# CHAPTER ONE Introduction

## **1.1-Transition elements:**

Humans have been aware of transition elements for thousands of years. For example the use of copper predate 500 BC and iron 1200 BC, but chromium has been discovered in1797 AC (Chris, 2001). Titanium was discovered in 1791AC. (Bentor, (2015), and zirconium in 1789 AC. (Forrest, (1981).

Transition metals may be strictly defined as those have partly filled d or f orbitals. Here the definition adopted is slightly broader and include also elements that have partly filled d or f shell in one of their commonly occurring oxidation states, this means that the coinage, Cu , Ag and Au treated as transition metals , since Cu<sup>+2</sup> has 3d<sup>9</sup> configuration , Ag<sup>+2</sup> a 4d<sup>9</sup> configuration and Au<sup>+3</sup> a 5d<sup>8</sup> configuration (Cotton & Wilkinson, 1972).

Transition elements are metallic elements that serve as a bridge or transition between the two sides of periodic table S-block and P-block (Petrucci, Harwood & Herring., 2002)

The large number of transition elements is subdivided into three main groups: (a) the main transition elements or d-block elements, (b) the lanthanide elements and (c) the actinide elements (Cotton & Wilkinson, 1972).

The main transition group or d-block includes these elements that have partially filled d-shells only, thus the elements scandium with the outer electronic configuration 4s<sup>2</sup> 3d<sup>1</sup> is the lightest member, the eight succeeding elements Ti ,V , Cr , Mn , Fe , Co , Ni and Cu all have partially filled 3d orbilais either in the ground state of the free atom (all except Cu ) or in one or more of their chemically important ions (all except Sc ) , this group of elements is called the first transition series (Cotton & Wilkinson, 1972). Zr belongs to the second transition series, which begins with Yttrium with ground state outer electronic configuration 5s<sup>2</sup> 4d<sup>1</sup> the following eight elements Zr, Nb, Mo, Tc, Ru, Rh, Pd and Ag all have partially filled 4d orbitals either in free elements (all but Ag) or in one or more of the chemically important ions (all but Y) (Petrucci, Harwood & Herring, 2002).

Coordination compounds play an essential role in chemical industry and in life itself. The importance of metal complexes becomes clear when one realizes the chlorophyll, which is vital to photosynthesis in plants is a magnesium complex and that hemoglobin which carries oxygen to animal cells is an iron complex (Fred & Ronald, 1986).

## **1.1.1-Physical properties of transition metals:**

Transition elements are hard, strong, high melting point, form alloys with one another and with other metals, high electrical and thermal conductors, and each transition metal have several readily accessible oxidation states. (William & Jolly, 1991).Their compounds are often colored, many of the compounds are paramagnetic, and their metal ions are often obtained in form of complexes with a wide variety of ligands. The compound, often have a catalytic properties. (William & Jolly, 1991). The two best conductors of electricity are the transition metal (copper) and the main group metal (aluminum). This shows the extent to which the physical properties of main group metals and transition metals overlap. (Boner & Pardue 1996).

## **1.1.2-** Chemical properties of transition metals:

Much of the chemistry of transition metals is the chemistry of complexes or coordination compounds. (William & Jolly, 1991). Transition metals organometalic chemistry is an important part of modern renaissance of inorganic chemistry that began 1950's and 1960's. Transition metal ions  $(M^{+2})$  are lewis acids and the ligands are lewis bases, they join to give coordination compounds or complexes,  $(ML_n)$  (Robert, 1988). When transition metals ionized, electrons are removed from the n orbitals before being remove from the valence shell (n-1)d-orbitals and this due to the small difference between the energies of the ns and the (n-1)d- orbitals. For this reason the electronic configuration of chromium and copper differ slightly from the prediction of the aufbau principal. (Boner & Pardue, 1996).

Cr : 
$$[Ar]4s^{1}3d^{5}$$
.  
Cu :  $[Ar]4s^{1}3d^{10}$ .

The sability of transition metals to form organo derivatives only began appreciated properly during 1950's, whereas the organo derivatives of non-transition metals and metalloids had been actively studied for more than hundred years before that (Cotton & Wilkinson, 1972). The main group metals tend to form salts such as NaCl and Mg<sub>3</sub>N<sub>2</sub> in which there are just enough negative ions to balance the charge on the positive ions .The transition metals form similar compounds such as CrCl<sub>3</sub>,

FeCl<sub>3</sub> or Cd(OH)<sub>2</sub>, they are more likely than the main group metals to form complex such as  $[FeCl_4]^-$ ,  $[CrCl_4]^-$  or  $[Cd(OH)_4]^{-2}$  (Albert *et al.*, 1995).

Transition metals have some characteristic chemical properties:-

1/ Forming compounds with several oxidation states. 2/ Strong tendency to form complexes. 3/ Useful as catalyst.

| Zn | Cu | Ni | Со | Fe | Mn | <u>Cr</u> | V  | <u>Ti</u> | Sc |
|----|----|----|----|----|----|-----------|----|-----------|----|
| -  | +1 | -  | -  | -  | -  | -         | -  | -         | -  |
| +2 | +2 | +2 | +2 | +2 | +2 | +2        | +2 | +2        | -  |
| -  | +3 | +3 | +3 | +3 | +3 | +3        | +3 | +3        | 3+ |
| -  | -  | -  | -  | -  | +4 | -         | +4 | +4        | -  |
| -  | -  | -  | -  | -  | -  | +5        | +5 | -         | -  |
| -  | -  | -  | -  | +6 | +6 | +6        | -  | -         | -  |
| -  | -  | -  | -  | -  | +7 | -         | -  | -         | -  |

Table (1). Most common oxidation states of first transition series.

Copper is the only one element in which the +1ion is important. For the rest of the elements, the sum of the first two ionization energies is low enough for the first two electrons to be removed, (except for scandium where the +2 ions are formed when the 4s electrons have been lost). The first three ionizations are also low enough for three electrons to be removed (except Zn).

The number of successful ionization energies increases from Sc to Mn after which it decreases again. This is because from Sc to Mn the highest oxidation state is simply the sum of the 3d and 4s electron. The metal with higher oxidation state are usually bonded covalently to oxygen or fluorine e.g.[MnO<sub>4</sub>]<sup>2-</sup>.

Compounds containing metals in higher oxidation state tend to be oxidizing agent, whereas compounds containing metals in lower oxidations state are usually reducing agent. Higher oxidation states become stable compared to lower ones, across the series. (Varoxidation, 2014).

One striking characteristic of representative elements is that their chemistry markedly changes across a given period as the number of valence electron changes, the chemical similarities occur mainly with vertical groups. In contrast the transition metals show great similarities within a given period as well as within a given vertical group. This differences occurs because the last electrons add for transition metals are inner electrons for the d-block transition metals and f electrons for lanthanides and actinides .These inner d and f electrons cloud participate, as easily in bonding as can the valence s and f electrons, thus the chemistry of transition elements is not affected as greatly by gradual change in the

number of electrons as in the chemistry of representative elements. (Steven & Susan, 2002).

Coordination compounds are used extensively in quantitative analysis as a means of separating certain metals ions and as means of positively identifying certain unknown ions. For example experiment may perform, to identify silver ion in solution, if silver ion is present. The addition of chloride ion gives an immediate white precipitate of silver chloride, this precipitate dissolve in excess of aqueous ammonia, but if an excess nitric acid is added to this clear solution the white precipitate forms again, this behavior is due to equilibria (1) and (2). (Fred & Ronald, 1986)

 $Ag^+ + Cl^- - AgCl^{*}$  (white ppt.) .....(1) AgCl+2NH<sub>3</sub>-[Ag(NH<sub>3</sub>)<sub>2</sub>]+Cl<sup>-</sup> (clear solution).....(2)

## **1.2- Complex formation**

It is difficult to state exactly when the first metal complex was discovered. Perhaps the earliest one in record is Prussian blue KCN,  $Fe(CN)_2$ , or  $Fe(CN)_3$  which was obtained by artist's color maker Diesbach in Berlin at the beginning of eighteenth century. However the date usually cited, is that of the discovery of hexaamine cobalt(II) chloride  $CoCl_36NH_3$  by Tassaert (1798). This discovery marks the real beginning of coordination chemistry. Because of existence of the compound of unique properties stimulated a considerable interest, and research on similar system (Dodle & Darl, 1995). Complex compounds have been known for more than 150 years but no satisfactory explanation for their formation was available until the imaginative work of Alfred Werner (William, *et al.*, 1985). From what he observed he, suggested that the transition metal compound has:-.

(i)- Primary valence: number of negative ions that are needed to satisfy the positive charge on the metal ion.

(ii)- Secondary valence: the number of ions or molecules that are coordinated to the metal ion (Boner & Pardue, 1996).

Co(Ⅲ) is six- coordinate and its coordination compounds can written as follows :

$$\begin{split} [Co(NH_3)_6]^{+3}(Cl^{-})_3 &----orange----yellow. \\ [Co(NH_3)_5(H_2O)]^{+3}(Cl^{-})_3 &----Red. \\ [Co(NH_3)_5Cl]^{+2}(Cl^{-})_2 &----purple. \\ [Co(NH_3)_4Cl_2]^{+}Cl^{-}----green. \end{split}$$

Brackets [] are used to distinguish between ligands that contributed to primary and secondary valencies. The charge on the complex is always the sum of the charges on the ions or molecules that form the complex (Dodle, 1995). For example:-

## $Fe^{+2} + 6CN^{-1}Fe(CN)_{6}^{-4}$

There are several features of complex or coordination compounds, the first feature is the metal ion, the second is the ligand, the third is the coordination number and the fourth is the geometry (Abbo, 1991).

In formation of  $Cu(NH_3)_4^{+2}$  ion the nitrogen atom of each  $NH_3$  molecule contributes a pair of unshared of electrons to form a covalent bond with  $Cu^{+2}$  ion, this bond and other like it , where the both electrons contributed by the same atom, is referred to as coordinate covalent bond, there are four such bonds in  $Cu(NH_3)_4^{+2}$  ion. The term complex ion indicates the charged species in the metal ion joined by coordinate covalent bond to neutral molecule and/or negative ions (Charles, 1986).

The metal cation in a complex is called the central ion. The molecule or anions bonded directly to it are called ligands. The number of bonds form by the central metal ion is called the coordination number In  $Cu(NH_3)_4^{+2}$  the central ion is  $Cu^{+2}$  the ligands are NH<sub>3</sub> molecule, coordination number is 4. This molecule cannot exist by itself in the solid state, charge must be balance with total charge -2 typical compound is [Cu(NH)<sub>3</sub>]Cl<sub>2</sub>. Compounds contain a complex ion are referred to as coordination compounds (Cotton, 2006).

## **1.3-The central metal ion:**

The central metal ion is the metal ion to which the ligands are attached at the centre of coordination sphere (Chris, 2001). In a general way it is true that the better complex-forming ions are those for which the ionic potential is relatively large. The comparatively small, highly charged ions of the 3d-transition series for example are much better complex formers than the large univalent alkali metals (Gaafar, 2000).

The bond between the metal ion and a ligand shows high dependency on the properties of the metal atom. The most important of these properties are the size of metal atom, its ionic charge, atomic number, electronic configuration, electronegativity and ionization potential. These properties govern the relative tendencies for various metal to combine with a given donor atom (William *et al.*, 1985). Sedgwick has pointed out that rough division of the metal ions into three groups can be made, based upon the relative tendencies of these ions to form

complexes with oxygen as donor atom on one hand or with nitrogen on the other hand . These groups are as follows:

(i)- Those ions which in general , complex more rapidly with oxygen than with nitrogen :Ti<sup>+4</sup>, Zr<sup>+4</sup>, Nb<sup>+5</sup>, V<sup>+5</sup>, Ta<sup>+5</sup>, Mo<sup>+5</sup>, Fe<sup>+3</sup> and Co<sup>+3</sup>.

(ii)- Those showing about equally strong tendencies to coordinate with oxygen and nitrogen:  $Cr^{+3}$ ,  $Fe^{+2}$  and  $Pt^{+2}$ .

(iii)- Those which complex more rapidly with nitrogen than with oxygen:  $Cu^{+1}$ ,  $Cu^{+2}$ ,  $Au^+$ ,  $V^{+3}$ ,  $Co^{+2}$  and  $Ni^{+2}$  (Abdalazeem, 2005).

#### 1.4- Ligands:

In principle any molecule or anion with an unshared pair of electrons can donate them to a metal ion to form a coordinate covalent bond. The expected species, such as ammonia molecule, water molecule, hydroxide ion and the chloride ion to act as ligands (Dodle & Darl, 1995). ligands that themselves can both donate or accept electrons, so that their own oxidation state is indistinct, make it difficult if not impossible to attribute unambiguous oxidation number to the metal atom. The extreme examples of such ligands are 1,2 dithiolene ligand, and many others such as NO, CO, CN and various phosphines are also capable of varying their net balance of donor and acceptor behavior toward a given metal atom, because of this the physical significance of the oxidation number assigned to the metal atom surrounded by such ligands becomes vague. Avery cogent example is provided by the pair of ions  $Fe(CN)_6^{-3}$  and  $Fe(CN)_6^{-4}$ , the formal oxidation state of the iron atoms are obviously +3 and +2 respectively, but detailed studies of Mossbauer and Esr spectra, coupled with molecular orbital treatment of the bonding, indicate that the effective charge residing on the metal atom is practically the same in the two cases (Cotton & Wilkinson, 1972).

#### **1.4.1-Types of ligands:**

Ligands classified, according to the number of electron pair donated.

**1.4.1.1-monodentate ligands** : provide one electron pair per ligand molecule or ion. Monodentate (literally one toothed) because they bite the metal ion in only one place, typical monodentate ligands are:-

 $F^-$ ,  $Cl^-$ ,  $I^-$ ,  $OH^-$ ,  $H_2O$ ,  $NH_3$ .

Such monodentate ligands form no chelate compounds (Cotton, 2006).

**1.4.1.2- Bidentate ligands** (two toothed) : that ligands furnish two electron pairs per molecule or ion (Charles, 1986).

For example ethylenediamine is bidentate ligand. It attaches to a metal by two nitrogen donor atoms.

 $H_2NCH_2CH_2NH$  Another example of bidentate ligand is carbonate, this an example of a case in which the distance between the potential donors is too short.

| 0 |   |     |
|---|---|-----|
|   | Μ | C O |
| 0 |   |     |

The carbonato complex is not stable since 4-membered ring is highly strained.5-membered and 6-membered rings are less strained as illustrated by the following examples:-

|                   | 0               |        |                   |
|-------------------|-----------------|--------|-------------------|
|                   |                 | С —О   |                   |
| 5-membered ring   | М               |        | Oxalato complex   |
|                   |                 |        | С —О              |
|                   | 0               |        |                   |
|                   | 0               |        |                   |
|                   |                 |        | С—О               |
| (5-membered ring) | Μ               |        | Glycinato complex |
|                   |                 | $CH_2$ |                   |
|                   | $\mathbf{NH}_2$ |        |                   |



(6-membered ring)

Acetyl acetate (acac)

## (M is a metal ion) 1.4.1.3**-Tridentate ligand**: Diethylenetriamine H<sub>2</sub>NCH<sub>2</sub>CH<sub>2</sub>NH CH<sub>2</sub>CH<sub>2</sub>NH<sub>2</sub>

1.4.1.4- Hexadentate ligand: EDTA (Ethylenediaminetetraacetate) (Abdalazeem, 2005).The general term polydentate is used for any ligand that supplies more than one pair of electrons. The complex form by polydentate ligands are often called chelate (Greek chela meaning crab's claw).

For ligand to act as chelating agent it must have at least two pairs unshared of electrons, these two pairs must be far enough from one another to form a chelate ring with stable geometry. Chelate formed by ethylenediamine or oxalate ion the ring contains five atoms. Four- membered are less stable, three-membered ring do not occur. (Charles, 1986).Examples

 $H_2NCH_2CH_2NH_2$  $H_2NCH_2NH_2$  $NH_2NH_2$ EthylenediamineMethylenediamineHydrazineMethylenediamine is less effective chelating agent than ethylenediamine since itwould form four-membered ring opposed 5-membered ring. Hydrazine does notact as chelating agent. To do so it would have to form 3-membered ring with ametal atom, this would required a highly unstable  $60^0$  angle (Dodle & Darl, 1995).Another important role of ligands is a bridging group. In many cases they serve asmonodentate ligands. This means that there is only one ligand atom which is formtwo (or even three) bonds to different metal atoms. Monoatomic ligands as halides(Cotton & Wilkinson, 1972).

Cl

Cl

Pd

#### **1.4.2-Linkage isomers:**

This rise from ambidentate ligands which define as: ligands with two or more different donor cites only one of which is attached to single metal atom at a given time. Examples:-

For NO<sub>2</sub>: M-NO<sub>2</sub> nitro attached through N.

Pd

: M-ONO nitrito attached through O.

CN<sup>-</sup> : Cyano(M-CN) and isocyano (M-NC).

NCS<sup>-</sup> : thiocyanato(M-SCN) and isothiocyanato (M-NCS).

### $R_2SO$ : S-bond and O-bond.

If different donor atoms belong to the same ligand molecule the complex may be termed as mixed donor. If the different donor atoms belong to separate ligand molecules the complex may be termed mix ligand or ternary complex (Hala, 1995).

## 1.5-Oxidation state and coordination number:

## 1.5.1-Oxidation state:

An oxidation state (number) is a charge an atom would carry if the molecule or ion was completely ionic (Karen, McArdle & Takats, 2014).

The multiplicity of the oxidation by most transition metals is due to ability of these elements to lose a variable number of d-electron. For example chromium exist in the 0, +1, +2, +3, +4 +5 and +6 oxidation states corresponding to the electronic configuration  $3d^54s^1$ ,  $3d^5$ ,  $3d^4$ ,  $3d^3$ ,  $3d^2$ ,  $3d^1$  and  $3d^0$  respectively. Titanium has four valence electrons  $3d^2 4s^2$ , Ti(IV) is the most stable and common oxidation state, in lower oxidation states 0, +2 and +3 are quite readily oxidized to titanium Ti(IV) by air , water and other reagents while Zr has four valence electron  $5s^2 4d^2$  as same as Ti, as they are in the same group four having the same oxidation states +1, +2, +3 and +4 (Cotton & Wilkinson, 1972).

Oxidation reaction involves increase in oxidation state, and reduction reaction occurs when the oxidation state of an atom decreases. Chemical reactions are often divide into two categories, oxidation reduction reaction and metathesis reaction (interchange or position) in which no change in oxidation state of any atom such a reaction is (William, 1991):-

## **1.5.2-** Coordination number:

This is the modern terminology for secondary valence which was mentioned first in Alfred Werener's postulates for describing the nature of metal complex which known later as werner's coordination theory (Basol & Ronald, 1986). The coordination number defines as the number of bonds from a ligand to a transition metal ion. Transition metal complexes are characterized with coordination number that range from 1 to 12, but the most common coordination numbers are 2, 4 and 6. Odd coordination number (1, 3, 5, 7, 9) are rare (Abdalazeem, 2005).

## **1.6-** Classification of structure in terms of coordination number

#### **1.6.1-** Coordination number (2):

Two-coordinate bond directed at  $180^{\circ}$  angle, the structure is linear. Examples: CuCl<sub>2</sub>,  $[Ag(NH_3)_2]^+$  and  $[Au(CN)_2]^-$  (Struct. 2014).

$$H_3N - Ag - NH_3$$

#### 1.6.2- Coordination number (4)

Four-coordinate bond, metal complexes may have either of two different geometries :-

-Tetrahedron : Bonds direct towards the corners of regular tetrahedron. Examples:  $[Zn(NH_3)_4]^{+2}$  and  $[CoCl_4]^{-2}$ .



-Square planar : the four bonds direct towards the corners of the square .Examples :  $[Pt(NH_3)]^{+2}$  and  $[Ni(CN)_4]^{-2}$  .(Struct., 2014).



Geometric isomerism (cis and trans) can occur with square planar of the type Ma<sub>2</sub>b<sub>2</sub> or Ma<sub>2</sub>bc (where M refers to the central metal ion and a, b and c are different ligands). This does not occur in tetrahedral complex because all position of ligands equivalent.

#### 1.6.3- Coordination number (6)

The six ligands surrounding the central metal ion in a complex such as  $[Fe(CN)_6]^{-3}$ ,  $[Pt(Cl)_6]^{3-}$  and  $[Co(NH_3)]^{+3}$  are located at corners of regular octahedron. Geometric isomerism can occur in octahedral complex such an example is  $[Co(NH_3)_4Cl_2]^+$  can exist in cis and trans. These two isomers differ in their physical and chemical properties. The most striking difference is color, the cis complex tend to be violet while trans is green (Charles, 1986).



(Octahedral structure) (Struct, 2014).

### 1-7- Magnetic properties of transition elements:

These are direct and often sensitive relationship between the magnetic properties of matter in bulk and distribution of unpaired electrons in its various constituent atom and ion. There are several kinds of magnetism, paramagnetism, diamagnetism, ferromagnetism and antiferromagnetism (Cotton & Wilkinson, 1972). Paramagnetism arises whenever the molecule (ion or atom) contains unpaired of electron such as oxygen molecule contain two unpaired of electrons, NO<sub>2</sub> is paramagnetic. Always nature avoids this situation in compound of representative elements, but makes up for it in transition and inner transition metals. Complexes of most transition metals are paramagnetic as a result of presence of unpaired electrons in the splitting d-orbitals (Cotton & Wilkinson, 1972). The actual number of unpaired of electrons can be determined with Gouy balance. Gouy balance is like a normal balance but it has an electromagnet associated with it. A sample of compound is weighed with the magnet off and again with magnet on, a paramagnetic compound attached to the magnet with a force related to the number of unpaired electrons. Calibration with known paramagnetic substance allows determining the number of unpaired electrons in the sample. (Abdalazeem, 2005). Measurement of magnetism of FeCl<sub>3</sub> shows that there are five unpaired electrons for each iron( $\mathbb{II}$ ). This shows that the electronic configuration of iron( $\mathbb{II}$ ) is [Ar]3d<sup>5</sup> and not [Ar]4s<sup>2</sup> 3d<sup>3</sup>. Thus the 4s electrons removed before the 3d electrons when transition metal ion is formed (Dodle & Darl, 1995). Diamagnetic is a property of all forms of matter. In closed shells the electron spin moment and orbital moment balance each other. However when an atom or a molecule placed in magnetic field small moment is induced, so planes of orbital tipped slightly so that small moment set up in opposition to applied field, because of this diamagnetic substances are repelled from magnetic field. A very dilute solution of paramagnetic ion in a diamagnetic solvent such as water may be diamagnetic because of the large ratio of diamagnetic to paramagnetic species therein. Another important feature of paramagnetism is that its magnitude does vary with temperature, this because the moment induced depends only on the size and shapes of orbitals in closed shells and these are not temperature-dependent (Cotton & Wilkinson, 1972).

## **1.8- Complex ion stability:**

In some cases the preference of metal ion for certain ligands is easily understood. It seems reasonable the positive metal ions should preferred anionic ligand, neutral ligand to positive charge ones. However the factor that determine which ligand will coordinate best with a given metal ion, are numerous complicated and not completely understood (Basol & Johnson, 1986).

1.8.1- Stability constant:

The term stable and unstable are often used in general way to describe the reactivity of compounds. In the case of metal complexes these terms have specific meaning, which relate to the thermodynamics of complex formation. Stable complexes might be defined as those which have overall stability constant greater than one, and those unstable would then have overall stability constant less than one (Barrete, 1991). In general an increase in ligand basicity and/or an increase in acidity of the metal ion enhances the stability of complexes formed. The stability of the metal complex [ML<sub>m</sub>]<sup>n+</sup> is usually expressed in the term of formation constant ( $\beta_m$ ). For the reaction: (Quintus, 1982); (William *et al.*, 1985).

 $M^{n+} + mL \rightarrow [ML_m]^{n+}$ 

$$\beta_{m} = \frac{[(ML_{m})^{n+}]}{[M^{n+}][L]^{m}}$$

The generalization about stability is that soft, ligands form stable complexes with soft metal ions and hard ligands-hard metal ions complexes are stable. Mixtures of hard metal ion- soft ligands or soft metal ion- hard ligand complexes are less stable (Petrucci, Harwood & Herring,(2002). The formation constant is the number indicating the extent to which two species combine to form a new complex species in solution. The value of formation constant is the reciprocals of the corresponding dissociation constant values (Barrete, 1991). Determination of stability constants of complexes is an important subject in analytical chemistry. Computer programs such a hyperquad, superquad. sirko and polet have been proposed to obtain their values. However the stability constant of complex is frequently estimated from

measurement and treatment of analytical data using a wide selection of traditional methods such as a "Job's method", continuous variation method, mole ratio method and others. The traditional methods based on graphical representation of curves derived from more or less complicated functions obtained by means of experimental measurement of analytical signals from chemical system in equilibrium (Abel, Kinson, & Stone, 1982). For reaction involving complex ions in water solution we must be concern of two factors:-

(i) The rate of reaction: in which there is exchange of ligands.

## $[Cu(H_2O)_4]^{+2}_{(aq)} + 4NH_{3(aq)} \rightarrow [Cu(NH_3)_4]^{+2} + 4H_2O$

(ii)-Position of equilibrium involve: This commonly called formation constant. Complex ion that exchange ligands almost instantaneous are referred labile, in which the exchange occur within a half-life of a minute or less or rapidly to be measured, such an example is the substitution of  $[Cu(H_2O)_4]^{+2}$  by NH<sub>3</sub>. For  $[Ni(NH_3)]^{+2}$  the half-life substitution H<sub>2</sub>O by NH<sub>3</sub> or other ligands is 0.025s at 25<sup>o</sup> C (Cary, (1986). The complex ions that undergo ligands substitution slowly are called nonlabile or inert, such a complex  $[Cr(H_2O)_6]^{3+}$  here the half-life for substitution by NH<sub>3</sub> is 40 h at 25<sup>o</sup>C. For illustrated difference between labile and inert, complexes of Fe<sup>2+</sup> and Fe<sup>3+</sup> with cyanide,  $[Fe(CN)_6]^{-4}$  is inert and nonpoisonous.  $[Fe(CN)_6]^{3-}$  labile and poisonous, because CN<sup>-</sup> released in water solution are toxic.(Charles, 1986).

The stability of coordination compounds and reaction rate or lability, these two terms relate to different phenomena. The stability of the complex depends on the difference in the free energy between reactants and products, whereas the lability of the compounds depends on the difference in free energy between reactants and activated complex (Cotton, 2006) (Fig. 1)

Activated complex



## Fig.(1) Stability and lability

## **1.9-** Electronic structure of transition metal complex:

### **1.9.1-** Genealogy of several theories:

The study of Werner and his contemporaries followed by the idea of Lewis and sidgwick on electron pair bonding led to the idea that ligands are groups that can in some way donate electron pairs to metal ion or other acceptors, thus forming the so-called coordinate link. This approach to bonding in complexes was extended by Pauling and developed into the valence bond theory (VBT) of metal-ligand bonding, this theory enjoyed great among chemist (1930's-1940's), but during 1950's it was supplemented by ligand field theory (LFT), the ligand field theory as we have it today evolved out of purely electrostatic theory called crystal field theory (CFT) which was first expounded in 1929 by H. Bethe. CFT treat metal-ligand interaction as purely electrostatic problem, at opposite extreme metal-ligand interaction can be described in terms of molecular orbitals form by overlap of ligands and metal orbitals. CFT modified in certain parameters to allow for the effect of covalence. This modified CFT is sometimes called ligand field theory (LFT). However also LFT used as general name for the whole gradation of theories from CFT to MO formulism, and sometimes called adjusted crystal field theory (ACFT) (Cotton & Wilkinson, 1972).

#### **1.9.2-** Concept of effective atomic number:

It has been long recognized that in the compounds in which each atom can share with other atom, gather around itself a number of electrons equal to that found in the corresponding noble gas. Professor Sidgwick of Oxford University applied this to metal complexes and this what he called effective atomic number (EAN) Example: the EAN for cobalt (III) in  $[Co(NH_3)_6]^{+3}$  is readily calculated as:-Co: Cobalt atomic number 27 has 27 electrons. Co<sup>3+</sup>: 27-3= 24 electrons 6NH<sub>3</sub>: 6x2 = 12 electrons EAN: 36 electrons (Kr) There are many exception to this rule for example  $[Ag(NH_3)_2]^+$  and  $[Ni(en)_3]^{2+}$  with EAN 50 and 38 respectively. For this unfortunate it would be impossible to estimate the coordination number of metal ion. One class of the compounds that frequently does obey the EAN rule comprises the metal carbonyls and their derivatives (Dodle & Darl, 1995).

## **1.9.3-** Valence bond theory (VBT) "Atomic orbitals":

This theory was developed by Professor Linus Pauling who has been awarded two Nobel prizes. The theory aided coordination chemists for it can account reasonably well for structure and magnetic properties of metal complexes (Cotton & Wilkinson, 1972). This theory starts with simple assumption, it considers that electron pairs donated by ligands enter hybrid orbitals, these electron pairs depend upon the coordination number and geometry of complex. Table (2) below (Charles, 1986)

|              |                                | C             | ·                   |
|--------------|--------------------------------|---------------|---------------------|
| Example      | Hybrid orbitals occupied by    | Geometry      | Coordination number |
| _            | ligand electron                | _             |                     |
| [Cu(NH3)4]+  | sp                             | Linear        | 2                   |
| [Zn(NH3)6]+2 | sp <sup>3</sup>                | Tetrahedral   | 4                   |
| [Ni(CN)4]-2  | dsp <sup>2</sup>               | Square planar | 4                   |
| [Cr(NH3)6]+3 | d <sup>2</sup> sp <sup>3</sup> | Octahedral    | 6                   |

Table (2). Coordination numbers and geometries.

Example: Applying of valence bond theory for  $[Co(NH_3)_6]^{+3}$ : The electronic configuration for transition metal ion:

 $Co^{3+}: [Ar]3d^6 4s^0 4p^0$ . 4s orbital and three 4p orbitals are empty. To satisfy for the covalent bond theory  $Co^{3+}$  needs six empty orbitals to accept six pairs of electrons from the donor atoms (nitrogen), to satisfy for this two orbitals from the five orbitals of 3d should be empty. This leads to pairing of electrons into three orbitals of 3d sub-shell .Now two empty orbitals of the 3d sub-shell plus 4s orbital and three 4p orbitals are empty hybrized to  $d^2sp^3$ .

$$Co^{3+}$$
: ( $\hbar g$ ) (

accepted nonbonding pair of electron from NH<sub>3</sub> molecule.  

$$(\tilde{n}_{\tilde{s}})(\tilde{n}_{\tilde{s}})(\tilde{n}_{\tilde{s}})(\tilde{n}_{\tilde{s}})(\tilde{n}_{\tilde{s}})(\tilde{n}_{\tilde{s}}))(\tilde{n}_{\tilde{s}})(\tilde{n}_{\tilde{s}})(\tilde{n}_{\tilde{s}})(\tilde{n}_{\tilde{s}}))(\tilde{n}_{\tilde{s}})(\tilde{n}_{\tilde{s}})(\tilde{n}_{\tilde{s}}))(\tilde{n}_{\tilde{s}})(\tilde{n}_{\tilde{s}}))(\tilde{n}_{\tilde{s}})(\tilde{n}_{\tilde{s}}))(\tilde{n}_{\tilde{s}})(\tilde{n}_{\tilde{s}}))(\tilde{n}_{\tilde{s}})(\tilde{n}_{\tilde{s}}))(\tilde{n}_{\tilde{s}})(\tilde{n}_{\tilde{s}}))(\tilde{n}_{\tilde{s}})(\tilde{n}_{\tilde{s}}))(\tilde{n}_{\tilde{s}})(\tilde{n}_{\tilde{s}}))(\tilde{n}_{\tilde{s}})(\tilde{n}_{\tilde{s}}))(\tilde{n}_{\tilde{s}})(\tilde{n}_{\tilde{s}}))(\tilde{n}_{\tilde{s}})(\tilde{n}_{\tilde{s}}))(\tilde{n}_{\tilde{s}}))(\tilde{n}_{\tilde{s}})(\tilde{n}_{\tilde{s}}))(\tilde{n}_{\tilde{s}})(\tilde{n}_{\tilde{s}}))(\tilde{n}_{\tilde{s}})(\tilde{n}_{\tilde{s}}))(\tilde{n}_{\tilde{s}})(\tilde{n}_{\tilde{s}}))(\tilde{n}_{\tilde{s}}))(\tilde{n}_{\tilde{s}})(\tilde{n}_{\tilde{s}}))(\tilde{n}_{\tilde{s}}))(\tilde{n}_{\tilde{s}}))(\tilde{n}_{\tilde{s}}))(\tilde{n}_{\tilde{s}}))(\tilde{n}_{\tilde{s}}))(\tilde{n}_{\tilde{s}}))(\tilde{n}_{\tilde{s}}))(\tilde{n}_{\tilde{s}}))(\tilde{n}_{\tilde{s}}))(\tilde{n}_{\tilde{s}}))(\tilde{n}_{\tilde{s}}))(\tilde{n}_{\tilde{s}}))(\tilde{n}_{\tilde{s}}))(\tilde{n}_{\tilde{s}}))(\tilde{n}_{\tilde{s}}))(\tilde{n}_{\tilde{s}}))(\tilde{n}_{\tilde{s}}))(\tilde{n}_{\tilde{s}}))(\tilde{n}_{\tilde{s}}))(\tilde{n}_{\tilde{s}}))(\tilde{n}_{\tilde{s}}))(\tilde{n}_{\tilde{s}}))(\tilde{n}_{\tilde{s}}))(\tilde{n}_{\tilde{s}}))(\tilde{n}_{\tilde{s}}))(\tilde{n}_{\tilde{s}}))(\tilde{n}_{\tilde{s}}))(\tilde{n}_{\tilde{s}}))(\tilde{n}_{\tilde{s}}))(\tilde{n}_{\tilde{s}}))(\tilde{n}_{\tilde{s}}))(\tilde{n}_{\tilde{s}}))(\tilde{n}_{\tilde{s}}))(\tilde{n}_{\tilde{s}}))(\tilde{n}_{\tilde{s}}))(\tilde{n}_{\tilde{s}}))(\tilde{n}_{\tilde{s}}))(\tilde{n}_{\tilde{s}}))(\tilde{n}_{\tilde{s}}))(\tilde{n}_{\tilde{s}}))(\tilde{n}_{\tilde{s}}))(\tilde{n}_{\tilde{s}}))(\tilde{n}_{\tilde{s}}))(\tilde{n}_{\tilde{s}}))(\tilde{n}_{\tilde{s}}))(\tilde{n}_{\tilde{s}}))(\tilde{n}_{\tilde{s}}))(\tilde{n}_{\tilde{s}}))(\tilde{n}_{\tilde{s}}))(\tilde{n}_{\tilde{s}}))(\tilde{n}_{\tilde{s}}))(\tilde{n}_{\tilde{s}}))(\tilde{n}_{\tilde{s}}))(\tilde{n}_{\tilde{s}}))(\tilde{n}_{\tilde{s}}))(\tilde{n}_{\tilde{s}}))(\tilde{n}_{\tilde{s}}))(\tilde{n}_{\tilde{s}}))(\tilde{n}_{\tilde{s}}))(\tilde{n}_{\tilde{s}}))(\tilde{n}_{\tilde{s}}))(\tilde{n}_{\tilde{s}}))(\tilde{n}_{\tilde{s}}))(\tilde{n}_{\tilde{s}}))(\tilde{n}_{\tilde{s}}))(\tilde{n}_{\tilde{s}}))(\tilde{n}_{\tilde{s}}))(\tilde{n}_{\tilde{s}}))(\tilde{n}_{\tilde{s}}))(\tilde{n}_{\tilde{s}}))(\tilde{n}_{\tilde{s}}))(\tilde{n}_{\tilde{s}}))(\tilde{n}_{\tilde{s}}))(\tilde{n}_{\tilde{s}}))(\tilde{n}_{\tilde{s}}))(\tilde{n}_{\tilde{s}}))(\tilde{n}_{\tilde{s}}))(\tilde{n}_{\tilde{s}}))(\tilde{n}_{\tilde{s}}))(\tilde{n}_{\tilde{s}}))(\tilde{n}_{\tilde{s}}))(\tilde{n}_{\tilde{s}}))(\tilde{n}_{\tilde{s}}))(\tilde{n}_{\tilde{s}}))(\tilde{n}_{\tilde{s}}))(\tilde{n}_{\tilde{s}}))(\tilde{n}_{\tilde{s}}))(\tilde{n}_{\tilde{s}}))(\tilde{n}_{\tilde{s}}))(\tilde{n}_{\tilde{s}}))(\tilde{n}_{\tilde{s}}))(\tilde{n}_{\tilde{s}}))(\tilde{n}_{\tilde{s}}))(\tilde{n}_{\tilde{s}}))(\tilde{n}_{\tilde{s}}))(\tilde{n}_{\tilde{s}}))(\tilde{n}_{\tilde{s}}))(\tilde{n}_{\tilde{s}}))(\tilde{n}_{\tilde$$

6 electron pairs from 6 NH<sub>3</sub> (Maxwell, (1988).

 $[Ni(NH_3)_6]^{2+}$ 

Another example to explain bonding in complex on basis of valence bond theory:

The electronic configuration for Ni<sup>2+</sup> is :[Ar]3d<sup>8</sup>4s<sup>0</sup>4p<sup>0</sup> or

If the two unpaired electron in the two 3d orbitals were forced to pair , then there will be one d-orbital empty , plus 4s orbital and three 4p-orbitals , this gives only five empty orbitals in central ion which does not satisfy for d<sup>2</sup>sp<sup>3</sup> hybridization ,to solve this, the 4d-orbitals are used to give sp<sup>3</sup>d<sup>2</sup> hybridization. The complex ion



Six pairs of electrons are donated by six NH<sub>3</sub> molecules. This complex is known as outer-shell complex using sp<sup>3</sup>d<sup>2</sup> configuration. Complex of the type d<sup>2</sup>sp<sup>3</sup> is known as the inner-shell complex (William, Emil & Conrad 1985).

## 1.9.4- Crystal field theory (CFT):

The crystal field model interprets the bonding between ligand and metal ion is primary electrostatic in nature. Ligands electron pairs are not donated into orbitals of the central metal ion as the valence bond theory. Instead it assumed that the only effect of ligand to create an electrostatic field around the d-orbitals of the metal ion. The symmetrical field caused by ligands is similar to electrostatic field around ion in ionic crystal, this similarity account for the name crystal field theory. (Charles, 1986).This field changes the relative energy of the different d-orbitals.The degeneracy of the five d-orbitals is partly removed by the  $d_{r^2}$  and  $d_{r^2-r^2}$ 

electrostatic field (Dodle, 1995). This happens because electrons in the

orbitals will in average spend more time closer to the six regions of ligand

 $d_{xy}, d_{xz}, d_{yz}$  electron density than those in the orbitals. thus in the energy diagram the first two placed higher energy than the later three orbitals, figure (3). The raised in energy between the two set of orbitals is known as the crystal field splitting or

ligand field splitting. And represented by crystal splitting parameter  $\square$  or 10dq. The more specific symbol  $\square_o$  may be used in particular case of an octahedral complex, similarly  $\square_t$  used to donate the value for a tetrahedral complex (Chris, 2001). The

two sets of the d-orbitals are given symmetry labels  $e_g$  for  $d_{x^2-y^2}$  and  $t_{2g}$  for  $d_{xy}$ ,  $d_{xz}$  and  $d_{yz}$ 

orbitals, the energy of  $e_g$  increase by (3/5)  $\square_o$  and that of three  $t_{2g}$  orbitals will decrease by (2/5)  $\square_o$  ((Schläfer, & Gliemann 1969). In an octahedral  $[Ti(H_2O)_6]^{3+}$ 

complex that contains one d- electron for example , the electron will reside in the orbital that has lowest energy i.e  $t_{2g}$  orbital that has energy  $0.4\mathbb{I}_{\circ}$  less that of hypothetical degenerate orbitals. Thus the complex will be  $0.4\mathbb{I}_{\circ}$  more stable than a simple electrostatic model predict  $0.4\mathbb{I}_{\circ}$  called the crystal field stabilization energy (CFSE). For  $d^5$  system is either  $3(0.4\mathbb{I}_{\circ}) + 2(-0.6\mathbb{I}_{\circ}) = 0.0\mathbb{I}_{\circ}$  or  $5(0.4\mathbb{I}_{\circ}) + 0(-0.6\mathbb{I}_{\circ}) = 2.00\mathbb{I}_{\circ}$  depending in distribution of the five electrons in the  $t_{2g}$  and  $e_g$  orbitals (Grabtree, 1988).



Figure (3) crystal field splitting.

#### **1.9.5-Molecular orbital theory**: (MOT):

Molecular orbital theory uses a linear combination of atomic orbitals (LCAO) to represent molecular orbitals involving the whole molecule. These orbitals are often divided into bonding orbitals, anti-bonding orbitals and nonbonding orbitals (Dr. Paul, 2006).The method for constructing these orbitals specifically for octahedral complexes will take the following steps:

(i)-There are nine valence shell orbital of the metal ion to be considered six of

 $d_{x^2}., d_{x^2-y^2}$  s,  $P_x, P_y, P_z$ 

 $d_{xy}, d_{xz}$  and  $..d_{yz}$ 

these , are suitable for  $\square\mbox{-bonding}$  whereas three suitable for  $\pi\mbox{-bonding}$  .

(ii)- each of the six ligands possesses one  $\square$ -orbital, they must combined into six metal-ion orbitals which are suitable for  $\square$ -bonding, to give bonding and anti bonding molecular orbital.

(iii) If the ligand also possesses  $\pi$ -orbitals , these also combine to overlap effectively with metal ion  $\pi$ -orbital and give bonding and anti bonding MO's then form by overlap (Schläfer,& Gliemann, (1969)

figure (4) Below is the resulting molecular orbital (MO) diagram for an octahedral complex with strong  $\pi$ -acceptor ligands [(Cr)CO)<sub>6</sub>)]. The Cr<sup>0</sup> centre is a 3d<sup>6</sup> configuration. The 6 CO ligands each donate two electrons to the metal centre via  $\sigma$  bonding. The  $\pi$  bonding symmetry orbitals of the ligands are also populated, but cannot effectively act as  $\pi$  donors to the central metal, partially because of their energies being much lower than the appropriate symmetry metal t<sub>2g</sub> set, but also because the metal d<sup>6</sup> centre has its t<sub>2g</sub> set populated by metal based electrons; electron-electron repulsion further hinders any  $\pi$  donor ability from the CO ligand (Landis, & Weinhold, 2007).



Fig.(4) Molecular orbital diagram. (Chemistry, 2000)

## 1.10-Titanium:

Titanium latin (titan) the first son of the earth in the mythology. Discovered in 1791, named by Klaproth in 1795. Impure titanium was prepared by Nilson and Pettersson in 1887 AC, however the pure metal (99.9%) was not made until 1910 when Hunter heated TiCl<sub>4</sub> with sodium in steel bomb. Titanium is in the first transition series of d-block and has four valence bond electrons  $3d^24s^2$  (the electronic configuration. [Ar]  $3d^24s^2$  (Cotton &Wilkinson, 1972).

## 1.11.1-Physical properties of titanium:-

It is a light, strong, lustrous, corrosion resistance (including resistance towards sea water), transition metal with white silvery metallic color, titanium can be alloyed with other elements such as iron, aluminum, vanadium, molybdenum and others, to produce strong light weight alloys for aerospace (jet engines, missiles and spacecrafts), military industrial processes (chemical and petrochemical), desalination and paper. Pure titanium is insoluble in water but soluble in concentrated acids. (Stwertka, (1998). Nearly 500 kg of Ti alloys is used in each engine of Boeing747 jetliner (Bruce, 1975).

## 1.11.2-Chemical properties of titanium:-

Titanium is the first member of the d-block transition elements, and has four valence electrons  $3d^24s^2$ . Ti(N) is the most stable and common oxidation state. Compounds in lower oxidation states -1, 0, +2 and +3 are quite readily oxidized to Ti(N) by air, water and other reagents. The energy for removal of electrons is high, so that Ti<sup>+4</sup> ion does not has real existence, and titanium Ti<sup>4+</sup> compounds are generally have covalent nature (Cotton & Wilkinson,1972). Compounds of this element and also zirconium are formed with evolution of considerable energy. On the basis of thermodynamic only, the element would be considered very reactive. However it protects itself from chemical attack by very thin layer (TiO<sub>2</sub>), and therefore is quite resistant to chemical at ordinary temperature (Bruce1975). Titanium is relatively abundant in the earth's crust (0.6%). The main ores are ilmenite (FTiO<sub>3</sub>) and rutile one of the several crystalline varieties of (TiO<sub>2</sub>). It is not possible to obtain the metal by common reduction with carbon, very stable carbide is produced and moreover the metal is rather reactive towards oxygen and nitrogen at elevated temperature (Cotton & Wilkinson, 1972)

Ilmenite and rutile is treated at red heat with carbon and chlorine to give TiCl<sub>4</sub>:

 $2\text{TiFeO}_3 + 7\text{Cl}_2 + 6\text{C}(900^{\circ}\text{C}) \rightarrow 2\text{TiCl}_4 + 2\text{FeCl}_3 + 6\text{Co}$ 

This is fractionated to free form FeCl<sub>3</sub>. The titanium tetrachloride (TiCl<sub>4</sub>) is then reduced with molten magnesium at 800<sup>o</sup> C, this gives metallic titanium as sponge mass.

#### $TiCl_4+2Mg(800^{\circ}C)\rightarrow 2MgCl_2+Ti$

The excess of magnesium chloride (MgCl<sub>2</sub>) is removed by volatilization at 1000<sup>°</sup> C. Natural titanium consists of five isotopes with atomic mass from 46-50, all are stable. Eight other unstable isotopes are known (Stwertka, 1998).

There is no particularly strong resemblance between the metal of group 4A and 4 B. The important oxidation state of tin and particularly lead is +2 and not +4 while the reverse is true in titanium family. The tetrachloride of both are however somewhat similar, like SnCl<sub>4</sub>, TiCl<sub>4</sub>, ZrCl<sub>4</sub> and HfCl<sub>4</sub> are relative volatile compounds that exist as discrete covalently bonded molecules (Bruce, 1975).

#### 1.11.3-Titanium compounds:

Titanium is a transition metal since it has partially-filled d-orbital. So it is better to consider the chemistry and complexes of titanium according to its several oxidation states. The chief oxidation states of titanium are +4 ( $d^0$ ), +3 ( $d^1$ ), +2 ( $d^2$ ) and +1( $d^3$ ) (Mona, 2000).

#### **1.11.4-Chemistry of titanium (IV) (d<sup>0</sup>):**

This is the important oxidation state. **(A)-Halides** : TiCl<sub>4</sub> the most well known titanium compounds since it is the usual starting point for preparation of most other titanium compounds, and can be hydrolysed by  $H_2O$  : TiCl<sub>4</sub>+2H<sub>2</sub>O $\rightarrow$ TiO<sub>2</sub>+4HCl

When HCl present. Roman spectra indicate the present of species  $[TiO_2Cl_4]^{4-}$  or  $[TiOCl_5]^{3-}$  and not  $[TiCl_6]^{2-}$ . TiBr<sub>4</sub> and TiI<sub>4</sub> are similar to TiCl<sub>4</sub>, but they are crystalline at room temperature whereas TiCl<sub>4</sub> is a liquid (Cotton & Wilkinson, 1972).

$$TiCl_{4} + Ti \rightarrow 2TiCl_{2}$$
$$TiCl_{4} + O_{2} \xrightarrow{burning} TiO_{2} + 2Cl_{2(g)}$$
(Bruce, 1975)

**(B)** Oxides: TiO<sub>2</sub> has three crystalline modifications rutile , anatase and brookite , and each of which occur in nature. Considerable number of material called "titanates" are known such that FeTiO<sub>3</sub> (ilmenite) and CaTiO<sub>3</sub> "perovskite".

**(C) Alkoxides** : These are much studied and are typically of other transition metal alkoxides ( such as V , Fe and U and others ) .The compounds can be obtained by reactions as such : (Leslie,1971).

$$TiCl_4+4ROH+4NH_3 \rightarrow Ti(OR)_4+4NH_4Cl.$$
  
 $TiCl_4+3EtOH\rightarrow 2HCl+TiCl_2(OEt)_2.EtOH$ 

**(D) ß**-diketonates: These are made by treating TiCl<sub>4</sub> with ß-diketones in an inert solvent. The acetyacetonate [Ti(acac)<sub>2</sub>] what has cis-Cl groups and is fluxional molecule, and is readily hydrolyzed to an oxo-bridged species where the Ti-O-Ti is almost linear , suggesting some  $p\pi$ -d $\pi$  bonding such as :

 $(C_5H_5)Cl_2Ti-O-TiCl_2(C_5H_5)$ 

**(E) Nitrogen compounds**: Nitrogen compounds with N-H bonds appear to react with titanium halides to initially an adduct from, which hydrogen halide is eliminated by base catalysis. Thus the dilute gaseous ammonia gives addition product. But with an excess of ammonia, ammonolysis occurs and up to three Ti-Cl bonds are converted to Ti-NH<sub>2</sub> bonds.

Primary and secondary react in a similar way to give orange and red solids such as TiCl<sub>2</sub>(NHR)<sub>2</sub> and TiCl<sub>2</sub>NR<sub>2</sub> (Basol & Ronald, 1986).

#### **<u>1.11.5-Chemistry of titanium (III) d<sup>1</sup></u>**:

The most important compound is the chloride  $TiCl_3$  which has several crystalline forms, violet  $\alpha$ -form and brown  $\beta$ -form. The oxide  $Ti_2O_3$  obtained by reducing  $TiO_2$  in 1000°C in steam of  $H_2$ . The addition of OH<sup>-</sup> ions to aqueous titanium solution gives purple precipitate of hydrous oxide (Cotton & Wilkinson, 1972).

**1.11.6-Chemistry of titanium** ( $\Pi$ ) **d**<sup>2</sup> : The compounds of divalent titanium are few and Ti (II) has no aqueous chemistry because of it is oxidation by water. Although it has been reported that the ice-cold solution of titanium oxide (TiO) in dilute HCl contain Ti<sup>2+</sup> ions which persist for some time. The well-define compounds are TiCl<sub>2</sub>, TiBr<sub>2</sub>, TiI<sub>2</sub> and TiO these can be obtained by the reduction of tetrahalides with titanium:

$$TiX_4+Ti \rightarrow 2TiX_2$$
  
And by disproportional of trihalides [4]:  
 $2TiX_3 \rightarrow TiX_2+TiX_4$ 

## 1.12-Zirconium : (Zr)

Zirconium was discovered by Martin Klaproth a German chemist, while analyzing the composition of mineral jarcon or zircon in 1789. Zirconium is Persian word for gold-like Zargum (Forrest, 1981). The primary ore of this element has been known since biblical times, and it has been called by a variety of names including jargon , hyacinth and jacinth. Swedish chemist Jacob Berzlius isolated an impure zirconium metal, was not until 1914 when the pure zirconium was finally produced. (Lide, 2008). Zirconium an element of second transition series, in general the first, second and third transition series of a given group of elements have similar chemical properties but all show pronounced differences from their light congeners (Cotton & Wilkinson, 1972).The radii of Zr<sup>4+</sup> and Hf<sup>4+</sup> ions (0.74 and 0.75 respectively) are virtually identical, thus has the effect of making chemical behavior of the two elements extremely similar. The most important difference from titanium is that lower oxidation states are of minor important. Zirconium occurs widely over the

earth's crust, but not in very concentrated deposits. The major minerals are baddeleyite a form of ZrO<sub>2</sub> and Zircon ZrSiO<sub>4</sub> (Basol and Ronald, 1986).

### **1.11.1-Physical properties of zirconium:**

Zirconium is grayish -white metal, lustrous and exceptionally corrosion resistant. Zirconium is lighter than steel and its hardness is similar to copper. When it is finely divided, the metal can spontaneously ignite in air, especially at high temperature (it is much difficult to ignite the solid). Zirconium zinc alloy becomes magnetic at temperature below 35<sup>o</sup> K. (Forrest, (1981).

## **1.12.2-Chemical properties:**

Zirconium reacts more rapidly with nitrogen than with oxygen, to give mixture of nitride oxide and oxide nitride  $Zr_2ON_2$  (Cotton & Wilkinson, 1972).  $ZrO_2$  is more basic than  $TiO_2$  and is virtually insoluble in an excess of base. Zirconium hydrolysis does not occur, and it is very doubtful indeed if  $Zr^{4+}$  aquo ions exist even in strongly acid solutions. The hydrolyzed ion is often referred to as "Zirconyl" ion and written  $ZrO^{2+}$ . However there is a little, if any reliable evidence for the existence of such an oxo ion either in solution or in crystalline form (Lide, (2008). Zirconium has nearly equal energy of the 4d and 5s levels, and this allows most of zirconium chemistry to involve the four electrons in these two levels. Zirconium salt dissociated in water at lower pH value, and it hydrated with bonding to eight water molecules, to form square antiprism (Winter,(2007).

 $[Zr(H_2O)_8]^{4+} \to H_2O \to [Zr(H_2O)_7(OH)]^{3+} + H_3O^+ \xrightarrow{H_2O} [Zr(H_2O)_6(OH)_2]^{2+} + H_3O^+$ 

## **1.12.3-Compounds of zirconium:**

ZrCl<sub>4</sub> resembles TiCl<sub>4</sub> in chemical properties.

 $ZrCl_4+9H_2O \rightarrow ZrOCl_2.8H_2O+2HCl$ 

ZrCl<sub>4</sub> combines with donors such as ethers, esters, PoCl<sub>3</sub>, CH<sub>3</sub>CN and with Cl<sup>-</sup> to form six coordinate species (Lide, (2008). Zirconium chloride (ZrCl<sub>4</sub>) reacts with carboxylic acid above 100<sup>o</sup> C to give Zr(RCO<sub>2</sub>)<sub>4</sub> compound which appear to contains 8-coordinate molecules. ZrBr<sub>4</sub> and ZrI<sub>4</sub> are similar to ZrCl<sub>4</sub> and ZrF<sub>4</sub> white crystalline subliming at 903<sup>o</sup>C which, unlike the other halides, insoluble in donor solvents, it has an eight-coordinate structure. The best known compounds of zirconium is oxide ZrO<sub>2</sub>, high melting point (3100<sup>o</sup>K), it is not attacked by acids or bases, consequently is used as refractory material in furnace and in manufacture of crucibles. Zirconium oxide is more basic than TiO<sub>2</sub>, and thus is less soluble in alkalis and more soluble in acids. This change to basic nature is expected from

increased size of  $Zr^{4+}$  ions, this makes solution of Zr(IV) less hydrolyzed than the acidic solution of Ti(IV), so the aqueous chemistry of heavier elements is more extensive than that of Ti(IV). Acidic solution of Zr(IV) contains polymeric cations as : (Bruce, 1975).  $[Zr_3(OH)_4]^{+8}$  and  $(Zr_4(OH)_8]^{+8}$ 

#### **1.13-Chromium:**

Chromium has become a subject of much interest in recent years, and the studies about it have continued. Chromium was long thought to be toxic tolerance factor which composes chromium molecule in the trivalent state (+3charge), two niacin molecules, and three amino acids – glycine , systeine and glutamic acid (Fawcett, 1988). Chromium is not found in nature as a free metal, so it must be reduced to its elemental form to make the chromium used in the industry (Fawcett, 1988). Chromium is the earth's 21<sup>th</sup> most abundant element (about 140ppm) and 6<sup>th</sup> most abundant transition metal (Brandes, Greenaway, & Stone, 1956).

Principal and commercial available ore is chromite  $FeCr_2O_4$  which found mainly in south Africa (with 96% of the world reserve) and in former U.S.S.R and Philippines. less common source include crocoites PbCrO<sub>4</sub> and chrome ochre  $Cr_2O_3$ .White gemstone, emerald, ruby owe their colors to traces of chromium. (Emsley,2001).Several studies have found that chromium supplementation can improve mild abnormalities in blood sugar control, although one study found no benefit (Kotaś & Stasicka, (2000). Recent evidence suggests that chromium may be effective aid in weight loss. Chromium is redox active transition metal with a wide range (-2 to +6) of possible oxidation states. However only Cr (III) and Cr(VI) are stable. The valence of chromium is important because it control the geochemistry and toxicity of the element. Hexavalent Cr species are strong oxidants which act as carcinogens, mutagens and teratogens in biological system. In contrast Cr(III) species has low toxicity, in part because their bioavailability is limited by their low solubility (Haxhillazi, 2003).

#### 1.13.1-Historical background of chromium:-

Chromium was discovered in 1797 by the French chemist Louis Nicolas Vauquenlin, it was named chromium (Greek word chroma color) because of many different colors characteristic of its compounds. [Brandes, Greenaway, & Stone, 1956).). In the mid of 18<sup>th</sup> century analysis of Siberian red lead (PbCrO<sub>4</sub> crocoite) from Siberia showed that a quite a lot of lead, but also a further material, this was eventually identified as chromium oxide. (Guertin, Jacques & Avakian, 2005). A

year or two after Vauquenlin's discovery, a German chemist named Tassort working in Paris, found chromium in an ore now called chromite. This ore Fe(CrO<sub>2</sub>)<sub>2</sub> is now an important source of chromium. In 1822 one of Vauquenlin's pupil (Kurtz) move to England and began producing potassium bichromate and selling to England textile industry at 5 shilling a pound , local manufacture soon followed suit, and competition drove the price down to 8 pence, about an eighth of the original price. This did not give Kurtz a satisfactory profit, so he began producing other chromium compounds, and Kurtz yellow still in British color catalogues. Unlike other metals chromium had no ancient or prehistoric uses (Dennis, & Such, (1993).

## **1.13.2-Physical properties of chromium:**

Chromium is a silver-white metal, it is hard and malleable, fairly good electrical and thermal conductor, its density  $7.19g/cm^3$ , m.p.  $1920^{\circ}C$ , B.P.  $2300^{\circ}C$ . (Haxhillazi, 2003). Its compounds are toxic (Hukeey *et al.*, 1993). Cr<sup>2+</sup>(aq) is sky blue , Cr<sup>+3</sup> is violet . The atomization energy of chromium is 95j/mol which indicate it is hard , strong and with high melting point (Basol & Ronald, 1986).

## **1.13.3-Chemical properties of chromium:**

Apart from stoichiometries, chromium resembles group (6) elements (Albert. et al.,1995). Chromium does not corrode in air at normal temperature, but it forms chromic oxide ( $Cr_2O_3$ ) when heated strongly.

$$4Cr_{(s)} + 3O_{2_{(g)}} \rightarrow 2Cr_2O_3$$

It is not attacked by water under normal condition , but react slightly with steam , when red hot, to give chromic oxide and hydrogen (Kotaś & Stasicka, 2000).

$$2Cr + 3H_2O \rightarrow Cr_2O_3 + 3H_{2(a)}$$

One of the obvious characteristics of  $Cr(\mathbb{II})$  is that it is acidic i.e. it has the tendency to hydrolyze and form poly nuclear complexes containing OH<sup>-</sup> bridge in a process known as olation. This is thought to occur by loss of proton from coordinated water, followed by coordination of OH<sup>-</sup> to the second cation (Emsley, (2001).

$$[Cr(H_2O)_6]^{+3} \rightarrow [Cr(H_2O)_5(OH)]^{+2} \rightarrow [(H_2O)_4CrOHCr(H_2O)_4]^{+4}$$

In another attempt to explain this reaction it is suggest that it takes place as follows: (William et al., 1985).

$$[Cr(H_2O)_6]^{3+} \rightleftharpoons [Cr(H_2O)_4OH]^{2+} \rightleftharpoons [(H_2O)_4 \qquad Cr Cr(H_2O)_4]^{4+}$$
  
OH

The metal dissolves in dilute mineral acids to give chromous salt and hydrogen (Basol & Ronal, 1986).  $Cr + 2H^{2+} \Leftrightarrow Cr^{2+} + H_2$ Dilute nitric acid has very little reaction with metallic chromium. Concentrated hydrochloric and sulphuric acids react with the metal more vigorously than the dilute acids. Hot sulphuric acid attacks the metal to give chromic sulphate. Chromium combine with several elements for example chlorine when hot (Guertin, Jacques & Avakian, 2005).

$$2Cr + 3Cl_2 \Leftrightarrow 2CrCl_3$$

#### **1.13.4-Electronic configuration of chromium:**

 $Cr(\mathbb{I})d^4$ ,  $Cr(\mathbb{II})d^3$ ,  $Cr(\mathbb{IV})d^2$ ,  $Cr(\mathbb{V})d^1$ ,  $Cr(\mathbb{V}1)d^0$ 

The atomic number of chromium 24 and the electronic configuration of it, is [Ar]  $3d^5 4s^1$ , instead of the expected configuration (aufbau principle) [Ar]  $3d^4 4s^2$ , due to electron sub-shells which are half filled according to its electronic structure (Chris, 2001).

Chromium is a transition metal since it has partially –filled d-orbital. So it is better to consider the chemistry and complexes of chromium according to its several oxidation states, the chief oxidation state of chromium are +2, +3, +4. A few compounds of cr<sup>+4</sup> and Cr<sup>+5</sup> are known but they are unstable [(Guertin, Jacques., & Avakian.,2005)

## **1.14-Chemistry of chromium**

### 1.14.1-Chromium (**II**) (d<sup>4</sup>):

Aqueous solution of the blue chromium(**I**) ions are best prepared by dissolving electrolytic Cr metal in dilute mineral acid. The solution must be protected from air (Holleman, Wiberg, & Wiberg, 1985); (Karen, Patrick & Takats, 2014). because it is readily oxidized to  $Cr^{+3}$ , so it can only be preserved in the presence of an inert atmosphere (Guertin, Jacques., & Avakian.,(2005).

Chromium (II) acetate  $Cr(O_2CCH_3)_4(H_2O)_2$  is precipitated as red solid when a  $Cr^{2+}$  solution is added to a solution of sodium acetate (Cotton, *et al.*, 1995).

#### 1.14.11-Chromium (Ⅲ), (d<sup>3</sup>):

Chromium (III) salts are usually purple in color. Solutions of chromium salts give green precipitate of hydroxide or ammonia solution (Holleman, Wiberg, & Wiberg, 1985).

There are thousands of chromium (III) of which few complexes are six coordinated. The principal characteristic is their relative kinetic inertness in aqueous solution, because of this so many complex species can be isolated, and this why of the classical complex chemistry studied by workers, notably S.M. Jorgenson and A. Werner, involved chromium. (Cotton et al., 1995) The most numerous complexes are those of amine ligands, these ligands provide examples of virtually all the kinds of isomerism in octahedral complexes. In addition to mononuclear species for example [Cr(NH<sub>3</sub>)<sub>5</sub>Cl]<sup>2+</sup>, there are many polynuclear complex species in which two and sometimes more metal atoms are bridged by hydroxo groups or less commonly representative oxygen in linear Cr-O-Cr group. А example is  $[(NH_3)_5Cr(OH)Cr(NH_3)_5]^{5+}$  (Cotton et al.,1995). Chromium (III) ion form many stable complexes and since they are inert, they capable of exhibiting various types of hydrate including isomerism  $.CrCl_{3.6H_{2}O}$ exist as isomer Trans  $[Cr(H_2O)_4Cl_2]Cl.2H_2O$  (green dark) (Emsley,2001).  $[Cr(H_2O)_6Cl_2]Cl$  (Violet) and [Cr(H<sub>2</sub>O)<sub>6</sub>Cl]Cl<sub>2</sub> (pale green) (Jones, 2001). CrCl<sub>3</sub> anhydrous reacts with pyridine only in the presence of zinc powder, this allows small amount of chromium (II) ion to be form which is very labile (Brandes, Greenaway, & Stone, 1956); (Emsley, 2001).

 $CrCl_3$  + 3pyr/Zn []  $CrCl_3pyr_3$ 

## **1.14.12-Chromium(IV) (d<sup>2</sup>) :**

Chromium (IV) compounds are perhaps slightly more numerous and stable than of chromium(V) but still relatively rare. The most common compounds are peroxo compounds (Cotton & Wilkinson, 1972). The most unusual Cr<sup>4+</sup> compounds are the species with Cr-C, Cr-N and Cr-O bonds (Cotton, et al. 1995).

## **1.14.13-Chromium (V) (d<sup>1</sup>):**

This oxidation state is not well known in simple compounds, but electron-spin resonance spectra suggest that many oxide lattices containing may, when suitably oxidized or reduced , contain  $Cr^{5+}$  (Cotton & Wilkinson, 1972).

The only evidence for persisting  $Cr^{5+}$  species in solution was obtained by dissolution of chromate (IV) in 65% oleum. The quantity of O<sub>2</sub> evolved and the magnetic properties of the blue solution were consistent with the formation of  $Cr^{5+}$ , but the nature of the species is uncertain (Boner & Pardue, 1996).

## 1.14.14-Chromium (VI) (d<sup>0</sup>):

Chromate and dichromate ions: In basic solution above pH 6  $CrO_3$  forms the tetrahedral yellow chromate ion  $CrO_4^{2-}$ , between pH 2 and pH 6  $HCrO_4^{-}$  and the orange red dichromate ion  $Cr_2O_7^{2-}$  are in equilibrium. At pH values below 1 the main species is  $H_2CrO_4$  (Chris, 2001).

The equilibrium as follows:

$$HCrO_{4}^{-} \leftrightarrow CrO_{4}^{2-} + H^{+} \qquad K = 10^{-5.9}$$
$$H_{2}CrO_{4} \leftrightarrow HCrO_{4}^{-} + H^{+} \qquad K = 4.1$$
$$Cr_{2}O_{7}^{2-} + H_{2}O \leftrightarrow 2HCrO_{4}^{-} K = 10^{-2.2}$$

The pH-dependent equilibria are quite labile and on addition of cations that form insoluble chromate e.g.Ba<sup>2+</sup>, Pb<sup>2+</sup>, Ag<sup>+</sup> the chromate and not dichromate are precipitated (Cotton & Wilkinson, 1972). Chromium (VI) oxide is very soluble in water forming chromic (VI) oxide and is used for cleaning laboratory glassware (Guertin, Jacobs, & Avakian, 2005). Another compound is chromyl chloride (CrO<sub>2</sub>Cl<sub>2</sub>) a deep-red liquid which formed by the action of HCl on chromium (VI) oxide :

#### CrO3+2HCl→CrO2Cl2+H2O

Or in warming dichromate with an alkali metal chloride in concentrated sulphuric acid.

$$K_2Cr_2O_7 + 4KCl + 3H_2SO_4 \rightarrow 2CrO_2Cl_2 + 3K_2SO_4 + 3H_2O$$

CrO<sub>2</sub>Cl<sub>2</sub> is photosensitive, rather stable vigorously oxidizes organic matter and it

$$CrO_{4}^{2-}$$
.

hydrolyzed by water to (Chris, 2001).

## 1.15-Ligands:

Aliphatic carboxylic acids are compounds which contain a carboxyl group. Their general formula is R-COOH. Carboxylic acid boil higher than alcohols of corresponding molecular weight, indicating the greater strength of the hydrogen bonds. Molecular weight determination of the lower carboxylic acids by vapor-density method gives twice a formula weight because they exist as dimer (Alebert *et al.*, 1973).

#### 1.15.1- Acetic acid:

Systematically named ethanoic acid, is an organic compound with formula CH<sub>3</sub>COOH, colorless liquid that when concentrated is called glacial acetic acid, with distinctive sour taste, and pungent odor (smell).

The global demand of acetic acid is around 6.5 million tons per year (mt/a), 1.5mt/a met by recycling, the remainder is manufactured from petrochemical, the

biological sources is not competitive. These can be produce by fermentation and oxidation of ethanol.

Use in manufacture as cellulose acetate for photographic film, and as polyvinyl acetate for wood glue.

**1.15.2-Oxalic acid** is chemical organic compounds, specifically carboxylic acid, with a formula  $H_2C_2O_4$ . This carboxylic acid is better described with the formula HOOCCOOH. It is relatively strong organic acid, being about 10,000 times stronger than acetic acid, the anion oxalate (OOCCOO) or (COO)<sub>2</sub> is a reducing agent.(Cohen, 1930). The other name (synonym) is ethanedoic acid (Alebert, Eberhard & Gunther,1973).

Physical properties : Oxalic acid is white crystals, density  $1.90g/cm^3$  (anhydrous) or  $1.653g/cm^3$  (dihydrate), solubility in water 9.5g/100ml at  $15^{\circ}C$ , 14.3g/100ml at  $25^{\circ}C$ , 120g/100ml at  $100^{\circ}C$ , odourless, melting point  $101.6^{\circ}C$ , boiling point loses  $2H_2O$  111.11°C sublimes 148.88/160°C, pH(1%solution) 1.3 stable in an ordinary conditions, decomposition products carbon dioxide and carbon monoxide may formed when heated, and also formic acid may be of the products.  $pK_a$  at  $25^{\circ}C$   $pK_1=1.23$ ,  $pK_2=4.19$  (Dutton &Evans, 1996).

Chemical properties: Oxalic acid (oxalate ion) is versatile since it can act as mono-, bi-, tri-, tetradentate ligand capable of forming polynuclear complexes. Much interesting exist in oxalate ligand as bridging unit for preparing polynuclear complexes and extending molecular assemblies figure (5). With tripositive transition metal ions the tris chelate anions  $[M^{3+}(C_2O_4)_3]^{3-}$  are formed. This polynuclear complexes and molecular assemblies, not only owing to their potential magneto structure properties, but also due to the fact that polynuclear oxalate systems are excellent candidates to improve our still limited understanding of the way that molecules and ions organized in the solid state to form materials with a given physical and chemical properties (Wells, 1948). Oxalic acid also combines with metals such as calcium, potassium, iron, magnesium and sodium in the body to form the corresponding oxalates, which irritate the gut and kidneys, especially calcium oxalate known as kidney stones obstruct the kidney tubules (Cohen, 1930).



Fig. (4)

**1.15.3-Oxaloacetic acid**: formula HOOCCH<sub>2</sub>COCOOH.(C<sub>4</sub>H<sub>4</sub>O<sub>5</sub>). First known 1896, white crystalline dicarboxylic. Synonyms: 2-oxo succinic acid , oxaloacetic acid, 2-oxo butanoic acid, keto succinic acid, acid 2-oxo succinque. (Wells, 1948). Oxaloacetic acid produces in the body as an intermediate in citric acid cycle, genetic mutation in genes produces pyruvate carboxylase renders some individual unable to produce oxaloacetic, the lack of which effects metabolism in three ways: (i)prevent citric acid cycle from proceeding (ii) oxaloacetic acid requires for producing body fuel during fasting (iii) the breakdown products of oxaloacetic acid is aspartic acid which is required for urea cycle, reduces level of aspartic acid led to an increase in serum ammonia levels (Marrian, (2000).

## 1.15.4- Propanoic acid:

Also known as propionic acid from Creek words protos meaning first and pion meaning fat. It is a naturally occurring carboxylic acid with chemical formula CH<sub>3</sub>CH<sub>2</sub>COOH. It is clear liquid with pungent odor.

Propanoic acid was first described in 1844 by Johnn Gottlieb (Austrian chemist) who found it among degradation products of sugar. Propanoic acid has physical properties intermediate to those of smaller carboxylic acid formic and acetic and the largest fatty acid (Bebthamscience, 2003).

**1.15.5-Citric acid:** It is weak organic acid with formula C<sub>6</sub>H<sub>8</sub>O<sub>7</sub> a white crystalline powder with molar mass 192.124. It is a natural preservative and it is also used to sour taste to foods and drinks. The conjugate citrate is important as intermediate in citric acid cycle. It consists of three carboxylic groups. Citric acid is commodity chemical, and more than million tones are produced every year by fermentation (Wikipedia, (2003).

## **1.16-** Literature review:

As indicated by (Al-hazmi, 2005) work entitled "synthesis, characterization and application of zirconia drived from single source precursors" submitted to

Oklahoma state university, that a variety of zirconium carboxylate complexes were utilized as precursors for synthesis of zirconium oxide. Zirconium carboxylate can be prepared easily by the reaction of sodium carboxylate with and aqueous solution of zirconium salt. Zirconium cations in aqueous solution of zirconium oxychloride for instance, , carboxylate groups displace water in tetrameric cation  $[Zr_4 (OH)_8]^{8+}$ , to form monocaboxylate zirconium species. As more carboxylate ligands coordinate to zirconium, more water molecules will be displaced from zirconium complex. The bond formed between zirconium atom and carboxylate ligand should be stronger and more stable than the zirconium-water bond. The increase of carboxylate chain length, the hydrophilic nature of zirconium carboxylate reduced. Zirconium metal possibly coordinates to the carboxylate ligands in four different modes: free ion, a monodentate ligand, bidentate bridging ligand and bidentate chelating ligand as follows:



Another work has been done by (Pienaar, 2005), the work entitled "Metal carboxylate complexes relevant to the fischer-tropsch synthesis". Submitted to university of Stellenbosch (South Africa), determined the molecular structure of copper ( $\pi$ ) allyl acetate , Zinc( $\pi$ ) acetate, Zinc( $\pi$ ) isovaleroate, Yttrium ( $\mu$ ) acetate and Lanthanum propionate has been established, zinc has preferred tetrahedral coordination in carboxylate complexes compare to octahedral coordination of copper, lanthanum and yttrium complexes considered. The carboxylate O-C-O angle in these complexes range between 119 and 125<sup>o</sup> and the conformation of the carbon chain is anti in all cases except for copper( $\pi$ ) allyl acetate where gauche conformation adopted. The characterization techniques adopted were infrared

spectroscopy, x-ray diffractometry (powder diffraction , single crystal diffraction) and thermal analysis (TGA and DSC) .

Study also has been carried out by (Csilla, 2005) at university of Debrecen entitled "Transition metal complexes of amino acid and peptide derivatives containing caboxylate and imidazole side chain." He has investigated the copper( $\pi$ ) and nickel( $\pi$ ) complexes of di-, tri- and tetra-peptides containing two or more spartic and/or glutamic acids, and he has studied the influence of  $\beta$ - and  $\Upsilon$ - carboxylate group as well as the effect of increased negative charge of complexes. The result, ligands contain two to five carboxylate functions enhanced metal binding ability of the peptides. It is also important to note that the presence of side chain carboxylate functions results in the formation of carboxylato-bridge polynuclear complexes in medium pH range. The characterization technique adopted were potentiometric titration for determination of protonation constants of the ligands and stability constants of the metal complexes (T= 5<sup>o</sup>C, I=0.2mol.dm<sup>-3</sup> KCl). The evaluation of the titration curves were performed by PSEQUAD and SUPERQUAD computation programs. In order to determine the protonation microconstants NMR technique was used. For characterization of binding modes in the complexes UV- visible spectrophotometer and electron paramagnetic resonance (EPR) spectroscopic method were used.

Many studies have been made for characterization of complexes using potentiometric titration method, one of that, (Nayan & Dey, 1978) studied the acid dissociation constant of iminodiacetic NH(CH<sub>2</sub>COOH)<sub>2</sub> and iminodipropanoic acid NH(CH<sub>2</sub>CH<sub>2</sub>COOH)<sub>2</sub> and the chelate stability constant of corresponding anions with Cu<sup>2+</sup>, Ni<sup>2+</sup> and Cd<sup>2+</sup>. In this method no mineral acid was added to mixture of titration. The method was modified by adding mineral acid to the titration mixture before titrating against standard alkali solution, as this modified method was applied by to several systems and the results were encouraging. (Chaberek,1952).

The modified method applied by (Ali, 1987), for determination of stoichiometries and stability constants of complexes of ß-alanine with Cu<sup>2+</sup>, Ni<sup>2+</sup> and Co<sup>2+</sup>. The result obtained showed that the modified method would be promising if carefully applied.

The method was also applied by (Abbo, 1991), for determination of stoichiometries and stability constants of complexes of propanoic, ß-chloropropanoic, succinic and ß- aminopropanoic acids, with Cu<sup>2+</sup>, Ni<sup>2+</sup> and Co<sup>2+</sup>.

The same method was also adopted by (Gaafar, 2000), for determination of stoichiometries and stability constants of complexes of three amino acids iso-leucine, serine and tyrosine with Co<sup>2+</sup> and Ni<sup>2+</sup>.

Most of these three later studies, their authors confirmed the results obtained with some spectrophotometry method.

done. The work is also aims to study the effect of carbon chain length on the stability of these complexes.

## **1.17-Charaterization techniques**

## **1.17.1-Potentiometric titration:**

Volumetric titrations are usually most conveniently performed with visual indicators. In cases where indicator is unavailable, potentiometric indication of end point can often be used. Potentiometric titrations are among the most accurate known, because the potential follows actual change in activity and therefore the end point coincide with the equivalent point (Louis, 1981); (Gurdeep, 1986).

The pH of the solution is directly affected by the complex formation, since all complexing agents are either base or acid. All metal complexes or chelates may be considered as being formed by displacement of one or more usually weakly acidic protons of the complexing or chelating agent by a metal ion in a solution, which result in pH drop (Cotton, 2006).

When stability constants are determined from the pH data the experiment can be carried out in one of the following ways: the change of pH can be measured as function of the ligand concentration, or measured as a function of concentration of acid or alkali added to constant total metal and total ligand concentration. Although pH measurement has been widely used to determine stability constants there are number of limitation to the method:

(i) It cannot used under conditions of extreme pH, at high pH the concentration of the free ligand is insensitive to pH change.

(ii)The method is inapplicable at very low total concentrations.

(iii)The method is inapplicable for very stable complexes such as those formed by transition metal ion and EDTA, because the protons are unable to compete effectively with such metal ions for the ligand.

The composition of the predominant complexes is determined in various pH intervals and at various concentration ratios by comparison of titration curves recorded in the presence and absence of the metal ion. The difference between the

titration curves has limiting value that equivalent to quantitative complex formation (Hala, 1995).

## **1.17.2-** potentiometric determination of stability constants

A large number of techniques of great diversity are now being employed for determination of stepwise stability constants. The generally utilized and probably the most accurate and reliable method for determination of stability constant is based on potentiometric measurement of hydrogen ion concentration (Gurdeep, 1986). This depends on the fact that pH of the solution is directly affected by complex formation, which combined by displacement of proton from the acidic ligand (Vogel,1978). The magnitude of the observed pH changing may be employed to determine the stability constant of the metal complex by Calvin, Wilson or Bjerrum's method.

Numerous experimental studies of equilibrium in solution have been made in the last fifteen years, and some of the method used to calculate the stability constants, have been reviewed recently by Sullivan and Hindman (Rossotti & Rossotti, 1955). The fundamental assumption that the complex formation is stepwise process, if this true then the ratios of various stability constants could in theory is predicted by statistical considerations (Hartley & Alcock, 1980).

The study of metal-ligand complexes in a solution would be interesting which throw a light on the mode of storage and transport of metal ion in biological kingdom with a view to understand the bi-inorganic chemistry of the metal ions (Maldhure *et al.*, 2012).

The work of coordination chemistry was first begun in the twentieth century; it was mostly related to stepwise formation of complexes (Praveen, et al., 2009).

The stability of compounds means in most general sense, the compounds exist under suitable conditions may be stored for long period of time. However the formation of complexes in solution studied two types of stabilities, thermodynamic and kinetic stabilities are considered (Hartley & Alcock, 1980).

**1.17.3-Importance of stability constant**: The stability constant of reaction between metal and ligand has found to be greater than zero, is perhaps one of most convincing evidence for the existence of the complex species ML<sub>n</sub> in solution. Moreover if all the possible stability constants for a given system have been determined, it is possible in principle to calculate the equilibrium concentration or activity of each species present, under a known set of experimental conditions (Abdulbaset et al., 2012).

There are so many factor affecting the stability of complex, without details that are: solvent, nature of the ligand, steric factor within complex, effect of substituent and nature of the donor atom (Abdulbaset et al., 2012).

## **1.17.4-** Determination of stability constant of binary complex:

It was shown by Calvin and Wilson that pH measurement done during titration with alkali, solution of ligand in presence and absence of metal ion could be used to calculate the formation functions  $n^{-}$ ,  $n_{A}$  and pL (Hartley, Burgess & Alcock,1980) (where  $n_{A}$  average number of proton associated with ligand,  $n^{-}$  the average number of ligand attached with metal ion and PL is the free ligand exponential function) (Ashwini, Ashok & Malik, 2007); (Anjani *et al.*, 2011).

Irving and Rossotti titrated the three sets of the following solutions against carbonate free standard alkali solution keeping the total volume constant (Minaxi & Shah, 2011); (Avinash & Marutil, 2013)

(i)-Free acid.(A)

(ii)-Free acid +ligand. (A+L).

(iii)-Free acid +ligand +metal. (A+L+M).

On plotting the observed pH against the volume of alkali added, the result is different trends in the titration curves, the acid curve (A), the ligand curve (A+L) lies below the acid curve indicating the dissociation of ligand in the reaction medium and metal complex (A+L+M), lies below the ligand curve indicating the complex formation.

From the titration curves the average number of the proton associated with ligand  $(n_A)$  (in some where called proton ligand stability constant, or degree of formation, and others called it proton ligand formation number) at different pH can be calculated utilizing the titration curve of acid in presence or absence of the ligand, can be calculated from the following equation: (Anjani, *et al.*, 2011).

Where y= the number of dissociable protons,  $N^0$  is the concentration of the alkali,

 $T_L^0$  is the concentration of the free acid,  $T_L^0$  is the total ligand concentration V<sup>0</sup> is the total volume of titration solution, V<sub>1</sub> and V<sub>2</sub> the volume of alkali added to acid and acid +ligand respectively bring any of them to same pH value.

The average number of the ligand to metal or metal ligand formation number at various pH values determined according to Irving and Rossotti by the following equation: (Ashwini, Ashok & Malik, 2007).

$$\bar{n} = \frac{(V_3 - V_2)(E^0 + N^0)}{(V^0 + V_2)\bar{n}_A T_m^0}$$
(2)

Where  $V_2$  and  $V_3$  the volume of alkali required to the mixture of (acid + ligand) and (acid+ligand +metal) to bring them to same pH,  $T_m$  is the total concentration of the metal and other significances as in equation (1).

A free ligand exponent (PL) was calculated using equation (3) (Santosh, 2011).

where  $V_3$  = the volume of alkali required to bring the solution of the complex to same pH in titration curve.

Fairy large number of methods for computing stability constant of complex from experimental data has been used by number of authors. Some of the more generally applicable computational methods are as follows:

## **1.18-Generally applicable computational methods:**

#### 1.18.1 Point-wise calculation method:

This method is used to calculate  $K_1$  and  $K_2$ ...etc values of the proton ligand formation by using the following expression:

For monobasic acid:-

The ratio of concentration of two consecutive complexes is given by:

$$\frac{[ML_n]}{[ML_{n+1}]} = \frac{n^{-} + 1 - n}{n - n^{-}} \quad \text{if } n > n^{-} > n + 1.....(4)$$
  
or  
$$K_n = \left[\frac{(n^{-} + 1 - n)}{(n - n^{-})}\right] \frac{1}{[L]} \quad ....(5)$$

Hence for a system where n=2

$$K_{2} = \left[\frac{(n^{-}-1)}{(2-n^{-})}\right] \frac{1}{[L]} \quad \text{for } 2 > n^{-} > 1 \dots (7)$$

By taking logarithm for two sides:

$$\log K_1 = pL + \log \frac{n}{1 - n}$$
.....(8)

For dibasic acid:

$$\log K_2 = pL + \log \frac{n - 1}{2 - n}$$
....(9)

For 2>n<sup>-</sup>>1 (Hartley, Burgess & Alcock,1980); (Gharib, Shamel & Mohajeri, 2006). Generally:

$$\log K_n = \log \frac{n^{-} + 1 - n}{n - n} + PL....(12) \quad (n > n - 1)$$

(Gharib, Shamel & Mohajeri 2006)

In general the n<sup>-</sup> values chosen should lie ideally in the following range:

## **1.18.2-Half integral method of calculation:**

If the value of  $n^-$  were put equal 0.5 in equation (8) the obtained value is:  $logK_1=pL$ .

Similarly putting of value of  $n^-$  equal to 1.5 in equation (9) the obtained value is:  $logK_2=pL$ .

It follows that if a graph is plotted between n<sup>-</sup> and pL, then the corresponding values of pL at n<sup>-</sup> equal to 0.5 and 1.5 gives logK<sub>1</sub> and logK<sub>2</sub> respectively.

Similarly if the graph plotted  $n_A$  against pH the values of  $pK_1$ ,  $pK_2$  ... etc can be calculated in same way. (Lonibala & Rao. Devi 2006).

generally for log  $K_n$  the value of pL at which n=n-0.5 (Hartley, Burgess, & Alcock.1980). Other expression for this:
$$K_n = \left(\frac{1}{[L]}\right)_{\text{at n}^- = n-0.5}$$

#### **1.18.3- Method of least squares:**

Irving and Rossotti showed that the problem of calculating the better set of stability constants from different experimental data can be solved by a least squares method. Moreover when the difference between log  $K_1$  and log  $K_2$  was less than 1.8, the exact values were evaluated by this method.

For a system consisting of (1:1) and (1:2) complex species, the following expression was employed:

$$\frac{n}{(n-1)[L]} = \frac{(2-n)[L]}{(n-1)}.K_1K_2 - K_1....(13)$$

$$\frac{\bar{n}}{(n-\bar{1})[L]} \underset{\text{against}}{\text{against}} \frac{(2-n)[L]}{(n-\bar{1})}$$

gives the best straight line with slope  $K_1 K_2$  and intercept  $K_1$ .(Rossotti. & Rossotti, 1955).

Two other forms of linear treatment are available when N=2 namely extrapolation and elimination and all can be deduced from the basic following equation:

 $n^{-} = (1 - n^{-})[L]K_{1} + (2 - n^{-})[L]^{2}K_{1}K_{2}$  ....(14)

Divide by n<sup>-</sup> without rearranging

The equation takes the form:

Where  $F_1$  and  $F_2$  are function of n<sup>-</sup> and [L], whilst x and y are  $K_1$  and  $K_1K_2$  respectively. This type of equation can be solved graphically by plotting  $1/F_1$  against  $1/F_2$ , the point of intersection yielding  $K_1$  and  $K_1K_2$  by inspection. This method is known as elimination. The sharpness of point of intersection gives an indication of the order of the experimental error in the data set.

The most important form is by rearrangement of equation (14) and division by (2-n<sup>-</sup>) the resulting form:

If the left hand side of equation (17) is plotted against  $n/(2-n)[L]^2$ , straight line result. An interesting point to note is that whilst the y-intercept gives  $-K_2$  and the slope  $1/K_1$ , the x intercept gives  $K_1K_2$  which is a useful check on the consistency of the data, this called extrapolation (Hartley, Burgess &Alcock,1980).

This is verified by equating the left hand side of equation above to zero and then solving for  $K_1K_2$ .

Up till now we have only considered a system where  $N \le 2$  and hence linear method apply. If system considered for  $N \ge 3$  then rearrangement of the expression will be as such below: (Rossotti & Rossotti, 1955).

$$\left(\frac{N-n^{-}}{N-1-n^{-}}\right)[L] + \frac{\beta_{N-1}}{\beta_{N}} + \frac{\beta_{N-2}}{\beta_{N}}\left(\frac{n^{-}-N+2}{N-1-n^{-}}\right)[L]^{-1} + \sum_{n=0}^{n=N-3} \frac{n^{-}-n}{N-1-n^{-}} \frac{\beta_{n}}{\beta_{N}}[L]^{n-N+1}...(18)$$

$$[L] = \frac{T_{CL} - n^{-} T_{CM}}{\sum_{i=0}^{n} \beta_{i}^{H} [H]^{i}} \dots (19)$$

[L]-Concentration of ligand not bonded to metal ion,- can be calculated from the expression:

For monoprotonic equation (19) can be transform to: (Hartley, Burgess & Alcock, 1980).

Although equation (19) is somewhat alarming equation is non-linear, a plot of the left hand side against (n-N+2)/(N-1-n)[L] will have intercept  $\beta_{N-1}/\beta_N$  and a limiting slope of  $\beta_{N-2}/\beta_N$  as [L] tends to zero. Hence all the values of the various K values (via  $\beta$ 's) can be found. It should be stressed, however that with an approach of this type errors will accumulate as  $K_1$ to  $K_n$ . calculated (Santosh, *et al.*, 2011).

#### 1.18.3.1-Limitation of linear least-squares:

Linear equations derived from a general case for that when only two complexes are present, for calculating stability constants. Examples are equations (13, 14, 15, and 17) using the complex formation function n<sup>-</sup> for calculating the stability constants.

These equations do not conform to conditions necessary for the simple linear least-squares procedure to valid and erroneous stability constants may be calculated for the following reasons:

(i)-The independent variable, the x-coordinate, is not exact and cannot be considered error free.

(ii)-Since both the independent and dependent variables, x- and y-coordinates, are function of the same quantity, [L], the errors are correlated.

Rigorous statistics have been developed for this situation and they should therefore be used (Hartley, Burgess & Alcock, 1980).

The linear equations that mentioned are perhaps more useful for graphical representation of the data, as no more objective criterion that the eye is used for deciding on the values of stability constants in any case.

For that, we should plot the graphical representation only and give the numerical value of the stability constants (Hartley, Burgess & Alcock, 1980).

#### 2.2.4-linear plot method:

This can be utilized for detecting  $\log K_1$  by plotting  $\log(n^{-}/n^{-} - 1)$  versus pL and for  $\log K_2$  plotting  $\log(n^{-} - 1)/(2 - n^{-})$  versus pL and so on (Anjani, et al., 2011).

# CHAPTER TWO

# Materials and Methods

### 2.1- : Preparation of stock solution:

All material used in this investigation were chemically pure brand and hence were used without further purification. The solutions used throughout the experiment were prepared in doubly distilled water.

#### 2-1-1-Sodium hydroxide solution :(NaOH)

Sodium hydroxide, pellets, fulka, percentage >97.00%.

Concentrated solution of sodium hydroxide (equal weights of solid and water) is prepared, (50gm of sodium hydroxide in 50ml of doubly distilled water) , carbonate remain insoluble and the clear supernatant solution (carbonate free),17M was utilized to prepare the desired concentration by pipetting 6ml in litre volumetric flask and then made up to mark by doubly distilled water, the solution was standardized versus standard hydrochloric acid by titration method, the resulting molarity is 0.10355M. And other solution of carbonate free sodium hydroxide solution is prepared (0.522M)

#### 2-1-2-Hydrochloric acid solution: (HCl)

The percentage is ~36%, molecular weight 36.46 D= 1.18gm/ml, the calculated molarity is 11.65 M. 10ml of concentrated acid transferred to litre volumetric flask

and made up to mark with distilled water, the solution standardized against sodium carbonate (0.1M), the resulting molarity of the acid has calculated to be 0.1092M.and other concentration of hydrochloric acid 0.1 is prepared.

#### 2-1-3-Sodium chloride solution :(NaCl)

Interchem (INC) metrocare ltd units, molecular weight 58.44, percentage 99.50% .Since sodium chloride is primary standard substance does not need standardization, the calculated weight is 58.733g, this weight dissolve in litre volumetric flask and completed with distilled water to mark to give 1M solution. It used to maintain the ionic strength constant.

#### 2-1-4-Sodium carbonate solution: (Na<sub>2</sub>CO<sub>3</sub>)

Brixworth (U.K), molecular weight 105.99, percentage 99.50%. Since sodium carbonate is primary standard substance, the calculated weight 2.653 was transferred to 25ml volumetric flask to give 0.1M solution.

#### 2-1-5-Oxalic acid dihydrate solution: (H<sub>2</sub>C<sub>2</sub>O<sub>4</sub>.2H<sub>2</sub>O).

Nice chemical laboratory reagent, molecular weight 126.07. Since this acid is primary standard substance the calculated weight is 12.3g transferred into litre volumetric flask, already containing water and then made to mark with distilled water to give 0.1M solution used as stock solution utilized for preparing of dilute ones.

#### 2-1-6-Chromium (ш) chloride solution : (CrCl<sub>3</sub>.6H<sub>2</sub>O)

Extra pure scharlau molecular weight 266.45. Calculated weight 13.322gm was transferred to 500ml volumetric flask to give 0.1M solution, used as stock solution for preparing other dilute concentrations.

#### 2-1-7-Titanium(III) chloride solution: (TiCl<sub>3</sub>)

Acros organics, New Jersey, molecular weight 132.07, titanium chloride 20% solution 2N in hydrochloric acid. To change the normality to molarity, or M = N/3, M = 0.6667 by dilution 37.5 gives 0.1M solution.

#### 2-1-8-Acetic acid: (CH<sub>3</sub>COOH)

Glacial analytical grade, made in Spain, Mwt. 60.05 density 1.05, purity 99.8%, the calculated molarity of acid is 17.45M, the solution diluted by measuring 2.57ml in 500ml beaker already containing water, then completed to graduation mark by double distilled water to give a solution 0.1M.

#### 2-1-9-Zirconium(1V) chloride: (ZrCl<sub>4</sub>)

Molecular weight 233.03, Acros organics nitrogen flushed purity 98%, appropriate weight 11.42 g dissolve in 500 ml distilled water to give 0.1M solution, used as stock solution.

#### 2-1-10-Nitric acid :(HNO<sub>3</sub>)

Nitric acid (U.K), percentage 69%, density 1.42g/ml, molecular weight 63.01, the calculated molarity is equal to 15.5499M,  $6.43 \approx 6.5$  was transferred to one litre volumetric flask and then made up to graduated mark with double distilled water, and then standardized to 0.1M with sodium carbonate by titration method, then standardized to 0.1M.

#### 2-1-11-Potassium nitrate: (KNO<sub>3</sub>):

Interchem.(U.K), purity 99%, molecular weight 70.11, since potassium nitrate is primary standard substance the molecular weight calculated in grams (70.11g), transfer to one litre volumetric flask containing distilled water, after it was dissolved, completed to mark with double distilled water to prepare 1M solution. The solution was used to maintain the ionic strength constant.

#### 2-1-12-**Propanoic acid: (C<sub>3</sub>H<sub>6</sub>O<sub>2</sub>).**

Product of USA, purity 99%, density 0.99, molecular weight=74.08. calculated molarity 13.23, an appropriate volume 3.77 introduced in 500ml beaker already contained water, then made up with double distilled water to mark, the prepared solution give a solution of 0.1M.

#### 2-1-13-Oxalacetic acid: (C<sub>4</sub>H<sub>4</sub>O<sub>5</sub>).

Molecular weight 132.07, purity 98%, product of HU, New Jersey USA, an appropriate weight =0.47g dissolved in 500ml beaker, then completed to graduation mark with double distilled water to give a solution of 0.1M.

#### 2.2-Apparatus

pH-meter denver instrument ultra basic pH/mVmeter with combine electrode at 29±1°C, the sensitivity of the pH-meter is 0.01 unit, the instrument could read pH in range 0.00 to 14.00 in step 0.01.The pH-meter was switched on before half an hour for warm up before starting titration. The instrument was calibrated before each set of titration using two buffer solutions of pH 4 and 10. The electrode was washed with distilled water and dried with tissue paper. The readings were recorded only when the instrument registered a steady value for at least one minute.

Startorius analytical balance, maximum weighing capacity 220 grams and increments in 0.0001 grams graduations, (4 decimal places).

Thermo scientific hot plate combined with magnetic stirrer, to stir the solution mixture, during titration course.

## CHATER THREE Results and discussions

The present investigation is based upon reaction of some organic reagent, carboxylic acids and  $\beta$ -substituent carboxylic acid with some transition metals chromium, titanium and zirconium, in purpose of developing a sensitive and selective method for determination of stoichiometries and stability constants of these complexes. These stability constants were evaluated assuming that the formation of hydrolysed products, polynuclear complexes, hydrogen and hydroxyl bearing complexes were absent.

Dissociation of organic acid and their interactions with metal ions (complex formation) may be extremely sensitive to ionic strength of the medium. If charges in the reacting species are opposite then here is a decrease in the reaction rate with increasing ionic strength whereas if the charges are identical, an increase in the reaction rate will occur and if one of the reactant is charge less the reaction rate will not affected by ionic strength of the medium. (Santosh et al., 2011). So many trials had been made for detection of the best ionic strength of the medium to be in concordant with the mentioned in literature, and this conclude that the reactants are oppositely charged, that there was decrease in rate of reaction with increasing ionic strength. This related to the concentration of electrolytes and indicates that how effectively the charge on a particular ion is shielded or stabilized by other ions in an electrolyte. For that volume of potassium nitrate minimize to one milliliter (1cm<sup>3</sup>) for maintained only the ionic strength of medium.

On plotting the observed pH against the volume of alkali added, different trends have shown, acid curve (A), a ligand curve (A+L) lies below the acid curve

indicating the dissociation of ligand in the titration medium, and metal complex curve lies below the ligand titration curve indicating the complex formation.

This investigation represents a comparative study of three graphical methods and two algebraic methods for overall stability constant determination techniques including point-wise calculation method, half integral method, linear plot method, least squares method and Henderson or Hasselbalch's equation in purpose to select the most sensitive and accurate method aiming also to determine the parameters that affect the precision of the methods under investigation.

#### **Titration procedure:**

Three sets of solutions Total volume of each  $(V^0)$  200cm<sup>3</sup> were prepared for titration against free carbonate sodium hydroxide solution. The change in pH of solution with each addition of alkali was recorded for each of the following

 $n_A$ , n and PL

mixtures, to calculate the formation function

A/ 10cm<sup>3</sup> HCl 0.12293M + 1cm<sup>3</sup> KNO<sub>3</sub> 1M.

 $B/A + 10 \text{ cm}^3$  acetic acid 0.1M.

C/B +  $2.5 \text{ cm}^3 \text{ CrCl}_6.6\text{H}_2\text{O}.0.1\text{M}$ 

All solution were completed with distilled water to 200 cm<sup>3</sup> after addition of 1cm<sup>3</sup> of KNO<sub>3</sub> 0.1M. The titrations were carried out in 250 cm<sup>3</sup> beaker with magnet bar inside, for stirring the solution.

The ionic strength was maintained constant by using  $KNO_3$  (u = 0.005).

## Chromium carboxylates complexes

#### 3/Results and discussion

#### 3.1-Chromium- acetic acid system.

The pH titration reading of acid, acid + ligand (acetic acid) and acid + ligand + metal ion (Cr<sup>+3</sup>).  $N^0 = 0.525M$ ,  $E^0 = 6.1465 \times 10^{-3}M$ ,  $T_{Cl} = 5 \times 10^{-3}M$ ,  $T_{cm} = 1.25 \times 10^{-3}M$ ,  $V^0 = 200cm^3$ ,  $u^0 = 5 \times 10^{-3}$  t = 36.5°*C*. *Table* (3.1.1)

| Vol. of alkali | Acid  | Acid +ligand | Acid+ligand | Volume of alkali | Acid  | Acid+ligan | Acid+ligand+ |
|----------------|-------|--------------|-------------|------------------|-------|------------|--------------|
| added          |       |              | +metal ion  | added            | 44.00 | d          | metal ion    |
| 0.0            | 2.24  | 2.28         | 2.28        | 3.6              | 11.82 | 5.73       | 4.93         |
| 0.1            | 2.26  | 2.29         | 2.29        | 3.7              | 11.85 | 6.11       | 5.03         |
| 0.2            | 2.28  | 2.31         | 2.30        | 3.8              | 11.87 | 7.60       | 5.13         |
| 0.3            | 2.30  | 2.32         | 2.32        | 3.9              | 11.90 | 10.46      | 5.25         |
| 0.4            | 2.32  | 2.35         | 2.34        | 4.0              | 11.92 | 10.83      | 5.37         |
| 0.5            | 2.35  | 2.37         | 2.36        | 4.1              | 11.94 | 11.04      | 5.52         |
| 0.6            | 2.38  | 2.40         | 2.39        | 4.2              | 11.94 | 11.18      | 5.67         |
| 0.7            | 2.41  | 2.43         | 2.41        | 4.3              | 11.98 | 11.28      | 5.82         |
| 0.8            | 2.44  | 2.46         | 2.44        | 4.4              | 12.00 | 11.36      | 5.95         |
| 0.9            | 2.48  | 2.49         | 2.47        | 4.5              | 12.02 | 11.43      | 6.07         |
| 1.0            | 2.52  | 2.53         | 2.51        | 4.6              | 12.03 | 11.50      | 6.18         |
| 1.1            | 2.56  | 2.57         | 2.55        | 4.7              | 12.05 | 11.55      | 6.25         |
| 1.2            | 2.61  | 2.61         | 2.59        | 4.8              | 12.06 | 11.59      | 6.36         |
| 1.3            | 2.66  | 2.66         | 2.63        | 4.9              | 12.08 | 11.64      | 6.55         |
| 1.4            | 2.77  | 2.72         | 2.68        | 5.0              | 12.09 | 11.68      | 6.97         |
| 1.5            | 2.78  | 2.79         | 2.74        | 5.1              | 12.10 | 11.71      | 9.53         |
| 1.6            | 2.87  | 2.87         | 2.80        | 5.2              | 12.12 | 11.74      | 10.43        |
| 1.7            | 2.98  | 2.97         | 2.88        | 5.3              | 12.13 | 11.78      | 10.76        |
| 1.8            | 3.12  | 3.09         | 2.97        | 5.4              | 12.14 | 11.80      | 10.96        |
| 1.9            | 3.34  | 3.25         | 3.07        | 5.5              | 12.15 | 11.83      | 11.10        |
| 2.0            | 3.76  | 3.43         | 3.19        | 5.6              | 12.17 | 11.85      | 11.21        |
| 2.1            | 9.65  | 3.65         | 3.32        | 5.7              | 12.18 | 11.88      | 11.30        |
| 2.2            | 10.65 | 3.85         | 3.46        | 5.8              | 12.19 | 11.90      | 11.37        |
| 2.3            | 10.95 | 4.03         | 3.60        | 5.9              | 12.20 | 11.92      | 11.43        |
| 2.4            | 11.12 | 4.18         | 3.74        | 6.0              | 12.21 | 11.94      | 11.49        |
| 2.5            | 11.24 | 4.31         | 3.87        | 6.1              | 12.22 | 11.96      | 11.53        |
| 2.6            | 11.34 | 4.42         | 3.98        | 6.2              | 12.23 | 11.98      | 11.58        |
| 2.7            | 11.42 | 4.53         | 4.10        | 6.3              | 12.24 | 12.00      | 11.62        |
| 2.8            | 11.49 | 4.64         | 4.20        | 6.4              | 12.25 | 12.01      | 11.65        |
| 2.9            | 11.55 | 4.74         | 4.30        | 6.5              | 12.25 | 12.03      | 11.69        |
| 3.0            | 11.60 | 4.84         | 4.39        | 6.6              | 12.26 | 12.04      | 11.72        |
| 3.1            | 11.64 | 4.94         | 4.49        | 6.7              | 12.27 | 12.06      | 11.74        |
| 3.2            | 11.68 | 5.05         | 4.58        | 6.8              | 12.27 | 12.07      | 11.77        |
| 3.3            | 11.72 | 5.18         | 4.66        | 6.9              | 12.28 | 12.09      | 11.80        |
| 3.4            | 11.76 | 5.32         | 4.75        | 7.0              | 12.29 | 12.10      | 11.82        |
| 3.5            | 11.79 | 5.50         | 4.84        | 7.1              | 12.30 | 12.11      | 11.84        |

Amatlab program have been created for plotting the graph for volume of alkali solution versus pH of three sets of solutions (acid, acid+ligand, acid+ligand+metal ion) and secondly to find the volume of alkali required for bringing the three sets of solutions to reach the same pH. This program written in matlab as follows: plot (x,y,x,y,y,x,y3)

```
yii=2.5;
disp([' y ',' x1 ', ' x2 x3 '])
while yii<12
disp( [yii, polyxpoly(x,y1,[0,45],[yii,yii]) ,
polyxpoly(x,y2,[0,45],[yii,yii]) , polyxpoly(x,y3,[0,45],[yii,yii])
yii=yii+0.1000001;
end
```

yii means the chart start from pH 2.5 and can be change as it requires.

Yii+0.1000001means the gradually increase from the starting may be 0.1. also the rate of successive increase can be changed to any number as it requires.Y X1 X2 X3 means display should be in columns and X1, X2, X3 represent the volume of alkali needed to bring the solutions of acid, acid+ligand and acid+ligand+metal ion respectively to the facing pH (Y).

As a conclusion this program plotted the graph and determined the volume of alkali required to bring the three set of solutions to the same pH. The result has been as follows:



Fig. (3.1.1) Titration curves of three set of solutions against pH

Table (3.1.2). Alkali volume required for bringing the three sets of solutions to the same pH (B).

| В   | V1     | V2     | V3     | В    | V1     | V2     | V3     |
|-----|--------|--------|--------|------|--------|--------|--------|
| 2.5 | 0.9500 | 0.9250 | 0.9750 | 7.3  | 2.0601 | 3.7799 | 5.0101 |
| 2.6 | 1.1800 | 1.1750 | 1.2250 | 7.4  | 2.0618 | 3.7866 | 5.0141 |
| 2.7 | 1.3667 | 1.3667 | 1.4333 | 7.5  | 2.0635 | 3.7933 | 5.0181 |
| 2.8 | 1.5222 | 1.5125 | 1.600  | 7.6  | 2.0652 | 3.8000 | 5.0222 |
| 2.9 | 1.6273 | 1.6300 | 1.7222 | 7.7  | 2.0669 | 3.8035 | 5.0262 |
| 3.0 | 1.7143 | 1.7250 | 1.8300 | 7.8  | 2.0686 | 3.8070 | 5.0302 |
| 3.1 | 1.7157 | 1.8063 | 1.9250 | 7.9  | 2.0703 | 3.8105 | 5.0343 |
| 3.2 | 1.8364 | 1.8688 | 2.0077 | 8.0  | 2.0720 | 3.8140 | 5.0383 |
| 3.3 | 1.8818 | 1.9278 | 2.0846 | 8.1  | 2.0737 | 3.8175 | 5.0423 |
| 3.4 | 1.9143 | 1.9833 | 2.1571 | 8.2  | 2.0754 | 3.8210 | 5.0464 |
| 3.5 | 1.9381 | 2.0318 | 2.2286 | 8.3  | 2.0771 | 3.8245 | 5.0504 |
| 3.6 | 1.9619 | 2.0773 | 2.3000 | 8.4  | 2.0788 | 3.8280 | 5.0544 |
| 3.7 | 1.9857 | 2.1250 | 2.3714 | 8.5  | 2.0805 | 3.8315 | 5.0585 |
| 3.8 | 2.0007 | 2.1750 | 2.4462 | 8.6  | 2.0822 | 3.8350 | 5.0625 |
| 3.9 | 2.0024 | 2.2278 | 2.5273 | 8.7  | 2.0839 | 3.8385 | 5.0665 |
| 4.0 | 2.0041 | 2.2833 | 2.6167 | 8.8  | 2.0856 | 3.8420 | 5.0706 |
| 4.1 | 2.0058 | 2.3467 | 2.7000 | 8.9  | 2.0873 | 3.8455 | 5.0746 |
| 4.2 | 2.0075 | 2.4154 | 2.8000 | 9.0  | 2.0890 | 3.8490 | 5.0786 |
| 4.3 | 2.0092 | 2.4923 | 2.9000 | 9.1  | 2.0907 | 3.8524 | 5.0827 |
| 4.4 | 2.0109 | 2.5818 | 3.0100 | 9.2  | 2.0924 | 3.8559 | 5.0867 |
| 4.5 | 2.0126 | 2.6727 | 3.1111 | 9.3  | 2.0941 | 3.8594 | 5.0907 |
| 4.6 | 2.0143 | 2.7636 | 3.2250 | 9.4  | 2.0958 | 3.8629 | 5.0948 |
| 4.7 | 2.0160 | 2.8600 | 3.3444 | 9.5  | 2.0975 | 3.8664 | 5.0988 |
| 4.8 | 2.0177 | 2.9600 | 3.4556 | 9.6  | 2.0992 | 3.8699 | 5.1078 |
| 4.9 | 2.0194 | 3.1286 | 3.5667 | 9.7  | 2.1050 | 3.8734 | 5.1189 |
| 5.0 | 2.0211 | 3.1762 | 3.6700 | 9.8  | 2.1150 | 3.8769 | 5.1300 |
| 5.1 | 2.0228 | 3.2385 | 3.7583 | 9.9  | 2.1250 | 3.8804 | 5.1411 |
| 5.2 | 2.0244 | 3.3143 | 3.8500 | 10.0 | 2.1350 | 3.8839 | 5.1522 |
| 5.3 | 2.0261 | 3.3857 | 3.9417 | 10.1 | 2.1450 | 3.8874 | 5.1633 |
| 5.4 | 2.0278 | 3.4444 | 4.0200 | 10.2 | 2.1550 | 3.8909 | 5.1744 |
| 5.5 | 2.0295 | 3.5000 | 4.0867 | 10.3 | 2.1650 | 3.8944 | 5.1856 |
| 5.6 | 2.0132 | 3.5435 | 4.1533 | 10.4 | 2.1750 | 3.8979 | 5.1967 |
| 5.7 | 2.0329 | 3.5870 | 4.2200 | 10.5 | 2.1850 | 3.9108 | 5.2212 |
| 5.8 | 2.0346 | 3.6184 | 4.2867 | 10.6 | 2.1950 | 3.9378 | 5.2515 |
| 5.9 | 2.0363 | 3.6447 | 4.3615 | 10.7 | 2.2167 | 3.9649 | 2.2818 |
| 6.0 | 2.0380 | 3.6711 | 4.4417 | 10.8 | 2.2500 | 3.9919 | 5.3200 |
| 6.1 | 2.0397 | 3.6974 | 4.6118 | 10.9 | 2.2833 | 4.0333 | 5.700  |
| 6.2 | 2.0414 | 3.7060 | 4.6706 | 11.0 | 2.3294 | 4.0810 | 5.4286 |
| 6.3 | 2.0431 | 3.7128 | 4.7455 | 11.1 | 2.3882 | 4.1429 | 5.5000 |
| 6.4 | 2.0448 | 3.7195 | 4.8211 | 11.2 | 2.4667 | 4.2200 | 5.5909 |
| 6.5 | 2.0465 | 3.7262 | 4.8737 | 11.3 | 2.5600 | 4.3250 | 5.7000 |
| 6.6 | 2.0482 | 3.7329 | 4.9100 | 11.4 | 2.6750 | 4.4572 | 5.8500 |
| 6.7 | 2.0499 | 3.7396 | 4.9300 | 11.5 | 2.8167 | 4.6000 | 6.0250 |
| 6.8 | 2.0516 | 3.7463 | 4.9500 | 11.6 | 3.0000 | 4.8200 | 6.2500 |
| 6.9 | 2.0533 | 3.7530 | 4.9700 | 11.7 | 3.2500 | 5.0667 | 6.5334 |
| 7.0 | 2.0550 | 3.7597 | 4.9900 | 11.8 | 3.5334 | 5.4000 | 6.9000 |
| 7.1 | 2.0567 | 3.7664 | 5.0020 | 11.9 | 3.9000 | 5.8000 | -      |
| 7.2 | 2.0584 | 3.7732 | 5.0060 | -    | -      | -      | -      |

**B** is the pH-meter reading.

**V1**, **V2** and **V3** are volumes of alkali added to bring the solutions of acid, acid+ligand and acid+ligand+metal ion respectively to the same pH value.

#### **3.1.1-Practical proton-ligand stability constant:**

**3.1.1.1-Point-wise calculation method:** 

Since the ligand used is monobasic acid, the calculation of free ligand exponent function (pL) of metal complexes requires a prior knowledge of the practical proton-ligand stability constant. Using excel program on personal computer the values of  $n_A$  at various pH reading (B) were calculated from the acid and ligand titration curve, table (3.1.1). The ligand titration curve is well separated from the free acid titration curve at pH 2.9 indicating the dissociation of the ligand in the titration medium, figure (3.1.1) and table (3.1.2). The formation curve for the ligand extends  $0 < n_A < 1$  in  $n_A$  scale Table (3.1.3). The pK<sub>a</sub> taken as an average from  $n_A = 0.2$  to  $n_A = 0.8$  the value found,  $pK_a = 4.8365$ . This value is further being verified by half integral method.

$$pk_1 = \log \frac{n_A}{1 - n_A} + pH - \dots - \dots - (1.1)$$

| рка    | $\log\left(\frac{n_A}{(1-n_A)}\right)$ | .n <sub>A</sub> | V2     | V1     | рн  |
|--------|----------------------------------------|-----------------|--------|--------|-----|
| 5.7463 | 2.8463                                 | 0.9986          | 1.6300 | 1.6273 | 2.9 |
| 5.2466 | 2.2466                                 | 0.9943          | 1.7250 | 1.7143 | 3.0 |
| 4.4001 | 1.3001                                 | 0.9523          | 1.8063 | 1.7157 | 3.1 |
| 4.9607 | 1.7607                                 | 0.9829          | 1.8688 | 1.8364 | 3.2 |
| 4.9054 | 1.6054                                 | 0.9758          | 1.9278 | 1.8818 | 3.3 |
| 4.8240 | 1.4240                                 | 0.9637          | 1.9833 | 1.9143 | 3.4 |
| 4.7852 | 1.2852                                 | 0.9507          | 2.0318 | 1.9381 | 3.5 |
| 4.7896 | 1.18962                                | 0.9393          | 2.0773 | 1.9619 | 3.6 |
| 4.8020 | 1.1020                                 | 0.9267          | 2.1250 | 1.9857 | 3.7 |
| 4.7960 | 0.9960                                 | 0.9083          | 2.1750 | 2.0007 | 3.8 |
| 4.7713 | 0.8713                                 | 0.8815          | 2.2278 | 2.0024 | 3.9 |
| 4.7642 | 0.7642                                 | 0.8532          | 2.2833 | 2.0041 | 4.0 |
| 4.7606 | 0.6606                                 | 0.8207          | 2.3467 | 2.0058 | 4.1 |
| 4.7637 | 0.5637                                 | 0.7855          | 2.4154 | 2.0075 | 4.2 |
| 4.7678 | 0.4678                                 | 0.7459          | 2.4923 | 2.0092 | 4.3 |
| 4.7675 | 0.3675                                 | 0.6998          | 2.5818 | 2.0109 | 4.4 |
| 4.7743 | 0.2743                                 | 0.6529          | 2.6727 | 2.0126 | 4.5 |
| 4.7869 | 0.1869                                 | 0.6060          | 2.7636 | 2.0143 | 4.6 |
| 4.7980 | 0.0980                                 | 0.5562          | 2.8600 | 2.016  | 4.7 |
| 4.8078 | 0.0078                                 | 0.5045          | 2.9600 | 2.0177 | 4.8 |
| 4.7540 | -0.1459                                | 0.4167          | 3.1286 | 2.0194 | 4.9 |
| 4.8104 | -0.1895                                | 0.3926          | 3.1762 | 2.0211 | 5.0 |
| 4.8515 | -0.2484                                | 0.3608          | 3.2385 | 2.0228 | 5.1 |
| 4.8761 | -0.3238                                | 0.3217          | 3.3143 | 2.0244 | 5.2 |
| 4.9007 | -0.3992                                | 0.2851          | 3.3857 | 2.0261 | 5.3 |
| 4.9351 | -0.4648                                | 0.2553          | 3.4440 | 2.0278 | 5.4 |
| 4.9673 | -0.5326                                | 0.2267          | 3.5000 | 2.0295 | 5.5 |
| 4.9850 | -0.6149                                | 0.1953          | 3.5435 | 2.0132 | 5.6 |

Table (3.1.3) Proton-ligand stabilityconstant.(acetic acid ) pKa average value =4.8365pKa $v_{A}$  $v_{A}$ v\_{A} $v_{A}$ v\_{A}v\_{A}v\_{A}v\_{A}v\_{A}v\_{A}v\_{A}v\_{A}v\_{A}v\_{A}v\_{A}v\_{A}<td colspan=

#### **3.1.1.2-Half integral method (acetic acid)**

In case of half integral method the proton-ligand stability constant can be calculated from ligand formation curve by plotting  $n_A$  against pH. The value of pH where  $n_A$ = 0.5 corresponds to value of pK<sub>a</sub>, figure (3.1.2), the value was found to be, pK<sub>a</sub>=4.815. This value was in a good agreement with the value obtained by point-wise method.



#### Fig. (3.1.2) half integral method (acetic acid) pK<sub>a</sub> =4.815 **3.1.2-Metal-ligand stability constant :(** chromium acetate) **3.1.2.1-Point-wise calculation method**

Metal-ligand titration curve crossed over ligand titration curve at pH 2.5 table (3.1.2) figure (3.1.1). n<sup>-</sup> range from 0.1044 to 2.1991, table (3.1.4) indicating the formation of ML and ML<sub>2</sub> complex species. The formation of complex species extends from pH 2.5 to pH 5.2, showed that complexes are stable in acidic medium, after that the pL cannot be calculated that means [L] tends to zero. Metal-ligand stability constant for 1:1and 1:2 complex spieces were calculated by point-wise method using equation (1.2), and equation (1.3).



All calculations were done using excel program in personal computer table (3.1.4) and table (3.1.5) for evaluation of  $n^-$  and pL. Linear equations (1.1) and (1.2) were solved for determination of logK<sub>1</sub> and logK<sub>2</sub>. The average values were taken as correct value of logK<sub>1</sub> and logK<sub>2</sub>. The values of the metal-ligand formation number ( $n^-$ ) were selected in the range 0.2 to 0.8 and 1.2 to 1.8 for logK<sub>1</sub> and logK<sub>2</sub>

respectively. These values were found,  $logK_1 = 3.6175$ ,  $logK_2 = 3.0439$ The unappreciable difference between  $logK_1$  and  $logK_2$  indicates that the complex species were form simultaneously and not in step-wise manner.(Minaxi & Shah 2011), (Sayved, Abdul Rahim, & Mazahar 2011) K<sub>1</sub>>K<sub>2</sub> this indicates no steric effect in the addition of second ligand. (Lonibala, 2006). These values were further corroborated by the method of half integral.

| Table: (3.1.4). Point-wise method $\log K_1$ (Average value = 3.61/5) |                                              |               |              |                |        |  |
|-----------------------------------------------------------------------|----------------------------------------------|---------------|--------------|----------------|--------|--|
| $Log K_1$                                                             | $\log\left(\frac{n^{-}}{(1-n^{-})}\right)$   | pL            | n            | V3             | V2     |  |
|                                                                       |                                              |               |              |                |        |  |
| 3.6040                                                                | -0.9291                                      | 2.3146        | 0.1053       | 1.225          | 1.1750 |  |
| 3.6517                                                                | -0.7864                                      | 4.5331        | 0.1405       | 1.4333         | 1.3667 |  |
| 3.6961                                                                | -0.6481                                      | 4.4382        | 0.1836       | 1.6000         | 1.5125 |  |
| 3.6299                                                                | -0.6169                                      | 4.3443        | 0.1946       | 1.7222         | 1.6300 |  |
| 3.6081                                                                | -0.5436                                      | 4.2469        | 0.2224       | 1.8300         | 1.7250 |  |
| 3.6094                                                                | -0.4487                                      | 4.1516        | 0.2625       | 1.9250         | 1.8063 |  |
| 3.5913                                                                | -0.3733                                      | 4.0582        | 0.2974       | 2.0077         | 1.8688 |  |
| 3.5805                                                                | -0.2917                                      | 3.9645        | 0.3381       | 2.0846         | 1.9278 |  |
| 3.5668                                                                | -0.2137                                      | 3.8722        | 0.3794       | 2.1571         | 1.9833 |  |
| 3.5787                                                                | -0.1129                                      | 3.7806        | 0.4354       | 2.2286         | 2.0318 |  |
| 3.6022                                                                | -0.0025                                      | 3.6916        | 0.4985       | 2.3000         | 2.0773 |  |
| 3.6217                                                                | 0.1029                                       | 3.6047        | 0.5589       | 2.3714         | 2.1250 |  |
| 3.6622                                                                | 0.2265                                       | 3.5188        | 0.6275       | 2.4462         | 2.1750 |  |
| 3.7541                                                                | 0.3972                                       | 3.4357        | 0.7139       | 2.5273         | 2.2278 |  |
| 3.9446                                                                | 0.6611                                       | 3.3569        | 0.8209       | 2.6167         | 2.2833 |  |
|                                                                       |                                              |               |              |                |        |  |
| Table:                                                                | (3.1.5). Point-w                             | vise method l | ogK2 (Averag | ge value = 3.0 | 0439)  |  |
| Log K <sub>2</sub>                                                    | $\log\left(\frac{n^{-}-1}{(2-n^{-})}\right)$ | pL            | n            | V3             | V2     |  |
|                                                                       | $\left(\left(2-n\right)\right)$              |               |              |                |        |  |
| 1.6025                                                                | 1.6025                                       | 3.1456        | 1.0278       | 2.8            | 2.4154 |  |
| 2.3210                                                                | 2.3210                                       | 3.0850        | 1.1469       | 2.9            | 2.4923 |  |
| 2.6293                                                                | 2.6293                                       | 3.0320        | 1.2835       | 3.01           | 2.5818 |  |
| 2.8207                                                                | 2.8207                                       | 2.9827        | 1.4078       | 3.1111         | 2.6727 |  |
| 3.1191                                                                | 3.1191                                       | 2.9509        | 1.5956       | 3.225          | 2.7636 |  |
| 3.6064                                                                | 3.6064                                       | 2.9351        | 1.8243       | 3.3444         | 2.86   |  |
|                                                                       |                                              |               |              |                |        |  |

Tables (2.1.4) Doint vise method  $\log V$  (Average value = 2.617E)

#### **3.1.2.2-Half integral method:** (Chromium acetate)

For determination of log  $K_1$  and log  $K_2$  according to this method n<sup>-</sup> should be plotted versus pL, table (3.1.6), From the formation curve figure (3.1.3) the values of pL at which n = 0.5 and n = 1.5 corresponds to values of  $\log K_1$  and  $\log K_2$ respectively. For this purpose graph is elongated and broaden. The values found, logK<sub>1</sub>=3.6 and logK<sub>2</sub>=2.958, the values were in a good agreement with values of point-wise calculation method. These values were further verified by linear plot method.



Fig.(31.3). Cr-acetate formation curve logK<sub>1</sub>=3.6 &logK<sub>2</sub>=2.958

#### 3.1.2.3- Linear plot method :( Chromium acetate)

To estimate the stability constants of chromium acetate by this method log n<sup>-</sup>/(1-n<sup>-</sup>) and log(n<sup>-</sup> -1)/(2-n<sup>-</sup>) were plotted against corresponding pL for determination of logK<sub>1</sub>, and logK<sub>2</sub> respectively (Anjani et al., 2011). It is obviously that from figure (3.1.4) and figure (3.1.5) log K<sub>1</sub>= 3.6 and log K<sub>2</sub>=2.96, these values were in a good agreement with values deduced by two previous methods. The values were further corroborated by least squares method.



Fig. (31.4) Linear plot method  $\log K_1 = 3.6$ 



Fig. (3.1.5) Linear plot method logK<sub>2</sub>= 2.96

#### **3.1.2.4-Method of least squares**: (chromium acetate)

Irrving and Rossotti showed that the problem of calculating the better set of stability constants from different experimental data can be solved by a least squares method. Moreover when a difference between the values logK<sub>1</sub> and logK<sub>2</sub> was less than 1.8, such as the case under investigation the exact values can be evaluated by this method. (Gurdeep, 1986)

Least squares method one of the most popular graphical methods as they make use of all data. Two forms of linear treatment are available when N=2, namely extrapolation and elimination. (N is all possible coordination sites) as the present case, the following expression was employed.

$$n^{-} = (1 - n^{-})[L]K_{1} + (2 - n^{-})[L]^{2}K_{1}K_{2}....(3.1.3)$$

$$\frac{n^{-}}{(1-n^{-})[L]} = \left(\frac{(2-n^{-})[L]}{(1-n^{-})}\right) K_1 K_2 + K_1$$
------ (3.1.4)
$$\frac{n^{-}}{(1-n^{-})[L]} \times \frac{1}{K_1 K_2} - \frac{1}{K_2} = \left(\frac{(2-n^{-})[L]}{(1-n^{-})}\right)$$
------ (3.1.5)

A plot of the left hand side (equation'1.4') against  $(2-n^{-})[L]/(n^{-}-1)$  give a straight line equation. An interesting point to note is that whilst the y-intercept gives  $K_1$  and the slope  $K_1 K_2$ , the x-intercept is  $-1/K_1$  and the slope  $1/K_1K_2$  which is a useful check on the consistency of the data.(Vogel, 1978). In this way error accumulated on  $K_{n-1}$ .

By plotting equation (3.1.4),  $\log K_1$ =3.3768 and  $\log K_1$ =2.9242 fig (3.1.6). However with an approach of this type, errors will accumulate as we calculate  $K_1$ to  $K_n$ . (Rossotti & Rossotti,1955). For plotting of equation (3.1.5), values obtained  $\log K_1$ =3.1029, and  $\log K_2$ = 3.00, fig. (3.1.7).

The method can be also utilized to confirm the presence and absence of 1:2 complex species. Nayan and Dey have also attempted to simplify the approach for calculating various parameters required for stability constant. (Gurdeep, 1986). The R squared ( $R^2$ ) on figure (3.1.6) and figure (3.1.7) is an excel label, names as coefficient of determination, it is a famous number, people quote to prove how good the fit is, it is quite useless for evaluating a working curve unless you count the number of nines you get. (0.978 is a pretty bad working curve, 0.999 is probably a good one). In the figures fitted,  $R^2$ =0.983, that means the working curves are good.

| 1001C (0.1.0) L  | seuse squares men |         |        | 10512  |
|------------------|-------------------|---------|--------|--------|
| $(2 - n^{-})[L]$ | n <sup>-</sup>    | [L]     | n      | pL     |
| $(1 - n^{-})$    | $(1-n^{-})[L]$    |         |        | -      |
|                  |                   |         |        |        |
| 4.9E-05          | 4992.5923         | 2.3E-05 | 0.1044 | 4.6319 |
| 6.2E-05          | 4017.9331         | 2.9E-05 | 0.1053 | 4.5331 |
| 7.9E-05          | 4484.8425         | 3.6E-05 | 0.1405 | 4.4382 |
| 0.0001           | 4967.5484         | 4.5E-05 | 0.1836 | 4.3443 |
| 0.0001           | 4265.1598         | 5.7E-05 | 0.1946 | 4.2469 |
| 0.0002           | 4055.8009         | 7.1E-05 | 0.2224 | 4.1516 |
| 0.0002           | 4068.3161         | 8.7E-05 | 0.2625 | 4.0582 |
| 0.00023          | 3901.7738         | 0.0001  | 0.2974 | 3.9645 |
| 0.00034          | 3806.1331         | 0.0001  | 0.3381 | 3.8722 |
| 0.00043          | 3688.3915         | 0.0002  | 0.3794 | 3.7806 |
| 0.00056          | 3790.6599         | 0.0002  | 0.4354 | 3.6916 |
| 0.00074          | 4000.9270         | 0.0002  | 0.4985 | 3.6047 |
| 0.00099          | 4184.9108         | 0.0003  | 0.5589 | 3.5188 |
| 0.00135          | 4593.6042         | 0.0004  | 0.6275 | 3.4357 |
| 0.00198          | 5676.3636         | 0.0004  | 0.7139 | 3.3569 |
| 0.00343          | 8801.5979         | 0.0005  | 0.8209 | 3.2835 |
| 0.00704          | 15259.7411        | 0.0006  | 0.9040 | 3.2098 |
| -0.0250          | -51624.2899       | 0.0007  | 1.0278 | 3.1456 |
| -0.00458         | -9494.4212        | 0.0008  | 1.1469 | 3.0850 |
| -0.00235         | -4874.2900        | 0.0009  | 1.2835 | 3.0320 |

Table (3.1.6) Least squares method for confirmation of  $logK_1$  = and  $logK_2$ 



Fig. (3.1.6) least squared Method (equation 1.4) logK<sub>1</sub>=3.3768& logK<sub>2</sub>=2.9242

Linear Regression for Data



#### Fig. (3.1.7) least squares method (equation 1.5) $\log K_1 = 3.1029 \& \log K_2 = 3.00$

| Parameter | Value    | Error      | R <sup>2</sup> |
|-----------|----------|------------|----------------|
| Intercept | -0.0011  | 0.00016    | 0.99163        |
| Slope     | 4.555E-7 | 1.32576E-8 |                |

#### Linear Regression for Data

Table (3.1.7) Summary for chromium acetate stability constants

| Method                           | logK1  | logK <sub>2</sub> | Log <sub>2</sub> |
|----------------------------------|--------|-------------------|------------------|
| Point wise calculation method    | 3.6175 | 3.0439            | 6.661            |
|                                  |        |                   | 4                |
| Half integral method             | 3.6    | 2.958             | 6.558            |
| Linear plot method               | 3.6    | 2.96              | 6.56             |
| Least squares method eq. $(1.4)$ | 3.3455 | 2.9242            | 6.269            |
|                                  |        |                   | 7                |
| Least squares method eq. (1.5)   | 3.1029 | 3.00              | 6.102            |
|                                  |        |                   | 9                |

**3.2-Chromium-oxalic acid system** *Table* (3.2.1). The pH - titration reading of acid, acid + ligand(oxalic acid) and acid + ligand + metal ion (Cr<sup>+3</sup>).  $N^0 = 0.525M$ ,  $E^0 = 6.1465 \times 10^{-3} M$ ,  $T_{Cl} = 5 \times 10^{-5} M$ ,  $T_{cm} = 1.25 \times 10^{-5} M$ ,  $V^0 = 200 cm^3$ ,  $u^0 = 5 \times 10^{-3}$ ,  $t = 36.5^0 C$ 

| Vol. of alkali | Acid  | Acid +ligand | Acid+ligand | Volume of alkali | Acid  | Acid+ligan | Acid+ligand+ |
|----------------|-------|--------------|-------------|------------------|-------|------------|--------------|
| added          |       | 0            | +metal ion  | added            |       | d          | metal ion    |
| 0.0            | 2.22  | 2.02         | 2.01        | 4.1              | 11.90 | 3.72       | 3.37         |
| 0.1            | 2.24  | 2.02         | 2.02        | 4.2              | 11.92 | 3.82       | 3.45         |
| 0.2            | 2.26  | 2.03         | 2.03        | 4.3              | 11.94 | 3.91       | 2.54         |
| 0.3            | 2.29  | 2.04         | 2.04        | 4.4              | 11.95 | 4.01       | 3.63         |
| 0.4            | 2.31  | 2.06         | 2.05        | 4.5              | 11.97 | 4.09       | 3.71         |
| 0.5            | 2.34  | 2.07         | 2.06        | 4.6              | 11.99 | 4.19       | 3.79         |
| 0.6            | 2.37  | 2.08         | 2.07        | 4.7              | 12.01 | 4.29       | 3.88         |
| 0.7            | 2.40  | 2.09         | 2.08        | 4.8              | 12.02 | 4.41       | 3.96         |
| 0.8            | 2.43  | 2.11         | 2.10        | 4.9              | 12.04 | 4.53       | 4.04         |
| 0.9            | 2.47  | 2.12         | 2.11        | 5.0              | 12.05 | 4.67       | 4.12         |
| 1.0            | 2.51  | 2.14         | 2.12        | 5.1              | 12.06 | 4.85       | 4.21         |
| 1.1            | 2.56  | 2.15         | 2.14        | 5.2              | 12.08 | 5.09       | 4.30         |
| 1.2            | 2.61  | 2.17         | 2.15        | 5.3              | 12.09 | 5.54       | 4.39         |
| 1.3            | 2.67  | 2.19         | 2.17        | 5.4              | 12.10 | 7.29       | 4.50         |
| 1.4            | 2.74  | 2.20         | 2.19        | 5.5              | 12.11 | 10.31      | 4.61         |
| 1.5            | 2.82  | 2.22         | 2.20        | 5.6              | 12.13 | 10.72      | 4.74         |
| 1.6            | 2.92  | 2.24         | 2.22        | 5.7              | 12.14 | 10.93      | 4.89         |
| 1.7            | 3.04  | 2.26         | 2.24        | 5.8              | 12.15 | 11.08      | 5.10         |
| 1.8            | 3.21  | 2.28         | 2.26        | 5.9              | 12.16 | 11.19      | 5.33         |
| 1.9            | 3.51  | 2.31         | 2.28        | 6.0              | 12.17 | 11.28      | 5.61         |
| 2.0            | 4.44  | 2.33         | 2.31        | 6.1              | 12.18 | 11.36      | 5.86         |
| 2.1            | 10.16 | 2.36         | 2.33        | 6.2              | 12.19 | 11.42      | 6.06         |
| 2.2            | 10.70 | 2.39         | 2.35        | 6.3              | 12.20 | 11.48      | 6.26         |
| 2.3            | 10.94 | 2.42         | 2.38        | 6.4              | 12.21 | 11.52      | 6.48         |
| 2.4            | 11.10 | 2.45         | 2.41        | 6.5              | 12.21 | 11.57      | 6.76         |
| 2.5            | 11.21 | 2.48         | 2.44        | 6.6              | 12.22 | 11.60      | 7.18         |
| 2.6            | 11.30 | 2.52         | 2.47        | 6.7              | 12.23 | 11.64      | 7.62         |
| 2.7            | 11.38 | 2.56         | 2.50        | 6.8              | 12.24 | 11.67      | 8.18         |
| 2.8            | 11.45 | 2.61         | 2.54        | 6.9              | 12.25 | 11.70      | 8.97         |
| 2.9            | 11.50 | 2.66         | 2.58        | 7.0              | 12.26 | 11.73      | 9.61         |
| 3.0            | 11.55 | 2.71         | 2.62        | 7.1              | 12.27 | 11.76      | 10.07        |
| 3.1            | 11.60 | 2.77         | 2.67        | 7.2              | 12.28 | 11.78      | 10.42        |
| 3.2            | 11.64 | 2.84         | 2.72        | 7.3              | 12.29 | 11.80      | 10.67        |
| 3.3            | 11.68 | 2.91         | 2.77        | 7.4              | 12.30 | 11.83      | 10.86        |
| 3.4            | 11.71 | 3.00         | 2.83        | 7.5              | 12.31 | 11.85      | 11.00        |
| 3.5            | 11.74 | 3.09         | 2.90        | 7.6              | 12.32 | 11.87      | 11.11        |
| 3.6            | 11.77 | 3.19         | 2.96        | 7.7              | 12.33 | 11.89      | 11.25        |
| 3.7            | 11.80 | 3.30         | 3.04        | 7.8              | 12.34 | 11.91      | 11.27        |
| 3.8            | 11.83 | 3.41         | 3.12        | 7.9              | 12.35 | 11.93      | 11.34        |
| 3.9            | 11.85 | 3.52         | 3.20        | 8.0              | 12.36 | 11.95      | 11.39        |
| 4.0            | 11.87 | 3.62         | 3.28        | -                | -     | -          | -            |



Fig.(3.2.1). Alkali volume against pH of three sets of solutions. Table (3.2.2) Volume of alkali required to bring three set of solutions to same pH

| В          | V1     | V2               | V3     | В          | V1     | V2     | V3        |
|------------|--------|------------------|--------|------------|--------|--------|-----------|
| 2.1        | 0.7500 | 0.800            | -      | 6.8        | 2.0413 | 5.3720 | 6.5096    |
| 2.2        | 1,400  | 1.500            | -      | 6.9        | 2.0430 | 5.3777 | 6.5334    |
| 2.3        | 0.3500 | 1.8667           | 1.9667 | 7.0        | 2.0448 | 5.3835 | 6.5573    |
| 2.4        | 0.7000 | 2.2334           | 2.3667 | 7.1        | 2.0465 | 5.3892 | 6.5811    |
| 2.5        | 0 9751 | 2 5501           | 2 7001 | 72         | 2 0483 | 5 3949 | 6 6047    |
| 2.6        | 1 1801 | 2 7801           | 2 9501 | 73         | 2 0500 | 5 4003 | 6 6274    |
| 2.0        | 1 3429 | 2 9801           | 3 1601 | 7.0        | 2.0500 | 5 4037 | 6 6501    |
| 2.8        | 1 4751 | 3 1429           | 3 3501 | 75         | 2 0535 | 5 4070 | 6 6728    |
| 2.0        | 1 5801 | 3 2858           | 3 5001 | 7.6        | 2.0553 | 5 4103 | 6 6956    |
| 3.0        | 1.6667 | 3 4001           | 3 6501 | 7.0        | 2.0555 | 5.4136 | 6 7144    |
| 3.0        | 1.0007 | 3 5101           | 3 7751 | 7.8        | 2.0570 | 5 4169 | 6 7322    |
| 3.1        | 1.7942 | 3 6092           | 3 9001 | 7.0        | 2.0500 | 5 4202 | 6 7501    |
| 2.2        | 1 8300 | 3 7001           | 4 0223 | 8.0        | 2.0003 | 5.4202 | 6 7680    |
| 3.0        | 1.0500 | 3 7010           | 4.0225 | 0.0<br>8 1 | 2.0022 | 5.4255 | 6 7858    |
| 3.4        | 1.0054 | 3 8810           | 4.1570 | 8.2        | 2.0040 | 5 4302 | 6.8026    |
| 3.5        | 1.0907 | 3 08013          | 4.2337 | 0.2<br>8 3 | 2.0037 | 5 4335 | 6.8153    |
| 27         | 1.9097 | 3.9001<br>4.0801 | 4.3000 | 0.J<br>Q / | 2.0075 | 5 4368 | 6 8 7 7 0 |
| 2.7        | 1.9204 | 4.0001           | 4.4077 | 0.4        | 2.0095 | 5.4500 | 6.0279    |
| 2.0        | 1.9312 | 4.1002           | 4.0115 | 0.5        | 2.0710 | 5.4401 | 6 9522    |
| 5.9<br>4.0 | 1.9420 | 4.2091           | 4.7252 | 0.0        | 2.0727 | 5.4454 | 0.0352    |
| 4.0        | 1.9527 | 4.5902           | 4.0502 | 0./        | 2.0742 | 5.4407 | 0.0059    |
| 4.1        | 1.9035 | 4.5102           | 4.9752 | 0.0        | 2.0762 | 5.4500 |           |
| 4.2        | 1.9742 | 4.6102           | 5.0891 | 8.9        | 2.0780 | 5.4533 | 0.8912    |
| 4.3        | 1.9850 | 4.7085           | 5.2002 | 9.0        | 2.0/9/ | 5.4566 | 6.9048    |
| 4.4        | 1.995/ | 4./918           | 5.3093 | 9.1        | 2.0815 | 5.4600 | 6.9204    |
| 4.5        | 2.0011 | 4.8/52           | 5.4002 | 9.2        | 2.0832 | 5.4633 | 6.9360    |
| 4.6        | 2.0028 | 4.9502           | 5.4911 | 9.3        | 2.0850 | 5.4666 | 6.951/    |
| 4.7        | 2.0045 | 5.0168           | 5.5694 | 9.4        | 2.0867 | 5.4699 | 6.9673    |
| 4.8        | 2.0063 | 5.0724           | 5.6402 | 9.5        | 2.0885 | 5.4732 | 6.9829    |
| 4.9        | 2.0082 | 5.1209           | 5.7049 | 9.6        | 2.0902 | 5.4765 | 6.9986    |
| 5.0        | 2.0098 | 5.1626           | 5.7525 | 9.7        | 2.0920 | 5.4798 | 7.0197    |
| 5.1        | 2.0115 | 5.2023           | 5.8001 | 9.8        | 2.0937 | 5.4831 | 7.0415    |
| 5.2        | 2.0133 | 5.2245           | 5.8436 | 9.9        | 2.0955 | 5.4864 | 7.0632    |
| 5.3        | 2.0150 | 5.2467           | 5.8871 | 10.0       | 2.0972 | 5.4898 | 7.0849    |
| 5.4        | 2.0168 | 5.2690           | 5.9251 | 10.1       | 2.0990 | 5.4931 | 7.1088    |
| 5.5        | 2.0185 | 5.2912           | 5.9608 | 10.2       | 2.1076 | 5.4964 | 7.1374    |
| 5.6        | 2.0203 | 5.3034           | 5.9965 | 10.3       | 2.1261 | 5.4997 | 7.1659    |
| 5.7        | 2.0220 | 5.3092           | 6.0361 | 10.4       | 2.1446 | 5.5221 | 7.1945    |
| 5.8        | 2.0238 | 5.3149           | 6.0761 | 10.5       | 2.1631 | 5.5465 | 7.2323    |
| 5.9        | 2.0255 | 5.3206           | 6.1202 | 10.6       | 2.1816 | 5.5709 | 7.2723    |
| 6.0        | 2.0273 | 5.3263           | 6.1702 | 10.7       | 2.2003 | 5.5953 | 7.3162    |
| 6.1        | 2.0290 | 5.3320           | 6.2202 | 10.8       | 2.2420 | 5.6385 | 7.3689    |
| 6.2        | 2.0308 | 5.3377           | 6.2702 | 10.9       | 2.2837 | 5.6861 | 7.4292    |
| 6.3        | 2.0325 | 5.3435           | 6.3184 | 11.0       | 2.3380 | 5.7472 | 7.5008    |
| 6.4        | 2.0343 | 5.3492           | 6.3638 | 11.1       | 2.4008 | 5.8190 | 7.5917    |
| 6.5        | 2.0360 | 5.3549           | 6.4073 | 11.2       | 2.4917 | 5.9121 | 7.6649    |
| 6.6        | 2.0378 | 5.3606           | 6.4430 | 11.3       | 2.6011 | 6.0261 | 7.8441    |
| 6.7        | 2.0395 | 5.3663           | 6.4787 | -          | -      | -      | -         |

**B** is the pH-meter readings.**V1**, **V2** and **V3** volumes of alkali needed for acid, acid+ ligand and acid +ligand + metal ion.

#### **3.2.1-Proton-ligand stability constant:**

#### **3.2.1.1-pointwise calculation method:**

Since the ligand used is Diprotonic, the calculation of free ligand exponent function (pL) of metal complexes requires a prior knowledge of the practical proton-ligand stability constant. The values of  $n_A$  at various pH readings (B) were calculated from the acid and ligand titration curves table (3.2.3) using excel program on personal computer. The ligand titration curve is well separated from the acid titration curve at pH 2.1 indicating the dissociation of the ligand in the titration medium table (3.2.2) and figure (3.2.1). The formation curve for the ligand in the range  $0 < n_A < 2$ , indicating the dissociation constants pKa<sub>1</sub> and pKa<sub>2</sub>. The accurate values of pk<sub>1</sub> and pk<sub>2</sub> were determined using equations (3.2.1) & (3.2.2): (Abdulbast, 2012)

$$pk_{1} = \log \frac{n_{A} - 1}{2 - n_{A}} + pH$$
------ (3.2.1)
$$pk_{2} = \log \frac{n_{A}}{1 - n_{A}} + pH$$
------ (2.2)

The correct values of  $pka_1$  and  $pka_2$  were taken as average of values of  $n^-$  in range 0.2-0.8 and 1.2-1.8 respectively. The values were found,  $pka_2=4.5708$  and  $pka_1=1.7799$  table (3.2.3) and table (3.2.4).

| pKa1   | $\log\left(\frac{(n_A-1)}{(2-n_A)}\right)$ | .n <sub>A</sub> | V2     | V1     | pН  |
|--------|--------------------------------------------|-----------------|--------|--------|-----|
| 1.6865 | -0.6143                                    | 1.1958          | 1.8667 | 0.3500 | 2.3 |
| 1.7657 | -0.6343                                    | 1.1884          | 2.2334 | 0.7000 | 2.4 |
| 1.8036 | -0.6964                                    | 1.1675          | 2.5501 | 0.9751 | 2.5 |
| 1.8640 | -0.7360                                    | 1.1552          | 2.7801 | 1.1801 | 2.6 |
| 1.8978 | -0.8022                                    | 1.1362          | 2.9801 | 1.3429 | 2.7 |
| 1.9373 | -0.8627                                    | 1.1206          | 3.1429 | 1.4751 | 2.8 |
| 1.9516 | -0.9488                                    | 1.1011          | 3.2858 | 1.5801 | 2.9 |
| 1.9786 | -1.0214                                    | 1.0869          | 3.4001 | 1.6667 | 3.0 |
| 1.9452 | -1.1548                                    | 1.0654          | 3.5101 | 1.7353 | 3.1 |
|        |                                            | 59              |        |        |     |

Table (3.2.3). Dissociation constant of oxalic acid pKa<sub>1</sub> (Average value=1.7799)

| 1.8685 | -1.3315 | 1.0445 | 3.6092 | 1.7942 | 3.2 |
|--------|---------|--------|--------|--------|-----|
| 1.5030 | -1.7970 | 1.0157 | 3.7001 | 1.8300 | 3.3 |

V1 pKa<sub>2</sub>  $\log\left(\frac{n_A}{(1-n_A)}\right)$ V2 pН .n<sub>A</sub> 1.3316 0.9555 3.8819 1.8967 4.8316 3.5 1.0086 0.91071 3.9801 4.6086 1.9097 3.6 4.5022 0.8022 0.8638 4.0801 1.9204 3.7 1.9312 4.4494 0.6494 0.8169 4.1802 3.8 4.4134 0.5134 0.7653 4.2891 1.942 3.9 4.4056 0.4056 0.7178 4.3902 1.9527 4.0 4.3889 0.2890 0.6605 4.5102 1.9635 4.1 4.4008 0.2008 0.6136 4.6102 1.9742 4.2 4.4182 0.1182 0.5676 4.7085 1.985 4.3 4.4514 0.0514 0.5295 4.7918 1.9957 4.4 2.0011 4.4801 -0.01990.4886 4.8752 4.5 4.5129 -0.0871 0.4500 4.9502 2.0028 4.6 4.5525 -0.14750.4159 5.0168 2.0045 4.7 4.6014 -0.1986 0.3876 5.0724 2.0063 4.8 -0.2440 0.3631 5.1209 2.0082 4.9 4.6560 4.7159 -0.2841 0.3421 5.1626 2.0098 5.0 0.3221 2.0115 4.7768 -0.3232 5.2023 5.1 4.8553 -0.3447 0.3114 5.2245 2.0133 5.2 4.9333 -0.3667 0.3006 5.2467 2.015 5.3

Table (3.2.4) Dissociation constant of oxalic acid pKa<sub>2</sub> (Average value 4.5708)

# **3.2.2** -**Metal-ligand stability constants:** (chromium oxalate)

# **3.2.2.1-point-wise calculation method** Metal ligand titration curve cross over the ligand titration curve at pH 2.3 table (3.2.2) indicating starting point of formation of the chelates. n<sup>-</sup> extended between 0.1334 to 2.0856 indicating the formation of chelate species ML , ML<sub>2</sub>, table (3.2.4) the ML complex type is major one in the solution medium, for it extends from pH 2.3 to nearly 4. Since the ligand is bidentate making a chelate, ML<sub>2</sub> formation beyond pH 4 till pH 4.7 table (2.5), two molecules attached to ligand in four places, with two water molecules. At a very narrow range of pH the ML<sub>3</sub> begins formation from pH 4.8 to 5 which can be neglected after that the free ligand

exponential function (pL) cannot be calculated or [L] tends to zero. Equation (3.1.2), (3.1.3) and (3.2.1) were employed.

The correct values of  $logk_1$  and  $logk_2$  were taken as an average for the values of n<sup>-</sup> from 0.2 to 0.8 and 1.2 to 1.8 respectively. The values found were  $logK_1$ = 3.7762 and  $logK_2$  = 2.9479. These values were further corroborated by half integral method.

In general  $K_1 > K_2 > K_3$  etc. any reversal of this order implies specific electronic or steric phenomenon. (Vogel, 1978)

| $Log K_1$ | $\log\!\left(\frac{n^-}{(1-n^-)}\right)$ | pL     | n      | V3     | V2     |
|-----------|------------------------------------------|--------|--------|--------|--------|
| 3.9179    | -0.8128                                  | 0.1334 | 2.3248 | 1.9667 | 1.8667 |
| 3.9423    | -0.6748                                  | 0.1745 | 2.3319 | 2.3637 | 2.2334 |
| 3.9147    | -0.5908                                  | 0.2042 | 2.3372 | 2.7001 | 2.5501 |
| 3.8809    | -0.5159                                  | 0.2336 | 2.3422 | 2.9501 | 2.7801 |
| 3.8150    | -0.4742                                  | 0.2512 | 2.3454 | 3.1601 | 2.9801 |
| 3.8054    | -0.3826                                  | 0.2930 | .35241 | 3.3501 | 3.1429 |
| 3.7335    | -0.3512                                  | 0.3082 | 2.3551 | 3.5001 | 3.2858 |
| 3.7476    | -0.2423                                  | 0.3640 | .36446 | 3.6501 | 3.4001 |
| 3.7047    | -0.1880                                  | 0.3934 | 2.3695 | 3.7751 | 3.5101 |
| 3.6959    | -0.1042                                  | 0.4403 | 2.3776 | 3.9001 | 3.6092 |
| 3.7141    | 0.0023                                   | 0.5013 | 2.3882 | 4.0223 | 3.7001 |
| 3.7211    | 0.0968                                   | 0.5555 | 2.3979 | 4.1376 | 3.791  |
| 3.7487    | 0.2084                                   | 0.6177 | 409173 | 4.2557 | 3.8819 |
| 3.7646    | 0.3077                                   | 0.6700 | 2.4189 | 4.3668 | 3.9801 |
| 3.8440    | 0.4640                                   | 0.7443 | 2.4331 | 4.4877 | 4.0801 |

Table (3.2.5).  $\log K_1$  Cr-oxalate (Average value = 3.7762)

Table (3.2.6) logK<sub>2</sub> Cr-oxalate (Average value =2.9479)

| pKa <sub>2</sub> | $\log\left(\frac{(n^1)}{(2-n^-)}\right)$ | n      | pL     | V3     | V2     |
|------------------|------------------------------------------|--------|--------|--------|--------|
| 2.2063           | -0.9162                                  | 1.1082 | 3.1224 | 4.9752 | 4.5102 |
| 2.5470           | -0.5299                                  | 1.2280 | 3.0769 | 5.0891 | 4.6102 |
| 2.7960           | -0.2458                                  | 1.3621 | 3.0418 | 5.2002 | 4.7085 |
| 3.0891           | 0.0629                                   | 1.5362 | 3.0262 | 5.3093 | 4.7918 |
| 3.3593           | 0.3443                                   | 1.6884 | 3.0150 | 5.4002 | 4.8752 |
| 3.9312           | 0.8985                                   | 1.8878 | 3.0326 | 5.4911 | 4.9502 |

#### **3.2.2.2-Half integral method:**

From below formation curve, the stability constants were determined from the values of pL at which  $n^-=0.5$  and  $n^-=1.5$  corresponds to  $\log K_1$  and  $\log K_2$  respectively, figure (3.2.2)  $\log K_1=3.71$ ,  $\log K_2=3.04$ . These values were in a good concordance with the values obtained by point-wise method. Since the difference

between the stability constants less than 1.8 then these complexes were occurred simultaneously. These values were further verified by linear plot method.



Fig. (3.2.2). Metal-ligand formation curve of Cr-oxalate. Average values of logK<sub>1</sub>and logK<sub>2</sub> were 3.71 and 3.04 respectively.

**3.2.2.3-Linear plot method**: (chromium oxalate) In this method log (n)/(1-n) and log(n-1)/(2-n) were plotted against corresponding pL, for determination of logK<sub>1</sub> and log K<sub>2</sub> respectively, figures (3.2.3) and (3.2.4), values were found to be logK<sub>1</sub>=3.72 and logK<sub>2</sub>=3.0296





Fig. (3.2.4) linear plot method Cr-oxalate logK<sub>2</sub>=3.03 **3.2.2.4-Method of least squares**: (chromium oxalate)

For this system chromium oxalate the possible coordination sites N =2, the complex species ML and ML<sub>2</sub> can be characterizing by the equations (2.3) or (2.4).

$$\frac{n^{-}}{(1-n^{-})[L]} = \frac{(2-n^{-})[L]}{(1-n^{-})} \times K_1 K_2 + K_1$$
------(2.3)

Thus plotting  $n^{-}/(1-n^{-})[L]$  against  $(2-n^{-})[L]/(1-n^{-})$  tends to straight line of intercept K<sub>2</sub> and slope K<sub>1</sub>K<sub>2</sub>. logK<sub>1</sub>=3.5525 and logK<sub>2</sub>=2.8221.

Another form of equation (2.3) can take the form:

$$\frac{n^{-}}{(1-n^{-})[L]} \times \frac{1}{K_1 K_2} - \frac{1}{K_2} = \frac{(2-n^{-})[L]}{(1-n^{-})}$$
-----(2.4)

According to this form  $\log K_1$ = 3.6785 and  $\log K_2$ =3.0. As mentioned before this form matching very well the values obtained by other three methods, we explained before how these values have been obtained.

Equation (2.4) can check also consistency of data.

Table (3.2.7) Determination of log K<sub>1</sub> and logK<sub>2</sub> (least squares method)

| $\frac{(2 - n^{-})[L]}{(1 - n^{-})}$ | $\frac{n^-}{(1-n^-)[L]}$ | [L]     | pL     | n      |
|--------------------------------------|--------------------------|---------|--------|--------|
| 4.0E-05                              | 8277.1137                | 1.9E-05 | 4.7307 | 0.1334 |
| 5.3E-05                              | 8755.4615                | 2.4E-05 | 4.6171 | 0.1745 |
| 7.0E-05                              | 8215.9900                | 3.1E-05 | 4.5054 | 0.2042 |

| 9.2E-05 | 7602.3711   | 4.0E-05 | 4.3969 | 0.2336 |
|---------|-------------|---------|--------|--------|
| 0.0001  | 6531.9544   | 5.1E-05 | 4.2893 | 0.2512 |
| 0.0002  | 6388.8863   | 6.5E-05 | 4.1880 | 0.2930 |
| 0.0002  | 5413.5482   | 8.2E-05 | 4.0847 | 0.3082 |
| 0.0003  | 5591.8902   | 0.0001  | 3.9899 | 0.3640 |
| 0.0003  | 5065.8480   | 0.0001  | 3.8927 | 0.3934 |
| 0.0004  | 4965.2124   | 0.0001  | 3.8001 | 0.4403 |
| 0.0006  | 5177.3200   | 0.0002  | 3.7119 | 0.5013 |
| 0.0008  | 5261.5272   | 0.0002  | 3.6243 | 0.5555 |
| 0.0010  | 5606.4351   | 0.0003  | 3.5403 | 0.6177 |
| 0.0014  | 5815.0831   | 0.0003  | 3.4568 | 0.6700 |
| 0.0020  | 6982.2099   | 0.0004  | 3.3800 | 0.7443 |
| 0.0034  | 10086.0936  | 0.0005  | 3.3088 | 0.8320 |
| 0.0063  | 15170.2124  | 0.0006  | 3.2369 | 0.8979 |
| -0.0711 | -164698.197 | 0.0007  | 3.1785 | 1.0092 |
| -0.0062 | -13580.1085 | 0.0008  | 3.1224 | 1.1082 |
| -0.0028 | -6430.6010  | 0.0008  | 3.0769 | 1.2279 |
| -0.0016 | -4141.6134  | 0.0009  | 3.0418 | 1.3621 |
| -0.0008 | -3043.5104  | 0.0009  | 3.0262 | 1.5362 |
| -0.0004 | -2538.5804  | 0.0010  | 3.0150 | 1.6884 |
| -0.0001 | -2292.2096  | 0.0009  | 3.0326 | 1.8879 |



Fig (3.2.5) least squares method logK<sub>1</sub>=3.5525&logK<sub>2</sub>=2.8221[equation 2.3] Linear Regression

| Parameter | Value      | Error       | R <sup>2</sup> |
|-----------|------------|-------------|----------------|
| Intercept | 3569.26285 | 647.38547   | 0.99652        |
| Slope     | 2.36902E6  | 43212.15133 |                |



Fig. (3.2.6) least squares method logK<sub>1</sub>=3.8247 &logK<sub>2</sub>= 2.8539[equation 2.4]

#### Linear Regression for:

| Parameter | Value      | Error      | R2      |
|-----------|------------|------------|---------|
| Intercept | -0.00142   | 0.00028    | 0.99599 |
| Slope     | 4.19259E-7 | 8.02693E-9 |         |

Table (3.2.7) Stability constants of chromium oxalate by four graphical method

| Method                         | logK <sub>1</sub> | logK <sub>2</sub> | $Log\beta_2$ |
|--------------------------------|-------------------|-------------------|--------------|
| Point wise method              | 3.7762            | 2.9479            | 6.7241       |
| Half integral method           | 3.71              | 3.03              | 6.75         |
| Linear plot method             | 3.72              | 3.0296            | 6.7496       |
| Least squares method equ.[2.3] | 3.5525            | 2.8221            | 6.3746       |
| Least squares method equ.[2.3] | 3.8247            | 2.8539            | 6.6786       |

**3.3/Chromium-oxalacetic acid system:** *Table* (3.3.1). The pH - metric readings of acid, acid + ligand and acid + ligand + metal ion  $(Cr^{+3})N^0 = 0.522M$ ,  $E^0 = 5 \times 10^{-3} M$ ,  $T_{Cl} = 1.5 \times 10^{-3} M$ ,  $T_{cm} = 5 \times 10^{-4} M$ ,  $V^0 = 200 cm^3$  $u^0 = 5 \times 10^{-3}$ ,  $t = 22.5^0 C$ .

| Vol. of alkali | Acid  | Acid +ligand | Acid+ligand | Volume of alkali | Acid  | Acid+ligan | Acid+ligand+ |
|----------------|-------|--------------|-------------|------------------|-------|------------|--------------|
| added          |       |              | +metal ion  | added            |       | d          | metal ion    |
| 0.0            | 2.33  | 2.22         | 2.24        | 3.1              | 11.92 | 11.59      | 10.88        |
| 0.1            | 2.35  | 2.24         | 2.26        | 3.2              | 11.94 | 11.66      | 11.07        |
| 0.2            | 2.38  | 2.27         | 2.28        | 3.3              | 11.97 | 11.71      | 11.21        |
| 0.3            | 2.40  | 2.30         | 2.31        | 3.4              | 11.99 | 11.76      | 11.32        |
| 0.4            | 2.44  | 2.33         | 2.33        | 3.5              | 12.01 | 11.80      | 11.41        |
| 0.5            | 2.47  | 2.36         | 2.36        | 3.6              | 12.04 | 11.83      | 11.48        |
| 0.6            | 2.51  | 2.39         | 2.39        | 3.7              | 12.06 | 11.86      | 11.55        |
| 0.7            | 2.56  | 2.43         | 2.42        | 3.8              | 12.08 | 11.90      | 11.60        |
| 0.8            | 2.62  | 2.47         | 2.46        | 3.9              | 12.10 | 11.93      | 11.65        |
| 0.9            | 2.68  | 2.51         | 2.50        | 4.0              | 12.11 | 11.95      | 11.70        |
| 1.0            | 2.75  | 2.56         | 2.54        | 4.1              | 12.13 | 11.97      | 11.74        |
| 1.1            | 2.84  | 2.62         | 2.58        | 4.2              | 12.15 | 12.00      | 11.77        |
| 1.2            | 2.96  | 2.69         | 2.63        | 4.3              | 12.16 | 12.02      | 11.81        |
| 1.3            | 3.17  | 2.75         | 2.69        | 4.4              | 12.17 | 12.04      | 11.84        |
| 1.4            | 3.39  | 2.84         | 2.75        | 4.5              | 12.19 | 12.06      | 11.87        |
| 1.5            | 4.16  | 2.94         | 2.82        | 4.6              | 12.20 | 12.08      | 11.90        |
| 1.6            | 10.00 | 3.06         | 2.91        | 4.7              | 12.22 | 12.10      | 11.92        |
| 1.7            | 10.73 | 3.21         | 3.01        | 4.8              | 12.23 | 12.12      | 11.95        |
| 1.8            | 11.03 | 3.44         | 3.13        | 4.9              | 12.24 | 12.14      | 11.97        |
| 1.9            | 11.21 | 3.78         | 3.29        | 5.0              | 12.25 | 12.15      | 11.99        |
| 2.0            | 11.33 | 4.35         | 3.49        | 5.1              | 12.27 | 12.17      | 12.01        |
| 2.1            | 11.44 | 5.46         | 3.78        | 5.2              | 12.28 | 12.18      | 12.03        |
| 2.2            | 11.51 | 6.90         | 4.16        | 5.3              | 12.29 | 12.19      | 12.05        |
| 2.3            | 11.58 | 9.64         | 4.72        | 5.4              | 12.30 | 12.21      | 12.07        |
| 2.4            | 11.64 | 10.48        | 5.53        | 5.5              | 12.31 | 12.22      | 12.09        |
| 2.5            | 11.69 | 10.85        | 6.20        | 5.6              | 12.32 | 12.23      | 12.10        |
| 2.6            | 11.74 | 11.08        | 6.87        | 5.7              | 12.33 | 12.25      | 12.12        |
| 2.7            | 11.78 | 11.24        | 8.00        | 5.8              | 12.34 | 12.26      | 12.13        |
| 2.8            | 11.82 | 11.36        | 9.51        | 5.9              | 12.35 | 12.27      | 12.15        |
| 2.9            | 11.85 | 11.45        | 10.22       | 6.0              | 12.36 | 12.28      | 12.16        |
| 3.0            | 11.89 | 11.53        | 10.62       | 6.1              | 12.37 | 12.29      | 12.17        |



Fig. (3.3.1) Titration curve of three sets of solutions

| <u></u> | V1     | V2     |         | B    | V1     | V2     | V3     |
|---------|--------|--------|---------|------|--------|--------|--------|
| <br>    | 0 3000 | 0.2667 | ¥5      | 70   | 1 5521 | 2 2110 | 2 6202 |
| 2.3     | 0.3000 | 0.2007 | -       | 7.2  | 1.5528 | 2.2110 | 2.0292 |
| 2.4     | 0.5000 | 0.0230 | 0.0333  | 7.5  | 1.5555 | 2.2140 | 2.0301 |
| 2.5     | 0.3730 | 1.0667 | 1 1 400 | 7.4  | 1.5555 | 2.2103 | 2.0403 |
| 2.0     | 0.7007 | 1.0007 | 1.1400  | 7.5  | 1.5572 | 2.2219 | 2.0330 |
| 2.7     | 0.9200 | 1.210/ | 1.510/  | 7.0  | 1.5509 | 2.2255 | 2.0040 |
| 2.8     | 1.0550 | 1.3550 | 1.4/14  | /./  | 1.5000 | 2.2292 | 2.0/35 |
| 2.9     | 1.1500 | 1.4600 | 1.5889  | 7.8  | 1.5623 | 2.2328 | 2.6823 |
| 3.0     | 1.2267 | 1.5500 | 1.6900  | /.9  | 1.5640 | 2.2365 | 2.6912 |
| 3.1     | 1.2933 | 1.6267 | 1.7750  | 8.0  | 1.5658 | 2.2401 | 2.7000 |
| 3.2     | 1.3321 | 1.6933 | 1.8438  | 8.1  | 1.5675 | 2.2438 | 2.7066 |
| 3.3     | 1.3679 | 1.7391 | 1.905   | 8.2  | 1.5692 | 2.2474 | 2.7132 |
| 3.4     | 1.4013 | 1.7826 | 1.9550  | 8.3  | 1.5709 | 2.2511 | 2.7199 |
| 3.5     | 1.4143 | 1.8177 | 2.0035  | 8.4  | 1.5726 | 2.2547 | 2.7265 |
| 3.6     | 1.4273 | 1.8471 | 2.0379  | 8.5  | 1.5743 | 2.2584 | 2.7331 |
| 3.7     | 1.4403 | 1.8765 | 2.0724  | 8.6  | 1.5760 | 2.2620 | 2.7397 |
| 3.8     | 1.4532 | 1.9035 | 2.1053  | 8.7  | 1.5777 | 2.2657 | 2.7464 |
| 3.9     | 1.4662 | 1.9211 | 2.1316  | 8.8  | 1.5795 | 2.2693 | 2.7530 |
| 4.0     | 1.4792 | 1.9386 | 2.1579  | 8.9  | 1.5812 | 2.2730 | 2.7596 |
| 4.1     | 1.4922 | 1.9561 | 2.1842  | 9.0  | 1.5829 | 2.2766 | 2.7662 |
| 4.2     | 1.5007 | 1.9737 | 2.2071  | 9.1  | 1.5846 | 2.2803 | 2.7729 |
| 4.3     | 1.5024 | 1.9912 | 2.2250  | 9.2  | 1.5863 | 2.2839 | 2.7795 |
| 4.4     | 1.5041 | 2.0045 | 2.2429  | 9.3  | 1.5880 | 2.2879 | 2.7861 |
| 4.5     | 1.5058 | 2.0135 | 2.2607  | 9.4  | 1.5897 | 2.2912 | 2.7927 |
| 4.6     | 1.5075 | 2.0225 | 2.2786  | 9.5  | 1.5914 | 2.2949 | 2.7993 |
| 4.7     | 1.5092 | 2.0315 | 2.2964  | 9.6  | 1.5932 | 2.2985 | 2.8127 |
| 4.8     | 1.5110 | 2.0405 | 2.3099  | 9.7  | 1.5949 | 2.3072 | 2.8268 |
| 4.9     | 1.5127 | 2.0496 | 2.3222  | 9.8  | 1.5966 | 2.3191 | 2.8409 |
| 5.0     | 1.5144 | 2.0586 | 2.3346  | 9.9  | 1.5983 | 2.3310 | 2.8549 |
| 5.1     | 1.5161 | 2.0676 | 2.3469  | 10.0 | 1.6000 | 2.3429 | 2.8690 |
| 5.2     | 1.5178 | 2.0766 | 2.3593  | 10.1 | 1.6137 | 2.3548 | 2.8831 |
| 5.3     | 1.5195 | 2.0856 | 2.3716  | 10.2 | 1.6274 | 2.3667 | 2.8972 |
| 5.4     | 1.5212 | 2.0946 | 2.3840  | 10.3 | 1.6411 | 2.3786 | 2.9200 |
| 5.5     | 1.5229 | 2.1028 | 2.3963  | 10.4 | 1.6548 | 2.3905 | 2.9450 |
| 5.6     | 1.5247 | 2.1097 | 2.4105  | 10.5 | 1.6685 | 2.4054 | 2.9700 |
| 5.7     | 1.5264 | 2.1167 | 2.4254  | 10.6 | 1.6822 | 2.4325 | 2.9950 |
| 5.8     | 1.5281 | 2.1236 | 2.4403  | 10.7 | 1.6959 | 2.4595 | 3.0308 |
| 5.9     | 1.5298 | 2.1306 | 2.4552  | 10.8 | 1.7234 | 2.4865 | 3.0693 |
| 6.0     | 1.5315 | 2.1375 | 2.4702  | 10.9 | 1.7567 | 2.5218 | 3.1106 |
| 6.1     | 1.5332 | 2.1444 | 2.4851  | 11.0 | 1.7900 | 2.5653 | 3.1632 |
| 6.2     | 1.5349 | 2.1514 | 2.5000  | 11.1 | 1.8389 | 2.6126 | 3.2215 |
| 6.3     | 1.5366 | 2.1583 | 2.5149  | 11.2 | 1.8945 | 2.6751 | 3.2929 |
| 6.4     | 1.5384 | 2.1653 | 2.5299  | 11.3 | 1.9751 | 2.7501 | 3.3819 |
| 6.5     | 1.5401 | 2.1722 | 2.5448  | 11.4 | 2.0637 | 2.8445 | 3.4890 |
| 6.6     | 1.5418 | 2,1792 | 2.559   | 11.5 | 2.1859 | 2.9626 | 3.6287 |
| 6.7     | 1.5435 | 2.1861 | 2.5746  | 11.6 | 2.3335 | 3.1144 | 3.8002 |
| 6.8     | 1.5452 | 2.1931 | 2.5896  | 11.7 | 2.5202 | 3.2802 | 4.0002 |
| 69      | 1 5469 | 2 2000 | 2 6027  | 11.8 | 2 7502 | 3 5003 | 4 2752 |
| 7.0     | 1 5486 | 2 2037 | 2 6115  | 11.0 | 3 0337 | 3 8005 | 4 6005 |
| 7.0     | 1.5503 | 2.2073 | 2.6204  | 12.0 | -      | -      | -      |
|         | 1.0000 |        |         |      |        |        |        |

Table (3.3.2). Alkali volume required to bring three sets of solutions to same pH

**B** is the pH-meter reading.

**V1**, **V2** and **V3** are the volumes of alkali employed to bring the solutions of acid, acid+ ligand and acid+ligand+metal ion respectively to the same pH value.

#### 3.3.1-Dissociation constant of oxalacetic acid:

#### 3.3.1.1- point-wise calculation method:

The free ligand titration curve displaced to right side of acid titration curve at pH=2.3 indicates the dissociation of protons from oxalacetic acid. The values of  $n_A$  extend between 1.4267 and 0.6656 table (3.3.2) showed that there were two dissociable protons pK<sub>1</sub> and pK<sub>2</sub>. According to point-wise calculation method the values of dissociation constants can be evaluated table (3.3.3), and table (3.3.4). Values of proton-ligand formation constant were selected in range 0.2 to 0.8 and 1.2 to 1.8 (on  $n_A$  scale) for pK<sub>1</sub> and pK<sub>2</sub> respectively. The values found pK<sub>1</sub>= 2.9252, pK<sub>2</sub>=10.5172.

|                    | В       | V1          | V2                     | n <sub>A</sub> | $\log\left(\frac{(n_A-1)}{(2-n_A)}\right)$ | $pK_1$          |
|--------------------|---------|-------------|------------------------|----------------|--------------------------------------------|-----------------|
|                    | 2.4     | 0.3000      | 0.625                  | 1.4267         | -0.1283                                    | 2.2717          |
|                    | 2.5     | 0.5750      | 0.875                  | 1.4715         | -0.0495                                    | 2.4505          |
|                    | 2.6     | 0.7667      | 1.0667                 | 1.4720         | -0.0487                                    | 2.5513          |
|                    | 2.7     | 0.9286      | 1.2167                 | 1.4934         | -0.0115                                    | 2.6885          |
|                    | 2.8     | 1.0556      | 1.3556                 | 1.4728         | -0.0473                                    | 2.7527          |
|                    | 2.9     | 1.1500      | 1.4900                 | 1.4028         | -0.1711                                    | 2.7289          |
|                    | 3.0     | 1.2267      | 1.5500                 | 1.4323         | -0.1183                                    | 2.8817          |
|                    | 3.1     | 1.2933      | 1.6267                 | 1.4148         | -0.1495                                    | 2.9505          |
|                    | 3.2     | 1.3321      | 1.6933                 | 1.3661         | -0.2384                                    | 2.9616          |
|                    | 3.3     | 1.3679      | 1.7391                 | 1.3487         | -0.2714                                    | 3.0286          |
|                    | 3.4     | 1.4013      | 1.7826                 | 1.3311         | -0.3055                                    | 3.0945          |
|                    | 3.5     | 1.4143      | 1.8177                 | 1.2923         | -0.3840                                    | 3.1160          |
|                    | 3.6     | 1.4273      | 1.8471                 | 1.2636         | -0.4461                                    | 3.1539          |
|                    | 3.7     | 1.4403      | 1.8765                 | 1.2349         | -0.5129                                    | 3.1871          |
|                    | 3.8     | 1.4532      | 1.9035                 | 1.2102         | -0.5749                                    | 3.2251          |
|                    | 3.9     | 1.4662      | 1.9211                 | 1.2022         | -0.5961                                    | 3.3039          |
| Fig. (3.3.4) Deter | minatio | n of log pl | K <sub>2</sub> average | value 10.      | 5172                                       |                 |
| _                  | В       | V1          | V2                     | n <sub>A</sub> | $\log\left(\frac{(n_A)}{(1-n_A)}\right)$   | pK <sub>2</sub> |
|                    |         |             |                        |                | $((1, n_A))$                               |                 |
| _                  | 8.5     | 1.5743      | 2.2584                 | 0.8009         | 0.6044                                     | 9.1044          |
|                    | 8.7     | 1.5777      | 2.2657                 | 0.7940         | 0.5861                                     | 9.2861          |
|                    | 8.9     | 1.5812      | 2.2730                 | 0.7874         | 0.5687                                     | 9.4687          |
|                    | 9.1     | 1.5846      | 2.2803                 | 0.7806         | 0.5512                                     | 9.6512          |
|                    | 9.3     | 1.5880      | 2.2876                 | 0.7738         | 0.5341                                     | 9.8341          |
|                    | 9.5     | 1.5914      | 2.2949                 | 0.7670         | 0.51/3                                     | 10.01/4         |
|                    | 9./     | 1.5940      | 2.30/2                 | 0.7510         | 0.4795                                     | 10.1/95         |
|                    | 9.9     | 1.5905      | 2.331                  | 0.7150         | 0.4012                                     | 10.3012         |
|                    | 10.1    | 1.6411      | 2.3340                 | 0.7012         | 0.3705                                     | 10.4703         |
|                    | 10.5    | 1.6685      | 2.4054                 | 0.7089         | 0.3866                                     | 10.8866         |
|                    | 10.7    | 1.6959      | 2.4595                 | 0.6623         | 0.2926                                     | 10.9926         |
|                    | 10.9    | 1.7567      | 2.5218                 | 0.6601         | 0.2882                                     | 11.1882         |
|                    | 11.1    | 1.8389      | 2.6126                 | 0.6456         | 0.2604                                     | 11.3604         |
|                    | 11.3    | 1.9751      | 2.7501                 | 0.6442         | 0.2579                                     | 11.5579         |
|                    | 11.5    | 2.1859      | 2.9626                 | 0.6427         | 0.2549                                     | 11.7549         |
|                    | 11.7    | 2.5202      | 3.2802                 | 0.6740         | 0.3155                                     | 12.0155         |

Fig.(3.3.3) pKa<sub>1</sub> of oxalacetic acid (Average value=2.9252)

# **3.3.2-Metal-ligand stability constants:** (chromium oxalacetate) **3.3.2.1-point-wise calculation method:**

Metal titration curve showed a displacement with respect to the ligand titration curve along the volume axis at pH 2.4 table (3.3.2) and figure (3.3.1). The values of  $n^-$  extends from 0.0305 to 2.9997 indicate the formation of complex species ML<sub>1</sub> and ML<sub>2</sub>. To calculate the complex stability constants for chelates, expressions (1.2) and (1.3) were used. logK<sub>1</sub>=10.2385, logK<sub>2</sub>=6.0183, tables (3.3.5) and (3.3.6). As it has seen that there is appreciable difference between logK<sub>1</sub> and logK<sub>2</sub> > 1.8, what indicates the complex species were formed, in stepwise manner and not simultaneously. (Sayyed, 2011). The higher values of logK<sub>1</sub> and logK<sub>2</sub> showed that the ligand is stronger chelating agent (Anil, 2008). These values were further verified by half integral method.

Table (3.3.5) metal-ligand stability constants Cr-oxalacetate logK<sub>1</sub> average value = 10.2385

| $Log K_1$ | $\log\left(\frac{n^-}{(1-n^-)}\right)$ | n      | pL      | V3     | V2     |
|-----------|----------------------------------------|--------|---------|--------|--------|
| 10.6551   | -0.4531                                | 0.2605 | 11.1082 | 1.1400 | 1.0667 |
| 10.6544   | -0.2687                                | 0.3501 | 10.9230 | 1.3167 | 1.2167 |
| 10.5767   | -0.1567                                | 0.4107 | 10.7334 | 1.4714 | 1.3556 |
| 10.4769   | -0.0655                                | 0.4624 | 10.5424 | 1.5889 | 1.4600 |
| 10.3683   | 0.0174                                 | 0.5100 | 10.3509 | 1.6900 | 1.5500 |
| 10.2388   | 0.0813                                 | 0.5467 | 10.1575 | 1.7750 | 1.6267 |
| 10.0924   | 0.1299                                 | 0.5742 | 9.96256 | 1.8438 | 1.6933 |
| 10.0264   | 0.2516                                 | 0.6409 | 9.77481 | 1.9050 | 1.7391 |
| 9.89785   | 0.3167                                 | 0.6746 | 9.58116 | 1.9550 | 1.7826 |
| 9.86902   | 0.4737                                 | 0.7485 | 9.39529 | 2.0035 | 1.8177 |
| 9.76732   | 0.5647                                 | 0.7859 | 9.20263 | 2.0379 | 1.8471 |

Table. (3.3.6) metal-ligand stability constants Cr-oxalacetate  $\log K_1$  average value = 6.0183

| Log K <sub>2</sub> | $\log\left(\frac{(n^1)}{(2-n^-)}\right)$ | n      | pL     | V3     | V2     |
|--------------------|------------------------------------------|--------|--------|--------|--------|
|                    | ( )                                      |        |        |        |        |
| 6.7269             | -0.5692                                  | 1.2124 | 7.2961 | 2.2786 | 2.0225 |
| 6.6750             | -0.4350                                  | 1.2686 | 7.1100 | 2.2964 | 2.0315 |
| 6.5619             | -0.3574                                  | 1.3051 | 6.9193 | 2.3099 | 2.0405 |
| 6.4329             | -0.2947                                  | 1.3366 | 6.7275 | 2.3222 | 2.0496 |
| 6.3044             | -0.2319                                  | 1.3696 | 6.5363 | 2.3346 | 2.0586 |
| 6.1745             | -0.1709                                  | 1.4029 | 6.3454 | 2.3469 | 2.0676 |
| 6.0459             | -0.1092                                  | 1.4375 | 6.1551 | 2.3593 | 2.0766 |
| 5.9173             | -0.0479                                  | 1.4725 | 5.9652 | 2.3716 | 2.0856 |
| 5.7914             | 0.0153                                   | 1.5088 | 5.7760 | 2.384  | 2.0946 |
| 5.6712             | 0.0831                                   | 1.5477 | 5.5881 | 2.3963 | 2.1028 |
| 5.5821             | 0.1770                                   | 1.6005 | 5.4051 | 2.4105 | 2.1097 |
| 5.5092             | 0.2843                                   | 1.6581 | 5.2249 | 2.4254 | 2.1167 |
| 5.4504             | 0.4037                                   | 1.7170 | 5.0467 | 2.4403 | 2.1236 |

| 5.412/ 0.541/ 1.//00 4.0/10 2.4552 2.150 |
|------------------------------------------|
|------------------------------------------|

**3.3.2.2-Half integral method**: (chromium oxalacetate)

In method of interpolation at half n<sup>-</sup> values, the average number of ligand attached to metal (n<sup>-</sup>) was plotted against the ligand exponential function (pL), logK<sub>1</sub>and logK<sub>2</sub> were calculated from formation curve, figure (3.3.2), by known values of pL at which n<sup>-</sup>=0.5 and 1.5 respectively. The values were found to be logK<sub>1</sub>=10.232and logK<sub>2</sub> =5.76. These values were in agreement with the values obtained by point wise calculations method. The values were further corroborated by linear plot method.



Fig. (3.3.2) Metal-ligand formation curve (Cr-oxalacetate) logK<sub>1</sub>=10.4 & logK<sub>2</sub>=5.76. **3.3.2.3-Linear plot method:(**chromium oxalacetate)

 $\log K_1$  and  $\log K_2$  were estimated by plotting the corresponding pL against  $\log n^{-1}$  (1-n<sup>-</sup>) and  $\log (n^{-1})/(2-n^{-})$  respectively. Results were found to be  $\log K_1=10.2$  and  $\log K_2=5.76$ , figure (3.3.3) and (3.3.4).



Fig. (3.3.3) linear plot method Cr-oxalacetate  $\log K_1 = 10.2$ 



Fig. (3.3.4) Linear plot method Cr-oxalacetic  $logK_2 = 5.76$ 

#### **3.3.2.4-Least squares method:**

Two forms of linear treatment are available when N=2 namely extrapolation and elimination. (Vogel, 1978).

$$n^{-} = (1 - n^{-})[L]K_1 + (2 - n^{-})[L]^2 K_1 K_2$$

Which on division by (2-n-)[L]2K1K2 and further rearrangement becomes:

$$\frac{n^{-}}{(2-n^{-})[L]^{2}} = \frac{(1-n^{-})}{(2-n^{-})[L]} \times K_{1} - K_{1}K_{2} - \dots - (3.1)$$

The other deduction can take the form:

$$\frac{(1-n^{-})}{(2-n^{-})[L]} = \left(\frac{n^{-}}{(2-n^{-})[L]^{2}}\right)\frac{1}{K_{1}} + K_{2} - \dots - (3.2)$$

| n         | pL        |         | [L] <sup>2</sup> | n                             | (1-n <sup>-</sup> )         |
|-----------|-----------|---------|------------------|-------------------------------|-----------------------------|
|           | F.        |         |                  | $\frac{1}{(2-n^{-})[L]^{2}}$  | $\frac{(-1)}{(2-n^{-})[L]}$ |
|           |           |         |                  |                               |                             |
|           |           |         |                  | 1.36175E+2                    |                             |
| 0.0305    | 11,4721   | 3.4F-12 | 1.1F-23          | 1                             | 1.45987F+11                 |
| 0.0890    | 11 2813   | 5 2E-12 | 2 7F-23          | $\frac{1}{1}$ 7006F+21        | 91117104678                 |
| 0.0050    | 11.2015   | J.2L 12 | 2.76 25          | 1.70002721<br>$1.31711E\pm 2$ | 5111/1040/0                 |
| 0 2605    | 11 1000   | 7 0E 10 | 61522            | 2                             | 1 260765 11                 |
| 0.2005    | 11.1002   | 7.0L-1Z | 0.12-25          |                               | 1.20070L+11                 |
| 0.25.01   | 10 0220   | 1 25 11 | 1 45 22          | 1./JIJ/E+2                    | 7500010110                  |
| 0.5501    | 10.9250   | 1.20-11 | 1.46-22          |                               | /5200512112                 |
| 0 4107    | 10 7004   | 1 05 11 | 2 45 22          | 4.25431E+2                    | 47570712021                 |
| 0.4107    | 10.7334   | 1.8E-11 | 3.4E-22          |                               | 4/5/0/13821                 |
|           |           |         |                  | 2.109/4E+2                    |                             |
| 0.4624    | 10.5424   | 2.9E-11 | 8.2E-22          | 1                             | 2928/568165                 |
|           |           |         |                  | 1.00292E+2                    |                             |
| 0.5100    | 10.3509   | 4.5E-11 | 2.0E-21          | 1                             | 17801082543                 |
|           |           |         |                  | 4.57345E+2                    |                             |
| 0.5467    | 10.1575   | 7.0E-11 | 4.8E-21          | 0                             | 10876382998                 |
|           |           |         |                  | 2.02664E+2                    |                             |
| 0.5742    | 9.9626    | 1.1E-10 | 1.2E-20          | 0                             | 6699359650                  |
|           |           |         |                  | 9.74067E+1                    |                             |
| 0.6409    | 9.7748    | 1.7E-10 | 2.8E-20          | 9                             | 3797136406                  |
|           |           |         |                  | 4.28399E+1                    |                             |
| 0.6746    | 9.5812    | 2.6E-10 | 6.9E-20          | 9                             | 2252186966                  |
|           |           |         |                  | 2.12032E+1                    |                             |
| 0.7485    | 9.3953    | 4.0E-10 | 1.6E-19          | 9                             | 1196386351                  |
|           |           |         |                  | 9.40624E+1                    |                             |
| 0.7859    | 9.2026    | 6.3E-10 | 3.9E-19          | 8                             | 672304942.7                 |
|           |           |         |                  | 4.33832E+1                    |                             |
| 0.8254    | 9.0105    | 9.7F-10 | 9.5E-19          | 8                             | 369440014.1                 |
| 0.010     | 0.0100    |         | 0.01 10          | 1 94668F+1                    |                             |
| 0 8673    | 8 8190    | 1 5E-09 | 2 3E-18          | 8                             | 186836958 9                 |
| 0.0075    | 0.0150    | 1.52 05 | 2.52 10          | 8 77294F+1                    | 100050550.5                 |
| 0 0106    | 8 6280    | 2 /F-00 | 5 5E-18          | 7                             | 8/100636 8/                 |
| 0.9100    | 8 / 373   | 2.4L-09 | 1 3E-17          | ,<br>3.060/E±17               | 28561076 04                 |
| 0.9547    | 0.4575    | J.7L-09 | 1.56-17          | 3.9094L+17<br>1 00102E 1      | 20301970.94                 |
| 0.0004    | 0 2470    |         | 2 25 17          | 1.00103E+1<br>7               | 220077 0774                 |
| 0.9994    | 0.2470    | 5.7E-09 | 3.22-17          |                               | 259977.0774                 |
| 1 0 2 6 2 | 0.0551    | 0.05.00 |                  | 8.03838E+1                    | 10000711 47                 |
| 1.0363    | 8.0551    | 8.8E-09 | 7.8E-17          | 0                             | -10323/11.4/                |
| 1 0 6 0 0 | 7 0 6 1 1 | 1 4 9 9 | 1 05 10          | 3.53/81E+1                    | 11001507.00                 |
| 1.0629    | 7.8611    | 1.4-08  | 1.9E-16          | 6                             | -11861527.23                |
|           |           |         |                  | 1.58577E+1                    |                             |
| 1.1032    | 7.6703    | 2.1E-08 | 4.6E-16          | 6                             | -13067179.41                |
|           |           |         |                  | 7.23847E+1                    |                             |
| 1.1569    | 7.4828    | 3.3E-08 | 1.1E-15          | 5                             | -13519620.45                |
| 1.2124    | 7.2961    | 5.1E-08 | 2.6E-15          | 3.37167E+1                    | -12619401.51                |

Table (3.3.7) Least squares method for determination of logK<sub>1</sub>& logK<sub>2</sub>
|        |        |                    |                    | 5                        |                   |
|--------|--------|--------------------|--------------------|--------------------------|-------------------|
|        |        |                    |                    | 1.60236E+1               |                   |
| 1.2686 | 7.1100 | 7.8E-08            | 6.0E-15            | 5                        | -11162840.56      |
| 1.3051 | 6.9193 | 1.2E-07            | 1.4E-14            | 7.3444E+14<br>3.34414E±1 | -8683576.047      |
| 1.3366 | 6.7275 | 1.9E-07            | 3.5E-14            | 3.34414L+1<br>4          | -6536550.078      |
| 1.5500 | 017270 | 1.02 07            | 5.52 11            | 1.49845E+1               | 00000000000000000 |
| 1.3696 | 6.5363 | 2.9E-07            | 8.5E-14            | 4                        | -4868643.101      |
| 1 4000 | 6 2454 | 4 5 5 0 7          | 2 05 12            | 6.69922E+1               | 20020227          |
| 1.4029 | 6.3454 | 4.5E-07            | 2.0E-13            | 3<br>3 02076E+1          | -3602622.7        |
| 1.4375 | 6.1551 | 7.0E-07            | 4.9E-13            | 3                        | -2673890.588      |
|        |        |                    |                    | 1.36957E+1               |                   |
| 1.4725 | 5.9652 | 1.1E-06            | 1.2E-12            | 3                        | -1983795.097      |
| 1 5000 | F 7760 | 1 75 06            | 2 0E 12            | 6.2/4//E+1               | 1400500 25        |
| 1.5000 | 5.7700 | 1.7E-00<br>2.6E-06 | 2.0E-12<br>6 7E-12 | 2<br>2 9146F+12          | -1480598.55       |
| 1.5477 | 5.5001 | 2.02 00            | 0.72 12            | 1.42821E+1               | 111/4/0.405       |
| 1.6005 | 5.4051 | 3.9E-06            | 1.5E-11            | 2                        | -897426.5335      |
|        |        |                    |                    | 7.27579E+1               |                   |
| 1.6581 | 5.2247 | 6.0E-06            | 3.6E-11            | L<br>2 010755 + 1        | -/45493.953/      |
| 1,7170 | 5.0467 | 9.0F-06            | 8.1F-11            | 3.91973E+1<br>1          | -643974,9195      |
| 1.7170 | 5.0107 | 5.02 00            | 0.12 11            | 2.24243E+1               | 01007110100       |
| 1.7768 | 4.8710 | 1.3E-05            | 1.8E-10            | 1                        | -584159.8424      |
| 1 0200 | 4 6000 |                    | 4 05 10            | 1.41211E+1               | 570400 5001       |
| 1.8386 | 4.6992 | 2.0E-05            | 4.0E-10            | L<br>1 0500E + 11        | -5/8433.5001      |
| 1.9010 | 4.5520 | 2.9E-05            | 0.0E-10            | 1.0599E+11<br>1.38019E+1 | -0/0029.3/07      |
| 1.9644 | 4.3714 | 4.3-05             | 1.8E-09            | 1                        | -1354478.821      |
|        |        |                    |                    | -803646206               |                   |
| 2.0293 | 4.2201 | 6.0E-05            | 3.6E-09            | 05                       | 1197523.738       |
| 2 005/ | 1 0816 | 8 3E-05            | 6 0E-00            | -121434093               | 260060 1806       |
| 2.0954 | 4.0010 | 0.52-05            | 0.92-09            | -365841968               | 209900.1090       |
| 2.1629 | 3.9601 | 0.0001             | 1.2E-08            | 8                        | 118493.9052       |
|        |        |                    |                    | -140293118               |                   |
| 2.2316 | 3.8599 | 0.0001             | 1.9E-08            | 0                        | 64163.71844       |
| 2 3010 | 3 7855 | 0 0002             | 2 7E-08            | -634341574.<br>0         | 30332 63660       |
| 2.3019 | 5.7055 | 0.0002             | 2.72-00            | -332928106.              | 59552.05009       |
| 2.3741 | 3.7395 | 0.0002             | 3.3E-08            | 7                        | 26603.12775       |
|        |        |                    |                    | -207818092.              |                   |
| 2.4365 | 3.7139 | 0.0002             | 3.7E-08            | 1                        | 20079.93824       |
| 2.4773 | 3.0947 | 0.0002             | 4.1E-08            | -100380090               | 10989.13288       |
| 2.5192 | 3.6947 | 0.0002             | 4.1E-08            | 1                        | 15140.34016       |
|        |        |                    |                    | -112013507.              |                   |
| 2.5601 | 3.7088 | 0.0002             | 3.8E-08            | 5                        | 13788.57985       |
| 2 6026 | 2 7267 | 0 0002             | 2 4 5 0 9          | -105857064.              | 12166 24107       |
| 2.0020 | 5.1501 | 0.0002             | 3.40-00            | o<br>-107309881          | 13100.2419/       |
| 2.6448 | 3.7749 | 0.0002             | 2.8E-08            | 8                        | 13047.57159       |
|        |        |                    |                    | -116244765.              |                   |
| 2.6879 | 3.8244 | 0.0001             | 2.2E-08            | 7                        | 13383.20782       |

|        |        |         |         | -132516978.                   |             |
|--------|--------|---------|---------|-------------------------------|-------------|
| 2.7308 | 3.8843 | 0.0001  | 1.7E-08 | 9<br>-159544023               | 14103.83045 |
| 2.7746 | 3.9586 | 0.0001  | 1.2E-08 | 4                             | 15289.76482 |
| 2.8182 | 4.0502 | 8.9E-05 | 7.9E-09 | 9<br>274267141                | 17023.15621 |
| 2.8627 | 4.1711 | 6.7E-05 | 4.5E-09 | 2                             | 19629.61134 |
| 2.9064 | 4.3366 | 4.6E-05 | 2.1E-09 | -404052055.<br>4<br>690159117 | 23610.11595 |
| 2.9370 | 4.5084 | 3.1E-05 | 9.6E-10 | -089158117.<br>5              | 30652.47593 |
| 2.9679 | 4.8014 | 1.6E-05 | 2.5E-10 | -144503062<br>4               | 44136.57121 |
| 2.9997 | 6.9078 | 1.2E-07 | 1.5E-14 | -311934681<br>5               | 64494.00717 |



Fig.( 3.3.5) Least squares method logK<sub>1</sub>= 11.0174 & K<sub>2</sub>= 7.4604 (equ. (3.1)

Linear Regression

| Parameter | Value       | Error      | $\mathbb{R}^2$ |
|-----------|-------------|------------|----------------|
| Intercept | -3.00423E18 | 2.49379E18 | 0.99997        |
| Slope     | 1.04097E11  | 1.20083E8  |                |



Fig.(3.3.6) Least squares method logK<sub>1</sub>=11.0175 &logK<sub>2</sub>=7.4641

| Linear Regression |             |             |                |  |  |  |  |
|-------------------|-------------|-------------|----------------|--|--|--|--|
| Parameter         | Value       | Error       | $\mathbb{R}^2$ |  |  |  |  |
|                   |             |             |                |  |  |  |  |
| Intercept         | 2.91168E7   | 2.39491E7   | 0.99997        |  |  |  |  |
| Slope             | 9.60579E-12 | 1.10809E-14 |                |  |  |  |  |
| ~                 | •           |             |                |  |  |  |  |

Table (3.3.8) Stability constants chromium oxalacetic by four graphical method

| Method                         | $logK_1$ | logK <sub>2</sub> | Logβ <sub>2</sub> |
|--------------------------------|----------|-------------------|-------------------|
| Point wise method              | 10.2385  | 6.0183            | 16.2568           |
| Half integral method           | 10.232   | 5.76              | 15.992            |
| Linear plot method             | 10.2     | 5.76              | 15.96             |
| Least squares method fig.(3.5) | 11.0174  | 7.4604            | 18.4778           |
| Least squares method fig.(3.6) | 11.0174  | 7.4641            | 18.4815           |

**3.4/Chromium-propanoic acid system:** *Table* (3.4.1). pH - metric titration readings of acid, acid + ligand and acid + ligand + metal ion.(Cr<sup>+3</sup>).  $N^0 = 0.522M$ ,  $E^0 = 5 \times 10^{-3}$  M,  $T_{Cl} = 1.5 \times 10^{-3}$  M,  $T_{cm} = 5 \times 10^{-4}$  M,  $V^0 = 200mlu^0 = 5 \times 10^{-3}$  t = 22.5°C

| Vol. of alkali | Acid  | Acid +ligand | Acid+ligan       | Volume of alkali      | Acid  | Acid+ligand | Acid+ligand+ |  |  |  |
|----------------|-------|--------------|------------------|-----------------------|-------|-------------|--------------|--|--|--|
| added          |       |              | d<br>I motal ion | added                 |       |             | metal ion    |  |  |  |
|                | 2 2 2 |              |                  | <b>D</b> 1            | 11 02 | 11 74       | 11 20        |  |  |  |
| 0.0            | 2.00  | 2.34         | 2.33             | 3.1<br>2 J            | 11.92 | 11.74       | 11.30        |  |  |  |
| 0.1            | 2.34  | 2.34         | 2.55             | J.2<br>D D            | 11.95 | 11.//       | 11.4/        |  |  |  |
| 0.2            | 2.30  | 2.37         | 2.37             | 5.5<br>7 4            | 11.97 | 11.01       | 11.54        |  |  |  |
| 0.5            | 2.39  | 2.39         | 2.40             | 3.4<br>2 E            | 11.99 | 11.00       | 11.01        |  |  |  |
| 0.4            | 2.42  | 2.42         | 2.45             | 5.5                   | 12.02 | 11.00       | 11.00        |  |  |  |
| 0.5            | 2.45  | 2.45         | 2.40             | 3.0                   | 12.04 | 11.91       | 11./1        |  |  |  |
| 0.6            | 2.49  | 2.49         | 2.49             | 3./                   | 12.06 | 11.94       | 11.76        |  |  |  |
| 0.7            | 2.53  | 2.54         | 2.53             | 3.8                   | 12.08 | 11.9/       | 11.80        |  |  |  |
| 0.8            | 2.58  | 2.59         | 2.58             | 3.9                   | 12.10 | 11.99       | 11.83        |  |  |  |
| 0.9            | 2.64  | 2.64         | 2.62             | 4.0                   | 12.12 | 12.01       | 11.87        |  |  |  |
| 1.0            | 2.71  | 2.71         | 2.68             | 4.1                   | 12.13 | 12.04       | 11.90        |  |  |  |
| 1.1            | 2.80  | 2.80         | 2.76             | 4.2                   | 12.15 | 12.06       | 11.92        |  |  |  |
| 1.2            | 2.92  | 2.90         | 2.84             | 4.3                   | 12.17 | 12.08       | 11.95        |  |  |  |
| 1.3            | 3.08  | 3.04         | 2.94             | 4.4                   | 12.18 | 12.10       | 11.98        |  |  |  |
| 1.4            | 3.35  | 3.24         | 3.07             | 4.5                   | 12.20 | 12.11       | 12.00        |  |  |  |
| 1.5            | 4.24  | 3.56         | 3.25             | 4.6                   | 12.21 | 12.13       | 12.03        |  |  |  |
| 1.6            | 9.93  | 4.07         | 3.52             | 4.7                   | 12.22 | 12.15       | 12.05        |  |  |  |
| 1.7            | 10.70 | 4.49         | 3.84             | 4.8                   | 12.24 | 12.16       | 12.07        |  |  |  |
| 1.8            | 11.02 | 4.84         | 4.19             | 4.9                   | 12.25 | 12.18       | 12.09        |  |  |  |
| 1.9            | 11.21 | 5.19         | 4.52             | 5.0                   | 12.26 | 12.20       | 12.10        |  |  |  |
| 2.0            | 11.34 | 5.71         | 4.80             | 5.1                   | 12.27 | 12.21       | 12.12        |  |  |  |
| 2.1            | 11.44 | 7.50         | 5.11             | 5.2                   | 12.29 | 12.22       | 12.14        |  |  |  |
| 2.2            | 11.52 | 10.42        | 5.52             | 5.3                   | 12.30 | 12.24       | 12.16        |  |  |  |
| 2.3            | 11.59 | 10.87        | 5.96             | 5.4                   | 12.31 | 12.25       | 12.17        |  |  |  |
| 2.4            | 11.65 | 11.12        | 6.35             | 5.5                   | 12.32 | 12.26       | 12.19        |  |  |  |
| 2.5            | 11.70 | 11.28        | 6.78             | 5.6                   | 12.33 | 12.27       | 12.20        |  |  |  |
| 2.6            | 11.74 | 11.39        | 8.83             | 5.7                   | 12.34 | 12.28       | 12.22        |  |  |  |
| 2.7            | 11.78 | 11.49        | 10.44            | 5.8                   | 12.35 | 12.29       | 12.23        |  |  |  |
| 2.8            | 11.82 | 11.57        | 10.86            | 5.9                   | 12.36 | 12.30       | 12.24        |  |  |  |
| 2.9            | 11.85 | 11.63        | 11.11            | 6.0                   | 12.37 | 12.32       | 12.25        |  |  |  |
| 3.0            | 11.89 | 11.68        | 11.26            | -                     | -     | -           | -            |  |  |  |
|                | 11.00 |              | Titationallye    | eof three set of solu | tions |             |              |  |  |  |
|                | 14    |              |                  |                       |       |             |              |  |  |  |



Fig. (3.4.1) titration curve of three sets of solutions against pH

| В   | V1     | V2               | V3     | В    | V1     | V2     | V3     |
|-----|--------|------------------|--------|------|--------|--------|--------|
| 2.4 | 0.3250 | 0.3333           | 0.3000 | 7.2  | 1.5520 | 2.0832 | 2.5205 |
| 2.5 | 0.625  | 0.6200           | 0.6250 | 7.3  | 1.5538 | 2.0888 | 2.5254 |
| 2.6 | 0.8333 | 0.8200           | 0.8500 | 7.4  | 1.5555 | 2.0944 | 2.5302 |
| 2.7 | 0.9857 | 0.9827           | 1.0250 | 7.5  | 1.5573 | 2.1000 | 2.5351 |
| 2.8 | 1.1000 | 1.1000           | 1.1500 | 7.6  | 1.5591 | 2.1034 | 2.5400 |
| 2.9 | 1.1833 | 1.2000           | 1.2600 | 7.7  | 1.5608 | 2.1069 | 2.5449 |
| 3.0 | 1.2500 | 1.2714           | 1.3462 | 7.8  | 1.5626 | 2.1103 | 2.5498 |
| 3.1 | 1.3074 | 1.3300           | 1.4167 | 7.9  | 1.5643 | 2.1137 | 2.5546 |
| 3.2 | 1.3444 | 1.3800           | 1.4722 | 8.0  | 1.5661 | 2.1171 | 2.5595 |
| 3.3 | 1.3815 | 1.4188           | 1.5185 | 8.1  | 1.5678 | 2.1206 | 2.5644 |
| 3.4 | 1.4056 | 1.4500           | 1.5556 | 8.2  | 1.5696 | 2.1240 | 2.5693 |
| 3.5 | 1.4169 | 1.4813           | 1.5926 | 8.3  | 1.5714 | 2.1274 | 2.5741 |
| 3.6 | 1.4281 | 1.5078           | 1.6250 | 8.4  | 1.5731 | 2.1308 | 2.5790 |
| 3.7 | 1.4393 | 1.5275           | 1.6563 | 8.5  | 1.5749 | 2.1342 | 2.5839 |
| 3.8 | 1.4506 | 1.5471           | 1.6875 | 8.6  | 1.5766 | 2.1377 | 2.5888 |
| 3.9 | 1.4618 | 1.5567           | 1.7171 | 8.7  | 1.5784 | 2.1411 | 2.5937 |
| 4.0 | 1.4730 | 1.5863           | 1.7457 | 8.8  | 1.5801 | 2.1445 | 2.5985 |
| 4.1 | 1.4843 | 1.6071           | 1.7743 | 8.9  | 1.5919 | 2.1479 | 2.6044 |
| 4.2 | 1.4955 | 1.6310           | 1.8030 | 9.0  | 1.5837 | 2.1514 | 2.6106 |
| 4.3 | 1.5011 | 1.6548           | 1.8333 | 9.1  | 1.5854 | 2.1548 | 2.6168 |
| 4.4 | 1.5028 | 1.6786           | 1.8636 | 9.2  | 1.5872 | 2.1582 | 2.6230 |
| 4.5 | 1.5046 | 1.7029           | 1.8939 | 9.3  | 1.5889 | 2.1616 | 2.6292 |
| 4.6 | 1.5063 | 1.7314           | 1.9286 | 9.4  | 1.5907 | 2.1651 | 2.6354 |
| 4.7 | 1.5081 | 1.7600           | 1.9643 | 9.5  | 1.5924 | 2.1685 | 2.6416 |
| 4.8 | 1.5098 | 1.7886           | 2.0000 | 9.6  | 1.5942 | 2.1719 | 2.6478 |
| 4.9 | 1.5116 | 1.8172           | 2.0323 | 9.7  | 1.5960 | 2.1753 | 2.6540 |
| 5.0 | 1.5134 | 1.8457           | 2.0645 | 9.8  | 1.5977 | 2.1788 | 2.6603 |
| 5.1 | 1.5151 | 1.8743           | 2.0968 | 9.9  | 1.5995 | 2.1822 | 2.6665 |
| 5.2 | 1.5169 | 1.9019           | 2.1220 | 10.0 | 1.6091 | 2.1856 | 2.6727 |
| 5.3 | 1.5186 | 1.9212           | 2.1463 | 10.1 | 1.6351 | 2.1925 | 2.6851 |
| 5.4 | 1.5204 | 1.9404           | 2.1707 | 10.2 | 1.6351 | 2.1925 | 2.6851 |
| 5.5 | 1.5221 | 1.9596           | 2.1951 | 10.3 | 1.6481 | 2.1959 | 2.6913 |
| 5.6 | 1.5239 | 1.9789           | 2.2182 | 10.4 | 1.6610 | 2.1993 | 2.6975 |
| 5.7 | 1.5257 | 1.9981           | 2.2409 | 10.5 | 1.6740 | 2.2178 | 2.7143 |
| 5.8 | 1.52/4 | 2.0050           | 2.2636 | 10.6 | 1.6870 | 2.2400 | 2.7381 |
| 5.9 | 1.5292 | 2.0106           | 2.2864 | 10.7 | 1.7000 | 2.2622 | 2.7619 |
| 6.0 | 1.5309 | 2.0162           | 2.3103 | 10.8 | 1.7313 | 2.2845 | 2.7845 |
| 6.1 | 1.5327 | 2.0218           | 2.3359 | 10.9 | 1.7625 | 2.3120 | 2.8160 |
| 6.2 | 1.5344 | 2.0274           | 2.3615 | 11.0 | 1.7938 | 2.3520 | 2.8560 |
| 6.3 | 1.5362 | 2.0330           | 2.38/2 | 11.1 | 1.8422 | 2.3920 | 2.8960 |
| 6.4 | 1.5380 | 2.0385           | 2.4116 | 11.2 | 1.8948 | 2.4501 | 2.9601 |
| 6.5 | 1.5397 | 2.0441           | 2.4349 | 11.3 | 1.9693 | 2.5183 | 3.0334 |
| 6.6 | 1.5415 | 2.0497           | 2.4582 | 11.4 | 2.0601 | 2.6101 | 3.1223 |
| 6.7 | 1.5452 | 2.0555           | 2.4014 | 11.5 | 2.1751 | 2./126 | 3.2430 |
| 6.8 | 1.5450 | 2.0609           | 2.5010 | 11.6 | 2.3168 | 2.8502 | 3.3859 |
| 6.9 | 1.540/ | 2.0005<br>2.0721 | 2.3039 | 11.7 | 2.5002 | 3.0402 | 3.5802 |
| /.0 | 1.5485 | 2.0721           | 2.5107 | 11.8 | 2./502 | 3.2/52 | 3.8003 |
| /.1 | T'2202 | 2.0///           | 2.2120 | 11.9 | 3.033/ | 3.56/0 | 4.1005 |

Table (3.4.2) alkali volume required to bring three sets solutions to the same pH

**B** is the pH-meter reading. **V1**, **V2** and **V3** are the volumes of alkali employed to bring the solutions of acid, acid+ ligand and acid+ligand+metal ion respectively to the same pH value.

# **3.4.1-Dissociation constants of propanoic acid:**

#### **3.4.1.1-Point-wise calculation method:**

The ligand titration curve is well separated from free acid titration curve at pH 2.9, table (3.4.2) indicating the dissociation of the ligand in the titration medium, figure (3.4.1) and table (3.4.2).Using excel program on personal computer the values of  $n_A$  at various pH reading (B) were calculated from the acid and ligand titration curve, table (3.4.3).Calculation has been made according to point-wise method, and the value of dissociation constant has been taken as an average of pKa<sub>1</sub> in range of  $n_A$  0.2 -0.8 that is pKa<sub>1</sub>=4.8259.This value is further confirmed by half integral method.

Table (3.4.3) proton-ligand stability constant (propanoic acid) pKa<sub>1</sub> average value =4.8259

| pKa <sub>1</sub> | $\log\left(\frac{n_A}{(1-n_A)}\right)$ | .n <sub>A</sub> | v2     | v1     | В   |
|------------------|----------------------------------------|-----------------|--------|--------|-----|
| 4.4223           | 1.5223                                 | 0.9708          | 1.2000 | 1.1833 | 2.9 |
| 4.4111           | 1.4111                                 | 0.9626          | 1.2714 | 1.2500 | 3.0 |
| 4.4866           | 1.3866                                 | 0.9606          | 1.3300 | 1.3074 | 3.1 |
| 4.3789           | 1.1789                                 | 0.9379          | 1.3800 | 1.3444 | 3.2 |
| 4.4574           | 1.1574                                 | 0.9349          | 1.4188 | 1.3815 | 3.3 |
| 4.4760           | 1.0760                                 | 0.9225          | 1.4500 | 1.4056 | 3.4 |
| 4.3977           | 0.8977                                 | 0.8877          | 1.4813 | 1.4169 | 3.5 |
| 4.3919           | 0.7919                                 | 0.8610          | 1.5078 | 1.4281 | 3.6 |
| 4.4404           | 0.7404                                 | 0.8462          | 1.5275 | 1.4393 | 3.7 |
| 4.4939           | 0.6939                                 | 0.8317          | 1.5471 | 1.4506 | 3.8 |
| 4.6026           | 0.7026                                 | 0.8345          | 1.5567 | 1.4618 | 3.9 |
| 4.6087           | 0.6087                                 | 0.8024          | 1.5863 | 1.4730 | 4.0 |
| 4.6647           | 0.5647                                 | 0.7859          | 1.6071 | 1.4843 | 4.1 |
| 4.7096           | 0.5096                                 | 0.7637          | 1.6310 | 1.4955 | 4.2 |
| 4.7364           | 0.4364                                 | 0.7320          | 1.6548 | 1.5011 | 4.3 |
| 4.7546           | 0.3546                                 | 0.6935          | 1.6786 | 1.5028 | 4.4 |
| 4.7770           | 0.2770                                 | 0.6543          | 1.7029 | 1.5046 | 4.5 |
| 4.7898           | 0.1898                                 | 0.6075          | 1.7314 | 1.5063 | 4.6 |
| 4.8062           | 0.1062                                 | 0.5608          | 1.7600 | 1.5081 | 4.7 |
| 4.8242           | 0.0242                                 | 0.5139          | 1.7886 | 1.5098 | 4.8 |
| 4.8429           | -0.0571                                | 0.4672          | 1.8172 | 1.5116 | 4.9 |
| 4.8610           | -0.1390                                | 0.4206          | 1.8457 | 1.5134 | 5.0 |
| 4.8758           | -0.2242                                | 0.3737          | 1.8743 | 1.5151 | 5.1 |
| 4.8900           | -0.3100                                | 0.3288          | 1.9019 | 1.5169 | 5.2 |
| 4.9631           | -0.4369                                | 0.2678          | 1.9404 | 1.5204 | 5.4 |
| 4.9929           | -0.5071                                | 0.2373          | 1.9596 | 1.5221 | 5.5 |

3.4.1.2-Half integral method (propanoic acid)

Value of pKa<sub>1</sub> deduced from metal-ligand curve formation, figure (3.4.2) pKa=4.826 and it is in a good agreement with the value obtained by point-wise calculation method.



Figure (3.4.2) half integral method (propanoic acid) pKa = 4.826

# **3.4.2-Metal ligand stability constants**: (Chromium propanoiate) **3.4.2.1-Point-wise calculation method:**

Metal titration curve showed a displacement with respect to the ligand titration curve along the volume axis at pH 2.5. Table (3.4.2) indicates the affinity of ligand with metal ions which released a protons and produced the volume difference (V<sub>3</sub>-V<sub>2</sub>), which utilized for calculation of the values n<sup>-</sup> and pL and further to evaluate the metal-ligand stability constants. The variation of n<sup>-</sup> from 0.0260 to 1.9031 indicates the formation of two complex species ML<sub>1</sub> and ML<sub>2</sub>. The values were found to be  $logK_1=4.5499$  and  $logK_2=3.6038$ , table (3.4.4), and table (3.4.5).These values were further verified by half integral method.

| V2     | V3     | pL     | .n <sup>-</sup> | $\log\left(\frac{n^-}{(1-n^-)}\right)$ | $logK_1$ |
|--------|--------|--------|-----------------|----------------------------------------|----------|
| 0.8200 | 0.8500 | 5.0772 | 0.1539          | -0.7403                                | 4.3369   |
| 0.9827 | 1.0250 | 4.9885 | 0.2207          | -0.5480                                | 4.4406   |
| 1.1000 | 1.1500 | 4.8962 | 0.2621          | -0.4496                                | 4.4465   |
| 1.2000 | 1.2600 | 4.8074 | 0.3238          | -0.3199                                | 4.4875   |
| 1.2714 | 1.3462 | 4.7226 | 0.4069          | -0.1636                                | 4.5589   |
| 1.3300 | 1.4167 | 4.6355 | 0.4725          | -0.0478                                | 4.5877   |
| 1.3800 | 1.4722 | 4.5450 | 0.5145          | 0.0252                                 | 4.5702   |
| 1.4188 | 1.5185 | 4.4553 | 0.5580          | 0.1013                                 | 4.5566   |
|        |        |        |                 |                                        |          |

Table (3.4.4) point-wise method logK<sub>1</sub> (Cr-propanpoiate), average value=4.5499

| 1.4500 | 1.5556 | 4.3660 | 0.5989 | 0.1741 | 4.5401 |
|--------|--------|--------|--------|--------|--------|
| 1.4813 | 1.5926 | 4.2805 | 0.6559 | 0.2802 | 4.5607 |
| 1.5078 | 1.6250 | 4.1962 | 0.7120 | 0.3931 | 4.5892 |
| 1.5275 | 1.6563 | 4.1188 | 0.7961 | 0.5915 | 4.7103 |
| 1.5471 | 1.6875 | 4.0440 | 0.8828 | 0.8769 | 4.9210 |

Table (3.4.5) point-wise method (Cr-propanoiate) logK<sub>2</sub> average value =3.6038

| V2     | V3     | pL     | n      | $\log\left(\frac{(n^1)}{(2-n^-)}\right)$ | logK <sub>2</sub> |
|--------|--------|--------|--------|------------------------------------------|-------------------|
| 1.6310 | 1.8030 | 3.7624 | 1.1772 | -0.6667                                  | 3.0957            |
| 1.6548 | 1.8333 | 3.7073 | 1.2745 | -0.4220                                  | 3.2853            |
| 1.6786 | 1.8636 | 3.6637 | 1.3942 | -0.1867                                  | 3.4770            |
| 1.7029 | 1.8939 | 3.6304 | 1.5255 | 0.04436                                  | 3.6748            |
| 1.7314 | 1.9286 | 3.6185 | 1.6959 | 0.35958                                  | 3.9780            |

#### 3.4.2.2-Half integral method: (chromium & propanoic acid)

PL plotted against n<sup>-</sup> for construction of formation curve figure (3.4.3). Values were been found,  $logK_1$ =4.54and  $logK_2$ =3.632. These values were later corroborated by linear plot method.



Fig. (3.4.3) Metal-ligand formation curve  $\log K_1 = 4.54 \& \log K_2 = 3.632$ 

#### 3.4.2.3-Linear plot method: (Cr and propanoic acid)

Plotting of log (n<sup>-</sup>/1-n<sup>-</sup>) and log(n<sup>-</sup> -1)/(2-n<sup>-</sup>) versus corresponding pL where curve intersect pL axis the value correspond to logK<sub>1</sub> and logK<sub>2</sub> respectively, figure (3.4.4) and figure (3.4.5). The values were found, logK<sub>1</sub>=4.626 and logK<sub>2</sub>=3.63. These values were in a good concordance with values obtained by half integral method. The values were further verified by the least squares method.



Figure (3.4.4) Linear plot method (Cr-propanoiate) logK<sub>1</sub> = 4.626



Figure (3.4.5) linear plot method (Cr-propanoiate)  $\log K_2 = 3.63$ 

#### **3.4.2.4-Least squares method:** (chromium & propanoate)

For estimation of  $K_2$  and  $K_3$  for chromium propanoiate by this method, linear equation of Rossotti and Rossotti as expressed below has been employed:

$$n^{-} = (1 - n^{-})[L]K_1 + (2 - n^{-})[L]K_1K_2 - - - (4.1)$$

This on division by  $(1-n^{-})[L]K_1$  and further rearranging becomes:

$$\frac{n^{-}}{(1-n^{-})[L]} = \frac{(2-n^{-})^{*}[L]}{(1-n^{-})} \times K_{1}K_{2} + K_{1} - \dots - (4.2)$$

If the values of n- and [L] were known, plotting of  $(2-n^{-})[L]/(1-n^{-}) V/s n^{-}/(1-n^{-})[L]$ , give straight line equation with y-intercept= $K_1$  and slope =  $K_1K_2$ . (Gurdeep, 1986).

| pL     | n      | [L]        | $\frac{(2-n^{-})[L]}{(1-n^{-})}$ | $\frac{n^-}{(1-n^-)[L]^2}$ |
|--------|--------|------------|----------------------------------|----------------------------|
| 5.1571 | 0.0260 | 6.9647E-06 | 1.4116E-05                       | 3838.8930                  |
| 5.0772 | 0.1539 | 8.3716E-06 | 1.8266E-05                       | 21723.1864                 |
| 4.9885 | 0.2207 | 1.0267E-05 | 2.3442E-05                       | 27579.1226                 |
| 4.8962 | 0.2621 | 1.2701E-05 | 2.9912E-05                       | 27960.5246                 |
| 4.8074 | 0.3238 | 1.5583E-05 | 3.8626E-05                       | 30723.2399                 |
| 4.7226 | 0.4069 | 1.8943E-05 | 5.0881E-05                       | 36218.9184                 |
| 4.6355 | 0.4725 | 2.3148E-05 | 6.7031E-05                       | 38701.2932                 |
| 4.5450 | 0.5145 | 2.8513E-05 | 8.7244E-05                       | 37171.0648                 |
| 4.4553 | 0.5580 | 3.5049E-05 | 0.00014351                       | 36023.8284                 |
| 4.3660 | 0.5989 | 4.3056E-05 | 0.0002                           | 34678.2783                 |
| 4.2805 | 0.6559 | 5.2416E-05 | 0.0002                           | 36368.7292                 |
| 4.1962 | 0.7120 | 6.3656E-05 | 0.0003                           | 38837.3431                 |
| 4.1188 | 0.7961 | 7.6076E-05 | 0.0004                           | 51320.6695                 |
| 4.0440 | 0.8828 | 9.0363E-05 | 0.0009                           | 83359.2057                 |
| 3.9795 | 1.0051 | 0.0001     | -0.0203                          | -1870517.592               |
| 3.8987 | 1.0386 | 0.0001     | -0.0031                          | -212882.0742               |
| 3.8297 | 1.1123 | 0.0001     | -0.0012                          | -66924.1810                |
| 3.7624 | 1.1772 | 0.0002     | -0.0008                          | -38434.2168                |
| 3.7073 | 1.2745 | 0.0002     | -0.0005                          | -23662.7599                |
| 3.6637 | 1.3942 | 0.0002     | -0.0003                          | -16303.5508                |
| 3.6304 | 1.5255 | 0.0002     | -0.0002                          | -12394.8823                |
| 3.6185 | 1.6959 | 0.0002     | -0.0001                          | -10122.9771                |
| 3.6337 | 1.9031 | 0.0002     | -2.4942-05                       | -9066.0208                 |
| 3.6895 | 2.1486 | 0.0002     | 2.6452E-05                       | -9150.3771                 |

Table (3.4.6). Least squares method (Cr-propanoiate)  $\log K_1 = 4.2198 \& \log K_2 = 3.7344$ 



Fig (3.4.6) Least squares method (chromium propanoiate  $\log K_1$ =4.2198 and  $\log K_2$ =3.7447)

|            | Linear Regre | ession:    | _              |
|------------|--------------|------------|----------------|
| Parameters | Value        | Error      | $\mathbf{R}^2$ |
|            |              |            |                |
| Intercept  | 16590.2608   | 4192.90636 | 0.99849        |
| Slope      | 9.2152E7     | 1.03405E6  |                |
|            |              |            |                |



Fig (3.4.7) Least squares method (chromium propanoiate  $logK_1$ =4.2211 and  $logK_2$ =3.7447)

#### Linear Regression

| Parameter | Value      | Error       | $\mathbb{R}^2$ |
|-----------|------------|-------------|----------------|
| Intercept | -0.00018   | 0.00005     | 0.9984         |
| Slope     | 1.08189E-8 | 1.21401E-10 |                |

Table (3.4.7) Stability constants of (cr-propanoate) obtained by four graphical methods

| Method                          | logK <sub>1</sub> | logK <sub>2</sub> | Log <sub>2</sub> |
|---------------------------------|-------------------|-------------------|------------------|
| Point wise method               | 4.5499            | 3.6038            | 8.1537           |
| Half integral method            | 4.54              | 3.632             | 8.172            |
| Linear plot method              | 4.626             | 3.63              | 8.256            |
| Linear squares method fig (4.6) | 4.2198            | 3.7344            | 7.9542           |
| Least squares method fig (4.7)  | 4.2211            | 3.7447            | 8.2676           |

# 3.5/ Chromium-citric acid system

*Table* (3.5.1). The pH titration readings of acid, acid + ligand and acid + ligand + metal ion  $(Cr^{+3}).N^0 = 0.525M$ ,  $E^0 = 6.1465 \times 10^{-3}M$ ,  $T_{Cl} = 5 \times 10^{-5}M$ ,  $T_{cm} = 1.25 \times 10^{-5}M$ ,  $V^0 = 200mlu^0 = 5 \times 10^{-3}$ ,  $t = 3.65^0C$ 

|   | Vol. of alkali | Acid  | Acid +ligand | Acid+ligand | Volume of alkali | Acid  | Acid+ligan | Acid+ligand+ |
|---|----------------|-------|--------------|-------------|------------------|-------|------------|--------------|
| _ | added          |       | -            | +metal ion  | added            |       | d          | metal ion    |
|   | 0.0            | 2.38  | 2.39         | 2.36        | 2.7              | 11.88 | 6.14       | 5.40         |
|   | 0.1            | 2.40  | 2.40         | 2.38        | 2.8              | 11.91 | 6.50       | 5.67         |
|   | 0.2            | 2.42  | 2.42         | 2.39        | 2.9              | 11.94 | 6.95       | 5.93         |
|   | 0.3            | 2.44  | 2.44         | 2.41        | 3.0              | 11.97 | 9.26       | 6.20         |
|   | 0.4            | 2.47  | 2.46         | 2.41        | 3.1              | 12.00 | 10.39      | 6.48         |
|   | 0.5            | 2.50  | 2.48         | 2.47        | 3.2              | 12.02 | 10.85      | 6.81         |
|   | 0.6            | 2.53  | 2.51         | 2.49        | 3.3              | 12.05 | 11.14      | 7.32         |
|   | 0.7            | 2.57  | 2.54         | 2.52        | 3.4              | 12.07 | 11.32      | 8.45         |
|   | 0.8            | 2.62  | 2.58         | 2.56        | 3.5              | 12.09 | 11.46      | 9.75         |
|   | 0.9            | 2.68  | 2.62         | 2.60        | 3.6              | 12.11 | 11.56      | 10.39        |
|   | 1.0            | 2.75  | 2.66         | 2.65        | 3.7              | 12.13 | 11.64      | 10.79        |
|   | 1.1            | 2.84  | 2.72         | 2.70        | 3.8              | 12.15 | 11.70      | 11.05        |
|   | 1.2            | 2.95  | 2.78         | 2.76        | 3.9              | 12.17 | 11.76      | 11.23        |
|   | 1.3            | 3.13  | 2.85         | 2.82        | 4.0              | 12.18 | 11.81      | 11.37        |
|   | 1.4            | 3.45  | 2.93         | 2.89        | 4.1              | 12.20 | 11.85      | 11.47        |
|   | 1.5            | 5.50  | 3.03         | 2.98        | 4.2              | 12.22 | 11.89      | 11.56        |
|   | 1.6            | 10.40 | 3.15         | 3.08        | 4.3              | 12.23 | 11.93      | 11.64        |
|   | 1.7            | 10.82 | 3.29         | 3.20        | 4.4              | 12.24 | 11.96      | 11.70        |
|   | 1.8            | 11.13 | 3.47         | 3.33        | 4.5              | 12.26 | 11.99      | 11.76        |
|   | 1.9            | 11.31 | 3.70         | 3.49        | 4.6              | 12.27 | 12.02      | 11.80        |
|   | 2.0            | 11.45 | 3.97         | 3.68        | 4.7              | 12.28 | 12.05      | 11.85        |
|   | 2.1            | 11.54 | 4.26         | 3.90        | 4.8              | 12.29 | 12.07      | 11.89        |
|   | 2.2            | 11.62 | 4.55         | 4.12        | 4.9              | 12.31 | 12.10      | 11.92        |
|   | 2.3            | 11.69 | 4.83         | 4.36        | 5.0              | 12.32 | 12.12      | 11.95        |
|   | 2.4            | 11.74 | 5.18         | 4.60        | 5.1              | 12.33 | 12.14      | 11.99        |
|   | 2.5            | 11.79 | 5.50         | 4.85        | 5.2              | 12.34 | 12.16      | 12.01        |
|   | 26             | 11 Q/ | 5.92         | 5 11        | 5.2              | 12 25 | 17 10      | 12.04        |



Fig. (3.5.1) Plotting of three sets of solutions (Cr-citrate) against pH Table (3.5.2) Alkali volume required to bring three sets of solutions to same pH

| В          | V1         | V2        | V3           | В    | V1        | V2        | V3        |
|------------|------------|-----------|--------------|------|-----------|-----------|-----------|
| 2.4        | 0.100      | 0 1 0 0 0 | 0.250        | 7.2  | 1 50.00   | 0.0100    | 2 2765    |
| 7 5        | 0          | 0.1000    | 0633         | 7 2  | 1.5366    | 2.9108    | 3.2765    |
| 2.5        | 0.300      | 0.5667    | 0.055<br>3   | 7.5  | 1.5388    | 2,9152    | 3,2961    |
| 2.6        | 0.760      | 010007    | 0.900        | 7.4  | 1.5500    | 210 202   | 5.2501    |
|            | 0          | 0.8500    | 0            |      | 1.5409    | 2.9195    | 3.3071    |
| 2.7        | 0.928      | 1 0007    | 1.100        | 7.5  | 1 5 4 3 1 | 2 0 2 2 0 | 2 21 5 0  |
| 2.6        | 0<br>1 055 | 1.0667    | 0<br>1 266   | 76   | 1.5431    | 2.9238    | 3.3159    |
| 2.0        | 6          | 1.2286    | 1.200        | 7.0  | 1.5453    | 2.9281    | 3.3248    |
| 2.9        | 1.154      |           | 1.411        | 7.7  |           |           |           |
|            | 6          | 1.3625    | 1            | - 0  | 1.5474    | 2.9325    | 3.3336    |
| 3.0        | 1.227      | 1 4700    | 1.520        | 7.8  | 1 5496    | 2 9368    | 3 3425    |
| 3.1        | 1.283      | 1.4700    | 1.616        | 7.9  | 1.5450    | 2.5500    | 5.5425    |
|            | 3          | 1.5583    | 7            |      | 1.5517    | 2.9411    | 3.3513    |
| 3.2        | 1.321      | 1 6257    | 1.700        | 8.0  | 1 55 20   | 2 0 4 5 5 | 2 2602    |
| 33         | 9<br>1 353 | 1.0357    | 1 7 7 6      | 8 1  | 1.5559    | 2.9455    | 5.5002    |
| 5.5        | 1          | 1.7056    | 9            | 0.1  | 1.556     | 2.9498    | 3.3690    |
| 3.4        | 1.384      |           | 1.843        | 8.2  |           |           |           |
| 2 5        | 4          | 1.7611    | 8            | 0.2  | 1.5582    | 2.9541    | 3.3779    |
| 3.5        | 1.402      | 1 8130    | 1.905        | 8.3  | 1 5603    | 2 9584    | 3 3867    |
| 3.6        | 1.407      | 1.0150    | 1.957        | 8.4  | 1.5005    | 21000     | 515667    |
| - <b>-</b> | 3          | 1.8565    | 9            |      | 1.5625    | 2.9628    | 3.3956    |
| 3.7        | 1.412      | 1 0000    | 2.009        | 8.5  | 1 5647    | 2 9671    | 3 1030    |
| 3.8        | 1.417      | 1.5000    | 2.054        | 8.6  | 1.5047    | 2.5071    | 5.4055    |
|            | 1          | 1.9370    | 6            |      | 1.5668    | 2.9714    | 3.4115    |
| 3.9        | 1.422      | 1 07/1    | 2.100        | 8.7  | 1 5600    | 2 0759    | 2 4102    |
| 4.0        | 1.426      | 1.9741    | 2.145        | 8.8  | 1.3090    | 2.9750    | 5.4192    |
|            | 8          | 2.0104    | 5            |      | 1.5711    | 2.9801    | 3.4269    |
| 4.1        | 1.431      | 2 0 4 4 0 | 2.190        | 8.9  | 1 5 7 7 7 | 2 00 4 4  | 2 4246    |
| 42         | 1 4 3 6    | 2.0448    | 9<br>2 2 3 3 | 9.0  | 1.5755    | 2.9844    | 5.4540    |
|            | 6          | 2.0793    | 3            | 510  | 1.5754    | 2.9887    | 3.4423    |
| 4.3        | 1.441      | 2 1 1 2 0 | 2.275        | 9.1  | 1 5 7 7 6 | 2 0 0 2 1 | 2 45 0 0  |
| ΔΔ         | 5<br>1 446 | 2.1138    | 0<br>2 316   | 9.2  | 1.5776    | 2.9931    | 3.4500    |
|            | 3          | 2.1483    | 7            | 5.2  | 1.5797    | 2.9974    | 3.4577    |
| 4.5        | 1.451      |           | 2.358        | 9.3  |           |           |           |
| 16         | 2          | 2.1828    | 3            | 0.4  | 1.5819    | 3.0035    | 3.4654    |
| 4.0        | 1.450      | 2.2179    | 2.400        | 5.4  | 1.5841    | 3.0124    | 3.4731    |
| 4.7        | 1.461      |           | 2.440        | 9.5  |           |           |           |
| 4.0        | 0          | 2.2536    | 0            | 0.0  | 1.5862    | 3.0212    | 3.4808    |
| 4.0        | 1.405<br>9 | 2,2893    | 2.460        | 9.0  | 1.5884    | 3.0301    | 3.4885    |
| 4.9        | 1.470      |           | 2.519        | 9.7  |           | 0.000-    |           |
| - 0        | 7          | 2.3200    | 2            | 0.0  | 1.5905    | 3.0389    | 3.4962    |
| 5.0        | 1.475      | 2 3486    | 2.557        | 9.8  | 1 5927    | 3 0478    | 3 5078    |
| 5.1        | 1.480      | 2.3400    | ,<br>2.596   | 9.9  | 1.5527    | 5.0470    | 5.5070    |
|            | 5          | 2.3772    | 2            |      | 1.5948    | 3.0566    | 3.5234    |
| 5.2        | 1.485      | 2 1063    | 2.631        | 10.0 | 1 5070    | 3 0655    | 2 5 2 0 1 |
| 5.3        | 1.490      | 2.4005    | 2.665        | 10.1 | 1.5970    | 5.0055    | 3.3391    |
| -          | 2          | 2.4375    | 5            |      | 1.5991    | 3.0743    | 3.5547    |
| 5.4        | 1.495      | 2 1600    | 2.700        | 10.2 | 1 6000    | 2 0022    | 2 5700    |
| 5.5        | 1.500      | 2.4000    | 2.737        | 10.3 | 1.0000    | 2.0022    | 2.2702    |
|            | 0          | 2.5000    | 0            |      | 1.6235    | 3.0920    | 3.5860    |
| 5.6        | 1.502      | 2 5212    | 2.774<br>1   | 10.4 | 1 6202    | 2 1000    | 3 6025    |
| 5.7        | ∠<br>1.504 | 2.2212    | 1<br>2.811   | 10.5 | 1.0202    | J.1022    | 5.0025    |

#### **3.5.1-Practical proton ligand stability constant: (citric acid) 3.5.1.1-Point-wise calculation method:**

The ligand used is triprotonic, or tribasic acid. The ligand titration curve is well separated from the acid titration curve at pH 2.5 table (3.5.2), indicating the dissociation of the ligand in the titration medium figure (5.1).  $n_A$  extends from 0.4384 to 2.8833 as the ligand is triprotonic. The values obtained were, pKa<sub>1</sub>= 3.1459, pKa<sub>2</sub>=4.8270 and pKa<sub>3</sub>=8.3813, table (3.5.3), table (3.5.4) and table (3.5.5).

|             | pH                                                         | .n <sub>A</sub>                                                                       | $\log \frac{(n_A - 2)}{(2 - 1)}$                                                         | pKa <sub>1</sub>                                                                       | pН                                                         | n <sub>A</sub>                                                                       | $\log \frac{(n_A - 2)}{(2 - 1)}$                                                                                                                                 | pKa1                                                                                          |
|-------------|------------------------------------------------------------|---------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
|             |                                                            |                                                                                       | $(3-n_A)$                                                                                |                                                                                        |                                                            |                                                                                      | $(3 - n_A)$                                                                                                                                                      |                                                                                               |
|             | 2.5                                                        | 2.8833                                                                                | 0.8789                                                                                   | 3.3789                                                                                 | 3.1                                                        | 2.5201                                                                               | 0.0349                                                                                                                                                           | 3.1349                                                                                        |
|             | 2.6                                                        | 2.8426                                                                                | 0.7287                                                                                   | 3.3287                                                                                 | 3.2                                                        | 2.4525                                                                               | -0.0828                                                                                                                                                          | 3.1172                                                                                        |
|             | 2.7                                                        | 2.7587                                                                                | 0.4975                                                                                   | 3.1975                                                                                 | 3.3                                                        | 2.3850                                                                               | -0.2034                                                                                                                                                          | 3.0966                                                                                        |
|             | 2.8                                                        | 2.6978                                                                                | 0.3635                                                                                   | 3.1635                                                                                 | 3.4                                                        | 2.3429                                                                               | -0.2825                                                                                                                                                          | 3.1175                                                                                        |
|             | 2.9                                                        | 2.6370                                                                                | 0.2443                                                                                   | 3.1443                                                                                 | 3.5                                                        | 2.2838                                                                               | -0.4021                                                                                                                                                          | 3.0979                                                                                        |
|             | 3.0                                                        | 2.5772                                                                                | 0.1353                                                                                   | 3.1353                                                                                 | 3.6                                                        | 2.2164                                                                               | -0.5587                                                                                                                                                          | 3.0413                                                                                        |
| Table (35.4 | 4) Citr                                                    | ic acid pK                                                                            | a <sub>2</sub> by poin                                                                   | t-wise met                                                                             | hod, av                                                    | erage valu                                                                           | ie = 4.8270                                                                                                                                                      |                                                                                               |
|             |                                                            |                                                                                       |                                                                                          |                                                                                        |                                                            |                                                                                      |                                                                                                                                                                  |                                                                                               |
|             | pН                                                         | .n <sub>A</sub>                                                                       | $\log \frac{(n_A - 1)}{1}$                                                               | pKa <sub>2</sub>                                                                       | pН                                                         | n <sub>A</sub>                                                                       | $log \frac{(n_A - 1)}{(n_A - 1)}$                                                                                                                                | pKa <sub>2</sub>                                                                              |
|             | рН                                                         | .n <sub>A</sub>                                                                       | $\log\frac{(n_A - 1)}{(2 - n_A)}$                                                        | pKa <sub>2</sub>                                                                       | рН                                                         | n <sub>A</sub>                                                                       | $\log \frac{(n_A - 1)}{(2 - n_A)}$                                                                                                                               | pKa <sub>2</sub>                                                                              |
| -           | <b>pH</b>                                                  | .n <sub>A</sub>                                                                       | $\frac{\log \frac{(n_A - 1)}{(2 - n_A)}}{0.5389}$                                        | рКа <sub>2</sub>                                                                       | <b>pH</b>                                                  | n <sub>A</sub>                                                                       | $log \frac{(n_A - 1)}{(2 - n_A)}$                                                                                                                                | <b>рКа</b> 2                                                                                  |
|             | рН<br>4.3<br>4.4                                           | .n <sub>A</sub><br>1.8275<br>1.7757                                                   | $\frac{\log \frac{(n_{A} - 1)}{(2 - n_{A})}}{0.5389}$ 0.4191                             | рКа <sub>2</sub><br>4.8389<br>4.8191                                                   | <b>pH</b><br>5.1<br>5.2                                    | n <sub>A</sub><br>1.4364<br>1.3943                                                   | $\frac{\log \frac{(n_{A} - 1)}{(2 - n_{A})}}{-0.1865}$ -0.2722                                                                                                   | рКа <sub>2</sub><br>4.9135<br>4.9278                                                          |
| -           | <b>pH</b><br>4.3<br>4.4<br>4.5                             | .n <sub>A</sub><br>1.8275<br>1.7757<br>1.7241                                         | $\frac{\log \frac{(n_{A} - 1)}{(2 - n_{A})}}{0.5389}$ 0.4191<br>0.3105                   | <b>pKa</b> <sub>2</sub><br>4.8389<br>4.8191<br>4.8105                                  | <b>pH</b><br>5.1<br>5.2<br>5.3                             | n <sub>A</sub><br>1.4364<br>1.3943<br>1.3483                                         | $\frac{\log \frac{(n_{A}-1)}{(2-n_{A})}}{-0.1865}$ -0.2722 -0.3633                                                                                               | рКа <sub>2</sub><br>4.9135<br>4.9278<br>4.9367                                                |
| -           | <b>pH</b><br>4.3<br>4.4<br>4.5<br>4.6                      | .n <sub>A</sub><br>1.8275<br>1.7757<br>1.7241<br>1.6715                               | $\frac{\log (n_{A} - 1)}{(2 - n_{A})}$ 0.5389 0.4191 0.3105 0.2086                       | рКа <sub>2</sub><br>4.8389<br>4.8191<br>4.8105<br>4.8086                               | <b>pH</b><br>5.1<br>5.2<br>5.3<br>5.4                      | n <sub>A</sub><br>1.4364<br>1.3943<br>1.3483<br>1.3023                               | $     \begin{array}{r} \log \frac{(n_{A} - 1)}{(2 - n_{A})} \\         -0.1865 \\         -0.2722 \\         -0.3633 \\         -0.4624 \\         \end{array} $ | <b>pKa</b> <sub>2</sub><br>4.9135<br>4.9278<br>4.9367<br>4.9376                               |
| -           | <b>pH</b><br>4.3<br>4.4<br>4.5<br>4.6<br>4.7               | .n <sub>A</sub><br>1.8275<br>1.7757<br>1.7241<br>1.6715<br>1.6178                     | $\frac{\log \frac{(n_{A} - 1)}{(2 - n_{A})}}{0.5389}$ 0.4191 0.3105 0.2086 0.1120        | рКа <sub>2</sub><br>4.8389<br>4.8191<br>4.8105<br>4.8086<br>4.8120                     | <b>pH</b><br>5.1<br>5.2<br>5.3<br>5.4<br>5.5               | n <sub>A</sub><br>1.4364<br>1.3943<br>1.3483<br>1.3023<br>1.2564                     | $\begin{array}{r} \log \frac{(n_{A} - 1)}{(2 - n_{A})} \\ \hline \\ -0.1865 \\ -0.2722 \\ -0.3633 \\ -0.4624 \\ -0.5867 \end{array}$                             | <b>pKa</b> <sub>2</sub><br>4.9135<br>4.9278<br>4.9367<br>4.9376<br>4.9133                     |
| -           | <b>pH</b><br>4.3<br>4.4<br>4.5<br>4.6<br>4.7<br>4.8        | .n <sub>A</sub><br>1.8275<br>1.7757<br>1.7241<br>1.6715<br>1.6178<br>1.5641           | $\frac{\log (n_{A} - 1)}{(2 - n_{A})}$ 0.5389 0.4191 0.3105 0.2086 0.1120 0.0330         | рКа <sub>2</sub><br>4.8389<br>4.8191<br>4.8105<br>4.8086<br>4.8120<br>4.8330           | <b>pH</b><br>5.1<br>5.2<br>5.3<br>5.4<br>5.5<br>5.6        | n <sub>A</sub><br>1.4364<br>1.3943<br>1.3483<br>1.3023<br>1.2564<br>1.2057           | $\frac{\log \frac{(n_{A} - 1)}{(2 - n_{A})}}{-0.1865}$ -0.2722 -0.3633 -0.4624 -0.5867 -0.7365                                                                   | <b>pKa</b> <sub>2</sub><br>4.9135<br>4.9278<br>4.9367<br>4.9376<br>4.9133<br>4.8635           |
| -           | <b>pH</b><br>4.3<br>4.4<br>4.5<br>4.6<br>4.7<br>4.8<br>4.9 | .n <sub>A</sub><br>1.8275<br>1.7757<br>1.7241<br>1.6715<br>1.6178<br>1.5641<br>1.5190 | $\frac{\log (n_{A} - 1)}{(2 - n_{A})}$ 0.5389 0.4191 0.3105 0.2086 0.1120 0.0330 -0.0388 | рКа <sub>2</sub><br>4.8389<br>4.8191<br>4.8105<br>4.8086<br>4.8120<br>4.8330<br>4.8612 | <b>pH</b><br>5.1<br>5.2<br>5.3<br>5.4<br>5.5<br>5.6<br>5.7 | n <sub>A</sub><br>1.4364<br>1.3943<br>1.3483<br>1.3023<br>1.2564<br>1.2057<br>1.1550 | $\frac{\log \frac{(n_{A}-1)}{(2-n_{A})}}{-0.1865}$ -0.2722 -0.3633 -0.4624 -0.5867 -0.7365 -0.9340                                                               | <b>pKa</b> <sub>2</sub><br>4.9135<br>4.9278<br>4.9367<br>4.9376<br>4.9133<br>4.8635<br>4.7660 |

Table (3.5.3) Citric acid pKa<sub>1</sub> by point-wise method, average value=3.1459

Table (3.5.5) Citric acid pKa<sub>3</sub> by point-wise method, average value= 8.3813

| pН  | .n <sub>A</sub> | $\log \frac{n_A}{(1-n_A)}$ | pKa₃   | pН  | n <sub>A</sub> | $\log \frac{n_A}{(1-n_A)}$ | pKa <sub>3</sub> |
|-----|-----------------|----------------------------|--------|-----|----------------|----------------------------|------------------|
|     |                 | $(\mathbf{I} \ n_A)$       |        |     |                | $(\mathbf{I} \ n_A)$       |                  |
| 6.4 | 0.8159          | 0.6465                     | 7.0465 | 8.3 | 0.5630         | 0.1101                     | 8.4101           |
| 6.5 | 0.7714          | 0.5279                     | 7.0279 | 8.4 | 0.5592         | 0.1034                     | 8.5034           |
| 6.6 | 0.7362          | 0.4458                     | 7.0458 | 8.5 | 0.5556         | 0.0970                     | 8.5970           |
| 6.7 | 0.7012          | 0.3705                     | 7.0705 | 8.6 | 0.5518         | 0.0903                     | 8.6903           |
| 6.8 | 0.6662          | 0.3001                     | 7.1001 | 8.7 | 0.5480         | 0.0836                     | 8.7836           |
| 6.9 | 0.6314          | 0.2337                     | 7.1337 | 8.8 | 0.5442         | 0.0769                     | 8.8769           |
| 7.0 | 0.6119          | 0.1977                     | 7.1977 | 8.9 | 0.5405         | 0.0706                     | 8.9706           |
| 7.1 | 0.6082          | 0.1910                     | 7.2910 | 9.0 | 0.5367         | 0.0639                     | 9.0639           |
| 7.2 | 0.6044          | 0.1841                     | 7.3841 | 9.1 | 0.5329         | 0.0573                     | 9.1573           |
| 7.3 | 0.6006          | 0.1772                     | 7.4772 | 9.2 | 0.5291         | 0.0506                     | 9.2506           |
| 7.4 | 0.5968          | 0.1703                     | 7.5703 | 9.3 | 0.5223         | 0.0388                     | 9.3388           |
| 7.5 | 0.5932          | 0.1638                     | 7.6638 | 9.4 | 0.5107         | 0.0186                     | 9.4186           |
| 7.6 | 0.5895          | 0.1572                     | 7.7572 | 9.5 | 0.4990         | -0.0017                    | 9.4983           |

| 7.7 | 0.5855 | 0.1501 | 7.8501 | 9.6  | 0.4874 | -0.0219 | 9.5781 |
|-----|--------|--------|--------|------|--------|---------|--------|
| 7.8 | 0.5819 | 0.1436 | 7.9436 | 9.7  | 0.4757 | -0.0422 | 9.6578 |
| 7.9 | 0.5781 | 0.1368 | 8.0368 | 9.8  | 0.4641 | -0.0625 | 9.7375 |
| 8.0 | 0.5743 | 0.1300 | 8.1300 | 9.9  | 0.4524 | -0.0829 | 9.8171 |
| 8.1 | 0.5705 | 0.1233 | 8.2233 | 10.0 | 0.4408 | -0.1033 | 9.8967 |
| 8.2 | 0.5669 | 0.1168 | 8.3168 | 10.1 | 0.4292 | -0.1237 | 9.9763 |

### 3.5.2Metal-ligand stability constant: (chromium citrate)

#### 3.5.2.1-Pointwise calculation method:

Metal-ligand titration curve crossed over ligand titration curve at pH 2.4 table (3.5.2), but the formation of the complex start at pH=2.7 table (3.5.6). The value of  $n^-$  extended between 0.0633 and 2.9925, indicating formation 1:1 chelate  $\log K_1$ =6.1327.This value was further verified by half integral method.

Table (3.5.6). Stability constants determined by point-wise method. Average value of  $logK_1 = 6.1327$ 

| V2     | V3     | 'n     | pL     | $\log \frac{n^-}{(1-n^-)}$ | $logK_1$ |
|--------|--------|--------|--------|----------------------------|----------|
| 1.7611 | 1.8438 | 0.1844 | 8.7155 | -0.6457                    | 8.0697   |
| 1.8130 | 1.9053 | 0.2111 | 8.4197 | -0.5726                    | 7.8471   |
| 1.8565 | 1.9579 | 0.2389 | 8.1242 | -0.5033                    | 7.6209   |
| 1.9000 | 2.0091 | 0.2650 | 7.8284 | -0.4430                    | 7.3854   |
| 1.9370 | 2.0546 | 0.2932 | 7.5330 | -0.3820                    | 7.1510   |
| 1.9741 | 2.1000 | 0.3225 | 7.2379 | -0.3223                    | 6.9156   |
| 2.0104 | 2.1455 | 0.3556 | 6.9434 | -0.2581                    | 6.6853   |
| 2.0448 | 2.1909 | 0.3948 | 6.6500 | -0.1856                    | 6.4644   |
| 2.0793 | 2.2333 | 0.4275 | 6.3557 | -0.1269                    | 6.2288   |
| 2.1138 | 2.2750 | 0.4600 | 6.0615 | -0.0696                    | 5.9918   |
| 2.1483 | 2.3167 | 0.4945 | 5.7678 | -0.0096                    | 5.7582   |
| 2.1828 | 2.3583 | 0.5306 | 5.4748 | 0.0533                     | 5.5282   |
| 2.2179 | 2.4000 | 0.5678 | 5.1828 | 0.1186                     | 5.3013   |
| 2.2536 | 2.4400 | 0.6004 | 4.8911 | 0.1769                     | 5.0680   |
| 2.2893 | 2.4800 | 0.6353 | 4.6023 | 0.2410                     | 4.8433   |
| 2.3200 | 2.5192 | 0.6832 | 4.3206 | 0.3337                     | 4.6543   |
| 2.3486 | 2.5577 | 0.7371 | 4.0487 | 0.4477                     | 4.4964   |
| 2.3772 | 2.5962 | 0.7940 | 3.7934 | 0.5861                     | 4.3795   |

#### 3.5.2.2- Half integral method. (chromium citrate)

Construction of metal-ligand formation curve by plotting  $n^-$  against pL, from which the stability constants of the complex deduced. logK<sub>1</sub>=5.72. Figure (3.5.2).



Fig. (3.5.2) Metal-ligand formation curve logK<sub>1</sub>=5.72 (half integral method) **3.5.2.3-Linear plot method:** 

Plotting of log  $n^{-}/(1-n^{-})$ , versus corresponding pL, the values found was logK<sub>1</sub>=5.7. The values were further verified by least squares method. Fig.(3.5.3).



Fig. (3.5.3) Linear plot method (Cr-citrate) logK<sub>1</sub> = 5.7 **3.5.2.4 Henderson's or Hasselbalch's equation:**(Cr-citrate)
This equation is used when only one complex or chelate is formed.

The equation is familiar as Henderson's or Hasselbalch's equation, and has been widely used for determination of the dissociation constants of monobasic acids. It is also useful for determining constants from  $n^-$  and [L] data over a very limited range e.g. if very strong or very weak complexes are formed, or if precipitation occurs at low value of  $n^-$ . (Gurdeep,1986).Which is the case. Value was found  $\log K_1 = 6.0508$ . This value was in a good agreement with the value obtained by point-wise calculation method. The equation takes the form as follows:

$$\frac{n^-}{(1-n^-)} = \beta_1[L]$$

or

$$\log\left(\frac{n^-}{(1-n^-)}\right) = \log\beta_1 + \log[L].$$

Table (3.5.7) Stability constant of Cr-citrate (Hasselbach's equation)  $logK_1$  the average value =6.0509)

| pL      | n      | log[L]   | $\log \frac{n^-}{(1-n^-)}$ | $\log \frac{n^-}{(1-n^-)} - \log[L]$ |
|---------|--------|----------|----------------------------|--------------------------------------|
|         |        |          | (± " )                     | (± " )                               |
| 11.7244 | 0.2634 | -11.7244 | 0.2796                     | 12.0040                              |
| 11.4032 | 0.1214 | -11.4032 | 0.2918                     | 11.6950                              |
| 11.0994 | 0.0923 | -11.0994 | 0.2941                     | 11.3935                              |
| 10.7956 | 0.0633 | -10.7956 | 0.2963                     | 11.0919                              |
| 10.4975 | 0.0740 | -10.4975 | 0.2955                     | 10.7930                              |
| 10.2012 | 0.0965 | -10.2012 | 0.2938                     | 10.4949                              |
| 9.9022  | 0.1015 | -9.9022  | 0.2934                     | 10.1955                              |
| 9.6053  | 0.1212 | -9.6053  | 0.2918                     | 9.8971                               |
| 9.3079  | 0.1371 | -9.3079  | 0.2905                     | 9.5984                               |
| 9.0111  | 0.1562 | -9.0110  | 0.2889                     | 9.2999                               |
| 8.7155  | 0.1844 | -8.7155  | 0.2866                     | 9.0020                               |
| 8.4197  | 0.2111 | -8.4197  | 0.2843                     | 8.7040                               |
| 8.1242  | 0.2389 | -8.1242  | 0.2818                     | 8.4060                               |
| 7.8284  | 0.2650 | -7.8284  | 0.2795                     | 8.1079                               |
| 7.5330  | 0.2932 | -7.5330  | 0.2768                     | 7.8099                               |
| 7.2379  | 0.3225 | -7.2379  | 0.2741                     | 7.5119                               |
| 6.9434  | 0.3556 | -6.9434  | 0.2708                     | 7.2142                               |
| 6.6500  | 0.3948 | -6.6500  | 0.2668                     | 6.9168                               |
| 6.3557  | 0.4275 | -6.3557  | 0.2634                     | 6.6190                               |
| 6.0615  | 0.4600 | -6.0615  | 0.2598                     | 6.3213                               |
|         |        | 00       |                            |                                      |

| 5.7678 | 0.4945  | -5.7678 | 0.2559  | 6.0237 |
|--------|---------|---------|---------|--------|
| 5.4748 | -5.4748 | -5.4748 | 0.2517  | 5.7265 |
| 5.1828 | -5.1828 | -5.1828 | 0.2471  | 5.4299 |
| 4.8911 | -4.8911 | -4.8911 | 0.2430  | 5.1341 |
| 4.6023 | -4.6023 | -4.6023 | 0.2384  | 4.8407 |
| 4.3206 | -4.3206 | -4.3206 | 0.2318  | 4.5523 |
| 4.0487 | -4.0487 | -4.0487 | 0.2238  | 4.2726 |
| 3.7934 | -3.7934 | -3.7934 | 0.2149  | 4.0083 |
| 3.5624 | -3.5624 | -3.5624 | 0.2073  | 3.7697 |
| 3.3701 | -3.3701 | -3.3701 | 0.1999  | 3.5701 |
| 3.2277 | -3.2277 | -3.2277 | 0.1917  | 3.4193 |
| 3.1378 | -3.1378 | -3.1378 | 0.1800  | 3.3178 |
| 3.0903 | -3.0903 | -3.0903 | 0.1653  | 3.2556 |
| 3.0723 | -3.0723 | -3.0723 | 0.1469  | 3.2192 |
| 3.0738 | -3.0738 | -3.0738 | 0.1228  | 3.1966 |
| 3.0875 | -3.0875 | -3.0875 | 0.0914  | 3.1789 |
| 3.1082 | -3.1082 | -3.1082 | 0.0520  | 3.1602 |
| 3.1356 | -3.1356 | -3.1356 | -0.0027 | 3.1328 |
| 3.1715 | -3.1715 | -3.1715 | -0.0892 | 3.0823 |
| 3.2149 | -3.2149 | -3.2149 | -0.2356 | 2.9793 |
| 3.2692 | -3.2692 | -3.2692 | -0.5897 | 2.6795 |

Table(3.5.8) Stability constants of Cr- citrate estimatedby four methods.

| Method                        | logK1  |
|-------------------------------|--------|
| Point wise calculation method | 6.1327 |
| Half integral method          | 5.72   |
| Linear plot method            | 5.70   |
| Least squares method          | 6.0508 |

# CHAPTER FOUR Titanium carboxylates complexes

#### **Results and discussion**

#### 4.1/Titanium-acetic acid system:

*Table* (4.1.1). The pH - titration reading of acid, acid + ligand and acid + ligand + metalion (Ti<sup>+3</sup>). $N^0 = 0.525M$ ,  $E^0 = 5 \times 10^{-3}M$ ,  $T_{Cl} = 1.5 \times 10^{-3}M$ ,  $T_{cm} = 5 \times 10^{-4}M$ , $V^0 = 200cm^3$ , $u^0 = 5 \times 10^{-3}$ ,  $t = 36.5^0C$ .

| Vol. of | Acid  | Acid    | Acid+ligand | Volume of    | Acid  | Acid+ligand | Acid+ligand+ |
|---------|-------|---------|-------------|--------------|-------|-------------|--------------|
| alkali  |       | +ligand | +metal ion  | alkali added |       |             | metal ion    |
| added   |       |         |             |              |       |             |              |
| 0.0     | 2.34  | 2.34    | 2.32        | 3.4          | 11.98 | 11.82       | 11.62        |
| 0.1     | 2.36  | 2.36    | 2.33        | 3.5          | 12.00 | 11.86       | 11.67        |
| 0.2     | 2.39  | 2.39    | 3.34        | 3.6          | 12.03 | 11.89       | 11.71        |
| 0.3     | 2.42  | 2.42    | 2.36        | 3.7          | 12.05 | 11.92       | 11.75        |
| 0.4     | 2.46  | 2.45    | 2.39        | 3.8          | 12.07 | 11.94       | 11.79        |
| 0.5     | 2.49  | 2.49    | 2.41        | 3.9          | 12.08 | 11.97       | 11.82        |
| 0.6     | 2.54  | 2.53    | 2.43        | 4.0          | 12.10 | 11.99       | 11.85        |
| 0.7     | 2.58  | 2.57    | 2.46        | 4.1          | 12.12 | 12.02       | 11.88        |
| 0.8     | 2.64  | 2.62    | 2.50        | 4.2          | 12.13 | 12.04       | 11.91        |
| 0.9     | 2.69  | 2.68    | 2.54        | 4.3          | 12.15 | 12.06       | 11.93        |
| 1.0     | 2.77  | 2.75    | 2.58        | 4.4          | 12.17 | 12.08       | 11.96        |
| 1.1     | 2.85  | 2.83    | 2.63        | 4.5          | 12.18 | 12.10       | 11.98        |
| 1.2     | 2.96  | 2.93    | 2.68        | 4.6          | 12.20 | 12.11       | 12.00        |
| 1.3     | 3.11  | 3.06    | 2.75        | 4.7          | 12.21 | 12.13       | 12.02        |
| 1.4     | 3.31  | 3.23    | 2.82        | 4.8          | 12.22 | 12.15       | 12.04        |
| 1.5     | 3.74  | 3.48    | 2.91        | 4.9          | 12.24 | 12.16       | 12.06        |
| 1.6     | 9.04  | 3.87    | 3.02        | 5.0          | 12.25 | 12.18       | 12.08        |
| 1.7     | 10.57 | 4.29    | 3.17        | 5.1          | 12.26 | 12.19       | 12.09        |
| 1.8     | 10.94 | 4.65    | 3.37        | 5.2          | 12.27 | 12.20       | 12.11        |
| 1.9     | 11.14 | 5.00    | 3.68        | 5.3          | 12.28 | 12.22       | 12.12        |
| 2.0     | 11.28 | 5.43    | 4.11        | 5.4          | 12.29 | 12.23       | 12.14        |
| 2.1     | 11.39 | 6.62    | 4.51        | 5.5          | 12.30 | 12.24       | 12.15        |
| 2.2     | 11.47 | 10.39   | 4.87        | 5.6          | 12.31 | 12.26       | 12.16        |
| 2.3     | 11.55 | 10.85   | 5.30        | 5.7          | 12.32 | 12.27       | 12.18        |
| 2.4     | 11.61 | 11.09   | 6.05        | 5.8          | 12.33 | 12.28       | 12.19        |
| 2.5     | 11.67 | 11.25   | 9.77        | 5.9          | 12.34 | 12.29       | 12.20        |
| 2.6     | 11.72 | 11.37   | 10.60       | 6.0          | 12.35 | 12.30       | 12.22        |
| 2.7     | 11.76 | 11.46   | 10.91       | 6.1          | 12.36 | 12.31       | 12.23        |
| 2.8     | 11.80 | 11.53   | 11.11       | 6.2          | 12.37 | 12.32       | 12.24        |
| 2.9     | 11.84 | 11.60   | 11.25       | 6.3          | 12.38 | 12.33       | 12.25        |
| 3.0     | 11.87 | 11.65   | 11.35       | 6.4          | 12.39 | 12.34       | 12.26        |
| 3.1     | 11.90 | 11.70   | 11.44       | 6.5          | 12.40 | 12.35       | 12.27        |
| 3.2     | 11.93 | 11.75   | 11.51       | 6.6          | 12.41 | 12.36       | 12.28        |
| 3.3     | 11.96 | 11.79   | 11.57       | -            | -     | -           | -            |

Table (4.1.2) Alkali volume that bring the three sets of solutions to the same pH

| В          | V1      | V2     | V3       | В                  | V1     | V2     | V3     |
|------------|---------|--------|----------|--------------------|--------|--------|--------|
| 24         | 0 2333  | 0 2333 | 0.4500   | 7.2                | 1 5653 | 2 1154 | 2 4309 |
| 2.5        | 0.5200  | 0.5250 | 0.8000   | 7.3                | 1.5672 | 2.1180 | 2.4336 |
| 2.6        | 0.7333  | 0.7600 | 1.0400   | 7.4                | 1.5691 | 2.1207 | 2.4363 |
| 2.7        | 0.9125  | 0.9286 | 1.2286   | 7.5                | 1.5709 | 2.1233 | 2.4390 |
| 2.8        | 1.0375  | 1.0625 | 1.3714   | 7.6                | 1.5728 | 2.1260 | 2.4417 |
| 2.9        | 1.1455  | 1.1700 | 1.4889   | 7.7                | 1.5747 | 2.1286 | 2.4444 |
| 3.0        | 1.2267  | 1.2539 | 1.5818   | 7.8                | 1.5766 | 2.1313 | 2.4470 |
| 3.1        | 1.2933  | 1.3235 | 1.6533   | 7.9                | 1.5785 | 2.1340 | 2.4497 |
| 3.2        | 1.3450  | 1.3824 | 1.7150   | 8.0                | 1.5804 | 2.1366 | 2.4524 |
| 3.3        | 1.3950  | 1.4280 | 1.7650   | 8.1                | 1.5823 | 2.1393 | 2.4551 |
| 3.4        | 1.4209  | 1.4680 | 1.8097   | 8.2                | 1.5842 | 2.1419 | 2.4578 |
| 3.5        | 1.4442  | 1.5051 | 1.8419   | 8.3                | 1.5860 | 2.1446 | 2.4605 |
| 3.6        | 1.46/4  | 1.5308 | 1.8/42   | 8.4                | 1.5879 | 2.14/2 | 2.4632 |
| 3./        | 1.4907  | 1.5564 | 1.904/   | 8.5                | 1.5898 | 2.1499 | 2.4659 |
| 3.0<br>2.0 | 1.5011  | 1.5021 | 1.9279   | 0.0                | 1.5917 | 2.1525 | 2.4000 |
| 3.9<br>4.0 | 1.5050  | 1.0071 | 1.9512   | 0.7                | 1.5950 | 2.1552 | 2.4712 |
| 4.0        | 1.5049  | 1.6548 | 1.9977   | 89                 | 1.5955 | 2.1570 | 2.4755 |
| 4.1        | 1.5087  | 1.6786 | 2 0225   | 9.0                | 1.5992 | 2.1005 | 2.4700 |
| 4.3        | 1.5106  | 1.7028 | 2.0475   | 9.1                | 1.6039 | 2.1658 | 2.4820 |
| 4.4        | 1.5125  | 1.7306 | 2.0725   | 9.2                | 1.6105 | 2.1684 | 2.4847 |
| 4.5        | 1.5143  | 1.7583 | 2.0975   | 9.3                | 1.6170 | 2.1711 | 2.4874 |
| 4.6        | 1.5162  | 1.7861 | 2.1250   | 9.4                | 1.6235 | 2.1737 | 2.4901 |
| 4.7        | 1.5181  | 1.8143 | 2.1528   | 9.5                | 1.6301 | 2.1764 | 2.4927 |
| 4.8        | 1.5200  | 1.8429 | 2.1806   | 9.6                | 1.6366 | 2.1790 | 2.4954 |
| 4.9        | 1.5219  | 1.8714 | 2.2070   | 9.7                | 1.6431 | 2.1817 | 2.4981 |
| 5.0        | 1.5238  | 1.9000 | 2.2302   | 9.8                | 1.6497 | 2.1844 | 2.5036 |
| 5.1        | 1.5257  | 1.9233 | 2.2535   | 9.9                | 1.6562 | 2.1870 | 2.5157 |
| 5.2        | 1.5275  | 1.9465 | 2.2768   | 10.0               | 1.6628 | 2.1897 | 2.5277 |
| 5.3        | 1.5294  | 1.9698 | 2.3000   | 10.1               | 1.6693 | 2.1923 | 2.5398 |
| 5.4        | 1.5313  | 1.9930 | 2.3133   | 10.2               | 1.6758 | 2.1950 | 2.5518 |
| 5.5        | 1.5332  | 2.0059 | 2.3267   | 10.3               | 1.6824 | 2.1976 | 2.5639 |
| 5.6        | 1.5351  | 2.0143 | 2.3400   | 10.4               | 1.6889 | 2.2022 | 2.5759 |
| 5./        | 1.53/0  | 2.0227 | 2.3533   | 10.5               | 1.6954 | 2.2239 | 2.5880 |
| 5.8        | 1.5389  | 2.0311 | 2.300/   | 10.6               | 1.7081 | 2.245/ | 2.6000 |
| 5.9        | 1.5400  | 2.0395 | 2.3000   | 10.7               | 1.7352 | 2.20/4 | 2.0323 |
| 6.0        | 1.5420  | 2.0479 | 2.3933   | 10.0               | 1.7022 | 2.2091 | 2.0045 |
| 6.2        | 1 5464  | 2.0505 | 2.4015   | 11.0               | 1.8300 | 2 3625 | 2.0500 |
| 6.3        | 1.5483  | 2.0731 | 2.4067   | 11.0               | 1.8800 | 2.4063 | 2.7950 |
| 6.4        | 1.5502  | 2.0815 | 2.4094   | 11.2               | 1.9429 | 2.4688 | 2.8644 |
| 6.5        | 1.5521  | 2.0899 | 2.4121   | 11.3               | 2.0183 | 2.5417 | 2.9501 |
| 6.6        | 1.5540  | 2.0983 | 2.4148   | 11.4               | 2.1112 | 2.6334 | 3.0557 |
| 6.7        | 1.5558  | 2.1021 | 2.4175   | 11.5               | 2.2287 | 2.7573 | 3.1859 |
| 6.8        | 1.5577  | 2.1048 | 2.4202   | 11.6               | 2.3835 | 2.9002 | 3.3602 |
| 6.9        | 1.5596  | 2.1074 | 2.4229   | 11.7               | 2.5602 | 3.1002 | 3.5752 |
| 7.0        | 1.5615  | 2.1101 | 2.4255   | 11.8               | 2.8002 | 3.3337 | 3.8337 |
| 7.1        | 1.5634  | 2.1127 | 2.4282   | 11.9               | 3.1003 | 3.6337 | 4.1670 |
|            | 14      |        |          |                    |        |        |        |
|            |         |        |          |                    |        |        |        |
|            | 12      |        |          |                    |        | -      |        |
|            | -       |        | <b>A</b> |                    |        |        |        |
|            | • • • • | -      | <u> </u> |                    |        | 1      |        |
|            | la      |        | ALIN     | I                  |        | -      |        |
|            | e       |        |          |                    |        | _      |        |
|            |         |        |          |                    |        |        |        |
|            | 4       |        |          |                    |        | 1      |        |
|            | 20      | 1      | 2        | 3 4<br>ofalkaliado | 5      | 6 7    |        |

Figure (41.1) Titration curves of the three sets of solutions versus pH 4.1.1-Metal ligand stability constant:

# 4.1.1.1-Point-wise calculation method: (Titanium acetate)

Metal-ligand titration curve cross over the ligand titration curve at pH 2.4. Table (4.1.2), figure (4.1.1) indicating the formation of the complex.  $n^-$  extends between 1.1406 and 2.8823 indicating the formation ML<sub>2</sub> and ML<sub>3</sub> complex species. logK<sub>2</sub> =5.5484 and K<sub>3</sub>=4.2895, table (4.1.3), and table (4.1.4). These values were further verified by half integral method.

| •                  |                                                                                |                                                                                                                        |                                                                                                                                                       |                                                        |                                                        |
|--------------------|--------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|
| Log K <sub>2</sub> | $\log \frac{(n^1)}{(2-n^-)}$                                                   | pL                                                                                                                     | n                                                                                                                                                     | V3                                                     | V2                                                     |
| 5.4030             | -0.0502                                                                        | 5.4532                                                                                                                 | 1.4711                                                                                                                                                | 0.8000                                                 | 0.5250                                                 |
| 5.5869             | 0.2083                                                                         | 5.3786                                                                                                                 | 1.6177                                                                                                                                                | 1.0400                                                 | 0.7600                                                 |
| 5.6033             | 0.3001                                                                         | 5.3032                                                                                                                 | 1.6662                                                                                                                                                | 1.2286                                                 | 0.9286                                                 |
| 5.7546             | 0.5263                                                                         | 5.2283                                                                                                                 | 1.7706                                                                                                                                                | 1.3714                                                 | 1.0625                                                 |
| 5.8164             | 0.6691                                                                         | 5.1473                                                                                                                 | 1.8236                                                                                                                                                | 1.4889                                                 | 1.1700                                                 |
| 5.9895             | 0.9204                                                                         | 5.0691                                                                                                                 | 1.8928                                                                                                                                                | 1.5818                                                 | 1.2539                                                 |
|                    | Log K <sub>2</sub><br>5.4030<br>5.5869<br>5.6033<br>5.7546<br>5.8164<br>5.9895 | Log $K_2$ $log \frac{(n^ 1)}{(2 - n^-)}$ 5.4030 $-0.0502$ 5.58690.20835.60330.30015.75460.52635.81640.66915.98950.9204 | Log K2 $log \frac{(n^ 1)}{(2 - n^-)}$ pL5.4030-0.05025.45325.58690.20835.37865.60330.30015.30325.75460.52635.22835.81640.66915.14735.98950.92045.0691 | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ |

Table (4.1.3) Stability constants determined by pointwise method  $logK_2$  average value = 5.5484

Table (4.1.4) Stability constants determined by pointwise method  $logK_3$  average value =4.2895

| Log K <sub>3</sub> | $\log \frac{(n^2)}{(3-n^-)}$ | pL     | n      | V3     | V2     |
|--------------------|------------------------------|--------|--------|--------|--------|
| 4.0607             | -0.5879                      | 4.6487 | 2.2053 | 1.8419 | 1.5051 |
| 4.1430             | -0.4315                      | 4.5745 | 2.2702 | 1.8742 | 1.5308 |
| 4.1767             | -0.3211                      | 4.4978 | 2.3232 | 1.9047 | 1.5564 |
| 4.3440             | -0.0842                      | 4.4283 | 2.4517 | 1.9279 | 1.5821 |
| 4.7230             | 0.3379                       | 4.3851 | 2.6853 | 1.9512 | 1.6071 |
|                    |                              |        |        |        |        |

#### 4.1.1.2- Half integral method:

 $\log K_2$  and  $\log K_3$  were determined by plotting metal-ligand formation curve, n<sup>-</sup> against pL, figure (4.1.2). Logk<sub>2</sub>= 5.4612 and  $\log K_3$ = 4.4 and these values were further corroborated with linear plot method.



Figure (4.1.2) Metal-ligand formation curve logK<sub>2</sub>=5.412 & logK<sub>3</sub>=4.352 **4.1.1.3 -Linear plot method: (Ti-acetate)** 

In this method log  $(n^{-}-1)/(2-n^{-})$  and log  $(n^{-}-2)/(3-n^{-})$  were plotted versus corresponding pL for determination of logK<sub>2</sub> and logK<sub>3</sub> respectively. logk<sub>2</sub>=5.454 and logK<sub>3</sub>=4.386, figures (4.1.3), and figure (4.1.4) these values were in a good agreement with the two previous methods, and further were verified by least squares method.







Fig. (4.1.4) linear plot method logK<sub>3</sub>=4.386 **4.1.1.4-Least squares method**:

To calculate the stability constants according to this method the following expression can be used.

$$(n^{-}-1)[L]K_{1} = (2-n^{-})[L]^{2}K_{1}K_{2} + (3-n^{-})[L]^{3}K_{1}K_{2}K_{3} - - - (5.1)$$

On division and rearrangement becomes:

$$\frac{(n^{-}-1)}{(2-n^{-})[L]} = \frac{(3-n)[L]}{(2-n^{-})} K_2 K_3 + K_3 - \dots - \dots - (5.2)$$

Plotting the right-side equation against the left one, straight line equation is obtained, with intercept  $K_3$  and slope  $K_2K_3$ .

|        | т      | [T]      | (2) ->[7]                    | ( - 1)                           |
|--------|--------|----------|------------------------------|----------------------------------|
| n      | pL     | [L]      | $\frac{(3-n)[L]}{(2-n^{-})}$ | $\frac{(n - 1)}{(2 - n^{-})[I]}$ |
|        |        |          | (2 11)                       |                                  |
| 1.1407 | 5.4707 | 3.34E-06 | 7.3E-06                      | 48395.90797                      |
| 1.4582 | 5.4532 | 3.5E-06  | 1.0E-05                      | 252936.3228                      |
| 1.5421 | 5.3786 | 4.2E-06  | 1.5E-05                      | 386264.8041                      |
| 1.6193 | 5.3032 | 5.0E-06  | 2.0E-05                      | 401186.9264                      |
| 1.6933 | 5.2283 | 5.9E-06  | 3.2E-05                      | 568355.9548                      |
| 1.7455 | 5.1473 | 7.1E-06  | 4.8-05                       | 655221.67                        |
| 1.8029 | 5.0691 | 8.5E-06  | 8.8E-05                      | 976195.7797                      |
| 1.8227 | 4.9781 | 1.1E-05  | 0.0001                       | 1157945.494                      |
| 1.8623 | 4.8951 | 1.3E-05  | 0.0017                       | 10155076.66                      |
| 1.9476 | 4.7349 | 1.8E-05  | -0.0001                      | -499562.992                      |
| 1.9710 | 4.6487 | 2.2E-05  | -8.7E-05                     | -261486.856                      |
| 2.0192 | 4.5745 | 2.7E-05  | -7.2E-05                     | -176466.041                      |
| 2.0570 | 4.4978 | 3.2E-05  | -6.7E-05                     | -128810.752                      |
| 2.1054 | 4.4283 | 3.7E-05  | -4.5E-05                     | -86163.6847                      |
| 2.1979 | 4.3851 | 4.1E-05  | -1.9E-05                     | -59686.7934                      |
| 2.3010 | 4.3564 | 4.4E-05  | -2.3E-06                     | -46646.5877                      |
| 2.4156 | 4.3483 | 4.5E-05  | 9.1E-06                      | -40055.531                       |
| 2.5537 | 4.3826 | 4.1E-05  | 1.6E-05                      | -38945.9176                      |
| 2.7090 | 4.4889 | 3.2E-05  | 1.7E-05                      | -45689.2367                      |
| 2.8824 | 4.8070 | 1.6E-05  | 9.7E-06                      | -88317.6359                      |

Table (4.1.5) Stability constants of Ti-acetate determined by least squares method.



Fig. (4.1.5) plot of the least squares method  $logK_2$ =5.5807 &  $logK_3$ =4.1975

| Linear Regression |              |             |                |  |  |  |  |  |
|-------------------|--------------|-------------|----------------|--|--|--|--|--|
| Parameter         | Value        | Error       | $\mathbb{R}^2$ |  |  |  |  |  |
|                   |              |             |                |  |  |  |  |  |
| Intercept         | 157594.55876 | 44637.31696 | 0.99652        |  |  |  |  |  |
| Slope             | 5.98402E9    | 1.17923E8   |                |  |  |  |  |  |

Table (4.1.6) Ti-acetate stability constant estimated by the four methods

| Method                        | logK <sub>2</sub> | logK <sub>3</sub> | logK <sub>2</sub> +logK <sub>3</sub> |
|-------------------------------|-------------------|-------------------|--------------------------------------|
| Point-wise calculation method | 5.5484            | 4.2895            | 9.8379                               |
| Half integral method          | 5.412             | 4.4               | 9.812                                |
| Linear plot method            | 5.454             | 4.386             | 9.84                                 |
| Least squares method          | 5.5809            | 4.1975            | 9.7784                               |

# 4.2-Titanium-oxalic acid system:

*Table* (4.2.1). The pH - titation readings of acid, acid + ligand and acid + ligand + metal ion (Ti<sup>+3</sup>).  $N^0 = 0.522M$ ,  $E^0 = 5 \times 10^{-3}$  M,  $T_{Cl} = 1.5 \times 10^{-3}$  M,  $T_{cm} = 5 \times 10^{-4}$  M,  $V^0 = 200 cm^3$ ,  $u^0 = 5 \times 10^{-3}$ ,  $t = 36.5^0$  C.

| Vol. of alkali | Acid  | Acid +ligand | Acid+ligand | Volume of alkali | Acid  | Acid+ligan | Acid+ligand+ |
|----------------|-------|--------------|-------------|------------------|-------|------------|--------------|
| added          |       |              | +metal ion  | added            |       | d          | metal ion    |
| 0.0            | 2.33  | 2.26         | 2.24        | 3.1              | 11.86 | 11.04      | 5.88         |
| 0.1            | 2.35  | 2.26         | 2.24        | 3.2              | 11.89 | 11.19      | 9.62         |
| 0.2            | 2.38  | 2.27         | 2.25        | 3.3              | 11.91 | 11.31      | 10.50        |
| 0.3            | 2.41  | 2.29         | 2.26        | 3.4              | 11.94 | 11.40      | 10.86        |
| 0.4            | 2.44  | 2.31         | 2.27        | 3.5              | 11.96 | 11.48      | 11.07        |
| 0.5            | 2.48  | 2.33         | 2.29        | 3.6              | 11.98 | 11.55      | 11.22        |
| 0.6            | 2.52  | 2.35         | 2.31        | 3.7              | 12.01 | 11.60      | 11.33        |
| 0.7            | 2.56  | 2.38         | 2.32        | 3.8              | 12.03 | 11.66      | 11.41        |
| 0.8            | 2.61  | 2.40         | 2.34        | 3.9              | 12.04 | 11.70      | 11.48        |
| 0.9            | 2.67  | 2.43         | 2.36        | 4.0              | 12.06 | 11.74      | 11.54        |
| 1.0            | 2.74  | 2.46         | 2.38        | 4.1              | 12.08 | 11.77      | 11.60        |
| 1.1            | 2.81  | 2.50         | 2.41        | 4.2              | 12.10 | 11.81      | 11.65        |
| 1.2            | 2.91  | 2.54         | 2.44        | 4.3              | 12.11 | 11.84      | 11.69        |
| 1.3            | 3.04  | 2.58         | 2.47        | 4.4              | 12.13 | 11.87      | 11.73        |
| 1.4            | 3.22  | 2.63         | 2.50        | 4.5              | 12.14 | 11.89      | 11.76        |
| 1.5            | 3.53  | 2.69         | 2.54        | 4.6              | 12.16 | 11.92      | 11.79        |
| 1.6            | 5.08  | 2.75         | 2.58        | 4.7              | 12.17 | 11.94      | 11.82        |
| 1.7            | 10.26 | 2.83         | 2.62        | 4.8              | 12.18 | 11.96      | 11.85        |
| 1.8            | 10.81 | 2.92         | 2.67        | 4.9              | 12.20 | 11.98      | 11.88        |
| 1.9            | 11.04 | 3.02         | 2.73        | 5.0              | 12.21 | 12.00      | 11.90        |
| 2.0            | 11.20 | 3.16         | 2.80        | 5.1              | 12.22 | 12.02      | 11.92        |
| 2.1            | 11.33 | 3.32         | 2.88        | 5.2              | 12.23 | 12.04      | 11.95        |
| 2.2            | 11.42 | 3.52         | 2.98        | 5.3              | 12.24 | 12.06      | 11.97        |
| 2.3            | 11.50 | 3.75         | 3.10        | 5.4              | 12.25 | 12.05      | 11.99        |
| 2.4            | 11.56 | 4.00         | 3.26        | 5.5              | 12.26 | 12.07      | 12.01        |
| 2.5            | 11.62 | 4.26         | 3.45        | 5.6              | 12.27 | 12.09      | 12.02        |
| 2.6            | 11.67 | 4.56         | 3.67        | 5.7              | 12.28 | 12.10      | 12.04        |
| 2.7            | 11.72 | 5.07         | 3.91        | 5.8              | 12.29 | 12.11      | 12.06        |
| 2.8            | 11.76 | 7.17         | 4.16        | 5.9              | 12.30 | 12.13      | 12.07        |
| 2.9            | 11.79 | 10.32        | 4.48        | 6.0              | 12.31 | 12.14      | 12.09        |
| 3.0            | 11.83 | 10.79        | 4.87        | -                | -     | -          | -            |
|                | 14    |              | 1           |                  |       |            |              |
| ۵              |       |              |             |                  |       |            |              |
|                | 12    |              | ~           |                  |       | -          |              |
| 5              | -     |              |             | <b>∽</b> ₁∟      |       |            |              |
| -              | 4     |              |             | Allah            |       | -          |              |



Fig.(4.2.1) Plotting of alkali volume of three set of solution V/s pH Table (4.2.2) alkali volume required to bring the three sets of solutions to same pH

| В         | V1               | V2     | V3     | В          | V1     | V2     | V3               |
|-----------|------------------|--------|--------|------------|--------|--------|------------------|
| 2.3       | 0.3500           | 0.5500 | _      | 7.2        | 1.6409 | 2.8010 | 3.1353           |
| 2.4       | 0.2667           | 0.8000 | 1.0667 | 7.3        | 1.6429 | 2.8041 | 3.1380           |
| 2.5       | 0.5500           | 1.1000 | 1.4000 | 7.4        | 1.6448 | 2.8073 | 3.1406           |
| 2.6       | 0.7800           | 1.3400 | 1.6500 | 7.5        | 1.6467 | 2.8104 | 3.1433           |
| 2.7       | 0.9429           | 1.5167 | 1.8500 | 7.6        | 1.6486 | 2.8136 | 3.1460           |
| 2.8       | 1 0857           | 1 6625 | 2 0000 | 77         | 1 6506 | 2 8186 | 3 1487           |
| 2.0       | 1 1900           | 1.0025 | 2 1200 | 78         | 1.6525 | 2,8199 | 3 1513           |
| 3.0       | 1 2692           | 1 8800 | 2 2167 | 79         | 1.6544 | 2.0133 | 3 1540           |
| 3.1       | 1 3333           | 1.0000 | 2 3000 | 8.0        | 1.6564 | 2.8263 | 3 1567           |
| 3.2       | 1 3889           | 2 0250 | 2 3625 | 8.1        | 1.6583 | 2.8294 | 3 1594           |
| 3.2       | 1.0005           | 2.0250 | 2.3023 | 8.2        | 1.6503 | 2.0204 | 3 1620           |
| 3.0       | 1.4250           | 2.0075 | 2.4211 | 83         | 1.6622 | 2.0520 | 3 1647           |
| 35        | 1.4001           | 2.1400 | 2.4/3/ | 8.4        | 1.66/1 | 2,0000 | 3 1674           |
| 3.5       | 1.4903           | 2.1300 | 2.5227 | 0.4<br>8 5 | 1.0041 | 2.0303 | 3.1074           |
| 3.0       | 1.5045           | 2.2340 | 2.5002 | 0.J<br>8.6 | 1.6680 | 2.0421 | 3.1701           |
| J./<br>20 | 1.3110<br>1.5174 | 2.2703 | 2.0125 | 0.0        | 1.0000 | 2.0433 | 3.1/2/<br>2.1754 |
| 2.0       | 1.51/4           | 2.3200 | 2.0342 | 0.7        | 1.0099 | 2.0404 | 3.1734<br>2.1701 |
| 3.9       | 1.5239           | 2.3000 | 2.0950 | 0.0        | 1.0/10 | 2.0510 | 3.1/01<br>2 1000 |
| 4.0       | 1.5505           | 2.4000 | 2.7500 | 0.9        | 1.0757 | 2.054/ | 3.1000<br>2.1024 |
| 4.1       | 1.5500           | 2.4305 | 2.7700 | 9.0        | 1.0/5/ | 2.05/9 | 3.1034<br>2.1061 |
| 4.2       | 1.5452           | 2.4/09 | 2.0125 | 9.1        | 1.0770 | 2.0011 | 3.1001           |
| 4.5       | 1.5497           | 2.5155 | 2.0430 | 9.2        | 1.0/95 | 2.8042 | 3.1000           |
| 4.4       | 1.5561           | 2.5467 | 2.8/50 | 9.3        | 1.0815 | 2.86/4 | 3.1914           |
| 4.5       | 1.5626           | 2.5800 | 2.9051 | 9.4        | 1.0834 | 2.8/06 | 3.1941           |
| 4.6       | 1.5690           | 2.6078 | 2.9308 | 9.5        | 1.0853 | 2.8/3/ | 3.1968           |
| 4./       | 1.5/55           | 2.62/5 | 2.9564 | 9.6        | 1.68/3 | 2.8/69 | 3.1995           |
| 4.8       | 1.5819           | 2.64/1 | 2.9821 | 9./        | 1.6892 | 2.8801 | 3.2091           |
| 4.9       | 1.5884           | 2.6667 | 3.0030 | 9.8        | 1.6911 | 2.8832 | 3.2205           |
| 5.0       | 1.5948           | 2.6863 | 3.0129 | 9.9        | 1.6931 | 2.8864 | 3.2318           |
| 5.1       | 1.6004           | 2./014 | 3.0228 | 10.0       | 1.6950 | 2.8896 | 3.2432           |
| 5.2       | 1.6023           | 2.7062 | 3.0327 | 10.1       | 1.6969 | 2.8927 | 3.2546           |
| 5.3       | 1.6042           | 2./110 | 3.0426 | 10.2       | 1.6988 | 2.8959 | 3.2659           |
| 5.4       | 1.6062           | 2.7157 | 3.0525 | 10.3       | 1.7073 | 2.8991 | 3.2773           |
| 5.5       | 1.6081           | 2.7205 | 3.0624 | 10.4       | 1.7255 | 2.9152 | 3.2886           |
| 5.6       | 1.6100           | 2.7252 | 3.0723 | 10.5       | 1.7437 | 2.9370 | 3.3000           |
| 5.7       | 1.6120           | 2.7300 | 3.0822 | 10.6       | 1.7618 | 2.9587 | 3.3278           |
| 5.8       | 1.6139           | 2.7348 | 3.0921 | 10.7       | 1.7800 | 2.9805 | 3.3556           |
| 5.9       | 1.6158           | 2.7395 | 3.1005 | 10.8       | 1.7982 | 3.0040 | 3.3834           |
| 6.0       | 1.6178           | 2.7443 | 3.1032 | 10.9       | 1.8392 | 3.0440 | 3.4191           |
| 6.1       | 1.6197           | 2.7490 | 3.1059 | 11.0       | 1.8826 | 3.0840 | 3.4667           |
| 6.2       | 1.6216           | 2.7538 | 3.1086 | 11.1       | 1.9376 | 3.1401 | 3.5201           |
| 6.3       | 1.6236           | 2.7536 | 3.1112 | 11.2       | 2.0001 | 3.2084 | 3.5867           |
| 6.4       | 1.6255           | 2.7633 | 3.1139 | 11.3       | 2.0770 | 3.2917 | 3.6728           |
| 6.5       | 1.6274           | 2.7681 | 3.1166 | 11.4       | 2.1779 | 3.4001 | 3.7876           |
| 6.6       | 1.6293           | 2.7729 | 3.1193 | 11.5       | 2.3002 | 3.5287 | 3.9335           |
| 6.7       | 1.6313           | 2.7776 | 3.1219 | 11.6       | 2.4668 | 3.7002 | 4.1002           |
| 6.8       | 1.6332           | 2.7824 | 3.1246 | 11.7       | 2.6602 | 3.9002 | 4.3252           |
| 6.9       | 1.6351           | 2.7871 | 3.1273 | 11.8       | 2.9252 | 4.1752 | 4.6337           |
| 7.0       | 1.6371           | 2.7919 | 3.1299 | 11.9       | 3.2505 | 4.5337 | 5.0005           |
| 7.1       | 1.6390           | 2.7967 | 3.1326 | 12.0       | -      | -      | -                |

**4.2.1-Metal-ligand stability constants :(** Titanium and oxalate) **4.2.1.1-pointwise calculation method:** 

As n<sup>-</sup> and pL were calculated and hence n<sup>-</sup> extends between 1.3152 and 2.8983, indicates the formation of 1:2 and 1:3 chelates, the stability constants of chelates were easily found  $\log K_2$  =5.0805, and  $\log K_3$ =4.4069. Tables, (4.2.3) & (4.2.4). Table (4.2.3) Point-wise method  $\log K_2$  average value = 5.0805

| Table | (4.2.3) FOIIIt     | -wise memou i                   | Jgrv2 average v | aue = 5.0005   |        |        |
|-------|--------------------|---------------------------------|-----------------|----------------|--------|--------|
|       | Log K <sub>2</sub> | $\log \frac{(n^ 1)}{(2 - n^-)}$ | pL              | n              | V3     | V2     |
|       |                    |                                 |                 |                |        |        |
|       | 4.6936             | -0.3370                         | 5.0306          | 1.3152         | 1.0667 | 0.8000 |
|       | 5.0120             | 0.0296                          | 4.9825          | 1.5170         | 1.4000 | 1.1000 |
|       | 5.0620             | 0.1596                          | 4.9024          | 1.5909         | 1.6500 | 1.3400 |
|       | 5.3277             | 0.4747                          | 4.8530          | 1.7489         | 1.8500 | 1.5167 |
|       | 5.3072             | 0.5441                          | 4.7632          | 1.7778         | 2.0000 | 1.6625 |
|       | 5.3933             | 0.7076                          | 4.6856          | 1.8361         | 2.1200 | 1.7778 |
|       | 5.4815             | 0.8758                          | 4.6058          | 1.8825         | 2.2167 | 1.8800 |
|       | 5.9605             | 1.4184                          | 4.5421          | 1.9632         | 2.3000 | 1.9572 |
| Table | (4.2.4) Point-     | wise method l                   | ogK₃ average v  | value = 4.4069 |        |        |
|       | Log K <sub>3</sub> | $\log \frac{(n^2)}{(3-n^-)}$    | pL              | n              | V3     | V2     |
|       | 3,1772             | -1.2185                         | 4.3957          | 2.0570         | 2.4211 | 2.0875 |

| 3.1772 | -1.2185 | 4.3957 | 2.0570 | 2.4211 | 2.0875 |
|--------|---------|--------|--------|--------|--------|
| 3.5807 | -0.7671 | 4.3478 | 2.1460 | 2.4737 | 2.1400 |
| 3.7601 | -0.5405 | 4.3006 | 2.2236 | 2.5227 | 2.1900 |
| 4.1281 | -0.1922 | 4.3202 | 2.3911 | 2.5682 | 2.2348 |
| 4.6840 | 0.2305  | 4.4535 | 2.6296 | 2.6125 | 2.2783 |
| 5.8816 | 0.9460  | 4.9357 | 2.8983 | 2.6542 | 2.3200 |

#### **4.2.1.2-Half integral method**: (titanium oxalate)

 $logK_2$  and  $logK_3$  have been determined by plotting formation curve n<sup>-</sup> versus pL.  $logK_2=4.987$  and  $logK_3=4.36$  figure (4.2.2). The value was in a good concordance with the values of point wise calculation method. The value was further verified by linear plot method.



#### Fig. (42.2).Metal-ligand formation curve logK<sub>2</sub>=4.986, &logK<sub>3</sub>=4.36 **4.2.1.3-Linear plot method**: (Titanium oxalate)

In this method the value of  $\log K_2$  and  $\log K_3$  were calculated by plotting  $\log (n^- -1)/(2-n^-)$  and  $\log(n^- - 2)/(3-n^-)$  against corresponding pL. The values obtained,  $\log K_2=5.00$  and  $\log K_3=4.36$  and figure (4.2.3) and figure (4.2.4). This value was in a good agreement with value obtained by half integral method.



Figure (4.2.4) linear plot method logK<sub>2</sub>=5.00 **4.2.14-Linear least squares method:** (titanium oxalate)

Since there were two complexes, the stability constants can be calculated by the following equation:

|         |                       | $\frac{1}{(2-n^{-})[L]}$                                                                                                                                                                                                                                                                     | $(2-n^{-})^{-K_2K_3+1}$                                   | K <sub>2</sub> (4.1                     |                                                                |
|---------|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------|----------------------------------------------------------------|
| able (4 | 4.2.5) Least (        | equation metho                                                                                                                                                                                                                                                                               | d logK <sub>2</sub> average va                            | lue = $5.3705$                          |                                                                |
|         | pL                    | n                                                                                                                                                                                                                                                                                            | [L]                                                       | $\left(\frac{(3-n^{-})}{m}\right)^*[L]$ | $\left(\frac{(n^{-}-1)}{(n^{-}-1)}\right)*\frac{1}{(n^{-}-1)}$ |
|         |                       |                                                                                                                                                                                                                                                                                              |                                                           | $\left(\left(2-n\right)\right)$         | $\left( \left( 2-n^{-}\right) \right) \left[ L\right]$         |
|         | 5.0306                | 1.3152                                                                                                                                                                                                                                                                                       | 9.3E-06                                                   | 2.3E-05                                 | 49384.1130                                                     |
|         | 4.9825                | 1.5170                                                                                                                                                                                                                                                                                       | 1.0E-05                                                   | 3.2E-05                                 | 102806.4482                                                    |
|         | 4.9024                | 1.5909                                                                                                                                                                                                                                                                                       | 1.3E-05                                                   | 4.3E-05                                 | 115345.7431                                                    |
|         | 4.8530                | 1.7489                                                                                                                                                                                                                                                                                       | 1.4E-05                                                   | 7.0E-05                                 | 212647.0763                                                    |
|         | 4.7632                | 1.7778                                                                                                                                                                                                                                                                                       | 1.7E-05                                                   | 9.5E-05                                 | 202884.0336                                                    |
|         | 4.6856                | 1.8361                                                                                                                                                                                                                                                                                       | 2.1E-05                                                   | 0.0001                                  | 247329.6142                                                    |
|         | 4.6058                | 1.8825                                                                                                                                                                                                                                                                                       | 2.5E-05                                                   | 0.0002                                  | 303057.8173                                                    |
|         | 4.4536                | 1.9778                                                                                                                                                                                                                                                                                       | 3.5E-05                                                   | 0.0016                                  | 1250331.863                                                    |
|         | 4.3957                | 2.0570                                                                                                                                                                                                                                                                                       | 4.0E-05                                                   | -0.0007                                 | -461031.5384                                                   |
|         | 4.3478                | 2.1460                                                                                                                                                                                                                                                                                       | 4.5E-05                                                   | -0.0003                                 | -174812.6954                                                   |
|         | 4.3006                | 2.2236                                                                                                                                                                                                                                                                                       | 5.01E-05                                                  | -0.0002                                 | -109307.8573                                                   |
|         | 4.3202                | 2.3911                                                                                                                                                                                                                                                                                       | 4.8E-05                                                   | -7.4E-05                                | -74350.72002                                                   |
|         | 4.4535                | 2.6296                                                                                                                                                                                                                                                                                       | 3.5E-05                                                   | -2.1E-05                                | -73532.19782                                                   |
|         |                       | 1.2×10 <sup>6</sup><br>8.0×10 <sup>6</sup><br>14<br>8.0×10 <sup>6</sup><br>14<br>1,2×10 <sup>6</sup><br>1,2×10 <sup>6</sup><br>1,2×10 <sup>6</sup><br>1,2×10 <sup>6</sup><br>1,2×10 <sup>6</sup><br>1,2×10 <sup>6</sup><br>1,2×10 <sup>6</sup><br>1,2×10 <sup>6</sup><br>1,2×10 <sup>6</sup> |                                                           |                                         |                                                                |
|         | -1.0x10 <sup>-3</sup> | -5.0×10 <sup>-4</sup>                                                                                                                                                                                                                                                                        | 0 5.0x10 <sup>-4</sup><br>(3-n <sup>-</sup> )*[L]/(2-<br> | 1.0x10 <sup>-3</sup> 1.5x:<br>n)        | 10 <sup>-3</sup> 2.0×10 <sup>-3</sup>                          |

Fig.(4.2.5), least squares method,  $logK_2$ =4.7760 &  $logK_3$ = 4.1067 Linear Regression

| Intercept Slope 2 | 59700.14132<br>7.63329E8 | 19099.17125<br>3.81281E7 | 0.98655 |
|-------------------|--------------------------|--------------------------|---------|

| Table ( | 4.2.6) | Stability | v constants | of | <b>Ti-oxalate</b> | obtained | by | the <i>i</i> | four | meth | od |
|---------|--------|-----------|-------------|----|-------------------|----------|----|--------------|------|------|----|
|---------|--------|-----------|-------------|----|-------------------|----------|----|--------------|------|------|----|

| Method                        | logK <sub>2</sub> | logK <sub>3</sub> | logK <sub>2</sub> +logK <sub>3</sub> |
|-------------------------------|-------------------|-------------------|--------------------------------------|
| Point wise calculation method | 5.0805            | 4.4069            | 9.4874                               |
| Half integral method          | 4.987             | 4.36              | 9.347                                |
| Linear plot method            | 5.00              | 4.36              | 9.36                                 |
| Henderson's equation          | 4.7760            | 4.1272            | 8.9032                               |

# 4.3/Titanium-oxalacetic acid system:

Table (4.3.1). ThepH - titration readings of acid, acid + ligand and acid + ligand + metalion (Ti +3). $N^0 = 0.522M$ ,  $E^0 = 5 \times 10^{-3} M$ ,  $T_{Cl} = 1.5 \times 10^{-3} M$ ,  $T_{cm} = 5 \times 10^{-4} M$ , $V^0 = 200 \text{ cm}^3$ , $u^0 = 5 \times 10^{-3}$  t = 23.5°C

|   | Vol. of alkali | Acid  | Acid +ligand | Acid+ligand | Volume of alkali | Acid  | Acid+ligan | Acid+ligand+ |
|---|----------------|-------|--------------|-------------|------------------|-------|------------|--------------|
| _ | added          |       |              | +metal ion  | added            |       | d          | metal ion    |
|   | 0.0            | 2.28  | 2.20         | 2.07        | 3.1              | 11.86 | 11.67      | 11.36        |
|   | 0.1            | 2.29  | 2.21         | 2.09        | 3.2              | 11.89 | 11.72      | 11.45        |
|   | 0.2            | 2.31  | 2.23         | 2.11        | 3.3              | 11.92 | 11.76      | 11.53        |
|   | 0.3            | 2.33  | 2.25         | 2.13        | 3.4              | 11.95 | 11.80      | 11.59        |
|   | 0.4            | 2.36  | 2.27         | 2.15        | 3.5              | 11.97 | 11.84      | 11.65        |
|   | 0.5            | 2.39  | 2.30         | 2.17        | 3.6              | 12.00 | 11.87      | 11.70        |
|   | 0.6            | 2.42  | 2.33         | 2.19        | 3.7              | 12.02 | 11.90      | 11.74        |
|   | 0.7            | 2.46  | 2.36         | 2.22        | 3.8              | 12.04 | 11.93      | 11.78        |
|   | 0.8            | 2.51  | 2.39         | 2.25        | 3.9              | 12.06 | 11.96      | 11.82        |
|   | 0.9            | 2.56  | 2.43         | 2.28        | 4.0              | 12.08 | 11.98      | 11.86        |
|   | 1.0            | 2.62  | 2.47         | 2.31        | 4.1              | 12.10 | 12.01      | 11.89        |
|   | 1.1            | 2.69  | 2.52         | 2.35        | 4.2              | 12.12 | 12.03      | 11.92        |
|   | 1.2            | 2.79  | 2.59         | 2.39        | 4.3              | 12.14 | 12.05      | 11.95        |
|   | 1.3            | 2.92  | 2.65         | 2.43        | 4.4              | 12.15 | 12.07      | 11.97        |
|   | 1.4            | 3.11  | 2.72         | 2.48        | 4.5              | 12.17 | 12.09      | 12.00        |
|   | 1.5            | 3.49  | 2.81         | 2.53        | 4.6              | 12.19 | 12.11      | 12.02        |
|   | 1.6            | 6.56  | 2.93         | 2.59        | 4.7              | 12.20 | 12.13      | 12.04        |
|   | 1.7            | 10.32 | 3.08         | 2.66        | 4.8              | 12.21 | 12.15      | 12.06        |
|   | 1.8            | 10.82 | 3.30         | 2.75        | 4.9              | 12.23 | 12.16      | 12.08        |
|   | 1.9            | 11.06 | 3.69         | 2.84        | 5.0              | 12.24 | 12.18      | 12.10        |
|   | 2.0            | 11.22 | 4.79         | 2.96        | 5.1              | 12.25 | 12.20      | 12.12        |
|   | 2.1            | 11.34 | 6.90         | 3.13        | 5.2              | 12.27 | 12.21      | 12.13        |
|   | 2.2            | 11.43 | 9.87         | 3.37        | 5.3              | 12.28 | 12.22      | 12.15        |
|   | 2.3            | 11.50 | 10.61        | 3.89        | 5.4              | 12.29 | 12.24      | 12.17        |
|   | 2.4            | 11.57 | 10.93        | 5.27        | 5.5              | 12.30 | 12.25      | 12.18        |
|   | 2.5            | 11.62 | 11.12        | 7.18        | 5.6              | 12.31 | 12.26      | 12.20        |
|   | 2.6            | 11.67 | 11.27        | 9.91        | 5.7              | 12.32 | 12.28      | 12.21        |
|   | 2.7            | 11.72 | 11.38        | 10.59       | 5.8              | 12.33 | 12.29      | 12.22        |
|   | 2.8            | 11.76 | 11.47        | 10.90       | 5.9              | 12.34 | 12.30      | 12.24        |
|   | 2.9            | 11.80 | 11.55        | 11.10       | 6.0              | 12.35 | 12.31      | 12.25        |
|   | 3.0            | 11 83 | 11 61        | 11 25       | _                | _     | _          | _            |



Figure (4.3.1) pH against volume of KOH for the three set of solutions Table (4.3.2) Alkali volume that bring the three set of solutions to the same pH

| В          | V1     | V2      | V3     | В          | V1     | V2               | V3     |
|------------|--------|---------|--------|------------|--------|------------------|--------|
| 2.3        | 0.1500 | 0.5000  | 0.9667 | 7.2        | 1.6170 | 2.1101           | 2.5007 |
| 2.4        | 0.5333 | 0.8250  | 1.2250 | 7.3        | 1.6197 | 2.1135           | 2.5044 |
| 2.5        | 0.7800 | 1.0600  | 1.4400 | 7.4        | 1.6223 | 2.1168           | 2.5081 |
| 2.6        | 0.9667 | 1.2286  | 1.6143 | 7.5        | 1.6250 | 2.1202           | 2.5117 |
| 2.7        | 1.1100 | 1.3714  | 1.7445 | 7.6        | 1.6277 | 2.1236           | 2,5154 |
| 2.8        | 1.2077 | 1.4889  | 1.8556 | 7.7        | 1.6303 | 2.1269           | 2.5190 |
| 2.9        | 1.2846 | 1.5750  | 1.9500 | 7.8        | 1.6330 | 2.1303           | 2.5227 |
| 3.0        | 1.3421 | 1.6467  | 2.0235 | 7.9        | 1.6356 | 2.1337           | 2.5264 |
| 3.1        | 1.3947 | 1.7091  | 2.0824 | 8.0        | 1.6383 | 2.1370           | 2.5300 |
| 3.2        | 1.4237 | 1.7546  | 2.1292 | 8.1        | 1.6410 | 2.1404           | 2.5337 |
| 3.3        | 1.4500 | 1.8000  | 2.1708 | 8.2        | 1.6436 | 2.1438           | 2.5374 |
| 3.4        | 1.4763 | 1.8256  | 2.2058 | 8.3        | 1.6463 | 2.1471           | 2.5410 |
| 3.5        | 1.5003 | 1.8513  | 2.2250 | 8.4        | 1.6489 | 2.1505           | 2.5447 |
| 3.6        | 1.5036 | 1.8769  | 2.2442 | 8.5        | 1.6516 | 2.1539           | 2.5484 |
| 37         | 1 5068 | 1 9009  | 2 2635 | 8.6        | 1 6543 | 2 1572           | 2 5520 |
| 3.8        | 1 5101 | 1 9100  | 2 2827 | 87         | 1 6569 | 2 1606           | 2 5557 |
| 39         | 1 5134 | 1 91 91 | 2.3007 | 8.8        | 1 6596 | 2 1640           | 2 5593 |
| 4.0        | 1 5166 | 1 9282  | 2 3080 | 89         | 1.6622 | 2.1673           | 2,5630 |
| 4.0        | 1 5199 | 1 9373  | 2 3152 | 9.0        | 1.6649 | 2.1075           | 2,5667 |
| 4.1        | 1 5231 | 1 9464  | 2 3225 | 9.0        | 1.6676 | 2.1707           | 2,5703 |
| 43         | 1.5264 | 1 9555  | 2,3223 | 9.1        | 1.6702 | 2.1741<br>2 1774 | 2.5740 |
| 4.5        | 1.5204 | 1.9535  | 2,3237 | 0.2<br>0.3 | 1.6729 | 2.1774           | 2.5740 |
| 4.4        | 1.5250 | 1 9736  | 2.5570 | 9.5<br>Q / | 1.6755 | 2.1000           | 2.5777 |
| 4.5        | 1.5362 | 1 9827  | 2.5442 | 9.4        | 1.6782 | 2.1042           | 2.5015 |
| 4.0        | 1.5302 | 1 0018  | 2,3513 | 0.6        | 1.6200 | 2.1075           | 2.5050 |
| 4.7        | 1.5554 | 2 0005  | 2.3307 | 9.0        | 1.0005 | 2.1909           | 2.5000 |
| 4.0        | 1.5427 | 2.0005  | 2.3033 | 0.2        | 1.0055 | 2.1945           | 2.5925 |
| 4.9<br>5.0 | 1.5455 | 2.0032  | 2.3732 | 0.0        | 1.0002 | 2.1370           | 2.5300 |
| 5.0        | 1.5452 | 2.0100  | 2,3004 | 10.0       | 1.0000 | 2.2041           | 2.5550 |
| 5.2        | 1.5524 | 2.0147  | 2.3077 | 10.0       | 1.0915 | 2.2170           | 2.0132 |
| 5.2        | 1.5557 | 2.0134  | 2,3343 | 10.1       | 1.0342 | 2.2311           | 2.0200 |
| 5.5<br>E 4 | 1.5590 | 2.0242  | 2.4010 | 10.2       | 1.0900 | 2.2440           | 2.0427 |
| 5.4        | 1.5022 | 2.0209  | 2.4000 | 10.5       | 1.0995 | 2.2301           | 2.05/4 |
| 5.5        | 1.5055 | 2.0337  | 2.4120 | 10.4       | 1.7100 | 2.2710           | 2.0/21 |
| 5.0        | 1.5007 | 2.0304  | 2.41/5 | 10.5       | 1.7500 | 2.2031           | 2.0000 |
| 5.7<br>E 0 | 1.5720 | 2.0431  | 2.4225 | 10.0       | 1.7500 | 2.290/           | 2.7055 |
| 5.0<br>E 0 | 1.5/52 | 2.04/9  | 2.4270 | 10.7       | 1.7700 | 2.3202           | 2./300 |
| 5.9        |        | 2.0520  | 2.4330 | 10.0       | 1.7900 | 2.3594           | 2./0/0 |
| 0.0        | 1.5010 | 2.05/3  | 2.4302 | 10.9       | 1.0334 | 2.3907           | 2.8000 |
| 0.1        | 1.5050 | 2.0621  | 2.4435 | 11.0       | 1.0750 | 2.4309           | 2.8500 |
| 0.2        | 1.5005 | 2.0008  | 2.4407 | 11.1       | 1.9251 | 2.4695           | 2.9001 |
| 6.3        | 1.5915 | 2.0/16  | 2.4539 | 11.2       | 1.98/6 | 2.5534           | 2.9667 |
| 0.4<br>6 5 | 1.5948 | 2.0/63  | 2.4592 | 11.3       | 2.066/ | 2.02/4           | 3.0455 |
| 6.5        | 1.5980 | 2.0810  | 2.4644 | 11.4       | 2.1668 | 2./223           | 3.1445 |
| 6.6        | 1.6011 | 2.0858  | 2.4696 | 11.5       | 2.3001 | 2.8376           | 3.2626 |
| 6.7        | 1.6037 | 2.0905  | 2.4749 | 11.6       | 2.4602 | 2.9835           | 3.4168 |
| 6.8        | 1.6064 | 2.0953  | 2.4801 | 11.7       | 2.6602 | 3.1602           | 3.6002 |
| 6.9        | 1.6090 | 2.1000  | 2.4853 | 11.8       | 2.9003 | 3.4002           | 3.8502 |
| 7.0        | 1.6117 | 2.1034  | 2.4906 | 11.9       | 3.2337 | 3.7003           | 4.1337 |
| 7.1        | 1.6144 | 2.1067  | 2.4958 | -          | -      | -                | -      |

**B** is the pH-meter reading.

**V1**, **V2** and **V3** are the volumes of alkali employed to bring the solutions of acid, acid+ ligand and acid+ligand+metal ion respectively to the same pH value

#### 4.3.1-Metal-ligand stability constant: (Ti-oxalacetate)

#### **4.3.1.1-Pointwise calculation method:**

Metal titration curve showed a displacement with respect to the ligand titration curve along the volume axis at pH 2.3 indicates the affinity of ligand with metal ions which release a proton and produced the volume difference ( $V_3$ - $V_2$ ), which utilized for calculation of the values of n<sup>-</sup> and pL, in turn to evaluate the metal-ligand stability constants. The variation of n<sup>-</sup> from 1.2653 to 2.0556 indicates the formation of 1:2 chelate only since the ligand is dibasic acid. The value of logK<sub>2</sub> was taken as an average for values facing n<sup>-</sup> extended from 1.2653 to 1.7987. The value found, K<sub>2</sub>=8.6384, table (4.3.3). This value was further verified by half integral method.

What should be mentioned is that, during experimental work, a precipitation occurred at low values of pH, and then disappear at high values of pH.

Titanium-oxalacetic acid form one chelate  $ML_2$ , if it compared with titanium-oxalic acid which formed chelate  $ML_2$  and  $ML_3$ , one can say this may refer to the longer chain of oxalacetic acid relative to oxalic acid chain, that may leave no room for complex  $ML_3$  (titanium-oxalacetic acid) to be formed. To verify this, x-ray diffraction needed, and also thermal gravimetric analysis can throw a light.

| $Log K_2$ | $\log \frac{(n^1)}{(2-n^-)}$ | pL      | n      | V3     | V2     |
|-----------|------------------------------|---------|--------|--------|--------|
| 10.7178   | -0.4423                      | 11.1601 | 1.2653 | 1.7445 | 1.3714 |
| 10.3010   | -0.2807                      | 10.5817 | 1.3438 | 2.0824 | 1.7091 |
| 9.9186    | -0.1655                      | 10.0841 | 1.4059 | 2.2250 | 1.8513 |
| 9.7384    | 0.0713                       | 9.6671  | 1.5409 | 2.3007 | 1.9191 |
| 9.3533    | 0.1047                       | 9.2486  | 1.5600 | 2.3297 | 1.9555 |
| 8.9859    | 0.1410                       | 8.8449  | 1.5805 | 2.3587 | 1.9918 |
| 8.6868    | 0.2306                       | 8.4562  | 1.6297 | 2.3877 | 2.0147 |
| 8.3682    | 0.3017                       | 8.0666  | 1.6670 | 2.4120 | 2.0337 |
| 8.0227    | 0.3489                       | 7.6738  | 1.6907 | 2.4330 | 2.0526 |
| 7.6792    | 0.3977                       | 7.2815  | 1.7142 | 2.4539 | 2.0716 |
| 7.5099    | 0.4243                       | 7.0856  | 1.7265 | 2.4644 | 2.0810 |
| 7.1868    | 0.4910                       | 6.6958  | 1.7559 | 2.4853 | 2.1000 |
| 6.8803    | 0.5725                       | 6.3077  | 1.7889 | 2.5044 | 2.1135 |
| 6.5203    | 0.6073                       | 5.9130  | 1.8019 | 2.5190 | 2.1269 |
| 6.1633    | 0.6441                       | 5.5192  | 1.8150 | 2.5337 | 2.1404 |
| 5.8118    | 0.6842                       | 5.1276  | 1.8286 | 2.5484 | 2.1539 |
| 5.4673    | 0.7264                       | 4.7409  | 1.8419 | 2.5630 | 2.1673 |
| 5.1384    | 0.7719                       | 4.3664  | 1.8554 | 2.5777 | 2.1808 |
| 4.8398    | 0.8209                       | 4.0189  | 1.8688 | 2.5923 | 2.1943 |
| 4.6870    | 0.8261                       | 3.8609  | 1.8701 | 2.5996 | 2.2041 |
| 4.9651    | 1.2167                       | 3.7484  | 1.9428 | 2.6280 | 2.2311 |

Table (4.3.3) Point-wise calculation method average value oflogK<sub>2</sub>=8.6384

#### **4.3.1.2-Half integral method: (titanium oxalacetate)**

Metal-ligand formation curve was plotted n<sup>-</sup> versus pL. log K<sub>2</sub>, found to be 9.76 figure (4.3.2). This value was further corroborated by linear plot method. The lengthy of n<sup>-</sup> let logK<sub>2</sub> more prone to error. (Gurdeep, 1986)



Figure (4.3.2) half integral method  $\log K_2 = 9.76$ 

#### **4.3.1.3-Linear plot method:** (titanium oxalacetate)

By plotting pL against log (n-1)/(2-n), the resulting curve at point where pL equal 1.5 should be the value of log K<sub>2</sub>. Hence logK<sub>2</sub> =9.821, figure (4.3.3). Thinking may leads to, that, two molecules of this bidentate ligand attached to metal ion as monodentate. The value was further verified by equation familiar as Henderson's or Hasselbalch's equation.



Figure (4.3.3) linear plot method logK<sub>2</sub> =9.821 **4.3.1.4-Henderson's or Hasselbalch's equation:**(titanium oxalacetate)

Because only one chelate is formed, Henderson's or Hasselbalch's equation can be employed. The lengthy of n<sup>-</sup> makes the values of stability constants calculated by these methods more difficult and more prone to error.

$$\log\left(\frac{n^{-}-1}{(2-n^{-})}\right) = \log\beta_1 + \log[L]$$

| pL      | n      | [L]      | $\log \frac{(n^ 1)}{(2 - n^-)}$ | Log[L]   | logK <sub>2</sub> |
|---------|--------|----------|---------------------------------|----------|-------------------|
|         |        |          | (2-11)                          |          |                   |
| 11.1601 | 1.2653 | 6.92E-12 | -0.4423                         | -11.1601 | 10.7178           |
| 10.8617 | 1.3132 | 1.38E-11 | -0.3409                         | -10.8617 | 10.5207           |
| 10.5817 | 1.3438 | 2.62E-11 | -0.2807                         | -10.5817 | 10.3010           |
| 10.3286 | 1.3937 | 4.69E-11 | -0.1875                         | -10.3286 | 10.1411           |
| 10.0841 | 1.4059 | 8.24E-11 | -0.1655                         | -10.0841 | 9.9186            |
| 9.86084 | 1.4418 | 1.38E-10 | -0.1016                         | -9.86084 | 9.7593            |
| 9.66712 | 1.5409 | 2.15E-10 | 0.0713                          | -9.66712 | 9.7384            |
| 9.45522 | 1.5503 | 3.51E-10 | 0.0877                          | -9.45522 | 9.5429            |
| 9.24861 | 1.5600 | 5.64E-10 | 0.1046                          | -9.24861 | 9.3533            |
| 9.04559 | 1.5701 | 9.00E-10 | 0.1226                          | -9.04559 | 9.1682            |
| 8.84485 | 1.5805 | 1.43E-09 | 0.1410                          | -8.84485 | 8.9859            |
| 8.64871 | 1.6010 | 2.25E-09 | 0.1778                          | -8.64871 | 8.8265            |
| 8.45618 | 1.6297 | 3.50E-09 | 0.2306                          | -8.45618 | 8.6868            |
| 8.26357 | 1.6558 | 5.45E-09 | 0.2800                          | -8.26357 | 8.5436            |
| 8.06659 | 1.6670 | 8.58E-09 | 0.3017                          | -8.06659 | 8.3682            |
| 7.87011 | 1.6789 | 1.35E-08 | 0.3251                          | -7.87011 | 8.1952            |
| 7.67379 | 1.6907 | 2.12E-08 | 0.3489                          | -7.67379 | 8.0227            |
| 7.47763 | 1.7026 | 3.33E-08 | 0.3734                          | -7.47763 | 7.8510            |
| 7.28145 | 1.7142 | 5.23E-08 | 0.3977                          | -7.28145 | 7.6791            |
| 7.08561 | 1.7265 | 8.21E-08 | 0.4242                          | -7.08561 | 7.5099            |
| 6.89054 | 1.7408 | 1.29E-07 | 0.4561                          | -6.89054 | 7.34674           |
| 6.69584 | 1.7559 | 2.01E-07 | 0.4910                          | -6.69584 | 7.1868            |
| 6.50323 | 1.7767 | 3.14E-07 | 0.5413                          | -6.50323 | 7.0446            |
| 6.30773 | 1.7889 | 4.92E-07 | 0.5725                          | -6.30773 | 6.8803            |
| 6.11028 | 1.7954 | 7.76E-07 | 0.5897                          | -6.11028 | 6.7000            |

Table (4.3.4) Henderson's or Hasselbalch's equation logK<sub>2</sub>=7.5696

Table (4.3.5) Stability constants of Ti-oxalacetate obtained by four methods.

| Method                        | logK <sub>2</sub> |
|-------------------------------|-------------------|
| Point-wise calculation method | 8.6384            |
| Half integral method          | 9.76              |
| Linear plot method            | 9.821             |
| Henderson's equation          | 8.6384            |

#### 4.4/Titanium-propanoic acid system:

Table (4.4.1). The pH - titration readings of acid, acid + ligand and acid + ligand + metal ions (Ti<sup>+3</sup>).  $N^0 = 0.522M$ ,  $E^0 = 5 \times 10^{-3}$  M,  $T_{Cl} = 1.5 \times 10^{-3}$ , M,  $T_{cm} = 5 \times 10^{-4}$  M,  $V^0 = 200 cm^3$ ,  $u^0 = 5 \times 10^{-3}$  t = 22.5° C

|   | Vol. of alkali | Acid  | Acid +ligand | gand Acid+ligand Volume of alka |       | Acid  | Acid+ligan | Acid+ligand+ |
|---|----------------|-------|--------------|---------------------------------|-------|-------|------------|--------------|
| _ | added          |       |              | +metal ion                      | added |       | d          | metal ion    |
|   | 0.0            | 2.33  | 2.34         | 2.29                            | 3.1   | 11.92 | 11.74      | 11.59        |
|   | 0.1            | 2.34  | 2.34         | 2.30                            | 3.2   | 11.95 | 11.77      | 11.65        |
|   | 0.2            | 2.36  | 2.37         | 2.31                            | 3.3   | 11.97 | 11.81      | 11.71        |
|   | 0.3            | 2.39  | 2.39         | 2.33                            | 3.4   | 11.99 | 11.85      | 11.76        |
|   | 0.4            | 2.42  | 2.42         | 2.36                            | 3.5   | 12.02 | 11.88      | 11.80        |
|   | 0.5            | 2.45  | 2.45         | 2.39                            | 3.6   | 12.04 | 11.91      | 11.84        |
|   | 0.6            | 2.49  | 2.49         | 2.42                            | 3.7   | 12.06 | 11.94      | 11.88        |
|   | 0.7            | 2.53  | 2.54         | 2.45                            | 3.8   | 12.08 | 11.97      | 11.91        |
|   | 0.8            | 2.58  | 2.59         | 2.48                            | 3.9   | 12.10 | 11.99      | 11.94        |
|   | 0.9            | 2.64  | 2.64         | 2.52                            | 4.0   | 12.12 | 12.01      | 11.97        |
|   | 1.0            | 2.71  | 2.71         | 2.57                            | 4.1   | 12.13 | 12.04      | 11.99        |
|   | 1.1            | 2.80  | 2.80         | 2.62                            | 4.2   | 12.15 | 12.06      | 12.02        |
|   | 1.2            | 2.92  | 2.90         | 2.69                            | 4.3   | 12.17 | 12.08      | 12.04        |
|   | 1.3            | 3.08  | 3.04         | 2.76                            | 4.4   | 12.18 | 12.10      | 12.06        |
|   | 1.4            | 3.35  | 3.24         | 2.85                            | 4.5   | 12.20 | 12.11      | 12.08        |
|   | 1.5            | 4.24  | 3.56         | 2.96                            | 4.6   | 12.21 | 12.13      | 12.10        |
|   | 1.6            | 9.93  | 4.07         | 3.12                            | 4.7   | 12.22 | 12.15      | 12.12        |
|   | 1.7            | 10.70 | 4.49         | 3.36                            | 4.8   | 12.24 | 12.16      | 12.14        |
|   | 1.8            | 11.02 | 4.84         | 3.74                            | 4.9   | 12.25 | 12.18      | 12.15        |
|   | 1.9            | 11.21 | 5.19         | 4.25                            | 5.0   | 12.26 | 12.20      | 12.17        |
|   | 2.0            | 11.34 | 5.71         | 4.65                            | 5.1   | 12.27 | 12.21      | 12.18        |
|   | 2.1            | 11.44 | 7.50         | 4.98                            | 5.2   | 12.29 | 12.22      | 12.20        |
|   | 2.2            | 11.52 | 10.42        | 5.41                            | 5.3   | 12.30 | 12.24      | 12.21        |
|   | 2.3            | 11.59 | 10.87        | 6.12                            | 5.4   | 12.31 | 12.25      | 12.23        |
|   | 2.4            | 11.65 | 11.12        | 9.23                            | 5.5   | 12.32 | 12.26      | 12.24        |
|   | 2.5            | 11.70 | 11.28        | 10.47                           | 5.6   | 12.33 | 12.27      | 12.25        |
|   | 2.6            | 11.74 | 11.39        | 10.88                           | 5.7   | 12.34 | 12.28      | 12.27        |
|   | 2.7            | 11.78 | 11.49        | 11.13                           | 5.8   | 12.35 | 12.29      | 12.28        |
|   | 2.8            | 11.82 | 11.57        | 11.28                           | 5.9   | 12.36 | 12.30      | 12.29        |
|   | 2.9            | 11.85 | 11.63        | 11.41                           | 6.0   | 12.37 | 12.32      | 12.30        |
|   | 3.0            | 11 89 | 11 68        | 11 52                           | _     | _     | _          | _            |



Figure (4.4.1) Titration curves of three sets of solutions versus pH Table (4.4.2) alkali volume needed to bring the three sets solutions to the same pH

| B   | V1     | V2     | V3     | В    | V1     | V2     | V3     |
|-----|--------|--------|--------|------|--------|--------|--------|
| 2.4 | 0.3250 | 0.3333 | 0.5333 | 7.2  | 1.5520 | 2.0832 | 2.3347 |
| 2.5 | 0.625  | 0.6200 | 0.8500 | 7.3  | 1.5538 | 2.0888 | 2.3379 |
| 2.6 | 0.8333 | 0.8200 | 1.0600 | 7.4  | 1.5555 | 2.0944 | 2.3412 |
| 2.7 | 0.9857 | 0.9827 | 1.2143 | 7.5  | 1.5573 | 2.1000 | 2.3444 |
| 2.8 | 1.1000 | 1.1000 | 1.3445 | 7.6  | 1.5591 | 2.1034 | 2.3476 |
| 2.9 | 1.1833 | 1.2000 | 1.4455 | 7.7  | 1.5608 | 2.1069 | 2.3508 |
| 3.0 | 1.2500 | 1.2714 | 1.5250 | 7.8  | 1.5626 | 2.1103 | 2.3540 |
| 3.1 | 1.3074 | 1.3300 | 1.5875 | 7.9  | 1.5643 | 2.1137 | 3.3572 |
| 3.2 | 1.3444 | 1.3800 | 1.6333 | 8.0  | 1.5661 | 2.1171 | 2.3605 |
| 3.3 | 1.3815 | 1.4188 | 1.6750 | 8.1  | 1.5678 | 2.1206 | 2.3637 |
| 3.4 | 1.4056 | 1.4500 | 1.7105 | 8.2  | 1.5696 | 2.1240 | 2.3669 |
| 3.5 | 1.4169 | 1.4813 | 1.7368 | 8.3  | 1.5714 | 2.1274 | 2.3701 |
| 3.6 | 1.4281 | 1.5078 | 1.7632 | 8.4  | 1.5731 | 2.1308 | 2.3733 |
| 3.7 | 1.4393 | 1.5275 | 1.7895 | 8.5  | 1.5749 | 2.1342 | 2.3765 |
| 3.8 | 1.4506 | 1.5471 | 1.8118 | 8.6  | 1.5766 | 2.1377 | 2.3797 |
| 3.9 | 1.4618 | 1.5567 | 1.8314 | 8.7  | 1.5784 | 2.1411 | 2.3830 |
| 4.0 | 1 4730 | 1 5863 | 1 8510 | 8.8  | 1 5801 | 2 1445 | 2 3862 |
| 4 1 | 1 4843 | 1 6071 | 1 8706 | 89   | 1 5919 | 2 1479 | 2 3894 |
| 4.2 | 1 4955 | 1 6310 | 1 8902 | 9.0  | 1 5837 | 2 1514 | 2 3926 |
| 4.3 | 1.5011 | 1.6548 | 1.9125 | 9.1  | 1.5854 | 2.1548 | 2.3958 |
| 44  | 1 5028 | 1 6786 | 1 9375 | 9.2  | 1 5872 | 2 1582 | 2 3990 |
| 4.5 | 1 5046 | 1 7029 | 1 9625 | 9.3  | 1.5889 | 2 1616 | 2 4057 |
| 4.6 | 1 5063 | 1 7314 | 1 9875 | 94   | 1 5907 | 2 1651 | 2 4137 |
| 47  | 1 5081 | 1 7600 | 2 0152 | 9.5  | 1 5924 | 2 1685 | 2 4218 |
| 4.8 | 1 5098 | 1 7886 | 2 0455 | 9.6  | 1 5942 | 2 1719 | 2 4298 |
| 4.9 | 1.5116 | 1.8172 | 2.0758 | 9.7  | 1.5960 | 2.1753 | 2.4379 |
| 5.0 | 1 5134 | 1 8457 | 2 1047 | 9.8  | 1.5977 | 2 1788 | 2 4460 |
| 5.0 | 1 5151 | 1 8743 | 2 1279 | 99   | 1 5995 | 2 1822 | 2 4540 |
| 5.2 | 1 5169 | 1 9019 | 2 1512 | 10.0 | 1 6091 | 2 1856 | 2 4621 |
| 5.3 | 1.5186 | 1.9212 | 2.1744 | 10.1 | 1.6351 | 2.1925 | 2.4702 |
| 54  | 1 5204 | 1 9404 | 2 1977 | 10.2 | 1 6351 | 2 1925 | 2 4782 |
| 5.5 | 1.5221 | 1.9596 | 2.2127 | 10.3 | 1.6481 | 2.1959 | 2.4863 |
| 5.6 | 1.5239 | 1.9789 | 2.2268 | 10.4 | 1.6610 | 2.1993 | 2.4944 |
| 5.7 | 1.5257 | 1.9981 | 2.2409 | 10.5 | 1.6740 | 2.2178 | 2.5073 |
| 5.8 | 1.5274 | 2.0050 | 2.2549 | 10.6 | 1.6870 | 2.2400 | 2.5317 |
| 5.9 | 1.5292 | 2.0106 | 2.2690 | 10.7 | 1.7000 | 2.2622 | 2.5561 |
| 6.0 | 1.5309 | 2.0162 | 2.2831 | 10.8 | 1.7313 | 2.2845 | 2.5805 |
| 6.1 | 1.5327 | 2.0218 | 2.2972 | 10.9 | 1.7625 | 2.3120 | 2.6080 |
| 6.2 | 1.5344 | 2.0274 | 2.3026 | 11.0 | 1.7938 | 2.3520 | 2.6480 |
| 6.3 | 1.5362 | 2.0330 | 2.3058 | 11.1 | 1.8422 | 2.3920 | 2.6880 |
| 64  | 1 5380 | 2 0385 | 2 3090 | 11.2 | 1 8948 | 2 4501 | 2 7467 |
| 6.5 | 1 5397 | 2 0441 | 2 3122 | 11.3 | 1 9693 | 2 5183 | 2 8155 |
| 6.6 | 1.5415 | 2.0497 | 2.3154 | 11.0 | 2,0601 | 2.6101 | 2,8924 |
| 67  | 1.5432 | 2.0553 | 2.3187 | 11.5 | 2.1751 | 2.7126 | 2.9819 |
| 6.8 | 1.5450 | 2.0609 | 2.3219 | 11.6 | 2.3168 | 2.8502 | 3.1165 |
| 6.9 | 1.5467 | 2.0665 | 2.3251 | 11.7 | 2.5002 | 3.0402 | 3.2835 |
| 7.0 | 1 5485 | 2 0721 | 2.3283 | 11.8 | 2 7502 | 3 2752 | 3 5002 |
| 7.1 | 1.5503 | 2.0777 | 2.3315 | 11.9 | 3.0337 | 3.5670 | 3.7670 |

B is the pH-meter reading.

V1, V2 and V3 are the volumes of alkali employed to bring the solutions of acid , acid+ ligand and acid+ligand+metal ion respectively to the same pH value.

4.4.1-Metal-ligand stability constants: (titanium propanoate)

4.4.1.1-pointwise calculation method:
For calculation of stability constants by this method, n<sup>-</sup> and pL were calculated at every pH, by the aid of excel program. Complex titration curve pass over the ligand titration curve at pH 2.4, table (4.4.2), and figure (4.4.1), indicating the formation of the complex. The values of n<sup>-</sup> extends from 1.0835 to 2.8135 indicates the formation ML<sub>2</sub> and ML<sub>3</sub> complex species characterized in table (4.4.3) and table (4.4.4) respectively. The values were found. logK<sub>2</sub>=4.7564, and log K<sub>3</sub>=4.1015.

| V2     | V3     | n      | pL     | $\log \frac{(n^1)}{(2-n^-)}$ | logK <sub>2</sub> |
|--------|--------|--------|--------|------------------------------|-------------------|
|        |        |        |        |                              |                   |
| 0.6200 | 0.8500 | 1.1875 | 5.2731 | -0.6369                      | 4.6362            |
| 0.8200 | 1.0600 | 1.2030 | 5.1779 | -0.5938                      | 4.5841            |
| 0.9827 | 1.2143 | 1.2019 | 5.0788 | -0.5968                      | 4.4820            |
| 1.1000 | 1.3445 | 1.2815 | 4.9998 | -0.4070                      | 4.5928            |
| 1.2000 | 1.4455 | 1.3645 | 4.9228 | -0.2415                      | 4.6814            |
| 1.2714 | 1.5250 | 1.4331 | 4.8433 | -0.1170                      | 4.7263            |
| 1.3300 | 1.5875 | 1.4610 | 4.7533 | -0.0679                      | 4.6854            |
| 1.3800 | 1.6333 | 1.5071 | 4.6692 | 0.0124                       | 4.6816            |
| 1.4188 | 1.6750 | 1.5338 | 4.5803 | 0.0587                       | 4.6391            |
| 1.4500 | 1.7105 | 1.6014 | 4.5050 | 0.1786                       | 4.6836            |
| 1.4813 | 1.7368 | 1.6963 | 4.4406 | 0.3603                       | 4.8008            |
| 1.5078 | 1.7632 | 1.8021 | 4.3837 | 0.6077                       | 4.9913            |

Table (4.4.3) point-wise method  $LogK_2$  average value =4.7567

Table (4.4.4) point-wise method LogK<sub>3</sub> average value =4.1015

| V2     | V3     | n      | pL     | $\log \frac{(n^2)}{(3-n^-)}$ | logK <sub>3</sub> |
|--------|--------|--------|--------|------------------------------|-------------------|
| 1.5567 | 1.8314 | 2.0627 | 4.2195 | -1.1746                      | 3.0449            |
| 1.5863 | 1.8510 | 2.1494 | 4.1760 | -0.7554                      | 3.4206            |
| 1.6071 | 1.8706 | 2.2306 | 4.2196 | -0.5234                      | 3.6962            |
| 1.6310 | 1.8902 | 2.3229 | 4.1926 | -0.3216                      | 3.8710            |
| 1.6548 | 1.9125 | 2.5137 | 4.2574 | 0.0238                       | 4.2812            |
| 1.6786 | 1.9375 | 2.8135 | 4.5987 | 0.6396                       | 5.2383            |

#### **4.4.1.2-Half integral method: (**titanium propanoate)

The stability constants obtained by construction of complex formation curve, figure (4.4.2). The values of pL at which  $n^- = 1.5$  and  $n^- = 2.5$  corresponds to  $\log K_2$  and  $\log K_3$  respectively. Values were found,  $\log K_2 = 4.655$  and  $\log K_3 = 4.251$ These values were further verified by linear plot method.



Fig. (4.4.2) Half integral method  $logK_2 = 4.655 \& logK_3 = 4.251$ 

#### **4.4.1.3-Linear plot method: (**titanium propanoate)

 $\log(n^{-1})/(2-n^{-})$  and  $\log(n^{-2})/(3-n^{-})$  were plotting against the corresponding pL for determination of  $\log K_2$  and  $\log K_3$  respectively.  $\log K_2=4.655$  and  $\log K_3=4.25$ . Figures (4.4.3), and (4.4.4). These values were further verified by least squares method.



Fig. (4.4.3)Linear plot method logK<sub>2</sub> = 4.655



Fig.(4.4.4) . Linear plot method  $logK_3 = 4.25$ **4.4.1.4-Least squares method :** (titanium propanoate)

Since there are 1:2 and 1:3 complex species the following expression should be used:

$$\left(\frac{n^{-}-1}{2-n^{-}}\right)L^{-} = + \left(\frac{3-n^{-}}{2-n^{-}}\right)L^{-} K_{2}K_{3} + K_{3} - - - - (4.4.1)$$

The resulting equation is a linear (y=mx+b) y-intercept gives  $K_3$  and the slope  $K_2K_3$ .on division by  $K_2K_3$  gives x-intercept  $-1/K_2$  and slope  $1/K_2K_3$ , which is useful check on the consistency of the data. Equation (4.4.1) becomes:

$$\left(\frac{3-n^{-}}{2-n^{-}}\right)L] = \left(\frac{n^{-}-1}{2-n^{-}}\right)L^{-}\frac{1}{K_{2}K_{3}} - \frac{1}{K_{2}} - \dots - (4.4.2)$$

Table (4.4.5) logK<sub>2</sub> & logK<sub>3</sub> by least squares method

| pL     | n      | [L]     | $\frac{(3-n^{-})L]}{(2-n^{-})}$ | $\frac{(n^1)}{(2-n^-)[L]}$ |
|--------|--------|---------|---------------------------------|----------------------------|
|        |        |         | . ,                             |                            |
| 5.2731 | 1.1875 | 5.3E-06 | 1.2E-05                         | 43273.7427                 |
| 5.1779 | 1.2030 | 6.6E-06 | 1.5E-05                         | 38379.4056                 |
| 5.0788 | 1.2019 | 8.3E-06 | 1.9E-05                         | 30339.0368                 |
| 4.9998 | 1.2815 | 1.0E-05 | 2.4E-05                         | 39155.6176                 |
| 4.9228 | 1.3645 | 1.2E-05 | 3.1E-05                         | 48014.1694                 |
| 4.8433 | 1.4331 | 1.4E-05 | 4.0E-05                         | 53250.2639                 |
| 4.7533 | 1.4610 | 1.8E-05 | 5.0E-05                         | 48467.1681                 |
| 4.6692 | 1.5071 | 2.1E-05 | 6.5E-05                         | 48040.9190                 |
| 4.5803 | 1.5338 | 2.6E-05 | 8.3E-05                         | 43560.2481                 |
| 4.5050 | 1.6014 | 3.1E-05 | 0.0001                          | 48261.3917                 |
| 4.4406 | 1.6963 | 3.6E-05 | 0.0002                          | 63217.6627                 |
| 4.3837 | 1.8021 | 4.1E-05 | 0.0003                          | 98024.2553                 |
| 4.3340 | 1.9137 | 4.6E-05 | 0.0006                          | 228575.0338                |
| 4.2800 | 2.0011 | 5.2E-05 | -0.0469                         | -17084838.08               |

111

| 4.2195      | 2.0627      | 6.0E-05 | -0.0009  | -280901.229  |
|-------------|-------------|---------|----------|--------------|
| 4.1760      | 2.1494      | 6.7E-05 | -0.0004  | -115394.9119 |
| 4.2196      | 2.2306      | 6.0E-05 | -0.0002  | -88498.5412  |
| 4.1926      | 2.3229      | 6.4E-05 | -0.0001  | -63837.9119  |
| 4.2574      | 2.5137      | 5.5E-05 | -5.2E-05 | -53301.5501  |
| 4.598715796 | 2.813477727 | 2.5E-05 | -5.8E-06 | -88487.5877  |
| 5.27307629  | 1.18748957  | 5.3E-06 | 1.2E-05  | 43273.7427   |



Fig. (4.4.5)Determination of  $logK_2$ = 4.5257 and  $logK_3$  = 4.0763 (y-intercept)



Fig.(4.4.6) Determination of  $logK_2 = 4.5229\& logK_3 = 4.0364$ (x-intercept)

# Linear Regression

| Parameter | Value      | Error      | R <sup>2</sup> |
|-----------|------------|------------|----------------|
| Intercept | -0.00003   | 0.00002    | 0.99997        |
| Slope     | 2.74583E-9 | 5.2387E-12 |                |

Table (4.4.6) Stability constants of Ti-propanoate obtained by four methods

| Method                             | logK <sub>2</sub> | logK <sub>3</sub> | logK <sub>2</sub> +logK <sub>3</sub> |
|------------------------------------|-------------------|-------------------|--------------------------------------|
| Pointwise method                   | 4.7567            | 4.1015            | 8.8582                               |
| Half integral method               | 4.655             | 4.251             | 8.9060                               |
| Linear plot method                 | 4.655             | 4.25              | 8.9050                               |
| Least squares method (y-intercept) | 4.5257            | 4.0763            | 8.6020                               |
| Least squares method (x-intercept) | 4.5229            | 4.0384            | 8.5613                               |

*Table* (4.5.1). The pH - titration readings of acid, acid + ligand and acid + ligand + metal ions (Ti<sup>+3</sup>).  $N^0 = 0.525M$ ,  $E^0 = 6.1465 \times 10^{-3}M$ ,  $T_{Cl} = 5 \times 10^{-5}M$ ,  $T_{cm} = 1.25 \times 10^{-5}M$ ,  $V^0 = 200cm^3$ ,  $u^0 = 5 \times 10^{-3}$ ,  $t = 3.65^0C$ 

| Vol. of alkali | Acid  | Acid +ligand | Acid+ligand | Volume of alkali | Acid  | Acid+ligan | Acid+ligand+ |
|----------------|-------|--------------|-------------|------------------|-------|------------|--------------|
| added          |       |              | +metal ion  | added            |       | d          | metal ion    |
| 0.0            | 2.38  | 2.39         | 2.31        | 2.7              | 11.88 | 6.14       | 4.87         |
| 0.1            | 2.40  | 2.40         | 2.31        | 2.8              | 11.91 | 6.50       | 5.18         |
| 0.2            | 2.42  | 2.42         | 2.33        | 2.9              | 11.94 | 6.95       | 5.53         |
| 0.3            | 2.44  | 2.44         | 2.34        | 3.0              | 11.97 | 9.26       | 5.84         |
| 0.4            | 2.47  | 2.46         | 2.35        | 3.1              | 12.00 | 10.39      | 6.13         |
| 0.5            | 2.50  | 2.48         | 2.37        | 3.2              | 12.02 | 10.85      | 6.45         |
| 0.6            | 2.53  | 2.51         | 2.39        | 3.3              | 12.05 | 11.14      | 6.83         |
| 0.7            | 2.57  | 2.54         | 2.42        | 3.4              | 12.07 | 11.32      | 7.67         |
| 0.8            | 2.62  | 2.58         | 2.44        | 3.5              | 12.09 | 11.46      | 9.95         |
| 0.9            | 2.68  | 2.62         | 2.47        | 3.6              | 12.11 | 11.56      | 10.58        |
| 1.0            | 2.75  | 2.66         | 2.50        | 3.7              | 12.13 | 11.64      | 10.94        |
| 1.1            | 2.84  | 2.72         | 2.53        | 3.8              | 12.15 | 11.70      | 11.18        |
| 1.2            | 2.95  | 2.78         | 2.57        | 3.9              | 12.17 | 11.76      | 11.34        |
| 1.3            | 3.13  | 2.85         | 2.62        | 4.0              | 12.18 | 11.81      | 11.47        |
| 1.4            | 3.45  | 2.93         | 2.67        | 4.1              | 12.20 | 11.85      | 1.57         |
| 1.5            | 5.50  | 3.03         | 2.72        | 4.2              | 12.22 | 11.89      | 11.64        |
| 1.6            | 10.40 | 3.15         | 2.78        | 4.3              | 12.23 | 11.93      | 11.71        |
| 1.7            | 10.82 | 3.29         | 2.86        | 4.4              | 12.24 | 11.96      | 11.77        |
| 1.8            | 11.13 | 3.47         | 2.94        | 4.5              | 12.26 | 11.99      | 11.82        |
| 1.9            | 11.31 | 3.70         | 3.04        | 4.6              | 12.27 | 12.02      | 11.87        |
| 2.0            | 11.45 | 3.97         | 3.15        | 4.7              | 12.28 | 12.05      | 11.91        |
| 2.1            | 11.54 | 4.26         | 3.29        | 4.8              | 12.29 | 12.07      | 11.95        |
| 2.2            | 11.62 | 4.55         | 3.48        | 4.9              | 12.31 | 12.10      | 11.98        |
| 2.3            | 11.69 | 4.83         | 3.73        | 5.0              | 12.32 | 12.12      | 12.01        |
| 2.4            | 11.74 | 5.18         | 4.00        | 5.1              | 12.33 | 12.14      | 12.03        |
| 2.5            | 11.79 | 5.50         | 4.29        | 5.2              | 12.34 | 12.16      | 12.06        |
| 2.6            | 11.84 | 5.82         | 4.58        | 5.3              | 12.35 | 12.18      | 12.09        |



Fig. (4.5.1) Plotting of three sets of solutions versus pH Table (4.5.2) Alkali volume used for bringing three sets of solutions to the same pH

| В          | V1     | V2               | V3     | В            | V1     | V2               | V3                  |
|------------|--------|------------------|--------|--------------|--------|------------------|---------------------|
| 2.4        | 0.1000 | 0.1000           | 0.6333 | 7.2          | 1.5366 | 2.9108           | 3.3441              |
| 2.5        | 0.5000 | 0.5667           | 1.0000 | 7.3          | 1.5388 | 2.9152           | 3.3560              |
| 2.6        | 0.7600 | 0.8500           | 1.2600 | 7.4          | 1.5409 | 2.9195           | 3.3679              |
| 2.7        | 0.9286 | 1.0667           | 1.4600 | 7.5          | 1.5431 | 2.9238           | 3.3798              |
| 2.8        | 1.0556 | 1.2286           | 1.6250 | 7.6          | 1.5453 | 2.9281           | 3.3917              |
| 2.9        | 1.1546 | 1.3625           | 1.7500 | 7.7          | 1.5474 | 2.9325           | 3.4013              |
| 3.0        | 1.2278 | 1.4700           | 1.8600 | 7.8          | 1.5496 | 2.9368           | 3.4057              |
| 3.1        | 1.2833 | 1.5583           | 1.9546 | 7.9          | 1.5517 | 2.9411           | 3.4101              |
| 3.2        | 1.3219 | 1.6357           | 2.0357 | 8.0          | 1.5539 | 2.9455           | 3.4145              |
| 3.3        | 1.3531 | 1.7056           | 2.1053 | 8.1          | 1.556  | 2.9498           | 3.4189              |
| 3.4        | 1.3844 | 1.7611           | 2.1579 | 8.2          | 1.5582 | 2.9541           | 3.4232              |
| 3.5        | 1.4024 | 1.8130           | 2.2080 | 8.3          | 1.5603 | 2.9584           | 3.4276              |
| 3.6        | 1.4073 | 1.8565           | 2.2480 | 8.4          | 1.5625 | 2.9628           | 3.4320              |
| 3.7        | 1.4122 | 1.9000           | 2.2880 | 8.5          | 1.5647 | 2.9671           | 3.4364              |
| 3.8        | 1.4171 | 1.9370           | 2.3259 | 8.6          | 1.5668 | 2.9714           | 3.4408              |
| 39         | 1 4220 | 1 9741           | 2 3630 | 87           | 1,5690 | 2 9758           | 3 4452              |
| 4.0        | 1 4268 | 2 0104           | 2 4000 | 8.8          | 1 5711 | 2 9801           | 3 4496              |
| 4.1        | 1 4317 | 2.0104           | 2.1000 | 89           | 1 5733 | 2.5001           | 3 4540              |
| 4.1        | 1 4366 | 2.0440           | 2.4540 | 9.0          | 1.5754 | 2.3044           | 3 4583              |
| 4.2<br>4.3 | 1 4415 | 2.0733           | 2.4000 | 9.0          | 1.5776 | 2,9031           | 3 4627              |
| 5<br>1 1   | 1 4463 | 2.1130           | 2.5055 | 0.2          | 1.5797 | 2.5551           | 3 4671              |
| 4.4        | 1,4403 | 2.1405           | 2.5575 | 9.2          | 1.5757 | 3 0035           | 3.4071              |
| 4.5        | 1,4512 | 2.1020           | 2.5724 | 9.5<br>Q /   | 1.5015 | 3 0124           | 3 4759              |
| 4.0        | 1,4501 | 2.2175           | 2.0005 | 9.4          | 1.5862 | 3 0212           | 3 4803              |
| 4.7        | 1,4010 | 2.2350           | 2.0414 | 9.5          | 1.5002 | 3 0301           | 3 4847              |
| 4.0        | 1,4055 | 2,2000           | 2.0755 | 0.7          | 1,5004 | 3 0380           | 3 4800              |
| 4.J<br>5.0 | 1,4707 | 2.3200           | 2.7037 | 0.8          | 1.5505 | 3.0303           | 3 /03/              |
| 5.0        | 1,4750 | 2.3400           | 2.7410 | 0.0          | 1.50/8 | 3.0566           | 3 4078              |
| 5.1        | 1.4003 | 2.3772           | 2.7742 | 10.0         | 1.5540 | 2.0500           | 2 5070              |
| 53         | 1.4004 | 2.4005           | 2.0037 | 10.0         | 1.5970 | 3.0000           | 3 5738              |
| 5.0        | 1.4902 | 2.4575           | 2.0343 | 10.1         | 1.5551 | 3 0832           | 3 5307              |
| 5.4        | 1,4551 | 2.4000           | 2.0023 | 10.2         | 1.0000 | 2,0022           | 2.5557              |
| 5.5<br>E 6 | 1.5000 | 2.5000           | 2.0914 | 10.5         | 1.0233 | 3.0920<br>2.1022 | 3.3330<br>2 E714    |
| 5.0        | 1.5022 | 2.3313           | 2.9220 | 10.4<br>10 E | 1.0302 | 3.1022           | 3.3/14<br>3 E 0 7 2 |
| 5./<br>E 0 | 1.5045 | 2.5025           | 2.9549 | 10.5         | 1.0550 | 5.1259<br>2.1457 | 3.30/3              |
| 5.0        | 1.5005 | 2.3930           | 2.9071 | 10.0         | 1.0077 | 3.1437<br>2.1674 | 3.0030              |
| 5.9        | 1.5060 | 2.0250           | 3.0207 | 10./         | 1.0024 | 3.10/4           | 3.0334              |
| 0.0<br>C 1 | 1.5106 | 2.0505           | 3.0552 | 10.0         | 1.09/1 | 3.1691           | 3.0011              |
| 0.1        | 1.5129 | 2.00/5<br>2.7107 | 3.009/ | 10.9         | 1.7200 | 3.21/3           | 3.0009<br>2.7750    |
| 0.2<br>C D | 1.5151 | 2./10/           | 3.1219 | 11.0         | 1./581 | 3.2518           | 3./250              |
| 6.3        | 1.51/2 | 2./445           | 3.1531 | 11.1         | 1./904 | 3.2862           | 3./66/              |
| ь.4<br>с г | 1.5194 | 2.7/22           | 3.1844 | 11.2         | 1.8389 | 3.3334           | 3.8126              |
| b.5        | 1.5216 | 2.8000           | 3.2132 | 11.3         | 1.8945 | 3.3889           | 3.8751              |
| 6.6        | 1.5237 | 2.8222           | 3.2395 | 11.4         | 1.9644 | 3.4572           | 3.9462              |
| 6.7        | 1.5259 | 2.8445           | 3.2658 | 11.5         | 2.0557 | 3.5401           | 4.0301              |
| 6.8        | 1.528  | 2.8667           | 3.2621 | 11.6         | 2.1751 | 3.6501           | 4.1430              |
| 6.9        | 1.5302 | 2.8889           | 3.3083 | 11.7         | 2.3202 | 3.8002           | 4.2859              |
| 7.0        | 1.5323 | 2.9022           | 3.3202 | 11.8         | 2.5202 | 3.9802           | 4.4602              |
| 7.1        | 1.5345 | 2.9065           | 3.3321 | 11.9         | 2.7670 | 4.2252           | 4.6752              |

Table (4.5.3). Calculation of proton attached to lignd and ligand attached to metal.

|          | V1     | W2     | W2     | n                | n <sup>-</sup> | nI      |
|----------|--------|--------|--------|------------------|----------------|---------|
| <u> </u> | 0 1000 | 0.1000 | 0.6222 | 2 0000           | 0.2121         | pr      |
| 2.4      | 0.1000 | 0.1000 | 1,0000 | 3.0000<br>2.0022 | 0.3121         | 2.0/30  |
| 2.5      | 0.5000 | 0.500/ | 1.0000 | 2.8833           | 0.2/39         | 11.4380 |
| 2.0      | 0.7000 | 0.8500 | 1.2600 | 2.8420           | 0.2003         | 11.1309 |
| 2.7      | 0.9286 | 1.0667 | 1.4600 | 2./58/           | 0.2709         | 10.8381 |
| 2.8      | 1.0556 | 1.2286 | 1.6250 | 2.6978           | 0.2853         | 10.5407 |
| 2.9      | 1.1546 | 1.3625 | 1.7500 | 2.6370           | 0.2917         | 10.2420 |
| 3.0      | 1.2278 | 1.4700 | 1.8600 | 2.5772           | 0.3072         | 9.9447  |
| 3.1      | 1.2833 | 1.5583 | 1.9546 | 2.5201           | 0.3263         | 9.6481  |
| 3.2      | 1.3219 | 1.6357 | 2.0357 | 2.4525           | 0.3476         | 9.3517  |
| 3.3      | 1.3531 | 1.7056 | 2.1053 | 2.3850           | 0.3672         | 9.0551  |
| 3.4      | 1.3844 | 1.7611 | 2.1579 | 2.3429           | 0.3776         | 8.7569  |
| 3.5      | 1.4024 | 1.8130 | 2.2080 | 2.2838           | 0.3955         | 8.4510  |
| 3.6      | 1.4073 | 1.8565 | 2.2480 | 2.2164           | 0.4161         | 8.1635  |
| 3.7      | 1.4122 | 1.9000 | 2.2880 | 2.1491           | 0.4385         | 7.8674  |
| 3.8      | 1.4171 | 1.9370 | 2.3259 | 2.0932           | 0.4633         | 7.5717  |
| 3.9      | 1.4220 | 1.9741 | 2.3630 | 2.0370           | 0.4891         | 7.2762  |
| 4.0      | 1.4268 | 2.0104 | 2.4000 | 1.9821           | 0.5174         | 6.9813  |
| 4.1      | 1.4317 | 2.0448 | 2.4345 | 1.9307           | 0.5454         | 6.6863  |
| 4.2      | 1.4366 | 2.0793 | 2.4690 | 1.8791           | 0.5757         | 6.3917  |
| 4.3      | 1.4415 | 2.1138 | 2.5035 | 1.8275           | 0.6085         | 6.0980  |
| 4.4      | 1.4463 | 2.1483 | 2.5379 | 1.7757           | 0.6442         | 5.8049  |
| 4.5      | 1.4512 | 2.1828 | 2.5724 | 1.7241           | 0.6833         | 5.5129  |
| 4.6      | 1.4561 | 2.2179 | 2.6069 | 1.6715           | 0.7257         | 5.2222  |
| 4.7      | 1.4610 | 2.2536 | 2.6414 | 1.6178           | 0.7722         | 4.9336  |
| 4.8      | 1.4659 | 2.2893 | 2.6759 | 1.5641           | 0.8234         | 4.6484  |
| 4.9      | 1.4707 | 2.3200 | 2.7097 | 1.5190           | 0.8799         | 4.3690  |
| 5.0      | 1.4756 | 2.3486 | 2.7410 | 1.4777           | 0.9360         | 4.0982  |
| 5.1      | 1.4805 | 2.3772 | 2,7742 | 1.4364           | 1.0021         | 3.8453  |
| 5.2      | 1.4854 | 2.4063 | 2.8057 | 1.3943           | 1.0699         | 3.6192  |
| 5.3      | 1.4902 | 2.4375 | 2.8343 | 1.3483           | 1.1365         | 3.4323  |
| 5.4      | 1.4951 | 2.4688 | 2.8629 | 1.3023           | 1.2097         | 3.2965  |
| 5.5      | 1.5000 | 2.5000 | 2.8914 | 1.2564           | 1.2905         | 3.2129  |
| 5.6      | 1.5022 | 2.5313 | 2.9226 | 1.2057           | 1.4008         | 3.1787  |
| 5.7      | 1.5043 | 2.5625 | 2.9549 | 1.1550           | 1.5306         | 3.1710  |
| 5.8      | 1.5065 | 2.5938 | 2.9871 | 1.1043           | 1.6780         | 3.2069  |
| 5.9      | 1.5086 | 2.6250 | 3.0207 | 1.0536           | 1.8544         | 3.2592  |
| 6.0      | 1.5108 | 2.6563 | 3.0552 | 1.0028           | 2.0629         | 3.3414  |
| 6.1      | 1.5129 | 2.6875 | 3.0897 | 0.9521           | 2.3071         | 3.4699  |
| 6.2      | 1.5151 | 2.7167 | 3.1219 | 0.9051           | 2.5718         | 3.6778  |
| 6.3      | 1.5172 | 2.7445 | 3.1531 | 0.8603           | 2.8701         | 4.1950  |

## **4.5.1-Metal-ligand stability constants:** (titanium citrate)

### 4.5.1.1-pointwise calculation method:

 $n^{-}$  and pL were calculated at every pH, by the aid of excel program. Complex titration curve pass over the ligand titration curve at pH 2.6, table (4.5.3) and figure (4.5.1), indicating the formation of the complex. The values of  $n^{-}$  extend from 0.26626 to 2.8701 and since the ligand is a tridentate this indicates the

formation ML chelate species characterized in table (4.5.4). The value was found, logK<sub>1</sub>=7.8351

| V2     | V3     | n      | pL      | $\log \frac{n^-}{(1-n^-)}$ | logK <sub>2</sub> |
|--------|--------|--------|---------|----------------------------|-------------------|
|        |        |        |         |                            |                   |
| 0.8500 | 1.2600 | 0.2663 | 11.1369 | -0.4402                    | 10.6967           |
| 1.0667 | 1.4600 | 0.2709 | 10.8381 | -0.4300                    | 10.4081           |
| 1.2286 | 1.6250 | 0.2853 | 10.5407 | -0.3989                    | 10.1418           |
| 1.3625 | 1.7500 | 0.2917 | 10.2420 | -0.3853                    | 9.8570            |
| 1.4700 | 1.8600 | 0.3072 | 9.9444  | -0.3532                    | 9.5915            |
| 1.5583 | 1.9546 | 0.3263 | 9.6481  | -0.3148                    | 9.3332            |
| 1.6357 | 2.0357 | 0.3476 | 9.3517  | -0.2734                    | 9.0783            |
| 1.7056 | 2.1053 | 0.3672 | 9.0551  | -0.2364                    | 8.8186            |
| 1.7611 | 2.1579 | 0.3776 | 8.7569  | -0.2170                    | 8.5399            |
| 1.8130 | 2.2080 | 0.3955 | 8.4600  | -0.1842                    | 8.2758            |
| 1.8565 | 2.2480 | 0.4161 | 8.1635  | -0.1471                    | 8.0164            |
| 1.9000 | 2.2880 | 0.4385 | 7.8674  | -0.1073                    | 7.7601            |
| 1.9370 | 2.3259 | 0.4633 | 7.5717  | -0.0639                    | 7.5078            |
| 1.9741 | 2.3630 | 0.4891 | 7.2762  | -0.0189                    | 7.2573            |
| 2.0104 | 2.4000 | 0.5174 | 6.9813  | 0.0303                     | 7.0115            |
| 2.0448 | 2.4345 | 0.5454 | 6.6863  | 0.0791                     | 6.7654            |
| 2.0793 | 2.4690 | 0.5757 | 6.3919  | 0.1324                     | 6.5243            |
| 2.1138 | 2.5035 | 0.6085 | 6.0980  | 0.1916                     | 6.2896            |
| 2.1483 | 2.5379 | 0.6442 | 5.8049  | 0.2579                     | 6.0628            |
| 2.1828 | 2.5724 | 0.6833 | 5.5129  | 0.3339                     | 5.8468            |
| 2.2179 | 2.6069 | 0.7257 | 5.2222  | 0.4226                     | 5.6448            |
| 2.2536 | 2.6414 | 0.7722 | 4.9336  | 0.5301                     | 5.4637            |
| 2.2893 | 2.6759 | 0.8234 | 4.6484  | 0.6685                     | 5.3169            |
| 2.3200 | 2.7097 | 0.8799 | 4.3690  | 0.8648                     | 5.2338            |

Table (4.5.4) Point-wise method (Ti-citrate)  $logK_1$  average value =7.8351

#### **4.5.1.2-Half integral method: (**titanium citrate)

The stability constants obtained by construction of complex formation figure (4.5.2). The values of pL at which  $n^- = 0.5$ , Value was found, hence  $\log K_1 = 7.26$ . This value was further verified by linear plot method.



Fig.(4.5.2) Metal-ligand titration curve logK<sub>1</sub>=7.26

#### 4.5.1.3- Linear plot method: (Ti-citrate)

In this method pL plotted versus log  $n^{-}/(1-n^{-})$ , where the resulting curve cross pL axis is the value of logK<sub>1</sub>= 7.26. figure (4.5.3).



Fig.(4.5.3) Metal-ligand titration curve logK<sub>1</sub>=7.26

### 4.5.1.4- Hinderson-Hasselbalch's equation: (Ti-citrate)

| pL      | [L]     | n      | $\log \frac{n^-}{(1-n^-)}$ | logL]    | $logK_1$ |
|---------|---------|--------|----------------------------|----------|----------|
|         |         |        |                            |          |          |
| 11.1369 | 7.3E-12 | 0.2663 | -0.4402                    | -11.1369 | 10.6967  |
| 10.8381 | 1.5E-11 | 0.2709 | -0.4300                    | -10.8381 | 10.4081  |
| 10.5407 | 2.9E-11 | 0.2853 | -0.3989                    | -10.5407 | 10.1418  |
| 10.2420 | 5.7E-11 | 0.2917 | -0.3853                    | -10.2420 | 9.8567   |
| 9.9447  | 1.1E-10 | 0.3072 | -0.3532                    | -9.9447  | 9.5915   |
| 9.6481  | 2.2E-10 | 0.3263 | -0.3148                    | -9.6481  | 9.3332   |
| 9.3517  | 4.4E-10 | 0.3476 | -0.2734                    | -9.3517  | 9.0783   |
| 9.0551  | 8.8E-10 | 0.3672 | -0.2364                    | -9.0551  | 8.8186   |
| 8.7569  | 1.8E-09 | 0.3776 | -0.2170                    | -8.7569  | 8.5399   |
| 8.4600  | 3.5E-09 | 0.3955 | -0.1842                    | -8.4600  | 8.2758   |
| 8.1635  | 6.9E-09 | 0.4161 | -0.1471                    | -8.1635  | 8.0164   |
| 7.8674  | 1.4E-08 | 0.4385 | -0.1073                    | -7.8674  | 7.7601   |
| 7.5717  | 2.7E-08 | 0.4633 | -0.0639                    | -7.5717  | 7.5078   |
| 7.2762  | 5.3E-08 | 0.4891 | -0.0189                    | -7.2762  | 7.2573   |
| 6.9813  | 1.0E-07 | 0.5174 | 0.0303                     | -6.9813  | 7.0115   |
| 6.6863  | 2.1E-07 | 0.5454 | 0.0791                     | -6.6863  | 6.7654   |
| 6.3919  | 4.1E-07 | 0.5757 | 0.1325                     | -6.3919  | 6.5243   |
| 6.0980  | 8.0E-07 | 0.6085 | 0.1916                     | -6.0980  | 6.2896   |
| 5.8049  | 1.6E-06 | 0.6442 | 0.2579                     | -5.8050  | 6.0628   |
| 5.5129  | 3.1E-06 | 0.6833 | 0.3339                     | -5.5129  | 5.8468   |
| 5.2222  | 6.0E-06 | 0.7257 | 0.4226                     | -5.2222  | 5.6448   |
| 4.9336  | 1.2E-05 | 0.7722 | 0.5301                     | -4.9336  | 5.4637   |
| 4.6484  | 2.2E-05 | 0.8234 | 0.6685                     | -4.6484  | 5.3169   |
| 4.3690  | 4.3E-05 | 0.8799 | 0.8648                     | -4.3690  | 5.2338   |
| 4.0982  | 8.0E-05 | 0.9360 | 1.1654                     | -4.0982  | 5.2636   |

Table (4.5.5) Henderson's equation (Ti-citrate) logK<sub>1</sub> average value 7.6282

Table (4.5.6) Stability constants of Ti- Citrate obtained by four methods

| Method               | $logK_1$ |
|----------------------|----------|
| Point-wise method    | 7.8351   |
| Half integral method | 7.26     |
| Linear plot method   | 7.26     |
| Hinderson's equation | 7.4337   |

# **CHAPTER FIVE**

# Zirconium carboxylate complexes 5.1/ Zirconium-acetic acid system

*Table* (5.1.1). The pH - titration readings of acid, acid + ligand and acid + ligand + metal ions (Zr<sup>+4</sup>).  $N^0 = 0.525M$ ,  $E^0 = 6.1465 \times 10^{-3}$  M,  $T_{Cl} = 5 \times 10^{-5}$  M,  $T_{cm} = 1.25 \times 10^{-5}$  M,  $V^0 = 200 cm^3$ .  $u^0 = 5 \times 10^{-3}$ ,  $t = 3.65^0$  C.

| Vol. of alkali | Acid  | Acid    | Acid+ligand | Volume of    | Acid  | Acid+ligan | Acid+ligand+ |
|----------------|-------|---------|-------------|--------------|-------|------------|--------------|
| added          |       | +ligand | +metal ion  | alkali added |       | d          | metal ion    |
| 0.0            | 2.24  | 2.26    | 2.12        | 4.1          | 11.97 | 11.23      | 4.66         |
| 0.1            | 2.26  | 2.29    | 2.13        | 4.2          | 11.99 | 11.32      | 4.75         |
| 0.2            | 2.28  | 2.31    | 2.14        | 4.3          | 12.01 | 11.40      | 4.86         |
| 0.3            | 2.31  | 2.33    | 2.15        | 4.4          | 12.02 | 11.46      | 4.98         |
| 0.4            | 2.33  | 2.36    | 2.16        | 4.5          | 12.04 | 11.52      | 5.09         |
| 0.5            | 2.36  | 2.38    | 2.17        | 4.6          | 12.05 | 11.57      | 5.21         |
| 0.6            | 2.39  | 2.42    | 2.18        | 4.7          | 12.07 | 11.61      | 5.35         |
| 0.7            | 2.42  | 2.45    | 2.20        | 4.8          | 12.08 | 11.65      | 5.54         |
| 0.8            | 2.46  | 2.48    | 2.21        | 4.9          | 12.10 | 11.69      | 5.78         |
| 0.9            | 2.51  | 2.52    | 2.23        | 5.0          | 12.11 | 11.73      | 6.12         |
| 1.0            | 2.55  | 2.56    | 2.25        | 5.1          | 12.12 | 11.76      | 6.93         |
| 1.1            | 2.60  | 2.61    | 2.27        | 5.2          | 12.14 | 11.79      | 9.24         |
| 1.2            | 2.66  | 2.65    | 2.29        | 5.3          | 12.15 | 11.81      | 10.30        |
| 1.3            | 2.72  | 2.71    | 2.31        | 5.4          | 12.16 | 11.84      | 10.67        |
| 1.4            | 2.79  | 2.78    | 2.33        | 5.5          | 12.17 | 11.86      | 10.89        |
| 1.5            | 2.88  | 2.85    | 2.35        | 5.6          | 12.18 | 11.89      | 11.05        |
| 1.6            | 2.99  | 2.94    | 2.37        | 5.7          | 12.19 | 11.91      | 11.17        |
| 1.7            | 3.14  | 3.06    | 2.40        | 5.8          | 12.20 | 11.93      | 11.27        |
| 1.8            | 3.36  | 3.21    | 2.42        | 5.9          | 12.21 | 11.95      | 11.34        |
| 1.9            | 3.91  | 3.40    | 2.45        | 6.0          | 12.22 | 11.97      | 11.41        |
| 2.0            | 10.01 | 3.62    | 2.48        | 6.1          | 12.23 | 11.98      | 11.47        |
| 2.1            | 10.37 | 3.83    | 2.52        | 6.2          | 12.24 | 12.00      | 11.52        |
| 2.2            | 10.98 | 4.01    | 2.55        | 6.3          | 12.25 | 12.02      | 11.56        |
| 2.3            | 11.15 | 4.17    | 2.60        | 6.4          | 12.26 | 12.03      | 11.61        |
| 2.4            | 11.27 | 4.31    | 2.64        | 6.5          | 12.27 | 12.05      | 11.65        |
| 2.5            | 11.36 | 4.44    | 2.69        | 6.6          | 12.28 | 12.06      | 11.68        |
| 2.6            | 11.45 | 4.55    | 2.74        | 6.7          | 12.28 | 12.07      | 11.72        |
| 2.7            | 11.51 | 4.66    | 2.80        | 6.8          | 12.29 | 12.09      | 11.75        |
| 2.8            | 11.56 | 4.76    | 2.88        | 6.9          | 12.30 | 12.10      | 11.77        |
| 2.9            | 11.61 | 4.87    | 2.96        | 7.0          | 12.31 | 12.11      | 11.79        |
| 3.0            | 11.66 | 4.98    | 3.06        | 7.1          | 12.32 | 12.12      | 11.82        |
| 3.1            | 11.70 | 5.11    | 3.19        | 7.2          | 12.32 | 12.14      | 11.85        |
| 3.2            | 11.74 | 5.24    | 3.33        | 7.3          | 12.33 | 12.15      | 11.87        |
| 3.3            | 11.77 | 5.40    | 3.51        | 7.4          | 12.34 | 12.16      | 11.89        |
| 3.4            | 11.80 | 5.59    | 3.70        | 7.5          | 12.34 | 12.17      | 11.91        |
| 3.5            | 11.83 | 5.87    | 3.88        | 7.6          | 12.35 | 12.18      | 11.92        |
| 3.6            | 11.85 | 6.42    | 4.02        | 7.7          | 12.36 | 12.19      | 11.94        |
| 3.7            | 11.88 | 10.00   | 4.17        | 7.8          | 12.36 | 12.20      | 11.96        |
| 3.8            | 11.90 | 10.65   | 4.31        | 7.9          | 12.37 | 12.21      | 11.98        |
| 3.9            | 11.93 | 10.93   | 4.43        | 8.0          | 12.38 | 12.22      | 11.99        |
| 40             | 11 95 | 11 10   | 4 54        | _            | _     | _          | _            |

Table (5.1.2). Alkali volume required to bring three sets of solutions to same pH

| В          | V1      | V2               | V3               | В            | V1     | V2               | V3               |
|------------|---------|------------------|------------------|--------------|--------|------------------|------------------|
| 2.2        | 0.7000  | _                | _                | 7.0          | 1.9507 | 3.6162           | 5.1030           |
| 2.3        | 0.2667  | 0.1500           | 1.2500           | 7.1          | 1.9523 | 3.6190           | 5.1074           |
| 2.4        | 0.6333  | 0.5500           | 1.7000           | 7.2          | 1.9539 | 3.6218           | 5.1117           |
| 2.5        | 0.8800  | 0.8500           | 2.0500           | 7.3          | 1.9556 | 3.6246           | 5.1100           |
| 2.6        | 1.1000  | 1.0800           | 2.3000           | 7.4          | 1.9572 | 3.6274           | 5.1203           |
| 2.5        | 0.8800  | 0.8500           | 2.0500           | 7.5          | 1.9589 | 3.6302           | 5.1247           |
| 2.6        | 1.1000  | 1.0800           | 2.3000           | 7.6          | 1.9605 | 3.6330           | 5.1290           |
| 2.7        | 1.2667  | 2.2833           | 2.5200           | 7.7          | 1.9621 | 3.6358           | 5.1333           |
| 2.8        | 1.4111  | 1.4286           | 2,7000           | 7.8          | 1.9638 | 3.6385           | 5.1377           |
| 2.9        | 1.5182  | 1.5556           | 2.8250           | 7.9          | 1.9654 | 3.6413           | 5.1420           |
| 3.0        | 1.6067  | 1.6500           | 2.9400           | 8.0          | 1.9670 | 3.6441           | 5.1463           |
| 31         | 1 6733  | 1 7267           | 3 0308           | 81           | 1 9687 | 3 6469           | 5 1506           |
| 3.2        | 1 7273  | 1 7933           | 3 1071           | 82           | 1 9703 | 3 6497           | 5 1550           |
| 3.3        | 1 7727  | 1 8474           | 3 1786           | 8.3          | 1 9720 | 3 6525           | 5 1593           |
| 34         | 1 8073  | 1 9000           | 3 2389           | 84           | 1 9736 | 3 6553           | 5 1636           |
| 3.5        | 1.8255  | 1 9455           | 3 2944           | 8.5          | 1 9752 | 3 6581           | 5 1680           |
| 3.6        | 1 8436  | 1 9909           | 3 3474           | 8.6          | 1 9769 | 3 6609           | 5 1723           |
| 37         | 1 8618  | 2 0381           | 3 4000           | 87           | 1 9785 | 3 6637           | 5 1766           |
| 3.8        | 1 8800  | 2.0301           | 3 4556           | 8.8          | 1 9802 | 3 6665           | 5 1810           |
| 3.0<br>3.0 | 1.8982  | 2.0007           | 3 51/3           | 8 Q          | 1 9818 | 3 6693           | 5 1853           |
| 10         | 1 9015  | 2.1305           | 3 5857           | 9.0          | 1 983/ | 3 6721           | 5 1896           |
| 4.0        | 1 9031  | 2.1544           | 3 6533           | 9.0<br>Q 1   | 1.9054 | 3 67/9           | 5 1939           |
| 4.1        | 1 00/18 | 2.2000           | 3 7214           | 0.1          | 1.9051 | 3 6777           | 5 108            |
| 4.2        | 1,9040  | 2.3214           | 3 7020           | 0.2          | 1.9007 | 3 6804           | 5 2057           |
| 4.5        | 1 0080  | 2.3929           | 3 8750           | 9.5          | 1,9004 | 3 6832           | 5.2057           |
| 4.4        | 1,0007  | 2.4032           | 3.0730           | 0.5          | 1.0016 | 3.6860           | 5 2245           |
| 4.5        | 1 0112  | 2.5545           | 4 0500           | 9.5          | 1,0022 | 3,6888           | 5 2340           |
| 4.0        | 1.9113  | 2.0433           | 4.0500           | 9.0          | 1.9933 | 3.0000           | 5.2340           |
| 4.7        | 1.9130  | 2.7400           | 4.1444           | 0.8          | 1,9949 | 3 6944           | 5.2434           |
| 4.0        | 1.9140  | 2.0304           | 4.2433           | 9.0          | 1.9900 | 3.0344           | 5.2520           |
| 4.9<br>5.0 | 1.9102  | 2.9273           | 4.5555           | 9.9<br>10.0  | 1.9902 | 3.0972           | 5.2023           |
| 5.0        | 1.9179  | 3.0134           | 4.4102           | 10.0         | 2 0125 | 3.7000           | 5 2911           |
| 5.1        | 1.9195  | 2 1602           | 4.5005           | 10.1         | 2.0125 | 2 7200           | 5.2011           |
| 5.2        | 1.9211  | 2.1092           | 4.5917           | 10.2         | 2.0204 | 27462            | 5.2900           |
| 5.5        | 1.9220  | 2 2000           | 4.0043           | 10.5         | 2.0403 | 3.7402<br>2.761E | 5.3000           |
| 5.4        | 1.9244  | 3.3000           | 4.7203           | 10.4         | 2.0342 | 3.7013           | 5.5270<br>E 2E41 |
| 5.5<br>E 6 | 1.9201  | 3.3320<br>2.4026 | 4.7709           | 10.5         | 2.0001 | 2.7/09           | 5.5541<br>E 2011 |
| 5.0        | 1.9277  | 2 4202           | 4.0230           | 10.0         | 2.0019 | 3./923<br>2.0170 | 5.3011<br>E 4126 |
| 5./<br>E 0 | 1.9295  | 3.4393<br>2.4750 | 4.0007           | 10.7         | 2.0950 | 3.01/9           | 5.4130<br>E 4E10 |
| 5.8<br>E 0 | 1.910   | 3.4/50           | 4.9059           | 10.8         | 2.1280 | 3.8230           | 5.4519           |
| 5.9        | 1.9520  | 3.3033           | 4.955            | 10.9         | 2.1000 | 3.0093           | 5.5005           |
| 0.0<br>C 1 | 1.9343  | 3.5230           | 4.9647           | 11.0         | 2.2118 | 3.9412           | 5.5088           |
| 6.1<br>C D | 1.9359  | 3.5418           | 4.9941           | 11.1         | 2.2/66 | 4.0000           | 5.641/           |
| 0.2        | 1.9750  | 3.5000           | 5.0099           | 11.2         | 2.3417 | 4.0769           | 5./300           |
| 0.3        | 1.9392  | 3.5/82           | 5.0222           | 11.5         | 2.4333 | 4.1778           | 5.8429           |
| 6.4        | 1.9408  | 3.5964           | 5.0346<br>E.0460 | 11.4<br>11 F | 2.5445 | 4.3000           | 5.985/<br>6.1000 |
| 0.5<br>C.C | 1.9425  | 3.0022           | 5.0469           | 11.5         | 2.0033 | 4.400/           | 0.1000           |
| 6.6<br>C 7 | 1.9441  | 3.6050           | 5.0593           | 11.0         | 2.8800 | 4.6/50           | 0.3800           |
| 6.7        | 1.9457  | 3.6078           | 5.0716           | 11.7         | 3.1000 | 4.9250           | 6.6500           |
| b.8<br>С С | 1.94/4  | 3.0100           | 5.0840           | 11.ŏ         | 3.4000 | 5.2500           | /.0334           |
| 6.9        | 1.9490  | 3.6134           | 5.0963           | 11.9         | 3.8000 | 5.6500           | 7.4500           |



Fig. (5.1.1)Titration curves of three sets of solutions versus pH

# 5.1.1-Practical proton ligand stability constant: 5.1.1.Point-wise calculation method:

ligand used is monoprotonic. The ligand titration curve is well separated from the acid titration curve at pH 2.7 table (5.1.2), indicating the dissociation of the ligand in the titration medium figure (5.1.1). Number of proton attached to ligand extends  $0 < n_A < 1$  table (5.1.3).pKa<sub>1</sub> values calculated on table (5.1.3), the value taken as average of  $n_A 0.2 - 0.8$ . pK<sub>a</sub>= 4.87707 This value was further corroborated by half integral method.

| pK <sub>1</sub> | $\log \frac{n_A}{(1-n_A)}$ | n <sub>A</sub> | pН  | pKa₁   | $\log \frac{n_A}{(1-n_A)}$ | n <sub>A</sub> | pН  |
|-----------------|----------------------------|----------------|-----|--------|----------------------------|----------------|-----|
|                 | (2                         |                |     |        | (± 11 <sub>A</sub> )       |                |     |
| 4.7416          | 0.6416                     | 0.8142         | 4.1 | 4.7536 | 2.0536                     | 0.9912         | 2.7 |
| 4.7517          | 0.5517                     | 0.7808         | 4.2 | 4.8308 | 2.0308                     | 0.9908         | 2.8 |
| 4.7634          | 0.4634                     | 0.7440         | 4.3 | 4.5966 | 1.6966                     | 0.9803         | 2.9 |
| 4.7778          | 0.3778                     | 0.7047         | 4.4 | 4.6317 | 1.6317                     | 0.9772         | 3.0 |
| 4.7895          | 0.2895                     | 0.6608         | 4.5 | 4.6385 | 1.5385                     | 0.9719         | 3.1 |
| 4.8011          | 0.2011                     | 06137          | 4.6 | 4.6436 | 1.4436                     | 0.9652         | 3.2 |
| 4.8134          | 0.1134                     | 0.5649         | 4.7 | 4.6879 | 1.3879                     | 0.9607         | 3.3 |
| 4.8261          | 0.0261                     | 0.5150         | 4.8 | 4.6899 | 1.2898                     | 0.9512         | 3.4 |
| 4.8444          | -0.0556                    | 0.4680         | 4.9 | 4.6712 | 1.1712                     | 0.9368         | 3.5 |
| 4.8645          | -0.1355                    | 0.4226         | 5.0 | 4.6755 | 1.0755                     | 0.9225         | 3.6 |
| 4.8929          | -0.2071                    | 0.3829         | 5.1 | 4.6903 | 0.9903                     | 0.9072         | 3.7 |
| 4.9185          | -0.2815                    | 0.3434         | 5.2 | 4.7159 | 0.9159                     | 0.8918         | 3.8 |
| 4.9492          | -0.3508                    | 0.3084         | 5.3 | 4.7386 | 0.8386                     | 0.8734         | 3.9 |
| 4.9819          | -0.4181                    | 0.2763         | 5.4 | 4.7395 | 0.7395                     | 0.8459         | 4.0 |

Table (5.1.3). Dissociation constant of acetic acid, average value of pKa=4.8770

#### **5.1.1.2-Half integral method**

Proton-ligand stability constant calculated by plotting  $n_A$  against pH, figure (5.1.2). The value of pH where  $n_A$ = 0.5 corresponds to value of pKa<sub>1</sub>. pKa<sub>1</sub>= 4.836, the value was in a good agreement with the value obtained by point-wise method.



Fig. (5.1.2). Half integral Method (Zr-acetate) pK<sub>a</sub> =4.836

# **5.1.2-Metal-ligand stability constants:** (zirconium acetate) **5.1.2.1-Point-wise calculation method:**

Metal-ligand titration curve crossed over ligand titration curve at pH 2.3, table (5.1.2), Figure (5.1.1). The value of n<sup>-</sup> extended between 2.1992 and 3.9504, table (5.1.4) since the ligand is monobasic acid this indicates the existance of ML<sub>3</sub> and ML<sub>4</sub> complex species. The value [L] represented the quantity of free ligand in the solution decrease gradually with the increase of pH of the solution and attained almost zero, so pL cannot be calculated after pH=4.3, this suggests that with increasing pH the ligand distributed in complex species. logK<sub>3</sub>=5.1050 and K<sub>4</sub>=4.1095 table (5.1.4) and table (5.1.5). The complexes were formed simultaneously. These values were further verified by half integral method.

|                    |                             | value : | =5.1050 |        |        |
|--------------------|-----------------------------|---------|---------|--------|--------|
| Log K <sub>3</sub> | $\log\frac{(n^2)}{(3-n^-)}$ | pL      | n       | V2     | V3     |
| 4.6242             | -0.6043                     | 5.2285  | 2.1992  | 0.1500 | 1.2500 |
| 4.8631             | -0.3004                     | 5.1635  | 2.3336  | 0.5500 | 1.7000 |
| 5.1084             | -0.0016                     | 5.1100  | 2.4991  | 0.8500 | 2.0500 |
| 5.1155             | 0.0891                      | 5.0264  | 2.5511  | 1.0800 | 2.3000 |
| 5.1912             | 0.2382                      | 4.9530  | 2.6338  | 1.2833 | 2.5200 |
| 5.2606             | 0.3826                      | 4.8780  | 2.7070  | 1.4286 | 2.7000 |
| 5.2188             | 0.4319                      | 4.7870  | 2.7299  | 1.5556 | 2.8250 |
|                    |                             | 1       | 22      |        |        |

Table (5.1.4) Point-wise method stability constants, (Zr-acetate) logK<sub>3</sub> average

| 5.2606 | 0.5541 | 4.7065 | 2.7818 | 1.6500 | 2.9400 |
|--------|--------|--------|--------|--------|--------|
| 5.3022 | 0.6778 | 4.6244 | 2.8265 | 1.7267 | 3.0308 |
| 5.3521 | 0.8107 | 4.5413 | 2.8661 | 1.7933 | 3.1071 |
| 5.5076 | 1.0438 | 4.4638 | 2.9171 | 1.8474 | 3.1786 |
| 5.7934 | 1.4081 | 4.3853 | 2.9624 | 1.9000 | 3.2389 |

Table (5.1.5). Point-wise method (Zr-acetate) logK<sub>4</sub>=4.1095

| Log K <sub>3</sub> | $\log \frac{(n^3)}{(4-n^-)}$ | pL     | n      | V2     | V3     |
|--------------------|------------------------------|--------|--------|--------|--------|
| 3.2653             | -0.9870                      | 4.2523 | 3.0934 | 1.9909 | 3.3474 |
| 3.4605             | -0.7293                      | 4.1897 | 3.1572 | 2.0381 | 3.400  |
| 3.6114             | -0.5246                      | 4.1361 | 3.2301 | 2.0857 | 3.4556 |
| 3.7462             | -0.3465                      | 4.0927 | 3.3105 | 2.1389 | 3.5143 |
| 4.0311             | -0.0757                      | 4.1068 | 3.4565 | 2.1944 | 3.5857 |
| 4.3432             | 0.18485                      | 4.1583 | 3.6048 | 2.2563 | 3.6533 |
| 4.8155             | 0.51425                      | 4.3013 | 3.7657 | 2.3214 | 3.7214 |

**5.1.2.2-Half integral method:** (zirconium acetate) The metal-ligand stability constants calculated by plotting  $n^-$  against pL figure (5.1.3). From the formation curve of complex, log  $K_3 = 5.11$  and  $K_4 = 4.113$ . These values were in a good agreement with values obtained by point-wise method. These values were further corroborated with linear plot method.



Fig. (5.1.3) Zr-acetate formation curve logK<sub>3</sub>= 5.11& logK<sub>4</sub>=4.113 **5.1.2.3-Linear plot method**: (zirconium acetate)

log (n-2)/(3-n) and log(n-3)/(4-n) were plotted against corresponding pL, for determination of logK<sub>3</sub> and log K<sub>4</sub> respectively figure (5.1.4) and figure (5.1.5) the values obtained were,  $K_3$ = 5.115and  $K_4$ =4.125.



Fig. (5.1.4) Linear plot method Zr-acetate logK<sub>3</sub>=5.11



Fig. (5.1.5) Linear plot method Zr-acetate logK<sub>4</sub>=4.125 **5.1.2.4-Least squares method: (**zirconium acetate**)** 

For evaluation of  $K_3$  and  $K_4$  by this method, one can adopt F. J. C. Rossotti and H. S. Rossotti expression:

$$\frac{(2 - n^{-})}{(4 - n^{-})[L]} = \frac{(3 - n^{-})[L]}{(4 - n^{-})[L]^{2}} \times K_{3} + K_{3}K_{4}$$
-----(5.1.1)

Or

$$\frac{(n^{-}-2)}{(3-n^{-})[L]} \times \frac{1}{K_{3}K_{4}} - \frac{1}{K_{4}} = \frac{(4-n^{-})[L]}{(3-n^{-})}$$

-----(5.1.2)

Plotting left-hand side against right-hand side of equation (5.1.1) or (5.1.2) resulting is straight line equation, Figure (5.1.6) and figure (5.1.7) respectively, and stability constant deduced from intercept and slope, as elucidated on the captions below figure (5.1.6).logK<sub>3</sub>=5.1974, logK<sub>4</sub>=4.3259, and figure (5.1.7) logK<sub>3</sub>= 5.000, logK<sub>4</sub>=4.3056. As we mentioned before it seen obviously that equation (5.1.2) gives more accurate result than equation (5.1.1) if the sign is omitted.

|        | e (01210) | , <u></u>  |             |                               |                  |
|--------|-----------|------------|-------------|-------------------------------|------------------|
| pL     | n         | [L]        | [L]2        | (n <sup>-</sup> - 2)          | $(4 - n^{-})$    |
| 1      |           |            |             | $\overline{(3-n^{-})[L]^{2}}$ | $(3 - n^{-})[L]$ |
|        |           |            |             |                               |                  |
| 5.2285 | 2.1992    | 5.9082E-06 | 3.49077E-11 | -3168154624                   | 75267.94602      |
| 5.1635 | 2.3336    | 6.8626E-06 | 4.70945E-11 | -4251591258                   | 58270.89193      |
| 5.1100 | 2.4991    | 7.7616E-06 | 6.0243E-11  | -5519385379                   | 42999.65109      |
| 5.0264 | 2.5511    | 9.4106E-06 | 8.85594E-11 | -4295168382                   | 32921.50111      |
| 4.9530 | 2.6338    | 1.1144E-05 | 1.24186E-10 | -3735630269                   | 24052.88107      |
| 4.8780 | 2.7070    | 1.3243E-05 | 1.75375E-10 | -3118012864                   | 17110.18085      |
| 4.7870 | 2.7300    | 1.6331E-05 | 2.66701E-10 | -2155027679                   | 13019.7581       |
| 4.7065 | 2.7818    | 1.9657E-05 | 3.86385E-10 | -1660799718                   | 9113.736722      |
| 4.6244 | 2.8265    | 2.3747E-05 | 5.63923E-10 | -1248830469                   | 6227.214559      |
| 4.5413 | 2.8661    | 2.8753E-05 | 8.26737E-10 | -923878633                    | 4107.304541      |
| 4.4638 | 2.9171    | 3.4374E-05 | 1.1816E-09  | -716716452                    | 2227.384731      |
| 4.3853 | 2.9624    | 4.1177E-05 | 1.69554E-09 | -547030201                    | 880.2094545      |
| 4.3182 | 3.0296    | 4.8066E-05 | 2.31038E-09 | -459232830                    | -634.5479486     |
| 4.2523 | 3.0934    | 5.5935E-05 | 3.12872E-09 | -385479641                    | -1841.946744     |
| 4.1897 | 3.1572    | 6.4606E-05 | 4.17397E-09 | -328955306                    | -2887.096637     |
| 4.1361 | 3.2301    | 7.3103E-05 | 5.34411E-09 | -298940988                    | -4087.174953     |
| 4.0927 | 3.3105    | 8.0777E-05 | 6.52487E-09 | -291288743                    | -5574.760497     |
| 4.1068 | 3.4565    | 7.8194E-05 | 6.11429E-09 | -438331485                    | -10743.06672     |
| 4.1583 | 3.6048    | 6.9448E-05 | 4.82301E-09 | -842032342                    | -22039.0563      |
| 4.3013 | 3.7657    | 4.9972E-05 | 2.49716E-09 | -3017653618                   | -65392.72221     |
| 4.8950 | 3.9504    | 1.2736E-05 | 1.62199E-10 | -2.425E+11                    | -1504943.635     |

|              |            | 1        | `     | /         | 0                      |       |
|--------------|------------|----------|-------|-----------|------------------------|-------|
| Table (5.1.6 | ) Least so | llares m | ethod | (Zr-aceta | ite) logK <sub>2</sub> | &logK |



Fig. (5.1.6) least squares method (equation '5.1.1') logK<sub>3</sub>=5.1974 & logK<sub>4</sub>=4.3259



Fig. (5.1.7) least squares method (equation '5.1.2')  $\log K_3 = 5.00 \& \log K_4 = 4.3056$ 

Linear Regression

| Parameter | Value       | Error      | R <sup>2</sup> |
|-----------|-------------|------------|----------------|
| Intercept | 20209.53103 | 8204.4937  | 0.9943         |
| Slope     | 0.00001     | 1.54882E-7 | -              |

Table (5.1.7) Stability constants of zirconium acetate obtained.by four methods

| Method                         | logK <sub>3</sub> | logK <sub>4</sub> | logK <sub>3</sub> +logK <sub>4</sub> |
|--------------------------------|-------------------|-------------------|--------------------------------------|
| Point wise calculation method  | 5.0803            | 4.1095            | 9.1898                               |
| Half integral method           | 5.11              | 4.113             | 9.223                                |
| Linear plot method             | 5.11              | 4.125             | 9.235                                |
| Least squares method fig(1.6)  | 5.1974            | 4.3259            | 9.5233                               |
| Least squares method fig.(1.7) | 5.00              | 4.3056            | 9.3055                               |

# 5.2/ Zirconium-oxalic acid system

*Table* (5.2.1). The pH - titration readings of acid, acid + ligand and acid + ligand + metal ions (Zr<sup>+3</sup>).  $N^0 = 0.525M$ ,  $E^0 = 6.1465 \times 10^{-3}$  M,  $T_{Cl} = 5 \times 10^{-5}$  M,  $T_{cm} = 1.25 \times 10^{-5}$  M,  $V^0 = 200 cm^3$ ,  $u^0 = 5 \times 10^{-3}$  t = 36.5° C.

|       | Vol. of           | Acid              | Acid         | Acid+liga   | Volume of    | Acid  | Acid+liga    | Acid+ligan   |
|-------|-------------------|-------------------|--------------|-------------|--------------|-------|--------------|--------------|
|       | alkali            |                   | +ligand      | nd          | alkali added |       | nd           | d+ metal     |
| _     |                   | 2.26              | 2.01         | +metal ion  | <i>A</i> 1   | 11.06 | 3.85         | <u>10n</u>   |
|       | 0.0               | 2.20              | 2.01         | 1.88        | 4.2          | 11.98 | 3.95         | 2.00         |
| Table | 0.2               | 1.31              | 2.04         | 1.88        | 4.3          | 12.00 | 4.05         | 2.77         |
|       | 0.3               | 2.33              | 2.05         | 1.89        | 4.4          | 12.02 | 4.14         | 2.84         |
|       | 0.4               | 2.35              | 2.06         | 1.90        | 4.5          | 12.04 | 4.25         | 2.93         |
|       | 0.5               | 2.38              | 2.07         | 1.91        | 4.6          | 12.05 | 4.35         | 3.03         |
|       | 0.6               | 2.41              | 2.09         | 1.92        | 4.7          | 12.07 | 4.47         | 3.13         |
|       | 0.7               | 2.45              | 2.10         | 1.93        | 4.8          | 12.09 | 4.60         | 3.26         |
|       | 0.8               | 2.48              | 2.11         | 1.94        | 4.9          | 12.10 | 4.75         | 3.41         |
|       | 0.9               | 2.52              | 2.13         | 1.94        | 5.0<br>E 1   | 12.11 | 4.94<br>E 24 | 3.58<br>2.70 |
|       | 1.0               | 2.50              | 2.15         | 1.95        | 5.1          | 12.13 | 5.87         | 3.70<br>4.01 |
|       | 1.1               | 2.01              | 2.17         | 1.97        | 53           | 12.14 | 9.36         | 4.01         |
|       | 1.3               | 2.73              | 2.20         | 1.99        | 5.4          | 12.16 | 10.45        | 4.46         |
|       | 1.4               | 2.80              | 2.22         | 2.00        | 5.5          | 12.17 | 10.80        | 4.71         |
|       | 1.5               | 2.88              | 2.24         | 2.01        | 5.6          | 12.19 | 11.00        | 5.20         |
|       | 1.6               | 2.99              | 2.26         | 2.02        | 5.7          | 12.20 | 11.15        | 5.66         |
|       | 1.7               | 3.14              | 2.28         | 2.04        | 5.8          | 12.21 | 11.25        | 6.06         |
|       | 1.8               | 3.35              | 2.31         | 2.05        | 5.9          | 12.22 | 11.34        | 6.30         |
|       | 1.9               | 3.78              | 2.33         | 2.07        | 6.0          | 12.23 | 11.42        | 6.48         |
|       | 2.0               | 9.07              | 2.36         | 2.08        | 6.1          | 12.24 | 11.48        | 6.64         |
|       | 2.1               | 10.5              | 2.39         | 2.09        | 6.2          | 12.25 | 11.53        | 6.69         |
|       | 2.2               | 10.8<br>8         | 2.42         | 2.11        | 6.3          | 12.26 | 11.58        | 6.78         |
|       | 2.3               | 11.0<br>8         | 2.45         | 2.13        | 6.4          | 12.27 | 11.62        | 6.90         |
|       | 2.4               | 11.2<br>1         | 2.48         | 2.14        | 6.5          | 12.28 | 11.66        | 7.05         |
|       | 2.5               | 11.3<br>3         | 2.52         | 2.16        | 6.6          | 12.28 | 11.70        | 7.28         |
|       | 2.6               | 11.4<br>1         | 2.56         | 2.19        | 6.7          | 12.29 | 11.73        | 8.43         |
|       | 2.7               | 11.4<br>8         | 2.60         | 2.20        | 6.8          | 12.30 | 11.76        | 9.54         |
|       | 2.8               | 11.5<br>4         | 2.65         | 2.22        | 6.9          | 12.31 | 11.79        | 10.28        |
|       | 2.9               | 11.5<br>9         | 2.71         | 2.25        | 7.0          | 12.32 | 11.82        | 10.64        |
|       | 3.0               | 11.6<br>4         | 2.77         | 2.28        | 7.1          | 12.32 | 11.84        | 10.86        |
|       | 3.1               | 11.6<br>8         | 2.83         | 2.30        | 7.2          | 12.33 | 11.86        | 11.03        |
|       | 3.2               | 11.7<br>2         | 2.91         | 2.33        | 7.3          | 12.34 | 11.89        | 11.15        |
|       | 3.3               | 11.7<br>5         | 3.00         | 2.35        | 7.4          | 12.35 | 11.91        | 11.25        |
|       | 3.4               | 11.7<br>9         | 3.09         | 2.38        | 7.5          | 12.35 | 11.93        | 11.33        |
|       | 3.5               | 11.8<br>2         | 3.20         | 2.41        | 7.6          | 12.36 | 11.95        | 11.40        |
|       | 3.6               | 11.8<br>5         | 3.31         | 2.44        | 7.0          | 12.36 | 11.9/        | 11.46        |
|       | ט. <i>ו</i><br>גע | 11.0<br>8<br>11.0 | J.4J<br>3 ⊑1 | 2.4/<br>252 | 7.0<br>7.0   | 12.3/ | 12.20        | 11.51        |
|       | 3.0<br>2.0        | 0<br>11 Q         | 3.65         | 2.52        | 7.5<br>8.0   | 12.50 | 12.00        | 11.55        |
|       | 4.0               | 2<br>11.9         | 3.75         | 2.61        | -            | -     | -            | -            |
|       |                   | 1                 |              |             |              |       |              |              |

| [B] | V1     | V2     | V3     | В    | V1     | V2     | V3     |
|-----|--------|--------|--------|------|--------|--------|--------|
| 2.3 | 0.1669 | 1.7667 | 3.1000 | 6.3  | 1.9476 | 5.2123 | 5.9000 |
| 2.4 | 0.5667 | 2.1333 | 3.4667 | 6.4  | 1.9495 | 5.2152 | 5.9556 |
| 2.5 | 0.8500 | 2.4500 | 3.7600 | 6.5  | 1.9514 | 5.2181 | 6.0125 |
| 2.6 | 1.0800 | 2.7000 | 3.9750 | 6.6  | 1.9533 | 5.2209 | 6.0750 |
| 2.7 | 1.2571 | 2.8833 | 4.1800 | 6.7  | 1.9552 | 5.2238 | 6.2111 |
| 2.8 | 1.4000 | 3.0500 | 4.3429 | 6.8  | 1.9571 | 5.2266 | 6.3167 |
| 2.9 | 1.5182 | 3.1875 | 4.4667 | 6.9  | 1.9590 | 5.2295 | 6.4000 |
| 3.0 | 1.6067 | 3.3000 | 4.5700 | 7.0  | 1.9609 | 5.2324 | 6.4667 |
| 3.1 | 1.6733 | 3.4091 | 4.6700 | 7.1  | 1.9628 | 5.2352 | 6.5217 |
| 3.2 | 1.7286 | 3.5000 | 4.7538 | 7.2  | 1.9647 | 5.2381 | 6.5652 |
| 3.3 | 1.7762 | 3.5909 | 4.2670 | 7.3  | 1.9665 | 5.2410 | 6.6017 |
| 3.4 | 1.8116 | 3.6750 | 4.8933 | 7.4  | 1.9684 | 5.2438 | 6.6104 |
| 3.5 | 1.8349 | 3.7636 | 4.9529 | 7.5  | 1.9703 | 5.2467 | 6.6191 |
| 3.6 | 1.8581 | 3.8545 | 5.0100 | 7.6  | 1.9722 | 5.2496 | 6.6278 |
| 3.7 | 1.8814 | 3.9500 | 5.0600 | 7.7  | 1.9741 | 5.2524 | 6.6365 |
| 3.8 | 11.900 | 4.0500 | 5.1087 | 7.8  | 1.9760 | 5.2553 | 6.6452 |
| 3.9 | 1.9023 | 4.1500 | 5.1522 | 7.9  | 1.9779 | 5.2582 | 6.6539 |
| 4.0 | 1.9042 | 4.2500 | 5.1957 | 8.0  | 1.9798 | 2.2610 | 6.6626 |
| 4.1 | 1.9060 | 4.3556 | 5.2409 | 8.1  | 1.9817 | 5.2639 | 6.6713 |
| 4.2 | 1.9079 | 4.4545 | 5.2864 | 8.2  | 1.9836 | 5.2668 | 3.6800 |
| 4.3 | 1.9098 | 4.5500 | 5.3304 | 8.3  | 1.9854 | 5.2696 | 6.6887 |
| 4.4 | 1.9117 | 4.6417 | 5.3739 | 8.4  | 1.9873 | 5.2725 | 6.6974 |
| 4.5 | 1.9136 | 4.7231 | 5.4160 | 8.5  | 1.9892 | 5.2754 | 6.7063 |
| 4.6 | 1.9155 | 4.8000 | 5.4560 | 8.6  | 1.9911 | 5.2782 | 6.7153 |
| 4.7 | 1.9174 | 4.8667 | 5.4960 | 8.7  | 1.9930 | 5.2811 | 6.7243 |
| 4.8 | 1.9193 | 4.9263 | 5.5184 | 8.8  | 1.9949 | 5.2840 | 6.7333 |
| 4.9 | 1.9212 | 4.9789 | 5.5388 | 8.9  | 1.9968 | 5.2868 | 6.7423 |
| 5.0 | 1.9231 | 5.0200 | 5.5592 | 9.0  | 1.9987 | 5.2897 | 6.7514 |
| 5.1 | 1.9250 | 5.0533 | 5.5796 | 9.1  | 2.0021 | 5.2926 | 6.7604 |
| 5.2 | 1.9268 | 5.0867 | 5.6000 | 9.2  | 2.0090 | 5.2954 | 6.7694 |
| 5.3 | 1.9287 | 5.1095 | 5.6217 | 9.3  | 2.0160 | 5.2983 | 6.7784 |
| 5.4 | 1.9306 | 5.1254 | 5.6435 | 9.4  | 2.0229 | 5.3037 | 6.7874 |
| 5.5 | 1.9325 | 5.1413 | 5.6652 | 9.5  | 2.0299 | 5.3128 | 6.7964 |
| 5.6 | 1.9344 | 5.1571 | 5.6870 | 9.6  | 2.0368 | 5.3220 | 6.8081 |
| 5.7 | 1.9363 | 5.1730 | 5.7105 | 9.7  | 2.0438 | 5.3312 | 6.8216 |
| 5.8 | 1.9382 | 5.1889 | 5.7368 | 9.8  | 2.0507 | 5.3404 | 6.8351 |
| 5.9 | 1.9401 | 5.2009 | 5.7632 | 9.9  | 2.0576 | 5.3495 | 6.8486 |
| 6.0 | 1.9420 | 5.2037 | 5.7895 | 10.0 | 2.0646 | 5.3587 | 6.8622 |
| 6.1 | 1.9439 | 5.2066 | 5.8231 | 10.1 | 2.0715 | 5.3679 | 6.8757 |
| 6.2 | 1.9457 | 5.2095 | 5.8615 | **** | ****   | ****   | ****   |

(5.2.2) Alkali volume required for three set of solutions to reach the same pH



Figure (52.1) Plotting of Alkali volume of the three sets of solutions versus pH

# **5.2.1-Metal-ligand stability constant:** (zirconium oxalate) **5.2.1.1-Point-wise calculation method:**

Since the ligand is dibasic and  $n^-$  values lies between 2.3360 and 3.9128 this indicates the formation of complex 1:2 only. Metal-ligand stability constant logK<sub>2</sub> was calculated, table (5.2.3). The average value was taken as correct value for logK<sub>2</sub>=3.3953. This value was further corroborated by half integral method.

| Log K <sub>3</sub> | $\log \frac{(n^2)}{(4-n^-)}$ | n      | pL     | V3     | V2     |
|--------------------|------------------------------|--------|--------|--------|--------|
| 2,0020             | 0 0 1 70                     | 2 2004 | 4.000  | A ACC7 | 2 1075 |
| 3.9820             | -0.61/9                      | 2.3884 | 4.6005 | 4.4007 | 3.18/5 |
| 3.8911             | -0.60/3                      | 2.3962 | 4.4984 | 4.5/00 | 3.3000 |
| 3.8364             | -0.5675                      | 2.4261 | 4.4039 | 4.6700 | 3.4091 |
| 3.7769             | -0.5332                      | 2.4532 | 4.3101 | 4.7538 | 3.5000 |
| 3.7010             | -0.5137                      | 2.4691 | 4.2147 | 4.8267 | 3.5909 |
| 3.6390             | -0.4842                      | 2.4939 | 4.1232 | 4.8933 | 3.6750 |
| 3.5767             | -0.4564                      | 2.5181 | 4.0331 | 4.9529 | 3.7636 |
| 3.5077             | -0.4353                      | 2.5370 | 3.9430 | 5.0100 | 3.8545 |
| 3.4140             | -0.4351                      | 2.5372 | 3.8491 | 5.0600 | 3.9500 |
| 3.3219             | -0.4353                      | 2.5370 | 3.7571 | 5.1087 | 4.0500 |
| 3.2530             | -0.4188                      | 2.5520 | 3.6719 | 5.1522 | 4.1500 |
| 3.1896             | -0.4004                      | 2.5691 | 3.5900 | 5.1957 | 4.2500 |
| 3.1317             | -0.3801                      | 2.5884 | 3.5118 | 5.2409 | 4.3556 |
| 3.0922             | -0.3486                      | 2.6189 | 3.4408 | 5.2864 | 4.4545 |
| 3.0613             | -0.3139                      | 2.6536 | 3.3752 | 5.3304 | 4.5500 |
| 3.0458             | -0.2716                      | 2.6971 | 3.3174 | 5.3739 | 4.6417 |
| 3.0536             | -0.2166                      | 2.7557 | 3.2702 | 5.4160 | 4.7231 |
| 3.0748             | -0.1570                      | 2.8212 | 3.2318 | 5.4560 | 4.8000 |
| 3.1326             | -0.0774                      | 2.9111 | 3.2100 | 5.4960 | 4.8667 |
| 3.1150             | -0.0548                      | 2.9370 | 3.1699 | 5.5184 | 4.9263 |
| 3.1071             | -0.0298                      | 2.9657 | 3.1369 | 5.5388 | 4.9789 |
| 3.1308             | 0.0123                       | 3.0142 | 3.1185 | 5.5592 | 5.0200 |
| 3.1824             | 0.0684                       | 3.0786 | 3.1140 | 5.5796 | 5.0533 |
| 3.2511             | 0.1311                       | 3.1498 | 3.1200 | 5.6000 | 5.0867 |
| 3.3693             | 0.2203                       | 3.2483 | 3.1491 | 5.6217 | 5.1095 |
| 3.5277             | 0.3284                       | 3.3611 | 3.1992 | 5.6435 | 5.1254 |
| 3.7231             | 0.4525                       | 3.4785 | 3.2705 | 5.6652 | 5.1413 |
| 3.9795             | 0.6052                       | 3.6023 | 3.3743 | 5.6870 | 5.1571 |
| 4.3875             | 0.8333                       | 3.7440 | 3.5542 | 5.7105 | 5.1730 |

Table (5.2.3) Point-wise method (Zr-oxalate) logK<sub>2</sub> average value=3.4985

### 5.2.1.2-Method of interpolation at half n<sup>-</sup> values:(half intedral method)

 $\log K_2$  was calculated from metal-ligand formation curve by plotting n<sup>-</sup> against pL, figure (5.2.2),  $\log K_2$ =3.3. This value in a good concordance with the value obtained by point-wise calculation method. The value was further verified by linear plot method.



Fig. (5.2.2) Metal-ligand formation curve (zirconium oxalate) logK<sub>2</sub>=3.3

#### **5.2.1.3-Linear plot method**: (Zirconium oxalate)

 $\log K_2$  calculated by plotting log (n-2)/(4-n<sup>-</sup>) v/s corresponding pL. log K<sub>2</sub>=3.126 (5.2.3) this value was in a good agreement with the two previous methods.



Fig. (5.2.3). Linear plot method Zr-oxalate  $\log K_3 = 3.126$ 

5.2.1.4- Hinderson or Hasselbalch's equation: (zirconium oxalate).

Because only one chelate is form and the ligand is dibasic Hinderson's equation can taken the following form.

$$\log K_4 = \log \left( \frac{(n^- - 2)}{(4 - n^-)} \right) - \log[L]$$

| Log K <sub>2</sub> | $\log \frac{(n^2)}{(4-n^-)}$ | Log[L]  | pL     | n      |
|--------------------|------------------------------|---------|--------|--------|
|                    | (4-n)                        |         |        |        |
| 3.8911             | -0.6073                      | -4.4984 | 5.2858 | 2.4396 |
| 3.8364             | -0.5675                      | -4.4039 | 5.1546 | 2.3952 |
| 3.7769             | -0.5332                      | -4.3101 | 5.0357 | 2.3831 |
| 3.7010             | -0.5137                      | -4.2147 | 4.9105 | 2.3360 |
| 3.6390             | -0.4842                      | -4.1232 | 4.8117 | 2.3788 |
| 3.5767             | -0.4562                      | -4.0331 | 4.7082 | 2.3950 |
| 3.5077             | -0.4353                      | -3.9430 | 4.6005 | 2.3884 |
| 3.4140             | -0.4351                      | -3.8491 | 4.4984 | 2.3962 |
| 3.3219             | -0.4352                      | -3.7571 | 4.4039 | 2.4261 |
| 3.2530             | -0.4188                      | -3.6719 | 4.3101 | 2.4532 |
| 3.1896             | -0.4004                      | -3.5900 | 4.2147 | 2.4691 |
| 3.1317             | -0.3801                      | -3.5118 | 4.1232 | 2.4939 |
| 3.0922             | -0.3486                      | -3.4408 | 4.0331 | 2.5181 |
| 3.0613             | -0.3139                      | -3.3752 | 3.9430 | 2.5370 |
| 3.0458             | -0.2716                      | -3.3174 | 3.8491 | 2.5372 |
| 3.0536             | -0.2166                      | -3.2702 | 3.7571 | 2.5370 |
| 3.0748             | -0.1570                      | -3.2318 | 3.6719 | 2.5520 |
| 3.1326             | -0.0774                      | -3.2100 | 3.5900 | 2.5691 |
| 3.1150             | -0.0548                      | -3.1699 | 3.5118 | 2.5884 |
| 3.1071             | -0.0298                      | -3.1369 | 3.4408 | 2.6189 |
| 3.1308             | 0.0123                       | -3.1185 | 3.3752 | 2.6536 |
| 3.1824             | 0.0684                       | -3.1140 | 3.3174 | 2.6971 |
| 3.2511             | 0.1311                       | -3.1200 | 3.2702 | 2.7557 |
| 3.3693             | 0.2203                       | -3.1491 | 3.2318 | 2.8212 |
| 3.5277             | 0.3284                       | -3.1992 | 3.2100 | 2.9111 |
| 3.7231             | 0.4525                       | -3.2705 | 3.1699 | 2.9370 |
| 3.9795             | 0.6052                       | -3.3743 | 3.1369 | 2.9657 |
| 4.3875             | 0.8333                       | -3.5542 | 3.1185 | 3.0142 |
| 5.3544             | 1.3414                       | -4.0130 | 3.1140 | 3.0786 |
| 3.8911             | -0.6079                      | -4.4984 | 3.1200 | 3.1498 |
| 3.8364             | -0.5675                      | -4.4039 | 3.1491 | 3.2483 |
| 3.7769             | -0.5332                      | -4.3101 | 3.1992 | 3.3611 |
| 3.7010             | -0.5137                      | -4.2147 | 3.2705 | 3.4785 |
| 3.6390             | -0.4842                      | -4.1232 | 3.3743 | 3.6023 |
| 3.5767             | -0.4564                      | -4.0331 | 3.5542 | 3.7440 |

Table(5.2.4) Zr-oxalate stability constant, logK<sub>2</sub> average value =3.4768

Table (5.2.5). Stability constants of zr-oxalate, obtained by four methods.

| Method                        | logK <sub>2</sub> |
|-------------------------------|-------------------|
| Point wise calculation method | 3.4985            |
| Half integral method          | 3.3               |
| Linear plot method            | 3.126             |
| Hinderson's equation          | 3.4768            |
|                               |                   |

# 5.3/Zirconium and oxalacetic acid system:

*Table* (5.3.1). The pH - titration readings of acid, acid + ligand and acid + ligand + metal ions  $(Zr^{+4}).N^0 = 0.522M$ ,  $E^0 = 5 \times 10^{-3}$  M,  $T_{Cl} = 1.5 \times 10^{-3}$  M,  $T_{cm} = 5 \times 10^{-4}$  M,  $V^0 = 200 cm^3$ ,  $u^0 = 5 \times 10^{-3}$  t = 22.5°*C*.

| Vol. of alkali | Acid  | Acid +ligand | Acid+ligand | Volume of alkali | Acid  | Acid+ligan | Acid+ligand+ |
|----------------|-------|--------------|-------------|------------------|-------|------------|--------------|
| added          |       |              | +metal ion  | added            |       | d          | metal ion    |
| 0.0            | 2.31  | 2.25         | 2.02        | 3.1              | 11.95 | 11.62      | 11.04        |
| 0.1            | 2.34  | 2.27         | 2.03        | 3.2              | 11.98 | 11.68      | 11.17        |
| 0.2            | 2.37  | 2.29         | 2.05        | 3.3              | 12.01 | 11.73      | 11.29        |
| 0.3            | 2.40  | 2.31         | 2.06        | 3.4              | 12.03 | 11.77      | 11.37        |
| 0.4            | 2.44  | 2.33         | 2.08        | 3.5              | 12.05 | 11.82      | 11.45        |
| 0.5            | 2.48  | 2.36         | 2.12        | 3.6              | 12.08 | 11.85      | 11.51        |
| 0.6            | 2.53  | 2.40         | 2.15        | 3.7              | 12.09 | 11.88      | 11.57        |
| 0.7            | 2.58  | 2.43         | 2.17        | 3.8              | 12.11 | 11.91      | 11.62        |
| 0.8            | 2.63  | 2.46         | 2.20        | 3.9              | 12.13 | 11.94      | 11.66        |
| 0.9            | 2.70  | 2.50         | 2.23        | 4.0              | 12.15 | 11.97      | 11.71        |
| 1.0            | 2.78  | 2.55         | 2.26        | 4.1              | 12.17 | 11.99      | 11.75        |
| 1.1            | 2.89  | 2.60         | 2.30        | 4.2              | 12.19 | 12.02      | 11.78        |
| 1.2            | 3.01  | 2.66         | 2.33        | 4.3              | 12.20 | 12.04      | 11.81        |
| 1.3            | 3.19  | 2.71         | 2.37        | 4.4              | 12.22 | 12.06      | 11.84        |
| 1.4            | 3.48  | 2.78         | 2.42        | 4.5              | 12.23 | 12.08      | 11.87        |
| 1.5            | 4.50  | 2.87         | 2.47        | 4.6              | 12.24 | 12.10      | 11.90        |
| 1.6            | 10.02 | 2.98         | 2.52        | 4.7              | 12.26 | 12.12      | 11.92        |
| 1.7            | 10.74 | 3.12         | 2.58        | 4.8              | 12.27 | 12.14      | 11.94        |
| 1.8            | 11.04 | 3.31         | 2.65        | 4.9              | 12.28 | 12.16      | 11.97        |
| 1.9            | 11.23 | 3.60         | 2.73        | 5.0              | 12.29 | 12.18      | 11.99        |
| 2.0            | 11.36 | 4.19         | 2.83        | 5.1              | 12.31 | 12.19      | 12.01        |
| 2.1            | 11.46 | 5.77         | 2.95        | 5.2              | 12.32 | 12.20      | 12.03        |
| 2.2            | 11.55 | 7.56         | 3.11        | 5.3              | 12.33 | 12.32      | 12.04        |
| 2.3            | 11.61 | 9.99         | 3.35        | 5.4              | 12.34 | 12.23      | 12.06        |
| 2.4            | 11.68 | 10.60        | 3.82        | 5.5              | 12.35 | 12.25      | 12.08        |
| 2.5            | 11.73 | 10.92        | 5.39        | 5.6              | 12.36 | 12.26      | _            |
| 2.6            | 11.78 | 11.13        | 7.04        | 5.7              | 12.37 | 12.27      | _            |
| 2.7            | 11.82 | 11.28        | 9.33        | 5.8              | 12.38 | 12.28      | -            |
| 2.8            | 11.86 | 11.39        | 10.32       | 5.9              | 12.39 | 12.30      | _            |
| 2.9            | 11.89 | 11.48        | 10.55       | 6.0              | 12.40 | 12.31      | _            |
| 3.0            | 11 93 | 11 56        | 10.84       | 6.1              |       | -          | _            |



Fig(5.3.1) Titration curves of three sets of solution versus pH.

Fig. (5.3.2) Alkali volume required for the three set solutions to reach the same pH

| В   | V1     | V2     | V3     | В    | V1     | V2     | V3     |
|-----|--------|--------|--------|------|--------|--------|--------|
| 2.1 | 0.4500 | _      | _      | 7.1  | 1.5471 | 2,1743 | 2.6026 |
| 2.2 | 0.8000 | -      | -      | 7.2  | 1.5489 | 2.1799 | 2.6070 |
| 2.3 | 0.2500 | 1.1000 | -      | 7.3  | 1.5507 | 2.1855 | 2.6114 |
| 2.4 | 0.3000 | 0.6000 | 1.3600 | 7.4  | 1.5525 | 2.1911 | 2.6157 |
| 2.5 | 0.5400 | 0.9000 | 1.5600 | 7.5  | 1.5543 | 2.1967 | 2.6201 |
| 2.6 | 0.7400 | 1,1000 | 1.7286 | 7.6  | 1.5562 | 2,2016 | 2.6245 |
| 27  | 0.9000 | 1.2800 | 1.8625 | 77   | 1.5580 | 2,2058 | 2.6288 |
| 2.8 | 1.0182 | 1.4222 | 1.9700 | 7.8  | 1.5598 | 2,2099 | 2.6332 |
| 2.9 | 1.1083 | 1.5273 | 2.0583 | 7.9  | 1.5616 | 2.214  | 2.6376 |
| 3.0 | 1,1917 | 1.6143 | 2,1313 | 8.0  | 1.5634 | 2,2181 | 2.6419 |
| 3.1 | 1.2500 | 1.6857 | 2.1938 | 8.1  | 1.5652 | 2.2222 | 2.6463 |
| 32  | 1.3035 | 1.7421 | 2.2375 | 82   | 1.5670 | 2.2263 | 2.6507 |
| 3.3 | 1.3379 | 1.7947 | 2.2792 | 8.3  | 1.5688 | 2.2305 | 2.655  |
| 34  | 1.3724 | 1.8310 | 2.3106 | 84   | 1.5707 | 2,2346 | 2.6594 |
| 3.5 | 1.4020 | 1.8655 | 2.3319 | 8.5  | 1.5725 | 2.2387 | 2.6638 |
| 3.6 | 1.4118 | 1.9000 | 2.3532 | 8.6  | 1.5743 | 2.2428 | 2.6681 |
| 3.7 | 1.4216 | 1.9170 | 2.3745 | 8.7  | 1.5761 | 2.2469 | 2.6725 |
| 3.8 | 1.4314 | 1.9339 | 2.3957 | 8.8  | 1.5779 | 2.251  | 2.6769 |
| 3.9 | 1.4412 | 1.9509 | 2.4051 | 8.9  | 1.5797 | 2.2551 | 2.6812 |
| 4.0 | 1.451  | 1.9678 | 2.4115 | 9.0  | 1.5815 | 2.2593 | 2.6856 |
| 4.1 | 1.4608 | 1.9847 | 2.4178 | 9.1  | 1.5833 | 2.2634 | 2.6900 |
| 4.2 | 1.4706 | 2.0006 | 2.4242 | 9.2  | 1.5851 | 2.2675 | 2.6943 |
| 4.3 | 1.4804 | 2.0070 | 2.4306 | 9.3  | 1.5870 | 2.2716 | 2.6987 |
| 4.4 | 1.4902 | 2.0133 | 2.4369 | 9.4  | 1.5888 | 2.2757 | 2.7071 |
| 4.5 | 1.5000 | 2.0196 | 2.4433 | 9.5  | 1.5906 | 2.2798 | 2.7172 |
| 4.6 | 1.5018 | 2.0260 | 2.4497 | 9.6  | 1.5924 | 2.2840 | 2.7273 |
| 4.7 | 1.5036 | 2.0323 | 2.4561 | 9.7  | 1.5942 | 2.2881 | 2.7374 |
| 4.8 | 1.5054 | 2.0386 | 2.4624 | 9.8  | 1.5960 | 2.2922 | 2.7475 |
| 4.9 | 1.5072 | 2.0449 | 2.4688 | 9.9  | 1.5978 | 2.2963 | 2.7576 |
| 5.0 | 1.5091 | 2.0513 | 2.4752 | 10.0 | 1.5996 | 2.3017 | 2.7677 |
| 5.1 | 1.5109 | 2.0576 | 2.4815 | 10.1 | 1.6111 | 2.3180 | 2.7778 |
| 5.2 | 1.5127 | 2.0639 | 2.4879 | 10.2 | 1.6250 | 2.3344 | 2.7879 |
| 5.3 | 1.5145 | 2.0703 | 2.4943 | 10.3 | 1.6389 | 2.3508 | 2.7980 |
| 5.4 | 1.5163 | 2.0766 | 2.5006 | 10.4 | 1.6528 | 2.3672 | 2.8348 |
| 5.5 | 1.5181 | 2.0829 | 2.5067 | 10.5 | 1.6667 | 2.3836 | 2.8783 |
| 5.6 | 1.5199 | 2.0892 | 2.5127 | 10.6 | 1.6806 | 2.4000 | 2.9173 |
| 5.7 | 1.5217 | 2.0956 | 2.5188 | 10.7 | 1.6945 | 2.4313 | 2.9518 |
| 5.8 | 1.5236 | 2.1017 | 2.5249 | 10.8 | 1.7200 | 2.4625 | 2.9862 |
| 5.9 | 1.5254 | 2.1073 | 2.5309 | 10.9 | 1.7534 | 2.4938 | 3.0300 |
| 6.0 | 1.5272 | 2.1129 | 2.5370 | 11.0 | 1.7867 | 2.5381 | 3.0800 |
| 6.1 | 1.5290 | 2.1184 | 2.5430 | 11.1 | 1.8316 | 2.5858 | 3.1462 |
| 6.2 | 1.5308 | 2.124  | 2.5491 | 11.2 | 1.8843 | 2.6467 | 3.2251 |
| 6.3 | 1.5326 | 2.1296 | 2.5552 | 11.3 | 1.9539 | 2.7183 | 3.3126 |
| 6.4 | 1.5344 | 2.1352 | 2.5612 | 11.4 | 2.0401 | 2.8112 | 3.4376 |
| 6.5 | 1.5362 | 2.1408 | 2.5673 | 11.5 | 2.1446 | 2.9251 | 3.5835 |
| 6.6 | 1.538  | 2.1464 | 2.5733 | 11.6 | 2.2835 | 3.0668 | 3.7602 |
| 6.7 | 1.5399 | 2.1520 | 2.5794 | 11.7 | 2.4402 | 3.2402 | 3.9802 |
| 6.8 | 1.5417 | 2.1575 | 2.5855 | 11.8 | 2.6502 | 3.4602 | 4.2670 |
| 6.9 | 1.5435 | 2.1631 | 2.5915 | 11.9 | 2.9252 | 3.7670 | 4.6005 |
| 7.0 | 1.5453 | 2.1687 | 2.5976 | 12.0 | -      | -      | -      |

# **5.3.1-Metal-ligand stability constant:**(zirconium oxalacetate) **5.3.1.1-Point-wise calculation method**

Metal-ligand titration curve cross over the ligand titration curve at pH 2.4, table (5.3.2) and figure (5.3.1), indicating the formation of a complex.  $n^-$  extended between 2.0206 to 2.9607 Table (5.3.3) indicating the formation of ML<sub>3</sub> chelate only. logK<sub>3</sub>= 4.4584.This value was further verified by half integral method. It was noticed during the titration course; a precipitate appeared at lower pH (2.4) and disappeared at higher pH.

| $logK_3$         | $\log\frac{(n^2)}{(3-n^-)}$ | n      | pL               | V3               | V2     |
|------------------|-----------------------------|--------|------------------|------------------|--------|
| 6 0902           | 1 6775                      | 2 0206 | 7 75 70          | 7 4422           | 2.0106 |
| 6 1205           | -1.0775                     | 2.0200 | 7.7570           | 2.4455           | 2.0190 |
| 6 0094           | -1.4331                     | 2.0334 | 7.3044           | 2.4497           | 2.0200 |
| 6.0346           | -1.2/29                     | 2.0300 | 7.3713           | 2.4301           | 2.0323 |
| 0.0240<br>E 0222 | -1.1337                     | 2.0030 | 6.0957           | 2.4024           | 2.0300 |
| 5.9525           | -1.0554                     | 2.0015 | 6 7021           | 2.4000           | 2.0449 |
| 5.0224           | -0.9700                     | 2.0907 | 6,6009           | 2.4732<br>2.471E | 2.0313 |
| 5.7020           | -0.0900                     | 2.1123 | 6.4000           | 2.4013           | 2.0570 |
| 5 4474           | -0.0300                     | 2.1207 | 6 2175           | 2.4079           | 2.0033 |
| 5 3100           | -0.7702                     | 2.1451 | 6.0263           | 2.4943           | 2.0703 |
| 5.5109           | -0.7134                     | 2.1015 | 0.0203<br>5.8251 | 2.5000           | 2.0700 |
| 5 0211           | -0.0072                     | 2.1771 | 5.6331           | 2.3007           | 2.0029 |
| 1 9711           | -0.0230                     | 2.1324 | 5.0441           | 2.5127           | 2.0052 |
| 4.0744           | -0.5790                     | 2.2005 | 5 2655           | 2.5100           | 2.0950 |
| 4.7272           | -0.3302                     | 2.2245 | 5.0787           | 2,5245           | 2.1017 |
| 4.3010           | -0.4570                     | 2.2413 | 1 8047           | 2,5305           | 2.1075 |
| 4.4500           | -0.4333                     | 2.2555 | 4.0347           | 2.5370           | 2.1125 |
| 4.2505           | -0.4170                     | 2.2705 | 4.7135           | 2.5450           | 2.1104 |
| 4.1005           | -0.3/02                     | 2.2331 | 4.3303           | 2.5451           | 2.1240 |
| 3 9091           | -0.3403                     | 2.3130 | 4 2132           | 2,5552           | 2.1250 |
| 3 8031           | -0.2674                     | 2.3510 | 4.2152           | 2.5012           | 2.1332 |
| 3 7137           | -0.2074                     | 2,3500 | 3 9458           | 2.5075           | 2.1400 |
| 3 6461           | -0.1969                     | 2 3885 | 3 8430           | 2.5794           | 2.1404 |
| 3 6032           | -0 1608                     | 2.0005 | 3 7640           | 2 5855           | 2.1520 |
| 3 5813           | -0.1260                     | 2.4000 | 3 7073           | 2 5915           | 2 1631 |
| 3 5811           | -0.0900                     | 2.4200 | 3 6712           | 2,5976           | 2.1687 |
| 3 5815           | -0.0649                     | 2 4627 | 3 6464           | 2 6026           | 2 1743 |
| 3 5853           | -0.0456                     | 2 4738 | 3 6309           | 2 6070           | 2 1799 |
| 3.5981           | -0.0260                     | 2.4850 | 3.6241           | 2.6114           | 2.1855 |
| 3.6155           | -0.0072                     | 2.4958 | 3.6228           | 2.6157           | 2.1911 |
| 3.6390           | 0.0129                      | 2.5074 | 3.6261           | 2.6201           | 2.1967 |
| 3.6660           | 0.0336                      | 2.5193 | 3.6324           | 2.6245           | 2.2016 |
| 3.6968           | 0.0556                      | 2.5320 | 3.6412           | 2.6288           | 2.2058 |
| 3.7311           | 0.0791                      | 2.5454 | 3.6521           | 2.6332           | 2.2099 |
| 3.7670           | 0.1029                      | 2.5589 | 3.6641           | 2.6376           | 2.2140 |
| 3.8025           | 0.1260                      | 2.5720 | 3.6765           | 2.6419           | 2.2181 |
| 3.8409           | 0.1507                      | 2.5858 | 3.6903           | 2.6463           | 2.2222 |
| 3.8806           | 0.1757                      | 2.5998 | 3.7050           | 2.6507           | 2.2263 |
| 3.9195           | 0.2000                      | 2.6131 | 3.7195           | 2.6550           | 2.2305 |
| 3.9602           | 0.2252                      | 2.6268 | 3.7350           | 2.6594           | 2.2346 |
| 4.0040           | 0.2520                      | 2.6411 | 3.7520           | 2.6638           | 2.2387 |
| 4.0474           | 0.2784                      | 2.6550 | 3.7690           | 2.6681           | 2.2428 |
| 4.0945           | 0.3067                      | 2.6696 | 3.7878           | 2.6725           | 2.2469 |

Table (5.3.3) Zr-oxalacetate stability constant logK<sub>3</sub> average value =4.4584

| 4.1436 | 0.3360 | 2.6843 | 3.8076 | 2.6769 | 2.2510 |
|--------|--------|--------|--------|--------|--------|
| 4.1927 | 0.3650 | 2.6986 | 3.8277 | 2.6812 | 2.2551 |
| 4.2461 | 0.3964 | 2.7135 | 3.8498 | 2.6856 | 2.2593 |
| 4.3026 | 0.4292 | 2.7287 | 3.8734 | 2.6900 | 2.2634 |
| 4.3596 | 0.4620 | 2.7434 | 3.8976 | 2.6943 | 2.2675 |
| 4.4201 | 0.4965 | 2.7583 | 3.9236 | 2.6987 | 2.2716 |
| 4.6073 | 0.6017 | 2.7999 | 4.0056 | 2.7071 | 2.2757 |
| 4.9030 | 0.7635 | 2.8530 | 4.1395 | 2.7172 | 2.2798 |
| 5.3233 | 0.9869 | 2.9066 | 4.3364 | 2.7273 | 2.2840 |
| 6.1018 | 1.3887 | 2.9607 | 4.7130 | 2.7374 | 2.2881 |

**5.3.1.2-Half integral method: (**zirconium oxalacetate**)** 

 $\log K_3$  was estimated from metal-ligand formation curve, that constructed by plotting n<sup>-</sup> v/s pL fig(5.3.2).logK<sub>3</sub> is the value of pL at which n<sup>-</sup>=2.5. logK<sub>3</sub>=3.616. The value was further verified by linear plot method.





#### **5.3.1.3-Linear plot method**: (zirconium oxalacetate)

pL plotted against  $\log(n^{-}-2)/(3-n^{-})$ , where curve intersect pL should be  $\log K_3$ .  $\log K_3=3.7$ , figure (5.3.3), this value was in a good agreement with the half integral method value. The value was further verified by least squares method.



Figure (5.3.3) linear plot method, Zr-oxalacetic logK<sub>3</sub> =3.64 **5.3.1.4-Henderson's or Hasselbalch's equation:** (zirconium oxalacetate)

Since only one chelate 1:3 is formed, so the following expression of Henderson's equation is employed.

$$\frac{n^{-}-2}{(3-n^{-})} = \beta_1[L]$$

By taking logarithm it becomes:

$$\log\left(\frac{(n^{-}-2)}{(3-n^{-})}\right) = \log K_3 + \log[L].$$

Value was found,  $\log K_3 = 4.4584$ , table (5.3.4). The value obtained agreed very much with the value point-wise calculation method than other two methods.

Table (5.3.4) Henderson's Hasselbalch's equation, logK<sub>3</sub> average value =4.4584

| pL     | 'n     | [L]     | $\log\left(\frac{(n^2)}{(3-n^-)[L]}\right)$ | Log[L]  | $logK_3$ |
|--------|--------|---------|---------------------------------------------|---------|----------|
| 7.7578 | 2.0206 | 1.7E-08 | -1.6775                                     | -7.7578 | 6.0802   |
| 7.5644 | 2.0354 | 2.7E-08 | -1.4351                                     | -7.5644 | 6.1294   |
| 7.3713 | 2.0506 | 4.3E-08 | -1.2729                                     | -7.3713 | 6.0984   |
| 7.1783 | 2.0656 | 6.6E-08 | -1.1537                                     | -7.1783 | 6.0246   |
| 6.9857 | 2.0813 | 1.0E-07 | -1.0534                                     | -6.9857 | 5.9323   |
| 6.7931 | 2.0967 | 1.6E-07 | -0.9706                                     | -6.7931 | 5.8224   |
| 6.6008 | 2.1123 | 2.5E-07 | -0.8980                                     | -6.6008 | 5.7028   |
| 6.4090 | 2.1287 | 3.9E-07 | -0.8308                                     | -6.4090 | 5.5782   |
| 6.2175 | 2.1451 | 6.1E-07 | -0.7702                                     | -6.2175 | 5.4474   |
| 6.0263 | 2.1615 | 9.4E-07 | -0.7154                                     | -6.0263 | 5.3109   |
| 5.8351 | 2.1771 | 1.5E-06 | -0.6672                                     | -5.8351 | 5.1679   |
| 5.6441 | 2.1924 | 2.3E-06 | -0.6230                                     | -5.6441 | 5.0211   |
| 5.4542 | 2.2083 | 3.5E-06 | -0.5798                                     | -5.4542 | 4.8744   |
| 5.2655 | 2.2245 | 5.4E-06 | -0.5383                                     | -5.2655 | 4.7272   |
| 5.0787 | 2.2415 | 8.3E-06 | -0.4970                                     | -5.0787 | 4.5818   |
| 4.8947 | 2.2593 | 1.3E-05 | -0.4559                                     | -4.8947 | 4.4388   |
| 4.7139 | 2.2769 | 1.9E-05 | -0.4170                                     | -4.7139 | 4.2969   |
| 4.5385 | 2.2951 | 2.9E-05 | -0.3782                                     | -4.5385 | 4.1603   |
| 4.3707 | 2.3136 | 4.3E-05 | -0.3403                                     | -4.3707 | 4.0304   |
| 4.2132 | 2.3318 | 6.1E-05 | -0.3041                                     | -4.2132 | 3.9091   |
| 4.0705 | 2.3508 | 8.5E-05 | -0.2674                                     | -4.0705 | 3.8031   |
| 3.9458 | 2.3695 | 0.0001  | -0.2321                                     | -3.9458 | 3.7137   |
| 3.8430 | 2.3885 | 0.0001  | -0.1969                                     | -3.8430 | 3.6461   |
| 3.7640 | 2.4085 | 0.0002  | -0.1608                                     | -3.7640 | 3.6032   |
| 3.7073 | 2.4280 | 0.0002  | -0.1260                                     | -3.7073 | 3.5813   |
| 3.6712 | 2.4484 | 0.0002  | -0.0900                                     | -3.6712 | 3.5811   |

| 3.6464 | 2.4627 | 0.0002  | -0.0649 | -3.6464 | 3.5815 |
|--------|--------|---------|---------|---------|--------|
| 3.6309 | 2.4738 | 0.0002  | -0.0456 | -3.6309 | 3.5853 |
| 3.6241 | 2.4850 | 0.0002  | -0.0260 | -3.6241 | 3.5981 |
| 3.6228 | 2.4958 | 0.0002  | -0.0072 | -3.6228 | 3.6155 |
| 3.6261 | 2.5074 | 0.0002  | 0.0129  | -3.6261 | 3.6390 |
| 3.6324 | 2.5193 | 0.0002  | 0.0336  | -3.6324 | 3.6660 |
| 3.6412 | 2.5320 | 0.0002  | 0.0556  | -3.6412 | 3.6968 |
| 3.6521 | 2.5454 | 0.0002  | 0.0791  | -3.6521 | 3.7311 |
| 3.6641 | 2.5589 | 0.0002  | 0.1029  | -3.6641 | 3.7670 |
| 3.6765 | 2.5720 | 0.0002  | 0.1260  | -3.6765 | 3.8025 |
| 3.6903 | 2.5858 | 0.0002  | 0.1506  | -3.6903 | 3.8409 |
| 3.7049 | 2.5998 | 0.0002  | 0.1757  | -3.7049 | 3.8806 |
| 3.7195 | 2.6131 | 0.0002  | 0.2000  | -3.7195 | 3.9195 |
| 3.7350 | 2.6268 | 0.0002  | 0.2252  | -3.7350 | 3.9602 |
| 3.7520 | 2.6411 | 0.0002  | 0.2520  | -3.7520 | 4.0040 |
| 3.7690 | 2.6550 | 0.0002  | 0.2784  | -3.7690 | 4.0474 |
| 3.7878 | 2.6696 | 0.0002  | 0.3067  | -3.7878 | 4.0945 |
| 3.8076 | 2.6843 | 0.0002  | 0.3360  | -3.8076 | 4.1436 |
| 3.8277 | 2.6986 | 0.0001  | 0.3650  | -3.8277 | 4.1927 |
| 3.8498 | 2.7135 | 0.0001  | 0.3964  | -3.8498 | 4.2461 |
| 3.8734 | 2.7287 | 0.0001  | 0.4292  | -3.8734 | 4.3026 |
| 3.8976 | 2.7434 | 0.0001  | 0.4620  | -3.8976 | 4.3596 |
| 3.9236 | 2.7583 | 0.0001  | 0.4965  | -3.9236 | 4.4201 |
| 4.0056 | 2.7999 | 9.9E-05 | 0.6017  | -4.0056 | 4.6073 |
| 4.1395 | 2.8530 | 7.3E-05 | 0.7635  | -4.1395 | 4.9030 |
| 4.3364 | 2.9066 | 4.6E-05 | 0.9869  | -4.3364 | 5.3234 |

Table (5.3.5) Stability constants of Zi-oxalacetate obtained.by four methods

| Method                 | logK <sub>3</sub> |
|------------------------|-------------------|
| Point wise method      | 4.4584            |
| Half integral method   | 3.616             |
| Linear plot method     | 3.70              |
| Hasselbalch's equation | 4.4584            |

# **5.4/Zirconium-propanoic acid system:**

*Table* (5.4.1). The pH - titration readings of acid, acid + ligand and acid + ligand + metal ions (Zr<sup>+4</sup>).  $N^0 = 0.522M$ ,  $E^0 = 5 \times 10^{-3}$  M,  $T_{Cl} = 1.5 \times 10^{-3}$  M,  $T_{cm} = 5 \times 10^{-4}$  M,  $V^0 = 200 cm^3$ ,  $u^0 = 5 \times 10^{-3}$   $t = 22.5^0 C$ 

| Vol. of alkali | Acid          | Acid +ligand | Acid+ligan     | Volume of alkali | Acid  | Acid+ligand | Acid+ligand+ |
|----------------|---------------|--------------|----------------|------------------|-------|-------------|--------------|
| added          |               |              | d              | added            |       |             | metal ion    |
|                | 2.22          | 2.24         | +metal ion     | D 1              | 11.00 | 11 74       | 11 10        |
| 0.0            | 2.00          | 2.34         | 2.23           | 2.1              | 11.92 | 11.74       | 11.10        |
| 0.1            | 2.34          | 2.34         | 2.20           | J.2<br>2 2 2     | 11.95 | 11.//       | 11.20        |
| 0.2            | 2.30          | 2.37         | 2.27           | 3.3              | 11.97 | 11.01       | 11.50        |
| 0.5            | 2.33          | 2.33         | 2.20           | 35               | 12.00 | 11.05       | 11.47        |
| 0.4            | 2.42          | 2.42         | 2.30           | 3.6              | 12.02 | 11.00       | 11.55        |
| 0.5            | 2.45          | 2.45         | 2.32           | 3.0              | 12.04 | 11.91       | 11.01        |
| 0.0            | 2.45          | 2.43         | 2.33           | 3.2              | 12.00 | 11.54       | 11.07        |
| 0.7            | 2.55          | 2.54         | 2.37           | 3.0              | 12.00 | 11.07       | 11.72        |
| 0.0            | 2.50          | 2.35         | 2.40           | J. <del>J</del>  | 12.10 | 11.55       | 11.70        |
| 1.0            | 2.04          | 2.04         | 2.45           | 4.0              | 12.12 | 12.01       | 11.00        |
| 1.0            | 2.71          | 2.71         | 2.47           | 4.1              | 12.15 | 12.04       | 11.04        |
| 1.1            | 2.00          | 2.80         | 2.50           | 4.2              | 12.13 | 12.00       | 11.07        |
| 1.2            | 2.92          | 2.90         | 2.54           | 4.5              | 12,17 | 12.00       | 11.90        |
| 1.5            | 2.00          | 3.04<br>2.04 | 2.39           | 4.4              | 12.10 | 12.10       | 11.95        |
| 1.4            | 2.20<br>4 7 4 | 3.24         | 2.03           | 4.5              | 12.20 | 12.11       | 11.90        |
| 1.5            | 4.24          | 4.07         | 2.71           | 4.0              | 12.21 | 12.15       | 11.50        |
| 1.0            | 9.95          | 4.07         | 2.70           | 4.7              | 12.22 | 12.15       | 12.10        |
| 1.7            | 10.70         | 4.49         | 2.07           | 4.0              | 12.24 | 12.10       | 12.05        |
| 1.0            | 11.02         | 4.04<br>E 10 | 2.30           | 4.9<br>E 0       | 12.25 | 12.10       | 12.05        |
| 1.9            | 11.21         | 5.19         | 3.13           | 5.0<br>E 1       | 12.20 | 12.20       | 12.07        |
| 2.0            | 11.54         | 5.71         | 3.34<br>2.67   | 5.1              | 12.27 | 12.21       | 12.09        |
| 2.1            | 11.44         | 7.50         | 3.07           | 5.2              | 12.29 | 12.22       | 12.11        |
| 2.2            | 11.52         | 10.42        | 4.07           | 5.5<br>E 4       | 12.30 | 12.24       | 12.13        |
| 2.3            | 11.59         | 10.87        | 4.44           | 5.4              | 12.31 | 12.25       | 12.14        |
| 2.4            | 11.05         | 11.12        | 4.75           | 5.5<br>E.C       | 12.52 | 12.20       | 12.10        |
| 2.5            | 11.70         | 11.28        | 5.06           | 5.0              | 12.33 | 12.27       | 12.18        |
| 2.0            | 11.74         | 11.39        | 5.41           | 5./              | 12.34 | 12.28       | 12.19        |
| 2.7            | 11.70         | 11.49        | 6.06           | 5.8              | 12.35 | 12.29       | 12.20        |
| 2.8            | 11.82         | 11.57        | 8.90           | 5.9              | 12.36 | 12.30       | 12.22        |
| 2.9            | 11.85         | 11.63        | 10.44          | 6.0              | 12.37 | 12.32       | 12.23        |
| 3.0            | 11.89         | 11.68        | 10.85          | -                | -     | -           | -            |
|                | 14            |              | Intrational Ve |                  |       |             |              |
|                |               |              |                |                  |       |             |              |
|                | 12            |              | A              |                  |       | -           |              |
|                |               |              | AIL            | AH HM            |       |             |              |
|                | 10-           |              |                | ,                |       | -           |              |
|                | I a           |              |                |                  |       |             |              |
|                | • 1           |              |                |                  |       | 1           |              |
|                | 6             |              |                |                  |       | 1           |              |
|                |               |              |                |                  |       |             |              |
|                | 4             |              |                |                  |       | 4           |              |
|                |               |              |                |                  |       |             |              |
|                | 2             | 1            | 2              | 3 4              | 5     | 6           |              |

Figure (5.4.1) Plotting of three sets of solutions of alkali volume against pH Table (5.4.2) alkali volume required for the three components to reach the same pH

1 2 3 4 volume of alkali added

5

| _           | В   | V1     | V2     | V3     | В    | V1     | V2     | V3     |     |
|-------------|-----|--------|--------|--------|------|--------|--------|--------|-----|
| <b>B</b> is | 2.4 | 0.3250 | 0.3333 | 0.8000 | 7.2  | 1.5520 | 2.0832 | 2.7401 | the |
| <b>D</b> 10 | 2.5 | 0.6250 | 0.6200 | 1.1000 | 7.3  | 1.5538 | 2.0888 | 2.7437 | the |
|             | 2.6 | 0.8333 | 0.8200 | 1.3167 | 7.4  | 1.5555 | 2.0944 | 2.7472 |     |
|             | 2.7 | 0.9857 | 0.9827 | 1.4833 | 7.5  | 1.5573 | 2.1000 | 2.7507 |     |
|             | 2.8 | 1.1000 | 1.1000 | 1.6222 | 7.6  | 1.5591 | 2.1034 | 2.7542 |     |
|             | 2.9 | 1.1833 | 1.2000 | 1.7273 | 7.7  | 1.5608 | 2.1069 | 2.7577 |     |
|             | 3.0 | 1.2500 | 1.2714 | 1.8133 | 7.8  | 1.5626 | 2.1103 | 2.7613 |     |
|             | 3.1 | 1.3074 | 1.3300 | 1.8800 | 7.9  | 1.5643 | 2.1137 | 2.7648 |     |
|             | 3.2 | 1.3444 | 1.3800 | 1.9333 | 8.0  | 1.5661 | 2.1171 | 2.7683 |     |
|             | 3.3 | 1.3815 | 1.4188 | 1.9810 | 8.1  | 1.5678 | 2.1206 | 2.7718 |     |
|             | 3.4 | 1.4056 | 1.4500 | 2.0182 | 8.2  | 1.5696 | 2.1240 | 2.7754 |     |
|             | 3.5 | 1.4169 | 1.4813 | 2.0485 | 8.3  | 1.5714 | 2.1274 | 2.7789 |     |
|             | 3.6 | 1.4281 | 1.5078 | 2.0788 | 8.4  | 1.5731 | 2.1308 | 2.7824 |     |
|             | 3.7 | 1.4393 | 1.5275 | 2.1075 | 8.5  | 1.5749 | 2.1342 | 2.7859 |     |
|             | 3.8 | 1.4506 | 1.5471 | 2.1325 | 8.6  | 1.5766 | 2.1377 | 2.7894 |     |
|             | 3.9 | 1.4618 | 1.5567 | 2.1575 | 8.7  | 1.5784 | 2.1411 | 2.7930 |     |
|             | 4.0 | 1.4730 | 1.5863 | 2.1825 | 8.8  | 1.5801 | 2.1445 | 2.7965 |     |
|             | 4.1 | 1.4843 | 1.6071 | 2.2081 | 8.9  | 1.5919 | 2.1479 | 2.8000 |     |
|             | 4.2 | 1.4955 | 1.6310 | 2.2351 | 9.0  | 1.5837 | 2.1514 | 2.8065 |     |
|             | 4.3 | 1.5011 | 1.6548 | 2.2622 | 9.1  | 1.5854 | 2.1548 | 2.8130 |     |
|             | 4.4 | 1.5028 | 1.6786 | 2.2892 | 9.2  | 1.5872 | 2.1582 | 2.8195 |     |
|             | 4.5 | 1.5046 | 1.7029 | 2.3194 | 9.3  | 1.5889 | 2.1616 | 2.8260 |     |
|             | 4.6 | 1.5063 | 1.7314 | 2.3516 | 9.4  | 1.5907 | 2.1651 | 2.8325 |     |
|             | 4.7 | 1.5081 | 1.7600 | 2.3839 | 9.5  | 1.5924 | 2.1685 | 2.8390 |     |
|             | 4.8 | 1.5098 | 1.7886 | 2.4161 | 9.6  | 1.5942 | 2.1719 | 2.8455 |     |
|             | 4.9 | 1.5116 | 1.8172 | 2.4484 | 9.7  | 1.5960 | 2.1753 | 2.8520 |     |
|             | 5.0 | 1.5134 | 1.8457 | 2.4807 | 9.8  | 1.5977 | 2.1788 | 2.8584 |     |
|             | 5.1 | 1.5151 | 1.8743 | 2.5114 | 9.9  | 1.5995 | 2.1822 | 2.8649 |     |
|             | 5.2 | 1.5169 | 1.9019 | 2.5400 | 10.0 | 1.6091 | 2.1856 | 2.8714 |     |
|             | 5.3 | 1.5186 | 1.9212 | 2.5686 | 10.1 | 1.6351 | 2.1925 | 2.8779 |     |
|             | 5.4 | 1.5204 | 1.9404 | 2.5972 | 10.2 | 1.6351 | 2.1925 | 2.8844 |     |
|             | 5.5 | 1.5221 | 1.9596 | 2.6139 | 10.3 | 1.6481 | 2.1959 | 2.8909 |     |
|             | 5.6 | 1.5239 | 1.9789 | 2.6292 | 10.4 | 1.6610 | 2.1993 | 2.8974 |     |
|             | 5.7 | 1.5257 | 1.9981 | 2.6446 | 10.5 | 1.6740 | 2.2178 | 2.9147 |     |
|             | 5.8 | 1.5274 | 2.0050 | 2.6600 | 10.6 | 1.6870 | 2.2400 | 2.9390 |     |
|             | 5.9 | 1.5292 | 2.0106 | 2.6754 | 10.7 | 1.7000 | 2.2622 | 2.9634 |     |
|             | 6.0 | 1.5309 | 2.0162 | 2.6908 | 10.8 | 1.7313 | 2.2845 | 2.9878 |     |
|             | 6.1 | 1.5327 | 2.0218 | 2.7014 | 10.9 | 1.7625 | 2.3120 | 3.0200 |     |
|             | 6.2 | 1.5344 | 2.0274 | 2.7049 | 11.0 | 1.7938 | 2.3520 | 3.0600 |     |
|             | 6.3 | 1.5362 | 2.0330 | 2.7085 | 11.1 | 1.8422 | 2.3920 | 3.1001 |     |
|             | 6.4 | 1.5380 | 2.0385 | 2.7120 | 11.2 | 1.8948 | 2.4501 | 3.1626 |     |
|             | 6.5 | 1.5397 | 2.0441 | 2.7155 | 11.3 | 1.9693 | 2.5183 | 3.2334 |     |
|             | 6.6 | 1.5415 | 2.0497 | 2.7190 | 11.4 | 2.0601 | 2.6101 | 3.3223 |     |
|             | 6.7 | 1.5432 | 2.0553 | 2.7225 | 11.5 | 2.1751 | 2.7126 | 3.4376 |     |
|             | 6.8 | 1.5450 | 2.0609 | 2.7261 | 11.6 | 2.3168 | 2.8502 | 3.5835 |     |
|             | 6.9 | 1.5467 | 2.0665 | 2.7296 | 11.7 | 2.5002 | 3.0402 | 3.7602 |     |
|             | 7.0 | 1.5485 | 2.0721 | 2.7331 | 11.8 | 2.7502 | 3.2752 | 4.0002 |     |
|             | 7.1 | 1.5503 | 2.0777 | 2.7366 | 11.9 | 3.0337 | 3.5670 | 4.3003 |     |

pH-meter reading.**V1**, **V2** and **V3** are the volumes of alkali employed to bring the solutions of acid , acid+ ligand and acid+ligand+metal ion respectively to the same pH value.

## **5.4.1-Metal-ligand stability constants:**

**5.4.1.1-Point-wise calculation method**: (zirconium propanoate)

Metal titration curve showed a displacement with respect to the ligand titration curve along the volume axis at pH 2.4 indicate the affinity of ligand with metal ions which release a proton, figure (5.4.1) and table (5.4.2). This deviation used for calculation of stability constants by point-wise method, n<sup>-</sup> extends in the range 2.4881 to 2.9968 indicates the formation complex of 1:3 only, the value of stability constants is found, logK<sub>3</sub>=11.5165, table (5.4.3)

| Table ( | Table (5.4.3) point-wise method $Log R_3$ average value $-11.5105$ |                 |                     |         |                   |  |  |
|---------|--------------------------------------------------------------------|-----------------|---------------------|---------|-------------------|--|--|
| V2      | V3                                                                 | .n <sup>-</sup> | .n <sup>-</sup> .pL |         | logK <sub>3</sub> |  |  |
|         |                                                                    |                 |                     | . ,     |                   |  |  |
| 0.3333  | 0.8000                                                             | 2.4881          | 11.4807             | -0.0207 | 11.4661           |  |  |
| 0.6200  | 1.1000                                                             | 2.4974          | 11.3885             | -0.0045 | 11.3883           |  |  |
| 0.820   | 1.3167                                                             | 2.5456          | 11.3325             | 0.0795  | 11.4156           |  |  |
| 0.9827  | 1.4833                                                             | 2.6101          | 11.2990             | 0.1944  | 11.4962           |  |  |
| 1.1000  | 1.6222                                                             | 2.7356          | 11.3686             | 0.4443  | 11.8160           |  |  |

#### **5.4.1.2-Half integral method:** (zirconium propanoate)

Metal-ligand formation curve was plotted n<sup>-</sup> against pL figure (5.4.2). logK<sub>3</sub>corresponds to value of pL where n<sup>-</sup>=2.5. The value was found, logK<sub>3</sub>=11.382. This value was further verified by linear plot method.



Fig.(5.4.2)Metal-ligand formation curve logK<sub>3</sub>=11.382

#### 5.4.1.3-Linear plot method:

Plotting of pL versus log  $(n^{-2})/(3-n^{-1})$ , logK<sub>3</sub> equal to point of intersect of the curve with x-axis (pL) figure (5.4.3). The value found, logK<sub>3</sub>=11.382 the value was in a good agreement with the value obtained by point-wise calculation method. This value was further verified by Henderson's Hasselbalch's equation.





$$\log(\frac{n^{-}-2}{(3-n^{-})}) = \log K_{3} + \log[L]$$

The value of  $\log K_3$  has taken as an average of the left hand side values of the equation. The value found,  $\log K_3$ =11.5125 table (5.4.4).

| ••• | ····)e |        |          |                                    |         |  |  |
|-----|--------|--------|----------|------------------------------------|---------|--|--|
| -   | pL     | n      | log[L]   | $\log \frac{(n^{-}-2)}{(2-n^{-})}$ |         |  |  |
|     |        |        |          | (3-1)                              | logK3   |  |  |
| -   | 3.5936 | 2.4881 | -11.4807 | -0.0207                            | 11.4600 |  |  |
|     | 3.6022 | 2.4974 | -11.3885 | -0.0045                            | 11.3840 |  |  |
|     | 3.6465 | 2.5456 | -11.3325 | 0.0795                             | 11.4120 |  |  |
|     | 3.7132 | 2.6101 | -11.2990 | 0.1944                             | 11.4934 |  |  |
|     | 3.8822 | 2.7356 | -11.3686 | 0.4443                             | 11.8129 |  |  |
| _   | 4.1123 | 2.8442 | -11.4992 | 0.7340                             | 12.2332 |  |  |

Table (5.4.4) Henderson's equation  $logK_3$  average value=11.5125

Table (5.4.5) Stability constants of Zr-propanoic acid obtained.by four methods

| Method               | logK <sub>3</sub> |
|----------------------|-------------------|
| Pointwise method     | 11.5165           |
| Half integral method | 11.382            |
| Linear plot method   | 11.382            |
| Henderson' equation  | 11.5125           |

# 5.5/ Zirconium-citric acid system.

*Table* (5.5.1). The titration resdings of acid, acid + ligand and acid + ligand + metal ions  $(Zr^{+4}).N^0 = 0.525M$ ,  $E^0 = 6.1465 \times 10^{-3}M$ ,  $T_{Cl} = 5 \times 10^{-5}M$ ,  $T_{cm} = 1.25 \times 10^{-5}M$ ,  $V^0 = 200cm^3$ ,  $u^0 = 5 \times 10^{-3}$ ,  $t = 3.65^0C$ 

| - | Vol. of alkali | Acid  | Acid +ligand | Acid+ligand | Volume of alkali | Acid  | Acid+ligan | Acid+ligand+ |
|---|----------------|-------|--------------|-------------|------------------|-------|------------|--------------|
| - |                | 2.20  | 2 30         | 7 21        | 27               | 11 00 | <u> </u>   | / 20         |
|   | 0.0            | 2.30  | 2.39         | 2.31        | 2.7              | 11.00 | 0.14       | 4.50         |
|   | 0.1            | 2.40  | 2.40         | 2.29        | 2.0              | 11.91 | 0.50       | 4./1         |
|   | 0.2            | 2.42  | 2.42         | 2.31        | 2.9              | 11.94 | 6.95       | 5.06         |
|   | 0.3            | 2.44  | 2.44         | 2.32        | 3.0              | 11.97 | 9.26       | 5.46         |
|   | 0.4            | 2.47  | 2.46         | 2.33        | 3.1              | 12.00 | 10.39      | 5.82         |
|   | 0.5            | 2.50  | 2.48         | 2.35        | 3.2              | 12.02 | 10.85      | 6.14         |
|   | 0.6            | 2.53  | 2.51         | 2.37        | 3.3              | 12.05 | 11.14      | 6.89         |
|   | 0.7            | 2.57  | 2.54         | 2.39        | 3.4              | 12.07 | 11.32      | 6.93         |
|   | 0.8            | 2.62  | 2.58         | 2.41        | 3.5              | 12.09 | 11.46      | 7.95         |
|   | 0.9            | 2.68  | 2.62         | 2.43        | 3.6              | 12.11 | 11.56      | 9.81         |
|   | 1.0            | 2.75  | 2.66         | 2.46        | 3.7              | 12.13 | 11.64      | 10.44        |
|   | 1.1            | 2.84  | 2.72         | 2.48        | 3.8              | 12.15 | 11.70      | 10.83        |
|   | 1.2            | 2.95  | 2.78         | 2.51        | 3.9              | 12.17 | 11.76      | 11.08        |
|   | 1.3            | 3.13  | 2.85         | 2.55        | 4.0              | 12.18 | 11.81      | 11.25        |
|   | 1.4            | 3.45  | 2.93         | 2.58        | 4.1              | 12.20 | 11.85      | 11.38        |
|   | 1.5            | 5.50  | 3.03         | 2.63        | 4.2              | 12.22 | 11.89      | 11.48        |
|   | 1.6            | 10.40 | 3.15         | 2.67        | 4.3              | 12.23 | 11.93      | 11.56        |
|   | 1.7            | 10.82 | 3.29         | 2.72        | 4.4              | 12.24 | 11.96      | 11.63        |
|   | 1.8            | 11.13 | 3.47         | 2.78        | 4.5              | 12.26 | 11.99      | 11.69        |
|   | 1.9            | 11.31 | 3.70         | 2.85        | 4.6              | 12.27 | 12.02      | 11.74        |
|   | 2.0            | 11.45 | 3.97         | 2.93        | 4.7              | 12.28 | 12.05      | 11.78        |
|   | 2.1            | 11.54 | 4.26         | 3.03        | 4.8              | 12.29 | 12.07      | 11.83        |
|   | 2.2            | 11.62 | 4.55         | 3.14        | 4.9              | 12.31 | 12.10      | 11.86        |
|   | 2.3            | 11.69 | 4.83         | 3.29        | 5.0              | 12.32 | 12.12      | 11.90        |
|   | 2.4            | 11.74 | 5.18         | 3.47        | 5.1              | 12.33 | 12.14      | 11.93        |
|   | 2.5            | 11.79 | 5.50         | 3.74        | 5.2              | 12.34 | 12.16      | 11.96        |
|   | 2.6            | 11 8/ | 5.82         | 4.06        | 53               | 12 35 | 12 18      | 11 99        |



Fig. (5.5.1) plotting of three sets of solutions versus pH
|     |        |        |        | 0    |        |        |        |
|-----|--------|--------|--------|------|--------|--------|--------|
| В   | V1     | V2     | V3     | В    | V1     | V2     | V3     |
| 2.4 | 0.1000 | 0.1000 | 0.7500 | 7.2  | 1.5366 | 2.9108 | 3.4265 |
| 2.5 | 0.5000 | 0.5667 | 1.1667 | 7.3  | 1.5388 | 2.9152 | 3.4363 |
| 2.6 | 0.7600 | 0.8500 | 1.4400 | 7.4  | 1.5409 | 2.9195 | 3.4461 |
| 2.7 | 0.9286 | 1.0667 | 1.6600 | 7.5  | 1.5431 | 2.9238 | 3.4559 |
| 2.8 | 1.0556 | 1.2286 | 1.8286 | 7.6  | 1.5453 | 2.9281 | 3.4657 |
| 2.9 | 1.1546 | 1.3625 | 1.9625 | 7.7  | 1.5474 | 2.9325 | 3.4755 |
| 3.0 | 1.2278 | 1.4700 | 2.0700 | 7.8  | 1.5496 | 2.9368 | 3.4853 |
| 3.1 | 1.2833 | 1.5583 | 2.1636 | 7.9  | 1.5517 | 2.9411 | 3.4951 |
| 3.2 | 1.3219 | 1.6357 | 2.2400 | 8.0  | 1.5539 | 2.9455 | 3.5027 |
| 3.3 | 1.3531 | 1.7056 | 2.3056 | 8.1  | 1.556  | 2.9498 | 3.5081 |
| 3.4 | 1.3844 | 1.7611 | 2.3611 | 8.2  | 1.5582 | 2.9541 | 3.5134 |
| 3.5 | 1.4024 | 1.8130 | 2.4111 | 8.3  | 1.5603 | 2.9584 | 3.5188 |
| 3.6 | 1.4073 | 1.8565 | 2.4482 | 8.4  | 1.5625 | 2.9628 | 3.5242 |
| 3.7 | 1.4122 | 1.9000 | 2.4852 | 8.5  | 1.5647 | 2.9671 | 3.5296 |
| 3.8 | 1.4171 | 1.9370 | 2.5188 | 8.6  | 1.5668 | 2.9714 | 3.5349 |
| 3.9 | 1.4220 | 1.9741 | 2.5500 | 8.7  | 1.5690 | 2.9758 | 3.5403 |
| 4.0 | 1.4268 | 2.0104 | 2.5813 | 8.8  | 1.5711 | 2.9801 | 3.5457 |
| 4.1 | 1.4317 | 2.0448 | 2.6125 | 8.9  | 1.5733 | 2.9844 | 3.5511 |
| 4.2 | 1.4366 | 2.0793 | 2.6438 | 9.0  | 1.5754 | 2.9887 | 3.5565 |
| 4.3 | 1.4415 | 2.1138 | 2.6750 | 9.1  | 1.5776 | 2.9931 | 3.5618 |
| 4.4 | 1.4463 | 2.1483 | 2.7061 | 9.2  | 1.5797 | 2.9974 | 3.5672 |
| 4.5 | 1.4512 | 2.1828 | 2.7364 | 9.3  | 1.5819 | 3.0035 | 3.5726 |
| 4.6 | 1.4561 | 2.2179 | 2.7667 | 9.4  | 1.5841 | 3.0124 | 3.5780 |
| 4.7 | 1.4610 | 2.2536 | 2.7970 | 9.5  | 1.5862 | 3.0212 | 3.5833 |
| 4.8 | 1.4659 | 2.2893 | 2.8257 | 9.6  | 1.5884 | 3.0301 | 3.5887 |
| 4.9 | 1.4707 | 2.3200 | 2.8543 | 9.7  | 1.5905 | 3.0389 | 3.5941 |
| 5.0 | 1.4756 | 2.3486 | 2.8829 | 9.8  | 1.5927 | 3.0478 | 3.5995 |
| 5.1 | 1.4805 | 2.3772 | 2.9100 | 9.9  | 1.5948 | 3.0566 | 3.6143 |
| 5.2 | 1.4854 | 2.4063 | 2.9350 | 10.0 | 1.5970 | 3.0655 | 3.6302 |
| 5.3 | 1.4902 | 2.4375 | 2.9600 | 10.1 | 1.5991 | 3.0743 | 3.6460 |
| 5.4 | 1.4951 | 2.4688 | 2.9850 | 10.2 | 1.6088 | 3.0832 | 3.6619 |
| 5.5 | 1.5000 | 2.5000 | 3.0111 | 10.3 | 1.6235 | 3.0920 | 3.6778 |
| 5.6 | 1.5022 | 2.5313 | 3.0389 | 10.4 | 1.6382 | 3.1022 | 3.6937 |
| 5.7 | 1.5043 | 2.5625 | 3.0667 | 10.5 | 1.6530 | 3.1239 | 3.7154 |
| 5.8 | 1.5065 | 2.5938 | 3.0945 | 10.6 | 1.6677 | 3.1457 | 3.7410 |
| 5.9 | 1.5086 | 2.6250 | 3.1250 | 10.7 | 1.6824 | 3.1674 | 3.7667 |
| 6.0 | 1.5108 | 2.6563 | 3.1563 | 10.8 | 1.6971 | 3.1891 | 3.7923 |
| 6.1 | 1.5129 | 2.6875 | 3.1875 | 10.9 | 1.7258 | 3.2173 | 3.8280 |
| 6.2 | 1.5151 | 2.7167 | 3.2172 | 11.0 | 1.7581 | 3.2518 | 3.8680 |
| 6.3 | 1.5172 | 2.7445 | 3.2457 | 11.1 | 1.7904 | 3.2862 | 3.9118 |
| 6.4 | 1.5194 | 2.7722 | 3.2743 | 11.2 | 1.8389 | 3.3334 | 3.9706 |
| 6.5 | 1.5216 | 2.8000 | 3.3023 | 11.3 | 1.8945 | 3.3889 | 4.0385 |
| 6.6 | 1.5237 | 2.8222 | 3.3250 | 11.4 | 1.9644 | 3.4572 | 4.1201 |
| 6.7 | 1.5259 | 2.8445 | 3.3477 | 11.5 | 2.0557 | 3.5401 | 4.2251 |
| 6.8 | 1.528  | 2.8667 | 3.3705 | 11.6 | 2.1751 | 3.6501 | 4.3573 |
| 6.9 | 1.5302 | 2.8889 | 3.3932 | 11.7 | 2.3202 | 3.8002 | 4.5202 |
| 7.0 | 1.5323 | 2.9022 | 3.4069 | 11.8 | 2.5202 | 3.9802 | 4.7402 |
| 7.1 | 1.5345 | 2.9065 | 3.4167 | 11.9 | 2.7670 | 4.2252 | 5.0003 |

Table (5.5.2) Alkali volume required to bring three sets of solutions to same pH

**5.5.1-Metal-ligand stability constant: (**zirconium citrate)

**5.5.1.1-Point-wise calculation method:** 

Metal-ligand titration curve crossed over ligand titration curve at pH 2.4 table (5.5.2). The values of  $n^-$  extended between 1.1649 and 2.8752 indicating formation of 1:2 complex only, since ligand is tribasic and  $n^-$ s value start with value  $\geq 1$ . The value of logK<sub>2</sub> deduced from table (5.5.3) and the correct value taken as an average. This value was further verified by half integral method.

| V2     | V3     | n      | .pL     | $\log \frac{(n^1)}{n^1}$ | $logK_2$ |
|--------|--------|--------|---------|--------------------------|----------|
|        |        |        |         | - (2-n <sup>-</sup> )    |          |
| 0.8500 | 1.4400 | 1.0892 | 11.2928 | -1.0092                  | 10.2837  |
| 1.0667 | 1.6600 | 1.1274 | 11.0021 | -0.8357                  | 10.1664  |
| 1.2286 | 1.8286 | 1.1649 | 10.7112 | -0.7045                  | 10.0067  |
| 1.3625 | 1.9625 | 1.1910 | 10.4177 | -0.6270                  | 9.7907   |
| 1.4700 | 2.0700 | 1.2179 | 10.1245 | -0.5549                  | 9.5696   |
| 1.5583 | 2.1636 | 1.2560 | 9.8341  | -0.4633                  | 9.3708   |
| 1.6357 | 2.2400 | 1.2880 | 9.5423  | -0.3930                  | 9.1492   |
| 1.7056 | 2.3056 | 1.3146 | 9.2492  | -0.3383                  | 8.9109   |
| 1.7611 | 2.3611 | 1.3378 | 8.9554  | -0.2922                  | 8.6631   |
| 1.8130 | 2.4111 | 1.3678 | 8.6634  | -0.2353                  | 8.4281   |
| 1.8565 | 2.4482 | 1.3939 | 8.3705  | -0.1871                  | 8.1834   |
| 1.9000 | 2.4852 | 1.4215 | 8.0781  | -0.1375                  | 7.9406   |
| 1.9370 | 2.5188 | 1.4508 | 7.7863  | -0.0858                  | 7.7005   |
| 1.9741 | 2.5500 | 1.4754 | 7.4933  | -0.0428                  | 7.4505   |
| 2.0104 | 2.5813 | 1.5028 | 7.2013  | 0.0049                   | 7.2062   |
| 2.0448 | 2.6125 | 1.5339 | 6.9105  | 0.0590                   | 6.9695   |
| 2.0793 | 2.6438 | 1.5669 | 6.6206  | 0.1169                   | 6.7375   |
| 2.1138 | 2.6750 | 1.6014 | 6.3314  | 0.1787                   | 6.5101   |
| 2.1483 | 2.7061 | 1.6379 | 6.0432  | 0.2459                   | 6.2891   |
| 2.1828 | 2.7364 | 1.6739 | 5.7555  | 0.3152                   | 6.0708   |
| 2.2179 | 2.7667 | 1.7113 | 5.4692  | 0.3917                   | 5.8609   |
| 2.2536 | 2.7970 | 1.7504 | 5.1850  | 0.4781                   | 5.6631   |
| 2.2893 | 2.8257 | 1.7868 | 4.9026  | 0.5672                   | 5.4698   |
| 2.3200 | 2.8543 | 1.8324 | 4.6284  | 0.6962                   | 5.3246   |
| 2.3486 | 2.8829 | 1.8834 | 4.3653  | 0.8794                   | 5.2447   |
| 2.3772 | 2.9100 | 1.9318 | 4.1175  | 1.1356                   | 5.2531   |
| 2.4063 | 2.9350 | 1.9746 | 3.8942  | 1.5845                   | 5.4786   |

Table (5.5.3) Stability constants of Zr-citrate  $logK_2$  average value = 7.5441

#### 5.5.1.2-Half integral method

Construction of metal-ligand formation curve by plotting n<sup>-</sup> against pL, from which the stability constant of the chelate is deduced.  $\log K_2 = 7.16$ , figure (5.5.2). This value was further verified by linear plot method.



Figure (5.5.2) Metal-ligand formation curve logK<sub>2</sub>=7.16

#### 5.5.1.3-Linear plot method:

Plotting of log  $(n^{-}-1)/(2-n^{-})$  versus corresponding pL, value found was, logK<sub>2</sub>=7.16, figure (5.5.3). The value was in good agreement with the values obtained by two previous methods. The value was further verified by Hinderson's equation.



Fig. (5.5.3) Stability constant of Zr-Citrate logK<sub>2</sub> =7.16

### 5.5.1.4-Henderson and Hesselbalch's equation:

| pL      | L        | n      | Log[L]   | $\log \frac{(n^{-}-1)}{(2-n^{-})}$ | logK <sub>2</sub> |
|---------|----------|--------|----------|------------------------------------|-------------------|
|         |          |        |          |                                    |                   |
| 11.2928 | 5.1E-12  | 1.0892 | -11.2928 | -1.0092                            | 10.2837           |
| 11.0021 | 10.0E-12 | 1.1274 | -11.0021 | -0.8357                            | 10.1664           |
| 10.7112 | 1.9E-11  | 1.1649 | -10.7112 | -0.7045                            | 10.0067           |
| 10.4177 | 3.8E-11  | 1.1910 | -10.4177 | -0.6270                            | 9.7907            |
| 10.1245 | 7.5E-11  | 1.2180 | -10.1245 | -0.5549                            | 9.5696            |
| 9.8341  | 1.5E-10  | 1.2560 | -9.8341  | -0.4633                            | 9.3708            |
| 9.5423  | 2.9E-10  | 1.2880 | -9.5423  | -0.3930                            | 9.1492            |
| 9.2492  | 5.6E-10  | 1.3146 | -9.2492  | -0.3383                            | 8.9109            |
| 8.9554  | 1.1E-09  | 1.3378 | -8.9554  | -0.2922                            | 8.6631            |
| 8.6634  | 2.2E-09  | 1.3678 | -8.6634  | -0.2353                            | 8.4281            |
| 8.3705  | 4.3E-09  | 1.3939 | -8.3705  | -0.1871                            | 8.1834            |
| 8.0781  | 8.4E-09  | 1.4215 | -8.0781  | -0.1375                            | 7.9406            |
| 7.7863  | 1.6E-08  | 1.4508 | -7.7863  | -0.0858                            | 7.7005            |
| 7.4933  | 3.2E-08  | 1.4754 | -7.4933  | -0.0428                            | 7.4505            |
| 7.2013  | 6.3E-08  | 1.5028 | -7.2013  | 0.0049                             | 7.2062            |
| 6.9105  | 1.2E-07  | 1.5339 | -6.9105  | 0.0590                             | 6.9695            |
| 6.6205  | 2.4E-07  | 1.5669 | -6.6205  | 0.1169                             | 6.7375            |
| 6.3314  | 4.7E-07  | 1.6014 | -6.3314  | 0.1787                             | 6.5101            |
| 6.0432  | 9.1E-07  | 1.6379 | -6.0432  | 0.2459                             | 6.2891            |
| 5.7555  | 1.8E-06  | 1.6739 | -5.7555  | 0.3152                             | 6.0708            |
| 5.4692  | 3.4E-06  | 1.7113 | -5.4692  | 0.3917                             | 5.8609            |
| 5.1850  | 6.5E-06  | 1.7504 | -5.1850  | 0.4781                             | 5.6631            |
| 4.9026  | 1.3E-05  | 1.7868 | -4.9026  | 0.5672                             | 5.4698            |
| 4.6284  | 2.4E-05  | 1.8324 | -4.6284  | 0.6962                             | 5.3246            |
| 4.3653  | 4.3E-05  | 1.8834 | -4.3653  | 0.8794                             | 5.2447            |
| 4.1175  | 7.6E-05  | 1.9318 | -4.1175  | 1.1356                             | 5.2531            |
| 3.8942  | 0.00013  | 1.9746 | -3.8942  | 1.5845                             | 5.4786            |

Table (5.5.4) Stability constants of Zr-citrate, logK<sub>2</sub> average value = 7.5441

Table (5.5.5) Stability constants of Zr-citrate obtained by four methods.

| Method                        | logK <sub>2</sub> |
|-------------------------------|-------------------|
| Point wise calculation method | 7.5441            |
| Half integral method          | 7.16              |
| Linear plot method            | 7.16              |
| Hesselbalch's equation        | 7.5441            |

# **CHAPTER SIX**

# **Conclusion and Recommendation**

## Conclusion

The three graphical methods, half integral method, linear plot method and least squares method in addition to the two algebraic ones (point-wise and Henderson's equation) give nearly the same results for each chromium, titanium and zirconium carboxylates systems, and no appreciated difference between the stability constants except in least squares method, the difference is very small and always  $\leq 0.3$ , specially in  $K_{n-1}$ , where the error accumulated. This method has many restrictions which can be found in literature.

Chromium with these carboxylic acid ligands forms 1:1and 1:2 complexes except with citric acid, it forms 1:1 complex only. The values of stability constants were always in order of  $\log K_1 > \log K_2$  this indicates that the complexes form simultaneously, and may implies no specific electronic or steric phenomenon. The difference between  $\log K_1$  and  $\log K_2$  of chromium acetate complexes is lesser than of propanoate complexes, this smaller difference may be due to that chromium acetate 1:2 forms trans structure with water, and chromium propanoate may be in cis structure with water. The difference of stability constants values of 1:1 and 1:2 chromium oxalate complexes nearly as same as chromium acetate complexes (0.5). In chromium oxalacetate the difference between  $\log K_1$  and  $\log K_2$  bigger enough (4.2201), ( $\log K_2$ =10.2385 and  $\log K_2$ =6.0183), this indicates the steric hindrance to the linking of the secondary ligand to the metal ion, which make me thought of the long carbon chain of oxalacetic acid in respect to acetic acid, oxalic acid and propanoic acid, and this elucidate why chromium ion forms 1:1complex only with citric acid.

The strongest chelating agent of these ligands with chromium as it was found were oxalacetic acid and citric acid respectively, the first is bidentate as the second is tridentate ligand.

Metal ion solutions used in present study were very dilute; hence there was no possibility of formation of polynuclear complexes.

Titanium forms 1:2 and 1:3 complexes with the ligands acetic acid, oxalic acid and propanoic acid. The difference between stability constants of these complexes was  $\leq$ 1 this implies that 1:2 and 1:3 complexes found in the same time in the solution.

But with comparative long carbon chain ligands, oxalacetic acid and citric acid titanium forms only 1:1 chelates.

The strongest chelating agents of these ligands under the study with titanium were oxalacetic acid and citric acid.

Zirconium ion forms only one complex with all ligands under investigation, except with acetic acid forms two 1:3 and 1:4 complexes, the difference between the values of stability constants was unity in all methods employed; this indicates the complexes formed simultaneously and not in step-wise manner. Zirconium forms only 1:3 complexes with propanoic acid and oxalacetic acid, with two remained ligands oxalic acid and citric acid forms only 1:2 complexes. Since oxalacetic acid attached to zirconium metal ion as same as propanoic acid, this implies that oxalacetic acid attached to zirconium as monodentate ligand.

The strongest chelating agent of ligand under study to zirconium were propanoic acid ( $\log K_3 = 11.5165$ ) and citric acid ( $\log K_2 = 7.5441$ ).

Now the maximum numbers of ligands under investigation attached to chromium and titanium were two, but zirconium accommodated four ligands as maximum number. Zirconium is a second series transition element.

Always if the complex is alone in the solution would be very stable or the value of stability constant will be high, in addition the chelation will increase the stability of interaction. I stating out of this investigation that, the bidentate ligands is high stable than tridentate ones, example for this, titanium oxalacete  $\log K_1 = 9.76$ , and titanium citrate  $\log k_1 = 7.26$ 

The question should be asked "what method should be use, and which should give the most accurate value". Each of these methods employed above seen satisfactorily to give the answer, with difference  $\leq 0.3$ , for a system where N $\leq 3$  (N is the possible coordination sites).

The most important thing in this work is that, matlab program used for determination of the volume of alkali that required to bring the three sets of solutions to the same pH, which is important for determination of formation functions  $n_A$ ,  $n^-$  and pL.

Interaction of metal ion with carboxylic acid shows high dependency on the salt that added to maintain the ionic strength of the medium, so potassium nitrate with nitric acid as free acid is found adequate after many trials, for nitrate ion has very slight complexing tendency, and the competition between nitrate ion and the ligands under study is of minor importance. Half integral method and linear plot method, give nearly unique answer for  $K_n$  values, whereas common fault is that, as n- increases,  $K_n$  becomes more prone to error.

Differences in magnitude between  $K_n$  values obtained by five methods, are due solely to errors inherent in the experimental data or non-rigorous data treatment, that is, least squares and other graphical methods fit to curves with correlated errors.

In half integral method and least squares method, one treat all data gained from the experiment, that allow one to say the output of these methods is more accurate than others.

In least squares method the slope and intercept obtained by adding trend line and display equation on chart is less accurate than that obtained by LINEST in excel program, or that obtained from origin program (view- result log or fit linear).

### **Recommendation:**

Potentiometic titration is the most reliable technique for determination of stiochiometries and stability constants of complexes, if the external factors are well adjusted, such that temperature, ionic strength, concentration. Spectrophotometric methods, such as continuous variations method, mole ratio method, can applied for the same purpose, but colored transition metal that formed colored complexes, in need of special treatment for to calculate the absorbance of the complex only. Spectrophotometric methods better to be use as confirmation experiments. In each of these two techniques a very dilute solutions must be used.

Potentiometric titration, having more than ever methods for determination of stability constants,

The apparatus and tools for performing the potentiometic titration experiments are cheaper and obtainable, than that of spectrophotometric experiments.

Potentiometric methods give convincing results, if the data derived rigorously.

## References

Abdalazeem, Abdeen, Omar. (2005) Determination of Stoichiometries and Stability Constants of Chromium with Nitrogen Containing Ligands. Thesis submitted in fulfillment of

requirement of Khartuom University for degree of M.Sc.Khartoum. U of K.

Abdulbaset, A. Zaid, Mazahar. Farooqui, D.M. Janrao. (2012) Study of stability constant of biological active molecules (drug) using potentiometric titration technique. J. of chem. boil. phys. Sc. 2 (1). P. 67-81.

A.K. Maldhure. S.S. Agarkar. R.K. Taywade. R.S. Wankhade. (2012) Metal-ligand stability constants of Co(II), Ni(II) and Cu(II) metal ion complexes with N-(5-methyl-hydrox-

yacetophenone)-N-(2-hydroxyacetophenone). J. Chem. pharm. Res. 4 (8). P.3865-3868. Alebert, Zlatkis. Eberhard, Breitmale. Gunther, Jung. (1973) A concise Introduction to

Organic Chemistry. United States of America: McGraw Hill..

A. Leslie, Neal. (1971) Chemistry and Biochemistry a Comprehensive Introduction. United States of America: McGraw-Hill book company.

Ali, Hamoud, Ali. (1987) determination of stoichiometries and stability constants of complexes of propanoic, ß-chloropropanoic, succinic and ß- aminopropanoic acids, with Cu<sup>2+</sup>, Ni<sup>2+</sup> and Co<sup>2+</sup>. Thesis submitted in fulfillment of requirement of Khartuom University for degree of Doctor of Philosophy. Khartoum: U of K.

Andrew, pienaar. (2005) Metal Carboxylate Complexes Relavant to the Fischer-Tropsch synthesis. Thesis submitted in fulfillment of requirement of Stellenbosch University for degree Ms.C. Stellenbosch: Stellenbosch university

Anil, B. Naik. Maroti, Narwade. (2008) Studies on influence of dielectric constants on complex equilibria between substituted pyrazalines and lanthanide metal ions pH-metrically. Amer.-Euras. scient. Res. 3(2). P. 212-216.

Anjani, Kumar, Mishra. Prem, Mohan, Mishra. Sunil, K., Misra. (2011). Equilibrium studies on bivalent transition metal chelates with biologically active schiff's base of heterocyclic aldehydes. Ras. J. Chem. 4(2). P. 303-319.

Ashwini, kumar, Ashok. Kumar, Malik. (2007) Potentiometric studies on the complexes of Cu(II), Cd(II), Co(II), Ni(II), Pb(II), and Zn(II) with Gabapentin. Euras. analy. Chem. 2(2). P. 1-6.

Avinash, Ramteke. Marutil, Narwade. (2013) Studies of stability constants of complexes of chlorosubstituted pyrazoles and pyrazoline with Cu(II), Ni(II), Co(II) and Nd(II) metal ions in 70% dioxane- water mixture at 0.1 ionic strength. Arch. of appl. Sc. 5 (1). P. 231-237.

BENTHAMSCIENCE. (2003) Propanoic Acid. [Online]. Available from:

http://benthamscience-com10pen/tolsj/articles,pdf. [Accessed: 2013].

Bentor, Yinon. (2015). Chemical Element.com - Titanium.[Online]. [Online]. Modified 31 march 2007. Available from www.chemicalelements.com/elements/ti.html, [Accessed: 2013] Boner, George, M. & Pardue, Harry, L. (1996). Chemistry An Experimental Science. 2<sup>nd</sup> edition. John wiley & sons Inc.

Brandes, E. A. Greenaway, H. T. & Stone, H. E. N. (1956). Ductility in Chromium. Nature\_ Bruce, H. Mahan. (1975) University Chemistry. 3<sup>rd</sup> edition. Addison-Wesley publishing. Cary, D. Christian. (1986) Analytical Chemistry. 4<sup>th</sup>. New York. John Wiley and Sons.

Charles E. Mortimers. (1986). Chemistry. 6<sup>th</sup> edition. U.S.A. Wadsworth Inc.

CHEMISTRY 3211 COORDINATION CHEMISTRY PART 3. (2000). Molecular Orbt- tal Diagram for CO. [Online]. Available from: www.chem.mun.ca/homes/cmkhome/Chemistry %203211%20Pt3.pdf. [Accessed: 2012].

Chris, J. Jones. (2001) D and F Block Chemistry. Royal Society Chemistry.

CLASSIFICATION OF STRUCTURE IN TERMS OF COORDINATION NUMBER. (2005)

Coordination number (2). [Online]. Available From:

www.chem.purdue.edu/gchelp/cchem/struct2.html. [Accessed: 2014]

Cotton, Simon. (2006) Lanthanide and Actinide Chemistry. John Wiley & Sons Ltd.

C. R. Landis, & F. Weinhold. (2007) Valence and extra-valence orbitals in main group and transition metal bonding. Journal of Computational Chemistry 28 (1). P. 198–203.

Dennis, J. K. & Such, T. E. (1993) History of Chromium Plating. Nickel and Chromium Plating. Woodhead. P. 9–12.

Dodle, Douglas. Darl H. Daniel. (1995) Concept and Model of Inorganic Chemistry. 2<sup>nd</sup> edition. united states. Xerox college.

Dr. Paul, G. Hages. (2006) M.O. diagrams for O<sub>2</sub> and N<sub>2</sub>. University of Lethbrige

Emsley, John. (2001) Chromium Nature's Building Blocks. An A-Z Guide to the Elements. Oxford, England, UK. Oxford University Press. P. 495–498

E.W. Abel, G.W. Kinson. F.G.A.Stone. (1982) Comprehensive Organometalic Chemistry Sir Geoffrey Wikinson, FRS.

Fawcett, Eric. (1988) Spin-density-wave antiferromagnetism in chromium. Reviews of Modern Physics.

F. Albert, Cotton. & Geoffrey, Wilkinson. (1972) Advanced Inorganic Chemistry 3<sup>rd</sup> edition. John wiley & sons.

F. Albert, Cotton., et al. (1995). Basic Inorganic Chemistry. 3<sup>rd</sup> edition. John Wiley and sons Inc.

F. Gharib. A. Shamel. S. Mohajeri. (2010) Russ. J. Inorg. Chem. Vol. 55. P. 1651

Figgis, B.N., Lewis, J. Lewis, J. & Wilkins, R.G. ((1960) The Magnetochemistry of Complex Compounds. Modern Coordination Chemistry. New York: Wiley Interscience.

Forrest, A. L. (1981) Effects of Metal Chemistry on Behavior of Titanium in Industrial Applications. Industrial Applications of Titanium and Zirconium. p. 112

Fred, Basol. & Ronald, C. Johnson. (1986). Coordination Chemistry. 2<sup>nd</sup> edition. British Library Cataloguing in Publication Data.

F.R., 'Hartley. C. Burgess, R.M. Alcock. (1980) Solution equilibria. New York. John Wiley and sons.

F. J. C. Rossotti. H. S. Rossotti. (1955) Graphical methods for determining equilibrium constants.1- system of mononuclear complexes. Ac. chem. scandinavica. Vol.9, 1166-1176.

Gaafar, Abd Elatief, Hamid. (2000) Determination of Stoichiometries and Stability Constants of Copper (**I**) and Nickel (**I**) Complexes with some Amino Acids. Tthesis submitted in fulfillment of requirements of Khartoum University for degree M.Sc. Khartoum: Uof K. Guertin, Jacques, Jacobs. James, Alan. & Avakian, Cynthia. (2005). Chromium (VI)

Handbook: CRC Press. P. 7–11

Gurdeep, Raj. (1986) Advance inorganic chemistry-**II**. [Online]. Ninth thoroughly revised 2004. Twelfth edition. Satyendra Rastogi "Mitra" p.67.(E- book). Available from: Book code : 277-12 . [Accessed ed. 2010]

Hala, Ali, Shuwail. (1995) Study in Mixed Ligand Complexes. A thesis submitted in partial fulfillment of the requirements for King Abdul Aziz University for the degree of M.Sc. Jadda: King Abdul Aziz University.

Holleman, Arnold, F. Wiberg, Egon. & Wiberg, Nils. (1985) Chromium. Lehrbuch der Anorganischen Chemie. German. Walter de Gruyter. P. 1081–1095. Haxhillazi, Gentiana. (2003) Preparation, Structure and Vibrational Spectroscopy of Tetraperoxo Complexes of  $Cr^{V+}$ ,  $V^{V+}$ ,  $Nb^{V+}$ \_and  $Ta^{V+}$ . Thesis submitted in fulfillment of requirement of University of Siegen. For degree of Doctor of Philosophy. Siegen: University of Siegen.

Jack, Barrete. (1991), understanding inorganic chemistry. Ellis harwood limited.

Julius, B. Cohen. (1930). Practical Organic Chemistry. New York: Macmillan

Kalleey, Csilla. (2005) Transition Metal Complexes of Amino Acid and Peptide Derivatives containing Caboxylate and Imidazole side chains. Thesis submitted in fulfillment of requirement of University of Debrecen. for degree of Doctor of Philosophy. Debrecen: University of Debrecen.

Karen, Pavel. McArdle, Patrick. & Takats, Josef. (2014) Toward a comprehensive definition of oxidation state, (IUPAC Technical Report). *Pure and* Applied Chemistry 86 (6).

Kotaś, J. & Stasicka, Z. (2000) Chromium occurrence in the environment and methods of its speciation. Environmental Pollution 107 (3). P.263–283.

Lames E. Hukeey et al. (1993) Inorganic Chemistry Principle of Structure and Reactivity. 4<sup>th</sup> edition. Harber Collins colledge.

Lide, David, R. (2008) Zirconium. CRC Handbook of Chemistry and Physics 4. New York: CRC Press.

Louis, Meites. (1981) An Introduction to Chemical Quilibrium and Kinetics. Pergamon series in analytical chemistry. Vol. 1. Hungary. Franklin printing house.

MARRIAN. (2000) Oxalacetic Acid. [Online]. Available from: http://www.marrian-websTer.com. [Accessed: 2014].

Martin, V. Dutton, Christine, S. Evans. (1996) Oxalate Production by fungi, it's role in pathogenicity and ecology in soil environment. Canadian journal of microbiology. Vol.42. P. 881-895.

M. Abbo. (1991) The interaction of some  $\beta$ -substitued carboxylic acids with Cu (II), Ni(II) and Co(II). Thesis submitted in fulfillment of requirement of Khartuom University for degree of Doctor of Philosophy. Khartoum: U of K.

Maxwell J. C. (1988) An Elementary Treatise on Electricity, 2<sup>nd</sup> Oxford, England: Clarendon Press.

METAL PROGRAM. (2003) Physical Properties of Chromium. [Online]. Last revised Tuesday 07/Jan./2003. Available from: http://www.toxic. [Accessed: 2012].

Minaxi, Maru. M.K. Shah. (2011) Synthesis and physic-chemical studies of some divalent transition metal complexes of 2-(2'-chloro-6'-substituted quinoliny)-1H-benzo[d]imidazole ligands. J. Chem. Res. 2 (2). P. 14-27.

Mohammed.H.Al-hazmi. (2005) Synthesis and Characterization and Application of Zirconia and Sulfated Zirconia from Single source and Precursors. Thesis submitted in patial fulfillment of requirement of College of the Oklahoma State University for degree of Doctor of Philosophy. Oklahoma: Oklahoma state university.

Mona. (2000) Chromium Complexes. Thesis Submitted in Fulfillments of the Requirements of Khartoum University for degree of Master. Khartoum: (U of K).

Praveen P. Singh et al. J. Indian Soc. (2009) Determination of stability constants of metal-Methionine & and metal-methionine NTA complexes. Vol.86. P.83-86.

Quintus, Fernando. & Michael, D. Ryan. (1982) Calculation in Analytical Chemistry. New York: Harcourt Brace Jovanovich.

Ram, Nayan. & Arun, K. Dey. (1978) pH-metric titration technique for Study of metal

complexes in solution. J. of inorganic& nuclear Chemistry 40(2). P. 289-293.

R.H. Petrucci, W.S. Harwood & F.G. Herring. ((2002). General Chemistry.8<sup>th</sup> edition, Prentice-Hall.

R. K. Lonibala. T. R. Rao. R. K. B. Devi. J. (2006) Chem. Sci., , 118(4). P. 227-334

Robert Grabtree. (1988) Organometalic Chemistry Of Transition Metal. John Wiley and sons Inc.

Santosh, D. Deosarkar. Ashok, B. Kalambe. Vijay, J. Thakare. Shivraj, G. Wanale. Vinay, V. Hiwase. (2011) Potentiometric studies of electrolyte effects on complex equilibria of some substituted 5-(2-hydroxy phenyl) Pyrazoles. Der pharma chemic. 3 (6). P. 75-83.

Sayyed, Hussain, Abdul Rahim, Mazahar, Farooqui. (2011) Studies of binary complexes of metal ions with mandelic acid by potentiometry. Chem. J. 02 (6). P. 206-209.

S.Chaberek Jr. & A. E. Martell (1952) Stability of Metal Chelates Iminodiacetic and Iminodipropionic acids . J. Amer. Chemical Soc. 74(20). P. 5052-5056

Schläfer, H. L.& Gliemann, G. (1969) Basic Principles of Ligand Field Theory. New York. Wiley Interscience.

Steven, S. Zumdah. & Susan, A. Zumdah. (2003) Chemistry, 6<sup>th</sup> edition. New York: Houghton mifflim company.

Stwertka, Albert. (1998). Titanium. Guide to the Elements . Oxford University Press

TRANSITION ELEMENTS. (2007) Oxidation states. [Online]. Last modified 2011. Available from: www.4college.co.uk/a/ss/varoxidation.php. (Accessed: 2014)

Vogel, A.I. (1978) A text Book of Quantitative Inorganic Analysis. 4<sup>th</sup> edition. London: Longman.

Wells, A.F. (1948) Structural Inorganic Chemistry. Oxford Canadian press.

WIKIPEDIA. (2003) Citric Acid.[Online]. Available from:

http://en.wikipedia.org/wiki/Citric\_acid. [Accessed: 2013].

Winter, Mark. (2007) Electronegativity (Pauling). University of Sheffield. Retrieved 2008-03-05.

William, L. Masterton. Emil J. Slowinski. Conrad L. Stanitski. (1985) Chemical Principles. 6<sup>th</sup> edition. U.S: CBS college publishing.

William, L. Jolly. (1991). Modern Inorganic Chemistry. 2<sup>nd</sup> edition. Singapore: Mc.Graw-Hill co.