

Sudan University of Science and Technology

College of Graduate Studies

The Influence of Walking Stress on Some Blood Parameters in Desert Goats.

أثر إجهاد السير علي الاقدام علي بعض مقاييس الدم في الماعز الصحراوي

By

Elkhier Tamour Ahmed Tamour

A Thesis Submitted in Fulfillment of the Requirements for the Degree of Master in Veterinary medicine (Veterinary Physiology)

Superviser: Prof. Shadia Abdelatti Omer

Preface

"Every stress leaves an indelible scar, and the organism pays for its survival after a stressful situation by becoming a little older."

~Hans Selye (1907-1982).

Dedication

To those who are giving me the love and support, my parents

To that who are surrounding me by love and respect, my wife Madeha Ahmed.

To my supervisor & colleagues, I dedicated this work.

Acknowledgement

My first and last thanks to ALLAH who gave me ability to carry this work out. My deep thanks and respect to my supervisor prof Shadia Abdelatti Omer, for her help, guidance and patience to bring out this work. My thanks to University of Nyala for financial support. My great thanks without limit to all my colleagues, Abdalla Ibnomer, Ferdous koko, Kawther .M. Osman, Ibrahim Elsaid Elnoor, Eiass Elzane, Ismail Abdulraheem, Fathee elrahman Eysa, for their great help. And also Technicians Abdoraheem Abdorahman, Ahmed Ibrahim, Fathee Elrahman Gumaa, and lab assistant Asia. M.Ahmed and my animal attendant Abdalla Haroon.

Finally to all those I do not mention my deep respect and a lot of thanks.

Elkhier Tamour Ahmed Tamour

Abstract

This study was conducted to investigate the changes on blood parameters due to walking stress and the response of blood parametres to walking stress in correlation with sex and season in 21 desert goats, which were allocated randomly into test group (6bucks, 6 does), control group (5 bucks, 4 does), and transported in two experiments (Experiment one in winter and experiment two in summer) in the year 2011, up to 12 km round trip for 7hrs, every experiment was replicated three times with one week interval. Blood samples was taken before transport, at 7hrs transport and 24 hrs rests, in the same time interval blood was collected from control group. Blood samples were assessed for; RBCs count, hemoglobin concentration, PCV, MCV, MCH, MCHC, serum glucose, total leukocytes and differentials count. Hb concentration, increased (P<0.05) at 7hrs transport in the experiment one, PCV, MCV values decrease (P,0.05) and serum glucose concentration increase (P<0.05) at 7hrs transport in the experiment two neutrophils percentage, N:L ratio were increase (p<0.05), lymphocytes percentage decrease (p<0.05) at 7hrs transport in both experiments, while eosinophils, monocytes percentages were increased (P<0.05) at 7hrs transport in the experiment one, and eosinophils percentage decrease(p<0.05) at 7hrs transport in the experiment two. However RBCS, MCH, MCHC values were not show any significant change in both experiment. Sex did not have any significant effect on the response of blood parameters to walking stress in this study, while in the case of the influences of seasons on the response of blood parameters to the walking stress show significant (P<0.05)effects included; decrease of Hb, MCH ,MCHC and lymphocytes percentage, an increase of neutrophils percentage and serum glucose concentration at 7hrs walking stress in summer,

increase of eosinophils and monocytes percentages at 7hrs walking stress in winter. However RBC,PCV,

IV

MCV and total WBCs count were not influenced. It is conclude that walking stress of desert goats in this study induce increase in neutrophils, N:L ratio, decrease in lymphocytes, while sex did not influence the response of blood parameters to walking stress. On the other hand the influence of season on the response of blood parameters to twalking stress induced; eosinophlia, monocytosis, increase in Hb concentration, MCH and MCHC in winter, while induce eosinopenia, increase in glucose concentration in summer, and the changes in neutrophils and lymphocytes percentage in summer were more than those in winter.

مستخلص الأطروحة:

أجريت هذة الدراسة لمعرفة التغيرات في مقاييس الدم بعد إجهاد النقل سيرا على الاقدام لمسافة قصيرة في 21 رأس من الماعز الصحراوي والتي قسمت عشوائيا الى مجموعة تجريبية مكونة من (6 زكور ، 6 اناث) ، ومجموعة تحكم مكونة من (5 زكور، و4 اناث)، نقلت سيرا على الاقدام في تجربتين (الاولى في الشتاء والثانية في الصيف) في العام 2011 في رحلة دائرية لحوالي 12كلم ولمدة 7 ساعات، كررت كل تجربة ثلاث مرات بواقع اسبوع يفصل بينها ، جمعت عينات الدم قبل النقل ، وبعد النقل لمدة 7 ساعات، وبعد الراحة لمدة 24 ساعة، وفي الوقت نفسة جمعت العينات من مجموعة التحكم. أستخدمت عينات الدم لعد كريات الدم الحمراء، تركيز الهيموقلوبين، نسبة حجم الخلايا المتراصة، متوسط حجم الكرية، متوسط الهيموقلوبين في الكرية، متوسط تركيز الهيموقلوبين في الكرية تركيز الجلوكوز في السيرم ،والعد الكلي والتمييزي لخلايا الدم البيضاء. فوجد ان تركيز الهيموقلوبين يزداد معنويا بعد النقل ل7 ساعات في التجربة الاولى ، حجم الخلايا المتراصة ومتوسط حجم الكرية ينخفض معنويا و تركيز الجلكوز في السيرم يزداد معنويا بعد النقل ل7 ساعات في التجربة الثانية. نسبة العدلات، و النسبة بين العدلات: الليمفاويات إزدادتان معنويا، وإنخفضت نسبة الليفاويات معنويا وذلك بعد النقل ل 7ساعات في التجربتين معا بينما نسبتي الحمضيات و الوحيدات از دادتا معنويا بعد النقل ل 7ساعات في التجربة الاولى وانخفضت نسبة الحمضيات معنويا في التجربة الثانية بينما عد كريات الدم الحمراء متوسط الهيموقلوبين في الكرية، متوسط تركيز الهيموقلوبين في الكرية لم تظهر اي تغيرات معنوية في التجربتين معا. الجنس لم يظهر اي اثر على استجابة مقاييس الدم للاجهاد الناتج عن النقل سيرا على الاقدام في هذة الدراسة ،بينما في حالة تأثير الفصول على استجابة مقاييس الدم للاجهاد الناتج عن النقل سيرا على الاقدام اعطى تأثيرات معنوية تمثلت في نقصان تركيز الهيموقلوبين متوسط الهيموقلوبين في الكرية، متوسط تركيز الهيموقلوبين في الكرية ، نسبة الليفاويات ، وزيادة نسبة العدلات تركيز الجلوكوز في السيرم بعد النقل ل7 ساعات في فصل الصيف. زيادة نسبتي الحمضيات و الوحيدات عند النقل ل7 ساعات في فصل الشتاء. بينما عد كريات الدم الحمراء ، نسبة حجم الخلايا المتراصة ، متوسط حجم الكرية ، والعد الكلي لخلايا الدم البيضاء و النسبة بين العدلات : الليمفاويات لم تتغير تغيرا معنويا. وخلصت الدراسة إلي ان إجهاد النقل سيراً علي الاقدام لفترة قصيرة للماعز الصحراوي في هذة التجربة احدث زيادة في نسبة خلايا الدم العدلة ، زيادة النسبة بين العدلات : الليمفاويات ، نقصان نسبة خلايا الدم الليمفاوية ، اما الجنس ليس لة اي تأثير في استجابة مقايسس الدم لاجهاد النقل سيرا على الاقدام بينما في حالة تأثير الفصول في استجابة مقاييس الدم لاجهاد النقل سيرا

VI

علي الاقدام احدثت زيادة نسبة الخلايا الحمضية والوحيدات ومتوسط تركيز هيموقلوبين الكرية في فصل الشتاء، اما في الصيف فاحدثت نقصان نسبة الخلايا الحمضية، تركيز الهيموقلوبين، متوسط الهيموقلوبين في الكرية، وزيادة تركيز الجلوكوز التغيرات في نسب العدلات ،الليمفاويات عند النقل في الصيف اكبر من تلك الموجودة في حالة النقل في الشتاء.

VII

List of contents:

	Items	Pag
		e
	Preface	I
	Dedication	II
	Acknowledgement	III
	Abstract	IV
	Arabic abstract	VI
	List of contents	VIII
	List of Table	XIII
	List of abbreviations	XV
	Introduction	1
1	Chapter one: literature review	3
1.1	Desert goats	3
1.2	Stress, general concepts and definition	3

1.3	Factors affecting physiological response to stress	4
1.4	Effects of transport stress	4
1.4.1	Animals behaviors' during transport	4
1.4.2	Body temperature	5
1.4.3	Heart rate	5
1.4.4	Live body weight	5
1.4.5	Muscle glycogen and ultimate pH	6
1.4.6	Blood parameters	6
1.4.6.	RBCs, PCV, and Hb	6
1		

VIII

1.4.6.2	Leukocytes profile	7
1.4.6.2.1	Total leucocytes count	7
1.4.6.2.2	Differential leukocyte count (DLC)	8
1.4.6.2.2.1	Neutrophils	8
1.4.6.2.2.2	Eosinophils	9
1.4.6.2.2.3	Basophils	9
1.4.6.2.2.4	Lymphocytes	9
1.4.6.2.2.5	Monocytes	10
1.4.7	Blood chemistry	11
1.4.7.1	Hormones	11
1.4.7.1.1	Cortisol	11
1.4.7.1.2	Catecholamine	11

1.4.7.1.3	Thyroid hormones T ₄ , and T ₃	12
1.4.7.2	Plasma total protein and albumin	12
1.4.7.3	Non-esterified fatty acids	12
1.4.7.4	Aspartate aminotransferase (AST), alanine aminotransferase (ALT) creatine phosphate kinase (CPK), nitrogen urea, lactic acid, uric and free fatty acids:	13
1.4.7.5	Urea	13
1.4.7.6	Mineral balance	14
1.4.7.7	Glucose	14

IX

1.4.8	Effect of transport stress on shedding of infectious agent	16
1.5	Adaptation to stress	16
1.5.1	General Adaptation Syndrome model (GAS)	16
1.5.2	preliminary response to stress	17
1.5.3	The major common adaptation to stress	17
1.6	The chain of events during road transportation	19
2	Chapter two: Materials and methods	20
2.1	Experimental Animals	20
2.2	Animals housing	20

2.3	Animals feed regime	20
2.4	Study area	20
2.6	Transport protocols	20
2.7	Climatological Data	21
2.8	Blood Sampling	21
2.9	Laboratory Measurements	21
2.9.1	Red Blood Corpuscles (RBCs) Count	22
2.9.2	Hemoglobin (Hb) assay	22
2.9.2.	Principle of method	22
1		
2.9.2.	The Hb reagent (Drabkin) contains	22
2		
2.9.3	Preparation of hemoglobin working reagent (WR	22
2.9.2.	Procedure of hemoglobin assay	23
4		
2.9.2.	Calculation of Hb concentration	23
5		
	X	

2.9.3	Packed cell volume (PCV%) Procedure	23
2.9.4	Erythrocyte indices	24
2.9.4.1	MCV	24
2.9.4.2	MCH	24
2.9.9.4.	MCHC	24

3		
2.9.5	White Blood Cells (WBCs) Count	24
2.9.6	Differential leucocytes count	24
2.9.7	Glucose assay	25
2.9.7.1	Principal of the method	25
2.9.7.2	The components of reagent and stander of glucose	25
2.9.7.3	Preparation of glucose working reagent (WR)	26
2.9.7.4	Procedure of glucose Assay	26
2.9.7.5	Calculation of glucose concentration	26
2.9	Experimental plan	27
2.10	Statistical analysis	27
3	Chapter three: Results	28
3.1	Effect of walking stress on blood parameters	28
3.1.1	experiment one (in winter)	28
3.1.1.1	Erythrocyte series and glucose concentration	28
3.1.1.2	Leukocytes profile	28
3.1.2	Experiment two (in summer)	31
3.1.2.1	Erythrocyte series and glucose concentration	31
3.1.2.2	Leukocytes profile	31

XI

3.2	The	influence	of	sex	on	the	response	of	blood	34
	para	meters to th	ne w	alkir	ng st	ress				

3.2.1	Erythrocyte series, glucose concentration and	34
	leukocytes profiles	
3.3	The influence of seasons on the response of blood	39
	parameters to walking stress	
4	Chapter four: Discussion	42
	Conclusion	46
	Recomendation	46
	References	47

XII

List of tables:

Table .NO	Items	Page
1	Average temperature and relative humidity of the	
	experimental periods	21
2	The effect of walking stress on Erythrocyte	
	series and serum glucose concentration in	
	the experiment one	29
3	The effect of walking stress on Leukocyte	
	profile in the experiment one	
		30
4	The effect of walking stress on Erythrocyte	
	series and serum glucose concentration in	
	the experiment two	32
5	The effect of walking stress on Leukocyte	
	profile in the experiment two	
		33
6	The influence of sex on response of	
	Erythrocyte series and serum glucose	
	concentration to the walking stress in the	35
	experiment one	
7	The influence of sex on response of	
	leukocytes profile to the walking stress in	
	the experiment one	36

8	The influence of sex on response of Erythrocyte series and serum glucose concentration to the walkin stress in the experiment two	37
9	The influence of sex on response of	
	leukocytes profiles to the walkin stress in the experiment two	38
10	effect of season on the response of	40
	Erythrocyte series and serum glucose	40
	concentration to walking stress in desert	
11	goats	
11	Effect of season on the response of	41
	leukocytes profile to walking stress in desert	41
	goats	

XIV

List of Abbreviations:

Abbreviation	Stan for
Dl	Deciliter
DLC	Differential leukocytes count
EDTA3K	Ethylene di amine tetra acetic acid tri-potassium
FL	Femtoliter
GAS	General Adaptation syndrome
GOD	Glucose oxidase
Hb	Hemoglobin
НРА	hypothalamic pituitary adrenal
МСН	Mean corpuscle hemoglobin
МСНС	Mean corpuscle hemoglobin concentration
MCV	Mean corpuscle volume
N:L	Neutrophils : Lymphocytes ratio

Nm	Nanometer			
PCV	Packed cells volume			
Pg	Picogram			
POD	Peroxidase			
RBCs	Red blood corpuscles			
SNS	sympathetic nervous system			
SD	Standard deviation			
WBCs	white blood cells			
WR	Working Reagan			
μl	Micro liter			