Dedication

To my father (AHMED)

Mother (AMNA)

Sisters(MONA.AMANY.HOWIDA)

Brothers(ALSADIG.ANAS. EMAD.HASHIM)

Friends (AFRAA & REHAB)

To all I love

Walla

Acknowledgement

Praise be to Allah who gave me health, strength and patience to conduct this work. I would like to express my gratitude and appreciation to my main supervisor Dr. **Maysara Ahmed Mohammed** for his consistent supervision and patience, invaluable advice, and guidance throughout the course of study.

I'm indebted to Dr. Hitham Ragab Elrmlawy for his invaluable help in the computer model design. I also find myself indebted to Dr. Hassan Ibrahim and Dr. Omran Musa and Dr Alsadig Almahadi and all Department of Agricultural Engineering Sudan university. for their invaluable help through the study period.

Finally, I shall be failing in duty if I don't say a word to Eng. Izzeldin Ahmed for his invaluable help and continuous encouragement and support all through the study period and my brothers Waly Aldeen Alnaeam, and Abdelgadir Idriss although their names didn't appear here simply because they are innumerable.

﴿ قُلْ اللَّهُ اللَّ اللَّهُ اللَّهُ اللَّهُ اللَّهُ اللَّهُ اللَّهُ اللَّهُ اللَّهُ

(المُرْزِينَ الْمُرْزِينَ إِلَيْهِ الْمُرْزِينَ فِي الْمُرْزِينِ وَلِي الْمُرْزِينِ وَالْمُرْزِينِ وَلِينِ وَالْمُرْزِينِ وَالْمُرْزِينِ وَالْمُرْزِينِ وَالْمُرْزِينِ وَالْمُرْزِينِ وَالْمُرْزِينِ وَالْمُرْزِينِ وَالْمُرْزِينِ وَلِينِ وَالْمُرْزِينِ وَالْمُرْزِينِ وَالْمُرْزِينِ وَالْمُرْزِينِ وَالْمُرْزِينِ وَالْمُرْزِينِ وَالْمُرْزِينِ وَالْمُرْزِينِ وَلِينِ وَالْمُرْزِينِ وَالْمُرْزِينِ وَالْمُرْزِينِ وَالْمُرْزِينِ وَالْمُرْزِينِ وَالْمُرْزِينِ وَالْمُرْزِينِ وَالْمُرْزِينِ وَلْمُرْزِينِ وَالْمُرْزِينِ وَالْمُرْزِيزِينِ وَالْمُرْزِينِ وَالْمُرْزِيزِينِ وَالْمُرْزِيزِينِ وَالْمُرْزِيزِ وَالْمُرْزِيزِي وَالْمُرْزِيزِ وَالْمُرْزِيزِي وَالْمُرْزِيزِي وَالْمُرْزِينِ وَالْمُرْزِيزِي وَالْمُرْزِيزِي وَالْمُرْزِيزِي وَالْمُرْزِيلِي وَالْمُرْزِيزِي وَالْمُرْزِيزِي وَالْمُرْزِيلِ وَالْمُرْزِيلِي وَالْمُرْزِيلِ وَالْمُرْزِيلِ وَالْمُرْزِيلِ وَالْمُرْزِيلِ وَ

المالية المالية

الخلاصه

(X) القائم علي بيئة ويندوز (APAMMتم إعداد برنامج حاسوبي لادارة الاليات الزراعية (X) القائم علي بيئة ويندوز (visual basic) او الانظمة الحديثة وهو برنامج سهل الاستخدام كتب علي برنامج 7او (لادارة الاليات ويتيح للمستخدم ادخال البيانات المطلوبه لمعالجتها حسابيا كما يمكن المستخدم من استخراج المحرجات التي تظهر على الشاشة مباشرة و المحرجات التي تظهر على الشاشة مباشرة و المحرجات التي تطهر على المحرب ال

يتنبأ بالسعه الحقلية لمختلف الالات الزراعية (هكتار/ساعة)، يحدد قدرة الجر APAMM المطلوبة لكل الله (كيلو واط)كما يتنبأ البرنامج بعدد الجرارات والالات المطلوبة لكل عملية زراعية ، يحسب التكلفة الكلية للعمليات (هكتار اساعة) وايضا يحسب التكلفة الكلية والثابتة لمختلف الدورات الزراعية يمنح المستخدم خيار شراء او ايجار الالة الزراعية .

تم التحقق من صحة البرنامج بالتحليل الاحصائي بالمقارنة مع مشروع الرهد موسم (٢٠٠٦- ٢٠٠٥) ، واشارت المقارنة انه لاتوجد فروق معنوية

يمكن تطبيقة على ارض الواقع بكل نجاح وثقة. APAMMاشارت النتائج ان

ABSTRACT:

The program APAMM, is a Windows based program that can be run on a Windows xp or higher system on computers. It is a user-friendly interactive program written in a Visual Basic (VB) programming environment for machinery management. It allows the user to interact with it by entering the required inputs and it will carry out the interactive calculations. The program enables the user to print out the output which is displayed on the screen. The APAMM can predict the effective field capacity for different implements(ha/hr), determines the drawbar power needed for each implement (kw), calculates the power take-off power for each implement (kw). Predicts the number of tractors and implements required for each agricultural operation. Calculates the total operation cost per ha, and per hour and finally estimates total costs of owning and operating machinery for various crop rotations, giving the user an option to hire or purchase the machine. APAMM was successfully validated statistically (chi-square)in comparison to Rahad scheme machinery system season 2006-2007. The comparisons indicated that there were no significant differences. In general, the results indicated that the APAMM could be applied to any real-life case successfully and with confidence.

TABLE OF CONTENTS

DEDICATION	I
ACKNOLEDGEMENT	II
ARABIC ABSTRACT	IV
ENGLISH ABSTRACT	V
TABLE OF CONTENTS	VI
LIST OF TABLES	IX
LIST OF FIGURES	Х
LIST OF ABBREVIATIONS AND NOTATITIONS	
CHAPTER I: INTRODUCTION	1
1.1Background	1
1.2 Problem definition	2
1.3 Study objectives	3
1.4 Specific objectives	4
CHAPTER II: LITERATURE REVIEW	5
2.1 Machinery Management	5
2.2Computers And Agricultural Machinery Management	6
2.3 Machinery Performance	14
2.4 Machine Field Capacity	15
2.4.1Theoretical Field Capacity	15
2.4.3 Machine Field efficiency	17
2.5 Tractor Power Performance	19

2.5.1 Implement (machine) power requirements	19
2.5.2 Drawbar Performance	21
2.5.3Power-Take Off (PTO) power	21
2.5.4 Pto performance	22
2.6 Wheel slippage	23
2.7 Attractive efficiency	24
2.8 Machinery cost	26
2.8.1Depreciation	27
2.8.2Interest	29
2.8.3 Taxes, insurance &shelter (tis)	29
2.8.4 Variable costs	30
2.8.5 Repair costs	30
2.8.6 Fuel costs	31
2.8.7 Lubricant	32
2.8.8 Labor	32
2.9 Timeliness Costs	32
2.10 Costs for Implements or Attachments	32
2.11 Factors That Affect the Size of Machinery Needed	33
2.12 Breakeven Point (BEP)	35
2.13 Least Cost Width	35
2.14Crop Rotation	36
2.15 Advantages of a Crop Rotation	36

CHAPTER III: MODEL DEVELOPMENT	39
3.1 General	39
3.2 Program Development	39
3.3 The Program Assumptions	39
3.4.1 The Program Structure	40
3.4.2Program Features and Technical Specifications	42
3.5 Data Entry	42
3.7 Tractor /Machine Parameter	47
CHAPTER VII: RESULTS AND DISCUSSION	51
4.1Model verifications	52
4.2 model validation	53
4.3Satisfactionofpurposeofmodelbuilding	55
4.4. Sensitivity Analysis	55
4.4.1 Model Response to change in single input	55
4.4.2 . Effect of changing cultivated area	56
4.4.3. Effect of changing machinery purchase price	57
4.4.4. Effect of changing multiple input on model output	59
CHAPTER V CONCLUSION AND RECOMMENDATIONS	61
5.1Conclusion	61
5.2 Recommendations	62
REFENCES	63
APPENDIXES	70

List of Tables

Table	page
2.1 Default values for speed, field efficiency and, draft requirements	9
2.2 Drawbar power estimation in different soil conditions for different tractors	14
2.3 Draft parameters and expected range in draft estimated for tillage and seeding implements	16
4.1 Rahad Scheme Data 2006-2007	52
4.2 Comparison between APAMM and Rahad (170hp tractor)	51
4.3 Comparison between APAMM and Rahad (80HP tractors)	51
4.4 Effect of changing cultivated area in tillage	55
4.5 Effect of changing cultivated area in ridging	56
4.6 Effect of changing cultivated area in planting	56
4.7 Effect of changing machinery purchase price in tillage	57
4.8 Effect of changing machinery purchase price in ridging	57
4.9 Effect of changing machinery purchase price in planting	58
4.10 Effect of changing multiple input on model output in tillage	58
4.11 Effect of changing multiple input on model output in ridging	59
4.12 Effect of changing multiple input on model output in planting	59

LIST OF FIGURES

figures	page
Fig (2.1) Effect of increasing machinery size on machinery cost	25
Fig(3.1)APAMM main interface	40
Fig(3.2) input data for implement	42
Fig (3.3)input data for tractor primary tillage	43
Fig (3.4)input data for tractor secondary tillage	44
Fig (3.5) APAMM general Flow Chart	46

LIST OF ABBREVIATIONS

List of Abbreviations and Notations.

Abbreviations Full Name

and Notations

ASAE American Society of Agricultural Engineering.

TFC Theoretical field capacity.

EFC Effective field capacity.

FE Field Efficiency.

A Area to be processed.

D Implement draft.

F Dimensionless texture adjustment factor.

d Tillage depth.

P_{db} Drawbar or Propulsion Power

S Forward or travel speed.

PTO or TOP Take-off shaft power.

Prot Rotary power.

pp Purchase Price.

l Life on farm.

S v Salvage value.

tis Taxes ,insurance and shelter costs.

el Economic life.

f Fuel cost.

fp Fuel price.

0 Oil costs.

Mtc Machinery total cost.

op Operation cost

R &m Repair & Maintenance.

I Interest rate.

D Depreciation

SDG Sudanese giniah