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  Chapter 2 

Embedding Derivatives and Dual Inequalities of Hardy and Littewood 

    A characterization is given of those measures ߤ on ܷ, the upper half plane ܴାଶor the unit 
disk, such that differentiation of order ݉ maps ܪ  boundedly into ܮ(ߤ) where	0 <  < ∞ 
and 0 < ݍ < ∞	The cases where 0 <  = ݍ < 2		and  0 < ݍ <  are the only two not 
previously known .The solution is presented in the ݊ real variable setting ܴାାଵ of Fefferman 
and Stein [7]  with an arbitrary differenƟal monomial of order ݉ replacing complex 
differentiation . 

Section (2.1):Some Related Dual Inequalities: 

Let	ܮ(−ߨ, 	"integrable	power	th	-"	complex-valued	of	space	linear	usual	the	denote	(ߨ

functions	on[−ߨ, 	by	given	norm	the	with	,[ߨ

‖݂‖ = ቊ
1
ߨ2

න ߠ݀|(ߠ)݂|
గ

ିగ
ቋ
ଵ/

(1 ≤  ≤ ∞),	

‖݂‖ஶ = ess sup|݂|.	

For	any	complex-valued	function	w	continuous	on	the	open	unit	disc	ܷ	in	the	plane,	and	

for	0 ≤ ρ < 1,	we	write	

;ݓ)ܯ (ߩ = ቊ
1
ߨ2

න หݓ(݁ߩఏ)ห

ߠ݀

గ

ିగ
ቋ
ଵ/

(1 <  < ∞),	

;ݓ)ஶܯ (ߩ = sup
ఏ
หݓ൫݁ߩఏ൯ห.	

It	 is	 familiar	 that	 if	 either	 w	 is	 harmonic	 and	1 ≤ p ≤ ∞,	 or	 w	 is	 holomorphic	

and1 <  ≤ ∞,	then	ܯ(ݓ; 	define	We	ρ.	with	increases		(ߩ

ै(ݓ) = sup
ஸఘழଵ

;ݓ)ܯ 0)															(ߩ <  ≤ ∞),	

the	value	∞	being	permitted.	The	class	of	holomorphic		ݓ	for	which	ै(ݓ) < ∞	is	the	

Hardy	 classܪ = 	.(ܷ)ܪ The	 class	 of	 complex-valued	 harmonic	 	ݓ for	 which	

ै(ݓ) < ∞	will	be	denoted	byℎ = ℎ(ܷ)..	Clearly	

ܪ ⊂ 	.ܪ

For1 <  ≤ ∞,1 < ݍ ≤ ߛ		,∞ > 0,wewrite	

ॉ,,ఊ(ݓ) =

⎩
⎪
⎨

⎪
⎧
ቊන (1 − ܯఊିଵ(ߩ

(ݓ; ߩ݀(ߩ
ଵ


ቋ
ଵ/

(0 <  ≤ ∞),

sup
ஸఘழଵ

൛(1 − ;ݓ)ܯఊ(ߩ ݍ)ൟ(ߩ = ∞),
�	

the	value	∞	being	permitted.	This	expression	ॉ,,ఊ(ݓ)			can	be	regarded	as	a	measure	
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of	 the	 rate	 of	 growth	 of	 ;ݓ)ܯ 	(ߩ when	 ;ݓ)ܯ 	(ߩ is	 unbounded.	 If	 ;ݓ)ܯ 	(ߩ 	 is	

increasing,	 then	 the	 condition	 ߛ > 0	 is	 obviously	 necessary	 for	 the	 finiteness	 of	

ॉ,,ఊ(ݓ)		except	in	the	trivial	case	where	ݓ		vanishes	identically.	We	note	in	passing	

that	if		ݓଵ, 	then	ܷ,	on	continuous	are		ଶݓ

ॉ,,ఊ
௦ ଵݓ		) (ଶݓ+ ≤ ॉ,,ఊ

௦ (ଵݓ		) + ॉ,,ఊ
௦ 	(1)																								(ଶݓ)

where	ݏ = min{, ,ݍ 1}.	This	is	an	easy	consequence	of	Minkowski's	inequality	and	the	

inequality	

(ܽ + ܾ) ≤ ܽ + ܾ 																					(ܽ, ܾ ≥ 0	, 0 < ݇ < 1).	

				We	 use	 	ܤ to	 denote	 a	 positive	 constant,	 depending	 on	 the	 particular	 parameters	

, ,ݍ . . . , ,ߙ ,ߚ . ..	concerned	in	the	particular	problem	in	which	it	appears;		ܣ		will	denote	

a	positive	absolute	constant.		These	constants	are	not	necessarily	the	same	on	any	two	

occurrences.	

For	 any	 index	 p	 satisfying	 	1 ≤  ≤ ∞	 	 we	 define	 the	 conjugate	 index	 p'	 by	

′ = )/ − 1)(1 <  < ∞), ′ = )	∞ = 1), ′ = )1 = ∞).	

In	[57]	I	have	proved	the	following	result.'	

Theorem  (2.1.1) [52]:	

	Let			1 <  < ݎ ≤ ߜ,∞ = /1 − ݂	let			,ݎ/1 ∈ ܮ 			and	let	ݑ	be	the	Poisson	integral	of	݂			

on	ܷ.	If	either	ݍ = ∞,	or	 ≤ ݍ < ∞	and	 > 1,	then	

ॉ,,ఋ(ݑ) ≤ 	.‖݂‖ܤ
Further,	ܯ(ݑ; (ߩ = 1)) − ߩ	ఋ)asି(ߩ → 1 −.	
	By	arguments	of	a	standard	type	involving	subharmonic	functions	(cf.	[57]),	Theorem	

A	gives	

Theorem (2.1.2) [52]:	

		Let	0 <  < ݎ ≤ ∞,	  ≤ ݍ < ∞,	 ߜ = /1 − 	,ݎ/1 and	 let	߶ ∈ 	ܪ .	 Then	 ॉ,,ఋ(߶) ≤

;߶)ܯ			and		(߶),ैܤ (ߩ = 1)) − ߩ		as	ఋ)ି(ߩ → 1 −.	

Theorem	B	is	a	known	result	of	Hardy	and	Littlewood(	[62]	 ,[11],	[54]	and	[57])	 ,	we	

have	 given	 a	 number	 of	 new	 applications	 of	 it.	 The	 case	  > 1	 of	 Theorem	 (2.1.2)	

implies	 the	 case	  > 1	of	Theorem	(2.1.1),	but	 the	 	 implication	 is	nontrivial,	 	 since	 it	

depends	on	ܯ.	Riesz's	theorem	on	conjugate		functions.	

In	this	section	we	show	a	new	inequality	that	is	the	dual	of	Theorem	(2.1.1),	and	

consider	a	number	of	related	results.	

The	most	general	 form	of	 this	dual	 theorem	 involves	 fractional	derivatives,	or	
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some	 multiplier	 transformation	 akin	 to	 a	 fractional	 derivative,	 and	 we	 use	 here	 a	

multiplier	transformation	introduced	in	[58]	that	is	particularly	suited	to	harmonic	and	

holomorphic	functions.	

				Consider	 	 first	 	 the	 	 case	 	 of	 	 a	 	 function	 	 ,߶	holomorphic	 	 on	 	ܷ,	 	 and	 	 let	 (ݖ)߶ =
∑ ܿݖஶ
ୀ ݖ)	 ∈ ܷ).	We	define	 the	multiplier	 transformation	ࣹఈ߶of	߶,	where	ߙ	 is	 any	

real	number,	by	

ࣹఈ߶(ݖ) = (݊ + 1)ିఈ
ஶ

ୀ

ܿݖ(ݖ ∈ ܷ).	

This	 function	 ࣹఈ߶	 is	 clearly	 holomorphic	 on	 	 ܷ.	 It	 may	 be	 regarded	 as	 a	 fractional	

integral	(for	α > 0)	or	fractional	derivative	(for	α < 0)	of	∅,	and	obviously	

ࣹఈ൫ࣹఉ߶൯ = ࣹఈାఉ߶																																																					(2)	
for	all	real	ߙ, 	݉	integer	positive	any	for	Moreover,	.ߚ

ࣹି∅(ݖ) = 	(3)																																												.(ݖ)∅[ݖ(ݖ݀/݀)]
There	is	also	an	integral	formula	for	ࣹఈ∅when	α > 0,	which	in	its	simplest	form	is	

ࣹఈ߶൫݁ߩఏ൯ =
1
Γߙ

න (log(
1
(ߪ

ఈିଵ߶(݁ߪߩఏ)
ଵ


	(4)																																										.ߪ݀

	
This	is	easily	verified	by	term-by-term	integration,	using	the	formulae	

න (log(1/ߪ)ఈିଵߪ݀
ଵ


= න ݐఈିଵ݁ି(ାଵ)௧݀ݐ

ஶ

ଵ
= (݊ + 1)ିఈΓ.ߙ												(5)	

A	similar	definition	applies	to	a	(complex-valued)	harmonic	function	on	ܷ.	

If	ݑ	is	harmonic	on	ܷ,	then	it	is	of	the	form	

ఏ൯݁ߩ൫ݑ =  ܿߩ||݁ఏ
ஶ

ୀିஶ

,																																											(6)	

and	we	define		ࣹఈݑ		by	

		ࣹఈ൫݁ߩఏ൯ =  (|݊| + 1)ିఈܿߩ||݁ఏ
ஶ

ୀିஶ

.	

It	is	easily	verified	that			ࣹఈݑ		is	harmonic	on	ܷ,	that	(2)	and	(4)	hold	with	ݑ	in	place	of	

߶,		and	that,	if	݉	is	a	positive	integer,	then	

		ࣹିݑ൫݁ߩఏ൯ = 	.ఏ൯݁ߩ൫ݑ[ఘ(ߩ߲/߲)]

	 It	is	also	obvious	that	if	ݑ	is	the	real	part	of	a	holomorphic	߶,	 	then	fo.u		 	 is	the	

real	part	of			ࣹఈ߶.	
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				We	can	now	state	our	dual	of	Theorem	A,	viz.,	

Theorem  (2.1.3) [52]:	

Let	 	 	 1 ≤ ܲ < ݎ < ∞, 1 ≤ ݍ ≤ ,ݎ ߛ > 0, ߜ = /1 − 	and,ݎ/1 let	ݑ	be	a	harmonic	

function		on	ܷ		such	that		ॉ,,ఊ൫		ࣹିఊିఋݑ൯ < ∞.			Then	

ݑ ∈ ℎ ,	and	

ै(ݑ) ≤ 	(7)																																												൯ݑࣹିఊିఋ		ॉ,,ఊ൫ܤ

Hence	also	ݑ	is	the	Poisson	integral	of	a	function	݂ ∈ ܮ ,	and	

‖݂‖ ≤ 	(8)																																												൯ݑࣹିఊିఋ		ॉ,,ఊ൫ܤ

As	 an	 immediate	 example	of	 the	 applications	 of	Theorem	2.1.3,	we	may	mention	 the	

well-known	 theorem	 of	 Hardy	 and	 Littlewood	 	 	 [60]	 on	 Fourier	 coefficients,	 that	 if	

2 < ݎ < ∞,		and	(ܿ)ିஶழழஶ		is	a	sequence	of	complex	numbers	such	that	

ܵ = ൝  (|݊| + 1)ିଶ|ܿ|
ஶ

ୀିஶ

ൡ
ଵ/

< ∞,	

then	the		numbers		ܿare	the		Fourier		coefficients	of	a	function	݂ ∈ 	and	",ܮ

‖݂‖ ≤ 	(9)																																																																			.ܵܤ

To	deduce	this,	we	observe	 first	 that	 the	condition	ܵ < ∞	trivially	 implies	 that	

the	 series	on	 the	right	of	 (6)	 converges	 for	0 ≤ ߩ < 1.	Further,	 if	ݑ	 is	deϐined	by	 (6),	

and	2 < ݎ < ∞,		then	

ॉଶ,,భమା
భ
ೝ
(ࣹିଵݑ) = ቐන (1 − /ଶ(ߩ

ଵ


൭  (|݊| + 1)ଶ|ܿ|ଶߩଶ||

ஶ

ୀିஶ

൱
/ଶ

ቑߩ݀

ଵ/

,	

and	this	does	not	exceed	ܵܤ,				in	virtue	of	the	inequality	

න (1 − ఈ(ߩ
ଵ


൭ܽߩ

ஶ

ୀ

൱
௦

ߩ݀ ≤ ݊)ܤ + 1)௦ିఈିଶܽ

ஶ

ୀ

,														(10)	

which			is		valid			for		ݏ ≥ 1, ߙ > −1, ܽ ≥ 0		(Hardy				and			Littlewood				[61,	Theorem	

3];		see		also		Mulholland		[67]).	Theorem	2.1.3	(with		 = 2, ݍ = ,ݎ ߛ = 1/2 + 		now		(ݎ/1

shows		that		if	ܵ < ∞,		 	then		ݑ		is	the	Poisson		integral		of	a	function		f	satisfying		(9),	

and	this	gives	the		required		result.	

			In		the		same		way,	 	by		taking			ݎ = 2, ܲ = 	,A	Theorem		in	ݍ 	writing		ݎ	in	place	of	,	

and	using	the	reverse	of	(10),	which		holds	for	0 < ݏ ≤ 1, ߛ > 	−1,	we	obtain		the		dual		

of	(9),	namely	that	if	f	݂ ∈ ܮ ,	where		1 < ݎ < 2,	and		has	Fourier			series	∑ ܿ݁ఏ,	then		
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ܵ ≤ ‖݂‖(ݎ)ܣ .	 The	 same	 case	 of	 Theorem	 B	 gives	 	 	 similarly	 the	 extension	 of	 this			

result	for	a	function	∅ ∈ ܪ ,		where0 < ݎ ≤ 1	(Hardy		and		Littlewood			[60]).	

Theorem  (2.1.4) [52]:	

Let		, ,ݍ 	:conditions	of	sets	following	the	of	one	satisfy	ݎ

(i)			0 <  < 	ݎ < ∞, 0 < ݍ ≤ 	;ݎ

(ii)				0 <  ≤ ݎ = ∞, 0 < ݍ ≤ 1;	

(iii)				0 <  = 	ݎ < ∞, 0 < ݍ ≤ min{2, 	.{ݎ

	Let			also	ߛ > 0, ߜ = /1 − 	whose	ܷ	on				function		holomorphic		a	be	∅		let			and	,ݎ/1

imaginary	 	 part	 	 vanishes	 at	 	 the	 origin,	 and	 whose	 Teal	 part	 	 	ݑ satisfies	

ॉ,,ఊ(ࣹିఊିఋݑ) < ∞.	Then		߶ ∈ ܪ 	and	

ै(߶) ≤ 	.൯ݑॉ,,ఊ൫ࣹିఊିఋܤ

Theorem	(2.1.4)	is	best	possible,		in	the	sense	that		the	result		is	false	for	all	choices	of	

, ,ݍ 0	satisfying	ݎ <  ≤ ݎ ≤ ∞,0 < ݍ ≤ ∞,	and		not		covered		by		one	of	the		conditions			

(i)-(iii).	 	 	 Moreover,	 the	 result	 is	 still	 	 false	 	 in	 	 these	 	 cases	 	 if	 we	 replace	 	ݑ in	

ॉ,,ఊ(ࣹିఊିఋݑ)	by	߶.	

The	 	 	proof	 	of	Theorem	2.1.3	 is	given	 	 in	 	4.	The	 	 	various	 	cases	 	of	Theorem			

(2.1.4)	require	 	 	widely	 	diverse	 	 arguments,	 	 	and	 	we	 	begin	 	by	 	proving	 	an	easier		

result	 (Theorem	 	 5)	 in	 	 which	 	 we	 	 replace	 	ݑ	 	 by	 ߶.Theorems	 3	 and	 4	 in	 5,	 	 6	 are	

preliminaries			to	the	proof	of	Theorem	5.	The	proof	of	Theorem	2	is	completed	in	9-11.		

We		show		also	in	11	(Theorem	8,	Corollary	2)	that		when		ߛ + 		,݇	integer			positive	a	is	ߜ

then		there		is		a		result			similar			to			Theorem				2		with	,ࣹିఊିఋݑ = ࣹିݑ	replaced		by	

	.(ߩ߲/ݑ߲)ߩ

Theorems	6-8	 	 in	9-11	have	applications	 	 to	Lipschitz	 	spaces	 	of	holomorphic	

and		harmonic		functions		on	the		disc,	and	I	hope	to	consider		these		in	a	further	section.	

We	note	 	here	 that	 	 the	 	 cases	  ≥ 1, ݍ ≥ 1	of	 some	of	our	 	 results	 	have	been	

obtained	 	 	 in	 	 a	more	 	general	 	 setting	 	by	Taibleson	 	 (68]	and	 	 the	 	 author	(58]	 in	a	

discussion	of	Lipschitz	spaces.	However,	the	area	of	overlap	is	small,	and	the	new	cases	

that	 we	 have	 to	 consider,	 where	 0 <  < 1or	 0 < ݍ < 1,	 generally	 require	 new	

arguments,	which	are	often	applicable	also	to	the	known	cases.	

In	this	section	we	give	the	proof	of	Theorem	2.1.3.	For	0 ≤ ܴ < 1	we	have	

;ݑ)ܯ ܴ) = sup ቊ
1
ߨ2

න ߠ݀(ߠ)൫ܴ݁ఏ൯݃ݑ
గ

ିగ
ቋ,																																					(11)	
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where	the	supremum	is	taken	over	all	bounded	functions	݃		such	that	‖݃‖ᇲ = 1.	Let	݃	

be	such	a	function,	and	let	

~(ߠ)݃  ݀݁ఏ
ஶ

ୀିஶ

ఏ൯݁ߩ൫ݒ				, =  ݀ߩ||݁ఏ
ஶ

ୀିஶ

ఏ൯݁ߩ൫ݑ					, =  ܿߩ||݁ఏ
ஶ

ୀିஶ

	

(so	that	ݒ	is	the	Poisson	integral	of	݃).	By	(5),	

1
ߨ2

න ߠ݀(ߠ)൫ܴ݁ఏ൯݃ݑ
గ

ିగ
	=  ܿ݀ିܴ||

ஶ

ୀିஶ

	

																											=
2ఊାఋ

Γ(ߛ + (ߜ
න (log1/ߩ)ఊାఋିଵ ൭  (|݊| + 1)ఊାఋܿ݀ିܴ||ߩଶ||

ஶ

ୀିஶ

൱ߩ݀ߩ
ଵ


	

																															

=
2ఊାఋ

Γ(ߛ + (ߜ
න log1)ߩ
ଵ



ߩఊାఋିଵ݀(ߩ/ ቊ
1
ߨ2

න ࣹିఊିఋݑ൫݁ߩఏ൯ݒ൫ܴ݁ߩఏ൯݀ߠ
గ

ିగ
ቋ 	ߩ݀ߩ

(the	term-by-term	integrations	being	justified	by	uniform	convergence).	Hereߩ(log1/

ఊାఋିଵ(ߩ ≤ (1 − 	property	increasing	the			and			inequality			Holder's			by	and,	ఊାఋିଵ,(ߩ

of	ܯᇲ 	,	

ቤ
1
ߨ2

න ࣹିఊିఋݑ൫݁ߩఏ൯ݒ൫ܴ݁ߩఏ൯݀ߠ
గ

ିగ
ቤ ≤ ;ݑ(ࣹିఊିఋܯ ;ݒ)ᇲܯ(ߩ 	(ߩܴ

≤ ;ݑ൫ࣹିఊିఋܯ ;ݒ)ᇲܯ൯ߩ 	.(ߩ

Hence	

ቤ
1
ߨ2

න ߠ݀(ߠ)൫ܴ݁ఏ൯݃ݑ
గ

ିగ
ቤ ≤ නܤ (1 − ;ݑ൫ࣹିఊିఋܯఊାఋିଵ(ߩ ;ݒ)ᇲܯ൯ߩ ߩ݀(ߩ

ଵ


	

≤ ൯ॉᇲ,ᇲݑॉ,,ఊ൫ࣹିఊିఋܤ ,ఋ(ݒ)																																																	(12)	

				≤ ൯‖݃‖ᇲݑॉ,,ఊ൫ࣹିఊିఋܤ = 	,൯ݑॉ,,ఊ൫ࣹିఊିఋܤ

by		Holder's	 	inequality	and	Theorem	2.1.1	(note	that	here		1 < ′ݎ < ′ ≤ ᇱݎ,∞ ≤ ᇱݍ ≤

ߜ,∞ = ′ݎ/1 − 	this	and	(7),	obtain	now	we	(11)	and	(12)	combining	On	.(′/1 in	 turn	

gives	(8)	by	standard	properties	of	harmonic	functions.	

For	index	ݎ < 1	the	key	result	is	a	theorem	concerning	holomorphic	functions.	

Theorem  (2.1.5) [52]:	

	Let	 	 0 < ݎ < 1, ߛ > 0,	 and	 	 let	 ߶	 be	 a	 holomorphic	 function	 on	 ܷ	 such	 that	
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ॉ,,ఊ(ࣹିఊ߶).			Then	߶ ∈ ܪ 		and	

ै(߶) ≤ 	(13)																																																ॉ,,ఊ(ࣹିఊ߶).ܤ

A	 similar	 result	 for	 a	 different	 multiplier	 transformation	 is	 proved	 in	 [54,	

Theorem	5(ii)],	but	the	proof	given	there	has	the	disadvantage	that	it	is	peculiar	to	the		

disc,	 and	 does	 not	 extend	 to	 the	 half-plane.	 An	 alternative	 proof,	 using	 yet	 another	

multiplier	 transform,	 applicable	 both	 to	 the	 disc	 and	 half-plane,	 is	 given	 in	 [55,	

Theorem	 2].	 While	 preparing	 this	 section,	 1	 have	 realized	 that	 a	 more	 elegant	 and	

simpler	variant	of	the	argument	in	[55]	is	implicit	in	a	section	of	Hardy	and	Littlewood	

[64],	 and	 it	 seems	worth	while	 to	 give	 the	 proof	 of	 Theorem	 (2.1.5)	 explicitly	 using	

their	argument.We	require	the	following	lemma	(see	[55]).	

Lemma (2.1.6) [52]:	

Let	 	nonnegative	a	be	ݓ	 	 subharmonic	 function	on	ܷ	satisfying	 	 the	condition		

that		ܯଵ(ݓ; ( ≤ 0	for		ܥ ≤ ߩ < 1,			let		0 < ߟ < 1,			and	for	each	ݖ ∈ ܷ	let		ݓఎ∗(ݖ)	be	the		

supremum	 	 of	 	 	ݓ on	 	 the	 	 closed	 disc	 withcentreݖ	 	 and	 radius	 1)ߟ − 	.(|ݖ| Then	 for		

0 ≤ ߩ < 1	

1
ߨ2

න ߠ݀(ఏ݁ߩ)∗ఎݓ
గ

ିగ
≤ 	.ܥܤ

Consider	now	the	proof	of	Theorem	2.1.7.	Let	0 ≤ ܴ < 1.	By	(5).	

߶൫ܴ݁ఏ൯ =
2ఊ

Γ(ߛ)
න (log

1
(ߩ

ఊିଵ
ଵ


ࣹିఊ߶൫ܴߪଶ݁ఏ൯,ߪ݀ߪ																					(14)	

whence	also	

ห߶൫ܴ݁ఏ൯ห ≤ නܤ (1 − ߩଶ݁ఏ൯ห݀ߪఊିଵหࣹିఊ߶൫ܴ(ߩ
ଵ


.																						(15)	

Let			ߪ = 1 − 2ି(݊ = 0,1, . ..).		Then			1 − ߪ = ߪ − ିଵߪ = 2ି ,			and	

ିଵߪ ≤ ଶߪ ≤ 	also	that	so	,ߪ

sup
ఙషభஸఙஸఙ

หࣹିఊ߶൫ܴߪଶ݁ఏ൯ห ≤ sup
ఙషమஸఙஸఙ

หࣹିఊ߶൫ܴ݁ߪఏ൯ห = 	.(ߠ)ߤ

Then,	by	(15),	

ห߶൫ܴ݁ఏ൯ห ≤ නܤ (1 − ఊିଵ(ߪ
ఙ

ఙషభ

ஶ

ୀଵ

หࣹିఊ߶൫ܴߪଶ݁ఏ൯ห݀ߪ	ܤ2ିఊߤ(ߠ)
ஶ

ୀଵ

.	

Since	(∑ ܽ) ≤ ∑ܽ 		whenever	an	ܽ ≥ 0and	0 < ݎ < 1,	it	follows	that	
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ห߶൫ܴ݁ఏ൯ห ≤ ߤ2ିఊܤ (ߠ)
ஶ

ୀଵ

,	

and	therefore		also	

ܯ
(߶; ܴ) ≤ 2ିఊනܤ ߤ (ߠ)

గ

ିగ

ஶ

ୀଵ

	.ߠ݀

we	now	apply	Lemma	(2.1.6)	with		ݓ൫݁ఏ൯ = หࣹିఊ߶൫ܴߪାଵ݁ߩఏ൯ห

				.	Since	

1
2 ߪ) − ାଵߪ)/(ିଵߪ −

1
2 ߪ) − ((ିଶߪ =

3
4,	

we	see	that	ߤ (ߠ) ≤ ݖ	where	,(ݖ)∗ఎݓ =
ଵ
ଶ
ାଵିଵߪ ߪ) + ିଶ)݁ఏߪ =

ଷ
ସ
	.	Since	also	

;ݓ)ଵܯ (ߩ ≤ ܯ
(ࣹିఊ߶; (ାଵߪܴ ≤ ܯ

(ࣹିఊ߶; 	(ାଵߪ

it	follows	that	

න ߤ ߠ݀(ߠ)
గ

ିగ
≤ ܯܣ

(ࣹିఊ߶; 	(ାଵߪ

Hence	also	

ܯ
(߶; ܴ) = ܯ2ିఊܤ

(ࣹିఊ߶; (ାଵߪ
ஶ

ୀଵ

	

≤ නܤ (1 − ംషభ(ߪ
ఙశమ

ఙశభ

ஶ

ୀଵ

ܯ
(ࣹିఊ߶; 	ߪ݀(ߪ

= නܤ (1 − ംషభ(ߪ
ଵ


ܯ

(ࣹିఊ߶; ߪ݀(ߪ = ॉ,,ఊܤ
 (ࣹିఊ߶),	

and	this	gives	(13).	

A	more	detailed	examination	of	 the	preceding	argument	shows	that	the	constant	B	 in	

(13)	is	bounded	as	ݎ → 1 −			for	each	fixed	ߛ.	The	inequality	of	(13)	is	in	fact	true	for	

ݎ = 1,	as	is	shown	by	Theorem	4	below.	

			An	argument	exactly	similar	to	that	above	gives	also	

Theorem  (2.1.7) [52]:	

Let	 	 0 < ݎ < 1,	 and	 let	 	 ∅	 	 be	 	 a	 holomorphic	 function	 on	 ܷ	 such	 that	

ॉ,,ଵ(∅′) < ∞.	Then	∅ ∈ ܪ 	and	

ै
(߶) ≤ ॉ,,ଵܤ

 (߶ᇱ) + |߶(0)| .	

If	we	apply	this	last	inequality	to	the	function	ݖ ⇝ 0	where(ݖߩ)∅ ≤ ߩ < 1,	and	use	the	

increasing	property	of	the	mean	ܯ 	,	we	deduce	that	
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ܯ											
(߶; (ߩ ≤ නܤ (1 − ିଵ(ߪ

ଵ


ܯ

(ߩ߶′; ߪ݀(ߪߩ + |߶(0)|	

≤ ܯܤ
(ߩ߶′; (ߩ + |߶(0)| = ܯܤ

(ݖ߶ᇱ; (ߩ + |߶(0)| .										(16)	

There	is	also	an	inequality	corresponding	to	(5.4)	for	1 ≤ ݎ ≤ ∞,		namely,	

;߶)ܯ (ߩ ≤ ;′߶ݖ)ܯ (ߩ + |߶(0)|.																																			(17)	

To	prove	this	we	apply	Minkowski's	inequality	to	the	relation	

߶൫݁ߩఏ൯ = න
߲߮
ߪ߲ ݁ߪ)

ఏ)
ఘ


ߪ݀ + ߶(0);	

this	gives	

;߶)ܯ (ߩ ≤ නܯ(߶ᇱ; ߪ݀(ߪ + |߶(0)|


,																																(18)	

and	(17)	follows	from	(18)	and	the	increasing	property	of	ܯ 	.	

Theorem (2.1.8) [52]:	

	Let	 	 1 ≤ ݎ < ∞,	 ߛ > 0,	 and	 let	 ∅	 be	 a	 holomorphic	 function	 on	 ܷ	 such	 that	

ॉ,ଵ,ఊ(ࣹିఊ߶).		Then	߶ ∈ ܪ 	and	

ै(߶) ≤ 	(19)																																																					ॉ,ଵ,ఊ(ࣹିఊ߶).ܤ

Moreover,		if	ݎ = ∞,		then	∅has	a	continuous	extension	to	 ഥܷ.	

From	Minkowski's	inequality	and	the	inequality	(15),	we	have	

(ܴ;߶)ܯ ≤ නܤ (1 − ఊିଵ(ߪ
ଵ


	ߪ݀(ଶߪܴ;߶ఊିࣹ)ܯ

and	(19)	follows	from	this	and	the	increasing	property	of	ܯ .	

To	prove	the	second	part,	it	is	enough	to	prove	that	the	integral	on	the	right	of	(14)	is	

convergent,	uniformly	in	ܴ, 0	Let	.ߠ < ߜ < 1.	Then,	exactly	as	above,	

sup
ோ,ఏ

ቤන (log1/ߪ)ఊିଵ
ଵ

ఋ
ࣹିఊ߶(ܴߪଶ݁ఏ)ߪ		ߪ݀ቤ ≤ නܤ (1 − ఊିଵ(ߪ

ଵ

ఋ
	,ߪ݀(ߪ;߶ఊିࣹ)ஶܯ

and	the	required	result	therefore	follows	from	the	finiteness	of	ॉஶ,ଵ,ఊ(ࣹିఊ߶).	

Theorem  (2.1.9) [52]:	

	Let	, ,ݍ 	:conditions	of	sets	following	the	of	one	satisfy	ݎ

(i)			0 < 	 < 	ݎ < ∞, 0 < ݍ ≤ 	;ݎ

(ii)			0 < 	 ≤ ݎ = ∞, 0 < ݍ ≤ 1;	

(iii)			0 <  = ݎ < ∞, 0 < ݍ ≤ min{2, 	.{ݎ

Let	 also	 ߛ > 0,	 ߜ = /1 − 	,ݎ/1 and	 let	 ∅	 be	 a	 holomorphic	 function	 on	 ܷ	 such	 that	
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ॉ,,ఊ൫ࣹିఊିఋ߶൯ < ∞	Then		߶ ∈ ܪ 	and	

ै(߶) ≤ 	.ॉ,,ఊ൫ࣹିఊିఋ߶൯ܤ

Further,	in,	case	(ii)	߶has	a	continuous	extension	to	 ഥܷ.	

We		remark		here		that		cases	(i)	and		(ii)	and		the		cases	0 <  = ݎ ≤ 1,0 < ݍ	 ≤

1	and			ݎ <  = ݎ < ∞,0 < ݍ ≤ 1		of		(iii)		depend			only		on	Theorems		(2.1.3),	(2.1.5)	

and	(2.1.8),	and	in	their	proofs	we	have	invoked	none	of	the	deeper	theorems		of		ܪ-

theory,	 such	 	 as	 the	 	Hardy-Littlewood	 "Complex	 	Max"	 theorem	 	or	 the	 	Littlewood-

Paley	 	 theorems.	 In	 contrast,	 the	 remainder	of	 case	 (iii),	 i.e.,	 the	 case	1 <  = ݎ < ∞,	

1 < ݍ ≤ min{2, 	only	Our	below.	(2.1.10)	Lemma	from	it	deduce	we	and	deeper,	lies	,{ݎ

application	of	this	case	is	to	the	proof	of	the	corresponding	case	of	Theorem	2.1.4.	

 

Lemma  (2.1.10) [52]:	

	Let	1 < ݇ ≤ 2,1 < ݎ < ∞, ߛ > 0,	 and.	 let	 ∅	 be	 a	 holomorphic	 function	 on	 ܷ	 such	

that݃ ∈ ,ߨ−) 	where	,(ߨ

݃(ߠ) = ቊන (1 − ห(ఏ݁ߩ)߶ఊିଵหࣹିఊ(ߩ

ߩ݀

ଵ


ቋ
ଵ/

.	

Then		∅ ∈ ܪ 	and	

ै(߶) ≤ ‖݃‖ܤ .	

				This	is	essentially	Hirschman's	extension	of	one	of	the	Littlewood-Paley	theorems.	A	

proof,	for	a	closely	similar	multiplier	transformation,	is	given	in	[54,	Theorem	4],	where	

references	can	also	be	found.	The	modifications	required	for	are	minor.	

				To	 deduce	 Theorem	 (2.1.9)	 from	 these	 various	 results	 we	 require	 two	 simple	

lemmas.	

Lemma  (2.1.11) [52]:	

Let	0 <  ≤ ∞,	0 < ݍ < ݏ ≤ ߛ	,∞ > 0,	and	let	∅	be	a	holomorphic	function	on	U	

such	that	ॉ,௦,ఊ(∅) < ∞.		Then	

ॉ,௦,ఊ(∅) ≤ 	(20)																																																										ॉ,,௦,ఊ(∅),ܤ

And	ܯ(∅; (ߩ = 0((1 − ߩ	as	ఊ)ି(ߩ → 1 −.	

Since		ܯ
(∅; 	,ߪ		with	increases	(ߪ

න (1 − ఊିଵ(ߩ
ିଵ

ఘ
ܯ

(∅; ߪ݀(ߪ ≥ ܯ
(∅; න(ߩ (1 − ఊିଵ(ߪ

ିଵ

ఘ
	ߪ݀
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= 1)ܤ − ܯఊ(ߩ
(∅; 	.(ߩ

Since	 	 the	 	 integral	 	 	 on	 	 the	 	 left	 	does	 	not	 	exceed	 	ॉ,,ఊ
 (∅),and	 	 	 tends	 	 	 to	 	0	 	 as	

ߩ → 1 −,	 	 this	 proves	 	 both	 	 the	 case	 ݏ = ∞	 of	 (10)	 and	 the	 remark	 	 concerning	

;∅)ܯ 	The	.(ߩ 	 	deduction	 	 	 of	 the	 case	 ݏ < ∞	 	of	 (10)	now	 follows	 from	 the	obvious	

inequality	

ॉ,௦,ఊ
௦ (∅) ≤ ॉ,ஶ,ఊ

௦ି (∅)ॉ,,ఊ
 (∅).	

Lemma  (2.1.12) [52]:	

Let	 0 <  < ݐ ≤ ∞, 0 < ݍ ≤ ∞, ߛ > 0,	 and	 let	∅	 be	 a	 holomorphic	 function	 	 on	

ܷsuch	that	ॉ,,ఊ(∅) < ∞.	Then	

ॉ௧,,ఊାଵ/ିଵ/௧(∅) ≤ 	(21)																																																										ॉ,,ఊ(∅),ܤ

By	the	case	ݍ = ∞	of	Theorem	B	applied	to	ݖ ⇝ 	,(ݖߩ)∅

(1 − ;∅)௧ܯଵ/ିଵ/௧(ߩ (ଶߩ ≤ ;∅)ܯܤ 	,(ߩ

and	this	trivially		gives	(21).	

Proof of Theorem (2.1.9):.	

Cases	 (i)-(iii)	 	 	 are	 covered	 	 	 by	 the	 following	 	 	 cases	 (not	 entirely	 	mutually		

exclusive):	

(݅)′				0 <  < ݎ < ∞, 1 < ,ݎ 0 < ݍ ≤ 	;ݎ

(݅݅)′		0 <  ≤ ݎ < ∞, 0 < ݍ < 1 ≤ 	;ݎ

(݅݅݅)ᇱ0 <  ≤ ݎ < 1, 0 < ݍ ≤ 	;ݎ

1	′(ݒ݅) <  = ݎ < 2, 1 < ݍ ≤ 	;ݎ

2	ᇱ(ݒ) <  = ݎ < ∞, 1 < ݍ ≤ 2.	

By	virtue	of	Lemmas	(2.1.11)	and	(2.1.12)	we	can	reduce	these	cases	respectively			to	

(݅)ᇱᇱ		1 ≤  < ݎ < ∞, ݍ = 		;ݎ

(݅݅)ᇱᇱ	1 ≤  = ݎ ≤ ∞, ݍ = 1;	

(݅݅݅)ᇱᇱ	0 <  = ݍ = ݎ < 1;	

1	ᇱᇱ(ݒ݅) <  = ݍ = ݎ ≤ 2;	

2			ᇱᇱ(ݒ) <  = ݎ < ∞, ݍ = 2.	

Here	(it	 is	contained	 	 	 in	Theorem	(2.1.3),	and	 	(݅݅)ᇱᇱ, (݅݅݅)ᇱᇱ 	are	Theorems	(2.1.8)	and	

(2.1.5).	Also	(݅ݒ)ᇱᇱ	is	the	case		1 < ݇ = ݎ ≤ 2	of	Lemma	(2.1.10),	and	to	prove		(ݒ)"	we	

have	only	to	take	݇ = 2	in	Lemma	2	and	apply	Minkowski's			inequality.	
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				Before	proceeding		to		the		proof		of		Theorem			2,		we		note		that	Theorem	5(݅)	and	

Theorem	B	 together	 give	 a	 result	 equivalent	 to	 the	 Hardy-	 Littlewood	 	 theorem	 	 on		

fractional	 	integrals	 	[64,	 	Theorem			336],	 	namely,	that	if	0 <  < ݎ < ߙ		;∞ = /1 −

∅	and		,ݎ/1 ∈ ߶ࣹఈ	then			,ܪ ∈ ܪ 	and	

ै(ࣹఈ߶) ≤ 	(22)																																																															(߶)ैܤ

To	obtain	(22),	 let	ݍ = ଵ
ଶ
) + 	.(ݎ 	By	Theorem	B,	with	the	ݎ	of	 that	 theorem	replaced	

by	ݍ.	

(߶)ܯܤ ≥ ॉ,,ଵ/ିଵ/(߶) = ॉ,,ఈିଵ/ାଵ/(ࣹିఈ(ࣹఈ߶)),	

and	we	have	now	only	to	apply	Theorem	(2.1.8)(݅)	with	߶replaced	by	ࣹఈ߶.	

Theorem	(2.1.13)	below	is	a	further	preliminary	to	the	proof	of	Theorem	(2.1.4).	Like	

the	theorems	to	be	proved	in	10,	11,	it	has	also	applications	to	the	theory	of	Lipschitz	

spaces.	

Theorem  (2.1.13) [52] :	

Let	0 <  ≤ ∞,0 < ݍ ≤ ∞, ߚ > 0, ߛ > 0,	and	let	߶	be	holomorphic		on	ܷ.		Then	

(i)	ܤॉ,,ఊ(߶) ≤ ॉ,,ఉ(ࣹఊିఉ(ࣹఈ߶) ≤ 	,(߶)ॉ,,ఊܤ

(ii)ܯ(߶; (ߩ = 1)) − ߩఊ)asି(ߩ → 1 −	iff	ܯ൫ࣹఊିఉ߶; ൯ߩ = ൫1) − 	.ఉ൯ି(ߩ

				The	 cases	 1 ≤ , ݍ ≤ ∞	and	0 <  = ݍ ≤ 1	of	 this	 theorem	are	known	(Hardy	 	 and		

Littlewood		[64],		Flett		[54]),		but	the		remaining	cases	appear	to	be	new.	Since	the	new	

cases	require	new	arguments,	and	these	arguments	give	also	the	known	cases,	we	give	

the	proof	in	full.	

				We	 observe	 first	 that	 the	 left-hand	 inequality	 in	 (݅)	 follows	 from	 the	 right-hand	

inequality	with	∅	 	replaced	by	 	ࣹఉିఊ߶,	and	that	 the	"if"	 	 in	(݅݅)	 follows	similarly	 from	

the	 "only	 if".	Writing	ߙ = ߛ − 	so)ߚ that	ߛ > 	we	,(ߙ see	 that	 it	 is	 therefore	 enough	 to	

prove	

(݅݅݅)ॉ,,ఊିఈ(ࣹఈ߶) ≤ 	ॉ,,ఊ(߶),(23)ܤ

;∅)ܯif(ݒ݅) (ߩ = 1)) − ߩ	as	ఊ)ି(ߩ → 1 −,	then				

;߶(ࣹఈܯ (ߩ = 1)) − 	.(ఈିఊ(ߩ

Next,		to	prove	(݅݅݅)	and		(݅ݒ)	it	is	enough	to		prove	the	cases	(a)	ߙ > 0,	(b)	ߙ = −1,	for	

ߙ = ߟ− < 0	 and	݉	 is	 the	 integral	 part	 of	 ߟ + 1,	we	 can	 prove	 the	 result	 for	 0:	 by	m	

successive	 applications	 of	 case	 (b)	 followed	 by	 an	 application	 of	 case	 (a)	 with	

ߙ = ݉ − 	.ߟ
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				We	 prove	 	 first	 	 the	 case	 ݍ < ∞	 	 of	 (a),	 and	 	 for	 this	 	 we	 use	 a	 lemma	 	 that	 	 is	 a	

relatively	simple	particular	case	of	a	theorem	on	Riemann-Liouvill	 integrals	(see	[53]		

and		references		given		there),	

Lemma  (2.1.14) [52]:	

Let		1 ≤ ݇ < ߤ		,∞ > ߜ	,0 > 0,	and	let	݂: ]0,∞][0,∞]		be	measurable.	Then	

∫ ିఋିఓିଵஶݔ
 ቄ�∫ ݔ) − ௫ݐ݀(ݐ)ఋିଵ݂(ݐ

 ൟ

ݔ݀ ≤ �ܤ ∫ ஶ.ݔ݀(ݔ)ିఓିଵ݂ݔ

 																				(23)	

If	 in	 this	 we	 take	 (ݐ)݂ = 0	 for	 0 < ݐ ≤ (ݐ)݂,1 = ఋିଵℎ(1ିݐ − 	(ݐ/1 for	 ݐ > 1,	 and	 put	

ߩ = 1 − 	,ݔ/1 ߪ = 1 − 	,ݐ/1 	 we	 deduce	 	 that	 	 if	 	 1 ≤ ݇ < ∞,	 ߤ > ߜ,0 > 0,	 and		

ℎ: ]0,1[→ [0,∞]		is	measurable,			then	

න (1 − ఋିଵ(ߩ
ଵ


൝�න ߩ) − ߪ݀(ߪ)ఋିଵℎ(ߪ

ఘ


ቋ


ߩ݀ ≤ �ܤ න (1 − .ߩ݀(ߩ)ఓାఋିଵℎ(ߩ
ଵ


											(24)	

Next,	we	note	that	the	substitution	of	ߩఈାଵ	for	ߩ,	together	with	the	increasing	property			

of	ܯ	,	gives	

ॉ,,ఊିఈ
 (ࣹఈ߶) = න (1 − ܯ(ఊିఈ)(ߩ

(ࣹఈ߶; .ߩ݀(ߩ
ଵ


	

																				= ߙݍ) + 1)න (1 − ܯఈାଵ)(ఊିఈ)ିଵߩ
(ࣹఈ߶; ߩ݀(ఈାଵߩ

ଵ


	

				≤ නܤ (1 − ܯ(ఊିఈ)ିଵ(ߩ
(ࣹఈ߶; .ߩఈ݀ߩ(ߩ

ଵ


																																					(25)	

We	now	distinguish			three	cases.	

Case	1.1 ≤  ≤ ∞, 1 ≤ ݍ < ∞	.		By	Theorem			(2.1.8)	

;߶(ࣹఈܯ															 (ߩ ≤ නܤ (1 − ߬)ఈିଵ
ଵ


;߶)ܯ 	߬݀(߬ߩ

		= ఈනିߩܤ ߩ) − ఈିଵ(ߪ
ఘ


;߶)ܯ 	(26)																																																													,ߪ݀(ߪ

and	 	 (23)	 follows	 	 from	 	 this,	 	 (23),	 	 and	 	 (24)	with	 	݇ = ,ݍ ߤ = ߛ − ,	ߙ ߜ = ,ߙ ℎ(ߪ) =

;∅)ܯ 	.(ߪ	

Case	II.				1 ≤  ≤ ∞, 0 < ݍ < 1	or	0 < ݍ <  ≤ 1.		By	Theorem	(2.1.9)	

ܯ
(ࣹఈ߶; (ߩ ≤ නܤ (1 − ߬)ఈିଵ

ଵ


ܯ

(߶; 	߬݀(߬ߩ

		= ఈିߩܤ න ߩ) − ఈିଵ(ߪ
ఘ


ܯ

(߶; 																																				,ߪ݀(ߪ
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and	(23)	follows	from		this,		(25),		and		(24)	with		݇ = 1, ߤ = ߛ)ݍ − ,(ߙ ߜ = ,ߙݍ ℎ(ߪ) =

ܯ
(∅; 	.(ߪ

CaseIII.0	 < 	 < 	,1 ≤ ݍ < ∞.			By	Theorem	(2.1.15),	

ܯ
(ࣹఈ߶; (ߩ ≤ නܤ (1 − ߬)ఈିଵ

ଵ


ܯ

(߶; 	߬݀(߬ߩ

	= ఈනିߩܤ ߩ) − ఈିଵ(ߪ
ఘ


ܯ

(߶; 	(27)																															,ߪ݀(ߪ

and	 we	 	 now	 	 use	 	 (25)	 	 and	 	 (24)	 with	 	 ݇ = ,/ݍ ߤ = ߛ)ݍ − ,(ߙ ߜ = ,ߙ ℎ(ߪ) =

ܯ
(∅; 	.(ߪ

To	complete	the	proof	of	case	(a),	it	remains	to	prove	the	case	q	=	0	of	(23)	and	

the	result	of	(iv).	These	follow	simply	from	either	(26)	or	(27)	according	as		1 ≤  ≤ ∞	

or	0 <  < 1,	and		we	omit	the		details	.([54]).	

				To	prove	the	case	(b)	of	(iii)	and	(iv),	whereߙ = −1,	we	use	a	further	lemma,	and	we	

combine	the	proof	of	this	lemma	with	that	of	another,	which	we	use	in	II.	

Lemma  (2.1.15)[52]:	

Let	∅ ∈ ܪ ,		where	0 <  < ∞.				Then	for		0 ≤  < 1	

;(߶ᇱܯ (ߩ ≤ 1)ܤ − 	(28)																																									ଵै(߶)ି(ߩ

and	

;(ࣹିଵ߶ᇱܯ (ߩ ≤ 1)ܤ − 	(29)																																									ଵै(߶)ି(ߩ

Lemma  (2.1.16)[52]:	

Let	f		݂ ∈ ܮ ,		where	1 ≤  ≤ ∞,		let	ݑ	be	the	Poisson	integral	of	݂	on		ܷ,	and		let	

߶	be	 the	 holomorphic	 function	 on	 ܷ	 with	 	 real	 part	 	 	ݑ and	 	 whose	 imaginary	 part		

'vanishes	at	the	origin.		Then	for		0 ≤ ߩ < 1	

;(߶ᇱܯ (ߩ ≤ 1)ܤ − 	(30)																																									ଵ‖݂‖ି(ߩ

and	

;(ࣹିଵ߶ᇱܯ (ߩ ≤ 1)ܤ − 	(31)																																									ଵ‖݂‖.ି(ߩ

	 Let	0 ≤ ߩ < 1	,	 and	 let	 C	 be	 the	 circle	 with	 centre	 	ఏ݁ߩ and	 radius	 ଵ
ଶ
(1 − 	.(ߩ

Then,	by	the	Cauchy	integral	formula,	

ห߶ᇱ(݁ߩఏ)ห ≤ 2(1 − ଵି(ߩ sup

|߶|,	

and	on	applying	Lemma	1	with	ݓ = |∅|	,ߟ = ଵ
ଶ
ܥ	,	 = ै

(߶)	,	we	obtain	(28).	Further,	
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by	(3)	

ܯ
௧(ࣹିଵ߶ᇱ; (ߩ ≤ ܯ

௧(߶ᇱ; (ߩ ܯ+
௧(߶; 	(32)																															,(ߩ

where	ݐ = min{, 1},	and	(29)	follows	from	(32)	and	(28).	

In	the	case	of	Lemma	2.1.10	we	have	similarly	

ห߶ᇱ(݁ߩఏ)ห ≤ 2(1 − ଵି(ߩ sup

	,|ݑ|

(this	 	 	 is	 	 an	 	 easy	 	 consequence	 	 	 of	 	 the	 	 integral	 	 	 formula	 	 	 for	 	∅	 in	 	 terms	 	 	of	݂,	

translated	 	 	 to	 	.(ܥ Applying	 Lemma	 2.1.6	 with	ݓ = 	|ݑ| ߟ	, = ଵ
ଶ
	 ܥ, = ‖݂‖	 	 we	 thus	

obtain		(30).		Further,			by	(30)	and	(17),	

;߶)ܯ (ߩ ≤ 1)ܤ − ଵ‖݂‖ି(ߩ + |߶(0)|,	

and	since	|∅(0)| = |(0)ݑ| ≤ ‖݂‖ + |∅(0)|	follows	from	this	and	(9.10).	

An	alternative	proof	of	Lemma	6,	using	the	Hardy-Littlewood	maximal	theorem,	

is	given	in	[65,	Theorem			3].	

To	complete	the	proof	of	Theorem	6,	we	apply	(9.7)	to	ݖ ⇝ 	obtain	we			;(ݖߩ)∅

;(ࣹିଵ߶ᇱܯ (ଶߩ ≤ 1)ܤ − ;߶)ܯଵି(ߩ 	,(ߩ

and	this	trivially		gives	the		required		results.	

The			next			theorem			enables			us	to	switch			from	ࣹ ᇱݏto		ordinary	derivatives.	

Theorem  (2.1.17) [52]:	

Let	 	 0 <  ≤ ∞,	 	 0 < ݍ ≤ ∞,	 	 ߛ > 0,	 	 let	 k	 	 he	 a	 positive	 integer,	 and	 let	∅	 be	

holomorphic	ܷ.	Then	

߶()൯ݖॉ,,ఊ൫ܤ ≤ ॉ,,ఊ(ࣹି߶) ≤ ܤ ൜ॉ,,ఊ൫ݖ߶()൯ + max
ஸஸିଵ

|߶()(0)|ൠ,	

(ii)	ܯ(ࣹି߶; (ߩ = 1)) − ߩఊ)asି(ߩ → 1 −	iff	ܯ൫߶(); ൯ߩ = 1)) − 	.(ఊି(ߩ

By	 (3),	 	 ࣹି߶	 is	 a	 linear	 	 combination∅, ,ᇱ∅ݖ … , ∅()ݖ ,	 with	 	 coefficients	

depending			only		on	k.	Further,			by	(16)	and	(17),	

ܯ
௧(߶; (ߩ ≤ ܯܤ

௧(ݖ߶ᇱ; (ߩ + |߶(0)|௧,																																														(33)	

Where	 ݐ	 = min{ߩ, 1}.	 Replacing	 ∅	here	 by∅(ିଵ),	 and	 multiplying	 both	 sides	 of	 the	

resulting	inequality	byߩ(ିଵ)௧,	we	obtain	also	

ܯ
௧൫ݖିଵ߶(ିଵ); ൯ߩ ≤ ܯܤ

௧൫ݖ߶(); ൯ߩ + ห߶(ିଵ)(0)ห
௧
																						(34)	

(݆ = 1,2, . ..	 ).	 Combining	 the	 inequalities	 (34)	 for	 ݆ = 1, . . . , ݇	 with	 (33),	 we	 thus		

obtain	
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ܯ
௧(ࣹି߶; (ߩ ≤ ܤ ൜ܯ

௧൫ݖ߶()൯ + max
ஸஸିଵ

|߶()(0)|௧ൠ,	

and	this		implies		both		the		right-hand			inequality			in	(i)	and		the		"if"		in(ii)	

In	 the	 opposite	 direction,	 we	 note	 that	 [again	 by	 (3)]	 ∅ݖ 	 is	 a	 linear	

combination	of	߶, ࣹିଵ߶,… , ࣹି߶		with	coefficients	depending	only	on	݇.	

Further,		by	Theorem	6,	we	have	

ॉ,,ఊ൫ࣹି߶൯ ≤ ॉ,,ఊାି(ࣹି߶) ≤ ॉ,,ఊ(ࣹି߶).	

for	݆ < ݇,	 and	 this	 easily	 implies	 the	 left-hand	 inequality	 in	 (i).	The	"only	 if"	 in	(ii)	 is	

proved	similarly.	

Theorem  (2.1.18) [52]:	

Let		0 <  ≤ ∞,	0 < ݍ ≤ ߛ	,∞ > 0,		and			let		∅	be		a	holomorphic	function			on		ܷ	

whose	imaginary		part		ݒ		vanishes		at		the		origin	and	whose	real	part	is	ݑ.	Then	

(i)			ܤॉ,,ఊ(߶) ≤ ॉ,,ఊ(ݑ) ≤ ॉ,,ఊ(߶)	,		

(ii)	ܯ(߶; (ߩ = 1)) − ߩఊ)asି(ߩ → 1 −	iff	ܯ(ݑ; (ߩ = 1)) − 	.(ఊି(ߩ

The	 right-hand	 inequality	 in	 (i)	 and	 the	 "only	 if"	 in	 (ii)	 are	 trivial.	 Of	 the	

remaining	 	results,	 the	 	case	 	 	1 <  ≤ ∞		 	 is	essentially	known,	and	can	be	proved	 in	

several	ways,	For	example,	Lemma	(2.1.16)	with	݂(ߠ) 	= ,ߩ)ݑ 	gives	(ߠ

(1 − ;߶(ࣹିଵܯ(ߩ (ଶߩ ≤ ;ݑ)ܯܤ 	,(ߩ

and	 the	 required	 results	 (for	 	1 ≤  ≤ ∞)	 follow	 from	 this	 and	 Theorem	 (2.1.13)	 to	

deal	with	the	case	0 <  < 1,	it	is	enough	to	prove	

(i)			ॉ,,ఊାଵ(߶′) ≤ 		,	(ݑ)ॉ,,ఊܤ

(ii)	ifܯ(߶; (ߩ = 1)) − ߩ	as	ఊ)ି(ߩ → 1 −	iff	ܯ(߶′; (ߩ = 1)) − 	.(ఊି(ߩ

For,	suppose	that	(iii)	and	(iv)	hold.	Then,	by	(iv),	Theorem	(2.1.17)	(ii),	and	Theorem	

(2.1.13)	(ii),	the	"if"	of	(ii)	holds.	To	prove	that	(i)	hold,	we	apply	Theorem	(2.1.13)	(i)	

and	Theorem	(2.1.17)	(i)	to	the	function∅ = ∅ − ∅(0).	Since∅ᇱ = ∅	,	we	thus	get	

ॉ,,ఊ(߶) ≤ ॉ,,ఊାଵ(ࣹିଵ߶)ܤ ≤ 	.(′߶)ॉ,,ఊାଵܤ

and	this,	together	with	(iii),	gives	

ॉ,,ఊ(߶) ≤ 	.(ݑ)ॉ,,ఊܤ

Since	the	imaginary	part	of	∅is	ݒ,		we	thus		have	ॉ,,ఊ(ݒ) ≤ 	,(ݑ)ॉ,,ఊܤ

and	(i)	follows	from	this	and	(1).	

Next,	 the	case	0 < ݍ =  < 1	of	(iii)	 is	proved	 in	[56],	and	the	argument	given	
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there	extends	to	the	case	0 < ݍ ≤  < 1	with	only	minor	modifications.	

The	 	case	0 <  < 1, ݍ = ∞	of	both	 	(i)	and	 	(iii)	arc	also	known	 	(Hardy		 	and	

Littlewood	 	 	 	 [63];1	 see	 	 also	 	 Gwilliam	 	 	 [59]),	 but	 this	 	 case	 	 is	 covered	 	 	 by	 the		

following			argument,				which			deals		with	the		case	0 <  < 1,  ≤ ݍ	 ≤ ∞	of		(iii)		and		

the		case		0 <  < 1	of		(iv].		,reuse	the	analogue		for	the	disc	of	Theorem	(2.1.17)	of	[3];	

this	asserts		that		if	0 < 	 < 1,	then		for	ଵ
ଷ
≤ ߩ < 1	

ܯ
(߶ᇱ; (ߩ ≤ 1)ܤ − ିଵනି(ߩ ܯ

(ݑ; (35)																							.ߪ݀(ߪ
ఘା(ଵିఘ)

ఘି(ଵିఘ)
	

This			inequality			(35)	immediately			implies			the	case		ݍ = ∞			of	(iii)	and	the	result	of	

(iv).		Further,			if	 ≤ ݍ	 < ∞,	then		(35)	gives	

ܯ
(߶ᇱ; (ߩ ≤ 1)ܤ − ି(ߩ ൝(1 − ଵනି(ߩ ܯ

(ݑ; .ߪ݀(ߪ
ఘାభమ(ଵିఘ)

ఘିభమ(ଵିఘ)
ൡ

/

.	

Raising	 	 	 both	 	 	 sides	 	 	 to	 	 the	 	 	 	th-(/ݍ) 	 power,	 multiplying	 	 by	 (1 − 	ఊାିଵ(ߩ 	 ,	

integrating	 	 	over	 [ଵ
ଷ
, 1)	 ,	 and	 	 inverting	 	 	 the	 	order	 	of	 integration	 	 	 in	 the	 	resulting	

integral,		we	obtain	

න (1 − ܯఊାିଵ(ߩ
(߶ᇱ; (ߩ

ଵ

ଵ/ଷ
ߩ݀ ≤ ॉ,,ఊܤ

 	.(ݑ)

Since	ܯ
(∅ᇱ; 	also	have	we		,ߩ	with	increases	(ߩ

න (1 − ܯఊାିଵ(ߩ
(߶ᇱ; (ߩ

ଵ/ଷ


ߩ݀ ≤ ܯܤ

 ൬߶ᇱ;
1
3൰.	

																																																																≤ නܤ (1 − ܯఊାିଵ(ߩ
(߶ᇱ; (ߩ

ଵ

ଵ/ଷ
	ߩ݀

≤ ॉ,,ఊܤ
 																					,(ݑ)

and	this		gives		(iii).	

It	should			be		remarked			that		the		proofs		of	the		theorems			in		[55)	and		[56]	to	

which	 	 we	 have	 appealed	 	 are	 formidably	 	 long,	 but	 their	 	 use	 appears	 	 to	 be	

indispensable.	We	note	two	corollaries	of	Theorem	(2.1.18).	

Corollary  (2.1.19) [52]:	

The	result	of	Theorem	(2.1.13)	continues	to	hold	if	∅	is	replaced	throughout	by	

a	(complex-valued)	harmonic	ݑ,	this	is	immediate.	
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Corollary  (2.1.20) [52]:	

Let	 0 <  ≤ ∞,0 < ݍ ≤ ∞, 	ߛ > 0,	 let	 ݇	 be	 a	 positive	 integer,	 	 let	 	ݑ be	 a	

(complex-valued)		harmonic	function	of	the	form	

ఏ൯݁ߩ൫ݑ =  ܿߩ||
௫

ୀି௫

݁ఏ,																																																						(36)	

and	let	ܦ	denote	߲/߲.		Then	

(i)			ܤॉ,,ఊ(ߩܦݑ) ≤ ॉ,,ఊ(ࣹିݑ) ≤ (ݑܦߩ)൛ॉ,,ఊܤ + max||ஸିଵ | ܿ|ൟ,	

(ii)	ܯ(ࣹିݑ; (ߩ = 1)) − ߩఊ)asି(ߩ → 1 −	iff	ܯ(ߩܦݑ; (ߩ = 1)) − 	.(ఊି(ߩ

				We		note		first	 	that	 	if	ݑ		is	 	real-valued			and		∅	is	the		holomorphic			function	with		

real	part		ݑ	and		imaginary		part		vanishing		at	the		origin,		then	ߩܦݑ	is	the	real	part		

of	 ∅ݖ .	 Moreover,	 	 	 if	 	is	ݑ given	 by	 (36),	 then	 in	 this	 case	 ܿି = ܿିfor	 all	 ݊,	 and	

(ݖ)∅ = ܿ + 2∑ ܿݖஶ
ୀଵ 	 .	 The	 result	 for	 a	 real-valued	 	 	ݑ therefore	 follows	 from	

Theorem	(2.1.17).	

To	complete	the	proof,	we	have	now	only	to	observe	that	 if	ݑ	 is	complex-valued		and		

satisϐies		(36),	ݒ	and		ݓ	are		the		real	and		imaginary		parts		of	ݑ,	and	

ఏ൯݁ߩ൫ݒ =  ܽߩ||
ஶ

ୀିஶ

݁ఏ ఏ൯݁ߩ൫ݓ										, =  ܾߩ||
ஶ

ୀିஶ

݁ఏ,	

thenmax|୨|ஸ୩ିଵ൛ห ܽห, ห ܾหൟ ≤ max||ஸିଵห ܿห	.	This		is	easily			verified,	for	in	fact	

ܽ = തܽି =
1
2
(ܿ − ܿ̅ି ),							ܾ = തܾି = −

1
2 ݅
(ܿ − ܿ̅ି )(݊ = 0,1,… ).	

It	 remains	 	 	 to	 	prove	 	 the	 	negative	 	 	 results	 	 	mentioned	 	 	 in	 	3	 	 and	 	 in	 virtue	 	 	 of	

Theorem	(2.1.18)		it		is	enough			to		prove		that		the		result		of	Theorem	(2.1.9)	is	false		

for	 	all	choices	 	of	, ,ݍ 	ݎ 	satisfying	 	0 <  ≤ ݎ ≤ ∞, 0 < ݍ ≤ ∞,	 	 	and	not	covered	 	by	

one	of	the		conditions			(i}-(iii)	of	that		theorem.			To	prove	this,	we	have	to	prove	that	

the	result	of	Theorem			(2.1.9)	is	false	when	

(a)			0 <  < ݎ < ݍ												,∞ > 		,ݎ

(b)			0 <  ≤ ݎ = ݍ												,∞ > 1,		

(c)				0 <  = ݎ ≤ ݍ									,2 > 		,ݎ

(d)				2 <  = ݎ < ݍ												,∞ > 2.	

Further,		by		Lemma	(2.1.12),		the		falsity		of	the		theorem		in	the		case		(c)	is	implied	by	

that		in	the		case	(a),	and	the		falsity		in	the		case	(b)	is	implied		by	that		in	the	case	
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(b')				0 <  < ݎ = ݍ												,∞ > 1	

Thus	we	have	to	find	counter	examples	for	cases	(a),	(b)',	(d).	For	(a)	we	take	

(ݖ)∅ = (1 − −log[1/(1(ݖ/1)}ଵ/ି(ݖ ఒି{[(ݖ ,	

where1/ݍ < ߣ < 	take	we	for(b)'	and	,ݎ/1

(ݖ)∅ = log[1/(1(ݖ/1)} − ଵିఓ{[(ݖ ,	

where	݈/ݍ < ߤ < 1.	 The	 arguments	 here	 are	 of	 a	 standard	 type,	 and	 we	 refer	 the	

reader	to	[66,	93-96].		Finally,	for	(d)	we	take	

(ݖ)∅ = ݊ିଵ/ଶݖଶିଵ
ஶ

ୀଵ

.	

Since		߶	is	lacunary		and		obviously		does		not		belong		to		ܪଶ,	 it	does		not		belong	to	

ॉ,,ఊ(ࣹିఊ߶)	that	also	shows	[66]	of	that	to	similar	proof	a			Moreover,	.ݎ	any	forܪ <

∞	when		2 < 	ݎ < ∞, ݍ > 2, ߛ > 0.	

Section (2.2):Embedding Derivatives of Hardy and Lebesgue Spaces:	

Let	 	ܷ	denote	the	upper	half-space	 	ℝ × (0,∞)in	ℝାଵ.	The	reader		 	 is	invited	(indeed	

urged)	 to	 let	݊ = 1	 on	 first	 reading.	 Let	ܪ 	 denote	 the	Hardy	 space	 on	 	 .	 	 Let	 	ߤ 	 be	 a	

positive	measure	on		ܷ	and	consider	the	problem	of	determining	what	conditions	on		ߤ	

imply	 |ߤߘ|	 ∈ ߤwhenever	(ߤ)ܮ ∈ ܪ .	More	generally,	 if	 	ߚ	 is	a	multi-index	of	order	 	݉		

and	 	 	 ఉܦ 	 	 	 is	 the	 corresponding	 differential	 monomial,	 we	 have	 the	 problem	 of			

determining	 conditions	 on	 	ߤ so	 that	 ݑఉܦ ∈ 	(ߤ)ܮ whenever	ߤ ∈ 	.ܪ 	 A	 standard			

application	 of	 the	 closed	 graph	 theorem	 leads	 to	 the	 following	 equivalent	 problem.	

characterize	the		ߤ	for	which	there	exists	a	constant	ܥsatisfying	

൬නหܦఉݑห

൰ߤ݀

ଵ/
≤ ு‖ݑ‖ܥ 																																																										(37)	

and.	estimate	the	size	of	ܥ	in	terms	of	ݑ.	

In		the		case		where		݉ = 0	(that		is,		no		differentiation			takes		place		in		(37)			the	

problem		is	solved	by	the	well-known		theorem		of	Carleson		[71]	when	 = 	a	by		and	,ݍ

theorem	 	 of	 Duren	 	 [74]	 when	 	 ݍ > 	. The	 case	 where	 ݍ < 	 	 seems	 to	 have	 been	 a	

folklore	theorem,	at	least	when	݊ = 1.	It	can	be	found	stated	in	[86].		

				When	 ݉ > 0	 there	 are	 two	 solved	 cases:	  = ݍ ≥ 2	 due	 to	 Shirokov	 [83,	 84]	 and	

0 <  < ݍ < ∞		due	to	the	author	[69].	These	 	 two	references	 	do	not	consider	 	all	 the	

possibilities		implicit		in	(37)		(	[84]	considers		only		݉ = 1,	while		[69]	and		[83]	consider		
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only	 	݊ = 1),	 	but	 	 the	 	methods	 	 	 there	 	easily	 	give	 	 the	 	complete	solution.	 	 for	some	

indications	of	how	this	could	be	done.	

				The	purpose	of	 this	 section	 is	 to	present	a	 solution	 in	 the	 remaining	 	 	 two	cases:0 <

 = ݍ < 2	and	0 < ݍ <  < ∞.	

				Let	us	now	present	some	basic	definitions	that	will	enable	us	to	state	the	solutions.			A	

point	ݖ ∈ ܷ	will	be	written		ݖ = ,ݔ) 	(ݕ 	with	ݔ = ,ଵݔ) ,ଶݔ . . . , (ݔ ∈ ℝ	and	ݕ > 0.	We	use	

the	 absolute	 value	 symbol	 |∙|to	 denote	 the	 Euclidean	 	 	 norm	 in	 ℝ	 and	 in	 ℝାଵ	 (so	

ଶ|ݖ| = ଶ|ݔ| + 	When	ଶ).ݕ ݖ	 = ,ݔ) 	,(ݕ let	ݖ∗ = ,ݔ) 	metric	hyperbolic	pseudo	The	.(ݕ− 	ߩ	 is	

defined	on	ܷ	by	ݖ)ߩ, (ݓ = ݖ| − ݖ|/|ݓ	 − 		motions		rigid		under		invariant	is	ߩ	Clearly			,|∗ݓ

in	the	ݔ-variable			and		under		dilations		in	~n+l.	Let		ܦఌ(ݓ) = ݖ} ∈ ܷ: (ݓ,ݖ)ߩ < 		when		{ߝ

ݓ ∈ ܷ	 	 and	 	 	 0 < ߝ < 1.	 	 Let	 	 	 Γ(ݐ) = ,ݔ)} (ݕ ∈ ܷ: ݔ| − |ݐ < 	{ݕߙ 	 where	ߙ > 0.	 In	

discussions	where	the	actual	value	of	ߝ	or		ߙ	is	irrelevant,			they	may	be	omitted	from	the	

subscripts.	

If	0 < ݎ < ∞		and	݂	is	a	measurable			function	on	ܷ,	define	

(ݐ)(݂)ܣ = ቆන |݂|ିݕିଵ݀ݕ݀ݔ
(௧)

ቇ
ଵ/

	

and	

(ݐ)(݂)ஶܣ = sup
௭∈(௧)

	|(ݖ)݂|

If	ܧ		is		an		open			set		in		ℝ ,		let		ܧ = ,ݔ)} (ݕ ∈ ,ݔ)ܤ:ܷ (ݕ ⊆ ,ݔ)ܤ		where		,{ܧ 	denotes	(ݕ

the	Euclidean		ball	in	ℝ	centered		at	ݔ	with	radius	ݕ.		We	say	that		ܧ	is	the	'tent'	over		ܧ.	

Define,		for	0 < ݎ < ∞		and	f	measurable		on	ܷ,	

(ݐ)(݂)ܥ = sup
௧∈

ቆ
1
|ܤ|

න|݂|ିݕଵ݀ݕ݀ݔ


ቇ
ଵ/

,	

	where	|ܤ|denotes	 the	 	 ݊-dimensional	 	 volume	 	 of	 	 	ܤ and	 	 the	 	 sup	 	 is	 over	 	 all	 balls	

containing		ݐ.Finally,	if	ߚ = ,ଵߚ) ,ଶߚ … , 	with	integers	non-negative	of	index	multi	a	is	ାଵ)ߚ

order|ߚ| = |ଵߚ| + |ଶߚ| + ⋯+ 	ାଵ|,thenߚ| 	ఉdenotesܦ the	 differential	 monomial	

߲/߲ݔଵ
ఉభ߲ݔଶ

ఉమ 	. . . 	.theorem	main	our	state	to	ready	now	are	We		.	ఉశభݕ߲

Theorem (2.2.1) [69]:	

For	 a	 positive	measure	ߤ	 on	ܷ	 and	 a	multi-index	ߚof	 order	݉, ܽ	 necessary	 and	

sufficient	condition	for	



75 
 

൬නหܦఉݑห

൰ߤ݀

ଵ/
≤ ு‖ݑ‖ܥ 	

to	hold	is	that	the	function	݃(ݖ) = 	satisfy		((ݖ)ܦ)ߤିିݕ

(i)		ܥଶ/(ଶି)(݃) ∈ ஶ(ℝܮ , 0	if	(ݐ݀ <  = ݍ < 2,	

(ii)		ܣଶ/(ଶି)(݃) ∈ /(ି)(ℝܮ , 0	if	(ݐ݀ < ݍ < ݍ	and	 < 2,	

(iii)	ܣஶ(݃) ∈ /(ି)(ℝܮ , 2		if	(ݐ݀ ≤ ݍ < 	

We	will	present	the	necessary	background	on	ܪ 	 	and	tent	spaces.	 	In	additional		

results		and	inequalities		regarding		tent		spaces	are	presented		culminating	in	the	duality	

results	of	the	key	ingredient	in	the	proof	of	Theorem	(2.2.1)	(Lemma	3)	is	proved,	and	an	

interpolation	 	 	 	 theorem	 for	 derivatives	 ofܪ-functions	 at	 the	 points	 of	 an	 	'lattice-ߟ'

follows	almost	as	a	by-product.	contains	the	proof	of	the	sufficiency	of	conditions	(i)-(iii)	

of	 Theorem	 (2.2.1).	 	 This	 could	 be	 read	 immediately	 after.	 	 The	 necessity	 of	 the	

conditions	is	shown.	An	interesting	ingredient	of	the	proof	(not	in	the	original	proof)	is	

the	 use	 of	 Khinchine's	 inequalities.	 The	 main	 result	 and	 some	 related	 results	 are	

discussed.For	now	we	will	describe	'discrete'	or	dyadic	versions	of	the	conditions	(i),		(ii)	

and	(iii)	of	Theorem	(2.2	.1).	The	equivalence	between	these	two	versions	will	come	out	

in	the	proof	of	the	theorem	

A	dyadic	 interval	 is	one	of	 the	 form	(݉2ି, (݉ + 1)2ି]	 ,	where	 	݉	 	 and	 	݇	 	 are	

integers.	 	 	A	 	dyadic	 	cube	 	ܳ	 	 in	 	ℝ	 is	a	 	cube	 	of	 	 the	 	 following	 	 form:	 	 there	 	 	 is	 	an	

integer	 	݇	such	that	 	ܳ	 is	a	product		of	dyadic		 intervals	 	of	 length		2ି .	 	 	The	set	of	all	

dyadic	 cubes	 of	 sidelength2ିwill	 be	 denoted	 	 	 ∆	 	 and	 the	 set	 of	 all	 dyadic	 cubes	 is	

denoted	 	 ∆	 .	 Then	 the	 cubes	 of	 	 ∆	 are	 disjoint.	 For	 each	 	 ܳ ∈ ∆	 	 	 	 	 letܴ(ܳ) = ܳ ×

(ଵ
ଶ
݈(ܳ), ݈(ܳ)] ⊆ ℝା

ାଵ,	where	݈(ܳ)	is	the	sidelength	of	ܳ.	Then	clearly		{ܴ(ܳ):ܳ ∈ ∆}	is	a	

disjoint	cover	of		ܷ = ℝା
ାଵ	.The		discrete		version		of	Theorem		(2.2.1)	is	then		obtained		

by	 replacing	 	 integrals	 	 over	 	 Γ(ݐ)	 with	 sums	 over	 	 those	 ܴ(ܳ)	 which	 meet	 the	 line	

,ݐ)} :(ݕ ݕ > 0},	with	a	 similar	adjustment	 for	 	 integrals	over	ܤ.	The	discrete	versions	of	

(i)-(iii)			are	then	

(݅’)	sup ൝ ଵ
|ொ|
∑ ቈ

ఓቀோ൫ொᇲ൯ቁ

(ொᇲ)శ
ଶ/(ଶି)

݈(ܳᇱ): ܳ ∈ ∆ொᇲ⊆ொ
ொ∈∆

ൡ	is	finite,	

(݅݅′)	the	function		ݐ → ൭∑ ቈ
ఓቀோ൫ொᇲ൯ቁ

(ொ)శ
ଶ/(ଶି)

ொ⊆ொ
௧∈∆

൱
ଵି/ଶ

	belongs	to		ܮ/(ି),	
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(݅݅݅′)	the	function	ݐ → supொ⊆ொ
௧∈∆

ఓ൫ோ(ொ)൯
(ொ)శ	belongs	to	ܮ/(ି).	

We		take		as	our		definition		of	ܪ(ܷ)	the		definition		by	Fefferman			and		Stein		in	

[76].	We	 are,	 however,	more	 interested	 	 	 in	 certain	 equivalent	 deϐinitions.	 	 These	 are	

summarized	 in	 Theorem	 (2.2.2)	 below.	 In	 order	 to	 state	 that	 theorem,	 we	 introduce	

some	 notation.	 If	 ݆ = (݆ଵ, ݆ଶ, . . . , ݆)	 	 is	 an	 ݉-tuple	 of	 integers	 with	1 ≤ ݆ ≤ ݊ + 1,	 let	

ݑܦ = ߲ݔ߲)/ݑభ߲ݔమ … 	(ݔ߲	 	 where	 	 	ାଵݔ denotes	ݕ.	 	 The	 	 ݉-fold	 	 gradient	 	 	 	 ߘ
ݑ	

denotes	 	 the	 tensor	 	 ,ݑܦ) ܬ ∈ 	 {1,2, . . . , ݊ + 1})	 	 with	 	 ଶ|ݑߘ| = ∑ หܦݑห
ଶ

 .	 Here	 	ݑߘ

simply	means			ݑ.	Thus,	if	ߚ 	is	the	number	of	occurrences			of	݇	in		the		݉-tuple	ܬ,then	

ݑܦ = ଶ|ݑߘ|		and	ݑఉܦ = ∑ !
ఉ!|ఉ|ୀ หܦఉݑห

ଶ
,	

Where	ߚଵ! !ଶߚ 		!ାଵߚ…

For	݉ ≥ ݐ		and	ܷ		in		harmonic	ݑ,1 ∈ ℝ ,	define		ܵ(ݐ)ݑ = 	conform	To		.(ݐ)(|ݑߘ|ݕ)ଶܣ

with	the	usage	of	[76]	we	let	ܵݑ = ଵܵݑ		and	(ݐ)∗ݑ = 	.(ݐ)(ݑ)ஶܣ

Theorem  (2.2.2) [69]:	

	For	ݑ	harmonic	in	ܷ	the	following			are	equivalent:	

(i)		ݑ	 ∈ ܪ ;	

(ii)		lim௬→ஶ ,ݔ)ݑ (ݕ = 0and	ܵݑ ∈ (ℝܮ , 	;(ݐ݀

(iii)	 for	 	 	 some	 	 	 ݉ ≥ 1,	 	 lim௬→ஶห∇୩ݔ)ݑ, ห(ݕ = 0,	 	 for	 all	 0 ≤ ݇ < ݉,	 	 	 and	 	 	 ܵݑ ∈

(ℝܮ , 	;(ݐ݀

(iv)	same	as	(iii)	but	for	every	݉ ≥ 1;		

(v)		ݑ∗ ∈ (ℝܮ , 	.(ݐ݀

As	usual	ܮdenotes		the		Lebesque		class	of	functions		with	integrable	p-th		power	

and	dt	denotes		n-dimensional			Lebesque		measure		on	ℝ	

Most	of	 the	 implications	 in	Theorem	(2.2.2)	 can	be	 found	 in	 [76].	Certainly	one	

can	obtain	the	equivalence	of	(i),	(ii)	and	(v).	

				To	get	(ii)⟹(iv),	we	make		the		following		observations:	

,ݔ)௦ݑ	(1) (ݕ = ,ݔ)ݑ ݕ + ݏ	as		zero	to	sets	compact	on	uniformly	converges	,	(ݏ → ∞		and	

hence		all	∇୩ݔ)ݑ, (ݕ → 0	as	ݕ → ∞;	

,ݔ)ݑߘ|		(2) ଶ|(ݕ ≤ ଶିݕܥ ∫ ,ݐ)ݑߘݏ| (௭)ݏ݀ݐିଵ݀ିݏଶ|(ݏ .	

Multiplying		 	by		ݕଶିିଵ	 	 in	 	(2),	 	 	 integrating		 	 	over	 	 	Γ(ݐ),	 	 	and	 	 	applying		 	Fubini's	

Theorem	 	 on	 the	 right	 gives	 ܵݑ ≤ ሚܵݑ;	where	 ሚܵݑ	 is	 the	 same	 as	 	ݑܵ but	 defined	 	with	
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respect	 	 to	 cones	 	Γ෨(ݐ)with	 	 strictly	 	 larger	 	 aperture	 	 	 than	 	Γ(ݐ).	 	We	 then	 invoke	 the	

well-known	fact	that		ܵݑ ∈ ܮ 	is	independent			of	aperture			[72,76,85].	

To	 get	 (iii)	⟹	 (ii),	 the	 approach	 in	 [85]	 (showing	 that	݃(݂)(ݔ) ≤ 	(ݔ)(݂)݃ାଵܥ for	

all	݇ ≥ 1)is	easily	modified	to	show	that		ܵ(ݐ)ݑ ≤ 	.	(ݐ)ݑܵାଵܥ

				Implicit	 in	 Theorem	 A	 is	 the	 fact	 that	 the	 quantities	 ு‖ݑ‖ 	 (however	 defined),	

‖ݑܵ‖ ,	‖ܵݑ‖ 	and	‖ݑ∗‖ 	are	equivalent.	In	our	proof	 	of	Theorem	(2.2.1),	then,	 	we	

will	normally		make		use	of	I‖ܵݑ‖ 		with	݉ = ܪon	norm	working	asour		ߚ .	

				Following	Coifman,	Meyer,	 and	Stein	[72],	we	deϐine	the	tent	spaces	 	 ܶ
௦for	0 < ݏ,ݎ ≤

+∞.	We	will	need	to	consider	a	slightly	more	general	context	than	they	do.	Thus	if		ݒ	is	a	

positive	measure	on	ܷ,	finite	on	compact	sets,	and		if	ݎ < ∞,let	

(ݐ)(݂),௩ܣ = ቆන |݂|
(௧)

ቇݒ݀
ଵ/

	

and	

(ݐ)(݂),௩ܥ = ݑݏ
௧∈

ቆ
1
|ܤ|

න|݂(ݖ)|ݕ


 .ቇݒ݀

If	ݎ = ∞,	let	

(ݐ)(݂)ஶ,௩ܣ = v − ess	sup
௭∈(௧)

	.|(ݖ)݂|

In	the		case	where		݀ݒ = 		tent	The	,ݒ		subscript		the		omit		and	[72]		follow	we	,ݕ݀ݔିଵ݀ିݕ

space		 ܶ௦(ݒ)	is	defined		to	be	the		space	of	ݒ-equivalence		classes	of	functions	f	such	that	

(i)		ܣ,௩(݂) ∈ ௦(ℝܮ , ,ݎ		if(ݐ݀ 	ݏ < ∞,	

(ii)		ܥ,௩(݂) ∈ ஶ(ℝܮ , ݎif(ݐ݀ < ݏ = ∞.	

	We	would		like	to	use	the	symbol		 ஶܶ௦ 		satisfying	functions	of	space		the		mean	to	(ݒ)

(i)	 with	 ݎ = ∞,butthis	 would	 conflict	 with[72].So	 instead,	 we	 define ෨ܶஶ௦ 	(ݒ) to	 be	 the	

space	of	functions	݂	with	

(iii)	ܣஶ,௩(݂) ∈ 	.௦ܮ

For	consistency,	we	let		 ෨ܶ௦ = ܶ
௦when		ݎ, ݏ < +∞.			(In		[72],		 ஶܶ

௦ 	is	defined		in	away	that			

makes			it		the			closure			in			 ෨ܶஶ௦ 	of		the			continuous				functions			with	compact	support.)			

One	way	to	view		 ܶ௦(ݒ)		when		ݎ, ݏ < ∞	is	as	a	subset	of	the	weighted	mixed	norm	space	

,ݔ)߮		functions	of		(ݐ݀ݒ݀ݓ)ܮ௦ܮ ,ݕ ܷ		on	(ݐ × ℝ	with	norm	

‖߮‖,௦ = ቈන൬න|߮| ,ݔ)ݒ݀ݓ ൰(ݕ
௦/

ݐ݀
ଵ/௦

,	
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where		ݔ)ݓ, ,ݕ (ݐ = 	߯(௧)(ݔ, 		Then		.(ݕ ܶ௦(ݒ)	consists	of	those		߮	independent			of	ݐ.	Slight	

(and	easy)	modifications		of	results		of	Benedek		and	Panzone		[70]	can	then		be	used		to		

obtain	 	some	 	duality	 	results.	 	Though	not	exactly	 the	 	 	same,	 	 	 this	 	 	 is	essentially	 the	

approach	 	 	 we	 take	 this	 is	 also	 equivalent	 	 	 to	 the	 approach	 taken	 independently	 by	

Harboure,	 Torrea,	 and	 Vivani	 in	 [77].	 Unfortunately,	 they	 have	 chosen	 a	 different	

normalization:	 	 our	 	 ܶ
௦(ݒ)	 in	 their	 	 	 ܶ

௦(ݕݒ).	 	 With	 three	 defendable	 choices	 of	

normalization,	it	is	not	surprising	that	we	have	chosen	two	different	ones.	There	is	also	

an	incompatibility	of	notation:		our		 ෨ܶ௦;	and	theirs		have	two		different		meanings.			

The	appropriate	duality	results	were	proven		(for		ݒ = 	We	[72].		in		(ݕ݀	ݔ݀	ି௧ିݕ

will	need	 	 the	 	corresponding	 	 	results	 	 for	 	 ܶ
௦(ݒ),	Namely,	 	 	 if	 	1 ≤ ݎ < ∞,	1 ≤ ݏ < ∞	,	

then			 ܶ
௦(ݒ)∗ = ෘܶ

ᇲ
௦ᇲ(ݒ),				where			ݎ′		and		ݏ′			are		the		usual		dual		exponents,				that			is,	

′ݎ = ݎ)/ݎ − 1).	We	will	normally	be	concerned	only	with	certain	discrete	measures	ݒ	and	

in	that	case	we	also	need	to	consider	the	case	of	ݎ < 1.	In	our	application	of	these	results	

to	Theorem	(2.2.1)	we	will	need	to	consider		ݎ = ݏ	and		ݍ/2 = ,ݎ		that	so	ݍ/ 	over	range	ݏ

all	of	(0,+∞)	and	(1,+∞),			respectively.	

Our		notations			and		those		of		[72]	and		[77]	do		not		incorporate			the		aperture			ߙ	

of	Γ(ݐ).		Clearly	the	various		ܣ,௩(݂)			depend	on		,	but	the		spaces		 ܶ
௦	do	not.		This	can	be	

proved	using	a	 limiting	argument	applied	to	the	corresponding	 	 	result	 in	[72],	but	we	

will	need	a	stronger	result	which	will	yield	it	immediately	.	

The		major		result		we		will	need		from		[72]	is	the		'atomic			decomposition'				of		

the	spaces	 ܶଵ,	with	ݎ > 1.	Define	a	 ܶ௦-atom	as	a	function		ܽ(ݔ, 	for	ܤ	in		supported	ܷ,	on(ݕ

some		ball		ܤ	in		ℝ ,	and	satisfying	∫ |ܽ|ିݕଵ݀ݕ݀ݔ ≤ ଵି|ܤ| 	.		In	the	case	where	ݎ = ∞,	a	

must	satisfy	sup	|(ݔ, |(ݕ < 	.ଵି|ܤ|

Theorem  (2.2.3) [69]:	

Suppose	݂ ∈ ෨ܶଵ,	where	1 < ݎ ≤ ∞.		Then	݂ = ∑ ߣ ܽ
ஶ
ୀଵ 	where	the	 ܽare	 ܶଵ-atoms,	

the	 	areߣ scalars,	 and	∑หߣห ≤ ‖݂‖ܥ ෨்ೝభ.	 The	 symbol	 	 ‖݂‖ ෨்ೝభ(௩)	 means	 the	 obvious:	 	 the	

	norm-(ݐ݀)ܮ of	 the	 appropriate	 functional	 and	 the	 omission	 of	 	ݒ in	 the	 notation	

means	݀ݒ = 	.ݕ݀	ݔିଵ݀ିݕ Theorem	 B	 is	 incorporated	 in	 Proposition	 2	 ݎ) = ∞)	 and	

Proposition	5	(1 < 	ݎ < ∞)	of	[72].	The	statement		there		of	Proposition		2	mentions		only	

ஶܶ
ଵ 	(which	we	have	not	defined		here)		but	the	proof	 	goes	through		unchanged		for	our	

larger		space		 ෨ܶஶଵ .	
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It	should		be		mentioned			that		many		of	the		proofs		and		the		general		approach	of	

this	section		are	very	close	in	spirit		to	work		of	ܴ.		Rochberg	and	ܵ.	Semmes.	(This	was	

even	 truer	 of	 the	 original	 version	 of	 this	 section.)	 In	 particular,	 there	 are	 close	

connections	with	[82].	In	fact,	the	space	 ଶܶ
ଵ{ݖ}	deϐined		the	same		as	QCM	in	[82],	and	a	

proof		of,	could		have	been		based		on	[82].	

The	case	where		ݏ > 1	of	the	following	proposition	is	equivalent,	via	duality,	with	

Case	(i)	of	Proposition	4.4	of	[77].	

Proposition  (2.2.4) [69]:	

If	 ݏ	 > 0	 	 and	 ߣ	 > max(1,1/ݏ),	 	 then	 	 there	 	 is	 a	 	 constant	ܥ = ,ߣ)ܥ ,ݏ ,ߙ ݊)	 such	

that,	for		any	positive	locally	finite		measure	ݒ	on	ܷ,	

න ቆන ൬
ݕ

ݔ| − |ݐ + ൰ݕ

ఒ
,ݔ)ݒ݀ ቇ(ݕ

௦

ݐ݀ ≤ ܥ න ݐ௦݀((ݐ)Γ)ݒ
ℝℝ

.													(38)	

Proof:		

First	suppose	that	ݏ ≥ 1	and	let	0 < ߰ ∈ ‖߰‖ೞᇲ	with		௦(ℝ)ܮ ≤ 1	.	Then,	defining		

,ݔ)ఒݓ (ݕ 	= 	 |ݔ|)/ݕ] + ߰ఒ	and		ఒ.[(ݕ = ߰ିݕ ∗ ,∙)ఒݓ 	have	we		,(ݕ

න ݔ)ఒݓන(ݐ)߰ − ,ݐ (ݕ


,ݔ)ݒ݀ ݐ݀(ݕ = ܥ න߰ఒ(ݔ, ,ݔ)ݒଶ݀ݕ(ݕ (ݕ
ℝ

	

											= ఈܥ නන ߰ఒ(ݔ, ,ݔ)ݒ݀(ݕ ݐ݀(ݕ
(୲)

				
ℝ

= ఈܥ නܣஶ,௩(߰ఒ)(ݐ)ݒ(Γఙ(t))݀ݐ
ℝ

	

			= ∫ஶ,௩(߰ఒ)ฮೞ൫ܣఈฮܥ ℝݐ௦݀(Γఙ(t))ݒ ൯ଵ/௦																			(39)	

The		proof		of	Stein	[83]		works	as	well	for	the	kernel	ݓఒ(ݔ, ߣ		,(ݕ > 1,		as		for	the		Poisson		

kernel	 .Thus	 ஶ,௩(߰ఒ)ܣ	 ≤ 	is	ܯ	where		߰ܯఈ,ఒܥ the	Hardy-Littlewood	maximal	operator.	

Whence	[83]	ฮܣஶ,௩(߰ఒ)ฮೞᇲ ≤ 	.(38)	yields	(39)	in	߰	over	supremum	the	Taking	ఈ,ఒ,௦.ܥ

Now	fix		ߝ ∈ (0,1)	and	let	(ݖ)ܦ = 	satisfies		ఒݓ	function	The				.(ݖ)ఌܦ

ଵݔ)ఒݓ − ,ݐ ଶݔ)ఒݓ/(ଵݕ − ,ݐ (ଶݕ ≤ 	ఒ,ఌܥ

for	any	points	ݖଵ, ܦଶݖ ∈ ఒ,ఌܥ		and					,(ݖ) 	is	independent	of	ݖ	and	ݐ.	Thus	

ିଵିݕ න 	(ݖ)ఒݓ~	ݕ݀ݔఒ݀ݓ
(௭)

	

(where	~		means		that	 	the	two	quantities		have	ratios		bounded		independently		 	of	ݖ).	
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Substituting	this	average	into	(28)	in	place	of	ݓఒ		we	find	that	

නݓఒ݀ݒ	 ≤	


ఒ,ఌܥ න݂ݓఒିݕିଵ݀ݕ݀ݔ		


	

where	݂(ݖ) = 	gives	(38)	of	side	right-hand	the	on	argument	similar	A			.((ݖ)ܦ)ݒ	

න 	ݕ݀ݔିଵ݀ିݕ݂ ≤	
ഁ(୲)

ఌܥ න݀ݒ		
ഀ

	

providedߚ	is	 strictly	 	 less	 than	 	andߙ	 	 	isߝ chosen	 	 so	 that	 	⋃ :(ݖ)ܦ}	 ݖ ∈ Γஒ(ݐ)} ⊆ Γஒ(ݐ).			

Thus	it	sufϐices	to	show	(38)	for	݀ݒ = ,ߝ		that	Note			.ݕ݀ݔିଵ݀ିݕ	 	to	preassigned	be	can	ߚ

depend	only	on	ߙ.	

Now	suppose		ݏ < 1,	let	݃(ݔ, (ݕ = ,ݔ)݂ ݎ	put	and			௦(ݕ = 	that	show	to	need	We		.ݏ/1

න ቌනݓఒ(ݔ − ,ݐ (ݕ


,ݔ)݃ ቍݕ݀ݔିଵ݀ିݕ(ݕ

ଵ/

≤ ‖݃‖ܥ ೝ்
భ

ℝ
.													(40)	

with	the	 	 ܶ
ଵ-norm	based	on	Γஒ(ݐ).	 	 	Because	 	of	Theorem	 	(2.2.2),	 it	suffices	 to	 find	an	

upper	 	bound	 	 for	 	 the	 	 left-hand	 	 	side	 	of	 	(40)	 	when		݃(ݔ, (ݕ = ,ݔ)ܽ 	,(ݕ 	 	a	 	 ܶ
ଵ-atom.	

Without	loss	of	generality,			we	may	suppose	that	the	atom	ܽ(ݔ, 		with		ܤ	in	supported	is	(ݕ

ܤ = ∫that	and	(0,1)ܤ ܽିݕଵ݀ݕ݀ݔ ≤ 1 .	 In	 this	case	we	divide	the	outer	 integral	 in	(40)	

into	 two	 parts:	 the	 integral	 	ஶܫ over	 |ݐ| > 2	 and	 the	 integral	 	overܫ ‖ݐ‖ ≤ 2.	 Since		

ݔ)ఒݓିݕ − ,ݐ (ݕ ≤ |ݐ|It	when	ఒିݐఒܥ > 2	and	(ݔ, (ݕ ∈ 	that	see	we	,ܤ

ஶܫ ≤ ܥ න ఒ/ିݐ ቌනܽ
ݕ݀ݔ݀
ݕ



ቍ

ଵ/

ݐ݀ ≤ ܥ
|௧|வଶ

	

By	Holder's	Inequality	followed	by	Fubini's	Theorem,	

ܫ ≤ ܥ න න൬
ݕ

ݔ| − |ݐ + ൰ݕ
ఒ

ଶ

,ݔ)ܽିݕ	ݐ݀ (ݕ
ݕ݀ݔ݀
ݕ





ଵ/

ଵିଵ|ܤ2| ⁄ 	

Clearly	

න ൬
ݕ

ݔ| − |ݐ + ൰ݕ
ఒ

ଶ

ݐ݀ ≤ න൬
ݕ

|ݐ| + ൰ݕ
ఒ

ℝ
	ݐ݀

																																																							= ݕ න(1 − ఒି(|ݐ|

ℝ
ݐ݀ = 	ݕܥ
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so	

ܫ ≤ ܥ න ,ݔ)ܽ (ݕ ݕ݀ݔଵ݀ିݕ	




ଵ/

≤ 	ܥ

By	putting		|݂|݀ݒ	in	place	of	ݒ	and	putting		ݎ/ݏ		in	place	of	s	in	(38)	we	obtain	

න൬න|݂(ݖ)|ݕఒ(ݕ + ݔ| − ఒି(|ݐ ൰ݒ݀
௦/

ݐ݀ = නቌܥ න |݂|݀ݒ
ഁ(୲)

ቍ

௦/

	ݐ݀

for	 any	 aperture	 	.ߚ	 From	 the	 fact	 thatݕఒ/(|ݔ − [|ݐ + ఒ(ݕ ≥ ,ݔ)ఈ߯ಉ(୲)ܥ 	we	,(ݕ clearly	

get	 the	 reverse	 inequality	 as	 well.	 This	 shows	 that	 for	 0 < 	,ݎ ݏ < ∞,	 	 	 ௦ܶ
(ݒ)	 is	

independent	of	aperture.	

Proposition (2.2.5) [69]:	

For	 1 ≤ ݎ < ∞	 and	 1 ≤ ݏ < ∞	 	 	 the	 dual	 of	 	 ௦ܶ
(ݒ)	 	 is	 ෨ܶ௦ᇲ

ᇲ(ݒ).The	 pairing	 is	

〈݂, ݃〉 = 	∫ ݒ݀ݕ݂݃ .	

Proof:		

Let	ݏ > 1.	 From	 the	 fact	 that	 	 ∫ ݒ݀ݕ݂݃ = ܥ ∫ ∫ (୲)ℝݐ݀ݒ݀	݂݃ 	 plus	 two	

applications	 of	 Holder's	 Inequality,	 we	 see	 that	 any	 	 ݃ ∈ ௦ܶ
(ݒ)	 defines	 a	 continuous	

linear	functional	on ௦ܶ
(ݒ),	

Conversely,		letܮ	be	a	continuous			linear		functional		on		 ௦ܶ(ݒ).		Let	

(ݐ݀ݒ݀)ܮ௦ܮ = ቄ݂(ݖ, :(ݐ ܷ × ℝ → ℂ: ൫∫(∫|݂(ݖ, |(ݐ ௦/((ݖ)ݒ݀ ൯ݐ݀
ଵ/௦

≡ ‖݂‖,௦ < +∞ቅ.	

Clearly		 ௦ܶ
(ݒ)	embeds		 	 in		ܮ௦ܮ(݀ݐ݀ݒ)		by	the	mapping	݂(ݖ) → 	.(ݖ)(ݐ)(୲)߯(ݖ)݂ 	 	 	 	 	By	a	

result	 of	 Benedek	 and	 Panzone	 [70],	 ∗(ܮ௦ܮ) = 	.ᇲܮ௦ᇲܮ 	 By	 the	 Hahn-Banach	 Theorem	

there	is	a	function		݃(ݖ, (ݐ ∈ ܮ௦ܮ 			such	that	

(݂)ܮ = න න ,ݖ)݃ ݐ݀(ݖ)ݒ݀(ݖ)݂(ݐ
(௧)ℝ

	

with‖ܮ‖ = ‖݃‖ᇲ,௦ᇲ.	By	Fubini's		Theorem	

(݂)ܮ = න݂(ݖ) ିݕ න ,ݖ)݃ ݐ݀(ݐ
|୲ି୶|ழ௬




	(ݖ)ݒ݀ݕ

It	 now	 suffices	 to	 show	 that	 the	 expression	 	 ܲ݃(ݖ)	 in	 brackets	 defines	 a	 bounded	
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operator	 from	 	to(ݐ݀	ݒ݀)ᇲܮ௦ᇲܮ 	 ௦ܶᇲ
ᇲ(ݒ)First	 suppose	 ′ݎ = +∞	 and	 let	 	 ℎ(ݐ) = ݒ −

ݏݏ݁ sup௧∈ ,ݖ)݃ 	(ݐ so	 that	ℎ ∈ ௦ܮ
ᇲ(݀ݐ).	 	Clearly	ܲ݃(ݖ) ≤ 	(ݐ)ℎܯܥ 	 	 	whenever	 	 	 ݖ ∈ Γ(ݐ).				

Thus	ܣஶ,௩(ܲ݃(ݖ) ≤ ฮೞᇲ(ௗ௧)(ݖ)ஶ,௩(ܲ݃ܣฮ	ℎsoܯܥ ≤ ℎ‖ೞᇲ‖ܥ .	

Now	suppose		ݎ′ = 		Then			.′ݏ ௦ܶᇲ
ᇲis	just		{݂: |݂|ݕ	݀ݒ < +∞}	and	

න|ܲ݃|ᇱ



ݒ݀ݕ = න ቮିݕ න ,ݖ)݃ ݐ݀(ݐ
|୲ି୶|ழ௬

ቮ


ᇱ

	(ݖ)ݒ݀ݕ

											≤ ܥ නන|݃(ݖ, ᇲ|(ݐ



	(ݖ)ݒ݀ݐ݀

= 					.	ᇲ,௦ᇲ‖݃‖ܥ

We	see	that		߯(௧)(ݖ)ܲ݃(ݖ)	defines	a	bounded	operator	from	ܮ௦
ᇲܮᇲ(݀ݒ	ݐ݀)	to	itself	when	

ݎ = ∞	 	 and	 when	ݎ = 	.′ݏ Thus,	 by	 another	 result	 of	 [70],	 it	 is	 bounded	 on	 all	 	ᇲܮ௦ᇲܮ

with	1 < ′ݏ ≤ ′ݎ ≤ ∞.	Since	߯(௧)ܲ	is	easily	seen	to	be	self-adjoint,	we	also	see	that	it	is	

bounded	on	ܮ௦ᇲܮᇲ	with		1 ≤ ′ݎ ≤ ′ݏ ≤ ∞	

Now	 take	ݏ = 1.	 See	 [72]	 goes	 through	 in	 the	 weighted	 case	 to	 show	 that	 ܶᇲ
ஶ(ݒ)is	

contained	 in	 the	 dual	 of ܶ
ଵ.	 We	 again	 observe	 that	 a	 bounded	 linear	 functional	

corresponds	 to	 an	 element	 ݃	 of	ܮஶܮᇲ(݀ݐ݀ݒ).	 Again	 we	 need	 to	 show	 that	 	 ܲ݃(ݖ) =

ିݕ ∫ ,ݖ)݃ ௧ି௫|ழ௬|ݐ݀(ݐ 	defines	a	bounded	operator	from		ܮஶܮᇲ 	to ܶᇲ
ஶ.		To	this	end	let		ܤ	be	

a	ball	in		ℝ	and	consider	

1
|ܤ|

න|ܲ݃(ݖ)|ᇲ



(ݖ)ݒ݀ݕ ≤
1
|ܤ|

න න ,ݖ)݃| ᇲ|(ݐ

|୲ି୶|ழ௬

	(ݖ)ݒ݀ݐ݀

=
1
|ܤ|

න න ,ݖ)݃| ᇲ|(ݐ

	 ∩(୲)ℝ
																																		ݐ݀(ݖ)ݒ݀

																																											≤
1
|ܤ|

නන|݃(ݖ, ᇲ|(ݐ



	ݐ݀(ݖ)ݒ݀

																										≤
1
|ܤ|

න‖݃‖ᇲ,ஶ


	ݐ݀

Thus	ฮܥᇲ,௩(ܲ	g)ฮ ≤ ‖݃‖ᇲ,ஶ	

	It	is	not	true	that	the	operator	ܲ	maps		ܮஶܮᇲinto	{݂:	ܣᇲ,௩(݂) ∈ 	''natural	the	Thus	ஶ}.ܮ
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definition	of	 ܶஶ	is,	at	least	for	duality	purposes,	not	the	appropriate	one.	

				We	 	will	 	 need	 	 	 to	 	 identify	 	 	 the	 	dual	 	 of	 	 ܶ
௦(ݒ)	 	 for	 	 a	 	 special	 	 class	 	of	 	ݒ	 	when	

0 < ݎ < 1.	 If	 	{ݖ} is	a	 	 sequence	 	 	 in	 	ܷ,	 	we	 	say	 	 that	 	 it	 	 is	 separated	 	 	 	 if	 there	 	 is	an		

ߝ ∈ (0,1)	such		that		the		balls		ܦఌ(ݖ)		are	disjoint.	The	separation				constant	will	be	the	

largest	 such	 	.ߝ 	When	 	 ݒ = ௭ೖߜ∑ 	 (where	 	௭ߜ denotes	 a	 unit	 	mass	 at	 	,(ݖ 	we	will	write		

ܶ
௦{ݖ}		instead		of		 ܶ௦(ݒ).		Thus,		for1 < ݏ < ∞		and		1 ≤ ݎ < ∞,				we	can	identify	the	dual	

to	 ܶ
௦{ݖ}	 	 	 with	 	 	 a	 	 	 space	 	 	 of	 	 	 sequences	 	 	 (for	 example,	

ܶ
௦{ݖ}∗ = ቄ(ܿ): ൫∫∑ |ܿ|ଶ௭ೖ∈(௧) ൯௦

ᇲ/ଶ
ݐ݀ < +∞ቅ.	In	the	case			where				ݎ ≤ 1		we			have	the	

following.	

Proposition (2.2.6) [69]:	

If	 	ܮ is	 a	 continuous	 linear	 functional	 on	 ܶ
௦{ݖ},	 where	 	 	 ݖ} = ,ݔ) 	{(ݕ 	 is	 a	

separated	sequence		in		ܷ	and		0 < ݎ < 1 < ݏ < ∞,			then	݂ܮ = ܾ(ݖ)݂∑ 		unique	a	forݕ

sequence			{ܾ}		satisfying	

1
ܥ
‖ܮ‖ ≤ ൭ නቆ sup

௭ೖ∈(௧)
|ܾ|ቇ

௦ᇱ

ℝ

൱
ଵ/௦ᇱ

≤ 	‖ܮ‖ܥ

Conversely,	any	sequence	in	 ෨ܶஶ௦
ᇲ{ݖ}	defines	a	continuous	linear	functional	on	 ܶ௦{ݖ}·	

 

Proof.	

Let	 ܾbe	 a	 sequence	 in	 ෨ܶஶ௦
ᇲ{ݖ}.	 (More	 precisely,	 	 ܾ = 	(ݖ)݃ 	 with	 ݃		 in	 that	

space.)	Then	

ቚ݂(ݖ)ܾ ቚݕ = ܥ ቮ න  ݐܾ݀(ݖ)݂
௭ೖ∈(௧)ℝ

ቮ	

																																														≤ ܥ න sup
(௧)

|ܾ|
ℝ

ቌ|݂(ݖ)|
(௧)

ቍ

ଵ/

	

																													≤ ‖݂‖ܥ ೝ்
ೞ{௭ೖ}‖ܾ‖ ത்ಮೞᇲ{௭ೖ}	

The	first	inequality	holds	because	ݎ < 1	so	∑|݂(ݖ)| ≤ (∑ )ଵ/|(ݖ)݂| .	The	second	comes	

from	Holder's			Inequality.	

Now	let	ܮ௦be	a	linear	functional	on	 ܶ௦{ݖ}.			We	clearly	get	a	candidate			for	the	sequence	
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{ܾ}	by	putting	ܾ = ିݕ(݁)ܮ ,	where	݁is	the	function		with	݁൫ݖ൯ = 	a	݂	for	Then,	.ߜ

linear	combination	of		the		݁		we	get	

ܮ =݂(ݖ)ܾ ݕ = ܥ න  ݐܾ݀(ݖ)݂
௭ೖ∈(௧)ℝ

.	

We	need	to	show	that		{ܾ} ∈ ෨ܶஶ௦
ᇲ{ݖ}.	 	It	suffices	to	obtain		norm		estimates		when	ܾis	

zero	 	 except	 	 for	 	 a	 finite	 	 number	 	 of	 	 indices	 	 and,	 	 by	 dilation	 	 and	 	 translation,	 	 	 it	

suffices	to	suppose		b,	is	non-zero		only	if	ݖbelongs		to	the	unit	cube	ܳଵ = (0,1]ାଵin	ℝ .		

We	 consider	 	 now	 all	 subcubes	 	 ܳଵ	 of	 ܳଵ	 which	 have	 	 as	 their	 base	 	 one	 	 of	 the	 	 2	

subcubes		of	(0,1]	obtained		by	the		usual	 	bisecting		of	(0,1].	Similarly,	ܳଶ	are	the	2ଶ	

subcubes	 obtained	 in	 the	 same	way	 from	 all	 the	 	ܳଵ.	 In	 general,	 	ܳ 	 is	 a	 cube	with	 a	

dyadic	cube	of	sidelength		2ି 			at	its	base.		Let	 ܴ
 = ܳ − ⋃ ܳାଵ 	be	the	top	half	of	ܳ .	

Now	each	 ܴ
 	contains	at	most	ܯ		points	of	{ݖ}	 	where		ܯ		is	the	maximum	number	of	

disjoint		ܦఌ(ݖ)		that	will	fit	in	ܴଵ.	We	need		only	multiply		our	estimates		by	ܯ	if	we	make		

them		for	the		special		case	where		each		 ܴ
 	contains		one	point		of	{ݖ}.	

Now	let	݂ ∈ ܶ
௦{ݖ}				and	let	ܿ = 	is		݂	of	norm	the	(2.2.4),	Proposition	by	Then,	.|(ݖ)݂|

equivalent	to	

൭න ቈܿ ൬
ݕ

ݕ + ݔ| − ൰|ݐ
ఒ

௦/

൱
ଵ/௦

	

It	is	clear	that	this	is	equivalent	to	the	same	expression	at	points	{ݖᇱ }				provided	ݖ)ߩ, ᇱݖ )	

is	bounded	away	from	1.	 	Thus,	 	 	without		 	 loss		of	 	generality,	 	 	we		may	suppose		 		{ݖ}

consists	 of	 the	 centres	 	 of	 the	 ܴ
 	 	 We	 index	 them	 	 that	 	 way:	 ݖ 	 is	 the	 centre	 of	

ܴ
Similarly,	 	 index	 	 { ܿ}	 and	 	 { ܾ}.	Without	 loss	 of	 generality,	 	 	we	may	 assume	 that	

ܾ ≥ 0.	

Now,	

 ܿ ܾݕ = ܥ න ܿ ܾ߯ࡽೕೖ(ݐ)
ℝ

	ݐ݀

Where	ࡽ
	is	the	base	of	ܳin	ℝ .	Put	߮(ݐ) = ∑ ܿ߯ࡽೕೖ(ݐ) and	߰ = ∑ ܾ߯ࡽೕೖ(ݐ) .	

Then	the	condition	on	 ܿ 	 (that	 is,	݂ ∈ ܶ
௦{ݖ})	becomes	∫ (∑ ߮ )௦/ℝ ݐ݀ < +∞	and	the	

condition		on	 ܾ 	(the		boundedness			of	ܮ)		becomes	
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න߮߰݀ݐ ≤ ܥ ቌන൭߮


൱
௦/

ቍݐ݀

ଵ/௦

	(߮	)			݈݈ܽ	ݎ݂		

The	 goal	 is	 to	 prove	 	 that	 sup ߰ ∈ ௦ܮ
ᇲ.	 	 (We	 take	 the	 aperture	 	ߙ to	 be	 such	 that	

ݖ ∈ Γ(ݐ)only	 if	ݐ ∈ ࡽ
.)Proving	 this	 will	 require	 us	 to	 select	 ߮	 an	 appropriate	 way.	

Notice	 that	 ߮	 is	 an	 arbitrary	 function	 measurable	 with	 respect	 to	 the	 algebra	ℱ 	

generated			by	{	ࡽ
: ݆ = 1,2, . . . , 2}.		Clearly		ℱ ⊆ 	ℱାଵ.	

Lemma (2.2.7) [69]:	

If	 ߮	 is	 any	 finite	 sequence	 of	 non-negative	 	ℱ-measurable	 functions,	 define	 a	

'stopping	 time'	 as	 follows:	 ݇ଵ(ݐ)	 is	 the	 first	 ݇	 such	 that߮ > 0.	 	 	 Once	 ݇ଵ, ݇ଶ, … , ݇	 are	

chosen	let	 ݇ାଵ(ݐ)		be	the	first	݇	such	that߮(ݐ) > 2߮ೕ(ݐ).		Define	 ߮(ݐ) = ߮(ݐ)	if		݇			is	

one	 of	 the	 ݇,	 otherwise	 let	 	 ߮(ݐ) = 0.	 	 	 	 Then	 	 ߮	 is	 	ℱ-measurable	 and	 there	 are	

constants	ܥ,	such	that,	for	all	ݐ,	

						sup


߮(ݐ) ≤ ൭ ߮(ݐ)


൱
ଵ/

≤ ܥ sup


߮(ݐ)																																													(41)	

and	

			sup


߮(ݐ) ≤ sup߮(ݐ)


≤ 2 sup


߮(ݐ)																																																									(42)	

Proof.	

Since	 for	each	݇	 the	 choice	as	 to	whether	 	 ߮ = 0	or	߮is	made	on	 the	basis	of	

߮ଵ, ߮ଶ, … , ߮ 	which	are	all	 constant	on	 ࡽ	
,	 then	 	 ߮is	 also	 constant	 	on	ࡽ

,	Therefore			

߮is	 	ℱ-measurable.	For	 fixed	ݐ,	 it	 is	clear	 that	 the	sequence	 	 ݇(ݐ)	 terminates	and	the	

last	element,			݇(ݐ)	say,	satisfies	

max ߮(ݐ) = ߮(ݐ) ≥ 2 sup


߮(ݐ)	

for	otherwise	 	 	 an	 	 additional	 	݇ାଵ(ݐ)	 	would	 	have	 	been	 	 chosen.	 	This	 	 gives	 	 (42).	

Clearly		߮(ݐ) > 2ି߮ೕ(ݐ)	by	the	choice	of	݇.	Thus	

൭ ߮(ݐ)


൱
ଵ/

≤ ൫2ି(ିଵ) + 2ି(ିଶ) +⋯+ 2ି + 1൯߮(ݐ) 				≤
2

2 − 1max ߮(ݐ)	

This	gives	(41)	with	ܥ = 2/(2ݎ − 1).	
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To	conclude	the	proof	of	Proposition			2.2.6	let	߮ = ߰௦
ᇲିଵ	and	consider	

න ߮ ߰݀ݐ ≤ ܥ ቆනቀ ߮ቁ
ೞ
ೝ ቇݐ݀

భ
ೞ

																																																				(43)	

From	Lemma	2.2.7	we	have,	for	each	ݐ,	

 ߮(ݐ)߰(ݐ) = ߮(ݐ)௦ ≥ ቀmax


߮ቁ
௦
> 2ି௦ ቀmax


߮ቁ

௦
= 2ି௦max


߰௦

ᇲ 															(44)	

and	

ቀ ߮ቁ
ೞ
ೝ ≤ ቀܥmax ߮ቁ

௦
≤ ቀܥmax ߮ቁ

௦
= max߰௦ܥ

ᇲ 																												(45)	

Using	(44)	and		(45)	in	(43)	we	get	

න2ି௦ ቀmax


߰ቁ
௦
ݐ݀ ≤ ܥ ൬නܥ௦(max߰)௦

ᇲ ൰ݐ݀
ଵ/௦
	

whence	(∫(max ߰)௦
ᇲ ଵ/௦ᇲ(ݐ݀ ≤ 2௦ܥܥ .	This	completes	the	proof	of	Proposition	(2.2.6).	

				It	is	not		hard		to	verify		that		the		operator			ܴఉ,	defined		by	(ܴఉݑ) = 	maps	,(ݖ)ݑఉܦݕ

ܪ 	into		 ଶܶ
{ݖ}	when	{ݖ}	is	a	separated	sequence	(݉ = 	If		.(|ߚ| > 1,		then		the		adjoint			

of		ܴఉ	maps		 ଶܶ
{ݖ}	into	ܪᇲby	duality.	This	gives	us	a	bounded	map	 ఉܵ	from	 ଶܶ

{ݖ}		into		

ܪ ,	for	all	 > 1,	that		will	have	useful	applications.	Unfortunately,	this	argument	breaks	

down	for	 ≤ 1,	so	we	have	to	construct	the	map	we	need	more	concretely.	

				First	we	need	some	facts	about	derivatives	of	the	Poisson	kernel.	The	(un	normalized)	

Poisson	 kernel	 is	 given	 by	 ݔ)ܲ − ,ݐ (ݕ = ݔ|)ݕ − ଶ|ݐ + 	.ଶ)ି(ାଵ)/ଶݕ If	 ,ݔ) 	(ݕ 	 is	 fixed	 at	

,ݔ) (ݕ = 	write	we	,ݖ ௭ܲబ(ݐ),		so		 ௭ܲబis	a		function			on		ℝ
 .	The	harmonic	extension	of	this	

function	 to	 	 ܷis	 ݔ)ܲ − ,ݔ ݕ + 	,(ݕ with	 ,ݔ) 	.ܷ(ݕ Call	 this	 function	 	 ௭ܲబ(ݖ).	 Note	 that	

௭ܲబ(ݖ) = ݖ)ܲ − (∗ݖ = ݖ)ܲ − ఉ൫ܦ	Clearly	.(∗ݖ ௭ܲబ൯ = ൫ܦఉܲ൯(ݔ − ,ݔ ݕ + (ݕ = ൫ܦఉܲ൯(ݖ −

	.(∗ݖ

Lemma  (2.2.8) [69]:	

(a)	ܦఉܲ(ݖ) = ఉܲ(ݖ)(|ݔ|ଶ + 	where	ଶ)ି(ାଵାଶ)/ଶݕ ఉܲis	a	polynomial		of	degree	݉ + 1.	

(b)		ܦఉܲ	is	homogeneous			of	order	−݊ − ݉.	

(c)		If		ߚଵ, ,ଶߚ … , ݊	are	even,	then	ܦఉܲ(0,1) ≠ 0.	

Proof:	
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Because	 differentiation	 lowers	 the	 order	 by	 1	 each	 time,	 (b)	 is	 clear.	 	 It	 is	 also	

clear	 by	 induction	 that	 ఉܲis	 a	 polynomial	of	 degree	 at	most	݉ + 1.	 If	 the	 degree	were	

strictly	less	than	݉ + 1	then		ܦఉܲ	would	have	order	strictly	less	than	−݊ − ݉.	But	ܦఉܲ	

can	have	two	different	orders	of	homogeneity	only	if	ܦఉܲ = 0.		Now	

,ݔ)ܲ (ݕ = (1ିݕ + 	ଶ)ି(ାଵ)/ଶ|ݕ/ݔ|

																															=  ൭
ଵ
ଶ
(݊ + 1)
݉

൱ 
݉!
ܽ!

|ఈ|ୀ

ஶ

ୀ

ଶିݕଶఈݔ 	

where	 	 ଶఈݔ = ଵݔ
ଶఈభݔଶ

ଶఈమ ݔ…
ଶఈ .	 Clearlyܦఉܲ ≠ 0.	 Moreover,	 it	 is	 easily	 seen	 that	 if	

ߚ = ,ଵߙ2) ,ଶߙ2 … ߙ2, , 	of	coefficient	the			of				multiple	non-zero	a	is	ఉܲ(0,1)ܦ		then	ାଵ)ߚ

ଶఈݔ 	and	so	is	not	zero.	

						To	get	an	idea	of	where		 ఉܵ	will	come	from,	we	compute	the	'adjoint'	of	ܴఉ	(in	the	case	

where	 > 1).	Let	{ܾ}	belong	to	 ଶܶ
ᇲ{ݖ},	the	dual	of	 ଶܶ

{ݖ}.	Then	with	݉ = 	,|ߚ|

൫ܴఉݑ൯


ܾݕ = ܾܿݕା නܦ(ݐ)ݑఉ

ℝ
௭ܲೖ(ݐ)݀ݐ	

																														= ܿ න(ݐ)ݑ
ℝ

ܾݕା


ఉܦ
௭ܲೖ(ݐ)݀ݐ	

where(ݐ)ݑ	denotes	the	boundary	values	of	ݑ	and	ܿ	is	the	normalization			constant	in	the	

Poisson	 	 integral	 	 formula.	 	 	 Since	 the	 dual	 of	 ܪ 	 is	 	ᇲunderܪ 	 	 the	 pairing〈ݑ, 〈ݒ =

	∫ ℝݐ݀	ݒݑ ,we	identify	ܴఉ∗൫(ܾ)൯ = ∑ܾݕାܦఉ
௭ܲೖ(ݐ)			(operating			from		 ଶܶ

ᇲ 	to	ܪᇲ).	This	

therefore	 operates	 from	 	 ଶܶ
	 to	 ܪ 	 for	 all	 > 1,	 but	 not	 for	  ≤ 1.	 To	 remedy	 the	

situation	when	 ≤ 1,	define	the	operator		 ఉܵఒ	for	multi-indices			ߚ	satisfying		|ߚ| = ݉ ≥ 1	

and	for	integers		ߣ ≥ 0	by	

ఉܵ
ఒ(ܾ) =ܾݕାାఒ



߲௬ఒܦఉ
௭ܲೖ 	, where		߲௬ = ߲/߲௬																										(46)	

Then		we	have	

Lemma  (2.2.9) [69]:	

Let	ߚ	be	any	multi-index	with	|ߚ| = ݉ ≥ 1,		let	ߣ	be	a	non-negative	integer.	 	Let	

 > 0	and	if	 < 2,	suppose	(݊ +݉ + (ߣ > 2݊.	Then	 ఉܵ
ఒ	is	a	bounded	map	from	 ଶܶ

{ݖ}	

into	ܪ 		whenever	the	sequence	{ݖ}	is	separated.	
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Proof : 

put݃(ݖ) = ఉܵ
ఒ(ܾ)(ݖ) = ∑ ܾݕାାఒ߲௬ఒܦఉ

௭ܲೖ(ݖ) 	and	estimate	

|y∇݃(ݖ)|ଶ	

										≤ ∑ |ܾ|ଶݕାାఒ
 yห߲௬ఒܦఉ∇ ௭ܲೖ(ݖ)ห ∑ ାାఒݕ

 yห߲௬ఒܦఉ∇ ௭ܲೖ(ݖ)ห		(47)	

Each	term	in	the	second	sum	can	be	estimated	using	sub	harmonicity	(and	

௭ܲೖ(ݖ) = ௭ܲ(ݖᇱ )):	

ఉ∇ܦାାఒyห߲௬ఒݕ				 ௭ܲೖ(ݖ)ห ≤ yܥ න ห߲௬ఒܦఉ∇ ௭ܲ(ݓ)ห
ഄ(௭ೖ)

	(48)																							ݒ݀ݑାఒିଵ݀ݒ

Fix	an	ߝ ∈ (0,1)	such	that	ܦఌ(ݖ)	are	disjoint	and	observe	that	 ,ߝ	on	depend	will	ܥ	 ݊, ݉	

and		ߣ	only.		Sum		the		inequality			in		(48)		to		obtain		the		following		upper	bound		for	the	

second		sum	in	(47):	

yܥ නห߲௬ఒܦఉ∇ ௭ܲ(ݓ)ห


ݒ݀ݑାఒିଵ݀ݒ ≤ yܥ නห߲௬ఒܦఉ∇ (ܲ,௬)(ݓ)ห


	ݒ݀ݑାఒିଵ݀ݒ

after	 translation	 	 by	 	.ݔ Now	 	 change	 	 variables	 	 via	 a	 dilation	 ݓ	 → 	ݓݕ and	 	 use	 	 the	

homogeneity		of	derivatives		of	ܲ	to	get	the		upper		bound:	

ܥ																													 න ݒ))ାఒିଵݒ + 1)ଶ + ଶ)ିିభమ(ఒା)|ݑ| ݒ݀ݑ݀

= 	(49)																																				ఌ,,,ఒܥ

Putting		(49)	into		(47)	for	the	second		sum	yields	

|y∇݃(ݖ)|ଶ ≤ ାାఒݕ|ܾ|ଶܥ



yห߲௬ఒܦఉ∇ ௭ܲೖ(ݖ)ห																																						(50)	

To	get	the	ܪ-norm	of	݃	we	integrate	this	over	ret)	with	respect	to	ିݕିଵ݀ݕ݀ݔ	to	obtain	

Aଶ(y∇݃)(ݐ)ݖଶ ≤ ାାఒݕ|ܾ|ଶܥ නห߲ݕఒܦఉ∇ ௭ܲೖ(ݖ)หy
ିିଵ

(௧)

	(51)																	ݕ݀ݔ݀

Taking		ݐ = 0	and	using	homogeneity	again	we	get	

න ห߲௬ఒܦఉ∇ ௭ܲೖ(ݖ)หy
ିିଵ

()

	ݕ݀ݔ݀
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				≤ ܥ න(|ݔ − ଶ|ݔ + ݕ) + ଶ)ିିభమ(ାఒ)yିିଵ(ݕ

()

	ݕ݀ݔ݀

≤ ܥ න(|ݔ|ଶ + ݕ) + ଶ)ିିభమ(ାఒ)yିିଵ(ݕ

()

	ݕ݀ݔ݀

		= |ݔ|)නܥ + ݕ) + ଶ)ିିభమ(ାఒ)yିଵ(ݕ

ஶ



																ݕ݀ݔ݀

≤ ܥ න(|ݔ| + ݕ + ଶିିఒyିଵି(ݕ

ஶ



																				ݕ݀ݔ݀

																			= |ݔ|)ܥ + )ିିିఒනݕ ξିଵ(1 + ଶିିఒି(ߦ

ஶ



															ݕ݀ݔ݀

																																									= |ݔ|)ܥ + 				)ିିିఒݕ

Translating	by	t	and	putting	this	in	(51)	gives	

Aଶ(y∇݃)(ݐ)ݖଶ ≤ |ܾ|ଶܥ ൬
ݕ

ݔ| − |ݐ + ݕ
൰
ାାఒ

	

Raising	this	to	the		ଵ
ଶ
	(2.2.4)yields	Proposition	applying	and	ݐ	in	integrating	power,	

‖݃‖ு
 ≤ ‖(ܾ)‖ܥ

మ்
{௭ೖ}

 																																																																										(52)	

Where	ܥ	depends	only	on		ߝ, ݊, ݉, 	Proposition	apply	to	required	condition	The	.	and	ߣ

(2.2.4)	 is	 that(݊ +݉ + ݊/(ߣ > max(1, 	.(/2 If ≥ 2,	 this	 is	 automatically	 satisfied	

for	݉ + ߣ > 0.If	 < 2,		we		require			(݊ + ݉ + (ߣ > 2݊,			which		is		our	hypothesis.	

				Note		that	 	the	 	duality		argument		 	preceding		 	the		lemma	 	allows		us	to		take	ߣ = 0	

even	when		1 <  < 2,	while	the		lemma		requires		݉ + ߣ > /2) − 	1)݊.	

				The	 	above	 	 lemma,	 	combined	 	with	 	 the	 	results	 	of	 the	 	previous	 	sections,	 	will	be	

enough	to	prove	the	main	theorem.	The	reader	interested	only	in	the	proof	of	that	result	

may	skip	to	the	next	section.	

What	 follows	 is	 an	 interpolation	 theorem	 for	 the	 evaluation	 of	 derivatives	 	 	 of	 -ܪ

functions	at	points	of	an	ߟ-lattice.		The	first	version	of	this	section	actually	required	this	

theorem	in	the	proof	of	Theorem	(2.2.1).	

 



90 
 

Theorem (2.2.10) [69]:	

Let	 	 	ߚ 	 be	 a	 multi-index	 with|ߚ| = ݉ ≥ 1,	 and	 	 	 ݖ} = ,ݔ) 	{(ݕ 	 a	 separated	

sequence	with	separation	constant	ߛ = sup{ߝ > {	disjoint	are(ݖ)ఌܦ:0 > 0.	Define		ܴఉ	on	

ܪ 	 	 to	 sequences	by	(ܴఉݑ) = 	Then	.(ݖ)ݑఉܦݕ 	ܴఉ	 is	 a	bounded	map	 from	 	 ܪ	 	 into		

ଶܶ
{ݖ}	.	If	ߛ	is	sufϐiciently	close	to	1,	then	ܴఉtakes		ܪonto	 ଶܶ

{ݖ}·	

Proof:	

Since	|ܦఉݑ|ଶ		is	subharmonic,			it	follows	that	

หݕܦఉݑ(ݖ)ห
ଶ
≤ ܥ න หݕܦఉݑห

ଶ

(௭ೖ)

ݕ݀ݔ݀
ାଵݕ 	

Summing	on	ݖ ∈ Γ(t),		we	get	

 ห(ܴఉݑ)ห
ଶ

ಉ(୲)

≤ ܥ නหݕܦఉݑห
ଶ

ഥ(୲)

ݕ݀ݔ݀
ାଵݕ ≤ 	(ݐ)ݑܵܥ

Where	 (ݐ)෨߁ = :ఊܦ}⋃ ݖ ∈ 	{(ݐ)ఈ߁ 	 	 	 	 is	 	 a	 	 cone	 	 with	 	 aperture	 	 	 larger	 	 than	 	 	 	ߙ (but	

depending		only	on		ߛ	and		 	ܴఉ	Thus	.(ߙ	 is	bounded.	 	 	To	show	that		it	is	surjective,	we		

show		that		for		an		appropriate				constant			ܣ			the		operator			norm		of		ܫ − ఉܴܣ ఉܵ
ఒ 	tends		

to	 0	 as	 ߛ → 1 −.	 	 Thus,	 for	 large	 enough	 ,ߛ ܴఉ ఉܵ
ఒ 	 will	 be	 invertible,	 	 whenceܴఉwill	 be	

surjective.	

To	this	end,	fix	a	sequence	(ܾ)	in	 ଶܶ
{ݖ}	with	norm	1	and	let	

ܿ = ܫ) − ఉܴܣ ఉܵ
ఒ(ܾ)) = ܾ − ାାఒݕఉܾܦݕܣ



y߲௬ఒܦఉܦ௭ೖ(ݖ)	

Note	that	

߲௬ఒܦଶఉ
௭ܲೖ൫ݖ൯ = ߲௬ఒܦଶఉܲ(0,2ݕ) = 	ଶఉܲ(0,1)ܦଶିିఒ߲௬ఒି(ݕ2)

So	 that	 if	 ܣ = 2ଶାାఒ/߲௬ఒܦଶఉܲ(0,1),	 then	ݕܣݕାାఒ߲௬ఒܦଶఉ
௭ܲೖ൫ݖ൯ = 1	 when	 ݇ = ݆.		

Taking	this	value	of	ܣ,		we	get	

ܿ = ାାఒݕఉܾܦݕܣ−

ஷ

y߲௬ఒܦఉ
௭ܲೖ(ݖ)	

Notice	 	 	 that	 	 	 this	 is	 almost	 	with	൯ݖఉ݃൫ܦݕܣ−	 	 ݃	 	 as	 in	 Lemma	 (2.2.9).	 The	 	 	 only	

difference	is	that	the	sum	is	over	݇ ≠ ݆	instead	of	all	݇.	Thus	the	same	argument	leading	

to	(50)	(where	the	constant	is	a	multiple	of	(49)),		leads	to	
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ห ܿห
ଶ
≤ ାାఒyݕఊ|ܾ|ଶܥ



ห߲௬ఒܦఉ
௭ܲೖ(ݖ)ห	

where	

ఊܥ = න
ାఒିଵݒ

ݒ)) + 1)ଶ + ଶ)ାభమ(ఒା)ം|ݑ|

	ݒ݀ݑ݀

with ఊܷ = :(ݖ)ఌܦ}⋃ ݖ ∉ 	be	can	This	disjoint.	being	(ݖ)ఌܦ	on	based	is	argument	.The	ఊ(݅)}ܦ

arranged	by	selecting	any	ߝ ∈ (0,1),	say	ߝ = ଵ
ଶ
	and	then	requiring	ߛ > 	to	hard	not	is	It	.ߝ

verify	that	 ఊܷ → ∅as	ߛ → 1 −,		so	that	ܥఊ → 0			as	ߛ → 1 −.	Thus	

ห ܿห
ଶ
< ାାఒyݕఊ|ܾ|ଶܥ



ห߲௬ఒܦఉ
௭ܲೖ(ݖ)ห	

Now	 we	 sum	 over	 ݖ ∈ Γ(ݐ)	 	 obtaining	 the	 discrete	 version	 of	 (51).	 	 Using	 the	 same	

argument	as	at	 the	beginning	of	 	 this	 	proof,	 	we	can	bound	 	∑ | ܿ|ଶ௭ೕ∈(௧) 	 	by	the	right-

hand	side	of		(51)		with		an	additional		factor		of		ܥఊ		Following		the		same	argument		that		

leads		from		(51)	to	(52),		we	get	

ฮ( ܿ)ฮ
మ்
{௭ೖ}

≤ ఊܥܥ
/ଶ‖(ܾ)‖

మ்
{௭ೖ}

 	

so	that	 	ฮܫ − ఉܴܣ ఉܵ
ఒฮ ≤ ఊܥܥ ,	and		this	 	tends	 	to		zero		as		ߛ → 1 −	(because	ܥ	does	not	

depend		on	ߛ).	

Let		ݑ	 ∈ ܪ .			Then			ܦఉݑ	is		harmonic			in		ܷ	for		any		multi-index			ߚ	and		so,		by	

Lemma	(2.2.8)	of	[76],	we	have	

หܦఉݑ(ݖ)ห

≤ ܥ

1
(ݖ)ܦ

න หܦఉݔ)ݑ, ห(ݕ


(௭బ)

	ݕ݀ݔ݀

whereܥ	depends		on	the		radius		ߝ	of	ܦఌ(ݖ)		and		on	ݍ.	From	this	we	get	

නหܦఉݑ(ݖ)ห

ߤ݀ ≤ ܥ න

1
(ᇱݖ)ܦ

න หܦఉݔ)ݑ, ห(ݕ


(௭ᇲ)

	(ᇱݖ)ߤ݀ݕ݀ݔ݀

																									≤ ܥ නหܦఉݔ)ݑ, ห(ݕ




	ݕ݀ݔିଵ݀ିݕ((ܼ)ܦ)ߤ

																														= ܥ නหݕܦఉݔ)ݑ, ห(ݕ




ିିݕ((ܼ)ܦ)ߤ ݕ݀ݔ݀
ݕ 	
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where	 	݉ = 	Since.|ߚ| 	 l|ݕܦఉݑ| ≤ 	,ଶ|ݑߘݕ| 	 	 it	 follows	 that	 	|ݑߘݕ| 	 lies	 in	 	 ଶܶ/
/ ,	

with	norm	at	most	ݑ‖ܥ‖ு
 .		Thus,		in	order		to	get	∫ |ݑఉܦ| ≤ ு‖ݑ‖ܥ

 ,		it	suffices	to	have	

	ିିݕ൯(ݖ)ܦ൫ߤ in	 ቀ ଶܶ/
/ቁ

∗
= ෨ܶ

ଶ/(ଶି)
/(ି)	when	ݍ ≤ 2.	This	 is	 exactly	parts	 (i)	 and	 	 (ii)	of	

Theorem			(2.2.1)	and	the		ݍ = 2	case	of	(iii).	

						Suppose	 that	 now	 ݍ > 2.	 Observe	 	 that	 sup(௧) |ݑఉܦ|ݕ ≤ ܥ sup෩(௧)|ݑ| = 	(ݐ)∗ݑܥ

provided		Γ෨(ݐ)			has	larger		aperture			than		Γ(ݐ).		This	is	because	

ห(ݖ)ݑఉܦหݕ ≤ ܥ
1

(ݖ)ܦ
න |ݑ|

(௭)

	,	ܿ݅݊݉ݎℎܽ	ݑ	with					,				ݕ݀ݔ݀

which	 	 is	easily	 	proved		on	 	a	single	 	ball,	 	 say	 	,(݅)ܦ	 	 	and		obtained		 	 for		all	(ݖ)ܦ	 	by	

translation		in	ݔ	and	dilation.		Now,	with	݃(ݖ) 	= ିିݕ൯(ݖ)ܦ൫ߤ ,	

නหܦఉݑห

ߤ݀ ≤ ܥ නหݕܦఉ(ݖ)ݑห





	ݕ݀ݔଵ݀ିݕ(ݖ)݃

																																		≤ ܥ න නหݕܦఉ(ݖ)ݑห


(௧)ℝ
	ݐ݀ݕ݀ݔିଵ݀ିݕ	݃

																																																		≤ ܥ න(ݑ∗)ିଶ නหݕܦఉ(ݖ)ݑห


(௧)ℝ
	ݐ݀ݕ݀ݔିଵ݀ିݕ	݃

																											≤ ܥ න(ݑ∗)ିଶܵ(ݐ)ݑଶ

ℝ
	ݐ݀(ݐ)(݃)ஶܣ

Since	 	∗ݑ and	 ܵݑ	 belong	 to	 	whenܮ ݑ ∈ ܪ ,	 it	 follows	 that	 	 	ଶ(ݑܵ)ିଶ(∗ݑ) 	 	 belongs	

toܮ/,	 	 whence	 (݃)ஶܣ ∈ 	/ିisܮ a	 sufficient	 condition.	 	 This	 is	 the	 rest	 of	 (iii)	 of	

Theorem	(2.2.1).	

One	 technical	 tool	 we	 shall	 need	 for	 the	 proof	 is	 Khinchine's	 Inequality	 (see,	 for			

example,	 [77]).	 Let	 	 	ݎ denote	 the	 	 ݊th	 Rademacher	 function,	 that	 is,	 (ݐ)ݎ = (−1)if		

݇2ି ≤ ݐ < (݇ + 1)2ି		where		݊ ≥ 1, 0 ≤ ݇ < 2	are	integers.	Khinchine's	Inequality	is	

the	following:		for	any	 > 0	there	exist	constants	ܽ		and	ܤ	such	that,	for	any	sequence	

of	scalars	{ܿ},	

ܽ ቀ|ܿ|ଶቁ
/ଶ

≤ න ቚܿݎ(ݐ)ቚ


ଵ



ݐ݀ ≤ ܤ ቀ|ܿ|ଶቁ
/ଶ
	

In	 	 order	 	 to	 	 ϐinish	 the	 	proof	 	of	Theorem	(2.2.1),	 let	ߤ	 	be	 	 a	positive	 	measure	 	 	 on		
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ܷ	satisfying	

නหܦఉݑห

ߤ݀ ≤ ு‖ݑ‖ܥ

 						, ݑ	ݎ݂ ∈ ܪ 																																											(53)	

Let	ݑ	be	set	equal	to	 ఉܵ
ఒ(ܾ)	for	some	(ܾ) ∈ ଶܶ

{ݖ}	and	some	separated			sequence	{ݖ}.		

Then	by	Lemma	2.2.9	and	(53)	we	get	

න ቚܾݕାାఒ ߲௬ఒܦଶఉ
௭ܲೖቚ


ߤ݀ ≤ ‖(ܾ)‖ܥ

మ்
{௭ೖ}

 																								(54)	

Now	if	each	ܾis	replaced	 	 	by	ܾݎ(ݐ)	 	 for	 fixed	ݐ ∈ [0,1),	 the	right-hand	side	of	(54)	 is	

unchanged.			We	can	then	integrate	the	resulting	equation	in	ݐ	and	use	the	lower	bound	

in	Khinchine's	Inequality	to	obtain	

ܽන൬หܾݕାାఒ߲ఒܦଶఉ
௭ܲೖห

ଶ
൰
/ଶ

ߤ݀ ≤ ‖(ܾ)‖ܥ
మ்
{௭ೖ}

 																	(55)	

Recall	 that	߲௬ఒܦଶఉܲ(0,1) ≠ 0.	By	 continuity,	 there	are	an	 	 ߝ > 0	and	a	 ߜ	 > 0	such	 that			

߲௬ఒܦଶఉܲ(0,1) > 	lower	common	a	get			we	translation	and	homogeneity	By		ఌ(݅).ܦ			on		ߜ

bound	for	|ݕାଶାఒ߲௬ఒܦଶఉ
௭ܲೖ(ݖ)|	on	ܦఌ(ݖ)Call	this	lower	bound	ߜ.	From	(55)	we	get	

ܽߜ
න൭|ܾݕି|ଶ



߯ഄ(௭ೖ)൱
/ଶ

ߤ݀ ≤ ‖(ܾ)‖ܥ
మ்
{௭ೖ}

 	

We	 assume	 that	 	 	{ݖ}	 has	 separation	 constant	 at	 least	 	ߝ so	 that	 	(ݖ)ఌܦ are	 disjoint,	

whence	

|ܾ|


ݕ
ିߤ(ܦఌ(ݖ)) ≤ ‖(ܾ)‖ܥ

మ்
{௭ೖ}

 	

where	theܽ	and		ߜℊ	have	been	absorbed	in	the	constant		ܥ.	Putting		|ܾ| = ܿ	we	get	

ܿ


ݕ
ିିߤ൫ܦఌ(ݖ)൯ݕ ≤ ‖(ܿ)‖ܥ

మ்



{௭ೖ}

																																					(56)	

for	any	positive	(ܿ) ∈ ଶܶ/
/{ݖ}	The		inequality		continues		to	hold	for	non-positive	(ܿ),				

so		we		conclude		 	that	{ݕ
ିିߤ(ܦఌ(ݖ))}	 	belongs		to		the		dual		of	 ଶܶ/

/{ݖ},	provided	

	{ݖ} 	has	separation	 	 	constant	 	 at	 least	 	 	,Moreover	.ߝ 	 	 its	norm	 	 in	 that	 	dual	depends			

only		on		the		constant			in		(53),		, ,ݍ ,ߣ ݉,		n	and			ߝ,		and		not		on		the	sequence		{ݖ}.		

Note		also		that		݊,݉, , ,݊	on	only	depend	to		chosen	be	can	ߣ		,given		are	ݍ ݉	and	,		and		

	on	only	depends	therefore	(56)	in	constant	The	݊.	and	ߚ	,ߣ	on	only			depended		clearly	ߝ
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, ,ݍ ݊,	 and	 	.ߚ By	 adding	 	 up	 a	 ϐinite	 number	 	 of	 inequalities	 	 like	 (56)	 for	 different		

sequences	 	 	get	can	we	,{ݖ} (56)	 for	arbitrary	 	 	ߝ and	arbitrary	 	 separated	 	 	 sequences		

with	 the	 constant	 	 now	 depending	 	 on	 	andߝ the	 separation	 	 constant	 	 of	 the	 	 new	

sequence.	

Let	 us	 now	 consider	 the	 case	 where	 	 ݍ < 	 and	 ݍ < 2.	 Then	 the	 dual	 of		

ଶܶ/
/{ݖ}	is	 ଶܶ/(ଶି)

/(ି){ݖ},	so	

  ቆ
((ݖ)ఌܦ)ߤ
ݕ
ା ቇ

ଶ/(ଶି)

௭ೖ∈(௧)



ିభమ(ଶି)

∈ ܮ


ష݀(ݐ)																																(57)	

This	 is	 a	 discrete	 version	 of	 part	 (ii)	 of	 Theorem	 (2.2.1).	 We	 need	 only	 show	 that	 it	

implies	the	continuous	version	stated	in	Theorem	(2.2.1)	(ii).	

				Let	ߝ ∈ (0,1)	be	arbitrary	and	let	݃(ݖ) = ିିݕ((ݖ)ఌܦ)ߤ .	Select	a	separated	sequence		

	Then	ܷ.	cover		(ݖ)ఌܦ		the	that	such		{ݖ}

න ଶ/(ଶି)(ݖ)݃

(௧)

ݕ݀ݔ݀
ାଵݕ ≤  න ଶ/(ଶି)(ݖ)݃

ഄ(௭ೖ)

ݕ݀ݔ݀
ାଵݕ

௭ೖ∈(௧)

	

while	

න ଶ/(ଶି)(ݖ)݃

ഄ(௭ೖ)

ݕ݀ݔ݀
ାଵݕ ≤ ܥ sup

௭∈ഄ(௭ೖ)
	ଶ/(ଶି)(ݖ)݃

																																																				≤ ܥ ቆ
((ݖ)ఌᇱܦ)ߤ
ݕ
ା ቇ

ଶ/(ଶି)

	

whereߝ′ ∈ ,ߝ) 1)	is		chosen			so			that		⋃{ܦఌ(ݓ):ݓ ∈ {(ݖ)ఌܦ ⊆ 	namely						,(ݖ)ఌᇲܦ

ᇱߝ = 1)/ߝ2 + 	Thus			ଶ).ߝ

න ଶ/(ଶି)(ݖ)݃

(௧)

ݕ݀ݔ݀
ାଵݕ ≤ ܥ  ቆ

((ݖ)ఌᇱܦ)ߤ
ݕ
ା ቇ

ଶ/(ଶି)

௭ೖ∈(௧)

	

Combining	 this	with	 (57)	 gives	 Theorem	 (2.2.1)	 (ii).	 The	 other	 two	 cases	 of	 Theorem	

(2.2.1)	are	handled	in	a	similar	manner,	part	(iii)	making	use	of	Proposition			(2.2.6).	

		If	 ܮ = ∑ ఉܦఉܥ
|ఉ|ୀ 	 is	 any	 constant-coefficient	 linear	 partial	 differential	 	 	 operator	 of	

pure	order	݉,	it	is	clear		that		the	conditions	(i)-(iii)	of	Theorem	(2.2.1)	are	sufϐicient		for	
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∫ |ݑܮ| ߤ݀ ≤ ு‖ݑ‖ܥ
 ,	 	 They	 	 are	 	 not	 	 necessary,	 as	 the	 example	 where	 	 	 	ܮ is	 	 the			

Laplacian		 	 	∑ ߲ଶ/߲ݔଶାଵ
ୀଵ 	shows.	 	If	we		put		a	 	simple,	 	 	obvious	hypothesis	 	on		ܮ		then		

the		conditions		do		turn		out		to		be		necessary.			Suppose	only	that	there	is	at	least	one	

harmonic	 function	 ݑ ∈ ܪ 	 	 	 with	 	 ݑܮ ≠ 	0on	 	 ܷ.	 Then	ݔ)ܲܮ, (ݕ ≠ 	0,	 where	 ܲ	 is	 the	

Poisson	kernel.	By	homogeneity	and	analyticity	considerations,	every	neighbourhood	of	

(0,1)	contains	a	point	where	ܮଶܲ	is	not	zero.		This	can	be	used	then	in	the	proof	in	place	

of	 the	 stronger	 condition	ܦଶఉܲ(0,1) ≠ 0	 .	 It	 is	 strong	enough	 to	 complete	 the	proof	of	

Theorem	(2.2.1).	

If	ݍ	and		are		given,	 	then		the		conclusions		of	Theorem	(2.2.1)	depend		 	only		on		the	

function	 	 	.ିିݕ((ݖ)ܦ)ߤ It	 is	 clear	 then	 that	 there	 is	 in	 general	 no	 containment	

relationship	between	the	families	

ܥ
, = ൜ߤ: ߤ∀ܥ∃ ∈ |ߚ|∀ܪ = ݉,නหܦఉݑห


ݑ݀	 ≤ ு‖ݑ‖ܥ

 ൠ	

For	different	values	of	݉.	However	,	it	ߤ	is	concentrated	in	a	strip	of	the	form		

,ݔ)} :(ݕ 0 < ݕ < 	or	}ݕ in	one	of	 the	 form	 ,ݔ)}	 0	:(ݕ < ݕ < 	,{ݕ 	 then	ܥାଵ
, ⊆ ܥ

,	 in	 the	

first	case	but		ܥ
, ⊆ ାଵܥ

, 		in	the	second.	

				In	the	case	where	the	dimension	݊	is	1,	another	classical	ܪis	the	one	on	the	unit	disk.	

There	is	no	difficulty	in	obtaining	the	corresponding	result	in	that	case.	In	this	setting	we	

always	get	ܥାଵ
, ⊆ ܥ

,.	

				We	promised	a	proof	of	 the	݉ = 0, ݍ < 	 	case	of	 inequality	(37).	 	We	formally	state	

the	result.	

 

Theorem  (2.2.11) [69]:	

Let	ݍ < 	necessary	A	. and	sufficient	 condition	on	a	positive	measure	ߤ	on	ܷ	 in	

order	that	there	exist	a	constant	ܥ > 0	with	

න|ݑ|݀ߤ ≤ ு‖ݑ‖
 for	all	ݑ ∈ 	(58)																																													,ܪ

is	that	the	function		ݐ → ∫ ,ݔ)ߤ݀ିݕ (௧)(ݕ 	belong	to	ܮ/(ି).	

			Theorem	C	can	be	 found	 in	[86]	where	 it	 is	proven	only	 in	the	case	where	ݍ = 1.	The		

proof	 that	 the	 general	 case	 can	 be	 reduced	 to	 this	 one	 is	 omitted.	 To	 this	writer	 	 the		
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reduction			is	non-trivial,	and		the	proof		presented			here		is	based		on	the	ideas	of	rather		

than		the		arguments		of	[86].	

Proof:	

As	in	other	cases,	the	proof	of	sufficiency	is	easy:	

න ߤ݀|ݑ| = ܿන න ݐ݀	ߤ݀ିݕ|ݑ| ≤ න (ݐ)∗ݑ
ℝ(௧)ℝ

න .ݐ݀	ߤ݀ିݕ
(௧)

	

The	sufficiency	is	now	clear	because	(ݑ∗) ∈ ݑ	/whenܮ ∈ ܪ .	

				The	necessity	seems	to	be	much	more	difficult.	 	We	referred,	because	the	case	where		

݊ = 1	(where	 	 	 complex	 	 	methods	are	available)	 is	 relatively	easy.	Let	us	present	 this	

case	first,	and	then	present			the	proof	for	݊ > 1.	

In	the	case	where	݊ = 1, 		on	݂		function	analytic	an	is	there	if	only	and	ifܪ	to	belongs	ݑ

ܷ = ℝା
ଶ 	with	 	 	Re	݂ = 	ݑ 	 and	 	 sup௬வ ݔ)݂|∫ + ݔ݀|(ݕ݅ < +∞	(the	 classical	definition	of	

analyticܪ).	Now	let	0 < ߮ ∈ ,/(ℝܮ 	be	ܷ		to	extension	integral	Poisson	its	let	and	(ݐ݀

denoted			by	the	same	letter	߮(ݔ, ݃	Re		with	(analytic)	/ܪ	to	belong	݃	Let		.(ݕ = ߮.Then	

݂ = ݃ଵ/ 	belongs	to	ܪ 	(where		the		principal	branch		of	the		root		is	taken).		Now	

න߮݀ߤ ≤ න|݃| ߤ݀ = න|݂|݀ߤ ≤ ு‖݂‖ܥ
 = ு/‖݃‖ܥ ≤ /‖߮‖′ܥ ,	

where		the	second		inequality		assumes		(58).	 	Now	express	߮(ݔ, 		of	convolution	a	as	(ݕ

	with(ݐ)߮ 	 	 the	 	 	 Poisson	 	 	 Kernel	 	 	 and	 	 	 exchange	 	 	 integrals	 	 	 in	 	 the	 	 	 expression	

∫ ,ݔ)߮ ,ݔ)ߤ݀	(ݕ 	obtain	to	(ݕ

න ݐ݀(ݐ)ߤ(ݐ)߮ ≤ /‖߮‖′ܥ
ஶ

ିஶ
,																																																											(59)	

Where	

(ݐ)ߤ = ܿଵන
ݕ

ݔ) − ଶ(ݐ + ଶݕ ߤ݀
,ݔ) 	.(ݕ

We	conclude		from		(59)	that		ߤ ∈ (ݐ)ߤ	clearly		But	/(ି).ܮ ≥ ܿ ∫ ଵ(௧)ିݕ 	the	so		and		,ߤ݀

necessity		has	been		shown		in	the	case	where		݊ = 1.	

				The	 	 function	 	ߤ is	 called	 	 the	 balayage	 of	 	 	ߤ and	 	 we	 	 could	 	 add	 	 the	 	 additional	

necessary	 	 and	 	 sufficient	 condition	 	 that	 ߤ	 ∈ 	./(ି)ܮ This	 follows	 	 from	 	 the	 	 above	

proof	 	 (when	 	݊ = 1):,	 	 but	 	 it	 also	 follows	 from	Proposition	 (2.2.4),	 inequality	 	 	 (38),		

with	ݏ = ߣ	and.	ݍ/ = 1,	even		when	݊ > 1	once		Theorem	C	is	proven.	
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				What	we	will	actually	show	is	that	the	following	function	belongs	to	ܮ/(ି).	

(ݐ)(ߤ݀ݕ)ଵܥ = sup൛ߤ(ܤ)/|ܤ|: 	ൟݐ	containing	ball	a	ܤ

It	is	shown		[3]	that		C2(f)		and		A2(f)			have		comparable			ܷ-norms		when	 > 2.		Since	

ଵ(݂)‖ܣ‖ = ฮܣଶ(ඥ|݂|)ฮଶ	and			‖ܥଵ(݂)‖ = ฮܩଶ(ඥ|݂|)ฮଶ 		it	follows	that		‖ܣଵ(݂)‖	and		

	for	comparable	are	ଵ(݂)‖ܥ‖ > 1.	It	is	not		hard		to		see		that	this	continues		to	hold		in	

the		case	where	݂݀ݕ݀ݔ		is	replaced		by	the		measure		ߤ݀ݕ.	Thus,	once		ܥଵ(ߤ݀ݕ)		is	shown	

to	be	in	ܮ/(ି)		the	proof	will	be	finished.		To	simplify	the	notation	we	will	write		̂(ݐ)ߤ		

for		sup൛ߤ(ܤ)/|ܤ|: ݐ ∈ 	.(ݐ)(ߤ݀ݕ)ଵܥof		ൟinstead	ܤ

				As	if	(ߣ + ݊)/݊ > max(2/, 1)	then,	for	any	separated	sequence	ݖ = ,ݔ) ܷℝା	)inݕ
ାଵ,	

the	function	∑ ܾݕାఒ߲௬ఒ ௭ܲೖ ,ݔ) ܪ	has	(ݕ
-norm		dominated			by	the		 ଶܶ

{ݖ}	norm		of	(ܾ).		

From	the	assumption		(58)	we	get	

නหܾݕାఒ߲௬ఒ ௭ܲೖห




ߤ݀ ≤ ܥ ൦නቌ  ܾଶ
௭ೖ∈(௧)

ቍ

/ଶ

൪ݐ݀

/

.																									(60)	

We	can	apply	Khinchine'sInequality		to	(60)	just		as	we	did	to	obtain	

න ቀܾଶܨଶቁ
/ଶ

ߤ݀ ≤ ‖(ܾ)‖ܥ
మ்


 ,																													(61)	

where	ܨ = หݕାఒ߲௬ఒ ௭ܲೖห	 .	We	saw	in	Lemma	2	that	߲௬
ఒܲ(0,1) ≠ 0	and	by	continuity	this	

persists	in	a	neighbourhood			of	(0,1).	Using	this	we	can	easily	see	that	there	is	an	ܽ > 0	

such	that	if	ܤ = ,ݔ) ܨ		then	)ݕߙ > ܥ > 0on	ܤ.			From	this	and	(61)	we	obtain	

න ቀܾଶ߯ೖቁ
/ଶ

ߤ݀ ≤ ‖(ܾ)‖ܥ
మ்


 ,																													(62)	

We	will	 now	 construct	 appropriate	 	 	 	ܤ and	 ܾand	 apply	 (62).	 	 Let	 	 ࣶ 	 	 	 denote	 the	

collection	 of	 maximal	 dyadic	 cubes	 	 ܳ	 such	 that	( ܳ) > 2|ܳ|	 .	 Let	 	 ࣶ = ⋃ࣶ 	 and	 let	

ܧ = ⋃{ܳ: ܳ ∈ ࣶ}.				We	will	show	that	

ݐ → sup ቊ
)ߤ ܳ)
|ܳ| : ܳ	dyadic, ݐ ∈ ܳቋ	

belongs	to	ܮ/(ି).	By	an	observation	of	Fefferman	and	Stein	[75],	this	will	prove	that	̂ߤ,	

belongs	to	ܮ/(ି).	Thus,	there	is	no	harm	in	assuming	that	̂ߤ,	is	this	dyadic	supremum.		

Then	on	ܧ − 2	have	we	ାଵܧ < ܳ	If		2ାଵ.(ݐ)ߤ̂ ∈ ࣶ			let	ݔொ		be	its	centre	and	let	ݕொbe		
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	(ߙ2)/1 	 	 	 times	 its	 side	 length.	 	 	 It	 is	 not	 hard	 to	 verify	 that	 ,ொݔ)} ܳ	:(ொݕ ∈ ࣶ}	 	 	 	 is	 a	

separated	sequence	in	ܷ.		By	assuming	that		ߤ	has	compact	support,	we	may	suppose	this	

is	a	finite	sequence.		Let	(ܾொ)	be	any	sequence	indexed	by	ܳ ∈ ࣶ.		It	is	clear	that	

ቀܾொଶ߯ொቁ
/ଶ

≥ܾொ
߯ீ(ொ),	

whereܩ(ܳ) = ܳ − ⋃{ܳᇱ: ܳᇱ ∈ ࣶ,ܳ′ ⊂ ܳ} = ܳ − ⋃{ܳᇱ: ܳᇱ ∈ ࣶାଵ, ܳ′ ⊆ ܳ}			if	ܳ ∈ ࣶ	

Let	 	us	 	now	 	 index	 	 the	 	ܳ ∈ ࣶ	 	 	 according	 	 	 to	 	which	 	ࣶ 	 	 they	 	belong	 	 to,	 	writing	

ࣶ =	 {ܳ ∶ 	݆ = 1, 2, . . . }	and	ܾொೕೖ = ܾೕ 	.	Then,	from	the	above	and		(62)	we	have	

ܾೕ




൮ߤ൫ ܳ൯ −  ൫ߤ ܳାଵ൯
ொೕ
ೖశభ⊂ொೕ

ೖ

൲ ≤ ܥ ቈනቀܾೕ
ଶ ߯ொೕೖቁ

/ଶ
ݐ݀

/



.						(63)	

	(Note		that∑ ܾொଶ ≤ ∑ܾೕ
ଶ ߯ொೕೖ(ݐ)௭ೂ∈(௧) 	 	because		if	(ݔொ, (ொݕ ∈ Γ(ݐ)	then	ݐ ∈ (ܳ).)	Now	we	

put	ݎ = ′ݎ		andݍ/ = ݎ)/ݎ − 1) = )/ − ܾೕ		set		and		,(ݍ
 = 2(ᇱିଵ).				The	left-hand	side	

of	(63)	becomes	(if	we	write	ܧ෨ = ⋃ ܳ )	

2(ᇲିଵ)ߤ(


(෨ܧ −2൫ᇲିଵ൯ߤ(


ܳ) ∩ 	(෨ାଵܧ

															= 2൫ᇲିଵ൯ߤ൫ܧ෨൯ −2൫ᇲିଵ൯ߤ(


	(෨ାଵܧ

	=2൫ᇲିଵ൯ − 2(ିଵ)൫ᇲିଵ൯ߤ൫ܧ෨൯


	

													= ൬1 −
1

2ᇲିଵ
൰2൫ᇲିଵ൯

)ߤ ܳ)
ܳ

หܳห


	

≥2ᇲ



|ܧ| ≥ ܿ න ᇲߤ̂ 							,		ݐ݀

while	the	right-hand		side	of	(63)	is	

ܥ න൭2൫ᇲିଵ൯ଶ/


߯ாೖ൱
/ଶ

ݐ݀

ଵ/

= ܥ න൭
ߟ
ߟ)ଵିߟ − (ିଵߟ



߯ாೖ൱
/ଶ

ݐ݀

ଵ/

	

where		ߟ/= 2(ᇲିଵ)ଶ/ > 1.	Another	summation	by	parts	makes	this	equal	to	
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.ݐݏ݊ܿ න൭ߟ(߯ாೖ − ߯ாೖశభ)


൱
/ଶ

ݐ݀

ଵ/

= .ݐݏ݊ܿ නߟ/ଶ


߯ாೖ\ಶೖశభ݀ݐ൩
ଵ/

	

																																																																													= .ݐݏ݊ܿ න2ᇱ ቚ߯ாೖ\ಶೖశభቚ ൨ݐ݀
ଵ/
	

																																																							≤ .ݐݏ݊ܿ න ൨ݐᇲ݀ߤ̂
ଵ/
	

Combining	these	two	estimates	gives	

න ݐᇲ݀ߤ̂ 	≤ .ݐݏ݊ܿ න ൨ݐᇲ݀ߤ̂
ଵ/
		,	

or‖̂ߤ‖/(ష)	const.		forߤ	with		compact			support.	The	result	for	arbitrary	ߤ	follows	from	

this	by	an	easy	limit	argument.			Theorem	ܥ	is	now	proven	

Many		of	the		previously		known		cases		were		not		placed		in	the		ܪ(ℝା
ାଵ)		setting	when		

the		results		were		obtained.			It	makes		sense		to	examine		these		cases,		state		the	version		

appropriate			to	this	setting,		and		verify	that		the		results		continue		to	hold.	

Carleson's Theorem:	݉ = 0,  = 	studied	thoroughly	been	has	case	This	.ݍ in	all	settings	

and	there	 is	no	problem	with	 it	here.	 	However,	 for	 further	use	we	will	state	 the	result	

and	sketch	a	proof.	The	necessary	and	sufficient	condition	is	that	

൯ܤ൫ߤ			 = ܤ									ݏ݈݈ܾܽ	݈݈ܽ	ݎ݂										|ܤ|ܥ ⊆ ℝ																																													(64)	

The	necessity	of	this	condition	follows	upon	applying	the	inequality	∫ |ݑ| ߤ݀ ≤ ு‖ݑ‖ܥ
 	

to	 appropriate	 	ݑ (of	 the	 form	 	 ௬ఒ߲ܥ ௭ܲబ 	 with	 ݖ = ,ݔ) ,(ݕ 	ݔ the	 centre	 of	 	ܤ 	 and	 	aݕ

multiple	of	the	radius).	

				The	 sufficiency	 can	 be	 obtained	 by	 the	 following	 argument.	 For	 ߣ > 0,	 	 let	 ఒܧ =

:ݐ} (ݐ)∗ݑ > 	this	that	say	to	it	Suffice	decomposition.	Whitney	a	has	it	open,	ఒisܧ	Since	.{ߣ

means	 	 ఒܧ = ⋃{ܳ:ܳ ∈ ℱ}	 such	 that	 ఒܧ	 ⊆ ⋃ ܥ) ∙ ܳ)∧ொ∈ℱ ,	where	ℱis	a	disjoint	 	 family	of	

cubes	and		ܥ ∙ ܳ	denotes		the	cube	with	the	same	centre		as	ܳ	but	ܥ		times	the	size.	Now,	

with	 ఒܩ = 	 ,ݔ)} :(ݕ ,ݔ)ݑ| |(ݕ 	> 	,{ߣ	 	 	 it	 follows	 from	 the	 definition	 	 of	 	∗ݑ that	 	 ఒܩ ⊆ ఒܧ 			

Thus	

(ఒܩ)ߤ		 ≤  .ܥ)]ߤ ܳ)∧]
ொ∈ℱೖ

≤ |ܳ|ܥ = 	(65)																																				ఒ|ܧ|ܥ

Integrating	 this	 inequality	 with	 	 respect	 	 to	 	 	ߣିଵ݀ߣ gives	 ∫ |ݑ| ߤ݀ ≤ ‖∗ݑ‖ܥ
 	 ,	 Thus		
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(64)	is	sufϐicient.	

						II.	 Duren's	 Theorem:	 ݉ = 0, ݍ > 	The. necessary	 and	 sufficient	 condition	 for	

∫ |ݑ| ߤ݀ ≤ ு‖ݑ‖ܥ
 is	

൯ܤ൫ߤ = ܤ									ݏ݈݈ܾܽ	݈݈ܽ	ݎ݂									/|ܤ|ܥ ⊆ ℝ																																													(66)	

The	necessity	follows	as	in	I	by	applying	the	inequality	to	appropriate	ݑ	(the	same	one).

	 The	 sufϐiciency	 	 follows	 	 from	 	 something	 like	 (65):	write	 ଶೖܩ	 ⊆ ⋃ ܥ) ∙ ܳ)∧ொ∈ℱೖ 	

where		ℱ 	is	the		ℱ	for	ܧଶೖ .					Then	

ଶೖ൯ܩ൫ߤ ≤ ܥ  |ܳ|/
ொ∈ℱೖ

	

and	

නݑ݀ߤ ≤ 2ܥ


ଶೖ൯ܩ൫ߤ ≤ 2ܥ


|ܳ|/
ℱೖ

	

On	the	other	hand,	

න(ݐ)∗ݑ݀ݐ 2ܥ≤


|ܳ|
ℱೖ

	

Expressing	 	 	 {ܳ: ܳ ∈ ℱ}	 as	 	 {ܳ:	݆ = 1,2, . . . }	we	 need	 only	 show	 (with	 ܾೕ = 2|ܳ|)	

that		∑ |ܾೕ |
/

, .	But	this	is	immediate	for	/ݍ > 1.	

Theorem  (2.2.11) [69]:	(Shirokov-Luecking	):	

			݉ > 0,  = ݍ ≥ 2or		 < 	.ݍ 	The		 	necessary	and	sufficient	condition	for	∫ |ݑఉܦ| ߤ݀ ≤

ு‖ݑ‖ܥ
 	is	that	

൯ܤ൫ߤ	 ≤ |ܤ|ܥ ⁄ ା|ఉ| ⁄ ܤ									ݏ݈݈ܾܽ	݈݈ܽ	ݎ݂									 ⊆ ℝ																														(67)	

The	 necessity	 again	 follows	 on	 applying	 the	 inequality	 to	 	ݑ of	 the	 form	߲௬ఒܦఉ
௭ܲబ .	 The	

sufϐiciency	is	obtained			by	the	same	arguments	as	in	[78]:	

ቚݕ
|ఉ|ܦఉݑ(ݖ)ቚ


≤
ܥ ∫ หݕఒ∇ఒݑห


(௭బ)ݕ݀ݔ݀

ାଵݕ
	

wheneverߣ ≤ 	.|ߚ| If	 ݍ > 	, 	 let	 	 ߣ = 0	 	 and	 	 integrate	 	 	 both	 	 sides	 	with	 	 respect	 	 	 to	

ݕ
ି|ఉ|݀ߤ(ݖ),	using	Fubini's		Theorem		on	the		right	to	obtain	

නหܦఉݑห

ߤ݀ ≤ ܥ න|ݑ|ߤ൫(ݖ)ܦ൯ିݕିଵି|ఉ| 	ݕ݀ݔ݀
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										≤ ܥ න|ݑ|ିݕ ିିଵ⁄ 	ݕ݀ݔ݀

													≤ ுು‖ݑ‖ܥ
 	

where	the	second	inequality	is	from	(67)	and	the	last	one	is	Duren's		Theorem	(II).	

If	ݍ =  > 2,		let		ߣ = 1		and	again		integrate	both		sides		with		respect	to	ݕ
ି|ఉ|݀ߤ(ݖ)	and		

use	Fubini's		Theorem		to	obtain	

නหܦఉݑห

ߤ݀ ≤ ܥ න|∇ݑ|ିݕିଵି|ఉ| 	ݕ݀ݔ݀

										≤ ܥ න|ݑ|ݕିଵ 	ݕ݀ݔ݀

																		≤ ுು‖ݑ‖ܥ
 	

where	(67)	is	used	in	the	second	inequality	and	the	Littlewood-Paley				Inequality	in	the		

last.	

				We		saw		that			if		{ݖ}is		a		separated			sequence			in		ܷ	and		ݑ ∈ ܪ 	then	ݕ
|ఉ|ܦఉݑ(ݖ)	

has		 ଶܶ
{ݖ}-norm			less	than		the	ܪ-norm	of	ݑ.	We	also	saw	that	if	the	sequence		{ݖ}	has	

large	 enough	 separation	 constant,	 then	 all	 sequences	 in	 ଶܶ
{ݖ}	 arise	 in	 this	way	 from		

	the	then	'crowded'	sufficiently	is{ݖ}	if	that	surprise	no	as	come	should	It	-functions.ܪ

ଶܶ
{ݖ}-norm	 	 	of	ݕ߲௬ݑ(ݖ)	 	 	 dominates	 the	ܪ-norm	of	 	 	What	.ݑ	 this	means	 is	 the	

following.	Call	a			sequence		{ݖ}	D-dense	if	{ܦఋ(ݖ):		݇ = 1, 2, . . . }	covers	ܷ.	Then	there	is	

a		ߜ > 0	depending			only	on		݉, 	then	dense-	ߜ	is{ݖ}	if	that	such		ߙ	aperture	the	and	

නቌ  ห(ݖ)ݑଶห߲௬ݕ
ଶ

௭ೖ∈(௧)

ቍ

/ଶ

ݐ݀ ≥ ܿනቌ නหݕ߲௬(ݖ)ݑห
(௧)

ቍݕ݀ݔିଵ݀ିݕ

/ଶ

	ݐ݀

																									≥ ுು‖ݑ‖ܥ
 	

With	 this	 inequality	 	 (and	 	 the	 duality	 	 between	 	(ᇲܪ	andܪ	 there	 	 is	 no	difficulty	 in	

showing		that	 	if	 	 	{ݖ} 	is	separated		 	and	 		dense-ߜ	 for		sufficiently		small	 	,ߜ	 	then		the	

operator	 ఉܵ	(with	ߚ = (0, 0, . . . , 0,݉)		 	of	 	 is	surjective.	 	 	That	is,	every	ݑ ∈ ܪ 	 for	 > 1	

has	the	form	(ݖ)ݑ = ∑ ܾݕା߲௬ ௭ܲೖ(ݖ) with	(ܾ) ∈ ଶܶ
{ݖ}.			Moreover,	the	norm	of	ݑ	in	

	by	below	and	above	bounded	isܪ the	 infimum	of	 the	norm	 in	 ଶܶ
{ݖ}over	all	 (ܾ)	 for	

which	this	representation			holds.	
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				The	 proofs	 of	 these	 statements	 are	 essentially	 the	 same	 as	 those	 corresponding	

statements	 about	 Bergman	 spaces	 found	 in,	 for	 example,	 	 	 [78,	 79,	 80].	 In	 fact,	 the	

methods	 in	 [80]	 easily	 give	 very	 general	 sufficient	 conditions	 on	 a	measure	 	ݒ so	 that	

ு‖ݑ‖ ≤ ฮݕ߲௬ݑฮ
మ்
(௩)

.	

In	 [81],	 Shirokov	 actually	 considered	 the	 following	 more	 difϐicult	 problem.	 For	 each	

ݔ ∈ ℝlet	ߤ௫ 	be	a	positive	measure	on	(0,+∞).	Assume	ߤ௫(ܧ)	is	measurable	ܧ ⊆ (0,∞).	

Characterize	those	ߤ௫ 	for	which	

න න|∇ݔ)ݑ, (ݕ)௫ߤ݀|(ݕ
ஶ



൩

/

ݔ݀ ுು‖ݑ‖ܥ≥
 																																																(68)	

(Actually	 in	 [81]	 Shirokov	 took	 ݊ = 1and	 considered	 	 ܪ 	 of	 the	 unit	 disk,	 but	 the	

problems	are	essentially	the	same.)	

Shirikov	had	four	main	conclusions	(see	[81]).		The	ϐirst	was	the	necessary	condition	for	

(68):	

න ௫ߤ 
1
2
� ,ݕ ݔ)/݀ݕ� ≤ ݕܥ

ା

(௫బ,௬బ)

																																												(69)	

for	all	(ݔ, (ݕ ∈ ℝା
ାଵ.	The	second	was	the	equivalence	of	(68)	and	(69)	when	 = ݍ	 ≥

2.	 The	 ϐirst	 is	 a	 consequence	 of	 applying	 (68)	 to	 one	 of	 the	 functions	 ߲௬ఒܲݖ	 and	 the	

second	 is	 the	 known	 result	 discussed	 above.	 	 His	 third	 conclusion	 was	 the	 following	

sufficient	condition	in	the	case	where		2 ≤ ݏ < ݍ < ߝ		exists	there			: > 0	such	that	

න ௫ߤ 
1
2
� ,ݕ ݔ)(ାఌ)/݀ݕ� ≤ ݕܥ

(ାఌ)ା

(௫బ,௬బ)

																																																																	(70)	

for	all	(ݔ, (ݕ ∈ ℝା
ାଵ.	Let	us	show	how	this	can	be	obtained	with	our	methods.		In	order	

for	(68)	to	hold	it	is	necessary	and	sufϐicient	that	for	all	߰ ∈ 	have	we	/(ି)ܮ

නන|∇ݔ)ݑ, ݔ݀(ݕ)௫ߤ݀(ݔ)߰|(ݕ ≤ ‖߰‖ܥ ି⁄

ஶ

ℝ

ு‖ݑ‖
 	

Thus	߰(ݔ)݀ߤ௫(ݕ)݀ݔ	must	be	a	measure	satisfying	(37)	and	so	Theorem	(2.2.1)	applies	

(part	(iii)	to	obtain	the	necessary	and	sufficient	condition	

sup
(௫బ,௬బ)∈(௧)

ݕ
ିି න ௫ߤ(ݔ)߰ 

1
2
� ,ݕ ݔ݀(ݕ� ∈ ܮ ି⁄ (71)																			(ݐ)

(௫బ,௬బ)
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with	a	uniform		bound		on	the		norm.		Let	us	rewrite	this	as	

sup
∋௧

1
|ܤ|

න߰(ݔ)݃(ݔ, ݔ݀(ݕ ∈ ܮ ି⁄



	

where	ݕ	 is	 the	 	 radius	 	of	 	 the	 	 ball	ܤ,	 	 the	 	 sup	 	 is	 over	 	 all	 balls	 	 containing	ݐ,	 	 and	

,ݔ)݃ (ݕ = ௫ߤ ቂ
ଵ
ଶ
� ,ݕ ݕ(ݕ�

ି .	 	 The	 question	 then	 is	 to	 find	 conditions	 on	 ݃	 that	 give	 a	

bound	on	the	ܮ/(ି)-norm	of	 this	 function.	But	 if	we	apply	Holder's	 	 	 Inequality	with	

exponents	sand	s'	with	1 < 	ݏ < )/ − 	get	we		,(ݍ	

1
|ܤ|

න߰(ݔ)݃(ݔ, (ݕ ≤	


൭
1
|ܤ|

න߰௦



൱
ଵ/௦

൭
1
|ܤ|

න ݃(. , )௦ᇱݕ



൱
ଵ/௦ᇱ

	

Since	 	 sup௧∈ ቀ(1/|ܤ|) ∫ ߰௦
 ቁ

ଵ/௦
	 	 has	 	,/(ି)‖߰‖ܥ	most	at	/(ି)-normܮ 	 the	 sufficient		

condition	 	 	 is	 	 that	 	 ∫ ݃(∙, )௦ݕ
ᇲ

 ≤ 	.|ܤ|ܥ 	 Rewriting	 this	 in	 terms	 of	 	 ௫ߤ ,	 using	 ܤ =

,ݔ)ܤ ′ݏ		putting		and		),ݕ = ) + 	.(70)	gives				ݍ/(ߝ

(Shirokov's	fourth	conclusion	in	[81]	is	that	a	sufϐicient	condition	for	(68)	when	ݍ > 	is	

න ௫ߤ 
1
2
� ,ݕ ݔ݀(ݕ� ≤ ݕܥ

ା

(௫బ,௬బ)

																																																												(72)	

for	all	(ݔ, 	(ݕ in	ℝା
ାଵ(or	 rather	 	 the	݊ = 1	version).	 Shirokov's	proof	of	 this	 relies	on	

complex	methods	but	the	result	remains	true	when		݊ > 1	as	the	following	shows	

නቌන|∇ݑ|݀ߤ௫(ݕ)
ஶ



ቍ

/

ݔ݀
ℝ

	

≤ ܥ නቌන|ݕ∇ݑ|ି|∇ݑ|ݕ(ି)݀ߤ௫(ݕ)
ஶ



ቍ

/

ݔ݀
ℝ

	

	≤ ܥ න(ݔ)∗ݑ(ି) ⁄ ቌන|∇ݑ|ݕ(ି)݀ߤ௫(ݕ)
ஶ



ቍ

/

ݔ݀
ℝ

	

																																					≤ ‖∗ݑ‖ܥ
ଵି ⁄ නቌන|∇ݑ|ݕ(ି)݀ߤ௫(ݕ)

ஶ



ቍ

/

ݔ݀
ℝ

	

Now	 if	 ௫ߤ݀ 	 satisϐies	 (72)	 then	 ௫ݒ݀ = ௫ߤ݀(ି)ݕ 	 	 satisfies	 the	 same	 condition	 with	
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	in		Thus,	.	by	replaced	ݍ	with	(68)	for	condition	right	the	exactly	is	This	.	by	replacedݍ

the		last	expression		above,		the		first	factor		is	bounded		by	ݑ‖ܥ‖ு
ଵି/ 	and	the	second		by	

ு‖ݑ‖ܥ
/,	and		(68)	follows.)	

					In	 the	 case	 where	 ݍ < 2with	 ݍ < 	, our	 methods	 give	 the	 following	 	 sufficient	

condition		for	(68):	

න ൮
1
ݕ

න 
௫ߤ ቂ

ଵ
ଶ
� ,ݕ (ݕ�

ݕ 

(ାఌ) ⁄

(௫బ,௬)

൲

( (ାఌ))⁄ (ଶ (ଶି))⁄

ݕ݀
ݕ

ஶ



≤ 	ܥ

or	all	ݔ ∈ ℝ .	This	is	obtained	just	as	in	the		ݍ ≥ 2	case	except	that	Theorem	(2.2.1),	part	

(ii)	is	invoked	instead	of	part	(iii).	

				It	seems	clear	that	the	approach	in	this	section	depends	largely,	if	not	entirely,	on	the	

properties	of	the	kernel	ܦఉܲ.	This	suggests	that	the	whole	theory	could	be	developed	for	

kernels	defined	on		ܺ × ܺ × (0,+∞)		where	ܺ	is	a	space	of	homogeneous	type.	It	is	very	

likely,	then,	that	the	result	corresponding	to	Theorem	(2.2.1)	for	the	ball	inℂ ,	say,	would	

be	very	similar	to	Theorem	(2.2.1).		

	


