Please use this identifier to cite or link to this item: https://repository.sustech.edu/handle/123456789/26944
Title: Optimal Exponents for Hardy–Littlewood Inequalities and Riesz–Morrey–Hardy–Sobolev Spaces and Potentials
Other Titles: الأسيات الأمثل لأجل متباينات هاردي – ليتليوود وفضاءات ريس – موري – هاردي – سوبوليف والجهد
Authors: Osman, Imadeldin Hashim Elhag
Supervisor, -Shawgy Hussein AbdAlla
Keywords: Science
Mathematics
Optimal Exponents for Hardy–Littlewood Inequalities
Morrey
Riesz
Hardy
Sobolev Spaces
Potentials
Issue Date: 25-May-2021
Publisher: Sudan University of Science and Technology
Citation: Osman, Imadeldin Hashim Elhag .Optimal Exponents for Hardy–Littlewood Inequalities and Riesz–Morrey–Hardy–Sobolev Spaces and Potentials \ Imadeldin Hashim Elhag Osman ; Shawgy Hussein AbdAlla .- Khartoum:Sudan University of Science & Technology,College of Science,2021.-297p.:ill.;28cm.-Ph.D
Abstract: The study started by harmonic maps, Morrey potentials and Restrictions of Riesz – Morrey – Hardy inequalities, Morrey spaces in harmonic analysis with generalized local Morrey spaces and the fractional integral operators with rough kernel. Remarks and an interpolation approach to Hardy - Littlewood inequalities for norms of operators on sequence spaces are presented. Optimal and optimal exponents for Hardy – Littlewood type in equalities by blocks, for polynomials, multilinear operators, for m-linear forms on l_pspaces and for m-linear operators are given. The decomposition and generalized Hardy – Morrey spaces with trace law for Hardy – Morrey – Sobolev spaces are established. We find the singular integral operator and Hardy – Morrey space estimates for multilinear operators and Bilinear estimate in weak – Morrey spaces and uniqueness for Navier – Stokes equations.
Description: Thesis
URI: http://repository.sustech.edu/handle/123456789/26944
Appears in Collections:PhD theses : Science

Files in This Item:
File Description SizeFormat 
Optimal Exponents for ....pdf
  Restricted Access
Research3.95 MBAdobe PDFView/Open Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.