Please use this identifier to cite or link to this item: https://repository.sustech.edu/handle/123456789/24132
Title: AComputer Aided Diagnosis Systemforthe Detection ofPulmonary Nodules in CT Scans Images
Other Titles: نظام للتشخيص بمساعدة الكمبيوترللكشف عن العقيدات الرئوية في الصور المقطعية
Authors: Khairy, Samah AbdElkhaleg Mohamed Nour
Supervisor, Zainab Adam Mustafa
Keywords: Biomedical Engineering
Pulmonary Nodules
CT Scans Images
AComputer Aided
Issue Date: 10-Feb-2019
Publisher: Sudan University of Science and Technology
Citation: Khairy, Samah AbdElkhaleg Mohamed Nour . AComputer Aided Diagnosis Systemforthe Detection ofPulmonary Nodules in CT Scans Images / Samah AbdElkhaleg Mohamed Nour Khairy ; Zainab Adam Mustafa .- Khartoum: Sudan University of Science and Technology, college of Engineering, 2019 .- 52p. :ill. ;28cm .- M.Sc
Abstract: Lungcancer (both smallcelland non-smallcell)isthe second most co mmon cancerin both men and women (not countingskin cancer).In men,prostate cancer ismore common,whileinwomen breast cancer ismore common.About14%ofallnewcancersare lungcancers. The American Cancer Society’sestimatesforlungcancerinthe Unit ed Statesfor 2018are:about234,030newcasesoflungcancer (121,68 0in men and 112,350inwomen) ,about154,050deathsfromlungcan cer (83,550in men and 70,500inwomen). Use CTscanners tostudydetectedoflungcancerwith alarger nu mber of thinnerslices,resultingin the detectionof more nodules.Thi sincreasein thenumber of imagesperCT examination makesthepr ocessof CT interpretation more time consumingand boringfor the r adiologist.Thiscanlead to decreased detectionsensitivityfor nodules ,apart fromthefactthat the majorityofthescreeningcasesare nor mal, and hence diagnostic readingerrorsmanybehard toavoid.The refore,computerized methodsfor nodule detection toassistthe radiol ogist became important. Computer-aided diagnosis(CAD) system;First,The CT imagesin D ICOMformatwereread bythesystem,and thelungswere extracted fromthethoraxtominimize the Region OfInterest (ROI),Finally,se veralfeatures(geometricand texture)were extracted, tobeused in t he classificationstage. In classification stagewe used three types(SVM, ANNandKNN). The CADsystemwasable toachieve anaccuracyof SVM92%, AN N87%and KNN86% .
Description: Thesis
URI: http://repository.sustech.edu/handle/123456789/24132
Appears in Collections:Masters Dissertations : Engineering

Files in This Item:
File Description SizeFormat 
AComputer AidedDiagnosis....pdf
  Restricted Access
Research2.02 MBAdobe PDFView/Open Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.