Please use this identifier to cite or link to this item: https://repository.sustech.edu/handle/123456789/26179
Title: Compact Sobolev Embeddings and the Equivariant Spectral Function of an Invariant Elliptic Operator with Full Asymptotics of Analytic Torsion
Other Titles: طمر سوبوليف المتراص والدالة الطيفية المتساوية للمؤثر الناقصي الثابت مع التقاربات الكاملة للالتواء التحليلي
Authors: Sudani, Dhifaf Fadhil Majeed
Supervisor, -Shawgy Hussein AbdAlla
Keywords: Science
Mathematics
Compact Sobolev Embeddings
Equivariant Spectral Function
Invariant Elliptic Operator
Issue Date: 12-Mar-2021
Publisher: Sudan University of Science and Technology
Citation: Sudani, Dhifaf Fadhil Majeed . Compact Sobolev Embeddings and the Equivariant Spectral Function of an Invariant Elliptic Operator with Full Asymptotics of Analytic Torsion \ Dhifaf Fadhil Majeed Sudani ; Shawgy Hussein AbdAlla .- Khartoum: Sudan University of Science and Technology, college of Science, 2021 .- 442 p. :ill. ;28cm .- PhD.
Abstract: The Hardy inequality, compact Sobolev embeddings and L^p-estimates for the torsion functions are studied. We find the estimates for the torsion functions with Robin or Dirichlet boundary conditions and Sobolev constants. We determine the L^p norm of the spectral clusters and of higher rank eigenfunctions for compact manifolds with boundary and bounds for spherical functions. The equivariant spectral function of a Riemannian orbifold, invariant elliptic operator, L^p-bounds, caustics and concentration of eigenfunctions are obtained. We show the holomorphic and the asymptotics of the analytic torsion on Hermitian symmetric spaces and on CR manifolds with S^1 domain and the orbifold submersion with the full asymptotics of analytic torsion.
Description: Thesis
URI: http://repository.sustech.edu/handle/123456789/26179
Appears in Collections:PhD theses : Science

Files in This Item:
File Description SizeFormat 
Compact Sobolev Embeddings .....pdf
  Restricted Access
Research5.94 MBAdobe PDFView/Open Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.