Please use this identifier to cite or link to this item:
https://repository.sustech.edu/handle/123456789/26178
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Osman, Nuha Abdel Halim Mohamed | - |
dc.contributor.author | Supervisor, -Belgiss Abdel Aziz Abdel Rahman | - |
dc.date.accessioned | 2021-05-26T09:11:36Z | - |
dc.date.available | 2021-05-26T09:11:36Z | - |
dc.date.issued | 2020-03-12 | - |
dc.identifier.citation | Osman, Nuha Abdel Halim Mohamed . The Dixmier Property and Tracial States for C^*-Algebras \ Nuha Abdel Halim Mohamed Osman ; Belgiss Abdel Aziz Abdel Rahman .- Khartoum:Sudan University of Science & Technology,College of Science,2020 .- 197 p.:ill.;28cm.-M.Sc | en_US |
dc.identifier.uri | http://repository.sustech.edu/handle/123456789/26178 | - |
dc.description | Thesis | en_US |
dc.description.abstract | Let A is a C^*-algebra for which A≅A ⊗ Z, where Z is the Jiang–Su algebra: a unital, simple, stably finite, separable, nuclear, infinite-dimensional C^*-algebra . We show that every directed graph defines a Hilbert space and a family of weighted shifts that act on the space.We obtain necessary and sufficient conditions for a simple unital C^*-algebra with unique tracial state to have this uniform property. | en_US |
dc.description.sponsorship | Sudan University of Science & Technology | en_US |
dc.language.iso | en | en_US |
dc.publisher | Sudan University of Science and Technology | en_US |
dc.subject | Science | en_US |
dc.subject | Mathematics | en_US |
dc.subject | Dixmier Property | en_US |
dc.subject | Tracial States for C^*-Algebras | en_US |
dc.title | The Dixmier Property and Tracial States for C^*-Algebras | en_US |
dc.title.alternative | خاصية ديكسمير والحالات الأثرية لجبريات-C^* | en_US |
dc.type | Thesis | en_US |
Appears in Collections: | Masters Dissertations : Science |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
The Dixmier Property ....pdf Restricted Access | Research | 2.56 MB | Adobe PDF | View/Open Request a copy |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.