Please use this identifier to cite or link to this item: https://repository.sustech.edu/handle/123456789/20391
Title: Estimates of Pseudo-Differential Operators and Operator of Lipschitz Functions on Schatten Classes and von Neumann Norms
Other Titles: التقديرات للمؤثرات شبه التفاضلية ومؤثر دوال لبيشتيز على عائلات شاتن ونظائم فون نيومان
Authors: Alhussein, Hiba Mohamed Awad
Supervisor, -Shawgy Hussein AbdAlla
Keywords: Neumann Norms
Estimates of Pseudo
Operator of Lipschitz
Issue Date: 2-Aug-2017
Publisher: Sudan University of Science and Technology
Citation: Alhussein, Hiba Mohamed Awad .Estimates of Pseudo-Differential Operators and Operator of Lipschitz Functions on Schatten Classes and von Neumann Norms\Hiba Mohamed Awad Alhussein;Shawgy Hussein AbdAlla.- Khartoum: Sudan University of Science and Technology, college of Science, 2017 .- 299p. :ill. ;28cm .- PhD.
Abstract: We study the asymptotic distribution and singular values of compact pseudo differential operators. We determine the boundedness of a certain class and estimates for Schatten-von Neumann norms of Hardy-Steklov operators in lebesgue spaces. We give the bounds for constant in some operator inequalities in Schatten classes on compact manifolds, traces and global functional calculus for operators on compact Lie groups. We obtain the best constant in some non- commutative Martingle inequalities and for operator Lipschitz functions on Schatten classes. We estimate the approximation numbers of one class of integral operators. We show Wiener- Hopf operators on finite interval and the Schatten - von Neumann properties of some pseudodifferential operators. We establish the operator Lipschtiz functions and operator smoothness in Schatten -von Neumann classes and norms for functions of several variables.
Description: Thesis
URI: http://repository.sustech.edu/handle/123456789/20391
Appears in Collections:PhD theses : Science

Files in This Item:
File Description SizeFormat 
Estimates of Pseudo...pdf.pdf
  Restricted Access
Research3.71 MBAdobe PDFView/Open Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.