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Chapter	1	

Scattered	Zeroes	Extensions	of	Bounds	for	Functions	in	Sobolev	Spaces	

We apply results to obtain estimates for continuous and discrete least squares surface fits 
via radial basis functions (RBFs). These estimates include situations in which the target 
function does not belong to the native space of the RBF.We then apply the Sobolev bound 
to derive error estimates for interpolating and smoothing	(݉, (ݏ −splines. In the case of 
smoothing, noisy data as well as exact data are considered. 

Sec	(1.1):Applications	to	Radial	Basis	Functions	Surface	Fitting:	

		The	 problem	 of	 effectively	 representing	 an	 underlying	 function	 based	 on	 its	 values	

sampled	 at	 finitely	 many	 distinct	 scattered	 sites	 ܺ	 = 	 ,	ଵݔ} . . . , 	{ேݔ lying	 in	 a	 compact	

region	 Ω ⊂ ℝ	 is	 important	 and	 arises	 in	 many	 applications—neural	 net-	 works,	

computer	 aided	 geometric	design,	 and	 gridless	methods	 for	 solving	 partial	 differential	

equations,	to	name	a	few.	

There	are	two	main	ways	of	dealing	with	this	problem:	interpolation	of	the	data	

or	 least	 squares	 approximation	 of	 the	 data.	 	 In	 both	 cases	 one	 assumes	 the	 data	 is	

generated	by	a	function	݂	belonging	to	a	classical	Sobolev	space,	 ܹ
(Ω).	One	next	needs	

to	select	an	 interpolating	or	approximating	subspace	of	 functions.	One	choice	 is	 to	use	

multivariate	splines	or	finite	elements.	In	this	approach,	one	needs	to	decompose	Ω	into	

a	number	of	subregions	and	interpolate	or	approximate	by	multivariate	polynomials	on	

each	 subregion.	 One	 then	 sews	 together	 the	 pieces	 in	 a	 smooth	way	 to	 construct	 the	

representing	surface.	This	is,	in	ℝ	with		݊	 ≥ 	3,	a	nontrivial	task.	

Another	approach,	which	will	be	 the	 focus	of	 this	 section,	 is	 to	use	 radial	basis	

functions	 (RBFs).	 An	 RBF	 is	 a	 radial	 function	 (ݔ)ߔ 	= 	(|ݔ|)߮	 that	 is	 either	 positive	

definite	or	conditionally	positive	definite	on	ℝ .	 Interpolants	for	multivariate	 functions	

sampled	 at	 scattered	 sites	 are	 constructed	 from	 translates	 of	 RBFs	 with	 the	 possible	

addition	of	a	polynomial	term.	

It	was	Duchon	[5]	who	introduced	a	type	of	RBF,	the	thin-plate	spline,	which	he	

constructed	via	a	variational	technique	similar	to	those	used	to	obtain	ordinary	splines.	

The	error	analysis	he	provided	for	thin-plate	splines	involved	reproducing	kernel	Hilbert	

space	 (RKHS)	 methods	 and	 applied	 to	 both	 interpolation	 and	 least	 squares	

approximation.	 	 Subsequently,	 the	 theory	 of	 RBF	 interpolation	 evolved	 with	 seminal	

contributions	 from	Micchelli	 [9],	who	 	 introduced	 a	wide	 class	 of	 functions	 for	which	

interpolation	of	scattered	data	was	always	possible,	and	Madych	and	Nelson	[6,	7],		who	
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obtained	ܮஶ	 	 error	 estimates	 for	RBF	 interpolation.	 	 	 Least	 squares	 approximation	 by	

RBFs	was	treated	by	de	Boor,	DeVore	and	Ron	[3,	12]	in	the	case	where	the	underlying	

domain	 was	 ℝ	 and	 the	 approximating	 subspace	 had	 “centers”	 at	 the	 scaled	 lattice	

points.	 	In	particular,	the	theory	of	least	squares	approximation	on	a	compact	set	Ω	for	

scattered	data	has	not	gone	beyond	the	initial	work	of	Duchon.	

In	this	section	we	seek	to	extend	the	work	of	Duchon	in	several	directions.	The	original	

work	of	Duchon	dealt	with	the	globally	supported	thin-plate	splines.	The	natural	spaces	

to	 deal	with	 in	 that	 setting	were	 the	 integer-order	Sobolev	 spaces	 (or	 the	Beppo-Levi	

spaces	which	are	Sobolev	semi-normed	spaces).	We	obtain	similar	results	for	the	locally	

supported	Wendland	 functions	[15]	 in	 their	natural	 setting	of	 fractional	order	Sobolev	

spaces.	 Another	 aim	of	 this	 section	 is	 to	 extend	 the	 least	 squares	 setting	 estimates	 to	

functions	 which	 lie	 outside	 the	 RKHS	 as	 has	 been	 recently	 done	 for	 the	 case	 of	

interpolation	[10].	

	 Recall	that	the	original	Duchon	estimates	applied	to	the	continuous	least	squares	

setting	only.		That	is,	one	approximated	functions	that	were	defined	on	all	of	Ω.	We	will	

obtain	discrete	 least	squares	estimates	where	 it	 is	assumed	the	 function	belongs	to	an	

appropriate	Sobolev	space	 ܹ
(Ω)but	is	only	known	on	a	discrete	subset		.	These	results	

are	the	first	of	their	kind.	

				Finally	we	wish	to	provide	an	“intrinsic	proof	”	of	all	these	results	which	relies	on	basic	

principles.	

Central	 to	 our	 approach	 will	 be	 a	 Theorem	which	 	 gives	 very	 precise	 Sobolev	

norm	 estimates	 for	 functions	 having	 many	 zeros	 in	 a	 domain	 Ω.	 	 Note	 that	 the	

interpolation	error	 function	 is	 an	example	of	 a	 function	having	many	zeros.	This	 same	

concept	will	be	 important	 in	establishing	 the	 least	 squares	error	estimates	as	well.	 	 In	

general,	 we	 believe	 this	 Theorem	 has	 applications	 outside	 the	 realm	 of	 RBFs.	 In	

particular,	 a	 variant	 of	 the	 theorem	 below	 can	 be	 used	 to	 extend	 to	 more	 general	

domains	 some	 of	 the	 interpolation	 error	 estimates	 found	 in	 [1].	 More	 precisely,	 the	

following	will	be	established	in	the	ℝsetting.	

Theorem	(1.1.1)[18]:	

		Let		݇	be	a	positive	integer,		0 < ݏ ≤ 1,1 ≤  < ∞,1 ≤ ݍ ≤ ∞	and	let	ߙ		

be	 a	 multi-index	 satisfying	 ݇ > |ߙ| + 	,or	/݊ for	  = 1, ݇ ≥ |ߙ| + ݊.	 	 Let	 ܺ	 ⊂ 	Ω	 be	 a	

discrete	set	with	mesh	norm		ℎ = ℎ,Ω	 = 	sup௫∈Ωmin௫ೕ	∈	|ݔ − 	compact	a	is	Ω	where	|ݔ
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set	with	Lipschitz	boundary	which	satisfies	an	interior	cone	condition.			If	ݑ ∈ ܹ
ା௦(Ω)	

satisfies	ݑ| = 0,	then	

ௐ|ഀ|(ஐ)|ݑ| ≤ ܿℎା௦ି|ఈ|ି(ଵ/ିଵ/)|ݑ|ௐೖశೞ(Ω),	

where		ܿ	is		a	constant		independent			of	ݑ		and		ℎ,		and		(ݔ)ା = ݔ		if	ݔ ≥ 0	and		is		0	

otherwise.	

Here	|ݑ|ௐ(ஐ)refers	to	the	(fractional)	Sobolev	semi-norm	(see	definitions	later).	

A	precursor	of	this	theorem	may	be	found	in	[5]	by	Duchon,	who	restricted	Ω	to	balls	of	

certain	 radii	 and	 considered	 only	 the	 cases	 	 = 2	 and	 	 	ݏ = 	0.	 In	 another	 direction,	

Madych	and	Potter	[8]	obtained	a	restricted	version	of	this	theorem	for	the	case		 = 	ݍ	

and	for	functions	which	vanished	on	the	boundary	of	Ω.	

A	typical	application	of	Theorem	(1.1.1)	can	be	described	as	follows.		Suppose	we	

have	 an	 interpolation	 process	 ܲ ∶ 	 ܹ
ା௦(Ω) → ܸ 	 	 	 	 that	maps	 Sobolev	 functions	 to	 a	

finite	 dimensional	 subspace	 of	 ܹ
ା௦(Ω)with	 the	 additional	 property	 Then		

| ݂ܲ|ௐೖశೞ(Ω) ≤ |݂|ௐೖశೞ(Ω).	 Theorem	 (1.1.1)	 immediately	 gives	 error	 estimates	 of	 the	

form	

|݂ − ݂ܲ|ௐ|ഀ|(Ω) ≤ ܿℎା௦ି|ఈ|ି(ଵ/ିଵ/)|݂|ௐೖశೞ(Ω).	

We	 illustrate	 the	 above	 in	 two	 different	 cases.	 Probably	 the	 most	 prominent	

situation	 is	 illustrated	by	classical	univariate	splines.	For	example,	natural	cubic	spline	

interpolants	are	known	to	minimize	| · |ௐమమ[,]amongst	all	interpolants	from	| · |ௐమమ[,].	

The	second	example	deals	with	multivariate	radial	basis	function	interpolation.	In	

our	framework	the	error	estimates	fall	into	two	parts.		Theorem	(1.1.1)	gives	estimates	

on	 the	 interpolation	 error.	 	 Moreover,	 it	 is	 well	 known	 that	 radial	 basis	 function	

interpolants	are	also	best	approximants	in	certain	associated	reproducing	kernel	Hilbert	

spaces.	Hence,	 if	 such	a	 space	 coincides	with	an	appropriate	Sobolev	 space,	 the	(semi-

)norm	of	the	interpolant	can	be	bounded	by	the	(semi-)norm	of	the	target	function.	

Our	new	approach	offers	a	new	paradigm	 for	radial	basis	 function	nterpolation	

error	estimates,	where	estimates	on	functions	with	a	large	zero	set	replaces	the	power	

function	approach.	

	We	 will	 need	 to	work	with	 a	 variety	 of	 Sobolev	 spaces.	 The	 def-	 initions	 	 used	 here	

follow	those	used	by	Brenner	and	Scott	[1].	 	Let	Ω ⊂ ℝbe	a	domain.	For	݇ ≥ 	0, ݇ ∈ ℤ,	
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and	 1 ≤  < ∞,	 we	 define	 the	 Sobolev	 spaces	 ܹ
(Ω)	to	 be	 all	 	 	 with	 distributional	

derivatives	ܦఈݑ ∈ ,(Ω)ܮ |ߙ| ≤ 	݇.	Associated	with	these	spaces	are	the	(semi-)norms	

ௐೖ(Ω)|ݑ| = ൭ (Ω)‖ݑఈܦ‖


|ఈ|ୀ

൱
ଵ/

ௐೖ(Ω)‖ݑ‖				݀݊ܽ					 = ൭ (Ω)‖ݑఈܦ‖


|ఈ|ஸ

൱
ଵ/

	.	

The	case	 = ∞	is	defined	in	the	obvious	way	

ௐೖ(Ω)|ݑ| = sup|ఈ|ୀ‖ܦఈݑ‖ಮ(Ω)			and			‖ݑ‖ௐಮೖ (Ω) = sup|ఈ|ஸ‖ܦఈݑ‖ಮ(Ω).	

For	 fractional	 order	 Sobolev	 spaces,	 we	 use	 the	 norms	 below.	 	 Let	 1 ≤  < 	∞,	

݇ ≥ 0, ݇ ∈ ℤ,	and	let	0 < ݏ < 1.		We	define	the	fractional	order	Sobolev	spaces	 ܹ
ା௦(Ω)	

to	be	all	ݑ	for	which	the	norms	below	are	finite	

ௐೖశೞ(Ω)|ݑ| = ൭ න න
(ݔ)ݑఈܦ| − |(ݕ)ݑఈܦ

ݔ| − ା௦ΩΩ|ఈ|ୀ|ݕ

൱ݕ݀ݔ݀
ଵ/

,	

ௐೖశೞ(Ω)|ݑ| = ൬‖ݑ‖ௐ
ೖ(Ω)

 + ௐೖశೞ(Ω)|ݑ|
 ൰

ଵ/
.	

Let	ܺ	 = 	 ,	ଵݔ} . . . , 	be	to	assume	now	we	which	Ω,	of	subset	discrete	finite,	a	be	ே}ݔ

bounded.	There	are	three	quantities	that	we	associate	with		:		the	separation	radius,	the	

mesh	norm		or	fill	distance,	and	the	mesh	ratio.	Respectively,	these	are	given	by	

ݍ =
1
2minஷ

หݔ − หݔ ,										ℎ,Ω = sup
௫∈Ω

dist ,ݔ) ,Ωߩ		݀݊ܽ			,(ܺ =
ℎ,Ω
ݍ

.	

Here,	 	 	| · |	denotes	the	Euclidean	distance	on	ℝ .	 	The	first	is	half	the	smallest	distance	

between	points	in		,	the	second	measures	the	maximum	distance	a	point	in	Ω	can	be	from	

any	point	in	ܺ	,	and	the	final	quantity,	the	mesh	ratio,	measures	to	what	extent	points	in	

ܺ	 uniformly	 cover	 Ω.	 	 Frequently,	 when	 the	 set	 Ω	 or	 ܺ	 is	 understood,	 we	 will	 drop	

subscripts	and	write	ℎ		or	ℎ.		Other	notation	will	be	introduced	along	the	way.	

In	this	section	we	obtain	Sobolev	bounds	on	functions	with	scattered	zeros	in	a	bounded	

Lipschitz	domain	Ω	that	satisfies	a	uniform	interior	cone	condition.	This	is	done	in	two	

main	 steps.	We	 first	 obtain	 results	 for	 a	 special	 class	 of	domains	 that	 are	 star-shaped	

with	respect	to	balls.	We	then	use	a	decomposition	of	Ω	into	such	domains	to	obtain	the	

general	results.	

We	will	first	obtain	our	bounds	for	a	special	class	of	domains.	Following	Brenner	

and	 Scott	 [1],	 we	 will	 say	 that	 a	 domain	 ࣞ	 is	 star-shaped	 with	 respect	 to	 a	 ball	

ݔ)ܤ 	, (ݎ 	= ݔ} ∈ ℝ ∶ ݔ| − |ܿݔ < ݔ	every	for	if	{ݎ ∈ ࣞ,	the	closed	convex	hull	of	{ݔ} ∪ 		ܤ	

is	contained	in	ࣞ.	
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We	will	deal	only	with	bounded	domains.		Thus,	there	will	be	a	ball	ݔ)ܤ 	, ܴ)that	

contains	ࣞ.	 Of	 course,	 the	 diameter	݀ࣞ 	 of	ࣞ	 satisfies	ݎ < ݀ࣞ < 2ܴ.	 	 Also,	 Brenner	 and	

Scott	[1,	Deϐinition	4.2.16]	deϐine	the	chunkiness	parameter			ߛ	to	be	the	ratio	of	݀ࣞto	the	

radius	of	the	largest	ball	relative	to	which	ࣞ	is	star-shaped.	This	parameter	comes	up	in	

various	estimates	and	it	is	useful	to	note	that	it	can	be	bounded	above;	namely,	we	have	

ߛ ≤
2ܴ
ݎ .																																																																									(1)	

Finally,	such	domains	satisfy	a	simple,	interior	cone	condition,	which	we	now	describe.	

Proposition	(1.1.2)[18]:	

If	ࣞ	is	bounded,		star-shaped		with	respect		to	ݔ)ܤ 	, ݔ)ܤ	in		contained	and(ݎ 	, ܴ),		

then		every	ݔ	 ∈ ࣞ	is	the	vertex		of	a	cone	ܥ ⊂ ࣞ	having	radius	ݎ	and	angle		ߠ	 =

	2arcsin ቀଶோ

ቁ	

Proof:			

It	is	easy	to	check	that	when	ݔ ∈ ݔ)ܤ 	, 	central	the	if	satisfied	is	condition	the	,(ݎ

axis	of	 the	 cone	 is	directed	along	a	diameter	of	 the	ball	ݔ	 ∈ ݔ)ܤ 	, 	.(ݎ If	ݔ	 is	outside	of	

that	 ball,	 then	 consider	 the	 convex	 hull	 of	 	ݔ and	 the	 intersection	 of	 the	 sphere	

S(ݔ, ݔ| − ݔ 	|) = ݕ} ∈ ℝ: ݕ| − |ݔ = ݔ| − ݔ)ܤ	with	{|ݔ 	, 	This	.(ݎ is	a	cone,	and,	because	

ࣞ	is	star-shaped	with	respect	to	ݔ)ܤ 	, 	distance	the	is	radius	Its	ࣞ.	in	contained	is	it	,(ݎ

from	ݔ	to	ݔ.	To	find	its	angle	ߠ,	consider	a	triangle	formed	by	ݔ, ݔ ,	and	any	point	on	ݕ	in	

the	 intersection	of	ܵ(ݔ, ݔ| − 	(|ݔ and	 the	 sphere	ܵ(ݔ 	, 	This	(ݎ is	 any	 isosceles	 triangle,	

since	|ݔ − |ݔ = ݕ| − 	.|ݔ 	The	angle	∠	ݔ	ݕݔ	 = 	length	has	angle	this	opposite	side	the	;ߠ

ݔ|	that	us	gives	then	trigonometry	little	A		.ݎ − ଵ	sin(|ݔ
ଶ
(ߠ	 = ଵ

ଶ
	have	we	Consequently,		.ݎ	

	ߠ = 	2arcsin ቀ 
ଶ|௫ି௫|

ቁ.	 Moreover,	 sinceࣞ ⊂ ݔ)ܤ , ܴ),	 we	 also	 have	 ݔ| − |ݔ ≤ 	ܴ.	 Thus,	

	≥ 	2arcsin ቀ 
ଶோ
ቁ	 .	 Finally,	 ݎ ≤ ݔ| − 	implies	|ݔ that	 the	 cone	 with	 vertex	 x,	 axis	 along	

ݔ − 	ߠ	angle	and	,ݔ = 2arcsin ቀ 
ଶோ
ቁ					is	contained	in	ࣞ.	

				Throughout	 the	 remainder	 of	 this	 section,	ࣞ, ,ݎ ܴ, ,ߛ 	,ߠ and	 x	 are	 related	 in	 the	way	

described	above.				

What	 we	 want	 to	 do	 next	 is	 to	 prove	 a	 Bernstein	 inequality	 for	 polynomials	

restricted	 to	 ࣞ.	 	 Let	  ∈ 	)	ℓ(ℝߨ and	 assume	 that	 	ߘ is	 not	 identically	 	 zero.	 	 The	

maximum	of	|(ݔ)ߘ|	over	 ഥࣞ 	occurs	at	some	point	ݔெ ∈ ഥࣞ	 .	Obviously,	 the	maximum	is	

positive.	Let	ߟ = ఇ(௫ಾ)
|ఇ(௫ಾ)|

.	Because	ݔெ ∈ ഥࣞ,	Proposition	(1.2.1),	which	holds	for	 ഥࣞ 	as	well	
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as	ࣞ,	implies	that	ݔெis	the	vertex	of	a	cone	ܥ ⊂ ഥࣞ	having	radius	ݎ,	axis	along	a	direction	

	ߠ	angle	and	,ߦ = 2arcsin ቀ 
ଶோ
ቁ.	We	may	adjust	the	sign	of		so	that	ߟ	 · 	ߦ	 ≥ 	0.		By	looking	

at	the	intersection	of	the	cone	ܥ		with	a	plane	containing	ߦ	and	ߟ,	we	see	that	there	is	a	

unit	 vector	 	ߞ pointing	 into	 the	 cone	 and	 satisfying	 ߟ · ߞ ≥ cos(2/ߨ	 − (ߠ	 = 	sin(ߠ).	 It	

follows	that	

|(ெݔ)ߘ| =
߲
ߟ߲ (ெݔ)	 ≤ csc(ߠ)	

߲
ߞ߲ 	.(ெݔ)	

On	the	other	hand,	for	ݐ ∈ ℝ, (ݐ) 	= ெݔ)	 + 	the	obeys	it	particular,	In	ℓ(ℝ).ߨ	in	is	(	ߞݐ

usual	Bernstein	inequality	on	0	 ≤ 	ݐ	 ≤ 	ݎ	

|(ݐ)ᇱ| ≤ (2ℓଶ/ݎ) max
௧∈[,]

|(ݐ)ᇱ| ≤ (2ℓଶ/ݎ)‖‖ಮ(ࣞ).	

Since	ᇱ(0) = 	 డ
డ
ݔ	all	for	have	we	,(	ܯݔ) ∈ ഥࣞ ,	

|(ݔ)ߘ| ≤ |(ெݔ)ߘ| ≤ csc(ߠ)
߲
ߞ߲

(ெݔ) ≤
2ℓଶ

(ߠ)sinݎ
	(2)																						ಮ(ࣞ)‖‖

Noting	 that	 | డ
డ௫ೕ

| ≤ 	|(ݔ)ߘ| and	 keeping	 track	 of	 polynomial	 degrees	 as	 we	 differ-	

entiate,	we	arrive	at	the	following	result.	

Proposition	(1.1.3)	[18]:	

With	the	notation	and	assumptions	of	Proposition		2.1,		if	 ∈ 	a	is	ߙ	if	and	ℓ(ℝ)ߨ

multi-index	for	which	|ߙ| ≤ ℓ,	then	

(ࣞ)ಮ‖ఈܦ‖ ≤
2|ఈ|(ℓ!)ଶ

|ఈ|ݎ sin|ఈ|(ߠ)((ℓ − ଶ(!(|ߙ|
(ࣞ)ಮ‖‖ ≤ ቆ

2ℓଶ

ቇ(ߠ)	sinݎ
|ఈ|

	.(ࣞ)ಮ‖‖

Proposition	(1.1.4)	[18]:	

Let	 	  ∈ 	ℓ(ℝଶ)ߨ and	 	 let	ࣞ	 be	 a	 bounded	 	 domain	 	 that	 	 is	 	 star-	 shaped	with	

respect		to	a	ball	ݔ)ܤ 	, ,	ݔ)ܤ	ball	a	in		contained	also	and	(ݎ ܴ).		If	the	mesh	norm		ℎ	for	

ܺ = ,ଵݔ} . . . , 	satisfies	ࣞ	in	ே}ݔ

ℎ ≤
(ߠ)sin	ݎ

4(1 + sin(ߠ))ℓଶ 																																																				(3)	

then	there	exist	complex	numbers	 ܽ(ݔ)	such	that	for	any	multi-index	ߙ	with	|ߙ| ≤ ℓ	

(ݔ)ఈܦ = ܽ
ఈ	(ݔ)(ݔ)

ே

ୀଵ

	

where	
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ห ܽ
ఈ	(ݔ)ห



≤
2|ఈ|(ℓ!)ଶ

|ఈ|ݎ sin|ఈ|(ߠ)((ℓ − ଶ(!(|ߙ|
≤ ቆ

2ℓଶ

ቇ(ߠ)	sinݎ
|ఈ|

	

Proof::		

See	[17,	Proposition	3.6]	and	[11,	Lemma	6.2].	

Remark	(1.1.5)	[18]:	

The	result	derived	in	[17]	is	stated	with	ℎ	taken	to	be	the	mesh	norm	of	ܺ	relative	

to	ࣞ.	 In	 fact,	 in	 the	proof	of	 the	 result,	ℎ	 is	only	 required	 to	 satisfy	 the	 condition	 that	

every	ball	ݔ)ܤ, ℎ) ⊂ ࣞ	contains	at	least	one	point	in		,	rather	than	being	the	mesh	norm.	

This	will	be	useful	later.	

						In	[1],	Brenner	and	Scott	discuss	approximating	a	 function	ݑ ∈ ܹ
(ࣞ)	by	averaged	

Taylor	 polynomials	 ܳݑ ∈ 	ିଵ(ℝ)Inߨ this	 section,	 we	 briefly	 summarize	 their	

discussion	and	extend	some	of	their	results.	

				The	 averaged	Taylor	 polynomials	 are	 defined	 as	 follows.	 Let	ܤఘ	 be	 a	 ball	 relative	 to	

which	ࣞ	is	star-shaped	and	having	radius	ߩ ≥ ଵ
ଶ
୫ୟ୶ߩ ,	the	largest	radius	of	a	ball	relative	

to	which	ࣞ	is	star-shaped.		In	particular,		we	have	݀ࣞ/ߩ ≤ 	chunkiness	the	is	ߛ	where	,ߛ2

parameter.	The	averaged	Taylor	polynomials	are	then	given	by		

ܳ(ݔ)ݑ = 
1
!ߙ

|ఈ|ழ

න ݔ)(ݕ)ݑఈܦ − 	ݕ݀(ݕ)ఈ߮(ݕ
ഐ

.	

Here	߮(ݕ) ≥ 0	is	a	ܥஶ		“bump”	function	supported	on	ܤఘand	satisfying	both	

∫ 	ݕ݀(ݕ)߮ = 	1ഐ
	and	max	߮ ≤ ܥ	where	,	ିߩܥ = 	is	ݑܴ	remainder	the	Finally,	.	ܥ

defined	by	

ܴݑ = ݑ − ܳݑ.	

The	following	result	provides	a	bound	on	Rk	u.	

Proposition		(1.1.6)	[18]:	

For		ݑ ∈ ܹ
(ࣞ),	with	1 <  < ∞	and	݇ > 		with	or	/݊ = 1	and	݇	 ≥ 	݊,	

‖ܴݑ‖ಮ(ࣞ) ≤ ,,(1ܥ + ݀ࣞ(ߛ
ି/|ݑ|ௐೖ(ࣞ).	

Where	ܥ,, = ,ܥ
ೖషభ

(ିଵ)!
(݇ − 


)ଵ/ିଵ	if	 > 1	and	ܥ,,ଵ = ,ଵܥ

ೖషభ

(ିଵ)!
	if	 = 1.	

Proof:			
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See	Brenner	and	[1].	 	 	We	remark	that	we	have	tracked	down	and	made	explicit	

the	 dependence	 on	 γ	 and	 k	 of	 the	 constant	 ,,ఊ,ܥ 	 used	 in	 [1].	 In	 the	 process,	 we	

employed	the	identity		∑ !
ఈ!|ఈ|ୀ = ݊.	

To	deal	with	fractional	Sobolev	spaces,	we	need	a	version	of	the	previous	result	

that	applies	when	u	belongs	to	ܹ 	ା௦	(ࣞ),	where	0 < ݏ < 1.		We	begin	with	this	lemma.	

Lemma	(1.1.7)	[18]:	

For	 1 <  < ∞	 and	 ݇ > 	/݊ or	  = 1	 and	 ݇	 ≥ 	݊,	 if	 ݑ ∈ ܹ 	ା௦	(ࣞ),	 and	

ܲ ∈ 	then	),	(ℝߨ

‖ܴାଵݑ‖ಮ(ࣞ) ≤ ,,(1ܥ + ݀ࣞ(ߛ
ି/|ݑ − ܲ|ௐೖ(ࣞ).																									(4)	

Proof:		

We	 begin	 by	 noting	 that	 if	 ܲ	 is	 in	 	,)	(ℝߨ then	 ܳାଵ	ܲ	 = 	ܲ	 ;	 that	 is,	

ܳାଵ	reproduces	 polynomials	 of	 degree	 ݇.	 	 Thus,	 ܴାଵݑ = 	ܴାଵ(ݑ − ܲ).	 The	 obvious	

identity	ܴାଵݑ = ܴݑ + ܳݑ − ܳାଵݑ	then	implies	that	

ܴାଵݑ = 	ܴାଵ(ݑ − ܲ) = ܴ(ݑ − ܲ) + (ܳ − ܳାଵ	)(ݑ − ܲ	).	

By	the	triangle	inequality	and	Proposition	(1.1.6),	we	obtain	

‖ܴାଵݑ‖ಮ(ࣞ) ≤ ,,(1ܥ + ݀ࣞ(ߛ
ି/|ݑ − ܲ|ௐ

ೖ(ࣞ)	

+‖(ܳ − ܳାଵ	)(ݑ − ܲ	)‖ಮ(ࣞ)																																	(5)	

The	second	of	the	two	terms	can	be	estimated	as	follows.	First,	from	the	definition	of	ܳ ,	

the	fact	that	max	߮ ≤ ∑		identity	the	and	,	ିߩܥ ଵ
ఈ!|ఈ|ୀ = ೖ

!
		we	get	

‖(ܳ − ܳାଵ	)(ݑ − ܲ	)‖ಮ(ࣞ) ≤ sup
௫∈ࣞ

 න
ݔ|(ݕ)߮ − ݑ)ఈܦ||ݕ − |(ݕ)(ܲ

ഐ|ఈ|ୀ!ߙ

	ݕ݀

≤ ݀ࣞ ∙ ିߩܥ
݊

݇! max|ఈ|ୀ
න ݑ)ఈܦ| − .ݕ݀|(ݕ)(ܲ
ഐ

	

Applying	Holder’s	inequality	to	the	integral	above,	we	see	that	

න ݑ)ఈܦ| − ݕ݀|(ݕ)(ܲ ≤ vol(ܤఘ)ଵିଵ/‖ܦఈ(ݑ − ܲ)‖(ഐ)
ഐ

	

≤ vol(ܤଵ)ଵିଵ/ߩି/‖ܦఈ(ݑ − ܲ)‖(ࣞ)	

≤ vol(ܤଵ)ଵିଵ/ߩି/|ݑ − ܲ|ௐೖ(ࣞ).	

Combining	these	inequalities	and	using	݀ ߩ/ࣞ ≤ 	estimate	the	at	arrive	we	,ߛ2	

‖(ܳ −ܳାଵ	)(ݑ − ܲ	)‖ಮ(ࣞ) ≤ ଵିଵ/(ଵܤ)volܥ
2/݊

݇! ݀ࣞ
ି/ߛ/|ݑ − ܲ|ௐೖ(ࣞ).	
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Obviously,	ߛ/	 ≤ (1 + 	(ߛ .	 Consequently,	 putting	 the	 inequality	 above	 together	with	

(5)	yields	(4).																																																																																	

Proposition	(1.1.8)	[18]:	

Let	0 < 	ݏ ≤ 1.		For	1 <  < ∞	and	݇ > 	or	/݊ = 	1	and	݇	 ≥ 	݊,	if	ݑ ∈ ܹ
ା௦(ࣞ),	

then	

‖ܴାଵݑ‖ಮ(ࣞ) ≤ ,,(1ܥ + ࣞ݀(ଵାଵ/)(ߛ
ା௦ି/|ݑ|ௐೖశೞ(ࣞ).																(6)	

Proof:		

The	 case	ݏ = 1	 is	 a	 consequence	of	Proposition	(1.1.6),	 so	we	may	assume	 that	

ݏ < 1.	Let	ܲ = ܳାଵݑ	and	note	that	ܲ ∈ 	,identity	The	(ℝ).ߨ

ݑఉܳܦ	 = ܳିି|ఉ|ܦఉ,ݑ																																																	(7)	

which	is	found	in	[1],	holds		for	|ߚ| ≤ ݉ − 1.	In	particular,	if	we	take	ߚ	 = ,ߙ	 |ߙ| = ݇	and	

݉ = ݇ + 1,	then	we	have	

ݑఈܳାଵܦ = ܳଵܦఈݑන (ݕ)ݑఈܦ(ݕ)߮
ഐ

	,ݕ݀

which	is	of	course	a	constant.	Since	∫ ഐ(ݕ)߮
ݕ݀ = 1		we	note	that	

ݑఈܳାଵܦ−ݑఈܦ = න (ݕ)߮
ഐ

(ݔ)ݑఈܦ) − 	ݕ݀((ݕ)ݑఈܦ

From	 this,	 a	 simple	 manipulation,	 bounds	 on	 ߮	 and	 ݔ| − |ݕ ≤ ݀ࣞ 	 ,	 and	 Hӧlder’s	

inequality,	it	follows	that	

|ݑఈܳାଵܦ−ݑఈܦ| ≤ න (ݕ)߮
ഐ

ݔ| − ௦ା/|ݕ
(ݔ)ݑఈܦ| − |(ݕ)ݑఈܦ

ݔ| − ௦ା/|ݕ 	ݕ݀

																								≤ ݀ࣞିߩܥ
௦ା/න

(ݔ)ݑఈܦ| − |(ݕ)ݑఈܦ
ݔ| − ௦ା/ഐ|ݕ

	ݕ݀

																																			≤ ݀ࣞିߩ,ܥ
௦ା/ ብ

(ݔ)ݑఈܦ| − |(ݕ)ݑఈܦ
ݔ| − ௦ା/|ݕ

ብ
(ࣞ,ௗ௬)

	

Raise	both	sides	to	 the	power	.	 	 Integrate	 in	ݔ	over	ࣞ	and	sum	over	all	|ߙ| 	= 	݇.	The	

result	is	

ݑ| − ܲ|ௐೖశೞ(ࣞ)
 ≤ ,ܥ

 ݀ࣞ
௦ାିߩ  න න

(ݔ)ݑఈܦ| − |(ݕ)ݑఈܦ

ݔ| − ା௦ࣞࣞ|ఈ|ୀ|ݕ

	ݕ݀ݔ݀

The	double	integral	on	the	right	is	just	|ݑ|ௐೖశೞ(ࣞ)
 Again	using	݀ࣞ/ߩ ≤ 	the	taking	and		ߛ2

௧ 	root	of	both	sides,	we	obtain	

ݑ| − ܲ|ௐೖ(ࣞ), ≤ 2/ܥ,݀ࣞ௦ 	(ࣞ)ௐೖశೞ|ݑ|/ߛ
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Applying	Lemma	(1.1.7)	yields	the	result	

Corollary	(1.1.9)	[18]:	

Let	0 < ݏ ≤ 1.		For	ݑ ∈ ܹ
ା௦(ࣞ),	

(ࣞ)ಮ‖ݑఈܳାଵܦ−ݑఈܦ‖ ≤ ,,(1ܥ + ࣞ݀(ଵାଵ/)(ߛ
ା௦ି|ఈ|ି/|ݑ|ௐೖశೞ(ࣞ)	

provided	that	1 <  < ∞	and	݇ > |ߙ| + 	or	,/݊ = 1	and	݇ ≥ |ߙ| + ݊.	

Proof:			

This	follows	directly	from	Proposition	(1.1.8),	the	identity	(7),	and	the	inequality	

(ࣞ)|ഀ|ௐೖశೞష|ݑఈܦ| ≤
	ௐೖశೞ(ࣞ).One|ݑ| can	 use	 function-space	 interpolation	 theory	 to	 prove	

Proposition	 (1.1.8)	 and	 Corollary	 (1.1.9).	 	 Indeed,	 the	 proofs	 are	 somewhat	 simpler.			

There	is	a	difficulty	in	doing	this,	however.		The	fractional	Sobolev	norms	then	also	must	

come	 from	 interpolation	 of	 integer	 Sobolev	 spaces.	 While	 these	 are	 known	 to	 be	

equivalent	 to	 the	 intrinsic	 fractional	 norms	 we	 employ	 here,	 determining	 the	

dependence	of	the	equivalence	constants	on	the	parameters	of	ࣞ is	problematic.	

We	are	now	ready	to	establish	Sobolev	bounds	for	functions	with	scattered	zeros	

in	ࣞ.	 Suppose	 that	ܺ ⊂ ࣞ	 is	finite	and	has	a	mesh	norm	ℎ	 satisfying	the	 conditions	 in	

Proposition	 (1.1.4).	 In	 addition,	 with	 0 < ݏ ≤ 1,	 suppose	 that	 ݑ ∈ ܹା௦(ࣞ)	 satisfies	

|ݑ = 	0,	where	݇ > 	,or	/݊ if	 = 1, ݇ ≥ ݊.	Let	ݒ = 	ݑ	 −	ܳାଵݑ.	 	 	Note	 that	 if	ݔ ∈ ܺ	,	

(ݔ)ݒ = (ݔ)ݑ − (ܳାଵ	ݑ)(ݔ) = −(ܳାଵ	ݑ)(ݔ).	 By	 Proposition	 (1.1.4),	 with	 ℓ = ݇,	 we	

thus	have	for	each	ݔ ∈ ࣞ,	

(ݔ)(ݑ	ାଵܳ)ఈܦ = − ܽ
ఈ(ݔ)ݒ(ݔ)

ே

ୀଵ

	

and	hence	that	

|(ݔ)(ݑ	ାଵܳ)ఈܦ| ≤ ቌห ܽ
ఈ(ݔ)ห

ே

ୀଵ

ቍmax
௫ೕ∈

หݒ൫ݔ൯ห	

		≤ 2 ቆ
2݇ଶ

ቇ(ߠ)	݊݅ݏݎ
|ఈ|

ݑ‖ − ܳାଵݑ‖ಮ(ࣞ)	

≤ 2 ቆ
2݇ଶ

ቇ(ߠ)	sinݎ
|ఈ|

,,(1ܥ + ࣞ݀(ଵାଵ/)(ߛ
ା௦ି/|ݑ|ௐೖశೞ(ࣞ).	

where	the	last	step	follows	from	Proposition	(1.1.8).	

Next,	let	α	be	a	multi-index	satisfying	݇ > |ߙ| + 	or	,/݊ = 1	and	݇ ≥ |ߙ| + ݊.	

From	Corollary	(1.1.9),	the	previous	inequality,	and	the	triangle	inequality,	we	have	
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(ࣞ)ಮ‖ݑఈܦ‖ ≤ ൝1 + 2ቆ
2݇ଶ݀ࣞ
ቇ(ߠ)	sinݎ

|ఈ|

ൡ ,,(1ܥ + ࣞ݀(ଵାଵ/)(ߛ
ା௦ି|ఈ|ି/|ݑ|ௐೖశೞ(ࣞ)	

Now,	1 ≤ ߛ ≤ ௗࣞ

≤ ଶோ


= csc(2/ߠ),	sin(2/ߠ) ≤ sin(ߠ),	and	so	we	have	that		

(ࣞ)ಮ‖ݑఈܦ‖ ≤ |,,2|ఈ|ାା/݇ଶ|ఈܥ3 cscଶ|ఈ|ାା/(2/ߠ)݀ࣞ
ା௦ି|ఈ|ି/|ݑ|ௐೖశೞ(ࣞ)	

Collecting	coefficients	in	this	expression	and	simplifying,	we	obtain	the	following	result.	

Proposition	(1.1.10)	[18]:	

Let	 ݇	 be	 a	 positive	 integer,	 	 1 ≤  < ∞,	 0 < ݏ ≤ 1,	 and	 let	 	ߙ be	 a	 multi-index	

satisfying	 	݇ > |ߙ| + 	,or	,/݊ for	 = 1,	݇ ≥ |ߙ| + ݊.	 	Also,	 	 let	ܺ ⊂ ࣞ	be	a	discrete	 	set	

with	mesh	norm		ℎ	satisfying		(3).		If	ݑ ∈ ܹ
ା௦(ࣞ)		satisfies		ݑ| = 	0,	

(ࣞ)ಮ‖ݑఈܦ‖ ≤ |,,,|ఈܥ3 cscଶ|ఈ|ାା/(2/ߠ)݀ࣞ
ା௦ି|ఈ|ି/|ݑ|ௐೖశೞ(ࣞ),	

where	ܥ,,,|ఈ| = |,,2|ఈ|ା(ଵାଵ/)݇ଶ|ఈܥ3 	

	

Corollary	(1.1.11)	[18]:	

Let	 	1 ≤ ݍ < ∞.	 	With	the	notation	and	assumptions	of	Proposition	(1.1.10),	we	

have	

(ࣞ)|ഀ|ௐ|ݑ| ≤ ,,,ܥ csc
ଶ|ఈ|ା(ଵାభ)(2/ߠ) ݀ࣞ

ା௦ି|ఈ|ି(ଵ/ିଵ/)|ݑ|ௐೖశೞ(ࣞ) 	

Proof:			

Since	card{ߚ ∈ ℕ
:	|ߚ| = {|ߙ| = ൫|ఈ|ାିଵିଵ ൯ = (ࣞ)vol	and	(	ିଵ|ߙ|)ܱ < ࣞ݀ܥ 	we	

find	that	

(ࣞ)|ഀ|ௐ|ݑ| ≤ ቆ
|ߙ| + ݊ − 1
݊ − 1 ቇ

ଵ/

vol(ࣞ)ଵ/ max
|ఉ|ୀ|ఈ|

ฮܦఉݑฮಮ(ࣞ)	

≤ ࣞ݀|,,|ఈܥ
/ max

|ఉ|ୀ|ఈ|
ฮܦఉݑฮಮ(ࣞ)	

≤ ,,,ܥ csc
ଶ|ఈ|ା(ଵାభ)(2/ߠ)݀ࣞ

ା௦ି|ఈ|ି(ଵ/ିଵ/)|ݑ|ௐೖశೞ(ࣞ).	

We	will	now	treat	a	domain	Ω	 ⊂ ℝ	 	that	is	bounded,	has	a	Lipschitz	boundary,	

and	satisfies	an	interior	cone	condition,	where	the	cone	has	a	maximum	radius	ܴ			and	

angle		߮.		Of	course,	the	cone	condition	will	be	obeyed	if	we	use	any	radius	0 < ܴ ≤ ܴ	.	

To	begin,	we	need	to	cover	Ω	with	domains	that	are	star-shaped	with	respect	to	a	

ball.	We	will	employ	a	construction	due	to	Duchon	[5].	Let	

ݎ =
ܴ sin(߮)

2(1 + sin(߮)) and ܶ = ൜ݐ ∈
ݎ2
√݊

ℤ: ,ݐ)ܤ (ݎ ⊂ Ωൠ,																																				(8)	
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where	≤ ܴ	 .	 	Fix	ݔ	 ∈ 	Ω.	 	Duchon	 	(see	the	proof	of	[5,	Proposition	1])	shows	that	 the	

cone	 ௫ܥ ⊂ Ω	 associated	 with	 x	 contains	 one	 of	 the	 balls	 ,ݐ)ܤ 	,(ݎ where	 ଶ
√
ℤ	.	This	 of	

course	 implies	 that	 the	 set	 ܶ = ߮and,	 	 since	 	 ݐ| − |ݔ < ܴ,	 that	 ௫ܥ ⊂ ,ݐ)ܤ ܴ) ∩ Ω.	

Moreover,	the	closed	convex	hull	of	{ݔ} ∪ ,ݐ)ܤ	 ௫ܥ	in	contained	is	(ݎ 	,	because	ܥ௫ 	is	itself	

convex.	

Instead	of	fixing	ݔ,	we	now	fix	ݐ ∈ ܶ .	Let	ࣞ௧		be	the	set	of	all	ݔ ∈ Ω	such	that	the	closed	

convex	hull	of	{ݔ} ∪ ,ݐ)ܤ	 Ω	in	contained	is	(ݎ ∩ ,ݐ)ܤ ܴ).	By	construction,	each	ࣞ௧is	star-

shaped	with	respect	to	ݐ)ܤ, ݔ	every	that	is	above	shown	have	we	What	.(ݎ ∈ Ω	is	in	some		

ࣞ௧,	 so	 Ω ⊂ ⋃ ࣞ௧௧∈ ೝ் 	 	 	 .	 Of	 course,	 it	 is	 also	 true	 that	ࣞ௧ ⊂ 	Ω,	 so	 in	 fact	 we	 have	 that	

Ω = ⋃ ࣞ௧௧∈ ೝ் 	

This	 implies	 several	 useful	 geometric	 facts.	 	 We	 have	 that	 the	 diameter	 of	 ࣞ௧	

satisfies	݀ࣞ < 2ܴ		and	that	the	angle	of	the	cone	ߠ	in	Proposition	2.1	is	related	to	߮	via	

ߠ = 2	arcsin(	 
ଶோ
	) = 2	arcsin( 	ୱ୧୬(ఝ)

ସ(ଵାୱ୧୬()))
).	 Also	we	 have	 that	 # ܶ ,	 the	 	 cardinality	of	 ܶ ,,	

satisfies	# ܶ < vol(Ω)/vol(ݐ)ܤ, ((ݎ ≤ 	.	Ω,,ఝܴିܥ

There	is	one	more	thing	that	we	need.	Let	߯ௌ	denote	the	characteristic	function	of	

a	set	ܵ.		Because	ࣞ௧ ⊂ ,ݐ)ܤ	 ܴ), ߯ࣞ(ݔ)		߯(௧,ோ)	(ݔ)	for	all	ݔ ∈ ℝ
.	By	[5],	there	is	a	constant	

	ଵܯ ,	 which	may	 be	 taken	 as	ܯଵ = ,߮)ଵܯ ݊),	 such	 that	∑ ߯(௧,ோ)	(ݔ) ≤ ∋ଵ௧ܯ ் all	ݔ ∈ ℝ .	

Consequently,	∑ ߯ࣞ (ݔ)	 ≤ ∋ଵ௧ܯ ் .	We	summarize	these	remarks	below.	

Lemma	(1.1.12)	[18]:	

With		the	notation		introduced		above,	we	have	the	following:	

(1)	Each	ࣞ௧is	star-shaped	with	respect	to	the	ball	ݐ)ܤ, ,ݐ)ܤ	satisfies	and	(ݎ (ݎ ⊆ ࣞ௧ ⊆ Ω ∩

,ݐ)ܤ ܴ), ݀ࣞ < 2ܴ, and	ߠ = 2	arcsin ቀ 	ୱ୧୬(ఝ)
ସ(ଵାୱ୧୬()))

ቁ .	

(2)	Ω = ⋃ ࣞ௧௧∈ ೝ் 		and	# ܶ < Ω,,ఝܴିܥ .	

(3)	There	exists		a	constant		ܯଵ = ,߮)ଵܯ ݊)	such	that		∑ ߯ࣞ	(ݔ) ≤ ∋ଵ௧ܯ ் 		for	all	ݔ ∈ ℝ	.	

We	are	now	ready	to	obtain	Sobolev	bounds	for	functions	having	zeros	at	a	finite	

subset	ܺ ⊂ Ω,	where	we	let	ℎ = ℎ,Ω	be	the	mesh	norm	of	ܺ	in	Ω.	We	will	assume	that	ℎ	

satisfies	the	following	condition:	

ℎ ≤ ݇ିଶܳ(߮)ܴ			where		ܳ(߮) =
ୱ୧୬(ఝ) ୱ୧୬(ఏ)

଼(ଵାୱ୧୬(ఏ))(ଵାୱ୧୬(ఝ))
.																												(9)	

We	note	that	ߠ = 2	arcsin ቀ 	ୱ୧୬(ఝ)
ସ(ଵାୱ୧୬())

ቁ,	so	that	ܳ	only	depends	on	߮.		If	this	as	sumption	

holds,	then	we	can	take	= 	 
మ

ொ(ఝ)
	,	for	then	ܴ ≤ ܴ	.		Moreover,	from	the	definition	of	ݎ	in	



13 
 

terms	of	߮and	ܴ	 	 given	 in	 (8),	we	 see	 that	ℎ = 	ୱ୧୬(ఏ)
ସ୩మ(ଵାୱ୧୬())

	 .	 	Hence,	ℎ	 satisϐies	 (3)	 for	
ℓ = ݇.	

We	point	out	that	every	ball	ݔ)ܤ, ℎ) 	⊂ 	Ω	contains	at	least	one	point	in		.	

In	particular,	if	we	have	(ݔ, ℎ) 	⊂ 	ࣞ௧	,	this	is	still	the	case.		By	Remark	(1.1.5),	if	ℎ = ℎ,Ω		

satisϐies	(3),	then	the	results	proved	earlier	all	hold	with	this	ℎ.	That	said,	we	now	have	

the	following	estimate.	

Theorem	(1.1.13)	[18]:	

Let	 	݇	 	be	a	positive	 	 integer,	 	0 < ݏ ≤ 1, 1 ≤  < ∞,1 ≤ ݍ ≤ ∞,	and	 	 let	ߙ	 	be	a	

multi-index	 satisfying	 	݇ > |ߙ| + 	,/݊ or	 = 1	 and	 	 ݇ ≥ |ߙ| + ݊.	 Also,	 	 let	ܺ ⊂ Ω	be	 a	

discrete		set	with	mesh	norm		ℎ	satisfying		(9).		If	ݑ ∈ ܹ
ା௦(Ω)satisfies	ݑ| = 0	

ௐ|ഀ|(ஐ)|ݑ| ≤ 	(10)																	ௐೖశೞ(ஐ),|ݑ|,,,,|ఈ|ℎା௦ି|ఈ|ି(ଵ/ିଵ/)ܥ

where	(ݔ)ା = 	ݔ	if	ݔ ≥ 	0	and	is	0	otherwise.	

Proof:.	

The	case	ݍ = ∞	follows	from	Proposition	(1.1.10)	and	the	decomposition	given	in	

Lemma	 (1.1.12),	 Ω = ⋃ ࣞ௧௧∈ ೝ் 	 	 .	 Thus,	 we	 will	 assume	 1 ≤ ݍ < ∞.	 For	 such	 	,ݍ the	

decomposition	Ω = ⋃ ࣞ௧௧∈ ೝ் implies	that	we	have	

ௐ|ഀ|(ஐ)|ݑ| = ቌ  නหܦఉ(ݔ)ݑห


Ω|ఉ|ୀ|ఈ|

ቍݔ݀

ଵ/

	

				≤ ቌ  න หܦఉ(ݔ)ݑห


ࣞ|ఉ|ୀ|ఈ|௧∈ ೝ்

ቍݔ݀

ଵ/

= ቌ|ݑ|
ௐ
|ഀ|(ࣞ)



௧∈ ೝ்

ቍ

ଵ/

	

																				≤ (# ܶ)
(భି

భ
)శ ቌ|ݑ|

ௐ
|ഀ|(ࣞ)



௧∈ ೝ்

ቍ

భ


,	

where	 # ܶ 	 	 is	 the	 cardinality	 of	 ܶand	 where	 the	 last	 bound	 follows	 from	 standard	

inequalities	relating		and	ݍ	norms	on	finite	dimensional	spaces.		Next,	by	this	inequality	

and	Corollary	(1.1.11),	where	we	use	݀ ࣞ < 2ܴ = 2݇ଶℎ/ܳ(߮),	we	obtain	

ௐ|ഀ|(ஐ)|ݑ| ≤ ,,,,|ఈ|,ఝᇱܥ (# ܶ)
(భି

భ
)శℎା௦ି|ఈ|ି(ଵ/ିଵ/) ቌ|ݑ|

ௐ
|ഀ|(ࣞ)



௧∈ ೝ்

ቍ

భ


,	

for	each	ݐ ∈ ܶ 	.	Now,	since			ࣞ௧ ⊂ Ω,	we	have	by	Lemma	1.1.10,	
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|ݑ|ௐೖశೞ(ࣞ)


௧∈ ೝ்

=  න ቌ ߯ࣞ(ݔ)
௧∈ ೝ்

ቍ
Ω|ఉ|ୀ

න
หܦఉ(ݔ)ݑ − ห(ݕ)ݑఉܦ



ݔ| − ା௦ࣞ|ݕ
	ݔ݀ݕ݀

							≤ ଵܯ  න න
หܦఉ(ݔ)ݑ − ห(ݕ)ݑఉܦ



ݔ| − ା௦|ݕ ݔ݀ݕ݀
ΩΩ|ఉ|ୀ

	

		≤ ௐೖశೞ(ࣞ)|ݑ|ଵܯ
 	

Putting	these	two	inequalities	together	yields	

ௐ|ഀ|(ஐ)|ݑ| ≤ ଵܯ
ଵ/ܥ,,,,|ఈ|,ఝᇱ (# ܶ)

(భି
భ
)శℎା௦ି|ఈ|ିቀ

భ
ି

భ
ቁ|ݑ|ௐೖశೞ(ஐ).	

Now,	 by	 part	 (2)	 of	 Lemma	 1.1.10	 and	 ܴ = 2݇ଶℎ/ܳ(߮),	 we	 see	 that	 # ܶ < 	ℎିܥ .	

Inserting	this	in	the	inequality	above	gives	us	

ௐ|ഀ|(ஐ)|ݑ| ≤ ,,,,|ఈ|,ఝℎܥ
ା௦ି|ఈ|ିቀభି

భ
ቁି(

భ
ି

భ
)శ|ݑ|ௐೖశೞ(ஐ),	

Using	݊ ቀଵ

− ଵ


ቁ − ݊(ଵ


− ଵ


)ା = /1)݊ − 	.(10)	yields	inequality	previous	the	ାin(ݍ/1

In	 practical	 situations,	 bounds	 on	 continuous	 norms,	 such	 as	 those	 we	 have	

investigated	above,	are	less	important	than	bounds	on	discrete	norms.		Our	aim	here	is	to	

obtain	 estimates	 similar	 to	 those	 in	 Theorem	 (1.1.13),	 again	 for	 |ݑ = 	0,	 but	 with	

continuous	norms	replaced	by	the	discrete	ones	that	we	now	define.	

Let	ܻ = ,ଵݕ} . . . , 	a	be	ெ}ݕ finite	 subset	of	Ω,	 and	denote	 its	 separation	 radius	by	ݍ	 ,	 its	

mesh	norm	by	ℎ ,	and	its	mesh	ratio	by	ߩ = ℎ/ݍ.	Let	1 ≤ ݍ ≤ ∞.	(Note	that	ݍ	is	not	

the	same	quantity		as	 ݍ	 .)	For	a	continuous	 function	ݑ	defined	on		Ω,	define	the	norm	

ℓ(ܻ)	by	

ℓ()‖ݑ‖ =

⎩
⎪
⎨

⎪
⎧
ቆ
1
ܯ หݑ൫ݕ൯ห

ெ

ୀଵ
ቇ

భ


for		1 ≤ ݍ < ∞,

max
ଵஸஸெ

หݑ൫ݕ൯หfor		ݍ = ∞ .

� 																		(11)	

As	before,	we	also	define	αq	(Y	)-derivative	norms	when	u	is	in	C	k	(Ω)	and	1	≤	q	<	∞:	

௪ೖ()|ݑ| = ൭ ℓ()‖ݑఈܦ‖
|ఈ|ୀ

൱
ଵ/

and‖ݑ‖௪ೖ() =	൭  ℓ()‖ݑఈܦ‖


|ఈ|ୀ

൱
ଵ/

			(12)	

The	ݍ = ∞	norms	are	defined	in	the	obvious	way.		We	now	state	the	analog	of	

Theorem	(1.1.13)	for	the	discrete	norms.	 	

	

Theorem	(1.1.14)	[18]:	
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Let	 k	 be	 a	 positive	 integer,	 0 < ݏ ≤ 1,1 ≤  < ∞,1 ≤ ݍ ≤ ∞,	 and	 	 let	 α	 	 be	 a	

multi-index	 satisfying	 	k > |α| + ୬
୮
,	 or	 p = 1	 and	 	 k ≥ |α| + n.	 Also,	 	 let	 	 X ⊂ Ω	 be	 a	

discrete		set	 	with		mesh		norm		h = hଡ଼		satisfying			(9).			Let	Y = {yଵ	, …	, y} ⊂ Ω	be	a	

second		discrete		set,		with		hଡ଼ ≤ 	h.			If		u ∈ W୮
	୩ାୱ(Ω)satisfies	u|ଡ଼ = 0	then	

ௐ|ഀ|(ଢ଼)|ݑ| ≤ ߩ,,,,|ఈ|,ఝ,Ωܥ
/ℎା௦ି|ఈ|ି(

భ
ି

భ
)శ|ݑ|ௐೖశೞ(ஐ),																				(13)	

where	the	discrete	norm	on	the	left	above	is	deϐined	in	(12).	 	In	particular,	 	 if	|ߙ| = 0,	

then	

ℓ()‖ݑ‖ ≤ ߩ,,,,ఝ,Ωܥ
/ℎା௦ି|ఈ|ି(

భ
ି

భ
)శ|ݑ|ௐೖశೞ(ஐ).	

Proof:			

The	 ݍ = ∞	 case	 is	 a	 direct	 consequence	 of	 Theorem	 (1.1.13)	 and	 ߩ ≥ 1.	We	

therefore	 assume	 that	 ݍ < ∞.	 Let	 ࣞ୲be	 one	 of	 the	 star-shaped	 domains	 from	 the	

decomposition	 of	 Ω	 given	 in	 Lemma	 (1.1.12).	 From	 the	 	ஶܮ 	 bound	 in	 Proposition	

(1.1.10),	 the	 conditions	 on	 ࣞ୲in	 Lemma	 (1.1.12),	 and	 the	 fact	 that	 	 ݀ࣞ౪ ≤ 2ܴ	 =

	2݇ଶ	ℎ/ܳ(߮),	we	have	that	

 หܦఈݑ(ݕ)ห

≤

௬ೕ∈ࣞ౪

ℎ(ା௦ି|ఈ|)ି/card(ࣞ୲ܥ ∩ ௐೖశೞ(ࣞ౪)|ݑ|(ܻ
 	

To	estimate	card(ࣞ୲ ∩ ܻ),	we	note	that	every	point	ݕin	ࣞ୲ ∩ ܻ		is	the	center	of	the	ball	

,	ݕ)ܤ 	.(	ݍ Now,	 by	 construction,	 ࣞ୲ ⊂ ,ݐ)ܤ ܴ)	 and	 ݍ ≤ ℎ ≤ ℎ ≤ ܴ,	 so	 every	

,	ݕ)ܤ (	ݍ ⊂ ,ݐ)ܤ 2ܴ).		Hence,	the	number	of	points	in	ࣞ୲ ∩ ܻ		satisfies	the	bound	

card(ࣞ୲ ∩ ܻ) ≤
୴୭୪൫(௧,ଶோ)൯

୴୭୪ቀ൫௬ೕ	,ೊ൯ቁ
= ቀଶோ

ೊ
ቁ

.	

Recall	from	the	previous	section	that	we	chose	= మ
ொ(ఝ)

	,	and	so	we	have	

 หܦఈݑ(ݕ)ห

≤

௬ೕ∈ࣞ౪

ௐೖశೞ(ࣞ౪)|ݑ|′ܥିℎ(ା௦ି|ఈ|)ାି/ݍ
 	

where	ܥ′		depends	on	݊, , ,ݍ ߶, ݐ	over	Sum		.|ߙ| ∈ ܶ 	on	both	sides.		Since	every	ݕ ∈ ܻ		is	

in	at	least	one	ࣞ୲,	we	have	

หܦఈݑ(ݕ)ห

≤   หܦఈݑ(ݕ)ห



௬ೕ∈ࣞ౪௧∈ ೝ்

ெ

ୀଵ

	

≤ ିℎݍ
(ା௦ି|ఈ|)ାି ܥ

ᇱ∑ |௨|
ೈ
ೖశೞ(ࣞ౪)


∈ೝ 	
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The	sum	on	the	left	above	is	ܦ‖ܯఈݑ‖ℓ()
 .	To	deal	with	the	sum	on	the	right,	note	that	

standard	inequalities	relating		and	ݍ	norms	on	a	finite	dimensional	space	give	

|ݑ|ௐೖశೞ(ࣞ౪)
 ≤ (# ܶ)

(భି
భ
)శ

௧∈ ೝ்

ቌ|ݑ|ௐೖశೞ(ࣞ౪)


௧∈ ೝ்

ቍ

/

	

The	sum	∑ ௐೖశೞ(ࣞ౪)|ݑ|


௧∈ ೝ் was	dealt	with	in	proving	Theorem	(1.1.13),	where	we	showed	

that	it	is	bounded	by	ܯଵ|ݑ|ௐೖశೞ(ஐ)
 	.	Also,	recall	that	# ܶ < 	in	bounds	these	Using	.	ℎିܥ

our	earlier	inequality	and	dividing	by		,	we	obtain	

ℓ()‖ݑఈܦ‖
 ≤ ିℎݍଵିܯ

(ା௦ି|ఈ|)ାି(భି
భ
)శܥ′ܥܯଵ

/|ݑ|ௐೖశೞ(ஐ)
 .	

Summing	 over	 all	multi-indices	ߙ	 	 of	 fixed	 length,	 simplifying	 the	 exponent	 of	 ℎ,	 and	

suppressing	constants,	we	arrive	at	

|ݑ|
௪
|ഀ|()

 ≤ ିℎݍଵିܯ
(ା௦ି|ఈ|)ି(భି

భ
)శݑ|′′ܥ|ௐೖశೞ(ஐ)

 .																(14)	

Our	last	task	is	to	estimate		 ,	the	number	of	points	in	ܻ	,	from	below.		 	Since	the	mesh	

norm	of	ܻ		relative	to	Ω	is	ℎ ,	every	ݔ ∈ Ω	is	in	one	of	the	closed	balls	ݕ)ܤఫ	, ℎ	)തതതതതതതതതതതതത,	and	so	

their	 union	 covers	 Ω.	 It	 follows	 that	 the	 number	 of	 such	 balls,	 	 ,	 satisfies	 	ܯ ≥

	vol(Ω)/vol(ݕ)ܤ	, ℎ))	or,	equivalently,	

ଵିܯ ≤
vol(ݕ)ܤ	, ℎ))

vol(Ω) ≤ Ω,ℎܥ .	

Insert	this	in	(14),	simplify,	and	collect	constants.	Taking	the	ݍ௧		root	of	both	sides	then	

completes	the	proof.	

In	this	section,	we	will	apply	the	estimates	that	we	obtained	in	the	previous	section	to	

obtain	 error	 estimates	 for	 both	 continuous	 and	 discrete	 least	 squares	 RBF	 surface	

fitting	 in	 a	 domain	Ω	 in	ℝ .	 	We	make	 the	 same	 assumptions	 on	Ω	 as	we	 did	 above;	

namely,	 Ω	 is	 bounded,	 has	 a	 Lipschitz	 boundary,	 and	 satisfies	 an	 interior	 cone	

condition,	where	again	the	cone	is	assumed	to	have	a	maximum	radius	R0			and	angle	߮.	

	 We	will	concentrate	on	radial	basis	functions	ߔ:ℝ → ℝ	that	have	a	

positive,	algebraically	decaying	Fourier	transform.	To	be	more	precise,	we	

assume	that	

ܿଵ(1 + ‖߱‖ଶଶ)ିఛ ≤ Φ(ω) ≤ ܿଶ(1 + ‖߱‖ଶଶ)ିఛ ,				߱ ∈ ℝ ,																	(15)	

where	ܿଵ, ܿଶ > 0	are	some	constants	and	߬ > ݊/2.	In	this	case	it	is	well	known	that	
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the	native	space	 ఃࣨ = ఃࣨ(ℝ)	associated	to	ߔ	is	the	Sobolev	space	

ଶܹ
ఛ(ℝ) ≔ ൛݂ ∈ :ଶ(ℝ)ܮ መ݂(∙)(1 + ‖∙‖ଶଶ)ఛ/ଶ ∈ 	(16)														ଶ(ℝ)ൟܮ

and	the	native	space	norm	

‖݂‖ࣨ
ଶ ≔ න

ห መ݂(߱)ห
ଶ

Φ(ω)ℝ
݀߱	

is	obviously	equivalent	to	the	Sobolev	norm	

‖݂‖ௐమഓ(ℝ)
ଶ ≔ ฮ መ݂(∙)(1 + ‖∙‖ଶଶ)ఛ/ଶฮమ(ℝ).																																		(17)	

Later	 on,	 we	 will	 also	 deal	 with	 the	 case	 of	 thin-plate	 splines.	 The	 details	 of	

treating	them	differ	somewhat	 from	the	more	usual	RBF	case	above.	 	 	So,	 even	though	

their	treatment	is	in	fact	easier,	they	will	be	handled	separately.			Until	then,	we	assume	

that	the	RBF	ߔ	has	a	Fourier	transform	Φsatisfying	(15).	

As	 is	 well	 known,	 the	 great	 utility	 in	 RBFs	 is	 that	 for	 any	 finite	 subset	

ܺ = ,ଵݔ} …	, {ேݔ ⊂ ℝand	arbitrary	complex	numbers	{݀ଵ, …	 , ݀ே},	one	can	find	a	unique	

function	ݒ	from	the	span	of	 ܸ,ః = span{ݔ)ߔ − )}ୀଵேݔ 	such	that	ݒ(ݔ) = 	 ݀, ݆ = 1, . . . , ܰ	

.	In	addition,	interpolants	satisfy	a	minimum	principle.	If	f	is	in	the	native	space	 ఃࣨand	if	

we	let	the	interpolant	to	݂	on	ܺ	from	 ܸ,ః 		be	ܫ݂	,	then	

min
௩∈,

‖݂ − ࣨ‖ݒ = ‖݂ − ݂‖ࣨܫ .	

In	particular,	since	we	can	take	ݒ = 0	on	the	left	above,	we	also	have	

‖݂ − ݂‖ࣨܫ ≤ ‖݂‖ࣨ .	

These	observations	lead	to	the	following	lemma,	which	we	will	need	in	the	sequel.	

Lemma	(1.1.15)	[18]:	

Let		߬ > ݊/2,		݂ ∈ ଶܹ
ఛ(Ω),	ܺ = ,ଵݔ} ,ଶݔ …	, {ேݔ ⊂ Ω,		and		let	ܫ݂ ∈ ܸ,ః 			be	

the	unique		function		that		interpolates		f	on	ܺ	.		If	ߔ		 	satisϐies	(15),	then	there	

exists	a	constant		ܥΩ,ః ,	depending		on	Ω	and	ߔ,	such	that	

‖݂ − ݂‖ௐమഓ(Ω)ܫ ≤ 	.Ω,ః‖݂‖ௐమഓ(Ω)ܥ

Proof:		

	 We	will	 require	extension	 theorems	 for	 ଶܹ
ఛ(Ω),	where	Ω	 is	 a	bounded	Lipschitz	

domain.	 	 For	 the	 case	 in	which	 ߬	 	 is	 a	 nonnegative	 integer	we	may	 use	 the	 extension	

operator	ू	constructed	by	Stein	[14]	to	extend	any	݂	in	 ଶܹ
ఛ(Ω)	to	a	function	defined	for	

1 ≤  ≤ ∞.	Brenner	 and	 Scott	 [1]	 give	on	 a	 brief	 discussion	 concerning	 extensions	 for	

fractional	Sobolev	spaces	(i.e.,	 	߬ ∉ ℤ).	They	point	out	that	combining	results	of	DeVore	



18 
 

and	 Sharpley	 [4]	 immediately	 yields	 the	 existence	 of	 ू	in	 the	 fractional	 case	 as	 well,	

provided	 only	 that	1 ≤  < ∞.	 In	 particular,	 ू	exists	 for	 = 2,	 the	 value	 of	 	 we	 are	

concerned	with	here.	

Since	 ू	݂ = ݂	 on	 Ω	 and	 since	 the	 values	 of	 ݂|	 	 uniquely	 determine	 the	

interpolant	from ܸ,ః 	,	we	have	thatܫू	݂ = 	of	chain	this	obtain	we	Consequently,		.	݂ܫ

inequalities:	

‖݂ − ݂‖ௐమܫ
ഓ(Ω) = ‖ू	݂ − 	݂‖ௐమഓ(Ω)	ूܫ

≤ ‖ू	݂ − 	݂‖ௐమഓ(ℝ)	ूܫ

≤ ܿଶ
ିଵ/ଶ‖ू	݂ − ݂‖ࣨ	ूܫ 	

≤ ܿଶ
ିଵ/ଶ‖ू	݂‖ࣨ 	

≤ (ܿଵܿଶ)ିଵ/ଶ‖ू	݂‖ௐమഓ(ℝ)	

≤ (ܿଵܿଶ)ିଵ/ଶ‖ू	‖‖݂‖ௐమ
ഓ(Ω)	

Setting	ܥΩ,ః 	= (ܿଵܿଶ)ିଵ/ଶ‖ू	‖		completes	the	proof.	

We	now	employ	this	lemma	and	the	results	obtained	in	the	previous	section	to	derive	

bounds	on	݂ − 	case	the	for	norms,	discrete	and	continuous	both	in	,	݂ܫ = 2.	

Proposition	(1.1.16)	[18]:	

Suppose	߬ = ݇ + 0	and	integer	positive	a	is	݇	where	,ݏ < ݏ ≤ 1.	Let		ߙ		be	a	multi-

index	 satisfying	݇ > |ߙ| + ݊/2,	 	 and	 let	 ܺ ⊂ Ω	 be	 a	 discrete	 	 set	 with	 mesh	 norm	 	 ℎ	

satisfying		(9).		If	݂ ∈ ଶܹ
ఛ(Ω)	and	if	1 ≤ ݍ ≤ ∞,	then	

|݂ − ݂|ௐܫ
|ഀ|(Ω) ≤ 	(18)																		,,,|ఈ|,ஐ,ℎఛି|ఈ|ି(ଵ/ଶିଵ/)శ‖݂‖ௐమഓ(Ω).ܥ

In	addition,	the	continuous	least	squares	error	(ݍ = 2)	satisfies	the	bound,	

min௩∈,ಅ‖݂ − మ(ஐ)‖ݒ ≤ 	(19)																			,,,|ఈ|,ஐ,ℎఛ‖݂‖ௐమഓ(Ω).ܥ

Proof:			

Apply	Theorem	(1.1.13)	to	= ݂ − 	with	,	݂ܫ = 2.	Using	Lemma	(1.1.15)	

then	gives	us	(18).	Sinceܫ݂ ∈ 	 ܸ,ః 	,	we	also	have	that	

min௩∈,ಅ‖݂ − మ(ஐ)‖ݒ ≤ ‖݂‖మ(ஐ).																																(20)	

The	estimate	(19)	then	follows	from	(18)	with	ݍ = 	2and	|ߙ| = 0.																						

			The	case	where	the	discrete	norm	is	 to	be	bounded,	rather	than	the	continuous	one,	

can	be	dealt	with	in	a	similar	way	

Proposition	(1.1.17)	[18]:	
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Suppose	߬ = ݇ + 0	and	integer	positive	a	is	݇	where	,ݏ < ݏ ≤ 1.	Let		ߙ	be	a	multi-

index	 satisfying	݇ > |ߙ| + ݊/2.	 	 Also,	 	 ܺ	ݐ݈݁ ⊂ Ω	 be	 a	 discrete	 set	 with	 mesh	 norm	

ℎ = ℎ	 	 satisfying	(9).	Let	 	ܻ = ,ଵݕ} . . . , {ெݕ ⊂ Ω	be	a	second	discrete	set,	withℎ 	≤ 	ℎ.		

If	݂ ∈ ଶܹ
ఛ(Ω),	and	if	1 ≤ ݍ ≤ ∞,	then	

|݂ − ݂|௪|ഀ|()ܫ ≤ ߩ,,,|ఈ|,ஐ,ܥ
/ℎఛି|ఈ|ି(ଵ/ଶିଵ/)శ‖݂‖ௐమ

ഓ(Ω).														(21)	

where	|∙|௪|ഀ|()	is	deϐined		in		(12).		Also,	the	discrete	least	squares	error	satisϐies	the	

bound,	

min௩∈,ಅ‖݂ − ℓమ(ଢ଼)‖ݒ ≤ ߩ,,ஐ,ܥ
/ଶℎఛ‖݂‖ௐమഓ(Ω).																																(22)	

Proof:	

Apply	Theorem	(1.1.14)	to	ݑ = ݂ − 	with	(1.1.15),	Lemma	Using	݂.ܫ = 2,	then	

completes	the	proof.	Again,	becauseܫ݂ ∈ ܸ,	,	we	have	that	

min௩∈,ಅ‖݂ − ℓమ(ଢ଼)‖ݒ ≤ ‖݂ − 	(23)																																݂‖ℓమ(ଢ଼).ܫ

The	estimate	(22)	then	follows	from	the	interpolation	estimate	(21)	with	|ߙ| = 0	

and	ݍ = 2	

We	remark	that	in	both	cases	the	interpolant	is	a	good	approximation	to	the	least	

squares	fit.	

The	RBFs	we	 just	discussed	are	 all	positive	definite	 functions.	 	The	 thin-plate	 splines,	

however,	are	RBFs	that	are	conditionally		 	positive	definite	functions.	 	If	݇ > ݊/2	is	an	

integer,	 then	we	define	 the	 thin-plate	 spline	 corresponding	 to	݊	and	݇	as	 follows.	For		

ଶ‖ݔ‖ ≠ 0,	we	let	

(ݔ),ߔ ≔ ܿ, ቊ
,odd	݊	ଶଶିfor‖ݔ‖

ଶଶି‖ݔ‖ log‖ݔ‖ଶfor	݊	even,
�	

where	ܿ, 	 	 is	a	constant	chosen	so	that	ߔ, 	 	 is	a	fundamental	solution	of	the	iterated	

Laplacian.	 In	 terms	 of	 the	 distributional	 Fourier	 transform,	 this	 is	 equivalent	 to	

requiring	that	ߔ,(߱) = ‖߱‖ଶିଶ 	,	if	߱ = 0.	

The	native	space	associated	with	ߔ,is	the	Beppo-Levi	space,	

(ℝ)ܮܤ 	= {݂ ∈ ఈ݂ܦ	:(ℝ)ܥ ∈ |ߙ|	all	for	ଶ(ℝ)ܮ = ݇},	

which	is	equipped	with	the	semi-inner	product	

(f, g)ౡ(ℝ) = 
k!
α!

||ୀ୩

(Df, Dg)మ(ℝ)	

and	 induced	 	 semi-norm	 	 | · |ౡ(ℝ)	 .	 For	Beppo-Levi	 spaces	on	Ω,	 similar	 	definitions		
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apply.	Both	the	semi-norm	| · |ౡ(ℝ)		and	| · |ౡ(Ω)	are	equivalent	to	the	corresponding	

Sobolev	semi-norms	of	order	k.	

An	 interpolantܫ݂	 ,	which	 is	 associated	with	 	,ߔ	 and	 	݂|	 	 from	a	 continuous	

function,	 includes	a	polynomial	piece	 ∈ 	well	as	ିଵ(ℝ୬)ߨ as	a	 linear	 combination	of	

span{Φ୬,୩	(x − x୨)}୨ୀଵ .	That	is,	Iଡ଼f	is	in	

ܸ,, = ିଵ(ℝ୬)⨁span{Φ୬,୩൫xߨ − x୨൯}୨ୀଵ .	

To	insure	that	the	interpolant	exists,	one	must	make	the	additional	assumption	that	the	

finite	set	ܺ ⊂ Ω	is	unisolvent	for	ߨିଵ).	Under	this	assumption,	the	method	reproduces	

polynomials	in	ߨିଵ	.	In	addition,	if	݂	is	in	the	native	space	BL୩(ℝ୬),	then	ܫ݂	minimizes	

the	semi-norm	|݂ − ∋	all	among	ౡ(ℝ)|ݒ ܸ,, 	.	As	in	the	previous	section,	this	implies	

that	

|݂ − ݂|ౡ(ℝ)ܫ ≤ |݂|ౡ(ℝ)	,								݂ ∈ BL୩(ℝ
୬).	

Now,	 an	 extension	 theorem	 of	 Duchon	 [5]	 shows	 the	 existence	 of	 a	 linear	 map	

ू: ଶܹ
(Ω) → BL୩(ℝ୬)such	 that	 for	 all	 ݂ ∈ ଶܹ

(Ω)we	 have	ू݂|Ω = ݂	 and	

|ू݂	|ౡ(ℝ) ≤ 		 ‖ू‖|݂	|ౡ(Ω).	 	 Essentially	 repeating	 the	 proof	 of	 our	 own	 Lemma	

(1.1.15)	then	yields	the	following:	

Lemma	(1.1.18)	[18]:	

Let	 	݇ > ݊/2	be	an	integer,	 	ܺ = ,ଵݔ} ,ଶݔ . . . , {ேݔ ⊂ Ω	be	unisolvent	for		ߨିଵ(ℝ୬)		

and		let		݂ ∈ ଶܹ
(Ω).	 	If	 ݂ܫ	 ∈ ܸ,, 	 	 	 is	the	unique	function	that	interpolates		݂	on		ܺ	,	

then	there	exists	a	constant		ܥΩ,, 		such	that	

ቚ݂ − ݂|ௐమೖ(Ω)ܫ ≤ Ω,,ቚܥ ݂|ௐమೖ(Ω) ≤ Ω,,‖݂‖ௐమܥ
ೖ(Ω).	

Recall	that	a	finite,	discrete	set	ܺ ⊂ ℝis	unisolvent	for	the	vanishing	of		on	ܺ	

—i.e.,	 | = 	0—implies	 that	 ≡ 0.	 	 Suppose	 that	 we	 again	 have	ܺ ⊂ Ω,	 with	 mesh	

norm	 h	 satisfying	 (9).	 We	 want	 to	 show	 that	 under	 these	 conditions	 we	 have	 the	

slightly	stronger	result	that	X	is	unisolvent	with	respect	to	ߨ(ℝ୬).	

Proposition	(1.1.19)	[18]:	

Let	݇ ≥ 1	be	an	 integer.	 	 If	ܺ	a	 finite,	discrete	 subset	of	ܺ	 ,	with	mesh	norm	 	ℎ	

satisfying	(9),	then	X	is	unisolvent	forߨ(ℝ୬).	

Proof:	

In	 Theorem	 (1.1.13),	 takeݏ = 1,	 |ߙ| = 0,	 ݍ = ∞,	  = 2݊.	 If	 	ݑ is	 a	 polynomial	

inߨ(ℝ୬),	 withݑ| = 0,	 then,	 we	 have	 that	 ಮ(Ω)‖ݑ‖ ≤ 	ௐమೖశభ(Ω)|ݑ|ℎାଵ/ଶܥ Since	



21 
 

	ݑܦ ≡ 0	 for	 |ߙ| ≥ ݇ + 1,	 the	norm	 	.ௐమೖశభ(Ω)|ݑ| It	 then	 follows	 from	Theorem	(1.1.13)	

that	 Ω|ݑ = 0	 and,	 since	 Ω	contains	 open	 sets,	 that	 ݑ ≡ 0.	 Thus,	 ܺ	 is	 unisolvent	 for	

	.(ℝ୬)ߨ

				By	our	remarks	above,	the	set	X	being	unisolvent	implies	that	for	any	݂ ∈ 	there	,(Ω)ܥ

is	a	unique	interpolantܫ݂ ∈ ܸ,, 		for	݂	.		This	plus	the	lemma	above	is	precisely	what	

we	require	to	get	the	same	type	of	estimates	that	we	obtained	in	the	last	section.	In	fact,	

repeating	the	proofs	of	Propositions	(1.1.16)	and	(1.1.7)	yields	the	same	estimates.	We	

formally	state	these	observations	below.	

Corollary	(1.1.20)	[18]:	

Under	 the	 assumptions	 on	 ܺ	, Ω,	 and	 h	 made	 in	 Propositions	 (	 1.1.16)	 and	

(1.1.17),	the	interpolant		ܫ݂ ∈ ܸ,, 	 	exists	and	is	unique.	 	Moreover,	the	estimates	in	

both	propositions	also	hold	forܫ݂ ∈ ܸ,, 	.	

It	 is	 now	 our	 goal	 to	 establish	 discrete	 and	 continuous	 Sobolev-type	 error	

estimates	for	functions	that	are	outside	the	native	space,	but	still	in	a	Sobolev	space	or	a	

	either	assume	will	we	,		ߔ	of	decay	the	determine	߬	let	we	if	precisely,	More	-space.	ܥ

that	݂ ∈ ଶܹ
௧(Ω),	where	߬ ≥ ݐ > ݊/2,	or	that	݂ ∈ ߬	,(Ω)ܥ ≥ ݇ > ݊/2.	

For	 approximation	 rather	 than	 interpolation,	 such	 error	 estimates	 have	 been	

derived	for	integer	߬	in	[16],	using	a	technique	introduced	in	[13].	We	will	extend	this	

result	to	positive,	real	߬	.	The	proof	we	give	here	is	simpler	than	that	given	in	[16];	it	is	

based	upon	recent	results	from	[10].	

Lemma	(1.1.21)	[18]:		

Let	 	 ݐ ≥ ݎ ≥ 0.	 	 	If	 	݂ ∈ ଶܹ
௧(ℝ),	then		there	exists	a	constant	 	ܿ௧, 	 	such	that	for	

every	ߪ > 0	we	can	choose	a	band	limited	function	݃ఙ ∈ ఙܤ = {݂ ∈ ଶ(ℝ)ܮ ∶ 	supp( መ݂) ⊆

,0)ܤ 	with	{(ߪ

‖݂ − ݃ఙ‖ௐమ(ℝ) ≤ ܿ௧,ߪି௧‖݂‖ௐమ(ℝ).																						(24)	

Obviously,	 this	 result	 is	 important	mainly	 in	 the	 case	 of	 ߪ > 1,	 and	 in	 such	 a	

situation	we	will	use	it	now.	

Theorem	(1.1.22)	[18]:	

Suppose	Φ	is	a	positive	deϐinite	function	satisfying	(15),	with	߬ ≥ ݐ > 	݊/2,		and		

that		ܺ = ,ଵݔ} . . . , {ேݔ ⊂ Ω	has		mesh		norm		ℎ		satisfying			(9).	If	݂ ∈ ଶܹ
௧(Ω),	then	there	

exists	a	function	ݒ ∈ ܸ,ః	 = 	span{ߔ(· ݔ	:(	ݔ	− ∈ ܺ	}	such		that	for	every	real	0 ≤ ݎ ≤ 	,ݐ

‖݂ − ௐమೝ(Ω)‖ݒ ≤ 	.ℎ௧ି‖݂‖ௐమ(Ω)ܥ
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Here,	ܥ	is	a	constant	independent	of	݂	and	ℎ.	

Proof.			

Let	ू	be	the	extension	operator	discussed	 in	the	proof	of	Lemma	(1.1.15).	 	We	

first	 extend	 the	 function	݂ ∈ ଶܹ
௧(Ω)	 to	a	 function	ू݂ ∈ ଶܹ

௧(ℝ).	Next	we	pick	a	 	band	

limited	function	݃ఙ	 	that	approximates	ू݂	according	to	(24),	with	ߪ = 1/ℎ.	Finally,	we	

let	ݒ = ݃ఙܫ .	Then,	we	have	

‖݂ − ௐమೝ(Ω)‖ݒ ≤ ‖ू݂ − ݃ఙ‖ௐమೝ(ℝ) + ‖݃ఙ − 	݃ఙ‖ௐమೝ(Ωܫ

≤ ܿଵℎ௧ି‖ू݂‖ௐమ(ℝ) + ܿଶℎఛି‖݃ఙ‖ௐమഓ(Ω)	

≤ ܿଷℎ௧ି‖݂‖ௐమ
(ℝ) + ܿଶℎఛି‖݃ఙ‖ௐమഓ(Ω),	

where	we	 have	 used	 (24),	 Proposition	 (1.1.16),	 and	 the	 continuity	 	 of	 the	 extension	

operator	ू.	 To	 estimate	 the	 second	 term	on	 the	 right,	we	 observe	 that	 	 ‖݃ఙ‖ௐమഓ(Ω) ≤

‖݃ఙ‖ௐమഓ(ℝ)	 .	 Now,	 ݃ఙband-limited,	 and	 so	 ‖݃ఙ‖ௐమഓ(ℝ) ≤ ఛି௧‖݃ఙ‖ௐమ(ℝ)ߪܿ =

ܿℎఛି௧‖݃ఙ‖ௐమ(ℝ)	 .	 (This	 is	 trivial	 to	 show	 = 2.	 It	 is,	 of	 course	 a	 special	 case	 of	

Bernstein’s	Theorem	for	functions	of	exponential	type.)	Another	application	of	(24)	and	

the	continuity	of	ू	establishes		

‖݃ఙ‖ௐమ(ℝ) ≤ ‖ू݂‖ௐమ(ℝ) + ‖ू݂ − ݃ఙ‖ௐమ
(ℝ) ≤ ܿସ‖ू݂‖ௐమ

(ℝ) ≤ ܿହ‖݂‖ௐమ(Ω)	

Combining	 these	 bounds	 results	 in	 	‖݃ఙ‖ௐమ
ഓ(Ω) ≤ ܿହℎ௧ିఛ‖݂‖ௐమ(Ω)	 Overall,	 this	 gives	 us	

the	estimate	

‖݂ − ௐమೝ(Ω)‖ݒ ≤ (ܿଷℎ௧ି + ܿଶܿହℎఛିℎ௧ିఛ)‖݂‖ௐమ(Ω) ≤ 	,ℎ௧ି‖݂‖ௐమ(Ω)ܥ

which	is	what	we	wished	to	show	

We	now	turn	to	error	estimates	for	interpolation	of	a	function	݂	in	 ଶܹ
(Ω)	by	the	

smoother	 functions	 in	 ܸ,ఝ ⊂	 ఝࣨ .	 	 In	 the	special	case	of	 interpolation	by	means	of	 an	

integer	 order	 thin-plate	 spline,	 Brown-lee	 and	 Light	 [2]	 have	 obtained	 	ܮ 	 	 error	

estimates	in	terms	of	|݂|ௐమೖ(Ω)	We	will	treat	the	general	RBF	case	here,	but	we	will	need	

to	work	in	the	space	ܥ(Ωഥ),	rather	than	 ଶܹ
(Ω).	

We	 begin	 with	 a	 few	 remarks	 about	 the	 extension	 operator	ू	 constructed	 by	

Stein[14].	Stein	explicitly	states	that	this	operator	maps	 ܹ
(Ω)	boundedly	To	 ܹ

(ℝ)		

for	 1 ≤  ≤ ∞	 and	 for	 any	 integer݇ ≥ 0.	 In	 fact,	 it	 does	 a	 little	 more	 than	 that.	 If	

݂ ∈ 	,(Ωഥ)ܥ then	 Stein’s	 construction	 yields	 ू݂ ∈ 	(ℝ)ܥ ∩	 ஶܹ
(ℝ).	 Moreover,	 if	

݇ > ݊/2,	then	the	fact	that	ू݂ ∈ ଶܹ
(ℝ)	also	implies	that	 	ू݂ ∈ 	turn	in	which	ଵ(ℝ)ܮ

yields	lim|௫|→ஶ (ݔ)݂ू = 0	course,	we	also	have	the	norm	bounds	
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‖ू݂‖ௐమೖ(ℝ) ≤ ‖ू݂‖ௐಮೖ	and		ଵ‖݂‖ௐమೖ(Ω)ܥ (ℝ) ≤ 	ଵ‖݂‖ೖ(Ωഥ)ܥ

since‖݂‖ௐమೖ(Ω) ≤ 	that	have	ଷ‖݂‖ೖ(Ωഥ),weܥ

max ቄ‖ू݂‖ௐమೖ(ℝ), ‖ू݂‖ௐಮೖ (ℝ)ቅ ≤ 	(25)																													ೖ(Ωഥ).‖݂‖ܥ

We	will	now	make	use	of	the	extension	ू݂	to	obtain	a	band-limited	interpolant	to	݂	on	

ܺ ⊂ Ω.	For	normalization	purposes	we	will	require	diam(ܺ) ≤ 1.	

Lemma	(1.1.23)	[18]:	

Let	 ݂ ∈ 	(Ωഥ)ܥ and	 suppose	 that	 ܺ = ,ଵݔ} ,ଶݔ . . . , {ேݔ ⊂ Ω	 satisfies	 diam(ܺ) ≤ 1.			

Let		ݍ			be	the	separation	radius	of		.			Then,	there		is	a	constant	ܿ	,	depending		only	on	

the	dimension	 	݊,	 	 such	 that,	 	 for	any	ߪ ≥ 

	 	 ,	 there	 	 exists	 	 a	band-limited	 	 function		

ఙ݂ ∈ ℬఙ		for	which	

݂| = ఙ݂|and‖ ఙ݂‖ௐమೖ(ℝ) ≤ 	(26)																															ೖ(Ωഥ).‖݂‖ܥ

Proof:	

The	extension	ू݂	 is	 in	ܥ(ℝ) ∩ 	us	gives	[10]	so	ଶ(ℝ),ܮ the	existence	of	 ఙ݂for	

which	 ू݂| = ఙ݂|	 .	 Sinceू݂|Ω = ݂	 ,	 we	 see	 that	 ݂| = ఙ݂|	 .In	 addition,	 sinceू݂ ∈

ଶܹ
(ℝ) ∩ ஶܹ

(ℝ) ∩ 	estimate	the	provides	3.12]	Proposition	[10,	(ℝ),ܥ

‖ ఙ݂‖ௐమೖ(ℝ) ≤ max ቄ‖ू݂‖ௐమ
ೖ(ℝ), ‖ू݂‖ௐಮ

ೖ (ℝ)ቅ.	

Applying	(25)	to	bound	the	right	side	above	then	yields	(26),	which	completes	the	

proof	

Theorem		(1.1.24)	[18]:	

Let	 	 	݇	 	and	݆	be	integers,	 	with	0 ≤ ݆ < ݇ ≤ ߬		and	݇ > ݊/2,	 	and	let	݂ ∈ 	.(Ωഥ)ܥ

Also	 suppose	 that	ܺ = ,	ଵݔ} ,ଶݔ . . . , {ேݔ ⊂ Ω	 satisfies	 diam(ܺ) ≤ 1,	with	mesh	 norm	 	ℎ	

satisfying	(9).		Then,	

|݂ − ݂|ௐೕ(Ω)ܫ ≤ 	(27)																									ఛିℎିି(ଵ/ଶିଵ/)శ‖݂‖ೖ(Ωഥ),ߩܥ

where	ߩ =


	is	the	mesh	ratio	for	ܺ	in	Ω.	

proof:	

By	Theorem	(1.1.13),	we	have	

|݂ − ݂|ௐೕ(Ω)ܫ ≤ ݂|ℎିି(ଵ/ଶିଵ/)శܥ − 	(28)																									݂|ௐೕ(Ω)ܫ

Choosing	ߪ = 

		in	Lemma	(1.1.23),	we	have	the	existence	of ఙ݂ ∈ ℬఙ	that	interpolates	݂	

on	ܺ.	Recall	that	the	interpolation	operator	ܫ	depends	only	on	f| = ఙ݂|	,	so	ܫ݂ = ܫ ఙ݂ 	

.	Consequently,	we	have	this	chain	of	inequalities	
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|݂ − ݂|ௐమೖ(Ω)ܫ = |݂ − ܫ ఙ݂|ௐమೖ(Ω)	

≤ |݂ − ఙ݂|ௐమೖ(Ω) + | ఙ݂ − ܫ ఙ݂|ௐమೖ(Ω)	

≤ |݂|ௐమೖ(Ω) + | ఙ݂|ௐమೖ(Ω) + | ఙ݂ − ܫ ఙ݂|ௐమೖ(Ω).		

By	 Proposition	 (1.1.16)	 (or,	 for	 the	 thin-plate	 splines,	 Corollary	 (1.1.20)),	 with	 ݂	

replaced	by	 ఙ݂ 	have	we	on,	so	and	2,	by	ݍ	,

| ఙ݂ − ܫ ఙ݂|ௐమೖ(Ω) ≤ |ℎఛିܥ ఙ݂|ௐమೖ(Ω).	

Obviously,	| ఙ݂|ௐమഓ(ஐ) ≤ ‖ ఙ݂‖ௐమഓ(ℝ)		By	Bernstein’s	inequality	for	functions	of	

Exponential	type,	‖ ఙ݂‖ௐమഓ(ℝ) ≤ ‖ఛିߪܿ ఙ݂‖ௐమഓ(ℝ).	Hence	,	we	have	

|݂ − ݂|ௐమೖ(Ω)ܫ ≤ | ఙ݂|ௐమೖ(Ω) + (1 + ‖(ఛିߪℎఛିܥ ఙ݂‖ௐమ
ೖ(ℝ)	

However,	ߪ = 

		,	so	

|݂ − ݂|ௐమೖ(Ω)ܫ ≤ | ఙ݂|ௐమೖ(Ω) + ൫1 + ‖ఛିℎఛି൯ߩఛିܿܥ ఙ݂‖ௐమೖ(ℝ),	

where	we	recall	 that	ߩ =


≥ 1	is	 the	mesh	ratio	 for	ܺ	 in	Ω.	 	By	(26	In	 ‖ ఙ݂‖ௐమೖ(ஐ) ≤

‖݂‖ೖ(Ωഥ)addition,	we	have	the	standard	estimate|݂|ௐమೖ(ஐ) ≤ 	of	all	Combining	.	ೖ(Ωഥ)‖݂‖′ܥ

these	and	simplifying,		we	obtain	

|݂ − ݂|ௐమೖ(Ω)ܫ ≤ ൫1 + ᇱܥ + ‖ఛିℎఛି൯ߩఛିܿܥ ఙ݂‖ೖ(ஐഥ),	

≤ ‖ఛିߩᇱᇱܥ ఙ݂‖ೖ(ஐഥ).	

Using	this	bound	in	(28)	then	gives	us	(27),	which	completes	the	proof.														

Our	final	result	is	a	corollary	that	deals	with	the	discrete	case,	rather	than	the	

continuous	one.	

Corollary	(1.1.25)	[18]:	

Let	 	݇	 	and	 ݆	be	 integers,	 	with	0 ≤ ݆ < ݇ ≤ ߬	 	and	݇ > ݊/2,	 	and	 let	݂ ∈ 	.(Ωഥ)ܥ

Also	 suppose	 that	 ܺ = ,	ଵݔ} ,ଶݔ . . . , {ேݔ ⊂ Ω	 satisfies	 diam(ܺ) ≤ 1,	 with	 mesh	 norm	 	 ℎ	

satisfying	(9).		In	addition,		let	ܻ		be	a	second	discrete		set,		with	ℎ ≤ ℎ.		Then,	

|݂ − ܫ ఙ݂|௪ೕ() ≤ ߩܥ
/ߩఛିℎିି(ଵ/ଶିଵ/)శ‖ ఙ݂‖ೖ(ஐഥ),																				(29)	

where	the	discrete		norm		on	the	left	above	is	deϐined	in		(11).	

Proof:	

The	proof	is	nearly	identical	to	the	theorem	above.	The	difference	is	that	at	the	

start	 one	 needs	 to	 use	 Theorem	 (1.1.14),	 which	 is	 the	 discrete	 version	 of	 Theorem	

(1.1.13).		
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Sec	(1.2):Applications	to	(, (࢙ −	Spline	Interpolation	and	Smoothing:	

Let	 Ω	 be	 a	 bounded	 domain	 in	ℝ୬	 with	 a	 Lipschitz-continuous	 boundary.	 Let	 r	 > 	0,	

p ∈ 	 [1,∞)	and	q ∈ [1,∞],	and	 let	W୰,୮(Ω)	stand	for	the	usual	Sobolev	space	of	order	r	

contained	in	L୮(Ω).	Likewise,	for	any	finite	set	⊂ Ωഥ	,	let	δ(A, Ωഥ)	be	the	Hausdorff	distance	

between	A	and	Ωഥ	(see	(4.1)).	Through	the	section			[21]	and	[31],with	minor	corrections	

in	 [22]	 and	 [15],	 H.	Wendland	 and	 co-workers	 have	 proved	 the	 following	 remarkable	

result	 (see	 Sect.	 2	 for	 the	 precise	 deϐinition	 of	 the	 Sobolev	 semi-norms	 | · |୪	,୯	,Ω	 	 and	

| · 	 |୰	,୯	,Ω	):	

Theorem	(1.2.1)	[19]:	

Assume	that	݇	 ≥ 	݊,	if		 = 	1,	or	݇ > 	if	,/݊ > 1,	where	݇	stands	for	the	integer	

part	of	ݎ	 .	Then,	 there	exist	 two	positive	 constants	 	 ෨ॗ	 and	 	ܥ	 satisfying	 the	 following	

property:	for	any	finite	set	ܣ ⊂ Ωഥ	such	that	݀ = ,ܣ)ߜ Ω) ≤ ෨ॗ ,	for	any	ݑ ∈ ܹ,(Ω)	,	and	

for	any	non-negative	integer	݈	such	that	݈ ≤ ݇ − ݊,	if	 = 1,	or	݈ < ݇ − 	if	,/݊ > 1,	we	

have	

,Ω	,	|ݑ| 		≤ ൫݀ିି(ଵ/ିଵ/)ܥ +	| · |	,	,Ω 		+ 	݀ି‖ݑ|‖ஶ൯										(30)	

where		‖ݑ|‖ஶ =	max∈|ݑ(ܽ)|	and	(ݔ	)ା = 	max{ݔ	, 0}.	

As	an	immediate	consequence,	if	u	is	null	on	the	set	A,	one	gets	

|u|୪	,୯	,Ω ≤ C	d୰ି୪ି୬(ଵ/୮ିଵ/୯) +	 | · |୪	,୮	,Ω																																																						(31)	

which	 is	 really	 the	main	 result	 in	Narcowich	et	 al.	 [40].	This	 latter	 bound	has	 known	

several	precursors	in	the	literature.	In	a	multivariate	setting,	we	first	quote	the	work	of	

Duchon	 [30],	 where	 	ݎ is	 a	 positive	 integer	 and	  = 2.	 For	 q=2,	 these	 results	 were	

extended	 to	 non-integer	 values	 of	 r	 by	 López	 de	 Silanes	 and	Arcangéli	 [36]	 (see	 also	

[22]).	 We	 remark	 that	 Duchon’s	 results	 and	 their	 extensions	 are	 actually	 particular	

cases	of	Proposition	(1.2.8)	and	Corollary	(1.2.9)	in	this	section.	We	ϐinally	mention	that	

Bezhaev	and	Vasilenko	obtained	(31)	for	ݎ ∈ ℕ,	 = 2	and	ݍ	 ≥ 2	

(cf.	[24]).	

Madych	has	also	obtained	bounds	which,	 formally,	 are	almost	 identical	 to	 (30)	

and	(31)	with	l	=	0	(cf.	[38,	39];	the	second	section	is	co-authored	by	Potter).	However,	

Madych’s	bounds	are	established	in	a	different	frame,	Ω	being	a	(possibly)	unbounded	

open	 set	 satisfying	 a	 specific	 geometric	 condition,	 	ܣ a	 discrete	 set	 and	 u	 a	 function	
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belonging	to	a	suitable	Beppo-Levi	space.	

In	this	section,	our	first	goal	is	to	extend	Theorem	(1.2.1)	in	two	directions.	On	

the						one	hand,	we	enlarge	the	set	of	admissible	values	of	ݎ	, 	significant	has	This	and.	

consequences	on	the	range	of	functions	to	which	the	result	applies.	On	the	other	hand,	

we	replace	the	term	݀ି‖ݑ|‖ஶ	by	a	more	general	one,	better	suited	to	the	applications.	

To	this	end,	we	adapt	the	original	approach	of	Duchon	[30]	and	we	develop	some	ideas	

that	were	 already	 implicit	 in	 [36]	 (see	 also	 [22]).	 As	 a	matter	 of	 fact,	 in	 [36]	may	 be	

considered	as	a	first	statement	of	(30),	in	the	particular	case		 = 	ݍ	 = 	2,	but	involving	

a	term	better	than	݀ି‖ݑ|‖ஶ	

Despite	their	intrinsic	interest,	Sobolev	bounds	like	(30)	and	(31)	ϐind	their	main	

motivation	 in	 the	 obtaining	 of	 error	 estimates	 for	 approximation	 processes	 from	

Lagrange	data,	as	can	be	easily	verified	from	the	reading	of	the	above	cited	references.	

The	 present	 section	 will	 not	 be	 an	 exception.	 We	 shall	 derive	 error	 bounds	 for	

interpolating	 and	 smoothing	 (m, s)-splines,	 which	 include,	 as	 particular	 cases,	 the	

popular	thin	plate	splines.	Although	our	results	are	not	completely	new	in	the	literature,	

to	our	knowledge,	they	have	not	been	previously	established	in	such	great	generality	for	

the	kind	of	splines	considered	here.	(cf.	[23,	37,	and	48]).For	any	x ∈ ℝ,	we	shall	write		

⌊x⌋		and		⌈x⌉		for	the	floor	(or	integer	part)	and	ceiling	of	ݔ	,	that	is,	the	unique	integers	

satisfying	 	 x ≤ x < ݔ + 1	 and	 	 ݔ − 1 < ݔ ≤ 	ݔ	 	 .	 Likewise,	 as	 indicated	 in	 Theorem	

(1.2.1),	we	shall	write(x	)ା = 	max{x	, 0}.	

The	 letter	 ݊	 will	 always	 stand	 for	 an	 integer	 belonging	 to	 ℕ∗ = ℕ\{0}	 (by	

convention,	0	 ∈ 	ℕ).	The	Euclidean	norm	in	ℝ	will	be	denoted	by	| · 	 |.	For	any	set	ࣩ	in	

ℝ ,	we	shall	write	 തࣩ	and	ࣩ߯ 	,	respectively,	for	the	closure	and	the	characteristic	function	

of	ࣩ.	The	restriction	to	ࣩ	of	a	function		݂		defined	over	ℝwill	be	simply	denoted	by	݂	

instead	 of	 |ࣩ	 ,	 unless	 this	 latter	 notation	 be	 strictly	 necessary.	 Finally,	 for	 any	 ݐ ∈ ℝ		

and	for	any	ߜ	 > 	0,	we	shall	denote	by	ݐ)ܤ	, ,	ݐ)തܤ	and	(ߜ 	and	open	the	respectively,	,(ߜ

closed	balls	with	centre	ݐ	and	radius	ߜ.	

Given	ܰ ∈ ℕ∗, ई ∈ [1,∞], ܾ = (ܾଵ	, . . . , ܾே 	) ∈ (ℝ)ே		and	a	real-valued	function	

	every	on	defined	ݒ ܾ 	,	we	shall	write	

‖ई|ݒ‖ =

⎩
⎨

⎧ቆ หݒ( ܾ)ห
ईே

ୀଵ
ቇ
ଵ/ई

, if		ई < ∞,

max
ଵஸஸே

หݒ( ܾ)ห 									,								if		ई = ∞.
�	
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Likewise,	if	the	function	ݒ	is	defined	on	a	finite	subset	ܤ	of	ℝ ,	we	let	‖ݒ|‖ई = ‖ई|ݒ‖ 	,	

ܾ	being	any	card	ܤ-tuple	obtained	by	ordering	the	elements	of	ܤ	.	

Given	 ࣩ ⊂ ℝand	 ݇ ∈ ℕ,	 we	 shall	 write	 ܲ(ࣩ)	 for	 the	 space	 of	 polynomial	

functions	defined	on	ࣩof	total	degree	less	than	or	equal	to	݇.	If	= ℝ	 ,	we	shall	simply	

write	 ܲ.	

For	 any	 open	 subset	 Ω	 of	 ℝand	 for	 any	 ݈ ∈ ℕ,	 we	 shall	 denote	 by	 	(Ωഥ)ܥ the	

space	 of	 those	 functions	which,	 together	with	 all	 their	 partial	 derivatives	 of	 orders	≤

	݈	are	uniformly	continuous	and	bounded	in	Ω	.	ܥ(Ωഥ)	is	a	Banach	space	for	the	norm	

(Ωഥ)‖ݒ‖ 	= 	max|ఈ|ஸ
sup୶∈ஐ |߲ఈݔ)ݒ	(|,	

where,	 for	 any	 ߙ = ,ଵߙ) . . . , (ߙ ∈ ℕ ,	 we	 write	 |ߙ| = .+ଵߙ . . 	ߙ	+ 	 and	 ߲ఈ 	=

߲|ఈ|/	(߲ݔଵ
ఈభ ··· ݔ߲	

ఈ), ,	ଵݔ . . . , 	ݔ 	 being	 the	 generic	 independent	 variables	 in	 ℝ .	 If	

ݒ ∈ |ߙ|	with	,ݒ߲ఈ	regard	we	(Ωഥ),ܥ 	≤ 	݈	 ,	as	defined	on	Ωഥ,	that	is,	we	identify	߲ఈݒ	with	

its	unique	continuous	extension	to	the	closure	of	Ω	 .	Finally,	 for	any	ߣ ∈ 	,ఒ(Ωഥ)ܥ	,[0,1)

stands	 for	 the	 subspace	 of	 	(Ωഥ)ܥ 	 consisting	 of	 functions	 satisfying	 in	 Ω	 a	 Hölder	

condition	of	exponent	ߣ.	This	space	is	a	Banach	one	endowed	with	the	norm	

బ,ഊ(Ωഥ)‖ݒ‖ = బ(Ωഥ)‖ݒ‖ = sup
௫,௬∈ஐ
୶ஷ୷

(ݔ)ݒ| − |(ݕ)ݒ
ݔ| − ఒ|ݕ .	

Let	Ω	be	a	non-empty	open	set	 in	ℝ .	For	any	ݎ ∈ ℕ	and	for	any	 ∈ [1,∞],	we	

shall	denote	by	ܹ,(Ω)	the	usual	Sobolev	space	defined	by	

ܹ,(Ω) = 	 ݒ	} ∈ ߙ∀	|(Ω)ܮ ∈ ℕ , |ߙ| ≤ ,ݎ ߲ఈݒ ∈ 	.{	(Ω)ܮ

We	 recall	 that	 the	 derivatives	 ߲ఈݒ	 are	 taken	 in	 the	 distributional	 sense.	 The	 space	

ܹ,(Ω)	 is	 equipped	with	 the	 semi-norms	 | · |,,Ω	 ,	 with	 	 ݆ ∈ {0, . . . , 	,{ݎ and	 the	 norm		

‖·‖,,Ω		given,	if	 < ∞,	by	

,,Ω|ݒ| = ቌ න|߲ఈ(ݔ)ݒ|݀ݔ
Ω|ఈ|ୀ

ቍ

భ


,,Ω‖ݒ‖		݀݊ܽ	 = ቌ|ݒ|,,Ω




ୀ

ቍ

భ


,	

or,	if		 = 	∞,	by	

,,Ω|ݒ| = max
|ఈ|ୀ

ess	sup
௫∈Ω

|߲ఈ(ݔ)ݒ| ,ஶ,Ω‖ݒ‖		݀݊ܽ			 = max
ஸஸ

	.	,ஶ,Ω|ݒ|

If	Ω	is	bounded,	it	follows	from	Theorem	in	Adams	[20]	that,	for	any		ଵ	, ଶ ∈ [1,∞]	such	

thatଵ ≤ ܹ,మ(Ω)	,	ଶ ⊂ ܹ,భ(Ω)	and,	for	anyݒ ∈ W୰,୮మ(Ω)	,	

∀j = 0,⋯ , r, |v|୨,୮భ,Ω ≤ (measΩ)ଵ/୮భିଵ/୮మ 	|v|୨,୮మ,Ω.																								(32)	
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For	any	ݎ ∈ (0,∞)\ℕ	and	 for	any	 	 ∈ [1,∞],	we	 shall	denote	by	ܹ,(Ω)	 the	Sobolev	

space	 of	 non-integer	 order	 	 ,	 formed	 by	 the	 (equivalence	 classes	 of)	 functions	

ݒ ∈ ܹ⌊⌋,(Ω)		such	that	

,,Ω|ݒ|
 =  න

|߲ఈ(ݔ)ݒ − ߲ఈ(ݕ)ݒ|

ݔ| − ା(ି⌊⌋)|ݕ
ݕ݀	ݔ݀ < ∞

Ω×Ω|ఈ|ୀ⌊⌋

,	

if	 < ∞,	and	

,ஶ,Ω|ݒ| = max
|ఈ|ୀ⌊⌋

ess	sup
௫,௬∈Ω
௫ஷ௬

|߲ఈ(ݔ)ݒ − ߲ఈ(ݕ)ݒ|
ݔ| − ି⌊⌋|ݕ

< ∞,	

if	 = ∞.	Besides	the	semi-norms	| ∙ |,,Ω	,	with	݆ ∈ {0, . . . , |	and	,{⌊ݎ⌋ ∙ |,,Ω	,	the	space	

ܹ,(Ω)	is	endowed	with	the	norm	

,,Ω‖ݒ‖ = ቐቀ
,Ω,⌊⌋‖ݒ‖

 + ,,Ω|ݒ|
 ቁ

ଵ/
,											if		1 ≤  < ∞,

max൛‖ݒ‖⌊⌋,ஶ,Ω
 		, 			if																,	,ஶ,Ωൟ|ݒ| = ∞.

�	

For	 any	 ݎ ∈ [0,∞),	 for	 any	  ∈ [1,∞]	 and	 for	 any	 open	 subset	 Ω	 of	ℝ ,	 the	 following	

imbedding	is	a	trivial	consequence	of	the	preceding	definitions:	

∀݈ = 0, . . . , ,(Ω)ܹ,		⌊ݎ⌋ 	↪ ܹ,(Ω),																																							(33)	

where	the	symbol		↪stands,	as	usual,	for	the	continuous	injection.	

Sobolev	spaces	have	been	intensively	studied	by	numerous	authors.	For	related	

matters	in	our	section,	we	refer	to	Adams	[20]	(see	also	Adams	and	Fournier	[21])	and	

Grisvard	 [31],	where	 the	main	 results	 of	 the	 theory	 are	 stated.	 In	what	 follows,	 how-	

ever,	we	establish	certain	results	that	we	have	not	found	in	the	literature	formulated	in	

the	exact	way	that	we	need.	As	usual,	we	adhere	to	the	convention	that	takes	1/ = 0	if	

 = ∞.	

From	now	on,	 the	term	domain	means	a	non-empty,	connected	open	set	 in	ℝ .	

Likewise,	 we	 shall	 use	 the	 expression	 Lipschitz-continuous	 boundary	 in	 the	 sense	 of	

Nečas	 [42].	 It	 can	 be	 seen	 (cf.,	 for	 example,	 Adams	 [20])	 that	 any	 bounded	 domain	

Ω ⊂ ℝ	 	 with	 a	 Lipschitz	 continuous	 boundary	 satisfies,	 for	 some	 ߠ ∈ (0, 	[2/ߨ and	

	ߩ > 	0,	 the	 cone	 property	with	 radius	 	ߩ and	 angle	 	ߠ ,	 that	 is,	 for	 every	 ݔ ∈ Ω	 ,	 there	

exists	a	unit	vector	(ݔ)ߦ ∈ ℝ 		such	that	the	cone	

ݔ	} + ℎߟ	|	ߟ ∈ ℝ , |ߟ| = 1, ߟ · (ݔ)ߦ	 ≥ cos	ߠ, 0 ≤ ℎ ≤ 	{	ߩ

is	contained	in	Ω	(above,	the	dot	·	is	the	Euclidean	scalar	product	in	ℝ).	

Let	us	recall	one	of	the	most	important	properties	of	Sobolev	spaces,	the	existence	

of	an	extension	operator.	Let	Ω		be	a	bounded	domain	in	ℝwith	a	Lipschitz-continuous	
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boundary.	 Then,	 for	 any	  ∈ [1,∞)	 and	 	ݎ ≥ 	0,	 there	 exists	 a	 linear	 	 continuous		

operator	 ܲ	 from	 ܹ,(Ω)	 in	 ܹ,(ℝ)	 such	 that,	 for	 any	 ݒ ∈ ܹ,(Ω),	 	 Ω|ݒܲ = 	.ݒ

Moreover,	such	an	operator	ܲ	also	exists	if		 = ∞	and	ݎ ∈ ℕ(34)	

(for	 the	 proof,	 cf.	 Grisvard	 [31],	 if	  > 1,	 and	 Sanchez	 [44],	 if	  = 1.	 If	 ݎ ∈ ℕ	 and		

 ∈ [1,∞],	see	[46]).	

Proposition	(1.2.2)	[19]:	

Let	Ω		be	a	bounded	domain	in	ℝwith	a	Lipschitz-continuous	boundary.	Let	

 ∈ [1,∞]	and	let	r	be	a	real	number	such	that		ݎ > 	,Then	./݊

we	have	

ߣ∃ ∈ (0, 1], ܹ 	,(Ω	) 	↪ 	(35)																																						(Ωഥ).	,ఒܥ	

In	addition,	we	have	

ܹ 	,ଵ(Ω	) ↪ 	(36)																																																					(Ω),ܥ	

where	ܥ(Ω)	is	the	Banach	space	of	bounded,	continuous	functions	on	Ω	,	endowed	with	

the	norm		‖ݒ‖ಳబ(Ω) = sup௫∈Ω|(ݔ)ݒ|.	

Proof:	

The	imbedding	(36)	is	just	a	particular	case	of	(7)	of	Adams	[20].	In	what	follows	

we	shall	prove	(35).	

We	 first	 suppose	 that	 1 ≤  < ∞	 and	 r	 ≥ /݊ + 1.	 Let	 ݈ = /݊ + 1.	 Thus,	 we	 have	

/݊ < ݈ < /݊ + 1, 		/݊	݂݅ ∉ ℕ,	and	݈ = /݊ + 1,	otherwise.	In	the	first	case,	we	choose	

ߣ ∈ (0, ݈ − 	,and	[/݊ in	 the	 second,	we	 take	ߣ ∈ (0,1)	 (if	 = 1,	 the	value	ߣ = 1	 is	 also	

admissible).	It	is	then	clear	that,	by	Cases	ܥ’	and	ܥ”	in	Adams	[20],	we	get	the	imbedding	

ܹ 	,(Ω	) 	↪ 	.(Ωഥ)	,ఒܥ	 Likewise,	 since	 ≤ /݊ + 1 ≤ 	ݎ ,	 it	 follows	 from	 (33)	 that	

ܹ 	,(Ω	) 	↪ 	ܹ 	,(Ω	).	The	last	two	imbeddings	imply	(35).	

(b)	 Let	 us	 now	 assume	 that	 1 <  < ∞	 and	 ݎ ∈ ,/݊) /݊ + 1).	 In	 this	 case,	 taking	

ߣ = ݎ − 	and	[31]	Grisvard	in	(1.4.4.6)	relation	the	from	follows	directly	result	the	,/݊

property	(34)	(cf.	[31,	Sect.	1.4.4]).	

(c)	 We	 next	 assume	 that	  = 1	 and	 ݎ ∈ (݊, ݊ + 1).	 Obviously,	 there	 exists	 ݍ ∈ (1,∞)	

such	 that	 ݈ = ݎ − ݊ + 	ݍ/݊ 	 is	 a	 non-integer	 number.	 By	 Adams	 [20],	 we	 have	

ܹ 	,ଵ(ℝ) 	↪ 	ܹబ ,(ℝ),	 which	 implies,	 taking	 property	 (34)	 into	 account,	 that	

ܹ 	,ଵ(Ω	) 	↪ 	ܹబ ,(Ω	)	 (cf.	 [20,	Remark	5	 .5	 (4)]).	 Since	 ݈ ∈ ,ݍ/݊) ݍ/݊ + 1),	 it	 follows	

from	point	(b)	 that	ܹబ,(Ω	) 	↪ ܥ	 	,ఒ(Ωഥ	)	with	ߣ = ݈ − 	The	.	ݍ/݊ last	 two	 imbeddings	

yield	the	result.	
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(d)	We	finally	suppose	that	 = ∞.	If	ݎ ≥ 1,	then	(35)	follows	from	the	chain	of	

imbeddings	

ܹ 	,ஶ(Ω	) 	↪ 	ܹ 	ଵ,,ஶ(Ω	) 	↪ 	ܹ 	ଵ,ଶ(Ω	) 	↪ ܥ	 	,ଵ/ଶ(Ωഥ	),	

which	can	be	derived	from	(32),	(33)	and	point	(b),	respectively.	If	ݎ ∈ (0,1),	let	us	first	

see	that	

			ܹ 	,ஶ(Ω	) 	↪ 	ܹᇲ,ᇲ(Ω	),																																																	(37)	

with	 ′ ∈ 	(∞,ݎ/2݊) and	 ′ݎ = ݎ − 	/݊ .	 We	 observe	 that	 1 < ′ < ∞	 and	 that	

	′/݊ < ′ݎ < 1 < 	′/݊ + 1.	 Let	 ݒ ∈ 			ܹ 	,ஶ(Ω	)	.	 On	 the	 one	 hand,	 it	 follows	 from	

relation	(2.1)	that	ݒ ∈ 	that	and	ᇲ(Ω)ܮ

|v|,୮ᇲ,Ω ≤ (meas	Ω)ଵ/୮ᇲ|v|,ஶ,Ω.	

On	the	other	hand,	since	the	set	{(ݔ, (ݕ ∈ Ω × Ω: ݕ = 	have	we	measure,	null	a	has	{ݔ

ᇲ,ᇲ|ݒ| ,Ω
ᇲ = න

(ݔ)ݒ| − ᇲ|(ݕ)ݒ

ݔ| − ାᇲᇲΩ×Ω|ݕ
	ݕ݀ݔ݀

= න
(ݔ)ݒ| − ᇲ|(ݕ)ݒ

ݔ| − ᇲᇲΩ×Ω|ݕ
ݕ݀ݔ݀ ≤ meas(Ω × Ω)|ݒ|,ஶ,Ω

ᇲ 	

We	conclude	that	(37)	holds.	From	this	imbedding	and	point	(b),	we	deduce	that	(35)	

also	holds.																																																																																																																						

Proposition	(1.2.3)	[19]:	

Let	 Ω	 	 be	 a	 bounded	 domain	 in	ℝwith	 a	 Lipschitz-continuous	 boundary.	 Let		

, ݍ ∈ [1,∞], ݎ > 0	 and	 ݈ = ݎ − /݊ + 	.ݍ/݊ If	 	  ≤ 	ݍ and	 ݈ > 0,	 then,	 for	 any	

݈	 = 	0, . . . , ⌈݈⌉ − 	1,	we	have	

			W	୰,୮(Ω	) 	↪ 	W	୪,୯(Ω	).																																																											(38)	

If	r		∈	N∗,	this	imbedding	also	holds	with	݈ = ݈when:	(i)	1 ≤  < ݍ < ∞	and	݈ ∈ ℕ,	or	

(ii)	(, (ݍ = (1,∞)	and	ݎ ≥ ݊,	or	(iii)	1 ≤  = ݍ < ∞.	

Proof	The	imbedding	(36)	with	݈ = ݈	in	the	cases	just	mentioned	is	a	trivial	conse-	

quence	of	(33)	(case	(iii))	or	follows	immediately	from	Cases	A	and	B	in	Adams	[20].	

Hereafter,	we	assume	that	 ≤ ݈	and	ݍ > 0.	We	shall	consider	two	cases.	

Case	I:	1 ≤  ≤ ݍ < ∞.	

(a)	Let	us	assume	that	ݎ ∈ ℕ∗.	Let	݈ ∈ {0, . . . , ⌈݈⌉ − 1}.	If	ݎ − /݊ < ݈	or	−݊/ = 	݈	,	Cases	

A	or	B	 in	Adams	 [1]	directly	yield	 (38).	 If	−݊/ > ݈	 ,	 by	Proposition	 (1.2.2),	we	have	

			ܹ 	ି,(Ω	) 	↪ 	get	we	Thus,	).	(Ωഥܥ	
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W୰,୮(Ω	) ↪ 	C୪(Ωഥ) ↪ 	W୪,୯(Ω	).	

(b)	Let	us	now	assume	that	ݎ ∉ ℕ∗	and	that	݈ ∉ ℕ∗.	By	Adams	[1],	we	have	ܹ,(ℝ) 	↪

ܹబ,(ℝ	),	and	so,	by	property	(34),	ܹ,(Ω	) 	↪ ܹబ ,(Ω	)	(cf.	[20,	Remark	5.5	(4)]	and	

specially,	if	 > 1,	[31]).	The	relation	(38)	is	then	a	consequence	of	(33)	(applied	with	

= ݈	),	taking	into	account	that		⌊݈⌋ = 		 ⌈݈⌉ − 	1.	

(c)	 To	 complete	 this	 case,	 we	 finally	 suppose	 that	 ݎ ∉ ℕ∗	 and	 that	 ݈ ∈ ℕ∗.	 Let	 ′ݍ ∈

ݍ	if	,(∞,ݍ) ≥ ݊,	and	ݍᇱ ∈ ,ݍ) ݊)/	ݍ݊ − ݈ଵ	let	and	otherwise,	,	((	ݍ = ݎ − /݊ + 	is	It	.		′ݍ/݊

readily	 seen	 that	 ݈ − 1	 < ݈ଵ < ݈	 .	 Since	 ݈ଵ ∉ ℕ∗	 and	 	 ⌈݈ଵ⌉ = ݈ = ⌈݈⌉,	 the	 reasoning	 in	

point	(b)	shows	that	

∀l = 0, . . . , ⌈l⌉ − 	1,W	୰,୮(Ω	) ↪ W୪	,୯ᇲ(Ω	).	

But	Ω	is	a	bounded	set	and	′ > 	relation	preceding	the	from	follows	result	the	Thus,	.	ݍ

and	relation	(32).	

Case	II:	1 ≤  ≤ ݍ = ∞.	

Let	݈ ∈ {0, . . ., ⌈݈⌉ − 1},		where	݈ = ݎ − ݎ	since	Thus,	./݊ − ݈ > 	by	,/݊

Proposition	1.2.2,	we	have	

ܹ	ି	,(Ω	) ↪ (Ωഥ)ܥ ↪ )	ஶ(Ωܮ 	= 	ܹ 	,ஶ(Ω	).	

This	imbedding	implies	(38).	

Remark	(1.2.4)	[19]:	

The	 statement	 of	 Proposition	 (1.2.3)	 is	 limited	 to	 the	 cases	 needed	 in	 this	

section.	 There	 is,	 however,	 one	 exception.	 In	 the	 proof	 of	 Theorem	 (1.2.8)	 we	 shall	

require	the	relation	(1,4,4,5)	in	Grisvard	[31],	which	establishes	that	(38)	holds	under	

the	 following	 conditions:	 1 <  ≤ ݍ < ∞,	 and	 	ݎ and	 ݈	 are	 non-negative	 real	 numbers	

such	that	ݎ − /݊ = ݈ − 	.	ݍ/݊

Let	us	begin	with	a	result	slightly	different	from	one	by	Duchon	(cf.	[30]).	

Proposition	(1.2.5)	[19]:	

Let	Ω	be	a	bounded	open	subset	of	ℝsatisfying	the	cone	property	with	radius	ߩ	

and	angle		.	Then,	there	exist	constants	ܯ > 1	(depending	on	ߠ	),	ܯଵ > 1	(depending	on	

݊	and	ߠ	,(	ߣ > 0	(depending	on	ߩ	and	θ	),	and	ܯଶ > 1	(depending	on	n	and	diam	Ω	)	

such	that,	for	any	ߣ ∈ (0, 	exists	there	],ߣ ఒܶ ⊂ Ω	satisfying	

(i)			∀ݐ ∈ ఒܶ, ,ݐ)	തܤ (ߣ ⊂ Ω	,	

(ii)		Ω ⊂ ⋃ ,ݐ)	തܤ ௧∈்ഊ(ߣܯ ,	

(iii)	∑ ߯ത	(௧,ெఒ)௧∈்ഊ ≤ 	,	ଵܯ
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	(iv)	card	 ఒܶ 	.	ିߣଶܯ	≥

Proof:	

It	has	been	shown	by	Duchon	that	(i),	(ii)	and	(iii)	hold	if	one	takes	ܯ = 2(1 +

	ߠ݊݅ݏ/(ߠ݊݅ݏ ଵܯ	, = ݊√	ܯ	) + 1)	 ,	 ߣ = 	ܯ/ߩ ,	 and,	 for	 any	 ߣ ∈ (0, 	,[ߣ ఒܶ = ݐ} ∈ ℤߣߥ ∶

,ݐ)തܤ (ߣ ⊂ Ω	},	where	ߥ = 2/√݊.	Let	us	see	that	(iv)	also	holds.	Since	Ω	is	a	bounded	set,	it	

is	contained	in	an	open	hypercube	ܥ	with	sides	of	length	ܮ = diam	Ω	.	Let	ܯଶ = 	.	ିߥܮ

Then,	it	is	clear	that	

card	T ≤ card(C ∩ νλℤ୬) ≤ 	L/(νλ)୬ = Mଶλି୬,	

which	completes	the	proof.	

Let	us	now	recall	a	more	or	less	classical	result.	

				Let	Ω	be	a	bounded	domain	in	ℝwith	a	Lipschitz-continuous	boundary.	Let	 ∈

ݎ			,[∞,1] > 0	and	݇ = ⌈ݎ⌉ − 1.	Then,	there	exists	a	positive			constant	ܥ		such	that												

ݒ∀						 ∈ ܹ,(Ω), min
ట∈ೖ(ஐ)

ݒ‖ − ߰‖,,ஐ ≤ ,,ஐ|ݒ|ܥ 																														(39)	

(for	the	proof,	cf.	Ciarlet	[26],	if	ݎ ∈ ℕ∗,	and	Sanchez	and	Arcangéli	[45],	otherwise).	

Proposition	(1.2.6)	[19]:	

Let	 Ω	 	 be	 a	 bounded	 domain	 in	ℝwith	 a	 Lipschitz-continuous	 boundary.	 Let		

 ∈ [1,∞),	 ݎ > /݊) − ݊/2)ା	 and	 ݇ = ⌈ݎ⌉ − 1.	 Then,	 there	 exists	 a	 linear	 operator	
෨ܲ:	ܹ,(Ω	) → ܹ,(ℝ) + ܲ	 	 and	 a	 positive	 constant	 	ܥ such	 that,	 for	 any	 ݒ ∈

ܹ,(Ω	), ෨ܲݒ|Ω = 	|	and	ݒ ෨ܲݒ|,,ℝ ≤ 	,,Ω|ݒ|ܥ .	Moreover,	such	an	operator	 ෨ܲalso	exists	

if	 = ∞	and	ݎ ∈ ℕ∗.	

Proof:	

Let	ܫ	and	ܲ	be,	respectively,	the	identity	operator	in	ܹ,(Ω	)	and	the	extension	

operator	 from	 ܹ,(Ω	)	 into	 ܹ,(ℝ)	 introduced	 in	 relation	 (34).	 Likewise,	 let	 us	

denote	by	ߎ෩	 	and	 	 ,	 respectively,	 the	orthogonal	projection	operator	 from	ܮଶ(Ω)	onto	

ܲ(Ω)	 and	 the	 operator	 that	 assigns	 to	 any	 polynomial	 function	 over	 Ω	 	 the	 same	

polynomial	 function	 over	 ℝ .	 Finally,	 let	 ܶ	 be	 the	 linear	 operator	 of	 the	 continuous	

imbedding	 of	 ܹ,(Ω	)	 into	 	.ଶ(Ω)ܮ We	 note	 that,	 if	 2 ≥ 	, the	 existence	 of	 ܶ	 is	 a	

consequence	 of	 Proposition	 (1.2.3)	 (applied	with	ݍ = 2	 and	 ݈ = 0),	whereas,	 if	 2 < 	,

taking	into	account	that	Ω	is	bounded	and	relation	(32),	we	obviously	have	ܹ,(Ω	) ⊂

)	(Ωܮ	 	⊂ 	.)	ଶ(Ωܮ

				Following	Geymonat	(cf.	Strang	[28]),	 let	us	consider	the	operator ෨ܲ = ܫ)ܲ − )ାߎ +

ߎܧ 	 ,	 where	 ߎ 	෩ܶߎ	= .	 It	 is	 clear	 that	 ෨ܲ	 is	 a	 linear	 operator	 from	 ܹ,(Ω	)	 into	
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ܹ,(ℝ) + ܲ	.	Sinceߎݒ ∈ ܲ(Ω),	for	any	∈ ܹ,(Ω	)	,	we	deduce	that	 ෨ܲݒ|Ω = 	.ݒ

	 Let	us	now	see	that	there	exists	a	constant	ܥ > 0such	that,	for	any	ݒ ∈ ܹ,(Ω	),	

| ෨ܲݒ|,,ℝ ≤ 	that	remark	first	we	end,	this	To	.	,,Ω|ݒ|ܥ

ݒ∀ ∈ ܹ,(Ω), | ෨ܲݒ|,,ℝ = ܫ)ܲ| − ,,ℝ|ݒ(ߎ ≤ ܫ)ܲ‖ − ,,ℝ‖ݒ(ߎ 	,	

since	 the	 semi-norm	 | · |,,ℝ 	 	 is	 null	over	 ܲ	 .	 Then,	 by	 definition	of	ܲ	 and	ߎ,	 there	

exists	ܥ > 0	such	that	

ݒ∀ ∈ ܹ,(Ω), ∀߰ ∈ ܲ 	(Ω	), | ෨ܲݒ|,,ℝ ≤ ܫ)‖ܥ − ݒ)(ߎ − ߰)‖,,Ω	.	

The	 result	 then	 follows	 from	 relation	 (39)	 and	 the	 continuity	 of	 the	 operator	

	ܫ − ߎ	 ∶ 	ܹ,(Ω) 	→ 	ܹ,(Ω).																																																																																																		

The	following	proposition	is	strongly	based	on	a	result	due	to	Duchon	(cf.	[30	Lemma]),	

with	additional	ideas	drawn	from	[36]	(see	also	[22]).	

Proposition	(1.2.7)	[19]:	

Let	 Ω	 	 be	 a	 bounded	 domain	 in	ℝ	 with	 a	 Lipschitz-continuous	 boundary.	 Let	

 ∈ [1,∞]	 and	 let	 	ݎ be	 a	 real	 number	 such	 that	 	 ݎ > 	,/݊ if	  > 1,	 or	 r	≥	 n,	 if	 p	=	 1.	

Likewise,	 let	 ݇ = ⌈ݎ⌉ − 1	and	 	 ܴ = dim ܲ	 .	 Finally,	 let	ܤ ⊂ Ωॆ	 be	a	 compact	 set	of	 ܲ-

unisolvent	ॆ	-tuples.	Then,	for	any	ई ∈ [1,∞],	there	exists	a	constant	ܥ > 0	(dependent	

on	Ω	, ,	ܤ ,	ݎ 	that	such	)	ई	and	

∀ܾ ∈ ,ܤ ݒ∀ ∈ ܹ 	,(Ω), 		,,Ω	‖ݒ‖ ≤ ,,Ω|ݒ|൫	ܥ 	.		‖ई൯|ݒ‖	+

Proof:	

(a)	For	any	= (ܾଵ	, . . . , ܾॆ) ∈ 	Lagrange	the	be	ߎ	let	,	ܤ ܲ-interpolating	operator,	

defined,	for	any	ݒ ∈ ܹ 	,(Ω),	by	

	ݒߎ ∈ 	 ܲ(Ω	)	ܽ݊݀, ݆	ݎ݂ = 1, . . . , ,ܭ )ݒߎ ܾ) 	= )ݒ	 ܾ).	

By	Proposition	(1.2.4),	ܫ	 − ܹ	from	operator	continuous	linear	a	is		ߎ 	,(Ω)	into	

ܹ 	,(Ω).	Hence,	for	any	∈ 	that	such	(b)	C	constant	a	exists	there	,	ܤ

ݒ∀ ∈ ܹ 	,(Ω), ݒ‖ − ,,Ω‖ݒߎ ≤ 	.			,,Ω	‖ݒ‖(ܾ)	ܥ

(b)	Let	us	prove	that	

(ܾ)ܥ	∈ݑݏ < ∞											(40) 

To	do	 this,	 it	 is	 sufficient	 to	 show	 that,	 for	 any	ݒ ∈ ܹ 	,(Ω),	 the	 set	 ݒߎ	} ∶ ܾ ∈ 	is{	ܤ

bounded	in	ܹ 	,(Ω).	The	relation	(40)	then	follows	by	applying	the	Banach-	Steinhaus	

Theorem	to	the	family	of	operators	(ܫ − )∈ߎ .	

Let	ଵ	, . . ., 	ॆ be	a	basis	of	 ܲ(Ω)	and,	 for	any	∈ 	ܤ ,	 let	us	 consider	 the	matrix	
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(ܾ)ܯ = 		 ൫( ܾ)൯ଵஸ,ஸॆ	 We	 remark	 that	 	(ܾ)ܯ is	 regular,	 since	 ܾ	 is	 ܲ–unisolvent.	

Denoting	 by	 ݉,
ᇱ (ܾ)	 the	 generic	 element	 of	 the	 inverse	 matrix	 (ܾ)ିଵ	 ,	 for	 any	

ݒ ∈ ܹ,(Ω),	we	have	

ݒߎ =  ൫ݒ ܾ൯݉
ᇱ

ॆ

,ୀଵ

(ܾ) .																																																																											(41)	

Now,	on	the	one	hand,	ݒ ∈ ܹ,(Ω)	is	continuous	on	Ωഥ	(in	fact,	on	Ωഥ	if	ݎ > 	on	and,	(/݊

the	other	hand,	since	matrix	inversion	is	a	continuous	operation,	each	function	݉ 
ᇱ 	is	

bounded	on	the	compact	set	ܤ	.	We	deduce	that,	for	any	ݒ ∈ ܹ,(Ω),		‖ߎݒ‖	୰,୮,Ω	

remains	bounded	when	ܾ	varies	in	ܤ	and	so	(40)	holds.	

(c)	Since	

∀ܾ ∈ 	߰∀,ܤ ∈ 	 ܲ(Ω), ߎ 	߰ = ߰,																																																					(42)	

by	points	(a)	and	(b),	there	exists	a	constant	ܥ	such	that	

∀ܾ ∈ ,ܤ ݒ∀ ∈ ܹ,	(Ω	), ∀߰ ∈ ܲ(Ω), ݒ‖ − ,,Ω	‖ݒߎ ≤ ݒ‖ܥ − ߰‖,,Ω.	

This	inequality	and	relation	(3.1)	imply	that	

∀ܾ ∈ ݒ∀,ܤ ∈ ܹ,(Ω	), ݒ‖ − ,,Ω‖ݒߎ 	≤ 	(43)																								,	,,Ω|ݒ|ܥ

with	C	depending	on	Ω	, ,	ܤ 	.	and	ݎ

(d)	Let	us	now	see	that,	given	ई ∈ [1,∞],	

ܥ∃ > 0, ∀ܾ ∈ ,ܤ ∀߰ ∈ ܲ(Ω), ‖߰‖	,,Ω ≤ 	(44)																												,	‖ई|ݒ‖	ܥ

with	C	depending	on	Ω	, ,	ܤ ,	ݎ 	.	ई	and	

Let	ܾ∗ = (ܾଵ∗, . . . , ܾॆ∗ )	be	a	fixed	ॆ	-tuple	of		.	It	follows	from	(41)	and	(42)	that,	for	any	

ܾ ∈ ߰	any	for	and	ܤ ∈ ܲ(Ω),	

(߰	(ܾଵ∗), . . . , ߰	(ܾॆ∗ ))் = ,(ܾଵ)	(߰	ଵି(ܾ)	ܯ	(∗ܾ)ܯ . . . , ߰(ܾॆ))் 	,	

where	the	super-index	ܶ	means	transposition.	The	compactness	of	ܤ	and	the	continuity	

of	the	operator	ܾ ∈ ܤ ⟼ ܥ	constant	a	of	existence	the	imply	ଵି(ܾ)ܯ(∗ܾ)ܯ > 0	such	

that	

∀ܾ ∈ ߰∀,ܤ ∈ ܲ(Ω), ‖߰|∗‖ई ≤ 	(45)																																											.	‖ई|߰‖ܥ

Likewise,	the	mappings	߰	 ⟼ ‖߰‖,,Ω		and	߰ ⟼ ‖߰|∗‖ई		are	both	norms	on	the	finite	

dimensional	space	 ܲ(Ω).	Thus,	there	exists	ܥ > 0	such	that	

∀߰ ∈ ܲ(Ω), ‖߰‖,,Ω ≤ 		(46)																																													.	∗‖ई|߰‖		ܥ	

The	relation	(44)	follows	from	(45)	and	(46).	
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(e)	For	any	ܾ ∈ 	ݒ	any	for	and	ܤ ∈ 	ܹ,(Ω),	it	is	clear	that	

,,Ω‖ݒ‖ ≤		 ݒ‖ − 	,,Ω‖ݒߎ + 	.		,,Ω‖ݒߎ‖

The	result	is	then	a	consequence	of	this	relation,	(43)	and	(44).																																	

We	conclude	this	section	with	a	proposition	that	extends	a	well-known	result	by	

Duchon	(cf.	[30];	see	also	[22]).	

Proposition	(1.2.8)	[19]:	

Let	 , ,ݍ ई ∈ [1,∞]	 such	 that	≤ 	ݍ .	 Let	 	a	be	ݎ real	number	 such	 that	ݎ > 	,/݊ if	

 > 1,	 or	 ݎ ≥ ݊,	 if	  = 1.	 Finally,	 let	 ݇ = ⌈ݎ⌉ − 1,	ॆ = ݀݅݉	 ܲ 	 and	 ݈ = ݎ − /݊ + 	ݍ/݊ .	

Then,	 there	 exists	 ܴ > 1	 (dependent	 on	 ݊	 and	 	ݎ )	 and,	 for	 any	ܯ′ ≥ 1,	 a	 constant	 	ܥ

(dependent	on	ܯ′, ݊, ,ݎ , ݀	any	for	property:	following	the	satisfying	ई)	and	ݍ > 0	and	

any	 ݐ ∈ ℝ 	 ,	 the	 open	 ball	ݐ)ܤ, ܴ݀)	 contains	ॆ	 closed	 balls	ℬଵ, . . . , ℬॆof	 radius	 ݀	 such	

that,	for	any	ݒ ∈ ܹ 	,(ܤത	(ܯ,ݐ′	ܴ݀	))	,	for	any	ܾ ∈ ∏ ℬॆ
ୀଵ 	and	for	݈ = 0, . . . , ⌈݈⌉ − 1,	

,,ത(௧,ெᇲோௗ)|ݒ| ≤ ,,ത(௧,ெᇲோௗ)|ݒ|൫݀ିି/ି/ܥ + ݀/ି‖ݒ|‖ई൯.																					(47)	

If	 ݎ ∈ ℕ∗,	 this	 bound	 also	 holds	 with	 ݈ = ݈when	 either	  < ݍ < ∞	 and	 ݈∈ℕ,	 or	

,) (ݍ = (1,∞),	or	 = 		.ݍ

Proof:	

(a)	 Let	 ܾ =	 (ܾଵ, . . . , ܾॆ) 	∈ 	 (ℝ)ॆ	 be	 a	 ܲ-unisolvent	 ॆ	 -tuple.	 Since	 the	 subset	 of		

(ℝ)ॆ	formed	by	all	the	 ܲ-unisolvent	ॆ	-tuples	is	an	open	subset	of	(ℝ)ॆ	(cf.	[30	proof	

of	 Proposition	 2]),	 there	 exists	 ݎ > 0	 such	 that	 any	ॆ	 -tuple	ܾ ∈ ∏ )തܤ ܾ
, ॆ(ݎ

ୀଵ 	 is	 ܲ-

unisolvent.		

				By	a	homothecy	of	 reason	1/ݎ	 ,	writing	ߙො = (	ݎ/1) ܾ
	 ,	we	obtain	ॆ	balls	ܤത(ߙො	, 1)	

such	 that	 the	product	ܤ ∈ ∏ ,	ොߙ)തܤ 1)ॆ
ୀଵ 	 is	 a	 compact	 subset	of	 (ℝ)ॆ	 formed	by	 ܲ	 -

unisolvent	ॆ-tuples.	The	set		⋃ ොߙ)തܤ 	, 1)ॆ
ୀଵ 		is	bounded	and	so	contained	in	an	open	ball	

)ܤ ොܽ, ܴ)	whose	radius	ܴ > 1	depends	on	݊	and	݇,	and	hence,	on	݊	and	ݎ	.	

(b)	Let	ܯ ≥ 1	and	let	݈୫ୟ୶ =		 ⌈݈⌉ − 1,	except	in	the	cases	cited	after	(47),	for	which	we	

take	 ݈୫ୟ୶ = 		 ݈	 .	 Applying,	 in	 order,	 Proposition	 (1.2.5)	and	Proposition	 (1.2.7)	 (with	

Ω = )ܤ ොܽ, ܤ	and	cases		both	in	(ܴ		ܯ = 	any	for	that,	deduce	we	second),	the	in	ܤ ܾ ∈ 	,	ܤ

for	any	ݒො ∈ ܹ,(ܤത( ොܽ,ܯ′	ܴ))		and	for	݈ = 0, . . . , ݈୫ୟ୶ 	

ො|,,ത(ො,ெᇲோ)ݒ| ≤ ො|,,ത(ො,ெᇲோ)ݒ|൫ܥ + 	(48)																															ො|‖ई൯,ݒ‖

with	ܥ	depending	on	ܯ		, ݊, ,	ݎ , 	.ई	and	ݍ

(c)	 For	 any	݀ > 0	 and	 any	∈ ℝ	 ,	 let	 	௧ௗܨ d	 	 be	 	 the	 invertible	 affine	mapping	ݔ → ݐ +
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ݔ)݀ − ොܽ	).	This	mapping	transforms	the	ball	ܤത( ොܽ,ܯᇱ݀)	into	the	ball	ܤത(ݐ, 	ball	the	ᇱܴ݀)ܯ

)ܤ ොܽ	, ܴ)	into	the	ball	ݐ)ܤ	, ܴ݀)	and,	for	any	݆	 = 	1, . . . , ॆ,	the	ball	ߙ)ܤො, 1)	,	into	a	closed	

ball	ℬ		of	radius	d	contained	in	the	ball	ݐ)ܤ, ܴ݀).	

For	 any	 ݒ ∈ ܹ,(ܤത(ݐ, 	((ܴ݀′ܯ 	 and	 any	 ܾ = (ܾଵ	, . . . , ܾॆ) ∈ ∏ ℬॆ
ୀଵ ,	 we	 write	

ොݒ = ݒ ∘ 	and	௧ௗܨ ܾ = ( ܾଵ	, . . . , ܾॆ),	where,	 for	݆ = 0,… , ॆ	 ,	 ܾ = )ଵି(௧ௗܨ) ܾ).	 It	 is	clear	 that	

)ݒ ܾ) = )ොݒ ܾ).	Then,	it	follows	from	the	rules	of	change	of	variables	in	semi-norms	(cf.	

Ciarlet	 [26]	 for	 the	 integer	 case,	 and	 Sanchez	 and	 Arcangéli	 [45],	 for	 the	 non-integer	

one)	 that	 there	 exists	 a	 constant	 	ܥ (depending	 	 on	݊, ,	ݎ 	 and	 	ݍ )	 such	 that,	 for	 any	

integer	݈ = 0, . . . , ݈୫ୟ୶ 	max		and	for	any	ݒ ∈ ܹ,(ܤത(ܯ,ݐ′ܴ݀))	

,,ത(௧,ெᇲோௗ)|ݒ| ≤ 	ො|,,ത(ො,ெᇲௗ)ݒ|/ି݀ܥ

and		

ො|,,ത(ො,ெᇲௗ)ݒ| ≤ 	,,ത(௧,ெᇲோௗ)|ݒ|ି/݀ܥ

Taking	into	account	that		‖ݒො|‖ई 	the	and	(47)	from	follows	then	result	the	,	ߎ		‖ई|ݒ‖	=

last	two	relations.	

Throughout	 this	 section	 we	 denote	 by	 Ω	 a	 bounded	 domain	 in	 ℝwith	 a	

Lipschitz-	 continuous	 boundary.	 As	 mentioned	 in	 Sect.	 2,	 for	 some	 ߠ ∈ (0, 	[2/ߨ and	

ߩ > 0,	the	domain	Ω	satisfies	the	cone	property		with	radius	ߩ	and	angle	ߠ	.	

Likewise,	 for	 any	 finite	 subset	 	ܣ of	 Ωഥ,	 we	 write	 ,ܣ)ߜ Ωഥ)	 for	 the	 Hausdorff	 distance	

between	ܣ	and	Ωഥ,	also	known	as	fill	distance,	which	is	given	by	

(Ωഥ,ܣ)ߜ = sup௫∈Ωmin∈ 	ݔ| − 	ܽ|.																																								(49)	

Theorem	(1.2.9)	[19]:	

Let	, ,	ݍ ई ∈ [1,∞].	Let	 ݎ	that	such	number	real	a	be	ݎ ≥ ݊,	 if	 = ݎ	,1 > 	,/݊ if	

1 <  < ∞,	 or	 ݎ ∈ ℕ∗ ,	 if	  = ∞.	 Likewise,	 let	 ݈ = ݎ − /1)݊ − 	ା(ݍ/1 and	 ߛ =

max{	, ,	ݍ ई	}.	Then,	 there	exist	 two	positive	constants	ॗ(dependent	on	ߠ, ,ߩ ݊	and	ݎ	)	

and	ܥ	(dependent	on	Ω	, ݊, ,	ݎ , 	finite	any	for	property:	following	the	satisfying	ई)	and	ݍ

set	 ܣ ⊂ Ωഥ	 (or	 ܣ ⊂ 	Ω	 if	  = 1	 and	 ݎ = ݊)	 such	 that	 ݀ = ,ܣ)ߜ Ωഥ) ≤ ॗ ,	 for	 any	

ݑ ∈ ܹ,(Ω)	and	for	any	݈ = 0, . . ., ⌈݈⌉ 	− 1,	we	have	

	,Ω	,	|ݑ| ≤ 	,,Ω|ݑ|)శ	ିଵ/	–(ଵ/	–	݀	ܥ + ݀	/ఊ	ି‖ݑ|‖ई.																															(50)	

If	 ݎ ∈ ℕ∗,	 this	 bound	 also	 holds	 with	 ݈ = ݈	 when	 either	  < ݍ < ∞	 and	 ݈ ∈ ℕ,	 or	

,) (ݍ = (1,∞),	or	 ≥ 		.ݍ

Proof:		
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We	shall	consider	three	different	cases.	

Case	I:		 ≤ ݍ < ∞.	

Let	 ܯ > ଵܯ,1 > 1, ߣ > 0	 and	ܯଶ > 0	 be	 the	 constants	 given	 by	 Proposition	 (1.2.5),	

and,	for	any	ߣ ∈ (0, 	let	],ߣ ఒܶ	be	the	subset	of	Ω	whose	existence	is	also	assured	by	that	

proposition.	Likewise,	 let	ܴ	 > 1	be	 the	 first	of	 the	 constants	provided	by	Proposition	

(1.2.8).	We	let	ॗ 	constant	a	obviously	is	which	ܴ,	/ߣ	= that	depends	only	on	ߠ	,	ߩ,	݊	

and	ݎ	.	Finally,	as	in	Proposition	(1.2.8),	we	let	݇ = ⌈ݎ⌉ − 1	and	= dim ܲ	.	

Let	 us	 consider	 any	 finite	 set	 ܣ ⊂ Ωഥ	 (or	 A	 ⊂	 Ω	 if	  = 1	 and	 ݎ = ݊)	 such	 that	

݀ = ,ܣ	)ߜ Ωഥ) 	≤ ॗ 	 .	 We	 note	 that	 ≤ 	ߣ .	 Given	 ∈ ோܶௗ 	 ,	 by	 (49),	 there	 exists	 ॆ-tuple	

ܽ௧ௗ ∈ ∏ (ℬ,∩ ॆ(ܣ
ୀଵ ,	 where	 ℬଵ, … , ℬॆ	 are	 the	 closed	 ball	 associated	 with	 ݀	and	 	ݐ by	

Proposition	(1.2.8).	We	remark	that	ܽ௧ௗbelongs	to	Ωॆ	K,	since,	by	Proposition	(1.2.8)	and	

point	(i)	of	Proposition	(1.2.5),	for	݆	 = 	1, . . . , ॆ,	ℬ ⊂ .ݐ)തܤ ܴ݀) ⊂ 	Ω	.	

For	any	ݑ ∈ ܹ,(Ω),	we	write	ݑ = 	where	,ݑܲ ෨ܲ		stands	for	the	operator	defined	

in	Proposition	(1.2.6).	Since	ݑ ∈ ܹ,(ℝ) + ܲ 	,	it	is	clear	that	ݑ	belongs	to	ܹ,(ࣩ)	for	

any	bounded	open	subset	ࣩ	of	ℝ .	 Let	 ݈௫ 	 be	defined	as	 in	 the	proof	of	Proposition	

(1.2.8).	By	point	(ii)	of	Proposition	1.2.5,	for	= 0, . . . , ݈௫ 	,	we	get	

	,Ω	,	|ݑ| ≤ ⋃,|,ݑ| ത(௧,ெ	ோௗ)∈ೃ
≤ ቌ  ோௗ)	|,,ത(௧,ெݑ|



௧∈்ೃ

ቍ,	

from	which,	applying	Proposition	1.2.8	with	ܯ′ = 	obtain	we	,	ܯ

	,Ω	,	|ݑ| ≤ /ି݀ܥ ≤ ቌ  ቀ݀ି/|ݑ|,,⋃ ത(௧,ெ	ோௗ)∈ೃ
+ ቛݑ|ቛई

ቁ


௧∈்ೃ

ቍ

ଵ/

,	

where	ܥ	is	a	constant	that	depends	on	ߠ	(through	ܯ	),	݊, ,	ݎ , 	Applying	ई.	and	ݍ

Minkowski’s	inequality	for	the	discrete	space		ℓ	,	we	derive	the	relation	

	,Ω	,	|ݑ| ≤ /ି(݀/ି्ଵ݀ܥ + ्ଶ)		,																																			(51)	

with	

्ଵ = ቌ  ோௗ)	|,,ത(௧,ெݑ|


௧∈்ೃ

ቍ

ଵ/

ܽ݊݀				्ଶ = ቌ  ቛݑ|ቛई


௧∈்ೃ

ቍ

ଵ/

		.	

Next,	we	shall	bound	above	्ଵand	्ଶ.	

On	the	one	hand,	by	Jensen’s	inequality,	we	have	
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्ଵ ≤ ቌ  ோௗ)	|,,ത(௧,ெݑ|


௧∈்ೃ

ቍ

ଵ/

																																																	(52)	

If	ݎ ∈ ℕ,	we	deduce	from	point	(iii)	of		Proposition	(1.2.5)	that	

 ோௗ)	|,,ത(௧,ெݑ|


௧∈்ೃ

=  න ߯ത(௧,ெ	ோௗ)
ℝ

൭ |߲ఈݑ(ݔ)|
|ఈ|ୀ

൱݀ݔ
௧∈்ೃ

= න ቌ  ߯ത(௧,ெ	ோௗ)
௧∈்ೃ

ቍ൭ |߲ఈݑ(ݔ)|
|ఈ|ୀ

൱݀ݔ	
ℝ

≤ ଵනܯ ൭ |߲ఈݑ(ݔ)|
|ఈ|ୀ

൱݀ݔ = |,,ℝݑ|ଵܯ


ℝ
,	

which	obviously	implies,	together	with	(52),	that	

्ଵ ≤ ଵܯ
ଵ/|ݑ|	,	,ℝ 																																																							(53)	

If	 ݎ ∉ ℕ,	 a	 similar	 reasoning	 shows	 that	 (53)	 also	 holds,	 taking	 into	 account	 the	

definition		of		the		Sobolev		semi-norms		of		non-integer		order		ݎ			and		that,	 	again		by	

Proposition	(1.2.5)		

 (ݐ)ܳ߯ ≤ ,ଵܯ
௧∈்ೃ

	

Whereܳ(ݐ) = (ܴ݀ܯ,ݐ)തܤ × 	(ܴ݀ܯ,ݐ)ܤ

On	the	other	hand,	using	Hölder’s	inequality,	if	q	≤	x	<	∞,	or	Jensen’s	inequality,	if	> 	,	ݔ

as	well	as	points	(iii)	and	(iv)	of	Proposition	(1.2.5),	we	get	

्ଶ ≤ (card ோܶௗ)(ଵ/ିଵ/ई)శ ቌ  ቛݑ|ቛई
ई

௧∈்ೃ

ቍ

ଵ/ई

	

																										≤ శ(ଵ/ିଵ/ई)(ଶܴି݀ିܯ) ቌ  ฮݑ|∩ஐ∩ത(௧,ெ	ோௗ)ฮई
ई

௧∈்ೃ

ቍ

ଵ/ई

	

≤ ଵܯ
ଵ/ई(ܯଶܴି݀ି)(ଵ/ିଵ/ई)శ‖ݑ|∩ஐ‖ई .	

Of	course,	if	ई = ∞,	we	simply	have	

्ଶ ≤ (card ோܶௗ)ଵ/ max௧∈்ೃ
ቛݑ|ቛஶ

≤ 	.|∩ஐ‖ஶݑ‖ଵ/(ଶܴି݀ିܯ)

Therefore,	from	(51),	(53)	and	the	two	preceding	relations,	we	deduce	that	
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,,ஐ|ݑ| ≤ |,,ℝݑ|(ିି/ା/݀)ܥ ଶܯ+
(ଵ/ିଵ/ई)శ݀/ఊି‖ݑ|‖ई),			(54)	

where	ߛ = max{ݍ	, ई}	and	ܥ	is	a	constant	that	depends	on	ߠ	, ݊, ,	ݎ , 	result	The	ई.	and	ݍ

then	follows	from	Proposition	(1.2.6).	

Case	II:	 ≤ ݍ = ∞.	

We	keep	the	notations	in	Case	I.	A	similar	reasoning	now	yields	

,,ஐ|ݑ| ≤ ⋃,|,ஶݑ| ത(௧,ெ	ோௗ)∈ೃ
= max

௧∈்ೃ
ோௗ)	|,ஶ,ത(௧,ெݑ| ≤ ଵ(݀ି/्ଵି݀ܥ +्ଶ),	

Where	ܥ	is	a	constant	that	depends	on	ߠ	, ݊, ,	ݎ , ݍ = ∞	and	ई,	

्ଵ = max௧∈்ೃ|ݑ|,,ത(௧,ெ	ோௗ))			and		्ଶ = max௧∈்ೃ ቛݑ|ቛई
	

If	 < ∞,	it	is	clear	that	(53)	still	holds,	which	leads	again	to	(53).	This	relation	directly	

holds	 if	 = ∞.	Likewise,	we	can	 immediately	check	that	्ଶ |‖ईݑ‖	≥ 	 .	We	derive	the	

relation	

,ஶ,ஐ|ݑ| ≤ |,,ℝݑ|ିି/݀)ܥ + ݀ି‖ݑ|‖ई),	

from	where	we	obtain	(50)	by	Proposition	(1.2.6).	

	

Case	III:	 > 		.ݍ

On	 the	 one	 hand,	 by	 the	 two	 preceding	 cases,	 there	 exist	 two	 positive	 constants	

ॗ(depending	 on	 ,	ߠ ,ߩ ݊	 and	 	 )	 and	 C	 (depending	 on	 Ω	, ݊, ,	ݎ 	 and	 ई)	 satisfying	 the	

following	 property:	 for	 any	 finite	 set	 ܣ ⊂ Ωഥ	 such	 that	 ݀ = ,ܣ)ߜ Ωഥ) ≤ ॗand	 for	 any	

ݑ ∈ ܹ,(Ω),	we	have	

∀݈ = 0,… , ,⌊ݎ⌋ ,,ஐ|ݑ| ≤ |,,ஐݑ|ି݀)ܥ + ݀/ఊି‖ݑ|‖ई),	

where	ߛ = max{	, ई	}.	On	the	other	hand,	it	is	clear	that,	by	(32),	

∀݈ = 0,… , ,⌊ݎ⌋ ,,ஐ|ݑ| ≤	 (meas	Ω)ଵ/	ିଵ/		|ݑ|	,,Ω	.	

Thus,	in	this	case,	the	theorem	results	from	the	last	two	relations.																																

Remark	(1.2.10)	[19]:	

The	choice	of	ई	 is	completely	open.	When	ई	=	∞,	we	ϐind	again,	under	weaker	

hypotheses,	the	result	obtained	by	Wendland	and	Rieger	[50].	As	we	shall	see	later,	the	

optimal	value	for	getting	estimates	for	smoothing	(݉, 	.2	=	ई	is	splines-(ݏ

Corollary	(1.2.11)	[19]:	

Suppose	that	, ,	ݍ 	and	ݎ ݈	are	deϐined	as	 in	Theorem	(1.2.9).	Then,	 there	exist	

two	positive	constants	ॗ 	(dependent	on	ߠ	, ,ߩ ݊	and	ݎ	)	and	ܥ	(dep-	endent	on	Ω	, ݊, ,	ݎ 	

and	ݍ	)	satisfying	the	following	property:	for	any	finite	set	ܣ ⊂ Ωഥ	(or	ܣ ⊂ Ω	if	 = 1	and	
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ݎ = ݊)	 such	 that	݀ = ,ܣ)ߜ Ωഥ) ≤ ॗ ,	 for	any	ݑ ∈ ܹ,(Ω)	 such	 that	 |ݑ = 0	and	 for	any	

݈ = 0, . . . , ⌈݈⌉ − 1,	we	have	

	,Ω	,	|ݑ| ≤ 	.		,Ω	,	|ݑ|)శ	ିଵ/	ି(ଵ/	ି	݀ܥ	

If	ݎ ∈ ℕ∗,	this	bound	also	holds	with	݈ = ݈when	either	 < ݍ < ∞	and	݈ ∈ ℕ,	or	

,) (ݍ 	= (1,∞),	or		 ≥ 		.ݍ	

Proof	:		

	It	sufϐices	to	apply	Theorem	(1.2.9).Let	݉	and	ݏ	be,	respectively,	a	positive	integer	and	

a	real	number	such	that	

−݉ + 
ଶ
< ݏ < 

ଶ
																																																																												(55)	

We	write	ܪ෩௦	for	the	space	

෩௦ܪ = ቊݒ ∈ ܵᇱ: ොݒ ∈ ୪୭ୡଵܮ (ℝ),			න ଶ|(ߦ)ොݒ|ଶ௦|ߦ| < ∞
ℝ

ቋ,	

where	ܵᇱis	the	space	of	tempered	distributions	in	ℝand	ݒො	stands	for	the	Fourier	

transform	of	ݒ.	Then,	we	denote	by	ܺ,௦		the	Beppo-Levi	space	

ܺ,௦ = ݒ ∈ ߙ∀	′ࣞ ∈ ℕ	, |ߙ| = ݉, ߲ఈݒ ∈ 	,		෩௦ܪ

ࣞ′being	the	space	of	distributions	in	ℝ .	Endowed	with	the	semi-norm	

,௦|ݒ| = ൭ 
݉!
!ߙ

|ఈ|ୀ

න ห(ߦ)ݒଶ௦ห߲ఈ|ߦ|
ଶ

ℝ
൱
ଵ/ଶ

,	

where	 !ߙ = !ଵߙ ··· 	!ߙ if	 ߙ = ,ଵߙ) . . . , (ߙ ∈ ℕ ,	 ܺ,௦	 	 is	 a	 semi-Hilbert	 space	 (cf.	

Duchon[10],	where	ܺ,௦	 is	denoted	by	ିܦଵܪ෩௦(ℝ)).	 In	 fact,	ܺ,௦	 	 can	be	handled	as	a	

Hilbert	 space	 thanks	 to	 the	 following	 result:	 for	 any	 bounded	 domain	 Ω∗ ⊂ ℝ	 ,	 the	

mapping	

‖∙‖,௦
Ω∗ : ݒ ∈ ܺ,௦ ↦ ൫‖ݒ‖,ଶ,Ω∗

ଶ + ,௦|ݒ|
ଶ ൯ଵ/ଶ																														(56)	

is	a	Hilbertian	norm	on	ܺ,௦		whose	topology	is	independent	of		Ω∗	(cf.	[22]).	From	now	

on,	 we	 shall	 assume	 that	 ܺ,௦is	 endowed	 with	 a	 norm	 ‖∙‖,௦,	 without	 making	 any	

particular	 reference	 to	 a	which	we	 shall	 simply	write	 	 ‖∙‖,௦	 particular	 open	 set	 	 Ω∗	

(except	in	Proposition	1.2.12).	

Once	 equipped	with	 the	 norm	 	 ‖∙‖,௦	 ,	 the	 space	 ܺ,௦	 enjoys	 the	 following	 property	

(cf.[22]).For	 any	 bounded	 domain	 Ω ⊂ ℝwith	 a	 Lipschitz-continuous	 boundary,	 the	

operator	ܴΩ	of	restriction	to	Ω	is	linear	and	continuous	from	ܺ,௦	onto	ܹା௦,ଶ(Ω).	

As	shown	in	[3],	the	following	imbedding	also	holds:	
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ܺ,௦ ↪ 	(57)																																																																									(ℝ)ܥ

					We	conclude	this	subsection	with	a	generalization	of	an	extension	theorem	by	

Duchon	(cf.	[30,	Lemma	3.1]).	

Proposition	(1.2.12):	

Suppose	 that	 (55)	 holds.	 Let	 Ω	 be	 a	 bounded	 domain	 in	ℝ	 with	 a	 Lipschitz-

continuous	 boundary.	 Then,	 there	 exists	 a	 linear	 continuous	 operatorो:ܹା௦,ଶ(Ω) →

ܺ,௦		such	that	

∀݂ ∈ ܹା௦,ଶ(Ω), ो݂|Ω = ݂.	

Moreover,	if	ݏ	 ≤ 	0,	then	there	exists	a	constant	ܥ	 > 	0	such	that	

∀݂ ∈ ܹା௦,ଶ(Ω), |ो݂|,௦ ≤ 	(58)																																			ା௦,ଶ,Ω|݂|ܥ

Proof:	

Since	 we	 can	 freely	 choose	 the	 open	 set	 Ω∗	 to	 deϐine	 by	 (56)	 the	 norm	

‖∙‖,௦ = ‖∙‖,௦
Ω∗ 	 ,	we	take	Ω∗ = Ω	.	We	denote	by	 ((	·	,·	)),௦	and	 (	·	,·	),௦	 ,	 respectively,	

the	scalar	product	and	the	scalar	semi-product	associated	with	the	norm‖∙‖,௦	and	the	

semi-norm		|∙|,௦		.	

For	any		݂ ∈ ܹା௦,ଶ(Ω),	let	 ෩ࣥ	݂ = ݒ} ∈ ܺ,௦	|	ݒ|Ω = ݂}.	Since		‖∙‖,௦
ଶ 					and	|∙|,௦

ଶ 		

differ	only	in	a	constant	on	 ෩ࣥ	and	this	set	is	non-empty,	convex	and	closed	in	ܺ,௦ 	,	by	

the	Orthogonal	Projection	Theorem,	 there	exists	a	unique	element	ो݂ ∈ ෩ࣥof	minimal	

semi-norm	|∙|,௦		in	 ෩ࣥ	,	which	can	be	equivalently	characterized	by	the	relation	

ो݂ ∈ ෩ࣥ	and,	all	ݓ ∈ ෩ࣥ,	(ो݂,ݓ),௦ = 0,																																														(59)	

where	 ෩ࣥ = ݒ} ∈ ܺ,௦	|	ݒ|Ω = 0	}.	 	 In	 this	 way,	 we	 have	 defined	 an	 operator	

:ܹା௦,ଶ(Ω) → ܺ,௦	,	whose	linearity	follows	from	(59)	

Now,	let	us	see	that	P	is	continuous.	Let	( ݂)∈ℕ ⊂ ܹା௦,ଶ(Ω)	be	any	sequence	such	that	

∃݂ ∈ ܹା௦,ଶ(Ω), ݂ → ݂	inܹା௦,ଶ	(Ω	),																																																	(60)	

ݑ∃ ∈ ܺ,௦	, ो ݂ → 	(61)																																																																							.	inܺ,௦	ݑ	

For	any	∈ ෩ࣥ	,	it	follows	from	(59)	that,	for	any	݆ ∈ ℕ,	((ो ݂ 	, ,௦((ݓ = 	0,	which	implies,	

together	 with	 (61),	 that	 ,ݑ) ,௦(ݓ = 0.	 Likewise,	 by	 (56)	 and	 (59),	 we	 have	 ݂ =

ो ݂|Ω 	→ =	that	deduce	we	(60),	and	fact	this	From	ଶ(Ω).ܮ	݊݅		Ω|ݑ 	belongs	ݑ	,is	that	,	Ω|ݑ

to	 ࣥ	 .	 By	 (59),	 we	 conclude	 that	 = ो݂	 .	 Consequently,	 the	 graph	 of	 ोis	 closed	 in	

ܹା௦,ଶ(Ω) × ܺ,௦	.	By	the	Closed	Graph	Theorem,	the	operator	ो	is	continuous.	
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Let	 us	 finally	 suppose	 that	 	ݏ ≤ 	0	 and	 prove	 (58).	 Let	 ݇ = ⌈݉ + ⌈ݏ − 1.	 Since	

݇ ≤ ݉ − 1,	for	any	߰ ∈ ܲ(Ω),	we	have	ो߰	 = 	assigns	that	operator	the	is	ܧ	where	,	߰	ܧ	

to	any	polynomial	function	over	Ω	the	same	polynomial	function	over	ℝ .	Thus,	since	ो	

is	linear	and	continuous,	for	any	݂ ∈ ܹା௦,ଶ(Ω),	we	have	

∀߰ ∈ ܲ(Ω), |ो݂|,௦ = |ो݂ − ,௦|	߰	ܧ =	 |ो(݂ − ߰)|,௦	

																																																≤ 		 ‖ो(݂ − ߰)‖,௦ ≤ ݂‖ܥ − ߰‖	ା௦,ଶ,Ω	,	

with	C	independent	of		݂		and	߰	.	The	result	then	follows	from	(39).																												

Assume	 that	 (55)	 holds.	 Given	 an	 ordered,	 finite	 subset	 A	 of	 ℝand	 a	 vector	

= ∈(ߚ) ∈ ℝୡୟ୰ୢ		,	we	call	interpolating	(݉, 	,solution	any	ߚ	and	ܣ	to	relative	spline-(ݏ

if	any	exists,	of	the	problem:	find	݂A	such	that	

݂ ∈ ࣥ,ఉ 					and						|݂|,௦ = inf௩∈ࣥಲ,ഁ
	(62)																													,௦,|ݒ|

Where	 	 ࣥ,ఉ = ݒ} ∈ ܺ,௦|ݒ| = 	,given	Likewise,	.{ߚ in	addition,	a	positive	real	number		

,݉)	smoothing	call	we	,ߝ ,ܣ	to	relative	spline-(ݏ 	the	of	exists,	any	if	solution,	any	ߝ	and	ߚ

problem	:	find		 ఌ݂ 	such	that	

ఌ݂
 ∈ ܺ,௦	and	ࣤ,ఉ,ఌ( ఌ݂

) = inf௩∈,ೞ ࣤ,ఉ,ఌ(ݒ)																																											(63)	

where	the	functional		ࣤ,ఉ,ఌ ∶ 	 ܺ,௦ → 	ℝ	is	given	by	

ࣤ,ఉ,ఌ(ݒ) = 	∑ (ܽ)ݒ| − |ଶߚ + ,௦|ݒ|ߝ
ଶ

∈ .	

We	observe	that	 ࣥ,ఉ	and	ࣤ,ఉ,ఌ 		are	well	deϐined	thanks	to	relation	(59).	

We	 recall	 some	 relevant	 facts	 about	 both	 kinds	 of	 (݉, 	splines-(ݏ (cf.,	 for	 example,	

Duchon	 [29]	 or	 [22]).	 If	ܣ	 contains	 a	 ܲିଵunisolvent	 subset,	 problems	 (62)	 and	 (63)	

have	unique	 solutions	݂ 	 and	 ఌ݂ 	 	 ,	 respectively.	Both	min-	 imization	problems	admit	

equivalent	variational	formulations.	Therefore,	problem	(62)	is	equivalent	to	

݂ ∈ ࣥ,ఉand, for	all	ݓ	 ∈ ࣥ,	, (	݂ 	, ,௦(ݓ = 	0,																										(64)	

with	 ࣥ, = 	 ݒ	} ∈ ܺ,௦	|	ݒ| = 0	},	while	problem	(63)	is	equivalent	to	

ఌ݂
 ∈ ܺ,௦	and	,	for	allݒ ∈ ܺ,௦	,	∑ ఌ݂

(ܽ)ݒ(ܽ) + )ߝ ఌ݂
 , ,௦(ݒ =∈ ∑ ∈.(ܽ)ݒߚ 															

(65)	

It	follows	from	(65)	and	(66)	that	݂ 	and	 ఌ݂ 	belong	to	the	space	 ܵ = ݒ} ∈ ܺ,௦		|	∀ݓ ∈

ࣥ,	, ,ݒ) ,௦(ݓ 	= 0	},	 called	 space	 of	 (݉, 	spline-(ݏ functions	 relative	 to	 	.ܣ It	 is	 well	

known	that	every	element	ݒ	of	 ܵcan	be	written	in	a	unique	way	in	the	form	
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(	ݔ)ݒ = 	ߣ	߮(|ݔ − ܽ|) + ,(	ݔ)߰
∈

	

where	߮	is	the	conditionally	positive	definite	basis	function	

(ߩ)߮ = ቊ (−1)
⌈௩⌉ߩଶ௩ ݒ	݂݅																,		 ≠ ℕ

(−1)௩ାଵߩଶ௩ logߩ ݒ		݂݅							,	 ∈ ℕ
�	

with	ߥ = ݉ + ݏ − ݊/2,	 the	 function	߰	belongs	 to	 ܲିଵ	 ,	 and	 the	 coefficients	 	ߣ satisfy	

the	vanishing	moment	condition	

ݒ∀ ∈ ܲିଵ 	,			 (ܽ)ݒߣ
∈

	= 	0.	

We	recall	that	 ܵ ⊂ ,݉)	popular	most	the	that	remark	finally	We	ଵ(ℝ).ି⌈	ଶఔ⌉ܥ 	splines	-(ݏ

are	 those	 corresponding	 to	 the	 case	 		ݏ = 	0,	 also	 known	 in	 the	 literature	 as	

polyharmonic,	 surface	 or	 thin	 plate	 splines,	 as	 well	 as	 ॰	 -splines	 over	 ℝ .	 These	

splines	 belong	 to	 ܥ 	ଶିଵି(ℝ).	 For	 ݏ = (݊ − 1)/2,	 one	 gets	 the	 pseudo-polynomial	

splines,	which	belong	to	ܥ 	ଶିଶ(ℝ).	

Throughout	 this	 section,	 we	 denote	 by	 Ω	 a	 bounded	 domain	 in	 ℝwith	 a	

Lipschitz-	continuous	boundary.	We	start	with	an	auxiliary	result	and	then	we	establish	

our	main	result	on	error	estimates	for	interpolating	(݉, 	.splines-(ݏ

Lemma	(1.2.13)	[19]:	

Suppose	that	(55)	holds	and	let	= dim ܲିଵ	.	Then,	there	exists	a	constant	ߟ > 0	

verifying	the	following	property:	for	any	finite	set	ܣ ⊂ Ωഥ	such	that	)ߜ	ܣ, Ωഥ) 	≤ 	there	,ߟ	

exists	a	 ܲିଵ-unisolvent	ܯ-tuple	ܽ ∈ 	satisfying	ैܣ

	ݒ∀ ∈ 	ܺ,௦	, ,௦	‖ݒ‖ଵܥ 	≤ 	 ,,௦[[ݒ]] 		≤ 	,,௦	‖ݒ‖ଶܥ	

where		‖∙‖	,௦		is	the	norm	given	in	(56),	[[∙]],,௦ 		is	the	norm	defined	by	

	ݒ∀ ∈ 	ܺ,௦	, ,,௦[[ݒ] = ൫‖ݒ|‖ଶଶ +	 ,௦|ݒ|
ଶ ൯ଵ/ଶ					,	

And		ܥଵ	and	ܥଶ	are	positive	constants	independent	of	ܣ	and	ݒ.	

Proof:	

Cf.	[22].	

Theorem	(1.1.14)	[19]:	

Suppose	that	(55)	holds	and	let	

ॗ∗ 	= 	min{ߟ, ॗା௦	}																																																				(66)	

where	ߟ	and	ॗା௦ 	are	the	constants	provided	by	Lemma	(1.2.13)	and	Theorem	(1.2.9)	

(applied	with	ݎ = ݉ + 	:have	we	Then,	respectively.	,(ݏ
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For	any	finite	set	ܣ ⊂ Ωഥ	such	that	)ߜ	ܣ, Ωഥ) 	≤ 	 ॗ∗	and	for	any	∈ ܹା௦,ଶ(Ω	)	,	there	exists	

a	unique	interpolating	(݉, 	.		(݂(ܽ))∈	and	ܣ	to	relative		݂	spline-(ݏ

Let	ݍ ∈ [1,∞]	and	݈ = ݉ + ݏ − ݊(1/2 − 	constants	positive	two	exist	there	Then,	ା.(ݍ/1

	ଵܥ 	 and	 	ଶܥ 	 satisfying,	 for	 any	 finite	 set	 ܣ ⊂ Ωഥ	 such	 that	 ݀ = ,ܣ	)ߜ Ωഥ) 	≤ 	 ॗ∗ ,	 for	 any	

݂ ∈ ܹା௦,ଶ(Ω	)	and	for	all	݈	 = 	0, . . ., ݈ − 1,	

|݂ − ݂|,,Ω ≤ ݂|ଵ݀ା௦ିି(ଵ/ଶିଵ/)శܥ − ݂|ା௦,ଶ,Ω	

		≤ 	(67)																																								ଶ݀ା௦ିି(ଵ/ଶିଵ/)శ‖݂‖ା௦,ଶ,Ω,ܥ

where			‖݂‖ା௦,ଶ,Ω,		can	be	replaced	by	|݂|ା௦,ଶ,Ω	if	ݏ	 ≤ 	0.	These	bounds	also	hold	with	

݈ = ݈		if	݉ + ݏ ∈ ℕ∗ , ݈ ∈ ℕ	and	ݍ < ∞.	

Proof	:		

Let	 	 	ܣ be	 any	 finite	 subset	 of	 Ω	 	 such	 that	 ݀ = ,ܣ	)ߜ Ωഥ) 	≤ 	 ॗ∗	 and	 let	 ݂ ∈

ܹା௦,ଶ(Ω	).	

(i)	 It	 follows	 from	Lemma	6.1	 that	ैܣcontains	 a	 ܲିଵ	 -unisolvent	ܯ-tuple.	 	 In	 other	

words,	ܣ	contains	a	 ܲିଵ	-unisolvent	subset	and,	consequently,	as	mentioned,	f	A	exists	

and	is	unique.	

(ii)	We	first	observe	that,	݂belongs	to	ܹା௦,ଶ(Ω	).	Applying	Theorem	(1.2.9)	(or,	even	

simpler,	 Corollary	 (1.2.11))	 with	 ݎ = ݉ + 	,ݏ  = 2	 and	 ݑ = ݂ − ݂ ,	 we	 get	 the	 first	

inequality	 in	 (67).	 Let	 us	 prove	 the	 second	one.	 By	 	 Proposition	 (1.2.12)	 and	 Lemma	

(1.2.13),	we	have	

|݂ − ݂|,,Ω ≤ ଵ‖ो݂ܥ − ݂‖,௦ ≤ ଶ⟦ो݂ܥ − ݂⟧,,௦,	

with	 	ଵandܥ 	ଶindependentܥ of	 	 ݂	 	 and	 	 	.ܣ Since	 	 ݂| = ݂| = ो݂|	 ,	 we	 get	 ⟦ो݂ −

݂⟧,,௦ = |݂ − ݂|,௦	.		Likewise,	from	(64),		we		derive		that	|ो݂ − ݂|,௦ 			≤ 	 |ो݂	|,௦	

.	Thus,	we	get	|݂ − ݂|ା,௦,ଶ,ஐ 	≤ ܿଶ	|ो݂	|,௦	.	Inserting	this	bound	in	(67)	and	applying	

Proposition	(1.2.12),	we	obtain	the	result.																									

We	 ϐinish	 with	 a	 generalization	 of	 the	 error	 estimates	 given	 in	 [46]	 and	 [22,	

Corollary	II-7.1].	To	state	it,	we	may	consider,	without	loss	of	generality,	that	any	set	ܣ	

in	Theorem	(1.2.14)	is,	in	fact,	the	generic	element	ܣௗ 	of	a	family	of	subsets	of	Ωഥ	.	More	

precisely,	we	 suppose	 that	 	॰	is	 a	 subset	of	 (0, ॗ∗],	with	ॗ∗given	 ,such	 that	0 ∈ ॰ഥ ,	and	

݀	any	for	that,	such	Ωഥ	of	subsets	finite	of	family	any	is			ௗ∈॰(ௗܣ) ∈ ॰,		݀ = ௗܣ)ߜ , Ωഥ).	

	

Corollary	(1.2.15)	[19]:	
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Suppose	that	(55),	(66)	and	(68)	hold.	Let	ݍ ∈ [1,∞]	and	݈ = ݉ + ݏ − 	݊(1/2 −

݂	any	for	Then,	ା.(	ݍ/1 ∈ ܹା௦,ଶ(Ω	)	and	for	all	݈ = 0, . . ., ⌈݈⌉ − 	1,	we	have	

				|݂ − ݂|	,,Ω = ,		)శ൯	–(ଵ/ଶିଵ/	൫݀ା௦ି		 ݀	 → 	0																																

Where,	for	any	݀ ∈ ॰,	݂denotes	the	interpolating	(݉, 	ௗandܣ	to	relative	spline-(ݏ

(݂(ܽ))∈ .	This	error	estimate	also	holds	with	݈ = ݈if	݉ + ݏ ∈ ℕ∗,	݈ ∈ ℕ	and	ݍ	 < 	∞.	

In	addition,	we	have	

|݂ − ݂|ା௦,ଶ,Ω = ,		(1)		 ݀	 → 	0.	

Proof:	

For	 any	 ݂ ∈ ܹା௦,ଶ(Ω	),	 it	 directly	 follows	 from	 (57)	 and	 [22]	 (see	 also	 [29])	

that	limௗ	→ ቛ݂ − ݂ቛ
ା௦,ଶ,Ω

= 	0.	This	relation	and	Theorem	(1.2.14)	yield	the	result.	

Remark	(1.2.16)	[19]:	

Results	 like	 Theorem	 (1.2.14)	 and	 Corollary	 (1.2.15)	 are	 not	 new	 in	 the	

literature.	Similar	results,	for	particular	cases	of	the	parameters	ݍ	and	ݏ,	can	be	found,	

for	example,	 in	Duchon	[30]	(case	ݏ	 = 	0	and	ݍ	 ≥ 	2),	López	de	Silanes	and	Arcangéli	

[46]	(case	q	=	2),	Wu	and	Schaback	[51]	(case	q	=	∞),	Light	and	Wayne	[35]	(case	s	=	

0),	Johnson	[32]	(case	ݏ	 = 	0),	and	Narcowich	et	al.	[40]	(case	ݏ	 = 	0).	

Remark	(1.2.17)	[19]:	

The	ܮ	-approximation	order	provided	by	Corollary	(1.2.15)	is	not	optimal	in	all	

cases.	For	(݉, 0)-splines,	Johnson	(cf.	[33]	and	references	therein)	has	proved	that	

|݂ − ݂|	,,Ω = 	ܱ	൫݀ାଵ/൯		, ݀	 → 	0	

under	the	following	conditions:	Ω	has	the	uniform	ܥ 	ଶ	-regularity	and	݂	belongs	to	the	

Besov	space	ܤଶ,
ାଵ/	,	with	1	 ≤ 	ݍ	 ≤ 	2.	

	 Let	Ω	be	a	bounded	domain	in	ℝwith	a	Lipschitz-continuous	boundary.	We	first	

establish,	for	smoothing	(݉, 	.(1.2.14)	Theorem	to	analogous	result	a	splines,-(ݏ

Theorem	(1.2.18)	[19]:	

Suppose	that	(55)	holds	and	let	ॗ∗	be	the	constant	given	by	(67).	Then,	we	have:	

(i)			For	any	finite	set	ܣ ⊂ Ωഥ	such	that	ߜ(ܣ,Ωഥ) 	≤ ॗ∗ ,	for	any		݂ ∈ ܹା௦,ଶ(Ω	)	and	for	any	

	ߝ > 	0,	there	exists	a	unique	smoothing	(݉, 	spline-(ݏ ఌ݂ 	relative	to	ܣ,	(݂(ܽ))ୟ∈	and	ߝ.	

(ii)			Let	ݍ ∈ [1,∞],		ई ∈ 	 [2,∞],	݈ = ݉ + ݏ − ݊(1/2 − ߛ	and	ା(ݍ/1 = ,	ݍ}ݔܽ݉ ई}.	Then,	

there	exist	two	positive		constants	ܥଵ	and	ܥଶsatisfying,	for	any	finite	set	ܣ ⊂ Ωഥ	such	that	



46 
 

(Ωഥ,ܣ)ߜ 	≤ ॗ∗,	for	any	݂ ∈ ܹା௦,ଶ(Ω	),	for	any	ߝ	 > 	0,	and	for	all	݈	 = 	0, . . ., ⌈݈⌉ − 	1,	

|݂ − ఌ݂
|,,Ω ≤ ݂|ଵ൫݀ା௦ିି(ଵ/ଶିଵ/)శܥ − ఌ݂

|ା௦,ଶ,Ω + ݀/ఊିߝଵ/ଶ‖݂‖ା௦,ଶ,Ω,൯											(68)	

and,	whenever	݀	 ≤ 	1,	

|݂ − ఌ݂
|,,Ω ≤ ݂|ଶ൫݀ା௦ିି(ଵ/ଶିଵ/)శܥ − ఌ݂

|ା௦,ଶ,Ω + ݀/ఊିߝଵ/ଶ൯‖݂‖ା௦,ଶ,Ω,									(69)	

where			‖݂‖ା௦,ଶ,Ω		can	be	replaced	by	|݂|ା௦,ଶ,Ω		if	ݏ	 ≤ 	0.	Both	bounds	also	hold	with	

݈ = ݈	if	݉ + 	ݏ ∈ ℕ∗ , ݈ ∈ ℕ	and	ݍ < ∞.	

Proof	:	

Let	A	be	any	finite	set	in	Ωഥ	such	that	݀ = ,ܣ)ߜ Ωഥ) ≤ ॗ∗ ,	let	݂ ∈ ܹ 	୫ାୱ,ଶ(Ω)	and	let	

ߝ > 0.	

(i)	By	Lemma	(1.2.13),	the	set	ܣ	contains	a	 ܲିଵ	-unisolvent	subset	and	so	 ఌ݂ 	A	exists	

and	is	unique.	

(ii)	We	 ϐirst	 remark	 that,	by	 (64),	 ఌ݂ 	 belongs	 to	݂ ∈ ܹ 	୫ାୱ,ଶ(Ω).	Now,	 it	 follows	 from	

Proposition	(1.2.12)	and	(64),	taking	ߚ(݂(ܽ))∈		and	= ो݂	,	that	

‖(݂ − ఌ݂
)|‖ଶଶߝ| ఌ݂|,௦

ଶ ≤ |ो݂|,௦
ଶ ,	

from	which	we	deduce	that	

| ఌ݂|,௦
ଶ ≤ |ो݂|,௦

ଶ 																																																							(70)	

and,	together	with	Jensen’s	inequality	since	ई ≥ 2,	that	

‖(݂ − ఌ݂
)|‖ई ≤ ‖(݂ − ఌ݂

)|‖ଶ ≤ ଵ/ଶ|ो݂|,௦ߝ
ଶ ,																												(71)	

This	last	bound,	Proposition	(1.2.11)	and	Theorem	(1.2.9)	(applied	with	ݎ = ݉ + ,ݏ  =

2	and	ݑ = ݂ − ఌ݂
)	yield	 (68).	To	 complete	 the	proof,	we	observe	 that,	by	Proposition	

(1.2.12)	and	Lemma	(1.2.13),	we	have	

|݂ − ఌ݂
|ା௦,ଶ,Ω ≤ ܿଵ‖ो݂ − ఌ݂

‖,௦ ≤ ܿଶ⟦ो݂ − ఌ݂
⟧,,௦																	(72)	

with	ܿଵ	and	ܿଶindependent	of		݂	, ݂|		As	.ߝ	and	ܣ = ो݂|	,	if	follows	from	(70),	(71)	and	

(72)	that	

|݂ − ఌ݂
|ା௦,ଶ,ஐ ≤ 2ܿଶ(1 + 	(73)																																			ଵ/ଶ)|ो݂|,௦.ߝ

Since	+ݏ − ݊(1/2− ା(ݍ/1 > 	݀	whenever	,	ߛ/݊ ≤ 	1,	we	finally	derive	(69)	from	(68),	

(73)	and	Proposition	(1.2.12).																																																																																					

Remark	(1.2.19)	[19]:	

Theorem	(1.2.18)	 can	 be	 considered	 as	 a	 generalization	 of	previous	 results	 by	

López	 de	 Silanes	 and	Arcangéli	 [46]	 (case	 s	 arbitrary,	 ݍ = ई = 2)	 and	Wendland	 and	
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Rieger	[50]	(case	ݏ = 0, ई	arbitrary,	ݍ = 	∞).	

As	 in	Sect.	6,	we	now	turn	our	attention	to	error	estimates	stated	 in	terms	of	a	

family	 	ௗ∈॰(ௗܣ) of	 subsets	 of	 Ωഥ	 satisfying	 (68).	 We	 need,	 in	 addition,	 two	 main	

hypotheses	The	first	one	concerns	the	smoothing	parameter	ߝ.	We	assume	that	ߝ = 	(݀)ߝ

is	a	strictly	positive	function	of	݀	verifying	the	relation	

	ߝ = 	݀				,(ି݀)	 → 	0.																																																							(74)		

Note	that	assumption	(74),	quite	reasonable	from	a	practical	point	of	view,	is	not	really	

a	restricting	condition,	since	ߝ	has	not	to	go	to	0	as	݀	does	and	may	even	be	unbounded.	

This	 last	point	 is	 very	 important.	On	 the	one	hand,	 the	 convergence	 theorem	(1.2.18)	

(see	below)	holds	for	unbounded	ߝ’s.	On	the	other	hand	,	 in	the	case	of	noisy	data,	the	

convergence	requires	that	ε	(suitably)	increases	to	∞.	

Later,	we	shall	also	make	use	of	the	condition	

ܰ = ܱ(݀ି),				݀	 → 	0,																																																					(75)	

where	ܰ	 =	card	ܣௗ 	(to	simplify,	we	write	ܰ	instead	of	ܰ(݀)).	

Remark	(1.2.20)	[19]:	

Let	 us	 explain	 in	 some	detail	 the	meaning	 of	 hypothesis	 (75).	 From	 (68),	 it	 is	

easy	to	check	that	

ܥ∃ > 0, ∀݀	 ∈ ॰, ܰ݀ ≥ 	(76)																																																					.ܥ	

Hence,	hypothesis	(76)	implies	that,	as	݀	 → 	0,ܰ	tends	to	∞	at	the	same	rate	as	݀ି	.	So,	

hypothesis	 (76)	 means	 that,	 asymptotically,	 the	 points	 of	 ௗܣ 	 should	 be	 regularly	

distributed	in		Ωഥ	.	

			Consider	an	example.	Let	Ω	be	the	rectangle	(0, 2) × (0, 1)	in	ℝଶ.	First,	for	anyߥ ∈ ℕ∗,	

subdivide	Ω	into	2ߥଶ		equal	squares	and	define	ܣௗas	the	set	made	up	of	2ߥଶpoints,	such	

that	 each	 square	 contains	 just	one	of	 these	points.	One	easily	verifies	 that	 (2√ߥ)/1 ≤

݀ ≤ 	.ߥ/2√ So	ܰ݀ଶ ≤ 4,	 and	 (75)	 is	 satisfied.	Next,	 subdivide	Ω	 as	 follows:	 the	 square	

(0,1) × (0,1)	 is	 subdivided	 into	ߥଶequal	 subsquares,	 and	 the	 square	 (1,2) × (0,1)	 into	

	point	one	just	containing	square	sub	each	previously,	ௗasܣ	Define	subsquares.	ସequalߥ

of	 the	set	ܣௗ .	Here,	we	have	ܰ = ଶߥ + 	݀	ସwhereasߥ is	unchanged	as	 soon	as	ߥ > 1,	so	

ܰ݀ଶ ≥	 (1/2)(1 + 	,estimates	error	new	establishing	satisfied.Before	not	is	(75)	and	ଶ)ߥ

we	recall	a	convergence	result.	

Theorem	(1.2.21)	[19]:	

	Suppose	that	(55),	(69)	and	(76)	hold.	Then,	we	have	
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∀݂ ∈ ܹା௦,ଶ(Ω), lim
ௗ→

ቛ ఌ݂
 − ो݂ቛ

,௦
= 0	

where,	for	any	݀ ∈ ॰,		 ఌ݂
 	denotes	the	smoothing	(݉, 		to	relative	spline-(ݏ

ௗܣ , (݂(ܽ))∈ 		and	ߝ.	

Proof:	

cf.	 [22]	 (see	 also	 [46]	 and	 [47]).	 The	 following	 theorem	 provides	 error	 estimates	 for	

smoothing	(݉, ݏ	when	[48]	Utreras	by	proved	previously	been	has	It	splines.-(ݏ = 0	and	

ݍ = 2.	

Theorem	(1.2.22)	[19]:	

	Suppose	that	(55),	(68),	(74)	and	(75)	hold,	and	assume	that	

ܥ∃ > 0, ߝ ≥ ,	ଶାଶ௦ି݀	ܥ ݀	 → 	0.																																											(77)	

Let	ݍ ∈ [1,∞)	and	let݈ = ݉ + ݏ − ݊(1/2− ା(ݍ/1 .	Then,	for	any	݂ ∈ ܹ 	୫ାୱ,ଶ(Ω)	and	for	

any	݈ = 0, . . . , ⌈݈⌉ − 1,	we	have	

ቚ݂ − ఌ݂
ቚ

,,ஐ
= 	݀				,()శ	ି(ଵ/ଶିଵ/	ା௦ିݐ)	ܱ	 → 	0,																										(78)	

where	= 	have	we	addition,	In	.	ଵ/(ଶାଶ௦)(ܰ/ߝ)

ቚ݂ − ఌ݂
ቚ

ା௦,ଶ,ஐ
= ݀								,(1) → 0.																																			(79)	

Remark	(1.2.23)	[19]:	

	From	(74)	and	(76),	it	is	readily	seen	that	

ܰ/ߝ = 	݀				,(1) → 	0.																																																							(80)		

Thus,	the	error	estimates	(78)	make	sense.	Let	us	point	out	that	the	convergence	result	

of	Theorem	(1.2.22)	does	not		need	ߝ	 → 	0.	

Proof	of	Theorem	(1.2.22):	

	Let		݂ ∈ ܹ୫ାୱ,ଶ(Ω).	It	follows		

lim
ௗ→

ቛ ఌ݂
 − ݂ቛ

ା௦,ଶ,ஐ
= 0																																																			(81)	

This	implies	(79).	Now,	let	݈ ∈ {0, . . . , ⌈݈⌉ − 1}	and	let	us	see	(78).	

				Let	ߣ = ݈ + ݊(1/2− ݉,[0	to	belonging	number	real	a	is	which	ା,(ݍ/1 + 	remark	We	.(ݏ

that	

ܹఒ,ଶ(Ω) ↪ ܹ,(Ω)																																																	(82)	

For	ݍ	 ≤ 	2,	 this	 imbedding	 is	 just	 a	 consequence	of	 (32).	For	ݍ > 2,	we	can	apply	 the	

relation	 (1,4,4,5)	 in	 Grisvard	 [31].	 By	 (82),	 there	 exists	 a	 positive	 constant	 	 ,	

independent	of	݂	and	݀	,	such	that	
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ቚ݂ − ఌ݂
ቚ

,,ஐ
≤ ቛ݂ − ఌ݂

ቛ
,,ஐ

	≤ ܥ ≤ ቛ݂ − ఌ݂
ቛ

ఒ,ଶ,ஐ
.	

Consequently,	in	order	to	establish	(78),	it	suffices	to	prove	that	

ቛ݂ − ఌ݂
ቛ

ఒ,ଶ,ஐ
= 	݀				,(ା௦ିఒݐ)	ܱ	 → 	0																												(83)	

with	= 	 	ଵ/(ଶାଶ௦)(ܰ/ߝ) .	The	case	ߣ = 0,	which	happens	 for	݈ = 0	and	ݍ ≤ 2,	 is	easy	to	

handle.	By	(69),	choosing	ई = 2,	and	(77),	it	is	immediately	checked	that	

ቚ݂ − ఌ݂
ቚ

ఒ,ଶ,ஐ
= 	ܱ	(݀/ଶ	ߝଵ/ଶ	),				݀	 → 	0.	

Thus,	taking	(75)	into	account,	we	get	

ቛ݂ − ఌ݂
ቛ

,ଶ,ஐ
= (	ଵ/ଶ(ܰ/ߝ))	ܱ	 	= 	݀				,(ା௦ݐ)	ܱ	 → 	0																													(84)	

which	is	just	(83)	for	ߣ	 = 	0.	

	 Let	us	finally	discuss	the	case	ߣ > 0.	From	Grisvard	[31],	there	exists	a	positive	

constant	ܭ		such	that,	for	any	ߙ > 0	small	enough	and	for	any	ݒ ∈ ܹ୫ାୱ,ଶ(Ω)	

ఒ,ଶ,ஐ‖ݒ‖ ≤ ା௦,ଶ,ஐ‖ݒ‖ߙ + 	(85)																																	,ଶ,ஐ.‖ݒ‖ఒ/(ା௦ିఒ)ିߙܭ

It	follows	from	(72)	and	(74)	that	ݐ → 0	as	݀ → 0.	Thus,	for	any	݀ ∈ ॰	small	enough,	we	

can	replace	ߙ	by	ݐା௦ିఒin	(85).	By	taking,	in	addition,	ݒ = ݂ − ఌ݂
 		,	for	any	݀ ∈ ॰	small	

enough,	we	obtain	

ቛ݂ − ఌ݂
ቛ

ఒ,ଶ,ஐ
≤ ା௦ିఒݐ ቛ݂ − ఌ݂

ቛ
ା௦,ଶ,ஐ

ఒିݐܭ+ ቛ݂ − ఌ݂
ቛ

,ଶ,ஐ.
	

This	relation,	together	with	(81)	and	(84),	implies	(83)	for	ߣ > 0.	The	proof	is	complete.					

Remark	(1.2.24)	[19]:	

		With	 the	 notations	 and	 under	 the	 hypotheses	 of	 Theorem	 (1.2.18),	 if	 one	 chooses	

ई = 2	(or	even	ई ≤ ݍ	if		ݍ > 2)	and	assumes	(67)	and	that	

ܥ∃ > 0, ߝ ≤ ,	ଶାଶ௦ି݀	ܥ ݀	 → 	0																																																			(86)	

it	is	then	obvious	that,	for	݈ = 0, . . . , ⌈݈⌉ − 1	(and	eventually	݈ = ݈	),	the	relation	(69)	

yields	the	error	estimate	

|	݂ − ఌ݂
 |	,	,Ω = 	ܱ	(݀ା௦ି	ି(ଵ/ଶିଵ/	)శ),				݀	 → 	0																					(87)	

In	 [50],	 under	 the	 more	 restrictive	 hypothesis	 	ߝ ≤ 	݀ଶିଶ(ଵ/ଶିଵ/	)శ ,	 Wendland	 and	

Rieger	obtained	(87)	for	ݏ	 = 	0	and	݈ < ݉ − ݊/2.	

				We	 point	 out	 that,	 except	 for	 ݍ = ∞,	 the	 estimate	 (87)	 is	 just	 a	 particular	 case	 of	

Theorem	 (1.2.22):by	 selecting	 	ߝ = 	ଶାଶ௦ି݀ܥ	 for	 some	 ܥ > 0	 (so	 (77)	 holds),	 the	
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relation	(78),	together	with	(76),	yields	(87).	

					Now,	 let	 us	 notice	 an	 important	 point.	 Clearly,	 (86)	 implies	 that	 	ߝ → 	0	 as	 ݀	 → 	0.	

When	 the	 data	 are	 exact,	 condition	 (86)	 is	 sufficient	 (but	 unnecessary,	 according	 to	

Remark	(1.2.23))	to	get	the	convergence	in		ܺ,௦	.	When	the	data	are	noisy,	the	situation	

is	 radically	 different.	 It	 can	 be	 checked	 that	 the	 deterministic	 convergence	 over	 Ω	

cannot	 generally	 be	 ensured	 in	 this	 case.	 In	 fact,	 this	 problem	 needs	 a	 stochastic	

approach	(cf.	 [23,	27,	28,	37,	43,	48,	49]).	We	shall	see	 in	Sect.	8.2	 that,	under	a	usual	

random	noise	hypothesis,	the	convergence	of	smoothing	ܦ	-splines	in	quadratic	mean	

over	ℝrequires	that	ε	must	grow	to	∞	as	݀	 → 	0	.Let	Ω	be	a	bounded	domain	in	ℝwith	

a	Lipschitz-continuous	boundary.	Assume	that	(55)	and	(67)	are	satisfied,	and,	for	any	

݀ ∈ ॰,	 let	 ௗߥ = ∈(ௗߥ) = ℝே 	 be	 any	 error	 vector	 (we	 recall	 that	 ܰ = cardܣௗ).	

Likewise,	let		be	a	given	function	in	ܹା௦,ଶ(Ω).	Then,	for	any	݀ ∈ ॰	and	for	any	ߝ	 > 	0,	

let	 ሚ݂ఌ
denote	the	smoothing	(݉, ௗܣ		to	relative	spline-(ݏ ,	 	 	(݂(ܽ) ௗ)∈ߥ	+ 	and	ߝ	and	

let	 	 ఌ݂
be	 the	 smoothing	 (݉, 	spline-(ݏ relative	 to	 ௗܣ ,	 	 	 (݂(ܽ))∈ 	 	 and	 	.ߝ Finally,	 let	

݁ఌௗ = ሚ݂ఌ
 − ఌ݂

 .	It	is	clear	that	݁ఌௗis	the	smoothing	(݉, ௗܣ	to	relative	spline-(ݏ ௗݒ	, 	and	ߝ,	

due	 to	 the	 linearity	 of	 the	 operator	 that	 assigns	 to	 any	ߚ ∈ ℝே 	 the	 smoothing	 (݉, -(ݏ

spline	relative	to	ܣௗ 	.ߝ	and	ߚ	,

We	assume	in	what	follows	that	ߝ	is	a	function	of		݀	.	

Let	us	point	out	a	necessary	 condition	 for	 the	deterministic	 convergence	over	 	Ω	 ,	 i.e.	
such	that	limୢ→ ቛfሚக

ౚ − fቛ
୫ାୱ,ଶ,Ω

= 0.	

Proposition	(1.2.25)	[19]:	

	Suppose	 that	 (55),	 (67)	 and	 (74)	 hold.	 Then,	 a	 necessary	 condition	 for	 the	

deterministic	convergence	over	Ω	is	that	

ݒ∀		 ∈ ܺ,௦, lim
ௗ→

1
ܰ  (ܽ)ݒௗݒ = 0.																																																										(88)

∈
	

Proof	For	any	݀ ∈ ॰,	it	is	clear	that	(64)	holds	with	ܣௗ ,	fሚக
ౚ 	and	݂(ܽ) ௗߥ	+ 	instead	of	ܣ,	f	

∋	any	for	Thus,	.	ߚ	and	ఌܣ ܺ,௦	,	we	have	
1
ܰ  ൬fሚக

ౚ(a) − f(a)൰ (ܽ)ݒ
∈

+
ߝ
ܰ ቀfሚக

ౚ , vቁ
,௦

=
1
ܰ  (ܽ)ݒௗݒ = 0.																											(89)

∈
	

The	convergence	over	Ω	,	together	the	imbedding	ܹ 	ା௦,ଶ(Ω) ↪ 	the	that	implies		(Ωഥ),ܥ

first	 term	 on	 the	 left-hand	 side	 of	 (89)	 tends	 to	 0	 when	 ݀	 → 	0.	 Likewise,	 the	

convergence	over	Ω	also	implies	that	



51 
 

ܥ∃		 > 0,ቛ ሚ݂ఌ
ቛ

ା௦,ଶ,Ω
≤ ݀				,		ܥ → 0.																																																			(90) 

Now,	 it	 is	 not	 difficult	 to	 see	 that,	 for	 any	 ݀ ∈ ॰,	 we	 have	 fሚக
ౚ = ोφ	,	 Where߮ =

fሚக
ౚ|Ωand	ो	is	the	operator	introduced	in	Proposition	(1.2.12).	From	the	continuity	of	ो	

and	(90),	we	deduce	that 

ܥ∃ > 0, ቚ ሚ݂ఌ
ቚ
ା௦

≤ ݀				,		ܥ → 0.	

Hence,	 taking	account	of	(74)	and	(76),	 the	second	term	on	the	 left-hand	side	of	(91)	

also	tends	to	0	as		݀	 → 	0.	The	result	follows.	

Of	course,	condition	(89)	is	verified	under	the	assumption	

lim
ௗ→

sup
∈

|ௗݒ| = 0.																																																																													(91)	

The	 deterministic	 convergence	 over	 Ω	 has	 even	 been	 proved	 (cf.	 [22])	 under	 an	

unrealistic	assumption	implying,	like	(91),	that	the	errors	on	the	data	decrease	to	0	as	

݀	 → 	0.	But	 (88)	 is	not	verified	 in	general.	Consider,	 for	example,	 the	 case	where	 the	

errors	are	such	that	

ߙ∃ > 0, ∀݀ ∈ ॰,∀ܽ	 ∈ ௗܣ 	, ௗݒ > 	,ߙ	

and	take	ݒ	 = 	1.	Then,	the	left-hand	side	of	(88)	is	greater	than	0.	So,	we	cannot	prove	

in	general	the	deterministic	convergence	over	Ω	for	noisy	data.	

On	 the	 contrary,	 (88),	 considered	 as	 a	 stochastic	 relation,	 makes	 sense	 under	

additional	 hypotheses.	 Assume	 the	 “random	noise	 hypothesis”	 for	 any	 ݀ ∈ ॰,	 ௗߥ 	 is	 a	

vector	of	 independent,	 identically	distributed	 	 random	 	variables,	with	null	mean	and	

the	same	positive	variance	ߟଶ	,	i.e.,	such	that	

∀ܽ, ܾ ∈ ௗܣ , (ௗݒ)ܧ = 0andܧ൫ݒௗݒௗ൯ = ൜ߟ
ଶ,											if	ܽ = ܾ,

0,								if	ܽ ≠ ܾ,						
�																															(92)	

where	ܧ	 denotes	 the	mathematical	 expectation.	Moreover,	 suppose	 that	 the	 family	 of	

data	sets	is	an	increasing	sequence	of	ordered	sets	ܣ 	,	with	݆ ∈ ℕ,	made	up	of	ܰ = ܰ(݆)	

points.	 Then,	 it	 follows	 straightforwardly	 from	 the	 strong	 Law	of	 Large	Numbers	 (cf.	

Bouleau	[25])	that	

ݒ∀ ∈ ܺ,௦, lim
→

1
ܰ  ݒ

ݒ(ܽ) = 0,
∈ೕ

	

Where	 ߥ	 = ߥ)
)	denotes	 the	 error	vector	on	 ܣ	 	 ,	 holds	almost	 surely.	Thus,	we	can	

hope	for	a	positive	conclusion	in	the	stochastic	case.	
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From	now	on,	we	restrict	our	study	to	the	case	of	smoothing	ܦ	-splines,	i.e.,	we	

suppose	that	ݏ = 0	(so	condition	(55)	is	just	the	inequality		> 
ଶ
	).	Moreover,	we	

formulate	two	additional	hypotheses.	

The	first	one	is	the	quasi-uniformity	condition	

ܥ∃ > 0, ∀݀ ∈ ॰, ݀	 ≤ 	(93)																																																								,(ௗܣ)ݍ	ܥ	

where	ݍ(ܣௗ) = ଵ
ଶ
min{	|ܽ	 − 	ܾ||	ܽ, ܾ ∈ ௗܣ , ܽ = ܾ	}	is	the	separation	radius	of	ܣௗ .	It	is	not	

difϐicult	to	see	that	(93)	implies	(75).	The	second	hypothesis	stands	as	follows:	

ߝ = ܰ/(ାଶ)߱(ܰ),		with	limே→ஶ߱(ܰ)	and	

߱(ܰ) = ܱ൫ܰଶ/(ାଶ)൯		, ܰ	 → 	∞.																																															(94)	

It	 is	 readily	 seen	 that	 (75)	 and	 (94)	 imply	 (74).	 So	 (84)	 and	 (94)	 imply	 (74).	 The	

following	theorem,	where		‖·‖,		denotes	the	norm	deϐined	by	(56)	and	ो	the	operator	

introduced	in	generalizes	results	by	Utreras	[48]	(see	also	Ragozin	[43]).	

Theorem	(1.2.26)	[19]:	

	Suppose	that	(55)	and	(67)	are	veriϐied	for	s	=	0,	and	that	(92),	(93),	and	(94)	hold.	

Then,	fሚக
ౚ 			converges	to	ो	in	quadratic	mean	over	ℝ ,	i.e.,	

ܧ ቛfሚக
ౚ −ो݂ቛ

,

ଶ
൨ = (1),							݀ → 0.																																																		(95)	

Moreover,	as		݀ → 0,	

ܧ ቚfሚக
ౚ − ݂ቚ

,ଶ,ஐ

ଶ
൨ = ܱ(1),																												

And,	for	any		݈ = 0, . . . ,݉ − 1,	

ܧ ቚfሚக
ౚ − ݂ቚ

,ଶ,ஐ

ଶ
൨ = ܱ൫ܰିଶ(ି)/(ାଶ)(߱(ܰ)(ି)/൯.							

Proof:	

	For	the	last	two	relations,	see	[37].	Now,	let	us	prove	(95).	From	Theorem	(1.2.21)	one	

has	limௗ→ ቛ க݂
ౚ −ो݂ቛ

,
= fሚக	Since	.(1)

ౚ = க݂
ౚ + eக

ౚ 	it	is	enough	to	prove	that	

ܧ ቛeக
ౚቛ

,

ଶ
൨ = ܱ(1),							݀ → 0.					

For	any	 	݀ ∈ ॰,	 the	equation	 (64)	 for	 the	 smoothing	 spline	eக
ౚ 	 ,	with	ݒ = eக

ౚ ,	 can	be	

written	as	

 ቀ݁ఌ
(ܽ)ቁ

ଶ

∈
+ ቚ݁ఌ

ቚ
,

ଶ
=  ௗ݁ఌݒ

(ܽ).
∈
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From	(94),	it	follows	that	ߝ = 	݀	as	(ܰ) → 0.	Then,	from	this	relation	and	the	relation	

(50)	of	[23],	we	derive	that	there	exists	a	constant	ܥ	 > 	0	such	that	
1
ܰܥ  ቀ݁ఌ

(ܽ)ቁ
ଶ

∈
+ ቚ݁ఌ

ቚ
,

ଶ
≤  ௗ݁ఌݒ

(ܽ)									݀ → 0.																						(96)
∈

	

where	ℛௗ	 	denotes	a	matrix,	depending	on	the	basis	interpolating	ܦ	-splines	relative	

to	 ௗܣ ,	 introduced	 by	 Utreras	 [48],	 and	 	௧(ௗݒ) 	 the	 transposed	 vector	 of	 ௗݒ 	 (for	more	

details	see	[23]).	Under	assumption	(93),	F.	Utreras	showed	that	

Tr(ℛௗ) = ,		/ଶ(ߝ/ܰ)ܱ ݀	 → 	0,	

Where	 	 Tr(ℛௗ)	 denotes	 the	 trace	 of	 the	matrix	 	 ℛௗ.	 Now,	 the	 left-hand	 side	 of	 (96)	

involves	a	norm	on		ܺ,	 ,	which	is	uniformly	equivalent	in	݀	to	the	norm		‖·‖,	(this	

result	can	be	deduced	from	[48]).	So,	there	exists	a	constant	ܥ > 0	such	that,	as	݀ → 0	

ܧ ቛ݁ఌ
ቛ

,

ଶ
൨ ≤ ܧᇱܥ 

1
ܰܥ  ൬݁ఌ

(ܽ)൰
ଶ

∈
+ ቚ݁ఌ

ቚ
,

ଶ
൩ ≤

ᇱܥ

ߝ ܧ
	.[(ௗݒ)௧ℛௗ(ௗݒ)]

Thus,	a	sufficient	condition	 for	the	convergence	 in	quadratic	mean	 in	ܺ,	 	of	e	݁ఌ
 	 is	

that	the	last	term	tends	to	0.	From	(92),	it	follows,	for	any	݀ ∈ ॰,	that	

[(ௗݒ)௧ℛௗ(ௗݒ)]ܧ = 	.ଶTr(ℛௗ)ߟ

Finally,	using	(94),	we	have	

ܧ ቛ݁ఌ
ቛ

,

ଶ
൨ = ܱ൫ߟଶ߱(ܰ)ି(ାଶ)/ଶ൯ = ܱ(1),							݀ → 0,	

and	the	result	follows.																																																																																																				

Remark	(1.2.27)	[19]:	

	Subject	to	additional	stronger	assumptions,	we	can	obtain	a	result	analogous	to	that	of	

Theorem	 (1.2.26),	 but	 valid	 almost	 surely.	We	 do	 not	 detail	 this	 point,	 for	which	we	

refer	to	Arcangéli	and	Ycart	[23].	

Remark	(1.2.28)	[19]:	

	It	is	readily	seen	that,	under	the	hypotheses	of	Theorem	(1.2.26),	for	any	݈ = 0, . . . , ݉ −

1,	we	have,	as	݀ → 0,	

ܧ ቚfሚக
ౚ − ݂ቚ

,ଶ,ஐ

ଶ
൨ = ܱ൫(ߝ/ܰ)(ି)/൯.							

So,	 as	 could	 have	 been	 conjectured,	 we	 get	 in	 Theorem	 (1.2.26),	 in	 the	 sense	 of	

mathematical	expectation,	the	same	estimations	as	in	Theorem	(1.2.22)	when	ݏ = 0	and	

ݍ = 2.	Now,	we	prove	our	final	result.	
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Proposition	(1.2.29)	[19]:	

	Suppose	that	(55)	and	(67)	are	verified	 for	 	 ݏ	 = 0,	 that	(92)	and	(93)	hold	and		 that	

ߝ ≤ ܰ/(ାଶ)	 .	 Then,	 fሚக
ౚ 	 does	 not	 converge	 to	ो݂	 in	 quadratic	mean	 over	 	 	ℝ ,	 	 as		

݀	 → 	0.	

Proof:	

We	refer	to	the	proof	in	[23].	The	proof	shows,	taking	ε	= ܰ/(ାଶ)	,	that	

lim
					ௗ→

inf ܧ ቚ݁ఌ
 ቚ
,

ଶ
൨ > 0.	

Consider	the	relation	(4.11)	in	this	section.	Of	course,	it	may	be	written	

ܧ ቚ݁ఌ
 ቚ
,

ଶ
൨ ≥ ଶߟ

ௗߤ(ܰ/1)

(1 + ௗ)ଶߤ(ܰ/ߝ)

ே

ୀଵ

,	

where	the	ߤௗ 	are	positive	numbers.	Clearly,	any	term	of	the	sum	is	a	decreasing	function	

of	ߝ.	So,	we	infer	that,	if		ε ≤ ܰ/(ାଶ)	,	i.e.,	if	

∀݀ ∈ ॰, (݀)ߝ ≤ (ܰ(݀))/(ାଶ)	,	

the	result	follows.	Notice	that	the	proposition	still	holds	if	the	preceding	relation	is	only	

valid	for	݀	small	enough.																																																																																							

Remark	(1.2.30)	[19]:	

	The	 results	 of	 Theorem	 (1.2.26)	 and	 Proposition	 (1.2.29)	 can	 be	 improved	 in	 the	

following	form.	Suppose	that	(55)	and	(67)	are	verified	for		ݏ = 0,	and	that	(74),	(92)	

and	(93)	hold.	Then,	 the	condition	 limௗ→ ܰߝ
ି 
శమ = ∞	is	necessary	and	sufficient	 for	

the	convergence	in	quadratic	mean	of		 ሚ݂ఌ
 			to		ो݂	,	when			݀ → 0	.	

				As	a	 conclusion	 from	 the	preceding	 results,	we	would	 like	 to	emphasize	 that,	 in	 the	

stochastic	case	of	data	perturbed	by	a	noise	verifying	the	random	noise	hypothesis	(92),	

no	 assumption	 implying	 that	 	ߝ goes	 to	 0	 or	 even	 remains	 bounded,	 as	 ݀ → 0,	 is	

acceptable.	

	

 


