بسم الله الرحمن الرحيم Sudan University of Science and Technology College of Graduate Studies

Development of Smart Microcontroller by Using Zigbee Wireless Technology

تطوير متحكم ذكى بأستخدام تقنية الذبذبة النحلية اللاسلكية

A thesis submitted as partial fulfillment for the degree of M.Sc. in Electronics engineering (Computer).

Prepared by:

Hisham Abdelrahim Mohamed Abdelaziz

Supervised by:

Prof. Saad Da'ood Alshama'

August 2010

بسم الله الرحمن الرحيم

" اللَّهُ نُورُ السَّمَاوَاتِ وَالْأَرْضِ مَثَلُ نُورِهِ كَمِشْكَاةٍ فِيهَا مِصْبَاحُ الْمِصْبَاحُ فِي زُجَاجَةٍ الرُّجَاجَةُ كَأَنَّهَا كَوْكَبُ دُرِّيُّ يُوقَدُ مِصْبَاحُ الْمِصْبَاحُ فِي زُجَاجَةٍ الرُّجَاجَةُ كَأَنَّهَا كَوْكَبُ دُرِّيُّ يُوقَدُ مِن شَجَرَةٍ مُّبَارَكَةٍ زَيْتُونِةٍ لَّا شَرْقِيَّةٍ وَلَا غَرْبِيَّةٍ يَكَادُ زَيْتُهَا مِن شَجَرَةٍ مُّبَارَكَةٍ زَيْتُونِةٍ لَّا شَرْقِيَّةٍ وَلَا غَرْبِيَّةٍ يَكَادُ زَيْتُهَا يُضِيءُ وَلَوْ لَمْ تَمْسَسْهُ نَارُ ثُورٌ عَلَى نُورٍ يَهْدِي اللَّهُ لِنُورِهِ مَن يُضِيءُ وَلَوْ لَمْ تَمْسَسْهُ نَارُ ثُورٌ عَلَى نُورٍ يَهْدِي اللَّهُ لِنُورِهِ مَن يَشَاء وَيَضْرِبُ اللَّهُ الْأَمْثَالَ لِلنَّاسِ وَاللَّهُ بِكُلِّ شَيْءٍ عَلِيمٌ"

صدق الله العظيم سورة النور الاجه 35

Dedication

To

my

family

this

work

is

dedicated.

Hisham Abdelrahim August 2010

Acknowledgement

Very exceptional thanks to ALLAH for all his precious and valuable gifts including giving me the chance to do this thesis; I would like to thank him for his unlimited generosity and mercy.

I would like to thank Prof. Saad Dawood Alshama' for all his very valuable thoughts, ideas, suggestions and notices which obviously reveal the way to achieve the thesis objectives.

Special thanks to my colleague Eng. Khalid Alabbas for his precious time and information, and Eng. Alfatih Mohana for providing wireless chips from abroad.

Very distinguished and deep appreciation to my family for their continuous care and support.

Abstract

The adoption of wireless communications based on Low-Rate Wireless Personal Area Network ZigBee technology (designed to control and monitoring in real time) in civil and industrial applications has increased rapidly in recent times. Due to several reasons include, low cost, low power consumption, ease of use and installation. In this thesis the establishment of a practical system for monitoring and remote controlling of temperature of power transformer using ZigBee wireless technology has been accomplished, the system will initially measure the temperature, and then sent these values to the centralized computer to calculate the required response to activate or de-activate the cooling fans of the power transformer. The system was established and designed by using a computer work station with graphic interface to control the phases of operation and communication; moreover, ZigBee wireless chips were used, in one side these chips have been connected to computer work station and on the other side it has been connected to microcontroller. Temperature sensors and light emitting diodes have been used to represent inputs and outputs of microcontroller. After installation and completion of all installation and programming works the system has worked successfully.

المستخلص

اعتماد تقنية الاتصالات اللاسلكية قصيرة المدى المبنية على تقنية الذبذبة النحلية (المصممة للتحكم و المراقبة في الزمن الحقيقي) في التطبيقات المدنية و الصناعية قد ذادت بوتيرة سريعة في الاونة الاخيرة, لاسباب عدة منها التكلفة الاقل و قلة استهلاك الطاقة وسهولة الاستخدام و التركيب. في هذا البحث تم انشاء نظام عملى للمراقبة و التحكم عن بعد في درجة حرارة زيت محول قدرة باستخدام تقنية الذبذبة النحلية اللاسلكية, ي قوم النظام في البداية بوياس درجة الحرارة, بعد ذلك يتم ارسال هذه الرقيم لبرنامج في حاسوب مركزي, لي قوم الحاسوب بحساب الاستجابة المطلوبة لفصل اوتشغيل مراوح التبريد لمحول الرقدة. تم انشاء النظام وتصميمه باستخدام حاسوب مركزي ذو واجهة بينية للتحكم في مراحل التشغيل و الاتصال, تم ايضا استعمال شرائح اتصال لاسلكي تعمل بترقية الذبذبة النحلية, اوصلت هذه الشرائح بكل من الحاسوب المركزي من جهة والمتحكم الد قيق من جهة اخرى, تم اضافة محسسات حرارة كمداخل للمتحكم الد قيق. ودايودات ضوئية كمخاج وذلك لتمثيل الاستجابة للتغيير في درجة الحرارة. بعد تجهيز واكمال جميع اعمال التوصيل و البرمجة تم تشغيل النظام و قد عمل بنجاح.

Contents

اية قرانية		ii
Dedication	iii	
Acknowledg	iv	
Abstract	V	
		viالمستخلص
List of tables	s	X
List of figure	xi	
List of abbre	eviations	xii
Chapter on	e: Introduction	
1.1	Background	1
1.2	Problem Statement	2
1.3	Proposed Solution	2
1.4	Methodology	2 2 3
1.5	Required material	3
1.6	Thesis outline	3
Chapter two	o: Ad hoc networks and ZigBee technology	
2.1	Overview of wireless networking	5
2.2	IEEE 802.11 Standard	6
2.3	IEEE 802.11 Network types	6
2.4	Ad Hoc Networks	7
2.4.1	Body Area Network	7
2.4.2	Personal Area Network	8
2.4.3	Wireless Local Area Network	9
2.4.4	Mobile Ad hoc Networks (MANET)	10
2.5	Wireless sensor network	12
2.5.1	ZigBee standard and metaphor	12
2.6	ZigBee technology application and motivation	13
2.7	Evaluation of LR-WPAN standardization	15
2.8	ZigBee and IEEE 802.15.4	17
2.9	ZigBee vs. Bluetooth	18
2.10	IEEE 802.15.4 WPAN	19
2.10.1	Components of WPAN	20
2.10.2	Network topologies	21
2.10.2.1	Star topology	21
2.10.2.2	Peer-to-peer topology	21
2.10.2.3	Cluster-tree topology	21
2.11	LR-WPAN Device architecture	22
2.12	The IEEE 802.15.4 PHY	23
2 13	The IEEE 802 15 4 MAC	24

2.13.1	Superframe structure	25
2.13.2	The contention resolution protocol CSMA-CA	26
2.14	Routing in Ad hoc wireless networks	27
2.14.1	ZigBee routing algorithms	29
2.15	The application layer	29
2.15.1	Summary of the application layer responsibilities	31
Chapter thro	ee: Implementation of ZigBee in monitoring and control	
3.1	Project tools	33
3.1.1	Software components	33
3.1.2	Hardware components	33
3.2	Smart microcontroller board	34
3.3	Smart microcontroller board merit	34
3.4	The Smart microcontroller platform	34
3.5	The software (IED)	34
3.6	Installing Arduino on computer	35
3.6.1	Installing drivers in windows	36
3.6.2	Port identification in Windows	36
3.7	The application	36
3.8	Smart microcontroller program flow chart	37
3.8.1	Description Smart microcontroller program flow chart	37
3.8.2	Code of smart microcontroller board	38
3.9	Computer work station program flow chart	42
3.9.1	Description of computer work station program flow chart	43
3.9.2	Code of computer work station	43
3.10	Graphical user interface	48
3.11	ZigBee wireless module	49
3.12	Wireless module and its receptacle configuration	50
3.13	Wireless module software configuration	51
3.14	Working of temperature sensor	54
3.15	Output of temperature sensor	54
3.16	Wiring of temperature sensor	52
	r: Results and discussion	J _
4.1	Introduction	56
4.2	Description of Experiments	56
4.2.1	Experiment no.1	56
4.2.2	Experiment no.2	57
4.2.3	Experiment no.3	57
4.2.4	Experiment no.4	58
	e: Conclusion and recommendations	50
5.1	Conclusion	59
5.2	Recommendations	60
References	recommendations	61
Appendices		01
	: Arduino Duemilanove board	
	: XBee wireless module	
	: Temperature sensor LM35	

List of tables

Table no.	Table title	Page no.
2.1	Compares Zigbee, Wi-Fi and Bluetooth technologies	19

List of figures

Figure no.	Figure title	Page no
1.1	System layout	3
2.1	Ad hoc networks range	10
2.2	Wireless Sensor Network markets based on ZigBee	14
2.0	protocol	4 =
2.3	Comparison of wireless technologies	17
2.4	ZigBee protocol stack	18
2.5	ZigBee network topology	22
2.6	LR-WPAN device layers	23
2.7	MAC sublayer frame formats	26
2.8	Superframe structure	26
2.9	The APL layer consist of the APS sublayer, ZDO,	30
	and the application framework	
3.1	Hardware components	33
3.2	Arduino software interface	35
3.3	Windows device manager showing all available	37
	serial ports	
3.4	The flow chart of Arduino board program	38
3.5	Flow chart of computer work station program	42
3.6	Graphic user interface	49
3.7	XBee wireless module and its receptacle	47
3.8	X-CTU interface	51
3.9	Setting and com port positive response	52
3.10	Modem configuration tap	53
3.11	LM35 wired on a circuit board	55
4.1	Snapshot of experiment no.1	56
4.2	Snapshot of experiment no.2	57
4.3	Snapshot of experiment no.3	57
4.4	Snapshot of experiment no.4	58

List of abbreviations

Acronym	Stand for
AIB	Application Support Layer Information Base
AES	Advanced Encryption Standard

AF Application Framework

APDU Application Support Sublayer Protocol Data Unit

APL Application Layer

APS Application Support Sublayer

APS-IB Application Support Sublayer-Information Base

APSDE Application Support Sublayer Data Entity

APSDE-SAP APSDE-Service Access Point

APSME Application Support Sublayer Management Entity

APSME-SAP APSME-Service Access Point

ASDU APS Service Data Unit
CAP Contention Access Period
CCA Clear Channel Assessment
CFP Contention-Free Period

CSMA-CA Carrier Sense Multiple Access with Collision Avoidance

DSSS Direct Sequence Spread Spectrum

ED Energy Detection
FFD Full-Function Device
GTS Guaranteed Time Slot

LR-WPAN Low-Rate Wireless Personal Area Network

MAC Medium Access Control
MANET Mobile Ad hoc Network

MFR MAC Footer MHR MAC Header

MLME MAC Layer Management Entity

MLME-SAP MAC Layer Management Entity Service Access Point

MPDU MAC Protocol Data Unit MSDU MAC Service Data Unit NLDE Network Layer Data Entity

NLDE-SAP Network Layer Data Entity Service Access Point

NLME Network Layer Management Entity

NLME-SAP Network Layer Management Entity Service Access Point

NPDU Network Layer Protocol Data Unit

NSDU Network Service Data Unit

NWK Network Layer

PAN Personal Area Network PC Personal Computer

PD PHY Data

PD-SAP PHY Data Service Access Point

PHR PHY Header PHY Physical Layer

PIB PAN Information Base

PLME Physical Layer Management Entity

PLME-SAP Physical Layer Management Entity Service Access Point

PSDU PHY Service Data Unit

PPDU PHY Protocol Data Unit

QOS Quality of Service RF Radio Frequency

RFD Reduced Function Device SAP Services Access Point

SSP Security Services Provider

WLAN Wireless Local Area Network

ZDO ZigBee Device Object