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Abstract

We study the transport inequalities, gradient estimates entropy, and Ricci
curvature. A free probability method of the Wasserstein metric on the trace-
states space is considered. We give a free Brunn-Minkowski inequality, and
show the Talagrand inequality for the semicircular law and energy of
eigenvalues of Beta ensembles. We also show the Ricci curvature for metric
measure spaces by optimal transport, and consider the mass transportation
and rough curvature bounds for discrete spaces. We investigate the
combinatorial dimension and certain norms in the method of harmonic
analysis, and characterize the relationships between combinatorial
measurements and Orlicz norms. Also Characterization of dimension free
concentration in terms of transportation and Poincar'e inequalities with
dimension free concentration of measure are shown, mass transportation
evident of free functional inequalities and free Poincar'e inequalities are
confirm.
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We present various characterizations of uniform lower bounds for the Ricci
curvature of smooth Riemannian manifold in convexity properties of the
entropy.

We define free probability analogues of the Wasserstein metric, which
extends the classical one. We present one dimensional various of the
functional form of the geometric Brunn-Minkowski inequality in free (non-
commutative) probability theory. The proof relies on matrix approximation
as used recently by Biane and Hiai et al to establish free analogues of the
Logarithmic Sobolev and transportation-cost inequalities for strictly convex
potentials that are recovered here from the Brunn- Minkowski inequality as
in the classical case. We give a short proof of an extension of the free
Talagrand transportation —cost inequality to the semicircular which was
originally proved [198].The proof is based on a convexity argument and is
the spirit of the original Talagrand's approach for the classical counterpart
from [179].

We define a notion of measured length space having nonnegative Ricci
curvature or having c-Ricci curvature bounded below by a real number .We
introduce and study rough (approximate) lower curvature bounds for
discrete spaces and graphs. This notion agrees with the one introduce in the
sense that the metric measure space which is approximated by a sequence of
discrete spaces with rough curvature greater than or equals a real constant
will have curvature greater than or equals other a real constant.

We study a parameter called combinatorial dimension where appropriate
constructions in a harmonic, analytic framework filled “combinatorial " and
" analytic " gaps are open between Cartesian products of spectral sets. We
establish in a setting of harmonic analysis precise relationships between
combinatorial measurement and Orlicz norms.

The aim is to show that a probability measure on R concentrate
independently of the dimension like a Gaussian measure , if and only if it
verify Talagrand's T, transportation —cost inequalities .We consider
Poincar'e inequalities for non Euclidean matrics on R® .These inequalities
rate between type exponential and Gaussian and beyond. This work is
devoted to a direct mass transportation proofs of families of functional
inequalities in the context of one dimensional free probability, avoiding
random matrix approximation. The inequalities include the free form of the
transportation log Sobolev , HWI interpolation and Brunn-Minkowski
inequalities for strictly convex potentials. Sharp constants and some
extended version are put forward.

The contents
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Chapter 1
Transport Inequalities and Gradient Estimates with Entropy

The entropy will be considered as a function on the space of
probability measures on the Riemannian manifold as well as in terms of
transportation inequalities for volume measures, heat kernels, and Brownian
motions and in terms of gradient estimates for the heat semigroup.

For metric measure spaces there is neither a notion of Ricci curvature
nor a common notion of bounds for the Ricci curvature See
[104,156,143,251,285,118] (complete, for instance, to Alexandrov’s notion
of bounds for the sectional curvature for metric spaces [29.166,
4,129,163,145].

We present various characterizations of uniform lower bounds for the
Ricci curvature of a smooth Riemannian manifold M in terms of convexity
properties of the entropy (considered as a function on the space of
probability measures on M ) as well as in terms of transportation inequalities
for volume measures, heat kernels, and Brownian motions and in terms of
gradient estimates for the heat semi group.

In what follows, (M,g)is always assumed to be a smooth, connected,

complete Riemannian manifold with dimension n, Riemannian distance
d(x,y), and Riemannian volume m(dx)=vol(dx),for re[l,o)the L -
Wasserstein distance of two measures u,and u, on M is defined as:

Wr(ul,uz):zinf{ J‘ d(xlﬂxz)’ﬂ(dxldxz):ueC(ul,,uz)}

MxM

Where C(u,,1,) denotes the set of all coupling of u, and u,, that is, the set
of all measures u on M xM with u(AxM)=p,(A4) and u(M x 4)= p,(4) for
all measurable 4 < M : see [23].

Here and in what follows, the “measure on M” always means the measure
on M equipped with its Borel o -field. P (M) will denotes the set of

probability measures ¢ on M with jd (x,y) p(dy) <o for some (hence all)
M
x € M . Equipped with the metric W, the space P (M ) is a geodesic space.

The relative entropy is defined as a function on P" (M) by:



dv. dV
M

If Vis absolutely continuous with respect tovol with
JC;_V{IOg C;—V} +vol(dx) <o and H(V):=+wo otherwise. Given an arbitrary
& dx X

geodesic space(X ,p), a number K e R, and a functionU : X — (= o0,40), we

say that U is K convex if and only if for each (constant speed, as usual)
geodesic v:[0,1] » x with U(V;)<wand U(V)<w for each ¢ <[0,1]

U(V)=(1-0)U ()0 (V)= 1(1=1)p* (V).

K - Convex function on P?*(M) are also called displacement X - convex (to
make sure that ¢V is really the geodesic with respect to W, and not the
linear interpolation ¢+ (1-¢)v, +¢V in the spaceP *(M)).

Here and henceforth, p,(x,y) always denotes the heat kernel on M, i.e. the
minimal positive fundamental solution to the heat equation

(A—%)pl(x, y)=0. It is smooth in (t,x,y) and symmetric in(x,y). And it
satisﬁesjP,(x, y)Vd (dx)<1. Hence, it defines a sub probability measure
M

P(x,dy)=P(x,ypol(dy) as well as operators P :C*(M)—C”(M) and
P:1’(M)— *(M). Which are all denoted by the same symbol given
peP’(M) and >0, we define a new measure p, €P"(M) by:

uP, (A)zIIR (x,y ) u(dx Jvol (dy ).

Brownian motion on M is by definition the Markov process with generator

%A . Thus its transition (sub) probabilities are given by P, .

2

If the Ricci curvature of the underlying manifold M is bounded from
below, then all the P(x,) are probability measures. If the later holds true, we

say that the heat kernel and the associated motion has an infinite lifetime.

One obtains contraction in W, for each r [l,0]and for any initial data and
One obtains path wise contraction for Brownian trajectories.

The advantage of this characterization of Ricci curvature is that it depends
only on the basic, robust data: measure and metric. It does not require any
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heat kernel, any Laplacian, or any Brownian motion. It might be used as a
guideline in much more general situations.

For instance, Let (M,d) be an arbitrary separable metric space equipped

with a measure m on its Borel o -field and assume that (2) holds true (with
some numbers K eR andn>0). Define an operator m, acting on bounded
measurable functions by:

m, f(x)= J.f(y).mma’(y).

M

Then by the Arzela- Ascoli theorem there exists a sequence (Ej )/ c N such
that:

(/
Pt | 1

Exists for all bounded 1 € C"”(M), and it defines a Markov semi group on M
satisfying Lip(P.f)<e ™ Lip(f) (see [140])
Theorem (1.1)[186]:

For any smooth complete Riemannian manifold M and anyK eR, the
following properties are equivalent:

(i) Ric(M) > K which should be read as Ric, (V,V)>K|V[ for all xe M,VeT.M.

(ii) The entropy H (-)is displacement K-convex on P*(M).

(iii) the gradient flow ®:[, xP*(M ) — P *(M ) with respect to H (") satisfies
W, (©(t, 1), ®(¢,V))<e ™ W, (1,V) Vu,VeP?(M)Vi20.

Proof:

(ii) = (i). Assume — (i). Then Ric,(e,,e,)< K —¢ for someO € M , some unit
vector e, e T,M and some ¢ >0 let ¢,e,,....e, be an orthonormal basis of
T,M such that:

R(el »€; )el = ke,

For suitable number £,,i=1,...,n (denoting the sectional curvature of the

plane spanned by e, and e, ifi #1). Then Zn:Ki = Ric,(e,,e,) < K —&.

i=1



For 6,r>0 let 4, = B,(exp,(re,)) and 4, := B,(exp,(-re,)) be geodesic balls,
and let:

With 6, = 5{1 +r2[Ki +2ij/ 2}. Choosing §<<r<<1 we can achieve that
n

V, € 4, for each minimizing geodesic V:[0,1] > M withV, e 4,V € 4

2 2

1*

Now let u, and g, be the normalized uniform distribution in 4, .then
2

H(u,)=-logvold, =-logC, —nlog5+0(02)
H () =—logvold, =-logC, —nlog8+0(02) .

With C,:=wl(B) inR", where as

H(V) :—logvolAi =—logC, —ilog@ +O(52)

2 i=1

——logC, —nlog5—r2+ﬂ+0(”)+0(5z)

>—logC, —nlogs —r +0(r4)+0(52).

Since the optimal mass transport from u, to u, (with respect tow,) is along

geodesics of M the support of x4, must be contained in the set 4,,. Hence

/2

H(,ul/z) > H(V)

and thus

1 1 K K
H(“IJ‘EH(%)—EH(M)Z = +§r4 +0(r*)+0(8%)> < W (tos1t)’
2

for 6 <<r<<1.

(i) =(@i). Here we closely follow the argumentation of
[31,142,110,149,161,166] and use their notation. Assume thatRic(M)>K .
We have to prove that



() < (1=0) H (s )+ 21 (1) =1 (1= W, ()

For each geodesic ¢+ p, in (PZ(M),Wz)and eachse[0,1]]. Without

restriction, we may assume that u, and p, are absolutely continuous

(otherwise the right-hand side is infinite). Hence there exists a unique
geodesic connecting them. It is given as u =(F)u, where

F, (x)=exp(— V®(x)) with a suitable function® . Moreover, with

[FJ

J, —detdF(x and S

-K
s1nh[ _l.rj
Which should be read as S(r):= )

If K<0 and as S(r)=1 if K =0 and with V/(x,y) being the volume distortion
coefficient of [31], we deduce

H (1) = H (1)~ [ logJ, (), ()

M

and thus

—H(u,)+(1—t)H(u0)+tH(ul):I10gJ, (x)uo(dx)—tjloth (x ) o (e )

g

an-log (1-1)V,(F (x),x):11+t\{(x,Fl(x))%J( )1}10 —fjlogJ x) iy (dx)

n [l (“)[sar)d(a(x),x)] "H[S(w:a(x)))} "1 L ()

—tj log J, (x) , (dx)

>(n —I)J‘[(l—t)logS((l—S)a’(F1 (x),x))+10gS(td (R, (x),x))—logS(d(E (x),x))} 1o (dx)



2§t(1—t)jd2 (B (x), )ty () =2 (1) W (s ).

Here the first and second inequalities follow in
[31,254,69,162,31,156,34,181,174]. The third inequality follows from the
concavity of logarithm, and the least one from the fact that

-0k ,

(1—t)logS((1—t)r)+tlogS(tr)—logS(r)— >

=(1=1)A((1-1)r)+1A(tr)-2(r) 20

for all >0 under consideration and ¢ €[0,1] since A'(+)<0 where

Ar):=log S(r)—i—% K > Note that according to the Bonnet-Myers theorem

2

we may restrict ourselves to » >0 with r’<n’.

n—1

In order to verify that 1'(+)< 0, it suffices to consider the cases K = +(n—1). If

_ coshr —l—%r. The latter

sinhr r

K =—(n—1), then Ar)= logsinhr—log%r2 and A'(r)
is non positive for all »>0 if and only if rcoshr —sinh r —%rz sinh » <0 For all

r>0, Differentiating and dividing by g, we see that this is equivalent to

—rcoshr+sinhr <0, which (again by differentiation) will follow from
—rsinh7 <0 which is obviously true.

Analogously, if K=n-1 the condition A'(r)<0is equivalent to
rcosr—sinr+%r2 sinr <0, which (by the same arguments as before) is

equivalent to—rsinr <0. Here, of course, we have to restrict ourselves to
re [O, 71]

Theorem (1.2) [186]: For any smooth complete Riemannian manifold M
and K e Rthe following properties are equivalent:

(i) RidM)=K.
(iv) Forallfec®(m), allxe M, and allt >0, [VPf|(x)<e™P|V/](x).

(v) Forall fecr(m)andall >0, [VB /]| <e™|V/].
For all bounded f e C™ (M) and allz>0, Lip(P.f)<e™Lip(f).

Proof:



(1)=(iv) this is due to D.Bakry and M.Emery [28] and can be obtained
using their T', calculus,( see [20]).

(iv) = (v) take ||.| on both sides and use (on the right-hand side) the fact
that P is a contraction on L*(M).

(v) =(i) we prove it by contradiction, assuming —(i)A(v). If (i) is not true,
then there exists a point O e M and V e S"" < T,M such that

Ric,(V,V)< K —-¢ For somee >0. If (v) is true then

Lip(P f)< e ™ Lip(f)

For all feck?(M) and allf>0. Indeed, fix, yeMand ¢>0, and choose
f, € Cz(M) with f, — funiformly on M and Lip(f,) — Lip(f). Then

Pf(x)-Pf ) «|Pf,(x)-Pf, () <e™d(x,y)Lip(f,) > e“d(x, y)Lip(f).

Our first claim is that there exist a neighborhood U of O and a function
feck?(M) such that f‘U eC?and

V£(0)=0 (1)
Hess, f =0 )
Vf(x)=1 VxeU 3)
Lip(f)<1 (4)

In order to construct such a function f.Let F = {x e M cut (0)|logx L v} M
be the orthogonal hyper surface to vin M and define the signed distance
function f, from

F by

Jo :M‘cut(O)‘ —>R , f,(x)=dist(x,F ). sign(v,log, x).

It is shown in Lemma (1.4) below that f, eC*(U,) for some neighborhood
U, > 0 and that it satisfies the properties (1)-(4) from above with M (and U)
replaced by U,. Without restriction, we may assume that U, has a smooth
boundary and compact closure. Now put f=f, APv(xP)with
P(x)=dist(x,M[U,). This function coincides with f,on a suitable



neighborhood U of 0, and it has compact support and satisfies all the
properties (1)-(4) from above.

Now let us fix a function f as above, choose atest function0<®eCZ (U),
and define

for >0, @« J'|th f | ¢ dvol .Then(v) and(4) imply

I|thf| pdvol < Lip(P j pavol < exp(~2kt) j pavol =(1- 2kt + 0t I ddvol

m

Since |VPf|" >[v/['=1 on supp(®)cU, the function ®extends

continuously on the entire non negative half- hne by ¢(0 J'¢ .by continuity

of the function

L,(f.f):U—>R.

L, (f. f)(x)= ”Hess )”2 +Ric, (Vf,Vf).
We find:

Fz(f,f)gK—%e

On some neighborhood of that contains, without loss of generality, U. From
Bochner’s formula we deduce.

@(t)zj 2(Vp,Af,Vp, f)¢dvol
= (28F0s[ =200 o8 ))davol = [ 2Vps [ 86=2T (nf pf Yddvol ()

LO)J' (29T A =20, (f..1)8)dvol

- _2er2 (f, f dvol > (8—2K)IM¢ =(e-2K)®(0)

Thus ¢t—®() is differentiable inr=0, with®(0+)>(s-2K)E(0).
Consequently, we find for small ¢ that

D(t)> d(0)+ (& —2K)D(0) + O(t) = D(0)1 - 2Kz + O(¢t)), i.€

I|V3f|2 gavol > (1+(& —2K)t+0(t))I¢dvol

M M



Which contradicts (5)
(vi) = (v). This case is trivial.

One reason for the importance of Theorem (1.1) is that it characterizes
lower Ricci bounds referring neither to the differential structure of M nor to
the dimension of M . Property (i) may be formulated in any metric measure
space. For other weak substitutes of lower Ricci curvature bound including
volume doubling and Poincare inequality, see [110, 142, 268, 216, 97, 49,
59, 27].

F.Otto and C. Villani [69] gave a very nice heuristic argument for the
implication (i) =(i1). In the case K =0, this implication was proven in
[31,208,214,211,104.97].

The equivalence of (i) and (iv) is perhaps one of the most famous general
results that relate heat kernels with Ricci curvature. It is due to
[28,23,236,234,237,70,69,31], see also [20]. Property (iv) is successfully
used in various applications as a replacement (or definition) of lower Ricci
curvature bound for symmetric Markov semi groups on general state spaces.
Our result states that (iv) can be weakened in two respects:

We can replace the point wise estimate by an estimate between L”norm and
one can drop the P, on the right-hand side.

Besides being formally weaker than (iv), one other advantage of (v) is that
it is an explicit (since P, appears on both sides).

As an easy corollary to the equivalence of statements (iv) and (v), one may
deduce the well-known fact that (iv) is equivalent to the assertion that for all
f,x and t as above

Ve sl <e B (v Ko

Property (vi) may be considered as a replacement (or as one possible
definition) for lower Ricci curvature bounds for Markov semi group on
metric spaces. For several non classical example (including nonlocal
generators as well as infinite-dimensional or singular finite-dimensional
state spaces) we refer to [76, 184, 140,144]. This property turned out to be
the key ingredient to prove Lipschitz continuity for harmonic maps between
metric spaces in [140,166,269,29,21].

According to the kantorovich-Rubinslein dually, property (vi) is equivalent
to a contraction property for the heat kernels in terms of the L'-Wasserstein
distance W, . Actually, however, much more can be proven.

9



Corollary (1.3) [186]: For any smooth complete Riemannian manifold
M and any K € R, the following properties are equivalent:

(i) Ric(M)>K.
(vii) For all x,y e M and allz >0, there exists r € [1,0]with:
W, (B (5, () <ed(x)

(viii) For allr € [1,»], all g,veP"(M),and all >0

W, (., )<e™ W, (1.V).

(ix) For all x,x, e M there exists a probability space (Q,4,P) and two
conservative Brownian motions (X,(¢))., and (X,(t).,) defined on it with
values in M and starting in x, and x, respectively, such that for allz>0.

120

—kt

E [af()(1 (1), X, (t))} < eT.d(xl,xz).

(x) There exists a conservative Markov process (Q,4,P, X(t)),_y.u .m0 With

and ( ( ))t>0 are
Brownian motions on M and such that for all x =(x,,x,)e MxM and all 1>0

values in M xM such that the coordinate processes (X,(¢))

>0

—kt

d(X1 (1), X, (t))s eT.d(xl,xz)P““ —a.s.

Proof: (vii) = (vi). By Holder’s inequality, property (vii) for r>1
implies property (vii) forr=1, which in true implies (vi) according to the
Kantorovich Rubinstein dually.

Explicitly, for each coupling Aof P(x,) and P(y,)

it ()= =l ()1 o) e ﬂ\

1
<Lip(f) J-d z.w )A(dzdw )< Lip (f U-d (z.w) A(dzdw )}r

Hence

f (0)=Bf ()| <Lip (1) (P (x).B, (v,)) < Lip (£ )d (x,3 ) ™

(viii) = (vii). Choose p =6, andv =5, .

10



(ix) = (vii). The distribution A(-)=P(X,(21),X,(2)e:) of the pair
(X,(2¢), X,(2¢)) defines a coupling of P (x,,) and P(x,). Hence

W, (P (x1)P, (x5) jd VA(dz dz,) = E[d (X, (20),X, (2)) ] Se ™ d (x,.x,)

(x) = (viii). Let Abe an optlmal coupling of x and V with respect tow,,
and let 1, be the transition semi group of the Markov process from(x). Then

A, = M1,,1s a coupling of u, and v, . Hence

up, jd A, (dw,dw, )
jjd u ((x15x, )dwldwz)/ld(xldxz)
:jEwm[d(Xl(zt),xz(zt))’]x(dxl,xz)

Se'k”.jd (xp,x,) Aldx,dx,)=e ™" W, (uv) .

(x) = (ix). Take expectations.

(1) = (x). this implication is well-known and can be shown using either
stochastic differential equation theory on Riemannian manifold in order to
construct the coupling by a parallel transport process on M xM for two
Brownian motions (cf.,[247,23,157] and [48,223,160]) or by a central limit
theorem for coupled geodesic random walks and estimate of the type (2) (cf
[184] for a similar argument).

Lemma (1.4)[186]:

Let M be a Riemannian manifold, Oe M, Ve T,M and

F ={exp, (u)lueT,M,u LV}cM the  (n-1)-dimensional  hypersurface
through

orthogonal to V. Then the signed distance function f, : M — R Belongs to ¢
*(u)for some neighborhood Usoand Hess,(f,)=0

Proof: the level sets F_ = {x € M|f0 (x)= s}

Define a foliation of (a sufficiently small) neighborhood us0by smooth
hyper surfaces. The unit normal vector field to F, is given by V =Vf, which

11



is well-defined and smooth sufficiently close to F(f, is a” distance
function” on Uin the sense of [213]. Hence the Hessian of f, in a point
p e Umay be interpreted as the shape operator of F, in peF, with &= f,(p)
J.e.,

Hess, (X,X)=HZS(XaX)=<S£S (X)’X>TM

P

Where Hz is the second fundamental form of the hyper surface F, c M

and S™:T M —TF, is the associated shape operator. The claim Hess,(f,)=0
then follows from the construction ofF , which implies that F =F, c M is
flatin 0, 1.e., S, =0

Theorem (1.5)[186]:For any smooth compact Riemannian manifold
M and any K e R. The following properties are equivalent:

(i) Ric(M)>K.
(i1)) The normalized Riemannian uniform distribution on spheres

_H"' (4B, (x))

A): :A B(M s
c,.(4) o (aBr(x)) €B(M)
Satisfies the asymptotic estimate
Kr?
Wz(ahx,ar,y)é[l— > +0(r2)J,d(x,y) (6)

Where the error term is uniform with respect to x,y e M .

(i11)) The normalized Riemannian uniform distribution on balls

_m4nB,(x)

)= =G )

, AeB(M)

Satisfies the asymptotic estimate

W, (mr!x,mhy)é (1— Z(nIiZ) P+ 0(F2 )J.d(x,y) (7)

Where the error term is uniform with respect to x,y e M .

12



Proof:(xi)= (i). Let us define the family of Markov operators or: F, —F,
by o, f(x)= J‘f(y)O'r,x (@) on the set fof bounded Borel- measurable

functions on M — using that for feC’(M)

2

0,/ (x)= 1)+ -af(x)+ Ol*) (®)

Is given by V =Vy, which is well-defined and smooth sufficiently close of F

and on appropriate version of the Trotter —Chernov product formula
[246,247,223,141,29]) applied to p, =exp(ta)as a Feller semi group on

(c(M).]]..),we find for all 1 eC(M)

(07 ) £ ()= 1 ()

Uniformly in xeM and locally uniformly in ¢>0 y the Rubinstein—
Kantorovich duality condition, (xi) implies

n

o f(x)-o, f(y)< (1 —2£r2 + O(r2 )j.d(x,y).Lip(f)

Forall fecC* (M) and x,ye M, i.e.

Lip(o, f)< (1 LI )j-Lip(f )

2n

and hence by interaction for j € N,r =./2nt/ j

. - kt t .
il 1)< 14 f ot
Passing to the limit for j — oo yields
Lip(p, f) < exp(~kt)Lip(f)
Which is equivalent to (i) by Theorem (1.1).

For the proof of the converse we construct an explicit transport from o, to

o, , in the following lemma, whose proof is given below.

(1) = (xi). We show this for the case K <0; the case K>0is treated a
negligible error W is under noting but parallel transport because

13



v, log, (z))) +d (expy (Hvlogx (z), ¥ (z)) <d (z,expy (H ,log, (x)))))

d(z,‘Pf’y (z) < d(z, expy(

v1]] tog, (2)-Tog, ¥ (2)| < d (zexp, (| log, (2)))+ L (.»)0(*)..

Where L is some uniform upper bound for the Lipschitz constant of log(-)

with respect to the second argument. The asymptotic inequality (6) is now
easily verified from (8), since

W, (O'r,x,o;’y ) < __ I d (z, i (z))H"“ld (z)

H"' (0B, (x)) )

1

:m I d(z, exp, [vlog, z)H”'1 (dz)+d(x,y)0(r2)

0B, (x)

r2

= d(x,y)+ Z—AD” (x)+ d(x,y)O(rz)
n

With z » D™ (z)= d(z,expy ||vlogz), since
AD™ (x) = trHess D™ = Z 1,(J,.J,)
i=2

Where 1;,(J,,J,) is the index form of M along V, applied to the Jacobi field
induced from parallel geodesic variations of V .

In the direction ¢, with {\[;,ez,...,en} being an orthonormal basic of 7 .M .

Hence we may conclude by the standard Ricci comparison argument that

cosh[ _Kld(x, y)} -1
K ! <-Kd

n sinh[ _Kld(x,y)J

n—

(x.»)

AD™ (x) < Z(n - 1)

Such that we finally arrive at

2

W, (O'V,X,O'r,y)ﬁ d(x,y)—;—an(x,y)er(x,y)O(rz).

(xi1) = (1). This is shown in the same way as the implication.

(xi) = (1). With the slight difference that instead of (8) one uses

14



2

r )Af(x)+ O(rz).

mrf(x)=f(x)+m

(1) = (xi1). We proceed as before for (i) = (xi) where, now we have to
construct a map @’ that preserves the normalized uniform distributions on
balls. However, since similarly to condition (16) in the proof of Lemma
(1.6) we have

r

m, (4)= —(x))_[a (4)H"" (B, (x))du

0

Such a map can be constructed from a map ¥’ =B, (x) - 0B, (y) with

(‘P” )*aw =0, , and that is almost induced from parallel transport in the

sense of (9) below . It is clear that Lemma (1.6) can easily be generalized to
yield such a map ‘¥;;” which is all we need

Lemma (1.6)[186]:

Let M be a smooth compact Riemannian manifold and for xe Mlet & ()

denotes the normalized Riemannian uniform distribution on S,(x):=aB,(x)
.then for rsufficiently small for each x,ye M there exists a geodesic
segment v =y _and a measurable map ¥’ : S, (x)— S,(y) such that the push

forward measure ¥"/o _ equals o _ and:
r. r.x r.y

log: |/ og, ¥ (=)
Sup sup

_ 2
zeS, (x) yeM d (x,y) B 0(1” ) )

Where the error term o(rz)is uniform in xe M

Proof:We show the Lemma for the two-dimensional case first and
inductively generalize this result to higher dimensions later. Let »=2 and
choose a parameterization of S (x)and S, (y)(using Riemannian polar

coordinates, for example) on §'c R> =T, M, i.e., forall f:S (x) >R

J f(x)H"‘ld(z)szx(r,VOf(VO)S(dVO))= '[Dx(r,S)f(S)ds
S, (x) s 0

With a density D, (r,V°) given by:

Dx(t,V°)=\/det(@(f"’o)’yj(t’vo»)

i

15



z”‘l[l—%cx(VO,VO)JrO(tz)J (10)

Where €, is the Gaussian curvature of (M,g) in x and ¥,(+,V°) is the Jacobi
field along ¢—exp, (£,V") with J,(0)=0and J/(0)=¢, for an orthonormal
basis {e, :i =12} of 7.\, for instance.

For x,y and y,  fixed, let the parameterization of S' c7.M and S, =T, M
on [0,27] be chosen in such a way that 5’ 50=y_(0) and 5’ 50=y_ (d(x)).

Next, we choose a function z =z :[0,27]— [0,2z] with 7(0)=0 satisfying

H"l JD rS H"l '[D rS (11)

For allu €[0,27]. Identifying 7:[0,27]— [0,27] with the associatedz: S’ — S,
then equation (11) just means that the induced map ¥ =¥ :5 (x) > S, ()

¥(z)= expx{rr(%logx(Z)D

Transport the measure H,"' into H"'. By the definition of ¥*”, estimate (9)
is equivalent to

Tx,y _
sup supM =0(r) (12)
25[0,271] yeM d(X, )”)

Denoting:

Ex(r,s);z%zno(ﬁ) (13)

With E(,8)e C*(M x[0,¢])for all Se[0,27] and some ¢>0 (11) yields

7(2)

=[50

z

I(Ex(r,S))—Ey(r,S)dS :

(1+0

Consequently.

T (z)—z‘ ¢

r

Supwﬁ (1+0(r2 ))

yeM

0

16



Due to £(0,5)=1= const, we find Lim|v .E(r,S) = 0and hence

‘Tf’y (z)— z‘

Limsup < Lim 0 VxE(r,S]dS

=0 yenr rd(x, y) =0 J or

V.E(r,S) o V.E(r,S) 0

=Li —= —V E(r,S dS =Li al ,V. —E(r,S ds (14
f{p sy o) @ tl{REesy T deen) s

X

The right —hand side of (13) yields

iE (r,S)

or

r=0=O

From which we see that the integral above vanishes for r tending to 0. this
establishes (12) for fixedx. By the smoothness of (M,g)the error term is
locally uniform in xe M and hence is also globally uniform since M is
compact. See [145, 149, 144, 142, 193, 133, 31]

The case dimM =3will show how we can deal will arbitrary dimensions
neN . Fix x,y e M as well as some segment V, from xto y. By means of the

inverse of the exponential map, we lift the measures o, ando,, onto the
unit sphere in 7.M and T M , respectively, which we disintegrate along the
v, -direction as follows: choose an orthonormal basis {e,,e,,e,}c T .M with
e=V,and  {e.¢,¢} zuv{el,ez,%} M, and for wuel[-11] let
St (u)= {expx (r(ue,, se,  te )1”2 +5°+17 = 1} denote the ‘“orthogonal” part of
S,(x) with respect to  V at ue,. Define a probability measure C, (u)du)on
[— l,l]c eRcT.M by

1

C.. (u)(du)= H"? (Six (u)du

) J.Dr(r,vol)Sz(de) I Dx(r,(u,n))Sl(dn)du

’ N
52 Vi-u”

With the Riemannian volume density
i1 L o
D,(1.V") =1 1[1—ngcx(V°,V°)+(t2)j (15)

and C, (u) analogously, let 7, =[-Llle, > [-Ll]e] be the function defined by

17



J.Cr!x (u)du = I C.,(u)du VS e[-11] (16)

For each S e[-1,1] define a transport
T; : Siv (S) - Siy (Tl (S))

Analogously to equation (11) preserving the probability measure o, (S))
and o, (r(S))) obtained from conditioning o, , and o, on S, (S) and

S+, (z,(S)), respectively. Hence the map

S (x) =S, (y), P (z) = exp, (rt(llogx (Z)D
r
induced from r =7 : T.M o7 (x) > S*(y)c T, M

T(u) = (Tl (”1 )> T: ((”2 U ))) .

Will push forward o,(x) intoo,(y), and it remains to prove the

asymptotic estimate (12). Since the distance r;"—”(u)—uris Euclidean, we

may use estimate (12) from the two-dimensional case for the
o (o)) = (105 )‘ part, which also persists in this situation. Indeed, it is

sufficient to note that expression (14) and hence the error estimate

1
Txy((”Z’u3))_(u2’u3X

B -0
vor] et d(x,y) )

Also hold true for the embedded orthogonal spheres S;-.(«) and S}, (since
they are parallel translates of one another) and to note that by the triangle
inequality, this also generalizes to the situation 7, :S;(x)—>S:(y) with
r,r, <r. Thus it remains to prove

|Tlul - u1|

oo
Jup sup= 5y ~O0)

which follows from (16) by argument similar to those that established (12)
in the two-dimensional case. This completes the proof in three dimensions.
For arbitraryne N, one proceeds in a similar fashion by inductively
reducing the problem to lower dimensions.
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Chapter 2
Free Probability of Wasserstein metric On Trace-State Space

In dimension one, we prove that the square of the Wasserstein distance
to the semi-circle distribution is majorized by a manifold free entropy
quantity.

The Wasserstein distance between two probability distributions x4, Von
R"is given by

1/2
W(”’V)zﬂein?f,v)(ﬁx—ylz dn(x,y)j (1)
Where denotes the probability measures on. R"xR" with marginals z and V
.Following the usual free probability recipe we shall replace the set of

probability measures by the trace-state space of a C  -algebra and take
margillals with respect to a free product.

We note that in the context of non-commutative geometry, there is a
different non-commutative extension, due to A. Connes [3], of the related
Monge-Kantorowitz metric. The Monge-Kantorowitz metric is a p=1, p—
Wasserstein metric, but the definition which is extended is the dual defi-
nition based on Lipschitz functions, and the extension involves
Fredholmmodules or derivations (see [183, 200, 198, 44, 27,39]We will

work in the framework of tracial C”-probability spaces(M,z), where M is a

unital C* -algebra and r is a trace state. The simplest is to define the metric
at the' level of noncommutative. Random variable . If (X, ,..,X, )and

(Y, ....Y, )are two tuples of noncommutative random variables in tracial C”

n

-probability spaces (M,,7,) and(M,,7,), we define as the infimum of

(1x;-x1)
P J1<j<n

over 2n -tuples (X},..,X!,Y..,Y)of noncommutative random variables in

2)

P

some tracial C -probability space (M,,7,)such that the = -tuples
(X],...X),(X, ,...X,)and respectively (Y,...Y,)(X,,...X,,) have the same «-
distributions. Here ||p is the p-norm in a tracial C*-probability space.
while | Hp lip is the p -norrn on R". Like in the classical case, if p= 2we
call W the free Wasserstein metric' and we will. also use the notation W

for w,. We shall refer to W, as the free p- Wasserstein metric. Note also
that if
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X, =D, +iE,, ¥, =F, +iG,, 3)

where D, E F,

. F,,G,are self-adjoint, then

W((X,,..X,).(Y..t ))=W((D,...D,.E,....E,), (F,...,F,.G,....G,)) “4)

Note also that W, ((X,,....X,),(Y,,....Y,)) depends only on the :-distributions of
(XX, )and(,,...Y,) If we consider n -tuples with the same *-
distribution as equivalent; then W, will be a distance between equivalence'
classes of 7 — tuples. We pass now to trace-state spaces 7S (4), where 4 is

a unital C" algebra. We will assume A is finitely generated and we will
assume such a generator (a,,..,a,) has been specified. The p -Wasserstein

metric on 7S(4) given by
W, (T',T") =W, ((al',...,a;),(al",... ,a,',')), (5)

where 7',7"€TS(4)and (aj,...a,) and (a/,... ,a]) demote the variables defined
by (a,...a,)in(4,7")and respectively (4,z").

This definition can be rephrased using free products. If 4,, 4, are until C”-
algebras, we denote by o,: 4, — 4,* 4, the canonical injection of 4, into the

full free product C’-algebra (this presumes amalgamation over 0). If
7, €TS(A4),(1< j<2)we define

TS(A*Ayit,. 7)) = {r € TS (4% 4, )ro0, =7, j=12}. (6)

Remark that 7, *z, e TS(4, * 4,;7,,7,) .It is easy to see that

(‘O‘l (aj)—a2 (aj)w )KN ’

Where denotes the p -norm inZ”(4;7).Remark also that the distance on n-

W' t"= inf{ lreTs (A*A;T’,T")}, (7)

tuples of variables can be obtained from the definition for trace-states.
Assume for simplicity X, = X}, ¥, =Y, and Rz”Xj. ,RZHYj , 1< j<n.Let then

A =(C|—R,R|)*" (the free product of n copies) and o, (a)=q,, where a is the
identical function inC[-R,R]. Let p,:4—>M, j=12be the *-
homomorphisms such that p,(a,)=X,, p,(¢,)=Y, where the X,s are in
(M,,7,)and the Y;s in(M,,7,). Then

W, (2,7 =W, (X} s X,), (s Y,)) 8)
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where ' =1,0p,,7"=1,0p, .
Theorem (2.1)[198]: W, is a metric:.

Proof: To check that W is a metric on the set of equivalence classes of n-

tuples of variables or equivalently on a trace-state space ST (4)from
equation (5),the nontrivial assertion is the triangle inequality. Indeed that

W, (X X)(%07,))=0 & (X, X, ), (Y, Y, ) have  the  same  *-

distribution or

W, (7,7")=0<1'=1" are easy to see. For the triangle inequality it will
suffice to prove it in the equation (2).

Let (X],...X,.Y...Y,))in (M,,7r,)and (¥....Y), Z/,..,.Z!)in (M,.t,,)be 2n-
tnples in tracial W’ -probability spaces such that
(X1, X0) e (X X,), (X)) (LX) ~(Y,,0Y,), (2 Z0) (2, 2,)

Where : the —tuples have equal *-distribution. There is a trace- preserving
automorphism of W'(¥,...,¥,) and W(¥...,Y)which identifies ¥/ and Y.
Abusing notation we shall denote by M, the von Neumann sub algebras of
My, and Mj3 generated by(Y,...,Y") and respectively (Y...,Y") identified as
above. Let E' and E" be the conditional expectations of A7, and
respectively My; onto My. Let (M,,;,E)=(M,E")*, (M,E") and 1, =71,0E
where 7, =1,,|M, =1,,|M,(see in [42,52,196]). Further, withp, : M, > M .,
Py 1M, - M, denoting the canonical embeddings, let X7=p,(X}),z/'=Z]
Then p,, (Y/) = p,, (¥/) implies.

-z s‘X;"—plz(Yj')M

pulY))-2)1 =[x -v)

P13

+’Y n_gn
Pt / J

which is precisely what we need to establish the triangle inequality

Pt PiTy3

J’_
23

W, (XX, )y YoV D+ W (Yo )s (215000 Z,)) 2 W, (X s X )i (Z 5000 Z,) )

Let as also record as a proposition some easy consequences of the capacity
of the trace-state space.

Proposition (2.2)[198]: (a) The infimum in the definition of W is attained
(both in the equation (2) and (8)).

(b) Let t{,7,,7y,7,eTS(A)and assume rj) converges weakly tor, as
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k—oo(j=12)
Then

lim inf W, (#¥,e{)> W, (7,,7,). 9)

n n

Let (Xl("),...,X(")),(X,,...,Xn),(Yl(’“),...,Y“‘))(YI,...,Yn)) be n-tuples of' variables in

tracial Cc’ -probability spaces and assume that
[ x| <R | <R, |7 <R[y, <R, and

that (Xl("),...,Xl(")), (K("),...,Yl(")) converge in *-distribution to (.X,,..,X,)and

n

respectively (Y,,....Y,).Then

timinf W, (4., X0 ), (5, 7)) 2 W, (X0 X,), (YY) - (10)

n yeees
k—o I n

If (X,,..X,) are commuting self-adjoins variables in a tracial C’--
probability space, then their distribution u, , is a compactly supported

probability measure on R”.

Theorem (2.3)[198]: Let (X,....X,) and (Y,....Y,)be two n-tuples of com-

muting self-adjoint variables in tracial C"-probability spaces. Then the free
and classical Wasserstein distances are equal:

W (XI""’Xn)(YI""’Yn)Z W (ux],m,x”’uY],m,Yn) .

Proof: The left-hand side is the right-hand side, since the classical
Wasserstein distance can be defined the same way as the free one, with the
only difference that the 2n-tuples X/,..,X!,Y/,...Y/)in the infimum are

required to live in commutative tracial C”-probability spaces.

Let (x/,...X!,Y/,...,Y) be a 2n-tuple in the infimum defining the free
distance. Passing to the van Neumann algebra completion, we may assume
(M,,7,), where X/, v/live, is a W' -probability space with a normal faithful
trace state. Let 4=W'(X|,...,X))c M,, B=W'(¥,....Y)c M,and let E, be the
canonical conditional expectation onto A. Then the unital trace-preserving
completely positive map ¢=E ,|B:B— Agives rise to a state V:4A®B—>C,

on a commutative algebra, defined by
V(a®b)=1, (a¢(b)).

The positively of V..
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T, [Z a,.aj¢ (b,.b; )J >0

is easily inferred from the positivity of the matrix (qb(bib;))' ~ Alternatively,
L]

probabilistically, V. is the probability measure on R* obtained by
integrating ¢: 2" (R",u, , )—>L"(R",u, . ).Then

> V((xj@r-10) )= ¥ n (X7 +o(x7)-2x]4(7)))

1<j<n 1<j<n

RPSRE (X; +(Yj'2)_2EAj (X;Yj')): 27 ((X; _Yj')z)'

1<j<n 1<j<n
Sine 4® B is commutative this proves the theorem.

Let X,S in (M,7)be self-adjoint and freely independent and' assume S is
(0,1)semi circular. The purpose is to estimate W(X,S). We begin by

studying variables X (t)= e ’X +(1—e"t)1/2SWhiCh have the same

distribution as the variables in the free Ornstein-Uhlenbeck process. For
technical reasons, and without extra work, the complex PDE will be de-
rived under the more general assumption that X is unbounded self-adjoint
affiliated with M (see [92]).If Y is self-adjoint affiliated with A7, we denote
by u, its distribution and by Gu, (z) or G,(z) the Cauchy transform of 4, ,

which equals r((zI—X)fl).Let G(r,z):GY(r)(z)and G(t,z):GX(t)(z),

IfY(r)=X+r"S,Im~>0,r>0,,20.Then G satisfies the complex: .Burgers
equation (see[201],[47])

a_G+(~;8_G:O
or Oz

Like G(t,z)also G(t,z) isC'on [0, ©)x{zeC|mz>0}and holomorphic in z
for fixed .

Note that X(t)=¢"*Y(c')and thatG,Y(z)=a"'G(a'z).1t follows that

G(tz)=e"*G(¢',¢"*z), complex Burgers equation then gives
p g q g

%—fJ{G—EJa—G—lG:O (11)

With initial dataG(0,z) =G, (z).
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Here we shall assume that the distribution of X is of the form p, * uwhere
p, is the Cauchy distribution with density z'A(2*+x* )_1(/1 >0) and p has
compact support. Sincep, *u=p, ( u (see[92]) this is equivalent to

replacing X with X + AC where X is bounded, X and C are free and C has a
Cauchy distribution p, .Note that,

=G

My +)LC+I"1/2S =My +l"l/zS*p/1,G X+r1/2S

X+AC+rY2s (Z)

(Z+M)

etc. Thus, if the distribution of X is of the form p, * uthen the equation (11)

is satisfied on an extended domain {(t,z) €[0,00)xC

2
Imz> —et l}

Let —77'G(x,t)=q(x,t)+ip(x,s)wherexeR then p(.,7)is the density of ,(7)
and is analytic. For fixed t and £>0We have

k

0 o'
an P0=) a

axk q (x’t)

= O((1+|x|)_2_k) and

=o((1+}x) ")

Moreover these bounds are uniform for t in a compact set. Equation (12)
gives

q, =7(qq,-pp,)+ 27 (xq, +q)
P =r(pq,+qp.)+2" (xp, + p) (12)
q=—Hp,

Where H denotes the Hilbert transform.

Since p(x,t)>0 we infer thatf(a,t)zja p(x,t)dxis a C”-diffeomorphisms

f(5):R—(0,])which transports p,(sr)to Lebesgne measure. Hence
o, ()=/"(f(.5).,0)0<s<r)will be acC”-diffeomorphisms R — Rwhich
transports s, (s) to u,(¢). This is the same as saying that X (¢)and
¢, (X (s)) have the same distribution. It is easily seen that

0 S
o, - —[atfj(f (3.).2)

ot p(f 7 (3.1).1)

Using (12) to compute% f we find

%f(a,t) =Ia (ﬁ(pq)x +27 (xp)x)dx =7r(pq)(a,t)+2'1ap(a,t).
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S ) =ma(17 ()02 ().

For y=f(x,s)we get the transport equation .

0

a¢s,t (x)= an(.,t)((/ﬁS,t (x)) -2, (%) (13)

with initial conditiong,  (x)=x.

By the L"-continuity (1<m < x)results for the density (see [47]) applied to
u( pyy as a function of r, we infer after convolutions with Cauchy

distributions the continuity of (0,:0)> r— Hp(..t)e L" (R)

(the L"-space w.r.tLebesgue measure). We should keep these facts in mind
in computations where we shall use (13).

Lemma (2.4)[198]: Assume X has distribution u*p, where u. has
compact

support and let X (¢1)=¢™? X+ (1-e¢”)"*Swith S (O I)-semicircular and free
from X. Let geC”(R)be such that |g|| <o,
compact support. Then

(t - s)ZW(g (X(s)),g(X(t))) < supI

s<h<t YSupPpPg

an (., h)(x )—2'1x)2 p(x,h)dx.
Proof: We have

W(g(x(5) (X (1) = [ [e()- ed(d, (x))] pls)as
<[ ([ & (0us ) EHP )84 ()2 00 0) p(5)
(=) (j )) Gep () (g (x)) =29, Co (. 5) )
=) f( jR(g'<¢sh< W) (1, () (6,0 (00) =276, () (.5 |
(1=5) [ [ (') Gt () (x) =2 0° p (x. ) st

< (t —s)2 sup Luppg (rHp (.,h)(x )—2'1x)2p (x,h)dx

s<h<t
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Assume X is bounded and the semicircular variable S is free W.r.t. X. Then
the distribution s, () of X(1)=e""X +(1-e )1 S has L”-density p(.t)wrt
Lebesgue measure (see any of the papers [92], [203,201], [45,47] ).

Lemma (2.5)[198]: Assume X is bounded, S is (0,1) semicircular, X and §
are free and let p(.7)be the density of . (t), where
X(t)=¢"X +(1-¢") 5. Then

S(t—s)_2 W(X(S),X( < supj(an )(x)=27'x) p(x,h)dx

s<h<t

Proof: Let. C be a variable with Cauchy distribution and free w.r.t.{X,S}.
Let .If geC”(R) be such that |g'| <1,g(x)=xif |x|<|X]|+1 and g'(x)=0 if
x| >| X|+2. We apply X +AC in place of X . Let.

Z(t.4)=e" (X +AC)+(1-¢") " S =X (1) +e*AC

Then g(Z(t,A))is an operator of norm<|X|+2 and converges in distribution
to X(r), Moreover the distribution of Z(7,1)is given by the density
P2, * () and will he denoted by p(.,2,4). In view of the L"-continuity of
p(.1)(1<m<o)[47] it is easy to see that

limsup[sup Jisuppg, (ﬂ'Hp (.,h)(x ) —27'x )2p (x ,h,l)dx J < sup I(ﬂ'Hp (.,h)(x ) —27'x )2p (x ,h)dx

0 s<h<t s<h<t

From now on we return to the context of bounded variables X . If the
distribution of X is Lebesgue absolutely continuous and has density p

which is L°. then %J (X)=nHp(X) where J (X) is the conjugate variable
(a.k.a. free Brownian gradient, a.k.a. non-commutative Hilbert transform)

(see [44,52]) and ®(X)= T(J (X)z) = 4n2I(Hp(x))2p(x)dx = %nzjgf (x)dx

is the free Fisher information (see [45,44] up to different normalizations).
The quantity occurring in Lemma (2.5):

1(xX)=4f(zHp (x)-2"% ) p(x )dr ==((7 (X)—X)2)=®(X)—2+T(X2);

is a generalization of the free Fisher information for Ornstein-Uhlenbeck
processes (see [44] ). The inequality in Lemma (2.5): can also be written
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4(t—s) W (X (s), X (0)) <sup (X (h)). (14)

s<h<t

The free entropy. The free entropy of X with distribution u = u,is

;((X)zjjlog|s—t| du(s)du(t)+%+%log(27r)
(see [45,44] up to different constants) and we have
Z(aX) = )((X)+log|a| and 1@&18'1 (;((X+g”2S)—Z(X)) =2"1®(X)

The quantity we shall use in estimating the distance to the semicircle
distribution is a modified free entropy adapted to the free Ornstein-
Uhlenbeck process ([202]):

Z(X)=—;((X)+;((S)+%T(X2)—l=%r(/\’2)—J‘J‘d,u(s)d,u(t)log|s —t|—%

2

We have
lim, Z(X(t)) =0and
1

¢St 4f1o{ ot} et o)
:2'1(1—6"@)[)( +(e' —l)isj—e-fr(XZ)w"):z‘l(1—@(}( (t))—r(X ([)2)+1):_2—11(X )

Note also that in [202] using the logarithmic Sobolev inequality for X (see
[44] ), it is shown that

> (x(6)=21(x (1)), (15)

which is a logarithmic Sobolev inequality for the Ornstein-Uhlenbeck
process.

Lemma (2.6)[198]:Assume X ,Y are bounded and self-adjoint, then if t>0
we have

1

liris(}lp|g|_1 ‘W (Y,X(t+g))—W (Y,X(Z))‘ <27 (I(X(l‘)))2

We now have all ingredients to get an estimate for W (.X,S)which is similar
in the free context to an' inequality of Talagrand in the classical setting (
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[69],[179,224])

Theorem (2.7)[198]: W (X.5) <23 (X).

Proof: Because of the semicircular maximum for ¥ we have

2(X)< 2(8)+2 " log(z(X?)) s0 that ¥ (x)> 2" (7(x*)~(1+10g7(x?))) < 0.
Thus it will suffice to prove thatw (X ,S) {ZZ jm <0. By Lemma (2.7)

the inequality (15) and the formula for the derivative of Z(X (t)), we have

for t>0,

1

&0

“minf"f{w()( (r+e).5)- [22( (t+¢) )J W(X(t),S)Jr[ZZ(X(t))J;}

> 27 (T X @) +271 (X (1)) (22(){ O =27 T X @) +27 (X (1))@ @) =0

1/2
Hence W (X (),5)- (22( )J is an increasing function and we have

}EELW(X(O’S)[2Z(X(t))f}—

because of the semicircular maximum and lower semicontinuity of X . It
follows that. .

W(X(t),S)—{ZZ(X(t))jm <0

ifs>0. To get the inequality for /=0, remark that X(¢)is norm-continuous
so that W(X(¢),S)tends to W(X,S) ast—0.0n the other hand. by lower
semicontinuity of X ,

n%nf[[gx(tw))f}[Z(X)J“

Because of the coincidence of the free and classical Wasserstem distance for
single self-adjoint variables, the preceding theorem can also be written in
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terms of probability measures for the classical distance. Let u be a
compactly supported probability measure on R and o a (0,1)semicircle
distribution. Then we have

(WGt0)* = [ du(x)-2] [ dua(s) du(t)togls -1 -3

Assume A is a unital C" algebra/ e B < 4aC’-subalegbra and A is generated
by BU{a,,...a,}.If 0 € TS(B) let7S(4:B,0)={r eTS(A)|r|B =06} .If
t,€TS(4;: B,0), where leBcd4;j = 1,2,let
TS(App-A4,:B,0;7,,7,) = {T € TS(Az4, : B,O) 4,1s the

to0;=1,,j=1,2} where 4.,

full free product with amalgamation over B. The relative Wasserstein metric
is then

W, (7,,7,:0)=inf{

‘(‘al(aj)—az(aj)‘wISan p|r eTS(AyA:B,0;1,7, )},

Where (r, €7S(4:B.0), j=1,2

Proposition (2.8) [198]: (a)W,(..0)is a metric on TS(4:B,0). (b) The
infimum in the definition of W,(z,,7,:0)is attained. (c) Let
t,2,0,r,eT(A:B,0) and assume 7 converges weakly to ¢, as
k—o(j=1,2). Then

liminf W (71 ,T (k):H)ZWp(rl,rzze).

k—oo

There is also a corresponding version of the relative metric for » — tuples of
noncommutative random variables. Let (M,,7,),(M,,7,)be tracial W"-

probability space, so thatleBcM,,7,|B=6,j=12.. If X,..,X, eM and
Y,..Y,eM, we define W ((X,...X,),(¥,...Y,): B) as the infimum of

(-7, )
p

spaces (M,,7;)s0 thatIeBcM3,r3|B:0 and(x,,..,x,,B),(X],...,Xx.,B) and

n>-1o

over 2n—tuples (X|,..,X).Y...Y])in traciai W’ -probability

<j<
1<j<n »

respectively (¥,...Y,,B)(¥.....Y,, B)have the same *- distributions.

Note also that in case (B,0)is given by generators (Z,...., Z,)this leads to
relative metrics denoted

W (X, X)), (YY) (Z02,)

There are many higher dimensional metric quantities which appear naturally
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in this context of optimization problems on trace-state spaces. Here we only
want to give a few examples, to bring the reader's attention to this
unexplored structure of trace-state space. The idea is quite simple. Given an
m -tuple (7,,...,7, ) of trace-states, then an

element 7 € 7S(A4....4;7,,...,7, ) yields a m-tuple of vectors

a,(r)= (O‘k (aj ))1<,-gn € (L2 (Avend;T,, .07, ))n ,

Where 1<k <m.

Then if w is some geometric. quantity associated with an n-tuple of points
in a Hilbert space, we may consider w(a1 (7),....a, (r)) and then define.

W (‘L‘l,...,‘[m) =inf {qﬁ(al (T),...,an (‘L’))|‘L’ € TS(A oA T ey Ty )}

Two examples of such ware volp (h,,...h,) and voiS (hy,..,h,),the m- -

dimensional volume of the parallelipiped defined by the vectors h,,...,h_and

m

respectively. The(m—1) -dimensional volume of the simplex with vertices
h,..h_.n case A 1is commutative there are corresponding "classical"
quantities W,, (,,....7, ) ,where the supremum is over
TS, (A ATy, ) = TS(Avcos A;7,vt, NT(A®...® 4) Where A"is viewed as

a quotient of 4”.  We conclude with a few remarks about the volumes of
parallelepipeds volp If H is aHilbert space and h,....,s2, e H let

hon b, =(m) " Y e(y)h, ®..@h,, cH™

VEDy

be the exterior product, where ¢, is the permutation group and &(y)the sign
of the permutation. The norm | A...ah,|is the norm from H®" and by
definitionvolp (h,...h,)=|l A..nh,|| .

Proposition (2.9)[198]: (i) volp(fl,...,tq).volp (Tq+1,...fq+r)2 volp(fl,...,rq+r);

(if) vol p(r)) = (3., 7 (aia, )) :(id) I, 20(1<k<n) then 2'volp(z,.,)is
the area of a triangle with sidesvolp(7,),volp(t,), W(z,,7,);(iv) The jnfimum
in the definition of volp is attained;(v) Letrﬁk),rj eTS(4),1<j<mk<N, and
assume rj.") converges  weakly  tor, as k—o. Then
liminf volp (fl(k),...,r,(f)) >volp(z,,...,7,,).

k—o0
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Like the proof of the triangle inequality for W, the proof of (i) is based on
free products rr" wherer' e 7S(4;1,,...,7, ), 7" TS (477, 7., ).Also (iv)

AAAAA

and (v) have quite similar proofs to corresponding properties of W. The
condition a, >0,(1<k <n)in (iii) insures that the angle between the vectors

a,(r) and a,(r) is acute and under such a condition it is clear that the area
of the triangle with sides a,(z), a,(r) of constant length is minimum at the
same time with the third side|, (r)-a, (7)),
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Chapter 3
Free Brunn-Minkowski and Talagrand Inequalities

The method is used to extend to the free setting the Otto-Villani theorem
starting that the logarithmic Sobolev inequality implies the transportation
cost inequality. We also discuss the convergence, fluctuations and large
deviations of the energy of the eigenvalues of B ensembles ,which ,as an
application of Talagrand inequality gives in particular yet another proof the
convergence of the eigenvalue distribution to the semicircle law.

Section (3.1): One dimensional Brunn-Minkowski inequality

In its functional form, the Brunn-Minkowski inequality indicates that
whenever 6e(0,1) and u,,u,,u, are non-negative measurable functions on

R” such that

u, (9x+(1 —H)y) >y, (x)[9 u, (y)l_[9 for allx,y eR",

= ( | uldxje ( | uzdlee

The Brunn-Minkowski inequality has been used recently in the investigation
of functional inequalities for strictly log-concave densities such as
logarithmic Sobolev or transportation cost inequalities (cf. [174, 23], [79]
(cf. [65]). Given a continuous function Q:R—R such that lim [x|e **") =0

x>0

then

for everye >0, set

where  A={x <x,<..<xyjcR%and A, (x)=]]__..(x-x) is the
Vandermonde determinant. The large deviation theorem of [45] and [79]
(see also [132]) indicates that.

}/ifg%log Z,(0)=¢,(VO) (1)

where, for every probability measure V onR,
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ZQ ” log|x— y|dV(x)dV(y IQ dV(x).

is the weighted energy integral with external (compactly supported) measure
2

V, maximizing ZQ (cf. [52,65]). (For the choice of Q(x)z%,VQ is the

semicircle law.)

Let u,u,,u, be real—valued continuous functions onR such that, for every
£>0, 11m|x| ¥=0,i=1,2,3. Set

i (x)= A, (x)f e TV (x), xeRY,i=1,2.3.

Since -logA, is convex on the convex set A, assuming that, for some
0<(0,1) and all x,yeR, U;(0x+(1-0)y)<6U,(x)+(1-6)U,(»), the Brunn-
Minkowski theorem applies tou,,u,,u, on R"to yield

Taking the limit (1) immediately yields the following free analogue of the
functional Brunn-Minkowski inequality onR.

Theorem (3.1.1) [171]: Let u,,u,,u, be real-valued continuous functions on
R such that, for everye > 0,‘1‘im x[e ™ =0, i=1,2,3. Assume that for some

0e(0,1) and all x,yeR

u3(0x+(1—0)y)Sul(x)+(1—9)u2(y)

Then

> ()20, (V) +1-0)Y, (V)

The free analogue of Shannon's entropy power inequality due to Szarek and
Voiculescu [250] may be recovered along the same lines.

We next show how the preceding free Bnmn-Minkowski inequality may be
used, following the classical case, to recapture both the free logarithmic
Sobolev inequality of Voiculescu [44] (in the form put forward in [197] and
extended in [200]) and the free quadratic transportation cost inequality of
[198,66] for quadratic and more general strictly convex potentials Q.
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Let O be a real-valued continuous function on R such that lim |x|e™ =0

[x}—00
for everye >0. ForV, probability measure onR, define the free entropy of
V (with respect toV,,) [44, 200,202] as

(V%) =2 (%) -2, (V)20
If ¢:R— Ris bounded and continuous, it is convenient to set below

2o (9)= Zg_w(\@_w )- ZQ(VQ) . For every probability measure V onR,

I¢dV+Z W)=,V j¢dv (V%)

with equality forv =V, . In particular 4, (¢)> I ¢d\], .

Assume now that (Q is C'and such that) O(x)-c/2x* is convex for some
C>0. For bounded continuous functions f,g:R—Rsuch that

g(x)<f(v)

as in the classical case (cf. [173]), to U, =0—-(1-0)g,U,=0+6f andU, = Q.

—y|*, we may apply the free Bamn-Minkowski theorem,

Thus, by the theorem,/lQ((1—0)g)+%/lg(—0f)s0. As 600, it follows

that for every probability measure V,
Jin-J =51

(in other words A, ( I faVy). By the Monge-Kantorovitch-Rubinstein

theorem (see [23]), thls is the dual form of the free quadratic transportation
cost inequality.

1 B
W, (V%) < X (VIVD) 2)

c

recently put forward in [198] for the semicircle law associated to the
quadratic potential, and in [66] for strictly convex potentials (where

W, (V,VQ) is the Wasserstein distance between V and V).

The free logarithmic Sobolev inequality of [44], extended to strictly convex
potentials in [200], follows in the same way from the free Brunn-Minkowski
theorem. We follow [200] where the matrix approximation is used similarly
to this task. Fix a probability measure V with compact support and smooth
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density p onR. Define a ' function RonR such that
P(x)z2j10g|x—y|dv(y)0n supp(V), P(x)=Q(x)for |x| large, and such that
P(x)22I10g|x— y|dV(y)every-where. By the uniqueness theorem of

extremal measures of weighted potentials (cf.[52]), it is easily seen that the
energy functional %, is maximized at the unique pointV, = V. Define then f.

with  compact support, by f=Q-R+Cwhere the constant
C(z Z, (VQ)—ZR(\@)) is chosen so that4,(f)=0.

Letg, (x)=inf, [f(y)Jrzit(x—y)z}, >0, xeR, be the infimum-

convolution of f with the quadratic cost, solution of the Hamilton-Jacobi

equation 8,g +% ¢” =0 with initial

condition f. As in the classical case (cf. [173]), apply the Brumn-Minkowski

theorem to U, =Q—%g,, tzﬁ, U,=0, U,=0- fto get that
C

Jo((1+ct)g,) < jp(f)=0for everyt>0. In particular therefore,

j(l+ct)g,dVSi(V‘VQ),and, since V=V, ,,ast—0,
i(v\xg):jfdvgzijf'zdv
C

Now f'=Q'~Hp where Hp(x) =p).m{ 2p—(y)is the Hilbert transform (up to a
xX=y
multiplicative factor) of the (smooth) density p of V. Hence the preceding

atitounts to the free logarithmic Sobolev inequality
- 1 oo 1
z(v\\@)sz—cI[Hp—Q] dv_z—cl(v\vg) (3)

as established in [200], whereI(V|VQ) is known as the free Fisher
information of Vwith respect to V,[44, 197]. Careful approximation

arguments to reach arbitrary probability measures V (with density in Z’(R)
are described in [67].

The Hamilton-Jacobi approach may be used to prove, as in the classical
case, the free analogue of the OttoVillani theorem [69] (cf. [23, 256, 173])
stating that, for a given probability measure du=e%dron R (with a C'

potential Q such that ‘lim |x|e“?) =0 for everye>0), the free logarithmic

x| >0

Sobolev inequality (3) always implies the free transportation cost inequality
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(2). To this task, given a compactly supported C' function fon Rand aeR,
set  j,=jp((a+ct)g)and f, =(a+ct)g,—jso thatj,(f,)=0. Denote for
simplicity by Vthe extremal measure for the potential Q- f,. Then the

logarithmic Sobolev inequality (3) can be expressed asj ftd\{szLI f2av .
C

In other words,
claver) [gay et <~(a+er) (0,8
On the support of V (cf. [52]),
2jlog|x—y|d\{(y)=Q—f, +C,

where €, = [ [loglx~y|aVav+Z,., (V) Since ()=, , (V)-Z,(%)=0.it
follows

thatfa,f,d\{:o. Therefore, ¢j, >(a+ct)d,j, and hence (a+ct)” j, is non-
increasing in t. In particularL Jl/cﬁé Jjo» which for a = 0 amounts to

a+1
jQ(g)SI fdv,, that is the dual form of (2). This approach through the

Hamilton-Jacobi equations has some similarities with the use of the
(complex) Burgers equation in [198].

Section (3.2) Semicircular Law and Energy of the eigenvalues of Beta
Ensembles

In [179] Talagrand proves the transportation-cost inequality to the
Gaussian measure. The one dimensional version for the Gaussian measure

1 -x2/2
=—¢e " “dx

y (dx) o

reads as
(W (7)) <2H(V]y), )

where W, (u,y) lis the Wasserstien distance defined below by (8) and the
relative entropy is

(vl e () V=

o0 if Vissin gulartoy

36



In the context of free probability, Biane and Voiculescu provided in [198] a
free version of this:

(W, (1.0)) <2(E(u)~E(o)) 5)

whereE(u)=%J'xzu(dx)—Hlog(|x—y|)u(dx)u(dy) is the free energy of u

and o-(dr)zzll[_2 ;) (¥)V4-x*dx is the semicircular law, the minimizer of
o

E(u) over all probability measures on the real line. The role of the relative

entropy is played here by the difference of the free energy of u and the
semicircular.

Using random matrix approximations, Hiai, Petz and Ueda proved in [6] the
following extension of (5),

(W, (1110)) <E? (1) ~E2 (1) (6)

where p>0and O:R— R is a function so that Q(x)-px*, is convex and

B (1) = [ 0(x) ()~ [ [toghs—]sa(cte) ()

Here u, is the minimizer of E%0n the set of all probability measures on the

real line. They also prove a version of this for measures supported on the
circleT :

2
(p+1/4)(W,(V.V,)) <E®(V)-E(V,) (7)
where Q: T — R so that Q(e"“‘)—pxzis convex on R,p>-1/4and u,is the

minimizer of the functional £2 on probability measures on the unit circle T .

Another proof of (5) is given in [171] via a Brunn-Minkovsky inequality for
free probability.

The following result is an obvious one but is the key to our problem.

Lemma (3.2.1) [102]: Let f:[0,]]>Rbe a convex function with the
property that (0)=0 and there exists a>0so that

f(t)Z—at2 for te[O,l]
Then
f(t)ZO forall te[O,l]
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Proof: It follows from the assumptions that for anye >0, if5, =min(Le/a),

then f(¢)>—te forte[0,6,] . Now, since fis convex, one gets

f(mt)2mf(t)2-mte for any integer m withms<1, and therefore, /' (¢)>—et

for any[0,1]. Since this is true for anye >0, we get f(¢)>0 for any ¢<[0,1]
0

In the following, p(Q)denotes the set of all probability measures onQ, and
for two probability measures with finite second moment on p(R) orp(T),

where T={zeC:|z|=1}, we define W, (1, V), the Wasserstein distance by

WZ(“’V)Z\/ne]i‘I[l(t;,v),”'h_y'z dﬁ(x,y) (8)

Here [](uV)is the set of probability measures on R’with marginal
distributions x andv, and it can be shown that there is at least one solution
me[[(x V) to this minimization problem.

If pgand Vare two measures onR with Fand G their cumulative
distribution functions (i.e. F (x) = u((—o,x])), then in [23] states that

(W) = [ [P ()= (o at ©)

where F' denotes the generalized inverse of F.

Theorem (3.2.2) [102]: Let O:R—>Rbe a function so that Q(x)-px’is
convex for a certain p >0. If u,1is a solution to the minimization problem

1= Bl B (w) (1o
where
B ()= [ 0(x)u(d)~ [ [toghe— sl (e} (@) (11)

then for any u e p(R), we have

2
p(W, (1.1y)) <E?(u)-1° (12)
In particular, the minimization problem (10) has a unique solution.

Proof: There exist constants C,and C,so that
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O(x)-px*2C, andlog(|x—y|)2 _g(xz +y2)+02.

Then for a certain C, we get that

S0 +0()-tog(lx—r)2 5 (¢ +17)+C2C 13

and this in turn implies that the infimum in (10) is finite (since E€ () is
finite for u the uniform distribution on [0,1]) and in particular I O(x)du,(x),
and ”10g|x— y|dpy(x)du,(y) are finite, which means that u, has finite
second moment and no atoms.

Since E¢ (u)>-o, we may assume that E°(u) is finite, otherwise there is

nothing to prove. Then, ”10g|x—y|u(dx)y(dy) and IQ(x)y(dx) are finite. In
particular, ¢ has finite second moment and no atoms.

Taking F, and F,, the cumulative distributions ofu,u, and F~', F,'their
generalized inverses, set@(x):F’l(FQ(x)). According to [23] and the

discussion following thereafter, the minimizing measure » from (8) is the
distribution of x — (x,6(x))under u,. In this case, the inequality we want to

prove becomes

o [le=0o) wo ()< [ 0(x) )~ [l @eha( )~ 1°

Let f:[0,1]—>Rbe given by

——pt J‘|0 x| yQ dx J‘Q(te(x)Jr(l—t)x)yQ(dx)
[ rog(le(0x)=0 () +(1=0) (r=1)| g () 1y ()~ 1°

Notice here that /' is well defined. Indeed, Qis convex, hence bounded
below and because IQ( ) Hy (dx) IQ (dx) and IQ ) o (dx) are both

finite, one concludes that '[Q (16(x)+(1-1)x)u, (dx)is finite too. One the
other hand, there isa C>0 so that for anyse[0,1],

—log([f(0(x)=0(»))+(1=1)(x=y)) 2=C(0(x) +0(») +¥° +*)-C,

which, combined with the finiteness of the second moment of uandy,,
results with (for a constant C)
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j j tog ([ (6 ) (1=1)(x = )| g () 1o (dv) > € forall re[0.1].

Now, since 0 is a no decreasing function we can write

[ [roel(o )+ (1=0)(x =) Juo () 1 ()
=—2”x>ylog (t(0(x —Q(y))-i-(l—f)(x_y))lug(dx)/lQ(dy)’

which combined with the convexity of-log on (0,.0) and the finiteness of

jjlog|x — y|uy (dx) p, (dy) and jj‘log|x—y|u(dx)u(dy) , yields the fact that

‘> Hlog (o o (1=1) (x = )t (e ) gy () (14)

1s well defined and convex.

The inequality (12) is now equivalent to f(Z)>0. To show this, we apply

Lemma (3.2.1): The convexity follows easily from the convexity of
O(x)-px* and (14). Now if V is the distribution of x —1(x)+(1-7)x under
1, > then the minimization property of x, implies that

)=—pt jﬂ@ x| 1y (dx), for 1€[0,1]
and then, Lemma (3.2.1) : shows that /(7)>0 for anyz<[0,1] .

The existence statement follows from the lower continuity of £°. For a proof
of the existence and compactness of the support of i1, (see [206]).

Corollary (3.2.4) [102]: Let o (ax) =2LI[_2 5 (¥)V4-x*dxbe the semicircular
)
law on[-2,2]. Then for any pe p(R),

1

2 _1[ ,
(W (o)) = [ ()= [ [1og (=) a(toha(r) =
The next theorem is just inequality (7).

Theorem (3.2.5) [102]: Assume Q:T — Ris a function so that Q(e")- px” is
convex on Rfor a givenp>-1/4. If p,is a solution to the minimization
problem

1° = inf E°(p), (15)

uep (T)
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Where
=jQ(z)V(dz)— _[ ITXT10g|z—z'|V(dz)V(dz'), (16)
then, for any Ve T, we have
(p+1/4)(W, (V.Y ) <E2(V)-19. (17)

In particular, there is a unique solution for the minimization problem (15).

Proof: We identify [-z,z]with T via the exponential map x —¢"and move
the measure Vto pand V,tou,. We then follow the proof of Theorem
(3.2.2): with the necessary adjustments needed. The function f(¢)there
becomes here

f(t)=—(p+1/4)tzf|e(x +IQ i V) (k)
[ Jrog[et et —terr 0y, )y, (d) Iz

e —e"”r = 4sin’ ((a—b)/2)for a,breal numbers and

[l %, (@) =2 [ [((000)-2)-(00) ) Vo (@)% (@)

Next, set 6,(x)=t0(x)+(1-¢)x and notice that.

=——I|9 1 (dv) J‘J‘log
Hg x)—x)-(0 )) b (dx)V, (dy)
- [ [rogfasin(0, (x)- <>) 2, ()Y, ()

—2[ [ L{(0()=5)-(0(1)-)) Vo ()Y ()
~2f [ tog(2sin(6,(x)-0,(3))/2)) % () ¥ ()

) _ 001100}y

Now,

ne (x)) ei@()

o (), ()

where in the last line we used the fact that 6 is a non-decreasing function.
Since x,y,0(x),0(y)e[-=,7]and for0<a<b<r, we have
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d
dt

2
2

(%(a—b)z—log(sin(wnj :(“‘4b)2 Sinz{“’:(l‘t)bj_l >0

2

which implies that the function g is convex on [0,1]. This coupled with the
convexity of Q(e“)— px*concludes that /' is a convex function. Finally

£(1)> —(p+1/4)t2j|0(x)—x|2VQ(dx),
and thus, Lemma (3.2.1) : shows that f(1)> 0, which is (17).

The existence of a minimizer follows from the fact that E<is lower
semicontinuous.

For 0=0and p =0, the minimizer of (14) is the Haar measure onT . One can

check this by showing directly that the uniform measure satisfy the
variational form of (15).

Corollary (3.2.6) [102]: For any pe p(T)

%(wz (u,g—;nz < —J‘J‘TXT10g|z—z'|y(dz)u(dz').

Using the same argument as in the proof of Theorem (3.2.2): we can also
prove a discrete version of it.
Theorem (3.2.7) [102]: Let O:R—>Rbe a function so that Q(x)-px’is

convex for a certain p>0. For X =(x,,x,,..,x,) €R", set the energy of X to be
given by

orvy_ 1N 2 _
EH(X)—n;Q(Xi) n(n—1)1<;<nlog‘xi xj‘
IfA? =EZ(y)=inf {EZ(X):x<R"}, then for any X eR",
p(W, (1(X ).u(y))) <E2(X)-EC (y)=E2 (X )-2 (18)

where u(X 1 " 8, Moreover,
n k=1"xk
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The only statement that needs to be clarified here is (19). If y  is a
minimum point for E¢ andy’  denotes the n dimensional vector obtained

from y by removing the i ™ component, then A° =—Z"+1 ?(vin)

n+l i=1 n

which is obviously > A?.

The minimum points of £¢ are called Fekete points in the literature. It is
known (see [206]) thatlim  A° =12, with /°defined in (10). We will
reprove this fact below in Proposition (3.2.8) For O(x)=x?, the formula

[168, 11] with the appropriate scaling gives the formula for computing
A, =A°as

A, :%(1+10g(n—1))—

Zn:jlogj:l_loﬂ_l Y Llog(Lj (20)
n— n

The next statement is a similar result to Theorems (3.2.2): and (3.2.7):

Proposition (3.2.8) [102]: Assume Q:R—>R 1is a function so that
O(x)-px* is convex for a certainp>0. Then for any Ve p(R)and yeR"a
Fekete point for£¢, we have

n

P(Wz(w(y)))2 <E9(V)-A% (21)

Furthermore, if u,is the minimizing measure ofE®, and y, eR" is a Fekete
point forE?, then

limA¢ = /¢ and lim W, (,uQ, (v ))=0, (22)

n—>0

hence, u(y,)——=— 1, weakly.

Proof: In the first place there is nothing to prove if E¢(V)=cw. Therefore
we assume thatE®(V)<oo. Integrating (17) with respect to
V(dx,)V(dx,)..V(dx,), one gets that

p[(W, (u(X),u(y)))zV(dxl)V(dxz)...\/(dxn)S EC(V)-A?.

We finish the proof of (21) by showing the
j(wz (X ) a3 ) V() V(s )V (A, ) = (W (Vo () - (23)

To do this, we proceed by induction. Forn =1, this statement becomes
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J‘(W2 (5x’5y))2 V(dx)= (W2 (V,5y))z

which, (9), is equivalent to the following (here F, is the cumulative
distribution function of V')

I|x—y|2 V(dx) = J‘Ol‘y—Fv'1 (t) dt

This can be checked by changing the variable in the second integral.

Assume (23) is true forn—1,n>2. A simple application of (9) gives that

(W, (X)) = =30,

n

2

Fo(i) = Ve(i)

b

where & and r are permutations

of{1,2,..,nfs0 x,, <x,,..<xIf we denote by X the vector X with the ith

component removed and similarly fory,, one deduces

(W (10X ) () = 2o (W (X))o 1(v))) (24)

On the other hand,

(v =3

which can be used to argue that

(W (Vatt ()] =22 (W (Ver(3,)) (25)

i=l1

Putting together (24) and (25) and the induction hypothesis one finishes the
proof of (23).To prove (22), we first point out that (21) applied to u,yields

that 72 > A%for anyrn>1. In particular this means thatA° is bounded. Since

~log|x - y|>—z(x +y*)+cfor a certain constant ¢, we get that

A > P Z x’—C, where Cis a constant. This implies that the sequence

{jx /l( )(dx)} is bounded, whose consequence is that the sequence of

measures u( n)lS tight, therefore there is a weak convergent subsequence
u(y,.) to ameasure V. Now, for any L >0, we have
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Jmin{((Q(x)+Q(y))/2—log|x—y),L}u(ynk)(dx)u(ynk)(dy)sAnQ YL/ nk

and this demonstrates that for any L >0,

jmin{((Q(x)+Q(y))/2—log|x—y ),L}v(dx)v(dy)SIQ

and, after passing L — o, this yields
E¢(V)<I9.

This together with (19) and the uniqueness of u, from Theorem (3.2.2):
ends the proof oflimA? = 7¢. The rest follows.

n—>0

In this section we deal with g -ensembles, which are studied in- [98]. These
are tridiagonal matrices with independent entries of the form

N(0,2) x(n-1)p
2(n-1)BN(0,2) x(n-2)p

x2p N(O,Z) xpB
28 N(0,2)

Here N(0,2)stands for a normal with mean 0 and variance 2, while y, is the

x -distribution with parametery. The joint distribution of the eigenvalues is

ZL H ‘xi—xj‘ﬁ exp[—ﬁnzn;xfj

B.n 1<i<j<n
where here Z,, is a normalization constant.
Set u, =" 5, the empirical distribution of the eigenvalues {4, ,}" of 4,

1 n 2
Th 3.2.8) [102]: Set E =— Y —
eorem ( ) [102] e i 2nzk:l ; =)

energy of the eigenvalues {4}, of4, . If A is the quantity defined in (21),

Zlg/qgn IOg M,- - Z’i | the

then almost surely,

limn(E, -A,)=¥Y(1+8/2)-log(B/2), (26)

n—>0
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where v (x) =dilogl“(x) and T'is the Gamma function. In addition, we have
X

that
' (n(E,-A,)- (v (1+ B/2)-log(B/2)))—=— N (0.y'(1+ B/2)), (27)
where the convergence is in distribution sense.
The large deviations of n(E, -A,) is governed by the rate function
R'(t)=sup{tz-R(z):z€R},

r(1+8/2-2)

z+(ﬁ/2—z)log(ﬂ/2—z)—log[ 1("(1+ﬁ/2) J—(ﬂ/2)log(ﬂ/2), z<B/2

w 2= B/2.

R(z)z

Proof: The proof is based on a version of Selberg's formula and elementary
approximations involving Gamma function.

First, we have

Jo JL

2
oo o= )
I<i<j<n n
E[exp zE )

L H ‘x x‘ exp( ﬁnz . j)dx

1<i<j<n

and then, as a consequence of Selberg's formula [168], we get for complex
z, that

1+][[3/2
B —g(n—l) ﬁ/Z—ﬁﬁ-l n [ (n I)J}
. (nB/2-z/n) { [ ( >HH“ r(+5/2)
E[e™ |= T 75 2) , R(z)<p/2
(nﬁ/Z) (n-1)B/2+1] H T\UTJjprea)
HT(1+B/2)
o, ER(Z)<[3/2.

We need Stirling formula for approximation of Gamma function in the
following form

10gF(t+1):(t+1/2)10gt—t+10g(27r)/2+0(%j for >0
J’_

Using this and the above formula for E[exp(zEn)] and (20), after some

arrangements we get
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z B z Z(n+1) z
_mlog(7_7)+ Z(n—l)log[l—i_ n[(n—l)nﬁ/Z—Z]j

n[(” -1)p +1] z np =
* 2 log[l_(n—l)[nz/i/z—z]}r 2 log(l_mJ

—n{log(Hg—ﬁ]—log(ng}ro(%j

From this, replacing zbynz , one immediately obtains that for anyzeR,

log(E[exp(zn(En —A, ))]) —>7 1;((11:5//22)) —zlog(B/2) :z(l//(1+ﬁ/2)—log(ﬁ/2))

3

Applying(27) with z replaced byn?,z, one can prove that for any complex z

log(E[eXp(znm (n(E, —An)—(w'(1+/3/2)—1og(/3/2)))ﬂ)ﬁzzw'(1+/3 /2)/2

whose consequence is (26). This, applied for z=+1together with Chebyshev
inequality yields

P(‘H(En —An)—(l//'(1+ﬁ/2)—10g(ﬁ/2))‘ > e)s Ce_gnl/z

for a certain constantC>0. This and an application of Borel-Cantelli's

Lemma prove (26). Again applying (25)with »*zin place ofz, we can show
that

%log(E [exp(zn2 (E,-A, ))])T’R (z)

for anyzeR. As a consequence of standard large deviations results (see in
[111]) we conclude the proof of the last part of the theorem.
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Chapter 4
Ricci Curvature for Metric Measure Spaces

The definitions are in terms of the displacement convexity of certain
functions on the associated Wasserstein metric space of probability
measures. We show that these properties are preserved under measured
Gromov-Hausdorff limits. We give geometric and analytic consequences.
Moreover, in the converse direction discretizations of metric measure spaces
with curvature greater than or equals to the real constant will have rough
curvature greater than or equal to the real number. We apply our results to
concrete examples of homogenous planar graphs. We show a length of
successive maps in a closed unit interval. We generalize the perturbations
related to the Wasserstein distance.

Section( 4.1): Geometry and Functionals of Wasserstein space

In this section we first recall some facts about convex function ,we
then define gradient norms length space and measured Gromov-Hausdorff
convergence. Finally, we define the 2- Wasserstein metric W, on P (X).

Let us recall a few results from convex analysis. (See [231])

Given a convex lower semi continuous function U:R—> RU{x} (which we

assume is not identically « ), its Legendre transform U":R—RU {oo}is
defined by
U*(p)zsup[pr—u(r)] (1)

reR

Then U” is also convex and lower semi continuous. We will sometimes
identity a convex lower semi continuous. Function U define on a closed
interval /<R with the convex function defined on the whole of R by
extending U by « outside of 7 .

Let U[0,0)—>Rbe a convex lower semi continuous function. Then U
admits a left derivative U :(0,0)—>Rand a right derivative
U: [0,00]— {—oo}U R, withU(0,50)c R.

Furthermore, U <U! .They agree almost everywhere and are both non-
decreasing. We will write

U/ (0) = lim " () = tim L) e R U oo} @)

r—ow r—wo  p
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If we extend U by « on (—»,0)then its Legendre transform
U:R—R U{wx}becomes U(p)=sup,.,(r)]It is non-decreasing in P, infinite

on (U(x),o) and equals-U(0) on(-»,U(0)].Furthermore it is Continuous
on[—w,U()).For all 7 €[0,00) ,we have U"(U(r))=rU.(r)-U(r).Let (X,d)be

a compact metric space (with 4 valued in [0,0)).

Then Open ball of radius » around x e Xwill be denoted by B, (x)and the
sphere of radius » around x will be denoted by S, (x).

Let L”(X)denote the set of bounded measurable function on X .(We will
consider such a function to be defined every where ).Let Lip(X) denote the
set of Lipschitz functions on X . Given f elip(x), we define the gradient
norm of f by

IVf|(x)= }133 sup % 3)

If x is not an isolated point, and|V/|(x)=0if x is isolated then |V/|eL*(X).

On some occasions will use a finer notion of gradient norm:

=S qup D =@), @)

\a x)=lim su
[V A1(x) = tim sup == =5 = lim sup =

If X is not isolated, and |V/|(x)=0 if X is isolate. Here a,=max (a,0)and

a_=max (—a,0).

Clearly|v" f|(x)£|Vf|(x).n0te that |V’ f|(x)is automatically zero if f has a

local minimum at.X . In a sense,

V" f|(x) measures the downward pointing

component of F near x .

If y is curve in X, i.e a continuous map y :[0:1] — x, this its length is

L (y)= sup sup JZ]_: d (y (tjfl),y (tj )) (5)

JeN 0=to<t,<..<t,=1 1

Clearly (7, )2 d (y (0).y (1))

We will assume that X is a length space, meaning that the distance between
two points x,,x, € X is the infirmum of the length of curve from x,to «x,

.Such a spade is path connected.

49



As X is compact, it is a strictly in transit length space ,meaning that we can
replace infirmum by minimum [29] That Is for any x,,x, e X there is

minimal geodesic (possible non-unique) from x, to x,.We may sometimes
write geodesic instead of “minimal geodesic”.

By [29], any minimal geodesic y joining x, to x, can be parameterized
uniquely by 7€[0,1] so that

d(;/(t),;/(t'))z‘t—t"d(xo,xl) (6)

We will often assume that the geodesic has been so parameterized .By
definition a subset Ac Xis convex if for any x,, x,e4 there is a

minimizing geodesic from x, to X that lies entirely in 4. It is totally
convex if for any x,, x, € 4 ,any minimizing geodesic in x from x, to x,
lies in A. Given 1eR a function F: X —R and only 7€[0,2] we have

F(r(0) <7 (r () + (=00 F (#(0))—5 24(1-0)L(7) 7)

In the case when x is a smooth Riemannian manifold with Riemannian
metric g, and F eC?(x ), this is the same as saying that hessF > Ag.

Definition (4.1.1) [121]: Given two compact metric spaces (x,d,) and
(x,,d,)) an

¢-Gromov- Hausdorff approximation from X to x, is a (not necessarily
continuous ) map f:X, - X, so that

(i)sz(xl. ),F(xll)—dl(xl,xl') <e,Vx,x eX,,

(ii)For all xz,eXz,there is an xleXl so that d, (F(x2 ),xz)ﬁ <.

An ¢-Gromov-Hausdorff approximation f:X, — X, has an approximate
inverse F:X, — X, which can be constructed as follows: Given x, e X,

choose x e.X, so that d,(/(x).x)>¢ and put f'(x,)=x then f'isa 3s-
Gronov-Hausdorff approximation from X, to X,.Moreover, for all
x, € X,,d, (al,(f'of)(x))e%‘,and forall x, € X,,d, (x2 (fof)(x,)< 8),
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Definition (4.1.2) [121]: A Sequence of compact metric spaces {X}i1

1

converges to X in the Gromov-Hausdorff topology if there is a sequence of
¢, —approximations f;: X, - X with lim, ¢ =0

This notion of convergence comes from a metrizable topology on the space

f all compact metric spaces modulo isometries. If {X,.}:i1 are length spaces

that converge to X in Gromov-Hausdorff topology. Then X is also a length
space [29]. For the purpose of this section , we can and will assume that
maps fand /' in Gronov-Hausdorff approximation are Borel probably

measures on X . We give P (X)the weak—*topology, i.e
lim, = u, if and only if for all F eC(X), limeJ‘ Fd u :j Fdu. (8)
X, X

Definition (4.1.3) [121] Given VeP (X).Consider this metric-measure
space (X.,d,V). A sequence {X,.d,V}  converge to (X,d,V) in the
measured Gronov-Hausdorff topology, if there are ¢,- approximations are
f:X,—> X with lim__ ¢ =0 so that lim,_ (f,)*V =Vin P (X).

Other topologies on the class of metric-measure spaces are discussed in

[166]. For later use we note the following generalization of the Arzela-
Ascoli Theorem.

Lemma (4.1.4) [121] : [163] Let {X, }" be a sequence of compact metric

spaces converging to X in the Gromov-Hausdorff topology with&;-
approximations f,:X, - X Let {¥,}" be a sequence of compact metric
spaces converging to Yin the

Gromov-Hausdorff topology with ¢, -approximations g,:Y, — Y. For eachi,
letf,': X — X, be an approximate inverse to f, as in the paragraph following

Definition (4..1.1): Let {a} be a sequence of maps a,:X,— Y that are

asymptotically equicontinuous in the sense that for every &>0, there are
5=56(¢)>0 and N =N (¢)>U"that forall i=N
dX,.(x,.,x})<5:dyi(ai(xi),ai(x.l))<g 9)

1

Then after passing to a subsequence to maps g oa,of, X — yconverge
uniformly to a continuous map a: X —7Y.
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In the conclusion of Lemma (4.1.4): the maps g oa of may not be

continuous, but the notion of uniform convergence makes sense
nevertheless .

Given gy, 1, €P (X) we say that a probably measure DeP (XxX), is a
transference plan between p,and g, if.

(po)*H:,uoa(pl)*H:M (10)

Where p,,p,: XxX — X are projection onto the first and second factors,
respectively. In wards Ilrepresents a way to transport the mass from , to
p, and II(x,x,) is the a moment of mass which is taken from appoint x, .
And brought to a point x,

We will use optimal transport with quadrate cost function ( sequence of the
distance ). Namely, given u,,u €P(x), we consider the variational

problem.
W, (ﬂovul)z :ir%fJ.XXXd(XO’xl)ZdH(xO’xl) (11)

Where » ranges over the set of all transference plans between y,and g, .

Any minimizer rz for this variational problem is called an optimal
transference plan.

In (11), one can replace the infimum by the minimum [23], i.e. there always
exist (at least) one optimal transference plan. Since X has finite diameter,
the infimum is obviously finite . The quantity w,will be called the

Wasserstein distance of order 2 between u, and g, , it defines a metric on
P (X), the topology that it induces on P (.X)is the weak -*topology [23].
When equipped with the metricw, , P(X), is a compact metric space,
which we will often denote by P, (X), we remark that there is an isometric
embedding X —>P,(X),given by x—>5x. This shows that diam
(P,(X))=diam(X). Since the reverse inequality follows from the definition
of W, actually. (P,(X))=diam(X), a monge transport plan coming from a
map F:X - Xwith Fu, =u givenby z=(ld,,F), y,,. In general an optimal

transference plan does not have to be a monge transport . Although this may
be true under some assumption
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2
A functiong: X —[-o0,®], is d? concave if it is not identically -« and it can

be written in the form

x'eX

¢<x>=inf[d(’“j') —¢‘<x’)] (12)

For some function ¢:X —[-w,),such functions play an important role in
the description of optimal transport on Riemannian manifolds.

In this section. We investigate some features of the Wasserstein space
P, (X')associated to a compact length space(.X,d). (Recall that the subscript
2 in P, (X )means that P (.X) is equipped with the 2-Wasserstein metric). We
show thatP, (.X) is a length space. We define displacement interpolation and
show that every Wasserstein geodesic comes from a displacement
interpolation. We then recall some fact about optimal transport on
Riemannian manifolds.

We denote byLip ([0,1],X), the space of Lipschitz continuous maps
C:[0,1]— X with the uniform topology. For any k >0

Lip, ([0,1], X) ={C e Lip([0,1], X ):d (C(¢)C(¢)) < k|t =t for all 1,¢' [0,1]}  (13)
is a compact subset of Lip([0,1],X).

Let I"'denote the set of minimizing geodesies on X . It is closed subspace
Lip 4 ([0.1], X),

defined by equation L(C):d(C(0),C(1)).For any ¢<[0,1], the evolution map
e, :T — X defend by

¢(7)=7() (14)

is continuous. Let E:I'—>XxX be the “endpoint” map given by
E(y)= (e1 (7/)) , A dynamical transference plan consists of a transference plan
rand a Borel measure 11 on I' such that E.IT=7; it is said to be optimal if
IT itself is. In words the transference plan r tells us how mach mass goes
from a pintx, to another point x,, but does not tell us about the actual path
that the mass has to follow. Intuitively, mass should follow a long
geodesies, but there may be several possible choices of geodesies between
two given points and the transport may be divided among these geodesies
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,this is the information provided by IT,but there may be several . If i is
on optimal dynamical transference plan, then for 7€[0,1] we out

w=(,).10 (15)

The one-parameter family of measures {”t}ze[o 1 is called displacement

interpolation in wards u, i1s what has becomes of the mass of y, after it has
traveled from time 0 to time ¢ according to the dynamical transference planii .

Lemma (4.1.5) [121]: The map cc[0,1]—>P,(X) given by ¢(¢)=py, has length
L(C):Wz(,uo,,ul) .

Proof: Given O<t<¢'<I,(e,e,),Ilis a particular transference plan from g,
to u, and so

W, (4,1, ) Sj d(xo,xl)zd((et,et, ). H)(xo,xl)

XxX

- [l )= [ (0o 27ty

r

=(t'—t)j d (33,3, P dETT(x3,3,) = (£ =) W, (10,11, (16)
Equation (15) implies that L(c)<W, (1, z) and so L(c)=W, (. t4)

Proposition (4.1.6) [121]: Let (X.d) be a compact length space then any
two point u,, 4, € p,(X) can be joined by a displacement interpolation .

corollary (4.1.7)[121] , If X is a compact length space then P,(X) is a
compact length space. ..

Example (4.1.8) [121] : Suppose that X=AUBUC where A,Band C are
subsets of the plane given by A:{(xl,o):—2£x1 S—l},Bz{(xl,xz):xf+x§ :1}
and C= {(xl,o) 1<x < 2} . Let u be the one —dimentional Hausdorff measure

of A and let u, be the one - dimentional Hausdorff measure of C . Then
there is an uncountable number of Wasserstein geodesies from u, to g,
given by the whims of a switchman at the point (-1,0).

Corollary(4.1.9)[274]:The map cc[0,1] > P, (.X) given by ¢(7)=y, has length
L(C) :Wz(.uo,,ul) .
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Proof: Given 0<t,t +¢<1(e,.e, ) and II is a transference plan from g, to
u ., and so

Wz(ut,u,)sj‘ d (x 0%, )'d ((€,5¢,0, ). 1) (x o))

X xX

B g.[x Xd (anxl)sz*H(xo,xl) =&'W, (,uo>,u1 )2- (17)

Hence equation (15) gives the result.

The next result states that every Wasserstein geodesies arises from a
displacement interpolation .

Proposition (4.1.10) [121]: Let (X,d) be a compact length space and let
{ 'ut}ze[o , is the displacement interpolation associated to IT.

Proof: Let {4, }te[O ’ be a Wasserstein geodesies U, up to reparametrization ,

we can assume that for all 7,/ €[0,1]

W, (11, ) =t =2\ W,y (g 11,) (18)

Let 7x\”x,, be an optimal transference plan from , to y,, and let

% be
optimal transference plan from y , to u .Consider the measure obtained by
gluing together axy)x,, and 7,°,x,.
d”;?)xl/zd”xf/lf) » X1

M(l) —
du,, (xl/z )

(19)

on XxXxX. The precise meaning of this expression is just as in the
“gluing Lemma”’ started in [23]: Decompose z'°’ with respect to the
projection p,: XxX — X on the second factor as 11" = ox{?)p,, (x,,), where
for p,,-almost all x,,,0x%) e p( p (xm)) is a probability measure on p; (x,)

(1/2)

. Decompose IT"” with respect to the projection p_ : X xX — X on the first

factor as "7 =ox{"w,(x,)  where for g, -almost all
X,p,0x0) P (p;1 (xm)). Then for Fec(XxXxX)

j Fdm"
XxXxX
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:j ,[ -1 . F(x07x1/2’xl)do—xl(/OZ)Xdo-xl(/l;z) (x1)d/11/2 (x1/2) (20)
X o p (XIZ)XPD (xlz)
The formula
dﬂ-an xl = J‘ M)(c;?xl 2,X) (21)
v 2

Defines a transference plan from u, to y, with cost

d 2d < d d d”(O)xoaxl/z dr'”
(xO’xl) TTXys Xy = (xO’x1/2)+ (xl/Z’xl) T X5 X
XxX XxXxX d/ll/z (xl/2 )

(1/2) 1/2
dr" 7 x,,x,,d X, X,

du,, (x1/2 )

Sz(j d(xoaxl/z)zdn'i?xm +I d(xl,aaxl)zdﬂ':/z)x j
o X xX 2 U2 X

=2(W, (st ) + W (11011 )' | = W (1t0514)' (22)

< ,[xXxsz(d(xo’xl/z )2 Jraf(xm,x1 )2)

This » is an optimal transference plan and we must have equality every
where in (21). Let

1
B ={(x0,x1/2=x1)€ X x X xX id(xy,%,,)=dx,,,x, =Ed(xo,x1)}; (23)

Then M" is supported on B". For 1e{0,1/2}, define e,:BY 5> X by
et (xoaxl/z,xl) th. Thel’l (et)* M(l) :‘L[t

We can repeat the same procedure using a decomposition of the interval
[0,1] into 2'subintervals. For any ;> 7 define .

B :(xo,x;i,xz’zl,...,xH,xl)eXZi+1 (24)

d(xo,xz,,.)zd,(xz,,. ’szz"')z"'zd(x,,{" ,x1)=2'id(x0,x1)

For 0<j<2'-1 choose an optimal transference plan n({ 2) from u}; to

X
()27

H ., -Then as before we obtain a probability measure M © on BY by

S )...dﬁ(l_zii) (xl_z,,. ,xl)
du,., (xz,,. )...dul_z,i (xl_z,,)

0 dr” (xo,xz,, )dﬂ'(f) (x X

EREE R

(25)

X =

The formula
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dr. =\ m" (26)

Xp »X; i
0 %1 XZ_] Xo ,xzii,m,xl

Defines a transference plan from p, to g,. For t=;27,0<;<2" define
e,:B” 5 X by e, (Xgs-s Xy, X, ) = x, 5then (e,), MY =y

Let S be in the proof of Proposition (4.1.6): Given (x,,...x )€ B"” define a
map p, . . :[01]>X , as the concatenation of the paths

.

S(xo,xz,l ), S(xz,, 2 X ),..., and

S(xH,,,xl) . As p, . is normalized continuous curve from x, to x,

length d(x,,x )it is a geodesies. For each the linear function L on C(T)
given by

F- E F(px()’___,xl )dM)El) (27)

Define a probability measure R on the compact space T'. Let R” be the

limit of a weak -* convergent subsequence of {R(")} ﬂit is also a probability

i

measure on I'.

For any te%ﬂ[o,l] and fec(X) we have '[k (e,)JdR (i) :'[deut for large
I. Then .[k (e,).fdR"™) = .[X fdu, forall fec(X),or equivalently ,(e,), R = ut.

But as in the proof of Lemma (4.1.5) (¢,), R is weak-* continuous in t. It
follows that (e,), R = for all 7€[0,1]

We discuss the case when Xis a smooth compact connected Riemannian
manifold M with Riemannian metric g.( The results are also valid if. G is

only C* smooth). Given u,,u, €P, (M) which are absolutely continuous with
respect to dvol,, it is known that there is a unique Wasserstein geodesies c¢
joining g, toy, [242]. Furthermore; for each r€[0,¢],c(¢) is absolutely
continuous with respect to dvol,, [31]. Thus it makes sense to talk about the
length space P,“(M) of Borel probability measures on A that are

absolutely continuous with respect to the Riemannian density equipped with
the metricw, . It is a dense totally convex subset of P,(M). Note that if M is

other than a point a dense totally, then P,“ (2 )is an incomplete metric space
and it is neither open nor closed in P, (.X').An optimal transfer-ence plan in
P,“(M) turn out to be monge transport that is c(¢)=(F), u, for a family of
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Monge transport {F, of M. For each

f}te[o,l]
meM,F, (m )= exp,, (—tV¢(m ))

[31]. This function ¢ just as any ¢’ _concave function on a compact
2

Riemannian manifold, is Lipschitz [242] and has Hessian every where [31].

If we only want the Wasserstein geodesies to be defined for an interval
2

[0, r’lj then we can use the same formula with ¢being rd?-concave.

All of our results will involve a distinguished reference measure, which is
not a prioric canonically given. So by “’measured length space ** we will
mean a triple (X,d,V), where (X.d)is a compact length space and Vis a

Borel probability measure on X . These assumptions automatically imply
that V is a regular measure we write.

P, (X,V):{ueP2 (X):supp(u)csupp(V)} (28)

We note by P,“(X,V) the elements of P,(X,V)that are absolutely
continuous with respectto V .

Definition (4.1.11) [121]: Let U be a continuous convex function on [0,0]
with  U(0)=0. Given p,VeP,(X), we define the functional
Uy :P,(X)—>RU{x} by
Uy ()= | U(p (X)) aV(x)+U" (=) (). (29)
Where
w=pV+u, (30)

is the Llebesgue decomposition of z with respect to V into an absolutely
continuous part pV and a singular part u ,we have the

IXU(p(x)) dv(x)= UU

X

p(x)dV(x)). 31)
Lemma (4.1.12) [121]: U, (u)>U,(V)=U(1).
Proof: as Uis convex for anya (0.1) we have

U(ar+1-a)<aU(r)+(1-a)U(1) (32)
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U(r)-uU(1)= |:U((ZI"+1—(Z)—U(1):| (33)

Then

.[Xu(p)dv-u(l)z'[XU("‘p ;;‘_"‘03“](1)

(p-1)av (34)
Where we take the integrand f* the right-hand-side to vanish at pointsx € X

where p(x)=1. We break up the right-side of (34) according to whether
p(x)<1 or p(x)>1from monotone convergence for p>1 we have

ap+1 a)-U(1)

hmJ- (p=1)1,,dV= U(l)L(P—l)lpqu

a—0" p—a

While forp>1 we have

lim [ D0 o1y av - ), (-1, (35)
jxu<p>dv—v<l>zvz<l> [ (p-naveui-v )| (pe-)1.av  (36)
As U,(V)=U(1) the Lemma follows. O

Definition (4.1.13) [121]: Given a compact measured length space (X,d,V)

and a number A e R , we say that U, is.

(1) A-displacement convex if for all Wasserstein geodesies {”r};e[m] with

Ho, ty €P,(X,V), we have

Uv(ut)StUV(ul)+(1—t)UV(uo)—%lt(l—t)wz(uo,ul)z 37)
for all +€[0,1]

(iiyweakly A-displacement convex if for all g,z €P,(X,V), there is some
Wasserstein geodesies from u, to u, along which (37) is satisfied

weakly A —a.c . displacement convex if the condition is satisfied when we
just assume that g, 1, € P, (X,V).
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If U,is A-displacement convex and suppU = X, then the nctions — Uy (u,) is
A-convex on [0,1],i.e. forall 0<s<s'<1 and ¢€[0,1].

1 :
Uy (#0000 ) S0 (1) + (1= 1)U ( )= 2 (1=0)(s" =) W, (. 4 y (38)
This is not a priori the case if we only assume that U, is weakly %
displacement convex .

A-displacement convex = weakly A-displacement convex
U U (39)

A-a.cdisplacement convex = weakly A-a.c displacement convex
The next proposition reverse the right vertical implication in (39)

Proposition (4.1.15) [121]: Let U be a continuous convex function on
[0,00] with U(0)=0. Let (.X,d,V) be compact measured length

space. Then U, is weakly

A-displacement convex, if and only if it is weakly 1-a.c.displacement
convex.

Proof : We must show that if U, is weakly

A—a.c displacement convex, then it is weakly A-displacement convex, that is
for p,, 1 €P,(X,V), we must show that there is some Wasserstein geodesies

{ ”r}te[o,l] from u,to u, along which

Us (1) < 1U (1) + (1=0)Us ()= 20 (1=0) W (s 1) (40)

We may assume that U, (y,)<o and U,(y)<o as otherwise (38) is
trivially true for any Wasserstein geodesies from u, to g, . There are

sequences {u,,} and {g,} ~in P(X,V) ( in fact with continuous

densities  so that lim gy o = g, lim gy =gy, limy U (,uk o ) =U,(4,)and
lim,_,, Uy (:uk,l) =Uy (/11 )

Let ¢, =[0,1]]>P,(X) be a minimal geodesies from 4, ,, to g, such that for
all e [0,1].

UV(Ck (l())S th(ﬂk,1)+(1_t)Uv(ﬂk,o)_%lt(l_t)wz (uk,oﬂuk,l )2 (41)
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After taking a subsequence, we may assume that the geodesies {C,}
converge uniformly (i.e.inC([O,l],Pz(X )))to geodesies ¢:[0,1]—P,(X)from
u,to . [29]. The lower semi-continuity of U,, implies that

U, (c(t)) <liminf,_ U, (ck (t))

The proposition follows. In fact the proof of Proposition (4.1.15): gives the
following slightly stronger result.

Lemma (4.1.16) [121]: Let Ube a continuous convex function on (0,x)
with U, =0. Let (X,d,V) be a compact measured length space. Suppose that
for all g, eP,“(X,V), with continuous densities, there is some
Wasserstein geodesies from u, to p, along with (22) is so satisfied. Then
U, is weakly 1-displacement convex. The next lemma gives sufficient

conditions for the horizontal implications in (39) to be reversed . We recall
the definition of total convexity.

Lemma (4.1.17) [121]: (i) Suppose that X has the property that for each
minimizing geodesies C=[0,1]—>P,(X), where is some &, >0 so that
minimizing geodesies between C(¢r) and C(¢) is unique whenever

|y—t|<Sc. Suppose that supp(V)=X. If U, 1is weakly A-displacement
convex.

(ii) Suppose that P,” (X",V), is totally convex in P, (.X'). Suppose that X has
properly that for each minimizing geodesies C:[0,1]—>P,“(X,V), there is
some &, >0so that the minimizing geodesies between c¢(r) and c(¢) is
unique whenever [r—¢|<3,, Suppose thatsupp (V)=X. If U, is weakly A-
displacement convex, then it is 1—a.cdisplacement convex,

The following functional will play an important role.

Definition (4.1.18) [121]: Put

Nr(l—r"l/N) if [<N<ow

UN(}/)Z{ (42)

rlogr if N=oo

Definition (4.1.19) [121]: Let H,,:p,(X)—[0,0] be the functional
associated to U, via definition (4.1.11)]: More explicitly.

-For N e (l,oo)

61



HN,V _ N—Nj pl—l/NdV (43)
X

Where pV is the absolutely continuous part in the Lebesgue
decomposition of u with respectto V.

-For N =wthe functional H,, is defined as follows : If u is absolutely
continuous with respect to V with u=pV then

stv(y)zj‘plog pdV (44)

While if p is not absolutely continuous with respect toV then H, (u)=.
To verify that H, is indeed the functional associated to U, we note that
Uy(o)=N

And write.

Nj ”N dV+Nu Nj ”N dV+N(1— j pdV)
X

=N—NJ‘ pNav. . (45)
X

Of course the deference of treatment of the singular part of V according to
whether N is finite or not reflects the fact that U, grows at most linearly

when N <o but super linearly when N=oo,ensures that H,, is lower

semicontinuous on P, (X).

Definition (4.1.20) [121]: Let (X.d,V)be a compact measured length
space. Let U be a continuous convex function on [0,:0] with U(0) =0 which
is C? regular on [0,0]. Given peP,“(X,V) with p=du/dV a positive
Lipsehitz function on X, define the generalized Fisher information 7, by .

U(u)=LU"(P)2\V'/D\2du IPU" V' [vp| av. (46)

The following estimated generalize the ones that underline the HWI
inequalities in [69].

Proposition (4.1.21) [121]: Let (X,d,V)be a compact measured length

space. Convex function Let U be a continuous convex function on [0,]
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with U(0)=0.Given peP,(X,V). Let {4}, ~be a Wasserstein geodesies
from u,=uto y =V.Given 1eR, suppose that (35) is satisfied. Then

%Wz(u,V)z <U, (p)-Uy (V). 47)

Now suppose in addition that Uis C’regular on(0,») and that
peP,“(X,V) issuchthat p= Z—é is a positive Lipsechitz function on X .

Suppose that U, (u)<w and w eP,“(X,U,), for allz€[0,1].Then

A 2
Uy (1) =Uy (V)= Wy (V)L (1) =S (1) (43)
Proof: consider the functiong(r)=U,(x,). Then ¢(0)=U,(x) and
¢(1)=U, (V). By assumption,

¢(t)§t¢(1)+(1—t)¢(0)—%lt(l—t)W2(u,V)2 (49)

If $(0) (1) < LW, (1, V)" then ¢(t)—¢(1)S(l—t)(¢(0)—¢(1)—%lwz(u,V)zj,

we conclude that ¢(z)—¢(1) is negative for t close to 1, which contradicts

Lemma (4.1.12): This ¢(0)-¢(1)= %/IW2 (u,V), which proves (46).

To prove (47) put p, =%, then ¢(t)=J.XU(pt)dV. From (48)for >0 we
v

have

$(0)-9(1) <=2 20 (1-0) W, (1) (50)

To prove the inequality (48), it suffices to prove that

liminf[—MJSWZ(y,V) 1o (0) 51)

t—>0 t

The convexity of U implies that

U(pt)_U(pO)ZU'(pO)(pt_p()) (52)

Integrating with respect to V and dividing byt <0, we infer
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1

[00)-0(0)]=; [ V(s (3)) [, () ()] (53)

By Proposition (4.1.10): x4 =(¢,),I1 where IT is a certain probability
measure on the space I' of minimal geodesies in X In particular,

[ va ) (x)=du(x)] == [ [U(po (7 (1) -V (2 (@) Jani() (54)

Since U'is non-decreasing andd(y(0),7(1))=d(y(0),r(¢)),we have
W (e O) -V e (@) <= [0 Uy (r(0))-U ey ((0))ami(r),

1 Ul O)- a0 [ 0)-p ()]
g P (7 (1), (7(0) ) wO:r(0)dnly) (53)

Where strictly speaking we define the integrand of the last term to be
zero when

po(7(1))=p0(7(0))

Applying the Cauchy-Schwarz inequality, we can bound the last term above

U (7(0))-U(((0)] [po<
\/j (2 (r(0)-p,(7(0)] \/ I d(y 7)(56)

The second square root is Justh(uo, M)- To conclude the argument, it

suffices to show that

2

S [0 (2o (7(0)=U" (2 (7 ()| [0 (7 ()= ( (0)) ]
S Lo ()= (7 (0) ] d (7(0),7(0))

dT1(y) <1y (1) (57)

The continuity of p, implies that lim,_, p,(7(¢))=p,(7(0)).So

e @)-vler@)] 2 (58)
lim], [/oo(y(t))—/oo(y(O))}2 V(b))

On the other hand , the definition of the gradient implies

lim sup

t—0

J.r[ Z}(/I) P(j/)(;)z))] ‘V'p‘z(;/(o)). (59)
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As p is a positive Lipschitz function onX and U'is also C'-regular on

[0 )0 e r O]
d(r(0)-(r(0)

uniformly bounded on I', with respect to ¢, and dominated convergence
implies that

fim inf [U'(Po(ﬂf)))‘U'(Po(y(o)))}z [ (7(£)) =20 (7 (0))]
e o (r ()= (7 (0)] d(7(0).7 (1))
Ser"(Po(7(0)))2\V'Po\z(7(0))dH(7)=IXU"(Po(X))Z\V'Po\z(X)du(X)- (60)

This concludes the proof of the inequality on the right-hand side of (49).

(0,0),U;p, is also Lipschitz on X. Then

—dr(y)<1,(n)

Particular case (4.1.22) [121]: Taking U=U, with u=pv and
p € Lip(X)appositive function define

2
1V IVp
(N ljj‘ 2‘dv if [<N<ow
N X —+1
pV

IN,V(IIJ): 5 (61)
v-
I ﬁd\/ ip N =00
x p
Proposition (4.1.23) [121]: implies the following inequalities :
-If >0 then
A 2 A 2 1
sz (u:V) SHN,V(/J)Ssz(/lav) IN,V(/J)_EWZ (uaV) Sﬁlzv,v(;u) (62)
-If A<0
H, (1) < diam(X) IN!,(y)—gdiam(X)z (63)

Corollary (4.1.24) [121]: If a sequence of compact metric spaces {(X,.d, )}i1

converges (X,d)then {Pz()(,.)}i1 converges in the Gromov-Hausdorff
topology to P, (X)

Proposition (4.1.25) [121]: If f:(X,.d,)—>(X,.d,) is an &-Gromov-
Hausdorff approximation then f.:P, »>P,(X,) is an &- Gromov-Hausdorff
approximation where
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£=4z+ 3¢ (2diam(X,)+3¢) (64)

Proof: Given u,u €P,(X,), let 7, be an optimal transference plan for

and g/but 7, =(fxf), 7. Then r, is a transference plan for fu and f.u
we have

W, (ﬁﬂ1aﬁﬂ{)3jx d, (xzayz)z drm, (xzﬂyz)

%X,

[ ) () 65)

As

2

d, (f(x1)af(y1))2 —d, ('xl’yl)

=[df (5)./ () =d (5, ) (S (), f () + 4, () (66)
We have
s (£ (), £ (0)) = dy (50| < & (2diam (X, )+ 2) (67)
If follows that
W, (Lot fo)) < W, (p. 1))+ (2diam (X,)+¢) (68)
and
W, (ot o) < W, (1, p1]) +e& (2diam(X,) +¢) (69)

If follows from this last inequality that

W, (f*;unf*:u{)z W, (;un tu{)"' \/8 (diam (Xz ))+ € (70)

We now exchange the roles of X, and X,. We corresponding apply (68)
instead of (69) to the map f’and the measures f,u,and f.u and use the fact
f'isa

&- Gromov-Hausdorff approximation, to obtain

WL (for ), £ (fort)) S W, (ﬁupﬁu{)+\/38(2diam(X2)+3g) (71)
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Since f'o f is an admissible Monge transport between g, and (f'e f), i or
between yjand (/o f), s, which moves points by a distance at most 2¢ we

have

W, (70 f ).ttt ) <28, W (70 f). 1, 1) <26 (72)
This by (70) and the triangle inequality,
W, (1) S W, (fottys fobt]) + 4 + 32 (2diam (X, ) + 3¢ ) (73)

Equation (70) and (73) show that condition (i) of Definition (4.1.1):is
satisfied .

Finally, given u, €P,(X,)consider the Monge transport fof’ from u, to
(fof"),1,. Then Wz(uz,f*(ﬂuz))ég. Thus condition (ii) of Definition
(4.1.1): 1s satisfied as well. 0
Theorem (4.1.26) [121]: Let {X,.d,V}

(Xi,di,\;.):(X,d,Voo)in the measure

be a sequence of compact
measure spaces so that llml. 300
Gromov-Hausderff topology . Let Ube a continuous convex function on
[0,00) withU(0)=0. Given AeR, suppose that for all ;,U, is weakly A-

displacement convex for {X,,d,,V/}. Then Uy, is weakly

A-displacement convex for (X,d, V).

Proof : By Lemma (4.1.16): it surfaces to show that for any u,,u €P,(X)
with continuous densities with respect to V, there is a Wasserstein geodesies
joining them along which inequality (37) holds for Vv, we may assume that
Uy (u4,)<ooand U, (u,) <o as otherwise any Wasserstein geodesies works.
Write u,=p,V, and y =pV, . Let fl :X; =X be an ¢-approximation,
with lim,_y,&;=0 and lim; | (fc)« V.=V, if Lis sufficiently large then
. (fi*po)\{
[ pd(f)NV>0 and fy,pd(f;),V>0 for such i, put y,=-————— and
[ pd(£)N
(ﬁ*pl)\{

Py =

[ patrv

Then
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_ LV and(f")*y,.!; A(f)Y .
pd(1).Y [ patn).y

Now choose geodesies c,:[0.1]—->P,(X,) with ¢;(0)=x, and ¢, (1)=x, so
that for all ¢<[0,1], we have

Uy (G (1)) £ 1Uy (111)+ (1)U (120) = A2 (1) Wa (1, ) (74)

From Lemma (4.1.4): and Corollary (4.1.24): after passing to a subsequence,
the maps (f,).oc, :[0,1]—> p,(X) converge uniformly to a continuous map

c:[0,1]>P,(X).  As  W,(c,(t).c,(¢'))=|t=#|W,(p0.11,), it follows that
W, (c(t),c(t")) =]t =W, (s, 11, ). Thus C is a Wasserstein geodesic. The problem

is to pass to the limit in (73) as i > .

Given F ec(x), the fact that p, ec(x) implies that

=j Fp,dV. . (75)

i—o Jy * i—0

. . v
lim | Fd(f) p, = hmJ.XFpOW
Poa\ J;

Thus lim(f)), g, = posimilarly , lim(f), y,, =p,. It follows from Corollary
(4.1.24): that

lim W, (p1,00 2,4) = W, (1, 14) (76)
Next
fip P
0)= i Fo dv = 0 d(f).V. 77
Uy (:0) I&U[podu)*v,} K LU{jXpodm*v,} LY 77
As
imU| —2—— |=U(p,) (78)

o ey

Thus lim(f), , =, -Similarly lim(f,), g, = u,. It follows from Corollary
(4.1.24): that

}i_g_}wz (0> V) =Wy (1, 1) (79)

68



Uniformly on X ,it follows that

. P
lim| U| ———2——|d(/, —hmI U(p,)d jU (p,)dV, . (80)
o (jxpod(f,)*v,} -
Thus lim,,, U, (Hi,o):va () .Similarly  lim,_,, U, (Hi,o):va (). It follows
that

Uiy (£).C(0) <, (e (). (81)

Then for any 7€[0,1], we can combine this with the lower semicontinuity of
(1, V)—>U, (1) to obtain

th( (¢ ))<11rn1nfU ((f,)c,( ))<hmme ( ()) (82)

11— 1—>0

Combining this with (76) and the preceding results, we can take i —» o in
(74) and find

U, (e(t)=tU.. () +(1=0)U,. () =5 21 (1= W2 (st

This concludes the proof.

Definition (4.1.27)[121]: Let F be family of continuous convex functions U
on [0,c0)with U(0)=0. Given a function 1:F —RU{—o}we say a compact
measured length space (X,d,V) is weakly A-displacement convex for the
family F if for any u,,u €P,(X,V), one can find a Wasserstein geodesic
{ ‘u’}re[o,l] is supposed to work for all of the functions U eF .Hence if (X,d,V)

is weakly A-displacement convex for the family F then it is weakly A(U)-
displacement convex for each U eF , but the converse is not a priori true.

Theorem(4.1.28)[121]:  Let {(X,.d,V)} be sequence of compact
measured length spaces with lim_(X,.d,V)=(X,d,V,) in the measured

Gromov-Hausdorff topology. Let F be a family of continuous convex
functions U on [0,0)with U(0)=0. Given a function A:F —RU{—0}

,suppose that each (X,,d,,V)is weakly 1-displacement convex for the family
F .Then (X.d,V,) is weakly A-displacement convex for the family F .

Proposition (4.1.29)[121]: Let be a family of continuous convex functions
U on [0,0) withU(0)=0. Given a function A:F —RU{-0},(X,d,V) is
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weakly A-displacement convex for the family F if and only if it is weakly
A-a-c-displacement convex for the familyF .

Section (4.2): Ricci Curvature for Measured Length Spaces And
Riemannian Manifolds

This section deals with N -Ricci curvature and its basic properties.
We first define certain classes DC, of convex functions U . We use these to

define the notions of a measured length space (X,d,V) having nonnegative

N -Ricci curvature, or « -Ricci curvature bounded below by KeRin
[234].Consider a continuous convex function U :[0,00) - R with U(0)=0.We

define the nonnegative function.
p(r)=rUi(r)=U(r), (83)

with p(0)=0. If one thinks of U as defining an internal energy for a
continuous (0,») then p can be thought of as a pressure. By analogy, if U
is C*-regular on (0,0) then we define the "iterated pressure"

p.(r)=m'(r)=p(r). (84)

Definition (4.2.1)[121]: For N e[l,«), we define DC,to be the set of all
continuous convex functions U on [0,1), with U(0)=0, such that the
function

$(2)=2"U(27) (85)

is convex on (0,0) .We further define DC, to be the set of all continuous
convex functions U on [0,1) , withU (0) = 0such that the function

¢(l)=e’1U(e%) (85)
is convex on (—o0,).
We note that the convexity of U implies that ¢ is non-increasing in A, as

Ule)

[0

DG, .

_is non-decreasing in xblow are some useful facts about the classes
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Lemma (4.2.2) [121]: If N<N' thenDC,, c DC, .

Lemma (4.2.3) [121]: ForN e[l,],

(a) IfU is a continuous convex function on [0,00) with U(0)=0 then U e DC,

L

if and only if the function » — p(r)/r * if is non-decreasing on (0,)

(b) If U is a continuous convex function on[0,0) that is C*-regular on (0,)
, with U(0)=0, thenU e DC, if and only if p, 2_%.

Proof |274]:(a) Suppose first that U is a continuous convex function on
[0,00) and N €[1,).

—1 -1

Putting,y (1) =AU (1) r =AY and A = r" therefore y(r¥)=r"U(r).By

Differentiating we get that
A - > 1.
v_(rV ).(VI’N )=r"U (r)-t-U(r) =;(rU )-U(r)).
So that

(U (r)=U(r)

, -N 1 \ -N
v (A)=——0U (r)-U(r)=—
—1 r -
rN r v
1
v (A)=-Np(r)/r ¥ (87)
Then w 1is convex if and only if ' is non-decreasing, which is the case if

1
and only if the function r p(r)/ » ¥ is non-decreasing (since the map
A — 17" is non-increasing).
(b) Suppose that U is C,-regular on (0,0).We  get
1
W

N 1
v (r )'(Vr )=-N

1-
r

OU ) +U ()= @)= (=0 U () -U ()

and
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1
2 (I-—) 2
v =" U O-—A U ) -u ey | =
v N ry
r

20 (1) r(r)
(rU(r) p(r)+ N j

},.N

2,
" (A)= NN [pz(m%} (88)
Then ¢ is convex if and only if yw">0, which is the case if and only if
p
>
Py = N

The proof in the case N =oo is similar.

Lemma (4.2.4)[121]: Given UeDC,, either U 1is linear or there exist
a,b>0 such that

U(r) >arlogr—br
Proof: The function U can be reconstructed from ¢ by the formula
U(x)=x¢(log(l/x)). (89)

As ¢ is convex and non-increasing, either ¢ is constant or there are
constants a,b>0 such that ¢(1)>—-aA—b for all 2eR. In the first case, U is
linear. In the second case, we have U(x)>-axlog(1/x)—bx, as required.

We recall from Definition (4.1.27): the notion of a compact measured
length space (.X,d,V) being weakly A-displacement convex for a family of

convex functionsF .

Definition (4.2.5)[121]: Given N €[l,|, we say that a compact measured
length space (X,d,V) has nonnegative N -Ricci curvature if it is weakly
displacement convex for the family DC,,.

By Lemma (4.2.2): if N<N' and X has nonnegative N -Ricci curvature

then it has non-negative N’'- Ricci curvature. In the case N=w, we can
define a more precise notion.
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Definition (4.2.6)[121]: Given K R, define 1:DC, »RU{—»} by

Klim?() if K>0,

r—0" 7

A(U):ianﬂz 0 if K=0, (90)

>0 7

KnmM if K <0,

r—0 v

where p is given by (1). We say that a compact measured length space
(X.,d,V) has «-Ricci curvature bounded below by K if it is weakly A-

displacement convex for the family DC,

If K<K' and (X,d,V) has «--Ricci curvature bounded below by K’ then it
has

o — Ricci curvature bounded below by K .

The next proposition shows that our definitions localize on totally convex
subsets.

Proposition (4.2.7)[121]: Suppose that a closed set 4c X is totally
convex. Given VeP,(X)with V(4)>0,, put v’ =;V\A eP,(4)..

V(4)

(a) If (X,d,V) has nonnegative N -Ricci curvature then (4,4,V’) has
nonnegative

N -Ricci curvature.

(b) If (X.d,V) has « -Ricci curvature bounded below by K then (4,d,V')
has «» -Ricci curvature bounded below by K.

Proof: By Proposition (4.1.10) P,(4) is a totally convex subset of P,(.X).
Given pueP,(4)cP,(X), let u=pV+p, be its Lebesgue decomposition with
respect to V. Then u=p'V'+u, is the Lebesgue decomposition of u with
respect to V', where p'=V'(4)p|,. Given a continuous convex function
U :[0,0) > Rwith U(0)=0, define

U(r)=——+—">. 91)

Then U'(w)=U'(w)and U e DC, if and only if U e DG, .Now
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U, ()= U(p WV +U" (=), (4)

=J‘XU(p)deLU’(oo)ys(X)zUv(u). (92)
As P,(4,V')=P,(X,V), part (a)follows.

Letting p denote the pressure of U one fine that

p(r) _ P(V(4)7)
pr - V(A)r ' ©3)

Then with reference to Definition (4.2.6) 4(U)=4(U). Part (b) follows.
We considered the following result.

Theorem (4.2.8)[121]: Let {(X,.d.V)|  be a sequence of compact
measured length spaces with lim, , (X,.d,V)=(X,d,V) in the measured
Gromov-Hausdorff topology.

If each(X,,d,,V) has nonnegative N -Ricci curvature then (X,d,V) has
nonnegative N -Ricci curvature. If each (X,.d,,V) has o -Ricci curvature
bounded below by K, for some K eR, then (X,d,V) has e« -Ricci curvature
bounded below by K.

We first show that a weak displacement convexity assumption implies that
the measure V either is a delta function or is nonatomic.

Proposition (4.2.9)[121]: Let (X.,d,V) be a compact measured length
space. For all Ne(l,«],if H,, i1s weakly A-displacement convex then V

either is a delta function or is nonatomic.

Proof: We will assume that V({x})e(0,1) for some xeX and derive a

contradiction.

V-V({x})s,

1=V({x})

Suppose first that Ne(l,0). Put y =6 and g = .By the

hypothesis
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and Proposition (4.1.10): there is a displacement interpolation {“t}te[o 1

from y,to y, along which

Uv(ut)StUV(ul)+(1—t)UV(uo)—%lt(l—t)wz(uo,ul)z Satisfied withu, =, ,..

Now
Hyy(#)=N-N(V({x}))" and#,, (u)=N-N(1-V({x}))" . Hence

|
! A=W, (). (94)

Hyy (1) <N-(1-0)N(V({a})) " =V (1-V({x}))

Put D=diam(X).. As we have a displacement interpolation, it follows that if

t>0 then supp(u)<B,(x) and g ({x})=0. Letting u =pv+(y,) be the

Lebesgue decomposition ofyu, with respect to V, Holder's inequality
implies that

L L
.f P ='f p, MdV
X B/D(x)fix}

s[ L/D(x)_{x} p,de ' V(B (¥)={x})" <V(B, (x)-{x})" (95)
Then

H (1) N =N (V(B, () - V(i) (96)
As limHM(BtD (x)):V({x}), we obtain a contradiction with (94) when t is
small.

1 1

IfN:oothenHw,V(uo):logV({x}) and Hw,v(/,tl):logT({x}). Hence
Hw,v(u[)S(l—t)log@ﬂlogﬁl({x})—%lt(l—t)W2(uo,/,tl)z. 97)

In particular, p, is absolutely continuous with respect to V. Write y, =p,V..
Jensen's

inequality implies that for >0,
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Ji PG

O 1 ’ 98
( ,D(x) {x})l g[\/(BtD(x) {x})\] ( )
Then

H = =
o (H) L plog(p,)dv jf%(x)_{x} p,log(p,)dV

> 1o ! . 99
| g{v(e,[,(x){x})} >

As lim, . (B,D (x)) = V({x}), we obtain a contradiction with (97) when t is small.

We now prove a Bishop-Gromov-type inequality.

Proposition (4.2.10)[121]: Let(X ,d,V) be a compact measured length
space. Assume that 7, , is weakly displacement convex on P,(.X),for some
N &(1,0). Then for all xesupp(V)and all 0<r, <r,

v(B, (x))g[r_sz V(B, (x)). (100)

By the hypothesis and Proposition (4.1.10): there is a displacement
interpolation {u,} (0.1 from Uy to i, along which

Uv(ut)StUV(u1)+(1—I)UV(uo)—%lt(l—t)wz(uo,,ul)z is satisfied with U, =H |

and1=0.. Now H, (u)=Nand H, ,(u)= N—N(V(Brz (x)))m .. Hence
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/N

Hyy (1) <N=tN(V(B, (x))) . (101)

Let u,=pV+(u,) be the Lebesgue decomposition of p, with respect to V.

As we have a displacement interpolation, p, vanishes outside ofB,, (x).

Then from Holder's inequality,

Hyy(1)2N-N(V(B, (x)) . (102)

4!

The theorem follow by taking r = -,
}"2

Theorem (4.2.11)[121]: If a compact measured length space (X,d,V) has

nonnegative N —Ricci curvature for some N e[l,0) then for all xesupp(V)

and all 0<7 <n,,

V(B, (x))< (QJN V(B, (x)). (103)

Corollary (4.2.12) [121]: Given N €[l,0) and D>0, the space of compact
measured length spaces (X,d,V) with nonnegative N -Ricci curvature,
diam(X,d)<D and supp(V)=X is sequentially compact in the measured
Gromov-Hausdorff topology.

Proof: Let {(X,.,a’,.,\{)}:}i1 be a sequence of such spaces. Using the Bishop-

Gromov inequality oif Theorem (4.2.11): along with the fact that
supp(V)=X,, it follows as in [166] that after passing to a subsequence we

may assume that {(X,.,a’,.)}l_i1 converges in the Gromov-Hausdorff topology
to a compact length space(X.d), necessarily with diam(X,d)<D. Let

g, =0.. From the

i—w i

f,:X, > X be Borel ¢, -approximations, with lim
compactness of P,(X),, after passing to a subsequence we may assume that
lim,,,(f;).V=V. for some VeP,(X). From Theorem (4.2.8): (X,d,V) has
nonnegative N -Ricci curvature.

It remains to show that supp(V)=X. Given xe X, the measured Gromov
Hausdorff convergence of ()(wdw\{'); to(X,d,V) implies that there is a

sequence of points x, € X, with lim,_, f;(x,)=x so that for all # >0 and
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£€(0,7), we  have limsup, \{(Br_g (xl.)) < V(B,, (x)).By Theorem
(4.2.11): (r-&) " V(B (x,))2daim(X,d) " ThenV(B (x))2 (WJ :

iam( X,
which proves the claim.

We show that in certain cases, lower Ricci curvature bounds are preserved
upon quotienting by a compact group action.

Lemma (4.2.13)[121]: The map p.:P,(X)—>P,(X/G) restricts to an

isometric isomorphism between the set P,(X)" of G-invariant elements in
P,(X),and P,(X/G).

Proof: Let dh be the normalized Haar measure on G. The map
p.:P,(X)>P,(X/G) restricts to an isomorphism p.:P,(X)" —>P,(X/G);
the problem is to show that it is an isometry. Let 7be a transference plan
between /i, /i, €P,(X)" Then ﬁ':jG gAdh(g) is also a transference plan

between 4, and g, with

jmczx( ) di(%.7) _[ (i, ) 4 (2.7 dh(g) = j dx(%.7) dr(%7) (104)

XxX

Thus there is a G-invariant optimal transference plan 7 between g, and g, .
As 7 =(pxp).7 is a transference plan between p.4, and p.j, with
2

dit(%,7)< J d, (% 7)d7(%,7), (105)

XxX

2
[ delnn)dnten)=]  dio(p().p()
(X/G){(X/G) XxX

it follows that the map p.:P,(X)” —P,(X/G) is metrically nonincreasing.

Conversely, let s:(X/G)x(X/G)—>XxXbe a Borel map such that
(pxp)es=1d and d,os=d,, That is, given x,yeX/G,the map s picks
points xep'(x)and jep'(y) in the corresponding orbits so that the
distance between % and 7 is minimized among all pairs of points in
p(x)xp™ (). (The existence of s follows from applying [240] to the
restriction of pxp to {(£7)eXxX:d,(%7)=dye(p(%).p(7))}. The
restriction map is a surjective Borel map with compact preimages.) Given
an optimal transference plan z between 4,1, €P,(X/G),, define a measure
7 on XxX by saying that for all FeC(XxX),
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IXXXF"” Hx v (w2)(2 &) (x,)dh(g). (106)

Then for FeC((X/G)x(X/G)),

J‘(X/G)X(X/G)Fd(p Xp)*ﬁ' - J.XXX Fd(p xp)* dr
:J‘GJ‘(X/G)X(X/G)(pxp)*F( ( y) ( ))dir(x y)dh( )
B J‘GJ‘(X/G)X(X/G)(pXp)(s(x’y)'(g’g))dn(x’y)dh(g)

= J‘(X/G)X(X/G)F (x,y)dm(x,). (107)

Thus (pxp),#=x. As 7 is G-invariant, it follows that it is a transference

plan between (p.)" (1).(p.)" (1) eP,(X)" Now

@5 aFEN=] | de(s(n)e.0) dr () dn(e)

XxX
2
_J‘(X/G)X(X/G)dxm (x,y) dir(X,y). (108)

Thus p. and ( p,f)f1 are metrically non-increasing, which shows that p.

defines an isometric isomorphism between P, (X )G and P, (X/G)..

Theorem (4.2.14)[121]: Let (X.,d,V) be a compact measured length
space. Suppose that any two . €P,“(X,V) are joined by a unique
Wasserstein geodesic, that lies inP,“(X,V). Suppose that a compact
topological group G acts continuously and isometrically on X preserving V
. Let p: X - X/Gbe the quotient map and let 4, be the quotient metric.

X/G
We have the following implications

(a) For Ne[l,»), if(X,d,V) has nonnegative N -Ricci curvature then
(X/G,d,,;,P.V) has nonnegative N - Ricci curvature.

(b) If (X.,d,V) has o -Ricci curvature bounded below by K then
(X/G,d,,;,P.V) has « - Ricci curvature bounded below by X .
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Proof :The proofs of parts a. and b. of the theorem are similar, so we will be
content with proving just part( a).First, (X/G,d,,;)is a length space. (Given

x,yeX/G,let xep'(x) and yep(y) satisty d,(%,7)=d,;(xy). Ifcisa
geodesic from x to y then poc is a geodesic from x to y.)

Given gy, €P,“(X/G,pV)write u, =p,p.V and u=p p.V.Put f, :( p*pO)V
and ﬁt:(p*pl)V.. From Lemma (4.2.13): W, (f.4)=W>(uy.1y). By
hypothesis, there is a Wasserstein geodesic { ﬂt}te[ogl]from i, to a, so that for
all UeDG,, equation U, (4)< U, (s4)+(1-0)U, (1)~ 21(1-1) Wi (tyos4)in

o]’ with 2=0. The geodesic {z,} : is G-

invariant, as otherwise by applying an appropriate element of G we would
obtain two distinct Wasserstein geodesics between g, and . Put u, = p.4,.

section is satisfied along {7 } 01

It follows from the above discussion that {z,} is a curve with length

te0,1]
W, (M. /1) , and so is a Wasserstein geodesic. As [ €P,“(X,V), we have
g, €P(X/G,pNV) Write u, = p,p.V..Then f, = (p*p,)V. As

Up,v(ut)=J‘X/GU(pt)dp*V=J‘Xp*U(pt)dV=J‘XU(p*pt)dV=UV(ﬁt). (109)

it follows that equationUV(yt)StUV(y1)+(1—t)UV(yo)—%lt(l—t)wz (4ot )’ in

section is satisfied along {z } [Ogl]withl =0.Along with proposition (4.1.15):

te|

this concludes the proof of part (a).

Lemma (4.2.15)[121]: Let {x} _, be a finite subset of P,“(X,V), with

densities p, = % . If N < then there is a function U e DC, such that

u(r)

lim =0 (110)
row  p
and
supj U(p,.(x))dV(x)<oo. (111)

Proof: As a special case of the Dunford-Pettis theorem [81], there is an
increasing function ®:(0,o0) - R such that
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o(r)

lim =0 (112)
rowo  p
and
supj @(pi(x))dV(x)<oo. (113)

We may assume that @ is identically zero on [0,1].

Consider the function ¢:(0,0) >R given by
p(A)=2"D(27). (114)

Then ¢=0 on [l,,0), andlim, . ¢(A)=co. Letd ; be the lower convex hull

of ¢; on (0,x), i.e. the supremum of the linear functions bounded above

by ¢. Then $=0 on [Leo)and ¢ is nonincreasing. We claim that

lim,  @(A)=. If not, suppose that lim _, §(2)=M<w. Let

M+1-¢(2)
l ~

enough). Then ¢(A)>M+1-al,s0 lim_  ¢(A)>M+1, which is a

contradiction.

a=sup,., <o (because this quantity is <0 when Ais small

Now set
U(r):rqz(r’w). (115)

Since ¢ <¢; and ®(r) :rqb(r’“N), we see that U <®. Hence

sup jXU(p,. (x)) dv(x)< 0. (116)

1<i<m

Since lim, . ¢(2)=cowe also know that

limM:oo. (117)

r—x0 V4

Clearly U is continuous with U(0)=0.As § is convex and nonincreasing, it
follows that U is convex. Hence U e DC,.

Theorem(4.2.16)[121]: If (X,d,V)has nonnegative N -Ricci curvature for
some N e[l.0)then P,“(X,V) is a convex subset of P,(.X)..
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Proof: Given u,,u €P,“(X,V)put p, = ddﬂo and p, =a;liBy Lemma (4.2.15)
v v

there is a UeDC,.with U'(w)=cosuch that U, (y,)<owand U, ()< .As
(X ,d ,V) has nonnegative N-Ricci curvature, there is a Wasserstein geodesic

{1, };E[o g from p, tou, so that (117) is satisfied with A=0.In particular,
U, (n,) <o forall 1€[0,1]. As U'(0) =o0,it follows that y, € P, (X, V) for each t.

We now clarify the relationship between (X,4,V) having nonnegative N -
Ricci curvature and the analogous statement for supp (V).

Theorem (4.2.17)[121]: (a) GivenN €[l,0), suppose that a compact
measured length space (.X,d,V) has nonnegative N -Ricci curvature. Then

supp(V) is a convex subset of X (although not necessarily totally convex)

and (supp(V),d

supp(v),V) has nonnegative

N -Ricci curvature. Conversely, if supp(V) is a convex subset of X and

(supp (V).d

nonnegative N - Ricci curvature.

Supp(v),V) has nonnegative N - Ricci curvature then (X ,d,V)has

(b) Given K €Rthe analogous statement holds when one replaces "nonnegative
N -Ricci curvature" by "o -Ricci curvature bounded below by K”.

Proof: (a) Let (X,d,V)be a compact measured length space with
nonnegative N -Ricci curvature. Let x4, and g be elements of P,(X,V)

There are sequences {u,,} and {,,} inP(X,V)(in fact with continuous

densities) such  that  lim_, =g lim_, u,=x and for all
UeDGC, lim,_ U, (uk,o) =U,(1,) and lim_, Uy (s, ) =U, (). From the

definition of nonnegative N -Ricci, for each k there is a Wasserstein
geodesic {u, | ’ such that

tE[O,

Uv(,uk,t)StUV(,uk,z)"‘(l_t)Uv(,uk,o) (118)

for all UeDC,and 7€[0,1] By repeating the proof of Theorem(4.2.16) each
., 1s absolutely continuous with respect to V. In particular, it is supported
in supp(V). By the same reasoning as in the proof of Proposition (4.1.15)

after passing to a subsequence we may assume that as K — o, the geodesics

{1}, oy converge uniformly to a Wasserstein geodesic {u,, | o that
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satisfies
Uy () <tUy (1) +(1-1) Uy (1) (119)

For each t€[0,1], the measure p, is the weak-+* limit of the probability

measures { uk,,}w which are all supported in the closed set supp(V). Hence

k=1

u, 1s also supported in supp(V).

To summarize, we have shown that {/lk,t} is a Wasserstein geodesic

t[0,1]

lying in P,(X,V)that satisfies (119) for all U e DC, and &[0,1]

We now check that supp(V)is convex. Let x, and x, be any two points in
supp(V).Applying the reasoning above to 4, =5, and =5, one obtains the

existence of a Wasserstein geodesic {ﬂk,t} o] joining &, to &, such that

L€

each g, is supported in supp(V).By Proposition (4.2.10) there is an optimal
dynamical transference plan ITeP (') such that u =(e ), I1 for all z[0,1].
For each 7€[0,1], we know that (¢)esupp(V) holds for IT almost all ». It
follows that for IT-almost all y we have y(¢)esupp(V), for all 7eQN[0,1].As

y el 1is continuous, this is the same as saying that forIT-almost all y,the
geodesicy is entirely contained in supp(V). Also, for IT-almost all y we

have y(0)=x, and y(1)=x.Thus x, and x, are indeed joined by a geodesic
path contained in supp(V).

This proves the direct implication in part a. The converse is immediate.

(b) The proof of part (b) follows the same lines as that of part a. We
construct the approximants {u, .} and {sx,}" , with continuous densities,

and the geodesics ”ksr}te[o,l] :
As H_, (uo,k) <o andH_, (/h,k ) <oo,, we can apply inequality (117) with U = H_
and 1=K, to deduce that Hw,v(y,,k)<oo, for all 7[0,1]. This implies that g,

is absolutely continuous with respect to V. The rest of the argument is
similar to that of part (a)

Theorem (4.2.18)[121]: Suppose that (.X,d,V)has «o-Ricci curvature
bounded below by x > 0.Then for all ueP,(X,V),,
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ng(u,v)zssz(u). (120)

If now ueP,”(X,V)and its density_ p:% is a positive Lipschitz function
on X then
K 2 1
H,y (/1) W, (u,V) v (/1) _?Wz (u,V) ﬁlw,V (/1) (121)

If on the other hand (X ,d,V) has «-Ricci curvature_bounded below by
K <0 then

H, (1)< diam(X) 1w,v(u)-§diam(x)2. (122)
If (X.d,V) hasnonnegative N -Ricci curvature then
H, , (u)<diam(X)1,, (u). (123)

We now express the conclusion of Theorem(4.2.18): in terms of more
standard inequalities, starting with the case N = .

(1) The case N =w.

Definition (4.2.19)[121]: Suppose that K > 0.

We say that Vv satisfies a log Sobolev inequality with constantK, LSI(K), if

for all ueP,“(X,V) whose density p :%is Lipschitz and positive, we have

H (1)< 5 (1), (124)

We say that v satisties a Talagmnd inequality with constant K,T(K), if for
all peP,(X,V)

W, (1, V)< L(“). (125)

We say that v satisfies a Poincare inequality with constant K,P(K), if for all
heLip(X) with [ hdV=0, we have
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L WAV < % [ [vrfav. (126)

All of these inequalities are associated with concentration of measure [20,
256, 254, 174]. For example, T(K)implies a Gaussian-type concentration of

mecasurc.

The following chain of implications, none of which is an equivalence, is
well-known in the context of smooth Riemannian manifolds:

[Ric>K]= LSI(K)=T(K)=P (K). (127)

In the context of length spaces, we see from Theorem (4.2.18) that having
w-Ricci curvature bounded below by x >0 implies LSI(K)and T(K).The

next corollary makes the statement of the log Sobolev inequality more
explicit.

Corollary (4.2.20)[121]: Suppose that (X,d,V) has oo -Ricci curvature
bounded below by K eR

If feLip(X) satisfies .[szdV:I then

Ixfz log(f?)dV <2W, (V. V) /Uvﬂz dv —ng (fzv,v)z. (128)

In particular, ifK > 0 then
I 1 1og(f2)dvsij v/ av, (129)
X K Jx

while if K < 0 then

Ileog(fz)dVSZdiam(X) /j ‘V'frdV—gdiam(X)z. (130)

2
Proof: For anys — 0, put p, = j; "¢ From Theorem (4.2.18)
+e

‘v_f‘z K 2
nglog(pg)dVﬁwz(pg,V,V) J-—dV—?Wz(pg,V,V) (131)
x ¥ op,

As

85



2

Voo 1 o4 e
- \Y 132
P, 1+gf2+e‘ 71 (132)
the corollary follows by taking.s — 0.

We now recall standard fact that LSI(K) implies P (K).

Theorem(4.2.21)[121]: Let (X,d,V) be a compact measured length space
satisfying LSI(K) for some X > 0. Then it also satisfies P (K).

Proof: Suppose _that heLip(X) satisfies .[X hdv=0.. For ¢ ¢ [O,W) _put

f.=N1+eh>0. As 2.V f, =&V h,it follows
that

lim (%J‘ A 2dvj:lj VoA av. (133)
eow'\ g7 Jx 4 Jx

. . 1 .
As the Taylor expansion of xlog(x)-x+1 around x=1is E(x_1)2+""1t

follows that

nmi2 2 log( ff)dvzlj RdV. (134)
X 2Jx

&£ —ox' g
Then the conclusion follows from (129).

As mentioned above, in the case of smooth Riemannian manifolds there are
stronger implications: T(K) implies P (K), and LSI(K)implies 7(K). We
will show elsewhere that the former is always true, while the latter is true
under the additional assumption of a lower bound the Alexandrov curvature:

Theorem(4.2.22)[121]: Let (X,d,V) be a compact measured length space.
(i) If v satisfies T(K) for some K > 0, then it also satisfies P (X).

(i) Ifx is a finite-dimensional Alexandrov space with Alexandrov
curvature bounded below, and satisfies LSI(K)for some K >0, then it also

satisfies T(K)

N -Ricci curvature, with N <, then it admits a local Poincare inequality, at
least if one assumes almost-everywhere uniqueness of geodesics. We will
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discuss this in detail elsewhere.

The case N <. We now write an analog of Corollary(4.2.20) in the case
N <. Suppose that (X,d,V) has nonnegative N -Ricci curvature. Then if

p 1s a positive Lipschitz function on X, (123) says that

(135)

N-2

If ~N>2 putf=p?¥ Then .[Xfﬁdvzland one finds that (135) is

equivalent to

W 2(N-1) T
I—J‘Xp( )dvsﬁcﬁam(){) J‘X‘V f‘ dVv. (136)

As in the proof of Corollary (4.2.20) equation (136) holds for all f e Lip(.X)
2N

satisfying I £V 2dv=1.From HOlder's inequality
X

[ (L) (L] () o

Then (136) implies

1< %dmm(){) /IX\V'f\Z av +(L desz”. (138)

Writing (138) in a homogeneous form, one sees that its content is as
follows: for a function F on X, bounds on ||V‘F||2 and |F|, imply a bound

on |F|.x . This is of course an instance of Sobolev embedding
N-2

If N=2, putting f = log{lj , one finds that le'de=1
o

- [ e 2av < Laan(x) [ v av (139)

The classical Bonnet-Myers theorem says that if M is a smooth connected
complete
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N -dimensional ~ Riemannian  manifold with  Ric, 2K, >0, then
N -1

diam(M )< 7, |[——.
1am( ) T X

Theorem(4.2.23)[121]: There is a constant C >0 with the following
property. Let (X,d,V) be a compact measured length space with

nonnegative N -Ricci curvature, and «-Ricci curvature bounded below
by K >0. Suppose that supp(V)=X. Then

diam(X)SC\/%. (140)
Proof: From Theorem (4.2.11) v satisfies the growth estimate

<a™, 0<a<l. (141)

From Theorem (4.2.18), v satisfies 7(K). The result follows by repeating
verbatim the proof of Theorem(2.1.26): with R=0, n=N and p=K.[

Let (M, g) be a smooth compact connected n-dimensional Riemannian
manifold. Let Ric denote its Ricci tensor.

Given ¢ € C*(M)with .[M e’dovl,, =1,put dV =e’dovl,,.
Definition (4.2.24)[121]: For N €[1,],, the N -Ricci tensor of (M,g,V)is

Ric+Hess(¢) if N=oo,

Ric, = Ric+Hess(¢)—ﬁdw®d¢ if n<N <o, (142)
Ric+ Hess(¢)—oo(dy ®d¢)  if N =n,

—00 if N<n,

where by convention «.0=0.

The expression for Ric,is the Bakry-Emery tensor [27]. The expression for
Ric, with N <n <« was considered in [119, 273]. The statement Ric, > Kg 1s
equivalent to the statement that the operator L=A—-(V¢).V satisfies Bakry's
curvature-dimension condition CD(X,N)[25].

Given K eR we recall the definition of 1:DC, - RU{—x}from Definition
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(4.2.5)

2

Lemma (4.2.25)[121]: Let ¢:M —R be d?concave function. We recall

that ¢ is necessarily Lipschitz and hence (V¢)(y)exists for almost all y e M .
For such y, define

F(y)=exp, (-tV$(y)). (143)
Assume furthermore that y e M is such that
(1) ¢ admits a Hessian at y (in the sense of Alexandrov),
(i1) F is differentiable at y for all 7 €[0,1) and

(iii) dF,(y) is nonsingular for all 7<[0,1).

1

Then D(t)=det" (dF,(y)) satisfies the differential inequality

l;’((tt)) isic(F,'( V)(F () te(0.). (144)

S

Proof: Let {¢|” be an orthonormal basis of 7,u For each i, let J(¢)be
defined by

J(6)=(dF), (). (145)

Then J,(z) is a Jacobi field with J,(0)=¢,. Next, we note that d¢ is
differentiable at y, and that d(d¢) coincides withHess, (4), up to

identification. This is not so obvious (indeed, the existence of a Hessian
only means the existence of a second-order Taylor expansion) but can be
shown as a consequence of the semiconcavity of ¢, as in [31]. (The case of
a convex function in R” is treated in [77].) It follows that

J!(0)=—Hess (¢)(y )e,. (146)

Let now W(¢) be the nxn-matrix with
WAOEFAGRAG)E (147)

then det” (dF,)(y)=det" W (¢).
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Since W(t) is nonsingular for r€[0,1), J,(¢)., is a basis of 7, ,M . Define a
matrix R(t)by J/(t)=3" R(z)'J,(¢)It follows from the equation

%«Ji’(t),Ji(t)—J,.(t),J,.'(t)>) -0 (148)

and the self-adjointness of Hess ¢(y) that RW-RW' =0 for all r<[0,1), or
equivalently, R=WR"W™". (More intrinsically, the linear operator on 7.,

defined by R satisfies R=R", where R" is the dual defined using the inner
producton 7

Next,
W'=RW + WR’. (149)

Applying the Jacobi equation to

Wy =(1(0),7,(0)+,(0),3(0)+ 21(0), 3 1) (150)
gives
W =2Riem(..F}(y),..F(y))+2RWR'. (151)
Now
d . 5 - -
7 det? W (1) = ——det W () Tr(WW) (152)
and
d—zdetzlnW(r):idetzlnw(t)(Tr(W'W'l))z—idet;nw(t)Tr(W'W'1)+
ar’ 4n® 2n
1 = " -1
2—ndet2"W(t)Tr(WW ). (153)
Then by (150) and(152),
Ld’D 1 ) | , 1
D=5 =?(Tr(R)) —;Tr(Rz)—;ch(Ft(y),Ft(y))Jr;Tr(Rz). (154)

As R is self-adjoint,

90



l(Tr(R))z—Tr(Rz)so, (155)

n
from which the conclusion follows.
Theorem (4.2.26)[121]:a. For N (1,), the following are equivalent.
(1) Ric, >0.
(i1) The measured length space (M,g, V)has nonnegative N -Ricci curvature.
(iii) For all U e DC,,U, is weakly displacement convex on P, (M).
(iv) For all U e DC,,U, U, is weakly a.c. displacement convex onP,”(M).
(v) H,, is weakly a.c. displacement convex on P, (M).
b. For any K eR, the following are equivalent ..
(i) Ric,>Kg.

(i1)) The measured length space (M,g,V)has oo-Ricci curvature bounded
below by K.

(iii) For all U eDC,,U, is weakly A(U)-displacement convex on P,(M).
(iv) For all U e DC,,U, is weakly A(U)-a.c. displacement convex on P,“ (M)
(v) H,, isweakly K -a.c. displacement convex on P, ().

For both parts (a) and (b), the nontrivial implications are (/)= (i) and
(v)=(i). The proof that (i)=(ii) will be along the lines of [159], with
some differences. One ingredient the following lemma.

Proof : part (a). To show(i)=(ii), suppose that Ric,>0. By the
definition of Ric,, we must have n< N, or n=N and ¢ is constant. Suppose
first that » < N . We can write

[4 _ 9
Ric,, =Ric—(N—n)eN‘”Hess[e N‘”j. (156)

Given 1,1, €P,“(M),, let { ”r}te[o,l] be the unique Wasserstein geodesic from

u,to 4, . From Proposition(4.1.29), in order to prove (ii) it suffices to show
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that for all such g, and 4, and all U eDC,, the inequality (37) in Section
(4.1) is satisfied with 1=0.

We recall facts from Section (4.1) about optimal transport on Riemannian
manifolds. In particular, 4 is absolutely continuous with respect to dvol,, for

2
all t, and takes the form (F)), 4y, where F,(y)=exp,(~tV¢(y)) for some d?

d

M

concave function ¢. Put n = . Using the nonsmooth change-of-

variables formula proven in [31] (see also [234]), we can write

U, (1) = jMU(e¢(M)77t (m)) e ""avol,, (m)

- IMU[e‘ﬁ(E(y)) %j ") Get (dF, ) (y)dvol,, (). (157)
Putting
clri)=e > de (E)() (158)
we can write
Uv(u,)=ch(y,t)NU(no(y)c(y,f)'N)dvon(y). (159)

Suppose that we can show that ¢(y,r)is concave in ¢ for almost ally e .
Then for y e supp(4,),as the map

A=y (3) AU (1 () 27Y) (160)
is nonincreasing and convex, and the composition of a nonincreasing
convex function with a concave function is convex, it follows that the

integrand of (159) is convex in ¢. Hence U, (x,) will be convex in¢.

To show that ¢(y,t) is concave in ¢ fix y. Put

H(E()
a(t)=e N (161)
and
c, (t)zdet; (dF)(»), (162)



N-n

So ¢(nf)=¢ () ¥ ¢ (1)¥. We have

2 2 2 _ 2
NC™ —fhf _(N=-n)q’ ”;t? ne i;f —"(]jv n)[ 3 —”;c; e —ifjj
. . ' ' -1 dzcz
S(Rlc—RlcN)(E(y),E(y))+n02 o (163)

We may assume that the function ¢ has a Hessian at y [31], and that dF is
well-defined and nonsingular at y for all 1€[0,1) [31] Then Lemma (4.2.25),
shows that

2
dc,

o <—Ric(F/().F(»))- (164)

-1
ne,

So Ne™'(t)C"e(t) < —Ricy (F/(y).F/(y))<0. This shows that (M,g,V) is weakly
displacement convex for the family DC,.

The proof in the case N = n follows the same lines, replacing ¢, by 1 and
¢, byc.

We now prove the implication(v )= (i ). Putting U =U,, in (77), we obtain

HN!V(ut)zN—NJ.Mc(y,t)nO(y)l_%dvolM(y). (165)

Suppose first that » < ¥ and H, , is weakly a.c. displacement convex. Given
meM and VeT M, we want to show that Ric, (V,V)>0. Choose a smooth
function ¢, defined in a neighborhood of m, so that v=—(V¢)(m), Hess
(¢)(m) is proportionate to g(m) and

1

N—_anS:%(Aqﬁ)(m). (166)

Consider the geodesic segment ¢ — exp,, (V). Then

' (0)c/(0) == Vs (167)

and
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¢ (0)¢[(0)===Tr(W'(0)W™(0)) =1Tr(R(o)) (168)

=L 1v (stess(8) () =L (a9) (m)

n

Hence by construction, ¢, (0)¢;(0)=c;'(0)c;(0). From (164), it follows that

NC™(0)c"(0) =(Ric—Ricy )(V,V)+nc;' (0)5(0). (169)
As R(0)is a multiple of the identity, (154) now implies that

Nc™(0)c"(0)=—Ricy (V, V). (170)

For small numbers ¢,,¢, >0 consider a smooth probability measure p, with

support in an ¢ ball around m. Put u =(F, ) u,whereF, is defined by

2
2

F,(y):expy(—thb(y)).. If v,is small enough then &,4 is d?—concave. As u,

is absolutely continuous, it follows that F, is the unique optimal transport
between u, and (F, ) 4. As a consequence, u =(F,,), u,is the unique
Wasserstein geodesic from y,to g . Taking &, -0 and then ¢, >0, if H,
is to satisty (36) in Section (4.1) for all such y, then we must have ¢"(0)<0.

Hence Ric,(V,V)>0.Since vV was arbitrary, this shows that Ric, > 0.

Now suppose that N=»n and H,, is weakly a.c. displacement convex.

Given

meMand VeT,M, we want to show that V¢=0 and Ric(V,V)>0.. Choose
a smooth functiong, defined in a neighborhood of m, so that V=—(V¢)(m),

and Hess(¢)(m) is proportionate to g(m). We must again have ¢"(0)<0,

HEG) 1
where now c(t)=e " det"(dF,)(»).By direct computation,

<'(0) = —l(RichHess((b))(V, V)+ (V¢)2 + 2(V)(Ag)(m) (171)

c(O) n n’ n’

If V§=0 then we can make ¢"(0)>0 by an appropriate choice of A¢.Hence
¢ must be constant and then we must have Ric (V,V)>0.

Finally , if N <n
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N O (Ric + Hess (¢))(v.v) + (;’f)n - ”(va ‘”)(— - (A‘b}z(’")j. (172)

One can always choose (A¢)(m) to make ¢"(0) positive, so H,, cannot be
weakly a.c.

displacement convex.
[

part (b). We first show (i )= (ii ) .suppose that Ric, > Kg .

Given u,, 4, €P,“ (M), we again use (157), withU e DC,. Putting

c(y,t)=—¢(F,(y))+logdet(dF,)(y), (173)

we have
U,(1)= j eC(y’t)U(nO (y)e_c(y’t))dvolM (») (174)
M

As in the proof of (a), the condition Ric, > Kg implies that

2
de g

< KIEO) ==KVl (7). (175)

where the last equality comes from the constant speed of the geodesic
t — F,(y). By assumption, the map

l—)no’l(y)e’lU(no(y)e”l) (176)
-2
is nonincreasing and convex in A, with derivative p(n(’((—y)i)._lt follows
m\y)e

that the composition

A—-n (y)ec(y”)U (770 (») ec(””)) (177)
is A(U)|Vg[ (v)-convex in t. Then

0 (i, (v)e ) <160 (i, () )
ooy 1

+(1=0)eU (1, (v) e ’0))—51(U)|V¢|2 (»)m, (¥)1(1-1). (178)

95



Integrating with respect to dvoly (y)and using the fact that

W (saotn) = [ [99] (5 (3)dvol,, () (179)

shows that (37) in section (4.1)is satisfied with 2 =A(U). The implication
(i )= (ii ) now follows from Proposition(4.1.29).

The proof that (v)=(i) is similar to the proof in part (a).

The case N =1 is slightly different because #,, is not defined. However, the
rest of

Theorem (4.2.26)a carries through.

Theorem (4.2.27)[121]: (a)The following are equivalent:

(1) Ric,>0..

(ii) The measured length space (M,g,V) has nonnegative 1-Ricci curvature.
(iii) For all U eDG,U, is weakly displacement convex on P, ().

(iv) For all U e DG, U, is weakly a.c. displacement convex on P, (M).

Corollary (4.2.28)[121]: Let (B.,g,) be a smooth compact connected

Riemannian manifold, equipped with the Riemannian density dvolg, and let
¢ be a C’-regular function on B which is normalized by an additive

constant so that e* dvolg is a probability measure on B. We have the
following implications:

(1) If (B, gB, e’“’dvolB) is a measured Gromov-Hausdorff limit of Riemannian

manifolds with nonnegative Ricci curvature and dimension at most N then
Ricy (B)=0.

(1) If (B, gB, e’“’dvolB)is a measured Gromov-Hausdorff limit of Riemannian

manifolds with Ricci curvature bounded below by KeR then
Ric, (B)>KgB..

(iii) As a partial converse, if (B.gB,e "dvol,) has Ric,(B)=0 with
N 2dim(B)+2
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an integer then (B, gB,e’“’dvolB)is a measured Gromov-Hausdorff limit of

Riemannian manifolds with nonnegative Ricci curvature and dimension at
most N .

(iv) If (B,gB, eﬁlydvolB)haS Ric, (B)> KgB. then (B,gB, eﬁlydvolB) is a measured
Gromov-Hausdorff limit of Riemannian manifolds with Ric(M,)> (K —lj 2y
[ |8m,

Corollary (4.2.29)[121]: (a) Suppose that (X,d) is a Gromov-Hausdorff
limit of

n-dimensional Riemannian manifolds with nonnegative Ricci curvature. If
(X ,d)has Hausdorff dimension n, and V, is its normalized n-dimensional
Hausdorff measure, then (.X,d,V, ) has nonnegative » - Ricci curvature.

(b) If in addition (X,d) happens to be a smooth n-dimensional Riemannian
manifold B, gBthen Ric(B)>0.

proof: (a)If {M,}”

_, 1s a sequence of n-dimensional Riemannian manifolds

with nonnegative Ricci curvature and {f}

_, 1s a sequence of ¢ -

approximations f:M, » X, with lim_,, ¢ =0, thenlim,_ (/). dvol,, =V, in
the weak-* topology [108 ]. (This also shows that the n-dimensional

Hausdorff measure on X can be normalized to be a probability measure.)
Then part a. follows from Theorems (4.2.8) and Theorems (4.2.26)

dvol,,
vol (B)
Theorem (4.2.26): along with the definition of Ric,.

(b) If (X.d)=(B.g;) then V, = and the claim follows from

(X,d) has nonnegative Alexandrov curvature then (X,d,V, )has nonnegative
n-Ricci curvature. For n>1, if (X,d)has Alexandrov curvature bounded

below by thhen (X,d,V,) has «- Ricci curvature bounded below by K.
n—

As mentioned above, in the collapsing case the lower bound in the
conclusion of Corollary (4.2.28)[ (i) (or Corollary (4.2.28) (ii)) would
generally fail if we replaced Ric, (or Ric,) by Ric. However, one does

obtain a lower bound on the average scalar curvature of B.
Corollary (4.2.30)[121]: If (B, gB,e’“’dvolB) is a smooth n-dimensional
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measured Gromov -Hausdorff limit of Riemannian manifolds (of arbitrary
dimension), each with Ricci curvature bounded below by K eR, then the

scalar curvature 5 of (B,gB) satisfies

J. S dvol,,
B

R R (180)

Corollary(4.2.31)[121]: Let M be a compact connected Riemannian
manifold. Let G be a compact Lie group that acts isometrically on M,
preserving a function ¥eC”(M) that satisfies .[Me‘“’dvolel. Let

p:M — M /G be the quotient map.

a. For N €[l,), if (M ,e’wdvolM) has Ric, >0 then

(M /G,d,6.p- (e“"dvolM)) has nonnegative N -Ricci curvature.

b. If (M,eflydvolM) has Ric, > Kg,, then M /G, dM/G,p*(eflydvolM) has «-Ricci

curvature bounded below by « .

Corollary (4.2.32)[121]: provides many examples of singular spaces with
lower Ricci curvature bounds. Of course, the main case is when ¥ is
constant.

We conclude this section by giving a "synthetic" proof of a part of the Ricci
O'Neill theorem of [119].

Corollary(4.2.33)[121]: Let p:M — B be a Riemannian submersion of
compact connected manifolds, with fibers Zz,.Choose N=>dim(}) and

¥, €C” (M) with J'M e *vdvol,, =1; if N=dim(M) then we assume that ¥, is
constant. Define ¥, e C”(B) by p*(e’“"”dvolM):e’“'”dvolB. Suppose that the

fiber parallel transport of the Riemannian submersion preserves the
fiberwise measures e | dvol. up to multiplicative constants. (That is, if

y:[0,]]> B is a smooth path in B, let p, :Z,, = Z,, denote the fiber
transport diffeomorphism. Then we assume that there is a constant ¢, >0 so
that

~Ym

dvol =ce "
Zy) Zy) v

P, (e 2, ol ) (181)

With these assumptions,
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a. If Ricy(M)>0 then Ric, (B)=>0.
b. For any K eR, if Ricw(M)dvolZ“) > Kg,, then Ric, (B)>Kg,,.

Proof: Put vV, =e*“dvol, and V, =e *:dvol, We can decompose V, with
respect to pas o(b)V,(b), with o(b)eP,“(Z,) From the assumptions, the
family {o(b)}  of vertical densities is invariant under fiber parallel

transport.

To prove part (a), let { ”r}te[o g be a Wasserstein geodesic in P,“. Define
{yt’}te[m] in P,“(M) by p =o(b)y,(b).By construction, the corresponding

densities satisfy p/=p'p,. Thus H,, (#/)=Hy, (u). Furthermore, o

is a Wasserstein geodesic; if (F) is an optimal Monge transport from g,

te0,1]
to u, then its horizontal lift is an optimal Monge transport from x4 to x', with
generating function ¢, =p’¢, From Theorem(4.2.26) (a) H,, 1is a.c.

displacement convex on P,“(M). In particular, (36) in section (4.1) is
satisfied along {u;}te[o,l] with U =H, ~and 2=0. Then the same equation is

satisfied along {y,} ol with /#, and 2=0. Thus {4} isa.c.

te[ VB tE[O,l]

displacement convex on P,“(B).. Theorem (4.2.26) (a) now implies that
Ricy (B)=0.

The prove of part (b) is similar.

Section (4.3): Mass transportation and rough curvature bounds

We develop a notion of rough curvature bounds for discrete spaces,
based on the concept of optimal mass transportation. These rough curvature
bounds will depend on a real parameter h >0, which should be considered
as a natural length scale of the underlying discrete space or as the scale on
which we have to look at the space. For a metric graph, for instance, this
parameter equals the maximal length of its edges (times some constant).

. For instance, instead of midpoints of a given pair of points x,,x, we look at

h-midpoints which are points y with d(xo,y)ééd(xo,xl)+h and

d(xl,y)ééa’(xo,xl)+h.
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Given any metric space (M,d,m)with curvature>K and any ©>0 we
define standard ~ discretizations (M,.d,m,)of(M,d,m)with
D*(M,.d,m,),(M.,d,m))—>0 as h— 0 and with ~—Curv(M,d,m)>K,.

Throughout this section, a metric measure space will always be a triple
(M,d,m)where (M,d)is a complete separable metric space and m is a

measure onM (equipped with its Borel o —algebra B(M))which is locally
finite in the sense that m(B,(x))<00f0r all xe M and all sufficiently small
r>0. We say that the metric measure space (M,d,m)is normalized if
m(M)=1.Two metric measure spaces (M,d,m)and (M',d',m')are called
isomorphic if and only if there exists an isometry y : M, - M| between the
supports M, =supp[m]cM and M, :=supp[m'|c M’ such that y.m=m'"The
diameter of a metric measure space (M ,d,m)will be the diameter of the

metric space (supp[m],d).

We shall use the notion of L ,-transportation distance D for two metric
measure spaces (M,d,m) and (M',d',m'), as defined in [141]:

D(M,d,m),(M',d',m')=inf(J‘

MUM'

P (rn)ia(s)]

where dranges over all couplings ofd and 4' and ¢ ranges over all
couplings of m and m .Here a measure q on the product space M xM' is a
coupling of m and w'if q(AxM')=m(A4) andg(MxA")=m'(4')for all
measurable 4 <M, A4 <= M'; a pseudo-metric d on the disjoint union M UM’
is a coupling of d and 4' if c;’(x,y):d(x.y)A)and c;’(x’,y’):d’(x’,y’) for all
x,yesupp[m]cM and all x',y" esupp[m']c M’

The L, —transportation distance D defines a complete and separable length
metric on the family of all isomorphism classes of normalized metric
measure spaces(M,d,m)for which J'Mdz(z,x)dm (x )< some (hence all)

zeM. The notion of D-convergence is closely related to the one of
measured Gromov—Hausdorff convergence introduced in [128]. Recall that
a sequence of compact normalized metric measure spaces

{(Mn,dn,mn)}neN.converges in the sense of measured Gromov—Hausdorff

convergence (briefly, mGH -converges) to a compact normalized metric
measure space (M,d,m)iff there exist a sequence of numbers ¢] Oand a

100



sequence of measurable maps f,:M,—>M such that for all

x,yeM,,,d(fn(x),f,,(y))—d,,(x,y)‘ﬁgn,for anyxe M there exists ye M, with

d(fn(y),x)sgnand such that(f,),m, >m. weakly on M for n-— .

According to Lemma (1.2.)[141]: any m GH -convergent sequence of
normalized metric measure spaces is also D-convergent; for any sequence
of normalized compact metric measure spaces with full supports and with
uniform bounds for the doubling constants and for the diameters the notion
of m GH - convergence is equivalent to the one of D -converg-ence. It is easy

to see that D((M,d,m),(M’,d',m’))ﬂan(ﬁm,qﬁlm')where the inf is taken
over all metric spaces (M ,a?) with  isometric  embeddings
oMy —>M,§ M, —>M

of the supports M,and M. of m and ', respectively, and where dW denotes
the

L, -Wasserstein distance derived from the metric 4. Recall that for any
metric space (M,d)the L,-Wasserstein distance between two measures u
and VvV on M is defined as

W (u,V) =inf (IMxM d’ (x,d)alq(x,y))l/2 :q isa coupling of wand V;,

with the convention inf6 =c.. For further details about the Wasserstein
distance see the monograph [23]. We denote by P,(M,d) the space of all

probability = measuresV ~ which have finite second moments
_[M d*(0,x)dv(x)<o for some (hence all)o e .For a given metric measure

space (M,d,m)we put P,(M,d,m)the space of all probability measures
veP,(M,d) which are absolutely continuous w. r. t. Vvm. If
V= p.meP,(M.dm)we consider the relative entropy of v with respect to m
defined by H(V|m):=lim,, Oj{p>g}plogpdm. We denote by P, (M,d,m)the

subspace of measures VeP,(M,d,m) of finite entropyH(V|m) <00,

We recall here the definitions of the lower curvature bounds for metric
measure spaces introduced in [141]:

A metric measure space (M,d,m)has curvature > K for some number K € R

if and only if the relative entropy H (.|m)is weakly K -convex on
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P, (M,d,m)in the sense that for each pairVj,V eP, (M,d.m)there exists a
geodesic I':[0,1]—> P, (M,d,m) connecting v,and V, with

H(F(t)|m)S(1—t)H(F(0)|m)+tH(F(1)|m)—§t(1—t)W2(F(O),F(l)) (182)
for allz€[0,1].
The metric measure space (M,d,m)has curvature > K in the lax sense if and

only if for each ¢>0 and for each pair v,v, eP, (M,d,m)here exists an
¢ —midpoint 7 € P,"(M,d,m)of V; and V with

H(n‘m)s%H(\{)‘m)+%H(\ﬂm)—§W2(\{),\{)+8 (183)

Briefly, we shall write Curv(M,d,m)> K , respectively Curv,, (M,d,m)>K.
Recall that in a given metric space (M,d ) a point y is an ¢ -midpoint of x,

and x, if d(x,y)< %d(xo,xl)+8 for each i=0,1. We call y midpointof x,and x,

if d(x,y)é d(xo,xl)for i=0,1.

1
2

In order to adapt the notion of curvature bound to other spaces then geodesic
without branching we shall refer in this section to a larger class of metric
spaces:

Definition (4.3.1)[7]: Let 7 >0be given. We say that a metric space (M.d )
is h-rough geodesic iff for each pair of points x,,x eM and eachte(0,1)
there exists a point x, € M satisfying

d(xy,x) <td(xy,x,)+hd(x,,x) < (1—1)d (xy,x,) + h (184)
The point x will be referred to as the /& -rought—approximatepoint between

1 . . . ) )
x,,and x, The ~h—rought 5 approximatepoint is actually the #4—midpointof

X,,and X,

Example (4.3.2)[7]: Any nonempty set Xwith the discrete metric
d(x,y)=0 for x=y and 1 for x#y h-roughgeodesic for any ,. L .In this
2

case, any point is an s —midpoint of any pair is distinct points.

If ¢£>o0then the space (R”,d)with the metric d(x,y)=|x-y|A&.is h—rough
geodesic for 7> ¢ /2 (here ||is the Euclidian metric).
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(iii) For ¢>0 the space (R”,d)with the metric d(x,y)z\/8|x—y|+|x—y|2 is

h—rough geodesic for each r>¢/4.

The above examples are somewhat pathological. We actually have in mind
the more friendly examples of discrete spaces and some geodesic spaces

with branch points, e.g. graphs, that do not have curvature bounds as
defined in [141].

For a discrete /—rough geodesic metric space (M,d )one should think of

as a discretization size or “resolution” of M .In an 4 —geodesic space a pair of
points x and y is not necessarily connected by a geodesic but by a chain of

. . . . . h
points x =x,,x,,...,x, = y having intermediate distance less then E.In the

sequel we will use two types of perturbations of the Wasserstein distance,
defined as follows:

Definition (4.3.3)[7]: Let (M,d ) be a metric space. For each h >0 and any
pair of measures V),V € P, (M,d)put

1/2
W (V, V) =inf {(J.[(d(xo,xl)mh)JrT dq(x,,x, )) : q coupling of Vjand \{}, (185)
where (.) + denotes the positive part.

The two perturbations W*" and W™ are related to the Wasserstein distance
W in the following way

Lemma(4.3.4)[7]: For any >0 we have

(YW <WSW 4y () WSW" <W+h.

Proof: (i) Let Vyand Vbe two probabilities in (M,d ) and consider gan
optimal coupling and g + / a + h -optimal coupling of them. Then

W (\{)’\{):(J‘[(d (xo,xl)—h)szq Jrh()co,xl))l/2 S(J[(d (xo,xl)—h)Jerq Jrh()co,xl))l/2

< (J.a?(xo,xl)2 alq(xo,xl))l/2 = W(\{),\{)

and

W (V) =( [ ) dq(xo,xl)jl/z <[ atsny dm(m))m
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< (I[(d(xo,xl)—h)+ +h]2dq+h(x0,xl)jl/2 <W (V) +h

(i1) Similar to (1).
With an elementary proof we have also a monotonicity property of W* in 7 :

Lemma(4.3.5)[7]: Let 0<# <h be arbitrarily given. Then for each pair of
probabilities v,and v,

() W (V) < W (VL V);

(i)  W"(V,V)2W"™(V,V)and the inequality is strict if and only if
W (V, V) >0.
We introduce now the notion of rough lower curvature bound:

Definition(4.3.6)[7]: We say that a metric measure space (M,d, m)has & -

rough curvature >K for some numbers h>0 and KeR iff for each pair
\},V eP,"(M,d.m)and for any ¢<[0,1]here exists an h -rough t -approximate

point n, eP,” (M,d,m)between v,and v, satisfying
H(n, |m)s(1—r)H(\{)|m)+tH(\{|m)—§t(1—t)w*h (V. V)’ (186)

where the sign in W* (V,,V)is chosen ’ + if K >0 and * -” if K <0. Briefly,

we write in this case h—curv(M,d,m)>K .
Corollary (4.3.8)[274]: If any %, >0 we have
(()W™ <W<W" +h (i )WSW™ <W +h,.

Proof: (i) Let vV and V,,,,n > 0be two probabilities in (M,d ). Now consider
g an optimal coupling andq + 4, ,a + h, -optimal coupling of them. Then

1/2

W) = (1@ o) =), T g, (o)) = ([0 Grox) =) T +h, (v, x,00)

1/2

< (Id (x,%,.1) dq (x, ,)c,M))U2 =W (V,,V.,)

and

1/2 1/2
W(\/;l ’\]n-H) = (J‘d (xn ’xn+1 )2 dq (xn ’xn+1 )j S (J‘d (xn ’xn+11 )2 dq + h (xn ’xn+1 ))
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1/2
< (I[(dxn,xn+l)—hn ), +h, ['dq+h, (xn,xm)j <W™(V.V,,)+h,

(i1) Similar to be find as (1).

Theorem (4.3.9)[7]: Let (M,d,m)be a normalized metric measure space
and {(Mh,dh,mh)}h>0a family of normalized metric measure spaces with

uniformly bounded diameter and with #—curv(M,,h,,m,)>K,for K, > K as
h—o0 if

(M,.d,.m,)>(M,d,m)
as h— 0then
curv,, (M,d,m) >K.
If in addition M is compact then
curv(M,d,m) >K.
Proof: Let {(M ol m, )}Mbe a family of normalized discrete metric measure
spaces.  Assume  that  (M,.d,,m)—2—>(M.,d,m) as  h-0and

sup,_,, diam(M,,d,,m, ), diam(M,d,m)<A for some .AeR Now lete >0 and
\, =p,m,N =pmeP, (M,d,m) be given. Choose R with

supH(v,.|m)+@A2+§[A2+3|K|(2A+35)}£R. (187)

i-0,1

We have to deduce the existence of an ¢-midpoint n which satisfies
inequality (2). Choose0 < i< ¢ with |K, —K|<eand

(188)

2

2
D(Mh,dh.mh),(M,d.m)Sexp[2+4A RJ
&

Like in [141],0one can define the canonical maps
0,:P,(M,d,m)—>P,(M,,d,,m,)and Q,:P,(M,.d,,m,)—>P,(M,d,m)as follows.

We consider ¢,a coupling of m and m, and d,a coupling of 4 and d, such
that

J‘c%hz (x,y)dqh(x,y)s 2D? ((Mad~m)’(Mh’dh’mh ))
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Let 0/ and Q, be the disintegrations of ¢, w. r. t. m,and m, resp., that is
sqgh(x,y) =0, (y,dx)dm,(y) =0, (x,dv)dm(x)and let Adenote the m —essential

supremum of the map

xl—)[ . c?,f (x,y)Qh (x,a’y)}

In our case A<?2A.

For V=pmeP,(M,d,m)define Q,(V)eP,(M,.d,,m,)by O (V):=p,m, where

p(0)= [ p(x)0i (v

The map Q,1s defined similarly. From [12] gives the following estimates:
H(Q,; (V)|mh) < H(V|m) for allV = pm (189)
and

2+AH (V|m)

190
~logD(M,d,m),(M,.d,,m,) (190)

W2 (V.0 (V)<

provided D(M,d,m),(M,,d,,m,)<1. Analogous estimates hold for ©,.
For our given , = pom,\, = pm P, (M,d,m) put
V= o4 (Y) = P,

withp,, (v Ip, x)0; (v,dx)for i=0,1 and let ,be an h—midpointof V,, and
Vv, such that

1 1
H(m|mh) 5 (\(])h|mh)+2H(\{h|mh) Izw (\{)}n\{h) (191)

where ¢, 1s the sign of X,

From (188)-(190) we conclude

2 2+ A H (Vy|m) 2+ A°R
W (NN )< ~logD ((M ,d,m)(M,.d,,m,)) ) ~logD (M d,m).(M,.d;.m,)) o

106



and similarly W* (\{,\{),h ) <g’
If K <0we can suppose K, <0 too. From Lemma (4.3.5) (i1) we have
W (Vo V)= (W (VW) + )
<(W (Vi V) +3e) W (W V) +68A+9¢

because W(\{),\{,)SA.For K <0one can choose h small enough to ensure
K, <0. Then Lemma (4.3.5 )(i): implies.

WY < (W (W V) +26) < (W (W1, ) +38) < W (VL) +66A +9¢

In both cases the estimates above combined with (189), (191) and the fact
that we chose hi™ -k, <& -k will imply

1 1 K
H(n, |mh)SEH(\{)|m)+EH(\{|m)—§W2(\{J,\{)+S' (192)

A +3|K|(2A+3¢)|
8

with ¢'=¢

The case K = 0follows by the calculations above, depending on the sign of K, .

Finally, put n=0,(n,).

Then again by (188), the estimates given in [141] for Q,and by the previous
estimate (192) for H(n, |m,)we deduce
2+AH (n, |m, ) 2+ 4AR )

W2 (n,,1) < < <¢
( ’ ) —logD((M,d,m),(Mh,dh,mh)) —log((M,d,m),(Mh,dh,mh))

. 1
For,1=0,lwe have W (n,V)<2ec++h< EW(UO,\{)+45
Hence,

1
sup W (n.V) <5 W(\,V)+4e

i=0,1

i.e. 7 1s a(4¢)—midpointof V, and V. Furthermore, by (189)
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| | K ,
H(n|m)£H(nh|mh)SEH(\{)|m)+EH(\{|m)—§W2(\{),\{)+8
with ¢'as above. This proves that Curv,, (M,d,m)>K.

Let (M,dm)be a given metric measure space. For h>olet be a discrete
subset of M, sayM, ={x,:ne N}, with M=CJBR(x,.),where R=R(h)—0as
h—0.If (M,dm) -

has finite diameter then M, might consist of a finite number of points.

Choose 4 c B, (x,)mutually disjoint with x,e4,i=1,2,..and | Ai =M and
i=1
(e.g. one could choose a Voronoi tessellation) and consider the measure M,

on given by mh({xi})::m(Aj),i:1,2,...We call (M,,d,,m,)a discretization of
(M,d,m).

Theorem (4.3.10)[7] (i): If m(M)<Othen (M,,d,m,)—=—>(M.,d,m) as h—0

If Curv, (M,d,m)>K. with K=0 then for each %#>0 and for each
discretization(M,,d,m, ) with R(h) < h/4 we have h—Curv(M,.d,m,)>K..

If Curv(M,d,m)>K. for some real number K then for each h >0 and for
each  discretization (M,.d,m,) with R(h)<h/4 we  have
h—Curv(M,,d,m,)>K.h

Proof: (i) The measure ¢ = Z;(m(A,.)&C,_ )x(lA,.m)is a coupling of m, and m , so

0

Dz(Mh,d,mh),(M,d,m)Sj dz(x,y)dq(x,y):zm(A,.)Ldz(x,y)dm(y).

M) xM i=l

<Sm(aW() <81 ()|

:R(h)zm(M)2—>O as h—0.

(i) Fix h>0 and consider a discretization (M,,d,m,),(M,d,m) with
R(h)<h/4 Let \',\\]" P, (M,,d,m,) be given; it is enough to make the proof

n

for V',v" with compact support. Suppose then V' :(Z a' 1 )mh,izl,z

j=1 b {x/ }
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(some of the a4 ,can be zero). We take also an arbitraryse[0,1]Put

V. :=(Z;’_:1a,.’fj)m eP, (M,d,m)for i=1,2. Choose ¢ >0 such that

4R(h)+e<h. (193)

Since Curv,, (M,d,m)>K. for our given ¢€[0,1] there exists 1, €P, (M,d,m)
an ¢ -rough t -approximate point between V,and V such that

H () < (1=0) H (G )+ (V)=S0 (1-0) W2 (4 N)+2 (194)

We compute

H(\{|m)=ZL a' loga' dm= ") af loga'm, ({xj})zH(\{h |mh), (195)
j=1

For i=0,1. Denote nth({xj}):zn,(Aj),jz1,2...,n. Suppose 7, =p,.m. From
Jensen’s inequality we get
N IA/ pidm

H(U,h|mh)=Z m(Aj)

IA/ pidm

m(Af)

<i[m(LJ)L pt log pt dm}mh ({x,. })=H(77t |m),

Jj=1

m, ({x;})

log

which together with (194) and (195) implies

H(n! m,)<(1=1) H (N’ [m, )+ H (V] |mh)—§t(l—t)W2(\{),\{)+8 (196)
Firstly, we consider the case X <0. Let ¢" be a—2R (h)-optimal coupling
of V/

and V".Then the formula

1, x4,

qg:= Z q' ({(xj’xk )})5 XW(’”X’”)

Jok=1

defines a measure on M,xM,xM xM which has marginals V",V andV
Moreover, the projection of ¢ on the first two factors is equal to ¢".
Therefore we have
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W(\{),\{)2 < Id(x,y)zdé(xh,yh,x,y)
< j[d(x.xh)+d(xh,yh)+d(yh’y)]2 dﬂ?(xhayhaan’)
\ —J.A/XAk[d(x,xj)+d(xj,xk)+d(xk,y)Tdm(x)(y)

= Zn:qh ({(xj,xk )})(d(xf’xk)+2R(h))2 =W )2’

Jok=1

which together with (196) yields

H(n! m,)<(1-1)H (V' |mh)+tH(Vh|mh)—§t(l—t)W O N e (197)

In the case K <0 we start with an optimal coupling ¢ of V, and V and we
show that the measure

ZQ(A XA) (x)%)

J.k=1

is a coupling of V" and V". Indeed, if 4 c M, then we have in turn

Zq(A xA) o AxM Zq(A xA) )=Zn:q(ijM)5x/(A)

J.k=1 J.k=1 J.k=1

= Zn: vO(Aj)5x/ (4)= 3 vy (xj)5x/ (A)zvf)’ (4)

k=1 Jok=1

Since for any j,k=12..,n and for arbitraryxe 4, and ye 4, we have
(d (k) =2R () <(d(x,,%)=d(x.x,)=d (v.%,)) <d(xy)one can estimate:

WY < 3 (0| (d (5 m) 2R (), |

J.k=1
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Therefore from (196) we obtain
H(nﬂmh)S(l—t)H(\{)h|mh)+H(\{h|mh)—§t(1—t)W+2R(h)(\{)h,\{h)z+8 (198)
For ¢ sufficiently small we can get

—gt(l—t)W”R“’) A% )2 te< —gt(l — )W (! )2 (199)
and then (197), (198) yield

H(n,h|mh)s(l—t)H(\{j’|mh)+H(\{h|mh)—§t(1—t)w*h(\{ﬁ,\{h)2 (200)

depending on the sign of K . The inequality (199) fails only when K >0
and W (V. V")=0,but in this case W(V;',\/")<h and either 5=V orp =V

verifies directly the condition (186) from the definition of 7 -rough
curvature bound for the discretization.

The measure z=3"" n/ ({xj})@/_ x1, n,1s a coupling of7/ and 7,, so

W (nfm,) < IM & (x,y)dr (x,v) < B (h)

<M

and similarly Wz(\{.’“,\{)SRz(h). For i=1,2.Because 5, is an ¢-rough t -

approximate point between V, and Vwe deduce

w(n,h,\{f) <W (1, V) +2R(h) <tW (V,, V) +2R(h)+& <tW (\{)h,\{h)+2R(h)(1+t)+g
and by a similar argument
W' ) (=) WV V) + 2R (k) (2-1) +2

From (193) we conclude thatn" is an h -rough t -approximate point between
\{)h
and V" ,which together with (200) proves that #—Curv(M,,d,m,) 2 K.

(ii1) follows the same lines as (i1).

Example(4.3.11)[7]:If we consider on Z" the metric d,coming from the

norm |{ in R" defined by ||, =>" |x| land with the measure ,=) .6,

n
i=1

then h—Curv(Z”,dl,n_an)ZOfor any h>2n.

111



The n -dimensional grid E"having Z" as set of vertices, equipped with the graph
distance and with the measure m, which is the 1-dimensional Lebesgue measure

on the edges, has h—Curv(E”,dl,mn)Z 0, foranyh>2(n+1).

Proof. We use the following result:

Lemma (4.3.12)[7]: (See [22]). Any finite dimensional Banach space
equipped with the Lebesgue measure has curvature >0.

We tile the space R" with » -dimensional cubes of edge 1 centered in the
vertices of the grid. The || -radius of the cells of the tessellation with such
cubes isn/2. Therefore, claim (i) is a consequence of Theorem (4.3.10) (iii)
applied to the space(R”, 1, dx), and of Lemma (4.3.12).

For the proof of (ii)) we follow the same argument like in the proof of
Theorem (4.3.10). In this case, we pass from a probability on the grid to a
probability on R” by averaging on each cube of the tessellation and scaling.
Here one should take into account that for a cube C from the tiling

sup{|x—y|l:xeCﬂE”,yeC}:nTH,

that provides the minimal »#=2(n+1) starting from which
h—Curv(E”,dl,mn)Z 0

Example (4.3.13)[7] (i): Let G be the graph that tiles the Euclidian plane
with equilateral triangles of edge r . We endow G with the graph metric 4,

induced by the Euclidian metric and with the 1-dimensional Lebesgue
measure m on the edges. Then G has h -curvature >0 for any 4 >8/3/3

The graph G'that tiles the Euclidian plane with regular hexagons of edge
length r , equipped as usual with the graph metric 4, and with the 1-

dimensional measure m', has h —curvature>0 for any 4 >34r/3..

Proof: Consider a Cartesian coordinate system in the Euclidian plane with
origin O and axes Oxand Oy . We equip R* with the Banach norm | -that

has as unit ball the regular hexagon centered in O , having two opposite
vertices on Ox and the edge length (measured in the Euclidian metric) equal

to 1. Explicitly
3
5

for any (x,y)inR’> . We denote by 4 the metric determined by this norm.

X

b

||(x,y)||=max{¥|y
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For the triangular tessellation we choose the origin O to be one of the
vertices of the graph and two of the 6 edges emanating from O be along the
Ox axis. The edges of the graph have length r in the Euclidian metric. We
see that

d; (V. V,)=d(V.,V,) for any two verticesv,and v, of the graph. In general for
x,yeG we have d,(x,y)—d(x,y)<r. Then one can construct a coupling “d
of d, and d by setting d(V,x):=d(V,x)for v vertex of G and xe R’and

d(y,x)=inf_, {dG (»V) +d(\{.,x)}
if y e G belongs to an edge with endpoints V,V,and xe R’

By Lemma (4.3.12)Curv(R2,d,l)2Owhere A is the 2-dimensional

Lebesgue measure. If we tile the plane with regular hexagons 4,,jeN,

which have vertices in the centers of the triangles d(y,x)<2ry/3/3 for any
yeA4,NG and xe 4,.The proof of the h -curvature bound is a modification
of the proof of Theorem (4.3.10). We start withV,,V eP, (G,d,,m) with

0> "1

V =pm,i=0,1, and we define

- & 1 * .
\Y ::;TA])UGM pidmle/ AP, (R*,d,1)for i=0,1

We have thena?w(\{,\?)SZrﬁ /3. We consider 7, =p,.1 the geodesic that
joints V andV/, along which the convexity condition for the entropy on
P, (Rz,d,l) is fulfilled and denote

- 1
= E _ pdAl |1 ., .
77; = m(GﬂAj){J‘A/ pt J GN4, m

Then 75, is 8~/3/3-rough t -approximate point between v and V. From
Jensen’s inequality we obtainH(n,|m)H (7,|A)-logm(GNA4)+logA(4)and
H(N|A)<H(V|m)+logm(GN A)—logi(4)observe that all sets 4, have the
same Lebesgue measure A(4)and all sets G4 have the same measure
m(GNA). Hence n, satisfies

H ()< -1) () ()

and so we have proved /1—Curv(G,d;,m)>0for any h>8r3/3.
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(i1) For the hexagonal tessellation let 0 be again one of the vertices of the
graph and one of the 3 edges emanating from it be along the Oyaxis. In this

case we use the Banach norm | ::%||-||'0n R’ and denote by ' the

associated metric. The length of the edges of the graph in the metrica’ is
equal to 4r/3. We see that |d;—d'|<r/3 for any two vertices V,V, with

d;(V,V;)=2kr, KeN. In general |d;-d'|<r/3on the set of vertices and
|d;—d'|<r everywhere onG’

One can construct then a couplingd’ of d_.and 4’ in the following way: Fix

V,=0.If v is a vertex of the graph with d,(V,,V)=2kr, ke N then set
d'(V,x)=d'(V,x), xeR*.For ye G with d;(V,,V)# 2kr,k e N define

C?’(%x) = inf{dG, (».V)+d'(V,x):VeG',d;(\,V) =2kr}

We tile the plane with equilateral triangles B,ie N, with vertices in the

centers of the hexagons of the graph. Then Ac?'(y,x)éﬂr/ 6 for
yeB NG, xeB,. By the same argument as for the triangular tiling we
obtain s —Curv(G',d,,m')>0for any

h>4.17r/6=34r/3.

The following result is probably well-known.

Lemma (4.3.14)[7]:(i) If%+l <% then G(/,n,r)can be embedded into the 2-
n

dimensional hyperbolic space with constant sectional curvature

2
! cos?
K =——| arccosh| 2 n_q (201)
sin’ %

r

There are infinitely many choices of such / and ». In any case, the graph is
unbounded.

@) If %+l>% thenG(/,n,r) is one of the five regular polyhedra
n

(Tetrahedron, Octahedron, Cube , Icosahedrons , Dodecahedron) and can be
embedded into the

2 -dimensional sphere with constant sectional curvature
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2

| cos’ (nj
K =——|arccos| 2——"2 ] (202)
r sin’ (nj
/

If %+l :% then G(/,n,r)can be embedded into the Euclidian plane (K =0).In
n

this case there are exactly three cases corresponding to the 3 regular
tessellations of the Euclidian plane: the tessellation of triangles (/=6,n=3),

of squares (/=n=4), and of hexagons(/=3,n-6)

Proof: Firstly we see that

cos’

R

2

—1>1<:>sin2(£—£j>sin2 (£j<:>1+l<l
. 2 2 n /

Sin

hence in each case the expression that defines the curvature K makes sense.

For given /,n,rwe construct the embedding in the following way: we start
from an arbitrary point O of the 2-hyperbolic space with curvature K |,
denoted byH**. From this point we construct n geodesic lines
04,,04,,...,04,0f length

R = —L arcsin i Sinh—_Krsin (Ej (203)
-k sin (2”) !
n

such that the inner angle between any two consecutive geodesics 04,,04, ,,
is27 /n.We prove that 4, 4,...., 4 correspond to vertices of the given graph,
and the geodesics 4,4,,...,4, 4 4, correspond isometrically to consecutive
edges inG(/,n,r)that bound a regular n-polygon with edge-length » and all
angles equal to2z /7. Let us denote by

d the intrinsic metric on H “*.

From the Cosine Rule for hyperbolic triangles applied to A04,4,and from
(201) and (203) we have:

COSh(\/Id (Al,Az)) = cosh’ (M)—sin h? (M)cos(z—nj

n
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sinhz(x/ﬁ)—l . sinh>=|| cos’
=1+ 5 sm27=1+ 2 no_1 1
T
1+cos—— 2cos’ — sin® =
n n
cos? ~
n

-1= cosh(\/jr)

s 2

So d(4.,4,)=r and the same holds for all the other edges of the
polygon. We apply now the Sine Rule for the hyperbolic triangle A04,4, and
(203) in order to compute:

2
s1n(j
: _ J=kR =sin| = 204
sinS (4,0, 4,) s sinhv/—kR s1n( Ij (204)

whereS (4;0, 4,) denotes the angle at 4, in the triangle AO4 4, . This angle is

less than 7/2 because it is equal toS(4,;0,4) and in the hyperbolic

triangles the sum of the angles of a triangle is less than . Therefore (204)
shows that all the angles of the polygon are equal to 2z /7, so around each
vertex one can construct other /-1

polygons with n edges, congruent with the first one.We repeat the procedure
with each of the vertices of the new polygons. In this way the whole space
H*?can be tiled with regular polygons which are faces of the graph G(/,n,r)
(1), (ii1) Since there is only a finite number of examples with well-known
realizations, the claim can be verified directly. Alternatively, one can prove
it like in the part (1) with appropriate interpretations of the hyperbolic sine as
sine for positive curvature and as length for the Euclidian plane.
Theorem(4.3.15)[7]: For any numbers /,n>3 and for anyr >0 both metric
measure spaces ¥ (I,n,r),ds and (G(I,n,r),d.m) have h-curvature > K for

h>r.C(l,n) where
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r 2
cosz(nj
—iz arccos 1| 2 "1 for l+1>l
r Sinz(ﬂ-j I n 2
[
2
1 Cosz(nj 111
K ={—— arccos| 2 "1 for —+—<— (205)
r Sinz(ﬂ') [ n 2
| [
1 1 1
0 or —+—<—
s [l n 2
and

cos” | — cos | —
nJ_ /arccosh 2 n
< 2 T .2 T
sin“| — sin“| —
(lj (lj

Proof : We look at V(/,n,r) and G(/,n,r) as subsets of the 2 -manifold with

constant curvature K (given by Lemma (4.3.14). We tile the manifold with
the faces of the dual graph G(/,n,r')having vertices in the centers of the

-1

C(l,n)=4.arcsinh

faces of G(I,n,r) the center O of the polygon with n edges in the proof of
Lemma (4.3.14). becomes vertex of the dual).

We make explicitly the calculations only in the hyperbolic case, the other
two cases are similar. One can decompose the hyperbolic space as

H*? =0Fj where {F /}/are the faces of the dual graph, as described above.

Jj=1
The curvature bound for the discrete space ¥V (/,n,r)is then a consequence of
the Theorem (4.3.10). For G=G (,n,r)

the proof of the curvature bound is a modification of the proof of
Theorem(4.3.9) We start with V;,\ eP,’(G(,n,7),d,m) with V= p,.m,i=0,1

a1 T -
\{‘_;—VOI(FJ.)[J‘GHF/ pidmle/.voleP2 (H ,d,vol) for i=0,1

Now the place of R (h) from Theorem(4.3.10) is taken by R from the proof
of Lemma (4.3.14)(i), so W(\{,\:I)SR One can express R only in terms of
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our initial data /,nand r as R=rC(/,n)/4,with C(/,n)given in the statement
of the theorem. We consider 7, = p,.vol the geodesic that joints V,and V

along which one has the K-convexity for the entropy on H** [141] and
denote .

= 1
=) p,dvol |1, .m.
n, ;m(GﬂFj)[»L/pf vojcmam

Thenn, is 4R —rough 7 -approximate point between V, and V. From Jensen’s
inequality ~we obtain  H(n,|m)<H(7,|vol)~logm(GNF )+logvol (F )and
H(V|vol) < H(V/|m)+logm(GNF )~logvol (F ) observe that all faces F, have the
same volume vo/(F) and all sets GNF, have the same measure m(GNF).

Hence, like in the proof of Theorem (4.3.10) 5, satisfies so we have proved
h—Curv(G(I,n,r),d,m) >k for any /> 4R in the hyperbolic axe(k <0)

In [270] the combinatorial curvature of a graph G is a map ®,:V(G)—>R

mx) o0 _1_

2 i=1 d(E)
where m(x) is the degree of the vertex x,d(F )is the number of edges of the

that assigns to each vertex x e V(G)the number @, (x)=1-

cycle bounding a face F ,and F,F,....,F, , are the faces around the vertex
x The combinatorial curvature introduced in [164] is a map @, :F (G) >R,
where the curvature ®,(F) of a face F is given by the curvature @, of the

corresponding vertex in the dual graph. For the homogeneous graph
I 1 1

G(l,n,r) the curvature of any vertex x is ®G(x)21[;+__5j and the
n

curvature in the sense of Gromov [164] of any face F is
I 1 1

<D*G(F)=n(;+——§j.

n

Note that the sign of the combinatorial curvature in both approaches above
. 1 1 . 1
changes according to whether f+_ is greater or less than 5 Rather
n

curiously, in our Theorem (4.3.15) the sign of the rough curvature bound
changes in the same manner, although our notion of curvature applies to
graphs that have a metric structure and a reference measure. For the moment
we see no further links with the notions of combinatorial curvature
mentioned here.
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Let (M,d) be a metric space and meP,(M,d) be a given probability

measure. The measure m is said to satisfy a Talagrand inequality (or a
transportation cost inequality) with constant Kiff for all VeP,(M,d)

2H (V|m)
K

Such an inequality was first proved by Talagrand in [179] for the canonical
Gaussian measure on R’ . A positive rough curvature bound allows us to
obtain a weaker inequality, in terms of the perturbation W™ of the
Wasserstein distance:

Proposition (4.3.16)[7]: (“#-Talagrand inequality”). Assume that (3,d,m)
is a metric measure space which has 4 —Curv(m,d,m)> K for some numbers
h>0andK > 0. Then for each VeP,(M,d)we have

W (V,m)< (206)

2H (V|m)

W (V,m) <
(Vom) <4/

(207)

We will call (207) h —Talagrand inequality.

Proof: Since we assumed that m is a probability measure, for any
VeP,(M,d)

the entropy functional is nonnegative: H(V|m)=—-logm(M)=0,, according to
[7]:The curvature bound h—Curv(M,d,m)>K implies that for the pair of
measures v and m and for each re€[0,1] there exists an h -rough t -
approximate point 7, P, (M,d) such that

H(n,|m)< (1—t)H(V|m)—§t(1—t)W+h (VIm)’ (208)

If H(V|m)<§w+h(v,m) then there exists an &>0 such that

H(V|m)+e< %w”l (V,m)" This together with (208) would imply

H(nm) < -1 (1=0) W (V) = (1-1)

for each[0,1]. We choose now t very close to 1, such that 0 <1-7<¢ and
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K(1-t) W"(V,m)" <&*. This entails H(n,|m)<—¢*/2<0 in contradiction
with the fact that the entropy functional is nonnegative. Therefore

H(V|m)= —52§W+’1 (V,m)" , which is precisely our claim.

A Talagrand inequality for the measure m implies a concentration of
measure inequality for m (see for instance [136]).

For a given Borel set 4c M denote the (open) r —neighborhood of A by
B.(A4):= {x eM:d(x,A4)< r} for r>0. The concentration function of (M,d,m)is

I

1
defined as 4, (7)== sup{l—m(Br (4)): A€ B(M),m(4)= E}J >0

We refer to [172] for further details on measure concentration.

The following result shows that positive rough curvature bound implies a
normal concentration inequality, via 4 -Talagrand inequality.

Proposition(4.3.17)[7]: Let (M.,d,m)be a metric measure space with
h—Curv(M,d,m)>K >0 for some h>0. Then there exists an 7, >0 such that
forall »>r,

a(M,d,m) (r) < e_Kr2 :

Proof: We follow essentially the argument of K. Marton used in [9] for
obtaining concentration of measure out of a Talagrand inequality for the
Wasserstein distance of order 1. Let A4,BeB(M) be given with

m(4).m(B)>0 Consider the conditional probabilities m,=m({4) and

my =m({B). For these measures the h -Talagrand inequality holds:

2H (my|m
W (m,m)< —),W”’(mg.m)é % (209)
Let ¢, and ¢, be the +h-optimal couplings of m,m and m,,m
respectively. According to [2], there exists a probability measure § on
MxMxM such that its projection on the first two factors is ¢, and the

projection on the last two factors is ¢,. Then we have in turn

N —

MxMxM

W () + W )=

[(af(xl,xz)—h)J2 quA(xl,)cz,x2 )}
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N —

[ _(d(xz,x3)—h)+T dc}(xl,xz,xz)}

o MxMxM -

|
2{ ] (d(x,x,)~ k) +d (%, —h)J2 dc}(xl,xz,xz)}
|

o] —

o MxMxM -

N —

(d(xl,xz)+d(x2,x3)—2h)+]2 d@(x1axzax2)}

o MxMxM -

N | —

M><M><M|:

2{: (cl(xl,)c3)—2h)+]2 d@(xlaxzaxz)}

Assume now that d(4,B)>2h. Since the projection on the first factor of g is

m, and the projection on the last factor is m, , the support of § must be a
subset of AxM xB,

hence

N =

{IMWXM [(d(xl,x3)—2h)+]2 dé(xl,xpxﬂ} >d(A,B)-2h

The above estimates together with (209) imply

d(A,B)_zhé\/ZH(mA |m)+JzH(mB m) nglog;+J%10g;
m

K K K “m(4) (B)

if we choose now 24 <r and for a given 4e B(M)we replace B by GB,(4),
we get

2 1 2 1
—2h< =1 “log——F———
’ \/K Ogm(A)+\/K Og1—m(3,(A))

Hence, for m(A)Z%,

2 2 1
—2h<,|=log2+ [—log————
' \/K o +\/K Ogl—m(Br(A))

Therefore whenever » > 2, /%mgz +4h for instance we have

1

r 2
Eg\/Elo 1-m(B, (4))
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or equivalently

which ends the proof.

In [254] it has been shown that a Talagrand type inequality implies
exponential integrability of the Lipshitz functions. We prove further that an
h - Talagrand inequality leads to the same conclusion.

Theorem (4.3.18)[7]: Assume that (M,d) is a metric space and let #>0 be
given. If m is a probability measure on (M,d)that satisfies an n - Talagrand

inequality of constant X >0 then all Lipschitz functions are exponentially
integrable. More precisely, for any Lipschitz function ¢. with. ¢, <land

Iq&dm =0 we have

2

_[ ¢Pdm < e Vi>0 (210)
M

or equivalently, for any Lipschitz function ¢.

t tz :
J‘M e ¢dm < exXp (ZIM ¢dmj (Y [E”¢”L1p ht ||¢||Lip J ’
@11)

Proof: The proof we present here extends the one given in [54]. Let f be a
probability density with f log f integrable w. r. t m .The -Talagrand
inequality implies

W (fm,m)ﬁ\/%JMflogfdm S2—3€+%JMflogfdm

for each t>0.We consider now the Wasserstein distance of order 1 of two
probability measures u and Vv

W' (1, V)= infj af(xo,x1 ) dq(xo,xl),

MxM

where q ranges over all couplings of x4 and v .If § is a +h-optimal
coupling of fim and m then by the Cauchy—Schwartz inequality,

[(d ()c()!)c1 ) - h)+ Tdc](xo,xl ),}1/2
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2
> J‘MXM[(d (xo’xl )_ h)+:| dq (XO’XI ) =W (fma m) —h
The Kantorovich—Rubinstein theorem gives the following duality formula

w‘(fm,m )z sup {J.M ¢dm._[M dpdm }

llé ”LipSl

If¢ is a Lipschitz function that satisfies the assumptions of the theorem

(|¢],,, <1 and [ ¢dm =0)then

I ¢fdmsw+h(fm,m)+hsi+1jflogfdm+h
M 2k ¢t
which can be written as

IM[t¢—2t—k)fdm£IMflogfdm+ht 212)

This estimate should take place for any probability density / Therefore one

can take
2 2 -l
tp—— top——
f=e Zk[J. e demJ
M

in formula (212) and obtain

2N ot ot
J- t¢—t—e¢2kdm J- e¢2"
M 2k M
2 2 -1 2 2
SI em_ﬁ j et¢_ﬁdm t¢—t——10g J- et¢_§dm dm + ht

This yields

1ogu e"ﬁ'%de <ht,
M

that proves the claim (210). The general estimate (211) is a consequence of

(210) applied to the function ¥ = W[qﬁ - Iq&dm] .
Lip
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Chapter 5
Dimensions and Relations Between Combinatorial Measurement

These relationships further extend and sharpen prior results concerning
extensions of the Littlewood 2"/(n +1) -inequalities, the n-dimensional

Khintchin inequalities, and the Kahane-Khintchin inequality.We show an
estimate between the combinatorial structure of a series ofa —Orlicz
functions, that is finite and summation of norms of random variables in a
Hilbert space.

Section (5.1): Dimension and Norms in Harmonic Analysis

The purpose of this section is to study a parameter that we call
'‘combinatorial dimension'; its definition has been motivated by previous
work [228] where appropriate constructions in a harmonic analytic
framework filled 'combinatorial' and 'analytic' gaps left open between
Cartesian products of spectral sets.

We start with a set E (apriori devoid of structure), and a positive integer L.
AsusE" denotes the L-fold Cartesian product of E,

E' = {(xl,...,xL):xl,...,xL € E}
Let F be an arbitrary subset of E* and define for every positive integer s

W, (s)=max{|FN(4x...x4,)|: 4....4, CE |4]=..=|4,|=s] (1)

( | | denotes cardinality).

Definition (5.1.1)[226]: The combinatorial dimension of F c E*is

dim F =inf {a : hmlPF—a(S) < oo}.
s

§—>00
dimF 1s exact if

—WY. (s
1im—sin§) <

§—>0

otherwise, dim F is asymptotic.

Next, we consider {B,} S, the Steinhaus system of (statistically)

neN
independent random variables equidistributed on the unit circle [127]. S is
concretely realized as a sequence of functions defined on the probability
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space Q=®7T where T =[0,27)(with the usual Borel structure and Lebesgue
measure) and ®7 is the direct product of T: For w=(w(n))neN €eQ, B (w)=1

and B,(w) =" >l
Taking into account the usual group structure on [0,27), we shall view § as
a set of algebraically independent characters on the compact abelian group

Qwhose discrete dual group is ®Z,, where Z is the additive group of
integers.

In this sections focusing on what we consider basic issues, we shall work in
the framework of L-fold Cartesian products of S consisting of functions on
Qf,

S*={(BisesB.): Bir-s By €S}

where

(ﬁl,...,ﬁL)(wl,...,wL) =4 (wl)...,ﬁL (wL).

Here we link the measurement of certain probabilistic-harmonic analytic
properties of F < S* to the measurement of the combinatorial dimension of
F; the analytic-combinatorial connections are summarized see [228]
[231],{24],[267],[228] and[229].

We recall the definition of the A(p) constant of F cT,2< p<oo:

AF(p)zsup{”g”p . GLZF(G),g?&O},

‘g
el

where L. (G) denotes the space of ' functions on G whose spectrum is a
subset of F.

Theorem(5.1.2)[226]: Let F — S* be arbitrary. For every integer s >0
8 (W, (5)) <2, (25) (¥, (5)) )

Proof : We will denote the L canonical projections from S* into S by
TCyseeis T,

1

7 (B.uB)=B, 1<i<L

We establish first the right hand inequality in (2). Let s>1 be an arbitrary
integer, and let
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g=Y ay(m(B)7(B))

peF

be an arbitrary function in L, (Q"). Write

g = 2 ag.a, (m(B)r, (B, (B)-7,(B,))

py...peF

with the aim of estimating

2

s

2s
2s

el

)"

To this end, observe first that for any y € Q*

where
A(y)= {(ﬂl,...,ﬂs)e F'iy= (71'1 (B)r (By)sest, (By)-r, (B ))}

Therefore, by Schwartz's inequality,

=

yeQl

2. a4,

A(7)

g s

< ;L|A(y)|/%:) A(y)|ag-ay [ 3)

Next, for any y eQ", we estimate ‘A(y)‘zo as follows: Note that either
[4(7)

B B, €F

so that

=0 there exist

Y =(V1see¥1) Z(ﬂ'l (B (B,)sen, (B) .7, (ﬂs)), 4)

We assume (4). Now, observe that the algebraic independence of S Q
implies that we have

(Yiser7r) =7 =B 1, (5)

for some B/...3/ e F only if
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1

{7[1 (é{),..., 7, (ﬂ: )} = {7[1 (BY)seeeos ﬂl(ﬂ:)}

o
AN

{”L (ﬂl')"”’ﬂ‘-L (ﬂ;)} = {ﬂ‘-L (ﬂl)"”"ﬂ‘-L (ﬂv )} =4,

That is, a necessary condition for: e F to appear as a factor on the right
hand side of (5) is that

m(B)eA,.n (B)e A,
Therefore,
A(;/)c{ﬂeF:ﬂl(ﬂ)eAl,....,ﬁL(,B)eAL}S (6)

Finally, since |4|<s for i=1,...,L,it follows from (6) and the definition of
¥, that

4(r)| < (W, (5)) - (7)

Substituting (8) in (4), we obtain

!

2 ”g

le

<t 5 (Sl ]|

yeQt \ A(7)
Clearly, A(y)NA(y')=¢whenever y =y'. Therefore,

S Syt~ Y \aﬁlr...\aﬂr:(z\aﬁr}
407) ’ BriPcF ’ 407)

yeQL

and the right hand side of (6) is established.

We now prove the left hand inequality in (2). Let s > 1 be arbitrary, and
choose 4,,....,4, = S, where
A =...=|4| =s

L

and
P, (s)=[FN (4 x...x4,). 8)

Write the Riesz product

R(W,.ow, ) {H (1+COSﬁ(w1))}--.{H (1+c05ﬁ(WL))}

Ped PeA;
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(for y eT,cosy =(y+7)/2). Observe the following:
IR], =R(0)=Land i), <|&], <24 42"
Hence, for any 1< p <2, by a routine interpolation argument,

IR, <R R, < 22 ©)

(1/ p+1/¢g=1). Also, a routine spectral analysis of R yields

R(B)=(1/2) (10)
for all g e §*. Next, let h= Z B,
BeFN(4x..x4;)
whence (by 8)
I, = (¥ (s))" (a1

Therefore, combining (9), (10) and (11), we obtain
/2 5.
], (¥ ()" 2" = h*R(0) <], [, <], 4
Letting ¢ =s, we obtain the desired inequality.

The following is an immediate consequence of Theorem (5.1.2) and the
definition of combinatorial dimension.

Corollary(5.1.3)[226]: Let F = S* be arbitrary. Then. In the case that ¢imr
1S exact,

) (12)

a
p—o© p

if and only ifa z(dimF)/ 2; in the case that ¢imr 1s asymptotic, (3)holds if
and only if

a> (dimF)/2,

Proposition (5.1.4)[226]: Let FcTI' be arbitrary. The following are
equivalent:

(i) E/IFP(P)@o;;(ii) for all feL%(G), (/1> x) < exp( )

a
F—o

for allx >0 (m is the Haar measure on I'=G and X > 0depends only onF).
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Sketch of proof (i) = (ii) follows by checking that for all a >0

Lexp(a|f

(13) is verified by integrating term by term the Taylor expansion ofexp (a |/

Z/a)<oo, (13)

2/a )

(i) = (i) follows by a direct computation of the z# norm of /.

Here and throughout the section, K (possibly subscripted) will denote a
fixed constant whose value may change from one context to another.

Proposition (5.1.5)[226]: Let F c E* by arbitrary, and suppose that
¥, (s)<Ks* (14)
for all s>1. For every integer N >1and

A,...4, cE,

A|=N, i=1..L,
there exists a partition of F (4, x...x 4, )
F={F...F}
with the following property: For each 1<k <L andall xe 4,
| (x)NF| < KN“". (15)

Proof: The proof is by induction on N >1.The case N =1 is trivial. Let ¥ >1
and assume the assertion is true forn-1 . Let 4,..,4, cEbe arbitrary,

|4|=N,i=1,..,L By (14), we can find x, € 4,i=1,.., L so that
‘71';1 (x)NFN(4, x...xAL)‘ < KN,

For each i, let 4'=4\{x,}, and apply the induction hypothesis to find a
partition {£),...,F} of F(A4 x...x4;) so that for all xe 4’ we have

|7 ()N Ef<K (N -1)"
Let
F=FU[7" (x)NFN (4 4,)]

for each i=1,..,L. It is easy to verify that {F,...F,} is the required partition.
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Corollary (5.1.6)[226]: Let 4,....4, cE,
|4|=..=|4,|]=N>1.

Suppose Fc A4 x..x4,,

F|>KN“ and ¥, (s)<K,s"for all
s>1 Then, for some 1<i <L,
‘{x e d, <[z, (x)| = KN /2L}‘ > (K, /ALK, )N. (16)

In Proposition( 5.1.5) we achieved control on cardinality of fibers in F
over xe Ac E. We now show how to control the cardinality of fibers in
FcE" over xe AcE*". In what follows, for each /e{l,..,L},7,denotes the
projection from E* onto E“"' that is 'orthogonal' to r,,. The idea for Lemma
(5.1.7) below was shown to us by Professor J. Schmerl.

Lemma(5.1.7)[226]: Let 4...,4, cE be arbitrary, |4|=...=|4,| .Suppose
F c A4, x...x 4, . Then, there is a partition of F,
F ={F,..F,}
so that for each /=1,..,L and xer [4 x..x4,],
‘fl'l(x)ﬂFl‘ S|F|M (17)

Proof: Initialize

F=.=F=¢ G=F.

Search and sort procedure: Pick a point x € ¢ and consider for each /=1,...,L
B/(x)=1"(z,(x))NC (18)

If |B, (x )|>|F|”L for each /=1,...,L, place x back in G. Otherwise,

let
K = min(l : ‘Bl (x)‘ < |F|1/L j ;
remove B, (x)from e and place B,(x) in F,.

Repeat this procedure until B, (x)>|F|"" for all /=1,...,L and all xec. It is
clear that the resulting 7,....,F, satisfy (17), and all that is left to prove is the
following:

130



Claim. G=¢.

Suppose not, and x e G . From the way the 'search and sort' procedure above
is designed, it is clear that

(B, (x))x...x 7, (B, (x)) c@

and

/L

|7le1 (x)| >|F|
(recall that =, and 7 are orthogonal projections). But, we then have
¢ > (|F|“L )L =|F|, ,and reach a contradiction.

Proposition (5.1.8)[226]:. Let F c E* be arbitrary, and suppose that for

every s>1. W, (s)<Ks".

For every integer N >1 and 4,,..,4, cE,

A|=N,i=1,..,L,
there exists a partition of FN (4, x..x4,), Z={F,...,F,}
with the following property: For each 1<k < and allxeT, (4,x..x4,))
7 (INA] < ke
We recall the definition of a randomly continuous function following ([89] and

[37]. An I’ function on a compact metrizable abelian group G(: f") =27y

yell

is said to be randomly continuous if

p.S = J‘[O,l]

where (ry) ) is an enumeration of the usual Rademacher system, i.e. a
ye

system of symmetric statistically independent random variables on [0, 1]
each of whose range is{—1,+1}. The notion of random continuity in the

dt <o
L(G)

s

o (6)f(r)r

yell

context of harmonic analysis is part of a general philosophy contained in
Kahane's monograph, Some Random Series of Functions [127].Next we
define the RC-norm of an L-dimensional tensor

a=(a, )

R
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1/2

e =3I 2| 2 e, (19)

J=1| i;eN | ixey
ke(l,m,L)
k#j

(Here and throughout, the set of natural numbers denoted by N serves
merely as a convenient indexing set.) Returning toS={p,} _ , the Steinhaus

system of independent characters on Q = ®7, and viewing £, f eLfL(QL) , as

an L-dimensional tensor

( f ( Biseees B, )= a . ) , our starting point will be the following theorem
Theorem 5.1.9)[226]: For all /e ’s"(Q")

(K,)" |/ i (20)

L
e <M, < (&)

RC

where K,K, >0 are universal constants.

Definition (5.1.10)[226]: The p(¢)-constant of FcT,2<g<oo is

pe(@)=sup{|f1, /171, / € L3 (G). f #0}.

Theorem 5.1.11)[226]: Let FcS" be arbitrary. Then: In the case that
dim F 1s exact,

m29) @1)

q—© q

if and only ifa>(dimF —1)/2; in the case that dim F is asymptotic, (21) holds
if and only if a >(dimF-1)/2

In order to keep notation as simple as possible, we prove Theorem (5.1.9) in
the case L=2; the arguments in the general case are similar. In what
follows, F < S* will be identified with its underlying indexing set in N°:

{(nl,nz):( B, ﬁ,,z)eF}cN2 Slightly abusing notation, we shall occasionally

refer to the latter also as F'.

Lemma (5.1.12)[226]: Let F < S* and suppose that
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W, (s)<hs (22)

for all s>1. Then, for all feLZF(Qz)

a-1)/2

I/]. <v2Ks'

i @)
forall s>1.

Proof. Let an arbitrary feL, (Qz)be given by

f: Z ail,,»z(ﬁipﬁiz)'

(iy,iy JeF
(we identify F c §? with{(il,iz)eNz:(ﬂ,.],ﬂiz)eF}ch).. Let s>1 be an

arbitrary integer and write

fs = Z aillill”ailsih (ﬁiu'"ﬁih ’ﬁizl "'ﬁizs )

(it )i o, )EF

We obtain by Plancherel's formula

z: - Z Z a"n"m'"a"l.\\"z.\\ ¢ (24)

Q2 |(ivyiay )ors(its sias JEF

(ﬂ,-” wBisBiyy. Py ):7

7

It is clear that the summation in (24) is performed over only those y's which
are s-fold products of elements in F. For such yeQ*write

y = ((ﬂj]] B, B, B, ))and denote

G (7) = {j117“"j1x} and G, (7) = {j217"'7j2x} >

let

A(y)= {(il,iz) eF:ieC(y) and iye C(y)}

By the algebraic independence of S, it follows from (24) that
2

2
2‘: < Z Z aiuizl ”.ailsil.\ (25)

7€ (1o )oeosling s JEA(7)
(Biyy~BisBy By, )=r

fa

By Proposition (5.1.5)and (22), for each y e Q? that participates in the
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summation in (25), partition A(y) into A4 (y)=4cA(y) and
4,(7)=4, = A(y) so that for each i, eC,(y)and i, € C, ()

|7r1'1 (i,)N 4 (;/)| < Ks*!

26
5! (1) N 4, (7)| < Ks*” (20)

Reassessing (25) in view of the partition above, we obtain

2

“f "i: < Z Z Z iy jigy - iging (27)

12 (Bi1y-hih,

21Ping J7

For eache=(g,),_ & =12, define a projection 7,, from 4, (y)x..x4, (7)
into N°by

T, [ (i) seos (intng ) | = (i 0oy )-

For topographical reasons, we shall write i, fori, ,k=1,..,s, wherever the

omission of the second subscript causes no confusion. It follows from (26)
that for each (i, ......i, ) in the range of 7, we have

T (illai21)ﬂ A, (;/)x,,,xAgx (7/)‘ < (Ks“—l )2 (28)
For eache =(¢,),_,, define 5, =5(5,)_ by
(life, =2
“2ife, =1

2

a. . .a. .
121 hsias

e’ (BB BB ) =7

For a fixed ¢ =(g,),_, write

k=1?

2

= Z . Z ( Z ailliZIWailsiZS} (29)

yeQ? [igy les ley o
(ﬂill“'ﬁlsﬁizl’ﬁizs J:y
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(we write i, for i, )

Applying (28) and Schwartz's inequality to the third summation (over

is iy ) 1N (29), we obtain that (29) is majorized by
2
Ks(a_l)s Z Z ( Z ‘ ‘11‘21 ‘1s 2s 1/2 (30)
o
yeQ Leples 151 A s
[ﬂin"'ﬂ“ﬂlzl b
Claim. (30) is majorized by
2
|: i Zl (léZ; ‘ 11121 ) 118‘123‘ (31)
&tes Top g

which, in turn, equals
(ks HZ(Z\ a,) } .[Z(Z\%r)”} (32)
g i leg s,

(The summations in (31) and (32) are performed freely over i, ,...,i, € N,and
is ,....is € N respectively.)

To establish the claim, we first note that each y e Q? that is a product of s
elements in S X § can be viewed as

7/:7/8'7/5’

where y, and y,' are products of s elements in ({3, }xS)U(Sx{p,})respecting
the following scheme:

}/s = yl"'ys
a
{0

s = ViV

(b){n =, (1),7, @) e (B} xEYU(E x{B,})
e =l (D),7, @) e (B < EYUE x{B,})

where the 5" coordinate of 'y, is B, and the ¢”coordinate of y/ is
ﬂoaK = 1,...,S.,.Let

A(}/a ) = {(ig] ""’ig»\.) : }/g = }/1"'}/5‘ *
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as in (a) and  (b), and  y,(r)=8, .k=L..s} Similarly,
A(;/a)z{(iﬁl,...,id\_):;/g =y...y as in (a)and(b) , andy,(5,)= B, -k=1,..s}.Next,
observe that (30) is majorized by

( (as— 1) Zz AZ: (Z‘ . z“z_x‘ 1/2 2 (33)

Ye Vs ) Alrs)

(Zy_a"dZy , are summations over y,,y, €Q’described by (a) and (b)
above; 3 ~and}’ . are summations over (i,»-, )and (iy,....i; ) taking

values in A(y,) and A(y;), respectively.) (33) is certainly majorize d by

() 2

which, by an application of Minkowski's inequality, is majorized by

() 12

Clearly, A(y)NA(y.)=A(rs)NA(7;) =¢whenevery, = y! and y, =y.and

1/2 1/2

}’»A

) 12

I (34)

Vs A7>

therefore (34) equals

( (a- 1) {lz ( Z ‘ a , .a imlh‘ 1/2}2

) ljl l

and that completes the proof of the claim. Each of the s factors in (32) is
majorized by” f H , and we obtain from the claim and (27) that

2s

A

f

<2 (k)

RC
which completes the proof of (23).
Lemma 5.1.13)[226]: Let F < S* and suppose that

. (35)

Then: For D >0 and integers s>1as large as we please there are he L, (Qz)
so that

( (27

)Pl (36)
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Proof: Let D be as large a number as we please. By (35) we can find s > 1
as large an integer as we please, and 4,B < S,|4|=|B|=s so that

F((A4xB)>Ds".

Without loss of generality, assume that ¥ = F (4 x B) contains [Ds"]points (
[Ds"]denotes here the largest integer smaller than Ds"). Let

h= Z (ﬂpﬂz)'

(ﬁ] B )EV

We clearly have
I, <205 (7)

which implies the following

Claim.

|7

(as usual, K denotes a fixed constant).

< KD1/2S(n+1)/2
c

R

Proof of claim: It follows from (37)and the Kahane-Salem Zygmund
probabilistic estimates of the sup-norm of random trigonometric
polynomials that there is a choice of signs + for which

SKDI/ZSU/ZSI/Z (38)

0

Z i(ﬂpﬂz)

(ﬁ] B )EV

Denote the characteristic function of ¥ by y, and obtain the left hand side

of (38)=sup,

weQ Ped

2[L2

Bied

>(1/C) YD XV (BB

pied p,eB

2 XV (B.,)B (@)

BreB

2 XV (B, B,)B, (w)dw

BreB

The last inequality above was obtained by an application of the Khintchin
inequality for the Steinhaus system (C above is the Khintchin constant of §
whose precise determination is still an open problem). The roles of B, and ,
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are interchangeable in the estimation above, and the claim is thus
established. Let R be the Riesz product

R(Wlawz)z {H(l"‘cosﬂ(“ﬁ))} LEB(I +cos f3, (Wz ))}

Bred

and as in the proof of Theorem 5.1.2)[226]: we conclude
D n
[st < R*h(0)<8]] (39)

Combining the claim and (39) we obtain (36).

Combining Lemma (5.1.12) Lemma (5.1.13)and Theorem (5.1.9) we obtain
Theorem (5.1.11).

The application of the decomposition property given by Proposition (5.1.5)
is a crucial step in the proof of Theorem (5.1.11) (see (26)above).Following
the line of arguments that is completely analogous to the proof of Lemma
(5.1.13) via the decomposition property given by Proposition (5.1.8) we

obtain Lemma(5.1.14) below. First, some notation: Let a=(a, ,) €N

be an L-dimensional tensor. Define the RC -norm of a by

lale =20 2 X a

Jj=1 iyeN i;eN
ke(l AAAAA L)
k#j

2)U2]

Lemma(5.1.14)[226]: Let FeS* be so that W, (s)<K;s*for all s>1. Then,
for every feL;(Q")

A

”f”q Squ(a—l)/z(L—l) f

RC

forall ¢>2.

We start by recalling the classical Littlewood and Orlicz inequalities whose
statements given here are slightly different from the ones given in [112] and
[266]: For all f continuous functions on Q° with spectrum in

$*(=cs* (@)

> (S| (B8 <oo. if and only if p=2, (Littlewood) (40)

pies pyes
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)" <o if and only if p>2. Orlicz 41)

> (|7 (8.5)

pies Pres

3 \ 7 (B, ﬁz‘ <w ifandonlyif p>4/3.  (Littlewood) (42)

By.pyeS?

Still within a classical context, the following are multidimensional
extensions of the statements above: Let L >1 be an arbitrary integer. For all

feCs* (Qz)

)'? <o if and only if p>2; )

SO Y (BB

BeS (ByBy )ESL_l

> (3|7 (B )y if and only if p>2: )
(ﬁzsm,ﬁL)esL" BeS
S (B, )y if and only if p> z/(ul) i
(ﬂlsm,ﬁL)ESL L

(1) and (i1), straightforward extensions of (40) and (41), appear in the
literature on ad hoc basis; (ii), was obtained in [90]. In this section, we
establish 'continuous' systems of inequalities in which (i) and (ii) are
'discrete' instances. First some notation: In what follows, we shall consider

norms of restrictions of fto F < S* denoted by fX,. For example,

BN

(By By )eS*

F(Brroos BL) X (Bireon B, )

Where X, is the characteristic function of .

Theorem (5.1.15)[226]: (An extension of Orlicz's inequality). Let F < S?
be arbitrary, dim F exact (respectively, dim F asymptotic). Then: For all

feCs? (Qz)

YN (BaB) X (BB <o

peS p,eS

if and only if
p=2 / (3 —dim F)(respectively,p >2/ (3 —dimF)).

Theorem (5.1.16)[226]: (an extension of Littlewood's inequality, (42)
above. Let FcS§* be arbitrary, dim F exact (respectively, dim F
asymptotic). Then: for all

139



feCs" (QL)

P
<0

> T (B B) X, (Bon )

if and only if

1 1
>2/[ 1+ respectively, >2/ 1+
P [ diij{ pectivelyy ( dimFD

The proofs make use of the results the Kahane-Salem-Zygmund estimates
and an in-stance of a general theorem due to in[89])). To establish that
p>2/(3-dimF) and p=>2/(1+1/dimF)are sufficient in Theorems (5.1.15)

and (5.1.16) respectively (with strict inequality in the asymptotic dim F
case), we follow the strategy of the proof) in [89].

Lemma( 5.1.17)[226]: Let F < S* and suppose ¥, (s)<Ks” forall .s>0

()Let  ¢el”(S*).4=00nS"\F,, and

2(a-1)
y (sup\cb(ﬁ,-,ﬁ,)} <1,
preS

BeS

i,j =land i # j then,

> 6(B)f(B)B
PeF
lim pl/z

p—>0

2 <o

for all feLZF(Qz).

(i) Let ¢e /¥ (SL),¢ =00onS*\F. Then,

> 6(B)/(B)B
peF
lim pl/z

pow

2 <o

for all feLZF(Qz). :

Proof: (i) Let feL, (Qz). and fix an arbitrary p>2. Define
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¢1 _ {¢ lf|¢| < p(l—a)/Z

0 otherwise,
and
) =0-¢.
A straightforward computation yields

172

ZSLSUP} o (ﬂlaﬂz)z Sp(2—a)/2~ (43)
hieS Pocs
We estimate

S o(B) (B)B| <|Xa(B)(B)B| +|X (B (B)B

peF peF » BeF »

p

By the assumption on F and Theorem(5.1.2) we obtain

(B (BB <(Kp") | 0(8)(B)B
PeF » BeF )
<VKp"|1];- (44)
From (43) we deduce
af|, <P,

and thus by Lemma(5.1.13) we have

> 6:(8)(B)B| <Kp"|/], (45)

BeF

P

The conclusion in (1) follows from (44) and (45).The proof of (2) is
practically identical and will be omitted.

are necessary in Theorems(5.1.15) and(5.1.16) (strict inequality when
dimF asymptotic): Suppose there exists C > 0 so that for all feC, (Qz).

C||f||w>[/;[/§ f(ﬁl,ﬂz)j J : (46)

Write dim F = a.Suppose s>1,4,,4, < 5.|4|=|4,|=sand |(4 x 4,)NF| = Ks".
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By Corollary (5.1.6) we assume without loss of generality that for all
Bie4

| (B) 2 ks 47)

Write 4=(4,,4,)NF.. We obtain a choice of signs + so that

< Kls(a+1)/2 (48)

Z i(ﬂpﬂz)

(ﬁ] B )EA

2

K, > 0depends only on K). Combining (48), (47) and (46), we deduce

KICS(a+1)/2>[Z£ZXA(ﬁl’ﬁZ)XF(ﬁl’ﬁZ)J } (49)

Pied\ Bied,
> Ks''7s? ),
(49) holds for arbitrarily large s only if p>2/(3-«).Iflim_,, (‘PF (s)/s” ) =00

then (49) implies that p >2/ (3 —a). This completes the proof of Theorem (5.1.15) The

proof that p>2/ (1+(1/ dimF )) is necessary in (5.1.16) Theorem is similar
and will be omitted.

Theorem (5.1.18)[226]: (An extension of Orlicz's inequality). Let F < S“be
arbitrary, dim F exact (respectively, dim F asymptotic). Then: For all
feCs" (QL)
Z (Z‘f(ﬁlaaﬁz)XF )p<OO
B €5 Bres

for all
p22((L—2)dimF+1)/((L—2)dimF+L—dimF+1)

(in the asymptotic dim F case, the above is a strict inequality).Depending on
the 'combinatorial' structure of F < S*, Theorem (5.1.18) may or may not
be sharp. We illustrate:

(1) If dim F =L, then the inequality in Theorem (5.1.18) reduces to the
usual Orlicz inequality (41)L which is sharp.

(i1) If L=2, then the inequality in Theorem (5.1.18) reduces to the one in
Theorem (5.1.15) which is sharp.
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Theorem (5.1.19)[226]: (Another extension of Orlicz's inequality).Suppose
F=S8"xF,J>1 and F c §*Then: For all feCF(QM)

p)l/p <0

> (X BB)

(BisesBran)es”™ Brises
if and only if(i)p=(2/+2)/(2/+3-dimF),dim F exact, (ii)
p>2J+2/(2J+3-dimF), dim F asymptotic).

The proof of Theorem (5.1.19) follows the line of arguments used in the
proof of

Theorem (5.1.15) In the case F=S'xF,/>1land 1<dimF <2, the

inequality in Theorem (5.1.19) is sharper than the one given by Theorem
(5.1.18) The classical Orlicz inequality (for all f e Cs® (Qz),

> (2|7 (B.8.)

pies p,es

)2<oo

follows from the classical Littlewood inequality (for all f e Cs® (Qz),

> |7 8.8)

pies Pyes

2
)1/2 < (D)

which, in turn, follows from the classical Khintchin inequality (for all
feL (@)l =&,

in fact, these three inequalities are 'equivalent'(see [230]). The extended
Orlicz inequality of Theorem (5.1.15) however, does not follow from or
imply a Littlewood-type inequality:

Proposition (5.1.20)[226]: Suppose F c §°,dim F >1.For every 1< p<2
there is feCF(Sz) So that
P 1/p -0

> | (B8

pes p,es

Proof: We argue as we did to establish the necessity of p>2/(3—dimF)
in Theorem (5.1.16) Suppose that s>1,4,4, = S|4|=|4,|=s and

(4, % 4,) N F| = Ks*
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where o >1. We follow (47) and (48) but in place of (49) we write
1/p
K Cs“? > D1 X,(B.B) > Ks s,
Pred \ p,ed,
The inequality above is valid for arbitrarily large s only if p>2.

We now move to a general harmonic analytic setting. With the aim of
simplifying future arguments, we start by altering slightly the definition of
¥,.FcE", (givenin (1)): Let s>1and write

‘PF(S)zmax{‘FﬂAL‘:ACE,

4|=s. (50)

It is trivial to see that the redefinition of ¥, has no impact on the definition
of dim F

(Definition (5.1.1).We recall: EcT is said to be K-independent, K a
positive integer, if for any J>J'>0, and{y,,....7,} < E,, the relation

J N J'
[1r7 =11
Jj=1 =1
where the Xi's and the vj's are integers in [-K,K],implies that J = J'and
A, =V, for j=1,.,J.E is independent if it is K -independent for everyK; 1-

independent sets are traditionally called dissociate sets. From here on, EcT
will denote an infinite dissociate set which does not contain 1, ,the identity

element of I'. Fix an arbitrary integerL >0, and define E, = {y"..y:" :7,,....,
distinct characters in E}.More generally, fixing ¢ = (gj )L =1,
J

¢, = =1, we define distinct characters in E }.Finally, define

E,-|U U E U

Next, we identify [EI, with a subset of the L-fold Cartesian product,
(BUETU{1-P" 1y =97 [E] is identified with 7= (j/f‘ yees Vi ,lr,...,lr) el
We designate

[E]L ={77:7/ e[E]L} (N
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givenF c[E], <T,, we denote

ﬁ'z{f:yeF}c(EUE"IU{lr})L (51)
Definition (5.1.21)[226]: Let .FcT

(1) The A-exponent of F is given by
A (p) }

QF :inf{a:lima<00 .
p

p—H >

0,.1s exact iflim (lF (p)/ p* ) <oo; ; otherwise, 6, is asymptotic.

p—>0

(i1) The p-exponent of F is given by

rF:inf{a:limpF (q)<0}

a
g 4

r. 1s exact 1fﬁ (pr (4)/ g7 ) <05 otherwise, 7, is asymptotic. (The definition

g—o

of . (p),

the A(p)constant of F, is stated in Corollary (5.1.3) the definition of p(q)
is given in Definition (5.1.10)

Definition (5.1.22)[226]: F cT'is a p -Sidon set (respectively, asymptotic p
- Sidon set) if

Cp(F)er (52)

if and only if »> p (respectively,r > p). (Following tradition, we refer to 1-
Sidon sets as Sidon sets.) The Sidon exponent of Fis given by o, = p and is
exact if F is p-Sidon, and asymptotic if F is asymptotically p -Sidon.
Recall that the Sidon constant of F T is given by

K, =sup{”/}”1 /||f||w feC, (f"),f;éO}
For each positive integer n, define

CDF(n)zsup{KA:AcF,

A| = n} .
Definition (5.1.23)[226]: The Sidon characteristic of F T is given by
—inf .._(DF (l’l) <o
N, =1 a'l}_l:}o’l e .
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is exact iflim, , (@, (n)/n™ ); otherwise, 5, is asymptotic.
Mg F F ymp

It is easy to see that 0 <7, <1/2 and we note two obvious external cases: (1)
n, =01s exact if and only if F is 1-Sidon. (i1) 7, :Els exact.
The first statement is a trivial tautology. The second statement,

appropriately translated, is folklore in various contexts (e.g., see section 1.6
in [24]).

Lemma (5.1.24)[226]: Let F cE, . For every integer s > 1
2 (25) <25 (W (sL) .

Proof: We shall prove the lemma first in the particular case where Eis an
infinite independent set in some I'. For example, we can take E to be the
Steinhaus system. For the purpose of the proof, designate

F={(B.B,)€E":B.., e F| (53)

Clearly, F c E*is symmetric:

(BioosBL) € F = (Bypyss By ) € F
forany r,a permutation of {1,..,L}. We thus trivially have
LY, =%, (54)
(¥, and ¥ are given by (50)). Let f € L. (G), f=> f(B)B, which can be

PeF
rewritten as

f=%2aﬁ7rl(ﬁ)...7rL(ﬂ)

* BeF

Where aﬁ:f(irl(ﬁ)...ﬂL(ﬂ))(as usual 7,..,7,denote the canonical

projections from E* into E ). As in the proof of Theorem (5.1.2) lets > 1 be
an arbitrary integer and write

0P
» L' yell

Where A(y)= {(ﬁl,...,ﬁx) eF:m(B).m,(B)-7 (B)= }/}.

2
Z dp--dg | > (55)

A(y)

|7
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Following an argument similar to the one in the proof of Theorem (5.1.2)
we deduce that

A(y)<(¥(sL)) and thus obtain from (55)

172 1 2.0
I, =9 ) ) S

yeF

But,

1 12 2,
I=(3) Sl
and we obtain from (54)

71, = (%2 (s2)) 71, (56)

To prove the lemma in the case F cE,, dissociate E={y,}  } we employ a
Riesz product argument and make a reduction to the independent case
considered above (see [228], for example). Let E, ={B,} | <T, (: (}’0) be an
infinite independent set of characters. For y=y,..y, € F denote g, =p,..5,

and Foz{ﬁy:yeF}c(Eo) Let feL.(G) be arbitrary, f=> f(y)y. Fix

yeF

teG, and let £,=>" 7(y)B, (t),

yeF

where  denotes here complex conjugation. Next, write a Riesz product

M:ﬁ(Hﬂno)wﬂn(f)ﬁ}

n=1 2

We easily have ||y, =1and u,* £, = £ /2", and thus obtain from (56)

L <2H(¥a(sL)) 7| s], forall s>1..

Is
Lemma (5.1.25)[226]: Let 7 c E,. Then, for every integer s>1.

25w, (5)) 7 <2, (25).

Proof: Let AcE,|4=s be so that ¥, (s) :‘AL NF
f= > =(y).m,(r), whence

yed'NF

, and define

Il =(¥ ()"
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Define the Riesz product R =] [(1+cosy)

yeAd

cosy =(y+y)/2)whence |R| =1,
1

<2’ and [R| <27, 1/p+l/q=1,
for all 1< p<2. We therefore have

271 (s) =R* f(0)< 2>

/1,
Setting ¢ =s in the inequality above, we obtain the lemma.

Lemma (5.1.26)[226]:

(K >0 is a constant independent of f).

<K]/]..

Proof: Let x,,...,x, € G be so that ‘f(xle)‘zuwa

Let Bc{l,..,L} =L and define for each y T

)=2 (%)= ps(7)exp(i6 (7))

JjeB

(P (7) = (v)|and6, (v) = arg ¢, (7))

By the symmetry of F —T'*, observe that

Lln XX L‘ i Z[Z“%( ) ¢B( ( ))j (57)

m=l1 BcL \ yeF
|Bl=m

Fix B c L, and write the Riesz product

y = H(H £ E (| 207 (expin, 1y + expi-i6, ()7 /2J

yeE

We have

> ad ()-8, (y)% =L =L\2[B)* |, * (0)|<L12[B) 1], (58)

X/ (w7, ()

yel

Summing (58) over all B< L, we obtain via (57) the desired estimate
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Theorem (5.1.27)[226]: Let EcI be a dissociate set, Fc[E,] be
arbitrary, and F be given by (51). Then:

(i) 6, =dimF; (ii) . _(dimF 1), (i) oy (iv)
F > F 2 9 F [1+ 1 j’

: =
[1— - ! ~j
dimF

2

Ng =

Moreover 6,,7.,0, and g, are exact if and only if dim F is exact.

Proof :(iv). Suppose dim F =« exact. Let n >0 be an arbitrary integer, and
f€C.(G) be so that

(e F:7(r)=0f|=n.
By Holder's inequality and Theorem (5.1.26) (iii) we have
2|7 sl <kl 0
wheneverp p>2/(1+1/a),and 1/ p+1/q=1. Therefore,
®, (n)<Kn® forall a>(1-1/a)/2 (59)

We now recall the following basic fact:

An immediate corollary to Theorem (5.1.27) yields that the dimension of a
spectral set Fc[E] <Iis well defined. Suppose that E, and E, are

dissociate sets and Z,, L, are positive integers. Assume that F C[El]lq and
Fc[E,], . Denoting the images of F in [EIL and [EJLZ (given by(51)) as
F and F,, respectively, we have
Corollary (5.1.28)[226]:

dimF, =dim F, = dim F .

Moreover, dim F, is exact if and only if dim F, is exact. Theorem (5.1.27) is

essentially a summary of the results in this section ,we shall sketch its proof
in the case F c E,, and then indicate how to obtain the general case F c[E],
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Combining Lemmas (5.1.24) and (5.1.25) we deduce part (i) in Theorem .
(5.1.27) Parts (i1) and (iii) in Theorem(5.1.27) follow from Theorems
(5.1.11) and (5.1.16)thru symmetrizing procedures and the use of Riesz
products similar to the ones employed in the proof of part (i). Leaving the
details to the reader, we note that the added ingredient here is a simple
combinatorial device, Lemma (5.1.26) below. Let feC.(G)be a

trigonometric polynomial, (=) f(y)y, and define the trigonometric
yeF

polynomial  f eC- (GL)by f:Zay(nl(y),...,nL(y)), where
a, =f(ﬂ1(y)...ﬂL(;/))

for each y e F (F is defined by (53) at the outset of the proof of Lemma
(5.1.26).

Theorem (5.1.29) Let F T be a Sidon set with Sidon constant X,. Then,
forall feL(G) and 2< p<w

Kelp 11,2111,

Let AcE be as at the start of the proof of Lemma (5.1.25) whence (as per
the proof of Lemma (5.1.25)

AuLn, (25) 227 (¥, (s))”

Therefore, by the Theorem above and the definition of @, we have

1/2
K L. >24 222
ATNE [ 2s j

From the inequality above it follows that

lim— - <o (60)

only if a >

Combining (59) and (60), we obtain Theorem (5.1.27) (iv). The same proof
works for the case dim F = aasymptotic.
U
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The passage from FcE" to Fc[E], in Theorem (5.1.27) is based on the

following basic lemma whose proof rests on routine Riesz product
arguments.

k

Lemma (5.1.30) [226]: Let 1<k<Lande= (sj)
There is e M(G) so that

| if yeE’
ﬁ(y)={ e

0 if ye[E], \E;.

_»¢,=%l1, be arbitrary.
J

Consequences ;Let E be a maximal dissociate set in I'in which case we
clearly have

r=Ue),

and [E]
present context to fill the 'gaps' between [E], and[E]

S[E], .for all £>o0. The results in [231] can be translated to our
L=1...

L+1

L+1°

Theorem (5.1.31)[226]: ([231]). Let E cI'be a maximal dissociate set inT"

(a) there exists a family of sets {F,}

X ) xe[l,0

, with the following properties:

(i) For each xel,»),F, C[E][x] ([x]denotes the smallest integer greater than
X), and dimF, = x.
(ii) WhenZ <x<L+1 , La positive integer, F, =| JF,, and F, =[E], = JF,..In

t<x t<L

particular,

U Ev:r'

xe[l,0)

(b) Letx, e[1,0) be arbitrary. There exists a family of sets {F,}

x fxel,

., with the

following properties:

(1) For each xe[l,x,),F. [E][x] and dim F. = x asymptotically. (iv) For each
X e [on)’Fx = ﬂx0>t>xF;‘

Predictably, combining Theorem (5.1.31) (1) with Theorem (5.1.27) we
obtain that I' is a 'continuous' union of spectral sets whose combinatorial
and analytic complexities are 'continuously' indexed. Similarly, part (2) of
Theorem(5.1.31) yields the existence of continuously decreasing towers of
asymptotic spectral sets whose combinatorial and analytic complexities are
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continuously indexed as well. Theorem. (5.1.16) implies, in effect, a
statement that is stronger than part (ii) of Theorem (5.1.31)

Theorem (5.1.32)[226]: Let E =T be dissociate, L a positive integer and

F c[E],. Then: Forall feC, (G)

e

<o
if and only if

dim F exact,

1
1+—
( dlij

[+ )
dimF

Section(5.2): Combinatorial Measurements and Orlicz Norms

dim F asymptotic.

We focus on connections between measurements reflecting purely
combinatorial data and measurements that are based on harmonic-analytic
and probabilistic properties.

Given an infinite set ¥ and FeY"(n>1), we consider a function associated
with .y, such that for seN,

Y, (s)zrnax{|Fﬂ(A1><...><An)|:Aj cY,

Aj‘Ss, j=1,...,n}. (61)

Define

diszgnlog‘PF (s)/logs; (62)

§—>0

Equivalently , for a> 0define

dF(a):sup{‘PF(s)/s“:seN} (63)

and observe that if | F |= o, then
diszinf{a:dF(a)<oo}=sup{a:a’F(a)=oo}. (64)
The function ¥, is viewed as a gauge of the combinatorial complexity in

F:¥,(s) is the smallest integer K such that for all s-sets A, cY,.., A, cY
the number of samplings
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a, €A,,...a, €A, with (a,...,a,)eF is no greater than k. The index dim is

viewed as the combinatorial dimension of F, conveying that ¥, (s)“grows

. dimF .
like? s , in the sense that

E‘PF(S):{O i]'”ﬁ>di.mF, (65)
o if f<dimF.

e gP
We distinguish between two cases:

(i) If lim, P, (5) /8™ <oo(d,, (dimF) <), then dim F is exact;

(ii) Iflim—e¥, (s) /"™ =oo(d, (dimF)=w0), then dim F is asymptotic.

(see [219]). In this section we further analyze the asymptotic case, and
establish a precise resolution of it.

We take Yto be N (without loss of generality), and identify it with the

Rademacher  system(r,) =R, ~a set of projections from
je

{—I,I}N ::Qonto{—l,l} :
rj(w)zw(j), JeN, w=(w(j)) eQ. (66)

JjeN

Here we view Q as a compact Abelian group (endowed with the product
topology, coordinate wise multiplication, and the normalized Haar measure
P), and view Ras an independent set of characters on Q. (see [219]).For
FcR'(n21). , let C, (Q”) and LZF(Q”)be, respectively, the spaces of
continuous functions and P ”"-square integrable functions on Q", whose
Fourier—Walsh transforms are supported in .

For >0, let || be the ¢ norm, and for feC(Q”)., let 7 be the Fourier-
Walsh transform of /. ForF cR"and >0, let

; :feB. (Q" )} , (67)

A

f

¢r(t)= SUP{
where B, (Q) denotes the closed unit ball in C, (Q”), and define

o, =inf{t:{, (1) <o} =sup{r: ¢, (1) =oo}; (68)
if ¢.(0,)<0, then o, is exact, and if¢, (o, )=0 , then o, is asymptotic.

For FcR” and t> 0, let
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ne (t) =sup {Ilf |,/P':p>2feB, (Qn)} : (69)

where B,

- is the closed unit ball in L. (Q) and define
S :inf{t:nF (t)<0}=sup{77F (t)ZOO} (70)

again, if 7,(6,)<0, then 5, is exact, and if 7,(5,)<0, then &, is
asymptotic.

The main results in [226] were:
dF(t)<oo<:>§F(2t/(t+1))<oo©17F(t/2)<oo (71)
In particular,

_ 2dimF

_ 2
T dimF +1 (72)
and
5 =L, (73)

where o, and §, are exact if and only if dimF is exact. These results in

effect were extensions of the classical Littlewood 2n/(n+1)-inequalities
[84,112], and the n -dimensional Khintchin inequalities [13,10].

We use Orlicz functions and their associated Orlicz norms to precisely
resolve the case d, (dimF)=o0. Our work is divided into four parts. In the

first part we focus on the combinatorial gauge ¥,,FcR"(n>1). Given

functions ¥:N - N and ®:R — R we say that ¥ is quasi-asymptotic to @,
and write ¥ : @, if

¥(s)

O<Enq)(s)<oo. (74)

§—>00

We prove Theorem (5.2.3) that if FcR” is infinite, dimF =a(a>1), and

EM‘PF (s)/ s“>0, then there exists an «-Orlicz function (Definition
(5.2.1)) @ such that ¥, : ¢q®.. Conversely, we show (Theorem (5.2.7) that
for every a-Orlicz function ®(« >1) there exists ¥ c R" such that ¥, : ¢®.
These results extend prior constructions in [227] and [220].

154



In the next three parts we derive precise relations between ¥ F(FCR”)
and corresponding Orlicz norms associated with ¥, in C F(Q”) and

LZF(Q”,P”) (Theorem(5.2.13)  Corollary  (5.2.18)and  Theorem

(5.2.22).These results naturally extend prior results stated in (71), (72) and
(73) above, concerning relations between combinatorial dimension and
Littlewood-type inequalities and Khintchin-type inequalities. An R -valued
function @ on [0,%) is an Orlicz function if ® is continuous, non-

decreasing, convex, ® (0) = 0, andlim_,, ®(x)=o, see [116]. For F =N,
and Orlicz function @, define (extending the definition in (63))

d, (CD)zsup{‘PF(s)/CD(s):seN}, (75)
If ®(x)=x" for some a>1, then we write d,. (a) for d,. (P).

Note that dim F =a is exact (a >1) and lime .y, (s)/s* >0 if and only if ¥,
is quas-iasymptotic to ®(x)=x“,x>0. If dimF =« is asymptotic, then we
focus on ¢(s)=W, (s)/s*, where (necessarily) lim¢(s), and ¢(s) is o(s*)

for all £>0. To this end, for technical reason that will later become
apparent, we introduce the notion of an a-Orlicz function:

Definition (5.2.1.)[218]: For « >1, an Orlicz function @ is said to be an a-
Orlicz function ifg e C*[0,1)and ®(x)=x"¢(x) for x>0, where either ¢=1,
or ¢ satisfies the following properties:

(i) ¢ is concave and strictly increasing to oo;(ii) x¢(x) is convex for x>0;
(iii) ¢(x) :o(xg) for all ¢ >0, and for each ¢ >0 there exists K >0, such that

¢(x)/x° is decreasing with increasing x for x> K .

Example(5.2.2)[218]: Suppose we want to construct an a-Orlicz function
whose graph contains (s,s“(logs)ﬂ ) for s large, for some o >1 and >0.

Note that (log x)® is not concave forx<eﬁ’1,x(logx)ﬁ is not convex for
x<e” , and the y-intercept of the tangent line to the graph of (logx)ﬁ at x

for x<eé’is less than 0. Let xozmax{el’ﬁ,eﬁ}ﬂ, and let ¢ be the linear

function whose graph is the tangent line to the graph of (log x)” at xo; that is
(¥)=(logx ) + x5 (log )" (v-x,),  —m<x<eo (76)

Let
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B .
3(x) = (log x) .zfoxO (77)
(x) if0<x<x,

Smooth ¢ at x, so that the smoothed function ¢ is in C*[0,x), ¢ is
concave, and x¢(x) is convex. Then the function ®(x)=x"¢(x) for x>0 is
the desired a-Orlicz function.

Theorem (5.2.3)[218]: Let neN. If F<=N" is infinite with dimF =«, and
EW}PF(s)/ s*>0, then there exists an «-Orlicz function ® such that

Y,.: q..

Proof. Because FcN® is infinite, we have a>1. If d,(a)<w, then
@ (x)=x* for x>0 is an a-Orlicz function such that ¥, : ¢®.

Suppose d, (a)=o0. First we choose a sequence {Sj},sj T . For any positive
integers s and s, let ¢/ be the linear function whose graph is the line
passing through (s,‘PF(s)/s”‘) and (s',‘PF(s')/(s')“) let ¢, be the linear
function whose graph is the line passing through (0, 0)and (1, 1).) Let s, =0,
and s, =1. To choose for j>2, we proceed by (double) induction.

Suppose we have chosen s, for;j>2. To choose s,,, we consider the ]

points S_gl),...,s_g") such that

Y.ls, b4
sj.l):min{s>sj: Fg’)< Fa(s)<fs_ v_S},andforl<i£j (78)
K J-12
J
Yo, b4
sﬁ.l) = min{s > sﬁ'_l) : Fg j) < Fa(s) <l v_S}, (79)
Sj K J-107j

The existence of s_gl),...,s_g:’) for any ;is guaranteed because d,(a)=c0, and
because ¥, (s)/s* :o(sg) for all £>0 (because dim F =«). Denote the slope

of ¢ ., bym, , forany s and s'. Let

(,)} for all i=1,....;. (80)

;58]

- (1) ().
S —max{se[sj PR ER L=

Continuing this process, we obtain a sequence s, T o that satisfies
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(1) lI’F(sj)/s]’?‘ is strictly increasing to o with increasing j ; (ii)

m, >mg >0 forall j>1;

j18

(iii) for each ;, and s, <s<s" either
‘P;(S) >0, (s), @81)
or
‘Pga(s) <ty () (82)

Claim (5.2.4)[218]: For each ; , there are only finitely many seN such
that

Prels), 0, (s) (83)

Proof : Suppose the claim is false. Then there exist j and a sequence s, T oo
such that .

>/ (s,'c), (84)

Forx>o0, write

o (X)=m  x+D,, (85)
where m, >0, and b, >0. By (84) and (85),
Yo (s)zm,, (5)7 4, () (86)
which contradicts F = ¢, and the claim follows.
(]
Let ¢ be the piecewise-linear function defined by
x)=t,, (x) s,Sx<s,,j21 (87)
Claim (5.2.5)[218]:
sup{\¥ . (5)/(s"¢(s)):s eNf <o, (88)
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Proof : Suppose the claim is false. Then there exists a sequence {s/} such
that nd lim,_, ¥, ((sf )/(s!)” E(s;)):oo.By Claim 1 and because

1 1

, ], there exist j sufficiently large, and s/ e [s j,sf.’)] such that

0 (s)<¥e(s))/(s))" <¢, ., (s7), which contradicts (81) and (82), and the

claim follows.

; ()
sj,sj+]‘c ;S

Next we construct a spline function as follows. Note that for 5> 0,(10gx)h is

concave for b<log+1, andx(logx)h is convex for x>e. We start from s,

(because s, >e). For s, <x<s,, let

12 (x):a4(logx)h4 +ex+d,, (89)

Where a,>0,0<b, <logs, +1,c, >0, and d, are chosen such thatC

m

! S3 S4 +m§‘4 SS
p4(s4):((54)= p4(S5)=f(S5), (p4)+(s4):f (90)

where (p, )'+ (x) denotes the right derivative of p, at x. (Similarly (p,) (x)
denotes the left derivative of p, at x.)
Fors, <x<s,, let

ps()c)zas(log)c)h5 +egx+d,. 1)

where a; >0,0<b, <logs,+1,¢, >0, and d, are chosen such that:
(iv) if (p,) (s;)>m,_ . then
Ps (Ss) = E(Ss)a Ps (S6) = E(Sa)a al’ld(p5 ),+ (Ss) = (p4 ),_ (Ss)§ 92)

(v) if (p4)'_(s5)s m, . then

! ms5 Se +ms6 57
ps(ss)ZE(Ss)a ps(So)’ and (ps)_(s()):f' (93)
We proceed as follows. Forj>6, and s, <x<s,,,, let
p;(x)=a, (logx)h’ +ex+d,, (94)

wherea; >0,0<b, <logs; +1,¢,20,, and d; are chosen such that:
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vi)if (p.) (s,)>m, . -then

pi(s;)=0(s,). p(s:)=4(5). and (Pj)l+(sj)=(1’j—1)l_(sj); ©5)

pi(s)=t(s;). pilsia)=tls50), (96)

and

! _ msj,s i+ * msj+1,s 42
() (510) =" - (97)

<(p, ),+(Sj)' By the

mean value theorem, there exist x, , € (s 1sS j), and x; e (s S jﬂ) such that

For any j>5 such that (vii) holds, (p,,) (s,)<m

S8 i

—_— 4 —_—
Py e(xjfl)—mxm,/ and p| e(xf)_mwm Because p,, and p, are concave, and

becausem,  >m, ., thereare ¢ € (xj,l,s j), ,and ¢, (Sj,xj) such that
p},l(tj,l)zp}(tj). (%)

For x>0, let
T;’(x):pj—l (tj—1)+p]"—1 (tjfl)(x_tjfl)’ 99)

that is, 7, is the linear function whose graph is both the tangent line to the

graph of p , at ¢ _ ,and the tangent line to the graph of p, at ¢, .Let ¢ be the

-1

spline function such that

(viii) for 0<x<s,,$(x)is the linear function whose graph is the tangent line
to the graph of p,at s,;

(x) forany x>s,, let p(x)=p,(x),s,, <x<s, for j>5 and let

- T (x) if ¢, <x<t,[t,,,t;]c[x, ,x;], j=5,
¢(x)={ (x) (100)

p(x) otherwise,
where ¢, and ¢, j > 5, are indicated in (93).
Then 4 is concave, and xg(x) is convex. Let ®=x“§(x). By Claim (5.2.5)

and because ¢ > ¢,
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sup {'¥ 1 (5)/®(s):5 €N} <sup{W¥, (5)/(s"(s)):5 €N} <. (101)
Claim (5.2.6)[218]: There are infinitely many j such that

#(s,)=(s,)- (102)
Next we establish the converse to Theorem (5.2.3.) .

Lemma (5.2.7)[218]:[219] Let n>2 be an integer, and 1<y <n. Let ® be
an Orlicz function such that x<®(x)<x” for all xe[l,0) and ®(x)/x" is

decreasing with increasingx. Then for everykeN, there exist
F k] ([k]={L....k}) such that

Y. (s)<CD(s), selk], (103)
and
IF] =‘PF(k)2%(D(k). (104)
where C > 0 depends onlyonnand vy .

Proof: Fork keN, let {X (&) :ie[k]"} be the Bernoulli system of statistically
independent {0, 1}-valued variable on (€, P) such that

P (X.(k) :1): . (105)

Consider the random set F = {i x = 1}.

We use the following elementary fact about binomial probabilities: for
p<(0,1), and integers m >0 and i>2mp,

m i+l (g Ml m i(1_ A\
2[i+1jp (1 p) S[i jp (1 p) , (106)
which implies
e e 107
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Fix se[k], and let 4 be a s-hypercube in ([k]'A=4 x..x4, where
|4|=...= 4, =s5) Denote

szax{Z ””} (108)
n—y

Let j(s [CCD ] (= smallest integer >C®(s)). Then

j220(s)=2s" (109)

gz[s_"jj[q)]ff)jjg( 25" 0k) (110)

C@(s))j e k"

Then,

ns ns

Ca(s)) ek s"e™ (Cla(s)) e k"

= RS

(ZX s )for some s — hypercubeAj {k jn(zs"j (@) _ k" (@Ek))

(because ®(s)/s",n(j—s)+j=j=sand(n—y)j =(n-y)CO(s)=(n+1)s )

Hence,
k s
P {z x> CD(s) for some s —hypercube A, s [k]} <> (%) (112)
ic4 s=1
Therefore,
limP {ZX,.(“ 2C<D(s)j=0. (113)
k—0 ied
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By Chebyshev’s inequality,

o[ ©k) Y (k)
P( > 25 J V| 3 X -4 )_ "V‘r(fi(k))g% ( K j[lzkj
i (Cb(k)j k) D(k)
2
Scp?k)' (114)
Hence
limP{ > x< gk)J 0 (115)
k—o te[k]
By (113) and (115),
limP (7) (116)

satisfies (103) and (104)=1
i

Let #,,...,z, be the canonical projections fromN" ontoN. We say F <N" and
Gc<N" are n-disjoint if 7z, (F)Nx,(G)=¢forall /=1,...n.

Lemma (5.2.8)[218]: (Cf[219].). Suppose F,.jeN, is a sequence of
pairwise n-disjoint subsets of N”, and let F=U F,. For an Orlicz function
®, and for every meN,

sup{ #(s5)/®(s): Se[m]}<nsup{ ( )/ @(s): Se[m],jeN}. (117)
Proof: Let m eN and let s €[m]. For 4 x..x4, ¢ N" such that
|A1|Ss,..., <
[ (F)N4l. ic[a)jeN (118)
and
sjzmax{sl.,j:ie[n]}, jeN (119)
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Then ism <|4|<s, ie[n] (120)

J=1

Let
L—sup{ #(s)/ ®(s):s€[m], jeN}. (121)

By (118), (119) and (121), for any jeN,

£, 0 (4 x.x 4,) =|F,0((7 ()N 4 )xox(7, (F)N 4, )) < 2o (s)) (122)
then
|Fﬂ(A1 X.. XA, )| _ ZL\F/ N(A4 x...x 4, )‘ . LZ;@(SJ) 13
o) o) o0 (29
Because @ is increasing,
Y05 )Y Y0, )< 3o [isi!jjﬁnd)(s) by (119) (124)
(because @ is convex) by (120).
By (123) and (114),
|Fﬂ(A1><...><An)| .
o(s) <nL (125)

Theorem (5.2.9)[218]: ([219].For n>2, and 1<a<n,, if ® is an a-Orlicz
function, then there exist ¥ = N” such that ¥, ~q®,

Proof]: Leta <y <n, and let @ be an a-Orlicz function. Then x<®(x)<x"
for large x, and ®(x)/x"is eventually decreasing. By Lemma (5.2.3) we
produce a collection {Fj}of pairwise n-disjoint subsets of N” such that
{ r (s)/®(s )'SeN}<C, and for each jeN, we have ‘ﬂ/(Fj)‘zj for

j)/2. Let F=U,F, and apply Lemma (5.2.9)

Suppose ®(x)=x“¢(x) forx>0 is an «-Orlicz function. Because ¢ is
concave, increasing, and¢(0) >0, we have ¢'(x)<¢(x)/xfor all x>0. Hence
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#(x) N
os¢(x) <1, > 0. (126)
Let
@(x)zx%l(ﬂx))%, x>0 (127)
and
1
0(x)=¢(®_1—(1/x)) ,x>0 (128)
Note that
$(x)0(1/0(x))=1, x>0 (129)
For x>0, define
M(D()c)z)c%(é?(x))ﬁ (130)
Then
Mg (x)= alJrlxafl_l (6’()c))m {2a+ 90((;)) x} (131)
and
M (x)= ailx«fffz (0(x)) {Zaéff‘x;l) +Dx} (132)
where
o 0'(x) _a 0'(x) ’ 0"(x) ,
PL)= o) a+1(0(x)xJ Tom) (133)

We now establish that A, is an Orlicz function. We will use the Orlicz
norm associated with A7 .

Lemma (5.2.10)[218]: M, (defined in (130)) is an Orlicz function.
Moreover, except for the case ®(x)=x forx>0 , we have M;(x)>0 and
Mg (x)>0 forx>o0.

0]
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Proof: It is obvious that M, (x)>0 for x>0. Now we consider M. Taking
derivatives on both sides of (129), we have

¢ (x)0(1/0(x))+(x)0' (1/0(x))(1/6(x)) =0. (134)
Hence
q;'((;c))x—i—00'((11//2)(());))))(1/®(x))'x=0. (135)
By (127),
(1/0(x)) x “2”(1+E( )(1/0(x)). (136)
where
(1)
E(x)—[OHJ(b(x) . (137)

Notea > 1. By (135) and (136), and by substituting1/©(x) =y, we have

() _ 2 #(x) ()
00)” a1 EE) o) " o) " by (126) . (138)

Taking derivatives on both sides of (134), we have

¢ (x)0(1/0(x))+2¢'(x)0'(1/0(x))(1/©(x))

+¢(x)0”(1/®(x))(1/®(x) )2 +4(x)0'(1/0(x))(1/0(x)) =0. (139)
Hence
¢"(x) , ¢'(x) o(1/0(x)) . 0"(1/0(x)) A
¢(x) R ) ¢(x) X 9(1/®(x)) (1/®(x)) X 0(1/®(x)) ((1/@()6)) j X
09((11//;)((;)))) (1/6(x)) x* =0 (140)

By (127),

(1/8(x)) x* =w(1w(x))(1/@(x)), (141)
where
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Fl)e {a+1¢'(x)x+§[¢’(x)xj2

$"(x)
(a+1)(a+3)| 2 ¢(x) 4 x} (142)

Bringing (136) and (141) into (140), and substituting1/©(x) =y, we have

P"() o e ), 20)
¢(x)x ( 1)(1 E( ))(b(x) Q(y)y

) ( (XTHJ (45 (0) 6;”((;)) . (a +1)4$a +3) (1+E(x)) 99((;)) y=0. (143)
By (137) and (142),

1+ P (x)=(1+E(x)) - (a+1)2(a 5 ":((j)) ©—G(x). (144)
where

e 4 P(x) ] e #x)
O = (@) o) { 2a+1) 4() } (145)

Then by (126), G(x)>0for all x>0.Applying (138) and (144) to (143), we
have

() <a+1)2<1+E<x>>2[9'<y)yj2

x =

o) > Lo
NGO PO (oo g O,

P L00) (a)@nd) 00

I N T IO M o
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S0 100) ) @)@y o)
o [l zemyJ )

[because— ¢"(x) x*>0,0< 0 (y)y <land G(x)= OJ. (147)

Hence for all y>0.

00) L O0) L (@s3)0()
‘2(e<y)yj+e<y)y ( = e

Then, by (133), for allx>0,,

D<x>-{{9'@%}2+0"<x)>xz+<o;+3>0'<x>x .

H(x) H(x ( +1)0(x)
a+2(0(x) | 3a-30(x) _
+a+1[9(x) x} e o(x) " (149)

By (132) and (149), we have M} >0.If a >1, then 2a(a-1)(a+1)>0, and
hence Mgy (x)>0 forx>0. If a=1, and ¢ is strictly increasing, then

M)»Oin (138), and hence D(x)>0for x>0. Then My (x)>0forx>0.

0(y)
Because @ is an a-Orlicz function, eitherg=1, or ¢ is strictly increasing.

Therefore, except for the case ®(x)=x, we have M (x)>0 and Mg (x)>0
forx>o0.

The following property will be needed.
Lemma (5.2.11)[218]: For »m,, defined in (130), M (x)—xMy (x)> 0 for all

x>0.

Proof: It suffices to show that M (y)-yMg(y)>0 for all y>0, where
y=1/0(x),For simplicity, we denote M, by M, . By (131) and (132),

' " 1 27(1_1 L
M'(v)=3M" ()= —=y O(v) H(y). (150)

where
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0’()/) 2a(a—1)
H(y)y_ a+1 by (151)

H(y):2a+

where D(y)is defined in (133). By (149) and (147), we have

_ 4 H@) L, 10W)), (e (@+3) , 0()
D(y)‘<a+1>2<1+E<x>>2{ 4(2) (l ze(nJ 3 G<>9(y)y}
+(o¢+2) 6'(y) 2+3a—30’(y)

(a+1) [B(y) yj (a+1)0(y)” (152)

Because x¢(x) is convex forx >0, we have

(x(b(x))" =2¢'(x)+x¢"(x)>0, x>0. (153)
Hence
) ..
4(x) 4(x)

(154)
By (151), (152), (154) and (145),

H( )>4_a+0'(y)

Zari 00’
e S R B e (e R ]
<5 e
e e s )
Sals] R e
By (137),
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4 O(y)

0'(»)
(a+)(1+E(x)) 0(y)" "

4
#(x) o0’

#(x)
4 ¢'(x)x< 4
¢'(x)x¢(x) o+l
#(x)

By (155) and (156 ),

H(y)z 22 +(1_3“‘3j9'(y) _a+2(9'(y)yj2

a+l a+2 a+l H(y)y a+l

a+1+

( by (126) and (78)) . (156)

a+1+

o +3a—2+—2a+49'(y) _a+2(0'(y) ’
(@+)(@+2) a+l  a+l 0(y) a+l g

o’ +(305—2 —2a+4j9'(y) _OH—Z(B’(y)sz

> + y
(a+)(a+2) \a+l a+l JO(y)" a+l

( because 0< Q(y)ySI)
~ o’ a+20(y)  a+2(0'(y) ’
“(at))(a+2) a+l Q(y)y_owrl(@(y)yj >0, (157)

as desired.

We recall the following definitions of Orlicz norms (see[116]). For an
Orlicz function M and a sequence of scalarsa =(a,,a,,...), define

lal, =inf{p>0:n§;M(an /p)Sl}, (158)
M () =max {px—M(x):x >0}, (159)

and
lal, =sup{ni:anbn SQAE 1}. (160)

The two Orlicz norms| - |, and || -|| = are equivalent and
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lal,, <lall,, <2ldl,,- (161)

Definition (5.2.12)[218]: For F c R" and «a -Orlicz function @, let

A

i, i ebe (@), (162)

CF(QD):sup{
where M, is given in (130).

This definition naturally extends the definition in (67). If ®(x)=x,x>0, for

somea > 1, then ¢, () and ¢, (2a/(a+1))have the same meaning.

LetneN. For F = R"and « -Orlicz function @, let

i if d. (®)<1
5(at) = ., | (163)
Aot rary) @

Theorem (5.2.13)[218]:. (Cf .[219]) ForneN, there exist C, >0 and D, >0
such that for all F < R” and « -Orlicz functions @,

¢, (d, (@) <¢, (®)<D, max{dF (®)2 ,1}. (164)

Proof: Let ® be an « -Orlicz function, and let F c R” such that d, (®)<x..
First we assume lim,_,, ®(x)/x=oco.. (That is, we exclude the case ®(x)=x
for x>0.) Then, by Lemma (5.2.10) M, (defined in (130)) satisfies
My (x)>0and Mg (x)>0for x>0. (The case @(x)x,xe[0,»0), will be
discussed later.). For M, simplicity, we denote M, by M. In (159), for
eachu>0, the maximum of u(x)-M(x).occurs at the unique point x
satisfying M'(x)=u. Hence we can treat x as a function of u, and write as
a function satisfying the two equations

M’ (p)=ux—M(x),, where x is such that M'(x)=u.
(165)

We define M, on [0,)in a similar way by
M, (w)=~wx —M(x), where x is such that M'(x)=v/w. (166)

Then for x satisfying (166),
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M;(w)=21 wr (Nt () B (167)

and

(168)

By (167), (168) and Lemma (5.2.11) M, is an Orlicz function such that
M, (w)>0,M5(w)>0 forw>0. By (159),

M;(y):max{yw—MZ(w):w>O}. (169)

For each y>0, the maximum of yw-M,(w)occurs at the unique point w

satisfying y=M;(w). Hence we can treat w as a function of y. But x is a
function of w in (166). Therefore by (166) and (169),

M, (y)= —%M’(x)+M(x),, here x is such that

() =y. (170)

Our aim is to apply (170) and the duality expressed in (160) to prove (164).
To this end, letse N, and consider a s-hypercube 4 x..x4, < R” such that

[FN(4,x..x4,)|¥,, By(158)

1

FN(Ax..x4,) "

*:inf{p>0: > M;(IF(W)//))SI} zinf{p>0:M;(l/p)‘PF(S)Sl}.(171)
Let p, >0be such that
M;(1/ p) ¥ (s)=1 (172)

Then p, =||I

. Replacing y by 1/p, in (170), and then combining

FN(A4x..x4,) u

(170) with (172), we ﬁave the system of equations

:M(x)—gM'(x) and (173)

(174)

We want to estimate p,_ using Eqgs. (173) and (174). To this end, we
first estimate x as a solution to Eq. (172). By (173),
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= (1/0(s))=1(0(1/0(s))) by (127) (175)

S M (1/0(s)) (by (130))

d.(®)

if d, (®)>1, then

2a 1
a+l

M[dF (op)%1 xj = L(dF (@))ZE xTH MG(dF (qa))ﬂ xﬂw by (130)

2a 1

>d, (®)x"(0(x))=" (because 0 increasing)
4p (@) (x) (i (130)
>M(1/0(s)) by (175) (176)

Because M is increasing, the comparison of both sides of (176) implies

xZ(dF(d))) /0(s) (177)
If d,.(®)<1, then by (175),
M (x)=M(1/0(s)). (178)

Hence

x>1/0(s). (179)
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For simplicity, let d, (®) :max(dF(CD),l), By (177), (179),

a+l

x2>d, ()2 /0(s), (180)
which is the estimate that we need.

0'(x)

Now we estimate p_ . By (138), we have Osmxﬂ for allx>0. Then by
X
(131) and (174),

P, =ﬁx‘33_2(9(x))01+1 {2a+%x}ﬁ4(x'29(x))“1“. (181)

0'(x) 1

Because 0< mxﬁl for all x> O,(x‘zé?(x))m is decreasing with increasing
X
x. Then by (180) and (181),

1
- 1 1

<4(d,(@)) s(g(s))=(6(1/0(s)))=" (by (127) and because d, (®)=1)

1

=4(d.(®))*s  (By (129)) (182)

which is the estimate we need.

Let » be a function with support in /* such that

M (|n(w)[) <1.. (183)

weA x.. x4,

(165) and (166), for allwe 4, x...x 4, ,
M (|n(w)) =M, (|h(w)|2). (184)

Hence
A (|h(w)|2)£1. (185)
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Then,

1

> = X fr(w) 1<

we A x.. x4y we A x.. x4y

FN(4x..x4,) v

by (185) and the duality in (160)

<2l by (161)

FO(Apx.x Ay ) o

/e

<8(d.(®)) "s by (182) (186)

Let =, be the canonical projection from R” onto R. By [219], there exists a
coverG,...,G, of 4 x..x A such that for everyi=1,...,n,,

Va

max Zl () 1, (w) <8(d (@) . (187)

Suppose fis an R”"-polynomial in C(Q”)with spectrum in 4, x..x4,. (We
identify (r,,...r, JeR" with the character w=r, ®..®r, on Q".) By the
Cauchy—Schwarz inequality, (187) and ([219]) we obtain for i e[n],

<2,

red;

2 (w)h(w)ig( 2 S (W)h(w)g ()

weA x.. x4y

i |(wemy [r]
12 2 Y
EA wenl [7] wenl_l[r]
" b
Smax[ > nw) IG,(W)J : [ DI J
red; | wem 1] re; \wem [r]
<2V2(d, (@)« gR(1)2§ 171, (188)

where ¢, (1)=sup “ f ”/1 : f € B, o < 2. Therefore,

D TmEwI<D DL Tmh(wig(w)

wed x.. x4, i=1 weA X.. XAy
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1 n-1
<2V2n(dj (®))20 CR(1)2 2 |f]],, - (189)

By (183), (189) and the duality in (160),

Ty =sup Z J(w)h(w): Z M (jn(w)) <1
1 n—1
<20V2n(dp (®))22 ¢R(1)2 2 |f],, (190)
Then by (161),
A 1 n-l
7], < 2v2n(dp (@))2 cr(1)2 2 7], (191)
.

which implies (164) with D,, = 2v2n¢R(1)2 2 .
Next suppose that @ (x)=xfor all x>0. (Recall we excluded this case in the
beginning of our proof.) Then Mg, (x) =M (x)=x,x>0, and |-|, =|- H@[Rn),

Let h be in the unit ball of ¢*(R")with support in F. Then

Z (W) <[FO|(4x.x4,)<d, (D)s. (192)

WeA1 x___xAn

which corresponds to (186). Following the steps from (187) to (191), we
have

A

1 n—1
f| <n(dp(@)2¢R(1)2 2 - (193)

which implies (164) in this case.

Now we prove the left side inequality of (164). For seN, let 4, x...x 4, be a
s-hypercube in R” such that |[F(4 x..x 4,)|="¥, (s)Identify (r,....r, )eR"
with the character w=r, ®..®r, on Q"By the Kahane-Salem—Zygmund
probabilistic estimates ([219], Theorem X.8), there exists a {-1,+1} - valued

n-array {ew:ew: t,we FN(4x..x 4, )} such that if
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fer Y ew (194)

then

1 1

71 <c|fl, (log(2”“‘ ))5 =Cs 2 (ns)2 (log2)2 = Cn? (log2)z (195)

where C >0 is a constant. By (158),

/.

L)/ p)< 1}

=inf< p>0 > M
Mo {p wEFﬂ( ¢ (

A1><,,.><An)

:inf{p >0 Y )M(D (s_; (wr (s))'% /pj < 1}

weF((4)x..x 4y

—inf {p >0: M, [s_; (we (S))_% p'ljw (s)< 1}. (196)

For each seN, letp, >0 be such that
M, [s'z (¥r(s)) 2 /p;lj‘PF (s)=1. (197)

Then p, = ” f

. By the definition of 4, (®)in (75)and because ®is an a-

M,

Orlicz function, we have,
Y, (s)<d, (Q)D(s)=d, (®)s“d(s). (198)

By the definition of A, in (130) and by (197),

1
2 R _atl 1 L atl
> p (\PF (S)) a+l g a+l LQ[S 2 (dF ((D)) 2 (¢(s)) 2 px‘lj}
by (198), and because 6 is increasing (199)

By (199) and (127),
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pi (9, 6) 50 (4, (@) " 0(0) |
Let

-1

Ps

N |~

c= (dF ((D))_
By (200),
P>V, (s)s’“@(c/@(s))

If ¢ >1, by (202) and (129),

pe ZTF(S)SﬂH(l/@(S)):lPF (s)s™ ((ﬁ(s))f = F(S).

Then (by taking supremum )

sup{”]iHMw :s eN} =sup{p, €N} 2sup{¥, (s)/ ®(s):s eNy=(d, (CD))i

If ¢ <1by (127) and because ¢ is increasing,

e/0(s)=es * (p(s))> ZKC_LSJ [¢[c«2+wjj | =1/®[c-5“s)

Then

0(c/0(s))= 9{1 / ®£1 / ®[c-ai1sn - L(b[c—jﬂsn_l } By (129).

By (202) and (206)

Pz, (s)s™ [(b[c_"z“sn .

Because¢ is concave andc <1,

2

(’{C_MSJ 9 0-40

177

(200)

(201)

(202)

(203)

(204)

(205)

(206)

(207)

(208)



Because ¢(0)>0,

¢ c Oj-lS
LTJ<¢(S)¢(0) 2O c4(6). (20)
ﬁ c ot

By (207), (209) and (201),

P =W, (5)s (¢(s)) e = e (d,®)" p,". (210)
Hence
2(a2+a+1) e
p, @ Z\PF(S)(dFCD) @211)

®(s)

Then (by taking supremum)

o]

By (195), (204) and (212), we obtain the left side inequality of (164) with
(Cn”2 (log2)l/2 )71

Corollary (5.2.14)[218]:For ne N,F cR", and « -Orlicz function @,

@%ﬁkmg(@)w. (213)

L eN} =sup{p, :s€ N} z(%(@))@‘aﬂ[z&’i&ﬂﬂ = (@, @) (212)

Remarks. ((5.2.15) [218]: (i) (A question) we were unable to answer the
following: on the left side inequality in (164), can §(a)be replaced by1/(2¢)?

(ii) (Example(5.2.2). Let log® denote the i-fold iteration of log. Suppose
®(x)=x"¢(x) is ana -Orlicz function such that for some ~ >0,

ﬁ(log x) , x>N, (214)

i=1

for k>1and B, >0fori=1,..,k, We want to show that the Orlicz function
M, defined in (130) can be approximated in a neighborhood of 0 by

N @15

1



in the sense thatlim _,, M, , (x)/ M, (x)=1. By (130) and (215),

M
hn% (;\,4,31,“(&)()(:) — hn3 — 1
oM v (o)
B k P
sl 1 (@) ® a+l
_ [“_”j o LLlloz” O0 )1) by substituting x = 1/6(y)
2 y%oo -
(9(1/@()/)))0:4—1
a+l1 % L ol 12 Tanl
:(—j lim g (y)et H[log( ) [y 2 (¢(y)) D by (127) and (129)
Yoo i
- (“—”Jﬂl limﬁ(lo 0 )1( lo Jﬂl
=75 ) [fm]Tlee"y gy
A
k k a+l
H{l g™ [—loger—log(H(log()x) D} by (124)
i=2 i=1
“ (10g) )'B’l
k ~ {log" y )=
=] lim 1. —=1
-2 y—o© ﬁ
Hk,z {1 (i-1) ( log y+—log (H 1(log() x)ﬁ jj}
( by L'Hopital's rule), (216)
as desired.

Definition (5.2.16)[218]:. (Cf. [219]).) ForneN,FcR”, anda-Orlicz
function @, let

n(@)=sup|f], /0(p):p>2 feBppf- (217)

This definition extends the definition in (69). Our aim is to establish a link
between n,(®)and d,(®), where F<R”. To this end, we first analyze

analogous measurements in the context of(TN)", where T :{ez”i’ :te[O,l]}.
We let S=18,: je N} be the set of the canonicalprojections from 7" onto7

Bi(1)=t(j), t=(¢(j):jeN)eT". (218)
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We refer to S as the Steinhaus system, and view it as an independent set of
characters on the compact Abelian group TV with the normalized Haar
measure P .

For Fc §"and «-Orlicz function ®, the definition of d,(®) is the same as
in (217). (Replace 0" by (T")".)

Lemma (5.2.17)[218]: (Cf. [219]). For ne N,F c §", and « -Orlicz function
o,

167 (d, (@))% <, (@"2)< (d, (@), (219)

Proof: By [219], for all /e2(T" )"l

[ = (2 ()" 1

Because ¥, (s)>d, (®)®(s) forallseN,,

2> SEN. (220)

111, <(d, (@) (@(s))*r],; sen. @21)

Let 1= 257.25..p5 . By Holder’s inequality, for 2s< p <2s+2,

p

A1, <UL (222)

Then by (221) and (222),
1, =((d (@) (@(5)) " 111, ) ((d (@) (@(s1)) |11, ) (223)

= (d, (@) (@(s)) @(s + 1)) |11
Because

p>2s>s5+1 (224)

and @ is increasing,

Therefore,

171, < (de(@))(@(P)2 1] (225)
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To verify the left side inequality of (219), let se Nand let 4, x...x 4, be a s-
hypercube in S”such that|F (4 x...x 4,)="¥,(s)Consider the Riesz
product

ﬁ+/7j [ ﬁ+/7j
H =TT+ ®. o1+ } (226)
Then |H |, =land |H | . =2""2. Hence for 1< p<2,,
22w
|z, |, <|H#,|,"|H,|: =27, 1/p+1/g=1. (227)
Let
h, = D> B®.®B,. (228)

(By sy JEFN(A%..x A,)

Let E (expectation) denote integration with respect to Haar measure, either
on Q or on T". Let E”denote the n-fold iteration of E. By Holder’s
inequality and (227) with ¢ = x,

E"H | <|H ], |A], <2+ h, <21, (@)@ ()|, (229)
Because
E"H,h|=2"%,(s), (230)
and
Bl =(¥r ()2 (231)
we obtain
47 (%, (5)) <n, (®)D(s), 232)

which implies the left side of (219).

Corollary (5.2.18) [218]: (Cf. [219]). ForneN,FcR", and 0a-Orlicz
function @,
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1

16~mdF@D»zgnF[@ijgzu(dFop»é. (233)

Proof. For each j e N, let r, be the Rademacher function in R such that

r(w)=w(j), weQ={-111", (234)

and let g, be the Steinhaus function in S such that
Bi(t)=t(j), tel™. (235)

Let fbe an F-polynomial (i.e., spect /= support f c F,, and spect f is
finite). Define for 7 =(j,,...,i, ) (TN)",

L= Y f(r®.0r B, (4).B, (1), ®..Or. (236)

(r,l sl )EF

For te(TN )".there exists 0, e L' (Q) such that

ét (rj1 ®..9r, )=,le itl },B/ itn L r, ®.0r espect f, (237)
6], <4 (238)

(See [219]). Then

P VA /

wherexdenotes convolution. Integrating both sides of (239) with respect to

‘ (239)

i’

1 <qm
Lq

the Haar measure on (T N )" , applying Fubini’s Theorem, and then the right
side of (219), we obtain

(240)

1£],, <4 (d, (@): (@(g):]/]

which implies the right side of (173).The proof of the left side of (233) is a
transcription of the proof of the left side of (219).

L2ﬂ

Suppose (4,)is a probability space. For any Orlicz function ¥, consider the
Orlicz norm corresponding to ¥,

| X[, =inf{p>0:Ey x|/ p)<1},  xeL'(. o). (241)

The classical Kahane—Khintchin inequality states that: if ‘P(x)zexp(xz)—l
forx >0,, then there exists X >0 such that,
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|xl, <xlx

XeLy(QP). (242)

*(Q,p)°

(see [87].)We will extend the inequality in (183) to FcR" Let ® =x“¢(x)
be an a -Orlicz

function (as per Definition (5.2.1). Define

f(x)=x" (¢(x2 ))5 , x>0, (243)
and let
g=f" (244)
Lemma (5.2.19)[218]: (Cf. [219].) Suppose (A,P)is a probability space, and
Xe BLZ(A).

Then the following are equivalent:

(1) there exists 0 < 4 < oo such that

mexp(A(g(x))z)f/’(|X|>x)<oo; (245)

X—>0

(i1) there exists 0 < B < such that
S 1
sup|X], / p> (@(p))2 : p>2¢ < B (246)

(1i1) there exists 0 < C <o such that

EEexp(tg(|X|)—Ct2)<oo; (247)

X—>0

(iv) there exist 0 < D <o such that
Eexp(D(g(|X|))2)<oo. (248)

Proof: (i) =(ii). Suppose lim exp(A(g(x))z)ﬁf“(|X|>x):=Bl<oo, For

p>2 sufficiently large,

E[X]" = Trf/f(|X|p > x) d

0
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1

let V= g(xp J Then

x=(" () =(r ) = (o(0"))

Hence

dx /dy =apy™ (¢ (»? ))Z {1 ¥ é Z((;V;)) yz}

<20py ™ (9(1"))" . (by(126)).

Whenx=P 2 (¢)(p))§ , we have y=./p. Hence by (249) and (251),

E|X|" < p%p (¢(p))§ +B, T 2apy™! (¢(y2))§ exp(—Ayz)dy.

Jr

By the Cauchy—Schwarz inequality,

E |X|p < p%p (¢(P))§ + 2Blap\/7r/—A {T JnT@““P‘” exp(—Ay2 )dy}
0

{ }W (+(")) exp(—Ayz)dy}z.

(249)

(250)

(251)

(252)

(253)

The first integral on the right side of (253) is the 2(op—1) moment of a
Gaussian random variable with mean 0 and variance 1/24. Hence there

exists B, >0 such that

T A/ 7 yHe ) exp(— Ay* )dy <B!p*,

0

(254)

Next we estimate the second integral on the right side of (253). By property
(i11) in Definition (5.2.1),¢(y2)/ y 1s eventually decreasing. Because p is

sufficiently large, for all y> \/; ,
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80v2) v <d(p)//p. (255)

P

! T A/ﬁ(¢(y2)) exp(—Ayz)dy
Jr

= JATR 60 9lp)f exol 427y

8

< [Vaiz(pfp) expl-a? )ty (by (255)

Q‘

IN
>.qm \*t:| —

NAlmy? exp(—Ayz)dySBf (256)

O =y 8

for some B, >0 (by estimating p-th moments of Gaussian random variables).
Then

;m(qﬁ(yz))p exp(~4y*)dy< B! (¢(p))". (257)

By (253), (254) and (257), there exists B >0 such that

(04

X1, < 80" (4(p)) (258)

(i)= (iii).. We assume B>1.Fort>0,

k

Eexp(1g(|X])) = 3 t—‘E(tg(|X|))k. (259)
For eachk >1, let
fi (x) =x“ [qj[xlzjy , x €[0,00), (260)
and let
g =Ji- (261)

Then f,=f and g, =g.We will show that g, is increasing for £ >1,and is
concave for x>2.To this end, it suffices to show that f, is increasing for
k>1, and is convex fork > 2. By (260),
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fi(x)=x"" (¢(y))% {a +%y}2 0, (262)

Where y=x"*. Hence g, = 1" is increasing for all £ >1. By (262),

ﬁ"<x)=xa-2<¢<y))i[Ej{—"““‘l)+[ka_§+1j¢’<y) o0

K| 2 TOMEION

{g@[%} y}. (263)

Because @ is an Orlicz function, for allx>0,

Q" (x)= (x“(/ﬁ(x))” =x""¢ (x){oc (a—-1)+2a (Z((;C)) x+ q;'((;c)) xz} >0. (264)

For k >2,the expression inside the brackets of (263) is

ka(a—1)+(ka_§+1J¢'(y))y+¢”(y)y2+§_1(Myjz

’ ()" 4() #(7)
>a(a-1)+2a ¢'(j:)) y+ (1;'(())}/)) 32
>0 by (264) 065)

Hence f/>o0for k >2.Therefore g, = f,' is concave fork > 2. as desired.

By (243), (244), (260) and (261),

() =0 @) =16 ) =2 ). (266)
Then, by Jensen’s inequality, for x =2,
E(g(|X]) =E (gk (|X|")) <g,(E[X[). (267)
By assumption (ii) and because | X| . <1, for k>2,
B[ <B'K > (4(k):. (268)

Because B>1, we have ¢(B>'“k)> ¢(k). Hence
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E|x| < [Bika [gb (Bikjjz - f. L[Bikal . (269)
By (267) and (269), fork>2,
E(g(]X)) <(g.0 fk)L[B;ka} = [Bika _ Bkt (270)

Next we estimate E(g(|X|)) By (243), Osf(x)s(¢)(1))”2 for 0 <x<1. Then
0< g(x)Sl

for 0<x<(¢(1))" (because (¢ = £~'). Also by (243), for x>(¢(1))"", we have

jl/a

{x((/ﬂ(l))_; Jz (because x((b(l))_é >1)

1

()25 (60 = (000

N | =

IA

-1

=x*(¢(1)) . (271)

Let k=max{2(¢((1)))_l,2} . Then

xis(e())2

(e (el

\x\>(¢<1>>%}

<1+(¢(1)) E|X[" <K (because E|X[ <1). (272)

Applying (270) and (272) to (259), we obtain for t sufficiently large,

o Lk kK k

Eexp(tg(|X])) <1+ Kt + Z%BEKE
k=2 .

k
< exp(Ctz) (because K2 /K!<2* /(K /2)) (273)
for some C>0.

(iii)= (i). Because g is increasing (g =g, ), for x>0 ands>0 ,

(f/"(|X|>x)£(f7/‘(g(|X|)>g(x))
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- E exp (tg (|X|))

< (by Chebyshev’s inequality). (274)
exp(1g(x))
Then by assumption (jii), for > osufficiently large,

C 2
7 (|x|> x)S—exp( ) : (275)
exp(1e (1)
Put 7= g(x)/2C in (274), and obtain (245) with 4=1/4C.

(i):>(iV). Suppose lim. exp(A(g(x))z)ff/‘(|X|>)C):M1 <w, and let M, >0 be

sufficiently large so that o (|X|>x)<M, exp(—A(g(x))z) forx>M,. Choose
0<D<A4.Then

0

E exp(D(g(|X|))2): jﬁ/)(exp(D(gﬂXD)z) > x)dx

0

0 1 l
<M,+ J' f/[|X| > g ' (logx)? /D2jdx (because g is increasing)
M,

<M,+M, T exp{ A{ gL g—l[(log x)% / D% jﬂ }dx (by assumption ;) (i)

A

=M, + M, [x Pdx<M,+M,. (276)
M,

(iV)= (i). Because g is increasing, for x>0 sufficiently large,
7 (|x]>x) < (D(2 (X)) > D(g ()]
3 E exp(D (g(|X|))2)
- exp(D(g(x))z)

which implies (245).

(by Chebyshev’s inequality), (277)

Lemma (5.2.20)[218]: Let f and g be the functions defined in (243) and
(244). Let

h(x)= exp((g(x))2 ) -1,  x>0. (278)
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Then there exists N >0 such that 2"(x)>0 forall x> N..

Proof:

(%)= 2ex0((2(x)) )2 (x) ' (%), @79)
and

() = 2exp( (g (x))’ )1 (). (280)
Where

Because g = 7', we have

g(f(x))f'(x)=1  x=20. (282)

Hence

(SN ) +&' (£ ()" (x) =0, (283)

g'(f(x)=-"""=5 (284)

By (281) and (284)

1(£ () =2(e(£ ) (' (£@) +(& (£ ) +2(f ()" (£ (%))

2 2

P (g'(f(x))) +(g'(f(x))) +xg”(f(x))( because g = ")

=2x’ ! - ! - X () an
U@ ey (o) CRmaes

I Xt + —f”<x)x

() {2 ) } o



By (202) withK =1,

f’(x) s (¢(xz)); {O{ N ¢,(x2)x2} > ax®! (¢(x2 )); (286)

e
—_
=

)
~—

<x“? (¢<x2 ))E {a(a -1)+2a +1}. (287)
Hence
j;'((;))xsa+1+ém+2. (288)
By (285) and (288),
1
I(f(x))= —12x" —a -1, (289)
TEETR
Replacing x by g(x) in (289), we have
1 2
[(x)2——12(g(x)) —a-1}. (290)
<,~<g<x))){ }

Then for x> g™ ((«+1)/2)>, we have I(x)>0which implies /"(x)>0.

Let ¥, be an Orlicz function such that for some N >0,

Wy (1) =exp((g(x)) )1 w2 N, @91)
where g is defined in (244).

Lemma (5.2.21)[218]: (Cf. [219]).Suppose (., is a probability space,
and
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XeB, . Then the following are equivalent:

(1) there exists 0 < D <« such that
Eexp(D(g(|X|))2)<oo; (292)

|x

v, < (293)

Proof: (i)= (ii). Suppose
E exp(D(g(|X|))2) <M, (294)

for some M >1.. Let >0 be such that f>max{4M,D} and ¥, (</B)<
Then

N | =

1
E,, (‘X‘/ﬂ)l{\x\w} < 5 (295)
Because ¢ is concave, we have for ¢>1 and x>0,
b(ex)=0(0) _#(x)=¢(0) 06
cx X
Then, because ¢(0)>0,,
b(ex) _8()_8(x), 8(0) _d(x) oo
cx X X cx X
Let
L(x) = g((ﬂD_1 )_%1 xj, x2>0. (298)
Then

a+l
a+l - a+l

= ()3 (pp) " x= (607" £ (L)

a+l

~(p07) > (L) (9((2x)) ) oy (244) and (245))

N | =
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N | —

(5 (£ (5061

N | —

:(ﬁD_l ); (L(x))" (ﬁD_I(b((L(X))Z)) . (by (297) and because gD >1)

= ¢ (B )(v)) by (243) and (244). (299)
By (298) and (299),
¢()> (8D Lx)= (D)2 g((ﬁD o xj. (300)
Because 8>2M, we have
(M) D g(x)> g((ﬂD . )Tl x} (301)
Then

a+l k

el any

© k

< 1+EZL(D(g(|X|))2) (because M >1)

o k!
£1+ﬁE exp(D(g(|X|))2)
S% by (294) (302)

By the definition of y, in (291), we have

a+l

E‘PCI) (('BDI )7T |X|j1(X>N) =E exp(g((ﬁDl )T |X|jJ 1(\X\2N) -1

< %by(302). (303)

o+l

Let K = maX{ﬁ,(ﬁD_l )2} By (295) and (303), we have

EY, (|X]/K)<1. (304)
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Therefore

xl, <.

(iii) = (i) If |x],, sk for somex >0, then

EY

o (|X]/ K)<1.

Hence by the definition of ¥, in (291),

E {exp ((g (‘X‘ / K))2 ) - 1} 1{\X\ZN}SL

Let

M :max{4,2E exp((g(N/K))z)}.

By (307) and (308),

Eexp((g(‘X‘

/K))2)£%+2SM.

We may assume K >1. By (303) and (304), forx>0,

Then

Hence

= () =()) (o (2 ) -

“J:[g(x)/K‘LT ((/{(g(x))z /K

<(()" ((2(x)) /&
- x/K (by (310))
= f(glx/ K))

1

glx)/ K <g(x/K)
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(305)

(306)

(307)

(308)

(309)

(310)

(311)

(312)



Let D=1/K*“. By (312) and (309), we obtain
Eexp(D(g(|X|))2)SEexp((g(|X|/K))2)SM, (313)

as desired.

The following is a link between the combinatorial structure of F < R" and
tail probability estimates involving random variables in L, (Q”,P” )

Theorem (5.2.22)[218]: Forne N,F cR", and « -Orlicz function @,
a’F(CI))<00<::>supi|X||%D :XeBL%(Q,,)}<oo (314)

Proof: Observe that statement (iv) in Lemma (5.2.19) is the same as
statement (i) in Lemma (5.2.19).Then by Lemma (5.2.19) and Lemma
(5.2.21)

sup {”X"LP / p? (¢(p))1/2 :p>2.XeB,, } < o0
& sup {||X||W® X eB,, } < oo, (315)

Because o' (p)= p* (¢(p))1/2

ny (@)= sup{”X L (#(p)) i p>2.XeB, (Qn)} (316)
(Definition(5.2.16)) Hence
L
ne [®2J<oo<:>sup{||X v :XEBLg(Qn)}<°O° (257)

which, by Corollary (5.2.18) implies (314).

Corollary (5.2.23)[274]: Ifn e N and F c R" ,then for «-Orlicz functions
o,

J

J

d, [Zd)j]<ooif and only ifsup{Z"Xj” X eBLz(Q,,)}«:o (318)
J=l J=l Vo, ’
Proof: By Lemma (5.2.19) and Lemma (5.2.21) we have
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sup{i“)(j.” /p%((;jj (p))m p>2,X, GBLZFQ”}<CO
Jj=l L’

if and only if sup {iuxj | cforx, eB,., } <o, (319)
j=1 ® ’

since Zn: ®,"(p)= Zn:pm ((15,- (p ))1/2 ,then
Jj=1 Jj=1

1/2
1, (Zq)jl/z]:sup ZHXJ H / e (Z@ (p)j p>2,X, eBL%(QH)
j=l j=1 )74 j=l
Hence

nr [Z <Dj”2j < ooif and only if sup{zn:”)(j ”W forX, eB, } <o
= j=l i '

Which gives the result by Corollary (5.2.18).

Chapter 6

Mass Transportation of Free Functional Inequalities and Poincare
Inequalities

We permit to give a new and very short proof of a result of Otto and
Villani-Generalization to other type of concentration are also considered. In
particular, we show that the Poincar'e inequality is equivalent to a certain
form of dimension free exponential concentration. The proofs of these result
rely on simple large Deviations techniques. We give equivalent functional
form of these Poincare type inequalities in terms of transportation-cost
inequalities and inf-convolution inequalities workable sufficient conditions
are given a comparison is made with super Poincar'e inequalities , we also
addresses two version of free Poincare inequalities and their interpretation
in terms of spectral properties of Jacobi operators. The last establish the
corresponding inequalities for measures on R, with the reference example
of the Marcenko-pastar distribution. We show some verifications of series
of transportations inequalities. We give a result by using a nondecreasing
super additive function. Wegeneralize a Lamma used in deriving
concentration inequalities and Bobkov-Ledoux result. We determined a
particular value of delta with a general some potential. We find a norm of a
projection with respect to—1<1<1. We deduce the values of W (u,u,)
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interms of the relative free Fisher Information to construct the transportation
cost result.

Section (6.1): Characterization of Dimension Free Concentration In
Transportation Inequality

One says that a probability measure on R? has the Gaussian
dimension free concentration property if there are three non-negative
constants a, b and r, such that for every integern, the product measure p"

verifies the following inequality:

u'(A+rB,)> 1-be ™) wp> A 1)

For all measurable subset A of (R’)" with u”(A)Z% denoting by B, the

Euclidean unit ball of(R?)".The first example is of course the standard

Gaussian measure on R for which the inequality (1) holds true with the

1 1 . ..
sharp constants 7, =0,a = and b = - Gaussian concentration is no the only

possible behavior; for example, if pe[l,2] the probability measure
dup(x)zzljle"x‘pdx verifies a concentration inequality similar to (1) with »?
replaced bymin(rp,rz). In recent years many developed various functional

approaches to the concentration of measure phenomenon. For example, the
logarithmic-Sobolev inequality is well known to imply (1); this is renowned
Herbst
argument[174],[165,255],[276,254],[252,101,61],[138,179,217.257,69,256,
191],[171,[238],[261,239,58,59],[120]and[23,22] .

One shows with a certain generality that Talagrand’s transportation-cost
inequalities are equivalent to dimension free concentration of measure. Let
us give a flavor of our results in the Gaussian case. Let us first define the

optional quadratic transportation-cost onP(R"), one defines
TZ(V,u)zir;f“x—yE dr(x,y) (2)

where r describes the set P(v,u) of probability measures on R* xR’ having

v and ufor marginal distributions. One says that u verifies the inequality
.,(C), if

T,(V,u)<CH(V]u), wVeP (RY) (3) Where
H (V| H) is the relative entropy of v with respect to x4 defines by
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H(V| u) = Ilog{Z—ZjdVifV is absolutely continuous with respect to  and +w

otherwise. The idea of controlling an optimal transportation-cost inequalities
by the relative entropy to obtain concentration first appeared in Marton’s
works [138,139]. The inequality T, was then introduced by Talagrand in

[179], where it was proved to be fulfilled » Gaussian probability measures
in particular, if u=yis the standard Gaussian measure on R, then the
inequality (3) holds true with the sharp constant C=2.We show theorem .

Theorem (6.1.1) [194]: Let x4 be a probability measure on R? anda > 0; the
following propositions are equivalent:

(1) There are r,,b>0 such that for all n the probability u" verifies (1).

(i) The probability measure y verifies 7, (1/a).

Letu be a probability measure onyand (X,)aniid sequence of random

variables with law x defined on some probability space(,P).The empirical
measure L is defined for all integern byL, = lZnZEX, ,where §_, stands for the
nio

Dirac mass at point x.

According to Varadarajan's Theorem (see [222]), with probability 1 the
sequence (L,) converges to u in P(y) for the topology of weak

convergence, this means that there is a measurable subset N of Qwith
P (N)=0such that for allwe N,

for all bounded continuous f on X.

The topology of weak convergence can be metrized by various metrics.
Here, one will consider the Wasserstein metrics. Let p >1 and define

pp(l):{wp (2): [ (xp) dV(x)<oo,} for some x, .

For all probability measures V,\; P, ( x), define

1

7, (V) =inf [ p(x.y) dz (. )and W, (V.\) = (7, (V. W))"

where 7 describes the set P (V,V,)of couplings of Vand V.
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According to [23]Wp is a metric on P,(y) and for every sequence g, in
P (%), W,(u,u)—0, if and only if u, converges tou, for the weak
topology and J'p X0, x)" du, —)J.p x,,x)" dp , for some (and thus any) x, e y .

From these considerations, one can conclude that if ueP,(y) then
1)=t)—>0

n)

W, (L,,1)—0 with probability one, and in particular, P( (L

whenn — +w0, for all¢ > 0. Moreover, supposing that peP,(y) withp>1, it
is easy to check that the sequence W, (L,, ) is bounded inL , (Q,P ), thus it
is uniformly integrable and consequentlyE[Wp (Ln,/l)]—>0- This is

summarized in the following proposition:

Proposition (6.1.2) [194]: IfueP,(y), then the sequence W, (L,,u)—0
almost surely (and thus in probability) and if p >1, then the convergence is
inL,:E[W,(L,,u) ]| >0.

On the other hand, Sanov's Theorem (see [5]) says that for all good sets
A,P (L, € 4), behaves like ¢ k) when n is large, where H(A|u)stands for

the infimum of H(.|u) on 4. So, when 4 does not contain u, H(A|u)>0 and
this probability tends to 0 exponentially fast. With this in mind, one can
expect that P (W, (L, u)>t)behaves like ¢ ") where

H(t) = inf{H(VLu):Vs.t. W, (V,,u) > t} .

The following result validates partially this heuristic, stating that
P (Wp (L,,p)> t)tends to 0 not faster thane ")

As in [190], the use of this Large Deviations technique will be the key step
in the proof of Theorem (6.1.1) .

As in the preceding section, (x,p)will be a Polish space. The product space
z"will be equipped with the following metric:

n AP
y){ZP(X’»y’)Z}
im1
(herex:(xl,xz,...,x”)with x'e yforall i).

In the general case, one says that a probability measure pon (yx,p) verifies
the dimension free Gaussian concentration property, if there are r,a,b6>0
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such that for all n the probability u” verifies

u” (Ar) >1—pe ) , Vr>r, 4)

for all measurable 4 c y" such that u,(4) 2% , where 4" denotes the 1-
enlargement of A defined by 4" = {xe »" such that there isx € 4 with
Py (x,x)<r}

Of course, when y=R“is equipped with its Euclidean metric one has
A" = A+rB, and one recovers the inequality (1).

Let us recall the inequality of the 7 transportation-cost inequality. One says
that a probability measure 4 on y verifies7; (C), if

W, (V,u)<JCH(V|u), VYVeP (x)

According to Jensen's inequality, the inequality 7;(C)is weaker than7, (C); it

was completely characterized in terms of square exponential integrability in
[93].

The proof of the following well known result makes use of the so called
Marton's argument.

Proposition (6.1.3) [194]: (Marton). If x verifies 7;(C), then for all

measurable subset 4of v, such that p(4) 2%.

u (Ar) >1 —be_c_l(r_r())2 , Vrzr,

where 7, =/Clog(2).

Proof: Consider a subset 4ofy, and definedu, =1,dpu(x)/pud. Let B=y\ 4’
and define u, accordingly. Since the distance between two points of 4 and
B is always more than r, one has W, (u,,u,)2r. The triangle inequality
and the transportation-cost inequality 7;(C) yield[274]
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r< W (pgity ) S W (pgm)+ W, (15, 00) S\/CH (1, |1) + JCH (11, |)

\/C log(1/ (4 \/C log(1/ u(B \/clogl clogp(4 +\/c10g1—clogy(B)

=\/—clogy \/—clogy ,/—clog +\/—c logy logy(A’)J

_\/—c10g1+c10g2 +\/—clog,u )+clogu( =,/clog?2 +\/—c logu +10gu(,4r)]

=7, +\/—c [log1+log,u(Ar)] =r-r, 3\/_0[10g1—10gﬂ<‘4r)]

= (r —ro)2 S—c[logl—logu(/l’)}: —cl(r —7”0)2 g(logl—logu(Ar))

{e_‘f (r —7, )2 > 1—,u<A’ ) = ,u(A’ ) Zl—e‘“z("’o)2

Rearranging terms gives the result.

Theorem (6.1.4) [194]: Let peP,(x)and a>0; the following Propositions
are quivalent:

(1) There are r,,b > 0such that for all n the probability " verifies (4),
(ii) The probability u verifiesT,(1/a).

Proof: Let us show that (i1) implies (i). The main point is that 7, tensorizes ;
this means that if pverifies 7,(1/a)then u"verifies 7,(1/a)on the space "
equipped with p; we can find a general result concerning tensorization

properties of transportation-cost inequalities in [190]. Jensen's inequality
implies that W? <7, and consequently u"verifies 7;(1/a)(on x"equipped

with p;) for all »n. Applying Proposition (6.1.3) to u"gives (1) with
r,=+llog(2)/a, b=1 anda.

Let us show that (i) implies (ii). For every integer n, andxe y", define
Ly=n")_ 6,. The map x—>W, (L“;,y)isl/\/Z—szschizz. Indeed, if

x:(xl,...,x”) and y:(yl,...,y”)are iny", then thanks to the triangle
inequality,
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(W, (L5, 1) =W, (L, )| < W (25, 23)

According to the convexity property of 7,(.,.)(see e.g. [257]), we have

2

x Ty 1< i L,
T, (L. L)< ZT(é 5, )= ;;p(x,y) =—p (%)
which proves the claim.

Now, let (X;)be an iid sequence of law pand let L be its empirical
measure. Let m, be the median of W, (L, u)and defineA:{x-W (L)< m, }

Then u"(4)=1/2and it is easy to show that4" c {x W, (L, p)<m, +r/\/_}
Applying (4) to A gives

P (W2 (L,,p)>m, +1«/Z)Sb exp(—a(r—ro)z), Vrzr,
Equivalently, as soon as \n(u—m,)>7,, one has
P (W, (Ln,u)>u)£bexp(—a(\/;(u_mn)_rof).

Now, since W, (L,, ;1) converges to 0 in probability (see Proposition (6.1.2)),
the sequence m, goes to 0 when n goes to+w. Consequently,

logP (W, (V,u)>u)= limllogP (W, (L, 1) > p)<
H—)OOn

lirnsupllogP (W, (L, 1)>u)<-au’, Yu>0

n—+o N

The final step is given by Large Deviations. According to Theorem (6.1.4),

lim sup log P (W, (L, 1) >u) = —inf {H (V]|u): VeP,(x) stW, (V. 1) >u}
This together with the preceding inequality yields
inf {H(V|u):VeP,(x)stW, (V,u)>u}>au
or in other words,
aW, (V,u)’ <H(V|u)
and this achieves the proof.
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Let us make a remark on the proof. We will notice that the second part of the
proof applies if one replaces W,(.,u)by any application®:P (x)— R which
is continuous with respect to the weak top'ology, verifies®(u)=0, and is
such that for all integer »n, the map y" >R :x+— CD(L“;) is 1/~/n — Lipschitz for

the metric p;ony”. For such an application®, one can show, with exactly
the same proof, that the dimension free Gaussian concentration property (4)
implies thata®’(V)<H(V|u), for all v and it could be that this new
inequality is stronger than7,. Actually; it is not the case. Namely, it is to
show that if @ verifies the above listed properties ,then®(V)< W, (V, u), for all
Vv, and so the choice ® =W, is optimal.

Our aim is now to recover and extend a theorem by Otto and Villani stating
that the Logarithmic-Sobolev inequality is stronger than Talagrand'sT,
inequality.

Let us recall that a probability measure 4 on y verifies the Logarithmic-
Sobolev inequality with constant C >0 (LSI( C) for short) if

H,(f)< cj|v|2d/.¢
for all locally Lipschitz f, where the entropy functional is defined by
,(1)= [ f1og fau- faplog([ fdu), 20,
and the length of the gradient is defined by

— limsu ‘f<x)_f<y)‘
|Vf|<x)—1 y%xp p(x,y)

)

(when X is an isolated point, we put |[Vf|(x)=0.
. Namely, if u, verifies the LS/ (C)inequality, then according to the additive

property of the Logarithmic-Sobolev inequality, one can conclude that the
product measure " verifies

1, (1) C[ VT () () ©)

where the length of the 'partial derivative' |V, /]| is defined according to (5).
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The problem is that, in this very abstract setting, Zn:|V,. /T (x)and |VfT (x)

i=1
(computed with respect top;) may be different. The tensorized
Logarithmic-Sobolev inequality will yield concentration inequalities for
functions such that " |V, f |2 (x)<1u" —almost everywhere and this class of
functions may not contain 1-Lipschitz functions for the p; metric.

Nevertheless, this difficulty can be circumvented as shown in the following
theorems.

Theorem (6.1.5) [194]: Letu, be a probability measure on y and suppose
that for all integer n the function F,defined on yx"by F,(x)=W, (L“;, H)
verifies

n

YIViES

i=1

(x)<1/n, for p" almost every xe x". (7)

If u, verifies the inequality LSI(C), then u, verifies the inequality 7,(C). We
have seen during the proof of Theorem (6.1.4) that the functions F, are
1/n — Lipschitz for the metric p!. Suppose that y=R’or a Riemannian
manifold M, then according to Rademacher's Theorem, F is almost

everywhere differentiable on (R")" (resp.M ") with respect to the Lebesgue

measure. It is thus easy to show that condition (188) is fulfilled when u, is

absolutely continuous with respect to Lebesgue measure. This permits us to
recover Otto and Villani's result as stated in [69].

Proof: As we said above the product measure u” verifies the inequality (6).

Sp
Apply this inequality to f =e*> | withseR*. It is easy to show that

N

Sp e
Ve |= 562 V.F,|, thus, using condition (7), one sees that the right hand

2
side of (6) is less thaan—nje“F" du" .

Letting Z ( s) = IeSF”d u1" , one gets the differential inequality:

(x)du" (x)

S
V,e?

Hu" (fz)écf,zn;‘vifz‘(x )d " (x):cji
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2
V, Fn| ( )d p" (x) Sii—zje“F"dty" (x)

—CIZ—e‘F”

Since V,.e%F" =%e;F" |V Fnl

From the definition of the relative entropy we deduce that

H(u f?

[ 10 rraur - [ rraut g [ s

ZJ‘SFneSF"dﬁ/J" _J‘eSFndun log(J‘eandun)
skn n sFn n skn n CS 2 skn n
Then we see that | sfne™d u" — | e*™d u" log| | e*"d u 34— e™d u
n

Letting Z (S) = J.e‘wd 1" We get the differential inequality

| 5> Z’(S)_IOgZ(S)<£
5z (s)—z (s)logz (S)S ” z (S).SO thatSZ(S) 2 47

The integrating this yields

2

z (s) = J.eSF”du" Se“J.Fndu” +Ci , Vs eR”

This implies that
P (W, (L, u)2t +E[W,(L,,u)])<e™"

According to Proposition (6.1.2)E[W,(L,,u)]—>0. Arguing exactly as in
proof of Theorem (6.1.4), one concludes that the inequality 7, (C)holds.

With an extra assumption on the support of x, one shows in the following
theorem that the implication LSI = 7,1s true with a relaxed constant:

Theorem (6.1.6) [194]: Let 1 be a probability measure on y such that
ulxeystp’(xu)-p*(x,V)=K}|=0,VKeR,Vu=Vey 8)

If p verifies the inequality LSI(C)then usatisfies7(2C).

The condition (8) first appeared in a paper by Cuesta-Albertos and Tuero-
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Dfaz on optimal transportation. Roughly speaking, this assumption
guaranties the wuniqueness of the Monge-Kantorovich Problem of
transporting u on a probability measure V with finite support (see [106]).
For x4 on RY, the condition (8) amounts to say that x4 does not charge
hyperplanes. We think that working better it would be possible to obtain the
right constant C instead of 2C.

Proof: We will use a sort of symmetrization argument. First observe that the
probability measure u"x " verifies the following Logarithmic-Sobolev
inequality:

H(,u” x 1" fz) < CZ‘VM]“Z (x,y)+‘Vi,2f‘2 (x,y)du" (x)dp" ()

i=1
forall f:y"xz" >R:(x,y) f(x.,y), where |V, f|(resp. |V,,f]) denotes the
length of the gradient with respect to the x'-coordinate (resp. the y'-
coordinate).

Define Gn(x,y):Wz(L“;,L;)for all x,yey". One wants to apply the
tensorized Logarithmic-Sobolev inequality to the functionG,. To do so one

needs to compute the length of its partial derivatives. Let us explain how to
computeL:‘VmGn (a,b), for instance. For everyzey, letzaz(z,az,...,a”);

obviously,

@ b\ a gb @ b\ a 7b
L= limsup‘w2 (Ln ,Ln) VIVZ (LH’LH) = — limsup - (Ln ’Ln) YE(L"’LH )‘
2o5d p(z.a') 2W, (L. L) = p(z.d)

According to the condition (8), the probability measure wuis diffuse; so the
probability of pointsx e y"having distinct coordinates is one. So, one can
suppose without restriction that the coordinates of a (resp. b) are all
different. If z is sufficiently close toa', the coordinates of z and a are all
distinct too. According to e.g [23], the optimal transport of 7! on L’ is given

by a permutation, this means that there is at least one permutation a of
{1,...,n} such that

T(z.2) =Y p(a570)

i=1

Let us denote by S the set of these permutations and define accordingly the
set S. of permutations realizing the optimal transport of L onZ’.
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Without loss of generality, one can suppose that § is a singleton. Indeed, let
o and & be two distinct permutations and consider

H, = {x ey :i/)()c",l9"(i))2 = ip(xi,b”(i))z}
i=1 i=1

Applying Fubini's Theorem together with the condition (8), one gets easily
that u”(HUﬁ):O. This readily proves the claim. In the sequel we will set

Sz{a*}.

Now we claim that if z is sufficiently close toa', thenS. = {0*}. Indeed, let

€, =min {nlip(ai,b”(i) )2 -1, (L, L, )} >0

c#£0 -
i=1

then there is a neighborhood Vv of &' such that for allz e ¥, one has

L(L.L) -1 (L. L)

<g /3

and for all permutationo,

n_lgp((za)i ,ba(i))

2 n

n—lzp(ai,b&(i) )2

i=1

<g, /3

Now, if zeV ando € S., one has

AN (0 DY < AN i o))
nl;p(a,b )Snl;p((za) ,b )

=T, (L, L)) +&,/3<T, (L, L)) +2¢,/3

+&,/3

By the definition of the number co, one concludes thato =", which proves
the claim. Now, ifz e, then

#(1 2 #(1 2
ofe ol

p(z,al) - np(z,al)

L(L.L)-1,(L. L)

1
np(z,a’)

‘p (z B0 ) +p (a,b o) )

a,5°0 ‘p (z,bo*(l) ) *p (a,bg(l))

~L{pf7) 4 pfs6)

p(z6")-p

!

c plzd)
np(z,al)
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1 #(1 #(1
S—p(z,b“())+p(al,b“())

n
P (al,b"*(l) )

. 1 . L A S — A

So letting z —a', Yields W, (LZ,L};) .

Doing the same for the other partial derivatives yields:

n o))
nz(a’b)gz_l :l

n’T, (LZ,L';) n

il
Finally,

: 2(a,b)+‘Vl.,2Gn “(a,b) <

2
il -
n

for u" x u"almost every a,be y"x x".

Now reasoning as in the proof of Theorem (6.1.14), one concludes that

n?

P (W2 (L5 L) > e+ B[ W, (L) LY)]) e
On the other hand, an easy adaptation of Theorem (6.1.14) yields

1
liminf —log P (W2 (L.L)>+E[ W, (ij,Lﬁ)])

—inf {H (V|)+ H (V1) : V.,V €P, () 47, (Vi V) > ¢}
From this follows as before that

T, (V|u)<2C(H(N|p)+ H(V |u))

holds for all probability measures V,V,belonging to P,(y). Taking V, =u
gives the inequality 7, (2C).

Our next goal is to recover and extend a result of Lott and Villani.
Following [117], one says that a probability measure wpon y verifies the

inequality LSI* (C) if

il ?) < v of a
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holds true for all locally Lipschitz f, where the subgradient norm‘V‘ f ‘ is
defined by

b

[V~ £|=timsup L/()-7()],
y—x p(x,y)

with [a]+=max(a,0). Since

vofl<|vr
than L1 ; more precisely, LSI* (C)= LSI(C).

, the inequality LSI"(C)is stronger

Theorem (6.1.7) [194]: If u verifies the inequality LSI* (C), then u verifies
L(C).

This result was first obtained by Lott and Villani using the Hamilton-Jacobi
method. This approach forced them to make many assumptions on yand u.

In particular, in [117] » was supposed to be a compact length space and a
doubling condition was imposed onu. The result above shows that the
implication LSI* =T, is in fact always true. The following proof uses an
argument which I learned from Paul-Marie Samson.

Proof: The inequality LSI*tensorizes, so u"verifies

H(,u”

IRE cji\v;ff du’

Take f —e2” seR*"With F, (x) =W, (L“;,u). Once again, it is easy to check

that V;eEE’ =%e3a ‘V;Fn (note that the function x> e™ is non decreasing).

Reasoning as in the proof of Theorem (6.1.5), it is enough to show that

Zi‘v"—F"

2(x)sl/n for u" almost allxe y”. Let us show how to compute

‘V;Fn .LetzeX, a z(al,...a”)ex” and set Zaz(z,az,...,a”)
o n(Ee) (L))
I e e L

Let 7P (LZ, H) be an optimal coupling; it is not difficult to see that one can
write 7 (dx,dy) = p(x,dy) L, (dx), where p(a’,dy)=V/(dv)withV,...,V, probability
measures on y such that »'(V+..+V)=u. Let pbe defined as pwith z in
place of a'; then=p(x.dv)L(dy)belongs to P (L.u)) (but is not
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necessary optimal). One has

T, (L) =T, (L, 1) < [ p(x,y Y d A (x,0) = [p(x.y) dx(x,)
=—ij(za ,y)dv ——ij ,y dV (»)
(o) = pla'y ) dN () £ p(z.a') [ (.0 +p (a0 )N ()

Since the functionx — [x] is non decreasing, one has

TZ(LZG,I[J)—TZ(LZ,/J)‘

)

<L (e eald )

2
[p(a'.y) av(y)
T, (L, )
computations for the other derivatives (with the same optional couplingr ),

we gets

Letting z—a' yields ‘V;Fn‘(a)zﬁ Doing the same

a)zsjp(ai’y)zd\{(y).

.| T, (L. p)

“F| (a)<1/nfor all aey", which

achieves the proof. The following theorem can be established with exactly
the same proof as Theorem (6.1.8).

Theorem (6.1.8) [194]: Let u be a probability measure ony, p>2 and
a>0. The following propositions are equivalent:

(1) There are r,b>0 such that for every n the probability measure u"

. . 1
verifies for all 4subset of »" with u"(A) 25,

—a\r—r P
,u"(A’)Zl—be (=) , Vrzr, )

where the enlargement 4" is performed with respect to the metric p), on y”
defined by

1/p
)| o) | vnrer
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(i1) The probability measure u verifies the following transportation cost
inequality:

T,(V.u)<a'H(V|u), YVeP, (x).

We want to find the transportation-cost inequality equivalent to Talagrand's
two level concentration inequalities which are well adapted to concentration
rates between exponential and Gaussian.

Let us say that a probability measure 4 on R‘ satisfies a two level
dimension free concentration inequality of order pe[l,2] if there are two
non-negative constants a and » such that for every n the inequality

' (A4+rB, +4rB, )2 1-be, ¥r>0 (10)

holds for all measurable subset 4 of (R’)" such that u”(A)zl, where B,
n

and B, are the standard unit balls of (R)". Inequalities of this form appear

in [182], where it is proved that the measure dpu, (x)zZ;le_W, p >1 verifies
such a bound.

The transportation-cost adapted to this kind of concentration is defined for
all probability measures V.V, on (Rd") by

n d ] )
L, (V)= _inf [> ¥ a,(x-y))dn(x.y)

i=1 j=1

2
u

b

Where a, (u) = min(|u

?) (here x=(x'....x") with ¥ eR’ foralli).

The following lemma collects different facts that are needed in the proof.

Lemma (6.1.9) [194]: (i) For allx,y>0,a, (x+y) <20, (x)+2a, (y).
(ii) For all integer »>1 and all probability measures V.V, and V;on(R‘)",

L, (M%) <2L,, (V. %) +27, , (V. V).

(111) For all integer» >1 and all » >0, define

B, )= re(®) 3 S a () <o,

i=l j=1

=
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Then for all pe[1,2],

1
E(\/?B2 +4/rB,)rB,,, (r)crB,+{rB,
Theorem (6.1.10) [194]: Let u be a probability measure on R and p €[1,2]
. The following propositions are equivalent:

(1) The two level concentration (10) holds for some non-negative a,b
independent of n.

(i1) The probability measure u verifies the transportation-cost inequality
T,,(V.u)<CH(V|u), VVeP(R')

for some constant C .

More precisely, if (10) holds for some constants a, b5, then the
transportation-cost inequality holds with the constant C = 288/ a.
Conversely, if the transportation-cost inequality holds for some constant C,
then (10) is true forp =2 anda=1/(2C).

Proof: Let us recall the proof of (ii) implies (i). According to the tensoriza-

n
b

tion property, for all n and all probability measure v on(R)

L, (V.u')<CH(V

ﬂ")
holds. Take A and B in (RY)" and define duj=1,du/u"(4)and
duy=1,du/p"(B). According to point (ii) of Lemma (6.1.9) and the
transportation-cost inequality satisfied by u", we have[274]:
Ty, (4. up ) <2, () 1" )+ 20, , (15, 1")
SZCH(,uZ ,u”)+2CH(,u; ,u”):—2Clog(,u” (4)u" (B))

Define

¢,,(4,B)= inf{r >0ss. (A+B,,(r))NB= %}
then Tz,p(#Zaﬂg)Zcz,p(A,B) and so u"(A)u" (B)< o (4:B)2C

Now, if 4"(4)>— and B=(R*)"\(4+B,,(r)),

1
2
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C,, (A,B)Z —2c log(u” (A)u” (B)=—2c [logu” (A)+log/,t” (B )]

> -2 [log%+ log 1" (Rd )n (A |B,, (1))} > -2c [logl—log,u” (A +B,, (1))]

= —2c[—log2 +log u" (R" )n —log u" (A +B,, (1))}

=2 [log%Q ~logu" (4 +B,, (1))} =-2c {log%—log%(/l +B,, (1))}

n

1 1 M
— _2_002’p (4,B)= loga—log 5 (A+Bz,p (1))

Taking the logarithms in both sides

: ' e (4.5)
/Jz (A +Bz,p(1)):>/-1 (A +Bz,p (1))21_26 % A,B

1
-— AP
e 2662’;0( > ) 2

N |~

Where log2>0,b=2,a :%

we havec,,(4,8)=rand sou"(4+B,,(r))21-2¢">. Using point (iii) of
Lemma (6.1.9), gives u” (A+«/;B2 H’/;Bp) S1—2e"%

We give that the probability measure u"on(R‘) satisfies two level
dimension free concentration inequality of order pe[1,2]if there are two

. 1
non-negative constants a = > and h=2.
C

Now let us prove the converse. Let (X,) be an i.i.d sequence of law u and
let L be its empirical measure. Consider

Az{xe(Rd)" S.t.Tz’p(Lf,,y)Smn}WheI‘e m,denotes the median of7, (L, ).

According to point (iii) of Lemma (6.1.9) A+\rB, +{rB, c A+12B, (r). Let
xe A+12B, ,(r); there is some X € 4+12B, ,(r) there is some ¥ e 4such that

d i —i
a, I |<p
L% T
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(here x=(x',x*,..x") with x' eR"). Sincea, (x/12) 2, (x)/144, one gets
T,, (L;‘;,Li)s 144r/n . According to point (ii) of Lemma(6.1.9)T,, (L;‘; ,u)
<T,, (L;‘; LY ) +2T, , (Li ) H) <2m, +288r /n . Consequently, the following
holds for alln :

P (T,, (L, 1)=2m, +288r/n)<be”, Vrz0

Reasoning as in the proof of Theorem (6.1.1) [194]:, one concludes that

288
T,,(V.u)< 7H(V|u), VVeP (R)

In this section, one considers more carefully the case p=1 of the preceding
one. Let us recall that a probability measure u on R?satisfies the Poincare
inequality with constant ¢ >0 if

2
Var, (1)< C[Vf| du (11)
for all smooth .

The following theorem proves the equivalence between Poincare inequality,
dimension free exponential concentration and the corresponding
transportation-cost inequality.

Theorem (6.1.11) [194]: Let u be a probability measure on R“. The
following propositions are equivalent:

(1) The probability measure u verifies Poincare’ inequality with a constantC,
(i1) The probability measure u verifies for some constants a,5 >0

u" (A +D,, (r)) 21-be™™, Vrz=0

for all subset 4of (R)'such that u'(4)>1/2, where the set D, (r) is
defined by

D, (r)= {x c(RY) su. S, (|¥],)= r}

i=l1

(ii1)) The probability measure u verifies the following transportation-cost
inequality for some constant C, >0.
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Ty (V. 1) = infjal (Jx=»],)dm (x.y)<C,H(V|u), ¥VeP(R?)
More precisely:
- (i) implies (ii) with a = Kmax(CL\/a )‘1 ,K being a universal constant.
- (ii) implies (iii) withC, =2 /4.
- (iii) implies (i) with ¢ =¢, /2.

The equivalence between (i) and (iii) was first obtained by Bobkov, Gentil
and Ledoux in [256], with the Hamilton-Jacobi approach. The equivalence
of (i) and (i1) or (i1) and (ii1)) seems to be new.

Proof: Accoding to [255], (1) implies (ii) withs =1 and a depending only on

_1 . .
C,; one can takea =K max(CL\/E1 ) ,K, where K is a universal constant.

According to (a slightly different version of) Theorem (6.1.10) ,with p =1,
(1) implies (iii) (withC, =2/a). It remains to prove that (iii) implies (i). This
last point is classical; let us simply sketch the proof. The transportation-cost
inequality is equivalent to the following property: for all bounded f onR?,

jled u<el™ where 0f (x)= inf {F(»)+C e ([x—1], )} (see [254], [190]). Let

f be a smooth function and apply the preceding inequality toz . When ¢
goes to 0, it can be shown that

0(1)(¥)-1 (x) =~ E oy (x) 0 )

SO J.eQ(’f)du = 1+tJ.fdu +%J.f2du%tzj.|Vf|zdu+O(t2). On the other hand,
ef_[fdyzlw_[fdw%j(fdy)z
One concludes, that
Var(f)s%ﬂvﬂ2 du

which achieves the proof.

Transportation-cost inequalities are closely related to the so called(r)
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property introduced by Maurey in [17]. If ¢(x,y) is a non negative function
defined on some product space yxyand u is a probability measure on y,
one says that(u,c) has the (z)property if for all non-negative fon y,

J-eQ{f’fd/,tJ‘efdu <1

Where Qcf (x =inf j )+e(x, y . By Latala and Wojtaszczyk [138]

provides an excellent 1ntr0duct10n together with a lot of new results
concerning this class of inequalities.

The (r) property is in fact a sort of dual version of the transportation-cost
inequality. This was first observed by Bobkov and Gotze in [254]. In the
case of 7,, one can show that if u verifies 7,(C) then (u, 20) |x-y; ) has

the(z) property and conversely, if (/1,(2C)'1 |x— y|§) has the (r) property,

then u verifies7,(C). A general statement can be found in [189].

Several sufficient conditions for transportation-cost inequalities are known.
Let us recall some of them. In [191], The author proved the following result:

Theorem (6.1.12) [194]: Let 4 be a symmetric probability measure on R of

the form dp(x)=e Mdx , with a smooth function such that 11mV (+) =0. Let

()

<+, then pverifies the transportation-cost

p-1

>1,if v h that lim—
P 1 is such tha Lan(x)
inequality

inf |a,(x-y)dr(x,y)<CH(V|u), VVeP (R)

ﬂEP(V,y)
Where a,(u)=u® if [u|<1 and a, (u)=|u|" if |u|>1.

The case p=2was first established by Cattiaux and Guillin in [204] with a

completely different proof. Other cost functions acan be considered in
place of the «, . Furthermore, if u satisfies Cheeger's inequality on R, then

a necessary and sufficient condition is known for the transportation-cost
inequality associated toa (see [191]).

On R’, a relatively weak sufficient condition for 7,(and other

transportation-cost inequalities) was will be established by the author in
[189]
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Define W :R? — R’ (XX, ) (w(xl),...,w(xd)) , where

,uz) with &(u)=1 when u is non-negative and -1

W(U) = s(u)max( u
otherwise. If the image of 1 under the map w') verifies the Poincare
inequality, then u satisfies 7,. It can be shown that this condition is strictly

weaker than the condition u verifies LSI (see [189]).

Other sufficient conditions were obtained by Bobkov and Ledoux in [257]
with an approach based on the Prekopa-Lcindler inequality, or in [33] by
Cordero-Erausquin, Gangbo and Houdre with an optimal transportation
method .

The following proposition is quite classical in Large Deviations theory. It
can be found in DCllIschdl and Strook’s book [125].
Proposition (6.1.13) [194]: Let AcP (y) be such that {xe;(”:L“;eA}is

measurable. Then for every probability measure von yabsolutely
continuous with respect to z and such that

V”(x:L“;eA)>0,wehave

1 " nH(V]u)
~1 Led >
. og(u (L, ed)e )

Vn(L”EAC)llogV”(LneA) 1

_H(V|g)—2— 7
( |H) V' (L, € A4) n n neV'(L, € A)

(12)

"
du"

Proof: Let h= andB={xe y":L e Aand h(x)>0}. Then,

e—logh(x) "(x
,u"(LneA)Zu"(B):IBh(x)an(x):Vn(B)IB Vn(‘;\)/ ( )

Applying Jensen's inequality gives

1 el (B [ logh(x)av’
n > n _
oz (L, € 4)2log V" (B) -~
Since H(V" u")zjlogh(x)dV", one concludes that
H(V” /,t”) I(,logh(x)h(x)du”
1 n > n _ B
ogu"(L, e A)=logV"(B) V' (B) + v (B) (13)
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But for allx >0, xlogx>-1/e, S0

[ logh(x)h(x)du" gy 4
B (5 () {14

Putting (14) into (13) and using H (V"

u")=nH (V|u) andV" (B)=V" (L, € A)
gives the desired inequality.

Theorem (6.1.14) [194]: If ueP, (y), then for all t >0,

liminf — ! logP (W (L,,p)> t)Z inf{H(V|u):Ve P (x)st.W,(V,u) >t}

n—>+to n

Proof: Let +>0and define A={VeP,(x)st.W,(V,u)>t}. Take Ve 4such

that H(V|u)<+wo.If (¥) is an i.i.d sequence of law 7, and L] =n"'>"" 5, ,
then L) converges to Valmost surely for the W distance and so

V' (L, ed)=P (W, (L, u)>t)>P (W, (V,u)>t)=1, when ntends to +o0.
Applying Proposition (6.1.13) to A and v and taking the limit when » goes
to 4+, gives

liminf — ! logP (W (Ln,u)>t)2—H(V|u).

n—>+0 n
Optimizing over V gives the result.

Corollary(6.1.15)[274]: If <P, (y, ), then forall t>0,

11m1nfllogP(W (Ln,y)>t)2—inf{iH( |y) ZV eP, (x)st. pr (vj,u)>t}
n—s+o p =

=1

k
Proof: Let ¢>0and define 4 = {ZV eP, (1. )st. pr (vj,u)>t}. Take

ivj e 4 such thatiH (v, |u) <+ . If (¥), isan iid sequence of law
j=1 j=1

iv/. ,and L = n‘liZ:(@ ) , then L' converges to Zn:v/. almost surely
J 1= i J J

j=1 j=1 J=1
for the w, distance and so

[ivjjn (L, e4)=P(W, (Li,#)>t)—>P[in (vj,y)>tj=1,when n—o



Applying [194] to A and iv , and taking the limit when n —— +o, gives

nminfllogP(Wp (L,.u)>t)=- > i (v, |u)-
n—+o g = k

k
Optimizing over v gives the result.

J=1

Corollary(6.1.16)[274]: (Marton). If u verifies T, (¢), then for a

measurable subset 4 of y, , such that y(A)Z%.

u(A“) 21-be 7, Vg2 0

where r, = /¢ log(2).

k
Proof: Consider a subset 4 of y, , and defined u, = IAdu[ij j/u(A )- Let
j=1

B =y, \4“"and define u, accordingly. Since the distance between two
points of 4 and B is always more than (. + ), one has
W, (1,1, )= (e +1,). The triangle inequality and the transportation-cost
inequality T, (¢) yield
(e+r)<W, (lLtA > Hp ) W, (:uA ’:u)'i'Wl (:uB uu)
< \H (s 1) + et (uy |u)

= JClog(1/ p(4)) + ¢ log(1/ u(B))

Rearranging terms gives the result.

Corollary (6.1.17)[274]: Let pueP,(y )and a > 0; the following
Propositions are equivalent:

(1)There are r,,b> 0such that for all n the probability u" verifies (4),
(ii)The probability u verifies7,(1/a).

Let us recall the definition of the series of the T, transportation-cost
inequality. We say that a probability measure 4 on y, verifiesT, (1/a), if

in (vj,,u)S GiH (vj |,u),f01‘ everyivj eP (z, )

Jj=1 J=1 J=1
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Proof: Let us show that (ii) implies (i). The main point is that T, ten-
sorizes ; this means that if u verifies T, (1/a)then u"verifies T, (1/a)on the
space y; equipped with p; (see[190]) .Jensen's inequality implies that
W, <T, and consequently u"verifies T, (1/a)(ony; equipped withp;) for
all n. Applying Proposition (6.1.3) to u"gives (1) with 7, :\/W, b=1
and a.

Let us show that (i) implies (ii). For every integer n, andixj e !, define

J=1

AZX/J £ n S [Azx/J
L[ a5 s .Themap Yx, »W,| L7 /4 is%—Lipschitz-
- j=1

n
n

b8 ) )-8

According to the convexity property of T, (.,.)(see [37]), we have

2 504
T, L[ L))" leTz S .5
) )

J=l

1 k ! ' 1 k k 2
:;Zp [ijj a[zyjj :;pzn [ijazyjj
which proves the claim.

k

Now, let L[ZX jj j be an 1.i.d sequence of law u and let L, be its empirical
J=1 iJi

measure. Let m,be the median of W, (L, ,)and define
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A=Dx, W, L ,u|<m, . Then u"(4)=1/2and it is easy to show

; J <m +(g+l’0)
Applying (4) to A gives
P(W, (L, u)>m, +(&+r)Vn)<b exp(-az®), V&>0

k
Equivalently, as soon as v/n [Z” ;—m, J >r,, we have
j-1

P[W2 (Ln,y)>ji;ujj§b exp[a[\/ﬁ[jiuj mnjr(j}.

Now, since W, (L,,u)converges to 0 in probability (see Proposition (6.1.2)),
the sequence m, — 0 whenn — +00. Consequently,

k k
hmsup—logP( L ,u >ZujJ —a(Zu J , VZuj >0
Jj=1 Jj-1

n—+o N

The final step is given by Large deviations. According to Theorem(6.1.4),

1 k k k k
liminf — logP[ (L,,n) >Zujj mf{ZH( |y):2vj ePz(;(k)sI.ZW/z(vj,u)> uj}
Jj-1 Jj=l j=

n~>+00n

This together with the preceding inequality yields

j=l j=l

mf{zH< )i, ew)@WZ<v,,,,)>iu,}2a[iuj

or in other words,

and this achieves the proof.
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Corollary(6.1.18)[274]: Let i, be a probability measure on y, and suppose
that for all integer n the function F,defined on y; by

k

k 2 ,
F, [ij j =W, [L;,‘ ,y}verlﬁes
j=l

215

[ij <Ly for u" almost every Zx €yl (15)

n =

If i1, verifies the inequality LSI(¢), then u , verifies the inequality T, (¢).
Suppose that y, = R? or a Riemannian manifold M, then according to
Rademacher's Theorem, F, is almost everywhere differentiable on (R‘ )
(resp. M") with respect to the Lebesgue measure. It is thus easy to show that

condition (15) is fulfilled when x , is absolutely continuous with respect to

Lebesgue measure. This permits us to recover Otto and Villani's result as
stated in [32].

Proof: As we said above the product measure u"verifies the inequality (6).

.. . SE .
Apply this inequality to f =e?> ", with seR". It is easy to show that
SF| s CF,
Vel |[==e*"|V,F|,

1

, we see that the right hand

side of (6) is less than ¢ — Ie‘F du"
4n

Letting Z(s) = | e™du" , we get the differential inequality:
g g quality

Integrating this yields:

This implies that

P (W2 (Ln ,,u) >t+E [Wz (Ln H)]) <o

Corollary(6.1.19)[274]: If u verifies the inequality LSI" (¢), then u
verifies T, (¢).
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.Proof: The inequality LSI"tensorizes, so u"verifies[194].

H(u"

f2)3cji\v;f\2 du’

s k [ix/»
Take f —e?” , seR'withF, [ij j =W,| L/

j=l

J,u . Once again, it is easy

J

El k v[ir]
to check that V;eZF" (note that the function ) x, e V" ’ is

=2V,
2 j=l
non decreasing). Reasoning as in the proof of Theorem (6.1.7) it is enough

k k
to show that » ‘V;Fn 2[ijj§1/n for x"almost all} x e 4. Let us
j=1 j=1

show how to compute‘V;Fn‘. Letizj € iX e
j=1 j=1

z[[zj[ﬂ  rand set

Let 7P| L J, u | be an optimal coupling; it is not difficult to see that we

ol ol ol e ) o

p Hza J ,d/i v ] _ (Zv ] {d [z v Bwith (Zv J [Zv ] probability
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k
ZV,
j=l

measures on y, such that »™' H

; then

1

k
2, j
¥, JJ belongs to P{

z, jin place of [

i
Jj=1

Let p be defined as p with (

lu}

>
j=1

)

N
Nk
N
o~
AL
N
~
N N
SAH AN
- " D )
O ) >
ajl o Lnua
< <L
=Y 2= .
AT AT a) 20
T AL =
—| = ——= ~ N~ %
[ -~ - S
VY
A LR 5
N > - 5
A
D c
— o ¥ 2
Ay kZﬂ, ~ 2]
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4\ T kZﬂ,} —
N N -
o S = -
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ZF N Il
~ i .
PRS2 il
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SN ERN ER O KR o b
NG - (7U m
A\ T s
nz._lz, — < 2 kZF m
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[ VI <
o
o
(=)
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N
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1

|

k
Zaj
Jj=1

-

k
j =1

Letting > -

]
g
<
w2
]
=
g}
en
g
o=
Q
A
7\
=,

A
N~
T

v.j 7\

I

N \|./)a
S
o~ S kZﬂ,/

/
computations for the other derivatives (with the same optimal coupling ),

2
n 2{
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we get

WECIEALCIID

V;F,

pe

Jj=1

Summing these inequalities gives ) ‘V;Fn

j =1

2[Zajjﬁl/n for all ia}. €xs
Jj= J=1
which achieves the proof.

Corollary(6.1.20)[274]: Let u be a probability measure on R? and
p<[L,2]. The following propositions are equivalent:

(1)The two level concentration (10) holds for some non-negative iaj ,ib}.

J=1 J=l

independent of»

(i1)The probability measure u verifies the series of transportation-cost
inequality

k k n
ZTZ,[) (vj.,,u)SéZH(vj |,u), VZV}. eP(Rd)
j=l =1

J J=1

for some constant ¢ .

More precisely, if (10) holds for some constants iaj ,Zk:bj , then the series

PR
of the series of the transportation-cost inequality holds with the constant

¢ = kL(for j=1,c=288 see[194]). Conversely, if the transportation-cost

4;

J=l

inequality holds for some constant ¢, then (10) is true foribj =2 and

J=1

S, =1/(2¢)

J

Proof: Let us recall the proof of (i1) implies (i). According to the tensoriza-
tion property, for all n and all probability measure v on(R")",
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T,, [Z;vj " j <cH [Z;vj
j= j=

)

holds. Take 4 and B in (R")" and define du)=1,du/u"(4)and
duy=1,dp/u"(B). According to point (ii) of Lemma(6.1.9) and the
transportation-cost inequality satisfied by u", one has
T, (u)mp ) <27, , (w0, 1" )+ 2T, , (uy.0")
< 2H () | )+ 26H (y |u” )
= —2510g(u" (4)u" (B ))

Define
¢, (4,B)=inf{(s+7,)20ss. (4+B,,(s+7,))NB *¢|
then T,, (u},u5)2¢,,(4,B8)and so
W (A) " (B)se e

Now, if u"(4)>— and B = (R’ )" \(4 +B,, (¢ +r,)), one has

N | =

¢,,(4,B)=(s+r,)and sou" (4 +B,, (e+7, )) >1-2¢"""1 Using point (iii)
of Lemma (6.1.9) gives

/ln (A +\/(8 +7, )32 +1\’/(g +7, )Bp ) > 1_26_(8+r°)/26 .

Now let us prove the converse. Let (X,) be an 1.1.d sequence of law x and
let L, be its empirical measure. Consider

k

k n [Zx/} .
A=:>x,e(R") s£.T,,|L)" ', u|<m, ywhere m,denotes the median of
=

ix/
T,, LE” J, 1 |. According to point (ii1) of Lemma(6.1.9)

k
A+ (e+r,)B,+¥/(s+7,)B, cA+12B,, (s+r,). LetY x, ed +12B,, (s +1,);

J=1

k k
there is some ' ¥, €4 +12B,, (¢ +r,) there is some > i, e4 such that
j=1 j=1
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(for j=1,¢, =144 (see [194]). According to point (i1) of Lemma(6.1.9)

T L[/ N

2,p n

2 e |25 o [ c(etn)
S |S2T, L +2T, | L 7, |<2m, + P
Consequently, the following holds for all# :

k
—Za/(s+ru)
=1
be’ , Vez-r,

n

.M»

P(ngp (L, p)=2m, +5(8+r0)/n)é
Jj=1

Reasoning as in the proof of Theorem(6.1.6) we conclude that

ingp (v, )<+ Zn:H(vj |u), for every Zn:vj cP (R)
=

k
= =l
Zaj

—, (A,B})/2¢
Remark[6.1.21]: (1) If »” (A)zéwe have %u” (B)<e ¢, (4.8 )2

,approximately ,we have forgz,p (A,B ) =0 that u" (B)<2
(i)  We can deduce that

A,B)/2c -
) >1 and ¢ (A,B)£2log2.Hence52%
» og

_clp(

Section (6.2): Poincare’Inequalities and Dimension of freeConcentration of
Measure.

We say that a probability measure on a metric space (X,d)satisfies a

Poincar’e inequality also called spectral gap inequality with the constantC,
if for all locally Lipschitz function /', we have
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Var(f) < C[|vfT du, (16)
where the length of the gradient is defined by

|f(:;)_f(y)| (17)

IVf](x):= limsup

(when x is not an accumulation point of X, one defines |[Vf|(x)=0.

It is well known since the works [165], [244],[243] and [255] that the
inequality (16) implies dimension free concentration inequalities for the
product measures u",n>1.

For example, in [255] M. Ledoux and S.G. Bobkov proved that if u verifies
(16), then there exists a constant L depending only on ¢ such that for all

. 1
subset 4 of x" w1thu”(A)25,

u(4')z1-¢" vh20 (18)

where the set 4”is the enlargement of 4 defined by

A" :{yeX"iXI;Af;a(d(xi,yi))Sh},

where a(u) :rnin(u ,uz) for all u € R (see [255]

Inequalities such as (18) were first obtained by M . Talagrand in different
articles using completely different techniques (see [181]).

In this paper, one will say that a probability measure p satisfies the classical
Poincar’e inequality with constant C>0on R?, if p satisfies (16) onR’
equipped with its standard Euclidean norm| - |, . In that case, one will write

that p satisfies the inequality SG(C), where SG stands for spectral gap. In all
the sequel, Bpwill denote the ¢7unit ball of R”:

sz{xeR’”:

x|+t

"51}

xﬂ'l

If p satisfies the inequality SG(C)on R then (18) can be rewritten in a

more pleasant way: for all subset 4 of (R*)" with u" (4) 2%,

y”(A+\/ZBZ+hBI)21—e”“’VhZO (19)
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with a constant L depending on C and the dimension 4. The archetypic
example of a measure satisfying the classical Poincare’ inequality is the

. I . -
exponential measure on R? ¥V, wheredy, (x):ze “dx. For this probability,

(19) cannot be improved (a version of (19) with sharp constants has been
established by Talagrand in [180] see also Maurey [17] Thus (19) expresses
that the probability measures u”concentrate at least as fast as the

exponential measure on(R‘)".
Some probability measures concentrate faster than the exponential measure.
For example, the standard Gaussian measure u” on R”verifies for all 4 c R”

with 1 (A)z%

W' (4 +hBy)=1-¢ "7 (20)

One cannot derive such a bound from the classical Poincar’e inequality. The
inequality (20) requires stronger tools. For example, it is now well known
that (20) follows from the Logarithmic-Sobolev inequality, introduced by L.
Gross in [155], which is strictly stronger than the classical Poincare’
inequality (see [174]). Let us recall, that a probability measure p on R is
said to satisfy the Logarithmic-Sobolev inequality with a constantC > 0, if

H(u\fz)scjwfidu 1)

holds for all locally Lipschitz function f on R, where the entropy
functional is defined by

Hy(p)zIflog(f)du—(Ifduj.log(ffdu)ﬁf20

The aim is to show that considering Poincare” inequality on R‘ equipped
with other metrics than the Euclidean distance makes possible to reach a
large scope of concentration properties including Gaussian or even stronger
behaviors. The metrics we are going to equip R’ with are of the form:

d 2
W (55)=| Sl -l )f [ vmyer 2)
i=1
We will assume that » :R — R is increasing and verifies:

(i) w is such that x> w(x)/xis nondecreasing on (0+w),(ii) » is non
negative onR",
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(iii) w is such thatw(—x)=-w(x), for allx e R.
Note that the first assumption is verified as soon as w is convex on R* with w(O) =0.

Definition (6.2.1) [189]: One says that a probability measure p on R*
satisfies the inequality SG(w,C)if u satisfies the Poincar’e inequality (16)

for the distance W (.,.) defined by (22) with the constantC > 0.

The following proposition gives examples of the variety of concentration
rates enabled by our approach.

This result will be easily deduced from (18) and from an elementary
comparison between the metric W, (.,.)and the norms|.|p )

This section will provide a lot of sufficient conditions for the inequalities
SG(w,C). Let us just say for the moment that, in particular, for all p e[1,+x),

the probability measure dV, (x) :%e“‘”dx verifies SG(wp,C) for some C on

R. For these ¥, one thus formally recovers a famous result by Talagrand

[182]. Let us emphasize here that the above proposition only gives an
example of the concentration results we can obtain with this approach. It is
for instance possible to derive adapted concentration results for fast

decreasing probabilities such as du(x) :%eXp(—exp( xz))dx

Before presenting in details our results, let us outline some of the positive
features of the inequalities SG (w,.):

(1) They enjoy the classical properties of Poincar’e inequalities:
tensorization and stability under bounded perturbation.

(i1) A lot of workable sufficient conditions are available. In dimension one,
one proves a necessary and sufficient condition.

(ii1) A large variety of Talagrand’s like concentration inequalities can be
obtained. Moreover it is interesting to note that the same family of
functional inequalities yields as well subgaussian and supergaussian
estimates.

(iv) These inequalities are weak. For example, we are going to show that for
all p e[1.2]the Poincar’e inequality SG(wp,.) is strictly weaker than the Lata

la-Oleszkiewicz inequality LO ( p,.) defined below and gives the same kind of
concentration.
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(v) Finally, inequalities SG (w,.) are equivalent to certain transportation-cost

nequalities and inf-convolution inequalities. As a byproduct, our section
furnishes new results for these inequalities.

Let pe[1.2], one will say that a probability measure u on R‘satisfies the

inequality LO(P,C)if
Ifzdu—(jlfla du)
sup <C

ae(1,2) (2 _a)z(l"%))

[l an 23)

holds for all f smooth enough. For p=1, the inequality (23) is Poincar’e
inequality SG(C)and for p=2 it is equivalent to the Logarithmic-Sobolev
inequality see [239,].The LO(P,C)inequalitiecs on Rwere completely

characterized by Barthe and Roberto in [58]. Several extensions of this
inequality were considered (see [73] or [59]). According to [239,], if pis a
probability measure on R’ satisfying LO(P,C), then there is a constant

L >o0such that y" verifies the concentration inequality (23). So, roughly
speaking, if u verifiesLO(P,C)it concentrates independently of the
dimension like dv, (x)= Zie-xf dx,p e[1,2]

P
These inequalities first appear in a paper of S. G. Bobkov and M. Ledoux
[200]. Let H : R—>R* be a convex function ; one says that a probability u
on R verifies the modified Logarithmic-Sobolev inequalityLS(Hq,C) , if

H,(f)s< CIiH[%}/zdy (24)

holds for all positive and locally Lipschitz function f. WhenH (x)=x", the
preceding inequality is simply the Logarithmic-Sobolev i