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ABSTRACT 

 

The low cost navigator can be used to observe 

coordinates with a low accuracy and in a flexable way. 

This Research is directed towards the investigation of 

possibility of improvement of low cost Navigator 

observations using Artificial neural networks the main 

conclusions are: 

 It is possible to enhance navigator coordinates by 

Artificial neural networks 

 A large  number of data points  is required with this 

method . 

 The method is useful for large area rather than small 

area. 
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  المستخلص

إستخدامه في رصد إحداثيات النقاط بدقة  قليل التكلفة يمكن الملاحي جهاز الموقع العالمي

  . بسيطةوطريقة مرنة

الملاحي بإستخدام  الموقع العالمي هذا البحث يهدف إلى دراسة إمكانية تحسين أرصاد جهاز

  . الشبكات العصبية الإصطناعية

  :اهم النقاط التي تم التوصل اليها

الملاحي باستخدام الشبكات  الموقع العالمي جد أنه من الممكن تحسين الإحداثيات المرصودة بالوُ 

  العصبية 

  . الإصطناعية، ولكي تتم عملية التحسين يجب أن يتوفر عدد كبير من النقاط  

  .هذه الطريقة مفيدة في المساحات الواسعة وليس الصغيرة 
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CHAPTER ONE  
INTRODUCTION 

 

The determinations of position is not new in our life, since the ancients, 

people used several various techniques for surveying positioning e.g. the 

use of field astronomy. 

However due the limitation of accuracy and practical difficulties of using 

such techniques especially in surveying made it necessary to establish new 

technique.   

Such a technique was developed by the us navy in the 60thof past century 

and it was called Transite, which was based on the use of satellite system 

and by using principles of intersection between the satellites and the 

location on the earth the position will be computed depending on the 

accuracy there , are two types of ground receivers are used, the 

geodetic)with accuracy of sub-millimetres and the navigator with has an 

accuracy up to meters . 

Anew technique suggested for prediction is the artificial neural network 

(ANN) .it based on the structure and the performance of our biological 

neural network.ANN consists of units called neurons . These units are 

subdivided into three connected layers with an activation functions (initial 

functions) .The produce an output (predicted values) referring to its input 

value(known values). 

The main objective of the research focuses on the possibility of using 

artificial neural net work for enhancing the accuracy of the navigator 

observations. 
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This research consist of five chapters ,chapter one is an introduction ,chapter 

two Isabout the global positioning system, chapter three isthe artificial neural 

network,thefourth chapter is the tests and results, and chapter five is the 

conclusion and recommendations. 
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               CHAPTER TWO 

Global Positioning System 

2.1 Introduction 

The use of satellites in surveying is not new, the so- called TRANSIT 
system has been available for civilian purposes since 1967.The system’s 
accuracy has been in the decimetre range and this method has there, been 
used mainly for navigation, and in prospecting for natural resources and 
establishing the basic documentation for use by national topographic 
department. 

2.2 Global Positioning System 

The Global Positioning System (GPS) changes this situation, since it is 
capable of achieving a relative accuracy in centimetre range. It consists of 
twenty-five satellites that place in six different orbits with 60˚ interval,  
eachorbit with four satellites. The orbital plane is at an angle of 55˚ relative 
to the equatorial plane. In addition to the twenty one active satellites, three 
spare satellites are placed in orbit about the earth and are intended to 
replace any active satellite that becomes unserviceable, by being 
immediately brought into service in its stand ,all the satellites are at a 
height about 20200 km above the earth with an orbiting time of 11h 58 
min, i.e. Each satellite is again over the same position at the end of a 
sidereal day, three further space satellites are kept in readiness on Earth. 

2.3 Satellite Signals 

The satellites transmit continuously on two carriers frequencies. These are 
L1 at 1575.42 MHzand L2 at 1227.60 MHZ (with wave length of 19 cm 
and 24 cm respectively).The use of second frequency allows the 
elimination of the effects of the ionosphere signal propagation. The carrier 
frequencies are modulated with the navigation signals which contains 
privies time information .The navigation signal is a binary code generated 
by a mathematical algorithm. And transmittedto the user who is ignorant of 
this code it is reminiscent of random noise . And is therefore known as 
pseudo – random noise .The phase modulation of the a carrier with a high 
frequency code is known as pseudo – spectrum modulation . 

There are two codes, the C/A (Coarse Acquisition) and the P (Precise) 

codes. The C/A code is accessible to all users and is modulated on the 
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carrier at frequency 1.023 MHZ (a wavelength of about 300m). It has a 

period of One millisecond, 

In the ultimate stage, access to the P code is restricted to certain military 

users only . This code is modulated on the carrier with a frequency of 

10.23MHZ (wavelength of about 30m) . The P code has a period of 261 

day.  

In addition to the codes, the satellite transmits at a speed of 50 bites per 
second (BPS), containing all the parameters necessary for computing the 
satellite’s position which is known as the navigation message. 

2.4 GPS Measurements Biases 

These biases can be categorized into the following 

2.4.1 Satellite Biases 

Satellite biases has two components 

2.4.1.1 Orbit Biases 

The ephemeris information used to calculate the GPS satellite positions is 

generated from the tracking data collected by the five monitor stations of 

the Control Segment, data is  processed at the Master Control Station and 

the satellite navigation message information is uploadedto every satellite, 

and are available to GPS users at the time of observation. The satellite orbit 

bias istherefore the discrepancy between the "true" position (and velocity) 

of a satellite and its broadcast ephemeris. 

One option for overcoming satellite bias error is to use a precise ephemeris 

as generated by the International GPS Service (the IGS -- Section 3.1.5). 

These ephemerides are accurate to the sub metre level and are computed 

after global tracking data is collected from the IGS stations. Hence they are 

only available "post-mission" (unlike the broadcast ephemerides which are 

predicted into the futurefrom the computed orbit and which can be used in 

real-timeapplications). 
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2.4.1.2Clock Biases 

Although GPS satellites uses high quality cesium or rubidium atomic 

clocks for time-keeping and signal synchronization, there are unavoidable 

clock error which changes with time. These satellite clock errors can’t be 

ignored, hence they are significant bias which are monitored by control 

segments during tracking data analysis. The only way they can be 

accounted in signal receiver positioning is by using broadcast clock error 

model defined by polynomial coefficients. These coefficients are known 

well enough to match the basic pseudo-range accuracy to few meters. 

As all the observations made at an instant to particular satellite, by all GPS 
receivers are contaminated by the same satellite clock error, then the 
possibility exist for eliminating this bias through the principles of 
differential positioning. 

2.4.2Receiver Biases       

Satellite signal receivers are equipped with relatively inexpensive quartz 

oscillators. Although the time defined by individual receiver clocks has 

essentially arbitrary origins, they can be tied to a well established time 

scale, such as GPS Time (GPST). The offset between the receiver clock 

time and GPST time is the receiver clock error that contaminates all 

satellite-receiver ranges made at the instant by the receiver, and leads to 

these quantities being referred to as pseudo-ranges, typically, the solution 

to this problem is to treat the clock bias as an additional parameter in the 

pseudo-range navigation estimation procedure, requiring that four or more 

pseudo-range measurements are available. An alternative strategy is to take 

the differences between data collected to the different satellite so that the 

common bias is eliminated. 
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2.4.3 Signal Propagation Biases 

2.4.3.1 Ionospheric propagation delay 

The ionosphere is the band of the atmosphere from around 50 to 1000 km 

above the surface of the earth where free electrons are released. When the 

electromagnetic GPS signals propagate through this medium dispersion 

occurs, changing the velocity of the propagated signal which causes the 

measured range to be longer than the true range. Ionospheric delay can in a 

range of 50m for signals at the zenith to as much as 150m for observations 

made at the receiver's horizon. To reduce the ionospheric effect, 

coefficients of a correction formula are transmitted within the satellite 

navigation message. The correction can be applied to the measured data. 

However, the accuracy of the correction is very much dependent on the 

reliability of the estimate of Total Electron Content (TEC) along the signal 

path, which varies as a function of: the latitude of the receiver, the season, 

the time of day the observation of a satellite's signal is being made, and the 

Level of solar activity at the time of observation. 

As the TEC is difficult to accurately determine, applying the correction 

formulae cannot effectively remove this effect. It is generally conceded 

that the broadcast correction model can be used to remove up to about 50% 

of the ionospheric delay at mid-latitude regions. For single frequency 

receivers the use of the correction model parameters is often the only 

option for point positioning. However, the ionospheric bias is spatially 

correlated (it is approximately the same for receivers up to a few tens of 

kilometres apart), and can be effectively eliminated using differential 

positioning. 

The ionospheric delay on a signal is a function of the signal frequency, 

hence if dual-frequency receivers are available this factor can be used to 

remove almost all of the ionospheric effect by making measurements on L1 

and L2 signals and combining them in a special linear combination. 
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2.4.3.2 Tropospheric Refraction Delay  

The troposphere extends from the surface of the earth to about 8 km. GPS 

signals travelling through this medium will experience a tropospheric 

refraction delay that is a function of elevation and the altitude of the 

receiver, and is dependent on the atmospheric pressure, temperature, and 

water vapour pressure. The bias ranges from approximately 2m for signals 

at the zenith to about 20m for signals at an elevation angle of 10୭.The 

propagation of GPS signals in this medium is frequency independent, 

therefore this effect cannot be removed by combining observations made 

on two frequencies. There are several options to minimize the effect of the 

tropospheric medium which can be summarized in: 

a. Using existing tropospheric models e.g. Hopfield model, the Black 

model, and the Saastamoinen model. 

b. For high precision applications the residual tropospheric bias has to 

be parameterised in the final position solution. 

c. Avoid tracking low elevation satellites. Generally satellites below 

20୭have much greater problems with the tropospheric delay than 

high elevation satellites, 

d. As with the ionospheric bias, the fact that the bias is spatially 

correlated over distances up to several tens of kilometres means that 

differential positioning is an effective strategy for mitigating the 

effect of the tropospheric bias on positioning results. 

2.4.4 GPS Measurements Errors 

These errors occur during measurement session, they could be modulated. 

However they could be avoided using some special proportions, and they 

are discussed in the following. 
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2.4.4.1Multipath Effect 

Multipath effects are propagation errors arising from the interference of the 

direct signal by reflected signals from water and metallic surfaces and 

nearby buildings. The combined direct and reflected signals will give rise 

to incorrect pseudo-range or phase measurements. The maximum multipath 

error that can occur in the case of pseudo-range data is one half the chip 

length (or resolution) of the code that is, about 300m to 30m for code 

measurements. To reduce this effect it is recommended to use special 

designed antennas and careful antenna mounting. Also new techniques are 

being developed to effectively filter out multipath effects using advanced 

signal processing. 

2.4.4.2Loss of Track (Cycle Slip) 

This error effect only carrier phase observations. It occur when the satellite 

signal is obstructed by object, or interfered by another signal. On the 

resumption of lock to the satellite(s), the accurate fractional part of the 

phase observable can 

again be measured, however the integer part will be re-initialised and the 

initial integer ambiguity will no longer be a valid connection between the 

ambiguous fractional cycle measurement and the satellite receiver range. 

For this reason there is a "jump" in the measurement data just before and 

immediately after the epoch at which the loss of lock occurred, and all 

measurements beyond this epoch are shifted by the same integer number of 

cycles. This "jump" is known as a cycle slip, and can occur independently 

on L1 and L2. The detection and repair of cycle slips is therefore an 

important carrier phase data pre-processing step. 

2.5 Observations Techniques 

The GPS observation technique used in a given project depends on  
a. Accuracy requirements  

b. Urgency of the project  

c. Local terrain conditions  



9 
 

d.  Available equipment, etc.  

Following are the techniques that are commonly used now  

a. Static 

b.   Fast Static (Rapid Static)  

c. Kinematic 

d.  Pseudo-kinematic(Pseudo-static)  

e. Real Time Kinematic  

2.5.1 Static Mode of GPS Surveying  

Also known asstatic surveying. Itis usedin surveying projects that require 

high accuracy.  In this method, each receiver at each point logs data 

continuously for a pre-planned length of time. where the duration of data 

collection depend on the required precision , number of visible satellites, 

satellite geometry(DOP) whether the receivers are single frequency or dual 

frequency,anddistance between receivers. 

However, the duration of data collection should be long enough for the post 

processing software to resolve the integer ambiguity e.g. the longer 

duration is the more accuracy obtained. 

The slope line between any two antennas is called a baseline vector or 

simply baseline. Most GPS survey projects consist of multiple baselines or 

networks, and the baselines can be measured individually using only two 

receivers or several at a time using multiple receivers. Unlike in 

conventional surveys, the accuracy obtainable from networks is 

independent of the network geometry  

Fast static mode of GPS surveys  

Fast Static or Rapid Static was a method developed for dual frequency 

receivers .A new algorithm was developed to reduce the amount of data 

needed to resolve integer ambiguity  
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Lately, because of modifications in processing algorithms and because a 

larger number of satellites are available, the amount of data needed can be 

reduced even with single frequency receivers  

Field requirements and procedure for fast static are same as those for static 

except for the short session lengths.However, fast static is only suitable for 

low order control surveys, e.g. ground control for photogrammetric 

mapping  

2.5.2 Kinematic Mode of GPS Surveying  

This is the mode of positioning from a moving platform. i.e. when the 

antenna is in motion .This is the mode used in navigation where usually 

only a single receiver is used. But, unlike in navigation, the kinematic 

method used in surveying is a relative positioning method where one 

antenna receiver is stationary and one antenna receiver is moving. When 

the moving receiver is in constant motion as in navigation it is called 

‘continuous’ kinematic.In most surveying applications, a method called 

‘stop-and-go’ kinematic is used. 

The stationary receiver, called the base receiver, is placed at a known point 

while a second receiver called "rover' will visit all unknown points  

Rover will occupy each unknown point for a very short time (less than two 

minutes); Hence the term "Stop-and-Go" surveying .It is possible to 

combine both ‘continuous’ and ‘stop and go‘ methods in the same survey  

It also is possible to operate more than one ‘rover’ with the same base 

station. The accuracy obtained is not as good as that obtained from static 

surveying but is better than that obtained in most surveys .The single most 

advantage of ‘stop and go’ surveying is its speed. 

This method also has certain limitations  

a. An initialization process to determine the integer biases of 

at least 4 satellites is needed at the beginning. 
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b.  The lock on the same four or more satellites must be 

maintained during the entire survey. 

For this reason, kinematic GPS surveying is suitable for an area where 

there are no large over-hanging trees, over-passes or such structures in 

rover’s route  

If for any reason a cycle slip occurs, the rover must return to any previous 

point which had been determined without cycle slip The Initial integer bias 

term can be determined in one of 3 ways  

a. Using a known baseline less than 20 km in length and having 

an accuracy of less than 5 cm. 

b.  Antenna swap 

c.  Perform a static mode survey first for one of the base lines  

When using a known baseline, it is necessary to use one end of the baseline 

as the base station , the rover will occupy the other end to collect 3 or 4 

epochs of data (less than 2 minutes). 

Antenna swap is done by first occupying the known point with the base 

receiver and another point 15-30 feet away with the rover. After collecting 

data for 3-4 epochs two receivers + antennas are swapped while 

maintaining lock .Collect data for another 3-4 epochs, return the base 

receiver + antenna to the base and continue the survey with the rover as 

usual.  

In the third method, a baseline is measured by static method with the base 

receiver at the known base. This now becomes a known baseline and the 

rest is similar to the first method  

For highest accuracy more than 6 satellites, well distributed over the sky is 

preferable .Kinematic post processing software is needed to obtain the 

point coordinates. 
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2.5.2 Real Time kinematic GPS Surveys  

Real Time kinematic (RTK) refers to a stop-and-go method where the 

coordinates of points are available in real time. In this method, a radio 

communication link is maintained between the base receiver and the rover, 

and the base receiver supplies the pseudo-range and carrier phase 

measurements to the rover which in turn computes its position and display 

the coordinates.The rover keeps updating coordinates as it moves as long 

as the lock on satellites is maintained.Kinematic GPS surveying is 

generally suitable for any type of surveying or mapping. 

Some RTK receivers have the capability of resolving the integer ambiguity 

On The Fly (OTF), and this technique can only be used with dual 

frequency receivers,this means that there is no need to maintain the lock on 

satellites while the rover is in motion. 

New observables are generated by taking linear combinations of 

observations made on these codes and carriers (wide laning).The integer 

ambiguity can be resolved very quickly by this technique while the 

receiver is still in motion . Wide laning techniques are used in some high-

end receivers even if OTF is not being used. 

2.5.4Pseudo-kinematic (or Pseudo-static)  

This is a combination of both static and kinematic methods. It has the 

speed of kinematic method but there is no need to maintain lock on 4 

satellites. However newer receivers and algorithms can resolve the integer 

ambiguity much faster and the need for pseudo-kinematic surveys is 

somewhat diminished. There is a reference (or base) receiver and a roving 

receiver, and the reference receiver remains at the reference point during 

the entire survey while the roving receiver visits the unknown points. There 

is no initialization as in ‘stop and go’ method. Each point is occupied for 5-

10 minutes for baselines of 10 km or less. 

Each point must be revisited multiple times (at least once more) and these 

visits must be separated by at least 1 hour and preferably not more than 4 
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hours .Multiple observations at the same site at different times capture 

different epochs along the satellite's orbit, and allow the satellite 

configuration to change and to resolve the integer ambiguity This 

technique is suitable for areas where there are obstructions to signal and 

crew movement or if the receivers are not equipped with kinematic 

software .Pseudo-kinematic is the least precise of all methods but is more 

productive than static. 

Stop-and-Go kinematic method is suitable for details surveys as 

topographic mapping or boundary survey work whereas pseudo- kinematic 

is suitable for lower order control such as photogrammetric control etc.  A 

combination of these methods can be used in some projects. 
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CHAPTER THREE 
ARTIFICIAL NEURAL NETWORKS  

3.1 Introduction 

 Artificial Neural Networks (ANN) are mathematical models based on the 

structure and the performance of our Biological Neural Networks (BNN) 

used to perform pattern recognition tasks.  

Just like the biological neural networks the artificial neural networks 

models consist of unites called the neurons. It can also display some of the 

features of the biological network. However these models are not expected 

to reach the performance of the BNN for two reasons: 

a. We are not fully understand the operation of the BNN and their 

interaction, 

b. Their operation in the neutral asynchronous is not known.   

3.2 Historical Background  

The first model was proposed by Warren McClloch and Walter Pittes in 

1943. They called it McCulloch Pittesneurons, the proposed model uses the 

weighted sum of the input followed by a threshold logic operation. The 

main drawback of this model of computation is that the weight are fixed 

and hence the model could not learn by itself.   

Six years later (in 1949) Donald Hebb proposed a learning  law for 

adjusting a connection weight based on pre and post synaptic values of the 

variables. Hebb’s law become fundamental learning rule of the neural 

networks.  

In 1958   Rosenblatt proposed a perceptron network and a perceptron 

learning law. The network itself is a supervised network   (based on prior 

knowledge). The learning law was chosen in a way that it covers the 



15 
 

problem of patterns classification problem which are linearly separable in 

the feature space. It was shown that a multilayer perceptron could be used 

to perform any pattern classification task. However, there was no 

systematic learning algorithm to adjust the weights realizing the 

classification task. Ten years later the limitation of the perceptron models 

was demonstrated by  Minsky and Papert through several illustrative 

examples.  

In the 1960sWidrow and his group proposed an Adaline model, which is an 

adaptive threshold logic element. It uses a Least Mean Square learning 

algorithm (LMS) to adjust the weights of an Adaline model. The algorithm 

was successfully used for an adaptive single processing situation. Lack in 

suitable learning law for multilayer perceptron network had put brakes on 

the development of the neural networks models for pattern recognition 

tasks for nearly 15 years till 1984  

Actually the increase of the interest in artificial neural network is due to 

two key development in early 1980s. The first one is the energy analysis of 

feedback neural networks by John Hopfield. The analysis has shown the 

existence of a stable equilibrium state in feedback network, provided that 

the network has symmetric weights and that the state update is made 

asynchronously. Also, in 1986 Rumelhart, and others, have shown that it is 

possible to adjust the weight of a multilayer feed forward neural network in 

a systematic way to learn the implicit mapping in a set of input-output 

pattern,. The learning law has been called the generalization delta rule or 

error back propagation learning low (Rumelhart et al 1986).  

At the same time Ackley Hinton and Sejnowski proposed the Boltzmann 

machine, which had included the hidden unites. These unites were used to 

make a given pattern   problem representable in feedback networks. Several 

learning laws were also developed; the prominent among them being the 

reinforcement learning or learning with critic 
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 3.3 Network Architecture  

 Generally, neural networks can be categorized into two main types; 
namely supervised networks and unsupervised networks. The way the 
network architecture is designed depends on the ability of its training 
algorithm. In most newly proposed network topologies, the design of the 
corresponding training algorithm are deemed essential. Apparently, a 
successful network architecture must be supported by an effective and 
simple enough training algorithm.   

3.3.1 Supervised neural networks 

Supervised neural networks are the mainstream of neural network 

development. The differentiable characteristic of the supervised neural 

network lies in the inclusion of a teacher on their learning process. The 

basic block diagram of the supervised learning for all neural network 

models can be described through figure 3. 1. For learning process, the 

network needs training data examples consisting of a number of input-

output pairs. The desired output vector in the training data set serves as a 

teacher for the network learning. In the training process error signals are 

constructed from the difference between the desired output and the system 

output. Through an iterative training procedure the network’s weights are 

adjusted by the error signal in a way that the neural network output tries to 

follow the desired output as close as possible. The training procedure is 

repeated until the error signal is close to zero or below a predefined value. 

The sum of the errors over all the training samples can be considered as a 

network performance measure, which is a function of the free parameters 

of the system. Such function can be visualized a multidimensional error 

surface where network free parameters serve as coordinates. During the 

course of learning the system gradually moves to a minimum point along 

an error surface. The error surface is determined by the network 

architecture and the cost function. In the coming sections, some example of 

supervised neural network models are presented. 
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      Figure (3.1) overview of the supervised learning 

3.3.1.1 McCulloch-Pitts (MP) model 

In McCulloch-Pitts model (Figure (3.2)) the activation (ݔ) is given by a 

weighted sum of its  inputs values (ܽݏ)and a bias term (ߠ). The output 

signal (ݏ) is typically a nonlinear function, ݂(ݔ),of an activation function 

value(ݔ).       

 

Figure (3.2) McCulloch-Pitts model  

The following equations describe the operation of the MP model:  

 Activation:      (3.1)  

Output signal:       (3.2) 
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There are three commonly non-linear functions used. These are binary, 

ramp, and sigmoid are shown in Figure (3.2). However only binary 

function was  use in the original multi-preceptron (MP) model. 

 
           Figure (3.3) some non-linear functions  

 

In MP model the weights are fixed. But a network using this mode doesn’t 

have the capability of learning. Moreover the original model allows only 

binary output states operating at descried time steps.  

3.3.1.2 Rosenblatt Perceptron model 

The Rosenblatt perceptron  model figure (3.4) is an artificial neural 

network consisting of outputs from sensory units to a fixed set of 

association unites, which are fed to a MP neuron.  
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Figure (3.4) Rosenblatt perceptron model of neurons 

The association unites preform predetermined manipulation on their units. 

The main deviation from the MP model is that learning (i.e. adjustment of 

weights) is incorporated in the operation of the units.  The desired, or target 

output, (ܾ) is compared with the actual binary output (ݏ )  and the error (δ) 

is used to adjust the weight. The following equations describe the operation 

of the perceptron model of a neuron:  

Activation   (3.3) 

 `  

Output signal    (3.4)  

  

   Error    ߜ = ࢈ −   (3.5)  ࢙

   

Weight change    (3.6)  

 

 

where η is the learning rate  



20 
 

here are perceptron learning laws that give a step-by-step procedure for 

adjusting the weight. The converges or noncoverganse of the adjustment 

depend on the nature of input-output pairs to be represented by the model.  

The perceptron convergence theorem enables us to determine whether the 

given pattern pairs are representable or not. If the weight values converge, 

the corresponding problem is said to be representable by perceptron 

network.  

3.3.1.3 Adeline 

ADAptiveLInear Element (ADALINE) is another computing model 

proposed by Widrow in. In the Adaline model the activation value (ݔ) is 

compared with the target output (ܾ). In other words the output is a linear 

function of the activation value ( ). The equations that describes the 

operation of an Adaline are as follows:  

     (3.7) 

  

     (3.8)    

    (3.9)   

  

    (3.10) 

     

All the variables as defined as before. This weight role minimises the mean 

squared error (ߜଶ) averaged over all inputs. Hence it is called least mean 

squired (LMS) error learning law. This law is derived using the negative 

gradient of the error surface in the weighted space. Hence it is also known 

as a gradient descent algorithm.     

3.3.1.4 Multilayer feedforward neural networks 
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In a simple, form a feedforward network consists of an input layer and a 

single layer of neurons. Such a single layer feedforward network is not 

capable of classifying nonlinear separable pattern. Multilayer feedforward 

network has become the major and most widely used for the architecture of 

the neural network. In the feed forward networks all the connections are 

acyclic or indirected from the input to the output layer.  

 

Figure (3.5) multilayer feedforward neural network with one hidden 

layer  

Multilayer network in figure (3.5) consist of one or more layers of neurons 

between input and output layer, called the hidden layer. The neurons in the 

hidden layers are called hidden neurons. The network is called fully 

connected when every the neurons in one layer is connected to every 

neuron in the next layer.  

 

3.3.1.5 Recurrent neural network 

A recurrent network is a special form of neural networks. It can be a single 

layer or a multiple hidden layer neural network. The basic difference 

between this network and feedforward network is that it has one or more 
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feedback loops as shown in Figure (3.6). The feedback loops can appear in 

many forms between any two neurons or layers. It typically involve unites 

delay elements denoted by (ିݖଵ). Recurrent neural networks exhibit 

complex dynamics because of the large number of feedforward feedback 

connections. This characteristic provides them extra advantages in handling 

time series related and dynamical problems over feedforward networks. 

Recurrent networks are also useful for processing special data such as 

graph structure data. A recurrent small size network with size may be 

equivalent to complicated type of feedforward network.  

 

  Figure (3.6) Recurrent neural  

 3.3.2 Unsupervised neural networks 

Unlike the supervised networks, unsupervised networks do not have a 

teacher in the training data set. The learning process of unsupervised neural 

network is carried out from the self-organizing behaviour. In the course of 

training, no extra factor is used to affect the weights adjustment of the 

network. The correct outputs are not available during the course of training. 

For instance, a typical unsupervised network consists of an input layer and 

a competitive layer. Through competitive learning the network output 
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automatically reflects some statistical characteristics of input data such as 

cluster, topological ordering etc.  

One of the most widely used unsupervised neural network is Self-

Organizing Map (SOM) represented by  Figure (3.7).As shown in the 

figure all neurones arranged on a fixed grid of output layer, containing a 

weight vector similar to the input dimension. After training, each neuron 

becomes representative of different data sets. One of the most important 

characteristics of SOM lies in its topological ordering which means that the 

neurones that have similar weights (in the input dimension) are also close 

to each other in the SOM output map. This type of sum map is useful in 

many applications including visualization, quantization, and retrieval 

clustering,  

Figure (3.7) SOM network architecture   
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3.4 Training algorithms 

Many training algorithms had been developed since the 1950’s, here are 

some examples for these algorithms. 

3.4.1 Conjugate gradient descent  

 The conjugate gradient-descent optimization technique was  developed by 

Hestenes and Stiefel. As an optimization technique, the conjugate gradient 

descent can be the applied to neural network training by adopting weights 

as was in back propagation. In addition, the conjugate gradient descent has 

the ability to work with a large number of weights  

Conjugate gradient descent performs a series of line searches across the 

error surface. It determines the direction of the steepest descent and 

projects a line in that direction to locate the minimum, after which it update 

in the weights once per epoch. Another search is then preformed along a 

conjugate direction from that point. This direction is been chosen to insure 

that all direction that have been minimized stay minimized. It does this in 

the assumption that the error surface is quadratic. If the quadratic 

assumption was wrong and the chosen slope direction doesn’t slope 

downwards, it will then calculate a line of steepest descent and search that 

direction. Each epoch involves searching in specific direction these results 

in a search that doesn’t generally follow the steepest descent, but it often 

produces a faster convergence than a search along the steepest decent 

direction because it is only searches one direction at a time. As the 

algorithm moves closer to the minimum point the quadratic assumption is 

more likely to be true and the minimum is then located quickly.                

3.4.2 Back propagation 

Since 1989, learning by back propagation has become the most popular 

method of training neural networks. The reason for this popularity is the 

underlying simplicity and the relevant power of the algorithm. Its power 
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derives from the fact that, unlike its precursors, the perceptron learning rule 

and the Widrow-Hoff learning rule can be employed for training nonlinear 

networks of arbitrary connectivity. Since such networks are often required 

for real world application, such a learning procedure is critical. Nearly as 

important as its power in explaining its popularity is its simplicity. The 

basic idea is old and simple, namely define an error function and use a 

gradient descent to find a set of weights which optimize performance of 

particular task. This algorithm is to a degree that simple so it can be 

implemented in few lines of code.  

3.4.3 Quick propagation  

The quick propagation algorithm is a variation of the standard back-

propagation algorithm developed by Scott Fahlman in 1989. It assumes that 

the local is quadratic and employs an approximation to the second order 

derivatives of the quadratic to make weight changes. The algorithm is 

generally not fast but has shown that to be faster than back-propagation for 

some applications, but is not generally faster. It can also get trapped in 

local minima or become unstable in a manner similar to back-propagation. 

For these reasons it is not considered a general purpose method for training 

feedforward networks, but can treated as specialized technique that can , 

sometimes, produce rapid training.  

3.4.4 Quasi-Newton  

The Quasi-Newton method is a popular algorithm for nonlinear 

optimization. It uses second order derivatives to find an optimal solution. 

They generally converge faster than first order techniques such as the 

gradient method used in back-propagation. However, its memory 

requirements and computation complexity scale as the squire of the number 

and weights. For these reasons it is generally not suited for training 

networks with many weights.  
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3.4.5 Levenberg-Marquardt                       

 This is another nonlinear optimization algorithm based on second order 

derivatives. It has been adopted for training feedforward neural networks. 

It is however more restrict than back-propagation. Like quasi-newton 

method, the memory requirements for the LM algorithm scales as a 

function of the squire of numbers and weights, and their for restricted to 

smaller networks, typically, on the order of few hundred weights. It works 

only with summed squire error functions.  

3.5 Neural network learning laws 

 Learning laws describe the weight vector for the ݅th processing units at 

time instant (ݐ + 1) in the terms of the weight vector at time instant (ݐ) , it 

is formulated as follows : 

ݐ)ݓ     + 1) = (ݐ)ݓ +   (3.11) (ݐ)ݓ∆

   

where∆ݓ(ݐ) is the change in the vector between(t) and (t+1) instant of 

time .  

 There are different methods for implementing the learning feature of 

a neural network, leading to several learning laws. Some basic learning 

laws are discussed below. All these learning laws use local information for 

adjusting the weight of the connection between two units 

3.5.1 Hebb’s law 

Here the change in the weight vector is given by 

ݓ∆ = ݓ൫݂ߟ
்ܽ൯ܽ (3.12) 

Therefore, the ݆th component of ∆ݓ is given by 

ݓ∆ = ݓ൫݂ߟ
்ܽ൯ ܽ (3.13) 
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= ݆ ܽ,      forݏߟ =  1,2, … . ,    (3.14)ܯ

whereݏ is the output signal of the ݅th unite. This law states that a weight 

increment is proportional to the product of the input data and the resulting 

output signal of the unit. It requires weight initialization of small random 

values around ݓ = 0 prior to learning. It represents an unsupervised 

learning. 

3.5.2 Perceptron law 

Here the change in the weight vector is given by 

ݓ∆ = ]ߟ ܾ − ݓ൫݃݊ݏ
்ܽ൯]ܽ  (3.15)  

There for we have  

ݓ∆ = ൣߟ ܾ − ݓ൫݃݊ݏ
்ܽ൯൧ ܽ    (3.16) 

= ) ߟ ܾ−ݏ) ܽ for j= 1,2, … . . ,  (3.17)   ܯ

This law is applicable only for bipolar output functions݂(. ). This law is 

also called discrete perceptron learning law. The expression for ∆ݓ shows 

that the weights are adjusted only if the actual output ݏ is incorrect, since 

the term between the brackets is zero for a correct output. This is a 

supervised learning law, as the law requires a desired output for each input. 

In implementing the law, the weights can be initialized by any random 

initial values, as they are not critical. The weights converge to the final 

values, eventually, by repeated use of the input-output pattern pairs, 

provided the pattern pairs are representable in the system. 

3.5.3 Delta law 

Here the change in the weight vector is given by: 

ݓ∆ = ]ߟ ܾ − ݂൫ݓ
்ܽ൯]݂̇(ݓ

்ܽ)ܽ (3.18) 

 Where ݂(ݔ)̇  is the first derivative with respect to ݔ. Hence 
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ݓ∆   = ]ߟ ܾ − ݂൫ݓ
்ܽ൯]݂̇(ݓ

்ܽ) ܽ  

                   = ൣߟ ܾ − (ݔ)൧݂̇ݏ ܽ for j= 1,2,…M   (3.19)This law is valid 

only for a differentiable output function, as it depend on the derivative of 

the output function (.). It is a supervised learning law since the change in 

the weight is based on the error between the desired and the actual output 

values for the given input. Delta learning law can also be viewed as a 

continuous perceptron learning law.  

3.5.4Widrow and Hoff LMS  law 

Here the change in the weight vector is given by: 

ݓ∆ = ]ߟ ܾ − ݓ
ݓ∆(3.20)   ܽ[்ܽ = ]ߟ  ܾ − ݓ

்ܽ] ܽ     

for j=1,2,..,M  (3.21) 

This is a supervised learning law and is a special case of the delta learning 

law where the output function is assumed to be linear, i.e .݂(ݔ) =  . Inݔ

this case the change in the weight is made proportional to the negative 

gradient of the error between the desired output and the continuous 

activation value, which is also the continuous output of output signal due to 

linearity of the output function.  

 3.6Activation function 

 The sigmoidal activation function plays a critical role in neural 

network modelling. However, selecting the correct sigmoidal function to 

apply as the transfer function or activation function is not important in 

neural network designs. The purpose of the sigmoidal transfer function to 

the neural network design is to normalize and shrink the weight estimates 

in the hidden layer to the output layer with a distribution that is centred 

about the zero in order to assure convergence to the correct values. A 

sigmoidal function has an S-shaped distribution as illustrated in Figure 
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(3.8). The beauty of the sigmoidal function lies in the fact that it is the first 

derivative of the function itself given by 

݂ (ݔ)′ = 1)(ݔ)݂ −  (3.22)  (ݔ)݂

     

 The most common sigmoidal functions is the logistic function that given 

by the following equation 

(ݔ)݂ = 1 1 − ݁ି௫⁄   (3.23) 

This link functions redefines the target variables from  (∞, −∞) interval to 

a [0, 1] interval. However, the default link function of SAS Enterprise 

Miner is a hyperbolic tangent (݊ܽݐℎ) activation function that is defined by 

(ݔ)݂   = (݁௫ − ݁ି௫)/(݁௫ + ݁ି௫) (3.24) 

The function actually has an exponential distribution that is used as a 

transfer function applied to the input-to-hidden layer weights. The 

difference between the two sigmoidal distributions is the range values of 

the output responses. The hyperbolic tangent has a range between 

[−1, 1] compared to the logistic function which has the rang between 

[0, 1]. The hyperbolic tangent function has an ideal network modelling 

property. It leads to faster a convergence in the optimization process in 

comparison to the various logistic functions given a sufficiently large 

sample size. At times, other functions such as the arctan and Elliott 

functions, given by equations (3.25), and (3.26) can be used 

(ݔ)݂ = (2 ⁄ߨ  (3.25)  (ݔ)ଵି݊ܽݐ(

(ݔ)݂    = ݔ (1 +⁄  (3.26) (|ݔ|

The Elliot function can often produce similar results as those obtained 

using the hyperbolic tangent function. The sigmoidal activation function 

applied to the hidden-to -target layer depends on the level of measurements 
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of the target variable, typically, a nonlinear design. However, one is 

encouraged to try other output activation function in order to increase the 

precision of the neural model. The coefficients of the inputs weights 

determine the steepness or the slop of the curve as either increasing or 

decreasing. 

The sigmoidal function is linear when the input layer weight estimates are 

close to zero. The hidden unit bias determines the location of the inflection 

point or the centre of the curve changes. The weights and biases from the 

output layer determine the upper and lower asymptotes or tails of 

thesigmoidal function. 

 

Figure 3.8Common activation function 
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CHAPTER FOUR 

METHODOLOGY AND RESULTS 

4.1 Study Area 
In this study a network consist of 73 control points distributed in Khartoum 
state (Omdurman and Bahri).63point were used as data(known)points and 
10 points used as computation (unknown points) Figure 4,1 shows the 
study area and the distribution of these points . 

       Figure 4.1 Study area 
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4.2 Materials of the test 
Two sets of observations was done at each station at the same time  by using 
Logistic Trimble R8And navigation Garmin GPS Map 60 CSX and the 
difference between each set of observations at each station was computed.Table 
(4.1)shows the observation and their differences and the root mean square error 
for the ten check points. 

Table (4.1) Observations and differences 

21 442858.998 1735293.012 442859 1735295 0.002 1.988 
22 442051.933 1741004.437 442052 1741006 0.067 1.563 
23 445554.890 1744373.644 445552 1744376 -2.890 2.356 
24 449393.661 1745428.791 449396 1745433 2.339 4.209 
25 449858.471 1743218.490 449858 1743222 -0.471 3.510 
26 447663.823 1738381.600 447665 1738379 1.177 -2.600 
27 453104.751 1737784.633 453103 1737780 -1.751 -4.633 
28 444999.269 1732132.857 444997 1732135 -2.269 2.143 
29 442859.941 1735295.077 442860 1735292 0.059 -3.077 
30 442052.871 1741006.489 442050 1741003 -2.871 -3.489 
31 445555.775 1744375.753 445556 1744374 0.225 -1.753 
32 449394.466 1745430.870 449394 1745429 -0.466 -1.870 

       

Point 
ID 

RTK.Reading 
E (m) 

RTK.Reading 
N(m) 

Nav.Reading 
E(m) 

Nav.Reading 
N(m) 

Difference
E(m) 

Difference
N(m) 

1 447631.038 1738404.990 447629 1738404 -2.038 -0.990 
2 451459.138 1737728.699 451460 1737729 0.862 0.301 
3 452997.665 1737834.046 452996 1737839 -1.665 4.954 
4 450592.292 1732892.574 450589 1732893 -3.292 0.426 
5 447691.759 1729486.443 447688 1729492 -3.759 5.557 
6 447982.455 1734530.150 447980 1734534 -2.455 3.850 
7 447331.958 1736343.947 447328 1736345 -3.958 1.053 
8 444882.893 1738419.372 444883 1738421 0.107 1.628 
9 442103.266 1738796.113 442100 1738796 -3.266 -0.113 

10 442048.505 1741025.267 442051 1741027 2.495 1.733 
11 442220.826 1742797.512 442225 1742799 4.174 1.488 
12 444886.010 1743220.449 444886 1743217 -0.010 -3.449 
13 447075.654 1742269.229 447080 1742268 4.346 -1.229 
14 449394.794 1745437.614 449395 1745434 0.206 -3.614 
15 448898.395 1740813.273 448898 1740810 -0.395 -3.273 
16 447662.969 1738379.504 447660 1738379 -2.969 -0.504 
17 453103.958 1737782.686 453100 1737782 -3.958 0.686- 
18 449736.453 1732234.916 449736 1732231 -0.453 -3.916 
19 447677.605 1729476.068 447678 1729480 0.395 3.932 
20 444999.268 1732132.859 444998 1732128 -1.268 -4.859 
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Point 
ID 

RTK.Reading 
E (m) 

RTK. Reading 
N(m) 

Nav. Reading 
E(m) 

Nav. Reading 
N(m) 

Difference 
E(m) 

Difference 
N(m) 

33 449859.390 1743220.607 449860 1743219 0.610 -1.607 
34 447662.962 1738380.661 447663 1738379 0.038 -1.661 
35 453103.888 1737783.785 453101 1737783 -2.88 -0.785 
36 449734.137 1732234.910 449735 1732235 0.862 0.090 
37 447677.583 1729477.141 447678 1729478 0.417 0.859 
38 444999.267 1732132.858 444996 1732137 -3.267 4.142 
39 442858.964 1735294.115 442858 1735294 -0.964 -0.115 
40 442051.832 1741005.571 442053 1741004 1.168 -1.571 
41 445554.860 1744374.804 445554 1744374 -0.860 -0.804 
42 449393.512 1745429.933 449392 1745432 -1.512 2.067 
43 449858.438 1743219.568 449857 1743219 -1.438 -0.568 
44 447662.990 1738380.493 447659 1738383 -3.990 2.507 
45 453103.862 1737783.802 453102 1737779 -1.862 -4.802 
46 449736.415 1732235.998 449733 1732235 -3.415 -0.998 
47 447677.574 1729477.216 447676 1729478 -1.574 0.784 
48 444999.283 1732132.930 444995 1732136 -4.283 3.070 
49 442858.979 1735294.158 442855 1735294 -3.979 -0.158 
50 442051.902 1741005.525 442047 1741005 -4.902 -0.525 
51 445554.857 1744374.678 445550 1744374 -4.857 -0.678 
52 449393.479 1745429.967 449392 1745428 -1.479 -1.967 
53 449858.433 1743219.598 449856 1743216 -2.433 -3.598 
54 447960.393 1738004.080 447959 1738001 -1.393 -3.080 
55 452499.678 1738015.578 452501 1738014 1.322 -1.578 
56 449086.278 1737554.669 449085 1737553 -1.278 -1.669 
57 444524.607 1741892.738 444528 1741895 3.393 2.262 
58 444906.291 1743236.481 444907 1743236 0.709 -0.481 
59 443863.103 1740951.623 443865 1740950 1.897 -1.623 
60 445677.667 1740121.506 445680 1740120 2.333 -1.506 
61 447119.611 1739367.480 447122 1739367 2.389 -0.480 
62 448744.219 1739754.649 448745 1739752 0.781 -2.649 
63 449004.756 1741345.549 449006 1741345 1.244 -0.549 
64 449329.974 1742752.391 449330 1742753 0.026 0.609 
65 449960.305 1745075.793 449962 1745077 1.695 1.207 
66 447706.867 1737325.528 447705 1737326 -1.867 0.472 
67 447169.546 1738525.332 447168 1738526 -1.546 0.668 
68 446425.540 1738760.638 446422 1738761 -3.540 0.362 
69 445689.100 1738215.514 445688 1738213 -1.100 -2.5`14 
70 445244.834 1737087.129 445241 1737084 -3.834 -3.129 
71 445969.011 1735958.837 445966 1735958 -3.011 -0.837 
72 448807.648 1735820.650 448809 1735821 1.352 0.350 
73 447966.596 1736437.420 447963 1736440 -3.596 2.580 

RMSE 0.886 0.373 
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Figure (4-2a) and (4-2b) shows the relationships between differencein 
easting and northing at the 10 points computation. 

 
Figure (4-2a) 

 

 

 

Figure (4-2b) 
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4.3 Procedures 
In order to test  the possibility of enhancing thelow cost navigater 
observationby using artificial neural network 
(softwareAluydaNeurolntelligence Version2.2(577 ) was used for the test 
according to the following criteria . table 4.2 shows the test criteria at ten 
points were obtained.  

Table (4.2) tests criteria easting 

Training  Conjugate gradient 
Random seed number 50 
Iterations 1000 
Input activation function Logistic 
Output activation function Linear 
Output error function sum-of-squares 

 

Table (4.3) tests criteria northing 

Training  Conjugate gradient 
Random seed number 20 
Iterations 1000 
Input activation function Logistic 
Output activation function Linear 
Output error function Sum-of-squares 
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4.4 Results 
The results at ten points were obtained at Table (a,b) shows the results with 
thereroot  mean square error. 

 

Table (4.4) The Result for Easting 

 

Table (4.5) the result for northing 

 

 

 

Row Target Output Difference (m) 

TST 66 447170.0 447170.6 0.522 
TST 55 449086.8 449084.6 2.142 
TST 49 442052.4 442050.5 1.848 
TST 36 447678.1 447679.3 1.241 
TST 47 444999.8 444997.1 2.722 
TST 67 446426.0 446425.9 0.189 
TST 17 449737.0 449736.8 0.137 
TST 7 444883.4 444884.7 1.286 
TST 32 449859.9 449861.2 1.303 
TST 4 447692.3 447689.3 2.959 
RMSE 0.571 

Row Target Output 
Difference 
(m) 

TST 66 1737325.528 1737326.456 0.928 
TST 55 1738015.578 1738014.663 -0.915 
TST 49 1735294.158 1735293.874 -0.284 
TST 36 1735294.115 1735293.874 -0.241 
TST 47 1729477.216 1729476.118 -1.098 
TST 67 1738525.332 1738526.831 1.499 
TST 17 1737782.686 1736345.181 -0.095 
TST 7 1736343.947 1745427.455 1.234 
TST 32 1745430.870 1732891.936 -0.950 
TST 4 1732892.574 1737326.456 -0.638 
RMSE 0.300 
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A graph showing the relationship between enhanced values  for E 
and N at the 10 points.Figure (4-2a) and (4-2b) 

 
 

 

Figure (4-2c) 

 

Figure (4-2d) 

 

A graph of a comparisons  of differences before and after the enhancement is shows in fig (4.3a 
, and 4.3b).  
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Figure (4-3a) 

 

 

 

 

Figure (4-3b) 
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CHAPTER FIVE 
CONCLUSIONS  AND RECOMMENDATIONS 

 

5.1 Conclusions   

According of the test correct out in the study it could be conclude that: 

1. The Planimetic accuracy of the absolute posting technique were 

found to be ±3 meter.      

2. The accuracy figure was improved (±5) meter when the ANN model 

was used as an integrated solution. 

3. The ANN model was able to proceed all test pattern successfully 

4. The training session of the ANN model took 5minutes. 

  

5.2 Recommendations                                                                                

 Testing effect of the (distribution of data control points). 

 Testing  possibility of linking the ANN to GIS software    
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