Please use this identifier to cite or link to this item:
https://repository.sustech.edu/handle/123456789/26179
Title: | Compact Sobolev Embeddings and the Equivariant Spectral Function of an Invariant Elliptic Operator with Full Asymptotics of Analytic Torsion |
Other Titles: | طمر سوبوليف المتراص والدالة الطيفية المتساوية للمؤثر الناقصي الثابت مع التقاربات الكاملة للالتواء التحليلي |
Authors: | Sudani, Dhifaf Fadhil Majeed Supervisor, -Shawgy Hussein AbdAlla |
Keywords: | Science Mathematics Compact Sobolev Embeddings Equivariant Spectral Function Invariant Elliptic Operator |
Issue Date: | 12-Mar-2021 |
Publisher: | Sudan University of Science and Technology |
Citation: | Sudani, Dhifaf Fadhil Majeed . Compact Sobolev Embeddings and the Equivariant Spectral Function of an Invariant Elliptic Operator with Full Asymptotics of Analytic Torsion \ Dhifaf Fadhil Majeed Sudani ; Shawgy Hussein AbdAlla .- Khartoum: Sudan University of Science and Technology, college of Science, 2021 .- 442 p. :ill. ;28cm .- PhD. |
Abstract: | The Hardy inequality, compact Sobolev embeddings and L^p-estimates for the torsion functions are studied. We find the estimates for the torsion functions with Robin or Dirichlet boundary conditions and Sobolev constants. We determine the L^p norm of the spectral clusters and of higher rank eigenfunctions for compact manifolds with boundary and bounds for spherical functions. The equivariant spectral function of a Riemannian orbifold, invariant elliptic operator, L^p-bounds, caustics and concentration of eigenfunctions are obtained. We show the holomorphic and the asymptotics of the analytic torsion on Hermitian symmetric spaces and on CR manifolds with S^1 domain and the orbifold submersion with the full asymptotics of analytic torsion. |
Description: | Thesis |
URI: | http://repository.sustech.edu/handle/123456789/26179 |
Appears in Collections: | PhD theses : Science |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Compact Sobolev Embeddings .....pdf Restricted Access | Research | 5.94 MB | Adobe PDF | View/Open Request a copy |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.