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Chapter 1
Nevanlinna and Hardy classes of vectors

The purpose of this chapter is to set down the most basic concerning
Nevanlinna and Hardy classis of vector and operator valued holomorphic
function. The emphasis in the chapter is on characterizations of the
classes and boundary behavior. After these ideas have been worked out,
generalizations; of many familiar results from the scalar theory follow in
a routine way. Example of such results is given in Great generality and
completeness is not objectives of the chapter. In our choice of material
we are guided mainly by what is needed for subsequ8ent applications.

We assume familiarity with the scalar theory of Nevalinna and Hardy
classes on a disk or half-plane. What we need may be found, for example,
in Daren, Hoffman, and Krylov. Other prerequisites from the theory of
subharomonic functions are collected .These are given in Hille and
Phillips.

Let X denotes a complex Banach space with, norm|.|x.

We write & for a separable Hilbert space and |.|y for the norm and inner
product 0n<.,.>y. The norm on § . The space. Of bounded linear operator
on& , 1s Written|.| ()"

Sec (1.1):Nevanlinna Hardy_orliez classes and their characterization:
The key definitions are conveniently made in terms of harmonic major
ants for sub harmonic functions. To begin we show how sub harmonic
function arises in the study of holomorphic functions with values in a
Banach space.

Theorem (1.1.1):
If f (Z) is a zoomorphic X -valued function on a region Q2 Cthen

each of the functions listed below is sub harmonic on€2:

log f(z) o
f(z)
/(2)
¢(log"

Here log’ ¢ = max(logt,0) fort > 0andlog0=—o

log”

b
X

ff0r0<p<oo, and

f (Z)‘x), , where ¢ is any no decreasing convex function(—oo,oo)



(@)

(i)

(iii)

(iv)

Proof: _
We show that log‘ f (Z)‘x is sub harmonic on (2. LetD( a, r) cQ, and let

(t) onaD(a,r).Then

p(z) any polynomial such that log‘f (Z)
‘exp(—p(z))f(z)‘ <1 on aD(a,r).By the maximum principle (Hille

and Phillips), the same inequality extends toD(a,r), and therefore
log‘f

Once it is known that log‘ f (Z)‘ is sub harmonic, it follows by standard

) onD(a,r). Hence log‘ f (Z)‘x is sub harmonic on

properties of sub harmonic functions that all of the functions listed in the
theorem are sub harmonic.

Definition (1.1.2):
Let Q2 C be any region.

A holomorphic X -valued function f (Z) on () is of bounded type on €2

iflog" ‘ f (Z)‘x has a harmonic major ant on{). The class of all such

functions is denoted NV, (Q)
If ¢ is any strongly convex function then by Fy (Q) we mean the class
of all holomorphic X-valued functions f (Z) on{) such that

(log

We deﬁneN;(Q)U%yx(Q), where the union is over all strongly

(Z)‘x) has a harmonic major on2.

convex functiong.

By H’ (Q) we mean the set of all bounded holomorphic X -valued

functions on (2.
The sets N. X(Q) and N, (Q) are called Nevanlinna classes, and % | (Q)

is aHardy-Orlicz class. The term ‘bounded type' comes from the property
expressed in Theorem (1.1.5) below.
When X =C in the absolute valued norm, we droop the subscript X, and

write simply N(Q),N+(Q),%(Q),H°°(Q) for the classes. We refer to

this as the scalar case



Theorem (1.1.3):
For any region (2 and strongly convex functiongb,H;O(Q), %J(Q)]\ﬁ

and NX(Q) are linear spaces and
H:(Q)= 7, (Q) = N (@) < N, (). 0

Proof:
We use the elementary inequalities

log" (xy) <log"+log"
log"(x+y)< max(log+ (Zx)) <log" xlog" y+log2

In the proof
It is clear that H (Q) is a linear space.
Let f,g €%, andlet a €C.Then

qﬁ(log+ ocf|x)ﬁ(/5(log+ f 05|)£M(10g+ f|x)+K
For constants M >0 and K >O0by properties of a strongly convex
function since f €.%, ’X(Q), the right side has a harmonic majorant is €2

<lp(2)

_+log’

Hence af e%’x(Q).Examining separately the cases ‘ f (Z)
and‘f(z) ) >‘g(z)
d(log"|f+g| ) <d(log"[2/], ) +¢(log"[2g]. ).

It follows easily that f +g €.%; (Q) and so %} (Q) is linear space.

X

. We see that
X

The proof that N;(Q) is a linear space is straightforward once it is
known that for any two strongly convex functions v/, andy, there exists

a strongly convex function y such that y <y, and ¥ <y,.To see this

,;result that a convex function is the integral of a no decreasing function.
By the properties of a strongly convex function we can write

w,(x)= Igj (¢)dt +c, —o0<x <o,

Where g is nonnegative and no decreasing on (—OO,OO), g(t) —>00 as
t —o0, andc; 20, f=1,2. Constant in any way a nonnegative and no
decreasing function go(—OO,OO) such that Q(t ) —>0 as { —>00,g < g and
g<g, on(—OO,OO), andg(t+1) SZg(t) for all realz. These conditions.

Then in a straightforward way we see that



(i)

l//(x):ig(t)dt, _m<x<on,

Have the required properties. It follows that N, (Q) is a linear space.
The fact that N, (t ) is a linear space follows from the inequalities
log” |af|x <log" |f|x +log" |x
f+g|x £10g+|f|x +log’|g
Which hold for any f g ENZ(Q) anda €C.
The first two inclusions in are obvious. If f en;(Q) then f €.%, ’X(Q)

b

log" log2,

for some strongly convex function¢g. Choose & >0 such that l//(t)/ t>1

for #>a.Then 10g+|f|x£l//(10g+ f|x)+a .Therefore feNx(Q) and

the third inclusion of follows.

Theorem (1.1.4):
Let f belong to one of classes H (Q),%y(ﬂ),N%Q) or NX(Q) for

some region2.

If h is holomorphic on a region €' and h(Q’) cQ, then f €h belong to
the corresponding class on (Y

(i)If ¥ is a region contained is Q.then f ‘Q’ belongs to the

corresponding class onCY' .
Proof:
The assertions are immediate from the definition of the classes.

Theorem (1.1.5):
Let f be a holomorphic X -valued function on(2.

A sufficient condition for f to belong to NX(Q) is that /' =g/u, where
<1 on

geH’ (Q) and u is a scalar valued holomorphic function O<‘u
Q.
If Q is simply connected, then the sufficient condition of (t) is also

necessary.



(1)
(ii)
(iii)

(iv)

Proof:
(i)Let f=g/u in (i).We can assume without loss of generality that

|gx <lon€).Then
log” |f|x <log" |g|x +10g(1/|u|) :—10g|u|
OnQ). Since—log‘u‘ is harmonic,fE]Vx(Q). This proves(i).
(ii) Assume that € is simply connected and f ENx(Q) Let (l) be a
harmonic Majorant f0r10g+| f |x. For each disk D(a, y) (2 there is a

holomorphic function & , onD(a,r) such that k. =/ on D(a,r) By the

monodromy theorem (Rudin), there a holomorphic function £ on € such

that Rek =k on Q.
Then f=g/u.where g= fe_k and u=e" have the required properties.
For example,

10g|f|x <log" f|x <h=Rek
And so| g|x z‘ fe_k‘x <1. The theorem follows.

When the region €2 is a disk or half-plane, the defining properties for the
Nevanlinna and Hardy-Ortiz classes have useful equivalent forms.

Theorem (1.1.6):

Let Q=D orll, and let X be a holomorphic2.-valued function on€2.
The following are equivalent:

f is of bounded type, that is, f ENX(Q);

log" | f |xhas a harmonic major on (2;
According as Q= Dor I1,

supjlog+ f (reie) do <oo 2)
017, X
Or
% log" +i
sup o ‘f(x zy)x dx < oo; 3)

p0 % x2+(y+1)2

f =g/uWhere g is a bounded holomorphic X -valued function on{)

and u is a scalar valued holomorphic function such that O<‘u‘ <1 onQ.



(i)

(1)
(ii)
(iii)

Proof:
The equivalence of (l) and (ii) is by the definition of the classes

NX(Q) concerning (iii) see the criteria for the existence of harmonic

major ants and for (iv) use Theorem (1.1.5).

Theorem (1.1.7):
Let Q=D orll, and let € be a strongly convex function. If f is a
holomorphic X -valued function on €2,then the following are equivalent:

/e, (%)
¢(10g+ | f |x) has a harmonic major ant on €);
(iii) According as Q=D orllI,

suqu)(log+ ‘f(reie)‘x)d0<oo (4)

O<r<1r
Or
= ¢(log" +i
SupJ. ( g ‘f(x lf)‘x)dx<oo; 5)
wo T X +( y+1)
(iv) Same as(iii), but with ‘log" *replaced by *log"
Proof:

The equivalence of(i),(ii) and(iii) follows from the definition.and the

criteria for the existence of harmonic major ants since
d(log|f],) <d(log"|1],) <#(log|£],)+#(0)

(iii ) Is equivalent to (iv) :

Theorem (1,1.8):

Let Q=D orll, and let f be a holomorphic X -valued function on 2
.The following are equivalent:

f GN;(Q);

fex, (Q) for some strongly convex function¢@;

f =h/v, whereh: is a bounded holomorphic X -valued function on €2

and v is a scalar valued outer function such that 0 <M <1 onQ.

Moreover, in the case 2= D,(i) —(iii) , are equivalent to:

6



(iv)

The function {log+‘ f (r‘e’p

) } are uniformly integrable with respect to
O<r<1

normalized Lebesgue measure o onl .
See the definition of a uniformly integrable family of function.
Proof:

The equivalence. Of (l) and (ii) is by the definition WhenQ2= D), the
equivalence of (ii) and (iv) follows from a theorem of de la Vallce

Poussin and Nagumo. It remains to show that (ii) and (iii) is

Equivalent. It is sufficient to treat the case €2 since the other case then
follows is by conformal mapping.

Assume (iii) Without loss of generality we can further assume that
‘hx‘ <l onD. Since v is an outer function,

(2], <log’ |A(2), +1og" (1/]v(2)]

= —log‘v(z)‘ = —J‘p(z,eﬂ ) log‘v(e’
r

log"

OnD. The family consisting of the single function—log‘v(et) . In

L (6) is uniformly integrable, so by the theorem of de la. Vallee Poussin

and Nagumo, there is a strongly convex function €2 such that
Iqﬁ(—log‘v(e” ) )da <o
r

By Jensen's inequality (Rudin),

¢( ) [ _r[ z,e" log‘ ]
£.F[P z,e” (—log‘v(e”
o(e")
<”P ré e”)a’o e ( log‘
)da(e”).

And hence




It follows; that ¢5(10g+ ‘ f (x)‘) has a harmonic Major ant. Therefore
f e, (D) and (ii) holds.
Assume (ii) trivial case f =0.It is easy to see that the function

u(z)z‘ f (Z)‘x Satisfies the hypotheses of the Szego-Solomentsev

theorem .The inequality in the second part of that theorem may be written
|f|x . |gS+ /S—

Where g is a scalar valued outer function and §,,S are scalar valued

b

singular inner functions. By our assumption. (i1) And the third part of the
Szegd-Solomentsev theorem, S, . Is a constant of modulus 1. Choose an

outer function v such that O<M <1l and ‘vg‘ <l onD. Settingh=vf , we
obtain f =h/vas required in(iii).



(1)
(i)
(iii)

Sec (1.2): Hardy classes and Fatou's lemma:

We define ifo(D)z%yx(D), Where¢(t)=ept,0<p<00. The class

H’ (D) has previously been defined

Theorem (1.2.1):
Let 0< p<co is a holomorphic f-valued function onD,
Then the following are equivalent:

feH(D);

| f |f: has harmonic major ant on D;
i0\| P

o<r<i fp|f(7‘€le)|x do < o

Proof:
By Theorem (1.1.1), lf|f is subharmonic onD. It is easy to see that

{ f }f{harmonic majorant onl). Hence the result follows from the

definition of H )’;(D) and the condition for the existence of a harmonic

majorant for subharmonic function on D .
For each f eH)’;(D),O < p <oo,set

1/p
11, = o2 [l )
r

: p . . o
Since ‘ f (Z)‘X is sub harmonic on D we can see also write this as

1, 1) |
For '€ Hy (D) set.

11, =supl (2

As in the scalar case (Duren), we define two kinds of Hardy classes or.
The upper half-planell.

First kind. Let H%,0< p <o be the set of all holomorphic X .-valued
functions F on I1 such that

X



(@)
(i)

(iii)

o l/p
||F||p :spuf{ﬂF(xHy)‘ij <00,
The classH;(H) is as previously defined. For any F EH}O(H)
1, =suplF ()

Second kind. Let %" (H),0< p <0 be the set of all holomorphic X -

X

valued - functions F onlI1 such that o € H where o is the mapping
of D onll given by

a:w—i(1+w)/(1-w).
For each Fe%p(ﬂ) set

|1, =l oed,,

Theorem (1.2.2):

Let0< p<oo. If F is a holomorphic X -valued function on I then the
following are equivalent:

Fex!(IT);

|F |f( has a harmonic majorant on IT;

2F(x +iy !
supJ' ‘ 2( )‘dex <00,

>0 Sx % +(y +1)

Proof:

The equivalence, of (l) and (ii) follows from Theorem % (H) and the

definition of (ii) and the equivalence of D and is by theorem of Flett and

Kuran.

Theorem (1,2.3):
If0 < p <0, then
Hy (D)< Ny (D) And HY (IT) ¢ 7 (TT) < Ny (IT).
Proof:
The inclusion follows easily from definitions and characterizations of the

classes given above.
From now on we assume that Xeither Hilbert space & or the space

ﬂ?( & ) of bounded linear operators on& .

10



In this section we prove version of Fatou’s theorem on the existence of
nontangential limits at boundary points. Boundary behavior in general is
discussed latter.

FATou's Theorem(i) each f in H, (D) has a nonangertial limit

CE lim /(2).
o.a.e. In the strong topology of & .
(ii) Each F in H;;( g)(D) a nontangential limit

F(eig) = lin%F(z)

z—¢
o.a.e In the strong operator topology onﬂ?( & )

We digress briefly to review some notions from measure theory. As this
material is widely used and well generally known, we merely give and
state the facts, we need 'without proof.

Let (A,f ,u) be a measure space. A &-valued function f on A is
weakly measurable if < f (.),a>g is measurable for eachae&. 4 ﬂ?(é‘” )-
valued function F on A is weakly measurable if <F (.)a,b>g is

measurable for alla,b € & .
Let fg be weakly measurable & -valued function, and let F,G be

weakly measurable ﬂ(é" ) -valued function on A. Then Ff is a weekly
measurable & -valued function, Fgis a weekly measurable ﬂ?( & ) -valued

function, and <f(),g()> f()

valued functions on 4.
Let fbe a weakly measurable & -valued function and F' a weakly

measurable ﬁ( & ) -valued function on A such that
_[|f|gdu <o And _[|f|$(g)dy <o,

and ‘F ()‘ are measurable scalar

4 & #(#)

We define
J.fd,uze And J.Fd,uzC,
4 A

And so

f(2) =lp(z,e”)¢(e”)d6. (6)

Let & be a countable dence in & . By the scalar version of Fatou's
theorem, there is a o -null set N C L 'such that

11
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(e”)—a

Nontangentially for each €’ €[\ N anda .

Fixé’ e[\ N. Let D be an open triangular sector in D with vertex e’
given

«+ <D, choose a €& such that ‘gb(e’@)—a‘ <&gl/2. By (6),

[ (2)=Le"), =|[plz.e")ole")-a+—ple”) Jdor

S}“P(z,e”) gb(e )—a ‘¢(ei9)—a
(2) —¢(ei9) . S2‘¢(ei9) —q

(2)-0(<"),
We thus obtain (l) with f(e’@) =¢( ,-9) forall &’ e\ N

Let & be as above, and apply (! ( ) to I ( )a for each fixed& . Since & is'
countable, there , is a o-null set N I such that

- (0
ZILIC}%F(z)a =¢ (e )
Exists nontangentially for all €’ €/\ Nandae¥#.
Fixé’ e["\ N. Define So(eie) on &x& by

So (eig’,a,b) :<¢a (eig),b>g , abe&

For anya,,a,,b,,b, €&,
‘So(e a b)—so(eie’ a2,b)

= lim|(F(2)a.b —by), +(F(2)(e —).b,),
b, +|F||o~a, b,

=‘¢(ei9) —a

(7

&

JgrP(z,ei’)

L
Hence by (7),
<ég&.

2
zeS

By the arbitrariness of &, —0 forzeS,z—>e".

E

Therefore s, (6’9 , ,-) has unique extension by continuity S(eie’,-,-) to
& x& . By construction.
0. T
S (e ,a,b) _Zl_l{e% <F(Z )a,b>g
Nontangentially for alla,b €& . Routine arguments now show that

12



S(eig,-,-) is a bounded sesquilinear form on & With“S”S”F ||OO Hence

there is an operator F' (6’0) eg (g ) such that ‘F (eia)
s(eiga,b) :<F(ei9)a,b>g , abeg.

It follows that F’ (Z)a ->F (eie)a nontangentially in the norm of & for

< ||F|| and
&) %

allae&. Since F' (Z) is bounded on D . The same holds for alla €&. The

result follows.

13



Chapter-2
Bounded functions and Hardy classes

Sec (2.1): Boundary Behavior of bounded functions:

The boundary properties of vector and operator valued functions of
bounded type are very similar to the scalar theory. The most serious loss
is that in the case of operator valued functions, Fatou's theorem fails in
the norm topology However, as we have seen Fatou'stheorem holds
relative to the strong operator topology, and this is an dequate substitute.

Theorem (2.1.1):
Let X=& orﬂ?(é" ) For each f € N X(D) a nontangenrial limit

i0 .
f(¢")=lim f(2) (1)
Exists o.a.e . On I in the strong topology if X =& and strong operator
topology if Xzﬂf(é‘”).Also, for X =& orﬂ?(é"),

("), =lim|f(2), @)
Nontangentially o.a.e. OnI". Moreover, if f'#0 onD, then
log‘f(e’p)x eLl(G) 3)

Proof:
Assume f #0. By, Theorem (1.1.6)(iv ), we may further assume that f°

is bounded onD. Then the existence of a nontangential boundary
function (1) follows from Fatou's theorem. We obtain (3) from the

Szergo-Solomentsev theorem applied to the function u(z) = ‘ f (Z)‘X
.(When X =&(2) is clear. Ii remains to prow; (2) when X 2%(5 )
.Choose a o-null set N T such that for each € €T\ N, f (eie) exists,

and 1s nonzero and

finy [ P(z,eie)log‘ f(e”)\g(g) d(y:log‘ f(e"‘g)‘ﬂ(g) )

nontangentially.Fix€” € "\ NV, and let S be a triangular sector in D with
vertexe€” . Forallze D,

14



log‘f(z)‘x £jP(z,ei9)log‘f(ei9)

Hence by (4),

do
X

S‘f(e’@)

limsyp f (z)

Z5¢ A#) 7).

zeS
For anya,b eg|a|g =|b|g =1,

(7(e”)ab) =lim|(f(z)ab),| <liminf|f(2)

zeS zeS

##)

By the arbitrariness of a andb,

uCo Sl%igf T () ey
Therefore,
s (ele)g(g) :Zlgi% F(2)

Since the sector S is arbitrary, the result follows.

Theorem (2.1.2):
Let X=& orﬂ?(é" ) Foreach feN X(H) , a nontangential limit

f(x)=lim/f(z) 5)
Existsa.e. On (—O0,00) in the strong topology if X =&, and strong
operator topology if Xzﬂf(é") Also, for ngorﬂ?(é‘”).

(), =tim|f(2)], (©)
Nontangentially a.e. On (—OO,OO). Moreover, either f' =0 on IT or
T |10g|—fz(t)dt <00, (7)
J 14+t

Proof:
The mapping a:w—)i(1+w)/(1—w) takes D onto IT and F\{l} onto

(—OO,OO) It 1s conformal at all points ofl_)\{l}. We thus Obtain Theorem
(2.1.2) from Theorem (2.1.1) by a routine change of variables.

Theorem (2.1.3):
LetX =& orﬂ?(é" ) , and let @cf.) be a strongly convex function.

15
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(i)

If f'€Ny(D), thenf €% (D) ifand only if
I¢(log‘f(ei9)‘x)d6<oo. (®)

ligi.r[qﬁ(log‘f(reie )‘X)a'cj = _r[gb(log‘f(eie)‘x)a’c.

If X=& and lim, ,__ ¢(t) =0, then also for each f €.%;, (D)
lriillajqﬁ(log‘f(eie) —f(rei
T

Q)g)d(?:O. (10)

In this case,

Assertion fails if & is replaced by ﬂ?(é" )
Proof:
(i) Let f e Ny (D) and f#£0. If f e%’X(D), then by Theorem (2.1.2),

and Fatous's lemms.

J{1oglr(¢"),

(log‘f re' )
Slrlilli.[ ¢(10g ‘ flre

X)d(7<oo (11)

Thus (8) holds.
Conversely suppose that (8) holds. For allz € D «

log‘f(z)‘x £jP(z,e”)log f(e”)

By Jensen's inequality (Rudin)

do.

X

¢(log‘f(z)‘x) < .F[P(z.ei’)q)(log‘f(ei’) X)dc.

Hence forO<r <1,
Iqﬁ(log‘f re’p ‘ )dc e’p
<jjp re” ¢ do(e”) (log‘f (¢). ) ”):jqﬁ(log‘f(e”)‘)()da(e”). (12)
A similar argument with “log” replaced by “10g+” yields
I¢(log+ ‘f(reie)‘x)dc < I¢(log+ ‘f(e”)x
r r

Whereby (8) the integral on the right is finite .In particular, f S X(D)
by Theorem (2.1.2). Moreover.we obtain (9) by combining (11) and (12).

16



(i) Letfe%’g,(l)),f$0, and assume that(b(—oo):(), where

¢(_OO) =lim,_,, ¢(x) Fix a sequence 7,1 1 and set ft(e’@) :f(r’eie) on
I" for each n=1,2,3,...Let >0 be given. By (8) there is a 6 >0 such
that 0 <& and

J.¢(10g|f|g)d6<8 (13)

For every Borel set AgrwithG(A) <b.By Egoroff’s theorem we can
choose A such that G(A)<5 and | |- fn|g —0 uniformly on I'\A

Since ¢(—OO) =0, ¢(10g|f—fn , —)0)uniformly on["\ A, and so
lim [ ¢(logl /-,

do=0. (14
NA

By the definition of a strongly convex function there exist constants
M >0 and K >0 such that ¢(t+log2)SM¢(t)+K for 1l realt. Then

foralln=12,3,...,
1
g) :¢(10g(5|f—fn gj+log2j

#(log|f - f,
£M¢(log(%| -1 XJ}K

< Mmax(¢(log|f], ).¢(log| ;] )) +K
SM[¢(log| 71,)+4(logl7, g)]+1<.

g)da

o-a.e.on A.Sinced <&.

j #(log|f - f,), o <(M+K)e +M_[ ¢(log

By (13). By (9) and (13),
]jmsupj.¢(log f

= lim[¢{logl |, Jdo—liminf [ g{log
< [(10g] /1, Jdo— | ¢(log] /], Jdo
:J.¢(10g|f|g)d6 <g.

Therefore for all sufficiently large n,

Ju

g)da

Ju

o

17



(@)
(i)

(iii)

j¢(1og|f—];g)da<(2M+K)g.

By the arbitrariness of's,,
lim j d(loglf _f,|, Mo =0. (1)
A

Combining (14) and (15), we obtain (10) first for 7 tending to 1 through
the sequence 7, I and then as asserted by the arbitrariness of the

sequence’, 1.
This completes the proof.

Definition (2.1.4):
Let X =& or%(é‘”). We WriteNX(r),Hﬁé(r). For the classes of

boundary functions of functions in N, (D),Hy(D) . We define
N, (R),HY(R),... similarly from N, (IT), HY(IT),...

The mapping f(z) = f(€”)from Ny (D) to Ny(T) is one-to-one and
linear. If F(z),G(z) €N, (D)and f(z) €N, (D), then F(z)G(z) is
in N, (D) and has boundary function F(¢” | G(e”), and F(2) f(z)in
N, (D) and has boundary function F(e” ) f(e”).we caution that there is

more. Here than meets the eyes since multiplication is not continuous in
the strong operator topology. However; Theorem (2.1.1), we can reduce
the assertions to the case of bounded then they are easily proved. The

situation for IV, (H) and IV, (R) is similar.

It is not easy to derive-the main facts concerning boundary behavior for
the Hardy classes.

Theorem (2.1.5):
Let X=& or (&)

For 0< p<oo, HY(T') =Ny (T')nL; (o),
If 0<p<oo,and feH;(D) then

I =ty () do= [l ()

IffeH;(D), then

p
do.
X

18
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|71, = limmax

1(2)], =esssu| (")

Proof:
(i) For 0< p <oothis follows from, Theorem (2.1.3).with(¢) =¢”. The

inclusion H;(F) gN;(F) ﬁL’)’((G) is clear, and we obtain the reverse
inclusion, from the result.

Apply Theorem (2.1.3)¢(t) =

The first equality follows from the definition of ” f ||Oo and the maximum

modulus principle (Hille and Phillips). Another application of the results
yields

|11, <esssupl () .

This inequality is also a consequence of the Poisson representation in
Theorem (2. 1.3) below. The reverse inequality follows from (2).

Theorem (2.1.6):
IffeH§(D),0<p<oo , then

I%Pl[‘f(eie)_f(reie):
Proof:-

Apply Theorem (2.1.3) With¢(t) =

Theorem (2.1.7):
Let X =& or.%(#).

If ISP<oo, then H;( ) is the subspace of L’;{(G) consisting of all
functions f (6’0) L (o) such that

J.f e e’9d6=0, j=123,... (16)
If feHYy(D),1< p<oo, then forall zeD,

j—ltdo P(z e”)f(e”)da. (17)

The integrals in (16) and (17) re taken in the weak sense.
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The two formulates for f (Z) in (17) are called the Cauchy and Poisson

representations, respectively.

Proof:
We take the result as known in the scalar case (Duren; Hoffman ) If

f (Z) belongs to HY, (D),I < p<o0 , then the boundary function f (6’0)
belongs to L’;{(G) by Theorem (2.1.1) .Then (16)and (17) follow by
applying the scalar version of the theorem to the functions < f (Z),C>g

when X =& and <f(z)a,b>g when Xzﬂf(é") for arbitrary a,b,c € & .

Conversely, let f (6’0) be a given function in L’;{(G) satisfying (16).

Then since

! : :P(z,e”)—lge_it. :P(z,e).

l—ze™ —zé"

There is a function f (Z) on D satisfying (17) .The first representation of
f (Z) in (17) shows that f (Z) is holomorphic, and by familiar properties
of the Poisson kernel the second implies that f(Z) is inH)’;(D). It
remains to show that the boundary function of f (Z) 1s the given function

f (eig).For definiteness suppose that X =& . It is enough to show that for

a countable dense set of vectors ce&.the boundary function of
< f (Z),C>g 1s equal to < f (eig),c> o-a.¢ . This follows from the scalar
&

version of the theorem. The case X = ﬂ?(é" ) is treated similarly.

Theorem (2.1.8):

Let X =& orﬂ?(é") . If 1<p<oo , then H)’;(D) and H)’;(F) are
Banach spaces (the norm in H)’;(F) is that of LI;((G)) . The mapping
f(Z) —)f(eie) is an isometry from H;(D) on toH)’;(r).

Proof:-
This results may be obtained as a corollary of Theorem (2 1.3),
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Section (2.2): Hardy classes on the disk and half plane:

The scalar theory for the half-plane is given in Duren [1970], Day and
McKean [1972], Hoffman [1962], and Krylov [1939]. As in the disk case,
vector and operator generalizations of many theorems follows in a
straightforward way from the classical theory and results. The results
stated below present no unusual difficulties, and the proofs can be safely
omitted.

Theorem (2.2.1):-

j s(?) i, y>0. (18)

Theorem (2.2.2)--
Let X=& or ﬂ?(é") and ﬁxpe[l,oo)’
If g(z) is HY (IT), then the boundary function g(x) to Ly (—o0,00),
1 7el)
=—0 | —=dt, 0, 19
g(z) 2mi Y t—z = (19)
And
o 180 o (20)
2mi Y t—z
Conversely let g(x) be a given function in L’)’((—oo,oo) which satisfies
(4-27).
Then (18) and (19) define one and the same function g(z) onll, g(z),

belongs to HY (H) , and its boundary function is the given function.

Theorem (2.2.3):
Let X=& and ﬁ(é") ﬁxpe[l,oo]. Then H)’;(H) and H)’;(R) are

Banach spaces, and the mapping g(z) —> g(x) is an isometry from
Hf;(l_[) ontoH)I;(R).
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The norm in H)’;(R) is thatL’;((—O0,00). A similar result holds for
%! (I1) and % (R), provided that norm in % (R) is defined by

{2

Jl, =essupl( 3

If 1< p<oo and

If p=c0.
The case p =2 and X =& (tractable to the Plancherel theorem and Paley-
Wiener representation.

Theorem (2.2.4):
(Planchearel Theorem).There is an isometry % : F S F of L;(—oo,oo)

onto itself such that for each F € I (—oo oo)

F(x e F(t
i |
And
y
)=l [
With convergence in the metric of r ( )

Theorem (2.2.5):
(Palley-Wiener Representation). Given f €L¢’ X(O, OO) ,define

1 :
z) =—Ie”zf(t)dt, y>0.
N2,
Then the mapping U: f —F is an isometry from L (O,oo) onto [ (H)
f f and F.
Are related in this way, then for eachy >0,
e f(x) x>0,
I F(t+iy)d /()
\/ O, x<0,

With convergence in the metric ong( ,oo).
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In particular, H? (H) is a Hilbert space which is naturally isomorphic
with L; (O, oo).

Theorem (2.2.6):

For any Fe H? (H) f_oooolF (x +iy)| de, is a nonincreasing function of

y>0. For anyF,GeHéf(H).
<F,G>2:1ri£1)1 <F(x+iy),G(x+iy)>gdx

And

0

lim [ |F(x-+iv)— F(x)] dx=0.

—00
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Chapter-3
Operator Valued Inner and Quter Functions

In this Chapter we construct an inner outer factorization theory for
operator valued functions that are of bounded type on  a disk or half-
plane. The theory is less complete than in the scalar case, but it retains
many of the characteristic features of the classical situation. In the case of
bounded functions we obtain our results from the factorization theory for
Toeplitz operator. Unbounded functions are handled with the aid of scalar
mollifies. We characterize outer functions in terms of extremal properties.
In particular, & always denotes a. separable Hilbert space, and D and I1
arc the open unit disk and open upper half-plane.

Let Q=Dorll.

Section (3.1)Inner and outer functions with Beur ling|-lax theorem
and canonical factorization functions

Definition 3.1.1):

If Ae H;;(g) (Q) ,then:

A is inner function if the operator
T(A):f—>4f, feH,(Q). (1)
Is a partial isometry on H; (Q) ;

b

A an outer function if
Vi4f: f eH; (Q)) = Hy (Q) 2)
For some subspace M of& .

We use a scalar mollifier to extend the definition of an outer function to
allow for unbounded functions.

Definition (3.1.2):
A holomorphic %(ép ) -valued function F on (Q is an outer function if

there is a bounded scalar valued outer function @0 on  such that ¢F

is bounded in the sense of Definition(3.1.1).

The boundary function of an inner (resp. outer) function is also called an
inner (resp.outer) function. The function identically zero is both inner and
outer by Definition C.

Theorem (3.1.3):
In this scalr case except for the function identically zero, the classes of
inner and outer functions obtained from Definitions (3.1.1) and (3.1.2)

coincide with the classes obtained from the classical definitions.
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The classical definitions and properties of inner and outer function are
given in Duren [1970] and Hoffman [1962].

Proof :

For definitions take Q2= D. In the scalar case, a function 4 in

HOO(D),;«'éO Is inner in the sense of definition (3.1.1) if and only if
<f, Ag>2 =<f,g>2. Or what is the same thing,

1 A(e’y )‘Zf(eig)g(eig)da = if(eig)g(eig)da.

For all f,g€H’(D).This holds if and only if‘A(ei‘g)‘ —lo-a.e, that is,

A is inner in the classical sense.

The equivalence of the two definitions of an outer Lunction follows from
Beurling's theorem (Duren) in the case of bounded functions. The general
case is easily reduced to this case.

The canonical shift operators on H; (D) and H; (H) are defined by

S:f(z)>zf(z) on HA(D) 3)
And
S:f(2) = 1(2) on H(T). @)

These operators are unitarily equivalent by means of the isomorphism.
Therefore the results for the operator

(3) Transfer to analogous results for (4). In either case,(Q=D. Orll, we
set

F =kerS” and B =1-S5".
By the Wold decomposition, £ is the projection of H; (Q) on%"
each H; (Q) has an expansion

f =iS"1%S*"f ()
0

Which converges in the metric ofH; (Q).The expansion (5) also

converges pointwise on {2 in the norm of (and is easily identified -in
classical terms.

Theorem (3.1.4):
(i)When =D, % is the space of constant function inH; (Q), that is

with an obvious identification, # =&. For each f EH; (D), (5)

coincides with the Taylor expansion
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(iii)

(iv)

f(z):iajzi, zeD.
0
(ii) When Q=IL.% is the space of function of the formﬂ'_l/zc/(z+i),

wherec € & . For each f € H; (H) coincides with the expansion

o 72 s_i j
- J I1
f(Z) Zol z+1 [z+ij > EEL

Where q,,q,,... are the Taylor coefficients of the function g EH; (D)
such that f(z) = (24—1')_1 g((z—i)/(z+i)) for allz €I1.

Corollary (3.1.5):
A subspace .# of H; (Q) reduces the canonical shift operator S if and

only .# ZH; (Q) for some subspace M of& .

The next result enables us to translate many theorems on operators, such
as the theorems for Toephtz. Operator::, into analogous theorems on
operator valued function.

Theorem (3.1.6).

. . 2 o0
Let S be the canonical shift operator on /7, (Q) Let AecH pr (D) and
define T(A) on H; (Q) by (1). Then:
T (A) is Sanalytic in this sense of 1.6, and every §-analytic operator
on H; (Q) has this form¢
T ( A) is S-constant in the sense of 1.6 if and only if A(Z) = const. on
Q;
T (A) is s-inner (rep. S-outer ) in the sense of 1.6 if and only if A" is an
inner (resp. outer) function*
T ( A) Both S-inner and C-constant if and only if A(Z) = 4, on (Qwhere
4, € fa”(é”) is a partial isometry.
These results are straightforward, and we omit the proofs.
It turns out that. Any. % (é”) -valued inner function 4 does all of its

work on a subspace M of & and is trivial on the orthogonal complement
of M . This subspace if. Denoted]Wm(A). The formal definition and key

properties are. Given below.
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Theorem (3.1.7):
LetA be a. % (é”) -valued inner function on Q=D orll. There exists a

subspace M of & such that

\ofet(Q) and 4], =] 1]} =H3(Q)
And Ag=0 forallg EH]%[(Q), where N =M™
Proof:
The set, of functions f in. H. (Q) such that ||Af||2 =||f||2 is a reducing
subspace for the canonical shift operator S by Theorem (3.1.3). By
(corollary to Theorem (3.1.4)), this subspace has the form H;{(Q) for
some subspace M  of&. Moreover, Ag=0 for every

geH,, (Q) =H.(Q), where N=M".

Definition (3.1.8):
We write MH(A) for the subspace M in the situation of Theorem

(3.1.3).

Theorem (3.1.9):
For any % (é” ) -valued inner function 4 on Q=D orll.

M, (4)=V A(w)"#. ©)
Where €, is any subset of €2 that has an accumulation point in€2.

Proof:
For definition let Q=D.IfM ZMH(A), then H;{ (D) is the initial

space of the partial 7' (A) defined by (5-1). Equivalently, Hf{ (D) is the
range of T(A)*.Function of the form C/(I—ZW),C €& span a dense
subset ofH; (D) , and

T(A) :c/(1-zw) —> A(w) c/(1-zw).
Thus (6) follows.

Theorem (3.1.10):

Let4 bea % (é” ) -valued inner function M = D orI1. Then the values of
the nontangential boundary function of A are partial isometrics on with-
initial space M =M, (A) o-a.c.onl orae on(—O0,00)

Depending on the case.A converse result is given.
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Proof:
It is sufficient to prove this whenQ=D. Let B, be the projection of &
onM . Since the operators (1) is a partial isometry with initial space

Hy, (D),
j<A(e’0 )* A(e’y ) a,b> " do
T &

= <sz(Z)a,zkA(z)b>2 = <ZjPMa,szMb>

r

2

For all a,be&,j,k=0,12,....Hence A(eig) A(eie) =P,0-ae. Onl’
,and the result follows.
We show that values of any . % (é” ) -valued outer; function F'- on D

have ranges that are dence in a constant subspace M of& . This subspace
denoted Mout(F ) .The formal definition follows a prelimiminary result.

Except where otherwise stated. We assume that Q=D orI1.

Theorem (3.1.11):
Let & (é” ) be a C-valued holomorphic function on€, and let ¢ #0 and

w #0 be bounded scalar valued holomorphic function such that ¢F and
wF are bounded onQ. If ¢ and v are outers, then

(6FH; () =(wFH; ()
By Theorem (3.1.10), this is a special case of 1.12. Similarly, the

assertions following 1.12 yields companion uniqueness result.

Theorem (3.1.12):
If AH; (Q) = CH; (Q) for two function 4,C on Q(Qz D) orIl, then

C(z) EA(Z)BO, A(Z)Bg OnQ2.
Where B, efo”(é”) is apartial isometry with initial space MH(C) and
finial space M, (A) Conversal, if two inner functions 4,C on €2 are so
related, then AH; (Q) = CH; (Q) .
Let Q=D orll. Every F e Ng(g) (Q) has a representation

F=AG/b (7)

Where A isa F (é” ) -valued inner function, G is a % (é” ) -valued outer
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function with M, (G) =M (A) , and b scalar valued singular -inner
function. For any representation (7), either
F(eig )* (6’9) = G(eig )* G(e’@) o-ae On I’ (8)
Or
F(x)* F(x) = G(x)* G(x) a.e on(—oo,oo) 9)
Depending on the case. For any w;, €Q), there exists a representation (7)
such that G(WO) >0

Proof:
We take 2=D andw, =0. The general case follows by conformal

mapping for any C e H;j(g,) (D),let T (C) be the operator multiplication
by C onH; (D)

Suppose first that F' e H;(g,) (D) . By 3.6 and 5.2, Theorem (3.1.10),

T(F)=T(4)T(G)
For some inner function 4 and some bounded outer function G such
that in]Wm(A) =M (G) Then F'= AG, so there exists a factorization

out

(7) withb=1. Moreover by 3.6 we can choose the factorization so that for

all ce&
<G(O)c,c>g =<G(z)c,c>2 >0,
That G(0)>0
Now anyFeNg(g)(D). By 4.3. Theorem (3.1.3),F =F,/u, where

F, e H;(g) (D) and u is a scalar valued holomorphic function such that

0<|u| <1 onD. Factor F, = 4,G, as above with GO(O) >0. Factoru =bv,

whereb is inner and v is outer WithV(O) >0. Since u#0 on D,b is

singular inner function. The required factorizations (7) is then obtained
with 4= 4,,G=G,/v, and the singular innerb.

We prove (8) for any factorization (7). First let F’ ,GEH;(g)(D) and
b=1By 3.6,

T(F) T(F)=T(G) T(G). (10)
Hence for any f,, f, EH; (D),

(Ff,Ff,), =(Gf,.Gf),. (11)

And so
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1<F(ef9)>*F(ei9)ﬁ (6[9),j’2 (efg )g) do

-J{e(e) 6le)afe) ) do a2
By the arbitrariness 0; 1151, (8) follows.

The general case of (8) can be reduced to the special case Consider any
factorization (7). By 4.3, Theorem (3.1.3) ,F=F/ (u ,u) where

00 . . . .
F,eH ﬂ(g)(D),ul.,uo are scalar valued functions, .is a singular inner

function, and u, is an outer function such that 0<|u0| <1 onD. By5-2,

G =G, /v,where G,is a bounded outer function and vis a bounded scalar
valued outer function onD. By (7),
b vFy =(u,4)(u,G, ).

Applying, the special case to this factorization, we get

[ole” e )" Lol e o) ()]
=[1o(¢")G0(e) [ ") (") ]

o.a.e Onl’", which implies (8).
Let Q= Dor II every F e N;(g) (Q) has representation ¢

F=AG, (13)
Where A is F (é” ) -valued inner function and G is a % (é” ) -valued outer

function such that M, (G) =M. (A).For any representation (13) either

mn

(8) or (9) holds, depending on the case. For any w, €Q there a

representation (13) such that G( Wo) >0.

Proof:
The argument is essentially the same as for 5.6.In place of Section 4.3
Theorem (3.1.3), use Theorem (3.1.10).

Corollary (3.1.13):
If Q=D or II, N;(g) (Q) is the smallest algebra containing an 1 %(ép )-

valued inner and outer functions on Q2.
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Sec(3.2):Uniqueness of inner —Outer factorization and outer
functions on the disk and half plane:

Let F,GEN;(g)(Q),QZD orIT.

Theorem 3.2.1):

If G is outer, the following are equivalent:
The boundary function of F' and G satisfy (8) or (9), depending on the
case;

F =Gfor some Z (é” ) -valued inner function Asuch that M (A) =
M, (G).

out

Proof:
(i):>(ii) For definition take(2=D. Using 4.3, Theorem (3.1.10), we

easily reduce to the case in whichF andG are bounded. In this
multiplication by Fand multiplication by G are bounded operators

T(F) and T(G) onH; (D) Our hypothesis (8) implies (12) for
arbitrary f;, f, eh; (D) Hence (11) and (10) hold, and (ii) follows from

3.5, Theorem (3.1.3)
(ii) :>(l) This follows from5.7.

Theorem 3.2.2):
If F,G are both outer, the following are equivalent:

The boundary function of F' and G satisfy (8) or (9). Depending on the
case;

G(z) ECF(Z) And F(z) EC*g(Z) on () where Cefa”(é”) is a partial
isometry with initial space M, (F ) and final space M, (G)

Proof:
Argue is in the proof of Theorem (3.2.1) but in place of 3.5, Theorem A

use the corollary to 3.5, Theorem (3.2.1).

Theorem (32 3):
Let F',G both be outer, and let their boundary function satisfy (8) or (9),
depending on the case. If F(WO) >0 and G(WO) >0 for somew, €€,
then F'=Gon(2.

Proof:
Without loss of generality we can take Q=D andw, =0. It is easy to

reduce the assertion to the case where F' and G are bounded, and then
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the result follows from 3.5, Theorem (3.2.2).
Throughout this section S denotes the canonical shift operator on H; (D)

. We identify #=kerS" with & in the obvious way. The Taylor
coefficients of % (é” ) valued holographic functions A4, B,... on the disk

are denoted {A.}:,{B,}w,... . IfAeH;(g)(D). Then T(A) is the

J JJ)o
operator multiplication by A4 onH; (D) The matrix of T ( A) as definied
in 3.2 is given by

5 _
r(4)-|

N N

0
0
4

\V)

Theorem (3.2.4):
LetCe N, ) (D) Then C is outer if and only if

(
CC > A4 (14)
For every A€ N;( 5) (D) such that

A(eig )* A(eig) = C(e’@)* C(eig) o-a.e (15)
In this case, for every A € N;( 5) (D) satisfying (15), we have
Sce Y44, n=012,... (16)
0 0
Proof:
If we replace N;( 5) (D) by H;(g) (D) , the theorem follows from

3.10(see Theorem (3.2.4) and the corollary to Theorem (3.2.4)). We
deduce the general result from the bounded version.

Consider any C EN;(g) (D) By4.3, Theorem (3.1.10), there is a scalar

value, outer function v such that V( O) >0,0< M <1, and C=vc is
bounded onD . For eachk =1,2,3...,, the function defined on D by

v, (z)exp[zizf ei: Tz log(min(k‘v(e”) ,1))d0)

7T 0 e —Zz
Is outer, 0<|v,|<1l,and C(k)=v,C is bounded onD. Moreover,
k k
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vk(z)—>1

Uniformly on all compact subsets of 1).Thus:

1 = .
=>a,z, zeD,
v (2) sz): "
Then:«
. l, j=0,
lime,, = _ (17)
ko 510, 21,

Suppose that4 is outer. Or any A€ N;(g) (D) satisfying (15), set
A =v, A,k 21, fork>1:
A(k) (eiG )* A(k) (eie) _ C(k) (eiQ )* C(k) (eie)'

c-ae. Onl. Since C* is bounded on D so is AWM by 4,7,
Theorem(3.2.4). By the special case of the theorem not A above«

e Ge I oI [N I
DAY ALY, n=012,....
j=0 =0
By (17), (16) follows on letting k —>00.In particular. (14) Holds.
Conversely, suppose that (14) holds for every A EN;(g) (D) that
satisfies (15). Consider any 4’ e N;(g) (D) such that
A!(ei9 )* A!(el@) — C!(el@)* C!(el@)
o-a.€. Onl". By 4.7, Theorem (3.2.4),4' eN;(g) (D) IfA=A'/v, then
Ae N;(g) (D) and (15) holds. Then assumption (14) holds so
4 2 k 2 1% A1
GGy =(0)] GG, = |v(0) 4 4
Since the result is knows for bounded function, C' is outer. Hence C is

outer.
This completes the proof.

Let .2 be the set of polynomials p(z)=p0+plz+---+pnzn with

coefficients in& .

Theorem (3.2.5):

LetC EN;(g) (D) And assume that C(Z) belong to H; (D) for each

a€&. Then C is outer if and only if for alla € &,
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<C§C0a,a> = inf <C(ei9)*C(eig)[a—eigp(eig)],a—eigp(ei9)> do (18)

& pE%r

In this case, for all Aand A4
<ZC¢CJ“’“>
0 &

=inf <C(ei9) C(e’@)[a—e’("”)ep(e’@)],a—el("+1)9p(ei9)> do (19)
Pe%’vr 4

The infimum in (18) may he viewed as a form of Szego's infimum

(Ahiezer [1056]. Grenander and Szego [19581 and Dyrn and McKean

[1972]

Proof:

Assume that C is outer. The proof of (19) is similar to the

Proof .of 3.10, Theorem (3.1.10) ,(i):>(iii).FiX ac& and n>0.Let
M=M

out

(C) , so{Cp:peg}_ZHé. The infimum ofHCa—Sanz.

Over all H., (D) is attained with g =S™". Thus
ineg F<C(ei9 )* C(eie)[a - ei(n+1)9p(ei9 )],a — ei(n+l)9p(ei9 )>g do

= inf|C, -y
Pe% 2
= inf |c, -5’
neHAQ/,(D) 2

Ca . Sn+1 S*n+1 CaHz

= <iCjC ja,a>
0 &

This proves (19), and (18) follows as a special case.
Conversely, assume that C satisfies (18) for alla € &. We apply Theorem

(3.2.4) to show that C is outer. Let 4 EN;(g) (D), and suppose that (15)
holds. For any Aa € &, by (18) and (15)

C,Ca,a) =inf A(e®) A(°) a—e’p(e?) |,a—e”) do
& re% &

—inf [ 4(2)[a~=p(2)]|
>|4(0), ;
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=(44a.e),
Thus (5-18) holds, and C is outer by Theorem (3.2.4).° .«
Let S be the canonical shift operator on H; (D) ,sthat is,S s

multiplication by, (Z—i)/(z+i). For each? >0, define V,on H; (D) by
V,f(z) € f(z)

The identity
Z— i r -1 itz 7.
—.21—2".6 ‘e di (20)
Z+1 0
Holds for eachz €I1. Weshow that it also holds in an operator theoretic
sence.
Theorem (3.2.4) we have

S =1—2fe"'V,dt, Q1)
0

Where the integral is taken in the weak sense defined in 4.5.
Proof it is enough to show that

(57.2),=(f.g), 2]’ (V.1 g), (22)

For all feH, (D) and all Ain some set whose linear span is dense in
H, (1),
Choose g of the form
I ¢
glz)=———, zell (23)
( ) 2ri w—z
Where well andc €& . In this case, reduces to (20) withz =w, and the
result follows.
Theorem (3.2.5).The clouser .In the weak operator topology of the linear

span of (Vt) _, contains §.

20

Proof. By theorem (3.2.4),

S—1+2_[e"V,dt
0

2T e 'v,dt

< 2Te_tdt =2e .

The two integrals involvinge 'V, are taken in the weak sense defined

a
before it is easy to see that Riemann sums forj0 e 'v,dt, converge to the

integral in the weak operator topology as well, and so the result follows.
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Theorem (3.2.6):
LetCe N;(g) (H) For C to be outer it is necessary and sufficient that

ﬂv(s)‘;ds Zﬂu(s)‘;ds, t>0, (24)
Whenever ' '
|
C = B ds, I1,
(2)alz) =5 j év(s)ds, ze
3 (25)
|
A = B ds, I1,
(Z)a(z) \/%.([e u(s) zZE

For some AEN;(X) (H) such that A(x)* A(x)ZC(x)* C(x)a.eeon

(—OO,OO) and some d EN;(H) such thatC , Aa EH; (H)
The integrals in (25) give the Paley-Wiener representation of the

functions Ca, Aa € H; (H) Thusu,v e Lz,, (O, OO) . Note that by the
Plancherel theorem, since

2

, =|C(x)a(x)

[4(x)a(x)

a.e On(—O0,00) , we have

2

&

T“’(S)E«ds :I ju (s )‘;ds (26)

In the sufficiency direction, the proof can easily be made to show more.
Assume only that the condition holds when A is outer, and, for any fixed
outer A for a set of a's such that the span of vectors&, is dense in A4
.Then A is outer,

Proof:

We begin with some preliminary remarks, concerning the Paley-Wiener

representation. Every f € N (H) has a representation

lch EH)

e

Where /1 EL; (O ) It is easy to see that for any# >0,

(7 1) (z) \/_j “h(s+t)ds, zell.

Hence by the Plancherel theorem,
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o= s s

Assume that is outer. Let u,v satisfy (25) for some A and a as in the
theorem. By, theorem (3.2.4) A=BC for some inner functionB. Such

that ]\/[m(B) =M (C) Appling, to the operator multiplication by Bon

out

H’ (H) we obtain

&

) i 2 . IR
V caH <\\V, BCaH =V, AaH

2 2 2
For all £>0.By (25) and the remarks at the beginning of the proof, this

yields

(s o< (o). 150,

Then (24) follows from (26).
Conversely, assume that (24) holds whenever u,v are related -as in the

theorem. C = BA, where 4 is outer, B is innerM , (A), and
A(x)* A(x) = C(x)* C(x) a.c. On(—OO,OO) . For this choice of A and any

aas in the theorem, there exist u,VEL;(0,00) .satisfying (25), and then

(24) holds by assumption. By what we proved above with the roles of A
and C interchanged now A is outer), equality holds in (24). Arguing as
in tilt proof necessity, we obtain

|77 4a| =[; Ba
We now apply. To the operator T (B) of multiplication by B onH; (H)
, choose{Vj}je], to be the family{Vt}tZO, and let {gk}keK be the set of

functions Aa with a as in the theorem. Notice that holds by (27). By
Theorem (3.2.5) above, the hypothesis Win. Satisfied. Hypothesis (ii) in

t>0 27)

2)

3.11 Lemma B, requires that the vectors A(i)a(i) span a dense set in
M

in
and hence B is a constant inner function. Since C = BA is outer and A

outer and M, (B) =M_. (A) ,C is outer.

(B), and this holds. Hence T (B) is an A-constant inner operator,
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Chapter 4
Factorization of Nonnegative Operator Valued functions

If Q(x)lex+---+ Qx" is a polynomial with operator coefficients,
then P(x) :Q(x)*(x) is polynomial such that P(x) >0 for all realx.

We shall, conversely, every polynomial P(x) with operator coefficients

such that P(x) > () for all real has this form.

‘More generally, We study the operator analogue Szegd’s problem.this
is interpreted as the problem of giving condition on an operator valued

function F () on the circle I' on line R which imply that

F()=6() G(),

Where G() is the boundary function of a holomorphic operator valued

function of class N* on the unit disk. DOr upper half-plane ITinspired,
respectively. Our results are inspired principally by three theorems in
classical function theory to Feier. Riesz. Alliezer [1948] and Szego
[1921].

FeJER- RIESZ, Theorem. Any trigonometric  polynomial,

A (eig) =Zn a.e’j@ that is nonnegative on the joint circle I" ,has the

form f ‘ gle ‘ , where g(eig) = an.e’j@ Is an analytic
trigonometric polynomial such that g Z b z/ has no zero on the
disk D.

An elementary proof can be based on the fundamental theorem of
algebra. See Riesz and Sz.-Nagy [1955].

AHIEZER’S Theorem. Let f (Z) be an entire function of exponential

type that is nonnegative on the real axis and satisfies
T log" f(x)

: <00
1+x

Then there exists an entire function g(z)of exponential type 7/2

hunting no zeros for y >0 such that f ‘ g ‘ on the real axis.

Ahjezer; s theorem is a g(z) generahzatlon of the Fejer-Riesz theorem
(Boas [1954]).
SZBGO'S Theorem. Let f (6’0) be a nonnegative function inL ((7) For

the existence a function g(z) in H’ (D) having no zeros on D, such that
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2
. OnlI, it is necessary and sufficient that

jlogf(e’p )do > —00.

We obtain extension of these results to operator valued function. The
operator versions of the Fejer-Riesz and Ahiezer theorems follow as
special cases of a general factorization theorem for till pseudoincromm
functions. We also prove a generalization of Krein; s theorem for operator
valued functions.

Thus & denotes a separable Hilbert space.

7(e)=e(e")

By S we always mean the canonical shift operator defined on H; (D) or

H; (H) .Equivalently, we may view S as acting on boundary function, so
that either
S: f(e’@) —e’ (6’0) on H,(T)
Or
$:£() » () on HL(R)
x+i d

Depending on the case.

Sec(4.1):Toilets operators  with operators  valued and
Pseudomeromorphic Functions Analyticity:
Consider the disk case we describe the class of S-Toilets operators on

H; (F) nd relate the factorization properties of these operators to the
problem at hand.

Let P be the projection of Lz,, ((7) onH; (F)

Theorem (4.1.1):

Abounded linear operator T onH; (F) isS' -Toilets in the sense, if and

only if7' = t(W) , where
T(W):f—>PWf, feH.(T), (1)
=
() (F),T (W) is S-analytic, and (1) may be-written
TW):f -, feH.(T). 2)

Conversely. Theorem (4.1.2), every S -analytic operator has this form.
Proof:

Let T(W)be defined by (1) for some WeLO;(g,) (6) Cleary HT(W)HOO

For someW e N;(g) (0) . In this case,
When W e H,

OO)
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Forany f,g EH;(F),
<T(W)Sf,Sg>2 =l<W(ei9)ei9 (eig),eigg(ei9)>gd0=<T(W)f,g>2.

Hence ST (W)SZT (W).That is T (W) is S-Toeplitz.Sufficiengy
follows.
Conversely, let 7T be an S-Toeplitz operator on H; (F) Set

%zU_"H;(F),HZO,I,Z,..., where U is the operator on L;(G)
defined by (3).Then U:%fn is dense in H; (G) and
H,D)=s%cH%cxc...L,(o).

&
For each n >0, set

s, (f.8)=(TU"f.U'g) ,  f.gex.
Then Sn(-,-) is a bounded sequillinear form on % with [|S,|| < [|T||
Since S*TS = T by assumption and S =U%, forany #f,g €%
o0 (£:8) = (TU™ 1.Ug) = (TSU"£U"g)
:<TU”f,U*g>2 =s,(/.2).

Hence there is a bounded sequilinear form S(-,-) on L;(G) that extends
each s (,) and satisfies ||S|| < ||T ” Let L be the unique operator on
L (6) such that

s(f.g)=(Lf.g),, [f.geL,(o)
And | =|s] <[] For f.g €..,.n 0.
(LUf,Ug), =s(Uf,Ug) =s,(Uf ,Ug)

=(TUuf,U'Ug) =s,,(f.g)=s(/.g)=(Lf>g),
Therefore U"LU =L and LU =UL. By the lemma. L Has form (4) for
some ¥ & Ly, (o it 1], =] <[] 5orany 1. ().

<]f’g>2 :So(f’g):<Lf’g>2

:J'<W(ei9)f(ei9),g(ei9 )>gd6 =<T(W)f,g>2,
1

It follows that7'=T (W) By construction ||W||OOS||T || The reverse

inequality holds automatically as in the proof. Of sufficiency, so the
result follows.
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(@)
(i)

Theorem (4.1.2):
Let W e L:;(g) (0) and 4 € H;(g) (F)

T(W)=0 ifand only if W(e” )20 on T(W)20;

T(W) = T(A)* T(A) . If and only if W(eig) = A(eig)* A(eiQ)G-a.e on
r

Proof:
(z’) If W(e’p) >(00-a.e. On I, then

(T(W)1.1),=[(W(").1 ("), do>0)

r

For every f e H;(g,) (F) , SO T(W) >0.

Conversely, Let T = T(W) > (0 .Construct Lon L; (6) as in the proof of
Theorem(4.1.1). Then L >0, so

I<W(ei9)f(ei9),f(ei9 )>g do >0

r

For every f e H;(g,) (F) It follows that W(eig) >0oc-a.eonl'.

(il') Since 4 € H;(g) (F)OO t(A). A Is multiplication by A4 on H; (F)
Thus

T(W) = T(A) If and only if for all f,g EH; (F)

That is,

O)f equivalently W(e’p) = A(e’p )* A(eie ) o-a.c onl.

The exterior of the unit circle denoted l~); the lower half-plane, fI;that 1S,

~

D={z:|z|>1} And ﬁ:{zzlmz<0}, (8)
If Fis F ﬂ(é’)-valued function on a set Qc C, the reflection of F
with respect to I is the function

F(z)=F(l/z) on Q={z:1/2€Q)}. )
The reflection of F' with respect to R is
F(z)=F(zZ) on Q={z:2eQ). (10)

Whether (9) or (10) is intended will. Either is clear from context or
indicated.

The notion of a Laurent .expansion has a routine extension to ﬁ(é’ )-
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valued functions. Removable singularities, essential singularities, poles,
and principal parts are then defined in the usual wav. We assume that

removable singularities have been removed. A% (é’ ) -valued function F

is meromorphic on an open set QinC,_ =C U{OO} if it is holornorphic

on. Q) Except for poles.

Lemma (4.1.3):

Bounded linear operator L on Lz,, (6) commutes with the operator

U:f(eie) — e’ (6’0) A3)
On L (o) ifand only if
L:f->Wf 4)
For someWW e Lc;(g) (6) In this case HVVHOO = HLH

Proof:
Cleary any operator of the form (4) comutes with U andHLH < HVVHOO

Conversely, suppose that LU=UL Then LU’ =U’L for all
j=0,£1,%2,....
Hence

L¢f)=¢-(Lf),  feLy,(o). )

For any trigonometric polynomial ¢ with scalar coefficients. By a

routine approximation argument, (5) holds for all continuous complex
valued functions ¢onl.

Let & be a countable dense set in & .For eachce&, let g, (eie)be a

represntatative in the coset Lc.Four any fixeda,b € & .
- i0 i0 _ i0
v}l_g%lP(W,e )<gn(e ),b>g d6—<gn(e ),b>g (6)

Nontangentially o-a.¢. On I" by Fatou; s theorem. Since & is countable,
we can choose o-null set N I such that (6) holds for all a,b €& and
e’ e\ N.
Fixeé? e\ N Define So(eig,-,-) on &x& by
i0 i0
s,|e€”,a,b :< e ,b> , .be&.
o(eab)=(g,(¢") ),

Define gbw(e”) :P(w,eie )1/2 forwe D,e" eT. By (5).
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jP(w,ei’ )<ga (e” ),b>g do = <¢W(La),¢wb>2 = <L(¢Wa),b>2
So by (g)
s,(€”;a,b) = lim(L(¢,a).4,b), (7)

Nontangentially for alla,b € & . It is.easy to see that the limit on the right
of (7) exists for all a,be& and defines a bounded sesquilinear form

S(eig,-,-) on So(eig,-,-) and satisﬁesHSH SHLH Hence there is an operator
W(eig) € ﬂ(ép) Such that ‘W(eio )‘g(g) < ||L|| and

s(eig,a,b) = <W(ei9)a,b>
Now consider. W(eig) As a function ofe”. By construction,

WELO;(g)(G) andHVVHOOSHLH. FOI‘CEg,LIC—)W(QiQ)C. In a

straightforward way we obtain (4)
And the result follows .

abe&

°
&

Definition (4.1.4):
(i) Let u,v be nonzero scalar valued functions inN+(F),Aﬂ(g).

Valued function F' . On I is of class .# (u,v) ifuF vF~ EN;(X) (F)

(ii)Let u, v nonzero scalar valued functions inN%R)Afo”(ép) valued

functions /' on Ris of class j(u,v) if uF’,vF" EN;(g) (R)

.Functions of class %(u,v).are called. Pseudomerornorphic because of
the —characterizations in Theorems (4.1.1) and (4.1.2) below. The class
J(u,v) . Does not depend on outer factors in # andv:F is of class.
ﬁ(u,v)lf and only if it is of class %(ul.,vl.), where u,,v,are the inner

factors ofu, v , respectively.

Example (4.1.5):
Letu(eig) = ei”'g,v(eie) =¢", where m,nare nonnegative integers. Every
trigonometric polynormial
0\ _ N ii0
F(e’)=> de (11)

With coefficients in ﬂ?( & ) is of class .# (u,v).
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(1)
(i)

(i) If F e[}g(g)(c) and F’ is of class ﬁ(u,v),then F’ has the form (11).
For, Theorem A, uF ,vF~ e N;(g) (F) N L;(g) (F) = ng)g (F) , .Hence, for

(
all,

>l
[eue)F(e)do =[e" (e ")F(e'Ydo =0
r T

There for j>m or j<-n

[e""F(e)do =0

r

By the Cauchy representation (17), £ >0 has the form (11)

(11) For each p €(0,1), there is a function F e L%, (o) of class M (u,v)and

not of the form(11)
An example F,(e'’)=F,/(e'’ - 1) for any nonzero F, € #(#).

Theorem(4.1.6):
Let u,(e?),v,(e’’)be nonzero scalar valued function in N *(I'), and let

u(z),v(z) be thecorresponding functions in N “(D),let F(z) be a #(#)-
valued meromorphic functiom on D UD such that

the restrictions of uF an v F to D are in N 2 (D)3

F(re'’) has the same strong limit F,(e'’)for rfanyl and r71caeon T,
Then F,(e"’) 1s of class M (u,,v,). Conversely, every function of class
M (u,,v,)has this form.

Proof:
The restrictions of uF and vFto D have boundary functions u,F, and

voF, . These functions therefore belong to N, (I'), and hence Fis of

class. M (ug, vy) .
Conversely ,let G, be any #(#)-valued function of class M(,,v,). Then

u,Gov Gy €N 4, () and so u,G,v,G, are the boundary functions of some
functions G,,G_in N, (D). Set
G.(z)/u(z), Z€D,

G_(2)/9(2), z€D,
A routine check shows that G, and G are related in the required manner

Theorem(4.1.7):
Let u,(x),v,(x) be nonzero scalar valued functions in N *(R), and let

u(z),v(z) be the corresponding functions in N *(IT). Let F(z) be #(#)-

valued meromorphic function on ITUII such that:
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(@)
(i)

(i) the restr ictions of uF an v Fto I are in N 2D

(1) F(x+1y) has the same strong limit F,(x)for y|0 and y70 a,e. on
(—o0,0).

Then F,(x)is of class M (u,,v,). Conversely, every function of class
M (u,,v,) has this form.

Proof:
This follows from Theorem(4.1.6) by a change of variables.
Let Q=D orIl, and Let A be an open subset of 6Q2. Define

Q=Dor[lor M asin (8) .

Definition(4.1.8):
In the situation of either Theorem(4.1.6) or Theorem(4.1.7) , we say that
F is of class M(u,v). We refer to F,as the boundary function of F.

Definition (4.1.9):
Memorphic % (5 ) -valued function F on QUQ is analytic across A if

F can be defined on A so that when viewed as a function on QU QU A
F', M is holomorphic at each point of A.
A holomorphic scalar valued function ' on €2 is said to have an analytic

continuation across A iff :g‘Q) where g is holomorphic on some

open set G containing QUA. The following result generalized a theorem
of Carleman [1944],

Theorem (4.1.10):
Let /' be a meromorphic % (5 ) -valued function on QUQ of class M

for some nonzero functionsu#,QUC2 . Assume that:

M have analytic continuations across A;
If F

o

is the boundary function of /", then for eacha € L, the scalar

valued function M is integrable over every compact subset of A.

Then F' is analytic across A.

The function in the lemma below are scalar valued.

Proof:

We give the proof for the case Q=]1]. Then the other case follows by a
change of variables.

We may assume thatA= (06, B ),—oo <a< <o, and that the analytic

continuations of # and M across A have no zeroes on A. For if there
are zeroes, we can contract the interval slightly and reduce to the case of
a finite number of zeros; dividing out factors to remove these zeros does
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not change M because the factors are outer functions.

Consider an interval [c,d]|<=(a,B) such that F(x +iy) has a strong
limit for x =c,d as \y\—)O. We can choose such an interval with ¢
arbitrary near « and d arbitrary near . Choose a rectangle
O =(c,d)x(-6,8), where 6>0 is small enough that the analytic

continuations of M across A are defined and nonnegative on Q . Define

_ 1 [ E(@)
G(Z)_2m' 6'£t—z d, zeQ.

Our assumptions imply that F is sufficiently regular on 0Q for the

integral to exists in the weak sense: F (x +iy) remains bounded for

x =c,d, y\—)O, by the uniform boundedness principle. The function

G (z) is holomorphic onQ . To complete the proof, we show that F

coincides with G onQ ﬂ(HUﬁ). By considering the scalar valued

functions (F()a,a), and (G()a,a), for arbitrary ae# , we can assume

without loss of generality that we are in the scalar case, thatis, ' and G
are themselves scalar valued functions.

Set O(e+)=(c.d)x(&,6) for any € €(0,5). By Cauchy's theorem,
1 F(t)
Fz)=— d
(z) - aQ‘(L)f—Z t, z EQ(8+)-
We show that

E%j\F(+iyx)—F(x )|t =0 (12).

By assumption, F is of class M, souF' € N"(I]). By the lemma, (1)
holds with F' replaced by uF'. The assumptions on u imply that we can
drop the factor u , and (12) follows. Letting & 1 0, we obtain

1 F(t)

F(z) = — f dt ,z€Q*
t—z

oQ*
Where O+=0 NII and the boundary function of F is used on the
lower edge. Combining this formula with an analogous formula for

O—=0nII, we obtain
F(z)—1 J.F(t)dt, zeQﬂ(HUﬁ),

2ri w0t~z
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Thus /=G on Q ﬂ(HUH) , and the result follows.
Lemma (4.1.11):
Letf eN” (H) and suppose that

b
'f Jf x pdx <, where —0<a <b <00 and0<b <o, Then

hmﬂf —f x+1y)‘ dx =0

For every closed subinterval [C,d ] of (Cl,b) .

Proof:
Choose ¢ such thatpg >1. Let € be an outer function such that

‘g (x )‘ =1 on (a,b) and ‘g (x )‘ =(M+1)q V (X )‘ otherwise. Then

h =I/g eN*(IT) and'[:‘h(x)‘pdx <0 Therefore # € H" (I1) and

hm_Hh x+zy)‘ dx =0

(See Krylov [1939]). The function g has an analytic continuation across
(Cl,b) , and so limy w8 (X +1y ) =8 (X ) uniformly on every closed
subinterval [C,d ] of (Cl,b) . In view of the elementary inequality

))p S2”(‘up vp),

This is sufficient to 51mp1y the lemma.

b

‘u +v‘ (max(

Theorem (4.1.12):
Let v be any nonzero scalar valued functionin N "(I') orN "(R). 1f M

is any nonnegative # (5 ) -valued function of class .# (M, V) on I orR ,
then

F=G'G (13)

o-a.e.on I ora.e. onR , where G is an outer function of class %(l, V)

on I' or R , respectively.

The factorization is essentially unique, Theorem (4.1.2)

Proof:

We give the proof in the circle case. The other case then follows by a

change of variables. Since # (M, V) does not depend on the outer factor in

vV, we may that v Inner
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Since F of class %(M,V),MFEN;(X)(F). Theorem (4.1.7), there a
bounded scalar valued outer function (1). On ' such the 9vf € H;(g) (F) :
Since MZIC-a-e,onF, the function W =@F¢ belongs toLo;(g)(O' ). Let
P be the projection of L;(G) onH; (F), and define the Toeplitz
operatorT (W) ., Theorem (4.1.2), and thus is applicable. We show that

condition (iii) of is satisfied. For each ce & andn=0,1,2....
1@ =swp{{T ). 577 ) |:f IO f),=1)

Here e is viewed as a constant function inH gp (r). Set"
Z(em) :em) ei0 cT

For any f ceH ;(1‘),
(rer.sm), |=|[.xr),do

r

= <(¢/¢7) ve, ;("P¢2va>g do

r

_ _'<p;("P(¢/¢7 Jve,v(F'79) f>g do

r

— :<F1/2¢7P;(—”P(¢/¢7) vc,vF1/2¢f>g do

r

1/2
< ”FI/ZCZ;PZ_”P<¢/§I;)VC‘2X daj <T(W)f,f>2
By the choice of ¢,F "2¢is bounded
1/2
I (c) < const(”P;("P(gb/q;) vc‘zg daj

< constHS*gr

2
Where g, = P(¢/¢?)VC. Since S is a shift operator, Z,(c)—>0 asn—w.

Thus condition (iii) is satisfied. There is an outer function A such that
W=A4"Ao -ae.onT .Therefore

F=W/($/¢)=4"4/(/$)=G"G

o -a.e.on I', where G=A/¢ is outer.
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We show that G s of class#(1,). Consider the function C=v4"(¢/§)
inL,, (). By the choice of$,CA=¢*vF € Hy, (T). Thus

Cl4H .0))< H (1)

Since A is outer, (4H;(T')) reducesS. Hence if g is in H; (') and
orthogonal to(AH; (T)), so is$’g.j=0,1,2.... Then for any
ueH;(F) and j >0,

[(47g. 7 > do = l (xg,Au), do=(S'g, Au) =0

r

Therefore A'g=0 o-a.e. onI', and so C,=0 o-ae. onI". It follows
that
Cer(n)cH(r)

And hence C EH;(&,) (F) . ThereforevG =Ce H;(g) (F) , and so

VGeN,, (T). Trivially G € N (T'), and hence G is of class#(LV).
This completes the proof.

49



Sec (4.2):Fejér-Riesz Operator and Rational Functions with Entire
Functions of Exponential Type:

Theorem (4.2.1):

Let F(¢?)=>" 4,¢" be trigonometric polynomial with coefficients in
#(#) such that F(€”)>0 onT". Then

F(e”)=G(e") G(e"), ¢’ el (14)

Where G(e”)is an outer function of the form G(e”)=>"Be" with

coefficients in % (5 ) .

Proof:
In view of the example this follows as a special case

Theorem (4.2.2):
Let P(x):ZZ" }3,xj be a polynomial with coefficients in ﬂ(é" ) such

that P(x) >0 for all x, then
P(x)zQ(x)* Q(x), XeR, (15)
Where Q( x) is outer function of the form Q(x) = ZZ ijj .

Proof:

—n

Set v(x)=(x—i)n/(x+i)nandF(x)=(x2—I—l) P(x). Then W(x)f(x)
and v(x) F" are the boundary functions of functions that are bounded and
holomorphicIl. Hence F’ is of class %(u,v), soF (x) =G(x)* G(x)a.e.
On(—o0,00), where G(x) is an outer function of class.#(u,v).
F (x) =G(x)* G(x)a.eOn(—O0,00), where G(x) is an outer function of
class .#(L,v).Consider the associated meromorphic functionG(z) as,

Theorem (4.2.2). Since G(x) and v(x) G(x)* are bounded functions in
N+(g) (R),G(Z) and V(Z) G(Z) are bounded on Il Hence

A
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“(24—1’)” G(Z)H SM(|Z| +1)n . zellUlIl,
For some constant M >(0.We have (Z-I-i)n G(Z) 1S an entire function.

Therefore by the Cauchy estimates, Q(Z) =(Z+i)n G(Z) is a polynomial
of degree at mostn . Since G(x) is outer as a function on(—OO,OO), SO 18
Q(x) By construction, (15) holds.

A ﬂ(é" )- Valued function F (x) is called relation rational if it is
meromorphic onC =C U(OO). It is not hard to see that / (Z) is rational
if and only ifF(z)=P(z)/q(z), whereP(z) is a #(&)-valued

polynomial and q(z) is a scalar valued polynomial.

Theorem (4.2.3):
Let F (Z) be a ﬂ(é" )- valued relational function that is either non-

negative at all points ¢’ €l that are not poles, or nonnegative at all
points x € Rthat are one poles. In the circle case,

F(2)=G(2)0(2).
Where G(Z) is a ﬂ(é" ) -valued relational function that is holomorphic

on Dand whose restriction to D is outer. In the line case there is a
similar factorization with respect to the half-planeI'1.

The tide notation. Thus G(Z) = G(l/ E)* or G(Z) = G(E)*, depending on

the case.
Proof:

In the disk case, choose a scalar polynomial q(z) whose restriction to.D
is outer such that P(Z) =q~(Z)F(Z) is a polynomial is z and1/z. Then
P(eig) >0 onl’, so by 6.6,

Ple’)=0le') ofe')
Where Q( Z) is a polynomial whose restriction to D is outer. The
required factorization is obtained with G( Z) = Q( e’ )* Q( eie) :
In the half-plane case, choose a scalar polynomial q(z) whose restriction

to D is outer such that P(Z) =§(Z)f(z) is a polynomial inz. Argue as
above using 6.7 instead of 6.6.
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The notion of mean type for scalar valued function in NV (H) is defined in

the Appendix, Section 6. We now extend this notion to functions F in
(H). For eachc € §, define F' by

F(z):<F(z)c,O>g zell.
Definition (4.2.4):
The mean type of a function F' in N (%) (H)is the number 7 =sup

(%)

cey Tc

,where 7_is the mean type of F, for anyce .

Theorem (4.2.5):
The mean type 7 of any F in Ng(g)(l_[) satisfies —00 < 7 <00, with

7 =—00 only if[ ' =0.
Proof:
Let 7, be the mean type of F, foranyc €& .

t =limsup y”' log‘FC (z'y)‘ <limsupy™ log‘F(iy)‘g(g).
y—0 Y%

By Theorem (4.2.1), there is a scalar valued holomorphic function u# such
that O<‘u‘ <1 and |uF| <1 onlII. Then
(%)

limsupy ™' log ‘F (i )‘g(g)
Y0
= limsup[y_1 10g‘“(ZY)F(iy)‘g(g) -y log‘u(iy)u
Y0

<-limy™ log‘u(iy)‘
y—0
=m.
Where m is finite real constant. Thus 7, <m <o for every c €§ and
7 <00.IfT =—00, thent, =—00 for every c €& .Hence [, =0 for every
cey and F=0.
If Flis & (é" ) -valued entire function, define F, for any ¢ € § by

F (z)<F(z)c,c>y, zeC

Definition (4.2.6):
ﬁ(é" ) -valued entire function F' is of expontial type if there is a real
constant m such that for eachc € &,

‘F; (z)‘ <Me™, zeC,
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(i)

For some M, > 0.In this case the exact type 7 of F is the infimum of all
suchm.

‘<F(z)c,c>

7. =sup| limsuplog
ces |2]>0 |Z|

We say that [’ is of exponential type 7if I is of exponential type and
T.T.

It is easy to see that F’is of exponential type rand only if Fis of
exponential type 7 for each ¢ € §.The exact type 7,1s the supermum of

the exact types of all functions F c€§ .As in the scalar case, either
F=0
And 7, =—00,0r /" #0and7, 20.

If Fisa ﬂ?(é" )-Valued entire function, let F be the reflection F with
respect to the real line: F (Z) =F (Z),Z € C.The following result

generalizes Krein’s theorem.

Theorem (4.2.7):
IfFisa & ( & ) -valued entire function, the following are equivalent;
F' is of exponential type and

= log" ‘F(x)‘g

— @) dx < o0 (16)

The restrictions of F and F to IT are of bounded type, that is they
belong to Ng(g) (H)
Let [ satisfy these conditions, and let T, T_ be the mean types of the

restriction of F' ,]5' to I'l respectively. Then
T, +7. 20 (17)
And

Smax(fhr_) =Tr (18)
Where 7. is the exact type of F'.

For dﬁ(é" ) -valued function F on Il orC, define F ,for each c€§ as

in (10)
Proof:
Let F' satisfy

T,
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(i) Let 7, be the exact type of F' and choose m >7,.For each ce ¥

there is a constant M > 0 such that ‘F; (Z)‘ < Mcem‘z‘ ,zeC.
Claim: the restrictions of ¢"F, and ¢™F to I1 belong to N* (1) .This is
trivial if /~, =0, so suppose [ #0. By the scalar version of Kreln’s

theorem the mean type of these restrictions do not exceed m.Since F,

and]*:; are entire the restriction of F, and F~; to Il have no singular
inner function in their canonical factorizations Thus
F=¢"”Bg And F=cBg (19)

On II, where p<m,q<m,B, and B,,are Blaschke product, and g is
outer (the outer factor may be chosen the same in each case since F, and

F have the same modulus on R).Therefore the restrictions of eimcF;

,and eimcF; to I'T belong to N* (H) this proves the claim.
In view of the claim just proved and (16), the lemma implies that the

restrictions of ¢"™F and ¢™F to TI belong to N;,(g)(l_[) .Hence the

restrictions of F and F to IT are of bounded type that is (ii) holds.
Conversely, let (ii) holds. By theorem B, f satisfied (16).Let 7,,7_ be
the mean type the restrictons of F ,]5' to I'l. Foranyce§, let 7, T, be

the mean type of the restrictions of £/, ,IE; , to. 11 By the scalar version of

Kren’s theorem £ ,is of exponential type and exct type equal to max
(Tc +,Tc_). Since
T+ = SUPcel Tet (20)

MaX(TH’TC‘)S maX(Tc +,Tc_) (7.are finite). Hence F' is of exponential
type and exact type 7, < maX(T +,’L’_) In particular, (i ) holds.

If 7. < maX(T+,T_) then by the first part of the proof, 7., <7, for all
cey and soT, <7T,.< maX(T+,T_) a contradiction. Hence
7, =max(7,,7_).Since 7,, +7,_ >0 forall c€& by 21), 7, +7_>0

.By an elementary argument this implies |Ti|£maX(T+,T_),and the
proof is complete.
Let 7,20 and7, 20. Aﬂ(é’) -valued entire function F' is of class

4 (Tl,’[z) if the restriction of F to II is of bounded type and mean
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(i)

type <7, and the restriction of F to Fis of bounded type and mean
type <7,.The classes jif(’[l,’[z) re called Krein classes.

Lemma (4.2.8):
Aﬂ?(y) -valued holomorphic function /' on I1 belongs to N;(g) (H) if

and only if:

F eN' (H) for each ce &, and
The limit £ (x) = limy w/ (x + iy) exists in the weak operator topology

ae on R, and
o log+ ‘E) (Z)L?(y)

o dx < 0, (21)

Proof:
Necessary follows.

Conversely, assume that (l) and (ii) holds. By (19) there is scalar valued
outer function v, onR such that 1/ |VO| zmaX(I|E)|ﬂ(g))a.e . On R then
‘Vo‘ and |VOE)|£?(3) <lze onR. Multiplying Vo(t) by 1/(t+i) if

necessary, we can assume that
f ‘v )dt <o ¢

Let v be the outer function on Il whose boundary function isv,. By

(i) VI, eN*(II) for eachce&. Since VF, has a square summable
boundary function, it belongs to : (H) and

1 T <vb(t)}ﬂ(t)c;c>

2mi *,

dt=0 zell.

t—z

By the arbitrariness ofc,
LU
2mi ¥ ’
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By Theorem B,v, [ H;(g) (R) - N;(g) (R) it follows that v, /7y is the
boundary function of some G e N;( 5) (H) For eachc e ¥, the scalar
valued functionvF, and G, belong to N* (H) and have the same

boundary function.

HencevF, = G_, onll. Therefore v/ =G .Since G EN;(X) (H) and v is
outer, F' EN;(X)(H)

Theorem (4.2.4):
Let u(x) = eit‘x,v(x) =" for all realx. Let F|, be a weakly measurable

74 (é" ) -valued function on R such that |E)|g(g) is integrable over every

bounded interval. Then F is of class .# (u,v) if and only if F| is equal
a.e. To the restriction to R of ﬁ(é" ) -valued entire function F' of class
K (rl,rz) .

Proof:

Let f be class.# (u,v). F, Is equala.e. To the restriction to R of an

entire function F such that the restriction to I1 of €“F and €% F
belong to N;( 5) (H) It follows that the restrictions to I1 of F" and F are

of bounded type and mean type at most 7, and 7, respectively, that is F’
1s ofclass%(fl,fz).
Conversely, letfy (x) =F (x) ae. On R where F is ﬁ(é" ) —valued

entire function of class %" (TI,TZ) For ¢ in & let F and F; be definied
By
F(z)=(F(z).c), And F;(z)=<ﬁ(z)c,c>g

Forz € C. Then F, is entire and the restrictions of F, and F, to IT have

canonical factorizations of the form (20), where p <7,,q <7,.Hence the
. .2 ~

restrictions of €“F and ¢°F to Il belong to N+(H). Since F

satisfies (16) the implies that the restriction of ¢F and ¢7F to I1
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belong to N;( 5) (H) .The boundary function of these restrictions are uf,
and uE,*.Hence uFy,ufy € N;(g) (R) and [, is of class %(u,v)

We now apply the preceding results to generalize Ahezer’s theorem.

Theorem (4.2.5):
Let F be ﬁ(é" ) -valued centre function of exponential type 7,7 >0

such that F’ (x) >0 for all realx, and
F(x)

Lo () dx < oo

k 1+x7
Then F =(~;G for some ﬁ(é" ) -valued entire function G such that

¢“"?G is of exponential type 7/2 and the restriction of G two ITis an
outer function

Here G(Z) = G(E),Z eC
Proof:
The function F is of class % (T,‘L’).The restriction Fyof /' to Rbe of

class J(u,v) , Where v(x) ="
F,=GGae. onR , where G, is outer and of class %(1,\/) on R.By

since (12), G, is the restriction to R of an entire functionGof class
%(O,T).Sincefé=GgG0a.e.on,R,F=C~iG Since G is of class
4 (O,T),e_itZ/zG is of class % (‘L’/ 21/ 2) and hence of exponential type

7/2.The restriction of G two Il is of bounded type and has boundary
function G.Since is outer on G, the restriction of G to Ilis an outer

function on IT.
The following result generalization Szego’s theorem.

for all realx. Hence by (5),

Theorem (4.2.6):
Let I be a weakly measurable nonnegative . % (é" ) -valued function that

has invertible valueso.a.e. On I ora.e. OnR. In the circle case assume
that
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ELl(G),

#(#)

F (e’p )Ly(g) and

F (eig )_1
And in the case of the real line assume that
-1 -1
(1+x2) x)‘fa’(ép) and (1+x2) log‘F(x) o)

Then F =G Go—ae..on I or ae on R for some ﬁ(é" ) -valid outer
function G on I or R respectively.

-1

e L' (—o0,)

Proof:
We first reduce to the case in which F is bounded Introduce F;, = F'/ f,

where f=max(11|F|g(g)) on [ .Since logfeLl(G),f=|g|2

some outer function g onI. IfF; =G G.o.a.e. On T for some ﬁ(é" )-
valued outer functionG,, then F =G Go —a.e. Onl", where G = gG, is

outer. Since [ satisfies the hypotheses of the theorem and is bounded,
we may assume without loss of general that /' is bounded
We apply to the Toeplitz operator 1, =T (F ) induced on H; (F) by F

o—a.e. Onl'. By

#(#)

.Choose ];:T(gb[ ) Where¢ 1/‘F )"

an elementary argument¢/,, < Fo-a.e. Onl'. Therefore 7, <7, .We

+ —
check the hypotheses (l) and(ll).
Our assumptions imply that¢) € L ((7) ,80 @ = |l//|2 for somey € H” (F)
If 4 is multiplication by wl, onf, ; (F) , then Ais analytic and

=44,
(ii) Let {fn }:Ois sequence in H’ (F) such that

i (7, (f, = f) S = ), = (22)

And

lim(7,£,£,), =0 (23)
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