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Chapter one 
Introduction 

 
 
1.1 concept of vacuum  
 

 Vacuum plays an important role in physics it is not devoted   
from any physical meaning as people think. vacuum has it is own 
energy. At the early universe vacuum is responsible for generating 
inflation, which is responsible of solving some long standing 
problems, like horizon flatness  and entropy problem . vacuum 
energy is also proposed to generate elementary particles , beside 
permitting the propagation of electro magnetic waves[1] .   
 
1.2 Problems of vacuum energy: 

The role of vacuum energy in generating masses  of 
elementary particles  through higgs field faces some 
problems. Till now the higgs field is not discovered . the 
generation of field from photon field which constitutes 
vacuum is not well also established [2].     
 
1.3 Aim of the work:  

The aim of this work is to utilize generalized general 
relativity (GGR) and photon theory to relate vacuum energy to the 
photons and to see how vacuum and photon energy can generate 
fields and elementary particles .the expression for the vacuum 
energy can be treated also as a cosmological constant to solve 
some cosmological  problems like horizon, flatness and entropy 
problem.     
 
1.4 Methodology: 
           The GGR energy momentum tensor is used to constract an 
expression for the vacuum energy by minimizing the energy. the 
coordinate condition is also used to simplify the problem . 
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       The photon theory which relates photon energy to the field 
potentials is also used to see how the fields can be generated. 
These models are used to solve some cosmological problems and 
to explain how the fields and masses of elementary particles are 
generated . 
            The results obtained are compared with experimental and 
empirical results. They are also compared with the previous work 
made by others .       
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Chapter 2 
The Big Bang Model 

 
 2.1 introduction 
  The observed expansion of the universe is a natural (almost 
inevitable) result of any homogeneous and isotropic cosmological 
model based on general relativity . however, by itself, the Hubble  
expansion does not provide sufficient evidence for what we 
generally refer to as the Big- Bang Model of cosmology. While 
general relativity is in principle capable of describing the 
cosmology of any given distribution of matter, it is extremely 
fortunate that our universe appears to be homogeneous and 
isotropic on large scales . 
The formulation of Big- Bang model began in the 1940s with the 
work of George Gamow and his collaborators. in order to account 
for the possibility that the abundances of the elements had a 
cosmological origin, they proposed that the early universe which 
was once very hot and dense and has expanded and cooled to its 
present state [3]. 
    It was a Big Bang some 15 billion years ago, when the size of 
universe was zero and temperature was infinite. The universe then 
started expanding at near light speed [4].       
 
2.2 Basic Concepts  
2.2.1 The Friedmann- Robertson-Walker Metric    
 by the cosmological law as a physical constraint we can rite   the 
metric to the form [5]  
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where  ta  is  function of time,  k is a constant take the values 

1,0,1      
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only on choosing suitable units for r. the values 1,0,1   stands for a 
closed , spatially flat and open universes respectively within the 
frame work of SBB as will be shown later. the above metric is 
known in cosmology as the Robert-Walker metric. The spatial 
polar coordinates ,r  and  form a co-moving system in the sense 
that typical galaxies have constant spatial coordinates ,r  and . 
 
2.2.2  The Hubble Constant and velocities [6,7] 
In the  s,1920  Hubble measured the velocities of 18 spiral galaxies 
with a well-known distance. His fundamental discovery was that 
recession velocities  



v   increased linearly with distance  


r  between 
galaxies : 
       
                                                1.2.2.3r

a
av


   
 
 
The above relation is known as Hubble s law and the combination  
 
 
                                               2.2.2.30Ha

a




 
 
 
is known as the Hubble parameter. This law has been verified by 
the observation of some 3000 galaxies out to red shifts of 5.0z .  
  The present values from [8] 11sec8550  Mpckmto  (Mpc stands for 
mega parsec where one par sec (1pc)=3.26 light years ). 0H  is 
found by plotting galactic velocities versus distance and finding 
the average slope. The galactic velocities are determined by the 
Doppler shifting of the observed light. 
       Thus Hubble s law predicts that the universe is expanding 
galaxies are receding from us. 
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2.2.3 The Red shifting of Light [9,10] 
             Our most important information about the scale factor )(ta  
comes from the observation of shifts in frequency of light emitted 
by distant sources. To calculate such frequency shifts, we shall 
place ourselves at the origin r =0 of coordinates and consider an 
electromagnetic wave traveling to us along the –r direction with   
and   fixed. The equation of motion of a given wave crest is 
                            1.3.2.2

1
)(0 2

2
222

kr
drtadtdt
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  
   
Hence if the wave leaves a typical galaxy, located at 111 ,, r   at  time 
t, then it will reach us at a time t given by  
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 If the next wave crest leaves 1r at time 11 tt   , it will arrive here at a 
time ,00 tt  which is again given by  
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  Taking the difference between (2.2.3.2) and (2.2.3.4) and noting 
that a(t) does not change much during the periods ,10 tt    one 
obtains 
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 i.e.  
 
                                   5.3.2.2

)()( 1

0

0

0

tata


  

 
 
 hence the wavelength of light is actually stretched by the 
expansion of the universe. The frequency 0  observed here is thus 
related to the frequency 1v  when emitted by the relation. 
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   This can be expressed in terms of the red shift z, defined as the 
fractional increase in wavelength 
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                                              8.3.2.21
)(
)(

1

0 
ta
taz  

 
 
 For nearly galaxies the value of z [11] is very small and the 
corresponding velocity is tiny with respect to that of light . the shift 
may be reasonably interpreted as due to a classical Doppler effect. 
by contrast for the most distant galaxies the value of z may exceed 
1, which necessitates a complete theory of gravitation. Conversely 
the amount of expansion can be expressed in terms of the red shift 
 
 
                                         9.3.2.21

)(
)(

1

0 z
ta
taz   

 
 
  We derive these relations because of the central role the red shift 
of light plays in cosmology and to explicitly show that 1+z is 
equivalent to the ratio of scale factors. 
  To avoid confusion, it should be kept in mind that  1  and 1  are 
the frequency and wavelength of light if observed near the place 
and time of emission, while 0  and 0  are the frequency and 
wavelength of the light observed after its long journey to us. It 0z  
in (2.2.3.7) then 10    thus red shift  occurs while if  0z  then 

10    and blue shift occurs. 
     If the universe is expanding then )()( 10 tata   and (2.2.3.8)  
gives a red shift while if the universe is contracting then )()( 10 tata   
and (2.2.3.8) gives a blues shift. Such frequency shifts can be 
explained in terms of the Doppler effect which results from the 
relative motion of the source and the observed. 
  The first evidence for a systematic red shift of spectral lines from 
distant object was discovered by Vesto Melvin Slipher [12].in1922 
he gave data for 41 spiral nebulae of which 36 showed red shifts 
and only five showed blue shift. these frequency shift were 
interpreted as due to the  Doppler effect. However , Writz and K. 



 

8 
 

Lund mark showed that Slipher s red shifts increased with the 
distance of the spiral nebulae and therefore could be understood in 
terms of a general recession of distant galaxies, the furthest being 
those moving fastest. Thus the announcement by Hubble of a 
roughly linear relation between velocities and distances , equation 
(3.2.3.9) established the interpretation of the red shift as a 
cosmological Doppler effect. 
2.2.4 The Concept of Horizon [13] 
       The horizon demarcates events that are observable at a certain 
instant in the life time of the universe ; these events belong to the 
past light cone . it the observer has coordinates (0,t) the coordinate 

1  of a point emitting a light signal at a time 1t  is given by the 
relation 
 
                                                1.4.2.2
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If the integral on the right diverges when t tends towards 0, one can 
in principle receive a signal from all points in space (because the 
system of the coordinates cover the entire group of points). If , on 
the other hand, this integral converges , there exists a maximum 
finite value hr  for the coordinate 1r . The observer cannot receive 
information from points situated at hh rrr , being defined by 
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2.2.5 The Einstein Equations for the Robertson-Walker Metric 
        In this section we derive the Einstein equation for the 
Robertson-Walker Metric [14,15] , in which the matter is in the 
form of a perfect fluid of mass-energy density   and pressure p so 
tat the energy momentum tensor is given by  
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                                                 1.5.2.3)(   pgUUpT   
 
Where  0,0,0,1U  is the 4-velocity tensor as we are in commoving 
coordinates. 
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                                3.5.2.2sin 2
  arg                       

 
 we put the non-vanishing Christoffel symbols  

  in four groups 
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to get the following non-zero components of the Ricci tensor R  
(note that r is dimensionless while a(t) has the dimension of length) 
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Thus the Ricci scalar can be evaluated using (2.2.5.7) as follows 
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                              8.5.2.26
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 we are now in a position to write down the Einstein equation  
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  noting that the covariant components of the four-velocity are the 
same as contra variant ones:  0,0,0,1U  so that the non-zero 
components of T  are 
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the time –time component of (2.2.5.9) can be written using  
(2.2.5.3) and(2.2.5.7)  as follows 

                                       
 

  283

..

11.5.2.28
2
1

2

aGka

ei

GTRgR tttttt











 

 
 dividing by 3 
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the space-space components are given by 
                                                     13.5.2.28

2
1

iiiiii GTRgR                        
    
                                      14.5.2.282 22

aGkaaa    
 
the term 2a  can be eliminated by subtracting (2.2.5.12) from 
(2.2.5.14) to get  
 
                                                        15.5.2.2)3(43 apGa       
 
Multiplying (2.2.5.12) by 3 and adding (2.2.5.14) yields  
 
                                    16.5.2.2422 22

apGkaaa        
 
In addition we have the equation of energy conservation 
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 Or equivalently 
 
                                                                 18.5.2.23 23 paa
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  Thus given an equation of state )(pp  , we can use this equation 
to determine   as a function of a. knowing   as a function of a, we 
can determine )(ta   for all time by solving  (2.2.5.12) . thus the 
fundamental equation of dynamical cosmology are Einstein 
equation (2.2.5.12) , the energy-conservation equation (2.2.5.17) 
and the equation of state. 
    It is possible to learn [16] a good deal about the past and future 
expansion of the universe by inspecting the field equations. 
Equation (2.2.5.13) shows that as long as p3   remains positive, 
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the acceleration 
a
a 

   is negative . since at present 0a  (by 
definition) it follows that the curve of a(t) versus t must be concave 
downwards and must have reached a(t) =0 at some finite in the past 
t=0  
 
so that 
 
                                             19.5.2.20)0( a  
 
In the future, we see from equation (2.2.5.18) that as long as the 
pressure p does not become negative, the density   must decrease 
with increasing a, at least as fast as 3a , so that far a , the right 
hand side of equation  (2.2.5.10) vanishes at least as fast as 1a . For 
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  will reach zero when 2a  drops to the 

value 
G8

3  Since  a  is negative-define, a(t) will then begin to 
decrease again and must eventually again reach a=0 at some finite 
time in the future. Hence the cosmic history of the universe is 
determined by sign of the spatial curvature: k=-1 or k=0, then the 
universe will go on expanding forever, whereas if k=+1, then the 
expansion will eventually cease and be followed by a contraction 
back to a singular state with a(t)=0. An alternative derivation [17] 
of the dynamical equation for expanding universe is as follows: if 
we consider a galaxy of gravitating mass Gm  located at a radius r  

from the center of  a sphere of mean density and mass  
3

4 3rM 
  . 

the gravitational potential arising from the matter is  
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                              20.5.2.2
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where G is the Newtonian constant expressing the strength of the 
gravitational interaction. Thus the galaxy falls towards the center 
of gravitation, acquiring a radial acceleration  
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This is Newton s law of gravitation, usually written as 
                                 22.5.2.22r
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where F (in old fashioned parlance) is the force exerted by the 
mass M on the mass Gm  the negative signs in the (2.2.5.20)and 
(2.2.5.22) express the attractive nature of gravitation: bodies are 
forced to move the direction of decreasing r .  
  in an expanding Hubble universe the kinetic energy T of a galaxy 
receding with velocity v is  
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Where m is the inert mass of the galaxy . setting ,mmG   the total 
energy E is given by  
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With E constant (2.2.5.24) is the same as (2.2.5.12) provided that 
we identify the energy of a particle as  
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 For k =-1, E is positive-definite [18] so gravitation cannot prevent 
the galaxies from dispersing to infinity, with a finite asymptotic 
velocity. For k=0, E vanishes and the galaxies are barely able to 
expand indefinitely. for k=+1, E is negative and the explosion must 
ultimately cease and be followed by an implosion. 
 If the mass density    of the universe is large enough, the 
expansion will halt .the condition for this to occur is E=0 or from  
(2.2.5.24) this critical density [19] is  
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  A universe with density c   is called closed; and that with 
density c   is called open. 
   The density parameter 0  can be introduced as  
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  Where 0q  is the deceleration parameter which can be defined by  
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Hence if 

2
1

0 q   in (3.2.5.27), then c 0  and k =+1, while if  
2
1

0 q  

then c 0  and  k=-1,while if 
2
1

0 q  then c 0  and the space is 
flat i.e. k=0. 
 
2.3 Types of Matter  
    use the field equations and the equation of state to find the time 
dependence of three different types of  matter energy. 
 
2.3.1  Matter-Dominated Era [20]  
       If the particles are non relativistic the pressure p is negligible 
compared to the energy density   i.e. p  , thus the equation of 
energy conservation 
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 Reduces to 
 
                                           2.1.3.23 

a
a   

 
Which is solved with  
 
                                                 3.1.3.23 a  
 
This solution has a simple physical interpretation. If there are N 
particles each with mass m in co-moving volume 3L , then the 
energy density in physical space must be  
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Insert this form into the field equation (2.2.5.12)  
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    Also into (2.2.5.15)  
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Where  
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Hence  
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
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 On the other hand since p=0 in a matter era, hence by (2.3.1.3), 
equation (2.2.5.15) becomes 
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By using (2.3.1.9) one gets 
 



 

18 
 

 

                             
 11.1.3.2

2

2

2

22

 








kamGa
adat

kamGaa
mGdadt

a
mGda

 

If  k=0, this equation yields 
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Thus the universe expands for ever. If k=+1 then (2.3.1.11) gives 
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and this indicates that the expansion will eventually cease and be 
followed by a contraction, while for k=-1 
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And the universe will expand for ever. 
 
2.3.2 Radiation conquered Universe  
          In a universe where the energy density is dominated by 
relativistic hot particles, the pressure cannot be neglected. The 



 

19 
 

pressure is one-third of the energy density, hence 
3
1

p  . from the 
conservation equation  (2.3.1.1) 
 

                                  
 

 2.2.3.24)
3
4(3
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a
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a
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p
a
a

dt
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






 

 
which is solved if 4 a  . just as with cold particles, the number 
density of quanta decrease as 3a . The extra power of a for 
relativistic particles comes from the fact that the particles energy E 
red shifts as  
 
 
                                3.2.3.211

awavelength
E


  

 
Where   is the co-moving wavelength of the radiation. In analogy 
with equation (2.3.1.4), we can understand the energy density of 
radiation as a number N of mass less particles in a volume  3La  
with present energy aE /  thus 
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According to equation (2.2.5.17) [21] a  is large in early universe 
hence the curvature term can be dropped from (2.2.5.12) which 
becomes  
 

                                                     5.2.3.2
3

8 2
2 aGa 
  

 
Using (2.3.2.4) yields 
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Since at t =0 , a=0, thus 03 C  
 

                                                           7.2.3.2
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One can see from comparing the solutions for the matter and 
radiation energy densities that if both types are present in an 
expanding universe, then eventually the matter will dominate. 
   The present value of radiation density is about 312 /10 cmerg  [22]   
predominantly in the form of  microwaves and infra-red light . the 
present matter is not known because we can only observe luminous 
matter (l um) and there may be other matter (dark) as well in the 
form of invisible particles. 
 
2.3.3 The vacuum Energy [23] 
       The final type of matter that will consider is vacuum energy v  
usually the energy in the vacuum is of no dynamical interest. 
However, in GR, all forms of energy feel the force of gravitation 
and are important. Thus we can have the odd situation that the 
universe can be dynamically dominate by vacuum energy. This can 
happen, for example, when a symmetry-breaking occurs and the 
universe undergoes a phase transition. 
     This vacuum energy has odd properties when viewed in the 
frame work of a fluid. If we use the perfect fluid from T   as in 
equation (2.2.5.1), we find   
                                    1.3.3.2vp   
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  So vacuum energy has a negative pressure. The conservation 
equation (2.3.2.1) confirms that the vacuum energy density is 
constant with this negative pressure [24]i.e. 
 
                                        2.3.3.2tan tconsv   
 
      In a universe with a mixture of matter and vacuum energy, the 
vacuum energy will quickly dominate any matter energy density, 
the same result follows if we replace matter energy with radiation 
energy. 
Thus  

                       3.3.3.2tan
3

8
2

tconsG
a
a v 






    

    
 Which has the solution 
 
                    4.3.3.2Htea        
 
2.4 Cosmological Problems of the Standard big bang Model 
         We have spent the time discussing the observational support 
for the cosmological (SBB) model. Despite the successes of this 
model there are still a few puzzling features one would like to 
explain. In the following sections we will discuss some of these 
defects termed as cosmological problems. 
 
2.4.1 The Horizon Problem 
            In the SBB the initial universe is assumed to be isotropic 
and homogeneous, yet it consists of a huge number of separate 
regions which are causally disconnected [25](i.e., these regions 
have not yet had time to communicate with each other via light 
signals). This homogeneity is predicted by measurements of the 
CMBR which give temperatures in different regions differing by 
less than O( 410 ) [26]  
      How did these disconnected patches come to have the same 
temperature? This is the horizon problem. the physical horizon 
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distance )(tL  traveled by alight pulse beginning at t =0 is given 
by[27] 
                              
 
                      1.1.4.22

)(
)()(

0
 





t

t
ta
tdtatL  

 
thus whatever physical process operated at this epoch were limited 
in range by )(tL  . on the other hand, the physical )(tL  of the 
observed part of the universe is given by [28] 
 
                      2.1.4.2)(
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)(
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p
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tL
ta
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Where pt  the present time, )( ptT  is the present microwave 
background temperature. Hence 
 
 
                                3.1.4.2)()()(

)(
)( 1 pp tLtTtT
tL
tl    

 
 

Where 
90

)(8 3 TG   and N is the effective number of spin degrees 

of freedom. With 102 10)(,7.2)(,10  pp tLktTN   years and evaluating 
(2.4.1.3) at ,1017GEV   we obtain 
 
 
                                         4.2.4.2101 28

L
 

 
which is the ratio of the horizon radius to the radius universe. 
 
Thus  
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Which means that the initial universe consist of at least 8410  
causally disconnected  region indicating that our universe is neither 
homogeneous nor isotropic. This is in contrast with the observed 
isotropy and homogeneity. 
 
2.4.2 the Entropy problem 
        The observed homogeneity and isotropy of the detected 
microwave background and the observed value of the mass density 
suggests that there was an enormous amount of entropy [29]mainly 
in the form of blackbody radiation [30]. further the entropy 
contained within the horizon at early times was 6310  . this is much 
less than the entropy today which is about 8810  , this means that 
entropy is increasing. 
       On the other hand, the classical Einstein equations are purely 
adiabatic and reversible. consequently, they predict constant 
entropy. Therefore, they can hardly provide any explanation 
related to the origin of cosmological entropy. 
  In the expanding universe, the second law of thermodynamics, 
applied to a commoving volume element V, implies that 
 
                          1.2.4.2VdpVpdpdVdpVTds     
 
     Where   and p are the equilibrium energy density and pressure. 
The integrality condition 
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Relates the energy density and pressure 
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                                                     3.2.4.2p

dT
TdP

   
 
 
or equivalently 
 
 
                                                    4.2.4.2dT

T
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
  

 
substituting (2.4.2.4) into (2.4.2.1), it follows that 
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That is the entropy per comoving volume is 
 
 

                                                 6.2.4.23

T
paS 


  

 
Recall that the first law (energy conservation) can be written as 
 
                                      7.2.4.2VdpVpd   
 
Substituting (2.4.2.4) into (2.4.2.6) it follows that 
 
  
                                      8.2.4.200 



 

T
dS

T
Vpd   

 
This result implies that the entropy S per comoving volume is 
conserved, which is in contradiction with the fact that the entropy 
of the universe should increase. 



 

25 
 

 
2.4.3 The Flatness Problem  
       We have from (2.2.5.12) that  
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i.e.  
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where 

a
aH


  is the Hubble parameter. The above equation can also 
be written as  
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where 

G
H

c 


8
3 2

   is the critical density. Dividing (2.4.3.3)by c one 
gets 
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Since the matter density c   scales as 3a  . thus if there is a small 
deviation from the critical density at early times, this difference 
will grow at the same rate as expansion of the universe. Hence in 
the early universe the relative energy difference between   and c   
Must have been much smaller. Specifically [31] 
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                                              )10(1sec101 6043   O

c
  

 
whereas 
 

       )10(1sec1 16 O  
 Hence if the universe is closed it would have collapsed millions of 
years ago, while if the universe is open the present energy density 
  would have dwindled to a value much less than the critical 
density c  these two predictions are in conflict with the present 
observations which predicts that universe is expanding and its 
energy density    is in the range of  
 
                                                   201.0 0 

c
  

where 0  is the present energy density. 
     The flatness problem can be related to the entropy problem as 
follows. Using the entropy conservation equation (2.4.2.6) and the 
fact that radiation density    and its pressure are given by 
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where 

30

2N   and N is the effective number of spin degrees of 
freedom, yields   
 
                                         7.3.4.2tan tconsaT       
 
Let us define a quantity f  by 
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In this case the Friedmann equation is given by 
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Dividing both sides by   and using (2.4.3.5), one gets  
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The entropy S, given by (2.4.2.6), together with equation (2.4.3.6) 
yields   
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Combining equation (2.4.3.8) and equation(2.4.3.10),the resulting 
equation is 
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The equation (2.4.3.9) becomes  
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today cmaKT 28

00 10,7.2   and the entropy 87
0 10S and since it is 

conserved it follows that  
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Excluding the case k=0, then setting ,1// k  equation(2.4.3.12) 
gives 
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At Planck time one finds  
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If the universe density at Planck time pl  was slightly greater than 
c , i.e. )101( 58

0
 c  then the universe would be closed and it 

would have collapsed millions of years ago. This contradicts the 
fact that the universe exists and is expanding. On the contrary if 

)101( 58
0

 c  then the universe would be open and the present 
energy density would be negligibly small and much less than the 
critical density c this again contradicts the present observation 
where 201.0 0 

c
   
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Chapter 3 
                                 The Generalized field Equation  
 
3.1 introduction 
             Einstein's general theory of relativity is a beautiful piece of 
art which connects gravitational fields with geometry of space and 
time and thus provides a scheme in which our universe can be 
discussed [32].   
3.2 The Generalized field Equation Model 
A homogeneous universe is described by Robertson walker(RW) 
metric[33]  
 
 

                     
 1.2.3,,,,,0~

sin~~1~

~)(01
22212

2





rjijiforg
rgrgkrg

gtaggg

ij

rr

ijijittt






  

 
and the affine connection is takes the form 
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where a dot stands for a differentiation with respect to time. The 
Ricci from (2.2.5.7) tensor thus becomes 
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the scalar curvature R is thus given by 
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the covariant derivatives of R take the following form 
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Hence one can Find  the following covariant derivatives 
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the only non-vanishing components of R read                                    
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The Einstein generalized field equation  (GFE)  of motion is given 
by   
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If the lagrangian L is split into pure gravitational part L  and non-
geometrical part    representing matter and vacuum energy 
density respectively the above equation yields  
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If one substitute a simple non-linear Lagrangian 
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In the above equation we get 
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where  
 
                22  LandRL  was used 
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3.3 The mainly appropriate lagrangian form 
       To find cosmological solutions during vacuum, radiation and 
matter eras it is important to determine the structure of the 
lagrangian. When the lagranian is linear i.e.[34] 
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the vacuum energy which was found from the gravitational energy 
momentum takes the form  
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Vanishes and this situation can be avoided by adding extra terms to 
the Lagranian. The field equations of GR which correspond to  
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 read 
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where )(mT  is matter energy-momentum tensor. This implies that 
matter energy – momentum tensor is conserved and this 
contradicts the fact that the total energy momentum tensor of 
matter and gravity should be conserved. One of the possible ways 
to remove this controversy is to add other terms to the Lagrangian. 
Also it should be noted that when the Lagrangian is linear the total 
energy-momentum tensor 
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T   are the matter and vacuum tensors respectively, is 
purely non-geometrical and have no geometrical component that 
would represent the gravitational field. All these pathological 
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features associated with the linear lagrangian can be cured by 
adding higher order terms to the lagrangian. the suitable lagrangian 
structure can be deduced from the contracted form of the GFE 
where the expression   
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represents the ordinary wave equation [34] and by setting 
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equation(3.3.5) takes the form 
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Giving an ordinary wave equation with a source term . thus we 
conclude that the suitable lagrangian which can describe the 
gravitational phenomena is that which consists of the quadratic 
term besides the linear one and the non-geometrical part. 
 
3.4 Pure Radiation Era 
According to SBB model radiation energy is dominant in the early 
universe, where its energy density exceeds that of matter[35]. if we 
consider the matter energy momentum tensor to be conserved as in 
GR, then the energy density of radiation would be given by 
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                                1.4.34 Ca  
 
Where C  is a constant. The field equation in this era can be 
obtained by inserting and (3.2.4) and (3.4.1) in (3.2.14) to get 
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3.5 pure vacuum state of universe 
in a pure vacuum state the lagrangian L and the vacuum energy   
v  are given to be 
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 Since at vacuum stage k=0 and inflation is assumed to take place 
[33], i.e      
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  Thus from equation (3.2.4)  
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using (3.5.2) and taking into account that 0  in a pure vacuum 
state equation (3.2.12) can be rewritten as  
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using equation (3.2.4), (3.4.3)and (3.4.4) the GFE(3.5.4) become 
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3.6 Radiation and matter in the presence of vacuum 
     At present, the universe consists of matter, radiation and 
vacuum energy. Thus we have to consider the presence of all these 
kinds of Matter simultaneously. To find vacuum energy we 
compare the equation of motion of the classical field [36] 
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with the contracted form of GFE (3.2.13) when 
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to get the following expression for the potential 
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the vacuum energy can be obtained by minimizing v [37] 
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This can be satisfied if 0



R  . which means that constRR  0  , 
which conforms with the fact that v is minimum during vacuum 
stage as shown by equation (3.5.2) but the energy density of the 
scalar field is given by[37] 
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 following the Ozer-Taha model[38], the functional dependence of 
radiation energy r  and matter energy m  on the cosmic scale 
factor are given by 
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0
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with the aid of equation (3.6.7) together with equations (3.2.4) and 
(3.6.6) the field equation (3.2.14) reads 
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3.7 Cosmological  Solutions  During Radiation, Matter and 
Vacuum State of the Universe 
 First we consider the pure radiation era, if we assume a solution of 
the form  
 
                             1.7.30010   aDaDtDa   
 
The Lagrangian is assumed by some outhers to be [33] 
 
                               RRL 2  
At the early universe, the universe  is dense , as far as the radius of 
the universe is small at radiation and pre radiation stage .thus the 
same authers  assume that [33] the curvature R is large , thus one 
can neglect the linear term , thus the Lagrangian become  
 
                           2RL  
The choose of this quadratic term can forms also with the 
electromagnetic Lagrangian [33]. Thus upon substitution (3.7.1) in 
(3.4.2),  one gets  
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The value of   is proposed by some researchers to be [33] 
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Thus since     is large, one can thus neglect the term consisting of  
  , to get from (3.7.3)                                    
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Second , we consider the case in which only vacuum is present i.e. 
we try to solve equation (3.5.6) assuming 
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The field equation gives  
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to express   in terms of known physical quantities, we equate the 
coefficients of  04 ,,

2

aaa  with zero, i.e. 
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to secure a correct Newtonian limit,[39] give 
  
 
                                      13.7.31010 919 GevandGev     
substituting (3.7.11) and (3.7.13)in equation(3.7.5), one gets 
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Now, let us consider the case of radiation and matter in the 
presence of  vacuum energy, i.e. we consider equation(3.6.8) . 
Assuming the solution  
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One of the possible solution is to equate the coefficients of 
different  powers of t with zero   
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3.8 Solving the Cosmological Problems 
 First, we consider the horizon problem. In the case of  
 
                                                      1.8.32Dta   
 
The horizon radius is given by [40] 
 
 
                                       2.8.3

0

2
2

0
  
tt

H dtt
D
Dt

ta
dttatd  

 
 
 and in the case of 
 
                                                3.8.310 DtDa   
 
 the horizon radius is given by 
 
 
                                  2.8.3

0 10

0

0

10  



tt

H DtD
tdD

D
DtD

td  

       
    
                                3.8.3ln 010

0

10 tDtD
D
DtD




  

             
                            4.8.31ln

1

0

0

10













D
tD

D
DtD               

 If the universe is dominated by ultra-relativistic particles, 01 D  
and  
 
 
                                            5.8.3ln

0

10 



D
DtDtdH  



 

42 
 

 
    and hence different parts of the universe become causally   
connected in the early times. Further to solve the entropy problem, 
equation(2.4.2.1) can be used to give 
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But the expression for the total energy-momentum conservation is 
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where w  is the constant which relates the pressure p to the energy 
density   in the general state equation for  the perfect fluid 
and[41] 
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since ,0)(00  taandD  it follows that 
 
                                  16.8.30

dt
ds  

 
Hence the entropy of the universe increases in complete agreement 
with the second law of thermodynamics [42,43]. 
 To solve the flatness problem, let us consider the field equation    
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Using equation (3.8.17),the field equation reads  
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 Thus in the present model there is no direct relation between the 
critical density c  and the intrinsic curvature of space even if 
vacuum energy does not exist. This is because the General Field 
Equation consist of two additional terms the first term )(tF    arising 
from the quadratic Lagrangian i.e. when the gravity is strong, and 
which when 0  , and the second term representing the vacuum 
energy. 
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Chapter 4 

The Generalized General Relativity and Quantum Model 
4.1 introduction    
     One of the most disastrous problem which false GR is to 
describe the early universe specially vacuum energy and radiation 
these stage, the universe has high energy and dominated by 
elementary particles which can be described by the lows of 
quantum mechanics .  
 In this chapter we write The Schrödinger equation for the 
gravitational field and vacuum energy and we solution of quantum 
gravity equation in the early blank and vacuum era [44].  
 
4.2 The Schrödinger equation for the gravitational field  
The Schrödinger equation for the gravitational field is given by 
[45]: 
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This gravitational equation represent Schrödinger generalized 
solution from the Hamiltonian equation  
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Where .0 constatntC   
The time part of Schrödinger equation in view of equation (4.2.2) 
& (4.2.7)  
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The spatial part can be obtained by considering the spherical 
coordinate, because  the momentum components in the spherical 
coordinate takes the form  
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Using equation (4.2.7),one gets  
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but the mass density is given in terms of the mass of one particle m 
and  the number of particles per unit volume  n  to be    
 
                                      2ymmn   
                              
Since the density n is related to the wave function y , it follows that  
 

2yn   hence 
 

                             
 11.2.41

3

1

3

1

00

mA
eAeAm

rcirci








   



 

49 
 

 
But in the case that 0C  is complex  
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And to find (T)the temperatures we use the relation: 
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This implies that: 
 

                                            13.2.44
2


cT                       

 
Where 
 
                                  14.2.4

__
 m  

 
4.3 vacuum energy[46]: 
      To find the cosmological constant one minimizes the 
Hamiltonian with respect to the radius a   By setting  
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Can take the form 
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Substituting the values of  R  in terms of  a  with the aid of (4.3.1) 
and the fact that  xa 2   yields  
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This Can be solved by setting: 
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Thus the equation (4.3.5)  is satisfied.  
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In vacuum k=0, thus equation (4.3.1) reduces to  
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Now suggest the solution: 
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Substituting (4.3.7)in (4.3.6) yields: 
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Inserting (4.3.7) and (4.3.8) in (4.3.3) yields:(k=0 in vacuum) 
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Thus equation (4.3.3) which result from the minimization of the 
Hamiltonian can be satisfied by: 
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Provided that: 
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This means that during vacuum stage inflation takes place. 
It is important to see how the wave function of the universe looks 
like at vacuum stage. 
To do this substitute (4.3.10) in (4.2.2) for k=0, to get :  
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Inserting (4.3.12) in (4.2.7) to get  
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But according to lows of quantum mechanic this equation 
represents the energy Eigen equation: 
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with E standing for the energy of the system. But since during 
vacuum stage elementary particles to be produced, thus the energy 
E consists of complex potential to describe this situation. as a 
result one can write E a sum of real and imaginary part, in the form   
 
                                                             16.3.421 iEEE   
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The fact that the energy consist of real and imaginary part is utilize 
to describe inelastic scattering, where absorption and production of 
particles was will as loss of energy takes place. It is also tacked by 
Haronn and Dirar in their modified Schrödinger equation which is 
bored on the photon wave function inside the medium which is 
consist of damping term corresponding to energy loss. The minus 
sin in (4.3.16) result from the fact that the participles are bounded 
by attractive gravitational field. By substituting (4.3.16) in (4.3.15) 
gets:      
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where  
 
                                   1CeA   
 
Thus the density of the universe is given according to (4.3.18) 
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and exponential growth, the density of the universe decrease, as the 
universe expands exponentially. This expansion as far as which 
decreases the density of the universe. 
 
4.4 Solution of quantum gravity equation in the early plank 
and vacuum era.  
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 For cosmological application the state of the universe is time 
dependent as shown by standard model. Thus the required quantum 
equation is that which is time dependant as shown by (4.2.7) and 
(4.3.17) where:  
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Since quantum gravity is suitable for describing the early universe, 
thus it is quite natural to see whether the quantum equation can 
predict to this consider inflation. 
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Since the vacuum state is characterized by the zero scale factor 
K.I.e. 
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It follows that equation (4.4.2) becomes:  
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thus equation(4.4.1) takes the form   
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for inflation to take place, the minus sign is suitable in this case. 
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Thus the density of the universe takes the form: 
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this is quite reasonable since as the volume of the universe 
increases according to equation (4.4.3),i.e. 
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The average energy in this case takes the form 
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in view of (4.4.7) one gets: 
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4.5 Non Singular Solution at the early universe:[47]  
      At the early universe when vacuum or elementary particles 
dominates, i.e. during plank or pre plank era: 
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Consider now anon singular solution: 
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According to equation (4.4.1):  
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Thus equation (4.5.5) was red to 
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where 
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Thus the universe density is: 
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Thus according to (4.5.3) and (4.5.8) one has nonsingular 
expanding universe with exponential decreasing density. 
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Chapter 5 
Literature Review 

 
5.1 The 2ppi Expansion: Dynamical Mass Generation and 
vacuum energy 
Lately, there was growing evidence for the existence of a 
condensate of mass dimension two in Yang-Mills (YM) theories in 
the landau gauge . an obvious candidate for such a condensate is 

aaAA   . the phenomenon-logical back ground of this type of 
condensate can be found in 1,2,3. also lattice simulations indicated 
anon –zero condensate 4aaAA    .     
  
Thinking of simpler models like mass less 4   or gross-Neveu  
and the role played by quartic interaction in the formation of a 
(local) composite (in particular, containing two fields) condensate 
and the consequent dynamical mass generation for the originally 
mass less field  , it is clear the possibility exists that the quartic 
gluon interaction gives rise to a two field composite operator 
condensate in YM(QCD) and mass generation for the gluons too.   
 
The U(N) invariant gross-Neveu Lagrangian in 2D Euclidean 
space time reads 
    
                                          1.1.5)(
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This model possess a discrete chiral symmetry  5 , imposing  
0   perturbatively. We focus on the topology of vacuum 

diagrams. We can divide them into 2 disjoin classes : those 
diagrams falling apart in 2 separate pieces when 2 lines meeting at 
the same point are cut. We call those 2-point-particible or 2PPR  
All 2PPR sum building up the vacuum energy by summing them in 
an effective mass m. defining )(  , it can be shown that 
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Then the 2PPI vacuum energy PPIE2  given by the sum of all 2PPI , 
now with a mass m running in the loops. It is important to notice 
that PPIE2  is not the vacuum energy due to a double counting 
ambiguity, this can be solved by considering 2dg

dE   instead of E. the 
2g   derivative can hit 2PPR or 2PPI vertex. 
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This can be integrated using the ansatz 
      
                                     4.1.522

2  cgEE PPI  
        
It remains to determine the unknown constant c .it is easy to show 
that one has the following gap equation 
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Combination of the above formulae finally gives 
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An important point is the renormalizability of  the 2PPI expansion. 
Two possible problems could be mass renormalization and vacuum 
energy renormalization , since originally there was no external 
mass scale present. The proof is quite technical, but all formulate 
remain correct and are finite when the conventional counter terms 
of  the cross-Neveu model are included. Essentially, the proof is 
based on coupling constant  renormalization and the separation of 
2PPI and 2PPR contributions. 
It can be shown that  
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However , this does not mean that ( E ) is meaning less if the gap 
equation(5.1.7) is not fulfilled. 
In table1,we list the numerical deviations in terms of percentage 
between our optimized 2-loop result for the mass gap M and the 
square of minus the vacuum energy E   and the exact known 
values. We conclude that the 2PPI results are in relative good 
agreement with the exact values and converge to the exact N   
Limit. 
 
N Derivation M(%)  deviation (%)E  
2 
3 
4 
5 
10 
  

          ? 
          -4.5 
          -6.5 
          -6.1 
          -3.5 
             0 

           ? 
          47.7 
          27 
          19 
          8.4 
             0 

 
3. SU(N) Yang-Mills theory in the Landau gauge 
 
Next, we consider the Euclidean Yang –Mills action in the landau 
gauge where  aA  denotes the gauge field. Repeating the analysis of 
section 2 leads to 
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After some manipulation the 2-loop results became  
 
                           9.1.5002.0536131.0
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
 

 
We notice that the relevant expansion parameter, 2

2

16
Ng  is relatively 

small. As such, our results should be qualitatively trustworthy. 
As a comparison, the value found by Boucaud et  al from lattice 
simulations and an OPE treatment was .64.1

10

2 GeVA
GeV




 To find   
a value for the gluon mass gm  it self (as the pole of the gluon 
propagator) within the 2PPI frame work, the diagrams relevant for 
mass renormalization of m should be calculated [48].   
 
5.2 mass quantization in quantum and susy cosmological 
models with matter content  
The quantum solution of the FRW cosmological model has been 
calculated in many works , but not related to mass 
quantization[49]. 
  The main purpose of this work is to consider a time independent 
Schrödinger equation and SUSY generalization to obtain a mass 
spectrum for the closed FRW model, in which dust matter is filling 
the universe, as well as the wave function of FRW cosmological 
model in both formalisms. It was made following the canonical 
quantization procedure . 
  Starting with the FRW model we consider the classical lagrangian 
for a pure gravitating system and the corresponding terms of matter  
content, perfect fluid with barotropic state equation p  ,and 
cosmological term 
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In particular, we will consider the dust case ,0  with 1k  and 
0 , the action for this system has the form  

                                 
                    2.2.5,

22

42
2

dtNENR
G
cRR
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With ,2McEs    where M corresponds to the mass parameter of the 
closed universe and dust scenario. 
    Not that if we take the lapse function as  
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We have an invariant action, obtaining the following canonical 
Hamiltonian using the usual scheme 
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With the fundamental frequency of the system 

GM
cw
p1

2

0  . The lapse 

function )(~ tN  is a Lagrange multiplier, which enforces the first 
class constrain H=0. We trans form Eq.(4) by defining 2c

MGR   , 

thus its momentum conjugate becomes Rpp    and the constraint 
at the classical level reads as follows 
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Making the usual realization of operator 2
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applying it to the wave function   ,we get the following linear 
harmonic oscillator equation 
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In this point we make the transformation 
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4

R
G
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Considering the form of sE  given in (5.2.2) we obtain that 

2sup
2
c
MGR  , being the radius for the closed universe. Making the 

transformation x
lpl


  , one can rewrite (5.2.6) as 
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Using the creation-annihilation representation, with the usual 
algebra between them, 1, aa  , we can rewrite eq.( 5.2.8) as  
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In this way, we have the following useful relations 
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One can see that when n is big, we find  
 
                                        13.2.5122  n
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    Such that, when SUPRn ,   coincide with the maximum 
expansion of the scale R. 
     Let us write the equation (5.2.8) in the following form 
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      Where na  is parameter associated with the energy of the nth 
Eigen state, the quantum solution is similar to the harmonic 
oscillator case 
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 With )(xH n  the Hermite polynomials. 
 Now , it is clear that the system, even in its lowest energy state 
n=0, has a finite, minimal energy. Eq.(5.2.10) implies the 
following quantization mass rule 
         
                                16.2.512 PIn MnM                            
 
The introduce the condition on the nM  parameter when n  this 
parameter may be the classical mass parameter SUPM  for the closed 
universe, filled with dust matter, in the maximum expansion. 
   These results are similar to those obtained by other methods in 
the black hole . 
    The difference in mass between any two consecutive Eigen 
values is given by  
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The result when n  is in agreement with the correspondence 
principle.[49] 
 
5. 3  Point Charge Self Energy In The General Relativity 
 
        A major general relativity principle is the equality of inert and 
gravitating masses. However, the classical solutions to the Einstein 
equations (Schwarzschild, Kerr, Reissner–Nordstrom and Kerr-
Newman solutions) do not satisfy that principle at first sight. For 
the Schwarzschild and Kerr solutions the energy-momentum tensor 
and, hence, self- energy are zero, for the Reissner–Nordstrom and 
Kerr–Newman solutions the self-energy is infinite, whereas the 
gravitating mass is finite for all these solutions. A reason for this 
unconformity can be that the above solutions satisfy the Einstein 
equations not in the entire space. 
  
         The paper demonstrates that the  Einstein tensor for the afore 
mentioned solutions in fact contains the generalized functions, 
which can be of a more complex nature than the Dirac δ-function. 
If were quire validity of the Einstein equations in the entire space, 
including 0r , then an appropriate singular term must be added to 
the energy-momentum tensor. 
           It is simplest to elucidate the method determining if the 
generalized function appears in the singular function 
differentiation by the example of electrostatics. The point charge 
potential 
 
 

                                                   r
e
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is singular at point r = 0 and satisfies Poisson equation 
 
   
                                                    4                             (5.3.2) 
 
where  re   . A method to ascertain this is the following. 
Replace potential (5.3.1) by the nonsingular function of form 
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where  x is Heaviside function (   1x for 1x and   0x for 1x ). 
Having substituted this potential into (5.3.2) , we find that  will be 
a solution to the Poisson equation for charge density 
 

                                          rr
r
e

 0
04

3 
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                              (5.3.4) 

 
The integral of (5.3.4) over volume is independent of  0r  and equal 
to e. In the limit 
 

00 r , re  ,  re  , i.e. the limit of solution (5.3.3) 
corresponds to the presence of a point source with charge e in the 
origin of coordinates and is a solution to equation (5.3.2). It is easy 
to show that this result is independent of the choice of the potential 
in range 0rr  , with the smooth behavior of the potential at point 

0rr  being not necessary .The result is always single :in the limit 
00 r , the potential is re and the charge density is  re  . 

Below we apply a similar procedure to the classical solutions of 
the Einstein equations.What should be meant by the self-energy in 
the general relativity is not a trivial question. This question is 
typically solved using the energy-momentum pseudo tensor . 
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 A demerit of the approach is that the a For example, in 
electrostatics for the point charge potential we have  
                                            re 4   
while the direct differentiation yields 
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system self-energy definition is related to a special (Cartesian) 
system of coordinates and is not invariant under the coordinate 
transformations. The energy-momentum pseudo tensor allows 
energy density to be assigned to the gravitational field; the energy 
density, however, cannot be localized. A self-energy definition can 
be suggested based on the energy-momentum tensor of fields and 
material only. For stationary and static solutions there is Killing 

vector t
0  generating conserved current z , where  0,10   are 

the contra variant vector components. As 0 
 J , conservation 

law 
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d

0
03                     (5.3.5) 

 
is satisfied. If the energy density is defined as a zero component of 
the current, 
then total energy 
 
                         0

0
303 TgxdJgxdE                         (5.3.6) 

 
will be independent of a choice of the system of coordinates. 
 
         The Reissner–Nordstrom solution is of the form 
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where Qmrr  22  (m  and Q  are the mass and charge, 
respectively).This solution satisfies Einstein equations 
 
 
                                      TG 8                                         (5.3.8) 
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energy-momentum tensor every where, except for point 0r , at 
which the solution is singular. The singularity structure of the 
tensor G and nature of the appearing generalized function can be 
found out using a procedure similar to that described in Section 1.  
        
 Consider the metric of form (5.3.7), having substituted the 
following function for in it: 
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       In so doing the metric becomes non-singular and in the limit 
00 r transfers to metric (5.3.7). The energy-momentum tensor 

corresponding to the metric can be derived from the Einstein 
equations. The (0,0) component of the tensor is 
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In this expression the first term is the electrostatic field energy 
confined in range 0rr  . The second term appearing from the 
metric smoothing does not disappear in the limit 00 r . The self-
energy in the solution constructed is 
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Result (5.3.11) can be shown to be independent of the metric 
smoothing method. 
In the limit 00 r relation (5.3.10) can be written as 
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Here  r is the generalized function determined by the following 
integration 
rule: 
 

                                    (5.3.13)0 3
4

3 


 xd
r
frfxdrrf                                

 
where  rf is a bounded smooth function. For the Schwarzschild 
metric ( 0Q in (5.3.7)) the term  rm in 

0
0T  

0 that corresponds to a point source can be obtained 

straightforwardly when the presence of term  r1 in 
0

0G is 
considered. A more complicated generalized function  r  appears 
as a source when 0Q . It owes its origin to the presence of term 
 2
1
r

in 
0

0G . Thus, the Schwarzschild and Reissner–Nordstrom 
solutions can be extended to the entire space, if the point source is 
added to the energy-momentum tensor[50]. 
 
5.4 On Problem of Mass Origin and Self-Energy Divergence in 
Relativistic Mechanics and Gravitational Physics 
 
           The problem of mass is central in Gravitational and Particle 
Physics, Astrophysics, Cosmology and field theories. In 
Kinematics of Special Relativity Theory (SRT), the total mass totm  
of a point-like particle is related to the total energy by 

2cmE tottot  . A 
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constant proper mass 0m  and kinetic mass kinm are relativistic 
components of the total mass 
 
 
                                0mmtot    ,    (5.4.1)1 0mmkin                         

where 
211   is the Lorentz factor for a relative speed cu in 

a given inertial reference frame. As concerns dynamical mass 
properties, we found that the proper mass depends on the 
potential[51] of force field, on the gravitational and the Coulomb 
potential, in particular. Consequently, potential and kinetic energy 
become defined in SRT as strictly as in Newtonian Physics but at a 
new (relativistic) level of understanding. In the Lagrangian 
formulation of Relativistic Mechanics of a single particle, the rate 
of 4-momentum change equals the Minkowski force. A variation 
of the proper mass follows from the corresponding SRT dynamical 
equations (using Synge’s denotations. 
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They describe a particle motion on a world line  sxi , 

 ictxxxx ,,, 321


, with a 4-velocity dsdxi , where  sK i is a Minkowski 
4-force vector, and s  is a line arc-length. By definition of a time-
like world line of a massive particle, we have the fifth equation: 
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that makes the problem definite with respect to five unknown 
functions:  sxi  and  sm . The proper mass variation along the world 
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line is explicitly seen from the next equation obtained from (5.4.2) 
and (5.4.3): 
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For the sake of convenience, one may consider the description of 
motion in 3- space  3,2,1 and time t   4i  rather than in space 
time using the relation cdtds  and formulas for relative 
(“ordinary”) forces F  [51] 
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Now the equations of motion take the form: 
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where dtdxtu  )(   3,2,1  is the 3-velocity, and the proper 
mass m  is dependent on space and time coordinates in a given 
inertial reference frame. On the right-hand side of (5.4.7) the term 









dt
dmc



2

is recovered to account for the proper mass variation in a 
force field. The effect of the proper mass variation was noted in [4, 
5] but was never paid attention in literature. For example, the fact 
that a particle speed cannot exceed the speed of light is often 
illustrated by the expression of motion of the particle driven by a 
constant inertial force  constf 0 : 
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                tftcp 0)(    , (5.4.8))( 22
0

22
0 tfcmtft                

where the momentum )(tp is proportional to the time elapsed. The 
mass in (5.4.8) is supposed to be a constant proper mass 0m . To 
check it, one has to consider a general problem on acceleration of 
the particle by a pulse of force with transients specified. It follows 
from (5.4.6) and (5.4.7) that the proper mass varies during 
transients. When the force reaches a plateau it becomes constant 
but different from 0m , the difference being a binding energy of a 
particle in the system “particle-accelerator”. In the end of the pulse 
the proper mass acquires the initial value 0m  in a new state of free 
motion with kinetic mass-energy (5.4.1) taken from the 
accelerator. A dynamical change of the proper mass is a 
manifestation of a potential difference developed between the 
particle and the accelerator; consequently, the interaction should be 
characterized by the corresponding mass- energy current .A 
general relativistic mass-energy formula following from (5.4.6) 
and (5.4.7) holds: 
 
                                     (5.4.9))()()( 42222 ctmctptE                        
 
        It describes the instantaneous state of a single particle in a 
force field and leads to (5.4.8) under a constant force condition. 
For a free motion, the equation (5.4.9) is reduced to (5.4.1) and the 
known SRT Kinematics formula 
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        We shall see further that for a particle in free fall in a static 
gravitational field the expression (5.4.9) takes the form of the total 
energy conservation law with the proper mass being variable 
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           To understand a physical meaning of equation (5.4.11), let 
us consider a point-like particle of proper mass 0m  in a spherical 
symmetric gravitational field; the latter is characterized by a 
classical potential )(r due to a uniform sphere of mass 0mM  and 
a radius R : 
                                rrcr g

2)(   , Rr                          (5.4.12) 

Where 
2cGMrg  is a “gravitational radius”(G is the universal 

gravitational constant), r  is a distance from the center of the 
sphere. So far, we assume that grR  . The potential (5.4.12) is 
defined per unit mass which could be a rest mass of a test particle 
in the Newtonian Mechanics. In SRT Mechanics the proper mass 
m  must be field dependent. Imagine that the particle can be slowly 
moved with a constant speed along the radial direction with the use 
of an ideal transporting device supplied with a recuperating 
battery. Thus, the particle will exchange energy with the battery in 
a process of mass-energy transformation prescribed by the SRT 
mass-energy concept. The change of potential energy of the 
particle is related to the change of the proper mass[49]:  
 

                                    rrdrmdm g)(  ,  Rr                  (5.4.13) 
Thus, the proper mass of the particle is a function of the distance r : 
 
                                 rrmrm gexp)( 0  ,  Rr                    (5.4.14) 
where 0m  is a proper mass at infinity. In a weak field 
approximation Rr   
we have 
 
 

                                  rrmrm g 1)( 0                                (5.4.15) 
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with a Newtonian limit 0)( mrm   at Rrg  . At   rrg the 
proper mass tends to exhaust. 
Once the proper mass variation is taken into account, a 
gravitational force takes a kinematical form: 
 

                                      rrrrcmrF gg  exp)( 22
0            (5.4.16) 

The same result follows from (5.4.6) and (5.4.7) when the 
interaction of the particle with the battery is taken into account. 
One can find a relativistic generalization of the static potential 
function (12): 
 

            





 rrcmdrrmrFrm gexp1)(,)( 2
00   ,  Rr   (5.4.17)       

The expressions (5.4.16) and (5.4.17) have a point-like particle 
limit. In general, the proper mass of a test particle at a point r  in 3-
space uniquely characterizes a static gravitational field )(r : 
 
 

                                    



  )(11)( 20 r

c
mrm                     (5.4.18) 

 
The potential changes within the range 0)(2  rc  ; therefore, it 
is limited by the factor 2c . This is a result of fundamental 
importance. It shows that a singularity is absent in the relativistic 
form of gravitational potential. 
 
          Conservative field properties are embedded in equations 
(5.4.6) and (5.4.7). Consequently, for a particle in free fall in the 
spherical symmetric gravitational field (5.4.12) a total mass is 
constant. 
 
                                  0)()( mrmxm rtot                            (5.4.19) 
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Putting the expression for a gravitational force 
 

                   rrdrmcdrrF g)()( 2  
 
into equations (5.4.6) and (5.4.7), we have for 
 

                                       grRr  : 
 
                     21.4.5)()()( 222

0
2

0 rmrmxm                          
 
      
                          21.4.5)(111)( rrrmrm gr           
 
                           

                           22.4.5111)()( 2rr
dt
dr

c
crur g          

 
The total energy conservation law is given in (5.4.20) as a 
relativistic relationship between a varying proper mass and a 
momentum[49]. 
The expression (5.4.21) shows that a kinetic energy gain is equal to 
the corresponding potential energy change. 
It is worth noting that in these dynamical relations the r  factor 
looks like a linear approximation of the corresponding exponential 
factor in kinematic expression (5.4.15); this is because the 
equations of motion account for relativistic rescaling of space-time 
coordinates under dynamical conditions, when the gravitational 
force acquires Minkowski force properties. Finally, the expression 
(5.4.22) describes a radial speed of a particle falling from rest at 
infinity. If the particle has an initial radial momentum 

 10000  cm , then, taking into account the total mass conservation 



 

77 
 

222
0

2
0

2
0

2
0 )()( rmrmm     and the mass dependence on field 

rrmrm g /1/)( 0   , we have r 0 , and the expression (5.4.22) is 
modified: 
 
 
                              23.4.5//11)( 2

0
2  rrr g  

 
The solution formally shows that the proper mass vanishes at grr  . 
Because a baryon charge of a single particle cannot be destroyed, 
we have to conclude that the above case cannot be physically 
realized: the results are valid at r ≥ R > gr .They show that a 
particle carrying a non-zero proper mass in free fall can never 
reach the ultimate speed of light, though it constantly accelerates 
(the condition 0/,1)(  drdr    always takes place). 
Next, let us consider a radial motion of a photon in gravitational 
field. Unlike the particle, the photon does not have a proper mass. 
From equations (5.4.6) and (5.4.7) one can note that any force 
changes a momentum through the action on a total mass. Because 
the total mass is constant, the only way the photon can change the 
momentum is by changing the speed. In other words, the speed 
should be influenced by the potential φ(r). The following 
expression is consistent with SRT Mechanics:                                                                        
                                      24.4.5/1/)()( 0 rrcrcr gph   
Actually, this is the relative speed of wave propagation c(r) = λ(r) 
with a constant frequency f  = Const. The speed is constant on an 
equipotential surface 0rr  ; in this case, it may be termed a 
tangential, or arc speed. Henceforth the speed of light at infinity 
will be denoted 0c . In addition to (5.4.24), one can define the radial 
“coordinate” speed 0)()( crrc     . It is measured by the differential 
time-of-flight method by an observer at infinity with the use of the 
so-called standard clock. If a unit length were found from 
circumference measurements,  the radial scale would be 
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determined by the field-dependent length unit proportional to the 
wavelength of the standard photon emitted from infinity 

)/1(/ rrddr g  . Therefore: 
 
                                           25.4.5)/1()()( 2rr

d
drrr g


  

As is seen, the photon while approaching the sphere slows down 
and tends to  stop at RrRr g  . Our analysis of the phenomenon 
led us to the conclusion that the photon propagates in space of a 
gravitational field as in a refracting medium. The variation of the 
proper mass and the speed of light in a gravitational field is a 
consequence of the SRT mass-energy concept. Both phenomena 
should be considered as a result of interaction of the particle or the 
photon with the field; they are crucial for a metric determination in 
Relativistic Mechanics and should be verified in experiments[51]. 
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Chapter 6 
Vacuum Energy and mass generation 

6.1 introduction 
           This chapter is concerned with the contribution which is 
concerned with finding a useful expression for vacuum energy  and 
its relation to the process of mass generation. 
 
6.2 vacuum and energy minimization 
       The form of the vacuum energy  v  can be found form the 
Hamiltonian of the GFE proposed by Ali Eltahir [52] ,which is 
given by  
 
                                   1.2.6

3
1

3
12 



 R
AB
BRRH   

  
             Where                  
                                   

dt
dRR

dt
dBB 



 
 
minimizing H with respect of R  yields 
 
                          2.2.60

3
12  R

dR
dH  

 
the vacuum energy can also be obtained when the energy is 
minimized with respect to the field potential   as already utilized 
in the electro weak model [53] 
 
                                  3.2.60

3
12 






 




 d
dRR

d
dR

dR
dH

d
dH  

 
Which can be satisfied, when    

                           




3
12

0
3
12





R

R
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Since    and      are constants ,hence  

                                      
 4.2.60

6
 RconstR




       

 At early universe , the big bang model assumes that matter does 
not exist and vacuum energy dominates. Thus matter density     
vanishes, and the Hamiltonian H equals the vacuum energy v  ,i.e                 
 
                                          5.2.6

0

vH 



   

  
 substituting equations (6.2.4) and (6.2.5) in (6.2.1),the vacuum 
energy is given by: 
 
                                                            6.2.600

3
12  RRv                                        

 

                                              






















6
1

3
1

6
1 2

v  

 
There for , the vacuum is given by 
                                                         
 

                                                     7.2.6
3618

1
36

222













v  
 
The relation between  and    is proposed by M.dirar and 
others[54] to be 
 
 
                                              8.2.6

24


   

 
substituting (6.2.8) in (6.2.7), yields  
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 9.2.6
18
6

18
6

18
6

36
62

24
36

2
3

2
3

222






















v

v

 

 
But the value of    is proposed by Ali Eltahir [55] to be related to 
the gravitational constant G, according to the relation  
                                              10.2.6

16
1
G

    
Thus substituting the numerical value of G , in the expression for 

v   one gets 
 

                                        11.2.6
16

1
18

6 2
3

2
2

2
0

22


























w
x
n

v



  

 
The value of v  is large , which agrees with what proposed in 
inflation scenario [56] 
 
6.3 mass generation 
      According to the red shift phenomena the potential  increases 
the energy of the photon  according to the relation  
 
                                                           1.3.6Vhffh   
                                                   
Where  hf   is the initial photon energy in vacuum and fh   is the 
photon energy in afield having potential V . 
 
                                            2.3.6Vhffh   
 
The mass m can be found from the [57] rest mass term 0m  , by 
using Einstein generalized special relativity ( EGSR) to be 
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                                                  3.3.6

2

2

00

2
0002

c
vg

cmg
mc



  

 
In the Newtonian limit [45] 00g  can be expressed in terms of the 
potential per unit mass    
                                                     

                                               4.3.621
2121

2
0

2
0

0
200 cm

V
cm
m

c
g 







                                             

 
Where the potential  v for mass 0m  is given by 
 
                                                0mV   
  
 if the particle is  at rest: 
                  
                                            0v  
 
Then from (6.3.3) 
 
 

                         
 5.3.6000

000
2
1

00000
00

000

mgm

mggmg
g
mgm






                                

 
Substitute (6.3.4) in (6.3.5) to get 
 

                                    6.3.621 0

2
1

2
0

m
cm
Vm 








  

 
One can simplify equation (6.3.6) by assuming the potential to be 
much less than the rest mass energy, this is quite natural since it is 
assumed that vacuum by it self  generate negligible field . 
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  The fact that at vacuum stage, no matter exist confirms also the 
smallness of v.      
 
                                       2

0cmV    
Hence  
   
 

                                    7.3.62
2
11 02

0

m
cm
Vm 


















  

                                   
                                     8.3.620 c

Vmm   
 
Since one is concerned with mass generation by vacuum . thus it is 
obvious  that  the rest mass 0m  does not exist  the frozen vacuum 
field energy is thus  assumed to generate mass 
 
                                    9.3.62c

Vm   
   Thus  vacuum generates  the mass and increases it. 
If one follows GSR [58], Then vacuum energy according to the 
energy relation by  
  

                                       10.3.621
2
1

2

2

2
2

0
2












c
v

c
cmmcv

  

       
Where the potential should be of the vacuum  
    
                                        22&0 cforvfor    

Using the identity    nxx n  11  For  12
2 
c

x   

                                              11.3.6
2
221 2

02
2

0

2
1

2
2

0 cm
c

cm
c

cmv


 





 



 

 

                                                   12.3.62
2

0 c
Vcmv   
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if one replace   by   by assuming repulsive energy (at vacuum 
inflation stage   is  assumed  to be repulsive) 
 

                                                             
 

0
13.3.6

0

2
0




mfor
Vcmv  

 
                                                         14.3.6Vv   
 
This equations agrees with (6.3.9) as for as Vmcv  2  
 
from equation (6.2.9)since vacuum energy is given by 
 
 

                                                      15.3.6
18
6 2

3


 v  

 
it follows from (6.3.13) that  
 
 

                                             16.3.6
18
6 2

3

V  
 
Thus the vacuum potential which responsible for generating mass 
is given by 
 

                                             17.3.6
18
6 2

3


V   

 
 
Substitute (6.3.16) in (6.3.9) to get 
                                                
 

                                          18.3.6
18

6 2
3

2 c
m   
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6.4 vacuum energy During inflation and vacuum stage 
 
The above expression for vacuum and mass are derived from the 
general Hamiltonian of the gravitianal system . 
    In this section one needs to utilize the Hamiltonian of the 
universe which depends on RW metric and EGGR. This 
Hamiltonian takes the form [see(4.3.4)] 
 

                                                
 








R
AB
BRR

cH




3
1

1.4.6

2

2

     

  
 
For vacuum which is characterized by k=0 the cosmic scale factor 
a, and the scalar curvature R takes the forms [see (4.3.7),(4.3.8)] 
                                                    
 
                                                             2.4.6tAea   
 
 
 
                                               3.4.612 2R  
 
 
Where   is given, according to the equation of motion constraint 
from equation (4.3.9) 
 

                                                             4.4.6
72
1


   
Thus  
 
                                                   5.4.6

6
1


R  

 
Substituting (6.4.5) in (6.4.1) yields  
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






636
1

2



 RRv

  

 
But according to (6.2.8) 
 
    
                                                6.4.6

24


   

 
Thus 
 

                         
 7.4.6

3
61

12
1

6
62

36
62
















v

                         

 
Hence  
            

                          8.4.6/
3

61
12
1 2

0 cm 














 

 
  But if one utilizes the expression of the vacuum energy by using 
the expression of the gravitinal energy-momentum tensor in 
equation (3.3.2)    
 
                                                 9.4.6RLLv   
 
For  
 
                                                  RLRRL 2,2  
 
                           
   10.4.62 222 RRRRRV                                            
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Sub (6.4.5) and (6.4.7) in(6.4.9) yields 
 
             
                                       11.4.6

18
6

36
1


 v  

                                     
               
                      

                                     12.4.6
18

6
36

1
220 cc

m


  

 
The vacuum energy can also be found by using the GFE equation 
by taking energy tensor to be that of vacuum and substituting 
 
                                            teak  0  
 
To get 
     
 
                                                          13.4.612 2R  
 
And 
       

             26 v  
        
Substituting   (6.4.4) and (6.4.6) yields 
 

                                                       14.4.6
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6
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2
1

2
1





 v  

         
                                       
                                                         15.4.6

6 20 c
m


  
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However if one utilizes the quantum energy expression in equation 
(4.4.8) together with (6.4.4) , one gets  
 
                                    16.4.6

83
2


 
  mcE  

 
6.5 Mass generation  at vacuum stage: 
  
      The vacuum energy form is given  from equation (6.3.14) to be 
 
                                                       
 
                                               1.5.62

0cmVv   
 
But the vacuum energy v  from equation (6.3.15)  takes the form 
 
                         
 

                      2.5.6
18
6 2

3


 v  

Then 
 
                                      
 

                                      3.5.6
18
6 2

3

2
0


  cmv  

 
 
Hence  
           
                              

                            4.5.6
18

6
2

2
3

0 c
m 

  
 
 
From equation (6.2.10)  
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                                        5.5.6

16
1
G

   
 
According to Dirar and Isa paper [59] the gravitational constant G 
can be expressed in terms of the quantum number  n , radius of the 
universe  0x  and angular frequency of the gravitational waves  w to 
be 
 
 
                            
                                   6.5.61

2
2

2
0

22













w
x
n

G


 

 
Where n=0,1,2,3,…. 
 
Inserting (6.5.6) and (6.5.5) in (6.5.4) gives 
          

                                             7.5.6/
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90 
 

6.6 mass quantization 
       According to equation (6.2.10), one have   
                                    

                                   1.6.6
16

1
G

   
                                                
Inserting (6.6.1) and (6.5.6)  in (6.3.18) yields 
 
 

                               2.6.61
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


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                             n= 0,1,2,3,…..                                         (6.6.3) 
 
          At present , when 0x  no mass quantization exists. This 
agrees with the fact that at present , where macroscopic large 
objects dominate no mass quantization exists. According to the 
work done Ibrahim Hassan Hassan[60] the universe radius is 
quantized and is given by   
 

                                             4.6.6
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

nnrrx   

 
           Where:   ...,.........3,2,10 n   
Thus the mass term according  to equation (6.6.2) and (6.6.4) is 
given by   
 

                                          5.6.6
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Rearranging this relation yields  
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                                         6.6.60
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No matter, what the value of the mass is , finally the right hand 
side (r.h.s) of (6.6.6) is a number of the form 
 
                   7.6.610.10. 2

43214321
11   nn

n aaaaaaaac  
 
 
Where  4321 . aaaa   , 2110 n  are natural numbers thus one can choose  
               
                                           4321 . aaaan   
 
                                                     8.6.610 2

0
1 nn  

 
Which are both natural numbers .For example if  
 
                            3331 1037251025.37  nc  
 
                                5,2,7,3 4321  aaaa  
 
According to equations(6.6.6) (6.6.8) one can select  
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Which are both natural numbers . 
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    At the very early universe where the masses are assumed to be 
produced the radius  0x  is minimum . Thus according to equation 
(6.6.4) 
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2
1

00

6













rx  

 
Using equation (6.2.8) 
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But from (6.2.10) 
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Where  
 
                                     111067.6 G  
 
Thus the numerical value of 0x  is given by  
  
                                           10.6.610635.26 3

0
r   
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 In the table below one can find the appropriate masses for some 
elementary particles by assuming the absence of gravitational 
waves , thus ignoring the graviton angular frequency  w  , and 
setting the minimum universe radius 0r    to be equal to be equal 
[31,60] [see (6.6.10)] 
 
                                                            
                                            11.6.610635.260 3

0
 rw  

 
Thus form (6.6.6) and (6.6.11)  
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Table (6.6.1) [61] 
 
 Quantum number 
Particle name Particle 

mass(in kg) 
n  0n  

Electron 311011.9   271019  1 
Proton 2710672.1   231078  1 
Quark 3110333.3   271066  1 
 
   The mass quantization can also be obtain by using GFE, and 
assuming the mass is generated during vacuum stage where 
inflation takes place as discussed in section (6.4).As for  vacuum 
represents the minimum matter stage , it is  quit natural to assume 
that masses of elementary particles to be generated during vacuum 
stage . in this case the masses are given by (6.4.15) together with 
equations (6.6.1), (6.5.6) and (6.6.4) to be  
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Rearranging (6.6.13) yields  
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     Following the same procedures as in equations (6.6.7) and 
(6.6.8) , one can choose an appropriate quantum numbers for any 
elementary particle mass .The table below shows the appropriate 
quantum numbers for some masses of elementary particles by 
assuming 
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Table (6.6.2) [61] 
 
 Quantum number 
Particle name Particle 

mass(in kg) 
n  0n  

Electron 311011.9   81017  1 
Proton 271067262178.1   51013  1 
Quark 31103332.3   12109  1 
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6.7  Neutrino and its properties 

        Neutrino is one of the most mysterious particle  some a others 
thought that neutrino constitute part of the vacuum energy , as 
scientists still perplexed about its  mass [62]. Some Scientists 
believe that the rest mass is zero while others believe that the rest  
mass is very small [63], According to the theory of special 
relativity, the mass  m  can be found in terms of the rest mass  
speed v  according to the formula 
                                                     

                                             

 1.7.6
1 2

2
0

c
v

mm




 
 
Here one assumes the rest  0m   to be very small, i.e 
 
                                                          00 m  

 
For m to be finite (as experimentally observed) m limited, this 
requires  
 

                                                        01 2

2


c
v

 

i.e 
 
thus the neutrino speed v becomes 
 
  
                                                      2.7.6cv  
 
According to the big bang model , the neutrino in an expanding 
universe moves against gravity force F [64], thus  equation of 
motion becomes  
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 3.7.6)()(  F
dt
dmc

dt
mcd

dt
mvd    

Where    is the potential and this potential depends on matter 
density     according to the relation   

  
                                         G42        

  
Considering the neutrino to have uniform density and spherical 
shape with radius 0r  .The neutrino density equals 

  
   )4.7.6(

4
3

3
0r
m


   

 
 
Then the equation (6.7.4) becomes   
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using equation (6.7.3) in (x) axes  yields 
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Where    
   
                                     ctx                                          

  
And using equation (6.7.5) the resulting  
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This equation describes the neutrino mass equation variable with 
time and the solution is becomes  
  

                                             7.7.60
0

temm   
 
Substituting  equation (6.7.7) in equation (6.7.6) to gives  
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thus equation (6.7.7) is consistent with the fact that the neutrino 
mass is very small now  
 
          where 

  
 

 tm 0  
  
  

6.8 The Big Bang Theory equations 
    

            the Big Bang theory equations can be derived from  
Einstein's field equation of the gravitational field which takes the 
form  [65] 

                                            

                            
 1.8.68

2
1

 GTRgR 
 

 
 
Where  R   is the Ricci tensor,  g  is the metric tensor, T  is the 
energy  momentum tensor  . the  Roberson Walker metric is given 
by  
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Thus Einstein's equations for the universe is found by subbing 
(6.8.2) in (6.8.1) to get  
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Where   represents the matter density of the universe .The 
constant  k  take the following values 
 
                              5.8.61,0 k  
                                   

                 
6.9 The role of the neutrino in the amplification of the universe 
  the equation of the theory of the Big Bang can be used to describe 
the early universe  , Assuming that the neutrino particles have high 
density in the early universe, thus the density of the universe takes 
the form [66] 
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Where N represents to the total number for Neutrinos. If the 
equation (6.9.1)  together with (6.7.7)has been used in the equation 
(6.8.4), one gets 
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Then the standard cosmological factor a is becomes : 
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Then 
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0
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eaa   
 
 this equation predicts  universe inflation and  one can obtain the 
same solution of equation (6.7.7)and (6.8.3) for inflationary 
universe by assuming the universe to be flat (i.e k=0) in eqn (6.8.3) 
and assuming m to be constant at early stage, i.e 
 

       4.9.600
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Then equation (6.8.3) it becomes 
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Hence  the solution is in the formula 
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For consistency of the solutions of  equations (6.9.3) and 
equation(6.9.6) and (6.9.7)  one suggests 
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6.10 Inertial and Gravitation Mass 

     The dependence of particle masses by fields and motion was 
tackled by many scientists. Before Einstein SR theory, the particle 
masses are considered as universal constants. But SR theory, 
shows that the mass  m  increases according to the relation  

                                    1.10.6
1 2
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v

mm

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Where 0m  is the rest mass. 

     Later on Mubarak Dirar and others find that the potential and 
the field affect the mass according to the relation (6.3.5) 
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Where 00g  is given by (6.3.4) to be  

                                       3.10.621 200 c
g 
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This model is called EGSR . 

          The dependence of mass on the field in a curved space-time 
is also proposed by Savickas to be  
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          In his general relativity theory, Einstein proposed the 
equality of inertial mass im  and the gravitational mass gm , 
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according to the so called equivalence  principle . one can see the 
compatibility of this principle with EGSR and Savickas model [67]                 

           consider now a particle at rest in an elevator falling freely 
with the particle .  According to the observer on the earth the 
particle speed is  

                                       5.10.62222
0

2  axaxvv        

 He see the particle moving with speed v  in the field . Thus 
according to him equations (6.10.2) (6.10.3) and (6.10.5) the 
gravitational mass is given by  
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For the elevator the particle is at rest and no acceleration is 
observed . Thus 
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Hence , equation (6.10.2) reads  
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Thus according to EGSR model 

                   

                             9.10.6gi mm   

       i.e the inertial mass is not equal to the gravitational mass. 
However, the situation is different for Savickas model: for the 
earth observer, equations (6.10.5) and (6.10.6) gives  
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While for the elevator observer 
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Thus the inertial and gravitational masses are equal. 

       One can tackle the problem in another way by considering 
particle falling feely in gravity and another one in elevator is 
moving in free space with acceleration g with respect to a particle 
of  mass 0m   .  For the particle moving in gravity  

  

                         12.10.60222  axv  

The mass expression in EGSR [see equation (6.10.2)] reads  
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While for elevator the same equation gives 
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       The gravity and inertial mass are equal according to EGSR. 

However Savickas model for earth [see (6.10.4) and (6.10.12)] 
gives   
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While for elevator [see (6.10.2) and (6.10.14)] 
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Again the gravity and inertial mass are equal in Savickas model 
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 6.11 Discussion 

       The vacuum energy in equation (6.2.11) is found by 
minimizing the Hamiltonian of  the EGGR of  the gravitational 
field. it was found to be constant and dependent on the 
gravitational constant G. the value of vacuum energy is large 
which agrees with previous works  [68]. By using  EGSR the  mass 
in (6.3.9) is generated by potential. It is well known in physics that 
the mass is generated by vacuum. Thus the potential which 
generates mass should be that of vacuum. 
   Using the EGSR again a useful expression for vacuum potential 
related to vacuum energy is obtained. 
This expression is compared to the expression of vacuum in 
(6.2.11) to find a useful expression for vacuum potential dependent 
on G in (6.3.16) . This expression is used to find the mass of 
elementary particles in (6.3.18). 
Following the paper [69]  which quantize the gravitational constant 
G, equation (6.6.3) shows that the mass is quantized as far as it 
depends on the quantum number n. 
This means that vacuum can generate masses of elementary 
particles by changing the quantum number n . 
      Another expressions for vacuum energy and elementary 
particle masses are obtained by using the EGGR equation of 
motion of the universe at vacuum stage. The vacuum energies in 
(6.4.7), (6.4.11) and (6.4.14) are more realistic since they predict 
large vacuum energy which is in conformity with previous studies.      
Again the masses of  elementary particles are quantized as shown 
in equations (6.4.8),(6.4.12) and (6.4.15). and tables (6.6.1) and 
(6.6.2) the equality of inertial and gravitational masses confirm by 
Savickas model, while they are different according to EGSR [see 
section 6.10]. 
    By considering vacuum is constituted by Neutrino a time 
decaying mass is found in (6.7.7)  by assuming the Neutrino to 
move very fast in a gravitational  field . 
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 The decaying mass indicates that the Neutrino mass is very small 
at present which agrees with observations [70]  
It also suggests that vacuum energy is large at early universe and 
very small at present. 
This is in agreement with that proposed by particle physic's  .  
 
6.12 Conclusion 
 
           This model shows that vacuum energy obtained from EGSR 
and EGGR can generate masses of elementary particles. 
  The mass expression is quantized ,which indicates that vacuum 
can generate different masses. Each mass is characterized by a 
certain quantum number.   
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