Chapter 2
Embedding Derivatives and Dual Inequalities of Hardy and Littewood

A characterization is given of those measures u on U, the upper half plane RZor the unit
disk, such that differentiation of order m maps H? boundedly into LI (1) where 0 < p < o
and 0 < g < oo The caseswhere 0 <p =q < 2 and 0 < g < p are the only two not
previously known .The solution is presented in the n real variable setting R?*? of Fefferman
and Stein [7] with an arbitrary differential monomial of order m replacing complex
differentiation .

Section (2.1):Some Related Dual Inequalities:

Let LP (—m, ) denote the usual linear space of complex-valued "p- th power integrable"”

functions on[—m, ], with the norm given by

1 T 1/p
i = {5 | Ir@eae} a<p <o)

Ifllc = ess sup|fl.

For any complex-valued function w continuous on the open unit disc U in the plane, and

for 0 < p < 1, we write

1 b4 ' 1/p
My(w;p) = {—j IW(pe‘e)IpdG} (1<p <o),
2m)_,
Mo (w; p) = sup|w(pe'?)].
It is familiar that if either w is harmonic and1 < p < o, or w is holomorphic

and1l < p < oo, then M,,(w; p) increases with p. We define

M,(w) = sup M,(w;p) (0 < p <),
0=p<1

the value o being permitted. The class of holomorphic w for which 3t,(w) < o is the
Hardy classH? = HP(U). The class of complex-valued harmonic w for which
M, (w) < oo will be denoted byh? = hP(U).. Clearly

HP c HP,

Forl <p < o,1 < g <o, y > 0,wewrite

I{ 1 1/q
(1 — ) 1M (w; p)d } (0 <p < ),
N, 0y (W) = {{jo P pPER ’
| s (- o) =

the value oo being permitted. This expression 9t,, , ,(w) can be regarded as a measure

p.qy
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of the rate of growth of M,(w;p) when M,(w;p) is unbounded. If M,(w;p) is
increasing, then the condition y > 0 is obviously necessary for the finiteness of
I, 4 (W) except in the trivial case where w vanishes identically. We note in passing
that if w;, w, are continuous on U, then

m;),q,y( wy +wy) < m;),q,y( wy) + m;),q,y(WZ) €Y
where s = min{p, q, 1}. This is an easy consequence of Minkowski's inequality and the
inequality

(a + b)¥ < ak + bk (a,b=0,0<k<1).

We use B to denote a positive constant, depending on the particular parameters
p.q,...,a,[,... concerned in the particular problem in which it appears; A will denote
a positive absolute constant. These constants are not necessarily the same on any two
occurrences.

For any index p satisfying 1 <p <o we define the conjugate index p' by
p'=p/(p—DA<p<o)p =0w({@=1),p =1p =)
In [57] I have proved the following result.’
Theorem (2.1.1) [52]:
Let 1<p<r<owd=1/p—1/r, letf € LP and let u be the Poisson integral of f
on U. If either ¢ = o0,0orp < q < ocoandp > 1, then

mp,q,&(u) < B”f”p
Further, M, (u; p) = o((1 —p)%)asp > 1 —.
By arguments of a standard type involving subharmonic functions (cf. [57]), Theorem

A gives
Theorem (2.1.2) [52]:

Let0<p<r<ow, p<qg<o, §=1/p—1/r, and let¢ € H? . Then N, ,5(¢p) <
BM,(¢), and M, (¢;p) = o((1 —p) % as p—>1-.
Theorem B is a known result of Hardy and Littlewood( [62] ,[11], [54] and [57]) , we
have given a number of new applications of it. The case p > 1 of Theorem (2.1.2)
implies the case p > 1 of Theorem (2.1.1), but the implication is nontrivial, since it

depends on M. Riesz's theorem on conjugate functions.

In this section we show a new inequality that is the dual of Theorem (2.1.1), and

consider a number of related results.

The most general form of this dual theorem involves fractional derivatives, or
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some multiplier transformation akin to a fractional derivative, and we use here a
multiplier transformation introduced in [58] that is particularly suited to harmonic and
holomorphic functions.

Consider first the case of a function ,¢ holomorphic on U, and let ¢p(z) =
Y=o Cnz™ (z € U). We define the multiplier transformation #*¢of ¢, where «a is any

real number, by

$e(2) = Z(n + 1) ¢, z"(z € U).
n=0

This function #%¢ is clearly holomorphic on U. It may be regarded as a fractional

integral (for « > 0) or fractional derivative (for a < 0) of @, and obviously

Fe(#7¢) =P (2)
for all real a, 8. Moreover, for any positive integer m
$70(2) = [(d/d2)z]™ @ (2). 3)
There is also an integral formula for #*@when a > 0, which in its simplest form is
0 1! 1 0
$p(pe’®) = —j (log(=)*"'¢(poe') do. (4)
Ta ), o

This is easily verified by term-by-term integration, using the formulae
1 [e’e)
j (log(1/0)* to™d = j t@ e~ Dtge = (n + 1) Ta. (5)
0 1

A similar definition applies to a (complex-valued) harmonic function on U.

If u is harmonic on U, then it is of the form

e}

u(pe?) = Z cpp™ent, (6)

n=-oo
and we define #%u by
$9pe®) = ) (Inl+1)~cyplen.
n=-oco

It is easily verified that #%u is harmonic on U, that (2) and (4) hold with u in place of

¢, and that, if m is a positive integer, then
§mu(pe®) = [(3/3p), 1" u(pe’®).
It is also obvious that if u is the real part of a holomorphic ¢, then fo.u is the

real part of #%¢.
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We can now state our dual of Theorem A, viz.,
Theorem (2.1.3) [52]:
Let 1<P<r<ow, 1<qg<r y>00=1/p—1/r,and let u be a harmonic

function on U such that 9%, ,,( #777%u) < oo. Then

u € h", and
M, (W) < BR, ., ( #77%u) (7)
Hence also u is the Poisson integral of a function f € L", and
11l < By, ( #7770 ®)

As an immediate example of the applications of Theorem 2.1.3, we may mention the
well-known theorem of Hardy and Littlewood [60] on Fourier coefficients, that if

2 <r < oo, and (¢;)_c<n<w 1S asequence of complex numbers such that

) 1/r
- { > dnl+ 1)T-2|cn|f} <o

n=—oo
then the numbers c,are the Fourier coefficients of a function f € L"", and
Ifll < BS. )
To deduce this, we observe first that the condition S < oo trivially implies that
the series on the right of (6) converges for 0 < p < 1. Further, if u is defined by (6),
and 2 < r < oo, then

o 1/r

r/2
1
i@ = L“‘p)m(z<Inl+1>2|cn|2p2'”'> doy

n=—oo

and this does not exceed BS, in virtue of the inequality

j(l—p)“( anp>dp<BZ<n+1)S“ Ao

which is valid for s>1,a > —1,a, =20 (Hardy and Littlewood [61, Theorem
3]; see also Mulholland [67]). Theorem 2.1.3 (with p =2,q =7,y =1/2+ 1/r) now
shows that if § < oo, then u isthe Poisson integral of a function f satisfying (9),
and this gives the required result.

In the same way, by taking r =2,P = q in Theorem A, writing r in place of p,
and using the reverse of (10), which holds for 0 < s <1,y > —1, we obtain the dual

of (9), namely that if f f € L, where 1 < r < 2, and has Fourier series Y. c,e™?, then
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S < AMIIfIl,. The same case of Theorem B gives similarly the extension of this
result for a function @ € H", where0 < r < 1 (Hardy and Littlewood [60]).

Theorem (2.1.4) [52]:

Let p, g, r satisfy one of the following sets of conditions:

() 0<p<r <omw0<qg=sr;

(i) 0<p<s<r=0,0<q<1;

(iii) 0<p=r <o,0<qg<min{2,r}.

Let alsoy >0,6 =1/p—1/r,and let @ be a holomorphic function on U whose

imaginary part vanishes at the origin, and whose Teal part u satisfies

‘Jtp,q'y(#‘y“su) < o0.Then ¢ € H" and

M, () < BN, ., (7 7%u).
Theorem (2.1.4) is best possible, in the sense that the result is false for all choices of
p,q, 7 satisfying 0 <p <r < 00,0 < g < o, and not covered by one of the conditions
(i)-(iii). Moreover, the result is still false in these cases if we replace u in
R, g, (F 7V ~%) by .

The proof of Theorem 2.1.3 is given in 4. The various cases of Theorem
(2.1.4) require widely diverse arguments, and we begin by proving an easier
result (Theorem 5) in which we replace u by ¢.Theorems 3 and 4 in 5, 6 are
preliminaries to the proof of Theorem 5. The proof of Theorem 2 is completed in 9-11.
We show also in 11 (Theorem 8, Corollary 2) that when y + § is a positive integer k,
then there is a result similar to Theorem 2 with ,# 77 %u = #*u replaced by
p*(0*u/ap").

Theorems 6-8 in 9-11 have applications to Lipschitz spaces of holomorphic
and harmonic functions on the disc, and I hope to consider these in a further section.

We note here that the cases p > 1,q > 1 of some of our results have been
obtained in a more general setting by Taibleson (68] and the author (58] in a
discussion of Lipschitz spaces. However, the area of overlap is small, and the new cases
that we have to consider, where 0 <p < lor 0 < g <1, generally require new
arguments, which are often applicable also to the known cases.

In this section we give the proof of Theorem 2.1.3. For 0 < R < 1 we have

M,.(u; R) = sup {% jnu(Reie)g(e)de}, (11)
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where the supremum is taken over all bounded functions g such that ||g|[,» = 1. Let g

be such a function, and let

[ee]

g(0)~ Z dpen®, v(pei®) = Z dpimen® | u(pei®) = Z ¢, pmlenit

n=—oo n=—oo n=-o

(so that v is the Poisson integral of g). By (5),

[ee]

1 (™ ]
—j u(Re‘e)g(Q)dH = Z ¢, d_, R
2r)_,

n=-—oo

m] (log l/p)y+6 1( Z (In| + 1)y+6c d_ R|n|p2|n|>pdp
n=-—oo
2y+6 1
=m ; p(log1l

1 (" . .
/p)’+51dp {Ej #‘V“Su(pele)v(Rpe‘Q)dH}pdp
-

(the term-by-term integrations being justified by uniform convergence). Herep(log 1/
p)Y*9"1 < (1-p)*9-1 and, by Holder's inequality and the increasing property
Ofﬂ4pl,

< M, (§77*; p)M,y (v; Rp)

1 (" . .
—j #77 %u(pe®)v(Rpei®)dd
TJ g

<M, (#‘V“Su; p)Mpr (v; p).

Hence

1 (" .
‘%]_ u(Re‘e)g(G)dG

1
< Bj (1- p)V*"S‘lMp(#_y_SU; p)Mp'(v:P)dP
0

< By, (77 0u)R, 1 s(0) (12)
= Bmp,q,y(#_y_au)||g||r' = Bmp,q,y(#_y_au)'

by Holder's inequality and Theorem 2.1.1 (note that here 1 <r' <'p<oor' <q' <
0,5 =1/r'—1/p"). On combining (12) and (11) we now obtain (7), and this in turn
gives (8) by standard properties of harmonic functions.

For indexr < 1 the key result is a theorem concerning holomorphic functions.

Theorem (2.1.5) [52]:

Let 0<r<1,y>0, and let ¢ be a holomorphic function on U such that
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Ny gy (F7VP). Thenp € H" and
M, () < BRy 4, (77 P). (13)

A similar result for a different multiplier transformation is proved in [54,
Theorem 5(ii)], but the proof given there has the disadvantage that it is peculiar to the
disc, and does not extend to the half-plane. An alternative proof, using yet another
multiplier transform, applicable both to the disc and half-plane, is given in [55,
Theorem 2]. While preparing this section, 1 have realized that a more elegant and
simpler variant of the argument in [55] is implicit in a section of Hardy and Littlewood
[64], and it seems worth while to give the proof of Theorem (2.1.5) explicitly using
their argument.We require the following lemma (see [55]).

Lemma (2.1.6) [52]:

Let w be a nonnegative subharmonic function on U satisfying the condition
that M;(w;p) <C for0 <p <1, let 0<n <1, andforeachz € U let w,(z) be the
supremum of w on the closed disc withcentrez and radius n(1 — |z|). Then for
0<p<i1
1 (" .
ﬁjnwf;(pe‘e)de < BC.

Consider now the proof of Theorem 2.1.7. Let 0 < R < 1. By (5).

¢(Re?) = Z_VJ1(10g1)7"1#‘qu(Razeie)ada (14)
rJ, = "p '
whence also
1
|p(Re®®)| < B j (1 = p)"-1| 7 $(Ro2e®)|dp. (15)
0

Let 6,=1—-2""(n=0,1,...). Then 1—-0, =0, —0,_; =27", and

Op_1 < 0% < 0y, so that also

sup |#7p(Ro2e®)| < sup | 7P(Roei?)| = p,(6).

On—1S0<0p On—250<0y

Then, by (15),
|p(Re®)| < B " (1—-0) g 7¢p(Ro?e®)|do B ) 277"u,(H).

Since (3} a,)" < Y. al, whenever an a,, = 0and 0 < r < 1, it follows that
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[6(Re®) < B ) 27 (0),
n=1
and therefore also
® s
M @R <8y 2 [ e ae.
n=1 -n
we now apply Lemma (2.1.6) with w(e) = |#7¢(Ro,,1pe?)|” . Since

3
E (0n — On_1)/(Ong1 — E (On — On3)) = Z;

we see that u;, (60) < wy(2), where z = %a{ﬂl(an + 0,_5)e? = 2. Since also

Mi(w; p) < M7 ($7V$; Ropy1) < M7 (F 77 §; 0ns1)
it follows that

| " (0)d6 < AMI($ 5 9na)

Hence also

MI(§iR) =B ) 277" MI(§7 $; 0ns)
n=1
<B) ] " = oy ME(F s 0)do

1
=B [ (1= o) M5 ¢ 00do = B, (§774),
0

and this gives (13).
A more detailed examination of the preceding argument shows that the constant B in
(13) is bounded as r - 1 — for each fixed y. The inequality of (13) is in fact true for

r = 1, as is shown by Theorem 4 below.
An argument exactly similar to that above gives also
Theorem (2.1.7) [52]:
Let 0<r<1, and let @ be a holomorphic function on U such that
N, 11(@") < 0. Then @ € H™ and
M (P) < BR7,1 (") + |9 (0)]".
If we apply this last inequality to the function z w @(pz)where 0 < p < 1, and use the

increasing property of the mean M,. , we deduce that
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1
ME (¢ p) < B j (1 = 0)"~1 MI (pd; po)do + | (O)|"
0

< BM;(p¢’;p) +1¢(0)|" = BM[(z¢"; p) + |$(0)]".  (16)

There is also an inequality corresponding to (5.4) for 1 < r < o, namely,

M, (¢; p) < M (29"; p) + |$(0)]. (17)

To prove this we apply Minkowski's inequality to the relation
, Pa ,
#(pe) = [ 52 (0e)do + 9(0);
o d0
this gives
M,(@:0) < [ M@ 0)do + [6O), (18)
0

and (17) follows from (18) and the increasing property of M,. .
Theorem (2.1.8) [52]:
Let 1<r<o, y>0, and let ® be a holomorphic function on U such that
N1, (F7¢). Then g € H™ and

M, (p) < BN, 1, (F77P). (19)
Moreover, ifr = o, then @has a continuous extension to U.

From Minkowski's inequality and the inequality (15), we have
1
M,(¢;R) < Bj 1 —0) "I M.($77¢;Ro%)do
0

and (19) follows from this and the increasing property of M,..

To prove the second part, it is enough to prove that the integral on the right of (14) is

convergent, uniformly in R, 6. Let 0 < § < 1. Then, exactly as above,

1 1
sup j (log1/0)" 1 $Y¢p(Ro?e®)o do| < Bj (1—-0)""*M,($77Y¢p;0)do,
RO |J§ )

and the required result therefore follows from the finiteness of R, ; , (77 ¢).
Theorem (2.1.9) [52]:
Let p, q, r satisfy one of the following sets of conditions:
(i) 0<p <r<o,0<q=<r;
(i) 0<p £r=0,0<q<1;
(iii) 0<p=7r<o,,0<q <min{2,r}.
Let also y >0, § =1/p —1/r, and let @ be a holomorphic function on U such that
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‘Jtp'q'y(#_y“sqb) < o Then ¢ € H" and

M, () < BN, 4, ($#77%0).

Further, in, case (ii) ¢has a continuous extension to U.

We remark here that cases (i) and (ii) and the cases0<p=r<10< g <
r andl1<p=1r<o,0<q<1 of (iii) depend only on Theorems (2.1.3), (2.1.5)
and (2.1.8), and in their proofs we have invoked none of the deeper theorems of HP-
theory, such as the Hardy-Littlewood "Complex Max" theorem or the Littlewood-
Paley theorems. In contrast, the remainder of case (iii), i.e.,, the case 1 <p =1 < oo,
1 < g < min{2,r}, lies deeper, and we deduce it from Lemma (2.1.10) below. Our only

application of this case is to the proof of the corresponding case of Theorem 2.1.4.

Lemma (2.1.10) [52]:
Letl<k<21<r<o,y>0, and. let @ be a holomorphic function on U such

thatg, € (—m, ), where

1 ok 1/q
gk(9)={j0 (L= ) g7 p(pe™)| dp} :

Then @ € H" and
M, () < Bllgll,-

This is essentially Hirschman's extension of one of the Littlewood-Paley theorems. A
proof, for a closely similar multiplier transformation, is given in [54, Theorem 4], where

references can also be found. The modifications required for are minor.

To deduce Theorem (2.1.9) from these various results we require two simple

lemmas.
Lemma (2.1.11) [52]:

Let0 <p<o0,0<qg<s<o,y>0,and let @ be a holomorphic function on U
such that N, 5., (@) < . Then

mP»S»V(Q)) = BmP»Q»S»V(Q))’ (20)
And M,(@;p) =0((1—p))asp—>1-.

Since MZ (@; 0) increases with o,

-1

-1
jp (1- )71 M@ 0)do = MY(; p) jp (1-0)7do
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= B(1 - p)7 M, (®; p).
Since the integral on the left does not exceed ‘th'q'y(@),and tends to 0 as
p = 1—, this proves both the case s = o0 of (10) and the remark concerning
M,(@; p). The deduction of the case s < o of (10) now follows from the obvious
inequality
N5y (@) = m;,_og,y(mmg,q,y(@)'

Lemma (2.1.12) [52]:

Let 0<p<t<,0<qg<o,y>0,and let @ be a holomorphic function on
Usuch that 9, , (@) < 0. Then

Neqy+1/p-1/¢(@) < By, 4,(D), (21)
By the case g = o of Theorem B applied to z w @(pz),
(1 — p)VP=YEM,(0; p?) < BM,,(9; p),

and this trivially gives (21).
Proof of Theorem (2.1.9):.

Cases (i)-(iii) are covered by the following cases (not entirely mutually

exclusive):
() 0<p<r<o,l<r,0<qgcsr;
(i) 0<p<r<owld<qg<1l<r;
(ii))0<p<r<1,0<q<r;
(iv)1<p=r<21<q=<r;
W)'2<p=r<ow,l<qg=<?2
By virtue of Lemmas (2.1.11) and (2.1.12) we can reduce these cases respectively to
()" 1<p<r<ow,q=r;
(i)"1<p=r<o,q=1;
(ii)"0<p=q=r<1;
(iv)'"1<p=q=r<2;
W)" 2<p=r<ow,qg=2.
Here (it is contained in Theorem (2.1.3), and (ii)", (iii)" are Theorems (2.1.8) and
(2.1.5). Also (iv)" is the case 1 < k =r < 2 of Lemma (2.1.10), and to prove (v)" we
have only to take k = 2 in Lemma 2 and apply Minkowski's inequality.
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Before proceeding to the proof of Theorem 2, we note that Theorem 5(i) and
Theorem B together give a result equivalent to the Hardy- Littlewood theorem on
fractional integrals [64, Theorem 336], namely, thatif 0 <p <r <oo; a=1/p—
1/r, and @ € HP, then #%¢ € H" and

M ($9¢) < B (¢) (22)

To obtain (22), let g = %(p + r). By Theorem B, with the r of that theorem replaced
by q.

BMy,(¢) =2 Ngq1/p-1/q(P) = Rgqa-1/p+1/rF(F*P)),
and we have now only to apply Theorem (2.1.8) (i) with ¢replaced by #“¢.
Theorem (2.1.13) below is a further preliminary to the proof of Theorem (2.1.4). Like
the theorems to be proved in 10, 11, it has also applications to the theory of Lipschitz
spaces.
Theorem (2.1.13) [52] :

Let0 <p<0,0<qg<o,8>0,y>0,and let ¢ be holomorphic on U. Then

(@) BRy g, (6) < Ry 00 (B ($9) < BRy 4, (9),
(iDMp (3 p) = 0((L = p) Masp = 1 —iff M, (§7 P ¢; p) = o((1 = p)7#).

The cases 1 < p,q <o and 0 < p = q <1 of this theorem are known (Hardy and
Littlewood [64], Flett [54]), but the remaining cases appear to be new. Since the new
cases require new arguments, and these arguments give also the known cases, we give
the proof in full.

We observe first that the left-hand inequality in (i) follows from the right-hand
inequality with @ replaced by #f~Y¢, and that the "if" in (ii) follows similarly from
the "only if". Writing @ = y — f(so thaty > a), we see that it is therefore enough to
prove
DRy, q -0 (F9P) < BRy 4, (),(23)

(iv)ifM,(@; p) = o((1 —p)~")asp » 1 —, then

M, ($%p; p) = o((1 — p)*77).
Next, to prove (iii) and (iv) it is enough to prove the cases (a) @ > 0, (b) @ = —1, for
a = —n < 0 and m is the integral part of n + 1, we can prove the result for 0: by m
successive applications of case (b) followed by an application of case (a) with

a=m-—rn.
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We prove first the case g < o of (a), and for this we use a lemma that is a
relatively simple particular case of a theorem on Riemann-Liouvill integrals (see [53]

and references given there),
Lemma (2.1.14) [52]:
Let 1<k <o, u>0,6 >0,andlet f:]0,00][0,00] be measurable. Then

Jy xRS —ku=1 { Jy (x = )%t f(t)dt}kdx < B [ xkTlu1 R () dx. (23)

If in this we take f(t) =0 for 0 <t < 1,f(t) =t %"'h(1—1/t) for t > 1, and put
p=1—-1/x, o=1-1/t, we deduce that if 1<k<o, u>045>0, and

h:10,1[— [0, 0] is measurable, then

1 k 1
[ =gyt { | "o - a)‘“h(a)da} dp<B [ (L=p) R (dp. (24)
0 0 0

Next, we note that the substitution of p?%*1 for p, together with the increasing property

of M, , gives

1
mg,q,y—a(#a‘ﬁ) = -fo 1- p)Q(V‘“)Mg #%p; p)dp.
1
= (qa + 1)] 1- pqa"'l)Q(V‘a)—lMg(,ﬁlaqb; pqa+1)dp
0

1
<B | (1= Mg p)p e (25)

We now distinguish three cases.

Casel.1 <p <, 1<q<o.ByTheorem (2.1.8)

M, (6010) < B | (1= )% My (83 pr)d

p
= 8o | (p— )" M, (93 0)ds, 26)
0

and (23) follows from this, (23), and (24) with k=qu=y—a,d =a,h(o) =
M, (®; o).

Casell. 1<p<o, 0<qg<lor0<g<p<1 ByTheorem (2.1.9)

1
MEG<gip) < B | (1= o) Ml g e
p
= Bp~9¢ j (p — )1 M} ($; 0)do,
0
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and (23) follows from this, (25), and (24) with k =1,u = q(y — a),8 = qa,h(o) =
MY(8; 0).

Caselll.0 <p <1,p < q < o. By Theorem (2.1.15),

1
MEG<gip) < B | (1= ot MY prd

| (0 - P ME (5 0)do, (27)
0

and we now use (25) and (24) with k=q/p,u=qly —a),6 =pa,h(o) =
P
M, (@; o).
To complete the proof of case (a), it remains to prove the case q = 0 of (23) and
the result of (iv). These follow simply from either (26) or (27) accordingas 1 <p < o0
or 0 <p < 1,and we omit the details.([54]).

To prove the case (b) of (iii) and (iv), wherea = —1, we use a further lemma, and we

combine the proof of this lemma with that of another, which we use in II.
Lemma (2.1.15)[52]:
Let® € HP, where 0 <p < . Thenfor 0 <p <1
My(9';p) < B(1— p)~"M, (¢) (28)
and
My (§71¢"; p) < B(L — p) ™', () (29)
Lemma (2.1.16)[52]:

Letf f € LP, where 1 < p < oo, letu be the Poisson integral of f on U, and let
¢ be the holomorphic function on U with real part u and whose imaginary part

'vanishes at the origin. Thenfor 0 < p <1

My(@';p) < B —p) 7 lIfl, (30)

and
My p) < B(1—p)7HIf . (31)
Let0 < p <1, and let C be the circle with centre pe'® and radius %(1 —p).

Then, by the Cauchy integral formula,

|¢"(pe®)| <2(1-p)* suplgl,

and on applying Lemma 1 withw = |@|P ,n = %, C = My ($) , we obtain (28). Further,
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by (3)
Mi(#71¢'; p) < M5('; p) + ME(; p), (32)
where t = min{p, 1}, and (29) follows from (32) and (28).

In the case of Lemma 2.1.10 we have similarly
|¢"(pe'®)| < 2(1 = p)~* suplul,
C

(this is an easy consequence of the integral formula for @ in terms of f,
translated to C). Applying Lemma 2.1.6 withw = [u|? ,7 =% ,C =|Ifll, we thus
obtain (30). Further, by (30) and (17),
My($;p) < B(1—p) 7 Ifl, + 190,
and since |@(0)| = |u(0)| < |If]l, + |@(0)| follows from this and (9.10).
An alternative proof of Lemma 6, using the Hardy-Littlewood maximal theorem,
is given in [65, Theorem 3].
To complete the proof of Theorem 6, we apply (9.7) to z w» @(pz); we obtain
M,($71¢"; p*) < B(1— p) "' My(; p),
and this trivially gives the required results.
The next theorem enables ustoswitch from #'sto ordinary derivatives.
Theorem (2.1.17) [52]:

Let 0<p<o, 0<qg<o, y>0, let k he a positive integer, and let @ be

holomorphic U. Then
BY, 4, (2°0%0) < R0, ($74¢) < B {mp,q,y(zk‘lb(k)) + 0sjshet |9 (O)l}'

(ii) My (b3 p) = o((1 — p) Masp > 1 — iff My (¢®; p) = 0((1 = p) ™).

By (3), #7%¢ is a linear combination®,z®’,...,z¥@®), with coefficients
depending only on k. Further, by (16) and (17),
M (p; p) < BMi(z¢'; p) + |¢(0)]Y, (33)

Where t = min{p,1}. Replacing @ here by@U~b, and multiplying both sides of the
resulting inequality bypU~Dt, we obtain also
. . . . t
sz)(zl 1pU 1);p) < BMZf)(Z]qb(]);p) + |¢(1 1)(0)| (34)
(j =1,2,... ). Combining the inequalities (34) for j =1,...,k with (33), we thus

obtain
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Mi(f ™ d;p) < B {Mé(z%“‘)) + max |60 (0)|f},
and this implies both the right-hand inequality in (i) and the "if" in(ii)
In the opposite direction, we note that [again by (3)] z*@* is a linear
combination of ¢, #71¢, ..., # ¥ ¢ with coefficients depending only on k.
Further, by Theorem 6, we have
Npay(B7D) < Ny gyan—iF5P) < Ny (F5).
for j < k, and this easily implies the left-hand inequality in (i). The "only if" in (ii) is
proved similarly.
Theorem (2.1.18) [52]:
Let 0 <p<o00,0<qg<o00,y>0, and let @ be a holomorphic function on U
whose imaginary part v vanishes at the origin and whose real part is u. Then
() BN, gy (@) <Nyq, (W) <Ny 400 (P),
(i) Mp(¢; p) = o((1 = p)Masp = 1 —iff My (u; p) = o((1 — p)77).
The right-hand inequality in (i) and the "only if" in (ii) are trivial. Of the
remaining results, the case 1 <p < o is essentially known, and can be proved in

several ways, For example, Lemma (2.1.16) with f(8) = u(p, 0) gives
(1 - p)M, (72 ¢; p*) < BM,(u; p),
and the required results (for 1 < p < ) follow from this and Theorem (2.1.13) to

deal with the case 0 < p < 1, it is enough to prove

D) Ny gy+1(@) < By 4, (W),

(i) itM,, (¢; p) = o((1 = p) V) as p » 1 = iff M (¢ p) = 0((1 = p)77).

For, suppose that (iii) and (iv) hold. Then, by (iv), Theorem (2.1.17) (ii), and Theorem

(2.1.13) (ii), the "if" of (ii) holds. To prove that (i) hold, we apply Theorem (2.1.13) (i)
and Theorem (2.1.17) (i) to the function@®, = @ — @(0). Since@, = @, we thus get

Ny (Do) < BNy gyt (B o) < BNy, 141 (D).
and this, together with (iii), gives
mp'q'y((]bo) < Bmp'q'y(U).
Since the imaginary part of @yis v, we thus have N, .. (v) < BN, ,, (u),
and (i) follows from this and (1).

Next, the case 0 < g = p < 1 of (iii) is proved in [56], and the argument given
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there extends to the case 0 < g < p < 1 with only minor modifications.

The case 0 <p < 1,q = o of both (i) and (iii) arc also known (Hardy and
Littlewood  [63];1 see also Gwilliam [59]), but this case is covered by the
following argument, which deals with the case 0 <p < 1,p < q < o0 of (iii) and
the case 0 < p < 1of (iv]. ,reuse the analogue for the disc of Theorem (2.1.17) of [3];

this asserts that if 0 < p < 1, then for% <p<l1

» . p+(1-p) .
My(¢';p) <B(1—p)7? jp_(l_p) M? (u; 0)do. (35)

This inequality (35) immediately implies the case q = oo of (iii) and the result of
(iv). Further, ifp < q < oo, then (35) gives

1 p/q
_ _ o p+5(1-p) q
Mp () <B(1—p)Pi(1—-p) jp—lm—p) Mp (u; 0)do. .
2

Raising both sides to the (q/p)-th power, multiplying by (1 —p)9r+a-1 |
integrating over [%,1) ,and inverting the order of integration in the resulting

integral, we obtain
1
J =P @) dp < B, (0

Since MZ (@’; p) increases with p, we have also

1/3 1
—-1pg4 I, q I,

(1= p) "+ M (¢'s ) dp < BM ('35

0 3

<B 1 (1= p)T*a=tMy(¢'; p) dp

1/3
<BRY .., (W,
and this gives (iii).

It should be remarked that the proofs of the theorems in [55) and [56] to
which we have appealed are formidably long, but their use appears to be
indispensable. We note two corollaries of Theorem (2.1.18).

Corollary (2.1.19) [52]:
The result of Theorem (2.1.13) continues to hold if @ is replaced throughout by

a (complex-valued) harmonic u, this is immediate.
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Corollary (2.1.20) [52]:
Let 0<p<o0<g<o,y >0, let k be a positive integer, let u be a

(complex-valued) harmonic function of the form

X

u(pe'?) = Z cap™ em?, (36)

n=—x
and let D denote d/dp. Then

i) BN, (p*D*w) < N, (F7*w) < B{N, ., (p*D*u) + maxyjj<x-1 ¢},

(i) My ($ ~*u; p) = o((1 = p)™)asp = 1 — iff M, (p*D*u; p) = o((1 — p)77).

We note first that ifu is real-valued and @ is the holomorphic function with
real part u and imaginary part vanishing at the origin, then p*D¥u is the real part
of z¥@¥. Moreover, if uis given by (36), then in this case c_, = c_,for all n, and
B(z) =cog+22y-1¢cpz™ . The result for a real-valued wu therefore follows from
Theorem (2.1.17).

To complete the proof, we have now only to observe that if u is complex-valued and

satisfies (36),vand w are the real and imaginary parts of u, and

[ee]

v(pei®) = Z a,p et w(pei®) = Z b, pin! ginf,

n=—oo n=-—oo
thenmax|j|sk_1{|aj|, |b;|} < max|jj<k_1|c;| - This is easily verified, for in fact

1 — 1
a, =a_p, = E(cn —C.p), b,=b_,= —Ei(cn —C_)(n=0,1,..).

It remains to prove the negative results mentioned in 3 and in virtue of
Theorem (2.1.18) it is enough to prove that the result of Theorem (2.1.9) is false
for all choices of p,q,r satisfying 0 <p <r < 00,0 < g <o, and not covered by
one of the conditions (i}-(iii) of that theorem. To prove this, we have to prove that
the result of Theorem (2.1.9) is false when

(@A) 0<p<r<om, q>Tr,

(b) 0<p<r =00, q>1,

(o) 0<p=r<2 q>r,

d) 2<p=r<oo, q> 2.

Further, by Lemma (2.1.12), the falsity of the theorem in the case (c) isimplied by
that in the case (a), and the falsity in the case (b) isimplied by that in the case

72



(b)) 0<p<r=oo, q>1
Thus we have to find counter examples for cases (a), (b)', (d). For (a) we take
8(z) = (1 - 2)"V/"{(1/2)log[1/(1 — )]},
wherel/q < A < 1/r, and for(b)' we take
0(z) = {(1/2)log[1/(1 - 2)]}' 7,
where l/q < u < 1. The arguments here are of a standard type, and we refer the

reader to [66, 93-96]. Finally, for (d) we take

e}

?(z) = Z n-1/2z2"-1,

n=1
Since ¢ is lacunary and obviously does not belong to H?, it does not belong to
H"for any r. Moreover, a proof similar to that of [66] shows also that 9t, ,,, (§ 77 ¢) <
oo when 2<r <oo,q>2,y>0.
Section (2.2):Embedding Derivatives of Hardy and Lebesgue Spaces:

Let U denote the upper half-space R™ x (0,)in R®*, The reader is invited (indeed
urged) to let n = 1 on first reading. Let H? denote the Hardy space on . Let ¢ be a
positive measure on U and consider the problem of determining what conditions on u
imply |Vul| € L7(u) whenevery € HP. More generally, if B is a multi-index of order m
and DF is the corresponding differential monomial, we have the problem of
determining conditions on u so that Dfu € L9(u) whenever u € HP?. A standard
application of the closed graph theorem leads to the following equivalent problem.

characterize the u for which there exists a constant Csatisfying

q 1/q
<j|Dﬁu| du) < Cllullg» (37)

and. estimate the size of C in terms of u.

In the case where m = 0 (that is, no differentiation takes place in (37) the
problem is solved by the well-known theorem of Carleson [71] whenp = g, and by a
theorem of Duren [74] when q > p. The case where q < p seems to have been a

folklore theorem, at least when n = 1. It can be found stated in [86].

When m > 0 there are two solved cases: p = q = 2 due to Shirokov [83, 84] and
0 <p<q<o due to the author [69]. These two references do not consider all the
possibilities implicit in (37) ([84] considers only m = 1, while [69] and [83] consider
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only n=1), but the methods there easily give the complete solution. for some

indications of how this could be done.

The purpose of this section is to present a solution in the remaining two cases:0 <
p=q<2and0<qg<p<oo.

Let us now present some basic definitions that will enable us to state the solutions. A
point z € U will be written z = (x,y) with x = (x4,x,,...,x,) € R" and y > 0. We use
the absolute value symbol |-|to denote the Euclidean norm in R™ and in R"*? (so
|z|? = |x]? + y?). When z = (x, ), let z* = (x, —y). The pseudo hyperbolic metric p is
defined on U by p(z,w) = |z — w|/|z — w*|, Clearly p is invariant under rigid motions
in the x-variable and under dilations in ~n+l. Let D,(w) = {z € U: p(z,w) < £} when
weU and 0<e<1. Let T, (t)={xy €U:|x—t|<ay} wherea>0. In
discussions where the actual value of € or « isirrelevant, they may be omitted from the

subscripts.

If0 <r < o and f is a measurable function on U, define

1/r
A(P)(®) = ( | IfITy‘”‘ldxdy>
r'(t)

and

A (f)() = sup |f(2)]

z€eI'(t)

IfE is an open set in R", let £ = {(x,y) € U:B(x,y) € E}, where B(x,y) denotes
the Euclidean ball in R" centered at x with radius y. We say that E is the 'tent' over E.

Define, for 0 < r < o and f measurable on U,

1 L 1/r
C. () = sup (ﬁjélfl y dxdy) ,

where |B|denotes the n-dimensional volume of B and the sup is over all balls

containing t.Finally, if § = (B4, B2, ..., Bn+1) is @ multi index of non-negative integers with
order|B| = |B;| + 1B, + -+ + |Bps1l,then  DPdenotes the differential monomial
am/axflaxzz ...0yPr+1 We are now ready to state our main theorem.

Theorem (2.2.1) [69]:

For a positive measure y on U and a multi-index fof order m, a necessary and

sufficient condition for
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( ] IDﬁulqdu)l/q < Cllullyr
to hold is that the function g(z) = y~ 9 "u(D(z)) satisfy
(D) Cryz-q(9) €EL(R™dAD)If0<p=q <2
(i) Az/2-q)(9) € LP/®~D(R™,dt)if 0 < q <pandq < 2,
(iii) A (g) € LP/P~D(R™, dt)if 2<qg<p

We will present the necessary background on H? and tent spaces. In additional
results and inequalities regarding tent spaces are presented culminating in the duality
results of the key ingredient in the proof of Theorem (2.2.1) (Lemma 3) is proved, and an
interpolation  theorem for derivatives of HP-functions at the points of an 'n-lattice’
follows almost as a by-product. contains the proof of the sufficiency of conditions (i)-(iii)
of Theorem (2.2.1). This could be read immediately after. The necessity of the
conditions is shown. An interesting ingredient of the proof (not in the original proof) is
the use of Khinchine's inequalities. The main result and some related results are
discussed.For now we will describe 'discrete’ or dyadic versions of the conditions (i), (ii)
and (iii) of Theorem (2.2 .1). The equivalence between these two versions will come out
in the proof of the theorem

A dyadic interval is one of the form (m27%, (m + 1)27%] , where m and k are
integers. A dyadic cube Q in R"™isa cube of the following form: there is an
integer k such that Q is a product of dyadic intervals of length 27*. The set of all
dyadic cubes of sidelength2 *will be denoted A, and the set of all dyadic cubes is
denoted A . Then the cubes of A, are disjoint. For each Q € A letR(Q) = Q %

(%I(Q), 1(Q)] € R}*1, where 1(Q) is the sidelength of Q. Then clearly {R(Q):Q € A}is a
disjoint cover of U = R?*! .The discrete version of Theorem (2.2.1) is then obtained
by replacing integrals over ['(t) with sums over those R(Q) which meet the line
{(t,y):y > 0}, with a similar adjustment for integrals over B. The discrete versions of
(i)-(iii) are then

H(Rm'))r/“‘q)

-y i , ,)n_ . .
(i) sup {IQI ZQQEQAQ [—I(Q,)qmm I(Q"V:Q € A} is finite,

12/ @-)\ 1m/?
(i) the function ¢ — [ Soco |0 belongs to LP/@-
e functio 20 |ggyemen elongs to :
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(iii") the function t - supgcg :Q(i% belongs to LP/®~4),
tea

We take as our definition of HP (U) the definition by Fefferman and Stein in
[76]. We are, however, more interested in certain equivalent definitions. These are
summarized in Theorem (2.2.2) below. In order to state that theorem, we introduce
some notation. If j = (j;,J,,...,Jm) 1S an m-tuple of integers with1 < j, <n+ 1, let

Dju = 0™u/(0x;,0xj, ... 9x; ) where x,,, denotesy. The m-fold gradient V™u

denotes the tensor (Dju,J € {1,2,...,n+1}") with VAETIERES Zj|Dju|2. Here VOu

simply means u. Thus, if §; is the number of occurrences of k in the m-tuple J,then

m!

2
5 |Dﬁu| ,

Diu = DPuand |V ™u|? = Yigl=m

Where ;! 55! ... Bnsq!
For m > 1,u harmonic in U and t € R", define S™u(t) = A,(y™|V™ul|)(t). To conform
with the usage of [76] we let Su = S;u and u*(t) = A (u)(t).
Theorem (2.2.2) [69]:
For u harmonic in U the following are equivalent:
(i) u € HP;
(if) limy_ e u(x,y) = Oand Su € L (R", dt);
(iii) for some m=>1, lirny_>oo|Vku(x,y)| =0, foral 0<k<m, and S,uc€
LP (R™, dt);
(iv) same as (iii) but for every m > 1;
(v) u* € LP(R™,dt).
As usual LPdenotes the Lebesque class of functions with integrable p-th power
and dt denotes n-dimensional Lebesque measure on R"
Most of the implications in Theorem (2.2.2) can be found in [76]. Certainly one
can obtain the equivalence of (i), (ii) and (v).
To get (ii)=(iv), we make the following observations:
(1) us(x,y) = u(x,y +s), converges uniformly on compact sets to zero as s - o and
hence all Vku(x,y) = 0 as y — oo;

(2) [V™u(x,y)|? < Cy—2m |sVu(t,s)|?s " 1dtds.

D(z)
Multiplying by y?™~ "1 in (2), integrating over I'(t), and applying Fubini's

Theorem on the right gives S,,u < Su; where Su is the same as Su but defined with
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respect to cones ['(t)with strictly larger aperture than TI'(t). We then invoke the
well-known fact that Su € LP is independent of aperture [72,76,85].

To get (iii) = (ii), the approach in [85] (showing that g, (f)(x) < Cxgr+1(f)(x) for
all k = 1)is easily modified to show that S,u(t) < CSi+u(t).

Implicit in Theorem A is the fact that the quantities [|u||y» (however defined),
IISull 2, ISyull,» and [[u*||,» are equivalent. In our proof of Theorem (2.2.1), then, we
will normally make use of I||S,,,u||,» withm = B asour working norm onH?”.

Following Coifman, Meyer, and Stein [72], we define the tent spaces T7for0 <r,s <
+00. We will need to consider a slightly more general context than they do. Thus if v isa

positive measure on U, finite on compact sets, and ifr < oo,let

1/r
Ay (D) = ( j £Ir dv>
T

and

Crp(H() = sup (I%I jAIf(Z)ITy" dV>-

Ifr = oo, let

Ap () =v—e S)suplf(Z)I-

zerce
In the case where dv = y " 1dxdy, we follow [72] and omit the subscript v, The tent
space T7(v) is defined to be the space of v-equivalence classes of functions f such that
(1) 4,,(f) € L* (R, db)if r,s < oo,
(ii) Cr,(f) € L*(R™, dt)ifr < s = co.
We would like to use the symbol T3 (v) to mean the space of functions satisfying
(i) with r = oo,butthis would conflict with[72].So instead, we defineT$(v) to be the
space of functions f with
(iii) Ao, (f) € LS.
For consistency, we let T;¥ = Twhen 7,s < +o0. (In [72], TS is defined in away that
makes it the closure in TS of the continuous functions with compact support.)
One way to view T,°(v) when r,s < oo is as a subset of the weighted mixed norm space

L°L" (wdvdt) of functions ¢(x,y,t) on U X R™ with norm

1/s

lolles = | [ ([ 1ot waoie) " at]
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where w(x,y,t) = xr)(x,y). Then T?(v) consists of those ¢ independent of t. Slight
(and easy) modifications of results of Benedek and Panzone [70] can then be used to
obtain some duality results. Though not exactly the same, this is essentially the
approach we take this is also equivalent to the approach taken independently by
Harboure, Torrea, and Vivani in [77]. Unfortunately, they have chosen a different
normalization: our T;7(v) in their T7(y™v). With three defendable choices of
normalization, it is not surprising that we have chosen two different ones. There is also
an incompatibility of notation: our T.%; and theirs have two different meanings.

The appropriate duality results were proven (for v =y ™" tdx dy) in [72]. We
will need the corresponding results for T;°(v), Namely, if 1<r <o, 1<s<o0,
then T7(v)* = T’TS,’ (v), where r’ and s’ are the usual dual exponents, that is,
r' =r/(r —1). We will normally be concerned only with certain discrete measures v and
in that case we also need to consider the case of r < 1. In our application of these results
to Theorem (2.2.1) we will need to consider r = 2/q and s = p/q so that r, s range over
all of (0, +0) and (1, +0), respectively.

Our notations and those of [72] and [77] do not incorporate the aperture «
of I'(t). Clearly the various A, ,(f) depend on , butthe spaces T do not. This can be
proved using a limiting argument applied to the corresponding result in [72], but we

will need a stronger result which will yield it immediately .

The major result we will need from [72] is the 'atomic decomposition' of
the spaces T;}, with r > 1. Define a T;-atom as a function a(x,y)on U, supported in B for
some ball Bin R", and satisfying [;|a|"y~*dxdy < |B|*"" . In the case wherer = =, a
must satisfy sup |(x, y)| < |B|~*.

Theorem (2.2.3) [69]:

Suppose f € T}, where 1 <r < . Then f = Y%, 4;a; where the a;are T;'-atoms,
the A;are scalars, and Z|/1j| < CrlIfllz2. The symbol |[|f|l7:, means the obvious: the
LP(dt)-norm of the appropriate functional and the omission of v in the notation
means dv = y™" 1dx dy. Theorem B is incorporated in Proposition 2 (r = ©) and
Proposition 5 (1 < r < o) of [72]. The statement there of Proposition 2 mentions only

TL (which we have not defined here) but the proof goes through unchanged for our

larger space T3.
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It should be mentioned that many of the proofs and the general approach of
this section are very close in spirit to work of R. Rochberg and S. Semmes. (This was
even truer of the original version of this section.) In particular, there are close
connections with [82]. In fact, the space T;{z,} defined the same as QCM in [82], and a

proof of, could have been based on [82].

The case where s > 1 of the following proposition is equivalent, via duality, with

Case (i) of Proposition 4.4 of [77].
Proposition (2.2.4) [69]:

If s>0 and 1> max(1,1/s), then there is a constant C = C(4,s,a,n) such

that, for any positive locally finite measure v on U,

jm ( jU (ﬁ)m dv(x, y)>s dt<C jan(Fa(t))Sdt. (38)

Proof:
First suppose that s > 1 and let 0 < € L*(R") with ||| + < 1. Then, defining

wh(x,y) = [y/(Ix| + y)]*. and ¥ =y "¢ *w(,y), we have

[ 9@ [wht -ty ave e = [ 9y6oyiavey)
R"? U U

= [ [ mGnaveya =c, [Anr0vo)0
Ig(t)

R" R"
= Call Ao W)l s (fyn v(To (©)7d) (39)

The proof of Stein [83] works as well for the kernel W’l(x, y), A > 1, as for the Poisson
kernel .Thus A, ;) < C,2 My where M is the Hardy-Littlewood maximal operator.

Whence [83] ||Aoo,v(l)bl)||Ls’ < Cgq 1 Taking the supremum over 1 in (39) yields (38).
Now fix € € (0,1) and let D(2) = D.(z). The function w” satisfies
wh(x; — 6, y1) /wh(x, — 6,y;) < Cye

for any points z,,z,D € (z), and (. isindependent of z and t. Thus

y ol jw’ldxdy ~wh(z)
D(2)

(where ~ means that the two quantities have ratios bounded independently of z).
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Substituting this average into (28) in place of w# we find that

jwldv < C,ngfw’ly‘”‘ldxdy
U U

where f(z) = v(D(z)). A similar argument on the right-hand side of (38) gives

j fy ™ ldxdy < C, jdv
FB(t) Tq

providedp is strictly less than aand eis chosen so that U {D(z):z € Ig(t)} < Ig(t).
Thus it suffices to show (38) for dv = y " ldxdy. Note that &, can be preassigned to

depend only on a.

Now suppose s < 1,let g(x,y) = f(x,y)* and putr = 1/s. We need to show that

1/r

j j wh(x = £,9) g(x,y)y " ldxdy | <Cligllg.  (40)
Rn
U

with the T!-norm based on [g(t). Because of Theorem (2.2.2), it suffices to find an
upper bound for the left-hand side of (40) when g(x,y) =a(x,y), a T}-atom.
Without loss of generality, we may suppose that the atom a(x, y) is supported in B with
B = B(0,1) and thatfé a”y~ldxdy < 1. In this case we divide the outer integral in (40)
into two parts: the integral I, over |t| > 2 and the integral Iyover ||t|| < 2. Since
y"wh(x —t,y) < C;t~*" when It|t] > 2 and (x,y) € B, we see that

1/r

dxdy
y

I, <C j t—ln/r jar

[£]>2

By Holder's Inequality followed by Fubini's Theorem,

1/r
in
y dxdy
lhy<C jj(—) dt ya(x,y) —=| [2B[*-V
0 )7 |X—t|+y y ( y) y

Clearly

in in
| (=) = | () @
lx—t| +y It +y

2B R™

=yt [a-l e =cyr
Rn
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SO
1/r

Ih<C ja(x,y)r yldxdy| <C

B
By putting |f|"dv in place of v and putting s/r in place of s in (38) we obtain

s/r

[([r@ryo+ - dv)s/ ac=c|| [irav) a

Tp(®)
for any aperture f. From the fact thaty?"/(|x — t|] + y)** > CaXr, (X, ¥), we clearly

get the reverse inequality as well. This shows that for 0 <r, s <o, TJ(v) is

independent of aperture.
Proposition (2.2.5) [69]:
For 1<r<o and 1<s<o the dual of T/ (v) is Tsr,l(v).The pairing is
(f.9)= [, fgy"dv.
Proof:
Lets > 1. From the fact that [ fgy"dv=_C [p, fl"(t) fg dvdt plus two

applications of Holder's Inequality, we see that any g € TJ (v) defines a continuous

linear functional onTy (v),

Conversely, letL be a continuous linear functional on T§ (v). Let

LI (dvdt) = {f(z,0):U x R* > C: ([ ([If (& O dv(2))*/" at)"” = |Ifll,s < +oo}.
Clearly TJ (v) embeds in L°L"(dvdt) by the mapping f(z) = f(2)xrq) (t)(2). By a

result of Benedek and Panzone [70], (L°L")" = Ls'L. By the Hahn-Banach Theorem
there is a function g(z,t) € L°L" such that

L(f) = 9(z,t)f(2)dv(z)dt
Ll

with||[L|| = [|g|l, . By Fubini's Theorem

W= [r@l | god|yrave)
U

[t—x|<y
It now suffices to show that the expression P°g(z) in brackets defines a bounded
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operator from LS'LT'(dv dt)to TST,’(v)First suppose ' =+ and let h(t)=v-—
ess supsey g(z,t) so that h € le(dt). Clearly P°g(z) < CMh(t) whenever z € T(t).

Thus Ae»(P°g(2) < CMhso [|Ae»(P°g(2)|| s v = ClInlly

Now suppose ' =s’. Then TST,’isjust {f:1fI"y™ dv < +} and

T/

j|P°g|T'y”dv=jy‘" j g(z, t)dt| y"dv(z)
U

U [t—x|<y

< Cleg(z, | dtdv(z)

=Cligllyr s
We see that yr, (2)P°g(2) defines a bounded operator from LS'LT'(dv dt) to itself when

r =o0 and whenr =s'. Thus, by another result of [70], it is bounded on all s’

with1 < s’ <7’ < 0. Since )(r(t)PO is easily seen to be self-adjoint, we also see that it is
bounded on LS L™ with 1 < 7' < s’ <

Now takes = 1. See [72] goes through in the weighted case to show that T (v)is
contained in the dual ofl}. We again observe that a bounded linear functional
corresponds to an element g ofLwLT'(dvdt). Again we need to show that P%g(z) =
y " \t—x|<y g(z,t)dt defines a bounded operator from oL toT 7. To this end let B be

aball in R"™ and consider

|B|j|PO @I yrdv(z) < j j lg(z )| dtdv(z)

B |t—x|<y
1 ,
=mj j lg(z, )" dv(z)dt
R™ B NI (t)
Ig(Z DI dv(z)dt
IBI

1ot
IBl]ngn

Thus [|C,r, (P g)|| < lg 1,7 e
It is not true that the operator P° maps L*L" into {f: A, (f) € L*}. Thus the 'natural’
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definition of T, is, at least for duality purposes, not the appropriate one.

We will need to identify the dual of T,°(v) for a special class of v when
0<r<1.1If{z}isa sequence in U, we say that it is separated if there is an
€ € (0,1) such that the balls D.(z,) are disjoint. The separation constant will be the

largest such e. When v =% 4, (where §, denotes a unit mass at z), we will write

T7{z,} instead of T7(v). Thus, forl <s <o and 1 <r < oo, we can identify the dual

to T7{z.} with a space of sequences (for example,
Tz} = {(ck): (f Dz, er(t) |ck|2)5’/2dt < +00}. In the case where r <1 we have the
following.

Proposition (2.2.6) [69]:

If L is a continuous linear functional on T7{z;}, where {z, = (xx,yx)} is a
separated sequence in Uand 0 <r <1<s <o, thenLf =) f(z,)by ygfor a unique

sequence {b,} satisfying

s\ 1/s7
1
Sl s(j( sup 1) ) < cllel
R zZger(t)

- . . . .
Conversely, any sequence in Ty, {z, } defines a continuous linear functional on 77 {z}-

Proof.

Let biybe a sequence in Tof,'{zk}. (More precisely, b, = g(z;) with g in that

space.) Then

> reonor|=c| [ D reoba

R™ zg€l'(t)

1/r

<c [ suplbil| Y If@or

Rn F(t)
< C”f”TTS{zk}”bk ”Toso'{zk}

The first inequality holds because 7 < 1 s0 Y| f(z)| < (X |f (z)|")". The second comes

from Holder's Inequality.

Now let L°be a linear functional on T,’{z,}. We clearly get a candidate for the sequence
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{by} by putting b, = L(er)y,", where e,is the function with ek(zj) = §jx. Then, for f a
linear combination of the e, we get

L = Z FzObeyr = C j Z F(z)bydt.

R™ Zg €I (t)

We need to show that {b,} € Tof,'{zk}. It suffices to obtain norm estimates when byis
zero except for a finite number of indices and, by dilation and translation, it
suffices to suppose b, is non-zero only if z;belongs to the unit cube Q¥ = (0,1]**in R™.
We consider now all subcubes Q} of Q¥ which have as their base one of the 2"
subcubes of (0,1]" obtained by the usual bisecting of (0,1]. Similarly, Q? are the 22"
subcubes obtained in the same way from all the Q}. In general, Q}‘ is a cube with a
dyadic cube of sidelength 27% at its base. Let Rf = QF — U, Q}5"" be the top half of Q.
Now each R}‘ contains at most M points of {z;,} where M is the maximum number of
disjoint D,(z) that will fit in R?. We need only multiply our estimates by M if we make

them for the special case where each R}‘ contains one point of {z;}.

Now let f € T,’{z,} and let ¢, = |f(z)|. Then, by Proposition (2.2.4), the norm of f is
equivalent to

(J [Z ck (#)Mlsﬁ)us

It is clear that this is equivalent to the same expression at points {z,} provided p(zy, z;,)
is bounded away from 1. Thus, without loss of generality, we may suppose {z.}

consists of the centres of the R}‘ We index them that way: zj, is the centre of
R}‘Similarly, index {cj} and {bj}. Without loss of generality, we may assume that

Now,
Z e bylk = C j Z Gy By gy () dt
Rn
Where Qf is the base of Qfin R™. Put ¢, (t) = X cjsex gk (t)and Py = X; bx x gk (£)-
] ]

Then the condition on cj, (that is, f € T,5{z,}) becomes [.,(X ¢})*/" dt < +oo and the

condition on by, (the boundedness of L) becomes
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1/s

s/r
[ Yo <c | (Zw%) dt | forall (¢
k

The goal is to prove that sup, yy € LS. (We take the aperture a to be such that
zj, € I'(t)only ift € Qf.)Proving this will require us to select ¢, an appropriate way.
Notice that ¢, is an arbitrary function measurable with respect to the algebra F
generated by { Q):j = 1,2,...,2""}. Clearly Fy © Fyy.

Lemma (2.2.7) [69]:

If ¢, is any finite sequence of non-negative F,-measurable functions, define a

'stopping time' as follows: k;(t) is the first k such thatg, > 0. Once ky,k, ..., k; are
chosen let k;,1(t) be the first k such thate; (t) > 2¢y;(t). Define Pr(t) = @i (t) if k is
one of the k;, otherwise let @,(t) =0. Then @, is F,-measurable and there are

constants C, such that, for all ¢,

1/r
sup @ (t) < (Z @k(t)r> < Cy sup @ (t) (41)
k - k

and
SkuP @ (t) < sup ng(t) <2 Sip @r(t) (42)

Proof.

Since for each k the choice as to whether @, = 0 or ¢;is made on the basis of
®1, 2, ..., 9; which are all constant on Qf, then @,is also constant on Qf, Therefore
@ris Fyr-measurable. For fixed t, it is clear that the sequence k;(t) terminates and the

last element, k,,(t) say, satisfies

max @ (t) = @y, (t) = 2 Sip @ (1)

for otherwise an additional k,,,,(t) would have been chosen. This gives (42).

Clearly ¢y, () > Zm‘jqokj(t) by the choice of k,,,. Thus

r

1/r
(Z @k(t)7> < (277D 427772 o 27T 4 1) gy, (8) max @ (t)
k

<
2r—1

This gives (41) with C, = 2" /(2r — 1).
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To conclude the proof of Proposition 2.2.6 let ¢, = 1/),5("1 and consider

jz G Prdt < C (j (Z (ﬁz);dtf (43)

From Lemma 2.2.7 we have, for each ¢,
- - - S S I}
> BOWD = Y G0 = (max@,) > 27 (maxey) =27 maxyy 44

and

(Z qﬁ%); < (CT max qbk)s < (CT m}gxq)k)s =C, rnaxgb,s(’ (45)

Using (44) and (45) in (43) we get
1/s

jZ‘S (m}?xwk)s dt<C <j Cs(maxy)s’ dt)

whence ([ (max; 1/),()5' dt)l/S' < 2%CC,. This completes the proof of Proposition (2.2.6).
Itis not hard to verify that the operator Rgp,defined by (Rgu), = ymDPu(z,), maps
HP into T}{z,} when {z,} is a separated sequence (m = |S|). If p > 1, then the adjoint
of Rg maps TF{z,} into Hp'by duality. This gives us a bounded map Sz from TF{z,} into
HP, for all p > 1, that will have useful applications. Unfortunately, this argument breaks

down for p < 1, so we have to construct the map we need more concretely.

First we need some facts about derivatives of the Poisson kernel. The (un normalized)
Poisson kernel is given by P(x —t,y) = y(|x — t|?> + y?)~"®+*V/2_If (x,y) is fixed at
(x0,Y0) = zo, we write P, (t), so P, isa function on R".The harmonic extension of this
function to Uis P(xy —x,y + ¥,), with (x,y)U. Call this function P, (z). Note that
B, (z) = P(z — z§) = P(z, — z*). Clearly DF(P, ) = (DPP)(xo — x,¥ + ¥o) = (DPP)(z, —
z").

Lemma (2.2.8) [69]:

(@) DPP(2) = Pg(2)(|x|* + y?)~(*+1+2m)/2 where Ppis a polynomial of degreem + 1.
(b) DPP is homogeneous of order —n — m.

() If By, B, ...,nare even, then D P(0,1) # 0.

Proof:
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Because differentiation lowers the order by 1 each time, (b) is clear. It is also

clear by induction that Pgis a polynomial of degree at most m + 1. If the degree were
strictly less than m + 1 then D#P would have order strictly less than —n — m. But DFP

can have two different orders of homogeneity only if DP = 0. Now

P(x,y) =y (1 + |x/y|?)~(+D/2

o /1
= Z (E (n + 1)> E!XZay—Zm
m al
la]=m

m=0

2aq1 205 2an

where  x2% = x{"x;"% .. x,"". ClearlyDPP # 0. Moreover, it is easily seen that if

B = Qay,2ay, ...,2a,, Bys1) then DPP(0,1) is a non-zero multiple of the coefficient of
x2% and so is not zero.

To get an idea of where Sz will come from, we compute the 'adjoint’ of Rg (in the case

where p > 1). Let {b, } belong to sz,{zk}, the dual of T} {2, }. Then with m = |B)],

> (Rpw), byt = eu Y bk [ w(@pf B, 2ae
k k

R™
—c, j u(t) Z byl ™ DBE, (t)dt
R k
whereu(t) denotes the boundary values of u and c,, is the normalization constant in the
Poisson integral formula. Since the dual of H? is HP' under the pairing(u, v) =
Jyn uv dt,we identify R;((by)) = X byyf*™DPP, (t) (operating from sz, to H?"). This
therefore operates from T to HP for allp > 1, but not for p < 1. To remedy the
situation when p < 1, define the operator Sg for multi-indices g satisfying |f| =m =1

and for integers 1 > 0 by

SH(by) = Z byl ™+A 0} DPP,  where 3, = 0/0, (46)
k

Then we have
Lemma (2.2.9) [69]:

Let B be any multi-index with || = m > 1, let 1 be a non-negative integer. Let
p > 0 and if p < 2, suppose (n + m + A)p > 2n. Then Sg is a bounded map from T} {z,}

into H? whenever the sequence {z,} is separated.
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Proof:
putg(z) = Sg(bk)(z) =Y bky,ﬁ”m”a)’}Dﬁsz(z) and estimate
ly™v™g(2)]?
< Zilbe Pyt y™|0g PV B, (2)| Bie yit ™ y™ 0y DPVT B, (2)] (47)
Each term in the second sum can be estimated using sub harmonicity (and

sz(Z) = PZ(Z;()):

yptmedym|aADEYmp, (7)) < Cy™ j |03 DFV™ P, (w)| v™ 4 dudv (48)

De(zg)
Fix an ¢ € (0,1) such that D.(z;) are disjoint and observe that C will depend on ¢,n,m
and A only. Sum the inequality in (48) to obtain the following upper bound for the

second sum in (47):

Cy™ j |0 DEV™ P, (w)| v+ At dudy < Cy™ j |03 DAV™P 4y (W)| v A dudy
U U

after translation by x. Now change variables via a dilation w — yw and use the

homogeneity of derivatives of P to get the upper bound:

1
c j P10+ 12 + [ul2) T dudy

gn,m,A (49)

Putting (49) into (47) for the second sum yields

YT < € Y Ib Pyt y|9dDEYE, () (50)
k

To get the H?-norm of g we integrate this over ret) with respect to y ™ 1dxdy to obtain

ATz < € Y Ih Py [ oy Dvme, @)yt axdy 51)
r(t)

Taking t = 0 and using homogeneity again we get

j |ofDEV™ P, (2)|y™ ™t dxdy
r{0)

88



1
<C j(lxk — x|2 + (v + y)2) 2D ymon=1 gy gy
r{0)

1
<c j (el? + (e + y)2) 3T+ Dymen=1 gy gy
ro)

1
_¢ j (1] + G + )2 30D ym=1 gy,
0
<c j (il + Y + y)~2m=n=Aym=1 gy
0

= C(lxkl + yk)—n—m—lj Em_l(l + 5)—2m—n—l dxdy
0

= C(lxe| + yp ) m2
Translating by t and putting this in (51) gives

Vi )n+m+l

A, (ymvm ZtZSCZb 2(—
2(y g) () | kl |xk_t|+yk

Raising this to the %p power, integrating in t and applying Proposition (2.2.4)yields

gl < Cll@IIE (52)

T} {2k}
Where C depends only on ¢,n,m, A and p. The condition required to apply Proposition
(2.2.4) is thattn + m+ A1)/n > max(1,2/p). Ifp = 2, this is automatically satisfied
form+ 41> 0Ifp <2, we require (n+ m+ A)p > 2n, which is our hypothesis.

Note that the duality argument preceding the lemma allows us to take A =0

even when 1 < p < 2, while the lemma requires m+ 1> (2/p — 1)n.

The above lemma, combined with the results of the previous sections, will be
enough to prove the main theorem. The reader interested only in the proof of that result

may skip to the next section.

What follows is an interpolation theorem for the evaluation of derivatives of HP-
functions at points of an n-lattice. The first version of this section actually required this

theorem in the proof of Theorem (2.2.1).
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Theorem (2.2.10) [69]:

Let [ be a multi-index with|f| =m >1, and {zx = (xx,yx)} a separated
sequence with separation constant y = sup{e > 0: D,(z;)are disjoint } > 0. Define Rz on
H? to sequences by (Rgu), = yDPu(z). Then Rg is a bounded map from H? into

TF{z:} . If y is sufficiently close to 1, then Rgtakes HPonto TV {2}
Proof:

Since [Dfu|? is subharmonic, it follows that

2 dxdy

n+1

|y,§”Dﬁu(zk)|2 <C j |ymDFu|
Dy (zg)
Summing on z;, € [ (t), we get
dx

> IRl < ¢ [lymoraf S < csue

Fa(V) T(t)
Where ['(t) = U{D,:z € I,,(t)} is a cone with aperture larger than «a (but
depending only on y and a). Thus Rp is bounded. To show that it is surjective, we
show that for an appropriate constant A the operator norm of I—AR‘BS‘[?L tends
to 0 as y = 1 —. Thus, for large enough vy, R[gSé1 will be invertible, WhenceR[gwill be

surjective.

To this end, fix a sequence (by) in Tx{z,} with norm 1 and let

¢ = (I — ARgS} (b)) = by — Ay™ DﬁZb yREmtaymaApep, (7))

Note that
02D P, (z;) = 0}D?FP(0,2y,) = (2y,) 2™ *9D?£ P(0,1)
So that if A =22™*4/9D?FP(0,1), then Ay["y*™+*9}D?FP, (z;) =1 when k = .

Taking this value of A, we get

— A A
;= —Ay["DF Zb yrrmrAymolDEP, ()
k#j

Notice that this is almost —Ay" Dﬁg(z) with g as in Lemma (2.2.9). The only

difference is that the sum is over k # j instead of all k. Thus the same argument leading

to (50) (where the constant is a multiple of (49)), leads to
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|C]| <C Zlbklz n+m+A1 mlalDﬁP (Zj)l

where

vm+l—1
C, = j - dudv
g, (0 + 12 + Jupy™=

withU, = U{D.(2):z & D, (i)} .The argument is based on D,(z) being disjoint. This can be
arranged by selecting any ¢ € (0,1), say € = % and then requiring y > €. It is not hard to

verify that U, » @asy - 1 —, sothatC, - 0 asy - 1 —.Thus

|C]| <C Zlbklz n+m+A1 mlalDﬁ k(zj)l

Now we sum over z; € I'(t) obtaining the discrete version of (51). Using the same
argument as at the beginning of this proof, we can bound szel"(t) lc;|* by the right-

hand side of (51) with an additional factor of C, Following the same argument that

leads from (51) to (52), we get

lepll,p,,, < € NBNE,,

so that ||I — AR[gSEH < CC,, and this tends to zero as y — 1 — (because C does not

depend ony).

Let u € HP. Then DPFuis harmonic in U for any multi-index f and so, by

Lemma (2.2.8) of [76], we have

|DPu(zy)|” <Cm j|D u(x, y)|* dxdy

D(zo)

whereC depends on the radius ¢ of D,(z,) and on g. From this we get

1
leﬁu(ZO)lqdu < ij j IDPu(x, )| dxdydu(z")

U D(z")

<C ] DA U, y)|" u(D(2))y " tdxdy

dxd
=C ] Iymnﬂuoc,y)lqu(D(Z))y-mq—”%
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where m = |B|.Since 1|y™DPu| < |y™V™u|?, it follows that |[y™V™u|? lies in sz/qq,

q

v itsuffices to have

with norm at most CIIuIIZ,,. Thus, in order to get [ |DFul? < C|lull

u(D(z))y ™" in (sz/qq) = sz/((zp__q‘? when q < 2. This is exactly parts (i) and (ii) of

Theorem (2.2.1) and the g = 2 case of (iii).
Suppose that now g > 2. Observe that suprq y™|DPu| < C supglul = Cur(t)
provided I'(t) haslarger aperture than I'(t). This is because
1 : .
ym|Dﬁu(z)| < Cm jluldxdy , with u harmonic,
D(z)
which is easily proved on a single ball, say D(i), and obtained for all D(z) by

translation in x and dilation. Now, with g(2) = u(D(z))y ™™,

j|Dﬁu|qdu <C j|ymDﬁu(z)|qg(z)y‘1dxdy
U U

<C j j|ymDﬁu(z)|qu‘”‘1dxdydt
R™ T(t)

<C j(u*)q‘2 j|ymDﬁu(z)|qu‘”‘1dxdydt
R™ r(t)

<¢ [y su? an @t
Rn

Since u* and S,,u belong to LPwhen u € HP, it follows that (u*)?72(S,,u)?> belongs
toLP/4, whence A, (g) € LP/P~4is a sufficient condition. This is the rest of (iii) of

Theorem (2.2.1).

One technical tool we shall need for the proof is Khinchine's Inequality (see, for
example, [77]). Let 7, denote the nth Rademacher function, that is, 7,,(t) = (—1)kif
k27" <t < (k+1)2™ where n>1,0 <k < 2" are integers. Khinchine's Inequality is
the following: for any p > 0 there exist constants a,, and B, such that, for any sequence

of scalars {c,},

a, (Zlcnlz)P/Z < j |Z cnrn(t)|p dt < B, (Z|Cn|2)p/2
0

In order to finish the proof of Theorem (2.2.1), let 4 be a positive measure on
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U satisfying
j|Dﬁu|qdu <Cllul?, ,forueH? (53)

Let u be set equal to Sg(bk) for some (by) € T} {z;} and some separated sequence {z}.

Then by Lemma 2.2.9 and (53) we get

j |Z bky£l+m+l a));DZ,BPZk

Now if each byis replaced by b, 1, (t) for fixedt € [0,1), the right-hand side of (54) is

" du < clol 4)

TP {zx}

unchanged. We can then integrate the resulting equation in t and use the lower bound

in Khinchine's Inequality to obtain

2\ 4/2
a [ (Dlborrmton¥e, ) au < clgol (55)

T3 {2k}
Recall that OﬁDzﬁP(O,l) # 0. By continuity, there are an ¢ >0 and a § > 0 such that

aﬁDzﬁP(O,l) >¢§ on D.(i). By homogeneity and translation we get a common lower

bound for |y?*?™+**32D2?E P, ()| on D,(z,)Call this lower bound &,. From (55) we get
k y k

q/2
ap5gj(2|bk3’k_m|2)(ug(zk)> du < C”(bk)”gzp{zk}
3

We assume that {z,} has separation constant at least ¢ so that D.(z;) are disjoint,

whence
Zwkw,:qmuwg(zk)) < cll@ollly,,,,

where thea, and 6g have been absorbed in the constant C. Putting |b|? = ¢, we get

Y ey ™ (D) < Clleol » (56)
k T3 z))

q
TP/q

for any positive (c;) € 2/q {z,} The inequality continues to hold for non-positive (cy),

so we conclude that {yk_qm_nu(DE(zk))} belongs to the dual of Tz%q{zk}, provided

{zr} has separation constant at least &. Moreover, its norm in that dual depends
only on the constant in (53), p, g, 4, m, nand ¢, and not on the sequence {z}.
Note also that n,m,p, q are given, A can be chosen to depend only onn, m and p, and

€ clearly depended only on 4, § and n. The constant in (56) therefore depends only on
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p,q,n, and B. By adding up a finite number of inequalities like (56) for different
sequences {z;}, we can get (56) for arbitrary ¢ and arbitrary separated sequences
with the constant now depending on eand the separation constant of the new

sequence.

Let us now consider the case where ¢q<p and g <2. Then the dual of

sz/qq {z,}is sz/((zp__q%) {zx}, so
1
—(2-q)
2/(2-q)| 2
1(De(21)) P
(% € LP—Qd(t) (57)
k

zkel"(t)

This is a discrete version of part (ii) of Theorem (2.2.1). We need only show that it

implies the continuous version stated in Theorem (2.2.1) (ii).

Let € € (0,1) be arbitrary and let g(z) = u(D.(z))y~9™™. Select a separated sequence
{z}} such thatthe D.(z;) cover U. Then

_dxdy _dxdy
jg(Z)Z/(z o yn+l = Z j g(2)¥/ =9 yntl

r'(t) Zk €L () Dg(zy)

while

dxd
Y<c sup g(z)%@-9

72)2/(2-q) <
.[ g( ) y"“ Z€D¢(zg)

De(zg)

qgm+n

(e
Vi

wheree’ € (g,1) is chosen so that U{D.(w):w € D.(z)} € D,/(z), namely

e =2¢e/(1+¢&?). Thus

/2-q)
_, dxdy u(De (z )\
jg(z)z/(z q) S <C (W

zZger(t)

r(®) i

Combining this with (57) gives Theorem (2.2.1) (ii). The other two cases of Theorem

(2.2.1) are handled in a similar manner, part (iii) making use of Proposition (2.2.6).

If L =2%g1=m C[gDﬁ is any constant-coefficient linear partial differential operator of

pure order m, it is clear that the conditions (i)-(iii) of Theorem (2.2.1) are sufficient for
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fU |Lu|9du < Cllulll,, They are not necessary, as the example where L is the
Laplacian Z;‘;’ll 62/6xj2 shows. If we put a simple, obvious hypothesis on L then
the conditions do turn out to be necessary. Suppose only that there is at least one
harmonic function u € H?  with Lu # Oon U. ThenLP(x,y) # 0, where P is the
Poisson kernel. By homogeneity and analyticity considerations, every neighbourhood of
(0,1) contains a point where L?P is not zero. This can be used then in the proof in place

of the stronger condition D?#P(0,1) # 0 . It is strong enough to complete the proof of
Theorem (2.2.1).

If g and p are given, then the conclusions of Theorem (2.2.1) depend only on the
function u(D(z))y 9™ ™. It is clear then that there is in general no containment

relationship between the families
chi = {u: ACVYu € HPVY|B| = m,j|Dﬁu|q du < C||u||2,,,}

For different values of m. However, it u is concentrated in a strip of the form

{(x,¥):0 <y < y,}or in one of the form {(x,y):0<y, <y}, then Cf,’l'le c CP% in the

3 p.q p.q 3
first case but C,;" € €./, inthe second.

In the case where the dimension n is 1, another classical H?is the one on the unit disk.
There is no difficulty in obtaining the corresponding result in that case. In this setting we

always get Ch1, < ch?.

We promised a proof of the m = 0,q < p case of inequality (37). We formally state

the result.

Theorem (2.2.11) [69]:

Let g < p. A necessary and sufficient condition on a positive measure y on U in

order that there exist a constant C > 0 with
jmmu < llull, for allu € HP, (58)

is that the function t — fr ~"du(x,y) belong to LP/®~D,

oY

Theorem C can be found in [86] where it is proven only in the case where g = 1. The

proof that the general case can be reduced to this one is omitted. To this writer the
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reduction is non-trivial, and the proof presented here is based on the ideas of rather

than the arguments of [86].
Proof:

As in other cases, the proof of sufficiency is easy:

jlulqdu= cj j lul9y"du dtsj u*(t)qj y"du dt.
U R™ YI'(t) R™ r'()

The sulfficiency is now clear because (u*)? € LP/9whenu € HP.

The necessity seems to be much more difficult. We referred, because the case where
n =1 (where complex methods are available) is relatively easy. Let us present this
case first, and then present the proof forn > 1.

In the case where n = 1,u belongs to H?if and only if there is an analytic function f on
U=R%? with Ref =u and sup,s, [If(x +iy)|Pdx < +oo (the classical definition of
analyticH?). Now let 0 < ¢ € LP/4(R, dt) and let its Poisson integral extension to U be
denoted by the same letter ¢ (x,y). Let g belong to HP/4 (analytic) with Re g = ¢.Then

f = g4 belongs to HP? (where the principal branch of the root is taken). Now

j ody < j gl du = j Fledu < A% = Cllgllpra < Clioll,ora

where the second inequality assumes (58). Now express ¢(x,y) as a convolution of

@(t)with the Poisson Kernel and exchange integrals in the expression

J o(x,¥) du(x, y) to obtain
[ pwnwac < il 59)
Where
act) = clj(x_t;]—z_l_yzdu(x’y)_

We conclude from (59) that i € LP/®~®_But clearly fi(t) = ¢ [,y 'du, and so the

Ok4
necessity has been shown in the case where n = 1.

The function ji is called the balayage of u and we could add the additional
necessary and sufficient condition that j € LP/®=®, This follows from the above
proof (when n = 1): but it also follows from Proposition (2.2.4), inequality (38),

withs =p/q.and A = 1, even whenn > 1 once Theorem C is proven.
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What we will actually show is that the following function belongs to LP/(®=4),
C, (ydu)(t) = sup{u(B)/|B|: B a ball containing t}

It is shown [3] that C2(f) and A2(f) have comparable U-norms when p > 2. Since
IA; (Ol = ”Az(\/ )” and |[C;(Hl, = ”Gz(\/ )” it follows that [|4;(f)|l, and

IC,(Hl, are comparable forp > 1. Itis not hard to see that this continues to hold in
the case where fdxdy is replaced by the measure ydu. Thus, once C;(ydu) is shown
to be in LP/(P=® the proof will be finished. To simplify the notation we will write (t)
for sup{u(B)/|B|:t € B }instead ofC,(ydu)(t).

As if (A + n)/n > max(2/p, 1) then, for any separated sequence z, = (xi, yx)in UR?*1,
the function ), b,y +’16’1P . (x,¥) has HP-norm dominated by the TS {2z} norm of (by).
From the assumption (58) we get

p/2 19/

jZ|bky"+’16’1Pk|qduSCj Z AR (60)

zkel"(t)

We can apply Khinchine'sInequality to (60) just as we did to obtain

] 2 bire) du< Cll Iy, 61)

where Fj, = |yk +’16’1P | . We saw in Lemma 2 that 63’}P(O,1) # 0 and by continuity this
persists in a neighbourhood of (0,1). Using this we can easily see that thereisan a > 0

such that if B, = (x, ay;) then F, > C > Oon B,. From this and (61) we obtain

j(z bﬁ%ék q du < CII(bk)IITp, (62)

We will now construct appropriate By and biand apply (62). Let 4, denote the
collection of maximal dyadic cubes @ such that (Q) > 2¥|Q| . Let 4 = U4} and let
E, = U{Q: Q € 4}. We will show that

A~

t — sup {ul(QQl) Q dyadic, t € Q}

belongs to LP/(P=9, By an observation of Fefferman and Stein [75], this will prove that ,
belongs to LP/(®=@), Thus, there is no harm in assuming that £, is this dyadic supremum.

Then on Ej, — Ey4, we have 2 < (t)2**1. If Q € 4, let x, be its centre and let y,be
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1/(2a) times its side length. It is not hard to verify that {(x,,¥7):Q € 6} is a
separated sequence in U. By assuming that u has compact support, we may suppose this

is a finite sequence. Let (by) be any sequence indexed by Q € 4. Itis clear that

> baxe)"” 2> bxecer

whereG(Q) = Q —U{Q: Q" € 4,Q' c Q} = Q — U{Q": Q" € 63,1,Q S Q} ifQ € &
Let us now index the Q € & according to which #&; they belong to, writing
by = {Q}‘ :j=1,2,...}and ka = bkj . Then, from the above and (62) we have

J

Zzbffj u(Qf) - Z p(Qk) |<c j(zbm(z}k)p/zdtr/p. (63)

k j Q]I'<+1CQ]I'<
(Note that},,erybg <X bﬁj Xok(t) because if (xq,¥,) € [(¢) then t € (Q).) Now we
]

putr =p/qand v =r/(r—1) =p/(p — q), and set b,‘zj = 2*("=1_ The left-hand side

of (63) becomes (if we write £, = U; Q)

D 2B = ) 2K S (@) 1 Bir)
k k J
= Zk(rl_l)ll(gk) — > 2K Eyy)
2 2

_ Z 2k(r'=1) — 20D (1) (E,)
k

- (1) 2 Y o
J

222”’ |E| = cjm’dt ,
k

while the right-hand side of (63) is

p/2 1/r

p/2 1/r
C IJ (Z ok(r'-1)2/q XEk> dt =C Ij (%Z(nk — k1) XEk) dt
K K

where /= 2"-12/4 > 1. Another summation by parts makes this equal to
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11/7r

/2 1/r
const. j (Z n* (xs, — XEk+1)> dt| = const. [ j Z P Xbps,,, At
3 k :
11/r
= const. U Z 2k

< const. U ﬁT'dt]

XEk\Ekﬂ

1/r

Combining these two estimates gives
1/r
jﬁT'dt < const. U ﬁT'dt] ,
or|| &l p/@w-a) const. foru with compact support. The result for arbitrary u follows from
this by an easy limit argument. Theorem C is now proven
Many of the previously known cases were not placed in the H? (R%*1) setting when

the results were obtained. It makes sense to examine these cases, state the version

appropriate to this setting, and verify that the results continue to hold.

Carleson's Theorem: m = 0,p = q. This case has been thoroughly studied in all settings
and there is no problem with it here. However, for further use we will state the result

and sketch a proof. The necessary and sufficient condition is that
u(B)=c|Bl  forallballs BCSR" (64)

The necessity of this condition follows upon applying the inequality [ [u|? du < Cllull?,
to appropriate u (of the form CO{}PZO with z, = (xo,¥,), x the centre of B and y,a
multiple of the radius).

The sufficiency can be obtained by the following argument. For 4 >0, let E; =
{t:u*(t) > A}. Since E,is open, it has a Whitney decomposition. Suffice it to say that this
means E; = U{Q:Q € F} such that EA C Uger(C- Q)", where Fis a disjoint family of
cubes and C - Q denotes the cube with the same centre as Q but C times the size. Now,
with G, = {(x,y): |u(x,y)| > A}, it follows from the definition of u* that G, € E,
Thus

w6 < ) W0 =C ) lo] = ClE] (65)
QEFy

Integrating this inequality with respect to AP~'dA gives [ |u|? du < Cllu*|l}, , Thus
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(64) is sufficient.
II. Duren's Theorem: m = 0,q > p.The necessary and sufficient condition for
[ P du < CliullByis
u(B)=c|B|%?  forallballs B CSR" (66)

The necessity follows as in [ by applying the inequality to appropriate u (the same one).
The sufficiency follows from something like (65): write G,k € Uger, (C - Q)"
where F isthe F for E,x. Then

u(Gr)<c Z |Q|a/p

Q€Fy

and

qudu < CZ 2k u(G) < CZ 2ka Z|Q|q/r’
k k F

On the other hand,

ju*(t)pdt zcz 2ka ZIQI
3 Tr

Expressing {Q:Q € F} as {QF:j =1,2,...} we need only show (with by, = 2k Q5D
that X |bkj|‘7/p. But this is immediate for q/p > 1.
Theorem (2.2.11) [69]: (Shirokov-Luecking ):
m > 0,p =q = 2or p<gq. The necessary and sufficient condition for [ |DAu|?du <
CIIuIIZ,, is that
u(B) < c|B|v/pHiBla/m forall balls B S R" (67)

The necessity again follows on applying the inequality to u of the form aﬁDﬁPZO. The

sufficiency is obtained by the same arguments as in [78]:

c fD(ZO)|y’1V’1u|qudy

n+1

Yo

q
w'DPu(z)| <

wheneverd < |B|. If ¢ >p, let A =0 and integrate both sides with respect to

yo_lquu(zo), using Fubini's Theorem on the right to obtain

[17ul" de < ¢ [lultu(p )y 11019 dxay
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< leulqy‘”‘ﬂp‘”‘1 dxdy

< Cllull?,
where the second inequality is from (67) and the last one is Duren's Theorem (II).

Ifqg=p> 2, let A =1 and again integrate both sides with respect to yo_lquu(zo) and

use Fubini's Theorem to obtain

j|Dﬁu|q du<C lequy‘”‘l‘m'q dxdy

< leulqu‘1 dxdy

< Cllul%

where (67) is used in the second inequality and the Littlewood-Paley Inequality in the

last.

We saw that if {z,}is a separated sequence in U and u € HP then y,lleﬁu(zk)
has TP {z;}-norm less than the HP-norm of u. We also saw that if the sequence {z} has
large enough separation constant, then all sequences in T} {z,} arise in this way from
HP-functions. It should come as no surprise that if {z,}is sufficiently 'crowded' then the
TF{z¢}-norm of Vi 05'u(zx) dominates the H?-norm of wu. What this means is the
following. Call a sequence {z,} D-dense if {Ds(z;): k = 1,2,...} covers U. Then there is

a 6 > 0 depending only on m,p and the aperture @ such that if {z; }is § -dense then

p/2 p/2
Z y}fm|63’,”u(zk)|2 dt > cj j|y,§”6},”u(z)|y‘”‘1dxdy dt
zger(t) r(t)
= CIIuIIZP

With this inequality (and the duality between HPand Hp') there is no difficulty in
showing that if {z,} is separated and &-dense for sufficiently small §, then the
operator Sg (with f = (0,0,...,0,m) of is surjective. Thatis, every u € H? for p > 1
has the form u(z) = X byyi ™0 P, (z)with (by) € T, {z}. Moreover, the norm of u in
HPis bounded above and below by the infimum of the norm in T} {z,}over all (b;) for

which this representation holds.
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The proofs of these statements are essentially the same as those corresponding
statements about Bergman spaces found in, for example, [78, 79, 80]. In fact, the
methods in [80] easily give very general sufficient conditions on a measure v so that

mAam
lullygr < ||y™or u||T2,,(U).
In [81], Shirokov actually considered the following more difficult problem. For each

x € R"let u, be a positive measure on (0, +00). Assume p, (E) is measurable E € (0, o).

Characterize those pu, for which

J

(Actually in [81] Shirokov took n = land considered HP of the unit disk, but the

p/q
dx < Cllull?, (68)

j V™ (x, )19y ()
0

problems are essentially the same.)

Shirikov had four main conclusions (see [81]). The first was the necessary condition for

(68):

1
j [y [EYO;Yo)p/qu <y, (69)

B(x0,Y0)
for all (x9,y,) € R%*1. The second was the equivalence of (68) and (69) whenp = ¢q >
2. The first is a consequence of applying (68) to one of the functions 63’}on and the
second is the known result discussed above. His third conclusion was the following

sufficient condition in the case where 2 < s < q < p: there exists € > 0 such that

1
j e [Eyo,yo)(””)/ ddx < CyPromm (70)

B(x0,Y0)
for all (xo,y,) € R?*1. Let us show how this can be obtained with our methods. In order

for (68) to hold it is necessary and sufficient that for allyp € LP/(®~® we have
[ [ 1 ute i eadin I < cllyp-q Tl
R™ 0

Thus ¥ (x)du,(y)dx must be a measure satisfying (37) and so Theorem (2.2.1) applies

(part (iii) to obtain the necessary and sufficient condition

—mg- 1
sup 3™ [ w0 370 v0)dx € 210 1)
(*0:¥0)€L(Y) B(xay0)
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with a uniform bound on the norm. Let us rewrite this as

B3t

1
supmj Y(x)g(x,y,)dx € LP/P~4
B

where y, is the radius of the ball B, the sup is over all balls containing ¢, and

q

g(x, Vo) = iy Eyo,yo)yo_m . The question then is to find conditions on g that give a

bound on the LP/®~@-norm of this function. But if we apply Holder's Inequality with

exponents sand s' with1 <s <p/(p — q), we get

1/s 1/sr
1 1 1
o j Y96 o) < (ﬁ j w) (ﬁ j 90 ¥0) )

1/s
Since sup;ecp ((1/|B|) Js 1/)5) has LP/®~9-norm at most Cl[¥ll,/¢p-q), the sufficient
condition is that fBg(-,yO)S' < C|B|. Rewriting this in terms of pu,, using B =
B(xy,¥0), and putting s' = (p + €)/q gives (70).
(Shirokov's fourth conclusion in [81] is that a sufficient condition for (68) whenq > p is
1 mq+n

Hx EYO’Yo)dx < Cy, (72)

B(x0,Y0)

for all (xg,y,) in R%*1(or rather the n = 1 version). Shirokov's proof of this relies on

complex methods but the result remains true when n > 1 as the following shows

. p/qa
[ [1wmuvan oy | ax
R™ \0
oo p/q
<C j j ly™mvmula=P vy |Pym®P=Ddy, (y) dx
R™ \0
oo p/q
<C ju*(x)(q—p)p/q j|vmu|pym(p—q)dux(y) dx
R™ 0
oo p/q
<ty [ | [1wmupyne-oan.o) | ax

R™ \O

Now if dpu, satisfies (72) then dv, = y™®P-@dyu, satisfies the same condition with
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qreplaced by p. This is exactly the right condition for (68) with q replaced by p. Thus, in

the last expression above, the first factor is bounded by CIIullllﬁ,p/q and the second by

CllullPi, and (68) follows.)

HP
In the case where g < 2with g < p, our methods give the following sufficient
condition for (68):

) (pie)/q\ (@/ @)@/ (2-0)

1 M [;y.y) dy_ .

yn yma y
0 B(Xo,y)

or all x, € R™. This is obtained just as in the g > 2 case except that Theorem (2.2.1), part
(ii) is invoked instead of part (iii).

It seems clear that the approach in this section depends largely, if not entirely, on the
properties of the kernel D P. This suggests that the whole theory could be developed for
kernels defined on X X X X (0,+o) where X is a space of homogeneous type. It is very
likely, then, that the result corresponding to Theorem (2.2.1) for the ball inC", say, would

be very similar to Theorem (2.2.1).
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