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Chapter	3	

Polynomial	Approximation	and	Interpolation	in	Besov	Spaces	

  Approximation  of  functions  in fractional  order  Sobolev  spaces  is  treated  as  well  as  
the  usual  integer  order  spaces  and several  nonstandard  Sobolev-like  spaces. We have 
the results of the determination of the interpolation spaces between a pair of Besov spaces; 
an atomic decomposition for functions in Besov space; the characterization of the class of 
functions which have certain prescribed degree of approximation by dyadic splines . We 
study Besov  spacesܤ

ఈ(ܮ(Ω))   , 0 < , ,ݍ ߙ < ∞, on  domains  Ω  in  ܴௗ   . This is then used  
to derive  various properties  of the  Besov spaces such as interpolation  Theorems  for a pair 
of 

ܤ
ఈ(ܮ(Ω)) , atomic  decompositions  for  the  elements  of ܤ

ఈ(ܮ(Ω)) , and  a description  
of  the  Besov spaces by means of  spline  approximation. 

Sec	(3.1):		Functions	in	Sobolev	Spaces:	

Approximation properties of finite element spaces are often derived using variations of 
the so-called Bramble-Hilbert Lemma [91], [92]. This lemma is based on an inequality of 
the form 

inf
∈࣪

‖݂ − ܲ‖ ≤ ܥ  ቤ൬
߲

൰ݔ߲
ఈ

݂ቤ
ఈ∈

,                                                                    (1) 

where࣪is a class of polynomials, ܣ is an associated class of multi-indices, and ‖⋅‖ and |⋅| 
denote certain Sobolev norms. An inequality of the form (1) can be found in Morrey 
[103] (and implicitly in Sobolev [105]) for the case of ࣪ being all polynomials of degree 
at most ݎ, ݎ being all multi-indices of length ܣ + 1, ‖⋅‖ being the norm on ܹ

 and |⋅| 
being the norm on ܮ. In the second Bramble-Hilbert [92], (1) is derived for certain 
classes ܲ that range from the polynomials of degree at most ݎ to the polynomials that 
are of degree at most ݎ in each variable separately. Motivated by particular applications, 
we extend (1) by allowing more general collections ܲ and ܣ and, further, by deriving 
inequalities of the form 

inf
∈࣪

‖݂ − ܲ‖ ≤ ܥ  อ ܲ ൬
߲

൰ݔ߲ ݂อ


,                                                              (2) 

Where  ൛ ܲൟ is a collection of homogeneous polynomials of degree ݈ and ࣪ is the 
intersection of the kernels of the operators  ܲ(߲/߲ݔ). 

The proofs of Bramble and Hubert used the results of Morrey and 
generalizations thereof. The proofs of these results are non constructive and cannot be 
used to estimate the size of ܥ in (1) or to determine how ܥ would vary as a function of 
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the domain. Sobolev's approach to imbedding theorems is based on an explicit 
representation. of a function as a polynomial plus a remainder term. 

   The results presented here use a related representation that is derived as an averaged 
Taylor's series . This representation can be manipulated in various ways to get bounds 
of the form (1) and (2). Although we do not explicitly calculate the associated constants 
here, it is easy to see what parameters they depend on, and, in particular cases, the 
proofs could be used to bound them. (The results of are somewhat of an exception to 
this; see Remark (3.1.8).) We have calculated these constants in one special case [96]. 
Further, the form of proof used here allows the dependence of the constant on the 
underlying domain to be clarified. The basic results of this section are derived initially 
for domains that are star-shaped with respect to (each point of) a ball and in these cases 
the constants are seen to depend on the domain only through its diameter and the 
diameter of the associated ball. Having this type of dependence makes it easier (or 
possible) to treat the perturbations of the domain that are frequently needed to handle 
curved boundaries by finite element methods . Our results are also extended to regions 
that may be viewed as a finite union of domains that are star-shaped with respect to 
balls. Polynomial approximation results for such regions have been derived by Jamet 
[101] using an entirely different approach. These regions include ones satisfying the 
cone condition used by Bramble and Hubert [91], [92], but are slightly more general. 
When functions are approximated by piecewise polynomials on a mesh of size ℎ > 0, 
the bound for the error typically involves Atoa positive power. In most cases, the power 
decreases by one for each additional order of differentiation applied to the error. One 
purpose of our results on tensor-product polynomial approximation is to show under 
what conditions one should expect not to lose a power of ℎ when differentiating the 
error. An application is given to illustrate this point . 

There are situations in which it is necessary to approximate a function satisfying 
a homogeneous, constant coefficient differential equation by polynomials which also 
satisfy that equation. The approximation results following from (2) can be used to treat 
such cases. An application is given in which harmonic functions are approximated by 
harmonic polynomials. 

Our proofs of (1) and (2) are based on a basic representation formula of a 
function as a polynomial projection plus a remainder derived. An important property of 
the projection operator is that it commutes with differentiation, that is, a derivative of 
the polynomial projection of a function is the same as an associated (lower order) 
polynomial projection of that derivative of the function. This commutativity property is 
used in a crucial way to derive the results described in the previous two paragraphs.  

Frequently, one is interested in the best possible approximation of a function 
subject to the constraint that a function and its approximation agree at certain points 
[90], [95], [104]. Restricting to integer index Sobolev spaces excludes certain interesting 
cases from study. Most of the results in this section are proved for the integer case, 
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estimates of the form (1) involving fractional order Sobolev norms are proved, and an 
illustration of their application is given.  

Several of the questions we discuss here have been treated from different points 
of view by many authors. Our interest in these questions comes from studying the 
approximation results that are needed to analyze finite element methods. In this area, 
the work of Bramble and Hubert [91], [92] is fundamental. The work of Ciarlet and 
Wagschal on multipoint Taylor formulas [94] is another approach to giving constructive 
proofs of approximation results needed for finite element analysis and their results 
played an important role in the evolution of this section. The basic representation given, 
which we call a Sobolev representation, is quite similar to one used by Sobolev [105] in 
proving imbedding theorems .However, it appears to be different from the one used in 
[105] for which, in particular, it is not clear that the commutativity property mentioned 
above is valid. A more recent treatment of related representations, as well as some 
discussion of their applications in other work, can be found in an article by Burenkov 
[93]. In [102], Meinguet gave a constructive polynomial approximation process that is 
closely related to the Sobolev representation in [89], Arcangeli and Gout applied 
Meinguet's ideas to Lagrange interpolation in ܴ . 

Notation: Let ݔ, ,ݕ . .. denote points in ܴ , and let ݀ݔ, ,ݕ݀ . .. denote Lebesgue measure. If 
 ,is a measurable set ܦ ∈ [1, ∞], and ݂ is a (real or complex valued) measurable 
function, we say݂ ∈  if (ܦ)ܮ

‖݂‖() ≡ ቆන ݔ݀|(ݔ)݂|


ቇ
ଵ/

< ∞                                                     (3) 

with the usual modification when  = ∞. When  = ∞,  .is defined to be zero /1

Let ܰ denote the set of nonnegative integers. A multi-index ߙ is an ݊-tuple of 
nonnegative integers: ߙ = ,ଵߙ) … , ,(ߙ ߙ ∈ ܰ, ݅ = 1, … , ݊. We have the following 
definitions: 

|ߙ| = ଵߙ + ଶߙ + ⋯ + ߙ ,                                                                                 (4) 

ߙ    ≤ ߙiff   ߚ ≤ ߚ , ݅ = 1, … , ݊,                                                                        (5) 

ߙ) + (ߚ = ߙ + ߚ , ݅ = 1, … , ݊,                                                                      (6) 

ߙ) − (ߚ = max{ߙ − ߚ , 0} , ݅ = 1, … , ݊,                                                       (7) 

!ߙ   = (!ଶߙ)(!ଵߙ) …  (8)                                                                                      ,(!ߙ)

ఈݔ = ൫ݔଵ
ఈభ൯൫ݔଶ

ఈమ൯ … ൫ݔ
ఈ൯,       and                                                                  (9) 

൬
߲

൰ݔ߲
ఈ

= ൬
߲

ଵݔ߲
൰

ఈభ

൬
߲

ଶݔ߲
൰

ఈమ

… ൬
߲

ݔ߲
൰

ఈ

.                                                            (10) 
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We let ߜ , ݅ = 1, … , ݊, denote the multi-index whose ݅th component is 1 and the rest are 
zero: 

ߜ
 = ൜1, ݆ = ݅,

0, ݆ ≠ ݅,
�                                                                       (11) 

When ܦ is an open set, denote by ܥஶ(ܦ) the space of infinitely differentiable 

functions in ܦ. For ݂ ∈  we use the notation ,(ܦ)ஶܥ

݂(ఈ)(ݔ) = ൬
߲

൰ݔ߲
ఈ

ݔ)(ݔ)݂  ∈  (12)                                            .(ܦ

Let ܥ
ஶ(ܦ) denote the subset of ܥஶ(ܦ) functions that have compact support in ܦ. 

Let  ࣞ(ܦ) denote ܥ
ஶ(ܦ) topologized with the usual inductive limit topology [100]. The 

dual ࣞᇱ(ܦ) of ࣞ(ܦ) is called the set of distributions on ܦ. If ߶ ∈ ࣞᇱ(ܦ) and if ߙ is a 
multi-index, ߶(ఈ) is called a distributional or weak derivative of ߶, where ߶(ఈ) is defined 
by 

߶(ఈ)(݂) = (−1)|ఈ|߶൫݂(ఈ)൯,   ݂ ∈  .(ܦ)ࣞ

A distribution ߶ ∈ ࣞᇱ(ܦ) is identified with a function ߰ defined on ܦ if for each 

݂ ∈ ,(ܦ)ࣞ ݂߰ ∈ (݂)߶ and(ܦ)ଵܮ = ∫ ݂߰  In this case we shall let ߶ denote the .ݔ݀
identified function, ߰, as well. 

If ݉ ∈ ܰ and if for each ߙ ∈ ܰ with |ߙ| ≤ ݉, ߶(ఈ) is given by a function such 
that 

‖߶‖ௐ
() =  ฮ߶(ఈ)ฮ

() < ∞
|ఈ|ஸ

,                                                        (13) 

then ߶ ∈ ܹ
(ܦ). Note that ܥஶ(ܦ) ∩ ܹ

(ܦ) is dense in ܹ
(ܦ)provided  < ∞. (See 

[98] for a proof.) If  ܦ has finite measure, then  ܹ
(ܦ) ⊂ ܹ

(ܦ) if 1 ≤ ݍ ≤  ≤ ∞ (by 
Holder's inequality). For ߶ ∈ ܹ

(ܦ) let 

|߶|ௐ
() =  ฮ߶(ఈ)ฮ

()
|ఈ|ୀ

.                                                              (14) 

Let ݎ be a positive integer, and denote by ࣪  the space of polynomials in ݊ 

variables of degree less than ݎ. Let ஶ࣪ = ⋃ ࣪
ஶ
ୀଵ . 

Let ܦ be a bounded set in ܴ with diameter d. Suppose ܦ is star-shaped with respect to 
every point in an open ball ܤ. Let ߶ ∈ ܥ

ஶ(ܤ) have integral one. Throughout  , ܦ, ݀,  ,ܤ
and ߶ will remain the same.  

Sobolevs Representation.If ݂ ∈ ݔ I is a positive integer, and ,(ܦ)ஶܥ ∈  then ,ܦ
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(ݔ)݂   = ݂࣫(ݔ) + ܴ݂(ݔ),                                                                 (15) 

where 

݂࣫(ݔ) =  න (ݕ)(ఈ)݂(ݕ)߶
ݔ) − ఈ(ݕ

!ߙ ݕ݀
|ఈ|ழ

                                        (16) 

is a polynomial of degree less than ݈ and 

ℛ݂(ݔ) =  න ݇ఈ(ݔ, (ݕ)(ఈ)݂(ݕ
|ఈ|ୀ

 (17)                                                 .ݕ݀

The kernels ݇ఈ are given by 

݇ఈ = ݔ)(!ߙ/݈) − ,ݔ)ఈ݇(ݕ  (18)                                                    ,(ݕ

where 

,ݔ)݇   (ݕ = න ݔିଵ߶൫ିݏ + ݕ)ଵିݏ − ൯(ݔ
ଵ


 (19)                                    .ݏ݀

Remark	(3.1.1)	[87]:		

As a function of ݕ,  is supported in the convex ,(⋅,ݔ)and, therefore, each ݇ఈ ,(⋅,ݔ)݇
hull of {ݔ} ∪  upp ߶; in particular, the region of integration in (17) is contained in aݏ
compact subset of ܦ. 

Remark	(3.1.2)	[87]:	

Integration by parts shows that ࣫ is defined for all ݂ ∈ ࣞᇱ(ܤ) and that, in 
particular, for ݂ in ܮଵ(ܤ) 

‖݂࣫‖ௐಮ
షభ() ≤ ,݊)ܥ ݈, ݀, ߶)‖݂‖భ().                                          (20) 

	

Proof	of	the	Representation:		

Let ݔ ∈ ,ܦ ݕ ∈  :and use Taylor's theorem ,ܤ

(ݔ)݂ = 
ݔ) − ఈ(ݕ

!ߙ
|ఈ|ழ

݂(ఈ)(ݕ) + ݈ 
ݔ) − ఈ(ݕ

!ߙ
|ఈ|ழ

න ݔିଵ݂(ఈ)൫ݏ + ݕ)ݏ − ൯(ݔ
ଵ


 .ݏ݀

Multiply by ߶(ݕ) and integrate with respect to ݕ: 

(ݔ)݂ = ݂࣫(ݔ) + ݈ 
1
!ߙ

|ఈ|ୀ

න ݔ)(ݕ)߶ − ఈ(ݕ න ݔିଵ݂(ఈ)൫ݏ + ݕ)ݏ − ൯(ݔ
ଵ


 .ݕ݀ ݏ݀
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Using Fubini's theorem and the change of variables ݖ = ݔ + ݕ)ݏ −  one finds ,(ݔ

න ݔ)(ݕ)߶ − ఈ(ݕ න ݔିଵ݂(ఈ)൫ݏ + ݕ)ݏ − ൯(ݔ
ଵ


 ݕ݀ ݏ݀

= න න ݔ)(ݕ)߶ − ఈ(ݕ ݔିଵ݂(ఈ)൫ݏ + ݕ)ݏ − ൯(ݔ
ଵ


        ݏ݀ ݕ݀

= න න ߶൫ݔ + ݖ)ଵିݏ − ൯(ݔ
ଵ


ݔ) −  ݏ݀ ݖ݀ିݏ(ݖ)ଵ݂(ఈ)ିݏఈ(ݖ

= න(ݔ − (ݖ)ఈ݂(ఈ)(ݖ ቆන ߶൫ݔ + ݖ)ଵିݏ − ݏିଵ݀ିݏ൯(ݔ
ଵ


ቇ  ݖ݀ 

=
!ߙ
݈

න ݇ఈ(ݔ − (ݖ)(ఈ)݂(ݖ                                                       .ݖ݀

The use of Fubini's theorem is justified because 

,ݔ)݇| |(ݕ   =        න ߶൫ݔ + ݖ)ଵିݏ − ݏିଵ݀ିݏ൯(ݔ
ଵ


 

 

≤ ܿଵ|ݔ − ି|ݖ = ቤන ߶൫ݔ + ݖ)ଵିݏ − ݏିଵ݀ିݏ൯(ݔ
ଵ

|௭ି௫| ௗ⁄
ቤ                                              (21) 

whereܿଵ = ‖߶‖ಮ() ݀ ݊⁄  

Remark	(3.1.3)	[87]:	

In view of (18), it follows as in (21) that 

ቤ൬
߲

൰ݔ߲
ఉ

൬
߲

൰ݕ߲
ఊ

ቤ ≤ .݊)ܥ ݈. ݀. ߶, ,|ߚ| ݔ|(|ߛ| −  ఈ|ିି|ఉ|ି|ఊ|.                         (22)||ݕ

In view of the Sobolev representation and (22), estimates of the approximation 
error ݑ − ࣫ݑ may be reduced to consideration of the Riesz potentials 

(ݔ)݂ܫ ≡ න ݔ| − (ݕ)ି݂|ݕ


 (23)                                                      .ݕ݀

The following proposition collects several known results in the form we find useful. 

Proposition	(3.1.4)	[87]:	

Let ݈ be a positive integer and let  and ݍ be in [1, ∞]. Suppose that 1/ݍ − /1 +
݈/݊ ≥ 0 and that a is a positive lower bound for 
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max ൜
݈
݊ඈ ,

1
ݍ −

1
 +

݈
݊ , min ൜1 −

1
ݍ ,

1


ൠൠ, 

where⌈ݔ⌉is the largest integer not greater than ݔ. Then ܮ maps ܮ(ܦ) to ܮ(ܦ) and for 
all ݂ ∈  (ܦ)ܮ

݂‖()ܫ‖ ≤ ,݊)ܥ ݈, ݀, ߶)‖݂‖(). 

Proof:	

Let 

ܴ(ݔ) = ൜|ݔ|ି for ݔ ≤ ݀,
0 for ݔ > ݀.

� 

Then, for ݔ ∈  ,ܦ

(ݔ)݂ܫ = ܴ ∗  ,(ݔ)݂

where݂ is extended to ܴ by zero outside ܦ. 

For ݈ ≥ ݊, ܴ  is bounded and, hence, 

݂‖ಮ()ܫ‖ ≤ ,݊)ܥ ݈, ݀)‖݂‖భ(). 

The result then follows from Holder's inequality. 

Now suppose that ݈ < ݊ and that 1/ݍ − /1 + ݈/݊ ≥ ߪ > 0. For this case we 
apply Young's inequality [108] to obtain 

݂‖()ܫ‖ = ‖ܴ ∗ ݂‖() ≤ ‖ܴ‖ೝ(ோ)‖݂‖(), 

where 1/ݎ = 1 − /1 + ݍ/1 ≥ 1 − ݈/݊ +  But .ߪ

‖ܴ‖ೝ(ோ) = (݊)ܥ ቈ
݀(ି)ା

(݈ − ݎ(݊ + ݊


ଵ/

< ∞, 

since (݂ − + ݎ(݊  ݊ ≥  .Hence, the proposition holds in this case as well .ݎ݊ߪ 

Now suppose that / < n and 1/q - 1/p + l/n = 0. Then it is a standard result 

(cf. Stein [107]) that 

݂‖(ோ)ܫ‖ ≤ ,݊)ܥ ݈, ,  ,(ோ)‖݂‖(ݍ

provided that  > 1 and  <  ݊/݈, i.e., ݍ < ∞. It is clear from the proof in Stein 
referenced above that the constant ܥ(݊, ݈, ,  and can be chosen to be continuous in (ݍ
 and hence bounded by ,ݍ
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,݊)ܥ ݈, (ߪ = sup ൜ݑ)ܥ, ݈, , :(ݍ max ൬1 −
1
 ,

1
൰ݍ ≥ ൠߪ < ∞. 

This yields the proposition in the case 1/ݍ − /1 + ݈/݊ = 0and max(1 − ,/1 1/
(ݍ ≥ ߪ > 0. 

Now suppose 1/ݍ − /1 + ݈/݊ is positive, but arbitrarily small, and 
max(1 − ,/1 (ݍ/1 ≥ ߪ > 0. If 1 − /1 ≥ ݍ/ such that 1ݍchoose ,ݍ/1 − /1 + ݈/݊ = 0. 
Since max(1 − ,/1 ඥݍభ ) ≥  the previous case implies that ,ߪ

݂‖()ܫ‖ ≤ ,݊)ܥ ݈, ݀,  ,()‖݂‖(ߪ

for all ݂ ∈ ݍ/Since 1 .(ܦ)ܮ <  Holder's inequality yields the desired result. If on the ,ݍ/1
other hand 1 − /1 ≤ ݍ/choose p such that 1 ,ݍ/1 − /1 + ݈/݊ = 0. The previous case 
again implies that 

݂‖()ܫ‖ ≤ ,݊)ܥ ݈, ݀, ‖݂‖(ߪ (), 

and Holder's inequality applied to the right-hand side yields the desired conclusion. 
This completes the proof of the proposition. 

	

	

	

Remark	(3.1.5)	[87]:	

The above proposition may be interpreted via the following 1/ݍ v.s. 1/ 
diagram: 

 

 

(24) 

 

 

 

 

(24) 

The proposition holds for all pairs (1/,  in the closed unit square excluding the (ݍ/1
shaded region lying below the line 1/ݍ = /1 − ݈/݊ and excluding the two points 
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(݈/݊, 0)and (1, ݈/݊). Furthermore, the norm of ܫ: ܮ(ܦ) →  can be bounded (ܦ)ܮ
uniformly in the closed subset of the unit square excluding the shaded region and 
excluding discs of radius ߪ around the points (݈/݊, 0) and (1, ݈/݊). However, as ߪ is 
allowed to tend to zero, the norm of f tends to infinity. (If ݈ ≥ ݊, then ܫ is bounded 
uniformly for all p and q.) Notice that for all ݈, ݊,  for which the proposition is ݍ and ,
applicable, it is also applicable for ܫ, ݊, ′ for some ݍ and ,′ < ∞. This observation will 
be used later to restrict attention to finite p in order to allow the use of a density 
argument. 

The restriction that  ≠ 1 and ݍ ≠ ∞  when 1/ݍ = /1 − ݈/݊ is necessary since 
the Riesz potential of order / does not map ܮଵ(ܴ) (respectively, ܮ


(ܴ)) into 

 see Stein [106]. However that the case ;(ஶ(ܴ)ܮ ,respectively) /ିଵ(ܴ)ܮ = 1 may be 
treatable by another argument is indicated by the fact that the Sobolev embedding holds 
in this case; see Stein [106]. 

Viewing the Sobolev representation of ݂ as giving a polynomial approximation 
(݂࣫), there are now two natural polynomial approximations to the derivatives off, 
namely, (߲/߲ݔ)ఈ݂࣫ and ࣫ି|ఈ|(߲/߲ݔ)ఈ݂. Both are polynomials of degree less than 
݈ −  ,Schematically .||ߙ|

ࣞ
൬

డ
డ௫

൰
ഀ

ሱ⎯⎯ሮ ࣞ′

↓ ࣫ ↓ ࣫ି|ఈ|

࣪

൬
డ

డ௫
൰

ഀ

ሱ⎯⎯ሮ ࣪ି|ఈ|

                                                    (25) 

Theorem	(3.1.6)	[87]:		

The diagram (25) commutes, i.e. for ݂ ∈ ࣞᇱ(ܤ), ఈ݂࣫(ݔ߲/߲) = ࣫ି|ఈ|(߲/߲ݔ)ఈ݂. 

Proof:		

Let ݂ ∈ ,ݔ and let (ܤ)ஶܥ ݕ ∈  We write the Taylor polynomial of ݂ as .ܤ

௬ܶ
݂(ݔ) =  ݂(ఈ)(ݕ)

ݔ) − ఈ(ݕ

!ߙ
|ఈ|ழ

. 

Then 

൬
߲

൰ݔ߲
ఉ

൫ ௬ܶ
݂൯(ݔ) = ௬ܶ

ି|ఉ| ቆ൬
߲

൰ݔ߲
ఉ

݂ቇ  ,(ݔ)

as is easily proved by induction. But since 
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݂࣫(ݔ) = න (ݕ)߶ ௬ܶ
݂(ݔ)  ,ݕ݀

the result follows by differentiation under the integral. 

The result then follows for ݂ ∈ ࣞᇱ(ܤ) since (߲/߲ݔ)ఈis continuous on ࣞᇱ(ܤ)࣫ is 
continuous from ࣞᇱ(ܤ)  into ࣪ , and ܥஶ(ܤ) is dense in ࣞᇱ(ܤ) [100]. 

Combining Proposition (3.1.4) with Theorem (3.1.6) gives the following: 

Theorem	(3.1.7)	[87]:	

Let m and ݈ be integers such that 0 ≤ ݉ < ݈, and let  and ݍ be in [1, ∞]. Suppose 
that, with ሚ݈ = ݈ − ݉, ݍ/1 − /1 + ሚ݈/݊ ≥ 0 and that 

0 < ߪ ≤ max ቊඃሚ݈/݊ඇ,
1
ݍ −

1
 +

ሚ݈
݊ , min ൜1 −

1
 ,

1
ݍ

ൠቋ . 

Then for ݂ ∈ ܹ
(ܦ) 

‖݂ − ݂࣫‖ௐ
() ≤ ,݊)ܥ ݈, ݀, ߶)‖݂‖ௐ

 (). 

Proof:	

In view of Remark (3.1.5), it sufϐices to assume that  < ∞, for then the general 
case follows from Holder's inequality. Since ܥஶ(ܦ) ∩ ܹ

(ܦ) is dense in ܹ
(ܦ), it 

suffices to prove the estimate for ݂ ∈ (ܦ)ஶܥ ∩ ܹ
(ܦ). Take ߙ ∈ ܰ such that  |ߙ| ≤ ݉. 

Then by Theorem 1, 

൬
߲

൰ݔ߲
ఈ

(݂ − ݂࣫) = ݂(ఈ) − ࣫ି|ఈ|݂(ఈ) = ℛ ି|ఈ|݂(ఈ) . 

Thus the result follows from (22) and Proposition (3.1.4)  

Remark	(3.1.8)	[87]:	

Sobolev's proof [105] of the imbedding theorems was essentially via Theorem 
(3.1.72), Remark (3.1.2), and the triangle inequality: 

‖݂‖ௐ
() ≤ ‖݂ − ݂࣫‖ௐ

() + ‖݂࣫‖ௐ
()  

≤ ଵ|݂|ௐܥ
() +  .ଶ‖݂‖భ()ܥ

It is not clear that Theorem (3.1.6) holds for the representation used by Sobolev, but as 
noted below, Theorem (3.1.7) does not really rely on the commutativity. 

Remark	(3.1.9)	[87]:	
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The estimate in Theorem (3.1.7) could likewise be derived without using 
Theorem (3.1.6) simply by differentiating under the integral, in view of (22). However, 
the use of the commutativity becomes crucial in the next two sections. 

Remark	(3.1.10)	[87]:	

Note that if ݉ = ݈, then the conclusion of Theorem (3.1.7) remains valid for 
ݍ ≤  This follows because .

|݂ − ݂࣫|ௐ
() = |݂|ௐ

(). 

Let ܣ be a set of multi-indices, and let the polar of ܣ,  , be the set of multi-indices givenܣ
by 

ܣ = ቊߚ ∈ ܰ: ൬
߲

൰ݔ߲
ఈ

ఉݔ ≡ 0 for ݈݈ܽ ߙ ∈  ቋ.                                               (26)ܣ

If ܣ and s are two sets of multi-indices such that ܣ ⊃ ܣ then ,ܤ ⊂  .ܤ

Two sets of multi-indices that play important roles are the following: 

ܣ = ߙ} ∈ ܰ: |ߙ| = ܤ   ,{݈ = ,ଵߜ݈} … ,  .{ߜ݈

In these cases 

ܣ = :ߚ} |ߚ| < ܤ            ,{݈ = :ߚ} ߚ < ݈   for ݅ = 1, … , ݊} 

The set ܣ is naturally associated with complete polynomials of degree less than ݈ while 
  is naturally associated with polynomials that are of degree less than ݈ in eachܤ
variable separately. 

For any set of multi-indices ܣ define the base of ܣ,  as the collection of all ,ିܣ
ߙ ∈ ߚ such that ܣ ∈ ߚ and ܣ ≤ ߚ implies that ߙ = ܣ Note that .ߙ = ߙ  since(ିܣ) ∈  ܣ
implies that there is ߛ ∈ ߛ such that  ିܣ ≤ ఉݔఊ(ݔ߲/߲) and hence ,ߙ ≡ 0 implies 
ఉݔఈ(ݔ߲/߲) ≡ 0 

Lemma	(3.1.11)	[87]:	

,ݎ is a finite set if and only if there are nonnegative integersܣ ݅ = 1, … , ݊ such 
that 

൛ݎߜ: ݅ = 1, … , ݊ൟ ⊂  .ܣ

Proof:		

The "if' is obvious, since 

ܣ ⊂ ൛ݎߜ: ݅ = 1, … , ݊ൟ
= :ߙ} ߙ < ,ݎ ݅ = 1, … , ݊}. 
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To prove "only if, suppose that, for some ݅, ൛݊ߜ: ݊ ∈ ܰൟ ∩ ܣ = ∅. Then for ߙ ∈  there is ,ܣ
some ݆ ≠ ݅ such that ߙ ≠ 0, and so if ݂ is any function that is constant as a function of 
, then ݂(ఈ)ݔ ≡ 0. In particular, if ݂ depends on ݔ alone, then ݂(ఈ) ≡ 0 for all ߙ ∈  .ܣ
Thus, ൛݊ߜ: ݊ ∈ ܰൟ ⊂   . is not finiteܣ ,, and henceܣ

Remark	(3.1.12)	[87]:		

If ܣ is a finite set, then it follows from Lemma (3.1.11) that 

max
ఉ∈బ

|ߚ| < ݊ ൬max
ఈ∈ష

|ߙ| − 1൰. 

Note that it also follows from Lemma (3.1.11) that if ܣ is finite then the class of 
polynomials spanned by ݔఉ for ߚ ∈   is a subset of the tensor product space ofܣ
polynomials which are of degree less than ݎ in ݔfor ݅ = 1, … , ݊. 

Extended Tensor Product Representation. Given a finite set ܣ of multi-indices 
such that ܣ is finite and given ݂ ∈  ,(ܦ)ஶܥ

(ݔ)݂   = ݂࣫(ݔ) + ℛ݂(ݔ),   ݔ ∈  (27)                                                         ,ܦ

where 

݂࣫(ݔ) =  න (ݕ)(ఈ)݂(ݕ)߶
ఈ∈బ

ݔ) − ఈ(ݕ

!ߙ  (28)                                                   ݕ݀

and 

ℛ݂(ݔ) =  න ത݇ఈ(ݔ, ݕ݀(ݕ)(ఈ)݂(ݕ
ఈ∈ష

                                                  (29) 

If ܣ = ∅, then the sum over ܣ is identically zero. The kernels ത݇ఈ satisfy 

ቤ൬
߲

൰ݔ߲
ఉ

൬
߲

൰ݕ߲
ఊ

ത݇ఈ(ݔ, ቤ(ݕ ≤ ,݈)ܥ ݊, ߶, ݀, ,|ߚ| ݔ|(|ߛ| −  ఈ|ିି|ఉ|ି|ఊ|,                       (30)||ݕ

where ݈ = 1 + maxఈ∈బ|ߙ|. 

	

Proof:	

Consider Sobolev's representation of order ݈: 

(ݔ)݂ = ݂࣫(ݔ) + ℛ݂(ݔ) =  (ݕ)(ఈ)݂(ݕ)߶
ݔ) − ఈ(ݕ

!ߙ ݕ݀
|ఈ|ழ

+  න ݇ఈ(ݔ, (ݕ)(ఈ)݂(ݕ
|ఈ|ୀ

 ݕ݀
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The set of all multi-indices ܰ decomposes into two disjoint sets, namely ܣand 
ܣ̅ ≡ :ߚ} ߙ∃ ∈ ܣ ∋ ߙ ≤ {ߚ = ܣ + ܰ = ିܣ + ܰ. Since ݈ > ൫maxఉ∈బ|ߚ| , |ߙ| = ݈൯ implies 
that ߙ ∈  Thus, we have .ܣ̅

(ݔ)݂ = ݂࣫(ݔ) +  න (ݕ)(ఈ)݂(ݕ)߶
ݔ) − ఈ(ݕ

!ߙ ݕ݀
|ఈ|ழ
ఈ∉బ

+  න ݇ఈ(ݔ, (ݕ ݂(ఈ)(ݕ)݀ݕ
|ఈ|ழ

 

and the sums in the remainder terms are over ߙ ∈  It remains to convert these terms .ܣ̅
to the form (29). But, for each ߙ ∈ ߚ there is some ,ܣ̅ ∈ ߚ such that ିܣ ≤  so we may ,ߙ
write ݂(ఈ) = ߙ| ఈିఉ݂(ఉ) integrate by parts(ݕ߲/߲) −  times, and obtain |ߚ

න (ݕ)(ఈ)݂(ݕ)߶
ݔ) − ఈ(ݕ

!ߙ ݕ݀ = (−1)|ఈିఉ| න ቊ൬
߲

൰ݕ߲
ఈିఉ

ቈ߶(ݕ)
ݔ) − ఈ(ݕ

!ߙ
ቋ ݂(ఉ)(ݕ)݀ݕ 

or 

න ݇ఈ(ݔ, (ݕ ݂(ఈ)(ݕ) = (−1)|ఈିఉ| න ቊ൬
߲

൰ݕ߲
ఈିఉ

݇ఈ(ݔ, ቋ(ݕ ݂(ఉ)(ݕ)݀ݕ. 

Summing over all ߙ, we obtain (29); it is not clear whether the ത݇ఉ are uniquely 
determined by the above process. Estimate (30) follows from (22).  

We now consider the commutativity of ࣫ with differentiation. For two 
multiindices ߙand (7) ,ߚ deϐines a new multi-index ߙ − ߙ Note that .ߚ −  is defined ߚ
even if ߙ ≱ ߙ) and that ߚ − (ߚ + ߚ ≥ ߙ with equality if and only if ,ߙ ≥  ܣ Given a set .ߚ
of multi-indices and a multi-index ߚ, define a new set ܣ − ߚ ⊂ ܰ by 

ܣ − ߚ = ߙ} − :ߚ ߙ ∈  .{ܣ

Since (ܣ − (ߚ ⊂ ܣ)  is finite then so isܣ , we see that ifܣ −  .(ߚ

Theorem	(3.1.13)	[87]:	

Let ܣ be a finite set of multi-indices such that ܣ is finite and let ߚ be a multi-
index. Then 

൬
߲

൰ݔ߲
ఉ

݂࣫ = ࣫ିఉ݂(ఉ)for any ݂ ∈ ࣞᇱ(ܤ).                                   (31) 

Proof:	

It is easy to see that (߲/߲ݔ)ఊିఉݔఋ ≡ 0 if and only if (߲/߲ݔ)ఊݔఋାఉ ≡ 0. Thus, 
ߜ ∈ ܣ) − ߜ  if and only if(ߚ + ߚ ∈  ,. Henceܣ

ܣ) − (ߚ = ߜ} − ߜ :ߚ ∈ ,ܣ ߜ ≥  .{ߚ

Thus, for ݂ ∈   ,(ܤ)ஶܥ



118 
 

൬
߲

൰ݔ߲
ఉ

݂࣫(ݔ) =  න (ݕ)(ఊ)݂(ݕ)߶
ݔ) − ఊିఉ(ݕ

ߛ) − !(ߚ
ఊ∈బ

ఊஹఉ

 

=  න (ݕ)(ఋାఉ)݂(ݕ)߶
ݔ) − ఋ(ݕ

!ߜ ݕ݀
ఋ∈(ିఉ)బ

= ࣫ିఉ݂(ఉ)(ݔ). 

The result follows for ݂ ∈ ࣞᇱ(ܤ) by density.  

Remark	(3.1.14)	[87]:	

  Note that both sides in (31) are zero unless  ߚ ∈  . The remaining results in thisܣ
section and the results ,hold for functions that are in a function space described in 
Remark(3.1.20). In each case it sufϐices to prove these results for functions in ܥஶ(ܦ) 
such that all relevant norms are finite. The definition of the function space is delayed so 
that it need be given only once and because the intervening results make the 
appropriateness of the norm used much more apparent. 

Theorem	(3.1.15)	[87]:		

Let ܣ be a finite set of multi-indices such that ܣ is a finite set; let s be any multi-
index; let ݈ = minఈ∈ିఉ୪ୣ୲ |ߙ| ; let ݉ be a nonnegative integer less than ݈; and let 
{ݍ} ∪ :ఈ} ߙ ∈ ܣ) − {ି(ߚ ⊂ [1, ∞]. Suppose that 

min ൜
1
ݍ −

1
ఈ

+ |ߙ|) − ݉) ݊⁄ : ߙ ∈ ܣ) − ൠି(ߚ ≥ 0, 

and that 0 < ߪ < min{ߤఈ: ߙ ∈ ܣ) − ߙ where, with ,{ି(ߚ = |ߙ| − ݉, 

ఈߤ = max ൜⌈ߙ/݊⌉,
1
ݍ −

1
ఈ

+
ߙ
݊ , min ൜1 −

1
ఈ

,
1
ݍ

ൠൠ . 

Then 

ብ൬
߲

൰ݔ߲
ఉ

(݂ − ݂࣫)ብ
ௐ

()
≤ ,݊)ܥ ,ܣ ,ߚ ݉, ݀, ߶, (ߪ  ฮ݂(ఈାఉ)ฮ

ഀ()
ఈ∈(ିఉ)ష

. 

Proof:  

Use Theorem (3.1.13) to see that 

൬
߲

൰ݔ߲
ఉ

(݂ − ݂࣫) = ℛ ିఉ݂{ఉ}. 

Thus, it suffices to prove the result for ߚ = 0. Differentiating under the integral in (29) 
and using (30) and Proposition (3.1.4) completes the proof.  
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Theorem	(3.1.16)	[87]:	

Let ଵܲ, . . . , ܲ be nontrivial homogeneous polynomials (in ݊ variables) of degrees 
݈ଵ, . . . , ݈ , respectively, having no common (nonzero) complex zero ithis forces ݇ ≥ ݊. 
Define 

ܭ = ൜݂ ∈ ࣞᇱ(ܴ): ܲ ൬
߲

൰ݔ߲ ݂ ≡ 0   for ݆ = 1, … , ݇ൠ. 

Then ܭ ⊂ ࣪  for some integer ݎ. Let ݈ = minଵஸஸ ݈; let ݉ be a nonnegative integer less 
than ݈; and let ൛: ݆ = 1, … , ݇ൟ ⊂ [1, ∞]. Suppose that 

1
ݍ −

1
 + ൫ ݈ − ݉൯ ݊⁄ ≥ 0,   ݆ = 1, … , ݇, 

and that 0 < ߪ < min൛ߤ : ݆ = 1, … , ݇ൟ where, with ሚ݈ = ݈ − ݉, 

ߤ = max ቊൣሚ݈ ݊⁄ ൧,
1
ݍ −

1


+ ሚ݈ ݊⁄ , min ቊ1 −
1


,
1
 .ቋቋݍ

Then 

inf
࣫∈

‖݂ − ࣫‖ௐ
() ≤ ,൫݊ܥ ݉, ൛ ܲൟ, ݀, ߶, ൯ߪ  ฯ ܲ ൬

߲
൰ݔ߲ ݂ฯ

ೕ()



ୀଵ

. 

Proof:	

As is Agmon [88], it follows from Hubert's Nullstellensatz that there is an integer 
r such that for all |ܽ| =  ,ݎ

ఈߦ =  ܴ
ఈ(ߦ) ܲ(ߦ)



ୀଵ

                                                                                  (32) 

for some polynomials ܴ
ఈ  that are homogeneous of degree ݎ − ݈ . Thus each ݂ ∈  ܭ

satisfies ݂(ఈ) ≡ 0  for all |ܽ| = ܭ  ,.i.e ,ݎ ⊂  . 

Since ܭ ⊂ ܲ , it follows that for any ∈   

inf
ொ∈

‖ܲ − ܳ‖ௐ
(∗) ≤ ܥ  ฯ ܲ ൬

߲
൰ݔ߲ ܲฯ

ುೕ()



ୀଵ

, 

whereܦ∗ is the ball of diameter 2݀ concentric with ܤ, because of the equivalence  of 
norms on the finite-dimensional space  ⁄ܭ . Therefore, 
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inf
ொ∈

‖ܲ − ܳ‖ௐ
() ≤ ܥ  ฯ ܲ ൬

߲
൰ݔ߲ ܲฯ

ುೕ()



ୀଵ

,                                                     (33) 

With ܥ depending only on the diameter ݀ of ܦ, the diameter of  ܤ, and ൛ ܲൟ. (The 
independence from ݍ and ൛ൟ can be achieved using Hölder's inequality.) Using 
Sobolev's representation of order ݎ and the triangle inequality, we get 

inf
ொ∈

‖݂ − ܳ‖ௐ
() ≤ ‖݂ − ݂࣫‖ௐ

() + inf
ொ∈

‖݂࣫ − ܳ‖ௐ
() 

≤ ‖ܴ݂‖ௐ
() + ܿ  ฯ ܲ ൬

߲
൰ݔ߲ ݂࣫ฯ

ುೕ()



ୀଵ

. 

Because of Theorem (3.1.6) and the linearity of ࣫, 

ܲ ൬
߲

൰ݔ߲ ݂࣫ =   ܿఈ, ൬
߲

൰ݔ߲
ఈ

|ఈ|ୀఐ

 ݂࣫ =  ܿఈ,࣫ିఐ݂(ఈ)

|ఈ|ୀఐ

= ࣫ିఐೕ ܲ ൬
߲

൰ݔ߲ ݂. 

Thus, Remark (3.1.2) shows that 

ฯ ܲ ൬
߲

൰ݔ߲ ݂࣫ฯ
ௐ

()
≤ ܥ ฯ ܲ ൬

߲
൰ݔ߲ ݂ฯ

భ()
≤ ܥ ฯ ܲ ൬

߲
൰ݔ߲ ݂ฯ

ುೕ()
. 

It now remains to estimate ܴ݂.  Using (32), we have 

ܴ݂(ݔ) =  න ݇ఈ(ݔ, (ݕ)(ఈ)݂(ݕ
|ఈ|ୀ

 ݕ݀

          =   න ݇ఈ(ݔ, (ݕ  ܴ
ఈ ൬

߲
൰ݕ߲ ܲ ൬

߲
൰ݕ߲ ݂൨ (ݕ)



ୀଵ|ఈ|ୀ

 ݕ݀

                             =  න   (−1)ୢୣ ோೕ
ഀ

|ఈ|ୀ
ܴ
ఈ ൬

߲
൰ݕ߲ ݇ఈ(ݔ, ൩(ݕ



ୀଵ
ܲ ൬

߲
൰ݕ߲  .ݕ݀(ݕ)݂

Since deg ܴ
ఈ = ݎ − ݈, (22) and Proposition (3.1.4) imply that 

‖ܴ݂‖ௐ
() ≤ ܥ  ฯ ܲ ൬

߲
൰ݔ߲ ݂ฯ

ುೕ()



ୀଵ

, 

and this completes the proof of the theorem. 
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Remark	(3.1.17)	[87]:	

If ܣ = ,ଵߙ} . . . , } is a finite set of multi-indices and  ൛ߙ ܲൟ  is defined by 

ܲ(ݔ) = ݆ ఈೕforݔ = 1, … , ݇, then ܣ is a finite set if and only if ଵܲ, … , ܲ have no  common 
(nonzero) complex zero. This is because ܭ ∩ ஶܲ  is the space spanned by  {ݔఉ: ߚ ∈  ;{ܣ
hence, dim ܭ ∩ ஶܲ = cardܣ. The proof of Theorem (3.1.16) thus  contains the "if" part 
of our assertion. To prove the "only if part, suppose there is  someߦ ≠ 0 such that 

ܲ(ߦ) = ߙߦ = 0 for ݆ = 1, … , ݇. Then some component, say ߦ  of  ߦ must be nonzero, and 
so none of the ߙ's can be of the form ߜݎ, ݎ ∈ ܰ; hence, ܣ is not finite (Lemma 
(3.1.11)). 

Remark	(3.1.18)	[87]:	

The proof of Theorem (3.1.16) is constructive to the extent that the constant  ܥ in (33) 
can in principle be computed (it is a finite-dimensional problem). The  integerݎ 
guaranteed by Hubert's Nullstellensatz depends only on ݈ଵ, … , ݈; cf. van  der Waerden 
[107]. 

Remark	(3.1.19)	[87]:	

 If 0 ≠ ߦ ∈ (ߦ) is such that ܲܥ = 0for ݆ = 1, … , ݇, then ܲ(߲ ⁄ݔ߲ )݁క௫ = 0, so that ܭ ⊄
 ஶ. Thus, this condition is necessary for polynomial approximation  theory. (Note that
even if the ܲ's have real coefficients, there is a real-valued  non polynomial function in 
 ,namely ,ܭ

ܲ(߲ ⁄ݔ߲ )൫ܴ݁ ݁క௫൯ = ܴ݁ ൫ ܲ(߲ ⁄ݔ߲ )݁క௫൯ = 0, 

so it is necessary to consider all complex zeros of the ܲ's.) 

Remark	(3.1.20)	[87]:	

The estimates of Sections (4) and (5) are valid for functions ݂ in the space ܪ  
defined as follows: Let ൛ ܲൟ and ൛ൟ be finite sets of polynomials and extended real 
numbers as in Theorem (3.1.16). Take ܪ to be the subset of ܮଵ(ܦ) consisting of 
functions ݂ such that the distributional derivatives ܲ(߲ ⁄ݔ߲ )݂are elements of ܮೕ

 .(ܦ)

This is a Banach space with the norm 

‖݂‖భ() +  ฯ ܲ ൬
߲

൰ݔ߲ ݂ฯ
ುೕ()

. 

Further, when all the  's are finite, the set ܥஶ(ܦ) ∩  and this allows  to ,(see below) ܪ
be carried through in view of Remark (3.1.15). 

The claimed density of ܥஶ(ܦ) ∩  is not easily seen by the standard partition of ܪ
unity argument (cf. [98]), but can be demonstrated as follows: Assume  that 0 ∈  and ,ܤ
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for ݎ ≥ 1 let ݂(ݔ) = ݔ)݂ ⁄ݎ ) and ܦ = ݔ :ݔ} ⁄ݎ ∈  is  star-shaped with respect ܦ Since .{ܦ
to ܤ, ܦ ⊂⊂ ݎ    forܦ > 1. Given ݂ ∈ it is easily seen  that ݂ ,ܪ ∈ and that ݂ ܪ →  ܪ in ݎ
as ݎ ↓ 1. Thus, it suffices to approximate ݂ , by a  function in ܥஶ. If 
߰ ∈ ܥ

ஶ(ℝ), ∫ ݔ݀(ݔ)߰ = 1, and ߰ఢ(ݔ) = ߳ି߰(ݔ/߳), then as  ߳ ↓ 0 ߰ఢ ∗ ݂ → ݂  in ܮ of 
any compact subset of ܦ  provided ܲ < ∞. Hence, ߰ఢ ∗ ݂ → ݂in ܮଵ(ܦ). 

Finally, since ܲ(߲ ⁄ݔ߲ )(߰ఢ ∗ ݂) = ߰ఢ ∗ ܲ(߲ ⁄ݔ߲ ) ݂, we see that ߰ఢ ∗ ݂ → ݂  in  ܪ as ߳ ↓
0. 

For ݉ > 0let ݉ = ഥ݉ + where in is the integer part of ݉; i.e., ഥ݉ ,ߠ ∈ ܰ and  
0 ≤ ߠ < 1. For positive nonintegral ݉ and 1 <  < ∞ define 

|݂|ௐ
()

 =  ඵ
ห݂(ఈ)(ݔ) − ݂(ఈ)(ݕ)ห

ݔ| − ାఏ|ݕ
×|ఈ|ୀഥ

 (34)                                              .ݕ݀ ݔ݀

For  = ∞ define the seminorm by 

|݂|ௐಮ
() =  ess sup

×

ห݂(ఈ)(ݔ) − ݂(ఈ)(ݕ)ห
ݔ| − ఏ|ݕ

|ఈ|ୀഥ

.                                                    (35) 

The space ܹ
(ܦ) is the set of all ܹ

ഥ functions such that |݂|ௐ (ܦ)
() < ∞, and  its 

norm is defined by 

‖݂‖ௐ
() = ‖݂‖ௐ

തതത() + |݂|ௐ
(). 

	

Proposition	(3.1.21)	[87]:	

Suppose that 1 ≤  ≤ ∞, ݉ = ഥ݉ + where ഥ݉  ߠ ∈ ܰ and 0 < ߠ < 1, and  
݈ = ഥ݉ + 1. Then there is a constant ܥ = ,݊)ܥ ߶, ݀, ݉) such that for ݂ ∈ ܹ

(ܦ) 

‖݂ − ݂࣫‖() ≤ ௐ|݂|ܥ
(),                                                      (36) 

where࣫ is deϐined in (16). 

Proof:	

First take 1 ≤  < ∞. Then, we can assume without loss of  generality that 
݂ ∈  ஶ(ℝ). (See [99].)ܥ

Suppose that a is a multi-index such that |ܽ| = ݈, and take ݆ to be such that 
ߙ = ߚ +  is a multi-index. Let ߚ  whereߜ

ܴఈ(ݔ) = න ݂(ఈ)(ݕ)݇ఈ(ݔ, (ݕ


 (37)                                                                                ,ݕ݀
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where݇ఈ is deϐined in (18). This can be written as follows: 

ܴఈ(ݔ) = න
߲

ݕ߲
ൣ݂(ఉ)(ݕ) − ݂(ఉ)(ݔ)൧݇ఈ(ݔ, (ݕ


                               ݕ݀

  = lim
↘

⎩
⎪
⎨

⎪
⎧ − න ൣ݂(ఉ)(ݕ) − ݂(ఉ)(ݔ)൧

߲
ݕ߲

݇ఈ(ݔ, (ݕ
{௬∈:|௫ି௬|வఢ}

ݕ݀

+ න ൣ݂(ఉ)(ݕ) − ݂(ఉ)(ݔ)൧݇ఈ(ݔ, ݔ൫(ݕ − ൯߳ିଵݕ

|௫ି௬|ୀఢ
ݏ݀

⎭
⎪
⎬

⎪
⎫

        (38) 

where݀ݏ is surface measure. 

The surface integral in (38) tends to zero as ݁ ↘ 0. To see this note that, for  
ݔ| − |ݕ = ߳, (22) implies 

|݇ఈ(ݔ, |(ݕ ≤ ଵି߳ܥ , 

that, for |ݔ − |ݕ = ߳, ݂ ∈  ஶ(ℝ)  impliesܥ

ห݂(ఉ)(ݕ) − ݂(ఉ)(ݔ)ห ≤  ,߳ܥ

and that 

න 1
|௫ି௬|ୀఢ

ݏ݀ =  .ିଵ߳ܥ

Using (22) again, we see that 

|ܴఈ(ݔ)| ≤ ܥ න
ห݂(ఉ)(ݕ) − ݂(ఉ)(ݔ)ห

ݔ| − |ݕ


.                                                        (39) 

Note that the integrand is in ܮଵ since it is bounded by ݔ|ܥ −  ାଵ. Hölder's   inequalityି|ݕ
and (39) imply that 

|ܴఈ(ݔ)| ≤ ܥ න
ห݂(ఉ)(ݕ) − ݂(ఉ)(ݔ)ห

ݔ| − ାఏ|ݕ




 (40)                                                             .ݕ݀

Integrating this with respect to ݔ and summing on |ܽ| = ݈ gives (36) for the case  < ∞. 

Note that the ܥ in (40) is just 

ܥ
 ቆන ݔ| − ݕାఏᇲ݀ି|ݕ


ቇ

 ᇲ⁄

≤ ቐܥ ൭
߱

ߠ ൬1 −
1
൰൱

ଵିଵ ⁄

݀ఏቑ



, 

where߱ is the measure of the unit (݊ − ݈)-sphere. Thus the constant ܥ in (36)  can be 
taken to be independent of  ∈ (1, ∞), and it is bounded for ߠ in the  interval (߳, 1) 
where ߳ is positive. 
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The estimate for  = ∞ is complicated by the facts that, for nonintegral ݉,  

ஶܹ
(ܦ) ⊄ ܹ

(ܦ)for < ∞ and ܥஶ(ܦ) is not dense in ஶܹ
(ܦ). In this case,  note that 

ഥܥ ⊃ ஶܹ
(ܦ). For ഥ݉ ≥ 1 and for ݂ ∈ ഥܥ  ,(ܦ)

(ݔ)݂ = 
ݔ) − ఈ(ݕ

!ߙ ݂(ఈ)

|ఈ|ୀഥ

(ݕ) + ഥ݉ 

+ 
ݔ) − ఈ(ݕ

!ߙ
|ఈ|ୀഥ

න ഥݏ ିଵൣ݂(ఈ)൫ݔ + ݕ)ݏ − ൯(ݔ − ݂(ఈ)(ݕ)൧
ଵ


 (41)                             .ݏ݀

This representation is just the first line of the proof of the Sobolev representation given 
in ,except ݈ was decreased to ഥ݉  and zero was added in a  convenient form. Each term in 
the second sum can be bounded by 

ഥ݉
!ߙ

ݔ)| − |ఈ(ݕ න ഥݏ ିଵ[(1 − ݔ|(ݏ − ఏ[|ݕ
ଵ


ௐಮ|݂| ݏ݀

(). 

Multiplying (41) by ߶(ݕ), integrating with respect to ݕ, and applying the above  bound 
gives the conclusion for  = ∞  and ഥ݉ ≥ 1. 

For ഥ݉ = 0 replace (41) by the trivial relation 

(ݔ)݂ = (ݕ)݂ + (ݔ)݂] −  .[(ݕ)݂

Then proceed as above. 

Proposition (3.1.21), when combined with Theorem (3.1.15), gives 

Theorem	(3.1.22)	[87]:	

Suppose that ݉ = ഥ݉ + 9, where 0 < ߠ < 1 and ഥ݉  is a nonnegative integer. Let 
݈ = ഥ݉ + 1, and let ࣫ be deϐined by (16). Then there exists a constant ܥ = ,݊)ܥ ߶, ݀, ݉) 
such that, for 1 ≤  ≤ ∞and ݂ ∈ ܹ

(ܦ), 

‖݂ − ݂࣫‖ௐ
() ≤ ௐ|݂|ܥ

().                                                              (42) 

The results, were derived under the assumption that the domain was star-
shaped with respect to each point in a ball. In  this section we show how this constraint 
can be weakened. In particular, the  previous results can be extended to bounded 
domains which satisfy the restricted  cone condition (see below) that was used in [91], 
[92]. In addition certain domains  which fail to satisfy the restricted cone condition can 
be treated (for example a slit  disk in ℝଶ). The principal result of this section states 
roughly that  a domain has good approximation properties if it is a finite union of 
domains with good approximation properties. In [101] Jamet uses a different method to 
relax geometric constraints associated with polynomial approximation. 
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First, we remark on the relation between domains which satisfy the restricted 
cone condition and those which are star-shaped with respect to a ball. A bounded open 
set ߗ is said to satisfy the restricted cone condition if there exists a finite open cover 
൛ ࣩൟ

ୀଵ


 of Ωഥ and a corresponding collection ൛ܥൟ

ୀଵ


 of truncated right  circular cones 

with vertices at the origin such that if ݔ ∈ Ω ∩ ࣩ   then ݔ + ܥ ⊂  The following  .ߗ
remark is easily verified. 

Remark	(3.1.23)	[87]:	

If a bounded open set Ω satisfies the restricted cone condition then it is the  finite 
union of open sets ܦ each of which is star-shaped with respect to a ܤ. 

That the converse of this result is not valid is easily seen by considering 

Ω = ൛݁ݎఏ ∶ 0 < ݎ < 1, 0 < ߠ <  ,ൟߨ2

where we identify ܥ with ℝଶ. This domain fails to satisfy the restricted cone  condition, 
Ω = ଵܦ ∪  ଶwhereܦ

ଵܦ = ൛݁ݎఏ ∶ 0 < ݎ < 1, 0 < ߠ < ߨ3 2⁄ ൟ, 

ଶܦ = ൛݁ݎఏ ∶ 0 < ݎ < 1, ߨ 2⁄ < ߠ <  .ൟߨ

The domains ܦ are star-shaped with respect to balls ܤ = ൛ݖ: หݖ − หݖ < 1 4⁄ ൟ  where 
ଵݖ = 1

2ൗ ݁ଷగ ସ⁄ and ݖଶ = 1
2ൗ ݁ହగ ସ⁄  . 

For each bounded nonvoid open set ܦ let (ܦ)ܪ denote a linear space of  
functions, and let (ܦ)ܪ be equipped with two seminorms ‖. ‖  and ‖|. |‖.  Suppose that 
these spaces and seminorms have the following properties: 

a) The restriction of each element of ܦ)ܪଵ ∪  .(ଵܦ)ܪ ଵ is inܦ ଶ) toܦ
b) For each ݂ ∈ ଵܦ)ܪ ∪  ,(ଶܦ

‖݂‖భ∪మ ≤ ‖݂‖భ + ‖݂‖మ ≤ 2‖݂‖భ∪మ  

and‖|݂|‖భ + ‖|݂|‖మ ≤ 2‖|݂|‖భ∪మ . 

c) ஶ ⊂  .(ܦ)ܪ
d) If ܲ ∈ ஶand ‖ܲ‖భ = 0, then ‖ܲ‖భ∪మ = 0. 

   In the use of the results of this section, ‖݂‖ will be a finite sum of terms of the  

form‖݂ఈ ‖() and ‖|݂|‖ will include in addition terms of the form ‖ܲ(߲ ⁄ݔ߲ )݂‖() 

and ห݂(ఊ)ห
ௐೝ

ഇ(). 

Theorem	(3.1.24)	[87]:	
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Suppose that Ω = ⋃ ܦ
ே
ୀଵ  is connected and that each ܦ is a bounded  nonvoid 

open set. Let ܲ be a finite-dimensional subspace of ஶܲ, and suppose that  there exist ࣫ 
and ܥ for ݆ = 1, . . . , ܰ such that, for ݂ ∈ ,൯ܦ൫ܪ ݂࣫ ∈ ܲ and 

ฮ݂ − ݂࣫ฮ
ೕ

≤ |‖݂‖|ೕܥ .                                                                        (43) 

Then there exists ܥ such that, for ݆ = 1, … , ܰand ݂ ∈  ,(Ω)ܪ

ฮ݂ − ݂࣫ฮ
ஐ

≤  |‖݂‖|ஐ.                                                                                            (44)ܥ

Proof:	

It suffices to consider the case ܰ = 2, since the general case follows easily  

by induction. Let ܤ = ଵܦ ∩ ;ଶܦ ܤ ≠ ߶ since Ω is connected. By properties (b) and 

(d) above, the  seminorms  ‖ܲ‖భ + ‖ܲ‖మ   and |‖ܲ‖ on ܲ ∈   .have the same  kernel 

Using the equivalence of norms on the corresponding quotient space yields 

‖ܲ‖భ + ‖ܲ‖మ ≤ ܲ  for all‖ܲ‖ܥ ∈  (45)                                                              

for some constant ܥ = ,ଵܦ)ܥ ,ଶܦ  .(

Suppose that ݂ ∈ and that ܲ  (Ω)ܪ = ݂࣫for  ݆ = 1,2. Note that 

‖݂ − ଵܲ‖ஐ ≤ ‖݂ − ଵܲ‖భ + ‖݂ − ଶܲ‖మ + ‖ ଶܲ − ଵܲ‖మ , 

using property (b) and the triangle inequality. By (45), 

‖ ଶܲ − ଵܲ‖మ ≤ ‖ܥ ଶܲ − ଵܲ‖ ≤ ‖]ܥ ଶܲ − ݂‖ + ‖݂ − ଵܲ‖]. 

with the previous inequality, applying (43), and using property (b) yields 

‖݂ − ଵܲ‖ஐ ≤ (1 + ଵ|‖݂‖|భܥ൫(ܥ +  ଶ|‖݂‖|మ൯ܥ

≤ (1 + (ܥ max{ܥଵ, {ଶܥ |‖݂‖|ஐ. 

Remark	(3.1.25)	[87]:		

  In those cases in which the norm ‖. ‖ is translation invariant, as is the case  for all the 
Sobolev-type seminorms used so far in this section, the constant ܥ in (45) can be taken 
to depend only on ݀ and ݀ instead of  ܦଵ and ܦଶ, where ݀ > 0  is such that some ball of 
radius ݀ is contained in ܦଵ ∩ ݀ ଶ andܦ = diam(ܦଵ ∪  .(ଶܦ

Remark	(3.1.26)	[87]:	

   It follows from Theorem (3.1.24) that Theorems (3.1.7), (3.1.14), (3.1.16), and 
(3.1.22), hold if ܦ is any connected open set that is the union of a finite collection  of 
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domains that are star-shaped with respect to balls. In Theorems (3.1.7), (3.1.15), and  
(3.1.22), one chooses ࣫ to be defined with respect to any ball contained in ܦ. Note  that 
Theorem (3.1.16) still holds because Theorem (3.1.24) does not require the  mapping ࣫ 
. to be linear or even continuous; hence, we may define ࣫ by taking  anything 
reasonably close to the inϐimum in Theorem (3.1.16).  

Examples	(3.1.27)	[87]: 

  This section contains four simple examples that are based on the results . The purpose 
here is to show how the refinements in those  sections yield results that would not be 
easily derived by results based on complete polynomial approximation or on more 
restrictive tensor product results. First the results are used to show an error bound for 
approximation by   polynomials that are constant in one variable and linear in another. 
Next, the results  are used to show how well harmonic polynomials can  approximate 
harmonic functions. In the third example, the results are  used to bound the 
interpolation error in a case in which the function being  interpolated does not have 
enough derivatives to be able to apply the Theorems . The fourth example shows how 
triangles with curved edges can be  treated using our results.  

Example	(3.1.28)	[87]:	

In this example we consider approximation in two variables by polynomials  that 
are constant in one variable and linear in the other. One interesting question in  this 
context is whether differentiation of the approximating polynomial in the  direction in 
which it is linear gives a good constant approximation to the derivative of the function 
being approximated. The commutativity of the operator ࣫ with the  differentiation 
operator allows an affirmative conclusion. 

Let ℎ be a positive parameter, and let ܦ = (0, ℎ) × (0, ℎ). Take ߚ = (1,0) and 
consider, for ݂ ∈  ,ஶ(ℝଶ)ܥ

;݂)ߟ  ℎ) = inf ൝‖݂ − ܲ‖మ() + ብ൬
߲

൰ݔ߲
ఉ

(݂ − ܲ)ብ
మ()

: ܲ ∈  ൡ,                    (46)

where  = {ܽ + :ଵݔܾ ܽ, ܾ ∈ ℝ}. 

For any function g defined on ܦ let ݃(ݔଵ, (ଶݔ = ݃(ℎݔଵ, ℎݔଶ)  be defined on  

 ଵ. Note thatܦ

ብ൬
߲

൰ݔ߲
ఈ

(݂ − ܲ)ብ
మ()

= ℎଵି|ఈ| ብ൬
߲

൰ݔ߲
ఈ

൫ ሚ݂ − ෨ܲ൯ብ
మ(భ)

                                  (47) 

Thus, since ܲ ∈ if and only if ෨ܲ  ∈  ,
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;݂)ߟ ℎ) = inf ൝ℎฮ ሚ݂ − ܲฮ
మ(భ) + ብ൬

߲
൰ݔ߲

ఉ

൫ ሚ݂ − ܲ൯ብ
మ(భ)

: ܲ ∈  .ൡ

Fix ߶ ∈ ܥ
ஶ such that ∫ ߶ = 1, where ܤ is a ball contained in ܦଵ. Take ܣ = {(0,1), (2,0)} 

and let ࣫ = ࣫ be defined .Then, by Theorem (3.1.15),  

ℎฮ ሚ݂ − ࣫ ሚ݂ฮ
మ(భ) ≤ ℎܥ ቂฮ ሚ݂(,ଵ)ฮ

మ(భ) + ฮ ሚ݂(ଶ,)ฮ
మ(భ)ቃ ,

ብ൬
߲

൰ݔ߲
ఉ

൫ ሚ݂ − ࣫ ሚ݂൯ብ
మ(భ)

≤ ܥ ቂฮ ሚ݂(ଵ,ଵ)ฮ
మ(భ) + ฮ ሚ݂(ଶ,)ฮ

మ(భ)ቃ .
(48) 

Adding the two inequalities in (48) and applying (47) with ܲ ≡ 0, we see that  for 
0 < ℎ ≤ 1 

;݂)ߟ   ℎ) ≤ ℎܥ ቂฮ݂(,ଵ)ฮ
మ() + ฮ݂(ଵ,ଵ)ฮ

మ() + ฮ݂(ଶ,)ฮ
మ()ቃ.                      (49) 

It is interesting to note that if we had restricted ourselves to the direct 
application of the results .We would have not been able to show that ߟ(݂; ℎ) =
ܱ(ℎ)since the largest class of complete polynomials contained in  is ଵ and 
;݂)ߟ ℎ) ≥ ‖߲ ⁄ݔ߲ ‖మ()if  is replaced by ଵ, in the inf. Our results are related to those 
used by Ewing [97] in deriving a similar cross derivative approximation  bound. 

To further illustrate the possible uses of Theorem (3.1.15), suppose that 
,ݍ ,ଵ ଶ ∈ [1, ∞], ݂(,ଵ) ∈ భܮ

and ݂(ଶ,) ,(ܦ) ∈ మܮ
where 1 (ܦ) ⁄ݍ − 1 ⁄ଵ + 1 2⁄ > 0. 

Then 

inf ቄ‖݂ − ܲ‖(): ܲ ∈ ቅ ≤ ℎଵିଶܥ భ⁄ ାଶ ⁄ ฮ݂(,ଵ)ฮ
ುభ() + ℎଶିଶ మ⁄ ฮ݂(ଶ,)ฮ

ುమ(). 

In general, direct application of results ,would not yield such a bound.  

Example	(3.2.29)	[87]:	

To construct an example of the use of Theorem (3.1.16), let  

ܲାଵ(ݔ) = (ାଵି,)ݔ , for ݆ = 0, … , ݎ + 1, and let ܲାଷ(ݔଵ, (ଶݔ = ଵݔ
ଶ + ଶݔ

ଶ. The set ܭ 
consists of all harmonic polynomials of degree less than or equal to ݎ. If we proceed  
exactly as in the previous example, we see that for all ݂ ∈ 	ஶ(ℝଶ)ܥ

inf
∈

‖݂ − ܲ‖మ() ≤ ܥ ℎାଵ  ฮ݂(ఈ)ฮ
మ()

|ఈ|ୀା

+ ℎଶ‖∆݂‖మ()൩.                    (50) 

We can conclude that if ݂ is harmonic on ܦ then it can be approximated by elements of 
 .ℎାଵܥ with an error ܭ

Example	(3.1.30)	[87]:	
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To give an application of Theorem (3.1.22) we consider the question of bounding 
the error in an interpolation process. Suppose that ߗ is a bounded domain in ℝଶ with a 
polygonal boundary and that ܨ is a family of triangulations of Ω. For ࣮ ∈  let ,ܨ
ℎ = ℎ(࣮) = max்∈࣮ diam(ܶ).  Denote by ࣮ܯ = ,(1ܯ ࣮) the space of functions that are 
continuous on ߗത and linear (affine) on each ܶ ∈ ࣮. Assume that there is a ߩ < ∞ such 
that for all ࣮ ∈ , ܨ ܶ ∈ ࣮ ⟹ ൫diam(ܶ)൯ଶ

area(ܶ) ≤ ൗߩ ;  this says that the triangles do 
not degenerate. 

For any function ݂ ∈ ݂ܫ  let  (തߗ) = ܫ࣮ ݂  be the element of ࣮ܯ  which agrees with ݂ 
at each vertex of  ࣮; i.e., ݂ܫ is the piecewise linear interpolant of ݂. It is  well known (and 
follows easily from Theorem (3.1.7)) that if ݂ ∈ ଶܹ

ଶ(Ω), then 

‖݂ − మ(ஐ)‖݂ܫ ≤ ℎଶ‖݂‖ௐమܥ
మ(ஐ). 

However, if 0 < ߳ < 1 and if ݂ ∈ ଶܹ
ଵାఢ(Ω), the results of give no error bound. A natural 

approach would be to try to use the theory of interpolation of Banach spaces and use 
results for ଶܹ

ଶand ଶܹ
ଵ; however, this fails because ݂ܫ is  not defined on ଶܹ

ଵ since the 
elements of this space are not in general continuous. 

Define  ோܶ = ,ଵݔ)} ଵݔ :(ଶݔ > 0, ଶݔ > 0, ଵݔ + ଶݔ < 1}. For ܶ a triangle in ࣮ ∈ Flet ܣ 
be an affine map taking ோܶonto ܶ. Assume, without loss of generality, that A is linear, 
and note that ‖ܣ‖ ≤ ℎ. For a function ݃ܥ ∈ )ܥ തܶோ) define ܫሚ ݃ to be the affine function of ݔ 
that agrees with ݃ at the vertices of ோܶ; i.e., 

ሚܫ ݃(ݔଵ, (ଶݔ = ݃(0,0)(1 − ଵݔ − (ଶݔ + ݃(1,0)ݔଵ + ݃(0,1)ݔଶ. 

Note that ൫ ሚ݂ − ሚܫ ሚ݂൯(ݔ) = (݂ − (ݔ)where ሚ݂ ,(ݔܣ)(ܫ ≡  Thus .(ݔܣ)݂

‖݂ − (்)మ‖݂ܫ
ଶ = |det ฮ|ܣ ሚ݂ − ሚܫ ሚ݂ฮ

మ(்ೃ)
ଶ

.                                                                   (51) 

Next note that for any ܲ ∈ ଶ࣪ 

ฮ ሚ݂ − ሚܫ ሚ݂ฮ
మ(்ೃ) = ฮ ሚ݂ − ܲ − ሚ൫ܫ ሚ݂ − ܲ൯ฮ

మ(்ೃ), 

sinceܫሚ is a linear map which reproduces polynomials in ଶ࣪. Letting ‖ܫ‖ denote the norm 
of ܫሚ as a map of ଶܹ

ଵାఌ( ோܶ) into ܮଶ( ோܶ) (which is finite by Sobolev's inequality) we see 
that 

ฮ ሚ݂ − ሚܫ ሚ݂ฮ
మ(்ೃ) ≤ ൫1 + ฮܫሚฮ൯ inf

∈ మ࣪
ฮ ሚ݂ − ܲฮ

ௐ
భ
మశഄ(்ೃ)

. 

From Theorem (3.1.22) and the fact that |ܲ|
ௐ

భ
మశഄ = 0 for  ܲ ∈ ଶ࣪, it follows that 

ฮ ሚ݂ − ሚܫ ሚ݂ฮ
మ(்ೃ) ≤ หܥ ሚ݂ห

ௐ
భ
మశഄ(்ೃ)

.                                                                   (52) 
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To estimate the right-hand side of (52) represent ܣ as a 2 × 2 matrix that acts on 
column vectors (ݔଵ, ்(ଶݔ  and then note that 

∇ ሚ݂ = ቆ
ሚ݂(ଵ,)

ሚ݂(,ଵ)ቇ = ∗ܣ ቆ݂(ଵ,)

݂(,ଵ)ቇ =  ,݂∇∗ܣ

Where ሚ݂(ఈ) and ݂(ఈ)  are evaluated at x and ݔܣ, respectively. Thus 

ඵ
ห∇ ሚ݂(ݔ) − ∇ ሚ݂(ݕ)หଶ

ݔ| − ଶାଶఢ|ݕ
்ೃ×்ೃ

ݕ݀ ݔ݀

= |det ଶି|ܣ ඵ
ቚܣ∗ ቀ൫∇݂(ݔ)൯ − ቁቚ(ݕ)݂∇

ଶ

ݔ| − ଶାଶఢ|ݕ ቆ
ݔ| − |ݕ

ݔ)ଵିܣ| − ቇ|(ݕ
ଶାଶఢ

ݕ݀ ݔ݀
்×்

≤
ସାଶఢ‖ܣ‖

|det ଶ|ܣ ඵ
(ݔ)݂∇| − ଶ|(ݕ)݂∇

ݔ| − ଶାଶఢ|ݕ
்×்

 .ݕ݀ ݔ݀

From this result, (51) and (52) we see that 

‖݂ − (்)మ‖݂ܫ
ଶ ≤ ܥ ቈ

ଶ‖ܣ‖

|det |ܣ ℎଶାଶఢ ඵ
(ݔ)݂∇| − ଶ|(ݕ)݂∇

ݔ| − ଶାଶఢ|ݕ
்×்

 .ݕ݀ ݔ݀

Sum this result over triangles and use the nondegeneracy of ℱ to bound the term in 
brackets to obtain 

‖݂ − మ(ஐ)‖݂ܫ ≤ ℎଵାఢܥ ൭ ඵ
(ݔ)݂∇| − ଶ|(ݕ)݂∇

ݔ| − ଶାଶఢ|ݕ
்×்்∈࣮

൱ݕ݀ ݔ݀
ଵ/ଶ

 ≤ |݂|ℎଵାఢܥ
ௐ

భ
మశച(ஐ)

   (53) 

If we had not needed to estimate the interpolation error but merely the error in the best 
possible approximation in ℳ்࣮  a bound like (53) could be obtained by interpolating 
between ܮଶ(Ω) and ଶܹ

ଶ(Ω). However, it is frequently the case that one needs to know 
how well a function that vanishes on the boundary can be approximated by function 
spaces that vanish on the boundary. In such cases bounds like (53) extend the error 
estimates to their natural lower limits. One such example can be found in Douglas, 
Dupont, Percell and Scott [95]. 

Example	(3.1.31)	[87]:		

We now show how the above results can be applied to certain families of curved 
domains. Suppose Ω is a bounded domain in ܴଶ with smooth boundary ߲Ω. Let ℱ be a 
family of triangulations of Ω having straight interior edges and (possibly) curved edges 
lying on ߲Ω, and suppose that ℱ satisfies the nondegeneracy assumption of Example 
(3.1.30)	 

sup
࣮∈ℱ

sup
்∈࣮

(diam(ܶ))ଶ area(ܶ)⁄ ≤  < ∞. 
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Such families of triangulations were considered in [104], where approximation 
properties for the boundary triangles having a curved side were derived in a very 
complicated way. The main difficulty is that now there is no fixed reference traingle, but 
rather a family of reference domains. For each ܶ ∈ ࣮ ∈ ℱ, define an affine mapping by 
sending the vertices of ܶ onto the set {(0,0), (1,0), (0,1)}, and let the image of ܶ be 
denoted ோܶ. Again define ℎ(࣮) = max்∈࣮ diam(ܶ) for all ࣮ ∈ ℱ G F. For ℎ sufficiently 
small (depending only on Ωand ߩ), if ℎ(ܶ) ≤ ℎ and ܶ ∈ ࣮, then ோܶ is contained in the 
disc {|ݔ| ≤ 2} and is star-shaped with respect to the disc {|ݔ − |ݔ ≤ 1/8}, where 
ݔ = (1/4,1/4). Thus, the above approximation results apply to ோܶand, via the affine 
mapping, to each ܶ, with the constant ܥ in the estimates depending only on Ω and ߩ (as 
well as the degree and type of polynomial approximation).  

Sec	(3.2):	Besov	Spaces	 

The Besov space B୯
(L୮ ) is a set of functions f from L୮ which have smoothness α. The 

parameter q gives a ϐiner gradation of smoothness (see (57) for a precise deϐinition). 
These spaces occur naturally in many fields of analysis. Many of their applications 
require knowledge of their interpolation properties, i.e. a description of the spaces 
which arise when the real method of interpolation is applied to a pair of these spaces. 
There are two definitions of Besov spaces which are currently in use. One uses Fourier 
transforms in its definition and the second uses the modulus of smoothness of the 
function f. These two definitions are equivalent only with certain restrictions on the 
parameters; for example they are different when p < 1 and α is small. The first and 
simplest interpolation theorems for Besov spaces were for interpolation between a pair 
B୯

(L୮ ) and Bஓ
ஒ(L୮ ) with p ≥ 1 fixed. In this case, the real method of interpolation for 

the parameters (θ, s) applied to these spaces gives the Besov space Bୱ
ஓ(L୮ ) with, 

γ = θα + (1 − θ)β. Hence, when p is held fixed the Besov spaces are invariant under 
interpolation. 

More interesting and somewhat ‘more difficult to describe are the interpolation spaces 
when p is not fixed. Such a program has been carried out in the book of Petrel [121] 
using the Fourier transform definition of the Besov spaces. The main tool in describing 
these interpolation spaces is to correspond to each f in the Besov space a sequence of 
trigonometric polynomials obtained from the Fourier series of. In this way, the Besov 
space B୯

(L୮) is identified with a weighted sequence spacel୯
(L୮). Interpolation 

properties of the Besov spaces are then derived from the interpolation between 
sequence spaces (when these are known). The success of this approach when p < 1 
rests on the fact that the corresponding Besov spaces are defined using H୮ norms so 
that each f in the Besov space is a distribution and therefore has a Fourier series. 

The Besov spaces defined by the modulus of smoothness occur more naturally in many 
areas of analysis including approximation theory. Especially important is the case when 
p < 1 since these spaces are needed in the description of approximation classes for the 
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classical methods of nonlinear approximation such as rational approximation and 
approximation by splines with free knots (see [121]). 

The purpose of the present section is to describe the interpolation of the Besov spaces 
defined by the modulus of smoothness. This is established by developing the 
connections between Besov spaces and approximation by dyadic splines. We shall show 
that a function is in B୯

(L୮) if and only if it has a certain rate of approximation by dyadic 
splines . In this way, we can identify B୯

(L୮) with certain sequence spaces in a manner 
similar to that described above for the Fourier transform definition. While the basic 
ideas behind such identification is rather simple, some of the details become technical 
when dealing with the case p < 1. One of the main difficulties encountered is that in 
contrast to the Fourier transform case, the mapping which we use to associate to each 
f ∈ L୮ a dyadic spline is nonlinear when  p < 1. 

In the process of proving our 'interpolation theorem, we shall develop several 
interesting results about dyadic spline approximation and about the representation of a 
function f ∈ B୯

(L୮) as a series of dyadic splines (see the atomic decomposition in 
Corollary (3.2.14)). 

Let Ω be the unit cube inRୢ. Iff ∈ L୮(Ω), 0 <  ≤ ∞, we let w୰(f, t)୮, t > 0, denote the 
modulus of smoothness of order r of f ∈ L୮(Ω): 

,݂)ݓ (ݐ ≔ sup
||ஸ௧

∆
 (݂, . )൫Ω(ݎℎ)൯                                             (54) 

Where |ℎ| is the Euclidean length of the vector ℎ; ∆
  is the ݎth order difference with 

step ℎ ∈ ܴௗ ; and the norm in (54) is the ܮ “norm” on the set Ω(ݎℎ) ≔ :ݔ} ݔ + ℎݎ ∈ Ω}. 
Of course, when  < 1, this is not really a norm, it is only a quasi-norm, i.e. in place of 
the triangle inequality, we have  

‖݂ + ݃‖ ≤ 2ଵ ⁄ ൣ‖݂‖ + ‖݂‖൧                                         (55) 

Also useful is the fact that for any μ ≤  min(1, p) and any sequence (f୧) 

ቛ ݂ቛ


≤ ቆ‖ ݂‖


ఓ
ቇ

ଵ ఓ⁄

                                        (56) 

If α, p, q >  0, we say f is in the Besov space B୯
(L୮ ) whenever 

ቛ ݂ቛ


≤ ቆන ൫ିݐఈ߱(݂, ൯(ݐ


ஶ


ቇ

ଵ ⁄

                             (57) 

Is finite. Here, r is any integer larger than a. When q = ∞, the usual change from integral 
to sup is made in (56). 

We also define the following "norm" for B୯
(L୮) : 
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‖݂‖
ഀ( ) = ‖݂‖ + |݂|

ഀ( )                                      (58) 

Different values of r >  result in norms (58) which are equivalent. This is proved by ߙ
establishing inequalities between the moduli of smoothness ω୰ and ω୰ᇲwhen r′ ≤  r, A 
simple inequality is ω୰ ≤ cω୰ᇲ which follows readily from (55). In the other direction, 
we have the Marchaud type inequality: 

߱ᇲ(݂, (ݐ ≤ ‖݂‖ + ቆන ቀିݏᇲ߱(݂, ቁ(ݐ
ఓೞ

ೞ
ஶ

௧
ቇ

ଵ ఓ⁄

                    (59) 

Which holds for every μ ≤  min(1, p). This inequality can be proved by using standard 
identities for differences , we give a different proof of (59) using dyadic spline 
approximation. Using these two inequalities for moduli together with the Hardy 
inequality [113]J, one shows that any two norms (58) are equivalent provided that  
r >  .ߙ

There are many other norms which are equivalent to (58). We shall have occasion to 
use several of these which we describe in later sections. A simple observation is 

‖݂‖
ഀ( ) ≃ ‖݂‖ + ൭ൣ2ఈ߱(݂, 2ି)൧

ஶ

ୀଵ

൱
ଵ ⁄

                 (60) 

In fact, since ω୰ is bounded, the integral in (57) is equivalent to the integral of the same 
integrand taken over [O,IJ. Now, the monotonicity properties of ω୰ allow us to discretize 
the integral and obtain that (60) is equivalent to (57). 

We want to show that ω୰൫f, 2ି୩൯
୮ in (60) can be replaced by the error of dyadic spline 

approximation. This requires inequalities between the modulus of smoothness and the 
degree of spline approximation. These will be given .To-estimate the degree of spline 
approximation by the modulus of smoothness, we first need estimates for local 
polynomial approximation. We define the local error of approximation by polynomials 
by 

,݂)ܧ (ܫ =
݂݅݊

݀݁݃(ܳ) < ݂‖ݎ − ܳ‖(ܫ)                               (61) 

With deg (Q) the coordinate degree of Q. We use the notation ‖ ‖୮(I) to denote the L୮ 
norm over I; when I is omitted the norm is understood to be taken over Ω. 

,݂)ܧ (ܫ ≤ ܿ߱(݂, ݈ூ)                                                         (62) 

With l୍ the side length of I. Here and in what follows, c is a constant which depends only 
on r, d (and p, if p appears) unless otherwise stated, the value of c may vary at each 
appearance. 
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Whitney's theorem is best known for univariate functions and p ≥ 1. It has also been 
proved by Yu. Brudnyi [112] for multivariate functions and p ≥ 1. A proof of (62) for all 
p and all dimensions d can be found in the section of Storozhenko and Oswald [123]. We 
would also like to mention that the ideas used in the univariate proof for p ≥ 1 carry 
over to the general case. For example, in the forthcoming book of Popov and Petrushev 
[124], the reader will ϐind a proof of this type for p <  1 for univariate functions.The 
modulus of smoothness is not suitable when we want to add up estimates over several 
intervals. We therefore introduce the following modified modulus: 

߱(݂, (ݐ = ߱(݂, ,ݐ (ܫ = ‖݂‖ + ቆିݐௗ න න |∆௦
(݂, ݏ݀ݔ݀|(ݔ

ூ(௦)ఆ

ቇ
ଵ ⁄

൩        (63) 

Where  Ω୲ = [−t, t]ୢ. Using identities for differences, it can be shown that ω୰ and ω୰ are 
equivalent, i.e., cଵω୰(f, t)୮ ≤  ω୰(f, t)୮ ≤ cଶω୰(f, t)୮ with constants cଵ, cଶ > 0 which 
depend only on r, p and d (see [124] for a proof of this in the univariate case; the same 
proof applies to the multivariate case as well). From this, we have the following result 

Lemma	(3.2.1)	[109]:		

  If  f ∈ L୮(I), with 0 < ܲ ≤ ∞ and if  I is a cube with side length l୍, then 

,݂)ܧ (ܫ ≤ ܿ߱(݂, ݈ூ ,                                                                   (64) (ܫ

This result in a slightly different form can also be found in [123]. 

There always exist polynomials Q of best L୮(I) approximation of coordinate degree 
< f‖ :ݎ  − Q‖୮(I) = E୰(f, I)୮. In the present section we shall also find it very useful to use 
the concept of "near best" approximation. We say Q is a near best L୮(I) approximation 
to f from polynomials of coordinate degree <  with constant A if ݎ 

‖݂ − ܳ‖(ܫ) ≤ ,݂)ܧܣ                                              (65)(ܫ

It follows that if P is any polynomial of coordinate degree<  then ,ݎ 

‖݂ − ܳ‖(ܫ) ≤ ݂‖ܣ − ܲ‖(ܫ)                                         (66) 

One method for coustructing near best approximants of f is as follows. We let ρ ≤  p 
and we let Q be any polynomial of near best L(I) approximation to f of coordinate 
degree < i.e, ฮf ,ݎ  − Qฮ


(I)  ≤ AE୰(f, I). 

Lemma	(3.2.2)	[109]:	

if ρ ≤ p, and Q is as above, we have 

‖݂ − ܳ‖(ܫ) ≤ ,݂)ܧܣܿ                                             (67)(ܫ

with the constant c depending only on r, d and ρ. 
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Proof.	

Let Q be a best L୮(I) approximation to f of coordinate degree <  Then, from .ݎ 
elementary properties of polynomials (see[119], we have with θ = 1 p − 1 ρ⁄⁄ , 

ฮ݂ − ܳఘฮ


≤ ܿ ቀܧ(݂, (ܫ + ฮܳ − ܳఘฮ


ቁ 

≤ ܿ ቀܧ(݂, (ܫ + ఏฮܳ|ܫ| − ܳఘฮ
ఘ

ቁ 

≤ ܿ ቀܧ(݂, (ܫ + ఏ|ܫ| ቂ‖݂ − ܳ‖ఘ(ܫ) + ฮ݂ − ܳఘฮ
ఘ

 ቃቁ(ܫ)

              ≤ ܿ൫ܧ(݂, (ܫ + ܣ)ఏ|ܫ| + 1)‖݂ − ܳ‖ఘ(ܫ)൯ 

                                  ≤ ܿ൫ܧ(݂, (ܫ + ܣ) + 1)‖݂ − ܳ‖ఘ(ܫ)൯ ≤ ,݂)ܧܣܿ  (ܫ

Here, the first inequality uses the quasi-norm property (55); the second inequality is a 
comparison of polynomial norms; the third again uses (55); the fourth uses (66); and 
the fifth inequality is HOlder's inequality. 

We introduce the following notation. If I is any cube, we let P୍  denote any near best L(I) 
approximation to f from polynomials of coordinate degree <  with constant A. The ݎ 
following lemma shows that P୍  is also a near best approximation on larger cubes. 

Lemma	(3.2.3)	[109]:	

For any p ≥  ρ and any cube J ⊃ Iwith |J| ≤ a|I|, we have 

‖݂ − ூܲ‖(ܬ) ≤ ,݂)ܧܿ                              (68)(ܬ

withc depending at most on r, d, a and A. 

Proof.	

If P is the best L୮ approximation to f on J from polynomials of coordinate 
degree<  ,then from (55) and Lemma (3.2.2) ,ݎ 

‖ ூܲ − ܲ‖(ܫ)  ≤ ܿൣ‖݂ − ூܲ‖(ܫ) + ‖݂ − ܲ‖(ܫ)൧ 

                        ≤ ,݂)ܧൣܿ (ܫ + ,݂)ܧ  ൧(ܬ

≤ ,݂)ܧܿ  (ܬ

This estimate can be enlarged to J (see [115]): 

‖ ூܲ − ܲ‖(ܬ) ≤ ,݂)ܧܿ  (ܬ

Hence, 
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‖݂ − ூܲ‖(ܬ)  ≤ ܿൣ‖݂ − ܲ‖(ܬ) + ‖ܲ − ூܲ‖(ܬ)൧ ≤ ,݂)ܧܿ  (ܬ

Dyadic spline approximation. We want in this section to describe the connection 
between Besov spaces and dyadic spline approximation. Our main goal is to show that 
ω୰ in (59) can be replaced by an error in dyadic spline approximation with a resulting 
equivalent seminorm. This means that the Besov spaces B୯

(L୮) are the approximation 
spaces for tile approximation by dyadic splines inL୮ . Such characterizations are known 
when p ≥ 1 (see [114]; also [118]) and when p <  1 and d =  1 (see [115]). 

We let D୩ denote the collection of dyadic cubes of Rୢ of side length 2ି୩ and we let 
D୩(Ω)denote the set of those cubes I ∈ D୩with I ∈ Ω. We introduce two spline spaces for 
this partition. The first of these is ∏୩  = ∏୩(r), the space of all piecewise polynomials of 
coordinate degree < ∋ on the partition D୩ . That is, S ݎ  ∏୩ means that in the interior of 
each cube I ∈ ∏୩, S is a polynomial of coordinate degree <  We denote by ∏୩(Ω) the .ݎ 
restrictions of splines S in ∏୩to Ω. 

A best (or near best) approximation s୩ to I in L୮(Ω) from ∏୩(Ω) is gotten by simply 
taking S =  P୍ , x ∈  I, .where P୍ , I ∈ D୩(Ω), is a best (or near best) approximation to f in 
L୮(I) by polynomials of coordinate degree <  on each cube I from D୩(Ω). However, we ݎ 
shall also need to construct good approximations from ∏୩(Ω) which have smoothness. 
For this, we shall use the tensor of product B-splines and the quasi-interpolants of de 
Boor-Fix. 

Let N be the univariate B-spline of degree r −  1 which has knots at the points 
0,1, . . . , r, i. e. , N(x)  =  r[0,1, . . . , r](x − . )ା

୰ିଵ with the usual divided difference notation. 
For higher dimensions, we define N by 

(ݔ)ܰ ≔ (ଵݔ)ܰ …  (69)                                                (ௗݔ)ܰ

These are the tensor product of B-splines. They are piecewise polynomials of coordinate 
degree < ,which have continuous derivatives D୴N ݎ  0 ≤  v ≤ r −  2, and derivatives 
D୴N in Lஶ for 0 ≤ v < − ݎ  1. We use the notation k =  (k, k, . . . , k). The splines N are 
nonnegative and are supported on the cube [0, r]ୢ. 

To get splines in the space ∏୩, we let 

ܰ(ݔ) ≔ ܰ(2ݔ),   ݇ = 0,1, …                                                   (70) 

and 

N,(ݔ) ≔ ܰ൫ݔ − ݆   ,൯ݔ ∈ ܼௗ                                     (71) 

Where the ܺ =  2ିೕ  are the vertices of the cubes in ܦ. The B-splines ܰ,  are a 
partition of unity, i.e 
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 ܰ, ≡ 1
∈

ௗܴ݊   ,                                                               (72) 

Each spline ܵ in the span of the ܰ, can be written in a B-spline series: 

ܵ =  (ܵ)ߙ ܰ,
∈

                                                      (73) 

with the ߙ = ,ߙ  the dual functionals of the ܰ,. The functionals ߙcan be expressed in 
terms of the univariate functionals: 

(ܵ)ߙ = …(ቀߙ  ௗ(ܵ)ቁ                                                 (74)ߙ

where the univariate functional ߙ௩ . is applied to a multivariate function ݃ by 
considering ݃ as a function of ݔ௩ with the other variables held fixed. There are many 
representations for the functional ߙ  .We mention in particular, the de Boor-Fix formula 
[111]. This representation gives that for any point ߦin the supp ( ܰ ), we can write 

ߙܵ =  ܽ௩ܦ௩(ܵ)(ߦ)
  ஸஸିଵ

݆ ∈  (75)                          ܣ

for certain coefficients ܽ௩ depending on ߦ  and ݎ. 

For approximation on ߗ, we need only the B-splines ܰ,  which do not vanish identically 
on ߗ. We let ܣ =  denote the set of ݆ for which this is the case and we let (݇)ܣ 
∑ = ∑ (ߗ)  denote the linear span of the B-splines ܰ, , ݆ ∈ ܵ Then any .ܣ ∈ ∑ ܿܽ݊  be 
written 

ܵ =  (ܵ)ߙ
∈

ܰ,                                                                    (76) 

For the representation of ߙ  , ݆ ∈ ߦ we shall choose the points ,ܣ  as the center of a cube 
ܬ = ,ܬ  ∈   such thatܦ

ߦ ∈ ܬ ⊂ ൫ݑݏ ܰ൯ ∩ ݆ߗ ∈  (77)                                        ܣ

With this choice, we can define ߙ(݂) for any f which is suitably differentiable at  ߦ . In 
particular, in this way, we have that ߙ  is defined for any ܵ ∈ ∏ From (75), it is easy to 
estimate the coefficients of a spline  ܵ ∈ ∏  

Lemma	(3.2.4)	[109]:	

We have for any 0 < ܲ ≤ ∞ and any ܵ ∈ ∏, 

หߙ(ܵ)ห ≤ ܿ2ௗ ⁄ ‖ܵ‖൫ܬ൯                                           (78) 
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Proof. 

This is well known for one variable and  ≥ 1. A similar proof applies in the 
general case. For example, from Markov's inequality applied to ܵ on ܬ , and estimates for 
the coefficients ܽ௩ (see [115]), it follows that 

หߙ(ܵ)ห ≤ ܿ‖ܵ‖ஶ൫ܬ൯                                                     (79) 

Sinceหܬห = 2ି , (78) follows from  (79) and the well-known inequality between ܮ and 
 .ஶ norms for polynomials (see [119]). Closely related to (78) is the followingܮ

Lemma	(3.2.5)	[109]:	

If ܵ = ∑ ∈ߙ ܰ,   is in ∑ ℎ݁݊ݐ  for any 0 <  ≤ ∞ we have 

ܿଵ‖ܵ‖ ≤ ቌหߙ(ܵ)ห
2ିௗ

∈

ቍ ≤ ܿଶ‖ܵ‖                                    (80) 

With ܿଵ, ܿଶ depending at most on d and ݎ. 

Proof.	

Again this is well known (see [110]) when ܲ ≥ 1 and the general case is proved 
in the same manner. For example, since ∑ ⊂ ∏, the right side of (80) follows from 
(78) and the fact that a point ݔ falls in at most ݎௗ  of the cubes ܬ .For the left inequality, 
we use the fact that at most ݎௗ  terms in the representation of ܵ are nonzero at a given 
point ݔ. Hence 

|(ݔ)ܵ| ≤ ܿ หߙห
ܰ,

∈

 (ݔ)

Integrating with respect to ݔ and using the fact that the integral of ܰ,
  is less than ܿ2ିௗ  

(because ܰ, ≤ 1) gives the desired result. 

Now, let ݂ be any function which is ݎ −  1 times continuously differentiable at each of 
the points ߦ . Then ߙ(݂).is defined for all ݆ and we define 

ܳ(݂) ≔  (݂)ߙ
∈

ܰ,                                       (81) 

The ܳ  are called quasi-interpolant operators. In particular ܳ  is defined for all ܵ ∈ ∏ , 
and it follows that ܳ  is a projector from ∏ onto ∑ : ܳ(ܵ) = ܵ whenever ܵ ∈ ∑ :  . 

We want to examine the approximation properties of the ܳ . For this, we introduce the 
following notation. If ∈ ܬ መ be the smallest cube which contains each of theܫ  , we letܦ , 
for which supp ܰ, ∩ ܫ ≠ ∅. Then, ܫመ ⊂ መหܫand ห ߗ ≤  ,ݎ with ܿ depending only on ݀ and|ܫ|ܿ
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Lemma	(3.2.6)	[109]:	

If ܵ ∈ ∏and 0 <  ≤ ∞, then for each ܫ ∈  we have ,(ߗ)ܦ

‖ܳ(ܵ)‖ ≤ ܿ‖ܵ‖൫ܫመ൯                                              (82) 

And 

‖ܵ − ܳ(ܵ)‖(ܫ) ≤ ,൫ܵܧܿ  መ൯                                  (83)ܫ

Proof.	

We let ܣூ  be the set of ݆ such that ܰ,  does not vanish identically on ܫ, We use the 
representation (81) and the estimate (78) for the functionals ߙ , to find 

‖ܳ(ܵ)‖(ܫ) ≤
ݔܽ݉

݆ ∈ ூܣ
หߙ(ܵ)ห ቯ ܰ,

∈

ቯ



 (84)                            (ܫ)

≤ ଵ|ܫ|ܿ ⁄ ݔܽ݉
݆ ∈ ூܣ

2ௗ ⁄ ‖ܵ‖൫ܬ൯ ≤ ܿ‖ܵ‖൫ܫመ൯ 

Because of (72). This is (82). 

To prove (83), we let ܫ ∈ ܦ  and let ܲ be a polynomial of best ܮ(ܫም) approximation to ܵ 
of coordinate degree≤ (ܲ)Since ܳ .ݎ = ܲ, we have by (55) and (82) 

‖ܵ − ܳ(ܵ)‖(ܫ) ≤ ൣܿ‖ܵ − (ܫ)‖ + ‖ܳ(ܵ −  ൧                        (85)(ܫ)‖

   ≤ ܿ‖ܵ − ም൯ܫ൫‖ = ,ܵ)ܧܿ  መ)ܫ

	

Corollary	(3.2.7)	[109]:	

 If 0 <  ≤ ∞, then ‖ܳ(ܵ)‖ ≤ ܵ . for all‖‖ܿ ∈ ∑ :  

Proof.	

This follows immediately from (82) when  = ∞. When 0 <  < ∞, we raise 
both sides of (82) to the power p and then we sum over ܫ ∈  Since each point .(ߗ)ܦ
ݔ ∈  and ݀, the ݎ ም, with e depending only onܫ appears in at most ܿ of the cubes ߗ
corollary follows. 

We want to describe a class of methods for approximating each ݂ in ܮ(ߗ) by 
smooth dyadic splines from ∑ . ݎܨ  each ܫ ∈ ݂ andܦ ∈ we let ூܲ ,(ߗ)ܮ = ூܲ(݂) be a 
near best ܮ(ܫ)approximation to ݂ from polynomials of coordinate degree <  with an ݎ 
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absolute constant A. We then define ܵ = ܵ(݂) ∈ ∏, ݇ =  0, 1, . .. , to be the piecewise 
polynomial 

ܵ = ଵܲ(ݔ),   ݔ ∈ ,(ܫ)ݎ݅ݎ݁ݐ݊݅ ܫ݈݈ܽݎ݂ ∈                              (86)ܦ

From (68), we have 

‖݂ − ூܲ‖൫ܫም൯  ∈ ,ܵ)ܧܿ ܫመ)ܫ ∈                                                (87)ܦ

with e depending only on ݎ, ݀ and ܣ. 

Going further, for each ݂ ∈  we define ,(ߗ)ܮ

ܶ = ܶ(݂) = ܳ൫ܵ(݂)൯,    ݇ = 0,1, …                                  (88) 

Then ܶ is in ∑ .  and we have 

‖ ܶ(݂)‖ ≤ ܿ‖݂‖                                                           (89) 

With ܿ depending only on ݎ, ݀ and  ܣ. Indeed, since ூܲ  is a near best approximation to ݂, 
we have ‖ ூܲ‖(ܫ) ≤ ܿ‖݂‖(ܫ), ܫ ∈ Hence, ‖ܵ(݂)‖ .(ߗ)ܦ ≤ ܿ‖݂‖. And therefore (89) 
follows from Corollary (3.2.7). 

Theorem	(3.2.8)	[109]:	

For any of the operators ܶ in (88) and lor each ݂ ∈  we have , ,(ߗ)ܮ

‖݂ − ܶ(݂)‖ ≤ ܿ߱(݂, 2ି),     ݇ = 0,1, …                                             (90) 

With ܿ depending only on ݎ, ݀, p and ܣ. 

Proof.	

From (83), we have for each  ܫ ∈  ,(ߗ)ܦ

‖݂ − ܶ‖(ܫ) ≤ ൣܿ‖݂ − ܵ‖(ܫ) + ‖ܵ − ܳ(ܵ)‖(ܫ)൧                             (91) 

   ≤ ܿൣ‖݂ − (ܫ)ூ‖ + (ܵܧ ,  መ)൧ܫ

≤ ܿ ቂܧ൫݂, መ൯ܫ + ൫ܵܧ , መ൯ܫ
ቃ 

Now, for any cube ܬ ⊆ ∋ መwithܫ   , we have from (87)ܦ

‖ܵ − ூܲ‖(ܬ) = ฮ ܲ − ூܲฮ


(ܬ)  ≤ ܿ ቂฮ݂ − ܲฮ


(ܬ) +  ‖݂ − ூܲ‖(ܬ)ቃ                         (92) 

≤ ܿ ቂܧ(݂, (ܬ + ,൫݂ܧ መ൯ܫ
ቃ ≤ ,൫݂ܧܿ  መ൯ܫ
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Since the number of cubes ܬ ∈   contained in Iመ depends only on dand r, (92) givesܦ
E୰(S୩, Iመ)୮ ≤ cE୰(f, Iመ)୮ If we use this in (91), we obtain 

‖݂ − ܶ‖(ܫ) ≤ ,݂)ܧܿ  መ)                                            (93)ܫ

Now, each point x ∈ Ω appears in only a constant depending only on r and d number of 
cubes Iመ. Hence, if we raise both sides of (93) to the power p and sum over all Iin D୩(Ω), 
and use (64); we obtain 

‖݂ − ܶ‖
(Ω) ≤ ܿ  ߱(݂, ݈ூሚ

ூ∈ೖ(ஐ)

, ሚ)ܫ
     ≤ ௗିݐܿ න න |△௦

 (݂, ݏ݀ݔ݀|(ݔ
ஐ(୰ୱ)ஐ

        (94) 

With ݐ = max ݈ூሚ ≤ ܿ2ି . Here, we have used the fact that ߱(݂, (ᇱݐ ≤
ܿ߱(݂, ′ݐ provided(ݐ ≤ ݐ ≤  Finally, (90) follows from (94)because each of the ,′ݐܿ
interior integrals  on the right side of (94) does not exceed ߱(݂, (ݐ

 which from the 
usual properties of modulus is ≤ ܿ߱(݂, 2ି)

 . 

Theorem	(3.2.9)	[109]:	

Shows that the error of dyadic approximation can be majorized by the modulus 
of smoothness. Namely, if we let 

ܵ(݂) = inf
௦∈ஊೖ

‖݂ −                                               (95)‖ݏ

Then we have 

	

Corollary	(3.2.10)	[109]:	

For each ݂ ∈ ݎ (Ω)and for eachܮ = 1,2, . . ., we have 

ܵ(݂) ≤ ܿ߱(݂, 2ି)݇ = 0,1, . . . .                                 (96)  

It is  also  important to note that ܶ(݂)is a near best approximation from Σ  

Corollary	(3.2.11)	[109]:	

If  ݂ ∈  (Ω), thenܮ

‖݂ − ܶ(݂)‖ ≤ ܿܵ(݂) 

With ܿdepending only on ݎ, ݀,  .ܣ  ݀݊ܽ  

Proof.	

Let ܵ be a best ܮ(Ω) approximation to ݂ from  Σ . Then since 
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ܳ(ܵ) = ܵ, we have݂ − ܶ(݂) = ݂ −  ܵ + ܳ(ܵ −  ܵ(݂)).If we use the fact that ܳ(ܵ)is 
bounded (Corollary 4.4), we obtain 

‖݂ − ܶ(݂)‖ ≤ ܿൣ‖݂ − ܵ)‖ + ‖ܵ − ܵ(݂)‖൧ 

                                                 ≤ ܿൣ‖݂ − ܵ)‖ + ‖݂ − ܵ(݂)‖൧ ≤ ܿܵ(݂)  . 

Here, the last inequality uses the fact that ܵ(݂)is a near best approximation from 
Πwith constant ܣ and the error of approximating ݂ from Π is smaller than the error in 
approximating ݂ from  Σ  (because   Σ ⊂ Π).  

We also need inverse estimates to (96). We let ܵିଵ(݂) = ‖݂‖, 

	Theorem	(3.2.12)	[109]:	

For each  ݇ > 0, and each ݎ = 1,2, . . ., we have for  ߣ ≔ min(ݎ, ݎ − 1 +  and (/1
for each ݂ ∈   ,ܮ

߱(݂, 2ି)  ≤ ܿ ܷ ቌൣ2ఒ
ܵ(݂)൧ఓ



ୀଵ

ቍ

భ
ഋ

                      (97) 

Provided ߤ ≤ min(1,  .(

Proof:	

 We let ܷ  be a best approximation to ݂ from  Σ  and let ࣯ = ܷ − ܷିଵ, ݇ =
0,1, . . .,with ܷିଵ ≔ 0 . If  |ℎ| ≤ ଵ2ିିݎ  and ݔ ∈ Ω(ݎℎ), we write 

△
 (݂, (ݔ =△

 (݂ − ܷ , (ݔ + △
 ൫ ࣯ , ൯                (98)ݔ



ୀ

 

 

Then, from (63), 

‖△
 (݂)‖൫Ω(ݎℎ)൯ ≤ ܿ ൮ܵ(݂)ఓ + ฮ△

 ൫ ࣯൯ฮ




ୀ

൫Ω(ݎℎ)൯൲

ଵ/ఓ

         (99) 

To estimate ฮ△
 ൫ ࣯൯ฮ


൫Ω(ݎℎ)൯, we write ࣯in its ܤ −splineseries: 

 ࣯ =  ௩,൫ߙ ࣯൯ ௩ܰ,
௩∈ஃ()

                        (100) 
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For any ݔ,at mostܿܤ −splines (4.32) are nonzero at ݔwith ܿdepending only on ݎ and 
݀.Hence, 

ห△
 ൫ ࣯ , ൯หݔ

≤  หߙ௩,൫ ࣯൯หห△
 ( ௩ܰ,, ห (  ݔ



௩∈ஃ()

                (101)  

Now, we shall give two estimates for △
 ( ௩ܰ, ,  The first of these is for the set Γwhich .(  ݔ

consists of all ݔsuch that  ݔand  ݔ + ܫ ℎ are in the same cubeݎ ∈ ܦ  and  ௩ܰ,  does not 
vanish identically onܫ. Since ௩ܰ,is a polynomial onܫ whose ݐݎℎ order derivatives do not 
exceed ܿ2 , we have 

ห△
 ( ௩ܰ, , ห (  ݔ


≤ ܿ(2|ℎ|)ݔ ∈ Γ                                (102)  

       Our second estimate is for the set Γ′ which consists of all ݔ such that ݔ and  ݔ +   ℎݎ
are in different cubes from ܦ and ௩ܰ,does not vanish identically on both of these cubes. 
Since ௩ܰ, ∈ ஶܹ

ିଵ (Sobolev space) has (ݎ −  (Ω) norms do notܮ ℎ derivatives whoseݐ (1
exceed ܿ2(ିଵ), we have 

ห△
 ( ௩ܰ, , ห (  ݔ ≤ ܿ(2|ℎ|)ିଵݔ ∈ Γ′                                 (103) 

Now, the set  Γ  has measure ≤ ܿ2ିௗ  because the support of ௩ܰ,  has measure ≤
ܿ2ିௗ .Also ,Γ′ has measure ≤ ܿ|ℎ|2ି(ௗିଵ) . Indeed, for ݔ to be in Γ′ , we must have 
,ݔ)ݐݏ݅݀ (ܫ)݀݊ݑܾ  ≤ ݔThe measure of all such .ݔwhich contains ܫ ℎ| for the cubeݎ| ∈  is ܫ
less than ܿ|ℎ|2ି(ௗିଵ). Since ௩ܰ,vanishes on all but ܿ  cubes with depending only on 
′and ݀, we have Γݎ ≤ ܿ|ℎ|2ି(ௗିଵ) as claimed. 

   Using these two estimates for the measure of Γ and Γ′ together with (102) and (103), 
we obtain 

න ห△
 ( ௩ܰ, , ห (  ݔ

ஐ()

≤ ܿ[|ℎ|22ିௗ + |ℎ|(ିଵ)2(ିଵ)|ℎ|2ି(ௗିଵ)    (104) 

                                           ≤ ܿ[|ℎ|ఒ2ఒ2ିௗ  

Because|ℎ|2ି ≤ ଵିݎ ≤ 1. 

Now, we integrate (101) and use (104) to ϐind 

ฮ△
 ൫ ࣯൯ฮ


≤ ܿ|ℎ|ఒ2ఒ ቀหߙ௩,൫ ࣯൯ห

2ିௗቁ
ଵ/

          

                                        ≤ ܿ|ℎ|ఒ2ఒฮ ࣯ฮ


≤ ܿ|ℎ|ఒ2ఒ[S(f) + Sିଵ൫f)൧                (105) 

where the next to last inequality is (80) and the last inequality is the triangle inequality 
applied to ࣯ = ݂− ܷିଵ −  (݂− ܷ). 
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If we use (105) in (99), we obtain 

ฮ△
 ൫ ࣯൯ฮ


(Ω(ݎℎ) ≤ ܿ ቌS(f)ఓ + |ℎ|ఒఓ  ൣ2ఒS(݂)൧ఓ



ୀିଵ

ቍ

భ
ಔ

      (106)  

If we now take a sup over all |ℎ| ≤  ଵ2ି  (106) givesିݎ

߱(݂, 2ି) ≤ ܿ߱(݂, ,ଵିݎ 2ି) ≤ ܿ2ିఒ ቌ2ఒఓS(f)ఓ +  ൣ2ఒS(݂)൧ఓ


ୀିଵ

ቍ

ଵ/ஜ

 

Since the term 2ఒఓS(݂)ఓ  can be incorporated into the sum, we obtain (97).  

It is also possible to estimate ߱ᇱ for each ݎ′ <  :ݎ

߱ᇲ(݂, 2ି) ≤ ܿ2ିᇲ ቌ  (2ᇲ
ܵ(݂))ఓ



ୀିଵ

ቍ

భ
ಔ

                                                 (107) 

Indeed, this is proved in exactly the same way as we have derived (4.29), except that, in 
place of (102) and (103), we use the inequality 

ห∆
ᇱ൫ ௩ܰ,, ൯หݔ ≤ ܿ|ℎ|ᇲ2ᇲ                                              (108) 

Which follows from the fact that ௩ܰ,has all derivatives of orderݎ′inܮஶ. With (97), we 
can easily prove the Marchaud type inequality (59). 

Corollary	(3.2.13)	[109]:		

There is a constant ܿ depending only on , ݂ and ݀ such that for each ,ݎ ∈   weܮ
have the inequality (59). 

Proof. 

We have by (96): ܵ(݂) ≤ ܿ߱(݂, 2ି)݆ = 0,1`, …   Also ܵିଵ(݂) ≔ ‖݂‖Using 
this in (107) gives for2ିିଵ ≤ ݐ ≤ 2ି  , 

߱ᇲ(݂, (ݐ ≤ ܿ߱ᇲ(݂, 2ି) ≤ ܿ2ିᇲ ቆ‖݂‖
ఓ +  ൣ߱ᇱ(݂, 2ଶି)൧ఓ

ୀ
ቇ 

and (59)then follows from the monotonicity of ߱  . 

The estimates of the last section allow us to introduce several norms which are 
equivalent to‖݂‖

ഀ()݂ܽܫ ≔ (ܽ) is a sequence whose component functions are in the 
quasi-normed space ܺ ,we use the ݈

ఈ(ܺ)  norms 
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‖ܽ‖
ೌ (ܺ) ≔ ൭[2ఈ‖ܽ‖]

ஶ

ୀ

൱
ଵ/

                               (109) 

With the usual change to a supremum norm when ݍ = ∞.When (ܽ) is a sequence of 
real numbers, we replace ‖ܽ‖by |ܽ| in (109) and denote the resulting norm ‖ܽ‖

ഀ  . 

     Useful for us will be the discrete Hardy inequalities 

‖ܾ‖
ೌ ≤ ܿ‖(ܽ)‖

ೌ                                                  (110) 

Which hold if either 

              (i)|ܾ| ≤ ܿ2ିఒ൫∑ ൣ2ఒห ܽห൧ఓஶ
ୀ ൯

ଵ/ఓ
or 

              (ii) |ܾ| ≤ ܿ(∑ ห ܽหߤஶ
ୀ                                                                                                             

(111) 

Withߤ ≤ ߙ and (in (i)) ݍ < ,ݎ Here, the constant ܿ in (110) depends only on .ߣ ݀ 
and 1/(ߣ −  .in the case of(ii) ߙ/in case of (i) and 1 (ߙ

in the following theorem, we let  ܶ = ܶ(݂) be deϐined as in (4.20) for a given 
ݎ = 1,2, . ..  and given near best approximations ூܲ  with constant ܣ. We let ݐ  = (݂)ݐ =

ܶ − ܶିଵ with ܶି ଵ = 0 and let ߣ = min(ݎ − 1 + 1 ⁄ ,  .as before ,(ݎ

Theorem	(3.2.14)	[109]:	

Let  0 < 0 ݀݊ܽߙ < , ݍ  < ∞. If ߙ <  then the lollowing norms are equivalent to ,ߣ
ܰ(݂) = ‖݂‖

ഀ() with constants of equivalency depending only on ݀,  and the ܣ and ݎ
constant of (110): 

        (i) ଵܰ(݂) ≔ (݂)‖ݏ‖
ೌ + ‖݂‖ 

(݅݅) ଶܰ(݂) ≔ ‖݂ − ܶ(݂)‖
ೌ() + ‖݂‖                                                                                      (112) 

        (݅݅݅) ଷܰ(݂) ≔ (݂)‖ݐ‖
ೌ()  . 

Proof.	

From Theorem (3.2.9),  ݏ(݂) ≤ ‖݂ − ܶ(݂)‖ ≤ ܿ߱(݂, 2ି) .Hence, 
ଵܰ(݂) ≤ ଶܰ(݂) ≤ ܿܰ(݂). On the other hand, from Theorem (3.2.12) and the Hardy 

ineqnality (110) above, we have ܰ(݂) ≤ ܿ ଵܰ(݂) .This shows that  ܰ(݂), ଶܰ(݂) and ଶܰ(݂) 
are all equivalent .Since ‖ݐ‖ ≤ ܿൣ‖݂ − ܶ(݂)‖ + ‖݂ − ܶ(݂)‖൧ we have  ଷܰ(݂) ≤
ܿ ଶܰ(݂) .In the other direction ݂ − ܶ = ∑ ݐ

ஶ
ାଵ  and therefore from (55),  we obtain for 

݇ = −1,0,1, …, 
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‖݂ − ܶ‖ ≤ ൭ฮݐฮ


ఓ
ஶ

ାଵ

൱
ଵ/ఓ

 

Note, when  ݇ = −1, this is an estimate for ‖݂‖ Now, from the Hardy inequality (110), 
we have ଶܰ(݂) ≤ ܿ ଷܰ(݂) and therefore ଶܰ(݂) and ଷܰ(݂) are equivalent. 

The norm ଵܰ of Theorem (3.2.12) shows that a function ݂is inܤ
ఈ(ܮ) . if and only if 

(ܵ(݂)) is in ݈
ఈ. In the terminology of [116],we have that the approximation class ܣ

ఈ  for 
dyadic spline approximation in ܮ.is the sameasthe Besov space ܤ

ఈ(ܮ) . Related to this 
is the following Bernstein type inequality for dyadic splines. 

Corollary	(3.2.15)	[109]:		

If ݎ = 1,2, . .. andߙ < ܵ then for each,ߣ ∈ Σ 

‖ܵ‖
ഀ() ≤ ܿ2ఈ‖ܵ‖                                                   (113) 

Withܿ in dependent of ܵand ݊. 

Proof.	

Since  ܵ ∈ Σ , ܵ(ܵ) = 0, ݇ ≥ ݊,and for ݇ < ݊,we haveܵ(ܵ) ≤ ‖ܵ‖. 

Hence , for ݍ < ∞, 

ଵܰ(ܵ) ≤ ܿ  ൣ2ఈܵ(ܵ)൧


ୀିଵ

≤ ܿ2ఈ‖ܵ‖
 

and (5.5)follows from Theorem(3.2.12),Similarly for ݍ = ∞ . 

Another interesting application of Theorem (3.2.12) is  the following atomic 
decomposition for functions ݂in ܤ

ఈ(ܮ) AccordingtoTheorem(3.2.12),we can writ 
݂ = ∑ t with the notation of that theorem .Since t ∈ Σ, we have 

t =  ௩,ߙ
௩∈ஃ(୩)

௩ܰ,                                                                        (114)  

With  ௩ܰ,The B-splines for ܦ .Hence, 

݂ =   ௩,ߙ
௩∈ஃ(୩)

௩ܰ,

ஶ

ୀ

                                    (115)  

With  convergence in the sense of ܮ. 

Corollary	(3.2.16)	[109]:	
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 Let 0 < ,ݍ  ≤ ∞  and ݎ = 1,2, . ..  .If 0 < ߙ < then a function݂ , ߣ ∈ ܤ .is inܮ
ఈ(ܮ) if and 

only if ݂can be represented as in (5.7)with 

ସܰ(݂) = ൮ 2ఈ ቌ  หߙ௩,ห

௩∈ஃ(୩)

2ିௗቍ
ஶ

ୀ

/

൲

/

< ∞                                         (116)  

 (and the usual modification if either or ݍ = ∞) and ସܰ(݂)is equivalent to‖݂‖
ഀ() . 

Proof . 

From Lemma (3.2.5), 

t୩ ≃ ቌ  หߙ௩,ห

௩∈ஃౡ

2ିௗቍ

ଵ/୮

 

Hence from Theorem (3.2.12),ܰ ସ(݂)is equivalent to ଷܰ(݂)which is in turn equivalent to 
ܰ(݂).  

    A different atomic decomposition was given by M. Frazier and  B.J aewerth [120] for 
Besov spaces defined by the Fourier transform. In the case݀ = 1, there is also an atomic 
decomposition using spline functions by Ciesielski[114]. 

We are now interested in proving interpolation theorems  forBesov spaces. If ߙ, ,ଵߙ >
0, and 0 < , ,ଵ ,ݍ ଵݍ ≤ ∞ , we introduce the abbreviated notation ܤ ≔ ܤ

ఈ(ܮ) and 
݈ ≔ ݈

ఈ൫ܮ൯, ݅ = 0, 1. 

We recall that if ܺ , ଵܺ , is a pair of quasi-nonmed spaces which are continuously 
embedded in a Hausdorff spaceܺ, then the K-functional 

,݂)ܭ ,ݐ ܺ , ଵܺ ) =  inf
ୀబାభ

{‖ ݂‖బ + ‖ݐ ଵ݂‖భ }                                               (117) 

is defined for all ݂ ∈ ܺ + ଵܺ ,This K-functional determines new function spaces. If 
0 < ߠ < 1 and 0 < ݍ ≤ ∞ , we define the space ܺఏ, ≔ (ܺ , ଵܺ)ఏ, . as the set of all  ݂ 
such that 

‖݂‖ഇ, = ‖݂‖బ ାభ + ቌන ,݂)ܭఏିݐൣ ൧(ݐ ݐ݀
ݐ

ஶ



ቍ

ଵ/

                     (118)  

is finite.  

We wish to establish a connection between the K-functional for ܤ , -ଵand the Kܤ
functional  for݈ , ݈ଵ. For this, we fix a number 0 < ߩ ≤ ,   such that ݎ ଵ and an integer
, ߙ ≥ ଵߙ ݎ − 1. We  let ூܲ(݂)be the best ܮ(ܫ) approximation to݂ from polynomials of 
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coordinate degree<  A ccording to Lemma (3.2.2), if ܵ(݂) is defined by . ݎ
(86),and ܶ(݂) is deϐined by (88) then ଶܰ(݂) and ଷܰ(݂)of Theorem (3.2.12) are 
equivalent to the norm of ܤ

ఈ(ܮ) . 

     If݂ ∈ ݂ܶ , we letܮ = ݂ In this way ,we associate to each .((݂)ݐ)  ∈   aܮ

Sequence of dyadic splines and ݂ ∈ ܤ if and only ifܮ
ఈ൫ܮ൯and from Theorem (3.2.12) 

‖݂‖
ഀ൫൯ ≅ ‖݂ܶ‖

ഀ൫൯                                       (119) 

for allߙ, ݍ > 0,provided  ≥  .ߩ

Theorem	(3.2.17)	[109]:		

There are constants  ܿ, ܿଵ > 0 which depend only on ߩ, ,ݎ ݀,   such thatߙ , andߙ

ܿଵܭ(݂, ,ݐ , ܤ ( ଵܤ ≤ ,݂ܶ)ܭ ,ݐ ݈ , ݈ଵ ) ≤ ܿଶܭ(݂, ,ݐ , ܤ ,   ( ଵܤ ݐ > 0                         (120) 

Whenever ∈ + ܤ  .  ଵܤ

      Proof of lower inequality . We suppose that ܽ = (ܽ) ∈ ݈ଵ  is such that  ݂ܶ −  ܽ is in 
݈ , We define ݃ = ܶ(ܽ)  = ܳ(ܵ(ܽ)) as in (88). Then by (89), ‖݃‖భ ≤
ܿ‖ܽ‖భ .Now, we let ݃ ≔ ∑ ݃

ஶ
 with convergence inܮభ  . Since ∑ ݃

ஶ
  is in Σwe have 

from (55) 

ܵ(݃)భ ≤ ฯ ݃

ஶ

ାଵ
ฯ

భ

≤ ܿ ൬ ฮ݃ฮ
భ

ఓஶ

ାଵ
൰

భ
ഋ

  ,   ݇ = −1,0, …, 

Provided ߤ ≤ = ଵ. Here, when −1 ଵܵ(݂) = ‖݂‖, as usual . If we take also ߤ ≤  ଵwe
have from the Hardy inequality (110) and the equivalence of the norms ܰ and ଵܰ, in 
Theorem (3.2.12) that 

‖݃‖భ ≤ ܿ‖ܽ‖భ                                                   (121) 

We can prove a similar estimate for ݂ − ݃.Namely, 

ܵ(݂ − ݃)బ ≤ ฯ ݐ) − ݃)
ஶ

ାଵ
ฯ

బ

≤ ൬ ฮݐ − ݃ฮ
బ

ఓஶ

ାଵ
൰

భ
ഋ

                                  (122)  

Now ݐ = ܳ(ݐ) becauseܳis a projector. Also sinceݐ ∈ Π , we have ܵ൫ ܽ − ൯ݐ =

ܵ( ܽ) − ݐ . Hence, 

ฮݐ − ݃ฮ
బ

= ฮܳ(ݐ − ܵ൫ ܽ൯)ฮ
బ

= ฮܳ( ܵ(ݐ − ܽ))ฮ
బ

 

                                                        ≤ ܿฮݐ − ܽฮ
బ
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because of (89).If we use our last inequality in (6.6) and then argue as in the proof  of 
(6.5), we obtain 

‖݂ − ݃ ‖బ ≤ ܿ‖݂ܶ − ܽ ‖బ                                     (123) 

Since ܽ ∈ ݈ଵ is arbitrary,(121), (123) and the deϐinition of the K-functional give the 
lower inequality in (120).  

     For the proof of the upper inequality in (120), we shall need a result about 
Approximation in a quasi-normed space ܺ .We suppose that ܼ is a linear subspace of ܺ 
such that each element ݔ ∈ ܺ has a best approximation from  ܼ. We let 

(ݔ)ܧ =  inf‖ݔ − ‖ݖ
௭∈

                                                                          (124) 

We say that ݖ is a near best approximation to ݔ with constant ܣ if 

ݔ‖ − ‖ݖ    ≤  (125)                                                                                  (ݔ)ܧܣ 

Lemma	(3.2.18)	[109]:	

Let ܺ and ܼ be as above. If ݔ ∈ ܺ and ݖ ∈ ܼ is a near best  approximation to ݔ 
with constant ܣ ,then for each ݕ ∈ ܺ ,there is a ݖ′ ∈ ܼ such that ݖ′ is a near best 
approximation to ݕond ݖ − ݔ is a near best approximation to ′ݖ  −  ܿ with constants ݕ
depending only on ܺ and ܣ. 

Proof.	

 Let ߛ be such that ‖ݑ + ‖ݒ ≤ ‖ݑ‖)ߛ + ,ݑ for all (‖ݒ‖ ݒ ∈ ܺ (all norms in this proof are 
for ܺ).  

   Case:ݔ)ܧ − (ݕ ≤ ᇱݖ We let.(ݕ)ܧ = "ݖ + ݕ a best approximation to "ݖ with ݖ −  ,Then .ݖ
by definition ݖ − ݔ is near best for ′ݖ −  ,with constant1. On the other hand ݕ 

ݕ‖ − ‖′ݖ = ݕ‖ − ݖ − ‖"ݖ  ≤ ݕ‖)ߛ − ݔ − ‖"ݖ + ݔ‖ − ‖ݖ  ≤ ݔ)ܧ)ߛ − (ݕ +  ((ݔ)ܧܣ

                   ≤ ݔ)ܧ)ߛ − (ݕ  + (ݕ)ܧܣߛ + ݔ)ܧܣߛ − ((ݕ ≤ ߛ +  (ݕ)ܧ(ܣଶݎ2

Case: (ݕ)ܧ ≤ ݔ)ܧ − ݔ The same as the previous case with .(ݕ −   .interchanged ݕ and ݕ 

Proof of the upper inequality in (120) . We suppose that ݃ is any function in ܤଵ for 
which ݂ − ݃is in ܤ. We let ூܲ  be the polynomials which make up ܵ ≔ ܵ(݂) . Then ூܲ   
is a best ܮఘ(ܫ) approximation of ݂ from polynomials of coordinate degree <  .ݎ
Therefore, we can apply Lemma 6.2 to obtain a near best ܮఘ(ܫ) approximation ܳூ  to ݃ 
from polynomials of coordinate degree < such that ூܲ ݎ − ܳூ  is also a near best ܮఘ(ܫ) 
approximation to݂ − ݃. 

      We let ܷ , ܴ be obtained from ܳூ  and  ூܲ − ܳூ ܫ, ∈ ܦ , by using quasi-interpolants in 
the same way that ܶ  was defined from the ூܲ . Since ܳ  is linear, we have ܴ = ܶ −



150 
 

ܷThen, by Corollary4.7, ܷ  and ܴ  are respectively near best ܮభand ܮబ  
approximations to݃ and ݂ − ݃from  Σ, ݇ = 0, 1, . . .. 

We let ݐ = ܶ− ܶିଵ, ݑ = ܷ − ܷିଵ, ݎ = ܴ − ܴିଵ, ݇ = 0,1, . . ., with 

Our usual convention ܴିଵ = 0, ܴିଵ = 0.We then have for ݇ = 0, 1, . . ., 

‖భݑ‖ ≤ ܿ ቂܵ(݃)ଵ
+ ܵିଵ(݃)ଵ

ቃ , 

‖బݎ‖ ≤ ܿ ቂܵ(݂ − ݃)
+ ܵିଵ(݂ − ݃)

ቃ , 

With ݑ ≔  it follows from Theorem (3.2.12) that ,(ݑ)

‖݂ܶ − బ‖ݑ + భ‖ݑ‖ݐ ≤ ܿൣ‖݂ − ݃‖బ +  భ൧‖݃‖ݐ

              The upper estimate in (120) then follows from the deϐinition of the K-functional.  

Forܤ, ,ଵܤ ݈, ݈ଵand݂ܶas above, we have for any ݍ > 0 and  0 < ߠ < 1, 

݂ ∈ ,ܤ) ݂ܶ  ଵ)ఏ,if and only ifܤ ∈ (݈, ݈ଵ)ఏ,   . 

‖݂‖(బ,భ)ഇ, ≅ ‖݂ܶ‖(బ,భ)ഇ,                                          (126) 

Indeed, this follows immediately from the definition of the spaces  ܺఏ,. 

Now (126) allows us to deduce information about the interpolation spaces between ܤ 
and ܤଵfrom known theorems (see [121]) about the interpolation between ݈and݈ଵ. The 
simplest case to describe is  when   = ଵ =  We then have .

(݈బ
ఈబ൫ܮ൯, ݈భ

ఈభ(ܮ))ఏ, = ݈
ఈ൫ܮ൯                                          (127) 

Where  ߙ = ߙߠ + (1 −  . ଵߙ(ߠ

From this, (6.10), andTheorem (3.2.12),we obtain 

Corollary	(3.2.19)	[109]:	

If  0 < ,ߙ > ଵ, and 0ߙ , ,ݍ ,ଵݍ ≤ ∞, we have for each 0 < ߠ < 1 and 0 < ݍ ≤ ∞, 

బܤ )
ఈబ൫ܮ൯, భܤ

ఈభ ఏ,((ܮ) = ܤ
ఈ൫ܮ൯,   withߙ = ߙߠ + (1 −  ଵ  (128)ߙ(ߠ

When  ≠ ܮ  the interpolation spaces betweenܮ  and ܮభcan be described in terms of 
the Lorentz spaces ܮ,  (see [113]J for their definition and properties ).We have 
for 0 < ,ݍ ,ଵݍ ≤ ∞  (see [121]), 

(݈, ݈ଵ)ఏ, = ݈
ఈ൫ܮ൯                                                                           (129) 
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With  ߙ = ߙߠ + (1 − ݍ/ଵ        ,    1ߙ(ߠ = ݍ/ߠ + (1 − /ଵ, and  1ݍ/(ߠ = /ߠ + (1 −
 . ଵ/(ߠ

    In the special case when  ݍ = ,ܮ we have , =   and therefore, we obtainܮ

Corollary	(3.2.20)	[109]:	

If 0 < ,ߙ > ଵ, and 0ߙ , ,ଵ ,ݍ ,ଵݍ ≤ ∞, then for each 0 < ߠ < 1 and  for 
ݍ/1 = ݍ/ߠ + (1 − ;ଵݍ/(ߠ /1 = /ߠ + (1 −  ଵ we have/(ߠ

బܤ )
ఈబ൫ܮబ൯, భܤ

ఈభ(ܮభ))ఏ, = ܤ
ఈ൫ܮ൯,   with ߙ = ߙߠ + (1 −  ଵ                        (130)ߙ(ߠ

Provided   =  .ݍ

An embedding theorem for Beaov spaces. As an application of the results of the previous 
sections, we shall prove Sobolev type embedding theorems for Besov spaces. These 
have important applications in nonlinear approximation (see [117]). We fix a value of  
with0 <  < ∞. Givenߙ > 0, we determine  ߪ from the equation 

1 ⁄ߪ = 1 ݀⁄ + 1 ⁄                                                             (131)  

   We shall prove that ܤ
ఈ(ܮఙ)is continuously embedded inܮ.For this, we shall 

use the following simple inequality for splines ܵ ∈ Π(ݎ): 

‖ܵ‖ ≤ ܿ2ఈ‖ܵ‖ఙ                                                        (132) 

Indeed, on each cube ܫ ∈ ܦ , ܵ = ܲ withܲa polynomial of coordinate degree<  Hence .ݎ
(see[119]), ‖ܵ‖(ܫ) ≤ ଵ|ܫ|ܿ ିଵ ఙ⁄⁄ ‖ܵ‖ఙ(ܫ) = 2ఈ‖ܵ‖ఙ(ܫ) .Therefore, 

‖ܵ‖
 ≤ ܿ2ఈ  ‖ܵ‖ఙ(ܫ)

ூ∈ೖ(ಈ)

≤ ܿ2ఈ ቌ  ‖ܵ‖ఙ(ܫ)ఙ

ூ∈ೖ(ಈ)

ቍ

/ఙ

 

where the last inequality uses the fact that the ݈ఙ ⁄  norm is larger than the ݈ଵ norm 
because ߪ ⁄ < 1. 

Theorem	(3.2.21)	[109]:		

If ߙ, ,ߪ ܤ are related as in (131), then 
ఈ(ܮఙ) is continuously embedded in ܮ,that 

is, 

‖݂‖ ≤ ܿ‖݂‖
ഀ()                                                               (133) 

holds for ݂ ∈ ܤ
ఈ(ܮఙ) . 

Proof.	
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We choose ݎ > ߙ + 1 and let ݐ ∈ Σ(ݎ)be as in Theorem  (3.2.12). Then 
݂ = ∑ ݐ

ஶ
ୀ  in the sense of convergence in ܮఙ .From (56), it follows that for 

ߤ = min(1,  ,(

‖݂‖ ≤ ቌฮݐฮ


ఓ
ஶ

ୀ

ቍ

భ
ഋ

≤ ܿ ቌ ቀ2ఈฮݐฮ
ఙ

ቁ
ఓ

ஶ

ୀ

ቍ

భ
ഋ

≤ ܿ‖݂‖
ഀ()                        (134) 

where the second inequality follows from (132) and the last from Theorem (3.2.12). 

Inequality (134) shows that ܤ
ఈ(ܮఙ) is continuously embedded in ܮ which is the 

desired result when  ≤ 1. When  > 1, we choose 1 ≤  <  < ଵ < ∞ and for 
݅ = 0,1, we let ߙ  be determined by formula (131) for   and ourߪ. Then by (134) 

‖݂‖ ≤ ܿ‖݂‖భ
ഀ() ,             ݅ = 0,1                                              (135)  

If we now apply Corollary (3.2.19) with ߠ chosen so that 1/ = /ߠ + (1 −  ଵand/(ߠ
ݍ =  we obtain by interpolation ,

‖݂‖ ≤ ܿ‖݂‖భ
ഀᇲ() 

With ߙ′ = ߙߠ + (1 − ,ܮ ଵ  Here, we have used the fact thatߙ(ߠ =  .Now using (131)ܮ
for the pairs (ߙ, ,( ,ߙ) ,ଵߙ) ) and ᇱߙ  ଵ)shows that =      .as desired ,ߙ

Sect(3.3):	Besov	Spaces	On			ࢊࡾ: 

   Besov spaces ܤ
ఈ(ܮ(Ω)) are being applied to a variety of problems in analysis and 

applied mathematics. Applications frequently require knowledge of the interpolation 

and approximation properties of these spaces. These properties are well understood 

when  ≥  1 or when the underlying domainΩ, is ܴௗ  . The purpose of the present 

section is to show that these properties can be extended to general nonsmooth domains 

Ω of ܴௗ  and for all  0 < ≥   ∞. Besov spaces with  <  1 are becoming increasingly 

more important in the study of nonlinear problems. 

   To a large extent the present section is a sequel to [127 and 129] which established 

various properties of the spaces ܤ
ఈ(ܮ(Ω)), Ω a cube. Among these are atomic 

decompositions for the functions in ܤ
ఈ(ܮ(Ω)), a characterization of ܤ

ఈ(ܮ(Ω)) through 

spline approximation, and a description of interpolation spaces for a pair of Besov 

spaces. We establish similar results for more general domains. 

Our approach is to first define an extension operatorߦ, which extends functions in 

B୯
(L୮(Ω)) to all of  Rୢ . Similar extension operators for p ≥ 1 have been introduced by 
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Calderón and Stein (see [132]). Our main departure from these earlier approaches is 

that by necessity our extension operators are nonlinear. Moreover, whereas in the case 

p ≥ 1, it is possible to take ߦ so that ߱(݂ߦ, (ݐ ≤ ,݂)߱ ܥ   with ߱(ݐ  the rth order 

modulus of smoothness (at least when Ω is minimally smooth [130]), in the 

case0 < >    1, we only obtain a weak comparison between ߱(݂ߦ, ,݂)and ߱(ݐ  (ݐ

.We shall establish our results for two important classes of no smooth domains: the 

Lipschitz graph domains, and the (ߝ,  domains introduced by Jones [131]. We begin (ߜ

with the case of Lipschitz graph domains since the geometric arguments in this case are 

the most obvious. We later generalize these arguments to (ߝ,  domains . Although the (ߜ

results of contain those of, we feel that this two tier presentation makes the essential 

arguments much clearer. 

     Let Ω be an open subset of  Rୢ . We can measure the smoothness of a function 

݂ ∈ ,(Ω )ܮ 0 <  < ∞, by its modulus of smoothness. For any ℎ ߳ Rୢ , let ܫ denotes the 

identity operator, ߬(ℎ) the translation operator (߬(ℎ)(݂, (ݔ  = + ݔ)݂   ℎ)) and 

∆
  =  (߬(ℎ)  − (ܫ  , = ݎ  1, 2, . .. , be the difference operators. We shall also use the 

notation 

∆
 (݂, ,ݔ Ω) = ൜∆

 (݂, ,(ݔ ,ݔ ݔ + ℎ, … , ݔ + ℎݎ ∈ Ω
0,                                          otherwise

� 

 

The modulus of smoothness of order ݎ of a function ݂ ∈  (Ω )is thenܮ

߱(݂, (ݐ = ߱(݂, ,ݐ Ω)ୀ ฮ∆
ೝ (,.,ஐ)ฮು(ஐ)|ರ|

ೞೠ                    (136) 

For any ℎ ∈ Rୢ , we define 

Ω(h) ≔ :ݔ} ,ݔ] ݔ + h] ⊂ Ω}. 

A Besov space is a collection of functions / with common smoothness. If 0 < ߙ ≤   And ݎ

0 < , ݍ ≤ ∞ , the Besov space B୯
(L୮(Ω))consists of all Functions  ݂ such that 

|݂|౧
ಉ(౦(ஐ) ≔ ቆන ,݂)ఈ߱ ିݐ] ,ݐ Ω]݀ݐ

ଵ


ቇ

ଵ ൗ

< ∞                   (137) 

With the usual change to sup when ݍ = ∞. It follows that  (137) is a semi (quasi)-norm 
for B୯

(L୮(Ω)). (Frequently, the integral in  (137) is taken over (0, ∞); While this results 
in a  different semi norm, the norms given below are equivalent.) If we add ‖݂‖(Ω) to  
(137),  we obtain the (quasi)norm for B୯

(L୮(Ω)). It is well Known in the case  ≥ 1 that 
different  values of  ݎ >  give equivalent norms. This remains true for ߙ < 1 as well 
and can be  derived from the 'Marchaud Inequalities', which compare moduli of 
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smoothness of  different orders. These Inequalities have been proved for all  > 0 
and  Ω, either a cube or  all of Rୢ in [133] (See also [127]), and for more general 
domains Ω and  ≥ 1 by Johnen and  Scherer [130] (among others). We address this 
topic later for the remaining Case   0 <  ≤ 1 and more general Ω. 

There are fundamental connections between smoothness and approximation (See [127] 
and the references therein, especially [133]). We now describe these without Proofs 
(which can be found in [127] or [133]). If  ݂ ∈ ,(ܳ)ܮ 0 <  ≤ ∞ , ܳa Cube in Rୢ , we let 

,݂)ܧ ܳ) = ‖݂ − ܲ‖(ொ)∈ೝ
                                            (138) 

Be the error of approximation by the elements from the space ܲof polynomials of total  

degree less than ݎ where ‖. ‖(ொ) denotes the ܮ(ܳ) (quasi)norm. 

We then have Whitney's inequality 

,݂)ܧ ܳ) ≤ ,൫݂߱ ܥ ݈(ܳ)൯
                                 (139) 

Where ܫ(ܳ) is the side length of  ܳ and ܥ is a constant which depends only on  ݎ and ݀ 

(also  if  is close to  0). 

Sometimes (139) is not sufϐicient because it is not possible to add these estimates For 

different  cubes  ܳ. For this purpose, the following averaged moduli of smoothness is 

more convenient. For any domain  Ω and ݐ > 0 , we define 

ܹ(݂, ,ݐ Ω) ≔ ቆିݐ ௗ න න |∆௦
(݂, ,ݔ Ω)|

ஐ|௦|ஸ௧
ቇݏ݀ݔ݀

ଵ ൗ

                  (140) 

Where    < ∞ . Then, returning once again to cubes ܳ, ߱ and ܹ  are equivalent: 

,݂)ଵ߱ܥ ,ݐ ܳ) ≤ ܹ(݂, ,ݐ Ω) ≤ ,݂)ଶ߱ܥ                                 (141)(ݐ

Where ܥଵand ܥଶ depend only on  ݀ ,  is small. Therefore, the estimate (139)   if  and ݎ

can be improved by replacing ߱  by  ܹ  : 

,݂)ܧ ܳ) ≤ ,݂)ܹ ܥ ݈(ܳ), ܳ)                                      (142) 

We shall use the generic notation ொܲ  = ொܲ(݂) to denote a polynomial in ܲ  which 

satisfies 

ฮ݂ −  ொܲฮ


(ܳ)  ≤ ,݂)ܧ ߣ  ܳ)                                                   (143) 

Where  ߣ ≥ 1 is a constant which we fix. The polynomial ொܲ is then called a near best 

approximation to ݂ with constant ߣ. When  ߣ = 1, ொܲ is a best approximation. It follows 

from (142) and (143) that 

ฮ݂ −  ொܲฮ


(ܳ)  ≤ ,݂)ܹ ܥ  ݈(ܳ), ܳ)                                       (144) 
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We shall use the following observation (see [127]) about near best approximation in the 

sequel. Let  ݎ > 0 . If ொܲ ∈ Ρ  is a near best approximation to ݂ with constant ߣ on ܳ in 

the ܮఊ norm, then it is also a near best approximation to ݂ for  all  ܲ ≥  :ߛ

ฮ݂ −  ொܲฮ


(ܳ)  ≤ ,݂)ܧ ߣܥ  ܳ)                                    (145) 

where the constant ܥ depends only on ߛ,  . ݀ and ݎ

The estimate (145) leads to a characterization of Besov spaces in terms of spline 

approximation. For ݊ ∈ ܼ, let ܦ  , be the collection of dyadic cubes ܳ of side length 2ି 

and let ܦ ≔ ∪∈௭ ݊   be the collection of all dyadic Cubes. Forܦ ∈ ܼ, let Π ≔  Π,  be 

the space of piecewise polynomials ܵ on ܦ which have degrees less than ݎ. The error of 

approximation to a function ݂ ∈  (Ω) by elements of Π isܮ

(݂)ݏ ≔ ‖݂ −  ܵ‖(Ω)                                            ௦∈ஈ
    (146) 

It follows from [127] that a function ݂ ∈ ܤ (Ω)  is inܮ
ఈ ∈  (Ω) , Ω a cube, if and only ifܮ

‖݂‖ࣛ
ೌ൫൯ ≔ ൭൫2ఈݏ(݂)൯

∈௭

൱

ଵ ൗ

< ∞                                     (147) 

Moreover, (147) is an equivalent semi norm forB୯
(L୮(Ω)). Let us emphasize for later 

use that this same result holds in the case Ω = Rୢ with the same proof.  

It will be useful to mention briefly some well-known properties of polynomials which 

we shall use frequently in what follows. If  ܳ  is a cube, we let, for  0 < ܲ ≤ ∞ , 

‖݂‖
∗ (ܳ) ≔  |ܳ|ିଵ ൗ ‖݂‖(ܳ)                                                (148) 

be the normalized ܮ norms. We also introduce the notation ܳߩ to denote the cube with 

the same center as ܳ and side length ݈ߩ(ܳ) where ݈(ܳ) is the side length of ܳ. 

If ݎ is a nonnegative integer, ߩ > 1 and ܲ is a polynomial of  ݀݁݃݁݁ݎ ≤  then (see for ,ݎ

example [129]) for a constant ܥ depending only on ݀,  this constant and other) ݎ

constants in this section also depend on the distance of p to 0), we have for any ݍ ≥  : 

‖ܲ‖
∗ (ܳߩ) ≤ ‖ܲ‖ܥ

∗ (ܳ) ≤ ‖ܲ‖ܥ
∗  (149)                                    (ܳߩ)

We often apply this inequality in the following way. Let  ܳଵ, ܳଶ be two cubes with 

݈(ܳଵ) ≤ ݈(ܳଶ) and ܳଵ ⊂ ଶܳߩ  for some ߩ ≥ 1  . Then for a constant ܿ depending only on 

݀, ,ߩ , ݍ  we have, for all  ݎ ≥  ,

‖ܲ‖
∗ (ܳଵ) ≤ ‖ܲ‖ܥ

∗ (ܳଶ)                                                    (150) 

Indeed, it is enough to compare the left side of (150) with‖ܲ‖
∗ (ܳଵ), compare this with 

‖ܲ‖
∗ and then finally make a comparison with ‖ܲ‖ ,(ଶܳߩ)

∗ (ܳଶ). 
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We shall define an extension operator ߦ (similar to that introduced in [4]) which 

extends each function ݂ ∈ ݂ (Ω)to all of Rd and has the property that ifܮ ∈ B୯
(L୮(Ω)), 

then   ݂ߦ ∈ B୯
(L୮(Rୢ)), (with suitable restrictions on ߙ, ,  and Ω. We assume at the ,ݍ

outset that Ω is a Lipschitz graph domain and treat more general domains in the next 

section. This means that Ω = ൛(u, v): u ∈ Rୢିଵ, v ∈ R and v >  ൟ where ߶ i s a fixed(ݑ)߶ 

Lip 1 function. 

That is , ߶ atisfies |߶(uଵ) −  ߶(uଶ)| ≤ ଵݑ|ܯ − , ଶ|for alluଵݑ  uଶ ∈  Rୢିଵ, where M is a 

fixed constant (which we can assume is greater than one). 

We let ܨ denote the Whitney decomposition of ܳ into dyadic cubes (see [132]). 

Similarly we denote by Fc the Whitney decomposition of  Ω ∖  ߲Ω. Then, 

 (i)   ݀݅ܽ݉ (ܳ) ≤ ,ܳ) ݐݏ݅݀ ߲Ω) ≤ 4 ݀݅ܽ݉ (ܳ), ܳ ∈ ܨ ∪  ,ܨ

 (ii)   ݂݅ ܳ , ܳ ∈ ܨ ∪ ܨ , ℎܿݑݐ  ℎ݁݊ ݈(ܳ)ݐ ≤ 4݈(ܳ)),                                                                  

(151) 

(iii) |ݒ − ϕ(u)| ≤ ொ∋(௨,௩)ܥ 
௦௨ ݈(ܳ) 

Where ܥ depends only on the Lipschitz constant ܯ and the dimension ݀. Here, 

݀݅ܽ݉(ܳ) = √݀ ݈(ܳ) with ݈(ܳ)the side length of ܳ. For each cube ܳ in ܨ ∪ ܨ  letܳ∗ = ଽ
଼

ܳ. 

If ܳ ∈ ∗thenܳ ,ܨ  ⊂ 3ܳ ⊂ Ω. 

According to [132] there is a partition of unity ൛߶ொൟ
ொ∈ி

for the open set Ω\ ߲Ω  with the 

properties: 

  (i)    0 ≤ ߶ொ ≤ 1 , 

 (ii)  ∑ ߶ொ ≡ 1 , Ωொ∈ி ݊  , 

 (iii)    ߶ொ                                                                                                    ,(∗ܳ)ݐ݊݅ ݊݅ ݀݁ݐݎݑݏ ݏ݅ 

(152) 

(iv) ฮܦ௩߶ொฮ
ஶ

≤ ܿ [݈(ܳ)]ି |௩|, |ݒ| ≤ ݉, 

 (v)   ݂݅ ܳଵ , ܳଶ ∈ ܨ ∪ ܨ ℎ  ܳଵݐ݅ݓ 
∗ ∩ ܳଶ

∗  ≠  ߶ ,  ℎܿݑݐ ℎ݁݊ ܳଵ ܽ݊݀ ܳଶݐ

  (vi)  at most ܰ ≔  12ௗcubes from either  ܨ or ܨ  may touch a given cube from either 

family. 

Properties (i)-(iv) and (vi) are proved in [132], while a proof of (v) can be found in 

[129]. Here ݉ is an arbitrary integer and ܿ depends only on  ݀, Ω, and ݉  . We are using 

standard multivariate notation for the derivatives   ܦ௩ ≔ భܦ
௩భ ܦ …

௩ . 
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        If ܳ ∈ ,ݑ)   has centerܨ  which contains the point ܨ we let ܳ௦ denote the cube in ,(ݒ

,ݑ) ,2߶(u) − v). We speak of ܳ௦ as being the cube symmetric to ܳ a cross ߲Ω. The 

symmetric cubes ܳ௦ were introduced in [129] and we recall now some of their 

properties proved in [129]. While ܳ and ܳ௦ need not have the same size, they are 

comparable; i.e. there is a constant  ܥ >  0 for which there holds (see [129]). 

 (i)        ିܥଵ݈(ܳ) ≤ ݈(ܳ௦) ≤                                                                                                   ܳ)݈ܥ

(153)   

 (ii)       ݀݅ݐݏ(ܳ, ܳ௦) ≤  ܳ)݈ܥ

(iii)     each  cube in ܨ can be the symmetric cube ܳ௦ of at  most ܥ cubes ܳ ∈ ܨ  .  To 

define our extension operators ߦ, we fix a value  ߛ > 0 (which in application is chosen 

smaller than all  under consideration), and a value ݎ (which in application is larger 

than all the ߙ under consideration) and we let ߛ ≥ 0  . 

If  ݂ ∈  and ܳ is a cube, we let ொܲ(݂)  be a polynomial which satisϐies (143). we (݈ܿ)ఊܮ

then define ߦ by 

(ݔ)݂ߦ ≔ ቐ
ݔ         , (ݔ)݂ ∈ Ω                                  

 Pொೞ f(x)߶ொ(ݔ) ,     ݔ ∈ Ω\߲Ω
ொ∈ி

�                            (154) 

Actually, (154) deϐines a family of extension operators, since each choice of near Best 

approximants Pொೞ ݂ give an extension  ߦ . The results that follow apply to any such 

extension operator ߦ with the restriction that the constant ߣ ≥ 1  of (143) is ϐixed. 

   We have shown in [129] that ߦ is a bounded mapping from L୮(Ω) into L୮(Rୢ), 

ߛ  ≤  ≤ ∞, and also from B୯
(L୮(Ω)). Into   B୯

(L୮(Rୢ)). Whenever  1 <  ≤ ∞,. We 

shall prove now the same result when 0 <  ≤ 1 . To study the smoothness of ݂ߦ, we 

shall need estimates of how well ݂ߦ can be approximated by polynomials on cubes ܴ in 

the ܮ norm for  ≥ We fix 0 . ߛ <  ≤ ∞ and r and use the abbreviated notation 

(ܳ)ܧ ≔ E୰(f, Q)୮ 

Lemma	(3.3.1)	[125]:	

There exists a constant ܥ > 0 so that if ܳଵ , ܳଶbelong to ܨ and touch, then 

ฮ ொܲభ − ொܲమ ฮ
ஶ

(ܳଵ) ≤ ଵ|ିଵܳ|ܥ ൗ ଵܳ)ܧ]
∗) + ଶܳ)ܧ

∗)]                              (155) 

Proof.	
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By property (151) (ii) of the Whitney decomposition, ܳଵ and ܳଶ have 

comparable side lengths and  so we may select a cube ෨ܳ  ⊂ ܳଵ
∗ ⊂ ܳଶ

∗ whose side length is 

comparable to that of either cube: 

݈൫ ෨ܳ൯ =
1

16 min{݈(ܳଵ), ݈(ܳଶ)} 

Applying the triangle inequality in ܮஶ(ܳ) and using the elementary estimates for 

polynomials (150), we have for ݆ = 1,2 

ቛ ொܲೕ − ܲொ෨ቛ
ஶ

൫ܳ൯ ≤ ܥ ൜ቛ ொܲೕ − ܲொೕ
∗ቛ



∗
൫ܳ൯ + ቛܲொೕ

∗ − ܲொ෨ ቛ


∗
൫ ෨ܳ൯ൠ 

Using this inequality and two applications of Lemma 3.3 of [127] (applied once to ܳ   

and ܳ
∗ and again to ෨ܳand ܳ

∗) gives 

ቛ ொܲೕ − ܲொ෨ቛ
ஶ

൫ܳ൯ ≤ ൫ܳ൯ܥ
ିଵ

ൗ
൫ܳܧ

∗൯                                                     (156) 

Again using (150), we obtain 

ฮ ொܲమ − ܲொ෨ ฮ
ஶ

(ܳଵ) ≤ ฮܥ ொܲమ − ܲொ෨ ฮ
ஶ

(ܳଶ) 

and so together with (156) (applied with ݆ = 2) and the modified triangle inequality we 

obtain the desired result (155).  

    To estimate the smoothness of  ݂ߦ, we shall approximate  ݂ߦ on cubes ܳ from  Rୢ . We 

consider first the approximation of  ݂ߦ f on cubes close to ߲Ω. 

	

Lemma	(3.3.2)	[125]:		

There exists a constant ܿ > 0 so that if ߦ is any of the extension operators (154) 

and ܴ is a cube with ݀݅ݐݏ(ܴ, ߲Ω) ≤ ݀݅ܽ݉(ܴ), then for݂ ∈ L୮(Ω), ߛ ≤  ≤ 1, we hav 

E୰(݂ߦ, ܴ)୮ ≤ ൮  E(S∗)୮

ୱ∈
ୱ⊂ୡୖ

൲

ଵ ୮ൗ

                                        (157) 

Where ܿ , ,݀ depend only on ܥ ,ݎ ,ߛ  .and Ω ,ߣ

Proof.	

For such an ܴ, if (ݑ,  ܨ ) denotes its center, then we let ܴ be the member ofݒ

containing a point of the form (ݑ, )  such that ݈(ܴ)ݒ ≥ 16݈(ܴ) and ݒ is smallest. It is 

clear (see property (151) (i)) that R and Ro have comparable side lengths and so we 

may choose a constant ܿ > 0  so that  ܴܿ ⊃ ܴ. Let ܳ ∈  intersect  ܴ. We shall ܨ
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estimateฮ݂ − ோܲబฮ


(ܳ). Since ݀݅ݐݏ(ܳ, ߲Ω) ≤ ݀݅ܽ݉(ܴ) + ,ܴ)ݐݏ݅݀ ߲Ω) ≤ 2݀݅ܽ݉(ܴ), from 

(151)(i) it follows that  ݈(ܳ) ≤ 2݈(ܴ). 

     Our next step is to construct a 'chain' of cubes ൛ ܴൟ



from ܨ which connect 

ܴToܳ = ܴwith each ܴ  touching ܴାଵ. We accomplish this as follows. 

Let ݔଵ = ,ଵݑ) ଷݔ ଵ)   be the center of  ܴ andݒ = ,ଷݑ) ܳ ଷ)   be a point fromݒ ∩ ܴ We 

consider the path consisting of a 'horizontal' followed by a 'vertical' Linear segment 

which connects first ݔଵ to the point ݔଶ = ,ଷݑ)  ଶ is inݔ ଷ. The pointݔ ଶ toݔ ଵ)    and thenݒ
ଽ
଼

ܴ = ܴ
∗ and is therefore in a cube ෨ܴ ∈ which touches  ܴ . If  ෨ܴ ܨ ≠ ܴ , we 

defineܴଵ ≔ ܴ ෩ , otherwise ܴଵ is not yet defined. 

The remaining cubes ܴ  are obtained from the vertical segment which connects ݔଶ to ݔଷ, 

namely the cubes we encounter (in order) as ݒ changes from ݒଵ to ݒଷ.  Since  all  these  

cubes  are  in  ܨ,  they  have  disjoint  interiors.  From property (151)(݅݅݅),  we obtain 

∑ ݈( ܴ

ୀଵ )  is comparable to  ݈(ܴ)  ; moreover, 

݈(ܴ) ≤  ݈( ܴ



ୀଵ
) ≤ ܿ ݈(ܴ)  , 0 ≤ ݇ ≤ ݉  ,                                   (158) 

In particular, we have  ܳ ⊂ ܴܿ and ܴ ⊂ ܴܿ, where  ܿ  has been increased as necessary 
but remains independent of ݂.  
   Since  ܳ ⊂ ܴܿ ,  the  inequalities  (150)  for  polynomials,  give  that  for  any 
polynomial ܲ,  ‖ܲ‖ஶ(ܳ) ≤ ‖ܲ‖ܥ

∗ ൫ ܴ൯ , ݆ =   0, . ..  , ݉,  for a constant  ܥ depending  
only  on  , ݀, Ω  and  the  degree  of  ܲ  but  not  on  ݆.  We now write  ொܲ − ோܲబ =
൫ ோܲ − ோܲషభ൯ + ⋯ + ( ோܲభ − ோܲబ) and ϐind from Lemma 4.1 that 

ฮ ொܲ − ோܲబฮ
ஶ

(ܳ) ≤ ܥ  ቛ ோܲೕశభ − ோܲೕቛ


ିଵ

ୀ

൫ ܴ൯ 

                                             ≤ ܥ  ห ܴหିభ


ିଵ

ୀ

൫ܧൣ ܴ
∗൯ + ൫ܧ ܴାଵ

∗ ൯൧ 

 ≤ ܥ ห ܴหିభ




ୀ

൫ܧ ܴ
∗൯                                                         (159) 

Hence,  |ܳ|ିభ
ฮ ொܲ − ோܲబ ฮ


(ܳ)  also does not exceed the right side of (159).  If we 

write݂ − ோܲబ = (݂ − ொܲ) + ( ொܲ − ோܲబ), we obtain 
 

ฮ݂ − ோܲబฮ


(ܳ) ≤ |ܳ|ܥ
భ
 ห ܴหିଵ



ୀ

൫ܧ ܴ
∗൯                                       (160) 

Since  an ݈ଵ norm  does  not  exceed  an  ݈  norm  for  0 < ≥   1,  we have 
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ฮ݂ − ோܲబ ฮ



(ܳ) ≤ |ܳ|ܥ ห ܴหିଵ



ୀ

൫ܧ ܴ
∗൯

                                 (161) 

We denote the ‘chain’ from  ܳ to  ܴ  by  ொܶ ≔ (ܴ)ୀ
   Summing (161) over all  ܳ  

belonging to  ܨ  such thatܳ ∩ ܴ ≠ Φ, we then obtain 

 ฮ݂ − ோܲబฮ



(ܳ)

ொ∈
ொ∩ோஷ

≤ ܥ   |ܳ||ܵ|ିଵ

ௌ∈்ೂ

(∗ܵ)ܧ

ொ∈
ொ∩ோஷ

                              (162) 

Next  we  interchange  the  order  of  summation  in  (162)  and  note  that  while  an ܵ  
that  appears  in  the  sum  of  (162)  may  occur  in  more  than  one  ொܶ , each  such ܳ is  
contained  in  ܿܵ  and  therefore  ∑ |ܳ| ≤ {ொ:ௌ∈்ೂ}|ܵ|ܥ .  Since  ݂ߦ = ݂  on suchܳ, we obtain 

 ฮ݂ߦ − ோܲబฮ



(ܳ)

ொ∈
ொ∩ோஷ

≤ ܥ  (∗ܵ)ܧ

ௌ∈
ௌ⊂ோ

                                       (163) 

We can  prove  a  similar  estimate  to  (163)  for  cubes  ෨ܳ ∈ for  which  ෨ܳܨ ∩ ܴ ≠ Φ : 

 ฮ݂ߦ − ோܲబฮ



( ෨ܳ)

ொ෨∈ி
ொ෨∩ோஷ

≤ ܥ  (∗ܵ)ܧ

ௌ∈
ௌ⊂ோ

                             (164) 

 
Indeed,  for  a  cube  ෨ܳ   which  appears  in  the  left  sum  of  (164),  we  have  from the  
definition  of  ߦ  in  (154): 

ฮ݂ߦ − ோܲబฮ



( ෨ܳ) ≤  ฮܲொೞ − ோܲబ ฮ




( ෨ܳ)

ொ෨∩ொ∗ஷ
ொ∈ி

 

≤  ฮܲொೞ − ோܲబฮ


(ܳ௦)
ொ∗∩ொ෨ஷ

ொ∈ி

                               (165) 

where we have  used  the  fact  that  the Φொ   are  positive  and  sum  to  one  and  we have 

used (150) (for  ݍ = to  replace ฮܲொೞ  (  − ோܲబฮ



( ෨ܳ)  by  ฮܲொೞ − ோܲబฮ



(ܳ௦)  (recall that  

ܳ,  ෨ܳ ,  and  ܳ௦  all  have  comparable  size  and  the  distance  between  any  two of  these  
cubes  does  not  exceed  ܥ ݀݅ܽ݉(ܳ) ). Now, by  (152)(ݒ), ܳ∗ ∩ ෨ܳ ≠ Φ only if  ܳ  and  ෨ܳ  
touch.  Therefore  by (4.2)(݅ݒ) there  are  at  most  ܰ  terms  in the  sum  (165)  and  ܰ  
depends  only  on  ݀  and  Ω.  Also a given  ܳ௦    appears for at most  ܥ  cubes  ෨ܳ   (see the 
remark  following (156)).  Furthermore  ܳ௦ is  contained  in  ܴܿ  and  therefore  the  
estimate  (159)  holds  (with  the  ܳ  there replaced  by  ܳ௦).  Finally,  if  we  use  (149)  
to  replace  the  ܮஶ(ܳ௦))  norm  by  an ܮ(ܳ௦))  norm  on  the  left  side  of  (159)  and  
then  use  this  in  the  terms  of  the  right sum  of  (165),  we arrive  at  (164)  in  the  
same  way that  we have  derived  (4.13). 

  To complete  the  proof,  it  is enough  to  add  the  estimates  (164)  and  (165).       

   We are  now  in  a  position  to  give  an  estimate  for ߱(݂ߦ,    for  each  of  the(ݐ
extension  operators  ߦ . 
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Theorem	(3.3.3)[125]:		

  If  ߛ ≤   ≤  1  and  ݐ > 0  then 

߱(݂ߦ, (ݐ
 ≤ ܥ   ܹ(݂, 2)

 + ݐ  2ି
ܹ(݂, 2)



ଶೕஸ ௧ଶೕஸభ௧

             (166) 

where  ܹ   is  the  averaged  modulus  of smoothness  (140)  and  the  constants  ܿଵ  and 
,݀  depend  only on  ܥ ,ݎ ,ߛ  .and  Ω ,ߣ

	

	

Proof.	

 We write ܴௗ\ ∂Ω = Ω ∪ Ωି ∪ Ωା where Ω ≔∪ {ܳ ∈ ܨ ∪ :ܨ ݈(ܳ) ≤  ,{ݐݎ16
Ωା ≔ Ω\(Ω ∪ ∂Ω) , Ωି ≔ Ω\(Ω ∪ ∂Ω) .  It follows that for each ݔ ∈ Ω and for the 
appropriate cube  ܳ ∈ ܨ ∪ ܨ  which contains  ݔ  ,  we  have  

,ݔ)ݐݏ݅݀ ∂Ω) ≤  ݀݅ܽ݉(ܳ) + ,ܳ)ݐݏ݅݀  ∂Ω) ≤ 5  ݀݅ܽ݉(ܳ) ≤  (167)            ݐݎ݀√80

We shall consider three cases.  Let|ℎ| ≤  .ݐ

Case	1 (ݔ ∈ Ωା).  In this instance, there is a cube ܳ ∈ (ܳ)݈  and ݔ containing  ܨ >   .ݐݎ6ܫ 
Therefore the expanded cube ܳ∗ ≔ ଽ

଼
ܳ ⊂ Ω contains the line Segment [ݔ, ݔ +   ,[ℎݎ 

which shows for (ݔ ∈ Ωା  , that  △
 ,݂ߦ) (ݔ =△

 (݂,  . (ݔ

Hence, by (141), 

න|△
 ,݂ߦ) ,ݔ Ω)|

ொ

ݔ݀ ≤ න|△
 ,݂ߦ) ,ݔ ܳ∗)|

ொ∗

ݔ݀ ≤ ߱(݂, , ݐ ܳ∗)
 

≤ ܹ(݂, , ݐ ܳ∗)
 

We  now  sum  over  all  ܳ which  intersect  Ωାand  use  the  fact  that  a  point ݔ ∈ ܴௗ  
can  appear  in  at  most  ܰ  of  the  cubes  ܳ∗  (see  (4.2)(vi))  to  ϐind 

න|△
 ,݂ߦ) |(ݔ

ஐశ

ݔ݀ ≤ ܹ(݂, ( ݐ
                                  (168) 

Case	2   ݔ ∈ Ω  . In  this  case  we  are  near  the  boundary  and  employ  Lemma (3.3.2). 
We take a tiling Λ of  ܴௗ  into pairwise disjoint cubes  ܴ  of side length 80 ݐݎ .  Next  we  
obtain  additional  staggered  tilings  by  translating  Λ   in  coordinate  directions.  
Namely,  if  ݒ  is  a  vector  in  ܴௗ   with  coordinates 0 or1, then Λ௩ ≔ ݒݐݎ40} + ܴ}ோ∈ஃబ  is  
also  a  tiling.  We let  Λ  denote  the  collection  of  those ܴ  such  that  ܴ ∩ Ω ≠ Φ and  
R ∈ Λ௩for  one  of  these  ݒ .  We note  that  there are  2 ௗ  such  ݒ  and  for  each  point  
∋ ݔ Ω  there  is  a  cube  R ∈ Λ such  that [ݔ, ݔ + [ℎݎ ⊂  ܴ.  Hence, 

න|△
 ,݂ߦ) |(ݔ

ஐబ

ݔ݀ ≤  න |△
 ,݂ߦ) |(ݔ

ୖ(୰୦)

ݔ݀
ୖ∈ஃ
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    ≤ 2 ௗ  ,݂ߦ)ܧ ܴ)


ୖ∈ஃ

                                             (169) 

where the  last  inequality  follows  since the  ݐ ݎℎ  difference  annihilates  polynomials of  
degree  less  than  ݎ.  The  multiple  80  was  chosen  so  that  the  cubes  ܴ  in  Λ satisfy  
,ܴ)ݐݏ݅݀ ߲Ω) ≤  ݀݅ܽ݉(ܴ)  as  follows  from  (167)  because  Ω ∩ ܴ ≠ Φ . We may 
therefore estimate  ݂ߦ)ܧ, ܴ)  by Lemma (3.3.2) to give 

න|△
 ,݂ߦ) |(ݔ

ஐబ

ݔ݀ ≤ ܥ   (∗ܵ)ܧ

ௌ∈ி
ௌ⊂ோ

ୖ∈ஃ

                            (170) 

       Next,  we  observe  that  ܨ  is  the  disjoint  union  of  the ܨ ≔ ܨ ∩ ॰  and  so (170) 
becomes 

න|△
 ,݂ߦ) |(ݔ

ஐబ

ݔ݀ ≤ ܥ 

⎝

⎛  (∗ܵ)ܧ

ௌ∈ிೕ
ௌ⊂ோ

ୖ∈ஃ
⎠

⎞ =: ܥ  ܫ                
ஶ

ୀିஶ

ஶ

ୀିஶ

(171) 

 
Let  ܵ =∪ {ܵ∗: ܵ ∈  of Whitney decompositions, it  (݅ݒ)  and  (ݒ) .  By properties  (152)ܨ
follows that for each  ݆ 

  ∗ݏࣲ

ௌ⊂ோ
ௌ∈ிೕ

   ୖ∈ஃ

≤ ܥ ࣲܰݏ                                                                        (172) 

where  ܰ  is  the  constant  of  (152)(݅ݒ),  and  ܥ  is  a  constant  which  depends  only on  
݀  and  ܿ  counting  the  number  of  times  a  cube  ܵ ∈   can  appear  in  distinct cubes  ܨ
ܴܿ,  R ∈ Λ.  Therefore, from (142), we obtain for each݆ ∈ ܼ, 

ܫ ≤ 2ௗܰܥ න නห△
 ൫݂, ,ݔ S൯ห

ୗೕ

ℎ݀ݔ݀ ≤ ܥ ܹ

||ஸవ
ఴଶషೕ

(݂ , 2ିାଵ)
                   (173) 

Furthermore, if  ܵ ∈ ⊃ ܵ    satisfiesܨ ܴ  for someR ∈ Λ, then  ݈(ܵ) ≤ ݈ܿ(ܴ) =   .ݐݎ80ܿ
Hence, if  ܿଵ ≥ we have from  (151)(݅)  that2ିାଵ  ݎ160ܿ ≤  ܿଵݐ. Using this together with 
inequalities (171) and (173), we obtain 

න|△
 ,݂ߦ) |(ݔ

ஐబ

ݔ݀ ≤ ܥ  ܫ
ଶషೕஸ଼௧

≤ ܥ  ܹ
ଶషೕஸభ௧

(݂ , 2ି)
                         (174) 

Case	(ݔ ∈ Ωି) . Let  ܴ ∈ ܨ   withܴ ∩ Ωି ≠ Φ, then ݈(ܴ) > ,ݔ] and so  ݐݎ16 +  ݔ [ℎݎ   ⊂
ܴ∗ whenever ݔ ∈ ܴ.  We consider any other cube  ܳ ∈ ܨ  such that  ܳ∗  intersects  
,ݔ] ݔ + ݔ  ℎ]  for someݎ ∈ ܴ and |ℎ| ≤   .we have that  ܳ  and  ܴ  touch ,(ݒ)By (152)  .ݐ
Next we let Λோ ≔ {ܳ ∈   :  ܳ  touches  ܴ } denote  the  collection  consisting  of  ܴ andܨ
its  neighbors  from  Fc,  then  all  cubes ܳ ∈ Λோ have  side  length  comparable  to ݈(ܴ). 
The  number  of  cubes  in  Λோ  does  not  exceed  the  constant  N  of  (152)(݅ݒ).  We can  
use  (152)(݅ݒ)  to  majorize derivatives  of  the Φொ .  Hence,  from  the  definition  of  ߦ  
and  Leibniz'  formula, we  have  for  |ߤ| =  :ݎ
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(∗ܴ)ஶ‖݂ߦఓܦ‖ = ݂ߦ]ఓܦ‖ − ܲோೞ ]‖ஶ(ܴ∗) 
≤ ܥ max

ஸஸ
 ݈(ܴ)ି

ொ∈ஃೃ

max
|௩|ୀషೖ

ฮܦ௩[ܲொೞ − ܲோೞ]ฮ
ஶ

(ܳ∗) 

 ≤ ܥ ݈(ܴ)ି  ฮܲொೞ − ܲோೞฮ
ஶ

(ܴ௦)
ொ∈ஃೃ

                                                        (175) 

where  the  last  inequality  uses  Markov's  inequality  and  (150).  We  next  choose a  
constant  ܿ > 0  so  large  that  it  exceeds  the  constant  in  (153)  and  also ܴܿ௦contains  
each  of  the  cubes  ܳ௦,  for  ܳ ∈ Λோ   .  We shall  possibly  increase  the  size of  the  
constant  ܿ  in  the  remainder  of  the  proof  but  it  will end  up  to  be  a  fixed constant  
depending  at  most  on  ݀, Ω,  and  previous  constants. 

For  each  ܳ௦,  such  that  ܳ ∈ Λோ   , there  is a  'chain'  ொܶ  connecting  ܴ௦  with  ܳ௦ which  
can  be  obtained  from  the  proof  of  Lemma  (3.3.2).  Namely,  if  the  constant ܥ > 0  is  
large enough then  തܴ  = will contain  ܴ௦  and  all  of  the  ܳ௦,  .  We choose  R  ܴܥ ∈  as  ܨ
in Lemma (3.3.2) for the cube തܴ.  The chain  ொܶ    then consists of the cubes in  ܨ  which 
connect  ܳ௦ to  R  and then  R  toܴ௦.  Each  cube  in the  chain  ொܶ  will have  side  
length  larger  than ܿିଵ݈(ܴ)where  ܿ  may  have  to  be increased  appropriately.  Of  
course  each  cube  in  the  chain  also  has  side  length< (R)݈ܥ <   Because  of  .(ܴ)݈ܥ
the  size  condition  on  the  cubes  in  ொܶ , the  fact that  they  have  disjoint  interiors,  
and  ݀݅ݐݏ(ܳ௦, ܴ௦) <   the  number  of cubes  in  ொܶ  is  no  larger  than  a  fixed  ,(௦ܴ)݈ܥ
constant  depending  only  on  ݀  and  Ω. 

Therefore,  we  can  estimate ܲொೞ − ܲோೞ   as  in  (159)  of  Lemma  (3.3.2)  and  obtain 

ฮܲொೞ − ܲோೞฮ
ஶ

(ܴ௦) ≤ ฮܲொೞܥ − ܲோೞ ฮ
ஶ

(ܳ௦)     

≤ భି|ܴ|ܥ
 ቌ  (∗ܵ)ܧ

ௌ∈்ೂ

ቍ

భ


                         (176) 

Now, from (175) and (176), we obtain for  ݔ ∈  ܴ, 

|△
 ,݂ߦ) |(ݔ ≤ max

|ఓ|ୀ
ஶ‖݂ߦఓܦ‖ (ܴ∗)|ℎ|   ≤ ݈(ܴ)ି|ℎ|ିభݐܥ

 ቌ  (∗ܵ)ܧ

ௌ∈்ೂ

ቍ

భ


             (177) 

Now  let  Λ෩ோ   denote  the  collection  of  all  cubes  ܵ  from  ܨ  which  are  contained in  
ܴܿ௦  and  have  side  length ݈(ܵ) ≥ ܿିଵ݈(ܴ.  Then,  by  again  enlarging  ܿ  if necessary,  
we  can  guarantee  that  any  cube  ܵ  appearing  on  the  right  side  of (177)  is  
contained  in  Λ෩ோ .     Therefore,  if  we  take  ݐ ℎ  powers  of  (177)  and integrate  over  ܴ  
and  then  sum  over  all  ܴ,  we obtain 

න|△
 ,݂ߦ) |(ݔ

ஐି

ݔ݀ ≤ ݐܥ  ݈(ܴ)ି  (∗ܵ)ܧ

ௌ∈ஃ෩ೃோ∩ஐିஷ

                         (178) 

    where  we  have  used  the  fact  that  the  number  of  cubes  in  Λோ   is  bounded  index-
pendent  of  ܴ.    
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    We now proceed in a similar fashion to the way we derived (174).  Since  (as we have  
derived  earlier)  ݈ܿ(ܴ) ≤ ݈(ܵ) ≤   every cube  ܵ  appearing  in  the sum  of  (178)  ,(ܴ)݈ܥ
satisfies  ܿݐ ≤ ݈(ܵ) ≤ ܿଵݐ  provided  ܿଵ  is  sufficiently  large.  We majorize  ܧ(ܵ∗) by 
(140) and (142).  This gives (compare with the derivation of (171) through (174)): 

 ݈(ܴ)ି  (∗ܵ)ܧ

ௌ∈ஃ෩ೃோ∩ஐିஷ

=   2  (∗ܵ)ܧ

ௌ∈ஃ෩ೃோ∩ஐିஷ
ோ∈॰ೕ



 

≤ ܥ  2
ܹ(݂ ,2ି)



ଶషೕஹభ௧

                             (179) 

We use (179) in (178) to obtain 

න|△
 ,݂ߦ) |(ݔ

ஐି

ݔ݀ ≤ ݐܥ  ܹ(݂ ,2ି)


ଶషೕஹభ௧

                            (180) 

         The  proof  of the  theorem  is completed  by adding  the  estimates  (168),  (174), 
and  (180)  and  making  the  observation  that  ܹ(݂, , ݏ Ω) ≤ ܽௗ/

ܹ(݂, , ݏܽ Ω) any  
ܽ ≥ 1  to  put  the  resulting  sum  in  the  form  (166). The techniques of apply to more 
general domains.  We  shall  indicate in  this  section  the  adjustments  required  in   to  
execute  the extension  theorem for  (ߝ,   .[6]  ݏ݁݊ܬ  .ܲ  domains  as  introduced  by  (ߜ
Such  domains  include  as special  cases  the  minimally  smooth  domains  in  the  sense  
of  [189]. The  latter  are  equivalent  to  domains  with  the  uniform  cone  property  
[ܵℎ]. We say  an  open  set  Ω  is  called  an   (ߝ,  :domain  if(ߜ

for  any  ݔ, ݕ ∈ Ωsatisfying  |ݔ − |ݕ ≤   there  exists  a  rectifiable  path  Γ,of  length  ,ߜ
≤ ݔ|ܥ − ݖ  such  that  for  each  ,ݕ  and  ݔ  connecting  ,|ݕ ∈ Γ, 

,ݖ)ݐݏ݅݀     ߲Ω ≥ ݖ|)݊݅݉ ߝ − ,|ݔ ݖ| −  (181)                (|ݕ

We shall  also  assume  that  the  diameter  of  Ω is  larger  than  ߜ  which,  of  course, will 
be  true,  if  we take  ߜ  small  enough. 

  Let  ܨ  be  a  Whitney  decomposition  of Ω and F  be  a  Whitney  decomposition  of  
Ω/߲Ω;  that  is  (151)(݅)  and  (݅݅)  hold  for  the  cubes  ܳ ∈ F ∩ F  .  We shall  often  
make  use  of  the  following  two  properties  which  hold  for  a  constant ܥ depending 
only on  ݀ : 

(݅)      If  ܳ , ܳ′ ∈ , ܳ)ݐݏ݅݀ܥ  do not touch, then  ܨ  ܳ′) ≥  ݀݅ܽ݉(ܳ), 
(݅݅) if  ܳ ∈   then ,  ܨ 
,ܳ)ݐݏ݅݀ ܥ ߲Ω) ≥ ௭∈ொݑݏ ,ݖ)݀   ߲Ω).                                                            ( 182) 
The  first  of  these  properties  follow  from  the  fact  that  the  neighbors  of  ܳ all have  
size  comparable  to  that  of  ܳ  (property  (151)(݅݅)),  while  the  second  is  a 
consequence  of  (151)(݅). For a cube ܳ ∈  of maximal  ܨ  , we let  ܳ௦ be any cube fromܨ
diameter such that  ݀݅ݐݏ(ܳ௦ , ܳ) < ,ܳ)ݐݏ2݀݅  ߲Ω).  The cube  ܳ௦ will be called the 
reflection of  ܳ  and  plays  the  same  role  as  the  reflected  cubes  for  the  Lipschitz  
graph domains .  We note  for  further  use  that  from  (151  )(݅)  and  the  definition  of 
reflected cubes,  it  follows that  if ܳଵ, ܳଶ ∈ ܨ  ,  then  
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ଵܳ)ݐݏ݅݀
௦, ܳଶ

௦) < ,ଵܳ)ݐݏ൫݀݅ܥ ܳଶ) + max൫݀݅ܽ݉(ܳଵ) , ݀݅ܽ݉(ܳଶ)൯൯                        (183)  

With  ܥ  depending only on  ݀ . 

Since  there  are  not  necessarily  arbitrarily  large  cubes  in  Ω,  for  large  cubes ܳ ∈ ܨ  , 
the reflected cube  ܳ௦  may have small diameter compared to that of ܳ .  On the other 
hand, if  ℱ   denotes the collection of cubes  ܳ ∈ ܨ  whose  diameters  are  no  larger  
than  ߜ,  then  for  each  ܳ  in  ℱ     its  reϐlection will  satisfy  properties  (153)  for  a  
fixed  constant  ܥ  depending  only  on  ߝ ,  and ݀.  To  see  this,  we  take  a  point ,ߜ
ݔ ∈ ߲Ω  which  is  closest  to  ܳ  from the  boundary  and  let ݔ ∈ Ω  be  a  point  close  to 
  (to  be  described  in  more detail shortly).  Since ݀݅ܽ݉(Ω)ݔ ≥ ߜ ≥ ݀݅ܽ݉(ܳ),  there is 
a  ݕ ∈ Ω such that ߜ ≥ ݔ| − |ݕ  ≥ 2/ߜ ≥ ,ܳ)ݐݏ݅݀ ߲Ω)/8 .  Let Γ  be a path connecting  ݔ  to  
, ߝ)  satisfying the ݕ ݖ  property.  Then, we can find a point (ߜ ∈ Γ such that |ݔ − |ݖ =
,ܳ)ݐݏ݅݀  ߲Ω)/16  and  |ݕ − |ݖ ≥ ,ܳ)ݐݏ݅݀ ߲Ω)/16.  Therefore, by (181), ݀݅ݖ)ݐݏ , ߲Ω) ≥
,ܳ)ݐݏ݅݀ܥ ߲Ω).  Now let  ܳ′ ∈   Then by  (151)(݅݅)  and  .ݖ be the cube which contains ܨ
(182)(݅݅)݀݅ܽ݉(ܳ′) ≥ ,ܳ)ݐݏ݅݀ܥ ߲Ω) ≥  .(ܳ)݉ܽ݅݀ܥ

If  ݔ  is close enough to  ݔ  (e.g.,  |ݔ − |ݔ  < ଵ
ଶ

,ܳ)ݐݏ݅݀ ߲Ω)  will be fine), then 
,ᇱܳ)ݐݏ݅݀ ܳ) ≤ ,ܳ)ݐݏ2݀݅ ߲Ω).  Hence  ܳᇱ  is one of the candidates for  ܳ௦  which means 
that  ݀݅ܽ݉(ܳ௦) ≥ ݀݅ܽ݉(ܳ′) ≥  from which the properties in (153) easily  (ܳ)݉ܽ݅݀ܥ
follow. 

      The  key  to  generalizing  the  extension  theorem  from  Lipschitz  graph  domains to  
, ߝ)  For this we shall use the  .ܨ  domains  is  to  find  chains  which  connect  cubes  of (ߜ
following. 

Lemma	(3.3.4)	[125]:			

Let  ܴ  and  ܳ  be two cubes from ܨ  with  ݀݅ܽ݉(ܳ) ≤ ݀݅ܽ݉(ܴ) and 
,ܳ)ݐݏ݅݀ ܴ) ≤ ,ߜ)݊݅݉   ଵ  a fixed constant.  Then,  there is  aܥ  ଵ݀݅ܽ݉(ܴ))  withܥ
sequence  of  cubes  ܳ = : ܴ ,  ܴିଵ , . ..  , ܴ,  from  ܨ,  such  that  each  ܴ  touches  

ܴିଵ,  ݆ = 0, 1, . . .  , ݉ − 1,  and  for  each  ݆ = 1, . ..  , ݉, ܴ ⊂ ܴܿ and  for each  
݆ =  0, . . ., ݉ − 1,  ܳ ⊂ ܿ ܴ  with  c  depending  only  on  ܥଵ  and  Ω . 

Proof.	

Let  z ∈ Q  and  z ∈ R satisfy  |z −  z| ≤ δ  and let Γ(t), 0 ≤  t ≤ 1 , is a path 
connecting  ݖ  to  ݖ  guarantee by the definition of  (ߝ ,  domains. We claim that any  (ߜ
cube  ܵ ≤ ݎ݁ݐ݁݉ܽ݅݀  which intersects  Γ has  ܨ ≥   ܳ  Indeed, if  ܵ  touches .(ܳ)݉ܽ݅݀ܥ
orܴ, this is clear.  If  ܵ  does not touch  ܳ  or ܴand߱ ∈ Γ ∩ ܵ, then, by (4.1)(݅݅), |߱ −
|ݖ ≥  ݈(ܴ )/4    and  |߱ − |ݖ ≥  ݈(ܳ)/4  . Hence, by (181),   ݀݅ݐݏ(߱, ߲Ω) ≥  and  4/(ܳ)݈ߝ
therefore our claim follows from (182)(݅݅) and (151)(݅). 

We let  ܵ, ଵܵ, ܵଶ, …  be the cubes from  ܨ  met by the path  Γ   as  ݐ  increases; by the 
above remarks this sequence is finite.  If two cubes are identical, ܵ = ܵ  we delete 
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ܵାଵ,   , ܵfrom this sequence.  It is clear that  ܴ   touches ܴିଵ  for each݆ =  1,2, …   , ݉.  
We take points  ݖ ∈ Γ ∩ ܴ݆ = 0, . . . , ݉ . Since the path Γ has length ≤ ݖ|ܥ  − |ݖ ≤
ݖ  all points ,(ܴ)݉ܽ݅݀ܥ  satisfy dist (ݖ, ߲Ω)  ≤  diam(ܴ). Therefore, properties (151)  ܥ
(i) and (182) (ii) give that diam (ܴ) ≤ diam(ܴ).  Hence ܴ ܥ  ⊂ ܿ ܴ for some constant 
depending only on ܥଵand Ω. We also claim that ܳ ⊂ ܿ ܴ . This is clear if ܴ  touches  ܳ or 
ܴ (see (151)(ii)). On the other hand, if ܴdoes not touch ܳor ܴ, then by (181) and 
(151) (ii), we have dist(ݖ, ߲Ω) ≥ ݖmin൫ห ߝ  − ,หݖ หݖ − ห൯ݖ ≥  Hence, by (181) .(ܳ)݈ ܥ
(ii) and (151) (i), ݀݅ܽ݉ ൫ ܴ൯ ≥  .diam(ܳ) and our claim follows in this case as wellܥ

  We shall now define our extension operator for the (ߝ, domainΩ. Let߶ொ (ߜ ,ܳ ∈  , be aܨ
partition of unity for Ωୡ which satisϐies (152). Recall that ℱ  is collection of all cubes 
ܳ ∈ ܨ  for which diam(ܳ) ≤ ߛ If .ߜ > 0 and r is a positive integer, we define 

݂ߦ ≔ ݂߯ஐ + ∑ ܲொೞ߶ொொ ఢ ℱ       (184) 

Where as before ܲொೞ  denotes a near best approximation to ݂ in the metric ܮఊ(ܳ௦). we let 

Ωଵ  = ∋ ݔ}  ℛௗ ∶ dist(ݔ, Ω) ≤ ߜ 
4ൗ } and Ωଶ  = ∋ ݔ}  ℛௗ ∶ dist(ݔ, Ω) ≤ ,Then .{ ߜ6 

(ݔ)݂ߦ = 0 forݔ ∈  Ωଶ
ୡ , while onΩଵ, we have∑ ߶ொ(ݔ) = 1ொ ఢ ℱ . For example, to prove the 

first of these statements, let ܳ ߳ ℱ . Then supp൫߶ொ൯  ⊂ ܳ∗. Since any point ݔ ∈  ܳ∗ 

satisfies dist(ݖ, ߲Ω) ≤ ଽ
଼
 diam(ܳ) + dist(ܳ, Ω)  ≤  ସଵ

଼
 diam(ܳ) our claim follows. A 

similar argument proves the second statement. 

The proof of the smoothness preserving property of the extension operator ℰ is now 
very similar. We ϐirst consider the analogue of Lemma (3.3.2). 

Lemma	(3.3.5)	[125]:		

	 Let Ω be an(ߝ, ߛ ,domain(ߜ > 0,  r be a positive integer and ℰ be an extension 
operator deϐined by (184). Let ܴ be a cube with dist(ܴ, (ߜ߲ ≤ diamܴ) ≤  where ܽ is a ߜܽ
fixed sufficiently small constant depending only on ߝ, ݂ and ݀. Then for  ,ߜ ∈ ,(Ω)ܮ ߛ ≤
 ≤ 1, we have 

,݂ (ℰܧ  ܴ)
  ≤ ܥ ∑ ௌ ఢ ி)ܧ

ௌ⊂ோ 
ܵ∗)      (185) 

Where ܿ, ,݀ depend only on ܥ ,ݎ ,ߛ ,ߣ  .ߜ andߝ

Proof.	

 Let ࣫ = {ܳ: ܳ ∈ ∩ ܳ ݀݊ܽ ܨ ܴ ≠  ∅} ∪ {ܳ௦ ∶ Q ∈  ℱୡ and Q ∩ R ≠ ∅}. 

If ܽ is small enough then the properties (151) and (183) give that dist(ݔ, (ଵݔ ≤ √a δ for 
the centers ݔ, ,ଵ of ܳݔ ܳଵ respectively with these cubes chosen arbitrarily from ࣫. We 
want to find the cube ܴ to be used in conjuction with lemma (3.3.4). Let ܳ, we can 
take ܴ  = Q.  Otherwise, we pick a cube ܳଵ ∈  ࣫ such that the centers ݔ, ,ଵ of ܳݔ ܳଵ 
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respectively have the largest distance, say |ݔ − |ଵݔ = η. If Γis a path that connects the 
centers ݔ, ,ߝ) ଵ of these cubes and satisfies theݔ ݖ  condition, then there is a point (ߜ ∈ Γ 
such that |ݖ − |ݔ ≥ = ݅   ,2/ߟ 0, 1 .  If  ܵ  is  the  cube  in  ܨ  which  contains  ݖ,  then  we 
can  take  ܴ  as  the  largest  of  the  cubes  ܵ, ܳ  .  

 We next  check  that  ܴ  satisϐies  the  conditions  of  Lemma  (3.3.4)  relative  to  
any ܳ ∈ ࣫.  It  is clear that  ݀݅ܽ݉(ܳ) < ݀݅ܽ݉(ܳ) < ݀݅ܽ݉(ܴ)  for  all  ܳ ∈ ࣫.  Since 
:ߟ ݔ| − |ଵݔ ≤ >   and the length of  Γ  is  ߜܽ√  ఎ ,     we haveܥ

,ܳ)ݐݏ݅݀  ܴ) < ,ܳ)ݐݏ݅݀ ܳ) + ݀݅ܽ݉(ܳ) + ,ܳ)ݐݏ݅݀ ܴ) < ߟ  + ఎܥ2  ≤  (186)            ߜ
 
Provided  ܽ  is sufficiently small.  Also, by  (151)(݅)  and  (181) 
 

݀݅ܽ݉(ܴ) ≥ ݀݅ܽ݉(ܴ) ≥ ,ܴ)ݐݏ݅݀ ߲Ω)/4  >  .8/ߟߝ  
 
Hence, as in  (186)݀݅ݐݏ(ܳ, ܴ) ≤ + ܥ) ߟ(1 ≤  ଵa fixed constant. Weܥ ଵ݀݅ܽ݉(ܴ)  withܥ
have veriϐied the hypothesis of Lemma 5.1.  Therefore, there is a chain of cubes 

ܴ , ݆  =   0, . ..  , ݉ ,  connecting ܴ  to  ܳ .  By our assumptions, ܳ  ⊂ Ωଵ whenever  
ܳ ∈ ℱ   and  ܳ ∩  ܴ ≠ Φ  (provided  ܽ  is sufficiently small).  Hence ∑ Φொ  ≡ 1 ொ∈ℱ   Onܴ.  
We can therefore apply exactly the same proof as for Lemma (3.3.2) (namely from  
(152)  on) to derive  (185). 

Theorem	(3.3.6)	[125]: 

Let  Ω  be an(ߝ, ߛ  domain and let (ߜ > 0  and  ݎ  be a positive integer.  If  ℰ is any 
extension operator deϐined by (184), then for each  1 ≥   ≥ ݂  and   ߛ ∈  (Ω),  weܮ
have for  0 < ≥ ݐ 1, 

߱(݂ߦ, (ݐ
 ≤ ܥ   ܹ

ଶೕஸభ௧

(݂, 2)
 + ݐ ൭‖݂‖

 +  2ି

ଵஹଶೕஹ௧
ܹ(݂, 2)

൱     (187) 

  With the constants  ܥ  and  ܿ ଵ depending only on  ݀, ,ݎ ,ߣ ,ߛ  .  ߜ  and  ,ߝ

Proof.	

The  proof  of  (187)  is  very  similar  to  that  of  (166)  and  we  shall  only 
Highlight the differences.  We  ϐirst  observe  that  (187)  automatically  holds  if ݐ ≥  ߜܽ
and  a  is a fixed  constant  because ‖݂‖ ≤ ‖݂ߦ‖ܥ  . Therefore,  we need  only consider  
ݐ ≤   with  ܽ  a sufficiently  small  but  fixed constant  to  be  prescribed  in more  detail ߜܽ
as  we  proceed.  As in the proof of Theorem (3.3.3), we write  ܴௗ\߲Ω = Ω ∪ Ωି ∪ Ωା , 
where Ω ≔∪ {ܳ ∈ ܨ ∪ :ܨ ݈(ܳ) ≤ Ωା ,  {ݐݎ16 ≔ Ω\(Ω ∪ ߲Ω), Ωି ≔ Ω\(Ω ∪ ߲Ω) . We 

estimate  ∫ |△
 |(݂ߦ)

ௌ = for the three sets ݔ݀ Ω± , Ω and for |ℎ| ≤  . ݐ

We  proceed  as  in  the  proof  of  Theorem  (3.3.3) and  consider  three  cases.  Case 1  
which  estimates  the  integral  over  Ωା  is  identical  to  the  proof  in  Theorem (3.3.3)  
and  yields  the  estimate  (168).  Case  2  is also  the  same  since  if  ܽ  is  small enough  
the  cube  ܴ  which  contains [ݔ, +  ݔ   ℎ] will  be  one  of  the  cubes  to which  we  canݎ  
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apply  Lemma  5.2.  We  obtain  in  this  way  the  estimate  (174)  for the  integral  over  
Ω. 

     In  Case  3,  that  is  ݔ ∈ Ωି  ,  we  let  ܴ ∈ ܨ    have  nontrivial  intersection  with Ωି .  If  
ݔ ∈ ܴ , then [ݔ, +  ݔ [ℎݎ    ⊂  ܴ∗ .  we have two possibilities for  ܴ .  If ݀݅ݐݏ(ܴ, ߲Ω)   <
∑ and  ܽ  is small enough, then   ߜܽ Φொொ∈ℱ ≡ 1 on ܴ∗ .We consider ࣫  =   {ܳ௦ :  ܳ ∈
ℱ ,   we can take ܴ  as the largest cube in࣫.  Then  ܴ and any other cube  .{ܴ  ݏℎ݁ܿݑݐ  ܳ
ܳ௦  in  ࣫ will satisfy the hypothesis of Lemma (3.3.4).  We take a chain ( ܴ) connecting  
ܳ௦  and  ܴ    and proceed as in Theorem (3.3.3) to obtain 

 
‖△

 ‖(݂ߦ)


ோ

≤ ݐܥ  2ି

ଵஹଶೕஹ௧
ܹ(݂, 2)

                         (188) 

where  the  sum  is  taken  over  all  cubes  ܴ  of  this  type. 

The second possibility is that  ݀݅ݐݏ(ܴ, ߲Ω)  ≥ ࣫ Whenever  .ߜܽ ∈ ℱ  is such  that  
Φ࣫does  not  identically  vanish  on  ܴ,  then  6ߜ ≥  ݈(ܳ), (࣫)݈ܥ ≥  and therefore from ߜ
(4.2), ฮܦ௩Φொฮ

ஶ
(ܳ௦) ≤ ,  ܥ |ݒ| ≤  Also .ݎand ߜ  a  constant depending only on  ܥ  with , ݎ

ฮܲொೞ ฮ


(ܳ௦) ≤ (ܳ௦) by the definition of   ܲொೞ‖݂‖ܥ   as a near best approximation.  From 

this and by Markov’s inequality for polynomials, we obtain ฮܦ௩ܲொೞ ฮ
ஶ

(ܳ௦) ≤
,  (ܳ௦)‖݂‖ܥ |ݒ| ≤  Therefore, Leibniz’ rule for differentiation gives that  .ݎ

(ܴ)௩(ℰ݂)‖ஶܦ‖ ≤  (′ܴ‖݂‖ܥ
where  ܴ′  is the  union  of  all the  cubes ܳ௦ such that Φொ  does not  vanish  on  ܴ . 

Here  we are  using  the  fact  that  the  number  of  cubes  which  appear  nontrivially in  
 does  not  exceed  a  constant  which  depends  only  on  ݀. This gives  (ݔ)݂ߦ

‖△
 (ܴ)‖(݂ߦ) ≤ |ℎ| max

|௩|ୀ
(ܴ)ஶ‖(݂ߦ)௩ܦ‖ ≤ ܥ |ℎ|‖݂‖(ܴᇱ) ( 189) 

     Since a point  ݔ ∈ Ω  can appear in at most  ܥ  of the sets  ܴ′  with  ܥ depending  only  
on  ݀,  we  can  raise  the  inequality  (189)  to  the  power  and sum over all  ܴ  of this 
type and obtain 

‖△
 ‖(݂ߦ)



ோ

≤ ℎ|‖݂‖|ܥ
(Ω) ≤ ‖݂‖ݐܥ

(Ω)          (  190) 

We add  (188)  and  (190) to  obtain  that  ∫ |△
 |(݂ߦ)

ஐష
  does  not  exceed  the sum  ݔ݀

of  the  right  sides  of  (188)  and  (190).  The  proof  is  then  completed  by adding  the  
estimates  in  the  three  cases. 

In  this  section,  we establish  the  roundedness  of the  extension  operator  ℰ  on Besov  
spaces  and  apply  this  to  obtain  other  characterizations  of  these  spaces. Given 
 0 < ߙ < ∞ and  0 < > ݍ ∞  and a sequence  {ܽ}∈ࡺof real numbers, we define 
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‖(ܽ)‖
ഀ ≔ ൭[2ఈ|ܽ|]

∈ࡺ

൱

భ


                                                              (191) 

With the usual adjustment whenݍ = ∞.  We  shall  need  the  following  discrete Hardy  
inequalities  (for  a  proof  see  [127]).  If for sequences  (ܽ)∈ே  and (ܾ)∈ே  of real 
numbers, we have either 

(݅)|ܾ|   ≤ ܿ2ି൫∑ ൣ2ห ܽห൧ఓஶ
ୀ ൯

భ
ഋOr 

(݅݅)|ܾ|   

≤ ቌห ܽหఓ
ஶ

ୀ

ቍ

భ
ഋ

 ,                                                                                                                    (192) 

Then for all  ݍ ≥ and0  ߤ < ߙ < ݍ in case  (݅),  and all ,ݎ ≥ and0 ߤ < ߙ ≤ ∞, in case 
(݅݅),  we have 

‖(ܾ)‖
ഀ ≤ ‖(ܽ)‖ܥ

ഀ                                                                     (193) 

Therefore, (193) holds for  ݍ ≥ and0 ߤ < ߙ <  if |ܾ|does not exceed the sum of the ,ݎ
right sides of (192). 

Theorem	(3.3.7)	[125]: 

If Ω is an(ߝ, ߛ,domain(ߜ > 0 and  ݎ  is positive integer, then the extension 
operator ℰof (184) is a bounded mapping from ܤ

ఈ(ܮ(Ω)into ܤ
ఈ(ܮ(Rௗ)For 

allߛ ≤  ≤ 1,0 < ݍ ≤ ∞ andߙ <  :ݎ

‖݂ߦ‖
ഀ(൫ୖ൯ ≤ ‖݂‖ܥ

ഀ((ஐ)                                                         (194) 

With the constant  ܥ  depending only on ݀, ,ݎ ,ߣ ,ߛ  .ߜand  ,ߝ

Proof.	

Let  ߤ < ,ݍ)݊݅݉ Since an ݈norm is less than an݈ఓnorm and since ܹ  .( ≤ ߱ , 
from (187) forݐ = 2ି , we have 

߱(݂ߦ, 2ି , ܴௗ) ≤ ܥ   ߱(݂, 2ି , Ω)
ఓ

ஶ

ୀ



భ
ഋ

 

2ିܥ+ ቈ‖݂‖
ఓ(Ω) +  ൣ2߱(݂, 2ି , Ω)൧ఓ

ୀ


ଵ/ఓ

        (195) 

We can therefore apply (193) and obtain 

ฮ(߱(݂ߦ, 2ି, ܴௗ))ฮ


ഀ ≤ ܥ ‖݂‖(Ω) + ฮ(߱൫݂, 2ି, ܴௗ)൯ฮ


ഀ൨             (196) 
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The  monotonicity  of ߱   shows  that  the  left  side  of  (196)  is  equivalent  to 
|݂|

ഀ(൫ୖ൯While the right side is equivalent ‖݂‖
ഀ((ஐ) .Since  ℰ is a bounded map 

from  ܮ(Ω) intoܮ(Rௗ), (196) establishes the theorem.      

If follows from Theorem (3.3.7) that for each  0 <  ≤ 1 ,0 < ݍ ≤ ∞  , ߙ > 0 and 
any (ߝ,  domain Ω , we have (ߜ

‖݂‖
ഀ((ஐ) ≤ ‖݂ߦ‖

ഀ(൫ୖ൯ ≤ ‖݂‖ܥ
ഀ((ஐ)                                          (197) 

With constant  ܥ  depending only on ݀, ,ݎ ,ߣ ,ߛ   andΩ  ,ߝ

We next show that functions inܤ
ఈ(ܮ(Ω)have atomic or wavelet decompositions.  

Let ࡺ = ࡺ   be the  tensor  product ܤ spline in Rௗ  obtained  from the univariate  ܤ  
spline  of  degree ݎ − 1 which  has  knots  at  0, 1, . ..  ,  .ݎ

Let  ॰  denote the collection of all dyadic cubes for  Rௗ   which have side length 2ିand  
  ॰ା =∪ஹ   ॰ . With ࡺ /V,  we  can  associate  to  any  dyadic cube  ܫ = ቂ݆ଶషೖ , (݆ +

1)2ି൧ ∈   ॰   , ݆ ∈ চௗ  , ݇ ∈ (ݔ)ࡵࡺ the  dilated  functions  ,ࡺ ≔ ݔ2)ࡺ − ݆).  This function 
has support on an expansion of the cube  . 

Theorem	(3.3.8)	[125]: 

Let Ωbe a (ߝ, domain and0  (ߜ <  ≤ 1 ,0 < ݍ ≤ ∞  , ߙ > 0. Then each function 
݂ ∈ ܤ

ఈ(ܮ(Ω)  has decomposition 

(ݔ)݂    =  ݔ                   (ݔ)ࡵࡺ(݂)ࡵܽ ∈ Ω
॰శ∋ࡵ

                               (198) 

Where the coefficients  ܽࡵ(݂) satisfy 

‖݂‖
ഀ((ஐ) ≈ ൮ቌ 2ఈ  |ࡵ||(݂)ࡵܽ|

॰శ∋ࡵ

ஶ

ୀ

ቍ




൲

భ


                        (199) 

with constants  of equivalency  independent  of  ݂  and  the  usual  change  on  the  right 
side  of (199) when ݍ = ∞ . 

Proof.	

 By (6.7), ݂ ∈ ܤ
ఈ(Ω) if and only ݂ߦ ∈ ܤ

ఈ(ܴௗ) with equivalent norms.  It was shown in  
[129]  that  ݂ߦ has a decomposition (6.8) on ܴௗ  with coefficients ܽ(݂ߦ)ࡵ  satisfying 
(199).  Since  ݂ߦ = ݂  on Ω, the theorem follows. We next  discuss  the  interpolation  of  
Besov  spaces  using  the  real  method  of Peetre.  If  ܺ  and  ଵܺ  are  a pair  of  quasi-
normed  spaces  which  are  continuously embedded  in  a linear  Hausdorff  space  ߦ,  
their  ܭ −functional  is defined  for  any ݂ ∈ ܺ+ ଵܺ by 
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,݂)ܭ (ݐ ≔ ,݂)ܭ ;ݐ ܺ, ଵܺ) ≔ inf
ୀబାభ

‖ ݂‖బ + ‖ݐ ଵ݂‖భ                                  (200) 

For each0 < ߠ < 1 , 0 < ݍ ≤ ∞, the space ܺఏ, ≔ (ܺ, ଵܺ)ఏ, is the collection of all 
functions ݂ ∈ ܺ+ ଵܺ  for which 

‖݂‖ఏ, ≔ ቌන ൬ିݐఏܭ(݂, (ݐ
ݐ݀
ݐ ൰

ஶ



ቍ

భ


                                  (201) 

is  ϐinite  (with  again  the  usual  adjustment  on  the  right  side  of  (201)  when  ݍ =
∞.This  is  an  interpolation  space  since  it  follows  easily  from  the  definition  of the  
ܭ −functional that  each  linear  operator  which  is  bounded  on ܺ and  ଵܺ  is also 
bounded  on ܺఏ, . 

We  are  interested  in  interpolation  for  a  pair  of  Besov  spaces.  Suppose that 
0 < ,  ଵ ≤ ∞  . And 0 < , ݍ ଵݍ ≤ ∞ andߙ, ଵߙ ≥ 0.  We let  ܺ(Ω) ≔ ܤ

ఈ   ,((Ω)ܮ)
݅ = 0,1, with the understanding that this space is ܮ(Ω)  whenߙ = 0.  If  we choose  
ݎ > ,ߙ)ݔܽ݉ ߛ   ଵ) and ߙ < , )݊݅݉     of  (184)  areߦ  ଵ)  then  the  extension operators
deϐined  and  (197)  holds  for  each  of  these  extensions. In fact, we observe that 

,݂)ܭ ;ݐ ܺ(Ω)) ≤ K(݂ߦ, ;ݐ ܺ(ܴௗ), ଵܺ(ܴௗ))   ≤ CK൫݂, ;ݐ ܺ(Ω), ଵܺ(Ω)൯            (202) 
The left inequality in (202) is clear.  The usual  proof  of the  right  inequality  relies on  
the  linearity  of  the  operator,  which  as  we  have  previously  mentioned  may fail  for 
 ,since  near  best  approximations  ொܲ(݂)are  used  in  its  deϐinition  (184). However   ߦ
given any decomposition݂ = ݂+ ଵ݂, we may decompose  ݂ߦ as.ܨ+ܨଵ  Where  ܨ is a 
norm bounded extension (in ܺ) of ݂ , (݅ = 0, 1).  To  see this, we recall  Lemma  6.2  of [2]  
which established that  if  ݂ = ݂+ ଵ݂ and  ொܲ(݂)is  any  near  best  approximation  to  ݂,  
then  there  exist  near  best  approximations ܴொ

  to  ݂  (݅ = 0, 1) so that  ொܲ(݂) = ܴொ
 +

ܴொ
ଵ We then  use  ܴொೞ

   in  place of ܲொೞ  in  (184)  to  deϐine  ܨ  from  which  we may  
conclude  that  (202)  holds.  From (202) it  follows, therefore, that the interpolation 
spaces ൫ܺ(Ω), ଵܺ(Ω)൯

ఏ,and (ܺ(ܴௗ), ଵܺ(ܴௗ))ఏ,are  identical  with  equivalent norms.  

From  known results  for  the  latter  spaces  (see  [129])  we obtain  the  following. 

Theorem	(3.3.9)	[125]: 

Let  Ω   be a  (ߝ, domain.  If  0 (ߜ < ≥  1  andߙ , ݍ > 0, then for any 0 < ߠ < 1  
,0 < ≥ ݍ ∞ we have 

,(Ω)ܮ) బܤ
ఈ ఏ,((ܮ) = ܤ

ఏఈ൫ܮ൯                                                       (203) 

With equivalent norms .If 0 < ≥  1, we let  ߬(ߚ)  = ݀/ߚ) + ,ଵି(/1 ߚ >  0, then for any  
ߙ > 0  and0 < ߠ < 1,0 < ≥ ݍ ∞ we have 

,(Ω)ܮ) ఛ(ఈ)ܤ
ఈ ఏ,ఛ(ఏఈ)((ఛ(ఈ)(Ω)ܮ) = ఛ(ఏఈ)ܤ

ఏఈ ቀܮఛ(ఏఈ)(Ω)ቁ                                  (204) 
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With equivalent  norms. 

Remark	(3.3.10)	[125]:			

The  proof  in  [127]  of  interpolation  of  Besov  spaces  relies  on  estab-lishing  
the  equivalence  of  the  ܭ −functional of ݂ with  that  of  its  retract.  We take  this  
opportunity  to  correct  the  proof  of  the  lower  inequality  of  that  equivalence.  The 
sentences in lines  3 through 7 on  [127]  should be replaced by: "  We may estimate 
each term of the last sum as 

ฮݐ − ݃ฮ
బ

≤ ቀฮݐ − ܽฮ
బ

+ ฮ ܽ − ܶ(ܽ)ฮ
బ

ቁ  , 
And apply Corollary 4.7 to obtain 

ฮ ܽ − ܶ(ܽ)ฮ
బ

≤ ܿ ܵ(ܽ)బ ≤ ܿฮݐ − ܽฮ
బ

 . 
Hence, 

ฮݐ − ݃ฮ
బ

≤ ܿฮݐ − ܽฮ
బ

   , ′′ 
While  preparing  the  present  section,  Ridgway  Scott  posed  to  us  a  question 
concerning interpolation of Besov spaces for0 < ≥  ∞.  It is rather easy to settle  this  
question  given  the  machinery  developed  of  the  present  section. We  shall  from  
here  on  assume  that  Ω is  a  minimally  smooth  domain  in  the sense  of  Stein  (it  
may  be  that  Theorem (3.3.3)  that  follows  also  holds  for  (ߝ,   domains,  however(ߜ
our  proof  does  not  seem  to  apply  in  this  generality).  Minimally  smooth  domain  in  
ܴௗ   is  an  open  set  for  which  there  is  a  number ߟ > 0  and  open  sets ܷ  , ݅  =   1, 2,
. ..  ,  such  that:  (݅)  for  each  ݔ ∈ ,ݔ)ܤ  Ω, the  ballߜ   ;   is  contained  in  one  of  the  ܷ  (ߟ
(݅݅)  a  point  ݔ ∈ ܴௗ  is  in  at most  ܰ  of  the  sets  ܷ    where  ܰ  is  an  absolute  
constant;  and  (݅݅݅)  for  each  ݅, ܷ  ∩ Ω = ܷ  ∩ Ω    for  some  domain  Ω  ,  which  is  the  
rotation  of  a  Lipchitz graph  domain  with  Lipchitz  constant  ܯ  independent  of  ݅  . 

We recall the fractional order Sable spaces.  Let0 < ≥  ∞.  Andߙ > 0.   

If is not an integer, we write ߙ = ߚ + where  0  ݎ   < ߚ < 1  and  ݎ  is a 
nonnegative integer.  Let  ܹ

ఈ  be  the  collection  of  all  functions  ݂  in  the  Sobolev  
space ܹ

(Ω), for  which 

|݂|ௐ
ഀ(ஐ)

 ≔  න
(ݔ)௩݂ܦ| − |(ݕ)௩݂ܦ

ݔ| − ఉାௗ|ݕ
ஐ×ஐ|௩|ୀ

 (205)                   ݕ݀ݔ݀

Is finite. 

If  Ω = ܴௗand  a  is  not  an  integer,  then  it  is  well known  that  (205)  is  equivalent  to 
|݂|

ഀ(ஐ)
  We  want  to  show  this  remains  true  for  minimally  smooth domains  Ω.  For 

this purpose, we define for݂ ∈ ܹ
(Ω), 

ഥ߱ାଵ(݂, (ݐ ≔ ݐ  ଵܹ(
|௩|ୀଵ

,௩݂ܦ (ݐ
                                               (206) 
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with ଵܹ ,  as  before,  the  averaged  modulus  of  smoothness  (140). 

Lemma	(3.3.11)	[125]: 

Let Ω  be any open set. For 0 < ≥  ∞ and ߙ > 0not an integer, we have 

|݂|ௐ
ഀ(ஐ)

 = ߚ) + ݀)ିଵ න ఈିݐൣ ഥ߱ାଵ(݂, ൧(ݐ ݐ݀
ݐ

ஶ



                      ( 207) 

Where aݏ above. 

Proof.	

For  any ݃ ∈ (Ω) ,  we  have  for  0ܮ < ߚ < 1,  by  a  change  of  variables and 
Fubini’s theorem, 

න ఉିݐൣ
ଵܹ(݃, ൧(ݐ ݐ݀

ݐ

ஶ



 

    = න න න|△௦ (݃, ,ݔ Ω)|ିݐఉିௗିଵ

ஐ|௦|ஸଵ

ஶ



 ݐ݀ݏ݀ݔ݀

         = න න න (ݔ)݃|ݐఉିௗିଵ݀ିݐ − |((ݕ)݃

ஶ

|௫ି௬|ஐஐ

 ݕ݀ݔ݀

= ߚ) + ݀)ିଵ න න|ݔ − (ݔ)݃|ݐఉିௗ݀ି|ݕ −          ݕ݀ݔ݀|((ݕ)݃
ஐஐ

(208) 

We  take  ݃ = |ݒ| ,௩݂ܦ =        .and add the identities (208) to  obtain (207) , ݎ

We  shall  next  show  that  an  analogue  of  inequality  (187)  holds  for   ≥  1.  It is 
well known that if  ݂ ∈ ܹ

ିଵ then for the error  ܧ(ܵ)  for approximating ݂ in  the  
norm ܮ(ܵ)  on  a  cube  ܵ  by  polynomials  of  ݀݁݃݁݁ݎ <  we  have  ,ݎ 

(ܵ)ܧ      ≤ (ିଵ)(ܵ)݈ ܥ  ߱ଵ(ܦ௩݂ , ݈(ܵ), ܵ)


|௩|ୀିଵ

 

                    ≤ (ିଵ)(ܵ)݈ ܥ  ଵܹ(ܦ௩݂ , ݈(ܵ), ܵ)


|௩|ୀିଵ

 

     = ഥ߱(݂ , ݈(ܵ), ܵ)              
                                                              (209) 

Where as  before  ܹ  is  the  averaged  modulus  of  smoothness  given  by  (140)  and ߱   
is  deϐined by  (206). 

Theorem	(3.3.12)	[125]: 

Let  Ω  be a minimally smooth domain, let  ݎ  be a positive integer and let 
1 ≤  < ∞ .  Then for any ݂ ∈ ܹ

ିଵ  and0 < ݐ < 1, we have 
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  ߱(݂ߦ, (ݐ
 ≤ ܥ  ഥ߱(݂ , 2) 

 + ݐ ቀ‖݂‖
(Ω)ቁ

ଶೕஸ௧

 2ି ഥ߱൫݂ , 2) 
 ൯

ଶೕஸ௧

൩          (210) 

With  ܥ  a constant depending only on  ݀, ,ݎ  .andΩ ߣ

Proof.	

We  first  recall  that  a  minimally  smooth  domain  is  an  (ߝ,   domain. Since  (ߜ
Ω  will  be  an (ߝ,  domain  for  any  e  and  ô  sufficiently  small,  we  can assume  that  (ߜ
≤  in  the  definition  of  minimally  smooth  domains  is ߟ   Arbitrary butܥ with ߜܥ
fixed.  We shall prescribe  ߟ in more detail as we continue through the proof. 

We proceed as in Theorems (3.3.3) and (3.3.6).  The  ϐirst  case,  namely  the  
estimate of ∫ |△

 , ݂ߦ) |(ݔ
ஐశ

  ℎݐ ݎ  is  as  before,  but  we  use  standard  estimates  of  ݔ݀

differences  in  terms  of  a  first  order  difference  of  (ݎ −  ℎ derivatives . This givesݐ (1
that the integral does not exceed  ഥ߱൫݂ , , ݐ Ω) 

 ൯ . 

For  the  estimate  in  the  second  case,  that  is  over  Ω,  we need  first  to  derive 
an  analogue  of  Lemma  (3.3.5) for  ഥ߱ .  With  the  same  constructions  and  notation as 
in  Lemma  (3.3.5) and  the  same  argument,  we arrive  at  the  estimate  (160),  where 
now  1 ≤  < ∞.  We  need  to  observe  that  for  each  ݇,  at  most  ܥ  of  the  cubes ܴ   
appearing  in  (160)  belong  to  ॰ .  To see  this,  we  recall  that  these  cubes meet  the  
path Γ  which  connects  a  point  ݖ ∈ ܳ  to  a  pointݖ ∈ ܳ  From (151)(݅),  letting  ܵ  be  
such  an  ܴ ,  any  point ߱ ∈ ܵ ∩ Γ satisfies 

,߱)ݐݏ݅݀ ߲Ω) < ݀݅ܽ݉(ܵ) + ,ܵ)ݐݏ݅݀ ߲Ω)) ≤ 5  ݀݅ܽ݉(ܵ) = 5√݀2ି    . 

Therefore, by the definition of (ߝ,  domain (property (181)), we have(ߜ

min(|߱ − , |ݖ |߱ − (|ݖ ≤  .      ଵ2ିିߝ݀√5

That is, each of these cubes ܵ meets one of the balls of radius 5√݀ିߝଵ2ି  about ݖ  andݖ.  
Since the cubes  ܵ  are disjoint there are at most  ܥ  of them with  ܥ  depending only on ߝ 
and  ݀  . 

We now write ห ܴหିଵ/
= ห ܴหି/ห ܴหି/

 where  ܽ +  ܾ = 1  and ܽ݀ > ݀ − 1. 

We then  apply  Holder's  inequality  to  (160)  and  use  the  observation  above  
for݈൫ ܴ൯ = 2݈(ܳ) to  conclude that 

ฮ݂ − ோܲబฮ


(ܳ) ≤ |ܳ| ቌห ܴหି್ᇲ





ୀ

ቍ


ᇲ

ቌห ܴหି


ୀ

)ܧ ܴ
∗)ቍ 

 ≤ ଵି|ܳ|ܥ ቌห ܴหି


ୀ

)ܧ ܴ
∗)ቍ = |ܳ|ܥ ቌห ܴหି



ୀ

)ܧ ܴ
∗)ቍ                (211) 
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We  now  sum  over  all  ܳ ∈ ܳ such  that  ܨ ∩ ܴ ≠ Φ ,  reverse  the  order of  summation  
to  obtain  that  (185)  is  valid  for  this  range  of    provided  that  we can  show  that  
for  fixed ܵ = ܴ ,  we  have 

 |ܳ| ≤ ܥ
ொ∈ி

ொ⊂ௌ

|ܵ|                                                             (212) 

With ܥ ≥ 1 a fixed constant and  ܥ  depending only on ݀ , , ߝ  .ߟand  ߜ

We postpone  for  a  moment  the  proof  of  (212)  and  conclude  the  proof  of  
the theorem.  Now  that  we have  established  (185)  of  Lemma  (3.3.5)  for   1 ≤  < ∞, 
the estimate  of  ∫ |△

 (݂ , |(ݔ
ஐబ

 can  be  made  exactly  as  in  the  proof  of  Theorem ݔ݀

(3.3.3) with  (6.19)  used  in  place  of  (142)  and  ഥ߱ used  in  place  of  wr.  Finally, the  
proof  in  Case  3,  that  is  the  estimate  of ∫ |△

 (݂ , |(ݔ
ஐష

  can  be  made exactly  as  , ݔ݀

in  the  proof  of  Theorem  (3.3.3)  because  the  number  of  cubes  in  the  sums 
appearing  in  (176),  (177),  and  (178)  is  bounded  by  a  constant  ܥ  depending only  
on  ݀ ,  This then completes the proof of the theorem subject to the verification  . ߜ and  ,ߝ
of (212). 

To prove (212), we count the number  ܰ  of cubes  ܳ ∈ ܳ  with ܨ ⊂ ܿܵ  
and݈(ܳ) = 2݈(ܵ)).  There are only a finite number of values of  ݇ ≤ 0  and for  each  of  
these  ܰ ≤   depending  only  on  ݀  (because  the  cubes  ܳ are  pairwise  ܥ  with ܥ
disjoint).  Therefore,  this  portion  of  the  sum  appearing  in  (212) does  not  exceed  
the  right  side  of  (212). 

To estimate  ܰ  for݇ ≥ 1, we recall that the cubes  ܵ  have side length ≤ ݈(ܴ) ≤
(ܴ)݈ܥ ≤   sufficiently small, we can assume that  ߜ  Therefore, by choosing  .ߜܥ
2ܿ݀݅ܽ݉(ܵ) ≤   of  course ߟ with  ܿ  the constant in the summation index of (212)  and  ߟ
the  constant  in  the  definition  of  minimally  smooth domains.  Therefore, by property  
(݅݅)  of minimally smooth domains, we may assume that(4ܿ݀ܵ) ∩ Ω = (4ܿ݀ܵ) ∩ Ω for 
one of the domainsΩ .  Since ܿ ≥ 1 and݀݅ݐݏ(ܳ, (Ωߜ ≤ 4݀݅ܽ݉(ܳ) ≤ 2݀݅ܽ݉(ܵ), we 
have݀݅ݐݏ(ܳ, (Ωߜ = ,ܳ)ݐݏ݅݀  Ω). From property  (151)(݅)  of Whiney cubes, we haveߜ
ܳ ⊂ ܣ ≔ :ݔ} ,ݔ൫ݐݏ݅݀ Ω൯ߜ ≤ 52ି ݀݅ܽ݉(ܵ)}.  Now from  the  fact  that  Ω   is  a Lipschitz  
graph  domain,  we  have  that |ܣ| ≤   depending only on ܥ  2ି |ܵ|with  the  constantܥ
݀  and the Lipschitz constantܯ.  Henc  ܣcan contain at most  2ܥ(ௗିଵ)  cubes ܳ of side 
length2ି ݈(ܵ).  This shows that  ܰ ≤   2(ௗିଵ) .  Using  this  estimate  for  ܰ ,  we  findܥ
that  the  portion  of  the  sum  on the left  side  of  (212)  that  remains  to  be  estimated  
does  not  exceed 

 ܰ(
ஶ

ୀଵ

2ି ݈(ܵ))ௗ ≤ ܥ  2(ௗିଵ) 
ஶ

ୀଵ

2ିௗ |ܵ| ≤  |ܵ|ܥ

becauseܽ݀ > ݀ − 1. 



176 
 

      Using  Theorem  (3.3.13) we  are  able  to  easily  establish  the  equivalent  of  the 
fractional Sobolev spaces ܹ

ఈ(Ω) with the special family of Besov spaces ܤ
ఈ(ܮ(Ω)) . 

Theorem		(3.3.13)	[125]: 

Let Ω be a minimally smooth domain inܴௗ , and1 ≤  < ∞, 0 <   then ,ߙ
ܹ
ఈ(Ω) = ܤ

ఈ(ܮ(Ω)) and there exist positive constants ܿଵ , ܿଶ independent of  ݂  so that 

ܿଵ‖݂‖ௐ
ഀ(ஐ) = ‖݂‖

ഀ((ஐ)) ≤ ܿଶ‖݂‖ௐ
ഀ(ஐ)                                      (213) 

Proof.	

The  upper  inequality  in  (213)  is  obtained  by  applying  the݈
ఈ norm  to both  

sides  of  inequality  (210)  and  using  Hardy's  inequality  (193)  together  with Lemma  
(3.3.11).  The  lower  inequality  is  conϐirmed  by  recalling  that  the  corresponding  
result  holds  on ܴௗ ,  and  then  following  with  an  application  of  Theorem (3.3.7): 

‖݂‖ௐ
ഀ(ஐ) ≤ ௐ‖݂ߦ‖

ഀ൫ோ൯ ≤ ‖݂ߦ‖ܿ
ഀ((ோ)) ≤ ܿ‖݂‖ௐ

ഀ(ஐ)  . 
As we  previously mentioned, when 1 ≤  the extension operators may be taken to be 
linear.  It  then  follows  that ‖݂ߦ‖

ഀ((ோ)) is  equivalent  (within  constants  

independent  of ݂)  to  ‖݂‖
ഀ((ோ))   . Applying  the interpolation theorem Corollary in 

[127]  to ܤ
ఈ(ܮ(ܴௗ),  we obtain  the following interpolation resultfor the fractional  

order  Sobolev  spaces ܹ
ఈ(Ω)  : 

Corollary		(3.3.14)	[125]: 

Let Ω be a minimally smooth domain inܴௗ , and1 ≤ ଵ, ≤ ∞ ,0 < , ߙ  ଵ, thenߙ
for  satisfying   ଵ


= ଵିఏ

బ
+ ఏ

భ
 andߙ = (1 − ߙ(ߠ  +  ଵ, we haveߙߠ

ቀ ܹబ
ఈబ(Ω) , ܹభ

ఈభ(Ω)ቁ
ఏ,

= ܹ
ఈ(Ω)                                               ( 214) 

with equivalent norms. 

 
 
 


