Chapter 1
Scattered Zeroes Extensions of Bounds for Functions in Sobolev Spaces

We apply results to obtain estimates for continuous and discrete least squares surface fits
via radial basis functions (RBFs). These estimates include situations in which the target
function does not belong to the native space of the RBF.We then apply the Sobolev bound
to derive error estimates for interpolating and smoothing (m,s) —splines. In the case of
smoothing, noisy data as well as exact data are considered.

Sec (1.1):Applications to Radial Basis Functions Surface Fitting:

The problem of effectively representing an underlying function based on its values
sampled at finitely many distinct scattered sites X = {x;,...,xy} lying in a compact
region 1 € R" is important and arises in many applications—neural net- works,
computer aided geometric design, and gridless methods for solving partial differential
equations, to name a few.

There are two main ways of dealing with this problem: interpolation of the data
or least squares approximation of the data. In both cases one assumes the data is
generated by a function f belonging to a classical Sobolev space, W;,k (). One next needs
to select an interpolating or approximating subspace of functions. One choice is to use
multivariate splines or finite elements. In this approach, one needs to decompose Q into
a number of subregions and interpolate or approximate by multivariate polynomials on
each subregion. One then sews together the pieces in a smooth way to construct the
representing surface. This is, in R™ with n > 3, a nontrivial task.

Another approach, which will be the focus of this section, is to use radial basis
functions (RBFs). An RBF is a radial function @(x) = ¢(]x|) that is either positive
definite or conditionally positive definite on R™. Interpolants for multivariate functions
sampled at scattered sites are constructed from translates of RBFs with the possible
addition of a polynomial term.

It was Duchon [5] who introduced a type of RBF, the thin-plate spline, which he
constructed via a variational technique similar to those used to obtain ordinary splines.
The error analysis he provided for thin-plate splines involved reproducing kernel Hilbert
space (RKHS) methods and applied to both interpolation and least squares
approximation. Subsequently, the theory of RBF interpolation evolved with seminal
contributions from Micchelli [9], who introduced a wide class of functions for which

interpolation of scattered data was always possible, and Madych and Nelson [6, 7], who



obtained L, error estimates for RBF interpolation. Least squares approximation by
RBFs was treated by de Boor, DeVore and Ron [3, 12] in the case where the underlying
domain was R" and the approximating subspace had “centers” at the scaled lattice
points. In particular, the theory of least squares approximation on a compact set Q1 for
scattered data has not gone beyond the initial work of Duchon.

In this section we seek to extend the work of Duchon in several directions. The original
work of Duchon dealt with the globally supported thin-plate splines. The natural spaces
to deal with in that setting were the integer-order Sobolev spaces (or the Beppo-Levi
spaces which are Sobolev semi-normed spaces). We obtain similar results for the locally
supported Wendland functions [15] in their natural setting of fractional order Sobolev
spaces. Another aim of this section is to extend the least squares setting estimates to
functions which lie outside the RKHS as has been recently done for the case of
interpolation [10].

Recall that the original Duchon estimates applied to the continuous least squares
setting only. That is, one approximated functions that were defined on all of 0. We will
obtain discrete least squares estimates where it is assumed the function belongs to an
appropriate Sobolev space W;,k (Q)but is only known on a discrete subset . These results
are the first of their kind.

Finally we wish to provide an “intrinsic proof ” of all these results which relies on basic
principles.

Central to our approach will be a Theorem which gives very precise Sobolev
norm estimates for functions having many zeros in a domain (). Note that the
interpolation error function is an example of a function having many zeros. This same
concept will be important in establishing the least squares error estimates as well. In
general, we believe this Theorem has applications outside the realm of RBFs. In
particular, a variant of the theorem below can be used to extend to more general
domains some of the interpolation error estimates found in [1]. More precisely, the
following will be established in the R"setting.

Theorem (1.1.1)[18]:
Let k be a positive integer, 0 < s < 1,1 <p < 0,1 < g < oandleta
be a multi-index satisfying k > |a| + n/por, for p =1,k > |a| +n. Let X € Q be a

discrete set with mesh norm h = hyo = SUPxeqMiNy; ex |x — x| where  is a compact



set with Lipschitz boundary which satisfies an interior cone condition. If u € W, *5(Q)
satisfies u|y = 0, then

|u| S Chk+s_|a|_n(1/q_1/q)|u|Wk+S

W) K+ ()
where c is a constant independent ofu and h, and (x);, =xif x >0and is 0
otherwise.

Here IuIWI;n(Q)refers to the (fractional) Sobolev semi-norm (see definitions later).

A precursor of this theorem may be found in [5] by Duchon, who restricted Q to balls of
certain radii and considered only the cases p =2 and s = 0. In another direction,
Madych and Potter [8] obtained a restricted version of this theorem for the case p = q
and for functions which vanished on the boundary of .

A typical application of Theorem (1.1.1) can be described as follows. Suppose we
have an interpolation process Py : W;,k“ (Q) - Vx  that maps Sobolev functions to a
finite dimensional subspace of %k+s (Q)with the additional property Then

|PXf|W,§<+S(Q) < |f|W£<+s(Q). Theorem (1.1.1) immediately gives error estimates of the

form
If — PXflwz',“'(g) < Chk+s—|a|—n(1/17—1/17)|f|W£<+S(Q)_

We illustrate the above in two different cases. Probably the most prominent
situation is illustrated by classical univariate splines. For example, natural cubic spline

interpolants are known to minimize | - |2/, ,jamongst all interpolants from | - |24 -

The second example deals with multivariate radial basis function interpolation. In
our framework the error estimates fall into two parts. Theorem (1.1.1) gives estimates
on the interpolation error. Moreover, it is well known that radial basis function
interpolants are also best approximants in certain associated reproducing kernel Hilbert
spaces. Hence, if such a space coincides with an appropriate Sobolev space, the (semi-
)norm of the interpolant can be bounded by the (semi-)norm of the target function.

Our new approach offers a new paradigm for radial basis function nterpolation
error estimates, where estimates on functions with a large zero set replaces the power
function approach.

We will need to work with a variety of Sobolev spaces. The def- initions used here

follow those used by Brenner and Scott [1]. Let ) € R"be a domain. For k > 0,k € Z,



and 1 < p < o, we define the Sobolev spaces W;,k(ﬂ) to be all with distributional

derivatives Du € L, (), |a| < k. Associated with these spaces are the (semi-)norms

|u|WI;<(_Q) = (Z ”Dau”LP(Q)> and ||u||WI;<(Q) = (Z ”D u”LP(Q)>

lal=k lal<k

The case p = o is defined in the obvious way

|u|WI;<(g) = supjg|=klID%ull L, and llullyx gy = supjaiscllD“ullL )

For fractional order Sobolev spaces, we use the norms below. Let 1<p < oo,
k >0,k € Z, and let 0 < s < 1. We define the fractional order Sobolev spaces W;,“S(Q)

to be all u for which the norms below are finite
1/
ID%u(x) — D*u(y)IP g
|u|w,§<+5(g) = X =y dxdy ,
|a I k

1/p
|u|Wl§<+S(Q) = <||u||Wk(.Q) + |u|Wk+S(Q)) .

LetX = {x;,...,xy} be afinite, discrete subset of ), which we now assume to be
bounded. There are three quantities that we associate with : the separation radius, the

mesh norm or fill distance, and the mesh ratio. Respectively, these are given by

! —min|x; — x| hy o = supdist (x,X), and p @
I = 2 jek el x4 x€Q X0 dx
Here, |- | denotes the Euclidean distance on R™. The first is half the smallest distance

between points in , the second measures the maximum distance a point in Q can be from
any point in X , and the final quantity, the mesh ratio, measures to what extent points in
X uniformly cover (). Frequently, when the set (1 or X is understood, we will drop
subscripts and write hy or h. Other notation will be introduced along the way.
In this section we obtain Sobolev bounds on functions with scattered zeros in a bounded
Lipschitz domain () that satisfies a uniform interior cone condition. This is done in two
main steps. We first obtain results for a special class of domains that are star-shaped
with respect to balls. We then use a decomposition of () into such domains to obtain the
general results.

We will first obtain our bounds for a special class of domains. Following Brenner
and Scott [1], we will say that a domain D is star-shaped with respect to a ball
B(x.,r) ={x € R": |x —xc| < r} if for every x € D, the closed convex hull of {x} U B

is contained in D.



We will deal only with bounded domains. Thus, there will be a ball B(x. , R)that
contains D. Of course, the diameter d; of D satisfiesr < dp < 2R. Also, Brenner and
Scott [1, Definition 4.2.16] define the chunkiness parameter ¥ to be the ratio of dpto the
radius of the largest ball relative to which D is star-shaped. This parameter comes up in

various estimates and it is useful to note that it can be bounded above; namely, we have

2R

y=—. €Y)

Finally, such domains satisfy a simple, interior cone condition, which we now describe.
Proposition (1.1.2)[18]:

If D is bounded, star-shaped with respect to B(x.,r)and contained in B(x.,R),
then every x € D is the vertex of a cone C € D having radius r and angle 6 =
2arcsin (%)

Proof:

It is easy to check that when x € B(x,,r), the condition is satisfied if the central
axis of the cone is directed along a diameter of the ball x € B(x,,r). If x is outside of
that ball, then consider the convex hull of x and the intersection of the sphere
S(x, |x —x.|) ={y € R": |y — x| = |x. — x|} with B(x.,r). This is a cone, and, because
D is star-shaped with respect to B(x.,r), it is contained in D. Its radius is the distance
from x to x.. To find its angle 8, consider a triangle formed by x, x., and any point on y in
the intersection of S(x, |x — x.|) and the sphere S(x.,r) This is any isosceles triangle,
since |x, — x| = |y — x|. The angle £ x, xy = 6; the side opposite this angle has length

r. Alittle trigonometry then gives us that |x, — x|sin(% 0) = % r. Consequently, we have

6 = 2arcsin( ) Moreover, sinceD c B(x.,R), we also have |x. — x| < R. Thus,

2|xc—x|
> 2arcsin (i) . Finally, r < |x — x| implies that the cone with vertex x, axis along
X, — x,and angle 8 = 2arcsin (i) is contained in D.
Throughout the remainder of this section, D,r,R,y, 0, and x are related in the way
described above.
What we want to do next is to prove a Bernstein inequality for polynomials
restricted to D. Let p € m,(R™) and assume that Vp is not identically zero. The

maximum of |Vp(x)| over D occurs at some point x,; € D . Obviously, the maximum is

Vp (xm)

7p ()’ Because xy € D, Proposition (1.2.1), which holds for D as well
M

positive. Letn =



as D, implies that x,,is the vertex of a cone C © D having radius 7, axis along a direction
&, and angle 8 = 2arcsin (i) We may adjust the sign of p so thatn - &€ > 0. By looking

at the intersection of the cone C with a plane containing ¢ and 1, we see that there is a
unit vector ¢ pointing into the cone and satisfying n - { > cos(/2 — 6) = sin(0). It
follows that

dp dp
[Vp(xm)| = an (xm) < csc(0) a (xXm)-

On the other hand, for t € R, p(t) = p(xy + t{) is in m,(R). In particular, it obeys the

usual Bernstein inequalityon0 <t < r

[7(©)] < 2€2/r) max 15 (©)] < 262/ Ipl 0
Since p'(0) = z—? (xM ), we have for all x € D,

0 £2
7p(0)] < 17pCean)] < ese(0) 22 () < —o Il @
a¢ rsin(0)

Noting that |%| < |Vp(x)| and keeping track of polynomial degrees as we differ-
]

entiate, we arrive at the following result.
Proposition (1.1.3) [18]:
With the notation and assumptions of Proposition 2.1, ifp € m,(R") and if ¢ is a

multi-index for which |a| < #, then

21al (p1)2 2\l
hL < <|—— .
” p”Loo(D) = rlaf sin|“|(9)((€ _ |0(|)')2 ”p”Loo(D) = (rsin (9)> ”p”Loo(D)

Proposition (1.1.4) [18]:
Let p € mp,(R?) and let D be a bounded domain that is star- shaped with
respect to a ball B(x.,r) and also contained in a ball B(x.,R). If the mesh norm h for

X = {x4,...,xy} in D satisfies

b < r sin(0) 3
~ 4(1 + sin(0))¢? )

then there exist complex numbers a;(x) such that for any multi-index a with |a| < ¢

N

DUp(x) = ) af (¥)p(x)

j=1

where



Zlaa (x)l - 2|a|(g!)2 - 202 |l
J ~ rlalsinlel(8)((¢ — |a)})2 ~ \rsin ()

j
Proof:

See [17, Proposition 3.6] and [11, Lemma 6.2].
Remark (1.1.5) [18]:

The result derived in [17] is stated with h taken to be the mesh norm of X relative
to D. In fact, in the proof of the result, h is only required to satisfy the condition that
every ball B(x, h) € D contains at least one point in , rather than being the mesh norm.
This will be useful later.

In [1], Brenner and Scott discuss approximating a function u € W;,k (D) by averaged
Taylor polynomials Q*u € m;_;(R™)In this section, we briefly summarize their
discussion and extend some of their results.

The averaged Taylor polynomials are defined as follows. Let B, be a ball relative to
which D is star-shaped and having radius p > % Pmax, the largest radius of a ball relative

to which D is star-shaped. In particular, we have dy/p < 2y, where y is the chunkiness
parameter. The averaged Taylor polynomials are then given by
Qku(x) = Z j D*u(y)(x —y)%@(y)dy .
lal<k ~ “Bp

Here ¢(y) = 0isa C* “bump” function supported on B,and satisfying both

fB @(y)dy = landmax ¢ < Cp™", where C = C, . Finally, the remainder R*u is
p

defined by
Rfu = u — Q*u.
The following result provides a bound on Rk u.
Proposition (1.1.6) [18]:
For u € ka(D),With l1<p<owandk >n/porwith p=1andk > n,

k_
”Rku”Loo(D) < Crnp(1+y)"dy n/plulwk(b)'

nk-1

Where Cy = C —(k ——)1/7” Vifp>1land Cypy = Cpi—— =

”P(k o ifp = 1.

Proof:



See Brenner and [1]. We remark that we have tracked down and made explicit

the dependence on y and k of the constant Cy,,, used in [1]. In the process, we

employed the identity Z|a|=k§ =nk

To deal with fractional Sobolev spaces, we need a version of the previous result
that applies when u belongs to W **5 (D), where 0 < s < 1. We begin with this lemma.
Lemma (1.1.7) [18]:

For 1<p<ow and k>n/p or p=1 and k > n, if u€ WFks (D), and
P € mi(R™), then

IR 2l ) < Cenp (1 +1)"dpy Pl = Plys ). (4)
Proof:

We begin by noting that if P is in m(R"), then Q¥*'P = P ; that is,
Q**'reproduces polynomials of degree k. Thus, R**'u = R**!(u — P). The obvious
identity R**'u = R*u + Q*u — Q**'u then implies that

R¥*1y = R¥1(y— P) = R*¥(u — P) + (Q¥ — Q¥ )(u — P).
By the triangle inequality and Proposition (1.1.6), we obtain

k—
IR * 2l ) < Cenp (1 +¥)"dp P lu = Plyi)

HI(Q* = Q) (w = Pl m) 5)

The second of the two terms can be estimated as follows. First, from the definition of Q¥,
nk
k!

j oMx — yl*ID*(u — P)(¥)I 4
y

the fact thatmax ¢ < Cp™™, and the identity Z|a|=k% = — we get

1@ = Q¥*1) e = Py < sup )
xeD Lt

a!

nk
<dk- Cp‘”—rnaxj |D%(u — P)(y)|dy.
k! |lal=k B,
Applying Holder’s inequality to the integral above, we see that

|D%(u — P)(y)|dy < vol(B,)*"*/?||ID%(u — P)llo(s,)
Bp
< vol(B) /P p™P| D% (u — P) || 1o (py
< vol(B))"YPpn—n/P|y — P|W£<(D).

Combining these inequalities and using d, /p < 2y, we arrive at the estimate

n/p.,k

2™MPn -
1 = Q¥ ) (= Py < CvOIB) P ———dy Py ™Plu = Pl .



Obviously, y™P? < (1 + y)™ . Consequently, putting the inequality above together with
(5) yields (4).
Proposition (1.1.8) [18]:

Let0<s <1. Forl1 <p<oandk >n/porp= landk = n,ifu € W+ (D),

then

k j—
IR ull 0y < Crnp(1 + 1D ISRk e n/plulwé‘”(l))' (©)

Proof:
The case s = 1 is a consequence of Proposition (1.1.6), so we may assume that
s < 1.Let P = Q**'y and note that P € m,(R"). The identity,
DFQ™u = Q- IFIpAy, (7)
which is found in [1], holds for |f| < m — 1. In particular, if we take f = «, |a| = k and

m = k + 1, then we have

DeQ**1u = QlD“uj e()Du(y) dy,

Bp
which is of course a constant. Since fB @(y)dy =1 we note that
p
D%u—D*Q**'u =j ¢(y) D*u(x) — D*u(y))dy
Bp
From this, a simple manipulation, bounds on ¢ and |[x —y| <dp , and Holder’s

inequality, it follows that

|D%u(x) — Du(y)|
a,,_nank+1 — ~|stn/p
Ipeu-DeQ*ul < | o)1= e dy
—n gs+n/p |D%u(x) — Dau(y)l
< Cp™"dy ij lx — y|s*n/p dy
<C —n gs+n/p |D*u(x) — D*u(y)|
= LnpP D |x — y|s+n/p
LP(D,dy)
Raise both sides to the power p. Integrate in x over D and sum over all |¢| = k. The
result is
D%u(x) — D%u(y)I?
_ pIP < (P 4P*n ,-n Z |
. PlWéﬁS(D) B Cn,pdD ’ lal=k -[D-ID |x — y|n*sp dxdy
The double integral on the right is just |u|€vk+s(D)Again using do/p < 2y and taking the
14
p" root of both sides, we obtain

9



Applying Lemma (1.1.7) yields the result
Corollary (1.1.9) [18]:
Let0 < s < 1. Foru € W,*(D),

k —_ _
ID“u=D*Q** ull, ) < Ciomp(1 + 1) TP TP s

providedthatl < p < wandk > |a| +n/p,orp =1and k = |a| + n.
Proof:
This follows directly from Proposition (1.1.8), the identity (7), and the inequality

IDau|W§+s—|u|(D) < IuIWZ;<+s(D).One can use function-space interpolation theory to prove

Proposition (1.1.8) and Corollary (1.1.9). Indeed, the proofs are somewhat simpler.
There is a difficulty in doing this, however. The fractional Sobolev norms then also must
come from interpolation of integer Sobolev spaces. While these are known to be
equivalent to the intrinsic fractional norms we employ here, determining the
dependence of the equivalence constants on the parameters of Dis problematic.

We are now ready to establish Sobolev bounds for functions with scattered zeros
in D. Suppose that X c D is finite and has a mesh norm h satisfying the conditions in
Proposition (1.1.4). In addition, with 0 < s < 1, suppose that u € Wk*S(D) satisfies
u|ly = 0, where k >n/por,ifp=1,k>n.Letv= u — Q¥*'u. Note that if X €X,
v(x;) = u(x;) — (@ w)(x)) = —(Q*** w)(x;). By Proposition (1.1.4), with £ =k, we

thus have for each x € D,
N

D@ W) = - ) af ()

j=1

and hence that

D@ W@ < | ) [af ()] | maxlv(x)
j=1 !

2 2 |a|
2 _ Nk+1
< (rsin (9)> lu — Q*“* ull,,

2 la|
k+s-n/p
2(%) Cenp (1 + )" s o)

where the last step follows from Proposition (1.1.8).
Next, let a be a multi-index satisfying k > || + n/p,orp = 1and k > |a| + n.

From Corollary (1.1.9), the previous inequality, and the triangle inequality, we have

10



|et|
2k? D k+s—|a|-n/p
ID%ull 2y < {1 +2 (m) }Ck,n,p(l + )t gy |l s
Now,1 <y < dTD < % = c¢sc(6/2),sin(8/2) < sin(0), and so we have that
”Dau”Loo(D) < 3Ck'n'p2|a|+n+n/pk2|a| CSC2|a|+n+n/p(9/2) d$+5—|a|—n/P|u|W£€+s(D)
Collecting coefficients in this expression and simplifying, we obtain the following result.
Proposition (1.1.10) [18]:
Let k be a positive integer, 1 <p <o, 0 <s <1, and let ¢ be a multi-index

satisfying k > |a| +n/p, or, forp =1, k = |a| + n. Also, let X € D be a discrete set

with mesh norm h satisfying (3). Ifu € Wy*$(D) satisfies ulyx = 0,
k+s—|al—
ID“wll, 0y < 3Cienp et CSCHXH™MP(8/2) dp ™™ ] s o,

where Cy np o] = 3Ck'n'p2|a|+n(1+1/p)k2|a|

Corollary (1.1.11) [18]:
Let 1 < g < oo. With the notation and assumptions of Proposition (1.1.10), we

have
1
2 1+— — — —
|u|WJuI(D) < Cknp,q CSC aln) (6/2) d;+s lelmnt/a 1/p)|U|W,§‘+s(D)
Proof:
Since card{8 € N3: |g]| = |a[} = ("*"~) = 0(la|""! ) and vol(D) < Cd} we
find that

/q
lal+n—1 !

< (D)4 DB
[l et iny ‘( n—1 vol()* max [D7ull,

= C”»Q»|a|d$/p |[5?3§|||Dﬁul|Loo(D)

1
2|a|+n(1+=
< Ck,n,p,q csc a+p)

6/2) dg+s—lal—n(1/q—1/p)|u|W§+S(D)_
We will now treat a domain (. ¢ R™ that is bounded, has a Lipschitz boundary,

and satisfies an interior cone condition, where the cone has a maximum radius R, and

angle ¢. Of course, the cone condition will be obeyed if we use any radius0 < R <R, .
To begin, we need to cover Q2 with domains that are star-shaped with respect to a

ball. We will employ a construction due to Duchon [5]. Let

_ Rsin(p) _ Z_r .
r—mandﬂ—{teﬁz .B(t,T)C.Q}, (8)

11



where < R, . Fixx € . Duchon (see the proof of [5, Proposition 1]) shows that the

cone C, c () associated with x contains one of the balls B(t,r), where j—;Z” . This of

course implies that the set T, = pand, since |t—x| <R, that C, € B(t,R) N Q.
Moreover, the closed convex hull of {x} U B(t,r) is contained in C, , because C, is itself
convex.
Instead of fixing x, we now fix t € T,.. Let D; be the set of all x € Q) such that the closed
convex hull of {x} U B(t,r) is contained in (0 N B(t, R). By construction, each D,is star-
shaped with respect to B(t,r). What we have shown above is that every x € 1 is in some
D¢, 50 Q € Uer, Dy . Of course, it is also true that D, c , so in fact we have that
QO = Uter, D¢

This implies several useful geometric facts. We have that the diameter of D,
satisfies dp, < 2R and that the angle of the cone 8 in Proposition 2.1 is related to ¢ via

sin(¢)
4(1+sin()))

satisfies #T,. < vol(Q) /vol(B(t, 7)) < CopnoR™™ .

6 = 2 arcsin( i) = 2 arcsin( ). Also we have that #T,., the cardinality of 7.,

There is one more thing that we need. Let ys denote the characteristic function of
asetS. Because D; ¢ B(t,R), Xp,(X) Xp(tr) (x) forall x € R™. By [5], there is a constant
M, , which may be taken as M; = M;(¢,n), such that Y;er, Xp(er) (x) < M;all x € R™
Consequently, Yser, Xp, (x) < M;. We summarize these remarks below.

Lemma (1.1.12) [18]:
With the notation introduced above, we have the following:

(1) Each D;is star-shaped with respect to the ball B(t,r) and satisfies B(t,r) € D, € QN

B(t,R),dp, < 2R,and 6 = 2 arcsin (mf:i—r(:?p))))'

(2) @ = Uger, Dy and #T, < Copn R~

(3) There exists a constant M; = M, (¢, n) such that Ycr, xp, (x) < M; forallx € R".
We are now ready to obtain Sobolev bounds for functions having zeros at a finite

subset X c (), where we let h = hy o be the mesh norm of X in Q). We will assume that h

satisfies the following condition:

— _ sin(¢) sin(6)
h<k Q(q))RO where Q(q)) - 8(1+sin(0))(1+sin(¢))’ (9)
sin(¢p)
4(1+sin(@))
k%h
holds, then we can take = ,
Q)

We note that 8 = 2 arcsin ( ), so that Q only depends on ¢. If this as sumption

for then R < R, . Moreover, from the definition of r in

12



sin(60)

terms of @and R given in (8), we see that h = T Lrsin(@)

?=k.
We point out that every ball B(x, h) © Q contains at least one pointin .

Hence, h satisfies (3) for

In particular, if we have (x,h) c© D, , this is still the case. By Remark (1.1.5), if h = hx g
satisfies (3), then the results proved earlier all hold with this h. That said, we now have
the following estimate.
Theorem (1.1.13) [18]:

Let k be a positive integer, 0 <s<1,1<p<o,1<g<o,and leta bea
multi-index satisfying k > |a| +n/p, or p =1 and k = |a| +n. Also, let X € Q be a
discrete set with mesh norm h satisfying (9). Ifu € Wy*s(Q)satisfies u|y = 0

|ul < Ck,n,p,q,lalhk+s_|a|_n(1/q_1/p) |u|WI;<+S(Q)! (10)

Wi (@)
where (x), = x ifx > 0and is 0 otherwise.
Proof:.

The case g = o follows from Proposition (1.1.10) and the decomposition given in
Lemma (1.1.12), Q = U¢er, Dy . Thus, we will assume 1 < g < o. For such g, the

decomposition Q = U¢er, D,implies that we have

1/q
_ B 4
|u|WJuI(Q) = Q|D u(x)|" dx
[B]=|al
1/q 1/q
q
< Z Z |Dﬁu(x)| dx = Z'”'ZV'“'@
D a (Pt
teTy |Bl=lal =t teTy
- w0 |7

teT,
where #T, is the cardinality of T,and where the last bound follows from standard
inequalities relating p and g norms on finite dimensional spaces. Next, by this inequality

and Corollary (1.1.11), where we use dp, < 2R = 2k?h/Q (@), we obtain

' G+ k+s—|a|-n(1/q—1/p) q
|u|w$“'(ﬂ) = Ck,n,p,q,lal,w(#TT) “7h £ |u|WJ“I(Dt) '

for each t € T;. . Now, since D; c (), we have by Lemma 1.1.10,
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|Dﬁu(x) — Dﬁu(y)|p
Zlulwk+S(D ) Z j XDt(x) |x _y|n+5p d}’dx

tET, 1Bl=k teT, Dt
DAu(x) — DPu P
< M, ] [Put) ~ DA
a’a |x—y|" sp
|Bl=k
< M1|u|Wk+S(D )
Putting these two inequalities together yields
1/ k+s la]-n
| |W|“I(Q) M kanpq lal, q0(:[:!“"1-‘ ) q p ( )|u|Wk+S(Q)

Now, by part (2) of Lemma 1.1.10 and R = 2k?h/Q(¢), we see that #T, < Ch™" .
Inserting this in the inequality above gives us

k+s—|a|—- n( 1) (%—l

)
|u|wg“'(n) < Cknpalaloh ap P +|u|WI;<+s(Q),

Using n G — %) — n(% — %)J, =n(1/p — 1/q),in the previous inequality yields (10).

In practical situations, bounds on continuous norms, such as those we have
investigated above, are less important than bounds on discrete norms. Our aim here is to
obtain estimates similar to those in Theorem (1.1.13), again for u|y = 0, but with
continuous norms replaced by the discrete ones that we now define.

Let Y = {y;,...,yu} be a finite subset of (), and denote its separation radius by gy , its
mesh norm by hy, and its mesh ratio by py = hy/qy. Let 1 < g < oo. (Note that g is not
the same quantity as qy.) For a continuous function u defined on (), define the norm

£4(Y) by

(
|
|u”£ ) {( Z |u(y])| ) for 1 < q < o, (11)

k 1%%ﬁ|u(y])|f0r qg=oo.

As before, we also define aq (Y )-derivative norms when uis in Ck () and 1 < q < co:

1/a
oy = (Z IID“ullgq(y)> and|lull, ) = (Z ID%ull? (y)) (12)

la|=k la|=k
The q = oo norms are defined in the obvious way. We now state the analog of

Theorem (1.1.13) for the discrete norms.

Theorem (1.1.14) [18]:
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Let k be a positive integer, 0 <s<1,1<p<0,1<g<o, and let a be a

multi-index satisfying k > |af +§’ or p=1and k= |a|+n Also, let XcQ be a

discrete set with mesh norm h = hy satisfying (9). LetY ={y;,.. ,ym} € Qbea

second discrete set, with hy < h. If u e ka+S(Q)satisfies u|x = 0 then

n/q k+s—|oc|—n(l—l)+
|u|WJ“'(Y) < CenpalaleoPy  h pa |u|WI;<+s(Q), (13)

where the discrete norm on the left above is defined in (12). In particular, if || =0,
then

n/q k+s—|oc|—n(l
”ullfq(Y) < Ck,n,p,q,qo,ﬂpy/ h P

Dl sy
14
Proof:

The q = oo case is a direct consequence of Theorem (1.1.13) and py, = 1. We
therefore assume that g < . Let D;be one of the star-shaped domains from the
decomposition of Q given in Lemma (1.1.12). From the L,, bound in Proposition

(1.1.10), the conditions on Diin Lemma (1.1.12), and the fact that dp <2R =
2k? h/Q(¢p), we have that

q k+s— - q
Z ID%u(y,)|* < Chle+s—1aa-na/pcard(D, n Y)lulwgﬁ(pt)
Y;j€Dt
To estimate card(D, N Y), we note that every point y;in D, N'Y is the center of the ball
B(yj,qy ). Now, by construction, D; € B(t,R) and qy <hy <h<R, so every

B(yj,qy ) < B(t,2R). Hence, the number of points in D, NY satisfies the bound

vol(B(t,2R)) 2R n
card(D,nY) < Y CT— (50vy.0)) = (qy) )

2

. . k2h
Recall from the previous section that we chose = 2@

q — - - ’
> Ipeu|! Sgpratrs-ldenmancul,,

, and so we have

Y €Dy
where C' depends on n,p, q, ¢, |@|. Sum over t € T, on both sides. Since every y; €Y is
p b, q YYj

in at least one D;, we have
M
@ q @ q
|D*u(y)|” < |D*u(y))|
j=1 teT, ijDt

na 1¥eer,lul?
—n g (k+s=la)g+n- teTr k+s
< qynh( laDa+n=27 - Wity
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The sum on the left above is M||D%ul| To deal with the sum on the right, note that

a
tq(¥)*
standard inequalities relating p and g norms on a finite dimensional space give
a/v
p aG—2) p
» g/t
Z |u|W1;<+S(Dt) S (#TT) P4 Z |u|W1;<+S(Dt)
teT, teT,

p

whk#s(py Was dealt with in proving Theorem (1.1.13), where we showed
14 t

The sum X;er, |ul

that it is bounded by Mllulﬁ/k“(n) . Also, recall that #T,- < Ch™™ . Using these bounds in
p

our earlier inequality and dividing by , we obtain

< M_1q;nh(k+s—|a|)q+n—nq(§—§)+C,Cqu/p lu|?

a
||D u” W1§<+S(Q)

a
2q(Y)
Summing over all multi-indices a of fixed length, simplifying the exponent of h, and

suppressing constants, we arrive at

1 1
< M_1q;nh(k+5—|a|)q—n0(5—5)+Cululq (14)

q
|u| W1§<+S(Q)'

W)
Our last task is to estimate , the number of points in Y, from below. Since the mesh
norm of Y relative to Q is hy, every x € () is in one of the closed balls m, and so
their union covers Q. It follows that the number of such balls, , satisfies M >
vol(Q)/vol(B(y;, hy)) or, equivalently,

L vol(BW; b))
vol(Q)

< Conhl.

Insert this in (14), simplify, and collect constants. Taking the ¢** root of both sides then

completes the proof.

In this section, we will apply the estimates that we obtained in the previous section to

obtain error estimates for both continuous and discrete least squares RBF surface

fitting in a domain Q in R®. We make the same assumptions on Q as we did above;

namely, Q is bounded, has a Lipschitz boundary, and satisfies an interior cone

condition, where again the cone is assumed to have a maximum radius RO and angle ¢.
We will concentrate on radial basis functions @: R™ — R that have a

positive, algebraically decaying Fourier transform. To be more precise, we

assume that
a1+ lwld)7 < P(w) <c,(1+lwld)™?, »eR?, (15)

where c;, ¢, > 0 are some constants and T > n/2. In this case it is well known that

16



the native space Ny = Ny (R™) associated to @ is the Sobolev space

Wi (R™) = {f € L;(R™): f()(A + II1l15)*/? € L,(R™)} (16)

and the native space norm

IF1Z,, = jm ";ff’(j)' do

is obviously equivalent to the Sobolev norm

FOA+ D72, gy 17)

”f”azzf(]]gn) = |

Later on, we will also deal with the case of thin-plate splines. The details of
treating them differ somewhat from the more usual RBF case above. So, even though
their treatment is in fact easier, they will be handled separately. Until then, we assume
that the RBF @ has a Fourier transform ®satisfying (15).

As is well known, the great utility in RBFs is that for any finite subset
X = {x4, ... ,xy} € R"and arbitrary complex numbers {d;, ... ,dy}, one can find a unique
function v from the span of Vy 4, = span{®(x — xj)}?’zl such that v(x;) = d;,j=1,...,N
. In addition, interpolants satisfy a minimum principle. If f is in the native space Npand if

we let the interpolant to f on X from Vy o, be Ixf , then
vrerélxr;”f —Vlxg = If = Ixfllng-

In particular, since we can take v = 0 on the left above, we also have

If = Ixfllng < 1fllnvg-
These observations lead to the following lemma, which we will need in the sequel.
Lemma (1.1.15) [18]:

Let T>n/2, f e W7 (Q), X ={x1, x5, ... ,xy} € Q, and letlyf € Vxo be
the unique function that interpolates fon X . If ® satisfies (15), then there
exists a constant Cj, o, depending on () and @, such that

If — Ixfllwg ) < Coollf llwg)-
Proof:

We will require extension theorems for W} (Q), where Q is a bounded Lipschitz
domain. For the case in which t is a nonnegative integer we may use the extension
operator € constructed by Stein [14] to extend any f in W5 () to a function defined for
1 < p < oo. Brenner and Scott [1] give on a brief discussion concerning extensions for

fractional Sobolev spaces (i.e., T € Z). They point out that combining results of DeVore
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and Sharpley [4] immediately yields the existence of € in the fractional case as well,
provided only that1 < p < co. In particular, € exists for p = 2, the value of p we are
concerned with here.

Since €f =f on Q and since the values of f|y uniquely determine the
interpolant fromVy 4 , we have thatly€ f = Ixf . Consequently, we obtain this chain of
inequalities:

||f - IXf”WZT(Q) = ||(5f — IxC€ f||W2T(Q)
<€ f — Ix€ fllwrmm
< ¢; PI€ f — k€ fllv,
< ¢; € fll,
< (i) 2€ f”WZT(]Rn)
< (1) 2IC M fllwg

~1/2||€ || completes the proof.

Setting Cp o = (c1C,)
We now employ this lemma and the results obtained in the previous section to derive
bounds on f — Ixf , in both continuous and discrete norms, for the case p = 2.
Proposition (1.1.16) [18]:
Suppose T = k + s, where k is a positive integer and 0 < s < 1. Let ¢ be a multi-
index satisfying k > || + n/2, and let X € Q be a discrete set with mesh norm h
satisfying (9). If f € W7 (Q) and if 1 < q < o, then
|f — Ixf|w;“'(n) < Crmaalaoh™ 192D F]l oo (18)
In addition, the continuous least squares error (q = 2) satisfies the bound,
rnin,,EVX@Hf — VL@ < Chnglalooh®Ifllwz@- (19)
Proof:
Apply Theorem (1.1.13) to = f — Iyf , with p = 2. Using Lemma (1.1.15)
then gives us (18). Sincelyf € Vx4 , we also have that
minyey, o lf — vl @ < IfllL,@)- (20)
The estimate (19) then follows from (18) with g = 2and |a| = 0.
The case where the discrete norm is to be bounded, rather than the continuous one,

can be dealt with in a similar way

Proposition (1.1.17) [18]:
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Suppose T = k + s, where k is a positive integer and 0 < s < 1. Let a be a multi-
index satisfying k > |a| + n/2. Also, letX c Q be a discrete set with mesh norm
h = hy satisfying (9). Let Y = {y;,...,yu} € Q be a second discrete set, withh, < h.
If f e W;(Q),andif 1 < q < oo, then

lf - 1xf|wl|2u|(y) < Cenglalopy’ ThTIATA27 1D fl . (21)
where |'|w'“'(y) is defined in (12). Also, the discrete least squares error satisfies the
q

bound,

rnin,,EVX@Hf - 17||£2(Y) < Ck,n,ﬂ,(bp}y’l/zht”f”WZT(Q)- (22)
Proof:
Apply Theorem (1.1.14) tou = f — Iyf. Using Lemma (1.1.15), withp = 2, then

completes the proof. Again, becausely f € Vy ¢ , we have that

minyey, o lf = vlle,v) S IfF = Leflle, vy (23)

The estimate (22) then follows from the interpolation estimate (21) with |a| =0
andq =2

We remark that in both cases the interpolant is a good approximation to the least
squares fit.
The RBFs we just discussed are all positive definite functions. The thin-plate splines,
however, are RBFs that are conditionally positive definite functions. If k > n/2 is an
integer, then we define the thin-plate spline corresponding to n and k as follows. For
x|, # 0, we let

|lx||3%~"for n odd,

Ppr(x)=c
nic () n'k{llxllﬁk‘” log||x||,for n even,
where ¢, is a constant chosen so that @, is a fundamental solution of the iterated
Laplacian. In terms of the distributional Fourier transform, this is equivalent to
requiring that @, (w) = llwllz%*,ifw = 0.
The native space associated with @,, ;is the Beppo-Levi space,
BL,(R™) ={f € C(R™): D*f € L,(R™) for all |a| = k},
which is equipped with the semi-inner product
k!
(£, ®Br,@m = Z E(Daﬂ DG, mm)
lod=k

and induced semi-norm |- gy, (gny - For Beppo-Levi spaces on (), similar definitions
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apply. Both the semi-norm | - |y, (grn) and | - [gy, (o) are equivalent to the corresponding
Sobolev semi-norms of order k.

An interpolantlyf , which is associated with &, , and f|y from a continuous
function, includes a polynomial piece p € m;_;(R") as well as a linear combination of

span{®, (x — Xj)}lNzl. That is, Ixfis in

Vinie = Te—1 (R Bspan{®p c(x — x)}L;.
To insure that the interpolant exists, one must make the additional assumption that the
finite set X < () is unisolvent for m;_;). Under this assumption, the method reproduces
polynomials in 7;_; . In addition, if f is in the native space BLy(R™), then I f minimizes
the semi-norm |f — v|gy, (gny among all € Vy , . . As in the previous section, this implies
that
If = IxfleL,xm) < |flBLermy,  f € BLg(R™).

Now, an extension theorem of Duchon [5] shows the existence of a linear map
Cp: WE(Q) - BL(RM)such that for all fe€WSf(@Qwe haveG,f|o=f and
|Ckf gL,y < NCllIf |pL o). Essentially repeating the proof of our own Lemma
(1.1.15) then yields the following:
Lemma (1.1.18) [18]:

Let k > n/2 be an integer, X = {xq,X,,...,xy} C Q be unisolvent for m;_;(R")
and let f € WF(Q). If Iyf € Vx,) Iis the unique function that interpolates f on X,

then there exists a constant Cg, ; such that

f=Ieflwk@) < Cg,n,k| Flwk) < Compellf k-

Recall that a finite, discrete set X € R"is unisolvent for the vanishing of p on X
—i.e, p|x = O0—implies thatp = 0. Suppose that we again have X c (), with mesh
norm h satisfying (9). We want to show that under these conditions we have the
slightly stronger result that X is unisolvent with respect to m; (R™).
Proposition (1.1.19) [18]:

Let k > 1 be an integer. If X a finite, discrete subset of X , with mesh norm h
satisfying (9), then X is unisolvent form;, (R").
Proof:

In Theorem (1.1.13), takes =1, |a| =0, g =00, p = 2n. If u is a polynomial

inm, (R"), withu|y =0, then, we have that |lull, (g < Ch*¥*/2|u| k1 Since
0o () Won ~ ()
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D*u =0 for |a| = k + 1, the norm |U,|W2kn+1 It then follows from Theorem (1.1.13)

@
that u|n = 0 and, since () contains open sets, that u = 0. Thus, X is unisolvent for
T, (R™).

By our remarks above, the set X being unisolvent implies that for any f € C(Q), there
is a unique interpolantly f € Vy ,, for f . This plus the lemma above is precisely what
we require to get the same type of estimates that we obtained in the last section. In fact,
repeating the proofs of Propositions (1.1.16) and (1.1.7) yields the same estimates. We
formally state these observations below.

Corollary (1.1.20) [18]:

Under the assumptions on X,(}, and h made in Propositions ( 1.1.16) and
(1.1.17), the interpolant Ixf € Vy,, exists and is unique. Moreover, the estimates in
both propositions also hold forly f € Vy ,, .

It is now our goal to establish discrete and continuous Sobolev-type error
estimates for functions that are outside the native space, but still in a Sobolev space or a
C* -space. More precisely, if we let T determine the decay of @ , we will assume either
that f € Wf(Q), wheret >t >n/2,orthat f € C*¥(Q), T >k >n/2.

For approximation rather than interpolation, such error estimates have been
derived for integer t in [16], using a technique introduced in [13]. We will extend this
result to positive, real T . The proof we give here is simpler than that given in [16]; it is
based upon recent results from [10].

Lemma (1.1.21) [18]:

Let t =r>0. If f € Wf(R"™), then there exists a constant c;, such that for
every o > 0 we can choose a band limited function g, € B, = {f € L,(R™) : supp(f) €
B(0,0)} with

If = Gollwgam < Coro™ I f lygcany (24)
Obviously, this result is important mainly in the case of ¢ > 1, and in such a
situation we will use it now.
Theorem (1.1.22) [18]:

Suppose @ is a positive definite function satisfying (15), witht >t > n/2, and
that X = {x,,...,xy} € Q has mesh norm h satisfying (9).If f € W} (Q), then there

exists a function v € Vy o = span{®(- — x; ): x; € X } such thatforeveryreal 0 <r <,

If = vllwz < CR I o
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Here, C is a constant independent of f and h.
Proof.

Let € be the extension operator discussed in the proof of Lemma (1.1.15). We
first extend the function f € Wy (Q) to a function €f € W} (R"). Next we pick a band
limited function g, that approximates €f according to (24), with ¢ = 1/h. Finally, we
let v = Iyg,. Then, we have

If —vllwg@ < I€f — gollwy@mny + lgs — Ixgollwy o

< Clht_T”(Sf”Wt N CZhT_T”gG”WT Q
7 (R™) 2 ()

< s fllyscam + €A™ Ngo lhws .
where we have used (24), Proposition (1.1.16), and the continuity of the extension
operator €. To estimate the second term on the right, we observe that |lg,|lwzq) <
lgollwz@mny - Now, gsband-limited, and so llgsllugmny < o™ llgollysgny =
ChT_t”gO-HWZt(Rn) . (This is trivial to show p = 2. It is, of course a special case of
Bernstein’s Theorem for functions of exponential type.) Another application of (24) and
the continuity of € establishes

19l mry < NEf e mny + I€f = gollyemny < call€f e gny < csllf ey
Combining these bounds results in ||gsllwz@y < csh* " llfllyy(q) Overall, this gives us
the estimate

If = vllwg@ < (csht + CeshA™ R fllyecay < CA I iy
which is what we wished to show

We now turn to error estimates for interpolation of a function f in W, (Q) by the
smoother functions in Vx , € MN,. In the special case of interpolation by means of an
integer order thin-plate spline, Brown-lee and Light [2] have obtained L, error
estimates in terms of |f |W2k(_0) We will treat the general RBF case here, but we will need
to work in the space C*(Q), rather than Wy (Q).

We begin with a few remarks about the extension operator € constructed by
Stein[14]. Stein explicitly states that this operator maps W,*(Q) boundedly To W;*(R")
for 1 <p <o and for any integerk > 0. In fact, it does a little more than that. If
f € C¥(Q), then Stein’s construction yields Gf € C¥(R®) n WX (R™). Moreover, if
k > n/2, then the fact that €f € W}(R") also implies that €f € L'(R™) which in turn

yields limy|-c0 Ef (x) = 0 course, we also have the norm bounds
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”(Sf”WZk(]Rn) < Cl”f”WZk(Q) and ”(Sf”Wolg,(]Rn) < Cl”f”ck(ﬁ)

sinceIIfIIWZk(Q) < C3||f||ck(ﬁ),we have that

max {IGf |y, NEF Nyt amy } < CUF ey (25)
We will now make use of the extension €f to obtain a band-limited interpolant to f on
X c Q. For normalization purposes we will require diam(X) < 1.
Lemma (1.1.23) [18]:
Let f € C¥(Q) and suppose that X = {x;,x,,...,xy} C Q satisfies diam(X) < 1.
Let gy be the separation radius of . Then, there is a constant c¢,, , depending only on

the dimension n, such that, for any ¢ > ;—" , there exists a band-limited function
X

fs € B, for which
Flx = folxandllfy s eny < ClFll gy (26)
Proof:
The extension €f is in Cy(R™) N L,(R™), so [10] gives us the existence of f;for
which Cf |y = f;|x . Since€Cf|y = f , we see that f|y = f;|x .In addition, since€f €
WE(R™) n WE(R™) n C*¥(R™), [10, Proposition 3.12] provides the estimate

1fr ey < max {1 ey N6 e oy -

Applying (25) to bound the right side above then yields (26), which completes the
proof
Theorem (1.1.24) [18]:

Let k and j be integers, with0 <j <k <71 and k >n/2, and let f € C¥(Q).
Also suppose that X = {x;,x,,...,xy} € Q satisfies diam(X) < 1, with mesh norm h
satisfying (9). Then,

1 = Ixflyygay < COEF RSO i @7

where py = qi is the mesh ratio for X in (.
X

proof:

By Theorem (1.1.13), we have
_ , k—j-n(1/2-1/q)+ | £ — .

Choosing o = ;—" in Lemma (1.1.23), we have the existence off; € B, that interpolates f
X

on X. Recall that the interpolation operator Iy depends only on f|y = f;|x, s0 Ixf = Ixf5

. Consequently, we have this chain of inequalities
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|f - IXleZk(Q) = |f - IXfO'lWZk(_Q)
< |f _falwzk(g) + |f0' - IXfO'lWZk(_Q)

S |f|W2k(Q) + |fO'|W2k(_Q) + |fo‘ - IXfO"WZk(Q)

By Proposition (1.1.16) (or, for the thin-plate splines, Corollary (1.1.20)), with f
replaced by f;, g by 2, and so on, we have

|fa - IXfO'lWZk(Q) < Chr_klfalwzk(g)-
Obviously, |f;lwz) < llfllwg@n) By Bernstein’s inequality for functions of

Exponential type, [|f; [lwz®ny < co™ || f; llwg wn). Hence , we have
|f - IXleZk(-Q) S |f0_|WZk(Q) + (1 + ChT_kO-T—k)”fO_”WZk(Rn)

C
However, o = = , so
ax

|f - IXleZk(_Q) < |f0‘|WZk(Q) + (1 + Ccfl_kp};_khr_k)”fa”wzk(Rny
where we recall that py = qi > 1 is the mesh ratio for X in Q. By (26 In ||fa||W2k(Q) <
X
||f||Ck(ﬁ)addition, we have the standard estimateIfIWZk(Q) < C'Ilfllck@ . Combining all of

these and simplifying, we obtain
If = Ixflugy < (1+ €+ CeF*pg * R ) If; l ey,
< C"pE Iy iy

Using this bound in (28) then gives us (27), which completes the proof.

Our final resultis a corollary that deals with the discrete case, rather than the
continuous one.
Corollary (1.1.25) [18]:

Let k and j be integers, with 0 <j <k <71 and k >n/2, and let f € C¥(Q).
Also suppose that X = {x;,x,,...,xy} € Q satisfies diam(X) < 1, with mesh norm h

satisfying (9). In addition, letY be a second discrete set, with hy < h. Then,
If — Ixfa|wé'(y) < Cp;(l/qp};—khk—j—n(1/2—1/Q)+||fa||ck(ﬁ)’ (29)

where the discrete norm on the left above is defined in (11).
Proof:

The proof is nearly identical to the theorem above. The difference is that at the
start one needs to use Theorem (1.1.14), which is the discrete version of Theorem

(1.1.13).

24



Sec (1.2):Applications to (m, s) — Spline Interpolation and Smoothing:

Let 0 be a bounded domain in R" with a Lipschitz-continuous boundary. Let r > 0,
p € [1,00) and q € [1, ], and let W"P (1) stand for the usual Sobolev space of order r
contained in LP (Q). Likewise, for any finite set ¢ Q, let §(A, Q) be the Hausdorff distance
between A and Q (see (4.1)). Through the section [21] and [31],with minor corrections
in [22] and [15], H. Wendland and co-workers have proved the following remarkable

result (see Sect. 2 for the precise definition of the Sobolev semi-norms |- |, 4 o and

|1,q
| - |r,q Q ):
Theorem (1.2.1) [19]:

Assumethatk > n,ifp = 1,ork > n/p, if p > 1, where k stands for the integer
part of r . Then, there exist two positive constants b, and C satisfying the following
property: for any finite set A c Q such that d = §(4,Q) < b,, for any u € W™P(Q), and
for any non-negative integer [ such that I < k —n,ifp=1,orl <k —n/p,ifp > 1, we

have
luliga <C(AImAPVD 4|0 + d7lufallo) (30)
where ||u|ylle = maxges|u(a)| and (x ), = max{x,0}.
As an immediate consequence, if u is null on the set A, one gets
uli,q,0 < CA™IPOPVD 4| 5 g (31)

which is really the main result in Narcowich et al. [40]. This latter bound has known
several precursors in the literature. In a multivariate setting, we first quote the work of
Duchon [30], where r is a positive integer and p = 2. For q=2, these results were
extended to non-integer values of r by Lopez de Silanes and Arcangéli [36] (see also
[22]). We remark that Duchon’s results and their extensions are actually particular
cases of Proposition (1.2.8) and Corollary (1.2.9) in this section. We finally mention that
Bezhaev and Vasilenko obtained (31) forr e N,p =2and q = 2
(cf. [24]).

Madych has also obtained bounds which, formally, are almost identical to (30)
and (31) with 1 = 0 (cf. [38, 39]; the second section is co-authored by Potter). However,
Madych’s bounds are established in a different frame, (1 being a (possibly) unbounded

open set satisfying a specific geometric condition, A a discrete set and u a function
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belonging to a suitable Beppo-Levi space.

In this section, our first goal is to extend Theorem (1.2.1) in two directions. On
the one hand, we enlarge the set of admissible values of r, p and. This has significant
consequences on the range of functions to which the result applies. On the other hand,
we replace the term d~*||lu|,||. by a more general one, better suited to the applications.
To this end, we adapt the original approach of Duchon [30] and we develop some ideas
that were already implicit in [36] (see also [22]). As a matter of fact, in [36] may be
considered as a first statement of (30), in the particular case p = q = 2, but involving
a term better than d = ||u 4]l

Despite their intrinsic interest, Sobolev bounds like (30) and (31) find their main
motivation in the obtaining of error estimates for approximation processes from
Lagrange data, as can be easily verified from the reading of the above cited references.
The present section will not be an exception. We shall derive error bounds for
interpolating and smoothing (m,s)-splines, which include, as particular cases, the
popular thin plate splines. Although our results are not completely new in the literature,
to our knowledge, they have not been previously established in such great generality for
the kind of splines considered here. (cf. [23, 37, and 48]).For any x € R, we shall write
|x] and [x] for the floor (or integer part) and ceiling of x , that is, the unique integers
satisfying x<x<x+1 and x—1<x< x . Likewise, as indicated in Theorem
(1.2.1), we shall write(x ), = max{x, 0}.

The letter n will always stand for an integer belonging to N* = N\{0} (by
convention, 0 € N). The Euclidean norm in R" will be denoted by | - |. For any set O in
R", we shall write O and y, , respectively, for the closure and the characteristic function
of 0. The restriction to O of a function f defined over R®will be simply denoted by f
instead of |, , unless this latter notation be strictly necessary. Finally, for any t € R"
and for any § > 0, we shall denote by B(t,§) and B(t, 8), respectively, the open and
closed balls with centre t and radius 4.

Given N € N*,x € [1,00],b = (by,...,by ) € (RM)" and a real-valued function

v defined on every b; , we shall write

(o)
b; Jif o,
ot = { (2 0 i

1r£1je£]<v|v(bj)| , if x = oo,
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Likewise, if the function v is defined on a finite subset B of R", we let ||[v|g]l, = l[v]pll. ,
b being any card B-tuple obtained by ordering the elements of B .

Given O c R™and k € N, we shall write P,(O) for the space of polynomial
functions defined on Oof total degree less than or equal to k. If = R" , we shall simply
write Py,.

For any open subset Q of R"and for any [ € N, we shall denote by C!(Q) the
space of those functions which, together with all their partial derivatives of orders <

[ are uniformly continuous and bounded in Q. C'(Q) is a Banach space for the norm

Iwllei@ = maxsupxeq |0%v(x)l,

where, for any a = (ay,...,a,) € N*, we write |a|=a;+...+a, and 9% =
alel/ (9x]t - axfl‘"),xl ,...,X, being the generic independent variables in R". If
v € C}(Q), we regard 0%v, with |a| < [, as defined on Q, that is, we identify v with
its unique continuous extension to the closure of Q . Finally, for any 1 € (0,1], C%*(Q)
stands for the subspace of C°(Q)) consisting of functions satisfying in Q a Holder

condition of exponent A. This space is a Banach one endowed with the norm

ol oz, = vl oy = sup 20—
0A5y — = —_— .
R @ X,yEQ |x — y|)L
X#Y

Let (1 be a non-empty open set in R™. For any r € N and for any p € [1, o], we

shall denote by WP () the usual Sobolev space defined by
WwrP(Q) = {velP(Q)|Va e N |a| <1,d%v € LP(Q) }.

We recall that the derivatives 0%v are taken in the distributional sense. The space
WT™P(Q) is equipped with the semi-norms |- |;,q , with j € {0,...,7}, and the norm

Il .0 given,if p < oo, by

P r P
V] p0 = Z jﬂlaav(x)lpdx and ||[vll;p0 = Zlvlinﬂ ’
=0

la|=Jj
or,ifp = oo, by

v|; = max ess sup|d*v d ||lv = ; .
| |],p,.(l =) req pl (x)l an ” ||T,OO,.O. gg]as)s_lvlj,oo,ﬂ

If Q) is bounded, it follows from Theorem in Adams [20] that, for any p;,p, € [1, ] such
thatp; < p,, W™P2(Q) c W™P1(Q) and, for anyv € W"Pz(Q),

Vj=0,,1, |Vljp,0 < (meas@)/Pr=/Pz |y|, o (32)

27



For any r € (0,)\N and for any p € [1,o], we shall denote by W"?({) the Sobolev
space of non-integer order , formed by the (equivalence classes of) functions

v € WP (Q) such that

|0%v(x) — 0%v(y)|P
|17|§-)pg= Z j _y dx dy < oo,
Dy |x — y|n+p(T rD
|al=1r] "¢
if p < o0, and
] 10%v(x) — 0*v(y)|
V|rwq = Max esssu ,
el = S eyent lx — ylr]
X+Yy
if p = co. Besides the semi-norms | - |, o, with j € {0,...,|r]},and | - |, ,, o , the space
W™P(Q) is endowed with the norm
1/p
P P £ 1 <
ol = AP0+ 0E50) i 1<p <en
maX{”vllfy—J'w'Q ) |v|T,OO,Q} ) lf p = .

For any r € [0,), for any p € [1,00] and for any open subset Q of R", the following
imbedding is a trivial consequence of the preceding definitions:

Vi=0,..lrl , WPQ) o W), (33)
where the symbol <stands, as usual, for the continuous injection.

Sobolev spaces have been intensively studied by numerous authors. For related
matters in our section, we refer to Adams [20] (see also Adams and Fournier [21]) and
Grisvard [31], where the main results of the theory are stated. In what follows, how-
ever, we establish certain results that we have not found in the literature formulated in
the exact way that we need. As usual, we adhere to the convention that takes 1/p = 0 if
p = .

From now on, the term domain means a non-empty, connected open set in R".
Likewise, we shall use the expression Lipschitz-continuous boundary in the sense of
Necas [42]. It can be seen (cf, for example, Adams [20]) that any bounded domain
Q cR® with a Lipschitz continuous boundary satisfies, for some 8 € (0,7/2] and
p > 0, the cone property with radius p and angle 8 , that is, for every x € Q , there
exists a unit vector £(x) € R™ such that the cone

{x+hn|neR"n|=1n&x)=cosf,0<h<p}
is contained in () (above, the dot - is the Euclidean scalar product in R™).
Let us recall one of the most important properties of Sobolev spaces, the existence

of an extension operator. Let ) be a bounded domain in R®with a Lipschitz-continuous
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boundary. Then, for any p € [1,0) and r > 0, there exists a linear continuous
operator P from W"P(Q) in W"P(R™) such that, for any v € W"P(Q), Pv|g=v.
Moreover, such an operator P also exists if p = co and r € N(34)
(for the proof, cf. Grisvard [31], if p > 1, and Sanchez [44], if p=1. If r €N and
p € [1,00], see [46]).
Proposition (1.2.2) [19]:
Let 0 be a bounded domain in R"with a Lipschitz-continuous boundary. Let
p € [1,00] and letr be a real number such that r > n/p. Then,
we have
31 e (0,1], WTP(Q) o Co* (Q). (35)
In addition, we have
W™ (Q) o C5(Q), (36)
where C2(Q) is the Banach space of bounded, continuous functions on £, endowed with
the norm ||V||cg(m = Sup,eqlv(®)l.
Proof:
The imbedding (36) is just a particular case of (7) of Adams [20]. In what follows
we shall prove (35).
We first suppose that 1 <p <oo and r > n/p+ 1. Let [l =n/p + 1. Thus, we have
n/p<l<n/p+1,if n/p € N,and | =n/p + 1, otherwise. In the first case, we choose
A € (0,l —n/p] and, in the second, we take A € (0,1) (if p = 1, the value 1 =1 is also
admissible). It is then clear that, by Cases C’ and C” in Adams [20], we get the imbedding
W) o €% (Q). Likewise, since <n/p+1<r , it follows from (33) that
WT™P(Q) o W (Q). The last two imbeddings imply (35).
(b) Let us now assume that 1 <p <o and r € (n/p,n/p + 1). In this case, taking
A =r —n/p, the result directly follows from the relation (1.4.4.6) in Grisvard [31] and
property (34) (cf. [31, Sect. 1.4.4]).
(c) We next assume that p =1 and r € (n,n + 1). Obviously, there exists g € (1, o)
such that [ =r—n+n/q is a non-integer number. By Adams [20], we have
WTL(R") » WhP(R™), which implies, taking property (34) into account, that
wrt(Q) o Wha(Q) (cf. [20, Remark 5 .5 (4)]). Since [, € (n/q,n/q + 1), it follows
from point (b) that W4(Q) & €%*(Q) with A = [, —n/q. The last two imbeddings
yield the result.
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(d) We finally suppose thatp = co. If r > 1, then (35) follows from the chain of
imbeddings

WT,OO(Q) o Wl,,oo(Q) o Wl,Zn(Q) N CO,l/Z(ﬁ)’

which can be derived from (32), (33) and point (b), respectively. If r € (0,1), let us first
see that

WreQ) o Wrr'Q), (37)
with p’ € 2n/r,©) and r"=r—n/p . We observe that 1<p’'< o and that
n/p' <r'<1<n/p’ +1. Let ve W"®(Q). On the one hand, it follows from

relation (2.1) thatv € LPI(Q) and that

1V]g o o < (meas Q)P |v]g wq-
0,p’,Q 0,00,

On the other hand, since the set {(x,y) € (1 X (: y = x} has a null measure, we have

' v(x)—v P’
|17|pl ro — | ( ) (y,)l, dXdy
r,p.Q axa |x — y|n+p r
v(x)—v p' '
— j v(0) (,y),l dxdy < meas(Q x Q)|v|?
axq  1x—=ylPT o

We conclude that (37) holds. From this imbedding and point (b), we deduce that (35)
also holds.
Proposition (1.2.3) [19]:

Let (0 be a bounded domain in R®with a Lipschitz-continuous boundary. Let
p,q €[1,00],r>0 and ly=r—n/p+n/q. If p<q and [, >0, then, for any
[ =0,...,[l,] = 1, we have

WrP(Q) o whaQ). (38)

If r € Nx, this imbedding also holds withl = [ywhen: (i) 1 <p < g <oand [, € N, or

(i) (p,g) =(1Q,0)andr =2n,or(iii) 1 <p = g < .

Proof The imbedding (36) with [ = [, in the cases just mentioned is a trivial conse-

quence of (33) (case (iii)) or follows immediately from Cases A and B in Adams [20].

Hereafter, we assume that p < q and [, > 0. We shall consider two cases.

Case:1<p<qg< .

(a) Let us assume that r € N*. Letl € {0,...,[l,] —1}.Ifr —n/p < lor—n/p = [, Cases

A or B in Adams [1] directly yield (38). If —n/p > [, by Proposition (1.2.2), we have
WTlP(Q)  €°(Q). Thus, we get
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WrP(Q) o ci(Q) » wha(q).

(b) Let us now assume that r € N* and that [, € N*. By Adams [1], we have W"P(R") <
W' d(R" ), and so, by property (34), WP () o Wh4(Q) (cf. [20, Remark 5.5 (4)] and
specially, if p > 1, [31]). The relation (38) is then a consequence of (33) (applied with
= l, ), taking into account that |l,] = [l,] — 1.

(c) To complete this case, we finally suppose that r ¢ N* and that [, € N*. Let ¢’ €
(q,),if g =n,and q' € (q,nqg /(n—q)), otherwise, and letl;, =r —n/p+n/q" .Itis
readily seen that [, — 1 < l; <, . Since l; ¢ N* and [l;] = [, = [l,], the reasoning in
point (b) shows that

vi=0,...,[l,] — 1L,WrP(Q) o wha'(Q).

But Q is a bounded set and ' > q . Thus, the result follows from the preceding relation
and relation (32).
Casell: 1 <p < g = oo.
Letl € {0,..., [ly] — 1}, where l, = r — n/p. Thus, sincer — [ > n/p, by
Proposition 1.2.2, we have
WP Q) o C0(Q) o L (Q) = W o).
This imbedding implies (38).
Remark (1.2.4) [19]:

The statement of Proposition (1.2.3) is limited to the cases needed in this
section. There is, however, one exception. In the proof of Theorem (1.2.8) we shall
require the relation (1,4,4,5) in Grisvard [31], which establishes that (38) holds under
the following conditions: 1 <p < q < o, and r and [ are non-negative real numbers
suchthatr —n/p=101-—n/q.

Let us begin with a result slightly different from one by Duchon (cf. [30]).
Proposition (1.2.5) [19]:

Let Q) be a bounded open subset of R"satisfying the cone property with radius p
and angle . Then, there exist constants M > 1 (depending on 6 ), M; > 1 (depending on
n and 8 ), 4, > 0 (depending on p and 6 ), and M, > 1 (depending on n and diam )
such that, for any 1 € (0, Ay], there exists T; c Q satisfying
(i) VtETL,B(t,) cQ,

(i) @ € Ueer, B (t, MA),
(iii) ZtET,l XB (M) = My,
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(iv)cardT) £ MA™.
Proof:

It has been shown by Duchon that (i), (ii) and (iii) hold if one takes M = 2(1 +
sin@)/sinf , M; = (MVn+ 1), 1, = p/M , and, for any A € (0,40], Ty = {t € vAZ"™ :
B(t,1) c O}, wherev = 2/vn. Let us see that (iv) also holds. Since € is a bounded set, it
is contained in an open hypercube C with sides of length L = diam Q. Let M, = L"v™" .
Then, it is clear that

card Ty < card(CNnvAZ™) < L/(vVA)™ = M,A7",

which completes the proof.
Let us now recall a more or less classical result.

Let (1 be a bounded domain in R*with a Lipschitz-continuous boundary. Letp €
[1,00], r > 0and k = [r] — 1. Then, there exists a positive constant C such that

. ; _ <
Vv € WP (Q), wgir(ln)”v Yllypa < Clvlpa (39)

(for the proof, cf. Ciarlet [26], if r € N*, and Sanchez and Arcangéli [45], otherwise).
Proposition (1.2.6) [19]:

Let 0 be a bounded domain in R®with a Lipschitz-continuous boundary. Let
p €[1,o), r>(n/p—n/2), and k = [r] — 1. Then, there exists a linear operator
PwWmP(Q)-> W™ (R") + P, and a positive constant C such that, for any v €
W™ (Q),Pv|g = v and | F)‘Ulr'p']]gn < C|v|;p, - Moreover, such an operator Palso exists
ifp=ocandr € N*.

Proof:

Let I and P be, respectively, the identity operator in W"P(£1) and the extension
operator from W"P(Q1) into W"P(R") introduced in relation (34). Likewise, let us
denote by IT, and , respectively, the orthogonal projection operator from L?(£) onto
P,(Q2) and the operator that assigns to any polynomial function over (1 the same
polynomial function over R™. Finally, let T be the linear operator of the continuous
imbedding of W"™P(Q) into L?(Q). We note that, if 2 > p, the existence of T is a
consequence of Proposition (1.2.3) (applied with ¢ = 2 and [ = 0), whereas, if 2 < p,
taking into account that Q is bounded and relation (32), we obviously have WP (Q) c
IP(Q) < L2(Q).

Following Geymonat (cf. Strang [28]), let us consider the operatorP = P(I — IT},), +

Ell, , where I, = IT,T . It is clear that P is a linear operator from W™?(Q) into
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WTP(R™) + Py . Sincell, v € P,(Q), for any € W™P(Q ), we deduce that Pv|q = v.
Let us now see that there exists a constant € > Osuch that, for any v € WP (Q),
|Pv|, prn < C|V|ypq - To this end, we first remark that
Vv € WP(Q), Pyl ppn = [PU = M)Vlrpre < IPU = Ti)vllrpme
since the semi-norm | - |,.,, gn is null over P, . Then, by definition of P and Iy, there
exists C > 0 such that
Vv € WP (Q), V9 € Py (Q), 1PVl pn < CIIA ~ )@ = )l o

The result then follows from relation (39) and the continuity of the operator
[ — I, : WrP(Q) - WTP(Q).
The following proposition is strongly based on a result due to Duchon (cf. [30 Lemma)),
with additional ideas drawn from [36] (see also [22]).
Proposition (1.2.7) [19]:

Let 0 be a bounded domain in R" with a Lipschitz-continuous boundary. Let
p € [1,0] and let r be a real number such that r >n/p,if p>1,orr >n,ifp = 1.
Likewise, let k = [r] — 1 and R = dimP, . Finally, let B ¢ Q% be a compact set of P,-
unisolvent & -tuples. Then, for any x € [1, o], there exists a constant C > 0 (dependent
on(,B,r,pand x ) such that

Vb €B YW EW™(Q),  Illpa <C([0lpat Wl .
Proof:
(a) Forany = (b, ,...,bg) € B, let I1” be the Lagrange P, -interpolating operator,
defined, for any v € W "P(Q), by
M°v € P,(Q)and, forj=1,....,K,1°v(b) = v(b)).

By Proposition (1.2.4),1 — I1? is alinear continuous operator from W "7 (Q) into
W "P(£). Hence, for any € B, there exists a constant C (b) such that
v eW (), v —1vlpa < C BVl pa -
(b) Let us prove that
Suppep C(b) < (40)

To do this, it is sufficient to show that, for any v € W "P(Q), the set { [1’v : b € B }is
bounded in W "P (). The relation (40) then follows by applying the Banach- Steinhaus
Theorem to the family of operators (I — I1?) ,¢p.

Let p;,..., pg be a basis of P,({) and, for any € B , let us consider the matrix
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M(b) = (p;(by))

Denoting by m; ;(b) the generic element of the inverse matrix (b)~! , for any

1<ij<& We remark that M(b) is regular, since b is Pi-unisolvent.

v € W"P(Q), we have
&

v = Z v(b;)mi; (b)p;. (41)

ij=1

Now, on the one hand, v € W"?(Q) is continuous on Q (in fact, on Q if r > n/p) and, on

the other hand, since matrix inversion is a continuous operation, each function m; jis
bounded on the compact set B . We deduce that, for any v € WP (Q), ||[[1°v|| p,Q
remains bounded when b varies in B and so (40) holds.
(c) Since
Vb € B,YY € P,(Q), 1° ¢y =, (42)
by points (a) and (b), there exists a constant C such that
Vb EB,YY EW™ )V EP(D), v =10l pa < Cllv =Pl po.
This inequality and relation (3.1) imply that
vb € B,vv € WP(Q), [[v—1'll, 0 < Clvlrpa, 43)
with C dependingon Q, B, r and p.
(d) Let us now see that, given x € [1, 0],
3C > 0,Vb € B,V € P(, [l rp0 < C Il I, (44)

with C dependingon Q,B ,r,pand x.
Letb* = (b3,...,bg) be a fixed K& -tuple of . It follows from (41) and (42) that, for any
b € B and for any Y € P (),

W (D)., (be))T =MbY M (b)™ (@ (br), ..., P(b))"
where the super-index T means transposition. The compactness of B and the continuity
of the operator b € B — M (b*)M(b)~! imply the existence of a constant C > 0 such
that

Vb € B,V € P (D), [¥lp+ll < Cllgplpll - (45)

Likewise, the mappings  — [[¥|l;, o and ¢ + |[{p|,+|l,, are both norms on the finite

dimensional space P, (). Thus, there exists C > 0 such that
VY € P (), IPllrpa < C [I9lpell - (46)

The relation (44) follows from (45) and (46).
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(e) Forany b € B and forany v € W"P(Q), itis clear that

”v”r,p,ﬂ < ”17 - Hbv”r,p,ﬂ + ”Hbv”r,p,ﬂ '

The result is then a consequence of this relation, (43) and (44).

We conclude this section with a proposition that extends a well-known result by
Duchon (cf. [30]; see also [22]).

Proposition (1.2.8) [19]:

Let p,q,x € [1,00] such that < q . Let r be a real number such that r > n/p, if
p>1,orr=mn,ifp=1. Finally, letk=[r]—-1, S=dimP, and [ =r—n/p+n/q .
Then, there exists R > 1 (dependent on n and r ) and, for any M’ > 1, a constant C
(dependent on M',n,r,p,q and x) satisfying the following property: for any d > 0 and
any t € R" , the open ball B(t, Rd) contains & closed balls B;,..., Bgof radius d such
that, forany v € WP (B (t,M' Rd)) ,forany b € ]_[?=1 B;and forl =0,...,[ly] — 1,

V1108 m Ra) < C(dr_l_n/p_n/q|v|r,p,§(t,M'Rd) +d™V v, ). (47)
If r € N*, this bound also holds with [ = [ywhen either p < g < o and [ EN, or
(»,q) = (1,),0rp =gq.
Proof:
(@) Let b° = (b?,...,b2) € (R")® be a Py-unisolvent & -tuple. Since the subset of
(R™* formed by all the Py -unisolvent & -tuples is an open subset of (R™)® (cf. [30 proof
of Proposition 2]), there exists 1, > 0 such that any & -tuple b € Hf‘zlé(b]p,ro) is Py-
unisolvent.

By a homothecy of reason 1/r, , writing @; = (1/7, )b? , we obtain & balls E(o?j ,1)

such that the product B € Hf‘zlé(&j ,1) is a compact subset of (R™)® formed by P, -
unisolvent K-tuples. The set Uf‘zl E(o?j ,1) is bounded and so contained in an open ball
B(@, R) whose radius R > 1 depends onn and k, and hence,onn and r .
(b) Let M > 1 and let ., = [ly] — 1, except in the cases cited after (47), for which we
take l.x = [p . Applying, in order, Proposition (1.2.5) and Proposition (1.2.7) (with
QA =B(a,M R) in both cases and B = B in the second), we deduce that, for any beB,
forany ® € W™P(B(a,M' R)) and forl=0,..., .

191,4.58amr) < C(lﬁlr,q,é(d,M'R) +191511..), (48)

with C dependingon M ,n,r,p,q and x.
(c) For any d > 0 and any € R", let F¢ d be the invertible affine mapping x - t +
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d(x — @). This mapping transforms the ball B(@, M'd) into the ball B(t, M'Rd) the ball
B(@,R) into the ball B(t,Rd) and, for any j = 1,..., &, the ball B(&;, 1), into a closed
ball B; of radius d contained in the ball B(¢, Rd).

For any v € W™P(B(t,M'Rd)) and any b = (by,...,bg) € [[%,B;, we write
voF@ and b = (by,..., bg), where, for j = 0,..., &, b; = (F)7(b)). It is clear that

D
v(b;) = 13(13]-). Then, it follows from the rules of change of variables in semi-norms (cf.
Ciarlet [26] for the integer case, and Sanchez and Arcangéli [45], for the non-integer
one) that there exists a constant C (depending on n,r,p and q ) such that, for any

integer [ = 0,..., l,,,x max and for any v € W™P(B(t, M'Rd))

vl 80em ray < CA™ D0 5am'a
and
101 ,q.8am'ay < CA™ V], 4 peem'ray
Taking into account that ||9|;l[, = llv|ll, I, the result then follows from (47) and the

last two relations.

Throughout this section we denote by ( a bounded domain in R"with a
Lipschitz- continuous boundary. As mentioned in Sect. 2, for some 6 € (0,7/2] and
p > 0, the domain Q satisfies the cone property with radius p and angle 6 .

Likewise, for any finite subset A of O, we write §(4,Q) for the Hausdorff distance
between A4 and Q, also known as fill distance, which is given by

(4, K_l) = SUPyeq Mingey [X — al. (49)

Theorem (1.2.9) [19]:

Let p,q,x € [1,]. Let r be a real number such that r > n, if p=1,r > n/p, if
1<p<o, or reN", if p=oo. Likewise, let [y =r—-n(1l/p—1/q)y and y =
max{ p, q,x }. Then, there exist two positive constants d,.(dependent on 6,p,n and r )
and C (dependenton Q,n,r,p, q and x) satisfying the following property: for any finite
set AcQ (or Ac Q if p=1 and r=n) such that d =5§(4,Q) <bd,, for any
u € WrP(Q)and foranyl =0,... [l,] — 1, we have

[uli g o <Cd" APV | 0 +d ™ Hlul4ll, (50)

If r € N, this bound also holds with [ =1[;, when either p < g <o and [, €N, or

(»,q) = (1,0),0rp = q.

Proof:
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We shall consider three different cases.
Casel: p< g < .
Let M > 1,M; > 1,4, > 0 and M, > 0 be the constants given by Proposition (1.2.5),
and, for any 4 € (0, 4y], let T; be the subset of (L whose existence is also assured by that
proposition. Likewise, let R > 1 be the first of the constants provided by Proposition
(1.2.8). We let b, = 4,/ R, which is obviously a constant that depends only on 6 , p, n
and r . Finally, as in Proposition (1.2.8), we let k = [r] — 1 and = dimP;, .

Let us consider any finite set A c Q (or A € Q if p =1 and r = n) such that
d=26(AQ) <bd, . We note that <1, . Given € Tr, , by (49), there exists K-tuple
a‘ti € Hf‘zl(Bj,n A), where By, ..., Bg are the closed ball associated with d and t by

Proposition (1.2.8). We remark that abelongs to Q% K, since, by Proposition (1.2.8) and
point (i) of Proposition (1.2.5),forj = 1,...,& B; c B(t.Rd) c Q.

For any u € WP (Q), we write @i = Pii, where P stands for the operator defined
in Proposition (1.2.6). Since it € WP (R") + P, , it is clear that @& belongs to WP (0O) for
any bounded open subset O of R". Let l,,,,, be defined as in the proof of Proposition

(1.2.8). By point (ii) of Proposition 1.2.5, for = 0,..., Ljqx , We get

~ ~14
|u|l,q ko) < |u|l,q,UteTRdE(t,M Rd) < Z |u|l,q,§(t,M Rd) |
t€TRg

from which, applying Proposition 1.2.8 with M’ = M, we obtain

1/q
)q
x )

where C is a constant that depends on 6 (through M ), n,r, p, q and x. Applying

luly g0 < Cd™17t < Z (dr_n/p|ﬁ|l,q,UteTRdE(t,MRd) + ”ﬁ|a§i
t€T R4

Minkowski’s inequality for the discrete space £, we derive the relation

lul; g0 < cdvat(@vi-lg, + S,) (51)
with
1/q 1/q
~1q _ ~ q
S, = Z |u|r,p,§(t,MRd) and &, = Z ||u'|a§i |x
t€TRq t€TRa

Next, we shall bound above S;and &,.

On the one hand, by Jensen’s inequality, we have
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1/q

~ P
61 = Z |u|r,p,§(t,M Rd) (52)

t€T R4

If r € N, we deduce from point (iii) of Proposition (1.2.5) that

1P
Z |u|r,p,§(t,M Rd)
t€TRg
- xmmd)(z Ia“a(xnp) dx
R |aT=r

t€T R4
=[ [ xstmra (Z |aaa<x)|p> dx
R™ t€TRa |a|=r
< Mlj (Z |6“ﬁ(x)|p> dx = My|al} g,
R™ \|aT=r

which obviously implies, together with (52), that

S < M, Pluly p g (53)
If r ¢ N, a similar reasoning shows that (53) also holds, taking into account the
definition of the Sobolev semi-norms of non-integer order r and that, again by
Proposition (1.2.5)

tETR4

WhereQ(t) = B(t, MRd) X B(t, MRd)

On the other hand, using Holder’s inequality, if < x < oo, or Jensen’s inequality, if > x,
as well as points (iii) and (iv) of Proposition (1.2.5), we get

1/x

S, < (cardTgy)/a=1/%)+ Z ”ﬁ'a?

t€T R4

x
x
1/x

_ _ _ ~ X
< (M,R~"d—™)(1/a=1/x)+ Z ”ulAnQnE(t,MRd)”x
t€T R

< My* (MuR™d ™) Y4 YD+ 1] gg .
Of course, if x = oo, we simply have
S, < (cardTeg)® max ||l ]| < MRTA"™ Y] 4l
tETRd t oo

Therefore, from (51), (53) and the two preceding relations, we deduce that
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luligo < C@™PHDa], g+ M a1, (54)
where y = max{q ,x} and C is a constant that depends on 8 ,n,7,p, q and x. The result
then follows from Proposition (1.2.6).

Casell:p < q = .
We keep the notations in Case I. A similar reasoning now yields

luliga < |ﬁ|l,oo,uteTRdE(t,M Rd) = trg%)ilﬁll,oo,é(t,M Ra) = Cd™1(d" PG, + G),

Where C is a constant that dependson 8 ,n,r,p,q = o and x,

G, = maXtETRdlulr,p,E(t,M Rd)) and &, = maXeery, |u|a§i

x

If p < oo, it is clear that (53) still holds, which leads again to (53). This relation directly
holds if p = oo. Likewise, we can immediately check that S, < ||ii|,]|, . We derive the
relation

[l g < €A™ P 11l g + AL,

from where we obtain (50) by Proposition (1.2.6).

Caselll: p > gq.
On the one hand, by the two preceding cases, there exist two positive constants
b, (depending on 6,p,n and ) and C (depending on Q,n,r,p and x) satisfying the
following property: for any finite set A ¢ Q such that d = §(4,Q) < d,and for any
u € WrP(Q), we have

VI=0,..,1r] [ulpe < €A™ il pa + d™7 lulall),
where y = max{ p, x }. On the other hand, it is clear that, by (32),

VI=0,..lrl|ulgq < (meas QYIYP Ju|, ,q.

Thus, in this case, the theorem results from the last two relations.
Remark (1.2.10) [19]:

The choice of x is completely open. When x = oo, we find again, under weaker
hypotheses, the result obtained by Wendland and Rieger [50]. As we shall see later, the
optimal value for getting estimates for smoothing (m, s)-splines is x = 2.

Corollary (1.2.11) [19]:

Suppose that p,q,r and [, are defined as in Theorem (1.2.9). Then, there exist

two positive constants d, (dependent on 8 ,p,n and r ) and C (dep- endenton Q,n,r,p

and q ) satisfying the following property: for any finite set A € Q (or A € Qif p = 1 and

39



r =n) such that d = §(4,Q) < b,, for any u € W™P(Q) such that u|, = 0 and for any
l=0,...,[l,] — 1, we have

[ul g 0 < €A™t/ 2=y, g .

If r € N*, this bound also holds with [ = [,when either p < g < 0 and [, € N, or
(»,q) =(1,2),0rp 2 q.
Proof:
It suffices to apply Theorem (1.2.9).Let m and s be, respectively, a positive integer and
areal number such that
—m+Z<s <> (55)

We write H° for the space
Hs = {v €S0 €Ll (R"), |E12519(8)|? < 00},
]Rn

where S'is the space of tempered distributions in R"and ¥ stands for the Fourier

transform of v. Then, we denote by X™* the Beppo-Levi space

X™S =p €D Va €N*,|a| =m,0% € H® ,

D'being the space of distributions in R". Endowed with the semi-norm

| 1/2
[Vl s = ( > = jwwlzsla’a‘v(s)lz) ,
la|=m

where a!=aq! - a,! if a=(ay,...,a,) EN", X™® is a semi-Hilbert space (cf.
Duchon[10], where X™* is denoted by D~*H*(R™)). In fact, X" can be handled as a
Hilbert space thanks to the following result: for any bounded domain Q* ¢ R" , the
mapping

)1/2

-5 s: v € X™ o (IIvllg 50 + V]2 (56)

is a Hilbertian norm on X™° whose topology is independent of Q* (cf. [22]). From now
on, we shall assume that X™°is endowed with a norm |||/, 5, without making any
particular reference to a which we shall simply write |||, particular open set Q-
(except in Proposition 1.2.12).

Once equipped with the norm |||, s , the space X™* enjoys the following property
(cf.[22]).For any bounded domain (. € R"with a Lipschitz-continuous boundary, the
operator R, of restriction to Q is linear and continuous from X™* onto W™+$2(Q).

As shown in [3], the following imbedding also holds:
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X™S o CO(RM) (57)
We conclude this subsection with a generalization of an extension theorem by
Duchon (cf. [30, Lemma 3.1]).
Proposition (1.2.12):
Suppose that (55) holds. Let Q be a bounded domain in R® with a Lipschitz-

continuous boundary. Then, there exists a linear continuous operatorp: W™+s2(Q) —

X™S such that
VfeW™mts2(Q),  PBflg = f.

Moreover, ifs < 0, then there exists a constant C > 0 such that

Vf € WM2(Q), |Bflms < Clflmss2a (58)

Proof:

Since we can freely choose the open set Q" to define by (56) the norm
-lls = Il s , we take Q* = Q . We denote by ((+,-))ms and (-, )ms , respectively,
the scalar product and the scalar semi-product associated with the norm||-|,,, s and the
semi-norm |+, .

Forany f € Wm*$2(Q),let K, f = {v € X™ | v|q = f}.Since [I-lZ,s and |-13;
differ only in a constant on 7~Cf and this set is non-empty, convex and closed in X™* , by
the Orthogonal Projection Theorem, there exists a unique element Pf € f}~Cf0f minimal
semi-norm ||, s in f}~Cf , which can be equivalently characterized by the relation

PBf € 7~Cf and, allw € K,, (Bf, W)ns =0, (59)

where Ko ={ve€X™ |v|p=0}. In this way, we have defined an operator

:WMFS2(Q)) - X™S , whose linearity follows from (59)

Now, let us see that P is continuous. Let (f;) jey € W™*52(Q) be any sequence such that
af e WMHS2(Q), f; = f InW™*+s2 (Q), (60)
Ju € X", Bf; - winX™. (61)

For any € K, , it follows from (59) that, for any j € N, ((Bfj,w))ms = 0, which implies,

together with (61), that (u,w),,s = 0. Likewise, by (56) and (59), we have f; =

Bfila = ulq in L*(Q). From this fact and (60), we deduce that = u|q, that is, u belongs

to K; . By (59), we conclude that = Bf . Consequently, the graph of PBis closed in

wm+s2(Q)) x X™S By the Closed Graph Theorem, the operator 9B is continuous.
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Let us finally suppose that s < 0 and prove (58). Let k = [m + s] — 1. Since
k <m—1,foranyy € P,(Q), we have BY = E 1y, where E is the operator that assigns
to any polynomial function over Q) the same polynomial function over R™. Thus, since 8

is linear and continuous, for any f € W™*52(Q), we have

Vi € Pr(Q), |€Bf|m,s =|Bf—EY |m,s = |PB( — w)lm,s
< ||$(f - ¢)|lm,s < C”f - 1)[)” m+s,2,Q

with C independent of f and ¥ . The result then follows from (39).
Assume that (55) holds. Given an ordered, finite subset A of R"and a vector
= (By)qea € R4 we call interpolating (m, s)-spline relative to 4 and 8 any solution,

if any exists, of the problem: find f4A such that

fA € :KA,[? and |fA|m,s = infveJCArﬁlvlm,sr (62)

Where X,z = {v € X™°|v|, = B}. Likewise, given, in addition, a positive real number
g, we call smoothing (m, s)-spline relative to 4, f and ¢ any solution, if any exists, of the

problem : find f# such that
feA € X™* and JA,,B,E(feA) = infyeyms JA,,B,E(U) (63)

where the functional J,43,: X" > Ris given by
Jape() = Laealv(@) = fal? + €lV|70s.

We observe that X g and J, 3, are well defined thanks to relation (59).

We recall some relevant facts about both kinds of (m,s)-splines (cf, for example,
Duchon [29] or [22]). If A contains a P,,,_;unisolvent subset, problems (62) and (63)
have unique solutions f4 and f# , respectively. Both min- imization problems admit
equivalent variational formulations. Therefore, problem (62) is equivalent to

f4 € Kypand, forallw € Ko, (f4 , W)ms = 0, (64)
withK,o = {v € X™° | v|, = 0}, while problem (63) is equivalent to

fA € X™S and, for allv € X™5, ¥ pca fA(@v(a) + e(fA V) ms = Laea Bav(@).
(65)

It follows from (65) and (66) that f4 and f# belong to the space S, = {v € X™* |Vw €
Kpo,(v,w)ms =0}, called space of (m,s)-spline functions relative to A. It is well

known that every element v of S,can be written in a unique way in the form
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v() = ) 2, 0(x—al) + p),

a€eA

where ¢ is the conditionally positive definite basis function
—1)Vp2v | ifvN
0(p) = { Ol !
(=Dv " p“*logp, if veN
with v = m + s — n/2, the function ¥ belongs to P,,_; , and the coefficients 4, satisfy
the vanishing moment condition

VvEP, |, Z/lav(a) ~ 0.

a€A
We recall that S, c C?V1=1(R™). We finally remark that the most popular (m, s)- splines
are those corresponding to the case s = 0, also known in the literature as
polyharmonic, surface or thin plate splines, as well as D™ -splines over R". These
splines belong to € ?™~17"(R™). For s = (n— 1)/2, one gets the pseudo-polynomial
splines, which belong to € 2™~2(R™).

Throughout this section, we denote by ( a bounded domain in R"with a
Lipschitz- continuous boundary. We start with an auxiliary result and then we establish
our main result on error estimates for interpolating (m, s)-splines.

Lemma (1.2.13) [19]:

Suppose that (55) holds and let = dimP,,_; . Then, there exists a constant n > 0
verifying the following property: for any finite set A € Q such that §( 4,Q) < 7, there
exists a P,,,_; -unisolvent M-tuple a € A™ satisfying

Vo € XM, ol ms < [Wllams < Collvllms,

where |||l . s is the norm given in (56), [[']]gms is the norm defined by

o € X7, [0]]gms = (Ivlallf + )
And C; and C, are positive constants independent of A and v.
Proof:
Cf. [22].
Theorem (1.1.14) [19]:
Suppose that (55) holds and let
p* = min{7, dp4s } (66)

where 1 and d,,,¢ are the constants provided by Lemma (1.2.13) and Theorem (1.2.9)

(applied with r = m + s), respectively. Then, we have:
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For any finite set A c Q such that §(4,Q) < d* and for any € W™*52(Q), there exists
a unique interpolating (m, s)-spline f 4 relative to A and (f(a))gec 4 -

Letq € [1,0]and [, =m +s—n(1/2—1/q),. Then, there exist two positive constants
C, and C, satisfying, for any finite set A € Q such that d = §(4,Q) < d*, for any
fewmtsz2(Q)andforalll = 0,..., [, —1,

|f - fAll,q,.Q < Cldm+s_l_n(1/2_1/q)+|f - fA|m+s,2,Q
S Czdm+s_l_n(1/2_1/q)+||f||m+s,2,.(l, (67)

where ||fll 4520 can bereplaced by |f| 4520 if s < 0. These bounds also hold with
=1, ifm+seN’l,eENandqg < co.
Proof:

Let A be any finite subset of Q such that d =8(4,Q) < d* and let f €
wm+s2(Q).
(i) It follows from Lemma 6.1 that A% contains a P,,_; -unisolvent M-tuple. In other
words, A contains a P,,_; -unisolvent subset and, consequently, as mentioned, f A exists
and is unique.
(ii) We first observe that, f4belongs to W™*S2(Q). Applying Theorem (1.2.9) (or, even
simpler, Corollary (1.2.11)) with r=m+s, p=2 and u = f — f4, we get the first
inequality in (67). Let us prove the second one. By Proposition (1.2.12) and Lemma

(1.2.13), we have
|f - fAll,q,Q < CllliBf - fA”m,s < Cz [[iBf - fA]]a,m,s'

with Cjand C,independent of f and A. Since f2|4 = f|s = Bfls, we get [Bf —
fAlams = |f — f%ms - Likewise, from (64), we derive that |Bf — f4|ns < IBf lms
. Thus, we get |f — f4|mts20 < 2 |Bf |ms - Inserting this bound in (67) and applying
Proposition (1.2.12), we obtain the result.

We finish with a generalization of the error estimates given in [46] and [22Z,
Corollary II-7.1]. To state it, we may consider, without loss of generality, that any set A
in Theorem (1.2.14) is, in fact, the generic element A¢ of a family of subsets of Q. More
precisely, we suppose that D is a subset of (0,d*], with d*given ,such that 0 € D, and
(A% 4ep is any family of finite subsets of Q such that, forany d € D, d = §(4%, Q).

Corollary (1.2.15) [19]:
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Suppose that (55), (66) and (68) hold. Letq € [1,0] and [ =m +s— n(1/2 —
1/q),.Then, forany f € Wm*S2(Q)and foralll = 0,..., [l,] — 1, we have
|f _ fAll 0= 0 (dm+s—l—n(1/2—1/q )+) ) d - 0

Where, for any d € ), f4denotes the interpolating (m, s)-spline relative to A%and
(f (a@)) geqa- This error estimate also holds with [ = [jif m + s € N*,[; € Nand g < oo.

In addition, we have

If = flmssza=01), d-0.

Proof:

For any f € W™m+$2(Q), it directly follows from (57) and [22] (see also [29])

that lim, _,, ||f - fAd ” = 0. This relation and Theorem (1.2.14) yield the result.

m+s,2,0
Remark (1.2.16) [19]:

Results like Theorem (1.2.14) and Corollary (1.2.15) are not new in the
literature. Similar results, for particular cases of the parameters g and s, can be found,
for example, in Duchon [30] (case s = 0 and q = 2), Lopez de Silanes and Arcangéli
[46] (case q = 2), Wu and Schaback [51] (case q = o0), Light and Wayne [35] (case s =
0), Johnson [32] (case s = 0), and Narcowich et al. [40] (cases = 0).

Remark (1.2.17) [19]:
The L7 -approximation order provided by Corollary (1.2.15) is not optimal in all

cases. For (m, 0)-splines, Johnson (cf. [33] and references therein) has proved that

If =f*loga= 0(d™V9), d -0

under the following conditions: Q has the uniform C ?™ -regularity and f belongs to the
Besov space Bzyflqﬂ/q ,with1 < ¢ < 2.

Let (2 be a bounded domain in R®with a Lipschitz-continuous boundary. We first
establish, for smoothing (m, s)-splines, a result analogous to Theorem (1.2.14).
Theorem (1.2.18) [19]:

Suppose that (55) holds and let d* be the constant given by (67). Then, we have:
(i) For any finite set A € Q such that §(4,Q) < bd*, forany f € W™*52(Q) and for any
& > 0, there exists a unique smoothing (m, s)-spline f4 relative to 4, (f(a))aea and €.

(ii) Letq €[1,], x € [2,00],l =m+s—n(1/2—1/q), and y = max{q, x}. Then,

there exist two positive constants C; and C,satisfying, for any finite set A ¢ Q such that
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5(A,Q) < v forany f € W™*s2(Q),foranye > 0,andforalll = 0,..., [[j] — 1,

|f - ﬁ:All,q,.Q < Cl(dm+s_l_n(1/2_1/q)+|f - ﬁeA|m+s,2,Q + dn/y_lgl/2||f||m+s,2,.(1,) (68)

and, wheneverd < 1,

|f - ﬁ:All,q,.Q < Cz(dm+s—l—n(1/2—1/q)+|f - ﬁeA|m+s,2,Q + dn/y_lgl/z)”f”m+s,2,ﬂ, (69)

where |[fll;n+s20 can be replaced by |f|mn4s20 if s < 0. Both bounds also hold with
l=1ifm+s €Nl €Nandqg < .
Proof:

Let A be any finite set in Q such thatd = §(4, Q) < d*, let f € W ™52(Q) and let
e>0.
(i) By Lemma (1.2.13), the set A contains a P,,_; -unisolvent subset and so f A exists
and is unique.
(ii) We first remark that, by (64), f;4 belongs to f € W ™*$2(Q). Now, it follows from
Proposition (1.2.12) and (64), taking B(f (a))4e4 and = Bf , that

IC(f = fDlallZel f 7s < 1B 170,
from which we deduce that
|f s < IBf17s (70)
and, together with Jensen’s inequality since x > 2, that
I = D alle S NG = £DNallz < e2IBf s, (71)

This last bound, Proposition (1.2.11) and Theorem (1.2.9) (applied withr =m + s,p =
2 and u = f — f#) yield (68). To complete the proof, we observe that, by Proposition
(1.2.12) and Lemma (1.2.13), we have

If = f lmasza < allBf = fllns < 2[Bf = £ ams (72)
with ¢; and cyindependent of f,A and €. As f|, = Bf |, , if follows from (70), (71) and
(72) that

If = ff sz < 2¢2(1 + €2 |Bf s (73)
Since +s —n(1/2—-1/q), > n/y,wheneverd < 1, we finally derive (69) from (68),
(73) and Proposition (1.2.12).
Remark (1.2.19) [19]:

Theorem (1.2.18) can be considered as a generalization of previous results by

Lopez de Silanes and Arcangéli [46] (case s arbitrary, ¢ = x = 2) and Wendland and
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Rieger [50] (case s = 0, g arbitrary, x = ©0).

As in Sect. 6, we now turn our attention to error estimates stated in terms of a
family (A%)4ep of subsets of Q satisfying (68). We need, in addition, two main
hypotheses The first one concerns the smoothing parameter €. We assume that ¢ = ¢(d)
is a strictly positive function of d verifying the relation

e =o0od™), d - 0. (74)

Note that assumption (74), quite reasonable from a practical point of view, is not really
a restricting condition, since ¢ has not to go to 0 as d does and may even be unbounded.
This last point is very important. On the one hand, the convergence theorem (1.2.18)
(see below) holds for unbounded ¢’s. On the other hand , in the case of noisy data, the
convergence requires that € (suitably) increases to oo.

Later, we shall also make use of the condition

N=0@d™), d - 0, (75)

where N = card A% (to simplify, we write N instead of N(d)).
Remark (1.2.20) [19]:
Let us explain in some detail the meaning of hypothesis (75). From (68), it is
easy to check that
3C > 0,vd € D,Nd™ = C. (76)

Hence, hypothesis (76) implies that,as d — 0, N tends to oo at the same rate as d™" . So,
hypothesis (76) means that, asymptotically, the points of A% should be regularly
distributed in Q.

Consider an example. Let Q be the rectangle (0,2) x (0,1) in R?. First, for anyv € N*,
subdivide Q into 2v? equal squares and define A%as the set made up of 2v?points, such
that each square contains just one of these points. One easily verifies that 1/(vV2) <
d <V2/v. So Nd? < 4, and (75) is satisfied. Next, subdivide  as follows: the square
(0,1) x (0,1) is subdivided into v?equal subsquares, and the square (1,2) X (0,1) into
v*equal subsquares. Define A%as previously, each sub square containing just one point
of the set A%. Here, we have N = v? + v*whereas d is unchanged as soon as v > 1, so
Nd? = (1/2)(1 + v?) and (75) is not satisfied.Before establishing new error estimates,
we recall a convergence result.

Theorem (1.2.21) [19]:
Suppose that (55), (69) and (76) hold. Then, we have
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vf € Wm2(Q), lim

A -wf]| =0

where, for any d € D, fEAd denotes the smoothing (m, s)-spline relative to
A%, (f(a))geqe and e.
Proof:
cf. [22] (see also [46] and [47]). The following theorem provides error estimates for
smoothing (m, s)-splines. It has been previously proved by Utreras [48] when s = 0 and
q=2.
Theorem (1.2.22) [19]:
Suppose that (55), (68), (74) and (75) hold, and assume that
3C > 0,e=Cd*™*2z ™ d - 0. (77)

Let g € [1,0) and letl, = m +s —n(1/2 — 1/q),. Then, for any f € W ™*52(Q) and for

anyl =0,...,[l,] — 1, we have

[f = f, 0 = O OO, d s, (78)

where = (¢/N)Y/2m+25) [n addition, we have

IF - 2| =0o(1), d—0. (79)

m+s,2,Q
Remark (1.2.23) [19]:
From (74) and (76), it is readily seen that

e/N=0(), d - 0. (80)

Thus, the error estimates (78) make sense. Let us point out that the convergence result
of Theorem (1.2.22) does not need ¢ — 0.

Proof of Theorem (1.2.22):

Let f € wm+s2(Q). It follows

=1 =0 @1)

m+s,2,Q

This implies (79). Now, let [ € {0,...,[l,] — 1} and let us see (78).

i

LetA =1+n(1/2—-1/q),, which is a real number belonging to [0,m + s). We remark
that

w2 (Q) o wh(Q) (82)

For g < 2, this imbedding is just a consequence of (32). For g > 2, we can apply the

relation (1,4,4,5) in Grisvard [31]. By (82), there exists a positive constant ,
independent of f and d , such that
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i —f;‘d|l'q'Q <|r —ngdHl'q'Q scs|r-r -
Consequently, in order to establish (78), it suffices to prove that
= f;4d||l'2'Q = 0™, d - 0 (83)

with = (g/N)Y/(@m+25) The case A = 0, which happens for [ = 0 and q < 2, is easy to
handle. By (69), choosing x = 2, and (77), it is immediately checked that

d
|f_f£A |129= O(dn/zgl/z)’ d - 0.

Thus, taking (75) into account, we get

lf =) | = 0em My = 0@, d -0 (84)

02,
which is just (83) for4 = 0.
Let us finally discuss the case 4 > 0. From Grisvard [31], there exists a positive

constant K such that, for any @ > 0 small enough and for any v € W™m+s2(Q)

IVll320 < allvllmisz + Ka™ M+ Dvllg,q (85)

It follows from (72) and (74) thatt — 0 as d = 0. Thus, for any d € D small enough, we

can replace a by t™*5~4in (85). By taking, in addition, v = f — fEAd ,forany d € D small
enough, we obtain
d
I =5l

sems = e -

1,2,Q m+s,2,Q 0,2,Q.

This relation, together with (81) and (84), implies (83) for A > 0. The proof is complete.
Remark (1.2.24) [19]:
With the notations and under the hypotheses of Theorem (1.2.18), if one chooses
x =2 (orevenx < q ifqg > 2) and assumes (67) and that
3C>0,e<Cd*™t2sm d -0 (86)
itis then obvious that, forl = 0,...,[ly] — 1 (and eventually [ = [, ), the relation (69)
yields the error estimate
|f = £l g0 = 0 (@™~ -m210), 4 o 0 (87)
In [50], under the more restrictive hypothesis ¢ < d?m~2n(1/2-1/4)+ Wendland and
Rieger obtained (87) fors = Oandl <m —n/2.

We point out that, except for g = oo, the estimate (87) is just a particular case of

Theorem (1.2.22):by selecting ¢ = Cd?™+25~" for some C > 0 (so (77) holds), the
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relation (78), together with (76), yields (87).

Now, let us notice an important point. Clearly, (86) implies that ¢ - 0 as d — 0.
When the data are exact, condition (86) is sufficient (but unnecessary, according to
Remark (1.2.23)) to get the convergence in X™° . When the data are noisy, the situation
is radically different. It can be checked that the deterministic convergence over ()
cannot generally be ensured in this case. In fact, this problem needs a stochastic
approach (cf. [23, 27, 28, 37, 43, 48, 49]). We shall see in Sect. 8.2 that, under a usual
random noise hypothesis, the convergence of smoothing D™ -splines in quadratic mean
over R"requires that € must grow too as d — 0.Let (1 be a bounded domain in R*with
a Lipschitz-continuous boundary. Assume that (55) and (67) are satisfied, and, for any
deD, let v¢=(wd),.a =R be any error vector (we recall that N = card4?).

Likewise, let be a given function in W™*$2(Q). Then, for any d € D and for any ¢ > 0,
let f;Addenote the smoothing (m, s)-spline relative to A%, (f(a) + v),c4¢ and € and

let fEAdbe the smoothing (m, s)-spline relative to 4%, (f(a)),.,« and &. Finally, let
a€A

ed = fA" — £4% 1tis clear that edis the smoothing (m, s)-spline relative to A%, v and &,

due to the linearity of the operator that assigns to any g € RY the smoothing (m, s)-
spline relative to A%, 8 and «.

We assume in what follows that ¢ is a function of d .

Let us point out a necessary condition for the deterministic convergence over (, i.e.

fAd _ = 0.

such that limg_, ||fz

|
m+s,2,0)

Proposition (1.2.25) [19]:
Suppose that (55), (67) and (74) hold. Then, a necessary condition for the

deterministic convergence over (} is that

1
Vv € Xm's,llii_r)r(l)ﬁ Z viv(a) = 0. (88)

acA?

Proof For any d € D, it is clear that (64) holds with A%, A and f(a) + v¢ instead of 4, f
A% and B, . Thus, for any € X™* , we have

w2 (@ @)v@ (1) =5 ) vtv@=0 o

acA? acAd

The convergence over (), together the imbedding W ™*$2(Q) & €°(Q), implies that the
first term on the left-hand side of (89) tends to 0 when d — 0. Likewise, the

convergence over () also implies that
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ac >0,

ﬁAd” <C, d-0. (90)

m+s,2,Q0 -

Now, it is not difficult to see that, for any d € D, we have f;f‘d = P¢, Wherep =

f;f‘d |oand B is the operator introduced in Proposition (1.2.12). From the continuity of

and (90), we deduce that

ac >0,

2  <c, d-o.

m+s

Hence, taking account of (74) and (76), the second term on the left-hand side of (91)
alsotendsto 0 as d — 0. The result follows.
Of course, condition (89) is verified under the assumption

lim sup [v¢| = 0. (91)

d=0 gepd

The deterministic convergence over (0 has even been proved (cf. [22]) under an
unrealistic assumption implying, like (91), that the errors on the data decrease to 0 as
d — 0. But (88) is not verified in general. Consider, for example, the case where the
errors are such that

Ja > 0,vd € D,Va € A% ,v¢ > a,

and take v = 1. Then, the left-hand side of (88) is greater than 0. So, we cannot prove
in general the deterministic convergence over (1 for noisy data.

On the contrary, (88), considered as a stochastic relation, makes sense under
additional hypotheses. Assume the “random noise hypothesis” for any d € D, v¢ is a
vector of independent, identically distributed random variables, with null mean and

the same positive variance n?, i.e., such that

2 ifa=nb,
va,b € A% E(vd) = 0andE (vivi) = {g ifa % b,

(92)
where E denotes the mathematical expectation. Moreover, suppose that the family of
data sets is an increasing sequence of ordered sets A/ , with j € N, made up of N = N(j)
points. Then, it follows straightforwardly from the strong Law of Large Numbers (cf.
Bouleau [25]) that
1 '
Vv E Xm's,}l_r)r(}ﬁ Z'vév(a) =0,
acAl

Where v/ = (vé) denotes the error vector on A’ , holds almost surely. Thus, we can

hope for a positive conclusion in the stochastic case.
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From now on, we restrict our study to the case of smoothing D™ -splines, i.e., we
suppose that s = 0 (so condition (55) is just the inequality > %). Moreover, we
formulate two additional hypotheses.

The first one is the quasi-uniformity condition

3C > 0,vd € D,d < C q(A%), (93)

where q(4%) = %min{ la — b|| a,b € A% a = b} is the separation radius of A%. It is not
difficult to see that (93) implies (75). The second hypothesis stands as follows:
g = NV (+2m)y(N), with limy_,. w(N) and

w(N) = O(N#/@+2m)) ' N - oo, (94)
It is readily seen that (75) and (94) imply (74). So (84) and (94) imply (74). The
following theorem, where [|-||,,, denotes the norm defined by (56) and B the operator

introduced in generalizes results by Utreras [48] (see also Ragozin [43]).
Theorem (1.2.26) [19]:
Suppose that (55) and (67) are verified for s = 0, and that (92), (93), and (94) hold.

~ad . . .
Then, f2” converges to 9B in quadratic mean over R", i.e.,

|
|
And, forany [ =0,...,m—1,

d

For the last two relations, see [37]. Now, let us prove (95). From Theorem (1.2.21) one

Al — er||;0] - (1), d-o. (95)

Moreover, as d — 0,

4 2
R -f =0,
€ m,2,0Q

2
~ad
FAd _ |
& f 12,0

] — O(N—Z(m—l)/(n+2m) (w(N)(m—l)/m)_

Proof:

has limg_,

£AY — ‘Bf”mo = 0(1). Since fA* = £A" + eA” it is enough to prove that

For any d € D, the equation (64) for the smoothing spline ef:‘d , with v = ef}d, can be

Z (eg“d(a))2 + ;0 = Z vied (a).

acAd acA?

d
eg

2
| ]=0(1), d - 0.
m,0

written as

d
e;
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From (94), it follows that ¢ = o(N) as d — 0. Then, from this relation and the relation

(50) of [23], we derive that there exists a constant C > 0 such that

o Z (a) ;'0 < Z vieA (@)  d -0, (96)

acA? acAd

Ad

where R% denotes a matrix, depending on the basis interpolating D™ -splines relative
to A4, introduced by Utreras [48], and (v®)" the transposed vector of v¢ (for more
details see [23]). Under assumption (93), F. Utreras showed that

Tr(RY) = O(N/e)™?™ , d - 0,
Where Tr(R%) denotes the trace of the matrix R%. Now, the left-hand side of (96)
involves a norm on X™° , which is uniformly equivalent in d to the norm |||, o (this

result can be deduced from [48]). So, there exists a constant C > 0 such that,asd — 0

dl o 0 (e @) +le

a€A
Thus, a sufficient condition for the convergence in quadratic mean in X™° of e e is

2
49

2
e | 4
& &
m,0

< %E[(vd)th(vd)].

|<c

that the last term tends to 0. From (92), it follows, for any d € D, that
E[(wH)RY(wD)] = n* Tr(RY).

Finally, using (94), we have

and the result follows.

Remark (1.2.27) [19]:

d
e;

|2 0] _ O(nzw(N)—(n+2m)/2m) =0(1), d-0,
m,

Subject to additional stronger assumptions, we can obtain a result analogous to that of
Theorem (1.2.26), but valid almost surely. We do not detail this point, for which we
refer to Arcangéli and Ycart [23].

Remark (1.2.28) [19]:
It is readily seen that, under the hypotheses of Theorem (1.2.26), forany [l = 0,...,m —

E["a

So, as could have been conjectured, we get in Theorem (1.2.26), in the sense of

1, we have,asd — 0,

B f|12,2,n] = 0((e/M)™=0/m),

mathematical expectation, the same estimations as in Theorem (1.2.22) when s = 0 and

q = 2. Now, we prove our final result.
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Proposition (1.2.29) [19]:

Suppose that (55) and (67) are verified for s = 0, that (92) and (93) hold and that
g < NW/@+2m)  Then, fA” does not converge to Bf in quadratic mean over R", as
d - 0.

Proof:

We refer to the proof in [23]. The proof shows, taking £ = N™ (+2™) that

2

lim infE [ e ] > 0.
a-0 0

m,

Consider the relation (4.11) in this section. Of course, it may be written

el |20 (/N

L (1+ (/N
where the uf are positive numbers. Clearly, any term of the sum is a decreasing function

2
Ad
eE

of €. So, we infer that, if £ < NY/(®+2m) je if

vd € D, e(d) < (N(Q))V/m+2m) |

the result follows. Notice that the proposition still holds if the preceding relation is only
valid for d small enough.

Remark (1.2.30) [19]:

The results of Theorem (1.2.26) and Proposition (1.2.29) can be improved in the
following form. Suppose that (55) and (67) are verified for s = 0, and that (74), (92)

n
and (93) hold. Then, the condition lim,_, eéN n+2m = oo is necessary and sufficient for

the convergence in quadratic mean of f;Ad to Bf ,when d - 0.

As a conclusion from the preceding results, we would like to emphasize that, in the
stochastic case of data perturbed by a noise verifying the random noise hypothesis (92),
no assumption implying that & goes to 0 or even remains bounded, as d — 0, is

acceptable.
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