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ملخص البحث 

تعتبر تقانة اللیزر واحدة من التقنیة الواسعة الانتشار التي تستخدم في العدید من التطبیقات. 

حیث جذبت الإنتباه إلى تطویر آلیات تؤثر في تولید اللیزر, مثل لیزر الإلكترون الحر الذي

یستند على النسبیة الخاصة وشدة المجال المغناطیسي. ولكنھ في الإطار النظري یعاني من

القصور بسبب صیغة النسبیة الخاصة التي تتجاھل تأثیر المجال على الكتلة ومعامل إینشتاین.

ھذه التعقیدات حفزت للبحث عن نموذج جدید لتفسیر ھذا القصور النظري. في ھذا البحث 

استخدمت النظریة النسبیة الخاصة المعممة لإشتقاق صیغة الطاقة بإستخدام قانون حفظ 

الإندفاع ( الزخم ) بالإضافة إلى قانون حفظ الطاقة. 

تم الحصول على تأثیر شدة المجال المغناطیسي على شدة شعاع اللیزر نظریاً بإستخدام 

النظریة النسبیة الخاصة المعممة. ھذه العلاقات النظریة كانت قریبة ومتطابقة مع النتائج 

التي تم  الحصول علیھا تجریبیاً مثل لیزرات البلازما والغازات وأشباه الموصلات.  
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Abstract

Laser technology recently becomes one of the widespread technology in many
applications. This attracts attention to generation of laser and the mecha-
nisms affecting this generation. One of the recent developments in lasing
is the so-called free-electron laser (FEL) which is based on special relativity
(SR). FEL shows that lasing intensity is affected by magnetic fields. However,
the theoretical framework of this effect is complex and cannot explain the
effect of the magnetic fields on lasers produced by materials. These setbacks
motivates us to search for a new model based on SR to account for these the-
oretical defects. In this work, generalized special relativistic mass expression
is derived by using the momentum conservation law. Moreover, a new energy
conservation law is also obtained. Within this generalized special relativistic
framework, the effect of magnetic fields was found theoretically. These theo-
retical relations agree with the empirical ones for plasma, discharge gas and
semiconductor lasers.
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Chapter 1

Introduction

1.1 Laser and its Importance

Light is known as one of the most popular energy source. It
stimulates human eye, therefore it is used for vision. It is also used to produce
electricity by solar cells. Some electronic devices are used as light sensors for
security and control reasons. Recently scientists discovered that light can be
amplified to produce energetic concentrated beam of light known as laser.
Laser is now a days used for a wide variety for applications. In the middle
of the 1970s John Madey and colleagues constructed the first free electron
laser operating in the infrared wavelength range [1, 2]. Lasers are devices
that amplify or increase the intensity of light to produce a highly directional,
high-intensity beam that typically has a very pure frequency or wavelength.
They come in sizes ranging from approximately one-tenth the diameter of a
human hair to that of a very large building. Lasers produce powers ranging
from nanowatts to a billion trillion watts (1021W ) for very short bursts. They
produce wavelengths or frequencies ranging from the microwave region and
infrared to the visible, ultraviolet, vacuum ultraviolet, and into the soft-X-ray
spectral regions. They generate the shortest bursts of light that man has yet
produced, or approximately five million-billionths of a second (5× 1015sec).
Lasers are a primary component of some of our most modern communication
systems and are the probes that generate the audio signals from our compact
disk players. They are used for cutting, heat treating, cleaning, and removing
materials in both the industrial and medical worlds. They are the targeting
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element of laser-guided bombs and are the optical source in both supermarket
checkout scanners and tools that print our microchips.

The FEL is really different from conventional lasers, because, in-
stead of exploiting the stimulated emission from atomic or molecular systems,
it makes use of the radiation emitted from a relativistic accelerated elec-
tron beam to obtain radiation amplification, through the interaction of the
electron-beam with a spatially periodic static magnetic field. [3]. Also it is
different in many ways from other types of lasers. As the name suggests, the
radiation from the FEL is produced by a beam of free or unbound electrons.
One of the most attractive features of the FEL is its tunability, as well as the
Other important features of the FEL are its high power capabilities, tunabil-
ity, and its relatively high efficiency. Efficiencies of transferring this electron
kinetic energy to FEL radiation have reached 40 percent at millimeter-to cen-
timeter wavelengths. These unique features are desirable for a wide range of
applications. For example, there is a need for tunable, efficient infrared to ul-
traviolet sources for biomedical and photochemical applications, laser isotope
separation, materials processing, and physics research. High power sources
at these wavelengths have a number of military applications. There are also a
number of applications at longer wavelengths. Plasma heating at the electron
cyclotron resonance in high-field fusion devices requires efficient millimeter
to submillimeter sources at powers > 10MW . High-resolution, long-range
radar also needs powerful millimeter to submillimeter sources. FELs are also
being examined for various advanced particle accelerator concepts, such as
high-frequency, high-accelerating-gradient rf accelerators.

The interaction between the electron beam and the output radiation
field in an FEL is mediated by a periodic wiggler magnetic field. In conven-
tional terminology, the periodic magnetic field in synchrotron light sources
is referred to as an undulator while that used in FELs is called a wiggler,
although there is no fundamental difference between them. As the electron
beam traverses the wiggler field it emits incoherent radiation. It is necessary
for the electron beam to form coherent bunches in order to give rise to the
stimulated emission required for a free-electron laser [4]. This can occur when
a light wave traverses an undulatory magnetic field such as a wiggler because
the spatial variations of the wiggler and the electromagnetic wave combine
to produce a beat wave, which exerts a slowly varying ponderomotive force
on the electrons. It is the interaction between the electrons and this beat
wave which gives rise to stimulated emission.
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The special theory of relativity introduced by Albert Einstein who
first put forward a coherent and comprehensive solution in his 1905 paper ”On
the electrodynamics of moving bodies”, which introduced the special theory
of relativity [5]. The special relativity, be able to derive its basic equations
of Lorentz transformations, from the postulates of special relativity [5].

1.2 Research Problems

Despite the success of laser theories in explaining the amplification, but still
there are some problems. A theoretical framework showing the effect of fields
on the laser intensity is not well established. This may be related to the fact
that the effect of fields on physical parameters. Controlling amplification
is not recognized. This needs a theory showing effect of fields on physical
parameters like, mass, length, and time.

1.3 Literature Review

Many attempts are made to see how laser amplification and intensity
are affected by physical properties of matter as well as by fields. In a models
developed by A. Hagar Abed Rahaman and others [15]. Matter polariza-
tion as well as friction affect amplification. In free electron laser models the
magnetic field affect laser amplification. For example H. P. Freunda and W.
H. Miner, Jr. have been studied the Efficiency enhancement in seeded and
self-amplified spontaneous emission free-electron lasers by means of a tapered
wiggler [6]. Luqi Yuan, Anatoly A. Svidzinsky and Marlan O. Scully, pro-
duced transient lasing without inversion: generation of high frequency light
by driving low frequency transition[8]. This attempts which lead to generate
free electron laser. The important features of the FEL are its high power
capabilities and its relatively high efficiency. Because there is no physical
lasing medium which must support the radiation field, problems of heating
or breakdown which plague conventional solid or gaseous lasers are absent.
Enormous powers can be deposited in relativistic electron beams propagat-
ing in vacuum. Some researchers shows that laser intensity is affected by the
magnetic field [55]. This effect exists in lasers produced by a medium.
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1.4 Aim of the Work

The generalized special relativity is one of the a new theory that shows the
effect of fields on mass, length and time. The aim of the research is to utilize
the generalized special relativity (GSR) to explain the effect of fields on lasing
intensity and amplification factor.

1.5 Presentation of the Thesis

This thesis consists of sex chapters, chapter one represent the introduction,
chapter two is concerned with laser amplification, chapter three is devoted
for special relativity (SR). While in chapter four, free electron laser with
electromagnetic field. Also chapter five, cover literature review . In chapter
six the contribution, discussion and conclusion will be given.
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Chapter 2

Laser Amplification

2.1 Introduction

In this chapter will be discussed the amplification of light which is affected
by three processes, emission processes as well as absorption of electromag-
netic waves in medium. Will be derived the equation of exponential growth
or absorption of an incident light beam passing through medium based upon
specific condition of both the beam and the medium. The specific condition
which include the beam frequency, population inversion population densities
of the upper and lower laser levels. The conditions associated with amplifi-
cation or gain coefficient for making laser beam.

2.2 Transition and Absorption of light

Let us consider a two-level atomic system as shown in (Fig:2.1) in the pres-
ence of an electromagnetic field of frequency ν ∼ E2−E1

h
an atom can undergo

a transition from state 1 to 2, absorbing in the process a quantum of exci-
tation (photon) with energy hν from the field. If the atom happens to be
in state 2 at the moment when it is first subjected to the electromagnetic
field, it may make a downward transition to state 1, emitting a photon of
energy hν. Let us now assume that the atom is initially at level 2. Since
E2 > E1, the atom tends to decay to level 1. The corresponding energy dif-
ference E2−E1 must therefore be released by the atom. When this energy is
delivered in the form of an electromagnetic (em) wave, the process is called

5



spontaneous (or radiative) emission. The frequency ν0 of the radiated wave
is then given by the well known expression [9, 10]:

ν0 =
E2 − E1

h
(2.2.1)

Where h is Planck’s constant Let the energy density per unit frequency be
ρ(ν). We assumed that the induced transition rates per atom from 2 → 1
and 1→ 2 are both proportional [10].

(W
′

21)induced = B21ρ(ν)

(W
′

12)induced = B12ρ(ν), (2.2.2)

where B21 and B12 are constants. The total downward 2→ 1 transition rate
is the sum of the induced and spontaneous contributions

W
′

21 = B21ρ(ν) + A21 (2.2.3)

where A21 is the spontaneous transition rate. The total upward (1 → 2)
transition rate is

W
′

12 = (W
′

12)induced = B12ρ(ν) (2.2.4)

Since the magnitudes of the coefficients B21 and B12 depend on the atoms
and not on the radiation field [10].

Figure 2.1: Schematic illustration of the three processes: (a) spontaneous
emission, (b) stimulated emission, (c) absorption

Source: Orazio Svelto, David C. Hanna , Principles of Lasers , Springer P 2 (1998).
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2.3 Spontaneous Emission(A21)

The atoms at energy level E2 decay spontaneously to E1 as shown in (fig:2.2)
adding photon of energy hν = E2−E1 to radiation field ( photon population).
at the same time, the population N2 level E2 decreases. the rate the decrease
is proportional to the population at any time that is,(

dN2

dt

)
spont

= −A21N2 (2.3.5)

If spontaneous emission alone takes place, the solution to this equation yields

N2(t) = Nt(0)e
−A21t (2.3.6)

The N2 population decreases with a time constant τ = 1
A21

depleting the
number N2 at level E2 at a rate N2/τ or A21N2 and increasing the number
N1 at level E1 at the same rate. the constant τ is referred to as the sponta-
neous radiative lifetime of level E2, the coefficient A21 is referred to as the
radiative rate usually measured in unit of S−1 the coefficient A21 is constant
characteristic of the atoms.

Figure 2.2: Spontaneous Emission

2.4 Stimulation Emission (B21)

In this process as shown in (fig:2.3) the rate at which the N2 atoms are
stimulated by the radiation field (photon) to drop from level E2 to level

7



E1 is proportional to both the number of atoms present and the density of
radiation field. (

dN2

dt

)
se

= −B21N2ρ(ν) (2.4.7)

Where the photon density is expressed as function of frequency by the factor
ρ(ν)

Figure 2.3: Stimulation Emission

2.5 Absorption (B12)

Absorption is also stimulated process, since it depends on the strength of the
photon field. In effect, stimulation absorption and stimulated emission are
inverse processes. The rate at which N1 atoms are raised from energy level
N1 to N2 is given by: (

dN1

dt

)
abs

= −B12N1ρ(ν) (2.5.8)

The coefficient B12 is a constant characteristic of the atom. It turns out B12

and B21 are closely related. from (fig:2.4) The rate of change of atoms in
level E2 is by:

dN2

dt
= 0 = −N2A21 −N2B21ρ(ν) +N1B12ρ(ν) (2.5.9)

8



Figure 2.4: Absorption

The spectral energy density ρ(ν) of blackbody radiation [9, 10].

ρ(ν) =
8πhν3

c3
1

e
hν
kT − 1

(2.5.10)

and for the boltzmann distribution of atoms between the two energy levels,

N2

N1

= e−(E2−E1)/kT = e−
hν
kT (2.5.11)

In eqs (2.5.10) and (2.5.11) ν is frequency of radiation such that hν = E2−E1,
T is absolute temperature, and K is boltzmann constant. solving Eq:(2.5.9)
for ρ(ν) and substituting for N1

N2
from Eq:(2.5.11) we obtain [11]

ρ(ν) =
A21

B12(
N1

N2
)−B21

=
A21

B12e
hν
kT −B21

(2.5.12)

Equating this expression for ρ(ν) to that given in Eq:(2.5.10)

A21

B12e
hν
kT −B21

=
8πhν3

c3
1

e
hν
kT − 1

(2.5.13)

Rearranging to isolate multipliers of the term e
hν
kT(

A21

B21

− 8πhν3

c3
B12

B21

)
e

hν
kT −

(
A21

B21

− 8πhν3

c3

)
= 0 (2.5.14)
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Then,
A21

B21

=
8πhν3

c3
(2.5.15)

and
B12 = B21 (2.5.16)

The last two equations were first derived by Einstein [12]. We can, using
Equation (2.5.15), rewrite the induced transition rate (2.5.8) as

dN1

dt
=

A21c
3

8πhν3
ρ(ν) =

c3

8πhν3tspont
ρ(ν) (2.5.17)

where tspont = 1/A21 is the spontaneous lifetime of the atom. Equation
(2.5.17) gives the transition rate per atom due to a field with a uniform
(white) spectrum with energy density per unit frequency ρ(ν).

2.6 Light Amplification and Population In-

version

Light amplification is achieved by stimulated emission. Ordinary optical
materials donot amplify light. Instead, they tend to absorb or scatter the
light so that the light intensity out of the medium is less than the intensity
that went in. To get amplification you have to drive the material into a
non-equilibrium state by pumping energy into it as shown in fig:(2.5). The
amplification of the medium is determined by the gain coefficient γ which is
defined by the following equation [13].

I(z + dz) = I(z) + γI(z)dz (2.6.18)

= I(z) + dI, (2.6.19)

where I(z) represents the intensity at a point within the gain medium. The
differential equation can be solved as follows

dI = γIdz

∫ I

I0

dI

I
=

∫ z

0

γdz

10



ln I − ln I0 = γz

ln

(
I

I0

)
= γz

I

I0
= eγz

I = I0e
γz (2.6.20)

The amplification coefficient β also can be derived from the Lambert-beer
law [9, 14]

I = I0e
βz, (2.6.21)

where, I is the intensity transmitted through the sample, I0 is the incident
intensity and z stands for the distance traversed by radiation in the medium.
Rate of atoms in level 1 and 2 can be given as

dN1

dt
= (−B12n1 +B21n2)ρ(ν) + A21n2

dN2

dt
= (B12n1 −B21n2)ρ(ν)− A21n2 (2.6.22)

At equilibrium we will have a simple balancing, in which the net change in the
number of any excited atoms is zero, being balanced by loss and gain due to
all processes. With respect to bound-bound transitions, one will have detailed
balancing as well, which states that the net exchange between any two levels
will be balanced. This is because the probabilities of transition cannot be
affected by the presence or absence of other excited atoms. Detailed balance
requires that the change in time of the number of atoms in level 2 due to the
above three processes be zero therefore; dn2

dt
= 0 thus Eq:(2.6.22) becomes:

(B12n1 − B21n2)ρ(ν) − A21n2 = 0. On the other hand the rate of electron
transition −dn2

dt
A∆z from level 2 is equal to the rate of photon emission ∆I

hf
A

through the rate A

−dN2

dt
A∆z =

∆I

hf
A (2.6.23)
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Figure 2.5: Amplification of a traveling electromagnetic wave in (a) an in-
verted population (N2 > N1) and (b) attenuation in an absorbing (N2 < N1)
medium.
Source: Amnon Yariv and Pochi Yeh, Photonics Oxford University Press, P 28 (2007).

By reviewing of Eq:(2.6.23) and neglecting the condition of the spontaneous
emission are getting

(B12n1 −B21n2)ρ(ν)A∆z =
∆I

hf
A

But since I = ρc, then,

(B12n1 −B21n2)ρ(ν)I
A∆z

c
=

∆I

hf
A

Bearing in mind that
B = B21 = B12

are getting
∆I

∆z
=
dI

dz
= B(n2 − n1)

hfI

c
(2.6.24)

Hence,

∫
dI

I
= B(n2 − n1)

hf

c

∫
dz

12



ln I = B(n2 − n1)
hf

c
z + c0

I = I0e
B(n2−n1)

hf
c
z (2.6.25)

Comparing Eqs: (2.6.21) with (2.6.25) one find that the amplification coef-
ficient β is given by [15, 16].

β = B(n2 − n1)
hf

c
z (2.6.26)
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Chapter 3

Special Relativity

3.1 introduction

In this chapter will be discussed fundamental principles of the
special theory of relativity, and deduce some of the consequences of the the-
ory and postulates. The special theory of relativity gives the most basic
foundation that underlies all physical laws in inertial systems of reference.
Inertial systems of reference are those systems of reference for which the law
of inertia holds. According to the law of inertia or Newton’s first law, a
material particle in an inertial system of reference, which is free from exter-
nal influences, will stay at rest or continue to move in a straight line with
constant velocity. Before we start to discuss the essential parts of relativistic
electromagnetic theory, we briefly summarize the historical background from
which the special theory of relativity emerged. The second law of the Newto-
nian mechanics, which had occupied the absolute position in physics before
the latter half of the 19th century, is a basic law of motion which holds in an
inertial system of reference. However, any system of reference moving with
uniform velocity relative to an inertial system of reference is also another
inertial system of reference, because the law of inertia holds in the latter sys-
tem. Thus it follows that there are infinite sets of inertial systems of reference
and Newton’s second law holds in all these inertial systems. This principle
is called the Galilean principle of relativity. In other words, the form of
Newton’s second law is kept invariant under the coordinate transformation
referred to as the Galilean transformation. For the later discussion, it should
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be noted that the usual addition theorem of velocities holds for the Galilean
transformation. On the other hand, the basic law to describe electromagnetic
phenomena is the Maxwell equations established by Maxwell in 1864. With
the aid of his equations, he predicted the existence of electromagnetic waves,
showing that the light is a kind of electromagnetic wave. Special relativity
(SR) or the ’special theory of relativity’ was discovered by Albert Einstein
and first published in 1905 in the article ”On the Electrodynamics of Mov-
ing Bodies”[17, 18] . It replaced Newtonian notions of space and time and
it incorporates Maxwell’s theory of electromagnetism. The theory is called
”special” because it applies the principle of relativity to the ”restricted” or
”special” case of inertial reference frames in ’flat’ spacetime where the effects
of gravity can be ignored. The special relativity is come from the published
of the article entitled ” on the electrodynamics of moving bodies written by
Einstein. Where he was reformulated the notions of space and time starting
from two postulates [19, 20].

3.2 Postulates of Special Relativity

Einstein published the article entitled On the electrodynamics of moving
bodies (1905), where he reformulated the notions of space and time starting
from two postulates [18].

1. The same laws of electrodynamics and optics will be valid for all frames
of reference for which the equations of mechanics hold good. (Principle
of relativity)

2. Light is always propagated in empty space with a definite velocity c
which is independent of the state of motion of the emitting body.

The postulates refer to the validity of Maxwells laws in all inertial frames. In
this way, Einstein includes Maxwells laws in the set of fundamental laws sat-
isfying the Principle of relativity and eliminates any possibility of detecting
the state of (absolute) motion of an inertial frame by means of electromag-
netic experiments such as the phenomena of electrodynamics as well as of
mechanics possess no properties corresponding to the idea of absolute rest.
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3.2.1 Einstein Postulates

Einstein based the special theory of relativity on two postulates [18].

(A) The laws of nature are the same in all inertial reference frames.

(B) The speed of light is a finite constant that is the same in all inertial
frames.

3.3 Galilean Transformations

The Galilean transformation is the transformation which connects one iner-
tial frame with another. consider two inertial frames S and S

′
moving to

positive x-axes with constant velocity. If S is an inertial frame then any

Figure 3.1: Two inertial frames S and S
′
in standard configuration

Source: M. P . Hobson, G . P . Efstathiou and A . N . Lasenby, General Relativity,

Cambridge University Press, P 2 (2006).

other frame S
′
with parallel axes moving with constant velocity with respect

to S is also an inertial frame. Suppose that S
′
moves along the x-axis with

constant velocity υ, and that the two frames coincide at time t = 0 if at time

16



t a given point P has coordinates (x, y, z) in S, then it should be clear from
Fig.(3.1) that its coordinates (x

′
, y

′
, z

′
) in S

′
are [21].

x
′

= x− υt
y

′
= y

z
′

= z

t
′

= t

The formulas above are said to define a Galileo transformation (which is
nothing more than a change of inertial frame). The inverse transformation
is very simple [22].

t = t
′

x = x
′
+ υt

y = y
′

z = z
′

In other words, we just have to change the sign of v. This is what one would
expect, as S is moving with respect to S

′
with velocity −v

3.4 Velocity Addition Formula

A consequence of the Galileo transformations is the velocity addition formula
is given by [23].

u =
∆x

∆t

where ∆x = x2 − x1 is the distance traveled by P between the positions x1
and x2 and ∆t = t2− t1 time interval between times t1 and t2 both measured
in S. In S

′
, P moves by ∆x

′
between positions x

′
1 and x

′
2 in the time interval

∆t
′
between times t

′
1 and t

′
2 of t

′
1, t

′
2, x

′
1, x

′
2 are related to: The values of t1,

t2, x1, x2 by a Galileo transformation [23]

t
′

1 = t1

t
′

2 = t2

x
′

1 = x1 − υt1
x

′

2 = x2 − υt2
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Therefore

∆t
′

= ∆t

∆x
′

= ∆x− υ∆t

and the instantaneous velocity of P in S
′
is

u
′

=
∆x

′

∆t′
=

∆x− υ∆t
∆t

=
∆x

∆t
− υ = u− υ

In other words, the velocity u of P in S is simply the sum of the velocity u
′

of P in S
′
with the velocity υ of S

′
with respect to S.

3.5 Lorentz Transformations

The Principle of Special Relativity states that the laws of nature are invariant
under a particular group of space-time coordinate transformations, called
Lorentz transformations [21]. A lorentz transformation is a transformation
from one system of space-time coordinates S to another system S

′
. Let us

derive a new coordinate transformation from one inertial system to another,
which replaces the Galilean transformation, on the basis of Einstein’s two
postulates for the special theory of relativity. For this purpose, we consider
two inertial systems S(x, y, z, t) and S

′
(x′, y′, z′, t′). The inertial system S

′

is assumed to be uniformly moving in the z direction with constant velocity
v relative to the inertial system S, keeping each coordinate axis parallel to
the corresponding axis of the latter, as shown in Fig.(3.2). Now, let an event
occur at the position (x, y, z) at the time t in the inertial system S, and
let the same event occur at the corresponding position (x

′
, y

′
, z

′
) and at the

corresponding time t
′
in the inertial system S

′
. Then, we try to find how the

sets of space-time coordinates, (x, y, z, t) and (x
′
, y

′
, z

′
, t

′
) are transformed

to each other under the two postulates for the special theory of relativity.
From the law of inertia, it is apparent that a uniform rectilinear motion
in one inertial system corresponds to another uniform rectilinear motion in
the other inertial system. Hence, first of all, the transformation between
two inertial systems S and S

′
must be given by linear equations in terms of

space-time coordinates [24].

x
′
= γ(x− υt), y

′
= y, z

′
= z,
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Figure 3.2: Inertial systems S and S
′

Source: Toshiyuki Shiozawa,Classical Relativistic Electrodynamics: Theory of Light

Emission and Application to Free Electron Lasers, Springer-Verlag Berlin Heidelberg,

(2004).

t
′

= γ(t− υx

c2
),

where c represents the speed of light.
The special theory of relativity, developed by Einstein in 1905, boils down
to analyzing the consequences of these transformations. The velocities with
which we usually deal are much smaller than the speed of light, |υ| << c. In
this case c is almost equal to 1, and υx

c2
is almost equal to zero. Therefore for

most applications the Lorentz transformation formulas reduce to the Galileo
transformation formulas. It is only when the velocities involved become
comparable to the speed of light that the Lorentz transformations become
important. It is easy to check that the inverse transformation formulas are
obtained

t = γ(t
′ − υx

′

c2
)
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x = γ(x
′ − υt′)

The Lorentz transformation formulas require |υ| < c given two inertial
frames, the velocity of one of them with respect to the other must be less
than the speed of light. More generally, the Lorentz transformations imply
that light moves with the same speed in all inertial frames. To check this
fact we need the relativistic velocity addition formula.

∆t
′

= γ(∆t− υ∆x

c2
)

∆x
′

= γ(∆x− υ∆t)
Consequently, the instantaneous velocity of P in S

′
is

u
′

=
∆x

′

∆t′
=

∆x− υ∆t
∆t− υ∆x

c2

=
u− υ
1− uυ

c2

In the special case when u = c we obtain:

u
′

=
c− υ
1− υ

c

= c.
c− υ
c− υ

= c

If on the other hand u = −c we get

u
′

=
−c− υ
1 + υ

c

= −c.c+ υ

c+ υ
= −c

Therefore whenever P moves at the speed of light in S it also moves at the
speed of light in S

′
.

3.6 Length contraction and time dilation

Two elementary consequences of the Lorentz transformations are length con-
traction and time dilation. Both these effects are easily derived from [24].

ct
′

= γ(ct− βx)
x

′
= γ(x− βct) (3.6.1)

y
′

= y

z
′

= z

Where β = υ
c
and γ = (1−β2)−1/2. This Lorentz transformation, also known

as a boost in the x-direction, reduces to the Galilean transformation when
β << 1.
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3.6.1 Length contraction

Consider a rod fixed in S
′
with endpoints x

′
A and x

′
B as shown in Fig.(3.3). In

S, the ends have coordinates xA and xB given by the Lorentz transformations

L0 = x
′

B − x
′

A

We want to apply the Lorentz transformation formulae and so find what
length an observer in frame S assigns to the rod. Applying the second formula
in equation (3.6.1), we obtain

x
′

A = γ(xA − υtA)
x

′

B = γ(xB)− υtB

relating the coordinates of the ends of the rod in S
′
to the coordinates in S.

The observer in S measures the length of the rod at a fixed time t = tA = tB
as

L = xB − xA =
1

γ
(x

′

B − x
′

A) =
L0

γ

Hence in S the rod appears contracted to the length

L = L0γ
−1

If a rod is moving relative to S in a direction perpendicular to its length,
however, it is straightforward to show that it suffers no contraction.

3.6.2 Time dilation

Suppose we have a clock at rest in S
′
, in which two successive clicks of the

clock (events A and B) are separated by a time interval T0 . The times of
the clicks as recorded in S are

tA = γ(t
′

A +
υx

′
A

c2
)

tB = γ(t
′

A +
υx

′
B

c2
)
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Figure 3.3: Two inertial frames S and S
′
in standard configuration. A rod

of proper length L0 is at rest in S
′
.

Source: M. P . Hobson et al. General Relativity: An introduction for Physicist,

Cambridge University Press, P 10 (2006).

Since the clock is at rest in S
′
we have xA = xB, and so on subtracting we

obtain

T = tB − tA = γT0 =
T0

(1− υ2

c2
)1/2

Hence, the moving clock ticks more slowly by a factor of (1 − υ2

c2
)1/2 (time

dilation).

3.7 Derivation of the Lorentz Transformation

Formulas

In what follows will discussed a derivation of the Lorentz transformation
formulas, due to Einstein. Einstein started with two postulates [24]:

1. Relativity principle: Any two inertial frames are equivalent.

2. Invariance of the speed of light: The speed of light is the same in all
inertial frames.
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Since the Galileo transformations are not compatible with the second pos-
tulate, we cannot expect the obvious formula x

′
= x− υt to work. Suppose

however that x
′
is proportional to x− υt, that is,

x
′

= γ(x− υt)

for some constant γ (to be determined). Since S moves with respect to S
′

with velocity −υ, the first postulate requires an analogous formula for the
inverse transformation:

x = γ(x
′
+ υt

′
)

Solving for t
′
yields

t
′

=
x

υγ
− x

′

υ

Substituting in this formula the initial expression for x
′
gives

t
′

=

(
1

γ
− γ
)
x

υ
+ γt

We now use the second postulate. Consider a light signal propagating along
the x-axis in S, passing through x = 0 at time t = 0. The position of the
signal at time t will then be x = ct. On the other hand, the second postulate
requires that the position of the signal in S

′
be x

′
= ct

′
. Therefore [24].

c =
x

′

t′
=

γ(x− υt)(
1
γ
− γ
)

x
υ
+ γt

=
x
t
− υ(

1
γ2 − 1

)
x
υt
+ 1

=
c− υ(

1
γ2 − 1

)
c
υ
+ 1

c =
c− υ(

1
γ2 − 1

)
c
υ
+ 1

c

((
1

γ2
− 1

)
c

υ
+ 1

)
= c− υ
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(
1

γ2
− 1

)
c2

υ
+ c = c− υ

take c in right hand side become(
1

γ2
− 1

)
c2

υ
= −υ

multiply above equation by 1
υ
we obtain(
1

γ2
− 1

)
c2

υ2
= −1

also multiply above equation by υ2

c2
yields(

1

γ2
− 1

)
= −υ

2

c2

Now we isolate the desired term 1
γ2 :

1

γ2
= 1− υ2

c2

Inverting this, we get

γ = ± 1√
1− υ2

c2

Taking square roots of both sides, we obtain

γ =
1√

1− υ2

c2
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3.8 Lorentz transformations Important For-

mulas

By using the factor γ = 1√
1−υ2

c2

Lorentz transformations formulas gives [24].

t
′

= γ(t− υx

c2
)

x
′

= γ(x− υt)

or

t = γ(t
′
+
υx

′

c2
)

x = γ(x
′
+ υt

′
)

The formulas of velocity addition and time dilation gives by

u
′

=
u− υ
1− uυ

c2

or

u =
u

′ − υ
1− u

′
υ

c2

∆t
′

=
∆t

γ
= ∆t

√
1− υ2

c2
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Chapter 4

Free Electron laser with
electromagnetic field

4.1 Introduction

The Free Electron Laser is essentially a device that transform the kinetic en-
ergy of an electron beam (e-beam) into electromagnetic waves radiation [25].
The relativistic e-beam passing through a periodic magnetic field oscillates
in the transverse direction and emits radiation (synchrotron radiation) con-
fined in a narrow cone along the propagation direction. The periodic mag-
netic field is provided by the so-called wiggler, an insertion device usually
realized with two arrays of permanent magnets with alternating polarities
or with two helical coils with current circulating in opposite directions. The
wavelength of the emitted radiation depends on the wiggler period, on the
strength of the magnetic field and on the electron energy. This means that
the FEL can be continuously tuned in frequency, ranging from microwaves
(λ ≃ 1cm) to X-rays (λ ≃ 1A); The physical mechanism in the free-electron
laser depends upon the propagation of an electron beam through a periodic
magnetic field. Both incoherent and coherent radiation result from the un-
dulatory motion of the electron beam in the external fields which permits a
wave-particle coupling to the output radiation. Coherent radiation depends
upon the stimulated emission due to the ponderomotive wave formed by the
beating of the radiation and wiggler fields. The wiggler field itself may be
either magnetostatic or electromagnetic in nature.
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The basic difference between magnetostatic and electromagnetic-wave wig-
glers lies in the frequency of the output radiation, which depends upon both
the wiggler period and the beam energy in both cases. In the case of a mag-
netostatic wiggler, the wavelength of the output radiation scales as λ = λu

2γ2

where λu denotes the wiggler period and γ is the bulk relativistic factor
of the beam. In contrast, the wavelength of the output radiation for an
electromagnetic-wave wiggler scales as λ = λu

4γ2 . As a result, for fixed wiggler
periods and beam energies, the electromagnetic-wave wiggler will produce
shorter output wavelengths. As a consequence, electromagnetic-wave wig-
glers become attractive alternatives to magnetostatic wigglers for the pro-
duction of short wavelengths when the electron-beam energy is constrained.
Several different configurations have been proposed, and analyzed, to make
use of electromagnetic-wave wigglers. The electromagnetic wave acts as a
wiggler which induces an undulatory motion on the beam. The electrons ex-
ecuting oscillations in the periodic magnetic field represent the active medium
of a free-electron laser. The electric field of the light wave inside the undu-
lator is written in the form, Amplification condition From Electromagnetic
Theory, According to the Electromagnetic Theory, the electric field intensi-
ties is given by [28]:

E = E0e
−k2xei(k1ωt) (4.1.1)

Thus the light intensity is given by:

I = |E|2 = I0e
−2k2x = I0e

βx, (4.1.2)

where the factor β is called amplification factor. the static magnetic field of
the undulator (that in the electron reference frame becomes an electromag-
netic field). Let us now consider what happens when other EM modes are
present during the interaction. We will observe the emission properties of
such a system and the variations of the modes intensity during the process.
The EM mode copropagating with the electrons inside the undulator, and
Electrons oscillate inside the undulator in the transverse plane xz with period
λu. In order to obtain energy exchange between the electrons and the EM
field it is necessary to have synchronism between the transverse oscillations
of the electrons and the oscillations of the Electric field of the copropagating
EM wave. This will happens if the electron, after one undulator period, will
find the electric field with the same phase. If we remind that the electron
velocity Vz < c, it is evident that this condition can be fulfilled if the mean
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longitudinal electron velocity Vz is chosen in such a way that the electron
performs a complete oscillation in the time needed for the light to cover
an undulator period plus a wavelength. This condition can be expressed as
follows [29]:

• Being te the time needed for the electron to cover an undulator period
λu

• Being tp the time needed for the EM wave to cover the distance λu +λ

the synchronism condition is expressed by the equation te = tp ; if we remind
that: te =

λu

Vz
and that tp =

λu+λ
Vf

, where Vf is the phase velocity of the EM

wave vf = ω
k
, we obtain:

λu
Vz

=
λu + λ

Vf
, (4.1.3)

if we define Ku = 2π
λu

eq.(4.1.3) can be rewritten as:

Vfλu = Vz(λu+λ)⇒
Vf
Ku

= Vz

(
1

Ku

+
1

K

)
= Vz

(
K +Ku

KKu

)
⇒ VfK = Vz(K+Ku)

taking in mind that Vf = ω
K

and Vz = βzc we obtain:

ω

c
= βz(K +Ku) (4.1.4)

This equation, that defines the so called beam line, describes the points of the
(k, w

c
) space where the synchronism condition is fulfilled. If the interaction

occurs in vacuum, the dispersion relation is linear: w
c
= k

ω
c
= K

⇒ K(1− βz) = Kuβz

ω
c
= βz(K +Ku)

If we remind that γz =
1√
1−β2

z

, then;

ω

c
= K = Ku

βz
1− βz

(4.1.5)
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= Ku
βz

(1− βz)
(1 + βz)

(1 + βz)

= Ku
βz(1 + βz)

(1− β2
z )

= Kuβzγ
2
z (1 + βz)

Eq.(4.1.5) for relativistic electrons (β ∼ 1) becomes [29]:

ω

c
= 2γ2zKu (4.1.6)

In terms of wavelength we have [30]:

λ =
λu
2γ2

(4.1.7)

where λu is the undulator period, γ is the relativistic factor and ku is the
so called undulator parameter which is proportional to the magnetic field
inside the undulator. The amplification is due to the energy transfer from the
electrons to the previously emitted wave. The microbunching is caused by the
interaction between the electrons oscillating in the transverse direction and
the transverse B-field of the previously emitted waves. The microbunching
Lorentz force is proportional to the transverse electron velocity and to the
wave B-field strength BW . This is because the force is given by

F = eBυ

But

|E|2 = I

|E| = I
1
2

Since the magnetic flux density B is given by

B = cE

Thus

B

c
= I

1
2
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Hence

F = ecI
1
2υ

Since BW is proportional to the square root of the wave intensity, the mi-
crobunching force is proportional to I1/2. Multiplied by the energy transfer
rate for each electron, this factor gives dI/dt = AI with A = constant, cor-
responding indeed to an exponential intensity increase along the undulator.
Assuming A = u/LG, we obtain the commonly used form for the exponential
intensity law [25].

I = I0exp

(
ut

LG

)
= I0exp

(
x

LG

)
(4.1.8)

Where,
x = ut

The parameter LG, called gain length, characterizes the amplification and
the corresponding requirements to obtain lasing.
Since the lasing medium in free electron laser is unbounded free, relativistic
electrons the generated laser is called free electron laser. FEL, is generated
either in a undulator or a wiggler. Electrons traveling with almost the speed
of light experience a fierce oscillating motion in the magnetic field of the
undulator or wiggler which cause them radiating photons. The wavelength
of the radiated photons can be estimated via: Wiggler magnets

λ =
λw
2γ2

(
1 +K2

)
Undulator magnets

λ =
λu
2γ2

(
1 +

K2

2

)
,

where K is the magnetic deflection factor ( also known as undulator or wig-
gler parameter ) and is measure of the applied magnetic field’s strength.
Another important parameter is γ Lorentz contraction factor or relativis-
tic Doppler shift. The wavelength of generated light denoted λ, λu and λu
is measure of the undulator or wiggler period. The radiated photons can
in their turn interact with the electrons energetically and force them to be
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divided into microbunches based on their energy. The bandwidth can be
estimated by taking into account that each electron going through the undu-
lator emits a wave train consisting of a number of wavelengths equal to the
number of undulator periods, Nu. The time duration ∆t of this pulse is the
pulse length divided by the speed of light, Nuλ/c. According to the Fourier
transforms, a pulse of duration ∆t has a frequency bandwidth ∆ν = 1/∆t;
thus, ∆ν = c/(Nuλ). Wavelength and frequency are related as ν = c/λ,
which by differentiation gives ∆ν = c∆λ/λ2, thus ∆λ = ∆νλ2/c = λ/Nu

and since the duration of pulse is ∆t and corresponding pulse length is ∆λ.
Thus the number of pulses for one wave is given by

Nu =
λ

∆λ

∆λ

λ
=

1

Nu

a relative wavelength bandwidth decreasing as the number of undulator pe-
riods increases.

4.2 Factors influencing the gain length and

the amplification

The exponential amplification is preceded by a preliminary phase with a
slower intensity build-up, and is followed by the saturation phase. Remember
that the rate of energy transfer from an individual electron to the pre-existing
wave is proportional to I1/2vT . Thus, to find the amplification we must eval-
uate vT . However, the total correlated emission intensity from all electrons
also depends on microbunching; thus, to find the amplification we must also
evaluate the degree of microbunching. For transverse-motion dynamics, the
relevant equation is Newtons law with the relativistic mass [25]

γm0
dvT
dt

= transverse force = −euB = −euB0 sin
2πut

L

which gives

vT =

(
−euB0

γm0

)(
L

2πu

)
cos

(
2πut

L

)
= − eB0L

2πγm0

cos

(
2πut

L

)
,
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which is proportional to (B0L/γ). Thus, the energy transfer rate by a single
electron is proportional to I1/2 (B0L/γ). This is since the power is given by

Power = Pr =
dw

dt
= F.

dr

dt
= F.υ,

where
F ∼ eE

The electric intensity is
|E|2 = I

F = eE = eI
1
2

υ =
eB0L

2πm0γ

Pr =
I

1
2 e2B0L

πm0γ

Pr ∼ I
1
2

(
B0L

γ

)
and [see (4.1.8)] to I

1/2
0 exp[ut/ (2LG)]. The longitudinal force is given from

the relation
F = Beυ

But:
B = c|B| = cI

1
2 ,

υt (effective value) = υmax√
2
,

υ =
υmax√

2
=

eB0L

2
√
2πm0γ

=
c0B0L

γ
,

where c0 = constant.
Thus,

F =
c0B0

γ
ecLI

1
2

Hence

longitudinalforce = constant×
(
B0L

γ

)
I
1/2
0 exp

(
ut

2LG

)
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En = energy density = I
c
,

I = I0exp

(
ut

LG

)
dI

dt
=

u

LG

I =
c

LG

I

energy transfer rate

=
dEn

dt
=

1

c

dI

dt
=

I

LG

This force induces a small longitudinal electron displacement ∆x superim-
posed on the average motion with speed u. For longitudinal dynamics the
relevant relativistic equation is derived from the general law that the time
derivative of the longitudinal momentum γm0(d∆x/dt) equals the longitudi-
nal force.
But

dγ

dt
=

d

dt

(
1− υ2

c2

)−1/2

=
d

dt

(
1− υ2

c2

)−1/2
υ

dt

= −1

2

(
1− υ2

c2

)−3/2(−2υ
c2

dυ

dt

)
= γ3

υ

c2
dυ

dt

Thus:

d

dt
mυ =

d

dt
γm0υ = υm0

dγ

dt
+ γm0

dυ

dt

= γm0
dυ

dt
+ γ3

(
υ2

c2

)
m0

dυ

dt
= γ3m0

dυ

dt

[
γ−2 +

υ2

c2

]
= γ3m0

dυ

dt

[
1− υ2

c2
+
υ2

c2

]
= γ3m0

dυ

dt

Thus;

F =
d

dt
mυ = γ3m0

dυ

dt

= γ3m0
d2∆x

dt2
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The result is

γ3m0
d2∆x

dt2
= longitudinalforce = constant×

(
B0L

γ

)
I
1/2
0 exp

(
ut

2LG

)
,

where the factor γ3m0 is the so-called relativistic longitudinal mass. After
integration, the above equation gives a longitudinal displacement towards
microbunching,

∆x = constant× 1

γ3

(
B0L

γ

)
L2
gI

1/2
0 exp

(
ut

2LG

)
=

(
B0LL

2
G

γ4

)
I1/2

For ∆x = 0 where the amplification and motion towards microbunching
start. The corresponding number of electrons is proportional to N(∆x/λ).
Their contribution to the wave intensity is proportional to N

(
∆x
λ

)
where

λ =
L

2γ2
(4.2.9)

in turn proportional to

N

[
(
B0LL2

G

γ4 )I1/2
]

L/γ2
= N

(
B0LG

γ2

)
I1/2

. These arguments justify our previous assumption that microbunching ef-
fects correspond to a factor proportional to the longitudinal microbunching
force and therefore to I1/2. In addition, they reveal other important ele-
ments in this factor. Multiplying the factor by the energy transfer rate for
one electron, we see that the total transfer rate is proportional to

N

(
B0L

2
G

γ2

)
I1/2

(
I1/2

B0L

γ

)
= N

(
B2

0LL
2
G

γ3

)
I,

and we can write

dI

dt
= constant×N

(
B2

0LL
2
G

γ3

)
I
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dI

dt
=

I

LG

I

LG

= N

(
B2

0LL
2
G

γ3

)
I

L3
G =

γ3

B2
0

1

N

LG = N−1/3γB
−2/3
0 L−1/3

This is, indeed, an equation of the form

dI/dt = AI =
1

LG

I

whose solution is (1) as long as u
LG

(≃ c
LG

) is proportional to N
(

B2
0LL

2
G

γ3

)
I, or

LG = constant×N−1/3B
−2/3
0 L−1/3γ (4.2.10)

The gain coefficient is thus given by

β =
1

LG

= L−1
G

β = L−1
G = constant×N1/3B

2/3
0 L1/3γ−1 (4.2.11)

4.3 Electron Motion in an Undulator

In an FEL a beam of relativistic electrons produced by an accelerator passess
through a transverse periodic field produced by a magnet called undulator
and exchanges energy with an electromagnetic field (Fig.4.1). As a result of
energy exchange, the electrons that gain energy begin to move ahead of the
average electron, while the electrons that lose energy begin to fall behind the
average.The wavelength of the emitted radiation at the resonance depends
on the electron energy and the magnitude and periodicity of the undulator
field according to the relation [31, 32].

λ =
λu
2γ2

(1 + k2)
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Figure 4.1: Basic components of FEL
Source: Dagnachew W. Workie, Basic Physical Processes and Principles of Free Electron

Lasers (FELs), Cincinnati, Ohio 45221, P 2 (2001).

We call W = Ekin + mec
2 = γmec

2 the total relativistic energy of the
electron. The transverse acceleration by the Lorentz force is:

γme
˙⃗υ = −eυ⃗ × B⃗. (4.3.12)

This results in two coupled equations:

ẍ =
e

γme

Byż z̈ = − e

γme

Byẋ (4.3.13)

By = B0 cos(kµBct)

ẍ =
e

γm0

βcB0 cos(kµBct)

ẋ =
eβBc

γm0kµBc
B0 sin(kµBct)

x = − eB0

γm0k2Bc
cos(kµBct)

x = k cos(kz)

dx

dz
= −kk sin(kz),

which are solved iteratively. To obtain the first-order solution we observe
that vz = ż ≈ υ = βc = const and vx ≪ vz. Then z̈ ≈ 0.

x(t) ≈ − eB0

γmeβck2u
cos(kuβct), z(t) ≈ βct. (4.3.14)
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The electron travels on a cosine-like trajectory

x(z) = −A cos(kuz) with A =
eB0

γmeβck2u
cos(kuβct). (4.3.15)

The maximum divergence angle is:

θmax ≈
[
dx

dz

]
max

=
eB0

γmeβck2u
cos(kuβct) =

k

βγ
(4.3.16)

θmax =
eB0

γmβck

=
eB0λ

2πmβc

Here we have introduced the undulator parameter

K =
eB0

γmeβck2u
=
eB0λu
2πmec

(4.3.17)

Figure 4.2: Free-electron laser
Source: Karl F. Renk, Basics of Laser Physics, Springer-Verlag Berlin Heidelberg, P335

(2012).

Synchrotron radiation of relativistic electrons is emitted inside a cone
with opening angle 1/γ. The relativistic energy of an electron, which enters
a periodic magnetic field with the velocity Vz,0 is given by [33]:

Eel,0 = γm0c
2, (4.3.18)
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where, m0 is the electron mass and

γ =
1√

1− Vz,0

c2

(4.3.19)

is the Lorentz parameter; γ measures the relativistic energy of an electron
in units of m0c

2; γ = EMeV /0.51MeV . The oscillation frequency of a free-
electron oscillation is equal to

ν0 = K2
el

2cγ2

λu
(4.3.20)

K2
el(< 1) is a measure of the deviation of the oscillation frequency from

2cγ2/λw. The quantity γ̄ = Kelγ is an effective Lorentz parameter. It is
smaller than γ according to a reduction of the initial energy of longitudinal
motion due to conversion of energy of longitudinal motion into energy of
transverse motion. We write

1

K2
el

= 1 +
k2w
2

(4.3.21)

Kw is the dimensionless wiggler strength it is given by:

Kw =
eBwλw
2πm0c2

(4.3.22)

Bw is the maximum strength of a magnetic field assumed to vary sinusoidally
along the wiggler axis. Interaction of the free-electron oscillations with the
high frequency field in the resonator results in conversion of a portion of power
of the electron beam into power of laser radiation. The laser frequency has
a value near the resonance frequency of the free-electron oscillations,

ν ∼ ν0

. But ν is slightly smaller than ν0. It follows that the wavelength of the laser
radiation is given by [34, 35]:

λ =
λw
2γ2

(
1 +

K2
w

2

)
(4.3.23)
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Figure 4.3: Characterization of the free-electron laser. (a) Electron beam
and wiggler. (b) Section of a wiggler. (c) Optical resonator with free-electron
laser (FEL) medium
Source: Karl F. Renk, Basics of Laser Physics, Springer-Verlag Berlin Heidelberg, P336

(2012).

The free-electron laser is a beam of relativistic electrons, produced by use
of an accelerator (Fig.4.3a), traverses a spatially periodic magnetic field and
excites a radiation field in the optical resonator. The electron beam, guided
by a bending magnet into the resonator, passes through the periodic magnetic
field, which is produced by use of a periodic magnet structure, the wiggler
(= undulator). The electron beam then leaves the resonator by means of a
second bending magnet. Along the resonator axis (z axis), the magnetic field
direction assumes the +y direction and the −y direction in turn.
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It varies in the simplest case sinusoidally,

By = Bw sin
2π

λw
z (4.3.24)

The length of the wiggler is Lw = Nwλw and Nw is the number of wiggler
periods. Due to the Lorentz force, the electrons execute oscillations per-
pendicular to the magnetic field direction (y direction) and perpendicular to
the z direction. The electrons oscillate with displacements in ±x direction.
The wiggler can consist of two rows of equal magnets, with north poles N
and south poles S arranged periodically (Fig.4.3b). The magnetization of
a magnet and the distance d between the rows determine the field strength
Bw. Magnets prepared from a samarium-cobalt alloy, which has a high mag-
netization, are suitable as wiggler magnets. Alternatively, the wiggler is a
superconducting magnet with a helical winding of the superconducting wires,
leading to a circular sinusoidally varying transverse magnetic field. The elec-
tron beam in the range between the wiggler magnets constitutes the free
electron laser medium (Fig.4.3c). A radiation field propagating in +z direc-
tion is amplified. The length L of the optical resonator is larger than the
length Lw of the active medium; z0 is the center of both the optical resonator
and the active medium. Thus, the optical beam is a parallel (Gaussian) beam
within the active medium.

4.4 Frequency of Free-Electron Oscillations

Will be discussed the frequency of free-electron oscillations and the electron
energy. An oscillating free electron moving at a relativistic velocity emits
radiation at a frequency according to the relativistic Doppler effect. The
oscillation frequency of the free-electron oscillations,is given by:

ν0 =
2cγ2

λw
(4.4.25)

The spectrum of spontaneously emitted dipole radiation, centered at ν0. The
motion of an electron through a wiggler takes the time (Fig.4.4).

t =
Nwλw
v

(4.4.26)
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Figure 4.4: Path of an electron through a wiggler field and dipole radiation
Source: Karl F. Renk, Basics of Laser Physics, Springer-Verlag Berlin Heidelberg, P340

(2012).

Nw is the number of wiggler periods, λw the wiggler period and the electron
velocity along the wiggler. In the same time in which an electron traverses
the wiggler, the electron emits an electromagnetic wave packet with Nw os-
cillation cycles. A wave packet of radiation emitted in z direction has the
spatial length gives by:

(c− v)t = Nwλw
(1− β)
β

, (4.4.27)

β = v
c
. Since (c − v)t = Nwλ where λ is the wavelength of the radiation, it

follows that

Nwλ = Nwλw
(1− β)
β

(4.4.28)

λ = λw
(1− β)
β

(4.4.29)

λ = λw
(1− β)
β

(1 + β)

(1 + β)

λ = λw
(1− β2)

β(1 + β)
(4.4.30)
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with 1√
1−β2

= γ and

1

1− β2
= γ2 (4.4.31)

1

γ2
= (1− β2)

Substitute the value of (1− β2) in equation (4.4.30) yeileds

λ =
λw

γ2β(1 + β)
(4.4.32)

with β ≈ 1, we find

λ =
λw
2γ2

(4.4.33)

The number of oscillation cycles in a wave packet is Nw. The rectangular
envelope of the field has the temporal length.

∆t =
Nwλ

c
. (4.4.34)

4.5 Energy-Level Description of a Free-Electron

Laser Medium

We will discussed the characterize, in a simple picture, the energy levels of
an electron in a spatially periodic magnetic field by an energy ladder system
(Fig.4.5a),

Eℓ = ℓE0, (4.5.35)

where ℓ is an integer and
E0 = hν0 (4.5.36)

is the transition energy, such as the energy distance between two next-near
energy levels. Electromagnetic radiation interacts via spontaneous emis-
sion, absorption or stimulated emission according to the Einstein coefficients.
However, absorption and stimulated emission processes have the same tran-
sition probability (Fig.4.5b). Therefore, the average rate of absorption pro-
cesses is the same as the average rate Energy-Level Description of a Free-
Electron Laser Medium of stimulated emission processes if the frequency of
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Figure 4.5: Energy levels of an electron in a periodic magnetic field and
transitions. (a) Energy ladder. (b) Absorption and stimulated emission. (c)
Two-photon transitions. (d) Stimulated emission and absorption for hν <
E0. (e) Absorption and stimulated emission for hν > E0

Source: Karl F. Renk, Basics of Laser Physics, Springer-Verlag Berlin Heidelberg, P340

(2012).

the radiation is equal to the resonance frequency ν = ν0. The description as a
frequency modulation indicates that stimulated emission prevails ν < ν0 and
absorption if ν > ν0. Accordingly, the gain coefficient curve is not a Lorentz
resonance curve but a Lorentz dispersion curve. In a strong electromagnetic
field, transitions between next-near levels are also allowed as multiphoton
transitions (Fig.4.5c) corresponding to the condition.

nhν = hν0; n = 1, 2, 3, ... (4.5.37)

This corresponds to transverse velocity components of higher order. Whether
a radiation field experiences a population inversion in the free-electron laser
medium, depends on the frequency of the high frequency field [36]:

• A radiation field experiences a population inversion if hν < E0 (Fig.4.5d).
In a stimulated emission process by radiation at the frequency ν by an
ℓ → ℓ − 1 transition, the transition energy E0 is converted to photon
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energy hν and distortion energy Edist,

E0 = hν + Edist (4.5.38)

A stimulated transition in an energy-ladder system leads to a distortion.
Absorption does not occur as long as the states of distortion are not
populated, i.e., the upper laser level has an occupation number of nearly
unity, f2 ≈ 1, and the lower level of nearly zero, f1 ≈ 0, at small
distortion. At large distortion, absorption processes compensate the
stimulated emission processes: this corresponds to the saturation field
amplitude A∞ and to .(f2 − f1)∞ = 0.

• A radiation field does not experience population inversion if hν > E0

(Fig.4.5e). In an absorption process, a photon is converted into excita-
tion energy E0 and energy of distortion,

hν = E0 + Edist (4.5.39)

The reverse process, namely stimulated emission by an ℓ+ 1→ ℓ pro-
cess, does not occur as long as the states of distortion are not populated,
for instance the upper level has the occupation number of nearly zero,
f2 ≈ 0, and the lower laser level of nearly unity, f1 ≈ 1. At large
distortion, stimulated emission processes compensate the absorption
processes at the saturation field amplitude A∞, which corresponds to
.(f1 − f2)∞ = 0 .

• If hν = E0, upward and downward transitions are equally strong and
there is no net energy transfer from the field to the electrons and vice
versa. A high frequency field excites a transverse high frequency current
that has a phase of π

2
relative to the field.

In the energy-level description, a limitation of the field amplitude A1

is caused by a distortion of the energy-ladder systems and corresponds
to a saturation of the average population difference at steady state
oscillation, .(f2 − f1)∞ = 0. We make use of the following quantities:

• E0 = transition energy = resonance energy

• ν0 = E0

h
transition frequency = resonance frequency.

• ν = laser frequency (slightly smaller than the resonance frequency).
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• t = phase relaxation time.

• τstim = time between two subsequent stimulated emission processes.

In (Fig.4.6) illustrates, the energy-level description, the principle of the free
electron laser. An electron of energy Eel,0 injected into the wiggler field
forms an energy ladder system. A cascade of stimulated transitions in the
energy-ladder system contributes to amplification of radiation. The electron
leaves the wiggler field at an energy Eel,1. The energy difference Eel,0 −

Figure 4.6: Cascade of stimulated emission (and relaxation) processes in an
energy-ladder system
Source: Karl F. Renk, Basics of Laser Physics, Springer-Verlag Berlin Heidelberg, P362

(2012).

Eel,1 corresponds to the energy of the number Sstim of photons generated
by stimulated emission. During the flight of an electron through the active
medium, energy of longitudinal motion is converted to energy of the high
frequency field; amplification occurs only for radiation propagating in +z
direction. A stimulated transition from a level ℓ of an energy-ladder system
occurs to the high-energy wing of the level ℓ − 1 of the same energy-ladder
system. Phase relaxation, with the phase relaxation time, removes the energy
of distortion from the energy-ladder system. The change from gain at hν <
E0 to absorption at hν > E0 is due to a change of the phase between the high
frequency current and the high frequency field, in accord with the frequency
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dependencies of the conductivities σ1(ν) and σ2(ν). If hν = E0, upward and
downward transitions are equally strong and there is no net energy transfer
from the field to the electrons and vice versa. A high frequency field excites
a transverse high frequency current that has a phase of π

2
relative to the

field. The free-electron medium is transparent the resonance frequency ν0 is
a transparency frequency.

4.6 Einstein coefficients of a free-electron laser

We will be estimated the Einstein coefficients of stimulated emission and of
absorption from the expression of the gain coefficient [36].

α(ν) = αpḡL,disp(ν) (4.6.40)

by comparison with an expression given by:

γ(ν) =

∫ ∞

0

hνghomo(ν − ν0)B21(N2 +N1)(f2 − f1)ginh(ν0)d(ν0) (4.6.41)

is the growth coefficient.We used the relation (N2−N1) = (N2+N1)(f2−f1).
The gain coefficient is α = (n

c
)γ. Two-level atomic systems that have different

resonance frequencies ν0 contribute to the gain coefficient at frequency ν. The
Einstein coefficient B21 can depend on frequency. The comparison yields

α(ν) = (
1

c
)hνB21

2

π∆ν0
ḡ(ν)(N2 +N1)(f2 − f1). (4.6.42)

We replace the Lorentz dispersion function gL,disp by the Lorentz resonance
function gL,res and obtain, by replacing N2+N1 by N0, and with f2−f1 = 1,
the Einstein coefficient of stimulated emission [36]

B21 =
πcek

4ϵ0hν0Q0

(4.6.43)

The Einstein coefficient of stimulated emission is proportional to the cou-
pling strength k. And it is inversely proportional to the resonance frequency
ν0, and to the quality factor Q0 = Nw = ν0

∆ν0
of the electron oscillation.

The Einstein coefficient of absorption is equal to the Einstein coefficient of
stimulated emission,

B12 = B21
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Spontaneous emission of radiation of electrons moving with a velocity near
the speed of light occurs into a cone with a cone angle 1

γ̄
. In comparison

with emission into all spatial directions, the reduction of the density of states
available for spontaneous emission is therefore reduced by the factor 1

4γ̄2 . We

obtain the Einstein coefficient of spontaneous emission [36].

A21 =
1

4γ̄2
8πhν30
c3

B21 (4.6.44)

The spontaneous lifetime is given by [36]:

τsp =
1

A21

(4.6.45)

Table (4.1) shows values of Einstein coefficients characterizing transitions

Table 4.1: Einstein coefficients of a free-electron laser medium

value
ν0 6× 1013Hz Resonance frequency
∆ν0 =

ν0
Nw

1.2× 1012Hz Width of resonance

A∞ 4× 106V m−1 Amplitude of saturation
k = 3.6πν0

A∞
2× 108mV −1s−1 Coupling strength

Q0 = Nw = ν0
∆ν0

50 Quality factor

B21 = πcek/4ϵ0hν0Q0 4× 1026V m3J−1s−2 Einstein coefficient
γ̄ 70
A21 = (1/4γ̄2)× 8πhν30B21/c

3 2× 108s−1 Einstein coefficient
τsp 5× 10−9s Spontaneous lifetime
Source:Karl F.Renk, Basics of Laser Physics, Springer-Verlag Berlin Heidelberg, P 364

(2012).

between energy-ladder levels of a free-electron laser medium. The Einstein
coefficient of stimulated emission is larger than that of active media of con-
ventional lasers. The gain cross section σ21(ω) has the same frequency
dependence as the gain coefficient. The maximum gain cross section is
σ21,m = αm

N0
(= 2 × 10−18m2). In comparison, a naturally broadened two-

level system propagating with a velocity corresponding to a Lorentz factor γ̄
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would have a gain cross section 4 ¯γ−2λ2/2π(∼ 10−7m2). The states belonging
to an energy-ladder system are transient states according to the finite time
of flight of an electron through the wiggler. However, the time of flight is by
many orders of magnitude larger than the period of a free-electron oscillation.
An illustration of a free-electron medium as an ensemble of energy-ladder sys-
tems may therefore be justified.
The electrons execute, under the action of a static field and the periodic
potential, free-electron oscillations. An electromagnetic field modulates the
free-electron oscillations, which leads to a synchronization of the free-electron
oscillations to the field and to gain for the field. The gain coefficient curve
is a Lorentz dispersion curve. The states of an electron subject to both a
periodic potential and a static field are quantum mechanical describable as
WannierStark states. The energy levels of an electron form a WannierStark
ladder i.e., an energy-ladder with equidistant energy levels. An electron
occupies one of the levels. A stimulated transition occurs from the occupied
WannierStark level to an intermediate level that corresponds to the distorted
level of the energetically next-near level of lower energy. The active medium
of a free-electron laser consists of an ensemble of free electrons that execute,
under the action of a periodic magnetic field, free-electron oscillations. An
electromagnetic field modulates the free-electron oscillations, which leads to
a synchronization of the free-electron oscillations to the field and to gain for
the field. The gain coefficient curve is a Lorentz dispersion curve. We intro-
duced on basis of the similarity of the formal description of the free electron
oscillations in a free-electron laser and the free-electron oscillations in a Bloch
laser an energy-ladder description.

4.7 Electron Energy Loss by Spontaneous Un-

dulator Radiation

The large power of spontaneous radiation has a number of consequences.
Firstly, it complicates the commissioning procedure of the X-ray FEL. Sec-
ondly, the energy loss by spontaneous radiation may drive the electrons out of
resonance.The fractional electron energy change due to the emission of spon-
taneous undulator radiation in an undulator of length Lu can be computed
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using equation

Pspont =
e4γ2B2

0

12πε0cm2
e

(4.7.46)

One finds
∆W

W
=

∆γ

γ
=
e2γK2K2

uLu

12πε0cmec2
(4.7.47)
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Chapter 5

Literature Review

5.1 Introduction

Many attempts to produce amplify free electron laser have been made[38, 40].
Some of these attempts devoted to study the gain of free electron laser[38].
Some authors devoted to time study amplification process of free electron
laser due to effect of field and force[42]. Also there are some researches have
been written in coherence and Growth rate enhancement of free electron
laser[40]. while in other attempts studied lasing of free electron laser was
studied[37, 45]. In this chapter some attempts to new fined amplification
mechanism is presented.

5.2 Growth rate enhancement of free-electron

laser by two consecutive wigglers with ax-

ial magnetic field

The study of free-electron laser (FEL) as a high-power tunable source of
radiation has been the subject of many papers published by different groups
all around the world. The radiation is generated by relativistic electron
beam passing through a wiggler. In the conventional FEL configuration,
the energy of a relativistic electron beam is transferred into high-frequency
coherent radiation. Since the radiation wavelength varies with electron en-
ergy, it can be continuously tuned in frequency. The theory of conventional
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FEL has been studied extensively. Not only can the existence of an axial
magnetic field focus on the electron beam, against the self-field, but it can
also exploit the resonance between the frequency of the focussing device and
the frequency of the wiggler. As a result, the axial magnetic field greatly
increases the gain and growth rate in an FEL . The purpose of using a
wiggler in an FEL is to impart sufficient transverse oscillatory motion to the
electrons of the beam to interact with the radiation that is amplified. Re-
cently, considerable attention has been paid to the interaction of a relativistic
electron beam and electromagnetic wave in an FEL having one wiggler. But
the study of FEL with two wigglers and magnetized electron beam is com-
paratively limited. The motivation for this work is to present an analytic the
expression for the dispersion relation in an FEL consisting of a uniform axial
magnetic field and a two-sectioned helical wiggler having opposite circular
polarization. An FEL device operating with two undulators can provide
an output linearly polarized field. In optical-Klystron FEL, two undulators
having opposite polarization are employed because the output light may be
linearly polarized. The particular configuration one has employed is that of a
relativistic electron beam propagating along the z direction through an am-
bient magnetic field composed of two consecutive magnetic wigglers having
opposite polarization and a uniform guide field [46].

B⃗ = B⃗wB0êz (5.2.1)

Where B0 denotes the magnitude of the solenoidal guide field and the wiggler
field may be written as{

Bw1 = Bw(− sinKwzêx + cosKwzêy) 0 < z < 1
2

Bw2 = Bw(sinKwzêx + cosKwzêy)
1
2
< z < l,

(5.2.2)

where Bw, kw and l denote the amplitude of the wiggler, the wave number
and the wiggler length, respectively. In the coordinate frame that rotates
with the wiggler field and is described by the basic vectors:

ê1 = −êx(cosKwzêx + sinKwz) (5.2.3)

ê2 = êx(sinKwzêx + cosKwz (5.2.4)

ê3 = êz (5.2.5)
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the relativistic equations of motion for 0 < z < 1
2
, first section, is obtained

as

dυ1
dt

= −
(
Ω0

γ
− kwυ3

)
υ2 +

Ωω

γ
cos 2kwz (5.2.6)

dυ2
dt

= −
(
−Ω0

γ
− kwυ3

)
υ1 +

Ωω

γ
sin 2kwz (5.2.7)

dυ3
dt

= −Ωω

γ
υ1 cos 2kwz +

Ωω

γ
υ2 sin 2kwz, (5.2.8)

where Ω0, w = eB0w/mc,−e and m are charge and mass of the electron,
γ0 denotes the relativistic factor and c is the speed of light in vacuum, re-
spectively. The above equations can be solved by a first-order perturbation
analysis. The axial oscillation is of second order in Bw; consequently, the
quasi-steady-state trajectories of electron to first order in Bw can be found
as

υ1 =
(Ωw/γ0)υ∥

(Ω0/γ0)− kwυ∥
sin kwz. (5.2.9)

υ2 =
(Ωw/γ0)υ∥

(Ω0/γ0)− kwυ∥
cos kwz. (5.2.10)

υ3 = υ∥ (5.2.11)

These orbits are employed as the initial electron velocities upon entering the
second section. Therefore, the initial velocity of the electron for the second
part of the wiggler in Cartesian coordinates can be written as

υ0 =
(Ωw/γ0)υ∥

((Ω0/γ0)− kwυ∥)
(− sin kwzêx + cos kwzêy) + υ∥z (5.2.12)

The axial velocity, υ0, can be obtained by noting that the total energy is
conserved, (dγ0/dt) = 0. Hence we obtain [46].

υ2∥

[
1 +

Ω2
w/γ

2
0

(Ω0/γ0 − kwυ∥)2

]
= (1− γ−2)c2 (5.2.13)

One defines a fourth-order equation for υ∥. One has illustrated the influence
of two-sectioned wiggler in the growth rate clearly that the growth rate for
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FEL with two-sectioned wiggler is much higher than that for the conven-
tional FEL. Numerical calculations show that the growth rate in conven-
tional FEL is less than for typical parameters, compared to the FEL with
two-sectioned wiggler.

ω̄ =
ω

ckω
, k̄ =

kn
kω
, ω̄ =

(
4πn2e

2

mc2k2ω

)
and

βz0 =
υz0
c

Growth rate enhancement of free-electron laser are plots of growth rate, Imk̄,
versus. ω̄ for several values of Ω̄0

Figure 5.1: Graph of the normalized spatial growth rate vs. the normalized
frequency for two configurations, one-sectioned wiggler (dashed curve) and
two-sectioned wiggler (solid curve).
Source: A hasanbeigi, A farhadian and E Khademi Bidhendi, Growth rate enhancement

of free-electron laser by two consecutive wigglers with axial magnetic field, Pramana

journal of physics, Indian Academy of Sciences Vol. 82, No. 6 P1059 (2014).
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5.3 Comparison of Growth Rate of Electro-

magnetic Waves in Pre-bunched Cerenkov

Free Electron Laser and Free Electron Laser

Cerenkov free electron laser (CFEL) is the widely used source of broad- band,
high power microwave generation at short wavelengths. In this device, an
electron beam passing through wave structure resonantly interacts with wave
whose phase velocity equals the drift velocity of electrons and the wave grows
at the expense of energy of the beam. Since the electron velocity cannot
exceed the velocity of light, a slow wave structure is needed to slow down the
phase velocity of electromagnetic modes. In case of Cerenkov free electron
laser (CFEL). which employs a slow wave medium to slow down the phase
velocity of transverse electric (TE) or transverse magnetic (TM) modes to
less than c, the velocity of light so that they can be excited by a moderately
relativistic electron beam by the process of cerenkov emission. A Cerenkov
free electron laser generally employs two kinds of slow wave structures: (i)
A dielectric whose dielectric constant is |ε| > 1 reduces the phase velocity of
the radiation below c. A moderately relativistic electron beam can excite the
electromagnetic radiation by cerenkov emission, (ii) A plasma lining have a

dielectric constant ε = 1− ω2
p

ω2 can act as a slowing down medium for ωp >> ω
so that ε >> 1 (where ωp is the electron plasma frequency and ω is the
radiation frequency). A CFEL consisting of two dielectrically lined parallel
plates driven by dense moderately relativistic electron beam has been studied
and reported to produce coherent high power radiation from 375 micrometer
to 1mm wavelengths.

More recently, a lot of research work has been carried out in studying the
free electron laser by pre-bunched electron beams. A high power microwave
free electron laser experiment has been performed using pre-bunched electron
beam of 35Mev. Here when the electron beam is prebunched at a frequency
close to an eigen frequency of the cavity, the oscillation build process is speed
up and the radiation build time is shortened significantly. Free electron maser
experiment with a pre-bunched electron beam has been demonstrated at Tel
Aviv University. In this case, they utilize a 1.0A current pre-bunched electron
beam obtained from a microwave tube. The electron beam is bunched at
4.87GHz frequency and is subsequently accelerated to 70KeV .
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The bunched beam is injected into a planar wiggler (BW = 300 gauss,λW =
4.4cm, where BW is the wiggler field and λW is the wiggler wavelength)
constructed in a Halbach configuration with 17 periods. A theoretical model
for gain and efficiency enhancement in a FEL using pre-bunched electron
beam has been developed and studied by Beniwal et al. Sharma and Bhasin
have studied the gain and efficiency enhancement in a slow wave FEL using
prebunched electron beam in a dielectric loaded waveguide. They have found
that the growth rate and gain of a slow wave FEL increase with the increase
in modulation index and is maximum when the pre-bunched beam velocity
is comparable to the phase velocity of the radiation wave. In this section, we
develop a theoretical model of a prebunched CFEL and present the analytical
analysis for the excitation of electromagnetic waves by a pre-bunched electron
beam in a CFEL. We compare the increase in growth rate with the increase in
the modulation index for pre-bunched CFEL with a pre-bunched FEL. The
growth rate has been calculated at experimentally known CFEL and FEL
parameters. Consider a dielectric loaded waveguide of effective permittivity
ε0 . A pre-bunched relativistic electron beam of density nb0, velocity υbz,
relativistic gamma factor γ = 1+ eυb

mc2
(1+∆ sinω0τ) ≈ γ0(1+∆ sinω0τ) [where

∆ is the modulation index (its value lie from 0 to 1), mc2 is the rest mass
energy of the electrons, e is the electronic charge, ω0(≈ kzoυb) and kzobare the
modulation frequency and wave number of the pre-bunched electron beam],
respectively propagates through the waveguide An electromagnetic signal E1

is also present in the interaction region [47].

E1 = E0e
−(ω1t−k1x̄) (5.3.14)

B1 =
c

ω1

k1 × E1, (5.3.15)

where, E0 and k1 lie in the x − z plane ∂
∂y

= iky = 0. The response of
the beam electrons to the signal is governed by the relativistic equation of
motion [47].

∂

∂t
(γυ) + υ.∇(γυ) = − e

m
(E +−υ ×B) (5.3.16)

Velocity components in the x and z directions are given by

υx1 =
e

imγ(ω1 − kzυb)

[
Ex1 −

kzυbEx1

ω1

+
kx1υbEz1

ω1

]
(5.3.17)
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υz1 =
eEz1

imγ(ω1 − kzυb)γ3
(5.3.18)

On linearizing and solving equation of continuity, we obtain density pertur-
bation

n1 = nb0
k1υ1

(ω1 − kzυb)
(5.3.19)

One has determined the growth rate of the CFEL instability, we use the
first order perturbation techniques .In the presence of the right hand side
terms, (nb0 ̸= 0), one has assumed that the eigenfunctions are not modified
but their eigenvalue are. We expand ω1 as

ω1 = ω1r + δ = kzυb + δ = kz0υb + δ,

where δ is the small frequency mismatch and ω1r =
k1c√
ε

δ =

[
ω2
pb(ω

2
1r + k2x1υ

2
bγ

2)

2ω1rγ3ε

]1/3
ei

2nπ
3 , n = 1, 2, 3, ... (5.3.20)

Hence the growth rate, i.e., the imaginary part of δ is given as

Γ =

[
ω2
pb(ω

2
1r + k2x1υ

2
bγ

2
0)

2ω1rγ3ε

]1/3 √
3

2
, (5.3.21)

Where,

γ = γ0(1 + ∆ sinω0τ)

For maximum gain it is assumed that all electrons are bunched in the de-
celerating zone, ω0τ = −π

2
. This gives γ = γ0(1 −∆) [47]. Where ∆ is the

modulation index, its value lies between 0 to 1 and ∆ ̸= 1 .
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5.4 Efficiency enhancement in free-electron

laser amplifier with one dimensional he-

lical wiggler and ion-channel guiding

The free-electron laser (FEL) can produce high power and tunable elec-
tromagnetic radiation from microwave to x-ray. The development activities
of FEL are in two directions. In one direction, high brightness coherent
femtosecond x-ray emissions are produced and in the other, high powers of
infrared radiation are generated, which require low energy and high current
electron beam. This kind of beams usually requires quadrupole or solenoidal
magnetic field or ion channel to focus the beam against its self-field. When
an electron beam passes through a preionized plasma, it ejects the electrons
and the positive ions will guide the electron beam. This scheme has been
proposed for use in FELs, demonstrated experimentally and investigated
by numerical simulations. Theoretical studies of the FEL with ion-channel
guiding have shown considerable gain enhancement in the low and high gain
regimes. There are several advantages for this type of focusing. It is less
expensive compared to magnetic focusing. Other benefits of its use are sup-
pression of the transverse beam break up instability and emittance growth
due to scattering and to obtain current larger than vacuum limit. Many
studies were reported for the enhancement of efficiency in FELs. By in-
creasing the wave number of the wiggler, after the saturation point, in Ref.
The efficiency of the FEL was increased. On the other hand, efficiency has
been shown to increase when the wiggler and/or the axial magnetic field are
tapered. In another technique in Ref., rf power was injected in order to
accelerate the electron in the wiggler. In Ref. The electron beam energy
was detuned from the resonance condition in order to increase the efficiency
experimentally. The experimental demonstration of efficiency enhancement
has been reported for both fundamental resonance wavelength and the third
harmonic when the amplitude of wiggler was reduced after the saturation
point. Efficiency enhancement of FEL in Raman regime by tapered wave
number of the wiggler has been studied for both axial and ion-channel guid-
ing by numerical simulation. On the other hand, analytical and nonlinear
simulations of this problem in the Compton regime have been carried out in
one and three dimensions, using tapered wiggler and/or axial magnetic field.
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This type of tapering is more widely used in operational and proposed exper-
iments compared to the tapering of the wiggler wave number. The purpose
of the present study is to carry out a nonlinear simulation for the efficiency
enhancement of FEL with tapered wiggler and ion-channel density. A set
of coupled and nonlinear equations is derived that describe the evolution
of the electromagnetic radiation. Parameters correspond to the high-gain
Compton regime; therefore, spacecharge fields are neglected. In order to
obtain a better understanding of the efficiency enhancement, an analytical
treatment of the problem is also presented which involves the derivation of
a modified pendulum equation based on the small signal theory. This the-
ory will primarily provide the appropriate signs of the tapering that will be
used in the simulation. A nonlinear simulation of FEL in amplifier mode is
carried out, in one dimension, to find the saturated radiation amplitude and
efficiency. The parameters are in the high gain Compton regime and the ra-
diation wavelength corresponds to the microwave. Therefore, self-fields and
the space-charge potential of the electron beam are neglected. Interaction of
electrons with each other takes place indirectly by coupling to the electro-
magnetic field (radiation) through the source term in the wave equation. The
steady-state simulation with no time dependency will be used which requires
for the electron pulse to be long enough so that the slippage of radiation a)
over the electron beam to be negligible. In the present investigation, Lorentz
force equations are integrated over the complete equations of motion without
using wiggler-averaged approximation. The configuration is composed of the
combination of a tapered helical wiggler magnetic field in one dimension and
the electrostatic field of an ion channel

Bw(z) = Bwêx cos kwz + êy sin kwz

E1(x, y) = 2πeni(z)(xêx + yêy),

where Bw(z) denotes the wiggler amplitude, kw is the wiggler wave number,
and ni(z) is the ion number density with positive charge e. It is assumed that
both the wiggler amplitude and the ion number density vary adiabatically to
model the injection of the beam electrons.
Here, using modified pendulum equation, the efficiency enhancement by ta-
pered field configuration in FEL amplifier with the one dimensional helical
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wiggler and ion-channel guiding is investigated analytically. The time deriva-
tive of relativistic factor can be written as [48].

dγ

dt
= − e

mc2
V.E = −ω

2
i

c2
(υ1x1 + υ2x2) + δa

ω

c
(υ1 sinψ + υ2 cosψ).(5.4.22)

In the small signal domain, the radiation amplitude is assumed to be small
compared to the wiggler, therefore, the velocity and position of electrons can
be perturbed about the steady state orbits as υ = υ0 + δυ, x = x0 + δx and
y = y0 + δy.
The simulation consists of solution of a set of coupled nonlinear differential
equations for FEL in the amplifier mode using the fourth order Runge Kutta
method. To calculate the averages in the dynamical equations, Simpson
technique is used. A nonlinear analysis and numerical simulation of the
FEL amplifier with tapered wiggler and ion-channel density are presented
in order to enhance the efficiency. Also to demonstrate the physical basis
for the efficiency enhancement, the small signal theory for the gain in the
case of tapering is used to derive a modified pendulum equation. The gain
equation for the added gain gives the current sign of the tapering to be used
in the simulation. Both theory and simulation show that there is always an
asymptotic state in which the efficiency levels off as a function of axial length
and no further growth is possible except for some oscillations.
The gain due to efficiency enhancement can be defined as [48]

G =
[∂a(z=ℓ+z0) − ∂a(z=z0)]

∂a(z=z0)

(5.4.23)

The gain will lead to

G ≃ − ω̄b ℓ̄

2k̄+(1 + k̄+)∂a2z=z0

γ0β10
1 + φ

φ
[ω̄2

i εi − εω(ω̄2
i − γ0β2

∥)](5.4.24)

It is important to emphasize that G < 1 [48].
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5.5 Feasibility of UV lasing without inversion

in mercury vapor

Developing powerful, coherent light sources ranging from UV to X-ray is
a major quest in laser development with relevant applications from spec-
troscopy, lithography to material science. Conventional lasing requires pop-
ulation inversion, which becomes increasingly difficult for shorter wavelengths
since the threshold pumping power scales with the laser frequency ω4 to ω6.
In the UV regime lasing without inversion (LWI) is a possible pathway to
overcome this problem. To date, several experiments have been conducted
showing that inversionless lasing is in fact feasible. However, the lasing wave-
lengths were not significantly shorter than the driving fields, wavelengths.
Despite all commitment, a laser based on the LWI concept operating in the
UV regime is yet to be built. The large majority of existing UV lasers are
based on nonlinear harmonic frequency generation. Developing an alterna-
tive to this technique using LWI might allow for new applications. Doppler
broadening is a major obstacle in UV lasing without inversion when driving
frequencies are strongly disparate. One path to circumvent this problem is
transient lasing without inversion. However, it is limited to pulsed lasing.
Another path allowing for Doppler-free cwLWI has been proposed by Fry et
al. It is based on the concept of interacting dark resonances. The proposed
experiment allows for lasing on the 63P1 ←→ 61S0 transition in mercury at
a wavelength of 253.7nm. This idea can also be applied to similar schemes
for example in mercury and krypton at wavelengths of 185nm and 116.5nm
respectively. In this section, we provide a realistic three-dimensional the-
oretical analysis of the experiment proposed by Fry et al. One has used
the linear gain coefficient of the spatially inhomogeneous mercury vapor and
evaluate the intracavity field modes of a four-mirror ring laser resonator self-
consistently within Fourier optics. One has implemented LWI in a four-level
scheme, with three allowed dipole transitions driven by a strong and a weak
external electric field Es and Ew respectively and a probe field Ep, one finds
interacting dark resonances. For each of these fields, j = s, w, p, the positive
frequency components are given by [49].

E
(+)
j (r, t) = εj(r, t)ϵje

−iωjt, (5.5.25)
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with the angular frequencies ωj , polarization vectors ϵj , and slowly vary-
ing amplitudes εj . For each of the three dipole transitions we obtain
the corresponding Rabi frequencies Ωp = dab.ϵpεp/~,Ωs = dca.ϵsεs/~ and
Ωω = dcd.ϵωεω/~ with the dipole matrix elements of the respective transi-
tions dab, dca, anddcd. Within the dipole and rotating wave approximation,
one finds for the Hamiltonian matrix where the matrix elements are sorted
in the order of the basis {|ai⟩, |bi⟩, |ci⟩, |di⟩}. The detunings are defined as
∆p = ωp− (ωa−ωb), ∆s = ωs− (ωc−ωa) and ∆ω = ωω− (ωc−ωd), with ~ωj

being the energy of the respective atomic state. The origin of lasing without
inversion can be understood best in the dressed state picture. These results
reveal that even a small amount of incoherent pumping can invert the sharp
absorption peak into a gain dip and lead to lasing on the probe transition. In
the previous sections the gain mediums linear response to the external probe
field was investigated, whereas in this section the field Ep will be treated as
a dynamical quantity, the lasing field. By applying semiclassical laser theory
this will lead to the stationary laser power. The dynamics of the lasing field
is determined by the Maxwell equations from which the wave equation [49](

1

c2
∂2t + µ0σ∂t −∆

)
Ep(r, t) = −µ0∂

2
t Pp(r, t) (5.5.26)

can be deduced under the assumptions that the charge density, the gradient
of Pp, and the magnetization vanish and the current density is given by
conductivity times the electric field Ep. The polarization density Pp couples
this wave equation to the mediums Bloch equations. To solve this problem,
one has started by expanding the laser field

εp(r, t) =
∑
n

εn(t)un(r)e
[iϕn(t)], (5.5.27)

in the resonators Hermite-Gauss modes un(r) that are known to accurately
describe modes in ordinary optical resonators. ϕn is the phase and εn is
the real amplitude of the n-th mode. One has assumed that the spatial
distribution of the laser field is that of a Gaussian mode. One has devel-
oped a realistic multi-level model for the UV lasing scheme in mercury vapor
proposed, including technical noise of the driving field, Doppler broadening,
the spatial inhomogeneous structure of the gain medium, and self-consistent
eigenmodes of a four mirror ring cavity.
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The linear gain parameter [49].

α = − σ
ε0
− ωpV0

Vc
χ

′′

1 (5.5.28)

the nonlinear saturation parameters

β =
~ω2

pV1

2ε0V 2
c

χ
′′

3 γ =
~2ω3

pV2

4ε0V 3
c

χ
′′

5 (5.5.29)

and χ
′′
m = ℑ(⟨χ(m)⟩). Thus, the stationary photon number is given

nst =

{
− β

2γ
+
√

β2

4γ2 +
α
γ
= α

β
+O(γ), α > 0

0, α ≤ 0

The sign of the linear gain parameter α indicates if the laser system is above
(α > 0) or below (α ≤ 0) threshold, while β and γ are saturation parameters
that determine the stationary power when above threshold [49]. For γ → 0,
we obtain the standard form of the photon number equation for a laser.

5.6 High refractive index and lasing without

inversion in an open four-level atomic sys-

tem

The optical properties of atomic gases can be radically modified by quantum
coherence and quantum interference. Quantum coherence and interference
in an atomic medium can result in many appealing out comes. A marvellous
consequence of preparing an atomic system in a coherent superposition of
states is the absorption elimination that leads to the lasing without inver-
sion, enhancement of there fraction index and electromagnetically induced
transparency (EIT ). Under the conditions of electromagnetically induced
transparency (EIT ) it is feasible to control the optical response and related
absorption of weak laser light. This effect has been deeply studied in atomic
physics. EIT has many noteworthy usages in quantum optics,such as the
multi-wave mixing, enhancement of Kerr nonlinearity and optical bistability
and multistability.
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More interestingly,the EIT effect has been found applications in quantum
information science,such as the photon in formations to ring and releasing in
an atomic assemble, correlated photon pairs generation and even the entan-
glement of remote atomic assembles, which form the building blocks of the
quantum communication and the quantum computation. In view of many
proposals, the transient properties of the weak probe field via quantum inter-
ference such as transient-absorption,transient-dispersion, and transient-gain
without inversion are widely investigated. Zhu presented the condition re-
quired for observing the inversion less gain in the transient requirement for
V and Λ schemes. The effect of SGC on transient process in the three level
system has also been investigated. It is shown that EIT medium can be used
as an absorptive optical switch, in which the transmission of highly absorp-
tive medium is controlled dynamically by an additional signal (switching)
light. Transient two photon absorption property in a n-doped three-level
semi conductor quantum well system is also investigated. It is shown that
the intensities and detunings of the optical fields can affect the two-photon
absorptions pectra dramatically,which can be used to suppress or enhance
the two-photon absorption coefficient. Yang et al. studied the transient and
steady state absorption of a weak probe beam by means of a coupled double
quantum well structure. However,almost all of these studies are considered
with a closed system. An ideal level structure atomic system with appreci-
ate interference and coherence features will bring great help to achieve more
bright results.To the best of our knowledge, the transient properties of four-
level open atomic media is never investigated, which motivates us to carry
out this section. The presented scheme is based On Refs., but our scheme is
very different from those works. First,we investigate the transient evolution
of the atomic response in stead of steady-state response. Second, transient
behavior in our scheme is realized by atomic exit rate and atomic injection
rates which are characteristics of open systems and thus, is very different
from other conventional closed schemes. Finally, we show new convenient
ways to obtaining the high refractive index with out absorption as well as
lasing with and without absorption, which make our scheme much more prac-
tical than the other counterparts. denotes an open four-level atomic system
coupled by a weak probe field,and two strong coupling fields.
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Using the rotating-wave and the electric dipole approximations and in
the interaction picture,the density matrix equations of motion of this system
can be written as [50].

ρ̇11 = γ31ρ33 + γ41ρ44 + iΩp(ρ31 − ρ13) + iΩs(ρ41 − ρ14) + J1 − r0ρ11,
ρ̇22 = γ32ρ33 + γ42ρ44 + iΩc(ρ32 − ρ23) + J2 − r0ρ22,
ρ̇33 = −(γ31 + γ32)ρ33 + iΩp(ρ13 − ρ31) + iΩc(ρ23 − ρ32)− r0ρ33,

ρ̇12 = i(∆p −∆c)ρ12 + iΩpρ32 + iΩsρ42 − iΩcρ13

ρ̇13 = −
[
γ31 + γ32i∆p

2

]
ρ13 + iΩsρ43 − iΩcρ12 + iΩp(ρ33 − ρ11)

ρ̇14 = −
[
(γ41 + γ42)

2
i∆s

]
ρ14 + iΩpρ34 + iΩs(ρ44 − ρ11)

ρ̇23 = −
[
(γ31 + γ32)

2
i∆c

]
ρ23 − iΩpρ21 + iΩc(ρ33 − ρ22)

ρ̇24 = −
[
(γ41 + γ42)

2
i(∆p −∆s −∆c)

]
ρ24 + iΩcρ34 + iΩsρ21

ρ̇34 = −
[
(γ31 + γ32γ41 + γ42)

2
+ i(∆p −∆s)

]
ρ34 − iΩpρ14 + iΩcρ24 + iΩsρ31

ρ11 + ρ22 + ρ33 + ρ44 = 1 (5.6.30)

The frequency detuning parameters are defined as ∆p = ω31 − ωp,∆c =
ω32 − ωc∆s = ω41 − ωs. In this set of equations, if J1 = J2 = r0 = 0, Eq.(1)
changes to those for a closed four-level atomic system interested in the effect
of cavity parameters i.e.atomic injection rates and exit rate from cavity on
transient properties of open four-level atomic scheme. As well known, gain-
absorption and refractive index of the probe field on transition |3⟩ −→ |1⟩ are
proportional to imaginary and real part of ρ31 which can be obtained from
Eq.(1). If Im (ρ31) > 0 the system exhibits absorption for the probe field,
while for Im(ρ31) < 0, the probe laser will be amplified. When ρ33 > ρ11
and Im ρ31 < 0, the lasing with inversion can be obtained, whereas when
ρ33 < ρ11 and Im(ρ31) < 0, the lasing without inversion can be realized.
lasing without population inversion is obtained in open four-level system via
ratio of injection rates.
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Therefore, one has showed that the open system changes from a state with
population inversion to a state without population inversion. This Flexibil-
ity and controllability of open system to achieve lasing with and without
inversion shows its superiority than corresponding closed system which may
provide some new possibilities for technological applications. The probe gain
is obtained,that is to say the weak probe field will be amplified in open sys-
tem as shown (Fig. 8(a)) [50]. An investigation on Fig. 8(b) shows that
the population distribution in level |1⟩ reduces,while it increases in level |2⟩.
Accordingly, the population distribution in level |2⟩ is more than level |1⟩,
i.e. ρ22 > ρ11, thus population inversion occurs.It can be concluded that
the gain is obtained in the presence of population inversion [50]. In other
words,lasing with inversion is achieved in open system via atomic exit rate.

5.7 Nano wave guide and lasing

A seminal work of A. H. Abdlrahman and M. Dirar shows a possibility of
lasing by a rectangular wave guide. The amplification factor γ is related to
the dimension of guide according to the relation A. H. Abdlrahman and M.
Dirar, the possibility of utilizing a nano and micro rectangular wave guide
a solar cell and a lasing carry J. of science and technology, Vol. 13, No, 1,
march (2012).

γ =

√
2

(
nπ2

b

)2

− µεω2, (5.7.31)

where n is an integer called the mode of the wave, µ, ε, and ω are the electric,
magnetic permeability and angular frequency respectively. By setting the
mode to be

n = 2 (5.7.32)

the suitable dimension b to amplify light satisfies [51].

b <
2

n0

λ (5.7.33)

n0 is refractive index and λ is light wave length for glass visible light.

n0 = 1.5, λ = 50nm (5.7.34)
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The suitable dimension of the guide is

b < 66.6nm (5.7.35)

Thus one needs nano rectangular tube for lasing [51].

5.8 Quantum mechanical lasing mechanism

Quantum mechanical laws are used to find the wave function factor β in
the form A. H. Abdlrahman and M. Dirar, quantum mechanical nano lasing
mechanism, Africa University, journal of science, Vol. 2 (2012).

β =
2

c

√
p0 − E0

x0m
(5.8.36)

x0,m, p0, E0 are the vibration amplitude atomic mass, polarization and ex-
ternal field amplitude respectively. Lasing takes place when

p0 > E0 nm > ni, (5.8.37)

where nm, ni are the number of emitted and incident photons respectively.
Thus amplification exists when emitted photon exceed incident ones. The
expression for amplification factor for population inversion shows lasing can
takes place when lattice force Fl, which is related to collision and excitation
rate, exceeds the external one Fl,[52].
Where

β ∝ (
Fl − Fe

Fe

) (5.8.38)

5.9 Enhanced beam characteristics of a discharge-

pumped soft-x-ray amplifier by an axial

magnetic field

The first demonstration of large soft-x-ray amplification in a discharge-driven
plasma was recently realized using a fast capillary discharge to generate a hot
and dense plasma column in which collisional electron excitation of Ne-like
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Ar ions produced amplification in the J = 01 line of Ne-like Ar at 46.9nm. In
this excitation scheme, a fast current pulse rapidly compresses the plasma,
creating a hot and narrow plasma column with length-to-diameter ratios
approaching 1000 : 1. During the final stage of the compression, plasma con-
ditions for soft-x-ray amplification by collisional excitation are obtained [53].
In the initial experiments, a gain-length product of gl ∼ 7.2 at 46.9nm was
reported for a 12−cm-long plasma column. The experiments were conducted
in a capillary discharge excited, collisionally pumped 46.9 − nm Ne-like Ar
amplifier. To conduct the study, we modified a fast capillary discharge setup
previously described. To include an axial magnetic field. The discharge
consists of a 3 − nF capacitor which is pulse-charged by a Marx generator
and is discharged through a pressurized SF6 switch into a capillary channel
containing a selected pressure of preionized argon gas. In the experiments
the generator was used to excite plasmas in polyacetal capillaries 4mm in
diameter and 10cm in length with current pulses having a first half cycle
duration of approximately 64ns. The axial magnetic field was generated by
a 9− cm diameter, 15− cm long coil positioned concentrically with the cap-
illary channel. The coil, which was excited by a current pulse with a period
of 200ms is obtained by discharging a 420 − µF capacitor through a spark
gap, was used to produce magnetic fields up to 0.3T . The intensity of the
magnetic field was selected by varying either the capacitor charging voltage
or the delay time between the triggering of the latter spark gap and the firing
of the fast capillary discharge [53]. The discharge electrodes were made of
stainless steel and were slotted to improve the uniformity of the magnetic
field along the capillary axis, which was measured, using an axial Hall effect
probe, to be better than 20% over the 10− cm-long region where the capil-
lary is located. The dc calibration of Hall probe given by the manufacturer,
0.1146V/T , was checked in the pulsed mode by placing it on the axis and in
the center of the coil described above and comparing the measured value with
the one calculated from the expression for a finite solenoid. The soft-x-ray
radiation exited the capillary through the hollowed ground electrode. The
laser radiation was collected by a cylindrical copper mirror of 13cm in radius
and focused onto the slit of a 2.2 −m vacuum spectrometer provided with
a 1200l/mm diffraction grating placed at 4.2 with respect to the incoming
radiation. The detection system consisted of an intensified charge-coupled
device (CCD) array detector that was gated by pulsing the gain on the mul-
tichannel plate intensifier with a high voltage
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pulse with a duration of about 25ns. The variation of the measured inte-
grated intensity of the Ar IX 46.9−nm laser line as a function of the magnetic
field strength is shown in Fig (5.2). The laser intensity increases with the
magnetic field and reaches a maximum at approximately0.15T decreasing
monotonically for higher field strengths.The same figure also shows the cal-
culated variation of the intensity corresponding to two calculations which
differ from each other in the inclusion of Zeeman splitting of the laser line
[53]. In our case, the Zeeman splitting is mostly caused by the compressed

Figure 5.2: Variation of the integrated intensity of the 46.9-nm Ar IX laser
line as a function of the strength of the externally applied axial magnetic field

Source: F. G. Tomasel, V. N. Shlyaptsev, and J. J. Rocca, Enhanced beam

characteristics of a discharge-pumped soft-x-ray amplifier by an axial magnetic field,

Physical Review A volume 54, No 3 SEPTEMBER, P2476 (1996).

axial magnetic field. The azimuthal magnetic field is comparatively small in
the gain region, situated near the axis, due to the distribution of the current
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and the boundary condition Bθ = 0 at r = 0. In both computations the laser
intensity first increases to subsequently decrease at higher values of the mag-
netic field. The intensity increase is due to decreased refraction losses and to
a larger electron temperature caused by a decrease in heat losses. Only the
computation that considers broadening of the laser line due to the Zeeman
effect shows good agreement with the experiment. In the condition of our
experiments the line profile is largely determined by Doppler broadening, and
collisional and natural broadening contributions are small. Moderate mag-
netic fields, of the order of 10T , contribute to broaden the 2p53s1S0 −2p53p1P1
transition of Ne-like argon by ∆ν/ν ∼ 5× 10−5. This value is comparable to
the Doppler linewidth of the order of ∆ν/ν ∼ 1 × 10−4, therefore causing a
very significant decrease in the measured gℓ product. These results suggest
that the Zeeman effect is likely to be a major cause for the observed decrease
of the laser output intensity at higher magnetic fields. The laser intensity
decrease observed at large magnetic fields in the computation that excludes
the Zeeman effect is the result of a smaller gain caused by a decrease in the
density, reduced transient effects associated with ionization and excitation,
and an increase in the optical depth [53]. The larger optical depth at higher
magnetic fields is due to a reduction of the very important radial motional
Doppler effect, which is in turn caused by the previously discussed reduction
of the density gradients.

5.10 The effect of a weak axial magnetic field

on a He-Cd laser

In this work an internal cavity He-Cd laser which was 2.81cm internal di-
ameter and 72cm in discharge lengths was used as is shown in fig (5.3). so
that the polarization effects mentioned above could be observed [54]. The
optical resonator, which was 136cm in length, was composed of a mirror with
a curvature radius of 3m and a reflectivity of 99% and an output coupling
plane mirror with reflectivity of 98%. Mounted on a non-magnetic support,
the laser tube was placed in a coaxial glass tube of larger diameter so that
electrical leakage from the discharge capillary could be prevented to ensure
the accuracy of measurement. A coil was wound around the coaxial glass
tube (8.5C/cm) and was supplied by an adjustable D.C. power set so that
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the strength of the WAMF could be changed.

Figure 5.3: structure of laser tube,1-cathode,2-cd oven,3-anode,4-active bore
5-mirror,6-auxiliary anode,7-bellows.
Source: Gailan Asad Kazem, Diala , Journal , Volume , 39 , (2009). By experimenting

on a He-Cd laser in a weak axial magnetic field (WAMF)
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Figure 5.4: laser output as a function of the WAMF strength,(∆) with a
polarizer at 150 with same direction of WAMF , and (•) with a polarizer at
240 with reversed direction of WAMF .
Source: Gailan Asad Kazem, Diala , Journal , Volume , 39 , (2009). By experimenting

on a He-Cd laser in a weak axial magnetic field (WAMF)
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Figure 5.5: laser output as a function of the WAMF strength,(�) with a
polarizer at 240 with same direction of WAMF , (�) with out polarized .
Table(2) laser output as a function of the WAMF strength with a polarizer
at 150 , 240 with same direction of WAMF , and 240 with reversed direction
of WAMF ,and also without polarizer..
Source: Gailan Asad Kazem, Diala , Journal , Volume , 39 , (2009). By experimenting

on a He-Cd laser in a weak axial magnetic field (WAMF)

The total output of the laser remained unchanged without the polarizer
in front of the detector. It can be concluded that the weak axial magnetic
field only changed the polarization of the laser rather than the gain of the
laser. When a polarizer was inserted, however, the laser power varied with
the weak axial magnetic field. the weak axial magnetic field causes The
anisotropy of the laser gain, the rotation of the main polarization axis of the
laser, and the change the laser output which is a function of the polarization
direction of the polarizer. In figs. (5.4) and (5.5). the Lines marked with (∆)
and (�) refer to cases in which the polarization axis of the polarizer are at
angles of 150 and 240 respectively with the abscissa, and there is difference
of 90 between these two cases. The curves showing the laser output versus
the weak axial magnetic field for these two cases in figs. (5.4) and (5.5) [54].
Vary in opposite direction. When the weak axial magnetic field was stronger
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than 10 Gauss, the laser output was modulated by more than 80% of its
amplitude.

5.11 Influence of Magnetic Field on semicon-

ductor laser

The work titled ” Influence of magnetic field on laser ” made by R. Abd
Elgani (2003). Studied the effect of magnetic field on laser beam intensity
and polarization. One has found that the magnetic field increases the polar-
ization range and increases also the laser intensity by increasing the number
of photons. The data as shown in table (5.1) was obtained empirically and
it relate the intensity of laser beam I(J/m2s) to the applied magnetic field
H/T

Table 5.1: Relation of intensity of laser beam I(J/m2s) versus of the applied
magnetic field H/T

H / T I(J/m2s)

0.039 8.972236×10−3

0.074 9.170857×10−3

0.100 9.300988×10−3

0.136 9.335233×10−3

0.167 9.348931×10−3

0.202 9.431119×10−3

0.231 9.513307×10−3

0.254 9.527005×10−3

0.282 9.568099×10−3

0.303 9.611560×10−3

Source: R. Abd Elgani, Influence of magnetic field on laser, P. 60 (2003).
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Figure 5.6: Intensity of laser beam I(J/m2s) versus of the applied magnetic
field H/T

The intensity of laser beam as a function of the applied magnetic field
is displayed in figure (5.6) according to table (5.1) [55]. Obtained that the
laser intensity increases with increases of magnetic field [55].
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Chapter 6

Generalized Relativistic
Mass-energy Expression and
Lasing

6.1 introduction

In this chapter one has to discuss how gain coefficient ( amplification
coefficient ) is effected by the new theory called Generalized Special Relativity
theory (GSR). furthermore, the study will discussed the effects of fields on
light amplification with population inversion within the framework of (GSR),
the effects of fields on amplification for free elements in the presence of static
magnetic fields and electric fields, the effects of field on laser induced by
oscillating electric field beside sound vibration, the effects of fields on lasing of
thermally vibrating atoms electrons in the presence of electric and magnetic
fields, effects of field on amplification due to dipole moment and the effects
of fields on harmonic oscillator gain coefficient.

6.2 Expression of Mass in Generalized Spe-

cial Relativity

In this work the expression of time in generalized special relativity together
with the principle of conservation of momentum are utilized to find
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a useful expression for mass and energy of a moving particle in a field gen-
erating a constant acceleration. The energy and mass expression shows that
they both depends on potential as well as velocity. The two expressions are
in conformity with Savickas and generalized special relativity modes.

6.3 Generalized Special Relativity

The expression of the energy momentum tensor of the gravitation field, to-
gether with the space time interval in a curved space, were used by some
authors to derive expressions for time, length mass and energy in the pres-
ence of weak fields in the form [56, 57, 58].

t =
t0√

g00 − υ2

c2

= γt0 (6.3.1)

L = L0

√
g00 −

υ2

c2
= γ−1L0

m =
g00m0√
g00 − υ2

c2

= g00γm0

E = mc2 (6.3.2)

Where

g00 = 1 +
2ϕ

c2
, γ =

1√
g00 − υ2

c2

, (6.3.3)

with t0, L0, m0, standing for the mass at rest in free space, while t, l, m,
represents the corresponding values in the presence of field having a potential
ϕ per unit for particles moving with speed υ. The speed of light in vacuum
is designated here by c.
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6.4 The Relativistic Expression of Mass in

the presence of fields by using momen-

tum conservation

To find an expression of the mass m of particle moving with speed υ in
potential per unit mass ϕ consider two particles colliding elastically. Let
frame S

′
move with constant acceleration a. In a field with respect S which

is in free space. Before collision let particle 1 having a massm1 is at rest in S,
while particle 2 with mass m2 in frame S

′
. At the same time m1 was thrown

Figure 6.1: The two masses as observed in S

in the +y direction at speed υ1 while m2 was thrown in the −y direction at
speed υ

′
2 such that

υ1 = υ
′

2 (6.4.4)

After collision, m1 rebounds in the −y direction at the speed υ1 while: m2

rebounds in the +y
′
direction at the speed υ

′
2 If the particles are thrown from

positions L apart, the observer find collision occurs at

y =
1

2
L (6.4.5)
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and that in S
′
find it occurs at

y
′

=
1

2
L (6.4.6)

The round trip for m1 as measured in SI is

t0 =
L

υ1
(6.4.7)

Which is the same for m2 in S
′

t0 =
L

υ
′
2

(6.4.8)

The momentum conservation in S requires

m1υ1 = m2υ2, (6.4.9)

where m1, m2, υ1, υ2 are the masses and velocities as measured in S. In the
S frame the speed υ2 is given by

υ2 =
L

t
(6.4.10)

but

t = γt0 (6.4.11)

thus

υ2 =
L

γt0
(6.4.12)

Substitute Eqs.(6.4.7) , (6.4.10) in Eq.(6.4.9) yields

m1
L

t0
= m2

L

γt0
(6.4.13)

m1 =
m2

γ
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Since for S m1 is at rest while m2 moves , thus

m1 = m0, m2 = m

hence

m = γm0 =
m0√
g00 − υ2

c2

(6.4.14)

m =
m0√

1 + 2ϕ
c2
− υ2

c2

(6.4.15)

This expression indicates that the mass is affected by field potential as well
as on velocity υ. To find energy expression consider a particle moving with
initial velocity υ with constant acceleration a. The velocity υf at any time t
is given by

υf = υ2 − 2ax,= υ2 − 2ϕ, (6.4.16)

where the potential V is given by

V = mϕ = max (6.4.17)

Thus Eq.(6.4.15) can be rewritten as

m =
m0√
1− υf

c2

(6.4.18)

Thus the kinetic energy T is given by

T =

∫
Fdx =

∫
d(mυf )

dt
dx =

∫
dx

dt
d(mυf )

=

∫
υd(mυf ) = [mυ2f ]−

∫
mυfdυf

= mc2 −m0c
2 (6.4.19)

Thus the energy is given by

E = mc2 =
m0c

2√
1− υf

c2

(6.4.20)

=
m0c

2√
1 + 2ϕ

c2
− υ2

c2
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For low velocity

E = m0c
2(1−

υ2f
c2

)−1/2 = m0c
2(1 +

1

2

υ2f
c2

)

= m0c
2 +

m0υ
2
f

2
= m0c

2 +
m0

2
(υ2 − 2ϕ)

= m0c
2 +

1

2
m0υ

2 −m0ϕ

= m0c
2 + T + V (6.4.21)

This is a new form of the energy expression. It reduces to the ordinary
Newtonian energy expression, as shown also by same authors [59]. For low
speed of the observer υ and as far as the rest mass of photon is extremely
small, thus;

T =
1

2
m0υ

2 → 0

but since photon energy in vacuum and inside a field are given by

hf0 = m0c
2, hf = mc2

thus equation (6.4.21) given by

hf = hf0 + V

thus the energy expression can also explain the gravitational red shift phe-
nomenon as shown also by the same authors [59].

6.5 Energy Conservation Law within frame-

work of Generalized Special Relativity (GSR)

Using the Generalized Special Relativity (GSR) to proved energy conserva-
tion law. let us consider E0 is initial energy at rest, ϕ = 0, and E is final
energy. Therefore, the initial energy E0 is given by

E0 =
m0c

2√
1− υ2

0

c2

(6.5.22)
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The final energy E also given by

E =
m0c

2√
1 + 2ϕ

c2
− υ2

c2

(6.5.23)

What happen when E = E0. The relativistic mass m is given by

m =
m0√

1 + 2ϕ
c2
− υ2

c2

(6.5.24)

Substitute equation (6.5.24) into (6.5.23) yields

E =
m0c

2√
1 + 2ϕ

c2
− υ2

c2

(6.5.25)

When we compare equation (6.5.22) and (6.5.25) we obtain

m0c
2√

1− υ2
0

c2

=
m0c

2√
1 + 2ϕ

c2
− υ2

c2

(6.5.26)

We omit the m0, 1, c
2 and multiply by 1

2
m it gets

−υ20
c2

=
−υ2

c2
+

2ϕ

c2
(6.5.27)

Then;
υ2 = υ20 + 2ϕ (6.5.28)

1

2
mυ2 =

1

2
mυ20 + ϕm

This is a new form of the energy conservation law.

T = T0 + V,

where, T is total energy, T0 kinetic energy and V is potential.
Consider two points 1 and 2, having velocities υ1 and υ2 and potentials ϕ1

and ϕ2, the energies are given by

E1 =
m0c

2√
1 + 2ϕ1

c2
− υ2

1

c2

, E2 =
m0c

2√
1 + 2ϕ2

c2
− υ2

2

c2

(6.5.29)
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for the two energies to be equal

E1 = E2

2ϕ1

c2
− υ21
c2

=
2ϕ2

c2
− υ22
c2

Multiply both sides by mc2

2
, one gets.

mϕ1 −
1

2
mυ21 = mϕ2 −

1

2
mυ22

V1 − T1 = V2 − T2
T1 − V1 = T2 − V2

But the lagrangian is defined to be

L = T − V (6.5.30)

Thus conservation law requires

L1 = L2

The equation (6.5.30) is also a new form of conservation law in case of La-
grangian formula.

6.6 Free electron lasing within framework of

Generalized Special Relativity (GSR)

Let us consider that the relativistic factor γ =
(
1− υ2

0

c2

)−1/2

, in generalized

special relativity γ =
(
1 + 2ϕ

c2
− υ2

c2

)−1/2

, we substitute in equation (4.2.11)

as following:

Substitute the factor γ =
(
1− υ2

0

c2

)−1/2

we get

β = const×N1/3B
2/3
0 L1/3

((
1− υ20

c2

)−1/2
)−1

(6.6.31)
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When the relativistic factor γ used in equation (6.6.31) considered, the
expression for gain coefficient or lasing in special relativity (SR) takes the
form

β = const×N1/3B
2/3
0 L1/3

√
1− υ20

c2
(6.6.32)

while substitute γ =
(
1 + 2ϕ

c2
− υ2

c2

)−1/2

of generalized special relativity

we get

β = const×N1/3B
2/3
0 L1/3

((
1 +

2ϕ

c2
− υ2

c2

)−1/2
)−1

(6.6.33)

Then,

β = const×N1/3B
2/3
0 L1/3

√
1 +

2ϕ

c2
− υ2

c2
(6.6.34)

The Generalized Special Relativity theory is a new form of the special rela-
tivity theory that adopts the gravitational potential.
Comparing equations (6.6.32) with (6.6.34), leads to observe that potential
field does not affect in gain coefficient, when one dealing with the special rel-
ativity (SR). One has explained that the potential field does not appears. By
using Generalized Special Relativity theory (GSR), gravitational potential,
or the field in which the mass is measured appears. ϕ denotes the gravita-
tional potential, which can be given by

ϕ =
−MG

r

It is important to note that ϕ here is the potential per unit mass for any
field. the appearance of potential field leads to affect of magnetic field to
gain coefficient or lasing.
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6.7 Effects of Fields on Light Amplification

with Population Inversion within the frame-

work of GSR

The amplification coefficient β can be derived from the Lambert-Beer
law [61].

I = I0e
βz, (6.7.35)

where I is the intensity transmitted through the sample I0 is incident inten-
sity and z stands for the distance traversed by radiation in the medium. The
amplification coefficient β is given by:

β = B(n2 − n1)
hf

c
z, (6.7.36)

where β is amplification coefficient, B is Einstein Coefficient, n is the number
of particle at a certain energy level, h Blank Constant, f frequency, c speed
of light z axis. From equation (6.7.36) and referring to Einstein equation:

m0c
2 = hf (6.7.37)

The equation inside medium become:

mc2 = hf́ (6.7.38)

It is possible to use the new theory of Generalized Special Relativity (GSR)
can be given:

m =
g00m0√
g00 − υ2

c2

, (6.7.39)

where g00 = 1 + 2ϕ
c2

Since

m =
m0(1 +

2ϕ
c2
)√

1 + 2ϕ
c2
− υ2

c2

(6.7.40)

And referring to equation (6.7.36) it follows that β́ becomes:

β́ = B(n2 − n1)
hf́

c
(6.7.41)
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cβ́

B(n2 − n1)
= hf́ (6.7.42)

m0g00√
g00 − υ2

c2

c2 = hf́ (6.7.43)

Comparing equation (6.7.42) with (6.7.43) yields:

cβ́

B(n2 − n1)
=

m0g00√
g00 − υ2

c2

c2 (6.7.44)

When g00 = 1 + 2ϕ
c2
, then the amplification factor in the presence of a field,

of potential ϕ per unit mass, becomes:

β́ =
Bc(n2 − n1)m0(1 +

2ϕ
c2
)√

1 + 2ϕ
c2
− υ2

c2

(6.7.45)

This expression represents the Gain coefficient within framework of Gener-
alized Special Relativity (GSR). On other hand from equation (6.7.36) the
gain coefficient is given by:

β́ = B(n2 − n1)
hf

c
(6.7.46)

But since
m0c

2 = hf (6.7.47)

And

mc2 = hf

β = B(n2 − n1)
hf

c

cβ = B(n2 − n1)hf

cβ

B(n2 − n1)
= hf (6.7.48)
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Comparing equation (6.7.47) with equation (6.7.48) yields:

cβ

B(n2 − n1)
= m0c

2

β = B(n2 − n1)m0c (6.7.49)

When neglecting the field potential and when the υ is slow speed in equation
(6.7.45).

ϕ→ 0,
υ2

c2
→ 0

Thus the amplification coefficient becomes:

β = Bc(n2 − n1)m0 (6.7.50)

Thus the amplification coefficient reduces to the conventional one for low
speed particles in the absence of fields. When the crystal field is not ne-
glected.

mc2 = hf (6.7.51)

The amplification coefficient becomes:

β́ = B(n2 − n1)
hf

c
(6.7.52)

cβ́

B(n2 − n1)
= hf (6.7.53)

Comparing equation (6.7.51) with equation (6.7.53) yields:

cβ́

B(n2 − n1)
= mc2

Then;

β́ = B(n2 − n1)mc

When,

m =
m0g00√
g00 − υ2

c2

⇒
m0(1 +

2ϕ
c2
)√

1 + 2ϕ
c2
− υ2

c2
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β́ = B(n2 − n1)
m0cg00√
g00 − υ2

c2

β́ = B(n2 − n1)
m0c(1 +

2ϕ
c2
)√

1 + 2ϕ
c2
− υ2

c2

(6.7.54)

β́ = C0

(
1 +

2ϕ

c2

)(
1 +

2ϕ

c2

)−1/2

= C0

(
1 +

2ϕ

c2

)(
1− ϕ

c2

)
= C0

(
1− ϕ

c2
+

2ϕ

c2
− 2ϕ2

c4

)
= C0

[
1 +

ϕ

c2
− 2ϕ2

c4

]
= Bm0c(n2 − n1)

[
1 +

ϕ

c2
− 2ϕ2

c4

]
= B(n2 − n1)

[
m0c+

V

c
− 2V 2

c3

]

β́ =
(1 + 2ϕ

c2
)√

1 + 2ϕ
c2
− υ2

c2

β

When the field is weak ϕ << c2, ϕ
c2
≃ 0 n = refractive index = c

υ

Thus,

β́ =
β√
1− 1

n

=
β√
n−1
n

(6.7.55)

Thus amplification factor depends on the refractive index. Thus the amplifi-
cation factor is affected by the crystal field as well as the refractive index as
shown by equation (6.7.54) and (6.7.55).
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6.8 Effects of Fields on Amplification for free

electrons in the presence of static Mag-

netic and Electric Fields

If a resistive medium with characteristic relaxation time is sub-
jected to an electric field in the x-direction and magnetic filed in the direction
of z in such a way that it moves in the x − y plain with velocity, magnetic
field and electric field given by [62]:

υT = υx⃗i+ υy j⃗ = υ⃗i+ υj⃗ (6.8.56)

BT = Bzk⃗ (6.8.57)

Where one assumes that
υx = υy = υ (6.8.58)

In this case the equation of the motion reads

ma = eE + eB × υ − mT

τ
(6.8.59)

 i⃗ j⃗ k⃗
υx υy υz
0 0 Bz

 = (υBz )⃗i− (υBz )⃗j (6.8.60)

max = eEx + eυyBz −
mυx
τ

(6.8.61)

may = eEy + eυxBz −
mυy
τ

(6.8.62)

m
dυ

dt
= eEx + eυB − mυ

τ
(6.8.63)

m
dυ

dt
= eEy + eυB − mυ

τ
(6.8.64)

Confining our selves to the x direction the current density Jx is given by [62]:

Jx = neυx = neυ = σEx (6.8.65)
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For motion with constant speed

dυ

dt
= 0 (6.8.66)

And equation (6.8.63) reduced to (m
τ
−Be)υ = eEx, thus

υ =
e

m
τ
−Be

Ex =
τe

m−Beτ
Ex (6.8.67)

Utilizing this result in (6.8.65) yields:

Jx =
ne2τ

m−Beτ
Ex = σEx (6.8.68)

As result the conductivity is given by:

σ =
ne2τ

m−Beτ
(6.8.69)

Since σ stands for the real part σ1 it follows from relations σ1 = −ωϵ0χ2 ,
σ2 = ωϵ0χ1 that,

β =
µσ1
n1

=
µne2τ

n1(m−Beτ)
(6.8.70)

According to equation:

mn(
dυ

dt
+ υ∇υ) = enEe − γKBT∇n

Amplification takes place when β > 0 this requires:

m > Beτ,
mυ

τ
, Fr > Fm (6.8.71)

This indicates that amplification of electromagnetic waves is possible if the
resistive force Fr exceed the magnetic field Fm. The resistive force which
is measure of amount of energy lost in collision also measures the number
of excited atoms which gain energy loosed by free electron during collision.
Thus the larger number of excited atoms are emitting large number of pho-
tons responsible of inducing laser.
When one has applied the new theory of Generalized Special Relativity
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(GSR) into equation (6.8.70) it produces the following equation, this can
be done using the identity.

m =
m0g00√
g00 − υ2

c2

, (6.8.72)

where g00 = 1 + 2ϕ
c2

The gain coefficient can be written in terms of conductivity in the form

β =
µσ1
n1

=
µne2τ

n1(m−Beτ)
(6.8.73)

When one substitutes the relativistic mass see equation (6.8.72) into equation
(6.8.73) one gets

β =
µne2τ

n1

(
m0g00√
g00−υ2

c2

−Beτ
) (6.8.74)

β =
µne2τ

n1

(
m0g00−Beτ

√
g00−υ2

c2√
g00−υ2

c2

) (6.8.75)

β =
µne2τ

n1

(
m0(1+

2ϕ

c2
)−Beτ

√
1+ 2ϕ

c2
−υ2

c2√
1+ 2ϕ

c2
−υ2

c2

)

β =
µne2τ

√
1 + 2ϕ

c2
− υ2

c2

n1

(
m0(1 +

2ϕ
c2
)−Beτ

√
1 + 2ϕ

c2
− υ2

c2

) (6.8.76)

Equation (6.8.76) shows again that the field applied externally into the ma-
terial or the internal fields affect amplification factor.
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6.9 Effects of Fields on Laser Induced by Os-

cillating Electric field beside Sound Vi-

bration

Consider free electrons in a conductor having resistive medium
characterized by relaxation time τ . When these electrons are affected by an
oscillating electric field beside a sound wave in the form.

E = E0e
iωt, F = F0e

iωt (6.9.77)

The motion of free electrons become

m
dυ

dt
= eE0e

iωtt+ F0e
iωt − mυ

τ
(6.9.78)

The solution of this equation can be suggested to be,

υ = υ0e
iωt (6.9.79)

Incorporating (6.9.79) in (6.9.78) one can write

imωυ0 = eE0 + F0 −
mυ0
τ(

imω − F0

υ0
+
m

τ

)
υ0 = eE0

So we get.

υ0 =
eE0

imω + m
τ
− F0

υ0

(6.9.80)

Thus;

υ =
e

imω + m
τ
− F0

υ0

E (6.9.81)

According to the definition of current density J

J = σE = neυ =
ne2

imω + m
τ
− F0

υ0

E (6.9.82)
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Hence

σ =
ne2

[(
m
τ
− F0

υ0

)
− imω

]
[(

m
τ
− F0

υ0

)
+m2ω2

] = σ1 + iσ2

Hence the real and imaginary parts of the conductivity are given by:

σ1 =
ne2

[
m
τ
− F0

υ0

]
[(

m
τ
− F0

υ0

)2
+m2ω2

] (6.9.83)

σ2 =
−mωne2[(

m
τ
− F0

υ0

)2
+m2ω2

]
With the aid of equation (6.8.73) the gain coefficient is given by:

β =
µne2

[
m0

τ
− F0

υ0

]
n1

[(
m0

τ
− F0

υ0

)2
+m2

0ω
2

] (6.9.84)

Amplification takes place if β > 0, m
τ
− F0

υ0
> 0→ mυ0

τ
> F0 then,

mυ
τ
> F so

we find that Fr > F
When we substitute relativistic mass and relative force within the frame

work of Generalized Special Relativity (GSR) theory, into equation (6.9.84)
one gets the relativistic mass is given by:

m =
m0g00√
g00 − υ2

c2

⇒
m0(1 +

2ϕ
c2
)√

1 + 2ϕ
c2
− υ2

c2

(6.9.85)

and the force is given by

F = ma

F =

(
1 + 2ϕ

c2

)
m0a√

1 + 2ϕ
c2
− υ2

c2

⇒
(
1 + 2ϕ

c2

)
F0√

1 + 2ϕ
c2
− υ2

c2

(6.9.86)
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β́ =
µne2

[
m
τ
− F

υ0

]
n1

[(
m
τ
− F

υ0

)2
+m2ω2

] (6.9.87)

Then inserting (6.9.85), (6.9.86) in (6.9.87) yields:

β́ =

µne2
[

m0g00

τ
√

g00−υ2

c2

−
√

1+ 2ϕ

c2
−υ2

c2

υ0(1+ 2ϕ

c2
)
F0

]
n1

[(
m0g00

τ
√

1+ 2ϕ

c2
−υ2

c2

−
√

g00−υ2

c2

υ0(g00)
F0

)2

+

(
m0g00√
g00−υ2

c2

)2

ω2

]

β́ =

µne2
[

m0(1+
2ϕ

c2
)

τ
√

1+ 2ϕ

c2
−υ2

c2

−
√

1+ 2ϕ

c2
−υ2

c2

υ0(1+ 2ϕ

c2
)
F0

]
n1

[(
m0(1+

2ϕ

c2
)

τ
√

1+ 2ϕ

c2
−υ2

c2

−
√

1+ 2ϕ

c2
−υ2

c2

υ0(1+
2ϕ

c2
)
F0

)2

+

(
m0(1+

2ϕ

c2
)√

1+ 2ϕ

c2
−υ2

c2

)2

ω2

](6.9.88)

β =

µne2
[

m0(1+
2ϕ

c2
)

τ
√

1+ 2ϕ

c2
−υ2

c2

−
√

1+ 2ϕ

c2
−υ2

c2

υ0

√
1+ 2ϕ

c2
−υ2

c2

F0

]
n1

[(
m0(1+

2ϕ

c2
)

τ
√

1+ 2ϕ

c2
−υ2

c2

−
√

1+ 2ϕ

c2
−υ2

c2

υ0

√
1+ 2ϕ

c2
−υ2

c2

F0

)2

+

(
m0(1+

2ϕ

c2
)√

1+ 2ϕ

c2
−υ2

c2

)2

ω2

]

Thus the amplification factor is affected by the crystal field as well as the
velocity of the electrons.

6.10 Effects of Fields on lasing of Thermally

Vibrating Atoms and electrons in the

presence of electric and magnetic Fields

Ionized atoms emit radiation according to electromagnetic the-
ory as for as accelerated and oscillating charged particle emit electromag-
netic radiation. Two cases are considered here. The first case concerns with
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ionic crystals vibration while the second one concerns the electrons vibration.
When ions in crystal is vibrating the equation of motion ions in the presence
of oscillating electric field and constant magnetic field takes the form:

mün = −c(2un − un−1 − un+1) + eE +Beun (6.10.89)

m ¨un+1 = −c(2un+1 − un − un+2) + eE +Beun+1 (6.10.90)

Where,

E = E0e
iωt, un = u0e

iωteikna (6.10.91)

The solution of this equation requires;

χ2 =
β1n0e

2

α2
1 + β2

1

+
β2n0e

2

(α2
1 + β2

1)
(6.10.92)

With

β1 = β2 = eωB (6.10.93)

The gain coefficient is given by:

β = −µϵ0ω
n1

χ2 (6.10.94)

In view of equation (6.10.93) and (6.10.94) amplification takes place when

β1 = eωB = −eω|B| (6.10.95)

When the magnetic field B is oriented is such away that the force excreted
by it apposes that excreted by the electric field. In this case

B = −|B|, χ2 = −, β = + (6.10.96)

Laser can also induced by vibrating electrons in resistive medium with the
aid of oscillating electric field E and constant magnetic field B. With the
effect of all these forces the equation of motion of the electron is given by:

m
dυ

dt
= eE +Beυ − mυ

τ
(6.10.97)
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Where

E = E0e
iωt (6.10.98)

The solution of (6.10.97) requires

χ2 =
−n0e

2β3
(α2

3 + β2
3)

(6.10.99)

α3 = −ωℓm β3 = ω(
m

τ
− βe) (6.10.100)

In view of equation (6.10.94), (6.10.99) and (6.10.90) lasing takes places when

χ2 = −, β3 = +,
m

τ
−Be > 0

mυ

τ
>

Beυ

τ
, Fr > Fm (6.10.101)

a gain the condition of amplification requires the resistive force to be large.
Using the Generalized Special Relativity theory (GSR), the masses are given
by:

m =
m0g00√
g00 − υ2

c2

⇒
m0(1 +

2ϕ
c2
)√

1 + 2ϕ
c2
− υ2

c2

(6.10.102)

The ordinary amplification factor is given by:

β = ω
(m0

τ
−Be

)
The corresponding are in the framework of Generalized Special Relativity
theory (GSR) is given by:

β́ = ω
(m
τ
−Be

)
(6.10.103)

Inserting (6.10.102) in (6.10.103) yields:

β́ = ω

 m0(1 +
2ϕ
c2
)

τ
√

1 + 2ϕ
c2
− υ2

c2

−Be

 (6.10.104)
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One can be find β́ and β from the equation (6.10.104) When the crystal field
is neglected, and when the speed of the electrons are slow, such that;

ϕ

c2
→ 0,

υ2

c2
→ 0

Equation (6.10.104) becomes

β́ = ω
(m0

τ
−Be

)
= β

Which is the ordinary conventional amplification factor.

6.11 Effects of Fields on Amplification due to

Photon perturbation

The photon wave function can be obtained by using the relativistic relation.

E2 = p2c2 +m2
0c

4 (6.11.105)

Since the photon rest mass vanishes it follows that

m0 = 0 E = Pc (6.11.106)

The operator for E and P can be obtained again from the radiation.

ψ = Ae
i
h
(px−Et) (6.11.107)

Where;

i~
d

dt
ψ = Eψ,

~
i
∇ψ = Pψ (6.11.108)

To check that this equation describe the free photon consider the solution.

ψ = Ae
i
h
(px−Et) (6.11.109)

With;

P =
h

λ
=

h

2π
× 2π

λ
= ~K (6.11.110)
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Substituting (6.11.109) in (6.11.108) with the aid of (6.11.110) yields

i~
(
− i
~
E

)
ψ =

~c
i

(
− i
~
Pψ

)
, P cψ =

hc

λ
= hfψ

Hence;
E = hf (6.11.111)

This is the ordinary expression of the photon energy. Thus the expression
(6.11.109) stands for the wave function of the photon. To see how the photon
wave function looks like within a medium one can recall Doppler effect and
compton effects which shows that the photon frequency is affected by the
motion of radiation source beside the fields and collision. Equation (6.11.108)
can be made time dependent by making the substitution.

ψ = e
iE
~ tu (6.11.112)

In equation (6.11.108) to get.

Eu =
~c
i
∇u (6.11.113)

The solution of the equation in one dimensional space takes the form u =
Aeiαx, is

∇u = iαu (6.11.114)

Hence, iE
~c = ∇u = iαu thus, α = E

~c we obtain

u = Ae
iE
~c x (6.11.115)

Since E = ~ω it follows that the photon wave function becomes:

u = Ae
iω
c
x (6.11.116)

One can assume that the frequency of the oscillating polarized atoms is the
same as the frequency of the photon, as suggested by harmonic oscillator
solution of Schrodinger equation and proposed by classical electromagnetic
theory. In this case the frequency of the photon can be found from the
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equation of the classical harmonic oscillator in which polarization fields and
external fields acts on electrons.

F = ec0E − eE
= e (c0 − 1)E0e

iωt

=
e (c0 − 1)

x0
x0Ee

iωt

=
e (c0 − 1)

x0
E0x = −Kx

F = −mω2x (6.11.117)

Thus from K = (1−c0)
x0

E0 = mω2 the photon frequency is given by.

ω = ±

√
(1− c0)
x0m

E0 (6.11.118)

In the case when c0 > 1

ω = ±

√
(1− c0)
x0m

E0 = ±iω0, ω0 = ±

√
(c0 − 1)

x0m
E0 (6.11.119)

As a result equation (6.11.116).

u = Ae±
ω0
c
x (6.11.120)

Since the intensity of radiation is I = hfpc = c|u|2 = cAe±
2ω0
c

x = I0e
βx One

can take the plus sign for amplification to get.

I = I0e
2ω0
c

x = I0e
βx (6.11.121)

In view of (6.11.119) lasing is possible when,

β =
2ω0

c
=

2

c

√
1− c0
x0m

E0 (6.11.122)

This requires the polarization field E to exceed the external field.

ω0 > 0, c0E0 > E0, P0 = c0E0 > E0 (6.11.123)
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This not surprising as for as the polarizing field reflects the number of photons
emitted by the medium

nm = |c0E0|2

This should exceed the incident photons.

ni = |E0|2

Where equation (6.11.123) requires |c0E0|2 > |E0|2 one find nm > ni. The
force in classical theory can be written as follows

F = ma, (6.11.124)

where m is the mass and a is acceleration. The relative mass in the Gener-
alized Special Relativity theory (GSR), is given by:

m =
m0g00√
g00 − υ2

c2

(6.11.125)

When we substitute the value g00 = 1 + 2ϕ
c2
, in equation (6.11.125) it gives.

m =
m0

(
1 + 2ϕ

c2

)√
1 + 2ϕ

c2
− υ2

c2

(6.11.126)

When one substitute in equation (6.11.124) yields:

F =

(
1 + 2ϕ

c2

)
m0a√

1 + 2ϕ
c2
− υ2

c2

(6.11.127)

Where
F0 = m0a (6.11.128)

Then one substitute equation (6.11.128) into equation (6.11.127) it gives.

F =

(
1 + 2ϕ

c2

)
F0√

1 + 2ϕ
c2
− υ2

c2

(6.11.129)

The relation between the force and electric field is given by:

F0 = eE0 (6.11.130)
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E0 =
F0

e
(6.11.131)

When one substitute the equation of relative mass into equation (6.11.127)
and equation (6.11.131) yields:

β =
2

c

√
(1− c0)
x0m0

E0 =

√
(1− c0)
x0m0

F0

e
(6.11.132)

The amplification factor within the framework of the Generalized Special
Relativity theory GSR, is given by:

β́ =
2

c

√
(1− c0)
x0m

F

e
(6.11.133)

But since,

m =
g00m0√
g00 − υ2

c2

Then the equation become,

F =
g00m0a√
g00 − υ2

c2

=
g00F0√
g00 − υ2

c2

=

(
1 + 2ϕ

c2

)
F0√(

1 + 2ϕ
c2

)
− υ2

c2

When one substitute the above relations in equation (6.11.132) one gets

β́ =
2

c

√√√√√ 1−c0
x0(1+ 2ϕ

c2
)√

1 + 2ϕ
c2
− υ2

c2

×
(
1 + 2ϕ

c2

)
F0

e
√
1 + 2ϕ

c2
− υ2

c2
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Which is the amplification factor within the framework of Generalized Special
Relativity theory (GSR). This equation can be simplified by canceling some
terms to get,

β́ =
2

c

√√√√√ 1− c0
x0m0g00

√
g00 −

υ2

c2
g00F0

e
√
g00 − υ2

c2

β́ =
2

c

√
1− c0
x0m0

F0

e
= β

The relation between the ordinary amplification coefficient β and the real
amplification coefficient β́

β́ =
2

c

√
1− c0
x0m0

F0

e
= β

Thus the relativistic effect does not appear here. However the effect of the
field manifests use it through the term;

F0

m
= −∇ϕ

6.12 Effects of fields on Harmonic Oscillator

Gain Coefficients

According to classical electromagnetic theory oscillating dipoles
emit electromagnetic radiation, the quantum mechanical treatment of har-
monic oscillator also indicates that the energy of oscillating body takes the
form.

En =

(
n+

1

2

)
~ω (6.12.134)

This means that the charge in energy between successive levels is given by:

∆E = ~ω (6.12.135)

This indicates that these oscillators either emit or absorb photons as for as
the energy of photon is given by equation (6.12.135) and as for as the clas-
sical electromagnetic theory is concerted. This means that if these emitted
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photons are in phase and coherence they may produce laser beam. To see
how this happen, one can utilize equation.

β =
8π3f (N2 −N1)

3hc
µ2

and equation

µ =

∫
ūmĤ1undr

By considering to the wave function of the harmonic oscillator.

µ =

∫
ūmX̂undx =

(n+ 1)

2α
, (6.12.136)

where m = n+ 1.
Therefore,

α =

(
mk

h2

) 1
4

=
(mω
h

) 1
2

(6.12.137)

Where one make use of the fact that

F = −kx
= ma

= −mω2

However, one can be find

K = mω2 (6.12.138)

Hence the amplification coefficient is given by:

β =
8π3f

3~
(N2 −N1)

c
µ2 (6.12.139)

=
8π3f

3~c
(N2 −N1)

(n+ 1)2

4α2

=
2π3f

3~c
(N2 −N1) (n+ 1)2

(
~
mω

)
=

2π3f

3c
(N2 −N1) (n+ 1)2

( ω

mω2

)
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In view of equation of

K =
mυ0
τ
− eE0 − F0

x
(6.12.140)

Amplification is possible if

mυ0
τ
− eE0 − F0 > 0 Fr > Fe + Fz (6.12.141)

The resistive force dominate again in complete agreement with classical elec-
tromagnetic theory. Another lasing condition can be obtained. If one replaces
the ordinary mass m in (6.12.141) by the effective mass m in which the effect
of lattice field is incorporated via the term Fℓ which represents the lattice
force where given by:

m∗ =

(
Fe

Fe + Fℓ

)
m (6.12.142)

Which Fe is stands for the external field. This relation comes from the
equation.

ma = Fe + Fℓ, m∗a = Fe (6.12.143)

ma = |Fℓ|+ |Fe|, = m∗a = |Fe|, = m∗ = m

(
|Fe|

|Fℓ|+ |Fe|

)
(6.12.144)

Thus by replacing m∗ by m in equation (6.12.144) lasing takes place when
|Fℓ| > |Fe| when the lattice force exceeds the external one. By using Gener-
alized Special Relativity theory (GSR), and substituting relativistic mass in
equation (6.12.139) yields:

m =
m0g00√
g00 − υ2

c2

Where g00 = 1 + 2ϕ
c2

then,

m =
m0

(
1 + 2ϕ

c2

)√
1 + 2ϕ

c2
− υ2

c2

(6.12.145)
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Therefore the amplification factor within the framework of Generalized Spe-
cial Relativity theory (GSR) becomes

β́ =
8π3

3hf

(N2 −N1) (n− 1)2

c

(
~

m0ω

)
(6.12.146)

Substituting equation (6.12.145) in equation (6.12.146) yields:

β́ =
8π3

3hf

(N2 −N1) (n− 1)2

c

 ~
m0g00√
g00−υ2

c2

.ω


Thus;

β́ =
8π3

3hf

(N2 −N1) (n− 1)2

c

 ~
m0(1+ 2ϕ

c2
)√

1+ 2ϕ

c2
−υ2

c2

.ω



β́ =
8π3

3hf

(N2 −N1) (n− 1)2

c

~
√
1 + 2ϕ

c2
− υ2

c2

m0

(
1 + 2ϕ

c2

)
.ω


The amplification coefficient within the framework of Generalized Special
Relativity theory (GSR) is given by:

β́ =
8π3

3hf

(N2 −N1) (n− 1)2

c

~
√
1 + 2ϕ

c2
− υ2

c2

m0

(
1 + 2ϕ

c2

)
.ω

 (6.12.147)

Which indicates that the fields and kinetic energy bath affects amplification
factor. The ordinary of approximation amplification coefficient (β) and the
real amplification coefficient (β́) are given by [63]:

β =
8π3

3hf

(N2 −N1) (n− 1)2

c

(
~

m0ω

)
(6.12.148)
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This is the ordinary amplification coefficient. The Generalized Special Rela-
tivity (GSR) are is given according to equation (6.12.147) by:

β́ =
8π3

3hf

(N2 −N1) (n− 1)2

c

~
√
1 + 2ϕ

c2
− υ2

c2

m0

(
1 + 2ϕ

c2

)
.ω


In view of (6.12.148) and (6.12.147) are gets

β́ =

√
1 + 2ϕ

c2
− υ2

c2(
1 + 2ϕ

c2

) .β

This the real amplification coefficient.

6.13 The Effect of Magnetic field on Amplifi-

cation factor and Intensity of Laser Beam

In Einstein general relativity (GR) the length, time, frequency and mass
are not affected by fields. However in generalized special relativity (GSR)
they are affected by any field. To see how can this happen, consider the
amplification factor in equation (6.7.52). Where

β = B(n2 − n1)
hf

c
(6.13.149)

If one takes into account the wave properties of light, the frequency f is
related to the periodic time T according to the relation

f =
1

T
(6.13.150)

But according to generalized special relativity GSR see equation (6.3.1)

T = γT0 = T0

(
1 +

2ϕ

c2
− υ2

c2

)−1/2

Thus,

f =

(
1 + 2ϕ

c2
− υ2

c2

)1/2
T0
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Neglecting the velocity of frame of reference υ, i.e the atoms emitting pho-
tons, and for small ϕ

f =

(
1 + 2ϕ

c2

)1/2
T0

=

(
1 + ϕ

c2

)
T0

f =

(
1 + m0ϕ

m0c2

)
T0

=

(
1 + V

m0c2

)
T0

(6.13.151)

But the magnetic flux density B induces potential V

V =
enB

c
, (6.13.152)

where n is the number of particles per unit volume. Thus inserting equation
(6.13.152) and (6.13.151) in (6.13.149) yields

β =
B0(n2 − n1)

cT0

(
1 +

enB

m0c3

)
This can be written as.

β = C1[1 + C2B] (6.13.153)

With

C1 =
B0(n2 − n1)

cT0

C2 =
en

m0c3
∼ 10−19n

10−31 × 1025
∼ 10−13n

For n ∼ 1012 then C2 = 10−1 plotting equation (6.13.153) for I, where

I = I0e
βL (6.13.154)

for small βL

I = I0[1 + βL] = I0[1 + C1 + C1C2B] (6.13.155)

The relation between I and B becomes as in figure (6.2).
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Figure 6.2: Relation between I and B

The relation between I and B can also be investigated in view of equation
(6.13.156), by consider the particle nature of light, where

β = B(n2 − n1)
g00m0√
g00 − υ2

c2

(6.13.156)

β = B(n2 − n1)

(
1 +

2ϕ

c2

)
m0

(
1 +

2ϕ

c2
− υ2

c2

)−1/2

(6.13.157)

Neglecting again υ, for small ϕ, B becomes

β = B(n2 − n1)m0

(
1 +

2ϕ

c2

)(
1− ϕ

c2

)
(6.13.158)

= C3(1 +
ϕ

c2
− 2ϕ2

c4
)

Using equation (6.13.149)

β = C3(1 +
enB

m0c3
− 2e2n2

m2
0c

5
B2)
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β = C3(1 + C4B − C5B
2) (6.13.159)

Where

C3 = B(n2 − n1)m0 (6.13.160)

C4 =
en

m0c3

C5 =
2e2n2

m2
0c

5

I = I0e
C3(1+C4B−C5B2) (6.13.161)

Plotting I againstB according to equation (6.13.161) one gets figure (6.11.127).
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Figure 6.3: Relation between I and B

If one considers the electrons and atoms emitting laser photons, as har-
monic oscillators, the situation becomes different. The amplification factor
becomes according to equation (6.12.139).

β =
2π3f

3c
(n2 − n1)(n+ 1)2

( ω

mω2

)
(6.13.162)
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But according to harmonic oscillator model.

k = mω2

Thus

β =
2π3f

3c
(n2 − n1)(n+ 1)2

(
2πf

k

)
(6.13.163)

=
4π4(n2 − n1)(n+ 1)2f 2

3ck
= C5f

2

But

f =
1

T
=

(
1 + 2ϕ

c2
− υ2

c2

)1/2
T0

Neglecting υ and for small ϕ

f =
(1 + ϕ

c2
)

T0
= T−1

0

(
1 +

ϕ

c2

)
Thus

f 2 = T−2(1 +
ϕ

c2
)2 = T−2

0

(
1 +

2ϕ

c2
+
ϕ2

c4

)
If the magnetic field apposes the motion

V = m0ϕ =
−enB
c

Therefore

f 2 = T−2
0

(
1− 2enB

m0c3
+
e2n2B2

m2
0c

5

)
(6.13.164)

Inserting (6.13.164) in equation (6.13.163) yields

β = C5T
−2
0 (1− C6B + C7B

2)

β = C8 − C9B + C10B
2, (6.13.165)

where C8, C9, and C10 are constants. Thus

I = I0e
(C8−C9B+C10B2) (6.13.166)
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plotting I versus B yields (6.4) below.
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Figure 6.4: Relation between I and B

6.14 Discussion

The expression for the energy in Eq.(6.4.20) is obtained by using momentum
conservation together with time dilation relation of the GSR theory. This
expression shows that the mass and energy are affected by the kinetic energy
per unit mass 1

2
mυ2 as well as the potential ϕ per unit mass. This expres-

sion is in conformity with common sence and with GSR [60], and Savickas
model [59]. The expression of energy satisfies correspondence principle as
it reduces to Newtonian energy relation it consists of potential term beside
kinetic term. as shown by equation (6.4.21). The fact that the mass and
energy expressions resembles that of savickas and the GSR indicates that
these expressions rests on a solid ground. Such expressions can cure some of
SR setbacks like Newtonian limit and red shift phenomena. The fact that
the relativistic time and mass in equations (6.3.1), (6.3.3) and (6.4.15) can
explain the effect of magnetic field on laser amplification factor as well as
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laser intensity. Comparing the theoretical relation between I and B in figure
(fig:6.2), with the empirical relation in figure (fig:5.2), it is clear that the
two curves are similar. This is not surprising as well as the active lasing
media is a plasma which consist of free atoms that oscillates and act as a
harmonic oscillator. The effect of magnetic field on Helium cadmium (He-
Cd) laser discharged gas is displayed in figures (fig:5.4) and (fig:5.5). These
empirical relations are similar to the theoretical relations in figures (fig:6.3)
and (fig:6.4) which are concerned with particle nature of light and harmonic
oscillator. This is not surprising since the discharged gas which have free
isolated ionized atoms treat light as particles called photons with mass m.
The ionized atoms also oscillates and thus behaves as harmonic oscillator.
Finally the effect of magnetic field on semiconductor laser is linear as shown
in figure (fig:5.6). This empirical relation conforms with the linear theoret-
ical one in figure (fig:6.2) which was derived by considering the change of
frequency by the magnetic field. This is not surprising, since for the semi-
conductor laser, which is a balk matter, light behaves as waves with a certain
frequency.

6.15 Conclusion

The fact that generalized special relativity (GSR) predicts that the mass,
time and length are effected by physical field open a new horizon for explain-
ing a wide variety of physical phenomena. The (GSR) with this a new version
succeeded in explaining the change of laser intensity with the magnetic field
strength.

6.16 Recommendations

1. The (GSR) prediction need to be used to see how physical fields affect
physical quantities and material properties

2. The effect of (GSR) on lasing process should also extended to include
a wide variety of theoretical models

3. The theoretical framework of free electron laser need to be simplified.
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