8			
Figure No.	Title of figure		
Figure (1.1)	The cross section of optical fiber		
Figure (1.2)	fiber consists (core and cladding) and Light rays incident on the core–cladding interface		
Figure (1.3)	The fiber types	6	
Figure (1.4)	variation in polarization states of an optical pulse at it passes through a fiber Energy level		
Figure (2.1)	One, two, and three dimensional photonic crystals	22	
Figure (2.2)	the cross section of the first solid core photonic crystal fiber	24	
Figure (2.3)	Schematic of the cross-section of the first hollow-core PCF	24	
Figure (2.4)	Illustrated the light guidance mechanism		
Figure (2.5)	the pattern of air – holes acts like a model sieve	27	
Figure (2.6)	Propagation diagram of conventional and triangular lattice of air holes in silica glass		
Figure (2.7)	Scheme of the PCF fabrication process	32	
Figure (2.8)	The fabrication procedure of HC-PCFs.	33	
Figure (2.9)	illustrated the air hole diameter (d) and the air- hole pitch (Λ)		
Figure (3.1)	The experimental setup		
Figure (3.2)	Photographic image for experimental setup		
Figure (3.3)	Image photograph of omega laser xp system	48	
Figure (3.4)	The cross section of HC- PCF	50	

List of figures

Figure (3.5)	5) The electric oven photograph image		
Figure (3.6)	Figure (3.6) Photograph image of CCS 200 spectrometer		
Figure (3.7)	Figure (3.7) photograph of photoamplifier detector		
Figure (4.1)	the spectral width with 105 µs pulse duration before and after passing fiber at room temperature and 40°C		
Figure (4.2)	the spectral width with pulse duration 105 μ s at 45°C and 50°C		
Figure (4.3)	re (4.3) the spectral width with pulse duration 105 μ s at 55°C and 60°C		
Figure (4.4)	the spectral width with pulse duration 105 μ s at 65°C and 70°C	58	
Figure (4.5)	the spectral width with pulse duration 105 μ s at 75°C and 80°C	59	

Figure (4.6)	the spectral width with35µs pulse duration at room temp and 40°C	60
Figure (4.7)	the spectral width with 35µs pulse duration at 45°C and 50°C	61
Figure (4.8)	the spectral width with 35 μ s pulse duration at 55°C and 60°C	
Figure (4.9)	the spectral width with 35 μs pulse duration at $65^{o}C$ and $70^{o}C$	62
Figure (4.10)	the spectral width with 35 μs pulse duration at $75^{0}C$ and $80^{0}C$	62
Figure (4.11)	the spectral width with 25 μs pulse duration at $\ at$ room temperature and $40^{\circ}C$	63
Figure (4.12)	the spectral width with 25 μ s pulse duration at 45°C and 50°C	63
Figure (4.13)	the spectral width with 25 μ s pulse duration at 55°C and 60°C	64
Figure (4.14)	the spectral width with 25 μ s pulse duration at 65 ^o C and 70 ^o C	64
Figure (3.15)	the spectral width with 25 μs pulse duration at 75^0C and 80^0C	65
Figure (4.16)	Spectral width variation of laser pulse (675 nm) at three repetition rates in different temperatures.	65
Figure (4.17)	the spectral width with 105 μ s pulse duration at room temp and 40 $^{\circ}$ C	67
Figure (4.18)	the spectral width with 105 μs pulse duration at 45°C and 50°C	67
Figure (4.19)	the spectral width with 105 μs pulse duration 55°C $$ and 60°C $$	68
Figure (4.20)	the spectral width with 105 μs pulse duration at 65°C an d 70°C	68
Figure (4.21)	the spectral width with 105 μs pulse duration at 75°C and 80°C	69
Figure (4.22)	the spectral width with 35 μs pulse duration at room temperature and $40^{\circ} C$	70
Figure (4.23)	the spectral width with 35 μ s pulse duration at 45°C and 50°C	70
Figure (4.24)	the spectral width with 35 μs pulse duration at 55°C and 60°C	71
Figure (4.25)	the spectral width with 35 μs pulse duration at 65°C and 70°C	71
Figure (4.26)	the spectral width with 35 μs pulse duration at 75°C and 80°C	72
Figure (4.27)	the spectral width with 25 μs pulse duration at room temperature and $40^{\circ}C$	73
Figure (4.28)	the spectral width with 25 μs pulse duration at 45°C and 50°C	74
Figure (4.29)	the spectral width with 25 μs pulse duration at 55°C and 60°C	74
Figure (4.30)	the spectral width with 25 μs pulse duration a t 65°C and 70°C	75
Figure (4.31)	the spectral width with 25 μs pulse duration at 75°C and 80°C	75
Figure (3.32)	Spectral width variation of laser pulse (820 nm) at three repetition rates in different temperatures.	76

Figure (3.33)	The Temperature and the spectral width relation of 675 nm wavelength with 10 KHz repetition rate and 25 ns duration pulse.	
Figure (3.34) The Temperature and the spectral width relation of 820 nm wavelength with 1 KHz repetition rate and 25 ns duration pulse.		79
Figure (3.35) The Temperature and the spectral width relation of 820 nm wavelength with 5 KHz repetition rate and 25 ns duration pulse.		79
Figure (3.36)	The Temperature and the spectral width relation of 820 nm wavelength with 10 KHz repetition rate and 25 ns duration pulse.	80

<u>List of Tables</u>

Table No.	Title	Page No.
Table (3.1)	The red light probe specification	48
Table (3.2)	The infrared light probe specification	49
Table (3.3)	The specification of HC- PCF	49
Table (3.4)	The electric oven specification	51
Table (3.5)	The CCS 200 spectrometer specification	53
Table (3.6)	The photoamplifier detector specification	54
Table (4.1)	The numerical values of spectral width variation of 675 nm wavelength at 1, 5 and 10 KHz repetition rate with 105, 35 and 25 µs pulse duration respectively.	66
Table (4.2)	The numerical values of spectral width variation of 820 nm wavelength at 1, 5 and 10 KHz repetition rate with 105, 35 and 25 µs pulse duration respectively.	77

List of symbols

Symbol	Meaning
n	The fiber core refractive index
n ₂	The fiber cladding refractive index
θ_c	The critical angle of reflection
Δ	Relative core – cladding index difference
V	Parameter determines the number of modes supported by the fiber
λ	Pulse wavelength
K	Wavenumber
β	Propagation constant
k ₀	Free space Propagation constant
Λ	the inter hole spacing
С	speed of light in vacuum
a	the core radius
$n_c(\lambda)$	The effective index of the fundamental space filling mode.
E	Electric field
Н	Magnetic field
В	magnetic induction field
D	electric displacement
Р	the induced electric polarization
ε_0	vacuum permittivity
Symbol	Meaning

μ_0	vacuum permeability
$oldsymbol{E}(oldsymbol{r},oldsymbol{t})$	A slowly varying complex envelope
ŷ	the polarization unit vector
ω_0	an angular optical frequency
k ₀	free space wave number
$arepsilon_{\it NL}$	Nonlinear dielectric constant
$\alpha(\omega)$	attenuation coefficient
γ	nonlinear coefficient
A _{eff}	the effective area
A	The slowly varying amplitude of the pulse envelope
T ₀	Initial pulse bandwidth
P ₀	Peak power
	Fiber length
L _D	Dispersion length
L_{Nl}	Nonlinear length
β_2	Group velocity dispersion
U	normalized amplitude
S	self – steeping effect
τ _R	intrapulse Raman scattering
P _T	transmitted power
С	The Rayleigh Scattering coefficient
α _{OH}	the OH absorption loss
Symbol	Meaning
α _{IR}	the infrared absorption loss

α_n			
	Abbreviations		Meaning
α_{r}	r PCFs		Photonic Crystal fibers
	HC-F		Hollow Core - Photonic Crystal fibers
` [P	BG	photonic Bandgap Guidance —
	Т	'IR	Total Internal Reflection
	M	TIR	Modified Total Internal Reflection
///	0	VD	Outside Vapor Deposition
	M	CVD	Modified Chemical Vapor Deposition
[V	AD	Vapor phase Axial Deposition
<u> </u>	Μ	IFD	Mode Field Diameter
	ⁿ NLSE		Nonlinear Schrödinger Equation
];[G	VD	Group Velocity Dispersion
[S	PM	Self Phase Modulation
	, LED		Light Emitting diode
;	PI	MD	Polarization Mode Dispersion
	CPM	or XPM	Cross Phase Modulation
	F۱	WМ	Four Wave Mixing
¹ [S	RS	Stimulated Raman Scattering
	k SBS		Stimulated Brillouin Scattering
[FWHM		Full Width at Half Maximum
	NA		Numerical Aperture
Φ_i			Linear phase shift
Φ_{nl}			Nonlinear phase shift

List of abbreviations