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Chapter One 

Introduction 

1.1 History of Macroscopic and Microscopic World: 

 The physics starts from the trials of scientists to describe the 

physical behavior of the objects that can be seen and known by our 

common sense. These objects are known as macro systems. The 

macro systems are described physically by the classical laws of 

physics like Newton's law. These objects are related to the so 

called matter. Our world also consists of the so called energy, like 

electromagnetic waves (e.m.w) [1, 2]. This e.m.w can be described 

by Maxwell's equations. Maxwell's equations are one of the 

biggest achievements that describe the behavior of electromagnetic 

waves (e.m.w) they describe interference, diffraction of light, as 

well as generation, reflection, transmittance and interaction of 

electromagnetic waves with matter[3, 4, 5]. 

 The light was accepted as having a wave nature for long 

time. But, unfortunately, this nature was unable to describe black 

body radiation phenomenon. This forces Max Plank to propose 

that light and electromagnetic waves behave as discrete particles 

known later as photons. This particle nature succeeded in 

describing a number of physical phenomena, like atomic radiation, 

photoelectric, Compton and pair production effects. The pair 

production effect needs particle nature of light as well as special 
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relativity (SR) to be explained [6, 7]. This dual nature of light 

encourages De Broglie to propose that particles like electrons can 

behave some times as waves. The experimental confirmation of 

this hypothesis leads to formation of new physical laws known as 

quantum mechanics. Quantum mechanics (QM) is formulated by 

Heisenberg first and independently by Schrödinger, to describe the 

dual nature of the atomic world [8].  

 Quantum theory starts from the discovery of Max Plank, 

that light can be treated discrete quanta, known recently as 

photons. This means that waves can behave sometimes like 

particles. This encourages De Broglie to propose that particles 

can also behave like waves. This dual nature of microscopic 

particles, leads to proposing a new physical framework known as 

quantum mechanics (QM) [9, 10, 11]. 

 The laws of quantum mechanics are now widely used to 

describe the behavior of atomic and subatomic particles beside 

Nano particles [12]. The spectrum of any atom beside some 

electrical and magnetic properties can be easily described by the 

laws of quantum mechanic [13, 14]. 

 Despite these remarkable successes of quantum mechanic, it 

suffers from noticeable set backs. For instance, there is no full 

quantum theory that can describe the behavior of superconductors 

(SC). The behavior of Nano systems are now far from being 

described fully by quantum mechanic. The situation for elementary 
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particles, fields is even worse. There is no theoretical model that 

can put gravity under the umbrella of quantum mechanic [15]. 

 The dream of unification of forces is too difficult to be 

achieved within the present physical theories including quantum 

mechanics [16]. These failures may be related to mathematical 

and physical laws are based on the dual nature of wave packets 

beside the energy expression in classical mechanics and relativity 

[17]. Unfortunately the energy expression take care of the effect 

of the field potentials only, without accounting other effects that 

can change the behavior of the particle under study. 

1.2 Research Problem: 

 The lack of quantum gravity theory and the failure to 

explain some superconductor's behaviors indicates the need for 

new laws of quantum mechanics; these new laws are needed also 

to explain the behavior of Nano particles.  

1.3 Literature Review: 

 Different attempts were made to construct new quantum 

laws [17], one of them is proposed by Khalid Haroon [18].  It is 

based on the form of the electric field intensity in a damping 

media. Another attempt was also made by Kamil Elsaid Algailani 

to construct Klein-Gordon equations [19]. But no one of them 

directly uses Maxwell's equations to construct directly and simply 

a quantum equation that accounts for the effect of friction and the 

bulk matter.  
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1.4 Aim of the Work: 

 The aim of this work is to relate microscopic atomic and 

subatomic word to macroscopic world by deriving a quantum 

equation form one of the classical equations. 

1.5 Presentation of the Thesis: 

 This thesis composed of five chapters; chapter one is an 

introduction, chapter two contains a derivation of Maxwell's 

equation by using ordinary laws of electricity and magnetism. 

Chapter three is devoted to derive Schrödinger and Klein-Gordon 

equation, chapter four is concerned for the literature review, while 

the contribution is given in chapter five. 
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Chapter Two 

Maxwell's Equations 

2.1 Introduction: 

 The basic electrodynamics equations are usually deriven 

from laws of a general course of electricity and magnetism [20]. 

These laws can describe the behavior of electromagnetic fields 

inside matter as well as free space. In this chapter Maxwell 

Equations (M.E) are derived by utilizing the basic laws of 

electricity and magnetism [21]. 

2.2 Electric and Magnetic Field Intensity: 

 It is well Know that, the electromagnetic field in a medium 

is described by four vectors quantities the electromagnetic field, 

the electric induction, the magnetic field and the magnetic 

induction. The force acting on unit electric charge at a given point 

in space is called the electric field intensity [22]. 

 In future, instead of the field intensity one can simply speak 

of the field at a given point in space. The magnetic field intensity 

or, for short the magnetic field is defined analogously, separate 

magnetic charge, unlike electric charges, don't exists in nature, 

however if we make a long permanent magnet in the from of a 

needle, then the magnetic force acting at it's ends will be the same 

as if there existed point charges at the end [23]. 
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 A rigorous definition of the electric and magnetic induction 

vectors where the field equations in a medium will be derived 

from the equations for point charges in free space. It need only be 

recalled that in free space. There is no need to use four vectors for 

a description of the electromagnetic field, only two vectors being 

sufficient: the electric and magnetic fields [24]. 

2.3 Electromotive Force: 

 One can recall the definition for electromotive force in 

circuit this is the work performed by the forces of the electric 

field when unit charge is taken along the given closed circuit [23]. 

It is absolutely immaterial what the given circuit represents: 

whether it is filled with a conductor or whether it is merely a 

closed line drown in space (e.m.f). The force acting on unit 

charge at a given point is the electric field E. The work done by 

this force on an element of path dl is the scalar product E.dl. Then 

the work done on the whole closed circuit. Or the e.m.f is equal to 

the integral [25]: 

)1.3.2(..  dlEfmeV  

Where V  is the induction potential 

2.4 Magnetic Field Flux Across a Surface: 

 Let us suppose that some surface is bounded by the given 

circuit. We shall denote the magnetic field by the letter H. The 
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magnetic field flux through an element of the chosen surface dS is 

given by [26]   dSHd  

The magnetic field flux through the whole surface, bounded by 

the circuit, is given by 

)1.4.2(.   SdBdSH  

Where B is the magnetic field density 

 One can consider a section of the surface through which unit 

flux 1  passes. If one draws through this section of the surface 

a line tangential to the direction of the field at some point on the 

surface. A line which is tangential to the direction of the field at 

its point is called a magnetic line of force. For this reason the total 

flux  is equal, by definition, to number of magnetic line of force 

crossing the surface [27]. 

 Magnetic line force are either closed or extended to infinity. 

Indeed a magnetic line force may being or end only at a single 

charge, but separate magnetic charges do not exist in nature. In a 

permanent magnet the lines of force are completed inside the 

magnet. From this it follows that a magnet flux through any 

surface, bounded by circuit, is the same at a given instant. Other 

wise, a number of the magnetic lines of force would have to begin 

or end in the space between the surfaces through which different 

fluxes pass. Consequently, at a given instant a constant a number 

of magnetic lines force, i.e. a constant magnetic field flux passes 
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across any surface bounded by the circuit. Therefore, the flux can 

be a scribed to the circuit it self, Irrespective of the surface for 

which it is calculated [28]. 

2.5 Faraday's Induction Law: 

 Faraday's induction law is written in the form of the 

following equation 

)1.5.2(
1

..
tc

fmeV





The constant of proportionality c is a universal constant with the 

dimensions of velocity equals to 18103  sm . Usually, Faraday's law 

is applied to circuits of conductors, however, e.m.f is simply the 

quantity of work performed by unit charge in moving a long the 

circuit, and for a given field value through the circuit, cannot 

depend upon the form of the circuit. The e.m.f is simply equal to 

the integral  .dlE  

 In a conducting circuit, this work can be dissipated in the 

generation of Joule heat (an ohmic load). However it is 

completely justifiable to consider the circuit in a vacuum also. In 

this case, the work performed on the charge is spent in increasing 

the kinetic energy of the charged particles, as for instance in the 

case in an induction accelerator, the betatron [29]. 
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2.6 Maxwell's Equations: 

 Equation (2.5.1) refers to any arbitrary closed circuit. We 

substitute the definitions (2.3.1) and (2.4.1) into this equation we 

get [30]: 

)1.6.2(
1

 


 dSB

tc
dlE

The left hand side of the equation can be transformed by the 

stokes theorem: which state that; the line integral of the tangential 

component of a vector A taken around a simple closed curve C is 

equal to the surface integral of the normal component of the curl 

of A taken over any surface S having C as it's boundary [31] i.e. 

)2.6.2()(   dSAdlA

When one takes A = E, Then 

)3.6.2()(   dSEdlE  

Thus equation (2.6.1) becomes 

)4.6.2(
11

)(   







 dS

t

B

c
dSB

tc
dSE  

Where, on the right hand side, the order of time differentiation and 

surface integration   is interchanged.  Thus taking this integral over 

to the left hand side, one obtains    

)5.6.2(0)
1

)(( 



 dS

t

B

c
E
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But initial circuit is completely arbitrary.  I.e. it can have arbitrary 

magnitude and shape. Let us assume that the integrand, in 

parentheses, of equation (2.6.5) is not equal to zero. Then one can 

chose the surface and the circuit that bounds it so that the integral 

(2.6.5) does not become zero. Thus, in all cases the following 

equation must be satisfied  

)6.6.2(0
1







t

B

c
E  

Which is one of the Maxwell’s equations relating electric and 

magnetic fields in differential form? In many applications the 

differential form is more convenient than the integral form. 

Magnetic field lines of force are either closed or go off to infinity. 

Hence, in any closed surface, the same number of magnetic field 

lines enters as leave. The magnetic field flux, in free space, across 

any closed surface [32], is equal to   

)7.6.2(0  dSB  

Transforming this integral to a volume integral according to the 

Gauss-Ostrogradsky theorem [33]:  

)8.6.2().()(   













 dvAdv

z

A

y

A

x

A
dSA zyx  

One obtains   

)9.6.2(0).(   dvBdSB  
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Due to the fact that the surface bonding the volume is completely 

arbitrary, we can always choose this volume to be so small that 

the integral is taken over the region in witch B. has constant sign 

if it is not equal to zero. But then in spite of (2.6.7) and (2.6.9) 

dSB. will not be equal to zero. 

For this reason, the divergence of B  must become zero. Thus  

)10.6.2(0.  B  

This is the differential form of (2.6.7) for an infinitely small 

volume. Since the divergence of a vector is the density of source 

of a vector field. The sources of the field are free charges from 

which the vector (force) magnetic field lines originate.  Thus 

(2.6.10) indicates the absences of free magnetic charges.  

 The equations (2.6.6) and (2.6.10) are together called the 

first pair of Maxwell’s equations. The electric field flux through a 

closed surface is not equal to zero. But to the total electric charge 

q  in side the surface multiplied by 4  [34]        

)11.6.2(4.  qdSD   

Where, D  is the electric flux density, the field due to a point 

charge q  is expressed by the following equation.  

)12.6.2(
2r

q
E 

Then the field is inversely proportional to 2r if one surrounds the 

charge by a spherical surface centered on the charge. The element 
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of the surface for the sphere dS is dr 2 where d an elementary solid 

angle. 

The flux of the field across the surface element is given by [35] 

)13.6.2(.. 2

2
 dqdr

r

q
dSD  

The flux across the whole surface of the sphere is thus given by 

)14.6.2(4.   qdqdq   

 But since lines of force  begin only at a charge the flux will 

be the same through the sphere as through any closed surface 

around the charge .Therefore if there is an arbitrary charge 

,distribution q inside a closed surface, then equation 

(2.6.11)holds. In order to rewrite this equation, in differential 

form, we introduce the concept of charge density. The charge 

density  is the charge contained in unit volume, so that the total 

charge in the volume is related to the density by the following 

equation 

)15.6.2( dvq 

Introducing the charge density in (2.6.11), and utilizing the 

relation 

  dvDdSD .
 

)16.6.2(0)4.(  dvD   
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Repeating the same argument for this integral as used (2.6.9) one 

have 

)17.6.2(4.  D  

According to (2.6.9) one can say that density of sources of an 

electric field is equal to the electric charge density multiplied 

by 4 . [36] 

2.7 Electromagnetic Potentials:  

  One can introduce new unknown quantities such that each 

equation will contain only one unknown .In this way overall 

number of equations is reduced. These new quantities are called 

electromagnetic potential .Thus for the magnetic field one can 

define by AB   where A is a vector called the vector potential 

and for the electric field the electric potential is defined to satisfy 







t

A

c
E

1
 

Where   is also called the scalar potential  

2.8 Magnetomotive Force: 

  By analogy with electromotive Force  dlE  one can define 

the magnetomotive force  dlH , where the integration is performed 

over a closed   circuit. Using Ampere's law, it may be shown that 

the integration of H in a closed circuit is equal to the summation 

of the Electric current I surrounded by the magnetic loop. In other 

word   
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  IdlH  

)1.8.2(.  dSJdSJ  

But according to vector algebra 

  dSHdlH )(  

Hence 

  dSJdSH )(  

0)(  dSJH  

This relation can be satisfied if  

0)(  JH  

)2.8.2(JH 

  This relation holds for static magnetic field and constant 

current which doesn't vary with time. But it is no larger hold for 

time dependant, current and field. To verify this take divergence 

of both sides of equation (2.8.2), one gets  

)3.8.2(.)(. JH   

But for vector algebra 

)4.8.2(090cos).(  HH  

Hence 

)5.8.2(0.  J                                               

where J  is the current density in infinitesimal area, mean while if 
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the electric field E is not stable, i.e .,varying with respect to time, 

and the variation frequency is high enough and extends into the 

radar frequency, there will be another current in the medium 

known as the displacement current and is proportional to the 

variation of the electric field E , and the proportionality factor is 

the dielectric permittivity .Thus, there will be another contributor, 

t
D


 , to induce the magnetic field H . The displacement current 

works exactly the same way as the conductive current J , so that the 

total current works is
t

DJ


 . Put both contributors into the above 

equation ends up with other Maxwell's equation. 

)6.8.2(
t

D
JH




  

This equation can be derived mathematically by using continuity 

equation 

0. 





t
J


 

Thus         

)7.8.2(.
t

J






 

In view of equation (2.8.2) let: 

)8.8.2(GJH   

Taking the divergence for both sides yields [see (2.8.4)] 

0...  GJH  
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)9.8.2(.. GJ   

But since   

 )10.8.2(.  D  

Thus equation (2.8.7) reads 

)11.8.2(..
t

D
J




  

Comparing (2.8.9) and (2.8.11)  

)12.8.2(
t

D
G




  

In view of equation (2.8.8) 

)13.8.2(
t

D
JH




  
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Chapter Three 

Schrödinger and Klein-Gordon Equations 

3.1 Introduction: 

         The Schrödinger equation is the fundamental of quantum 

mechanics and the starting point for any improvement to the 

description of submicroscopic physical systems [37]. Although it 

cannot be proved or derived strictly, it has associated with it 

various formulations and derivations [38]. 

         The Klein- Gordon equation is analog of the Schrödinger 

equation which tries to make quantum mechanics compatible with 

special relativity unlike the Schrödinger equation which is 

compatible only with Galilean relativity. Historically, the Klein-

Gordon equation invented by Schrödinger even be for Klein and 

Gordon in the context of understanding the fine structure of the 

hydrogen spectrum but was abounded by him as it did not give him 

the right results[39]. 

   In this chapter we try to obtain the Schrödinger equation for 

a particle with energy E and momentum p traveling in the x 

direction, and then we apply the relativistic energy E to obtain the 

Klein-Gordon equation [40].  
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3.2 Derivation of Schrödinger Equation: 

   Suppose the wave function for plane wave travelling in the 

x direction with a well defined energy and momentum that is [41]: 

)1.2.3(
)( Etpxi

Ae


 
 

Where  

E
 

kp   

For a particle moving in a potential energy field we write the 

energy according to the relation  

)2.2.3()(
2

2

xV
m

p
E 

Multiplying the both sides of equation (3-2-2) by , one gets 

)3.2.3()(
2

2

 xV
m

p
E   

From equation (3-2-1) we see that for the equality to hold the 

product of energy times the wave function ),( txE must be equal to 

the first derivation of the wave function with respect to time 

multiplied by i , that is [42]: 

)( Etpx
i

Ae
iE

t













 




iE


 

ti
E










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ti

i
E









2



 

)4.2.3(
t

iE






   

Similarly by examining equation (3-2-1) we see that: 

)( Etpx
i

pAe
i

x













 

)(
2

2

2

2

2
Etpx

i

Aep
i

x













 

2
2

1
p




  

)5.2.3(
2

2
22

x
p







 

 

Inserting equations (3-2-4) and (3-2-5) in equation (3-2-3) hence 

one get 

)6.2.3()(
2 2

22




xV
xmt

i 







 


 

Which is the famous Schrödinger equation. 

3.3 Derivation of Klein-Gordon Equation: 

   The Schrödinger equation is motivated by taking a look at 

the classical relation between energy and momentum of particle, 

quantization is done by replacing the physical quantities by 

operators corresponding to them and state or wave function on 

which they operate. These corresponding operators for the energy 

and momentum are given by [43, 44, 45]:  
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)1.3.3(


 ip  

)2.3.3(
t

iE



   

 Assuming the case of a free particle one get the following relation 

between momentum and energy  

)333(
2

2


m

p
E

Multiplying both sides of equation (3-3-3) by  , one gets 

)433(
2

2

 
m

p
E

Substituting the operators in (3-3-1) and (3-3-2) to equation (3-3-

4), one gets 

)533( 





t
iE


 

2

22
2

2

2
)(

2 xm
i

m

p










  

)633(
22 2

222







xmm

p 



 

Inserting equations (3-3-5) and (3-3-6) in equation (3-3-4), one gets 

)733(
2 2

22











xmt
i

 
  

Equation (3-3-7) is a Schrödinger equation for a free particle. 

We could now assume that we could obtain the relativistic version 

of Schrödinger equation by simply repeating the same procedure 

with relativistic correlation between momentum and energy [46, 

47]. 
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)833(42

0

22  cmcpE  

)933(42

0

222  cmcpE  

Where  

particleofenergyE   

momentumparticlep   

lightofspeedc   

electronrestofmassm 0  

Suppose the wave function for plane wave travelling in x direction 

is given by: 

)1033(
)(


Etpx

i

eA 

Where 

kp   

E  

Multiplying both sides of equation (3-3-9) by , one gets 

)1133(42

0

222   cmcpE  

From equation (3-3-10) 

)( Etpx
i

eA
Ei

t













 

)(

2

2

2

2
Etpx

i

eA
Ei

t












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)(

2

2
Etpx

i

eA
E 

 


 




2

2

2

2



E

t








 

)1233(
2

2
22 





t
E


 

Also from equation (3-3-10) 

)( Etpx
i

eA
pi

x













 

)(

2

22

2

2
Etpx

i

eA
pi

x













 




2

2

2

2



p

x








 

)1333(
2

2
22 





x
p


 

Inserting equations (3-3-12) and (3-3-13) in equation (3-3-11), one 

gets 


 42

02

2
22

2

2
2 cm

x
c

t










   

)1433(42

02

2
22

2

2
2 












cm

x
c

t
  

Which is the Klein-Gordon equation 

         The Klein-Gordon equation describes a wide variety of 

physical phenomena such as in wave propagation in continuum 

mechanics and in the theoretical description of spin less particles in 

relativistic quantum mechanics [48, 49, 50]. 
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Chapter Four 

Literature Review 

4.1 Introduction: 

 Different attempts were made to construct new quantum 

laws [51, 52], some of them based on the form of the electric field 

intensity in a damping media, and others to construct Klein-

Gordon equation. But none of them directly uses Maxwell's 

equations to construct directly and simply a quantum equation 

that accounts for the effect of friction and the bulk matter [53]. 

Here in this chapter one tries to mention some of them. 

4.2 Derivation of Schrödinger Equation from Variational 

Principle: 

 Sami.H.Altoum derived Schrödinger equation by using 

variational principle. The calculus of variations is a field of 

mathematical analysis that deals with maximizing or minimizing 

functional. Which are mappings from a set function to the real 

numbers. Functional are often expressed as definite integrals 

involving functions and their derivatives. The interest is in 

external functions that make the functional attain a maximum or 

minimum value or stationary functions those where the rate of 

change of the functional is zero [54]. 

 In several problems of physics and mechanics it is 

convenient to recast Euler's equations in canonical form, which 
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make possible a general approach to variational problems. 

Further, the new variable introduced in the process admits of a 

simple physical interpretation [55]. 

Consider the extremum of the functional 

  )1.2.4(),....,,,,.....,,.(,......,,
2

1

212121 dxyyyyyyxFyyyI

x

x

nnn 
  

Where )(),....,(1 xyxy n satisfy certain boundary conditions at 1x  and 2x . 

The Euler equations are 

)2.2.4(,......,2,1,0 niF
dx

d
F

ii yy    

Which constitute a system of n  ordinary differential equations 

in )(),....,(1 xyxy n  we introduce  

)3.2.4(,......,2,1,),.....,,......,( 11 niyyyxFp nyi i
 

  

Which together with ),....,2,1( niyi  are called canonical variables for 

the above functional. The variables iy  and ip are known as 

canonically conjugate variables. Then (4.2.2) gives 

)4.2.4(,......,2,1, ni
y

F

dx

dp

i

i 



  

Now if the Jacobian 

,0
),......,(

),....,,(

21

21 




n

yyy

yyyD

FFFD
n  

The system of equation (4.2.3) can be solved as 
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),......,,,......,,( 11 nnii ppyyxy   

When these are substituted into (4.2.4), we get a system of first 

order equation as 

)5.2.4(,.....2,1,),.....,,.....,,( 11 niwith
dy

dF

dx

dp
ppyyx

dx

dy

i

i

nni

i    

Henceforward the parentheses in the second equation of (4.2.5) 

signify that 

iy  in F are replaced by i . We now introduce the 

Hamiltonian function 





n

i

iinn FpppyyxH
1

11 )6.2.4(),.....,,.....,,(   

Then the system can be written as 

)7.2.4(,......,2,1,, ni
y

H

dx

dp

p

H

dx

dy

i

i

i

i 








  

This system is referred to as the Hamiltonian (canonical) system 

of Euler's equation and second ordinary equations in second 

unknown functions ii pandxy )(   

The fundamental equation of quantum mechanics (Schrödinger 

equation) can be derived from a variational principle. 

First we define an operator known as the Hamiltonian operator as 

follows: 

)8.2.4(),,(2 zyxVkH   
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Here ,
)8( 2

2

m
hk




 
 where h and m stand for the Plank's constant the 

mass of principle whose motion is considered in a field of 

potential energyV . We now seek a wave function   

Possibly complex extremize the functional 

)9.2.4()( dxdydzH
    

Subject to constraint  

)10.2.4(1
 dxdydz  

Where  is the complex conjugate of
 
 .The integration is over a 

fixed domain of yx , and z , we further assume that the admissible 

function  and  either vanish at corresponding points on opposite 

boundaries. As a consequence 

   dxdydzdxdydz  .2   

Introducing Lagrange multiplier , we then find the extremum of 

the functional 


  dxdydzVkdxdydzK zzyxx ])([   

The Euler equation is 
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Which reduce to 

)11.2.4(2   Vk  

This is written as  H  

If we multiply this by   and integrate over the domain of zyx ,,  the 

left side becomes the stationary integral (4.2.9) which depends on 

E which is the energy of the system. Hence by (4.2.10) we 

have E , so (4.2.11) reduces to Schrödinger equation. It is worth 

pointing out here that there is an interesting and important 

connection between Hamiltonian-Jacobi equation for classical 

system and the Schrödinger equation for a quantum mechanical 

system. In fact, if we put the wave function
S

h
i

e
)(

 , where S is 

action function of the classical system, then the Schrödinger 

equation reduces to the Hamiltonian-Jacobi equation provided S is 

much larger than Plank's constant . Thus in the limit of large 

values of action and energy, the surfaces of constant phase for the 

wave function  reduce to surfaces of constant  action S for the 

corresponding classical system. In this case, wave mechanics 

reduces to classical mechanics just as wave optics reduces to 

geometrical optics in the limit of very small wavelength. It may be 

noted that the Klein-Gordon equation [56] 

0)(
1 2

2

2

2

2 



 






mc

tc
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(c =velocity of light) representing a possible wave equation for 

relativistic particle (though it is not correct for an electron or 

proton) can be constructed in 

]][)(
1

.[
2

22

2

2




  







cm

tcm

h
L   

4.3 Derivation of Klein-Gordon Equation from Maxwell's 

Electric Wave Equation: 

 Kamil.E.Algailani derived Klein-Gordon equation from 

Maxwell's equation. The behaviors of electromagnetic waves are 

described by Maxwell's equations according to the relations: [57] 

)1.3.4(,,0.,.
t

D
JH

t

B
EBD









 

where JandHEBD ,,,  represent the electric flux density, the 

magnetic flux density, the electric field and the current density 

respectively. Satisfying the following relations, we have  

)2.3.4(,, PEDEJHB   

Where ,P and   are the macroscopic polarization of the 

medium, the permittivity of free space and the permeability of 

free space, respectively. Appling the curl operator to both sides of 

the third equation in (4.3.1) the following equation is obtained: 

)3.3.4()()( B
tt

B
E 











Using the identity [58]: 

)4.3.4().()( 2 EEE 
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Equation (4.3.3) gives: 

)5.3.4()().( 2 B
t

EE 



  

From (4.3.2) since: 

)6.3.4(HB   

Then (4.3.5) becomes: 

)7.3.4()().( 2 H
t

EE 



  

From equation (4.3.7), since: 

)8.3.4(
t

D
JH




  

From (4.3.1) we have: 

)9.3.4()().( 2

t

D
J

t
EE









    

But: 

)10.3.4(PED    

Therefore: 

)11.3.4().(
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2

2
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t
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t

E

t

J
EE














  

 

Also: 

)12.3.4(EJ 

)13.3.4().(
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t
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t

E

t

J
EE




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







    
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The polarization, P, thus acts as a source term in the equation for 

radiation field [59].since: 

)14.3.4(0,.,   DED   

)15.3.4(0.,0.  EE   

Therefore equation (4.3.13) becomes: 

)16.3.4(
2

2

2

2
2

t

P

t

E

t

J
E




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







    

This represents the wave equation for the electric field. 

Klein-Gordon equation for free particles is usually derived by 

using Einstein relativistic energy equation: 

)17.3.4(42222 cmcpE   

The Klein-Gordon equation can be obtained by replacing the 

electric dipole moment term in equation (4.3.17) by the term 

standing for photon rest mass to gets 

)18.3.4(2

2

2
2 Ek

t

E
E m




   

Multiplying both sides by 22c , the following equation is obtained: 

)19.3.4(
1

,
2

222

2

2
2222

 





c
whereEkc

t

E
Ec m  

We have 

22222 cmkp mm    

Thus, 
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)20.3.4(
2

2

242222

t

E
EcmEc




    

The incorporation of mass for photon in Maxwell's equations 

corresponds to adding the term 
 AAm to the electromagnetic field 

Lagrangian. 

Since in the electromagnetic (e.m) theory the oscillating electric 

wave E  is related to its e.m, the energy or intensity is obtained 

according to the relation: 

)21.3.4(2EcI   

And since the e.m intensity, when treated as a stream of photons 

of density n  is given by: 

)22.3.4(
2

fhfhnI   

Where the photon density is related to the wave 

function according to the relation: 

)23.3.4(
2

n   

Comparing (4.3.21) and (4.3.22) it follows that: 

)24.3.4(,
22   EE  

Thus the correspondence between
 
E  and    secure the replacement 

of E  by  in equation (4.3.20)  

)25.3.4(42222

2

2
2 


cmc

t
 




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This represents the Klein-Gordon equation. 

4.4 Direct Derivation of Schrödinger Equation from 

Hamiltonian-Jacobi Equation Using Uncertainty Principle: 

 In the work of Pranab Rudra Sarma the similarly between 

the Schrödinger equation and the Hamiltonian-Jacobi (H-J) 

equation of classical mechanics was used to derive Schrödinger 

equation. The Hamiltonian-Jacobi equation in one dimension for 

a particle of mass m and momentum p can be written as [60] 

)1.4.4(),()(
2

1
),(

2

2
2

2
txV

x

S

m
txV

m

P

t

S










   

Where ),( txSS  is the generating function. Here the momentum p 

of the particles has been, by definition, replaced by  

)2.4.4(
x

S
p




   

One can attempt to derive Schrödinger equation from H-J 

equation by substituting  

)3.4.4()ln(ln)exp(),(  


  iSoriStx  

Where  is constant. The substituting yields 
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
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Substituting equations (4.4.4) and (4.4.5) in equation (4.4.1) one 

gets 

)6.4.4(),()(
1

2

2
2







txV

xmt
i 








 
  

This differs from the Schrödinger equation because of the 

presence of the  /)( 2

x
 term in place of the term 2

2

x
  . For 

obtaining a second order equation instead of a second degree 

equation, one can proceed as follows. One can write equation 

(4.4.4) in the form  

)7.4.4(
x

ip






   

And proclaim p as an operator  

)8.4.4(
x

ip



   

Substitution of this in equation (4.4.1) gives the fundamental 

Schrödinger equation. 

 In this work one have made an attempt to derive 

Schrödinger equation without invoking the concept of operators. 

Instead, we have used the concept of uncertainty principle for 

deriving the equation. This can be done by assuming that there is 

a basic uncertainty in the momentum in equation (4.4.1). If the 

root-mean square (RMS) uncertainty in p is p , then the average 

value of momentum-square is 



34 
 

)9.4.4()()( 22222 ppppp 

Therefore, for a particle with average momentum p, the average 

kinetic energy is not 
m

p
2

2

   but 
m

pp
2

])([ 22  because of the 

uncertainty. The term 2)( p is related to the uncertainty 2)( x in x 

by the uncertainty principle. 2)( p Can be written as 

)10.4.4()( 2 xp
x

p
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
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
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


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
)()(
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p

x

p
. From equation (4.4.4) we have 
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We have to find an expression for xp the minimum value 

of xp is considered to be
2


. The average value of this should be 

higher. Considering a Gaussian error function uncertainties can be 

shown to be related by [61] 

)13.4.4(. xp  

Using equations (4.4.10), (4.4.12) and (4.4.13), the expression for 

the average value of the square of the momentum becomes 
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Replacing 2p by  2p  i.e. b y 22 )( pp  in the H-J equation and 

using equation (4.4.14) one gets the Schrödinger equation 
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4.5 Derivation of Schrödinger Equation from Maxwell's 

Solution of Electric Field Intensity: 

 Khalid Haroon and others tried to use the expression for the 

electric field in a damping medium in the form: 

)1.5.4()( txkixt eeeEE     

To derive new Schrödinger equation that accounts for the effect 

of friction of the medium, they use the fact that  

kpE   ,  

And by replacing E by  they found that 

)( tExp
i

xt eeeA

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Where 
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


n

c
  

 Electric permittivity        magnetic permittivity 

 Electrical conductivity 1n refractive index 

By using this expression they found that the energy and 

momentum operators becomes 
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)3.5.4()(  pi
i

 


By using the energy expression for classical system multiplied by 

 they get [62] 

)4.5.4(
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 V
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p
E 

By inserting (4.5.2) and (4.5.3) in (4.5.4) one gets the new 

Schrödinger quantum equation 

)5.5.4(
2 2

1

1

2

2

1

1

2

2

2

1

1

2










nm

c

nm

c

nm

c
i

t
i


 





4.6 Summary and Critique: 

         The first attempt in section (4.2) uses variational principle to 

derive Schrödinger equation; this derivation is complex and does 

not account for rest mass energy and friction. 

         In the attempt of Kamil. Algailani in section (4.3), the 

Klein-Gordon equation was derived from Maxwell's equations. 

But this attempt does not derive Schrödinger equation and does 

not account for friction. 

         In work of Pranab Rudra Sarma in section (4.4) Schrödinger 

equation was derived from Hamiltonian-Jacobi equation using 

uncertainty principle, but this attempt does not account for a 

relativistic energy.  

         In Khalid Haroon model in section (4.5) Schrödinger 

equation was derived from the electric field intensity wave 



37 
 

expression in a resistive medium, unfortunately this model does 

not account for the friction for the relativistic particles.  
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Chapter Five 

Unification of Macroscopic and Microscopic World on 

the Basis of Maxwell's and Quantum Equations 

(5.1)Introduction: 

         The unification of macroscopic and microscopic world needs 

a sort of link between classical and quantum laws. This is done in 

this chapter by deriving Schrödinger and Klein-Gordon equations 

for frictional medium from Maxwell's equations. 

5.2 Maxwell's Electric Wave Equation: 

The magnetic field intensity and the current density are related 

according to equation (2.8.6) by  

)1.2.5(
t

D
JH




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


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The equation of continuity takes the form 
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b c
tt
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The current density J is assumed to result from external ohmic 

field 0J , beside bounded charge bJ and diffusion process dJ  

)3.2.5(0 db JJJJ   
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Thus the divergence of both sides of equation (5.2.3) gives 
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By rearranging the above equation 
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To find the unknownG , one uses 
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Insert equation (5.2.12) in (5.2.8) yields 
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Using equation (5.2.10) and (5.2.11) yields 
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Comparing both sides of above equations yields 
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Thus from equation (5.2.1) and the fact that EJ 0  
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Also from Maxwell's equations we have 
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From equation (5.2.16) and (5.2.1) one found that 
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Multiplying both sides of equation (5.2.19) by   and differentiate 
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5.3 Derivation of Klein-Gordon Equation from Maxwell's 

Equation for a Massive Photon: 

From Maxwell's equation 
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Neglecting polarization effect and considering the propagation in 

free space where 
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Where c is speed of light 

Equation (5.3.1) reduce to 
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Inserting equation (5.3.2.1) in (5.3.4), one gets 
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Multiplying both sides of above equation by 2c  
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If the rest mass equals the relativistic mass, when no potential exist 

then, 
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Thus equation (5.3.5) reduces to 
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Replacing E by   in equation (5.3.7), one gets 
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Which is the ordinary Klein-Gordon Equation 

5.4 Derivation of Schrödinger Equation from Maxwell's 

Equations: 

Equation (5.2.1) can be rewritten as: 
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Where  
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200

1

c
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Neglecting the dipole moment contribution and taking into account 

the fact that: 

1c  

Thus the terms that do not consist of c can be neglected to get: 
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Dividing both sides of equation (5.4.2) by 22mc , yields 

0
222 2

42

2

22

2

222








E

mc

cm

t

E

mc

c

mc

Ec 
 

)3.4.5(0
2

1

22

2
2

2
2








Emc

t

E

m
E

m



 

To find conductivity consider the electron equation for oscillatory 

system, where the electron velocity is given by: 

)4.4.5(0

tievv   

And its equation of motion takes the form 
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Differentiate equation (5.4.4) over dt hence one get 
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Inserting equation (5.4.6) in (5.4.5) 
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Also we know that 
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Comparing equation (5.4.8) and (5.4.9) hence one get 
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The coefficient of the first order differentiation of E with respect to 

time is given with the aid of equations (5.4.3) and (5.4.10) 

)11.4.5(
22 2

222





m

eni

m

 
  

Using Gauss law 
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Where x is the average distance of oscillator and is related to the 

maximum displacement according to the relation 

)13.4.5(
2

1
0xx   

)14.4.5(

)
2

1
(4

)()(

22 2

0

2

2

0

2

2

222

Amxm

Axeni

m

eni

m






  



  

By using equation (5.4.13) 
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By using equation (5.4.12), one gets 
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But according to quantum mechanical and classical energy formula  
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Therefore equation (5.4.16) reduce to 
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As a result equation (5.4.3) becomes 
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Since Schrödinger deals with low speed therefore 
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Thus one can neglect the speed term to get 
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Since atomic particles which are describes by quantum laws are 

very small, thus one can neglect 0m  compared to the potential V
 
to 

get 
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Hence from equations (5.4.22) and (5.4.23) 
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Taking into account that the electromagnetic energy density is 

proportional to 2E  , and since 2
  is also reflects photon density. 

Thus one cans easily replace E by , in the above equation, to get 
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Which is Schrödinger equation 

5.5 The Electric Polarization and Special Relativity: 

We have 

)1.5.5(xenP   

)2.5.5(
2

2 





xen

t

P
  

Where                  
ti

exx 0

0


  

ti
exix 0

00




 

)3.5.5(
2

00

2

0

2 0 xexix
ti  




 

)4.5.5(
2

02

2

xen
t

P
 




 

From equation (5.4.12) we have 
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Inserting equation (5.5.5) in equation (5.5.4), one gets 
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Equation (5.2.1) can be written as  
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From equations (5.5.6) and (5.5.7), one gets 
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Inserting equations (5.5.10) and (5.5.11) in (5.5.8) 
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Multiplying both sides of above equation by
E

c 2

 

E

c

E

cE

cE

cE

cE

cEk 22

2

2

0

2
2

2

22 01



  

)12.5.5(0
2

0

222  ck  

Multiplying both sides of equation (5.5.12) by 2  

22

0

222222 0  ck  

)13.5.5(222

0

2222   ck  

For a photon the energy and momentum are given by Plank and De 
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Substituting equations (5.5.16), (5.5.15) and (5.5.14) in equation 

(5.5.13), one gets 
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5.6 New Generalized Quantum Equation: 

         Schrödinger equation deals only with non relativistic 

particles, thus it does not take into account the rest mass energy. 

On contrary Klein-Gordon equation can account for rest mass 

energy but does not have potential energy term for fields other than 

electromagnetic fields [63]. Thus there is a need to find a new 

quantum equation that accounts for rest mass energy, beside 

potential energy. This can be done with the aid of equation (5.3.1), 

where one uses the mass expression of the generalized special 

relativity which is given by [64]:  
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But we have 

)3.6.5(0 Vm   

)4.6.5(0 pvm   

Substituting equation (5.6.4) and (5.6.3) in (5.6.2), one gets 
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Multiplying both sides of equation (5.6.5) by 4cE  
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By using the identity 
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 and inserting equation (5.6.8) in 

equation (5.6.2) 
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Replacing E  by   and collecting similar terms leads to the new 

quantum equation of the form 
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5.7 Discussion: 

         The fact that Maxwell's equation is used to derive Klein-

Gordon equation is related to the fact that quantum mechanical laws 

are based on Plank quantum light equation. The replacement of the 

electric field intensity vector E  by the wave function   is 

reasonable as far as the electromagnetic energy density which is 

related to the number of photons is proportional to  2E  , i.e. 

2En   

While it is also related to 2
  

I.e.      
2

n  

Thus  

E  

         Since Schrödinger equation is first order in time, thus the 

second order time term should disappear in equation (5.4.1). This is 

achieved by taking into account that all terms that consist of c are 

larger compared to terms free of c. this is since the speed of light is 

very large ( 810c ). The dipole term in(5.4.1) is neglected, which is 

also natural as well as Schrödinger equation deals only with 

particles moving in a field potential through the term v which is 

embedded in the mass term according to GSR [see equation (5.4.1) ]. 

In deriving the conductivity term the effect on the particle is only 

the electric field, while the effect of friction is neglected. This is 

also compatible with Schrödinger hypothesis which considers the 
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effect of the medium is only through the potential according to the 

energy wave equation.  
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         The fact that the velocity in equation (5.4.4) represents 

oscillating reflects the wave nature of particles, on which one of the 

main quantum hypotheses is based. By using this hypothesis 

together with plank expression of energy, beside classical energy of 

an oscillating system, the coefficient of the first time derivative of E 

is found to be equal to )( i .  

         In view of equation )18.4.5( and the GSR expression of mass 

)19.4.5( the potential term in Schrödinger equation is clearly stems 

from the mass term. Again the wave nature of particles relates the 

maximum light speed to its average speed according to 

equation )20.4.5( . Neglecting the rest mass, in the third term in 

equation )18.4.5( the coefficient of E is equal to the potential. The 

final Schrödinger equation was found by the replacing E by . This 

is not surprising since number of photons 22
E  . 

         The relation of energy and momentum in SR, by assuming 

oscillating atoms in the media with frequency 0 as representing the 

background rest energy as shown by equations (5.5.3) and (5.5.6). 
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The energy gained by the system is the electromagnetic energy of 

frequency  [see equations (5.5.9) and (5.5.11)]. Using Plank 

hypothesis for a photon, beside momentum mass relation in 

equations (5.5.14), (5.5.15) and (5.5.16) the special relativity 

momentum energy relation was found. 

         The new quantum mechanical law shown in equation (5.6.9) is 

more general than Schrödinger and Klein-Gordon equations. It 

consists of conductivity of the medium, which is related to the 

friction of the system. The conductivity term can also feels the 

existence of the bulk matter through the particle density term n , 

where 

m

en 


2

  

         Unlike Schrödinger equation the new quantum equation 

consists of a term representing rest mass energy. This equation is 

also more general than Klein-Gordon equation by having terms 

accounting for the effect of friction, collision through conductivity, 

besides having a potential term accounting for all fields other than 

electromagnetic field. 
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5.8 Conclusion: 

         The derivation of Schrödinger quantum equation and SR 

energy-momentum relation from Maxwell electric equation shows 

the possibility of unifying the wave and particle nature of 

electromagnetic waves. It shows also of unifying Maxwell's 

equations, SR and quantum equations. 

         Quantum equations derived from Maxwell's equations are 

very promising, since they reduce to Klein-Gordon equation. It 

also accounts for collision, friction and scattering processes. 
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