Dedication

To my Parents
To my Family
To my teachers
To my Friends

Acknowledgements

Praise is in the first place being to Almightily Allah, who gave me health and aptitude to complete this work.

I am deeply indebted to my supervisor prof. Shadia Abdelaatti Omer for her guidance, advice, encouragement and considerable help throughout the execution and writing of this study.

I wish to express my sincere thanks and gratitude to my cosupervisor Dr. Shams Eldein Hassaballa Ahmed for his helpful suggestion, and continuous support throughout this work. My great thanks are extended to the Animal Nutrition Laboratory staff, University of Khartoum. Also I would like to thank Dr Noha, Dr Eaman, Dr Khalid and Dr Bahaa for their assistance. Thanks to Sudan University of Science and Technology for support and finance this work through the projects of Scientific research Council. Finally, many thanks to all those who helped me to finish this work.

List of Contents

Subjects	Page No.
Dedication	i
Acknowledgement	ii
List of contents	iii
List of Tables	vii
Abstract	viii
Arabic abstract	X
Introduction	1
CHAPTER ONE	5
LITERATURE REVIEW	5
1.1. The need for development of livestock novel feed material	5
1.2. Non-wood forest products (NWFPs)	6
1.2.1.Adansonia digitata	7
1.2.1.1. Food Value	7
1.2.1.2. Main Uses	8
1.2.1.3. Anti – nutritional factors of Tabaldi seed cake:	10
1.3. The common oil seed cakes in the Sudan	10
1.3.1.Groundnut Cake	10
1.3.2: Sesame Seed Meal : (Sesamum indica)	11
1.4. Goats:	12
1.4.1. Feeding Habits of Goats	13
1.4.2. Digestive Efficiency of Goats	13
1.5. Nutritional Requirements of Goats	14
1.5.1. Protein requirements of Goats:	14
1.5.2.Protein Requirements for Growing Kids	15
1.5.3. Energy Requirements:	16
1.5.4. Supplemental Feeding for Goats	18
1.6. Digestion in ruminants :	19
1.6.1. Rumen Digestion:	19
1.6.2. Dry Matter Degradability:	21
1.6.3. Degradation of Cell Wall by Microorganisms:	21
1.6.4. Rumen Degradation and Outflow	22
1.7. Proteins :	22
1.7.1. Measures of Protein Quality:	23
1.7.2. Protein solubility and Degradability by Microorganisms as related to Ruminants	24
1.7.3. Protein Degradation in the Rumen	25

1.8. Ruminal Degradability:	26
1.8.1. Non protein nitrogen (NPN)	27
1.8.2. Ruminal undegraded protein (RUP)	27
1.8.3. Ruminal microbial protein	27
1.9. Feedlot Performance	28
1.9.1. Dry Matter Intake – DMI	28
1.9.2. Feed Conversation Rate – FCR	28
1.10. The gas test:	29
1.11. Rumen ecology	30
a) Rumen pH	31
b) Rumen ammonia	32
c) Volatile fatty acid:	33
d) Rumen bacteria:	34
1.12. General Composition and Function of Blood:	35
1.12.1. Ruminal haemogram:	36
1.12.1.1.Erythrocyte (Red blood cells –RBCs):	36
1.12.1.2.Haemoglobin:	37
1.12.1.3.Packed Cell Volume (PCV):-	38
1.12.1.4.Erythrocyte Sedimentation Rare (ESR):-	38
1.12.2. Leukocyte profile :	38
1.12.2.1. Type of Leukocytes (White Blood Cells - WBCs):	39
1.12.3. Blood Metabolites	40
1.12.3.1.Total protein	40
1.12.3.2.Serum albumin	40
1.12.3.3.Blood urea	41
1.12.4.Minerals	41
1.13.Liver function	42
1.13.1. liver function tests	42
CHAPTER TWO	44
Material and method	44
2.1. Experiment (1) Degradability Study – in Sacco	44
2.1.1. Preparation of sample	44
2.1.2. Experimental Animals and feed	44
2.1.3. Procedure	44
2.2. Experiment (2) Feedlot Performance	46
2.2.1. Experimental Animals	46
2.2.2 Housing	47
2.2.3. Feed and Feeding Protocol	47
2.3. Experiment (3) Gas production	50
2.4. Experiment (4) <i>In-vitro</i> digestibility	51
2.5. Experiment (5) Rumen environment study	52
2.5.1. Experimental animals	52
2.5.2. Feeds	52

2.5.3. Sampling and collection	52
2.5.4. Rumen parameters	52
a) Rumen pH	53
b) b) Ammonia (NH ₃) determination	53
c) Volatile fatty acids determination	53
d) Bacterial count	51
2.6. Experiment (6) Analysis of blood	55
2.6.1. Experimental plan	55
2.6.2. Collection of blood samples	55
2.6.3. Erythrocyte	56
2.6.3.1. Total Erythrocytes Count (TEC):	56
2.6.3.2. Haemoglobin concentration ([Hb]):	56
2.6.3.3.Packed cell volume (PCV): Blood heamatocrit (Hct)	57
2.6.3.4. Calculation of MCV, MCH, MCHC	57
2.6.4. Leukocyte profile	58
2.6.4.1. Total leukocyte count (TLC)	58
2.6.4.2. Differential leukocyte count	59
2.6.5. Blood Chemistry	59
2.6.5.1. Total protein	59
2.6.5.2. Albumin	59
2.6.5.3. Urea	59
2.6.5.4. Creatinine	60
2.7. Serum Electrolytes	60
2.7.1 Sodium [Na]	60
2.7.2 Potassium [K ⁺]	60
2.7.3 Chloride [CI ⁻]	60
2.8. Liver function test enzymes	60
2.8.1. Alanine aminotransferase ALT (GPT)	60
2.8.2. Aspartate aminotransferase AST (GOT)	61
2.8.3. Alkaline phosphates (ALP)	61
2.8.4. Bilirubin (Total and Direct)	61
Statistical analysis	62
CHPTER THREE	63
RESULTS	63
3.1.Chemical composition	63
3.2. Rumen degradability study	65
3.2.1. Dry matter degradability of the three cakes	65
3.2.2. Crude protein degradability of the three cakes	68
3.3. Feedlot performances	71
3.4. Gas production	73
3.5. Rumen environment study	76
3.5.1. Rumen PH	76
3.5.2. Rumen ammonia (NH ₃)	78

3.5.4. Bacterial count 3.6. Erythrocyte profile 8	4
3.6. Erythrocyte profile	
3.7. Leukocytes profile and Electrolytes	6
3.8. Serum chemistry	8
CHAPTER FOUR 90	0
Discussion 90	0
Conclusion 10)3
Recommendation 10)4
REFERENCES 10)5
Appendixes 13	32

List of Tables

	Table	No.
1	The ingredients of the experimental rations (DM%)	48
2	Proximate analysis of the experimental rations (%)	49
3	Proximate analysis of Sesame seed cake(SSC), Groundnut cake(GNC) and Tabaldi seed cake (TSC) (%).	64
4	Rumen degradation of Dry matter of the three cakes.	66
5	Rumen degradation Kinetics of dry matter of the three cakes.	67
6	Rumen degradation of crude protein of the three cakes.	69
7	Rumen degradation Kinetics of crude protein of the three cakes.	70
8	Effect of feeding rations containing different levels of Tabaldi seed cake on Feed lot performance of male Nubian goat kids.	72
9	Gas production (mL/200mgDM) of the experimental rations.	74
10	estimated parameters of the rations.	75
11	Rumen pH (Mean \pm SD) after feeding (0-8 hrs) of the cattle fed different level of (TSC).	77
12	Rumen ammonia (NH ₃) (mg/100ml) concentration (Mean \pm SD) after feeding (0-8 hrs) of the cattle fed different levels of (TSC).	79
13	Rumen Volatile fatty acid (VFA)(mg/100ml) concentration (Mean \pm SD) after feeding (0-8 hrs) of the cattle fed different levels of (TSC).	81
14	Rumen Bacterial count (ml/l \times 10 ⁶) after feeding (0-8hrs) of the cattle fed different level of (TSC).	83
15	Erythrocyte parameters (Mean \pm SD) of Nubian goat kids fed different levels of (TSC).	85
16	leukocyte parameters and Na, K and CL (Mean \pm SD) of Nubian goat kids fed different levels of (TSC).	87
17	Serum metabolites concentration and liver enzymes activities (Mean \pm SD) of Nubian goat kids fed different levels of (TSC).	89

Abstract

This study was carried out at the Experimental Farm of the College of Veterinary Medicine and Animal Production, Sudan University of Science and Technology at Hillat Kuku. The objective of this study was to evaluate Tabaldi seed cake (TSC) physiologically and nutritionally; through proximate analysis, *in situ* ruminal degradability of Dry Matter (DM)and crude protein (CP) was performed for TSC, Groundnut cake (GNC) and Sesame seed cake (SSC)). Rations containing TSC at 4 levels (0%,5%,10% and 15%) were fed to ruminants to assess their effect on feedlot performance, rumen environment and some blood constituents..

TSC showed lower CP (12.48%) and ME (5.7MjKg) content and higher fiber content than GNC and SSC. TSC registered a lower disappearance rate and degradability characteristics of dry matter and crude protein than those of GNC and SSC.

In situ rumen degradability of DM and CP was performed with rumen fistulated steers with the three cakes were incubated in the rumen of for 0, 6,12, 24, 36, 48, 72 and 96 h . TSC registered ,for both the DM and CP , the lowest disappearance rate and degradability characteristics i.e. soluble fraction (a) ,potentially degradable insoluble fraction (b) , potential degradation (a+b) ,the rate of degradation of b(c) and effective rumen degradability at three ruminal flow rates (0.02/hr , 0.05/h and 0.08/hr).

Twenty-four male Nubian goats kids, with an average weight of 10 kgs, were used to study the feedlot performance ,rumen ecosystem and blood analysis. The animal fed rations containing 10% TSC registered the highest total weight gain/head (Kg) ,daily weight gain(g/day) , daily feed intake(kg/day), total feed intake/head (Kg) and the best feed conversion ratio.(FCR) .Animals fed rations containing 15% TSC suffered from diarrhoea at the end of the experiment and registered significantly lower total weight gain/head (Kg). daily weight gain(g/day) , daily feed intake(kg/day), total feed intake/head (Kg) and higher FCR than the other groups.

Rumen environment parameters (pH, NH3, VFAs and Bacterial count) were not affected significantly with the ration except of the rumen pH at 6hrs after feeding was 4.83 ± 0.15 – 5.40 ± 0.01 was registered by the lowest value was registered by animals fed ration containing 0% TSC and the highest value was registered by animals fed ration 10% TSC

The animal fed rations containing 5% TSC registered the highest RBCs×(10⁶/ml), Hb (mg/dl) and P.C.V. (%). Animals fed rations containing 15% TSC registered the lower values.

leukocyte parameters were not affected significantly with the rations except Neutrophil (%) was32.21±9.61-35.14±5.86 the lowest value was registered by

Animals fed ration containing 10% TSC and the highest value was registered by the control group (0% TSC).

Albumen (g/dl), creatinin (mg/dl), T. billirubin (g/dl) and D. billirubin (g/dl) values were not affected significantly with the rations.

The control group showed significantly higher values for Total Protein (g/dl), AST (units/l) and A LP (units/l) than the other groups. The animal fed rations containing 15% TSC registered Lower values for Total Protein (g/dl), ALT (units/l), AST (units/l) and A LP (units/l).

It is concluded that TSC can be incorporated in Nubian goat kids up to 10% to improve their feed intake, body weight gain and feed conversion ratio without any ill signs. Strategic planning and effective implementation are recommended for efficient utilization of indigenous fruit trees in livestock feeding.

ملخص الأطروحة

أجريت هذه الدراسة في المزرعة التجريبية لكلية الطب البيطري والإنتاج الحيواني، جامعة السودان للعلوم والتكنولوجيا حلة كوكو. وكان الهدف من هذه الدراسة هو تقييم ام بازبذرة التبلدي من الناحية الفسيولوجية و القيمة الغذائية، من خلال التحليل الكيميائي، والتحلل الطبيعي في الكرش للمادة الجافة والبروتين الخام امباز بذرة التبلدي ، ام باز الفول السوداني و ام باز بذرة السمسم . غذيت العلائق التي تحتوي على ام با ز بذرة التبلدي في ٤ مستويات (٠٪، ٥٪، ١٠٪ و ١٠٪) للحيوانات المجترة لتقييم تأثيرها على الأداء العام، البيئة الكيميائية والحيوية بالكرش وبعض مكونات الدم .

وأظهر امباز بذره التبلدى انخفاضا في البروتين الخام (١٢,٤٨٪) والطاقة التحويلية (5.7) والطاقة التحويلية (5.7) وارتفاعا في محتوى الألياف أعلى من ام باز الفول السوداني و ام باز بذرة السمسم سجل ام باز بذرة التبلدى انخفاضا في معدل اختفاء وخصائص تحلل المادة الجافة والبروتين الخام من تلك التي سجلت لامباز الفول السوداني وام بابذرة السمسم.

التحلل الطبيعي في الكرش للمادة الجافة والبروتين الخام أديا بعجول مخصيه للامبازات الثلاث وحضنت في الكرش لمدة ، ٦، ١٢،٢، ٢، ٢، ٢، ٢، ٤ و ٩٦ ساعة. سجل امباز بذرة التبلدى ، لكل من المادة الجافة والبروتين الخام أدنى معدل اختفاء وخصائص تحلل أي جزء قابل للذوبان (a) ، غير قابل للذوبان (b)، قابلية التكسر المتوقعة (a + b)، معدل التكسر لل b للذوبان (c) . التحلل في الكرش فعال في ثلاثة نسب (7, 7, 7) ساعة ، (7, 7, 7) ساعة و(7, 7, 7) ساعة و(7, 7, 7) ساعة و(7, 7, 7) ساعة و(7, 7, 7) ساعة استخدمت أربع وعشرين من صغار ذكور الماعز النوبي ، بمتوسط وزن (7, 7) على الأداء العام، البيئة الكيميائية والحيوية بالكرش وتحليل الدم. الحيوانات التي غذيت بعليقه تحتوي على (7, 7) النومية (7, 7) الم باز بذرة التبلدى سجلت أعلى مجموع زيادة الوزن / رأس (كجم)، وزيادة الوزن اليومية (7, 7) الم باز بذرة الحيوانات التي غذيت بعليقه تحتوي على (7, 7) الم باز بذرة الوزن اليومية (7, 7) التجلك العلف اليومي (7, 7) وسجلت أقل زيادة في الوزن / رأس (7, 7) ، زيادة الوزن اليومية (7, 7) واستهلاك العلف اليومي (7, 7) ، بينما كانت الكفاءة التحويلية أعلى من المجموعات الأخرى .

البيئة الكيميائية والحيوية بالكرش (درجة الحموضة ،الامونيا ، الأحماض الذهنية الطيارة وإعداد البكتيريا) لم تتأثر بشكل كبير باختلاف نسبة ام باز بذرة التبلدى في ألعليقه باستثناء درجة الحموضة في الكرش بعد ٦ ساعات من التغذية (٤,٨٣ \pm ٥,٠٠ \pm ٥,٠٠ \pm ٥,٠٠ وسجلت من قبل الحيوانات التي غذيت بعليقه تحتوي على أقل قيمة من ام باز بذرة التبلدى \cdot ، وأعلى قيمة تم تسجيلها من قبل الحيوانات التي تتغذى بعليقه تحتوي على \cdot ، المن ام باز بذرة التبلدى \cdot

الحيوانات التي غذيت بعليقه تحتوي على ٥٪ من ام باز بذرة التبلدى سجلت أعلى عدد لكرات الدم الحمراء (مل× ١٠١)، تركيز الدم (ملغم / ديسى لتر) و متوسط حجم الخلية المرصوص(٪). بينما سجلت الحيوانات التي غذيت بعليقه تحتوي على أقل قيمة من ام باز بذرة التبلدى ١٥٪ انخفاضا لهذه القيم.

لم تتأثر الكريات البيض بشكل كبير باختلاف نسبة ام باز بذرة التبلدى في ألعليقه ما عدا العدلات (%0.35.14±5.86 -32.21±9.61 واقل قيمه سجلت من قبل الحيوانات التي غذيت بعليقه تحتوي على ١٠٪ من ام باز بذرة التبلدى ، وأعلى قيمة تم تسجيلها من قبل مجموعة التحكم (%0).

الزلال (غ / دیسی لتر)،الکریاتنین (ملغم / دیسی لتر)، والبلیروبین (غ / دیسی لتر) لم تتأثر بشکل کیبر

لك وحدة / لينر) و LP (وحدة / لينر) و AST أظهرت مجموعة التحكم (٠٪) قيم أعلى بكثير لإنزيمات الكبد AST (وحدة / لينر) و البروتين (غ / ديسي لتر) .

الحيوانات المغذاة على عليقه تحتوي على ١٥٪ ام باز بذرة التبلدى سجلت القيم الأدنى للبروتين (غ / ديسى لتر)، ALT (وحدة / لينر)، AST (وحدة / لينر) وALT (وحدة / لينر). يُستَنتجُ من ذلك بأنّ امباز بذرة التبلدى يُمْكِنُ أَنْ يضاف إلى صغار ذكور الماعز النوبي حتى ١٠ % لتَحسين كمية غذائهم، زيادة وزن الجسم وزيادة الكفاءة التحويلية بدون أيّ إشارات مرضية. التخطيط الإستراتيجي والتطبيق الفعّال يوصتى بكفاءة استخدام أشجار الفاكهة المحلية في تغذية الماشية.