Chapter 1
Weighted Soblove Spaces with Zeros and Critical Points

Let u” be the Fefferman-Stein sharp function of u, and for 1 < r < oo, let M u be an appropriate
version of the Hardy-Littlewood maximal function of u.If A is a pseudodifferential operator of order 0,
then there is a constant ¢ > 0 such that the pointwise estimate (Au)*(x)cM,u(x) holds for all x € R" and
all Schwartz functions u. In certain cases the zeros themselves have the sameasymptotic limit distribution,
while in other cases we can only ascertain that the support of a limit distribution lies within a specified set
in the complex plane. One of our tools, which is of independent interest, is a new result on zero
distributions of asymptotically extremal polynomials. Our results are illustrated by numerical
computations for the case of two disjoint intervals.We also describe the numerical methods that were
used.

Section(1.1) :Pseudo Differential Operators with Smooth Symbols:

In this section, we show boundedness results for pseudodifferential operators on weighted LP
spaces. The methods are different from those which depend upon a point wise estimate. Since this
estimate does not rely on properties of weight functions, it is of independent interest and may be of further
use in discovering how pseudo differential operators preserve various classes of functions and their
differentiability properties.

If 1 < p < o, a nonnegative function w belongs to 4, (R™) if:

() w € Li,.(R™);

p—1
(i) supg (ﬁ fQ wdx) (Ell fQ W‘l/(p_l)dx) < oo,

where the supremum is taken over all cubes Q in R.
Coifman, Fefferman, Hunt, Muckenhoupt, and Wheeden have shown [1], [2], [3] that

a weight function w satisfies the A, condition if and only if the Hardy-Littlewood maximal operator or
classical singular integral operators are bounded on LP(R™ wdx). Our boundedness results for
pseudodifferential operators will also apply to spaces with A, weight functions.
We shall say that the function a(x,&) € C*(R™ X R™) is a symbol of order m if it satisfies the
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is one which satisfies the above estimates for each real number m. If a(x, ) is a symbol of order m,

estimates < Cop(1+ 1€ N™~18! for all multi-indices & and 8. A symbol of order —oo

then it defines a pseudodifferential operator A, of order m, by the formula

auG) = [ ate a5z,
Rn
To begin with, A is defined only on the space of Schwartz functions, where the Fourier transform w of the
function u is given by 2(¢) = [, u(x)e 2™*4dx.
That A can be extended to a larger class of functions is the main result of this section , contain this result,
which we summarize as: Suppose 1 < p < . Every pseudodifferential operator of order 0 has a bounded
extension to LP (R™, wdx) if and only if w € A,,(R™).



The necessity of the A, condition is proved using a modification of an argument by Coifman and
Fefferman.The sufficiency is proved by controlling the pseudodifferential operator with various versions
of the Hardy-Littlewood maximal operator, which appeared in [4]. With this goal in mind,we make the
following definitions:

(i) Mf (x) = the Hardy-Littlewood maximal function of f = sup, ﬁ ) 0 lf(y)ldy,

the supremum being taken over all cubes @ containing x;
1

DM, f () = supg (=, IFI"dy ),

the supremum being taken over all cubes @ containing x;
(ii) f*(x) = the dyadic maximal function of f = sup, ﬁ ) 0 lf()ldy
the supremum being taken over all dyadic cubes Q, with sides parallel to the axes, containing x;

W) = supq i Jy 1F ) = foldy,
where the supremum is taken over all cubes Q containing X, and fy is the average value of f on the cube Q.

Note that f* enjoys many of the properties of the more usual maximal function Mf; in particular,
lf(x)] < f*(x) ae., and the operator f — f* is bounded on LP(R", wdx) whenever 1 < p < o and
w € A,(R™) [1].

In addition to all the foregoing maximal function machinery, the proof of the result requires the
following pointwise estimate.

Theorem (1.1.1)[5]. Suppose 1 < r < oo, and let A be a pseudodifferential operator of order 0. Then
there is a constant ¢ > 0 such that the pointwise estimate(Au)*(x) < cM,u(x) holds for all x € R™ and
all Schwartz functions u.

Armed with these two theorems, we then define weighted Sobolev spaces in R™ and prove the
usual a priori estimates of elliptic differential operators. We also formulate the A, condition for a compact
manifold without boundary and show that the condition is invariant under coordinate changes. In the
setting of a manifold, further results are the construction of weighted Sobolev spaces of fractional order,
a version of Sobolev's theorem, and coercive estimates for elliptic pseudo differential operators. Note that
the theorem above has been proved for classical singular integral operators by Cordoba and Fefferman.
Our theorem shows that the method works for “variable coefficient” operators defined by non-
homogeneous kernels and that these operators can be used to give painless constructions of weighted
Sobolev spaces.
Until further notice, ||-||, will denote the norm in the space L (R™,wdx); w will always be a weight
function of class A,(R™). We shall prove estimates of the form ||Aull, < cllull, for u a Schwartz
function and A a pseudodifferential operator of order 0. The next lemma shows that once this is done, A
can be defined as a bounded operator on LP (R™, wdx).
Lemma (1.1.2)[5]. S the set of all Schwartz functions, is dense in LP (R™, wdx), 1 < p < .
Proof. We first show that smooth functions with compact support are dense in LP.
Given f in LP and € > 0, choose a continuous function g with compact support such that
If —gll, <e/2 (seel6]).
Now let ¢ be a positive-valued C* function supported in the unit ball of R™ with total integral (1).

Define ¢;(x) =t "¢ (x/t)fort > 0.



It is standard knowledge that
(i) ¢p; x g € C3°(R™) forall t > 0, and
(i), * g = g, as t = 0, uniformly on compact subsets of R™.
If K is a large ball containing the support of g in its interior, pick ¢t small enough that

£ ~1/p £ €
lg — d¢* glle < g(f,( WdX) . Then |If = e+ glly < If —gllp +llg = e+ glly <5+5=¢
this shows that
Cs°(R™) is dense in LP (R™, wdx).It remains only to show thats < LP (R™, wdx).
If w € A,(R™), then [2] implies that fRnw(x)/(l + |x|)*dx < oo for large enough k. But if u € S, then
lw(x)| < C,/(1 + |x|)*/P, which shown the assertion in the first sentence of this paragraph. The Ap
condition is a necessary one for continuity of even the best-behaved pseudo differential operators; the
proof of this fact is adapted from [1]. From now on, if p is a real number between 1 and oo, p’ will denote
its conjugate, the number such that 1/p + 1/p’ = 1.
Theorem (1.1.3)[S]. Suppose w is a nonnegative locally integrable function whose zero-set has Lebesgue
measure 0. If every pseudo differential operator of order- oo is continuous on LP (R™, wdx), then
wE A (R™),1<p < oo,
Proof. We first establish that w=%®~D € [1(Q, dx) for any cube Q in R™. Suppose Q is a cube such that
w~V®-1D ¢ 11(0,dx); then w™1/? ¢ LP'(Q,dx), and there is a function ¢ € LP(Q,dx) such that

fQ Ppw/Pdx = 0. Let ) = w™/P _and let T € CF°(R™) have the value 1 in the set

Q—Q ={x—y:x,y € Q}. The operator Tu = 7 * u is a pseudodifferential operator of order- oo
(its symbol, Z, is rapidly decreasing), and by hypothesis it is continuous on LP (R™, wdx).
Now ¢ € LP(R™, wdx), since ¢ is supported in Q, but Ty (x) = oo for almost all x € Q.
This is impossible since w has a zero-set of Lebesgue measure 0. Hence w™Y®~1D € [1(Q, dx).
Having disposed of this preliminary step, we now show the necessity of the A, condition.
Fix a cube Q of side length d, and let Q' be an adjoining cube of the same size. If x € Q and y € Q’, then
|x — y| < 2v/nd. Suppose g € CF(R™), g =0, and g(x) = 1/d™if |x| < 3v/nd.
Again, f = f * g is a pseudodifferential operator of order —oo since § € S.
If f = 0 s supported in Q, thenf * g(x) = f, f(g(x = y)dy = (= [, FOIdy) xq ().

Hence,
p

1
J,de lQ—lof f(y)dy Sé[lf*glpwdeCé[fpwdx, (D

the last inequality being a consequence of the assumption on w.Now let f = 1 on Q to get
fQ, wdx < C fQ wdx; interchanging Q and Q’', we get fQ wdx < C fQ, wdx.
Since w=/®-1 € [P(Q,wdx) by the first part of the proof, we can now let
— w0, (L 2 oD gy N 2 w0 gy
f=w )(Q( fQ de)( wi dx) SC( f,wdx)( wi dx)

QI lel Q'] lel
£ -1/(p-1)
<tgido W dx
P
by (1). Hence, (ﬁ fQ de) (ﬁ fQ w_l/(p_l)dx) <C.
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Having established the necessity of the A, condition for boundedness of pseudodifferential
operators, we can now turn to the sufficiency of the condition.
Lemma (1.1.4)[5]. Suppose 1 < p < oo. Let ¥ be a radial, decreasing, positive function with total
integral 1. Set ¥, (x) = t™™p(x/t). Then:
(i) () supesolf * e (x)| < Mf(x) for f € LP(R™, wdx);
(ii) If 1 has compact support, then f * . (x) = f(x), as t — 0, almost everywhere for
f € LP(R™, wdx);
(iii)if 1 has compact support, then ||f * 1, — fll, » 0 as t — 0, for all f € LP(R™, wdx).
Proof. A proof of (i), (ii) (see [7]).
Let B be any ball in R™, let B’ be any other ball containing B in its interior, and let § be the distance from
B to the complement of B’. We shall show that if f € LP(R™, wdx) then f * .(x) - f(x) as t - 0 for
almost every x € B. Then, by expanding B, we establish (ii) for almost every x € R™.
Set f;(x) equal to f(x) if x € B, and equal to 0 outside B'. Let f;, = f — f;.
1

1

= 1 T
Now.f; € L'(R",dx) since[,,|f;|dx < (fB,Ifllpwdx)p (fB, W_mdxy) < 0.

The last integral is finite since w™%/ -1 jg locally integrable.
Hence f; * P, (x) = fi(x) = f(x) as t - 0 for almost every x € B (see [7]).
To deal with f,, we note that if x € B, then

Ifs * o) < f 0 = MIAHO)Idy

< TEGIPWOI - (f g el = 3w TG =0

for sufficiently small t, since 1 has compact support. This completes the proof of (ii).

Part (iii) is now easy, since |, * f — f| < Mf + |f| by part (i).
Since Mf € LP(R™, wdx) (see[17]), Lebesgue's dominated convergence theorem and (ii)
at once yield a proof of (iii).

Now we can use the Hardy-Littlewood maximal operator to dominate any pseudodifferential
operator of order —oo.
Theorem (1.1.5)[5].Suppose A is a pseudodifferential operator of order —oo, and suppose 1 < r < co.
Then there exists a constant ¢ > 0 such that for all x° € R™ and all u € S,(Au)*(x°) < cM,u(x°).

Proof. If a(x, &) is the symbol of A, then for any real number m, and any multi-indices a and S8,
B

(3) (3) ated)| < Copnta +160m

We can therefore write the operator as follows: for any Schwartz function u,

Aux) = [ 2(E)ale, e ™ EdE = [u(y)K(x,x — y)dy, where K(x,y) = [ a(x, §)e*™€d¢.
Note that for fixed x, K (x, y), as a function of y, lies in . In fact,

[ a(x, &)&P (a%)a ezmy.s‘dg|

2 \% . .
< Cap [ |(a—€) [a(x, §)éP ]| dé (integration by parts)
S C(Xﬁl
with Cpp independent of x and y.

v (2Y k)

= Cup




The rapid decrease in € of a(x, &) justifies the differentiation under the integral sign and the integrations
by parts in the calculation above.

B
Hence, sup,, [y (i) K(x,y)| < Cqp. Now choose an integer k > n.

dy
By the previous discussion, there is a constant C;, > 0 such that |K (x, y)| < C,/(1 + |y|)*for all x.
Then
|[Au(x)| < flu(Y)lK(x.x —y)dy < Cy ﬂd}' < GeMu(x),
(1+ |x—yD*

by an application of Lemma (1.1.4).
Suppose that x° is any point in R™, that Q is a cube containing x° in its interior, and that Q has
diameter d and center x'.
Let T € C°(R™) satisfy 0 < 7(x) < 1, be 1 when |x — x'| < 2d, and vanish when |x — x'| > 3d.
We have

f |[Au(x) — (Aw)y|dx < f |Au(x)|dx

lQl ~ el

< IQlf |A(Tw)|dx + IfQ |A((1 = Du)|dx.

Let Q' be the cube centered at x’, with 51des parallel to those of Q, and with diameter 4d. Since the
Hardy-Littlewood maximal operator is bounded on L"(R™, dx) for 1 < r < oo, we can control the first
term in the inequality above as follows:

T
r
= Jy 1AGWldx < 2 (7 f, 1G] dx)

1

<2 (51, |M<w>|rdx) < €, (g fpnleul"dx)

(IQ If ,Iulrdx) < C M, u(x%).

To dominate the other term, we first note that there is a constant ¢ > 0 such that
|x® —y| < c|x — y|for allx € Q and y such that|x" — y| = 2d.
The constant ¢ is independent of x,y, and the cube Q. So,

f |[A((1 = Du)|dx = f |/ (1 =z())uK(x,x — y)dy|dx
< fyorrim2a WO 5 Sy T dydx

e
< Ci Jan apeomy e Y

< cMu(x®)(by Lemma (1.1.4))
< cM,u(x%).

We have showed that %fQ |[Au(x) — (Aw)y|dx < cMyu(x®).

lQl lQl

Taking the supremum of the left side over all cubes Q containing x°, we find that

(Au)*(x°) < cM,u(x?).

Corollary (1.1.6)[S]. A pseudodifferential operator A, of order-co, has a bounded extension to
LP(R™ wdx) whenever w € A,(R™) and 1 < p < oo.



Proof. In the course of proving the last theorem, we showed that |[Aw(x)| < cMu(x) for all x € R™ and
u € §. The constant ¢ is independent of x and u. Since § is dense in LP(R™, wdx),and the maximal
operator is bounded on LP (R™, wdx) [1], the conclusion of the corollary follows immediately.

Dealing with operators of order-0 will require a much more delicate touch than in the previous
theorem; however, the variants of the maximal function defined in the Introduction together with ever-
reliable integration by parts will save the day.

We shall use f# to control f*; the next lemma makes this possible.

Lemma (1.1.7)[5]. There is a constant ¢ > 0 such that || f*]|, < C”f#”p for all

f € LP(R™ wdx) n L*(R™, dx).

Theorem(1.1.8) [S]. Suppose 1 < r < oo, and let A be a pseudodifferential operator of order 0. Then
there is a constant ¢ > 0 such that the pointwise estimate (Au)*(x°) < cM,u(x°) holds for all x° € R®
andallu € S.

Proof. Given x° € R™, we let Q be a cube containing x°, with center x’ and diameter d.

As in Theorem (1.1.5) we also let 7 € C3°(R™) satisfy 0 < 7(x) < 1, be 1 when |x — x'| < 2d, and

vanish when |x — x'| = 3d. Then foru € §,
1 2 1
o J 14uG) = (Awldx < = [, 1A@wldx + = [, |A((1 = Du) @) - (A((1 - T)u))Q| dx.

Letting Q' be as in Theorem (1.1.5), we can dominate the first term in the inequality above by
recalling that pseudodifferential operators of order 0 are bounded on L (R™,dx) when 1 < r < oo [8]:

1/r 1/r
2 S r kR r
|Q|fQ |[A(Tw)|dx < 2 (|Q|fQ |A(Tw)| dx) < c(lQlfRnITul dx)

1/r
<c (IQl_’If ,Iulrdx) < cM,u(x°).
To deal with the second term, we simplify notation, writing u for (1 — 7)u, and we assume that u
has support in the set {x: |x — x'| = 2d}.
We must estimate the quantity (1/[Q]) [ 0 |Au(x) — (Au)Q|dx. For now, we shall also assume that
a(x, &), the symbol of A, has compact ¢&-support. The various constants that occur in the following
argument will not depend on the support of a; at the end we show how to dispense with the assumption on

the support of a. We begin by decomposing the operator A into a sum of simpler operators. Standard

techniques allow us to construct a nonnegative, radial, C® function ®, whose support is contained in the
1 1 if|é| > 1,

set {E: >< &< 2}, and which satisfies }.7%, Pp(277¢) = {0 if|é| < 1
=

Now we can write
Au(x) = [0())a(x,&)e?™™*5dE
= [U(®)al, (1 - X2 p(277¢))e?™*4dE
+ 3% Ju®) [ alx, )p(2778)e?m 8 ddy
= Bu(x) + XjZo Aju(x).
B is a pseudodifferential operator whose symbol is a(x, & )(1 - 3% ¢(2— j f)) :

theé-support of this symbol is always contained in the set {¢: |&] < 1}.
Hence B has order —oo, and (Bu)*(x°) < cM,u(x®) by Theorem (1.1.5).

Since (Aw)*(x°) < (Bw* (x°) + (X0 47u)" (2°) < eMu(x®) + (220 Au)" (x0),
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the next task is to examine the operators A;.

Aju(x) = [u@) [ alx, )Pp(277§)e? >N dsdy.
The following lemma allows us to control the inner integral.
Lemma (1.1.9)[5]. Let q(x, ¢) be a symbol of order m, and suppose ¢ € C5°(R™) has support in

{E:% <€ < 2}. If t > 0, then there is a constant ¢; > 0 such that the
inequality |y|¢|f q(x, ©)p(277¢)e?™ 8 d¢| < ¢ 2/(Fm=D
holds for all x and y in R™ and every integer j > 0.

Proof. Suppose first that t is a nonnegative integer.
Letting|y|, = max{|y;|: 1 < i < n}, we have

YIS aCo ©)B(27)e?™4de] = ¢, [ aCe )B(276) (L) ¢ de | (wherelyil = IyD
(2) (et 09 (26| ag @

<c
(integration by parts)
2 \¢ _j a\" _i 2\$ _j
() 9 0D@7D]| < Srvsmers [(2) ate 027 ((2) 9) (2759))
< Lrts=t Crs(1 + zj)m_rz_js

(since the support of the expression above lies in {f: 271 <|é) < 2j+1}) < ¢ 2/m-Ut,

Substituting this estimate into (2) and integrating over the region

{&: 2771 < |€] < 27%1} yields the desired inequality.

If ¢ > 0 is not an integer, say i < t < i + 1, with i an integer, then we can interpolate between the
inequalities for i and i + 1. Returning to the proof of the theorem, we now estimate

(Z 0 A; u) (x9). IQI |A u(x) — (4u) |dx = |Q| ||Q|f Aju(x) — 4 u(z)dz| dx

= fQ |@ fQ fRnu(J’) fRn¢(2—J€) . [a(x, f)emz(x )€ _ a(z, E)ezm(z‘y)'f]dfdydﬂdx (3)
To estimate this last quantity, we consider two cases:
Case i. 2/d > 1. Then (3) is dominated by

Now

zgloil f f u()| f $(277€)alx, ©)e?mME de| dydx

Q 2kds|y—x'|<2k+1q R™

o [ 2mk lu@)|
_CZf f —Ix_y|n+1'|x—)’|"+1
k=1

desly—x’|<2k+1d

f d(2778)alx, §)e?™ =14 dg| dydx
Rn

(Qy is the cube with center x', sides parallel to those of Q, and radius 2¥*qd)

< CYe, dr2nk(2kg)—n—1277 . me lu(y)ldy

(by Lemma (1.1.9) witht =n + 1 and m = 0)
< CMu(x®) ¥ d=*27%277 < cd=*27 Mu(x°).
Caseii. 2/d < 1.



We write
a(x, §)e? EE — a(z,£)e? N = ¥ (6, — 7)) [, —(x(t) e O=y)¢

+2mi&a(x(t), &)e?mxO-»Ege
where x(t) = z + t(x — 2).
Using this last expression and the facts:
(i) da/dx; is a symbol of order 0;
(ii) &;, a(x, &) is a symbol of order 1;
(iii)|x; — z;| < d since both x and z are in Q; and
(iv)if 2%d < |y — x'| < 2F*1d, then 2%71d < |x(t) — y| < 2%*2d since x(t) € Q,

we can invoke Lemma (1.1.9) withm =0Qorl,and t =n + lto see that (3) is dominated by

g P IQIf J e Z"‘l‘zl'f be(e) =y

Q 2kds|y—x'|<2k+1g |x — y|

| fon #(277€) [— (x(t), §)e?™ O 4 2mi& a(x(t), §)e?™*O-Y)¢|d¢|dtdydz

1 . .
< Cz 2k jlu(y)ldy dr(2kd)=n=1/2q(271/% 4 21/2)
] | Qul ¢
- k

< CMu()d 2112 ) 27412 < Ca /2202 Mux)
k=1
Putting the two cases together, we have shown that if Q is any cube containing x°, then

o) o) 1
|Q| Q |Z ZoAju(x) — (Zj=0Aju)Q| dx < j=0|Q—|fQ |Aju(x) — (Aju)Ql dx
< C(Zpigo1 d71277 + Xpiger dY?27/2)Mu(x°).
Since the quantity in parentheses above is finite and independent of d, we find, after taking the
supremum over all cubes Q containing x°, that (Z] 20 ]u) (x% < cMu(x®) < cM,u(x°).

Going back to our original notation, and summarizing, we have shown that if Q is any cube
containing x9, then

o #
[, [AuG) — (Auwgldx < (Aw)" () + (B((1 - T)u)) (x9) + (22, 4;((1 — Du))" (x°)
< cMpu(x®) + M (1 — Du)(x%) < cMyu(x0),
the constant ¢ being independent of Q,u, x°, and the &-support of a(x, &).
We have been working under the assumption that a(x, ), the symbol of A, has compact

IQI

¢-support. Suppose now that this is no longer so. Let b;(x,¢) be a(x,$) multiplied by a smooth cutoff
function which is 1 when |&| < 2/ and 0 when |&| > 2/*1. Let B; be the pseudodifferential operator
whose symbol is b;(x, §). Sinceb;(x,§) — a(x,§) as j — oo, the dominated convergence theorem implies

that Bju(x) — Au(x) for all x. Another application of the dominated convergence theorem shows that for

each cube Q, ﬁf(g |Bju(x) - (Bju)Q| dx - |Q|f |Au(x) — (Aw)g|dx.



Applying our previous result to the operators Bj, and taking the limit as j — co, we see that
1
Il
containing x°, we finally obtain the inequality (Au)*(x®) < cM,u(x°).

fQ |Au(x) — (Au)Q|dx < cM,u(x®).When we take the supremum of the left side over all cubes

We are now ready to prove a basic result about pseudodifferential operators.
Theorem(1. 1.10)[S]. If 1 < p < oo and w € A,(R™), then any pseudodifferential operator of order 0 has
a bounded extension to all of LP (R™, wdx).
Proof. Let A be a pseudodifferential operator of order 0. The proof that A is bounded depends on the
following train of inequalities:
if u € S then
lAull, < (A", < CIAW*Il, < ClIMull,ifl <r <o
< Cllull,if1 <r <p.

The first inequality is easy, since |Au(x)| < (Au)*(x) for every x.

Since Au € §, Au € LP(R™, wdx) N L}*(R",dx); so we can apply Lemma (1.1.7) to prove the
second inequality. The third inequality is Theorem (1.1.8), while the last inequality is proved like this:

1/ :
IMully, = ([ CuIDI || = (f M (ulD]P " wdx) ’ < c(JlulPw dx)Psince p/r > 1 = Cllull,,.

Since § is dense in LP (R™, wdx), we can now extend A to a bounded operator on LP (R™, wdx).

We shall introduce the weighted Sobolev spaces LY(R™ wdx). It will transpire that many of the
properties of the traditional unweighted spaces are still true in the weighted case; in particular, we can
identify the space L} (R™, wdx) (k a positive integer) with the space of functions in LP (R™, wdx) whose
distributional derivatives of all orders < k lie in LP (R™, wdx), and we can prove a version of Sobolev's
theorem. If s is any real number, we write /° for the pseudodifferential operator of order -s whose symbol
is (1 +4m?|€]?)75/2. Clearly, J° can be defined as a map of tempered distributions to tempered
distributions; we also point out that if w € A,(R™), then functions in LP(R™ wdx) are tempered
distributions. We define LY (R™, wdx), the Sobolev space of order s, as the image of LP (R", wdx) under
the map J5;i.e., LZ(R", wdx) = ]S(Lp (R™, de)). If f € I2(R™, wdx), then f = J*g for some
g € LP(R™, wdx). We write the LY -norm of f as ||f ||, s, and define it the LP-norm of its preimage g.

S0 [Iflls = llgll, whenever f = J°g.
The following facts about the L% are easy consequences of the definitions.
(i) Since J? is an invertible elliptic pseudodifferential operator, the definition of the norm on L’S’ (R™, wdx)
is unambiguous; i.e., if /°g; = J°g, then g; = g.
(ii) If s > 0, then LE(R™, wdx) is a subspace of LP (R™, wdx), since J* is a pseudodifferential operator of
order 0.
(iii)For all real s and t, JS]¢ = JS*¢,
(iv)For all real s, J° is an isomorphism of § to § and of §' to §'; furthermore, § is dense in LI; (R™ wdx).
(v) For all real s and ¢, J¢ is a norm-preserving isomorphism of L% (R™, wdx) to LY, (R™, wdx).
(vi)The spaces LY (R™, wdx) are Banach spaces.
(vii) If s >t then LY(R™, wdx) S LY(R™, wdx), and |fl,¢ < Cs¢llfls-
That pseudodifferential operators behave correctly on Sobolev spaces is the content of the next two
theorems.



Theorem (1.1.11)[5]. Suppose 4 is a pseudodifferential operator of order m. Then A is a bounded map
from LY (R™, wdx) to LE_,, (R™, wdx).
Proof. We can write A = JS"™(J7S*™AJS)]75.]=5 maps Lf to LP;]J~S*™AJS is a pseudo- differential

p
J5+™ maps LP to Lg_,,.

operator of order 0, and therefore maps LP to LP; finally,

Theorem (1.1.12)[5]. Let 0 < m < s and suppose that 4 is an elliptic pseudodifferential operator of order

m. Then there is a constant ¢; > 0 such that ||f||,s < cs(llAfllp,s_m + ||f||p,0),f € LP.

Proof. Since A is elliptic, we can find an elliptic operator B, of order —m, and an operator R,

of order-oo, such that I, the identity operator, can be written | = BA + R.Theorem (1.1.11) shows that
Ifllp,s = IBA+ R)fllps < IBAfllps + IR llp,s < cs(Af llp,s—m + lIfllp,0)-

Theorem (1.1.13)[5]. Suppose k is a positive integer and 1 < p < co.

The space Ll,i (R™,wdx) is identical to the subspace of functions in LP (R™, wdx) whose distributional

derivatives of all orders < k lie in LP (R™, wdx). Furthermore, the norms ||f ||, x and ¥4<ll(/0x)*f I,

are equivalent.

Proof. We can use the same proof as in [9], if we keep in mind that (9/dx)%/* is a pseudodifferential

operator of order 0, and hence bounded on LP (R™, wdx) whenever |a| < k.

As in the unweighted case, the weighted Sobolev spaces can be used to compare the size of the
distributional derivatives of a function and its degree of smoothness. The following is a weak form of
Sobolev's theorem.

Theorem (1.1.14)[5]. Suppose that w € A,(R™) for some q satisfying

1< q<p(m—1)/n If k>nq/p, then every function in L} (R", wdx) can be modified on a set of
measure 0 so that the resulting function is continuous.

Proof. Fix f € L} (R™ wdx), and suppose that f = J*g, with g € LP(R™, wdx). Let {g,} be a sequence
in § such that g,, » g in LP(R™, wdx) (Lemma (1.1.2)), and let f,, = /*g,,. If |a| < k, then (8/0x)%J¥ is

a a a a
a pseudodifferential operator of order 0; consequently, (;—x) fn= (;—x) Jkgn — (;—x) Jkg = (i) f,

0x
the limit being taken in LP (R", wdx). So f;, - f in L} (R™, wdx) by Theorem (1.1.13).
Since % <n-—1, we can assume, by decreasing k if necessary, that k is an integer and that

nq/p < k <n — 1. Let K be any compact set. If ¢ is a function in C5°(R™) which is identically 1 on K, it
is clearly enough to prove the theorem for ¢ f. Since the sequence {f,} approximates f in L} (R™, wdx),
the sequence {¢f, } approximates ¢f .

Now choose R large enough that if K; is the support of ¢, then the set K; — K; is contained in the
ball of radius R about the origin. If x € K ,see [7] repeatedly to writ

1500 = G| = [$f ) = A < € Fjagore [ oL

there are k repetitions of g(x) = |x|™"*1. By [7], g * g * ---* g(x) = C|x| ™ (k repetitions of g).
Hence,

|fj(x) — fl(x)l < C2|a|=k f|y|sR

xgxgx-xg(x),

2%[o(rj-r1)] —n+k
—a X =yl 1yl dy

< C2|a|=k

6“[¢(fj—fz)]|| YA
o | Upeg e =)0 Dy Creior)

dax<®
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If we can show that the second factor on the right side of the last inequality is bounded
independently of x € K, it will follow that the {f,} converge uniformly on K, and therefore that f is
continuous on K. Therefore, let g be as in the statement of the theorem, and set r = (p — 1)/(q — 1).
Since r > 1, we can apply Holder's inequality to the integral in question to find that

[l W = WO Dy < () e ngy) " ([ yjcrome-o) T
ly|sR — \Vlyl=3R lyI=R )

Since w € A,(R™), the first integral on the right side is finite. The second integral is finite since
(—n+kp/(p—q >-n
Example (1.1.15)[5]. Suppose q¢ > 1, and let —n < t < n(q — 1). It is well known that |x|® is in A;(R™),
and hence in A;(R™), for all p = q. Now choose p > nq/(n — 1).

By Theorem(1.1.1 3), every function in Lfl_l(R", |x|tdx) is actually continuous.
We can now transfer the results to a compact manifold without boundary. This requires that we localize
the previous results to bounded open subsets of R™. If U and V' are two open subsets of R™, the notation
U cc V will mean that the closure of U is compact and contained inside V. Suppose U is a bounded open
subset of R™. The function w is said to belong to A, (U) if

(i) w is nonnegative and integrable over every compact subset of U;

(ii) for every open set U’ cc U, there is a constant C, which may depend on U’, such that

[ty was) Gy o) s

whenever Q is a cube contained in U’. a constant C will be called the A,, constant for u’.
The next lemma shows that the A, condition is invariant under coordinate changes.
Lemma (1.1.16)[5]. Suppose U and V' are bounded open sets in R", and y: U — V is a diffeomorphism.
Ifwe A,(V) thenw o) € A, (V).
Proof. Suppose U' cc U; then V' = y(U') cc V.
Using x to denote the coordinates in U, and y to denote the coordinates in VV, we have
x =Y~ Y(y) and dx = |Jy~1(y)|dy, where Ji~1 is the Jacobian determinant of 11,
Let V"' be an open set such that V' cc V" cc V.
The following list of constants will be used in the remainder of the proof:
b = sup{JyY~1(y):y € V'},6 = the distance from V' to the complement of V"',
d = the A, constant for V"',k = sup{Dy(x): x € U'}, where D is the differential of 1.
Now suppose S is a cube in U’ with center x° and side length 27, with r < §/kn. If x is any point
in S, then [ (x) — P (x°)| < k|x — x°| for the Mean Value Theorem < krv/n < &//n.
Hence ¥ (S) is contained inside any cube with center ¥(x°) and side length 2k+/n 7, and any such
cube lies entirely inside V"'. Let Q be such a cube in V"',
Then

(I_i‘l Js we ‘P(x)dx) (I?ll J, wo lp(x)_ﬁdx)p_l

b(2kyn)" b(2kyn)" - Pt
< (ML f wody ) (B2 f ) w(y) Ty

< bP(2kvn) " d.
The A, condition is therefore proved for small cubes in U’ with side length < 26 /kn.

11



Now suppose that S is a cube in U’ with side length 2r > 26 /kn.
Then

(11, wopeds) (L[, wopeo-vax)
= ((;;_Z)n frw o $(xdx) ((I;_Z)n Jyrwe ll)(x)‘1/(zr)—1)dX)p—1

< (&) b2 (1, widdy) (1, wid-+@Day)

< C since w and w=/®~D are integrable onV’.
The result that w o € A,(U) now follows. We now formulate the A, condition for a C* compact
manifold without boundary. A word about notation: we say that (0, ¢) is a coordinate chart when Q is a
coordinate neighborhood on the manifold, and ¢ is a C* coordinate map from € to open subset of R™.

Let M be a compact C* manifold without boundary, let {(Q;, ¢;)}*_, be a fixed finite atlas for M. If w is
a non-negative function on M, thenw € A,(M) ifwo ¢; ' € A, ((j)i(ﬂi))for i=1,2,...,k.

Theorem (1.1.17)[5]. The definition of A, (M) is independent of the particular atlas {(;, P,

That is, w € A,(M) if and only if w o ¢~ € 4, (d)(ﬂ)) for any coordinate chart (€, ¢).

Proof. One implication is obvious; so we shall assume that w € A,(M) and that (Q, ¢) is a randomly
chosen coordinate chart. Suppose U cc ¢(Q), and let Q be a cube in U. Since cl(U), the closure of U, is
contained in U; ¢(Q; N Q), we can pick open sets W; in R™ such that W; cc ¢(Q; N Q) and

cl(U) © U; W;. When {W;}¥_, is regarded as a covering of cl(U), it has a Lebesgue number, [. If Q has
diameter < [, then it lies entirely inside W; for some i. Since ¢; o ¢~ is a diffeomorphism between
QN Q;) and ¢;(Q N Q;), and since W; cc ¢p(Q N Q;), the last lemma shows that the A, condition
holds for all cubes with diameter < [.On the other hand, if Q is a cube inside U with diameter > [ then

(i fQ we ¢_1dx) (i fQ [wo ¢—1]—1/(p—1)dx)p‘1

Q] Q|
<2 (J, wogtdx) (J, [wed1 VP Dax)

c _ 111 /(— p-1
=< ln_p( ?:1 f¢io¢—1(wi) w o ¢)i 1dy) ’ ( Ii(=1f¢io¢—1(wi)[w ° ¢i 1] Y@ Dd}’) < C.

Having fixed the particular atlas {(Q;, ¢;)}, we now choose a nonnegative C*® partition of unity, {t;},
subordinate to this atlas. If w € A, (M) is restricted to ;, we can regard it as a function in 4, (d)i(ﬂi)).

Similarly, if f is a function defined on M, we will consider 7;f as a function with compact support
defined in R™. We say that f € LP(M,wdx) if t;f € LP(¢;(Q;), wdx) for each i.
1/p
The norm on LP(M, wdx) is given by, ||f|l,, = ( ?=1||Ti1/pf||2) , where the norms on the right side are
given by
1/p
el =( [ wlriews
$i(Q)

A standard argument shows that the norms given by different atlases and different partitions of unity are
all equivalent and define the same topology on LP (M, wdx). We recall that a pseudodifferential operator

can be defined on the manifold M by prescribing the action of the operator on functions supported in a
coordinate patch. The operator A is said to be of order m if in each coordinate patch ) we can write

12



Au(x) = [1(&)a(x, &)e?™*3d¢E, with a(x, &) a symbol of order m, whenever x € Q and u is a function
supported in Q. By using a partition of unity subordinate to the covering by coordinate charts, we can
extend the definition of A to all functions in C*(M). (See [10].)The next theorem allows us to localize the
estimates of theorem (1.1.10).

Theorem (1.1.18)[5]. Suppose U is a bounded open subset of R™, and let w € A, (U).

If Vcc U and if A is a pseudodifferential operator of order 0, Then A : LP(V,wdx) — LP(V,wdx)
boundedly.

Proof. Since V cc U, we can cover V with a finite number of cubes {Q;}*_, such that Q; cc U.

By introducing a partition of unity subordinate to these cubes, we need only show that

A: LP(Q;,wdx) — LP(Q;,wdx) boundedly for i = 1,2,..., k.

So we choose one of the cubes Q and, by translating it in the directions of its edges, we decompose
R™ into a mesh of cubes the same size as @, whose interiors are disjoint, and whose sides are parallel to
those of Q.

The next step is to extend the function w from @ to the rest of R". We do this by reflecting the
values of w through the sides of @Q into its adjacent cubes, continuing in this way so that the values of w in
cubes sharing a common face match up along that face. The resulting function w’ lies in A,,(R™), and has
an A constant no more than 3™ times the A, (V) constant for w. The rest is easy, since if u is supported in
Q. then [|Aull, o < [[Aullpre < Cllullp g = Cllullp,o
where the first and last norms are in LP (Q, wdx) and the middle two are in LP (R™, w'dx).

Corollary (1.1.19)[S]. If A is a pseudodifferential operator of order 0, and w € 4,, (M), then
A :LP(M,wdx) - LP(M,wdx)boundedly.
Proof. Use a partition of unity subordinate to a coordinate covering of M.

Now we can define L (M, wdx), the Sobolev potential space of order s on the manifold M.
Let E be an invertible elliptic pseudodifferential operator of order s defined on C*(M).

LY (M, wdx) is the set of all distributions f defined on C* (M) such that E;f € LP (M, wdx).

We define a norm on this space by ||fl,s = IEsf|l,.

At first glance, it seems as if LY (M, wdx) depends on the choice of Ej, but this is not so.For suppose that
E is another invertible elliptic pseudodifferential operator of order s.Then
Ifllps = NEfll, = IEEEF N, < IEFIl,,

since E;E™1 is a pseudodifferential operator of order 0, and hence bounded on L? (M, wdx).
The norms defined by different E’s are therefore all equivalent.
By introducing a partition of unity, covering coordinate patches in R™ with cubes, and extending w from
the cubes to all of R™, we can transfer all the results stated to L (M, wdx).
Theorem (1.1.20)[S]. Let M be a compact C® manifold without boundary, and let w € A,,(M).

(i) The spaces LY (M, wdx) are Banach spaces.

(ii) If s = ¢ then LY < LY and [If I, < ClIf lls-

(iii)Suppose A is a pseudodifferential operator of order m < s.

Then A: LE - LE_,, boundedly.

(iv)If A is an elliptic pseudodifferential operator of order m, and 0 < m < s, then there is a constant

Cs > 0 such that |[ull,s < Cs(llAullps—m + llull,),u € LE.
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(v) Suppose k is a positive integer. The space L} (M, wdx) coincides with the subspace of functions in
LP(M,wdx) having distributional derivatives of all orders < k in LP(M,wdx) in any coordinate
system.

(vi) Suppose that w € A,(M) for some q satistfying 1 < q < p(n — 1)/n.

If s > nq/p, then every function in LY (M, wdx) is continuous.

Corollary (1.1.21)[236]. Let € > 0 and suppose that A is an elliptic pseudodifferential operator of order
s — &. Then there is a constant ¢ > 0 such that [|f||;4¢s < Cs(”Af”1+s,s + ||f||1+8,0), f e Lite,

Proof. Since A is elliptic, an elliptic operator A + €, of order - (s — ¢€), and an operator R, of order-oo,
such that I, the identity operator, can be written I = (A + €)A + R.
Theorem (1.1.11) shows that

fll14es = 1CCA + A + R)fll14e5 < (A + )Afll 145 + IRfll14es < cs(IAfll14e5-m + fll14e0)-
Section (1.2).Sobolev Orthogonal Polynomials:

We consider a Sobolev inner product

(f.g) = f FOFOduo () + j £ O duy (0, @)

where 1, and p,are compactly supported positive measures on the real line with finite total mass.
We put
Xy :=supp(uo), X1 :=supp(p), X=Xy Uy, (5)

If, as we assume, p, has infinite support, there exists a unique sequence of monic polynomials
., degm, = n, which is orthogonal with respect to the inner product (4). These Sobolev orthogonal
polynomials have properties that clearly distinguish them from ordinary orthogonal polynomials, most
notably by the fact that some or many of the zeros of m,, may be outside the convex hull of X, or even off
the real line see [11],[12]. In recent many results on zeros of special classes of Sobolev orthogonal
polynomials were obtained in [13].We refer to the survys in [14] , [15].Asymptotic properties of Sobolev
orthogonal polynomials were obtained by Lépez,Marcelldn, and Van Assche. These authors considered a
general class of inner products, including inner products (4) with discrete measure p;.We study the
asymptotic behavior of zeros and critical points of orthogonal polynomials in a continuous Sobolev space,
i.e., when both p, and p; are nondiscrete measures. Our results will be stated in terms of weak*
convergence of measures. We associate with a polynomial P of exact degree n its normalized zero
distribution,

n
1
v(P) = EZ 521., (6)
j=1
where z4, ..., z, are the zeros of P counted according to their multiplicities. A sequence of polynomials

{P,}_,, deg P, = n, is said to have asymptotic zero distribution u if y is a probability measure on C and

tim [ favee) = [ rau ™

for every continuous function f on C. That is, their normalized zero distributions converge in the weak*
sense to y. Asymptotic zero distributions for orthogonal polynomials with respect to an ordinary inner
product

(f,g) = f F(OO®, T =supp(w) € R, ®)
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have been studied by many authors. The most comprehensive account in [17].

They introduce a class Reg of regular measures. One of their results is that for 4 € Reg, the orthogonal
polynomials p,, for the inner product (8) have regular asymptotic zero distribution.

This means that lim,,_,, v(p,) = ws, Where wy, is the equilibrium measure of X, see[16].

In case £ = supp(u) is regular with respect to the Dirichlet problem in C\Z, the measure y belongs to
Reg if and only if

1/n
lim <|”’¢> _1 ©)

n-oo |Pn||L2(u)
for every sequence of polynomials {B,};—;, deg B, < n, B, # 0. Here and in the following we use [|-||5 to
denote the supremum norm on X. Regularity of a measure indicates that it is sufficiently dense on its
support. For example, it is enough that u has a density which is positive almost everywhere on X. See[16]
for this and other criteria for regularity of u. Motivated by these facts, we make the following assumptions
on the measures o and yy in (4). Recall that %; = supp(,uj) ,j=0,1.

Assumption (i) For j = 0, 1, the set Z; is compact and regular for the Dirichlet problem in C\Zj.

Assumption (ii) The measures py and p; belong to the class Reg.

Our first result concerns the asymptotic zero distribution for the derivatives m, of the Sobolev
orthogonal polynomials.

Theorem (1.2.1)[17]. Let u, and p; be measures on the real line satisfying Assumptions (i) and (ii).

Let {mr,,} be the sequence of monic orthogonal polynomials for the inner product (4).

Then lim,,_,, v(;,) = wg,where £ = supp(uy) U supp(p;) and wy is the equilibrium measure of X.
Thus the sequence of derivatives {m,,} has regular asymptotic zero distribution.

Note, however, that this does not imply that the zeros of m;, are all real. In fact, we do not even know if
the zeros remain uniformly bounded. In our computations we found in all cases that the zeros of m;, are
real. We feel confident about the following conjecture.

Conjecture (i). Under the same conditions as in (1.2.1), let U be an arbitrary open set containing the
convex hull of Z. Then there is an n, such that for every n > n,, all zeros of 1, are in U. To discuss the
zeros of the Sobolev orthogonal polynomials 7, themselves. Set Q := C\Z, and let go(z; ) be the
Green function for ) with pole at infinity see[16],[18]. For r > 0, we denote by V}. the union of those
components of {z € C: gq(z; ©) < r} having empty intersection with X, and we put V := U, V..
Finally, we put K = aV U (Z\V).

Corollary (1.2.2).Let v be a weak* limit of a subsequence of {v(w,,)}.
IfK =2 (e.g.,if Z; € Z), then v = wy. In this case the full sequence {v(m,)} converges to wsy.

In our numerical examples, we found that for n up to 50, part of the zeros of m,, are still pretty far outside
K. But we conjecture that they do not accumulate outside of VV and the convex hull of Z.

Let U be an arbitrary open set containing V and the convex hull of X.
Then there is an n, such that for every n > n,, all zeros of m,, are in U.

We first present numerical results on zeros and critical points for several special cases, where X
consists of two disjoint intervals.They depend essentially on results on zero distributions of
asymptotically polynomials obtained by [19],[20].

We present numerical calculations to illustrate our results.
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We consider the case where X consists of two disjoint intervals of equal length.
We choose X = [—1, —l] U [l, 1].
2 2
With A, the Lebesgue measure restricted to E, 1] and A_ the Lebesgue measure restricted to [—1, —%]

we distinguish the following four cases:
Case (i): o = g = Ay +1_;
Case (ii): g = Ay +A_,puqy = A_;
Case (iil): g = Ay, +py = A4 + 43
Case (iv): g = Ay, +y = 1_.

In all four cases, we know from Theorem (1.2.1) that the asymptotic zero distribution for the
derivatives is equal to wy. In Cases (i) and (ii) we haveX; € X,. Thus, it follows from Corollary (1.2.2)
that in these two cases the asymptotic zero distribution for the Sobolev orthogonal polynomials is also
equal to wy. This is confirmed by our calculations.

Case (1) po =14 +1_,uy = A_ (Tablel ).
In our calculations for n = 1(1)25(5)50 we found complex zeros ofr,, only forn = 5,7, and 9.
All zeros of 7,, were found to be simple, real, and in the interval (—1, 1).

Case (ii) po = A4 +A1_,uy = A_ (Table 2') Again, most of the zeros are real.

Only for n = 4 and 6 did we find complex zeros of m,,.

The zeros of m,, are all simple, real and in (—1, 1).Calculations for the same n as in Case (i)

The situation is different in Cases (iii) and (iv) . In these cases the set K of Theorem (1.2.1) may be
described as follows.

The Green function gq(z; ©) of O = C\X has one level set {z: gq(z; ) = 7.} consisting of a figure

eight.
TABLE 1 : Zeros of m,, and r,,,n = 5,10, in Case (i)
Zeros of 1, Zeros of 1,
n=5 —0.93646854 — 0.20876772i —0.88534979
—0.93646854 + 0.20876772i —0.46499783
0.0 0.46499783
0.93646854 — 0.20876772i 0.88534979
0.93646854 + 0.20876772i
n=10 —1.00052723 —0.97497028
—0.93567713 —0.87345927
—0.80269592 —0.71474572
—0.62612019 —0.55444777
—0.50181795 0.0
0.50181795 0.55444777
0.62612019 0.71474572
0.80269592 0.87345927
0.93567713 0.97497028
1.00052723
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TABLE 2 : Zeros of ,, and 1,,,n = 5,10, in Case (ii)

Zeros of 1, Zeros of m;,

n=5 —1.01982013 —0.91709404
—0.74396812 —0.64370369
—0.55435292 0.14139821
0.61214903 0.78137665
0.90846355

n=10 —1.00290062 —0.97911875
—0.93891943 —0.89422735
—0.84280403 —0.75923516
—0.66396367 —0.61066220
—0.55481204 —0.51231989
—0.48324766 0.16014304
0.55639877 0.62971341
0.71942191 0.80459125
0.87676555 0.93865007
0.97576614

For symmetry reasons, this is the level set containing 0. The set K consists of two parts.

It is the union of E, 1] with that part of the figure eight that encircles [— 1,- %]

Case (iii) : gy = A4, +1; = A4 + A_ (Table 3). In our calculations for n = 1(1)25(5)50 all zeros of 7,
were found to be simple, real, and in (—1, 1). All zeros of m,, are real only forn = 1, 2, 3,4,6,8, and 10.

All complex zeros have a negative real part and they are encircling [— 1,- %]

For odd n, the complex zeros are outside.
TABLE 3 : Zeros of m,, and ,,,n = 5,10, 15, in Case (iii)

Zeros of 1, Zeros of 1,

n=5 —1.13970225 — 0.44661459i —0.90932823
—1.13970225 + 0.44661459i —0.62403037
0.50779290 0.62478703
0.76816794 0.90887919
1.00382819

n=10 —0.98774277 —0.97498555
—0.95967689 —0.87349586
—0.77454092 —0.71478191
—0.65462781 —0.55436421
—0.48961896 0.00056691
0.50181827 0.55445253
0.62612626 0.71475358
0.80270124 0.87346371
0.93567933 0.97497123
1.00052715
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n=15 —1.20729028 —0.99008732
—1.11842498 — 0.237622011 —0.94869995
—1.11842498 + 0.237622011 —0.87812479
—0.86567461 — 0.41291713i —0.78542939
—0.86567461 + 0.41291713i —0.68199701
—0.48045299 — 0.45544118i —0.58497964
—0.48045299 + 0.45544118i —0.51762420
0.50000295 0.51762967
0.54387032 0.58499199
0.63049097 0.68200314
0.73428763 0.78542581
0.83481287 0.87811753
0.91801959 0.94869496
0.97492010 0.99008612
0.99999844
1 -
c.8F
0.4
ozl 0000 Ta T e s E mae_ e
ob ...
—0.a
—o.6
. sy - “o.5 l:;) o5

Fig. 1. Plot of the zeros of 1,,,n = 5(5)50, in Case (iii).

the set K, while for even n, they are initially inside, but eventually some cross over to the outside.
It seems likely that for odd n, the zeros tend to K from the outside but the convergence is very slow.
For even n, there might be a different limit distribution, although it is conceivable that also for even n, the

zeros accumulate on K. It is also remarkable that the zeros
1 T -

L8 -

.6




Fig. 2. Plot of the zeros of 1, n = 5(5)50, in Case (iv).
of m;, are very close to being symmetric around 0. We have no explanations for these phenomena.

Figure 1 depicts the zeros of m,, n = 5(5)50, along with that part of K that encircles [—1, - %]
Case (iv):
Uo = A4, uy = A_ (Table 4 ) .We found complex zeros of m, for all n, except n = 1,2, and 3. Again, all

the zeros of7,, are simple, real, and in (—1, 1). In contrast to Case (iv), we found no zeros of 1, inside the
curve K (except for n = 3). This is illustrated in Fig. 2 with the plots of the zeros of

Ty, = 5(5)50.

Note that the zeros are pretty far from K.
TABLE 4 : Zeros of m,, and m;,n = 5,10, 15, in Case (iv)

Zeros of 1, Zeros of 1,

n=5 —1.40237979 —0.91931357
—0.67193855 — 0.70835815i —0.64605904
—0.67193855 + 0.70835815i —0.18436141
0.62935932 0.78712860
0.91364079

n=10 -—1.29703537 —0.98088476
—1.10126374 — 0.39294199i —0.90316848
—1.10126374 + 0.39294199i —0.77960092
—0.57893971 — 0.56595190i —0.63989830
—0.57893971 + 0.56595190i —0.53049964
0.51468739 0.55298588
0.60589851 0.68147141
0.75300437 0.83024743
0.89081502 0.94619968
0.97842844

n=15 —1.24663987 — 0.13488685i —0.99138203
—1.24663987 + 0.13488685i —0.95536746
—1.07914072 — 0.37346724i —0.89378004
—1.07914072 + 0.373467241i —0.81229432
—0.77108509 — 0.51962021i —0.71962499
—0.77108509 + 0.519620211 —0.62805945
—0.36124445 — 0.50773392i —0.55324965
—0.36124445 + 0.50773392i —0.50975247
0.51791298 0.54446702
0.58620377 0.63199538
0.68402014 0.73630329
0.78755144 0.83660513
0.87969723 0.91913536
0.94947423 0.97530045
0.99024926

19



Case (iiv) Another Choice for A, and A_We also experimented with A, the measure

-1/2
] (t2 - %) (1 — t?)~Y/2 restricted to E, 1] and A_ the same measure restricted to [— 1,— %]

The results, on the whole, are very similar to those for the Lebesgue measure. The differences noted were
that complex zeros of m,, occur also for n = 11 and 13 in Case (i), and for n = 8 in Case (ii).
In Case (iii), all zeros of m,, are real only forn = 1,2, 3,4, 6, and 8.

A major tool is a well-known result on zero distributions of polynomials, which we state below for the
case of a set E c R, and in the following, cap(E) denotes the logarithmic capacity of Esee[16], [18].
Lemma (1.2.3)[17]. Let E c R be compact with cap(E) > 0 and let {p,} be a sequence of monic
polynomials, deg p,, = n, such that

lim supllp,lly’* < cap(E). (10)
n—-oo
Then
lim v(p,) = wg. (11)
n—->oo

Proof. SeeMhaskar and Saff [19]
Monic polynomials satisfying (10) are called asymptotically minimal polynomials, since every

monic polynomial p,, of degree n satisfies ||pn||Z/ > cap(E). Hence, if (10) holds, we have in fact
equality. A weighted analogue of this theorem was obtained by Mhaskar and Saff [19] . To show the
following Theorems we will need a slightly stronger result, which may be of independent interest.
To state it . Assume E < C is a closed set. A function w: E — [0, o0) is an admissible weight if
(i) w is upper semicontinuous;
(ii) the set {z € E: w(z) > 0} has positive capacity;
(iii) if E is unbounded, then |z| w(z) - 0 as |z| - o,z € E.
Associated with an admissible weight w is a unique positive unit measure p,, and a unique constant F,,
such that UH*w(z) —logw(z) = E,q.e.onsupp(u,,),

Utw(z) —logw(z) = F,q.e.onE. (12)

1

Here, U* denotes the logarithmic potential of the measure u, U#(z) = | logmd,u(t), and g.e. means

quasi-everywhere, that is, except for a set of zero capacity.

In the following theorem we use S,, to denote the support of u,,, Pc(S,,) denotes the polynomial
convex hull of S, D,, = C\Pc(S,,) denotes the unbounded component of C\S,,, and dD,, denotes the
boundary of D,, (also known as the outer boundary of Sw).

Theorem (1.2.4)[17]. Let w be an admissible weight on the closed set E c C. Let {p, };=; be a sequence
of monic polynomials, deg p,, = n, such that for q.e. z € dD,,,

lim sup[w(2)[p, ()] < exp(~F,). (13)
n-—-oo
Then for every closed A c D,,,,
lim v(p,)(4) = 0. (14)
n—->oo

Furthermore, if v is the weak* limit of a subsequence of {v(p,,)}, then
supp(v*) < Pc(S,,) and the balayage of v* onto dD,, is equal to the balayage of u,, onto dD,,.In[14] the

same result was obtained from the stronger assumption lim sup,,_,.||lw™p, II;QL < exp(—F,).
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Proof. In terms of potentials, the relation (14) is F, + logw(z) < liminf, . UY®"(2),q.e. z € dD,,,
and in view of (12) this implies

Utw(z) < liminfUY®P(z),  qe. z € D, (15)
n—oo
Let v, be the balayage of v(p,) onto Pc(S,,). Then
UVn(z) = UY®P(2) + ¢, q.e. z € Pc(S,,), (16)
with a constant ¢,, given by see [16].
in = [ 90, @) v 2 0. (a7)

Let v be the weak* limit of a subsequence of {v,}, say v, > v as n » oo,n € A, where A is a
subsequence of the natural numbers. Then supp(v) c Pc(S,,), and by the lower envelope theorem
in [16] UV(z) = liminf, 0 nep U (2), qe. z€C.
Combining this with (16), (17), and (15), we find for q.e. z € dD,,:

UY(z) = liminf, 4 nep UV (2) = lim infn_)oo'neA[UV(pn) (z) + cn]
> liminf,_, o nep UYPP (2) = UPw(2). (18)

Since UV — U"w is harmonic in D, and zero at infinity, the minimum principle and (18) give that
UV(z) = U*w(z) for z € D, and therefore, UV (z) = U*w(z), q.e. z € dD,,.
Consequently, equality holds in every inequality in (18) for q.e. z € dD,,. Then it follows that
lim inf,ecp ¢, = 0. Since this holds for every subsequence A € N for which {v;,},ep converges,

we obtain
lim ¢, = 0. (19)

n-—-oo

Since for a closed set A © D, there exists a constant C > 0 such that gp, (z;0) = C
for z € A, it follows from (17) and (19) that lim,,_,, v(p,)(A) = 0. This proves (14).
To prove the rest of the theorem, let v* be the weak* limit of a subsequence of {v(p,)}; say Ais a
subsequence of the natural numbers such that v(p,,) = v*
asn — oo,n € A. Having (14), we see that v* is supported on Pc(S,,).
Define A :={z € D,, : dist(z, S,,) = 1}.
Let {jn,j = 1,...,n, be the zeros of p, counted according to multiplicity, and put

n(2)
T (2) = H(]-’nEA(Z ~{im)s Gn(2) = z;n(; = H{j,nﬂ(z = in).
Then, because of (14),

deggqn, =n(1-46,), 6, -0, (20)
and the sequence {v(q,)}nea converges to v* in the weak* sense. Since the measures v(q,,) are supported

on a fixed compact set, the lower envelope theorem can be applied. It gives
UV (2) = lim inf uvn(z), gq.e.z € C. (21)

n—oo,ne

Next, since 1,(z) = 1 for z € S,,,, we have for z € S,
UvPn(z) = (1 — 86,)U") (2) — §, log|n,(2)| < (1 — 8,)U"9)(2); hence, by (20),(21),
liminf,, o nea uven)(z) < liminfn_)oo'neA[(l — 8,)Uvn (z)] =U"(2), q.e.Z €S,,.
Combining this with (15), we obtain U*w(z) < U (z), q.e.z € dD,,.
In the same way as before, (18), this implies equality for q.e. z € dD,,,.
Now the equality of the balayages of v* and p,, onto dD,, follows from the uniqueness of balayage.
This completes the proof of Theorem (1.2.4).
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Lemma (1.2.5)[17]. Let y, and p,; be measures satisfying Assumptions (i) and (ii). Let m, be the
sequence of monic orthogonal polynomials with respect to (14). Then we have

lim supllnnllgn < cap(X) (22)
n—oo
and
. 12 l/n
lim supllnnllzo < cap(2). (23)
n—-oo

Proof. Let ||-||; denote the norm associated with the inner product (4),

AN = 1712 )+ 1 2y
We first prove that

lim supllnnlllli/n < cap(X). (24)

n—-oo

Let T}, be the monic Chebyshev polynomial of degree n for . That is,
|7l < l|B,ll5 for all monic polynomials P, of degree n. It is well known that

lim || T, Iy = cap(2). (25)
From the regularity of Z; (see Assumption (1)) it is easy to see (using the continuity of the Green function,
the Bernstein-Walsh lemma and Cauchy's formula) that the Markov constants for £; have subexponential
growth. This means that there exist constants M,, with lim,,_,¢, M,ll/ " = 1 such that
1Rz, < MyllPlls,, deg P, < n. (26)
Then, for certain constants ¢4, ¢5,
ITalZ = ITA 12, oy + ITAIZ, oy < € lITall3, + lITAIZ, < clIT,lI3, + e, MEITLIE,
< (e + o MDIITIE - (27)
Using (25), (27), and M,/ = 1, we find lim sup,_q|[|T, I3/ < cap(E).
Since m, minimizes the Sobolev norm among all monic polynomials of degree n, we have
oy < [Tyl for all n, and (24) follows. Now, because u, € Reg, we have by (9),

1/n
T
lim <|”ﬂ> =1. (28)

n—oo |7Tn”L2(/,L0)
(o) < lInlly, we get (22) from (24) and (28).

Next, using the regularity of X,, we find that the Markov constants for X, grow sub exponentially.

Since ||m,|| 2

Il

I7nllz,

1/n
Thus, lim sup,,_, ( ) < 1. Hence, from (22),

lim supllmylly" < lim suplim,[I/" < cap(2). (29)

n—oo n—oo

Further, we get from p; € Reg and (9)

Iz, \"
lim sup |—1 <1. (30)

n-oo |T[‘;1”L2(ul)
< |lmylly, (24) and (30) give

lim supn_)oolln;lllgn <cap(2). (31)

Combining (29) and (31), we obtain (23).
The significance of the set V is described in the following lemma.

Since [|7nll 2 (yy)
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Lemma(1.2.6)[17]. Let z € C. Then z ¢ V if and only if for every r > gq(z; ), there is a differentiable
path y: [0, 1] - C such that
i. vy(0) €z,
ii. yQ@) =z
iii. go(y(t);o) <rforallt € [0,1].
Proof. If z €V, then z € V, for some r > gq(z; ). From the definition of V, it follows that the
connected component of {{: gq({; ) < r} containing z does not contain a point of X,. Hence there is no
path satisfying (i), (ii), and (iii).On the other hand, if z € V and r > gq(z; ), then z € V.. Thus the
connected component of {{: gq({; ) < r} does contain a point of X. Consequently, there is a path
satisfying (i), (ii), and (iii). This allows us to estimate |, (2)| for z outside V.
Lemma(1.2.7) [17]. For every z € C\V,
lim sup|m,(2)|Y™ < cap(Z)edals), (32)

n—00
Proof. Let z € C\V and r > gq(z; ). By Lemma (1.2.6) there is a differentiable path y:[0,1] - C
satisfying (i), (ii), and (iii) of Lemma (1.2.6).

By the Bernstein-Walsh lemma we have |},({)| < ||, ||se™2&*), ¢ € C.

Using this and the properties of y, we find

@] < |y ()] + |f, T (©dg| < limallz, + LGy llze™,
where L(y) denotes the length of y.
Then, by (22) and (23), lim sup,e |7, (2)|Y" < cap(Z)e”.
Since r > gq(z; ©) can be chosen arbitrarily close to gq(z; ), (32) follows.
Theorem (1.2.8)[17]. Let u, and p; be measures on the real line satisfying Assumptions (i) and (ii).
Let {m,} be the sequence of monic orthogonal polynomials for the inner product (4). Let v be a weak*
limit of a subsequence of {v(r,,)}. Then
(i) supp(v) cV u %,
(i1) the balayage of v onto K is equal to the balayage of wy onto K see[16]. for the notion of
balayage of a measure onto a compact set.
Proof: Define w(z) = exp(—gﬂ(z; 00)) , Z € K.
Let & be the balayage of wy onto K. Since £ ¢ Pc(K), we have U® (z) = U“=(z),z € K.
We also have U®Z(z) + gq(z; ©) = —logcap(X), z € C,
so that U?®(z) —logw(z) = —logcap(Z), z € K.
Thus, by (12), u,, = @, E,, = —logcap(Z).
Because of (32) we can apply Theorem (1.2.1), and Theorem (1.2.2) follows.
There are two general procedures for calculating Sobolev orthogonal polynomials: the modified
Chebyshev algorithm and the Stieltjes algorithm both generate the coefficients 8 }‘ in the recursion

k
T () = tm(©) = ) flme (6, k=0,12,... (33)
j=0

for the respective polynomials ;. Being interested in the polynomials up to (and including) degree n, we

need the coefficients {‘8}{}0<j<k fork=0,1,...,n—1.
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This computes the desired coefficients {,6’ }‘} from “modified moments”
v = jpj(t)duo(t), 0<j<2n-1,

(34)
v = fpj(t)d/,tl(t), 0<j<2n-2 (ifn=2),
where {pj} is a given set of polynomials, with p; monic of degree j. “Ordinary moments” correspond to
p;(t) = t/, but are numerically unsatisfactory. A better choice are modified moments corresponding to a
set {p j} of orthogonal polynomials, p;(-) = p;(-; 1), relative to some suitable measure A on R. These are
known to satisfy a three-term recurrence relation,

Pr+1(t) = (€ — ap)pi (6) — bpi—1 (D), k=012,...,

po(t) =1, p-1(t) =0,
with coefficients a; = ax (1), by = b (1) depending on A. We need the coefficients {aj}, {bj} for

(35)

0 <j < 2n — 2.In the context of the Sobolev orthogonal polynomials a natural choice of 4, and one that
was found to work well, is A = 1, + A_. By the orthogonality of the p; we then have

1
f—_fpj(t)dl—(t) + f_llpj(f)dlﬂt) =0, j =1, so that
2

-1/2 1
[ noaro=- [poao. (36)
21 172

Since, by symmetry, p;(—t) = (—l)jpj (t), the change of variables t = — in (87) yields
1

fpj(t)d/1+(t) =0 ifjiseven > 2. 37)
1/2
Let
1
I = fpj(t)d/1+(t), 0<j<2n-1, (38)
1/2
so that [; = 0 if j = 2 is even. We then have, in Case (i),
v =v =260, j=012.., (39)
where §;  is the Kronecker delta. Similarly, in Case (ii),
Io, _] - 0,
v =280l vV = {—10, j odd, (40)
0, otherwise,

in Case (iii):
NON {Ij, j =0orj odd,

D
g 0, otherwise, } Yj 5,010 (41)

and in Case (iv):

© _ (h J'=00r1'0dd'} W_; O _,0 sy 42
Yj {0, otherwise, Yo o Y )= (42)

In Case(i) - Case(iv) we have that A, and A_ are Lebesgue measure supported on E, 1]and [—1, —%],
respectively. Here, I, = % The coefficients a;(4),b;(4) in (35) can be computed very accurately by
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known procedures of Stieltjes or Lanczos whereupon the integrals I; in (38) can be computed (exactly) by
(35) and n-point Gauss-Legendre quadrature.

-1/2
In Case(iiv), A, and A_ are equal to the measure |t| (tz - %) (1 — t?)~%2 supported on E, 1] and
[—1, - %] , respectively. Here, [, = %n. The coefficients a;(4), b;j(1) are known explicitly

a=0,0<j<2n-2,by =m, b1=§,

1+3/72 ,
L o Jeven, .
b=l Sh , j=2,3,...,2n—2. (43)
i odd,

The integrals I; can no longer be computed exactly by numerical quadrature, but can be

approximated by N-point Gauss-Chebyshev quadrature with N sufficiently large.
-1/2
Indeed, if in I; = f11/2 p;(®) t(t2 —%) (1 —t?)"Y2dt one makes the change of variables
t?> = (1 + 3s)/4, one gets I; = %fol D; G —
1 . 1
I; =—f -(—\/5+3x) (1 —x?)"Y2dx. 44
=5 . bj 2 (44)

Gauss-Chebyshev quadrature applied to the integral in (44) converges fast.

1 1
V14 35) s 2(1 — s) zds, or, transforming to the interval ,

Here the coefficients {,6’ }‘} are computed as Fourier-Sobolev coefficients

tTl’k,T[k_‘
g}k=g j=0,1,...k (45)

I
i1,

where appropriate quadrature rules are used to compute the inner products in (45). The coefficients ,8}‘

and polynomials m,intervening in (45) are computed simultaneously, the polynomials recursively by (33)

using the coefficients ﬁ}‘ already obtained. The choice of quadrature rules is particularly simple in the

case of Lebesgue measures. Indeed, for k < n — 1, the integrands in (45) are polynomials of

degree < 2n — 1, so that n-point Gauss-Legendre rules on the respective intervals [—1, —%] and E, 1]

will do the job.In the other example, one has to integrate numerically as described above in connection
with [;. The zeros of m, (including the complex ones, if any) can be conveniently computed as
eigenvalues of the Hessenberg matrix

Bo Bi Bz - Baz Baci)
L B Bi o B Biz
2 .. n-2 n-1
Bn= 0 1 :8 n—4 n-3|. (46)
0 0 0 - pr2 prt
(0 0 0 - 1 -1

To compute all real zeros of m, and m,,, we scanned a suitable interval for sign changes in 7, and m;, and
used the midpoints of the smallest intervals found on which m, (resp. m;) changes sign as initial
approximations to Newton's method.

25



Chapter 2

Sobolev Embeddings and Constant Functions
We provide an elementary proof of the usual concentration compactness alternative extended to the
fractional Sobolev spaces H® for any 0 < s < N/2. We study optimizing sequences for corresponding
Sobolev embedding in bounded domains, showing that they are not compact and concentrate energy at
one point.
Section (2.1): Concentration-Compactness Alternative for Fractional Sobolev Spaces:
Let N > 1 and for each s > 0 let HS(RV) = {u € L>(RV)s.t.|&[51(&) € L2(RV)}

be the standard fractlonal Sobolev space H® defined using the Fourier transform

Fw)(¢) =1(¢) =—F5 RN e~ ™Su(x)dx. As usual, the space HS(RM) can be equivalently defined as the
@2m)z

completion of C;°(RNF) with respect to the norm

lulfye = || — )2

f (1 + |12 1a()|2dE, )

where the operator (Id —A)z =F o= M (1+1¢12)""2 o F is conjugate to the multiplication operator on

L?(RN) given by the function (1 + |&|%)5/2.
It is well known that for 0 < s < N/2 and 2* = 2N /(N — 2s), the Sobolev critical exponent, the
following Sobolev inequality is Valid for some positive constant S* = S*(N, s)

el vy < S vu € 5 (RY), ©)

L2(RN)
and the same inequality holds by density on H5(RN).

In order to discuss inequality (2), it is very natural to introduce for each 0 < s < N/2 the
homogeneous Sobolev space H§(RY) = {u € L2 (RV)s.t.|¢[*@(¢) € L2(RM)}.

This space can be equivalently defined as the completion of C§°(RY) under the norm

Il = | o], = [le1arag 3)

and inequality (2) holds by density on Hy (RN).
When 0 < s < 1, a direct calculation using Fourier transform (see,[21]) gives

2
f €125 18(8)[2dE = c(N, s) j f u) ~ ffv(y)l dxdy, @)

which provides an alternative formula for the norm on Hy(RM). The previous equality fails for s > 1,
since in that case the right hand-side in (4) is known to be finite if and only if uis constant [22].

When 0 < s < 1, according to [23], [24] for the more difficult case 1 < s < N/2,s &€ N), the Sobolev
inequality (2) is also equivalent to the trace Sobolev embedding Hi (RN x (0, ), t1=2dxdt) < L? (RN).
Indeed, taking for simplicity u € C§°(RN) and U € C§°(RM[0, 00)) such that U(x, 0) = u(x) we have

Il ey < 57217 f e Pds < c,s) | f VU225 dxdt, )
RN 0
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which extends to a bounded trace operator T, : Hy — L?". Moreover, the second inequality in (5) is an
equality if and only if the extension U satisfies
div(t172VU) =0 in RN x (0, ),
{U(-,O)zu in RV,
Actually, the solution operator to (6) allows to identify Hy (RY) as the trace space of
HY(RYN x (0, 00), t1725dxdt) and the Sobolev inequality (2) as the trace inequality in (5).
The starting point is the following theorem proved in [25] which gives the optimal constant in the

(6)

Sobolev inequality (2) together with the explicit formula for those functions giving equality in the

inequality.
Theorem (2.1.1)[26].Let 0 < s < N/2 and 2* = 2N /(N — 2s). Then
s 2"
||u||i2*(RN) < §*||(=A)zu () vu € Hy(RY), (7
2*
r(N=2s 2s/N\ 2
Where S* =|2725g~S (Nfzs)[ L) and I is the Gamma function.
r(57) trav)
For u # 0, we have equality in (7) if and only if
c
u(x) = — Vx€eRNV, (8)

(22 + |x —xo|?) 2~
where ¢ € R\{0}, 1 > 0 and x, € R are fixed constants. The Sobolev inequality (7) as well as the
previous theorem in the case s = 1 are proved in [27] and also in [28], where the connection with the
Yamabe problem is discussed.

When 2 < s < N/2 is an even integer the same result was obtained some years later in [29],
following the ideas in [30],[31].

Also the case s =1/2 has been already studied in the equivalent form (5)-(6) in [32], in
connection with the Yamabe problem on manifolds with boundary (see also [33] for the trace inequality in
the case WP with a different proof using mass transportation techniques).

The proof in [25] is based on a sharp form of the Hardy-Littlewood-Sobolev inequality.

Using the moving planes method, formula (8) has been obtained independently in [34].

At least when 0 < s < 1, a third approach through symmetrization techniques applied to the norm
in the right hand-side of (4) can be found in [35].

A naive approach to the validity of (7) is to study the variational problem

2
dx <1 ©)

S*:=sup<F(u):ue€ HS(RN), f |(—A)§u
]RN
where

F(u) == flulz*dx. (10)
RN

Clearly, the validity of (7) is equivalent to show that the constant $* defined in (9) is finite.
Moreover, Theorem (2.1.1) gives an explicit formula for it as well as for the maximizers of the variational
problem (9) up to normalization. Note that even the existence of a maximizer is not trivial since the
embedding (2) is not compact, because of translation and dilation invariance.
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Indeed, if u € H§(R") is an admissible function in (9), the same holds for
Uy, 2 () = AV 722 (x, + Ax) for any x, € RN and any 1 > 0.

In addition u, , satisfies F (uxO, ,1) = F(u) and tends to zero weakly in Hj, as |xo| - 1
(translation invariance) or as A —» 0% and A — o (dilation invariance).Another related problem we
consider is the following. Given a bounded domain Q. c RY, one can define the Sobolev space H§ () as

the closure of C5°(Q) in H§(RY) with the norm in (3) and the corresponding maximization problem
(or Sobolev embedding), namely

2
dx <1 (11)

Sq =sup Fo(u) : u € H3(Q), f |(_A)%u
RN
where

2dx. (12)

Fo(u) = l "

A simple scaling argument on compactly supported smooth functions shows that $* = S, but in view of
Theorem (2.1.1) the variational problem (11) has no maximizer. Thus, in order to study the behavior of a
maximizing sequence for (9) and (11) it is very convenient to establish a concentration-compactness
alternative for bounded sequences in the fractional space Hg, using methods and ideas introduced in the
pioneering works [30] and [31] and developed extensively in literature (see [36], [37], [56] ).We have the
following

Theorem (2.1.2)[26]. Let O € RY an open subset and let {u,} be a sequence in H(Q) weakly

2
dx S p and |uy|¥dx v in M(RV).

N
converging to u as n — oo and such that |(—A)5u

2*

Then, either u,, - u in Lj;,

(RN) or there exists a (at most countable) set of distinct points {xf}je] and

positive numbers {vj} . such that we have
JEJ]

V= |u|2*dx+zvj5xj. (13)
Jj

If, in addition, Q is bounded, then there exist a positive measure i € M(R") with spt i € Q and positive
numbers {u]} such that
J€J

2%

2 Z
dx+ﬁ+zuj5xj, v; <57 (pj)7. (14)
j

u= |(—A)5u
Proof: Since H3(Q) © L% _(RY) with compact embedding, passing to a subsequence if necessary, we may
2

assume that u, - u both in L{ (RM) and a... Similarly, for v, =u, —u—=0 in H3(Q), up to

s 2 .
subsequence, we may assume|(—A)5vn| dx *fiand|v,|¥ dx “9inM(RN),for some positive measures fi
and ¥ with spt ¥ c Q..
In addition, when ( is bounded, Lemma (2.1.16) easily yields spt /i € Q. Clearly v > |u,|* dx
by Fatou's Lemma, and combining pointwise convergence and the result in [61],[62] we have
fRqu)lz*dv — fRNl(pulz*dx = lim,,5 e fRNl(punlz*dx - fRNI(pulz*dx = lim,, 500 fRNl(pvnlz*dx

= ]RNl(plz df),
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i.e. v =7+ [u|¥ dx because the function ¢ € CJ(R") can be choosen arbitrarily.We are going to prove
the structure properties in (13) and (14) assuming that Q is bounded. Then, the structure relation (13) will
be true for any () just by a simple localization argument.

Indeed, ¥ € C°(RN) such that ) = 1 on B; and for 0 < A < 1 let ¥, (x) = P(Ax).

For fixed A € (0,1), we consider u;} = 1,u,,. Then, letting n — oo, we have u}! = y,u

in H§(Q), because 1, is a multiplier on Hg(Q), and |u%|2*dx Xy = [Yy12 v in M(RY).

If we assume that (13) holds for each of these limiting measures v, (possibly adding further Dirac
masses in By-1 N as A gets smaller), then the number of atoms of v, is clearly uniformly bounded and
for 0 <A <1 and, for 0 <4 <4, in the location is independent of A in Bj-1. Thus v Xvyas 1-0,
hence (13) holds for vas desired. Let & € R" be bounded and let us prove (13) and (14).

Given ¢ € CJ°(RY), the Sobolev inequality (2) yields

2

2F

. . 2z s 2
[ 101 1l dx | < 5% | -)2Coun) ) (15)
]RN
and
2
2*
N N s 2
| R B Co e [CECTS] . (16)
]RN
s 2 s 2
we have ||(—A)2((pvn) (") = ”(p(—A)zvn (") +0(1) as n - oo.
Passing to the limit in (16) we get
2 2
* * * i
[1o1zas ) =1m | [1oP ] <% [ o2 (17)
RN " RN RN

i.e. the measures vV and /i satisfy the reverse Holder inequality (25) with p = 2,7 = 2" and
C = (5§*)Y? Thus, the decomposition for ¥ and in turn for v = |u|? dx + ¥, i.e. (13) holds.In order to

prove (14), note that as n - o we have v, = u, —u— 0 in H;(Q) (hence (—A)z(u, —u) =0 in
L?*(RY)), thus Lemma 4 gives

jRN |(—A)§(<pun)|2 dx = fRN |(—A)§(<pu)|2 dx + fR otmy2un - u)|2 dx + o(1)

s 2 s 2 s 42
=J |(—A)5((pu)| dx+j |(p(—A)5un| dx—f |(p(—A)5u dx + o(1)
RN RN RN
s 2 s 12
=f |(—A)5(<pu)| dx—f |<p(—A)5u dx+f lo|?du + o(1). (18)
RN RN RN
Combining (15) and (18), as n — oo we obtain
.o 2 s 2 512
[lorar| < ( [ Jeoi@wl ar- | Joc-a| dx+ | |<p|2du) (19)
RN RN RN RN
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for any @ € C§°(RY). Since v satisfies (13), choosing (plel(x) =@ (xj + A‘lx)) in (26) as
a test function, and dominated convergence as A — 0 yield

S 2 S 2
S |(—A)5 ((pxj,lu)| dx — [on |@x;a(—=D)2u| dx = 0(1), whence v = ¥;v;§,, implies

*

2
w=y ,uijj for some p; > 0 such that v; < S*,ujz. Note that (14) follows easily because . ; ,uijj and

2
dx (the latter inequality by weak

s 2 s
|(—A)5u dx are mutually singular, u > };; uij]. andu > |(—A)5u

lower semicontinuity in L?), hence (14) holds. In order to conclude, it remains to observe that spt i S Q,
ie., [@idu = [ ¢? |(—A)5u
equation (18) asn — 1.

The previous result extends to the case of the fractional spaces H® a well known fact for s = 1 and,

2
dx for any ¢ € C(RV\Q), which is a straightforward consequence of

more generally, when s is an integer (see [30],[31]and[36]), namely that, at least locally, compactness in
the Sobolev embedding fails precisely because of concentration of the L2 norm at countably many points.
These results have been largely used for the variational treatment of the Yamabe problem and their higher
order analogues involving the Paneitz-Branson operators and more generally for semi-linear elliptic
equations with critical nonlinearities. At least when Q = RN, a proof of Theorem (2.1.2) can be deduced
as a byproduct of the so-called profile-decomposition in [38].

In[38] much stronger results are obtained using Fourier analysis, Paley-Littlewood decomposition, a
tricky exhaustion method and the improved Sobolev inequality in Besov spaces due to Gérard-Meyer-Oru.
Here, we provide an elementary proof of Theorem (2.1.2) by following the original argument in [30],[31];

clearly, we need to operate some modifications due to the non-locality of the fractional operators (—A)g.
Indeed, our approach relies on pseudodifferential calculus to control the natural error term in the
localization by cut-off functions.Using a commutator estimate by Taylor [39] and a standard
approximation argument, we will be able to prove the compactness of the commutator

[(p, (—A)E] : Hy () - L2(RM) when ¢ € C5°(RV), at least if Q is bounded.

This will give us the possibility to handle the fractional differentiation giving local description of the
lack of compactness in terms of atomic measures. We hope that will be of use in the variational theory of
the fractional Yamabe problem firstly considered in [40,[41].

Armed with the concentration-compactness alternative given by Theorem (2.1.2), we can study
maximizing sequences of the variational problems (9) and (11). We will see that concentration always
occurs in problem (11) because of the classification in Theorem (2.1.1),Corollary(2.1.8)). It would be very
interesting to study the existence/nonexistence of optimal functions in (9) and (11) for other equivalent
norm. Indeed, even for norms equivalent to (3), (4) and (5)-(6), e.g. obtained multiplying by suitable
functions |a(§)|, |K(x,y)| and |A(x,t)| bounded from above and below, we expect the existence of
optimal function to depend in a nontrivial way on the choosen functions (see [42]). In addition, we expect
that, as for the local case s = 1, optimizing sequences for the Sobolev inequality (9) look asymptotically
like optimal functions. It would be interesting to prove a quantitative version of this fact in analogy with
what is done in [43] for the case s = 1 (see [44] for Sobolev space W1P). Next, we consider a family of
variational problems associated to suitable perturbations of the functional (12).

Let 0 < & < 2*— 2 and let Q@ € RY be a bounded open set.
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We set

s 2
5t = supd R s e B, [ |(-a)fu dr<1 (20)

RN

whereF, (u) = [ lu|? ~¢dx.
The previous problem is subcritical. Indeed, since () is a bounded open set and the embedding
H$(Q) & L2 ~5(Q) is compact, the previous problem admits a maximize u, € H§({). Our purpose is to
investigate what happens when & — 0 both to the subcritical Sobolev constant S; (i.e., the optimal
constant for the embedding H§ () & L2 ~¢(Q) given in (20)) and to the corresponding maximizers
uc(i.e. the corresponding optimal functions). Combining the pointwise convergence of F; to F together
with previous Theorem (2.1.2), we are able to prove the following result.
Theorem (2.1.3)[26]. Let Q © R" be a bounded open set and for each 0 < £ < 2* — 2 let u, € H5(Q) be
a maximizer for S;. Then

) limg,oSe =57,

(ii)) As € =&, = 0, up to subsequences u, = u,, satisfies u, = 0 in Hj(Q)and it concentrates at

some point x, € { both in L? and in H?, i.e.

s 2
lun|? dx X585, and |(—A)5un| dx X8, in M(RV).

Proof: First, we claim that

lim sup S; < S™. (21)
£-0
Indeed, taking u, € Hj(£)) a maximizer for S;, by Holder inequality we have
2% —¢

2%

—& &
2 | Q)7

§2 = Ra(up) = [, [uel?~#dx < ([ luel?) 7 10 < (57
Thus, inequality (21) follows as € = 0.

The reverse inequality easily follows from the pointwise convergence of F; to Fn with a standard
argument. Indeed, for every § > 0 there exists us € H§(Q) such that |Jus]| ng < 1and

Fq(us) > S* —6. (22)

Clearly, for such function ug, we have S; > F.(us). Thus, combining the previous inequality with (22)
and passing to the limit as € goes to zero, we get lim inf,_, Sy = lim,_ F.(us) = Fo(ug) =S*—§
and claim (i) follows as § = 0 in view of (21). The concentration result (ii) for the sequence {u,} of
maximizers of S; now is straightforward. Due to (i) the sequence u. is a maximizing sequence for Fg,
hence, ensures that, up to subsequences, {u,} concentrate at one point x, € {, in the sense that

s (2
[un|? dx %.5" 8y, and |(—A)ou,| dx 18, in M(RY).

Let Q be a bounded domain in RY,s € R,0 < s < N/2. In the Introduction we have considered
the following problem for € € (0,2* — 2)

2
dx < 1}. (23)

S; = sup flulz*_sdx tu € H3(Q), f |(—A)§u

Q RN
The goal of the present section is to refine the result given in Theorem (2.1.3) about the behavior of the
maximizers u, of (23). Here, we describe the asymptotic behavior as € = 0 of the optimal constants S;
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associated to the embeddings HS(Q) & L2 ~¢(Q)) and of the corresponding maximizers, studying the
family {F,} of functionals

F.(w) = f|u|2*_£dx, (24)
o

s 2
on the set {u € H§(Q), fRN |(—A)5u dx < 1}. The main tool is the notion of T'-convergence in the sense

of De Giorgi (see [62]) and the crucial point is to introduce a convenient functional framework in which
performing the passage to the limit. The previous concentration result is well known for s = 1.
The asymptotic behavior of the optimal functions has been discusses in [45] and [46], at least assuming (i)
and the smoothness of the domain ). For the case of general possibly non-smooth domains we refer to
[47],[48] for the analogous problem in WP In view of Theorem (2.1.3), it would be also interesting to
understand whether the concentration point x, has some characterization, e.g. as critical point of some
function. This is known to be the case when s = 1 or s = 2, the function being the regular part of the
Green function of the Laplacian or the BilLaplacian in the domain Q (see [45],[46],[49],[50] and
[51]).Here, we also note that the maximizes u, € Hg () discussed in Theorem (2.1.4) are in fact solutions
of the semi-linear equation

(—8)%u, = Aue|? 22w, in(H (Q)) (25)
where 2 = (S7)7! is a Lagrange multiplier. Indeed, (24) is the Euler-Lagrange equation for the functional
F. among functions with H§ norm equal to one. Equivalently, the previous equation is the Euler-Lagrange
equation for the dual variational problem, i.e. to minimize the H;j norm keeping F; constant. Our results

yield a concentration phenomenon for a sequence of solutions u,, as € goes to zero.In this respect, another
subcritical problem that would be very natural to investigate is

(8% —mu = |u|* “2in(H5(Q)), (26)
where 7 > 0 is a parameter. Well known results for s = 1 (see [52]) and s = 2m an even integer (see [53]
and [54]) suggest that, even for fractional values of s, existence results for (26) should always depend in a
delicate way on 7 (see [55] for a first result when s = 1/2, and [4] when s € (0,1), though with a slightly
different definition of the fractional Laplacian; see, [56]).
Finally, we come back to the subcritical problem (20), carefully analyzing the asymptotic behavior of the
energy functionals F;, by means of De Giorgi's I'-convergence techniques. Here, the analysis is much in
the spirit of ([50],[51],[47] and [48]), but with some relevant differences in the proofs . We have the
following result.

Theorem (2.1.4)[26]. Let O € RY be a bounded domain and let X be the space
s 2
X=X := {(u,,u) € H5(Q) x M(RN) : u > |(—A)5 u| dx, u(RN) < 1},

endowed with the product topology 7 such that

T dgef  (u, = uin L? (),
) Y U) S . 27
Let us consider the following family of functionals
R = [l ~fdx v X (26)

Q
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Then, as € — 0, the ['*-limit of the family of functionals F, with respect to the topology T corresponding
-
to (23) is the functional F defined by F (u, u) = fﬂ |ul? dx + S* ﬁluj?, V(u,u) € X.

Here S* is the best Sobolev constant in RY as given in Theorem (2.1.1) and the numbers y; are
the coefficients of the atomic part of the measure p. As a consequence of the previous I'*-convergence
result, together with some property of the limit functional F, we can also deduce that the sequences of
maximizers {u,} concentrate energy at one point x, € {0, as already stated in Theorem (2.1.3)-(ii). It
would be interesting to prove results analogous to those of Theorem (2.1.2), (2.1.3) and (2.1.4) with
respect to the equivalent norms (4) and (5)-(6), i.e. taking the measure y as limit of energy densities in
RN x RN or RN x (0, o), respectively, and describing the corresponding loss of compactness in terms of
atomic measures.It is worth noticing that Theorem (2.1.4) could have its own relevance also to identify
the location of the concentration point. Indeed, it can be read as the necessary first step in the asymptotic
development by I'-convergence (as firstly introduced in [57],[58]) of the functionals in (28). In this sense,
a second order expansion of the I'-limit could bring the desired informations on the concentration of the
maximizing sequences, as in [59], where different energies involving critical growth problems have been
studied (see [59] and [60]). we will prove Theorem (2.1.2) and its consequences, i.e. we establish the
concentration-compactness alternative and we describe the behavior of the optimal sequences for the
Sobolev inequality. We also show that in the case of bounded domain there is no energy loss in the
concentration process and that the maximizing sequences for the Sobolev inequality concentrate at one
point.We analyze the asymptotic behavior of the subcritical Sobolev constant S; and the corresponding
optimal functions proving Theorem (2.1.3).Here we prove Theorem (2.1.4) and as a consequence we
provide an alternative argument for the concentration of the corresponding maximizes u..

Finally we establish two auxiliary results about H® functions that are needed in the proof of the
concentration-compactness alternative.We start with a well known lemma about pairs of positive
measures in the Euclidean space. Roughly speaking, it gives control on their atomic parts whenever a
reverse Holder inequality holds.

Lemma (2.1.5)[26]. ([48]) Let & € RY be an open set and let u and v in M(RY) be two nonnegative
bounded measures with support in such that for some 1 < p < r < oo there exists a positive constant C
such that

T

f lplrdv | <c f lplPdu | Vo € CORM). 29)
RN RN

1_7.—1)—1

Then, there exists a number 0 = C -(p~ > 0, a (at most countable) set of distinct points {xj}je] in

Q and positive numbers V; = 0,j € ], such that

p
V= Z viby, and pu= c? z vj?ij, (30)
J J

where ij denotes the Dirac mass at x;.

Using the previous lemma we are able to prove the main result, i.e.
Theorem (2.1.2). Namely we show that the well-known concentration-compactness alternative holds for
sequences in any Sobolev spaces H3(£),0 < s < N/2. The proof follows the original arguments in [30]
and [31] with some modifications to handle fractional differentiation. A simple consequence of the
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previous theorem is the following result, which will be useful and which shows that on bounded domains
there is no energy loss in the concentration process.

Proposition(2.1.6)[26]. Let 0 < 2s < N, let & ¢ R" be a bounded open set and let

{u,,} © H$(Q) such that u,, = 0 as n — oo. For any open set A € RY such that QN A =@
s 2

we have [, |(—A)5un| dx > 0asn — oo.

Proof. In view of the energy concentration described in formula (14) of Theorem (2.1.2), the conclusion
clearly holds when A is bounded, so it is enough to prove the claim when A = R¥\B and B c RY is some
Euclidean ball sufficiently large. Let us choose B such that 2Q € B and let ¢ € Cy°(B) such that ¢ = 1
on B/2 D Q. we have

s 2 s 2 s 2
[y |00%un| dx < fou(1 = 022 |~y | dx = [ |[1 = 0, (—)2] | dlx
= Jo [, 093] | x50
and the proof is complete.

The following result is a direct consequence of Theorem (2.1.2) and Theorem (2.1.1) and describes the
behavior of optimal sequences for the variational (11) in bounded domains.

Corollary (2.1.7)[26]. Let Q ¢ R" a bounded open set and let {u, } € H§ () be a maximizing sequence
for the critical Sobolev inequality (11). Then, up to subsequences, {u, } concentrates at one point x, € Q

s g2
in the sense that |u,|? dx iS*(SxO and |(—A)5un| dx ino in M(RM).

Proof. The result easily follows from the concentration-compactness alternative in Theorem (2.1.2).
One of the key point in the proof is the well-known convexity trick by Lions.
Let {u,} € H§(Q) be a maximizing sequence for the critical Sobolev inequality (11). Then, up to

subsequences, u, — u in Hg(ﬂ),fQ lu,|? dx - S* and also |u,|¥ dx X v € M(R") with v(Q) = S*.
By formula (13) in Theorem (2.1.3), we have
s =v(@) = j|u|2*dx+zvj. (31)
Q J
Combining the Sobolev inequality (2) with (13)-(14), we get
2*
flulz*dx + Zvj <Ss* f |(—A)Eu
Q RN

J
where p; are the atomic coefficients of the measure u € M(RY), that is the limit in the sense of measures

2
2 2"
dx | +S§° Z W, (32)
7

s 42
of the sequence |(—A)5un| dx.

Taking formula (14) and Proposition (2.1.6) into account we have

2* o
2 . Y
s 2 2- s 2
5* f |(_A)Eu dx +S*Z“f2 < f |(_A)zu dx +Z”f
RN j RN J
< S*u(RV) = 5%, (33)

because ||u,|| ug = 1 for each n and there is no loss of energy in the limit.
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Therefore, combining (31),(32) and (33),we see that all the inequalities must be equalities. Since
2*
the Sobolev constant is not attained on bounded domains and the function t + tz is strictly convex, it

follows that i = 0,u is zero and only one of the u;'s and v;'s can be nonzero in (13)-(14). Hence,
concentration occurs at one point x, € Q as claimed.

We conclude this section with the asymptotic analysis of the maximizes for the variational
problem in (20), proving the claims stated in Theorem (2.1.3).

Theorem (2.1.8)[26]. Let € RY be a bounded domain and let X be the space
2
dx, (R <1},

X = X = {0 € HY@) X MR) : > |(~8)5u

endowed with the product topology 7 such that

T def (u, = u in L% (),
Uy, - u,u) & . 34
Let us consider the following family of functionals
Fun) = [ Il ~#dx v(uw e X, (35)

Q
Then, as € - 0, the I'*-limit of the family of functionals F, with respect to the topology 7 corresponding
2*
to (34) is the functional F defined by F(u, u) = fﬂ |ul¥ dx + S* 21 y]? V(u,u) € X.
Here S* is the best Sobolev constant in RY as given in Theorem (2.1.1) and the numbers y; are the
coefficients of the atomic part of the measure p. The reason for the choice of X in Theorem (2.1.8) can be

described as follows. We are interested in the asymptotic behavior of the sequence {F.(u,)} for every
2

sequence {u.} such that ”(—A)Eug < 1. The constraint on the “Dirichlet energy” of u, implies

L?(RN)
that, up to subsequences, there exists 4 € M(R"Y) and u € H3(Q)

s 2
such that u(RV) < 1, |(—A)5u5 dx * pin M(RN) and u, — w in HS.

Clearly, by Sobolev embedding, we also have u, = u in L? (). By Fatou's Lemma, we deduce

2

where u; € [0,1] and {xj} C Q are distinct points; the positive measure fi can be viewed as the “non-

s |2 s
U= |(—A)5u dx and we can always decompose y in u = |( —A)z2u

2
dx). In view of this decomposition, the definition of X given

atomic part” of the measure (,u - |(—A)5u

in Theorem (2.1.8) is very natural; moreover the space X is sequentially compact in the topology .
Indeed, if {u,, u,} € X, then {u,} is bounded in H§((). Up to subsequences, u,_ - ¢ in M(R") and
u, = u in H§(Q) (and in L?" (), by Sobolev embeddings) and the inequalities defining X still hold for
(u, u) by weak lower semicontinuity. Since X appears as a sort of completion of H5(£) in the weak

topology of the product L2 (€) x M(RM), it would be interesting to understand whether, as in the case
s =1 (see [51]), every pair (u, u) in X can be actually approximated in the topology T by a sequence of

s 2
the form {(ug, (—A)2u, dx)}. We will not pursue this point here.
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Note that, since the embeddings H§(Q) < L? ~¢() are compact, the functionals F, as extended to
X by (33) are continuous and Proposition (2.1.9) below show that there are no further maximizes in the
space X. As a consequence, we have that the I'*-convergence of functionals in this space implies the
convergence of maximizers {u,} of F, to the maxima of F; this will allow an alternative proof of the
concentration for the sequences {u,} already obtained in Theorem (2.1.3).
Proposition (2.1.9)[26]. For any € > 0, let (i, fi;) € X be such that
2

dx .

SUp G ex Fe (1) = Fu(fl,, ). Then fi, = |(—A)2a,
Proof. We observe that the supremum is attained at some (i, fI,) because X is sequentially compact and
F. is sequentially continuous (due to the compact embedding H(Q) < L¥ ~¢(Q)).

Clearly, we may suppose ji(RY) = 1. Indeed, if we have A, := i,(RY) < 1, then we may
consider the pair (i, fi/A,) which belongs to the space X and satisfies (ii,/A.)(RY) = 1 and F, (i, i,/
Ae) = Fs(ae; .ae) = maXgy y)ex Fs(u’ .U)-

Since s, # 0, by the definition of X we have 0 < ” (—A)zu,

< 1. Hence, if we set

Hg ()
1
a=a(e):= — = 1, (36)
”ug”Hg(Q)
s 2
we may consider a new pair (T, [I;) given by i, = Vailandji, = a |(—A)5ﬁg dx.
Note that (i, i) belongs to the space X and it satisfies
2*-¢ 2*-¢
Fe(ug, i) = a2 F(Ue, i) = a2 max Fe(u,u). (37)
(wu)ex

s 2
Clearly, (36) and (37) imply that & = 1, (ﬁg, (—A)zu, dx) is a maximize and || || g ) = 1.

s 2 s 2
Since 1 = | |(—A)5ﬂ8 dx < ji.(RY) = 1, we have i, = |(—A)5ﬁ£ dx and the proof is complete.

Definition (2.1.10)[26]. We say that the family {F,}I'*-converges to a functional F: X — [0, ®); as € = 0,
if for every (u, ) € X the following conditions hold:

(i) for every sequence {(u., 4z)} C X such that u, — u in L2 (Q) and p, " u in M(RY)

F(u, ) = lim SUPe—o Fe(ug, pe) ;
(ii) there exists a sequence {(T, I:)} C X such that %I, = u in L2"(Q), @, pin M(RY) and

F(u’ ,Lt) = lim inf5—>0 Es(as’ .ag)
The ['*-limsup inequality (i) easily follows from the concentration-compactness alternative shown see
following proposition. The proof of the I'*-liminf inequality (ii) (i.e., the construction of a recovery
sequence) is more delicate. In the case s = 1 it is proved in [48], following the strategy adopted in [51]
and in [48], the authors prove the existence of a recovery sequence and the ['*-liminf inequality, working
in two separate cases (u, u) = (u, |Vu|?dx + fi) and (u,u) = (O,Zi Ht5xi) and cover the general case by
means of compactness and locality properties of the I'"-limit. Here, we follow a different strategy and we
explicitly construct a recovery sequence using the optimal functions given by Theorem (2.1.1).

The proof of the I'*-limsup inequality (i) is given by the following result.

Proposition(2.1.11)[26]. For every (u, 1) € X and for every sequence {(ug, 1)} < X such that
T
(ug, pe) = (u, 1), we have F(u, u) = lim sup,_,q F, (ug, ue).
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Proof. Let {(u,, u.)} be a sequence in X such that (u,, p,) 5 (u, pw); clearly,
p= |(—A)5u

and {x;} € RV. Up to subsequences, there exists a measure v € M(R") such that |u.|?'dx X v. and by

2
dx + [l + X721 #;6y;, for some [ € M, (RM),{u;} < (0,1)

Theorem (2.1.2) there exists a set of nonnegative numbers {vj}jejsuch that (up to reordering the points
{xj} and the {,u j})
2*
v = [ul?dx + Z vy, andv; < S*W?. (38)
J

Using Holder Inequality and arguing as in the proof of Proposition (2.1.11)-(i), we have

2*—¢
F(ug, pte) = lu |2 ~edx < (fﬂ |u£|2*dx) " |Q|7, hence, the definition of v and (38) yield
2%—¢

£
2%

lim sup,_o+ Fe (e, te) < limsup,o ([, el dx) * 10
2*
<v(@) < [, lul¥dx +S* X2, pu? < F(u,p).
Now, we will prove the I'*-lim inf inequality (ii).
It is convenient to define a relevant subset of configurations X < X as follows

2
dx + 1+ 552 g8, m(RY) < 1]

For any pair (u, 1) in X we will prove the existence of a recovery sequence {(ii, fi;)} € X for the

%= {(wm) € H3 (@) x MRY) : = | ()P

['*-liminf inequality, as stated in the following proposition.

Proposition (2.1.12)[26].For any x, € Q there exists a sequence {v,} € H3(Q) such that
@ {(ve
(ll) lim€—>0 diStH (SthSi {xO}) = 0’

(ii)limgg [, [vel? ~#dx = §”.

s 2
(—A)5v£| dx) c X} and -converges to (0,8, ) as &€ > 0;

Proof. We assume that x, is an interior point of Q and we construct the sequence {v.} modifying the

extremal functions u for the Sobolev embedding S*given by Theorem (2.1.1).
Let u € H§(RYN) defined as follows u(x) = f —, Vx€eRV,
(1+|x—x0|2) 2
where the positive constant ¢ is chosen such that |[u|| ns = 1.

N-2s
If, for any positive &, we set we(x) =€ 2 u(x/e), then we have

[ el dx = sandlwellyg = 1, (39)
]RN

. . . *
by scaling invariance of L and Hj norms.
2

Moreover, the function w, satisfies w, — 0 in L2 (RM) and |(—A)Ewg dxi&xo
in M(RY) as ¢ — 0, since a direct calculation for any p > 0 gives
-0 « [ s 2 e50 [
w, — 0 inL?"(R¥\B, (xo) )and |(—A)2w€ = 0inl2(RM\B, (x,))- (40)
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We want to localize the sequence w, in smaller and smaller neighborhoods of x,.
For any fixed positive p, take a cut-off function ¢ € C;°(RN) such that ¢ = 1
in B,(x0), ¢ = 0in RV\B,,(xp) and 0 < ¢ < 1. For any € > 0, we deine
g (x) = @(x)we(x)and we claim that, as € - 0,

The first convergence result in (41) is a direct consequence of (40).
B s 2 s 2 -0
1Bellg = fyn | (-2 (@ CIWe (/)| dx = [ |[(~0)2(0(ey)u)| = 1.
The last convergence result in (41) is more delicate. We split the integral into two parts, namely /; . and

L givenby I == fﬂn{wg<1}|(PWg|2*_£dX and [, ; == fﬂn{wgzl}l(pWSIZ*—gdx'

Since |ow,|?> ¢ < 1in Q N {w, < 1} uniformly in € and |pw,(x)|?> ¢ - 0
a.e. as € » 0, we deduce that I; . vanishes as € goes to 0.
For I, . first we want to prove that
2% —¢

lim ——1 =0. (42)

ool we L ((we21))
Note that, for & small enough, we have {w, > 1} € B,(x,) and then

2%—¢
(pwg —-1= % —1in Q n {w, < 1}. Hence, (42) follows once we show that
£§%||W§ = 1l o (fw, 213 = O. (43)

N-2s+ €
Clearly, on Q N {w, > 1} the function w; satisfies 1 < wf < (maxw,)& = (cs_ 2 )
and thus we obtain (43) and in turn (42) as € = 0.
Combining (42) with (39), I, . can be estimating as follows
o> ¢

wg

* * £-0
|we|? dx = fm{w‘gzl}lwgl2 dx + 0(1) — S*.

I = fﬂn{wgzl}l(pwglz*_gdx = fﬂn{wgzl}
Thus, (41) holds for any p > 0 small enough, whence a diagonal argument as p N 0 gives a
sequence {#,} such that (41) holds, since ¥, = 0 in L? (Q) and lim,_, disty (spt¥,, {x,}) = 0.
Note that, by Proposition (2.1.12), ¥, also satisfies

s 2
| (=225, | dx > 0 in L2(RM\B, (o) )as & > 0. (44)
Finally, for any € > 0, we set
T (x)
v.(x) = — . 45
0 = ol (42)

Claim (i) follows readily from (41) and (44). Claim (ii) holds by construction, since the function

¥, has the same property. Finally, a simple calculation of the L? ~¢

norm of the function v, gives
* —(2*— *
fﬂ |ve|? ~edx = ||17£||H§2 &) fﬂ |D|? ~#dx — S*as & - 0,which proves claim (iii).

To complete the proof, we observe that the case of x, € dQ can be obtained by a standard
diagonal argument taking an approximating sequence of points {x;} € Q converging to x, and the
optimal sequences corresponding to each xy.
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Corollary(2.1.13)[26]. For any finite set of distinct points {x;, x,, ..., x,,} € Q and for any set of positive
numbers {iy, U, ..., Un} € R,Y; p; < 1,there exists a sequence {u?} c H3(Q) such that

W (u,

(i) lim,q f, disty(sptud, U;{x;}) = 0.

(_A)Eus

dx) € X and 7-converges to (0 D=1 M0 ) as e — 0;

2
(i) limg_ f,, uf |2 ~2dx = §* Py

Proof.Let us set A; = Br.(xj) N Q for any j = 1,2, ...,n, with radii 7; and r; such that dist(Aj,Ai) > 0.

s 2
By Proposmon (2.1.12), there exists a sequence {(vg,/,tg)} c X, with /,tg |(—A)5vé
(ug,ug) (O Oy ) sptv C A dlstH(sptvg,{ }) —0ase— 0and

11mj|v]| ‘dx=S*, forj=1.2,..,n (46)

2
dx} gives

Letus set ug = Y72, \/u jvej . Estimating the energy of the sequence {| (—A)zul

f|( AYous dx—z [ I Ayivl|

J=1RN i,j=1,i<j
We clalm that the last sum in the formula above converges to zero as € goes to zero.
Indeed, by Cauchy-Schwarz inequality, we get

Hildj )2173'( A)EUJ>L2(RN) (47)

N

s s . s 2 g s .
(=0)2vf, (—A)2v!) 2 gy | < (—A)zv} (-M)zv]
o ot [l e | [lcoi

s .2
f |~z
RN

where, for i and j fixed, we have divided the whole space R" into two complementary half-spaces H; and

2
dx

NP

2
s . 2
dx j|(—A)5vg‘ dx |, (48)
H.

s 2
H; such that A; € Hi and A; c H;. Note that [ |(—A)5v&!

s 42
(—4)2v] dx)} C X. Thus, (49) becomes

€ because {(vgj ,

)% + (in |(—A)§v§ i dx)i.

to Oy in M(RN) as € > 0 and spt v/ € A;

[(C-52, (=030 < (Fyn |00

S .
On the other hand, since the measure |(—A)5vé

s .2
forall j = 1,2,...,n, (2.1.8) yields [, |(—A)5v€]

, that in turn implies

((~8)2vk, (~8)ev)) 2y > 0 ase = 0, (49)
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Combining (47) and (49) with the fact that each vgj concentrates energy at x;, in the sense of

2
dx} satisfies

Proposition(2.1.12),we deduce that the constructed sequence {| (=A)zuf

2

(=8)2u| dx L%, w0, inM (RY).

s 42
Finally, since };u; <1, by (47) we also deduce that f[RNl(—A)Eug4 dx <1, for & small, hence

< (ug,
Note that (ii) follows by construction, because of Proposition (2.1.12).
Moreover, since spt v# are mutually disjoint and v# satisfies Proposition (2.1.12)

« & « -0 2_*
(iii), we have [ [uf]* ~¢dx = ¥}, ' fAJ_lngl2 “fdx — ST YT u],

(—A)zul

2
dx)} C X, for € small and claim (i) is completely proved.

which concludes the proof of claim (iii). Now, we are in position to prove the I'*-liminf inequality for the
set of configurations X as stated in Proposition (2.1.14). The main contribution is given by the sequence

(o

the desired recovery sequence {(iig, fig)}.
Proposition(2.1.14)[26]. For any (u, 1) € X there exists a sequence {(ii,, fi;)} € X such that

s 2
(=B)zug

dx)} built in Corollary (2.1.13), but we have to carefully modify it in order to obtain

T
(g, pte) = (u, ) and
lim inf F; (i, ) 2 F (u, ). (50)
E—

Finally, we will prove the I'*-liminf inequality in the whole space X, by a diagonal argument using
recovery sequences for the elements of X.

Proof: for any point x; in Q we construct a sequence {vgj } that concentrates energy at x;

(see Proposition (2.1.12)). Then, we show that we can glue such sequences {vé } into a sequence {uf}
such that it concentrates at any finite set of points {xj} in Q (see Corollary (2.1.13)). Thus, the sequence
{u#} will be the recovery sequence for a pair (0,u) € X when uis purely atomic. Finally, for any pair
(u, ) in X, we will able to join the function u to the sequence {u#}, adding suitably their corresponding
measures, to obtain the desired recovery sequence {(#, )} satisfying (50).

Let (u, 1) be any fixed pairin X, i. e.,

s 2
u € H(Q) and p = |(—A)5u dx + [+ Z7y 16y, € M(RY), with u(RY) < 1 and let {ug}

For o > 0, take a cut-off function ¢, in C5°(R") such that ¢, = 0 in B, (xj),
forj =1,2,..,m,¢, =1in QU;B,,_(x;), with p, > 0as ¢ - 0,
_ [(x—Xxj _ . _ = _
Y =1 _Z?=1(P(?]); PECT(B),g=1onB,0<p <1
Now, we can define the sequence {(i, ft;)} as follows

s 2
Uy = Tep = upy +uf, [l = flsg = I + [(—0)2(up, +uf)| dx

s 2
and we claim that this is a recovery sequence for (u(pa, |(—A)5(u(p,,)| dx + i + Xi-q 1 é‘xj) as e - 0.
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Note that we will play with two positive parameters, namely & (which is the parameter for the
atomic part of u) and o (which will control the diffuse part of ). We will take limits in these parameters
in the following order: first € = 0, then ¢ — 0. The recovery sequence for (u, u) will be actually given by
a further diagonal argument. First, we claim that {(#, fi;)} c X for € and ¢ small enough. Since we have

s 2
U, € H3(Q) (because ¢, is a multiplier in Hy (2); see [63]) and i, > |(—A)5ﬂ€ dx, this claim reduces

to proving that
Z(RY) < 1. (51)
In order to check (51), for any &, ¢ > 0 we compute

ReRY) = (R + [ [-0)eCug, +ud)| ax = me®@) + [ -0, ax
RN RN

2 s s
dx + (D)2 (g, (~0): W p(gry.  (52)

+ [ o
RN

We can treat the last three terms in the right-handside of equation (52) as follows.
For o > 0 fixed, Corollary (2.1.13)-(i) and Proposition(2.1.6) yield

n
s 2
i [ |oin] dx = (53)
¢ RN j=1
Again by Corollary (2.1.16) u2 — 0 in H3 (), hence we have
lim ((~8)2ug,), (~)3 )y (am) = 0. (54)

Finally, from the definition of ¢, and we have

iy [ | [ ax = [ [earu | ar (55)
RN RN
Thus, combining (53), (54), (55) with the fact that u(RY) is strictly less than 1 (recall that
(u, ) € X), we can deduce the inequality in (51) for € and ¢ small enough.
We prove that {(Zi.fi;)} T-converges to (u, i), i.e.,
T, = win L2 (Q) and . pin M(RM). (56)
Clearly, |up, —ul?> = |1 — @z [u|* < |ul?, thus, {ug,} converges strongly to u in L%, as
o — 0, by Lebesgue's Dominated Convergence Theorem, and then the first convergence result in (56)

follows from the fact that the sequence {u2} weakly converges to 0 in L2 (1) as € goes to 0.The second
convergence result in (56) is a consequence of the convergence in the sense of measures of the sequence

{|-auz
and ug, = u in H§(Q) as ¢ — 0 by Corollary (2.1.13) respectively. Indeed, by arguing as in (52), (55)
and (53), for any ¥ € CJ(R"), we have

limo‘—>0 hmg—)O fRN lpdﬁs = limo'—>0 lirne—>0 fRN lpdﬁ + fRN l,b |(_A)5(U<Pa + ué)

s 2
= an WA+ [ond | (~02u| dx + [ pd B 18 = [,

2
dx} to the finite sum of Dirac masses Y. ; u j6xj, together with the fact that u2 = 0 as € > 0

2
dx

that completely proves (56).
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In order to complete the proof, it remains to show that its energy F; (i, [l) satisfies the lim inf
inequality stated in (39). Since dist(spt(u(p(,), UjB,, (xj)) > 0, we can split the integral in F,(ug, fI;) as
follows

F.(i,, i) = f|u<p0+u§1|2*_£dx = flu(p,,lz*_‘gdx+flu;f‘lz*_gdx. (57)
o) Q Q

By dominated Convergence Theorem, we have

lim limflu(p,,lz*_gdx = flulz*dx. (58)
0-0&-0
Q Q

On the other hand, taking Corollary (2.1.13)-(iii) into account, we have

n 2%
flug“lz*‘sﬁS*Zujz as e - 0. (59)
Q j=1

Finally, combining (57), (58) and (59), we obtain (up to the diagonal argument on € and ogmentioned)
2*
lim inf,_ E. (g, 1) = fﬂ lu|? dx + §* Yi=1t? =Fu,p).
In view of Proposition (2.1.14), the T'*-liminf inequality in Theorem (2.1.8) holds for any (u,u) € X.
Thus, it is enough to check that X € X is t-sequentially dense by an explicit approximation and that F is
continuous with respect to this approximation, in order to conclude by a standard diagonal argument. For
any pair (u, u) € X, we consider the sequence {(u.u.)} defined as u,, = c,u and

2
dx + chfi+ cf Xiq 1 jOx;» Where {c,} € (0,1) is any increasing sequence such that

= -0
¢, 7 1 asn > oo. Clearly, the sequence {(u,, i)} is in X, since, for any n € N,u,, € H§(Q) and p,, is a
measure with a finite number of atoms such that u, (RY) < c2u(RY) < ¢2 < 1.

Moreover, (U, ty) 5 (u, i) as n — oo, because u, — u in H§(Q) (hence weakly in L? (Q)) and, for
any p € C(RN),

s 12
S Wil = [ e [(—8)2u| dx + [y pcdd + c2 By wp(x))

s 2 - n-o
= & [ ¥ | (=07 dx + [ i+ Ty wp () = fon e
Finally, evaluating the functional F, we have

2%

F(uy, ) = [ ¢ lul? dx + S %7 (c2uy)?

2*
=% (fn [ul? dx + S* Z’jl:l,ujz> - F(u,u), asn - oo,

Here we show that, due to the I'*-convergence result, the maximizers {u,} for the variational
problem (23) concentrate energy at one point x, € Q when & goes to zero. The key result is the following
optimal upper bound for the limit functional F on the space X.

Lemma (2.1.15)[26] . For every (u, 1) € X, we have
Flu,u) < S* (60)
and the equality holds if and only if (u, ) = (0, 5x0) for some x, € Q.
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Proof. We adapt the argument in [51] for the case s = 1, using a convexity trick as in the proof of
Corollary (2.1.7). For every (u, u) € X, by Sobolev inequality (2), we have

2

*

2 2 2z
dx) + ST N u

2

Fu,p) = fﬂ |u|? dx + S*Z}’:luj? <Ss* (fRN |(—A)5u

2%

Now, by the convexity of the function t ~ tz, for every fixed s € (0, N/2), we get

2"
2 0 N
2 2
dx +S*Z/,tj2
j=1
2*

2 = 2*
dx + Z ui | <S*(u@®Y))? <s° (61)
j=1

F(u,u) <S* j |(—A)§u
RN

< s j |(—A)5u
RN
which proves (60). Note that equality clearly holds if (u, u) = (0, SXO), for some x, € (. Assume

that equality in (60) holds for some pair (u, ) € X. Then, each inequality in (61) is in effect an equality.
In particular, we deduce i = 0. If u # 0 then we also deduce by convexity that u; = 0 for every j.

2
dx and u € H§(Q)) is optimal in Sobolev inequality (7), which

In turn, this fact yields u = |(—A)5u
contradicts Theorem (2.1.1). Thus, u = 0, equation (61) and the strict convexity implies that y = &, for

some x, € Q as claimed. Now, by Theorem(2.1.8) and I'*-convergence properties, it follows that every

s 2
(—A)zu, dx)} in view of Proposition (2.1.9),

sequence of maximizes of F, which is in the form {(ug,

must converge (up to subsequences) to a pair (u,u) € X which is a maximizer for F, i.e.

(us ’

every (u, 4) € X and the equality is achieved if and only if (u, 1) = (0, 5x0) for some x, € Q. Hence, it

s 2
(_A)Eus

dx) 5 (u,u), with F(u,u) = maxyg F. We have the upper bound F(u,u) <S* for

s 2
follows that (ug, (—A)zu,

dx) 5 (0, 5xo), which is the desired concentration property for the energy

density.
Lemma (2.1.16)[26]. Let 0 < s < N/2 and let u € H§(RN). Let ¢ € C°(RY) and for each A > 0 let
03(x) = (17 1x). Thenug; — 0in H§(RY) as 1 - 0.
If, in addition, ¢ = 1 in a neighborhood of the origin, then u@; — u in Hy(RY) as 1 - oo,
Proof. First, note that each function ¢, gives a bounded multiplication operator M,,, € L(H§, Hy) with
operator norm independent on A because of the scale invariance of the Hy norm (see[63],[64])where
instead of Hj the more traditional notation h5 is used for the Riesz potential space of order sand
summability two).
Thus, if C = ||(p,1||L(H3'Hg) we have
lvoallug < Cllvilag (62)

for any v € Hj.
By density we take a sequence {u,} € C5°(R") such that u,, = u in H§, so we can estimate

leallys < NG = w)@allys + ugallys < Clw = wdllgs + latn@alls. (63)
Since for fixed n the function u,, gives also a bounded multiplier on H§, we have
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lun@allug < Cw)ll@allys > 0 (64)
as 1 — 0 by a direct scaling argument. Thus, the first statement of the lemma follows from (63) and (64)
letting A —» 0 and n — co. In order to prove the second statement, it is enough to note that whenever
u € € (RY) (indeed for any u which is compactly supported) we have u@; = u for A sufficiently large
(depending on u). Thus we see that ug; — u as 1 — oo for any u € C;°(RY) and the same holds for any
u € Hy(Q) by approximation.Indeed, (62) gives

lu —ugallys < lw —u) (X = @D s + llun (1 — @) |lxg
< (1 + Ol = up)llys + e (1 = @Dl (65)

and the conclusion follows arguing as in the previous case.
Lemma (2.1.17)[26].Let 0 < s < N/2,let @ ¢ R" a bounded open set and

let @ € C(RY).Then the commutator [(p, (—A)E] : H5(Q) —» L*(RY) is a compact operator, i.e.
® ((—A)Eun) — (=M)2(pu,) = 0 in L2(RM)whenever u,, — 0 in H3(Q) as n — oo.

Proof. Let L = (—A)z and for each € > 0 set L, = (¢eId — A)z. Clearly, by conjugation with Fourier
1

transform we have Lu = F ' o Mgs o F(uw)andL,u = F " o M(I%I 5 o F(u).
St+e
Thus, L, : HS(RY) - L?(R") is a bounded operator which in turn implies the boundedness of the
operator L, : H§(Q) - L>(R") induced by the continuous embedding H3(Q) < L*(RN).
Similarly, L : H5(Q) — L?>(R") is a bounded operator and the induced operator
L : H§(Q) — L*(R") is also bounded. Estimating the norm in L(HS, L?) easily yields
(s+|f|2)2—5|5 s_—»())
(1+€12)2
that[L,, @] : H5(Q) —» L>(RY)is a compact operator for each & > 0, to deduce the same property for
[L,p].Let L, = (eld — A)z and [, (&) = (]¢]? + €)z the corresponding symbol.
Clearly, L, is a classical pseudodifferential operator of order s, i.e.
L. € OPS7, (hence L. € OPB S7,). Since 0 <s < N/2, according to [50] we have the following

commutator estimate ||[Ly, (p]ulle(RN) < CII(pIIHJ(RN)IIulle- 1(]RN),pI'OVidCd oc>N/2+1.

|ILe = L|| < sup 0,hence the same holds in L(Hg (), L2(R")).Thus, it suffices to prove

Section (2.2): Constant Functions Connections in Sobolev Spaces:

Most of the ideas in this section are coming from a series of recent collaborations (see H. Brezis and P.
Mironescu [65], [66], [67], [68], H. Brezis and L. Nirenberg [69]). However we will adopt here on slightly
different presentation and provide some simplified proofs. The starting point is the following

Proposition (2.2.1)[70]. Let Q be a connected open set in R and let f : Q - R be a measurable function
such that

[ [UL=10 4, <o )

|x — y|N+1

then f is a constant. The original motivation for such a proposition was twofold:
(i) Uniqueness of lifting. Given a (measurable) function u : 0 = C such that |u| = 1 a.e., there are many

liftings ¢, i.e., u = . If @4, @, are 2 liftings then k(x) = i((pl(x) —0,(x): Q> L.
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Under further assumptions one may hope to prove that k is a constant function. For example,
if ¢4, ¢, are continuous and () is connected, then k is constant. The message [70] wish to convey is that
the continuity assumption can be replaced by a different type of condition, such as (66), which is much
more natural in the framework of Sobolev spaces .

(i1) A degree theory for classes of discontinuous maps. The possibility of defining a degree for maps in
Sobolev spaces (see [71],[72] ) is based on the fact deg h,(-) remains constant along a homotopy h;(:), as
t varies in [0, 1] (or more generally in a connected parameter space A). Such a conclusion holds possibly
in situations where the dependence in t need not be continuous.

Corollary (2.2.2)[70]. Assume ( is a connected open set in RY, and let f : Q > Z be a measurable
function such that

jjlf(X)—f(y)lp

|X — y|N+1

dxdy < 1, (67)

for some 1 < p < oo, then f is a constant. In [94] had obtained a similar conclusion under the stronger
assumption sp > 1.

Corollary (2.2.3)[70]. Assume is a connected open set in RY and A is measurable subset such that

f flxdxai%“ (68)

then either meas (A) = 0 or meas (Q\A) = 0. It suffices to apply Proposition (2.2.1) to
f = Xxa, the characteristic function of A.Note that in (68), (N + 1) is again optimal. If A is any subset of
Q with smooth boundary, then (68) holds if (N + 1) is replaced by any ¢ < N + 1 (it suffices to consider
the case where d4 is flat and to make an explicit computation).

Proposition (2.2.4)[70]. Assume () is a connected open set in RY and f : Q — R is a measurable function
such that

[ LSO iy o 9)

|x — y|N*P
for some 1 < p < oo, then f is constant. [Proposition (2.2.1) corresponds to the case p = 1].
Still a further generalization

Proposition {2.2.5)[70]. Assume Q is a connected open set in RY and f : - R is a measurable function
such that

— p
f lf &) =) W(lx — yDdx dy < o, (70)

lx —yIP
where p > 1 and ¢ E L},:(0,0),9 > 0 satisfies

flp(r)rN_ldr = oo, (71)

then f is a constant. [Proposition (2.2.4) corresponds to the case (1) = r™V].

Here is one important generalization of Proposition (2.2.4).
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Proposition (2.2.6)[70]. Assume () is a connected open set in RN and f : Q0 > R is a measurable function
such that

f If ) —fFOIP

1
Xy e dxdy =o (—) ase— 0, (72)

&

i.e.,

hmgf |f ) = fOIP

[ — ype XAy =0 (73)

-0
for some p > 1, then f is a constant. Assumption (72) is clearly much weaker than (69) (when (1 is
. lfC)-fIP
bounded) which says that [, [, de dy=0(1) ase-0,
On the other hand (72) is optimal since for any Lipschitz function f on ()

j G-I dy = 0(%) (74)

|x — y|V*P=e

1 - 1 . . o . .
v rN-1ldr =;.Here is a final generalization, which brings us closer to the

1
because [,
connection with Sobolev spaces.

Theorem (2.2.7)[70]. Assume ( is a connected open set in RN and f : QO — R is a measurable function.
Let (pg)e>o be a sequence of radial mollifiers, i.e.

Pe € Lipc(0,),  p =20, (75)
f p:(MrVtdr=1 ve>0, (76)
0
for every § > 0, lingf p:(r)r¥N-ldr = 0. (77)
ED
5
Assume that, for some p = 1,
. lf ) —fFIP
i [ [ bl ~ ydrdy =0, 79)
Q Q
Then fis a constant. Note that Proposition (2.2.6) is a consequence of Theorem (2.2.7) when
choosingp,.(r) = {er‘””, r<l
8Pe 0o, r>1
And Proposition (2.2.5) is also a consequence of Theorem (2.2.7) when choosing
0 ifr<e
pe(r) = {agl,b(r) if e <r < 1where
0 ifr>1,
1 -1
a, = fl/)(r)r’v‘ldr -0 ase-0. (79)
&
Note that, in view of (70), [, [, LOTOE ) |y — y])dx dy < Ca, - 0 ase - 0, by (79)
’ »Jo Ja |x—y|p pS y y — & 4 y -

The proof of Theorem (2.2.7) involves an excursion into Sobolev spaces which we will now describe.
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For simplicity,we start with the case of all of RY.
Let f € LP(RN),1 < p < oo. It is well-know,(see[71])that if f € WP (RN) then

f |f(x + h) — f(x)|Pdx < |h|P f |Vf|Pdx for every h € RY. (80)
RN
And conversely, if f € Lp (RM) and if there exists a constant C such that

Jlf(x +h) — f(x)|Pdx < C|h|Pas h - 0, (81)

then f € WYP(RN).When p = 1, W should be replaced by BV, the space of functions in L' who’s
derivatives (in the sense of distributions) are bounded Radon measures; thus f € BV if and only if

flf(x+h)—f(x)|dx£C|h| as |h| = 0, (82)

and then (16) holds for all h € RN with C = [|Vf]|dx.
In particular, if p, satisfies (75), (76) and f € WP, we have

f p:(|h])dh fle+ b — fOI” dx <C ase -0, (83)
RN

|R]P
RN

Since

f pe(IhDdh = ay f PPV -1dr = oy

RN 0
where oy = |S¥71|. Changing variables in (83) yields

P
f f|f(x)_§|(3’)| pe(lx —y|)dxdy < C ase - 0. (84)
RN RN
Similarly, if f € BV, we have
J J If(Ta)c £|(y)| pe(|x —y)dx dy < C ase - 0. (85)

RN RN
The heart of the matter is that (84),(85) gives a characterization of W when p > 1 (resp. BV).
Theorem (2.2.8)[70]. Assume f € LP (R") satisfies (84) with p > 1.
Let (pg) be as in (75)-(76)-(77). Then f € WP and

f If ) = fFOIP
|x — y|?

lim

£-0

pellx = yDdxdy = Ko [ 1971Pd (86)
RN RN N
where K, y depends only on p and N. Similarly for p = 1 we have
Proof: The original proof of Theorem (2.2.8) is to be found in [72]. We present here a simpler argument
suggested by E.
Assume f € LP satisfies (84) an let (y5) be any sequence of smooth mollifiers.
Setfs =vs * f.

Note that (84) still holds when f is replaced by its translates (7, f)(x) = f(x + h).
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Also, (84) is stable under convex combinations and thus fg satisfies (84) with the same constant C,

i.e., we have

[ O =hOP e

—ylp

PO el

where C is independent of € and §.
Next, let g € C2(R") be such that

f f lg(x) —gIP
lx — ylP
RN RN

where p, satisfies (75), (66), (77).
We claim that

pe(lx —yDdxdy < C ase - 0,

j Vg(oIPdx < C/Kyp,
]RN

with C taken from (88) and
Kyn = j |(g-e)|Pdo, e e SN

SsN-1
Proof of (89). Let K be any compact subset of RY.
For x € K and |h| < 1 we have

lg(x +h) = g(x) —h-Vg(x)| < Ckl|h|*.
From (88) we have
lg(x + h) — g(x)|P

dx e p.(JhDdh < C.

K |h|=1
By (91) we have
|h-Vg()| < lglx +h) — g(x)| + Ck|h|?
and therefore, for every 8 > 0
|h-Vg(x)P < (1+8)|glx +h) — g@)|P + Coxlh|*.
Combining this with (92) yields

h-V P
j ax [ LBV an < 1+ 03¢ + ok f |l pc (IR dh.

|h|?
K |h|<1 |h|<1

But, for any vector V € RV,
1

|(h-V)|? )
|n|=1 J
On the other hand, it is clear from (76) and (77) that

lirré f |h|Pp.(|h|])dh = 0.
&>
|h|=1
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Passing to the limit as € = 0 in (93) we find

Ky n j [Vg(x)|Pdx < (1 + 6)C. (94)

Since (94) holds for every 8 > 0 and every compact set K(with C independent of 8 and K) we obtain (89),
that is,

P

prIVg(x)Ivdx < hmmfj f Ig(lx il(g)l pe(lx —yldx dy. (95)
K

On the other hand, if g € CZ2(R") we have, as above,

lglx + h) —g(x)| < |h-Vg(x)| + C'|h|? vx € RV, Vh € RN.Hence

lglx +h) —gx)IP < (1 +0)|h-Vgx)|? + C4|h|?P.We multiply this by p.(|h])/|h|P and integrate

over the set {(x,h) € R?" : x or x + h € supp g} to obtain

h)— p ’
Jaw ¢ o I o (1R < (1+6) [ K wIVg(OIPdx + 2C4Isupp gl fyn RIPpe (IR dh.

We first let € = 0 and then 6 — 0. This yields

lg(x +h) — gx)|?
j dx j I[P

pellhDdh < Ky [ 17gGOPax. (96)

RN

lim sup
£-0

Combining (95) and (96) yields, for every g € CZ(RN),

. lg(x)-g()IP —

limg o [on Jpn ey Pelx —yDdx dy = Kpn JpnlVg () [Pdx.

Since CZ(RN) is dense in WP (RN), it is easy to conclude (using (80)) that (86) holds for every

f € WLP(RN). We may now complete the proof of Theorem (2.2.9). Assuming f € LP? (RN) satisfies (84)

and applying Claim (91) to g = f5 we see that

f|Vf5|pdx <— (97)

where C comes from (84).
Finally, we pass to the limit in (97) as § - 0 and obtain f € WP,
Theorem (2.2.9)[70]. Assume f € L(RN) satisfies (86). Let (p,) be as in (75)-(76)-(77).
Then f € BV and
. If (x) — F)I
i [ [ L2 pellx = yhax dy = K [ 1971 (98)
lx =yl
RN RN RN
where the right-hand side denote the total mass of the measure Vf.

-0

An interesting consequence of Theorem (2.2.9) is the following
Proof: If f € L'(R") and satisfies (85) and we proceed as above we are led to

Jan|Vfsldx < C/Ky y.Therefore f € BV and [o|Vfldx < C/K;y.

In other words we have proved that

If () = fOI

Kin flVflde lirgrLi()nf f =]

RN RN RN

pe(lx —yDdx dy. (99)
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On the other hand it is easy to see, using (82), that for f € BV

f f |f(x) — f(y)lp (Ix — yDdx dy < Ry flvfldx- (100)

RN RN
Unfortunately the constant RN in (100) is not the same as K y. It is also clear that (98) holds when
f € C2(RN). However we cannot conclude easily that (98) holds for every f € BV since CZ(RY) is not
dense in BV. It remains to be shown that, for every f € BV (RN)

. IF CO—f I
lim sup,_o f]RN fRN%ps(lx —yDdxdy < Ky fRvafld-x-

This has been established by J. It is still true (for a general (1) that

_ p
V1P < lim sup j j O =S 1 ypyax dy. (101)

2 £-0 —yl?
However, it may happen for p > 1 that f € W1 p(ﬂ) (so that the left hand side in (101) is finite) while the
right-hand side in (101) is infinite. Here is such an example. Let Q = D\X where D is a disc (in R?) and X
is a slit. Let f be a smooth function in Q which is discontinuous across the slit (for example two different
constants on each side of the slit). Clearly f € W1P((), but the RHS in (101) is infinite. This is so
because [ [, -+ = [, [, - andif the RHS in (101)

were finite we would conclude that f € WP (D)(by Theorem (2.2.8)), which is obviously wrong.
This example suggests the following open problem (i). Let Q € RN be a bounded connected set
(not necessarily smooth). Let § (x, y) denote the geodesic distance in Q. Let f € LP(Q) be such that

14
fo Jo L (62 3))dx dy < C ase 0.

Does it follow that f € WP and if so, does have

IfC)-f)IP
lime_o [ [y ! ;(xi)i: pe(8Cx,y))dx dy = K,y Jo 1VfIPdx?

Corollary (2.2.10)[70]. Let A be a bounded measurable set in RV,
Then A has finite perimeter

(in the sense of De Giorgi) if and only if [, [ Ipg(lx y)dx dy < C as e - 0 and then

CAl

limf f i pg(lx ydx dy = K, y Per(A). (102)

&-0
Theorem (2.2.11)[70]. Assume f € LP(Q) satisfies

f If ) = F)IP
|x — yIP
with p, as in (75), (76), (77). Then f € W1P(Q) and

f If ) = fFOIP
lx — y|P

pe(lx —ydxdy < C ase = 0, (103)

lim

-0

pellx — yDdx dy = Ky f VAP (104)
Q
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Sketch of proof. First assume that (103) holds. By a standard technique of reflection across the
boundary and multiplication by a cut-off one constructs a function f on R¥, with compact support, such
that f = f on and satisfying

| 7% =T (x— yyixdy < Case =, _

P
N g -l
By Theorem (2.2.8) we conclude that f € WP (R") and thus f € WP ().
Next one shows that if f € C2((1), then

f lf ) — fF)IP
lx — yIP
Finally one proves that if f € C2(Q)

f If () = FO)IP
lx — ylP

pellx = yDdx dy < (@) [ 1VfPdx, (106)

lim

-0

pelx — yDdx dy = Ky f Vf[Pdx. (107)
Q

The conclusion of Theorem (2.2.11) follows from an easy density argument.
Corollary (2.2.12)[70]. Assume () is a smooth bounded domain in RY.
Let f € LP(Q)be such that € [ [ T FIT dy <C ase - 0, then f € WP(Q) and

[9) |x_y|N+p—s

f lfG) = fFIP

|x — y|V*P=e

lim e

-0

dxdy = Ky [ 19717 (108)
Q

Recall that the standard fractional Sobolev space WP, 0 <s < 1,1 <p < oo, is equipped with
Gagliardo (semi) norm

— b
Wl = | f@) = fO)I

|x — y|V*sp

dx dy. (109)

It is well-known that ||f||s» does not converge to ||f||,,1r as s T 1; in fact it converges to 1 (unless f is
constant) by Proposition (2.2.4). However in view of Corollary (2.2.12)we may now assert that

lim(1 — IIf 55 = ;'N [z (110)

This “reinstates” WP as a continuous limit of WP as s T 1 provided one uses the norm
(1 = $)PlIfllwsp on W*P.

N .
Choice (ii) p(r) = {sN ifr < €This choice yields
0 ifr>¢
| @ =FON Ko [0
lim Ay =F [osr. (111)
Q Q
[x—yl<e
(N+p)rP
A variant is p.(r) = { N T <€
0 r>¢

and then we have
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1
lim 75 J l FG) = FOIPdx dy = s f i (112)

lx—yl<e
Still another choice yields

lim
-

1 -
) OSNH,f flf(x) — fO)IPdx dy=Kp,NfIVpr- (113)
QQ Q
e<|x—yl < 2¢
0 r<e

Choice (iii) p.(r) = - € <r < 1This choice yields

|loge|rN
0 r>1.
1 If ) = fF)IP
. _ p
E—rg_llogelf X =[P dx dy anlVfl . (114)
Q Q Q
[x—yl<e

Choice (iv) Lety € L1,.(0,+), y = 0, be such that foooy(r)r’“p‘ldr =1.
Choosing p.(r) = EN iy (;) rP yields
. lx=yI
limo v [y Jo IF@) = FODPy (B52) dx dy = K,y [, IVSIP,

for every f € WP (with p > 1) and for every f € BV (with p = 1). Applying this in the BV case with
f = x4 we obtain a new characterization of sets of finite perimeter. Namely a measurable set A C () has

- yl)dxdy<C ase = 0,

. , : o1
finite perimeter if and only if [, [c,v (

and then limgqogl\%fA ch}/ (lx;yl) dx dy = Ky yPer(A).

All the results of (2.2) are immediate consequences of the statements of (2.2.7) applied in a ball B c ().
One concludes that f is constant on B and then that f is constant on ( since ) is connected.
Note that the assumption

) = £ _
liny f f Lk =y dy = 0, (115)

implies first that f € BV and then that Vf = 0, so that f is a constant.
By contrast, when p > 1, and f takes its values into Z it suffices to assumes that

fflf(x) il(g)lp

Indeed, (116) 1mphes that f € WP (attention when p = 1, (116) only implies that f € BV). Then, one
may use the fact that f takes its values into Z to conclude that f is constant. The argument is the
following: write Q = Uyez Axwhere A, = {x € Q; f(x) = k} and use a well-known result of Stampacchia
asserting that Vf = 0 a.e. on A;. Hence Vf = 0 a.e. on ().

Alternatively, one may deduce from (49) and assumption f : {1 = Z, that

fO=F O] pell=yD)
fo Jo S dxdy < C.

pe(lx —yDdxdy < C ase— 0. (116)

52



This yields easily
. |fC)-F )l —
hms—>0 fQ fQ_ Tylpe(lx - )’Ddx dy =0
and thus f is a constant. There are interesting extensions of some of the above results where the ratio
lfF)-fFIP . . If ) -f I
e S replaced by a more general expression @ (—Ix—yl

Theorem(2.2.13)[70]. Assume w : [0,0) — [0, ) is a continuous function such that
w(0) =0, w() >0Vt > 0and

[ee]

). Here are two results due to R.

w(t)
j z dt=c° (117)
1
1 - IfCO—f O dxdy .
Assume f € L'(Q) satisfies [, [, ( p— )Ix—yIN < oo, then f is a constant.
Theorem (2.2.14)[70]. Assume w : [0,00) — [0,00) is a continuous function such that w(0) = 0 and
lim;_, o @ = a > 0. Assume f € L'(Q) satisfies

Jo Jo @ (|f()|2:£|(y)|) pe(Ix —yDdxdy < C ase - 0.

Then f € BV and

limeo fy fy @ (L2 pellx = yDdx dy = [, @(1VfacDx + akyy [, 1Vfildx,

where @(t) = fsN_l w(t|o - e|)do and Vf = Vf,. + Vf; is the Radon—Nikodym decomposition of Vf.
Here is still another open problem ,open problem (67). Let Q be a (smooth) connected, bounded domain in
RV . Let f : O - R be a continuous (or even Holder continuous) function. Let

w : [0,00) — [0, ) be a continuous function such that ! w(0) = 0 and w(t) > 0 for t > 0.

. . If ) =f )l 1
(Here (51) might fail). Assume that fﬂ fﬂ w ( o~ ) P
constant? We first recall the definition of VMO(Q; R) (= vanishing mean oscillation).We say that a

function f € VMO(Q; R) if f € L],.(€; R) satisfies

dx dy < oo. Can one conclude that f is a

. 1 .
hmg""ws(—x)vag(x) fBS(x)If(y) — f(2)|dy dz = 0 uniformly for x € Q.
Let Q be a connected (smooth) open set in R and let f € VMO(Q; Z). Then f is a constant. Indeed if we

set f(x) = IB_tx)I [ B.(0) f (y)dythen dist(fg (), Z) — 0 uniformly in Q and thus there is some constant

k. € Z such that| fo(x) — k€| — 0 uniformly in Q ( see [90]). Hence f is a constant. Functions in WP ()
belong to VMO (Q) provided sp > N (see[69]).Therefore one cannot apply directly this argument in our
setting which corresponds roughly speaking to sp = 1. Assume for simplicity that € is a square in RZ.

Let f € WSP(Q). Then the restrictions f(xy,") and f(-, x;) still belong to WP (I) for a.e. x; and a.e. x;
(where I is an interval)(see[72]).This observation is very useful when combined with the following
measure theoretical tool: (see[72] Assume that f : Q — R is measurable. Suppose that for a.e. xq, f (x,)
and for a.e. x,, f(+,x,) are constant functions. Then fis a constant. The considerations above yield an
alternative proof of Corollary 1 when p > 1. Indeed, if p > 1, (2) says that f € WP () where s = 1/p.
The restrictions of f to almost every line still belong to W*? with s = 1/p. Therefore, if f : A = Z one
may conclude that the restrictions of f to almost every line are constant. The above lemma allows to
conclude that f is constant [75].
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Section(2.3): Composition and Products in Fractional Sobolev Spaces:

The main result is the following: let 1 < s < 00,1 < p < oo,
S, ifs is an integer

[s]+ 1, otherwise.

SetR = {f € C™(R); f(0) =0,f,f',.... f™ € L (R) }.

Here, 0 < s < 00,1 <p< oo and Qis a smooth bounded simply connected domain in R". In

and letm = {

particular, one may ask whether Xis path-connected and whether C*(Q; S1)is dense in X. Several results
concerning the first question were obtained in [77](and subsequently in [78] for the spaces WP (M; N),
where M, Nare compact oriented Riemannian manifolds. The second equation was studied in [79] , [80]
and [78] for the spaces WP (M; N) and in [81] for the spaces WP (M; S¥).

The case where N = S is somehow special; one may attempt to answer these questions by lifting the
maps u € X. Here is a strategy: given u € WSP(Q;S'), one may try to find some ¢ € WSP(Q; R)such
that u = e'?. Then, hopefully, the path t € [0, 1] = e*% will connect continuously u, = 1 to u.
Moreover, if @j are smooth R-valued functions on Qsuch that Q=@ in W*P, then, hopefully, the

smooth maps e'?J converge to uin WP (Q; S*).We are thus naturally led to the study of the mapping

WSP(Q) 29 » f(p)for “reasonable” functions f(e.g. f(x) = e™* — 1), where Q is either a smooth
bounded domain or (0 = R"and s > 1. In [82] we settle the above mentioned questions about
WSP(Q; SY)when s > 1. Another motivation for analyzing composition and products in fractional
Sobolev spaces comes from the study of nonlinear evolution equations (e.g. Schrodinger equation) in H*®
spaces; see[83],[84] and [85]. In fact, the Appendix in [83],[86] contains a result which is a special case of
the Runst-Sickel lemma about products: it coincides below when g = 2.We start by recalling the
Littlewood-Paley decomposition of temperate distributions.

Let o € Co°(R™) be such that 0 < Py < 1,90(&) = 1 for [E] < 1,9(&) =0

for |€] = 2. Set (&) = 9o(277¢) —o(277%1¢),j = 1,
and ¢; = F~(;),j = 0.

Thus
@;(x) = 2Wgy(2/x) — 2"U Vg (2/71x), j =1, (118)
and
Z 0u(x) = 2 o(27x), j > 0. (119)
k<j

For f € §',set fj = fo;. We have f = Y5, fjin S”.
Definition (2.3.1)[87]. For —o0 < s < 00,0 <p < 00,0 < g < oo, set
Fa = { €550 llgs, = 1297560l g <
For 0 < p < o orp = q = o, these are the standard Triebel-Lizorkin spaces F, .

We have added the F;,‘?q to avoid confusions in the exceptional cases where they do notcoincide.

When 0 < p < oo, different choices of 1, yield equivalent quasi-norms.
The usual function spaces are special cases of these Triebel-Lizorkin spaces:
(i) LP = FJ1 <p < oo;
(i) WmP =Fhm=12,...,1<p<oo;
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(iti) WP = F3y,
(iv) L7 = F3,,s ER, 1 < p < oo;

V) L c S, ie.,
sup|f; ()| < CIIf Il . (120)
1,.x

In this list, when 1 < p < 00,0 < s < o, s non-integer, the W*? are the Sobolev-Slobodeckij spaces.
An equivalent norm on these spaces may be obtained as follows: let s = k + 0,k integer, 0 < o < 1.
Then

0 < s < oo, snon-integer, 1 < p < oo;

Dk — Dk p
UFIE o ~ 1P + D% I, + f f ID77x) ~ DT g (121)
R RN

e =y

In [88] these spaces also coincide with the Besov spaces B, (recall that s is notan integer). We warn
that, for p # 2, the spaces W3Pdo not coincide with the Bessel potential spaces L3P see[68].We will often
use the trivial fact that, for fixed sand p, the space F‘g,q increases with q. The following result is
well-known in [69]

Lemma (2.3.2)[76].Let 0 < s < 00,1 <p < 00,1 < q < o. Forevery j = 0, let f] € S’be such that
supp F(fj) C B,j+2. Then

: 122
- (122)

> =cllr el
J F
In the HS-spaces(p = q = 2), this result is proved in [91]. Recall that, for any f € Lj,., the
r(X)If(y)ldy. Fort > 0, set, for @ : R" - R,

@' (x) =t "p(x/t), x € R™ (123)
We recall some classical inequalities
Proof: With f =3, f/, we have fi = (X fj)k = (Zjek-3 fj)k = ZjZk—3(fj)k'

Therefore

Iflleg, = |||

maximal function Mf is defined by Mf(x) = sup;>g m fB

2 Brs RO oy = B2 a0 )

LP(R™ LP(R™)

<C

)

LP(R™)
by the Holder inequality with exponents gand q’ = qi applied to the inner sum.

-1
(5, Sreejos 257G — k + 42| MfI ()] (5,259 |Mfio| D
= c||llz7mpiG,q|

The desired conclusion is a consequence of (126) and (129).
Lemma (2.3.3)[76],[92]. We have:
(i) for 1 < p < oo and any function f,
IMfl[Le ~ [Ifllp; (125)
(ii) for 1 < p < 00,1 < g < o0, and any sequence of function (fj),
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Ifllgs, <C

<C
)

LP(R™ LP(R™)

. (124
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MO GO, <c|lIFll,q ; (126)

LP(RD) — LP(R™)
(iii)for any fixed ¢ € S and any function f,
If *@'(x)| < CMf(x), Vt>0, Vx€R" (127)

By (118), (119) and (127) we obtain the following
Corollary (2.3.4)[76].For every f € L],.we have

| < cMf(x), j=0, xeR" (128)
ij(x) <CMf(x), k=0, x€RM (129)
j<k

In the Gagliardo-Nirenberg type inequalities for the spaces F'ps_q, there is a gain in the
“microscopic” parameter q; this gain is also called sometimes “precised” or “improved” Sobolev
inequalities. In the context of Besov spaces, a typical Gagliardo-Nirenberg inequality asserts that

ByrNL® c st;é,zzr' for0 <s <o, 0 <p<o,0<r< oo see [93].Here, the value 2r of the

microscopic parameter is optimal in general. By contrast, in the scale of F-spaces we have, given
N

0<s5<00,0<p<00<r<cob, NL*c in,qforeveryo < q < oo (see [93]).
Amore general version of this phenomenon, in [94], is the following.
Let —0 <5y <5, <0,0<@qq,q, <0,0<py,py; <00,0<80 <1, and define
s=0s;+(1—0)s, ,% = pi+ 1p—_9. We state some interesting consequences.

1 2

Corollary (2.3.5)[76].We have
(1) for0<s; <s, <, 1<p; <o, 1<p, < 00,s=951+(1—9)52,%:i+ﬂ,

P1 D2
Ifllwse < ClFNGysionllf 1y sas; (130)
(ii) ([93]) for 0 < s <0, 1< p < o0, 0 < q < oo,
Ilfllﬁg/seq < ClIFNGspllFII;=E. (131)

In particular, we have
(ili)for 0 < s < 0,1 <p<o00,0<KO <1,
£l yospre < ClFNGsollf I3, (132)
Lemma (2.3.6)[76].Let —0 < 5; <5, < 0,0<q<,0<60<1, and set s =60s; + (1 — 0)s,. Then
for every sequence (aj)we have

12741l < Cllzajll 22 o (133)

Proof: Let C; = sup 25V |q;|, C, = sup 252/ |a;|, so that C; < C,.
We may assume C; > 0. Since s; < S5, there is some j; > 0 such that

C1

<
. Cq Cy _ 251j”’ -] - -]0 . Cq Cy Cy Cq1 .
min {2511"252}'} I P> i Since 2s1jo — 252Jo and 251(jo+1) = 251(Jo+1) we find that
252j 4 ] ]0'
C, ~ C12(52—51)j0_ (134)
Therefore
. 0 , 1-0 .
- 1-6
||2511aj||€m”2521%.”{)oo ~ C;2(52751)jo(1-0) (135)
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On the other hand, we have a; < mm{ } so that
251] 252]
Cy o Cy .
a; < ﬁforo <J<Jjo a; < 5527 forj > j,. (136)

It then follows that
1
127 | 4 < (Ejej €267 + B, €7 205792))a

1
< C(Zijo Clqz(S—Sﬂjq + Ej>j0 Clq2—9(52—51)jQ+(52—51)jOQ)q
so that
||25jaj ”{’q < 6612(52—51)1'0(1—9) (stjo 2—(1-6)(s2=s1)Uo—-)q 4 Zj>j0 2—9(52—51)(f—f0)Q)1/q_
Finally, we find that
||251'aj||€q < €€ 2062750j0(1-0) (137)

and (133) follows from (135) and (137).
Lemma (2.3.7)[76].Under the above hypotheses we have, for every 0 < q < oo,

Iflls, < CIfIIG o Mf g (138)
P 242
where Cdepends on s;, p;, 8 and q.

Proof: Since [|a; |, < [|aj]l,¢, 0 < g < o0, we find that r-h.s. of (138) is [ ll 75, = C||f||~sl ||f||~52

o
On the other hand, ||f]| o = I f I|F5q’ 0 < q < oo. It therefore suffices to prove (138) in the spec1al case
0<q<,q =g, =0

In this case, we have

Iflzs, = ||ll2s fj(x)”{,q”Lp(Rn) < (by(133))

< c |l @l el
Using the Holder inequality, (139) yields

1705, = c 2560l o IS )Ilfooll
= CIFIGe: IFIEE

||Lp(Rn) . (139)

LP2(R™)

The proof of Lemma (2.3.7) is complete.

We split the statement into two parts; the first one contains the fundamental estimate, the other one
deals with the continuity of the product.
Let0<s<, 1<qg<® 1<p; £0,1<p, <0,1<1r3<0,1<1,<»
be such that
1 1 1 1 1
-I<—-=—4+—=—+—<1 (140)
P p1 T2 P2 TN
Lemma (2.3.8)[76]. We have, for f € F§ , nLand g € F, ; N L',
£l = € ([|Mr N2 9;CON,0 ]y g + IMICN2T Ol ) 14D
and

Ifgllzs, < € (Ifllzg, gl + Ngllzs,  IF ). (142)
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Proof.We start by noting that (142) follows from (141).
Indeed, using the Holder inequality we find

||Mf(x)||25jgj(x)||{,q ”LP(Rn) + ||Mg(x)||251fj €[ ||Lp(]Rn)
< 51l TNy + 2950

< ¢ (Iflizs, Ngllers + gllzs, Nfllr)
by (125). We turn to the proof of (141). It relies on Lemma (2.3.2) which is valid since 1 < p < ooand
1< q <. Wehave fg =Y Gy + X;Fj, where G, = (stkfj)gk,Fj = (Z,Kjgk)fj.
Since supp F(P}) C B,j+2 and supp F(Gy) € B,k+2, Lemma (2.3.2) yields
Ifgllzs, , < C(A+ B), (143)
With A = [|[125%G () |l all o wny, B = 1255 F (Ol pall o (rny-We estimate, e.g.

A:4 = 12752 500) k@ |y gy < By (129)

Cl[Mf; N2 g CMleall ey (144)
We obtain (141) by combining (143), (144) and the similar estimate for B.
Corollary (2.3.9)[76].We have that:
(1) for1<qg<®0<s5<0,1<p; <0,1<p, <0,1<r <01 << ox,
11,1 1 1 ~ - -
0<o=—d-=—+—<1the map(Fs , NL™) x (ES ., nL?)> (f,9) » fg € E5,

P1 2 D2

is continuous;

Mg (x r n
e MO lrany

ffﬁfinﬁps.q' ||f€||°oSC
(i) forl <q<o0,0<s<o,1<p<ooiff , o
g' > gink, g ”LooSC

then ffg* - fgin ES,;
(i) for 1<qg<0,0<s5<00,1<p;<00,1<r<o,1<p<oosuch that %zpi+%, if

1

S finEs o . <c -

{fe FinBa Wl = Coen pege o pg,

g--o>gink,nl, '

Proof.(i) follows directly from (142). Some care is needed when one of the rj's is 0. We treat, e.g. case
(111). It clearly sufficesto prove the following two assertions:
() if f* - 0in F'pslq and ||f‘)||Loo < C, thenffg — 0 foreach g € F;q nL.

1
@ irg = 0in By 01 < Gl < G then gt >0

Assertion (ii) is clear from (142). We prove (i) using (141). We have

I#ales, < € (Il Nl + [MreCollz g, GOl o0 )
< o) +C | Mfe @279, |, - (145)
Set (x) = Mf*(x)||25 g; (x)||€q.Then clearly
[Ff(o| < cl[2g; 0,4 € LP. (146)
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On the other hand, F'psi,q S LP1 (see [87]). It follows from the maximal inequality (125) that

M f‘) — 0 in LP1 and, up to a subsequence,that M f ¢ 5 0 a.e. Then (i) follows from (145) and (146) by
dominated convergence.

Theorem (2.3.10)[76]. Let Q be a smooth bounded domain in R™ and f € C™ be such that

ff,...,f™ € L*. Then the map WSP(Q) N WSP(Q)) 3 ¢ & f(P) € WSP(Q)

is well-defined and continuous. Our original motivation in proving Theorem (2.3.10) comes from the
study of properties of the space X = WP (Q; S') = {u € WSP(Q; R?); |u| = 1ae.}

Proof: The conclusion is well-known when s is an integer (this uses the standard Gagliardo-Nirenberg
inequalities). Assume snon integer. Clearly, the mapWs? N WP 3 u » f(u) € LP

is well-defined and continuous, since f(0) = 0, fis Lipschitz and WP & LP,

Thus it suffices to prove that the map WP N WP 3 u » D(f(u)) = f'(w)Du € WS~1P

is well-defined and continuous. With m = [s] + 1 > 2, we obtain, using (14), that the inclusion

WSP A WL & WM Vi q WL (147)

is continuous. Applying Theorem (2.3.10) to the integer s = m — 1 = 1, we find that

- _1.35P
if u > uin WP n WP, then f'(u?) - f'(win FEIZ = W™ %3 and,
m—1’

£ ()| o < C. (148)
On the other hand, we clearly have that if u? - uin WSP n WSP, then Du? - Duin
Ws=1p 0[P = F;;l N L°P, (149)
Using (148) and the Gagliardo-Nirenberg type inequality (131) (withg =p,s =m—1,0 = ;__11,

p= %), we obtain if u? - uin WP n WP, then f'(u?) - f'(w) in F‘Elb and
s—=1

IF" @) < €. (150)
Finally, by (149), (150), Lemma (2.3.8) and Corollary (2.3.9), we obtain that

f'(W)Du € 551 = WP and that if u® > uin WP n WP, then f”(u?)Du’ > f'(w)Du in W12
Theorem (2.3.11)[76]. Assume 1 < s < oo, s non integer, 1 < p < 00,1 < q < . Then, for every f € R,
the map IE'IS:,_q NWLSP 3 - () € li'ls,lqis well-defined and continuous. There is a natural strategy for
proving Theorem (2.3.10): assume, e.g. that 1 < s < 2 and try to prove that f'(u)Du € WS~17,
Set s = 1 + ¢. On the one hand, we have Du € WP 0 L(1+9)P_ Qn the other hand, since u € WH(1+o)p
we find that f'(u) € Wb(1*9P n [® By the “standard” Gagliardo-Nirenberg inequality, we obtain

+0

1
f'(w) € WPa P n L. The conclusion of Theorem (2.3.10) would follow if we can prove that

o,p (1+0)p
A } — UV e WP, (151)
Vew’s p N L*®
Using the Gagliardo norm (121), we have to estimate
fRn f]Rn |U(x+h)V (x+h)—U(x)V (x)|P dxdh < C (fRn fRn|V(x)|p|U(x+h)_U(x)|p i dh

|h|n+0'p |h|n+0'p

WPV GeHh) -V )P
+ fRn fRn |h|n+0'p dx dh)
T WEPIVGHn) -V @IP
< C(IVIB NN op + fign Sin o dx dh).(152)
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It is natural to estimate the last integral in (151) using the Holder inequality with exponents

|U ()| A+oP

1
1+0 . p P ) p 1+o0
1+ 0 and =2 We find [[UV[},0p < C(llVllLooIlUIle,p VI s, (fRn Jan P dx dh) ) .

Unfortunately, the last integral diverges, but we are “close” to convergence. In fact, we suspect
that (151) is wrong. It is here that the microscopic improvement of the Gagliardo-Nirenberg inequality
Lemma (2.3.7), combined with the Runst-Sickel Lemma (2.3.8), magically saves the proof. We make use,
in an essential way, of the additional information that V = f'(u) € Fﬂ_gplp

We conclude this section with a brief survey of earlier results dealing with composition.
(i) if0<s<1,1<p<oo,f(0)=0,f Lipschitz, then
u € W9 = f(u) € W5P(trivial for s < 1; see [95] and [96] for s = 1);
S, ifs is an integer
[s]+ 1, otherwise
This result is explicitely stated in[97] ; G. Bourdaud has pointed out that it may also be derived
from a result of T. see [86], combined with a result in [98] ,which asserts that, when
s =n/p,WSP o F25 for 0 < 6 < land every 0 < g < oo,
(iii)if s >n/p,1 <p < oo, f(0) =0 and f € C™, then u € WP = f(u) € W5P; see [99] for p = 2
and [100] for the general case;
(iv) if 1 <s <n/p, we have to impose additional restrictions on u, if 1+ 1/p <s <n/p, the only
C?f’s that act on WSPare of the form f(t) = ct; see [126] for sinteger and [93], for a general s. For
1 <s <n/p, it follows from Remark (i) in the introduction that Rdoes not act on W*P, since
WsP ¢ WP, A standard additional condition on uis u € L®: if f(0) =0 and f € C™, then
u€eEWSPNL*® = f(u) € WP, (see [100] , [81]).
(v) an improvement is that, for fas above and 0 < ¢ < 1 we have
u € WSP nWSP/9 = f(u) € WSP;see [97]. This result implies the previous one, since
WSP 0 L® & WP/ (by Corollary (2.3.4);
(vi) a finer result asserts that, for fas above, we have u € WP n F;%,lq(with q < 2 sufficiently small

(i) ifs=n/p,1 < p < oo,f € R, where m = { sthenu € WP = f(u) € WP,

depending on sand p) = f(u) € W5P;see [86].This hypothesis on uis weaker than the previous one,

since WSP nWosP/7 o 2

(2.3.10), since F'S%,,q o WP = Fslplz as soon as q < 2 (recall that Fﬁqincreases with q). However,

for all ¢ > 0, by Lemma (2.3.7). This result is contained in Theorem

when p < 2 or 1 < s < 2, that the above smallness condition on qis precisely ¢ < 2. This means that
Runst and Sickel had established Theorem (2.3.10) whenp < 2or1 <s < 2.

(vii) in the framework of Bessel potential spaces

Ls? ={f = Gy x g; g € LP, G5(§) = (1 + |§|2)75/2} = F5,, there are various similar results about
composition, starting with [101],[102] when s > n/p, [103],[104] and [91] for H® N L* when
s=1.

The ultimate result for s > 1was obtained by Adams-Frazier in [104] .
ifl<s<o,1<p<o,f€ER,thenu €L NLYP = f(u) € L5P.

This is a special case (q = 2) of Theorem (2.3.11) since L1? = W15P,

(viii) Other questions concerning composition in Sobolev spaces have been investigated e.g in [105] ,
[106] , [86].
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We state some natural results about products which may be derived from the Runst-Sickel

lemma.

Let1<p<oo,0<s<oo,1<r<oo,0<9<1,1<t<oo,besuchthat%+§=%.

Corollary (2.3.12)[76].If 1 <s < 0,1 <p < ooand f€ WSP N L®, g € W51, p N LSP then
fg € WS1P and

1 gllws-1p < C(IF o llglys-1o + Ngllusollf e IFILE). (153)
In particular, if f, g € WSP N L®, then Dg € W5~1P 0 LSP, so that Corollary (2.3.12) contains as
a special case the following result

Corollary (2.3.13)[76].If 1 <s < 0,1 <p < oo and f,g € WSP N L*, then f Dg € WS~ 1P,
Lemma (2.3.14)[76].For f € WSt N L®, g €n L7, we have fg € W% Pand

1 gllyoso < CQIFNisellgllyose + NGl IS sl IES?). (154)
In the special case s > 1,0 = %, we have r = sp and we obtain the following
Proof: Let g = 2 if Os is an integer, ¢ = p otherwise. By (131), we find that f € F‘t%lq and
1l < CIFNGsellFI1" (155)

From the Runst-Sickel lemma, we deduce that fg € F'pglgand
Ifgllyose = 1fglizgsq < € (IFli=lgllzgs + lglurllfllpgs )

< C(lIfll=llgllyosp + ||g||Lr||f||5|,s.t||f||io_09)-
Corollary (2.3.15)[236]. If f€ Wltst N L* g en L, we have fg € WP
and

1
lIfgllwer < C (”f”L‘””g”WS'P + IIgIILrIIfIIS\,m,tIIfIIit.f)-

In the special case € > 0,0 = i, wehaver = (1 + ¢&)p

and we obtain the following
Proof: Let g = 2 if Bs is an integer, ¢ = p otherwise.
By (131), we find that f € Ff, /1.,

and
1

£
- 1+e 1+e
IFe, v, < CIAIE e LIS
From the Runst-Sickel lemma, we deduce that
fg € Fs,
and
Ifgllwe = Ifgllz,

< C(Ifl=lghss, + Ngllzeaeliflize,,..,)

1
. =
=C <|If||L°°||g||W«s.2 + gl 22l f llyyaeecll 1 iéif)-
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Chapter 3
Convergence in the Mean and Necessary Conditions

For weights p(t) and q(t) with a finite number of power-law-type singularities we obtain

necessary and sufficient conditions for the inequality to hold, where sr(lp) (f) is a partial sum of the Fourier
series function f in terms of polynomials orthogonal on [—1,1] with weight p(t). Some additional
properties of the orthogonal polynomials are also shown.

Section(3.1): Fourier Series in Orthogonal Polynomials:

Let 0, = {p,(t)}7’ be a system of polynomials orthonormal on [—1,1] with weight p(t); let

s,(lp) (f) = s,(lp) (f,x) be the n-th partial sum of the Fourier series of the function f with respect to the
system a,; let L7 (R) be the space of functions of summable 7-th powers ( = 1) on the set

1/n
R (=, fllmgm = [y If17de) 5 L7 =17(-1,1),  [Ifllx = lIfllun-
Throughout this section the numbers 7’ and 1 are related by =1 + 77’_1 =t.

We consider the following problem. Assume that the number 7, the weight p(t), and the set of
functions M = {q(t)} are given. We are required to find conditions on the function g € M, which are
necessary and sufficient for satisfaction of the inequality

|s®¢a]| < clifall, &

for all measurable f with the finite norm ||fqll, and all n =0,1,... where C is some constant. This
problem was recently solved in[107] for the case in which the weight p = (1 — t)%(1 + t)# and the set M
consists of the functions ¢ = (1 — t)4(1 + t)5, where A and B are arbitrary real numbers and

1 < 1 < oo. Special cases (with ¢ = p*/" and g = p/?; @ and B = —1/2) of the inequality (1) have been
treated by [108],[109]. [109] generalize Muckenhoupt's result to the case of the weight

m
p(0) = (1 — (1 + £)P 1_[|t — %, |"H(D), )
v=1
Where -1 < x; < <xp < La,Bandy, >—-1(v =1,m)
H() >0, w(H, 88 € L2(0,2), (3)
and the set M consists of the functions
q@®) = (1= + OB [TyLqlt — x, ™. 4

We show, moreover, that if the function q is of the form (4) and the weight is that defined by relations (2)
and (3), then if q is a solution of the problem stated, q € L". Therefore from fq € L" and the inequality

(1) there follows, in a known way, the inequality || [f — sflp) (f)] q” < (1 + O)E, (f),where E,(f) is the
n

minimum of ||[f — @,]q/l;, on the set of all polynomials @,,.Thus it follows from inequality (1) that

[l =sP@]d]|, = ow@ . ©)
From the relation (5) and in[110] with ¢ = p/" and it follows that
sPf,x) = F(0) = 0,(D)(n - ) 6)

almost everywhere in (—1,1) if w(H,8)67 ! € L"'(0,2).
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Lemma(3.1.1)[109]. Let R = (—, ) and assume that K(x,y) = |(x —y) " 1yx~1|¢ — 1],
where —1/n' < c < 1/n,1<n < . Then

[ kenrow|| < oIl %
R L(R)
Proof. In [111] it is sufficient to show that for arbitrary nonnegative f € L"(R) and g € L"’(R), we have

J= j g(x)dxf K, y)f()dy < Gl gl - (8)
R R
Using Hiolder's inequality for double integrals and Fubini's theorem,

, , 1/n' 1/n

weobtain ] < {f, g7 )hGdx} " {f, 1oLy}
where J; = [ K(x,y)|xy~[Ydy, J, = [, K(x,y)lyx~[V/7 dx.
Making the substitutions y = 7|x| and x = 7|y|, we find that

27, < fy K(xl,y) (x| /y)Mdy = |E(—c +1/9,1/n)],
271, (y) < [ KCe IyD (/20 dx = [E(c + 1/n',1/n),

where E(a, b) = fooo(‘c_a —17%)(1 — 1)~'dr is Euler's integral, which, as we know,

(see [112])assumes finite Values for a and b € (0,1). Since —1/n' < c < 1/n, then J; and J, are
bounded from above by constants and, consequently, the inequality (7) is valid.Consider now the Hilbert
transformG (f) = G (f,x) = ffooof(t)(x — t)~1dt.It is known (see [113]) that for 1 <7 < oo

”G(f)"LTI(—oo,oo) =< CZ(T])”f”Ln(—oo,oo)- (9)
Let Xz (t) be the characteristic function of the set R € (—o0, ). We introduce the notation:

Gr(f) = G(f Xg). Then by virtue of the inequalities (9) and (7), for arbitrary intervals R; and
R, € (—o0,0) and 1 < 1 < oo, wehave

16, (D gy < C2ODIf lincy), (10)
f Kanfodyl| < amifloe,. (11)
Ry L7(Ry)

We consider the weights p(t) and ©(t) = (1 —t?)p(t), and the systems of polynomials,
orthonormalized on [—1, 1], corresponding to these weights, namely, g, = {p,(t)}¢ and

o, = {1 (t)}g As pollard [114]. Showed , for the kernel K,(lp) (x,t) = X8 pr () pr (t), we have
the valid representation
(x = K" (6, £) = ap(® = )Py (Oppss (6)
+b,{(1 = )7 (OPrs1() — (1 = x*) T, () Prs1 (O}, (12)
wherein a,, and b, = 0(1), if (1 — t2)"Y2 inp(t) € L.
In the considerations which follow we shall also use the following estimate[110] for polynomials
of the system g, with weight p(t) satisfying the conditions (2)-(3):

m
1 1
|pn(x)|(\/1 —x+ n—l)“+2(v1 +x + n_l)BJr2 < C5(p) H(Ix —x,| +n )2 x| < 1. (13)
v=1
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Theorem (3.1.2)[109]. Assume that 1 < n < oo, that the weight p(t) is defined by the retations (2)-(3),
and that q(t) is a function of the form (4). If

[A+n 1= (a+1)/2] < min(1/4, (a + 1)/2), (14)
IB+n7t—(B+1)/2| <min(1/4, (B +1)/2), (15)
IT, + 1™t — (v, + 1)/2| < min(1/4, (v, + 1)/2),v = 1,m, (16)

then for all f for which fq € L", and for all n = 0, 1, ..., the inequality (1) holds, where C depends only on
p,q,and 1.
Proof. From the relations (14)-(16) it follows that An, (@ — A)n’, By, (B — B)n', y,n and
(v, — L)' > —1(v = 1T,m). Consequently, g € L",pq~* € L', and, by virtue of Holder's inequality
ol < ||fq||,,||pq_1||nf we have fp € L,if fq € L". The latter is equivalent to the existence for all
n = 0,1, ... of the partial sums s,(lp) (N.

We now show that inequality (1) holds. We fix the points y;, satisfying the conditions

1<y <1 <Yy << xp <ym < 1L

Putting [~1,1], I, = [yy—1, ] = T, m), Iy = [=1,¥0], Im+1 = [V, 1], we have

m+1 m+1
[s2all, = > sPaxa| <Y Is@wall,, - o
n v=0

v=0
PUtting Av = [yv—l — &Yy + 8],1] = 1) m’AO = [_1'3}0 + S],Am+1 = [ym - & 1]
(e >0, wehave AV = 4,,4% = N\4, w=0,m + 1),

9o = s al , . < 9"+ 0, (18)
Where g,” = [l9G) [y FOKP o op@ae| | =12
Taking into account that |x — t| = &, we obtain ’
£gs? < NIfally{lpns1allylloapa 1y + 1Pnqlly IPnsapa My, (19)

ifx€l,and t € AI(,Z) by virtue of the Christoffel-Darboux formula and Holder's inequality. From[115] it
follows that the conditions (14)-(16) are necessary and sufficient for the simultaneous boundedness as
n — oo of the norms ||p,q|l,and [|pp+1pq ||, Consequently, the right side of inequality (19) does not
exceed C||fqll,.

Putting u,, = (1 — x3)q(x)t,,(x),V,, = (1 — t*)1,()p(t), by virtue of (12),

@ <

Imi1 < Cof ||qpn+1 fAmeanpdt”Ln( + [|aPns1Gay. s [f ”n]”maml)

Im+1)
+||unGAm+1[fpn+1p]||Ln(1m+1) } =Cilly +1; + 13} (20)
In accord with HiSlder's inequality we have, by virtue of the relations (55)-(57),
L < lgppsallpllfallyllpnseira™ Nl < Clifqlly,. (21)

1
Assume that ¢ > — >

Putting a; = % + % —Aa, =a, — %, we have, by virtue of inequality (54):
qIpn+al < c(1—x)7" and |uy| < (1 —x)7%2, if X € Ipyq;

Un = ()P () (1 = ), ppyap = q(O)Pr(O)(1 —x)%,

where ®,, and ¥, are uniformly bounded for t € A4,,,1 and n.
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Therefore, according to inequalities (10) and (11),
L + 13 < C||Gy,,, [fPrq{l = (1 = )" (1 = )~}
HGapy [ Prafl = A =)= =),

HGaps fPnalll i, + NGy F¥nlll L, 5 < Cllfqlln @ and a € (=177, 1/m), (22)
by virtue of inequality (14), a; and a, satisfy the bounds required in inequality (22).

Assume now that —1 < ¢ < —1/2. We decompose A, intothe parts

T, = [y —&1—n"2%] and T, = [1 —n~2,1]. Then, by virtue of inequality (13), for t € A4,
we have v, = () Py, (O)(1 — )%, 031, = q(E) Py, ()(1 — )74, |y, | and |y | < c: for x € T, we
have |pp4+119 < c(1 — x)~%1; for x € T, we have

LM (I 41)

1
|Pnsalg < c(1 — x)4n“*2. Therefore, putting a; = a;,a, = —A, we obtain
2 2
l, < ZIqunHGAmH[fvn]llmm) < CZIIGAmH[fcbni(l = 0% =0y (23)
i=1 i=1

Further, by virtue of inequality (13), we have pn1p = q(t)Wy,, (£)(1 — t)%.
1
¥, | < ¢/t € Ty pnsap = n*2q(OWn, ((1 — )4,

1
|an2| <t €Ty luy < c(1—x)"%,n"%2|u,| < c(1—0)4%  x €Ly,

Therefore, putting b; = a,, b, = @ — A, we have

LM(Im41

2 2
l3 < ZHunGTi [fpn+1p]|| ) < CZHGTi [fq‘Pni(l —t)Pi(1 - x)_bi]||Ln(1m+1)- (24)
i=1 i=1

Since in accord with inequality (14) we have a; and b; € (—%,%), then, by virtue of the relations (10),

(23), and (24), the estimate (22) is also valid for —1 < a < —%. From the relations (18)-(22) it follows
that g1 < Cllfqll,,.Similarly it may be shown that gy < C||fqll,. We now show that even when

v = 1,m, we have the valid inequality

9v < Clifqlly. (25)
By virtue of the Christoffel-Darboux formula

91(;1) =< ||qpn+1GA,, [anP]L’?(I,,)” + ”qpnGA,, [fpn+1P]L’7(1,,)” =1y + 1s.
If y,, = 0, then, putting d,, = % — I,, we have, by virtue of inequality (13)

qlpnsil < clx — xvl_dv'x € Iy; P10 = q(O) P, (D]t — xvldv’ [P, (D) <c, tEA,.
From inequality (16) it follows that d,, € (—1/n',1/n). Therefore using the relations (10) and (11), we
< Glifqlly. (26)

obtain
dy l
L (1)

In a similar way we may obtain the estimate for [5 also.Thus for y,, = 0 we may consider the estimate (25)
as proven. If — 1 <y, < 0, then putting T, = {x : |x — x,,| < n~1},T; = 4,\T, and notingthe estimate

t—x,

L<C

X=X,

Gy, [f q®,

|K,§p) (x, t)| < cn?*1(x and t € T,), we obtain, with the help of Holder's inequality for i = j = 4,

lae oKD @ op@©ae]| < clifally 27)
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By virtue of the Christoffei-Darboux formula, we have

laco 1, rORP G op@de] <l + 1
J

= ||qpn+1GTi[fpnp]”Ln(Tj) + ||CIPnGTi[an+1P]”Ln(Tj)-

From this, by analogy with inequality (26), we obtain inequality (27) for i = j = 3. Using the estimate
n"/2 < |u — x,|7"/?,u € T3, we find, by virtue of the inequality (54), by analogy with inequality (24),

3,4 _ 43 - _
that [;* < C||GT3qubn|t —x,| 7T |x — xvlr"”an), " < C||GT4quDn|t —x, |7 v |x — x,|Tv VV||L,7(T3).

Since by virtue of inequality (16) the numbers —TI, and y, — I, belong to the interval (—1/n',1/n), it
then follows from relations (10) and (11) that the right sides of the last two estimates do not exceed
C1llfqll,,- Upon obtaining analogous estimates for 13* and 12, we may convince ourselves of the validity
of the estimate (27) in each of the cases: i =3, =4 and i = 4,j = 3. From (18), (19), and (27) we
obtain inequality (25).

Theorem(3.1.3)[109]. Assume that 1 < n < oo, that the weight p(t) is defined by the conditions

(2)-(3), and that q(t) is a function of the form (4). If there exists a constant C such that inequality (24)

is satisfied for all measurable f with finite norm ||fql|,, and for all n = 0, 1, ..., then the inequalities
(14)-(16) are valid.

Proof. Estimating, by virtue of inequality (1), the n-th term of the Fourier series of the function f sign

{fpn} with respect to the system o, we have ||(fq)p,pq~"ll; < 2C(||pnq||n)_1||fq||n. From [111] it
follows that
lgpullyllopa I, < 2C. (28)
Let m, = m,(t) denote an arbitrary polynomial of degree < n. By the inequalities of Zolotarev-Korkin
and Holder, we have 2'7" < [[t" + mp_q |1 < ([t + Iy 1111,
From this, considering the function q(t) of the form (4) as the product of a polynomial by a
function bounded in absolute value from below by a positive constant, we obtain
I[E™ + 1] glly = ¢ ()27 > 0. (29)
Assume that p,(t) = k,(lp)t” + - If (1 —t2)"Y21Inp(t) € L,then in [116] 2_"k,(lp) tends to a finite
positive limit; therefore it follows from inequalities (70) that
lpnally, = cp,q) > 01 = 1. (30)
From inequalities (28) and (30) it follows that ||p,q|l,, and ||pnpq_1||nr = 0(1). Necessary and sufficient
conditions for simultaneous boundedness (as n — 00). Of these norms are given in [115] They consist in
the satisfaction of the inequalities (14)-(16). This completes the proof of the theorem.
Corollary(3.1.4)[109]. Assume that 1 < 1 < oo, and that p and q are the functions appearing in Theorem
(3.1.3). If at least one of the relations (14)-(16) is not satisfied, then a function f can be found, with a
finite norm ||fq|l,, for which the relation (5) is invalid.

Proof. First of all we note that violation of the conditions (14)-(16) may lead to a situation in which an f

exists for which fq € L", but such that fp € L. One cannot then form the partial sums 51(117) (f) and to
speak of the relation (5). If, however, we can construct, for all f for which fq € L", the Fourier series
with respect to the system oy, such that for each such function the relation (5) holds, then by virtue of the
Banach-Steinhaus theorem the inequality (1) must hold (with an absolute constant C).
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However, this contradicts Theorem (3.1.3). We remark that throughout the above the function q(t)
of the form (4) could obviously be multiplied by a fixed measurable function H; (t), satisfying on [—1, 1]
the conditions 0 < m; < H,(t) < M; < co. In particular, in(3.1.2) we could consider the case in which
q= pl/ " where p is the weight defined by (2),(3). If in this case it be required that the condition
w(H,8)6"1 e L"(0,2), n' > 1, (31)
be satisfied in[110] the relation (6) will follow from the relation (5) almost everywhere in (—1, 1) for each
function f € L7, where LZ is the class of functions f for which fp'/7 € L". Assume that

H(t) € Lip 1 on [—1,1]. Then (31) is satisfied for all n" = 1. Taking A = %, B = %,

[, = v»/n (v = 1,m), we rewrite the conditions (14),(16), which are sufficient for (46), in the form
(a +1) |77‘1 — %l < min G, (a + 1)/2), (32)
B+t =2 <min(3, B +1/2), (33)
vy +1) |77_1 — §| < min G, (yp + 1)/2),17 =1,m. (34)

Let M = M(a, B, V1, -, Vi) denote the largest of the numbers

L4+ 1DQRa+3) L4+ 12 +3)742(v, + D(y, +2) (v = 1,m) . Then from relations
(31)-(34) it follows that if H(t) € Lip 1, then relation (6) holds almost everywhere in (—1,1) for all
n > M for each function f € Lf,. We note that if a and f < %,yy <0 (v=1,m), then M = 1. In the

remaining cases, M > 1. Assume that M > 1. In [110] it was shown that in the case of the system

o, = g%h = {ﬁ,‘fﬁ (t)} , where ﬁ,f‘ﬁ (t) are Jacobi polynomials, orthonormal on [—1, 1] with the weight
0

p=1-0)%1 +t)P, forn < M for some function f € LZ does not held almost everywhere in (- 1,1).

We consider an analogous example here, for the case of the weight p = (1 — t2)%|¢t|?, of a function

having a singular point inside (—1, 1). Namely, we show that if a > — %, y > -1,
n<4(a+t)Ra+3)tor2) a>-1y>0n<2(+1)(y+2)"1 then there exists a function
f € L7, for which the relation (6) does not hold everywhere in (—1, 1). Indeed, for p = (t — t2)|t|?,
we have
pzk(x) — 2(2a+y+1)/2ﬁ;:,()’—1)/2(sz -1). (35)

By virtue of (6) the Fourier series of the functions (1 — t?)* and |t|?*, with respect to the system Op,
at the point x € (—1, 1) are carried over, respectively, into the Fourier series of the functions
f(w) = c;(1 — u)H, with respect to the system ¢®¥~1/2_at the point (2x2 — 1). However, as was shown
in [110] for @ > —1,8 > —1/2 and n < 4(B + 1)(28 + 3)™! the exponent u can be chosen so that
f e LZ with g € LTZ’,,p = (1 — t)* and moreover, the Fourier series of the function f with respect to the
system o%F is everywhere divergent in (—1, 1). For the case, however, in which @ > —1,8 > —1/2 and
n<4(F+1)(2B +3)71, the number u can be chosen so that g € LZ,p =(1-t)%(1 + t)?, but
nevertheless the Fourier series of the function g with respect to the system o%# is everywhere divergent
in (—1,1). Taking note of the fact that f = (y —1)/2 and reverting to the variable t, we obtain
interesting examples of functions for which (6) is not valid almost everywhere in (—1, 1). Note Added in

Proof. Subsequent to the submission of this section to the printers by [117] and [118] appeared in the
literature, having a direct bearing on the content of the present .
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In [117] stated concerning the validity of our Theorem (3.1.3) for the particular case of it for
which H(t) =1 and B = —12, ¥, = 0 (v = 1,m), q(t)*/" = {p(¢)}. Deduced the notion of the proof of
this hypothesis for p(t) = |ty|. Using Jacobi polynomials as an example, Askey discovered the
importance of statements of the type of Theorem (3.1.3) for solving the problem of convergence in the
mean of Lagrange interpolational polynomials which coincide with a continuous function at the zeros of
the orthogonal polynomials.

In [118],[119] and [120] the convergence almost everywhere of the trigonometric Fourier series of
the function f(x) € L"(—m,m)(n > 1), used a theorem on uniform convergence due to Szegd and an
example due to Szego of a diverging Fourier-Jacobi in [116] series to find that the Fourier-Legendre series
of the function f(x) € L" forn > 4/3 converges almost everywhere in (—1, 1), and for
1 <n < 4/3, that it may diverge almost everywhere in (—1,1). Pollard noted that an analogous result
may be obtained also in the more general case of Jacobi polynomials. We remark that this result forn > 2
was obtained in [121] even for the generalized Jacobi polynomials. For 7 > 1 this result was obtained
in[110] for the Jacobi polynomials without application of Szegd's theorem but using the results of [107] in
particular, it is also contained among the results of this section.

Section(3.2): Convergence of Fourier Series in Orthogonal Polynomials:
Let da be a finite positive Borel measure on the real line such that supp(da) is an infinite set and
let p,(da) denote the corresponding orthonormal polynomials. For f € L}, let S, (da, f) denote the nth

partial sum of the orthogonal Fourier expansion of f in {p, (da)}, that is,
n

1
$:@a ) = Y amda), o= [ fpldda
k=0 -1
It is well known [122] that S, (da, f) — f in L4, as n — oo for every f € L3, if and only if the moment
problem for da possesses a unique solution, and the latter is certainly the case whenever supp(da) is
bounded. The problem of weighted mean convergence of S, (da, f) to S in spaces different from L7, has
not yet been resolved with the exception of some specific orthogonal polynomial systems. For example, if
da and df are generalized Jacobi measures, then there is a necessary and sufficient conditions for L’éﬁ
convergence of S, (da,f) to f for every f € L’éﬁ. Badkov’s results generalize earlier ones by [123],
[124], Newman and Rudin [125], Muckenhoupt [126]. Askey [127] , and Badkov [128]. Orthogonal
Hermite and Laguerre scrics were investigated in Askey and Wainger [129] . In [130] one of us found
necessary conditions for wa convergence of S, (da, f) when da belongs to the Szegii class [131], that is,
when supp(da) = [ —1,1] and log a’(cos 8) € L'[0,7]. In the particular case when da and df are
generalized Jacobi measures, these conditions turn out to be sufficient as well [132]. We laid foundation
to a theory of orthogonal polynomials that extends Szegd’s theory when loga’(cos8) € L[0, 7] is
replaced by the weaker condition that ' > 0 a.c. in [ —1,1].
Our results enable us to prove the following generalization in [132].
Theorem(3.2.1)[133].Let « be such that supp(da) = [ —1,1] and a’ > 0 almost everywhere in [ —1,1].
Assume that p and g satisfy 0 < p < o and 1 < g < o0. Let u and w be Borel-measurable functions such
that neither of them vanishes almost everywhere in [ —1,1] and u is finite on a set with positive Lebesgue
measure.

Write ¢' = q/(q — 1) and v(x) = (a’(x)\/l - xz)l/z.
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Suppose that for every function f € L%, the inequality
1 1/p 1/q

1
flw/vlpa’ <C flfulqda (36)
-1 -1
holds for all integers n > 0 with a finite constant C indepcndmt of n and f (if f(x) = 0 and
u(x) = oo, then f(x) u(x) = 0 is to be taken in the integral on the right-hand side).
Thenw € LY ,, u™t € LT,

1/p

1
flw/vl”a’ < oo, (37)
-1
and
1 1/q
fluvlqa’ < oo, (38)
-1

Here what follows, for p = oo the expression ([|g|Pda)/P means the L%, norm of g.

It may be worth pointing out that if 0 < p < 0,1 < g < o, and p < q then in every known case (37) and

(38) are also sufficient conditions for (36) to be satisfied see[128].

Proof: For n = 0, inequality (36) implies
1/p) 4

1 1 1/q
flwlp da ffda < Cpo* flfulq da (39)
-1 -1 -1
for every f € L},. Since u is finite on a set of positive measure, we can find a Borel set E and a positive
number N such that da(E) > 0 and u(x) < N for x € E. If f is the characteristic function of this set E

then (39) shows that w € L¥ . If 1 < q < oo then we can apply (39) with f = (Ju| + €)~9, where € > 0

andq' = q/(q—1);if welete > 0,thenu™! € L?;a will follow by Fatou’s lemma.
If ¢ = 1, then we apply (39) with f = f,, being the characteristic function of the set where |u™1| > 1/n;
we obtain a contradiction unless f;, = 0 a.e. for large enough n; thus, we can conclude that u™* € L3,.

Thus we have u™! € L?;a for 1 < q < o (q is fixed), as claimed. Therefore

f = (fwu! € LY, also holds whenever fu € L], (1 < q < ).

. 1 1/p 1 1/q
Moreover, it follows from (39) that (f_1|[5n(f) - Sn_l(f)]wlpda) < 2t+/pc (f_llfulqda)
holds forn > 1 and f € L}, . Hence we have

1/q

1 1 1
flpnwlpda ffpnda < 2+i/pC flfulqda (40)

-1 -1 -1

forn > 1and f € L}, . Fix n and choose g such that
gPa 20 and |gul? = |pu |, (41)

. 1 _aIN1/4 .
ie, g=(IpalTu™7)" " (g(x) = 0if u(x) = ).
Put E = {x € [-1,1]: g(x) # 0}. Let E, c E be a Borel set and h; its characteristic function such that
hi(x) > 1ask — oo for x € E,gu € L% (E}), i.e., hygu € LL [—1,1], for every k.
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Then hyg € LY,[—1,1] according to the last sentence of the preceding paragraph, i.e., (40) holds
with f = fi, = hy.g. Noting that we havefipn = |fiullpau™| = |fiul? = |ppu=|7

. . 1/q , 1/q
on E}, according to (41), the equality fEk fePnda = (fEklfkulqda) (fEkIpnu‘llq da)

1/p , 1/q
holds. Thus (40) with f = f; implies (f_lllpnwlpda) (fEk|pnu‘1|q da) < 21+1/pC.

Making k — oo and replacing E with [—1, 1] in the second integral (u~! = 0 outside E),

!

1/ NV
we obtain (f_lllpnwlpda) b (f_lllpnu_llq da) ! < 2¥YPCforalln > 1(q' = q/(q — 1)).

1/p
By (42) in Theorem (3.2.3) this implies that sup,,s (f_lllpnwlpda) <

1 l/q,
and supy>1 (J,1pnu19'da) " < oo, and now inequalities (37) and (38) follow from Theorem (3.2.3).

For orthogonal polynomials on the unit circle, the analogue of Theorem (3.2.3) can be derived without
much difficulty from [134], and therefore one can easily formulate and prove a result similar to Theorem
(3.2.1) for weighted mean boundedness of Fourier expansions in orthogonal polynomials on the unit
circle.We expect that Theorem (3.2.3) and the Lemma above will have further applications. In fact, we
believe that these two statements will Play a significant role in the extension of Szegd’s theory we
initiated in [134].

Lemma(3.2.2)[133] Let supp(da) =[—1,1] and @’ > 0 ae. in [—1,1]. For a given real ¢ and a
nonnegative integer n define the set B, ,,(da) by

Ben(da) = {x: p(da, )a’ )W 1— 22 = c}. (42)
Then for every ¢ > 2/m
lim |B,,(da)| = 0, (43)
n—0o

where |E| denotes the Lebesgue measure of the set E.

Proof. Write Q,, (x) = pj (x) — 2xp, (X)pn_1 (x) + p‘rzl—l(x)-
Then Q,, = (xpp — Pp—1)* + (1 — x*)p3, sothat (1 —x*)p;(x) < Q, (x).
Therefore, if D, (da) is defined by D, ,(da) = {x: Q,(x)a’(x)(1 — x?)"Y/2 > ¢}

then B, C Den. It was shown in [134] that limye, [ |Qn(x)a’(x) -2Vi- x2| dx = 0.
Hence, for ¢ > 2/mlim,,_,, fD (Qn(x)a’(x) — %\/1 — xZ) dx = 0 holds, so that

limy oo (¢ = 2) [, VI =22dx = 0, from which limy 0| Den| =0 (c > 2/m)

follows.

Thus (43) must indeed hold.

Theorem (3.2.3)[133].Let supp(da) =[—1,1], a’ > 0 almost everywhere in [—1,1],and suppose
0<p<oo.

Put v(x) = (a’(x)\/l — xz)l/z.

If g is a Lebesgue-measurable function in [—1, 1] then

1 1/p
f 1g/vI?
-1

1/p

1
< \r2max{1/p=1/20} iy inf flgpn(da)lp . (44)
n—-00
1
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In particular, if
1/p

1
lim inf flgpn(da)lp =0 (45)
n—-oo

1

theng = 0 a.e.

Proof. First assume 0 < p < 2. Define 1;, and h by 1, = v?p2(da) and h = (|g|/v)?, respectively.
Let
1/p

1
K = lim inf f lgpn(da)|P
n—-oo
-1

If K = oo then there is nothing to prove, so assume K < co.

Then
1
lim inf fhrf/z = KP
n—-00
21
holds; therefore, if hy, is defined by hy,(x) = min{h(x), M} for M > 0, then
1
lim inf f hrP/? < gp (46)
n—-oo
51

is satisfied as well. Fix ¢ > 2/m. If ¢ > 2 /m. If B, ,, is defined by (42) then (43) is holds,in [134] implies

lim hyr, = 0. (47)

n—-oo
Ben

Applying in [134] , we obtain

1
1
hm hMT‘n = - th. (48)
n-—-oo T
Ben -1
Consequently,
1
) 1
n—-oo A
[_1:1]\Bc,n -1

holds as well. On the other hand, 0 < 7,,(x) < c is satisfied for x € [—1, 1]\B; . so that
0 < cP/27 g, < rP/?(x € [-1,1]\B.,,) holds.
Thus by (46) we have

lim inf j hyr, < c'7P/2KP,
n—-oo
[_1'1]\Bc,n
and combining this inequality with (48) we obtain

1
1-P
hM < mc ZKp
-1

forevery M > 0 and € > 0.
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Letting M — oo here and applying Legesgue’s Monotone Convergence Theorem, and then ¢ — 2/m,

1/p
we can conclude that ( f_ll h) < 2V/P=1/2\[zK, and so the theorem follows for 0 < p < 2. When

2 <p <o we can proceed as follows. (the arguments below closely parallel those given in [130])

Keeping the previously established notation, from Holder’s inequality we obtain
1 w-2)/p , 4 2/p

1 1
-2 2 2
j hy = j hP=D/P (20 < j Ay f Ay’
-1 -1 -1 -1
Hence

(»-2)/p 1/p
) . which together with (47) implies ( f_ll hM) < VnK.

lim inf, o [ Ryt < K ( S o
. : 1 \M/P
Letting M — oo, Lebesgue’s Monotone Convergence Theorem entails ( [ | h) < VrK, so that

the theorem follows for 2 < p < oo as well. Finally. assume p = oo, and let 1 < g < oo. Clearly, we have

1 1/q 1 1 1 1/p . . .
(f_llflq) < 2Yc¢ss.sup_q 4| f] = 2%/4 (f_llflp) , where the equation holds in view of the

convention concerning the interpretation of the right-hand side for p = oo.
Therefore, inequality (44) with g replacing p implies

1 1/q
f 19/
-1

Making q — oo, inequality (44) follows for p = oo as well. Thus the proof of (3.2.3) is complete.
Theorem (3.2.4)[133].If supp(da) = [—1, 1], a’ > 0 almost everywhere in [—1, 1]then

1/p

1
< Vm2Y41im inf flgpn(da)lp (p=00,1<qg < ).
n—-o0o
1

D lep(da, )| (50)
k=0
either diverges or converges almost everywhere in [—1, 1], and in the latter case
PEEL 5D
k=0
holds as well,
Proof. By Theorem (3.2.3) with p = 1, we have
li 'fj (da) = 1f 1>0 (52)
imin a)=z2—| v
N—00 ) pn \/EE

for every set E with positive Lebesgue measure. Now assuming that (50) converges on a set

E c [-1,1],|E| > 0, one can apply (52) and the usual arguments used to prove the Denjoy-Lusin
theorem on absolute convergence of trigonometric series [135). These give (51), from which the
convergence of (49) almost everywhere in [—1,1] follows by Lebesgue’s Monotone Convergence
Theorem.
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Chapter 4

Location and nth Root in Weierstrass' Theorem
For a wide class of Sobolev orthogonal polynomials, it is shown that their zeros
are contained in a compact subset of the complex plane and the asymptotic zero distribution is obtained.
With a certain information, the nth root asymptotic behavior outside the compact set containing all the
zeros is given. For a big class of weights wy ,wy ..., wy (even non-bounded) weights wj. We allow a

great deal of independence among the weights wj.

Section (4.1): Asymptotics of Sobolev Orthogonal Polynomials:

(i) Let {uy Jreo be a set of m + 1 finite positive Borel measures.
For each k = 0,...,m the support A, of u;, is a compact subset of the real line R. We will assume that A,
contains infinitely many points. On the space of all polynomials, we consider

pads = Y [ PP @G = Y PPN 00, (1)
k=0 k=0

where p, q are polynomials. As usual, f®) denotes the kth derivative of a function f.

Obviously, (1) defines an inner product on the linear space of all polynomials. Therefore, a unique
sequence of monic orthogonal polynomials is associated to it.By Q,, we will denote the corresponding
monic orthogonal polynomial of degree n. The sequence {Q,} is called the sequence of Sobolev monic
orthogonal polynomials relative to (1). Sobolev orthogonal polynomials have attracted much attention in
the past two decades. Recently, some important results have been obtained regarding their asymptotic
behavior. In this direction in [136], an important step was taken in the study of the so-called discrete
Sobolev inner product; that is, when p, is the only measure containing infinitely many points in its
support. When g, > 0 a.e. on its support which consists of an interval, the authors find the relative
asymptotic behavior between the Sobolev orthogonal polynomials and the orthogonal polynomials
associated with p, (in fact, they consider a more general class of product not necessarily positive definite).
Thus, the asymptotic behavior of discrete Sobolev orthogonal polynomials is reduced to the case when the
inner product solely contains the measure py.In[137] With m = 1, the authors assume that p,, u; € Reg
in [138] and that their supports are regular sets (a compact subset of the complex plane is said to be
regular if the unbounded connected component of its complement is regular with respect to the Dirichlet
problem). Under these assumptions, they find the asymptotic zero distribution of the zeros of the
derivatives of the Sobolev orthogonal polynomials and also of the proper sequence of Sobolev orthogonal
polynomials when AyD A;. Finally, in [139] with m = 1, for a wide class of Sobolev products defined on
smooth curves of the complex plane, the author gives the strong asymptotics of the corresponding Sobolev
orthogonal polynomials.

In contrast with the case of classical orthogonality with respect to a measure, where it is easy to
prove that the zeros of the orthogonal polynomials lie on the convex hull of the support of the measure,
the location of the zeros of Sobolev orthogonal polynomials in the complex plane for general Sobolev
inner products seems to be a difficult problem. Thus,it is not possible to derive from the results in [137],
the (uniform) nth root asymptotic behavior of the Sobolev orthogonal polynomials. The main question
considered in this section is the study of the location of the zeros of Sobolev orthogonal polynomials.
Under general assumptions on the measures involved in the inner product, [140] prove that the zeros of
the Sobolev orthogonal polynomials are contained in a compact subset of the complex plane.
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This is done and making use of methods from the theory of bounded operators. In following the
ideas in[202] we extend some results of m > 2.This extension together with the results allow us to give
the nth root asymptotic behavior of Sobolev orthogonal polynomials for a wide class of Sobolev
orthogonal polynomials.

(11) Before proceeding, let us fix some assumptions and additional notation.

As above, (12) defines an inner product on the space P of all polynomials. The norm of p € P is
1/2

m 1/2 m
Il = (kz | (p“‘))Z(x)duk(x)) - (kzollp<’<>llimk>) @

We will denote by (Hz,m' [l 5) the Banach space obtained completing the normed space (P, ||-||s).

As usual, this is done identifying all Cauchy sequences of polynomials whose difference tends to
zero in the norm ||||s. Certainty, H; ,, heavily depends on the measures involved in the inner product, but
for simplicity in the notation we will not indicate it. For f € H, ,, [|f||s is defined by continuity; that is,
IfIls = limyollpnlls,where {p,} is a representative of f. On H, ,,, we consider the inner product

1
(fr9)s = 5If +glls = lIfls = llglis),  f,9 € Hom. (3)

Therefore, (Hz,m’ -, 5) is a separable Hilbert space because by construction the space of polynomials is
dense in it. In particular, we have the sequence {g,} of Sobolev orthonormal polynomials
((qn, qr)s = 6n_k) forms a complete basis in (Hz,m, () s) and the Parseval identity takes place

I£13 = ) at.cs = () = (. qids. f € Hopm )
k=0
In virtue of the Riesz-Fischer Theorem, the application which places f € H, ,, in correspondence with
{a,(f)} € £, establishes an isometric isomorphism between H, ,, and €,.We restrict our attention to sets
of measures {t}, k = 0,1,...,m, with the property that xf € H, ,, for each f € H, ,,.
By xf € H,,,, we mean that if two Cauchy sequences of polynomials {p,,} and {l,,} are representatives of
f (and, therefore, lim,,_,||pn — lxlls = 0), then the sequences of polynomials {xp,} and {x[,} are also
equivalent Cauchy sequences (in the sense that lim,,_, . ||xp, — xI,|ls = 0).
The element in H,,,, which they represent is what we denote xf.
In this case, it is easy to verify that the application Mf = xf from H, ,, onto H, ,, is linear.
This property is not always fulfilled. The first result below gives a class of inner products for
which M is bounded. We say that the Sobolev inner product (1) is sequentially dominated if
Ay Ap_q, k=1,...,m,and dug = fr_1dur—1, fi—1 € Loo(ttg—1), where k =1,...,m.
Obviously, this is the case when all the measures in the inner product are equal.
Theorem (4.1.1)[140]. Assume that the Sobolev inner product (1) is sequentially dominated, then the
application Mf = xf defines a bounded linear operator on H, ,, with norm
IMIl < 2[¢f + (m + D?C,DYV?, ()
Where C; = maxxerlxl ,Cy = man=0,...,m—1”fk”Loo(uk)-
The boundedness of the multiplication operator has an interesting consequence on the location of
the zeros of Sobolev orthogonal polynomials.
Proof: First of all, we show that there exists a constant C > 0 such that for any polynomial p
llxplls < Cliplls. (6)
74



Take C; and C, as in the statement of this theorem.
Straightforward calculations lead to the estimates

lxpliZ = Bl Gp) @I} = St o [lxp® + kp®D)|;
< 2310 (Bl + K210 I) < 2380 (P @IE + K2l )
< 2[C} + (m + D?CI T, [P @) = c2lIpli2,
which imply (6) with C = (2[C + (m + 1)*C,DY/>.
Let f € H,,,, and assume that {p,} is a representative of f. Using (6), for all n,m € Z, we have
”xpn - xpm”s < C”pn - pm”s-
This shows that {xp,,} is also a Cauchy sequence. Moreover, if {[,,} also represents f, from (6) we also
have that for all n € Z,, ||xp,, — xl,|ls < Cllp, — L|ls,which shows that both sequences
{xp,} and {xl, } represent the same element in H, ,,. If {p,} is a representative of f € H,,, and {[,,} is a
representative of g € H,,,, and a, f € R it is easy to verify, that {axp, + fxl,} represents
x(af + Bg) which amounts to the linearity of M.The boundedness of the operator follows immediately
because (6) and the definition of the ||*||s norm give
Ixflls = limyeollxpplls < € limy o llpplls = ClIf 5.
With this we conclude the proof of Theorem (4.1.1).

Our next goal is to connect the operator M with an infinite Hessenberg matrix. We have that H, ,,
is isometrically isomorphic to £, through the application which identifies an element f € H,,, with the
sequence of its Fourier coefficients (see (4)). Thus the nth Sobolev orthonormal polynomial g, is in
correspondence with the element e, of £, with 1 at the coordinate n + 1 and the rest of the coordinates
equal to 0. Since the sequence {q,} of orthonormal polynomials with respect to the inner product (-, )s

forms a basis in the space of all polynomials, we have that for eachn € Z,
n

X021 () = ) Cena@e(2), )
k=0
Where ¢y = (Xqn_1,qx)s, k =0,...,n.
From (7) we obtain that the matrix representation of M, taking in €, the canonical basis {e,}, is given by
the infinite Hessenberg matrix

Coo Co1 Co2 *° Con-2 Con-1
€10 €11 €12 ° Cipn-2 Cin-1
0 cq1 €22 ' Con2 Con—-1
M = : : : : : . (8)
0 0 0 " Cn—2n-2 Cn-2n-1
0 0 0 " Cn-1in-2 Cn-1n-1

By M ,,, we denote the nth principal section of M, and g, (x) = (qo (x),q:(x),..., qn_l(x))t.
Here and in the following (-)¢ denotes the transpose of the vector or matrix (-).
Relation (24) for consecutive values of n indicates that

%X () = M50 () + Cnn-1(0,...,0, g, (x))". ©9)
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Theorem (4.1.2)[140]. Assume that the application Mf = xf defines a bounded linear operator from
H; ., onto H,,,. Then, all the zeros of the Sobolev orthogonal polynomials are contained in the disk
[z: |z| < 2||M]|].We underline that in Theorem (4.1.2) the inner product does not have to be sequentially
dominated. The boundedness of M is the only requirement. Therefore, it is of interest to find other

(or less restrictive) sufficient conditions for the boundedness of this operator.

(iii) We mention some concepts needed to state the result on the asymptotic zero distribution of Sobolev
orthogonal polynomials. For any polynomial g of exact degree n,we denote

v(q) = % =1 6,;,where zy,..., zqare the zeros of q repeated according to their multiplicity , &,; is the
Dirac measure with mass one at the point z;.This is the so called normalized zero counting measure
associated with q.In [138] the authors introduce a class Reg of regular measures. For measures supported
on a compact set of the real line, they prove that 4 € Reg if and only if the orthogonal polynomials g, (in
the usual sense) with respect to y have regular asymptotic zero distribution. That is, that in the weak star

topology of measures lim,,_«(q,) = wa,where w, is the equilibrium measure of the support A of the
measure (. In case that A is regular, the measure u belongs to Reg (see [138]) if and only if

1/n
lim <M> -1 (10

n-o \||pnllL,

for every sequence of polynomials {p,}, degp, < n,p, Z 0. Here and in the following |||/, denotes the
supremum norm on A. Given a compact set A of the complex plane, we denote by C(A) the logarithmic
capacity of A and by ga(z: ©) the corresponding Green's function with singularity at infinity. In the
following, A= UyL, Ak, where Ay is the support of y; in (1). Assume that there exists [ € {0,...,m} such
that U;czo A, = A, where Ay, is regular, and u;, € Reg for k = 0,..., 1. Under these assumptions, we say
that the Sobolev inner product (1) is [-regular.The next result is in [137]

Theorem (4.1.3)[140]. Let the Sobolev inner product (1) be [-regular. Then for each fixed k = 0,...,1
and forall j > k

Iim ||Q,§”||Z/n < Ch). (11)
Forallj > 1 '

" = e (2
and

7{1_)1’1;101/( ,(lj)) = w,, (13)

in the weak star topology of measures. If the inner product is sequentially dominated, then Ag= A;
therefore, if Ay and pq are regular the corresponding inner product is O-regular.
In the sequel,

Z, =1{0,1,...}.
Proof: We start out showing

Im|Q, Il < c(). (14)
Since each of the sets Ay ,k =0, ..., is regular, so is A.

Let T,, denote the monic Chebyshev polynomial of degree n for the set A. It is well known that
lim,,o || Ty lly™ = C(A).
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Then, forall j € Z_
lim ||, ||:/" < C(n). (15)

Therefore, by the minimizing property of the Sobolev norm of the polynomial Q,,,

m
1Qull3 < 17,13 = ZHT(")H <> w@|| |
k=0

This estimate, together with (15), gives (14).
From the regularity of the measure uk (see (10)), we know that foreach k = 0,...,1

2?1,
My 0 ” (k)” =1 (16)
k

Since ”Q(k) || < 10, lls, (14) and (16) imply

we have

im ”Q(k‘)” < ). (17)

n—-oo
Taking into consideration Lemma (4.1.3), relation (11) follows from (17).
If j = [, (15) takes place for each k = 0,..., 1.
Since

@], = max o],

.....

using (14), we obtain

i o[ = cco

n—-oo

But
lim ||Q(])|| > C(A)

n—->oo

is always true for any sequence {Q,,} of monic polynomials. Hence (12) follows.

The compact set A has empty interior and connected complement. It is well known that under such

conditions (12) implies (13). The so called discrete Sobolev orthogonal polynomials have attracted

particular attention in the past years. They are of the form
m Ni

(f.9)s = [ foduo+ 2.2 Auf (g V@, (18)

i=1j=

where 4;; = 0,4; 5, > 0, and ¢; € R. If any of the points ¢; lie in the complement of the support A, of

Uo, the corresponding Sobolev inner product cannot be [-regular.

Theorem (4.1.4)[140]. Assume that the Sobolev inner product is sequentially dominated and
O-regular. Then, for all j € Z,

1/n
Iim |Q(f)(z)| = C(h)e9r(=) (19)
for every z € C except for a set of capacity zero, and
: D" (z;00)
lim [0 ()] = C@)esn, (20)
n—-oo

uniformly on each compact subset of C{z: |z| < 2||M||}, where ||M|| satisfies (5).
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Proof:We have that for all n € Z,, the zeros of the Sobolev orthogonal polynomials are contained in a
compact subset of the complex plane. It is well known that the zeros of the derivative of a polynomial lie
in the convex hull of the set of zeros of the polynomial itself. Therefore, there exists a compact subset of

the complex plane containing the zeros of QU ) for all n,j € Z,. In particular, all these zeros are contained
in {z: |z| < 2 ||[M||}. Thus, for each fixed j € Z, the measures v,, ; = v( U)) n € Z,, and w, have their
support contained in a compact subset of C. Using this and (20), from the lower envelope theorem, see
[138] we obtain llmn_,ooflogI dvn](x) flogl—da)A(x)

for all z € C except for a set of zero capacity. ThlS limit is equlvalent to (10) because

92 0) = log ez~ [ log——day ().

In order to prove (11), notice that for each fixed j € Z, the family of functions

{flogl 1 Idv"’(x)} nei,

is formed by harmonic functions in the variable z which are uniformly bounded on each compact subset
of D = C\{z: |z| < 2||M||}. From (10), we have that any subsequence which converges uniformly on
compact subsets of D must tend to [log|z — x| *dw,(x). Therefore, the whole sequence converges
uniformly on compact subsets of D to this function. This is equivalent to (11). To conclude, we give
another consequence of Theorem (4.1.3) .We fix an inner product of the form (1). For simplicity in the
notation, we write {-')r, ) = Yo Ly = k-
Lemma (4.1.5)[140]. Assume that M defines a bounded linear operator on H,,,. Then, the infinite
Hessenberg matrix M defines a bounded linear operator on ¢, and |[M|| = [|[M||. Moreover, if M,
denotes the infinite matrix which is obtained adding zeros to M,,, then for all n € Z,

M| < 211 @D
Proof. As pointed out above, H,,, and ¢, are isometrically isomorphic, and M is the matrix
representation of the operator M on the orthonormal basis of H,,, (see (7) and (25)). It immediately

follows that |[M|| = ||M||. In order to prove (21), notice that Schwarz's inequality and the boundedness of
M give |cpn 1| = (¥qn_1, @n)s| < lxqn1lls < IM]I.
For any a € #,, let @,, denote its projection over the space generated by the first n + 1 elements ey, ..., e,

of the canonical basis in £,. It is easy to verify that
My 00 @ = My 0@ = M&;_1 — Cpn_1@n_15:.
Therefore ||Mn'oo(7'f||[2 < |M &fl_lllgz + |Cn'n_10ln_1| < 2|IM||||lall,, , which gives (21).
Corollary (4.1.6). Assume that the Sobolev inner product (1) is sequentially dominated, then all the zeros
of the Sobolev orthogonal polynomials are contained in
{z:|z| < 2 ||M||}, where ||[M|| satisfies (5).
Lemma (4.1.7). Let E be a compact regular subset of the complex plane and {B,} a sequence of
polynomials such that deg P, < n and P # 0. Then, for all k € Z,,

p(®)
o ”n;nn!E =t (22)
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Proof. Since P, appears in the numerator and the denominator of the expression above, we can assume
without loss of generality that P, is monic. Fix an arbitrary € > 0.

Consider the curve ¥, = {z € C : gg(z; ) = &}, where gz (z; ) denotes Green's function with respect to
the unbounded connected component of the complement of E with singularity at infinity. The curve y, is
closed and analytic, thus it has finite length [, and it is at a distance d > 0 from E. Since E is regular, the
curve y, surrounds E. By Cauchy's integral formula and the Bernstein-Walsh Lemma, we have that for
eachz € E

RO K 1RO
(Z z) 27T 1¢ — z|k+1
k! le ne
< W”Pn”yg = d"+1 P llze
Therefore,
S AN
- FE e £
( 1Pnlls ) = (an’“’l) e, and
LY
n-oo |\ ||P, g -

Making € — 0, (22) follows immediately.

Theorem (4.1.8)[140]. Let the discrete Sobolev inner product (18) be such that A, is regular, and
Uo € Reg. Then, (12)-(13) take place, for all j > 0, with A= A,.

Proof. Let T,, denotes the nth monic Chebyshev polynomial with respect to Ay.

Set w(z) = [12,(z — ¢;))Ni*1Let N = degw, and take n = N.

Then,

Q115 < NQnllE < IWTn y IS = flen—leduo < o (A IWIIZ I T w115, -

Since (AO)I|WI|A0 > 0 does not depend on n, we find that Irm,,_,¢, ||Qn||1/n < C(Ap).

From the regularity of the measure i, it follows that lim,,_,|| inll/ "< C(Ay).
Using the regularity of the compact set A, and Lemma (4.1.7) (for E = A,), we obtain

T, ||Qflj)||i/n < C(Ay), forall j = 0.
0

This inequality is necessary and sufficient in order that (12) takes place (with A= Ay), which in turn
implies (13).
Theorem (4.1.9)[140]. Assume that the Sobolev inner product is sequentially dominated and

O-regular. Then, forall j € Z_

(J+1)
(2) f dw, (x)

lim )
zZ—X

n—oo Qr(l]) (Z)
uniformly on compact subsets of C\{z: |z| < 2||M||}, where ||M|| satisfies (5).

i=1,...,n—j,denote the n — j zeros of Qflj).

(23)

Proof. Let x’

n, i’
As mentioned above, all these zeros are contained in {z: |z| < 2||M||}.
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Decomposing in simple fractions and using the definition of v, j, we obtain

(J+1) ) —j ;
@_1y L _no) (@) (24)

anl])(z) né&d J zZ—x

Z— Xy,
Therefore, for each fixed j € Z,, the family of functions

{ E )} netz (25)
nQY(2) v

is uniformly bounded on each compact subset of D = C\{z: |z| < 2||M||}. On the other hand, all the
measure Vy ;,n € Z,, are supported in {z: |z| < 2||[M||} and for z € D fixed, the function (z —x)~! is

continuous on {z: |z| < 2||M||} with respect to x. Therefore, from (13) and (24), we find that any
subsequence of (25) which converges uniformly on compact subsets of D converges pointwise to

[(z — x)"*dwa(x). Thus, the whole sequence converges uniformly on compact subsets of D to this
function as stated in (23). Due to Theorem (4.1.8), results analogous to Theorems (4.1.4) and (4.1.9) may
be obtained for discrete Sobolev orthogonal polynomials. For this, we must add to the restrictions of
Theorem (4.1.9) that in (18) all 4;; be greater than zero in order that the corresponding inner product be
sequentially dominated. Nevertheless, in any discrete Sobolev inner product, it is easy to see that at least

n — N — j zeros of Q,(lj ) lie in the open convex hull of A,.
Section (4.2): Weighted Sobolev Spaces:

If I is any compact interval, Weierstrass' theorem says that C(I) is the biggest set of functions
which can be approximated by polynomials in the norm L®(I), if we identify, as usual, functions which
are equal almost everywhere.There are many generalizations of this theorem (see [141]).Here we study
the same problem with the norm L* (I, w) defined by

Iflleqwy == eSS:IUDIf(x)IW(x). (26)

where w is a weight, i.e., a non-negative measurable function, and we use the convention 0.0 = 0.
Observe that (26) is not the usual definition of the L norm in the context of measure theory, although it is
the correct one when we work with weights (see [142]). If w = (wy, ..., wy) is a vectorial weight, we also
study this problem with the Sobolev norm W*® (A, w) defined by

If koo amy = X% _ollFY ||L°°(A ,where A:= U'_, supp w;.

It is obvious that W% (A,w) = L°°(A, w). (see[143],[144],and [145]). In [146], [147], and [148] study
some examples of Sobolev spaces for p = 2 with respect to general measures instead of weights, in
relation with ordinary differential equations and Sobolev orthogonal polynomials.

The [149],[150], and [151] are the beginning of a theory of Sobolev spaces with respect to general
measures for 1 < p < o.This theory plays an important role in the location of the zeroes of the Sobolev
orthogonal polynomials (see[152],[153], and [150]).The location of these zeroes allows us to prove results
on the asymptotic behavior of Sobolev orthogonal polynomials (see [152]).

We denote by P**(A, w)(k = 0) the set of functions which can be approximated by polynomials
in the norm W**® (A, w), where we identify, as usual, functions which are equal almost everywhere.

We must remark that the symbol Pk®(A,w) has a slightly different meaning in [149], [153],
[150], and [151]. First, we have results for the case k = 0.
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Theorem (4.2.1)[154]. Let us consider a closed interval I and a weight w € L{;.(I), such that the set S of

singular points of w in I has zero Lebesgue measure.

Then we have C*(R) N L*(I,w) = C(R) n L*(I,w) = H, with
H={feCU\S)NnL”({,w):Va€S,3Al, € R such that ig}slxli_)nglf(x) — I, w(x) =0}

where the closures are taken in L (I, w). If a € S is of type 1, we can take as la any real number. If a € S
isoftype 2, la =ess lim  f(x) for € > 0 small enough. Furthermore, if I is compact we also have

w(x)zex—a
P> (I,w) = H.
If f € Hn L*(I), I is compact, and S is countable, we can approximate f by polynomials with the
norm ||*|| ez wy + |I*ll ooy -The following are two of the main results for k > 1.

Theorem (4.2.2)[154].Let us consider a compact interval I and a vectorial weight
w = (Wg,...,wy) € L®(I) such that wi;* € L1(I).
Then we have P%*(I,w) = {f:1 > R/f*Y € AC(I) and f® € PO*(I,wk)}.

Theorem (4.2.3)[154]. Let us consider a compact interval I and a vectorial weight
w = (Wy,...,wy) € L(I) such that the set of singular points for wk in I has zero Lebesgue measure.
Assume that there exist ay € I, an integer 0 < r < k, and constants ¢, § > 0 such that

) wip1(x) < clx —aglwj(x) in[ag — 8,a0 + 8] N1, forr < j <k,

.o _1

(ii) f]\[ao—s,ao+s] wi ! < oo, forevery £ > 0,

(iii) if r > 0, aq is (r — 1)-regular.Then we have
PE2(l,w) = { f:1 = R/f*V € AC,(IH{ao)), f® € PO (I, wy),
31 € R with ess lim|f™(x) — l|lw,.(x) =0, ess lim f Dw; (x) = 0,
x€ElLx—>ag

xX€l,x—ag
forr<j<kifr<k—1,and f"V e AC(D) ifr > 0}.

This result gives the characterization of P*® (I, w) for the case of Jacobi weights .The analogue of
Weierstrass' theorem with the norms W*P(A, 1) (with 1 < p < oo and u a vectorial measure) can be
founded in [153] and [151]. Throughout k > 0 denotes a fixed natural number. Also, all the weights are
non-negative Borel measurable functions defined on a subset of R; ifa weight is defined in a proper subset
E c R, we define it in R\E as zero. If the weight does not appear explicitly, we mean that we are using
the weight 1. Given 0 < m < k, a vectorial weight w and a closed set E, we denote by Wk (E,w) the
space WR® (AN E,w|g) and by Wk"™%°(A, w) the space Wk_m'm(A, (Wm,...,Wk)). We denote by
suppv v the support of the measure v(x)dx, the intersection of every closed set E € R verifying

fR\Ev = 0. If A is a Borel set, |A|, x4, int(4), and A denote, respectively, the Lebesgue measure, the

characteristic function, the interior and the closure of A. If I, U are subsets of R, the symbol d;U denotes

the relative boundary of U in I. By f(j) we mean the jth distributional derivative of f.

P denotes the set of polynomials. We say that an n-dimensional vector satisfies a one-dimensional

property if each coordinate satisfies this property.

Definition (4.2.5)[154].Given a measurable set A, we define the essential closure of A as the set

essclA:=[x€R:[ANn(x—6,x+6)| >0,Vé >0].

Definition (4.2.6)[154].If A is a measurable set,f is a function defined in A with real values and a € ess cl

A, we say that esslimyeg ,q f(x) = [ € R if for every € > 0 there exists § > 0 such that [f(x) —[| < ¢

for almost every x € AN (a — §,a + §). In a similar way we can define esslimyep x-a f(x) = —co0 and
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ess limyey xq f(x) = —oo. We define the essential limit superior and the essential limit inferior in A as
follows:

ess lim su x):=inf esssu x),essliminf f(x):= su ess inf x).
XEA, x—»apf( ) 6>0x€Aﬂ(a—6,ap+6)f( ). X€A, x>a fx) 6>I(:)) xEAn(a—é‘,a+6)f( )

If we do not specify the set A we are assuming that A = R.

Definition (4.2.7)[154]. Given an interval I and a weight w in I we say that a € [ is a singularity of w

(or singular for w) in Iif essliminfye; ,—q w(x) = 0.

We say that a singularity a of wis of type 1 if esslimye; o w(x) = 0. In other cases we say that a is a
singularity of type 2.

Lemma (4.2.8)[154]. Let us consider an interval I, a weight w in I, and a point a € I which is not singular
for w in 1. Then there exists & > 0 such that every function in the closure of C(R) with the norm L* (I, w)
belongs to C(I N [a — &,a + 6]).

Proof. We have that supgssq ess infyeing—s,a+s) W(x) =1 > 0.

: . : l
Therefore there exists § > 0 with ess infye;n(g-sqa+5) W(X) > 5> 0.

l l

Hence, we have [|g|l .2 na-s,a+6)w) = 5 118llLo(1n@-s.a+8)) = 3 MAxxern[a-5,a+8118)1,

for every g € C(R). This inequality gives the lemma, since if f is the limit of functions {gn} c C(R) with
the norm in L*(I N (a — §,a + §),w), it can be modified in a set of zero Lebesgue measure in such a

way that it is the uniform limit of {gn} inInfa—6,a+46].

Lemma (4.2.9)[154]. Let us consider an interval I, a weight w in I and a singular point a of w in I of type
1. Then every function f in the closure of C(R) with the norm L* (I, w) verifies

ess ler‘rll fw(x) = 0. (27)

) |wkx) =1>0.
Therefore for every § > 0 we have ess supyern(a—s,a+s)lf (X)lw(x) = 1> 0.

Proof. Let us assume that (27) is not true, i.e., esslim sup, ., x_)alf

Since a is of type 1 we deduce ess limye;nq—-sq+6) 12X w(x) =0,
for every g € C(R). This implies that for each g € C(R) and & > 0 there exists § > 0 with

esssup |g(x)|w(x) <e.
x€ln(a-68,a+6)

Consequently, for this § > 0 we have

If = elliegmllf = gllieana=s.a+s)w) = If lieanca-s,a+8)w) — llgllieana-sa+s)w)

>1l—c¢

for every € > 0 and g € C(R). Hence we have ||f — g|l .~ w) = [ > 0 ,for every g € C(R). This implies
that f cannot be approximated by functions in C(R) with the norm L* (I, w).
Lemma (4.2.10)[154]. Let us consider an interval I and a weight w € L*(I).
Denote by S the set of singular points of w in I. Assume that a € S is of type 1 and |S| = 0.
Then, for any fixed € > 0 and f € C(I\S) N L™(I,w) with ess lim,¢; 4 f(x)w(x) = 0, there exist a
relative open interval U in [ with a € U and 0,U < I\S (and U c int(I) if a € int(I)) and a function
g€ L°(I,w)NC(U) suchthatg = fin I\U, |If — gll 0wy < € (and |If — gl <eiff € L*(D)).
We can choose g with the additional condition g(a) = 0 or eveng(a) = A for any fixed A € R.
Proof. Without loss of generality we can assume that a is an interior point of I, since the case a € dI is
simpler.
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Take n such that [a — 1/n,a + 1/n] c int(I). Since |S| = 0, there exist y,(a,a + 1/n)\S and
1 e
X, € (a - a) \S verifying
If )l < 27 +ess infyepq arr/ml f GO If ()] < 277 + ess infyejq—1/nap | f (X

Let us define now the function f,, (which is continuous in an open neighbourhood of [x,,, y,,],
since Xy, Y, & S) as

22 f)ifx € [y al,
fa(3): = yx — FORifx € [a,y,],
f) if x € 1\ [, ]

Observe that |f,, (x)| < 27" + |f(x)] for almost every x € [x,, y,].

Hence |If = fulliogw) = If = fall i Genymnlwy S 2l o qapymiwy + 27 Wl o),

and this last expression goes to 0 as n — oo, since ess lim,¢; xq f (X)W(x) = 0.

If f 3 L'(1), we also have ||f — full iy = If = full iy < 20 it e,y + 27" O — X2,

and this expression goes to 0 as n — 1. Observe that f,,(a) = 0; it is easy to modify fn in a small
neighbourhood of a in order to have f, (a) = A, for fixedA € R. This finishes the proof .

Lemma (4.2.11)[154]. If A is a measurable set, we have:

(i) ess cl A is a closed set contained in A.

(ii) |A\ess cl A| = 0.

(iii) If f is a measurable function in A U ess cl 4, a € ess cl A and there exists ess liMyeegs ¢ 4 x—a f(X),
then there exists ess limyey xq f (%) and ess liMye g xoq £(X) = €8s liMyeegser a»a f(X).

(iv) If |A] > 0 and f is a continuous function in R we have |[f|| 04y = SuPyeessci alf (OI.

Proof. (i) is direct.

R . .. . . 1 rx+6
(i1) is a consequence of the Lebesgue differentiation theorem, since we have limg_,q Y fx_ sXa=1

for almost every x € A, and this implies |[A N (x — &,x + §)| > 0 for a.e. x € A and every § > 0.
Assume now that ess limyeesscl ax—a f(X) = | € R. Consequently, for every € > 0 there exists § > 0
such that for almost every x € esscl AN (a — §,a + 6) we have |f(x) — ]| < e.
Since |A\esscl A| = 0, we have |f(x) — [| < &, for almost every x € AN (a — §,a + 6).
This gives (iii) if [ € R. The case [ = too is similar. The statement (ii) gives
If llecay < Nf 1l o esscl 4y < SUPxeesscl alf (X1

We have |f(x)| < ||f |l (4 for almost every x € A. Then |f(x)| < [|f [, (4) for every

x € ess cl A, since f is continuous. Therefore supyeess c1.alf ()| < |If 1l (a)-
These two inequalities give (iv).
Lemma (4.2.12)[154]. Let us consider an interval I, a weight win I, and a € I.
If esslim supye;y_.qo W(x) = [ > 0, then for every function f in the closure of
C(R) n L*(I,w) with the normL® (I, w) there exists the finite limit

esslim f(x), forevery0<e<lL.

w(x)zgx—a
Proof. We have for every 6 > 0 ess limy¢/ng—s,qa+5) W(x) =1 >0, and then [{x €I N (a—6§,a + ) :
w(x) = ¢€}| >0, forevery § > 0and 0 <=< L.
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This implies that a belongs to ess cl4,, where
Asi={xel: wx)=e}Ifge CR)NL®{,w),0<e < and § > 0, we have
ellgll o ca,nra-s,a+s1) < llglliecannia—sa+siw) -
Since ess cl(A; N [a — §,a + 6]) is a compact set and g € C(R) N L*(I,w), Lemma(4.2.11) (iv) gives

™| <
ngesscl (/{?r?[)é—a,aw])'g | = ||g||L°°(Agn[a—s,a+6],W)-

Consequently, if {g,} € C(R) N L*(I,w) converges to f in L*(I,w), then {g,} converges to f uniformly
inesscl (A, n[a—86,a+8])andf € C(ess cl(Ac,nfa—86,a+ 6])) for every § > 0. Therefore
f € C(esscl A,). This fact and (4.2.11) (iii) give that, for 0 < &€ < [, there exists

esslim f(x) = esslim af(x) = lim fx).

XEAgx—a x€ess cl Ag,x— x€essclAgx—a
Lemma (4.2.13)[154]. Let us consider an interval I, a weight w in I, and a singular point a of w in [.
Then every function f in the closure of C(R) N L* (I, w) with the norm L® (I, w) verifies

inf <ess lim suplf(x)lw(x)) = 0. (28)

>0 \ w(x)<ex—a
Proof: Observe first that a € ess cl({x € I : w(x) < &}) for every € > 0, since a is singular for w in .
Let us assume that (28) is not true, i.e.,

esslim sup|f(x)|w(x) >1>0,
x€ASx—a

for every € > 0, where A, :={x € [ : w(x) > ¢} andA¢ := I /A..For every €,6 > 0 we have
esssup |f()|lw(x)=1>0.
)

x€An(a—-6,a+68

Foreach g € C(R) N L*(I,w),& > 0, and § > 0, we have

gl 2o agn(a-s.a+s)wy < €llgllo(in(a-s,a+5)) < -
Consequently

If = elliogwy = IIf — glliecag na-s,a+8)w)

= [l o asnia-s,a+5)w) — gl oasnia-s,a+8)w) -
and therefore [|f — gllioqw) = 1 = €llgll o (1n(a-s,0+8))
for every g € C(R) N L*(I,w) and 6, ¢ > 0. Hence we obtain ||f — g|[;~w) = | > 0,for every
g € C(R) N L*(I,w). This implies that f cannot be approximated by functions in C(R) N L (I, w).
Lemma (4.2.14)[154]. Let us consider an interval I, a weight winI,and a € I .
If ess limyey y—q Ww(x) = 0 and infg>0(ess lim supw(x)qlx_,alf(x)lw(x)) =0,
then we haveess limye; x—q f(x)W(x) = 0.
Proof. For each 1 > 0 there exist €, §; > 0 such that
ess sup lf () w(x) <n.

w(x)<exeln(a—61,a+81)
We also have that there exists §, > 0 such that w(x) < ¢ for almost every x € I N (a — &5, a + §,).
If we take § := min(8;, §,), we obtain

esssup |f(x)|w(x) < ess sup lf () Iw(x) <7,

x€ln(a-68,a+6) w(x)<exeln(a—64,a+61)
and this finishes the proof.
Lemma (4.2.15)[154]. Let us consider an interval I and a weight w € L*(I).
Denote by S the set of singular points of w in I. Assume that a € S and |S| = 0.
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Then, for any fixed n > 0 and f € C(I\S) N L*(I, w) such that

(i) inf(ess lim supy, (o)< xoalf (X)W (X)) = 0,

(ii) there exists the finite limitess limyy,(y)»g x—q f(x), for € > 0 small enough, there exist a relative open
interval U in [ with a € U and ;U c I\S (and U c int(I) if a € int(I)) and a function
e€l2Uw)NC(@) with g=f in N\UIf —gllimgw <1 @nd [If —gllagy <n if fe L),
Furthermore, we can choose g with the additional condition g(a) = ess limy,(y)s¢x—q f (%), for € >0
small enough.

Proof: If a is of type 1, Lemmas (4.2.14) and (4.2.13) give the result. Assume now that a is of type 2.
Without loss of generality we can assume that a is an interior point of I, since the case a € 91 is simpler.
We consider first the caseess lim sup,._, ,+ w(x) > 0 and ess lim sup,_,- w(x) > 0.
For each natural number n, let us choosee,, > 0 with lim,,_,,, &, = 0 and
ess lim sup|f(x)|w(x) < l
w(x)<epx—a
Let us consider now §,, > 0 with lim,,_,,, &, = 0 and
ess sup lf () |w(x) < l, (29)
x€(a—8p,a+8n)NAG, n
where A, :={x €] : w(x) = ¢} and A=c := I"A= . We define [ := ess limyey_y-q f(x), for any £ > 0
small enough. We can take &, with the additional property |f(x) — [| < 1/n for almost every
x € (a—06y,a+6,) NA=n.Letus choose y, € (a,a + 6,)\S and y;, € (a — 6,,a)\S with
lf(vn) =1l < 1/n and |f(y,) — Ul < 1/n. We define the functions an (x) and b, (x)in[y,,y,] as
follows:

( : _
I+ (x—a) mln{l];f(_y,;)} lif x € [a,y,],
an(x) := 1 P AN
I+ (x—a) mln{l,f‘(yn)} lif x € [yn, al,
\ Yn—a
and
.
e )max{;f()/n)} .
bn(x) =< _
e )max{;f(yn)} l X €y al
\ n

Now we can define the functions g € L”(I,w) N C([yy , ¥x]) in the following way:

an (x)if x € [y, ¥nland f(x) < a,(x),
g,(x) = by, (x)if x € [yn ,ynland f(x) = by, (%),
f (x)in other case.

Observe that a,,(x) < g (x) < b,(x), |an(x) — | <1/n, and |b,(x) — | < 1/n ], for every
X € ¥4, , ¥nl. Therefore |gn(x) - l| < 1/nfor x € [y, ,¥,] and

2
IF = el oy ygeas. ) < 7 WMl - (30)
We prove now
B 1 = ) = O
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The facts

1
”g ||L°°([y Yalnag, w) = (lll + >5n;
and (29) give

1 l 1
F = &l g gty <+ (1147 &
This inequality and (41) give

1 ] 1 2
1 = 2ull oy gy <5+ (147 n + Sl
If f € L*(I), we also have
”f - gn”Ll(I) = ”f _g"”Ll([Vr'l val)

< Wl + (101+3) 0 7).

This finishes the proof in this case.

If esslimsup,_,+w(x) >0 and esslimsup,_ .- w(x) = 0,we only need to consider the
functions g, for x > a and the functions f,, in the proof of Lemma (4.3.11) for x < a (recall that we can
choose f,, with f,(a) = I).

The case ess limsup,._,,+ w(x) = and ess limsup,_,- w(x) > 0 is symmetric.

The following result is direct.

Proposition (4.2.16)[154]. Let us consider a sequence of closed intervals {I,,},ea such that for eachn € A
there exists an open neighbourhood of I,, which does not intersect U, +n I

Denote by J the union : = U, I,, . Let us consider a weight w in J.

Then we have C(J) N L*(J,w) = N, C(I,) N L*(I,, ,w),where the closures are taken in L* with respect
to w, in the corresponding interval. We also have a similar result for contiguous intervals.

Proposition (4.2.17)[154]. Let us consider an interval I and a weight w € L7 .(I).
Let us consider an increasing sequence of real numbers {a,}n,epn, Where A is either
Z*,Z7,Z,0or{1,2,...,N} for some N € N such that I = Up[a,, a,+1] and an is not singular for w in I if
an is in the interior of /. Then we have
C(D)NL>U,w)=Cc)nL>(,w)
= {f € Npea C([ay , Aneql)  f is continuous in eacha,, € int(I)}
= {f € Npea C®([ay ,an41]) ¢ f is continuous in eacha,, € int(I)},
where the closures are taken in L with respect to w, in the corresponding interval.

Remark.We can ensure C*°(I) N L*(I,w) = C*(R) N L®(I,w) if I is closed. The same is obviously true
for C(I) instead of C*(I).

Proof. The third equality is true since C®([a,,a,+1]) = C([a,,a,+1]) is a direct consequence of
Weierstrass' theorem and w € L*([a,, , a,+1])). We are going to see that the closure of

C®(I) NnL*(,w) and C(I) N L*(I,w) with the norm L*(I,w) is the same. It is enough to prove that
every f € C(I) can be approximated by functions in C*(I) with the norm L*(I,w). We can assume that
A = Z, since the argument in the other cases is simpler. Given € > 0 and f € C(I), for each n € Z, there
exists a function g € C*(R) with If - gn”

< &/2. Let us consider functions
L®([azn-1,02n42]W) /

0, € C*(R) with 8, = 0in(—, ay,_1],0, = lin[a,,,») and 0 < 6, < 1.
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We define a function
g € C*(Dbyg(x) := (1 - Hn(x))gn—1(x) + Qn(x)gn(x), if x € [azp-1, Az2n41].
We have
If = gl ((ayn_paznlw) < 1L = 0D — 8-l (az,_1.ammlw)
(1 = 6,)(f — g llio(ay, rapmiw) < E/2 +€/2=¢,
If — gllieqazn_rammiw) = If = 8nllie fagnpazniw) < €/2,

and this implies ||f — g|l . w) < €. In order to see the second equality, observe that the ideas above give
that the result is true if it is true for the set A = [1,2,3]. Let us consider f € C([a;,a,]) N C([a,,as])
and continuous in a, . Given m € N there exist functions g/, € C([a, ,a,]) and g2, € C([a, , as]) with

If = gmllioanaiw) + If — 82llio(ay asiw) < 1/m. In order to finish the proof it is enough to
construct a function g, € C([ay, as]) satisfying the inequality ||f — gmll1([a, a;]w) < €/m, Where ¢ is a
constant independent of m. We know that there exist positive constants §, c;, and ¢, such that

[a, — 8,a, + 81 E [ag,a3],| f(x) — f(a)| <1/m if |x—ay,]<fand0<c;l!<w()<c, for
almost every x € [a, — §,a, + §]. (4.2.8) gives that
f € C(la, — 6, a, + &]) and then

If (x) — gL, ()] < ¢y /m, for every x € [a, — §,a,],
If (x) — g2, ()| < cy/m, for every x € [a, ,a, + 6],
and consequently
lgl,(x) — f(ay)| < (¢, + 1)/m,  forevery x € [a, — 8, a,],
lg2,(x) — f(ay)| < (¢, + 1)/m, forevery x € [a,,a, + 6].
Let us define g9, as the function whose graph is the segment joining the points
(a; — 6,84 (a; — 8))and(a, + 8,g%,(ay + &)). Then we have
g%, (x) — f(ay)| < (¢c; +1)/m, foreveryx € [a, — 8,a, + &),
g%, (x) — f(ay)| < (¢, +2)/m, foreveryx € [a, — 8,a, + 6],
llgm — flli=(ay-s5.a,+81w) < c2(c1 +2)/m.
If we define the function g,,, € C([a4, as]) by
gm(x), ifx €[ay,a; — 4],
gm(¥) ={gm(x), ifx €la, -8 a,+3],
g2 (x), ifx€[a,+6,a;),
we have
lf = gmlleqa,asiw) < (c2(c1 +2) + 1)/m.This finishes the proof of Proposition (4.2.17).

Proposition (4.2.18)[154]. Let us consider a closed interval I and a weight w € L, .(I) such that the set S
of singular points of w in I has zero Lebesgue measure.

Then we have C®(R) N L*(I,w) = C(R) N L*(I,w) = H, with

H:={f € C(I/S) nL*(I,w): for each a € S, ir>1£ <ess lim supr(x)Iw(x))
€

wx)<gx—a

= 0 and, if ais of type 2, there exists the finite limit ess lim f(x),
w(x)zgx—a

for € > 0 small enough},where the closures are taken in L* (I, w). Furthermore, if I is compact we also
have P*®(I,w) = H. If f € HNL'(I), I is compact, and S is countable, we can approximate f by
polynomials with the norm ||{| ey + [I*ll 11y
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Proof. Lemmas (4.2.8),(4.2.9),(4.2.14),(4.2.12),and(4.2.13) give that H contains C(R) N L* (I, w).

In order to see that H is contained in C(R) N L*(I,w), assume first that I is compact; then w € L*(I).
Fix e > 0 and f € H. Proposition (4.2.16) gives that for each a € S there exist a relative open interval U,
in I with a € U, and 9,U, c 1/S (and U, c int(I) if a € int(I)) and a function g, € L®(I,w) n C(U,)

such that g, = f in — and If — 8allzow) < €. The set S is compact since it is a closed set contained in
a

the compact interval I. There exist a4 , ..., @, € SsuchthatS c U, U ..U U, .
Without loss of generality we can assume that U, , ..., Uy, is minimal in the following sense: for each

i =1,..,mthesetU;,; Uq does not contain to Uy, .Define [a;, B:] = l_]ai. Assume that we have

Ug, N Ug, # @, witha; < @;. The minimal property gives Ug, N Uaj = [, ;] and [a;, B;] N Uy, = @ for
every k # i,j. We define the functions gaj,ai(x) ‘= 8aya; x) := /fl—::] gq,(x) + ;:_0;11 8q; (x).

Observe that gg,q; € C([a]-,ﬁi]) and satisfies gai'aj(aj) = gai(aj), 8aiq; B:) = 8a; (B;), and

i—

_ B -
| 8aja; f||L°°([aj'ﬁi]-W) = ||Bi‘“j (gai(x) / (x)) L°([a;.B:lw)
+ ﬂ(gai(x) i (x)) < 2e.
Bi—q ([ Bi]w)

If we define the function g € L*(I,w) € C(I) as
f)if x € I\ U; Uy,
g(.X') = gai(x)ifx € Uai’ X € Ujii Ua]
gai,aj(x)ifx € Uy NUg,,
we have ||f — gll 0wy < 2€.If f € L'(I) and S is countable, consider [a;,a, ,...] = S.

If we take g, with ||f - gan” < 27N, it is direct that ||f — gll 1) < 2e.

L'
This finishes the proof in this case. If I is not compact, we can choose an increasing sequence {ay}nepa of
real numbers, where A is either Z*, Z~, or Z such thatl = Uy[a,, apsq]
and an is not singular for w in I if a,, is in the interior of I. We can take {a, },cp With the following
additional property: maxy,ep @, = max/ if there exists max/ and min,ep a, = min! if there exists
min /. We can reformulate this result as follows.
Theorem (4.2.19)[154]. Let us consider a closed interval I and a weight w € Lj;.(I) such that the set S
of singular points of w in I has zero Lebesgue measure.
Then we have C®(R) N L®(I,w) = C(R) — L*(I,w) = H, with

H={feCU\S)NL”{,w): foreacha € S, 3l, € R such that )eéi)}i_)rglf(x) — I lw(x) =0},

where the closures are taken in L*(I,w). If a € S is of type 1, we can take as [, any real number. If a € S
is of type 2, l; = ess limy,(y)>¢x—q f (%) for € > 0 small enough. Furthermore, if I is compact we also
have P*®(I,w) = H. If f € HNL'(I),] is compact and S is countable, we can approximate f by
polynomials with the norm ||| e () + II*ll11¢py -
Proof. We only need to show the equivalence of the following conditions (a) and (b):
(i) foreach a € S,
(ii) infeo (€S im sUPy (o) <e xmval f G W (X)) = 0,
(iii) if a is of type 2, there exists the finite limitl, := ess limy, (y)»¢ x—q f (X), for € > 0 small enough,
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(iv) for each a € S, there exists [, € R such that ess lim,¢; yq|f(x) — [5|w(x) = 0.
It is clear that (iv) implies (i). Hypothesis (ii) gives that for each 1 > 0, there exist &8 > 0 with
&llf |l o ((a-8.a+s1nwx<erw) < 1/3 and |lle <n/3.
By hypothesis (iii) we can choose § with the additional condition
Ilf — Lallieo((a—-s5,a+8]ntw)<elw) < 1/3. These inequalities imply

If = lallioa-s.a+81w) < If Lo (a—5a+81nwx)<erw)

+llale + If = lallieoa-sa+s1nwmzaw) <1
Corollary (4.2.20)[154]. Let us consider a closed interval I and a weight w € Ly, .(I)
such that the set S of singular points of w in I has zero Lebesgue measure.
If f,ge C(R)NL*(I,w) and ¢ € C(I) N L*(I), then we also have

|f1, f+, /-, max(f, g), min(f, 8), ¢f € C(R) N L*(I,w).
Proof. The characterization of C(R) N L*(I,w) given in Theorem (4.2.19) implies the result for |f| and
@f. This fact and max(f,g) = ”%lf_gl, min(f,g) = Hg—Tlf—gl gives the result for max(f,g) and
min(f, g). The facts f, = max(f,0), f. = max(—f,0) finish the proof.Most of our resultsfor k > 1 use
tools of Sobolev spaces. We include here the definitions that we need in order to understand these tools.
First of all, we explain the definition of generalized Sobolev space in [149] for the particular case p = oo
(the definition in [149] covers the cases 1 < p < oo, even if the weights are substituted by measures). One
can think that the natural definition of weighted Sobolev space (the functions f with k weak derivatives

satisfying ||f(j)||L°°(wj) <oofor0<j<k)is a good one; however this is not true (see [155] or

[149]).We start with some previous definitions.

Definition (4.2.21)[154]. We say that two functions u, v are comparable on the set A if there are positive
constants ¢y, ¢, such that ¢; < u(x)/v(x) < c, for almost every x € A. We say that two norms ||-[|1, ||*]|>
in the vectorial space X are comparable if there are positive constants ¢y, ¢, such that

¢ < |lx|l1/llxllz < ¢, for every x € X. We say that two vectorial weights are comparable if they are
comparable on each component. (We use here the convention that 0/0 = 1.) In what follows the symbol
a = b means that a and b are comparable for a and b functions or norms.Obviously, the spaces L (4, w)
and L”(A,v) are the same and have comparable norms if w and v are comparable on A. Therefore, in
order to study Sobolev spaces we can change a weight w by any comparable weight v.

We shall define a class of weights which plays an important role in our results.

Definition (4.2.22)[154]. We say that a weight w belongs to B, ([a, b]) ifw ™ € L([a, b]). Also, if J is
any interval we say that w € B, (J) if w € B,,(I) for every compact interval I € J. We say that a weight
belongs to B, (J), where J is a union of disjoint intervals U;e, J;, if it belongs to By (J;), for i € A.
Observe that if v = winJ and w € B, (J), then v € B, (J).

Definition (4.2.23). We denote by AC([a, b]) the set of functions absolutely continuous in [a, b], i.e. the
functions f € C([a, b]) such that

ﬂ@—ﬂ@=jfﬁﬂt

for all x € [a, b].
If J is any interval, AC;,.(J) denotes the set of functions absolutely continuous in every compact
subinterval of J.
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Definition (4.2.24)[154]. Let us consider a vectorial weight w = (wg , ..., wy).
For 0 < j < k we define the open set {; := {x € R : 3 an open neighbourhood V of x with w; € B, (V)}.
Observe that we always have w; € B, (Qj) for any 0 < j < k. In fact, (); is the greatest open set U
with w; € B, (U). Obviously, £); depends on w, although w does not appear explicitly in the symbol ;. It
is easy to check that if fU) € Lw(ﬂj,wj) with 1 < j < k, then fU) € L}OC(QJ-) and fU~D € AClOC(Qj).
Hypothesis. From now on we assume that w; is identically 0 in every point of the complement of ();.
We need this hypothesis in order to have complete Sobolev spaces (see [155] and [149]).
The following definitions also depend on w, although w does not appear explicitly.
Let us consider w = (wy, ..., w)) a vectorial weight and y € 2. To obtain a greater regularity of the
functions in a Sobolev space we construct a modification of the weight w in a neighbourhood of y, using
the following version (see[149]) of the Muckenhoupt inequality. This modified weight is equivalent in
some sense to the original one .
Muckenhoupt inequality I (4.2.25)[154]. Let us consider w,, w; weights in (a, b).

) .. b
Then there exists a positive constant ¢ such that || fx g(t)dt || ) < cllgll Lo ([a,p1wy)
L

©([a,blwg

for any measurable function g in [a, b], if and only if ess sup,<,<p Wo () frb wil < oo,

Definition (4.2.26)[154]. A vectorial weight w = (W, ..., W) is a right completion of a vectorial weight
w with respect to y if wy, := w;, and there is an € > 0 such that w; := w; in the complement of [y,y+¢€]
and w;:=w; + Wy, in[y,y + ¢]for 0 < j < k,where Wj is any weight satisfying:

@) w; € L”([y,y + €D,

(i) Ao (W), Wj41) < o0, with

y+£
Ao (U, V) := ess sup u(r)j v1,
y<r<y+e r

Muckenhoupt inequality I guarantees that if f&) € L® (Wj) and fU+D € L™ (Wj+1),thenf WeL~ (Wj).
Example(4.2.27)[154]: It can be shown that the following construction is always

a completion: we choose W; := 0 if w;,; & Boo((y,y + s]); if W11 € B ([ ¥,y + €]) we set

wi(x) :=1in[y,y + €]; and if W;,; & Boo(( v,y + s])\Boo([y,y + €]) we take W;(x) :=1

-1
forx € [y +¢/2,y + €], and W;(x) := min {1, (fxm Wi },for x € (y,y+¢e/2).

Definition (4.2.28)[154]. If w is a vectorial weight, we say that a point y € R is right j-regular
(respectively, left j-regular), if there exist € > 0, a right completion w (respectively, left completion) of
w, and j < i < k such that w; € B,([y,y + e])(respectively, B,([y —¢, y])). Also, we say that a point
y € R is j-regular if it is right and left j-regular.

Remarks (4.2.29)[154].

(1) A point y € R 1is right j-regular (respectively, left j-regular), if at least one of the following properties
1s verified:

(ii) There exist € > 0 and j < i < k such that w; € B, ([ y,y + €])(respectively,

B ([ ¥ — & y])). Here we have chosen w; = 0.

(iii) There exist e > 0,j < i < k,a > 0,and 6 < i —j — 1 such that
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w;(x) = alx — y|%, for almost every x € [y,y + €] (respectively, [y — &, y]). See [149].
(iv) If y is right j-regular (respectively, left), then it is also right i-regular (respectively, left) for each
0<i<y.
(v) We can take i = j + 1 in this definition since by the second remark to
Definition (4.2.28)we can choose W; = w; + 1 € B, ([y,y + €]) forj < I < i,ifj+ 1 < i.
(vi) If y is not singular for w;, then y € Q; and y is (j — 1)-regular.
When we use this definition we think of a point {b} as the union of two half-points {b*} and {b~}.
With this convention, each one of the following sets

(a,b) U (b,c)u{b*}=(a,b)u[bt,c) # (a,c),

(a,b)U (b,c)u{b~}=(a,b"]U(b,c) # (a,c),
has two connected components, and the set (a,b) U (b,c) U{b~}U{b*} = (a,b) U (b,c) U {b} = (a,c)
is connected. We only use this convention in order to study the sets of continuity of functions: we want
that if f € C(A) and f € C(B), where A and B are union of intervals, then f € C(A U B). With the usual
definition of continuity in an interval, if f € C ([a, b)) N C([b, c]) then we do not have f € C([a, c]).
Of course, we have f € C([a,c]) if and only if f € C([a,b~]) nC([b*,c]), where by definition,
C([b+,c]) =C([b,c]) and C([a,b”]) = C([a,b]). This idea can be formalized with a suitable
topological space. Let us introduce some notation. We denote by Q) the set of j-regular points or half-
points, i.e., y € QU if and only if y is j-regular, we say that y* € QU) if and only if y is right j-regular,
we say that y~ € QU if and only if y is left j-regular. Obviously, Q%) < @ and Qi1 V.. UQ C 91928
Definition (4.2.30)[154]. We say that a function h belongs to the class AC;,.(Q)
if h € AC,.(I) for every connected component I of QU).
Definition (4.2.31)[154] (Sobolev space). If w = (wy,...,wy) is a vectorial weight, we define the

Sobolev space W% (A, w) as the space of equivalence classes of
vke(2,w) :={f : A> R/fY) € ACjp.(QY) for 0 < j < k and ||f0'>||Lw(AW.) <o for 0<j <k}
Wj

i i = Yk )
with respect to the seminorm [|f 1]}k (5 ) = 1=0”f ”L°°(2,wj)'
Definition (4.2.32)[154]. If w is a vectorial weight, let us define the space K (2, w)
as K(2,w) := {g: Q® 5 R/g€ Vk'm(W, W), ||g||Wk'°°(Q(°),w) = 0}_

K(2,w) is the equivalence class of 0 in W (W, W). This concept and its analogue for 1 < p < oo play
an important role in the general theory of Sobolev spaces and in the study of the multiplication operator in
Sobolev spaces in particular (see [149], [153], [150] and [151]).
Definition (4.2.33)[154]. If w is a vectorial weight, we say that (A, w) belongs to the class C, if there
exist compact sets M,,, which are a finite union of compact intervals, such that
(i) M,, intersects at most a finite number of connected components of {; U ...U k,
(i) K(M,, ,w) = {0},
(iii) My, € My,
(iv) Up M, = Q©.

In this section we collect the theorems we need in or to prove the results on it.
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The next results, proved in [149], [153], and [150], play a central role in the theory of Sobolev
spaces with respect to measures (see [149]). We present here a weak version of these theorems which are
enough for our purposes.

Theorem (4.2.34)[154]. Let w = (wy, ..., wy) be a vectorial weight. Let K; be a finite union of compact
intervals contained in QU), for 0 < j < k, and W a right (or left) completion of w.

If (A,w) € Cy, then there exist positive constants ¢; = ¢;(Ky, ..., Kx_1) and ¢, = c,(W, Ky, ..., Kx_1)
such that ¢; Eﬁ(}”gm”mm) < llgllykeo@m, 2 llgllykowm < llgllykoww, Vg € VEC(A,w).

Theorem (4.2.35)[154]. Let us consider a vectorial weight w = (wy, ..., ;). Assume that we have either
(i) (A,w) € Cy or (ii) Q; U ... U Qy has only a finite number of connected components. Then the Sobolev
space W5 (A, w) is complete.

Proposition (4.2.36)[154]. Let w = (w,, ..., wy) be a vectorial weight in [a, b], with

Wi, € Bo ((a, b]) for some 0 < ky < k. If we construct a right completion w of w with respect to the

point a taking € = b — a, and w; = w; for kg < j < k, then there exist positive constants ¢; such that

Cj”g(j)”Loo([a'b]'wj) Zi'(;)j||g(i)||Loo([a'b]'wi) + Zfﬁ;llg(i) (b)l, forall 0 < j < ko and g € V**([a, b],w).

In particular, there is a positive constant ¢ such that
cliglyreqapm < lellweeqaow + Zico 189 ()], for all g € VA= ([a, b], w).
The following is a particular case in [149].
Corollary (4.2.37)[149]. Let us consider a vectorial weight w = (wy, ..., wy). Let K; be
a finite union of compact intervals contained in QD for 0 < j < k. If(A,w) € C, , then there exists a
positive constant ¢; = ¢;(Kj , ..., Kx—1) such that

e 2819 Pl < Nellwhos oy Ve € VE2B,w)
Corollary (4.2.38)[154]. Let us consider a vectorial weight w = (wy , ..., wy). For some 0 < m < k,
assume that (2, (W, ...,Wk)) € Cy. Let K be a finite union of compact intervals contained in Qim-1,
Then there exists a positive constant ¢; = ¢, (K) such that
cillgliiaey < Ngllyr-meogy yy, Y2 € VET™2(2,w).
In [153] and its remark give the following result.
Theorem (4.2.39)[154]. Let us consider a vectorial weight w = (wy, ..., w;) with (A2,w) € C,. Assume
that K is a finite union of compact intervals J;, ..., J,, and that for every J,, there is an integer 0 < k,,, < k
verifying J,, € Q®m& D if k>0, and f]m w; =0 for k,,, <j <k, if k,, <k. If w; €L*(K) for
0 < j < k, then there exists a positive constant ¢, such that
CollFellyeocam S If oo (awy(SuPxeal g™ | + lgllyioo(a,my ) for every f, g € VE©(A,w)
withg' = g’ = -+ = g = 0in A\K.
In [153] implies the following result.
Corollary (4.2.40)[154]. Let us consider a vectorial weight w = (wg , ..., W)
in (a, b)with w, € By, ([a, b]),w € L®([a, b]) and K([a, b],w) = {0}.
Then there exists a positive constant ¢, such that
Co”fg”Wk.OO([a_b]lw) < ”f”Wk.DO([a_b],m”g”Wk.DO([a,b]_W)
forevery f,g € V®®([a,b],w).
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Lemma (4.2.41)[154]. Let us consider w = (wy, ..., W) a vectorial weight with

Wi (X) < ¢qlx — aglwj(x),for 0 < j < k,ap €R and x in an interval I. Let ¢ € C*(R) be such that
supp’ € [, A+ t], withmax{|1 —ayl, |1+t —ayl} <c, t and||<p(f)||LooU) <cgtIfor0<j<k.

Then, there is a positive constant ¢, which is independent of I, ay , 4, t,w, @, and g

such that [|@g|lyy ke n,) < Collgllyieco(s y for every g € V(A w) with supp(pg) € I

Corollary (4.2.42)[154]. Let us consider a compact interval I and a vectorial weight
w=Wgy,.., W) € L(I). Assume that there exist a, € I, an integer 0 < r < k, and constants ¢,§ > 0
such that wi,1(x) < c|x — aglw;j(x) in [ag — 8,a9 + 8] NI, for r < j < k. Then a, is neither right nor
left r-regular.We define now the following functions,

log, x = —logx ,log, x = log(log; x), ...,log, x = log(log,,_; x) .
A computation involving Muckenhoupt inequality gives the following result.
Proposition (4.2.43)[154]. Let us consider a compact interval I and a vectorial weight
w = (Wy, ..., wy) € L*(I). Assume that there exist a, € I, an integer
0<r<kmneN,8,c>0,&<0,and a;, ¥, ...,y € Rforr < i <k such that

(i) w;(x) = e_cilx_a°|_8i|x - a0|€i10g]1/i|x — ag| logf[lllx — al

forx € lag—8,ap +6]Nlandr <i <k,
(i) @; & Nife; = Oand r < i < k.
Then there exists a completion W of w such that the Sobolev norms W*?(I,w) and W*P(I,w) are
comparable and there exists r < 1y < k with
Wi (x) < clx —aglwj(x) in [ag — 6,a0 + 61 N1, forrg < j < kifry <k, and
Wy, € Bo([ag — 8,a9 + 8] N 1I). In particular, a, is (1o — 1)-regular if ry > 0.First of all, the next results
allow us to deal with weights which can be obtained by “gluing” simpler ones.
Theorem (4.2.44)[154]. Letus consider —-o < a < b <c < d < oo,
Let w = (wy, ..., wy) be a vectorial weight in (a,d) and assume that there exists an interval I € [b, c]
with w € L*(I) and (I, w) € C,. Then f can be approximated by functions of C*(R) in W**([a, d], w)
if and only if it can be approximated by functions of C*(R) in W**([a, c],w) and W*>([b, d], w).
Proof. [a, B] < I prove the non-trivial implication. Let us consider /] = [a, 8] < I and an integer
0 < ky <k, suchthat] c (b,c)y, € (b,c) 1 Vifk; >0 J,wy = 0fork, <j < kifky <k.

Let us consider f € V¥ ([a,d],w) and ¢4, ¢, € C*(R) such that ¢, approximates f in W**([a, c], w)
and ¢, approximates f in W% ([b,d],w).Set 8 € C*(R) a fixed function with 0 <0 <1, =0 in
(—o0,a] and @ = 1in[B, ). It is enough to see that 8¢, + (1 — 8) ¢, approximates f in W**([a,d], w)
or, equivalently, in W*® (I, w). Theorem C with A= I and K = J gives

If = 002 = (1 = )1 llyies oy < 10CF = @) ooy + 11 = OIF = @)llpicorony

< c(If = @allykes + If = Prllykogm)
and this finishes the proof of the theorem.
Theorem (4.2.45)[154]. Let us consider strictly increasing sequences of real num- bers {a,}, {b,}
(n belonging to a finite set, to Z,ZF, or Z~) with a,,; < b,, for every n. Let w = (w, ..., wy) be a
vectorial weight in (a, 8): = Un(ay, by) with —0o < a < B < .
Assume that for each n there exists an interval I,, € [a,, 1, b,] withw € L*(I,,) and
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(I,,w) € Cy.Then f can be approximated by functions of C*(R) in W*® ([, 8], w) if and only if it can
be approximated by functions of C*(R) in W**([a,,, b,], w) for each n.
Proof. We prove the non-trivial implication. Let us consider ¢, € C*(R) which approximates f in
wk*([a,, b,],w). By the proof of Theorem (4.3.44) we know that there are 8, € C*(R) and positive
constants ¢, such that
lf — On@ni1 — 1- en)(Pn”Wk,w(]n_w) < Cn("f - (Pn”Wk'w(In_W) +If — (Pn+1”Wk,°°(1n,W))-

Now, given & > 0, it is enough to approximate f in [a,, b, ] with error less thane min{1, ¢;;%, ¢;;2,}/2.
Theorem (4.2.46)[154]. Let us consider a compact interval I and a vectorial weight
w = (wy, ..., w) € L*(I) such that wy, € B, (I). Then we have
PY2(1,w) = Hy = {f € V(L w) /f WP (1,w)}

= Hy :={f e VFU,w)/fD € P**(I,w;),for 0 < j < k}

={f:1->R/f%* D e AC(Dandf® € P>, w,)}.

Proof. We prove first H; € P**(I,w). If f € H;, let us consider a sequence {q,} of polynomials which
converges to £ in L* (I, w,). Let us choose a € I.

- = ' — oo g FUemD) () G il
Then the polynomials Q, (x) := f(a) + f'(a)(x a) + ot f (a) =—— D C 4 fa qn(t) D

satisfy Q) (x) = fP(a) + -+ f*V(a )(’;kai I )%dt for 0 < j < k.

Therefore, for 0 < j < k,
|f(f)(x) Q(J)(x)|

2 (F90 - 0 0) E222 | < ¢ [P0 = g wie(wie(®) - 1de
< c[|f9 = gull oo, -

Hence, we have for 0 < j < k, ||f(j) - Qg)”LOO(IW )= C”f( )~ Qn”Loo(Iwk)

since w; € L”(I). Then we have obtained that f € PR (1, w).
Since Q4 = int(1),Q; U -+ U Q, = int(I) is connected and Theorem (4.2.35) gives that W*®(I,w) is
complete; therefore P**(I,w) € H, . The content Hy € Hj is direct. The last equality is also direct since
the fact wy, € B, (I) gives Q%D = . Then f*~D € AC(I) for every f € VE*(I,w).
Theorem (4.2.47)[154]. Let us consider a compact interval I and a vectorial weight
w = (Wy, ..., w) € L*(I), the set S of singular points for wy, in I has zero Lebesgue measure.
Assume that there exist ay € I, an integer 0 < r < k, and constants ¢,§ > 0 such that
1) Wj41(x) < clx — aglw;(x) in[ag — 8,a0 + 6] NI, forr < j <k,
(if) W € Boo (I\{a0}),
(iii) if r > 0,aq is (r — 1)-regular. Then we have
P (I,w) = Hy == {f € V2 (I,w)/f® € Po°(I,wy), 3l € Rwith
ess lim |f(r)(x) — l|wr(x) = 0,and ess. 11m f(f)(x)w ) =0,forr<j<kifr<k-—1}

xX€l,x—ag
Hy:={f e Vk=U,w)/fD € P°°°(I,Wj),f0r 0 s j <k}
={f:1->R/f(k—1) € AC;,pc(I\{ap}) , f® € P*°(I,w}), 3l € Rwith
ess 11m|f(r)(x) — l|wr(x) =0, ess. hm f(f)(x)wj (x) =0,

x€l,x—ag

forr <j<kifr<k-1, andf(r 1> —AC(I)lfr > 0}
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Proof. We prove first H, € P**(I,w). Let us take f € H,. Without loss of generality we can assume that
a, is an interior point of I, since the argument is simpler if a, € dI. Without loss of generality we can
assume also [ = 0, since in other case we can consider f ) _ xr /r!instead of f(x) (recall that

w € L*(I)). Consider now a function ¢ € C°(R) with ¢ =1 in [-1,1],¢ = 0 in R\(-2,2), and
0 < ¢ < 1inR. Foreachn € N, let us define ¢,,(x) := <p(n(x — ao)) and hy, := (1 — @, )f(r).

™ _ — @
We haVC ||f hn”Wk—T,OO(I'W) - ”(pnf ||Wk 7"00(1 w) — C0||f ||Wk TOO([aO -2/n, a0+2/n] W)
since we are in the hypotheses of Lemma(4.2.41), where 1 = ay — 2/n,t = 4/n, and we consider the

interval [ag — 2/n,ay + 2/n]: observe that [A —ay| = |[A+t —ay| =2/n =t/2 and
) — il D k o M o (k) =J
02|, g, = 10l gy < 4 max (I llsoy 19 Ny - 0 © oy} 7/
Hence, we deduce that || o — hn”Wk_r,oo aw)
each r < j < k (Lemma (4.2.9) gives the result for j = k since hypotheses w, € L”(I) and (i) give that

— 0as n - oo, sinceess limye; yq, f 9 (X)w;(x) = 0, for

ao is a singularity of type 1 for wk in I). Therefore, in order to see that f ™ can be approximated by
polynomials in W*~"%(I,w) it is enough to see that each h, can be approximated by polynomials in
Wk="(I,w). Consider weights w,, := (Wo, ey Wi_1, Wk_n) with Wy 1= Wi + X[ag-1/nae+1/n] = Wk-

It is direct that w,, € L*(I) and wy ,, € B, (I). Observe that Corollary(4.2.20) gives

R € PO (1, wy), since A = (1 — @ )f ® + Fy, with F, = — X7 (k i Mol Fe e )

and 1 — ¢, € C(I). Hence Theorem (4.2.46) implies that each h,, can be approximated by polynomials in
Wk (I,w™) and consequently in W¥*="%(I,w). Therefore, f can be approximated by polynomials in
Wk="(I,w). This finishes the proof if r = 0.
In other case, hypotheses (ii) and (iii) give Q71 = I and consequently f ™1 € AC(I).
Without loss of generality we can assume that there exists € > 0 such that [ay, — €, ay + €] is contained in
the interior of I and w,, > 1 in I\[a, — &, ay + €]. In the other case we can change w by w* withw*j =W
if #7rand w := W, + X\[qy-e,a0+¢] - It 1S Obvious that it is more complicated to approximate f in
W (I,w*) than in W** (I, w). Therefore, we have K([a, b], (w,, ..., Wk)) = {0}
and ([a, b, (w,., ...,Wk)) € C, (see Definition (4.2.33)).
Let us consider a sequence {g,} of polynomials converging to f™ in W*="%(I,w).Corollary (4.2.38)
ives|[ £ = qul sy < ellF® =l ocrongra
The polynomials defined by

(x D"

Q) :=fl@+ fll@x—a)+-+flr—1(a)~— 4 " an(®) m—py
1 = Qully e < eF gy + 1 — @l < F® — ullyirn s

and we conclude that the sequence of polynomials {Qn} converges to f in W (I, w).

(x a)

dt Satisfy

Since Q; = int(I)\{ay}, Q; U ...U Q; has at most two connected components and Theorem (4.2.35) gives
that W** (I, w) is complete; therefore P*®(I,w) € H,. Observe that hypotheses w,. € L*(I) and (1) give
that a, is a singularity of type 1 for w; in I, for each r < j < k. By Theorem (4.2.19) there exists [ € R
with ess lime,_x_)aolf(T) (x) — l| w,-(x) = 0, if aq is a singularity for w, in I; in the other case, it is a

direct consequence of the continuity of f(r) in ay. This fact and Lemma (4.2.9) give Hy € H,.
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The last equality is direct by the definition of V¥ (I, w); it is enough to remark that Corollary
(4.2.42) and (ii) give Q) = Q0+ = ... = Q&= = [\{q,}, and (ii) and (iii) give QD = I if r > 0.

If we apply Theorem (4.2.44), Theorem (4.2.47), and Proposition (4.2.43), we obtain the next
result for Jacobi-type weights.
Corollary (4.2.48). Consider a vectorial weight w such that w;(x) = (x —a)®/ (b — x)Pi with a;, ;=0
for 0 < j < k. Assume that there exist 0 < 1y, 1, < k such that a is
ry-right regular if r; > 0, b is r,-left regular if r, > 0, and verifying either
() ajy =a;+1forry <j<kandfj =p;+1forr, <j<k,
(ii) a; € [0,00)\Z* forr; < j < k, and B; € [0, 0)\Z* forr, <j < k.
ThenP**([a, b],w) = {f € V¥*([a,b],w)/fY) € P**([a,b],w;), for 0 < < k}.
Lemma (4.2.49)[154]. Let a weight w € B, ([a — 26,a + 26]\{a}) N L®([a — 26, a + 25])
and a function f € ACj,.([a — 26, a + 28]\{a}), continuous in a and verifying
f' € P> ([a — 26,a + 28], w).Assume set S of singular pointsof w in [a — 28, a + 28]
has zero Lebesgue measure.
Then for each € > 0 there exists a function g € AC([a — 26, a + 26])
with g’ € P9%*([a — 28,a + 26],w), such thatg = f in [a — 25,a — §] U [a + §,a + 28] and

If — gllieqa-28a+2sp + If" — &llio(a-26,a+261w) < €

Proof. Theorem (4.2.19)gives that there exists [ € R with ess lim,_,,|f’ (x) — 1| w(x) = 0. Without loss of
generality we can assume that [ = 0, since in the other case we can consider f(x) — lx instead of
f(x).We construct the function g in the interval [a — 2§,a]. The construction in [a,a + 28] is
symmetric. If f' € L}*([a — 25, a]), we take g = f in [a — 28,a]. If f' € L*([a — 25,a]), the facts
flx) = f;_z sf' forx € [a—28,a) and f continuous in a give that
()4 (f)- € Lige(la = 28, a))\L*([a — 26, a]).
Assume now that a € ess cl{x € [a — 2§, a): f(x) < f(a)}.
If a € ess cl{x € [a — 26,a): f(x) > f(a)} the argument is symmetric.
Ifa g esscl{x € [a — 26,a): f(x) < f(a)}Uesscl{x € [a — 26,a): f(x) > f(a)} then
f(x) = f(a) for x € [a — &,, a], which contradicts f' & L'([a — 26, a]).

We claim that a € ess cl{x € [a — 26,a): f(x) < f(a), f'(x) = 0}. If it is not true there exists §; > 0
with [{x € (a — 6;,a): f(x) < f(a), f'(x) = 0}| = 0. Consider x, € (a —6;,a) with f(x,) < f(a).
Since f is continuous in X, there exists §, > 0 with f(x) < f(a) for x € [xg, xg + J5).

Then f’ < 0 in almost every point in [x,, Xy + 8,), and consequently

fG) = flxo) = [ f' <0.
By this argument it is clear that the set {x € [xy,a): f(x) < f(x,)} is open and closed in [x,, a);

therefore f(x) < f(x,) < f(a) for x € [x,, @), which contradicts f continuous in a.

Since |S| = 0, for each € > 0 there exists a € [a — §,a)\S with
fla) < f(@),f'(@ = 0,1If'lleaaw) < &/4and |f(x) — f(a)| < &/4 for x € [a, al.
Consider the family of functions p; , in [a, a] defined as follows:
for each 1 >0 and 0 <pu < (a—a)/2,p,,is the function whose graphic is the segment joining
(a,f’(a)) and (a + u,A) in [a, a + u], the segment joining (a — u,A) and (a,0) in [a — u,a], and is
equal to Ain [a + u,a — u].
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It is clear that there exists A = 0 and 0 < u < (a — a)/2 such that the function
f'(x) ifx € [a — 26, a]

hau(x) 1= { min ((f’) + (x).pa,ﬂ(x)) ifx € (a,a],

fla) — f(a) = f; hy . since (f')4 € L%OC([a — 26, a))\Ll([a — 26, a]). Observe
that hy , € LY([a — 26,a]) n PO>®([a — 28, a],w) (see Theorem (4.2.19) and Corollary (4.2.20)).
For this particular choice of A and u, we define g(x): = f(a) + f; hy, in [a — 28, a]. We define g in

verifies

[a,a + 26] in a similar way. Conditions f (a) — f(a) = f; hy, and hy, = " in [a — 25, a] give g =f
in [a — 26, a]. Since h; , does not change its sign in [, a], we have

18 — g(@)I < Ig(@) — g(@)| = |[*hau] = 1f (@) — f (@) < &/4 for every x € [a,al.
Therefore |g(x) — f(x)| < &/2 for x € [a, a] and ||f — gll ;= ([qa-25,qa]) < /2. We also have
|g, - (X)I < If,(x)l in [a; a] and therefore ”f, - g”L°°([a—26,a],w) < 2”f,”L°°([o:,a],w) < 8/2'
This finishes the proof of the lemma.
Theorem (4.2.50)[154]. Let us consider a compact interval I: = [a, b] and a vectorial weight

w = (wg,..,Wg) € L®(I). Assume that there exists a finite set R I such that
(i) the points of R are singularities for wy in I,
(ii) wy € B, (I\R),
(iii) the points of R are not singular for w;, — 1in I,
(iv) the set S of singular points for wy in [ is countable.
Then we have

PR (I,w) = Hs := {f € VE* (I, w)/f® € P> (I, wy) and f(k — 1) is continuous in each point of R}

= H, := {f € VE° (I, w)/fD € P**(I, w;),for 0 < j < k}
= {f: 1 > R/f® € P>*(I,wy), f(k — 1) € AC},(I\R), and f& =V is continuous in each point of R}.

Proof. We prove first Hs S P> (I, w). Consider a function f € Hs.
Condition (i) gives f*~ € AC,,.(I\R). Given n € N, if we apply a finite number of times Lemma
(4.2.49) to the function f %~ we obtain a function g,, € AC(I) with g € P%*(I,wy) and

I =y + 17 = gy <7
since f*~1 is continuous in each point of R,w; € L®(I) and |S| = 0. If k > 2, conditions (ii) and (iii)
give 0*=2) = I: hence f*~2) € AC([a, b]) and the functions

— q)k-2 x _ k-2
6o(0) = F(@) + /(@ =) + 4 [0 (@) T D [ e 00 "4

(k —2)! (k—=2)r
verify
FOE =66 = I} (400 - ,0) 25 e

for0<j<k-2,ifk =2
Consequently, since w € L*(I), we have for any

k2 1If = Gallweeogy < lf 0 =g ll oy + 1FY = gill o, ) > 025> 0.

For each n € N, since g;L € L*(I), I is compact and S is countable, by Theorem (4.2.19) we can

approximate g by polynomials with the norm ||| () + lIll2¢py-
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An integration argument finishes the proof of Hg © P** (I, w).

Since Qj = int(/)\R,Q; U ...U Q; has at most a finite number of connected components and
Theorem B gives that W*® (I, w) is complete; therefore

P (I,w) € H,. Let us take f € Hy. Lemma (4.2.20) and hypothesis (iii) imply that f*~1 s
continuous in each point of R. This gives H, € Hs. The last equality is direct by the definition of
vk (1,w), since (ii) gives QKD = J\R.
Theorem (4.2.51)[154]. Let us consider I: = [a, b] and a vectorial weight
w = (Wy, ..., wy) € L°(I), with wy, € Boo((a, b]) Assume that a is a singularity for wy, in I, the set of
singularities S for wy in I has zero Lebesgue measure and S N [a, a + €] is countable for some & > 0. If
k > 2, assume also that a is right (k — 2)-regular. Then we have

PE>(I,w) = Hg := {f e VE2(I,w)/fD) € PO*(I,w;), for j =k —1,k}
=Hy:={f eVE>U,w)/fD € P**(I,w;),  for0<j< k}
={f:1->R/f* D eacD)if k=2,f* Y € AC,((a,b])
and fU € P**(I,w;), for j =k —1,k}.

Proof. We prove first Hg € P (I,w). Fix a function f in Hy. Take a closed interval
] :=[a, B] € (a,a + a); we have wy € By (J) and therefore f =1 € AC(J). Without loss of generality
we can assume that wy = 1 in J, since in other case we can consider
w* = (Wg, Wy, ..., i) with wg := wy + x;, and it is more difficult to approximate f in W% (I, w*) than
in W** (I, w).Definition (4.2.33) gives that (J,w) € C,. Theorems (4.2.45) and (4.2.46) give that it is
enough to prove the inclusion in the interval [a, B]. Therefore, without loss of generality we can assume
that the set S of singularities for wy, in [a, b] is countable.
By Theorem (4.2.19), there exist I; € R such that ess limy¢; |9 (x) — [;|w;j(x) =0, forj =k —1,k
(if a is not singular for wy_, in I, this fact is direct for k — 1 with [,,_; = f*~V(a)). Without loss of
generality we can assume that [,_; = [, =0, i.e.,

ess lim| () w; () = 0, (31)
for j = k — 1, k, since in the other case we can consider
) =l (x — )1/ (k — 1) ! — I,,(x — a)*/k! instead of f(x).
Observe that wy, € Boo((a, b]) gives fk~1 € ACIOC((a, b])
Let us choose 0 < t, < 1/nsuchthata +t,, € S and

|f*&V(a+ )| < |f &= () i1 ~. (32)

E(a a+1 /n]
Choose functions g verifying

= f(k)in[a + ty, b], g, € C([a,a + t,]), |gn| < |f(k)|in [a,a + t,],
and f a+t“| nl < 1/n (recall that f (k) is continuous in a neighbourhood of a + t,, by (4.2.20).
Since |S| = 0, Theorem (4.2.19) gives g € PO (I, wy).

Observe that g € L*(1),since

1

|gn|L1(l) <-4+ ff_l_t |]C(k)|Wka_1 < l + ”f(k)”Loo(IW )”WI:1||L1([a+tn,b]) < oo,

(x—b)k- (x—t)k~
Definef, (x) := f(b) + -+ f&D(b) x(k O g,(®) )Ek i -dt.
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Conditions f;+t"|gn| < 1/n and(32) give

_ 2
o] < [Fe D)+ (33)
for x € (a,a + t,]. By (31) we have
(k) —
”f(k) —fa ||L°°(I,wk) - ”f(k) & ||L°°(IW )~ ||f(k)||L°°([a a+tylwi) ~0,

asn — oo, By (31) and (33), we also have as n —» o
e IO T R ]

L®(I,wy_ L®([a,a+tn]Wk_1)
2
k—
S 2||f( 1)||L°°([a,a+tn],wk_1) + E ”Wk—lllLoo([a,b]) - 0
These facts give that limn_)oo”f(k_l) — fn(k_l)” Lo (L) = 0. Assume now k > 2. Choose a compact
wh® (1w

interval J, < (a,b) = Q; we have f*~D € AC(J,) and then f belongs to V¥ ([a, b], W) with

W = (Wo, ..., Wg—2, Wi_1,Wy) and Wy_q = wy_; + x;,. Observe that K(I, (Wk_l,wk)) = {0} and even
(I , (Wi_1, Wk)) € C,, since Q;, = (a, b) (see Definition(4.2.33)). It is obvious that it is more complicated
to approximate f in W*® (I, W) than in W** (I, w). Therefore, without loss of generality we can assume
that (I, (Wy_1, W) € C,.

Since Q%Y = (g, b] and a is right (k — 2)-regular, we have Q®*~2) = [ and hence Corollary (4.2.48)
s 0= 2l -]

LD W1'°°(1.(Wk-1.Wk))'

It is clear that

(x—b)k (x—p)k
Fa0) = FB) 4 D) 4 [ 0 G

and consequently
fO0) = (200 = [ (%@ - £ 1)(t))—(’f Ot for 0 <j < k—2,ifk > 2.
Hence we have that

|ro - f,fn”Lm(ij) s Sl =0

for 0 < j < k — 2 and we conclude that {f,,} converges to f in W*®(I,w). Therefore, for any k > 1, in
order to finish the proof of this inclusion it is enough to find Q, € P with

limn_)w”fn — Q””Wk'”(l,w) = 0. Since S is countable and g € PO (I,wy) N L1(I), Theorem (4.2.19)

gives that there exists h, € P with||g, — Ayl w,) + lgn — Rall1y < 1/n. Hence the polynomials

< cf| pl - e

W (wy_ywi))

_ (x —b)t * (x -
<%@)=fwyw~+ﬂk”w%@;:m‘+ﬁhﬂ”YFfﬁrm

satisfy the inequality c|| fo — Qn”Wk,oo ) < || g, — h"”L1 @ + 11gn — hnllLo(tw,)» and consequently we
obtain limn_)oo”fn - Qn”Wk'oo(I w = 0. Therefore Hy © P (I, w).

Since Q; =int(I),Q; U--UQ; =int(]) is connected and Theorem (4.2.35) gives that
Wk®(1,w) is complete; therefore P**(I,w) € H,. The content H, € Hy is direct.

The last equality is direct by the definition of V¥ (I, w), since Q%=1 = (g, b], and
Q®=2 = [q,b]if k > 2.
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Theorem (4.2.52)[154]. Let us consider I := [a, b] and a vectorial weight
w = (Wy, -, W) € L(I), with w, € Boo((a, b]) Assume that a is a singularity for wy, in I, the set S of
singularities for wy, in I has zero Lebesgue measure and S N [a, a + €] is countable for some € > 0.
If k > 2, assume also that W|[g q+¢ is a right completion of (0, -+, 0, wi_;, w). Then we have

P (Iw) ={f e VE*U,w)/fD € P**(I,w;),  for j=k—1,k}.
Proof: If k = 1, the result is a direct consequence of Theorem (4.2.51).Assume that k > 2. The argument
follows the same lines as the one in the proof of Theorem (4.2.51). By Theorems (4.2.44) and (4.2.46) we
can assume that b = a + ¢. Given a function f with fU) € P0'°°(I, Wj), for j = k — 1, k, let us consider

the sequence {f,,} in the proof of Theorem (4.2.51). As in the proof of Theorem (4.2.51), we also have
(k-1)
fi

n — f&=1D in WL=(I,w), as n — o By Proposition(4.2.36) there is a positive constant ¢ such that

cliglly o wy < ”g”Wk,oo(I'(O'__'O'Wk_l'wk)) + Z?;&|g(j)(b)|, for all g € Vo (I, w).

Since (f — £)9(b) = 0 for 0 < j < k, we havellf — fullykeogyy < c[| f& = £E ||Wm(1 o

and we conclude that {f;;} converges to f in W**(I,w). The proof finishes with the arguments in the
proof of Theorem (4.2.51).

Although the main interest in this section is the case of non-bounded intervals, the following result can be
applied to the case of compact intervals.

Theorem (4.2.53)[154]. Let us consider a vectorial weight w = (wy, -, wy). Assume that there exist
a € 2 and a positive constant ¢ such that

cllgllyrsoquy < l2@ +1g @1+ -+ [e“ P @] + [|e]] oy, (34)
for every g € V&*(2,w). Then, P**(A,w) = {f: A> R/f®) € PO (A, wy)}.
Proof. We prove the non-trivial inclusion. Let us consider a fixed function f with

£ € po=(A,w,). Choose a sequence {q,} of polynomials which converges to (k) in L® (A, wy,).
Then the polynomials

, ~ (x —a)k 1 x (x — )t
Q) = f(@) + [ (@& = a) + -+ fET (@) =gy + f N VI
satisfy
C”f - Qn”Wk,oo(A_W) < ”f(k) - Qflk)”L“’(A,wk) = ”f(k) N qn”Loo(A:Wk),

since (f — Qn)(])(a) =0 for 0 <j <k, and we conclude that the sequence of polynomials {Q,}
converges to f in W% (A, w).We show now that Theorem (4.2.53) is very useful finding a wide class of
measures satisfying (34). The following inequality is similar to the Muckenhoupt inequality which can be
found in [156] and [157].

Proposition(4.2.54)[154].( Muckenhoupt inequality IT ) Let us consider two weights wy, wyin (0, o).

Then there exists a positive constant ¢ such that
< cllgllzee fo,00),wy) (35)

x
f g(t)dt
0 Loo([O,OO),WO)

for any measurable function g in (0, o), if and only if

B := ess sup,sq wo(T) for wy (H)1dt < oo,

Furthermore, the best constant ¢ in (35) is B.
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Proof: Assume that B < co. We have
|f0rg(t)dt|w0(r) =< for|g(t)| wy (Ow; ()71 dt wo(r) < gl ro,r 1w Wo (1) for wy ()71 dt,
and this implies (35) with ¢ = B. If (35) holds, the choice of the functiong := w; ! gives B < ¢ < oo.
Lemma (4.2.55)[154]. Assume that wy(x) < cox~%e ™" and w; (x) = c;x~%e = for
x = A,wy € L°([0,A]),w; € B,([0,A]), with 4, €, ¢y, ¢, A > 0 and ay, @, € R.
If ag < a; + € — 1, then wy, wy satisfy Muckenhoupt inequality /1.
Proof. First of all observe that (x®?*")’ = x%~1e?*"(a + bex*).
This implies (x%e?*") = x**¢~1eb*" a5 x — o0, if b > 0.
Therefore fAr x®ebx" dy = ratl=eehr® 4o 4 5 oo,
Hence, we have as 7 = o0 [ w; () 7ldx = [, w; () 7dx < ¢ [, x @M dx = r=aat1-gedr",
The expression wy (1) [ Or wy ! is bounded for  in a compact set it is bounded for big r, if
lim,_, o r%e A yr~®1+1-20A7° < o This condition holds since @y < a; + € — 1.
Lemma (4.2.56)[154]. Assume that wy(x) < koxPo and wy(x) = k,xP1, for 0 < x < b, with
ko, ki > 0,8, > 0 and B, € R. If B, = B; — 1, then w, w, satisfy Muckenhoupt inequality /,
with a = 0.
Proof. If 8; > 1, we have frb w;(x) tdx < ¢ frb x P dx = 1P,
If B, > 1, the expression F(r) := wy(r) frb wj ! is bounded for r € [g, b] (with £ > 0); it is bounded for
r € (0,¢), if lim,_ 4+ rPor'=F1 < oo,
This condition holds since By = B; — 1. If B; < 1, we obtain similarly that F(r) is bounded since 8, > 0
and F(r) < crPolog %, for small r.
These lemmas give the following results.
Proposition (4.2.57)[154]. Consider a vectorial weight w in (0, o), with
() wj(x) < ¢;xPi, for 0< j < k,wy(x) = cixPk, in (0, a),
(i) wj(x) < ¢ix®* (k —j ) (e — De ™, for 0 < j < k,wy (%) = cix®e~**",in(a, »),
where @ € R,a,¢,4,¢;>0for0 < j<k,and >0for0 <j <k.
If Bj = Bx — (k —j), for 0 < j < k, then

P ([0,0),w) = {f:[0,0) = R/f (k) € P>*([0, ), w;)].
Proof. An induction argument with Lemma (4.2.55) in (a, ) instead of (a, o), gives for 0 < j < k and

f e Vvk*([a,),w),
_ Nk-j-1
G < el

D(x) = FD(@) =+ — FED(g)
|f P(x) = f(a) [ (k—j—=1! L% ([a,00)w)

and therefore C”f(j)”L"o([a,oo),w]-) < ||f(k)||L°°([a,oo),wk) + X P @),

for 0 < j < k and f € V*®([a, ), w). Consequently, we have

L*([a,00),wg) ’

k-1
cllf lwrqaemwy < Fl o g o0y + Z'f O (36)
j=0
for all f € Vo ([a, o), w).
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If we use now Lemma (4.2.56) in (0, a), a similar argument gives

k-1
el lwsmqoam < N lim oy + 2 1F @, 37
j=0

for all f € V**([0, a], w). Theorem (4.2.53), (36), and (37) give the proposition.

We can obtain similar results for weights of fast decreasing degree.
The following results are not sharp since the sharp results are hard to write and do not involve any new
idea. Define inductively the functions exp, , 1. as follows:

exp; (t) := exp(At) ,exp,, 2. (t) = exp(A, expy,, 2. (0)).
Lemma (4.2.58)[154]. Consider a scalar weight w(x) = exp(_4, 4,1, (x®)) in (0, ), where we have
n>1landeg A4, 45, ..., 4, > 0.
Then (w, w) satisfy Muckenhoupt inequality /1.

Proof. A straightforward computation shows that the derivative of the function
n

1-¢ &
x | | EXP A, A1,y (X5)
i=2
converges to zero as x = . Now, if b > 0 we have that

n
d
Tx (epr,zz,....zn (x®)x' ¢ 1_[ €XP ;A1 (xs)) = exXPpa,,..1, (X5),
i=2
in (1, ). Hence we have that
n

r
.[ wh = expy, 1,2, 1_[ €XP 112, (7).
0

i=2
in (1, ). Therefore

r n
W(T)f wl =rl7e 1—[ eXP_i, 45,0, (T5),

0 i=2
in (1, ). This finishes the proof, since w € L°°([0, 00)).
Corollary (4.2.59)[236]. Assume that w,_; (X,)< ky—qxPn=1 and wy, 1 (%) = kpypqx8n+1, for
0<x,<b,with k,,_4,k,;1 >0,8,_1>0and £,,1 ER
If 1 = Bnaq — 1, then (w,,,_1, Wy, 4 1) satisfy Muckenhoupt inequality I, with a = 0.
Proof. If 8,1 > 1, we get

b b
f Wm+1(xn)_1dx < Cf (xn)_ﬁnﬂ dx = r17Bn+1,
r r

For f,+1 > 1, the expression

b
F(r) = w1 (r) f wiks

is bounded for r € [g, b] (with € > 0); it is bounded for r € (0, &), if

hm rﬁn—lrl_ﬁn+1 < 00,
r—0+
This condition holds since f,_1 = Bpy1 — 1. If Bpy1 < 1, we obtain similarly that F(r) is bounded since

Bn_1 > 0and F(r) < crfr-1log %, for small .
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Chapter 5
The Bourgain, Brezis, and Mironescu Theorem with Best constants

p
The relation limgg s f fRn |u|iX)y|lrl,E,g

dxdy = 2p~1|S"~ 1|||u||Lp(Rn), in this chapter is shown .As an
application, we give a new proof of a theorem of W. Beckner concerning conformally invariant higher-
order differential operators on the sphere. We believe that proofs are original and we do not make use of
any interpolation techniques nor pass through the theory of Besov spaces.

Section(5.1): Limiting Embeddings of Fractional Sobolev Spaces:
Let s € (0,1) and let p > 1. We introduce the space W, " (R™) as the completion of C§°(R™) in the

- 1/p
norm( fR" fR"de dy) We also need the space W;?(Q) of functions defined on the cube

lx—y|n+sp

Q = {x e R™: |x;| < 1/2,1 < i < n} which are orthogonal to 1 and have the finite norm
1/p
(f f |u(x) u(y)|pd dy) '

—y|ntsp
The main result by Bourgain et al. [158] is the inequality
gy < €0 s il &
where u € W;?(Q),1/2 < s <1,sp <n,q =pn/(n — sp) and c(n) depends on n.

The present article is a direct outgrowth of this result. Figuring out a similar estimate for functions
in WOS P(R™), valid for the whole interval 0 < s < 1, one could anticipate the appearance of the factor
s(1 —5) in the right-hand side, since the norm in W, (R™) blows up both as s T 1 and s | 0. The
following theorem shows that this is really the case.

Theorem (5.1.1)[159]:Letn > 1, p> 1,0 < s < 1, and sp < n. Then, for an arbitrary function
u € W, P(R"), there holds

1—
[ ol 5 < ) e Wl @
Rn

Proof. Let (h) = |S™ Y n(n+ 1) — |h]),,
where h € R™ and plus stands for the nonnegative part of a real-valued function.
We introduce the standard extension of u onto

RT = {(x,2) : x R, z> 0}U(x,2) = j Y(u(x + zh)dh.

nn+1)(n+2)

z|sn1| f|h|<1|u(x + zh) — u(x)|dh.

A routine majoration implies |VU (x, z)| <

Hence and by Holder’s inequality one has

f f z~1HPA=9\yU (x, 2)|Pdx dz < (n+1P(n+2)P

IS” Y

X | z717ps |lu(x + zh) —u(x)|Pdx dh dz. (3)
=

|h|<1 R™
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Setting 7 = zh and changing the order of integration, one can rewrite (3) as

n(n+ 1)P(n + 2)P f lu(x) —u@y)|? J
|S™=1|(sp + n) |x — y|n+sp

j j z7HPA=9) vy (x, 2)|Pdx dz <
0 R"
By Hardy’s inequality,fle —1—Sp|fz<p(r) dt|pdz <s7P folxl 2z~ 1+P(1=9)|(2)|P dz one has

14
lu(x)[P p(1 —s)f'x' ~14p(1-s) g, OO _ p(1 _S)f|x|z—1—spd ( (| '”(’”)')dr)

|x]5P P ||

< p(1- s)flxl —1+p(1-5) (|6U )| U(xz)) dz.

xdy. (4)

Now, the integration over R and Minkowski’s 1nequahty imply

[0 4y 20 f ot

Rn

1/p p

“drdx| 44 , (5)

(x z)

1/p
Where A = (fR" folxl z~ 1A= x| P|U(x, 2)|? dz dx)

[e9) p
Clearly, AP < 2P/? f ndx f 7z~ 1+p(1-9) %dz dx, which does not exceed
2p/2 f(cos g)~1+p(1-9) f |[UIPp™ 1P dp do, (6)
S
where p = (x% + z?)'/2,cos 0 = z/p, do is an element of the surface area on the unit sphere S™, and S7

is the upper half of S™.
Using Hardy’s inequality

Jy e dp < (1

AP < ( ) fooo S z~ P9y (x,2)|? dx dz.
Combining this with (5), one obtains

()P (1-5) 21/2p\P o0 C14p(1-
f B dx < B2 (14 228) 7 L 27109 |V (2, 2) P dz

[x|sP n—sp

which, along with (5), gives

lu(x)|P Y < (1-3s) p(n+2p)°°
|x|5P ~ (n—sp)P |Sn1sP

p au|P . .
) fooo |—| p"~ P09 g one arrives at the estimate

n—sp ap

21/2

n-sp

”u”%?[f'p(R“)' @)

In order to justify (2) we need to improve (2) for small values of s.

s P )
25Psp fRn |x|sP fRn flx —y|>2]x| - y|n+sp| (x)l dx.

Clearly,
Since |x — y| > 2|x| implies 2|y|/3 < |x — y| < 2]y|, we obtain

51 ¢ P \YP [uG)-u) P p n-1y3-1 0 P \YP
(ZSpsp fR" |x|sP x) = (fR"flx—y|>|x| |x—y|n+sp dxdy) +(|S |25psp fRn [y|sP dy) '

Hence,

1/p

n—-1p\ /P P
(ls l) - - | x| =2y

zspsp A |x|Sp
R
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Let § be an arbitrary number in (0,1). If s < (4p)~16P, we conclude

WO e« 2Py, 8
|x|5P x—|5n—1|(1_5)p u w, P (R")’ (8)

Setting § = 27! and comparing this inequality with (6), we arrive at (2) with
c(n,p) = IS™ L (n + Zp)3ppp+22(n+1)(n+2)_
The proof is complete.

From Theorem (5.1.1), we shall deduce an inequality, analogous to (2), for functions defined on the cube
Q. Unlike (3), this inequality contains no factor s in the right-hand side, which is not surprising, because,
for smooth u, the norm ”u”wf” (o) tends to a finite limit as s | 0.

Corollary(5.1.2)[159]:Letn > 1,p = 1,0 < s < 1, and sp < n. Then any function u € W,;*(Q) satisfies

1-s
[ eGP 55 = D) s Wl g ©)

Q
Proof. Let us preserve the notation u for the mirror extension of u € Wf’p (Q) to the cube 3Q, where aQ
stands for the cube obtained from Q by dilation with the coefficient a.
We choose acut-off function 1, equal to 1 on Q and vanishing outside 2Q, say,

n(x) =[]+, min {1, 2(1 - xl-)+}. By Theorem(5.1.1), it is enough to prove that
14 < -1 p
”Uu”Wg.p(Rn) < s 'c(n,p) ”u”Wf_'p(Q)' (10)

Clearly, the norm in the left-hand side is majorized by

p /P p 1/p
(ng f3 [uG)—u)|P WOUDP Gy n(y)P dy) (f3Q f3 mG&)-n»IP O=9DP G ju(y)|P dy)

Q [x— y|n+sp Q |x— y|n+sp

1/p
v P
(2L o iy | (N0 GOIP dx)
The first term does not exceed 6™/P ||u||wfp (¢): the second term is not greater than

2n'2 ([, . — ¥ )P d 1/p<n32+"/1"(|s |
30130 [y_yr-Gis) WAV | S

1/p
) il

2n+1+p

/p 1/p
and the third one is dominated by (Zf flx y|>1/2m lu(x)|? dx) < ( ) llull L2 (g)-

Summing up these estimates, one obtains
lIull e gny < 6™Pllullyysp gy + n32Pp~P(s7VP + (1 = )P lullp:  (11)
Recalling that u L 1 on Q, one has for any z € Q
Jo wCPdx < [, f, luC) —u@)Pdx dy <27 [, [u(x) —u(2)[P dx.

dz dz _ |s™1|
Hence and by the obvious inequality f2 0 m > |2=x|<1/2 [xg] P9 — p(1—5)2P-5)
-s) - P
. 2P279p(1-5) [u(x)-u(2)|
where x € Q, it follows that fQ [u(x)|Pdx < . fzo fQ mdx dz.

p(1-5)\/P
Thus, [|ullp(gy < 22*7/Pnt/2 (|sn-1|) el g)-

Combining this inequality with (10), we justify (9) and hence complete the proof.
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Theorem (5.1.3)[159]: Letn > 1, p > 1,0 < s < 1, and sp < n. Then, for an arbitrary function
u € W,P(R"), there holds
iy < € p) s 51 )Sp) el ey (12)
where q = pn/(n — sp) and c(n, p) is a function of n and p.
From Theorem (5.1.1), one can derive inequality (1) for all s € (0,1) with a constant ¢ depending
both on n and p.
In the case s = 1/2 considered in [158], one has 1 < p < 2n and therefore the dependence of the
constant ¢ on p can be eliminated.
Thus, we arrive at the Bourgain—Brezis—Mironescu result and extend it to the values s < 1/2.
The proof given in [158] relies upon some advanced harmonic analysis and is quite complicated.
Our proof of (12) is straightforward and rather simple.
It is based upon an estimate of the best constant in a Hardy-type inequality for the norm in
W, (R™).
Proof: It is well known that the fractional Sobolev norm of order s € (0,1) is non-increasing with respect
to symmetric rearrangement of functions decaying to zero at infinity (see [160], [161], [162]).
Let v(|x|) denote the rearrangement of |u(x)].

Then
1/q

| f v de™) | (13)

0

| n-—1

lullagr) =

where |S™1| is the area of the unit sphere S™~1. Recalling that an arbitrary

non-negative non-increasing function f on the semi-axis (0, o) satisfies
-1 o 2

o) o) t
f fOrd(th) < f f f(@) dr ft)dt = f fde|, a1=1
0 0 0 0

the right-hand side in (13) does not exceed
1/p 1/p

gn-1\ /4 b — sp)1/p
<| |> fv(r)p d(rn—Sp) (Tl SP) f (lXD |Sp

n nl/qlsn 1|s/n
0

We now see that (12) results from inequality (2u-n ).
Corollary (5.14):Letn>1,p=>1,0<s < 1,andsp <n.
Then any function u € W;?(Q) satisfies
”u”LP(Q) <c(n, p) . )p Tl [l WP (Q)"
Theorem (5.1.5)[159]:For any function u € Ug<s<; W, P (R"), there exists the limit
— 901 1
limgio SIUl1 e gy = 2972157 ully o
Proof. Since d can be chosen arbltrarlly small, 1nequahty 9) 1mphes

Let us majorize the upper 11m1t.

By (14), it suffices to assume that u € LP(R™).
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Clearly,

1 1\P
14
dy dx dy
p - p p - 7
Sluller ey < 24 5 [ j,x_ﬂmmW“”‘“ +s [ o)l R
R" |y|=22|x]| R" |y]=2|x]|
ulx) —uly)|?
+2s j [u) 2 dx dy.
e = ylnesr
R" |x|<|yl<2l|x|
The first term in braces does not exceed
1/p , 1/p
d sn-1i/p u(x)|P
S —ylu(x)lpdx :| 1| [uCo)l dx
|x — y|n+sp pl/p |x|sp
R" |ylz|x| R™
hence its lim sup_ |, is dominated by |sn-1 |1/pp_1/p||u||Lp(Rn).
The second term in braces is not greater than
1/p 1/p
1/p [ gnts fl 62] dy f . =25<—|5n—1|) fl (ys)l i |
|y|n+sp p |y| D
R" lx|<lyl/2 R"
so it tends to zero as s 1 0. We claim that
ulx) —u p
lim sup G 2l dx dy = 0. (15)
slo |x — y|ntsp
R" |x|<|yl<2|x|
By assumption of the theorem, u € W, ¥ (R™) for a certain 7 € (0,1).
Let N be an arbitrary number greater than 1 and let s < 7.
We have
ulx) —u(y)|? ulx) —u(ly)|P
2s [uC) n?:;):l dx dy < 2sNP(=9) ) ngzl dx dy
Re i<tz ¥ 7Y R" lei<yicza X Y]
[x-y|sN
ulx) —u p
+ 2s [ul) 2 dx dy.
[ — y[resp

R" |x|<|yl<2|x|
[x=y|>N

The first term in the right-hand side tends to zero as s | 0 and the second one does not exceed

dy

2ptig —_—
e =yl

uGPdr < cup) | P dx,
|x|>N/3 |x-y|>N |x|>N/3

which is arbitrarily small if N is sufficiently large.

The proof is complete.

Corollary (5.1.6)[236]: If any function u € Uy s ¢ oW, = 5(R™), there exists the limit

lsilr?sllull]lﬂ;;f-s,us(Rn) =2(1+ 871 = &) Mllullji gony.

Proof. Since d can be chosen arbitrarily small, inequality (9) implies

i i 1+e -1 -1 1+¢
lim infsllullyicrsegny 2 2(1 + )7 — &)"lull e emy.
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Let us majorize the upper limit. By (14), it suffices to assume that u € L**¢(R™).
Clearly,
( e
dy
|x — y|n+(1—s2)

(1 + E)”u”]lﬂ-;?:—&1+€(Rn) <2 (1 - E)

R" |y[=2]x|

[u@)'** dx

1 1+¢
1+¢€

dx dy
|x — y|n+(1—£2)

Ha-9 [uore
R" ly122]x|
[u() — u I

+2(1—¢) f =y e dx dy.

R" |x|<|y|<2|x|
The first term in braces does not exceed
1/1+¢ 1/1+¢
d 1—¢ n-1|1/1+¢ ulx 1+¢
Y correae)  ola=or uGO I
lx — y|n+(1—sz) (1 + g)l/1+¢ |x|1-¢
Rn

a-o |
R" |ylz|x|
hence its limsup_, is dominated by [(1— g)" | V/1te(1 + E)_1/1+£”u”L1+s(Rn).The second term in
braces is not greater than

1
—+e

_ 1. n41—g2 [u(y)|1+e )1  oi-e E n-1 1/1+4¢€ lu(y)|1+e 1/1+¢
1 -ey (2 e |y [n+(1-¢2) dy flx|<% dx =2 (1+s 1S |) (IR" ly|1-¢ dy) '
so it tends to zero as € | 1. We claim that

ulx) —u 1+¢€
lim sup f [u() ()’)|2 dx dy = 0.
sl |x — y|n+(1—s )

R" |x|<|y|<z|x|
By assumption of the theorem, u € Wy **(R™) for a certain 7 € (0,1). Let N be an arbitrary number
greater than 1 and let € > 7 — 1. We have
lu(x) —u@)|'*®

2(1—¢) f e dx dy

R" [x|<|y|<2|x]|

lu(x) —u(y)|'**
|x — y|n+r(1+s)

< 2(1 — E)Nl+s(‘r—(1—s))

R" |x|<|yl<2|x]|
|x-y|<N

lu(x) —u@)|**®
+2(1—¢) J =y dx dy.

R™ |x|<|y|<2|x|
[x-y|>N

The first term in the right-hand side tends to zero as € = 1 and the second one does not exceed
2+¢€ dy 1+€ 1+¢
2 Sf|x|>N/3 fIx—y|>N P lu()|**edx < c(n, (1 + £)) flx|>N/3|u(x)| dx,

which is arbitrarily small if N is sufficiently large. The proof is complete.
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Section(5.2): Sobolev Inequalities for Higher Order Fractional Derivatives:

Sobolev inequalities have a wide range of applications and have been extensively studied
(see[163]). Sometimes, it is also important to have precise estimates for the constants appearing in these
inequalities. This has been the subject on many Studies recently (see [164] . More precisely given an
integer k € N, the Sobolev space H*(R™)is defined as the space of those functions f € L2(R™)satisfying
||7€ f | € L?(R™),1 < £ < k. The Sobolev imbedding theorem asserts that H*(R™) € LI (R")for

q = 2n/(n — 2k). For example, when k = 1,n > 3 and q = 2n/(n — 2), we have the inequality

IfZe < CullZFI3,  f € CP(R™). (16)
n-2
The best value for the constant C,in the above inequality has been estimated (in [164])
C,=n"n"1(n-2)"1 re " (17)
" rtn/2)| °

where I' (t)is the Gamma function.
Let S™be the n-dimensional unit sphere and let |S™|denote its surface area.

F(n) 271.—1
r(njz) _ w2 F((n + 1)/2), we have

Then, using the formula

n+ 1\1?/"
= =D )
nn—2) 2
We have equality in (16) if and only if f(x) = c(u? + (x — x)?)~ (/2 x € R",
where ¢ € R, u > 0 and x, € R™are fixed constants.

4
gn -2/n _ 2—2/n —(n+1)/n [F(
IS & nn—2)

Let A be the Laplacian in R™and let f(¢)denote the Fourier transform off for the precise definitions and

notations).We have —Af (¢ ) = 2m|&])%f(§). So we can define the operators (— A)S/z, s € R, by setting
(=2572f) (k) = @rlkD*f (), f € C°(R™).

We can easily verify that ||Vf]||, = ||(—A)1/ 2f ||2 Using this notation, we can define Sobolev spaces

HS(R™), for s > 0 by H5(R™) = {f € L2(R™): [|(—2)¥/2f]|, < oo}.

We have the following generalization of (16), which was announced in [165].

Theorem (5.2.1)[166]: Let n > 2s and q = 2n/(n — 2s). Then
2
IF1Z < S| =D f|,,  feH R, (18)

where

S(n,s) =272~

(19)

n—2s 2
re) e 7
r (n+25) [‘(n/z) '
2
n-2s
We have equality in (18) if and only if f(x) = c(u® + (x —x¢)?)" 2z ,x € RY,
where ¢ € R, u > 0 and x, € R" are fixed constants. Also, by simple calculations we have that
n-2s 2s n-—2s
_zs __S<"+1>F( 2 ) n+ 1= F(T) 2
Stn,s) =2"nm T (n+25) [F( 2 )] - r (_"+25) '
2 2

Note that if s = 1 then we are in the case (16) and then the best value for the constant S(n, s)has been

given in [164]. For s = 1/2 the best value for S(n, s)is given in [167], for s = 2 in [168]. Also the case
s € N has been considered in [26].
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Proof:  Let us first observe that since C5° (R™)is dense in H¥(IR™), it is enough to prove (18) for
f €C(R™). Let f,g € Co°(R™). Then, we have

(f.9) = (f.9) = [IkISf ) kI g(k)dk = [(=2)5/2(F) (k) (=A)=/2(g) (k) dk
= ((=a)*2(5), (=2)~*(g)). (20)
Hence,
1, DI < |2l =2)~"2()], (21)

Now by the Hardy-Littlewood—Sobolev inequality we have that
r(2)\” LGk
r (%25) r(n/2)
where 1/p + 1/q = 1,i.e.,p = 2n/(n + 2s). Combining (21) and (22) we have that
I, 9] < (S0, )| =2(H)]), llgll,- (23)
Now let us take g = f97. Then we have |(f,9)| = If,f77 1 = If I3 lgll, = If 1, = IF1Ig

and hence (23) becomes |If[|2 < S(n, s)||(—=4)%/2f ”2 Finally, let us observe that in order to have
equality in (18) we must have equality in (22) and as it is well known, this happens if and only if

F(x) = c(u? + (x — x4)%)~29/2 for fixed constants ¢ € R,u > 0 and x, € R".
Remark(5.2.2)[166]. As we mentioned in the introduction, the case s € N has been considered
in [174], where it was proved that the best constant C, in the inequality

|(=="(g)|, < 275m =5/ gllp, (22)

Iflly < cllverll, (24)
‘/n
is given by C,=m*/? (%) ¢1,(n +2h)"Y2 This constant is related to our constant
oo TS [ ram P2 A
Sn,$) =2"%n~ p("—if’) [I"(n/Z)] as follows. In [174], there exist positive number cand C that depend
2

only on n, £ such that C||(—A)f/2f||2 < |||71{)f||2 < C”(—A)f/zf”z.

=
We have C = ¢ = 27¢[[42L ,(n + 2h) /2 [%l because S(n, £)is the best constant for the inequality

r(=55)

IfII2 < S(n, €)|| (—A)f/zf”zand C,is the best constant of (24).
Theorem (5.2.3)[166]: Let 2 < g < 0 and q — 2 < 2gs. Then,
2
112 < SC.9) [l =y "2F |12 + IF13], £ € HoR), (25)

where
r(i+2)r(-2+-2) @-2)/q

2s 25 q-2
q
T (35)
Let us define the operators (I — 4)%/2,s € R by setting (I — 4)S/2f (&) = (1 + 2n|E?)S/2f(§).
Then another way to define the Sobolev space H*(R™),s € R is as the space of those
functionfwhich satisfy ||(I — A)S/Zf”2 < o0. We set [|f||ysgny = ||(I — A)S/Zf”Z.

In the case of R?, we have the following result.

S(g,s) < (q — 1)~ t*agi=2/a

(26)
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Proof: It is enough to prove (25) for f € C;°(R). Let 1/p + 1/q = 1. Then p < 2 and

-1
p___a/@-b _ g9 27
2-p 2-(q/(q-1) q-2
We have that
71 = flf(k)lpdk = jlf(k)(l + 2rlkD2)2|" (1 + (2m|k])%) P 2dk. (28)
R R
~ 2 p/2
Letus setF () = (|00 (L + @nlkD)) ", GG = (1 + 2mlkl)?*) P/ Then
p/2
o 2 2 p/2
IF N2/ = j FOoI L + @rlkDzdk) | = ([0l + 113) (29)
R
Also, since 2qs/(q — 2) = 2ps/(2 —p) > 1,
1 1 p
amp) _ R e Ll =,
G112y = | (1 + 2mlkD*) dk = > (30)
R (%)
We have that 2/ (Zl—p) + i = 1. So, by the Holder inequality, it follows from (29), (30) and (28) that

1

1711, = (1Fnznon_= ) = (l-ayr2rll; + i3

2
P (2-p)

» ) (2-p)/2p
] and therefore, by (27),

)1/2 lr(1+%)r(—%+g
nl‘(%)

—2
1 DNr(=Lya)] =
)2 F(l t ZS)F( 25+ q—Z)
p, :
T (5)
Now, by the sharp Hausdorff—Young inequality (24) we have

A ) 1 /a11/2
Ifllg < GolI7ll,,  withe, = [p77 (@] (32)
Combining (31) and (32) we have that

(1+5)r(-5+55)
nl“(ﬁ)

F(1+i)r(_%+£) (a-2)/q

q
T (75)
which proves the theorem.
Theorem (5.2.4)[166]: For all 2 < g < o we have
IF13 < V(@ 9)[|a - 2)*2f]},  feH(R?), (33)

where the constant V(q, s)satisfies

o s 12
171, < (| avr]| + i3 31)

(g-2)

1715 < [p#(a) 4] ’ q (llc-azr])+ s

= (q _ 1)—1+1/qq1—2/q

<[22 f112 + 1F11E].

jage-wa| L__a=2 17N
_ -2+2/q2-4/q |\ ____*  —
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Proof: is similar to the proof of Theorem (5.2.3).We observe again that it is enough to prove (33) for
fECY(R?).Letl/p+1/q=1.
Then p < 2 and

-1
p __a/@-1 _ q (35)
2-p 2-(q/(g-1) q—2
We have that
AP = | IFGPdk = | |[fA + @rlkD2)/2|" (A + u|k|)2)~*P/2dk 36
||f||p |f ()] |f U@ + rlk?)*2|" (1 + (2r|k ) : (36)
R? R?
o 2 p/2
Letus set F(k) = (|f00]° (1 + @nlkDD®) ", G(k) = (1 + (2mlk[)?) P2,
Then
p/2
A2
1Pl = | [1FGOF L+ Gty | die = lla - 2771l (37)
R2
Also
161G = f (1 + @rlk?) P/ Pk = —— 12 (38)
2/@-p) 4rq(s—1)+2
We have that 2/ (2 > + 7 = 1. So, by the Holder inequality, it follows from (37), (38) and (36)
y q—2 (q-2)/2q
£ < _ s/2 [_— .
WAL, < I =D, | e =D 72 (39)
Now, by the sharp Hausdorff—Young inequality (53) we have
A : _1/a11/2
Ifllg = Cp”f”p' withC, = [pl/p(Q) Uq] . (40)
.. 2)/2q
Combining (39) and (40) we have that ||f||2 < [p'/?(q)~ 1/q] [Mq(:ﬁ] | —A)S/Zf”

and the theorem follows.
Let S = {x € R™"*"!: |x| = 1}, let gg¢n be the restriction of the Euclidean metric to S™ and let Agn denote

the spherical Laplacian. Let also dxbe the surface measure on S™ andlet us denote by |S™| the surface area
2p(+1)/2

Let us consider the following operators (studied in [169],[170],[171])

n—1\2 _ r(B+(1+5)/2)
B= |Agn + ( ) ;A= rariats, sER

of S™. We have S™ = We denote by do(x) the normalised measure do(x) = (1/|S™|)dx.

A function F : §™ - R with F € L?>(S™) is said to be in H*(S™) if and only if fsn FA,sFd¢ < oo.

The above defined operators A, are related to the operators (— A)Sas follows.
Let m: R™ - S™ — {0,..., 0, —1} denote stereographic projection and let J;; be the Jacobian of . Then,we
have [1711(AF) o 1t = |J|~+)/@m) (—4)s/2 (|]n|(n—s)/(2n)(1~" 0 n)), where s > 0 and F € L2(S™).

Making use of Theorem (5.2.1) and the above formula, we have a new proof of the following result due
to [169].
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2n
n-2s’

Theorem (5.2.5)[166]: Let n > 2s and q =

F(“‘_ZS) r(n) 128/m
Then [IFIIZ < S(n,s) [, FA,cFdg, F € HS(S™) where S(n,s) = 27251 F(anS) [F - /2)]
2

roof: The stereographic projection 7 : - §™" —{0,...,0,—1} is define
Proof: Th graphic projecti R™ - S™ — {0 0, —1} is defined by

2 2xn  1—]x|? . 2 \"
m(x) = (1+Txl|2 e 1+Tx|2 , 1+|i|2). Let ], denote the Jacobian of . Thel|] | = (W) .

If f € LP(R™), then we can lift f to S™ by setting F(§) = |J -1V f(r~1(8)).
Note that then [|F||»(sn) = |If |l»gn)- We have
fSn FAZSFdE = fRnF ° T[(AZSF) ° T[Un'ldx
= [ (F o m) [~ 25/2 (25 (11, |(0=2/ 0 (F 0 1)) | | dx

= [nlln| @2/ CV(F o ) (=) (1] | "2/ CW(F o)) dx.
Applying Theorem (5.2.1) we get

dE > 1 (n—2s)/(2n) 21 Zn/(n—ZS)d (n-2s)/n
fgnFAZsF E _S(n,s)”l]nl (FOTC)”q __S(n,s) (f]RnUn.”Fon'l X)
(n—-2s)/n
—_1 2n/(n-2s) 1 P
- S(n,s) (fSanl dS) - S(n,s) ”F” )
where we have set ¢ = nz_zs_

This proves the theorem.

A result, which is of great importance in applications and especially in the calculus of variations, is
the Rellich-Kondrashov theorem. More precisely, let Abe a measurable set of R™ and let us consider a

sequence of functions f; € L?(A) such that || fj”L2 w <Cc<®jEN.
Then, as we know, by the Banach-Alaoglou theorem, there exists a weakly convergent subsequence.

A strongly convergent subsequence may not exist.The Rellich—-Kondrashov theorem asserts that if the

sequence (fj)is uniformly bounded in H(4), i.e., sup jeN”ij” < oo, then any weakly convergent

L?(4)
subsequence of (f]) is also strongly convergent in L*(A4).Let us now assume that f; € H*(R"),j € N, and

that the sequence ( fj)converges weakly to a function f € HS(R™), i.e., that for every

g € H*RM) [ [£,(0) = FIO] U0 (1 + @rlk)?)dk > 0 (= oo).
Theorem (5.2.6)[166]. Let (fj) be as above and let us assume that 2s < n and p < 2n/(n — 2s).
fi=fllpy 20 (>0,
Proof: Letus set g, = e 4’ fiand g, = e 4’ f, ¢t > 0. Then, we have

”fj _f”LZ(A) s ”fj - gj,t||2 + ”gj,t - gtlle(A) +1g: = fll2- (44)
Since f; — fweakly in H*(R™), by the Banach—Alaoglou theorem, there is ¢ > 0 such that
|C=a)2f7]|, <c,  jeEN.

Then for every measurable set A € R™ with finite measure, |

Therefore, by Proposition (5.2.7),
If - gell, < Ve 1f = gull, < eVE (45)
Let F,(x) be the function with Fourier transform £, (k) = e t@mlkD*
Thengj; = F;* fjand g, = F; = f.
113



Then, by Theorem (5.2.1), for ¢ = 2n/(n — 2s) there is ¢ > 0 such that

711, < St )V2|[(=a)2f7]|, < c. (46)
Let1/q +1/q' = 1and p’ = q. Then by the Holder inequality
lgsell,, < WENL AN, gelleo < NENI1FNg- (47)
Note that
Vel cay = (Bl S 1Bl ey S BN ey < Wl gy < 2 (48)
Combining (46), (47) and (48) we have that there is ¢ > 0 such that
lgelliow) < ¢ ”gj,t”LOO(A) <c¢, JEN (49)

Now let us observe that since f; — fweakly in LI(R™) and since F; € L1(R"™) wehave that
gjt(x) = g.(x) for all x € R". From this observation and (49) and by using thedominated convergence
theorem we get that

19 = gell 2y > 0 (G > ). (50)
Combining (44), (45) and (50) we get that [|f; — f] w>0 (oo
This proves the theorem if p < 2, since then, by the Holder inequality,
Ifi — f”LP(A) < IAI%”fj - f||L2(A),where 1/p = 1/r +1/2.If p > 2, then again by the Holder inequality

1-a

”f} _f”Lp(A) = ”f} _f”ZZ(A)”f} _f“LQ(A)' (51)

forg >panda = (1/p —1/9)/(1/2 —1/q) > 0.

Now since f; € H¥(R™) and n > 2s, there is ¢ > 0 such that

lF7 = £1l, < SN =a"2(F7 = FIl, < SGu.9) (|21, + | (=a)%f]|,) < c.  (52)
(51) and (52) prove the theorem when 2 < p.If x = (xy,...,x,),k = (kq,..., k,) € R", then we denote
(k,x) = kyx; + -+ xpkpand |x| = (x, x)Y/2.If f, g € L>(R™), then we denote ( f,g) = [ f(x)g(x) dx.
The Fourier transform of a function f € L'(R™) is defined by f(k) = [ e~#™ (k,x)f (x)dx.
The sharp Hausdorf inequality in [172] says thatif 1 <p <2and 1/p+ 1/q = 1, then

171, < Collflly,  f e P, (53)
Where C, = [p/?(q)~/4]"/*. We have Vf = (3f /0x,...,0f /0x,) and A = 32/9x? +- - - + 8202,
Note that(- 4)f (k) = (2rr|k])2f (k).
Let us recall that the operators (— A)S/Z and (I — 4)5/? have been defined respectively by [173])
(—2)S72£ (&) = @rlEDFE), U — D/2f () = (1 + 2rlEND2f ().
Also H(R™) = {f € 2(R™): [|(1 = 2)%2f||, < oo} and [Ifllgsamy = |1 = )21 ],
Note that [I7f1l, = [|(~4)Y/2f]], and that [|(7 = A)2£]2 = I£ 113 + 17 13-

The operators (—A)_E,O < s <n, are called Riesz potential operators in [173] andwe have

(—A)_E(f) = I, * f, where I is the Riesz potential I;(x) = % [x] ™S,

n/25s
where y(s) = %fﬁ%ﬂ)

2 2

114



The Hardy-Littlewood—Sobolev fractional integration theorem asserts that the operators

-s/2
(-4) g ,0 < s < n, are bounded from LP(R") to LY(R"), for 1/q = 1/p — s/n.

The operators (I — A)~S/2 for s > 0, are called Bessel potential operators in [173] andthey are
given by Convolution with the Bessel potential

Gs(x) = a() * o=mlx|*/8 g=6/4m 5 (= n+s)/2? where a(s) = I'(s/2)(4m)5/?.

We consider the operator of semigroups e~t(-4)’ ,t>0,e U4’ t > 0, defined respectively by
(e78Ca £)" (k) = et@mD* f (i, (etU=07 £)" (k) = et(1+@mlkD?) £ (1),
Proposition (5.2.7)[166]: For every f € HS(R"), we have
If = e 21l < Ve aer], (59
If — e t@=2%f|| < V|| — /3| (55)
Proof. Let f € HS(R™). Then, we have ||f — e't("‘)sf”z = f|f(k)|2(1 — e‘t(z"”")zs)zdk
Now let us observe that 1 — e™ < x, for x = 0. Hence
s 2 A 2 2
If — et < ¢ j @rlk)?|F ()| dk = el (~a)"2f|[".

This proves (54). The proof of (55) is similar.
Corollary (5.2.8)[236]: For all € > 0 we have

Fall5l,, < V@ +ella- 225, £ € He®RD),

where the constant V(2 + ¢, s) satisfies

€ &g/2+¢
V(2 <1 (2+2¢)/2+g(D 2e/24¢
2+es)<(A+e) (2+e) prr Pt
Proof: is similar to the proof of Theorem (5.2.3).We observe again that it is enough to prove (33) for
f € Cy(R?).
We have that

2+e/1+¢

STl il e = Jaz Zieal O]

= [ D lA00 QL + 2rle)?)s/2

" 2 (2+&/1+4¢€)s
Let us set f;(k) = ( }"zl|fj(k)| 1+ (2n|k|)2)5) , G(k) = (1 + 2m|k|)?)-sC+e/1+o)/2,

2+£/1+£

|2+£/1+£(1 + (27-[|k|)2)—5(2+5/1+5)/2dk.

||2+£/1+8

m |2 2 s 2+¢g/2+2¢ s/2
Then [|Fll242¢/24+¢ = (fRz Llf 00"+ @rlkD?) ) dk = || = £
1
o

Also [|GlIgres/are = [,(1+ m|k)?) =@+ ed) =

6+68/2+¢ So, by the Holder inequality,

&
(4+8)(s—1)’

_ s/2
2+e/1+e — Z 1”(1 4) f)” [
Now, by the sharp Hausdorff—Young inequality (53) we have

Fallfilloye < Covtre SRallfill, e, with Cosveprve = (2 + /14 0)TI52 + )71/

Combining (39) and (40) we have that

£/4+2¢

it follows from (37), (38) and (36) TL,||f | )

]1/2

1

Z;n:1||f)||z+g < [(2 + 8/1 + E)_1/1+8(2 + S)_1/2+£]2 [Em

2&
Zisalla - a2
and the theorem follows.
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Section (5.3): Fractional Sobolev Spaces:

This section is for Hitchhike way from 1 to s € (0, 1). To wit, for anybody who, only endowed
with some basic analysis course (and knowing where his towel is), would like to pick up some quick,
crash and essentially information on the fractional Sobolev spaces WP .The reasons for such a Hitchhiker
to start this adventurous trip might be of different kind: (s) he could be driven by mathematical curiosity,
or could be tempted by the many applications that fractional calculus seems to have recently experienced.

We define the fractional Sobolev spaces W*? via the Gagliardo approach and we investigate some
of their basic properties.

We focus on the Hilbert case p = 2, dealing with its relation with the fractional Laplacian, and
letting the principal value integral definition interplay with the definition in the Fourier space. Then, we
analyze the asymptotic behavior of the constant factor that appears in the definition of the fractional
Laplacian. We have the extension problem of a function in WP () to WP(R™): technically, this is
slightly more complicated than the classical analogue for integer Sobolev spaces, since the extension
interacts with the values taken by the function in 2 via the Gagliardo norm and the computations have to
take care of it.Sobolev inequalities and continuous embeddings are dealt, while is devoted to compact
embeddings, then we point out that functions in W*? are continuous when sp is large enough. And we
present some counterexamples in non-Lipschitz domains.

This section is devoted to the definition of the fractional Sobolev spaces. No prerequisite is needed.
We just recall the definition of the Fourier transform of a distribution. First, consider the Schwartz space S
of rapidly decaying C® functions in R™. The topology of this space is generated by the semi norms
P (@) = supsemn (1 + [XD" Tjegenl D01, N = 0,1,2,..., where ¢ € S (R™).
Let S'(R™) be the set of all tempered distributions, that is the topological dual of S (R™). As usual,

for any ¢ € S (R™), we denote by F,(§) = mfRn e B Xp(x)dx

the Fourier transform of ¢and we recall that one can extend Ffrom S (R™)to S'(R™).

Let 0be a general, possibly nonsmooth, open set in R™. For any real s > 0 and for any p € [1, ),
we want to define the fractional Sobolev spaces WP (£2). In the literature, fractional Sobolev-type spaces
are also called Aronszajn, Gagliardo or Slobodeckij spaces, by the name of the ones who introduced them,
almost simultaneously (see [176]).

We start by fixing the fractional exponent sin (0, 1). For any p € [1, +00), we define WP (£2) as
follows

luCx) —u)l

lx —ylo™
i.e., an intermediary Banach space between LP (£2) and WP (), endowed with the natural norm
1

WSP(Q) = {u € LP(Q): € LP(Q X n)}; (53)

14
lu(x) —u(y)l?
llullwspo)y: = flulpdx+f X — | dxdy |, (54)
0

2 0

1

where the term [u] wsP(0): = ( f f 0 lu(x)—u)P ————dx dy)5 is the so-called Gagliardo (semi)norm of u.

|x y|n+sp
. . . . ! . .
It is worth noticing that, as in the classical case with sbeing an integer, the space W* P iscontinuously
embedded in WP when s < s’, as next result points out.
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Proposition (5.3.1)[175]. Let p € [1,+o) and 0 < s < s’ < 1. Let Q be an open set in R™ and

u : - R be a measurable function. Then |[ullyspq) < C||u||WS,_p(m

for some suitable positive constant C = C(n, s, p) = 1. In particular, Ws'P(Q) € WSP(Q).

[u(x)|P

, 1
Proof. First, [ fmﬂx_y'zl}mdx dy < [, (f|z|z1|z|n_+spdz) lu)Pdx < C(n, s, p)lIullfp ),

where we used the fact that the kernel 1/|z|™**P is integrable since n + sp > n.
Taking into account the above estimate, it follows

lu(x) —u@)?
e~y XY
2 on{|x-y|=1}
_ [uC)P + lu(y)P
< 2r-t X =y dx dy SZ”C(n,s,p)llullIL’p(m (55)
2 on{|x-y|=1}
On the other hand,
lu(x) —u()|P lu(x) —u@)IP
X =y dxdy < f PREwTEr dx dy. (56)
2 onf{|lx—y|<1} 2 on{|x-y|<1}
Thus, combining (55) with (56), we get
lu(x) —u@)|? lu(x) —uly)|?
p 14
f Xy dx dy < 2PC(n, s, p)llull g +f Xy dx dy
2 0
and so
lu(x) —u@)IP
el s ) < PC(,5,0) + Dl gy + f ey Gy < Cous Il gy
2 0

which gives the desired estimate, up to relabeling the constant C(n, p, s).

We will show in the following Proposition that the result in Proposition (5.3.1) holds also in the limit
case, namely when s’ = 1, but for this we have to take into account the regularity of

As usual, for any k € N and a € (0, 1], we say that £ is of class Ck2 if there exists M > 0 such
that for any x € 0.2 there exist a ball B = B,.(x),r > 0, and an isomorphism T : Q — B such that

T € Ch*(Q), T € C**(B), T(Q:)=BNAQ, T(Q)=BNnai2 and
||T||Ck,a@ + ”T_lllck,a(é) <M, where Q :={x = (x',x,) ER" 1 xR:|x'| <1 and|x,| < 1},
Q;, ={x=0("x,) ER" I xR:|x'| <1 and 0<x, <1} and Q, := {x € Q: x,, = 0}.
We have the following result.
Proposition(5.3.2)[175]. Let p € [1,+») and s € (0,1). Let Q be an open set in R" of class C®! with
bounded boundary and u : () = R be a measurable function. Then
llullwseay < Cllullwe g (57)

for some suitable positive constant C = C(n, s, p) = 1. In particular, WP () € WSP((Q).
Proof. Let u € WP (2).Thanks to the regularity assumptions on the domain 2, we can extend u to
a function %: R® — R such that % € WP (R") and Il 1o rry < Cllullyrog) for a suitable constant €
(see [177]).
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Now, using the change of variable z =y — x and the Holder inequality, we have

|u(x) —u(y)lp f j lu(x) —u(z + x)[?

|x_y|n+sp |Z|n+sp

dz dx

2 on{|lx-y|<1}

lu(x) —u(z + x)|P 1
dz dx
2P |2
p
Tu(x + tz
Sf f M dz dx
+s 1
2 B; \O |z[»
1
< ||7ﬁ(x+tz)|pd dzd
< f f W tdz ax
R™ 31 0
”Vu”Lp(Rn)
|Z|n+p(s 1)
< Cl(n S, p)”V””LP(Rn)
< G (s, ) Iullf1pqy- (58)
Also, by (55),
lu(x) —u@)IP
ey Xy < Cous Pl oy (59)

2 on{|lx-y|=1}
Therefore, from (58) and (59) we get estimate (57).

We remark that the Lipschitz assumption in Proposition (5.3.2) cannot be completely dropped we
discuss the extension problem in W*P. Let us come back to the definition of the space WP (£2). Before
going ahead, it is worth explaining why the definition in (53) cannot be plainly extended to the case

s = 1. Suppose that Q2is a connected open set in R™, then any measurable function u : 2 - R

_ 14
such that fﬂ 1} fuC)—u@I?

0 Ty dx dy < +oo is actually constant (see [178]). This fact is a matter of scaling

and it is strictly related to the following result that holds for any uin WP ():

lu(x) —u@)I?

=y

lir{1 (1-y9) dxdy =C, f [VulP dx (60)
Nl
for a suitable positive constant C; depending only on n and p(see [179]).

In the same spirit, in [180], Maz’ya and Shaposhnikova proved that, for a function

U € Ugeses WP (R™), it yields

u(lx) —u@)|P
lim s [uG) 2 dxdy =C, flulp dx, (61)
Rn

+ _ v |n+sp
oot )0 =yl

for a suitable positive constant C, depending only on n and p.
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When s > 1 and it is not an integer we write s = m + o, where mis an integer and o € (0,1). In
this case the space WSP(Q)consists of those equivalence classes of functions u € W™P () whose
distributional derivatives D%u, with |a@| = m, belong to WP (), namely

WsP(Q) = {u € W™P(): D*u € W?P(Q) for anya s.t. |a| = m} (62)

and this is a Banach space with respect to the norm
1

14
[ (nun’;’vm,p(m £ ) ||D“u||€va.p(m) . (63)

la|=m

If s = m is an integer, the space WP (£2) coincides with the Sobolev space W™P ().
Corollary (5.3.3)[175]. Let p € [1,+) and s,s’ > 1. Let Q be an open set in R™ of class C%1. Then, if
s’ >s, we have WS'P(Q) € WSP(Q).
Proof. We write s =k + g and s' = k' + o', with k, k' integers and o, ¢’ € (0,1). In the case k' = k,
we can use Proposition (5.3.1) in order to conclude that ws'p (2) is continuously embeddedin W5P ().
On the other hand, if k" > k + 1, using Proposition (5.3.1) and Proposition(5.3.2) we havethe following
chain Wk'+9'P(Q) c Wk'P(Q) c Wk+tLP(Q) € wktor(Q).
The proof is complete.

As in the classic case with s being an integer, any function in the fractional Sobolev space
WSP(IR™) can be approximated by a sequence of smooth functions with compact support.
Theorem (5.3.4)[175]. For any s > 0, the space Cy’(R™) of smooth functions with compact support
isdense in WSP(R"). A proof can be found in [181]. Let W, P (2) denote the closure of C§°(2) in the
norm ||-|[ys»(q) defined in (63). Notethat, in view of Theorem (5.3.4), we have

Wy (R™) = WSP(R™), (64)

but in general, for 2 ¢ R", WSP(2) # W;P(2), i.e. C(2) is not dense in WP (Q). Furthermore,it is
clear that the same inclusions stated in Proposition (5.3.1), Proposition (5.3.2) and Corollary (5.3.4) hold
for the spaces W, " ().

In this section, we focus on the case p = 2. This is quite an important case since the fractional
Sobolev spaces W2(R™) and W;"*(R™) turn out to be Hilbert spaces. They are usually denoted by
HS(R™) and Hj(R™), respectively. Moreover, they are strictly related to the fractional Laplacian operator
(—A)* (see Proposition (5.3.8)), where, for any u € Sand s € (0, 1), (—A)? it is defined as
dy = C(n,s) gl_i)rél+ f %d}/. (65)

C Bg(x)
Here P.V.is a commonly used abbreviation for “in the principal value sense and C(n, s) is a dimensional

constant that depends on n and s, precisely given by
-1

u(x) —u(y)

(=A)%u(x) = C(n,s)P.V. e
[Rn

C(ns) = j %Ofgl)d{ | (66)

R"
Now, we show that one may write the singular integral in (65) as a weighted second order
differential quotient.
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Lemma (5.3.5)[175]. Let s € (0,1) and let (—A)® be the fractional Laplacian operator defined by (65).
Then, for any u € S,

ulx+y) +ulx —y)—2u(x)
|y|n+25

(—A)Su(x) = —%C(n, s) f dy, Vx€R" (67)
Rn

Proof. The equivalence of the definitions in (65) and (67) immediately follows by the standard changing
variable formula. Indeed, by choosing z = y — x, we have

u(y) —u(x) ulx +z) —ulx)
u(x) = —-C(n,s)P.V. Wdy =—C(n,s)P.V. J BE dz. (68)
R7 R
Moreover, by substituting Z = —z in last term of the above equality, we have
ulx +2z) —ux) ulx—2)—ulx) _
P.V. f Iz dz=P.V. f Z dz (69)
R‘n
and so after relabeling Z as z
ulx +2z) —ulx) ulx + z) —u(x) ulx —z) —u(x)
2P.V. f 7]+ dz=P.V. f 2]+ dz+P.V. f 7] dz
R R
ulx +2z) +ulx —z) — 2u(x)
=P.V. J Z[ s dz (70)
[Rn

Therefore, if we rename zas yin (68) and (70), we can write the fractional Laplacian operator in (65) as
(=A)Su(x) = — % C(n,s)P.V. fRn wrty) tucy) - Zu(x) dy.

|y|n+25

The above representation is useful to remove the singularity of the integral at the origin. Indeed, for any

u(r+y)+ux-y)-2u(x) _ [P?u]e0
|y|n+25 - |y|n+25—2'

smooth function u, a second order Taylor expansion yields

which is integrable near O (for any fixed s € (0, 1)). Therefore, since u € S, one can get rid of the P.V.
and write (67). Now, we take into account an alternative definition of the space HS(R") = W$2(R") via
the Fourier transform. Precisely, we may define

HS(R™) = {u € L*(R™): f(l + [€12)IF u(§)]?d¢ < +oo (71)
RN

and we observe that the above definition, unlike the ones via the Gagliardo norm in (54), is valid also for
any real s > 1. We may also use an analogous definition for the case s < 0 by setting

A (R™) = {1 € §'(R™): fou (1 + 1E12)°IF u(©)[2d§ < +oo},
although in this case the space HS(R™) is not a subset of L?(R"™) and, in order to use the Fourier
transform, one has to start from an element of S’(R™) (see also Remark(i)).

The equivalence of the space H3(R™) defined in (71) with the one defined in the norm (53).

First, we will prove that the fractional Laplacian (—A )® can be viewed as a pseudo-differential
operator of symbol |&]%5.
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The proof is standard and it can be found in [182]),[184].We will follow the one in [183] ,[185] in
which it is shown how singular integrals naturally arise as a continuous limit of discrete long jump
random walks.

Proposition (5.3.6)[175]. Let s € (0, 1)and let (—A)S:S - L2(R™) be the fractional Laplacian operator
defined by (65). Then, for any u € S,
(-A)Su =F(|¢|*(Fuw)) VEER™ (72)

Proof. In view of Lemma (5.3.5), we may use the definition via the weighted second order differential

quotient in (67). We denote by L uthe integral in (67), that is

Lu(x) = — % C(n,s) fRn u(x+y)7:|(:;f)_2u(x) dy, with C(n, s) as in (66).

L is a linear operator and we are looking for its “symbol” (or “multiplier”), that is a function
S :R™ - R such that

Lu = F~1(S(Fu)). (73)
We want to prove that
S = I§1%, (74)

where we denoted by the frequency variable.

To this scope, we point out that

lu(x+y)+|z|(f+_zf)_2u(x)' < 4()rp, W yI*7725 supp, (x| D?ul

+xrme, MY ulx + y) + ulx — y) — 2u()|) € L'(R?™).
Consequently, by the Fubini-Tonelli theorem, we can exchange the integral in ywith the Fourier

transform in x.
Thus, we apply the Fourier transform in the variable xin (73) and we obtain

F —y) -2
SEOEE = ) = —5cns) [ LD SCER) u)
[Rn

1 ey 4 e 8y —2
= —2Cs) j o Y EE)
]Rn

1—cos(¢-y)
]Rn
Hence, in order to obtain (74), it suffices to show that
1—cos(¢-y) ~
f Ty @ = Cu) TR (76)
]Rn
To check this, first we observe that, if { = ({y,...,{,) € R", we have
1-cos{ 1412
|€|“+251 - I(I’t*'zs = |gn—2+2s near ¢ = 0.
Thus,
1—cos{; e .
f —|(|n+25 d{ is finite and positive. 77)
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Now, we consider the function I : R™ — R defined as follows

1(¢) = fl_L(é'y)dy_

ly|n+2s
R"
We have that lis rotationally invariant, that is
1(§) = 1([¢]ey), (78)

where e, denotes the first direction vector in R™. Indeed, when n = 1, then we can deduce (78) by the fact
that [(—&) = 1(¢). When n > 2, we consider a rotation Rfor which R(|€|e;) = & and we denote by RT its
transpose. Then, by substituting = RTy, we obtain

1—cos((R(I€le1))-y (Ile)-(RTy) 1 (€len)y) ;o
1) = [, fylnml Jay = [ 1 - cos B2 E) o Jay = o ) 4 = 1(1¢]e),

which proves (78).
As a consequence of (77) and (78), the substitution { = ||y gives that

1- 1 1
1) = 1(1gler) = mEP dy = G fyn oo d = Cn, ) g1,

where we recall that C(n,s)™! is equal to [ 1-cos(6y) d{by (66).

RN |(|n+25

Hence, we deduce (76) andthen the proof is complete.

Proposition (5.3.7)[175]. Let s € (0, 1).Then the fractional Sobolev space HS(R") defined
in (5.3.2)coincides with AS(R™) defined in (71).In particular, for any u € HS(R™)

[u]iS(Rn) =2C(n,s)7 ! fRnlflzleu(E) |2d¢&, where C(n, s)is defined by (66).
Proof. For every fixed y € R", by changing of variable choosing z = x — y, we get
[u()—u®)? _ [u(z+y)—u)I? _ u(z+y)-u(y)
S (fmn de) dy = [on Jgn e dzdy = Jan (f]Rn —| d)’) dz

|Z|n/2+52
_ w(z+ )-u()||? _ u(z+ )—u()) |2
- fRn |z7/2+s 1l 2 gny dz. = Jpn ||F ( |z|m/2+s ) L2(R™) dz,

where Plancherel’s formula has been used.
Now, using (76) we obtain

w(z+ )-u()\ || 2
F( |Z|n/2+s ) LZ(]R")

(1—cosé-z)

4z = [y fyn o IFu(®)l2dédz = 2 f, [, 05D D) Fu(§) [2dzdé

=2C(n, )7 [Ral§1Z°IFu(®)1?dS.

Jgn

This completes the proof.

Finally, we are able to prove the relation between the fractional Laplacian operator (—A)° and the
fractional Sobolev space H".

Proposition (5.3.8)[175]. Let s € (0,1) and let u € HS(R™). Then,
s 12
[w]sany = 2C(n,5) ™ || (—)2u
where C(n,s) is defined by (66).
Proof. The equality in (79) plainly follows from Proposition (5.3.6) and Proposition (5.3.7). Indeed,

||( A)zu = IE1Fullf2gny = C(n ) [ulZs .-

: 79
- (79)

- ||F(—A)§u :

L?(R™)

L?(R™)
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Let 2 € R" be an open set with continuous boundary df2. Denote by T the trace operator, namely
the linear operator defined by the uniformly continuous extension of the operator of restriction to df2for
functions in D({2), that is the space of functions C§°(R™) restricted to {2 (see[186]).

Now, for any x = (x’, x,,) € R™ and for any u € S(R™), we denote by v € S(R""1) therestriction
of u on the hyper plane x, = 0, that is

v(x") =u(x’,0) vx' € R 1, (80)
Then, we have
Fv(§') = [ Fu(§',§)dé, vE' e RMY, (81)
where, for the sake of simplicity, we keep the same symbol F for both the Fourier transform in n — 1 and
in nvariables. To check (81), we write

1 P / 1 szl !
Fv(¢') = — e X y(xNdx' = — e i y(x',0)dx’. (82)
(Zn)T ]Rn—l (27‘[)T an‘l
On the other hand, we have

f]}g ]Fu(fllfn)dfn = f]R ;ﬂf]]&" e_i(fl'fn)’(x”xn)u(x',xn)dx’dxndfn
(2m)2

1 &Nl 1 —i&, - 1] 1
=" 7n1lgn-1€ il _1f]Rg f]}g e nny (x ) Xn)dxndén | dx
2m) 2 (2m)2
1 izl !
= —n;l RN-1 e lf x [u(x,I 0)]dx;
(2m) 2
where the last equality follows by transforming and anti-transforming uin the last variable, and this
coincides with (82). Now, we are in position to characterize the traces of the function in HS(R™), as stated
in the following proposition.

Proposition (5.3.9)[175]. (See [182].) Let s > 1/2, then any function u € H5(R™) has a trace von the
hyperplane {x, = 0}, such that v € HS_%(Rn_l). Also, the trace operator Tis surjective from H3(R™) onto
HS 3 (R1).

Proof. In order to prove the first claim, it suffices to show that there exists a universal constant Csuch

that, for any u € S(R™) and any v defined as in (80),

1ot ey < Ml (83)

By taking into account (81), the Cauchy—Schwarz inequality yields

Rl < | [ e igirue e, || [ s | (84)
B e (1 +[¢17)°
R R
Using the changing of variable formula by setting &, = t4/1 + [¢’|2, we have
1
d 14 |&'|2)V/? 1+ (&')%)27° 1
(1 _|_i7zl|2)s = ( } lj D) > sdt = ( (1 ftlz))sz dt =C(s)(1 + [¢']5)27°, (85)
2 p (@+1EHA+2) 2
d .
where C(s) = [, (1+—;)S < +oosince s > 1/2.

Combining (84) with (85) and integrating in &’ € R""1, we obtain
1

Jana L+ 1€ 2F(EN2AE < C5) fynos fyy (1 + €125 |Fu(E, ;)12 dE,dE', that is (83).
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Now, we will prove the surjectivity of the trace operator T. For this, we show that for any

1
v € H 2(R™ 1) the function udefined by

$n 1

Fu(§',é) =F v(s")fﬂ( ; (86)
VI+I[E1Z Y1+ 2

with ¢ € C5°(R) and fR @(t)dt =1, is such that u € H(R™) and T u = v. Indeed, we integrate(86)

with respect to &, € R, we substitute &, = t4/1+ |&’|? and we obtain

£y 1
” n d n: 1A d n: 1A d — !
gwu@ ) gwcf )¢<J1+|5'|Z>¢1+|5'|2 ¢ gw(f Jo(©)dt = Fu(§)  (87)

and this implies v = T u because of (81).
The proof of H*-boundedness of u is straightforward. In fact, from (86), for any &' € R™1 we have

S |

1+ 8

dén

()
1+ [§'f?

= C(1+ £ 2 Fo(E) 2, (88
where we used again the changing of variable formula with &, = t{/1 + |£’|? and the constant C is given
by fR (1 + t2)|(t)|*dt.We obtain u € H5(R™) by integrating (88) in &’ € R™*1,

In this section, we go into detail on the constant factor C(n,s)that appears in the definition of the

f (1 + €15 |Fu(’, £)12dE, = j (1 + [E15IFu(E)2 |o
R R

fractional Laplacian see (65), by analyzing its asymptotic behavior as s - 17and s — 0*. This is relevant
if one wants to recover the Sobolev norms of the spaces H1(R™)and L?(R™)by starting from the one of
HS(R™).We recall that in Proposition (5.3.6), the constant C(n, s)has been defined by

_ 1-cos({1)
C(Tl, S) - (fRn |g|n+2s d{)
Precisely, we are interested in analyzing the asymptotic behavior as s - 0Tand s — 17 of a scaling of the
quantity in the right-hand side of the above formula. By changing variable n’ = {'/|{;|, we have

1-— cos({l 1 — cos({;) 1
n+2s n+ n+25d{’d(1
mjn el f f N RN D

f f 1 —cos({l 1 dn'de
n+2s 1
G @y

3 A(n,s)B(s)
 s(1—-5s)
where
1 !
A(n,s) = —wdn (89)
ri-1 (1 +[n'12) 2
and
1—cost
B(s) = s(1 —s)f e (90)
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Proposition (5.3.10)[175]. For any n > 1, let Aand B be defined by (89) and (90) respectively.
The following statements hold:

() limg,.- A(n,s) = wy_y f0+ £ dp < +oo;
(1+p2)z+1

(ii) limg_ g+ A(n, S) = Wyp_> f+°° " 7dp < +o0;
(1+p2)2

(iilim,- B(s) = 3:

(iv)limg g+ B(s) =1,

where w,_, denotes (n — 2)-dimensional measure of the unit sphere S™~2 . As a consequence,

+00 -1

lim C(Tl S) (‘)n—zf pn—z
m n
s—1" S(l - S) 2 (1 + p2)5+1 P

and
-1

—=dp
(1+p2)2
Proof. First, by polar coordinates, for any s € (0, 1), we get

1 too 2
n+25 d77' = Wnp—2 fO —n+25dp-
1+In"12) 2 (1+p?) 2

400
C(n,s) j pt?

slgl*' S(l - S) B

Rn-1

n-2 n-2

(o1

(92)

Now, observe that for any s € (0, 1)and any p = 0, we have L s < P = and the function in the

(1+p2) 2 (1+p?)2

right-hand side of the above inequality belongs to Ll((O, +00)) for any n > 1. Then, the Dominated

Convergence Theorem yields

limg_,;- A(n, s) = wy_y f0+ —dp and limg_,,+ A(n,s) = wy_» f+°° i ndp
(1+p2)2"" (1+p2)2

This proves (i) and (ii).

Now, we want to prove (iii). First, we split the integral in (90) as follows

1—cost 1—cost 1—cost
|t|1+25 dt = |t|1+25 dt + |t|1+25 dt.
R [t|<1 [t]=1

Also, we have that 0 < [, >ty 4f dt = % and

[t]=1 |t|1+25

f 1—Costdt f t? gt < C f [t]3 it 2C
|t|1+2s 2|t|1+2s = |t|1+2s T 3_-2¢
[tl<1 lt|<1 lt]<1
for some suitable positive constant C.

tl+2s

From the above estimates it follows that lim,_,;- s(1 — s) fl o2 1% dt = 0 and
lim s(1—s) 1 — cos t lim s(1—s) t? it
Jm s S f e[t |1+25 = ,Jms S 2le[t+es O
ltl<1 Iti<1
. 1 _ 1 1-2 1 5(1—5) _ l
Hence, we get limg_,;- B(s) = lims_,;- s(1 —s) (fo t Sdt) = limg_, - o =
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Similarly, we can prove (iv). For this we notice that

1
1—-cost
0< f—dtSCftl_zsdt

|t|1+25
|t]<1
which yields limy o+ s(1 —5) [}, Ty dt = 0.

Now, we observe that for any k € N,k > 1, we have

2(k+1)7r cost CoSt 1y 2kn+7r cost 2kn+m (t+m) _m_ ar
tl+2$ t1+25 kaTE (‘L'+TL')1+2$
2k7r+7r 1 1 dt
(1425 (t4m)1+2s

2km+1 1 1

< - dt
2k tit2s (t+n—)1+25

_ (2kmtm (t4m)tt2S—g1+2s d

- fzkn t1+25 (t4qr)1+2s t
2km+1T

= Jakn W(f (1 + 25)(t +9)*d9)dt

2km+m 3m(t+m)?S
— J2kTm t1+25(t+7'[)1+25

dt

2kn+m 3T
= Y2km t(t+m)
2knt+m 3w C
= < =
<ln T2 dt < =

As a consequence,

+o0 cost 2TL’ 1 +oo [2(k+1)m cost +o0 C
|f s dt| <[, dt+ |2k=1 e e dt| <log(2m) + X215 < C,
up to relabehng the constant C > 0. It follows that
1- cost cost +00 cost
|f|t|>1 |t|1+25 f|t|>1 |¢]1t+2s | |f|t|>1 |¢]1t+2s dtl 2 |f1 [t|1+2s dtl = C
and then

_ 1-cost . 1
limg_,y+ s(1 —5) f|t|21 e dt = limg_+ s(1 — ) f|t|21 0 dt.

1+2s

Hence, we can conclude that

2s(1 —5s) 3

1
. _ . _ — . _ _1_25 — .
Sll,%l+ B(s) = Slir(l)l+ s(1—y5) f —|t|1+25 dt Sll)rggr 2s(1 s)f t dt Slir(l)l+ s

|t]=1

Finally, (91) and (92) easily follow combining the previous estimates and recalling that

_ s(1-9) .
C(n,s) = B The proof is complete.

Corollary (5.3.11).[175] For any n > 1, let C(n, s) be defined by (66).
The following statements hold:

. . C(n,s) 4n
(1) limg_4- s mn—l;
Cns) 2

(i) limg_, g+ ——= S0 on s

where w,_; denotes the (n — 1)-dimensional measure of the unit sphere S,_;.
P
Proof. For any 6 € R such that 8 > n — 1, let us define E,(0) := f+ £ dp.

0 [
(1+p?)2
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Observe that the assumption on the parameter fensures the convergence of the integral. Furthermore,
integrating by parts we get

+00 o
1 (" 1) 6 p" 4
Ea(0) = —— sdp = — f sz dp = —— a0 +2), (93)
o (T+p2)2 (1 +p?)z
1 ._ _ ) ._ +oo _pn7?
Then, we set I, == E,(n+ 2) = fo dpand I, = E,(n) = [ =dp.
(1+p2)2+ (1+p?2)2
In view of (93), it follows that I, W and I, (0 can be obtained in a recursive way, since
o _ n—1 _n—1lw
I, = n+2(n+4)——E n+2)= +21 (94)
and
n—1 -1
I =E,.,(n+2) = ——Ey(n) =— — I, (95)
Now we claim that
 _ Wn—1
I, S 96
T 2nw,_, (96)
and
Wy
[(0) —n-1 (97)

2Wpn_y
We will prove the previous identities by induction. We start by noticing that the inductive bases are

satisfied, since 12(0) = f0+°° (1;2)2 dp =% , I§0) = f0+°°

dp—

(1+p2)2
and

(0) = +e L = T (0) = +e =
12 fo (1+p2) dp 2’ 13 fO (1+p2)% dp 1.

Now, using (94) and (95), respectively, it is clear that in order to check the inductive steps, it suffices to
verify that
Wnt1 _ n—1lw, 4

: 98
Wn n wnp-2 ( )
We claim that the above formula plainly follows from a classical recursive formula on w,,, that is
21
Wn = n—1 Wn—2- (99)

To prove this, let us denote by @, the Lebesgue measure of the n-dimensional unit ball and let us
fix the notation x = (%, x’) € R" 2 X R?. By integrating on R™ 2 and then using polar coordinates in R?,

we see that
w, = jdxz j dx |dx’
|x]2<1 [x"]=1 \|%|2g1-|x'|2
n-2)
T T e
|x'|<1
2 2
(n-2) W, _
= ZmUn_pr(l —p?) 2z dp = nz (100)
0

127



Moreover, by polar coordinates in R",
1

Wy = J dx = wp—q J pn_ldp =

|x|=1 0

Wn—1

(101)

2MTWn—3

— which is (99), up to

Thus, we use (101) and (100) and we obtain w,_; = nNw, = 2NW,_, =

replacing nwith n — 1. In turn, (99) implies (98) and so (96) and (97).

Finally, using (96), (97) and Proposition (5.3.10) we can conclude that
c(ns) _ 2 __ 4n dli c(ns) _ 1
S(1-5)  wp_ptP on_nd Moot STy = O

Remark (5.3.12)[175]. It is worth noticing that when p = 2 we recover the constants C; and C, in (60)

. 2 )
limg_,1- = , as desired.
Wn—1

and (61), respectively. In fact, in this case it is known that

1 1 Wn1
Cr =3 fual&112do(§) = =By [ |Eil?da(§) = =22
and C, = w,_1 (see [189] and [190]).
Then, by Corollary (5.3.11) it follows that

_ 2
lim-(1 = 8) fon fon S22 dxdy = limg_y- 2(1 = $)C(, 5) " 11€15F ull gy

n |x_y|n+25

= % ” Vulliz(Rn)

= Clllulllz.ll(ﬂgn)
and

: lu(x)-u)|? . _
1m0+ § fn fon S vy = lim, s 25C (o, ) 111 Fual e

= (‘)n—lllu”iZ(Rn)
= 62”””12,2(]}&71)-
We will conclude this section with the following proposition that one could plainly deduce from

Proposition (5.3.6). We prefer to provide a direct proof, based on Lemma (5.3.5), in order to show the
consistency in the definition of the constant C(n, s).

Proposition (5.3.13)[175]. Let n > 1. For any u € Cg’(R") the following statements hold
() limg,g+(—A)u = u;
(i) limg_,,-(—A)’u = —Au.

Proof. Fix x € R, R, > 0 such that suppu € B and setR = R, + [x| + 1.

First,
uu+w+uu—w—zuw WP
ly|n+es = ”u”CZ(Rn) | |n+25
Br
R

1
< wn—l”””cz(]}{{n)fmdp
0
_ wn—l”””CZ(R")Rz_zs
2(1—y5s)
Furthermore, observe that |y| > R yields |x +y| > |[y| — |x| = R — x| > Ry and consequently
u(xty)=0.

(102)
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Therefore,

1 ulx+y) +ulx—y)—2u(x) 1
) f [y[n+2s dy = u(x) f [y|n+2s dy
R™\BRr R™M\BR
+00
= wp_1u(x) J p2s+1
(1.) R~ 2s
== 21 u(x). (103)
Now, by (102) and Corollary (5.3.11), we have lim_+ — “’2‘ 5) Iy ity )+|Z|(,f+2{) 2D dy =

and so we get, recalling Lemma (5.3.5),
C( (c+y)+ulx—y)—2u(x) . c( n—1R
ns) f]R"\BRu ahed IZI’T’“;S] e dy = limg_,y+ —ns)w L u(x) = ulx),
where the last identities follow from (103) and again Corollary (5.3.11). This proves (1).
Similarly, we can prove (ii). In this case, when s goes to 1, we have no contribution outside the
unit ball, as the following estimate shows

u(x+y)+u(x—y)—2u(x) 1
|f]Rn\Bl ly|n+zs d)’| < 4”u”L°°(]Rn) f]Rn\Bl W dy

+o0 1
< 4wnq llulleogmy J; mdp

an_

limg_, o+ (—A)Su = limg_, o+ —

[l oo mmy-
As a consequence (recalling Corollary (5 3.11)), we get

C(n,s) f ulx+y) +ulx—y) — Zu(x)
|y|n+25

dy = 0. (104)

On the other hand, we have

u(x+y)+ule—y)—2u(x)-D2u(x)y-y ly|3
fBl ly|n+2s dy < ”u”C3(]R") fBin

1 1
< wn—1||u||C3(Rn) fo p25—2 dp

wn—1||u||c3(]Rn)

3-2s

and this implies that

y C(n,s) fu(x+y) +ulx — y)—Zu(x) i C(n,s) fDZu(x)y-y 105

R |y[n+2s dy = i |y[n+2s (105)
Now, notice that if i # j then

f OFuC)y,  yydy = - f OFu()y, 343,
where J, = y; forany k # j and y; = —Y;, and thus
f aizju(x)yi - y;dy = 0. (106)

By
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Also up to permutations, for any fixed i, we get

| |n+25 it | |n+25

= du(x) f| |n+25 = u(x 2[ |n+25

u(x)f ly|? _aﬁ-u(x)wn-l
IYI"”S 2n(l—s)

By

(107)

Finally, combining (104), ( 105), (106), (107), Lemma (5.3.5) and Corollary (5.3.11), we can conclude

. . C(n,s) u(x+y)+u(x—y)—2u(x) . C(n S) D2u(x)y-y
limg_,;-(—A)Su = limg_, ;- — f TS dy = limg_,;- — fBl S[iEs
C(n s) 6”u(x)yl

. C n
dy = limy_;- (()—“’)z 0fu(x) = —bu(x).

As is well known when s is an integer, under certain regularity assumptions on the domain (2, any

= limg,4- — 1 By |y|n+2s
function in W*P (£2)may be extended to a function in WP (R"). Extension results are quite important in
applications and are necessary in order to improve some embeddings theorems. For any s € (0, 1) and any
p € [1,), we say that an open set 2 € R"is an extension domain for WP if there exists a positive
constant C = C(n,p, s, 2) such that: for every function u € WSP(Q) there exists @i € WP (R™) with
fi(x) = u(x) forall x € 2 and ||ullysrrny < Cllullyse(q).

Lemma (5.3.14)[175]. Let Q be an open set in R™ and ua function in WSP(Q) with s € (0, 1) and

p € [1, +00). If there exists a compact subset K c Q such that u = 0 in Q\K, then the extension function
tdefined as

e )_{u(x) X € 0, (108)

0, x € R™\2
belongs to WSP(R") and [|u|lwspgrn) < Cllullwsp(q), where C is a suitable positive constant depending
on n, p, s, Kand Q.

Proof. Clearly & € LP(R™). Hence, it remains to verify that the Gagliardo norm of % in R™ is bounded by

the one of u in {2. Using the symmetry of the integral in the Gagliardo norm with respect to x and y and
the fact that L = 0 in R™\(2, we can split as follows

f Iﬁ(x)—ﬁ(y)lpd dy:j luCx) —uy)|?

lu(x)|P
dxdy + 2 ———F——dy |dx, (109)

|x — y|n+sp |x —_ y|n+sp |x —_ y|n+sp
o 0 0
where the first term in the right-hand side of (109) is finite since u € WP (). Furthermore, for any
lu@IP _ xg)lu)IP 1
Y ERNK, i = Ty = Xk ([P supxex - and so
[u(x)|? e < 1
f J [x — y|n+se yln+5p *= f dist(y, 9K)"+sp el ca): (110)
R\ 0

Note that the 1ntegral in (110) is finite since dist(d2,0K) = a > 0 and n + sp > n.
Combining (109) with (110), we get ||#|lysprny < Cllullwsp o) where C = C(n,s,p, K).
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Lemma (5.3.15)[175]. Let Qbe an open set in R", symmetric with respect to the coordinate x,, and
consider the sets Q, = {x € Q: x, > 0} and Q_ = {x € Q: x,, < 0}. Let ube a function in WSP(Q, ), with
s € (0,1) and p € [1, +). Define

oy (ulx',xy),  x, 20,
) = {u(x’, —Xn), Xp <O, 11
Then G belongs to WSP(Q) and ||[ullwseq) < 4llullwsrq,)-
Proof. By splitting the integrals and changing variable X = (x', —x,), we get
@p ey = [luGOPdx+ [ G 20PdE = 2lullng, (112)

Also, if x € R%and y € CR" then (x,, — y,)? = (x,, + ¥,,)? and therefore
Ja(0)-a)IP () -u@)|P u@)-u(y',~yn)|"
f, J, BOEOR ggy = [, f, MO gy 4 2, f,, MOl gy

|x y|n+sp + |x_y|n+sp |x_y|n+sp

e’ —xn)—u(y ~ym)|”
+ fC’ﬂ+ fC’.{'2+ |x—y|ntsp dxdy

< 4‘”u”Wsp(g )

This concludes the proof. Now, a truncation lemma near 9.2.
Lemma (5.3.16)[175]. Let Q be an open set in R™, s € (0, 1)and p € [1, +). Let us consider
u € WP (Q)and Y € C*1(Q),0 < Y < 1. Then Yu € WSP(Q) and

lYullwse ey < Cllullwsr oy, (113)
where C = C(n, p, s, 2).
Proof. It is clear that ||[yullrp) < llullLp(q) since || < 1. Furthermore, adding and subtracting the
factor Y(x)u(y), we get

f [ ()u(x) - ¢(Y)U(Y)|pd dy < 271 J‘ [ ulx) — Ppuly)|? dxdy
|x_ |n+sp |x_ |n+sp
n 0 2 0
[P (uly) —p(u@)|?
gl ey
0 0
_ lu(x) —u()? [uC)IPlp(x) —p(y)IP
< -1 j ey dxdy+j ey |.(114)
Since ¥ belongs to C%1(02),
we have
luC)Plp(x) —p)IP » [u(x)|P|x — y|P
| oy <47 | e~y
2 0 0 0n|x-y|s1
lu(x) P
| | mme

2 0njx-y|z1
< CllullPp gy (115)

where A denotes the Lipschitz constant of 1 and C is a positive constant depending on n, p and s.
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Note that the last inequality follows the fact that the kernel |x — y| ™*(1=9)? jssummable with respect to y
if |x —y| < 1 since n + (s — 1)p < n and, on the other hand, thekernel |x — y|™™75P is summable when
|x — y| = 1 since n + sp > n. Finally, combining (114) with (115), we obtain estimate (113).

We are ready to show the main theorem of this section, that states that every open Lipschitz set
Nwith bounded boundary is an extension domain for W*?.

Theorem (5.3.17)[175]. Let p € [1,+),s € (0,1) and Q € R" be an open set of class C®! with
bounded boundary.Then WSP(Q)is continuously embedded in WP (R"™), namely for any u € WP (Q)
there exists @i € W¥P(R") such that {i|q = u and [|T[lws»egn) < Cllullwspqy where C = C(n, p, s, Q).
Proof. Since 012 is compact, we can find a finite number of balls B; such that

N c U?=1 B; and so we can write R" = U?=1 B; U (R™\012).

If we consider this covering, there exists a partition of unity related to it, i.e. there exist k + 1 smooth
functions ¥, ¥y, ..., Py such that sptp, € R™\d42,spty; c B forany j € {1,...,k},0 <y; <1
forany j € {0,...,k} and Z?:o Y; = 1. Clearly, u = Zﬁ?:ol/)ju.

By Lemma (5.3.16), we know that Y,u belongs to W*5P(2). Furthermore, since You =0 in a
Youlx), x€0,

neighborhood of 412, we can extend it to the whole of R", by setting ou(x) = { 0 x € R™\Q

and Pou € WSP(R™). Precisely
||lpp(‘){u||Ws,p(Rn) < Cllpoullwsro) < Cllullwsr(q), (116)
Where C = C(n,s,p,2) possibly different step by step,see Lemmas (5.3.14) , (5.3.16).
For any j € {1,..., k}, let us consider u|p;no and set v; ) =u (T] (y)) forany y € Q,,
where Tj: Q — B; is the isomorphism of class C 01 defined in (5.3.1). Note that such a T; exists by the

regularity assumption on the domain 2.Now, we state that v; € WSP(Q,). Indeed, using the standard

changing variable formula by setting x = T;(%) we have
P
V@ v (@) -w(mO)
dxdy
f |% — p|n+ep f f % — y|nrep
Q+ Q4

_ f f lu(x) — u()|? det(T?) dxdy

_1 1 n+sp
BjnQ BjnQ |TJ (x) - T] (y)l

lu(x) —u@)I?
<C f X =yt dxdy, (117)

Bj nn Bjﬂﬂ
where (117) follows from the fact that Tj is bi-Lipschitz. Moreover, using Lemma (5.3.19) we can extend

v; to all @ so that the extension ; belongs to WP (Q) and ||7 ||W5p(Q) < 4|y ”WSP(Q )

We set w;(x) = 7; (Tj_l(x)) for any x € B;.
Since T; is bi-Lipschitz, by arguing as above it follows that w; € W*? (Bj). Note that w; = u(and
consequently Y;w; = ;u) on B; N (2. By definition ;w; has compact support in B; and therefore, as

done for 1ou, we can consider the extension ¥, w; to all R™ in such a way that y,w, € WP (R™).
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Also, using Lemmas (5.3.14), (5.3.15), (5.3.16) and estimate (117)
we get

”m”ww(]}gn) = C”lijj”WS.p(Bj) = C”Wj”Ws.p(B].)
= C”ﬁj”WS.p(Q) = Cllvj||WS.p(Q+) = Cllu”WS'p(ﬂnBj)' (118)
where C = C(n,p, s, 2) and it is possibly different step by step.
Finally, let @ = $ou + 5., P,w,
be the extension of udefined on all R™. By construction, it is clear that ii|, = u and, combining (116)
with (118), we get ||@t|[ysprny < Cllullysreq) with C = C(n,p, s, 2).

Corollary (5.3.18)[175]. Let p € [1,+),s € (0,1) and Q be an open set in R® of class C®! with
bounded boundary. Then for any u € WP(Q), there exists a sequence {u,} € Cy’(R") such that u, - u
asn — +ooin WSP(Q), ie., limp,_, o llu, — ullywseqy = 0.

In this section, we provide an elementary proof of a Sobolev-type inequality involving the fractional norm
||-|lws». The original proof is contained in Appendix of [191] and it deals with the case = 2 . We note that
when p = 2 and s € [1/2, 1)some of the statements may be strengthened (see [178]).We also note that
more general embeddings for the spaces W*Pcan be obtained by interpolation techniques and by passing
through Besov spaces. For a more comprehensive treatment of fractional Sobolev-type inequalities we
refer to [191] .We remark that the proof here is self-contained. Moreover, we will not make use of Besov
or fancy interpolation spaces. The first of them is an elementary estimate involving the measure of finite
measurable sets Ein R"as stated in the following lemma(see [192] and also [193]).

Lemma (5.3.19)[175]. Fix x € R™. Let p € [1,4+),s € (0,1) and E c R"be a measurable set with finite

d .
measure. Then,fCElx_yﬁ > C|E|~SP/", for a suitable constant C = C(n,p,s) > 0.

1
Proof. We setp = (E)nand then it follows

Wn
|(CE) nB,(x)| = |B,(x)| — |E n B,(x)| = |[E| — |E nB,(x)| = |E N CB,(x)|.
Therefore,

f _v =f dy +f dy
CE |x—y|n*sp (CE)NBy(x) |x—y|ntsp (CE)NCBy(X) |x—y|n+sp
dy dy

= f(CE)an(x) onEsp + f(CE)nCBp(x) lx—y|n+sp
__|(CE)nB, ()|

dy
pntsp + f(CE)ﬂCBp(x) [x—y]|+sp

_ |EncB, ()] ) _
= sy (CEINCBp(x) |x—y|n+sp

dy dy dy
Z Jencs n+s +fc C n+sp . JC ntsp®
p(%) |x—y[n+sp * J(CE)NCBp(x) |x—y|m*sP Bp () |x—y|n+sp

The desired result easily follows by using polar coordinates centered at x.

Now, we recall a general statement about a useful summability property (see [191], for related results,
see also [194]).

Lemma (5.3.20)[175]. Let s € (0,1) and p € [1, +0)be such that sp < n. Fix T > 1;
letN € Zand
ay be a bounded, nonnegative, decreasing sequence with a;, = 0 forany k > N. (119)
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Then, Yxez al(:]_slo)/nTk < CY ez ageia >/ TK,
ag#0

for a suitable constant C = C(n, p,s, T) > 0, independent of N.
Proof. By (119),both

n—sp)/n —sp/n 1
Z al(( Pk and Z Qper1Gy P/MTk gre convergent series.

k€eZ k€EZ
ap+0

Moreover, since a; is nonnegative and decreasing, we have that if a; =0,

Accordingly, Y xez a,(:ilsm/n’rk Y rez al(:ilsp)/nTk .
a0
Therefore, we may use the Holder inequality with exponents
a:= n/spand B := n/(n — sp)
by arguing as follows

1 (n—sp) (n—sp)
- n k _ n k
T E a, T = E a T

k€L k€L
= 3 ken ol T
ag+0
— sp/(B)rk/a 1/B —sp/(nB)mik/B
=l kez |a T a; T
2 kex (a ) (ah )

< (B o m00)") " (S (™ o))

sp/n (n—sp)/n
< (ZkEZ a;((n_Sp)/nTk) (Z kel Qp+10y p/nT"> .

ap+0

So, recalling (120), we obtain the desired result.

(120)

then aj,, =0.

We use the above tools to deal with the measure theoretic properties of the level sets of the

functions (see [191]).

Lemma (5.3.21)[175]. Let s € (0,1) and p € [1, +) be such that sp < n. Let
f € L”(R™) be compactly supported.
For any k € Z let

a = [{If] > 2¥}.
Then, fRn fR Md xdy > CY kez W10y —sp/n 2Pk,

no|x—y|ntsp a0
for a suitable constant C = C(n,p,s) > 0.

Proof. Notice that ||f(x)| — |f(y)|| <|If)—fl,
and so, by possibly replacing f with |f|, we may consider the case in which f > 0.

We define
A = {If > 2"},
We remark that Ay ., € Ag, hence
A 4+1 < ag.
We define Dy, == Ap\Ay41 = {2F < f < 2¥*1}and d), = |Dy|.
Notice that

dy and a; are bounded and they become zero when k is large enough,
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thanks to (121). Also, we observe that the D, ’s are disjoint, that

|J o = can, (126)

€L
{<k

and that
U D, = A,. (127)

L€EL
=2k

As a consequence of (127), we have that

a4 = Ud{, (128)

FA=Y/A
=k
and so
dy = ay — U d,. (129)
LEL
£=k+1

We stress that the series in (128) is convergent, due to (125), thus so is the series in (129). Similarly, we
can define the convergent series

S = Z 2vta, P, (130)
0€L
ap_1#0
We notice that Dy € Ay € Ay, hence a;_ f/ dy < a; Sf/ ap_1. Therefore
{(i,¢) €eZs.t.a;_; # Oand a;*P/"d, # 0} € {(i, ) € Zs.t.a,_, # O}. (131)

We use (131) and (124) in the following computation:

Z Z Zpl Sp/nd,g— Z Z Zpl sp/n

i€Z f€eZ IEZ L€EL
a;j_1#0 £2i+1 a;_1#0 fzi+1
Sp/nd #0
DRI
i€EZ t€L t€Z  I€EL
£=i+1 ap_1#0isf—1
ap_1#0
+ 00
—sp/n - - -sp/n
Z Z 2Pia; P, = Z ZZW V2P, /Mg, <5, (132)
€L IEZ {€L k=0
ag_1¢0 i<sf-1 ag_1¢0

Now, we fix i € Z and x € D; : then, for any j € Z with j < i — 2 and any y € D; we have that
If(x) — f(y)| = 2t — 2/t > 2t — 271 = 2i=1 apnd therefore recalling (126),
, If)-fIP (i-1) (i-1) dy
ijq?%z fDJ' lx—y|m+sP dy = 27 Z]ﬁfzz fD |x— y|n+5p 2P fCAz 1 [x—y|¥sp’
This and Lemma (5.3.24) imply that, for any i € Z and any x € D;, we have that

lf ) = fOIP
z Ix — |n+5p dy > Cozpl Sp/n’
J€Z p Y
j<i-2

for a suitable ¢, > 0.
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As a consequence, for any i € Z,

[f ) —fFOIP , -2
Z =y 9xdy = co2%a, s d (133)
EZ
jil 5 DixD;

Therefore, by (129), we conclude that, for any i € Z,

lf ) = F )P - s
2, |x<WMPd”yz%2m%$“‘§:”%£@- (134)
JEL D;ixD; £EL
jsi=2 £2i+1
By (130) and (133), we have that
lf G = FIP
Z Z f x — [t dxdy = c,S. (135)

JEL  JE€L D;xD;
a;_1#0 j<i-2

Then, using (134), (132) and (135),
— Y4 _
Y jez X jen fD XDj wdxdy> ¢ |2 jez 2Pq Sp/n —Y jez Y ¢ez 2P'a Sp/ndf

x—y|n+sp
aj_1#0 j<i-2 =yl a;_1#0 aj_1#0 f=zi+1

i —sp/n
>co |2 jez 2P'a; ) aq; —Sl
a;_1#0

, — 14
. pi,—sp/n - _ If C)—f I
>co2 jez 2P'a;Za; — X jez X jez fD XD; Py [ntsP dxdy.
aj—1#0 aj_1#0 j<i-2

That is, by taking the last term to the left-hand side,

lf () = fFOIP , -2
X =y dxdy = c, Z 2Pta, " ay, (136)
€l JeL €z
al] 170 ]il 2 DD al-j_l:tO

up to relabeling the constant c.
On the other hand, by symmetry,

J If(x)—f(y)lpdxdyzz flf(x)—f(y)lp

x — y|ntsp x — y|ntsp
R XR" | yl iL,jEL DiXDj | yl

dxdy

>ZZ If(x)—f(y)l”dxdy

x — n+sp
iL,JEL p; xDj | yl
j<i

_, G - FOIP

- Ix — y|n+sp
i€EZ JEL DixD;

a;-1#0 j<i—2 /

Then, the desired result plainly follows from (136) and (137).

Lemma (5.3.22)[175]. Let q € [1, ). Let f : R™ - R be a measurable function.
For anyN € N, let
fn(x) == max{min{f (x),N},—N} Vx € R™. (138)

dxdy. (137)
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Then limy_ ;o0 llfnllLarny = [IfllLacrn)-

Proof. We denote by |f|y the function obtained by cutting |f| at level N.
We have that |f|y = |fy| and so, by Fatou lemma, we obtain that

1 1
lim infy_.oollfyllLany = 1m infy oo (SnlF15)7 = (Sonl £19)" = I llLagam.
The reverse inequality easily follows by the fact that |f|y(x) < |f(x)]| for any x € R™.

Taking into account the previous lemmas, we are able to give an elementary proof of the Sobolev-
type inequality stated in the following theorem.

Theorem (5.3.23)[175]. Let s € (0,1)and p € [1,+) be such that sp < n. Then there exists a positive
constant C = C(n, p, s) such that, for any measurable and compactly supported function f : R® — R,
we have

— D
AU gy < Cf |f|(;)_y|];(£| dxdy, (139)

R" R"
where p* = p*(n,s)is the so-called “fractional critical exponent” and it is equal to np/(n — sp).
Consequently, the space WSP(R™)is continuously embedded in L4(R"™) for any q € [p, p*].

Proof. First, we note that if the right-hand side of (139) is unbounded then the claim in the theorem
plainly follows. Thus, we may suppose that fis such that

lf ) = FIP
f x—ynrer dxdy < +oo. (140)
R® R"
Moreover, we can suppose, without loss of generality, that
f € L*(R™). (141)

Indeed, if (141) holds for bounded functions, then it holds also for the function fy, obtained by any
(possibly unbounded) fby cutting at levels —Nand +N(see (138)). Therefore, by Lemma (5.3.22) and the
fact that (140) together with the Dominated Convergence Theorem imply

- If N —fNnOD)IP If)—-fIP
limy_ 40 f]}gn fRan xdy f]}gn f]Rn |x—y|n+sp dxdy,

we obtain estimate (139) for the function f.
Now, take a; and A, defined by (122) and (123), respectively. We have

”f”Lp (R™) ZkEZ fAk\Ak 1|f(x)|p*dx < EkEZ fAk\Ak+1(2k+1)p*dx < ZkEZ 2(k+1)p*ak.

. p/p
That is, IIfllp,, & = < 2P(Tpez 2" ay.)

Thus, since p/p* = (n —sp)/n =1 -sp/n<1,

kp ,(n—sp)/n
I gy < 27 ) 2470 (142)
K€L
and, then, by choosing T = 2P, Lemma (5.3.25) yields
sz>
Iy <€ D 2Paina, " (143)
aI:E:tZO

for a suitable constant Cdepending on n, pand s.

137



Finally, it suffices to apply Lemma (5.3.26) and we obtain the desired result, up to relabeling the
constant Cin (143). Furthermore , the embedding for g € (p, p*)follows from standard application of the
Holder inequality. From Lemma (5.3.19), it follows that

dx dy
[ | i = cm s an

for all measurable sets E'with finite measure.

On the other hand, we see that (139) reduces to (144) when f = yg, so (144) (and thus Lemma
(5.3.19)) may be seen as a Sobolev-type inequality for sets.
The above embedding does not generally hold for the space WP (2)since it not always possible to extend
a function f € WP () to a function f € WP (R™). In order to be allowed to do that, we should require
further regularity assumptions on f2(see (5.3.13)).

Theorem (5.3.24)[175]. Let s € (0,1) and p € [1, +0) be such that sp < n. Let Q € R" be an extension

domain for WP, Then there exists a positive constant C = C(n, p, s, ) such that, for any f € WSP(Q), we
have

If llLacay < ClIf lwsp ), (145)
for any q € [p, p*]; i.e., the space WP (Q) is continuously embedded in L(Q) for any q € [p, p*].
If, in addition, Qis bounded, then the space WP (Q) is continuously embedded in L4(Q) for any
q€[Lp’]
Proof. Let f € WSP(Q). Since Q € R"is an extension domain for WP, then there exists a constant
C; = C1(n,p,s,Q) > 0 such that
£l geny = CallFllwsray, (146)
with f such that f(x) = f(x) for xa.e. in Q.
On the other hand, by Theorem (5.3.23), the space W*P(R™)is continuously embedded in
L1(R™) for any q € [p,p*]; i.e., there exists a constant C, = C,(n,p,s) > 0 such that

f LI(R™) s CZHf”WS.p(]Rn)' (14’7)

Combining (146) with (147), we get
sty = Wl oy < 17l acqms < CollFllysmeqy < CoCillFllwoncan
that gives the inequality in (145), by choosing C = C,C;.
In the case of £ being bounded, the embedding for g € [1, p)plainly follows from (145), by using
the Holder inequality.
Theorem (5.3.25)[175]. Let s € (0,1) and p € [1, +o0) be such that sp = n. Then there exists a positive
constant C = C(n, p,s) such that, for any measurable and compactly supported function f: R - R, we
have
Ifll.arny < Cllfllwserny, (148)
for any q € [p, ©); i.e., the space WSP(R") is continuously embedded in LI(R") for any q € [p, ).
Theorem (5.3.26)[175]. Let s € (0,1) and p € [1, +0) be such that sp = n. Let Q € R be an extension
domain for WSP. Then there exists a positive constant C = C(n, p, s, Q) such that, for any f € WSP(Q), we
have
IfllLacqy < Clifllwsecqy, (149)
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for any q € [p, ), the space WSP(Q)is continuously embedded in LA(Q) for any q € [p, ). If, in
addition, Qis bounded, then the space WP (Q)is continuously embedded in L9(Q)for any q € [1, ).

The proofs can be obtained by simply combining Proposition (5.3.1) with Theorem (5.3.23) and
Theorem (5.3.24), respectively. We state and prove some compactness results involving the fractional
spaces WP (£2) in bounded domains.

The main proof is a modification of the one of the classical theorem (see [195]) and, again, it is
self-contained and it does not require to use Besov or other interpolation spaces, nor the Fourier transform
and semigroup flows (see [196]). We refer to [197] for the case p = q = 2.

Theorem (5.3.27)[175]. Let s € (0,1),p € [1,+),q € [1,p], Q © R" be a bounded extension domain

for WSP and T be a bounded subset of LP(£). Suppose that supger fQ I} q %

dxdy < +co.
Then T is pre-compact in LA(().
Proof. We want to show that T is totally bounded in L?(2), i.e., for any € € (0, 1) there exist
B1,---, Bu € L1(N2) such that for any f € T there exists j € {1,..., M} such that
If = Bjll oy < & (150)
Since {2 is an extension domain, there exists a function f in WP (R™) such that
|| f ”WS'P (R < ClIfllwsp(q)- Thus, for any cube Q containing £2, we have

”f”Wsp(Q) < ”f”Ws,p(]Rn) < C”f”WSp(.Q)
Observe that, since Q is a bounded open set, f belongs also to L1(Q)for any q € [1,p].

_ NN -
Now, forany € € (0,1), welet C, =1+ supfeT”f”Lq(Q) + supser fQ fQ [Feo-rof dy,

|x_y|n+sp
p = P = T gn p and n =1, = and we take a collection of disjoints cubes Q4,..., Qy of side
chn 2p
psuchthat 2 € Q = U?’zl Q;. For any x € (2, we define
j(x) as the unique integer in{1,..., N}for whichx € Q). (151)

Also, forany f € T, let
P —
(N@ =5 )lfQ ol Oy
Notice that P(f + g) = P(f) + P(g)forany f, g € T and that P(f) is constant, say equal to q;(f), in

any Q;, for j € {1,...,N}.
Therefore, we can define R(f ) = p™(qy(f),...,qn(f)) € RNand consider the spatial g-norm in R¥as

lvll, = Z|vj| , foranyv € RV.
We observe that R(f +g) = R(f) + R(g).
Moreover,
||R(f)||q
1P(O 1 %a gy = f P(H@)]9dx < p Zlq,(f)l = RGN < == (152)

j= 1g;n0
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Also, by the Holder inequality,
IROIE = 5oy p™|a; (O =

s S |f, F@dy|

-=1fQj|f(y)| dy = [, [F["dy = Ifll}a(0y-
In particular, supser||R(f) ||q < C,, that is, the set R(T) is bounded in R (with respect to the
g-norm of RY as well as to any equivalent norm of R") and so, since it is finite dimensional, it is totally
bounded. Therefore, there exist by,...,by € RY such that
R(T) € UL, B, (b, (153)
where the balls B, are taken in the g-norm of RY. For any i € {1,..., M}, we write the coordinates of

b;asb; = (bi,p e bi,N) € RY.Forany x € 2, weset B;(x) == p ab; ), where j(x) is as in (151).
Notice that f; is constant on @}, i.e. if x € Q; then

P(BI(x) = p by = Bi(x) (154)
and so q;(B;) = p_gbi,j; thus
R(B;) = b;. (155)

Furthermore, for any f € T

If = PNy = f GO = P(H()1dx

j= 1q;na
q
]ZQJL f(x)—E f Fody| dx
N q
=;Qf o ff<x> Fondy| dx
q
s%i [ |[1rea-folay| ax (156)
J=1q;na |Q;

Now for any fixed j € 1,..., N, by the Holder inequality with pand we get

)

14

1 ~
Tq[ f |f<x)—f<y)|dy S ol [ f FG) = Fl dy
Qj

— | [ Ireo = For o]
Qj

q
(=52) ﬂ<n+sp>[ @l ]”
n fy

< 2 Jppp
- pn‘Z/p P Ji |x—y|n+sp

n+sp

q
2 ppsq [f |f(x) f(Y)| dy] ) (157)

J |x—y|n+sp
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Hence, combining (156) with (157), we obtain that

dx

If = PO agqy <7 5% Sqf l |f|(;) y{;?;)J

qlf Fo —Fol”

2
|X — |n+sp

n+sp\q

<Cn( 2 )ppsq—

ot (158)

where (158) follows from Jensen inequality since t = |t|9/? is a concave function for any fixed pand
gsuch that q/p < 1.Consequently, for any j € {1,..., M}, recalling (152) and (154)

IRCH-R(B)I
£ q
=5+ —Q (159)

Now, given any f € T, we recall (153) and (155) and we take j € {1,..., M} such that

R(f) € B,(b;). Then, (154) and (159) give that

[RCA=bjl
€ q ~ £ no_
If = Bill oy S S+t <S4 =2 (160)

This proves (150), as desired.

Corollary (5.3.28)[175]. Let s € (0,1) and p € [1, +o0) be such that sp < n.

Let g € [1,p*), 2 € R" be a bounded extension domain for WSP and T be a bounded subset of LP(Q).

Suppose that supger [, Isz(_);fi(fzrl)pdxdy < 400, Then T is pre-compact in LA(€2).

Proof. First, note that for 1 < g < pthe compactness follows from Theorem (5.3.27).
For any q € (p,p*), we may take 6 = 6(p,p*,q) € (0,1)such that 1/q = 68/p + 1 — 6/p”*, thus
for any f € T and f; with j € {1,..., N} as in the theorem above, using the Holder inequality with

p/(0q) and p*/((1 —6)q), we get
0/ *
1F = Billopy = (o 1F = 8177 = 17 Pax) ™" < (5, 17 =Byl ax)™ (1, 1f - Byl v
= 1F = Bille o 7 = Bl < CNF = Bl IF = Billpgy < C°.

where the last inequalities come directly from (160) and the continuous embedding (see (5.3.24)).

*

)(1—9)/10

Notice that the regularity assumption on {2in Theorem (5.3.27) and Corollary (5.3.28) .We will show
certain regularity properties for functions in WP () when sp > n and £ is an extension domain for
WP with no external cusps. For instance, one may take f2any Lipschitz domain (recall (5.3.17)).

Lemma (5.3.29)[175]. (See [199].) Let p € [1,+) and sp € (n,n + p]. Let Q € R" be a domain with
no external cusps and fbe a function in WSP(Q). Then, for any X, € Q and R, R’, with

0 <R’ <R < diam(Q),

we have

(Fanteonn = oy ceona| < lflpsplBrro) 0 0| CP=m/mP (161)
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Where

TR

P
fysp = 5w o™ [ [0 ~ (n,ceomal s

X0€Qp>0 Bp(xo)ﬁﬂ
1
and (DBP(XO)QQ |B (Xo)ﬂﬂ| f p(XO)nQ f(X)dX

Theorem (5.3.30)[245]. Let Q € R be an extension domain for WP with no external cusps and let
p € [1,4+),s € (0, 1)be such that sp > n. Then, there exists C > 0, depending on n, s, p and £, such that

14
£ = FOIP
I eoagay < €| Iy + | [ Fommsdrdy | (162)

)
for any f € LP(Q), with a :== (sp — n)/p.

Proof. In the following, we will denote by C suitable positive quantities, possibly different from line to
line, and possibly depending on pand s.
First, we notice that if the right-hand side of Theorem (5.3.30) is not finite, then we are done.

If(x) -f(y)IP
y|n+sp

Thus, we may suppose that f f dxdy < C, for some C > 0.

Second, since Qis an extension domain for WP, we can extend any f to a function f such that
”f”WSp(Rn) =< C”f”WSP(_Q)

Now, for any bounded measurable set U ¢ R", we consider the average value of the function f in

U, given by (f)U = T

¢ =Pl =551, € - Foday|” < 5T, €~ Folay.
Accordingly, by taking x, € 2 and U == B,(x,),& = f(x) and integrating over B, (x,), we obtain that

£ P 14 1 ~ ~ p
fBr(xo)|f(x) - (f)Br(xo)| dx < 1B, (x| fBr(xo) fBr(xo)lf(x) - f(J’)l dXdy
Hence, since |x — y| < 2r forany x,y € B,(x,), we deduce that

f f(x)dx. For any £ € R™, the Holder inequality yields

2r) 1P e - Fol”
- d dxd
f |f(x) <f>Br(xo)| X = |B (x,)] f f |x — y|n+sp xay
Br(xo) By (x0) Br(xo)
2 PP C | f [
)
< , 163
B4 | (163)
that implies

[f1sp < ClIfIlyspcay (164)

for a suitable constant C.
Now, we will show that f is a continuous function. Taking into account (161), it follows that the
sequence of functions x = (f)g.(x)ne converges uniformly in x € 2 when R — 0. In particular the limit

function gwill be continuous and the same holds for f, since by Lebesgue theorem we have that

limg_, Wl)nmeR(x)mf(y)dy = f(x) for almost every x € 0.
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Now, take any x,y € {2 and set R = |x — y|. We have
£ = FOI < F ) = Plapeol + [Psarco = Fsin] + [(F sy = FOII.

We can estimate the first and the third term of right-hand side of the above inequality using Lemma
(5.3.29). Indeed, getting the limit in (161) as R’ — 0 and writing 2R instead of R, for any x € 2 we get

|<f>BZR(x) - f(x)l < C[f]p,splBZR(x)|(Sp_n)/np < C[f]p,spR(Sp_n)/p (165)
where the constant C is given by c26P~™/P/|B, |.

On the other hand, [{f)5,,¢0) = (Faarin | < 1F @) = (Fasreol + 17 (@ = (Peronl
and so, integrating on z € B,z (x) N Byx(y), we have

|B2r(x) N BZR(y)ll(f)BZR(x) - <f>32R(3I)| = fBZR(x)ﬂBZR(y)lf(Z) - <f>BZR(x)|dZ
+ fBZR(x)nBZR(y)lf(Z) - <f~)BzR(J/)|dZ

= BZR(x)|f(Z) - (f>BzR(x)|dZ + fBZR(y)lf(Z) - <f>BzR(J’)|dZ'
Furthermore, since Bg(x) U Bg(y) C (BZR (x) N B,g (y)), we have
|Br(x)| < |Bar(x) N Byr(¥)|and|Br(¥)| < |Bar(x) N Byr(y)l
and so
~ ~ 1 ~ ~ 1 ~ ~
|<f>BZR(x) - <f>32R(J/)| = |Br(x)| fBZR(x)lf(Z) - <f>BzR(x)|dZ + Bar(¥) fBZR(y)lf(Z) - <f>32R(J/)|dZ'
An application of the Holder inequality gives

1/p
1 = x | By (x)| P~ 1/P x = P
|BR(X)| f |f(Z) - <f)BzR(x)|dZ < |BR(X)| f |f(Z) - <f>BzR(x)| dz
Bor(x) B2r(x)
B ()| P77 _
< 5T R Upsp < ClfTpspREPP. (166)
R
Analogously, we obtain
IBR(y)I j [f(@) = (Ppopinldz < Clf1ppREPTV/P. (167)
Br(Y)
Combining (165), (166) with (167) it follows
1f () = FODI < Clflp,eplx — y| P72, (168)

up to relabeling the constant C.
Therefore, by taking into account (164), we can conclude that f € C%*(2), with

a = (sp—n)/p.
Finally, taking R, < diam(£)(note that the latter can be possibly infinity), using estimate in (165)
and the Holder inequality we have, for any x € (2,

FCOI < [(Fagyo| + [F OO = (Fagyco] <
Hence, by (164), (168) and (169), we get
|f C)—f )]
IFllconca) = Wfllioa) + supsyen 252 < C(I ey + Ulpap) < Clfwernco

for a suitable positive constant C .
When the domain (2is not Lipschitz, some interesting things happen, as next examples show.

¢ llIIfIIme) + c[flpsp|Br, )| (169)

|BR0 (X) 4
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Example (5.3.31)[175]. Let s € (0,1). We will construct a function uin W% () that does not belong to
WSP (), providing a counterexample to Corollary (5.3.3) when the domain is not Lipschitz. Take any

p € (1/s,+x). (170)
Due to (170), we can fix
p+1
K> p— (171)

We remark that x > 1.
Let us consider the cusp in the plane C := {(x;, x,) with x; < 0 and |x,| < |x,|*}
and take polar coordinates on R?\C, say p = p(x) € (0,+) and 8 = §(x) € (—m, 1), with
x = (x1,x,) € RE\C.
We define the function u(x) := p(x)8(x) and the heart-shaped domain 2 := (R?\C) N B, with
B, being the unit ball centered in the origin.
Then, u € WYP(2)\WSP?(£2). To check this, we observe that

0x,p = (2p)710,, p? = (2p) 710y, (xf + x5) = % and, in the same way, 0,,p = %.
Accordingly, 1 = 0,,x; = 0y, (pcos8) = 0,,pcosf —psin00, 0 == — x,0,, =1 — % — X0, 6.
That isd,, 6 = _ﬁ'
By exchanging the roles of x; and x, (with some care on the sign of the derivatives of the trigonometric
functions), one also obtains 0,0 = x—;
p

Therefore,0,, u = p~*(x10 — x,) and 0y, u = p~*(x,6 + x;)and so|Vu|* = 62 + 1 < m? + 1.
This shows that u € WP ().

On the other hand, let us fix r € (0,1), to be taken arbitrarily small at the end, and let us define
7o :=rand, forany j € N, 77, =17 — 17"
By induction, one sees that 7; is strictly decreasing, that 7; > 0 and so r; € (0,7) < (0, 1).
Accordingly, we can define € = lim;_ 1 77 € [0, 1].
By construction £ = limj_, 1o 741 = limj_ 400 77 — j ={¢—+¥" hence £ = 0.

As a consequence,

+0oo N N

K - K - .

r“ = lim r“ = lim 1, —1i,, = lim ry—r =7 172
z ] Notw ] Notw JoUt T NS O TN (172)
j=0 j=0 j=0

We define D; := {(x,y) € R x R?s.t.x3,y; € (=15, —7j41),
xz € (|x1]%, 2|x4[*) and — y, € (|y,[*, 2]y11%)}.
We observe that
N x02{(x, )’) € R* X R?s.t.x1,¥; € (=7,0), x5 € (|11, 2|, [) and —y, € (Iy11", 2[y11)}
2 Ui D;,
and the union is disjoint. Also, 77,1 = 7‘1(1 -1 1) >7(1—r 1) > for small 7.
Hence, if (x,y) € Dj,|x;| <1j < 2rj+1 < 2|y1| and, analogously ,|y; | S 2|xq].
Moreover, if (x,¥) € Dj,|x; — y1| S 15 — 1541 = 17 < 2°1f5; < 2F|xq|"
and [x; — y,| < [x2] + |y2| < 2[xq[* + 2|y |* < 2K+2|x1|x-
As a consequence, if (x,y) € Dj,|x — y| < 23 |x, |~
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Notice also that, when (x,y) € D;, we have 8(x) = n/2 and 6(y) < —m/2, so

mp(x) > T[lxll'
2 2

> c|x |P7*@*SP) for some ¢ > 0.

ulx) —uly) = ulx) =
[u(x)-u(y)?

As a consequence, for any (x,y) € D;, P

Therefore,
I, p@-u@P dy > [, _C|x1|p—'€(2+5p)dxdy

D; |x—y|2+sp

— Cf Tj+1 dx f Tj+1 dy |i|97,1c| f |3’1||’c dyle |p Kk(2+sp)
Tj
=cl ”“dx S5 dyn o IP7ECHP <y |
Tj
<c2” "f r’“ dx; [ Ly, | PSP
Tj

T' T
< 27 [T dxy [T dy, PP
J J

= CZ_Knp_KSp”K = cZ_"rj"_“, with
a=k(sp—1)—p>1, (173)
thanks to (171). In particular, ff %dxdy > c27"r™%r , by summing up and exploiting (172),
+00
u(x) —u@)|? ulx) —u@)|P
HORSTT N M) —wOIP o aia
|x — y|2+sp |x — y|2+sP
j=0Dp;

By taking ras small as we wish and recalling (173), we obtain that

f fﬂ |u(x) u(y)lp d dy = +OO,SO u e WS.p(_Q).

|x y|2+sp

Example (5.3.32). Let s € (0,1).We will construct a sequence of functions {f,} bounded in W*? () that
does not admit any convergent subsequence in L?(f2), providing a counterexample to Theorem(5.3.27)
when the domain is not Lipschitz.

We follow an observation by [200]. For the sake of simplicity, fixn =p =q = 2.
We take a := 1/C¥ for a constant C > 10 and we consider the set 2 = Uj, B;where, for any
k € N, By, denotes the ball of radius a? centered in ay. Notice that

ay > 0 ask » o anda, — ai > ag,q + az,,.

Thus, (2 is the union of disjoint balls, it is bounded and it is not a Lipschitz domain.

1
- =2
For any n € N, we define the function f;;: 2 — R as follows f,,(x) = {n 2an”, X € By,
0, X € O\B,

We observe that we cannot extract any subsequence convergent in L2(2) from the sequence of functions
{f.}, because f,,(x) = 0 as n = +oo, for any fixed x € {2 but

”fn”LZ(g) f |fn(x)|2dx = f T an4dx =1

Now, we compute the H*norm of f,, in £2. We have

f jlfn(x)_ @S}S)I f f - a,21+25 dxdyzzn-lz f f T dxdy. (174)
x—yl lx — v lx =yl
0 n kian Bn

lan—agl

Thanks to the choice of {ak} we have that |a2 + a2| = a2 + a2 <
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Thus, since x € B,y € By, it follows

lx =yl = lay, — af — (ax + ap)| = |a, — a, — (ai + ap)|
la, —ax| lan — agl
> |an, — axl — |ai + ai| = |a, — ax| - nz = nz .
Therefore,
—4 —4 4
a, an Ak
—————dxdy < 222 f f ———dxdy = 2**¥g? ————— 175
f f lx — y|2+2s y la, — |22 y a, — a |2+ (175)
By Bn By Bn
Also,if m = j + 1 we have
1 1 1 1 a;
G-n= - =g = (17¢) 27 (176)
Therefore, combining (176) with (174) and (175), we get
| fn ()= I? ap
Jo Jo TS - dxdy < 2870 Ty — 2 e
a4 a4
=2%*%q (kaW + Zkeon W)
5+4s aﬁ aﬁ
< 2°™m Ek<nF+ Yion 7o
6+4s 2-2s 6+4s 1 ¥
<2 T[Ek¢n aj =2 T[Ek:#n (m) < 400,

This shows that {f;,} is bounded in H*(02).

Corollary (5.3.33)[236]. Let Q be an open set in R™, (1 —¢) € (0,1) and (1 + ¢) € [1,+0). Let us
consider u € W1=#1+¢(Q) and (1 —¢) € C®1(Q), 0 < &€ < 1. Then (1 — &)u € Wi&*¢(Q) and

I(1 = ullyr-zi+eqy < Cllullyi-erveq), where C = C(n,1—¢,1+¢,02).

Proof. It is clear that [|(1— &)ullji+egy < [lull 1+¢(q) since |1 —¢e| < 1. Furthermore, adding and
subtracting the factor (1 — &) (x)u(y), we get
fn fg |(1-8) @u@)-(1—&) u@)| 1+ dxdy < 2¢ (Ig f_() |(1-8) (@) u@x)-1—&)@u(y)|*¢ dxdy

|x—y|"+1_52 |x—y|"+1_52

|(1—&)()ux)-(1—&) (Duy)| ¢
+/, I} \ dxdy)

|x—y|n+1-e?

< ¢ (fg fﬂ lu(x)-u(y)|*+e dxdy

|x_y|n+1—z~:2

lu()**E|(1-e) () -(1-) () |**E
+/, J, e bl 2y dxdy).

|x_y|n+1—£2

Since 1 belongs to C%1(12), we get

lu I+ la-a ) -1-a I P lu@I*+elx—y|**e
fﬂ fﬂ |x—y|nt1-€ dxdy =4 f.(l f.()nlx—y|51 [x—y|n+i-g2 dxdy
lu@)|™+e ~ 1+
+f!2 fnn|x—y|z1mdxdy = C”u”L“gS(ﬂ)'

where A denotes the Lipschitz constant of (1 — €) and € > 0 depending on n, (1 + €) and (1 — €).
Corollary (5.3.34)[236]. Let ¢ > 0 , Fix x € R" and E c R" be a measurable set with finite measure.

Then, |, dxte) C|E|~(~/n for a suitable constant C = C(n,1 + &1 — €) > 0.

CE |s|“+(1—€2) =

1
Proof. We set p := (ﬂ)" and then it follows

|(CE) nB,(x)| = |B,(x)| — |E n B,(x)| = |[E| — |E nB,(x)| = |E N CB,(x)|.
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Therefore,
d(x+¢)

f d(x+¢) _f +f d(x+¢)
CE |gn+(-€2) — J(CE)NBp(x) |g|n+(1-£2) (CE)NCB (x) |g|n+(1-2)
d(x+¢g) d(x+¢)
= f(CE)ﬂBp(X) pn+(1—€2) + f(CE)nCBp(x) |s|n+(1—52)
__|(CE)nB, ()| + dy
- p“+(1—€2) (CE)NCB)(x) |s|n+(1—92)
_ |EnCBp(X)| f d(x+g)
- p“+(1—€2) + (CE)NCB,(x) |s|n+(1—sz)
d(x+¢g) d(x+¢)
2 fEnCBp(x) |g|n+(1-22) + f(CE)nCBp(x) gn+(1-¢2)
d(x+¢)

~JCBp(x) [gn+(1-£2)’
The desired result easily follows by using polar coordinates centered at x.
Corollary (5.3.35)[236]. For £ >0 and p € [1,+) be such that (1 —¢€?) <n. Let Q € R be an
extension domain for W1=51%€_ Then there exists a positive constant C=Cn1+¢1—c¢0) such that,
for every f; € W151+2(Q), we get Z;-"ﬂ”]j-”LHEZ(m < CZ;”:1||jj-||W1_S'1+S(m,f0r any &, > 0; i.e., the
space W1=&1%2(Q) is continuously embedded in L1*¥2(Q) for any &, > 0. If, in addition, Q is bounded,
then the space W1=51*£(Q) is continuously embedded in L1*#2(Q) for any &, > 0.
Proof. Let f; € W'™51*2(2). Since Q S R"is an extension domain for W*~51*% then there exists a
constant C; = C;(n,1 4+ &1 —&,Q) > 0 such that
}n=1||fj”W1—s,1+5(Rn) < Cl ;'n=1||fj”W1—s,1+S(_Q)J
with f] such that fj(x) = fj(x) for x a.e. in Q. On the other hand, by Theorem (5.3.23), the space
W1-e1*e(R™)is continuously embedded in L*¥2(R") for any & > 0; i.e., there exists a constant
C,=C,(n,1+¢1—¢) > 0such that
;n=1||fj ”L“’EZ(]R") =C 27;1”]() ||W1—€.1+€(]Rn)'
Combining (146) with (147), we get
Z;n=1”fj||Li+«€z(g) = z:;n=1||fj”L1+«€2(Q)

< Z;llllf}llLl+Sz(Rn)

S CZ ;'n=1||f}||W1—s,1+S(]Rn)

S C2Cl Zjlg1||f}'||w1—s,1+s(ﬂ)'
that gives the inequality in (145), by choosing C = C,C;.
In the case of 2 being bounded, the embedding for £, > 0 plainly follows from (145),by using
Holder’s inequality
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Chapter 6

Relative asymptotics and Fourier Series with WP-Convergence
We study the pointwise convergence of the Fourier series associated to the inner product
provided that m is the Jacobi measure. We generalize the work done by F. Marcellan and W. Van Assche
where they studied the asymptotics for only one mass point in [—1,1].The same problem with a finite
number of mass points off [—1,1] was solved a more general setting by consider the constants My ; to be
complex numbers. As regards the Fourier series, we continue the results for the Jacobi measure and mass

points in R[—1,1].Let {Q,(La) (x)} denote the sequence of monic polynomials orthogonal with respect to
nz0

the non-discrete Sobolev inner product, (f, g) = f_11 f®gx)d,x) + 1 f_11 f'(x)g'(x)d, (x) where 1 > 0
and d, = (1 — xz)“_l/Z dx with a > — 1/2. A strong asymptotic on (—1,1) a Mehler-Heine type formula
as well as Sobolev norms of Q,(la) are obtained. Let {g,}, = 0 be the sequence of polynomials
orthonormal with respect to the Sobolev inner product
(f,g)s = f_llf(x)g(x)wo(x)dx + f_11 f'(x)g' (x)w, (x)dx where wy € L*([—1,1]) and w; is

a weight Kufner—Opic type .
Section (6.1): Orthogonal Polynomials With a Discrete Sobolev Inner Product:

Let u be a finite positive Borel measure supported on the interval [-1,1] with infinitely many points

at the support and let a; ,k = 1, ..., K be real number such that a; € [—1,1] .For f and g in L?(u) such
that there exist the derivatives in a; we can introduce the Sobolev-type inner product

1 K Nk
(.90 = | F@gCIduC) + YD Miif O (a)g® (@) ®
1 k=11i=0

Where M;,; = 0 fori =0, ..., N, — 1 and M; N, > 0 when k = 1, ..., K we assume

p({ax}) = 0 otherwise the corresponding My, should be modified. Let (Ek):):() be the sequence of

orthonormal polynomials with respect to this inner, (B, ,B,) = Onr k,m=0,1,.. .[201] deduced the
relative a symptotics for the orthogonal polynomials with respect to the Sobolev inner product with mass
points outside [—1,1] and complex constants My ; [202] analyzed such a question when there is only one
mass point inside [—1,1]. Here we deal with an extension of this last problem with a finite number of
masses. We compare the polynomials B,, with the polynomials (pn) k= orthonormal with respect to u.

The technique used in this section is a generalization of the one used for obtaining estimates of the

Sobolev orthogonal polynomials in [203],[204]. There, studied the pointwise convergence of the Fourier

series for sequences of orthogonal polynomials with respect to the inner product (1) for the Jacobi

measure and with mass points outside [—1,1].The main results concerning asymptotic properties we show
Bn(x)

that o (D) tends to 1, and we obtain for B, (x) the usual weak a symptotics, and, in Theorem (6.1.10), the

asymptotics for the coefficients in the recurrence relation of the Sobolev orthonormal polynomials are
given. We consider the pointwise convergence of the Fourier series with respect to (1) provided that u is
the Jacobi measure. We continue the work achieved in [203], [204] and prove the point wise convergence
for the Fourier series of functions which satisfy some standard sufficient conditions . From now on k([],)
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denotes the leading coefficient of any polynomial [[,with real coefficients and n is the degree of the
polynomial.

Ny + 1if Ny is odd

Ny + 2 if Ny is even

And let Wy(x) = [1K,(x —a )Nk where ¥K_N;j_, let (P,)%, be the sequence of orthonormal
polynomials with respect to p.

Lemma(6.1.1)[205].Wy (x)B, (%) = ]-2=l\10 AniPhin—j(X), App # 0. Moreover A, ; are bounded

= KCnw) 1
and An,ZN T K(Ppan) An,o *0.

Proof: Since Wy(x)B,(x) = }‘:ON oy B (x) and ap; = f_11 Wy () B, ()P (x)du(x) = (B, WyP) = 0,
j <n — N, we have the first assertion with A, ; = ay,j4n—j Furthermore,
1 -~
jzzN() Ai_j = f_l B COWR () dp(x) < MaXye[-1,1] Wy
And thus (An,j) are bounded also

Let Ny be the positive integer number defined by Ny = {

k(Bx)

k(Prl+N)

1
Ano = j Wi (9B GOPy sy () di(x) =
-1

As well as

k(Par) _ k(Poy) 1
k(En) k(pn+N) An,O

1
Anay = f Wiy (0B () Py COAR) (B Wik Pa_n) =
1

And the lemma holds.
Let A be a sequence of nonnegative integers such that limpep Ap; = A forj=0,1,....2N
When p'(x) > 0 since Ay < o0 and lim,,_, KPon) — L a5 it is well

K(Pn+N) 22N
known (see [206], [207]), A,y has to be greater than zero.

Let
2N

where, for each j, Tj(x) is the Chebyshev polynomial of the first kind and degree j.

Lemma(6.2.2)[205]. If ' (x) > 0 then the polynomial [],y satisfies [[52(ai) = 0 for
i=01,..,Ny—landk=1,..,K
Proof: For a givenk = {1,2,...,K} lete > 0 and i € {1,2, ..., Ny} consider the function
0 ifxe[—1ag+¢
#ie(0 = o —1ak)i ifxe(ay + €, 1)

This function is bound in [—1,1] and satisfies the condition maxxe[_l_l]le (X)‘Pi_s(x)l < C for some
constant C independent of € .

As it is well known (see [280]),[281] since p'(x) > 0

dx

1 1
1
lim j 9P Pa(IANCE) = ;_jl FEOT, 00 ==

149



For all Borel measurable function f bounded on [-1,1] as a consequence the expression of Wy (X)En (x)

in terms of (P) of lemma (6.1.1) gives

1 2N
lim f Wi (5B () P oy ()W (O () = f VZOA T, (W32 () —e ﬁ

From the Cauchy-Schwarz inequality

|2, Ba() Py COWN ()W (0 du(0)| < ¢ (7, BAGdu(x))

1

(12, P2y (0dne) < ¢

N =

And we get
1 2N
lsl_r)résup — IZA T, (x)‘PlS(X)\/i c for i=1,.., Ny (2)
—1 v=0

When i = 1 we have

I Tan (W) 725 = Tan(@) [y Pre(®) g + [, ([Ton ) — [an(@)) W1, (¥) 7=
Thus condition (2) holds 1f and only if [],n(ag) =0
Lemma (61.3)[205]. If 1’ (x) > 0 a.e. then [[on(x) = 2N Ty (%) TTE., (x — a) Nk,

Proof. For a given k € {1, ..., K}, let {; ((x),€ > 0 and i = 1, ..., Ny be the functions
1

—  if[x—ag| > ¢,
given by Y (x) = { (x—ag)! | Kl
0

if [x—ay| <-e.

Using Lemma (6.1.2), write 2N A, T, = [TX_, (x — a,) MkTy (x) where Ry (x)

polynomial of degree N . From the boundedness of ; . (x) we get
: . 1 = .1 d
limeo limye S, WhGOBa (0P snGOW1GOdR00 = lim [, 52 AT, (0. () 72

1 H] 1(X a])) X
= L my R = 3)

Because H]K=1(X — a]-))Nj Tyn(x) are bounded and as a consequence of the Lebesgue

dominated convergence Theorem. Moreover

Wn (X) dx

|12, BaGOPaen (0 22 () — = [, B3 ATV (0 i s
ffl B (Pnen () o () = [ Ba(OPnen COWN (Y1 (OdR(X)

+ |f_11 B ()Pn+n )Wy ()3, () dn(x) — = [, B2 AT, (x ) s Wl‘ix

Given > 0, from (3), llmI( ) < § for e > 0 small enough. On the other hand,

I +132.

(1) | f Bnr(X)pn+nX) = Wn a(X))1 du(x)land, since there is a constant C , independent from e and i; such

that

|WN(X)
ne =

= 1
< C,from the Cauchy—Schwarz inequality, 1Y <c ( faakkj: Bn(x)pf]_,_N(X)du(x)) 2

But pZ, yx)du(x) 5 - \/% and it means that, for € small enough, lim supn_)oolt(]'ls) <34.
As a consequence,
lim sup

neA |f

WN (X)

(X)pn+N(X) Fdpx) - f 2o AVTy (%) — (X a )1\/1—
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WN(X)
—ap)!

1 *
Since f_1Hk=1(X—ak)Nk T— N( )J_ 0,i=1,..,N;,k=1,..,K

Since {

By orthogonality, f B, (x)ppin(x ) du(x) =0,i=1,..,Ng,k=1,..,K and Ry(x) satisfies

(X_;ak)il‘[{le(x - ak)Ni} :i=1,..,Ng,k=1,..,Kis a basis of the space of polynomials

of degree less than or equal to N — 1, Ry(x) is the Chebyshev polynomial of the first kind and degree N
up to a constant factor. If we compare the leading coefficients,

Z‘Z,N A T V(%) = 2NTy(x) [T, (x — a )Nk and the proof is complete.

Lemma (6..1.4)[205]. If p' > 0 a.e., the coefficients A, satisfy

(D) limp e Apy = Ay, v =0,...,2N where 32N A, T, = [T¥_, (x — ak)) Nk Ty (x) .

(i) X2 Av(@~ ()Y = ZLNHE=1(((P_(X))2 — 2a0” () + 1Nk,

Proof. From Lemma (6.1.1) and the ratio a symptotics of p, with p'(x) > 0 a.e., we get

. W En(x) . Pn+N-v(X) -
11InnEA p:+N(X) = hmnEA 2‘2/20 An,VL(X) = ‘2120 AV[(p (X)]V
uniformly in compact sets of C/[—1,1]. Denoting again [[,n(X) = ZVN A T v(X), since
Ay 1 [In(® dt
V OA ((p (X))v = f 1 )Z(Nt \/1 t2

as it can be deduced from the residue theorem after the change t = cos 0 the expression of [[,y.
Lemma (6.1.3) gives

2N Av o~y o VXL (L2 T (-2 r)

v=0g, (@7 ()Y = Jig=1 o G pe)

T f‘ (148N 1K, (2 -2a,8+1)"&
Tti [§l=1 G-~ (x))E-0*(x)

dg = [TR-1 (0~ (%))? — 2ap™ (x) + DNk,

In particular, this means that — = lim Z‘Z,Noi—v (¢~ (x))Y =1, but, from
2N N
s k(pn-n) 1 _ 1 _ _ 1
Lemma (6.1.1) , A,y = limy 4 Koo Ao — 7NAs and Ag = Ay = N follows.

Now the coefficients A; are completely determined for any subsequence A and we
can assert that limy,_,,, Apy = Ay, v =0,..,.2N with 22N A T, = [T5_,(x — a)N KTy ()
_ 1 _
2\2,-20 Ay(e~ (X)) = 2_NH11§=1(((9 (X))z — 2ap~ (%) + 1)Nk-
Theorem (6.1.5)[205]. If p'(x) > 0 a.e. then
Bn(x)

Pn(%)
(i) n — N zeros of B,,(x) belong to [—1,1] and the other N zeros accumulate in [-1,1].

(iii) limp,, Bé”—zg) =X+ Vx2? — 1 uniformly on compact subsets of C/[—1,1].

. 1 ’ dx . Bh(x)
(V) If [, log p' (x) 7= > —oo then limyeo ——= i) =S, (x)

uniformly on compact subsets of C/[—1,1]. Here S,;/(x) denotes the Szegd function of ' (x).see [207]
Proof. Item (ii) follows from f_ll x*B,, (X)W, (x)du(x) = 0 for k + N < n and formula

(i). Items (iii) and (iv) are consequences of (i) and the well-known ratio and strong
asymptotes of p, So, we only needto prove (i). From Lemma (6.1.4) we have

(1) limp e = 1 uniformly on compact subsets of C/[—1,1].
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Bn _ ; _ _ * . .
lim, o W (0 2200 = 128 A0 (0) = 55 T, (07 (0)% = 2297 (0) + DMk, which yields

Bn
limp o Wy (0 2223 = (0 GO)N 55 T (07 (0)? = 210 (0 + DN = Wiy (0.
Lemma (6.1.6)[205]. With the previous notation, if p'(x) > 0 a.e., we get

wi () = ZEO AT To (%) + 2720 AjAj 1y Ty (%)
Proof. From Lemma (6.1.5), T2 A; Tj(x) = Tn(x) [Theo(x — a)Nk

Besides, as it was proved, A, = Ag and forj =1,... ,N — 1 we get
1 1 01 : d
S Ang = = T (= )N TN (O Ty () o=
1 1 : d
= _f HE—1(X - ak)NkT2N+j (X)TN+j %) ﬁ and,
d
_AN -j = f Hk 1(X - ak)NkTN(X)TN—] (X)\/I_X7
d
;f_l [Ty (x — ak)Nk(TZN—j (x) + Tj(x) ﬁ
1 1 s d
= — [ e = adN T (0 7=
which yields Ayyj = Ay_jforj=1,..,N—1.
As a consequence
Tn ) TTR. (x — ai )Nk = ANTN () + E]N=1 AN+ (T4 (O T (X))
And thus [T, (x — a)Nk = ANTo(x) + 2 ZN; Any T, () -
Now, if we work out the coefficients of wg(x) = (ANTO(X) + ZZ}ilANﬂ-Tj (X))2 in terms of the

polynomials (T,)2N, the statement of the Lemma follows.
Lemma (6.1.7)[205]. If p'(x) > 0 a.e. and f is a Borel measurable function bounded on [-1,1] then

limyeo J, GOWE (OB (OB GORGO) = = [ FOWE () Te(®) 7 k= 0,1, .

Proof. Let f be a Borel measurable function bounded on [-1,1] Writing the polynomials W, (x)B,, in terms
of (pp)r=o as in Lemma (6.1.1), from the a symptotics of the polynomials p, we get

limy, oo J, FGO W (0B GO Wy () B () dn(x)
= limpoe S, F) T2 AnjPran—i (0 T2 AnsieyPoicrnov () dp(x)
= limyooo [, F0O(Zjy + Disw + Tjco-) BnjAnsioyPran—j () i)
= = [1 FCO{Z2N APT() + Ziow AjAy (Teaj—y () + Ty ()} g
=211 FCO{EZY A? + 2 550 AA T, (O} Ti(®) s
= = [ FCO{EA A7 + 232N, NV AA LT, (x)}Tk(x)
== f f(X)WA Ty (%) \/= according to Lemma (6.1.6)

Lemma (6.1.8)[205]. If ' (x) > 0 a.e. then lim_q limyco [, ak+“Z(x)dp(x) =0,k=1,..,K.

Proof . Denoting by ||f]| = (f, f)z the Sobolev norm, fork =1, ...,K andi =0, ..., Ny , we have

My; < inf{||m,[1? : degm, <n, nP(a) =1} = ————
2e%(BY @)
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2
1

3(80@0)

¥o_ oB(”(ak)ﬁ(”(x)
Zv O(B(l)(ak))

because 1 = 58 CBY (@) < 03 Zioy T (BY (210 and

. 2 .
Then, for any (k, i) such that My; > 0,372, (B‘(,l) (ak)) < ML and, in particular, Br(ll) (ay) — 0 for
k,i

0 <k<K provided that the corresponding coefficient satisfies the condition My; >0. As a
consequence,

1
lsi_r)ré j B2(x)du(x) =1 (4)

For € > 0 let s be the function defined by
if x € [-1,1]\ UE=1[ak —ga, + €],

0 if UK [ax —&ay +¢].
Then, using Eq. (4), Lemma (6.1.8) and dominated convergence theorem, we have

B3 (0dnG0) = limgo limy o [, (1 = WEGIWR 00)BF (0 du()
=limeo (12 [ W2 OwWh(0) =) =

ak+s 52
lim,_,o lim,,_, o f

which gives the lemma.
Now we can prove the weak convergence for the Sobolev orthonormal polynomials.
Theorem (6.1.9)[205]. If u’ > 0 a.e. and f is a Borel measurable function bounded on [-1,1] then

limyeo [ FGOBR (0B dn(x) = = [ FEOT(®) =5 , k=0,1,... .
Proof. For € > 0, let Y be the function defined in the previous lemma. Let f be a
Borel measurable function bounded on [-1,1] Since f(x)2(x) is also bounded,
according to Lemma (6.1.7),

. 1 S r D 1 01 d
limyeo J, G2 GOWR (B (B G)dp) = 2 [, FEOWZOWR (O T, (¥) s
and, by the Lebesgue dominated convergence theorem,

1 1
lim lim [ fGU2COWE (9B () By ()dn () = f ) T, () m 5)
21 1
Moreover

|/, £G0Ba (0O Baay (AR = = [ 00 T, (0 s
< |/, F6OBA (0 By (OGO — [, FEOWZ COWE (OB (0 By () (0|

+ |12, FCOWZCOWE (9B () By (0N — = [ FGOT, () -5
=1$0 + 10,

Given 6 > 0 from (5), lim Ir(lzs) < 4 for &> 0 small enough. On the other hand,
n—-oo

I8 < K |2 0B (0 By (ARX)|
Since f is bounded on [—1, 1] there exists a constant C such that |f(x)| < C,x € [-1,1] and we get

150 < T |12 f00Bn (0B GOdR(0)| < C XK, (S0 B2 (X)du(X))

ag—¢&
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By Lemma (6.1.8) lim suplfﬁs) < 6 for € small enough then

n—-oo

[ BB, () du(x) — [ FEOT, () | < 26

And the proof is complete.

lim sup,_ e

=

Theorem (6.1.10)[205]. The polynomials B}, satisfy the recurrence relation

Wy (®)B,(x) = Z,N=1 an_j§n+j(x) ) O —j = 0pj,j =1,2,...,N,ap y # 0.
Furthermore if p'(x) > 0 a.e.then limy e, an; = a;,j = 0,...,N where Wy(x) = ay + 2 Z]N=1 ajﬁj(x).
1 ng;_l)(o) =0 N with W. ( ) 1K ( 2 2 1)Nl*<
gy )= 00 N owith Won (8) = TTie=, (87 — 2axg + 1),
Proof. We can write Wy (x)B,(x) = E]-“:ON An j ﬁj (x) where

- = 1 =~ =~ = = .
A j = (WyBn,Bj) = [, Wy()B,(0)B;(x)du(x) = (B, ,WyB;j) =0 for j<n—N.
Thus we get the recurrence relation with o, ; = An n+j.) = —N,...,N. Moreover, for

j =1 , ,N ,(Xn'_j = <WN§n 'P’n—j> = <WN§n—j ,§n> = O(n—j,j .

On the other hand, if p'(x) > 0 a.e., forj =0, ..., N, from Theorem (6.1.10)

. . 1 = = 1 1 d
lim o 5 = lim [, Wy (OB (0B (G0 = 2 [ F0OT, (9 s

- %fmﬂ MTiea B2 — 245 + DM = zN(l\?—l)!WZ(ll:II_l)(O)'
In terms of linear operator theory, the recurrence relation may be more useful in the form given in the
following theorem.
Theorem (6.1.11)[205]. If p'(x) > 0 a.e., the Sobolev polynomials satisfy the recurrence relation
xBp(x) = hyBy 1 (xX) + vyBy(x) + hy_1B,_1(X) + F,(x), where h, and v, are the coefficients of the
recurrence relation xp,(x) = hpppe1 (X) + vppn(x) + hy_1pn-1(x) and F,(x) are functions such that

and are given by oj =

= 0 uniformly on compact subsets of C/[—1, 1].

Proof. From Lemma (6.1.1),
XWNEn(X) = j2=NOAn,jXpn+N—j(X)
= j2=NO Ap i (hpan— COPnaN— () + Vnin—j () Pran—j (X) + hpinoj OPnan-j (X))
= WnN (hn§n+1(x) + Vngn x) + hn—lﬁn—l(x)) + ijzNO(An ,jhn+N—j - hnAn+1)pn+N—j x)
+ X720 An i (Vnan—j = V) Ans1)Pnan— () + X20(An jhnen— — hnAns1)Pnen-j (%)

And the lemma follows from Lemma (6.1.4), Theorem (6.1.5) (i) and the a symptotics of the sequence
(P(X))n=o- In this section we are focused on the study of the point wise convergence of the Fourier series
expansions in terms of the sequence of polynomials (ﬁn):; 0 orthonormal with respect to the inner

product (1) provided that p is the Jacobi measure. In order to do this we need some previous results and,

1
in what follows, we will denote by ||f|| = (f, f )z the Sobolev norm of a function f.
Lemma (6.1.12)[205]. Given a positive Borel measure m supported on [—1,1] with infinitely many
points at the support, the polynomials B, (x) satisfy
1

(i) if My ; > 0 then %= (’B“)(ak))2 _ 1
P n=0 n Mk,j

(ii) if My ; > O then Yo, §f]i) (ak)ﬁg) (ap) =0 for (t,g) # (k,i) suchthatMy ; >0.
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(i Py 2
iDif My ; > 0 then limyo, [, X3-0 (B (@1)B,(x)) du =0
Proof. For i=0,..,Nand k=1,...,K, let £} = inf{||m,||? : degm, < n, n®¥(ay) = 1}.
It is clear that for all My ; < {JSL and, as it was proved at the beginning of the proof of

Lemma (6.1.8). 4& = 1_ > let N* =YK (Ny+ 1) and introduce the function

' Z?zo:o(ﬁx(/l)(ak))

x2N*

px) = {EXP {m} o XI<1, then @ € £ (R), (0) =1, |p(x)| <1 forevery x € Rand ¢(0) =0
0, x| > 1.

fori=1,.., Ny, k=1,..,K Forafixed k€ {1, ...,K} and € > 0 such that,

ay & [ag — € ay + €] for t # Kk, let us consider the function @y . = ¢ (X_:k) ,

—a\ i .
for i € {0,1, ..., Ny} let wy;(x) = (@) and consider a polynomial [[(x) such that H(l)(ak) =1 and

1

. j ) , *
satisfies maxye[_q 1 |]_[(])(x) — (Wk,i(Pk,s) (X)l <e,j=01,..., N

Since (Wk,i(Pk,s)(j)(at) =0fort+ kand =0,1,...,N;, when 0 < j < N we have
I < [[Wiei G @r e G| + [[TT) = Wi B @ree K|

1 1
< {u([ax — & ax + €]) maxye—11] Wi (%) + My; + €22 = (My; + h(e))?
where lim,_,, h(g) = 0 because p({ax}) = 0 a consequence,

. i 1 1
Mg; < limp e fg)k = 5 < M; + h(¢) and thus My; = ————— , moreover,

23°=0(§§)(ak)) 23°=0(§§)(ak))
for (f,1) such that My; > 0

520 (80@0) = 220 (B0 @0) B,

2

2
=/ (23‘;0 (B @0)’ ’B‘v(x)> A Ge) + Mg {3520 (BY (ak))z}z
2

2
+ Zj;ti My <E3°=o (Ex(/i) (ak))z E\(;D (ak)> + Yk Zj:o My, <Z3°=o (P;\(/i) (ak))2 ﬁ\(/j)(at)> .

Multiplying this equality by £{} and taking limit when n — oo (ii) and (iii) follows from (i) and the
proof is complete.

Corollary (6.1.13)[205]. Let p be a positive Borel measure supported on [—1,1] with infinitely many
points at the support and let f be a function of L?(t) such that there exist the derivatives f(a) for
i=01,..,Ngand k=1,..,K.IfMy; > 0, then 32 o(f, Bn)BP (a) = fD(ay) 1=0,1,..., Ny,
K=1,..,K

Proof.

n_of, BB (a)) = [, () 20, B () B, () du(x)
. (i 2 ) o s
+Miif O () B30 (B (@10) + et Mieif D ai0) T BY (ai)BY (a0
+ Yook Dy Misf O (a) ¥ BP (a0BY (ay) -
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1

1 =
Since |f_11 f(x) ¥n_,BY (ak)ﬁv(x)du(x)| < (f_ll deu(X))2 {f_ll( n_ W (al<)§‘,(x))2 du(x)}2
taking limit in n the statement follows from Lemma (6.1.12).
So, we have convergence at the mass points for any function belonging to L? ()
and with derivatives at such points. But for the convergence at other points, more
conditions are needed and, in order to study this problem, we start with some
straight forward estimates for the polynomials By, .
Lemma (6.1.14)[205]. Let (p,)io=, be the sequence of orthonormal polynomials with respect to the
measure . Then there exists a positive constant C such that
lwn(®)Bnr ()| < Bl _n|pnsj(®)| forevery xeR
This lemma is an obvious consequence of Lemma (6.1.1).
When du(x) =(1-%*1 +x)Pdx,a>—1,8 > —1, i.e. the Jacobi measure, as it
is well known (see [208]), the orthonormal polynomials p,satisfy

a1 B, 1 1
(1-x2"2(1+x)2"+p,x)| <C, a>—c ,B>—§, (6)
IpnX)| <C,-1<a< —% , —1<pB< —% , for x € [—1,1] and, as a consequence of the previous

lemma, the corresponding Jacobi—Sobolev polynomials B,, satisfy the condition
[Ba ()| < Ch(x) (7

for x € [-1,1]\ UX_,{ax}, and for all n; where h(x) is the function which depends on a and B deduced
from (6) and Lemma (6.1.14). Lemma (6.1.12) gives some properties of the Dirichlet kernels

n_oBy(X)B,(t) and, as it was proved in [279] for the case |ay| > 1 they satisfy a Christoffel-Darboux
formula deduced from the recurrence relation. If x, € [—1,1] the polynomial wy (x) — wy(X,) may have
more than one zero at [—1,1] and this is not convenient for the representation of the Dirichlet kernel.
Instead of wy (x) we will consider the polynomial wy 4 (x) = f_X1 wy (t)dt and, from the positivity of
wn(X) when Xy # a,k=1,...,K,xq is the only zero of wy;q(X) — Wn41(Xg) in [—1,1] Because the
derivatives of wy,,(x) vanish at the a,S we have
(Wy41Bh,Bm) = (B, , Wy41By,) and this means that the Sobolev polynomials B,
satisfy the recurrence relation

N+1 N+1
W1 (0BG = D g (9B () + ) ety (0Bay(®) (®)
v=0 v=0

Moreover, the coefficients ay , are bounded because
1

|| = |(Whs 1B Bosw)| < j By (), Boey () Wys1 (ARG
-1
K Nk

+ z Z My i lwn1(ag)|
k=1 i=0

N
< MaXye[-1,1] W1 (X)) (1 + Z¥=1 Zizko My i

and, from Lemma (6.1.12), Eg) (ax) are bounded when My ; > 0 .
Christoffel-Darboux formula now takes the following form.
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Lemma (6.1.15)[205]. The orthonormal polynomials with respect to the inner product (1) satisfy the
following Christoffel-Darboux type formula:

{wns1 () — w1 ()3 20 B,(x)B,(y) = av,1(§V+1(X)§v(Y)) - §v+1(Y)§v(X))
+ty 2 (Bys2 () By () — Byaa (v) By (X))
+0y—1,2(By+1(X)By—1 (1)) — Bys1 () By_1 (%))
+-t+ (va+1(Bv+N+1(X)Bv(Y)) v+N+1(Y)Bv(X))

+eet O(V—N,N+1 (Bv+1 (X) BV—N(Y)) - V+1 (Y)BV—N(X))
with bounded coefficients.

Corollary (6.1.16)[205]. Let x € (—1,1)\ UK_;{ay} and p the Jacobi measure. If My; > 0 then
S B (a)Ba () = 0

and the convergence is uniform in compact subsets of (—1,1)\ UK_, {a}.

Proof. Let (k,1i) be such that My ; > 0 From the Christoffel-Darboux formula of

Lemma (6.1.15)it is clear that Y.2_, B, (ax)By(x) is a sum of a finite-depending on

By_yri g®
N-number of terms of the following type: oy Wn E;()X)W“_V(;k))
N+1 ~“WN+1(dk

bounded, |B,(x)| < h(x) with h(x) a continuous function in compact subsets of (—1,1)\ UK_,{a)} an

. Since the coefficients o,_y; are

lim, o ’B,(P (ax) = 0 lemma is proved.
Theorem (6.1.17)[205]. Let x, € [—1,1]\ UX_,{a;} and let f be a function with derivatives at the points
ak such that f(x;:)# belongs to L2 () when p is the Jacobi measure. Then
o
(D) Zizof, Bn)Bn (%) = f(xo).
(i)My; > 0 then Y2off, By)BY (ay) = D (ay) -
Proof. Because of f € L? (1) when M € L2(W) , Corollary (6.1.15) yields (ii).
Now, we denote by S, (Xq; f) the nth partlal sum of the Fourier Sobolev expansion and by D, (x,t) the
Dirichlet kernel ¥_, B, (x)B,(t). Then
f(x0) — Sn(x0; ) = (f(x0) — f(t), D (X0, 1))
1
= J_, f(x0) — f()Dn (x0, ) du(t) + Tkt Migo (f(x0) — (1)) D (%o, a)
+ 2K, T My of @ (ak) - (Xo; ak)
From Corollary (6.1.16) we get

. . 1
limy e f(xg) — Sp(X0; f) = limyLe [ () — F(©)Dy (%0, 1) duu(t)

Using the Christoffel-Darboux type formula, the above expression is the limit of a sum of a finite
depending on N number of terms

S 8(x0) = E(© oty 2 8P D_ gy ) b

T w1 (Xo)—wn+1 (D)

Bn_i+j(x)By_; () f(xo)—f - =
f_ll f(XO) _f(t)an—i,j s d (t)| |(xn 1]||Bn 1+](X0)| |f1 o)D) e B —'(t)

WN+1(Xo)=WN+1(t) Xo—t  Wni1(X)—wnsi (D) T
where the coefficients |an_i_j| are bounded and |Bn_i+]- (X0)| < h(xy) from Lemma (6.1.13) and the
comments after the lemma.
f(xo)—f(t) Xo—t

Xo—t  WN+1(Xo)—WnN+1(D)

Since the function g, (t) =
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belongs to L*() and there exist the derivatives g, )(ak) then

S5 o8 Ba) = 250 (1, 810 (OB (0d(®) + 2, 2% Mg @B (0) < [lgso |’
and , as a consequence, limp,_,,(gx,, B,) = 0. Taking into account that, when

My; > 0, limy e BY (a) = 0 we have limy e [ gx, (OB (D)du(t) = 0

This means that limy_, f(Xg) — S, (xq; f) = 0.

Section(6.2): Orthogonal Polynomials With a Non-Discrete Gegenbauer-Sobolev

Inner Product:

Letd, = (1 - XZ)O‘_l/ 2dx with — 1/ 2 » be the Gegenbauer measure supported on the interval
[—1,1]. We shall say that f € LP(d,,) if f is measurable on [—1,1] and
”f”Lp(du) < oo where

1
(S0P d ()P if 1 < p < oo,
€sS Sup_j <x<1 [f(X)]if p = 0.
Let us now introduce the Sobolev-type spaces (see [209])

s = {f ||f||sgg = maxnfnm(du),xnf ||Loo(du) < oo} <o, whered> 0.

fllpa,y =

Let f and g in S§. We can introduce the Sobolev-type inner product
1 1

(f,g) = ff(x)g(x)du(x) +A ff’ ®g’'(x®d, (%) 9
-1 -1
where A > Oand d, = (1 - xz)“_l/ZdX with o > — 1/2 . Let {Q;a) (X)} denote the
n=0
sequence of monic polynomials orthogonal with respect to (9). We call these polynomials the
Gegenbauer—Sobolev polynomials. These polynomials constitute a particular case of the so called

coherent pairs of measures, studied in [210]. In [211] the authors established the asymptotics of the zeros
of the Gegenbauer—Sobolev polynomials.

Let qfla) be the Gegenbauer—Sobolev orthonormal polynomials i.e.
-1
i = (], oo
2
Where”Q(a)” L S VTAZ 3/z=a-np
2

For f € S5 the Fourier expansion in terms of Gegenbauer—Sobolev orthonormal polynomials is

Z a0, (11)

Where f(k) = <f,qf(a)> k=01, ...

The main goal of this contribution is to study the necessary conditions for Sy —norm convergence of the
Fourier expansion(11),Theorem(6.2.8) . Also, we will prove that, for A > 0 and a > 0 there are
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functions f€S5,1<p< % , whose Fourier expansions (11) are divergent almost everywhere o [-1,1]
in the norm of Sg Theorem(6.2.9) . In particular, for A = 0, the Theorem(6.2.9) agrees with the result in

[212]. In order to prove the main results, we need some estimates for the polynomials ;"‘) (x) as well as

r(0)

for the polynomials Q' (x) such as the Mehler-Heine type formula, a symptotics on compact subsets of

(-1,1), and Sg norms of Gegenbauer—Sobolev orthonormal polynomials.
For o > _1/ o we denote by {Cr(la) (x)}n=0 the sequence of the Gegenbauer polynomials, orthogonal on

[-1 , 1] with respect to the measure d,(x) see [214],[215]. They are normalized in such a way that

() _ I(n+2w)
Ch () = r2or(n+1)

Note that this normalization does not allow o to be zero or a negative integer. Nevertheless, the

limits see([214]) limg_, Cga)(x) =To(x) , llma_)o ) (X) ——Tn(x), where T,(x) is the Chebyshev

polynomial of the first kind, exist for every x € [—1, 1]. To avoid confusing notation, we define the

polynomials Cr(lo) to be the Chebyshev polynomials of first kind Ty(x) as obtained by limits, i.e.
(@ =10 == ,0"® = T,(),n = 1,2,..

We denote the monic Gegenbauer orthogonal polynomial by Cr(lo‘) x) = (hg)—lég“) x)
where (see[214])
e 2T+
hnz—F(a)F(n+1) ,a# 0 (12)
. h¥ 2B

hg = llma_,o?:; n=>1.
Clearly, C2(x) = lim (h®)" 1€ (x) = 21 "T,(x),n > 1.
Now we list some properties of the monic Gegenbauer polynomials which we will use in

the sequel. The following integral formula for Gegenbauer polynomials holds see [215]
1

@ 12 1—2a—pn T+ DI+ 2a)
C = 2 , 13
_” n (X)] T I'n+a+ DI(n+ a) (13)
-1
They satisfy a structure relation
Cr00 = P00 — 519,600 ,n 2 2, 14
where
@ _ (n+2)(n+1) (15)
" 4nta+D(n+ )’
as well as the following relation for the derivatives see [290]
d
&cﬁf‘) (x) = nC** M (). (16)
The formula of Mehler-Heine type for Gegenbauer orthogonal polynomials is in [214]
lim 2°n 0‘C(O‘) (cos ) = 2'2—an[Tr 27 * /2] 1y, (2), (17)
o— 00

where a is a real number and a # —1,—2, ..., and J,(z) is the Bessel function of the first kind.
This formula holds uniformly for |z| < R, for R a given positive real number.
Let a be a real number and = —1,—2, ....
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The inner strong asymptotic behavior of C,(la)
for 0 € [e,m — €] and € > 0, is given by

-

0 0
. _ _ _1 .
Cr(la) (cosB) = Ch() l(sm 5 cos 2) cos(k0 +y) +0(n )| ifa# 0,

(18)
C,(a) cosnd ifa=0
where =n+ o,y = _O“T/z , and
21—20(—n2_1/2 F(n + 1)F(1’1 + 20() ifa = 0 )
Cy(a) = I'(n+ a)l'(n+ o+ 1/2) (19)
2t-n ifa =0
Moreover, for a = 0, the relation (18) holds for any 8 € [0, ] .
Fora>0and 1 <p < o see [216]
rnO(—l lf(2a+ 1)/a>p’
- 1 o (a+1
[ ~hm-r{n“taogm P if @ Dfa=p (20)
LP(dw)
20+1
R0 if 2o + 1)/0( <p
\

From (14) and [210] (see also [217] and [218] in a more general framework) we have the following
relation between the Gegenbauer—Sobolev and Gegenbauer monic orthogonal polynomials:

Proposition (6.2.1)[213]. For « > ~1/,

V00 = QP00 — dn2Q%0,  n>2, 1)
where
1
d. (@) = &, (a )—L(d“) (22)

Moreover, by using (10), (13)and (15) we fmd from (22) that

1
dy (o) = Tomz (23)

Using (21) in a recursive way and taking into account (14) we get the representation of the polynomials
(a)

in terms of the ¢\
H :
QP = €0 + Z a6 + ) a0
i=0
B
= D AP — Ol 123 @

i=1
where a( (@) = [T} dnzj (), a(n)((x) =1.
Note that Q(a) x) = cﬁ,"‘) (x) forn=1, 2.
Now, using a technique similar to the one used in [219] we obtain:
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Proposition (6.2.2)[213]. For any fixed real number r > O there exists a constant ¢ > 1 such that the
coefficients ai(n) (a) in (24) verify ai(n) (o) <crl,forall n>3and1<i< [n/z]

Next, we deduce a Mehler—Heine type formula forQ'® (x) and ( (@) (X)) .
Proposition (6.2.3) [213]. Let o > _1/ 2 and a # 0.Then, uniformly on compact subsets of C.

() lim 2np-ot1Ql@ (cos %) = 2%2-av/n Z_“+3/2]a_3/2(z), (25)
(i) lim 2"n Q' (w)y (cos E) = 2%2-ay/1 Z_“+1/2]a_1/2(z), (26)

Proof. (i) Multiplying in (21) by 2°n~%*1  we obtain
n— 2 a—1

) V@
Where Y, (z) = Znn“”lQ;a) (cos E) From (17), for a > _1/2 anda #= 0,

_ v/
Y, (z) = 2“n‘°‘+1C§1°‘ 2 (cos H) + 4d,_,(a) ( =

[ee]

we have that {2“n_°‘+1C,(1a_1) (COS E)} is uniformly bounded on compact subsets of C. Thus, for a
n=1

fixed compact set K < C there exists a constant B, depending only on K, such that when z € K

2“n‘°‘+1CI(1°‘_1) (cos E)| <B,n>1.

n-2)"1
On the other hand 4d,,_, () (T) = 0(n"2).

. n-2\%"1 1
Therefore, there exists n; € N such that 4d,_,(a) (T) <l 2, N=m
1
Thus, for z € K|Y,(z)| < B+ /2|Y L@ >n,.

Now we have that Y, (x) is uniformly bounded on K < C. As conclusion
o—1

) +0(n2),

vA n—2
Y,(z) = Znn‘““CI(]a_l) (cos —) +4d,_,(a) (

n

n
and by using (17) we obtain the result.

(i1) Since we have uniform convergence in (25), and taking derivatives and using properties of
Bessel functions we obtain (26).

Now we give the strong asymptotics of QE,“) on(—1,1).
Proposition (6.2.4)[213]. Let a> ~1/, and o # 0. For € [, m — €] and € > 0

—-a+1

lea) (cosB) =Cpla—1) [(singcos g) cos(kb +vy;,) + O(n_l)], (27)

-

Q' (cos 8) = nCy(a — 1) [(singcosg) cos(k8 +,) + O(n‘l)], (28)

where K=n+a—1,y; = —(a- 1)1'{/2 Y2 = ~ %/, and ¢, () is given by (19).

(o)
Proof. From (18) we have {Q“ (x) } is uniformly bounded on compact sets of(-1 , 1).

Cn ()

() (a-1)
e e Qn ') _ Gy "(®
Dividing in (21) by C,(a — 1) , we get D = D + d,_,(a)

Cn(a-1) QY
Cn(a=1) Ch_p(a-1)

Since
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n 2( )Cn(ot 1) _ n 2(0() 4(n+a—1)(n+a—3)(n+a—-3/2)(n+a-5/2) 5 oo 0 ( 1)

n(n-1)(n+2a—-3)(n+2a—4) n-2 n?

(0()( )

standard arguments yield that { c, (0()} is uniformly bounded on compact sets of
(“)(x) _ 4w

a-1)  Cp(a—1)
Using (18), the relation (27) follows.Concerning (28), it can be obtained in a similar way by using (16).
With the next proposition we establish the Sobolev norms of the Gegenbauer—Sobolev polynomials.
Proposition (6.2.5)[213]. Fora >0and1 <p < o0

(-1, 1). Thus +0(n™?)

(o1 if Lo+ 1)/0( >,
| ~(he-1)-1 { n**(log me i GetD/ —p (29)
2a+1
21 i (2a + 1)/0( <p
\
Proof. In order to prove the upper bound of (29) it is enough to prove s < Cr1| C r(loc) s
p K
Using (24), Minkowski’s inequality and (15) we have
(/2]
@ || ~(®
< S CET
” LP(dp) Z; A En=2ill gy
1=
(/2] [/l
@) || (@ 2™ || c@
< Z; a™| ¢ 21||Lp(du) + Z; ¢, 2||Lp(du),n >3, (30)
1= 1=
It is easy to prove that, for >0 and i =0,1, ..., [n/z] , by (20)
n-2if ¢ (@) 2 () ifl (0
2 | n- 2‘”Lp(d W =an | LP(dp) - Thus | Cozi LP(dp) =at | Cn LP(dp)
Using this and (6.2.4) forr < % , we get
(2] || c@ ("2l g i (@)
B A% gy S 267 g Bt @ S |7
In a similar way we can prove that
[/l
(n) (o) (o)
C C
; n—2i- 2||Lp(d W 4| ol
Thus
(o) < C(“) 31
| m e C5| "l aw (31)
On the other hand, from (8), (16) and Minkowski’s inequality
[/l
/(@) < Z M| @ < 32
” n |Lp(d w et n-2i- 1||Lp(d ) C7n| LP(dw)’ (32)

i=0

Thus, from (31) and (32) we get (30).
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In order to prove the lower bound in relation (29) we will need the following:
Proposition (6.2.6)[213]. Let a« > 0 and 1 < p < oo. Then, for sufficiently large n

if (20(+1)/0(=p

o 1
g = ey o omm) @)

20(_1_20(+1
n p

if a + 1)/0( <p.

\
Proof. Let o> 0 and n large enough. From (16) and (21) it follows that

nC(a) x) = 'f]a) x) —d,_ z(a)Q’(a) (x) ,and by using Minkowski’s inequality
7 () /(OC)
_ e il 195 oy dy_ z(a)”@m On the other hand, from (20), (23) and (32)
” ”Lp(du) ” ”Lp(du)
s

e o

m-2)[| Q"2
nflcay

LPdw _ d LP(dw

dp- Z(Q)W
LP(dp)
” ’(a)||LD(du) -2
which implies that 1 < N + 0(n™2).
[ CE2 b

LPdw) O(n—Z)

waw "7 2)ey, ”Lp(du)

o’

Thus, there exists a positive constant ¢ and ny € N such that ¢ < @—Lp(d”) ,1 =1
S S

The proof of Proposition (6.2.6) is complete. From (33),or a > 0,1 <p < o

and sufficiently large n

if (2(x+1)/a=p

1
= c(hgt e (ogm) v
p

20(_1_2(X+1
n p

f (2a+1)/(x<P-

\
Now, using this and (30) and the relation (29) follows.

The problem of the norm convergence of partial sums of the Fourier expansions in terms of Gegenbauer
polynomials has been discussed by [220].Taking into account (9) and Proposition (6.2.5), we obtain the
Sobolev norms of Gegenbauer —Sobolev orthonormal polynomials.

Proposition (6.2.7)[213]. Fora > 0,1 <p <

(¢ if(2a+1)/(x>p,

@l n“1(log /e if (2o + 1)/0( =p

On

S
P

20+1

nZO(—l—T lf (20( + 1)/(x < p.

\
Let S,f be the n-th partial sum of the expansion (10) S, (f,x) = Y=o f(k)q(a) (x).
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Theorem (6.2.8)[213]. Leta > 0and 1 < p < oo. If there exists a constant ¢ > 0 such that

ISafllsg < clfilsg (34)
2a+1 _ 20+
at+1 ’ 9o = a

Proof. We apply the same argument as in [221]. Assume that (26) holds.

Then [[{F,a5)al” | = Suf = Su-sfllsg < 2elflg
p

for every f € S§ then p € (pg , qo), where py =

qt

Consider the functionals L (f) = <f , q;a)> on Sp - Hence, for every fin S§
p

;
we have sup, |L, (f)| < co This implies, by the Banach-Steinhaus theorem,
that sup,||L,|| < o . On the other hand, by duality see [209] we have

Lol = {|an” || ||an” 0’
p

From Proposition (6.2.7), it follows that the last inequality holds if and only if p € (pgy,qg).-The proof of

an’ ||, <o

o
Sp

 Where p is the conjugate of q. Therefore |
p

|s %

Theorem (6.2.8) is complete.
If ||Spfllse, is uniformly bounded on a set, say E, of positive measure in [-1, 1] then

[Fmyal?

a.e. on E. From Egorov’s Theorem see [222] it follows that there is a subset E; C E of positive measure

L <c,mEN. Therefore”f(n)q’ga)(x)” L <c,neEN
Sp Sp

such that ”f(n)qlfla) %) || » < ¢ uniformly for x € E; On the other hand, from (9) and (28)
P

(04
q’f]a)(cos 0) =A, [(singcos g) cos(kO +vy,) + O(n‘l)] where A, ==
Thus |f(n)(cos(k® + v,) + O(n™1))| < ¢
uniformly for cos 0 € E;. Using the Cantor-Lebesgue Theorem ,see [223] we obtain
[fm)| < c. (35)
Theorem (6.2.9)[213]. Let a > 0 There is an f€ Sy , 1 < p < p,y , whose Fourier expansion (11)

diverges almost everywhere on [-1, 1] in the norm of Sg .
Proof. The uniform boundedness principle and Proposition (6.2.10) yield the existence of functions

zl/z—oc
N7

f €Sy, 1 <p < py, such that the linear functional f(n) satisfies f(n) — oo when — oo . Since this result

contradicts (35) then Fourier series (11) diverges almost everywhere on [-1 , 1] in the norm of Sg .
Corollary (6.2.10)[237]. Let @? > 1/2 and a? # 1. Then uniformly on compact subsets of C.

N1, .2 21 .2 2
() limgo oo 21791 (1 + ;)™ +2Q§ial ) (cos %0(1) = 23/1-a" [z~ +5/210(2_5/2(2),

(i) Timg oo 214 (1 + o) ™ *2Q (02 = Dy, (05 1) = 2317 V2™ 43/ 2, (a),

Proof.(i) Multiplying in (21) by 21*%1(1 + a;)~%**2 | we obtain

2_ _\a%-2
Vita,(2) =241 (1 + al)_“2+2C(a 2) (cos = ) +4dy,_1(a* - 1) (ai—l) Yo,-1(2)

1+ay 1+a, 1+a,

2_
Where Y1+a1(Z) = 21+a1(1 + al)_a2+2Q(a 1) (COS 1+Za )
1

1+(11
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[ee]

2_
From (17), for ? > 1/2 and a? # 1,we have that {21+“1(1 + al)_“zC(a 2) (cos L)}

1+aq 1+aq a;=0

is uniformly bounded on compact subsets of C. Thus, for a fixed compact set K c C there exists a

constant B, depending only on K, such that when z € K,

2_
|21+a1(1 n 061)_“2+26(a 2) (cosf) < B,a; = 0.0On the other hand

1+aq aq

PN
4dg, 1 (Tial) = 0((1 + a;)~2). Therefore, there exists n; € N such that ,
1
_1\@*-2
4da1_1 (‘fi_al) <1/2 ,‘n:‘n1+0(3.

Thus, for €K , |Y1+a1(z)| <B+1/2 |Ya1_1(z)| , n=n; +as. Now, we have that Yi,, (x) is
uniformly bounded on K c C. As conclusion

al—l
1+a,

)0‘2_2 +0((1+ ay)"2)

1+aq

_ 2_2
Ve, (2) =214 (1 + ay) @vecle ) (COS fal) +4dg, 4 (a? = 1) (

and by using (17) we obtain the result.(ii) Since we have uniform convergence in (25), and taking

derivatives and using properties of Bessel functions we obtain (26). Now we give the strong asymptotics

of Q01 +a;) (-1,1).

Corollary (6.2.11)[237]. Let a? > 1/2and a? # 1. For§ € [e,m — €] and € > 0

(@0 (cos 8) = Ciyq, (@® = 2)

(sin o cos 9)
1+a1 2 2

" cos(k6 +vy,) +0((1+ al)_l)],

Q' (cos 8) = 1+, Cyig, (@® — 1) [(Singws 2" cos (k0 +y) +0((1 + “1)_1)]

1+a'1
Where K = ay + a? —1,y; = —(a® = 2)n/2,y, = —(@* — D)n/2 and ¢;44,(a® — 1) is given by (19).

2_
Proof. From (18) we have {in all) (x)/C11a L (a? - 1)}1+a is uniformly bounded on compact sets of
1

(—1,1). Dividing in (21) by Cp,q, (a? — 2) , we get
Al P

Cita,(@?-2) B Cit+aq(@?-2)

2_ 2_ 2_ 2_ 2_
dai_l((xz 1 Citoq(0?-2) dai_l(az —1) 4(og+a?-1)(as+a?-3)(a;+a?-3/2)(a; +a?-5/2) % i+ai
,/ -

C1+O(1(a2_2) - (0(1+0£%)(0£1+20(2—4-)(0(1+20c2—5)

=0 ((1+21)2)

2_
Ciya, (@®-2) Qc(zoi—ll) ()

. Since
Ci+a,(@?2=2) Cq,—1(a?-2)

+ dai—l(az - 1)

2_
standard arguments yield that {Qﬁ all)(x) [C11a (a? — 1)} is uniformly bounded on
1+0£1
e e
e et

+0((1+ ay)7?).

compact sets of (—1,1) . Thus

Cita,; (@?-2) N Citaq (@?=2)
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Using (18), the relation (27) follows.

Concerning (28), it can be obtained in a similar way by using (16).

With the next proposition we establish the Sobolev norms of the Gegenbauer-Sobolev polynomials.
Corollary (6.2.12)[237]. Fora? > 1 and & > 0

I 1+ a)¥ 2ifa < +/1+ 1/¢; ,
(hfia?)

1
(14 a)% 2(log 1+ ay) 2*+erifa = +/1+ 1/,

211 -1
(1+a1)2a 2+en [fg > 4,/1+ 1/

Proof. In order to prove the upper bound of (29) it is enough to prove

|| Q1+a1

Using (24), Minkowski’s inequality and (15) we have

2
|| Q1+a1

2
a“—1
52+81

1+a'1

-1
., <c(l+ap) ||C(“ ) N
7 L**81(du)

(a®-1) [1+a1/2] (1+ai) || ~(@?-1)

||Q1+(11 L2+81(d ) i=0 ai |C1+a'1—2i L2+81(dﬂ)

Z[1+a1/z1 (1+ar) | cle*-1) Z[1+a1/z1 (1+ar) | cl@*-1)

1+(11 2i L2+£1(d[l.) (11—21 1 L2+81(du)’

@, = 2.1t is easy to prove that, fora > 1and i =0,1,...,[(1 + a;)/2], by (20)

1+aq—2i (a?-1) 2 (a?-1)

2 1= | C1+a1—21 L2+81(du) < Cl(l + al) ||C1+(X1 L2+51(d#)
(a2-1) < o ai|| o@D

Thus ||C1+a1—21 L2+e1 (ap) c14 | Cl+a1 Lberan

Using this and Proposition (6.2.2), for < 1/4 , we get

[1+a,/2] (1+a1) (a?-1) (a -1) [1+a,/2] i
E Ca1 2i-1 p2+er (g S || tay |l 2eer (g, )Z (4r)
(a?-1)
<ot e

In a similar way we can prove that

c@*-1)

a1—21 1

2[1"'051/2] (1+051)

cle*-1)

L2+81(dﬂ) L2+81(dﬂ) '

Thus || {5,

1+a,

<o e

L2+81(d[1.) - 1+ay

L2t€1 (d[l.)
On the other hand, from (8), (16) and Minkowski’s inequality
otz )

1+a, a1 —-2i

< C6(1 + al) E[1+a1/2] El+a1)

L2+81(d ) L2+81(dﬂ)

<c(1+ “1)||Cffo711||L2+81(du)'

Thus, from (31) and (32) we get (30).
In order to prove the lower bound in relation (29) we will need the following .
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Corollary (6.2.13)[237]. Let a? > 1 and &; > 0. Then, for sufficiently large (1 + a;)

( 1+ a)® Zifa < +J1+ 1/¢, ,

— 1
o 2 c(hE) A+ @)™ 2(log 1+ @) 2rarifa = £T+ 1/e

Sg—}' 1 2 2a2_1
(1+a)* °2rifa > +J1+ 1/¢,.
Proof. Let a? > 1 and 1 + @, large enough. From (16) and (21) it follows that

o

1+aq

2_ 2_ 2_ . . . . .
1+ “1C§: 1)(x) = Q’giall)(x) — da1—1(052 — 1)Q’((f;_11)(x) , and by using Minkowski’s inequality
152 )
+ay || 24614 a1-1 || 2+e1(4
1 S (a2_1) (aw) + dal—l(az _ 1) (az_l) (aw)
1-I—061||C‘7‘1_1 ||L2+51(du) 1-I—al”C‘)‘l ||L2+51(dlt)
On the other hand, from (20), (23) and (32)
(a?-1) (a?-1) (a?-1)
2 ’a1—1 ||L2+81(du) 2 (al_l) Q,al—i ||L2+81(du) Q,1+Ul1 ||L2+51(du)
e gy o]
+aq aq L2+51(dﬂ) +a; ai L2+81(dﬂ) ((11— ) a;-1 L2+51(dﬂ)
=0((1+a)™),
vl
1 2+
which implies that 1 < o+ 0((1 + @) 72).
trasezy )
L2+£1(dl,t)
I(‘xz_l)”
. .. rar |lpz+er gy
us, there exists a positive constant ¢ and n such that ¢ < > Ly = ng— 1,
Thus, th ts a posit tant ¢ and ny € N such that ¢ < 2= 1=>np—1
1+Oli”C"‘l ||L2+€1(d,¢)

the proof of Proposition (6.2.6) is complete.
From (33), for a® > 1,¢&, > 0 and sufficiently large (1 + a;)

(1+a)¥ 2ifa < +/1+ 1/¢, ,

— 1
e 2 c(hfi3l) ' J 1+ a)®?(log 1+ ay) /2+arifa = +1+ 1/e;,
2+¢&q 20%2-1

2
2_3_2a-1
1+ 0(1)2“ S ifa > 414+ 1/¢;.

Now, using this and (30) and the relation (29) follows.

(a*-1)

|| Q1+a1

Corollary (6.2.14)[237].Let a? > land &; > 0. If there exists a constant ¢ > 0 then

).

2_ 2_
||Sl+a f|| 2_, < c||fll q2-, forevery f € Sé"j;l then (2 + &) € et el
st ey S24eq 1 az-1

a?

Proof. We apply the same argument as in [221] .Assume that (26) holds.

(@®-1)\ (a?-1)
Then || <f’ q1+a1 > q1+a1 s

2, = ||Sl+a1f - S"‘lf”sgf;ll < ZC”f”sgfgil . Consider the functional
1

— (a?-1) (a?-1)
L1+a1 (f) - <f; q1+a1 > ||ql+0¢1 s
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Hence, for every f in Sé"j; 11 we have SUP1+a1|L1+a1 (f)l < oo. This implies, by the Banach-Steinhaus

theorem, that sup1+a1||L1+a1|| < .
On the other hand, by duality see [209] we have

ILta, || = [0,

1+a1

(a®-1)
2_ 1+a 2_q1°
a?-1 1 a?-1
S2+e1 S2+eq

Where (2 + &;) is the conjugate of (2 + & /1 + &).
Therefore

| (a*-1)

1+0£1

(a?-1)
q1+a1

< o0,
sa?-1 sa?-1
2+¢&1 2+¢&1

2_
From Proposition (6.2.7), it follows that the last inequality holds iff &; € (Zaa2 :

The proof of Theorem (6.2.8) is complete.

In general way, with higher exponents ,we extend the following corollary.
Corollary (6.2.15)[237]. Let a® > 1 and &, > 0. If there exists a positive constant C > 0 such that,

] 1||51+a1f]||5a2 1=

< Sl

N e

forevery Y7L, f; € Sz+ ! then g, € (

Proof. From [221] and (26) we have

(fl2 1)

2+ 32)2 + &3)

1+a

(a?-1)
<f]') ((2 + 82)2 + 83)14_251

2
a“—1
SZ+£2

Take the functional

(a?-1)
Zjn=11 L1+a1(fj) = <fp (2 + 52)2 + 53)“21 >

Hence
-1
=1 fi € Sz+ Séx+s1

therefore

Sup1+a1|2jn=11 L1+a1 (f])l = Sup1+a1 Ejn=11|L1+a1(fj)| <

and Sup1+a1||L1+a1” < o,

by the Banach-Steinhaus theorem, gives that

(@?-1) -1)

v || = \«z e e L

a“—1
52+£2

168

‘((2 + )% + 33)1+a

((2+ )% +&3)

a?-1
21

-2,

~2).

= Z4lISsvafy = Sl ggr-s

<203R|fillgge. -

(a?-1)
2
a“—1
on SZ+£2
a?-1
SZ+ 2
(a?-1) -1)
1+a
SO{ -1
(2+82)2+83)



Hence ,
(a?-1)

(2+e&)*+ 53)14_21

(e®-1)

((2+ &)+ €)1 40, <,

Sa2—1

sa?-1
2+e2 (2+£2)%+¢3)

The last inequality holds iff &, = 0 be considering by rearrangement of Proposition (6.2.7).

Section (6.3): Fourier-Sobolev Expansions:
Given1l < p < oo, letW'P([—1,1], (wo, w;)) be the following weighted Sobolev space

WP ([-1,1], (Wo,wy)) := {f: [-1,1] » R: f € LP([-1,1],w,),f’ € Lp([—1,1],w;)},
with the normllfllwpwl,p([_lil],(WO'Wl)): = ||f||Ep([_1‘1]‘WO) + ||f ’||Ep([_1‘1]‘wi)' where w, € L*([—1,1])
and w; is a Kufner—Opic type weight .

For f,g € W*P([—1,1], (wy, w;)) we introduce the weighted Sobolev inner product

1 1
(£,g)s = f F (0g(woe(x)dx + f F' (g’ W () dx (36)
21 21

Let p be the space of the polynomials with real coefficients. In general it is not true that
P € WYP([—1,1], (wg, wy)), but when it holds we can consider the sequence {q,}, = 0 of orthonormal
polynomials with respect to (36) and for f € WP ([—1, 1], ( w,, w;)) its Fourier

f ~ Xio [0 qx, (37)

Where f(k) = (f, g)s,fork > 0.
This definition of the Fourier—Sobolev expansion of f is purely formal and it is not obvious whether it
converges to . In fact, the solution of this problem can be very hard, or relatively easy, depending on
either the sense of the convergence, or in terms of additional restrictions on f and the pair of weights
(wo,wy) see [224].The main goal is to study necessary and/or sufficient conditions for the
WP ([—1, 1], ( wg, W;)) — norm convergence of the Fourier—Sobolev expansion (37). The structure of the
section is as follows. We study of necessary and sufficient conditions for the
WP([—1,1]), (wg, wy) —norm convergence of the Fourier—Sobolev expansion (37). Following the ideas
of [226],see [227] introduced general classes of Sobolev spaces appearing in the context of orthogonal
polynomials on the real line. We will use the approach given in these section to establish the Kufner-Opic
type property as follows.
Definition (6.3.1)[225]. Let 1 < p < oo. A weight function w on [a, b] is said to satisfy the
Kufner - Opic type property (or belongs to B, ([a, b]) if and only if
w1 € LY®=D ([a,b]),for1 < p < oo,
w1l eL! ([ab])forp = oo.

Also, if J is any interval we say that w € By (])ifw € By(I) for every compact interval [ < | .
We say that a weight belongs to B, (J), where ] is a union of disjoint intervals Uje, Jj, if it belongs to
B,(Ji). fori € A.
Noticeif v = w inJ and w € By(J) , then v € B,(J) .
This class contains the classical Muckenhoupt A, weights appearing in Harmonic Analysis see

[228].0Other properties of the class of weights of the Kufner—Opic type we will need in the sequel are
contained in the following result.
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Lemma (6.3.2)[225],[229]. Let us consider 1 < p < o and w € B,((a,b)).
For any compact interval I € (a, b), there is a positive constant C; , which only depends on p,w,and I,
such that |[gll;1(1y < Cyllgllecr,wy < Cillgllp(fapy, for any g € LP([a, b], w).
Furthermore, if w € By ([a,b]), then there is a positive constant C,, which only depends on p and w ,
such that [lgll 1 apy < CallgllLpqiapp, forany g € LP([a,b],w).
As a consequence, if w € Bp([a,b]) and f' € LP([a, b],w), then f € AC([a,b]).
The proof of this lemma will be not included here, however can check it in [229].
Definition (6.3.3)[225]. We denote by AC([a, b]) the set of absolutely continuous functions in [a, b], i.e.
the functions f € C([a,b]) such that f (x) — f(a) = faxf "(t)dt for every x € [a,b] . If ] is any interval,
ACjoc (J) denotes the set of absolutely continuous functions in every compact subinterval of J.
For1 < p < oo, let us consider the weighted Sobolev space
WLP([—1,1], (wg, wy)), given by

WLP([—1,1], (Wo,w)) := {f: [-1,1] > R: f € LP([—1,1], wo), f' € Lp([—1,1],w;)}
where w, € L”([—1,1]) and w; € B,([a,b]) . In [229] it is shown that W*P([—1, 1], (w,, w;)) with the

1
norm ||f||w1p([ LA wow)): (Ilflle( 11lwe) T [If' ||Lp( 1,1],w1)) o is a Banach space.

Let p be the space of polynomials with real coefficients. In general it is not true that

P € WYP([—1, 1], (wg, w;)), however if we denote by pP([—1, 1], (wg, wy))

the subset pP N ([—1, 1], (wgy, wy)), then as a consequence of [230] p*P([—1, 1], (wg, w;)) is dense
in W'P([-1,1],(wg,w;)) and from Lemma (6.3.2) it follows in a straightforward way that
WP ([-1,1], (wo, w1)) € AC([-1,1]).

Notice that if p < LP([—1,1],wy), since w; € By([—1,1]), then w; € A,([—1,1]). Also, when p =
2 and w; € L1([—1,1]), W2([—1, 1], (wo, w;)) is a Hilbert space and we can consider the sequence of
orthonormal polynomials {q,}, = 0 associated with the inner Sobolev inner product

(f,g)s = jf(X)g(X)Wo(X)dX + Jf' (g (w, (x)dx (38)
1

With these remarks in mind, we can give the following definition.

Definition (6.3.4)[225]. Let {q,}, = 0 be the sequence of orthonormal polynomials with respect to
Sobolev inner product (37). For 1 <p < oo let us consider (wg, w;) a vector of weights such that
wp € L*([-1,1]) and w; € A,([—1,1]). Let f € WP([—1,1],(wo,w;)) and x € [-1,1], for each
n = 0, we define the n-th Fourier—Sobolev partial sum

saE%) = Y H09ax(), where 709 = (f, qu)s (39)
k=0

as well as the Fourier—Sobolev expansion of f by means the formal expression

&f ~ z f(n)qy, (40)
k=0

In a similar way to the classical case, for each n = 0 the n-th Fourier—Sobolev partial sum (39)
induces a linear operator 8,: WP ([—1, 1], (wy, w;)) » WEP([—1, 1], (wy, w;)) given by
(8pf ) (%): = 8, (f, %), forx € [—1,1].
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The following result shows that under the conditions of Definition (6.3.4), the convergence in
WP ([—1,1], (wg,w;)) -norm of the Fourier—Sobolev expansion (40) is equivalent to the uniform
boundedness of the operator 8, for each n.
Theorem (6.3.5)[225]. Let {q,}, = 0 be the sequence of orthonormal polynomials with respect to (36).
Let (wo,wy) be a pair of weight functions such that wy € L”([—1,1]) and w; € Ap([—1,1]) for
1 < p < oo.Then the following conditions are equivalent.
(D8nf > fin WHP([—1, 1], (o, wy)), forall f € WP([—1, 1], (wo, wy)).
(ii) There exists C > 0, independent of n, such that
”‘3nf||W1'p([—1,1],(w0,w1)) < C||f||w1'P([—1,1],(wo,w1)) vf € W'P([-1,1], (wo, wy)).
Proof. (i) = (ii) Using the Holder inequality,

- 1 1 ! !
f0] = /2, f @arEwo(dx + [, £ ()ai(xws (x)dx
= ||f||LPw1'P([—1,1], wo)”qk”prl'p([—l,l],wo) + ||f’||LPw1'P([—1,1],w1)||Qi<||LPw1'P([—1,1],w1)
Then for each n, we have ||8,fllwip—11]wow,)) < Max (A, Bn)||f||w1,p([_1,1]'(w()_wl)),
where A = Yiollqillpwrp-1,13, wy) @and Bn = Xi=ollakllowre-1,13,w,) -
Consequently, 8, is a continuous operator for each n . Furthermore,
||/5nf”w1.p([_1,1],(W0,W1)) < ||8,f — f”wl'P([_l,l],(wo,wl)) + ||'5nf”Wl'p([—l,l],(WO,Wl)) < C(f),
where C(f) is a constant independent of n . Thus, suPnen |l 8nfllwir (-1, wowy)) <
and from Banach - Steinhaus theorem we obtain (ii).
(i) = (i) Since wo € L?([—1,1]) and w; € Ap([—1,1]),1 < p < o , then as a consequence of [230]
the linear space P is dense in WP([—1, 1], (wy, wy)). Then, given f € WP([—1, 1], (wy, wy)) and
e > 0,let p(X) = Ypeo axqr(X) such that
lip - f”wl'P([—m],(wO,wl)) < E.
Using that 8,p = p , whenever n > m , we have
|| 8 f — f”wLP([—1,1],(wo,w1)) < |[8nf — 5np||w1'P([—1,1],(wo.w1)) + [lsnp = fllwl'p([_lvl]:(WOJWl))
= llén(f = P lwrp((-1,13,wowp) F IIP = fllwrp (1,17, wowy))
S (C + 1)||p - f”wl'p([_l,l],(W(),W1))
< (C+1)e,
and from these last inequalities we can deduce (i).
The advantage of the previous result is that it allows us to work as in the case of LP[—1,1], where a
similar conditionto (ii) is stated for studying necessary conditions for the mean convergence of the Fourier
expansions in terms of classical orthogonal polynomials see [231],[232],[233].
When WP ([—1, 1], (wy, w;)) is a Banach space, some of their properties can be easily deduced taking
into account that WP ([—1, 1], (wy, w;)) is a closed subspace of the cartesian product
LP([—1,1],wg) X LP([—1, 1], w;)
with the norm

llullLp(=1,17, wo)xLP (= 1,13wy) = U1 U2 llLP([=1,1], wo)xLP ([~ 1,1w1)

1
p P p
(”“1||LP([—1.11.WO) + ”ul”Lp([—l.u.wl)) 1sp <o

max{||luy [l (-1,17, wo) Uz llLo (=117, wp } , P = -
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Lemma (6.3.6)[225]. Let (w,, wy) be a pair of weights on [-1, 1] such that w; € L'([-1,1]) and
1< p<o. If qis the conjugate of p, i.e. %+ é =1, then we can associate with every continuous
linear functional L € (LP([—1,1],w,) X LP([—1, 1], w,))’

aunique v = (v4,v,) € LY([—1,1],wy) X L9([—1, 1], w;) such that for every
u= (ull uZ) € (Lp([_l' 1]1W0) X Lp([_l’ 1],W1)

1 1
L(w) = (vq ’V2>w0 + (uy ,uz)w1 = f‘h (v (Dwo(x) + fuz (X)v,()wy (). (41)
-1 -1
P P /p
Moreover. ILIl = IVlla-1,11,woaa-1.17wn) = (V118 eyapawey + Vi lp s agwy) -

Thus L € (LP([—1, 1], wo) X LP([—1,1],w;))" = LI([—1,1],wo) x LA([—1,1], w,).
Proposition (6.3.7)[225]. If (w,, w,) is a pair of weights on [—-1, 1] such that
wj € LY([=1,1]),j = 0,1, W'P([—1,1], (wo, w;)),W4([-1, 1], (wg, w;)) are Banach spaces, with q
the conjugate of p,1 < p < oo, then (WP([—1,1], (wy, wy)))" = WH4([—1, 1], (Wy, wy)) and
WEllwop (- 1,17,wowe)y = SUPTIE, @)slllgllwrr(—1,11,wowp) = 13- (42)
Theorem (6.3.8)[225]. Let {q,}u=0 be the sequence of orthonormal polynomials with respect to (36),
(wo, wy) be a pair of weights such thatw, € L”([-1,1]) and w; € A ([-1,1]) for1 < p < oo.
If there exists C > 0, independent of n, such that
”‘Snf”Wl'p([—l,l],(wo,wl)) < C”f”wl'r)([_l_l]_(wo_wi)) (43)
forallf € Wl'p([—l; 1], (Wo'W1))'then ”qﬂ”wLP([—l,l],(wO.wl))”Cln||w1'P([—1,1].(w0,w1)) <C
1,1
Sto=1
Proof. We apply the same argument as in [234],[235]. Assume that (43) holds, then
lI<f, Qn)sqn”wlp( [-11], (wowl))||/5nf Sn- 1f||w1P( [-11](wowy)) = 2C
with s_; = 0. Now, we consider the functionals L, on WP ([—1, 1], (wy, wy)) given by
= (f, Qn>s||Qn”w1p([ 1,1],(wo,w1))*
Hence, for every f € Wb p( -1,1] (WO,Wl)) we have sup,{|L,f]} < o and from the

Banach—Steinhaus theorem we obtain that sup,{||L, ||} < .
On the other hand, taking into account Proposition (6.3.7) we get

LIl = llqn ||W1,p([_1,1]'(WOIW1)) ||qn||W1,p([_1'1]l(w()_wl)), where q is the conjugate of p.

Therefore [[qnlwp(-1,11,wo.w) 1dn llwee (1,11 wows)) < -

From the above inequality our statement follows.

We include a well-known result of [309] , which allows to find necessary conditions for the convergence
of the Fourier expansions in terms of orthogonal polynomials in Lp([— 1,1], du) norm.

Theorem (6.3.9)[225]. Let {p,}, = 0 be a orthonormal system with respect to a non-trivial probability
measure d, in [-1,1],p" > Oa.e.in[-1,1]and 0 < r < oo.

If g is a measurable function in [—1, 1], then

18601 = x2y 7w (0 dx < 12 20} lim, o, inf [ gyl Tdx.

In particular, if the above inferior limit is 0, then g =0 a.e.
As an immediate consequence of the above theorem we get the following.
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Corollary (6.3.10)[225]. Let {p,}, = 0 be an orthonormal system with respect to du supported in [-1, 1],
such that p'>0a.e.in[-1, 1],and 1 < p < oo. If there exists a constant C, independent of n, such that

ISnfllp(-111a,) < CIfllLp(-1,11,0,) » forall f € LP([-1,1],d,). Then

N 1
(), dx) <.

1 P 1-p

(i) [, (1 =x*)+ W ()2 dx < co.
From Theorems (6.3.8)and (6.3.9) we get the following.
Theorem (6.3.11)[225]. Let 1 < p < oo, {putnso and {tp},so be the sequences of orthonormal
polynomials with respect to w,dx and wydx , respectively. If there exists a constant C such that condition

(i1) of Theorem (6.3.7) holds, then
(Dw; € L'([-1,1]),j=0,1.

(ii) [, (1 = x2)% (wo(x)) = dx < oo.
oy s . 1 1 p
(iii) limy_, e 1nfm (f_1|pn(x)|1°w0(x)dx) < oo,
1
/p

N . 1 10
(iv) limy, 1nf—(n+1)”tn”5 (f_lltn(x)l wl(x)dx) < oo.

Proof. From Theorem (6.3.8) we deduce that

1 1
1 /p (1 /p
(1 1aaGO1Pwe 0dx) ™ (1, 1an (19w, (dx) " < C.
Therefore, when n = 0 (i) follows in a straightforward way. Let us consider the function
gr(x) = qr(x)wg ,k < 0. Then, by Theorem (6.3.9) we have

1 p 22 1_Tp B max{l_p/ } . . 1
[ 1BEIP (1 —x2) 7 (wo(0)) 7 dx < T2 20} Timy o inf [ Qi (P (9)[Pwo () dx,
for each k > 0. In particular, when k = 0 the above equation becomes condition (ii).
Finally, we only need to prove the condition (iii), taking into account similar arguments yield condition
(iv). For x € [-1, 1], we have that p,(x) = Yr=0 Pn(K)qx(x) and by the Cauchy—Schwarz inequality
IPn )P < lIpall2 (ER_,1qk (X)])P. On the other hand, using the Holder inequality for finite sums we have
Pn (%) Pnlls (Zk=0ldKk g quality

Choolaxk®DP < (n+ P YR _olqx)|P , for every x € [—1, 1]. Consequently,

n

_ @ P <1 Z .
(n+1)llpnlls| wo(x) < n+ 1k lqx )P wy a.e. (44)
=0

Y
From Theorem (6.3.8), we have ( f_lllqk(x)lpwo (X)dX) P<Cforeachk>0. Therefore,

1,1 o

1

— [ (Zmn(xnp)wo(x)dx <c (45)
—1 ‘k=0

Condition (ii1) is deduced from (44) and (45).
Corollary (5.3.12)[238]. Let {q, }ns0 be the sequence of orthonormal polynomials with respect to (1.1).

Let (Wp,—1, Wy,) be a pair of weight functions such that
Wm_1 € L°([-m, m]) and w, € A;,¢([—m, m]) fore > 0.

Then the following conditions are equivalent.
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(D8nf > fin W*e([—m, m], (Wp_1, W), for all f € W™+E([—m, m], (W1, Wi))-
(ii) There exists C > 0, independent of n, such that
ll$n fllwm e[ —mmi (wm_g W) = C||f||wm'1+8([_m,m],(Wm_I,Wm)) v f € W™**([-m, m], (Wp_1, Wi)).
Proof.(i) = (ii) Using the Holder inequality,
E®0] = /7 £ X a@Wm_1 ()dx + [ £ () ()W () dx |
< Nfll +epyma+e—mm], w1k llL+ewmase 2 mm), wi_p)
+[£] LI+eWm A+ ([—m m], wpp) [l LI+eWm A+ ([—m m], wpp)
Then for each n, we have
||5nf||wm'1+8([_m,m],(wm_1,wm)) < max (A, Bn)”f”wm e ([—mm],(Wm—1,Wm) )
Where Ay = Yi-ollallL+swmi+s(mm], wy,_,) and By = Zﬂ:o”%”L1+gwm,1+8([_m_m]lwln)-
Consequently, 8, is a continuous operator for each .
Furthermore,
||5nf”wm.1+8([_m_m]_(wm_1,wm)) < ||8nf — f||wm.1+s([_m,m],(wm_1_wm)) + ||5nf”wm.1+s([_m_m]_(wm_1_wm))
< C(H.
where C(f) is a constant independent of n.

Thus, suppen [|8n fllwma+e —mm],(wy_ywey)) < @ - from Banach-Steinhaus theorem we obtain (ii).
(ii) =(i) Since wy,_; € L*([—m, m])and wy,, € A;;.([—m, m]), € > 0, then as a consequence
of [230] the linear space P is dense in W™ +¢([—m, m], (Wp—_1, Wp)).
Then, given f € W™*¢([—m, m], (Wp,_1, W) and € > 0,let p(x) = X, aqi(x)
such that [|p(x) — fllymt+s((—mm1,(wm_rwm) < €-
Using that 8,p(x) = p(x), when ever n = m, we have
ll8nf = fllyym e (—mm] (win_s,wm))
< |l 8nf = 80P () llyym 1+2([—m,m],(wm_gwim)) T 80P = fllywma+e ([ m (wim— g wm))
= |l8n(f— p(X))||wm.1+s([_m,m],(wm_1,wm)) + llp(x) — f||wm.1+8([_m_m],(wm_1,wm))
< (C + 1)||p(x) — fl|Wm'“g([—m,m],(wm_l,wm))
< (C+ 1,
and from these last inequalities we can deduce (i).
The advantage of the previous result is that it allows us to work as in the case of L**[—m, m], where

a similar conditionto (i1) is stated for studying necessary conditions for the mean convergence of the

Fourier expansions in terms of classical orthogonal polynomials (see [231], [232]).
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When W™*e([—m, m], (Wy,_1, Wy,)), is a Banach space, some of their properties can be easily
deduced taking into account that W™*¢([—m, m], (Wp,_1, Wp,)) is a closed subspace of the cartesian
product L**¢([—m, m], wy,_;) X L'*¢([—m, m], wy,) with the norm
lTullte(omm], win x4 mmwgn) = [1Um U ot omm), wano <022 -mm] W)

) /1+8,8> 0,

(I - *+ 10
max{[|[um Il (- mm], woy_o)» Wme+1 1L (emm], wi) ) -
Corollary (5.3.13)[238]. Let {q,},=0 be the sequence of orthonormal polynomials with respect to (1.1),
(Wp—1, W) be a pair of weights such that w,,_; € L*([—m, m]) and w,, € A;,.([—m, m]) for e > 0.

If there exists C > 0, independent of n,
such that ”511fl|wm,1+s([_m'm]'(wm_1'wm)) < C”fl|Wm'1+5([—m,m],(wm_1,wm))

for all f € Wh+¢([—m, m], (Wi—1, W),

Then ”qn||Wm'1+£([—m,m],(wm_1,wm))”qn||Wm'l"'s([—m,m],(wm_bwm)) <cC
Proof.We apply the same argument as in [234]. Assume that (43) holds, then

IE, dn s A llyym e mmi, (wan gy 160 f = Sn—1fllwmase mmi (we_pwe)y < 2C With 8- = 0.
Now, we consider the functional L, on W™*¢([—m, m], (Wp,_1, W)

given by Lyf = (f, qn)sllanllwmr+e((—mm](wm_1,wm))-

Hence, for every f € Wm’“g([—m, m], (wm_l,wm))

we have sup,{|L,f|} < « and from the Banach-Steinhaus theorem we obtain that sup,{||L,||} < <.

On the other hand, taking into account Proposition (6.3.7) we get

ILn Il = Tan lwmt+e —mmi,wom—gwim) 190 lwm 2+ mmi, wim - win))e

Where % is the conjugate of 1 + €. Therefore

llan llwm 242 —m,m], (Wi, wm)) 190 w2245 m], (Wi wm)) <

From the above inequality our statement follows.

Corollary (5.3.14)[238]. Let € > 0, {pn}nZO and {t,},=o be the sequences of orthonormal polynomials
with respect to w,,,_;dx and w,,dx , respectively. If there exists a constant C such that condition (ii) of
Theorem (6.3.7) holds, then

(Dw; € L'([-m,m]),j=0,1.

) [ (1= X3 T (Wt ()7 dx < o0,

1
coN - . I+e /1+s
(iii) lim,, o, inf ———— G +1)||pn|| ( m |p 63] wm_l(x)dx) < o
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1
. . . 1 m s 1+e /1+8
(iv) lim,,_,, inf TR ( f_mltn(x)l wm(x)dx)

Proof.From Theorem (6,3.8),we deduce that

< o0,

(g, 0 s G0 1 (fi“m |(qn)n<x>|%wm(x>dx) <t

Therefore , when n = 0 (1) follows in a straight forward way.
Let us consider the function (fy)(x) = q, (X)W, , k < 0.Then by Theorem (6.3.9) we have
m —le = Lte - m 1+¢
I Qe GOI (1 = )T (Wt (0) 2 dx < w2 2720 1im, . inf ™ g, (Op, (0] “Waney (X)dx,
for each k > 0. In particular, when k = 0 the above equation becomes condition (ii).

Finally, we need to prove the condition (iii), taking into account similar arguments yield condition (iv).

For x € [—m,m], we have that p_(x) = XD, (k)q, (x) and by theCauchy-Schwarz inequality

n 1+e
|Pn(x)|1+S < ||Pn(x)||:rg <Z|qk(x)|> :
k=0

On the other hand, using the Holder inequality for finite sums we have

n 1+¢ n
(Zlchx)l) <G ) g0

K=0 k=0

for every x € [—m, m].

Consequently,
1+¢ 1 n 1
p, (%) te
__nr“Z <
+D]lp, Wm-1(x) < n+ 1k§—o'|qk(X)| Wm—1 a.€.

From Theorem (6.3.8), we have

m 1/1+.s
(flqk(x)llﬂwm—l(x)d?() <C

—m

foreach k> 0.

1
/1+s

Therefore, — (™ (Z-o|q, ()| 1+S) Wit (x)dx) """ < €. Condition (iii) is deduced from (44) and (45).

Corollary (5.3.15)[238]. For &> 0, {(\/2 + E)n} and {t,},>0 be the sequences of orthonormal

nz0
polynomials with respect to w,,_;dx and w,dx, respectively. If there exists a constant C such that

condition (ii) of Theorem (6.3.7) holds, then
(Dw; e L'([-m,m]),j =0,1.
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Gi) [ (1= x%)" S (W ()T dx < o0

1
Moz
o 1 . 1
(iii) lim, o, ll’lfm( |(V2 + ) (X)| Wp— 1(X)dX> <
1
. . | m o WZTE Nze
(iv) lim,_,, inf DI (f_mltn(x)l Wm(X)dX> < o

Proof. We deduce , using Theorem 3.4 that
1

m lave ;™ ' fe—g;
( f |(x/2_+s—sl)n(x)|mwm_1(x)dx) 42—< f |(\/2_+s—sl)n(x)|m_£1 wm(x)dx) o
<C.

So when n = 0 (i) follows .Consider the function
1
Ex) = (V2 +e- 81) (x)W,,,_1V2*¢ ,k > 0 .Theorem (6.3.9),then show that

V2 Fe-e) (x)| (1%

V2+e —\/2+¢
< 5 )

" Ners
lim, . inf [ |(V2F 2 — &), (O(VZFE) (] Wt ()dx,
foranyk > 0, whenk = 0 satisfy (ii).
To prove the condition (iii) similarly for condition (iv). For —m < x < m we have given that
(V2 + s)n(x) =Y (V2 + s)n(k)(\/z +e— sl)k(x).

Using Cauchy-Schwarz inequality we get

|(\/_2+E)n(x)|2 < |vzFe), (x)|| (Zn (V2 TE - k), <x>|)

Using the Holder inequality for finite sums we have

(Zk 0|(V2+5_51) (X)D <+ 1)m 1Zn_o|(\/2'|"°-_*°-1) (X)|

V2+¢
(V2+e) ()

ez,

VZ+e
W1 (X) < ﬁZﬂ:o |(V2 +e— El)k(X)| Wp_ a.€.

for —m < x < m. Hence,

From Theorem (6.3.8), gives that

1
m V2+e /\/2+ "
(f_m |(\/2 +e— sl)k(x)l wm_l(x)dx> ) < C forany k > 0. Hence,

n+1< <Zk 0|(V2+€—€1) (X)l )Wm 1 (x)dx

Now condition (iii) follows.
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Symbol

LP Lebesgue Space

Loc : Local

Sup :  Supremum

Lt Lebesgue Space on the real line
Max : maximum

cl closure

Supp: Support

deg degree

Reg : Regular

cap logarithmic capacity

q.e quasi everywhere

inf infimum

H? Fractional Sobolev Space

L? Hilbert Space

H} Trace Sobolev Space Embedding
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