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Abstract

We introduce an almost over complete sequence in a Banach
space and almost overtotal sequence in a dual space. We show that
any of such sequences is relatively norm- compact. We study
Banach space of traces of real polynomials on the Euclidean space
to a compact subsets equipped with supremum norms. We develop
a notion of a dimension where a Banach space with a uniformly
bounded action of sofic group is a sofic approximation. We also
develop a notion of the dimension with an embeddable group and
the space of finite- dimensional Schatten p- class operators. We
give examples of real Banach spaces with exactly infinite

countably many complex structures.
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Chapter 1
Almost Over Complete and Almost Over Total Sequences in
Banach Spaces

A sequence in a Banach space X is said to be over complete in X
whenever the linear span of any its subsequence is dense in X. It is well-
known facts that overcomplete sequences exist in any separable Banach
space. In the spirit of this notion, we introduce the new notion of
overtotal sequence and weaken both these notions to that ones of almost
overcomplete sequence and almost overtotal sequence.

Section (1.1): Main Results

We show that any bounded almost overcomplete sequence as well
as any bounded almost overtotal sequence is relatively norm-compact.
We feel that these facts provide useful tools for attacking many questions:
several applications are presented to support this feeling.

We use standard Geometry of Banach Spaces. In particular, [S]
stands for the closure of the linear span of the set S and by “subspace” we
always mean “closed subspace”.

Let us start by the following definitions.

Definition (1.1.1) [1]: Let X be a Banach space. A sequence in the dual
space X is said to be overtotal on X whenever any of its subsequence is
total over X.

If X admits a total sequence {x;;} € X*, then there is an overtotal
sequence on X. Indeed, put Y = [{x;,}]:Y is a separable Banach space, so
it has an overcomplete sequence {y,}.It is easy to see that {y,}is
overtotal on X.

As an easy example of an overtotal sequence, consider X = A(D),
where A(D) is the usual Banach disk algebra A(D) (also spelled disc
algebra) is the set of holomorphic functions (f: D — C), where D is the
open unit disk in the complex plane C, f extends to a continous function
on the closure of D. That is:

A(D) = H®(D) nc(D),
Where H (D) denotes the Banach space of bounded analytic finction on
the unit disc D (i.e. a Hardy space). When endowed with the point wise
addition, (f + g)(2) = f(z) + g(z), and point wise multiplication,
(f9)@ = f(2) g(2),



This set becomes an algebra over C, since if f and g belong to the disk
algebra thensodo f + g and fg.
Given the uniform norm

£l = sup{lf (2)|: z € D} = max{|f (2)|: z € D},
By construction it becomes a uniform algebra and a commutative Banach
algebra.

By construction the disc algebra is closed subalgebra of the Hardy
space H”. In contrast to the stronger requirement that is a continuous
extension to the circle exists, it is lemma of Fatou that a general element
of H® can be radially extended to the circle almost everywhere [5].

Whose elements are the holomorphic functions on the open unit
disk D of the plane that admit continuous extension to dD, and {x,} =
{zn|lap)} where {z,,} is any sequence of points of D converging inside D.
Definition (1.1.2) [1]: A sequence in a Banach space X is said to be
almost over complete when-ever the closed linear span of any of its
subsequence has finite codimension in X.

Definition (1.1.3) [1]: Let X be a Banach space. A sequence in the dual
space X is said to be almost overtotal on X whenever the annihilator (in
X) of any of its subsequence has finite dimension.

Clearly, any overcomplete < overtotal > sequence is almost
overcomplete < almost overtotal > and the converse is not true. It is easy
to see that, if {(x,, x;;)} is a countable biorthogonal system, then neither
{x,} can be almost overcomplete in [{x,}], nor {x;;} can be almost
overtotal on [{x,,}]. In particular, any almost overcomplete sequence has
no basic subsequence.

Theorem (1.1.4) [1]: Each almost overcomplete bounded sequence in a
Banach space is relatively norm-compact.

Proof. Let {x,} be an almost overcomplete bounded sequence in a
(separable) Banach space (X, ||-||). Without loss of generality we may
assume, possibly passing to an equivalent norm, that the norm [|-]| is
locally uniformly rotund (LUR) and that {x,} is normalized under that
norm.

First note that {x,} is relatively weakly compact: otherwise, it is
known that it should admit some subsequence that is a basic sequence, a
contradiction. Hence, by the Eberlein- Smulyan theorem states that the
three are equivalent on a banach space. While this equivalence is truein
general for a (metric space), the weak topology is not metrizable in
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infinite dimensional vector spaces, and so the Eberlein- Smulian theorem
is needed [6], then {x,,} admits some subsequence {xnk} that weakly
converges to some point x, € By. Two cases must now be considered.

(1) lxll < 1. From ||xnk — x0|| >1— |lxo]] > 0, according to a
well known result, it follows that some subsequence {xn kT xo}
1s a basic sequence: hence codim [{xnkﬂ - xo}] = codim [{xnkzi},xo] =
codim [{xnku_}] = o0, a contradiction.

(i)  |lxgll = 1. Since we are working with a LUR norm, the
subsequence {xn k} actually converges to x, in the norm too and
we are done.

As a first immediate consequence we get the following Corollary.

Corollary (1.1.5) [1]: Let X be a Banach space and {x,,} € By be a
sequence that is not relatively norm-compact. Then there exists an
infinite-dimensional subspace Y of X*such that |{x,} N YT| = co. For
instance this is true for any §-separated sequence {x,,} € Bx(§ > 0).
Theorem (1.1.6) [1]: Let X be a separable Banach space. Any bounded
sequence that is almost overtotal on X is relatively norm-compact.
Proof. Let {f,,}7=; = 1 € X" be a bounded sequence almost overtotal on
X. Without loss of generality, like in the proof of Theorem (1.1.4), we
may assume {f,,} € Sy~ . Let {an} be any subsequence of {f;,}: since X is
separable, without loss of generality we may assume that {an} weakly
converges, say tofy.

Let Z be a separable subspace of X™ that is 1-norming for X. Put
Y = [{fidmeo,Z]. Clearly X isometrically embeds into Y* (we
isometrically embed X into X** in the usual way) and X is 1-norming for
Y. There is an equivalent norm [||-||| on Y such that, for any sequence
{hi}and hyinY,

hi(x) = hy(x) Vx € X implies |||ho||| < liminf |||k, ]|l (1)
and, in addition,
I1hwlll = IHRolll implies [llhy — holll = 0. (2)
Take such an equivalent norm on Y and put h, = f, and hy = f,. By
(2), we are done if we prove that [||hg||| = |||holll. Suppose to the
contrary that

Al ol 3)



From (1) it follows that there are {nki} and 6 > 0 such that

|||fnki||| — llfolll > 6, that forces |||fnki — f0||| > § for i big enough. It

follows that some subsequence {fnk. — fo} is a w*-basic sequence
im m=0

(remember that Y c X*, X is separable and |||:||| is equivalent to the

original norm on Y). For m = 1,2,... put g, = f,, . Since {g;, —

fo} is a w*—basic sequence, it follows that for some sequence {x,, };n=1 in
X

{(gm — for Xm)}m=1 is a biorthogonal sequence. (4)
Only two cases must be now considered.

(1) For some sequence {mj}j=1 we have f (xmj ) =0,j=12,....1n
this case {(gmj,xmj)} would be a biorthogonal system,

contradicting the fact that { gmj} is almost overtotal on X.

(i1) There exists g such that for any m > g we have fy(x,,) # 0. For
any j > q, from (4) it follows

0= (93j - fo)(fo(x3j—1) " X3j—2 fo(x3j—2) 'x3j—1)
= g3j(f0(x3j—1) " X3j—2 fo(x3j—2) ’ x3j—1)-
It follows that the almost overtotal sequence {g3 j};:q annihilates the

subspace W = [{(fo (x3j-1) " X3j_2 — fo(x3j-2) -x3j_1)};iq] c X: being
{xm}m=1 @ linearly independent sequence, W is infinite-dimensional, a
contradiction.

Hence (3) does not work and we are done.

As an immediate consequence we get the following Corollary.
Corollary (1.1.7) [1]: Let X be an infinite-dimensional Banach space and
{f.} © Bx- be a sequence that is not relatively norm-compact. Then there
is an infinite-dimensional sub-space Y c X such that [{F,} nY1| = oo.
For instance this is true for any §-separated sequence {f,,} < Bx+(6 > 0).
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Section (1.2): Applications

The following theorem easily follows from Corollary (1.1.7) [1].
Theorem (1.2.1) [1]: Let X c C(K) be an infinite-dimensional subspace
of C(K) where Kis metric compact. Assume that, for {t,},ecy € K, the
sequence {t,|yx} € X™ is not relatively norm-compact. Then there are an

infinite-dimensional subspace Y € X and a subsequence {tnk}keN such

that y(tnk) = 0 forany y € Y and for any k € N.

Remark. Sequences {t,} € K as required in the statement of Theorem
(1.2.1) always exist: trivially, for any sequence {t,} dense in K, the
sequence {t,|x}, being a 1-norming sequence for X, cannot be relatively
norm-compact (since X is infinite-dimensional).

For any infinite-dimensional subspace X < C(K), there are an
infinite-dimensional subspace Y © X and a sequence {ty}rey € K such
that y(t;) = 0 for any y € Y and any k € N. Theorem (1.2.1) strengthens
this result. In fact actually, for any infinite-dimensional subspace
X c C(K), we can find such a sequence {t;} as a suitable subsequence
{Wnk} of any prescribed sequence {w,} c K for which {w,|x} € X" is
not relatively norm-compact.

There exist an infinite-dimensional subspace of [, every non-zero
element of which has only finitely many zero-coordinates? Let us
reformulate this question in the following equivalent way: does there
exist an infinite-dimensional subspace Y c [, such that the sequence
{e,|x} of the “coordinate functionals™ is overtotal on Y'?

Since the sequence {e,|y}is norming for Y, it is not norm-compact
(Y 1s infinite dimensional), hence by Theorem (1.1.6) [1] it cannot be
overtotal on Y. So the answer to the Aron- Gurariy’s question is negative.
Actually we can say much more. In fact, from Theorem (1.1.6) [1] it
follows that there exist an infinite-dimensional subspace Z C Y and a
strictly increasing sequence {n,} of integers such that {enk (z) = O} for
every z € Z and k € N.

The next Theorem generalizes the previous argument.

Theorem (1.2.2) [1]: Let X be a separable infinite-dimensional Banach
space and T:X — l,, be a one-to-one bounded non compact linear
operator. Then there exist an infinite- dimensional subspace Y € X and a
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strictly increasing sequence {n;} of integers such that e, (Ty) = 0 for
any y € Y and for any k (e, the “n-coordinate functional” on [,).
Proof. Assume to the contrary that for any sequence of integers {n;} we

have dim ({T*enk}T) < oo. Then the sequence {T*(e,)} € X* is almost

overtotal on X, so K = ||:|| — cl{T*(e,,)} is norm-compact in X* by
Theorem (1.1.6) Clearly we can consider By as a subset of C(K) (by
putting, for x € By and t € K,x(t) = t(x)). We claim that By is
relatively norm-compact in C(K). In fact, By is clearly bounded in C(K)
and its elements are equi-continuous since, for t;,t, € K and x € By, we
have
[x(t1) — x(@)] < llxll - Ity — 2l < [ty — ¢t -

we are done by the Ascoli-Arzela theorem. Since, for x € X we have
lxllcey = ITxl,, T(Bx) is relatively norm-compact in I, too. This
leads to a contradiction since we assumed that T is not a compact
operator.

Let now X be an infinite-dimensional space and {f,} c X" a
norming sequence for X. By Theorem (1.1.6), the fact that {f,,} is not
relatively norm-compact immediately forces {f,, } not to be overtotal on X.
Since any norming sequence is a total sequence, it follows that any
norming sequence for any infinite-dimensional space X admits some
subsequence that is not a norming sequence for X. In other words and
following our terminology, “overnorming” sequences do not exist.

As one more application of Theorem (1.1.6) [1] we obtain the
following Theorem.

We need some preparation. First note that, without loss of
generality, from now on we may assume that T has norm one and that the
unconditional basis {u;};=; is normalized and unconditionally monotone
(ie., if x =Y72;au; and o Cc N, then [|X;cs a;iBiu;ll < ||x|/for any
choice of f; with |B;] < 1.

Lemma (1.2.3) [1]: Let X,Y be infinite-dimensional Banach spaces, Y
having an unconditional basis {u;};2, with {e;};2; as the sequence of the
associated coordinate functionals.

Let T: X — Y be a one-to-one bounded non compact linear operator. Then
there exists § > 0 such that, for any natural integer m, some point z € By
exists (depending on m) such that ||Tz|| = § and the first m coordinates
of Tz are 0.

12



Proof. Let us start by:
I }pe1 € Bx,30<B < 1: ei(Txk) —»0ask »>oVieENA
T ]| > BVYk EN. (5)

In fact, let {z,};—; be any r—separated sequence in T'(By) for some
r > 0 (T(By) is not pre-compact). By a standard diagonal procedure we
can select a subsequence {an} such that, for any i € N, the numbers
e; (an) converge as k — oo. Of course, for any i we have ¢; (an —
Zngy) ™ 0 as k — o with ||z, —z, || =7r. For each k, put 2y, =
: since T(By) is both convex and symmetric with respect to

N2k+1°

the origin, it is clear that {y,};~, € T(By) too; morecover for any k we

Z — Z

N2k
have ||y, || = r/2 and for any i we have ei(yk) —-0as k > oo Soitis
enough to assume x; = T~ 1y, for any k and f = r/2 and (5) is proved.

Now fix m € N. Put L = [{T*(e,)}",]" and let x € X. Then,
denoting by g: X — X /L the quotient map, for some positive constant C,,
independent on x it is true that

dist(x,L) = llg@)|| = Sup {|f(q(x))| fe s@)*}
L

= Sup {lg@)l: g € Spr (e 1)

< C,Max{le,(Tx)|:1 <n < mj. (6)
Take {x,}, as in (5): some k € N exists such that

CmMax{le,(Txz)|: 1 <n <m} < B/2
that by (6) implies
dist(xz, L) < f/2.

Let 2z € L be such that ||xz — 2z|| < B/2: clearly ||z|| < 1 and |[Tz]| >
(”TE” —B/2) /2, so, since ||TE|| > [, we are done by assuming
6 = (/4.
Lemma (1.2.4) [1]: Let Y be as in the statement of Lemma (1.2.3) [1].
Then for any

n

n
1
neENO<e< V= Zviui,w = Zwiui with ||[v|| < €2 and ||w||
i=1 i=1
>1-—¢ (7)

there exists j,1 < j < n,such that |vj| < €|Wj|.
Proof. Recall that, under our assumptions, basis {u;} is unconditionally
monotone.
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Hence, without loss of generality, we may assume that w; # 0,i =
1,...,n. Moreover, for any n €N, any scalars a4,...,a, and
1811, -+, 1Bnl < 1, the following is true

n
z IBi au;
i=1

Assume to the contrary that some v,w exist satisfying (7) for some
£,0<e<1/2, for which |v;| = ¢|lw;| (.e.glw;/v;| < 1) for every
i,1 <i<n. By putting in (8) a; = v;/¢ and B; = ew;/v; for any i, we

n
§ wiuy,;
i=1

that gives € > 1/2, a contradiction.
Theorem (1.2.5) [1]: Let X,Y be infinite-dimensional Banach spaces, Y
having an unconditional basis {u;};2, with {e;};2 as the sequence of the

n

§ a;u;

i=1

<

(8)

get

n

z v, /€

i=1

1— < < <e€

associated coordinate functionals.

Let T: X — Y be a one-to-one bounded non compact linear operator. Then
there exist an infinite-dimensional subspace Z € X and a strictly
increasing sequence {k;} of integers such that e, (Tz) = 0 for any z € Z
and any [ € N.

Proof. By Lemma (1.2.3) [1], a bounded sequence {x,}n=1, |lx,|| < R for
some R >0, can be found in X such that T, € Sy for every n and
ej(Txn) =0,j =1,...,n. For any n put

Txn = In= z Yilui-
i=n+1
Now we are going to construct a subsequence {Ynk},io of {y =1
with special properties.
Putinshort 1/2™1 = ¢,,n = 1,2, ...
Put ny = 1 and let py > ny be such that yf;;’ * 0

oo
i
Z ynoui

ni+1

Take n; = py such that

< &2

Let n, > n; such that (remember that our basis is unconditionally
monotone)

14



oo oo
D kol + (| D Iy ]| < 2

ny+1 ny+1

and consider the two vectors

ny ny
— i —_ i .
U = § Vi W1 = § Vo, Wit
Tl1+1 n1+1

clearly we have |lvq]| <efand |lwyl]|>1 —& >1—¢g;, hence by
Lemma (1.2.4) [1] an integer p4,n4, +1 < p4, n, can be found such that

|yn0| <e¢

Now take n; > n, such that

2 9]
2 2 b < 23

j=0 n3+1
and consider the two vectors
ns ny
— i i —_ i .
Uy = z ( Yool T |Vny )ui'WZ = zynzui'
Tl2+1 Tl1+1

clearly we have [|lv,]| <e&and |wy|| >1 —& >1—¢,, hence by
Lemma (1.2.4) [1] an integer p,, n,, +1 < p;,n3, can be found such that

2| + |y

|yn2 |
It is now clear how to iterate the process, so getting a sequence {ynk}

2.

k=0
in S7(x), a corresponding subsequence {py}i-, being determined such that

fork >0

k=1 |.p
=0 yn;‘

Ng + 1 < Pk < Ngs1 A < Ek- (9)

Yok
Put
E = [{ynk}io]'w =T 1 (E)¢é = epk/yflf'k =0,1,2,....
Clearly we have
e (v, ) =0if k<i&(y,)= Lk =012,.. (10)
Note that, by our construction, {ynk}lio is a sufficiently small

perturbation of a block basis of the basis {u;}. Hence it is an
unconditional basis for E. Let B its basis constant.

15



We claim that {T*&|,}5., € W is a bounded sequence. Clearly it
is enough to prove that {&;|z}r~; is bounded. In fact, for any k € N and
any y = ;21 4;Yn, € Sg, taking into account (10) and (9) we have

co k k
€k <z aiyni> €k <z aiyni> < zlail |ék (yn,-)
0 i=0

Moreover we claim that it is a 1/R-separated sequence. In fact for

& ()| =

any k, m with k > m = 0, again remembering (10), we have
T8 — Tenll = |(T"&) (xn, /R) — (T"&p) (xn, /R)|
AP o
= (E) |(ek)(ynk) - (em)(ynk)

Hence, by Theorem (1.1.6), the sequence {T*&y|y}r=; cannot be

=1/R

almost overtotal on W: it means that there is an infinite-dimensional
subspace Z € W that annihilates some subsequence of the sequence

{T"e}.
The proof is complete.
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Chapter 2
Banach Spaces of Polynomials as ""Large' Subspaces of
£”-Spaces

Recall that the Banach-Mazur distance between two k-dimensional

real Banach spaces E, F is defined as

dpm(E, F) := inf{[lull - lu="13,

where the infimum is taken over all isomorphisms u: E — F. We say that
E and F are equivalent if they are isometrically isomorphic (i.e.,
dgy(E,F) = 1). Then In dg) determines a metric on the set Bj, of
equivalence classes of isometrically isomorphic k-dimensional Banach
spaces (called the Banach-Mazur compactum). It is known that Byis
compact of dgy,-“diameter” ~k.

Let C(K) be the Banach space of real continuous functions on a
compact Hausdorff space K equipped with the supremum norm. Let
F c C(K) be a filtered subalgebra with filtration {0} c Fy € F; €---C
Fg&---CF (that is, F = Uyeg, F; and F; - F; Cc Fyyjfor all i,j € Z,)
such that n;: = dim F; < oo for all d. In what follows we assume that F,
contains constant functions on K. We have the following:

Theorem (2.1) [2]: Suppose there are ¢ € R and {p;}4eny € N such that

Inn
% <cforalldeN. (D

Then there exist linear injective maps i4: F; < €5 ing such that
dem(Fa, ig(Fy)) <ef, d €N
As a corollary we obtain:
Corollary (2.2) [2]: Suppose {n;} ey grows at most polynomially in d,
that is,
3k,6 € R, suchthatVd ny < édk. (2)
Then for each natural number s > 3 there exist linear injective maps

la,siFa © ¥y, where Ny s = lédk. sk (Jin(éa®)| + 1)kJ, such that

1
dBM (Fd'id,S(Fd)) < (eSk)E, k € N.

Let Fsibe the family of all possible filtered algebras F on compact

Hausdorff spaces K satisfying condition (2). By Bsy 7, € By, we denote
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the closure in By, of the set formed by all subspaces F; of algebras
F € F¢j having a fixed dimension nn; € N,

Corollary (2.2) [2] allows to estimate the metric entropy of Be . .-
Recall that for a compact subset S € By its e-entropy (¢ > 0) is defined
as H(S,e):=InN(S,dgy,1+ €), where N(S,dgy,1+ &) is the
smallest number of open dg,,-“balls” of radius 1 + & that cover S.
Corollary (2.3) [2]: For k = 1 there exists a numerical constant C such
that for each ¢ € (O, %]

k+1

H(Bopn,€) < (ChIn(k + D)*. (6d*)2 (In(@d¥) + 1)+, (%)k (m(3))

Let FJ be the space of real polynomials on R™ of degree at most d.
For a compact subset K € R" by P}'|x we denote the trace space of
restrictions of polynomials in P} to K equipped with the supremum
norm. Applying Corollary (2.1.2) to algebra P™|x:= Ugso Pilx we
obtain:
(A) There exist linear injective maps iy ,: Pg'lx © €y e Where

Ngn = le*™. (n+2)".d".(2n+ 1+ |n Ind])?], (1)
such that

1
dpm (:Pgﬂl(» id,K(:PZﬂK)) < (e.(n + 2)»)n+2(< 2.903). (2)
Indeed,

— e.(d+n)\" e.(1+n)\"
Nd,n;zdim?gll(g(d:l_n)<<¥> S(%) At

< e dm 3)
Hence, Corollary (2.2) [2] with ¢ = e?™, k = n and s: = (n + 2)? implies
the required result.
If K is P"-determining (i.e., no nonzero polynomial vanish on K),

then N, = d+n and so for some constant c(n) (depending on n
an n

only) we have

—~ = P n

Nin <Ngn<c(m).Nyp.(1+1InNg,) . (4)
Hence, Vyn(K) =i gk (Pg ) is a “large” subspace of £, . Therefore
from (A) applied to V,; ,,(K) we obtain:
(B) There is a constant c;(n) (depending on n only) such that for each

P"-determining compact set K € R"™ there exists an m-dimensional
subspace F € P}|x with
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1
m:=dimF > ¢;(n). (Ny,)? and dgy(F, €5) <3. (5

1
In turn, if d € N is such that Ngn < c1(n). (ﬁd,n)z, then due to

property (A) for each P"-determining compact set K' € R"™ there exists
aN an-dimensional subspace F 3 ,, x © F such that

dou (Fanin Pl ) < 9. (6)
Further, the dual space (Vc}1 (K ))* of V3 (K) is the quotient space
of £} - I particular, the closed ball of (v (K))* contains at most

c(n) Ngn-(1+InNy, )n extreme points, see (4). Thus the balls of

(Vc}1 (K ))* and V}' (K) are “quite different” as convex bodies.

This is also expressed in the following property (similar to the celebrated
John ellipsoid theorem but with an extra logarithmic factor) which is a
consequence of property (A):

(C) There is a constant c,(n) (depending on n only) such that for all P"-

determining compact sets K;, K, € R"
1

dBM(:Pc?lKl(:Pc?lKZ)*) < c;(n) - (Nd,n ' (1 + In Nd,n ))2 (7)

A stronger inequality is valid if we replace (IPZZl Kz)* above by
e, .
Remark (2.4) [2]: Property (C) has the following geometric interpretation.
By definition, (P}| Kz)* is a N ,-dimensional real Banach space generated
by evaluation functional §, at points x € K, with the closed unit ball being
the balanced convex hull of the set {6,}, € K,. Thus K, admits a natural
isometric embedding into the unit sphere of (?C?I Kz)*' Moreover, the

Banach space of linear maps (?C?l Kz)* — Pk, equipped with the operator
norm is isometrically isomorphic to the Banach space of real polynomial
maps p:R™ - Pg|g, of degree at most d (ie., f"o p € Py for all
fre (IPZZlKl) ) with norm ||p]| := supxeKZ||p(x)||?gi1|K1.Thus property
(C) 1s equivalent to the following one:

(C') There exists a polynomial map p: R"™ — Pj|x of degree at most d

such that the balanced convex hull of p(K,) contains the closed unit ball

of Pilg, and is contained in the closed ball of radius c,(n) -
1

(Nd,n - (1 + In Nd,n ))E of this space (both centered at 0).
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Our next property, a consequence of Corollary (2.3) [2] and
equation (3), estimates the metric entropy of the closure of the set
Ilsd,n < BR,., formed by all Nd,n-dimensional spaces Pj|gwith P"-
determining compact subsets K ¢ R".

(D) There exists a numerical constant ¢ > 0 such that for each € € (O, ﬂ,

H (Cl(:ﬁd,n)r 8) <(cn? ‘In(n + )" -d?>*- (1 +Ind)™**- G)"

1 n+1

()" ®

Remark (2.5) [2]: The above estimate shows that Ilsd,n with sufficiently
large d and n is much less massive than By, . Indeed, as follows :

Ngn—1
1 2
H(Bﬁdn, e)~ <E) ase - 0t
(here the equivalence depends on d and n as well). On the other hand,

implies that for any € > 0,

InH(By, , InH(By, ,
0 < _lim inf . (~Nd'" E) n (~Nd,n E)

Nd'n—>oo Nd,n Nd'n—>oo Nd,n

< lim inf <

It might be of interest to find sharp a symptotics of H (cl(?sd,n), 8),
as € » 0% and d — oo, and to compute (up to a constant depending on n)
dgp-‘diameter” of Iﬁd,n.

Similar results are valid for K being a compact subset of a real
algebraic variety X ¢ R" of dimension m < n such that if a polynomial
vanishes on K, then it vanishes on X as well. In this case there are
positive constants cy, €y depending on X only such that Eyd™ <
dim P}|x < cxd™. For instance, Corollary (2.2) [2] with ¢ = ¢y, k :=m
and s:= (m + 2)? implies that P}'| is linearly embedded into PNy
where Ny x = [cxd™ - (m + 2)*™ - (|In cxd™| + 1)™], with distortion <
2.903.

Since dimF; =n;,i €N, and evaluations 6, at points z €
Kdetermine bounded linear functionals on F;, the Hahn-Banach theorem
needs some preparation. Given a real vector space V, a function f:V — R is
called sublinear if

(i)  Positive Homogeneity: f(yx) = yf(x) forally e R_,x € V.

(i)  Subadditivity: f(x +y) < f(x) + f(y) forallx,y € V.
Every seminorm on V (in norm on V) is sublinear. Other functions can be
useful as well, especially Minkowski functional of convex sets. If p: V = R
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is a sublinear function and ¢: U — R is a linear function on a linear subspace
U < V which is dominated by p on U, i.c.
px) <pk) vx € U
Then there exists a linear extension : V — R of ¢ to the whole space V, i.e.
there exists a linear functional Y such that:
Y(x) = px) Vx e U,
Y(x) < o(x) Vx eV. [7]
Implies easily that span {&,},ex = F;'. Moreover, ||§,||;z =1 forallz € K
and the closed unit ball of F; is the balanced convex hull of the set
{6,}sex- Let{fis ..., fnii} C F; be an Auerbach basis with the dual basis

(6,008 B that s fi(8,) = fiu(z) =8, (the
Kroneckerdelta) and || fki”K = 1 for all k. (Its construction is similar to that

of the fundamental Lagrange interpolation polynomials for F; = P/*|.
Now, we use a “method of E. Landau”. By the definition, for each

g €EF;, we have g(z)= ZZLlfki(z)g(zki),z € K. Hence, ||gllx <

nillgll{zl.mz AE Applying the latter inequality to g = fPd,f € Fy,

containing in F;,i :==d - pg, , and using condition (1) we get for A,;: =

{z1p- . Znu} C K

1 1 1
Ifll = Ulgll)Pe < (nap)Pe - (Ilglla,)Pe < €€ - lIf lla,
Thus, restriction Fy = Fy|,, determines the required map i4: Fy —

(0.0)
nd.pd *

Proof of Corollary (2.2) [2] We set pd := s - (|In(éd¥)| +1),d € N.
Then the condition of the corollary implies
1 : In(éd*) + k1 1 kInS
nndpdsn(c ) npdS—+ ns _
Pa Pa s S
Thus the result follows from Theorem (2.1) [2].
Proof of Corollary (2.3) [2]. We make use adapted to our setting:
Lemma (2.6) [2]: Let Sz, € By, be the subset formed by all 74-

dimensional subspaces of £y . Consider 0 < ¢ < ﬁi and let R = ?ﬁ;d.
’ d —sta

. C.

Then Sz, admits an R-net Ty of cardinality at most (1 + ?)N s,
Now given € € (O,%] we choose s = [s.] with s, satisfying

1
(esk)se = Y1+ € and ¢ such that R = R, = V1 + €. Then according to
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Corollary (2.1.2) and Lemma (2.2.3), distgy(Tx,, Bexi,) < V1 + €. For

each p € T, we choose g, € Bgyr, such that dgy(p,q,) <V1+e.
Then the multiplicative triangle inequality for dg,, implies that open
dpn-“balls” of radius 1 + € centered at points q,,p € Tg_, cover Bg i, -

Hence,

2 _
N(Bé;k,ﬁd’ dBMI 1 + 8) < CaTd TRS < (1 + E)Nd,s'nd_ (9)
L k-1
Next, the function ¢@(x) = In(ex*)xdecreases forx € [e K ,oo) and

k-1
lim, . @(x) = 0. Its inverse ¢ ! on this interval has domain <O, e T],

increases and is easily seen (using that ¢ o ¢ ™1 = id) to satisfy
1 3k 3k _k-1
p 1 (x) < —-ln(—),x € <O,e K ]
X X

k-1
Since %ln(l +e) <e « foree€ (0,%], the required s, exists and the

previous inequality implies that
12k 12k
S <hdte ™ <1n(1 + e))' (10)
Further, we have
1 ng(1+R) na(VI+e+1)
§ R-1  VT+e-1
 Ag(VT+e+ 1% (VI+e+1)
€
From (9), (10), (11) invoking the definition of N ¢ we obtain
InN(Beyn, dpm, 1 + €)
k

< 7,td*(n(ed") + 1)%In (led) (m(lff " (m(lff e))) '

Using that n,; < ed" and the inequality 2.8 <In(l+¢),c€ 0,l , WE
g 3 2

(11)

get the required estimate.
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Chapter 3
An [P- Version of Von Neumann Dimension for Banach
Space Representations of Sofic Groups

A theory of entropy for actions of a sofic group on a probability
space or a compact metrizable space has been developed. Using this
theory, it was shown for sofic groups I’ that probability measure
preserving Bernoulli actions I' ~ (X, )", I’ ~ (Y, v) are not isomorphic
if the entropy of (X, i) does not equal the entropy of (Y, v), if I', and that
Bernoulli actions I' ~ X', I’ ~ YT are not isomorphic as actions on
compact metrizable spaces if |X| # |Y| (here X and Y are finite). We can
think of the action of I on [P(I",V) as analogous to a Bernoulli action,
since both actions are given by translating functions on the group.

Section (3.1): Definition of the Invariants

Let I' be a countable discrete group. Suppose that H is a closed I'-
invariant subspace of [(I' X N), and let Py be the projection onto H,
then it 1s known that the number

dimL(p)(H) = z(PH5(e,n)'5(e.n))

neN
obeys the usual properties of dimension,

Property 1: dimyy(H) = dimy(K), if there is a I' -equivariant
bounded linear bijection from H to K,
Property 2: dimy(H @ K) = dimy(H) + dimy(K),
Property 3: dimy(H) = 0 ifand only if H = 0,
Property 4: dimy(Np=1 Hy) = limy,,e, dim, i (Hy), if dimyy(H,) <
oo, and also H, .1 € Hy,
Property 5: dimy, 1 (M) = limy, e dimyry(Hy), it Hy € Hyy4.
We also have

dimy i (12()®") = n,

Voiculescu and Gournay noticed that for amenable groups I', we
can define this dimension as a limit of normalized approximate
dimensions of F, (2, with F, a Folner sequence, and 2 € H. This formula
is analogous to the definition of entropy for actions of an amenable group
on a compact metrizable space or measure space. Gournay noted that a
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formula for von Neumann dimension similar to Voiculescu’s makes
senses for subspaces of [P (I", V), with I' amenable. Using this, he defined
an isomorphism invariant for subspaces of [P (I',V) agreeing with von
Neumann dimension in the case p = 2. In particular, Gournay shows that
if I' is amenable, and there is an injective I'-equivariant linear map of
finite type with closed image from [P(I",V) - [P(I', W) then dim
V <dimW.

Combining ideas of Kerr and Li and Voiculescu, we define an

isomorphism invariant

dim X, IP(Y,TI")
for a uniformly bounded action of a sofic group on a separable Banach
space Y.

A sofic group is a group whose Cayley graph is an initially
subamenable graph, or equivalently a subgroup of an ultraproduct of
finite- rank symmetric groups such that every two elements of the group
have distancel. They were introduced by Gromov as a common
generalization of amenable and residually finite groups. The name
“sofic”, from the Hebrew word meaning “finite”, was later applied by
Weiss, following Weiss’s earlier use of the same word to indicate a
generalization of finiteness in sofic subshifts.

The class of sofic groups is closed under the operations of taking
subgroups, extensions by amenable groups, and free products. A finitely
generated group is a sofic if it is the limit of a sequence of sofic groups.
Te limit of a sequence amenable groups (that is, an initially subamenable
group) 1s necessarily sofic, but there exist sofic groups that are not
initially subamenable groups [8].

This definition of dimension has the following properties:

Property 1: dimZ,[P(Y,I") < dimZX, [P(X,I") if there is an equivariant
bounded linear map X — Y with dense image,

Property 2: dimZ,IP(V,I') < dimZX,IP(W,I') +dimZ, [P(V/W,TI), if
W < V is a closed I'-invariant subspace,

Property 3: dim X, IP(Y®W,I') = dimZ, IP(Y,I") + dim X, [P(W,I"), for
2 < p < oo, where dim is a “lower dimension,” and is also an invariant,
Property 4: dimZ, lp(lp(F, V)) =dimZ, lp(lp(F, V)) = dim(V), for
1<p<2,

Property 5: dimZX, [P(X,I") = dim]_‘(r)()?”'llz)” when X € lp(N, lp(F))
and1<p < 2.
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We also note that for defining dim;» (Y, I'), little about soficity of
I' is used, and we can more generally define our invariants associated to a
sequence of maps a;: ' = Isom(V;) where V; are finite-dimensional
Banach spaces.

In particular, we can show that dimg ;»(Y,I") can be defined for
R®-embeddable groups I'. Because unitaries also act isometrically on the
space of Schatten p-class operators, we can also define an invariant

dimz,sz (Y, F),
SP -dimension has properties analogous to [P -dimension.
Property 1: dimgsp(Y,I') < dimg ¢p (X,I),, if there is a I'-equivariant
bounded linear bijection X — Y,
Property 2: dimgs(V,I') < dimgop(W,I') + dimg s (V/W,T), if
W < V is a closed I'-invariant subspace,
Property 3: dimgen(Y @ W,T') = dimg op(Y,T') + dims s»(W,T") for
2<p<oo,
Property 4: dims o (IP(I',V) = dim(V) for 1 < p < 2,
Property 5: dimg oo (W, ") = dimy (W) it W € 1P(N,IP(I) is a
nonzero closed invariant subspace and 1 < p < 2,
Property 6: dimg;2(H,I") =dimg,2(H,I') = dimy ) Hif H S
[2(N,12(I)) is T invariant.
In particular [P (I", V) is not isomorphic to [P (I", W) as a representation of
r, if I' is R¥-embeddable and 1 < p < oo. This extends a result from
amenable groups to R*-embeddable groups, and answers a question of
Gromov in the case of R“-embeddable groups.

We recall the definition of sofic and R*-embeddable groups. To
fix notation we use Sym (A) for the group of bijections of the set A, and
we let S, = Sym({1,---,n}), finally we let U(n) denote the unitary
group of C™, where C" has the usual inner product. It is useful to
introduce metrics on the symmetric and unitary groups. For 0,7 € §,,, we
define the Hamming distance by

1
dhamm(0,T) = n 1{:a() # (D}
IfA,B € M,,(C) we let

(A,B) = %TT(B*A),
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note that (4, B) is indeed an inner product. We let |[|-||, denote the Hilbert
space norm induced by this inner product.
Definition (3.1.1) [3]: Let I' be a countable group. A sofic approximation
for I' is a sequence of maps o;: I' = Sy, with d; — oo, (not assumed to be
homomorphisms) which is approximately multiplicatively and
approximately free in the sense that
dyamm(0:(st), 0;(s)o;(£)) = 0, foralls,t €T,
dyamm(0i(st), 0,(s")) > 1, foralls#s' €T.
We say that I' is sofic if it has a sofic approximation.
One can think of a sofic approximation g; as above as maps so that
if
Xt XV, Ym €T,
and a4,...,a,,by,..., b, € {—1, 1}, then with high probability,
0;(x)* -+ 0 () () = ;) ¥ -+ - ) (Dif 177 xy”

— yal yan
- 1 'TE} n )

0;(x)% - - 0; () () # 0;(y)4 - - () (if 21 xpy”
* yla1 ...y,f”,

The requirement d; — oo 1s not necessary since one can replace o;

with ai®ki where cri@ki: I - Sym ({1, ..., d;}*) is given by

ai®ki(s)(a1, ...,aki) = (ai(s)(al) ...ai(s)(aki)).

We require that d; —» oo simply for our properties of [P-dimension to
behave appropriately. Note that d; — oo is automatic when the group is
infinite by our approximate freeness assumption.
A related notion is that of being R*-embeddable.
Definition (3.1.2) [3]: Let I' be a countable group. An embedding
sequence for I is a sequence of maps g;: ' = U(d;), with d; - oo, (not
assumed to be homomorphisms) such that
llo;(st) — g;(s)a;(t)|l, » 0 foralls,t €T,

1
d—Tr(ai(s’)*ai(s)) - 0 foralls#s'inT.
i

A group is said to be R“-embeddable if it has a embedding sequence.

The second condition says that if s # s’, then asymptotically
0;(s),0;(s") become orthogonal under the inner product which induces
|I-]l2. One can formulate a probabilistic interpretation of an embedding
sequence analogous to that of a sofic approximation: for any € > 0, if
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X1y s Xy V1, 0, Ym €T, and ay,..,a,, by, ..., by, € {—1,1}, then if
a, an a, an
XXy =Y Y
P({¢ € S?% 1 loy(x)% - - - 0; ()™ (§) — 0;(¥1) % -+ - 0;(y) (O]
<e}) -1,

N ) an a, an
and if x; " .. x," F Y Y

P({§ € S [o;(x) ™ - - - 0;(xn) (8D, 3; (y) ™ - - - 3; () ()]
<e}) -1,
This equivalence follows by concentration of measure.
Note that if 0 € S,, and U, is the unitary on C" which ¢ induces,
we have that

1
dramm(0,7) = dHamm(T_lo'; Id)=1- ;TT(UT—la)

1
= 1= Tr(U;U,),

Uy — Ur“% =2 - 2(1 - dHamm(T_lo'» Id)) = 2dyamm(0,T)

thus all sofic groups are R*-embeddable.

We will sometimes use an alternate definition of R“-embeddable:
a group is R®-embeddable if its group von Neumann algebra embeds into
an ultraproduct of matrix algebras. For a good introduction to sofic and
R®-embeddable groups.

We now give examples of sofic groups, and thus R*-embeddable
groups, although most of these can be shown directly).
Example (3.1.3) [3]: All countable amenable groups are sofic. To prove
this, let F, is a Folner sequence for I'. For g € T, let 7;(g): F;\ g~ 'F; -
F;\ gF; be an arbitrary bijection. Define o;: ' = Sym (F;) by

SX if x € F;ns™1F
oi(s)(x) = {Ti(s) (x) ! othe;wise. l

It follows directly from the definition of a Falner sequence that g;
is a sofic approximation.
Example (3.1.4) [3]: All countable residually sofic groups are sofic. In
particular, this includes all free groups and residually amenable groups.
Example (3.1.5) [3]: Countable locally sofic groups are sofic.
Example (3.1.6) [3]: By Malcev’s Theorem all finitely generated linear
groups are residually finite, hence sofic. By the preceding example all
countable linear groups are sofic.

It is shown that sofic groups are closed under direct products,
taking subgroups, inverse limits, direct limits, free products, and
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extensions by amenable groups: if A< TI',A is sofic, and I'/A 1is
amenable, then I is sofic. It is also known that R*-embeddable groups
are closed under these operations as well. It is unknown whether all
countable groups are sofic. As mentioned earlier, a group is R®-
embeddable if and only if its group von Neumann algebra embeds into an
ultrapower of the hyperfinite II1 factor. It follows that if the Connes
Embedding Conjecture is true, then all countable discrete groups are R*-
embeddable. Even without the Connes Embedding conjecture we still
have many examples of R*- embeddable groups.
Definition (3.1.7) [3]: Let X be a Banach space. An action I' on X by is
said to be uniformly bounded if there is a constant C > 0 such that
Isx|| < Cllx|| forallx € X,s €T.

We say that a sequence S = (xj);foz1 in X is dynamically generating, if S
is bounded and Span {sxj: serl,je N} is dense.

If X is a Banach space we shall write Isom(X) for the group of all
linear isometries from X to itself.
Definition (3.1.8) [3]: Let V be a vector space with a pseudonorm p. If
A CV, a linear subspace W €V is said to be e-contain A, denoted
A c, W, if for every v € A, there is a w € W such that p(v —w) < ¢.
We let d.(A4,p) be the minimal dimension of a subspace which &-
contains A.

Definition (3.1.9) [3]: A dimension triple is a triple (X,I",Z = (0T >
Isom(Vi))), where X is a separable Banach space, I is a countable discrete
group with a uniformly bounded action on X, each V; is finite-
dimensional, and the g; are functions with no structure assumed on them.
Definition (3.1.10) [3]: Let (X,I',%=(0;:T - Isom(V))) be a
dimension triple. Fix § = (xj);?';l a dynamically generating sequence in
X.

Fore € E € I finite, [ € N let

Xg1 = Span{sx;:s € ELb1<j<l.

Ife € E ST finite, m €N, C,6 > 0, let Hom(S,F,m,d,0;) ¢ be

the set of all linear maps T: X ,,, — V; such that [|T|| < C and
|7 (s, ...skxj) — 0;(s1) ... ai(sk)T(xj)” <6

if1<j,k< msy, s, €F.If C =1 we shall use Hom (S, F,m,§,d;)
instead of Hom (S, F,m, 6, 0;),.
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We shall frequently deal with inducing pseudonorms on [*(N, V)
from pseudornoms on [ (N). For this, we use the following notation: if p
is a pseudonorm on [*(N) and V is a Banach space, we let p, be the

pseudonorm on [ (N, V) defined by py, (f) = p(j = [IfFG)ID.
Definition (3.1.11) [3]: Let Z, S be as in the proceeding definition and let

p be a pseudonorm on [®(N). Let ag: B(Xp , V;) = [®(N,V;) be given
by as(T)() = Xkemy(DT (x7). We let

czg(Homp(S, F,m,8,0;),p) = dg(aS(Homp(S, F,m,?&, ai)),pVi)
define the dimension of S with respect to p by

f.dims(S,F,m,6,¢,p) = lim sup d c(Homp(S,F,m,§,0;),p),

i—oo d

f.dims(S,&,p) = limsup f. dlmz(S, F,m,d,¢&,p),
e€FCT finite
meN
§>0

f' dlmZ(S;p) = Supf' dlmZ(S; 5;,0);

£>0
where the pairs (F,m, ) are ordered as follows (F,m,8) < (F',m’,§")

ifFSF' m<m',§=6".
We also use

1 o
f.dims(S,F,m,6,¢,p) = liminf 7 d.(Homp(S,F,m,é6,ad;),p),

i—>oo im

f.dims(S,&,p) = liminf f.dims(S,F,m,éd,¢,p),

e€FCT finite
meN
5>0
f.dims (S, p) = sup f.dims(S, €, p).

>0

We will show that

f.dims(S, p) = sup hm inf lim sup

e>0 (Fm, i—o0 di

1 o
7 d.(Homp(S,F,m,é8,0;),p),
i

1 n
f-dim dims(S, p) = sup llm inf liminf 7 d.(Homp(S,F,m,é,0;),p) .

e>0 (Fmg8) inoo dimV;

We introduce two other versions of dimension, which will be used
to prove that the above notion of dimension does not depend on the
generating sequence.

Definition (3.1.12) [3]: Let X be a separable Banach space, we say that X
has the C-bounded approximation property if there is a sequence 6,;: X —
X of finite rank maps such that ||8,,|| < C and

16,(x) —x|| = 0, forallxe€X.
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We say that X has the bounded approximation property if it has the C-
bounded approximation property for some C > 0.

Definition (3.1.13) [3]: Let X be a separable Banach space with a
uniformly bounded action of a countable discrete group I'. Let q:Y —» X
be a bounded linear surjective map, where Y is a separable Banach space
with the bounded approximation property. A g-dynamical filtration is a

pair F = ((asf )(s,j)EFxN’ (Yea) peper finite,leN) where as; €Y,Yp, S Y
is a finite dimensional linear subspace such that

(D) sups,j) lasi|| < oo,

(@ q(ay) =sq(a;),

(111) (q (ae j));il is dynamically generating,

(iv) Ye €Y pif ESE, I,

v) ker(q) = U Ve N ker(q),

(vi) Y, = Span{asj: seEL1<j <1} + ker(q) nYg,.

Note that if X has the bounded approximation property and Y = X

with g the identity, then a dynamical filtration simply corresponds to a
choice of a dynamically generating sequence. In general, if § = (xj);foz1 is
a dynamically generating sequence, then there is always a g-dynamical

filtration F = ((asj)(s Herxy’ YF,Z) such that q(aej) = x;. Simply choose

asj such that ||asj|| < C||xj|| and q(asj) = sx; for some C >0. If

(yj);?o:1 is a dense sequence in ker(q), we can set

l

Yz, = Span {asj: (s,j) € E' x {1, ...,l}} + z Cy;.
j=1

We can always find a Banach space Y with the bounded

approximation property and a quotient map q:Y — X, in fact we can
choose Y = [1(N).

Definition (3.1.14) [3]: A quotient dimension tuple is a tuple
(Y, q,X,Io;: T - Isom(Vi)) where (X, T, g;) is a dimension triple, Y is
a separable Banach space with the bounded approximation property and
q:Y — X is a bounded linear surjection.

Definition (3.1.15) [3]: Let (Y,q, X, I, 0;: T > Isom(V;)) be a quotient

dimension triple, and let F = ((asj) (5.)erxN’ YF,Z) be a g-dynamical
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filtration. For e € F € I finitem € N, §,C > 0 we let Homy(F,F,m, 6, 0;)¢
be the set of all bounded linear maps T: Y — V; such that ||T|| < C and
||T(as1 wSf) — 0y(s1) ...ai(sk)T(aej)” <4,
||T|ker(q)ﬂYF,z” <é.

As before, if C =1 we will use Homq(F,F,m,8,0;) instead of
Homp(F,F,m, 6, 0;)c.

Again, in the case X has the bounded approximation property, we
are simply looking at almost equivariant maps from I' to V;, and this is
similar in spirit to the definition of topological entropy. In the general
case, note that genuine equivariant maps from X to V; would correspond
to maps on Y which vanish on the kernel of g, and so that

T (as1 ...skj) = 0;(s1) ... ai(sk)T(aej).
so we are still looking at almost equivariant maps on X, in a certain sense.
Definition (3.1.16) [3]: Fix a pseudonorm p on [ (N), let (Y, q,X, 2=
(0;: T = Isom(V;)) be a quotient dimension tuple, and F a g-dynamical
filtration. Let az:B(Y,V;) »[I°(N,V;) be given by aF(¢) =
(p(aej))j=; we again use d.(4,p) = d.(ar(4),pV;). We define the

dimension of F with respect to p, Z as follows:

1 o
f.dims(F,F,m,6,¢&,p) = limsup 7 d.(Homp(F,F,m,é6,a;),p),

i—o0 i
f.dims(F,¢e,p) = engl}r}linitef. dims(F,F,m,6,¢,p),
meN
§>0
f' dlmZ(?‘;p) = Supf' dlmZ(?; 5;,0)-
£>0

Note that unlike f.dims(S,F,m,6,,p) we know that

f.dims(F,F,m,6,¢,p) is smaller when we enlarge F and m and shrink
§, thus the infimum is a limit and there are no issues between equality of
limit supremums and limit infimums for this definition.
Definition (3.1.17) [3]: Let Y,X be Banach spaces, and let p be a
pseduonorm on B(X,Y). Fore > 0,0 <M < o0, and A,C S B(X,Y), the
set C is said to (&, M) contain A if for every T € A, there is an S € C
such that ||S||< M and p(S§ —T) <eé&. In this case we shall write
Ac.y C. We let d.p(A p) be the smallest dimension of a linear
subspace which (¢, M) contains A.
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Definition (3.1.18) [3]: Let (Y,q, X, I, 0;: T > Isom(V;)) be a quotient

dimension tuple. Let F = (asj,YF,l) be a g-dynamical filtration. Fix a

sequence of pseudonorms of p; on B(Y,V;) and 0 < M < oo, set
opdimg v (F,F,m, 6, ¢, p;)

1
= lim sup T de y(Homp(F,F,m,6,0,),p;),
L

i—>oo
opdimg v (F, €, p;) = englln]finite opdimg v(F,F,m, 6, ¢, p),
meN
5§>0
opdims m(F, p;) = sup opdims y(F, €, p).
E>

As before, we shall use
opdimz m(F, py), f-dims m(F, p)
for the same definitions as above, but replacing the limit supremum with
the limit infimum.
By scaling,
inf opdimg \(F, p;),opdims o (F, p;), f.dimg(S,p), f.dimg(F,p)

O<M<oo
remain the same when we replace Hom,(F,F,m,§,0;), Hom(S,F,m,§,a;),

by Homp(F,F,m,6,0;)c, Homp(S,F,m,§,0;), for C a fixed constant.
This will be useful in several proofs.

Note that if p is a pseudonorm on [*(N), then we get a
pseudonorm px; on B(Y,V;) by

pri= p( — |IT (ae))ll)-
Further, for0 < M < o
opdims m(F, pgi) = f.dimz(F, p).

Definition (3.1.19) [3]: A product norm p is a norm on [ (N) such that

(1) p induces a topology stronger than the product topology,

(11) p induces a topology which agrees with the product topology on

{f € 1°(N): [Iflleo < 13.

Typical examples are the [P-norms:
o 1
P=Y Z[f(DIP
p(f) lej P
Jj=

We shall show that there is constant M > 0, depending only on Y,
so that if F,F’ are dynamical filtrations of q and S is a dynamically
generating sequence, then for any two product norms p, p’,
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opdims m(F, pz;) = opdimg m(F, pr,;) = f.dimz(F,p)
= f.dimg(F',p) = dimz(S,p)
and the same with dim replaced by dim. In particular all these dimension
only depend of the action of I on X, and give an isomorphism invariant.
When we show all these equalities we let
dims(X,T)
denote any of these common numbers.

The equality between these dimensions is easier to understand in
the case when X has the bounded approximation property. When X has
the bounded approximation property, we can take Y = X, g = Id and then
the equality

opdimg m(F, pz,;) = f.dims(S, p),
says the data of local almost equivariant maps on X is the same as the
data of global almost equivariant maps on X. This is essentially because if
we take 0g;: X — Xp; which tend pointwise to the identity, then any
almost equivariant map on Xz ; gives an almost equivariant map on X by
composing with 0 ;.

Since the maps o;: ' - Isom(V;) are not assumed to have any
structure, this invariant is uninteresting unless the maps og; model the
action of I on X in some manner. Thus we note that if I' is a sofic group,
then the maps o; : I' = S5, model at least the group I' in a reasonable
manner.

Because S, acts naturally on [P (n) we get an induced sequence of
maps o; : ' > Isom(IP(d;)) and the above invariant measures how

closely the action of I' on X is modeled by these maps. When I’ is sofic,

and X = (O'i N Sdi) is a sofic approximation and XP = (ai >

I Som(lp (di))) are the maps induced by the action of S,, on [P (n), we let
dimg p(X,I') = dimgm (X, T),
dimz,lp(X, F) = dimz(p)(X, F).

Similarly, if I' is R“-embeddable, and o;: ' - U(d;) is a
embedding sequence, then since U(d;) is the isometry group of I2(d;) we
shall let

dimZ’ZZ (X, 1—') = dlmz(X, 1—'),
dims 2(X,I') = dimy(X, ).
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Just as §,, acts on commutative [P-Spaces, we have two natural
actions of U(n) on non-commutative LP-spaces. Let SP(n) be M, (C)
with the norm

Alls» = Tr(lA[7)
where |A| = (4 * A)Y/?. Then U(n) acts isometrically on SP(n) by
conjugation and by left multiplication. We shall use

dimZ,Sp,conj(X» r
for our dimension defined above, thinking of o0; as a map into
Isom(SP(n)) by conjugation and

dims, v mauei (X, ')
thinking of o; as a map into Isom(S? (n)) by left multiplication.

One of our main applications will be showing that when I' is R®-
embeddable

@Z,Sp,conj(lp(r)@n; F) = dimZ,Sp,conj(lp(F)@n' F) =n,
if1 <p <2, and

dimz p(IP(M)®",T) = dimg wp (IP(I)®™,T) = n,
if 1<p<2 In particular the representations I[P(I')®™ are not
isomorphic for different values of n, if I' is R“-embeddable.

We show that our various notions of dimension agree. Here is the
main strategy of the proof. First we show that there is an M > 0,
independent of F so that

opdimg m(F, pz;) = f.dims(F,p),

the constant M comes from the constant in the definition of bounded
approximation property. A compactness argument shows that

opdims m(F, py.,;)
does not depend on the choice of pseudonorm. We then show that

opdims o (F, pz,;)
does not depend on the choice of F, this is easier than trying to show that

f.dimy(S,p)

does not depend on the choice of S. This is because the maps used to
define

opdims o (F, pz ;)
all have the same domain, which makes it easy to switch from one
generating set to another, since we can use that generators for F have to
be close to linear combinations of generators for F'. Then we show that
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f.dimy(F, p) = f.dimx(S, p),

this will reduce to showing that if we are given an almost equivariant map
¢:Y — V; which is small on the kernel of q, then there is a T: X' - V
with X' € X finite dimensional such that T oq is close to ¢ on a
prescribed finite set.

First we need a simple fact about spaces with the bounded
approximation property.
Proposition (3.1.20) [3]: Let Y be a separable Banach space with the C-
bounded approximation property, and let I be a countable directed set.
Let (Y,)qer be an increasing net of subspaces of Y such that

Y=UYa.
a

Then there are finite-rank maps 6,: Y — Y, such that ||8,|| < C and
lim[|6,(y) — ¥l = 0

forall e Y.
Proof. Fix Y;,---,Y, €Y and € > 0. Then there is a finite rank 6:Y — Y
such that

16(v;) —will <e
|6]] < C.

n
9=z¢]®x]
j=1

with ¢; €Y" and x; €Y. If « is sufficiently large, then we can find

Write

x]f € Y, close enough to x; so that if we let

n
0= ¢;0x
j=1

6 if l6oll <,
) = 6
¢ C

0 )
otherwise.
116l

then
18Cv) — il < 2e.
Now let (yj);:l be a dense sequence in Y, and let
A<y <oz <---
with a; € I be such that for all § € I, there is a j such that f < «; . By the
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preceding paragraph, we can inductively construct an increasing sequence
n, of integers and finite-rank maps

Oy:Y - Yank
such that

16kl < C,
16k (ys) =yl < 27% if j < k.
Set 6, = Hank if k is the largest integer such that a;, is not bigger than
a.Let 8, = 01if @ < a;. Then 8, has the desired properties.
Lemma (3.121) [3]: Let (Y,q,X,I,X = (0:T > Isom(V;))) be a
quotient dimension tuple. Let F = ((asj) (s.))erxy’ Yp,l) be a g-dynamical
filtration and p a product norm, and let C > 0 be such that Y has the C-
bounded approximation property. Fix M > C. Then for any V € Y finite-
dimensional, and k > 0, there is a F € I finitem € N,§,& > 0 and
linear maps
Li: 1N, Vi) = B(Y, V)

so that if ¢ € Homp(F,F,m,$,0;),f € I*(N,V;) satisfy py (az(¢) —
f) < &, then

IL:(HIl = M,

IL:(Dlv = ¢lvll < k.

Proof. Note that for every V finite-dimensional there are an E € I finite,
[ € N, such that

ma , nf lv = wll <x,

lvll=1|w|=1
so we may assume that V = Yg, for some E, [.

Fix 1 > 0 to be determined later. By the preceding proposition let
Or kY = Yp be such that
10rill < €,

(l}iw%HHF,k(y) —y|=0 forallyey.

Choose F, m sufficiently large such that
||6F,k|YE'l —Idly,,
Let B, © F™ X {1,---,m} be such that {q(asj): (s,)) € Bpm} is a
basis for Xr ,,, = span {q(asj): (s,j) e F™ x {1, - -,m}}. Define
Ly 12N V) > B(Xpm Vi)

<.
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L) (a(as)) = aiS)F () for (s,) € Bem.
We claim that if § >0,&' >0 are sufficently small, ¢ €
Homp(F,F™,m,8,0;) and f € (N, V;) satisfy
pu(f — ar(@®) <&,
Then

|Zyeal,, —dly,| <n e
By finite-dimensionality, there is a D(F,m) > 0 such that if
v € ker(q) N Y, (dyy) € CPFm, then

sup(lvll, d D) < D) v+ > dypagy|
(t,r)EBEm
Thus if x = v + Xt r)e,,, derGer With v € ker(q) N Yg ., has ||x|| = 1,

then

IEH (@) - @
<DEmMS+DEm) Y lplan) —a®f @)l

(t,1)EBEm
<D(F,m)é + D(F,m)|F|"™mé

£ b - FO,

(t,r)EBF,‘m
. n / ; /
if § < D ATy and &' > 0 is small enough so that p(g) < ¢
implies
Ui
> el <3,
(t,T)EBF'm

then our claim holds.
So assume that §, &’ > 0 are small enough so that (1) holds, and set

Li(f) = Ez(f) o q|YF,m o O m- Then
IL; (DIl < €A +1n)

and for ¢, f as above and y € Vg,

IL; () — pW)I
<@ +M)0rm — O+ |15 e a) — s
< 2 +mnllyll.
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So we force 71 to be small enough so that (2 + n)n < k,C(1+1n) < M.
Lemma (3.122) [3]: Let (Y,q,X,I,X = (0:T - Isom(V;))) be a
quotient dimension tuple.
Let F = ((as j) (5.))erxN’ YE,Z) be a g-dynamical filtration, and p a
product norm, suppose that Y has the C-bounded approximation property.
(@) If o > M > C, then
f.dims(F,p) = opdimgm(F, p),
f.dims(F,p) = opdims,u(F,p).
(b) If p’ is another product norm then for all 0 < M < oo,

opdimg y (iF, pT’i) = opdimg v (iF, PF i ),

opdimsy y (iF, pT’i) = opdimg v (iF, PF i )
Proof. (a) First note that
opdimg v (F,p) = opdims o(F,p) = f.dimg(F,p)
so it suffices to handle the case that M < oo.
Let A > 0 be such that
||asj|| <A forall(s,j) €I xN.
Take 1 > € > 0. Let k be such that if f € [°(N), and |||l < 1, and f
is supported on {n:n = k}, then p(f) < €. Since p induces a topology
weaker than the norm topology, we can find an € > k > 0 such that

p(f) <e
if
Ifllo < k.

By Lemma (3.1.21), lete € F € I" be finite, n€N,e > &' >0,k >§ >0
and L;: [*(N,V;) —» B(Y,V;)be such that if ¢ € Hom(F,F, m,§,0;) and
f € I®(N,V,) has (aF(¢) — f) < &', then
12D v = Dy < 5

IL: (DIl < M.

Then if ¢, f are as above we have
pg:,i(d) - Ll(f))

< M + Dae + p (e D(lo(aey) = LiH(ae)) )
and forj <k

[6(ae;) — Li(F)(ag)|| < AM + D
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Thus
pr(d—Li(f) < (m+ 1A+ De.
This implies that
d(M+1)(A+1)€,M (HomF (:F, F,, m', 6,, Ui), 'DT,i)
< czg, (Homp(?, F',m' &', ai),pﬂ.)
forall F' 2 F,m' = m, and all §' < §. This completes the proof.

(b) This is a simple consequence of the compactness of the |||
unit ball of [ (N) in the product topology.

Lemma (3.1.23) [3]: Let (Y,q,X,I,0;: I > Isom(V;)) be a quotient
dimension tuple. Let F,F’ be two g-dynamical filtrations. If p ; is any

fixed sequence of pseudonorms on B(Y,V;), then forall 0 < M < oo,
opdimg y (F,p ;) = opdimg (7:',,01- ),
opdims v (F, p i) = opdimg v (iF’,pi )

Proof. Let 7' = ((ai;) o era V). F = ((a5) ey V1) We
do the proof for opdimsy, the other case is proved in the same manner.
Let C > 0 be such that |[sx|| < C||x]|| for all s € I',x € X and such that
llas; |, ||as; || < €. Fix F €T finite, and m € N, > 0. Fix n > 0 which
will depend upon F,m, § in a manner to be determined later.

Choose E S T finite [ € N, such that for 1 < j < m,s € F™ there
are Cj ¢ with (t,k) € E X {1, - -, 1} and vs; € Yz, N ker(q) such that
Asj — Vsj — Gtk Aserc|| <7,
(t,k)EEX{L, - -1}
and so that for every w € Yr,,, N ker(q) there is a v € Yz; N ker(q)

such that ||[v —w|| < nllw||. Let A(n) = sup(|cj,t,k|,sup||vsj||) .
Setm’ =2max(m, D)+ 1,F =[(FUFtu {eh(EUEtuU
{e})]zmlﬂ, we claim that we can choose ' > 0,1 > 0 small so that
Homp(F,F',m',6',0;) € Homp(F,F,m,§, o).
If Te Homp(F',F',m',6',0;),1 < j,r<m, and s,7-+,S, EF
then
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T (as, - 5J) = 0i(s1) . 0:(s,)T (@) |
< 20 + ITW)Il + ||oy(51) - 0: (5T (ve)|

+ Cjtk [T(a_lsl...srtk)

(t,k)EEx{1, - - ,l}

— 0;(s1) .03 ()T (ag) |
<2n+6'A(n) +6'A(n) + 2|E|lA(n)d".

By choosing n < §/2, and then choosing §' very small we can make the
above expression less than §. If we also force §" < §/2 our choice of 1
implies that
ITW)I < Sliwll

for T as above and w € Yg ,, N ker(q). This completes the proof.

Because of the above lemma, the only difficulty in proving that
opdims (F, pF,i) does not depend on the choice of F is switching the
pseudonorm from p 7 10 P 5 ;. Because of this we will investigate how
the dimension changes when we switch pseudonorms.
Definition (3.1.24) [3]: Let (Y,q,X,I,% = (0;: T > Isom(V;))) be a
quotient dimension tuple, and fix a g-dynamical filtration F. If p;, q; are
pseduornoms on B(Y,V;) we say that p; is (F,ZX)-weaker than q; and
write p; < F,Z,q; if the following holds. For every &€ > 0, there are
F c T finite, 6, >0, m,ig €N, and linear maps L;: B(Y,V;) —
B(Y,V;) for i>=i, such that if ¢ € Homp(F,F,m,6,0;) andy €
B(Y,V;) satisfy q;(¢p — ) < &', then p;(¢p — L;(y)) < &. We say that
p; is (F,X) equivalent to q;, and write p; ~ F,Zq;, if p; < F,Z q; and
q; < F, X p;.
Lemma (3.1.25) [3]: Let (Y, X, q,I', Z) be a quotient dimension tuple and
F a g-dynamical filtration.

(a) If p;, q; are pseudonorms with p; < F, X q;, then

opdimz,oo(?,p i) = opdimy , (iF, q; ),
opdimz,oo(?,p i) = opdimy , (iF, q; )

(b)Let F' :((a;j)(s,j)erxN'Yé.l)'?z((asj)(s,j)eFxN'YE'l) be g-

dynamical filtrations. Let p be any product norm.
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Define a pseudonorm on B(Y,V;) byp . (¢) = p ((||¢(aej)||);o=1),
and similarly define p F i Then
Pri ST LP g
Proof. Let £ = (o;: ' — Isom(V;)).
(a) This follows directly follow the definitions.
(b)Let € > 0 be such that Y has the C-bounded approximation
property and
lag|| < €.
lag| < ¢
Choose m € N such that p(f) < € if ||f|lc < 1 and f is supported
on {n:n = m}, and let k > 0 be such that p(f) < € if ||f]ls < k.

By Lemma (3.1.21) choose F' 2 F finite m <m’' € N, and
0, > 0and
L 1°(N, V) > B(Y, V)
so that if f € [(N,V;) and ¢ € Hom (F,F',m',§,0;) has pV;(az(¢) —
f) < €' then

~. _ <

IZ:(H ]l < 2¢.

Let L;: B(Y,V;) » B(Y,V;) be given by L;(¥)) = L;(ar(¥)).

Suppose ¢ € Hom(F,F',m’,8,0;) and ¢ € B(Y,V;) satisfy pg ;(¢p —
Y) < &'. Then, for 1 <j <m we have

16 (ae;) — Li@)(ag;)| < Cx
Our choice of m,k then imply that pzr;(¢p — L;(¥)) < 2C(C + 1e.
This completes the proof.
Corollary (3.1.26) [3]: Let (Y,q,X,I,0;: I = Isom(V;)) be a quotient
dimension tuple. Let p,p’ be two product norms. For any two g-
dynamical filtrations F, F' we have
opdimy o (F,p F,i) = opdimy o(F',pF',i) = opdimy o(F',p'F’, i),
opdimsg o (F,p F,i) = opdimyg o(F',pF',i) = opdimg(F', p'F', 1 ).

Proof. Combining Lemmas (3.1.21), (3.1.25), and (3.1.23) we have
opdimy (F',p'F',i) = opdimy o(F', p F',1) < opdimyg o(F,p F,i).
The opposite inequality follows by symmetry.

Because of the preceding corollary f.dims(F, p) only depends on
the action of I' and the quotient map q: Y — X. Thus we can define
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dimy(q,T") = opdims,e(F, pz,; ) = f.dims(F, p)
where F is any g-dynamical filtration and p is any product norm.

We now proceed to show that dims(q, I') does not depend on q, as

stated before the idea is to prove that
dimy(q,I') = f.dimz(S, p)
where S is any dynamically generating sequence for X.

For this, we will prove that we can approximate maps T on Y
which almost vanish on the kernel of g, by maps on X. For the proof, we
need the construction of ultraproducts of Banach spaces.

Let X,, be a sequence of Banach spaces and w € SN\N a free
ultrafilter. We define the ultraproduct of the X,,, written [[* X,, by

w
[ T = {G)sixn € Ko suplicyll < oo]
n

/{5 % € Xy, lim [l || = 0},
n-w

We use (x;,)noe for the image of (x,)y=; under the canonical quotient

w
[ %

Ifaset A € Nis in w, we will say that A is w-large.
Lemma (3.1.27) [3]: Let X,Y be Banach spaces with X and q:Y - X a
bounded linear surjective map. Let F € X be finite and Z a finite-
dimensional subspace of Y with q(F) € Z. Let C > 0 be such that for all
x € X, there is a y € Y with ||y|| < C||x|| such that q(y) = x, and fix
A > C. Let I be a countable directed set, and (Y,),e; @ net of subspaces
of Y such that Y, € Y if @ < §8, and

q(Ya) 2 Z;

ker(q) = U Y, nker(q),

a
FQUYa.
a

Then for all € > 0, there are a § > 0 and «a with the following property.

map to

If a = ay and W is a Banach space with T:Y, — W a linear contraction
such that

||T|ker(q)ﬂYa” <9,
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then there is a S: Z — W such that ||S|| < A and
IT(x) = Seq()ll ¢,

forall x € F.

Proof. Note that our assumptions imply

Y=UYa.

a
Fix a countable increasing sequence «, in I, such that for every f € I

there is an n such that f < a,. Assume also that F € Y, . Since [ is
directed, if the claim is false, then we can find an € > 0 and an increasing
sequence f3, with B, = @, and a T;,: Yg = W, such that [T, || < 1,

[ leercarrs, [| < 27
and for every S: X — W, with ||S|| < 4,
IT,(x) — Seq(x)||=¢ forsomex€F.

Fix w € SN\N and let
w=m.

T: UYﬁn%W
n

T (x) = (To(x))
note that for any k, the map T, is defined on Yg _for n =k, so T is well-
defined. Also

Define

by

n-w’

ITCONl < llxll,

T(x) =0o0n U Yp N ker(q).

Our density assumptions imply that T extends uniquely to a
bounded linear map, still denoted T, from Y to W, which vanishes on the
kernel of g. Thus there is S:Z - W such that T =So¢q, and our
hypothesis on C implies that ||S|| < C.

Since Z is finite dimensional, we can find S,;: X — W, such that

S(x) = (Sn(x))n_w. Compactness of the unit sphere of Z and a simple

diagonal argument show that
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C 2 [ISII = lim [|Sy]|.
Thus B = {n:||S,|| < A} is an w-large set, and by hypothesis

B = U{n € B:||T,(x) — Sa(q()|| = ¢}

x€F
Since B is w-large, there is some x € F such that

{n € B: ||Tn(x) — Sn(q(x))” > e}
is w-large. But then T (x) # S o q(x), a contradiction.

Lemma (3.1.28) [3]: Let (Y,q,X,I,X = (0:T — Isom(V}))) be a

quotient dimension tuple. Fix a dynamically generating sequence S in X,
and p a product norm. Then

dimy(q,I') = f.dimg(S, p),

dims(q,I') = f.dimz(S, p).

Proof. We will only do the proof for dim .

Let S= (xj)jzland let F = ((asj)(s,j)erxN’ YE,l)be a
dynamical filtration such that q(aej) = xj . Let C > 0 be such that
sup”asj” <C,
(s.J)

sup|lx;]| < ¢,
J

llqll < C,
for every x € X, there is a y € Y such that q(y) = x and ||y|| < C[|x]|,
and so that Y has the C-bounded approximation property. By Proposition,
(3.1.20), we may find ||0g||: Y = Y such that ||@g || < C and

%}ignll)HHE.I(}’) —yll=0 forallyeY.

We first show that
dimy(q,I") = f.dimz(S, p).
For this, fix € > 0, and choose r € N such that
p(f) <e, iffissupportedon{n:n>r}and ||f|le <1,
as before choose € = k > 0 such that if ||f||, < K, then
p(f) <e.
Let e € E € T finite and | € N be such that if E € F € I' is finite, and
k = [ then
16Fk(acs) — ael| < x
forl1<j<r.
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Now fix E € F €T finite, [ <m € N,§ > 0. We claim that we
canfind F € F' € I finitem <m'inN,§ > §" > 0 such that
Homp(S,F',m',6',0;) o quF,'m, °© Opr r € Homp(F,F,m,6,0;) 2.
ForT € Homp(S,F',m’,6',0;),for1 <j,k <mands,, --,s; €EF,
||T oqo 6?Fr,mr(as1 skj) — 0;(81) ... 0;(s3 )T o q © HFr,mr(aej)”
< C||9F’,m’(a51 ...Skj) —ag, Sk]”
+ Cl|05 m (ae;) — acf|
+ ||T(crs1 ...skxj) —0;(s1) ...ai(sk)T(xj)”
< C'||6?Fr,mr(crs1 ...skxj) — a, ...skj”
+ |0 (ae;) — agj| + 6.
Also for y € ker(q) N Y., we have
IT o q e8| <Cll0p @) -yl
So it suffices to choose 6’ < min(é,k) and then F'2 F,m' >

max(m, [, r) such that
C||6?Fr,mr(crs1 wSkf) — as, S|+ C||9Fr,mr(aej) — aej” <§—-94,
Clloml, —1dly,,| <8
for1 <j,k<mandsy, --,si E'F.

Suppose  that 6 ,F',m’ are so chosen. If TE€
Homp(S,F',m',6',0)and ¢ =T o quF, 0 Op then,

pVi(as(T) — ar($)) < C(C? + e + pV; (x(7j2ny (as(T) — az(9)))
and ifj <,

las(TG) — ar@ DI = ||T(x) = T © q ° 0pm(ac;)|
< Cr+ ||T(x;) = T o q(ae)|| = Cr.

Thus
pVi(as(T) — az($)) < (C* + C + De.
Therefore
dicz2ycine(Homp(S,F, mI,SI,Ji),p) < d.(Hom(F,F,m,8,0)cz2,p).
Since F',m’ can be made arbitrary large and §’ arbitrarily small, this
implies
f.dimg(S, p(C%* + C + 1)¢)

dAg(HomF(?r Fr m, 61 O-i)Czi ,0);

<l
< 1misup dimV,
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taking the limit supremum over (F,m,d) and then the supremum over
e>0,
f.dims(S,p) < f.dims(q, ).

For the opposite inequality, fix 1 > & > 0 and let r,k,E, [ be as
before. Fix E € F € T finite, m = max(r, 1) and 6 < min(k, ¢).
By Lemma (3.1.27) we can find 6’ <6, and F € F' € I" finite and
m < m' € N such that if W is a Banach space and

T:Ypr oy > W
has
ITIl < 1,

S 6,;

|| leer(q)nY’F,'m/
then there is a ¢: Xg ,, & W such that
||T(as1 ...skj) — qb(sl ...skxj)” <6, for1<j,k<m,s;..sp€F
and ||¢p]| < 2C.
Fix T € Homp(F,F',m’,8’, 0;), and choose ¢: Xp ., = V; such that
lpll < 2C and
||T(as1 ...skj) —¢o q(as1 ...skj)” <6, forl1<jk<m,s;..s;€F.
Thus for 1 < j,k <m,s; ...s; € F we have
& (51 ...skxj) —0;(s1) ...ai(sk)qb(xj)”
< 26'||T(crs1 wSkj) — 0;(s1) ...ai(sk)T(aej)” <28 +4
< 36.
Thus ¢ € Hom(S, F,m, 36, 0,),c. Furthermore, for 1 < j <r
las(TY(G) — ar(@)DI = [[T(ae;) = ¢ ©qla)| <
SO
pVi(azr(T) —as(Pp)) < e+ (2C*+C). = (2C* + C + 1)..
Thus
f.dims(F,(C* + C + 2)¢,p)

< lim sup d.(Homp(S,F,m,368,0.)c,P),

i dimV;
and since F,m, §, € are arbitrary this completes the proof.
Because of the preceding Lemma and Corollary (3.1.26), we know
that
f-dimg(S, p),dims(q, ")
only depend upon the action of I' on X, and are equal. Because of this we
will use
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dims(X,I') = f.dimx(S,p) = dimx(q,I")
for any dynamically generating sequence S, and any bounded linear
surjective map q:Y — X, where Y has the bounded approximation
property. We similarly define dimy (X, I').

We now prove a lemma which allows us to treat the Ilimit
supremum over (F,m, &) in the definition of f. f.dims(S, p) as a limit.
Lemma (3.1.29) [3]: Let (X, I",2) = (0;: I’ = Isom(V;)) be a dimension
triple, fix a dynamically generating sequence S in X and p a product
norm. Then

1 n
f.dims(S, p) = supliminf lim sup — d.(Homp(S,F,m, 6, 0;),p),
£>0 (F,m,8) i dim V;

1 n
f.dimy(S,p) = sup lim sup lim inf— ” d.(Hom(S,F,m,§,0a;),p).

£>0 (F,m,5) l 1 i

Proof. Let S = (xj);:l. We do the proof for dim only, the proof for dim

is the same. Fix € > 0 and choose k € N such that if ||f]l, <1+
supjeN”xj” and f is supported on {n:n = k}, then p(f) < €. It suffices
to show that

f.dimg(S, p)

1 o
< sup lim inf lim sup — d.(Homp(S,F,m, 6, 0;),p).
e (F,m,8) i imV;

Fix F €T finite m = k,8 > 0. Then for any F € F' € I" finite, m' >
m,§' < and ¢ € Hom(S,F',m’,§,0,) we have 1 € Hom(S,F,m,§,0,).
Furthermore if f, g € [*(N,V;) are defined by

fG) = X{nsm}(j)lp(xj)' g(@) = X{nSm’}lp(xj)

then

p(G = IfG) — gDID < e.
Thus

dAzg(Homp(S, F’, ml,é‘l, O'i), p) S dAg(HOmF(S; F; m, 6; O-i); ,0)
Therefore

czg(Homp(S, F,m,§,0;),p).

.di 2 <l
f.dims(S,2¢,p) < 1misup amV,

Since F, m, § were arbitrary

f.dims(S,2¢,p) < ll(rgl igl)f lim sup czg(Homp(S, F,m,$,0;),p),
m, i

dim V;
and taking the supremum over € > 0 completes the proof.
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Section (3.2): Main Properties of dimy(X,I') and Computation
of dimz’lp (lp (F, V), F), and dimz’sp’conk (lp (F, V), [')

The first property that we prove is that dimension is decreasing
under surjective maps, as in the usual case of finite-dimensional vector
spaces.

Proposition (3.2.1) [3]: Let (Y,F,Z = (0;:T - Isom(Vi))), X,I',%)

be two dimension triples. Suppose that there is a I' -equivariant bounded
linear map T:Y — X, with dense image. Then

dimy(X,I") < dims(Y,T),

dims(X,I') < dims(Y,T).

Proof. Let S’ = (yj);:ll be a dynamically generating sequence for Y.

LetS = (T (xj));o_l, then S is dynamically generating for X. Then
Homp(S,F,m,8,0;) oT € Homp(S',F,m,§,0) 7|,
and
as' (¢ o T) = as(¢),
so the proposition follows.
We next show that dimension is subadditive under exact sequences. It
turns out to be strong of a condition to require that dimension be additive
under exact sequences. As noted if dimy;» is additive under exact
sequences and
dimg ;» (lp(F)@", F) =n,
then we can write the Euler characteristic of a group as an alternating sum
of dimensions of [P cohomology spaces. But torsion-free cocompact
lattices in SO(4,1) have positive Euler characteristic and their [P
cohomology vanishes when p is sufficiently large, so this would give a
contradiction.

Proposition (3.2.2) [3]: Let (V, r,2=(o;:r- Isom(Vi))) be a
dimension triple. Let W € V be a closed I'-invariant subspace. Then
dimy(V,I") < dimg(V/W,T') + dimg(W,T),
dims(V,I') < dims(V/W,I') + dimy(W, T),
dimy (VO™ I') < ndimg(V, ).
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Proof. Let S, = (Wj)c,x;l be a dynamically generating sequence for W,

and let §; = (a]) be a dynamically generating sequence for V/W. Let
xj €V, be such that x; + W =qa; , and ||x]|| < 2||aj||. Let S be the

sequence
X1, W1, X2, Wp," * *
We shall use the product norm on [® (N) given by

p1(f) = If(/)l

IIMS

pa(f) = Z —1f @]+ Z 172 =Dl

Let € > 0, and choose m such that 2~ m <¢. Let e € F; © I be finite,
m<my; €N, and §; > 0. Let n > 0 to be determined later. By Lemma
(3.1.27),wecanfinda é; >6 >0,aF, € ECT finite,andam <k €
N, so that if X is a Banach space, and
T: Vi o = X

has ||T|| < 2, and

ITlwavell < 6
then there is a ¢: (V/W)p, mm, — X with |[¢]| < 3, and

||qb(sl,- .- skaj) — T (51,7 - cSEx;) || < 01,
foralll <j,k <my,and s, - - s, € F;.
By finite-dimensionality, we can find a finite set F' 2 E,m’ > 2k, and a
0 <d' < 6y, s0thatif T: Vpr p,r — X, satisfies
IT(s2- - i) < 8,

foralll1 <j,k <m',and sq, - - s; € F', then

ITlwavg .|l < &
Define
R: Homp(S,F',2m’,8',0;) > Homp(S,,F',m', 8, 0;)
by
R(T) =Tlw,, -
Find
O:im(R) » Homp(S,F',2m’,8’', 0;)
sothat Roc @ = 1Id .
Then
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(T — H(R(T))(sl,- . -skwj) =0,
for all 1 <j,k <m',and sy, - s, € F'. Thus by assumption, we can
find a

¢: (V/W)pm, = Vi
so that ||¢p|| < 3, and
||qb(sl,- : -skaj) — (T — H(R(T))) (51, " * SkXj) || < 44,

forall1 <j,k <my,and s4,- - - s € Fy, in particular,

|e(a) — (T —6(rR)) G| <81,

forl <j<m.
Thus whenever 1 < j, k < mq, 84, - S, € Fy,
(51, - -skaj) — 0;(51) ...0; (sk)qb(aj)” < 268, + 26" < 46;.
Now suppose that
as, (Homp(SZ,Fl,ml, 61,ai)) Sepv; G
as, (Homp(Sy,F,m,461,0,)3) S¢p, v, F.
Let E € [*(N,V;) be the subspace consisting of all h so that there are
f €F,g € G so that
h(2k) = g(k), h(Zk — 1) = f (k).
Then dim(E) = dim(F) + dim(G). It easy to see that
aS(Homp(S, F',m/, 6’,ai)) S3e46,,0,v; E-
So if §; < &, we find that
aS(Homp(S, F;,m4, 6’,ai)) Cs. E.
From this the first two inequalities follow.
The last inequality is easier and its proof will only be sketched. Let

S = (xj);:lbe a dynamically generating sequence for X, and y; = x;, ®

e, if j=nq+r, with 1 <r <n, and x; ® e, is the element of XxOn
which is zero in all coordinates except for the rth, where itis x,. If F S I’
is finite m € N, 6 > 0, then
Homy(S,F,nm,é,0;) € Homp(S,F,m, 6, ai)@n.
The rest of the proof proceeds as above.
We note here that subadditivity is not true for weakly exact

sequences, that is sequences
0-X->Y—->Z-0,
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where X — Y is injective, im(X) = ker(Y — Z), and the image of Y is
dense in Z. In fact, using F,, for the free group on n letters a,," - -, a,, it
is known that the map

0: ll(Fn)@n - ll(IFn) )
given by

0fu 1 = Y i)=Y fi(x™)
=1 =1

has dense image and is injective. We will show that
dlﬂ}:,zl(llmn)@n; Fn) = dimz,zl(ll(Fn)@n; Fn) =n,
@2,11 (ll(IFn)» IFn) = diTnZ,l1 (ll(IFn)» IFn) =1.

this gives a counterexample to subadditivity under weakly exact
sequences. This also gives a counterexample to monotonicity under
injective maps, though once should note in this case that the map defined
above does not have closed image.

For 2 < p < o, we have a lower bound for direct sums, whose
proof requires a few more lemmas.
Lemma (3.2.3) [3]: Let H;, H, be Hilbert spaces and let H = H; @ H,
and let £2; € H; and suppose C;, C; > 0 are such that C; < [|¢]| < Cy, for
all§ € ;. 1f0 < 6 < Cyq, then

dC2‘16(‘Ql POUODN, = dCflm(‘Ql) + dCfl\/ﬁ(‘QZ)'
Proof. By replacing (); with
§
RAS
we may assume C; = C, = 1. Let P; be the projection onto each H;, and
set N =2, ®0O)U (0@ 2,). Suppose that V is a subspace such that
N S5V, and let Q be the projection onto V and T = QP;Q|y. Define
2 =0, ®0), 2= 000,

For ¢ € 2 we have

I(1—-Q)I <6
thus for € € 2, @ {0}

(TQE,Q¢) = (QP1Q¢, Q) = |IP1Q¢NI? = (1€l = 1Py (1 — Q)¢1D?
> (1-6)2
Soif T = f[0,1] tdE (t) we have withn = Q¢
1 1
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Thus
IEC[0,1/2Dn]1? <2(1 — (1 = 6)%) <46
1.e.
In —E((1/2,1]) nlI* < 46.

Thus

0 <,z EW1/2,1)V.
Similarly, because QP,Q|y, = 1 — T we have

2; S, E([0,1/2]) V.

For any projection P’ and any x € H we have ||x — P'x||? =
llx|I> = ||P'x]|. So for all £ € 2, @ 0 we have since, QE((1/2,1]) =
E((1/2,1]) (and E((1/2,1]Q = E((1/2,1]) by taking adjoints), that
1§ — E((1/2,1DQ¢N1* = II§ — E((1/2,1))¢II?

= [I§11* = IIE((1/2,1D¢ I
= 11§17 = Q&I + 11Q€N* — IIE((1/2, 1D§I?
= |I§ — Q&I * + 110§ — E((1/2,1DQ§1I* < 67 +46 < 56.
Thus with a similar proof for (2, we have
0, @05 E((1/21D 7V,
0D N2, S5 EW0/1,2])V
since
V=E(0,1/2)V @ E ((1/2,1)V
the desired claim follows.
Lemma (3.2.4) [3]: Let (X,I"',X) be a dimension triple. Let S be a
dynamically generating sequence in X, and p a product norm such that
p(f) < p(g) ifIf] < |gl. Set
p™(f) = pQtjnf)-
Then
f.dims(S,p) = lim f.dim; (5,p™M),
f.dimy(S,p) = lim f.dims(S,p™).
Proof. Let £ = (0;: " - Isom(V;)). Let S = (xj);:l, C = supj”xj”.

Since p™) < p, forany & > 0
f.dimg(S,e,p™) < f.dimz(S, &, p) < f.dimz(S, p).
thus
lim sup f. dimg(S, p™) < f.dimy(S, p).

n—oo
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For the opposite inequality, fix € > 0. and choose N such that
p(f) <eif fel®(N,V;) is supported on {k:k = N} and ||f]l < C.
Thus for T € B(X,V;), and f € [(N,V;) with ||T|| <1, and n = N we
have

|pvi(as(T) — Xtjsny) — (P%)(“S(T) - XUSN}f))|

= |pVi (X{k>N}“S(T))| <e.
Thus forn > N,
f-dimy(S, 2¢,p) < f.dims(S,£,p™) < f.dimy(S5,p™),
SO

f.dimz(S,2¢,p) < lim inf f.dimz(S, p™).
n—oo

For the next lemma, we recall the notion of the volume ratio of a
finite-dimensional Banach space. Let X be an n-dimensional real Banach
space, which we will identify with R™ with a certain norm. By an
ellipsoid in R™ we mean a set which is the unit ball for some Hilbert
space norm on R". Let B € R™ be the unit ball of X. We define the
volume ratio of B, denoted vr(B) by

vol (B))l/ n
vol (D) ’
where the infimum runs over all ellipsoids D € B. It is know that for any

vr(B) = inf(

unit ball B of a Banach space norm on R", there is an ellipsoid D™%**
such that D™% c B, and D™%has the largest volume of all such

ellipsoids. So we have
vol (B) )

vr(B) = <vol (Dmax)

The main property we will need to know about volume ratio is the

1/n

following theorem.
Theorem (3.2.5) [3]: Let B € R™ be the unit ball for a norm ||-|| on R™.
Let D € B be an ellipsoid. Set
vol (B)\*/™

A= <vol (D)) '
Let || be a norm such that D is the unit ball of (R",|-]), in particular
Il <|‘]. Then forall k = 1,---,n — 1 there is a subspace F € R" such
that dim F = k and for every x € F

x| < (4mA)n=E]|x||. @
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Further if we let G,; be the Grassmanian manifold of k-dimensional
subspaces of R™, then
P({F € Gp: for all x € F,Eq.(2)holds}) >1—-27",
for the unique O (n)-invariant probability measure on G .
What we will actually use is the following corollary.
Corollary (3.2.6) [3]: Let B € R" be the unit ball for a norm ||+|| on R",
and let BY be its polar. Let D € B° be an ellipsiod. Set

vol (BO)\ /"
- <vol (DO)) '
Let |-] be a norm such that D is the unit ball of (R",|-]), in particular
|| < ||:|]. Then for all k = 1,---,n — 1 there is a subspace F S R" such
that dim F = k and for every x € R"/F*
n
Wl rr ety < (AmA)n=Fk|x|gn/ps |10 3)
where we use |[-|[(gn/pL .y for the quotient norm induced by ||-|| and

similarly for |-|. Further,
P({F € G,x: forall x € F,Eq.(3)holds}) >1— 27",

Here is the main application of the above corollary to dimension
theory.
Theorem (3.2.7) [3]: Let I' be a countable group with a uniformly
bounded action on separable Banach spaces X,Y. Let X = (O'i: r-
Isom(V;)) with dim V; < oo. Suppose that V; is the complexification of a
real Banach space V; such that

sup vr (V' )7) < oo,
l

and there are constants Cy, C, > 0 so that

Cy (lxllyy + ylly ) < Hx + iyll < & (Ilxlly + Iyl ).

for all x, y € V;. Then the following inequalities hold,

dimy(X @Y, I') = dimy(X,I') + dimx (Y, 1),

dims(Y; ®Y,, ') = dims(X,I") + dims (Y, T),

dims(Y®",T') = ndims(Y, ).

Proof. We will do the proof for dim only, the proof of the other claims
are the same. Let S = () pe1, T = (n)m=y be dynamically generating
sequences, enumerate S @ {0} U{0} ® T by x4,y;, %5, V5, -+, and fix
integers k,m. By Lemma (3.2.4), it suffices to show that for fixed
m, k € N, and for the pseudonorms p, p;, p, on [*(N) given by
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/2

3
+
=

o= Y IrOr |
j=1

pr(f) = wa ,
k

p2(f) = IfFDI?
=1
we have
f.dimg(S®O0U0DT,p) = f-diz(s» p1) + f.dimy(T, p,),

Fix k, e > 0 and fix n > 0 which will depend upon k, € in a manner
to be determined later. By Corollary (3.2.6) there is a constant A, which
depends only on k,C;,C, Hilbert space norms |-|; on X;, and finite
dimensional complex subspaces F; € V;* of complex dimension [(1 —
k) (dim V;)| such that

~Ixl; < llx]l < Alx],

for all x € V;/F;- . Here, as in the Corollary (3.2.6), we abuse notation by
using ||x|| for the norm on X; /F;- induced by ||-||, and similarly for |-|.
Form’' > m €N,6 > 0and F €T finite we have
Homy(S,F,2m’,6,0;) @ Hom(T,F,2m/’, 8, 0;),
c Homp((S ®@{ohHhu{0o}&®T),F,m,26, ai).
Thus
c?n (Homp((S ®@{0Hu{0}®T),F,2m, 26, ai)z,p)
> d,(Hom(S,F,2m',8,0;) ® Hom(T,F,2m’, 8, 6;),, p).
Let
K, = {(T(x), -+, T(xp)): T € Hom(S,F,2m’, 8,0},
K, = {(S(yl),- . -,S(yk)):S € Homy(S,F,2m/’, &, ai)}.
Then, by definition,
czn(Homp(S, F,2m’,8,0;) ® Hom(T,F,2m/', 8, 0;), p)
= dy (K1 @ Ko, [I-1°™ @ [I-119%)
where we use the [?-direct sum.
Let m;: V; - Vi/F;- be the quotient map and let
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— Ol
Gy = m (K;),
where l =mifj=1,andl =k ifj = 2.
Then

dy (K1 @ Ko, [IF19™ @ [I19%) = d,y (61 D Go, I1FI1O™ @ [1-119F)

> dygy (G ® Gy, 1™ @ |- 25).
Set

Bi={xEGi:lA2|x| ZAZ},

where l=mifi=1,andl =k ifi = 2.
Then

day (61 ® Go, 1P™ @ I17)
= dmax(l,m)(e/tl)‘l\/m(lgl' H@m)
+ dmax(l,m)(e/tl)‘l\/m(BZ' |'|@k)-
Setting n = Amaxg(;/;)_sl - we have
dy (K1 @ Ko, 1119 @ [|-119%) = d%(Bl, 119™) + d%(Bz» |-19%)
> de(By, IIF19™) + do(By, [I1197).
Since B; 2 {x € C;: x| = Z} we have
de(By, I119%) + do(By, 11119%) = de(Go, 11-119F) + de (G, 1I-19%)

Let E; € (V;/F*)®! be a linear subspace of minimal dimension

which e-contains C; with respect to |[|-]|®! (I =k,ifi=1,andl =
mif i =2.) Let E; € V; be a linear subspace such that dim E; = dim E;
and ni@l(ﬁi) =E;. Set W, =E; + Fi@l. Then W; has dimension at most
. . . Ci _ . .
dim E; + lc; with hmi"o"diTvi = K, since dimV; —» o, and K; S .| V;.
Thus
de(Gi 11-19Y) = de(K, 11-19Y) = Ley.
Since € = 0 as 7 — 0 (and vice versa) we conclude that
dim2(51 @ Sy, T, ““STL)
> —k(k +m) + dimg(Sy, T, Ills,) + dims (Y, T M-Il 7,0)-
Since Kk is arbitrary this proves the desired inequality.
Corollary (3.2.8) [3]: Let 2 < p < oo.
(a) Let I' be a sofic group with uniformly bounded actions on
separable Banach spaces X,Y and let X' be a sofic approximation.
Then
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dimyp(X @Y, I') = dimyp(X,T) + dimy p (Y, 1),
dimyp(X @Y, I) = dimy p(X, ') + dimy p (Y, I).

(b)Let I' be an R*-embeddable group with uniformly bounded actions
on separable Banach spaces X,Y and let ¥ be an embedding
sequence. Then

dimg v (X @Y, I') = dimy oo (X, ") + dims g0 (Y, T),
dimyop (X @ Y,T) = dimy gp(X,T) + dimy 5o (Y, T).
Proof. For 1 < q < oo, let B, be the unit ball of LI({1, - -, n}, u,) where
Uy 1s the uniform measure.

It is known that for all g,
1/n

vol (B )

inf q

o <vol (32)> >0,
vol (Bq) 1/n <
— (0]

2 \vol (B3)

Similarly if we let C; be the unit ball of {A € M,,(C): A = A"} in the

norm |||l , (3Tr)' it is known that for all g,
n

1/n

vol (C )

inf q

12 <U0l (C2)> > O’
vol (Cq) 1/n <
— (00]

" \vol (Cy)

Apply the preceding theorem.

We note one last property of [%-dimension for representations, to
show that our dimension agrees with von Neumann dimension in the [?-
case.

Proposition (3.2.9) [3]: Let H be a separable unitary representation of a
R®-embeddable group I'. Let X be an embedding sequence of I'. Suppose
that H = m with Hj increasing, closed invariant subspaces, and
that each Hj, has a finite dynamically generating sequence. Then

dimy 2(H,I") = Sl;lp dimg ;2(Hy, I'),

dimy 2(H,I') = sup dimy ;2(Hy, I').
k

Proof. We will do the proof for dim only, the other cases are the same.
By Proposition (3.2.2) we know that dimg ;2 is monotone for unitary
representations, so we only need to show
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dimy 2(H,I') = sup dimy j2(Hy, I').
k

Let {El(k),- .., E,Ell:)} be unit vectors which dynamically generate Hy,.

Let Sy be the sequence

D W@ @ ) W)
SRR SO SCONY S OF SUSAY A\

1.e. the [th term of Sy 1s
®
$a
if i is the largest integer such that

Ci=zrj<l,

j=i

CIlzl_zrj-

j=i

and

Let S be the sequence obtained by the infinite concatenation of the
Sy’s. We will use Sy to compute dimy,2(Hy,I') and S to compute

dimy 2(H,T'), we also use the pseudornorms

o 1 co 1
175 = ) 717G 1Tlsy = D 5 1T
j=1 j=1

Fix € >0, and let M be such that 27 < &. Suppose F ST is
finite, § > 0 and m € N with m > Cy,. Let Py, € B(H) be the projection
onto H,,. Suppose V is a subspace of B(H,;, C%) of minimal dimension
such that

Homp(Sy, F,m,§,0;) Sell-lls, v,
let V € B(H,C%) be the image of V under the map T — T o Py,. If
T € Homp,lz,(di)(S, F,m,8,0;) then T = TlHM is in Hom(Sy, F,m, 6, 0;),
and there exists ¢p € V such that ||q5 — T” S < €. Then

S 1 T -m+1
lpoP —Ts; <2 z 2—n||qb—T|| <2 + ¢ < 3e.

Syt
n=Cy+1

Thus
Homp(S,F,m,8,0)) Ss¢ .45, V,
So
d3e(H0mr(SM» F,m,é§,0;), ””Sl) = de(HomI“(SM» F,m,§,0;), ””SML)

Thus
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dimg 2(S, T, 3¢, |Ills2) < dimg 12(Sy, 3¢, lI°lls,2) < SEP dimy 12 (1)

and similarly for dim. Taking the supremum over € > 0 completes the
proof.

Corollary (3.2.10) [3]: Let I' be a R®-embeddable group, and let
2 = (0;: T > U(d;)) be an embedding sequence. Let m: ' - U(Hy) be
a representations of I’ such that each m, has a finite dynamically
generating sequence. Then

0 o0
dimz’ZZ < (‘D Tl:k) < z dimZ,lz (T[k);
k=1 k=1

o0 oo
dimg 2 < @ nk> > z dimy ;2 (my).
k=1 k=1

We show that if X' is a sofic approximation of I' and 1 < p < 2,
then
dimg w(IP(I',V), ') = dimV,
for V finite dimensional. Similarly if 2 is a embedding sequence of I and
1 <p < 2, we show that
dimg sv con; (1P (I, V), I') = dimV,
dimg 2(1*(I,12(n)), T') = n,
again for I finite dimensional.
The proof for sofic groups will be relatively simple, but the proof
for R®- embeddable groups requires a few more lemmas.
Let v be the unique U(n) invariant Borel probability measure on
§2"=1 for the next lemma we need that if T: C* — C" is linear, then
= [ (reaav©.

5271—1

This follows from the fact that Tr is, up to scaling, the unique linear
functional on M,,(C) invariant under conjugation by U(n).

Additionally, we will use the following concentration of measure
fact, if f is a Lipschitz function on S™1, then

—nt?
P(If — Ef| > t) < 4e/liw 7277,

Lemma (3.2.11) [3]: Let I’ be a R®-embeddable group, let o;: " =
U(d;) be an embedding sequence, and fix E S I finite,m € N.For j €
{1,--.,m}, & n € 241 define
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Tf,j: lz(F X {1; vt ;m}) - lz(di)'
T P X {1, -, m) = SP(dy)

By
Tei () = ) [ Na)E,
SEE
Tens(F) = ) Fs)0i(5)E ® (.
SEE
Then forany 6 > 0and 1 < p < oo,
(a)
lim P((g € 52478 [[Tg 2 20 x (1, -, m}) » Bl < 1+8}) = 1,
(b)
{(€,n) € (S24 )2 ||Tg, ;2 P X {1,- - -,m}) > SP(dy)|| < 1+ 6}

2 A; X A,
Where 4; € S?%~1 has v(4;) — 1.
Proof. Let k¥ > 0 which will depend upon § > 0,p in a manner to be
determined later. Let

A= ()] € e (aEa® <9,
S#t,teE
since

[ @8 a@odE = 21 (60 0(s) > 0
s2di—1 l
for s # t, the concentration of measure estimate mentioned before the
Lemma implies that
v(4) - 1.
For the proof of (a), (b) we prove that if £, € A then
”Tf,f”lz_)lz <1+9,

|Tenill oo < 146

if k > 0 is sufficiently small.
(a) For f € I?(I' x {1,---,m}),& € A we have
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ITe,OI% = > FGDFENa(E a®)e)

S,tEE
<lfxel+ ) IFIBx < IFIBCL+ clED)
S#t,s,teE
<A+ DIfI3
. 6
ifk < T

(b)Fix € > 0 to be determined later. If k is sufficently small, then for
any (§,m) € A* we can find (§s)seg(Ms)sep such that (&, &) =
85=t, {Ns,Ne) = 8s5=¢ and

IS5 — a: ()l < & lIns — a:(sImll < e.

Then
Tens () = ) F()6 ®T;
SEE )
< Ifllp ) Ul = ai(EN + lloi(dn = ngll) < 21E eI,
SEE
Note that
Y FOE®T| = Y FOFOE &M @ = ) IF() 1, ® .
Thus |
14
‘ > F©&®T|| = Ifxsl} < IFIE.
SEE P

Soife < % the claim follows.

Lemma (3.2.12) [3]: Let H be a Hilbert space, and 74, --,n, an
orthonormal system in H, and V = Span {nj:l <j< k} and Py the
projection onto V. Let K be a Hilbert space and T € B(H,K) with
IT|| <1. Then

d:({T(ny), - -, T ()} = —ke + Tr(PyT*TPy).
Proof. For a subspace E € H we let P; be the projection onto E. Let W
be a subspace of minimal dimension which e-contains {T' (), - -, T () }.
Then

Tr(PyTT*) = Tr(P,T T*Py) < Tr(Py),

similarly
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k
Tr(PyTT*) = Tr(P, T*PyTPy) = z(PWT(n i) T(m)
j=1

k
> —ck + z(T(nj), T(n;)) = —ek + Tr(Py T*TPy).

j=1
For convenience, we shall identify L(I") as a set of vectors in
[2(I). That is, we shall consider L(I') to be all £ € I?(I") so that

1€l = sup NI€ = fll, < oo
fec.(IN

Irll2=1
Here ¢+ f is the wusual convolution product. By standard
arguments, if §¢ € L(I), then for all f € 12(I"),& = f € 1*(I") and
1S+ Fllz < NSl If 2.
By general theory, L(I") is closed under convolution and
E*m)*{=8x*0)
for &,m,¢ € L(I'). Finally for & € L(I"), we set
&) =¢(x™h.
If¢§ € L(I),{,n € I2(I'), then
(§*m,8) =& * Q).
Finally, for & € L(I"), f € c.(I),
If =&l = WS™ * frll2 < UM ey = IFN21E ey

Hence every element of L(I') is bounded as a right convolution

operator.

We shall need a few more lemmas, for the first we require the
following definitions.
Definition (3.2.13) [3]: We let C*(X;,- - -, X},) be the free *-algebra in n
noncommuting variables. That is C*(X;,---,X,) is the universal C -
algebra generated by elements Xj, --,X,, X{, -+, X,, and we equip
C*(Xy, - -, X;,) with a *-algebra structure defined on words (and extended
by conjugate linearity) by

Y- Y)" =Y VY, €y, X, X1, -, X},

here (X]*)* = X;. We call elements of C*(X;, - -, X;,) *-polynomials in n
noncommuting variables. Note that if A is a *-algebra, and a4, --,a, €
A, then there is a unique *-homomorphism C*(X;, - -, X,) = A sending
X; to aj. For P € C*(X;,--,X,), we denote the image under this

homomorphism by P(ay, - -, a,).
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Definition (3.2.14) [3]: A tracial *-algebra is a pair (4,7) where A is a
unital *-algebra, 7: A — C is a linear map so that (1) = 1,7(x*x) = 0,
with T(x*x) = 0 if and only if x = 0, and t(xy) = t(yx) for all x,y €
A, and for all x € A, there isa M > 0 so that T(y*x*xy) < Mt(y*y) for
all y € A. An embedding sequence of (4,7) is a sequence of maps
0;: A = Mg (C) such that

Sl;pllcri(x)lloo < o,

where ||'|| is the operator norm, for all x € A,
0;(1) =1,

%Tr(ai (x)) - 7(x),

lloi(PCxy, -+, x)) — Py (xy), ...,ai(xn))HZ -0
for all x4, -+, x, € A, and *-polynomials P in n noncomuting variables.
Here ||x]|, = t(x*x)Y/? for x € A. We let L?(4,7) be the completion of
Ain ||+]|,. We also let m;: A — B(LZ(A,T)) be given by m,.(x)a = xa, for
x,a € A.

The main example which will be relevant for us is A = c.(I") with
the product being convolution and the *-being defined by consider
c.(I') € L(I'), and t©(f) = f(e). Then an embedding sequence of I
extends to one of c.(I") by

o) =f@ld+ Y f9alg).
ger\{e}
We note that for the next Lemma, we will use measure theoretic

notation for certain norms on tracial von Neumann algebras (M, t). Thus
||| Will be the operator norm of x, and [|x||, = T((x*x)P/?) /P,
Lemma (3.2.15) [3]: Let (4, 1) be a tracial *-algebra. And let M be the
weak operator topology closure of m.(A) equipped with the trace
T(x) = (x1,1) for all x € M. Then any embedding sequence of A extends
to one of M.

Proof. By standard arguments, 7 is indeed a trace, since A is ||-||-dense in
L %(A, 1), and elements of M commute with right multiplication it follows
that 7(x*x) = 0 for x € M if and only if x = 0. If x € M\A, by the
Kaplansky Density Theorem we may choose a sequence a,, so that

””T(an.x)”oo < |[x]le and

||an,x — x||2 <2 ™
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Note that if w is a free ultrafilter on N, then o gives a trace-preserving
embedding of A into

1
N = {(xi):xi € My, (C), sup|lx;lle < m}/{(xi): lim —Tr(x;x;) = O},
n n-wn
where N has the trace

1
T,(x) = lim —Tr(x;),
n-w di
if x=(x;). Thus 0olgea |a|,<1}iS strong operator topology-strong

operator topology continuous, and hence has an extension
7:{a € M: ||a||l, < 1} = N.

p@ = () llale

it follows that p is a trace-preserving *-homomorphism M — N.

So by a standard contradiction and ultrafilter argument, for all
a €A, we may find a; € Mg, (C) so that |la;|le < [lmr(a)lles and
la; — a;(@)l, — 0.

For x € M, choose integers 1 < iy < i, <i3 <---, and elements
by xi € Mg, (C) so that ||bn'x'i||oo < ||x|| and

1B xi = 0i(@j)||, <27 for1<j<nmiziy

loi(ajx) = o(an)ll, < 27" + [|ajx — arxl for 1 <jk smni =iy,

If we define

the last inequality being possibile since g; is an embedding sequence on
A.

For x € M\A, define 0;(x) = by, ,; where n is such that i, < i <
Int1- 1Ifx € M\A, and i = i,, and N is such that iy < i < iy, then

lo:() = oi(an)ll, < 27" + [loi(an ) = oi(any)ll
<227+ |lay, —aiq]|, <4277,
llo; GO0 < Il |l co-

From this estimate it is not hard to see that o; is an embedding sequence
of M.
Lemma (3.2.16) [3]: Let I" be a countable sofic group, and £ = (0;: " > S4,)

a sofic approximation of I'. Extend o; to a embedding sequence, still
denoted o;, of (L(I'),7) with T the group trace. For r,s € N define

0y My s(L(I')) = Mp (Mdi((c)) by 0;(4) = [0;(a)]1<icn1<r<s- Fixn €
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N. For 1<j<d;,1<k<nand E ST finite define 7}(,? P(r®" »
[P(d;) by

TR0 = D f@alge;

gEE
Then

(a)For all E and (1 — 0(1))ndi of the j k we have ||T(E)|| <1

PP
as i — oo,

(b)For 1< p < oo, for all € > 0, for all f € c.(I'),g € IP(I®",
there is a finite subset E € I', so that if E' 2 E is a finite subset of
I', then the set of (j, k) so that

|70 < 9 = DT @] < elgll,
has cardinality at least (1 — €))nd; for all large i.

(c)Forall e > 0, forall £ € Ml,n(L(F )), (identifying Ml,n(L(F )) as a
subset of 12(I)®" there is a finite subset E € T, so that if E' 2 E
is a finite subset of I', then the set of (j, k) so that

||7}$;f’)(f) —0;(&)(e; @ ek)”Z <€
(here e; @ ey € IP (d)®™ is e; in the kth coordinate and zero otherwise).

Has cardinality at least (1 — ¢))nd; for all large i.

Proof. (a) We have

1 14
d;

520l =2 ). AW

r=1 gEE
oi(g)()=r
Let C;={je{1,--,d;}:0:(g)(y) # 0;(h)(j) for g # hin E}. By soficity,

we have l;—il — 1, and if j € C; we have

||T<E)<f)|| < Ifill® < IIFIIE.
(b) For A € M, (C),

d;

1 2

lall3 = 3 g,
j=1

where e; is the vector which has jth coordinate equal to 1, and all other

coordinates zero. Hence by Chebyshev’s inequality, the fact that
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||’I}(lf ) (f) ||p < 1, and the definition of embedding sequences, it is enough

to verify this for f = 6,, g = §,, for some x,y € I'. But this is trivial from
the definition of soficity.

(c) Let us first verfiy this when & € Ml,n(cc(l")). In this case, we
may again reduce to § = (8g,, * +, 8, ) for some a;, -+, a, € I'. Then if
E 2 {a,y, -, a;} we have

T = oi(a)e = 0,()(e; @ ey).

In the general case let € >0, given & € Ml,n(L (I")) choose
f € Myy(cc(r)) so that ||f — €|l < . Thus for (1 — (£ + 0(1))) kd; of
the (j, k) we have

”Tjgf’)(f) —0;(5)(e; @ ek)||2 < 2e + [|(0:(9) — i () (& ® ex)|.

By the definition of embedding sequence for all large i we have

di n

1
=3 Y@@ - a D) @ el <2

j=1k=1
thus for at least (1 — Ve)nd; of the (j, k) we have

1(0:® = () (e ® )|, < V&,
combining these estimates completes the proof.
We need a similar lemma for R*-embeddable groups.

Lemma (3.2.17) [3]: Let I" be a countable R*-embeddable group, and
X = (ai: r- U(di)) an embedding sequence. Define p;:I" —
U(S%(d;)) by pi(9)A = 0,(9)Ac;(g)~*. Extend a;, p; to embedding
sequences, still denoted a;, p; of (L(I'),T) with T the group trace. For
h,s €N define oy My (L)) » My (Mdl.((C)) by  a;(4) =
[0;(ai)]1sish1srss- Fix n€N. For &n€l?(d;), 1<k <d; and
E C I finite define Tf(f;?k: P(MN®" - 5P(d;) by

18N = Y ful@ale)é ® oo

gEE
Then

(a) There exists measurable 4; € S?%~1 with P(4;) — 1, so that

{(E’ 77) € (SZdi_l)Z: ||Tf(57?,)k||zp_>sp = 2} 2 A; X Ay,
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for (1 — 0(1))d; of the k.

(b)For all >0, for all f€c.(I),ge€lP)®", there exists
measurable B; € S?%~1 with P(B;) > 1 —¢, for all large i, a
finite subset E € I', so that if E' 2 E is a finite subset of I', then
for (1 — &)d; of the k and for all large i,

fem e 242 |1EX(F + ) - (AT (@) | < e} 28, x B,

(c)Forall e > 0, forall { € Ml,n(L(F )), (identifying Ml,n(L(F )) as a
subset of I[2(I')®") there are measurable C; € S?%~ !, with
P(C;) =1 — ¢ for all large i, a finite subset E € I', so that if
E' 2 E is a finite subset of I, so that for at least (1 — €)d; of the k
and for all large i,

{@m e 292 1000 - p@ @7 <ef26ixc,
has cardinality at least (1 — €)nd; for all large i.

Finally we need one last lemma, which allows us to reduce to
considering subspaces of finite direct sums of [P (I).

Lemma (3.2.18) [3]: Let I' be a countable discrete group. Let H C
lz(N, lz(l")) be a closed I'-invariant subspace.
(a) Define m;: 12(N, 12(1)) » 2(D)®* by m, f() = f(j) for 1 <j < k.
Then

. . —lIll
dimyy(H) = Sl;lp dimy (nk(H) 2).

(b)The representation H is isomorphic to a direct sum of
representations of the form [2(I)p with p € L(I') (by the remarks
preceding definition (3.2.13) each element of L(I') is a bounded
right convolution operator) an orthogonal projection.

Proof. (a) Since m, (H) is dense in ,(H) we have
. . II-1I
dimyy(H) = Sl;lp dimy (nk(H) 2).

Let us first handle the case when dim;;(H) < o, let P be the

projection onto H.
Then

dimy iy (m (H)) = dimy ) (ker(m, (P)*)
= dimy g (Hn (H* + 2(1)®"))

= dimy (Hn (H N P(N{L, ...k}, r))l).
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Let Q) be the projection onto H N 1(N{1, ...k}, I'). Then

dimy ey (H 0 EOVEL 030 ) = ) (06, @ €), 6, @ ex)
n=1

= z(Qk(5e & en)» 5e & en) < z(P(ae ® en)' 69 ® en)
n=k n=k

- 0,
as dimL(F) (H) < oo,

In the general case, it suffices to show that we may write H as a
direct sum of representations with finite von Neumann dimension. Zorn’s
Lemma implies that every representation is a direct sum of cyclic
representations which are contained in lZ(N, lz(l“)), so it suffices to show
every cyclic representation contained in [?(N,[?(I')) has finite von
Neumann dimension.

For this, let £ € H be a cyclic vector, then there is vector { € I*(I")
so that

(9¢,$) = (g¢,9)

for all g € r. Thus H is isomorphic to %”'”Z(rf) via the unitary
sending g¢ — g{. From this it clear that H has dimension at most 1.

(b) As in part (a), we may assume that H is a cyclic representation
contained in [?(I"). Let p be the projection onto H, then p commutes with
L(r). Set ¢ = p(6,), since p commutes with L(I"), it is not hard to see that
p(f) = f x&for f € c.(I). Arguments entirely similar to those before
Definition (3.2.13) prove that ¢ is a bouned left convolution operator.
Hence ¢ is an orthogonal projection in L(I"), and H = I*(I')€.

Theorem (3.2.19) [3]: Let I' be a countable discrete group, let 1 < p <
2, and Y a closed I' -invariant subspace of [P(N,[P(I)), with I' acting by

=IIl

gf(x) =f(g7x).SetH=Y .
(a) Suppose X is a sofic approximation of I', then
dimgpp (Y, 1) = dim;y(H).
(b) Suppose X is an embedding sequence of I', then
dlﬁz,sp,conj Y,r) = dimL(F) (H)
(c) Suppose X is an embedding sequence of I', and H € [ (N, 12 (F)) is
I' invariant, then
dim;2(H,I) = dim, -y (H)
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Proof. We first reduce to the case that Y € [P (") ®" with h finite.
Consider the projection
mp: PN, 1) = P({1,- -+, h}, P(1))

given by
mf () = f(),
assume we know the result for Y € [P (I')®" for each h.
Then,

— Il II-11
dimg (Y, ) = dimgp <T[h(Y) p,l“) > dimy <T[h(H) 2),

letting h — oo and applying the preceding Lemma proves the claim. Thus,
we shall assume that Y € [P(I")®™ withn € N.
By part (b) of the preceding Lemma, we can find vectors

(E(q)):;:l € H, so that

(MEYW,€9) = (A(9)as, as)
= qs(g~1),where qs is a projection in L(I),

z 7(qs) = dim, (H),

s=1
AU@ED,EWy=0 forj#lge€T
(0 0)
H= @ L&V,
j=1
These equations can be rewritten as

n
zgu) «(§D) =qj,for1<j < oo,
i=1

zgw $(EOY =0,if j# L.
i=1

Let us illuminate these equations a little. Regard a vector & €
2(r)®™ as a element in M, ,(12()) with the product of two matrices
induced from convolution of vectors. Then the product of elements of
M o (12(I) ), My ,(L(I') ) makes sense, but may not land back in I*(I).
The above equations then read

ED(EDN) = qj,for1<j < oo,
ED(EWY=0forj # L
In particular, the above equations imply that
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[,y =1

So that ) € M; ,(L(r)). Extend o; to a embedding sequence of
M, m (L(I) ) for all n, m and such that

||ai(f(j))|| <1, forallj,
| ai( ,EJ))” <1, forallj,r,
0i(69)0,(§V) =0, for all j # L.

forall j, 7.
(a)Let S = (xj)?zl be a dynamical generating sequence for Y.
Fix n>0,t €N and choose a finite subset F; € I, m; € N, and
(S)f0r1<s<t(g])e Fy X {1,--,my}sothatforalll < s <t

) _ z gl <n.

gEF;
1<sjsmy 2

Choose finitely supported functions x; so that ||x; — X; || <n

Since p < 2, it is easy to see that if we force 1’ to be sufﬁc1ently small
then,

E(S)— z (S)gx <.

gEF;
1<sjsmy 2

Let S = (xj)?zl be a dynamically generating sequence for Y. Fix
Ficr finitemé€N,§ > 0.Let E €T be finite, let ’I}(,f) be defined as
Lemma (3.2.16) [3].
: . : (E)
It is easy to see that if E is sufficently large, then Ty €

Yem
Hom(S,F,m,8,0;); for (1—o0(1))nd; of the j,k, and in fact
||T(E)||lp » < 2 for 1 < p < 2. For such (j, k), and for all small &, for
1<s<t+1

T]Sf)(E(S)) — z (p)o.l(g)T(E)(x]) < 2.,7’

gEF;
1<sjsmy 2
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|75 (o) - 12 (9) | <.

Thus by Lemma (3.2.16) [3] for at least (1 — (2013)!¢) nd; of the j, k we
have

ai(f(s))(ej X ek) — z (p)al(g)T(E)(x]) < e+

gEF;
1<sjsmy 2

Now consider the linear map A: I1°(N, [P(d;)) - 12(d;)®" given by

t
sH=| > “’)al(g)fo)\ ,

gEF;
1<sjsmy
p=1

from the above it is easy to see that if ag(Hom,(S,F,m,§,0;)) Sy V
and &’ is sufficiently small,

AW) 2¢ 1, {dile; ® ex) = (k) € A,

with
Al
- (1 - (2013)!¢e)nd,,
$:() = (a:(EDYP, 0 (§2) (), -+, 0i(§ D))
Thus ¢; is given in matrix form by
Ui(f(l)) 0 e 0
o= O oGP
L o 0 g5®)]
As
'Ji(f(l))ai(f(l))* 0 e 0
boi=| 0 A
0 0 o (ED)oy (60Y)

By our choice of g; we have

llo:ll < 1.
By Lemma (3.2.12) [3], we find that

dimgp(V, 1) = (1 = (2013)! e)n dim, - (H).

Letting e —» 0,t — oo completes the proof.
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(b), (c) Same proof as in (a), one instead uses Lemma (3.2.17) [3],
Lemma (3.2.11) [3], and the formula

P(4) = f [{j:Ue; € A}|ld; dU,
u(d;)
for A € %71, to find an orthonormal system {3, - -, {, with ¢ = (1 —

€)d;, so that T((fgq’k € Homp(- - -) for most k and all j, p.

Corollary (3.2.20) [3]: Let 1 <p <2,V a finite-dimensional normed
vector space, and I a countable discrete group.
(a) If I' is sofic and X' is a sofic approximation of I", then
dim;w(IP(r,v), 1) = dim 5 w(IP(r,v),r) = dimV.

(b)If I is R*-embeddable and X' is an embedding sequence of I, then
dim, 2(12(r, 2(n)),T) = dim , 2(1*(I,?(n)), T) = n,
dlﬁl,s”,conj (P(r,v),r) = dim zSP,conj (P(r,v),r) = dimV.
Corollary (3.2.21) [3]: Let I be a R“-embeddable group 1 < p < 2. If
V,W are finite dimensional vector spaces with dimV < dim W, then
there are no I'—equivariant bounded linear maps from [P(I,V) to
[P (r,w) with dense image. Consequently if 2 < p < oo, then there are no

I' -equivariant bounded linear injections from [P (I, w) to [P (I, V).
Theorem (3.2.22) [3]: Let I' be an R®-embeddable group, and m:I" —
U(H) a representation, such that m < A®®. Then for every embedding
sequence X,
dimy2(m) = dim ;2(m) = dim, ;) (10).
Proof. Let A:r - U(I?>(r)) be given by A(g) f(x) = f(g~1x). We
already know from Theorem (3.2.20) that
dim; 2A9% = dim ;219% = n.
Let us first assume that 7 is cyclic with cyclic vector ¢, then as in
Lemma (3.2.18) [3] we may find a { € [%(r) so that
(m(x)¢, &) = (A(x)], Q)
so m < A. Let m’ be a representation such that A =n @ n’, then by
Theorem (3.2.19) [3] we have
1 =dimypd = dim gpem+dim gpen’ = dim g em + dim g en’
> dim LT+ dim L(F)T[’ = 1.
Thus all the above inequalities must be equalities, in particular
dim y2m = dim y 2w = dim (T
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In the general case, apply Zorn’s Lemma to write 1 =@, -, 7,
with m,, cycle. Then by Corollary (3.2. 10) [3]

dims 2(m) = z dims 2(m,) = z dimy () = dim (»m,

dimy 2(m) < z dimg ;2(m,) = z dimyy(m,) = dim .

This completes the proof of the theorem.
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Chapter 4
A Banach Space with a Countable Infinite Number of

Complex Structures
We show the question remains about finding examples of Banach
spaces with exactly infinite countably many different complex structures.
A first natural approach to solve this problem is to construct an infinite
sum of copies of X(C), and in order to control the number of complex
structures to take a regular sum, for instance, ¢4 (X (C)).
Section (4.1): Construction and Complex Structure of the

Space X, (C)

A real Banach space X is said to admit a complex structure when
there exists a linear operator I on X such that I? = —Id. This turns X into
a C-linear space by declaring anew law for the scalar multiplication:

A+iw).x=Ax+ul(x) Au € R).

Equipped with the equivalent norm

lx|]] = sup |lcos@x + sin Olx]|
0<0=<2m

we obtain a complex Banach space which will be denoted by X!. The
space X! is the complex structure of X associated to the operator I, which
is often itself referred to as a complex structure for X.

When the space X is already a complex Banach space, the operator
Ix = ix is a complex structure on Xy (i.e., X seen as a real space) which
generates X. Recall that for a complex Banach space X its complex
conjugate X is defined to be the space X equipped with the new scalar
multiplication 1. x = Ax.

Two complex structures I and / on a real Banach space X are
equivalent if there exists a real automorphism T on X such that TI = JT.
This is equivalent to saying that the spaces X! and X’/ are C-linearly
isomorphic. To see this, simply observe that the relation T1 = JT actually
means that the operator T is C-linear as defined from X! to X/.

We note that a complex structure / on a real Banach space X is an
automorphism whose inverse is —I, which is itself another complex
structure on X. In fact, the complex space X! is the complex conjugate
space of X!. Clearly the spaces X! and X~ !are always R-linearly
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isometric. On the other hand, J. Bourgain and N. J. Kalton constructed
examples of complex Banach spaces not isomorphic to their
corresponding complex conjugates, hence these spaces admit at least two
different complex structures. The Bourgain example is an £,sum of finite
dimensional spaces whose distance to their conjugates tends to infinity.
The Kalton example is a twisted sum of two Hilbert spaces, i.e., X has a
closed subspace E such that E and X/E are Hilbertian, while X itself is
not isomorphic to a Hilbert space. More recently R. Anisca constructed a
complex weak Hilbert space not isomorphic to its complex conjugate.

Complex structures do not always exist on Banach spaces. The first
example in the literature was the James space, proved by J. Dieudonné.
Other examples of spaces with-out complex structures are the uniformly
convex space constructed by S. Szarek and the hereditary
indecomposable space of W. T. Gowers and B. Maurey. W. T. Gowers
and B. Maurey and S. A. Argyros, K. Beanland and T. Raikoftsalis also
constructed a space with unconditional basis but without complex
structures, the second is a weak Hilbert space. In general these spaces
have few operators. For example, every operator on the Gowers— Maurey
space is a strictly singular perturbation of a multiple of the identity and
this forbids complex structures: suppose that T is an operator on this
space such that T2 = —Id and write T = Ald +S with S a strictly
singular operator. It follows that (1% 4+ 1)Id is strictly singular and of
course this is impossible.

More examples of Banach spaces without complex structures were
constructed by P. Koszmider, M. Martin and J. Meri. In fact, they
introduced the notion of extremely non-complex Banach space: A real
Banach space X is extremely non-complex if every bounded linear
operator T:X — X satisfies the norm equality ||Id + T?|| =1+ ||T||?.
Among their examples of extremely non-complex spaces are C(K) spaces
with few operators (e.g. when every bounded linear operator T on C(K)
is of the form T = gld + S where g € C(K) and S is a weakly compact
operator on C(K)), a C(K) space containing a complemented isomorphic
copy of £, (thus having a richer space of operators than the first one
mentioned) and an extremely non-complex space not isomorphic to any
C(K) space.

Going back to the problem of uniqueness of complex structures,
Kalton proved that spaces whose complexification is a primary space
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have at most one complex structure (this result may be found in V.
Ferenczi and E. Galego). In particular, the classical spaces ¢y, €, (1 <
p < ),L,[0,1](1 <p <), and C[0,1] have a unique complex
structure.

We have mentioned before examples of Banach spaces with at
least two different complex structures. In fact, V. Ferenczi constructed a
space X(C) such that the complex structure X(C)/ associated to some
operator J and its conjugate are the only complex structures on X (C)up to
isomorphism. Furthermore, every R-linear operator T on X(C) is of the
form T = Ald + uJ + S, where A, u are reals and S is strictly singular.
Ferenczi also proved that the space X(C)"™ has exactly n + 1complex
structures for every positive integer n. Going to the extreme, R.Anisca [1]
gave examples of subspaces of L,(1 < p < 2) which admit continuum
many non-isomorphic complex structures.

It follows that every R-linear bounded operator T on ¥, (X (C)) is
of the form T = A(T) + S, where A(T) is the scalar part of T, i.e., an
infinite matrix of operators on X (C) of the form A; ;Id + u; ;J, and S is an
infinite matrix of strictly singular operators on X(C). It is easy to prove
that if T is a complex structure then A(T) is also a complex structure.
Recall that two complex structures whose difference is strictly singular
must be equivalent. Unfortunately, the operator S in the representation of
T is not necessarily strictly singular, and this makes very difficult to
understand the complex structures on ¢4 (X (C)).

It is necessary to consider a more “rigid” sum of copies of spaces
like X(C). We found this interesting property in the space X,
constructed by S.A.Argyros, J.Lopez-Abad and S.Todorcevic. Based on
that construction we present a separable reflexive Banach space ¥ ,2(C)
with exactly infinite countably many different complex structures which
admits an infinite dimensional Schauder decomposition ¥,2(C) = @, X
for which every R-linear operator T on ¥,2(C) can be written as
T =Dy +S, where S is strictly singular, Dr|y, = A;Idy, (1k € C) and
(Ai)« k is a convergent sequence.

This construction also shows the existence of continuum many
examples of Banach spaces with the property of having exactly w
complex structures and the existence of a Banach space with exactly w,
complex structures.
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We construct a complex Banach space X, (C) with a bimonotone
transfinite Schauder basis (e4)g<w,» such that every complex structure /
on X, (C)is of the form I =D + S, where D is a suitable diagonal
operator and S is strictly singular.

By a bimonotone transfinite Schauder basis we mean that
X,,(C) =span (ey)q<w, and such that for every interval I of w; the

naturally defined map on the linear span of (eq)g<,

z Ao M z AaCa

a<wq a€l
extends to a bounded projection Pp: X, (C) - X; = spang(ey)qe With
norm equal tol.

Basically X, (C) corresponds to the complex version of the space
X, constructed in this section modifying the construction in a way that
its R-linear operators have similar structural properties to the operators in
the original space X, (i.e., the operators are strictly singular perturbation
of a complex diagonal operator).

Recall that w and w, denotes the least infinite cardinal number and
the least uncountable cardinal number, respectively. Given ordinals
v, & we write y + &,y - &, y° for the usual arithmetic operations. For an
ordinal y we denote by A(y) the set of limit ordinals < y. Denote by
Coo(w1, C) the vector space of all functions x : w; — C such that the set
supp x = {a < wy:x(a) # 0}is finite and by ((eq)qew, its canonical
Hamel basis. For a vector x € cyy(w;, C) ran x will denote the minimal
interval containing supp x. Given two subsets E;, E; of w; we say that
E, < E, if maxE; < max E,. Then for x,y € cy9(w1,C) x <y means
that supp x < supp y. For a vector x € cyo(w,,C) and a subset E of
w1 we denote by Ex (or Pg ) the restriction of x on E or simply the
function xyg. Finally in some cases we shall denote elements of
coolwy,C) as f,g,h,...and its canonical Hamel basis as (eg)qew,
meaning that we refer to these elements as being functionals in the
norming set.

Definition (4.1.1) [4]: The space X, (C)shall be defined as the
completion of c¢yy(w4, C) equipped with a norm given by anorming set
Ko, (€) € coo(wq, C). This means that the norm for every x € cgo(w;, C)

77



is defined as sup{l(,b(x)l = |Za<w1qb(a)x(a)|:¢ € le((l)}. The norm
of this space can also be defined inductively.
We start by fixing two fast increasing sequences (m;) and (n;) that

are going to be used in the rest of this work. The sequences are defined
recursively as follows:
() my =2and mj,q = mf;
(i)n; = 4 and n;,, = (4n;)%, where s; = log, mfﬂ.
Let k., (C) be the minimal subset of ¢yo (w4, €) such that
(a) It contains every (eg) <, It satisfies that for every ¢ € k,, (C)
and for every complex number 6 = A + iy with A and pu rationals
and [6| < 1,0¢ € k,, (C). It is closed under restriction to intervals
of w;.
(b) For every {¢p;:i = 1,...,13;} € K, (C) such that ¢p; < -+ < Pn, ;>

the combination
lej

1
6= ) 91 €K, (O
i=1
In this case we say that ¢ is the result of an (m; ]-1, n,j)-operation.

(c) For every special sequence (¢ < - < @y, . (see Definition
2j+1
(4.2.4), the combination

1 Nzj+1
b = z é; € 1, (C).
Majs1 &= e

In this case we say that ¢ is a special functional and that ¢ is the result of
an (m; ]-1+1, Ny j+1)-Operation.

(d) It 1s rationally convex.
Define a norm on ccyo(w4, C) by setting

Ixll =supd| >’ d@x(@|: € x4, (@1,

a<w1
The space X, (C) is defined as the completion of (coo(wq, C), [|-]]) .
This definition of the norming set k,,_ (C) is similar to other (c).

We add the property of being closed under products with rational
complex numbers of the unit ball. This, together with property (b) above,
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guarantees the existence of some type of sequences in the same way they
are constructed for X,, . It follows that the norm is also defined by

Il = sup{ () = D p(@x(@): ¢ € 10, (€, () ER .

We also have the following implicit formula for the norm:

77.2]
||x||—sup{nxnw,supsup—ZnEx|| Fo<Ey < E}
n2]+1

E
ol [$ ]

It follows from the definition of the norming set that the canonical Hamel

(i ) Yis Nnyjr1Special, E interval}.

basis (e4)g<ew, is a transfinite bimonotone Schauder basis of X, (C). In

fact, by property (a) for every interval I of w; the projection P; has norm
I:
IPxll = sup |fPx|= sup [|Pfx|<|lxl|

fEK,, (© feKy, (©
Moreover, we have that the basis (ey) e, is boundedly complete and
shrinking, the proof is the obvious modification to the one for X, . In
consequence X, (C) is reflexive.
Proposition (4.1.2) [4]: x,, (©)®" = By, (C).
Proof. Recall that the set k,, (C) is by definition rationally convex. We
notice that mw* is actually a convex set. Indeed let f, g € mw*

and t € (0,1). Suppose that f, 2 f, 9n 2 g and t, — t, where f,,g, €
Ke,(C)and t, € QN (0,1)for every n €N. Then tf +(1—-t)gE€
K 1(@)“’* because

w*
thfn + (1 —t)gn 2 tf + (1 —t)g.
In the same manner we can prove that fz)l((l) 1s balanced,

ie., A X;, (C) € Xj, for every |1 | < 1. To prove the proposition suppose
that there exists f € By 1(@\Kw1((l)w*. It follows by a standard
separation argument that there exists x € X, (C) such that
If ()] > sup{lg(X)|: g € Ky, (O}
which is absurd.
Now we show the complex structures on X, (C)
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Let I € w, be an interval of ordinals, we denote by X;(C) the
closed subspace of X, (C) generated by {ey}qe;. For every ordinal
Yy <w;we write X,(C) =X[,)(C). Notice that X,(C)is a 1-
complemented subspace of X,, (C) : the restriction to coordinates in Iis a
projection of norm 1 onto X;(C). We denote this projection by P; and by
P! = (Id — P)) the corresponding projection onto the complement space
(Id — P))X,, (C), which we denote by X1(0).

A transfinite sequence (V,)q<y is called a block sequence when

Vo <yp for all @ < f <y. Given a block sequence (Yo)q<ya block

subsequence of (Y,)q<y is a block sequence (xﬁ) gt in the span of

(Ya)a<y - A real block subsequenceof (y,)q<y is a block subsequence in
the real span of (Yo)g<y - A sequence (xp)nenis a block sequence of
X, (C) when it is a block subsequence of (e4) g<gp, -

Theorem (4.1.3) [4]: Let T: X, (C) — X, (C) be a complex structure
on X, (C), that is, T is a bounded R-linear operator such that T* =
—Id. Then there exists a bounded diagonal operator Dr:%X, (C) —

X,,(C), which is another complex structure, such that T — Dy is strictly
K

singular. Moreover Dy = Z;Ll €iPy, for some signs (Ej)j=1 and ordinal
intervals 1} < I, <...< I, whose extremes are limit ordinals and such
that wy = U¥_1 I;.

The strategy for the proof of Theorem (4.1.4) is for the real case.

However here we want to understand bounded R-linear operators in
acomplex space. The result is obtained using the following theorems that
we explain with more details in Appendix A.
Step I. There exists a family & of semi-normalized block subsequences of
(ea)a<w,» called RIS.(Rapidly Increasing Sequences), such that every
normalized block sequence (xp)peyof X, (C)has a real block
subsequence in J.

Recall that a Banach space X is hereditarily indecomposable (or
H.L) if no (closed) subspace of X can be written as the direct sum of
infinite-dimensional subspaces. Equivalently, for any two subspaces
Y,Zof X and € > 0, there exist y €Y,z € Zsuch that |[y|| = ||z|| =
land |ly—z || <e.
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Step IL. For every normalized block sequence (x,)ney of X, (C), the
subspace Spang (x,)ney of X, (C) is a real H.I. space.

Step IIL. Let (x,)nen be a RIS and T:5panc(xp)neny = ¥4, (C) be a
bounded R -linear operator. Then lim,,_,.,(Tx,, Cx,) = 0.

The proofs of Steps 1, II and III are given in Appendix A.

Step IV. Let ((xp)nen be a RIS, and T:5panc(xp)neny — ¥4, (C) be a
bounded R -linear operator. Then the sequence A;:N — C defined by
d(Tx,,Cx,) = ||Tx,, — Ay(n)x,|| is convergent.

Proof of Step IV. First we note that the sequence (AT (n))n is bounded.
Then consider (a,,),, and (B,), as two strictly increasing sequences of
positive integers and suppose that A;(a,) — A; and A+(B,) = A,, when
n — co. Going to a subsequence we can assume that x, <xg < Xxg 41

for every n € N.
Fix €>0. Using the result of Step III, we have that

limn_m”Txan — Alxan” = 0. By passing to a subsequence if necessary,
assume
€
||Txan — Alxan” < g
for every n € N. Hence, for every w =), a,x, € spanR(xan)n with

lw|| < 1 we have
ITw = 23wll < ) Il Tx, = Aaxa, || < /3,
n

because (e4)g<g, is @ bimonotone transfinite basis. In the same way, we

can assume that for every w € spanR(xﬁm)mwith w|| <1, ||ITw —
A,w|| < €/3. By Step Il we have that spanR(xan)n U (xﬁn)n is real- H.I.
Then there exist unit vectors w; € spang (xan)n and w, € spanR(xﬁm)m,

such that |[|[w; — w,|| < §||T||. Therefore,
A wy — Aow, || < ITwy — Aywqll + [[Twy — Tw|| + [ITw, — Aw,|| < €
By other side
121wy — Aaws || = [[(Ag = 2wy || = (|22 (wy — wy)]
= [41 = 42| = [4;]e€
In consequence, |A; —A,| < (1 +|A,|)e. Since € was arbitrary, it
follows that ; = 4,.
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Let T:X, (C) » X, (C)be a bounded R-linear operator. We
define a bounded diagonal operator Dy (with respect to the basis
(ey)y<w,) such that T — D is strictly singular: Let & € A(w4) be a limit
ordinal, and  ()nens nenbe two RIS,  such that
Sup,, max supp X, = sup, max supp y, = @ + w. By a property of &
we can mix the sequences (x,),, (3,), in order to form a new R.LS.
(Z)nen, such that z,;, € {x,}nen and Zyp_q € {Vy}nen for all k € N.
Then it follows from Step IV that the sequences defined by the formulas

AT, Cs,) = [T = A ) | and d(Ty,C,,) = [Ty - G, |
are convergent, and by the mixing argument, they must have the same
limit. Hence for each a € A(w,) there exists a unique complex number
¢r(a) such that
lim [T — ££(@) | = 0

for every R.IS. (Wy)nen in X, , where we write I, to denote the ordinal
interval [a, @ + w). We proceed to defining a diagonal linear operator Dy
on the (linear) decomposition of span (e4)g<w,

span (ex)a<w, = @ span (xg)gel,

a€A(wq)
by setting DT(eﬁ) = ET(a)eB when B € 1,.

Observe in addition that this sequence (ET(a))ae Al )is
1

convergent. That is, for every strictly increasing sequence (a,,) n
’ n/neN

A(wq), the corresponding subsequence (&7 (cr))nEN is convergent. In fact,

for every n € N, let (%),,cny be a R.LS. in X, -
kn kn
Then we can take a R.LS. (yn )neN such that ||Tyn —ér(ay +

w)y,lf"” <1/n. It follows by Step IVthere exists A € C such that
limn”Ty:" — Ay,lf"” = 0. This implies that lim,, {r(a, + w) = A.

In general this operator Dy defines a bounded operator on X, (C).
The proof is the same as that uses certain James like space of a mixed
Tsirelson space is finitely interval representable in every normalized
transfinite block sequence of X,, (C). For the case of complex structures
we have a simpler proof (see Proposition (4.1.8)).
Proposition (4.1.4) [4]: Let A be a subset of ordinals contained in w,
and X =3spanc(eq)gea- Let T:X > X, (C) be a bounded R-linear
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operator. Then T is strictly singular if and only if for every R.LS.
(Vndnen on X, limy, Ty, = 0.

Proof. The proposition is trivial when the set A is finite, then we assume
that A is infinite. Suppose that T is strictly singular. Let (y;,),en be a
R.LS. on X such that lim, Ty, = 0, then by Step IV there is 4 # 0 with
lim, ||Ty, — Ay, |l = 0. Take 0 < € < |1]. By passing to a subsequence if
necessary, we assume that ||(T - M d)lm({:(J’n)n” < €. This implies that
T |spanc(y,),, 1S an isomorphism, which is a contradiction.

Conversely, suppose that for every R.LS. (y,),on X, lim, Ty, = 0.
Assume that T is not strictly singular. Then there is a block sequence
subspace Y = spanc(V,)neny of X such that T restricted to Y is an
isomorphism. By Step I we can assume that the sequence (y,,),, is already
a R.I.S. on X. Then inf, || Ty, || > 0. And we obtain acontradiction.

Given Y € X, (C) we denote by iy the canonical inclusion of Y
into X, (C).

Corollary (4.1.5) [4]: Let a € A(w,) and T:%,; (C) > X, (C) be a
bounded R-linear operator. Then there exists (unique) ér(a) € C such
that T — &7 (@) iz, © is strictly singular.
Proof. Let {;(a) be the (unique) complex number such that lim,, || Ty,, —
Er(@)ynll = 0 for every RIS, (yn)n on X; (C). Then by the previous
proposition T — & (a) iz, © is strictly singular.
Corollary (4.1.6) [4]: Let a € A(w;) and R:%,; (C) - Xla(C) be a
bounded R-linear operator. Then R is strictly singular.
Proof. By the previous result, ixioyR = /11'%1“(@ + S with S strictly
singular. Then projecting by P« we obtain R = P'a oiy,yR =
Pa$ which is strictly singular.
Proposition (4.1.7) [4]: Let T be a complex structure on X,, (C) . Then
the linear operator Dt is a bounded complex structure.
Proof. Let T be a complex structure on X,, (C) and D7 the corresponding
diagonal operator defined above. Fix @ € A(w;). We shall prove that
ér(a)? = —1. In fact,

Toiy, (¢ = P,T oy, @+ PT iy, © = P,T °ix, +51
where §; is strictly singular. This implies P; T o ix, (¢ = §r(@) Idy, (o) +
S2:%;,(C) » X, (C) with S, strictly singular. Now computing:
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(P IaTixza(C)) ° (P IaTixza(C)) =P, TeoP,Tiy
= P;,T o (Id = P')Tiy, ()
= P, ,T?ix, ) = Pi,TP"*Tix, (¢ = —Idx, (¢) + S3

where S3 is strictly singular because the underlined operator is strictly
singular. Hence we have that (&7(a)? + 1)I dy, s strictly singular,

which allows us to conclude that &7(a)? = —1. The continuity of Dy is
then guaranteed by the convergence of ({7(a) )gea(w,)-

Indeed, é7(a) = =i for every a € A(w,) and by convergence we have
that the variation of signals is finite, then there exist ordinal intervals
L <I, <[, with w; = U;-‘zll*j and such that D; = ZleejiP,jfor

. n
some signs (Ej)jzl.
Remark (4.1.7) [4]: More generally, the proof of Proposition (4.1.8)
actually shows that if T' is an R-linear bounded operator on X, (C) such
that T2 + Id = S for some S strictly singular, then Dy is bounded and
D2 = —Id.

Let T: X, (C) — X, (C) be a bounded R -linear operator which is
a complex structure and D be the diagonal bounded operator associated
to it. It only remains to prove that T — Dy is strictly singular. And this
follows directly from Proposition (4.1.5), because by definition lim,, (T —
Dr),. = 0 for every R.LS. (y,)n0on X, (C).

We come back to the study of the complex structures on X, (C).

Denote by D the family of complex structures Dron X, (C)as in
Theorem (4.1.4), i.e., Dy =Z§§=16jiP,j where (Ej)?zlare signs and

I; < I, < --- I are ordinal intervals whose extremes are limit ordinals and

such that w,; = U;Lllj.

Recall that two spaces are said to be incomparable if neither of

Notice that D has cardinality w;.

them embed into the other.

Corollary (4.1.8) [4]: The space X, (C) has w, many complex structures
up to isomorphism. Moreover any two non-isomorphic complex structures
are incomparable.

Proof. Let J be a complex structure on X,, (C). By Theorem (4.1.4) we have

that / — D; is a strictly singular operator and D; € D. Recall that two
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complex structures whose difference is strictly singular must be equivalent.
Then ] is equivalent to D;.

To complete the proof it is enough to show that given two different
elements of D they define non-equivalent complex structures. Moreover, we
prove that one structure does not embed into the other. Fix | # K € D. Then
there exists an ordinal interval I, = [@, @ + w) such that, without loss of
generality, /| %, = ild| x,, and K | %, = —ild| x;,- Suppose that there exists
T:%, (C) - %, (©) an isomorphic embedding. Then T is in particular
an R-linear operator such that TJ = KT. We write using Corollary (4.1.6),
Tl%za = fT(a)iAEIa((C) + Swith S strictly singular. Then fT(a)]lxIa -

¢r(a)K lea =S, where S;is strictly singular. In particular for each

x €X;,5x =2¢&r(a)ix. It follows from the fact that X; is infinite
dimensional that é;(a) = 0. Hence T| %, = S, but this is a contradiction
because T is an isomorphic embedding.

The next corollary offers uncountably many examples of Banach
spaces with exactly countably many complex structures.
Corollary (4.1.9) [4]: The space X,(C) has w complex structures up to
isomorphism for every limit ordinal w? <y < wy.
Proof. Let / be a complex structure on X, (C). We extend J to a complex
structure defined in the whole space X, (C) by setting T = JP; + iP', where
I =[0,y). It follows that T = D, + S for a strictly singular operator S and a
diagonal operator Dy like in Theorem (4.1.4). Notice that Dyx = ix for
every x € X!, otherwise there would be a limit ordinal a such that S| X, =

2i1d|351a. Hence JP; = DyP,+S. Which implies that / has the form

J = Z?zl giP+ 5 where Slis strictly singular on X, (C), (ej) are

k
j=1
signs and I; < I, < -- < [ are ordinal intervals whose extremes are limit
ordinals and such that y = Ule I;. Now the rest of the proof is identical to
the proof of the previous corollary. In particular, all the non-isomorphic
complex structures on X, (C) are incomparable.

We also have, using the same proof of the previous corollary, that for
every in-creasing sequence of limit ordinals A = («,),, the space X, =
@, %, (©), where I, = [ay, @, + w), has exactly infinite countably many
different complex structures. Hence there exists a family, with the
cardinality of the continuum, of Banach spaces such that every space in it
has exactly w complex structures.

85



Section (4.2): Observations

It is easy to check that subspaces of even codimension of a real
Banach space with complex structure also admit complex structure. An
interesting property of X, (C) is that none of its real hyperplanes (and
thus every real subspace of odd codimension) admit complex structure.
Proposition (4.2.1) [4]: The real hyperplanes of X,, (C) do not admit
complex structure.

Proof. By the results of V. Ferenczi and E. Galego it is sufficient to prove
that the ideal of all R-linear strictly singular operators on X,, (C) has the
lifting property, that is, for any R -linear isomorphism on X, (C) such
that T2 + Id is strictly singular, there exists a strictly singular operator S
such that (T — S)? = —Id. The proof now follows easily from Remark
(4.1.7) [4].

Appendix A

The purpose of this section is to give a proof for the results in Steps
I, IT and III. Several proofs are very similar to the corresponding ones in
[3]. In order to make this section as self contained as possible, we
reproduce them in detail.

First we clarify the definition of the norming set by defining what
being a special sequence means. All the definitions we present in this part
are the corresponding translation of [3] for the complex case.

A.1. Coding and special sequences
Recall that [w]? = {(a,B) € w?:a < B}.
Definition (4.2.2) [4]: A function g: [w;]? = w such that
(D) e(a,y) <max{o(a,p),e(B,y)} foralla <f <y < w;.
(2) o(a, ) < max{o(a,y),e(B,y)}foralla < <y < w;.
(3) The set {a < B: o(a, B) < n} is finite for all # < w; and n € N
is called a p-function.
The existence of p-functions is due to S. Todorcevic. Let us fix a p-

function o: [w4]?

— w, and then all the following work relies on that
particular choice of g.

Definition (4.2.3) [4]: Let F be a finite subset of w; and p € N, then we
write

pF = po(F) = max o(a, B).

FP = {a < maxF:thereisf € F suchthat a < § and o(a, B) < p}
A.1.1. 6,-coding and the special sequences
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We denote by Qi(w;,C) the set of finite sequences

(¢1» Wi, P15+ ¢d' Wy, pd) such that
(i) For all i < d, ¢; € cyo(wq,C) and for all @ < w; the real and the

imaginary part of ¢ () are rationals.
(i) (W)L, (p)%, € N are strictly increasing sequences.
(ii1) p; = P(UL_, supp o1) forevery i < d.
Let Q,(C) be the set of finite sequences

(D1, Wi, D1, P2, Wo, D2, ..., D g, Wg, Dg) satisfying properties (1), (2) above
and for every i <d, ¢; € cyo(w1,C). Then Q,(C) is a countable set
while Q(w1, €) has cardinality w;. Fix a one to one function ¢: Q;(C) —
{2j:j is odd} such that

1
o(¢h1, W1,01,-++, Pa, Wq, Pg) > max {pfi,e—z,max supp ¢d}

where € = min{|¢,(e,)|: a € supp ¢y, k =1,...,d}. Given a finite
subset F of w;, we denote by m:{1,2,...,#F} > F the natural order
preserving map, i.e., g is the increasing numeration of F.

Given @ = (¢, W1, P1,--» Pa, Wa, Pg) € Qs(C), we set
P

Gop = U Supp ¢,
1=1
Consider the family

TGy (@) = (mg (1), Wi, p1, T (D), Wo, Do, oo, T (Dg), Wy, Dg) Where
e (pr)(n) = {¢k (ﬂad,(n)) if n € Gy,

0, othersise.
Finally 0,,: Qs(w;, €) = {2j : j odd} is defined by a,(®) = o (g (P)).
Definition (4.2.4)[4]: A sequence @ = (¢4, Py, ..., ¢n2j+1) of functionals
of K, (C) is called a 2j + 1 special sequence if
(SS.1) suppp, < suppg, <--- < suppq5n2j+1. For each k < nyj.q, Py is
of type I, w(¢y) = myjy with j; even and my; > n§j+1.
(SS.2) There exists a strictly increasing sequence (pf’ , P35 ,...,p,fzjﬂ_l)
of natural numbers such that for all 1 <i <mn,;;; —1 we have that

w(¢ir1) = mg,(P;) where
(pi = (¢1; W(¢1); pf)' ¢2' W(¢2), pg)' ] ¢i' W(¢i)' pld))
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Special sequences in separable examples with one to one codings
are in general simpler: they are of the form (¢, w(ey), ..., P, w(epy)).
Their main feature is that if (¢y, w(py), ..., dr, w(gy)) and
(Y1, w@py), ..., Y;, w(¥p;)) are two of them, there exists iy < min{k, [}
with the property that

(p0w(9)) = (i, w(y) foralli < i ey
w(p)):ip<i<kln={w@)ig<i<l} =0 (2)

In non-separable spaces, one to one codings are obviously impossible,
and (1), (2) are no longer true. Fortunately, there is a similar feature to
(1), (2) called the tree-like interference of a pair of special sequences: Let

¢ = (qbl, ...,¢2j+1) and Y = (1,01, ...,1,02]-+1) be two 2j + 1-special
sequences, then there exist two numbers 0 < kg < Agpy < Nzj41 such
that the following conditions hold:

(TP.1) Foralli < Ag,w(¢;) =w(y;) and pf = p;‘b.

(TP.2) Foralli < K¢, ¢; = ;.

(TP.3) Forall kg y <i < Agpqy

Supp ¢; Nsupp Py U ... Usupp P, =1 #¥ " = @

And

supp ¥; N supp ¢, U ..U supp ¢z, 1 Plogpt = @
(TP4) (WP : dpy <i <nyjp}n{w@) i <mny4}=0 and
W) 1 Apy < i Snyj} N{w(py) i< nyjuq} = 0.
A.2. Rapidly increasing sequences (R.L.S.)

For the proof of Step I we shall construct a family of block
sequences on X, (C) commonly called rapidly increasing sequences
(R.1S.). These sequences are very useful because one has good estimates
of upper bounds on |f (x)| for f € K, (C) and x averages of R.LS.

For the construction of the family ¥ the only difference from the
general theory is that our interest now is to study bounded R-linear
operators on the complex space X,, (C). Hence, all the construction of
R.LS. in a particular block sequence (x,),eny must be on its real linear
span. We point out here that there are no problems with this, because all
the combinations of the vectors (x,),ey to obtain R.IS. use rational
scalars.
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Definition (4.2.5) [4]: (R.1S.). We say that a block sequence (xj ) of
X,,(Qisa (C,e)-RLS., C,e > 0, when there exists a strictly increasing
sequence of natural numbers (ji ), such that:

@O bl =G

(i)  |supp xx| = m;, €

(iii) For all the functionals ¢ of K, (C) of type I, with w(¢) <

c
m;,, || < TS

The following remark is an immediate consequence of this definition.
Remark (4.2.6) [4]: Let €’ < €. Every (C,€) -R.LS. has a subsequence
which is a (C,€')-R.IS. And for every strictly increasing sequence of
ordinals (a,,),, and everye > 0, (ean)n isa (1,€)-R.LS.

Remark (4.2.7) [4]: Let (x,,), and (y,,), be two (C, €)-R.LS. such that
Sup, max supp x,, = sup, max supp y,. Then there exists a (C, €)-R.LS.
(Zp)n such that z;,_1 € {xp}ken and z5p, € {Yic}ken-

Proof. Suppose that (t;); and (s;)j are increasing sequences of positive
integers satisfying the definition of R.LS. for (x;),and (yi)x
respectively. We construct (z;), as follows. Let z; = x; and j; = t;.
Pick si  such that x; < yskland t, < sk,. Then we define j, = s and

Z2 < Vs, - Notice that
@®  lzll =6
(i)  [supp z;| = mpe < mg, € =Mmy¢,

(iii) For all the functionals ¢ of ¥, (C) of type I, with w(¢) <

c
m;, [p(z)] < oo

Continuing with this process we obtain the desired sequence.
Theorem (4.2.8) [4]: Let (x))y be a normalized block sequence of X,
and € > 0. Then there exists a normalized block subsequence (yy,), in
spang {x; } which is a (3, €)-R.LS.
For the proof of Theorem (4.2.8) [4] we first construct a simpler

type of sequence.
Definition (4.2.9) [4]: Let X be a Banach space, C > 1 and kK € N. A
normalized vector y is called a C — £¥-average of X, when there exists a
block sequence (x4, ..., xx) such that

1N y=0+...+x)/k;

(i) x|l <C, foralli=1,...,k.
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In the next result we want to emphasize that this special type of
sequences is really constructed on the real structure of the space X, (C).
Theorem (4.2.10) [4]: For every normalized block sequence (x,) of
X,,(C), and every integer k, there exist z; <...< zj in spang (xp),
such that zy+...+z [k is a 2 — €%-average.

Proof. The proof is standard. Suppose that the result is false. Let j and n
be natural numbers with
2™ > my;
nyj > k™
Let N=k™ and x = YN ,x;. For each 1<i <n and every 1 <j <
k™! we define
jk!
x(i,j) = z Xt
t=(j-1)k'+1
Hence, x(0,) = x; and x(n, 1) = x.
It is proved by induction on i that ||x(i, )| = 27'k¢, for all i,j. In
particular, |[x]| = ||x(n,1)|| < 27™k™ = 27"N. Then by property (i) of
the definition in the norming set

lej
lej N
Ixll =2 — ) llxll = —>—.
2j & 2j Mz
Hence,
N
27"N > —
mzj
mzj > Zn,

which is a contradiction.
Finally, for the construction of R.LS. we observe these simple
facts:

(a)If yisaC — fnj-average of X, (C) and ¢ € K, (C) has weight
1 1 1

3C
w(¢) < mj) then |¢(y)| < 2(1)((1))’

(b)Let (xy)y be a block sequence of X, (C) such that there exists a

strictly increasing sequence of positive integers (j,), and € > 0

satisfying:
(a) Each x; 1sa 2 — f:j *_average;
(®) [supp x| < em;, .

Then (x;) isa (3,€ )-R.LS.
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A.3. Basic inequality

To prove Steps Il and III we need a crucial result called the basic
inequality which is very important to find good estimations for the norm
of certain combinations of R..S. in %wl((]). First we need to introduce

the mixed Tsirelson spaces.

The mixed Tsirelson space T[(m.—l,nj)j] is defined by

considering the completion of cyy(w;, C) under the norm ||-||, given by

the following implicit formula
nj

1
Illy = max{ llxll, sup sup— 1Byl
j m; £
i=1
The supremum inside the formula is taken over all the sequences
E; <...<Ep, of subsets of w. Notice that in this space the canonical

Hamel basis (€,)p<, Of coo(wq,C) is 1-subsymmetric and 1-
unconditional basis.
We can give an alternative definition for the norm of

T[(m.—l,nj)j] by defining the following norming set. Let

w [(m-_l,nj)j] C cyo(w1, C) be the minimal set of cyy(w;, C) satisfying
the following properties:
(i) For every a < w,e, € W[(m-_l,nj)]. If ¢ € W[(m-_l,nj)] and
0 =A1+iu 1s a complex number with A and p rationals and
61 < 1,69 € W[(m;*,n)]:
(i) For every ¢ € W[(m-_l,nj)] and E C w,E¢ € W[(m-_l,nj)];
(111) For every j EN and ¢; <...< qbnj in W[(m-_l,nj)],(l/
m) S, i € W[(mym))l;
(1v) W[(m-_l, nj)] is closed under convex rational combinations.

Theorem (4.2.11) [4]: (Basic inequality for R.LS.). Let (x,), be a
(C,€)-RLS. of X,,(C) and (by)k € coo(C,N). Suppose that for some
Jjo € N we have that for every f € ¥, (C) with weight w(f) = m; and

(2

keE
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Then for every f € K, (C) of type I, there exist gy, g, € coo(C, N) such

that
‘f <z bxxk> < C(g1t+ 92) <z|bk| ek);
kEE

kEE
Where g, = hyor g, = ef + hy,t € supp hy, and h, € W[(mj_l,4nj)] such

that hy € convg {h € W[(mj_l,l}nj)]: w(f) = W{f}} and m; does not appear

as a weight of a node in the tree analysis of hy, and |||l < €.

The following results are consequences of the basic inequality.
Proposition (4.2.12) [4]: Let f € K, (C) or f € W[(m ,4n; )] be of

type 1. Consider jEN and | € [;,nj]. Then for every set F €
j
Coo(w1, C) of cardinality 1,

‘ <1 F ) < {W(f]) j’ l W( ) o
i k w(f) Fwif) a

If the tree analysis of f does not contain nodes of weight m;, then

1 2
P72 <7
a€EF
Proposition (4.2.13) [4]: Let (x)y be a (C,e)-RLS. of X, (C) with

J

1 %o,
€ < n]-’l € [mj,n]] and let f € K, (C) be of type I. Then,

" l ( 5¢ , ifw(f) <m,,
‘ ; <72xk> B { Vg(f)mé-c
k=1 —+—, if wif) =m,.
()

Consequently, if (x;)k_, is a normalzzed (C,€)-R.LS. with € < ni,l €
2j

Ny
[mz nzj] then

l

1

k=1

Proof. Let (x)i be a (C,€)-RLS. and take b =(7,...,7,0,0,...) €

coo(C, N). It follows from the basic inequality that for every f € ¥, (C)

1
— <
mzj

2C
< —
m2]
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of type I, there exist hy € W|(
g2 € coo(N) with [|g]lo < € such that

(2

k=1

(3

Moreover,

< llg2llc

Now by the estimates on the auxiliary space T[(

1 m]
+—)<C
n;

Proposition (4.2.12), we have
@Ifw(f) <my,

1 1 2
‘f (T,Z_lx"> SC<7+w(f>mj

O fw(f) =my,

l
1 1 C 1
‘f<12> C( G )
Andnotice
©) < 25 ifw(f) < my;,

w(f)mZJ myj

C+C:

mzj mzj mzj

(d)m‘l'n—zj

< C(eif +h1 +g2)<

1
10,

k=1

1

1
<e —.

n;

2 l)

Tothm Ty

c_ ¢
o(h "

2 ifw(f) = my;.

We conclude from the fact that ,, (C) is the norming set:

l

1
7%

k=1

< 2C/my;.

m;*, 4n;)| with w(hy) = w(f),t €N and

l
1
T z €k>.
k=1

m]_1,4nj)j] of

3C
w(f)m;

For the proof of the second part of the theorem, let (x;)._; be a

normalized (C,€)-R.1S. withe < —,[ €

N2j

[ nzj] For every k < [, we

consider x; € X, (C), such that x; (x;) = 1 and ran x, € ran xj, then

52 : * (1 l ) ml ml =
= - € C)and x*(-2k= . Hen <
mszk_l k w1( )a le_lxk > ence, ——

1¢i
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A.4. Proof of Step 11
Now we introduce another type of sequences in order to construct

the conditional frame in %wl((]). In fact, this space has no unconditional
basic sequence.
Definition (4.2.14) [4]: A pair (x, ¢) with x € X, (C) and ¢ € K, (C)
is called a (C, j)-exact pair when:

@ llxll < €, w($) = m; and p(x) = 1.

(b)For each ¥ € X, (C) of type I and w(x) = m;i # j, we have

(2, i<
pelsi'e
km_j’ ifi>j.

Proposition (4.2.15) [4]: Let (x,), be a normalized block sequence of
X,,(C). Then for every j €N, there exists (x,¢) such that x €
spang (x,), ¢ € K, (C) and (x, ) is a(6, 2j)-exact pair.

Proof. Fix a normalized block sequence (x,), of X, (C) and a positive
integer j. By Proposition (4.2.8) [4] there exists (y;,),, a normalized
(3,1/n2;)-R.LS., in spang(x,). For every 1 <i < mn,; and € > 0, we
take ¢; € K, (C) such that ¢;(y;) > 1 — €, and ¢; < 1.

Let x = (my;/n) T yi and ¢ = (1/my)) 52 ¢ € Ko, (©). By
perturbating x by a rational coefficient on the support of some y; we may
assume that then ¢(x) =1 and using Proposition (4.2.13) [4] we
conclude that (x, ¢) is a (6, 2j)-exact pair.

Definition (4.2.16) [4]: Let j € N. A sequence (xl, b1, -- Xy ¢n2,-+1)
is called a (1, j)-dependent sequence when:

(DS.1) supp x1 U supp ¢, <...< supp X201 Y SUDD ¢2nj+1.
(DS.2) The sequence @ = (¢4,..., ¢n2j+1) is a 2j + 1-special sequence.

(DS.3) (x;,¢;) 1s a (6,2];)-exact pair. # supp x; < m2j+1/n§j+1 for
every 1 <i <ny; + 1.

(DS.4) For every (2j + 1)-special sequence ¥ = (lpl,...,lpnsz) we

have that
U supp x; N U supp Y; = 0,

Kd)'lp<i<l¢'l}l Kd)'lp<i<l¢'l}l
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where K¢ w, A¢ y are numbers introduced in Definition (4.2.4).
Proposition (4.2.17) [4]: For every normalized block sequence (yy,), of
X,,(C), and every natural number j there exists a (1,])-dependent

sequence (xl,qbl,...,xn2j+1,q5n2j+1) such that x; is in the R-span of

(Indn forevery i = 1,..., 1341
Proof. Let (y,,),, be a normalized block sequence of X, (C) and j € N.

We construct the sequence (xl, ¢1,...,xn2j+1,¢n2j+1) inductively. First
using Proposition (4.2.15) we choose a (6, 2j;)-exact pair (x1,¢$4) such
that j; is even, my; > ns j+1 and x; € spang(yp)y. Assume that we
have constructed (x,¢4,...,%;_1,¢;—1) such that there exists
(p1,---,p1—1) satisfying
(1)  supp x; Usupp ¢, <...< supp x;_1 U supp ¢;_,, where
x; € spang(y,,),, and (x;, @;) is a (6, 2j;)-exact pair.
(i1) For
1<i <l-1,w(¢;) =

O-Q ((pblr W((pbl)r P1s--vs ¢i—1; W((pbi—l)r pi—l)'
(iii) For 1<i <l—1,p; =>max{p;_1,pr,}, where F; =

Uk=1 Suppéy U supp x.
To complete the inductive construction choose
Pioy = Max Py, P,y 1341 #SUPD X121 |
and 2j;, = ag(gbl,w(gbl),pl, : "'¢z—1'W(¢z—1)'pz—1)- Hence take a (6, 2j;)-
exact pair (x;,¢;) such that x; € spang(y,), and suppx;_; U
suppx;supp ¢,. Notice that properties (DS.1), (DS.2) and (DS.3) are

clear by definition of the sequence and (DS.4) follows from (iii) and
(TP.3).

Modifying a little the previous argument we obtain the following:
Proposition (4.2.18) [4]: For every two normalized block sequences
n)n and (z,)y of %, (C), and every j €N there exists a (1,j))-

dependent sequence (xl,¢1,...,xn2j+1,¢n2j+1) such that x5_4 €

spang (¥n) and x5, € spang(z,) for every L = 1,...,n541.
Another consequence of the basic inequality is the following
proposition.
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Proposition (4.2.19) [4]: Let (X, (1,0 Xy, Bnyyey) be @ (L,))-

dependent sequence. Then:

. 1 n2j+1 1

1 ). Al =
M Nyjyq T1=1 l Majpr’

.. 1 n2]+1 l+1 1

11 T 1 :
(i) m— -, (=1 I

Proof. The first inequality is clear since the functional ¢ =1/
Myj41 an“l ¢; € ¥,,(C) and qb(z 2 x) = Nyj+1/Myj41. The second
is obtained by the basic inequality.
Now we can give a proof of Step II.
Proposition (4.2.20) [4]: Let (y,,),, be a normalized block sequence of
X, (C). Then the closure of the real span of (yn)p is H.I
Proof. Let (y,), be a normalized block sequence of X,, (C). Fix € > 0
and two block subsequences (z,),, and (w,), in spang(y,),. Take an
integer j such that m,;,,€ > 1. By Proposition (4.2.18) there exists a
(1,j)-dependent sequence (x1,¢1,...,xn2j+1,¢n2j+1) such that x,;_; €
spang(z,) and x,; € spang(w,,).
n

We define z = (1/n;j41) X 2]12)dd) xpand w=1/nyj44 le’lzven)x
Notice that z € spang(z,) and w € spang(w,). Then by Proposition
(4.2.19) we get |[z+w] =1/my,,and |z —w| = 1/m§j+1. Hence
|z —wl|| < €llz + w]l.
A.5. Proof of Step I11
Definition (4.2.21) [4]: A sequence (zl, PrreeerZny;py ¢n2]+1) is called a
(0, j)-dependent sequence when it satisfies the following conditions:

e (0DS.1) The sequence @ = (¢1,...,¢n2j+1) is a 2j + 1-special

sequence and ¢;(z;) = 0 forevery 1 < i,k < nyj44.
e (0DS.2) There exists {1,01, . .,l/)nzj+1} € X,,(C) such that

wp,) = wigy), # supp z; S w(p; + 1) /n3;, and (2,9,
(6,2j;1)-exact pair for every 1 < i < nyjyq.
e (0DS3) If H=(hy,...,h

sequence, then

) is an arbitrary 2j + 1-special

N2j+1
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U supp z; | N U supp h; | = 0.

Kp g<i<A Kp g<i<A
®H @ H ®H @,H

Proposition (4.2.22) [4]: For every (0, j)-dependent sequence

(xl, b1, -, Xnyjis ¢nz,~+1) we have that

1 Naj+1 1
N2j+1 =1 Myjtq

Proposition (4.2.23) [4]: Let (y,),, be a (C,€)-R.LS., Y = spanc(y,),
and
T:Y - X, (C) an R-linear bounded operator.
Then lim,,_,c, d(Ty,, Cy,,) = 0.
Proof. Suppose that lim,,_. d(Ty,, Cy,,) # 0. Then there exists an
infinite subset B € N such that inf, ¢z d(Ty,, Cy,,) > 0. We shall show
that for every € > 0 there exists y € Y such that ||y|| < €||Ty||, and this
is a contradiction.
Claim 1. There exists a limit ordinal y,,A € N infinite and § > 0 such
that

inf d(Py,Ty,, Cy,) > 6

neA
To prove this claim we observe that

Yo = min {y <w;:IA € [N]m%relgd(PyTyn, Cy,) > O}
is a limit ordinal. In fact, by the assumption the set on the right hand side
is not empty. And if y, is not limit, then we have yy = f + 1. The
sequence (yy,)y is weakly null (because (e, ), is shrinking) and then
%1_1)1010 e,[;+1 Ty, =0

And for large n and every A € C
”PﬁTYn - Ayn” = ||P[3+1T3’n - ’13’11” - ||eE+1T3’n” 20—
>6/2,
which is a contradiction.

eE+1Tyn|

Claim 2. Fix yoand A € N as in Claim 1. Then there exist a sequence
ny < ng <...in A, a sequence of functionals f,, f3,... in X, (C) and a

sequence of ordinals y; <y, <...<Yq such that
(@) d(P[yk'yk+1]Tynk’ Cynk) =06/2;
(1) fk Ty, = 6/2;
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Qi) feOmy) = 0;
(1v) ranfy S ranTyy, ;
(V)suppfi N supp y, = @ whenm # k.
To prove this claim, let ¢ = supmaxy,. We analyze the three
possibilities for ¢:
Case (a): ¢ < y,. Let ny = min A and choose ¢ < y; < ¥, such that
1PYoTYn, = By, Tym,|| < 6/2,
hence, d(Pleynl, Cynl) > § /2. By minimality of y, we have
inf d(Py1Tyn, Cyn) = 0,
neA
then we can choose n, > n; in A such that d (Pleynz, Cynz) < §/2 and
this implies that

d (B, = By )TYn,C¥n, ) > 6/2
Approximating the vector (P)/o — P),l)Tyn2 choose Yy > ¥, > 4 such that
||(Py0 — P)/1) X Tyn, || is small in order to guarantee that
APy, y,1TVn, Cyn,) = 6/2.

Using the complex Hahn—Banach theorem, there exists g, € By: L(©) such
that

(a) gZ(P[yl,yz]Tynz) >6/2,

(6) g2(yn,) = 0,
and by Proposition (4.1.3) [4] we can choose h, € K, (C) such that
hy(Ply,y,1TYn,) > 6/2 and h;(yy,) is arbitrarily small. Replacing h, by
ah, + Bk, where |a| + |B| =1, kz(ynz) is close enough to 1, and
k, € ¥, (C) we may assume that h, (ynz) = 0.

Let f, = haPly, y,10ran Ty, € Ko, (C). Again by minimality of y,,
there exists n; > n, in A such that d(Py2 Tyn,, Cyn3) < 6/2 and we can
choose yy > y3 > y, satisfying

Ad(Pry,ys1TVn, Cyn,) > 6/2.
Again by Hahn—Banach theorem and by Proposition (4.1.3) [4] there
exists a functional hy € K, (C) such that

(1) h3(Pry,y1TVn,) > 6/2;
(i) hs (¥n,) = 0,

then we define f; = h3P| € ¥,,,(C). The previous argument

Y2, ¥2lnranTyp,

gives us the way to construct the sequences of Claim 2. Properties (1)—(v)

98



are easy to check, in particular property (v) 1is true because
min supp f, >§ > max supp yy, for every positive integers k, L.

Case (b): ¢ > y,. In this case we start by picking n; € A such that
min supp ¥,, > ¥o. Then we repeat exactly the same argument as in
Case (a).

Case (¢): ¢ = y,. We basically repeat the same argument of Case
(a) with the additional care of maintaining property (v) true. That is, each
time we choose the ordinal yj .1 (With Yo > Yi+1 > Yi) We take it such
that yy 41 > max supp yy, , -

Claim 3. There exists a (0, ))-dependent sequence (Zl, ¢1,...,Zn2j+1)

such that

(1) z; € X forevery 1 < i < nyjyq;

(i)yran ¢, € ranTy; and ¢, (Tz,) > 6/2.

Let j with my;,4 > 24/€8. Choose j; even such that m,; > n§j+1
(see definition of special sequence) and F; & A with #F; = n,; such that
U, ker, 182 (3, 1/n§j ) -R.L.S. Then define

My
mhzflEiK (C) and 2z, = nzflzyk

IEF; 1 jeR,

1
observe that w(gy) = my;,, ¢1(Tzy) = EZiEFlfi(ZkEFl Tyy) > 6/2
1
1
and ¢1(Tz;) = EZieﬂfi(Zkeﬂ ) = 0. Select
1

p1 = max{p;, o (supp z, U supp Tz, U supp ¢1),n5;,1# supp z, },
denote 2j, = JQ(¢1,m2j1,p1). Then take F, & A with #F, = n,; and
F, > F; such that (yk)k € F, is (3, 1/n§j )-R.LS. and define
b, = Zflevcwl(@ and 7, =—22 "y,

Maj, & Naj, =

So we have ¢; < ¢, qbz(TZZ) > § and ¢,(z1) = ¢p,(z,) = 0. Pick
p2 = max{pl, Do (supp z, U supp z, U supp Tz, U supp Tz,
U supp ¢1 U supp )n3;.1# supp z,}

and set 2j3 = JQ(¢1,m2j1,p1, ¢2,m2j2,p2). Continuing with this

procedure we form a sequence (Zl, b1, -- 12y ¢n2,-+1)- Now we check

that this is a (0, j)-dependent sequence.
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Property (0DS.1) is clear, because of the construction of the
functionals their weights satisfy w(¢; + 1) = Mg, @, Where @; =
(P, w(P1),p1,---, i w(i), pi)-

Property (0DS.2).We proceed to the construction of the sequence
{l/)l,...,l/}nsz} in K, (C) such that (z;,v;) is a (6,2);)-exact pair and
w(@;) =w(¢;)) for every 1<i<mnyj,,;. The other -condition
# supp z; < w(d;y1)/n5 j+1 1s already obtained by the construction of
the weights. For each z; there exists a subset F; & A with #F; = n,;, such
that z; = (my;,/N2;,) Xker, Yn, Where (V)i € Fy is a (3,1/n§ji)R.I.S.
Now we follow the same arguments as in Proposition (4.2.15). For every
k € F; we take f, € X, (C) such that fnk(ynk) =1 and f, < fr +1-
Then ¥; = (1/my;,) Xker, fn, € Ko, (C) and (z;, ¢;) is a (6,2);)-exact
pair.

Property (0DS.3). Let H = (hl,... h ) be an arbitrary 2j + 1-

TN
special sequence. We consider two cases: (a) Suppose that max supp z, <
p’lcp,H‘l

max supp ¢ for every 1 < k < nyj;,,. Then supp z, S supp ¢,1¢H_1

for every ko y < k < A . Then for the second part of (TP.3) we obtain the
desired result. (b) Suppose that max supp ¢, < maxsupp z, for every

1<k <nyj;,. Then supp ¢ S supp Z,1¢H_1p’1¢ﬂ‘1 for every ko py < k <
Ae , and the result follows from the first part of (TP.3).
Fix a (0, j)-dependent sequence as obtained in the previous claim,

and define
Nn2j+1 Nn2j+1
z= (1/n2j+1) z zx and ¢ = (1/m2j+1) z by
k=1 k=1
N2j+1
Then ¢(Tz) = (1/nyj41) 2,2, ¢x(T2) = 6/myj,,  and lz]| <

12/m§j+1. Hence, [[Tz[| = 6/my;q = 6myj44ll2]l/12 > €]|z]|, and this

completes the proof.
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List Of Symbols

Symbols Page No
H” Hardy space 1
Sup Supremum 2
Max Maximum 2

lo Hilbert space 5
Dim Dimension 6
Dist Distance 7

Inf Infimum 7
Card cardinality 11

L Lebesgue space 16

I? Hilbert space 17

) Direct sum 17
Isom Isomorphism 17
Sym Symmetry 19

Hamm Hamming 19

® Tensor product 20
Ker Kernel 24
Hom Homomorphism 25

LP — spaces Lebesgue space 28

Vr Volume ratio 47

€4 Hilbert space 68
Supp Support 71
R.L.S Rapidly increasing 74
MIN minimum 91

ran range 93
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