

"وهوَ الذي جعلكمْ خلآئفَ الارضِ ورفعَ بعضكمْ فوقَ بعضٍ درجاتٍ ليبلوَكمْ في مآءاتاكمْ إن ربكَ سريعُ العقابِ وإنه لغفورٌ رحيم".

صدق الله العظيم

الأنعام : 165

Acknowledgements

I WOULD LIKE TO THANK MY SUPERVISOR PROF. EZZELDEEN

MOHAMMED OSMAN FOR HIS IDEAS, SUPPORT AND ENCOURAGEMENT;

A HUGE THANK YOU TO MY PARENTS FOR THEIR CONTINUED SUPPORT

TO MY LITTLE SONS ABDO AND NASIR FOR THEIR SMILES AND

TO MY WIFE FOR HER PATIENCE.

2 go remment of the a rayment obtains by seem

مستخلص

يهدف هذا البحث لايجاد وسيلة لتطبيق نظام التحصيل الالكتروني. لايرادات حكومة السودان كجزء من منظومة حكومة السودان الالكترونية.

تتحكم الان وزراة المالية والاقتصاد الوطنى الاتحادية وبشكل مركزى فى طباعة وتوزيع ما يعرف بالاستمارة 15 وهو الوثيقة الوحيدة المبرأة للذمة امام حكومة السودان ، حيث لكل ولاية ومؤسسة قومية تصميم متفرد من هذه الاستمارة للحد من عمليات المراجعة المالية.

وتعتبر عملية التحول من النظام اليدوى الى النظام الآلى تحد كبير فى ظروف السودان الحالية مع مراعاة اتساع الرقعة الجغرافية ووجود مناطق الانتاج خارج تغطية الاتصالات.

قسم البحث العملية الى اجزاء المعالجة التالية:

- تصدر وزارة المالية مايعرف برقم الدفعية الالكترونى والذى يتكون من 12 رقم وهو معُرف لدفعية محددة على نطاق السودان بالاضافة لتعريف جهة اصدار الدفعية والعام المالى. وتكون للمركز مسؤلية المتابعة فى استخدام هذا الرقم واجراء عمليات التدقيق المالى الدورية.
 - الجهة المسؤلة من استخدام هذه الارقام امام وزارة المالية هى ولايات
 السودان المختلفة ومؤسساتها القومية بنفس طريقة النظام المالى مع
 كثيرا من عمليات التدقيق والمراجعة.
 - صراف الاستلام التابع لجهة معينة هو المنوط به الااستخدام المباشر
 لهذه الارقام وفق شروط الكترونية وادارية محددة.

يتم تطبيق النظام على شبكة واسعة وهذا يقود الى تحدٍ رئيسيٍ فى عملية تأمين البيانات لذلك اقترحنا نظام ادارة قواعد بيانات يمكنه التوافق واستخدام ادوات تأمين بيانات معروفة عالميا مثل Kerberos.

من اهداف البحث الاساسية تمكين مؤسسات الدولة المختلفة من تبادل المعلومات المالية وهذه العملية تحتاج الى حل لا يتأثر اطلاقًا بمشاكل الاتصالات لاهمية البيانات المنقولة، لذا اقترح البحث طريقة خدمة الرسائل لهذه العملية والتى تضمن عدم ضياع المعلومة فى حال عدم توفر الاتصال واستخدام تقنية التخزين المؤقت. كما يمكن استخدام قواعد البيانات المؤقتة (Lite Databases) على الاجهزة المحمولة (Handheld Devices) لتبادل المعلومات بين قواعد البيانات المختلفة والوصول لاماكن الانتاج البعيدة خارج نطاق تغطية الاتصال.

ABSTRACT

This research is intended to solve a major problem in implementing Sudan e-government, which represents how electronic payments system will be implemented and prepared to be imbedded as part of the whole system.

The payments system is now centrally managed by Federal Ministry of Finance (MOF). All payments to the government are done through Form_15 which is uniquely designed for any state or national organization. MOF managed the issuing and distribution of this form but does not control how and when will be used.

In this research moving from the paper-based payment to electronic is key challenge; considering the special characteristics of Sudan in terms of rules, regulations and implementation environment.

This research divides process into three parts; each part includes definition of its job, start time, end time, actors and location.

The main process is located in the center (MOF) and it is responsible for generating and distributing unique electronic identifiers for every client (states and national organizations). This identifier is uniquely defining payment through the Sudan and known as a payment number. The center is also responsible for tracing usage of those numbers and performing financial auditing

The second part of the process which resides in the client side is responsible for getting payment numbers from the center and managing the usage of those numbers.

The third part simulated a traditional teller which issues and cancels payments considering all financial rules and our design restrictions such as payment can only be done when an unused payment number is available in the database and the user has rights to use it.

This system will be implemented over WAN, so the security is a major challenge of implementation. We propose a Database Management System that supports a security

authorization.

tool as a third party such as Kerberos which provide single-sign on, data integrity and

The studies designs and models the data exchange method between related clients such as commercial registry, tax chamber and its sub-offices using messaging service with buffering technique to tolerate data loss due unreliability of connection.

CONTENTS

Chapter	One:	Introd	luction
---------	------	--------	---------

Introduction	2
Research overview.	5
Monetary systems.	7
Analysis of Form 15	13
Electronic payment systems	
Chapter Two: Modeling	
Payment numbers	17
Central processes	19
Client processes	23
Security issues.	25
Risks assessment and fault tolerance	26
Chapter Three: Implementation Tools	S
Oracle server	29
Oracle advanced queue	31
Oracle advanced security option	46
Oracle lite.	48
Java Messaging Service (JMS)	49

Chapter Four: System Requirement and design

Use case diagram	52
Class diagram.	64
Sequence diagram	65
State diagram	73
Deployment diagram	74
Conclusion	75
Future Work	76
Reference	77

LIST OF FIGURES

Figure 2.1	System Design	20
Figure 3.1	Point-to-Point Model	31
Figure 3.2	Publish-to-Subscribe Model	32
Figure 4.1	Main view use case	52
Figure 4.3	Main database process use case	53
Figure 4.3	Local database process use case	54
Figure 4.4	Manage payment process use case	55
Figure 4.5	Class diagram	62
Figure 4.6	Create users sequence diagram	63
Figure 4.7	Manage states sequence diagram	63
Figure 4.8	Prepare payment numbers sequence diagram	64
Figure 4.9	Prepare payment numbers file sequence diagram	65
Figure 4.10	Collection sequence diagram	66
Figure 4.11	Prepare database sequence diagram	67
Figure 4.12	Manage users sequence diagram	67
Figure 4.13	Manage handheld derive sequence diagram	68
Figure 4.14	Payment processes sequenced diagram	69
Figure 4.15	Messaging service sequence diagram	70
Figure 4.16	Payment number state diagram	71
Figure 4.17	Message state diagram	71
Figure 4.18	Deployment diagram	72

LIST OF TABLES

Table 1Payment Numbers in Centre Site	 20
Table 2Payment Numbers in Client Site	 23
Table 3Payment Information	 24