Chapter 3
Polynomial Approximation and Interpolation in Besov Spaces

Approximation of functions in fractional order Sobolev spaces is treated as well as
the usual integer order spaces and several nonstandard Sobolev-like spaces. We have
the results of the determination of the interpolation spaces between a pair of Besov spaces;
an atomic decomposition for functions in Besov space; the characterization of the class of
functions which have certain prescribed degree of approximation by dyadic splines . We
study Besov spaceng‘(Lp(Q)) ,0<p,q,a <o, on domains Q in R4 . This is then used
to derive various properties of the Besov spaces such as interpolation Theorems for a pair
of

BZ(L,(Q)) , atomic decompositions for the elements of Bf(L,(Q)), and a description

of the Besov spaces by means of spline approximation.
Sec (3.1): Functions in Sobolev Spaces:

Approximation properties of finite element spaces are often derived using variations of
the so-called Bramble-Hilbert Lemma [91], [92]. This lemma is based on an inequality of

the form
6 a
(5:) 7

wherePis a class of polynomials, A is an associated class of multi-indices, and ||-|| and ||
denote certain Sobolev norms. An inequality of the form (1) can be found in Morrey
[103] (and implicitly in Sobolev [105]) for the case of P being all polynomials of degree
at most r, A being all multi-indices of length r + 1, ||| being the norm on W,™ and ||

infllf—Pl<C) , 1)

a€EA

being the norm on L,. In the second Bramble-Hilbert [92], (1) is derived for certain
classes P that range from the polynomials of degree at most r to the polynomials that
are of degree at most r in each variable separately. Motivated by particular applications,
we extend (1) by allowing more general collections P and A and, further, by deriving

inequalities Ofthe form

Where {P]} is a collection of homogeneous polynomials of degree [; and P is the

' — Pl <
infllf P”—CZ
J

intersection of the kernels of the operators P;(d/dx).

The proofs of Bramble and Hubert used the results of Morrey and
generalizations thereof. The proofs of these results are non constructive and cannot be
used to estimate the size of C in (1) or to determine how C would vary as a function of
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the domain. Sobolev's approach to imbedding theorems is based on an explicit
representation. of a function as a polynomial plus a remainder term.

The results presented here use a related representation that is derived as an averaged
Taylor's series . This representation can be manipulated in various ways to get bounds
of the form (1) and (2). Although we do not explicitly calculate the associated constants
here, it is easy to see what parameters they depend on, and, in particular cases, the
proofs could be used to bound them. (The results of are somewhat of an exception to
this; see Remark (3.1.8).) We have calculated these constants in one special case [96].
Further, the form of proof used here allows the dependence of the constant on the
underlying domain to be clarified. The basic results of this section are derived initially
for domains that are star-shaped with respect to (each point of) a ball and in these cases
the constants are seen to depend on the domain only through its diameter and the
diameter of the associated ball. Having this type of dependence makes it easier (or
possible) to treat the perturbations of the domain that are frequently needed to handle
curved boundaries by finite element methods . Our results are also extended to regions
that may be viewed as a finite union of domains that are star-shaped with respect to
balls. Polynomial approximation results for such regions have been derived by Jamet
[101] using an entirely different approach. These regions include ones satisfying the
cone condition used by Bramble and Hubert [91], [92], but are slightly more general.
When functions are approximated by piecewise polynomials on a mesh of size h > 0,
the bound for the error typically involves Atoa positive power. In most cases, the power
decreases by one for each additional order of differentiation applied to the error. One
purpose of our results on tensor-product polynomial approximation is to show under
what conditions one should expect not to lose a power of h when differentiating the
error. An application is given to illustrate this point.

There are situations in which it is necessary to approximate a function satisfying
a homogeneous, constant coefficient differential equation by polynomials which also
satisfy that equation. The approximation results following from (2) can be used to treat
such cases. An application is given in which harmonic functions are approximated by
harmonic polynomials.

Our proofs of (1) and (2) are based on a basic representation formula of a
function as a polynomial projection plus a remainder derived. An important property of
the projection operator is that it commutes with differentiation, that is, a derivative of
the polynomial projection of a function is the same as an associated (lower order)
polynomial projection of that derivative of the function. This commutativity property is
used in a crucial way to derive the results described in the previous two paragraphs.

Frequently, one is interested in the best possible approximation of a function
subject to the constraint that a function and its approximation agree at certain points
[90], [95], [104]. Restricting to integer index Sobolev spaces excludes certain interesting
cases from study. Most of the results in this section are proved for the integer case,
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estimates of the form (1) involving fractional order Sobolev norms are proved, and an
illustration of their application is given.

Several of the questions we discuss here have been treated from different points
of view by many authors. Our interest in these questions comes from studying the
approximation results that are needed to analyze finite element methods. In this area,
the work of Bramble and Hubert [91], [92] is fundamental. The work of Ciarlet and
Wagschal on multipoint Taylor formulas [94] is another approach to giving constructive
proofs of approximation results needed for finite element analysis and their results
played an important role in the evolution of this section. The basic representation given,
which we call a Sobolev representation, is quite similar to one used by Sobolev [105] in
proving imbedding theorems .However, it appears to be different from the one used in
[105] for which, in particular, it is not clear that the commutativity property mentioned
above is valid. A more recent treatment of related representations, as well as some
discussion of their applications in other work, can be found in an article by Burenkov
[93]. In [102], Meinguet gave a constructive polynomial approximation process that is
closely related to the Sobolev representation in [89], Arcangeli and Gout applied
Meinguet's ideas to Lagrange interpolation in R™.

Notation: Let x, y, ... denote points in R™, and let dx, dy, ... denote Lebesgue measure. If
D is a measurable set, p € [1,00], and f is a (real or complex valued) measurable
function, we sayf € L, (D) if

1/p
||f||L,,<D)s(j If(x)I”dx) <o (3)

with the usual modification when p = co. When p = o, 1/p is defined to be zero.

Let N denote the set of nonnegative integers. A multi-index a is an n-tuple of
nonnegative integers: a = (ay,..,a,),a; EN,i =1,..,n. We have the following

definitions:
la] = a; +a, + -+ ay, 4)
a<B iffe; <Bii=1,..,n (5)
(a+PB)i=a;+B,i=1,..,n, (6)
(¢ —B); = max{e; — B;,0},i =1,...,n, (7)
ol = () () ... (), (8)
x® = (x1)(x;%) . (%), and ©

aq [4%) an

) =) Gr) ) 10
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We let §%,i = 1, ...,n, denote the multi-index whose ith component is 1 and the rest are
Zero:

: 1, j=1i
| —
51"{0, j#i, 1D

When D is an open set, denote by C* (D) the space of infinitely differentiable

functions in D. For f € C®(D), we use the notation

a a
F@O(x) = (a) f(x)(x € D). (12)

Let C5° (D) denote the subset of C* (D) functions that have compact supportin D.

Let D(D) denote Cy°(D) topologized with the usual inductive limit topology [100]. The
dual D’(D) of D(D) is called the set of distributions on D. If ¢ € D'(D) and if a is a

multi-index, ¢® is called a distributional or weak derivative of ¢, where ¢® is defined
by

¢@(f) = (=Dp(f@), feDD).

A distribution ¢ € D'(D) is identified with a function ¢ defined on D if for each
f € D(D),Yf € Ly(D)and ¢(f) = fD Yf dx. In this case we shall let ¢ denote the

identified function, 1, as well.

If m € N and if for each « € N™ with |a| < m, ¢® is given by a function such
that

I$lpr = D 6@, ) <, (13)

|a|sm

then ¢ € W,™(D). Note that C* (D) n W,™ (D) is dense in W,™(D)provided p < . (See
[98] for a proof.) If D has finite measure, then W,"(D) c W;"(D) if1 < q < p < o (by
Holder's inequality). For ¢ € W,™(D) let

|¢|Wﬁn(D) = Z ||¢(a)||Lp(D)_ (14)

la|=m
Let r be a positive integer, and denote by P, the space of polynomials in n
variables of degree less than r. Let P, = U;2; %,

Let D be a bounded set in R™ with diameter d. Suppose D is star-shaped with respect to
every point in an open ball B. Let ¢ € C;°(B) have integral one. Throughout , D,d, B,
and ¢ will remain the same.

Sobolevs Representation.If f € C*(D), I is a positive integer, and x € D, then
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f(x) =9 (x) + R f(x), (15)

where
o= [ sorromay (16)
lal<t “B
is a polynomial of degree less than [ and
Rf@ = Y [ k@) ay. (a7)
lal=1"P
The kernels k, are given by
« = U/a)(x —y)*k(x,y), (18)
where
1
k(x,y) = j s 1p(x + 57 (y — x)) ds. (19)
0

Remark (3.1.1) [87]:

As a function of y, k(x,-), and, therefore, each k,(x,), is supported in the convex
hull of {x} U supp ¢; in particular, the region of integration in (17) is contained in a
compact subset of D.

Remark (3.1.2) [87]:

Integration by parts shows that Q' is defined for all f € D’'(B) and that, in
particular, for f in L, (B)

10 lyiss oy < CO0L d, I f Ly oy 20)

Proof of the Representation:
Letx € D,y € B, and use Taylor's theorem:
X — a _ a
fa= Y E D pwgy g 5 EIS j SLF@(x + 5(y - x) ds.
lal<l la|<t
Multiply by ¢(y) and integrate with respect to y:

fx)=Q'f(x) +1 Z jqb(y)(x y)“j 1@ (x 4+ s(y — x)) ds dy.

lal=L

109



Using Fubini's theorem and the change of variables z = x + s(y — x), one finds

j P (x —y)© jolsl‘lf(“)(x +s(y —x))dsdy
= jol j P (x —Y)* s D (x +s(y —x))dy ds
_ jol j d(x +57(z — 1)) (x — D)% D (2)s"dz ds
= j(x —2)*f@(2) (jolqb(x +s 1z - x))s-n-lds> dz

= aT'j k,(x — 2)f®(2) dz.

The use of Fubini's theorem is justified because

lk(x,y)| = j¢(x+s‘1(z—x))s‘”‘1ds
0

<c¢glx—z™=

1
j ¢(x+s71(z—x))s" ds
|z—x|/d

wherec; = ||¢||L°°(B) a"/n
Remark (3.1.3) [87]:

In view of (18), it follows as in (21) that

B

()

14
<Cn.ld.¢, 18] lyDlx — y|lel-n-1BI=I¥,

(21)

(22)

In view of the Sobolev representation and (22), estimates of the approximation

error u — Q'u may be reduced to consideration of the Riesz potentials

I () = j Ix = Y1 () dy.

The following proposition collects several known results in the form we find useful.

Proposition (3.1.4) [87]:

(23)

Let [ be a positive integer and let p and g be in [1, »]. Suppose that 1/q — 1/p +

[/n = 0 and that a is a positive lower bound for
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n1 1 1 11
max{[—],———+—,min{1 ——,—}},
ntbq p n qp

where[x]is the largest integer not greater than x. Then L' maps L,(D) to Ly(D) and for
all f € L,,(D)

I fllLyoy < € L d, L )-
Proof:

Let

I-n
R _ {le forx <d,
() 0 for x > d.

Then, for x € D,
I'f(x) = R, * f(x),
wheref is extended to R™ by zero outside D.

For ! > n, R, is bounded and, hence,

W'l oy < C, L DSl 0y

The result then follows from Holder's inequality.

Now suppose that! <nandthat1/q —1/p+ l/n = o > 0. For this case we
apply Young's inequality [108] to obtain

W N0y = IR * fllyy < IR, cemylIf 1L, 0,

wherel/r=1-1/p+1/q=>1 —1l/n+ o0.But

1/r
< oo,

d(l—n)r+n

IRl rmy = C(n) [m

since (f — n)r +n = onr. Hence, the proposition holds in this case as well.
Now suppose that / <nand 1/q-1/p +1/n = 0. Then it is a standard result
(cf. Stein [107]) that
Il emy < Cn Lp, DIl amy,

provided that p > 1 and p < n/l, i.e, q < oo. It is clear from the proof in Stein
referenced above that the constant C(n,l,p, q) can be chosen to be continuous in pand
q, and hence bounded by
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11
C(nl,o0) = sup{C(u, Lp, q):rnax(l —E,a) > 0} < oo,

This yields the proposition in the case 1/q—1/p+1/n =0and max(1 —1/p,1/
q) =0 > 0.

Now suppose 1/q —1/p+1/n is positive, but arbitrarily small, and
max(1 —1/p,1/q) =20 >0.1f1—-1/p > 1/q, chooseq such that 1/§—1/p+1/n=0.

Since max(1 — 1/p, i/a) > o, the previous case implies that
||Ilf||La(D) S C(nr lr dr O-)”f”Lp(D)r

forall f € L,(D). Since 1/G < 1/q, Holder's inequality yields the desired result. If on the

otherhand 1 — 1/p < 1/q, choose p such that1/q —1/p + l/n = 0. The previous case
again implies that

1 llg) < €00 L d, DIf M0,

and Holder's inequality applied to the right-hand side yields the desired conclusion.
This completes the proof of the proposition.

Remark (3.1.5) [87]:

The above proposition may be interpreted via the following 1/q v.s. 1/p
diagram:

1/q

A

I

(24)

The proposition holds for all pairs (1/p,1/q) in the closed unit square excluding the
shaded region lying below the line 1/qg = 1/p —[/n and excluding the two points
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(I/n,0)and (1,1/n). Furthermore, the norm of I*:L,(D) = L,(D) can be bounded
uniformly in the closed subset of the unit square excluding the shaded region and
excluding discs of radius ¢ around the points (I/n,0) and (1,l/n). However, as o is
allowed to tend to zero, the norm of f tends to infinity. (If [l > n, then I is bounded
uniformly for all p and q.) Notice that for all [,n, p, and g for which the proposition is
applicable, it is also applicable for I, n,p’, and g for some p’ < . This observation will
be used later to restrict attention to finite p in order to allow the use of a density
argument.

The restriction that p # 1 and q # ©© when 1/q = 1/p — l/n is necessary since
the Riesz potential of order / does not map L,(R™) (respectively, L»(R™)) into
l

Lpm-1(R™) (respectively, L., (R™)); see Stein [106]. However that the case p = 1 may be

treatable by another argument is indicated by the fact that the Sobolev embedding holds
in this case; see Stein [106].

Viewing the Sobolev representation of f as giving a polynomial approximation
(Q'f), there are now two natural polynomial approximations to the derivatives off,
namely, (0/9x)%Q'f and Q' !*I(3/dx)*f. Both are polynomials of degree less than
[ — |a||. Schematically,

0
L9 i (25)

917
Py @’ Piojal
Theorem (3.1.6) [87]:
The diagram (25) commutes, i.e. for f € D'(B), (8/0x)*Q'f = Q'~1el(a/0x)*f.
Proof:
Let f € C*®(B) and let x, y € B. We write the Taylor polynomial of f as
nif = Y e S22

|la|<l

Then

(2) @) =1 ((;—x)ﬁf> @),

as is easily proved by induction. But since
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0'f() = [ 9T I a,

the result follows by differentiation under the integral.

The result then follows for f € D’(B) since (0/dx)%is continuous on D’ (B)Q¥ is
continuous from D’(B) into Py, and C*(B) is dense in D'(B) [100].

Combining Proposition (3.1.4) with Theorem (3.1.6) gives the following:
Theorem (3.1.7) [87]:

Let m and [ be integers such that 0 < m < [, and let p and g be in [1, 0]. Suppose
that, with] =1 —m,1/q — 1/p + [/n > 0 and that

.o.1 01 1T 11
0 < 0 < max [l/n],———+—,m1n{1——,—} .
q p n pq

Then for f € W}(D)
If = Q'fllwgroy < €, L d, NIf iy .

Proof:

In view of Remark (3.1.5), it suffices to assume that p < oo, for then the general
case follows from Holder's inequality. Since C®(D) N W} (D) is dense in W} (D), it

suffices to prove the estimate for f € C*(D) N %l(D). Take a € N™ such that |a| < m.
Then by Theorem 1,
6 a
<6_) (f = 0'f) = f@ — gl-lalfl@) = pi-lalfla),
X
Thus the result follows from (22) and Proposition (3.1.4)
Remark (3.1.8) [87]:

Sobolev's proof [105] of the imbedding theorems was essentially via Theorem
(3.1.72), Remark (3.1.2), and the triangle inequality:

||f||W5"(D) < ||f - Qlf”W;"(D) + ||Qlf||W;"(D)
< Cllflwlg(p) + CZ”f”Ll(D)-

It is not clear that Theorem (3.1.6) holds for the representation used by Sobolev, but as
noted below, Theorem (3.1.7) does not really rely on the commutativity.

Remark (3.1.9) [87]:
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The estimate in Theorem (3.1.7) could likewise be derived without using
Theorem (3.1.6) simply by differentiating under the integral, in view of (22). However,
the use of the commutativity becomes crucial in the next two sections.

Remark (3.1.10) [87]:

Note that if m = [, then the conclusion of Theorem (3.1.7) remains valid for
q < p. This follows because

|f - Qlflwa(p) = |f|qu(D)-

Let A be a set of multi-indices, and let the polar of 4, A°, be the set of multi-indices given

by
A° = {ﬂ € N":(aa—x)

If A and s are two sets of multi-indices such that A © B, then A° c B°.

a

xP=0foralla € A}. (26)

Two sets of multi-indices that play important roles are the following:
A={a € N*|a| =1}, B ={l6%,..,16"}.
In these cases
A ={B:Ipl < 1}, B ={B:8;, <1l fori=1,..,n}

The set A° is naturally associated with complete polynomials of degree less than [ while
B is naturally associated with polynomials that are of degree less than [ in each
variable separately.

For any set of multi-indices A define the base of A,A_, as the collection of all
a € A such that f € A and f < « implies that § = a. Note that A° = (A4_)° since a € A
implies that there is y € A_ such that ¥ < a, and hence (9/9x)Yx® =0 implies
(0/0x)*xB =0

Lemma (3.1.11) [87]:

Alis a finite set if and only if there are nonnegative integers ;,i = 1, ...,n such
that

{réti=1,..,n}cA
Proof:

The "if' is obvious, since

A° {ri(Si:i =1, ...,n}o ={a:a;<mr,i=1,..,n}
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To prove "only if, suppose that, for some i, {n(Si: ne N} N A = @. Then for a € A, there is
some j # i such that a; # 0, and so if f is any function that is constant as a function of

xj, then f(® = 0.In particular, if f depends on x; alone, then f(® = 0 for all « € A.
Thus, {n5i: ne N} c A%, and hence, 4° is not finite.

Remark (3.1.12) [87]:

If A° is a finite set, then it follows from Lemma (3.1.11) that
gl < imgxlel — 1),

Note that it also follows from Lemma (3.1.11) that if A° is finite then the class of
polynomials spanned by xf for f € A° is a subset of the tensor product space of
polynomials which are of degree less than r; in x;fori = 1, ..., n.

Extended Tensor Product Representation. Given a finite set A of multi-indices
such that A° is finite and given f € C*(D),

fx)=0%f(x) +R4f(x), x €D, (27)
where
orrw =7 | s @ E= 2 gy (28)
and
R@ =y [ elendr©@may 29)

If A° = @, then the sum over A° is identically zero. The kernels k, satisfy

B Y
G ) s

where [ = 1 + max ¢ 4o|a|.

<C(l,no,d, Bl lyDx — y|la-n=IBl=I¥] (30)

Proof:
Consider Sobolev's representation of order [:
fx) = Q'f () + RIf(x) = Z ¢(y)f(“)(y)%dy + Z j ka(x, )@ () dy

|la|<l |la|=1
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The set of all multi-indices N™ decomposes into two disjoint sets, namely A%and
A={f:3a€Ada<B}=A+N"=A_+ N" Sincel > (maxﬁerIﬁI,IaI = l) implies
that @ € A. Thus, we have

flx) =Q4f(x) + Z jqb(y)f(“)(y)( d + Z jk (x, ) f@O(y)dy
|la|<l |la|<l
agA°

and the sums in the remainder terms are over a € A. It remains to convert these terms
to the form (29). But, for each a € 4, there is some 8 € A_ such that 8 < «a, so we may
write f(® = (3/0y)* # f(B) integrate by parts |a — 8| times, and obtain

— v 9\TF — v
[s0)r@6) E= 2 ay = ayest | {(ay) [qb(y)%]}f@(y)dy

or

j ko (e, y) f@(y) = (—1)leFl j {(%)a_ﬁ ka(x,y)}f(ﬁ)(y)dy.

Summing over all @, we obtain (29); it is not clear whether the Eﬁ are uniquely

determined by the above process. Estimate (30) follows from (22).

We now consider the commutativity of Q4 with differentiation. For two
multiindices aand £, (7) defines a new multi-index a — . Note that « — f is defined
even if @ £ B and that (¢ — ) + B = «, with equality if and only if « > . Given a set A
of multi-indices and a multi-index S, define anew set A — f € N" by

A—B={a—pB:a €A}
Since (4 — B)° c A% we see that if A° is finite then so is (4 — )°.
Theorem (3.1.13) [87]:

Let A be a finite set of multi-indices such that A° is finite and let 8 be a multi-
index. Then

B

<aa_x) QAf — QA—ﬁf(ﬁ)for any f € D'(B). (31)

Proof:

It is easy to see that (0/0x)Y#x% = 0 ifand only if (8/0x)Yx%*# = 0. Thus,
8§ € (A—p)Cifand onlyif § + B € A°. Hence,

A-p)°={6—-pB:6 €A% =p}
Thus, for f € C*(B),
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(2Y 0= Y [sorrmm &2t

o — B
YEA
vzp
= S [omrewo) S 4y - gaspw,

se(A-B)°
The result follows for f € D'(B) by density.
Remark (3.1.14) [87]:

Note that both sides in (31) are zero unless 8 € A°. The remaining results in this
section and the results ,hold for functions that are in a function space described in
Remark(3.1.20). In each case it suffices to prove these results for functions in C* (D)
such that all relevant norms are finite. The definition of the function space is delayed so
that it need be given only once and because the intervening results make the
appropriateness of the norm used much more apparent.

Theorem (3.1.15) [87]:

Let A be a finite set of multi-indices such that A° is a finite set; let s be any multi-
index; let [ = minge4—piet || ; let m be a nonnegative integer less than [; and let

{q} U{py:a € (A—B)_} c [1,0]. Suppose that
min{%—i+(|a| —m)/n:ae (A—ﬁ)_} >0

and that 0 < o < min{u,: @ € (A — B)_}, where, with @ = |a| —

Ug —max{[a/n] %—i+§ rnln{l—i 1}}

a Pa 4
Then
[ | scmapmase 3 pren
ox wq" (D) - T ac(A-f)- Lpa(0)
Proof:

Use Theorem (3.1.13) to see that

(;—x)ﬁ (f = Q4f) = RAFFIF),

Thus, it suffices to prove the result for § = 0. Differentiating under the integral in (29)
and using (30) and Proposition (3.1.4) completes the proof.
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Theorem (3.1.16) [87]:

Let P;,..., P, be nontrivial homogeneous polynomials (in n variables) of degrees
ly,..., Iy, respectively, having no common (nonzero) complex zero ithis forces k > n.
Define

K= {f € D'(R): P, (;—x)f =0 forj=1, k}

Then K c 7. for some integer r. Let [ = min; < [;; let m be a nonnegative integer less
than [; and let {pj:j =1, ...,k} C [1, oo]. Suppose that

1 1 :

andthat0 < g < min{uj:j =1,..., k} where, with[; =, —m,

- 1 1 . 11
- =maxi|l/n ,———+l-/n,min{1——,—}}.
Hj {[1 ] q p; 7 p.'q

Then

5 (5)7

k
InEIf = Qlhwgrcoy < Cnm, (P}, 6,0) )
j=1

Lp, (D)
Proof:

As is Agmon [88], it follows from Hubert's Nullstellensatz that there is an integer
r such that for all |a| =,

k
£ = REOPE) (32)
j=1

for some polynomials R{* that are homogeneous of degree r — ;. Thus each f € K

satisfies f(® = 0 forall |a| =1,i.e, K C p,.

Since K c p,, it follows that for any P € p,

p(a)p
I\ox

whereD* is the ball of diameter 2d concentric with B, because of the equivalence of

)

LP]-(B)

k
IEIP = Qllwpry < € ).
j=1

norms on the finite-dimensional space p,./K. Therefore,
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k
d
inf [P — Qllyg SCZ P'<_)P ' N
QII€1K|| Q”Wq (D) ' I\ox Lp (D) 4

j=1

With C depending only on the diameter d of D, the diameter of B, and {P]} (The
independence from g and {pj} can be achieved using Holder's inequality.) Using

Sobolev's representation of order r and the triangle inequality, we get

éfellf(”f - Q”W;"(D) < ||f _Qrf”W;"(D) + églf(”QTf - Q”Wgn(D)

k
d
< IR fllugroy + ¢ ) ||Pr(52) 27|
e Lp (D)

Because of Theorem (3.1.6) and the linearity of 9",

f’;’(%)QTf: |Z Caj (aa_x)a of = Z CajQ" I = QTP (aa_x)f'

al=u lal=t¢

Thus, Remark (3.1.2) shows that

()07 5 (5)7

It now remains to estimate R” f. Using (32), we have

<C

L1(D)

<C

5 ()7

WD) Lp,(D)

RI@= Y [ k@ ay

lal=r

_ Z ija(x,y) [R;?‘ (%)P,-(%)f] () dy

lal=r j=1

=Zk: j L;T(—l)deg’e? R (%) ka(x,y)

j=1

P (%) fdy.

Since deg R* = r — l;, (22) and Proposition (3.1.4) imply that

5 ()7

)

Lp; (D)

k
IR Fllwrcoy < € )
j=1

and this completes the proof of the theorem.
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Remark (3.1.17) [87]:

If A={al,...,a*} is a finite set of multi-indices and {P]} is defined by
Pi(x) = x“jforj =1,..., k, then A° is a finite set if and only if P;, ..., P, have no common
(nonzero) complex zero. This is because K N P,, is the space spanned by {x#:8 € A°};
hence, dim K N P,, = cardA°. The proof of Theorem (3.1.16) thus contains the "if" part

of our assertion. To prove the "only if part, suppose there is someé # 0 such that
Pi(&) = §al = 0forj =1,...,k. Then some component, say &; of & must be nonzero, and

so none of the a’'s can be of the form r&%,r € N; hence, A° is not finite (Lemma
(3.1.11)).

Remark (3.1.18) [87]:

The proof of Theorem (3.1.16) is constructive to the extent that the constant C in (33)
can in principle be computed (it is a finite-dimensional problem). The integerr
guaranteed by Hubert's Nullstellensatz depends only on [, ..., l; cf. van der Waerden
[107].

Remark (3.1.19) [87]:

If 0 # & € C™ is such that P;(§) = Ofor j =1, ..., k, then P]-(O/Ox)efx =0,so that K ¢
Po- Thus, this condition is necessary for polynomial approximation theory. (Note that
even if the P;'s have real coefficients, there is a real-valued non polynomial function in

K, namely,
P;(3/0x)(Re e%*) = Re (P;(8/8x)e**) = 0,
so it is necessary to consider all complex zeros of the P;'s.)

Remark (3.1.20) [87]:

The estimates of Sections (4) and (5) are valid for functions f in the space H
defined as follows: Let {P]} and {pj} be finite sets of polynomials and extended real

numbers as in Theorem (3.1.16). Take H to be the subset of L,;(D) consisting of
functions f such that the distributional derivatives P;(d/0x)fare elements of ij (D).

This is a Banach space with the norm

1 llz, o) + Z Pj (aa_x)f
j

Further, when all the p;'s are finite, the set C*(D) N H (see below), and this allows to

Lp,(D)

be carried through in view of Remark (3.1.15).

The claimed density of C*(D) N H is not easily seen by the standard partition of
unity argument (cf. [98]), but can be demonstrated as follows: Assume that 0 € B, and
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forr = 1let f,(x) = f(x/r) and D, = {x: x/r € D}. Since D is star-shaped with respect
to B,D cc D, for r > 1.Given f € H, itis easily seen that f, € H and that f, > rin H
as rl1. Thus, it suffices to approximate f,., by a function in C*. If
Y € CS(RM), [ P(x)dx = 1, and P (x) = e ™P(x/€), thenas €1 0y, * f, > f, in L, of
any compact subset of D, provided P < . Hence, Y, * f,. = f-in L;(D).

Finally, since P;(0/0x) (¢ * f,) = Y * P;(0/0x)f,, we see that o * f, —> f, in Hasel
0.

For m > Olet m = m + 6, where in is the integer part of m; i.e, m € N and
0 < 0 < 1. For positive nonintegral m and 1 < p < oo define

@ (x) — F@ NP
|l = Z ﬂlf &) — /0 dx dy. (34)

X — 7'l+9P
|al=m pxD | yl

For p = oo define the seminorm by

(a) — fl@
o = Z esSsup|f ) —f (y)l_ (35)

DXD |x_y|l9

la|=m

The space W,™(D) is the set of all W,™(D) functions such that |f|W1§n(D) < oo, and its

norm is defined by

||f||w,§"(D) = ||f||Wgn'(D) + |f|W,§"(D)-

Proposition (3.1.21) [87]:

Suppose that 1<p <o, m=m+6 where mMmeN and 0<6 <1, and
I = m + 1. Then there is a constant C = C(n, ¢, d, m) such that for f € W,™(D)

If = Q' fllL,) < Clflwiroys (36)
whereQ' is defined in (16).
Proof:

First take 1 < p < . Then, we can assume without loss of generality that
f € C*(R™). (See [99].)

Suppose that a is a multi-index such that |a| = [, and take j to be such that
a = B + 67/ where 8 is a multi-index. Let

Re@) = | FOOIke (1) d, 37)
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wherek,, is defined in (18). This can be written as follows:

d
Ro(x) = | =—[fB ) - fB(0)]ka(x,y) dy
V.

p 0Y;j

0
( —j [f(ﬁ)(y)—f(ﬁ)(X)]a—ka(x,y) dy )
_ 11{34 {y€eD:|x—y|>€} Yj ¥ (38)
[ 00 - Pk g - e as |
k [x-y|=€ }
whereds is surface measure.

The surface integral in (38) tends to zero as e N 0. To see this note that, for
|x — y| =€, (22) implies

lko (x, y)| < Ce'™™,
that, for |[x —y| = ¢, f € C*(R") implies
lF B Q) - FPX)| < Ce,

and that

j 1ds = Ce™ 1.
[x-y|=€

Using (22) again, we see that

lF B () — FB ()|
lx — y|" '

IR, (x)| < Cy (39)

Note that the integrand is in L! since it is bounded by C|x — y|™"*1. Holder's inequality
and (39) imply that

[P - fO@[

|x — y|n+ép (40)

IR ()P scj |

Integrating this with respect to x and summing on |a| = [ gives (36) for the case p < oo.

Note that the C in (40) is just

/v’ ® L\ VP
Co (j Ix—yl‘"+9P'dy> <1Go (f(l ——)) e,
D p

wherew,, is the measure of the unit (n — )-sphere. Thus the constant C in (36) can be
taken to be independent of p € (1,), and it is bounded for 6 in the interval (g, 1)
where € is positive.
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The estimate for p = o is complicated by the facts that, for nonintegral m,

W (D) & W™ (D)forp < oo and C*(D) is not dense in W,J*(D). In this case, note that
C™ > W (D).Form = 1 and for f € C"™(D),

=Y w6 4m

lal=m

+ —(x;!y : Lsm-l[f<“>(x+s<y—x>)—f“")(y)] ds. (41)

lal=m

This representation is just the first line of the proof of the Sobolev representation given
in ,except | was decreased to m and zero was added in a convenient form. Each term in
the second sum can be bounded by

2 I~ ypel j SP(L = 8)|x — Y11 ds |flwa o).

Multiplying (41) by ¢ (y), integrating with respect to y, and applying the above bound
gives the conclusion forp = 0 and m > 1.

For m = 0 replace (41) by the trivial relation
fG)=f) +[f) - fOI
Then proceed as above.
Proposition (3.1.21), when combined with Theorem (3.1.15), gives
Theorem (3.1.22) [87]:

Suppose that m=m+9, where 0 <8 <1 and m is a nonnegative integer. Let
I =m+ 1, and let Q' be defined by (16). Then there exists a constant C = C(n, ¢, d, m)
such that, for 1 < p < oand f € W™ (D),

||f - Qlf”Wg"(D) < C|f|w,§"(D)- (42)

The results, were derived under the assumption that the domain was star-
shaped with respect to each point in a ball. In this section we show how this constraint
can be weakened. In particular, the previous results can be extended to bounded
domains which satisfy the restricted cone condition (see below) that was used in [91],
[92]. In addition certain domains which fail to satisfy the restricted cone condition can
be treated (for example a slit disk in R?). The principal result of this section states
roughly that a domain has good approximation properties if it is a finite union of
domains with good approximation properties. In [101] Jamet uses a different method to
relax geometric constraints associated with polynomial approximation.
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First, we remark on the relation between domains which satisfy the restricted
cone condition and those which are star-shaped with respect to a ball. A bounded open
set () is said to satisfy the restricted cone condition if there exists a finite open cover

{0]-}521 of O and a corresponding collection {Cf};ﬂ of truncated right circular cones

with vertices at the origin such that if x € QN O; then x+ C; € 2. The following
remark is easily verified.

Remark (3.1.23) [87]:

If a bounded open set () satisfies the restricted cone condition then it is the finite
union of open sets D; each of which is star-shaped with respect to a B;.

That the converse of this result is not valid is easily seen by considering
Q={re?:0<r<1,0<6<2m},

where we identify C with R?. This domain fails to satisfy the restricted cone condition,
Q = D; U D,where

D, ={re?®:0<r<1,0<80<3n/2},
D,={re?:0<r<1,m/2<6<m}

The domains D; are star-shaped with respect to balls B; = {z: |z — zj| < 1/4} where
7, = 1/2 ei3™/4and z, = 1/2 piST/4

For each bounded nonvoid open set D let H(D) denote a linear space of
functions, and let H(D) be equipped with two seminorms ||. ||, and |||. |||p. Suppose that
these spaces and seminorms have the following properties:

a) The restriction of each element of H(D; U D,) to D, is in H(D,).
b) Foreachf € H(D, UD,),

Ifllp,up, < Ifllp, + 1Iflln, < 21lf1p,up,
and|l|f1llp, + Ilf1llp, < 2Il£1llp,up,-

C) P € H(D).
d) IfP € poand ||P||p, = 0, then ||P||p,yp, = O.

In the use of the results of this section, ||f||, will be a finite sum of terms of the
forrn||f“||Lp(D) and |||f]]| will include in addition terms of the form ||P(6/6x)f||Lp(D)
and ||

w? (D)’

Theorem (3.1.24) [87]:
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Suppose that Q) = U?’zl D; is connected and that each D; is a bounded nonvoid

open set. Let P be a finite-dimensional subspace of P, and suppose that there exist Q;
and C forj =1,...,N such that, for f € H(Dj),ij € P and

Ir = 2ifll,, < GlliFllo, (43)
Then there exists C, such that, forj = 1, ..., Nand f € H(Q),
lf = 9fll, < Colllflla. (44)
Proof:
It suffices to consider the case N = 2, since the general case follows easily
by induction. Let B = D; N D,; B # ¢ since ) is connected. By properties (b) and
(d) above, the seminorms [|P|[p, + |[P|[p, and |[[P]|z on P € p have the same kernel.
Using the equivalence of norms on the corresponding quotient space yields
IPllp, + lIPllp, < ClIPllgforall P €p (45)

for some constant C = C(D4, D,, p).

Suppose that f € H(Q) and that P; = Qffor j = 1,2. Note that

||f - Pl”ﬂ < ||f - P1||D1 + ||f - P2||D2 + ||P2 - Pl”sz
using property (b) and the triangle inequality. By (45),
||P2 _P1||D2 < C”Pz - Pl”B < C[”Pz _f”B + ||f _PlllB]-
with the previous inequality, applying (43), and using property (b) yields
If = Pilla < @+ O(Culllflp, + CllIfNllp,)
< (1 + O) max{C, G} IIf -
Remark (3.1.25) [87]:

In those cases in which the norm ||. ||, is translation invariant, as is the case for all the
Sobolev-type seminorms used so far in this section, the constant C in (45) can be taken

to depend only on d and d instead of D, and D,, where d > 0 is such that some ball of
radius d is contained in D; N D, and d = diam(D; U D,).

Remark (3.1.26) [87]:

It follows from Theorem (3.1.24) that Theorems (3.1.7), (3.1.14), (3.1.16), and
(3.1.22), hold if D is any connected open set that is the union of a finite collection of
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domains that are star-shaped with respect to balls. In Theorems (3.1.7), (3.1.15), and
(3.1.22), one chooses @ to be defined with respect to any ball contained in D. Note that
Theorem (3.1.16) still holds because Theorem (3.1.24) does not require the mapping 9
. to be linear or even continuous; hence, we may define Q; by taking anything

reasonably close to the infimum in Theorem (3.1.16).
Examples (3.1.27) [87]:

This section contains four simple examples that are based on the results . The purpose
here is to show how the refinements in those sections yield results that would not be
easily derived by results based on complete polynomial approximation or on more
restrictive tensor product results. First the results are used to show an error bound for
approximation by polynomials that are constant in one variable and linear in another.
Next, the results are used to show how well harmonic polynomials can approximate
harmonic functions. In the third example, the results are used to bound the
interpolation error in a case in which the function being interpolated does not have
enough derivatives to be able to apply the Theorems . The fourth example shows how
triangles with curved edges can be treated using our results.

Example (3.1.28) [87]:

In this example we consider approximation in two variables by polynomials that
are constant in one variable and linear in the other. One interesting question in this
context is whether differentiation of the approximating polynomial in the direction in
which it is linear gives a good constant approximation to the derivative of the function
being approximated. The commutativity of the operator Q4 with the differentiation
operator allows an affirmative conclusion.

Let h be a positive parameter, and let D, = (0,h) x (0,h). Take 8 = (1,0) and
consider, for f € C*(R?),

a\P
GDE inf{nf ~ Plliyco + H<£) F-pf e p}, (46)

L(Dp)
wherep = {a + bx;:a,b € R}.
For any function g defined on Dy, let §(x,,x,) = g(hx;, hx,) be defined on

D;. Note that

|G) o-»

Thus, since P € p ifand only if P € p,

(Z) ¢7-7)

— hl—lal

L(Dp)

(47)

Ly(D1)
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, 3 a\f .
n(f;h) = 1nf{hl|f - P||L2(D1) + H(a) (f-P) :P € p}.
Ly(Dy)
Fix ¢ € CS° such that [ ¢ = 1, where B is a ball contained in D;. Take A4 = {(0,1), (2,0)}
and let Q = Q4 be defined .Then, by Theorem (3.1.15),

h”f B Qf”Lz(Dﬂ < hC [”f(o'l)”Lz(Dﬂ + ”f(z'O)”Lz(Dﬂ] ’

g N ) (48)
|G) G-on|  scliFani, g, #1721, 4]

Ly(D1)

Adding the two inequalities in (48) and applying (47) with P = 0, we see that for
0O<h<1

(i) < ChllFO0, o+ IFAP, o+ 12N, o0 (49)

It is interesting to note that if we had restricted ourselves to the direct
application of the results .We would have not been able to show that n(f;h) =
O(h)since the largest class of complete polynomials contained in p is p; and
n(f;h) = 110/0x||,,p)if p is replaced by py, in the inf. Our results are related to those

used by Ewing [97] in deriving a similar cross derivative approximation bound.

To further illustrate the possible uses of Theorem (3.1.15), suppose that
q,p1,p; € [1,00), f D € L, (Dy), and f*O € Ly, (Dy) where 1/q—1/p;+1/2>0.
Then

inf{||f — Pl 0P € p} < Chl=%/Pit2/a||fOD)|| + h2%/az||f 2O

Lp,(Dp) Lp,(Dn)’
In general, direct application of results ,would not yield such a bound.
Example (3.2.29) [87]:

To construct an example of the use of Theorem (3.1.16), let

Py (x) =xT+1=00, for j=0,..,r+1, and let P, 3(x;,x;) = xZ+x%. The set K
consists of all harmonic polynomials of degree less than or equal to r. If we proceed
exactly as in the previous example, we see that for all f € C°(R?)

},Iel,f(“f =Pl =C

S VAT P G R | (50)

|la|=r+

We can conclude that if f is harmonic on D, then it can be approximated by elements of
K with an error Ch™*1,

Example (3.1.30) [87]:
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To give an application of Theorem (3.1.22) we consider the question of bounding
the error in an interpolation process. Suppose that 2 is a bounded domain in R? with a
polygonal boundary and that F is a family of triangulations of Q. For T € F, let
h = h(T) = maxycy diam(T). Denote by My = M,(1,7) the space of functions that are
continuous on {2 and linear (affine) on each T € 7. Assume that there is a p < o such
that foral TEF, TET = (diam(T))z/area(T) < p; this says that the triangles do
not degenerate.

For any function f € (2) let If = I;f be the element of My which agrees with f
at each vertex of T i.e, If is the piecewise linear interpolant of f. Itis well known (and
follows easily from Theorem (3.1.7)) that if f € W2 (Q), then

IF = Ifll iy < C2IF 2 -

However, if 0 < € < 1 and if f € W,1T€(Q), the results of give no error bound. A natural
approach would be to try to use the theory of interpolation of Banach spaces and use
results for W.2and W.,}; however, this fails because If is not defined on W, since the
elements of this space are not in general continuous.

Define Tx = {(x1,x3): x; > 0,x, > 0,x; + x, < 1}. For T a triangle in T € Flet A
be an affine map taking Tronto T. Assume, without loss of generality, that A is linear,
and note that ||4]| < Ch. For a function § € C(Tg) define I § to be the affine function of x
that agrees with g at the vertices of Ty; i.e.,

[§(x;,x2) = §(0,00(1 — x; — x5) + §(1,0)x; + G(0,1)x,.
Note that (f — If)(x) = (f — D(Ax), where f(x) = f(Ax). Thus
If = 1£12, ¢z = \detall|[F = T71; . . (51
Next note that for any P € P,
1F =171, o, = IF =P =1 =Pl

sincel is a linear map which reproduces polynomials in P,. Letting ||I|| denote the norm
of [ as a map of W}*¢(Tg) into L,(Tg) (which is finite by Sobolev's inequality) we see
that

I = 17l < (1 1) g7 =P
From Theorem (3.1.22) and the fact that IPIW%+£ = 0 for P € P,, it follows that

IF = T£1l,, oy < CIF] (52)

1 .
wz*¥(Tg)
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To estimate the right-hand side of (52) represent A as a 2 X 2 matrix that acts on
column vectors (x;,x,)T and then note that

e (FOON_ L (FOON
o = fon) = () =0

Where f® and f® are evaluated at x and Ax, respectively. Thus

ﬂ VF @) - V)|’

|x — y|2+26

dx dy

TrRXTR

= |det A| 2 ﬂ A" ((Vl];(i)})d:zz(y)ﬂ ( lx — y] >2+26 ey

A — )]
TXT
HAI**2€ ([ VGO — V)2
< .
—|detA|2j = yeree XY
TXT

From this result, (51) and (52) we see that

JAI ] o ﬂ IVF(x) = VF ()2

||f_1f||]%2(T) [ld tA| |x_y|2+26 dx dy'

Sum this result over triangles and use the nondegeneracy of F to bound the term in
brackets to obtain

Z j IVf(x) = VF)I?

|x — y|2+26

1/2
dxdy) < CRY€If| 1, (53)

—1 < 1+€
If = Ifll, < Ch ( @

TET TXT

If we had not needed to estimate the interpolation error but merely the error in the best
possible approximation in M+ a bound like (53) could be obtained by interpolating
between L,(Q) and W.2(Q). However, it is frequently the case that one needs to know
how well a function that vanishes on the boundary can be approximated by function
spaces that vanish on the boundary. In such cases bounds like (53) extend the error
estimates to their natural lower limits. One such example can be found in Douglas,
Dupont, Percell and Scott [95].

Example (3.1.31) [87]:

We now show how the above results can be applied to certain families of curved
domains. Suppose Q is a bounded domain in R? with smooth boundary Q. Let F be a
family of triangulations of () having straight interior edges and (possibly) curved edges
lying on 0(), and suppose that F satisfies the nondegeneracy assumption of Example
(3.1.30)

sup sup (diam(T))?/area(T) < p < oo.
TEF TET
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Such families of triangulations were considered in [104], where approximation
properties for the boundary triangles having a curved side were derived in a very
complicated way. The main difficulty is that now there is no fixed reference traingle, but
rather a family of reference domains. For each T € T € F, define an affine mapping by
sending the vertices of T onto the set {(0,0),(1,0),(0,1)}, and let the image of T be
denoted Tg. Again define h(T") = maxycs diam(T) for all T € F G F. For h, sufficiently
small (depending only on Qand p), if h(T) < hy and T € T, then Ty is contained in the
disc {|x| < 2} and is star-shaped with respect to the disc {|x —x,| < 1/8}, where
X9 = (1/4,1/4). Thus, the above approximation results apply to Trand, via the affine
mapping, to each T, with the constant C in the estimates depending only on (2 and p (as
well as the degree and type of polynomial approximation).

Sec (3.2): Besov Spaces

The Besov space BJ (L ) is a set of functions f from L, which have smoothness a. The
parameter q gives a finer gradation of smoothness (see (57) for a precise definition).
These spaces occur naturally in many fields of analysis. Many of their applications
require knowledge of their interpolation properties, i.e. a description of the spaces
which arise when the real method of interpolation is applied to a pair of these spaces.
There are two definitions of Besov spaces which are currently in use. One uses Fourier
transforms in its definition and the second uses the modulus of smoothness of the
function f. These two definitions are equivalent only with certain restrictions on the
parameters; for example they are different when p < 1 and « is small. The first and
simplest interpolation theorems for Besov spaces were for interpolation between a pair
Bg(Lp ) and B‘E(Lp ) with p > 1 fixed. In this case, the real method of interpolation for

the parameters (6,s) applied to these spaces gives the Besov space BZ(Lp) with,
y = 0a + (1 — 0)B. Hence, when p is held fixed the Besov spaces are invariant under
interpolation.

More interesting and somewhat ‘more difficult to describe are the interpolation spaces
when p is not fixed. Such a program has been carried out in the book of Petrel [121]
using the Fourier transform definition of the Besov spaces. The main tool in describing
these interpolation spaces is to correspond to each f in the Besov space a sequence of
trigonometric polynomials obtained from the Fourier series of. In this way, the Besov
space Bg(Lp) is identified with a weighted sequence spacelg(Ly). Interpolation
properties of the Besov spaces are then derived from the interpolation between
sequence spaces (when these are known). The success of this approach when p <1
rests on the fact that the corresponding Besov spaces are defined using H, norms so

that each f in the Besov space is a distribution and therefore has a Fourier series.

The Besov spaces defined by the modulus of smoothness occur more naturally in many
areas of analysis including approximation theory. Especially important is the case when
p < 1 since these spaces are needed in the description of approximation classes for the
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classical methods of nonlinear approximation such as rational approximation and
approximation by splines with free knots (see [121]).

The purpose of the present section is to describe the interpolation of the Besov spaces
defined by the modulus of smoothness. This is established by developing the
connections between Besov spaces and approximation by dyadic splines. We shall show
that a function is in B§(Ly) if and only if it has a certain rate of approximation by dyadic

splines . In this way, we can identify Bg(L,) with certain sequence spaces in a manner

similar to that described above for the Fourier transform definition. While the basic
ideas behind such identification is rather simple, some of the details become technical
when dealing with the case p < 1. One of the main difficulties encountered is that in
contrast to the Fourier transform case, the mapping which we use to associate to each
f € L, a dyadic spline is nonlinear when p < 1.

In the process of proving our 'interpolation theorem, we shall develop several
interesting results about dyadic spline approximation and about the representation of a
function f € Bg(L,) as a series of dyadic splines (see the atomic decomposition in

Corollary (3.2.14)).

Let Q be the unit cube inRY. Iff € Lp(Q), 0 <p < oo, we let w,(f, t)p, t > 0, denote the
modulus of smoothness of orderr of f € L,(€2):

w, (f, 1) = sup AL (f, )p(Q(rR)) (54)

Where |h| is the Euclidean length of the vector h; A} is the rth order difference with
step h € R%; and the norm in (54) is the L,, “norm” on the set Q(rh) = {x:x + rh € Q}.
Of course, when p < 1, this is not really a norm, it is only a quasi-norm, i.e. in place of
the triangle inequality, we have

If +gll, < 272l I, + N1l (55)

Also useful is the fact that for any p < min(1,p) and any sequence (f;)

M 1/u
1224 < (ZIIﬁ-IIp) (56)

Ifa,p,q > 0, we say fis in the Besov space Bg (L, ) whenever

IS = ([ o o0) o7

Is finite. Here, r is any integer larger than a. When q = oo, the usual change from integral
to sup is made in (56).

We also define the following "norm" for Bg(L;) :
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||f||Bg(Lp) =1fll, + |f|Bg(Lp) (58)

Different values of r > « result in norms (58) which are equivalent. This is proved by
establishing inequalities between the moduli of smoothness w, and w whenr' < r, A
simple inequality is w, < cw, which follows readily from (55). In the other direction,
we have the Marchaud type inequality:

1/u

0 (f,0p < |Ifll, + ( j (s, t))“?s) (59)

Which holds for every u < min(1, p). This inequality can be proved by using standard
identities for differences , we give a different proof of (59) using dyadic spline
approximation. Using these two inequalities for moduli together with the Hardy
inequality [113]], one shows that any two norms (58) are equivalent provided that
r >a.

There are many other norms which are equivalent to (58). We shall have occasion to
use several of these which we describe in later sections. A simple observation is

[ee]

1/q
Ifllsg,) = Ifll, + (Z |2k w, (f, 2"%]") (60)

k=1

In fact, since w, is bounded, the integral in (57) is equivalent to the integral of the same
integrand taken over [O,I]. Now, the monotonicity properties of w, allow us to discretize
the integral and obtain that (60) is equivalent to (57).

We want to show that oor(f, Z‘k)p in (60) can be replaced by the error of dyadic spline

approximation. This requires inequalities between the modulus of smoothness and the
degree of spline approximation. These will be given .To-estimate the degree of spline
approximation by the modulus of smoothness, we first need estimates for local
polynomial approximation. We define the local error of approximation by polynomials
by

inf

Er(frl)p = deg(Q) <r

If —ell,d) (61)

With deg (Q) the coordinate degree of Q. We use the notation || ||,(I) to denote the L,

norm over [; when I is omitted the norm is understood to be taken over (.
E.(f,Dp < cow (f, 1)), (62)

With ; the side length of I. Here and in what follows, c is a constant which depends only
on r,d (and p, if p appears) unless otherwise stated, the value of c may vary at each
appearance.
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Whitney's theorem is best known for univariate functions and p > 1. It has also been
proved by Yu. Brudnyi [112] for multivariate functions and p > 1. A proof of (62) for all
p and all dimensions d can be found in the section of Storozhenko and Oswald [123]. We
would also like to mention that the ideas used in the univariate proof for p > 1 carry
over to the general case. For example, in the forthcoming book of Popov and Petrushev
[124], the reader will find a proof of this type for p < 1 for univariate functions.The
modulus of smoothness is not suitable when we want to add up estimates over several
intervals. We therefore introduce the following modified modulus:

1/p
wr(f,)p = wr(f, 6,1y = [Ilfllp + (t‘dj j IA§(f,x)I”dxds> ] (63)

(rs)

Where Q, = [—t,t]9. Using identities for differences, it can be shown that w, and w, are
equivalent, ie, c;w.(f), < w (f), < c,w.(ft), with constants cq,c; >0 which
depend only on r,p and d (see [124] for a proof of this in the univariate case; the same
proof applies to the multivariate case as well). From this, we have the following result

Lemma (3.2.1) [109]:

If f€ L,(I), with 0 < P < co and if 1is a cube with side length I;, then
E.(f,Dp < cw.(f,1;,D) (64)
This result in a slightly different form can also be found in [123].

There always exist polynomials Q of best L,(I) approximation of coordinate degree
< 7 |If = Qllp(I) = E,(f,)},. In the present section we shall also find it very useful to use
the concept of "near best" approximation. We say Q is a near best L, (I) approximation

to f from polynomials of coordinate degree < r with constant A if
If —Qll,() < AE.(f, D), (65)
It follows that if P is any polynomial of coordinate degree< r, then
If —Qll, () < Allf — Pll,(I) (66)

One method for coustructing near best approximants of f is as follows. We let p < p
and we let Q, be any polynomial of near best L,(I) approximation to f of coordinate

f—Qull (D < AE.(£D),.

degree < r,1i.e, |
Lemma (3.2.2) [109]:
if p < p,and Q, is as above, we have

If = Qll,(I) < cAE.(f,D), (67)
with the constant c depending only onr, d and p.
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Proof.

Let Q be a best Ly (I) approximation to f of coordinate degree < r. Then, from

elementary properties of polynomials (see[119], we have with 6 = 1/p — 1/p,
If =@, < e (E-Cr.0, + Q= 0,
<c(E(f Dy +111Q - Q)

< c(E(F, Dy + 18 {llF = @ll, () + I = @Il (D])
< c(E.(f,Dp + 1P A+ DIIf = Qll,, (D)
< c(Er(f, Dp + (A + DIIf = Qll,(D) < cAE(f, 1)y

Here, the first inequality uses the quasi-norm property (55); the second inequality is a
comparison of polynomial norms; the third again uses (55); the fourth uses (66); and
the fifth inequality is HOlder's inequality.

We introduce the following notation. If [ is any cube, we let P denote any near best L, (1)

approximation to f from polynomials of coordinate degree < r with constant A. The
following lemma shows that P, is also a near best approximation on larger cubes.

Lemma (3.2.3) [109]:
Forany p = p and any cube | D Iwith |]J| < a|I|, we have
If = Pill, () < cE-(f.))yp (68)
withc depending at most onr, d, a and A.
Proof.

If P is the best L, approximation to f on ] from polynomials of coordinate
degree< r,then from (55) and Lemma (3.2.2),

1P, = Pll,(1D) < c[llf = Pll, (D) + IIf = Pl (D]
< c[E-(f, Dy + Er (f, )]
< cE.(f. )y
This estimate can be enlarged to ] (see [115]):
1P, = Pll,(J) < cE.(f,])yp

Hence,
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If = Pill,0) < c[llf = Pll, D +1IP = Pll, (D] < cE(F,))

Dyadic spline approximation. We want in this section to describe the connection
between Besov spaces and dyadic spline approximation. Our main goal is to show that
wy in (59) can be replaced by an error in dyadic spline approximation with a resulting
equivalent seminorm. This means that the Besov spaces Bg (L) are the approximation

spaces for tile approximation by dyadic splines inLj, . Such characterizations are known
when p > 1 (see [114]; also [118]) and whenp < landd = 1 (see[115]).

We let Dy denote the collection of dyadic cubes of RY of side length 27X and we let
Dy (Q)denote the set of those cubes I € Dywith I € . We introduce two spline spaces for
this partition. The first of these is [[x = [[x(r), the space of all piecewise polynomials of
coordinate degree < r on the partition Dy . That is, S € [[x means that in the interior of
each cube I € []y, S is a polynomial of coordinate degree < r. We denote by [[x(Q) the
restrictions of splines S in []xto Q.

A best (or near best) approximation sy to I in Ly(Q) from [[x(Q) is gotten by simply

taking S = P;,x € I, .where P, I € D (), is a best (or near best) approximation to f in
L, (I) by polynomials of coordinate degree < r on each cube I from Dy (). However, we

shall also need to construct good approximations from [ () which have smoothness.
For this, we shall use the tensor of product B-splines and the quasi-interpolants of de
Boor-Fix.

Let N be the univariate B-spline of degree r — 1 which has knots at the points
0,1,...,r,ie,N®X) = r[0,1,...,r](x —.)% ! with the usual divided difference notation.
For higher dimensions, we define N by

N(x) = N(xq)..N(xz) (69)

These are the tensor product of B-splines. They are piecewise polynomials of coordinate
degree < r which have continuous derivatives DVN,0 < v <r — 2, and derivatives
DYN in Ly, for 0 <v < r — 1. We use the notation k = (k,k,...,k). The splines N are
nonnegative and are supported on the cube [0, r]4.

To get splines in the space []i, we let
Ni(x) == N(2¥x), k=10,1,... (70)
and
N () = Ne(x — x;), j €z4 (71)

Where the X; = 27% are the vertices of the cubes in D,. The B-splines Njj are a

partition of unity, i.e
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Z Nix =1, onR“ (72)

jezd
Each spline S in the span of the N; ; can be written in a B-spline series:
S= Z & (SN, (73)
jezd

with the a; = a; the dual functionals of the N; ;. The functionals a;can be expressed in

terms of the univariate functionals:

where the univariate functional a;,. is applied to a multivariate function g by

considering g as a function of x,, with the other variables held fixed. There are many
representations for the functional @; .\We mention in particular, the de Boor-Fix formula

[111]. This representation gives that for any point ¢;in the supp (N; ), we can write
Sy= ) a,DUS)E)jEA (75)
o<r=r-1

for certain coefficients a,, depending on ¢; and r.

For approximation on {2, we need only the B-splines N;, which do not vanish identically
on . We let A= A(k) denote the set of j for which this is the case and we let
Yk =Xk (2) denote the linear span of the B-splines N;,j € A. Then any S € ¥, can be

written

S = Z(Z](S) Nj,k (76)

jea

For the representation of a; ,j € A, we shall choose the points ¢; as the center of a cube
Ji =Jjkx € Dy such that

§j€EJjC supp(Nj) NNjeA (77)

With this choice, we can define a;(f) for any f which is suitably differentiable at ;. In
particular, in this way, we have that q; is defined for any S € [[, From (75), it is easy to

estimate the coefficients of a spline S € [

Lemma (3.2.4) [109]:

We have forany 0 < P < oo and any S € [],

la;($)| < c2*4/?|is]I,(J;) (78)
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Proof.

This is well known for one variable and p > 1. A similar proof applies in the
general case. For example, from Markov's inequality applied to S on J;, and estimates for

the coefficients a,, (see [115]), it follows that
|a; ()] < cliSll ;) (79)

Since|]j| = 27k, (78) follows from (79) and the well-known inequality between L, and

L, norms for polynomials (see [119]). Closely related to (78) is the following.
Lemma (3.2.5) [109]:

IfS = Xjeaj Nji isin ¥ then forany 0 < p < oo we have

cilisll, < | ) la®)" 27+ ) < cilsll, (80)

JjEA
With ¢4, ¢, depending at mostond and r.
Proof.

Again this is well known (see [110]) when P > 1 and the general case is proved
in the same manner. For example, since )., [], the right side of (80) follows from
(78) and the fact that a point x falls in at most r? of the cubes J;.For the left inequality,

we use the fact that at most 7% terms in the representation of S are nonzero at a given
point x. Hence

p
NEILE CZ|0(]-| N;j (x)P
TeA

Integrating with respect to x and using the fact that the integral of ijk is less than c27*4

(because N; < 1) gives the desired result.

Now, let f be any function which is r — 1 times continuously differentiable at each of
the points ¢;. Then a;(f).is defined for all j and we define

%) = () Ny (81)
jea

The Qy are called quasi-interpolant operators. In particular Q, is defined for all S € [],
and it follows that Q, is a projector from [, onto Y: Q;(S) = S whenever S € Y;.:.

We want to examine the approximation properties of the Q. For this, we introduce the
following notation. If € D, , we let [ be the smallest cube which contains each of the Ij»

for which supp N;;, N1 # @. Then, [ ¢ 2 and || < c|I|with ¢ depending only on d and ,
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Lemma (3.2.6) [109]:
IfS € [][xrand 0 < p < oo, then for each I € D (12), we have
1@k, < cliSll, () (82)

And
IS — Q) (1 < cE, (S, i)p (83)
Proof.

We let A; be the set of j such that N;, does not vanish identically on I, We use the
representation (81) and the estimate (78) for the functionals «;, to find

ROTNOESSAON | HIETH O (84)

jEA
JEA] p

max o
<P ¢ g 2% 1ISI, () < ellsll, (1)

Because of (72). This is (82).

To prove (83), we let I € D, and let P be a polynomial of best Lp(i) approximation to S
of coordinate degree< r. Since Q,(P) = P, we have by (55) and (82)

IS = QeI (D) < [ellS = pll, (D) + 1Qk (S = pll, (D] (85)

< clls = pll, (1) = cE-(S, D),

Corollary (3.2.7) [109]:
If0 <p < oo, then [|Qx(S)Il, < cllpll,. forall S € ¥:
Proof.

This follows immediately from (82) when p = co. When 0 < p < oo, we raise
both sides of (82) to the power p and then we sum over I € D, ({2). Since each point
x € ) appears in at most c¢ of the cubes I, with e depending only on r and d, the
corollary follows.

We want to describe a class of methods for approximating each f in L,(f2) by
smooth dyadic splines from ). For each I € Dyand f € L,(12), we let P, = P;(f) be a
near best L,(I)approximation to f from polynomials of coordinate degree < r with an
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absolute constant A. We then define S, = S, (f) € [Ix,k = 0,1,..., to be the piecewise
polynomial

Sy = P,(x), x € interior(I), foralll € D, (86)
From (68), we have
If =PI, (I) €cE.(S, 1), € Dy (87)
with e depending only onr,d and A.
Going further, for each f € L,(12), we define
T = Te(f) = Qu(Sk(), k=0,1,.. (88)
Then Ty is in ). and we have
IT (Ol < cllfll, (89)

With ¢ depending only on r,d and A. Indeed, since P, is a near best approximation to f,
we have ||P|[,,(I) < clIfll,(I),I € Dy (2). Hence, [[S,(f)l, < clIfIl,. And therefore (89)
follows from Corollary (3.2.7).

Theorem (3.2.8) [109]:

For any of the operators T in (88) and lor each f € L,(#2),, we have

If = Te(Olly < cw (f,277), k=01,.. (90)
With ¢ depending only onr, d, p and A.
Proof.

From (83), we have for each I € D,(12),
If = Tiell, (D < [ellf = Sicllp, (D + 1Sk = Qe (Sl (D] (91
< c[lIf = pillp (D + E(Si 1y ]
<c|E(f.1), +E (S0 ]) |
Now, for any cube /] S [with € D, , we have from (87)

IS = Pl () = (1B, = Bl O) < ¢ [llf =2l ) + 1f = Pl )] (92)

<c [Er(f'])P + Er(f,i)p] < cE(f, i)p
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Since the number of cubes /] € D, contained in I depends only on dand r, (92) gives
E.(Sk, T)p < cE.(f, T)p If we use this in (91), we obtain

“f - Tk”p(l) < CET(f! i)p (93)

Now, each point x € Q appears in only a constant depending only on r and d number of
cubes 1. Hence, if we raise both sides of (93) to the power p and sum over all lin D, (),
and use (64); we obtain

IF-Tlb@s<c Y ot hy st [ [largorads 09
1€Dk(Q) Q; Q(rs)

With t = maxl; <c27%. Here, we have used the fact that w,(f,t") <
cw,(f, t),provided t' <t < ct’, Finally, (90) follows from (94)because each of the
interior integrals on the right side of (94) does not exceed w,(f, t)g which from the

usual properties of modulus is < cw, (f, 2"‘)5 .

Theorem (3.2.9) [109]:

Shows that the error of dyadic approximation can be majorized by the modulus
of smoothness. Namely, if we let

Se(Fp = InfIIf = sll, (95)

Then we have

Corollary (3.2.10) [109]:
For each f € L,(Q)and for eachr = 1,2,..., we have
Sk(f)p < cow(f,27F)k = 0,1,.... (96)
Itis also important to note that T}, (f)is a near best approximation from Z,,
Corollary (3.2.11) [109]:
If f € L,(Q),then
If = Tl < cSk(Fyp
With cdepending onlyonr,d,p and A.
Proof.

Let S be a best L, () approximation to f from X,. Then since
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Qr(S) =S, we havef — T, (f) = f — S+ Qx(S — S (f)).If we use the fact that Q,(S)is
bounded (Corollary 4.4), we obtain

If = Tl < c[llf =l +1IS = Sk (Ol ]
< c[lf =)l +1If = SOl < eSe(F)y -

Here, the last inequality uses the fact that S, (f)is a near best approximation from
[T, with constant A and the error of approximating f from II; is smaller than the error in
approximating f from X, (because X, c IIj).

We also need inverse estimates to (96). WeletS_; (f),, = lIfl,»,

Theorem (3.2.12) [109]:

For each k > 0, and each r = 1,2,..., we have for A := min(r,r —1+ 1/p) and
foreach f € L,

1

k
w0 (£,279 < cU| D 2250, )" (97)

j=1
Provided y < min(1, p).
Proof:

We let U, be a best approximation to f from X, and let Uy = Uy —Uy_1, k =
0,1,..,withU_; :== 0.1If || < r~127% and x € Q(rh), we write

k
AT (f, %) =AL (f = Uy x) + ZA; (W, x) (98)
=0

Then, from (63),

1/u
k
I8k (DI, (0w) < ¢ s (O + Y llaq (W), (26) (99)
j=0
To estimate || A%, (uj)”p(ﬂ(rh)), we write U;in its B —splineseries:
Uy = Z @y} (W) Ny, (100)

veA())
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For any x,at mostcB —splines (4.32) are nonzero at xwith cdepending only on r and
d.Hence,

laf (W = D law (W lag Mopx ) [P 0
vEA())

Now, we shall give two estimates for A}, (N, j, x ). The first of these is for the set 'which
consists of all xsuch that xand x + rh are in the same cube I € D; and N,,; does not
vanish identically onl. Since N, ;is a polynomial on/ whose rth order derivatives do not

exceed ¢2/", we have
8% (Nyjx ) [” < c@Ir)xeT (102)

Our second estimate is for the set I which consists of all x such that x and x + rh
are in different cubes from D; andN,, jdoes not vanish identically on both of these cubes.

SinceN,, ; € Wi~ (Sobolev space) has (r — 1) th derivatives whose Lp(£) norms do not

exceed ¢2/"~D we have
|aL (N, x ) | < c@/|A) ™ x e’ (103)

Now, the set ' has measure < c27/¢ because the support of N,; has measure <

c2774 Also ,I' has measure < c|h|27/(@~1D | Indeed, for x to be in I’ , we must have
dist(x,bound(I) < |rh| for the cube I which containsx. The measure of all suchx € [ is
less than c|h|27/¢4~D. Since N, jvanishes on all but ¢ cubes with depending only on

rand d, we have I'' < c|h|277/(4~D as claimed.

Using these two estimates for the measure of ' and I’ together with (102) and (103),
we obtain

j |a} (N, x ) | < c[|h[P277P274 4 |p|=DP 2/ =D || 27/@-D  (104)
Q(rh)

< c[|h|*P2/*P 24
Because|h|27¥ <r 1 < 1.

Now, we integrate (101) and use (104) to find
r Ap9 jAp Py—jd p
lar @I, < clri2 () e (w)[ 2)
< cln?® 27 ||| | < clhl® 27 [S;(B), + 51 (6),] (105)

where the next to last inequality is (80) and the last inequality is the triangle inequality
applied toU; = f—=U;_; — (f—U)).
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If we use (105) in (99), we obtain

TR

k

la% (W)l @rh) < c sk<f)ﬂ+|h|ﬂﬂ2[zfﬂs,.<f)]“ (106)

j=1

If we now take a sup over all |h| < r~127% (106) gives
1/p

k
0 (f, 279, < cap(F,r,27K), < c27K4 | 20us, (D# + Z [27%5,(P)]"
=1

Since the term 2"’1“5]- (f)* can be incorporated into the sum, we obtain (97).

It is also possible to estimate w,, for each r’ < r:

1

k
W (F,27, < 27 (Y @S (), (107)

j=1

Indeed, this is proved in exactly the same way as we have derived (4.29), except that, in
place of (102) and (103), we use the inequality

|a7 (Ny, 5, x)| < clhl™"2t (108)

Which follows from the fact that N, ;has all derivatives of orderr'inL,. With (97), we
can easily prove the Marchaud type inequality (59).

Corollary (3.2.13) [109]:

There is a constant ¢ depending only on p, 7, and d such that for each f € L, we
have the inequality (59).

Proof.
We have by (96):S;(f), < cw.(f,27),j =0,1°,... Also S_;(f), = lIfll,Using

this in (107) gives for2 %*~1 <t <27k,

1 k . u
wpr (f, £)p < cwpr(f,27%), < c27k <||f||§ + ijo[wr,(f,zz‘l)p] )

and (59)then follows from the monotonicity of w, .

The estimates of the last section allow us to introduce several norms which are
equivalent tol|f|lgz(.,)/fa = (ax) is a sequence whose component functions are in the

quasi-normed space X ,we use the [§(X) norms
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[ee]

1/q
lallg () = (Z[zkanaklu]q) (109)

k=0

With the usual change to a supremum norm when g = ©0.When (a;) is a sequence of
real numbers, we replace ||la, || xby |a,| in (109) and denote the resulting norm ||ak||zg .

Useful for us will be the discrete Hardy inequalities
||bk||zg < C”(ak)”zg (110)

Which hold if either

. 1/
Dbl = cZ‘k’l(Zﬁk[ZMlaj”H) Yor

(i) Ibi| < c(XFie|ay|u
(111)

Withy < g and (in (i)) a@ < A. Here, the constant ¢ in (110) depends only on r,d
and 1/(1 — @) in case of (i) and 1/« in the case of(ii).

in the following theorem, we let T, = Ty(f) be defined as in (4.20) for a given
r = 1,2,... and given near best approximations P, with constant A. We let t, = t;(f) =
Ty — Ty—1 withT_; = 0 and let A = min(r — 1 + 1/p, r), as before.

Theorem (3.2.14) [109]:

Let 0 < aand 0 < q,p < . If @ < 4, then the lollowing norms are equivalent to
N(f) = lIfllsg(,) with constants of equivalency depending only on d,r and 4 and the

constant of (110):
DN () = lse(Pllig + 71

N () = If = TePlligea,y + If1l (112)
GDONs(F) = I16(Plliger, -

Proof.

From Theorem (3.2.9), sk(Hp < If =T, < cwr(f,27%), .Hence,
N;(f) < N,(f) < cN(f). On the other hand, from Theorem (3.2.12) and the Hardy
ineqgnality (110) above, we have N(f) < cN,(f) .This shows that N(f), N,(f) and N,(f)
are all equivalent .Since [|t;|l, < c[IIf —Te(Oll, +1If = Tk(f)llp] we have N;3(f) <
cN,(f) .In the other direction f — T} = X’ ; t; and therefore from (55), we obtain for
k=-1,0,1,..,
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00 1/u
If = Tell, < (Z||t,-||§)

k+1

Note, when k = —1, this is an estimate for ||f||, Now, from the Hardy inequality (110),
we have N,(f) < cN;(f) and therefore N,(f) and N5(f) are equivalent.

The norm N; of Theorem (3.2.12) shows that a function fis inBf (L,) . if and only if
(Sk(f)) isin 7. In the terminology of [116],we have that the approximation class Ag for
dyadic spline approximation in Ly.is the sameasthe Besov space B (L,) . Related to this
is the following Bernstein type inequality for dyadic splines.

Corollary (3.2.15) [109]:
Ifr =1,2,...anda < Athen foreach S € X,

Ilsg,) < c22 ISl (113)

Withc in dependent of Sand n.
Proof.

Since S € X,,,5,(S) = 0,k > n,and for k < n,we haveS,(S), < IIS|l,.

Hence, for g < oo,

n

N, (S <c Z [zaksk(S),,]q < cza”||5||g

k=1
and (5.5)follows from Theorem(3.2.12),Similarly for g = oo .

Another interesting application of Theorem (3.2.12) is the following atomic
decomposition for functions fin Bf(L,) AccordingtoTheorem(3.2.12),we can writ

f = X t, with the notation of that theorem .Since t; € ;, we have

o= ) N (114)
veA(k)

With N, ,The B-splines for D, .Hence,
F=2 ) el (115)

With convergence in the sense of L,,.

Corollary (3.2.16) [109]:
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Let0 <gq,p <o andr =12,... .If0 <a <4, then a functionf € L,.is in BZ(L,) if and
only if fcan be represented as in (5.7)with

a/p q/q

[ee]

NP = D 2k Y [ 2 < (116)
k=0 veA(k)

(and the usual modification if either por g = o) and N,(f)is equivalent t0||f||3g(Lp) :

Proof.

From Lemma (3.2.5),

1/p

Hence from Theorem (3.2.12),N,(f)is equivalent to N;(f)which is in turn equivalent to

N(f).

A different atomic decomposition was given by M. Frazier and B.] aewerth [120] for
Besov spaces defined by the Fourier transform. In the cased = 1, there is also an atomic
decomposition using spline functions by Ciesielski[114].

We are now interested in proving interpolation theorems forBesov spaces. If ay, a;, >
0, and 0 < py,P1,90,q1 < © , we introduce the abbreviated notation B; := B:;ii (Lp,) and

L= 13! (Ly,),i =0,1.

We recall that if X,,X;, is a pair of quasi-nonmed spaces which are continuously
embedded in a Hausdorff spaceX, then the K-functional

K(f,t,Xo,X:) = _inf {llfollx, +tllfillx,} (117)
f=foth

is defined for all f € X, + X;,This K-functional determines new function spaces. If
0<6<1and0<gq <o, we define the space Xy, := (Xo,X1)g4- as the set of all f
such that

o 1/q

d

iy = Wl o, +{ [ 2K 0005 (118)
0

is finite.

We wish to establish a connection between the K-functional for B,,B;and the K-
functional forl,,[;. For this, we fix a number 0 < p < p,,p; and an integer r such that
ag,a; <r—1. We letP;(f)be the best L,(I) approximation tof from polynomials of
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coordinate degree<r . A ccording to Lemma (3.2.2), if Sp(f) is defined by
(86),andTy(f) is defined by (88) then N,(f) and N;(f)of Theorem (3.2.12) are
equivalent to the norm of B (L,,) .

Iff € Ly, weletTf = (t,(f)).In this way ,we associate to each f € L, a

Sequence of dyadic splines and f € L,if and only if B (Lp)and from Theorem (3.2.12)
Iflsgy = ITflligqe, ) (119)
for alla, g > 0,provided p = p.
Theorem (3.2.17) [109]:
There are constants c,, c; > 0 which depend only on p, r,d, @(, and @, such that
c1K(f,t,By,By) < K(Tf,t,1y,l;) < c,K(f,t,By,By) ,t>0 (120)
Whenever € B, + B; .

Proof of lower inequality . We suppose that a = (a;) € [; is such that Tf — a is in
lo, We define g, = Ty(ax) = Qx(Sk(ax)) as in (88). Then by (89), llgkll,, <
cllagll,,.Now, we let g == }.7° g, with convergence inL, . Since ¥.¢’ g; is in X,we have
from (55)

1
5k(@p, < ”Z gill < c(Z ||g,-||§ )” , k=-1,0,..
k+1 D1 k+1 1

Provided p < p;. Here, when = —15,(f), = lIfll,,, as usual . If we take also u < p;we
have from the Hardy inequality (110) and the equivalence of the norms N and N;, in
Theorem (3.2.12) that

lglls, < cllall, (121)

We can prove a similar estimate for f — g.Namely,

1
<D ls-gll) (122)
Po k+1 0

Now t; = Q;(t;) becauseQ;is a projector. Also sincet; € [I;, we have Sj(aj—tj) =

RN IRCETD

S;(a;) — t;. Hence,
1t = gill,,, = lle; &t =S (@D, = ls(S;¢t —a)ll,,

<cllg—ayll,
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because of (89).If we use our last inequality in (6.6) and then argue as in the proof of
(6.5), we obtain

If =g ls, <cllTf —a i (123)

Since a € l; is arbitrary,(121), (123) and the definition of the K-functional give the
lower inequality in (120).

For the proof of the upper inequality in (120), we shall need a result about
Approximation in a quasi-normed space X .We suppose that Z is a linear subspace of X
such that each element x € X has a best approximation from Z. We let

E(x) = infllx — z||x (124)

zZ€Z

We say that z is a near best approximation to x with constant 4 if
lx —z|| < AE(x) (125)
Lemma (3.2.18) [109]:

Let X and Z be as above. If x € X and z € Z is a near best approximation to x
with constant A ,then for each y € X ,there is a z’' € Z such that z’ is a near best
approximation to yond z — z' is a near best approximation to x — y with constants c
depending only on X and A.

Proof.

Let y be such that [[u + v|| < y(l|ull + |[v]]) for all u,v € X (all norms in this proof are
for X).

Case:E(x —y) < E(y).We let z' = z" + z with z" a best approximation to y — z. Then,
by definition z — 2’ is near best for x — y with constantl. On the other hand,

ly=Zll=lly—z-2"ll <y(ly —x—2"ll+llx — zI < y(E(x —y) + AE(x))
<y(E(x— y) +YAE(Y) + YAE(x — y)) < v + 2r?A)E(y)
Case: E(y) < E(x —y). The same as the previous case with x — y and y interchanged.

Proof of the upper inequality in (120) . We suppose that g is any function in B; for
which f — gis in B,. We let P; be the polynomials which make up Sy = S;(f) . Then P;
is a best L,(I) approximation of f from polynomials of coordinate degree <r.

Therefore, we can apply Lemma 6.2 to obtain a near best L, (/) approximation @, to g
from polynomials of coordinate degree < r such that P, — @, is also a near best L, (1)

approximation tof — g.

We let Uy, Ry, be obtained from Q; and P; — Q,,I € D;, by using quasi-interpolants in
the same way that T, was defined from the P,. Since Q; is linear, we have R, = T}, —
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UiThen, by Corollary4.7, U, and R, are respectively near best L, and L,
approximations tog and f — gfrom X,,k =0,1,....

We let tk = Tk—Tk_l,uk = Uk - Uk_l,rk = Rk - Rk—lfk = 0,1, ey with

Our usual convention R,_; = 0,R;,_; = 0.We then have fork =0, 1,...,

ey, < c[Sk(@Dp, + Se-r(@Dp, |

ricllpy < ¢ [Sc(F = D, + Seca (F = Dy »
With u = (uy), it follows from Theorem (3.2.12) that
ITf —ully + tllully, < c[llf = glls, + tliglls,]

The upper estimate in (120) then follows from the definition of the K-functional.
ForB,, By, 1y, l;andT fas above, we have foranyg > 0and 0 <0 <1,
f € (Bo,B1)ggqifand only if Tf € (ly,11)gq -

1l BoBryeq = NTSf Nl 10000, (126)

Indeed, this follows immediately from the definition of the spaces X .

Now (126) allows us to deduce information about the interpolation spaces between B,
and B;from known theorems (see [121]) about the interpolation between [yandl;. The
simplest case to describe is when p, = p; = p. We then have

gy (Lp), ! (Lp))o.q = 15 (Ly) (127)
Where a = 0ay + (1 —0)a; .
From this, (6.10), andTheorem (3.2.12),we obtain
Corollary (3.2.19) [109]:
If 0<ay ai,and0 < p,qg, g1, < o, we have foreach0 <8 < 1and 0 < g < oo,
(By2(Ly), Bg(Lp))e,q = BG(Ly), witha = 6ay + (1 — 6)a; (128)

When p, # L, the interpolation spaces between L, and L, can be described in terms of
the Lorentz spaces L,, (see [113]] for their definition and properties ).We have
for0 < qg,q1, < o0 (see[121]),

(IO' ll)@,q = lg(Lp) (129)
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With a=0a,+(1—-0)a;, , 1/g=06/qo+(1—-0)/q;,, and 1/p=06/p,+ (1—
0)/p1 .

In the special case when q = p, we have L, , = L, and therefore, we obtain
Corollary (3.2.20) [109]:

If 0<ay,a;, and 0 <py,P1,90, 91, < ©, then for each 0 <6 <1 and for
1/q=0/q0+ (1 —0)/q:;1/p = 6/po + (1 — 0)/p, we have

(B3 (Lyo), By (Lp))e,g = BE(Ly), witha = 6y + (1 - 6)ay (130)
Provided p = q.

An embedding theorem for Beaov spaces. As an application of the results of the previous
sections, we shall prove Sobolev type embedding theorems for Besov spaces. These
have important applications in nonlinear approximation (see [117]). We fix a value of p
with0 < p < oo. Givena > 0, we determine o from the equation

1/o0=1/d+1/p (131)
We shall prove that B (L,)is continuously embedded inL,.For this, we shall
use the following simple inequality for splines S € I, (r):
ISIl, < c2keP||s]|, (132)

Indeed, on each cube I € Dy, S = P withPa polynomial of coordinate degree< r. Hence
(see[119]), ISl (1) < cl11V/P=*/9||S|| (1) = 2*||S]|5(T) .Therefore,

p/o

ISIp < c2k > Sl (P < c2k | Y IS, ()°

IEDk(_Q) IEDk(_Q)

where the last inequality uses the fact that the [,,, norm is larger than the /; norm

o/p
because g/p < 1.

Theorem (3.2.21) [109]:

If a,0,p are related as in (131), then By (Ly) is continuously embedded in L,,that

is,
Il < cllifllgcy (133)
holds for f € Bf(L,) .

Proof.
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We choose r >a +1 and let t; € Xj(r)be as in Theorem (3.2.12). Then
f = Xj2ot; inthe sense of convergence in L,.From (56), it follows that for

p = min(1, p),

Ill, < Znt,-n <c[ Y (2905l,)" | =ellflega, (134)
j=0

j=0
where the second inequality follows from (132) and the last from Theorem (3.2.12).

Inequality (134) shows that B (L,) is continuously embedded in L, which is the
desired result when p < 1. When p > 1, we choose 1 <p, <p <p; <o and for
i = 0,1, welet a; be determined by formula (131) for p; and ouro. Then by (134)

Il < clifllgerg,,,  i=01 (135)

If we now apply Corollary (3.2.19) with 8 chosen so that 1/p =6 /p, + (1 — 8)/p,and
q = p, we obtain by interpolation

”f”p C”f”B“’(L )

With a' = 8, + (1 — 6)a; Here, we have used the fact that L,,,, = L,,.Now using (131)
for the pairs (a, p), (ay, py) and (a4, p;)shows that a’ = «, as desired.

Sect(3.3): Besov Spaces On R:

Besov spaces Bg (L,(£)) are being applied to a variety of problems in analysis and
applied mathematics. Applications frequently require knowledge of the interpolation
and approximation properties of these spaces. These properties are well understood
when p = 1 or when the underlying domain(, is R% . The purpose of the present
section is to show that these properties can be extended to general nonsmooth domains
Q of R% and for all 0 < p < oo. Besov spaces with p < 1 are becoming increasingly
more important in the study of nonlinear problems.

To a large extent the present section is a sequel to [127 and 129] which established
various properties of the spaces Bg(L,(£2)), Q a cube. Among these are atomic
decompositions for the functions in B¢ (L, (£2)), a characterization of B (L, (£2)) through
spline approximation, and a description of interpolation spaces for a pair of Besov
spaces. We establish similar results for more general domains.

Our approach is to first define an extension operatoré, which extends functions in

Bg (Lp () to all of RY . Similar extension operators for p > 1 have been introduced by
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Calder6n and Stein (see [132]). Our main departure from these earlier approaches is
that by necessity our extension operators are nonlinear. Moreover, whereas in the case
p =1, it is possible to take ¢ so that w,(¢f,t), < C w,(f,t), with w, the rth order
modulus of smoothness (at least when  is minimally smooth [130]), in the
case0 < p < 1, we only obtain a weak comparison between w,(¢f,t),and w.(f,t),
.We shall establish our results for two important classes of no smooth domains: the
Lipschitz graph domains, and the (&, §) domains introduced by Jones [131]. We begin
with the case of Lipschitz graph domains since the geometric arguments in this case are
the most obvious. We later generalize these arguments to (&, §) domains . Although the
results of contain those of, we feel that this two tier presentation makes the essential
arguments much clearer.

Let Q be an open subset of RY . We can measure the smoothness of a function
f€L,(Q), 0 <p < oo, by its modulus of smoothness. For any h € RY, let I denotes the

identity operator, t(h) the translation operator (z(h)(f,x) = f(x + h))and

AL = (t(h) — D",r = 1,2,..., be the difference operators. We shall also use the
notation
AT (f,x) x,x+h, .., x+Trhe
AT , ’Q ={ h ) ) ) ) ) .
n(f,x, Q) 0, otherwise

The modulus of smoothness of order r of a function f € L,,(Q )is then

Or(f, Op = 0 (£, 6, Q) sy o ipco (136)

“lhst|
Forany h € R4, we define
Q) == {x:[x,x + h] c Q}.
A Besov space is a collection of functions / with common smoothness. If 0 < @ < r And

0 < g,p < o, the Besov space Bg (L, (2))consists of all Functions f such that

1 Yq
|fIBg Ly = (j [t % (f,t, 'Q]pdt) < o (137)
0

With the usual change to sup when g = oo. It follows that (137) is a semi (quasi)-norm
for Bg (Lp(2)). (Frequently, the integral in (137) is taken over (0, ©); While this results
ina different semi norm, the norms given below are equivalent.) If we add [If I, (2) to
(137), we obtain the (quasi)norm for B§(L,(Q)). It is well Known in the case p = 1 that

different values of r > a give equivalent norms. This remains true for p < 1 as well
and can be derived from the 'Marchaud Inequalities’, which compare moduli of
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smoothness of different orders. These Inequalities have been proved for all p > 0
and Q, either a cube or all of R in [133] (See also [127]), and for more general
domains Q and p = 1 by Johnen and Scherer [130] (among others). We address this
topic later for the remaining Case 0 < p < 1 and more general (.

There are fundamental connections between smoothness and approximation (See [127]
and the references therein, especially [133]). We now describe these without Proofs
(which can be found in [127] or [133]).1f f € L,,(Q),0 < p < o0, Qa Cube in R4 we let

E,(f,Q)p = per,If = Pllpo) (138)
Be the error of approximation by the elements from the space P.of polynomials of total

degree less than r where ||. || (o) denotes the L,(Q) (quasi)norm.

We then have Whitney's inequality

E-(f,Q)p < € 0, (£,1Q)) (139)
Where I(Q) is the side length of Q and C is a constant which depends only on r and d
(also p if pis close to 0).
Sometimes (139) is not sufficient because it is not possible to add these estimates For
different cubes Q. For this purpose, the following averaged moduli of smoothness is

more convenient. For any domain Q and t > 0, we define

1/p
W, (f,t,Q), = (t‘djl LIAg(f, x,Q)|P dxds) (140)

s|st
Where p < oo.Then, returning once again to cubes Q, w, and W, are equivalent:
Cror(f,£,Q) S W (f, 1, Q)p < G (£, 8)y (141)
Where C;and C, depend only on d,r and p if p is small. Therefore, the estimate (139)
can be improved by replacing w, by W, :
E.(f,@)p < CW.(f,1(Q), Q)p (142)
We shall use the generic notation P, = P,(f) to denote a polynomial in B. which

satisfies
If = Poll (@ < 2E.(f, @), (143)

Where A =1 is a constant which we fix. The polynomial P, is then called a near best
approximation to f with constant 1. When 4 = 1, P, is a best approximation. It follows

from (142) and (143) that
I = Poll (@ < CW(£,1(0), ), (144)
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We shall use the following observation (see [127]) about near best approximation in the
sequel. Let > 0.If P, € P, is a near best approximation to f with constant 4 on Q in

the L, norm, then it is also a near best approximation to f for all P = y:
If = Poll (@ < C2E(£,Q), (145)

where the constant C depends onlyony,rand d .

The estimate (145) leads to a characterization of Besov spaces in terms of spline
approximation. Forn € Z, let D,, , be the collection of dyadic cubes Q of side length 27"
and let D := U,¢, D,, be the collection of all dyadic Cubes. Forn € Z, let II,, := II,,, be
the space of piecewise polynomials S on D,, which have degrees less than r. The error of

approximation to a function f € L, (Q) by elements of I, is

sn(Pp = ser If = Sl () (146)
It follows from [127] that a function f € L,(Q) isin B € L,(Q), Q a cube, if and only if

1/q
”f”a‘lg(Lp) = (Z(Znasn(f)p)q> < o0 (147)

nez
Moreover, (147) is an equivalent semi norm forBg(L,(Q)). Let us emphasize for later
use that this same result holds in the case Q = RY with the same proof.
It will be useful to mention briefly some well-known properties of polynomials which

we shall use frequently in what follows. If Q is a cube, we let, for 0 < P < o0,

£ = 101 IIfll, (@ (148)
be the normalized L,, norms. We also introduce the notation pQ to denote the cube with
the same center as Q and side length pl(Q) where [(Q) is the side length of Q.

If r is a nonnegative integer, p > 1 and P is a polynomial of degree < r, then (see for
example [129]) for a constant C depending only on d,r (this constant and other
constants in this section also depend on the distance of p to 0), we have foranyq = p :
IPIIZCp@) < CIIPIIZ(@) < ClIPIIL(pQ) (149)
We often apply this inequality in the following way. Let @Q,, @, be two cubes with
[(Q,) < 1(Q;) and Q, < pQ, for some p = 1 . Then for a constant ¢ depending only on
d,p,p,r we have, forall g = p,
IPII5(Q1) < ClIPII;(Q2) (150)
Indeed, it is enough to compare the left side of (150) with||P||},(Q;), compare this with

IP|l;, (pQ2), and then finally make a comparison with ||P ||}, (Q2).
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We shall define an extension operator ¢ (similar to that introduced in [4]) which
extends each function f € L,(Q)to all of Rd and has the property that if f € B§ (L, (),
then &f € Bg(Lp(Rd)), (with suitable restrictions on «, p, q, and (). We assume at the
outset that ) is a Lipschitz graph domain and treat more general domains in the next
section. This means that Q = {(u, v):u€RYL,veRandv > qb(u)} where ¢ i s a fixed
Lip 1 function.

That is , ¢ atisfies |¢p(u;) — ¢p(u,)| < Mlu, — u,lfor allu; ,u, € R4~1, where M is a
fixed constant (which we can assume is greater than one).

We let F denote the Whitney decomposition of Q into dyadic cubes (see [132]).
Similarly we denote by Fc the Whitney decomposition of Q¢ \ 0{). Then,

(i) diam (Q) < dist (Q,0Q) <4 diam (Q),Q E FUE,

(i) if Q,Qq € F UF, touch,then1(Q,) < 41(Q)),

(151)

(iii) (pye0lv — PWI < CUQ)

Where C depends only on the Lipschitz constant M and the dimension d. Here,

diam(Q) = v/d 1(Q) with I[(Q)the side length of Q. For each cube Q in F U E, letQ* = ZQ.

IfQ € F,thenQ* c 3Q c Q.
According to [132] there is a partition of unity {¢Q}QEF for the open set Q0¢\ dQ with the

properties:
(i) 0=¢p=1,
(i) ZQEFC $o=1,0nQ,
(iii) ¢ is supported in int(Q"),
(152)
(iv) [[D ]|, < c @I, [v| < m,
(v) if Q.,Q, EFUF. with Q; N Q; # ¢ ,then Q, and Q, touch
(vi) at most N, := 12%cubes from either F or F. may touch a given cube from either
family.
Properties (i)-(iv) and (vi) are proved in [132], while a proof of (v) can be found in
[129]. Here m is an arbitrary integer and ¢ depends only on d, (), and m . We are using

standard multivariate notation for the derivatives DV := D;; D;Z.
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If Q € F, has center (u,v), we let Q° denote the cube in F which contains the point
(u,,2¢p(u) —v). We speak of Q% as being the cube symmetric to Q a cross d{. The
symmetric cubes Q° were introduced in [129] and we recall now some of their
properties proved in [129]. While Q and Q° need not have the same size, they are
comparable; i.e. there is a constant € > 0 for which there holds (see [129]).

O U =URH =ClQ
(153)
(i) dist(Q,Q°) < Cl(Q
(iii) each cube in F can be the symmetric cube Q° of at most C cubes Q € F. . To
define our extension operators ¢, we fix a value y > 0 (which in application is chosen
smaller than all p under consideration), and a value r (which in application is larger
than all the a under consideration) and welety >0 .

If f €L,(loc)and Q is a cube, we let Py(f) be a polynomial which satisfies (143). we
then define & by

f(x), x €Q
§FG) =1 % Pfge(x), x €0°\00 (154)
Q€F¢

Actually, (154) defines a family of extension operators, since each choice of near Best

approximants Pysf give an extension ¢ . The results that follow apply to any such
extension operator ¢ with the restriction that the constant 4 > 1 of (143) is fixed.

We have shown in [129] that ¢ is a bounded mapping from L,(€) into Lp(Rd),
y <p < oo, and also from BE(L,(Q)). Into  BZ(L,(RY)). Whenever 1 <p <o, We

shall prove now the same result when 0 < p < 1. To study the smoothness of ¢f, we
shall need estimates of how well {f can be approximated by polynomials on cubes R in

the L, norm for p =y. We fix 0 <p < oo and r and use the abbreviated notation

E(Q) =E.(f,Qp
Lemma (3.3.1) [125]:
There exists a constant C > 0 so that if Q; , Q,belong to F and touch, then

1P, = Po,I|_ (@) < ClQuI™ /P[ECQD) + E(Q3)] (155)

Proof.
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By property (151) (ii) of the Whitney decomposition, Q; and @, have
comparable side lengths and so we may selecta cube Q < Q; c Q; whose side length is

comparable to that of either cube:

(@) = 7 min{L(@,), 1(@2)}

Applying the triangle inequality in L, (Q;) and using the elementary estimates for

polynomials (150), we have forj = 1,2

[P, = Pell, (@) = c{llPe, = Pos || (@) + [Pg; = Pl (@)}
Using this inequality and two applications of Lemma 3.3 of [127] (applied once to Q;

and (; and again to Qand Qj) gives

7o, - o]l (@) <c(e)) "7E(0)) (156)
Again using (150), we obtain
1P, = Pall,, (@) < C[|Pg, = Poll,(@2)
and so together with (156) (applied with j = 2) and the modified triangle inequality we
obtain the desired result (155).

To estimate the smoothness of f, we shall approximate &f on cubes Q from RY.We

consider first the approximation of £f fon cubes close to 01).

Lemma (3.3.2) [125]:
There exists a constant ¢ > 0 so that if ¢ is any of the extension operators (154)

and R is a cube with dist(R, 0Q) < diam(R), then forf € L,(Q),y < p <1, we hav
1
/p

B R)p < | ) E(SP (157)

seF
sccR

Where c, C depend only ond,r,y, 4, and Q.
Proof.

For such an R, if (uy, vy) denotes its center, then we let R, be the member of F
containing a point of the form (uy, v,) such that [(R,) = 16[(R) and v is smallest. It is
clear (see property (151) (i)) that R and Ro have comparable side lengths and so we
may choose a constant ¢ >0 so that c¢R D R,. Let Q € F intersect R. We shall
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estimate||f — PR0||p(Q). Since dist(Q, Q) < diam(R) + dist(R, Q) < 2diam(R), from
(151)(i) it follows that 1(Q) < 2I(R).

Our next step is to construct a 'chain' of cubes {Rj}:)nfrorn F which connect
RyToQ = R,,with each R; touching R;, ;. We accomplish this as follows.
Let x; = (uq,v;) be the center of R, and x3 = (u3,v;) be a point from Q N R We
consider the path consisting of a 'horizontal' followed by a 'vertical' Linear segment
which connects first x; to the point x, = (u3,v;) and then x, to x5. The point x, is in
ZRO = R} and is therefore in a cube R € F which touches R, . If R #R, , we
defineR; = R, otherwise R; is not yet defined.
The remaining cubes R; are obtained from the vertical segment which connects x, to xs,

namely the cubes we encounter (in order) as v changes from v; to v;. Since all these
cubes are in F, they have disjoint interiors. From property (151)(iii), we obtain

271 l(R;) is comparable to [(R,) ; moreover,

I(Ry) < Zill(R,) <cl(R), O<ks<m, (158)

In particular, we have Q c cR; andR; C cR, where ¢ has been increased as necessary

but remains independent of f.
Since Q < cR;, the inequalities (150) for polynomials, give that for any

polynomial P, [|P]|,(Q) < CIIPII;‘,(R]-) ,j= 0, .., m, for a constant C depending
only on p, d, Q and the degree of P but not on j. We now write Py — Pg, =
(PRm - PRm—l) + -+ + (Pg, — Pg,) and find frorn Lemma 4.1 that

o = P | <a><c2||PR ~Py|| (R)

< CZ|R]-|_5 E(R?) (159)
j=0

1
Hence, [Q177||P, _PRo”p(Q) also does not exceed the right side of (159). If we
writef — Pg, = (f — Pg) + (Py — Pg,), we obtain

ﬁl»—k

PER) + E(R)]

m

1
= -1 .
If = Peyll (@ < clol Y[R} E(R;) (160)
j=0
Since an [; norm does not exceed an [, norm for 0 < p <1, we have
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IF =PIl c@ < clol Y R B (&) (161)
=0

We denote the ‘chain’ from Q to R, by T, := (R;)j, Summing (161) over all Q
belonging to F such thatQ N R # @, we then obtain

S lr-rall@sc Y D lllsit ey (162)

QE€F Q€F SETQ
QNR+D QNR+P

Next we interchange the order of summation in (162) and note that while an S
that appears in the sum of (162) may occur in more than one T, , each such Q is

contained in ¢S and therefore Z{Q:SETQ}IQI < C|S|. Since éf = f on suchQ, we obtain

& —Pr P (@ <C Y E(S)? (163)
QEEF | roll, >
QNR=D SccR

We can prove a similar estimate to (163) for cubes Q € F.for which Q NR # ®:

> ler-rrll@=c ) By (164)
Q€F, SEF
ONR=d SccR

Indeed, for a cube Q which appears in the left sum of (164), we have from the
definition of ¢ in (154):
P, = P ~
ler = Pe 0@ = ) l1Pgs =P, 0@
OnQ*+d
QEF¢

P
< > lPes = Palll@® (165)
Q*NQ=d
Q€F,
where we have used the fact that the ®, are positive and sum to one and we have

used (150) (for g = p) to replace ||PQs - PR0||5(Q) by ||PQs - PR0||5(QS) (recall that
Q, 0, and QS all have comparable size and the distance between any two of these
cubes does not exceed C diam(Q) ). Now, by (152)(v),Q* N Q # ® onlyif Q and Q
touch. Therefore by (4.2)(iv) there are at most N terms in the sum (165) and N
depends only on d and Q. Also agiven Q° appears for at most C cubes Q (see the
remark following (156)). Furthermore @Q° is contained in cR and therefore the
estimate (159) holds (with the Q there replaced by Q°). Finally, if we use (149)
to replace the L, (Q°)) norm by an L,;(Q°)) norm on the left side of (159) and
then use this in the terms of the right sum of (165), we arrive at (164) in the
same way that we have derived (4.13).

To complete the proof, it is enough to add the estimates (164) and (165).

We are now in a position to give an estimate for w.(¢f,t), for each of the

extension operators ¢ .

160



Theorem (3.3.3)[125]:

If y< p<1andt>0 then

0 GLORSCP| Y W 2)h+ e Y 2PW (20| (166)
2J<cqt 2J<t
where W, is the averaged modulus of smoothness (140) and the constants c¢; and
C depend onlyon d, r, y, 4,and Q.

Proof.

We write R*\ 0Q = Q, U Q_ U O, where Qo =U{Q € FUF.:1(Q) < 16rt},
Q, =0\(QyuaQ), Q_ = 0°\(QyuUdQ) . It follows that for each x € Q, and for the
appropriate cube Q € F U F, which contains x , we have

dist(x,0Q) < diam(Q) + dist(Q,9Q) <5 diam(Q) < 80Vdrt (167)
We shall consider three cases. Let|h| < t.

Case 1 (x € (,). In this instance, there is a cube Q € F containing x and [(Q) > I6rt.
Therefore the expanded cube Q* = ZQ c Q contains the line Segment [x, x + rh],
which shows for (x € Q, ,that A}, (¢f,x) =A} (f,x).

Hence, by (141),
j AL (6f, %, QP dx < j A% (&f, % Q)P dx < w, (f, £, Q)

Q Q”
< W (f,t,Q");
We now sum over all Q which intersect Q,and use the fact that a pointx € R%
can appear in at most N, of the cubes Q* (see (4.2)(vi)) to find

j A% (&f, 0P dx < W, (f, ) (168)
Q4

Case2 x € (), .In this case we are near the boundary and employ Lemma (3.3.2).
We take a tiling A, of R% into pairwise disjoint cubes R of side length 80 r¢t . Next we
obtain additional staggered tilings by translating A, in coordinate directions.
Namely, if v is a vector in R? with coordinates 0 orl, then A, := {40rtv + R}gea, is
also a tiling. We let A denote the collection of those R such that R N Q, # ® and
R € Ay for one of these v. We note that there are 2% such v and for each point
x € Qg there is a cube R € Asuch that [x,x + rh] € R. Hence,

[ish@rorar<) [ 1a; @ropar

Qo REAR(rh)
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<249 Z ECf.R)} (169)

ReA
where the last inequality follows since the r th difference annihilates polynomials of

degree less than r. The multiple 80 was chosen so that the cubes R in A satisfy
dist(R,0Q) < diam(R) as follows from (167) because Qy,NR # ® . We may
therefore estimate E(¢f,R), by Lemma (3.3.2) to give

jm; Ef, )P dx<C Z Z E(S*)P (170)
Qo

REA SE€F
SCcR

Next, we observe that F is the disjoint union of the F; :== F nID; and so (170)

becomes

j=—oo ReA SEF]' j=—0o0
SCccR

jm; (f, )P dx < C i (Z Z E(S*)p> —.C i I (171)
J | |

Let S; =U {S§*:S € F;. By properties (152)(v) and (vi) of Whitney decompositions, it
follows that for each j

Z Xs™ < CNyXs; (172)

REA SCCR
SEF]'

where N, is the constant of (152)(vi), and C is a constant which depends only on
d and c counting the number of times a cube S € F can appear in distinct cubes
cR, R € A. Therefore, from (142), we obtain for eachj € Z,

I < CN2/4 j j|A; (f,x,5)|° dxdh < W, (f ,277+1)P (173)

|h|s§2—j Sj

Furthermore, if S € F; satisfies S c R for someR € A, then [(S) < cl(R) = 80crt.
Hence, if ¢; > 160cr we have from (151)(i) that2=/*! < c,t. Using this together with
inequalities (171) and (173), we obtain

jm; (f,x0)Pdx < C Z L<C Z W, (f,27)? (174)

Qg 27J<80crt 27)=cqt
Case (x €Q_).Let ReF, withRNnQ_ # &, then [(R) > 16rt and so [x, x + rh]C
R* whenever x € R. We consider any other cube Q € F, such that Q* intersects
[x,x + rh] for some x € R and |h| <t. By (152)(v), we have that Q and R touch.
Next we let Az := {Q € F.: Q touches R } denote the collection consisting of R and
its neighbors from Fc, then all cubes Q € A; have side length comparable to [(R).
The number of cubes in A does not exceed the constant N, of (152)(vi). We can
use (152)(iv) to majorize derivatives of the ®,. Hence, from the definition of ¢

and Leibniz' formula, we have for |u| = r:
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ID#&f 1l (R*) = ID*[Ef — Prs]lloo(RY)
= € fnax ZA WRY™ max, [|D¥[Pos — Pre]ll (@7
Q€EAR

< CIR)™ Z 1Pgs — Prs||_ (R®) (175)
QEAR
where the last inequality uses Markov's inequality and (150). We next choose a

constant ¢ > 0 so large that it exceeds the constant in (153) and also cR®contains
each of the cubes Q°, for Q € A . We shall possibly increase the size of the
constant ¢ in the remainder of the proof but it will end up to be a fixed constant
depending at most on d,(), and previous constants.

For each Q°, such that Q € Ag , there isa 'chain' T, connecting R® with Q° which
can be obtained from the proof of Lemma (3.3.2). Namely, if the constant C > 0 is
large enough then R = CR will contain R® and all of the Q¥, . We choose R, € F as
in Lemma (3.3.2) for the cubeR. The chain T, then consists of the cubes in F which
connect Q° to R, and then R, toR®. Each cube inthe chain T, will have side

length larger than ¢ !l(R)where ¢ may have to be increased appropriately. Of
course each cube in the chain also has side length< CI(Ry) < CI(R). Because of
the size condition on the cubes in T, , the fact that they have disjoint interiors,
and dist(Q* R*) < CI(R®), the number of cubes in T, is no larger than a fixed
constant depending only on d and (.

Therefore, we can estimate Pys — Pgs as in (159) of Lemma (3.3.2) and obtain

|[Pgs = Prs|| _(R®) < C||Pgs — Pgs||_ (@%)

< CIRI > Z E(S*)P (176)

Now, from (175) and (176), we obtain for x € R,

SR

185 6,01 < maxliDHfll, (ROIRIT < CEURY TR | D B(S)Y (177)

Now let A denote the collection of all cubes S from F which are contained in
cR® and have side length [(S) = c71I(R. Then, by again enlarging c if necessary,
we can guarantee that any cube S appearing on the right side of (177) is
contained in Ag. Therefore, if we take p th powers of (177) and integrate over R
and then sum over all R, we obtain

[lsr@rorascer Y 1wy sy (178)
0- RNO—#® SEAR
where we have used the fact that the number of cubes in Ay is bounded index-

pendent of R.
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We now proceed in a similar fashion to the way we derived (174). Since (as we have
derived earlier) cl(R) < I(S) < CI(R), every cube S appearing in the sum of (178)
satisfies ct < [(S) < ¢yt provided c; is sufficiently large. We majorize E(S*) by
(140) and (142). This gives (compare with the derivation of (171) through (174)):

Z I(R)~™P Z E(S*)P = Z Z 2irp Z E(S*)?

RNQ—%d SEAR j R%%E;;‘D SeAR
<c Y YW 2 (179)
27 z2cqt
We use (179) in (178) to obtain
[Iss@roparscer Y w2y (180)
Q- 277 zcqt

The proof of the theorem is completed by adding the estimates (168), (174),
and (180) and making the observation that W.(f,s, Q) < a®/’W.(f,as, ), any
a =1 to put the resulting sum in the form (166). The techniques of apply to more
general domains. We shall indicate in this section the adjustments required in to
execute the extension theorem for (¢, §) domains as introduced by P. Jones [6].
Such domains include as special cases the minimally smooth domains in the sense
of [189]. The latter are equivalent to domains with the uniform cone property
[Sh]. We say an open set () is called an (&, §)domain if:

for any x,y € Qsatisfying |x — y| < §, there exists a rectifiable path TI,of length
< Cylx — y|, connecting x and y, such that for each z €T,

dist(z,0Q = e min(|z — x|,|z — yl) (181)

We shall also assume that the diameter of Q is larger than § which, of course, will
be true, if we take § small enough.

Let F be a Whitney decomposition of Q and F. be a Whitney decomposition of
Q°/0Q; that is (151)(i) and (ii) hold for the cubes Q € FNF.. We shall often
make use of the following two properties which hold for a constant C depending
onlyon d:

(i) If Q,Q" € F donottouch, then Cdist(Q,Q") = diam(Q),

(ii)if Q € F ,then

C dist(Q,0Q) = sup,cq d(z,090). (182)

The first of these properties follow from the fact that the neighbors of Q all have
size comparable to that of Q (property (151)(ii)), while the second is a
consequence of (151)(i). For a cube Q € F,, we let Q° be any cube from F of maximal
diameter such that dist(Q® Q) < 2dist(Q,0Q). The cube Q@Q° will be called the
reflection of Q and plays the same role as the reflected cubes for the Lipschitz
graph domains . We note for further use that from (151 )(i) and the definition of
reflected cubes, it follows that if Q;,Q, € F., then
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dist(Q$,Q5) < C(dist(Qq,Q,) + max(diam(Q,) ,diam(Q,))) (183)
With C depending only on d .

Since there are not necessarily arbitrarily large cubes in (), for large cubes Q € F,,
the reflected cube Q° may have small diameter compared to that of Q. On the other
hand, if F. denotes the collection of cubes Q € F, whose diameters are no larger
than 6, then for each Q in F, its reflection will satisfy properties (153) for a
fixed constant C depending only on ¢,d, and d. To see this, we take a point
Xy € 0Q which is closest to Q from the boundary and let x € Q be a point close to
Xo (to be described in more detail shortly). Since diam(Q) = § = diam(Q), there is
ay€QQsuchthatd > |x —y| =6/2 = dist(Q,00)/8. LetT be a path connecting x to
y satisfying the (&,8) property. Then, we can find a point z € T such that |[x — z| =
dist(Q,0Q)/16 and |y —z| = dist(Q,0Q)/16. Therefore, by (181), dist(z,00) =
Cdist(Q,0Q). Now let Q' € F be the cube which contains z. Then by (151)(ii) and
(182)(it)diam(Q") = Cdist(Q,0Q) = Cdiam(Q).

If x is close enough to x, (e.g, [|x—xol <%dist(Q,6(2) will be fine), then
dist(Q',Q) < 2dist(Q,0Q). Hence Q' is one of the candidates for Q° which means
that diam(Q®) = diam(Q") = Cdiam(Q) from which the properties in (153) easily
follow.

The key to generalizing the extension theorem from Lipschitz graph domains to
(¢,6) domains is to find chains which connect cubes of F. For this we shall use the
following.

Lemma (3.3.4) [125]:

Let Ry, and @ be two cubes from F with diam(Q) < diam(R,) and
dist(Q, Ry) < min(6, Cidiam(R,)) with (C; a fixed constant. Then, there is a
sequence of cubes Q =: Ry, Ry, ..., Ry, from F, such that each R; touches
Ri_y, j=01,...,m—1 and for each j =1,.., mR;ccRy, and for each
j=0,.., m—=1, Q € cR; with ¢ depending only on C; and Q.

Proof.

Let z€ Q and z, € R satisfy |z— zy| <6 andlet'(t), 0 < t<1, is a path
connecting z to z, guarantee by the definition of (¢,d) domains. We claim that any
cube S < F which intersects T has diameter > Cdiam(Q). Indeed, if S touches Q
orR,, this is clear. If S does not touch Q or Ryandw € I' N S, then, by (4.1)(ii), |w —
Zo| = l(Ro)/4 and |w —z| = 1(Q)/4 . Hence, by (181), dist(w,dQ) = &l(Q)/4 and
therefore our claim follows from (182)(ii) and (151)(i).

We let S,,S;,S,, ... be the cubes from F met by the path I' as t increases; by the
above remarks this sequence is finite. If two cubes are identical,5; = §; we delete
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Si+1, » Sjfrom this sequence. Itis clear that R; touches R;_; for eachj = 1,2, .. , m.
We take points z; €T NR;j =0,...,m.Since the path T has length< Clz, —z| <
Cdiam(R,), all points z; satisfy dist (z;,0Q) < C diam(R,). Therefore, properties (151)
(i) and (182) (ii) give that diam (R;) < C diam(R,). Hence R; < c R, for some constant
depending only on C;and Q. We also claim that Q < cR;. This is clear if R; touches Q or
Ry (see (151)(ii)). On the other hand, if R;does not touch Qor Ry, then by (181) and
(151) (ii), we have dist(z;,0Q) > ¢ rnin(|z —zj|, |zj —ZOD > C l(Q). Hence, by (181)
(ii) and (151) (i), diam (Rj) > Cdiam(Q) and our claim follows in this case as well.

We shall now define our extension operator for the (¢, §) domainQ. Let¢,,Q € F, be a
partition of unity for Q° which satisfies (152). Recall that F, is collection of all cubes
Q € F, for which diam(Q) < §.If y > 0 and r is a positive integer, we define

§f = fxa+2ger, Posdo (184)

Where as before P,s denotes a near best approximation to f in the metric L, (Q*). we let
Q, ={x € R%: dist(x,0) < 9/,} and Q, ={x € R%: dist(x,Q) < 66}. Then,

§f(x) = 0 forx € QF, while onQ;, we have}y . 5, ¢ (x) = 1. For example, to prove the
first of these statements, let Q € .. Then supp(qbQ) C Q*. Since any point x € Q*
satisfies dist(z;, dQ) < Z diam(Q) + dist(Q,Q) < 2—1 diam(Q) our claim follows. A

similar argument proves the second statement.

The proof of the smoothness preserving property of the extension operator £ is now
very similar. We first consider the analogue of Lemma (3.3.2).

Lemma (3.3.5) [125]:

Let Q be an(e, §)domain, y > 0, r be a positive integer and € be an extension
operator defined by (184). Let R be a cube with dist(R,d6) < diamR) < ad where a is a
fixed sufficiently small constant depending only on &,8, and d. Then for f € Lp(Q),y <
p < 1, we have

E.(Ef,R)} <CXser E(S)P (185)
S

CcR

Where ¢, C depend only ond, r,y, 4, €and é.
Proof.
LetQ ={Q:Q€FandQ NnR+ @}u{Q®*:Q € F.andQ NR # @}.

If a is small enough then the properties (151) and (183) give that dist(x,, x,) < va & for
the centers x(, x; of Q,, Q respectively with these cubes chosen arbitrarily from Q. We
want to find the cube R, to be used in conjuction with lemma (3.3.4). Let Q,, we can
take Ry = Q,. Otherwise, we pick a cube Q; € Q such that the centers x,, x; of Qy, Q;
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respectively have the largest distance, say |x, — x;| = n. If T'is a path that connects the
centers X, x; of these cubes and satisfies the (¢, §) condition, then there is a point z € T
suchthat|z—x;| =7n/2, i =0,1. If S is the cube in F which contains z, then we
can take R, as the largest of the cubes S, Q, .

We next check that R, satisfies the conditions of Lemma (3.3.4) relative to
any Q € Q. It is clear that diam(Q) < diam(Q,) < diam(R,) for all Q € Q. Since
n:|xo — x;| <+aé and thelengthof T is < C,, we have

dist(Q,Ry) < dist(Q, Qo) + diam(Qo) + dist(Qo,Ry) < n+ 2C, <6 (186)
Provided a is sufficiently small. Also, by (151)(i) and (181)
diam(R,) = diam(R) = dist(R,0Q0)/4 > en/8.

Hence, as in (186)dist(Q,Ry) < (C + 1)n < C;diam(R,) with C;a fixed constant. We
have verified the hypothesis of Lemma 5.1. Therefore, there is a chain of cubes
R;, j = 0, .., m, connecting R, to Q . By our assumptions, @ < (; whenever
Q€EF, and QN R # @ (provided a is sufficiently small). Hence Ygcr, ?o =1 OnR.

We can therefore apply exactly the same proof as for Lemma (3.3.2) (namely from
(152) on) to derive (185).

Theorem (3.3.6) [125]:

Let Q1 bean(e, §) domainandlet y > 0 and r be a positive integer. If £ is any
extension operator defined by (184), then for each 1= p=y and f € L,(Q), we
havefor 0 <t <1,

w G O5<CP| > W (£, 2]+ tfp(nfnz + z—ffpwr(f,zf)z> (187)
2j<cqt 122/ >¢
With the constants C and ¢ ; dependingonlyon d, r, 4, y, ¢, and § .

Proof.

The proof of (187) is very similar to that of (166) and we shall only
Highlight the differences. We first observe that (187) automatically holds if t > aé
and a is afixed constant because ||f|l, < C||{f|l,, . Therefore, we need only consider
t < ad with a asufficiently small but fixed constant to be prescribed in more detail
as we proceed. As in the proof of Theorem (3.3.3), we write RN\dQ =Q,UQ_UQ,,
where Q, :==U{Q € FUF_:1(Q) < 167t} , Q, = Q\(Qy, U 9Q), Q_ = Q°\(Q, U Q) . We

estimate fs |a}, (6f)IP dx for the three sets = Q. , Qg and for |h| < t.

We proceed as in the proof of Theorem (3.3.3) and consider three cases. Case 1
which estimates the integral over (), is identical to the proof in Theorem (3.3.3)
and yields the estimate (168). Case 2 is also the same since if a is small enough
the cube R which contains [x, x + rh] will be one of the cubes to which we can
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apply Lemma 5.2. We obtain in this way the estimate (174) for the integral over
Qy.

In Case 3, that is x € Q_ , we let R € F, have nontrivial intersection with Q_. If
X €R, then [x, x + rh] € R*. we have two possibilities for R . If dist(R, 0Q) <
ad and a is small enough, then Ypecr ®o =1 on R* .We consider 9 = {Q°: Q €
F., Q touches R}. we can take R, as the largest cube inQ. Then R, and any other cube
Q° in Q will satisfy the hypothesis of Lemma (3.3.4). We take a chain (R;) connecting
Q° and R, and proceed as in Theorem (3.3.3) to obtain

Y llar @nlE <cew Y 2w (2 (188)

122/2¢t
where the sum is taken over all cubes R of this type.

The second possibility is that dist(R,dQ) = ad. Whenever Q € F, is such that
®ydoes not identically vanish on R, then 66 = [(Q), Cl(Q) = 6 and therefore from

(4.2),||DV®,|| (Q%) <C ,|v| <r,with C a constant depending only on & andr. Also
Qlle
||PQs||p(QS) < C|If1l,(Q®) by the definition of Pys as a near best approximation. From

this and by Markov’s inequality for polynomials, we obtain ||D”PQs||OO(QS) <
Clifll,(Q%) ,|v| < r. Therefore, Leibniz’ rule for differentiation gives that

ID” (€l (R) < ClIf IR

where R’ is the union of all the cubes Q° such that &, does not vanish on R.

Here we are using the fact that the number of cubes which appear nontrivially in
&f(x) does not exceed a constant which depends only on d. This gives

lah, GO, R) < |hI" Ir151|a=>T<IID”(§”f)Iloo(R) < CIrI"lIfNl,(R") (189)

Since a point x € Q can appear in at most C of the sets R’ with C depending only

on d, we can raise the inequality (189) to the power p and sum over all R of this
type and obtain

> llak ENIG < CIAPIFIZ@) < cevlifIR@  ( 190)

R
We add (188) and (190) to obtain that fQ_IA,T1 (¢)|P dx does not exceed the sum

of the right sides of (188) and (190). The proof is then completed by adding the
estimates in the three cases.

In this section, we establish the roundedness of the extension operator £ on Besov
spaces and apply this to obtain other characterizations of these spaces. Given
0<a<owand 0 <qg <o and asequence {a}renof real numbers, we define
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1

@)l = (Z [zka|ak|]q> (191)

keN
With the usual adjustment whenq = co. We shall need the following discrete Hardy

inequalities (for a proof see [127]). If for sequences (ay)xeny and (by)xen of real
numbers, we have either

Dlbel < 27 (T2 o[277|a;|])For

@lbl
® m

< Zla,-l“ , (192)
=0

Then for all g >y and0 < a <r, in case (i), and all ¢ = 4 and0 < @ < o, in case
(ii), we have

”(bk)”lg‘ = C”(ak)“zg (193)

Therefore, (193) holds for q = u and0 < a < r, if |b,|does not exceed the sum of the
right sides of (192).

Theorem (3.3.7) [125]:

If Qis an(g,§)domain,y >0 and r is positive integer, then the extension
operator £of (184) is a bounded mapping from Bg(L,(Qinto B (L,(RY)For
ally <p<10<qg<oanda <r:

16 ss s, vty < CIF oy (194)
With the constant € depending onlyond, r, 4, y, & andé.
Proof.

Let 4 <min(q, p). Since an l,norm is less than anl,norm and since W, < w,,
from (187) fort = 27%, we have

w0 (6,275 R, < €| ) 0 (f27, 0

j=ck

k 1/u
+C27k [llfllzm) £ e, z—f,n)p]“l (195)
j=0
We can therefore apply (193) and obtain

lConcer, 27 RO < A @ + lwr(r. 27 RO, 196)
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The monotonicity of w, shows that the left side of (196) is equivalent to
|f|Bg(Lp(Rd)While the right side is equivalent ||f||Bg(Lp(Q) Since €& is a bounded map

from L,(Q) intoL,(R?), (196) establishes the theorem.

If follows from Theorem (3.3.7) that foreach 0 <p <1,0<g<o00 ,a>0and
any (&,6) domain Q, we have

I llsg, ) < 1Efllagw, vty < Clfllsga,@ (197)
With constant C depending onlyond, r, 4, y, & and(Q

We next show that functions inBj (L, (Q)have atomic or wavelet decompositions.

Let N =N, be the tensor productB spline in R obtained from the univariate B
spline of degreer — 1 which has knots at 0, 1, ..., r.

Let D, denote the collection of all dyadic cubes for R* which have side length 27*and
D, =Ugso Dy . With N /V, we can associate to any dyadic cube I = [jz_k,(j +
1)2*%] € D, ,j €z%, k €N, the dilated functions N,(x) := N(2*x — j). This function

has support on an expansion of the cube .

Theorem (3.3.8) [125]:

Let Qbe a (¢,8) domain and0 < p < 1,0 <q <o ,a > 0. Then each function
f € BF(L,(Q) has decomposition

F0) =GN x€Q (198)
IeD,
Where the coefficients a;(f) satisfy

QR

q
0o p

Ifllagay = | | D2 Y la(pPl (199)
k=0

IeD,

with constants of equivalency independent of f and the usual change on the right
side of (199) whenq = .

Proof.

By (6.7), f € B&(Q) if and only {f € BY(R?) with equivalent norms. It was shown in
[129] that &f has a decomposition (6.8) on R% with coefficients a,;(§f) satisfying
(199). Since &f = f on (), the theorem follows. We next discuss the interpolation of
Besov spaces using the real method of Peetre. If X, and X; are a pair of quasi-
normed spaces which are continuously embedded in a linear Hausdorff space ¢,
their K —functional is defined for any f € X,+X; by
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K(f,t) = K(f,t; X0, X1) = _inf [If5llx, + tllfillx, (200)
f=fotf

For each0 <6 <1,0<g < o, the space Xy, = (Xo,X1)gqis the collection of all
functions f € Xy+X; for which

QR

e}

Iflq = { [ (005 (201)

0
is finite (with again the usual adjustment on the right side of (201) when q =

o.This is an interpolation space since it follows easily from the definition of the
K —functional that each linear operator which is bounded on X, and X; is also
bounded on Xy, .

We are interested in interpolation for a pair of Besov spaces. Suppose that
0<po, pr< .And 0<gqo, q; <o andag,a; =20. We let X;(Q) = B (L,(Q),
i = 0,1, with the understanding that this space is L,;(Q)) whena; = 0. If we choose
r >max(ay, aq)and y < min(py, p1) then the extension operators &of (184) are

defined and (197) holds for each of these extensions. In fact, we observe that

K(f, t; X, (Q)) < KES, £ X,(RY), X,(RY) < CK(Ff, t; Xo(Q), X, () (202)
The left inequality in (202) is clear. The usual proof of the right inequality relies on
the linearity of the operator, which as we have previously mentioned may fail for
¢ since near best approximations P,(f)are used in its definition (184). However,
given any decompositionf = fy+f;, we may decompose ¢f as.Fy+F; Where F; is a
norm bounded extension (inX;) off;, (i = 0,1). To see this, we recall Lemma 6.2 of [2]
which established that if f = f,+f; and Py(f)is any near best approximation to f,

then there exist near best approximations Ré to f; (i =0,1) so that Py(f) = Rg +
R}QWe then use Rés in place of Pps in (184) to define F; from which we may
conclude that (202) holds. From (202) it follows, therefore, that the interpolation
spaces (XO(Q),Xl(Q))Qqand (XO(Rd),Xl(Rd))Q'qare identical with equivalent norms.

From known results for the latter spaces (see [129]) we obtain the following.

Theorem (3.3.9) [125]:

Let ) bea (g08) domain. If 0 <p <1 anda,qy, > 0,thenforany 0 <6 <1
,0 < g < oowe have

(Lp(Q), Bg,(Lp))a,q = Bga(Lp) (203)

With equivalent norms .If 0 <p < 1,welet t(8) = (B/d + 1/p)~1, B > 0, then for any
a>0and0 <0 <1,0<qg < oo wehave

(Lp (), B0y (Latar @00 = B (Lecoa (@) (204)
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With equivalent norms.
Remark (3.3.10) [125]:

The proof in [127] of interpolation of Besov spaces relies on estab-lishing
the equivalence of the K —functional of f with that of its retract. We take this
opportunity to correct the proof of the lower inequality of that equivalence. The
sentences in lines 3 through 7 on [127] should be replaced by: " We may estimate
each term of the last sum as

It = gll,,, < (lls - g, +lla - Tj(aj)”po) :
And apply Corollary 4.7 to obtain

lj = Tiapll,, < eSjap, < cllty —aill, -
Hence,
It = gil,, <cllty—all, "

While preparing the present section, Ridgway Scott posed to us a question
concerning interpolation of Besov spaces forQ) < p < co. It is rather easy to settle this
question given the machinery developed of the present section. We shall from
here on assume that Qis a minimally smooth domain in the sense of Stein (it
may be that Theorem (3.3.3) that follows also holds for (& &§)domains, however
our proof does not seem to apply in this generality). Minimally smooth domain in
R? is an open set for which there is a numbern > 0 and open setsU; , i = 1, 2,
., such that: (i) for each x € §Q, the ball B(x,n) is contained in one of the U; ;
(ii) a point x €ER%is in at most N of the sets U; where N is an absolute
constant; and (iii) for each i,U; N Q =U; N{; for some domain (); , which is the
rotation of a Lipchitz graph domain with Lipchitz constant M independent of i .

We recall the fractional order Sable spaces. Let0 < p < co. Anda > 0.

If is not an integer, we write a =+ r where 0<f <1 and r is a
nonnegative integer. Let W,* be the collection of all functions f in the Sobolev
space W (), for which

v _nv P
1y = Z ID*f(x) — D"f(y)| dxdy (205)

|x — y|Frtd
[vl=r axq
[s finite.

If O = R%nd a is not an integer, then it is well known that (205) is equivalent to
|f|§;§‘(ﬂ) We want to show this remains true for minimally smooth domains Q. For

this purpose, we define forf € W, (),

B (O =17 ) Wy(Df, 00 (206)

[v|=1
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with W, , as before, the averaged modulus of smoothness (140).
Lemma (3.3.11) [125]:

Let 0 be any open set. For 0 < p < o and a > Onot an integer, we have

1 o pdt
gy = B+ D7 | [T (F 0] — (207)
0
Where as above.
Proof.

For any g € L,(Q), we have for 0 <f <1, by a change of variables and
Fubini’s theorem,

j [t—ﬁpwl(g’ t)p]p g
0

|As (g, x, Q)|Pt=FP~a-1 dxdsdt

[ I
i

Q Q |x-

= (Bp +d)! j j X — y|P=ddt|g(x) — g»)IPdxdy  (208)

We take g = D*f, |v| = r,and add the identities (208) to obtain (207).

t=PP=a=14dt|g(x) — g(¥))IP dxdy

We shall next show that an analogue of inequality (187) holds for p > 1. Itis
well known that if f € I/Vpr‘1 then for the error E(S), for approximating f in the
norm L,(S) on a cube S by polynomials of degree < r, we have

E(S)P < C I(S)Pr—D Z w1 (D*f,1(S), 5)?

lv|=r—-1

< C I(S)PCr-D Z Wy (D¥f ,1(S), )"
lv|=r—-1
= @ (f ,1(5),S)} (209)
Where as before W is the averaged modulus of smoothness given by (140) and w,
is defined by (206).

Theorem (3.3.12) [125]:

Let Q be a minimally smooth domain, let r be a positive integer and let
1<p<o. Thenforany f € Wy ~! and0 < t < 1, we have
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o (§f, D} < CP

D@ 20h + e (IFIR@) D 277 @ (£, 21)p)] (210)

2J<t 2J<t
With C a constant depending only on d, r, 1 and(Q.

Proof.

We first recall that a minimally smooth domain is an (¢, §) domain. Since
Q will be an (¢, §) domain for any e and 6 sufficiently small, we can assume that
n in the definition of minimally smooth domains is > Cyé with C, Arbitrary but
fixed. We shall prescribe 7 in more detail as we continue through the proof.

We proceed as in Theorems (3.3.3) and (3.3.6). The first case, namely the
estimate of meIA,T1 (¢f ,x)|? dx is as before, but we use standard estimates of r th

differences in terms of a first order difference of (r — 1) th derivatives . This gives
that the integral does not exceed @, (f ,t, Q)g ) .

For the estimate in the second case, that is over ();, we need first to derive
an analogue of Lemma (3.3.5) for @,. With the same constructions and notation as
in Lemma (3.3.5) and the same argument, we arrive at the estimate (160), where
now 1 <p <o. We need to observe that for each k, at most C of the cubes R;
appearing in (160) belong to D;. To see this, we recall that these cubes meet the
path ' which connects a point z € Q to a pointz, € Q, From (151)(i), letting S be
such an R;, any pointw € S N I satisfies

dist(w, Q) < diam(S) + dist(S,00)) < 5 diam(S) = 5Vd27*
Therefore, by the definition of (¢, §)domain (property (181)), we have
min(|w — z|, lo — zo|) < 5Vde™127%

That is, each of these cubes S meets one of the balls of radius 5vV/de~127% about z andz,.
Since the cubes S are disjoint there are at most C of them with ¢ depending only on &

and d .

™

- ~b
We now write |R;| VP = |R; R| /" where @ + b=1 andad >d — 1.

We then apply Holder's inequality to (160) and use the observation above
forl(R;) = 2¥1(Q) to conclude that

m bp' PE m
— —-a
If = Pr,|I” @ < 10l ZIR,-I z Z|R,-| E(RY)P
j=0 j=0
m m
< C|Q|*~? Zlel_aE(R;‘)P = C|Q|® Zlel_aE(R;)p (211)
j=0 j=0
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We now sum over all Q € F such thatQ N R # ®, reverse the order of summation
to obtain that (185) is valid for this range of p provided that we can show that
for fixed S = R;, we have

Dol =clsie (212)

QEF
QccS

With C > 1 a fixed constant and C depending onlyond,e,d andn.

We postpone for a moment the proof of (212) and conclude the proof of
the theorem. Now that we have established (185) of Lemma (3.3.5) for 1 <p < o,
the estimate of fQOIA,T1 (f ,x)|P dx can be made exactly as in the proof of Theorem

(3.3.3) with (6.19) used in place of (142) and w, used in place of wr. Finally, the
proof in Case 3, that is the estimate of fQ_IA,T1 (f ,x)|?dx, can be made exactly as

in the proof of Theorem (3.3.3) because the number of cubes in the sums
appearing in (176), (177), and (178) is bounded by a constant C depending only
on d,¢, and § . This then completes the proof of the theorem subject to the verification
of (212).

To prove (212), we count the number N, of cubes Q € F with Q ccS
andl(Q) = 2*1(S)). There are only a finite number of values of k < 0 and for each of
these N, < C with C depending only on d (because the cubes Q are pairwise
disjoint). Therefore, this portion of the sum appearing in (212) does not exceed
the right side of (212).

To estimate N, fork > 1, we recall that the cubes S have side length < I[(Ry) <
Cl(R) < C6. Therefore, by choosing ¢ sufficiently small, we can assume that
2cdiam(S) < n with ¢ the constant in the summation index of (212) and n of course
the constant in the definition of minimally smooth domains. Therefore, by property
(ii) of minimally smooth domains, we may assume that(4cdS) N Q = (4cdS) n Q; for

one of the domains();. Since ¢ = 1anddist(Q,6Q) < 4diam(Q) < 2diam(S), we
havedist(Q, 6Q) = dist(Q,69;). From property (151)(i) of Whiney cubes, we have
Q € Ay = {x:dist(x,89;) < 527% diam(S)}. Now from the fact that (; is a Lipschitz
graph domain, we have that |4,| < C27%|S|with the constant C depending only on
d and the Lipschitz constantM. Henc Ajcan contain at most €2%(@=1) cubes Q of side
length27% [(S). This shows that N, < €2%(@=1)_ Using this estimate for N, , we find
that the portion of the sum on the left side of (212) that remains to be estimated
does not exceed

Z Ni(27k1(S)H% < CZ 2k(d-1) p=da|g|a < C|S|@
k=1 k=1

becausead > d — 1.
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Using Theorem (3.3.13) we are able to easily establish the equivalent of the
fractional Sobolev spacesW,* (2) with the special family of Besov spaces By (L, (£2)) .

Theorem (3.3.13) [125]:

Let Q be a minimally smooth domain inR% andl <p <o, 0<a, then
W (Q) = Bj (L,()) and there exist positive constants ¢, , ¢, independent of f so that

allifllwe = 1fllsgw, @) < c2llf lwew (213)
Proof.

The upper inequality in (213) is obtained by applying thely norm to both
sides of inequality (210) and using Hardy's inequality (193) together with Lemma
(3.3.11). The lower inequality is confirmed by recalling that the corresponding
result holds on R%, and then following with an application of Theorem (3.3.7):

I gy < 1F lyacaty < cléflage ety < cllf g
As we previously mentioned, when 1 < p the extension operators may be taken to be
linear. It then follows that ||$f||Bg(Lp(Rd)) is equivalent (within constants

independent of f) to ”f”Bg(Lp(Rd)) .Applying the interpolation theorem Corollary in

[127] to BF(L,(R?*), we obtain the following interpolation resultfor the fractional
order Sobolev spaces W,*(Q) :

Corollary (3.3.14) [125]:

Let Q) be a minimally smooth domain inR%, and1 < Po,P1 < 0,0 < ay,aq, then

for p satisfying % = 1;—9 + pi anda = (1 — 0)a, + 0a,, we have
0 1

(W@, W2 @) =W (@) (214)
with equivalent norms.
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