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Abstract 
We study the transport inequalities, gradient estimates entropy, and Ricci 
curvature. A free probability method of the Wasserstein metric on the trace-
states space is considered. We give a free Brunn-Minkowski inequality, and 
show the Talagrand inequality for the semicircular law and energy of 
eigenvalues of Beta ensembles. We also show the Ricci curvature for metric 
measure spaces by optimal transport, and consider the mass transportation 
and rough curvature bounds for discrete spaces. We investigate the 
combinatorial dimension and certain norms in the method of harmonic 
analysis, and characterize the relationships between combinatorial 
measurements and Orlicz norms. Also Characterization of dimension free 
concentration in terms of transportation and Poincar'e inequalities with 
dimension free concentration of measure are shown, mass transportation 
evident of free functional inequalities and free Poincar'e inequalities are 
confirm. 
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  الخلاصة

نحناء ریكاي القصوردرسنا متباینات التنقل ودرجة  ٕ . الحراري لتقدیرات المیل وا
تم إعطاء . الحالات -إعتبرنا طریقة الإحتمال الحر لمترك واسرشتاین على فضاء أثر

منكووسكاي الحرة وتوضیح متباینة تالاجراند لأجل القانون نصف الدائري  -متباینة برن
اءات القیاس المتریة أیضاً أوضحنا إنحناء ریكاي لفض. وفعالیة القیم الذاتیة لفرق بیتا

عتبرنا تنقل الكتلة وحدودیات الإنحناء الخشن للفضاءات  ٕ بواسطة التنقل الأمثل وا
إستقصینا البعد الإندماجي ونظائم معینة في طریقة التحلیل التوافقي . المتقطعة

أوضحنا أیضاً تشخیص . وشخصنا العلاقات بین القیاسات الإندماجیة ونظائم أورلش
تم . عد بدلالات التنقل ومتباینات بونكاریة مع التمركز حر البعد للقیاسالتمركز حر الب

  . تأكید وضوح تنقل الكتلة للمتباینات الدالیة الحرة ومتباینات بونكاریة الحرة

  

  

  

  

  

  

  

  

  
 

Introduction 
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We present various characterizations of uniform lower bounds for the Ricci 
curvature of smooth Riemannian manifold in convexity properties of the 
entropy. 
We define free probability analogues of the Wasserstein metric, which 
extends the classical one. We present one dimensional various of the 
functional form of the geometric Brunn-Minkowski inequality in free (non-
commutative) probability theory. The proof relies on matrix approximation 
as used recently by Biane and Hiai et al to establish free analogues of the 
Logarithmic Sobolev and transportation-cost inequalities for strictly convex 
potentials that are recovered here from the Brunn- Minkowski inequality as 
in the classical case. We give a short proof of an extension of the free 
Talagrand transportation –cost inequality to the semicircular which was 
originally proved [198].The proof is based on a convexity argument and is 
the spirit of the original Talagrand's approach for the classical counterpart 
from [179]. 
We define a notion of measured length space having nonnegative Ricci 
curvature or having ∞-Ricci curvature bounded below by a real number .We 
introduce and study rough (approximate) lower curvature bounds for 
discrete spaces and graphs. This notion agrees with the one introduce in the 
sense that the metric measure space which is approximated by a sequence of 
discrete spaces with rough curvature greater than or equals a real constant 
will have curvature greater than or equals other a real constant. 
We study a parameter called combinatorial dimension where appropriate 
constructions in a harmonic, analytic framework filled “combinatorial " and 
" analytic " gaps are open between Cartesian products of spectral sets. We 
establish in a setting of harmonic analysis precise relationships between 
combinatorial measurement and Orlicz norms. 
The aim is to show that a probability measure on Rd concentrate 
independently of the dimension like a Gaussian measure , if and only if it 
verify Talagrand's T2 transportation –cost inequalities .We consider 
Poincar'e inequalities for non Euclidean matrics on Rd .These inequalities 
rate between type exponential and Gaussian and beyond. This work is 
devoted to a direct mass transportation proofs of families of functional 
inequalities in the context of one dimensional free probability, avoiding 
random matrix approximation. The inequalities include the free form of the 
transportation log Sobolev , HWI interpolation and Brunn-Minkowski 
inequalities for strictly convex potentials. Sharp constants and some 
extended version are put forward. 
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Chapter 1 

Transport Inequalities and Gradient Estimates with Entropy 

The entropy will be considered as a function on the space of 
probability measures on the Riemannian manifold as well as in terms of 
transportation inequalities for volume measures, heat kernels, and Brownian 
motions and in terms of gradient estimates for the heat semigroup. 

For metric measure spaces there is neither a notion of Ricci curvature 
nor a common notion of bounds for the Ricci curvature See 
[104,156,143,251,285,118] (complete, for instance, to Alexandrov’s notion 
of bounds for the sectional curvature for metric spaces [29.166, 
4,129,163,145]. 

We present various characterizations of uniform lower bounds for the 
Ricci curvature of a smooth Riemannian manifold M in terms of convexity 
properties of the entropy (considered as a function on the space of 
probability measures on M ) as well as in terms of transportation inequalities 
for volume measures, heat kernels, and Brownian motions and in terms of 
gradient estimates for the heat semi group.  

In what follows,  M,g is always assumed to be a smooth, connected, 
complete Riemannian manifold with dimension n, Riemannian distance
 d x, y , and Riemannian volume ),()( dxvoldxm  for ),1[ r the rL - 

Wasserstein distance of two measures 1 and 2  on M  is defined as: 

       

1

1 2 1 2 1 2 1 2, : inf , : ,
r

r
r

M M

d x x dx dx C     


    
  
W  

Where  21,C  denotes the set of all coupling of 1  and 2 , that is, the set 
of all measures   on MM  with    AMA 1   and    AAM 2   for 
all measurable :MA  see [23]. 

Here and in what follows, the “measure on M” always means the measure 
on M equipped with its Borel  -field.  r MP  will denotes the set of 
probability measures   on M with    ,

M

d x y dy   for some (hence all) 

Mx . Equipped with the metric rW the space  r MP  is a geodesic space.  

The relative entropy is defined as a function on  r MP  by:  
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  : log ( )
M

dv dH ol dx
dx dx

  VV V  

If V is absolutely continuous with respect tovol with 
log ( )

M

d d vol dx
dx dx

      
V V v  and ( ) :H  V  otherwise. Given an arbitrary 

geodesic space  ,X  , a number RK , and a function   ,: XU , we 
say that U  is K  convex if and only if for each (constant speed, as usual) 
geodesic  : 0,1 XV  with  0U  V and  1U V  for each  ,1,0t   

           2
0 1 0 11 1 ,

2t
KU t U tU t t     V V V V V . 

 K - Convex function on  2 MP  are also called displacement K - convex (to 
make sure that tt  V  is really the geodesic with respect to rW and not the 
linear interpolation   0 11t t v t  V  in the space  2 MP ). 

Here and henceforth,  yxp t ,  always denotes the heat kernel on M, i.e. the 
minimal positive fundamental solution to the heat equation

  0, 










 yxp
t t . It is smooth in  yxt ,,  and symmetric in  yx, . And it 

satisfies    , 1t
M

P x y d dx  V . Hence, it defines a sub probability measure 

     dyvolyxPdyxP tt ,,   as well as operators    MCMCP tt
 :  and

   MLMLPt
22:  . Which are all denoted by the same symbol given 

 r MP  and 0,t   we define a new measure  
t

r
P M P  by:  

       , .t t

A M

P A P x y dx vol dy     

 Brownian motion on M  is by definition the Markov process with generator


2
1 .  Thus its transition (sub) probabilities are given by 1

2

P . 

 If the Ricci curvature of the underlying manifold M  is bounded from 
below, then all the  ,xPt  are probability measures. If the later holds true, we 
say that the heat kernel and the associated motion has an infinite lifetime. 

One obtains contraction in rW for each   ,1r and for any initial data and 
One obtains path wise contraction for Brownian trajectories. 

The advantage of this characterization of Ricci curvature is that it depends 
only on the basic, robust data: measure and metric. It does not require any 
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heat kernel, any Laplacian, or any Brownian motion. It might be used as a 
guideline in much more general situations. 

 For instance, Let  M,d  be an arbitrary separable metric space equipped 
with a measure m on its Borel  -field and assume that (2) holds true (with 
some numbers KR  and 0n  ). Define an operator rm  acting on bounded 
measurable functions by: 

     ..r r x

M

m f x f y m d y  . 

Then by the Arzela- Ascoli theorem there exists a sequence   N
jj   such 

that:  

 2 2 /
: lim

j

t j n t j
P f m f

 

   
 




 

Exists for all bounded  MCf lip , and it defines a Markov semi group on M  
satisfying    fLipefPLip kt

t
  (see [140]) 

Theorem (1.1)[186]: 

 For any smooth complete Riemannian manifold M  and any KR , the 
following properties are equivalent: 

(i)   KMRic  which should be read as   2,xRic KV V V for all , .xx M T M V  

(ii)  The entropy ( )H  is displacement K-convex on  2 .MP  

(iii) the gradient flow    2 2: M M�   P P with respect to ( )H  satisfies                

        2
2 2t , , , . , , 0.ktt e M t        W WV V V P  

Proof: 

(ii)   (i). Assume   (i). Then    KeeRic 110 ,  for some MO , some unit 
vector MTe 01   and some 0   let neee ,...,, 21  be an orthonormal basis of 

MT0 such that: 

  iii ekeeeR 11,  

For suitable number nik i ,...,1,   (denoting the sectional curvature of the 

plane spanned by 1e  and ie  if 1i ). Then  



n

i
ii KeeRicK

1
10 .,   
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For , 0r   let   101 exp: reBA   and   100 exp: reBA    be geodesic balls, 
and let:  




































 


n

i

i

i
y

MTyA
1

2

00
2
1 1:exp:  

With 













  2/

2
1.: 2

n
Kr ii


 . Choosing 1r    we can achieve that 

1 1
2 2

AV for each minimizing geodesic  : 0,1 MV with 0 0 1 1,A A V V .  

Now let 0  and 1 be the normalized uniform distribution in .
2
1A then  

   
   

2
0 0

2
1 0

log log log

log log log

n

n

H volA C n O

H volA C n O

  

 

     

      
. 

With  1:nC vol B  in nR , where as  

 2
1

12

( ) log log log
n

n i
i

H volA C O 


     V  

   2 4 212log log
2

n

i
i

n

K
C n r O r O



 


     


 

   2 4 2/ 2log log
2n

KC n r O r O 
      . 

Since the optimal mass transport from 0  to 1 (with respect to 2W ) is along 
geodesics of M  the support of 1/ 2  must be contained in the set 1/2A . Hence  

 1/2 ( )H H  V  

and thus  

         22 4 4 2
1 0 1 2 0 1
2

1 1 ,
2 2 2 4 8

K KH H H r r O r O
     
 

         
 

W  

                                                    for 1r   .  

(i)  (ii). Here we closely follow the argumentation of 
[31,142,110,149,161,166] and use their notation. Assume that KMRic )( . 
We have to prove that  
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           2
0 0 1 2 0 11 1 ,

2
KH t H tH t t         W  

For each geodesic tt   in   2
2,MP W and each  1,0t . Without 

restriction, we may assume that 0  and 1  are absolutely continuous 
(otherwise the right-hand side is infinite). Hence there exists a unique 
geodesic connecting them. It is given as   0 tt F  where 

    exptF x t x    with a suitable function . Moreover, with  

 : dett tJ d F x  and  
r

n
K

r
n
K

rS
.

1

.
1

sin
:













  

Which should be read as   
r

n
K

r
n

K

rS
.

1

.
1

sinh
:
















  

If 0K   and as   1rS  if 0K  and with  ,t x yV  being the volume distortion 
coefficient of [31], we deduce  

       0 0logt t

M

H H J x dx      

 and thus 

               0 1 0 01 log logt t t

M M

H t H tH J x dx t J x dx            

           
1 1 1

1 1 1 1 0log 1 , ,n n n
t tn t F x x t x F x J x d x

 
   

  V V     1 0log
M

J x dxt    

      
   

   
       

1 11 1
111

1 0
1 1

,1 ,
log 1

, ,

n n

n
S td x F xS t d F x x

n t t J x dx
S d F x x S d F x x



  
    
      
       

 
     

   1 0log
M

t J x dx   

                   1 1 1 01 1 log 1 , log , log ,n t S S d F x x S td F x x S d F x x dx         



6 
 

          2
1 0 2 0 11 , 1 ,

2 2
K Kt t d F x x dx t t      W . 

 Here the first and second inequalities follow in 
[31,254,69,162,31,156,34,181,174]. The third inequality follows from the 
concavity of logarithm, and the least one from the fact that  

       2(1 )1 log 1 log log ( )
2 2

t t Kt S t r t S tr S r r
                             

        1 1 0t t r t tr r         

for all 0r  under consideration and  1,0t  since   0 r  where  

  2

16
1)(log: r

n
KrSr


 . Note that according to the Bonnet-Myers theorem 

we may restrict ourselves to 0r  with 22

1



r

n
K .  

 In order to verify that   0 r , it suffices to consider the cases  1 nK . If 

 1 nK , then   21logsinh log
6

r r r    and   r
rr

rr
3
11

sinh
cosh

 . The latter 

is non positive for all 0r   if and only if 0sinh
3
1sinhcosh 2  rrrrr  For all 

0r  , Differentiating and dividing by 
3
r , we see that this is equivalent to

0sinhcosh  rrr , which (again by differentiation) will follow from 
0sinh  rr  which is obviously true. 

Analogously, if 1 nK  the condition   0 r is equivalent to 

0sin
3
1sincos 2  rrrrr , which (by the same arguments as before) is 

equivalent to 0sin  rr . Here, of course, we have to restrict ourselves to 
 ,0r .  

Theorem (1.2) [186]: For any smooth complete Riemannian manifold M  
and KR the following properties are equivalent: 

 (i)        KMRic  . 

(iv)      For all  MCf c
 , all Mx , and all 0t  ,    xfPexfP t

kt
t   . 

(v) For all  MCf c
  and all 0,t   fefP kt

t  


. 
For all bounded  MCf lip  and all 0t  ,    fLipefPLip kt

t
 . 

Proof: 
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(i) (iv) this is due to D.Bakry and M.Emery [28] and can be obtained 
using their 2  calculus,( see [20]). 

(iv)   (v) take .


on both sides and use (on the right-hand side) the fact 
that tP is a contraction on )(ML .  

(v) (i) we prove it by contradiction, assuming    i v  . If (i) is not true, 
then there exists a point MO and 1

0
n T M V S such that 

 0 ,Ric K  V V  For some 0  . If (v) is true then  

   fLipefPLip kt
t

  

For all  MCf Lip
C  and all 0t  . Indeed, fix, My and 0t  , and choose 

 MCf Cn
  with ff n  uniformly on M and    fLipfLip n  . Then  

               fLipyxdefLipyxdeyfPxfPyfPxfP kt
n

kt
ntnttt .,.,.   . 

Our first claim is that there exist a neighborhood U of O and a function 
 MCf Lip

C  such that 2CUf  and  

                                00 f                                                            (1) 

                             00 fHess                                                          (2) 

                               1 xf                     x U                              (3) 

                              1fLip                                                             (4) 

 In order to construct such a function f . Let   0 logx M cut x v M   F

be the orthogonal  hyper surface  to v in M  and define the signed distance 
function 0f  from 

 F  by 

 0 : 0f M cut R  ,    0 , .f x dist x F  xvsign 0log, . 

It is shown in Lemma (1.4) below that  0 0f C U  for some neighborhood 

0 0U and that it satisfies the properties (1)-(4) from above with M  (and U ) 
replaced by 0U . Without restriction, we may assume that 0U  has a smooth 
boundary and compact closure. Now put  PPff  0 with
   0,P x dist x M U . This function coincides with 0f on a suitable 
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neighborhood U  of 0, and it has compact support and satisfies all the 
properties (1)-(4) from above.  

Now let us fix a function f as above, choose atest function  0 CC   U , 
and define 

for 0t  ,  t := 2
t

m

p f  d vol  .Then(v) and(4) imply 

      
2

2 exp 2 1 2t

m M M

ptf dvol Lip P f dvol kt dvol kt O t dvol              

Since 122
 ffPt  on supp   U , the function extends 

continuously on the entire non negative half-line by  0
M

    .by continuity 

of the function  

 2 , :f f U R .  

      2
2 , : ,x xf f x Hess f Ric f f     . 

We find: 

 2
1,
2

f f K     

On some neighborhood of that contains, without loss of generality, U . From 
Bochner’s formula we deduce. 

         2 ,t t
M

t f f dvol        

    2 2
2 22 2 , 2 2 ,t t t t t t

M M
f f f dvol f f f dvol                    (5) 

  2
2

0 2 2 ,
M

t f f f dvol          

       22 , 2 2 0
M M

f f dvol K K             

Thus  tt   is differentiable in 0t , with      020  K . 
Consequently, we find for small t  that 

              tOKttOtKt  210020  , i.e. 

    2 1 2t

M M

P f dvol K t O t dvol         
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Which contradicts (5)  

(vi)   (v). This case is trivial.  

One reason for the importance of Theorem (1.1) is that it characterizes 
lower Ricci bounds referring neither to the differential structure of M  nor to 
the dimension of M . Property  ii  may be formulated in any metric measure 
space. For other weak substitutes of lower Ricci curvature bound including 
volume doubling and Poincare inequality, see [110, 142, 268, 216, 97, 49, 
59, 27].  

F.Otto and C. Villani [69] gave a very nice heuristic argument for the 
implication (i)  (ii). In the case 0K , this implication was proven in 
[31,208,214,211,104.97]. 

    The equivalence of (i) and (iv) is perhaps one of the most famous general 
results that relate heat kernels with Ricci curvature. It is due to 
[28,23,236,234,237,70,69,31], see also [20]. Property (iv) is successfully 
used in various applications as a replacement (or definition) of lower Ricci 
curvature bound for symmetric Markov semi groups on general state spaces. 
Our result states that (iv) can be weakened in two respects: 

We can replace the point wise estimate by an estimate between L norm and 
one can drop the tP on the right-hand side. 

 Besides being formally weaker than (iv), one other advantage of (v) is that 
it is an explicit (since tP  appears on both sides). 

 As an easy corollary to the equivalence of statements (iv) and (v), one may 
deduce the well-known fact that (iv) is equivalent to the assertion that for all 

xf ,  and t  as above  

     212 xfPexfP t
kt

t    

Property (vi) may be considered as a replacement (or as one possible 
definition) for lower Ricci curvature bounds for Markov semi group on 
metric spaces. For several non classical example (including nonlocal 
generators as well as infinite-dimensional or singular finite-dimensional 
state spaces) we refer to [76, 184, 140,144]. This property turned out to be 
the key ingredient to prove Lipschitz continuity for harmonic maps between 
metric spaces in [140,166,269,29,21]. 

According to the kantorovich-Rubinslein dually, property (vi) is equivalent 
to a contraction property for the heat kernels in terms of the 1L -Wasserstein 
distance 1W . Actually, however, much more can be proven. 
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Corollary (1.3) [186]:  For any smooth complete Riemannian manifold 
M  and any KR , the following properties are equivalent: 

(i)    KMRic  . 

(vii) For all Myx , and all 0t  , there exists   ,1r with:  

      , , , . ,kt
r t tP x P y e d x y  W  

(viii) For all   ,1r , all  , ,rv M P and all 0t   

   , . ,
t t

kt
r P P re V VW W . 

(ix) For all Mxx 21 ,  there exists a probability space  PA,,  and two 
conservative Brownian motions    01 ttX  and   02 ttX  defined on it with 
values in M  and starting in 1x  and 2x respectively, such that for all 0t  . 

      2
1 2 1 2, . ,

kt

E d X t X t e d x x


    . 

(x) There exists a conservative Markov process    0,,,,  tMMxtXPA  with 
values in MM   such that the coordinate processes    01 ttX and    02 ttX are 
Brownian motions on M and such that for all   MMxxx  21,  and all 0t   

      2
1 2 1 2, . , .

kt
xd X t X t e d x x a s



 P . 

 Proof: (vii)   (vi). By Holder’s inequality, property (vii) for 1r  
implies property (vii) for 1r , which in true implies (vi) according to the 
Kantorovich Rubinstein dually.  

Explicitly, for each coupling of  ,xPt  and  ,yPt   

                       
         

           
1

. , . ,

t t

rr

p f x p f y f z f w dzdw

Lip f d z w dzdw Lip f d z w dzdw



 

    

     



 
 

Hence  

              . , , , . , .w kt
t t r t tP f x P f y Lip f d P x P y Lip f d x y e       

(viii)   (vii). Choose x   and y  .  
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(ix)   (vii). The distribution       1 2: 2 , 2X t X t   P  of the pair 
    tXtX 2,2 21  defines a coupling of  ,1xPt  and  ,xPt . Hence  

       
               1 1 2 1 2 1 2 1 2 1 2, . , , 2 , 2 . ,kt

t tP x P x d z z dz dz d X t X t e d x x       W E

(x)   (viii). Let  be an optimal coupling of   and V  with respect to rW , 
and let t be the transition semi group of the Markov process from  x . Then  

tt 2:   is a coupling of 
tP  and 

tPv . Hence  

     1 2 1 2, , ,
t t

r r
r p p td w w dw dw  VW  

      1 2 2 1 2 1 2 1 2, , ,r
td w w x x d w dw d x d x    

                                           1 2,
1 2 1 22 , 2 ,

rx x d X t X t dx x 
 

 E  

                                        1 2 1 2. , , . , .r rktr k t r
re d x x dx dx e v    W  

 (x)   (ix). Take expectations. 

(i)   (x). this implication is well-known and can be shown using either 
stochastic differential equation theory on Riemannian manifold in order to 
construct the coupling by a parallel transport process on MM  for two 
Brownian motions (cf.,[247,23,157] and [48,223,160]) or by a central limit 
theorem for coupled geodesic random walks and estimate of the type (2) (cf 
[184] for a similar argument). 

Lemma (1.4)[186]: 

Let M be a Riemannian manifold, MO , 0T MV and  

  0 0exp ,u u T M u M   F V ,the  n 1 -dimensional hypersurface 
through  

orthogonal to V . Then the signed distance function 0 :f M  R Belongs to c
 u for some neighborhood oU and   000 fHess . 

Proof: the level sets   0x M f x    F  

Define a foliation of (a sufficiently small) neighborhood u 0 by smooth 
hyper surfaces. The unit normal vector field to F  is given by 0f V which 
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is well-defined and smooth sufficiently close to 0( fF  is a” distance 
function” on U in the sense of [213]. Hence the Hessian of 0f  in a point 
pU may be interpreted as the shape operator of F  in p F  with  pf0

,i.e.,  

     , , ,
p

p pp T M
Hess X X X X S X X   F F  

Where 
p
F is the second fundamental form of the hyper surface M F  

and : p pS T M T
F F  is the associated shape operator. The claim   000 fHess

then follows from the construction of F , which implies that 0 M F F is 
flat in 0 , i.e., 0 0S F  

Theorem (1.5)[186]:For any smooth compact Riemannian manifold 
M  and any KR . The following properties are equivalent: 

(i)    KMRic  . 

(ii)  The normalized Riemannian uniform distribution on spheres  

 
  

    
1

, 1: ,
n

r
r x n

A B x
A A M

Br x







 



H
B

H
, 

 Satisfies the asymptotic estimate  

                            
2

2
2 , ,, 1 . ,

2r x r y
Kr O r d x y

n
 

 
   
 

W                         (6) 

Where the error term is uniform with respect to Myx , .  

(iii)  The normalized Riemannian uniform distribution on balls  

    
  xBm

xBAmAm
r

r
xr


:,  ,  A MB  

Satisfies the asymptotic estimate  

                        2 2
, ,, 1 . ,

2 2r r x r y
Km m r O r d x y

n
 

     
W                      (7) 

Where the error term is uniform with respect to Myx , . 
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Proof:    ixi  . Let us define the family of Markov operators or: B BF F  
by      

M
xrr dyyfxf ,  on the set bf of bounded Borel- measurable 

functions on M   using that for   MCf 3    

                            2
2

2
rOxf

n
rxfxfr                                      (8) 

Is given by 0f V which is well-defined and smooth sufficiently close of F
and on appropriate version of the Trotter –Chernov product formula 
[246,247,223,141,29]) applied to   tp t exp as a Feller semi group on 

  , .C M


,we find for all  MCf   

     2 /

j
j

tnt j f x p f x   ` 

Uniformly in x M  and locally uniformly in 0t   y the Rubinstein–
Kantorovich duality   condition, (xi) implies  

         fLipyxdrOr
n

kyfxf rr .,.
2

1 22 





   

For all  MCf Lip  and Myx , , i.e. 

     fLiprOr
n

kfLip r .
2

1 22 





   

and hence by interaction for jntrNj /2,   

    fLip
j
tO

j
ktfLip j

jnt .1/2 















  

Passing to the limit for j  yields  

     fLipktfpLip t .exp   

Which is equivalent to (i) by Theorem (1.1).  

For the proof of the converse we construct an explicit transport from xr ,  to 

yr , in the following lemma, whose proof is given below. 

 (i)   (xi). We show this for the case 0K  ; the case 0K is treated a 
negligible error yx

r
,  is under noting but parallel transport because  
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                , ,, , exp log exp log , , exp log
xy

x y x y
r y x y x r y xd z z d z z d z z d z x    

VV V  

           , 2log log ,exp log ,x y
x y y xL z z d z z Ld x y O r    

V V
. 

Where L is some uniform upper bound for the Lipschitz constant of  log  
with respect to the second argument. The asymptotic inequality (6) is now 
easily verified from (8), since  

                                
 

, 1
1 , , 1

1, ,
r

x y n
r x r y rn

r B x

d z z d z
B x

  




 
  H

H
W  

          
 

1 2
1

1 ,exp log ,
r

n
y xn

r B x

d z v z dz d x y O r
B x






 
  H

H
 

                               2,
2

,
2

, rOyxdxD
n

ryxd yx   

With    zvzdzDz y
yx logexp,,  , since  

                            



n

i
ii

v
M

yx
x

yx JJIDtrHessxD
2

,, ,  

Where  ii
v
M JJI ,  is the index form of M  along xyV applied to the Jacobi field 

induced from parallel geodesic variations of V . 

 In the direction ie  with  2, ,...,xy ne eV  being an orthonormal basic of MTx . 
Hence we may conclude by the standard Ricci comparison argument that  

   
 

 
 yxKd

yxd
n

K

yxd
n

K

n
KnxD yx ,

,
1

sinh

1,
1

cosh

1
12, 




























  

Such that we finally arrive at  

         
2

2
1 , ,, , , ,

2r x r y
rd x y Kd x y d x y O r
n

    W . 

(xii)   (i). This is shown in the same way as the implication. 

(xi)   (i). With the slight difference that instead of (8) one uses  
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         2
2

22
rOxf

n
rxfxfmr 


 . 

(i)   (xii). We proceed as before for (i)   (xi) where, now we have to 
construct a map yx

r
,  that preserves the normalized uniform distributions on 

balls. However, since similarly to condition (16) in the proof of Lemma 
(1.6) we have  

                            1
, ,

0

1
r

n
r x u x u

r

m A A B x du
m B x

   H  

Such a map can be constructed from a map    yBxB rr
yx
rr  ,

, 21
 with  

  yrxr
yx
rr ,,
,
, 2121

 


 and that is almost induced from parallel transport in the 
sense of (9) below . It is clear that Lemma (1.6) can easily be generalized to 
yield such a map yx

rr
,
21

  which is all we need 

Lemma (1.6)[186]:  

Let M  be a smooth compact Riemannian manifold and for Mx let  xr ,  
denotes the normalized Riemannian uniform distribution on    xBxS rr :
.then for r sufficiently small for each Myx , there exists a geodesic 
segment xyvv  and a measurable map    ySxS rr

yx
r  :,  such that the push 

forward measure ,
.* .

x y
r r x  equals yr .  and: 

              
 

 
   

1 ,
2

log log

,r

z x y
x y r

z S x y M

z
sup sup o r

d x y



 

 


V
                             (9) 

Where the error term  2o r is uniform in Mx  

Proof:We show the Lemma for the two-dimensional case first and 
inductively generalize this result to higher dimensions later. Let 2n  and 
choose a parameterization of  xSr and  ySr (using Riemannian polar 
coordinates, for example) on MTRS x 2 , i.e., for all  : rf S x R  

            
 

2

1 0 0 0

0

, ,
r

n
x x

S x S

f x d z D r f S d D r S f S ds






    H V V V  

With a density  0,xD r V  given by: 

      0 0 0, det , , ,x i j ij
D t Y t Y tV V V  
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2

1 0 0 21 ,
6

n
x

tt C O t  
  

 
V V                                  (10) 

Where xC is the Gaussian curvature of  gM ,  in x  and  0,jY t V  is the Jacobi 
field along  0exp ,xt t V  with   00 iJ and   ii eJ  0  for an orthonormal 
basis  2,1: iei  of ;xT M , for instance.                    

  For yx,  and yx ,  fixed, let the parameterization of MTS xx   and MTS yy 

on  2,0  be chosen in such a way that  00 xyxS   and   xydS xyy  0 . 

Next, we choose a function     2,02,0:,  yx
r  with   00   satisfying  

             
         

 

1 1

0 0

1 1, ,
uu

x yn n
r r

D r S dx D r S dS
S x S y



  H H
                 (11)     

For all  2,0u . Identifying     2,02,0:   with the associated SS : , 
then equation (11) just means that the induced map    ySxS rr

yx  :,   

    













 z

r
rz xx log1exp   

Transport the measure 1
,
n
xrH  into 1

,
n
yrH . By the definition of yx, , estimate (9) 

is equivalent to  

                        
 2,0
sup
z

   
 
   rO

yxd

zzyx
r

My




 ,
sup

,
                                         (12) 

Denoting: 

                            
    2

1

,
, : 1x

x n
r

D r S
E r S O r

S x
  

H
                                  (13) 

With     ,0, 2  MCSE for all  2,0S  and some 0   (11) yields  

      
 

    2

0

1 , , ,
z z

y x yO r z z E r S ds E r S E r S dS




      . 

Consequently. 

 
      

,
2

0

sup 1 ,
,

zx y
r

x
y M

z z
O r E r S ds

d x y
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Due to   constSE 1,0 , we find   0,
0




SrELim xr
and hence  

 
    








dSSrE

r
Lim

yxrd

zz
Lim xr

yx
r

Myr
,

,
sup

0

,

0


 

 
 

   
 

   
0 0

0 0

1
, ,
, ,

4, , , ,
x x

z z
x x

x xr r
x xT M T M

E r S E r S
Lim E r S dS Lim E r S dS

r rE r S E r S 

  
   

     

The right –hand side of (13) yields  

  0, 0rE r S
r 





 

From which we see that the integral above vanishes for r tending to 0. this 
establishes (12) for fixed x . By the smoothness of  ,M g the error term is 
locally uniform in Mx and hence is also globally uniform since M  is 
compact. See [145, 149, 144, 142, 193, 133, 31]  

      The case 3dim M will show how we can deal will arbitrary dimensions
nN . Fix Myx , as well as some segment xyV from x to y . By means of the 
inverse of the exponential map, we lift the measures , ,r x r ya n d   onto the 
unit sphere in MTx  and MTy , respectively, which we disintegrate along the 

xyv -direction as follows: choose an orthonormal basis   MTeee x321 ,, with 

1 xye  V and    1 2 3 1 2 3, , , , ye e e e e e T M    V , and for  1,1u  let 
     1,,exp 222

321,  tsuteseueruS xxr  denote the “orthogonal” part of 
 xSr  with respect to V  at 1ue . Define a probability measure   duuC xr , on 

  MTRe x 11,1  by  

       2
, ,1

1 n
r x r xn

r

C u du S u du
S x

 
 H

H
 

        
1

22 1

1
0 2 0

1 , ,
,

u

x
x S

S

D r u S d du
D r v S dv

 




   

With the Riemannian volume density 

                         
2

0 1 0 0 2, 1 ,
6

n
x x

tD t t Ric t  
   

 
V V V                            (15)  

and  uC yr ,  analogously, let     111 1,11,1 ee   be the function defined by  
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 1

, ,

0

x

r x r yC u du C u du


               1,1S                                  (16)  

For each  1,1S  define a transport  

    SSSS yrxrS 1,,:     

Analogously to equation (11) preserving the probability measure    Sxr,  
and     Syr  ,  obtained from conditioning xr ,  and yr , on  SS xr


,  and 

  SS yr 1,  , respectively. Hence the map  

        













 z

r
rtzySxS xy

yx
rr

yx log1exp:,: ,,  

induced from     MTySxMT yx
yx

r  
22, :  

       3211 ,,
1

uuuu u
  . 

      Will push forward  xr  into  yr , and it remains to prove the 
asymptotic estimate (12). Since the distance   2, uuyx

r  is Euclidean, we 
may use estimate (12) from the two-dimensional case for the 

    ,
2 3 2 3, ,x y

r u u u u   part, which also persists in this situation. Indeed, it is 
sufficient to note that expression (14) and hence the error estimate  

 

    
   rO

yxd
uuuuyx

Myz




 ,

,,
supsup 3232,

2,0




 

Also hold true for the embedded orthogonal spheres  uS xr

,  and 

yrS , (since 
they are parallel translates of one another) and to note that by the triangle 
inequality, this also generalizes to the situation    ySxS rryx

 
21

:,  with
rrr 21 , . Thus it remains to prove  

     rO
yxd
uu

Myu




 ,
supsup 111

1,11


 

which follows from (16) by argument similar to those that established (12) 
in the two-dimensional case. This completes the proof in three dimensions. 
For arbitrary Nn , one proceeds in a similar fashion by inductively 
reducing the problem to lower dimensions.  
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Chapter 2 

Free Probability of Wasserstein metric On Trace-State Space 

       In dimension one, we prove that the square of the Wasserstein distance 
to the semi-circle distribution is majorized by  a manifold free entropy 
quantity.  

     The Wasserstein distance between two probability distributions , Von 
nR is given by 

              
 

 
1/2

2

,
, inf ,x y d x y

 
 



   
 V

VW                                     (1) 

Where denotes the probability measures on. n nR R  with marginals  and V
.Following the usual free probability recipe we shall replace the set of 
probability measures by the trace-state space of a C* -algebra and take 
margillals with respect to a free product.  

We note that in the context of non-commutative geometry, there is a 
different non-commutative extension, due to A. Connes [3], of the related 
Monge-Kantorowitz metric. The Monge-Kantorowitz metric is a 1,p   p 
Wasserstein metric, but the definition which is extended is the dual defi-
nition based on Lipschitz functions, and the extension involves 
Fredholmmodules or derivations (see [183, 200, 198, 44, 27,39]We will 
work in the framework of tracial *C -probability spaces  ,M  , where M is a 
unital *C  -algebra and   is a trace state. The simplest is to define the metric 
at the' level of noncommutative. Random variable . If  1 ,..., nX X and 
 1 ,..., YnY are two tuples of noncommutative random variables in tracial *C

-probability spaces  ,I IM   and  2 2,M  , we define as the infimum of 

                                      
1

j j p
pj n

X Y
 

                                             (2) 

over 2 -tuples 1 1( ,..., , ,..., )n nX X Y Y    of noncommutative random variables in 
some tracial C*-probability space  3 3,M  such that the -tuples
   1,..., ,  ,...,n I nX X X X  and respectively  1 1,..., ( ,..., ,)n nY Y X X    have the same *-
distributions. Here ·

p
 is the p-norm in a tracial C*-probability space. 

while ·
p
. lip is the p -norrn on nR . Like in the classical case, if  2p  we 

call pW the free Wasserstein metric' and we will. also use the notation W  
for 2W . We shall refer to pW  as the free p- Wasserstein metric. Note also 
that if 
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                       ,  ,j j j j j jX D iE Y F iG                                                          (3) 

where , , ,j j j jD E F G are self-adjoint, then 

     I,..., , (Y ,..., ) ,..., , ,..., ,  ( ..., , ,..., )I n n I n I n I n I nX X Y D D E E F F G GW W         (4)                                 

Note also that   ( ,..., ), ,...,p I n I nW X X Y Y depends only on the *-distributions of  
.  1..., and( ,..., )n I nX X Y Y   If we consider -tuples with the same *-
distribution as equivalent; then pW  will be a distance between equivalence' 
classes of tuples. We pass now to trace-state spaces  TS A , where A  is 
a unital *C -algebra. We will assume A is finitely generated and we will 
assume such a generator  ,...,l na a  has been specified. The p -Wasserstein 
metric on  TS A  given by 

                    1 1, ,..., , ,... , ,p p n na a a a      W W                                             (5) 

where  , TS A   and  1,..., na a   and  1,... , na a   demote the variables defined 
by  1( . . ., )in( , )na a A   and respectively ( , )A   . 

This definition can be rephrased using free products. If 2,IA A are until *C -
algebras, we denote by 2: *j j lA A A  the canonical injection of jA  into the 
full free product *C -algebra (this presumes amalgamation over 0). If 

   , 1 2j TS A j    we define 

                 2 1 2 2( * ; , ) * , 1, 2l l j jTS A A TS A A j         .                         (6) 

Remark that 1 2 2 1 2* ( * ; , )lTS A A    .It is easy to see that 

    1 2 , 1
, inf ( * ; , ) ,p j j p j n p

a a TS A A


      
 

        
  

W                            (7) 

Where  denotes the p -norm in  ;pL A  .Remark also that the distance on n-
tuples of variables can be obtained from the definition for trace-states. 
Assume for simplicity * *,  j j j jX X Y Y   and , , 1j jX Y j n   R R . Let then

 *
,

n
A C R R  (the free product of n copies) and  k ka a  , where a is the 
identical function in  ,  C R R . Let : ,  1, 2j jA M j   be the *-
homomorphisms such that   2,  ( )j k k k ka X a Y   where the ,

kX s  are in 
 ,l IM  and the ,

kY s  in  2 2,M  . Then 

                1, ,... , , ( ,..., )p p I n nX X Y Y   W W ,                                             (8) 
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where 1 1 2 2, =           . 

Theorem (2.1)[198]: pW  is a metric:. 

Proof: To check that pW  is a metric on the set of equivalence classes of n-
tuples of variables or equivalently on a trace-state space  ST A from 
equation (5),the nontrivial assertion is the triangle inequality. Indeed that 

    1 1( ,..., ), ,..., =0 ,..., , ( ,..., )p n l n I n nX X Y Y X X Y YW have the same *-
distribution or 

 , 0p         W  are easy to see. For the triangle inequality it will 
suffice to prove it in the equation (2). 

Let  1 1,..., , ,...,n nX X Y Y    in  I2 12,M  and 1 1( ,..., ,  , ..., )n nY Y Z Z    in 23 23( . )M  be 2n -
tnples in tracial W*-probability spaces such that                                 
       1 1 1 1 1,..., ,..., ,  ( ,..., ) ( ,..., ) ~ ,..., ,  ( ,..., ) ,...,n I n n n I n n nX X X X Y Y Y Y Y Y Z Z Z Z       : :  

Where : the –tuples have equal *-distribution. There is a trace- preserving 
automorphism of *

1( ,..., )nY Y W  and *
1( ,..., )nY Y W which identifies jY   and jY  . 

Abusing notation we shall denote by M2 the von Neumann sub algebras of 
MI2 and M23 generated by 1( ,..., )nY Y   and respectively 1( ,..., )nY Y   identified as 
above. Let E  and E  be the conditional expectations of 12M  and 
respectively M23 onto M2. Let      

2123 12 23, *MM M M E E E  and 123 2   E  
where 2 12 2 23 2M M    (see in [42,52,196]). Further, with 12 12 123: ,M M   

23 23 123: M M  denoting the canonical embeddings, let   12 ,j j j jX X Z Z    

Then    12 23j jY Y   implies.                                                               

   
123 12 23123 123

12 23, , ,, ,j j j j j j j j j jp p pp p
X Z X Y Y Z X Y Y Z

   
                    

which is precisely what we need to establish the triangle inequality 

      p n l p l 1 n n 1 n( ,..., X ,  (Y ,..., ))   Y ,..., ),  ( ,..., Z ( ,...,X ), ( ,..., Z ) I n n p IX Y Y Z X Z W W W

        

Let as also record as a proposition some easy consequences of the capacity 
of the trace-state space. 

Proposition (2.2)[198]:  (a) The infimum in the definition of pW is attained 
(both in the equation (2) and (8)).  

(b) Let  1 1 2 2, , , S Ak k T     and assume 2
k ) converges weakly to j  as 



22 
 

 1.2k j   

Then 

                p 1 2 p 1 2lim inf   , , .k k

k
   


W W                                                   (9) 

Let              1 1 I, ..., , ,..., , , ..., Y ,...,k k k k
n I n n nX X X X Y Y Y ) be n-tuples of' variables in 

tracial *C  -probability spaces and assume that 
   , , , ,k k
j j j jX X Y Y   R R R R  and 

that     1 1,...,k kX X ,     1 1,...,k kY Y  converge in *-distribution to  1,..., nX X and 
respectively  1,..., nY Y .Then 

          1 1liminf ,..., , ,...,k k k k
p n nk

X X Y Y


W     I,..., , Y ,...,p I n nX X Y W .           (10)               

If  ,...,I nX X  are commuting self-adjoins variables in a tracial *C --
probability space, then their distribution 

1 ,..., nX X is a compactly supported 
probability measure on nR . 

Theorem (2.3)[198]:  Let  ,...,I nX X  and  IY ,..., nY be two n-tuples of com-
muting self-adjoint variables in tracial *C -probability spaces. Then the free 
and classical Wasserstein distances are equal:

    1 1I ,..., ,...,, ..., Y ,..., ,
n nI n n x x Y YX X Y  W W  . 

Proof: The left-hand side is the right-hand side, since the classical 
Wasserstein distance can be defined the same way as the free one, with the 
only difference that the 2n-tuples 1 1X ,..., X ,Y ,...,Y )n n    in the infimum are 
required to live in commutative tracial *C -probability spaces. 

Let 1 1( , ..., , Y ,..., )n nX X Y     be a 2n-tuple in the infimum defining the free 
distance. Passing to the van Neumann algebra completion, we may assume

3 3( , )M  , where ,  j jX Y  live, is a *W -probability space with a normal faithful 
trace state. Let * *

1 3 1 3( ,..., ) ,  ( ,..., )n nA X X M B Y Y M      W W and let AE  be the 
canonical conditional expectation onto A. Then the unital trace-preserving 
completely positive map :A B B A  E gives rise to a state : A B V C , 
on a commutative algebra, defined by 

                                                         3 .a b a b  V  

The positively of V . 
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                                                   * *
3

,
0i j i j

i j
a a b b 

 
 

 
  

is easily inferred from the positivity of the matrix   *

,i j i j
bb  Alternatively, 

probabilistically, V . is the probability measure on 2nR  obtained by 
integrating    1 1,..., ,...,: , ,

n n

n n
Y Y X XL L   R R .Then 

           2 2 2
3

1 1

2 .j j j j j j
j n j n

X I I Y X Y X Y  
   

           V  

                            22
3 3

1 1

2 .j j A j j j j j
j n j n

X Y X Y X Y 
   

          E  

Sine A B  is commutative this proves the theorem.      

Let ,X S  in  M, be self-adjoint and freely independent and' assume S  is 
 0,1 semi circular. The purpose is to estimate  ,X SW . We begin by 

studying variables    1/2t /2 tt  e 1 eX X S    which have the same 
distribution as the variables in the free Ornstein-Uhlenbeck process. For 
technical  reasons, and  without extra work, the complex PDE will be de-
rived under the more general assumption that X  is unbounded  self-adjoint  
affiliated with M (see [92]).If Y  is self-adjoint affiliated with M , we denote 
by X  its distribution and by  YG z  or  YG z  the Cauchy transform of Y , 

which equals   1zI X 
 .Let       , Y rG r z G z and    G(t, z ) z ,X tG                                                  

If   1/2Y r X r S  , Im 0, 0, 0r t   .Then G  satisfies the complex: .Burgers 
equation (see[201],[47]) 

                                                              0G GG
r z

 
 

 

 
  

Like  ,G t z also  ,G t z  is 1C on  [0,  ) z Im 0z   C and holomorphic in z 
for fixed t . 

Note that    t /2 tX t e Y e and that    1 1G z = GY z    .It follows that
   /2 /2G t,z =e G ,t t te e z , complex Burgers equation then gives 

                               1 0
2 2

G z GG G
t z

        
                                          (11) 

With initial data    xG 0,z G z .  



24 
 

Here we shall assume that the distribution of X  is of the form *p  where

p  is the Cauchy distribution with density    
11 2 2 0x   

    and   has 
compact support. Since   * 92p p see   (  this is equivalent to 
replacing X with X C  where X  is bounded, X and C are free and C has a 
Cauchy distribution 1p .Note that,                 

   1/2 1/2
1/2 1/2* ,X X X C r S X r S

C r S r S p G z G z i 
   

  
       

etc. Thus, if the distribution of X  is of the form *p  then the equation (11) 

is satisfied on an extended domain   /2
, [0, ) Im

t
t z z e     C                                               

Let      1 , , ,G x t q x t ip x t    where xR  then  .,p t is the density of  X t  
and is analytic. For fixed t and 0k  We have 

                                  2
, 1

k k

k p x t O x
x

 
 


 and     1

, 1 .
k k

k q x t O x
x

 
 


 

Moreover  these bounds are uniform for t in a compact set. Equation (12) 
gives 

            

1

1

( - pp )  2 ( )

( ) 2 ( )
,

t x x x

t x x x

q qq xq q
P pq qp xp p
q Hp









  


    
  

                                              (12) 

Where H  denotes the Hilbert transform. 

Since  , 0p x t   we infer that    , ,f a t p x t dx



  is a C -diffeomorphisms 

 (. ) : 0,1f t R which transports  X t to Lebesgne measure. Hence 
   , . ( . , )(0 s )I

s t f f s t t    will be a C -diffeomorphisms R R which 
transports  X s  to  X t . This is the same as saying that  X t and 

  ,s t X s have the same distribution. It is easily seen that 

                                                     
  

  

1

1
1

, ,
,

, ,

f f y t t
tf y t

t p f y t t






    


 

Using (12) to compute f
t



 we find 

           1 1, 2 , 2 , .
x x

f a t pq xp dx pq a t ap a t
t
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                          1 1 1 1, , , 2 ,f y t q f y t t f y t
t

   
 


. 

For  x,sy f we get the transport equation . 

                          1
, , ,., 2s t s t s tx Hp t x x

t
   

 


                              (13) 

with initial condition  ,s s x x  . 

By the mL -continuity (1 )m x  results for the density (see [47]) applied to 
1/2r S

 ( as a function of r , we infer after convolutions with Cauchy 

distributions the continuity of      0, ., mt Hp t L   Rه  

(the mL -space w.r.t.Lebesgue measure). We should keep these facts in mind 
in computations where we shall use (13). 

Lemma (2.4)[198]: Assume X  has distribution * p  where  . has 
compact 

support and let   /2 /2  (1 )t t IX t e X e S    with  S 0,  I  semicircular and free 
from X . Let  Cg  R be such that , 1g g

 
    and assume ghas 

compact support. Then 

              /

2 22 1

supp g
  t  s X , X t sup .,  h 2 x p x,h dx.

s h t
g s g Hp x 

 
  W  

Proof: We have 

                                             
22

,s , t  g ,ss tg X g X g x x p x dx  R
W  

         2
1

1
, , ,( ., 2 ( )) ,( )

S
s h s h s hg x Hp h x x dh p x s dx     R

 

            
1 2

1 2
, , ,( ., 2 ( )) ,( )

S
s h s h s ht s g x Hp h x x dhp x s dx dh      R

 

               
2 2

1
, , ,., 2 ,

t

S
ps h s h s ht s g x H h x x dhp x s dx       

  R
 

                                      
1 2 1 2( ., 2 ) ,
S

t s g x Hp h x x p x h dxdh    R
 

                                   
/

2 1 2

suppg
sup ( ., 2 ) ,

s h t
t s Hp h x x p x h dx 
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Assume X  is bounded and the semicircular variable S  is free W.r.t. X.Then 
the distribution  X t  of    1/21/2 1 tX t e X e S    has L -density  ., t w.r.tp  
Lebesgue measure (see any of the papers [92], [203,201], [45,47] ). 

Lemma (2.5)[198]: Assume X  is bounded, S  is  0,1 semicircular, X  and S  
are free and let  .,p t be the density of  tX , where 

   1/ 21/ 2 1 tX t e X e S    . Then 

             22 1 2, sup ( ., 2 ) ,
s h t

t s X s X t Hp h x x p x h dx 

 
   W  

Proof: Let. C  be a variable with Cauchy distribution and free  w.r.t. , .X S

Let .If   g C R  be such that  1,g g x x

   if 1x X   and   0g x   if

2x X  . We apply CX   in place of X . Let. 

       
1/2/2 /2, 1t t tZ t e X C e S X t e C           

Then g (Z(t, )) is an operator of  norm X 2   and converges in distribution 
to  X t , Moreover the distribution of  ,Z t  is given by the density 

 /2 * .,te
p p t

  and will he denoted by  ., ,p t  . In view of the mL -continuity of  

   ., 1p t m   [47] it is easy to see that 

           
/

2 21 1

suppg0
limsup sup ., 2 , , su . ,  p , 2

s h t s h t
Hp h x x p x h dx Hp h x x p x h dx


   

    

    
    

From now on we return to the context of bounded variables X . If the 
distribution of X  is Lebesgue absolutely continuous and has density p  

which is L3. then    1
2

X Hp XJ  where  XJ  is the conjugate variable 

(a.k.a. free Brownian gradient, a.k.a. non-commutative Hilbert transform) 
(see [44,52]) and            

22 2 2 344
3

X X Hp x p x dx p x dx      J  

is the free Fisher information (see [45,44] up to different normalizations). 
The quantity occurring in Lemma (2.5): 

              2 21 24 2 2 ;I X Hp x x p x dx X X X X          J  

is a generalization of the free Fisher information for Ornstein-Uhlenbeck 
processes (see [44] ). The inequality in Lemma (2.5):  can also be written 
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                224 , sup
s h t

t s X s X t I X h

 
 W .                                             (14) 

The free entropy. The free entropy of X with distribution X  is 

       3 1log log 2
4 2

X s t d s d t         

(see [45,44] up to different constants) and we have 

                       logX X       and       1 1/ 2 1

0
lim 2X S X X


    


     

The quantity we shall use in estimating the distance to the semicircle 
distribution is a modified free entropy adapted to the free Ornstein-
Uhlenbeck process ([202]): 

             2 21 1 1 3log
2 2 2 4

X X S X X d s d t s t              
:

 

We have 

  lim 0t X t 
:

and

        
1

221 1 11 1
2 2 2

t t td dX t X e S e X e
dt dt

    
           


:

  

            
1

21 2 1 122 1 1 2 1 1 2 .( )t t t te X e S e X e X t X t I X       
             

 
  

Note also that in [202] using the logarithmic Sobolev inequality for X (see 
[44] ) , it is shown that 

                  12 ,X t I X t
:

                                                                 (15) 

which is a logarithmic Sobolev inequality for the Ornstein-Uhlenbeck 
process. 

Lemma (2.6)[198]:Assume X ,Y  are bounded and self-adjoint, then if t 0
we have 

                           
1

1 1 2

0
lim sup , , 2Y X t Y X t I X t


  


  W W  

We now have all ingredients to get an estimate for  ,X SW which is similar 
in the free context to an' inequality of Talagrand in the classical setting ( 
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[69],[179,224])  

Theorem (2.7)[198]:    2, 2X S X 
:

W . 

Proof: Because of the semicircular maximum for   we have 

      1 2S 2 log X  X    so that        1 2 22 X 1 log X 0 .X     
:

 

Thus it will suffice to prove that    
1/2

, 2 X 0X S  
  
 


:

W . By Lemma (2.7) 

the inequality (15) and the formula for the derivative of   X t
:

, we have 

for t 0 , 

               
1 1
2 2

1

0
liminf , 2 , 2X t S X t X t S X t


  



 
                

 
 W W

: :

 

     1 1/2 1/2 1/2 1 1/2 1/2 1/2 1/2-2 ( ( ( ))) 2 (2 ( ( ))) -2 ( ( ( ))) 2 (( ( ))) 0I X t I X t X t I X t I X t IX t          
:

Hence      
1/2

, 2X t S X t 
  
 
W

:

is an increasing function and we have 

                            
1
2

lim , 2 0
t

X t S X t


 
       

 
W

:

. 

because of the semicircular maximum and lower semicontinuity of  . It 
follows that. .                                                  

                           
1/2

, 2 0X t S X t 
  
 
W

:

 

if 0t  . To get the inequality for 0t  , remark that  X t is norm-continuous 
so that  ( ,S)X tW tends to ( ,S)W X  as 0t  .On the other hand. by lower 
semicontinuity of  , 

                             
1
2

0

1/2
liminf

t
X t X



 
                
 
 

: :

                                      

Because of the coincidence of the free and classical Wasserstem distance for 
single self-adjoint variables, the preceding theorem can also be written in 
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terms of probability measures for the classical distance. Let   be a 
compactly supported probability measure on R  and   a  0,1 semicircle 
distribution. Then we have 

                          2 2 3( ( , )) 2 log .
2

x d x d s d t s t        W  

Assume A is a unital C* algebra *l B A C  a -subalegbra and A is generated 
by  1,..., .nBU a a If ( )TS B  let  : , { ( ) B }TS A B TS A      .If 

( : , ),j jTS A B  where ,1 j  1,2,jB A   let

1* 2 1 2 1* 2( . : , ; , ) { ( : , ) , 1, 2}B B j jTS A A B TS A A B j           where  * 2l BA A is the 
full free product with amalgamation over B. The relative Wasserstein metric 
is then 

       1 2 1 j 2 * 1 2,
, : inf{ ( a 1 : , ; , },p j Bp p

a a j n TS A A B


           W  

Where  ( : , ,  j 1,2.j TS A B    

Proposition (2.8) [198]: (a) (., . )p W is a metric on  : ,TS A B  . (b) The 
infimum in the definition of  p 1 2, :  W is attained. (c) Let

     1 l 2 2, , , A : B,k k T      and assume  k
j  converges weakly to j  as

 1,2k j  . Then 

      1 2 1 2liminf , : , :k k
p pk
     


W W . 

There is also a corresponding version of the relative metric for n   tuples of 
noncommutative random variables. Let    i 1 2 2M , , M ,  be tracial *W -
probability space, so that1 , , 1,2.j jB M B j     . If l n 1,...,X X M and 

1 n 2Y ,...,Y  M we define    p l n 1 n( ,..., , ,..., :  B)X X Y YW  as the infimum of 

 
1

j j p
pj n

X Y
 

  over 2n  tuples  1 1,..., , ,...,n nX X Y Y    in traciai *W -probability 

spaces  3 3,M  so that 3 3,  I B M B     and    l n l n,..., , , , ..., , BX X B X X   and 
respectively   1 1,..., , ,..., ,n nY Y B Y Y B  have the same *- distributions. 

.Note also that in case  ,B  is given by generators  l pZ ,..., Z this leads to 
relative metrics denoted 

   p 1 n l n 1 p ,..., , Y ,...,Y : ( ,...,Z )) .X X ZW  

There are many higher dimensional metric quantities which appear naturally 
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in this context of optimization problems on trace-state spaces. Here we only 
want to give a few examples, to bring the reader's attention to this 
unexplored structure of trace-state space. The idea is quite simple. Given an 
m -tuple  1,..., m  of trace-states, then an 

element  * * 1... ; ,..., mTS A A   yields a m-tuple of vectors 

                                   2
* * 11
... ; ,..., ,

n

k k j mj n
a a L A A   

 
   

Where 1 k m  .  

Then if w  is some geometric. quantity associated with an n-tuple of points 
in a Hilbert space, we may consider     l nw a ,..., a  and then define.        

                               1 l * * 1 m,..., inf ,..., A ... A; ,...,m na a TS        W  

Two examples of such w are volp  l mh ,..., h  and volS  l mh ,...,h , the m - -
dimensional volume of the parallelipiped defined by the vectors l mh ,..., h  and  
respectively. The  1m  -dimensional volume of the simplex with vertices 

l mh ,..., h .In case A  is commutative there are corresponding "classical" 
quantities  1,..., nab  W ,where the supremum is over 

* * 1 * * 1( ... ; ,..., ) ( ... ; ,..., ( ... )ab m mTS A A TS A A T A A       where nA is viewed as  
a quotient of *nA . We conclude with a few remarks about the volumes of 
parallelepipeds volp If H  is aHilbert space and Ih ,..., mh H let          

       
1/2

1... ! ...
m

m
i m mh h m h h 

 

  



      H  

be the exterior product, where m is the permutation group and    the sign 
of the permutation. The norm 1 ... mh h  is the norm from mH  and by 
definitionvolp   1 1,..., ...m mh h h h     . 

Proposition (2.9)[198]: (i)      1 1 1,..., . ,... ,..., ;q q q r qvolp t volp volp         

(ii)     1/ 2
*

1 11
;k kk n

vol p a a 
 

  (iii) If   0 1ka k n    then  1
1 22 volp ,  is 

the area of a triangle with sides  1volp  ,  2volp  ,  l 2, ; W (iv) The jnfimum 
in the definition of volp  is attained;(v) Let    , ,1 ,k

j j TS A j m k     N , and 
assume  k

j  converges weakly to j  as k  . Then 
      1 1lim inf ,..., ,..., .k k

m mk
volp volp   
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Like the proof of the triangle inequality for W , the proof of (i) is based on 
free products *    where    * *

1 1,...,; ,..., , ;q r
q q q rTS A TS A         .Also (iv) 

and (v) have quite similar proofs to corresponding properties of W . The 
condition  0, 1 k nka    in (iii) insures that the angle between the vectors 
 1a   and  2a   is acute and under such a condition it is clear that the area 

of the triangle with sides   1a  ,  2a    of constant length is minimum at the 
same time with the third side    1 2 2

a a  . 
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Chapter 3 

Free Brunn-Minkowski and Talagrand Inequalities 

      The method is used to extend to the free setting the Otto-Villani theorem 
starting that the logarithmic Sobolev inequality implies the transportation 
cost inequality. We also discuss the convergence, fluctuations and large 
deviations of the energy of the eigenvalues of  ensembles ,which ,as an 
application of Talagrand  inequality gives in particular yet another proof the 
convergence of the eigenvalue distribution to the semicircle law.     

Section (3.1): One dimensional Brunn-Minkowski inequality  

      In its functional form, the Brunn-Minkowski inequality indicates that 
whenever  0,1   and 1 2 3, ,u u u  are non-negative measurable functions on 

nR  such that 

                  13 1 21u x y u x u y      for all , nx yR , 

then 

                                     
1

3 1 2u dx u dx u dx
 

       
       

The Brunn-Minkowski inequality has been used recently in the investigation 
of functional inequalities for strictly log-concave densities such as 
logarithmic Sobolev or transportation cost inequalities (cf. [174, 23], [79] 
(cf. [65]). Given a continuous function :Q R R  such that  lim 0Q x

x
x e 


  

for every 0  , set 

                                       1
2

N
kk

N Q x
N NQ x e dx

      

where  1 2 ... N
NA x x x     R and    1N kk N

x x x
  

   
 is the 

Vandermonde determinant. The large deviation theorem of [45] and [79] 
(see also [132]) indicates that. 

                                 2

1lim log N QN
Q Q

N



  V                                         (1)

  

where, for every probability measure V  on R , 
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                                 log
Q

x y d x d y Q x d x    V V V V . 

is the weighted energy integral with external (compactly supported) measure 

QV  maximizing 
Q  (cf. [52,65]). (For the choice of  

2

,
2 Q
xQ x  V  is the 

semicircle law.) 

Let 1 2 3, ,u u u  be real-valued continuous functions on R  such that, for every
0  ,  lim 0, 1,2,3iU x

x
x e i


  . Set 

                           1
2 , , 1, 2,3

N
i kk

N U x N
i N Au x x e x x i

    RI . 

Since log N   is convex on the convex set A, assuming that, for some
 0,1   and all ,x yR ,         3 1 21 1U x y U x U y        , the Brunn-

Minkowski theorem applies to 1 2 3, ,u u u  on NR to yield 

                                           13 1 2N N NU U U        

Taking the limit (1) immediately yields the following free analogue of the 
functional Brunn-Minkowski inequality on R . 

Theorem (3.1.1) [171]: Let 1 2 3, ,u u u  be real-valued continuous functions on 
R  such that, for every 0  ,  lim 0, 1, 2,3iU x

x
x e i


  . Assume that for some

 0,1   and all ,x yR  

                                          3 1 21 1u x y u x u y         

Then 

                                          
3 1 1 23 2

1U U U UU U
    V V VΣ  

The free analogue of Shannon's entropy power inequality due to Szarek and 
Voiculescu [250] may be recovered along the same lines. 

We next show how the preceding free Bnmn-Minkowski inequality may be 
used, following the classical case, to recapture both the free logarithmic 
Sobolev inequality of Voiculescu [44] (in the form put forward in [197] and 
extended in [200]) and the free quadratic transportation cost inequality of 
[198,66] for quadratic and more general strictly convex potentials Q . 
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Let Q  be a real-valued continuous function on R  such that  lim 0Q x

x
x e 


  

for every 0  . For V , probability measure on R , define the free entropy of 
V  (with respect to QV ) [44, 200,202] as 

                                            0Q QQ Q
    V V V V

:

 

If : R R is bounded and continuous, it is convenient to set below 

     Q Q QQ Q
  

  V V . For every probability measure V  on R , 

                         ( )Q Q QQ Q
d d          V V V V V V

:

 

with equality for Q V V . In particular  Q Qd    V . 

Assume now that ( Q  is 1C and such that)   2/ 2Q x c x  is convex for some
0C  . For bounded continuous functions , :f g R R such that

    2/ 2g x f y c x y   , we may apply the free Bnmn-Minkowski theorem, 
as in the classical case (cf. [173]), to  1 21 ,U Q g U Q f      and 3U Q .  

Thus, by the theorem,     11 0Q Qg f   



    . As 0  , it follows 

that for every probability measure V , 

                                          Q Qgd fd  
:

V V V V  

 (in other words  Q Qg fd   V ). By the Monge-Kantorovitch-Rubinstein 
theorem (see [23]), this is the dual form of the free quadratic transportation 
cost inequality. 

                                2

2
1, Q Qc

 
:

V V V VW                                           (2)  

recently put forward in [198] for the semicircle law associated to the 
quadratic potential, and in [66] for strictly convex potentials (where 

 2 , QW V V  is the Wasserstein distance between V and QV ). 

The free logarithmic Sobolev inequality of [44], extended to strictly convex 
potentials in [200], follows in the same way from the free Brunn-Minkowski 
theorem. We follow [200] where the matrix approximation is used similarly 
to this task. Fix a probability measure V with compact support and smooth 
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density p on R . Define a 1C  function R onR  such that 
   2 logP x x y d y  V on      supp , P x Q xV for x  large, and such that

   2 logP x x y d y  V every-where. By the uniqueness theorem of 
extremal measures of weighted potentials (cf.[52]), it is easily seen that the 
energy functional RΣ is maximized at the unique point RV V . Define then f. 
with compact support, by f Q C  R where the constant 

    Q QC   R RV VΣ Σ is chosen so that   0Q f  .  

Let      21inf , 0,
2t yg x f y x y t x

t
       

R R , be the infimum-

convolution of f with the quadratic cost, solution of the Hamilton-Jacobi 
equation 21 0

2t t tg g    with initial 

condition f. As in the classical case (cf. [173]), apply the Brumn-Minkowski 
theorem to 1 2 3

1 1, , ,tU Q g t U Q U Q f
c





      to get that 

    1 0Q t Qj ct g j f   for every 0t  . In particular therefore,  

   1 t Qct g d  V V VΣ ,and, since Q fV V , as 0t  , 

                                           21
2Q fd f d
c

  Σ V V V V  

Now f Q Hp    where    2
. .

p y
Hp x p v

x y


p v is the Hilbert transform (up to a 

multiplicative factor) of the (smooth) density p of V . Hence the preceding 
atitounts to the free logarithmic Sobolev inequality 

                      21 1
2 2Q QHp Q d I

c c
  Σ V V V V V                          (3) 

as established in [200], where  QI V V  is known as the free Fisher 
information of V with respect to QV [44, 197]. Careful approximation 
arguments to reach arbitrary probability measures V  (with density in  3L R  
are described in [67]. 

The Hamilton-Jacobi approach may be used to prove, as in the classical 
case, the free analogue of the OttoVillani theorem [69] (cf. [23, 256, 173]) 
stating that, for a given probability measure Qd e dx  on R (with a 1C
potential Q such that  lim 0Q x

x
x e 


 for every 0  ), the free logarithmic 

Sobolev inequality (3) always implies the free transportation cost inequality 
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(2). To this task, given a compactly supported 1C  function f on R and aR , 
set   t Q tj j a ct g  and  t t tf a ct g j   so that   0Q tj f  . Denote for 
simplicity by tV the extremal measure for the potential tQ f . Then the 

logarithmic Sobolev inequality (3) can be expressed as 21
2t t t tf d f d
c

 V V . 

In other words, 

                                   
2

t t t t t tc a ct g d cl a ct g d      V V   

On the support of tV (cf. [52]), 

                                      2 log t t tx y d y Q f C    V  

where  log
tt t t Q f tC x y d d     ΣV V V Since       0

tQ t Q f t Q Ql f   V VΣ Σ ,it 

follows  

that 0t t tf d  V . Therefore,  t t tcj a ct j    and hence   1
ta ct j  is non-

increasing in t. In particular 1/ 0
1 1

1 cj j
a a




, which for a = 0 amounts to

 Q Qj g f d  V , that is the dual form of (2). This approach through the 
Hamilton-Jacobi equations has some similarities with the use of the 
(complex) Burgers equation in [198]. 

Section (3.2) Semicircular Law and Energy of the eigenvalues of Beta 
Ensembles 

               In [179] Talagrand proves the transportation-cost inequality to the 
Gaussian measure. The one dimensional version for the Gaussian measure 

  2 /21
2

xdx e dx


  

reads as  

                                2
, 2H  W V ,                                                      (4) 

where  2 , W  1is the Wasserstien distance defined below by (8) and the 
relative entropy is 

                                  log

sin

f x f x d x if dx f x dx
H

if is gular to

 




  


 V
V

V
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In the context of free probability, Biane and Voiculescu provided in [198] a 
free version of this: 

                                  2
2 , 2    W E E                                             (5) 

where          21 log
2

x dx x y dx dy       E  is the free energy of   

and       2
2,2

1 4
2

dr x x dx
  I  is the semicircular law, the minimizer of 

 E  over all probability measures on  the real line. The role of the relative 
entropy is played here by the difference of the free energy of   and the 
semicircular. 

Using random matrix approximations, Hiai, Petz and Ueda proved in [6] the 
following extension of (5), 

                           2

2 , Q Q
Q Q     W E E                                             (6) 

where 0  and :Q R R  is a function so that   2Q x x , is  convex and 

                                 logQ Q x dx x y dx dy       E  

Here Q  is the minimizer of QE on the set of all probability measures on the 
real line. They also prove a version of this for measures supported on the 
circle T : 

                        2

21/ 4 , Q Q
Q Q   V V V VW E E                                         (7) 

where :Q  RT  so that   2ixQ e x is convex on , 1/ 4  R and Q is the 
minimizer of the functional QE  on probability measures on the unit circle T . 

Another proof of (5) is given in [171] via a Brunn-Minkovsky inequality for 
free probability. 

The following result is an obvious one but is the key to our problem. 

Lemma (3.2.1) [102]: Let  : 0,1f R be a convex function with the 
property that  0 0f   and there exists 0a  so that 

                                           2 0,1f t at for t    

Then 

                                           0 0,1f t for all t   
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Proof: It follows from the assumptions that for anyє 0 , if  є min 1,є / a  , 
then    єє 0,f t t for t     . Now, since f is convex, one gets 
    єf mt mf t mt    for any integer m with 1mt  , and therefore,   єf t t    

for any  0,1t . Since this is true for anyє 0 , we get   0f t   for any  0,1t
.                                 �   

In the following,  p  denotes the set of all probability measures on , and 
for two probability measures with finite second moment on  p R  or  p T , 
where  : 1z z  T C , we define  2 ,W V , the Wasserstein distance by 

             
 

 2
2 ,

, inf ,
v

x y d x y
 

 


 
  VW                                               (8) 

Here  , V is the set of probability measures on 2R with marginal 
distributions  and v , and it can be shown that there is at least one solution 

 ,  V  to this minimization problem. 

If  and V are two measures on R  with F and G  their cumulative 
distribution functions (i.e.     ,F x x  ), then in [23] states that 

                       
1 22 1 1

2
0

, F t G t dt   VW                                              (9) 

where 1F  denotes the generalized inverse of F. 

Theorem (3.2.2) [102]: Let :Q R R be a function so that   2Q x x is 
convex for a certain 0  . If Q is a solution to the minimization problem 

                                    
 

 infQ QI






RP

E                                                   (10) 

where 

                        logQ Q x dx x y dx dy      E                            (11) 

then for any  p R , we have 

                                  
2

2 , Q Q
Q I    W E                                         (12) 

In particular, the minimization problem (10) has a unique solution.  

Proof: There exist constants 1C and 2C so that 
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                              2
1Q x x C  and    2 2

2log
4

x y x y c
     . 

 Then for a certain C, we get that 

                         2 21 log
2 4

Q x Q y x y x y C C
                              (13) 

and this in turn implies that the infimum in (10) is finite (since  Q E  is 
finite for  the uniform distribution on [0,1]) and in particular    QQ x d x , 

and    log Q Qx y d x d y    are finite, which means that Q  has finite 
second moment and no atoms. 

Since  Q   E , we may assume that  Q E  is finite, otherwise there is 
nothing to prove. Then,    log x y dx dy    and    Q x dx  are finite. In 
particular,   has finite second moment and no atoms. 

Taking F  and QF  the cumulative distributions of , Q   and 1F , 1
QF  their 

generalized inverses, set     1
Qx F F x  . According to [23] and the 

discussion following thereafter, the minimizing measure   from (8) is the 
distribution of   ,x x x under Q . In this case, the inequality we want to 
prove becomes 

           2
log Q

Qx x dx Q x dx x y dx dy I               

Let  : 0,1f R be given by 

            

            

22 1

log 1

Q Q

Q
Q Q

f t t x x dx Q t x t x dx

t x y t x y dx dy I

    

   

     

     

 


 

Notice here that f  is well defined. Indeed, Q is convex, hence bounded 
below and because         QQ x dx Q x dx     and    QQ x dx  are both 
finite, one concludes that       1 QQ t x t x dx   is finite too. One the 
other hand, there is a 0C   so that for any  0,1t , 

             2 2 2 2log 1t x y t x y C x y x y C              , 

which, combined with the finiteness of the second moment of  and Q , 
results with (for a constant C ) 
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            log 1 Q Qt x y t x y dx dy C           for all   0,1t . 

Now, since   is a no decreasing function we can write 

 
            

            

log 1

2 log 1 ,

Q Q

Q Q
x y

t x y t x y dx dy

t x y t x y dx dy

   

   


    

     




 

which combined with the convexity of log  on  0,  and the finiteness of 

   log Q Qx y dx dy   and    log x y dx dy   , yields the fact that 

            log 1 Q Qt t x y t x y dx dy                             (14) 

is well defined and convex. 

The inequality (12) is now equivalent to   0f I  . To show this, we apply 
Lemma (3.2.1): The convexity follows easily from the convexity of 
  2Q x x  and   14 . Now if tV is the distribution of    1x t x t x    under

Q , then the minimization property of Q  implies that 

                          22
Qf t t x x dx      , for  0,1t  

and then, Lemma (3.2.1) : shows that   0f I   for any  0,1t  . 

The existence statement follows from the lower continuity of QE . For a proof 
of the existence and compactness of the support of Q  (see [206]).                                                                        

 Corollary (3.2.4) [102]: Let       2
2,2

1 4
2

dx x x dx
  I be the semicircular 

law on  2,2 . Then for any  p R , 

                                2 2
2

1 1 3, log
2 2 4

x dx x y dx dy         W  

The next theorem is just inequality (7). 

Theorem (3.2.5) [102]: Assume :Q  RT is a function so that   2ixQ e x  is 
convex on R for a given 1/ 4   . If Q is a solution to the minimization 
problem 

                             
 

 infQ QI






P T

E ,                                                    (15) 
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Where 

                        logQ Q z dz z z dz dz


     V V V V
T T

E ,                      (16) 

then, for any TV , we have 

                          
2

21/ 4 , Q Q
Q I   V V VW E .                                        (17) 

In particular, there is a unique solution for the minimization problem (15). 

Proof: We identify  ,  with T via the exponential map ixx e and move 
the measure V to  and QV to Q . We then follow the proof of Theorem 
(3.2.2): with the necessary adjustments needed. The function  f t there 
becomes here 

               
                

2 12

1 1

1/ 4

log

i t x t x
Q Q

i t x t x i t y t y Q
Q Q

f t t x x dx Q e dx

e e dx dy I



 

   

   

    

  

 


V V

V V
 

Now,   2 24sin / 2ia ibe e a b   for ,a b real numbers and 

              
22 1

2Q Q Qx x dx x x y y dx dy        V V V  

Next, set      1t x t x t x    and notice that. 

              

          

         

          

          

2
2

2 2

2 2

g log
4

8

log 2sin / 2

2
8

2 log 2sin / 2

t tit x i y
Q Q Q

Q Q

t t Q Q

Q Q
x y

t t Q Q
x y

tt x x dx e e dx dy

t x x y y dx dy

x y v dx dy

t x x y y dx dy

x y dx dy

 

 

 

 

 





    

    

 

    

 

  
 




V V V

V V

V

V V

V V

 

where in the last line we used the fact that   is a non-decreasing function. 
Since      , , , ,x y x y     and for0 a b    , we have  
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22 2
2

2
2

1 1log sin 1 0
8 2 4 1

sin
2

ta t b a bd t a b
dt ta t b

 
                               

 

which implies that the function g  is convex on [0,1]. This coupled with the 
convexity of   2ixQ e x concludes that f  is a convex function. Finally 

                               
2

21/ 4 Qf t t x x dx     V , 

and thus, Lemma (3.2.1) : shows that  1 0f  , which is (17). 

The existence of a minimizer follows from the fact that QE is lower 
semicontinuous.  

For 0Q  and 0  , the minimizer of (14) is the Haar measure on T . One can 
check this by showing directly that the uniform measure satisfy the 
variational form of (15).  

Corollary (3.2.6) [102]: For any  p T  

                            
2

2
1 , log
4 2

dx z z dz dz  
 

            T T
W . 

Using the same argument as in the proof of Theorem (3.2.2): we can also 
prove a discrete version of it. 

Theorem (3.2.7) [102]: Let :Q R R be a function so that   2Q x x is 
convex for a certain 0  . For  1 2, ,..., n

nX x x x R , set the energy of X  to be 
given by 

                 1 1

1 2 log
1

n
Q
n i i j

k i j n
X Q x x x

n n n   

  
 E  

If     inf :Q Q Q n
n n ny X x   RE E , then for any nX R , 

                 
2

2 , Q Q Q Q
n n n nX y X y X      W E E E                          (18)    

where   1

1 n
xkk

X
n

 


  Moreover,  

                                  1
Q Q
n n                                                                      (19) 
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The only statement that needs to be clarified here is (19). If 1ny  is a 
minimum point for 1

Q
nE and 1

i
ny   denotes the n dimensional vector obtained 

from 1ny  by removing the thi component, then  1
1 11

1
1

nQ Q i
n n ni

E y
n


 

 
   

which is obviously Q
n  . 

The minimum points of Q
nE  are called Fekete points in the literature. It is 

known (see [206]) that lim Q Q
n n I   , with QI defined in (10). We will 

reprove this fact below in Proposition (3.2.8) For   2Q x x , the formula 
[168, 11] with the appropriate scaling gives the formula for computing 

Q
n n   as     

    
1

1 1

1 1 1 log 11 log 1 log log
2 1 2 1 1 1

n n

n
j j

n j jn j j
n n n n n n



 

              
           (20) 

The next statement is a similar result to Theorems (3.2.2): and (3.2.7): 

 Proposition (3.2.8) [102]: Assume :Q R R  is a function so that 
  2Q x x  is convex for a certain 0  . Then for any  p RV and nyR a 

Fekete   point for Q
nE , we have 

                     2

2
, Q Qy n   V VW E                                        (21) 

Furthermore, if Q is the minimizing measure of QE , and n
ny R  is a Fekete 

point for Q
nE , then  

          lim Q Q
nn

I


   and    2lim , 0Q nn
y 


W ,                                      (22)      

hence,  n Qny   weakly. 

Proof: In the  first place there is nothing to prove if  Q  VE . Therefore 
we assume that  Q  VE . Integrating (17) with respect to
     1 2 ... ndx dx dxV V V , one gets that 

                                
2

2 1 2, ... Q Q
n nX y dx dx dx      V V V VW E . 

We finish the proof of (21) by showing the 

               2 2

2 1 2 2, ... ,nX y dx dx dx y   W WV V V V .           (23) 

To do this, we proceed by induction. For 1n  , this statement becomes 



44 
 

                                          2 2

2 2, ,x y ydx   V VW W  

which, (9), is equivalent to the following (here FV is the cumulative 
distribution function of V ) . 

                                       
1 22 1

0
x y dx y F t dt    VV . 

This can be checked by changing the variable in the second integral. 

Assume  (23) is true for 1, 2n n  . A simple application of (9) gives that 

         

22

2 1

1, n
i ii

X y x y
n   


 W , 

 where  and  are permutations  

of 1,2,...,n so    1 2 ...x x x   If we denote by iX the vector X  with the ith 
component removed and similarly for iy , one deduces 

                     2 2

2 2
1

1, ,
n

i i
i

X y X y
n

   


 W W                 (24) 

On the other hand, 

                                           
 1 1 / 22 1

2
/

0

,
n k n

k
k n

k

y y F t dt
 





  VVW  

which can be used to argue that 

                 2 2

2 2
1

1, ,
n

i
i

y y
n

 


 W WV V                                (25) 

Putting together (24) and (25) and the induction hypothesis one finishes the 
proof of (23).To prove (22), we first point out that (21) applied to Q yields 
that Q Q

nI   for any 1n  . In particular this means that Q
n  is bounded. Since

 2 2log
4

x y x y c
      for a certain constant c, we get that

2
14

nQ
n ii

x C
n



   , where C is a constant. This implies that the sequence 

   2

1n n
x y dx

 is bounded, whose consequence is that the sequence of 

measures  ny is tight, therefore there is a weak convergent subsequence 
 nky  to a measure V . Now, for any 0L  , we have 
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            min / 2 log , /Q
nk nk nQ x Q y x y L y dx y dy L nk        

and this demonstrates that for any 0L  , 

          min / 2 log , QQ x Q y x y L v dx v dy I     

and, after passing L  , this yields 

                             Q QIVE . 

This together with (19) and the uniqueness of Q  from Theorem (3.2.2): 
ends the proof of lim Q Q

nn
I


  . The rest follows. 

In this section we deal with  -ensembles, which are studied in- [98]. These 
are tridiagonal matrices with independent entries of the form 

   
     

 
 

0, 2 1

1 0, 2 2
1 .

2 0, 2

0, 2

n

N n

n N n
A

n
N

N

 

   


  



 
 

  
   
 
 
  

    

Here  0,2N stands for a normal with mean 0 and variance 2, while   is the 
 

 -distribution with parameter . The joint distribution of the eigenvalues is 

2

11,

1 exp
n

i j i
ii j nn

x x n x
Z






  

 
  

 
  

where here ,nZ   is a normalization constant. 

Set ,1

n
n k nk  


 the empirical distribution of the eigenvalues  , 1

n
k n k



of nA  

Theorem (3.2.8) [102]: Set 
 

2
1 1

1 2 log
2 1

n
n k i ik j k n

E
n n n

  
   

  
  the 

energy of the eigenvalues   1

n
k k

 of nA . If n is the quantity defined in (21), 
then almost surely, 

                          lim 1 / 2 log / 2n nn
n  


    E ,                              (26) 
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where    logdx x
dx

    and is the Gamma function. In addition, we have 

that 

                    1/2 1 / 2 log / 2 0, 1 / 2n n nn n E N    
       ,   (27) 

where the convergence is in distribution sense. 

The large deviations of  n nn E   is governed by the rate function   

               sup :R t tz R z z   R , 

       
     1 / 2

/ 2 log / 2 log / 2 log / 2 , / 2
1 / 2

/ 2.

z
z z z z

R z

z


    





    
            

 

 

Proof: The proof is based on a version of Selberg's formula and elementary 
approximations involving Gamma function. 

First, we have 

                   
 

 

2
21

1
1

2
1

1

exp
2

exp
exp

n

n

z
nn n

i j jj
i j n

n n
i j jj

i j n

zx x n x dx
n

z
x x n x dx













  


  

    
   

 







R

R

E E   

and then, as a consequence of Selberg's formula [168], we get for complex 
z , that 

     
 

 

     
 

 

 

1 /2 1
2 1

1

1 /2 1
2

1

1 / 2
1

/ 2 /
1 / 2

, / 2
1 / 2

/ 2
1 / 2

, / 2.

n

n z nn
n n

j
z

n nn

j

zj
n n

n z n
e z
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n
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EE  

We need Stirling formula for approximation of Gamma function in the 
following form 

                    1log 1 1/ 2 log log 2 / 2
1

t t t t
t

          
for 0t   

Using this and the above formula for  exp nz  E E  and (20), after some 
arrangements we get  
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2

2

1log log 1
1 2 1

1
log log 1

1 2 2 1 1 / 2

1 1 2log 1 log 1
2 2 11 / 2

n nz E z ze
n n

z nz z z
n n n n n n z

n n z n z
n nn n z




 


           
                 

                     

E

   2log 1 log 1
2 1 2

z zn
n n n

                          
                             

From this, replacing z by nz , one immediately obtains that for any zR , 

     
        1 / 2

log exp log / 2 1 / 2 log / 2
1 / 2n n nzn E z z z


   



 
         

E

Applying(27) with z  replaced by
3
2 ,n z , one can prove that for any complex z  

  

           1/2 2log exp 1 / 2 log / 2 1 / 2 / 2n n nzn n E z    
         E

whose consequence is (26). This, applied for 1z   together with Chebyshev 
inequality yields 

        1/2
1 / 2 log / 2 єn n

nP n Ce          E  

for a certain constant 0C  . This and an application of Borel-Cantelli's 
Lemma prove (26). Again applying (25)with 2n z in place of z , we can show 
that 

     21 log exp n n nzn R z
n 

    E E  

for any zR . As a consequence of standard large deviations results (see in 
[111]) we conclude the proof of the last part of the theorem.  
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Chapter 4 

Ricci Curvature for Metric Measure Spaces 

           The definitions are in terms of the displacement  convexity of certain 
functions on the associated Wasserstein metric space of probability 
measures. We show that these properties are preserved under measured 
Gromov-Hausdorff  limits. We give geometric and analytic consequences. 
Moreover, in the converse direction discretizations of metric measure spaces 
with curvature greater than or equals to the real constant will have rough 
curvature greater than or equal to the real number. We apply our results to 
concrete examples of homogenous planar graphs. We show a length of 
successive maps in a closed unit interval. We generalize the perturbations 
related to the Wasserstein distance. 

Section( 4.1): Geometry and Functionals of Wasserstein space  

In this section  we first recall some facts about convex function ,we 
then define gradient norms length space and measured Gromov-Hausdorff  
convergence. Finally, we define the 2- Wasserstein metric 2W  on  .XP  

Let us recall a few results from convex analysis. (See [231]) 

Given a convex lower semi continuous function  :U  R R  (which we 
assume is not identically   ), its Legendre transform  * :U U R R is 
defined by  

                                  * sup
r R

U p pr u r


                                             (1) 

Then *U  is also convex and lower semi continuous. We will sometimes 
identity a convex lower semi continuous. Function U  define on a closed 
interval I  R  with the convex function defined on the whole of R  by 
extending  U  by   outside of I  . 

Let [0, )   U  R be a convex  lower semi continuous function. Then U  
admits a left derivative : (0, )U    R and a right derivative 

:  [0, ] { }  ,U     R with (0, ) U   R .  

Furthermore,  '    U U  .They agree almost everywhere and are both non-
decreasing. We will write 

                           lim lim
r r

U r
U U r

r 
     R                                 (2) 
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If   we  extend U  by   on ( ,0) then its Legendre transform 
:   { }U  R R becomes    0sup ]rU p r It is non-decreasing  in P , infinite 

on   ,U    and equals  – 0U  on  ( , 0U  .Furthermore it is Continuous 
on  , .U  For all [0, )r  ,we have       * .U U r rU r U r  Let  X,d be 
a compact metric space (with d  valued in [0, )).  

Then Open ball of radius r  around x X will be denoted by  Br x and the 
sphere of radius r   around x will be denoted by  S .r x  

Let   L X denote the set of bounded measurable function on X .(We will 
consider such a function to be defined every where ).Let  ( )Lip X  denote the 
set of Lipschitz functions on X  . Given  lipf x , we define the gradient 
norm of f by  

                               [ ( ) ( )]lim
( , )y x

f y xpf u
x

sx
d y


                                         (3)                                                                 

 If x  is not an  isolated point, and   0f x  if x  is isolated then  L  f X  . 
On some occasions will use a finer notion of gradient norm: 

     f x  lim
y x

sup    
 

[ ]
,

f y f x
d x y


:= lim

y x
sup [ ( ) ( )]

( , )
f y x

d x y
                              (4) 

       

If X  is not isolated, and   0f x   if X  is isolate. Here  a =max a,0 and
 a =max a,0 .   

Clearly     .f x f x   note that  f x is automatically zero if f has a 
local minimum at X . In a sense,  f x  measures the downward  pointing 
component of F near x .  

If   is curve in X , i.e a continuous map  : 0 :1 x  , this its length is  

            
1

1
0 . . . 1 1

s u p s u p , .
J

J

j j
J N t o t t J

L d t t  
      

                     (5) 

Clearly        0 , 1 .L d    

We will assume that X  is a length space, meaning that the distance between 
two points 0 1,x x X is the infirmum of the length of  curve  from 0x to 1x
.Such a spade  is path connected. 
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As X  is compact, it is a strictly in transit  length space ,meaning that we can 
replace infirmum by minimum [29] That Is for any 0 1,x x X there is  
minimal geodesic (possible non-unique) from 0x  to 1x .We may sometimes 
write geodesic instead of “minimal geodesic”. 

By [29], any minimal geodesic   joining 0x  to  1x  can be parameterized 
uniquely by  0,1t  so that  

                   0 1, ,d t t t t d x x                                                    (6)         

We will often assume that the geodesic has been so parameterized .By 
definition a subset A X is convex if for any 0 1x ,  x A  there is a 
minimizing geodesic from 0x  to  1x   that lies entirely in A . It is totally 
convex if for any 0 1x ,  x A  ,any  minimizing geodesic in x from  0x  to  1x  
lies in A. Given  R  a function :F X R  and only  0,2t  we have    

                     211 1 0 1
2

F t yF t F t t L                               (7)       

In the case when x  is a smooth Riemannian manifold with Riemannian 
metric g, and  2 ,F C x  this is the same as saying that .Fhess g  

Definition (4.1.1) [121]: Given two compact metric spaces  1 2,x d  and
 2 2,x d ) an  

 -Gromov- Hausdorff approximation from 1x  to 2x  is a (not necessarily 
continuous ) map 1 2f : X X  so that  

(i)      1 '
2 1 1 1 1 1 1 1, , , , ,id F x F x d x x x x X     

(ii)For all 2 2,x X , there is an  1 1x X  so that   2 22 ,d F x x  . 

An   Gromov-Hausdorff approximation 2 2:f X X  has an approximate 
inverse     2 1:F X X  which can be constructed as follows: Given 2 2x X  
choose  1 1x X  so that   2 1 3,d f x x   and put  2 1f x x   then f  is a 3 

Gronov-Hausdorff approximation from 2X  to 1X .Moreover, for all 
   1 1 1 1, , 2 ,x X d f f x   and for all    2 2 2 2 2,x X d x f f x   , 



51 
 

Definition (4.1.2) [121]:  A Sequence of compact metric spaces   1i i
X 



converges to X in the  Gromov-Hausdorff topology if there is a sequence of 
i approximations :i if X X with lim 0i i   

This notion of convergence comes from a metrizable  topology on the space 
f  all compact metric spaces modulo isometries. If   1i i

X 


  are length spaces 

that converge to X  in Gromov-Hausdorff topology. Then X  is also a length 
space [29]. For the purpose of this section , we can and will assume that 
maps  f and f   in Gronov-Hausdorff approximation are Borel probably 
measures on X . We give   XP the weak * topology, i.e 

 lim i i   , if and only if for  all ( ),F C X  lim .
i

i
X X

Fd Fd     (8)                                                        

Definition (4.1.3) [121]  Given  XV P .Consider this metric-measure 
space  , ,X d V . A sequence   1

, ,i i i i
X d 


V  converge to  , ,X d V  in the 

measured Gronov-Hausdorff topology, if there are i - approximations are  
:i if X X  with  lim 0i i   so that    lim * .i i if in X V V P                                                 

Other topologies on the class of metric-measure spaces are discussed in 
[166]. For later use we note the following generalization of the Arzela-
Ascoli Theorem.  

Lemma (4.1.4) [121] : [163] Let    1i i
X 


 be a sequence of compact metric 

spaces converging to X  in the Gromov-Hausdorff topology with i - 
approximations :i if X X .Let   1i i

Y 


 be a sequence of compact metric 

spaces converging to Y in the                                                                                                                                                                                              

Gromov-Hausdorff topology with  i -approximations :i ig Y Y . For eachi , 
let ' :i if X X be an approximate inverse to if  as in the paragraph following 
Definition (4..1.1): Let   1i 

 be a sequence of maps :i i iX Y  that are 
asymptotically equicontinuous in the sense that for every 0  , there are 

  0     and  N N  �   that for all i N   

                        1 1, ,i i i i i i i idX x x dy x x                                        (9)         

Then after passing to a subsequence to maps i i ig f X y    converge 
uniformly to a continuous map : X Y  . 
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In the conclusion of Lemma (4.1.4): the maps i i ig f    may not be 
continuous, but the notion of uniform convergence makes sense 
nevertheless . 

Given  0 1, X  P  we say that a probably measure  D X X P , is a 
transference plan between  0 and 1  if. 

                          0 0 1 1* *
Π , Πp p                                               (10)        

Where 0 1, :p p X X X  are projection onto the first and second factors, 
respectively. In wards Π represents a way to transport the mass from 0  to 

1  and  0 2Π ,x x  is the a moment of mass which is taken from appoint 0x . 
And brought to a point 2x  

We will use optimal transport with quadrate cost function ( sequence of the 
distance ). Namely, given  0 1, x  P , we  consider the variational 
problem. 

            
22

2 0 1 0 1 0 1, , Π ,inf X X
d x x d x x 


 



W                                      (11)        

Where   ranges over the set of all transference plans between  0 and 1 . 
Any minimizer    for this variational problem is called an optimal 
transference plan.  

In (11), one can replace the infimum by the minimum [23], i.e. there always 
exist (at least) one optimal transference plan. Since X  has finite diameter, 
the infimum is obviously finite . The quantity 2W will be called the 
Wasserstein distance of order 2 between 0  and 1  , it defines a metric on 
 XP , the topology that it induces on  XP is the weak -*topology [23]. 

When equipped with the metric 2W  ,  XP , is a compact metric space, 
which we will often denote by  2 XP , we remark that there is an isometric 
embedding  2X X P ,given by x x . This shows that diam 

    2 X diam XP . Since the reverse inequality follows from the definition 
of W2 actually.     2 diamX XP , a monge transport plan coming from a 
map :F X X with * 0 1F    given by   0*

, ,Id F  ,. In general an optimal 
transference plan does not have to be a monge transport . Although this may 
be true under some assumption  
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A function  : ,X    ,  is 
2

2
d  concave if it is not identically -  and it can 

be written in the form  

                                    
2,

2inf
x X

d x x
x x 



 
  

 
 

                             (12)         

For some function : [ , ),X    such functions play an important role in 
the description of optimal transport on Riemannian manifolds.  

In this section. We investigate some features of the Wasserstein space 
 2 XP associated to a compact length space ,X d . (Recall that the subscript 

2 in  2 XP means that  XP  is equipped with the 2-Wasserstein metric). We 
show that  2 XP  is a length space. We define displacement interpolation and 
show that every Wasserstein geodesic comes from a displacement 
interpolation. We then recall some fact about optimal transport on 
Riemannian manifolds.  

We denote by   Lip 0,1 , X , the space of Lipschitz continuous maps 
 C : 0,1  X with the uniform topology. For any k 0  

             Lip 0,1 , 0,1 , : , 0,1k X C Lip X d C t C t k t t for all t t             (13) 

 is a compact subset of   0,1 ,Lip X . 

Let denote the set of minimizing geodesies on X . It is closed subspace 

                                                                Lip 0,1 , ,diam X X  

defined by equation       : 0 , 1L C d C C .For any  0,1t , the evolution map 
:te X   defend by  

                                             te t                                                   (14) 

is continuous.  Let : X X E  be the “endpoint” map given by 
    1e E , A dynamical transference plan consists of a transference plan

 and a Borel measure  Π on  such that *Π ;E  it is said to be optimal if 
Π  itself is. In words the transference plan   tells us how mach mass goes 
from a pint 0x   to another point 1x , but does not tell us about the actual path 
that the mass has to follow. Intuitively, mass should follow a long 
geodesies, but there may be several possible choices of geodesies  between 
two given points and the transport may be divided among these geodesies 
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,this is the information provided by Π ,but there may be several   . If Π  is 
on optimal dynamical transference plan, then for   0,1t   we out    

                              * Πt t                                                             (15)       
The one-parameter family of measures    0 ,1t t




 is called displacement 

interpolation in wards t  is what has becomes of the mass of 0  after it has 
traveled from time 0  to time t  according to the dynamical transference plan Π . 

Lemma (4.1.5) [121]: The map    2: 0,1c Xc P  given by   tc t   has length 
   2 0 1,L c   W .  

Proof: Given  *I, , Πt tO t t e e    is a particular transference plan from t  
to t   and so  

         2
2 0 1 0 1*

, , , Π ,t t t t
X X

d x x d e e x x   


 W                                        

                  
            2 2 2, , Π Πd t t d t t L d    

 
      

                      2
0 1 * 0 1, Π ,

X X
t t d x x dE x x


      2 2

2 0 1,t t    W            (16)                                                                                              

Equation (15) implies that    2 0 1,L c   W  and so    2 0 1,L c  = W                           

Proposition (4.1.6) [121]: Let  ,X d  be a compact length space then any 
two point  0 1 2, p X    can be joined by a displacement  interpolation . 

corollary (4.1.7)[121] , If X  is a compact length space then  2 XP  is a 
compact length space. .. 

Example (4.1.8) [121] : Suppose  that X A B C     where A,B and C  are 
subsets of the plane given by   1 1,0 : 2 1A x x     ,   2 2

1 2 1 2, : 1B x x x x    
and   1 1,0 : 2C x I x   . Let   be the one –dimentional Hausdorff measure 
of A and let 1  be the one - dimentional Hausdorff measure of C . Then 
there is an uncountable number of Wasserstein geodesies from 0  to 1  
given by the whims of a switchman at the point  1,0 . 

Corollary(4.1.9)[274]:The map    2: 0,1c Xc P  given by   tc t   has length 
   2 0 1,L c   W .                        
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Proof: Given  
*

0 , I, ,t tt t e e     and Π  is a transference plan from t  to 

t    and so  

          2
2 0 1 0 1*

, , , Π ,t t t t
X X

d x x d e e x x   


 W                                        

                             2 22, , Π Πd t t d L d      
 

     

                        2
0 1 * 0 1, Π ,

X X
d x x dE x x


   22

2 0 1,   W .              (17)        

Hence equation (15) gives the result.   

The next result states that every Wasserstein geodesies arises from a 
displacement interpolation . 

Proposition (4.1.10) [121]: Let  ,X d  be a compact length space and let 
  0,1t t

  
 is the displacement interpolation associated to Π . 

Proof: Let    0,1t t



 be a Wasserstein geodesies pU up to reparametrization , 

we can assume that for all  , 0,1t t  

                           2 2 0 1, ,t t t t     W W                                       (18)        

Let  
0 1/2x x  be an optimal transference plan from 0  to 1/ 2  and let 

1/2

1/2
1,x x  be 

optimal transference plan from 1/ 2  to 1 .Consider the measure obtained  by 
gluing together                 

0 1/2x x  and 
1/2

1/2
1,x x . 

                      
   

 
0

0 1/2
1/2 1/2 11

1/2 1/2

,xd x d x x
M

d x
 


                                                  (19)        

on X X X  . The precise meaning of this expression is just as in the 
‘’gluing Lemma’’ started in [23]: Decompose    with respect to the 
projection 1 :p X X X   on the second factor as      1/2 1/2 1/2Π x x   , where 
for 1/ 2 -almost all     1

1/2 1/2 1 1/2,x x p p x   is a probability measure on  1
0 1/2p x

. Decompose (1/2)Π  with respect to the projection :p X X X    on the first 
factor as  1/2 (1/2)

1/2 1/2 1/2Π x x   where for 1/ 2 -almost all 
    1/2 1

1/2 1/2 1/2,x x p x P . Then for  F c X X X    

      1

X X X
FdM
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1 1

1 1/2 0 1/2

1/2
0 1/2 1 1/2 1/2 1 1/2 1/2, ,

X p x p x
F x x x d x xd x x d x  

 
                  (20) 

The formula  

                         
0 1/2 1

1
0 1 , ,, x x x

X
d x x M                                                        (21)       

Defines a transference plan from  0  to 1  with cost   

     
 

 
2

1/20 1/2
0 1 0 1 0 1/2 1/2 1 1/2 1

1/2 1/2

,, , , , ,
X X X X X

d x xd x x d x x d x x d x x d x x
d x


 

  
                                              

    
 

 
1/2 1/2

2 2 0 1/2 1/2 0
0 1/2 1/2 1

1/2 1/2

, ,2 , ,
X X X

d x x d x xd x x d x x
d x

 
 

   

        1/2

0 1/2 1/2 11/2

22 0
0 1/2 , 1 ,2 , ,x x x x

X X X X
d x x d d x x d 

 

   
    

                             2 2 2
2 0 1/2 2 /2 1 2 0 12 , , , .       W W W                      (22)   

 This   is an optimal transference plan and we must have equality every 
where in (21). Let  

       1
0 1/2 1 0 1/2 1/2 1 0 1

1, , : , , , ;
2

B x x x X X X d x x dx x d x x       
 

                    (23)  

Then  1M  is supported on  1B . For   0,1/ 2t , define  1:te B X  by 
 0 1/2 1, ,t te x x x x . Then    1

*t te M   

We can repeat the same procedure using a decomposition of the interval 
[0,1] into 2i subintervals. For any i I define . 

                       1 2 1
0 2 22 1 2 1, , ,..., ,i i iB x x x x x X  

                                              (24)  

                              
1 2

0 1 0 12 2 2.2
, , , ... , 2 ,i i i i

id x x d x x d x x d x x   


     

For 0 2 1ij    choose an optimal transference plan 
 

 
,2 ,

1 .2

,2 i

ij x ij

j
x






from .2
i

j   to 

  11 ,2j
 

.Then as before we obtain a probability measure  iM  on  iB  by  

  

 
           

   0 2

2 1 20
0 12 2 2.2 1 2

, 1

2 2 1 2 1 2

, , ... ,
,....

...

i i

i i i i

i
i i i i

i
x x

d x x d x x d x x
M x

d x d x

  

 

 

   


   





 

                   (25) 

The formula  
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20 1 0 11 2
, , ,...,

i

i
i

x x x x xX
d M


                                                                       (26) 

Defines a transference  plan from   0  to 1 . For .2 ,0 2i it j j     define   
 1:te B X  by  0 1/2 1,..., ,t te x x x x ;then    

*
c

t ie M  . 

 Let S be in the proof of Proposition (4.1.6):  Given    
0 1,..., ix x B   define a 

map 
0 1 1, ,... : [0,1]x x xp X  , as the   concatenation  of the paths

   10 2 2 2.2
, , , ,...,i iS x x S x x    and 

 11 2
,iS x x

 . As 
0 1,...,x xp  is normalized continuous  curve from  0 .x  to 1x   

length   0 1,d x x it is a geodesies. For each the linear function L  on  C 

given by  

                           
0 12 1 ,..., ,...,

0 1
i x x

x

i

x x
F F p dM


                                            (27) 

Define a probability measure  iR  on the compact space  . Let R  be the 
limit of a weak -* convergent subsequence of   

1

i

i




R it is also a probability 

measure on . 

For any  0,1
2vt 
N  and  f c X  we have    

*
i

t tk X
e fdR fd    for large 

I. Then    
*t tk X

e fdR fd     for all  f c X , or equivalently ,    
*te t R . 

But as in the proof of Lemma (4.1.5)    
*te R   is weak-* continuous  in t. It 

follows that    
*t te  R  for all  0,1t                                                                                                   

We discuss the case when X is a smooth compact connected Riemannian 
manifold M  with Riemannian metric g .( The results are also valid if. G   is 
only 3C  smooth). Given  0 1 2, M  P  which are absolutely continuous with 
respect to Mdvol  it is known that there is a unique Wasserstein geodesies c  
joining 0  to 1  [242]. Furthermore; for each    0, ,t t c t   is absolutely 
continuous with respect to Mdvol  [31]. Thus it makes sense to talk about the 
length space  2

ac MP  of Borel probability measures on M  that are 
absolutely continuous with respect to the Riemannian density equipped with 
the metric 2W . It is a dense totally convex subset of  2 MP . Note that if M is 
other than a point a dense totally, then  2

ac MP is an incomplete metric space 
and it is neither open nor closed in  2 XP .An optimal transfer-ence plan in 

 2
ac MP  turn out to be monge transport that is     0*ic t F   for a family of 
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Monge transport    0,1t t
F


 of M . For each           

    , ex pt mm M F m t m     

[31]. This function   just as any 2

2
d

 concave function on a compact 

Riemannian manifold, is Lipschitz [242] and has Hessian every where [31]. 
If we only want the Wasserstein geodesies to be defined for an interval 

10, r    then we can use the same formula with being 
2

2
dr -concave. 

 All of our results will involve a distinguished reference measure, which is 
not a prioric canonically given. So by ‘’measured length space ‘’ we will 
mean a triple  , ,X d V , where  .X d is a compact length space and V is a 
Borel probability measure on X . These assumptions automatically imply 
that V  is a regular measure we write. 

                          2 2, : supp suppX X   P V P V                            (28)  

We note by  2 ,ac XP V  the elements of  2 ,XP V that are absolutely 
continuous with respect to V  . 

Definition (4.1.11) [121]: Let   be a continuous convex function on  0,  
with  0 0 . Given  2, X V P , we define the functional 

   2:U X  RV P  by  

                         ,s
X

U U X d x U X    V V                                (29) 

Where  

                                   s   V                                                          (30)   

is the Llebesgue decomposition of   with respect to V  into an absolutely 
continuous part V  and a singular part s ,we have the 

                  .
X X
U x d x U x d x    

  V V                                           (31) 

Lemma (4.1.12) [121]:      1U U U  V V V . 

Proof: as  is convex for any  0.1   we have  

                               1 1 1U r U r U                                             (32)  
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                          11 1 1U r U U r U 

                                             (33) 

Then  

                            
1 1

1 1
X X

U U
U d U p d

 


 
  

  
 V V                (34) 

Where we take the integrand f  the right-hand-side to vanish at points x X  
where   1x  . We break up the right-side of (34) according to whether 
  1x   or   1x  from monotone convergence for 1   we have  

                                   
         1 1

0

1 1
1 1 1 1lim

X X

U U
I d U d 



 
 

 
  



  
  

 V V  

While for 1    we have  

                                     
         1 1

0

1 1
1 1 1 1lim X

U U
I d U d 



 
 

 
  



  
  

  V V                      (35) 

               11 1 1 1 1 1
X X X

U d U U d U U I d              V V V          (36) 

As    1vU UV  the Lemma follows.                                                             �                                   

Definition (4.1.13) [121]: Given a compact measured length space  , ,X d V  
and a numberR , we say that UV  is.  

(i)  -displacement convex if for all Wasserstein geodesies    0.1t t



 with 

 0 1 2, ,X  P V , we have  

                        2
1 0 2 0 1

11 1 ,
2v t v vU tU t U t t          W                    (37) 

for all  0,1t  

(ii)weakly  -displacement convex if for all  0 1 2, ,X  P V , there is some 
Wasserstein geodesies from 0  to 1  along which (37) is satisfied  

weakly .a c  . displacement convex if the  condition is satisfied when we 
just assume that  0 1 2, ,ac X  P V . 
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If U V is  -displacement convex and suppU X , then the nction  tt U  V is 
 -convex on   [0,1],i.e. for all 0 1s s    and  0,1t .  

             2
2 0 11

11 1 ,
2s sts t sU tU t U t t s s             WV V V                (38) 

This is not a priori the case if we only assume that U V  is weakly   
displacement convex . 

             
-displacement convex weakly -displacement convex

-a.c displacement convex weakly -a.c displacement convex

 

 



 


             (39)          

The next proposition reverse the right vertical implication in (39)  

 Proposition (4.1.15) [121]: Let U  be a continuous convex function on  
 0,  with                0 0U  . Let  , ,X d V  be compact measured length 
space. Then UV is weakly 

 -displacement convex, if and only if it is weakly  .a c  .displacement 
convex. 

Proof : We must show that if UV  is weakly 

.a c   displacement convex, then it is weakly -displacement convex, that is 
for  0 1 2, ,X  P V , we must show that there is some Wasserstein geodesies 
   0,1t t



 from 0 to 1  along which  

                        2
0 1 2 0 1

11 1 ,
2tU tU t U t t         V V V W                  (40) 

We may assume that  0U   V  and  1U   V  as otherwise (38) is 
trivially true for any Wasserstein geodesies from 0  to 1  . There are 
sequences  ,0 1k k





 and  ,1 1k k





 in  2 ,ac XP V  ( in fact with continuous 

densities  so that ,0 0 ,1 1lim , limk kk k
   

 
   ,    ,0 0limk kU U  V V and 

   ,1 1limk kU U  V V  

Let    20,1kc X  P  be a minimal geodesies from ,0 ,k  to ,1k  such that for 
all  0,1t . 

                      2
,1 ,0 2 ,0 ,1

11 1 ,
2k k k k kU C t tU t U t t         WV V V           (41)   
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After taking a subsequence, we may assume that the geodesies   1k k
C 



converge uniformly      2. . 0,1 ,i e inC XP to geodesies    2: 0,1c X P from  

0 to 1  [29]. The lower semi-continuity of U V , implies that 
     liminfk kU c t U c tV V .                                                                                        

The proposition follows. In fact the proof of Proposition (4.1.15): gives the 
following slightly stronger result.   

Lemma (4.1.16) [121]: Let U be a continuous convex function on  0,  
with 0 0U  . Let  , ,X d V  be a compact measured length space. Suppose that 
for all  0 1 2, ,ac X  P V , with continuous densities, there is some 
Wasserstein geodesies from 0  to  1  along with (22) is so satisfied. Then 
U V  is weakly   displacement convex. The next  lemma gives sufficient 
conditions for the horizontal implications in (39) to be reversed . We recall 
the definition of total convexity.  

Lemma (4.1.17) [121]: (i) Suppose that X  has the property that for each 
minimizing geodesies    20,1C X  P , where is some 0c   so that 
minimizing geodesies between   C t  and  C t  is unique whenever 
y t c  . Suppose that  supp XV . If U V   is weakly   displacement 

convex.  

(ii) Suppose that  2 ,as X P V , is totally convex in  2 XP . Suppose that X  has 
properly that for each minimizing geodesies    2: 0,1 ,acC X P V , there is 
some 0c  so that the minimizing geodesies between  c t  and  c t  is 
unique whenever ct t   , Suppose that supp ( ) XV . If U V  is weakly  -
displacement convex, then it is .a c  displacement convex, 

The following functional will play an important role. 

Definition (4.1.18) [121]: Put  

      1/1

log

N

N

Nr r if I N
U

r r if N


     
 

                                                  (42)      

  

Definition (4.1.19) [121]: Let    , 2: 0,NH p X  V  be the functional 
associated to U V  via definition  (4.1.11)]: More explicitly. 

-For  1,N   
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                       1 1/
,

N
N

X
H N N p d  V V                                                     (43)    

   Where V  is the absolutely continuous part in the Lebesgue 
decomposition of  with respect to V .  

-For N   the functional ,H V  is defined as follows : If    is absolutely 
continuous with respect to V with   V  then  

                            , logH d    V V                                              (44) 

While if   is not absolutely continuous with respect to V  then  ,H   V . 
To verify that ,NH V  is indeed the functional associated to NU  we note that 

 NU N    

And write.  

                1/ 1/1 + 1 1N N
s

X X X
N d N X N d N d             

   V V V  

                                           1 1/ N

X
N N d    V. .                                   (45)      

  

Of course the deference of treatment of the singular part of V  according to 
whether N  is finite or not reflects the fact that NU  grows at most linearly 
when N   but super linearly when N  ,ensures that ,NH V  is lower 
semicontinuous on  2 XP . 

Definition (4.1.20) [121]: Let  , ,X d V be  a compact measured length 
space. Let U  be a continuous convex function on  0,  with  0U  which 
is 2C  regular on  0, . Given  2 ,ac XP V  with /d d  V  a positive 
Lipsehitz function on X , define the generalized Fisher information I  by . 

                    2 22 2n
U

X X
I U d d             V.                   (46)     

The following estimated generalize the ones that underline the HWI
inequalities in [69]. 

Proposition (4.1.21) [121]: Let    , ,X d V be a compact measured length 
space.  Convex function Let U  be a continuous convex function on  0,  
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with  0 0U  .Given  2 ,XP V . Let    0.1t t



 be a Wasserstein geodesies 

from 0  to 1 V . Given R , suppose that  35  is satisfied. Then  

                                   2
2 ,

2
U U   W V VV V .                                 (47)        

Now suppose in addition that U is  2C regular on  0,  and that  

 2 ,ac XP V   is such that  d
d
 
V

  is a positive Lipsechitz  function on X . 

Suppose that   U   V   and   2 ,ac
t X U  VP , for all  0,1t .Then  

                         2
2 2, ,

2UU U I W     V V V V VW                        (48)     

  Proof: consider the function    tt U  V . Then    0 U  V  and
   1 U  V V . By assumption, 

                             2
2

11 1 0 1 ,
2

t t t t t         W V                        (49) 

If      2
2

10 1 ,
2

     W V  then            2
2

11 1 0 1 ,
2

t t           
 

W V , 

we conclude that    1t   is negative for t close to 1, which contradicts 

Lemma (4.1.12): This      2
10 1 ,
2

     W V , which proves (46). 

To prove (47) put t
d t
dv
  , then    tX

t U d   V . From (48)for  0t   we 

have  

                              2
2

0 10 1 1 ,
2

t
t

t
 

   


     W V                       (50)     

   

To prove the inequality (48), it suffices to prove that  

                     20

0
liminf , Ut

t
I

t
 

 


 
  
 

W V                                     (51)    

    

The convexity of U   implies that  

                           0 0 0t tU U U                                                 (52)     
   

Integrating with respect to V and dividing by t 0 , we infer 
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                     0 0
1 10 t

X
t U x d x d x

t t
                                      (53)    

By Proposition (4.1.10):  *t te    where   is a certain probability 
measure on the space  of minimal geodesies in X In particular, 

                 0 0 0 0
1 1 0t

X
U x d x d x U t U d

t t
       


                (54) 

Since U  is non-decreasing and          0 , 1 0 , ,td d t    we have  

         
     

         
0 0

0 0 0 00

1 1[ 0 ] 0 ,
t

U t U d I U t U d
t t    

         
  

            

       
     

     
           0 0 0 0

0 0

0
0 , 0

0 0 ,

U t U t t
d d

t d t

       
   

     

     
  (55) 

       Where strictly speaking we define the integrand of the last term to be 
zero when  

      0 0 0t     
Applying the Cauchy-Schwarz inequality, we can bound the last term above  

       
     

     
    

        
2 2

0 0 20 0

2 2

0 0

0 0
0 ,

0 ,0

U t U t
d d I d

d tt

       
   

    


 

         
  

  (56)                                                                                                                      

The second square root is just  2 0 1, W . To conclude the argument, it 
suffices to show that  

       
     

     
    

   
2 2

0 0 0 0

2 20
0 0

0 0
lim inf

0 , 00
Ut

U t U t
d I

dt

       
 

    


 

         
  

  (57)                 

The continuity of 0  implies that      0 0 0lim 0t t     .So  

                        
     

   
2

20 0

02
0

0 0

0
0

0
lim

t

U t U
U

t

   
 

   

    
  

                         (58) 

On the other hand , the definition of the gradient implies  

   
     
     

  
2

20 0
2

0

0
lim sup 0

0 ,t

t

d t

   
 

 




     .                                      (59) 
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As   is a positive Lipschitz function on X  and U  is also 1C -regular on 

 0, , 0 0U   is also Lipschitz on X . Then 
       
     

2

0 0

2

0

0

U t U

d t

   

 

   


is 

uniformly bounded on , with respect to t , and dominated convergence 
implies that   

       
     

     
    

   
2 2

0 0 0 0
2 20

0 0

0 0
lim inf

0 ,0
Ut

U t U t
d I

d tt

       
  

     

         
  

  

               
2 2 22

0 0 0 00 0
X

U d U x x d x        


       .       (60) 

This concludes the proof of the inequality on the right-hand side of (49).                                         

Particular case  (4.1.22) [121]:  Taking NU U    with v   and 
 Lip X appositive function define  

 

22

2 1

,
2

1
X

N
N v

X

N dv if I N
N

I

dv ip N














        
   





                                    (61) 

 

Proposition (4.1.23) [121]:  implies the following inequalities : 

-If 0    then 

                  

           2 2
2 , 2 , 2 ,

1, , ,
2 2 2N N NH I I      


   V V VV V VW W W           (62) 

-If 0   

                     2
, , 2N v N IH diam X I diam X
                                         (63) 

Corollary (4.1.24) [121]: If a sequence of compact metric spaces    1
,i i i

X d



 

converges  ,X d then   2 1i i
X




P  converges in the Gromov-Hausdorff 

topology to  2 XP  

Proposition (4.1.25) [121]: If    1 1 2 2: , ,f X d X d  is an   Gromov-
Hausdorff approximation then  * 2 2 2:f XP P  is an  - Gromov-Hausdorff 
approximation where  
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                  24 3 2 3diam X                                                         (64) 

Proof: Given  1 1 2 1, X P , let 1  be an optimal transference plan for 1  
and 1 but  2 1*

f f   . Then 2  is a transference plan for * 1f   and * 1f   
we have  

               
2 2

2
2 * 1 * 1 2 2 2 2 2 2, , ,

X X
f f d x y d x y  


  W  

                           
1 1

2
2 1 1 1 1 1, Π ,

X X
d f x f y d x y


                                       (65) 

As  

      2 2
2 1 1 1 1 1, ,d f x f y d x y                                                                                                                                              

                 2 1 1 1 1 2 1 1 1 1 1, , . , ,d f x f y d x y d f x f y d x y                             (66) 

We have  

                  2 2
2 1 1 1 1 1 1, , 2d f x f y d x y diam X                                  (67) 

If follows that  

                     2 2
2 * 1 * 1 2 1 1 1, , 2f f diam X        W W                            (68) 

and   

                   2 2
2 * 1 * 2 2 1 1 2, , 2f f diam X        W W                             (69) 

If follows from this last inequality that  

                         2
2 * 1 * 1 2 1 1 2, ,f f diam X        W W                        (70) 

We now exchange the roles of 1X  and 2X . We corresponding apply (68) 
instead of (69) to the map f  and the measures * 1f  and * 1f   and use the fact 
f   is a 

 - Gromov-Hausdorff approximation, to obtain 

               2 * * 1 * * 1 2 * 1 * 1 2, , 3 2 3f f f f f f diam X          W W                  (71) 
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Since f f  is an admissible Monge transport between 1  and   1*
f f   or 

between   1 and   1*
f f    which moves points by a distance at most 2 we 

have  

                   2 1 1 2 1 1* *
, 2 , , 2f f f f          W W                           (72) 

This by (70) and the triangle inequality,                        
      2 1 1 2 * 1 * 1 2, , 4 3 2 3f f diam X          W W                                  (73) 

Equation (70) and (73) show that condition (i) of Definition (4.1.1):is 
satisfied . 

Finally, given  2 2 2X P consider the Monge transport f f   from 2  to 
  2*

f f  . Then   2 2 * * 2, f f   W . Thus condition (ii) of Definition 
(4.1.1): is satisfied as well.                               �  

Theorem  (4.1.26) [121]: Let   1
, ,i i i i

X d 


V  be a sequence of compact 

measure spaces so that    lim , , , ,X d X di i i i   V V in the measure 
Gromov-Hausderff topology . Let U be a continuous convex function on  
[0, )  with  0 0U  . Given R , suppose  that for all ,

i
i UV  is weakly  -

displacement convex for   , ,i i iX d V . Then U V is weakly  

 -displacement convex for  X,d, .V  

Proof : By Lemma (4.1.16): it surfaces to show that for any  0 1 2, X  P  
with continuous densities with respect to V  there is a Wasserstein geodesies 
joining them along which inequality (37) holds for  V we may assume that 

 0U 


 V and  1U 


 V  as otherwise any Wasserstein geodesies works.  

Write 0 0   V  and 1 1   V . Let :f X Xi i   be an  -approximation, 

with lim 0i   and  lim *fci i   V V , if I is sufficiently large then 

 0 0*i iX
d f  V  and  1 *

0X i if d f V  for such i, put  
 

*
0

,0
0 *

i i
i

i iX

f

d f








V

V
 and 

 
 

*
1

,1

1 *

i i
i

i i
X

f

d f








V

V
. 

 Then 
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0 *
,0*

0 *

i ii
i

i i
X

f
f

d f








V

V
 and    

 
1 *

,1*
1 *

i ii
i

i i
X

f
f

d f








V

V
. 

Now choose geodesies    2: 0.1i ic X P  with   ,00i ic   and   ,11i ic   so 
that for all  0,1t , we have  

            2
2 .0 ,1

1,1 1 ,0 1 ,
2i i ii i i i iU C t tU t U t t         WV V V .                   (74) 

From Lemma (4.1.4): and Corollary (4.1.24): after passing to a subsequence, 
the maps  * 2( ) : 0,1 (X)i if c p   converge  uniformly to a continuous map 

   2: 0,1c X P . As       2 2 ,0 ,1, ,i i i ic t c t t t    W W , it follows that 
      2 2 0 1, ,c t c t t t    W W . Thus C is a Wasserstein geodesic. The problem  

is to pass to the limit in (73) as i  .  

Given  F c x , the fact that  0 c x   implies that  

     
 

*
,0 0 0

*
0 *

lim lim i i
i ii iX X X

i i
X

d f
Fd f F F d

d f
  


 

   
V

V
V

.                            (75) 

Thus   ,0 0*lim i if   similarly ,   ,1 2*
lim i ii

f  


 . It follows from Corollary 
(4.1.24): that  

                2 ,0 ,1 2 0 1lim , ,i ii
   


W W                                                          (76) 

Next  

     
 

*
0 0

*
0 0* *

,0
i

ii

i
i i i i

XX i i i iX

fU U dv U d f
d f d f

 


 

  
          V V

V V
.                 (77)                  

As  

     
 

 0
0

0 *

lim
i

i i
X

U U
d f






 
 

 
 
  V

                                                             (78) 

Thus   ,0 0*
lim i ii

f  


  .Similarly   ,2 2*
lim i ii

f  


 . It follows from Corollary 
(4.1.24): that  

           2 ,0 ,1 2 0 2lim ( , ) ( , )i ii
  


W WV                                                             (79) 
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Uniformly on X  ,it follows that  

 
       0

0 0* *
0 *

lim limi i i ii X X X
i iX

U d f U d f U d
d f


 
 

 
   
 
   V V V

V
.         (80) 

Thus    ,0 0lim
ii v i vU U 

  .Similarly      ,0 1lim
ii v i vU U 

  . It follows 
that  

                 
* * ii i i i v if vU f C t U c t .                                                            (81) 

Then for any  0,1t , we can combine this with the lower semicontinuity of 
   , vU V  to obtain  

             
* *lim inf lim inf

ii iv i i v if vi i
U c t U f c t U c t

  
  .                                 (82) 

Combining this with (76) and the preceding results, we can take i   in 
(74) and find  

                                2
1 0 2 0 1

11 1 ,
2v v vU c t tU t U t t    

  
     W  

This concludes the proof.                                                                                           

Definition (4.1.27)[121]: Let F be family of continuous convex functions U 
on  0, with  0 0U  . Given a function  :  RF we say a compact 
measured length space  , ,X d V  is weakly  -displacement convex for the 
family F if for any  0 1 2, ,X  P V , one can find a Wasserstein geodesic 
   0,1t t


 is supposed to work for all of the functions UF .Hence if  , ,X d V  

is weakly   -displacement convex for the family F  then it is weakly  (U)-
displacement convex for each UF , but the converse is not a priori true.  

Theorem(4.1.28)[121]: Let    0
, ,i i i i

X d



V  be sequence of compact 

measured length spaces with    lim , , , ,i i i iX d X d V V  in the measured 
Gromov-Hausdorff topology. Let F be a family of continuous convex 
functions U on  0, with  0 0U  . Given a function  :  RF

,suppose that each  , ,i i iX d V is weakly  -displacement convex for the family 
F .Then   , ,X d V  is weakly  -displacement convex for the family F . 

Proposition (4.1.29)[121]: Let be a family of continuous convex functions 
U  on  0,  with  0 0.U   Given a function    : , , ,F X d  R V  is 
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weakly  -displacement convex for the family F if and only if it is weakly 
 -a-c-displacement convex for the family F . 

Section (4.2): Ricci Curvature for Measured Length Spaces And 
Riemannian Manifolds 

This section deals with N -Ricci curvature and its basic properties. 
We first define certain classes NDC  of convex functions U . We use these to 
define the notions of a measured length space  , ,X d V  having nonnegative 
N -Ricci curvature, or  -Ricci curvature bounded below by KR in 
[234].Consider a continuous convex function :[0, )U  R  with  0 0.U  We 
define the nonnegative function.  

          ,p r rU r U r                                                                         (83) 

with  0 0p  . If one thinks of U  as defining an internal energy for a 
continuous  0,  then p  can be thought of as a pressure. By analogy, if U  
is 2C -regular on  0,   then we define the "iterated pressure" 

                  2 .p r rp r p r                                                                  (84) 

Definition (4.2.1)[121]: For [1, )N   , we define NDC to be the set of all 
continuous convex functions U  on [0,1), with  0 0U  , such that the 
function 

                           N NU                                                              (85) 

is convex on  0,  .We further define NDC  to be the set of all continuous 
convex functions U on [0,1) , with  0 0U  such that the function 

                                e U e                                                           (85) 

is convex on  , .   

We note that the convexity of U  implies that   is non-increasing in ,  as
 U 


 is non-decreasing in x blow are some useful facts about the classes 

NDC . 
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Lemma (4.2.2) [121]:  If N N   then N N DC DC . 

Lemma (4.2.3) [121]: For  1,N  , 

(a) IfU is a continuous convex function on [0, )  with  0 0U   then NU DC  

if and only if the function  
11

/ Nr p r r


  if is non-decreasing on  0,  

(b) If U  is a continuous convex function on[0, )  that is 2C -regular on  0,  

, with  0 0U  , then NU DC  if and only if 2 .pp
N

   

Proof ]274]:(a) Suppose first that U  is a continuous convex function on
[0, )  and [1, )N   . 

Putting, ( ) ( )N NU    
1

N Nr and r 


  therefore 
1

1( ) ( )Nr r U r


 .By 

Differentiating we get that  
1 1 1' 1 ' 2 '1 1( ).( ) ( ) r ( ) ( ( ) ( ))N Nr r r U r U r rU r U r

N r


 
  




    . 

So that  

' ' '
1 121 1

1( ) . ( ( ) ( )) ( ( ) ( ))
N N

N NrU r U r rU r U r
r

r r
  

 

 
     

     
11' ./ NNp r r 



                                                                       (87)   

Then   is convex if and only if '   is non-decreasing, which is the case if 

and only if the function  
11/ Nr p r r


  is non-decreasing (since the map

N   is non-increasing). 

(b) Suppose that U is 2C -regular on  0, .We get 
1 1 11 2" ' ' '

11

1 1 1( ).( ) N ( "( ) ( ) ( )) (1 ) ( ( ) ( ))N N N

N

r r rU r U r U r r rU r U r
N N

r


 
  



         
 
 

and 
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2
" '' '

1 1 11 2

1(1 )1( ) U (r) ( ( ) ( ))
N N N

N N rU r U r
r r

r

   
 

 
 

   
  
 

2
2 ''

2 1

( )r U (r) ( )
N

N p rp r
N

r




    
 

 

                2 12
2" .N

p r
N r p r

N
 

  
  

 
                                              (88)                                             

Then   is convex if and only if " 0  , which is the case if and only if 

2
pp
N

  . 

The proof in the case N   is similar.                                                                   

Lemma (4.2.4)[121]: Given ,U DC  either U  is linear or there exist 
, 0a b   such that 

  logU r a r r br   

Proof: The function U  can be reconstructed from   by the formula 

                                  log 1/ .U x x x                                               (89) 

As   is convex and non-increasing, either   is constant or there are 
constants , 0a b   such that   a b      for all R . In the first case, U  is 
linear. In the second case, we have    log 1/U x ax x bx   , as required.  

We recall from Definition (4.1.27):  the notion of a compact measured 
length space  , ,X d V  being weakly  -displacement convex for a family of 
convex functions F . 

Definition (4.2.5)[121]: Given  1, ,N    we say that a compact measured 
length space  , ,X d V  has nonnegative N  -Ricci curvature if it is weakly 
displacement convex for the family .NDC  

By Lemma (4.2.2): if N N  and X  has nonnegative N -Ricci curvature 
then it has non-negative N - Ricci curvature. In the case N  , we can 
define a more precise notion. 
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Definition (4.2.6)[121]: Given KR , define  :   RDC  by 

          

 

 

0

0

0

lim 0,

inf 0 0,

lim 0,

r

r

r

p r
K if K

rp r
U K if K

r
p r

K if K
r












  

 


                                           (90)                                 

where p is given by (1). We say that a compact measured length space
 , ,X d V  has    Ricci curvature bounded below by K  if it is weakly A-
displacement convex for the family DC  

If K K  and  , ,X d V   has   -Ricci curvature bounded below by K  then it 
has 

   Ricci curvature bounded below by K . 

The next proposition shows that our definitions localize on totally convex 
subsets. 

Proposition (4.2.7)[121]:  Suppose that a closed set A X  is totally 
convex. Given   2 XV P with   0,A V , put 

   2
1 .A A
A

  V V P
V

. 

(a) If  , ,X d V   has nonnegative N -Ricci curvature then  , ,A d V   has 
nonnegative  

N  -Ricci curvature. 

(b) If  , ,X d V  has  -Ricci curvature bounded below by K  then  , ,A d V  
has  -Ricci curvature bounded below by K . 

Proof: By Proposition (4.1.10)  2 AP  is a totally convex subset of  2 XP . 
Given    2 2 ,A X P P  let s   V  be its Lebesgue decomposition with 
respect to V . Then s    V  is the Lebesgue decomposition of   with 
respect to V , where   .AA  V  Given a continuous convex function 

:[0, )U  R with  0 0,U   define 

                   
 

.
U A r

U r
A


V
V

                                                                 (91) 

Then    U U    and NU DC if and only if NU  DC .Now 
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               v s
A

U U d U A        V                                            

                  
        1

s
A
U A d U A

A
    V V

V
 

                            .s v
X

U d U X U        V                              (92)  

As    2 2, , ,A X P V P V  part  a follows. 

Letting p denote the pressure of U one fine that 

                 
 

.
p A rp r

r A r

 V

V
                                                                    (93) 

Then with reference to Definition (4.2.6)     .U U   Part (b) follows.                      

We considered the following result. 

Theorem (4.2.8)[121]: Let    1
, ,i i i i

X d



V  be a sequence of compact 

measured length spaces with    lim , , , ,i i i iX d X d V V  in the measured 
Gromov-Hausdorff topology. 

If each  , ,i i iX d V  has nonnegative N -Ricci curvature then  , ,X d V   has 
nonnegative N -Ricci curvature. If each  , ,i i iX d V   has  -Ricci curvature 
bounded below by K , for some KR , then  , ,X d V   has  -Ricci curvature 
bounded below by K . 

We first show that a weak displacement convexity assumption implies that 
the measure V either is a delta function or is nonatomic. 

Proposition (4.2.9)[121]:   Let  , ,X d V  be a compact measured length 
space. For all (1, ]N  ,if ,N vH  is weakly  -displacement convex then V
either is a delta function or is nonatomic. 

Proof: We will assume that     0,1x V  for some x X  and derive a 
contradiction. 

Suppose first that (1, )N   . Put 0 x   and    
  1 .

1
xx

x








V V
V

By the 

hypothesis 
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and Proposition (4.1.10):  there is a displacement interpolation   0,1t t  
   

from 0 to 1  along which  

           2
1 0 2 0 1

11 1 ,
2v t v vU tU t U t t          W  Satisfied with , .NU HV V . 

Now  

     1/

, 0

N

NH N N x  V V  and      1/

, 1 1
N

NH N N x   V V . Hence 

               
1/ 1/ 2

, 2 0 1
11 1 1 , .
2

N N

N tH N t N x tN x t t         V V V W   (94) 

Put  .D diam X . As we have a displacement interpolation, it follows that if
0t   then supp    t tDB x   and    0t x  . Letting  t t t s

v     be the 
Lebesgue decomposition of t  with respect to V , Holder's inequality 
implies that 

        
   

1 11 1

tD

N N
t t

x B x x
d 

 


  V  

   
         

11 1 1

.
tD

N
N N

t tD tD
B x x

d B x x B x x




 
    
  V V V                       (95)                             

Then  

                  
1

, .N
N t tDH N N B x x   V V V                                          (96) 

As       0lim ,t tDB x x  V V  we obtain a contradiction with (94) when t is 
small. 

If N  then     , 0
1logH
x

 V V
 and     , 1

1log .
1

H
x

 
V V

 Hence 

             2
, 2 0 1

1 1 11 log log 1 ,
21tH t t t t

x x
        

V V V
W .            (97) 

In particular, t  is absolutely continuous with respect to V . Write .t t  V . 
Jensen's 

inequality implies that for 0t  , 
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log
tD

t
B x x

tD

d
B x xt 




 V
V

                                                          

                 
.log

tD tD

t t
B x x B x x

tD tD

d d
B x x B x x

 
 

   
   
       
   
 V V

V V
 

                   
         
1 1log .

tD tDB x x B x x

 
     
 

V V
                                  (98) 

Then 

   
   

 , log log
tD

t t t t t
X B x x

H d d    


  V V = V=                                                                                                                              

                                     
    
1log .

tDB x x

 
    
 

V
                                       (99)   

As      0lim ,t tDB x x  V V  we obtain a contradiction with (97) when t is small.         

We now prove a Bishop-Gromov-type inequality. 

Proposition (4.2.10)[121]: Let  , ,X d V  be a compact measured length 
space. Assume that ,NH V  is weakly displacement convex on  2 ,XP for some 

 1,N  . Then for all  suppx V and all 1 20 ,r r   

                            2 1

2

1

.
N

r r
rB x B x
r

 
  
 

V V                                             (100) 

Proof: From Proposition (4.2.9): we may assume that V  is nonatomic, as 

the theorem is trivially true when xV . Put 0 x   and  

  
2

2

1

1
.rB x

rB x
  V

V
. 

By the hypothesis and  Proposition (4.1.10): there is a displacement 
interpolation   0,1t t  

  from 0  to 1  along which 

           2
1 0 2 0 1

11 1 ,
2v t v vU tU t U t t          W  is satisfied with ,v N vU H  

and 0.  . Now  , 0N vH N  and      2

1/

, 1 .
N

N rH N N B x  V V . Hence 
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                   2

1/

, .
N

N t rH N tN B x  V V                                            (101) 

Let  t t t s
   V  be the Lebesgue decomposition of t  with respect to V . 

As we have a displacement interpolation, t  vanishes outside of  
2

.t rB x  
Then from Holder's inequality, 

                             2

1/

, .
N

N t trH N N B x  V V                                      (102) 

The theorem follow by taking 1

2

.rt
r

                                                                

Theorem (4.2.11)[121]:  If a compact measured length space  , ,X d V   has 
nonnegative N –Ricci curvature for some [1, )N    then for all  suppx V  

and all 1 20 ,r r   

                             2 1

2

1

.
N

r r
rB x B x
r

 
  
 

V V                                        (103) 

Corollary (4.2.12) [121]: Given [1, )N    and 0,D   the space of compact 
measured length spaces  , ,X d V   with nonnegative N -Ricci curvature, 

 ,diam X d D  and  supp XV  is sequentially compact in the measured 
Gromov-Hausdorff topology. 

Proof: Let    1
, ,i i i i

X d



V  be a sequence of such spaces. Using the Bishop-

Gromov inequality of Theorem (4.2.11): along with the fact that 
 supp ,i iXV  it follows as in [166] that after passing to a subsequence we 

may assume that    1
,i i i

X d



 converges in the Gromov-Hausdorff topology 

to a compact length space ,X d , necessarily with  ,diam X d D . Let 
:i if X X  be Borel i -approximations, with lim 0.i i  . From the 

compactness of  2 ,XP , after passing to a subsequence we may assume that 
 *lim .i i if V V  for some  2 .XV P  From Theorem (4.2.8):  , ,X d V   has 

nonnegative N -Ricci curvature. 

It remains to show that  supp .XV  Given x X , the measured Gromov 
Hausdorff convergence of   1

, ,i i i i
X d 


V  to  , ,X d V  implies that there is a 

sequence of points i ix X  with  limi i if x x   so that for all 0r   and 
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 0, ,r   we have      lim sup .i i r i rB x B x  V V By Theorem 

(4.2.11):       ,N N
i r ir B x daim X d  

 V Then     
,

,

N

r
rB x

diam X d
 

   
 

V  

which proves the claim.                                                                                                                        

We show that in certain cases, lower Ricci curvature bounds are preserved 
upon quotienting by a compact group action. 

Lemma (4.2.13)[121]: The map    * 2 2: /p X X GP P  restricts to an 
isometric isomorphism between the set  2

GXP of G-invariant elements in 
 2 ,XP and  2 / .X GP  

Proof: Let dh be the normalized Haar measure on G . The map 
   * 2 2: /p X X GP P  restricts to an isomorphism    * 2 2: / ;Gp X X GP P  

the problem is to show that it is an isometry. Let be a transference plan 
between  0 1 2, GX    P  Then  .

G
g dh g      is also a transference plan 

between 0  and 1  with 

             
2 2 2

, , , , , ,
X X G X X X X

dx x y d x y dx xg yg d x y dh g dx x y d x y  
  

                     (104) 

Thus there is a G-invariant optimal transference plan   between 0  and 1 . 
As   *p p     is a transference plan between * 0p   and * 1,p   with 

 
   

            
2 2

2
/ /

/ /
, , , , , , ,x G x G X

X G X G X X X X
d x y d x y d p x p y d x y d x y d x y  

  
              (105) 

it follows that the map    * 2 2: /Gp X X GP P  is metrically nonincreasing. 

Conversely, let    : / /s X G X G X X   be a Borel map such that 
 p p s Id   and /X X Gd s d  That is, given , / ,x y X G the map s picks 
points  1x p x and  1y p y  in the corresponding orbits so that the 
distance between x  and y  is minimized among all pairs of points in

   1 1 .p x p y   (The existence of s follows from applying [240] to the 
restriction of p p  to          /, : , , .X X Gx y X X d x y d p x p y         The 
restriction map is a surjective Borel map with compact preimages.) Given 
an optimal transference plan   between  0 1 2, / ,X G  P , define a measure 
  on X X  by saying that for all   ,F C X X   
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/ /
, . , , .

X X G X G X G
Fd F s x y g g dx x y dh g

 
                        (106) 

Then for     / / ,F C X G X G   

 
   

 *

*/ / X XX G X G
Fd p p Fd p p d 


      

                                  
   

        *

/ /
, . , ,

G X G X G
p p F s x y g g d x y dh g


    

                                  
   

        
/ /

, . , ,
G X G X G

p p s x y g g d x y dh g


    

                                    
   

 
/ /

, , .
X G X G

F x y d x y


                                   (107) 

Thus  *p p    . As   is G-invariant, it follows that it is a transference 
plan between           1 1

* 0 * 1 2, Gp p X  
P .Now 

       
   

   22

/ /
, , , , ,X X

X X G X G X G
d x y d x y d s x y g g d x y dh g 

 
        

                                  
   

2
/

/ /
, , .X G

X G X G
d x y d x y


                                (108) 

Thus *p  and   1
*p   are metrically non-increasing, which shows that *p  

defines an isometric isomorphism between  2
GXP  and  2 / .X GP .         

   Theorem (4.2.14)[121]: Let  , ,X d V   be a compact measured length 
space. Suppose that any two  0 1 2, ,ac X  P V  are joined by a unique 
Wasserstein geodesic, that lies in  2 ,ac XP V . Suppose that a compact 
topological group G  acts continuously and isometrically on X preserving V
. Let : /p X X G be the quotient map and let /X Gd  be the quotient metric. 
We have the following implications  

(a) For [1, )N   , if  , ,X d V  has nonnegative N -Ricci curvature then 
 / */ , ,X GX G d P V  has nonnegative N - Ricci curvature. 

(b) If  , ,X d V  has  -Ricci curvature bounded below by K  then 
 / */ , ,X GX G d P V   has   Ricci curvature bounded below by K . 
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Proof :The proofs of parts a. and b. of the theorem are similar, so we will be 
content with proving just part( a).First,  // , X GX G d is a length space. (Given 

, /x y X G , let  1x p x  and  1y p y  satisfy    /, ,X X Gd x y d x y  . If c is a 
geodesic from x  to y  then p c  is a geodesic from x to y.) 

Given  0 1 2 *, / ,ac X G p  P V write 0 0 *p  V  and 1 * .p  V Put  *
0 0p  V 

and  *
1 .t p  V . From Lemma (4.2.13):    2

2 0 1 0 1, ,    W W . By 
hypothesis, there is a Wasserstein geodesic    0,1t t




 from 0  to 1  so that for 

all ,NU DC  equation            2
1 0 2 0 1

11 1 ,
2v t v vU tU t U t t          W  in 

section is satisfied along    0,1t t



 , with 0  . The geodesic    0,1t t




  is G-
invariant, as otherwise by applying an appropriate element of G  we would 
obtain two distinct Wasserstein geodesics between 0  and 1 . Put *t tp   . 
It follows from the above discussion that    0,1t t




  is a curve with length

 2 0 1,  W  , and so is a Wasserstein geodesic. As  2 ,ac
t X  P V , we have 

 2 */ ,ac
t X G p  P V  Write * .t t p  V .Then   *

t tp  V . As 

         * *
, *

/
.p t t t t v t

X G X X
U U dp p U d U p d U          V V V V            (109) 

it follows that equation            2
1 0 2 0 1

11 1 ,
2v t v vU tU t U t t          W  in 

section is satisfied along     0,1t t



 with 0  .Along with proposition (4.1.15): 

this concludes the proof of part (a).                                                                                        

Lemma (4.2.15)[121]: Let   1i i



 be a finite subset of  2 ,ac XP V , with 

densities .i
i

d
d


 
V

. If N   then there is a function NU DC  such that 

                              lim
r

U r
r

                                                              (110) 

and 

                          
1
sup .i

Xi m
U x d x

 
  V                                                 (111) 

Proof: As a special case of the Dunford-Pettis theorem [81], there is an 
increasing function  : 0,  R  such that 



81 
 

                       
lim
r

r
r


                                                              (112) 

and 

                       
1
sup .i

Xi m
x d x

 
   V                                               (113) 

We may assume that   is identically zero on [0,1]. 

Consider the function  : 0,  R  given by 

                          .N N                                                           (114) 

Then 0   on [1, ) , and  0
lim


 

  . Let ; be the lower convex hull 
of  ; on  0, , i.e. the supremum of the linear functions bounded above 
by  . Then 0   on  1, and   is nonincreasing. We claim that 

 0
lim


 

  . If not, suppose that  0
lim M


 

   . Let 
 

0

1
sup

M
a 

 


 
    (because this quantity is 0  when  is small 

enough). Then   1M a     ,so  0
lim 1,M


 

   which is a 
contradiction. 

Now set  

                             1/ .NU r r r                                                           (115) 

Since   ; and    1/ ,Nr r r    we see that .U    Hence 

                          
1
sup .i

Xi m
U x dv x

 
                                                (116) 

Since  0
lim


 

  we also know that 

                                 
lim
r

U r
r

  .                                                        (117) 

Clearly U  is continuous with  0 0.U  As   is convex and nonincreasing, it 
follows that U  is convex. Hence .NU DC                                                                                          

Theorem(4.2.16)[121]: If  , ,X d V has nonnegative N -Ricci curvature for 
some [1. )N   then  2 ,ac XP V  is a convex subset of  2 .XP . 
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Proof: Given  0 1 2, ,ac X  P V put 0
0

d
dv


   and 1
d
dv


  By Lemma (4.2.15) 

there is a .NU DC with  U    such that  0vU    and  1vU    .As 

 , ,X d V has nonnegative N-Ricci curvature, there is a Wasserstein geodesic
   0,1t t



 from 0  to 1  so that (117) is satisfied with 0  .In particular, 

 v tU    for all  0,1t . As   ,U    it follows that  2 ,ac
t X P V  for each t. 

We now clarify the relationship between  , ,X d V   having nonnegative N -
Ricci curvature and the analogous statement for  supp .V   

Theorem (4.2.17)[121]: (a) Given [1, )N   , suppose that a compact 
measured length space  , ,X d V   has nonnegative N  -Ricci curvature. Then 

 supp V  is a convex subset of X  (although not necessarily totally convex) 

and     suppsupp , ,d VV V  has nonnegative 

 N -Ricci curvature. Conversely, if  supp V  is a convex subset of X  and 

    suppsupp , ,d VV V  has nonnegative N   Ricci curvature then  , ,X d V has 

nonnegative N - Ricci curvature. 

(b) Given KR the analogous statement holds when one replaces "nonnegative 
N -Ricci curvature" by " -Ricci curvature bounded below by K  . 

Proof: (a) Let  , ,X d V be a compact measured length space with 
nonnegative N -Ricci curvature. Let 0  and 1  be elements of  2 ,XP V

There are sequences  ,0 1k k





 and  ,1 1k k





in  2 ,ac XP V (in fact with continuous 

densities) such that ,0 0 ,1 1lim limk k k k       and for all 

   ,0 0limN k v k vU U U  DC   and    ,1 1lim .k kU U  V V  From the 
definition of nonnegative N -Ricci, for each k there is a Wasserstein 
geodesic    , 0,1k t t




 such that 

                          , , ,01k t k t kU tU t U    V V V                                      (118) 

for all NU DC and  0,1t  By repeating the proof of Theorem(4.2.16) each

,k t  is absolutely continuous with respect to V . In particular, it is supported 
in  supp V . By the same reasoning as in the proof of Proposition (4.1.15) 
after passing to a subsequence we may assume that as K  , the geodesics 
   , 0,1k t t



 converge uniformly to a Wasserstein geodesic    , 0,1k t t




 that 
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satisfies 

                   1 01 .tU tU t U    V V V                                                 (119) 

For each  0,1t , the measure t  is the weak-  limit of the probability 
measures , 1k t k





 which are all supported in the closed set  supp V . Hence 

t  is also supported in  supp V . 

To summarize, we have shown that    , 0,1k t t



 is a Wasserstein geodesic 

lying in  2 ,XP V that satisfies (119) for all NU DC and  0,1t  

We now check that supp  V is convex. Let 0x  and 1x  be any two points in 
 supp V .Applying the reasoning above to

00 x   and 
11 x   one obtains the 

existence of a Wasserstein geodesic    , 0,1k t t



 joining 

0x  to 
1x such that 

each t  is supported in  supp V .By Proposition (4.2.10) there is an optimal 
dynamical transference plan   P  such that  *t te    for all  0,1t . 
For each  0,1t , we know that    suppt  V  holds for   almost all  . It 
follows that for  -almost all  we have    suppt  V , for all  0,1t Q .As 
    is continuous, this is the same as saying that for -almost all  ,the 
geodesic  is entirely contained in  supp V . Also, for  -almost all   we 
have   00 x   and   11 x  .Thus 0x  and 1x  are indeed joined by a geodesic 
path contained in  supp V . 

This proves the direct implication in part a. The converse is immediate. 

(b) The proof of part (b) follows the same lines as that of part a. We 
construct the approximants  ,0 1k k





 and  , 1

,k t k





 with continuous densities, 

and the geodesics   , 0,1k t t



. 

As  , 0,v kH     and  , 1, ,v kH    , we can apply inequality (117) with U H  

and ,K   to deduce that  , , ,v t kH    for all  0,1t . This implies that ,t k  
is absolutely continuous with respect to V . The rest of the argument is 
similar to that of part (a)       

Theorem (4.2.18)[121]: Suppose that  , ,X d V has  -Ricci curvature 
bounded below by 0K  .Then for all  2 , ,XP V , 
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                       2
2 ,,

2
K H  VVW .                                             (120) 

If now  2 ,ac XP V and its density d
d


 
V

 is a positive Lipschitz function 

on X  then 

                     2
, 2 , 2 ,

1, 1 , 1 .
2 2
KH

K
       V V VV VW W                (121) 

If on the other hand  , ,X d V   has  -Ricci curvature bounded below by 
0K   then 

                 2
, ,1 .

2v v
KH diam X diam X                                       (122) 

If  , ,X d V   has nonnegative N  -Ricci curvature then 

                                 , ,1 .N v N vH diam X                                        (123) 

We now express the conclusion of Theorem(4.2.18): in terms of more 
standard inequalities, starting with the case N   . 

(i) The case N   . 

Definition (4.2.19)[121]: Suppose that 0K  . 

We say that V  satisfies a log Sobolev inequality with constant  K,  LSI K , if 

for all  2 ,ac XP V  whose density d
d


 
V

is Lipschitz and positive, we have 

                              , ,
1 1 .

2
H

K
  V V                                                  (124) 

 We say that V  satisfies a Talagmnd inequality with constant  K,T K , if for 
all  2 ,XP V  

                                ,
2

2
, .

H
K


  VVW                                                (125) 

We say that V  satisfies a Poincare inequality with constant  K,P K , if for all 
 h Lip X  with  0,

X
hd  V  we have 
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22 1 .

XX
h d h d

K
  V V                                                  (126) 

All of these inequalities are associated with concentration of measure [20, 
256, 254, 174]. For example,  T K implies a Gaussian-type concentration of 
measure. 

The following chain of implications, none of which is an equivalence, is 
well-known in the context of smooth Riemannian manifolds: 

                         .Ric K LSI K T K K    P                                    (127) 

In the context of length spaces, we see from Theorem (4.2.18) that having 
 -Ricci curvature bounded below by 0K   implies  LSI K and  T K .The 
next corollary makes the statement of the log Sobolev inequality more 
explicit. 

Corollary (4.2.20)[121]: Suppose that  , ,X d V  has  -Ricci curvature 
bounded below by KR  

If  f Lip X  satisfies 2 1
X

f d  V  then 

      222 2 2 2
2 2log 2 , , .

2X X

Kf f d f f dv f   W WV V V V V                    (128) 

In particular, if 0K   then 

   22 2 2log ,
X X

f f d f d
K

  V V                                                              (129) 

while if 0K   then 

     
2 22 2log 2 .

2X X

Kf f d diam X f d diam X   V V                            (130)   

Proof: For any 0  , put 
2

1t
f 







 From Theorem (4.2.18)                              

     
2

2
2 2log , , , ,

2X X

f Kd d   


   



  V V V V V VW W                   (131)  

As 
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2

2 2

2

1 4 ,
1

f f
f







  





 

 
                                                    (132)                                                               

the corollary follows by taking. 0  .                                                                              

We now recall standard fact that  LSI K implies (K).P  

Theorem(4.2.21)[121]:  Let  , ,X d V   be a compact measured length space 
satisfying  LSI K for some 0K  . Then it also satisfies  K .P  

Proof:  Suppose that  h Lip X  satisfies  0.
X

hdv  . For 1[0, )
h




  put 

1 0.f h     As 2 ,f f h      it follows 
that     

            2 2

2

1 1lim .
4X X

f d h d
 

 



    
   

V V                                        (133) 

As the Taylor expansion of  log 1x x x   around 1x  is   21 1 ...,
2

x  it 

follows that 

               2 2 2
2

1 1lim log .
2X X

f f d h d 
 

  
V V                                         (134) 

Then the conclusion follows from (129).                                                                  

As mentioned above, in the case of smooth Riemannian manifolds there are 
stronger implications:  T K  implies  KP , and  LSI K implies  T K . We 
will show elsewhere that the former is always true, while the latter is true 
under the additional assumption of a lower bound the Alexandrov curvature: 

Theorem(4.2.22)[121]: Let  , ,X d V   be a compact measured length space. 

(i) If V  satisfies  T K  for some 0K  , then it also satisfies  KP . 

(ii) If X  is a finite-dimensional Alexandrov space with Alexandrov 
curvature bounded below, and satisfies  LSI K for some 0K  , then it also 
satisfies  T K   

N -Ricci curvature, with N   , then it admits a local Poincare inequality, at 
least if one assumes almost-everywhere uniqueness of geodesics. We will 
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discuss this in detail elsewhere. 

The case N   . We now write an analog of Corollary(4.2.20) in the case 
N   . Suppose that  , ,X d V   has nonnegative N -Ricci curvature. Then if 
  is a positive Lipschitz function on X, (123) says that 

             
2

11

2 1

1N

X X
N

NN N d diam X d
N












  V V                             (135) 

If  2N   put
2

2 .
N

Nf 


 Then 
2

2 1
N

N
X

f d  V and one finds that (135) is 
equivalent to 

            
 
   

   
2 1

22 2 1
1 .

2

N
N

X X

N
d diam X f d

N N



 

  
 V V                          (136) 

As in the proof of Corollary (4.2.20) equation (136) holds for all  f Lip X  

satisfying 
2

2 1
X

N
Nf d

 V .From ’HOlder s  inequality 

      
  2 22 1 2 2

2 22 2 .

N
N N N

N NN N

X X X X
f d f d f d f d

 
  
              

   V V V V                  (137) 

Then (136) implies 

               
   

2
2 22 1

1 .
2

N

X X

N
diam X f d fd

N N
      

   V V                      (138) 

Writing (138) in a homogeneous form, one sees that its content is as 
follows: for a function F  on X , bounds on 

2
F  and 1

F  imply a bound 
on 2

2
.N

N
F


 This is of course an instance of Sobolev embedding 

If 2N  , putting 1logf


 
  

 
, one finds that 1f

X
e d  V  

               
2

2 11 .
4

f

XX
e d diam X f d
    V V                                        (139) 

The classical Bonnet-Myers theorem says that if M  is a smooth connected 
complete 
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 N -dimensional Riemannian manifold with 0M gMRic K  , then 

  1diam .NM
K




  

Theorem(4.2.23)[121]:   There is a constant 0C   with the following 
property. Let  , ,X d V   be a compact measured length space with 
nonnegative N -Ricci curvature, and -Ricci curvature bounded below 
by 0K  . Suppose that  supp .XV  Then 

                                     .Ndiam X C
K

                                                  (140) 

Proof: From Theorem (4.2.11) V  satisfies the growth estimate 

                                 
  

, 0 1.r N

r

B x
B x

   
V
V

                                     (141) 

From Theorem (4.2.18), V  satisfies  T K . The result follows by repeating 
verbatim the proof  of  Theorem(2.1.26): with 0R  , n N  and K  . �       

Let (M, g) be a smooth compact connected n -dimensional Riemannian 
manifold. Let Ric denote its Ricci tensor. 

Given  C M  with 1,MM
e dovl  put .Md e dovlV  

Definition (4.2.24)[121]: For  1, ,N   , the N -Ricci tensor of ( ,g, )M V is 

  

 

 

   

,
1 ,

1
,

,

N

Ric Hess if N

Ric Hess d d if n N
Ric N

Ric Hess d d if N n
if N n



  

  

   

       
    

 

                             (142) 

where by convention .0 0.   

The expression for Ric is the Bakry-Emery tensor [27]. The expression for 
NRic with N n    was considered in [119, 273]. The statement NRic Kg  is 

equivalent to the statement that the operator  .L       satisfies Bakry's 
curvature-dimension condition  CD ,K N [25]. 

Given KR  we recall the definition of  :   RDC from Definition 
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(4.2.5) 

Lemma (4.2.25)[121]: Let : M R  be  
2

2
d concave function. We recall 

that   is necessarily Lipschitz and hence   y exists for almost all y M . 
For such y, define 

                           exp .t yF y t y                                                    (143) 

Assume furthermore that y M is such that 

(i)   admits a Hessian at y (in the sense of Alexandrov), 

(ii) tF  is differentiable at y for all [0,1)t  and 

(iii)  tdF y  is nonsingular for all [0,1)t . 

Then     
1

det n
tD t dF y  satisfies the differential inequality 

            
         1 , 0,1 .t t

D t
Ric F y F y t

D t n


                                      (144) 

Proof: Let   1

n
i i

e


 be an orthonormal basis of yT M For each i, let  iJ t be 
defined by 

                  .i t iy
J t dF e                                                                   (145) 

Then   1

n
i i

J t


 is a Jacobi field with  0i iJ e . Next, we note that d  is 
differentiable at y, and that  y

d d  coincides with   ,yHess   up to 
identification. This is not so obvious (indeed, the existence of a Hessian 
only means the existence of a second-order Taylor expansion) but can be 
shown as a consequence of the semiconcavity of  , as in [31]. (The case of 
a convex function in nR  is treated in [77].) It follows that 

                                    0 ,i iJ Hess y e                                         (146) 

Let now  tW  be the n n -matrix with 

                            , ;ij i it J t J tW                                                      (147) 

then      
1 1

2det det .n n
tdF y t W  
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Since W(t) is nonsingular for [0,1)t ,   1

n
i i

J t


 is a basis of  tF yT M . Define a 
matrix  R t by      j

i jj i
J t R t J t  It follows from the equation 

                        , , 0i i i i
d J t J t J t J t
dt

                                               (148) 

and the self-adjointness of Hess  y  that 0T R RW W-  for all [0,1)t , or 
equivalently, 1.T R RW W  (More intrinsically, the linear operator on  iF yT M  
defined by R  satisfies * ,R R  where *R  is the dual defined using the inner 
product on  iF yT M  

Next,  

                        .T  R RW W W                                                            (149) 

Applying the Jacobi equation to 

                 , , 2 ,n
ij i j i j i jJ t J t J t J t J t J t     W                                     (150) 

gives 

             2 .‚ ,., 2 .n T
t tRiem F y F y    R RW W                                            (151) 

Now 

             
1 1

12 21det det
2

n nd t t Tr
dt n

W W W W                                         (152) 

and 

          
1 1 12 2

1 12 2 2
2 2

1 1det det det
4 2

n n nd t t Tr t Tr
dt n n

    W W W W W W W  

                     
1

121 det .
2

n t Tr
n

W W W                                                    (153) 

Then by (150) and(152), 

           
2

21 2 2
2 2

1 2 1 1, .t t
d DD Tr R Tr R Ric F y F y Tr R
dt n n n n

                     (154) 

As R  is self-adjoint, 
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                      2 21 0Tr Tr
n

 R R ,                                                   (155) 

from which the conclusion follows.                                                                              

Theorem (4.2.26)[121]:a. For  1,N  , the following are equivalent. 

(i)  0NRic  . 

(ii) The measured length space ( ,g, )M V has nonnegative N -Ricci curvature. 

(iii) For all ,N vU UDC is weakly displacement convex on  2 MP . 

(iv) For all ,NU UDC  U  is weakly a.c. displacement convex on  2
ac MP . 

(v) ,NH V  is weakly a.c. displacement convex on  2
ac MP . 

b. For any KR , the following are equivalent .. 

(i) NRic Kg . 

(ii) The measured length space  (M,g, )V has  -Ricci curvature bounded 
below by K . 

(iii) For all , vU UDC  is weakly  U -displacement convex on  2 MP . 

(iv) For all , vU UDC  is weakly  U -a.c. displacement convex on  2
ac MP  

(v)  ,H V  is weakly K  -a.c. displacement convex on  2
ac MP . 

For both parts (a) and (b), the nontrivial implications are     i ii  and
    v i . The proof that     i ii   will be along the lines of [159], with 
some differences. One ingredient the following lemma. 

Proof : part (a). To show    i ii , suppose that 0.NRic   By the 
definition of NRic , we must have n N , or n N  and   is constant. Suppose 
first that n N . We can write 

                            .N n N n
NRic Ric N n e Hess e

 


 
 

    
 

                             (156) 

Given  0 1 2, ,ac M  P , let    0,1t t



 be the unique Wasserstein geodesic from 

0 to 1 . From Proposition(4.1.29), in order to prove (ii) it suffices to show 



92 
 

that for all such 0  and 1 , and all ,NU DC  the inequality (37) in Section 
(4.1) is satisfied with 0  . 

We recall facts from Section (4.1) about optimal transport on Riemannian 
manifolds. In particular, t  is absolutely continuous with respect to Mdvol for 

all t, and takes the form   0*tF  , where     expt yF y t y    for some 
2

2
d

concave function  . Put .t
t

M

d
dvol


  Using the nonsmooth change-of-

variables formula proven in [31] (see also [234]), we can write 

                      
M

m m
v t MU U e m e dvol mt

      

         
  

       0 det .
det

t tF y F y
t M

M t

y
U e e dF y dvol y

dF y
   

   
                       (157) 

Putting 

                             
  

   
1

, det ,
tF y
N N

tc y t e dF y



                                    (158) 

we can write 

                     0, , .N N
t M

M
U c y t U y c y t dvol y  

 V                               (159) 

Suppose that we can show that  ,c y t is concave in t  for almost all y M . 
Then for  0supp ,y  as the map 

                                   1
0 0

N Ny U y                                            (160) 

is nonincreasing and convex, and the composition of a nonincreasing 
convex function with a concave function is convex, it follows that the 
integrand of (159) is convex in t . Hence  tU V  will be convex in t . 

To show that  ,c y t  is concave in t fix y . Put 

                                             
  

1

tF y
N nc t e




                                            (161) 

and 

                                           
1

2 det ,n
tc t dF y                                     (162) 
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So        1 2, .
N n n

N Nc y t c t c t


  We have 

    22 22
1 1 1 1 11 2 1 2

1 2 1 22 2 2

n N nd c d c dc dcd cNC N n c nc c C
dt dt dt N dt dt

           
 

 

                    
2

1 2
2 2, .N t t

d cRic Ric F y F y nc
dt

                                        (163) 

We may assume that the function   has a Hessian at y [31], and that tdF is 
well-defined and nonsingular at y for all [0,1)t  [31] Then Lemma (4.2.25), 
shows that 

                                   
2

1 2
2 2 , .t t

d cnc Ric F y F y
dt

                                     (164) 

So         1 , 0N t tNc t C c t Ric F y F y      . This shows that  , ,M g V  is weakly 

displacement convex for the family .NDC  

The proof in the case N = n follows the same lines, replacing 1c  by 1 and 
2c  by c . 

We now prove the implication    v i . Putting NU U  in (77), we obtain 

           
11

, 0, .N
N v t MM

H N N c y t y dvol y  
                                         (165) 

Suppose first that n N and ,NH V  is weakly a.c. displacement convex. Given 
m M  and mT MV , we want to show that  , 0NRic V V . Choose a smooth 
function  , defined in a neighborhood of m, so that   v m   , Hess
  m  is proportionate to  g m  and 

                          1 1 .m
N n n

  


V                                                      (166) 

Consider the geodesic segment  exp .mt t V  Then 

                           1
1 1

10 0c c
N n

   


V                                                    (167) 

and  
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                        1 1
2 1

1 10 0 0 0 0
2

c c Tr Tr
n n

    RW W                           (168) 

      1 1 .Tr Hess m m
n n

       

Hence by construction,        1 1
1 1 2 20 0 0 0c c c c   . From (164), it follows that 

           1 1
2 20 0 , 0 0 .NNC c Ric Ric nc c    V V                                       (169) 

As  0R is a multiple of the identity, (154) now implies that 

                    1 0 0 , .NNc c Ric    V V                                                       (170) 

For small numbers 1 2, 0   consider a smooth probability measure 0  with 
support in an 1 ball around m. Put  21 0*

F  where tF  is defined by 

    exp .t yF y t y   . If 2ن is small enough then 2   is 
2

2
d -concave. As 0  

is absolutely continuous, it follows that 
2

F is the unique optimal transport 
between 0  and  2 0*

F  . As a consequence,  2 0*t tF 
ن

is the unique 
Wasserstein geodesic from 0 to 1 . Taking 0t   and then 2 0  , if ,NH V  
is to satisfy (36) in Section (4.1) for all such 0  then we must have  0 0c  . 
Hence  , 0.NRic V V Since V  was arbitrary, this shows that 0.NRic   

Now suppose that N n  and ,NH V  is weakly a.c. displacement convex. 
Given 

m M and ,mT MV  we want to show that 0 V  and  , 0.Ric V V . Choose 
a smooth function , defined in a neighborhood of m, so that    ,m  V  
and Hess   m  is proportionate to  g m . We must again have  0 0,c   

where now  
  

  
1

det .
tF y
n n

tc t e dF y



 By direct computation, 

  
           2

2 2

0 21 ,
0

c m
Ric Hess

c n n n
  


 

    
V V

V V                         (171) 

If 0 V  then we can make  0 0c   by an appropriate choice of . Hence 
 must be constant and then we must have  , 0.Ric V V  

Finally , if N n  
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             220

, .
0

c n N n m
N Ric Hess

c N n N N n n
 

   
         

V VV V    (172) 

One can always choose   m  to make  0c  positive, so ,NH V cannot be 
weakly a.c. 

displacement convex.                                                                                                  
�  

part (b). We first show    i ii .suppose that Ric Kg  . 

Given  0 1 2, ,ac M  P we again use (157), with .U DC  Putting 

                            , logdet ,t tc y t F y dF y                                       (173) 

we have 

                               , ,
0 .C y t C y t

v t M
M

U e U y e dvol y                               (174) 

As in the proof of (a), the condition Ric Kg   implies that 

                        
2

2 2
2 ,t

d c K F y K y
dt

                                                (175) 

where the last equality comes from the constant speed of the geodesic 
 tt F y . By assumption, the map 

                           1
0 0y e U y e                                                        (176) 

is nonincreasing and convex in  , with derivative   
 
0

0

.
p y e

y e












 It follows 

that the composition 

                             , ,1
0 0

C y t C y ty e U y e                                          (177) 

is    2U y  -convex in t. Then 

                     , , ,1 ,1
0 0

C y t C y t C y C ye U y e te U y e    

                                           

                2,0 ,0
0 0

11 1 .
2

C y C yt e U y e U y y t t                            (178) 
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Integrating with respect to  Mdvol y and using the fact that 

                 
22

2 0 1 0, M
M

y y dvol y    W                                      (179) 

shows that (37) in section (4.1)is satisfied with  U  . The implication 
   i ii  now follows from Proposition(4.1.29). 

The proof that    v i  is similar to the proof in part (a).                                           

The case 1N   is slightly different because 1,H V  is not defined. However, the 
rest of 

Theorem (4.2.26)a carries through. 

Theorem (4.2.27)[121]: (a)The following are equivalent: 

(i)   1 0.Ric  . 

(ii) The measured length space  , ,M Vg  has nonnegative 1-Ricci curvature. 

(iii) For all 1, vU UDC  is weakly displacement convex on  2 MP . 

(iv) For all 1, vU UDC  is weakly a.c. displacement convex on  2
ac MP . 

   Corollary (4.2.28)[121]: Let  , BB g  be a smooth compact connected 
Riemannian manifold, equipped with the Riemannian density dvolB, and let 
  be a 2C -regular function on B  which is normalized by an additive 
constant so that e   dvolB is a probability measure on B . We have the 
following implications: 

(i) If  , , BB g e dvolB  is a measured Gromov-Hausdorff limit of Riemannian 
manifolds with nonnegative Ricci curvature and dimension at most N  then 

  0NRic B  . 

(ii) If  , , BB g e dvolB is a measured Gromov-Hausdorff limit of Riemannian 
manifolds with Ricci curvature bounded below by KR  then 

  .Ric B Kg  B . 

(iii) As a partial converse, if  , , BB g e dvolB  has   0NRic B   with
 dim 2N B   
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an integer then  , , BB g e dvolB is a measured Gromov-Hausdorff limit of 
Riemannian manifolds with nonnegative Ricci curvature and dimension at 
most N . 

(iv) If  , , BB g e dvolB has   .Ric B Kg  B  then  , , BB g e dvolB is a measured 

Gromov-Hausdorff limit of Riemannian manifolds with   1
ii MRic M K g

i
   
 

 

Corollary (4.2.29)[121]: (a) Suppose that  ,X d  is a Gromov-Hausdorff 
limit of  

n -dimensional Riemannian manifolds with nonnegative Ricci curvature. If 
 ,X d has Hausdorff dimension n, and HV  is its normalized n-dimensional 
Hausdorff measure, then  , , HX d V  has nonnegative n - Ricci curvature. 

(b) If in addition  ,X d  happens to be a smooth n-dimensional Riemannian 
manifold ,B gB then   0.Ric B   

proof: (a )If   1i i
M 


 is a sequence of n-dimensional Riemannian manifolds 

with nonnegative Ricci curvature and   1i i
f 


 is a sequence of 1 

approximations :i if M X , with lim 0i i  , then  *lim
ii i M Hf dvol V   in 

the weak-* topology [108 ]. (This also shows that the n-dimensional 
Hausdorff measure on X can be normalized to be a probability measure.) 
Then part a. follows from Theorems (4.2.8) and Theorems (4.2.26) 

(b) If    , , BX d B g  then  
 

B
H

dvol
vol B

V and the claim follows from 

Theorem (4.2.26):  along with the definition of .nRic                                                  

 ,X d  has nonnegative Alexandrov curvature then  , , HX d V has nonnegative 
n-Ricci curvature. For 1n  , if  ,X d has Alexandrov curvature bounded 

below by 
1

k
n

then  , , HX d V  has  - Ricci curvature bounded below by K. 

As mentioned above, in the collapsing case the lower bound in the 
conclusion of Corollary  (4.2.28)[ (i) (or Corollary (4.2.28) (ii)) would 
generally fail if we replaced NRic  (or Ric ) by Ric. However, one does 
obtain a lower bound on the average scalar curvature of B. 

Corollary (4.2.30)[121]: If  , , BB gB e dvol   is a smooth n-dimensional 
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measured Gromov -Hausdorff limit of Riemannian manifolds (of arbitrary 
dimension), each with Ricci curvature bounded below by KR , then the 
scalar curvature S  of  ,B gB  satisfies 

                                      
 

.
B

B
S dvol

nK
vol B

                                             (180) 

Corollary(4.2.31)[121]: Let M  be a compact connected Riemannian 
manifold. Let G  be a compact Lie group that acts isometrically on M , 
preserving a function  C M  that satisfies 1MM

e dvol  . Let 
: /p M M G  be the quotient map. 

a. For [1, )N   , if  , MM e dvol  has 0NRic   then 

  / , */ , M G MM G d p e dvol  has nonnegative N -Ricci curvature. 

b. If  , MM e dvol  has MRic Kg   then  / , */ , M G MM G d p e dvol  has  -Ricci 
curvature bounded below by k .                       

Corollary (4.2.32)[121]:  provides many examples of singular spaces with 
lower Ricci curvature bounds. Of course, the main case is when   is 
constant. 

We conclude this section by giving a "synthetic" proof of a part of the Ricci 
O'Neill theorem of [119]. 

Corollary(4.2.33)[121]: Let :p M B  be a Riemannian submersion of 
compact connected manifolds, with fibers bZ .Choose  dimN M  and 

 M C M   with 1M
MM

e dvol  ; if  dimN M  then we assume that M  is 

constant. Define  B C B   by  *
M B

M Bp e dvol e dvol  . Suppose that the 
fiber parallel transport of the Riemannian submersion preserves the 
fiberwise measures M

z ze dvol  up to multiplicative constants. (That is, if
 : 0,1 B   is a smooth path in B, let    0 1:p Z Z   denote the fiber 

transport diffeomorphism. Then we assume that there is a constant 0c   so 
that 

                
        1 1 1 0

* .)M M
Z Z Z Zp e dvol c e dvol
   

 
 

                                     (181) 

With these assumptions, 
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a. If   0NRic M   then   0.NRic B   

b. For any KR , if  
 1Z MRic M dvol Kg

   then   .MRic B Kg   

Proof: Put M
M Me dvolV  and B

B Be dvolV  We can decompose MV  with 
respect to p as    Bb b V , with    2

ac
bb Z P  From the assumptions, the 

family   b B
b


of vertical densities is invariant under fiber parallel 

transport. 

To prove part (a), let    0,1t t



 be a Wasserstein geodesic in 2

acP . Define 

   0,1t t



  in  2

ac MP  by    .t tb b    By construction, the corresponding 

densities satisfy *
t tp   . Thus    , ,M BN v t N v tH H   . Furthermore,    0,1t t




  

is a Wasserstein geodesic; if    0,1t t
F


is an optimal Monge transport from 0  

to 1  then its horizontal lift is an optimal Monge transport from 0 to 1, with 
generating function *

M Bp   From Theorem(4.2.26) (a)  , MN vH  is a.c. 
displacement convex on  2

ac MP . In particular, (36) in section (4.1) is 
satisfied along    0,1t t




  with , Mv N vU H  and 0  . Then the same equation is 

satisfied along    0,1t t



 with , BN vH  and 0  . Thus    0,1t t




 is a.c. 

displacement convex on  2 .ac BP . Theorem (4.2.26) (a) now implies that 
  0NRic B  . 

The prove of part (b) is similar.    

Section (4.3): Mass transportation and rough curvature bounds 

       We develop a notion of rough curvature bounds for discrete spaces, 
based on the concept of optimal mass transportation. These rough curvature 
bounds will depend on a real parameter h 0 , which should be considered 
as a natural length scale of the underlying discrete space or as the scale on 
which we have to look at the space. For a metric graph, for instance, this 
parameter equals the maximal length of its edges (times some constant). 

. For instance, instead of midpoints of a given pair of points 0 1,x x we look at 

h  midpoints which are points y with    0 0 1
1, ,
2

d x y d x x h   and 

   1 0 1
1, ,
2

d x y d x x h  . 
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      Given any metric space  , ,M d m with curvature K  and any 0h   we 
define standard discretizations   , ,h hM d m of  , ,M d m with 

 2 (( , , ), , , ) 0h hD M d m M d m    as 0h   and with    , , hh Curv M d m K  . 

Throughout this section, a metric measure space will always be a triple 
 , ,M d m where  ,M d is a complete separable metric space and m  is a 
measure on M  (equipped with its  Borel algebra B M  which is locally 
finite in the sense that   rm B x for all x M and all sufficiently small

0r  . We say that the metric measure space ( , , )M d m is normalized if
  1.m M  Two metric measure spaces ( , , )M d m and ( , , )M d m   are called 

isomorphic if and only if there exists an isometry 0 0: M M   between the 
supports  0 : suppM m M   and  0 : suppM m M    ,such that * .m m  The 
diameter of a metric measure space  , ,M d m will be the diameter of the 
metric space  (supp m ,d). 

We shall use the notion of L 2-transportation distance D for two metric 
measure spaces  , ,M d m  and  , , ,M d m    as defined in [141]: 

       
1/ 2

2ˆ, , , , , inf , ,
M M

D M d m M d m d x y dq x y


      
  

 

where d̂ ranges over all couplings of  d  and 'd  and q  ranges over all 
couplings of m  and m .Here a measure q on the product space M M   is a 
coupling of m  and m if    q A M m A   and    q M A m A    for all 
measurable , ;A M A M    a pseudo-metric d̂  on the disjoint union M M   
is a coupling of d and d   if    ˆ , .d x y d x y ˆ)and    ˆ , ,d x y d x y      for all 

, supp[ ]x y m M   and all , supp[ ] .x y m M      

The 2L  transportation distance D defines a complete and separable length 
metric on the family of all isomorphism classes of normalized metric 
measure spaces  , ,M d m for which    2 ,

M
d z x dm x   some (hence all) 

.z M  The notion of D  convergence is closely related to the one of 
measured Gromov–Hausdorff convergence introduced in [128]. Recall that 
a sequence of compact normalized metric measure spaces  

  , ,n n n n N
M d m


.converges in the sense of measured Gromov–Hausdorff 

convergence (briefly, mGH -converges) to a compact normalized metric 
measure space  , ,mM d iff there exist a sequence of numbers 0 ] and a 
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sequence of measurable maps :n nf M M  such that for all 
      , , , , ,n n n n nx y M d f x f y d x y    for any x M  there exists ny M  with  

  ,n nd f y x  and such that  *n nf m m . weakly on M for .n    
According to Lemma (1.2.)[141]:  any m GH -convergent sequence of 
normalized metric measure spaces is also D -convergent; for any sequence 
of normalized compact metric measure spaces with full supports and with 
uniform bounds for the doubling constants and for the diameters the notion 
of m GH convergence is equivalent to the one of D  -converg-ence. It is easy 
to see that       * *

ˆ, , , , , inf ,D M d m M d m m m      W where the inf is taken 

over all metric spaces  ˆˆ ,M d  with isometric embeddings 

0 0
ˆ ˆ: , :M M M M     

of the supports 0M and 0M of m and m , respectively, and where ˆdW denotes 
the  

2L  -Wasserstein distance derived from the metric d̂ . Recall that for any 
metric space  ,M d the 2L -Wasserstein distance between two measures   
and V  on M is defined as 

       1/2
2, inf , , :

M M
d x d dq x y q isa coupling of and 


 V VW , 

with the convention inf .   . For further details about the Wasserstein 
distance see the monograph [23]. We denote by  2 ,M dP  the space of all 
probability measures V  which have finite second moments 

   2 ,
M

d x dv x   for some (hence all) .M  For a given metric measure 

space  , ,M d m we put  2 , ,M d mP the space of all probability measures 
 2 ,v M dP  which are absolutely continuous w. r. t. V m . If 

 2. . .m M d m V P we consider the relative entropy of V  with respect to m 
defined by  

 0H : lim logm dm  
 


 ]V . We denote by  *

2 , ,M d mP the 

subspace of measures  2 , ,M d mV P  of finite entropy  H m  V . 

We recall here the definitions of the lower curvature bounds for metric 
measure spaces introduced in [141]: 

A metric measure space  , ,mM d has curvature K  for some number K R  
if and only if the relative entropy  .H m is weakly K -convex on 
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 *
2 , ,M d mP in the sense that for each pair  *

0 1 2, , .M d mV V P there exists a 
geodesic    *

2: 0,1 , ,M d m P  connecting 0v and 1V with 

                 21 0 1 1 0 , 1
2
KH t m t H m tH m t t         W          (182) 

for all  0,1t . 

The metric measure space  , ,mM d has curvature K  in the lax sense if and 
only if for each 0   and for each pair  *

0 1 2, , ,v v M d mP here exists an 
midpoint   *

2 , ,M d mP of 0V   and 1V with 

        2
0 1 0 1

1 1 ,
2 2 8

KH m H m H m    V V V VW                       (183)  

 Briefly, we shall write  , ,Curv M d m K , respectively  , ,laxCurv M d m K . 

Recall that in a given metric space  ,  M d  a point y is an  -midpoint of 0x  

and 1x  if    0 1
1, ,
2

d x y d x x   for each 0,1i  . We call y midpoint of 0x and 1x

if    0 1
1, ,
2

d x y d x x for 0,1.i   

In order to adapt the notion of curvature bound to other spaces then geodesic 
without branching we shall refer in this section to a larger class of metric 
spaces: 

Definition (4.3.1)[7]: Let 0h  be given. We say that a metric space  ,  M d  
is h rough geodesic iff for each pair of points 0 1,x x M  and each  0,1t
there exists a point tx M satisfying 

                          0 1 0 1 1 0 1, , , , 1 ,td x x td x x h d x x t d x x h                      (184)    

The point tx will be referred to as the rought approximateh   point between 

0 1 ,x and x The 1rought approximate
2

h  point is actually the midpointh  of 

0 1 ,x and x  

Example (4.3.2)[7]: Any nonempty set X with the discrete metric 
 , 0d x y   for x y  and 1 for x y  h-rough geodesic for any 1

2
h  .In this 

case, any point is an of any pair is distinct points. 

If 0  then the space  ,n dR with the metric  ,d x y x y    .is h rough

geodesic for / 2h   (here |·|is the Euclidian metric). 

midpointh 
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(iii) For 0   the space  ,n dR with the metric   2,d x y x y x y     is 
– rough geodesich  for  each / 4h  . 

The above examples are somewhat pathological. We actually have in mind 
the more friendly examples of discrete spaces and some geodesic spaces 
with branch points, e.g. graphs, that do not have curvature bounds as 
defined in [141]. 

For a discrete roughh  geodesic metric space  ,  M d one should think of h  
as a discretization size or “resolution” of M  .In an geodesich  space a pair of 
points x  and y is not necessarily connected by a geodesic but by a chain of 

points 0 1, , ..., nx x x x y  having intermediate distance less then 
2
h .In the 

sequel we will use two types of perturbations of the Wasserstein distance, 
defined as follows: 

Definition (4.3.3)[7]: Let  ,  M d be a metric space. For each  h 0  and any 
pair of measures  0 1 2, ,M dV V P put 

       1/22

0 1 0 1 0 1 0 1, : inf , , :h d x x h dq x x q coupling of and       
V V V VW m , (185) 

where (.) + denotes the positive part. 

The two perturbations hW  and hW  are related to the Wasserstein distance 
W in the following way 

Lemma(4.3.4)[7]:   For any 0h   we have 

  ;h hi h   W W W   hii h  W W W . 

Proof: (i) Let 0V and 1V be two probabilities in  ,  M d  and consider q an 
optimal coupling and q h a h  -optimal coupling of them. Then 

             1/2 1/22 2

0 1 0 1 0 1 0 1 0 1, , , , ,h d x x h dq h x x d x x h dq h x x


            W V V  

                      
1/22

0 1 0 1 0 1, , ,d x x dq x x  V VW  

and 

         
1/2 1/ 2

2 2
0 1 0 1 0 1 0 1 0 1, , , , ,d x x dq x x d x x dq h x x        

    V VW  
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1/22

0 1 0 1 0 1, , ,hd x x h h dq h x x h



           V VW  

(ii) Similar to (i).                                                                                                                                                                                    

With an elementary proof we have also a monotonicity property of hW  in h  : 

Lemma(4.3.5)[7]:  Let 1 20 h h  be arbitrarily given. Then for each pair of 
probabilities 0v and 1v  

(i)    1 2
0 1 0 1, , ;h h V V V VW W  

(ii)     1 2
0 1 0 1, ,h h V V V VW W and the inequality is strict if and only if 

 1
0 1, 0.h V VW  

We introduce now the notion of rough lower curvature bound: 

Definition(4.3.6)[7]:   We say that a metric measure space  , , M d m has h -
rough curvature K  for some numbers h 0  and KR  iff for each pair 

 *
0 1 2, , .M d mV V P and for any  0,1t here exists an h -rough t -approximate 

point  *
2 , ,t M d m P between 0v and 1v satisfying 

                    2
0 1 0 11 1 ,

2
h

t
KH m t H m tH m t t     V V V VW                 (186) 

 where the sign in  0 1,h V VW is chosen ’ +’ if 0K   and ’ -’ if 0K  . Briefly, 
we write in this case  , ,h curv M d m K  . 

Corollary (4.3.8)[274]:  If any 0nh   we have 

  n nh h
ni h   W W W   nh

nii h  W W W . 

Proof: (i) Let nV and 1n V , 0n  be two probabilities in  ,  M d . Now consider 
q an optimal coupling and ,n nq h a h  -optimal coupling of them. Then 

             1/2 1/22 2

1 1 1 1 1, , , , ,h
n n n n n n n n n n n n n nd x x h dq h x x d x x h dq h x x

     
            W V V  

      
1/22

1 1 1, , ,n n n n n nd x x dq x x    W V V  

and 

         
1/ 2 1/2

2 2
1 1 1 11 1, , , , ,n n n n n n n n n nd x x dq x x d x x dq h x x    

        
    W V V  
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1/ 2

2

1 1 1, ) , ,h
n n n n n n n n n ndx x h h dq h x x h

  
           W V V  

(ii) Similar to be find as (i).     

Theorem (4.3.9)[7]:   Let  , ,M d m be a normalized metric measure space 
and    0

, ,h h h h
M d m


a family of normalized metric measure spaces with 

uniformly bounded diameter and with  , ,h h h hh curv M h m K  for hK K  as
0h   if  

                                          , , , ,h h hM d m M d m
D

 

as 0h  then 

                                            , , .laxcurv M d m K           

If in addition M  is compact then 

                                               , , .curv M d m K  

Proof: Let    0
, ,h h h h

M d m


be a family of normalized discrete metric measure 
spaces. Assume that    , , , ,h h hM d m M d mD  as 0h  and 

   0sup , , , , ,h h h hdiam M d m diam M d m    for some .R .Now let 0   and 
 *

0 1 1 2, , ,m m M d m   V V P  be given. Choose R  with  

                2 2

0,1

3 2 3 .
8 8sup i

i

K
H v m K R




                                 (187)    

We have to deduce the existence of an  -midpoint   which satisfies 
inequality          (2). Choose0 h    with hK K   and 

                         
2

2
2 4, . , , . exph h h

RD M d m M d m


  
  

 
                             (188)    

Like in [141],one can define the canonical maps
   2 2: , , , ,h h h hQ M d m M d m P P and    2 2: , , , ,h h h hQ M d m M d mP P as follows. 

We consider hq a coupling of m and hm and hd a coupling of d  and hd  such 
that 

        2 2ˆ , , 2 , . , , .h h h hd x y dqh x y D M d m M d m  



106 
 

Let hQ  and hQ  be the disintegrations of hq  w. r. t. hm and m , resp., that is  

         , , ,h h hsqh x y Q y dx dm y Q x dy dm x  and let ̂denote the m essential

supremum of the map 

   
1/2

2ˆ , ,
h

h h
M

x d x y Q x dy 
    

In our case ˆ 2 .    

For  2 , ,m M d m V P define    2 , ,h h h hQ M d m V P by   :h h hQ m V  where 

     : .h h
M

y x Q y dx     

The map hQ is defined similarly. From  [12] gives the following estimates:  

                           h hH Q m H m V V  for all mV                             (189)    

and  

                      
   

2
2

ˆ2
,

log , , , , ,h
h h h

H m
Q

D M d m M d m


 


V
V VW                         (190)    

provided    , , , , , 1h h hD M d m M d m  . Analogous estimates hold for hQ . 

For our given  *
0 1 1 2, , ,m m M d m   V V P  put  

 , ,:i h h i i h hQ m V V  

with      , ,i h i hy x Q y dx    for 0,1i    and let h be an h midpoint of 0,hV and 

1,hV  such that 

                    2
0, 1, 0, 1,

1 1 ,
2 2 8

hhh
h h h h h h h h

KH m H m H m    V V V VW              (191) 

  

where h is the sign of hK  

From (188)-(190) we conclude 

   

   
        

2 2
02 2

0 0,

ˆ2 . 2,
log , , , , log , , , , ,h

h h h h h h

H m R
D M d m M d m D M d m M d m


   

  
 

W
V

V V  
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and similarly  2 2
1 0,, h V VW  

If  K 0 we can suppose 0hK   too. From Lemma (4.3.5) (ii) we have 

                   22
0, 1, 0, 1,, ,h

h h h h h  V V V VW W  

                                         2 2 2
0 1 0 1, 3 , 6 9       V V V VW W    

because  0 1,,  V VW .For K 0 one can choose h small enough to ensure 
0hK  .        Then Lemma (4.3.5 )(i): implies.  

                
         

2 22 2 2
0 1 0, 1, 0, 1, 0 1, , 2 , 3 , 6 9h h

h h h h           W W W WV V V V V V V V  

In both cases the estimates above combined with (189), (191) and the fact 
that we chose h ith hK K   will imply 

                              2
0 1 0 1

1 1 ,
2 2 8h h

KH m H m H m     V V V VW            (192) 

  

with 
 2 3 2 3
8

K 
 

   
   

The case 0K  follows by the calculations above, depending on the sign of hK . 

Finally, put  .h hQ   

Then again by (188), the estimates given in [141] for hQ and by the previous 
estimate (192) for  H h hm we deduce 

   
         

2 2
2 2

0

ˆ2 . 2 4,
log , , , , , log , , , , ,

h h

h h h h h h

H m R
D M d m M d m M d m M d m


  

   
  
 

W  

For, i = 0,1we have    0 1
1, 2 , 4
2i h       V VW W  

Hence, 

   0 1
0,1

1, , 4
2sup i

i

 


 V V VW W  

i.e.   is a(4 ) midpoint  of 0V  and 1V . Furthermore, by (189) 
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                 2
0 1 0 1

1 1 ,
2 2 8h h

KH m H m H m H m       V V V VW  

with   as above. This proves that  , , .laxCurv M d m K                                     

Let  M,d,m be a given metric measure space. For h 0 let be a discrete 

subset of M , say  : ,h nM x n N with  
1

,R i
i

M B x




 where   0R R h  as 

0.h  If   , ,M d m               

has finite diameter then hM  might consist of a finite number of points. 

Choose  i R iA B x mutually disjoint with 
1

, 1, 2,...i i
i

x A i and MiA




   and 

(e.g. one could choose a Voronoi tessellation) and consider the measure hM

on  given by     : , 1,2,...h i im x m A i  We call  , ,h h hM d m a discretization of
 , ,M d m . 

Theorem (4.3.10)[7] (i): If   0m M  then    , , , ,D
h hM d m M d m  as 0h   

If  , , .laxCurv M d m K  with 0K   then for each 0h   and for each 
discretization  , ,h hM d m with   / 4R h h  we have  , , .h hh Curv M d m K  . 

If  , , .Curv M d m K  for some real number K then for each h 0  and for 
each discretization  , ,h hM d m  with   / 4R h h  we have 

 , , .h hh Curv M d m K  h  

Proof: (i) The measure     1
1

ii x ii
q m A A m


  is a coupling of hm  and m , so 

             2 2 2

1

, , , , , , , , .
h i

h h i
M M Ai

D M d m M d m d x y dq x y m A d x y dm y


 

                                                           

                                 
       

2
2 2

1 1
i i

i i
m A R h R h m A

 

 

 
   

 
   

                                     2 2 0R h m M   as 0h  . 

(ii) Fix h 0  and consider a discretization    , , , , ,h hM d m M d m  with 
  / 4R h h  Let  *

0 1 2, , ,h h
h hM d mV V P be given; it is enough to make the proof 

for 0 1,h hV V    with compact support. Suppose then   ,1
1 , 1, 2

j

nh h
i i j hxj

a m i


 V  
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(some of the .
h
i ja can be zero). We take also an arbitrary  0,1t Put 

   *
, 21

: , ,n h
i i jj

a m M d m


 V P for 1,2i  . Choose 0   such that  

                                          4 .R h h                                                    (193)   

Since  , , .laxCurv M d m K  for our given  0,1t  there exists  *
2 , ,t M d m P  

an  -rough t -approximate point between 0V and 1V  such that 

                           2
0 1 0 11 1 ,

2t
KH m t H m tH m t t      V V V VW        (194)  

We compute 

                             

      . . . .
1 1

log log ,
j

n n
h h h h h

i i j i j i j i j h j i h
A

j j

H m a a dm a a m x H m
 

   V V               (195) 

For i 0,1 . Denote     : , 1, 2...,h
t j t jx A j n   . Suppose .t t m  . From 

Jensen’s inequality we get 

                
1

logj j
t tA Ah

t h h j
j ji

dm dm
H m m x

m A m A

 







    

                          
      

1

1 log
i

h i t
Ajj

t t dm m x H m
m A

  




 
  
 
 

  , 

which together with (194)  and (195) implies 

              2
0 1 0 11 1 ,

2
h h h
t h h h

KH m t H m tH m t t      V V V VW               (196) 

 Firstly, we consider the case 0K  . Let hq  be  a 2 R h -optimal coupling 
of 0

hV  

and 1
hV .Then the formula 

       
 ,

, 1

1
ˆ : , j

j k

n
A kh

j k x x
j kj k

A
q q x x m m

m A m A




 
   
  

  

defines a measure on h hM M M M    which has marginals 0 1,h hV V  and 1V  
Moreover, the projection of q̂  on the first two factors is equal to hq . 
Therefore we have 
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22

0 1 ˆ, , , , ,h hd x y dq x y x y V VW  

                                2
ˆ. , , , , ,h h h h h hd x x d x y d y y dq x y x y      

          
   

            
2

, 1

ˆ ,
, , ,

j k

n
j k

j j k k
A Aj kj k

q x x
d x x d x x d x y dm x y

m A m A 


      

                                   2 22
0 1

, 1

, , 2 , ,
n

R hh h h
j k j k

j k

q x x d x x R h 



  V VW  

which together with (196) yields 

            2
0 1 0 11 1 , .

2
R hh h h h h

t h h h
KH m t H m tH m t t      V V V VW         (197) 

 In the case 0K   we start with an optimal coupling q   of 0V  and 1V  and we 
show that the measure 

   ,
, 1

:
j k

n
h

j k x x
j k

q q A A 



   

is a coupling of 0
hV  and 1

hV . Indeed, if hA M then we have in turn 

             ,
, 1 , 1 , 1

j jj k

n n n

j k h j k x j xx x
j k j k j k

q A A A M q A A A q A M A  
  

         

                           
         0 0 0

, 1 , 1
j j

n n
h h

j x j x
j k j k

v A A v x A v A 
 

     

Since for any , 1,2....,j k n  and for arbitrary jx A  and ky A   we have 

             , 2 , , , ,j j j k j kd x k R h d x x d x x d y x d x y
 

     one can estimate: 

               
222

0 1
, 1

, , 2
n

R h h h
j k j k

j k
q A A d x x R h



   
 V VW  

                                  
2

, 1
, 2 ,

j k

n

j kA A
j k

d x x R h dq x y




       

                                     
2

, 1
, , , ,

j k

n

j k j kA A
j k

d x x d x x d y x dq x y




         

                             
         

2 2
0 1

, 1
, , , , ,

j k

n

j kA A M M
j k

d x x dq x y d x y dq x y
 



     V VW  
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Therefore from (196) we obtain 

             22
0 1 0 11 1 ,

2
R hh h h h h

t h h h

KH m t H m H m t t      V V V VW        (198)  

For  sufficiently small we can get 

                   2 22 2
0 1 0 11 , 1 ,

2 2
R h R hh h h hK Kt t t t      V V V VW W                  (199) 

 and then (197), (198) yield 

                        2

0 1 0 11 1 ,
2

h h h h h h
t h h h

KH m t H m H m t t     V V V VW     (200) 

 depending on the sign of K  . The inequality (199) fails only when 0K   
and  0 1, 0,h h h V VW but in this case  0 1,h h hV VW  and either 0

h  V or 1
h  V   

verifies directly the condition (186) from the definition of  h -rough 
curvature bound for the discretization. 

The measure   1
1

j j

n h
t j x A tj

x   


  is a coupling of h
t  and t , so 

       2 2 2, , ,
h

h
t t

M M
d x y d x y R h  


 W  

and similarly    2 2,h
i i R hV VW . For 1,2.i  Because  t  is an  -rough t -

approximate point between 0V  and 1V we deduce 

        
               0 0 0 1 0 1, , 2 , 2 , 2 1h h h h

t t R h t R h t R h t           V V V V V VW W W W  

and by a similar argument 

        1 0 1, 1 , 2 2h h h h
t t R h t     V V VW W  

From (193) we conclude that h  is an h -rough t -approximate point between 
0
hV  

and 1
hV ,which together with (200) proves that  , , .h hh Curv M d m K   

(iii) follows the same lines as (ii).                                                                    

Example(4.3.11)[7]:If we consider on nZ  the metric 1d coming from the 
norm 1

·  in nR  defined by 
1 1

n
ii

r x


  |and with the measure nn xx
m 


 Z  

then  1, , 0n
nh Curv d m Z for any 2h n . 
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The n -dimensional grid nE having nZ  as set of vertices, equipped with the graph 
distance and with the measure nm  which is the 1-dimensional Lebesgue measure 
on the edges, has  1, , 0n

nh Curv d m E , for any  2 1h n  . 

Proof. We use the following result: 

Lemma (4.3.12)[7]:  (See [22]). Any finite dimensional Banach space 
equipped with the Lebesgue measure has curvature 0 . 

We tile the space nR  with n  -dimensional cubes of edge 1  centered in the 
vertices of the grid. The 

1
· -radius of the cells of the tessellation with such 

cubes is / 2n . Therefore, claim (i) is a consequence of Theorem (4.3.10) (iii) 
applied to the space  1

, ·n dxR , and of Lemma (4.3.12). 

For the proof of (ii) we follow the same argument like in the proof of 
Theorem (4.3.10). In this case, we pass from a probability on the grid to a 
probability on nR  by averaging on each cube of the tessellation and scaling. 
Here one should take into account that for a cube C from the tiling  

 1

1sup : , ,
2

n nx y x C y C 
   E  

that provides the minimal  2 1h n   starting from which         

 1, , 0n
nh Curv d m E  

Example (4.3.13)[7] (i): Let G be the graph that tiles the Euclidian plane 
with equilateral triangles of edge r . We endow G with the graph metric Gd  
induced by the Euclidian metric and with the 1-dimensional Lebesgue 
measure m on the edges. Then G has h -curvature 0  for any 8 3 / 3h r  

The graph G that tiles the Euclidian plane with regular hexagons of edge 
length r , equipped as usual with the graph metric Gd   and with the 1-
dimensional measure m , has h –curvature 0  for any 34 / 3.h r . 

Proof: Consider a Cartesian coordinate system in the Euclidian plane with 
origin O and axes Ox and Oy  . We equip 2R  with the Banach norm  ·that 
has as unit ball the regular hexagon centered in O , having two opposite 
vertices on Ox  and the edge length (measured in the Euclidian metric) equal 
to 1. Explicitly  

                                   3 3 3, max ,
3 3

x y y x y
    
  

 

for any  , yx in 2R  . We denote by d  the metric determined by this norm. 
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For the triangular tessellation we choose the origin O  to be one of the 
vertices of the graph and two of the 6 edges emanating from O  be along the 
Ox  axis. The edges of the graph have length r in the Euclidian metric. We 
see that  

   1 2 1 2, ,Gd dV V V V  for any two vertices 1v and 2v  of the graph. In general for 
,x y G  we have    , ,Gd x y d x y r  . Then one can construct a coupling ˆ d̂  

of Gd  and d by setting    ˆ , : ,d x d xV V for v vertex of G and 2xR and
      1,2

ˆ , : inf , ,i G i id y x d y d x V V                                               

if y G  belongs to an edge with endpoints 1 2,V V and 2xR  

By Lemma (4.3.12)  2 , , 0urv d  C R where   is the 2 -dimensional 
Lebesgue measure. If we tile the plane with regular hexagons ,jA jN , 
which have vertices in the centers of the triangles  ˆ , 2 3 / 3d y x r  for any

jy A G   and jx A .The proof of the h -curvature bound is a modification 
of the proof of Theorem (4.3.10). We start with  *

0 1 2, , ,GG d mV V P  with 
, 0,1i im i V , and we define 

                        
   * 2

2
1

1: 1 , ,
j

j
i AG A

j j

dm d
A

  






   
   

V . P R for 0,1i   

We have then  ˆ , 2 3 / 3i idw rV V . We consider .t t     the geodesic that 
joints 0

V  and 1
V , along which the convexity condition for the entropy on

 * 2
2 , ,d P R is fulfilled and denote 

 1

1: 1 .
j

j
t t G A

Aj j

d m
m G A

  




 
  

 
  




 

Then t  is 8 3 / 3r  rough t -approximate point between 0V  and 1V . From 
Jensen’s inequality we obtain        log logt tH m H m G A A      and 

       log logi iH H m m G A A    V V observe that all sets jA  have the 
same Lebesgue measure  A and all sets jG A have the same measure 
 m G A . Hence t  satisfies 

       0 11tH m t H m tH m   V V  

and so we have proved  , , 0Gh Curv G d m  for any 8 3 / 3h r . 
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(ii) For the hexagonal tessellation let O  be again one of the vertices of the 
graph and one of the 3 edges emanating from it be along the Oyaxis. In this 

case we use the Banach norm 3:
4

   ·on 2R  and denote by d   the 

associated metric. The length of the edges of the graph in the metric d  is 
equal to 4 / 3r . We see that / 3Gd d r    for any two vertices 1V , 2V  with 

 1 2, 2 ,Gd kr K V V N . In general / 3Gd d r  on the set of vertices and 

Gd d r   everywhere onG  

One can construct then a coupling d̂of Gd and d  in the following way: Fix  

0 OV .If V   is a vertex of the graph with  0 1, 2 ,Gd kr k  V V N then set 

    2ˆ , : , ,d x d x x  V V R .For y G with  0 , 2Gd krV V , k N define  

                                   0
ˆ , : inf , , : , , 2G Gd y x d y d x G d kr      V V V V V  

We tile the plane with equilateral triangles , ,iB iN  with vertices in the 
centers of the hexagons of the graph. Then ˆ  ˆ , 17 / 6d y x r   for 

,i iy B G x B  . By the same argument as for the triangular tiling we 
obtain  , , 0Gh Curv G d m   for any  

                                              4.17 / 6 34 / 3.h r r                                             

The following result is probably well-known. 

Lemma (4.3.14)[7]:(i) If 1 1 1
2l n

   then  , ,G l n r can be embedded into the 2-

dimensional hyperbolic space with constant sectional curvature 

                         

2
2

2
2

cos1 arccos 2 1
sin

nK h
r

l





  
  

    
  
   

                                    (201)   

There are infinitely many choices of such l  and n . In any case, the graph is 
unbounded. 

(ii) If 1 1 1
2l n

   then  , ,G l n r  is one of the five regular polyhedra 

(Tetrahedron, Octahedron, Cube , Icosahedrons , Dodecahedron) and can be 
embedded into the 

 2 -dimensional sphere with constant sectional curvature 
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2
2

2
2

cos
1 arccos 2 1

sin

nK
r

l





   
        

   
      

                                    (202)   

If 1 1 1
2l n

   then  , ,G l n r can be embedded into the Euclidian plane (K 0). In 

this case there are exactly three cases corresponding to the 3 regular 
tessellations of the Euclidian plane: the tessellation of triangles  6, 3 ,l n 

of squares  4l n  , and of hexagons  3, 6l n   

Proof: Firstly we see that 

2

2 2

2

cos 1 1 12 1 1 sin sin
2 2sin

n
n l l n

l


  


             
   

 

hence in each case the expression that defines the curvature K  makes sense. 

For given , ,l n r we construct the embedding in the following way: we start 
from an arbitrary point O of the 2-hyperbolic space with curvature K  , 
denoted by ,2kH . From this point we construct n geodesic lines 

1 2, , ..., nOA OA OA of length 

                      1 sinh: arcsin sin
2sin

KrR h
lK

n




 
          

    

                           (203)   

such that the inner angle between any two consecutive geodesics 2,k kOA OA 

is 2 / n .We prove that  1 2, ...., nA A A  correspond to vertices of the given graph, 
and the geodesics 1 2 1 1, ..., n nA A A A A correspond isometrically to consecutive 
edges in  , ,G l n r that bound a regular n -polygon with edge-length r  and all 
angles equal to 2 / l . Let us denote by 

d  the intrinsic metric on ,2kH . 

From the Cosine Rule for hyperbolic triangles applied to 1 2OA A and from 
(201) and   (203) we have:  

      2 2
1 2

2cosh , cosh s h cosk d A A kR in kR
n
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     2 21 s h 1 cosin kR
n
        

     

 2

2

2

s h 21 sin 1 cos
2sin

in kR

l n
n

 


        
 
 

  

    
 2

2
s h 1

1 sin21 cos

in kR

l
n




 
 



2
2 2

2 2

s h cos
1 2 1 1

2 cos sin

in
l n

n l

 

 

  
  
     
      

 

       
2

2

cos
1 cosh

sin

n k r

l




     

   So   1 2,d A A r   and the same holds for all the other edges of the  
polygon. We apply now the Sine Rule for the hyperbolic triangle 1 2OA A and 
(203) in order to compute: 

         1 2

2sin
sin ; , sinh sin

sinh
nA O A k R

lkr




 
          

S                                  (204)   

where  1 2; ,A O AS denotes the angle at 1A  in the triangle 1 2OA A . This angle is 
less than / 2  because it is equal to  2 1; ,A O AS  and in the hyperbolic 
triangles the sum of the angles of a triangle is less than π . Therefore (204) 
shows that all the angles of the polygon are equal to 2 / l , so around each 
vertex one can construct other 1l   

polygons with n edges, congruent with the first one.We repeat the procedure 
with each of the vertices of the new polygons. In this way the whole space 

,2kH can be tiled with regular polygons which are faces of the graph  , ,G l n r
(ii), (iii) Since there is only a finite number of examples with well-known 
realizations, the claim can be verified directly. Alternatively, one can prove 
it like in the part (i) with appropriate interpretations of the hyperbolic sine as 
sine for positive curvature and as length for the Euclidian plane.                                                           
Theorem(4.3.15)[7]:   For any numbers , 3l n    and for any 0r   both metric 
measure spaces  , , , .V l n r d m  and    , , , .l n r d mG  have h-curvature K for

 . ,h r C l n where  
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2
2

2
2

2
2

2
2

cos
1 1 1 1arccos 2 1

2sin

cos
1 1 1 1arccos 2 1

2sin

1 1 10
2

nh for
r l n

l

nK for
r l n

l

for
l n









                   
       


   
           
           


  






                             (205)   

and  

 
2 2

2 2

cos cos
1, 4.arcsin 1 arccos 2 1

sin sin sin
/n nC l n h h

n l l

 

  

      
             
       

               

 

Proof : We look at  , ,l n rV  and  , ,l n rG  as subsets of the 2 -manifold with 
constant curvature K (given by Lemma (4.3.14). We tile the manifold with 
the faces of the dual graph  , ,l n r G having vertices in the centers of the 
faces of  , ,l n rG  the center O of the polygon with n edges in the proof of 
Lemma (4.3.14). becomes vertex of the dual). 

We make explicitly the calculations only in the hyperbolic case, the other 
two cases are similar. One can decompose the hyperbolic space as

,2

1

k
j

j





H F  where  j j
F are the faces of the dual graph, as described above. 

The curvature bound for the discrete space  , ,V l n r is then a consequence of 
the Theorem (4.3.10). For  , ,l n rG: G  

the proof of the curvature bound is a modification of the proof of 
Theorem(4.3.9) We start with   *

0 1 2, , , , ,G l n r d mV V P  with . , 0,1i i m i V  

   * ,2
2

1

1: 1 . , ,
j

j

k
i i

Gj j

dm vol d vol
vol






 
  

 
  

V PF
F

H
F

 for 0,1i   

Now the place of  R h   from Theorem(4.3.10) is taken by R  from the proof 
of Lemma (4.3.14)(i), so  ,i i RV VW  One can express R only in terms of 
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our initial data ,l n and r as  , / 4,R rC l n with  ,C l n given in the statement 
of the theorem. We consider .t t   vol the geodesic that joints 0

V and 1
V

along which one has the K -convexity for the entropy on ,2kH  [141] and 
denote . 

 1

1: 1 . .
j

j
t t G

Fj j

dvol m
m G

 




 
  

 
  




FF
 

Then t  is 4R  rough t -approximate point between 0V  and iV . From Jensen’s 
inequality we obtain        log logt tH m H vol m G vol   F F and 

       log logt iH vol H m m G vol   V V F F observe that all faces jF  have the 
same volume  vol F   and all sets jG  F  have the same measure  .m GF  
Hence, like in the proof of Theorem (4.3.10) t  satisfies so we have proved 

  , , , ,h Curv G l n r d m k  for any 4h R in the hyperbolic axe  0k                                                                                       

In [270] the combinatorial curvature of a graph G is a map  :G G RV  

that assigns to each vertex  x GV the number    
 

 
1

11
2

m x
G i

i

m x
x

d
    F

 

where  m x  is the degree of the vertex  ,x d F is the number of edges of the 
cycle bounding a face F  , and   1 2, ....., m xF F F  are the faces around the vertex 
x The combinatorial curvature introduced in [164] is a map  * :G G RF , 
where the curvature  *

G F  of a face F  is given by the curvature G  of the 
corresponding vertex in the dual graph. For the homogeneous graph 

 , ,G l n r  the curvature of any vertex x  is   1 1 1
2G x l

l n
     
 

 and the 

curvature in the sense of Gromov [164] of any face F  is 

 * 1 1 1
2G n

l n
     
 

F . 

Note that the sign of the combinatorial curvature in both approaches above 

changes according to whether 1 1
l n
  is greater or less than  1

2
 Rather 

curiously, in our Theorem (4.3.15) the sign of the rough curvature bound 
changes in the same manner, although our notion of curvature applies to 
graphs that have a metric structure and a reference measure. For the moment 
we see no further links with the notions of combinatorial curvature 
mentioned here. 
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Let  ,M d  be a metric space and  2 ,m M dP  be a given probability 
measure. The measure m is said to satisfy a Talagrand inequality (or a 
transportation cost inequality) with constant Kiff for all   2 ,M dV P  

               
   2

,
H m

m
K

W
V

V                                                              (206) 

 Such an inequality was first proved by Talagrand in [179] for the canonical 
Gaussian measure on 2R  . A positive rough curvature bound allows us to 
obtain a weaker inequality, in terms of the perturbation hW  of the 
Wasserstein distance: 
Proposition (4.3.16)[7]:  (“ h -Talagrand inequality”). Assume that  , ,mM d
is a metric measure space which has  , ,h Curv m d m K  for some numbers 
h 0 and K 0 . Then for each  2 ,M dV P we have 

                    2
,h H m
m

K
 W

V
V                                                          (207)   

We will call (207) h Talagrand  inequality. 

Proof: Since we assumed that m is a probability measure, for any 
 2 ,M dV P  

the entropy functional is nonnegative:    log 0,H m m M  V , according to 
[7]:The curvature bound  , ,h Curv M d m K   implies that for the pair of 
measures ν and m and for each  0,1t  there exists an h -rough t -
approximate point  2 ,t M d P  such that 

                        2
1 1

2
h

t
KH m t H m t t m    V VW                        (208)   

If    ,
2

hKH m mV VW  then there exists an 0   such that  

   2,
2

hKH m m  V VW  This together with (208) would imply  

       2
1 1

2
h

t
KH m t t m t    VW  

for each  0,1t . We choose now t very close to 1, such that 0 1 t    and 
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   2 2 21 ,hK t m  VW . This entails   2 / 2 0tH m     in contradiction 
with the fact that the entropy functional is nonnegative. Therefore 

   22 ,
2

hKH m m  V VW  , which is precisely our claim.                                      

A Talagrand inequality for the measure m implies a concentration of 
measure inequality for m (see for instance [136]). 

For a given Borel set A M  denote the (open) r neighborhood  of A  by 
    : : ,rB A x M d x A r   for r 0 . The concentration function of  , ,M d m is 

defined as            , ,
1: sup 1 : , , 0
2rM d ma r m B A A B M m A r      

 
 

We refer to [172] for further details on measure concentration. 

The following result shows that positive rough curvature bound implies a 
normal concentration inequality, via  h -Talagrand inequality. 

Proposition(4.3.17)[7]: Let  , ,M d m be a metric measure space with 
 , , 0h urv M d m K  C  for some h>0. Then there exists an 0 0r   such that 

for all 0r r  

    2 /8
, ,

Kr
M d ma r e  

Proof: We follow essentially the argument of K. Marton used in [9] for 
obtaining concentration of measure out of a Talagrand inequality for the 
Wasserstein distance of order 1. Let  ,A B B M  be given with 
   . 0m A m B   Consider the conditional probabilities  Am m A ·  and 

 Bm m B · . For these measures the h -Talagrand inequality holds: 

                2 2
. , .A Bh h

A B

H m m H m m
m m m m

K K
  W W                        (209)   

Let Aq  and Bq  be the h optimal couplings of ,Am m  and ,Bm m  
respectively. According to [2], there exists a probability measure q̂  on 
M M M   such that its projection on the first two factors is Aq  and the 
projection on the last two factors is Bq . Then we have in turn  

         
1

2 2
1 2 1 2 2ˆ, , , , ,h h

A B
M M M

m m m m d x x h dq x x x 

 
    W W  
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1

2 2
2 3 1 2 2ˆ, , ,

M M M
d x x h dq x x x

 
     

                                              
1

2 2
1 2 2 3 1 2 2ˆ, , , ,

M M M
d x x h d x x h dq x x x

 
       

                                              
1

2 2
1 2 2 3 1 2 2ˆ, , 2 , ,

M M M
d x x d x x h dq x x x

 
      

                                            
1

2 2
1 3 1 2 2ˆ, 2 , ,

M M M
d x x h dq x x x

 
     

Assume now that  , 2d A B h . Since the projection on the first factor of q̂  is 

Am  and the projection on the last factor is Bm  , the support of q̂  must be a 
subset of A M B  , 

hence 

                                    
1

2 2
1 3 1 2 2ˆ, 2 , , , 2

M M M
d x x h dq x x x d A B h

 
      

The above estimates together with (209) imply  

     
   

2 2 2 1 2 1, 2 log logA BH m m H m m
d A B h

K K K m A K m B
      

if we choose now 2h r  and for a given  A B M we replace B  by  rB AC , 
we get 

                            
    

2 1 2 12 log log
1 r

r h
K m A K m B A

  


 

Hence, for   1
2

m A  , 

                                     
  

2 2 12 log 2 log
1 r

r h
K K m B A

  


 

Therefore whenever 22 log 2 4r h
K

   for instance we have 

                                          
  

2 1log
2 1 r

r
K m B A
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or equivalently 

                                            2 /81 Kr
rm B A e   

which ends the proof.                                                                                

In [254] it has been shown that a Talagrand type inequality implies 
exponential integrability of the Lipshitz functions. We prove further that an 
h  Talagrand inequality leads to the same conclusion. 

Theorem (4.3.18)[7]:  Assume that  ,M d  is a metric space and let 0h   be 
given. If m is a probability measure on  M,d that satisfies an h  Talagrand  
inequality of constant 0K   then all Lipschitz functions are exponentially 
integrable. More precisely, for any Lipschitz function  . with. 1

Lip
  and 

0dm   we have 

                       
2

2 0
t ht k

M
e dm e t 

                                            (210) 

  

or equivalently, for any Lipschitz function  . 

                 
2

2exp exp .
2

t
Lip Lip

M M

te dm t dm ht
k

   
                        

(211)    

Proof: The proof we present here extends the one given in [54]. Let f be a 
probability density with f log f integrable w. r. t m   .The -Talagrand 
inequality implies 

                            2 1, log log
2

h

M M

tfm m f fdm f fdm
k k t

    W  

for each t 0. We consider now the Wasserstein distance of order 1 of two 
probability measures   and V  

     1
0, 1 0, 1, : inf ,

M M
d x x dq x x


 W V  

where q ranges over all couplings of   and V  .If q  is a h -optimal 
coupling of fm  and m  then by the Cauchy–Schwartz inequality, 

                              
1/22

0, 1 0, 1, ,h

M M
fm m d x x h dq x x



       W  
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2

1
0, 1 0, 1 ,

M M
d x x h dq x x fm m h



       W  

The Kantorovich–Rubinstein theorem gives the following duality formula 

   1

1

, s u p . .
M M

L ip

fm m d m d m


 


  W
 

If  is a Lipschitz function that satisfies the assumptions of the theorem   

( 1Lip   and 0dm  )then  

  1, log
2

h

M

tfdm fm m h f fdm h
k t

      W  

which can be written as 

             log
2M M

tt fdm f fdm ht
k

    
                                                (212)   

This estimate should take place for any probability density f Therefore one 
can take        

2 2 1

2 2
t tt t
k k

M
f e e dm

 


  
   

   

in formula (212) and obtain 

         
2 2 1

2
2 2

2

t tt t
k k

M M

tt e dm e
k

 



               

   

       
2 2 21

2
2 2 2log

2

t t t
t t t

k k k

M M M

te e dm t e dm dm ht
k

  



                      

    

This  yields 
2

2log
tt
k

M
e dm ht
 

  
  , 

that proves the claim (210). The general estimate (211) is a consequence of 

(210) applied to the function 1

Lip

dm 


     .                                                                     
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Chapter 5 

Dimensions and Relations Between Combinatorial Measurement 

    These relationships further extend and sharpen prior results concerning 
extensions of the Littlewood	2݊ (݊ + 1)ൗ  -inequalities, the	݊-dimensional 

Khintchin inequalities, and the Kahane-Khintchin inequality.We show an 
estimate between the combinatorial structure of a series of Orlicz   
functions, that is finite and summation of norms of random variables in a 
Hilbert space.  

Section (5.1): Dimension and Norms in Harmonic Analysis 

     The purpose of this section is to study a parameter that we call 
'combinatorial dimension'; its definition has been motivated by previous 
work [228] where appropriate constructions in a harmonic analytic 
framework filled 'combinatorial' and 'analytic' gaps left open  between 
Cartesian products of spectral sets. 

We start with a set E (apriori devoid of structure), and a positive integer L . 
As us LE  denotes the L -fold Cartesian product of E , 

  1 1,..., : ,..., .L
L Lx x x x E E  

Let F  be an arbitrary subset of LE  and define for every positive integer s 

    1 1 1max ... : ,..., , ...F L L Ls F A A A A A A s        E              (1)           

( .  denotes cardinality). 

Definition  (5.1.1)[226]: The combinatorial dimension of LF  E is 

 dim inf : .lim F
a

s

s
F a

s

 
   

 
 

 dim F  is exact if  

 
dim ;lim F

F
s

s
s


  

otherwise, dim F  is asymptotic. 

Next, we consider  n n N S


, the Steinhaus system of (statistically) 
independent random variables equidistributed on the unit circle  [127]. S is 
concretely realized as a sequence of functions defined on the probability 
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space T     where [0,2 )T  (with the usual Borel structure and Lebesgue 
measure) and T  is the direct product of T : For   n

w w n


 
N

,  0 1w   

and     , 1.iw n
n w e n    

Taking into account the usual group structure on [0, 2 ),  we shall view S  as 
a set of algebraically independent characters on the compact abelian group 
whose discrete dual group is ,Z , where Z  is the additive group of 
integers. 

In this sections  focusing on what we consider basic issues, we shall work in 
the framework of L -fold Cartesian products of S consisting of functions on 

L , 

  1 1,..., : ,...,L
L LS S      

where  

      1 1 1 1,..., ,..., ..., .L L L Lw w w w     

Here we link the measurement of certain probabilistic-harmonic analytic 
properties of LF S  to the measurement of the combinatorial dimension of 
F ; the analytic-combinatorial connections are summarized see [228] 
[231],{24],[267],[228] and[229]. 

We recall the definition of the  p  constant of , 2 :F p      

   2

2

sup : , 0 ,p
F F

g
p g L G g

g


     
  

 

where  2
FL G  denotes the space of 2L  functions on G  whose spectrum is a 

subset of F . 

Theorem(5.1.2)[226]: Let LF S  be arbitrary. For every integer 0s   

       1/2 1/2
8 2 .L

F F Fs s s                                            (2)           

Proof :  We will denote the L  canonical projections from LS  into S by 
1, ..., :L   

 1,..., , 1i L i i L       

We establish first the right hand inequality in (2). Let 1s   be an arbitrary 
integer, and let 
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    1 ,...,
F

g a


   


  

be an arbitrary function in  2 L
FL  . Write 

        
1

1

1 1 1 1
....

... .... ,..., ...
s

s

s
s L L s

F
g a a 

 

       


  . 

with the aim of estimating 
22

2 2
.s s

s
g g  

To this end, observe first that for any L   

   
   

1
1 ....

... ,
s

s

s

A
g a a 

  






   

where 

             1 1 1 1 1, ..., : ... , ..., ...s
s s L L sA F               

Therefore, by Schwartz's inequality, 

     
1

2
2

2
...

s
L

s

A
g a a 



      
 

1

2
...

s
L A

A A a a 


 


                                (3)        

Next, for any ˆ L  , we estimate   0A    as follows: Note that either

  0A    there exist 

1 , ..., s F    

so that 

                         1 1 1 1 1,...., ... ,..., ... ,L s L L s                                (4)      
      

 We assume (4). Now, observe that the algebraic independence of S    
implies that we have 

                 1 1,..., ...L s                                                             (5)      

for some 1... s F     only if 
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1 1 1 1 1 1 1

1 1

,..., ,....,

,..., ,....,

s s

L L s L L s L

A

A

       

       

    

   

      

That is, a necessary condition for: F   to appear as a factor on the right 
hand side of (5) is that 

   1 1,... L LA A      

Therefore, 

        1 1: ,....,
s

L LA F A A                                                   (6)            

Finally, since iA s  for 1,...., ,i L it follows from (6) and the definition of 

F  that 

    s
FA s   .                                                   (7)            

Substituting (8) in (4), we obtain 

  
 

1

1/2
21/21/

2 2
...

s
L

s
s

Fs
A

g g s a a 


  
         

  . 

Clearly,    A A    whenever    . Therefore, 

   
1 1

1

22 2 2

,....,
... ...

s s
L

s

s

A F A
a a a a a    

    

 
    

 
     

and the right hand side of (6) is established. 

We now prove the left hand inequality in (2). Let s > 1 be arbitrary, and 
choose 1, ...., ,LA A S where 

1 ....
L

A A s    

and 

   1 .... .F Ls F A A                                        (8)           

Write the Riesz product 

       
1

1 1,..., 1 cos ... 1 cos
L

L L
A A

w w w w
 

 
 

   
     
   
 R  
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 (for  ,cos / 2      ). Observe the following: 

 1
ˆ 0 1, R R and 1 ...

2
2 2 .LA A LsR  


  R  

Hence, for any 1 2p  , by a routine interpolation argument, 

1/ 1/ 2/ 2. /
1 2

2p q q Ls q
p

 R R R                                              (9)            

 1/ 1/ 1 .p q   Also, a routine spectral analysis of R yields 

   ˆ 1/ 2 L R                                                      (10)           

for all LS  . Next, let 
 1 ...

,
LF A A

h



  

 


 

whence (by 8) 

  1/2

2
.Fh s                                                 (11)            

Therefore, combining (9), (10) and (11), we obtain 

    1/ 2 . /
2

2 * 0 4L s L q
F q p q

h s h R h R h    . 

Letting q s , we obtain the desired inequality.                                                                 

The following is an immediate consequence of Theorem (5.1.2) and the 
definition of combinatorial dimension. 

Corollary(5.1.3)[226]: Let LF S  be arbitrary. Then. In the case that d im F  
is exact, 

 
lim F

a
p

p
p





                                                    (12)           

if and only if  dim 2;/a F  in the case that d im F  is asymptotic, (3)holds if 
and only if  

 dim 2,/a F  

Proposition (5.1.4)[226]:  Let F    be arbitrary. The following are 
equivalent: 

(i)   
;lim F

a
F

p
p





  ; (ii) for all  2 ,f L G
F


 

   2/exp am f x Kx    

for all 0x   (m is the Haar measure on ˆ G   and  0K  depends only on F ). 
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Sketch of proof     i  ii follows by checking that for all 0   

 2/exp .a

G
f                                                (13)           

 (13) is verified by integrating term by term the Taylor expansion of  2/exp .af  

   ii i follows by a direct computation of the pL  norm of f .                                  

Here and throughout the section, K (possibly subscripted) will denote a 
fixed constant whose value may change from one context to another. 

Proposition (5.1.5)[226]: Let LF  E  by arbitrary, and suppose that 

  a
F s Ks                                                                    (14)           

for all 1s  . For every integer  1N  and 

1,..., , , 1,...,L iA A A N i L  E , 

there exists a partition of   1 ... LF A A   

                                                 1,..., LF FF  

with the following property: For each 1 k L   and all kx A  

 1 1.k kx F KN                                                          (15)            

Proof: The proof is by induction on 1N  .The case 1N   is trivial. Let 1N   
and assume the assertion is true for 1N   . Let 1, ..., LA A  E be arbitrary, 

, 1,...,iA N i L  .By (14), we can find , 1,...,i ix A i L  so that 

   1 1
1 ...i i Lx F A A KN      . 

For each i, let  \i iA A x  , and apply the induction hypothesis to find a 
partition  1,..., LF F  of  1 ... LF A A    so that for all ix A  we have 

    11 1 a
i ix F K N      

Let 

   1
1,...,i i i i LF F x F A A         

for each 1,...,i L . It is easy to verify that  1,..., LF F  is the required partition.                                                                                
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Corollary (5.1.6)[226]: Let 1, ..., LA A  E , 

1 ... 1LA A N    . 

Suppose  1 1... ,LF A A F K N     and    2F s K s  for all 

1s   Then, for some 01 i L  , 

    
0 0

1 1
1 1 2: / 2 / 4 .i ix A x K N L K LK N                                  (16)           

    In Proposition( 5.1.5) we achieved control on cardinality of fibers in F 
over x A  E . We now show how to control the cardinality of fibers in 

LF  E  over 1Lx A   E . In what follows, for each   11,..., ,l L  denotes the 
projection from LE  onto 1LE  that is 'orthogonal' to 1 ,. The idea for Lemma 
( 5.1.7)  below was shown to us by Professor J. Schmerl. 

Lemma(5.1.7)[226]: Let  1,..., LA A  E  be arbitrary, 1 ... LA A   .Suppose 

1 ... LF A A   . Then, there is a partition of F, 

 1,..., LF FF  

so that for each 1,...,l L  and  1 1 ... Lx A A   , 

  1/1
1 1

Lx F F                                        (17)           

Proof: Initialize 

1 ... , .LF F F   C  

Search and sort procedure: Pick a point xC  and consider for each 1,...,l L  

    1
1 1 1B x x  C                                     (18)           

If   1/L
lB x F  for each 1,....,l L , place x  back in C . Otherwise, 

let 

  1/m in : 1
LK l B x F   

 
; 

remove  RB x from e  and place  RB x  in kF . 

Repeat this procedure until   1/
1

LB x F  for all 1,....,l L  and all xC . It is 
clear that the resulting 1, ...., LF F  satisfy (17), and all that is left to prove is the 
following: 
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Claim. C . 

Suppose not, and xC . From the way the 'search and sort' procedure above 
is designed, it is clear that 

     1 1 ... L LB x B x    C  

and 

  1/
1 1

LB x F   

(recall that 1  and  1T are orthogonal projections). But, we then have 

 1/ ,
LLF F C ,and reach a contradiction. 

Proposition (5.1.8)[226]:. Let LF  E  be arbitrary, and suppose that for 

every 1s  .   a
F s Ks  . 

For every integer 1N   and 1,..., , , 1,..., ,L iA A A N i L  E  

there exists a partition of  1 ... LF A A  ,  1,..., LZ F F 

with the following property: For each 1 k L   and all  1 ...k Lx T A A   ) 

    1 11
1

L
k kT x F K N     

We recall the definition of a randomly continuous function following ([89] and 
[37]. An 2L  function on a compact metrizable  abelian group  ˆG    ˆf f



 


  

is said to be randomly continuous if 

   
   

. 0,1

ˆ
p s

L G

f r t f dt


 


    

where  r 
 is an enumeration of the usual Rademacher system, i.e. a 

system of symmetric statistically independent random variables on [0, 1] 
each of whose range is 1, 1  . The notion of random continuity in the 
context of harmonic analysis is part of a general philosophy contained in 
Kahane's monograph, Some Random Series of Functions [127].Next we 
define the RC-norm of an L-dimensional tensor 

 1... ,,,L
L L

i i i i
a a N  by 
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1

1/ 2

2

1
1,...,

, ...,
L

j k

L

i iRC
j i i

k L
k j

a a a
 



  
  
     
  

   

  
NN                                          (19)           

 (Here and throughout, the set of natural numbers denoted by N serves 
merely as a convenient indexing set.) Returning to  n n N

S 


 , the Steinhaus 
system of independent characters on T   , and viewing  2ˆ , L

sf f L L  , as 
an L-dimensional tensor 

  1 1 ...
ˆ ,...,

L Li i i if a   , our starting point will be the following theorem  

Theorem 5.1.9)[226]: For all  2 L Lf L s   

   2 1.
ˆ ˆL L

p sRC RC
K f f K f                                             (20)          

where 1 2, 0K K   are universal constants. 

Definition (5.1.10)[226]:   The  q -constant of , 2F q      is 

    2
,

sup / : , 0F Fq p s
q f f f L G f    . 

Theorem 5.1.11)[226]:   Let LF S  be arbitrary. Then: In the case that 
dim F is exact, 

                              
lim F

a
q

q
q





                                                         (21)           

if and only if  dim 1 / 2a F  ; in the case that dim F is asymptotic, (21) holds 
if and only if  dim 1 / 2a F   

In order to keep notation as simple as possible, we prove Theorem (5.1.9) in 
the case 2L  ; the arguments in the general case are similar. In what 
follows, 2F S  will be identified with its underlying indexing set in 2N : 
    1 2

2
1 2, : ,n nn n F N     Slightly abusing notation, we shall occasionally 

refer to the latter also as F . 

Lemma (5.1.12)[226]:  Let 2F S  and suppose that 
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                                           a
F s ks                                                    (22)        

for all 1s  . Then, for all   2 2
Ff L   

                                     1 /2 ˆ2
a

s RC
f Ks f


                                         (23)  

for all  1.s           

Proof. Let an arbitrary  2 2
Ff L  be given by 

 
 1 2 1 2

1 2

,
,

, .i i i i
i i F

f a  


   

(we identify 2F S  with     1 2

2 2
1 2, : , ).i ii i F   N N . Let 1s   be an 

arbitrary integer and write 

   
 11 21 1 2 11 1 21 2

11 21 1 2, ,..., ,

... ... , ... .
s s s s

s s

s
i i i i i i i i

i i i i F

f a a    


   

We obtain by Plancherel's formula 

                  
   
 

11 21 1 2
2

11 21 1 2

1 ...21 211

2

2

2
ˆ , ,..., ,

...

...
s s

s s

i s i i s

s
i i i is

i i i i F
f a a


    




   .                                     (24)  

It is clear that the summation in (24) is performed over only those s  which 
are s-fold products of elements in F . For such 2ˆ  write

  11 1 21 2...... ,
s sj j j j     and denote 

   1 11 1,..., sC j j   and    2 21 2,..., sC j j  ; 

let 

        1 2 1 1 2, :A i i F i C and i C       

By the algebraic independence of S, it follows from (24) that 

     
 

11 21 1 2
2

11 21 1 2

1 ...11 21 2

2

2

2
ˆ , ,..., ,

...

...
s s

s s

i s i i s

s
i i i is

i i i i A
f a a


    




                                          (25)           

By Proposition (5.1.5)and (22), for each 2ˆ   that participates in the 
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summation in (25), partition  A   into    1 1A A A    and
   2 2A A A    so that for each  1 1i C  and  2 2i C   

                                       
   
   

1 1
1 1 1

1 1
2 2 2

a

a

i A Ks

i A Ks

 

 

 

 








                                   (26)        

Reassessing (25) in view of the partition above, we obtain 

    

2

2
2 11 21 1 22ˆ , ,..., ,11 21 1 211

1,2 ... ,111 21 2

...s
i i i is s ss i i A i i A ss sk k

k si i i s

f a a
   

      
 
 

  
 

                                (27)     

For each   1
, 1,2s

k kk
  


  , define a projection T , from    

1
...

s
A A     

into sN by 

     111 21 1 2 1, ,..., , , .... .s s sT i i i i i i       

For topographical reasons, we shall write 
k

i  for , 1,...,
k

i k s  , wherever the 
omission of the second subscript causes no confusion. It follows from (26) 
that for each  1

, ....,
s

i i   in the range of T  we have 

                                   1

21 1
11 21, ...

s

aT i i A A Ks                            (28) 

For each   1

s
k k

 


 , define   1

s
k k  


 by 

1 2
2 1

k
k

k

if
if






  
 

 
 11 15 21 25

2

11 21 15 25
, ,..., , ...11 21 15 25 1

2

...

... , ...i i i i

i i i i
i i i i A A s

a a
 

     

 
 

  

 


  

For a fixed   1

s
k k

 


 , write 

                        

2

11 21 1 22 ,..., ,1 1
... ,111 21 2

...
i

i i i is si i is s

i i is s

a a
   
     
 
 





 
 
 
 

                           (29)     
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 (we write 
k

i  for 
k ki  ) 

Applying (28) and Schwartz's inequality to the third summation (over
1
,...,

s
i i  ) in (29), we obtain that (29) is majorized by 

           

2

21 1/2
11 21 1 22 , ,1 1

... ,111 21 2

... )
sa

i i i is si i i is s

si i i s

Ks a a
   

     
 
 







  (                          (30)  

Claim. (30) is majorized by 

                        

2
21

11 21 1 2... ,...,1 1

( ... )
s

i

a
i i i is si i is s

Ks a a
   

 
                                    (31)  

which, in turn, equals 

                        2 2
1 1/2 1/2

1 2 1 2
1 1

( ) ... ( )

s

sa

i i
i i i i

i is s

Ks a a
  


                   
                       (32)  

(The summations in (31) and  (32) are performed freely over 
1
,..., ,

s
i i N   and

1
,...,

s
i i N    respectively.) 

To establish the claim, we first note that each 2ˆ   that is a product of s 
elements in S X S can be viewed as 

. ,     

where   and  ' are products of s elements in    0 0( ) ( )S S   respecting 
the following scheme: 

                        1

1

...

...
s

s

a 



  
  


  

 

 
     
     

0 0

0 0

( 1 , (2)) ( ) ( )

( 1 , (2)) ( ) ( )
k k k

k k k

E E
b

E E

    

    





    

     

 

where the th
k  coordinate of ' k  is 0  and the th

k coordinate of k   is 
0 , 1,..., .K s  ,.Let 

   1 1( ,..., ) : ...
s sA i i        .  
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as in  a  and  b , and   , 1,..., }
kk k i k s


    Similarly,

   1 1( ,..., ) : ...
s sA i i         as in  a and  b  , and   , 1,..., }.

kk k i k s


     Next, 
observe that (30) is majorized by 

                           
  

11 21 1 2

21 1/2 2[ ( ... ) ]
s s

sas
i i i i

A A
Ks a a

      

                              (33)          

 ( and
    , are summations over 2ˆ,    described by (a) and (b) 

above; 
  A A

and
    are summations over  1

,...
s

i i  and  1
,...,

s
i i   taking 

values in  A   and  A  , respectively.) (33) is certainly majorize d by 

   
   

21 1/2 2 1/2 2{ [ ( ) ] }
sa

A A
Ks

      

     . ,  

which, by an application of Minkowski's inequality, is majorized by 

                         
   

1/221 2{ } ] .
sa

A A
Ks

      

     .                                    (34)    

Clearly,        A A A A          whenever       and     and 
therefore (34) equals  

   11 21 1 2

1 1

21 1/2 2
, ,

,..., ,...,
{ ( ... ) }

s s

s s

sa
i i i i

i i i i
Ks a a

   

    

and that completes the proof of the claim. Each of the s factors in (32) is 
majorized by ˆ

RC
f , and we obtain from the claim and (27) that 

   21

2
ˆ ˆ2

ssas

s RC
f Ks f  

which completes the proof of (23).  

Lemma 5.1.13)[226]:  Let 2F S  and suppose that 

 
lim F

s

s
s


  .                                                    (35)            

Then: For 0D   and integers 1s  as large as we please there are  2 2
Fh L 

so that 

  1 /2 1/2ˆ .
sRC

s h D h                                               (36)            
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Proof:  Let D  be as large a number as we please. By (35) we can find s > 1 
as large an integer as we please, and , ,A B S A B s    so that 

  .F A B Ds   

Without loss of generality, assume that  V F A B  contains Ds  points (
Ds  denotes here the largest integer smaller than Ds ). Let 

 
 1 2

1 2
,

, .
V

h
 

 


   

We clearly have 
1/2 /2

2
2h D s                                                     (37)           

which implies the following 

Claim. 
 1 /21/ 2ˆ

RC
h KD s   

(as usual, K denotes a fixed constant). 

Proof of claim: It follows from  (37)and the Kahane-Salem Zygmund 
probabilistic estimates of the sup-norm of random trigonometric 
polynomials that there is a choice of signs  for which 

 
 1 2

1/2 /2 1/ 2
1 2

,
,

V
KD s s

 

 
 

                                         (38)           

Denote the characteristic function of V  by V  and obtain the left hand side 

of  (38)    
1 2

1 2 2,sup
A B

XV
 

   
 

    

             
   

1 2

1 2 2,
A B

XV w dw
 

  


 

    

            
   

1 2

1/2
1 21/ [ , ]

A B
C XV

 

 
 

    

The last inequality above was obtained by an application of the Khintchin 
inequality for the Steinhaus system (C above is the Khintchin constant of S
whose precise determination is still an open problem). The roles of 1  and 2  
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are interchangeable in the estimation above, and the claim is thus 
established. Let R  be the Riesz product 

 
1

1 2 1 1, (1 cos ( )) ,
A

w w w





 
  
 
R   

1
2 2Π 1 cos

B
w






   
 

and as in the proof of Theorem  5.1.2)[226]:  we conclude 

 * 0 8
4 s

D s R h h    
 

                                            (39)          

Combining the claim and  (39) we obtain  (36).                                                     

Combining Lemma (5.1.12) Lemma (5.1.13)and Theorem  (5.1.9) we obtain 
Theorem (5.1.11).  

The application of the decomposition property given by Proposition (5.1.5) 
is a crucial step in the proof of Theorem (5.1.11) (see  (26)above).Following 
the line of arguments that is completely analogous to the proof of Lemma 
(5.1.13) via the decomposition property given by Proposition (5.1.8) we 
obtain Lemma(5.1.14) below. First, some notation: Let  

1
1

,..., ,...,L
L

n n n n
a a N  

be an  L -dimensional tensor. Define the RC -norm of a by 

 

1

2 1/2
...

1
1,...,

[ ( ) ]
L

k j

L

i iRC
j i i

k L
k j

a a
  




  
N N

 

Lemma(5.1.14)[226]:  Let LF S  be so that   1F s K s  for all 1s  . Then, 
for every  2 L

Ff L   

   1 /2 1
2

ˆa L
q RC

f K q f   

for all 2q  . 

We start by recalling the classical Littlewood and Orlicz inequalities whose 
statements given here are slightly different from the ones given in [112] and 
[266]: For all f  continuous functions on 2  with spectrum in 

  2 2 2S Cs   

 
1 2

1/
1 2

ˆ( , )
p p

s s
f

 

 
 

   , if and only if 2p  ,  (Littlewood)                      (40) 
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1 2

1 2
ˆ( , ) p

s s
f

 

 
 

     if and only if 2p  .         Orlicz                             (41)  

 
2

1 2

1 2
,

ˆ ,
p

S

f
 

 


    if and only if 4 / 3p  .       (Littlewood)                    (42)  

Still within a classical context, the following are multidimensional 
extensions of the statements above: Let 1L   be an arbitrary integer. For all 

 2Lf Cs   

   
  1

1 2

1/
1

,...,

ˆ( ,..., )
L

L

p p
L

S s

f
  

 
 

    if and only if 2p  ;                           (i)      

  
  1

12

1
,...,

ˆ( ,..., )
L

L

p
L

Ss

f
 

 
 

  if and only if 2p  ;                                      (ii)  

 
 1

1/
1

,...,

ˆ ˆ( ,..., )
L

L

p p
Lp S

f f
 

 


  if and only if 12 / 1 .p
L

   
 

                (iii) 

(i) and (ii), straightforward extensions of (40) and (41), appear in the 
literature on ad hoc basis; (ii)L was obtained in [90]. In this section, we 
establish 'continuous' systems of inequalities in which (i) and (ii) are 
'discrete' instances. First some notation: In what follows, we shall consider 
norms of restrictions of f̂ to LF S  denoted by ˆ

FfX . For example, 

2
1/2ˆ ˆ( )F s F

fX f      
 1

1/2
1 1

,...,

ˆ( ,..., ,..., )
L

L

s

L F L
S

f X
 

   


   

Where FX is the characteristic function of F . 

Theorem (5.1.15)[226]:   (An extension of Orlicz's inequality). Let 2F S
be arbitrary, dim F exact (respectively, dim F asymptotic). Then: For all

 2 2f Cs   

   
1 2

1 2 1 2
ˆ( , , ) p

F
S S

f X
 

   
 

    

if and only if 

    2 3 dim , 2 3 dim/ /p F respectively p F    . 

Theorem (5.1.16)[226]:   (an extension of Littlewood's inequality, (42) 
above. Let 2F S   be arbitrary, dim F exact (respectively, dim F 
asymptotic). Then: for all  
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 L Lf Cs   

   
1

1 1
,...,

ˆ ,..., ,..., 0
L

p

L F L
S

f X
 

   


  

if and only if 

12 1
dim

/p
F

   
 

1respectively, 2 1
dim

/p
F

     
  

 

The proofs make use of the results the Kahane-Salem-Zygmund estimates 
and an in-stance of a general theorem due to in[89])). To establish that 

 2 / 3 dimp F   and   2 / 1 1/ dimp F  are sufficient in Theorems (5.1.15)   
and (5.1.16) respectively (with strict inequality in the asymptotic dim F 
case), we follow the strategy of the proof) in [89]. 

Lemma( 5.1.17)[226]:   Let 2F S  and suppose   F s Ks   for all . 0s   

(i) Let        2 2, 0 \ ,l S onS F   , and 

 
 

2

2 1

1

, 1sup i j
S

a

S 
  







 
  

 
 , 

, 1i j  and i j then, 

   
1/2

ˆ

lim
F p

p

f

p


   




 


 

for all  2 2 .Ff L   

 (ii) Let     2/ 1 , 0 \ .a L Ll S on S F    Then , 

   
1/2

ˆ

lim
F p

p

f

p


   




 


 

for all    2 2 .Ff L    . 

Proof: (i) Let  2 2 .Ff L   and fix an arbitrary 2p  . Define 
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 1 /2

1
0 ,

if p
otherwise

 


  


 

and 

2 1    . 

A straightforward computation yields 

                                        

1 2

1/22 2 /2.
2 1 2,sup

SS
s p 

 

  






 
   

                  (43)   

We estimate 

           1 2
ˆ ˆ ˆ

F F Fp p p

f f f
  

           
  

     

 By the assumption on F and Theorem(5.1.2) we obtain 

         
1/2

1 1
2

ˆ ˆ
F Fp

f Kp f

 

       
 

   

1/2
2
.K p f                                              (44)           

From (43) we deduce 
 2 /2

2 2
ˆ

RC
f p f   

and thus by Lemma(5.1.13)   we have 

    1/2
2 2

ˆ
F p

f Kp f



   


                                  (45)           

The conclusion in (1) follows from (44) and (45).The proof of (2) is 
practically identical and will be omitted.                    

are necessary in Theorems(5.1.15) and(5.1.16)    (strict inequality when 
dimF asymptotic): Suppose there exists C > 0 so that for all  2 .Ff C   

 
1 1

1/

1 2
ˆ ,

pp

S S
C f f

 

 


 

  
   
   
  .                                            (46)         

Write dim .F  Suppose 1 2 1 21, , ,s A A S A A s    and  1 2A A F Ks  .  
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By Corollary  (5.1.6)   we assume without loss of generality that for all 
1 1A   

 1 1
1 1 Ks   .                                                  (47)         

Write  1 2, .A A A F  . We obtain a choice of signs   so that 

 
 

 

1 2

1 /2
1 2 1

, 2

,
A

K s 

 

  



                                           (48)           

1 0K  depends only on K). Combining (48), (47) and (46), we deduce 

     
1 1 2

1/

1 /2
1 1 2 1 2, ,

pp

A A
K Cs A F

 

   

 

  
    
   
                        (49)           

 11/ .ppKs s   

 (49) holds for arbitrarily large s only if  2 / 3 .p   If   lim /s F s s     

then (49) implies that  2 / 3 .p    This completes the proof of Theorem (5.1.15) The 
proof that   2 / 1 1/ dimp F  is necessary in (5.1.16) Theorem  is similar 
and will be omitted.                                                                                                  

Theorem (5.1.18)[226]: (An extension of Orlicz's inequality). Let LF S be 

arbitrary, dim F exact (respectively, dim F asymptotic). Then: For all 
 L Lf Cs   

1 1

1 2
,...,

ˆ( ( ,..., ) )
L L

p
F

s s
f X

  

 
  

    

for all 

2(( 2)dim 1) (( 2)dim dim 1)/p L F L F L F        

(in the asymptotic dim F case, the above is a strict inequality).Depending on 
the 'combinatorial' structure of LF S , Theorem (5.1.18)  may or may not 
be sharp. We illustrate: 

(i) If dim F L , then the inequality in Theorem  (5.1.18)  reduces to the 
usual Orlicz inequality (41)L which is sharp. 

(ii) If 2L  , then the inequality in Theorem  (5.1.18) reduces to the one in 
Theorem (5.1.15) which is sharp. 



143 
 

 Theorem (5.1.19)[226]: (Another extension of Orlicz's inequality).Suppose 
1, 1JF S F J     and  2

1F S Then: For all  2J
Ff C    

  1
21 1 1

1/
1 2

,...,

ˆ( ( ,..., ) )
J

JJ

p
p

J
ss

f
 

 


 




    

if and only if(i)    2 2 2 3 dim ,/p J J F    dim F exact, (ii)

 2 2 2 3 dim ,/p J J F     dim F asymptotic). 

The proof of Theorem  (5.1.19)  follows the line of arguments used in the 
proof of 

Theorem (5.1.15) In the case 1, 1JF S F J   1and 11 dim 2,F   the 
inequality in Theorem (5.1.19)  is sharper than the one given by Theorem 
(5.1.18)  The classical Orlicz inequality (for all  2 2f Cs  , 

 
1 2

2
1 2

ˆ( , )
s s

f
 

 
 

    

follows from the classical Littlewood inequality (for all  2 2f Cs  , 

 
1 2

2 1/2
1 2

ˆ( , ) )
s s

f
 

 
 

    

which, in turn, follows from the classical Khintchin inequality (for all  

 1
1 2

, );sf L f K f    

 in fact, these three inequalities are 'equivalent'(see [230]). The extended 
Orlicz inequality of Theorem (5.1.15) however, does not follow from or 
imply a Littlewood-type inequality: 

Proposition (5.1.20)[226]: Suppose 2 , dim 1F S F  .For every 1 2p   
there is  2

Ff C S  So that 

 
1 2

1/
1 2

ˆ( , ) .
p

p

s s
f

 

 
 

    

Proof: We argue as we did to establish the necessity of  2 / 3 dimp F   

in Theorem  (5.1.16)  Suppose that 1 2 1 21, ,s A A S A A s     and  

                                            1 2A A F Ks   
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where 1  . We follow (47) and (48) but in place of (49) we write 

     

1 2 2

1/
1 /2 1 /

1 1 2, . .
p

a p
A

A A
K Cs X Ks s 

 

  

 

 
  

 
   

The inequality above is valid for arbitrarily large s only if 2.p                                    

We now move to a general harmonic analytic setting. With the aim of 
simplifying future arguments, we start by altering slightly the definition of

L
F F  E , (given in (1)): Let 1s  and write 

   max : , .L
F s F A A A s    E                                     (50)           

It is trivial to see that the redefinition of F  has no impact on the definition 
of dim F  

(Definition (5.1.1).We recall: E   is said to be K-independent, K  a 
positive integer, if for any 0J J   , and 1,..., ,J E   , the relation 

                                                  
1 1

j j
J J

v
j j

j j

 


 

   

where the  Xi 's  and the vj's are integers in  K,K , implies that J J ' and 

j j  V  for 1,..., .j J E  is independent if it is K -independent for every K;  1-
independent sets are traditionally called dissociate sets. From here on, E  
will denote an infinite dissociate set which does not contain 1 ,the identity 
element of  . Fix an arbitrary integer L 0 , and define 1

1 1{ ... : ,...,L
L L L

    E

distinct characters in E}.More generally, fixing   1
L

j j
   ,               

1,j   we define distinct characters in E }.Finally, define 

 
 

1
1

1

1
L

kL
kk

j j
j



 











 
 
 

  
 
 
 

 E E  

Next, we identify [ LIE with a subset of the L -fold Cartesian product, 
   11

1( 1 ) : ... kL
k L
  

  E E E is identified with  1
1 ,.., ,1 ,...,1k L

k
        

We designate 

  : L
LL

       
 E E ; 
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given   ,
L

F   E , we denote 

                                     1: 1
L

F F  
     E E                              (51)           

Definition  (5.1.21)[226]:  Let   . F   

(i) The A-exponent of F is given by 

 
inf : .lim F

F a
p

p
a

p





     
  

 

F is exact if   lim / ;F
p F p p   ; otherwise, F  is asymptotic. 

(ii) The p-exponent of F is given by 

 
inf : 0 .lim F

F a
q

q
r a

q




    
  

 

Fr  is exact if   / 0lim Fr
F

q
q q



 ; otherwise, Fr  is asymptotic. (The definition 

of  F p , 

  the  A p constant of F , is stated in Corollary (5.1.3) the definition of  q  
is given in Definition (5.1.10) 

Definition (5.1.22)[226]: F  is a p -Sidon set (respectively, asymptotic p
- Sidon set) if 

 ˆ
FC L                                                     (52)           

if and only if r p  (respectively, r p ). (Following tradition, we refer to 1-
Sidon sets as Sidon sets.) The Sidon exponent of F is given by F p   and is 
exact if F  is p -Sidon, and asymptotic if F  is asymptotically p -Sidon. 
Recall that the Sidon constant of F   is given by 

  1
ˆ ˆsup / : , 0F FK f f f C f


     

For each positive integer n, define 

   sup : ,F An K A F A n    . 

Definition (5.1.23)[226]:  The Sidon characteristic of F   is given by 

 
inf : .lim F

F a
n

n
a

n
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F is exact if   lim / F
n F n n  ; otherwise, F  is asymptotic. 

It is easy to see that 0 1/ 2F   and we note two obvious external cases: (i) 

0F  is exact if and only if F is 1-Sidon. (ii) 1
2

  is exact. 

The first statement is a trivial tautology. The second statement, 
appropriately translated, is folklore in various contexts (e.g., see section 1.6 
in [24]). 

Lemma (5.1.24)[226]:  Let LF  E . For every integer s > 1 

   1/22 2 (L
F Fs sL   . 

Proof: We shall prove the lemma first in the particular case where E is an 
infinite independent set in some  . For example, we can take E  to be the 
Steinhaus system. For the purpose of the proof, designate 

  1 1,..., : ...L
L LF F     E                              (53)           

Clearly, LF  E is symmetric: 

      1 1,..., ,...,L r L rF F       

for any   , a permutation of  1,...,L . We thus trivially have 

                          ! FFL                                                                   (54)     

( F   and F  are given by (50)). Let  2 ,Ff L G   ˆ ,
F

f f


 


   which can be 

rewritten as 

   1
1 ...
! L

F
f a

L 


   


   

Where     1
ˆ ... La f     (as usual 1, ..., L  denote the canonical 

projections from LE  into E ). As in the proof of Theorem  (5.1.2) let s > 1 be 
an arbitrary integer and write 

 
1

22
2

2

1 ... ,
! s

s
s

s
A

f a a
L  

 

   
 

                                    (55)           

Where           1 1 1 1,..., : ... ... .s L L sA F             
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Following an argument similar to the one in the proof of Theorem (5.1.2) 
we deduce that 

    s

FA sL   and thus obtain from (55) 

   21/2 1/2
2

1 ( ) ,
!Fs

F
f sL a

L 


    
 

  

But, 
1/ 2

2 1/ 2
2

1 ( ) ,
! F

f a
L 



   
 

  

and we obtain from (54) 

  1/2

2 2Fs
f sL f                                            (56)           

To prove the lemma in the case ,LF  E  dissociate   n n



 NE } we employ a 

Riesz product argument and make a reduction to the independent case 
considered above (see [228], for example). Let    0 0 0

ˆ
n n

G


   NE  be an 
infinite independent set of characters. For ...

Ln n F     denote 
1
...

Ln n    
and    0 0:F F    E  Let  2

Ff L G  be arbitrary,  ˆ
F

f f


 


 . Fix  

0t G  and let    ˆ ,t
F

f f t


  


  

where   denotes here complex conjugation. Next, write a Riesz product 

   
1

1
2

n n n n
t

n

t t   






 
   

 
  

We easily have  1t M
  and * / 2L

t tu f f , and thus obtain from (56) 

                       1/2

2 2
2L

Fs
f sL f   for all 1.s  . 

Lemma (5.1.25)[226]:   Let .LF  E  Then, for every integer 1.s   

                           1/212 2 .L
F Fs s     

Proof: Let ,A A s E  be so that   ,L
F s A F    and define 

   1 ... ,
L

L
A F

f


   


 


    whence               

                         1/2

2 Ff s   
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Define the Riesz product  1 cos
A




 R  

  cos / 2    whence 
1 2

1, 2s R R  and 2 /2 , 1/ 1/ 1,s q
p p q  R  

for all 1 2p  . We therefore have 

    2 /2 * 0 2 .L s q
F q

s f f   R  

Setting q s  in the inequality above, we obtain the lemma.                                           

Lemma (5.1.26)[226]:   

               f K f


 , 

( 0K    is a constant independent of f ). 

Proof: Let 1,..., Lx x G be so that  1, ..., Lf x x f


   

Let   1,...,B L L   and define for each    

        expB j B B
j B

x i      


  . 

        argB B B Band          

By the symmetry of LF   , observe that 

         1 1
1

1 ,..., 1 ... .
!

L
m

L B B L
m B L F

B m

f x x a
L 



     
  



 
   

 
                 (57)           

Fix B L , and write the Riesz product 

 1 (exp( ( )) exp( ( )) / 2B
B B Bi i

B

 
      



 
     

 
 . 

We have 

   1 1
ˆ( ( ))... ( ( )) ! ( ( ))... ( ( )) !(2 ) * 0 !(2 )L L

B B L B B L B
F F
a L f L B f L B f

 

             


 

   
 

(58) 

                                                                                                                                                                                       

Summing (58) over all B L , we obtain via (57) the desired estimate                                                  
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Theorem  (5.1.27)[226]:  Let E  be a dissociate set,  LF  E  be 
arbitrary, and F  be given by (51). Then: 

(i)     dimF F   ; (ii)       dim 1

2F

F
r





; (iii)     2 ;

11
dim

F

F

 
  
 

 (iv) 

11
dim .
2F

F

  
 


 

Moreover , ,F F Fr   and F  are exact if and only if dim F  is exact. 

Proof :(iv). Suppose dim F   exact. Let 0n   be an arbitrary integer, and  
 Ff C G  be so that 

  ˆ: 0 .F f n    . 

By Holder's inequality and Theorem  (5.1.26) (iii) we have 

  1/ 1/ˆ ˆ q q

p
f f n K f n


   

wheneverp   2 / 1 1/p   , and 1/ 1/ 1p q  . Therefore, 

          a
F n Kn   for all  1 1/ / 2a                                                   (59) 

We now recall the following basic fact: 

An immediate corollary to Theorem (5.1.27)  yields that the dimension of a 
spectral set  LF  E is well defined. Suppose that 1E  and 2E  are 
dissociate sets and 1L , 2L  are positive integers. Assume that  

1
1 L

F  E and

 
2

2 L
F  E  . Denoting the images of F  in 

1
1 L

  
E  and 

2
2 L

  
E  (given by(51)) as 

1F  and 2F , respectively, we have 

Corollary (5.1.28)[226]:   

                                                      1 2dim dim dimF F F   . 

Moreover, dim 1F  is exact if and only if dim 2F  is exact. Theorem (5.1.27) is 
essentially a summary of the results in this section ,we shall sketch its proof 
in the case LF  E , and then indicate how to obtain the general case  L

F  E
. 
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Combining Lemmas (5.1.24)  and (5.1.25) we deduce part (i) in Theorem . 
(5.1.27) Parts (ii) and (iii) in Theorem(5.1.27) follow from Theorems 
(5.1.11) and (5.1.16)thru symmetrizing procedures and the use of Riesz 
products similar to the ones employed in the proof of part (i). Leaving the 
details to the reader, we note that the added ingredient here is a simple 
combinatorial device, Lemma (5.1.26) below. Let  Ff C G be a 
trigonometric polynomial,  ˆ ,

F
f f



 


  and define the trigonometric 

polynomial  L
Ff C G by      1

ˆ ,..., ,L
F

f a


   





 where 

    1
ˆ ... La f      

for each F   ( F  is defined by (53) at the outset of the proof of Lemma 
(5.1.26). 

Theorem (5.1.29) Let F   be a Sidon set with Sidon constant FK . Then, 
for all  2

Ff L G  and 2 p    

2F p
K p f f  

Let A E  be as at the start of the proof of Lemma (5.1.25) whence (as per 
the proof of Lemma (5.1.25) 

    1/ 212 2 L
A F FL s s     

Therefore, by the Theorem above and the definition of F  we have 

  1/2
2 12 .

2
FL

A F
s

K L
s

   
  

 
  

From the inequality above it follows that 

                             lim F
an

n
n


                                                        (60)        

   

only if 

11
.

2
aa

  
   

Combining (59) and (60), we obtain Theorem (5.1.27) (iv). The same proof 
works for the case dim F a asymptotic.                                                                 
�  
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The passage from LF  E  to  L
F  E  in Theorem (5.1.27) is based on the 

following basic lemma whose proof rests on routine Riesz product 
arguments. 

Lemma (5.1.30) [226]:  Let  
1

1 , 1,
k

j jj
k L and   


      be arbitrary. 

There is  M G  so that 

   
1

ˆ
0 \ .

k

kL

if
if






 



  


E

E E
 

Consequences ;Let E  be a maximal dissociate set in  in which case we 
clearly have 

 
1

L
L





  E  

and    1L L
E E ,for all 0L  . The results in [231] can be translated to our 

present context to fill the 'gaps' between  L
E  and L 1

,L 1,....


E . 

Theorem (5.1.31)[226]:   ([231]). Let  E be a maximal dissociate set in  

(a) there exists a family of sets   [1, )x x
F

 
 with the following properties: 

(i) For each     1, ), (x x
x F x   E denotes the smallest integer greater than 

x), and dim xF x . 

(ii) When 1L x L     , L a positive integer, ,x t
t x

F F


  and   .L tL
t L

F F


 E .In 

particular,   

                                             
[1, )

x
x

F
 

  .  

 (b) Let 0 [1, )x    be arbitrary. There exists a family of sets  
0[1, )x x x

F


 with the 
following properties: 

(iii) For each   0[1, ), x x
x x F  E  and dim xF x asymptotically. (iv) For each 

00[1, ), .x x t x tx x F F        

Predictably, combining Theorem (5.1.31) (1) with Theorem  (5.1.27)  we 
obtain that   is a 'continuous' union of spectral sets whose combinatorial 
and analytic complexities are 'continuously' indexed. Similarly, part (2) of 
Theorem(5.1.31) yields the existence of continuously decreasing towers of 
asymptotic spectral sets whose combinatorial and analytic complexities are 
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continuously indexed as well. Theorem. (5.1.16) implies, in effect, a 
statement that is stronger than part (ii) of Theorem (5.1.31) 

Theorem (5.1.32)[226]:  Let  E  be dissociate, L  a positive integer and 

  .
L

F  E Then: For all  
L

f C G  

ˆ
F p

fX    

if and only if 

2 dim ,
11

dim
2 dim .

11
dim

p F exact

F

p F asymptotic

F

     
  

 
     

. 

Section(5.2): Combinatorial Measurements and Orlicz Norms 

  We focus on connections between measurements reflecting purely 
combinatorial data and measurements that are based on harmonic-analytic 
and probabilistic properties. 

Given an infinite set Y  and  1 nYF n , we consider a function associated 
with :F N N such that for sN , 

    1max ... : , , 1,...,F n j js F A A A Y A s j n       .                              (61) 
           

Define 

           dim log / log ;lim F
s

F s s


                                                                 (62)  

Equivalently , for a > 0 define  

            sup / :a
F Fd a s s s  N                                                             (63)  

 and observe that if | | ,F   then 

     dim inf : sup : .F FF a d a a d a                                                    (64)  

The function F  is viewed as a gauge of the combinatorial complexity in  

  : FF s  is the smallest integer K  such that for all s-sets 1 nA Y,...,  A Y 

the number of samplings 
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 Aa,...,Aa nn11  with  1,..., na a F  is no greater than k. The index dim is 
viewed as the combinatorial dimension of F , conveying that  F s “grows 

like” dimFs  , in the sense that 

              0 dim ,
lim

dim .
F

s

if Fs
if Fs




 
  

                                                        (65) 

We distinguish between two cases: 

(i)   dimIf lim / s  < (d  (dimF) ),F
s F Fs    then dim F is exact; 

(ii)   dimIf lim / s  = (d  (dimF) ),F
s F Fs    then dim F  is asymptotic. 

(see [219]). In this section we further analyze the asymptotic case, and 
establish a precise resolution of it. 

We take Y to be N  (without loss of generality), and identify it with the 
Rademacher system   :j j

r


 R
N

, a set of projections from 

   1,1 : 1,1 :onto  
N  

             ,j j
r w w j j w w j


   

N
N , .                                             (66) 

Here we view Ω as a compact Abelian group (endowed with the product 
topology, coordinate wise multiplication, and the normalized Haar measure
P ), and view R as an independent set of characters on Ω. (see [219]).For 

 1 .nF n R  , let  n
FC   and  2 n

FL  be, respectively, the spaces of 
continuous functions and nP -square integrable functions on n , whose 
Fourier–Walsh transforms are supported in F . 

For 0t  , let ·  be the t  norm, and for  .nf C  , let f̂  be the Fourier- 
Walsh transform of f . For nF  R and 0t  , let  

             ˆsup :
F

n
F Ct

t f f B    ,                                                       (67) 

where  F

n
CB   denotes the closed unit ball in  n

FC  , and define 

             inf : sup :F F Ft t t t      ;                                         (68) 

if   0F F   , then F  is exact, and if   0F F    , then F  is asymptotic. 

For nF  R  and t> 0 , let 
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           2sup / : 2, n
F

t
F LP L

t f p p f B


   ,                                            (69) 

where  2 n
FL

B


 is the closed unit ball in  2 n
FL   and define            

             inf : 0 supF F Ft t t                                                        (70) 

again, if   0F F   , then F  is exact, and if   0F F   , then F  is 
asymptotic. 

The main results in [226] were: 

               2 / 1 / 2F F Fd t t t t                                         (71) 

In particular, 

                        2dim
dim 1F

F
F

 


                                                                   (72)                                

and 

  
dim

2F
F

  ,                                                               (73)       

where F  and F  are exact if and only if  dim F  is exact. These results in 
effect were extensions of the classical Littlewood 2n / (n 1) -inequalities 
[84,112], and the n -dimensional Khintchin inequalities [13,10]. 

  We use Orlicz functions and their associated Orlicz norms to precisely 
resolve the case   dimFd F   . Our work is divided into four parts. In the 
first part we focus on the combinatorial gauge  , 1n

F F n  R . Given 
functions : N N  and  : R R  we say that Ψ is quasi-asymptotic to Φ, 
and write ,q :  if  

 
 

0 lim
s

s
s


 


.                                                                               (74)        

  

We prove Theorem (5.2.3) that if nF  R  is infinite,  dim 1 ,F     and 

 lim / 0s F s s  , then there exists an  -Orlicz function (Definition 
(5.2.1)) Φ such that .F q : . Conversely, we show (Theorem (5.2.7) that 
for every α-Orlicz function  1   there exists nF  R  such that F q : . 
These results extend prior constructions in [227] and [220].  
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   In the next three parts we derive precise relations between  n
F F  R  

and corresponding Orlicz norms associated with F  in  n
F C  and 

 2 ,n n
FL  P   (Theorem(5.2.13) Corollary (5.2.18)and Theorem 

(5.2.22).These results naturally extend prior results stated in (71), (72) and 
(73) above, concerning relations between combinatorial dimension and 
Littlewood-type inequalities and Khintchin-type inequalities. An R -valued 
function Φ on  0,  is an Orlicz function if Φ is continuous, non-
decreasing, convex, Φ (0) = 0, and  limx x   , see [116]. For 2F  N , 
and Orlicz function Φ, define (extending the definition in (63)) 

                               sup / : ,F Fd s s s    N                                  (75)       

If   nx x   for some 1a  , then we write  Fd a  for  Fd  . 

Note that dim F   is exact  1   and  lim / 0s F s s   if and only if F  
is quas-iasymptotic to   , 0x x x   . If dim F   is asymptotic, then we 
focus on     /Fs s s   , where (necessarily)  lims s , and  s  is  s  
for all 0  . To this end, for technical reason that will later become 
apparent, we introduce the notion of an α-Orlicz function: 

Definition (5.2.1.)[218]: For 1  , an Orlicz function Φ is said to be an α-
Orlicz function if 2[0,1)C  and    x x x   for 0x  , where either 1  , 
or   satisfies the following properties: 

(i)   is concave and strictly increasing to  ;(ii)  x x  is convex for 0x  ; 
(iii)    x x   for all 0  , and for each 0   there exists 0K  , such that  
  /x x  is decreasing with increasing x for x K . 

Example(5.2.2)[218]: Suppose we want to construct an α-Orlicz function 
whose graph contains   , logs s s   for s large, for some 1   and 0  . 

Note that (log x)β  is not concave for  1, logx e x x  is not convex for 
1x e   , and the y-intercept of the tangent line to the graph of  log x   at x 

for x e is less than 0. Let  1
0 max , 1,x e e    and let   be the linear 

function whose graph is the tangent line to the graph of (log x)β at x0; that is 

           11
0 0 0 0log log ,x x x x x x x                                    (76)  

Let  
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0

0

log

0

x if x x
x

x if x x




  

 




                                                   (77) 

Smooth   at 0x  so that the smoothed function   is in 2[0, ),C     is 
concave, and  x x  is convex. Then the function    x x x   for 0x   is 
the desired α-Orlicz function. 

Theorem (5.2.3)[218]: Let nN . If nF  N  is infinite with dim ,F   and 
 lim / 0s F s s  , then there exists an α-Orlicz function Φ such that 

.F q : . 

Proof. Because 2F  N  is infinite, we have 1  . If  Fd    , then 
 x x   for 0x   is an α-Orlicz function such that .F q :  

Suppose  Fd    . First we choose a sequence   ,j js s  . For any positive 
integers s and s , let .s s   be the linear function whose graph is the line 
passing through   , /Fs s s  and     , /Fs s s     let 0,1 be the linear 

function whose graph is the line passing through (0, 0)and (1, 1).) Let 1 0s  , 
and 2 1s  . To choose  for 2j  , we proceed by (double) induction. 

Suppose we have chosen js  for 2j  . To choose 1js  , we consider the j 
points    1 ,..., j

j js s  such that 

     
1

1
,min : ,

j j

F j F
j j s s

j

s s
s s s s

s s  

       
  

 and for 1 i j                        (78)    

      

               
1

1 1
,min : ,

j j

F ji F
j j s s

j

s s
s s s s

s s  


       
  

                                     (79) 

The existence of    1 ,..., j
j js s for any j is guaranteed because  Fd    , and 

because    /F s s s    for all 0   (because dim )F  . Denote the slope 
of _ ,s s  by ,s sm   for any s  and s . Let 

           
  1

1
1 , ,

max ,..., :
j j j

j
j j j s s s s

s s s s m m
      for all 1,...,i j .                     (80) 

Continuing this process, we obtain a sequence js   that satisfies 
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(i)   /F j js s   is strictly increasing to   with increasing j ; (ii) 

1 1, , 0
j j j js s s sm m
 

   for all 1j  ; 

(iii) for each j , and  j
j js s s   either 

                             
1

,
j j

F
s s

s
s

s 


                                                                (81) 

or 

 
   , 1

,F
s sj j

s
s

s 


                                                                          (82)    

Claim (5.2.4)[218]: For each j  , there are only finitely many sN  such 
that 

                                    
1, ,

j j

F
s s

s
s

s 


                                                        (83) 

          

Proof : Suppose the claim is false. Then there exist j and a sequence ks    
such that .  

               
 

 
1, ,

j j

F k
s s k

k

s
s

s  





                                                                       (84) 

For 0x  , write 

   
1 1, , ,

j j j js s s s jx m x b
 

                                                                     (85)  

where 
1, 0

j js sm

 , and 0jb  . By (84) and (85), 

     
1

1
,j j

a a
F k s s k j ks m s b s



                                                               (86) 

which contradicts F , and the claim follows.                                                                                            
�  

Let   be the piecewise-linear function defined by 

    1,, 11
 

jsxsxx jjss jj
                                                        (87) 

Claim (5.2.5)[218]: 

           sup / :F s s s s    N .                                               (88) 
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Proof : Suppose the claim is false. Then there exists a sequence  is   such 
that nd         iiiFi sss 

/lim .By Claim 1 and because 
 , , ,j

j j j js s j s s   ], there exist j sufficiently large, and  , j
i j js s s     such that 

         
1 ,,

/j j jj j
i F i i s s is s

s s s s


       , which contradicts (81) and (82), and the 

claim follows.  

Next we construct a spline function as follows. Note that for  0, log bb x is 

concave for log 1b   , and  log bx x  is convex for x e . We start from 4s  
(because  4s e ). For 4 5s x s  , let 

                              4

4 4 4 4log bp x a x c x d   ,                                      (89)          
  

Where  4 4 4 40,0 log 1, 0a b s c     , and 4d  are chosen such that C  

                    4 4 4 4 5 5 4 4
53, 4 4,, ,

2
s s s sm m

p s s p s s p s



               (90)          

where    4p x

  denotes the right derivative of 4p  at x . (Similarly    4p x


  

denotes the left derivative of 4p  at x .) 

For 5 6s x s  , let 

                           5

5 5 5 5log .bp x a x c x d                                             (91)  

where 5 5 5 50,0 log 1, 0a b s c     , and 5d  are chosen such that: 

(iv)  if    
5 64 5 , ,s sp s m


   then 

       5 5 5 5 6 6, ,p s s p s s   and        5 5 4 5 ;p s p s
 
                     (92) 

 (v) if    
5 64 5 , ,s sp s m


    then 

          5 , 6 6 , 7

5 5 5 5 6 5 6, ,
2

s s s sm m
p s s p s and p s



  .                             (93) 

We proceed as follows. For 6j  , and 1j js x s   , let 

          log jb
j j j jp x a x c x d   ,                                                              (94)    

     where 0,0 log 1, 0,j j j ja b s c     , and jd  are chosen such that: 
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(vi) if    
11 ,j jj j s sp s m
 

   , then 

       1 1, ,j j j j j jp s s p s s     and        1 ;j j j jp s p s 

               (95) 

 (vii)  if    
11 ,j jj j s sp s m
 

  , then 

                    1 1,j j j j j jp s s p s s    ,                                   (96) 

and 

        1
, 1 1, 2

2j j

s s s sj j j j
m m

p s 

  
  .                                                       (97)        

  For any 5j   such that (vii) holds,        
11 ,j jj j s s j jp s m p s
  

   . By the 

mean value theorem, there exist  1 1,j j jx s s  , and  1,j j jx s s  such that 

  11 1 ,j jj j s sp x m
    and   1,j jj j s sp x m


    Because 1jp   and jp  are concave, and 

because
1 1, ,j j j js s s sm m
 

 , there are  1 1, ,j j jt x s  , and  ,j j jt s x  such that 

                     1 1j j j jp t p t   .                                                           (98) 

For 0,x   let 

                      1 1 1 1 1 ,j j j j j jT x p t p t x t                                          (99) 

that is, jT  is the linear function whose graph is both the tangent line to the 
graph of 1jp   at 1jt  ,and the tangent line to the graph of jp  at jt  .Let   be the 
spline function such that 

(viii) for  40 ,x s x   is the linear function whose graph is the tangent line 
to the graph of 4p at 4s ; 

(x) for any 4x s , let     1,j j jp x p x s x s    for 5j   and let 

   
 
 

1 1 1,[ , ] [ , ], 5,

otherwise,
j j j j j j jT x if t x t t t x x j

x
p x

        


                          (100) 

where 1jt   and . 5jt j  , are indicated in (98). 

Then  is concave, and  x x  is convex. Let  x x  . By Claim (5.2.5) 
and because ,    
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          sup / : sup / :F Fs s s s s s s       N N .                     (101) 

Claim (5.2.6)[218]:  There are infinitely many j such that 

            .j js s                                                                          (102)                                                                       

Next we establish the converse to Theorem (5.2.3.) . 

Lemma (5.2.7)[218]: 219  Let 2n   be an integer, and 1 n  . Let   be 
an Orlicz function such that  x x x   for all [1, )x   and   /x x  is 
decreasing with increasing x . Then for every kN , there exist   

      1,...,nF k k k   such that 

                     , ,F s C s s k                                                         (103) 

and  

                        1 .
2FF k k                                                        (104)  

where C > 0 depends only on n and γ . 

Proof: For k kN , let     : nk
iX i k  be the Bernoulli system of statistically 

independent {0, 1}-valued variable on  , P  such that 

                    
1k

i n

k
X

k


 P .                                                              (105)  

Consider the random set   : 1 .k
iF i X   

We use the following elementary fact about binomial probabilities: for 
 0,1p , and integers 0m   and 2i mp , 

              112 1 1 ,
1

m i m ii im m
p p p p

i i
     

        
                                      (106)     

      

which implies 

         1 2 1 , 2
m

m i m ji j

i j

m m
p p p p j mp

i j
 



   
      

   
 .                               (107)    
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Fix  s k , and let A  be a s-hypercube in (  1 ...n
nk A A A    where 

1 ... nA A s   ) Denote 

 2 1max 2 , .n nC e
n 

 
  

 
                                                                       (108)         

   

Let    j s C s     (= smallest integer  C s  ). Then 

                
 

 
2 2 2

n
n n

n n n

k s kkj s s s
k s k k

  
   


                          (109)        

                                       

(because   /s s  is decreasing) . By (107) and (109), 

                                                     

         
1 2 1

n n
n i s i j s jn ns

k
i n n n n

i A i j

k k k ks sX j
k k k ki j

 

 

              
               

            
 P  

                       

         
  

2
2

!

j jnjnj

jn j nj

k s ks
kj C s e k

   
   

  
                                          (110)        

  

      Then, 

      
  

  
  

2 2
for some s hypercube A

j jn nj njns
k

i j jns nsj nj j j nji A

s k s kk kX C s
s s eC s e k C s e k

 

   
      

     
P

 
 

 
   

 

  
2

12 2 49
2

nj ns nj ns j n j ns s jj ns
s s

j n j s jn

ke s s k s se e by
k s k s k kee

    
 

 

                                  
(111)       

 (because   /s s ,  n j s j j s    and        1n j n C s n s        )  

Hence,   

     
1

,
sk

k s
i

i A s

sX C s for some s hypercube A s k e
k



 

          
  

 P                   (112) 

  Therefore, 

    0lim k
i

k i A
X C s

 

 
   

 
P .                                                        (113) 
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By Chebyshev’s inequality, 

     
     

 

  
 

   

 2 2 2

4 14

2

2

n

n

n
k kn n n

i ii kk
i

i k

k k
kVar X k k Var X k kk

X k
k kk





   
           

       
 


P   

 
4 .
k




                                                                                                  (114) 

                                                                                  

 Hence     

                
0

2lim k
i

nk i k

k
X

 
 

 

     
 
P                                                            (115)  

                       

By (113) and (115), 

                   lim
k

F


P                                                                                 (116)  

 satisfies (103) and (104)=1                                                                                                                              
�                                                                

Let 1, ..., n   be the canonical projections from nN  onto N . We say nF N  and 
nG  N  are n-disjoint if     F G    for all 1,..., n . 

Lemma (5.2.8)[218]: (  . 219 .Cf ). Suppose , ,jF jN  is a sequence of 
pairwise n-disjoint subsets of nN , and let .j jF F   For an Orlicz function 
 , and for every mN , 

               sup / : sup / : ,
jF Fs s s m n s s s m j       N .              (117)    

      Proof: Let mN  and let  s m . For 1 ... n
nA A   N  such that 

1 ,..., ,nA s A s   let 

                                    , , ,i j i j is F A i n j   N                               (118) 

and 

                                     ,max : ,j i js s i n j  N                                  (119) 
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Then                 ,
1

,i j i
j

s A s i n




                                               (120) 

 Let 

           sup / : ,FL s s s m j    N .                                                 (121)  

By (118), (119) and (121), for any jN , 

                             
          1 1 1... ...j n j j n j n jF A A F F A F A L s                      (122) 

 then 

      
 

 
 

 
 

11 1 1
...... j n jn j j

F A A L sF A A
s s s

 

 
   

 
  

 
.                  (123) 

Because   is increasing, 

          , ,
1 1 1 1 1

n n

j i j i j
j i j i j

s s s n s
  

    

 
       

 
     by  (119)                  (124)     

      

     (because   is convex) by (120).                                                   

By (123) and (114), 

   
 

1 ... nF A A
nL

s
 





                                        (125)       

 Theorem  (5.2.9)[218]: ( 219 .For 2n  , and  1 ,n  , if   is an α-Orlicz 
function, then there exist nF  N  such that ~ qF  , 

Proof]: Let n   , and let Φ be an α-Orlicz function. Then  x x x 

for large x , and   /x x is eventually decreasing. By Lemma (5.2.3) we 
produce a collection  jF of pairwise n-disjoint subsets of nN  such that

    / :
jF s s s C   N , and for each jN , we have  jF j   for 

   , / 2.jn F j    Let ,j jF F   and apply Lemma (5.2.9)                

Suppose    x x x   for 0x   is an  -Orlicz function. Because φ is 
concave, increasing, and  0 0  , we have     /x x x   for all 0x  . Hence 
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0 1, 0.
x

x x
x





                                          (126) 

Let  

                               
1 1

2 2 , 0x x x x





                                        (127) 

and 

                            
  1

1 , 0
1/

x x
x


 

 


                                 (128) 

Note that 

                                1/ 1, 0x x x                                        (129) 

For 0x  , define 

                                       
2 1

1 1M x x x


  
                                       (130) 

Then    

                     
 

2 11
1 11 2 .

1
x

M x x x x
x


 


 

 


 


     
   

                          (131)  

and 

                     
 

2 12
1 1

2 11 .
1

M x x x Dx
x


 

 


 


 


     
   

                        (132) 

where 

                                
 

 
 

 
 

2

24
1 1

x x x
D x x x x

x x x
   

    
   

       
.             (133) 

          

We now establish that M   is an Orlicz function. We will use the Orlicz 
norm associated with M  . 

Lemma (5.2.10)[218]: M   (defined in (130)) is an Orlicz function. 
Moreover, except for the case  x x   for 0x   , we have   0M x   and 

  0M x    for 0x  . 
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Proof: It is obvious that   0M x   for 0x  . Now we consider M  . Taking 
derivatives on both sides of (129), we have 

                               1/ 1/ 1/ 0x x x x x          .                      (134) 

Hence 

                          
 

  
     

1/
1/ 0

1/
xx

x x x
x x


 

    


.                               (135) 

By (127), 

                            11/ 1 1/
2

x x E x x     ,                                  (136) 

where 

                          
 

1
1

x
x x

x


 
    

E .                                                         (137) 

         Note 1  . By (135) and (136), and by substituting  1/ x y  , we have 

   
      

 
 

 
 

2 1
1 1

y x x
y x x

y x xE x
  
  
  

  
 

  by (126) .                         (138) 

          

Taking derivatives on both sides of (134), we have 

            1/ 2 1/ 1/x x x x x                                                                                      

              
2

1/ 1/ 1/ 1/ 0.x x x x x x             
 

                      (139) 

 Hence 

 
 

 
 

  
        

     
2

2 21/ 1/
2 1/ 1/

1/ 1/
x xx x

x x x x x x
x x x x

  
   

            
 

                       
      21/

1/ 0
1/

x
x x

x




    


                                               (140) 

By (127), 

                              2 1 3
1/ 1 1/ ,

4
x x F x x

                            (141) 

where 
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2

24 1 3 1 .
1 3 2 4 2

x x x
F x x x x

x x x
  

    

               
    (142)  

         

Bringing (136) and (141) into (140), and substituting  1/ x y  , we have 

 
        

 
 
 

2 1 1
x x y

x x x y
x x y

  


  
  

  E  

    
 

       
 

2
2 2 1 31 1 1 0

2 4
y y

x y x y
y y

   
 
       

 
E E .              (143)   

By (137) and (142), 

       
 
   2 221 1 ,

1 3
x

F x x x G x
x


  


    

 
E                                 (144) 

where 

      
 
   

 
 

4 .
1 3 2 1

x x
G x x x

x x
 

    
     

    
                                 (145) 

Then by (126),   0G x  for all 0x  .Applying (138) and (144) to (143), we 
have 

 
 

      
 

2 22
2 1 1

2
xx y

x y
x y

 
 

    
   

 

E
 

      
 

       
 

22
221 1 1 3

1
4 4

x y y
y x y

y y
    

 
    

  
E

E  

 

 
 

 
 

      
 

2 1 3
0

2 4
x y y

x y G x y
x y y

    
  
   

   .                                       (146) 

Then 

                  
 

 
 

 
 

2 22

21 1 3
2

4 1
x y y y

y y y
y y y

    
   

                

E
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2 1 311 0
2 4

x y y
x y G x y

x y y
    
  

    
     

 
   

   
 

 
   2 0,0 1 0 .

x y
because x y and G x

x y
 
 

  
      

 
                                  (147) 

          

Hence for all 0.y   

    
 

 
 

   
   

2

2 3
2 0.

1
y y y

y y y
y y y

   
   

   
       

                                            (148) 

          

Then, by (133), for all 0,x  , 

                       
 

 
 

   
   

2

2 3
2

1
x x x

D x x x x
x x x

   
   

               
.                   

               
 

 
 

2
2 3 3 0
1 1

x x
x x

x x
  

   
   

      
                                        (149) 

By (132) and (149), we have 0nM   . If 1  , then   2 1 1 0     , and 
hence   0nM x   for 0x  . If 1  , and φ is strictly increasing, then 

 
 

0
y

y
y





 in (138), and hence   0D x  for 0x  . Then    0nM x  for 0x  . 

Because   is an α-Orlicz function, either 1,   or   is strictly increasing. 
Therefore, except for the case  x x  , we have   0M x   and   0M x 

for 0x  .                                       

The following property will be needed.  

Lemma (5.2.11)[218]: For M   defined in (130),     0M x xM x    for all
0x  . 

Proof: It suffices to show that     0M y yM y     for all 0y  , where 
 1/ ,y x  For simplicity, we denote M   by M  . By (131) and (132), 

                      
2 11

1 1
1 ,

1
M y yM y y y H y


 




   


                                  (150)                     

where 
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 2 1
2 ,

1
y

H y y Dy
y

  


 
 

   


                               (151) 

where  yD is defined in (133). By (149) and (147), we have 

     
    

 
 

 
 

      
 

2
22

1 34 11
2 41 1

x y y
D y x G x y

x y yx

    
  

                 E
     

     
 

 
 

 
   

2
2 3 3
1 1

y y
y y

y y
   
   

   
     

                                                         (152)                                                                                        

Because  x x  is convex for 0x  , we have 

                   2 0, 0.x x x x x x                                                     (153) 

Hence 

               
 

 
 

2 2
x x

x x
x x

 
 
 

                                                                       

(154) 

By (151), (152), (154) and (145), 

   
 

4
1

y
H y y

y


 


 


                                                                                                                                        

    
 
 

 
 

 
   

 
 

 
 22

4 12 1 1
2 2 11 1

x y x x y
x y x x y

x y x x yE x

    
     

                          
                                                                                       

 
 

 
 

2
2 3 3
1 1

y y
y

y y
  

   
   

     
 

 
      

 
   

 
 

3
4 4

1 2 11 1
y y y

y y y
y y yE x

   
    

   
          

 

 
 

 
 

2
2 3 3
1 1

y y
y

y y
  

   
   

     
    by (138)                                            (155)     

      

By (137), 
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4 4
1 1 1

y y
y y

xy yE x x
x

 
  





 
 

 

               
 

 
 

4 4
1

1

x
x

x x
x

x


  





 

 
 

    ( by (126) and (78)) .                (156)                                                                                              

By (155) and (156 ), 

   
 

 
 

2
4 4 3 3 21

1 2 1 1
y y

H y y y
y y

   
     

                   
 

                               
  

 
 

 
 

2
2 3 2 2 4 2

1 2 1 1 1
y y

y y
y y

    
      

     
            

  

                               
  

 
 

 
 

22 3 2 2 4 2
1 2 1 1 1

y y
y y

y y
    

      
                     

 

( because  
 

0 1
y

y
y





  ) 

                
  

 
 

 
 

22 2 2 0
1 2 1 1

y y
y y

y y
   

     
   

          
,               (157) 

as desired.                                                                                                         

We recall the following definitions of Orlicz norms (see[116]). For an 
Orlicz function M  and a sequence of scalars  1 2, ,...a a a , define 

        
1

inf 0 : / 1nM
n

a M a 




 
   

 
 ,                                                 (158)   

           * max : 0M x M x x    ,                                                        (159)  
         

and 

           *

1 1
sup : 1 .n n nM

n n
a a b M b

 

 

 
  

 
                                                    (160)  

The two Orlicz norms M
·  and 

M
·  are equivalent and 
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                2 .
M MM

a a a                                                                     (161) 

Definition (5.2.12)[218]: For nF  R  and  -Orlicz function  , let 

                       ˆsup :
F

n
F CM

f f B


    ,                                          (162) 

where M   is given in (130). 

This definition naturally extends the definition in (67). If   , 0x x x   , for 
some 1  , then  F   and   2 / 1F    have the same meaning. 

Let nN . For nF  R and  -Orlicz function  , let 

                       
 

   2

1 1
2

1
2 1

F

F

if d

if d


  

 

   
 

 

                                   (163) 

Theorem (5.2.13)[218]:.  ( . 219Cf ) For nN , there exist 0nC   and 0nD   
such that for all nF  R  and  -Orlicz functions Φ, 

                     
1

2max ,1 .n F F n FC d D d
 

       
 

                         (164)   

Proof: Let   be an  -Orlicz function, and let nF  R  such that   .Fd   . 
First we assume  lim / .x x x   . (That is, we exclude the case  x x   
for 0x  .) Then, by Lemma (5.2.10) M   (defined in (130)) satisfies 

  0M x  and   0M x  for 0x  . (The case   , [0, )x x x   , will be 
discussed later.). For M   simplicity, we denote M   by M . In (159), for 
each 0  , the maximum of    .x M x  occurs at the unique point x  
satisfying  M x   . Hence we can treat x  as a function of  , and write  as 
a function satisfying the two equations 

   * ,M ux M x   , where x  is such that  M x u  .                                
(165) 

 We define 2M  on [0, ) in a similar way by 

   2M w wx M x  , where x  is such that  M x w  .                          (166)  

 Then for x  satisfying (166), 
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1 1
2 1

1
22

dx xM w x wM x
dw M xw

                                        (167) 

and 

                 
  2 2

2

M x xM x dxM w
dwM x

 
 


.                                                         (168) 

By (167), (168) and Lemma (5.2.11) 2M  is an Orlicz function such that 
   2 20, 0M w M w    for 0w  . By (159), 

       *
2 2max : 0M y yw M w w   .                                                           (169) 

For each 0y  , the maximum of  2yw M w occurs at the unique point w  
satisfying  2 .y M w  Hence we can treat w as a function of y . But x  is a 
function of w  in (166). Therefore by (166) and (169), 

     *
2 ,

2
xM y M x M x   , here x is such that 

                                               
.

2
x y

M x



                                                (170) 

Our aim is to apply (170) and the duality expressed in (160) to prove (164). 
To this end, let sN , and consider a s-hypercube 1 ... n

nA A   R  such that 
 1 ... n FF A A   , By(158) 

    *1
2

1

*
2...

...
1 inf 0 : 1 / 1

n
n

FF A A M W A A
M w  

  

     
  


    *

2inf 0: 1/ 1FM s     . (171) 

Let  0s  be such that 

          *
2 1/ 1.s FM s                                                                               (172) 

Then   *1
2

...1
ns F A A M

  


 . Replacing y by 1/ s  in (170), and then combining 

(170) with (172), we have the system of equations 

               
     1

2F

xM x M x
s

 


 and                                                      (173) 

                          2
s

M x
x




 .                                                                    (174) 

        We want to estimate s  using Eqs. (173) and (174). To this end, we 
first estimate x  as a solution to Eq. (172). By (173), 
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                         1 1 75
2 F F

xM x M x M x by
s d s s

   
 

 

                      
            

1
11 1 / 130

F

s s by
d s s


  


 


 

                           
      

2
1 11 1

2 12
1 1/

F

s s s
d


 

 
  


 

    
 

 

            
        

12
11

1 1/ 1/
F

s s
d


    


         by (127)                      (175)   

      

       1 1 / 130
F

M s by
d

 


 

if   1Fd   , then 

              
1 1

2 2

12
111

2
F F FM d x d x d x

 
 




 
                             

          by (130)        

  

      
2 1

1 1 because increasingFd x x


      

      130Fd M x by  

      1/M s       by (175)                                                         (176)         

Because M  is increasing, the comparison of both sides of (176) implies 

               
1

2

/Fx d s






                                                              (177)         

If   1Fd   , then by (175), 

               1/ .M x M s                                                                 (178)         

Hence 

                 1/x s  .                                                                        (179)         
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For simplicity, let     max ,1 ,F Fd d    By (177), (179),      

          
1

2 /Fx d s




   ,                                                                   (180)         

which is the estimate that we need. 

Now we estimate s  . By (138), we have  
 

0 1
x

x
x





   for all 0x  . Then by 

(131) and (174), 

         
    

2 112 21 112 2 4
1s

x
x x x x x

x


 


   

 
  

     
   

.                   (181)        

Because  
 

0 1
x

x
x





   for all   
1

2 10,x x x     is decreasing with increasing 

x . Then by (180) and (181), 

                     
12

1 1 11
2 24 / /s F Fd s d s
  
  

       
             

   

                 
1

11
114 1/Fd s s s


 



      (by (127) and because   1Fd   )   

        
1

4 Fd s      (By  (129))                                                                (182) 
                                

which is the estimate we need. 

Let h  be a function with support in f  such that 

             *

...1

1.
nw A A
M h w

  
 .                                                                 (183)  

       (165) and (166), for all 1 ... nw A A   , 

                 2*
2M h w M h w .                                                              (184)  

Hence 

 

    2

2
...1

1.
w A An

M h w
  

                                                                            (185) 
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Then, 

                                       1 *
2

2 2

...
... ...1 1

1 1
nF F A A

Mw A A w A An n
h w h w  

     
   

 

by (185) and the duality in (160) 

                                            *
2

...1
2 1

M
F A An 




   by (161) 

                   1/
8 Fd s


    by (182)                                                      (186) 

Let i  be the canonical projection from nR  onto R . By [219], there exists a 
cover 1, ..., nG G  of 1 ... nA A   such that for every 1,..., ,i n , 

       
 

    1/2

1
1

1 8 .max i
i

G F
r A w r

h w w d


 

                                                (187) 

Suppose f is an nR -polynomial in  nC  with spectrum in 1 ... nA A  . (We 
identify  1

, ...,
n

n
j jr r R  with the character 

1
...

nj jw r r    on n .) By the 
Cauchy–Schwarz inequality, (187) and ([219]) we obtain for  ,i n  

                     
 1...1 1

ˆ ˆ1 1G G
w A A r An w ri

f w h w w f w h w w
    

    

                                                  
 

 
 

11/2 2
22

1 1
1 1

ˆ1 .
i

i

G
r A w r w r

h w w f w
    

   
   
   
   

    

                                              

   
 

 
 

1/ 2 1
2

22

1 1
1 1

ˆ1 .max iG
r A r Aw r w ri i

h w w f w
    

   
   
   
   
    

                                         
1 1

2 2
,

2 2 1 2
n

Fd R f 



                            (188) 

where    1
ˆ1 sup : 2.

RR Cf f B   


Therefore, 

                
1

ˆ ˆ 1
... ...1 1

n

i

f w h w f w h w wG
w A A w A An n
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11

222 2 1 2 .
n

n d R fF
 


  

                         (189) 

By (183), (189) and the duality in (160), 

                 
... ...1 1

*ˆ ˆsup : 1
w A A w A An n

f f w h w M h wM
     

    
  
   

             
11

222 2 1 2
n

n d R fF
 


  

                                              (190) 

Then by (161), 

             
11

2ˆ 22 2 1 2 .
M

n
f n d R fF

 


  
                                      (191) 

which implies (164) with  
122 2 1 2 .

n
D n Rn 


  

Next suppose that  x x  for all 0x  . (Recall we excluded this case in the 
beginning of our proof.) Then     , 0M x M x x x   , and 1 .n

M  
 
 

  R· ·  

Let h be in the unit ball of  n R with support in F. Then 

                  
2

1
...1

... .n F
w A A

h w F A A d s
n  

                                      (192) 

which corresponds to (186). Following the steps from (187) to (191), we 
have 

                                    
11

2ˆ 2 1 2 .
M

n
f n d R fF 


                            (193)   

      

which implies (164) in this case. 

Now we prove the left side inequality of (164). For sN , let 1 ... nA A  be a 
s-hypercube in nR  such that    1 ... n FF A A s    Identify  1

, ...,
n

n
j jr r R  

with the character 
1

...
nj jw r r    on n By the Kahane–Salem–Zygmund 

probabilistic estimates ([219], Theorem X.8), there exists a  1, 1   valued 
n-array   1: , ...w w nw F A A       such that if 
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    1

1 1
...2 2

1

n

s w
w F A A

F

f w
s s   

 





                                     (194)         

then 

               
1 1 11 1 1
2 2 22 2 2

2
log 2 log 2 log 2ns

s sf C f Cs ns Cn



              (195)       

  

where 0C   is a constant. By (158), 

           
 ...1

ˆ inf 0 / 1s s
w F A An

f M f wM  
   

     
  

  

                      
 

1 1
2 2

...1

inf 0 / 1F
w F A An

M s s  
 


  

       
   

   

                         
1 1

12 2inf 0 : 1 .F FM s s s   
  



       
   

                        (196) 

                                 For each ,sN  let 0s   be such that 

                  
1 1

12 2 / 1.F s FM s s s
  



 
   

 
                                              (197) 

Then ˆ
s s M

f


 . By the definition of  Fd  in (75)and because  is an α-

Orlicz function, we have, 

                       .F F Fs d s d s s                                                 (198) 

By the definition of M   in (130) and by (197), 

                          
12

1 11 1 11
1 12 22 21 F s F s Fs s s s s




  


   
    

            
 

                          
1

2 11 1 1 1
11 1 21 2 2

s F F ss s s d s
   

    
       

  
       

 

by (198), and because  is increasing                                                  (199)    
     

By (199) and (127), 
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1

2 12 / .s F F ss s d s   
  

   
 

                                         (200)  

Let 

               
1

12
F sc d 

                                                                          (201) 

  By (200), 

            2 /s F s s c s                                                                  (202)   

If c >1, by (202) and (129), 

           
 

12 1/ .F
s F F

s
s s s s s s

s
    

  
    


                              (203) 

Then (by taking supremum ) 

           
1

2ˆsup : sup : sup / :s s F FM
f s s s s d 



       =N N N== =.           (204) 

If 1c  by (127) and because   is increasing, 

    
1

2
2

1

1
2 21 1 2

1 12 2/ 1/ .c s cs s c s c s c s






  






    

      
                 

                (205) 

Then 

  

































































1

1
2

1
2

/1/1/ scscsc   By (129).                         (206) 

By (202) and (206)  

 
12

2 1
s F s s c s   


 

  
       

.                                                                    (207) 

Because  is concave and 1c , 

  
 

   
s

s

sc

sc
0

0

1
2

1
2




























                                                                (208) 
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Because   00  , 

          

2
1

2
1

0
02

1

c s
s s

c








  









 
 
     



.                                                  (209) 

By (207), (209) and (201), 

      
   

1 1
1 1

2
12 1

2 .F
s F F

s
s s s c d

s
     

   


   


                                (210) 

Hence 

   
   

   
2 1

1
2 1

1
2

F
F

s
d

s


 





 




 


.                                                                     (211) 

Then (by taking supremum) 

         2
1 11

1 2 1ˆsup : sup :s F
M

f s s d


  


             N N     12 2  



Fd   (212) 

By (195), (204) and (212), we obtain the left side inequality of (164) with  

      12/12/1 2log


Cn                     

Corollary (5.2.14)[218]:For , nn F  RN , and  -Orlicz function  , 

                             
   lim F

F
s

s
s





    


.                                 (213)   

Remarks. ((5.2.15) [218]: (i) (A question) we were unable to answer the 
following: on the left side inequality in (164), can   be replaced by  2/1 ? 

(ii) (Example(5.2.2). Let   ilog  denote the i -fold iteration of log. Suppose 
   xxx    is an -Orlicz function such that for some 0N , 

                            
1

log , ,
i

k
i

i

x x x N





                                                (214) 

for 1k and 0i for ,,...,1 ki   We want to show that the Orlicz function 
M  defined in (130) can be approximated in a neighborhood of 0  by 

                        1

1

1
2

1

,
1log

2
1

1

,...,1









 













 
















i

k

k

i

i

x
xxM ,                          (215) 
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in the sense that     1/lim
1,0  xMxMx  . By (130) and (215), 

 
 xM

xM
k

x




 ,...,,

0

1lim

 

   1
1

1
2

1

1
1

21

0

11

1log
2

1

lim












 













 


















xx

x
x k

i
i

x
 

                  
    
    1

1
1

11

/1

log
lim

2
1

1





















 

 












y

yk

i
i

y

i

by substituting x = 1/Θ(y) 

             
1 1 111 1/2

21

1

1 lim log
2

i
k

i

y
i

y y y


 




 
 






             
 by (127) and (129)     

                    1

1

1
1

log
2

1loglim
2

1
1
















 







 

 









i

i

yy
k

i

i

y
    

                       
1
1

1

2 1

1 1log log log log
2 2

i
k k

i i

i i

y x









 

        
    

   by (124) 

  

    
1

1
2

2
1

2 1

log
lim 1

1 1log log log log
2 2

i

i

i

k i
k

i

yi
k ki i
i i

y

y x



















 

 

          




 

 

( by L'Hopital's rule),                                                                               (216) 

as desired. 

Definition (5.2.16)[218]:. (Cf. [219]).) For , ,nn N F  R  and -Orlicz 
function Φ, let 

              


 2,2:/sup
Fp LLF Bfppf .                                  (217) 

This definition extends the definition in (69). Our aim is to establish a link 
between  F and  Fd , where nF  R . To this end, we first analyze 
analogous measurements in the context of  nNT , where   2 : 0,1ite t T . 
We let  NjS j  :  be the set of the canonicalprojections from NT onto :T   

                          , : N
j t t j t t j j    TN .                                 (218) 
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We refer to S as the Steinhaus system, and view it as an independent set of 
characters on the compact Abelian group NT  with the normalized Haar 
measure P . 

For nSF  and  -Orlicz function Φ, the definition of  Fd  is the same as 
in (217). (Replace n by  nNT .) 

Lemma (5.2.17)[218]: (Cf. [219]). For ,, nSFNn   and  -Orlicz function 
Φ, 

                     .16 2/12/12/1 
FFF

n dd                                        (219) 

Proof: By [219], for all   ,2 nN
F TLf                                                       

                            2 2

1/2
, .s FL L

f s f s  N                                    (220) 

 Because      F Fs d s     for all ,Ns ,                  

                              2 2

1/2 1/2
.s FL L

f d s f s   N                          (221) 

Let 
p

psss ...2,2 2

 . By Hölder’s inequality, for ,222  sps  

                              5 2 2

1 .p s sL L L
f f f 



                                                       (222) 

Then by (221) and (222), 

             2 2

11/ 2 1/2 1/2 1/2
1p F FL L L

f d s f d s f
 

                       (223) 

                            .1 2

2/112/1
LF fssd    

Because  

                              12  ssp                                                             (224) 
and Φ is increasing, 

                                                                                                              

Therefore, 

       .22
1

2
1

LFL
fPdf p                                     (225)  
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To verify the left side inequality of (219), let Ns and let nAA  ...1   be a s-
hypercube in nS such that    ....1 sAAF Fn  Consider the Riesz 
product 

                









 








 


nAA
sH



 .
2

1...
2

1
1

.                            (226)     

    

Then  11 
LsH and .2 2/

2
ns

LsH   Hence for ,21  p , 

          .1/1/1,2
22

1

21 


qpHHH q
ns

q
Ls

q
LsLs p .                            (227)      

   

Let 

 
   

....
...,...,

1
11





nn AAF

nsh


                                                          (228)        

Let E  (expectation) denote integration with respect to Haar measure, either 
on Ω or on NT . Let nE denote the n-fold iteration of E . By Hölder’s 
inequality and (227) with ,xq   

          22 2 .p q s

ns
n ns

s s s s s F sL L L L
H h H h h s h    E                        (229)     

    

Because 

              2 ,n n
s s FH h s E                                                       (230)      

and 

                       2

1
2 ,s FL

h s                                            (231)      

we obtain 

                     
1
24 ,n

F Fs s                                                  (232)     

which implies the left side of (219).                                                            

Corollary (5.2.18) [218]: (Cf. [219]). For , nn N F  R , and α-Orlicz 
function Φ, 
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                      .416 2
1

2
1

2
1













F
n

FF
n dd                                 (233)      

Proof. For each Nj , let jr  be the Rademacher function in R such that 

                   , 1,1jr w w j w    N ,                                                 (234)   

and let j be the Steinhaus function in S such that 

                              , .j t t j t T   N                                                      (235)      

Let f be an F-polynomial (i.e., spect   f = support ,Ff 


, and spect f  is 
finite). Define for     ,,...,1

nN
n Tiit   

               
 

   
1 1 1

1

1
,...,

ˆ ... ... ... .
n n n

r jn

t j j j j n j j
r r F

f f r r t t r r 


                        (236) 

 For   .nNTt there exists  n
t L  1  such that 

      ,...,......ˆ
111 1 fspectrrttrr

nnn jjnjjjjt                             (237)  

                                        1 4n
t L
                                                      (238)  

(See [219]). Then 

  ,4* q

Lt
nqq

Ltt
q

L qqq fff                                                                        (239)  

where⋆denotes convolution. Integrating both sides of (239) with respect to 
the Haar measure on  nNT , applying Fubini’s Theorem, and then the right 
side of (219), we obtain 

                       ,4 22
1

2
1

LF
n

L fqdf q                                          (240)   

which implies the right side of (173).The proof of the left side of (233) is a 
transcription of the proof of the left side of (219).                                                                                   

Suppose   ,A is a probability space. For any Orlicz function  , consider the 
Orlicz norm corresponding to  , 

                 0inf 0 : / 1 , .X E X X L


       ,PA                    (241) 

The classical Kahane–Khintchin inequality states that: if    2exp 1x x  

for ,0x , then there exists  0K  such that, 
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        2
2

, , , .RL pX K X X L
 
   P                                                    (242) 

 (see [87].)We will extend the inequality in (183) to nF  R  Let  xx   
be an  -Orlicz 

function (as per Definition (5.2.1). Define 

          
1

2 2 , 0f x x x x   ,                                                              (243)  

and let 

                            .1 fg                                                                            (244) 

Lemma (5.2.19)[218]: (Cf. [219].) Suppose (A,P) is a probability space, and 
  .2 ALBX   

Then the following are equivalent: 

(i) there exists  A0 such that 

                    2
exp ;lim

x
A g x X x


  P                                               (245) 

(ii) there exists  B0  such that 

            ;2:/sup 2
1

2 BpppX pL













                                                   (246) 

(iii) there exists  C0 such that 

                     2explim
x

tg X Ct


    ;                                                     (247) 

(iv) there exist  D0 such that 

      2
exp .D g X  E                                                                           (248) 

Proof: (i) (ii). Suppose      2
1exp : ,lim A g x X x Bx    


P  For 

2p  sufficiently large, 

 
0

p pX x dx


  E P  
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  2 2

21
2 2

1 exp
p p

p p
p

p p

p p B A g x dx







                
                                       (249) 

 let  .
1











 pxgV  Then    

             1 2 2
p

p p px g y f y y y    .                                                  (250) 
        Hence 

    
 

2
1 2 22

2

1/ 1
p

p
y

dx dy py y y
y




 
 


    
  

 

   1 2 22
p

ppy y  . (by(126)).                                                               (251) 

When   2 2 ,
p p

x P p


  we have .y p  Hence by (249) and (251), 

       1 2 222 2
1 2 exp .

pp p
p p

p

X p p B py y Ay dy


  


  E                       (252) 

By the Cauchy–Schwarz inequality, 

                  
1
2

2 1 22 2
1

0

2 / / exp
p p

p pX p p B p A Ay Ay dy


   


     
  
E     

               
1
2

2 2/ exp .
p

p

A y Ay dy 
   

  
                                             (253) 

The first integral on the right side of (253) is the  12 p  moment of a 
Gaussian random variable with mean 0 and variance A2/1 . Hence there 
exists 02 B  such that 

         .exp/ 1
2

2

0

12 


  ppp pBdyAyyA                                                 (254) 

Next we estimate the second integral on the right side of (253). By property 
(iii) in Definition (5.2.1),   yy /2  is eventually decreasing. Because p is 
sufficiently large, for all py  , 
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       .//2 ppyy                                                                                (255) 

Then 

                     
  

    2 21 / exp
p

p
p

A y Ay dy
p

 




  

                                                   dyAypyA
p

p 22 exp//  


  

                                                 dyAypyA
p

p 2exp/  


        (by (255)) 

                            2
3

02

1 / expp B
p A y Ay dy B

p




                                 (256) 

for some 03 B (by estimating p-th moments of Gaussian random variables). 
Then 

       2 2
3/ exp

p pp

p

A y Ay dy B p  


  .                                             (257) 

By (253), (254) and (257), there exists 0B  such that 

              
1

2 2 .
Lp

X Bp p


                                                                    (258) 

   .iiiii  . We  assume 1B . For t > 0, 

              
0

exp .
!

k k

k

ttg X tg X
k





E E                                                    (259) 

For each ,1k  let 

               
2 2

, [0, ),

k

k
kf x x x x 

  
       

                                           (260) 

and let 

                      1.k kg f                                                                          (261) 

Then ff 1  and .1 gg  We will show that kg  is increasing for ,1k and is 
concave for .2k To this end, it suffices to show that kf  is increasing for 

,1k  and is convex for .2k  By (260), 
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1
1 2 0,k

y
f x x y y

y
 

 


       
  

                                                 (262) 

Where kxy /2 . Hence 1 kk fg  is increasing for all .1k  By (262), 

        
 

 
 

1
2 22

12 1
2 2k

k y ykf x x y k y y
k y y

    
 

 
              

   
 

                
 

2

1
2

yk y
y




            
.                                                              (263) 

Because Φ is an Orlicz function, for all 0x , 

          
 

 
 

2 21 2 0.
x x

x x x x x x x
x x

   
    

 
            

  
             (264) 

For ,2k the expression inside the brackets of (263) is 

   
 

 
 

 
 

2

21
1 1

2 2 2
k y y yk kk y y y

y y y
    


  

                  
 

   
 

 
 

21 2
y y

y y
y y

 
  

 
 

     

 0 by (264)                                                                                          (265) 

Hence 0kf for .2k Therefore 1 kk fg  is concave for .2k  as desired. 

By (243), (244), (260) and (261), 

                k
k

k
k

kk xgxfxfxg   11 .                                                (266) 

Then, by Jensen’s inequality, for 2k , 

                       k k k
k kg X g X g X E E E .                                    (267) 

By assumption (ii) and because ,12 L
X  for 2k , 

                 2 2
k k

k kX B K k


E .                                                           (268) 

Because 1B , we have    kkB   /2 . Hence 
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2 2 222 2

kk k

k
kX B k B k f B k



  
                           

E .                                        (269) 

By (267) and (269), for 2k , 

    
2 2 12 2

2

k k
kk

k kg X g f B k B k B k  
 
              
 

E  .                                   (270) 

Next we estimate    g XE . By (243),     1/2
0 1f x    for 10  x . Then 

  10  xg  

for   1/ 2
0 1x   (because  1 fg . Also by (243), for   1/2

1x  , we have 

                                       
1/1 1

1/ 2 21 1g x x x


  
  

   
 

 

                                         
21

21x 
 

  
 

(because   
1
21 1)x 


  

        12 1x 


 .                                                                                   (271) 

Let     1
max 2 1 ,2k 


 . Then 

                                
  

  
  

1 1
2 21 1

1 1
X X

g X g X g X
 

          
      

E E E  

   1 21 1 X K


  E (because 2 1X E ).                                          (272)                          

Applying (270) and (272) to (259), we obtain for t sufficiently large, 

   2

2

exp 1
!

k kk

k

ttg X Kt B K
K






  E  

 2exp Ct     (because  !2//2!/2 KKK k
k

 )                                          (273) 

for some 0C  . 

   iiii  . Because g is increasing  1gg  , for 0x  and 0t  , 

      X x g X g x  P P  
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exp

exp

tg X

tg x


E
 (by Chebyshev’s inequality).                             (274) 

Then by assumption  iii , for  0t sufficiently large, 

     
  

2exp
exp

Ct
X x

tg x
 P .                                                                     (275) 

Put   Cxgt 2/  in (274), and obtain (245) with CA 4/1 . 

   iVi  . Suppose      2

1lim exp :x A g x X x M   P , and let 02 M  be 

sufficiently large so that       2

1 expX x M A g x  P  for 2Mx  . Choose 

AD 0 . Then 

                          2 2

0

exp expD g X D g X x dx


   
 E P  

           
2

11
1 22

2 log /
M

M X g x D dx


 
   

 
 P  (because g is increasing) 

              















































2

2

2
1

2
1

1
12 /logexp

M

dxDxggAMM  (by assumption  i  (i) 

  1212

2

MMdxxMM
M

D
A

 
 

.                                                                (276) 

   iiV  . Because g is increasing, for 0x  sufficiently large, 

                                     2 2
X x D g X D g x  P P  

  
   
   

2

2

exp

exp

D g X

D g x


E
(by Chebyshev’s inequality),                                (277) 

which implies (245).  

Lemma (5.2.20)[218]: Let f and g be the functions defined in (243) and 
(244). Let 

                    2
exp 1, 0.h x g x x                                              (278) 
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Then there exists 0N   such that   0h x   for all .x N . 

Proof: 

                       2
2exp ,h x g x g x g x                                   (279)  

and 

                2
2exp ,h x g x I x                                          (280)  

Where 

                               2 2 2
2 .I x g x g x g x g x g x          (281)  

Because 1g f  , we have 

                    1, 0.g f x f x x                                         (282)   

Hence 

                           2
0.g f x f x g f x f x                              (283) 

 By (282) and (283), 

                
  3 .

f x
g f x

f x


  


                                                    (284)  

By (281) and (284) 

                

                    2 2 2
2I f x g f x g f x g f x g f x g f x      

                     2 222x g f x g f x xg f x     ( because 1g f  ) 

                
     

 
  

2
2 2 3

1 12
f x

x x
f x f x f x


  

  
by ( 282) and (284) 

       
  

 
 

2
2

1 2 1 .
f x

x x
f xf x

        
                                          (285)      
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By (202) with 1K  , 

             
    

21 1
1 2 2 1 22 2

2
.

x
f x x x x x x

x
 


   


 

      
  

            (286) 

By (263) with k = 1, and because  
 

2
2

2
0 1

x
x

x






   and 0,    

     

        
  
 

  
 

 
 

2 2 21
2 2 2 4 22

2 2 2
1 2 1 2

x x x
f x x x x x x

x x x


  
   

  


           
  

 

     
1

2 2 2 1 2 1 .x x                                                           (287) 

Hence 

           
 
 

11 2.
f x

x
f x

 



                                                     (288) 

By (285) and (288), 

                  
  

 2
2

1 2 1 .I f x x
f x

  


                                     (289) 

Replacing x  by  g x  in (289), we have 

              
   

   2

2

1 2 1 .I x g x
f g x

  


                        (290)    

Then for   
1

1 21 / 2 ,x g    we have   0I x  which implies   0.h x      

Let   be an Orlicz function such that for some 0,N   

            2
exp 1, ,x g x x N                                           (291) 

where g  is defined in (244). 

Lemma (5.2.21)[218]: (Cf. [219]).Suppose  ,A P  is a probability space, 
and  
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 2 .
FL

X B
A,,P

. Then the following are equivalent: 

(i) there exists 0 D    such that 

       2
exp ;D g X  E                                                 (292)       

                .X

                                                                      (293)  

Proof:    iii  . Suppose 

                   2
exp ,D g X ME                                                    (294) 

for some .1M . Let 0  be such that  DM ,4max  and   1/ .
2

   . 

Then 

             
1/ 1 .
2X NX 

  E                                                          (295) 

Because   is concave, we have for 1c  and ,0x  

                        
       0 0cx x

cx x
    

 .                                     (296) 

Then, because  0 0,  , 

                  
         0

.
cx x x x

cx x x cx x
    

                                (297) 

Let 

                      .0,2
1

1 










 xxDgxL


                                   (298) 

Then 

         xDDx
2

1

12
1

1












    xLgD 12
1

1 





   

                
11

2 21 2D L x L x



 


 (by (244) and (245)) 
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1

2 21 12D L x D L x



      

             
11

2 21 12 .D L x D L x


     (by (297) and because 11 D ) 

      xLDg 11             by (243) and (244).                                    (299)         

By (298) and (299), 

          .2
1

12
1

22
1

1











 xDgDxLDxg


                                  (300) 

Because ,2M  we have 

             .2 2
1

12
1

2
1












 xDgxgDM


                                             (301) 

Then 

       
21 211 2

1

1exp 1 2
!

k

k
g D X M D g X

k




  



  
   

  
E E  

                                             2

1

11
!

k

k

D g X
k





  E  (because 1M ) 

                                          
   211 exp

2
D g X

M
  E  

                
2
3

       by (294)                                 (302)                                 

By the definition of  in (291), we have 

       

21 1
1 12 21 exp 1 1X N X ND X g D X

 

 
  

  

    
     

    
E E

 

                                            2
1

 by(302).                                                (303) 

Let   .,max 2
1

1















 DK  By (295) and (303), we have 

                                / 1.X K E                                                       (304) 
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Therefore  

                            .X K

                                                                     (305) 

   .iiii  If KX 


 for some 0K , then 

                              / 1.X K E                                                           (306) 

Hence by the definition of   in (291), 

               
2

1.exp / 1 1 X Ng X K  E                                                (307) 

Let 

              2
max 4, 2 exp / .M g N K E                                         (308) 

By (307) and (308), 

              2
exp / 2 .

2
Mg X K M  E                                         (309) 

We may assume .1K  By (303) and (304), for ,0x  

                            
1

2 2 .x f g x g x g x

                             (310)   

Then 

                     
1

1 1 2 22
/ / /f g x K g x K g x K



  
      

              
 

                                           
1

2 2 /g x g x K

  

                                             Kx / (by (310)) 

                                  ./ Kxgf                                         ( 311) 

Hence                             

                                     .//
1

KxgKxg                                               (312) 
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Let /2/1 KD  . By (312) and  (309) , we obtain  

           2 2
exp exp / ,D g X g X K M E E                                          (313) 

as desired.                                                                                                             

The  following is a link between the combinatorial structure of nF  R  and 
tail probability estimates involving random variables in  2 , .n n

FL  P . 

Theorem (5.2.22)[218]: For , nn N F  R , and  -Orlicz function Φ, 

                             


n
FLF BXXd 2:sup


                            (314) 

Proof: Observe that statement (iv) in Lemma (5.2.19) is the same as 
statement (i) in Lemma (5.2.19).Then by Lemma (5.2.19) and Lemma 
(5.2.21) 

   2

1/22sup / : 2. np
FLL

X p p p X B





 
    

 
 

      2sup : .n
FLX X B

 
                                                       (315)  

Because              1/21/2 /2p p p    

 

       2

1/21/2 /2sup / : 2,p n
F

F L L
X p p p X B 


                      (316)   

(Definition(5.2.16))  Hence 

       2

1
2 sup : ,n

F
F L

X X B



 

 
       
 

                             (257) 

which, by Corollary (5.2.18) implies (314).   

Corollary (5.2.23)[274]: If nn N and F  R ,then for   -Orlicz functions 
j , 

 2

1 1
sup : n

F

j

n n

F j j L
j j

d if and only if X X B



 

            
    
                 (318) 

Proof: By Lemma (5.2.19) and Lemma (5.2.21) we have  
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                               2

1/2
2

1
sup / : 2,. n

F
p

n

j j j L
j L

X p p p X B







      
  
  

if and only if   2

1
sup : for .n

Fj

n

j j L
j

X X B





 
   

 
                               (319)     

 since            1/21/2 /2

1 1

,
n n

j j
j j

p p p then 
 

    

   2

1/2
1/2 /2

1 1 1
sup / : 2, n

Fp

n n n

F j j j j L
j j jL

X p p p X B 


  

            
     
   . 

Hence 

              1/ 2

1

n

F j
j




 
   

 
 if and only if 2

1
sup : for n

Fj

n

j j L
j

X X B





 
   

 
  

Which gives the result by Corollary (5.2.18).  

 

Chapter 6 

Mass Transportation of Free Functional Inequalities and Poincare 
Inequalities 

     We permit to give a new and very short proof of a result of Otto and 
Villani-Generalization to other type of concentration are also considered. In 
particular, we show that the Poincar'e inequality is equivalent to a certain 
form of dimension free exponential concentration. The proofs of these result 
rely on simple large Deviations techniques. We give equivalent functional 
form of these Poincare type inequalities in terms of transportation-cost 
inequalities and inf-convolution  inequalities workable sufficient conditions 
are given a comparison is made with super Poincar'e inequalities , we also 
addresses two version of free Poincare inequalities and their interpretation 
in terms of spectral properties of Jacobi operators. The last establish the 
corresponding inequalities for measures on R  with the reference example 
of the Marcenko-pastar distribution. We show some verifications of series 
of transportations inequalities. We give a result by using a nondecreasing 
super additive function. Wegeneralize a Lamma used in deriving 
concentration inequalities and Bobkov-Ledoux result. We determined a 
particular value of delta with a general some potential. We find a norm of a 
projection with respect to 1 1   . We deduce the values of  , W V  
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interms of the relative free Fisher Information to construct the transportation 
cost result.   

Section (6.1): Characterization of Dimension Free Concentration In 
Transportation Inequality 

One says that a probability measure on dR  has the Gaussian 
dimension free concentration property if there are three non-negative 
constants a, b and 0r  such that for every integer n , the product measure n  
verifies the following inequality: 

                      20
2 01 a r rn A rB be r r                                         (1) 

For all measurable subset A of  ndR  with   1
2

n A   denoting by 2B  the 

Euclidean unit ball of  ndR .The first example is of course the standard 
Gaussian measure on R  for which the inequality (1) holds true with the 

sharp constants 0
10,
2

r a   and 1
2

b   . Gaussian concentration is no the only 

possible behavior; for example, if  1,2  the probability measure 

  1 px
p pd x Z e dx  verifies a concentration inequality similar to (1) with 2r

replaced by  2min ,pr r . In recent years many developed various functional 
approaches to the concentration of measure phenomenon. For example, the 
logarithmic-Sobolev inequality is well known to imply (1); this is renowned 
Herbst 
argument[174],[165,255],[276,254],[252,101,61],[138,179,217.257,69,256,
191],[17],[238],[261,239,58,59],[120]and[23,22] . 

One shows with a certain generality that Talagrand’s transportation-cost 
inequalities are equivalent to dimension free concentration of measure. Let 
us give a flavor of our results in the Gaussian case. Let us first define the 
optional quadratic transportation-cost on  dP R , one defines 

                        2
2 2

, inf ,T x y d x y


  V                                                    (2)  

where  describes the set  ,P v   of probability measures on d dR R  having 
V  and  for marginal distributions. One says that   verifies the inequality
 2T C , if  

           2 , , dT CH    RV V V P                                                   (3)  Where 

 H V  is the relative entropy of V with respect to   defines by 
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   log dH d
d




 
  

 


VV V if V  is absolutely continuous with respect to  and

otherwise. The idea of controlling an optimal transportation-cost inequalities 
by the relative entropy to obtain concentration first appeared in Marton’s 
works [138,139]. The inequality 2T  was then introduced by Talagrand in 
[179], where it was proved to be fulfilled b  Gaussian probability measures 
in particular, if   is the standard Gaussian measure on R , then the 
inequality (3) holds true with the sharp  constant  C 2 .We show theorem . 

Theorem (6.1.1) [194]: Let   be a probability measure on dR  and 0a  ; the 
following propositions are equivalent: 

(i) There are 0 , 0r b    such that for all n the probability n  verifies (1).     

(ii) The probability measure  verifies  2 1/T a . 
Let   be a probability measure on and  iiX an . .i i d  sequence of random 
variables with law  defined on some probability space  , P .The empirical 

measure nL is defined for all integer n  by
1

1
i

n

n X
i

L
n




  ,where x , stands for the 

Dirac mass at point x . 

According to Varadarajan's Theorem (see [222]), with probability 1  the 
sequence  n nL  converges to   in  P  for the topology of weak 
convergence, this means that there is a measurable subset N  of with 
  0N P such that for all w N , 

                                          n nfdL w fd   

for all bounded continuous f  on X . 

The topology of weak convergence can be metrized by various metrics. 
Here, one will consider the Wasserstein metrics. Let 1p   and define 

                     0 1: , ,p
p x x d x     P V P V   for some 0x  . 

For all probability measures  1 2, p V V P , define 

                  1 2, inf , ,p
pT x y d x y


  V V and     

1

1 2 1 2, , p
p pTV V V VW  

where   describes the set  1 2,P V V of couplings of 1V and 2V . 



198 
 

According to [23] pW  is a metric on  p P  and for every sequence n  in 
   , , 0p p n   P W , if and only if n  converges to  , for the weak 

topology and    0 0, ,p p
nx x d x x d     , for some (and thus any) 0x  . 

From these considerations, one can conclude that if  p P  then 
 , 0p nL  W  with probability one, and in particular,   , 0p nL t  P W  

when n  , for all 0t  . Moreover, supposing that  p P  with p , it 
is easy to check that the sequence  ,p nL W  is bounded in  ,p  PL , thus it 
is uniformly integrable and consequently  , 0p nL    E W . This is 
summarized in the following proposition: 

Proposition (6.1.2) [194]: If  p P , then the sequence  , 0p nL  W  
almost surely (and thus in probability) and if p , then the convergence is 
in  1 : , 0p nW L    L E . 

On the other hand, Sanov's Theorem (see [5]) says that for all good sets

 , nA L AP , behaves like  nH Ae   when n is large, where  H A  stands for 
the infimum of  .H   on A . So, when A  does not contain  , 0H A    and 
this probability tends to 0 exponentially fast. With this in mind, one can 
expect that   ,p nL t P W behaves like  nH te where

      inf : . . ,pH t H s t t  WV V V .  

The following result validates partially this heuristic, stating that 
  ,p nL t P W tends to 0 not faster than  nH te . 

As in [190], the use of this Large Deviations technique will be the key step 
in the proof of Theorem (6.1.1) . 

As in the preceding section,  ,  will be a Polish space. The product space 
n will be equipped with the following metric: 

                                           
1
22

2
1

, ,
n

n i i

i
x y x y 



   
 
  

 (here  1 2, ,..., nx x x x with ix  for all i ). 

In the general case, one says that a probability measure  on  ,  verifies 
the dimension free Gaussian concentration property, if there are 0 , , 0r a b   
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such that for all n the probability n verifies 

                         20
01 ,a r rn rA be r r                                                (4) 

for all measurable nA   such that   1
2n A  , where rA  denotes the r-

enlargement of A defined by rA  { nx   such that there is x A with
 2 ,n x x r  } 

Of course, when d  R is equipped with its Euclidean metric one has 
2

rA A rB   and one recovers the inequality (1). 

Let us recall the inequality of the 1T transportation-cost inequality. One says 
that a probability measure   on  verifies  1T C , if 

                                          1 , ,CH    V V V PW  

According to Jensen's inequality, the inequality  1T C is weaker than  2T C ; it 
was completely characterized in terms of square exponential integrability in 
[93]. 

The proof of the following well known result makes use of the so called 
Marton's argument. 

Proposition (6.1.3) [194]: (Marton). If   verifies  1T C , then for all 

measurable subset Aof  , such that   1
2

A  . 

                                       
0

21
01 ,r c r rA be r r

  
     

where  0 log 2r C . 

Proof: Consider a subset Aof  , and define  1 /A Ad d x A   . Let \ rB A

and define B  accordingly. Since the distance between two points of A  and 
B  is always more than r , one has  1 ,A B r  W . The triangle inequality 
and the transportation-cost inequality  1T C  yield[274] 
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1 1 1, , ,

log 1 / log 1 / log1 log log1 log

1log log log log log
2

A B A B A B

r

r CH CH

C A C B c c A c c B

c A c B c c X A

         

   

   

    

     

          

W W W

                                                                 

       log1 log2 log log log2 log logr rc c c x c A c c X A              
                                 

   0 0log1 log log1 logr rr c A r r c A                 

                                                                    

        2 2
0 0

1log1 log log1 logr rr r c A r r A
c

              

                                                                                  

       20

1
2 1/2

0 1 1 r rr rce r r A A e 
 

     


 

Rearranging terms gives the result. 

Theorem (6.1.4) [194]: Let  2 P and 0a  ; the following Propositions 
are quivalent: 

(i) There are 0 , 0r b  such that for all n the probability n verifies (4), 

(ii) The probability  verifies  2 1/T a . 

Proof: Let us show that (ii) implies (i). The main point is that 2T  tensorizes ; 
this means that if  verifies  2 1/T a then n verifies  2 1/T a on the space n  
equipped with 2

n  we can find a general result concerning tensorization 
properties of transportation-cost inequalities in [190].  Jensen's inequality 
implies that 2

1 2TW  and consequently n verifies  1 1/T a (on n equipped 
with 2

n ) for all n . Applying Proposition (6.1.3) to n gives (1) with 
 0 log 2 / , 1r a b   and a. 

Let us show that (i) implies (ii). For every integer n, and nx  , define 
1

1 i

nx
n xi

L n 


  . The map  2 ,x
nx L  W is1/ n Lipschitz . Indeed, if 

 1,..., nx x x  and  1,..., ny y y are in n , then thanks to the triangle 
inequality, 
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                                             2 2 2, , ,x y x y
n n n nL L L L  W W W  

According to the convexity property of  2 .,.T (see e.g. [257]), we have 

                                 
2

2
2 2 2

1 1

1 1 1, , , ,i i

n n
x y i i n
n n x y

i i
T L L T x y x y

n n n
   

 

     

which proves the claim. 

Now, let  i iX be an i.i.d sequence of law  and let nL be its empirical 
measure. Let nm be the median of  2 ,nL W and define   2: ,x

n nA x L m W . 

Then   1/ 2n A  and it is easy to show that   2: , /r x
n nA x L m r n  W . 

Applying (4) to A gives 

                      2
2 0 0, exp ,n nL m r n b a r r r r       P W  

Equivalently, as soon as   0nn u m r  , one has  

                              2

2 0, expn nL u b a n u m r     P W . 

Now, since  2 ,nL W converges to 0  in probability (see Proposition (6.1.2)), 
the sequence nm  goes to 0  when n goes to . Consequently, 

                2 1
1log , lim log ,nn

L
n

   


   P V PW W  

                                 2
2

1limsup log , , 0n
n

L u au u
n




    P W  

The final step is given by Large Deviations. According to Theorem (6.1.4), 

                     2 2 2lim sup log , inf : . . ,n
n

L u H s t u   


    P V V P VW W  

This together with the preceding inequality yields 

                              2
2 2inf : . . ,H s t u au    V V P VW  

or in other words, 

                                            2
2 ,a H W V V  

and this achieves the proof.                                                                      
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Let us make a remark on the proof. We will notice that the second part of the 
proof applies if one replaces  2 .,W by any application  :   RP which 
is continuous with respect to the weak top'ology, verifies   0  , and is 
such that for all integer n , the map  :n x

nx L  R  is 1/ n Lipschitz for 
the metric 2

n on n . For such an application , one can show, with exactly 
the same proof, that the dimension free Gaussian  concentration property (4) 
implies that    2a H  V V , for all V  and it could be that this new 
inequality is stronger than 2T . Actually; it is not the case. Namely, it is to 
show that if verifies the above listed properties ,then    2 ,  WV V , for all 
V , and so the choice 2  W  is optimal. 

Our aim is now to recover and extend a theorem by Otto and Villani stating 
that the Logarithmic-Sobolev inequality is stronger than Talagrand's 2T  
inequality. 

Let us recall that a probability measure   on   verifies the Logarithmic-
Sobolev inequality with constant  C 0 (LSI  C for short) if 

                                               
2

2H f C d    

for all locally Lipschitz f , where the entropy functional is defined by 

                                 log log 0,H f f fd fd fd f       , 

and the length of the gradient is defined by  

                      
 

limsup
,y x

f x f y
f x

x y


                                          (5) 

(when X  is an isolated point, we put   0f x  . 

. Namely, if  , verifies the  LSI C inequality, then according to the additive 
property of the Logarithmic-Sobolev inequality, one can conclude that the 
product measure n verifies 

                     22

1
n

n
n

i
i

H f C f x d x





                                           (6) 

where the length of the 'partial derivative' i f  is defined according to (5). 
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The problem is that, in this very abstract setting,  2

1

n

i
i

f x


 and  2f x

(computed with respect to 2
n ) may be different. The tensorized 

Logarithmic-Sobolev inequality will yield concentration inequalities for 
functions such that  2 1 n

ii
f x    almost everywhere and this class of 

functions may not contain 1 -Lipschitz functions for the 2
n  metric. 

Nevertheless, this difficulty can be circumvented as shown in the following 
theorems. 

Theorem (6.1.5) [194]: Let , be a probability measure on  and suppose 
that for all integer n  the function nF defined on n by    2 ,x

n nF x L  W

verifies 

             2

1

1/ ,
n

n
i n

i

F x n for 


  almost every nx  .                              (7) 

If  , verifies the inequality  LSI C , then  , verifies the inequality  2T C . We 
have seen during the proof of Theorem (6.1.4) that the functions nF  are 
1/ n Lipschitz for the metric 2

n . Suppose that d  R or a Riemannian 
manifold M , then according to Rademacher's Theorem, nF  is almost 
everywhere differentiable on  ndR (resp. nM ) with respect to the  Lebesgue  
measure. It is thus easy to show that condition (188) is fulfilled when  , is 
absolutely continuous with respect to Lebesgue measure. This permits us to 
recover Otto and Villani's result as stated in [69]. 

Proof: As we said above the product measure n verifies the inequality (6). 

Apply this inequality to 2 n
s F

f e , with s R . It is easy to show that

2 2

2
n

s sF F

i i n
se e F   , thus, using condition (7), one sees that the right hand 

side of (6) is less than
2

4
nsF nsC e d

n
 .  

Letting   nsF ns e d   , one gets the differential inequality: 

                                

         
2

2 2 2

1 1

sn n Fnn n n
i i

i i
H f C f x d x C e x d x  
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2 2

2

2
1 4 4

n
sFn n sFn n

i
i

s CsC e Fn x d x e d x
n

 


     

Since 2 2

2

s sFn Fn

i i
se e Fn    

From the definition of the relative entropy we deduce that  

 
2

2 2 2 2log logn n n nH f f f d f d f d       
     

                 logsFn n sFn n sFn nsFne d e d e d      
     

Then we see that 
2

log
4

sFn n sFn n sFn n sFn nCssFne d e d e d e d
n

      
      

Letting   sFn nZ s e d   We get the differential inequality  

       
2

log
4

Cssz s z s z s z s
n

   .So that
 
 

 
2

log
4

Z s Z s
sZ s s n


 
C

 

The integrating this yields  

 
2

,
4

sFn n s n Csz s e d e Fnd s        R  

This implies that 

                                           2/C
2 2, , nt

n nL t L e      W E WP                   

According to Proposition (6.1.2)  2 , 0nL    E W . Arguing exactly as in 
proof of Theorem (6.1.4), one concludes that the inequality  2T C holds.                

With an extra assumption on the support of  , one shows in the following 
theorem that the implication 2LSI T is true with a relaxed constant: 

Theorem (6.1.6) [194]: Let  be a probability measure on  such that 

              2 2. . , , 0, ,x s t x u x K K u            RV V                       (8) 

If   verifies the inequality  LSI C then  satisfies  2T C . 

The condition (8) first appeared in a paper by Cuesta-Albertos and Tuero-
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Dfaz on optimal transportation. Roughly speaking, this assumption 
guaranties the uniqueness of the Monge-Kantorovich Problem of 
transporting   on a probability measure V  with finite support (see [106]). 
For   on dR , the condition (8) amounts to say that   does not charge 
hyperplanes. We think that working better it would be possible to obtain the 
right constant C instead of 2C. 

Proof: We will use a sort of symmetrization argument. First observe that the 
probability measure n n  verifies the following Logarithmic-Sobolev 
inequality: 

                          2 22
,1 ,2

1

, ,
n

n n n n
i i

i

H f C f x y f x y d x d y   


      

for all    : : , ,n nf x y f x y   R , where ,1i f (resp. ,2i f ) denotes the 
length of the gradient with respect to the ix -coordinate (resp. the iy -
coordinate). 

Define    2, ,x y
n n nG x y L L W for all , nx y  . One wants to apply the 

tensorized Logarithmic-Sobolev inequality to the function nG . To do so one 
needs to compute the length of its partial derivatives. Let us explain how to 
compute  1,1 ,nL G a b  , for instance. For every z  , let  2, ,..., nza z a a ; 
obviously, 

   
   

   
 1 1

2 2 2 2

1 1
2

, , , ,1limsup limsup
, 2 , ,

za b a b za b a b
n n n n n n n n

a b
z a z an n

L L L L T L L T L L
L

z a L L z a  

 
 

W W

W
 

According to the condition (8), the probability measure  is diffuse; so the 
probability of points nx  having distinct coordinates is one. So, one can 
suppose without restriction that the coordinates of a (resp. b) are all 
different. If z is sufficiently close to 1a , the coordinates of z and a are all 
distinct too. According to e.g [23], the optimal transport of a

nL  on b
nL is given 

by a permutation, this means that there is at least one permutation a of
 1,..., n  such that 

                                           2
1

2
1

, ,
n

ia b i
n n

i

T L L n a b



   

Let us denote by S  the set of these permutations and define accordingly the 
set zS  of permutations realizing the optimal transport of za

nL  on b
nL . 
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Without loss of generality, one can suppose that S  is a singleton. Indeed, let 
 and  be two distinct permutations and consider 

                               2 2

,
1 1

: , ,
n n

i in i i

i i

H x x b x b 
    

 

    
 

   

Applying Fubini's Theorem together with the condition (8), one gets easily 
that  , 0n H   . This readily proves the claim. In the sequel we will set

 S   . 

Now we claim that if z is sufficiently close to 1a , then  zS   . Indeed, let 

                              21
0 2

1

min , , 0
n

ii a b
n n

i

n a b T L L

 
 




    
 

  

then there is a neighborhood V  of 1a  such that for all z V , one has 

                                           2 2 0, , / 3za b a b
n n n nT L L T L L    

and for all permutation , 

                                 2 2
1 1

0
1 1

, , / 3
n n

i i ii

i i
n za b n a b    

 

    

Now, if z V and zS  , one has  

                         
       

   

22
1 1

0
1 1

2 0 2 0

, , / 3

, / 3 , 2 / 3

n n
ii ii

i i

za b a b
n n n n

n a b n za b

T L L L L

   

 

 

 

 

   

 
T

 

By the definition of the number co, one concludes that   , which proves 
the claim. Now, if z V , then 

                    
   

 

     
 

1 12 2
1

2 2

1 1

, ,, ,

, ,

za b a b
n n n n

z b a bT L L T L L

z a n z a

  

 

 


  

                  
          * 11 1 101 , , , ,

,
z b a b z b a b

np z a
       


 

 
 

            * * * *1 1 1 1
1

, 1, , , ,
,

z a
z b a b z b s b

nn z a
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     1 111 , ,z b a b

n
  
 

   

So letting 1z a , Yields 

  
 

11

2

,

,a b
n n

a b
L

n L L





W . 

Doing the same for the other partial derivatives yields: 

                                    
  

 

2

2 1
,1 2

1 2

, 1,
,

in i
n i

i n a b
i n n

a b
G a b

nn T L L








  


  

Finally,  

                                         2 2

,1 ,2
1

2, ,
n

i n i n
i

G a b G a b
n

     

for n n  almost every , n na b    . 

Now reasoning as in the proof of Theorem (6.1.14), one concludes that 

                                    2/ 2

2 2, ,
CX Y X Y nt

n n n nL L t L L e    P W E W  

On the other hand, an easy adaptation of Theorem (6.1.14) yields 

                   
    

        
2 2

1 2 1 2 2 2 1 2

1lim inf log , ,

inf : , . . ,

X Y X Y
n n n nn

L L t L L
n

H H s t W t  


    

   

P

V V V V P V V

W E W
 

From this follows as before that 

                                           2 1 1 22T C H H   V V V  

holds for all probability measures 1 2,V V belonging to  2 P . Taking 2 V

gives the inequality  2 2T C . 

Our next goal is to recover and extend a result of Lott and Villani. 
Following [117], one says that a probability measure  on  verifies the 
inequality  LSI C  if 

                                             22H f C f d    
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holds true for all locally Lipschitz f , where the subgradient norm f is 
defined by  

                                          
   

 
limsup

,y x

f y f x
f

x y
 



    , 

with    max ,0a a

 . Since f f   , the inequality  LSI C is stronger 

than LSI ; more precisely,    LSI C LSI C  . 

Theorem (6.1.7) [194]: If   verifies the inequality  LSI C , then   verifies
 2T C . 

This result was first obtained by Lott and Villani using the Hamilton-Jacobi 
method. This approach forced them to make many assumptions on  and  . 
In particular, in [117]   was supposed to be a compact length space and a 
doubling condition was imposed on . The result above shows that the 
implication 2LSI T   is in fact always true. The following proof uses an 
argument which I learned from Paul-Marie Samson. 

Proof: The inequality LSI  tensorizes, so n verifies 

  22

1

n
n n

i
i

H f C f d 



   

Take 2 ,n
s F

f e s  R with    2 ,x
n nF x L  W . Once again, it is easy to check 

that 2 2

2
n n

s sF F

i i n
se e F    (note that the function sxx e  is non decreasing). 

Reasoning as in the proof of Theorem (6.1.5), it is enough to show that 
 

2
1/i ni

F x n   for n  almost all nx  . Let us show how to compute

i nF . Let z X ,  1,... n na a a   and set  2, ,..., nza z a a  

                        
   

 1

2 2

1

, ,1 limsup
2 ,

za a
n n

i n
z an

T L T L
F a

F a z a

 


 



     

Let  ,a
nL P  be an optimal coupling; it is not difficult to see that one can 

write      , , a
ndx dy x dy L dx  , where    ,i

ia dy dy V with 1,..., nV V probability 
measures on  such that  1

1 ... nn    V V . Let  be defined as  with z in 
place of 1a ; then    , za

nx dy L dy   belongs to  ,za
nL P ) (but is not 
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necessary optimal). One has 

                
           

        

             

2 2
2 2

2
2

1 1

22 1 1 1
1 1

, , , , , ,

1 1, ,

1 1, , , , ,

za a
n n

n n
i i

i i
i i

T L T L x y d x y x y d x y

za y dv y a y d y
n n

z y a y d y z a z y a y d y
n n

     

 

    

 

  

 

   

 

  

 



V

V V

 

Since the function  x x


 is non decreasing, one has 

                         
   

       2 2 1
11

, , 1 , ,
,

za a
n nT L T L

T z y a y d y
nz a

 
 





  V  

Letting 1z a  yields  
   

 

21
12

2
2

,

,i n a
n

a y d y
F a

n T L




   V

. Doing the same 

computations for the other derivatives (with the same optional coupling ), 
we gets 

                                             
   

 

2

2

2
2

,

,

i
i

i n a
n

a y d y
F a

n T L




   V

. 

Summing these inequalities gives  
2

1/i ni
F a n  for all na  , which 

achieves the proof. The following theorem can be established with exactly 
the same proof as Theorem (6.1.8).  

Theorem (6.1.8) [194]: Let   be a probability measure on  , 2p   and 
0a  . The following propositions are equivalent: 

(i) There are 0 , 0r b   such that for every n  the probability measure n  

verifies for all A subset of n  with   1
2

n A  , 

                                
0

01 ,n r
p

a r rA be r r
 

                                      (9) 

where the enlargement rA  is performed with respect to the metric np  on n  
defined by 

                                        
1/

1

, , , ,
pn pn i i n

p
i

x y p x y x y 
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(ii) The probability measure   verifies the following transportation cost 
inequality:  

                                         1, ,pT a H     V V V P . 

We want to find the transportation-cost inequality equivalent to Talagrand's 
two level concentration inequalities which are well adapted to concentration 
rates between exponential and Gaussian. 

Let us say that a probability measure   on dR  satisfies a two level 
dimension free concentration inequality of order  1,2p  if there are two 
non-negative constants a and b  such that for every n the inequality 

        2 1 , 0pn ar
pA rB r B be r                                               (10) 

holds for all measurable subset A  of  ndR  such that   1n A
n

  , where 2B  

and pB are the standard unit balls of  ndR . Inequalities of this form appear 

in [182], where it is proved that the measure   1 , 1
px

p pd x e p     verifies 
such a bound. 

The transportation-cost adapted to this kind of concentration is defined for 
all probability measures 1 2,V V  on  ndR  by 

                             
 

   
1 2

2, , 1 1
, inf ,

n d
i i
j j

i j
T x y d x y 

  


 

 P V V
V  

Where    2min ,u u u 
   (here  1,..., nx x x  with i dx R  for all i ). 

The following lemma collects different facts that are needed in the proof.  

Lemma (6.1.9) [194]: (i) For all      , 0, 2 2p p px y x y x y      . 

(ii) For all integer 1n   and all probability measures 1 2,V V  and 3V on  ndR , 

                                        2, 1 3 2, 1 2 2, 2 3, 2 , 2 ,p p pT T T V V V V V V . 

(iii) For all integer 1n   and all 0r  , define 

                                       2,
1 1

:
n dnd i

p p j
i j

B r x x r
 

 
   
 

R . 
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Then for all  1,2p , 

                                 2 2 2
1 ,

12
p p

p p prB rB rB r rB rB     

Theorem (6.1.10) [194]: Let   be a probability measure on dR  and  1,2p
. The following propositions are equivalent: 

(i) The two level concentration (10) holds for some non-negative a,b 
independent of n.  

(ii) The probability measure   verifies the transportation-cost inequality 

                                          2, , , dT CH     RV V V P  

for some constant C . 

More precisely, if (10) holds for some constants a , b , then the 
transportation-cost inequality holds with the constant C = 288/ a. 
Conversely, if the transportation-cost inequality holds for some constant C , 
then (10) is true for 2b   and  1/ 2a C . 

Proof: Let us recall the proof of (ii) implies (i). According to the tensoriza-
tion property, for all n and all probability measure V  on  ndR , 

                                                2, , n n
pT CH V V  

holds. Take A and B in  ndR  and define  1 /n n
A Ad d A   and 

 1 /n n
B Bd d B   . According to point (ii) of Lemma (6.1.9) and the 

transportation-cost inequality satisfied by n , we have[274]: 

          
     

        
2, 2, 2,, 2 , 2 ,

2 2 2 log

n n n n n n
A B A B

n n n n n n
A B

T T T

CH CH C A B

       

     

 

   
 

Define  

                        2, 2,, inf 0 . .p pc A B r s t A B r B    %  

then    2, 2,, ,n n
p A B pT c A B   and so      2 , , /2pc A B Cn nA B e   . 

Now, if   1
2

n A   and     2.\
ndB A B r R ,  
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         2, , 2 log 2 log logn n n nC A B c A B c A B            

        

       2, 2,
12 log log | 1 2 log1 log 1
2

nn d n
p pc R A B c A B              

 

         2,2 log 2 log log 1
nn d n

pc A B         
R  

         2, 2,
1 12 log .2 log 1 2 log log 1
2 2 2

n
n

p pc A B c A B
              

 

      2, 2,
1 1, log log 1
2 2 2

n

p pc A B A B
c


     

Taking the logarithms in both sides  

     
 2

1 , ,
2

c A
ce 


P

       2,
1 ,

2
2, 2,

1 1 1 1 2
2 2

n c A Bn c
p pA B A B e  


        

Where 1log 2 0, 2,
2

b a    

we have  2, ,pc A B r and so    /2
2, 1 2n r c

pA B r e    . Using point (iii) of 
Lemma (6.1.9), gives   /2

2 1 2pn r c
pA rB rB e     . 

We give that the probability measure n on  ndR satisfies two level 
dimension free concentration inequality of order  1,2p if there are two 

non-negative constants 1
2

a
c

 and 2b  . 

Now let us prove the converse. Let  i i
X be an i.i.d sequence of law   and 

let nL be its empirical measure. Consider  

    2,. . ,
nd x

p n nA x s t T L m  R where nm denotes the median of  2, ,x
p nT L  . 

According to point (iii) of Lemma (6.1.9)  2 2,12p
p pA rB rB A B r    . Let

 2,12 px A B r  ; there is some  2,12 px A B r   there is some x A such that 

                                                
1 1 12

i in d
j j

p
i j

x x
r
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 (here  1 2, ,... nx x x x  with i dx R ). Since    /12 /144p px x  , one gets

 2, , 144 /x x
n nT L L r n  . According to point (ii) of Lemma(6.1.9)  2, ,x

p nT L    

 2,2 ,x x
p n nT L L   2,2 , 2 288 /x

p n nT L m r n   . Consequently, the following 
holds for all n : 

                                    2, , 2 288 / , 0ar
n nT L m r n be r      P  

Reasoning as in the proof of Theorem (6.1.1) [194]:, one concludes that 

                                        2,
288, , dT H
a     RV V V P                                    

In this section, one considers more carefully the case 1p   of the preceding 
one. Let us recall that a probability measure   on dR satisfies the Poincare 
inequality with constant 0C   if  

                                     
2

2
Var f C f d                                            (11) 

for all smooth f . 

The following theorem proves the equivalence between Poincare inequality, 
dimension free exponential concentration and the corresponding 
transportation-cost inequality.  

Theorem (6.1.11) [194]: Let   be a probability measure on dR . The 
following propositions are equivalent: 

(i) The probability measure   verifies Poincare’ inequality with a constant 1C  

(ii) The probability measure   verifies for some constants , 0a b   

                                      2,1 1 , 0n arA D r be r       

for all subset A of  ndR such that   1/ 2n A  , where the set  2,1D r  is 
defined by 

                                     2,1 1 2
1

. .
nnd i

i
D r x s t x r



    
 

R  

 (iii) The probability measure   verifies the following transportation-cost 
inequality for some constant 2 0C  . 
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          1 22
, inf , , d

SGT x y d x y C H        RV V V P  

More precisely: 

- (i) implies (ii) with   1

1, 1max ,a K C C K


  being a universal constant. 

- (ii) implies (iii) with 2 2 /C a . 

- (iii) implies (i) with 2 / 2C C . 

The equivalence between (i) and (iii) was first obtained by Bobkov, Gentil 
and Ledoux in [256], with the Hamilton-Jacobi approach. The equivalence 
of (i) and (ii) or (ii) and (iii)) seems to be new. 

Proof: Accoding to [255], (i) implies (ii) with 1b   and a depending only on

1C ; one can take   1

1, 1max ,a K C C K


 , where K  is a universal constant.  

According to (a slightly different version of) Theorem (6.1.10) ,with 1  , 
(ii) implies (iii) (with 2 2 /C a ). It remains to prove that (iii) implies (i). This 
last point is classical; let us simply sketch the proof. The transportation-cost 
inequality is equivalent to the following property: for all bounded f on dR ,

fdQfe d e


  where       1
2 1 2

inf
dy

Qf x f y C x y


  
R

( see [254], [190]). Let 

f  be a smooth function and apply the preceding inequality to tf . When t
goes to 0 , it can be shown that 

                                   
2

2 22
2

0
4

C tQ tf x tf x f x t      

so    
22

22 22
2

1 0
2 4

Q tf C tte d t fd f d f d t           . On the other hand, 

                                  
2

21
2

t te fd t fd fd        

One concludes, that 

                                          22

2
CVar f f d   

which achieves the proof. 

Transportation-cost inequalities are closely related to the so called    
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property introduced by Maurey in [17]. If  ,c x y  is a non negative function 
defined on some product space   and   is a probability measure on  , 
one says that  ,c  has the   property if for all non-negative f on  , 

                                              1Qcf fe d e d     

Where       inf ,
y

Qcf x f y c x y


  . By Latala and Wojtaszczyk [138] 

provides an excellent introduction together with a lot of new results 
concerning this class of inequalities. 

The    property is in fact a sort of dual version of the transportation-cost 
inequality. This was first observed by Bobkov and Gotze in [254]. In the 
case of 2T , one can show that if   verifies  2T C  then   21

2, 2C x y    has 

the    property and conversely, if   21

2
, 2C x y    has the    property, 

then   verifies  2T C . A general statement can be found in [189]. 

Several sufficient conditions for transportation-cost inequalities are known. 
Let us recall some of them. In [191], The author proved the following result: 

Theorem (6.1.12) [194]: Let   be a symmetric probability measure on R of 

the form    V xd x e dx  , with a smooth function such that  
 

lim
x

V x
V x


 


. Let

1p  , if V  is such that 
 

1

lim
p

x

x
V x




 


, then  verifies the transportation-cost 

inequality 

                          
 

       
,

inf , ,p x y d x y CH
 

  


    R
P V

V V P  

Where   2u u   if 1u   and   p
p u u   if 1u  . 

The case 2p  was first established by Cattiaux and Guillin in [204] with a 
completely different proof. Other cost functions  can be considered in 
place of the p  . Furthermore, if   satisfies Cheeger's inequality on R , then 
a necessary and sufficient condition is known for the transportation-cost 
inequality associated to  (see [191]). 

On dR , a relatively weak sufficient condition for 2T (and other 
transportation-cost inequalities) was will be established by the author in 
[189]  
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Define         1 1: : ,..., ,...,d d d
d dw x x w x w x R R , where 

     2max ,w u u u u  with   1u   when u is non-negative and -1 
otherwise. If the image of   under the map  dw  verifies the Poincare 
inequality, then  satisfies 2T . It can be shown that this condition is strictly 
weaker than the condition   verifies LSI (see [189]). 

Other sufficient conditions were obtained by Bobkov and Ledoux in [257] 
with an approach based on the Prekopa-Lcindler inequality, or in [33] by 
Cordero-Erausquin, Gangbo and Houdre with an optimal transportation 
method . 

The following proposition is quite classical in Large Deviations theory. It 
can be found in DCllschdl and Strook’s book [125]. 

Proposition (6.1.13) [194]: Let  A  P  be such that  :n x
nx L A  is 

measurable. Then for every probability measure v on  absolutely 
continuous with respect to  and such that 

 : 0n x
nx L A V , we have 

     1 log nHn
nL A e

n
  V

   
     

1 1log
n c

n n
nn n

n n

L A
H L A

L A n ne L A



 

 

V
V V

V n n V
                               (12)           

Proof: Let 
n

n

dvh
d

  and   : 0n x
nB x L A and h x    . Then, 

                            
   
 

log h x n
n n n n B

n n
B

e d x
L A B h x d x B

B
 



    
V

V V
V

 

Applying Jensen's inequality gives  

                                      
 
 

log
log log

n
n n B

n n

h x d
L A B

B
    

V
V

V  

Since    log ,n n nH h x d  V V  one concludes that 

         
 
 

   
 

log
log log c

n n n
n n B

n n n

H h x h x d
L A B

B B

 
     

V
V

V V
           (13) 



217 
 

But for all 0, log 1/x x x e   , so 

                   
   
 

 
   

log 1c

n n
B

n n n

h x h x d B
B e B e B

 
 


V V V                           (14) 

Putting (14) into (13) and using        n n n n
nH nH and B L A   V V V V  

gives the desired inequality. 

Theorem (6.1.14) [194]: If   ,p P  then for all t > 0, 

         1liminf log , inf : . . ,p n p pn
L t H s t t

n
   


   P V V P VW W  

Proof: Let 0t  and define     . . ,p pA P s t t   WV V . Take AV such  
that  H   V . If  i iY  is an i.i.d sequence of law V , and 1

1 i

nY
n Yi

L n 


  , 
then Y

nL    converges to V almost surely for the W distance  and so 
       , , 1n Y

n nL A L t t       V P P VW W , when n tends to  . 
Applying Proposition (6.1.13) to A and V  and taking the limit when n  goes 
to , gives 

                           1liminf log ,nn
L t H

n   


  P VW . 

Optimizing  over V gives the result. 

Corollary(6.1.15)[274]: If   ,p k  P  then for all t > 0, 

        
1 1 1

1liminf log , inf : . . ,
k k k

p n j j p p jn j j j
L t H v v s t v t

n
   


  

 
     

 
  P W WP  

Proof: Let 0t  and define    
1 1

. . ,
k k

j p k p j
j j

A v s t v t 
 

 
   
 
 P W . Take 

1

n

j
j

v A


 such that  
1

k

j
j

H v 


  . If  i i
Y  is an . .i i d  sequence of law 

1

n

j
j

v

 , and  1 1

1
1

k

j
j

i

Y k n
n Yi j

j
L n  





  , then Y

nL converges to 
1

n

j
j

v

  almost surely 

for the pW distance and so  

      
1 1

, , 1
n

n k
Y

j n p n p j
j j

v L A L t v t 
 

   
        

   
 P PW W , when n 

 .  
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Applying [194] to A and 
1

k

j
j

v

  and taking the limit when n   , gives 

                           
1

1lim inf log ,
k

p n jn j
L t H v

n
 

 

  P W . 

Optimizing over  
1

k

j
j

v

  gives the result. 

Corollary(6.1.16)[274]:  (Marton). If   verifies  1 cT , then for a 

measurable subset A  of k , such that   1
2

A  . 

                                     0( ) 1 2
1 , 0r cA be        

where  0 log 2r c . 

Proof: Consider a subset A of k , and define  
1

/
k

A A j
j

d d x A  


 
  

 
I . Let 

 0\ r
kB A   and define B  accordingly. Since the distance between two 

points of A  and B  is always more than 0( )r  , one has 
 1 0, ( )A B r   W . The triangle inequality and the transportation-cost 

inequality  1 cT  yield 

                          
     

   
     

0 1 1 1( ) , , ,

log 1 / log 1 /

A B A B

A B

r W

cH cH

c A c B

      

   

 

 

 

   

 

 

W W

 

Rearranging terms gives the result. 

Corollary (6.1.17)[274]: Let  2 k P and a > 0; the following 
Propositions are equivalent: 

(i)There are 0 , 0r b  such that for all n the probability n verifies (4), 

(ii)The probability  verifies  2 1/T a . 

Let us recall the definition of the series of the  1T transportation-cost 
inequality. We say that a probability measure   on k verifies  2 1 / aT , if 

              1
1 1

, ,
k k

j j
j j

v c H v 
 

 W for every  
1

k

j k
j

v 


 P  
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 Proof: Let us show that (ii) implies (i). The main point is that 2T  ten-
sorizes ; this means that if  verifies  2 1 / aT then n verifies  2 1 / aT on the 
space n

k  equipped with 2
n  (see[190]) .Jensen's inequality implies that 

2
1 2W T  and consequently n verifies  1 1 / aT 1 (on k

n equipped with 2
n ) for 

all ݊. Applying Proposition (6.1.3) to n gives (1) with  0 log 2 / , 1r a b   
and a. 

Let us show that (i) implies (ii). For every integer ݊, and
1

k

k
n

j
j

x 


 , define 

1

1

1
1

1

k

j
j

i
k

j

x k
n

n i
j x

L n 



 
 
   

  
  

 
 





 . The map 1

2
1

,

k

j
j

xk

j n
j

x L  

 
 
 
 



  
 
 
 

 W is 1 Lipschitz
n
 . 

Indeed, if 
1 2

1 1 1 1

, ,...,
n

k k k k

j j j j
j j j j

x x x x
   

      
              

    and

1 2

1 1 1 1
, , ...,

n
k k k k

j j j j
j j j j

y y y y
   

      
              

     

are in ,n
k   then thanks to the triangle inequality, 

                 1 1 1 1
2 2 2, , ,

k k k k

j j j j
j j j j

x y x y

n n n nL L L L    

       
       
       
       

                   
     
     

W W W  

According to the convexity property of  2 .,.T (see [37]), we have 

               1 1

1 1

2 2
1

1, ,

k k

j j
j j

i i
k k

j j
j j

x y n

n n
i x y

L L
n

  

 

   
   
   
   

   
    

   
   

          
       

T T   

              
2 2

2
1 1 1 1 1

1 1, ,
i i

n k k k k
n

j j j j
i j j j j

x y x y
n n

 
    

      
              

                                                

which proves the claim. 

Now, let 
1

k

j
j i i

X


  
     
 be an i.i.d sequence of law  and let nL be its empirical 

measure. Let nm be the median of  2 ,nL W and define
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1

2
1

: ,

k

j
j

xk

j n n
j

A x L m

 
 
 
 



       
    

 W . Then   1/ 2n A  and it is easy to show 

that   10 0
2

1

( )
: ,

k

j
j

xk
r

j n n
j

r
A x L m

n
 



 
 
   



         
    

 W .  

Applying (4) to A gives 

                      2
2 0, ( ) exp , 0n nL m r n b a         P W  

Equivalently, as soon as 0
1

k

j n
j

n u m r


 
  

 
 , we have  

                      
2

2 0
1 1

, exp
k k

n j j n
j j

L u b a n u m r
 

                     
 P W . 

Now, since  2 ,nL W converges to 0 in probability (see Proposition (6.1.2)), 
the sequence 0nm   when n  . Consequently, 

                        

 
2

2
1 1 1

1lim sup log , , 0
k k k

n j j j
n j j j

L u a u u
n


   

   
       

   
  P W  

The final step is given by Large deviations. According to Theorem(6.1.4), 

 

       2 2 2
1 1 11 1

1liminf log , inf : . . ,
k k k k k

j
j

n j j j k jn j j j j
L u uH v v s t v

n
   


    

   
      

   
    P W WP

  

This together with the preceding inequality yields 

                       

     
2

2 2
1 1 1 1 1

inf : . . ,
k k k k k

j j k j j j
j j j j j

H v v s t v u a u  
    

   
     

   
    WP  

or in other words, 

                                            2

2
1 1

,
k k

j j
j j

a v H v 
 

 W  

and this achieves the proof.  
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Corollary(6.1.18)[274]: Let  , be a probability measure on k and suppose 
that for all integer n the function nF defined on n

k by 

1
2

1

,

k

j
j

xk

n j n
j

F x L 



          
 W verifies 

       2

1 1

1n k

i n j
i j

F x
n 

 
  

 
   for n  almost every 

1

k
n

j k
j

x 


          (15) 

If  , verifies the inequality  cLSI , then , verifies the inequality  2 cT . 
Suppose that d

k  R or a Riemannian manifold M, then according to 
Rademacher's Theorem, nF  is almost everywhere differentiable on  ndR

(resp. nM ) with respect to the Lebesgue measure. It is thus easy to show that 
condition (15) is fulfilled when  , is absolutely continuous with respect to 
Lebesgue measure. This permits us to recover Otto and Villani's result as 
stated in [32]. 

Proof: As we said above the product measure n verifies the inequality (6). 

Apply this inequality to 2 n
s F

f e , with s R . It is easy to show that

2 2

2
n

s sF F

i i n
se e F   , thus, using condition (15), we see that the right hand 

side of (6) is less than 
2

4
nsF nsc e d

n
  .  

Letting   nsF ns e d   , we get the differential inequality: 

                                      
 

 
2

log
4

s s c
s s ns

 
 


 

Integrating this yields: 

                                    
2

4 ,
n

n
n

c s
s F dsF n ns e d e s





      R  

This implies that 

                                2 /
2 2, , nt c

n nL t L e      P EW W  

 

Corollary(6.1.19)[274]: If   verifies the inequality  cLSI , then   
verifies  2 cT . 
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.Proof: The inequality LSI tensorizes, so n verifies[194]. 

                                      22

1

n
n n

i
i

H f c f d 



   

Take 2 ,n
s F

f e s  R with 1

2
1

,

k

j
j

xk

n j n
j

F x L 

 
 
 
 



          
 

 W . Once again, it is easy 

to check that 2 2

2
n n

s sF F

i i n
se e F    (note that the function 1

1

k

j
j

s xk

j
j

x e 

 
 
 
 




   is 

non decreasing). Reasoning as in the proof of Theorem (6.1.7) it is enough 

to show that 2

1

1 /
k

i n ji
j

F x n



 
  

 
   for n  almost all

1

k
n

j k
j

x 


 . Let us 

show how to compute i nF . Let
1 1

k k

j j
j j

z X
 

  , 

1

1 1 1

,...,
n

k k k
n

j j j k
j j j

a a a 
  

    
          

   and set  
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1 1 1 1

, ,...,
n

k k k k

j j j j j
j j j j

z a z a a
   

    
          

     

                     

1 1

1

2 2

1
1

1 1 1

, ,

1 limsup
2 ,

k k

j j j
j j

z a a

n n

k

i n j k k kz aj
n j j j

j j j

L L

F a
F a a a

 



 

   
   
   
   

 



  

             
                    

              


  

T T

 

Let 1 ,

k

j
j

a

nL 

 
 
 
 

    
 
 

P  be an optimal coupling; it is not difficult to see that we 

can write 

1

1 1 1 1 1
, ,

k

j
j

ak k k k k

j j j j n j
j j j j j

d x d y p x d y L d x 

 
 
 
 

    

              
                                 

     ,where 

1 1 1 1
,

i
k k k k

j j j j
j j j ji

p a d y v d y
   

        
                  
    with

1 11

,...,
k k

j j
j j n

v v
 

   
   
   
  probability 
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measures on k such that 1

1 11

...
k k

j j
j j n

n v v 

 

    
           

  . 

 Let p be defined as p with 
1

k

j
j

z


 
 
 
 in place of 

1

1

k

j
j

v


 
 
 
 ; then 

1

1 1 1
,

k

j j
j

z ak k k

j j n j
j j j

p x d y L d y 

 
 
 
 

  

      
                

    belongs to 1 ,

k

j j
j

z a

nP L 

 
 
 
 

  
 
 
 

 

We have 

1 1

2 2

2 2
1 1 1 1 1 1 1 1

1 1
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1 ,

k k

j j j
j j

z a a k k k k k k k k

n n j j j j j j j j
j j j j j j j j

i
k k

j j j
i j j

L L x y d x y x y d x y

z a y
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1 1 1 1 1 1 1 1

22 1

1 1 1 1 1 11

1

1 ,
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i
n k k n k k k k

j j j j j j
j j i j j j ji i

k k k k k k

j j j j j j
j j j j j j

j
j

d v y a y d v y
n

z y a y d v y
n

z
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1 1

1 1 1 1 1 1 11
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k k k k k k k k

j j j j j j j
j j j j j j j

a z y a y d v y 
      

            
                           
       

 

Since the function
1 1

k k

j j
j j

x x
  

 
 
 

  is non decreasing, we have 

1 1
2 2

1

1
1 1 1 1 1 11

1 1

, ,
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,
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z a a

n n
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k k j j j j j j
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L L
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T T

 

Letting 
1

1 1

k k

j j
j j

z a
 

 
  

 
   yields 

1

21

2
1 1 1 11

1
2

2

,

,

k
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j

k k k k

j j j j
k j j j j

i n j
j a

n

a a d v y

F a

n L





   


 
  

 
 

      
                 

    
 
 
 

   


T

. Doing the same 

computations for the other derivatives (with the same optimal coupling ), 
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we get 

                   

1

2

2
1 1 1 1

1
2

2

,

,

k

j
j

ik k k k

j j j j
k j j j ji

i n j
j a
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T

. 

Summing these inequalities gives 2

1
1 /

k

i n ji
j

F a n



 
  

 
  for all 

1

k
n

j k
j

a 


 , 

which achieves the proof. 

Corollary(6.1.20)[274]: Let   be a probability measure on dR  and
 1, 2p . The following propositions are equivalent: 

(i)The two level concentration (10) holds for some non-negative 
1 1

,
k k

j j
j j

a b
 
 

independent of n   

(ii)The probability measure   verifies the series of transportation-cost 
inequality 

                                          2,
1 1 1

, ,
k k n

d
p j j j

j j j
v c H v v 

  

    T RP  

for some constant c . 

More precisely, if (10) holds for some constants 
1 1

,
k k

j j
j j

a b
 
  , then the series 

of the series of the transportation-cost inequality holds with the constant 

1

 k

j
j

cc
a









(for 1, 288j c   see[194]). Conversely, if the transportation-cost 

inequality holds for some constant c , then (10) is true for
1

2
k

j
j

b


  and  

                                                       
1

1 / 2
k

j
j

a c


   

Proof: Let us recall the proof of (ii) implies (i). According to the tensoriza-
tion property, for all n and all probability measure ݒ on  ndR , 



225 
 

                                             2,
1 1

,
n n

n n
p j j

j j
v cH v 

 

   
   

   
 T  

holds. Take A  and B  in  ndR  and define  /n n
A Ad d A   I and 

 /n n
B Bd d B   I . According to point (ii) of  Lemma(6.1.9) and the 

transportation-cost inequality satisfied by n , one has 

                          
     

   
    

2, 2, 2,, 2 , 2 ,

2 2

2 log

n n n n n n
p A B p A p B

n n n n
A B

n n

cH cH

c A B

     

   

 

 



 

 

 

T T T

 

Define  

                          2, 0 2, 0, inf 0 . .p pc A B r s t A B r B           

then    2, 2,, ,n n
p A B pc A B  T and so  

                                         2, , /2pc A B Cn nA B e 
 . 

Now, if   1
2

n A   and     2. 0\
nd

pB A B r  R , one has

   2, 0,pc A B r  and so    0

2, 0

( ) 2/1 2n
p

r cA B r e


      . Using point (iii) 
of Lemma (6.1.9) gives 

      0

0 2 0
/21 2n p

p
r cA r B r B e           . 

Now let us prove the converse. Let  i i
X be an i.i.d sequence of law   and 

let nL be its empirical measure. Consider 

  1
2,

1
. . ,

k

j
j

xk nd
j p n n

j
A x s t L m

 
 
 
 



        
    

 R T where nm denotes the median of

1

2, ,

k

j
j

x

p nT L 

 
 
 
 

  
 
 
 

. According to point (iii) of Lemma(6.1.9) 

      0 2 0 2, 012p
p pA r B r B A B r         . Let  2, 0

1

12
k

j p
j

x A B r


   ; 

there is some  2, 0
1

12
k

j p
j

x A B r


    there is some 
1

k

j
j

x A


 such that 
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                                                 0
1 1 12

i in d
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p
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x x
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         (here 
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1 1 1 1

, ,...,
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k k k k

j j j j
j j j j

x x x x
   

      
              

     with 
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i
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j
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, we  get  1 1 01
2, ,

k k

j j
j j

x x
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r
L L

n
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T . 

(for 31, c 144j   (see [194]). According to point (ii) of Lemma(6.1.9)  

 1 1 1 1 0
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x x x x
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 Consequently, the following holds for all n  : 
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1
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1
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Reasoning as in the proof of Theorem(6.1.6) we conclude that 
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, ,
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Remark[6.1.21]: (i) If   1
2

n A  we have    2,
, /21

2
p

c A B cn B e
 



,approximately ,we have for  
2,

, 0
p

c A B   that    2n B   

(ii) We can deduce that  
 2,

, /2
2 1p

c A B c
e

 
   and   

2 ,
, 2 log 2

p
c A B  .Hence  0

2 lo g 2
r

c





  

Section (6.2): Poincare’Inequalities and Dimension of  freeConcentration of 
Measure. 

We say that a probability measure on a metric space  ,dX satisfies a 
Poincar´e inequality also called spectral gap inequality with the constant C , 
if for all locally Lipschitz function f , we have 
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                                                   ,2 dfCfVar                                       (16) 
  where the length of the gradient is defined by 

                   
 

: limsup
,y x

f x f y
f x

d x y


                                                     (17) 

 (when x  is not an accumulation point of X , one defines   0f x  . 

It is well known since the works [165], [244],[243] and [255] that the 
inequality (16) implies dimension free concentration inequalities for the 
product measures , 1n n  . 

For example, in [255] M. Ledoux and S.G. Bobkov proved that if   verifies 
(16), then there exists a constant L  depending only on C  such that for all 

subset A  of nX  with   1
2

n A  , 

               1 , 0n h lhA e h                                                           (18)   

where the set hA is the enlargement of A  defined by 

                                   
1

inf , ,
n

h n
i ix A

i

A y X d x y h




    
 

  

where    2min ,u u u   for all u R (see [255]  

Inequalities such as (18) were first obtained by M . Talagrand in different 
articles using completely different techniques (see [181]). 

In this paper, one will say that a probability measure μ satisfies the classical 
Poincar´e inequality with constant C 0 on dR , if μ satisfies (16) on dR  
equipped with its standard Euclidean norm

2
 · . In that case, one will write 

that μ satisfies the inequality  CSG , where SG stands for spectral gap. In all 
the sequel, Bp will denote the p unit ball of mR :  

                         1: ... 1p pm
p mB x x x    R                                                 

If μ satisfies the inequality  CSG on dR  then (18) can be rewritten in a 

more pleasant way: for all subset A  of  ndR  with   1
2

n A  , 

                 2 1 1 0n hlA hB hB e h                                                  (19)   
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with a constant L  depending on C  and the dimension d . The archetypic 
example of a measure satisfying the classical Poincare’ inequality is the 

exponential measure on dR  1
dV where  1

1
2

xdv x e dx . For this probability, 

(19) cannot be improved (a version of (19) with sharp constants has been 
established by Talagrand in [180] see also Maurey [17] Thus (19) expresses 
that the probability measures n concentrate at least as fast as the 
exponential measure on  ndR . 

Some probability measures concentrate faster than the exponential measure. 
For example, the standard Gaussian measure n  on mR verifies for all mA  R  

with   1
2

n A        

                                     
2

2
2 1 hn A hB e                                      (20)   

One cannot derive such a bound from the classical Poincar´e inequality. The 
inequality (20) requires stronger tools. For example, it is now well known 
that (20) follows from the Logarithmic-Sobolev inequality, introduced by L. 
Gross in [155], which is strictly stronger than the classical Poincare’ 
inequality (see [174]). Let us recall, that a probability measure μ on dR  is 
said to satisfy the Logarithmic-Sobolev inequality with a constant C > 0 , if 

                           
2

2

2
H f C f d                                                    (21)  

holds for all locally Lipschitz function f  on dR , where the entropy 
functional is defined by 

     log .log , 0H p f f d fd fd f        
     

The aim is to show that considering Poincare´ inequality on dR  equipped 
with other metrics than the Euclidean distance makes possible to reach a 
large scope of concentration properties including Gaussian or even stronger 
behaviors. The metrics we are going to equip dR  with are of the form: 

                        
1
22

1
, , ,

d
d

i i
i

x y w x w y x y


     
 
 RW                      (22)    

We will assume that : R R is increasing and verifies: 

(i) w  is such that   /x w x x is nondecreasing on  0 ,(ii) w  is non 
negative on R , 
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(iii) w  is such that    w x w x   , for all xR . 

Note that the first assumption is verified as soon as w  is convex on R  with  0 0w  . 

Definition (6.2.1) [189]: One says that a probability measure μ on R  
satisfies the inequality  ,w CSG if   satisfies the Poincar´e inequality (16) 
for the distance  .,.W defined by (22) with the constant C 0 . 

The following proposition gives examples of the variety of concentration 
rates enabled by our approach. 

This result will be easily deduced from (18) and from an elementary 
comparison between the metric  .,.pW and the norms .

p
.  

This section will provide a lot of sufficient conditions for the inequalities 
 ,w CSG . Let us just say for the moment that, in particular, for all  1,p   , 

the probability measure   1 px
p pd x e dx

Z
V  verifies SG  ,pw C for some C on

R . For these pV  one thus formally recovers a famous result by Talagrand 
[182]. Let us emphasize here that the above proposition only gives an 
example of the concentration results we can obtain with this approach. It is 
for instance possible to derive adapted concentration results for fast 

decreasing probabilities such as     21 exp expd x x dx
Z

    

Before presenting in details our results, let us outline some of the positive 
features of the inequalities  ,.wSG : 

 (i) They enjoy the classical properties of Poincar´e inequalities: 
tensorization and stability under bounded perturbation. 

(ii) A lot of workable sufficient conditions are available. In dimension one, 
one proves a necessary and sufficient condition. 

(iii) A large variety of Talagrand’s like concentration inequalities can be 
obtained. Moreover it is interesting to note that the same family of 
functional inequalities yields as well subgaussian and supergaussian 
estimates. 

(iv) These inequalities are weak. For example, we are going to show that for 
all  1.2p the Poincar´e inequality  ,.pwSG is strictly weaker than the Lata 
la-Oleszkiewicz inequality  ,.pLO defined below and gives the same kind of 
concentration. 
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(v) Finally, inequalities  ,.wSG are equivalent to certain transportation-cost 
nequalities and inf-convolution inequalities. As a byproduct, our section 
furnishes new results for these inequalities. 

Let  1.2p , one will say that a probability measure   on dR satisfies the 
inequality  ,P CLO if 

                           
     

2
2

12 1 21,2 2
sup

a

pa

f d f d
C f d

a

 





   
   



                           (23)    

holds for all f  smooth enough. For 1p  , the inequality (23) is Poincar´e 
inequality  CSG and for 2p   it is equivalent to the Logarithmic-Sobolev 
inequality see [239,].The  ,P CLO inequalities on R were completely 
characterized by Barthe and Roberto in [58]. Several extensions of this 
inequality were considered (see [73] or [59]). According to [239,], if μ is a 
probability measure on dR  satisfying  ,P CLO , then there is a constant 
L 0 such that n  verifies the concentration inequality (23). So, roughly 
speaking, if   verifies  ,P CLO it concentrates independently of the 

dimension like    1 , 1,2
px

p
p

dv x e dx p
Z

   

These inequalities first appear in a paper of S. G. Bobkov and M. Ledoux 
[200]. Let H : R R  be a convex function ; one says that a probability   
on dR  verifies the modified Logarithmic-Sobolev inequality  ,qH CLS , if 

                             2 2

1

d
i

i

fH f C H f d
f 



 
  

 
                                        (24) 

holds for all positive and locally Lipschitz function f . When   2H x x , the 
preceding inequality is simply the Logarithmic-Sobolev inequality, and if

  2H x x  for 1x   and   otherwise, the resulting inequality was shown to 
be equivalent to the Poincar'e inequality (see [255]). 

Many different tools are considered in order to obtain dimension free 
concentration estimates such as (23) and (24) for 1 2p   (see [176], [179], 
[239], [58], [59], [101], [57]) and p > 2 ([257], [75], [252], [33], [103], 
[193]). It will be a difficult task to give a complete summary of these 
various attempts. We will focus on four important functional approaches to 
the concentration of measure phenomenon: the Lata la-Oleszkiewicz 
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inequalities, the modified logarithmic Sobolev inequalities, the super 
Poincar´e inequalities and the transportation-cost inequalities. 

(i) The Lata la-Oleszkiewicz inequalities.We have already indicate how the 
concentration inequalities (23) for 1   and 2    can be derived from the 
classical Poincar´e inequality and the Logarithmic Sobolev inequality (21) 
respectively. In [239], R. Lata la and K. Oleszkiewicz proposed a family of 
inequalities interpolating between Poincar´e and Log-Sobolev. These 
inequalities are defined as follows. 

 Let 2P   and consider  2
qH x x  with 1 1 1

p q
  ; the inequality  ,qH CLS

was studied by S. G. Bobkov and M. Ledoux in [257] and by S. G. Bobkov 
and B. Zegarlinski in [252], where a complete characterization on R was 
achieved (see [252]). This inequality is associated to supergaussian 
concentration. More precisely, if   verifies  ,qH CLS then for all subset A 

of  ndR  with   1
2

n A  , 

                                           
1

1 , 0n ltp
pA t B e t 

 
      

 
 

where L  is independent of n. For 2p  , the measure   1 px
p

p

dv x e dx
Z

   

verifies  ,qH CLSI for some C and 1 1 1
p q
  . 

 Let  1,2p  and consider    2max , q
qH x x x   with 1 1 1

p q
  .  

The family  ,qH CLSI was first studied by 1 in [101] where it was shown that 

 ,qH CLSI was fulfilled by   1 px
p

p

dv x e dx
Z

  for  1,2p  and 1 1 1
p q
  . It 

was recently completely characterized on the real line by F. Barthe and C. 
Roberto (see [59]). As shown in [101] or [59], if μ verifies  ,qH CLS for 
some C then it verifies the concentration inequality (18) for some 0L  . 
Other choices of H  were considered in [59] and a general concentration 
inequality established (see [59,]). These results are available under the 
assumption that   2/H x x is increasing. The resulting concentrations 
inequalities are thus always subgaussian. 
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Let  : 1, R    be a nonincreasing function; one says that a probability 
  on dR  verifies the super Poincar´e inequality with the function    if 

          
22

2

2
, 1f d s f d s f d s         

                            (25) 

holds true for all locally Lipschitz function f . If   verifies (25), one will 
write for short that   satisfies the inequality  PS . Super Poincare’ 
inequalities were introduced by F. Y. Wang in [75]. They are of great 
interest in spectral theory or for isoperimetric problems (see [60]). Another 
nice feature of this family is that several other functional inequalities are 
encoded among it, i.e correspond to specific choices of   . For example, 

defining for all      12 11, log p
pp s e s      

 
 then the Lata la-Oleszkiewicz 

inequality  ,P CLO ,  1,2p  is equivalent to  pCPS  for some C as shown 
in [73]. The same is true for F-Sobolev inequalities (see [75]) or Weak 
Logarithmic Sobolev inequalities (see [205]). For a general    only quite 
rough concentration estimates can be deduced from  PS . For example, if 
μ verifies the inequality  pP CS  for some C with the function  p  defined 

above, then  
pa xe d x    for some a 0 . The general case is more 

intricate (see [75] the present section). Moreover, unlike the functional 
inequalities presented above, the super Poincar´e inequality does not 
tensorize properly and thus the concentration bounds may be affected by the 
dimension.Transportation-cost inequalities were first introduced by K. 
Marton and M. Talagrand in [135, 139] and [79]. In these inequalities one 
tries to bound an optimal transportation-cost in the sense of Kantorovich by 
the relative entropy functional. 

More precisely, if c : X X   R is a measurable map on some metric space
X , the optimal transportation-cost between V  and    XP (the set of 
probability measures on X ) is defined by 

                                      
 

 
,

, inf ,c p v
T c x y d

 
 


 V                                (26) 

where  ,P V  is the set of probability measures   on X X such that 
   dx c dx   and    ,X dy dy  .One says that   satisfies the 

transportation-cost inequality with the cost function  ,C x y  if  
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                                   , ,cT H X   V V V P                                       (27) 
  

where  H v   denotes the relative entropy of V  with respect to   and is 

defined by   log dH
d




 
  

 


VV  if  V  is absolutely continuous with respect 

to   and  H   V  otherwise. Transportation- cost inequalities are 
known to have good tensorization properties and to yield concentration 
results independent of the dimension. One will say that μ satisfies the 
inequality  p CT ,  1,2P  if it satisfies the transportation cost inequality 
with the cost function    2

2 2
1, min , pC x y x y x yC   . It is now classical that 

the inequality  pT Ct  implies a concentration inequality similar to (31). 
When 2  , the inequality  2 .TC  is usually denoted by 2T . In [179], M. 
Talagrand proved that the inequality  2 .TC is satisfied by Gaussian measures. 

In dimension one, an almost complete characterization of transportation-cost 
inequalities was proposed by the author in [191]. It covers in particular the 
case of the  .pTC inequalities for all  1,2p .  

In higher dimensions, one only knows that  .pTC  inequalities and modified 
logarithmic Sobolev inequalities are related: 

(i) For 2  , a celebrated result by F. Otto and C. Villani shows that the 
Logarithmic-Sobolev inequality implies  2 .TC (see [69]). It was shown by p . 
Cattiaux and A. Guillin in [204] that the implication is strict: there exist 
probability measures satisfying  2 .TC and not the Logarithmic Sobolev 
inequality. F. Y. Wang provides extensions of Otto and Villani’s result to 
Riemannian manifolds and path spaces in [72, 74]. 

(ii) The case 1   is very interesting. S. G. Bobkov, I. Gentil and M. 
Ledoux have shown in [75] that the inequality  1 .TC  is equivalent to the 
Poincar´e inequality  .SG (see Theorem (6.2.18) for a precise statement). 

(iii) For  1,2P , it was shown by I. Gentil, A. Guillin and L. Miclo in [101] 

that the modified Logarithmic Sobolev inequality  ,.qHLS with 1 1 1
p q
    

implies the transportation-cost inequality  .pTC . 
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(iv)The case 2   is much less known. Examples of probability measures 
satisfying the transportation-cost inequality with a cost function of the form
 p

p
x y  appear in [257] or [33]. 

Another very efficient functional approach to the concentration of measure 
phenomenon was proposed by B. Maurey in [17]: the so called    property 
also called inf-convolution inequality. As inf-convolution inequalities are in 
fact equivalent to transportation-cost inequalities (see Proposition (6.2.24)  

The map w  is defined on R but we will also denote by  the map defined on 
mR  (for every 1m  )  by       1 1,..., ,...,mx x w x w xm . The image of a 

probability measure μ on a space X  under a measurable map :T X y  will 
be denoted by #T  . We recall that it is defined by 

                                                    # 1 ,T B T A A y      

Our paper is organized as follows. 

We first recall some well known facts about Poincar´e inequalities. We 
explains then how to derive general Talagrand’s concentration results from 
the inequalities  ,w CSG  for some 0C  , then n  concentrates independently 
of the dimension in the following way: for all 1n   and all  ndA  R , one has 

                                            1 , 0n lhA B h e h       

where L is a constant depending only on C  and  B h is the Orlicz ball 
defined by 

                                     ,
1

1 1
,..., :

2

n dn i jd
n

i j

x
B h x x ow h 



       
   

R . 

 (For all ,, ,1i ji n x j d    are the coordinates of the vector d
ix R ) 

Proposition (6.2.6) easily implies Proposition (6.2.7) for the special case of 
the functions p . 

We address the problem of finding workable sufficient conditions for the 
Poincare’ inequalities  ,.wSG . To do so, we relate the inequality  ,.wSG  to 
the classical Poincar´e inequality  .SG . We show in Proposition (6.2.10) 
that  

                 μ verifies   #,w C w SG  verifies  CSG .                             (28)   
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So, according to (28), to prove that a probability measure μ verifies  ,.wSG , 
all we have to do is to apply to the measure #w   one of the known criteria 
for the classical Poincar´e inequality  .SG . In dimension one, one thus 
easily derive from the celebrated Muckenhoupt Theorem a necessary and 
sufficient condition for the inequality  ,.wSG  (see Proposition (6.2.10) 
Using this criteria, one can give a large collection of examples. Under mild 
regularity conditions, one proves in Proposition (6.2.13) that a symmetric 
probability    v xd x e dx   on R satisfies the inequality              ,w CSG  for 
some C  if and only if 

                    
 
 

liminf 0
x

V x
w x




                                                                    (29) 

 The same strategy can be applied in dimension d . It is well known that a 
probability    v xd x e dx  on R  satisfies the Poincar´e inequality as soon as 

   2
2

1lim ln 0
2x

f V x V x


     Combined with (28), this criteria yields a 

sufficient condition for the inequality  ,.wSG (see Proposition (2.6.12) .We 
show the equivalence between the Poincare’ inequalities for the metrics d  
and certain transportation-cost inequalities. 

Definition (6.2.2) [189]: Let us say that  d RP  satisfies the inequality 
 ,w aCT  if it satisfies the transportation-cost inequality (29) with the cost 

function     , ,x y ad x y , where  ,d x y  is defined in (22). 

In Theorem (6.2.22) which is one of the main results of this section, one 
proves that   satisfies the inequality  ,w CSG  for some C  if and only if it 
satisfies the nequality  ,T w aC  for some a .The link between   and C  is 
made precise in Theorem (6.2.22) This theorem is an extension of a result 
by Bobkov, Gentil and Ledoux concerning the equivalence of the classical 
Poincare´ inequality and the inequality  1 .TC (see [256]). This extension is 
performed using a very simple contraction principle for transportation-cost 
inequalities. This technique was previously used by [191] to characterize a 
large class of transportation-cost inequalities on the real line. Since the 
inequality  ,.pT wC  is easily shown to be stronger than  .pTC , Theorem 
(6.2.22) offers new sufficient conditions for the transportation-cost 
inequalities  .pTC (see Corollary (6.2.19) .Up to now, Corollary (6.2.19) 
gives the weakest known sufficient condition for pT C  inequalities. 
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 We compare the inequalities  ,.pwSG  to other functional inequalities. 

The main result, Theorem (6.2.36) states that under not very restrictive 
conditions on the function  , the super Poincar´e inequality (  PS ) 
implies an inequality  ,.pwSG  where w depends only on the function  
.Since a lot of functional ine qualities are encoded as super Poincar´e 
inequalities, this result is extremely general. 

As a consequence, one deduces in particular the following relationships. 

For  1,2p . 

                       verifies Lo   #,.p w   verifies SG  

Moreover, a counter example of Cattiaux and Guillin shows that the 
Logarithmic-Sobolev inequality (which corresponds to 2  ) is strictly 
stronger than the inequality  2 ,.wSG .  

For 2p   and 1 1 1p q  ,    verifies  ,.qH LS  verifies  ,.pwSG . 

Let us emphasize another interesting fact about Theorem (6.2.36). 

We know that super Poincare’ inequalities don’t tensorize properly. If   
verifies a super Poincar´e inequality, then n  will satisfy a super Poincare’ 
inequality with  s  replaced by  /s n . Thus the inequalities deteriorate 
when the dimension increases. On the other hand, the inequality  ,.wSG  
implied by the super Poincar´e inequality has a good tensorization property 
and implies concentration independent of the dimension. From this follows 
that super Poincare’ inequalities (almost) always imply dimension free 
concentration estimates. 

Let us recall the two classical structural properties of Poincare’ inequalities: 
tens- orization property and stability under bounded perturbations. 

Proposition (6.2.3) [189]:  Let   be a probability on dR satisfying the 
Poincare’ inequality  ,w CSG for some constant 0C  . 

(i) For all 1n  , the probability measure n  verifies  ,w CSG on  ndR  

(ii) If   is a probability measure on dR  absolutely continuous with respect 
of   with a density of the form      h xd x e d x   with h  bounded, then   
verifies the Poincar´e inequality SG   , Osc hw e C where      sup infOsc h h h  . 
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We will find a proof (in the general case) in [174],[255]. 

Another way to express the concentration of the product measure n  is 
given in the following corollary which can be easily deduced from the 
preceding theorem: 

Lemma (6.2.4) [189]:(i) For all    , ,
2

x y
x y w x w y w

  
    

 
R m  

(ii) The function    2min ,x u u u  is such that      xu a x u  , for all 
, , 0a u    

Proof: Let us prove the first point. The function   /x w x x  is 
nondecreasing on R . It follows that w  is super additive on R . Indeed, if 
0 x y   then 

        
           

1 / 1 /

/ /

w x y w y x y x y w y

w y xw y y w y xw x x w y w x

    

     
 

Let x y . If 0x y   then using the super  additivity of w , one gets       

         ,w x w x y y w x y w y       so         / 2w x w y w x y w x y     . 

The case 0 x y  is similar.Now, if 0x y  , then  

                                  max / 2w x w y w x w y w x y w x y        . 

Now let us prove the second point. If     20 1, /a au a u    , if 1 /u a  and 
   / /au a u a    if 1u   one has       /au a u   . If  1,1/u a . Then 

2u u  and so      /au a u   .If 1 /u a   then /u a u  and so
     /x au x a u . The case 1a   can be handled in a similar way.  

Corollary(6.2.5)[274]:(i) For all     1
1 1, ,

2
n n

n n n n

x x
x x w x w x w 

 

  
    

 
R m  

(ii) The function    2min ,nx u u u  is such that      1 1n nx u a x u   , for 
all , , 0a u    

Proof: (i) The function  1 1 1/n n nx w x x    is nondecreasing on R . 
Consequently w  is super additive on R . If 1 0nx   1n nand x x   then 
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1 1 1

1 1 1 1

1 / 1 /

/ /
n n n n n n n n

n n n n n n n n

w x x w x x x x x w x

w x xw x y w x x w x x w x w x
  

   

    

     
 

If 1 0n nx x    then using the super  additivity of w , we get       

        1 1 1 ,n n n n n n nw x w x x x w x x w x         so that
        1 1 1 / 2n n n n n nw x w x w x x w x x       . 

Similar for 1 0n nx x   .But; now,if 1 0, 0n nx x   ,then  

                     
             1 1 1 1max / 2n n n n n n n nw x w x w x w x w x x w x x           . 

(ii) For the prove of the last part see the proof of Lamma (6.2.4). 

  Proposition (6.2.6) [189]: Suppose that μ satisfies  ,w CSG on dR  for 

some 0C  . Then for all 1n  and all  ndA  R with   1
2

n A   one has 

   1 , 0n lhA B h e h       

Where  1 / 16L d
Ck

    
 

and  B h   is defined by 

           1
1 1

,
,... :

2

n dn i jd
w n

i j

x
B h x x w h

 

           
 R                        (30)   

 (For all 1 , , ,1ii n x j j d    are the coordinates of the vector d
ix R ) 

Proof :First,      
1

1,
n

i i
i

dw u w u w
d 

 V V For  all , du RV . 

Now, 

           
            

   

1 1

1

1 1,

1 1
2 2

n d
i

w i i i i
i i

d
ii iiii i i i

i

d u w u w w u w
d d

u u
w w

dd

  

 

 



         
  

      
          

 

 

V V V

V V
 

where (i) comes from the super additivity of the function x , (ii) from 
Lemma (6.2.4)  (i) and (iii) from Lemma (6.2.4) (ii). 

Consequently, for all  ndx R  and  ndA  R . 
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               , ,
,

1 1 1

1( ( , ))
2inf inf

n n d
i j i j

w i i
a A a Ai i j

x a
d x a w

d
 

   

 
 
 
 

 
a

  

Applying (40) yields immediately the desired result.  

   Proposition (6.2.7) [189]: Let    max , p
pw x x x on R  with

   p pw x w x   for all xR . Suppose that μ satisfies the inequality SG

 ,pw C on dR  for some 0C  . If  1.2p , then for all 1n  and all  ndA  R  

with   1
2

n A  . 

                        2
12 2 1 , 0n lh

pA hB h B e hp                             (31)   

If 2p  , then for all 1n  and all  ndA  R  with   1
2

n A  , 

                      
1

22 2 1 , 0n lhp
pA hB h B e h 

 
       

 
                      (32)   

where L  is a constant depending only on C  and the dimension d  ; one can 

take  1 / 16L d
Ck

    
 

, where 518k e  

Proof : Suppose  1,2p ; in view of Proposition (6.2.7) it is enough to prove 
that 

                                 1/
1 2

1

,...,
nd

p
k nd p

k
wp u h u u u hB h B



      

Let  1,..., nds s s and  1,..., ndt t t be defined by k ks u  if  1,1ku    and 0ks   
if 1ku   and t u s  . Then, 

                                    2

2
1

nd
p

k p
k

wp u s t h


    

So, 2s h  and 1/ p
pt h . Sinceu s t  , one concludes that 1/

2
p

pu hB h B  . 

Now, if 2p  , then    20, max , px wp x x x   . This observation together 
with Proposition (6.2.6) easily implies the result.  
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Let us conclude this section with a remark concerning centering. If   is a 
probability measure on dR  and dzz R , let us denote by z  the translate of   
defined by: 

                                  z A A z                                                              (33) 

for all measurable set A . 

The following corollary is immediate. 

Corollary (6.2.8) [189]: Suppose that there is some dzz R  such that z  
verifies the inequality  ,w CSG  for some 0C  , then for all 1n  and all 

 ndA A  with   1
2

n A   one has  

                                       1 , 0n lhA B h e h      ,  

Where 1 /16
k

L x d
C

 
   

 
 and  Bw h is defined by (34). 

Definition (6.2.9) [189]:  One will say that   verifies the centered 
Poincare’ inequality  ,w CSG  if 

xd



verifies the inequality  ,w CSG . 

In order to obtain  sufficient  conditions for the inequalities  ,.wSG , one 
relates them to (weighted) forms of the classical Poincare’ inequality, which 
is quite well known. 

Proposition (6.2.10) [189]:  Let   be a probability measure on dR  and C  a 
positive number. The following properties are equivalent. 

(i) The probability measure   verifies  ,w CSG . 

(ii) The probability measure #w   verifies  CSG . 

(iii) The probability measure   satisfies the following weighted Poincare’ 
inequality: 

                
 

   
2

2
1

1d

i ii

fVar f C x d x
xw x 



 
    

                                    (34) 

for all : df R R such that 1f w   is of class 1C . 
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Proof: Let us denote  2
.f resp f


   the length of the gradient computed 

with respect to the metric  ., .wd  (see (17)). If : df R R  is locally 
Lipschitz for the Euclidean metric, then according to Rademacher theorem, 
we have 

                         
       

1
2 2

2
12

limsup
d

y x i i

f x f y f x f x
x y x 

   
        
  

For . . da e x R , and so the length of the gradient equals the norm of the 
vector .f a e . 

Locally Lipschitz function for  .,.d  and 
2

. are related in the following 
way.  

A function g : d R R9 is locally Lipschitz for  .,.d  if and only if 1g w   is 
locally Lipschitz for 2

. . 

[(i))(ii)] Define #w  . Let : df R R9:  be locally Lipschitz fo
2

. , then
f w  is locallyLipschitz for  .,.d , and  

     
 *2 2 2

2 2
:Var f Var f w f w d f wd f d  

            

where (*) follows from the easy to check identity:   2
f w f w


     

   ii i  The proof is the same. 

   ii iii  Take : df R R9 such that 1f w   is of class 1C . Then 

     
 

 
2

2
1 1

2
2 1

1d

i ii

fVar f Var f w f w wd d x
xw x       



 
       

  

   iii ii  Apply the weighted Poincare’inequality to the function f w  
with f of class 1C . 

In the following proposition, a necessary and sufficient condition is given 
for  ,.wSG   inequalities. 

Proposition (6.2.11) [189]: A probability measure   on R  absolutely 
continuous with density 0h   satisfies the inequality  ,w CSG  for some 

0C   if and only if 
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2

sup ,
m

w xx m

w u
D x du

h u





        

and                          
 

2

sup ,
x

w mx m

w u
D x du

h u





                                             (35) 

where m  denotes the median of . Moreover the optimal constant C  in (16) 
denoted by Copt verifies 

                                          max , 4 max ,w w opt w wD D C D D      

This proposition follows at once from the celebrated Muckenhoupt 
condition for the classical Poincare’ inequality (see [218]). 

Proof: According to Muckenhoupt condition, a probability measure dv hdx  
having a positive continuous density with respect to Lebesgue measure, 
satisfies the classical Poincare’ inequality if and only if 

                    
1 1sup , sup ,

m x

x mx m x m
D x du andD x du

h u h u
 

 
       V V  

and the optimal constant optC  verifies     max , 4max ,D D Copt D D    

.Now, according to Proposition (6.2.10) μ satisfies SG  ,w C  if and only if 

#w   satisfies  CSG . The density of   is 
1

1

h wh
w w








. Plugging h  in 

Muckenhoupt conditions gives immediately the announced result.                                             

The following result completes the picture giving a large class of examples: 

Proposition (6.2.12) [189]: Let   be an absolutely continuous probability 
measure on R  with density    v xdu x e dx . Assume that the potential V  is of 
class 1C  and that w  verifies the following regularity condition:  

                                                
 
 2 0

x

w x
w x 




  

If V  is such that 

                           
   
 

liminf 0
x

sgn x V x
w x




                                                (36) 

Then the probability measure   verifies the Poincare’ inequality  ,w CSG  
for some C 0 . 
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Proof: Let #w   and let V  be the symmetric exponential probability 

measure on R , that is the probability measure with density   1
2

xd x e dxV . It 

is well known that it verifies the following Poincare’ inequality: 

                                  24Var g g x d x  V                                               (37) 

for all smooth g   [255]. Let :T R R  be the map defined by 
   1

vT x F F x 
  with    ,vF x v x   and    ,F x x   . It is well known 

that T  is increasing and transports V  on   which means that #T  V . Let 
us apply inequality (37) to a function g f T  . It yields immediately: 

                           
2

212 1 124 4 sup
x

Var f f T T d T x f d   



     
  

R
 

As  a conclusion, if  the map T  is L  Lipschitz then   verifies  Poincare’ 
inequality             24LSG . The probability   has density    v xd x e dx  

with 

                                                      1 1logV x w x w w x     .  

  has density        V w xd w x e dw x  ,       log .V w x V x w x  The 
derivative of   V w x . .w r t  x  

  
 

 
 

 1.
dV w x dw x dw xdV

dw x dx dx w x dx


 



 

So that                          

                                         
  

     1/ /dw x dw x dw xdV dV
dxd w x dx w dx dx

 



 

It is proved in [191] that a sufficient condition for T  to be Lipschitz is that  

   lim inf s n 0
x

g x V x


 . But     
 

 
 12

v x w x
V w x

w x w x
 

  


  and by assumption 

 
 12

w x
w x




  when x  goes to  . 

 Thus                          
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sgn
liminf sgn liminf

x x

x V x
x V x

w x 





  

which completes the proof.                                                                   

Proposition (6.2.13) [189]:  Let   be a probability measure on dR  
absolutely continuous with respect to the Lebesgue measure, with 

   v xd x e dx   with V  a function of class 3C . Suppose that w  is of class 3C
on R  and such that  w  and  

 

 
 

3

3 ,w x M x
w

  


R  

for some 0M  . If there is some constant u 0 such that 

                        
 

2 2

22 2
1

1 1 1liminf
10

d

x i i i i

V y V y dM
u x u x u w x



                     
  

Then the probability measure   satisfies  ,w CSG  for some C , where 
   w x w ux , for all cR  

Proof: It is well known that a probability    w xdv x e dx   on dR  satisfies the 
classical Poincare’ inequality if w  verifies the following condition: 

                            2

2

1liminf 0
2x

w x w x


                                           (38) 

This condition is rather classical; a nice elementary proof can be found in 
[26]. 

Suppose that   is an absolutely continuous probability measure on dR  with 
density    v xd x e dx   with V  of class 2C . Then #w   has density

   v xd x e dx   , with 

      1 1

1

log ,
d

d
i

i
V x V w x w w x x 



     R  

According to Proposition (6.2.10) to show that   satisfies the inequality 
 ,w CSG  for some C 0 it is enough to show that   satisfies the inequality 
 CSG and a sufficient condition for this is that V  fulfills condition (38). 
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Elementary computations yield[274] 
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w x w x w xV V VV w x w x x x
x xw x w x x w x w x

 
   

  

   
     

     







 

Let        2

2

11 ,
2

x V w x V w x      we have: 

   
   

 
 
 

 
 

 

   
2 2 2

2 3 4 3 2 2
1

1 1 1 11
2 2

d
x xi i i

i i i ii i i i i i

V Vw x w x w xV Vx x
x x xw x w x w x w x w x x
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3 42i i
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w x w x
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1 1 52
2 2

d d d d
i i i

i i i ii ii i i i

w x w x w xV Vx x
x xw x w x w x w x   

     
            

     

Using the inequality 2 25 1 ,
2 5

u u V V  one has  

                         
 
     

       
     

2

3 2 4 2
1 1 1 1

1 5 2 12 2 .
2 5

d d d d
i i i

i i i ii i i ii i i i

w x w x w xV V Vx x x
x w x x xw x w x w x w x   

       
               

     

and so            
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i
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w xV V VI x x x x
x xw x x w x w x  
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Since,      
2

2

1liminf lim inf
2x y

I x V y V y 
 

     and 

 
 

3

31

n i
i

i

w x
dM

w x


 .We concludes that V satisfies (38) as soon as 

                           
2 2

2 2
1

1 1liminf
10

d

x i i i i

V Vx x dM
w x x x



           
  

Applying this latter condition to the probability measure  #u uId  (where 

Id is the identity function) which has density    /1
u d

v x ud x e dx
u

  .gives 

               

2 2

2 2 2
1

1 1 1lim inf
10

d

x i i i i

V y V y dM
u w x x u x u



                     
  

Where yx
u

                                                                                                        

 Let us recall the notation relative to this family of inequalities. A 
probability measure   satisfies the transportation-cost inequality with the 
cost function  ,C x y  on dR  if for all probability measure V  on dR , the 
following holds: 

                     
 

     
,

inf , ,
P v

C x y d x y H v
 

 


                                 (39) 

where  ,P V  is the set of all probability measures on dR × dR  such that                                                

         d ddx v dx and dy dy and H v      R R  is the relative entropy of 
V  with respect to  . 

Wne writes for short that μ satisfies the inequality  ,T w aC  if there is some 
0a   such that 

                                    
 

      
,

inf , , ,wP
ad x y d x y H

 
  


 V

V V  

with    2min ,u u u   and  ., .wd the distance defined by (22). The purpose 
of this section is to show that the inequalities  ,.wSG are equivalent to 
transportation-cost inequalities  ,.T wC .Transportation-cost inequalities of 
the form  ,.T wC are quite unusual. Let us define another family of 
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transportation-cost inequalities appearing often in (see [179,256,101]).Let
1p  , one says that μ verifies the inequality  pT CC if when  1,2pp p   

                    
       2

2 2,
inf min , ,px y x y d x y CH

 
 


   P V

V V  

when  2,p   

                      
       2

2 2,
inf max , ,px y x y d x y CH

 
 


   P V

V V  

As we will see, the inequality  .pTC  is slightly weaker than the inequality 
 ,.p pTC w  (see the proof of Corollary (6.2.19) So in this case, our 

characterization of inequalities  .pTC  in terms of Poincar´e inequalities 
brings new information and criteria for the study of the  .pTC . 

Like Poincare’ inequalities, transportation-cost inequalities enjoy a 
tensorization property and are related to Talagrand’s concentration 
inequalities. 

Proposition (6.2.14) [189]: (Tensorization). Suppose that a probability 
measure   on a space X  satisfies the transportation-cost inequality (39) 
with the cost function  c x,y , then n  satisfies the transportation-cost 
inequality on nX  with the cost function    1

, ,nn
i ii

c x y c x y


 . In other 
words, 

 
     

,
1

inf , ,
n

n
i i

i

c x y d H X
 

 




  P V
V V P  

where  , nP V  is the set of probability measures on n nX X such that 

   , ndx X dx  V and    , ,n nX dy dy   

This result goes back to the first works of K. Marton on the subject (see 
[138, 139]). A proof can be found in [190]. 

Let us explain how to derive concentration inequalities from the inequality 
 ,TC w a . 

We will need the following lemma: 

Lemma (6.2.15)[189] :The function    2minx u u u  is such that                                                                

      2 ,x x y x x x y       for all , 0x y  . 
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Proof: If 1x y  then          2 2 22 2x y x y x y x y          

Now, suppose that 1x y  . 

If 1x   and 1y  , then 

          2 2 22 2x y x y x y x y x y           . 

If 1x   and 1y  , then 

        2 2 22 2 2x y x x y x y x y x y x y               

If 1x  and 1y  then      x y x y x y        

                                2 x y                                            

Proposition (6.2.16) [189]:  If   satisfies the transportation-cost inequality 
 ,TC w a , then for all 1n  and all  ndA  R . 

                                 
 / /211 , 0n

n

h a d
A B h e h

A







      

where  B h is defined as in Proposition (6.2.7)  

Proof : If   satisfies  ,TC w a  on dR  then according to Proposition (6.2.14) 
n  satisfies the transportation-cost inequality on dR  with the cost function 

c  defined by 

           1 1: ,..., , ,... ,
n nd d

n n i ic x x y y ad x y  R R . 

Using the triangle inequality for the metric  .,.d  and Lemma (6.2.15) one 
has 

       , 2 , 2 , , , ,
ndc x z c x y c y z x y z    R . 

Now, let 1V and 2V be two probability measures on  ndR   

Take  1 1,
n P V  and  2 2,n P V  then one can construct three random 

variables X,Y,Z such that   1, ,X Y L  and   2,Y Z L  (see [23]).Then, one 
has 
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1 2

1 2

, , 2 , 2 ,

2 , , 2 , ,

cT c X Z c X Y c Y Z

c x y d x y c y z d y z 

            

  
E E EV V

 

Optimizing on 1  and 2  gives 

                                       1 2 1 2, 2 , 2 ,n n
c c cT T T  V V V V  

Consequently, n  satisfies the following symmetrized transportation-cost 
inequality: for all 1 2,V V  probability measures on  ndR . 

                                        1 2 1 2, 2 2n n
cT H H  V V V V                               

Take  1
n

Adv d A I  and  2
n n

Adv d A  I  for some  ,
ndA A  R  then 

                          
       

     
1 2 1 2,

inf , , 2 2

2log 1/ 2log 1/

n n
c cx A y A

n n

c x y T H H

A A

 

 

 
  

 





V V V V
 

Letting    
,

, inf ,
x A y A

c A A c x y
 




  we get 

     , /2c A An nA A e  
  

Defining e     : inf , /A y c x y a d h  one gets  

   
 / / 21 a d hn

nA e
A





 . 

To obtain the announced inequality it is thus enough to compare  A B h

and A . Take    1,...,
nd

nx x x  R and    1,...,
nd

ny y y  R then for all 
1,...,i n , one has 

  
 

   
 

   , , ,
1 1

, / , /
a bd d

i i i j i j i j i j
i i

a aa x y w x w y w x w y
d d

  
 

   
      

   
 W  

                   
   

, , , ,

1 12 2
/c dd d

j j i j i j

i i

i ix y x ya aw w
d d
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where  (a) follows from the comparison between the norms 2
. and  in 1

.  dR

, (b) from the super additivity of ,x (c) from Lemma (6.2.4)  (i) and (d) from 
Lemma (6.2.4) (ii). 

Consequently, if  y A B h   then , ,

1 1

inf
2

n d
i j i j

i j

x y
w h

 

 
 

 
   

and so y belongs to A . From this follows that 

      
 / /211n n c

n

a d h
A B h A e

A


 




    , 

 which completes the proof.  

Corollary (6.2.17)[274]:The function    2
1 minnx u u u   is such that                                                                

      1 1 1 1 12 ,n n n n n n nx x x x x x x           for all 1 , 0n nx x  . 

Proof: If 1 1n nx x   then 

          2 2 2
1 1 1 12 2n n n n n n nx y x x x x x x             

Now,if 1 1n nx x   .If 1 1nx    and 1nx  , then

          2 2 2
1 1 1 1 12 2n n n n n n n n n nx x x x x x x x x x                

If 1 1nx    and 1nx  , then 

        

2
1 1 1

2 2
1 1 1 1 1

2

2 2
n n n n n

n n n n n n n n

x x implies that x x x

implies that x x x x implies that x x x x  
  

    

  

     
 

If 1 1nx   and 1nx  , 

then      1 1 1n n n n n nx x x x x x              12 n nx x      

The proof of Theorem (6.2.18) relies on two ingredients. The first one is the 
following result by Bobkov, Gentil and Ledoux ([256]). 

Theorem (6.2.18) [189]: (Bobkov, Gentil, Ledoux). If an absolutely 
continuous probability measure   satisfies the inequality  cSG on dR then it 
satisfies the transportation-cost inequality for the cost function 
   2 2

,x y x x y  for all 2
c

s > , where 
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2
2

5

2

24 ( ) 2 ( ) ( )
2 2( )s

s s

s

t
C C sL st if t L s swithL s e

C ss t L s otherwise



         

 

In particular, if one takes 1s
C

 , then it is easy to check that   1
s t

Ck
     

 

, where    2min ,u u u  and 518K e . Thus if   satisfies  cSG it satisfies 

the transportation-cost inequality with the cost function   2.
x y

x y
Ck


  
 
 

 . 

In other words, with the definition of the transportation-cost inequality
 ,aSG , the preceding result can be restated as follows. 

Corollary (6.2.19) [189]: If   is an absolutely continuous probability 
measure on dR satisfying the classical Poincar´e inequality  cSG for some

0C  , then it satisfies the transportation-cost inequality 1,Id
Ck

 
 
 

TC . 

(where : :Id x x R R is the identity function.)  

The converse is also true: 

Proposition (6.2.20) [1 89]:  If   satisfies  ,TC Id a , for some 0a  , then   

satisfies the inequality 2

1
2a

 
 
 

SG . 

The proof of Proposition (6.2.20) is classical and can be found in various 
places (see [256] or [17]).The second argument is a very simple contraction 
principle: 

Proposition (6.2.21) [189]:  Let   be a probability measure on a metric 
space X  ; if   satisfies the transportation-cost inequality with the cost 
function :c XxX R and if :T X Y is a measurable bijection then, #T 
satisfies the transportation-cost inequality with the cost function 

      1 1, ,x y c T x T y  . 

This contraction principle goes back to Maurey’s work on infimum 
convolution inequalities (see [17]). A proof can also be found in [191], 
where this simple property was intensively used to derive necessary and 
sufficient conditions for transportation-cost inequalities on the real line. 
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Now let us apply the contraction principle together with Theorem (6.2.18) to 
prove that Poincare’ inequalities  ,.wSG and transportation-cost inequalities

 ,.TC w are qualitatively equivalent. 

Theorem (6.2.22) [189]:  Let  be a probability measure on dR absolutely 
continuous with respect to Lebesgue measure. Then   satisfies the 
Poincare’ inequality  ,w CSG for some C 0 if and only if it satisfies the 
transportation-cost inequality  ,TC w a for some a 0 .More precisely, 

(i) If   satisfies  ,w CSG then it satisfies 1,TC w
Ck

 
 
 

, with 518K e . 

(ii) If   satisfies the inequality  ,TC w a , then μ satisfies the inequality 

                                               2

1,
2

w
a

 
 
 

SG  . 

Corollary (6.2.23) [189]:  If an absolutely continuous probability measure 
  verifies the inequality  ,w CSG on dR , for some C and 1p  , then 

(i) if  1,2P  it satisfies the transportation-cost inequality 

                        2

2 2,

4inf min , , / ,
1

p

p
x y x y d x y H v

Cdk

 
 




   
 
 
 

V
V  

(ii)  if 2P  it satisfies the transportation-cost inequality 

                  

       2

2 2,

4inf max , , / ,
1

p

p
x y x y d x y H

Cdk
 

 



   

 
 
 

V
V V  

Proof: Let   1
,

2
d i i

p pi

x yc x y w


   
 

  . During the proof of Proposition 

(6.2.16) [189]: we have shown that       / , ,p pa d C x y adw x y   

So, if   satisfies the inequality  ,pw aSG , it satisfies the transportation-cost 

inequality with the cost function    / ,pa d c x y  

For  1,2p p , the function  .p   is concave, so 
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                                 2

2 2 2

1, , / 2 min , , ,
4

p
p pc x y adw x y x y x y  ,for 2p  .  

                             2 2

2 2

1 1, max , , , 1/ 2 max , , ,
4 2

p p
p pp p

p

c x y x y x y x y x y
 

   
 

 

The result follows from Theorem (6.2.22) 

Let us say that a probability measure   on a metric space X  satisfies the 
inf-convolution inequality with the cost function :c X X   R , if the 
following holds for all measurable non negative functions :f X  R  

                            . 1cQ f fe d e d                                                   (40) 

where the inf-convolution operator cQ is defined by 

                                      inf ,c y X
Q f x f y C x y


                                      (41) 

One will say that a probability measure   on dR satisfies the inf-convolution 
inequality  ,w aIC if it satisfies the inf-convolution inequality (40) with the 
cost function     , ,c x y adw x y . The inequalities  ,.TC w and  ,.wIC are 
qualitatively equivalent, as shown by the following proposition: 

Proposition (6.2.24) [189]: If   verifies the inequality  ,w aIC then it 
verifies the inequality  ,TC w a . 

Conversely, if   verifies the inequality  ,TC w a then it verifies the inf-

convolution inequality with the cost function  2 ,
2
ax dw x y 

 
 

; in particular, it 

satisfies the inequality ,
2
aw 

 
 

IC . 

Proof: Let        inf ,a

y X
Q f x f y ad x y


  . If   verifies the inequality

 ,w aIC then, applying Jensen inequality, it holds: 

                                 
a fdQ fe d e


                                                    (42)   

for all bounded measurable : df R R . According to [193], this latter 
inequality is equivalent to the transportation-cost inequality  ,w aTC . 
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Conversely, suppose that  verifies the transportation-cost inequality
 ,w aTC . According to [193], the inequality (42) holds. Applying (42) to 

afQ instead of f, we get 

                                                  . 1
aa a Q fdQ Q fe d e 


   

and applying again (42) with afQ instead of f , we get 

                                            
   . 1

aa a Q fdQ Q fe d e



    

Multiplying these two inequalities yields to  

    . . 1Q f Q fe d e d
 

 
    

Now, for all , dx yR ,we  have:       ,af x Q f y adw x y   , and 
consequently,      a af x Q Q f x   . Plugging this into the  last inequality 
gives 

  . 1
a afQ Q fe d e d     

An easy computation gives: 

      inf 2 ,
2

a a aQ Q f x f y dw x y
     

  
 

This completes the proof.  

The following corollary is an immediate consequence of Theorem (6.2.22) 

Corollary (6.2.25)[189]:Let   be a probability measure on dR absolutely 
continuous with respect to Lebesgue measure with a positive density. Then 
  satisfies the Poincare’ inequality  ,w CSG for some C 0 if and only if it 
satisfies the inequality  ,w aIC for some a > 0.More precisely, 

(i) If   satisfies  ,w CSG then it satisfies 1,
2

w
Ck

 
 
 

IC  with 518K e . 

(ii)If   satisfies the inequality  ,w aIC , then μ satisfies the inequality

2

1,
2

w
a

 
 
 

SG . 
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We show that the Poincar´e inequalities  ,.wSGw  are weaker than super 
Poincare’ inequalities. 

Let us recall that   verifies the super Poincar´e inequality  SP if for 
every locally Lipschitz f on dR , one has 

       
2

22
2

. 1f d s f d s f d s         
                            (43)   

where  : 1,  R  is nonincreasing. 

Indeed, taking 1s   in (43) and applying it to  f m


 , where m denotes the 
median of the function f , gives: 

                             
     

   

2

22

2

2 2

2

1

11
2

f m f m

f m f m

f m d d f m d

f d f m d

   

  

 

 

 
     
 
 

   

  

 
 

Thus,     22

2
1

f m f m

f m d f d  
 

    . Doing the same with  f m


   

yields ,     22

2
2 1

f m f m

f m d f d  
 

    . Adding these inequalities gives 

    22

2
2 1f m d f d      . Since    2Var f f m d   , this concludes the 

proof.    

As noted by  F.Y. Wang in [75], super Poincare’ inequalities imply 
concentration results. This is recalled in the following proposition. 

Proposition (6.2.26) [189]: Suppose that   verifies (43) with a continuous 
decreasing function  such that  0s  when s goes to   and define

 
1

2 1
a


 , then for all 1-Lipschitz function f  on dR such that 0fd  , we 

have: 

 
0

exp 0f ie d t e a dt


    
 
    
 
 

   

where the function is defined by 
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  1
2 2

1 1log 2 , 0
2

t t
t t

         
>  

As a consequence, defining for all     0, t a dt





        

and for all     00, supt t t   


    , we have 

 
1

, 0f t e t
    

Moreover, the inverse function of 
 can be expressed as follows 

   
0

1
, 0

t

t u du t 
     

Where  : 0,   R is defined by: 

                                          
     

 

2log 2 1 log 2

2 log 2
2

t

if t

t e if t






 
   

  
 

 

The observation concerning the inverse of 
 seems to be new and will be 

very useful in the sequel. The proof below is simpler than the one proposed 
by Wang in [75]. 

Proof: Let f  be a 1-Lipschitz function with 0fd  define   2 fZ e d    
and    log Z   . Applying (45) to the function fe yields: 

                                          222 2s s          

So, if  1 21s   , we easily get 

     22 log 2
1

s
s

 
 

 
      

 

Since the function Λ is convex, one has      2    Λ Λ Λ , and so 

               
     

 2 2 2

1 log
1

s
s

   
    

     
         

                        (45)   
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If  1 2 1 a  < , then taking 1s   in (46) yields 

          2
2

1 log 1 1 2log 2 1 a


   
 

 
     

 
 

If 
 

1
2 1

f a


  , then taking 1
2

1
2

s 


    
 

in (46) gives 

   


 


 
 

 
 

So, for all    0, a


  


 
  

 
 ; ince  

0
/ 0


 


   one gets the result. 

The inequality    tf t e 
  follows at once from the preceding using 

routine arguments. Now, let us prove the claim concerning the inverse of 
Λ . 

It is easy to check that 

     
 1 1

1
2

0 1 1 0

1 1u a du a du u du d
u u

 

 

   


 

        
     V V V  

Now integrating by part yields 

 
 

   
 1 11 1

1

0 0

1
d u du

   
 

 


 


   V V V  

Let      
0

t

h u du       , then 

        
  1 1

1

1 1

1 1
t t

h u du u du t
   

       
 

       

Observing that is decreasing and  1 1   is increasing, it is easy to 
check that the integral term above is always non positive and vanishes when

 1 t  . We concludes that 

   
0

0

sup
t

h u du t


 



 
   
  
 , 
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which concludes the proof.                                                                               

Lemma (6.2.27) [189]: Suppose that  : 1,  R is continuous decreasing 
function such that  s s s is nondecreasing on  1, and define 

:pw  R R  as follows: 

                                       1

0

4 , 0
t

uw t e du t                                     (45) 

Then we have 

                               5 , 0w t t w t t                                      (46) 

Where     2min ,t t t  for all 0t  . 

Proof: Let us prove the lower bound in (46). According to Proposition 
(6.2.26) this inequality is equivalent to the following one 

                                
0 0

2

4 , 0
t

u

t t

t u du e du t   



                          (47) 

where the function is defined in Proposition (6.2.26).In fact a slightly 
better inequality holds true: 

                             
2

0 0

2 2 2 0
t t t

ut u du e du t   


                   (48)  

with the convention    1s  ,when  0,1s . Since the function  s s is 
nondecreasing on 1, it is easy to check that    / 2 2u ue e  , and so (48) 
implies (47). To prove (48), let us distinguish the following cases. 

If  log 2t  , then 

             1 1 2

0

2 2 log 2 1 2 2 1 2 2 / 2
t

ut t t t e du              

 If  log 2 t , then 
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1 1

og 2

og 2

0 og 2 0

2 2 1 log 2 2 / 2

2 2 / 2 2 / 2 / 2

t

u

l

l t t

u u u

l

t t e du

e du e du e du

   

  

     

  



  
 

The proof of the upper bound in (46) is similar.                       

Examples (6.2.28) [189]: Let 1P , and define      2 1/ 1logp
ps e s  

(which verifies the conditions  s s increasing according to Lemma (6.2.38) 
Then, we can show that 

                     1/
, 0

44 2 1 pp pp

t tw w t w t
pp 

   
          

                            (49) 

where   p
pw u u u ν for all 0u  . In particular, if   verifies inequality

 pCSP  for some 0C > , then we have 

  
2 2

/ 4
, 0

w t C ppx t x d e t


 
      

   

and this implies that 2
pxe d

  < for some 0 > , Since the probability 

measure   1 px
p

p

dv x e dx



verifies  pCSP , for some 0C  , one concludes 

that the  function       
p

w gives the right order of concentration. We think 
that more generally the function w is of the right order. 

Now we can state the following result: 

Let us recall the definition of a capacity-measure inequality [262]and 
[59,60] 

Definition (6.2.29) [189]: Let   be a probability measure on dR . Let A
be Borel sets. One defines 

   2

2, inf : ACap A f d      I I  

The capacity of a set A with   1 2A  is defined by 
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    2

2

inf , : 1 2

inf : : 0,1 , 1 0 1 2d
A

Cap A Cap A A and

f d f f and f

  

 

    

      R
 

One says that   satisfies a capacity-measure inequality if there is a function 

 : 0,1 R  such that for all A  with  ( ) 1 2A  ,     A Cap A    

Many functional inequalities admit a transcription in terms of capacity 
measure. The simplest example is the classical Poincar´e inequality on dR . 

Theorem (6.2.30) [189]:  A probability measure   on dR verifies the 
inequality 

 CSG for some 0C   if and only if there is some 0D   such that for all 
dA R with   1 2A  ,    A DCap A  . 

Moreover, optimal constants verify / 2 4opt opt optD C D  . 

Theorem (6.2.31) [189]: (Barthe-Cattiaux-Roberto). Let  : 1,   R be a 
nonincr-easing function such that  s s s is nondecreasing. Suppose that 
for all dA R , with   1 2A  , 

                                           
 
    

1/
A

Cap A
A 


 

  

then   verifies the super Poincare’ inequality  8SP . 

In fact, for our purpose one is only interested in the converse proposition: 

Proposition (6.2.32)[189]: Let  : 1,  R be a nonincreasing function 
such that  s s s is nondecreasing. Suppose also that there exists 4  such 
that 

                                          4 , 1s s s      

Under the preceding assumption, if μ verifies the super Poincare’ inequality
 SP , then for all dA R , with   1 2A  we have 

 
    4

1/
A

Cap A
A 
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Proof: The following proof is a straightforward adaptation of the proof of 
[59] and we will only sketch it.  Let dA R with   1 2A  and  : 0,1df R  
a function which is 1 on A and vanishes with probability more than 1/2. For 
all k Z , define  2 2k k

kf f


    and  2k
k f   . Applying the super 

Poincare’ inequality (43) to the function kf one obtains: 

 

   

2
22
2

2 2
2

k k k

k k

f d s f d s f d

s f d s f d

   

   

     
 

   

 
 

 

Taking 
 
1 1

2 k

s


 


and noticing that 2 22 k
kf  on 1k gives 

 
 

22 2
1 2

12 2
2

k

k
k kf d f d



   


 
    
 
 

   

Defining    
1

2 / 2
F x

x
 for  2, k kx a    , and 2C f d  one gets 

 2
12 1k

ka F ak C  , as soon as 0ka  . Applying [59], we concludes that 
 22 1k

k ka F a C as soon as 0ka  . If one takes 0K  , one has A   so
 a A  and since  s s is nondecreasing,       1 1a F a A F A    . 

Consequently, 

 

 

 

 

2

21 14 2
2

A A
f d

A A

 
 

 
 

  
   
   
   

  

Optimizing over f gives the result.                                                                     

In all what follows, we will adopt the following convention: for 1s  , one 
defines    1s  . 

Let 

                                     4 1/
xx

k
    for all 0x  .                         (50)   

Where  is defined in (51). 
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Lemma (6.2.33) [189]:  If  : 1,   R is a nonincreasing function such 
that 

 s s s is nondecreasing then the function defined by (50) is 
nondecreasing and verifies      x y x y    for all ,x y R . 

Proof:Since  s s is nondecreasing, it follows that is 
nondecreasing.Moreover, since     is nonincreasing, it follows that   /x x

is nonincreasing. Thus, if 0x y > ; we get 

                                      1 / 1 /x y x y x y x x        

                                                 /x x x y   . 

This completes the proof.                                                                                       

The following lemma explains how behave capacity-measure inequalities 
under push-forward: 

Lemma (6.2.34) [189]: Suppose that   satisfies the capacity-measure 
inequality 

                           ,A DCap A   with   1 ,
2

A A    

Then #w  verifies the inequality 

                         ,A DCap A   
 with   1 ,

2
A A    

Where 

      
2

21

1

inf : 0,1 , 1
d

d
i A

ii

fCap w w x x d f f
x 



       
  R  and   10

2
f  


 . 

Proof: Let A  be such that   1
2

A  , and f be such that  1f  on A and 

  10
2

f   . Define  1B w A and g f w  .Then     1 . 1
2

B A g    on B  

and   10 0g w f    

and     10 0
2

f f     . Applying the capacity-measure inequality 

verified by   to B and g yields 



263 
 

          
2

22 1

2
1

d

g i
ii

fA B D d D w w x x d
x

     



       
     

Optimizing over such functions f  gives the announced inequality for .          

The next lemma compares the capacity Cap to the usual capacity Cap : 

Lemma (6.2.35) [189]:  Suppose that w is convex and  

Let     1: maxd
i d iB r x x r    R , for all 0r  . If  A B r and   1

2
A  , 

then 

                              212 1 cCap A w w r Cap A B r  


   
     

Proof: Let 

 
 

 
1

2

2

1inf :1 1 0
2r

r
A BCap A f d f and f  

 

       
     

Using the fact that the function 1   is nondecreasing on R , we clearly 
have: 

      
21 1 rCap A w w r Cap A

     

Now let  : 0,1df R be such that 1Af  and   10
2

f   . Let :h R R defined 

by    1 1h t r t


   Λ and consider : d R R defined by    x h x


 . It is 

not difficult to check that
 2

1 cB r


  . Let g f ; we have 

     1
11 1 , 0 0
2A B rg g f 

        , 

and 

 

  

2 22 22 2
22 2 2

2

2

2 2

2 2

r
g

c

Cap A d f f d f d f

f d B r

       

  

         

  

   

   

 
 

Optimizing over f yields: 
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      2 2 crCap A Cap A B r                                      

Theorem (6.2.36) [189]: Let  : 1,   R be a continuous decreasing 
function such that  s s s is increasing and such that there is some 4 

for which the following holds 

                                   4 , 1s s s                                         (51)   

If a probability measure   on dR verifies the super Poincar´e inequality
 SP , then there is some a > 0 such that μ verifies   2. / , 4w a SG , where

 is defined by (50) for 0t  and extended to R by    w t w t    , for 0t  . 
We can take 

                                              max ,a m    

Where  
2

m x d   

Moreover, under the same assumptions, the probability measure   verifies 
the centered Poincare’ inequality   2. / ,4w a SG (see Definition (6.2.29) 
with 

                                          max , 2 1a d    

The constant a above depends only on and enjoys the following invariant 
property: if  is replaced bytwith 0t  , then a is unchanged. 

Finally, under the same assumptions, the probability measure   verifies the 
following transportation-cost inequality 

                         
   

,
1

1inf ,
2 1

2

d
i i

P
i

k

x yw d x y H
a

d

 
  







      
 
 

 
V

V  

for all probability measure V  on dR . 

Proof :  Define as the image of   under the map  /px w x a  with 
  max ,a m   . We wants to prove tha  verifies the classical Poincare’ 

inequality 

 According to Proposition (6.2.32) the probability measure   satisfies the 
capacity-measure inequality 
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                            1, ,
2

A Cap A with A A     .                         (52) 

According to Lemma (6.2.35)  satisfies the capacity-measure type 
inequality: 

       1, ,
2

A Cap A with A A      , 

where Cap is defined in the lemma. 

Let     1: maxd
i d iB r x x r    R , for all 0r  . Let dA  R with   1

2
A  ; 

one has 

            

  
 

       
 

      
 

            
 

           
 

          

22 1

22 1

2

2 / 1

2 / 1

8

i
c

ii
c

iii
c c

iv
c c

v
c c

r

A A B r B r

Cap A B r B r

a w w r Cap A B r B r B r

a w w r Cap A B r B r

e Cap A B r B r
a e



 

 



  



 

 

 


 

 


  


 

 

  

 

    
 

    
 

   
 









  



  

 

 

 

where (i) follows from the sub-additivity and the monotonicity of , (ii) 
from Lemma(6.2.33)  (iii) from Lemma (6.2.34)   and the convexity of w , 
(iv) from the fact that the function  A Cap A is nondecreasing and (v) 
from the equation (45) of w and the inequality    1 1r re e e   . Thanks to 
Lemma (6.2.37)  below, one has 

                                               2c rr e e  
  . 

Using the monotonicity and the sub-additivity of , one has 

          2 2c r rr e e e e   
     . 

So, letting  t A  and using the definition of , one has: 
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2

2 2

12 . 0
1 2

r
r

t e eCap A e e r
t a a e

 
 

  
      

  
  

Since 4a   , one has 2 1 2
2
e
a


 and
2

2 2 8e e
a

  and so letting

 1
tb

t
 , one 

gets 

    
1

1sup 8
2s

b s s Cap A


    

Let     , 1s s s s g ; by hypotheses g is increasing and goes to when
s  . 

Taking  1 16s g b (which is well defined) yields 

    1 16b g b Cap A     

According to (52), one has    4g x g x  for all 1x  ; from this follows that 

   1 14g x g x  for all  1x   and by iteration    1 2 116g x g x  , for all
 1x  . Consequently, 

      1 2 1 2 1 216 / 1 1g b g b g g t t        

As   is nonincreasing, one concludes that     2 1 16t g b    .  

Since    2 21t t    , one gets     2 1 16t b g b Cap A     . 

In other word, for all dA  R with   1
2

A    

   2A Cap A    

According to Theorem (6.2.30) one concludes that verifies the classical  

Poincare’ inequality  24SG . 

Let xd
 


 . If   verifies the super Poincare’ inequality (43), then so does 

 . So all the preceding results apply to  . In particular,  verifies the 
inequality  

  2. / , 4w a SG  
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with   max ,a m   , where  
2

m x yd d x    . But, 

     
2

2

1

2 1
d

i i
i

m x y d d x d  


   , 

where the first inequality follows from Cauchy-Schwarz inequality and the 
second from the fact that   verifies the Poincar´e inequality   2 1SG (see 
Remark (6.2.41). This proves that  verifies   2. / , 4w a SG with 

   max , 2 1a d  Λ . 

The invariance property of a follows immediately from the definition of 
Λ

given in Proposition (6.2.20)  

Now, according to Theorem (6.2.22)  verifies the inequality 

  1. / ,
2

TC w a
k 

 
 
 

 

Reasoning as in the proof of Corollary (6.2.19) one sees that this implies 
that  satisfies the transportation-cost inequality with the cost function 

 
1

1,
22

d
i i

i

x y
c x y w

ak d  
 

      
   

  . 

Since transportation-cost inequalities are translation invariant, this 
concludes the proof.During the proof of Theorem (6.2.30) we have used the 
following lemma. 

Lemma (6.2.37) [189]: The probability measure  which is the image of μ 
under the  /map x w x a with    2

max ,a m and m x d   Λ verifies 

   2 , 0rx r e e r 

     

Proof: According to Lemma (6.2.33) and e.g [192], one has 

   2
1 , 0,1
1

x me d 
 



  
  

 Λ , 

where 
Λ is defined in Proposition (6.2.20).Using the convexity of 

  

and the fact that w   Λ one gets since 2a  . 
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     2 2 2

1 1exp / exp / exp .expw x a x a x m m
a a                 
   

  

Since      2
/ / /w x a w x a w x a  

  , integrating yields: 

     1 1 / 1. 2
1 1 /

x ae d x exp m e
a a


          

which gives the result.                                                                                  

In this section we will draw consequences of Theorem (6.2.36) .We will 
focuss on the functions      2 1/ 1log p

p s e s   , but more general results 
could be stated. First let us show that these functions verify the assumptions 
of Theorem (6.2.36). 

Lemma (6.2.38) [189]: For all 1p  , the function      2 1/ 1log p
p s e s   is 

such that 

 ps s s is increasing on  0, . Moreover, for all 1p  , there is some 4  , 
such that    4p ps s   for all 1s  . Let us denote by p the smallest of 
these ' s , then the pmap p  is increasing. Moreover, one always has

205p  for all 1p  and for  1,2p p , one has 20p  . 

Proof: Let  2 1 1/r p  ; then  0,2r . The  log rmap s e s is concave on

 0, . Consequently, the   log 1 /rmap s e s s  decreases on  0, and 
so does 

 log /rs e s s . In other word  ps s s is increasing. 

Next observe that      
 

log
4 4

log

r

p p

e s
s s

e s
   


 

    
. This clearly implies 

that the pmap p   map is nondecreasing. 

Let    
 

log
log

e s
f s

e s





 then 

         
     

   
    2 2

log log

log log

e s e s e s e s s s
f s

e s e s e s e s e s e s

     

   

     
  

     
 

with      logs e s e s    . Then  
    

2

logs s e e sd
ds s s

  
 . If 6s  , then 
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  0
sd

dx s
 

 
 

  so   /s s s  is nondecreasing and this implies that 

   s s    for all 6s  . As a consequence,   0f s  when 6s  and the 
function f is thus nondecreasing on 6, . Consequently,    6f s f for 

6s   and 

   
1

log 6
f s

e 



 for 6s  . Since    

16
log 6

f
e 




, one has

   
1

log 6
f s

e 



 

for  all 1s  . 

From what precedes one concludes it is enough to find 4  such that 

 
4

log 6e





  

For r 2 , one checks that 205  is convenient and for 1r  , one can take
20  . This the proof.  

Let us recall that μ satisfies the Lata la-Oleszkiewicz inequality  ,p CLO if 

                        
     

2/
2

2

2 1 1/ 2
1,2

sup ,
2

a
a

p
a

f d f d
C f d f

a

 





   
    



   .                                 

(53) 

The following result is due to F. Y. Wang (see [73]): 

Theorem (6.2.39) [189]: Let  1,2p ; a probability measure verifies the 
 ,p CLO  for some 0C   if and only if it verifies the super Poincar´e 

inequality  pCSP . 

Corollary (6.2.40) [189]: If   verifies the inequality  ,p CLO  on dR , with

 1,2p   then μ verifies the centered inequality   1 2. / ,pw a C aSG , where 1a

depends only on the dimension d  and 2a  is an absolute constant. One can 
take 1 4 6a   max (5d, 20) and  2

2 320a  . 
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Remark (6.2.41) [189]: The fact that the dimension d appears in the 
constant 2a  above is not a problem, thanks to the tensorization property of 
the (centered) Poincare’ inequality. 

Proof: According to Theorem (6.2.39)  verifies  96 pCSP and according to 
Theorem (6.2.36)    verifies the centered Poincare’ inequality 

      2
96, 4 : . / . / 4 6

pp C pw w w a w a C  SG . 

According to Lemma (6.2.38) we have 20p  . Using the inequalities (46) 

and (49), one sees that   2 1 2 5 ,p d d d      so  max 5 , 20a d . It 

is easy to check that 1 1
4 8p p pw w w

p
      According to Proposition (6.2.10) 

one concludes that   verifies the centered Poincare’ inequality 
    2. / 4 max 5 , 20 6 , 320pw d CSG .  

Let :H R R ; let us recall that   verifies the modified Log-Sobolev 
inequality 

 ,H CLS on dR , if for all locally Lipschitz positive function ;f  

 2 2

1

d
i

i

fH f C H f d
f

 


 
  

   

Let 2p  define q such that1 1 1p q  and   q
qH x x . The inequality 

 ,.qHLSI  

is related to super Poincar´e inequality  pSP as explained in the following 

Proposition (6.2.42) [189]: Let 2P  and suppose that   verifies the 
inequality  

 ,qH CLSI on dR  with1 1 1p q  , then   verifies the super Poincare’ 
inequality 

  2 1 1/ p
pC kSP , where k is a constant depending only on the dimension d  

and p . 

Proof: Since the function / 2qx x is concave, applying Jensen inequality 
yields: 
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/2 1 /2

22 2
q q

i
q i

fH f d f d f d
f

  
                   

So, using concavity again, 

                                    
/2 1 /2

22 1 /2 2
2

q q
qH f Cd f d f d  


        

      

Since, / 2 2
0inf

a
q q

s qx sx a s 
    
  

>  with
22 2

2

q
q

q
qa

q

     
  

, one concludes that for 

all s > 0 

                                       22 22
2

q
q

qH f Cs f d Ca s f d        

letting 1 /2qC Cd  . According to the proof of [75], if a probability measure   
verifies an inequality of the form: 

                                      22 2
1 22

H f C f d C f d       

Then it verifies 

                        
2

222 2
22

1

2exp , 0
2
rC Cf d r f d C f d r
C r

  
           

  
   

From this follows, that 

                 
22 22

2 2 2

2
1 exp 2 /

2

q
q q q

q

a
f d r f d rs Ca s Cs r f d   

                          

holdsfor all , 0s r  . Choosing 
2

2
q

s r


  yields: 

        
2

222 /2
2

1 2 exp 2 , 0
4

q
q qf d r f d a C a r f d r            

     

or equivalently: 

                 
2/ 2

22 2/ 1/
2

4 1log ,
4

q

q q
q q

q

sf d C b f d s f d s b
b

  


                  . 
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Where  2
2q qb a  . According  to [252], μ verifies the Poincare’ inequality

 2/q
qc cSG , where 2/36.6 q

qc  . Let  
2/

2/ 1 1/ 4
q

q q
q q

q

ss c d b
b





 

    
 

, for / 4qs b and

  qs c   for 1, / 4qs b    , then   verifies the super Poincare’ inequality

 2/qC SP . It is clear that one can find a constant k such that pk  . This 
constant K  depends only on d  and q .  

Reasoning exactly as in Corollary (6.2.43) we prove the following result. 

Corollary (6.2.43) [189]: Let 2p   and suppose that   verifies the 
inequality  ,qH CLS on dR with1 1 1p q  , then μ verifies

  1 1/. / ,p
pw ac bSG , where a  and b  are constants depending only on d  

and p .                                                             

Theorem (6.2.44) [189]:  (Bobkov-Ledoux). If μ satisfies (16), then for 

every bounded function f on nX  such that 2 2

1

n

i
i

f a


  and 

max , .n
i f b a e   (where i f  denotes the length of the gradient with 

respect to the thi  coordinate) we have  

            
2

2 2exp min , , 0n n t tf f d t t
Ck a C kb

 
  

       
  

             (54) 

 With 518k e  

 proof: (i) According to [255] (which is the main result of [255]), μ enjoys a 
modified Logarithmic-Sobolev inequality: for all 20 s

C
< < and for all 

locally Lipschitz        :f X  R such that .f s a e  . We have 

                            2f fH e L s f e d                                           (55) 

Where  
2

52
2 2

s CC CsL s e
Cs

 
    

  

(ii) Tensorization. Thanks to the tensorization property of the entropy 
functional, 
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1

i

n
fn f n

i

H e H e d 


                              

for all : nf X  R . 

Applying this inequality together with (40) yields 

                                     2

1

n
n f f

i
i

H e L s f e d 


  .                             (56) 

For  all 20 s
C

< <  and : nf X  R such that 1max .n
i n i f s a e    . 

(iii) Herbst argument. Thanks to the homogeneity one can suppose that
nf X  R is such that  1max 1 1i n i f b      and 2 2

1

n

i
i

f a


  . Define 

  f nZ e d   Then, applying (56) to f , we easily obtains the following 
differential inequality 

                                   
     2log 2, 0

Zd L s a s
d C




 

 
    

 
< <  

and since
  log

0
2

nZ
d as


   , we get 

                                    
  22 2, 0

nL s a fdf ne d e s
C

    
       

(iv) Tchebychev  argument. This  latter inequality on the Laplace transform 
yields via Tchebychev argument: 

                                        
  , 0sh tn nf fd t e t        

   

Where 

 
 

      

   

2
2 2

22 2

0, 2 2 2 2

0 2
4sup

2
s

t if t L s a s
L s ah t t L s a

st L s a s if t L s a s


 



 

   
  

 

Now it easy to see that ,    
2

2min ,
4 2s

t sth t
L s a

 
   

 
. For 1 /s C one obtains 

after some computations, 
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2

2 2min ,s
t th t

Ck a Ck
 

  
 

    with 518k e   

 Corollary (6.2.45) [189]: (Bobkov-Ledoux). Let   be a probability 
measure on X  satisfying the Poincar´e inequality (16) on  ,X d  with the 
constant 0C  . There is a constant L  depending only on C  such that for all 

subset A  of nX  with   1
2

n A  , 

                           1 , 0n h lhA e h                                                     (57) 

where the set hA  is the enlargement of A  defined by 

                              
1

: inf ,
n

h n
i ix A i

A y X d x y h




 
   
 

            

where    2min ,u u u   for all uR . One can take 1 /16L
Ck

   
 

  where as 

before 518k e . 

proof:Take nA X , such that   1
2

n A  and define 

    
1

inf ,
n

a A i
i

F x d x a


  , where    2min ,u u u  . Then for all 0r > , the 

function  min ,f F r verifies (see [255]) 1max 2i n i f    and 
2

1
4n

ii
f r


 

.Moreover since   1
2

n A  , we have 

  1 1 / 2c
n n n

A
fd f d r A r       . Consequently, applying (54) to f 

yields: 

                               / 2n n n n rK CF r f r f d r e            
   

with   2

1 1 1 1 1min ,
16 16

K C
Ck Ck Ck

       
   

. This concludes the proof of 

(57).  
Corollary (6.2.46)[274]:If μ is a probability measure  satisfies (16), then for 
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every bounded function  Lipichitz jf on nX  such that 2 2

1 1

n n
j

i
j i

f a
 

  and 

1

max
n

j
i

j

f b


  ,                      .n a e  we have  

                         

2

2 2min ,

1 1 1

e , 0
j jt t

nn n C kbCk an j j n
j j

j j j
f f d t t 

  
  

    

  

 
     

 
                

With 518k e  

 proof: (i) For all 20 js
C

< < and for all locally Lipschitz :jf X  R such 

that 
1

.
n

j j

j

f s a e


  . We get 

                                       
2

1 1

j
n n

f j j j f

j j
H e L s f e d 

 

                                      

Such that  
2

52
2 2

j
j

j s C
j

C C sL s e
C s

 
    

  

(ii)According to the tensorization property of the entropy functional, 

                                                
1 1 1

jj
i

n n n
fn f n

j j i

H e H e d 
  

                              

for :j nf X  R ,with (55) give 

                                               2

1 1 1

j
n n n

n f j j j f
i

j j i

H e L s f e d 
  

   .                     

For 20 js
C

< <  and : nf X  R s.t 1
1

max .
n

j j n
i n i

j
f s a e 



  . 

(iii) Given  1
1

max 1 1
n

j
i n i

j

f b 


   and 2 2

1 1

n n
j

i
j i

f a
 

  . Define

  j jj f nZ e d   .                             Applying (56)  we have 

                                   
     2

log 2, 0
j

j j j
j j

Zd L s a s
d C




 

 
    
 
 

< <  
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Since
  log

2

j
n

Z
d


  when 0j  , we find 

                                    
  22 2, 0

j j j j nj j L s a f df n j je d e s
C

    
       

(iv) 
  , 0

j
js

h tn j j n j jf f d t e t 
      

   

Where 

      
 
     

       

2
22

2 22

0,
2 22 2

0 2
4sup

2
j j

j
j j j

jj j j j j

s
j j j j j j j

t
if t L s a s

L s ah t t L s a

s t L s a s if t L s a s


 
  


     


 

Then    
 

2

2
min ,

24
j

j j j
j

s j

t s th t
L s a

 
 
 
 

, where 2 518k e  

Section (6.3): Mass transportation of free functional inequalities and  

free Poincaré inequalities 

A distinguished role in the world of functional inequalities is played 
by the logarithmic Sobolev (Log-Sobolev) inequality and the Talagrand or 
transportation cost inequality. There is an extensive literature dedicated to 
these inequalities in the classical setting of Euclidean and Riemannian 
spaces (see [25, 174, 23, 71]) 

Given a probability measure V  on  dR , the transportation cost inequality
  T   states that for some 0   and any other probability measure μ on dR , 

                                       2
2 , H  W V V                                                        

Here  2 ,W V is the Wasserstein distance between   and V  of finite second 
moment defined by 

     
1
22

2 ,
, inf ,x y dx du

 
  


      W

V
V  

with  , V denoting the set of probability measures on dR  with marginals 
  and V  and 
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  log dH d
d


  V
V

 

is the relative entropy of   with respect to V  if  Vand   otherwise. 
The Log-Sobolev inequality   LSI  is that for any μ 

     1 1
2

H  


V V                      

Where 

  log dI d
d


  V
V

 

is the Fisher information of   with respect to V  which is defined in the case

  V          with d
d

V

 being differentiable. A more subtle inequality is the 

  HWI  inequality relating entropy, Wasserstein distance W , and Fisher 
information I 

                              2
2 21 , ,

2
H v 

    W WV V V                    

Poincaré’s inequalit   P y in this classical context is that for any 
compactly supported and smooth function ψ on dR , 

                                         
2

Var dx                                        

Where           2
2Var x dx x dx        is the variance of ψ with 

respect to  . 

To wit a little bit here, let :V R R be a nice function with enough growth 
at infinity and define the probability distribution 

    1
n

n

nTn V MdM e dM
Z

P  

On the set nH of complex Hermitian n n matrices where dM is the Lebesgue 

measure on nH . For a matrix M , let    
1

1 n
n kk

M M
n  


  be the 

distribution of eigenvalues of M . These are random variables with values in
 RP , the set of probability measures on R  which converge almost surely 

to a non-random measure V  on R . For a measure   on R , it’s the 
logarithmic energy with external field V  is defined by 
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         logV x dx x y dx dy       E . 

The minimizer of  E  over all probability measures on R is exactly the 
measure V . From [78] we learned that the distributions of   1n n  under nP

satisfy a large deviations principle with scaling 2n and rate function given by 

        E ER V . 

The example of the quadratic potential   2V x x defining the paradigmatic 
Gaussian Unitary Ensemble in random matrix theory gives rise to the 
celebrated semicircular law as equilibrium measure. 

Within this random matrix framework, if   2V x px is smooth and convex 
for some 0  , then the function     nM Tr V M  is strongly convex

  2M n M  is convex) on 2n
nR H . An application of the classical 

 LSI n on nH for large n  was used by Biane [200] to prove a Log-Sobolev 
inequality in the context of one-dimensional free probability which holds 

(cf. [66]) in the following form 

                                     1 1
4V  


 E E                                                (58) 

for any probability measure   on R whose density with respect to the 
Lebegue measure is in  3L R , where 

        2
I H x V x dx     

with  12H dx
x y 
 being the Hilbert transform of  . 

More precisely, Biane and Voiculescu used the free Ornstein Uhlenbeck 
process and the complex Burger equation. Using the large random matrix 
strategy, Hiai Petz and Ueda [66] reproved and extended the result of Biane 
and Voiculescu in the following form. If   2V x px is convex for some 0 

, then for every probability measure   on R , 

                                            2
2 , V V     W E E                                   (59) 

For example, we cover potentials V  on the line such that   pV x x is 
convex for some 0  and p 1 as well as a class of bounded perturbations 
of convex potentials. Using this approach, we present here an HWI free 
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inequality for various cases of potentials. For the case   2V x x convex for 
some pR , this is 

                          2
2 2, ,V V VI         E E W W                              (60) 

Also a Brunn–Minkowski inequality receives a direct proof as well. 

The second part of this work is devoted to free one-dimensional Poincaré 
inequalities. Using random matrix approximations and the classical Poincaré 
inequality, we first give an ansatz to what could be a possible Poincaré 
inequality in the free probability world. In the case of   2V x x convex for 
some 0  , such that the measure v has support[ 1,1] , this states as, 

          1 1 2
2

2 2 2
1 1

1
2 1 1

V

x y xyx dx dxdy
x y x y

  


 

                                    (61) 

for any smooth function on the interval [−1, 1].           

There is also a second version of the Poincaré which is discussed in [200] 
for the case of the semicircular law. This inequality has a natural meaning in 
the context of free probability as the derivative  of a function from the 

classical  P  is replaced by the noncommutative derivative    x y
x y

 


, 

and thus our second version takes the form 

                     
2x x

dx dy CVar
x y

 
   

 
                                    (62) 

   For every  1
0C R                                               

As opposed to (61) which requires certain conditions on the measure V , it 
turns out that (62) is always satisfied for any compactly supported measure 
  with some constant. As was shown in [200] for the semicircular law, one 
can completely characterize the distribution in terms of the constant C . 

After the use of convexity, inequality (61) may actually be interpreted as a 

spectral gap as follows. On    2,22

24

x dx
L

x
 

   

I
 take the Jacobi operator 

                                              21Lf x f x xf x      

and the counting number operator defined by 
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                                             n nNT nT  

Where nT are the Chebyshev polynomials of the first kind, which are 

orthogonal in    2,22

24

x dx
L

x
 

   

I
. Then, (61) for   2 / 2V x px  is equivalent to 

L N .                                         

Inequality (62) in the case of   2 / 2V x px can also be seen as the spectral gap 

for the counting number operator on     2 2
2,21 4L x x dx   with respect to the 

basis given by the Chebyshev polynomials of second kind. A more general 
situation is discussed in this Section which includes both versions of the 
Poincaré inequalities. 

Throughout this section we consider lower semicontinuous potentials 
:V R R such that 

                             lim 2log
x

V x x


                                                      (63) 

For a given Borel set  R , denote by  P the set of probability measures 
supported on  . 

The logarithmic energy with external potential V is defined by 

         : logV V x dx x y dx dy       E  

whenever both integrals exist and have finite values. In particular for 
measures μ which have atoms,  V   E because the second integral is +∞. 
It is known (see [52] or [196]) that under condition (63) there exists a 
unique minimizer of VE  in the set  RP and the solution V is compactly 
supported. The variational characterization of the minimizer v ( [52]) is that 
for a constantC R , 

   2 log vV x x y dy C    for quasi-every xR , 

    2 log VV x x y dy C   forquasi-every  supp Vx                          (64) 

where  sup v stands for the support of  . If   is such that  V   E , then 
Borel quasieverywhere sets have   measure 0  and thus the properties 
above hold almost surely with respect to  . 

For simplicity of the notation, we will drop the subscript V from VE unless 
the dependence of the potential has to be highlighted. 
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Now we summarize some known facts about the equilibrium measure and 
its support as one can easily deduce them from [52] and [196]. 

Theorem (6.3.1)[177]: 

(i)  Let V  be a potential satisfying (63) and 0,  R . Set 
   ,V x V x     . Then,   

, #
/V Vid

 
      and 

                            , ,
logV V V V x

   
  E E                                            (65) 

(ii) If V is convex satisfying (63), then the support of the equilibrium 
measure v consists of one interval [a,  b]  where a and b solve the system 

                   
 

 

1 1
2

1 1
2

b

a
b

a

x aV x dx
b x

b xV x dx
x a





   



    




                                              (66) 

(iii) Let V  be either 2aC satisfying (63) whose equilibrium measure has 
support [[a,  b] . Then the equilibrium measure V has density  g x given by 

                
      

    , 22
1

b

a b

a

x a b x V y V x
g x dy

y x y a b y
   


  11 ,                      (67) 

(iv)  If V is 2C , then 

              2. vV x p v dx
x y

 
  for .V a s   all  supp Vx  ,                       (68) 

where p.v. stands for the principal value integral. Notice that the principal 
value makes sense as V has a continuous density. 

We mention as a basic example that if   2V x x is quadratic, then V is the 
semicircular law. 

    2 2

2/ , 2/
1 2V p p

dxdx x x  
 

  


   

In this work, for 1p  , we use  ,p vW for the Wasserstein distance on the 
space of probability measures on R defined as 

                          
 

 
1

,
, inf ,

pp
p v

x y dx dy
 

 


   
  W V                              (69) 
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with  , V denoting the set of probability measures on 2R with marginals   
and                                                                                                                                                                                                                                                       

                                  ,
pp

p x x dx   W V V                                         (70)  

For a detailed discussion on this topic . 

Our first result concerns the free version of the transportation cost 
inequality. As discussed in the introduction, the first assertion for strictly 
convex potentials was initially proved by large matrix approximation in 
[66]. The strategy of proof is inspired from [80, 32, 179] (see [102]). 

Theorem (6.3.2) [177]: (Transportation inequality). 

(i) If V  is 2C  and   2V x x is convex for some 0  , then for any 
probability measure μ on R , 

                                         2
2 , V V     W E E                                   (71) 

If   2V x x , then the equality in (71) is attained for measures #   V , with
 x x m   , therefore the constant ρ in front of  2

2 , V W is sharp. 

(ii) Assume that V is 2C , convex and   0V x p   for all x r . Then, there is 
a constant  , , , 0vC C r p  V , such that 

                                            2
2 , V VC     W E E                                 (72) 

(iii) In the case V  is 2C and   pV x x is convex for some real number 0  , 
then, for any probability measure  on R , 

                                       ,p
p p V Vc      W E E                            (73) 

Where   1inf 1 0p p p
p xC x x psign x x 

    R . 

Proof: (i) Since there is nothing to prove in the case    E , we assume 
that   E . In this case we also have that the measure  and V  both have 
second finite moments. 

Now we take the non-decreasing transportation map such that # V  

which exists due to the lack of atoms of V . Using the transport map , we 
first write 
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           1 log

V V

V V

V x V x V x x x dx

x y x y
dx dy

x y x y

    

   
 

    

  
     




E E

             (74)

 

where in between we used the variational equation (68) to justify that 

                   
            

         

2V V V

V V

x x
V x x dx dy dx

x y
x x y y

dy dx
x y


   

 
 


 



  




 


 

Since   2V x x is convex, for any ,x y  the following holds 

                            22 2 2V y V x V x y x y x x y x y x           

On the other hand since  1 loga a  for any 0a  , Eqs. (74) and (70) yield (71). 

In the case   2V x x it is easy to see that for  x x m   , all inequalities 
involved become equalities, thus we attain equality in (71) for translations of V . 

(ii) We start the proof with (74), whereas this time we need to exploit the 
logarithmic term to get our inequality. The idea is to use the strong 
convexity where    :x x x   takes large values and for small values of
 x we try to compensate this with the second integral of (74). 

Notice in the first place that by Taylor’s theorem we have that 

                  
1

2

0

1 1V y V x V x y x y x V x y d                           (75) 

Now, let us assume that the support of the equilibrium measure v is [a, b] . 
Next,   0V x  and  V x p  for x r , implies that for  2 2 max ,y r a b  , 
we obtain that 

      
            

   

1

1/2
2/8

2 1 1

,

V y V x V x y x y x V x y d

p y x for any x a b

           

  

  

Now write    x x x   . Thus using (74), and denoting 

 2 2max ,r a b R we continue with 
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1

2 2

0

1 1
2 16

V

V V

V x V x V x x x dx

px V x x d dx x dx


  

     


  

   


 

R            (76)

 

This inequality provides a lower bound of the first term in (74). Further, it is 
not hard to check that 

 

   

           

             

2

2 2

2

2

1 11 1
2 2
1 1 ,
8

V

V V

V Vx y

x dx

x x dx y y dy

x y x y dx dy



 

 

 

   

   



 

 

 

 






 

R

R R

R

                     (77) 

Now we treat the second integral on the left-hand side of (74). Use that
   log 1 log 1t t t t     for any t 1  together with the fact that  log 1t t 

is an increasing function for 0t  to argue that 

       

           

       
   

log 1

log 1

V V

V V

x y x y
dx dy

x y x y

x y x y
dx dy

b a b a

   
 

   
 

   
       

   
         




                     (78) 

Further, for 0s  and , 0u v  we have 

 
   2

2 22
2

2

log 1
log 1, 0

log 1 min ,
,

v v
v vs s v

us s s u sv
v

us v s

  
         

  

 

This inequality used for  2

128
b a

u
 

 and 2Rv
b a




in combination with (77) 

and (78) yields for the choice of    2min , log 1 /C u v v v   that 

               

                 

2

22 2

log 1
16 V V V

V V V V

x y x y
x dx dx dy

x y x y

c x y dx dy c x dx x dx



       

       



   
        

      

 

 
R  (79) 
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This shows that    V E E is bounded below by a constant times the 
variance of ψ. Notice that      2 2

2 , V Vx dx    W and in order to complete 
the proof we have to replace the variance of ψ by the integral of 2 with 
respect to V . This boils down to estimating the V integral of ψ in terms of 
the integral of 2 . 

To this end, use Cauchy’s inequality: 

   

           

   
 

12
2

0

1

0

11 1
2

1
11 1
2

V V

V

x dx x V x x d dx
c

dx
V x x d

c

      


  

             


  

  


 

This inequality combined with Eqs. (74), (76) and (79), results with 

           

   

   
 

   

   
   

1
2

0

1

0
1

0
1

20
21

0

1 1
2

1

2 1

1
,

2 1

V V

V

V V

x C V x x d dx

V x x d
dx

c V x x d

V x x d
dx

c V x x d

      

  


  

  
  

  

 
     

 

  

  


  


  
















E E

W

 

where here we used the convexity encoded into 0V   and the fact that 

     2 2
2 , V Vx dx    W to get the lower bound of the first integral. 

From the previous inequality, it becomes clear that we are done as soon as 
we prove that the quantity in front of  2

2 , V W is bounded from below by a 
positive constant uniformly in ψ. To carry this out, notice thatV can not be 
identically zero on [a, b]. Indeed, ifV were identically zero on [a, b], then 
we would have that  V x K  for all  ,x a b , and this plugged into Eq. (66), 
yields that  , 2K a b  and  , 2K a b   , a system without a solution. Therefore
V  is not identically 0  on [a, b] . If  x R> , then   V x x    for
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1 1
2

  , which implies     
1

0

1 / 8V x x       . On the other hand, if

 x  R , then 

         
1

0 0

1 1 inf
2 y x R

V x x d V x x d V y




     
 

          

for all 0 1  . Define 

 
 

 
0,1

supmin , inf
8 2 y x R

w x V y
 

 
  

 
  

 
 

Since V  is not identically 0 on[a,  b] , it follows that w is not identically zero 
on [a,  b] . With this we obtain that 

     
1

0

1 0V x x d w x        

and then that 

   

   
   

   

1

0
1

0

1
0

2
2 1

V V

V x x d
cw x

c dx C dx
c w x

c V x x d

  
 

  

  
  


  




   

which finishes the proof of (72) with this choice of C . 

(iii) For the inequality (73), we follow the same route as in the proof of (71), 
the only change this time being that   pV x x is convex, and thus we 
obtain 

                  1p p pV y V x V x y x y x psign x x y x                   (80) 

Writing    x x x   , and using (74) together with  1 loga a  for 0a  , 
one arrives at 

            1p p p
V Vx x x psign x x x dx         E E  

Now we use the fact that for all ,a bR , 

                   1p p p pa b b psign b b a Cp a                                        (81) 
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which applied to the above inequality in conjunction to (70), yields 
inequality (73).                                                                                                  

Remark (6.3.3) [177]:(i) The 2C regularity of V  for (71) can be dropped 
(see [102]) but to simplify the presentation here we decided to consider only 
this case. 

(ii) If   pV x x is convex, then using inequalities (73), (72) and Young’s 
inequality we obtain that for any 2 K   , there exists a constant

 , , , ,vc c k p V  such that 

     ,k
k V Vc     W E E  

(iii) We want to point out that the inequalities (73) and (72) are somehow 
complementary to each other. For example, if we take   pV x x with 1p 

and the measure # v   for  x x m   , then Eq. (73) takes the form 

                   p pp
p Vc m x m x dx                                           (82) 

while Eq. (72) becomes 

   2 p p
VCm x m x dx    

which, because it is easy to check that v is symmetric, is the same as 

                12 p p p
VCm x m x psign x x m dx                              (83) 

Notice here that (82) is in the right scale for large m as (83) is in the right 
scale for m  close to 0 , because in this case the integrand is of the size 2m . It 
seems that Talagrand’s transportation inequality in this context has two a 
spects, one is the large  ,p vW   which is dictated by the potential V  for 
large values and results with Eq. (73) and the small  2 , V W regime which 
is dictated by the repulsion effect of the logarithm and results with Eq. (72). 

(iv) It is not clear whether inequality (72) still holds for the case of a 
potential V  which is not convex. Of interest would be the particular case 
  4 2V x ax bx  for some 0a   and 0b  . This example actually raises the 

question of the stability of transportation inequality under bounded 
perturbations. 

(v) Very likely the constant pC in (73) is not sharp. 



288 
 

In this section, we investigate some potential independent transportation 
inequalities. A transportation inequality in the form of (72) can not possibly 
hold without a quadratic growth at infinity. Also, the proof of (72) might 
lead to the conclusion that the logarithmic term plays a more important role. 
Therefore the natural question one may ask is whether there is a 
manifestation of this fact in some sort of transportation type inequality 
which is independent of the potential involved. The main question reduces 
to hint some appropriate distance one needs to use to replace the 
Wasserstein distance in Theorem (6.3.3).We investigate in this section 
several possibilities, starting with the free version of the classical Pinsker’s 
inequality. 

The Pinsker’s inequality classically states that ( [96] and [126]) 

 22
V

H  V V for any , Vprobability measures on R , 

where  
V

V is the total variation distance between   and V  and  H  V  is 
the relative entropy between μ and V . This in particular shows that if n  
convergence to μ in entropy, then n converges to   is a very strong sense. 

The same natural question can be posed in the logarithmic entropy context. 
For a given potential V  , is there an inequality of the form 

   2
V VV

C         

for a given constant 0C   and any probability distribution   on R  

It turns out that these inequalities do not hold for the logarithmic energy. In 
fact, we will show that even a weaker inequality of the form 

                             
2

V Vu
C F F     E E                                          (84) 

does not hold, where F denotes the cumulative function of a probability 
measure μ on the line. Even though the uniform distance does not have the 
same widespread use in probability it appears for example in the Berry–
Esseen type estimates for the convergence in the central limit theorem. This 
is the reason why we consider this distance as the first next best candidate 
wherever the total variation fails. Clearly this metric gives a stronger 
topology as the topology of weak convergence. 

We will construct a counterexample to (84) in the case of   22V x x , for 
which the equilibrium measure is 
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2

1,1
2 11V

xdx x dx



  

the semicircular law on[ 1,  1] . Consider now the sequence 

                                        
   

 

2 12
2 12

1,1 2 2

12 11
4 1 1

n k
kk

V

T xxdx x dx dx
n x


 







 

 

  

where kT is the kth Chebyshev polynomial of the first kind. With these 
choices we have that 

                             
2 2

log / 3n V n V u
F F

n  


   E E  for all 4n  .                 (85) 

Let us point out that n is indeed a probability measure. This requires a little 
proof but it is entirely elementary. 

To prove (84), notice that since the support of n is the same as the support 
of v , we have from (64) that 

                       logn V n V n Vx y dx dy           E E                (86) 

Next remark that  #cosn nf  and  #cosv g  , where λ is the Lebesgue 
measure on [0, ] and 

                              

   
          2 1

2
2

1 cos 2 1 cos 21 1 cos 2 1 ,
4 1

n
k

n
k

t t
f t k t g t

n 





 
    

   

and further 

                    

        
0 0

log log cos cosn V n V n nx y dx dy t s h t h s dtds
 

                  

where n nh f g  . 

Now we provide a formula for the logarithmic energy we learnt from [260] 
and have not seen it elsewhere. Here is a quick description. Write first 

 cos / 2it itt e e  and  cos / 2it its e e   so

       cos cos / 2 / 2 1 1 / 2i t s i t sit it is ist s e e e e e e          and so, for t s , 
and t or s not equal to  , 
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1 1

log cos cos log 2 Re log 1 log 1

2log 2 Re / log 2 cos cos

i t s i t s

i t s i t s

t

t s e e

e e t s

 

 
 

 

      

      



   


 

From this, one gets to 

           
2

0 0 0

2log cos cos cosn n nt s h t h s dtds t h t dt
   

   
 
 

  


                   (87) 

But now, 
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2
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k
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n and odd
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and thus 
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1
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2 1
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                          (88)              

On the other hand    0,
0

sup
x

n v fn g nxu u
F F F F h t dt          and 

                                          
    2 1

2
2

0

1 sin 2 11
2 14 1

x
n

n

x
h t dt

n





 












 

from which for / 4x  , we obtain 

                
2 1

0, 2
2

0

1 1sup
2 14 1

x
n

n v nxu
F F h t dt

n   






  



 

                      (89) 

Combining (88) and (89) we get 

         
2 2

2 1

2

log12
2 1

n v n v n vun
F F x y dx dy 

    




     

 
 

         (90) 
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which together with the fact that  2 1

2

1 1 log / 3
2 1 2

n n




 
for 4n  and (86), we 

finally arrive at (85). 

The example shown above has the property that    n v E E  converges to 
0  when n goes to infinity, and also that n v u

F F  converges to zero. Despite 
the fact that (84) does not hold, we will see below in Corollary (6.3.11)  that 
if    n v E E  

converges to 0 , then n v u
F F  always converges to 0. 

We consider now a weak form of (84). To do this we define the distance 

           
,

, sup ax b ax b

a b
d e dx e dx    


  R

V V                                      (91) 

With this definition we have the following result. 

Theorem (6.3.4) [177]: For any potential V  satisfying (63), we have that 
for any compactly supported measure , 

                            3 24 , V Vd     E E                                        (92) 

Proof: Using Eqs. (63) and (64), we get for any compactly supported 
measure   with    finite, 

        logV V Vx y dx dy           E E  

We will prove that for any measures   and V  with compact support such 
that  

   log x y dx dy     <  and    log x y dx dy    <V V , we have that 

                       3 24 , log , ,Vd x y dx dy       V V                      (93) 

which shows that (93) implies (92). 

Now we use [196] to write 

        

0

ˆ ˆ
log V

V v

t t
x y dx dy dt

t
 

   



        

where the hat stands for the Fourier transform, and continue with 
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for any acR with 0a  . Further, using the inversion formula for the Fourier 
transform, one has 

              
2

2 2

ˆˆ 2ˆ2 ax bictt t
e dt x dx e dx

aa t
    



 




   

  
V

V V                (94) 

Because for   
 

 
   

2 2

2 2

,

ˆ

ict

a x ti x c t

et
a t

e ex dt
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                                                    (95)

 

The next result is collecting facts about how strong the topology induced by 
d is. 

Proposition (6.3.5) [177]:  

(i) d is a distance on  p R and if  , 0nd    , then n n  in the weak 
topology. In addition  , 1a bd    fora b , thus the topology induced by d  is 
strictly stronger than the weak convergence topology. 

(ii) For any two probability measures   and V , 

                   , 2
u

d F F   VV                                                             (96) 

(iii) If V satisfies condition (63), then     n n E EV V V  

implies 0n nu
F F   V   

Proof: (i) To prove that d is a distance the only non trivial fact is that for 
two probability measures   and  , , 0d  V V  implies  V . Thus from Eq. 
(95), we obtain for 1a   that for allcR , 

    
2

ˆˆ
0

1

ictt t e
dt

t









V
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Since this holds true for any cR , it implies that the Fourier transform of 

the function    
2

ˆˆ
1
t t

t
t

 



V is 0 , which means that the function in discussion 

must be 0 . This means that ˆ v̂  , or equivalently that   V . 

Let  ,L V stand for the Levy distance which induces the weak topology on
 RP . Let  , 0n nd    . Assume now that there exists 0 > and a 

subsequence such that  ,nk
  L . Otherwise said, the sequence n has a 

subsequence which is not convergent to  . Since, we are dealing with 
probability measures, there is a subsequence

kn which is vaguely convergent 
to a measure V  with total mass less than 1 . This means that for any 
continuous function  which is vanishing at infinity, we have that 

nkl
d d    V  

We can apply this for functions   ax bx e    where 0a  and infer that 

   ax b ax b
n lkl

e dx e dx   
  V for all 0a  , bR . 

On the other hand, because , 0n lkl
d   
  
 

, these considerations result 

with 

   ax b ax be dx e dx     V  for all 0a  , bR . 

Further, using the dominated convergence for b 0 anda 0 , we obtain that 
V  is a probability measure. From the discussion at the beginning of this 
proof, it also follows that V  and this in turn results with n k l

 being 

weakly convergent to  , a contradiction. This proves that the convergence 
in the metric d  implies weak convergence. 

It is obvious that  , 1d  V  for any measures   and V . For the case of 
discrete measures, we also have that 

     1 ,a b a b
x a x ad e dx e dx             for any 0 > , which yields that

 1 , 1a b
b ad e       for all 0 > . Letting   , we get that 

 , 1a bd    for a b which shows that convergence in d  is strictly stronger 
than convergence in the weak topology. 
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(ii) From the fact that for any finite positive measure μ, 

   
 

  
 0, 0,

1 ,y ye dx e y dy    

 

     

we deduce that 

          
 0,

x a ye dx e F a y F a y F a y F a y dx 
    



            V VV  

which easily yields (96). 

(iii) We actually show that if n and   are compactly supported probability 
measures such that 

                      log , log n nx y dx dy x y dx dy         < <  

and 

                                   lim log 0n nn
x y dx dy   


     

then 0n nu
F F   . From (72) and the first part, we obtain that n  

converges weakly to μ. In addition, none of the measures n or   have 
atoms. Thus nF  and F  are continuous functions which combined with the 
weak convergence implies that nF converges pointwise to F . Since the 
functions nF  and F  are distributions of probability measures, it is an easy 
matter to check that the convergence is actually uniform.  

Remark (6.3.6) [177]: We do not know if the topology of convergence in d  
is the same as the one defined by the metric

u
F F  V . 

This result might leave one wondering if a stronger convergence takes 
place. In other words, is it true that    v n v vn E E , implies 

 0n nv
     To this end, we can consider  

2 1
log

2
x x

V x
 

  

and notice (see [52]) that v is the arcsine law of[ 1,  1] . Thus if we consider 

                           
  

1,1 1,12 2

1
1 , 1

1 1
n

V n

T x dxdxdx x dx x
x x

 
 

 


 

 
, 
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then, using the same argument which led us to (87), with nh there replaced by

   ` cosnh x nx here, one arrives at     1
n v n

  E E  while the total variation 

distance is 1/ 4n v
   . 

We develop similarly the mass transportation method to prove the Log-
Sobolev inequality in the free context. We define inspired by Voiculescu 
[45], the relative free Fisher information as 

        2
I H x V x dx    with    2.H x p v dy

x y
 

                 (97) 

for measures μ on� which have density /d dx   in  3L R . In this case the 
principal value integral is a function in 3L . Otherwise we let  I  be equal to + ∞. 

Theorem (6.3.7) [177]: (Log-Sobolev). 

(i) If V  is 2C  and   2V x x  is convex for some 0  , then for any 
probability measure μ on R , 

                       1 1
4V  


 E E                                                      (98) 

Equality is attained for the case   2V x x and # V   , where  x x m   . 
Thus the inequality (98) is sharp for translations of V . 

(ii) If V  is 2C  and   pV x x is convex for some 0   and 1  , then for 
any probability measure   on R , 

      / 1p
v qq p

K
  


 E E  where        q

qI H x V x dx                  (99)                    

where here q  is the conjugate of p  i.e. 1 1 1q p  and the constant 

 q p
p pk pc , with pc  from (73). 

Proof:(i) We will assume that the measure   has a smooth compactly 
supported density as the general case follows via approximation arguments 
discussed in details in [66]. Take the (increasing) transport map  from V  
into  . We write the inequality (98) in the following equivalent way 
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21
4

log 0

V

V

V

V V V

H x V x dx

V x V x V x x x dx

H x V x x x dx

x yH x x x dx dx dy
x y

   


   

    

     
 



   

  


   






  

      (100) 

Notice now that from the convexity of   2V x x , one obtains that 

     
          

          222 22

V x V x V x x x

x x x x x x x

  

     

  

     
                                    (101) 

Now, 
       

                  2 1

V

V V V V

H x x x dx

x yx x dy dx dx dy
x y x y

   

    
   



 
       

 
       (102)                              

where one has to interpret the second integral here in the principal value 
sense, however since  is increasing, the last integral is actually taken in the 
Lebesgue sense. 

Using these, Eq. (100) may be rewritten as 

          

           

21 2
4

1 log 0

V

v V

H x V x x x dx

x y x y dx dy
x y x y

     


 
   

    

 
   

 




 

which is seen to hold since  1 log 0u u   for 0u  . 

Equality is attained for the case   2V x x and  x x c   , which corresponds 
to the translations of the measure V . 

(ii) With the same arguments used in the above proof and the proof of 
Theorem (6.3.2), we use Eqs. (80) and (81) to argue that 
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           1log 0

q
p

Vq p

qp
q p

p
p V

V V

K
H x V x dx

K
H x V x

V x H x x x c x x dx

x y x y dx dy
x y x y

   


  


     

 
   

   


 


    


 
  

 




 

 

where we used Young’s inequality / /q pa q b p ab  for , 0a b  and the 
constant         /q p

p pK pc q  

We devoted to the free analogue of the HWI inequality of Otto and Villani 
[69] in the classical context, connecting thus the (free) entropy,Wasserstein 
distance and Fisher information. As we will see, the HWI implies the Log-
Sobolev inequality for strictly convex potentials. This free HWI  inequality 
was not considered before, and in particular it is not clear whether there is a 
random matrix proof, delicate points involving the Wasserstein distance 
entering into the proof. 

Theorem (6.3.8) [177]: ( HWI  inequalities) 

(i) Assume that V  is 2C  such that for some   2, V x x  R is convex. 
Then, for any measure   RP  

            2
2 21 , ,V V V         E E W W                                     (103) 

In the case   2V x x , the inequality is sharp. 

(ii) If V  is 2C  and   2V x x is convex for some 0 > and 0p > , then for the 
same constant pc appearing in Theorem (6.3.2), we have that 

                 1/1 , ,q p
V q p v p p Vc         E E W W                                (104) 

where1/ p 1/ q 1  . 

Proof: (i) We employ here the notations used in Theorem (6.3.7) and we 
will give a proof of the inequality for the case of a measure μ with smooth 
and compactly supported density, the general case follows through careful 
approximations pointed in [66]. The inequality to be proved can be restated 
as (105)+(106)+ (107) ≥ 0, where 

                     
1/ 22 2

V VH x V x dx x x dx        
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                VH x V x x x dx                       (105) 

                  2
VV x V x V x x x x x dx           

                (106) 

                  logV v V
x yH x x x dx dx dy

x y
     

 


  
          (107) 

A simple application of Cauchy’s inequality shows that (105) ≥ 0. Using 
convexity of   2V x x  we have from Eq. (101), that (106) ≥ 0. Finally, 
using (102), we have that 

��������
           1 log 0V V

x y x y dx dy
x y x y

 
   
  

       �                         

which finishes the proof of (103). For the case   2V x x , we have equality 
if  x x m   . 

(ii) The inequality we want to prove is equivalent to the statement that (108) 
+ (109) + (110) ≥ 0, where  

            
1/ 1/q pq p

V VH x V x dx x x dx          

                    VH x V x x x dx                                 (108) 

              p
p VV x V x V x x x c x x dx                          (109) 

                   logV v V
x yH x x x dx dx dy

x y
     

 


  
             (110) 

Now, (108) is non-negative thanks to Hölder’s inequality, Eq. (109), follows 
from the convexity of   pV x x  and the combination of (80) and (81), 
while Eq. (110) is the same as (107).  

As pointed out in [69], HWI inequalities for 0  always implies Log-
Sobolev.We give here the following formal corollary of HWI  inequality. 
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Corollary (6.3.9) [177]:(i) If 0  , then inequality (103) implies (98) and 
(104) implies (97). 

(ii) If   2V x x is a convex for some R , then Talagrand’s free 
transportation inequality with constant  max 0,C > implies free Log-

Sobolev inequality with constant  2

max ,
32

C
K

C



    
  

. More precisely, 

             2
2

1, 1 ,
4V V VC

K
             W E E E E RP  

(iii) In particular, if V  is convex and 2C  such that   0V x   > for x r , then 
free Log- Sobolev inequality holds with the constant C 0 from (72). 

Proof: (i) It follows as an application of Young’s inequality 
/ /p qa p b q ab  for , 0a b  . 

(ii) For 0  , everything is clear. In the case 0  , then, from (103) and 
Talagrand’s transportation inequality, one has for 0 > , that 

         

      

2
2 21 , ,

14

V V V

VI
C C

       

   


  

     
 

E E W W

E E
 

which yields for any 1
c




>   

       
24 1

1V
C

c
  

 
 

 
E E  

Taking minimum over 1
c




>  gives the conclusion. 

(iii) In the case V  is convex, 2C  and strongly convex for large values, part 
(ii) of Theorem (6.3.2) does the rest.                                                                  

The (one-dimensional) free Brunn–Minkowski inequality was put forward 
in [166] again through random matrix approximation. We provide here a 
direct mass transportation proof similar to the one of its classical (one-
dimensional) counterpart (see [241]). As discussed in [171], this inequality 
may be used to deduce in an easy way both the Log-Sobolev and 
transportation inequalities. 

We show the following theorem. 
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Theorem (6.3.10) [177]: Assume that 1 2 3, ,V V V are some potentials satisfying 
(120) such that for some  0,1a  

        1 2 31 1aV x a V y V ax a y     for all ,x yR .                          (111) 

Then 

            1 1 2 2 3 3
1V V V V V Va a    E E E                                                      (112) 

Proof: Take the (increasing) transportation map   from 
1V into

2V . This 
certainly exists as the measure

1V  has no atoms. 

Noticing that for any measure with finite logarithmic energy, we have the 
obvious equality 

         log 2 log
x y

x y dx dy x y dx dy   


     

Using this we argue that 

        

             

      

             

   

1

1 1

1

1 1

3 3 3

1 2

3

1

2 log 1 log

1

2 log 1 1

V

V V

x y

V

V V

x y

V V V

aV x a V x dx

a x y a x y dx dy

V ax a x dx

ax a x ay a y dx dy

 

   

 

   







 

    

  

       

 


 


 

E EV

 

where   
1#

1 Vaid a    V and we used (111) and the concavity of the 
logarithm on (0,∞).The proof is complete.                                                                  

We investigate Poincaré type inequalities in the free (one-dimensional) 
context. We discuss two versions of it. The first one is suggested by large 
matrix approximations and the classical Poincaré inequality for strictly 
convex potentials, but will be proved directly. Recall first the classical 
Poincaré inequality (cf. e.g. [25, 174, 23, 71] ). 

Theorem (6.3.11) [177]: Let    W xdx e dx  be a probability measure on dR  
such that   2x r xW  is convex. Then for any compactly supported and 
smooth function 
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: d R R , we have that 

                
2

d rVar                                                     (113) 

Assume now that V  is a potential on R with enough growth at infinity. 
Consider the matrix models on nH , the space of Hermitian n n  matrices 
with the inner product  , rA B T AB  and the probability measure given by 

   
  1

n
n

nTr V MdM e dM
V




P  

where here dM is the standard Lebesgue measure on nH . We have that for 
any bounded continuous function :F R R  , 

               1
r n VnT F M dM F x dx

n
 P                                       (114) 

Assume in addition that   2V x x  is a convex function on R . Then, 
consider 

   rM T M  , where : R R  is a compactly supported and smooth 
function. Notice that    M M   and thus 

      2 2 2
rM M T M      . Since    2

rnT v M n M  is convex as a 

function of M , we can apply Poincaré’s inequality on nH  to obtain that 

                    2
r n n rT M dM n Var T M    P P                                    (115) 

The first term in this inequality divided by n (cf. Eq. (114)) converges to 

   2
vx dx  . To understand the second term in the above equation, notice 

that           2

r r rVar T M T M T M         
E E . The study of the 

asymptotic of the linear statistics,      r rT M T M    E  in the literature of 
random matrix is known as “fluctuations”. From Johansson’s [132], it is 
known that this is universal in the sense that the limit in distribution of the 
fluctuations is Gaussian and, at least in the case of polynomial V  (for which
  2V x x  fulfills the conditions in there), the variance of the Gaussian limit 

depends only on the endpoints of the support of v .Moreover, in the 
particular case of   22V x x , the variance of the distribution was computed 
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for example in [11] and [132] as 

                       
21 1

2 2 2
1 1

1 1
2 1 1

t s ts dtds
t s t s

 


 

  
                                       (116) 

This variance is interpreted in [258] in terms of the number operator of the 
arcsine law.  

Corollary(6.3.12)[274]: 
2( ) ( ) 64

32
c c c

c
  




   
  

Proof:Corollary(6.3.9) and Theorem(6.3.7) show that 
21 4( ) ( )

4 ( )
cI I

c


 
 




and  

                                               216 ( ) 1 0c c                         

                                         

2

2

( ) ( ) 64
32

( ) ( ) 64
32

c c c
c

c c c
c

  




  


    


   


 

Corollary(6.3.13)[274]: If 1 2, ,n n nV V V  are potentials such that for 0 1a   

                 1 21 1n n naV x a V x V ax a x         forall x R , 0 > .                        

Then 

                            
1 1 2 2

1
n n n n n nV V V V V Va a  

   
  E E E                                                       

Proof: Let 
1

:
n nV V  


 be a transportation map,we have  

         log 2 log
y x

dx dx dx dx


       
 

     

Hence 
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2 log 1 log
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2 log 1 ( ) 1
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aV x a V x dx
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V ax a x dx
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where   #
1

nVaid a    V .Theorem (6,3,10)complete the prove   

Dividing the inequality in Eq. (115) by n and taking the limit when n  , 
these heuristics (after a simple rescaling) suggest the following result. 

Theorem (6.3.14) [177]: Assume that   2V x x  is convex for some 0  . 
Then for any smooth function , one has that 

   

      
     

2

2

2

2 2
2 2

Vx dx

ab a b x y xyx y
dxdy

x y x a b x y a b y

 

 




     
       


 

     (117) 

where    ,vSupp a b  . Equality is attained for    2V x x x     and
  1 2x C C x    

for some constants 1C  and 2C . 

If the numerator in the second fraction of (117) is nonnegative. This is so 
because 

              
2

2 2 2 0
2 2 2

b a b a b aab a b x y xy x y
                           

 

for any  , , ,x y a b . 

Proof: Using a simple rescaling we may assume without loss of generality 
that a 1  and b 1 and the inequality we have to show reduces to 
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2

1 1 2

2 2
1 1

1
2 1 1

vx dx

x y xy dxdy
x y x y

 

 


 



  
     




                            (118) 

Then, based on Eq. (124), we have that 

                                        
 

12

2 2
1

1
2 1

V y V xxx dy
y y x



 


 q  

From the convexity of   2V x x , we learn that     2
V y V x

y x


 



 and thus 

that 

                           21q x x


                                                        (119) 

which implies 

                                     
2 2

21vx dx x x dx
  


     

Therefore it is enough to check that 

        

 

   

1
2 2

1
21 1

2 2
1 1

1

1 1
2 1 1

x x dx

x y xy dxdy
x y x y



 




 

 

  
     



                       (120)             

for any smooth  . Now, we make the change of variables cosx t to justify 

                              
1

2 2 22 2

1 0

1 cos sinx x dx t tdt t dt


  


        

where    cost t  . 

On the other hand, using the change of variable cos cosx t y s   on the 
right-hand side, inequality (120) becomes 

         2

0 0 0

1 1 cos cos
2 cos cos

t s
t dt t s dtds

t s

  
 




 
                                        (121) 
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To show this, we write   0
coskk

t a kt 


 and then, because   is a smooth 

function, we can differentiate term by term to get   1
sinkk

t ka kt 


   , 

therefore 

                                           2 2 2

1
0

2 k
k

t dt k a







    

and 

         

     

   
 

0 0

2
, 1 0 0

1 cos cos
cos cos

cos cos cos cos 1 cos cos
cos cosk l

k l

t s
t s dtds

t s

kt ks lt ls t s
a a dtds

t s

 

 

 





 
  

  






 
 

To compute the integrals on the right-hand side of the above equation, we 
take the generating function of these numbers and with a little algebra one 
can show that 

   

   
 

   
    

 

2
, 1 0 0

3 3

2 2 2 2

0 0

2
2

2
1

cos cos cos cos 1 cos cos
cos cos

1 cos cos

1 2 cos 1 2 cos 1 2 cos 1 2 cos

1

k l

k l

k k

k

kt ks lt ls t s
u v dtds

t s

u u v v t s
dtds

u u t u u s v v t v v s

uv ku v
uv

 

 












  



  


       

 




 

  (122) 

for all  , 1,1u v  . The last integral can be computed as follows. First use 
partial fractions to justify 

        
 

   2 2 2 22 2
0 0 0

cos / 2 / 2
1 2 cos 1 2 cos 1 11 2 cos 1 2 cos

A B t dt Cdt Ddt C D
u u t v v t u vu u t v v t

  


   
            

where the constants C,D are linear combinations of A  and B . Further, 
taking A 1 and B cos s  and repeating once more the partial fractions 
argument, one can cary out the proof of (122). 

The main consequence of the above calculation is that 

                         
 

2
2

0 0

cos cos cos cos 1 cos cos
cos cos kl

kt ks lt ls t s
dtds k

t s
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and that 

                      2 2

1
0 0

1 cos cos
cos cos k

k

t s
t s dtds ka

t s

 
 






 
   

                           (123) 

Therefore inequality (7.9) becomes equivalent to 

2 2 2

1 12 2k k
k k

k a ka  

 

   

which is obviously true. Notice that equality in this inequality is attained for 
the case 0ka   for all 2k   and arbitrary 1a . This corresponds to the case 
  1 2 cost c c t   or   2 1x c x c   for some 1 2,c c . 

Finally we point out that equality in (118) is attained if the equality is 
attained in (119) and (121). From there one can easily see from rescaling 
that equality in (117) is attained for    2V x x x     and   1 2x c c x   . 
The proof of Theorem (6.3.14)  is complete.  

The second version of the Poincaré inequality is motivated by the free 
calculus and the noncommutative derivative. It was already investigated by 
Biane [200] for the case of the semicircular law. 

Definition (6.3.15) [177]: For a given probability measure   on R , we say 
that it satisfies a Poincaré inequality if there is a constant 0C   such that 

         
2

x y
dx dy Var

x y 

 
  

 
     for every  1

0C R                  (124) 

By the best constant we mean the largest C 0 for which the above 
inequality is satisfied and we denote it by    P or  1  or  SG . 

In the noncommutative setting for a given function , we can think of 

     ,
x y

D x y
x y

 






 as the noncommutative derivative of . As pointed out 

by Voiculescu in [44], this is the unique :mapD C x C x C x   such that 

(i) 1D 0 . 

(ii)      D fg D f g fD g   for any ,f g C x   

First we collect a couple of obvious properties of the Poincaré constant. 
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Proposition (6.3.16)( [177]:(i) For any 0a  , 

                                         2#

1ax b
a

  P P  

where here and elsewhere, for a given function #: ,f f R R is the push 
forward measure given by      1

#f A f A   . 

(ii) If :f R R is a differential map such that   0f x C  >  for all xR , then 

                                              2
#C f P P  

(iii) If   1n n


 is a sequence of probability measures which converges weakly 
to  , then 

                                          lim sup n
n

 


P P  

Next we describe some bounds for the Poincaré constant. 

Theorem (6.3.17) [177]: Assume that the measure   has compact support 
and is not concentrated at one point. Then   satisfies a Poincaré inequality 
with 

                          
     2

2 1
d Var


 

 P                                                    (125) 

where     suppd diam  is the diameter of the support of and 

      2
2Var x dx x dx     . 

 Equality on the left in (125) is attained only for the case 

                                       1 , , 0a b a b d       < < <1. 

Equality on the right of (125) is attained only for the case of a semicircular 
law  , 0a rR >  

     22
2 2 , 2

1 1 4
2 a r a rdx x r x a dx

r


      1  

In addition, assume that V  is 2aC potential on R such that for some integer 
p  and real 0  ,   2 pV x x , is convex and   is the minimizer of 

                                         logV x x x y dx dy       
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over all probability measures of R . Then 

                         
  

 

1
2

8

p p
pp

 P                                                         (126) 

In particular if 1p  , we get that  
4


 P   

Proof: For a given function  1
0C R , the left-hand side of (125) follows 

from
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2
2

22

1
2

1
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2

Var x y dx dy

x y
x y dx dy

x y

d x y
dx dy

x y

     

 
 

  
 

 

 
    

 
   






                     (127) 

The right-hand side of (125) follows from (124) for  1
0a C R  such that

 x x   on the support of  . 

For measures  1a b      , condition (124) is equivalent to 

              

     

2 2 222

2

1 1

2 1

C b a a b

b a
b a

       

 
 

     

 
    

 for any  1
0C R  

Since for any function  0C  R  we can find another function  1
0C  R so 

that    a a  and    b b   and    0, 0a b    ψ, this is also 
equivalent to 

             2
2

1 2 1
b a

C b a
b a

 
     

 
      

for any  1
0C  R  

This amounts to  22 /C b a  and therefore, in this case,    2

2Poin
d




 . 

Conversely, if   is a measure so that    2

2
d




P  , then, for1 0> > , there 

is a function  1
0C  R  such that 
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2

2 x y
Var dx dy

d x y
 

 

 
   


   

           

Without loss of generality we can assume that  0 inf supp  ,  1 sup supp 

and 20, 1d d        where we recall that  supp  stands for the support 
of  . In this case, the above inequality implies 
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which results with 
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1
2

1
x y

x y dx dy 



 
   


  


  

                      (128)                       

Now, 

  

                 

 

2 2

1 1/2 1/2
1/2 1/2

2 1/ 2 1/ 2

x y x
y

x y dx dy x y dx dy

x

   

 


       

 

     
  

  

   

 
     (129)      

Thus (128) and (129) give    2
1/ 2 1/ 2 1

4 2
x

 
 




    


 for any 1 0  . 

This shows that   0,1 0   and therefore   10 1      . 

The other extreme case of inequality (125) is contained in Biane’s [200] in 
the more general context of several noncommutative variables. For 
completeness we will provide here a self contained proof. In the first place, 
we may assume that 

                                         
2

2,2
1 4

2
dx x x dx

  I  
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is the semicircular law on [−2, 2]. Take nU to be the Chebyshev polynomials 

of second kind defined by     sin 1
cos

sinn

n
U







 . With this choice, we 

have that 
2n
xU  

 
 

are the orthogonal polynomials with respect to μ. The 

generating function of nU  is given by 

  2
0

1
1 2

n
n

n
r U x

rx r






  ,  for , 1x r   

from which one gets 

           
   

      
1

12 2
0 0 0

2
1 2 1 2

n
n n n

k n k
n n k

U x U y rr r U x U y
x y rx r ry r

  

 
  


 

    
    

and then 

           
       

1

1
0

2
n

n n
k n k

k

U x U y
U x U y

x y



 





                                         (130) 

Now, for a given  1
0C R , we can write in  2L   sense, 

                                         
0 2n n

n

xx U 




   
 

 , 

yielding from orthogonality and (130) that 

                             
2

2 2

1
n

n
Var d d      





    
     and 

                          
       

2
2

1
n

n

x y
dx dy n

x y
 

  




 
  
  

It follows that in this case    1 1/Var  P and equality is attained only 
for    1 2 1 1 2x c c U x c c x      for some constants 1 2,c c . 

To prove the converse, take a compactly supported measure   and assume 
that   0x dx  and  2 1x dx  . In order to show that   is the semicircular 

distribution, it suffices to show that   0
2n
xU dx   

   for all 1n  . We use 

induction to this task. Assuming true for 1 2, , ..., nU U U , and using 
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     12n n nU x xU x U x , we need to show that  / 2nxU x  integrates to 0  
against  . Applying Poincaré’s inequality to    1/ 2 / 2nU x eU x together 
with the induction hypothesis and equation (130), we get that for any rR , 

       

               
2

2 / 2 / 2
/ 2 / 2 n n

n n

U x U y
U x dx r xU x dx dx dy

x y
   

 
        

which implies that    / 2 0nxU x dx   

In the case of the equilibrium measure of a convex potential V  , we have the 
support of the measure consists of one interval [a,  b]and a,  bsolve the 
system (cf. (66)) 

 1 1
2

b

a

x aV x dx
b x
 
  and  1 1

2

b

a

b xV x dx
x a
  
  

If we denote c (b a) / 2  and (a b) / 2   , the system above can be rewritten 
in terms of   and c as 

                
1

2
1

1 1
2 1
c tV ct dt

t





  
  and  

1

2
1

1 1
2 1
c tV ct dt

t





   
  

which is equivalent to 

                     
1

2
1

1
2 1
c tV ct dt

t





  
  and  

1

2
1

1 0
1

V ct dt
t




  
  

Since V  is 2C  the first equation can be integrated by parts to get that 

                                      
12

2

1

1 1
2
c V ct t dt




     

On the other hand we know that     2 22 2 1 pV x p p x    , hence 
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2 2 2

1
1 2 2 2 22

2 2 2

1

2 2 1
1 1

2

2 12 2 1
1

2 4 2 1 4

p

p p p pp
p pp

p p c
ct t dt

p p c p cp p c
t t d t

p p p






 











  


   






 

This yields 

                                            
1

2 22 p p
pc m


  

Finally, because   2d b a c    , we arrive at (126).  

To conclude this section, we present an inequality which relates the 
equilibrium measure of a strong convex potential and the arcsine law. 

Theorem (6.3.18) [177]: Assume that   2V x x  is a convex for some 0   
and the equilibrium measure v has support[a,  b] . Let 

    
  , ,

1arcsin a b a be x dx
b x x a


 

I  be the arcsine law with support [a,  b] . 

Then for any smooth function supported on[a,  b] , 

                        2
arcsin ,v ea b

x dx Var                                             (131)  

where the variance is considered with respect to the arcsinea,b law. 

Proof: It suffices to deal with the case a  1,  b 1   , the rest following by 
simple rescaling. Recall that in the proof of Theorem (6.3.14) , we use 

convexity to get that the density  g x  of v satisfies   21g x x


  . Thus 

the proof reduces to 

                   
1

2 2

1

arcsin
1 1 ex x dx Var 




                                             (132) 

For this, write  0 n nn
T x 


  the expansion of   in terms of Chebyshev 

polynomials of the first kind. Now, 1n nT nU   and thus the above inequality 
reduces to the obvious inequality 2 2 2

1 1n nn n
n   
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We will actually see below that inequality (132) is simply the spectral gap 
for the Jacobi operator associated to the arcsine law. 

We show how the two versions of the Poincaré inequalities can be viewed 
as spectral gaps for some Jacobi operators. This discussion is mainly driven 
from the work [258] by Cabanal-Duvillard and his interpretation of the 
variance in (127) in terms of the number operator of the Jacobi operator 
associated to the arcsine law. This viewpoint allows for an unified 
perspective of the Poincaré inequalities presented in the preceding sections. 

For our purpose we consider here the Jacobi operators given, for smooth 
functions on ( 1,  1) ,by 

                           21 2 1L f x x f x xf x                                      (133) 

for 0  . We consider the Gegenbauer polynomials , 0nC    , defined by the 
generating function 

                                                    
 20

1

1
n

n
n

r C x
rx r









 

  

For 0   we set     / , 1n nC x T x n n   , where nT are the Chebyshev 
polynomials of the first kind. 

It is known that nC   are eigenfunctions of L , with eigenvalue  2n n  , i.e. 

                                                            2n nL C n n C 
    

On the other hand the Gegenbauer polynomials are orthogonal with respect 
to the probability measure 

                                             
 

      
2 2

1/22
1,1

2 1
1

2 1
x x







 





 
 

 
IV  

Notice that in the case of 0  , this becomes the arcsine law and for 1  , 
this is the semicircular law, while for 1 / 2  , this becomes the uniform 
measure on[ 1,  1] . 

Take now the normalized Gegenbauer polynomials /n n nG c    , where 

   2
n nc G x dx 

  V . Then n
 form an orthonormal basis of  2L V  and thus 

the operator L  is diagonalized in this basis. Consider N to be the counting 
number operator with respect to the basis n

 , i.e. 



314 
 

                           n nN n 
                                                                     (134) 

This implies that 2nL N N
   . Therefore we have the following two 

inequalities 

              2 1L N    and 1N   P                                                     (135) 

where P here stands for the projection on constant functions in  2L V . In 

other words,    P V . 

Notice that Eq. (135) include two statements. The first one is the 
comparison of L  and N , with the spectral gap 2 1   while the second one is 
the spectral gap of the counting number operator with the spectral gap 1. In 
the sequel we want to translate these spectral gaps in terms of Poincaré type 
inequality. For this matter we need to find the kernel of the operator N
.Then we have for any function in the domain of definition of L , that

0 n nn
  




 , and then 

                                                 2
2

0

, 2 nL V
n

L n n


   




   

On the other hand, using integration by parts, we can justify that 

                                               2

2 2, 1
L V

L L dv x x v dx


           . 

For the number operator, we have that 

                                            2 1 2

1
0 0

lim n
n nr

n n

L dv n nr    
 




 

    

Now, for 1 r 1   , 

                                   1 2 1

1 1

n n
n n n

n n

nr x y nr x y dx dy 
     

 
 

 

  V V . 

Furthermore, since 0n d   V for 1n  , we also obtain that 

       1 2 2

0

0n
n n

n

nr x y dx dy
   






    V V for 0n  and thus, denoting  

     1
0

, , n
n nn

K r x y nr x y 
   


  . 
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                      21

0

1 , ,
2

n
n n

n
x y nr x y dx dy x y K r x y dx v dy 

   


     






  V V V  

The following formula is essentially due to Watson [91] and valid for λ > 0, 

                   
 

 
    

112 2

12 1 2
2 2 21 1

1 2 1
2 1 2 1 1

n
n n

n

r r
r x y dz

r xy z x y r



 



 






 

  


     
  . 

For 0  , we have to deal with the Chebyshev polynomials of the first kind 
which was more or less what appeared in the proof of Theorem (6.3.14). For 
this case, we have that (denoting x = cos t and y = cos s), 

                        
 

 
 2 2

0

1 cos 1 cos
1 2 cos 1 2 cos

n

n n
n n

r t s r t sr T x T y
c r t s r r t s r





   
 

      . 

where 2
0 1n nc T dv  for n = 0 and 1/2 otherwise. 

Thus, we obtain, after differentiation with respect to r and then limit over
1r  , that 
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13 1 2
1 2 2

21

2

12
, 0

2 1 1 1

1, lim , , , 0

1 , 1
2

r

zr
dz

xy z x y

xyK x y K r x y
x y

x y





 

















 
 
     


  



 
 




  (136) 

The integrand is not a rational function. In some cases, it is algebraic since 
0  need not be an integer. 

To reveal the singularity of this kernel, we make the change of variable 

                               2 2 2 21 1 1 1 1 1xy yz x y t xy x y         . 

Then, after simple algebraic manipulations, setting  : 0,1f R , 

                                                 11/

1

1

1 1u t ut
f u dt

t



 





     . 

and 
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2 2 2

1/23 1 2 2 2 2 2

2 1 1 1
, 0

2 1 1 1 1 1

, 1 , 0
1, 1
2

r xy x y x y
f

x y xy x y

H x y xy



















       
  

        
   


 




 (137) 

 

We can rewrite Eq (134) for , 1x y   as 

                                           
 2

,
,

H x y
K x y

x y


 


.                                         (138) 

where  ,K x y  is a continuous function of  , 1,1x y  . 

Corollary(6.3.19)[274]:  
 

1
2 2

0 1,1

1
( )(1 )I x x







    Since 

              V ,and      V , 

then 

              
   

2 1
2 2

1,1

1
sup ( )(1 )

1
I x x



  




 




 
    

   V V . 

Hence 

               
 

1
2 2

0 1,1

1
( )(1 )I x x







   . 

We can find the norm of the projection of  of 1
,1

2
  in the interval 1,1   .   

Now, from (136), we obtain the following result. 

Theorem (6.3.20) [177]: For any 0  , one has for all 0   and any 
  1,1  , that 

               
2

2 2 2 11 ,
2

x y
x x dx H x y dx dy

x y   

 
        V V V .        (139) 

And  
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2

, 2
x y

H x y dx dy Var
x y   

 


 
    VV V                                     (140) 

Remark (6.3.21) [177]:  

Combining Eqs. (139) and (140), we also get a Brascamp–Lieb type 
inequality: 

                        2 21 2 1x x dx Vra
      VV .                                   (141) 

For 1 / 2  , the measure 2V  is of the form  V xe dx , where  

     21/ 2 log 1V x c x       , a strictly convex function on ( 1,  1) and 
according to the classical Brascamp–Lieb inequality [286], 

                
 
       

2
2

2

1
2 1

1

x
x dx Vra

x   


  
 VV  .                                   (142) 

Notice here that neither (141) not (142) implies the other which means that 
they complement each other in some sense. For example if  has support in

1 1,
2 2 

   
 (141) implies (142) while if   is supported on   1 11,1 ,

2 2
\

 
    

, 

(142) implies (141), 

We address the preceding functional inequalities for probability measures 
on the real positive axis in the context of the Wishart Ensembles from 
random matrix theory and their associated Marcenko–Pastur distributions. 

We start with the random matrix heuristics although, as far as we know, it 
has not been used towards functional inequalities as before. The problems of 
large deviations principle for the distribution of the eigenvalues of Wishart 
ensembles is discussed in [64]. The model is as follows. 

Take  T n a  n p n random matrix with all the entries being iid  0,  1N
random variables. 

Then    tT n T n  for  n p n is known as the nonsingular Wishart random 
ensemble. According to [65], the distribution of the Wishart ensembles is 
given by 

                                  
 

  /22 det
p n T Mr p n

npC e M dM
  . 
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where the measure iji j
dM dM


  the restriction of the Lebegue measure on 

the set of n n  non-negative matrices. 

It is also known (for example [65]) that the joint distribution of eigenvalues 
 1 2, ,..., n    of 

     1 tT n T n
p n

is given by 

                                              

     .
1 /2

12 1 11 i j

n

n p n np n n ti ii i i j ne
Z

  
 

      


 

Our interest is in the limit distribution of 
1

1 n
n iin

 


  . The classical result 

states that if    / 0,1n p n   , then the limit distribution of n is the so 
called Marcenko–Pastur distribution given by 

                                       
   

   2

2 2
1 , 1

4 1
1

2
x x x

x dx
x   

 
  
 

 
1 . 

This is a particular model for the standardWishart ensembles. However one 
can consider a more general example with potentials for which the 
distribution of the matrix is driven by a potential  : 0,Q  R , 

                                                  detn
np n T Q MrC e M dM . 

where dM stands for the Lebesgue measure on n n positive definite 
matrices. The distribution of eigenvalues of M  is given by 

                                       
     

1
1 1

.1
nn n

i i i ji
i i j n

p n Q t t t t

n

e
Z




   

   
. 

The main result of [64] is that the distribution of the random measures 

 
 
1

1
i

p n
n ip n  


  under the conditions  

     / 0,1 , / 0, nn nn p n n n v        satisfy a large deviation 
principle with scale 2n and the rate function given by 

                                          
  

 
0,

infQ QR


  
 

  E E
P

. 

Where 
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2

log log
2Q Q x x dx x y dx dy          E . 

This gives the following motivation. Assume that    : 0,V    R is a 
lower semicontinuous potential such that   lim 2log

x
V x x


   . Then, 

according to the results in [52], we know that there is a unique minimizer of 

                                                 
  

 
0,

inf V


 
E

P
. 

In addition the equilibrium measure v has compact support. 

A particular case of interest is    logV x rx x  with 0, 0r s  for which 
we know [52] that the equilibrium measure is given by 

         
,1

2V a b

r x a b x
dx x dx

x



 

  where  

          2 2 1 2 2 1,s s s sa b
r r

     
  .                                      (143) 

One recovers the Marcenko–Pastur distribution for    logV x rx x  , 
0, 0r s  , with 1/r   and  1 /s    . 

The natural way to deal with functional inequalities in the context of 
measures on the positive axis [0,∞) is to transfer measures from [0,∞) into 
measures on the whole R . For a measure   on [0,∞), consider thus the 
associated symmetric measure  on R defined as 

                                  2:F x x F   .                                            (144) 

for any measurable set F  of [0,∞). Defining    2 / 2V x V x , it is then an 
easy exercise to check that 

                                           2v v   E E .                                              (145) 

In addition, the minimizer of VE is VV   . Further, for the non-decreasing 
transportation map  of V into μ, define 

                                       2x sign x x                                               (146) 

which transports V   into  . 
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In addition, as it was pointed out in [66], the relative free Fisher information 
 VI   is defined for measures   on [0, ) with density p d dx in 
  3 0, ,L xdx as 

           2

0

VI x H x V x dx 


   with    2. .H x p v dy
x y 
              (147) 

Otherwise we take  VI    . The main reason for defining this in this way 
is because, cf. [142] and the discussion following, one has 

                         2V VI I                                                                       (148) 

where VI   is defined by (154). 

To state the transportation cost result, we define the appropriate distance. 
For any   , 0,  V P , set the distance as 

                  
 

   
2

,
, inf ,

v
x y dx dy

 
 



   
  W V                                (149) 

where  , V is the set of probability measures on 2R  with marginals μ and ν. 

We have the following transportation cost inequality. 

Theorem (6.3.22) [177]: Assume that  : 0,V   R  is   2 0,C  ((0, ∞)) 
such that  2 2V x x  is convex on (0,∞) for some 0  and let v  be the 
equilibrium measure of V on [0,∞). Then, for any probability measure μ on 
[0,∞), we have that  

                                  2 , V V V V     W E E                                     (150) 

In the case of    logV x rx s x  with r > 0 and 0s  , this inequality with r   
is sharp. 

Proof: As announced, the idea is to interpret this inequality as an inequality 
for potentials on the whole real line instead of [0, ) .Using the measures 
and v from Eq. (144) together with (145), we have that 

                                                       2V V V VV V       E E E E  

On the other hand, if   is the (increasing) transportation map of v into  , 
then it is not hard to check that 
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2 22 , V Vv x x dx x x dx          W  

In this framework the inequality (150) translates as 

                              2
2 , v v v vE E         W                                          (151) 

From here we will use the same argument as in the proof of Theorem 
(6.3.20), start with 

                       
                

           1 log

v v v v

v v

V x V x V x x x dx

x y x y
dx dy

x y x y

    

   
 

    

  
      




 
     

   
 

E E

 

and notice that the second line of this is non-negative. For the first line we 

point out that because   2

2
V x x

  is convex and x  and  x have the same 

sign, for any X , 

                                                     2

2
V x V x V x x x x x           . 

which implies (150). 

In the case    logV x rx s x  , take    2
x x m   for large m  and notice 

that    x x msign x   . Therefore inequality (10.9) becomes 

                             
     

       

2 2 2 2 log

log 1

x msign x
rm rm rm x dx s dx

x

sign x sign y
m dx dy

x y

 

 

 
     

 
 

   

 



 

 

 

which is sharp for large m .  

The next result is the Log-Sobolev type inequality, which was conjectured 
by Cabanal-Duvillard in [259] for the case of Marcenko–Pastur distribution. 

Theorem (6.3.23) [177]: Let V  be as in the previous theorem. Then, with 
the definition from (147) and for any measure   0, P , 

                                    1
2V V V VI  


 E E                                          (152) 
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In the case    logV x rx s x  , r >0 and 0s   inequality (152) with ρ = r is 
sharp. 

Proof: We will discuss here the proof only in the case when μ has a smooth 
compactly supported density, careful approximations being described in 
[66]. 

From (148), we have    2v vI I    , where         
2

vI H x V x dx   
  . 

Rewriting everything in terms of   and the associated quantities, the 
inequality to be proven can be written in the same way as we did in the 
proof of Theorem (6.3.8). 

  

       

             

           

               

21
2

log 0

v

v

v

v v v

H x V x dx
p

V x V x V x x x dx

H x V x x x dx

x yH x x x dx dx dy
x y

   

   

    

     
 

  
 

    

  


   






 





  

 

     

   

    
 

         (153) 

Notice that   2

2
V x x

  is not convex on the whole real line but it is convex 

on the intervals (0, ) and (  ,  0)  . The key to everything here is that  x

has the same sign as x  and this allows us to apply convexity of   2

2
V x x

  

on each of the intervals (  ,  0)    and (0, )   to conclude that 

               
             

       

2

2

2

2
2

V x V x V x x x x x

x x x x x

   


  

    

   

     

  
                     (154) 

From here we can follow word by word the proof of Theorem (6.3.7). 

For the case  V x rx , we have equality in (152) if    x x msign x    and 

thus this means    2
x x m    

In the case    logV x rx s x  , we look at  x x m    for large m. In this case  

  2 / 2 logV x rx s s   and then a simple calculation shows that (152) is 
equivalent to 
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2

2

2 2 log

2 log 1

v v

v

x m sign x
rm mr x dx s dx

x

sign x sign y
m dx dy

x y

sr dx
x x m sign x

 

 



 
    

 
 

   

 
    

 

 



 

 



 

Dividing both sides by 2m  and taking the limit of m to infinity implies that
r  . On the other hand r   validates (152), hence r   is the best 

constant.  

Next in line is the HWI inequality which is the content of the following 
statement. 

Theorem (6.3.24) [177]: Assume V  is as in Theorem (6.3.19) and the 
distance W given by (149). Then for any measure   0, P , 

                  22 , ,V V V V V VI         E E W W                             (155) 

For the case of    logV x rx s x  , 0r  , 0s  , this inequality for r   is 
sharp. 

Proof: As it was made clear in the previous two theorems, we translate this 
inequality in terms of the associated symmetric measures on R . Following 
upon the proofs of above theorems, we can rewrite (155) in the following 
form: 

             

           

               

1/22 2

log 0

v v

v

v v v

H x V x dx x x dx

H x V x x x dx

x yH x x x dx dx dy
x y

     

    

     
 

   
 

  


   



 

  

   

   

    
 

 

Using the fact that   2

2
V x x

  is convex on each interval (  ,  0)    and (0, )

combined with the fact that x and  x have the same sign, the rest of the 
proof is the same as the one of Theorem (6.3.8).  

For the case    logV x rx s x  , using    2
x x m   , one can show that 

r  is sharp.  
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At last, we would like to discuss a Poincaré type inequality in this context. 
As in this section, for the heuristics, we consider the general model of 
random matrices with distribution 

           logdet sn nTr rM s M nTr V MnrTrM
n n n ndM C e M dM C e dM C e dM    P  (156)                        

where dM stands for the Lebesgue measure on n n  positive definite 
matrices and 0s  . For a given smooth compactly supported function

 : 0,  R , we want to apply the Brascamp–Lieb inequality [95] to the 
function    rM T M  on the space of positive definite matrices. 

Now,    M M  . 

The Hessian of     : rM T V M  can be interpreted as a linear map from 

nH (n ?n Hermitian matrices) into itself which is given by 
 2 1 1M X sM XM    . Hence the inverse of the Hessian is then

   12 1M X MXM
s


   . Thus we obtain from Brascamp-Lieb that 

          1 221
nr nT M M dM Var M

n



    PP . 

On the other hand, from [36] or [258] the variance of  M converges to 1
4

 

 
 

,arcsin a beVar  , where we recall that     ,a b
dxarcsnie

x a b x


 
 is the arcsine 

law on the support [a,  b]of V . Next,  

         1 2221 1
r rT M M T M M

n sn
 


    , whose integral against nP  

converges to the integral of  221 x x
s

  against the equilibrium measure V  

from Eq. (143). These considerations suggest that 

               22
arcsin ,4V e a b

sx x dx Var  
 
  

                                          (157) 

Corollary(6.3.25)[274]:Show that 

(i)  
2 ( )

,
2
V

V

I 
 


W (ii)  

2
2

2
0

1 2, ( ) ( ) ( )
2V x dy V x dx

x y
   



     
 W . 

Proof:(i)Theorem (6,3.23) and(6.3.24) gives that 
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                            20 2 , ,V V VI        W W  

Hence 

                             
2 ( )

,
2
V

V

I 
 


W  

                
2

2 2
2

0

1 22 , ( ) ( ) ( )
2V x dy V x dx

x y
    



     
 W  

Hence the result. 

Notice here that one can actually make this heuristic into an actual proof of 
this inequality.Motivated by these heuristics and also inspired by Theorem 
(6.3.14), we have the following stronger result. 

Theorem (6.3.26) [177]: Assume that  : 0,Q   R  is a convex potential 
and let      logV x Q x s x   for 0s   satisfy     2logxLim V x x    . 
Assume that the support of V  is[a,  b] . Then for any smooth function   on 
[a,  b] , the following holds    

          
       

2
2

2
2

2 2
4 2

b b

V

a a

x y ab a b x y xysx x dx dxdy
x y x a b x y a b y

 
 



       
             

  (158)     

If  Q x rx t  , equality is attained for   2
1

Cx C
x

    φ(x), therefore (158) is 

sharp. 

In particular, combining (158) with (140) for 0  , we get an improvement 
of (147) as 

                                                        2
sin ,2V aec e a b

sx x dx Var  
 
  

   

Equality though is attained only for φ identically 0. 

In the case   , 0V x rx r  , on [0, ) ,there is no constant C 0 such that 

inequality (158) holds with C  instead of 24
s


. Nevertheless, for every 

smooth   on[a,  b] , the following holds,    

          
     

2
2

2

2 2
4 2

b b

V

a a

x y ab a b x y xyrx x dx dxdy
x y x a b x y a b y

 
 



       
             

   (159) 
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with equality for   1 2x C C x   . 

As remarked after the statement of Theorem (6.3.14) the numerator in (159) 
is nonnegative. 

Proof:The same argument as in the proof of Theorem (6.3.14), shows that 
the density  g x  of V satisfies 

                                                        
   

2

s x a b x
g x

x ab

 
 , 

therefore it suffices to show that 

                  
        

  
     

2

2
2

1 1
2

2 2

2

b b b

a a a

x y
x x x a b x dx

x yab

ab a b x y xy
dxd

x a b x y a b y

 




 
      

    


   

 
 

Next, making the change of variable    / 2 / 2x a b u b a    and denoting 

      / 2 / 2u a b u b a     , 

We reduce the problem to showing that for any smooth function   on[ 1,  1] , 
we have 

               
     1 1 1 2

2 2
2

1 1 1

2 2

1 11
2 2 2

1
1 1

u va b a b u u u du
u van

uv dudv
u v

 



  

            




 

  
 

Denoting b a
b a

 



, we have that 

2

1
2 1
a b

ab 





, and the preceding 

inequality reformulates as 

       
21 12

2 2

2 2
1 1

1 11 1
2 1 1

u v uvu u u du dudv
u v u v

 
 


 

                     (160)        

To show this, take     cost t   and then after the change of variable 
 cosu t we need to check 
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22
2

0 0 0

1
1 cos 1 cos cos

2 cos cos
t s

t t dt t s dtds
t s

  
 

 


         . 

Writing    0
cosnn

t a nt 


 and using that    0

sinnn
t na nt 


  , together 

with the fact that 

                                                  
0

1,
cos sin sin 4

0

for m n
t nt mt

otherwise

    


  

and Eq. (153), the inequality becomes 

                        2 2 2 2
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1 1

1 1n n n n
n n
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                                (161) 

Let 
21 1 




 
  be the solution 0 1   of 2 2 0     . Notice that for 

any 1n  , we  have  2 2
1 1

1
2 2n n n na a a a

     

which implies that 
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what we had to prove. Notice here that equality is attained in this inequality 
if and only if 1n na a    for all 1n  , which means that   1 1

11 n n
na a   . This 

corresponds to the function    
1 2

cos
1 2 cos

t
t a

t



 



 

, or   1 21 2
uu a

u

 



 

 

which means that    1 /x a r s x   . Therefore equality holds also for
  1 2 /x C C x   . 

For the second part, in the case  V x rx  with 0r  , notice that if there is a 
0C  so that (158) holds with C  instead of 2/ 4s  , then, following the same 

argument as above, we would have the equivalent of (161) as 

                                              2 2 2
1

1 1

1n n n n
n n

n a n n a a C na
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Taking in this  n

n

r
a

n


  for 0  , we have that    2 2/ 1 log 1C      , 

and this is certainly false for γ close to 1.For Eq. (159), notice that in this 

case the equilibrium measure is  
2V

r b xdx
x





  and then after a simple 

rescaling this follows from Eq. (120). This complete the proof of the 
theorem.  

It is interesting to look at this inequality as a spectral gap result. For 
example in the case of the Marcenko–Pastur measure   Q x rx , the 
inequality (158) is actually equivalent to inequality (160). Using the 
interpretation from end of this section, we can rephrase this as, for a given

 0,1  , 

                                               22 2
01 1 1 ,x x x v dx N         

where 0v is the arcsine law on [ 1,  1] and N  is the number operator. Now we 
can define the operator 

                                               2 21 1 2L x x x x x x x              

With this definition, 

                                                      
0

2 21, 1 1
v

L x x x dx   


    

and then inequality (160) becomes 

                                                               
0

2, 1 , vL N       

for any smooth function   on [ 1,  1] . In particular this means that
21L N   . On the other hand it is clear that the operator L  can not be 

diagonalized by the Chebyshev polynomials of the first kind, therefore the 
orthogonal polynomial approach given does not work the same way here. 

 

 

  

  

  



329 
 

 
symbol 

List of symbols 
 

 
Page 

vol  Volume 1 
inf  Infimum 1 
Lip  Lipschitz 3 
Ric Ricci 3 
exp  Exponential 3 
det  Determinant  5 
L  Lebesque measure 7 
Hess  Hessian 7 
dist  Distant 7 
sign  Signature 7 
sup  Supremum 15 
dim Dimension 17 

pW  Free Wasserstein metric 19 
⊗ Tensor product 22 
⊞ Operation 24 
Im  Imajnary 24 
supp  Support 25 

3L  Banach space 26 
2L  Hilbert space 30 

min  Minimum 44 
diam  Diameter 52 
a c  Absolutely continuous  57 
LSI  Logarthmic Solev Inequality 85 
Tr  Trace 90 
curv  Cuevature 108 
max  Mascimum 112 
.  Cardinality 124 
ℓ∞ Lebesgue space 175 
TN Abelian group 180 
Var  Variation 227 
SG  Spectral Gap                                                              228 
SP  Super poincaire inequality  230 
LO  
a.e      

Lata la-Oleszkiewicz inequality 
Almost every where 

236 
241 

sgn  Signature 244 
⊕ Direct sum 247 

IC  Inf.convolution 253 
TC  Transportation cost 254 
Cap  Capacity  260 
opt  Optimal  260 

 Levydistance 293 

   
 ,L V
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