Dedication

To those who are searching knowledge. To reach the harvest of true hard work which we started from planning the plans of this project not forgetting the assistance of all our families. It is presented to fathers, mothers, brothers, sisters and also the staff of Sudan University of Science and Technology specially Dr. Jacqueline John

We extend our pleasures to the staff of Electronic System Research Centre for a good helping, and finally to the one who spent a lot of time to help us. With best regard to our supervisor Dr. musab ahmed.

Acknowledgement

All praises are due to Allah, who taught human everything. And His peace and blessings be on the Prophet, his household and all those that follow the truth which he was sent with till the day of resurrection.

Firstly, we like to thank our Parents for taking care with us. We appreciate their efforts and sacrifices more daily as we walk through life. May Allah reward them abundantly in this life and the hereafter and be merciful to them and accept them to paradise. We are grateful to our families for their support.

We would like to thank Supervisor Dr. musab ahmed for his continuous support to the project until reaching this state.

We would like to thank Electronic System Research Center, specially Eng Abdlkreem and Fawaz and fannaly cano forget Dr. **Jacqueline John** for giving us the opportunity to attend the Electronics in the control program, helping us finding the project component and for helping us in the printed circuit board construction.

We are indebted to all my teachers that have provided guidance and knowledge in all my education endeavors. May Allah reward all of them and ease their tasks. We also wish to thank all our friends for their friendship and support.

Lastly We pray that Allah teach us that which will benefit us, and benefit us with that which will profit us.

ABSTRACT

At the turn of the millennium, the number of elderly and disabled in need of care is increasing dramatically. Currently, the services provided to the elderly and disabled in most public institutions are unsatisfactory; this is largely because of their dependence on human assistance and costs. One obvious area that needs immediate attention is transportation in public areas like airport terminals, hospitals, museums, office buildings etc.

Robotic technology is going through major revolutions. Sparked by a dramatic increase of computation and the substantial decrease in costs of major sensor technologies (e.g. cameras), the goal of intelligent service robots that can assist people in their daily living activities is closer than ever.

In this thesis a low cost mobile robotic platform was built to transport the elderly and disabled people from one point to another. Software such as code vision and protus 7.7 was used in programming and simulating the circuit of the robot.

التجريد

في مطلع الألفية الثالثة ، هنالك عدد من المسنين والمعاقين الذين يحتاجون إلى الرعاية في تزايد كبير حاليا ، فإن الخدمات المقدمة للمسنين والمعوقين في معظم المؤسسات العامة غير مرضية ، وهذا ادي الى حد كبير لاعتمادهم على المساعدات الإنسانية والتكاليف . منطقة واضحة تستدعي اهتماما عاجلا من وسائل النقل في الأماكن العامة مثل المطارات والمستشفيات والمتاحف والمباني المكتبية الخ.

التكنولوجيا الآلية تمر بثورات كبرى. اندلعت بسبب الزيادة الهائلة في عدد الحسابات والانخفاض الكبير في تكاليف تكنولوجيات الاستشعار (مثل آلات التصوير)، والهدف من الروبوتات الذكية الخدمة التي يمكن أن تساعد الناس في أنشطتهم اليومية هي أقرب من أي وقت مضى.

في هذه الأطروحة بني برنامج الربوت المتحرك بتكلفة منخفضه لنقل كبار السن والمعاقين من نقطة الى اخرى. البرمجيات مثل codevision و proteus 7.7 تستخدم في البرمجة ومحاكاة حركة الروبوت

TABLE OF CONTENTS

DEDICATION	I
ACKNOLEDGEMENT	II
ABSTRACT	Ш
التجريد	IV
TABLE OF CONTENTS	V
LIST OF FIGURES	IX
LIST OF TABLES	XI
ABBREVIATIONS	XII
Appendix A	76
Appendix B	82
Appendix c	85
Chapter1 INTRODUCTIO	
1.1 introduction.	1
1.2 Literature review	2
1.3 Problem Statement	4 4
1.5 Scope of the Project.	5
1.6 Approach	6 6

chapter	2 Mechanic designed of mobile robot	
2.1 Introdu	action	7
2.2 Defini	ng the Line	3
2.2.1Curvi	ng and Crossing Lines)
2.3 The Do	C Motors	0
	2.3.1Gear designed 1	1
	2.3.2Converting RPM to a Metric Unit	2
	2.3.3 Calculating Linear Speed	3
	3.3.4 Torque vs. Speed Relationship	5
	2.3.5 Calculate the Required Wheel Torque	5
	2.3.6 Calculate the torque requirement. 1	6
2	3.7 Choosing dc motor	7
2.4 Archite	ecture of Mobile Robot System1	8
Chapter	3 Fundamental component of robotics	
3.1Introdu	ction 2	20
3.2 Introdu	ction to MikroC compiler2	20
	3.2.1 How to build a project in microC	21
	3.2.2 PWM and A/C	25
	3.2.3 MikroC ADC Libraries	26
	3.3 software flowchart	8.
3.4 Proteus	Isis 7	31
	3.4.1 Making the circuit and simulation.	32

Chapter 4 Electronic circuit Design

4.1	Introduction	35
4.2	Robot Basic Design and Requirements	35
4.3 H	ardware Components of the Robot	36
	4.3.1 IR sensors	36
	4.3.1.1 The Circuit of the sensor	38
	4.3.1.2 Calculation of the sensor's outpu	38
	4.3.2 IR Proximity sensor detection	40
	4.3.2.1 Application circuit	41
	4.3.3 The Microcontroller.	42
	4.3.4 DC motor driver module	44
	4.3.5 Voltage regulator (KA7805)	46
	4.3.6Building the control circuit	47
	4.3.6.1 Circuit description	47
Cha	pter5 Assembling and implementation of the mobile robot	
5.1	Introduction	49
5.2 A	ssembling of the electronic part	49
	5.2.1 Control Circuit (brain)	50
	5.2.2 Sensors	52
	5.2.3 IR Proximity sensor	53
	5.2.4 Power supply	53
	5.2.5 Burner or programmer	54

5.3 Mechanics	S	56
	5.3.1 Chassis construct	56
5.4 assemblin	g of the robot	57
Chapter6	Result, Conclusion and Recommendation	
6.1 Result		59
6.2 Robot Tes	sting	60
6.3 Curve erro	or correction	61
6.3 Conclusion	n	63
6.4Recommen	dation	64

LIST OF FIGURES

Figure 1-1: Robot Component	1
Figure 2-1: Location of wheels	8
Figure 2-2 Unacceptably	9
Figure 2-3. Unacceptably sharp turns	9
Figure 2-4 Acceptable 180° turn made gradually	10
Figure 2-5 A crossing and a split	10
Figure 2-6 gear design	11
Figure 2-7 Measuring wheel circumference	13
Figure 2-8 the wheel rotation	15
Figure 2-9 relation between torque, speed and power	15
Figure 2-10 wheel rotation analysis	17
Figure 2-11 Kinematics Model of the Robot	18
Figure 3-1 Microcontroller software System.	20
Figure.3-2 How to build a project.	21
Figure 3-3 Compilation of the project.	22
Figure 3-4 Messages of Compilation.	23
Figure 3-5 Project setting.	23
Figure 3-6 Generated HEX code.	24
Figure 3-7 HEX code downloads software	24
Figure 3-8 HEX code placed in uC software	25

Figure 3-9 PWM signals "on" and "off	26
Figure 3-10 Flowchart of the microcontroller to drive the motors	29
Figure 3-11 controlled line following robot	31
Figure 3-12 simulation circuit.	34
Figure 4-1mobile robot block Design	35
Figure 4-2: Properties of white and black surface	37
Figure 4-3 position of IR sensor.	37
Figure 4-4 The distance between each 2 sensor	37
Figure 4-5 Photo detector Circuit.	38
Figure 4-6 Sensor circuit.	39
Figure 4-7 schematic of obstacle IR.	40
Figure 4-8 Show proximity sensor circuit	41
Figure 4-9 show 36 KHz square wave	42
Figure 4-10 basic requirement for PIC16F877A	43
Figure 4-11 L293D Motor Driver pin configuration	44
Figure 4-12 a simple schematic for LD293	45
Figure 4-13 Voltage regulator (KA7805)	46
Figure 4-14 the schematic circuit	47
Figure 5-1 Robot assembling parts	49
Figure 5-2 The circuit layout.	50
Figure 5-3 the circuit on PCB.	51
Figure 5-4 component placed	51

Figure 5-5 The PCB before component placed	52
Figure 5-6 IR sensors component placed and soldered	52
Figure 5-7 show implementation of IR proximity	53
Figure 5-8 the 9-volt battery	54
Figure 5-9 Pin connections of PIC16F877A with PIC KIT3	55
Figure 5-10 PIC KIT2 programmer	55
Figure 5-11: Schematic of the chassis of the robot	56
Figure 5.12 top and bottom of a assembling of the chasses	57
Figure 5.13 assembling of all parts together	57
Figure 6.1 the color vs voltage	59
Figure 6.2 robot tracing line	61
Figure 6.3 proportional line followers	62

LIST OF TABLES

Table (2-1) show the technical specification of dc motor	17
Table (4-1) shows Truth Table of DC motor operation	45
Table (5-1) shows the cost of the project components	58
Table 6.1 show the color vs voltage	59
Table 6.2 .show distance vs output voltage of proximity sensor	60

ABBREVIATIONS

ADC: analog to digital converter DACs: Digital to Analog Converters DC motors: Direct Current motor DIP: Dual In line Package EEPROM: Electrical EPROM EPROM: Erasable Program ROM IC: Integrated Circuit IR: Infrared sensors LED: Light Emitting Diode LCD: Liquid Crystal Display LDR: Light dependent resistor MCU: micro-controller unit PCB: Printed Circuit Board PIC: Programmable Interface Controller PWM: Pulse Width Modulation PIC: Programmable interface control RISC: Reduced instruction set computer ROM: Read Only Memory

RPM: revolution per mints	
UV: Ultra Vitol	