Please use this identifier to cite or link to this item: https://repository.sustech.edu/handle/123456789/28325
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMohammed, Asmaa Ahmed Alhag Ibrahim-
dc.contributor.authorSupervisor, -Shawgy Hussein AbdAlla-
dc.date.accessioned2023-03-29T07:25:06Z-
dc.date.available2023-03-29T07:25:06Z-
dc.date.issued2022-08-30-
dc.identifier.citationMohammed, Asmaa Ahmed Alhag Ibrahim . Weighted Fourier Frames and Basis on Self – Affine with Moran and Sum of Singular Measures \ Asmaa Ahmed Alhag Ibrahim Mohammed ; Shawgy Hussein AbdAlla .- Khartoum:Sudan University of Science and Technology,College of Science,2022.-315 p.:ill.;28cm.-Ph.Den_US
dc.identifier.urihttps://repository.sustech.edu/handle/123456789/28325-
dc.descriptionThesisen_US
dc.description.abstractWe show the analysis of orthogonality Fourier frequencies and orbits in affine iterated function systems. We characterize the Fourier frames for the Cantor-4set, of absolutely continuous measures and for singular measures with weighted Fourier frames and Hadamard triples generate self-affine spectral and fractal measures. A class of spectral, divergence of the Mock and Scrambled Fourier analysis on Moran and fractal measures are considered. We determime the spectrality of a class of infinite Bernoulli convolutions and Fourier orthonormal bases and existence for Cantor-Moran measure. The uniformity and translation absolute continuity of measures with Fourier frames and a sum of singular measures are discussed.en_US
dc.description.sponsorshipSudan University of Science and Technologyen_US
dc.language.isoenen_US
dc.publisherSudan University of Science & Technologyen_US
dc.subjectScienceen_US
dc.subjectMathematicsen_US
dc.subjectFourier Framesen_US
dc.subjectBasis on Selfen_US
dc.subjectAffine with Moranen_US
dc.subjectSum of Singular Measuresen_US
dc.titleWeighted Fourier Frames and Basis on Self – Affine with Moran and Sum of Singular Measuresen_US
dc.title.alternativeإطارات فورير المرجحة وأساس النسيبية – الذاتية مع موران وجمع القياسات الشاذةen_US
dc.typeThesisen_US
Appears in Collections:PhD theses : Science

Files in This Item:
File Description SizeFormat 
Weighted Fourier ... .pdf
  Restricted Access
Research4.39 MBAdobe PDFView/Open Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.