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ABSTRACT 
In a free multicultural society a spam message is different from one user to 
another, i.e. certain content may be acceptable to one user but not be 
acceptable to another. So what is “unwanted” by one user may be liked by 
another user, what is classified as spam by one user at sometime may not be 
classified by the same user at other time. Therefore, there is a need to extend 
the standard spam filters to incorporate the different interests of the users 
and the changing interests of each user.  
 
In this thesis an attempt is made to extend the spam detection to follow the 
liking of the user. This is termed personalized spam detection. Thus the main 
objective of this work is to design a user personalized algorithm to detect 
English spam and modify it according to the complexity of Arabic language 
to detect Arabic and mixed (Arabic and English) spam emails. 
 
A dataset of Arabic emails which includes spam and non-spam is built. The 
data set is used to train Naïve Bayesian classifier to build Arabic spam 
detection model. Cross validation experiments are used to evaluate the 
model.  
 
 A personalized spam detection web based, Permail, is developed and used 
for comparison against the spam filtering capabilities of Microsoft Hotmail, 
Google Gmail, and Yahoo Mail and to determine the effectiveness of spam 
filtering for each provider. The criteria used in the comparison are the 
quantity and percentage of spam in the Inbox. 
 
In this work three models are presented, the first one is an English spam 
detection model which uses a Naïve Bayesian algorithm where  the model is 
trained using a large corpus of spam and non-spam messages and then tested 
using a standard dataset (From the Second Conference on Email and Anti-
Spam CEAS 2005, Stanford University, Palo Alto, CA). The results are 
comparable to those obtained from other models. The model is then 
extended and modified to handle second model of Arabic and mixed 
(English and Arabic) data model. It is then tested against the Arabic corpus. 
A personalized web based spam detection system which was developed to 
provide a more personalized mail system to filter spam emails. Third model 
is personalized mail system (Permail). Which is classify spam message 
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based on the behavioral of each user and it can provide a more personalized 
mail system to filter spam emails. 
 
The result of comparing performance of three classification techniques, 
Decision Tree J48, ZeroR, and Logistic Regression with the proposed 
Arabic spam detection shows the success criteria for text classification have 
significantly increased by using the proposed spam detection model. 
 
The result of using the corpus of the body of the message is better than that 
of the subject. The result of comparing the web based spam detection system 
with three known mail systems showed that the proposed system is the best 
one. 
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  ص لخستمال
  

من ف .المزعج تختلف من مستخدم لآخرالالكتروني رسالة البرید  إنمتعدد الثقافات ال في المجتمع
من قبل " غیر المرغوب فیھ"حتى ما ھو  .یكون مقبولا لآخر لایكون مقبولا لمستخدم  ماالمحتوى 

غیر مرغوبة  رسائل مستخدم واحد قد یكون محبوبا من قبل مستخدم آخر، أي ما تصنف على أنھا
ھناك فولذلك  .من قبل نفس المستخدم في وقت آخرتصنیفھا  یتمفي وقت ما قد لا من قبل مستخدم 

في ھذه الأطروحة تم إجراء . المستخدمین رغبات لتتماشى معالمرشحات القیاسیة  دمجحاجة إلى 
على ویطلق . كشف البرید الغیر مرغوب لمتابعة الرغبات المتغیرة للمستخدمل لتطویر نموذجمحاولة 

 صنكشف الرسائل المزعجة المشخ ذلك
  

غیر مرغوب لمتابعة لكتروني كشف البرید الال لتطویر نموذجفي ھذه الأطروحة تم إجراء محاولة 
الھدف . صنالمشخ غیر المرغوبةكشف الرسائل  على ذلكویطلق . الرغبات المتغیرة للمستخدم

غیر  الالكتروني البریدبناء نظام مشخصن للمستخدم لكشف رسائل الرئیسي من ھذا العمل ھو 
  الإنجلیزیة وتعدیلھ وفقا لمدى تعقید اللغة العربیة للكشف عن رسائل البرید الإلكتروني ةالمرغوب

   .)العربیة والإنجلیزیة(والمختلطة العربیة  مرغوبالر غی
  
الالكتروني عربیة واستخدمت لاختبار نموذج الكشف عن البرید الكتروني تم تجمیع رسائل برید   

لبناء  )Naive Bayes( لتدریب مصنف الرسائلتم استخدام مجموعة . العربیةغبر المرغوب 
جارب التحقق من صحة تستخدم وت. مرغوبالیر عن البرید الالكتروني غ لكشفلعربي النموذج ال

  .ھذا النموذج
  
، للمقارنة  Permail، وب لبرید المزعج على الن اعم تطویر واستخدام نظام الكشف المشخصن ت

 Microsoft Hotmail, Google Gmail, Yahoo(ضد قدرات مرشحات البرید المزعج من 
Mail( كانت المعاییر المستخدمة في المقارنة .  منتجالبرید المزعج لكل  ترشیح، لتحدید مدى فعالیة

  .الوارد قائمة البریدكمیة و نسبة البرید المزعج في 
 

لبرید المزعج للرسائل اعن ماذج ، الأول ھو نموذج الكشف یتم عرض ثلاثة ن البحثفي ھذا 
حیث تم تدریب النموذج باستخدام ) Naïve Bayesian(الانجلیزیة الذي یستخدم خوارزمیة 

من رسائل البرید المزعج وغیر المرغوبة ومن ثم اختبارھا باستخدام مجموعة بیانات  مجموعة
، 2005عام  CEASمن المؤتمر الثاني على البرید الالكتروني و مكافحة البرید المزعج (قیاسیة 

وكانت النتائج مماثلة لتلك التي تم الحصول علیھا من ) . جامعة ستانفورد ، بالو ألتو ، كالیفورنیا
 و لغة العربیةرسائل اللتعامل مع النموذج الثاني لو تعدیل نموذج  تطویرثم جرى . نماذج أخرى 

تم .عة من الرسائل العربیةوثم تم اختباره ضد مجم .)العربیة والإنجلیزیة ( مختلطة الالرسائل 
  (Permail)نظام الكشف المشخصن للبرید المزعج على الشبكة العالمیةالنموذج الثالث وھو  تصمیم

والذي تم تطویره لتوفیر نظام برید أكثر تخصیصا لتصفیة رسائل البرید الإلكتروني غیر مرغوب 
  .فیھا

  
 Decision Tree J48, ZeroR, and Logistic(نتیجة لمقارنة أداء ثلاث تقنیات التصنیف، 

Regression ( معاییر النجاح  اتضح ان عن البرید المزعج العربي المقترحمع نموذج الكشف
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 .لتصنیف النص قد زادت بشكل كبیر عن طریق استخدام النموذج المقترح للكشف عن البرید المزعج
  .موضوع الرسالة استخدام كانت نتیجة استخدام مجموعة بیانات نص الرسالة أفضل منقد و
  

 .نص الرسالة ھو افضل من موضوع الرسالةعلي  اظھرت نتیجة استخدام مجموعة بیانات 
أنظمة  من أظھرت نتیجة المقارنة بین نظام الكشف عن البرید المزعج على الشبكة العالمیة مع ثلاثةو

  .فضلالأالبرید المعروف أن النظام المقترح كان 
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CHAPTER ONE 
INTRODUCTION 

1.1 Motivation 
To understand the problem of spam, we must first establish common 
definitions, explain why the problem exists, discuss limitations of current 
solutions, and make suggestions of work that can lead to solutions that 
minimize the effect of the spam problem. 
 
Email is a method of sending and receiving messages over electronic 
communication systems such as the internet. The modern day protocol for 
sending email is the Simple Mail Transfer Protocol (SMTP), proposed in 
1982[1]. The most commonly used protocols for email retrieval by client 
programs are the Post Office Protocol (POP) [2] and Internet Message 
Access Protocol (IMAP) [3], which were proposed in 1984 and 1996 
respectively. 
 
Spam “unsolicited bulk email,” is email which the user does not want and it 
comes without his permission and he cannot easily stop receiving it. The 
story of the origin of the slang word spam details in Appendix A. Spamming 
in the electronic communications medium is the action of sending 
unsolicited commercial messages in bulk without the explicit permission or 
desire of the recipients [4] . A person engaged in spamming (sending spam) 
is called a spammer [5]. 
 
It is important to note that spam is not only annoying to the individual user, 
but also represents a security risk and resource drain on the system. It is 
noteworthy that in developing countries where the bandwidth is limited 
spam can create unwanted traffic amounting to a kind of denial of service. 
Email is a cost effective method of marketing legitimate products or services 
to millions of users, but it can also be used to conduct scams and confidence 
schemes to steal user information[6]. 
 
We assume that in a free multicultural society a spam message is different 
from one user to another i.e. certain content may be more acceptable to one 
user but not be acceptable to another. So what is “unwanted” by one user 
may be liked by another user i.e. what is classified as spam by one user may 
not be classified by another and by the same user what is classified as spam 
sometimes with some conditions may not be classified as spam if this 
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condition changed so the liking of the user changes dynamically. Therefore, 
there is a need to extend the standard filters to incorporate the interest of the 
users and the dynamic of opinion change. In this thesis an attempt is made to 
extend the spam detection to dynamically follow the liking of the user. It is 
termed personalized spam detection [7]. 
 
Most current spam filtering systems have worked in English spam message 
by relying on the content of the email message there is missing on dynamic 
English spam detection which would classify spam differently from one user 
to another. There is a need to have a dynamically user spam detection. It is 
important to have such detection system for the other languages. People 
whose mother tongue is a language other than English cannot be forced to 
use English. They resort to using their mother tongue (e.g. Arabic) or a 
mixture of English and their mother language (e.g. English and Arabic). This 
is particularly significant following the new accelerating friendly trend of 
multilingualism in the internet which is a consequence of the World Summit 
on Information Society (WSIS)[8]. There are no published detection models 
on Arabic messages. Currently this situation creates an unjustified 
disadvantage in the community of Arabic users. 
 
Due to the immense amount of Arabic emails as well as the number of 
internet Arabic language users, this thesis aims and attempts to provide 
Arabic spam detection. 

1.2 Problem Statement 

Spam or unsolicited email is defined by the fact that the recipients did not 
request the mail or reveal their email addresses for the purposes of receiving 
such mail. Email has seen explosive growth of usage in the last years, a 
considerable number of people all around the world use email as a very 
quick, handy and cheap way of communication. Internet users face many 
problems in this case. Spam continues to be a growing problem accounting 
for over 90% of all email today[9]. While spam filters have become more 
effective and widespread, many spam messages continue to be delivered to 
end users. This problem has negatively impacted consumers, businesses, and 
Internet Service Providers (ISPs) because spam represents a security risk and 
resource drain on the system. It is noteworthy that in developing countries 
where the bandwidth is limited spam can create unwanted traffic amounting 
to a kind of denial of service. A possible cause of this problem is that 
producers most continuously seek new ways for advertising their products in 
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order to maximize their sales. Therefore, sending emails to people would be 
a reasonable way of advertising products since it is very cheap, quick and an 
effective way for organizations and businesses spam handling results in huge 
financial losses, in addition to being a source of annoyance. A 1000 user 
organization spends more than $1.8 million to take care of spam, according 
to the estimates provided in[10]. 
The usage of the internet throughout the Arab world is witnessing a rapid 
increase every day. The total of population in Arab countries is around 350 
million people (5% of the World population), and the total of Arab internet 
users is around 65 million users (3.3% of the total internet users) [11]. In 
recent years, the ratio of Arabic email spam messages has increased a lot and 
the users of Arabic emails face the problem of spam on a very large scale but 
the research in this area is not as advanced as its counterpart for English 
spam. 
The basic problem of this thesis is to create a model that can dynamically 
classify spam (English and Arabic) from legitimate messages. 
In this thesis, a dataset of Arabic emails is collected and I used them to train 
different algorithms in order to classify between spam and non-spam. Naïve 
Bayesian is used to classify English emails (developed model by the Matrix 
laboratory (Matlab)) [12] and modified to classify Arabic emails using a 
Python programming language [13] is used to build an Arabic spam 
detection model. Cross validation experiments are used to evaluate the 
model. An Active Server Pages (ASP) [14] programming language is used to 
develop a web based spam detection system we called it Permail.  
 
1.3 Objectives 
The main objectives of this thesis are to: 

 Build a dynamic and personalized model to detect English spam 
emails and then test the model against a standard data set. 

 Modify the English model to detect Arabic and mixed (English and 
Arabic) spam emails. 

 Collect and build an Arabic corpus for testing the Arabic spam 
detection model. 

 Create Arabic spam words for using in spam filters. 
 Develop Personalized spam detection web based (Permail) and 

compare the spam filtering capabilities of Microsoft Hotmail, Google 
Gmail, Yahoo Mail and Permail to determine the effectiveness of 
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spam filtering for each provider. The key measurements for this thesis 
are the quantity and percentage of spam in the Inbox. 

1.4 Methodology 
The methodology of this thesis is to build spam detection framework include 
English spam detection model, Arabic spam detection model, web based 
personalized spam classification system, and create Arabic spam corpus. 

1.4.1 English spam detection model 
1. Use Matrix laboratory (Matlab) [12] to develop a personalized English 

spam detection model 
 Use emails corpus from Second Conference on Email and Anti-

Spam CEAS 2005, Stanford University, Palo Alto, CA [15] 
 Apply Naïve Bayesian (NB) to the proposed model to gain the 

advantage of the Naïve Bayesian classifier. 
 Perform the preprocess step and eliminated the common words 

from the message which we are going to classify. 
 Since different users receive different types of legitimate 

emails, the training process of model probabilities of spaminess 
of words is computed differently and as a result we would have 
different classification for each user. 

 On the test phase, we find out the most interesting words of that 
message. Afterwards, we find out the spam message which 
contains this word. From Bayes rule. 

 Design graphical user interface (GUI) to check whether the 
given email is classify as either spam or non-spam email. 

 Evaluate the model by using recall and precision Matrix 
algorithms[16]. 

1.4.2 Arabic spam detection model 
2.  Use  Python programming language [13] to build an Arabic spam 

detection model 
 Modify the Naïve Bayesian model built for English spam 

emails to create the Arabic spam detection model. 
 Build a dataset of Arabic emails include spam and non-

spam. The first part is called a training dataset to use to 
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build the model, and contains around 700 messages. 
While the second part is called a test data set, contains 
around 300 messages, and used to evaluate the model. 

 Extract a set of features from the Arabic dataset. 
 Perform feature selection. 
 Evaluate Naïve Bayesian algorithms to classify incoming 

email as spam or non-spam. 
 Use 10-fold cross validation to calculate the accuracy of 

the classifiers as the following: 
 Break data into 10 datasets of size n/10, where n 

is the data size. 
 Train the model on 9 datasets and test it on one 

dataset. 
 Repeat 10 times and take a mean accuracy[17]. 

1.4.3 Web based spam detection system 
3.  Use an ASP programming language to build a spam detection web 

based system we call it Permail 
 Use MS Access to build an email database. 
 Use Object Database Connectivity (ODBC) [18] to 

create a connection string. 
 Develop ASP program files that can perform the 

transactions between the front end (web pages) and 
back end (database). 

 Examine the performance of personalized spam 
detection email by creating many users and see the 
dynamic content of whitelist, blacklist and vocabulary 
list which is different from one user to another, this 
showed the dynamic performance of the system and 
personalized user lists. 

 Use English published corpus to send about 102 emails 
(spam and non-spam) to Permail, Hotmail, Yahoo and 
Gmail systems. 

 Compare the classification results of Permail, Hotmail, 
Yahoo and Gmail to identify the best classifier to 
detect spam emails. 

1.4.4 Creation of Arabic corpus 
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Collect and build an Arabic corpus for testing the Arabic spam detection 
model. Create Arabic spam words for using in spam filters. 
1.5 Thesis Importance 

This thesis tacks his importance from the following main point for the 
Arabic spam detection, there is no: 

 Standard Arabic emails corpus and Arabic spam words use in spam 
filters. 

 Spam detection model for Arabic emails. 
 Dynamic spam detection web based email system. 
 Published literature for Arabic spam classification. 

1.6 Contributions 

This section presents the contributions and contains papers, publications and 
others as follows: 

1.6.1 Publications 

This thesis has produced three papers 
 Asma Ibrahim, Izzeldin Mohamed Osman, "A Behavioral spam 

Detection System", Advances in Intelligent and Soft Computing, 
Future Computer, Communication, Control and Automation ABC, 
ISBN 978-3-642-25537-3, ICEA Conference- Shanghai, China 2011. 

 Asma Ibrahim, Izzeldin Mohamed Osman, "Arabic spam detection 
model", Submitted for publication to World of Computer Science and 
Information Technology Journal (WCSIT). 

 Asma Ibrahim, Izzeldin Mohamed Osman, "Personalized spam 
Detection model." 

1.6.2 Other Contributions 

In addition to publishing the papers mentioned in the above paragraph the 
thesis has the following additional contributions 
 
Build an international Arabic email corpus – An Arabic emails data set 
was collected to perform training and testing of Arabic detection models. 
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Arabic spam detection model – A model to detect and classify Arabic 
emails into spam and legitimate was developed. This model used Naïve 
Bayesian algorithm to classify the messages. 
Personalized Spam Detection Web Based System - A dynamic email 
system to classify spam message into spam and legitimate was developed. 
This system depended on the behavior of the user and built dynamically, 
personalized whitelist, blacklist and vocabulary list. 
Create Arabic spam words – This words can use in Arabic spam filters.  

1.7 Thesis Organization 

This thesis is divided into six chapters: Introduction, Literature review, 
Arabic email corpus, Arabic spam detection model, personalized spam 
detection algorithm, and Conclusion. 
 
Chapter 2: Literature Review 
This chapter gives a review of (all spam solutions) the well known spam 
detection methods with their advantages and disadvantages; also presented 
the machine learning algorithms and discuss the Naïve Bayesian in details. 
 
Chapter 3: Arabic Email Corpus 
This chapter gives a short review of English email corpus, presents the 
importance of corpus in Natural Language Processing (NLP) process; also 
shows the lack of Arabic email corpus, shows the need of Arabic email 
corpus and describes the proposed corpus. 
 
Chapter 4: Arabic Spam Detection Model 
This chapter discusses in details the Arabic spam detection model, testing 
the model, the experiments and results. 
 
Chapter 5: Personalized Spam Detection Algorithm 
This chapter discusses in detail the architecture of the personalized spam 
detection model, present all screens of the dynamic email system which is 
used to detect spam messages dynamically, testing the model, the 
experiments and results. 
 
Chapter 6: Conclusion 
This final chapter contains a summary of the content of the thesis, and 
recommends areas for future research. 
A list of references follows and Appendixes. 
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CHAPTER TWO 

 LITERATURE REVIEW 
The problem of unsolicited bulk email, or spam, gets worse with every year. 
The big amount of spam being sent wastes resources on the internet and 
wastes time for users. This development has stressed the need for spam 
filters [19], several filters have been built to protect from this problem.  
This chapter gives a review of the well known spam solutions with their 
advantages and disadvantages. There are many studies to filter spam of 
English email which use the Naïve Bayesian because it is the one of the best 
spam filter algorithms and NB classifier can outperform other powerful 
classifiers when the sample size is small [20]. There are many studies of 
Arabic web pages spam but  there is a scarcity of published studies of Arabic 
email spam and there is a need for personalized spam detection system that 
produced a new personalized feature not found on the other famous email 
systems(Gmail, Hotmail or Yahoo).The following literature review attempt 
to present the previous studies and related works. 

2.1 Spam Solutions Approach 
Many different spam filtering approaches have been tried in filtering models. 
Most of these have a degree of effectiveness and drawbacks. The six most 
significant spam filters are discussed below, along with their strengths and 
weaknesses. 

2.1.1 Rule Based Approach 
With the rule based approach, each email is compared with a set of rules to 
determine whether it is spam or not. A rule set contains rules with various 
weights given to each rule. Initially, each incoming email message has a 
score of zero, then, the message is passed to detect the presence of any rule. 
If any rule is found in the message, its weight is added to the final score of 
the email. In the end, if the final score is found to be above some threshold 
value, the email is declared as spam[21]. Rules are observations of features 
that are found more frequently in spam than in legitimate messages. 
 
Advantages 
This approach can be very effective with a given set of rules. It can achieve 
90 to 95 percent efficiency. The filter is easy to install, it requires copying 
the rule set. It requires neither training nor any sort of personal tuning. 
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Further, the rule set can be updated by copying an additional set of rules to 
challenge the current trend of spam [22]. 
 
Disadvantages 
The disadvantage to the rule based approach is there is no self learning 
facility available for the filter. Spammers with knowledge of the rule set can 
design a spam to deceive the method. For example, if there is a rule for 
classifying a message as a spam if the message contains the word “Wine” 
more than five times, the spammer can easily circumvent the rule by using 
the term “W*i*n*e” instead of “Wine.” Rules cannot be kept secret. The 
best option is to go through every spam and update the rule set by manually 
adding new found rules. Unfortunately, this updating process is never 
ending, as the spammers continually devise new procedures to deceive the 
spam filters. This process requires personal effort, time, and some level of 
expertise, qualities not found in every email user [23].  

2.1.2 Blacklist Approach 
This technique simply involves organizations manually keeping a list of the 
Internet Protocol (IP) addresses of known spammers (a “black list”) so that 
emails from those addresses are blocked [24]. 

2.1.3 Whitelist Approach 
Whitelists contain legitimate addresses. The email messages arriving from 
any of these addresses are allowed to pass into the recipient’s mailbox. The 
messages with sources that are not whitelisted are considered to be spam. It 
is difficult to maintain an exhaustive list of all legitimate addresses. The 
better option would be to share whitelists among correspondents, friends and 
relatives. However, this, too, can be an easy route for a spammer to get a big 
list of legitimate addresses [25]. 
 
Table 2.1 Whitelist and Blacklist Advantages [26] 

Blacklist Advantages Whitelist Advantages 
Easty to manage More secure 
Easy to install More accurate 
Can download update quickly Minimizes false positive 

Can be created at various levels 
within the enterprise 
Easy to customize 
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Table 2.2 Whitelist and Blacklist Disadvantages [26] 
Blacklist Disadvantages Whitelist Disadvantages 

Exponential growth More time to manage 
Many false positives. Requires additional time install. 

Reviews all new IP address Continual updates are required 
Hard to switch to whitelist 

2.1.4 Signature-based Approach 

The signature-based approach compares every new incoming email with the 
known set of spam [27]. The signature-based approach works in this way 
each character in an email carries weight. So, the summation of all 
characters would give a final score that is used as the signature of that email. 
Thus, every new message’s signature is compared with that of a spam’s 
signature. If the signatures match, then the new email is classified as spam 
[28]. 
 
Advantages 
The signature-based approach rarely generates false positives. It is usually 
very fast to compute[29]. 
 
Disadvantages 
These filters are easy to defeat. Since they are backward looking, they take 
action only after they become aware of a spam. A small change in emails 
might make the filter useless. Just by adding some random characters to each 
spam, the signatures of each will be different from the original spam. Thus, 
all such spam messages will pass for legitimate messages. In addition, these 
filters can only be used at the Internet Service Provider (ISP) level as first 
pass filters [30]. 

2.1.5 Filters Fight Back 

The filters fight back approach is the most aggressive among all the 
approaches adopted for filtering spam. It employs the policy of “attack is the 
best self-defense.” A spam message usually includes Uniform Resource 
Locator (URLs) for the readers to visit a site. The purpose may be 
commercial or social. The filters fight back approach works in this way once 
a message is detected as a spam, these filters send a number of requests to 
those URL-specified sites. A user can personally configure the number of 
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requests. If any spam is sent to thousands of users, there is a high possibility 
that the server hosting that site would receive millions of requests increasing 
the cost and the bandwidth, effectively shutting down all its services [31]. 

Advantages 
Since spam it has been the reason for the spammer’s loss, spammers would 
hesitate to send spam to unknown users. More recipients of the spam would 
create more loss to the spammer’s web server [32]. 
 
Disadvantages 
The job prior to fighting back is to detect a spam. Any URL sent to 
thousands of users mainly indicates a spam. However, at the bottom of every 
message, there are many advertisements, such as Yahoo, MSN, etc., many of 
which are legitimate URLs. If the site turns out to be legitimate, negatively 
affecting the site might involve legal proceedings. To avoid such confusion, 
auto-retrieval filters should refer to blacklists for servers that are banned. 
Further, the servers need to be blacklisted by human intervention, thus 
ensuring that the auto-retrieval filters send requests only to web servers that 
are blacklisted. 
With this approach, there is an easy way out for spammers. They need to 
include only active unsubscribe links in their messages. In that way, the 
senders with auto-retrieval filters will be unsubscribed from the program, 
which is good news. However, the spam is not reduced globally. There is 
also the possibility that spammers might include their contact information 
and their image for marketing purposes instead of their URLs. Doing so, 
would wholly eliminate the danger of auto-retrieval filters. To make this 
filter more effective, one needs to fine-tune the filter to each user’s incoming 
message. Fine-tuning a filter requires time and expertise, both of which are 
often hard to come by. Thus, one needs a filter that is adaptive in nature, one 
that self learns from the given legitimate messages and spam [32]. 

2.1.6 Content-Based Filters 

Content filtering was one of the first types of anti-spam filters to be used. An 
example of such filter is spam Assassin [33], which works by scanning the 
textual content of the email against each rule and adds the scores for all 
matching rules. If the total score of the email exceeds some set threshold 
score, then the message is considered spam. 
The simplest of content-based rules flag emails if a specific string or 
expression was matched. For example, one type of content filtering rule 
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would be to match all emails that contained a variation of the word WINE in 
the body or subject line[34]. 
Content-based filters can also match keywords or expressions in other parts 
of the email such as the headers or the base64 encoding of email attachments 
and embedded images. Email headers are typically used to determine where 
an email came from and how it was delivered from the initial source to the 
current destination[35]. 
 
 Table2.3: A Summary of the comparison of some spam filtering approachs 
[36] 

No Approach Good Bad 

1 Complaining to 
Spammers' ISPs 

Raises cost of spamming. Laborious 

2 Mail Server 
Blacklists 

Block spam right at the 
server. 

Incomplete, sometimes 
irresponsible 

3 Signature-based 
Filtering 

Rarely blocks legitimate 
mail. 

Catches only 50-70% of 
spam. 

4 Naïve Bayesian 
Filtering 

Catchs 99% to 99.9% of 
spam, low false positives. 

Has to be trained. 

5 Rule based 
Filtering 

The best catch 90-95% of 
spam, easy to install. 

Static rules, relatively 
high false positives. 

6 Challenge-
Response 
Filtering 

Stops 99.9% of spam. Rude, delays or drops 
legitimate email. 

2.2 Naïve Bayesian Researchs 
Taninpong and Ngamsuriyaroj [37] proposed a model for an incremental 
adaptive spam filtering that would improve the classification accuracy and 
reduce the misclassification rates. Two significant issues where considered 
(1) adaptation: the model should be adaptable to rapid and constant changes 
of spam patterns, and (2) performance: the learning process should be fast 
and does not require lots of memory. This work used Naïve Bayesian 
classifier based on a single word representation since it had good 
performance, simplicity and auto-adaptability. It was modeled as an 
incremental scheme that received a stream of emails, and applied the 
concept of sliding window to train only the last few emails for testing new 
incoming messages. Subsequently, the new features of tested messages were 
added to the existing features so that the model will be adapted to future 
incoming emails which gave good performance, simplicity and adaptability. 
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The proposed model was tested on two corpora: Trec05p-1 and Trec06p 
[15]. The parameters were the window size and the number of features, and 
the evaluation metrics were the processing time per message and the non-
spam and spam misclassification rates.   
The results in this study was that the overall accuracy of the Naïve Bayesian 
is was better than that obtained from the batch off-line training and the 
processing time is was reduced significantly.  Also the experimental results 
showed that the number of features has little impact whereas the window 
size has had significant effects on misclassification rates and the processing 
time. 
Chen et al [38] constructed different filters using three types of 
classification, including Naïve Bayes, SVM, and KNN. They compared the 
pros and cons between these three types and used some approaches to 
improve them to get a better spam filter. 
The result indicated that the Naïve Bayesian is a good method of spam 
filtering, and the time costs less on training (about 1-2 seconds). The result 
also indicated that testing an input message required much time using Naïve 
Bayesian, but the result is good enough [38]. 
 
Hovold [19] presented the results of using a variety of the Naïve Bayesian 
classifier for spam filtering. The effects of various forms of attribute 
selection were explored, as were the effects of considering not only single 
tokens, but rather sequences of tokens, as attributes. An efficient scheme for 
cost-sensitive classification is also introduced. All experiments were 
conducted on several publicly available corpora, thereby making a 
comparison with previously published results possible. 
The result in this study has shown that it is possible to achieve very good 
classification performance using a word-position-based variety of NB. 
Results also showed the simplicity and low time complexity of the algorithm 
thus makes NB a good choice for end-user applications also the results 
indicated that using the word- position- based attribute vectors gave very 
good results when tested on several publicly available corpora. 
 
Katirai [39] compared the performance of genetic programming and NB 
classifiers in the spam filtering domain. The training set for this experiment 
had seven times as many junk messages after removing duplicate spam. The 
corpus was tokenized into words, applying both stemming and a stop list. 
The best results showed genetic programming with junk precision of 95.45% 
and recall of 70% while Na¨ıve Bayes stood at 95.83% precision and 
76.67% recall. Katirai also noted that if certain regular punctuation 
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sequences (such as signatures and boundaries of forwarded messages) are 
removed, repeated punctuation is an information-rich feature. 
 
Gee [40] evaluated the effectiveness of a classifier incorporating Latent 
Semantic Indexing ("LSI") to filter spam email, using a corpus used 
inprevious studies. This study sought to compare the results of using a Naïve 
Bayesian classifier with the results from using an LSI-inspired classifier. 
While using LSI leads to precision roughly equal to that of using a Naïve 
Bayesian approach, the LSI technique has a substantially higher recall and 
was generally more effective under certain conditions.  
The  results shown that using LSI as the basis for an email classifier to filter 
out spam enjoys a very high degree of recall as well as a high degree of 
precision, no matter if the corpus was treated using a stop list or a 
lemmatizer. Also the results of an email classification test where both the 
recall and precision measurements are both very high and fall into 
acceptable levels. 
 
Brien and Vogel [41] compared NB to the “Chi by degrees of Freedom” 
approach. The latter is often used in author detection, and is used under 
suspicion that most spam is sent by a small number of prolific profiteers. 
They also compared the effectiveness of both classifiers working on words 
or characters as features. NB with words produced spam precision of 100% 
and recall of 76.9%, while operating on characters produced 100% in both 
categories (on a test corpus of less than 70 messages). The Chi approach 
produced 100% precision and recall when operating on words and 97.5% 
precision/100% recall working with characters. 
 
Metsis et al [42] discussed and evaluated experimentally in a spam filtering 
context five different versions of the (NB) classifier. Their investigation 
included two versions of NB Flexible Bayesian (FB) and the multinomial 
NB with Boolean attributes. They emulated the situation faced by a new user 
of a personalized learning-based spam filter, adopting an incremental 
retraining and evaluation procedure. They used six datasets, which they 
make publicly available, were created by mixing freely available non-spam 
and spam messages in different proportions. The mixing procedure emulates 
the unpredictable fluctuation over time of the non-spam spam ratio in real 
mailboxes. 
The result indicated that the most interesting result of the evaluation was a 
very good performance of the two NB versions that have been used less in 
spam filtering, i.e., FB and the multinomial NB with Boolean attributes; 
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these two versions collectively obtained the best results in the experiments. 
Taking also into account its lower computational complexity at run time and 
its smoother trade-off between non-spam and spam recall, they tend to prefer 
the multinomial NB with Boolean attributes over FB, but further 
experiments are needed to be confident. The best results in terms of 
effectiveness were generally achieved by the largest attribute set (3000 
attributes), as one might have expected, but the gain was rather insignificant, 
compared to smaller and computationally cheaper attribute sets. 
 
Deshpande et al [31] examined the effectiveness of statistically-based 
approaches Naïve Bayesian anti-spam filters, as it is content-based and self 
learning (adaptive) in nature. Additionally, they designed a derivative filter 
based on relative numbers of tokens. They trained the filters using a large 
corpus of legitimate messages and spam and they tested the filter using new 
incoming personal messages.More specifically they evaluated different 
threshold values in order to find an optimal anti-spam filter configuration. 
The result indicates that the based on cost-sensitive measures, additional 
safety precautions are needed for a Bayesian anti-spam filter to be put into 
practice. However, the technique can make a positive contribution as a first 
pass filter. 
 
Stone [43] explored and examined the effect of several parameters including 
corpus size, training set size, feature extraction method, and message 
portions to filter spam email presented by applying the NB algorithm. He 
compared the results to several published statistical spam filtering 
approaches. 
The result showed that the best classifier variant classifies messages with 
100% legitimate recall and 92.9% legitimate precision with room for 
improvement — comparable to or better than most published results. 
 
Khalid and Osman [44] introduced a simple feature selection algorithm to 
construct a feature vector on which the classifier will be built. They  
conducted an experiment on the SpamAssassin public email corpus to 
measure the performance of the NB classifier built on the feature vector 
constructed by the introduced algorithm against the feature vector 
constructed by the Mutual Information algorithm which is widely used in the 
literature. The effect of the stop list and the phrases-list of the classifier 
performance were also investigated. 
The results of the experiment showed that the introduced algorithm 
outperforms the Mutual Information algorithm. 
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Braganza [45] investigated variable in Naïve Bayesian spam filters. The 
main focus was to create a method for better spam detection by combining 
the classical Naïve Bayesian filter with a neural network that analyzes 
various characteristics of the email body. 
The results indicated that the analyzed and the method deemed effective in 
conditions were very strong thresholds must be set or where the training data 
is not exhaustive. 
 
Androutsopoulos et al [46] were trained the Naïve Bayesian classifier 
automatically to detect spam messages, they tested this approach on a large 
collection of personal email messages, which they made publicly available 
in "encrypted" form contributing towards standard benchmarks. They 
introduced appropriate cost-sensitive measures, investigating at the same 
time the effect of attribute set size, training corpus size, lemmatization, and 
stop lists, issues that had not explored in previous experiments. Finally, the 
NB filter was compared, in terms of performance, to a filter that uses 
keyword patterns, and which was part of a widely used email reader. 
The results indicate that NB filter outperforms by far the keyword-based 
filter, even with very small training corpora. 

2.2.1 Advantages of the NB classifier  

The main advantage of Bayesian classifiers is that they are probabilistic 
models, robust to noise found in real data. The NB classifier presupposes 
Independence of the attributes used in classification. However, it was tested 
on several artificial and real data sets, showing good performances, even 
when strong attribute dependencies are present. In addition, the NB classifier 
can outperform other powerful classifiers when the sample size is small[20]. 
Since it also has advantages in terms of simplicity, learning speed, 
classification speed, storage space [46]. Therefore, it is considered one of the 
best spam classifications Algorithm. 

2.3 Arabic Spam 
Arabic is a very rich language with complex morphology. The Arabic 
language is different from other Indo-European languages in terms of its 
syntax, morphology and semantics[47]. The writing system of Arabic has 25 
consonants and three long vowels. The Arabic text is  written from right to 
left and the written letters change shapes according to their position in the 
word. 
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The Arabic language consists of three types of words; nouns, verbs and 
particles. 
For instance, a word in Arabic consisting of three consonants like (ك ت ب 
ktb) “to write” can have many interpretations with the presence of diacritics 
[48] such as has shown in Table 2.3. Actually the diacritics should be written 
as they are part of the Arabic word but they are not shown in the common 
popular Arabic.  
 
Table 2.4 Different interpretation of the Arabic word generated from the text 
 using  diacritics  (ktb) كتب
 

Arabic word Transliteration Part of speech English meaning 

 Kataba Verb Wrote كَتبََ 

بُ  Kutub Noun Books كُت

بَِ   Kutiba Passive(verb) Written كُت

َّبَ   Kattaba Verb Make someone to كَت
write 

 
In comparison to English, Arabic language is recognized to be sparser, 
meaning that the Arabic words are repeated less than the English words for 
the same text length. Thus, in this sense, sparseness results in less weight for 
Arabic terms (features) compared to the English features. Since the 
difference of weight for the Arabic word is less than that of the English 
words, it becomes more difficult to differentiate between the different 
Arabic words, which consequently may negatively affect Arabic text's 
classifier’s effectiveness [49]. 

2.3.1 Arabic Web Pages Spam Researches 

Wahsheh et al [11] have analyzed the behaviors of the spammers in the 
content based Arabic web pages, through analyzing the weight of the most 
ten popular Arabic words used by Arabic users in their queries. Decision 
Tree was used to evaluate this behavior and it obtained the degree of 
accuracy which is equal to 90%. 
The results showed that the behavior of the spammers in the Arabic web 
pages can be unique and distinguished in comparison to other languages. 
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Al-Kabi et al [50] had investigated four different classification algorithms 
(NB, Decision Tree, SVM and K-NN) to detect Arabic web spam pages, 
based on content. They used three groups of datasets, with 1%, 15% and 
50% spam contents, and were collected using a crawler that was customized 
for that study. Spam pages were classified manually. 
 
Wahsheh et al [51] extended an Arabic spam dataset previously built by the 
authors of Arabic content-based spam web pages. The authors applied the 
Decision Tree classifier (J48) which is shown to be the best classifier to 
detect content-based Arabic web spam.The Decision Tree algorithm yields 
an accuracy of 99.521%, and error rate of 0.479%. A content based Arabic 
web spam detector is also developed, which extracts the content features of 
web pages, and compares their features with the rule based (graph structure) 
of Decision Tree. The content-based web spam detector presents a solution 
to clean the search engines from Arabic spam web pages. 
The results indicated that the content-based Arabic web spam detection 
showed an accuracy of 83%, using a dataset of 2,500 spam web pages. 
 
Jaramh et al [52] collected a corpus of Arabic web pages(spam and non-
spam) manually using search engines such as Google, Bing, AltaVista, 
Maktoob, Ayna. They proposed a set of new features to enhance the 
classification of Arabic web pages into spam and non-spam under different 
classification algorithms, namely Decision Tree, Naїve Bayesian, and 
LogitBoost. They compared their features, which they called Arabic Content 
Analysis (ACA) features, to state of the art Content Analysis (CA) features 
for spam detection in the English web. 
The result showed that augmenting the CA features with ACA features 
achieved an increase in detection accuracy of Arabic spam pages compared 
to CA features alone. When combined, ACA and CA feature correctly 
identified 5,536 pages of the 5,645 Arabic spam pages that they used for 
testing with a false positive rate of 1.9% using the Decision Tree classifier. 
They also identified the top-ranked features using the Gain Ratio method 
[52]. 
 
Wahsheh et al [53]discussed the current spamming techniques, ranking 
algorithms of web pages, applied three algorithms (K-nearest neighbor, NB 
and Decision Tree) that detected Arabic spam pages, and a comparison 
between their different results. 
The result showed that the K-nearest neighbor is better than other used 
algorithms. 
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Wahsheh et al [54] said "there are some web sites developers act as 
spammers and try to mislead the search engines by using illegal Search 
Engine Optimizations (SEO) tips to increase the rank of their web 
documents, to be more visible at the top 10 Search Engine Results Page 
SERP". The main goal of this study was to solve the Arabic web spam 
detection problem. They discussed the relation between the Arabic web 
spam types. This study is a continuation of a series of Arabic web spam 
studies conducted by the authors, where this study was dedicated to building 
the first Arabic content/link web spam detection system. The constructed 
dataset contains three groups with the following three percentages of spam 
contents: 2%, 30%, and 40%. These three groups with varying percentages 
of spam contents were collected through the embedded crawler in the 
proposed system. This Novel system is capable of extracting the set of 
content and link features of web pages, in order to build the largest Arabic 
web spam dataset. The automated classification of spam web pages used 
based on the features in the benchmark dataset. The proposed system used 
the rules of Decision Tree; which is considered the best classifier to detect 
Arabic content/link web spam. The proposed system helps to clean the 
SERP from all URLs referring to Arabic spam web pages [54]. 
The result indicated that the study produced accuracy of 90.1% for Arabic 
content-based, 93.1% for Arabic link-based, and 89% in detecting both 
Arabic content and link web spam, based on the collected dataset and 
conducted the analysis. 

2.3.2 Information Science Research Institute’s Stemmer 

A stemming is a technique used to reduce words to their root form, by 
removing derivational and inflectional affixes. The stemming is widely used 
in information retrieval tasks. Many researchers demonstrate that stemming 
improves the performance of information retrieval systems [55]. The Khoja 
Arabic Stemmer is a fast Arabic stemmer that works by removing the 
longest prefix and suffix present in the input word and then matching the rest 
of the word with known verb and noun patterns using a root library. The 
stemmer attempts to take into account the unavoidable irregularities in the 
language in order to extract the correct root from words that do not follow 
the general rules[56]. 
The Information Science Research Institute’s (ISRI) stemmer uses a similar 
approach to word rooting as the Khoja stemmer, but does not employ a root 
dictionary for lookup. Additionally, if a word cannot be rooted, the ISRI 
stemmer normalizes the word and returns a normalized form (for example, 
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removing certain determinants and end patterns) instead of leaving the word 
unchanged. [57]. The ISRI Stemmer requires that all tokens have Unicode 
string types. If the user uses  Python IDLE on Arabic Windows he has to 
decode text first using Arabic 'cp1256' coding. 

2.4 Email Services 
Electronic mail (E-mail) is an essential communication tool that has been 
greatly abused by spammers to disseminate unwanted information 
(messages) and spread malicious contents to Internet users [58]. Users can 
access any free email service such as Yahoo Mail, Gmail, Hotmail. There 
are various technical measures that are currently available, and each can play 
a role in the battle against spam When combined, these measures can 
provide a “good enough” solution to the spam problem for email users[59]. 

2.4.1 Google Mail 

Gmail's filters allow users to manage the flow of incoming messages, can 
automatically label, archive, delete, star, or forward mail [60]. 
When one user clicks a message as spam the system learns to blocking 
similar messages and it can use the behavior with all Gmail users to block 
similar future messages. Gmail uses machine learning algorithms to combine 
hundreds of factors to classify spam, supports multiple authentication 
systems[61]. 
Gmail spam filter is made of many factors depending on various 
actions/events such as Whenever Gmail system detects that the message has 
malicious links and trying to scam user through a phishing mail, When the 
message is sent from unknown/unconfirmed sender, When the user has 
already marked any such similar mail as spam, When the message is in 
different language, When many people marked same message as spam, 
When the message is sent lesser known domain, When it has similarity to 
suspicious messages and proactive words like “Get Rich Quickly” or “Free 
Goodies”[62]. 

2.4.1.1 Gmail spam filter technologies 
Gmail team used priority Inbox to automatically sort incoming email and 
help users to focus on the messages that matter most. Also, they launched 
smart labels, which help users to classify and organize their email[63]. 
To protect Gmail users from spam images, Gmail used Optical Character 
Recognition (OCR) developed by the Google Book Search team [64]. 
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Machine learning algorithms developed to merge and rank large sets of 
Google search results allow to combine hundreds of factors to classify spam. 
Gmail supports multiple authentication systems, including Sender Policy 
Framework(SPF), Domain Keys, and Domain Keys Identified Mail 
(DKIM)[65], so user can be more certain that the mail is from who is says it 
is from. Also, Gmail puts all senders through the same rigorous checks[66]. 
Gmail used Completely Automated Public Turing-test to tell Computers and 
Humans Apart (CAPTCHA). CAPTCHA is introduced in 2000 by Luis von 
Ahn and his colleagues. A CAPTCHA is a challenge response test used to 
ensure that the response is generated by humans. CAPTCHA test are 
administrated by machines to differentiate between humans and machine 
[67]. 

2.4.1.2 Gmail spam filter is insufficient 
Unrealistic to expect users to configure an individual filter for each domain 
so the spam keeps coming in after added filters for specific hosts[68]. Some 
users think that maybe Google give the spammers the email address of the 
users. Or sell it, because they never use the account but got spam[69]. 

2.4.2 Microsoft Mail 

Early versions of the Windows Live Hotmail spam filter consider all mail 
that does not come from trusted sources as spam and move it to 
the junk folder. It is not perfect, so a one of spam will arrive in the Windows 
Live Hotmail Inbox, but the majority will go to the junk folder 
automatically. At the same time only few legitimate emails will be filtered 
out by mistake. It decomposes an email into tokens, normally words, but 
sometimes other markers and then uses the frequency of each word's 
appearance in that given email against a know sample to determine if it is 
spam or not[70]. 
It is great to keep spam out of the Inbox, but user still needs to visit his junk 
folder every now and theun to make sure he/she has not missed something 
important. Hotmail not only keeps more spam out of Inbox, it keeps obvious 
spam out of the junk folder to make this job easier. In fact, they reduced the 
size of customers’ junk folders by more than 50% - that is about a half a 
billion fewer pure spam messages per day [71]. 
Microsoft office produces Outlook 2007 contains a junk email filter 
designed to reduce the unwanted email presented in user Inbox. The junk 
email filter evaluates each incoming message to assess whether it may be 
spam, based on several factors. The Outlook junk email filter does not stop 



  

 24

junk email from being delivered, but rather diverts suspected spam to the 
user's junk email folder instead of Inbox [72]. 
Outlook 2013 uses Microsoft word as its rendering engine, HTML and 
Cascade Style Sheet (CSS). There are five different user-controlled lists that 
can determine whether the email will hit the junk folder or not: 

 Safe Senders List – Email addresses and domain names in this list are 
never treated as junk, 

 Safe Recipients List – Users can add the mailing lists and distribution 
lists that they are part of to this list, 

 Blocked Senders List – Once users add an email address or domain to 
this list, messages from that source are automatically sent to the junk 
Email folder, 

 Blocked Top-Level Domains List – To block messages from another 
country or region, users can add country/region codes to this list and 

 Blocked Encodings List – To block messages that contain another 
character set or alphabet, users can add encodings to this list [73]. 

2.4.2.1 Hotmail spam filter technologies 
Early versions of email spam filters were very primitive and the mere 
presence of a word in an email was enough to push it into the spam queue. 
Those simple measures have been replaced by the more robust Bayesian 
spam filtering  [71]. 

2.4.2.2 Hotmail spam filter is insufficient 
There is no personalization because some messages come to even junk 
folder when it's deleted them daily[71]. 
Another failure in this spam filter is what is called ‘Dr Oz’ emails that are 
getting through partly because the spammer is taking advantage of a key 
failure in Outlook’s junk Email filter. The built-in filter that is configurable 
by the user works by matching the apparent email address of the sender. 
That is fairly useless because spammers change the ‘From’ email address 
very regularly. Each of the messages has the same ‘From’ name but the 
address itself is different for each email – spammers do that because they 
know Outlook’s mail filters are based around the email address [74].  
Hotmail filter use Bayesian which it searches for spammers' words, if the 
spammers' word does not have a space or recognized word separator on 
either side of it, it will not be picked up[70]. The spammers are no longer 
using domain names with words that’d be clearly identified as spam. If the 
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domain itself is not in a common format the spam classifier is not smart 
enough to identify that. 

2.4.3 Yahoo Mail 

Collaborative spam filtering in open membership systems, such as Yahoo 
Mail, depends on user generated label information. Users provide feedback 
by labeling emails as spam or not spam. These labels are then used to train a 
spam filter. Although the majority of users provide very little data, as a 
collective the amount of training data is very large (many millions of emails 
per day). Unfortunately, there is a substantial deviation in the users' 
understanding and liking of what constitutes spam and non-spam. As a 
result, spam filtering based on a global classifier will be sub-optimal. 
Conversely, there is often insufficient personal information to train an 
individual classifier for all users. [75].  

In this thesis, we will show that IP address is possible to start initially with 
the global black list  and then can edit this list for each user individually. 

2.4.3.1 Yahoo Mail spam filter technologies 
In the early Yahoo spam filter, the filter consided all mail that did not come 
from trusted sources as spam and moved it to the junk folder. Recently 
Yahoo used many techniques to detect and filter spam such as Spam Guard 
is a feature that automatically moves the spam email to the spam folder. 
Spam Guard adapts to the individual preferences every time user marks an 
email using the "spam" and "Not spam" buttons. 
Filters function according to rules that the user sets up because the user can 
automatically filter incoming email into the folders of his choice., A user can 
block an email address (or domain), if he/she does not want to get emails 
from that address in Yahoo Mail, Opting to not display images in his 
received emails can help fight against spam [76]. 
Thus, this spam Guard makes a good attempt towards personalizing the 
filter. However, this is done manually. 

2.4.3.2 Yahoo Mail spam filter insufficient 
There are many failures in the Yahoo spam filter for example each time user 
ticks spam message and "report as spam" and get thanked for improving 
"Spam Guard" but it comes straight through to the Inbox [77].  
Spammers can log into Yahoo accounts because Yahoo stores password in 
clear text and having them stolen by hackers. This has been a real headache, 



  

 26

mine spammers for email addresses, and then sends email from those 
accounts. Then they have been creating other fake accounts that are similar 
using those names so even if you change your password there may be a 
Gmail or Hotmail account owned by the spammer using your contact list and 
name [78]. 

2.5 Conclusion 

many years ago, established progressive principles for detection and filtering 
spam for English email and some in spam for Arabic web pages. The above 
studies, while tracing the English spam and Arabic web spam, do not 
address the important part of non-English or Arabic spam. More studies in 
the spam of Arabic email should be done. 

A second section of the literature review presents the spam filters of the 
famous mail systems are used by most email users like Gmail, Hotmail or 
Outlook and Yahoo and their successor and failure or insufficient in filtering 
spam from user Inbox. 

Taken together, the results indicate that spam filter of the big free mail 
systems that are used by most mail user worked very hard to fight the 
spammers and always developed new techniques to stop spam or to reduce 
false positive from mail users, but as presented above there are many 
complaints from users and this system still needs much hard work to solve 
and end the problem completely. 

In proposing mail services "Permail" attempted to give new and more 
sufficient spam filter depend basically on personalized behavior and can 
filter spam message from Inbox using many factors. 
 
The concept of automate personalizing of detecting and filtering spam is not 
addressed in the literature and not yet satisfied by products.  
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CHAPTER THREE 
 ARABIC EMAIL CORPUS 

3.1 Introduction 
A number of large corpora have been assembled in the last few years, but the 
idea itself is not new. It can be traced back to the German linguist Kading, 
who in 1897 used a large corpus of German - 11 million words - to collate 
frequency distributions of letters and sequences of letters [79]. 
The importance of corpora to language and linguistics studies is aligned to 
the importance of empirical data. As language and linguistics studies cannot 
rely on intuition or small samples of language; they require empirical 
analysis of large database of texts as in the corpus-based approach. 
Modern computers have made it possible to store a large number of texts and 
to analyze a large number of linguistic features in those texts [80]. 

3.2 Corpus in Natural Language Processing 
Natural Language Processing (NLP) is an area of computational linguistics 
which is interesting to use corpora in computationally than linguistic [81] the 
researchers in NLP have their own distinct interests and there are a 
limitations of the corpora created by researchers in NLP especially in Arabic 
language. 
Examples of corpora in NLP are: 
In Lancaster University there is a group of descriptive and computational 
linguists who worked together not only to create the British National Corpus 
but also to develop the tagger (CLAWS) that was used to tag the corpus 
[82]. 
BulTreeBank project Head-driven Phrase Structure Grammar (HPSG-based 
Syntactic Treebank of Bulgarian) created a high quality set of syntactic 
structures of Bulgarian sentences within the framework of HPSG it aims to 
contain samples of all the syntactic structures of the language. These 
sentences should serve as templates for future corpora development, become 
the basis for the development of a more comprehensive test suite for NLP 
applications they can also be used as a source for grammar extraction and for 
linguistic research [83]. 

3.3 Email Corpus 
This section gives a brief description of the famous English emails corpus. 
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3.3.1 English Email 

 TREC05 Corpus 
TREC’s spam Track introduces a standard testing framework that 
presents a chronological sequence of email messages, one at a time, to 
a spam filter for classification. The filter yields a binary judgment 
(spam or ham [i.e.non-spam]) [84]. 

 Enron Email Corpus 
This dataset was collected and prepared by the A Cognitive Assistant 
that learns and Organizes Project (CALO). It contains data from about 
150 users, mostly senior management of Enron, organized into 
folders. The corpus contains a total of about 0.5M messages. This data 
was originally made public, and posted to the web, by the Federal 
Energy Regulatory Commission during its investigation of Enron 
[85]. 

 Enronsent Email Corpus 
The EnronSent corpus is a special preparation of a portion of 
the Enron Email Dataset designed specifically for use in Corpus 
Linguistics and language analysis. Divided across 45 plain text files, 
this corpus contains 2,205,910 lines and 13,810,266 words. This 
preparation was created by cleaning up a portion of the original Enron 
Corpus [85]. 

 TREC07 Corpus 
TREC-7 corpus is made up of 75,419 real emails, comprising 25,220 
ham and 50,199 spam emails. All emails were arranged in 
chronological order to simulate a real spam filtering scenario in which 
training emails are older than testing ones[86].  

3.3.2 Arabic Email 

NLP, including information retrieval, Machine Translation and other Natural 
Language-related disciplines, is showing more interest in the Arabic 
language in recent years [81]. Suitable resources for Arabic are becoming a 
vital necessity for the progress of this research. Corpora are an important 
resource, but Arabic lacks sufficient resources in this field, so a research 
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project needs to compile a corpus, which represents the state of the Arabic 
language at the present time and the needs of end users. Many trials have 
been conducted to build Arabic corpora, but some of them were 
unsuccessful trials and others were for limited commercial purposes[80]. 
Due to all the previous discussion about the need for Arabic corpus in 
general and the absence of an Arabic email corpus, and as there is no Arabic 
email corpus made to be used in spam classification studies there is an 
urgent need to fill this gab. 

3.4 Arabic Email Corpus 
Over the past decade, there has been some important progress in the 
computational processing of Arabic. However, Arabic is still lacking Arabic 
email corpus. Arabic NLP is still in its infancy, due to the problem of 
obtaining large amounts of text data [87]. This section will describe the steps 
that used to build the first Arabic Email Corpus (AEC). 

3.4.1 Goal of AEC 

We have  planned AEC to contain 2000 emails. The collection of samples is 
of written Modern Standard Arabic (MSA). Demonstrating those corpora 
have proven to be very useful resources for linguists who believe that their 
theories and descriptions of Arabic should be based on real, rather than 
contrived data. 

3.4.2 Design of AEC 

We built a corpus of Arabic emails containing 1066 messages, 512 spam and 
554 non-spam. We collected them from October 2012 to July 2013. The 
corpus was collected manually from user emails (e.g., Gmail, Hotmail and 
Yahoo mail). Then we classified it manually as spam and non-spam. 
Non-spam emails, messages collected from my personal email and some 
colleagues whereas spam email messages collected from email of my 
supervisor (Hotmail), my husband's email and some of my personal email 
accounts (Gmail and Hotmail). 

3.4.3 Description of AEC 

This was collected and prepared by the A Personalized Arabic spam 
Detection Project (PASDP). It contains data from about 8 users accounts, 
organized into two folders (spam and non-spam). The corpus contains a total 
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of about 1.29M messages. This data was originally made public and posted 
to the Sudan University of Science and Technology website and known as 
SUST corpus at http:/www.susteh.edu/sustcorpus. 
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CHAPTER FOUR 
 ARABIC SPAM DETECTION MODEL 

4.1 Spam Detection Process 
Email is a cheap method of sending and receiving messages over electronic 
communication systems such as the internet[88]. Spam “unsolicited bulk 
email”, is email which the user does not want and it comes without his 
permission and he cannot easily stop receiving it[89]. 
 
There are many techniques have been implemented for English spam emails. 
Most spam filters use the Naïve Bayesian [19][31][37-46] recently 
automated anti-spam filters have become a familiar method in spam 
detection. Since such filters are quite effective, we believe that this classifier 
they proposed can be implemented by Arabic spam emails to gain better 
performance. 
 
Developing text classification systems for Arabic documents in general and 
Arabic emails is a challenging task due to the complex and rich nature of the 
Arabic language [90]. The Arabic language consists of 28 letters, and written 
from right to left and it has complex morphology [91]. Arabic exhibits two 
genders: masculine and feminine, three number categories: singular, dual, 
and plural. Whereas singular and plural are familiar categories of most 
Western learners, the dual is less familiar. The dual in Arabic is used 
whenever the category of two applies, where it is in nouns, adjectives, 
pronouns, or verbs. The Arabic plurals are divided into two categories: 
regular and broken. A noun has three cases, the nominative, accusative, and 
genitive [92]. 
 
There is a large Arabic community of users using email services were safer 
getting rich of the Arabic spam email problem. They need sufficient and a 
power Arabic spam filter. In the Arabic spam area many Arabic authors 
worked on Arabic web spam and had many published work [11][50-54], but 
in fact Arabic email spam area is very poor no published research [93]. 
 
This chapter discusses the spam detection model architecture for detection of 
Arabic emails and mixed (English to Arabic) emails as shown in Figure 4.1. 
In addition, it presents the importance of preprocessing for Arabic 
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emails.  The first available spam filtering system built upon the principles of 
the Naïve Bayesian [94]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure 4.1 Spam Detection Process 
 
The NB method was used to filter email by both Androutsopoulos et al. [46] 
and Graham [95]. 
In NB classification, each email is represented by a vector 
 

ݔ⃗ = 	 ,ଶݔ,ଵݔ〉 ,ଷݔ … ,  〉 -----(1)	௡ݔ
 

Where ݔଵ, … ,  ௡ Are the values of attributes X1,. .. , Xn, and n is the numberݔ
of attributes in the corpus of emails that has been collected, each attribute 
represents a particular word occurring or not. If the email contains the word 
corresponding to ݔ௜, then ݔ௜  = 1 otherwise ݔ௜= 0. By [96] using Bayes’s 
theorem and the theorem of total probability, that given the vector 
,ଶݔ,ଵݔ〉	 ,ଷݔ … , ௡ݔ 	〉 of a document d, and where k ∈ {spam, non-spam}, the 
probability that d belongs to category c is as given in (2)[41]. 
 

(ݔ⃗|ܿ)ܲ  = ௉(௖).௉(௫⃗|௖)
∑ ௉(௞).௉(௫⃗|௞)ೖ

 ----(2) 
 

(ݔ⃗|ܿ)ܲ = 	 ௉(௖).∏௉	(௫೔|௖)
∑ ௉(௖).∏௉	(௫೔|௞)ೖ

 ---(3) 
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The probabilities	ܲ(⃗ݔ|ܿ) (ie. The probability of vector 〈1, 0, 0, 1, 0, 1, . . . 〉 
Given C) are almost impossible to calculate, due to the fact that there are too 
many possible values for ܺ⃗	Even though it is binary in nature. There are also 
data sparseness problems [96]. Instead, the NB classifier makes the 
assumption that X1,. .. , Xn are conditionally independent of category C. This 
means that we can change the above equation to the one given in (3). It is 
much easier to calculate ܲ(ݔ௜|ܿ) Than to calculate  ܲ(⃗ݔ|ܿ). 
 
For example, it is far less difficult to calculate P (“word”|Category A) than 
to calculate P (1, 0, 0, 1, 0, 1,. ..) |Category A). 
In this instance, P(Xi |C) and P(C) can easily be calculated using the relative 
frequencies from the training corpus. This is a computationally efficient 
classifier. 
 
The NB filter calculates the likelihoods of all the words in the given 
email[97]. The probability of the mail being spam is estimated using 
equation (3). An effective way to combat false positives is to regard as spam 
only mails that have a probability higher than a named threshold [41]. 

4.2 Model Datasets 
As any classifier on text documents first we need an Arabic email collection 
as presented in chapter three we built a corpus of Arabic emails. 
English corpus which contains 1200 samples divided into two categories 
(spam and non-spam) This English corpus is provided by Stanford university 
[15]. 
 
Table 4.1 Summary of Arabic and English datasets 

English dataset (Standford University) 
 Number of messages Percentage 
Spam 400 33.3% 
Legitimate 800 66.7% 
Total 1200  

Arabic dataset 
 Number of messages Percentage 
Spam 100 33.3% 
Legitimate 200 66.7% 
Total 300  
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There are not corpus published for Arabic emails we collect this dataset for 
this study. Legitimate messages can easily be misclassified as spam. This 
makes the situation more challenging, as the cost of false positives is much 
higher than that of false negatives. We feel that by minimizing the false 
positives in such a situation, we have achieved an efficient Bayesian spam 
filter. Moreover, by recording tokens from such a huge number of spam, we 
have covered almost all the topics for spam and are in a pretty good position 
to classify new incoming mails. 
This thesis creates an Arabic spam keywords list contain about 150 
keywords which used in Arabic spam filters as shown in appendix B.2. 

4.3 Arabic Spam Detection Model 
 
 
 
 
 
 
 
 
 
 

Figure 4.2 Architecture of Arabic spam detection model 

We proposed Arabic Spam Detection Model (ASDM) in short, to build the 
detecting Arabic spam emails. We first perform data preprocessing in the 
data set, calculate the Document Frequency (DF) given a list of words, we 
count the number of unique words in the corpus, build a Comma Separated 
Value (CSV) file to use in the classification process, perform 10-fold 
stratified cross validation. 

4.3.1 Preprocessing 

Preprocessing is a very important step before the categorization documents 
to get knowledge from massive data and reduce the processing operations. 
[98]. A huge number of features or keywords in the documents lead to a poor 
performance in accuracy and time [99]. The preprocessing is the first step in 
data processing of Arabic emails is. It consist of 
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Split each email into words. 
- Removal of stop words create a list of stop words such as (etc …  ،من،

 (في،الى،التي ،الذین ،ھذا ،ھذه،إن أن 
- Removal of punctuation: 

Create a list contains all punctuation marks (such as (!), (?), (,), (:) … 
etc.) and then remove anyone from email if it appears. 

- Stemming 
We use ISRIStemmer (open source package) [57] written in python 
script and then we build method to take a single argument, word, 
which should either be a cp1256 encoded string, or a Unicode object.  
Which should either be a cp1256 (windows codepage number 1256 
which encodes languages which use the Arabic script) string, or a 
Unicode object. 
The result is the stemmed form of the word. If the word supplied is a 
Unicode object, the result will be a Unicode object. If the word 
supplied is a string, the result will be a cp1256 encoded string. 

- The normalization 
This step includes converting different form of letters to standardize 
form such as (إ ،آ ،أ) to (ا) and changing (ي) to (ى) and finally 
converting (ة) to (ه). This step aims to unify words typed differently. 

- Numeric filter 
Filter all numbers from strings (such as (1), (0.2), (100)… etc) 

4.3.2 Document frequency 

After the preprocessing of the data we calculate the document (here 
message) frequency (DF) score for all words in the corpus as sample data 
shown in the example in Table 4.2. Count number of words in the body and 
subject, return a dictionary associates each word with the number of times it 
occurs as shown in the example in Table 4.3. Then count the number of 
unique words in the corpus. 
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 Table 4.2 Occurrence of words on messages 
Word 
 
 Msg 

 تخفیضات دردشة أغاني تحمیل العاب مجاني بیع تسوق أخبار تجارة

1 4 0 2 1 2 0 0 0 0 5 
2 0 4 0 0 4 0 3 6 0 0 
3 0 3 6 0 0 0 0 0 2 3 
4 2 0 0 2 0 4 2 0 0 0 
5 0 7 0 0 2 6 4 1 0 0 

 
DF Example 
In this example, there is a list of five messages. The number of occurrences 
of each word in all the messages calculates follows: 
 occurs 4 times in message 1 "تجارة"
 occurs 2 times in message 4 "تجارة"
 occurs 3 times in message 2 "تحمیل"
 occurs 6 times in message 3 "تسوق"
 
Table 4.3 Words dictionary of the message 
Word Frequency 
 6 تجارة
 14 اخبار
 8 تسوق
 3 بیع
 8 مجاني
 10 العاب
 9 تحمیل
 7 اغاني
 2 دردشة
 8 تخفیضات

 
In Table 4.3 for each word on the Table 4.2 the frequency is calculated. 

4.3.3 Term frequency 

A collection of (n) emails can be represented in the vector space model by a 
term-email Matrix which it represent for each message the frequency of the 
words that it contains as shown in the Table 4.2 An entry in the Matrix 
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corresponds to the “weight” of a term in the email; zero means the term has 
no significance in the email or it simply does not exist in the email [100]. 
The most useful terms are those that are of intermediate frequency so most 
of their occurrences are in a small number of documents in the collection 
[101]. 

4.3.4 Cosine Normalization (TFxIDF weights) 

Now we can use document frequencies and term frequency to get the term 
frequency- inverse document frequency (tf-idf) score for every feature 
(word) of the corpus’s message [102]. 

…….(4) 
 
 
N: total number of document in a collection. 
df(w) : document frequency for feature w (the number of documents that 
contain w). 
idf(w) : inverse of the document frequency. 
 
As shown in the Table 4.4 calculation of document frequency using some 
words from Table 4.3 
N= corpus size = 5 
 
Table 4.4 Example of the document frequency 

Word Tf IDF 
 Log(5/9) 9 تحمیل
 Log(5/6) 6 تجارة
 Log(5/8) 8 تسوق
 Log(5/3) 3 بیع

 Log(5/10) 10 العاب
 
Calculate weighted term frequency with IDF as show below 
  
 

݀݅−݂ݐ ௧݂ௗ = ݐ ௧݂ௗ × ݅݀ ௧݂ ---(5) 
Where 
ݐ ௧݂ௗ: term frequency for term t in document d 
݅݀ ௧݂: inverse document frequency of term t in the corpus. 
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Table 4.5 Calculation of ݂ݐ × ݂݅݀ 
msg ݐ (݂ଵ)  ݐ (݂ଶ) ݐ (݂ଷ) ݅݀ (݂ଵ) 

log ൬
ܰ
݊1
൰ 

݅݀ (݂ଶ) 

log ൬
ܰ
݊2
൰ 

݅݀ (݂ଷ) 

log ൬
ܰ
݊3
൰ 

 (ଷ)ݓ (ଶ)ݓ  (ଵ)ݓ

1 4 0 2 0.398 0.222 0.398 1.592 0 0.786 

2 0 4 0 0.398 0.222 0.398 0 0.888 0 

3 0 3 6 0.398 0.222 0.398 0 0.444 2.388 

4 2 0 0 0.398 0.222 0.398 0.798 0 0 

5 0 7 0 0.398 0.222 0.398 0 1.554 0 

 
Normalize the term weight (so longer vectors are not unfairly given more 
weight). forces all values to fall within a certain range usually between 0 and 
1. 
 

௜௞ݓ =
௧௙೔ೖ ୪୭୥ቀே ௗ௙ೖൗ ቁ

ට∑ (௧௙೔ೖ)మቔ୪୭୥ቀே ௗ௙ೖൗ ቁቕ
మ೟

ೖసభ

 ---(6) 

 
Table 4.6 Calculations of Normalized tf x idf Example 

 A B C D E F G H 
ܣ  2^(3)݂ݐ 2^(2)݂ݐ 2^(1)݂ݐ × ܤ 2^݂݀݅ × ܥ 2^݂݀݅ × ݂݅݀^2 D+F+E ܩ ቀଵ

ଶ
ቁ෢  

Msg1 16 0 4 2.534 0 0.634 3.168 1.584 
Msg2 0 16 0 0 0.789 0 0.789 0.394

5 
Msg3 0 9 36 0 0.443 5.702 6.146 3.073 
Msg4 4 0 0 0.634 0 0 0.634 .317 
Msg5 0 49 0 0 2.414 0 2.414 1.207 

 
After calculating ( tf x idf ) we will organize the data in the tablet format so 
we will create a CSV file with201 columns - 200 features and class 
identifier, 301 rows - header (f1, f2...f200, class) and 1066 examples. All 
sections discussed above have been developed and the source code of all 
programs on in the Appendix C.3. 

4.3.5 Classification Based on Naïve Bayesian 

Definition of message classification 
Input: 
         A message m 
         A fixed set of classes C = {non-spam, spam} 
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Output: 
        A predicted class 
 
The Naïve Bayesian classification method based on Bayes rule which relies 
on representation of a document is a bag of words as shown in Figure 4.3 
[103]. Bayes’ Formula used in email message being filtered to classify the 
email messages [104]. 
As mentation before NB represent data in a bag of words here in Figure 4.3 
section (a) we shown short messages which we need to classify. 
 
 
 

Y = C 
 (a) 
 
 
 

Y  = C 
 
 
         (b) 
In Figure 4.3 section (b) we selected some words that will classify the 
message if spam or non-spam. 
 
 

Y = C 
 
 
 
 (c) 
 
Figure 4.3 Bag of words representation 

اھم الاخبار التجاریة قامت 
مجموعة شركات الصافي للتجارة 

بعرض بضائع والعاب ضمن 
موسم التسوق و التخفیضات كما 

ني یمكن تحمیل مجموعة من الاغا
. واللالعاب المجانیة  

اھم الاخبار التجاریة قامت 
مجموعة شركات الصافي للتجارة 

بعرض بضائع والعاب ضمن 
موسم التسوق و التخفیضات كما 

یمكن تحمیل مجموعة من الاغاني 
 واللالعاب المجانیة.

أخبار                        - 2 
تجارة                        - 2 
العاب                        - 2 

 1 -   تخفیضات               
 1 -        تسوق               
 1 -         تحمیل              
 1  -         اغاني              
 1 -         مجاني              
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In Figure 4.3 section (c) we counted the number of occurrences for each 
word that selected in (b). 

4.3.5.1 CSV files 
A CSV is an organized file format use in the text information processing 
where categorization can be done at word level [105]. On a CSV file each 
line is interpreted as a text document (here it is email) [106]. We created a 
CSV file consisted of columns (features and class identifier) rows (header 
(f1, f2...fn, class) and examples of emails). 
First we found the number of examples in the corpus and then calculate      
tf-idf scores of all messages in the corpus to get the weight of the features 
then we used this data to create a CSV file consisting of columns. 
Create headers 
 For each index feature in the corpus 
 Create the list of [f1, f2,..., fn] 
 Append spam class 
 Create the list [f1, f2..., fn, spam Class] 
Create CSV file 
 Append headers to the CSV file 
For each message in the corpus 
 Append the row of tf-idf scores for each feature 
 Append the spam class in the last column 
 Append the row in the CSV file 
Write the CSV file 
 For each row in CSV file 
 Write CSV file 
 
Figure 4.4 Creation CSV file algorithm 
 
The result of organized data file (CSV) is presented in the Figure 4.5 for 
body (which contained the data in the body) and Figure 4.6 for the subject 
(which contained the subject data of the each message) with features (f1..fn) 
and term class. 
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Figure 4.5 CSV file for message body 

 
 Figure 4.6 CSV file for message subject 

In the first step, the classification process retrieved data from CSV, Outputs 
will be two lists: a list of messages and a list of headers. 
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 Read CSV file 
 Read from the body and a subject CSV file into the reader 
 For row in reader 
Scans through the rows (header & message), appending to the file (corpus 
data) 
 Header data "f1, f2... 
 Message data with TF-IDF scores 
 For row in corpus data 
 Converts strings to floats 
 Return corpus header, corpus float data 

Figure 4.7 "Read CSV" files algorithm 

4.3.5.2 Training 

In the training phase, the model is trained using a known corpus of spam and 
non-spam emails. It keeps track of each word that occurs only in spam, only 
in non-spam messages, and in both. Based on these word occurrence 
statistics, incoming unseen messages are processed and classified 
accordingly. We trained the classifier by calculated the prior normal 
distribution parameters for the feature sets and true/false and calculates the 
mean and standard deviation for each feature in training messages when 
class equal spam class. At the end calculate the priori spam and not spam 
probabilities. 

4.3.5.3 Message classification 

To find the classification of the message we calculate the probability that a 
message is or is not spam, we commenced Bayes probability on message and 
get a priori class probability of the message. Used feature selection method 
from WEKA [107] to get feature reduction, finally used tf-idf for each 
feature of the message to find the probability of the feature and then multiply 
together to obtain the probability that a message is spam or not spam. 

4.3.5.4 Test classification 

Once the model is trained using a dataset of spam and non-spam messages, it 
is ready to perform its basic functionality of classifying new incoming 
unseen messages. 
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We used standard deviation technique which emphasized the spam 
probability of tokens rather than the number of tokens (words). The specialty 
of the technique is that it assigns the score to the email independent of its 
size. The same token should not be considered more than once to avoid any 
interference from the specific token if it had occurred a few times in the 
message. The processing time for classification would vary according to the 
size of the email[31]. 

4.4 ASDM Examples 

In this section we presented two examples for spam classification based on 
ASDM model. 

4.4.1 Example (1) 

This example uses spam message as shown in Figure 4.8  from Arabic 
emails corpus, which it uses in ASDM. To classify the email message as 
spam or non-spam ASDM looks at the subject and the body of the message 
and apply Bayes rule formula.  

 
Figure 4.8: Arabic spam message sample 

 
At the first  ASDM must split the message into tokens and build a table of 
all the tokens, the table would be as shown in Table 4.7 then we remove all 
the stop words as shown in the Table 4.8 finally we perform preprocessing 
step as shown in the Table 4.9: 
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Tale 4.7: Tokens of Spam Message 
 المخابرات بتأھیل نقوم استصلاح أفراد وضباط
 لیتحولوا الى مواطنین صالحین كتاب نشطاء
 الانترنت غصن ھم الذین انضجوا اطلقوا
 الثورات العربیة یدي على الارض تسقطوا
 الزیتون من لا كلما تجاھلنا الظالمون

 كلما ازددنا رغبة في تحطیمھم والمستبدون
 

Tale 4.8: Tokens without stop words 
 الثورات العربیة نقوم استصلاح والمستبدون وضباط
 الزیتون ازددنا مواطنین صالحین كتاب نشطاء
  المخابرات رغبة یدي انضجوا اطلقوا
  لیتحولوا بتأھیل أفراد الارض تسقطوا
  الانترنت غصن تحطیمھم تجاھلنا الظالمون

 
Tale 4.9: Tokens with preprocessing step 

 ثورة عرب قم اصلح استبد ضبط
 زیتون زد مواطن صلح كتب نشط
  خبر رغبة یدي نضج اطلق
  حول أھل فرد ارض سقط
  نت غصن حطم جھل ظلم

 
Once the ASDM has the list of tokens in the message, it searches for the 
spam and non-spam from the token file.  
The file of tokens is created and updated whenever the ASDM is “trained” 
on a new message. 
If a token from the message is found in the file, the ASDM calculates the 
token’s spamicity based on the following variables: 

 The frequency of the token in spam messages that the model has been 
trained on. 

 The frequency of the token in non-spam messages that the model has 
been trained on. 

 The number of spam messages that the model has been trained on. 
 The number of non-spam messages that the model has been trained 

on. 
 
The token’s spamicity is calculated from these pieces of data as follows: 
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Non-spam probability = 
Token frequency in non-spam messages / Number of non-spam messages trained on 
 
Spam probability = 
 Token frequency of spam messages / Number of spam messages trained on 
 
If either non-spam probability or spam probability are greater than 1.0, we 
set them equal to 1.0. 
 
Spamicity = Spam probability / (Non-spam probability + Spam probability) 
 
The ASDM was trained on 100 spam messages and 200 non-spam messages. 
In this example, if we use the token “مخابرات” from the non-spam words of 
the message, the value will be: 
 
Non-spam probability = 120/200 
Spam probability = 0/100 
Spamicity = 1.2 
 
This tells us that there’s only a 1.2 chance that a message containing the 
word “مخابرات” is a spam message. 
 
Repeating this process for each of the tokens in our sample message, we get 
the following frequencies and spamicities: 
Table 4.10: Tokens dictionary of the message 

Token Spam 
Frequency 

Non-Spam 
Frequency 

 63 322 ضبط
 30 236 نشط
 11 120 اطلق
 10 560 سقط
 22 220 ظلم
 10 145 استبد
 140 120 كتب
 29 790 نضج
 51 230 ارض
 10 590 جھل
 43 240 اصلح
 29 90 صلح
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 18 470 یدي
 20 350 فرد
 29 530 حطم
 15 140 قم

 45 240 مواطن
 30 140 رغبة
 98 240 أھل

 50 130 غصن
 44 430 ثورة
 29 430 عرب
 30 140 زد
 0 120 خبر
 20 340 حول
 78 140 زیتون

 
 
 
 
Table 4.11: Token probability and Spamicity of the message 
Token Spam probability Non-Spam probability Spamicity  

 3.49 0.27 3.22 ضبط
 2.76 0.4 2.36 نشط
 1.8 0.6 1.2 اطلق
 6 0.4 5.6 سقط
 3.3 1.1 2.2 ظلم
 1.65 0.2 1.45 اسبد
 1.26 0.06 1.2 كتب
 8.295 0.395 7.9 نضج
 2.5 0.2 2.3 ارض
 6.195 0.295 5.9 جھل
 2.845 0.445 2.4 اصلح
 9.45 0.45 9 صلح
 4.85 0.15 4.7 یدي
 3.9 0.4 3.5 فرد
 5.715 0.415 5.3 حطم
 1.5 0.1 1.4 نقم

 2.55 0.15 2.4 مواطن
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 2.1 0.7 1.4 رغبة
 2.565 0.165 2.4 أھل

 1.365 0.065 1.3 غصن
 4.635 0.335 4.3 عرب
 1.47 0.07 1.4 زد
 1.2 0 1.2 خبر
 3.5 0.1 3.4 حول
 5.8 0.2 5.6 ثورة
 2.05 0.15 1.9 زیتون

 
From Table 4.11 the model has calculated the spamicity value for each token 
in the message. 
 
This message has probability of 92.754 % chance that means the message is 
spam. If this message was sent to an email server protected by ASDM, it 
would be tagged as spam. 
 
 

4.4.2 Example (2) 

In this example we use a set of email messages as shown in Table 4.12 for 
training and testing. 
 
Table 4.12: Spam Messages Collection 
 Message Words Class 
Training msg1 “صحة.” non-spam  
Training msg2 “ الاطفالصحة  .” non-spam  
Training msg3 “العاب مجانیة.” Spam  
Training msg4 “تحمیل العاب.” Spam  
Training msg5 “ تحمیل العاب مجانیة“  Spam  
Test msg6 “ العاب الاطفال..تحمیل ” ? 

The first step is to split all the messages into tokens and build a table as 
shown in Table 4.13 of all the tokens. 
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Table 4.13: Spam Message Token Frequency 
 
 
 
 
 
 
 
 

Naïve Bayes Learning begins by calculating the prior probability 
ܲ(ܿ௜) = 	 ௖௢௨௡௧(௖೔)

∑ ௖௢௨௡௧(௝)ೕ
 ----(7) 

 
Applying prior probability equation of spam and non-spam data 
 

(݉ܽ݌ݏ)ܲ = 	
3
5

 
 

݊݋݊)ܲ − (݉ܽ݌ݏ = 	
2
5

 
 
Then we have to calculate the conditional probabilities 

(ܿ|ݓ)ܲ = 	 ௖௢௨௡௧(௪,௖)	ାଵ
௖௢௨௡௧(௖)ା	|௏|

 ----(8) 
Table 4.14: Spam Message Token Frequency and Spamicity 
Word Conditional probabilities Result 
1 ܲ൫ʹتحمیلʹห݊݊݋ − ൯ ଴ାଵ݉ܽ݌ݏ

ହାହ
 = 0.1 

2 ܲ൫ʹ عبل ʹห݊݊݋ − ൯ ଴ାଵ݉ܽ݌ݏ
ହାହ

 = 0.1 
3 ܲ൫ʹطفلʹห݊݊݋ − ൯ ଵାଵ݉ܽ݌ݏ

ହାହ
 = 0.2 

4 ܲ൫ʹتحمیلʹห݉ܽ݌ݏ൯ ଶାଵ
଻ାହ

 = 0.25 
5 ܲ൫ʹلعبʹห݉ܽ݌ݏ൯ ଷାଵ

଻ାହ
 = 0.33 

6 ܲ൫ʹطفلʹห݉ܽ݌ݏ൯ ଴ାଵ
଻ାହ

 = 0.083 
The last step is to choose a class for the test message 
 
݊݋݊)ܲ − ଶ = (6݃ݏ݉|݉ܽ݌ݏ

ହ
× ଵ

ଵ଴
× ଵ

ଵ଴
× ଶ

ଵ଴
 = 0.0008 

 

Word Frequency 
 2 ''صحة''

"طفل"  1 
"تحمیل " 2 

"لعب"  3 
"مجاني " 2 



  

 51

ଷ = (6݃ݏ݉|݉ܽ݌ݏ)ܲ
ହ

× ଷ
ଵଶ

× ସ
ଵଶ

× ଵ
ଵଶ

 =0.0041 
 
This test message has probability of 0.0041 chance that means the message 
is spam. 

4.5 Mixed Spam Detection Model 
To evaluate the spam detection model that is presented  above in mixed 
dataset English and Arabic spam messages first we need to mix the Arabic 
and English emails after they classified manually. 
 
Second step we perform data preprocessing separately for each type of 
message (English and Arabic). 
 
We modify the English spam detection model (from the previous section) to 
work on mixed datasets. 
 
 
 
 
 
 
 

 

 

 

 

 
 
 
 
 
 
Figure 4.9 Work flow of the mixed spam detection model 

N Y 

New Email 

English 
Email 

English Email Preprocessing Arabic Email Preprocessing 

English Email Detection Algorithm Arabic Email Detection Algorithm 
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4.6 Result and Experiments of the Model 
This section explains the set of experiments carried out to evaluate the 
Arabic spam detection model that we used to classify Arabic spam 
messages. 
In all experiments, 10-fold cross validation was employed. The dataset was 
partitioned randomly into ten parts, each experiment was repeated ten times, 
each time reserving a different part for testing, and using the remaining nine 
parts for training [108]. The final results are the average of the ten iterations. 
This process produces more reliable results and uses the entire corpus for 
both training and testing phases [93]. 
In proposed model we created the set of 10 thirty element random bins after 
that created the training set (270 elements) and the validation data (30 
elements) then train the probabilities of the Bayes filter and calculate the 
percentage of successful classifications. 

 

4.6.1 Experiment (1) Comparison of Three Datasets: 

The first experiment was designed to compare the effectiveness of using the 
Naïve Bayesian in English, Arabic and mixed in two sections body and 
subject of the message. The datasets used in these experiments are 
preprocessed. Table 4.15 and Table 4.16 have shown the results. 
 
Table 4.15 Results of spam detection model for three datasets (English, 
Arabic and mixed) on Body of the Email 

Dataset Correct 
Classification 

Incorrect 
Classification 

Accuracy 
 

Error 

English 577 23 96.2% 3.8% 
Arabic 287 13 95.8% 4.2% 
English & Arabic 481 19 96.2% 3.8% 
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Table 4.16. Results of spam detection model for three datasets (English, 
Arabic and mixed) on Subject of the Email 

Dataset 
 

Correct 
Classification 

Incorrect 
Classification 

Accuracy 
 

Error 

English 549 51 91.5% 8.5% 
Arabic 284 16 94.7% 5.3% 
English and Arabic 451 49 90.2% 9.8% 

4.6.2 Experiment (2) Applying To The Arabic Mode 
The second experiment was designed to get the result when the Arabic spam 
detection model applied to the body and the subject of the email Table 4.17 
and Table 4.18 shown the results. 
 
Table 4.17 Results of Arabic model on the body of email 

Stratification 
set 

1 2 3 4 5 6 7 8 9 10 

Percentage of 
Correct 

classification 

 
94.7% 

 
94.7% 

 
89.5% 

 
100% 

 
100% 

 
89.5% 

 
89.5% 

 
100% 
 
 
 

 
100% 
 
 

 
100% 

Percentage of 
Incorrect 

classification 

 
5.3% 

 
5.3% 

 
10.5% 

 
5.3% 

 
0 

 
10.5% 

 
10.5% 

 
0 
 

 
0 

 
0  

Overall 
accuracy 

 
95.8% 

 

 
Figure 4.10 Percentage classification of Arabic model of the body 
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Table 4.18. Percentage of Arabic model on the subject of Email 

Stratification 
set 

1 2 3 4 5 6 7 8 9 10 

Percentage of 
Correct 

classification 

 
100% 

 
94.7% 

 
100% 

 
94.7% 

 
89.5% 

 
84.2% 

 
94.7% 

 
94.7% 

 
100% 

 
94.7% 

Percentage of 
Incorrect 

classification 

 
0 

 
5.3% 

 
0 

 
5.3% 

 
10.5% 

 
15.8% 

 
5.3% 

 
5.3% 

 
0 

 
5.3% 

Overall 
accuracy 

 
94.7% 

 
 
 

 
Figure 4.11 Percentage of Arabic model on the subject of email 
 

4.6.3 Experiment (3) Applying On English Model 

The third experiment was designed to get the result when applied English 
spam detection model on the body and the subject of the email Table 4.19 
and Table 4.20 shown the results. 
 
 
 



  

 55

Table 4.19 Results of English model of the body of email 
Stratification 

set 
1 2 3 4 5 6 7 8 9 10 

Percentage of 
Correct 

classification 

 
96.7% 

 
100% 

 
95% 

 
93.3% 

 
95% 

 
95% 

 
98.3% 

 
98.3% 
 
 
 

 
93.3% 
 
 

 
96.7% 

Percentage of 
Incorrect 

classification 

 
3.3% 

 
0% 

 
5% 

 
6.7% 

 
5% 

 
5% 

 
1.7% 

 
1.7% 
 

 
6.7% 

 
3.3%  

Overall 
accuracy 

 
96.2% 

 
 

 
Figure 4.12 Percentage of English model of the body of email 
 
Table 4.20 Percentage of English model on the subject of email 

Stratification 
sets 

1 2 3 4 5 6 7 8 9 10 

Percentage of 
Correct 

classification 

 
100% 

 
94.7% 

 
89.5% 

 
100% 

 
98% 

 
89.5% 

 
89.2% 

 
94.7% 

 
100% 
 
 

 
98% 

Percentage of 
Incorrect 

classification 

 
0 

 
5.3% 

 
10.5% 

 
5.3% 

 
2% 

 
10.5% 

 
10.8% 

 
5.3% 

 
0 

 
2%  

Overall 
accuracy 

 
91.5% 
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Figure 4.13 Percentage of the English model on the subject of email 
 

4.6.4 Discussion Results or Arabic and English Spam Detection 

Accuracy the ratio of correctly classified messages is used as a combined 
measure. All experiments were conducted using 10-fold cross validation. 
The reported figures are the means of the values from the ten iterations [19]. 

The result of model showed that the Naïve Bayesian algorithm is the most 
effective way to use in detecting Arabic and English spam emails. It is 
shown that main point effect on the Arabic spam detection is the collection 
of Arabic corpus and the limit of the size of Arabic dataset. 

The results showed that the applied of English and Arabic detection models 
on the body of the message gave an accuracy of 96.2% of the English 
messages and 95.8% of the Arabic messages whereas the subject gave less 
of this accuracy. 

4.6.5 Experiments in Mixed Spam Detection Model 

This section explains the set of experiments carried out to evaluate the 
mixed (English & Arabic) spam detection model discussed above that we 
used to classify spam messages. 
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In all experiments, 10-fold cross-validation was employed. The final result is 
the average of the ten iterations. This process produces more reliable results 
and used the entire corpus for both training and testing phases [93]. 

4.6.5.1 Experiment (1) applying to the body of the email 
The first experiment was designed to get the result when applied mixed 
spam detection model on the subject of the email Table 4.21 shown the 
results.  
 
Table 4.21 Results of mixed model on the subject of Email 

4.6.5.2 Experiment (2) applying on the subject of the email 

The second experiment was designed to get the result when applied mixed 
spam detection model on the body of the email Table 4.22 shown the results. 

 
Figure 4.14. Result of mixed model on the subject of email 
 

Stratification 
sets 

1 2 3 4 5 6 7 8 9 10 

Percentage of 
Correct 

classification 

 
89.2% 

 
100% 

 
89.5% 

 
100% 

 
97% 

 
89.2% 

 
94.7% 

 
94.7% 

 
100% 
 
 

 
98% 

Percentage of 
Incorrect 
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Table 4.22 Results of mixed model of the body of  email 
Stratification 

sets 
1 2 3 4 5 6 7 8 9 10 

Percentage 
of Correct 

classification 

 
98.3% 

 
93.3% 

 
95% 

 
100% 

 
95% 

 
95% 

 
96.7% 

 
98.3% 
 
 
 

 
96.7% 
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Percentage 
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Figure 4.15. Results of mixed model of the body of email. 
 
4.6.6 Discussion of Results for Mixed Spam Detection 
The result of model showed that the Naïve Bayesian algorithm is the most 
effective way to use in detecting mixed (Arabic and English) emails. The 
mixed spam detection based on the collection of Arabic and English dataset. 
The model used different preprocess for each dataset and that effect on the 
end result. The results showed that the applied to the mixed detection model 
of the body of the message gave an accuracy of 96.2% of the English 
messages and Arabic messages. 
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The result of model showed that the Naïve Bayesian algorithm is the most 
effective way to use in detecting mixed (Arabic and English) emails.  The 
model used different preprocessor foreach dataset. The results showed that 
the applied to the mixed detection model of the body of the message gave an 
accuracy of 96.2%. 

4.7 Comparison between Models and various Classifiers 
The CSV file is generated from the corpus and presented in the Excel file. 
The resultant classify is tested on Decision Tree J48, Logistic Regression 
and ZeroR classification techniques on 10-fold cross validation and 
tabulated in Table 4.23. 
 
We experimented with three classifiers Decision Tree J48, Logistic 
Regression and ZeroR. The best results we obtained using proposed English 
model as shown in Table 4.23. 
 
Table 4.23 Comparison between English model with various classifiers 
Classifier Body Section Subject Section 

Correctly 
Classified 
Instances in % 

Incorrectly 
Classified 
Instances in % 

Correctly 
Classified 
Instances in 
% 

Incorrectly 
Classified 
Instances in 
% 

English  
Model  

96.2 3.8 91.5 8.5 

J48 92.5 7.5 80.2 19.8 
ZeroR 66.7 33.3 66.7 33.3 
Logistic 79.7 20.3 82.9 17.1 
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Figure 4.16 Performance of English model comparison 
 
The results from Table 4.23 indicate English model classification gives 
better performance than the other three classifiers. Figure 4.16 shows the 
performance curves of English model, Decision Tree J48, ZeroR, and 
Logistic Regression classification techniques. The success criteria for text 
classification have significantly increased by using the proposed English 
detection model. The results showed an English spam detection model using 
Naïve Bayesian which yielded an accuracy of 96.2%. 
 
Table 4.24 Comparison between Arabic model with various classifiers 
Classifier Body Section Subject Section 

Correctly 
Classified 
Instances in % 

Incorrectly 
Classified 
Instances in % 

Correctly 
Classified 
Instances in % 

Incorrectly 
Classified 
Instances in % 

Arabic 
Model 

95.8 4.2 94.7 5.3 

J48 92.8 7.2 92.8 7.2 
ZeroR 92.8 7.2 92.8 7.2 
Logistic 93.8 6.2 93.8 6.2 
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Figure 4.17 Performance of Arabic model comparison 
 
The results from Table 4.24 indicate Arabic model classification gives better 
performance than the other three classifiers. Figure 4.17 shows the 
performance of Arabic model,  Figure 4.17 shows the performance curves of 
Arabic model, Decision Tree J48, ZeroR, and Logistic Regression 
classification techniques. The success criteria for text classification have 
significantly increased by using the proposed Arabic detection model. The 
results showed an Arabic spam detection model using Naïve Bayesian which 
yielded an accuracy of 95.8%. 
 
Table 4.25 Comparison between Mixed model with various classifiers 
Classifier Body Section Subject Section 

Correctly 
Classified 
Instances in % 

Incorrectly 
Classified 
Instances in % 

Correctly 
Classified 
Instances in % 

Incorrectly 
Classified 
Instances in % 

Mixed 
Model 

96.2 3.8 90.2 9.8 

J48 93.7 6.3 78.5 21.5 
ZeroR 66.7 33.3 66.7 33.7 
Logistic 83.2 16.8 84.7 15.3 
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Figure 4.18 Performance of Mixed model comparison 
 
The results from Table 4.25 indicate English and Arabic model classification 
gives better performance than the other three classifiers. Figure 4.18 shows 
the performance curves of English and Arabic model, J48, ZeroR, and 
Logistic Regression classification techniques. The success criteria for text 
classification have significantly increased by using the proposed English and 
Arabic detection model. The results showed an Arabic and English spam 
detection model using Naïve Bayesian which yielded an accuracy of 96.2%. 
The final results show that proposed model achieves high levels of accuracy. 
In addition, it can minimize the number of legitimate emails that are 
misclassified and is also able to detect a high number of spam messages. 
Nevertheless, several points of discussion are important regarding the 
suitability of the proposed method. It is also important to consider efficiency 
and processing time. Our system compares each email against a big dataset. 
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CHAPTER FIVE 
PERSONALIZED SPAM DETECTION 

ALGORITHM 
This chapter presents a personalized spam detection algorithm, which is 
based on the behavior of the user towards different types of message content 
[109]. 
The classification of the message is dynamically made based on what each 
user is like. The personalized email is abbreviated as Permail it is the web 
based spam detection system. 
In this chapter we also present personalized spam classification model build 
on MATLAB [12]. 
5.1 Personalized Spam Detection System 
Personalized spam detection algorithm integrates spam solution methods 
(whitelist, blacklist, keyword, and content filter) and web based solutions to 
classify the message. 

5.1.1 System Architecture 
The incoming email message passes through levels of classification and ends 
up in either the mail is spam or non-spam as shown in Figure 5.1. 
 
A. Whitelisting 

Initially, it has a set list of email addresses  user "whitelist" ensures that all 
his important email addresses and web addresses will never be blocked. Most 
user whitelists consist of major legitimate newsletters and email address 
books. Messages that pass the filters be added to the whitelist, if they are not 
already there[110]. 
 
B. Blacklist 

Initially, it has a set list of email addresses. Any message that failed to pass 
the whitelist level and then sent to this level will be checked against the 
blacklist, which contains email addresses that users never accepted email 
email addresses of the users who aren't accepts messages from [111]. If there 
is a match, the message will be sent to the junk mail. 
C. Keyword filtering 

By creating keyword lists, messages can be filtered based on a variety of 
words, phrases, and sentences extracted from the message header (subject). 
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[112]An example of a general type of keywords list is suggested by [113] and 
is presented in Appendix B.1. In our proposed listing a keyword list is 
created for each user and is populated and updated by keywords extracted 
from the messages identified as junk mail at the following level. 
 
D. Content filtering 

The proposed content filter acts on the content, the information contained in 
the mail body, to classify, accept or reject a message [33-35]. A user content 
filter is created for each user based on his behavior which requires 
information to be compiled and maintained for each user. 
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Figure 5.1 Flow work of personalized spam detection model 

5.1.2 System Description 

This section describes personalized spam detection algorithm and web page 
application as follow: 

5.1.2.1 Personalized algorithm 

The algorithm initially contains three lists: 

 Whitelist: It contains Favorite email addresses (family, friends, 
related…. Etc.) Which are different from user to the other. 

 Blacklist: At the beginning contains some spam email addresses and it 
will change dynamically with each user according to what he want to 
receive email from. 

 Vocabulary list: It contains standard spam words each user can add or 
remove from the list to be as he like and the list will contain only the 
spam words. 

The next paragraph presents the two main algorithms: 
(1) When the user opens the Inbox 

- If the user deletes the email 

                      The email address is added to the black list. 

- If the user reads the email 

                       If the user then clicks delete 
Address candidate to be blacklist, after satisfying 
blacklist criteria, add an email address to the blacklist 

- If the user then clicks, spam button then he is given the 
following choices: 

Title: processed spamming words added to 
Vocabulary list. Or, 
Words: user clicks the particular word. Or, 
Whole body: body processed spamming words sent 
to the vocabulary list. 
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Title process: selects spam words from the title and 
adds to Vocabulary list. Or, 
Words process: selects the particular word from the 
title and adds to Vocabulary list. Or, 
Whole body: selects all body and adds to 
Vocabulary list.  

Now vocabulary list will acquire the words that this particular user classified 
as spam. 
 
 

 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
- 
 
 
 
 
 

 
Figure 5.2 Personalized spam detection Algorithm (User Opens Inbox) 
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(2) The user reviews the junk list 
- When the user selects a certain junk email and move it to the 

Inbox: 

                  Delete email address from the blacklist, Add to whitelist. 
- When a user selects a certain junk email and clicks not spam: 

                The email address is deleted from the blacklist. 
 

- When a user chooses words (which the user consider legitimate 
and not spam). He clicks the words: 

                    Words are deleted from the vocabulary list. 
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Figure 5.3 Personalized Spam Detection Algorithm (User Reviews Junk 
Mail) 
 
The vocabulary list is dynamically changed to resemble the liking of each 
individual user. I.e. the vocabulary list is different from a user to the other. 
Hence, this is a personalized spam detection algorithm. 

5.1.2.2 Personalized web pages 
We attempted to build web based spam detection email system based on the 
user and his personalized like on websites and emails. 

5.1.2.2.1 Permail database 
We used a Microsoft Access database to build the system database 
consisting of about 15 tables the database schema is shown in Figure 5.4 and 
the database relationship as shown in Figure 5.5. The following is the list of 
database tables. 
 

 

Candy Table 
PK Cdid Number 
 bladd Text 

 

Userbl Table 
PK uid Number 
Pk blid Number 

 

Usermsg Table 
PK Uid Number 
PK Msid Number 

   

 

Junk Table 
PK Jid Number 
 From Text 
 To Text 
 edate Date/time 
 subject Text 
 body Memo 

 

Message Table 
PK mid Number 
 from Text 
 To Text 
 edate Date/time 
 subject Text 
 body Memo 

 

User Table 
PK uid Number 
 fname Text 
 lname Text 
 bod Date/time 
 mobile Text 
 job Memo 
 country Text 

   

 

Userjn Table 
PK uid Number 
PK jid Number 

 

Bvocab Table 
PK jid Number 
PK vovid Number 

 

Wvocab Table 
PK vocid Number 
PK Msid Number 

   

 

Userwl Table 
PK Uid Number 
PK Wild Number 

 

Whitelist Table 
PK Wild Number 
 wladd Text 

 

Blacklist Table 
PK Blid Number 
 bladd Text 

   

 

Vocab Table 
PK Vocid Number 
 Word Text 
 Type Text 

 

Login Table 
PK Uid Number 
 Login Text 
 Pwd Text 

 

Candadd Table 
PK Cdid Number 
 Isdel y/n 

 
Figure 5.4 Database tables of Permail system 
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Figure 5.5 Database relationship of Permail system 
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5.1.2.2.2 Permail description 
This section explains Permail web application that provides personalized 
features on the email build. Figure 5.6 shows the sitemap.  
All sections discussed above have been developed and the source code of all 
programs on in the Appendix C.1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.6 Permail sitemap 
 
We developed web based application using ASP [14] this technology gives 
us ability to insert, update and retrieve data from database on the web page. 
We used ODBC [18] to create the connection between the database and the 
web pages. 
 
All figures will mention next have been developed in the Appendix D. The 
home page is shown in Figure D.1 gives the ability to enter the mail system. 
When the user clicks on user login he will go into the login page as shown in 
Figure D.2 and if he is already registered he can enter his user name and 
password. Otherwise, he can create a new account as shown in Figure D.3 
by entering his full information on the form. The following sections show 
the main processes of the web pages: 
 
A. User Inbox 

There are many users account created in the Permail. Each user has his 
different Inbox list message, whitelist, blacklist and vocabulary list and each 
list changes dynamically. When the user enters the correct login ID and 
password Permail open user Inbox page and this page contains many 
functions: 

    Home Page 
index.asp 

User Inbox 
inbox.asp 

User Junk 
junk.asp 

User Whitlist 
whitelist.asp 

User Blacklist 
blaclist.asp 

User 
Vocabulary 

list 
vocablist.asp 
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- If the user wants to view the message this page retrieves all 
messages from user Inbox. Figure D.4 shows different Inbox users 
a, b and c these users have a different Inbox. 

- If the user clicks on the subject of any message he can read this 
message as shown in Figure D.5. After the user reads the message 
page, he can do the following: 

 Delete it by click on the delete button as shown in Figure 
D.6 or 

 If a user classifies this message as spam he can click on 
spam button and he will go to spam message as shown in 
Figure D.7 then he must select words to add into the 
vocabulary list: 

o Either from the title of the message as shown in 
Figure D.8 or 

o Select some words from body as shown in Figure D.9 
or 

o Add all body to the vocabulary list as shown in 
Figure D.10. 

B. User junk 
 
User junk mail page retrieves all junk mail and contains many functions as 
follows: 
 

- If the user wants to view the message he can retrieves all messages 
from the user's junk mail as show in Figure D.11 shows different 
users. 

- If the user knows some message is not junk mail he can clicks to 
move the message to Inbox as shown on Figure D.12 and email 
address will be deleted from blacklist and added to the whitelist. 

- If the user clicks on the subject of any message he can read this 
message as shown in Figure D.13. After the user reads the message 
page, he can do the following: 

 Delete it by click on the delete button or 
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 If the user finds this message not spam he can click on not 
spam button and go to the page shown in Figure D.14 to 
select the non-spam words from: 
o  If the words of the title as shown in Figure D.15, the 

user can select these words and delete from blacklist 
and add to the whitelist or 

o If the words on the body as shown in Figure D.16, the 
user can select these words and delete these words 
from blacklist words and add to the whitelist or 

o If all the words of the body are non-spam words as 
shown on Figure D.17, the user can select all the body 
and delete these words from blacklist words and add 
them to the whitelist. 

C. User list 

This section presents user whitelist, blacklist and vocabulary lists. Figure 
D.18 (a, b and c) shown the different whitelist between users a, b, and c. 

Figure D.19 (a, b and c) shown the different blacklist between users a, b, and 
c. 
Figure D.20 (a, b and c) shown the different vocabulary between users a, b, 
and c. 

5.1.3 Advantages of Personalized Spam Detection 

Table 5.1 Advantages and disadvantages of mail services 
Mail 

service 
Advantages Disadvantages 

Permail - Personalize performance. 
- Body spam list. 
- User dynamic whitelist 

email address. 
- User dynamic blacklist 

email address. 
- User dynamic white 

vocabulary list. 

- - Used locally. 
-   
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- User dynamic black 
vocabulary list. 

Hotmail   - All users share same spam  
blacklists. 

Gmail - Bayesian   - All users share same  
spam blacklists. 

Yahoo 
Mail 

- Spamgraud feature. 
- No false positive. 

 - All users share same spam 
blacklists. 

5.1.4 Permail experiment 

This section compared Yahoo Mail, Hotmail, and Gmail with proposed 
Permail to test to his features and advantages. 
This section compared Yahoo Mail, Hotmail, and Gmail with proposed 
Permail. 

 We created three email accounts on Yahoo Mail, Hotmail, and Gmail. 
 We created suspicious email accounts on the top free email such as 

outlook.sa, mail.com, gmx.com, shortmail.com, myway.com and 
aim.com. 

- abc.dd@aim.com 
- Freeone98@gmx.com 
- buyone@shortmail.com 
- Topten10@myway.com 
- Abc.abc2@outlook.sa 
- Shop123@mail.com 
- Free.mony@lycos.com 

 We used above emails to send a message to Yahoo Mail, Hotmail, and 
Gmail, we used email corpus gets from the Second Conference on 
Email and Anti-Spam CEAS 2005, Stanford University, Palo Alto, 
CA [15]. 
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 We used valid mail accounts on Gmail, Yahoo Mail and Hotmail (my 
own accounts) to send spam messages. 

 We sent equal numbers of spam and non-spam emails for all mail 
services. 

 All three valid mails allow send spam message, that means there is no 
filter to send and they only filter the receive spam emails. 

Comparison aimed to count the amount and percentage of spam and non-
spam that showed up in the accounts' inboxes. 
 
Table 5.2 Mail service with spam in the Inbox 
 
Mail 
service 

Total 
Inbox 

Non-spam 
Inbox 

Spam % of 
Inbox 

Non-spam 
% of Inbox 

Permail 32 30 6.25% 93.75% 
Gmail 54 24 55.66% 44.44% 
Hotmail 59 23 61.02% 38.98% 
Yahoo  72 32 55.66% 44.44% 

 
Table 5.3 Mail service with spam in junk 
 
Mail 
service 

Total 
junk 

Non-
Spam 
in junk 

Spam % of 
junk 

Permail 72 2 2.77% 
Gmail 48 40 83.33% 
Hotmail 44 34 77.27% 
Yahoo  30 0 0 

 
Table 5.4 Mail service with false positive and false negative  
Mail 
service 

False 
negative 

False 
positive 

Permail 2 2 
Gmail 30 8 
Hotmail 36 10 
Yahoo  40 0 
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Compare the classification results of Permail, Hotmail, Yahoo and Gmail it 
identify that the Permail is the best classifier to detect spam emails. The 
results indicated that the Permail web spam detection showed the less false 
positive. 
5.2 Spam Classification Model Based on Naïve Bayesian 
 
Since different users receive different types of legitimate emails, the process 
of the training of the algorithm would be different for different users. Certain 
words may have more occurrences in the legitimate emails of one user; 
however, for another user, these words may have more occurrences in spam 
emails. Therefore, in the training process of algorithm probabilities of 
spaminess of words are computed differently and as a result, we would have 
different classification for each user. This is needed the personalization of 
the model. Our proposed model is based on Naïve Bayesian (NB) 
algorithm[114]. 

5.2.1 Naïve Bayesian 

As could be assumed by its name, the main idea of Naïve Bayesian spam 
classifier is the use of Bayes theorem which is used widely in the context of 
probability [115]. As such, assuming that given a specific word, we would 
like to find out what is the probability of being spam for a message which 
contains this word. From Bayes rule, we may write: 
 

.(1) 
Where 
P(spam|word) is the probability of being spam for a message which 
contains the specific word. Moreover, 
P(spam) is the probability that a message is spam in general and is equal to 
the number of spam emails we have in our data set divided by the total 
number of emails. 
P(word|spam) is the probability of occurrence of a specific word in spam 
messages. We find this value from our training set or we may check the 
frequency of occurring of this word in the spam emails. 
P(word|non-spam) is the probability of occurrence of a specific word in 
non-spam message. Similarly, we find this value from our training set or we 
may check the frequency of occurring of this word in the non-spam emails. 
Finally, 
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P(non-spam) is the probability that a message is non-spam in general. This 
value is equal to the number of non-spam emails we have in our training set 
[115]. 
 
In the context of machine learning, the problem of classifying emails as 
spam or non-spam is translated into a classy set of objects (emails in here). 
 
For each object (email), we have a feature vector. For the emails, the 
components of feature vectors are words. We choose these words according 
to our training set. We find out the most frequently occurring words in our 
training set. Then we form a vector size. 
 
For each new email that we would like to classify as either spam or non-
spam email we first form its corresponding feature vector such that we put 1 
for each word which is contained in the message and 0 for each word which 
is not contained in the message. 
 
A useful preprocess is to consider the message body and try to consider 
features which help us to make the algorithm more efficient, we can consider 
the words which belong to the same family as one word. For this aim, we 
can first convert the message to a new message in which words of a same 
family appear as one unique word. As an example, instead of words like 
“Dealer”, “dealing” and “deal”, we may only use one word like “deal” 
which is the root of this family [115]. 
All sections discussed above have been developed and the source code of all 
programs on in the Appendix C.2. 

5.2.2 Training Phase 

If we compare the spam emails and non-spam emails, we will find out that 
they are certain words, e.g. business related words, which have more 
occurrence in spam emails than in non-spam emails. The proposed model is 
to first provide a set of training examples containing both spam and non-
spam emails. This set has been downloaded from the Second Conference on 
Email and Anti-Spam CEAS 2005, Stanford University, Palo Alto, CA [15]. 
Then the model will find out for each word the probability of occurring in 
spam and non-spam emails in that training set. 
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5.2.3 Testing Phase 

As a result, when we have a new email which we would like to classify as 
either spam or non-spam, first we find out the most interesting components 
of that email (rather than pretty common words like: and, or, the, etc.). 
Afterwards, we find out the probability of those components or words with 
the values we found in the training process [116]. 

5.2.4 Rare Words 

These words are the ones which cause the term 0/0 in the product term we 
had previously for computation of the probability of spaminess. Since these 
words are not available in our training set, there is no information about their 
occurrence in spam and non-spam emails. Therefore, we may discard these 
rare words when seeing them for the first time. In addition, we have neutral 
words like “a”, “an”, “the”, “some” and etc. which are very common in 
either spam or non-spam emails [117]. 

5.2.5 Functions of Algorithm 

We used MATLAB to build proposed spam classification model. We list 
function with short description as is shown follow: 
 
Vocalist = getVocabList(n) 
 
This function loads the pre-defined vocabulary list. n indicates the length of 
our vocabulary list. This length-n vector is our general feature vectors where 
features in spam classifications are different words. We got this vocabulary 
list from Stanford online machine learning course computer assignments 
[118]. 
 
Posting = porterStemmer (inString) 
 
This function converts the words which have the same stem and belong to 
the same family (e.g. dealing, dealer, deal) in one word which is the stem of 
the family. The algorithm is called Porter Stemming algorithm[119]. 
 
[vocabList vocabHist] processEmail(email_contents,vocabList,vocabHist) 
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This function converts each email into a vector of features (defined by 
"vocalist" function mentioned previously) and removes unnecessary 
characters such as punctuation marks. In addition, it returns the distribution 
of the words from "vocalist" function in the email which we would like to 
classify it. This function can update the vocabulary list if the algorithm faces 
a new word which is not available in our vocabulary list. 
 
[Inmail]= indicateEmail(email_contents,vocabList,vocabScore) 
 
This function indicates whether the given email is spam or a legitimate email 
based on the vocabulary list and the spamicity of the corresponding words of 
the message. 

5.2.6 Spam Classification Model Interface 

For better understanding of the process, we have designed GUI as shown on 
Figure 5.7. Through the GUI, users can provide the program with their own 
email and check whether they are given email is classified as either spam or 
legitimate email. 
Figure 5.7 shows the screen that user can enter his message and click on 
classify to classify messages as spam or non-spam. 
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Figure 5.7 General interface of spam classification model 

If a user writes message " dear, we give you big free wine gift" and write the 
sender address" freeabc@free.com" and subject "free gift", then click on 
classify button he will get the result shows that this message is spam as 
shown on Figure 5.8 change on the color of the spam word from the brown 
color to red color indicate the classification of the message. 
 

 
Figure 5.8 Interface to classify the spam email  

 
If a user writes message " Eid Mubark mum" and write the sender address" 
shreef@yahoo.com" and subject "Eid Mubark", then click on classify button 
he will get the result shows that this message is non-spam as shown in 
Figure 5.9 when the color of the word non-spam will be white green color.  
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Figure 5.9 Interface to classify the non-spam email  

5.2.7 Evaluation Matrix 

For tasks like email classifying that amounts of spam and non-spam emails 
are different to each other, we have skewed classes. The metrics which we 
evaluate classification algorithms with skewed classes are as the following: 
 
The metrics which evaluate classification algorithms  are as the following: 
True positive 
 Emails which are spam and we have classified them correctly. 
True negative 
 Emails which are not spam and we have classified them correctly. 
False positive 
 Emails which are not spam and we have classified them as spam 
incorrectly. 
False negative: 
 Emails which are spam and we have classified them as non-spam 
incorrectly. 
Precision: 
 Of all emails we have classified as spam, what fraction of them is really 
spam spamming emails?[120] 
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Here are the formulas of above metric: 
 

݊݋݅ݏ݅ܿ݁ݎܲ =
݁ݒ݅ݐ݅ݏ݋݌	݁ݑݎݐ

݁ݒ݅ݐ݅ݏ݋݌	݁ݑݎݐ + ݁ݒ݅ݐ݅ݏ݋݌	݁ݏ݈݂ܽ
… . . (2) 

 
Recall: 
 Of all emails which are really spam, what fraction of them have been 
classified correctly by the algorithm? [121] 
 
Here are the formulas of above metric: 

 
 

݈݈ܽܿ݁ݎ = ௧௥௨௘	௣௢௦௜௧௜௩௘
௧௥௨௘	௣௢௦௜௧௜௩௘ା௙௔௟௦௘	௡௘௚௔௧௜௩௘

   ……(3) 

 
 

We call the metric through which we can compare performance of different 
 
Algorithms as F1 score. F1 scores are given by the following formula: 
 

 

1ܨ = 2	 × ௣௥௘௖௜௦௜௢௡	×௥௘௖௔௟௟
௣௥௘௖௜௦௜௢௡	ା	௥௘௖௔௟௟

………(4) 

5.2.8 Evaluation Of Recall And Position 

 
We have a large data set which we should use it for both trainings the 
algorithm and testing the algorithm. 
 
Based on the fraction of the data set to which we dedicate to training set, we 
might see different performance of our algorithm. 
 
The following Figure 5.10 shows the precision of the algorithm based on the 
percentage of data dedicated to the training set. 
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Table 5.5 Result accuracy of the classification model 
 

Percentage of training set Accuracy (%) 
0.1 94.9 
0.2 97.6 
0.3 97.8 
0.4 98.3 
0.5 98.7 
0.6 98.9 
0.7 98.5 
0.8 98.8 
0.9 99 

 
 

 
 

Figure 5.10 Precision of the classification model 
 

The next Figure 5.11 is corresponding to the second recall metric. 
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Table 5.6 Result of Recall metric algorithm for classification model 

Percentage of training set Spam recall (%) 
0.1 77.5 
0.2 91 
0.3 92 
0.4 95 
0.5 96.5 
0.6 100 

 
 

 
 

Figure 5.11 Recall metric algorithm for classification model 
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CHAPTER 6: CONCLUSION 
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CHAPTER SIX 
CONCLUSION  

 
This chapter consists of a summary of the thesis followed by a conclusion 
and recommendations for further research. 
 
6.1 Summary 

 The study was set out to build a user personalized spam detection 
model. 

  The first model to detect English spam, second to detect Arabic and 
mixed (Arabic and English) spam emails  

 And third personalized spam web based detection system, the reasons 
and motivation for spam detection models, the limitation of the 
resources for Arabic spam detection, no publish studies in this field, 
there is some problem  on performance on the most of famous free 
mail systems and the negative economic effect of the spam problem.    

 The study has also sought to know whether a proposed spam detection 
solution can result in effective compared with any mail system like 
Yahoo, Hotmail and Gmail, an algorithm used in the proposed Arabic 
spam detection can give better result than others algorithms. 

 The study sought to collect and build an Arabic corpus for testing the 
Arabic spam detection models. 

The main findings are summarized within the respective chapters: Arabic 
spam detection model and personalized spam detection algorithm. This 
section will synthesize the findings to obtain the study’s four research 
objective. 
1. Build a dynamic and personalized model to detect English spam 

emails and then test the model against a standard data set. 
 Design GUI to check the email classification. 
 Apply Naïve Bayesian (NB) to the proposed model. 
 Perform the preprocess. 
 Probabilities of spaminess of words are computed differently 

and as a result we would have different classification for each 
user. 
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 On the test phase, we find out the most interesting words of a 
message. 

 Evaluated the model by using recall and precision Matrix 
algorithms [16]. 

2. Modified the English model to detect Arabic and mixed (English and 
Arabic) spam emails. 

 Extracted a set of features from the Arabic dataset. And 
performed feature selection. 

 Evaluated Naïve Bayesian algorithms to classify incoming 
email as spam or non-spam. 

 Used 10-fold cross validation to calculate the accuracy of the 
classifiers. 
 

3. Collected and built an Arabic corpus for testing the Arabic spam 
detection model. 

 Built a larger dataset of Arabic emails include spam and non-
spam. The first part is called a training dataset used to build 
the model, and contains around 1066 emails, 512 spam 
messages. While the second part is called a test data set, and 
contains around 554 non-spam messages, and used to evaluate 
the model. 

 Build an Arabic spam words which are used in spam filtering, 
it contains about 200 of foumase spam words. 

 
4. Developed personalized spam detection web based (Permail) and 

compare the spam filtering capabilities of Microsoft Hotmail, Google 
Gmail, Yahoo Mail and Permail to determine the effectiveness of 
spam filtering for each provider. The key measurements for this mail 
system are the quantity and percentage of spam in the Inbox. 

 Build an email database. 
 Create a connection string. 
 Develop ASP program files that can perform the transactions 

between the front end (web pages) and back end (database). 
 Examined performance of personalized spam detection. 
 Compare the classification results of Permail, Hotmail, Yahoo 

and Gmail to identify the best classifier to detect spam emails. 
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One main point with existing theoretical on the spam detection and filtering 
was the truth of that most the published literature on the English email and 
there are no published detection models on Arabic messages. Currently this 
situation creates an unjustified disadvantage in the community of Arabic 
users. This thesis seems to point to the fact that Arabic spam detection has 
still not covered from the researchers and also in this thesis an attempt is 
made to extend the spam detection to dynamically follow the liking of the 
user. It is termed personalized spam detection [7]. This study has used data 
mining algorithm to show that the current published research and studies of 
spam detection and filter are not working on the Arabic emails. The 
theoretical arguments for this justification suggest the need for more 
algorithms and models which will enable researchers to work on this poor 
area. 
 
6.2 Conclusion 
This thesis has achieved the following: 

 Provided a personalized spam detection mode and tested it. 
  And compared it to the known filters : Yahoo,Hotmail and Gmail. 

The proposed model outperformed these known filters 
 Built an Arabic spam corpus. 
 Provided a personalized spam detection mode for Arabic messages 

and for mixed messages. Again, the proposed model outperformed the 
above mentioned known filters. 

 
6.3 Recommendations for Further Work 
 

 Evaluate the algorithm on live mail systems. 

 Collect a larger dataset of Arabic emails (spam and legitimate) to use 
in the training Arabic model and build  an international Arabic email 
corpus and Arabic spam words which can be used in Arabic spam 
filters. 

 Use multi-level classification based on another technique (such as 
ANN, SVM, etc.) to build the spam detection model. 

 Build international Arabic spam detection system. 
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The word spam comes from an old Monty Python Sketch first aired on 
television in 1970 and written by Michael Palin and Terry Jones in which a 
two customers are in a greasy café trying to order breakfast from a menu. 
Spam is in almost every dish on the menu. The sketch shows the woman 
trying to order something without spam, because she hates it. The word 
spam for unwanted messages and electronic mail was derived from this 
sketch. It became so famous for being disgusted and unwanted, that it 
became a term for junk mail that no one wants, but always get[5]. The first 
spam ever was a message from a Digital Equipment Corporation (DEC) 
marketing rep to every Arpanet address on the west coast, or at least the 
attempt that, they sent it on May 1978. 
 

A.2 First Spam Message 

Mail-from: DEC-MARLBORO rcvd at 3-May-78 0955-PDT 
Date: 1 May 1978 1233-EDT 
From: THUERK at DEC-MARLBORO 
Subject: ADRIAN@SRI-KL 
To: DDAY at SRI-KL, DAY at SRI-KL, DEBOER at UCLA-CCN, 
To: WASHDC at SRI-KL, LOGICON at USC-ISI, SDAC at USC-ISI, 
To: DELDO at USC-ISI, DELEOT at USC-ISI, DELFINO at USC-ISI, 
To: DENICOFF at USC-ISI, DESPAIN at USC-ISI, DEUTSCH at SRI-KL, 
To: DEUTSCH at PARC-MAXC, EMY at CCA-TENEX, DIETER at USC-ISIB, 
To: DINES at AMES-67, MERADCON at SRI-KL, EPG-SPEC at SRI-KA, 
To: DIVELY at SRI-KL, DODD at USC-ISI, DONCHIN at USC-ISIC, 
To: JED at LLL-COMP, DORIN at CCA-TENEX, NYU at SRI-KA, 
To: DOUGHERTY at USC-ISI, PACOMJ6 at USC-ISI, 
To: DEBBY at UCLA-SECURITY, BELL at SRI-KL, JHANNON at SRI-KA, 
To: DUBOIS at USC-ISI, DUDA at SRI-KL, POH at USC-ISI, 
To: LES at SU-AI, EAST at BBN-TENEX, DEASTMAN at USC-ECL, 
To: EBISU at I4-TENEX, NAC at USC-ISIE, ECONOMIDIS at I4-TENEX, 
To: WALSH at SRI-KL, GEDWARDS at SRI-KL, WEDWARDS at USC-ISI, 
To: NUSC at SRI-KL, RM at SU-AI, ELKIND at PARC-MAXC, 
To: ELLENBY at PARC-MAXC, ELLIS at PARC-MAXC, ELLIS at USC-ISIB, 
To: ENGELBART at SRI-KL, ENGELMORE at SUMEX-AIM, 
To: ENGLISH at PARC-MAXC, ERNST at I4-TENEX, 
To: ESTRIN at MIT-MULTICS, EYRES at USC-ISIC, 
To: FAGAN at SUMEX-AIM, FALCONER at SRI-KL, 
To: DUF at UCLA-SECURITY, FARBER at RAND-UNIX, PMF at SU-AI, 
To: HALFF at USC-ISI, RJF at MIT-MC, FEIERBACH at I4-TENEX, 
To: FEIGENBAUM at USC-ISI, FEINLER at SRI-KL, 
To: FELDMAN at SUMEX-AIM, FELDMAN at SRI-KL, FERNBACH at LLL-COMP, 
To: FERRARA at RADC-MULTICS, FERRETTI at SRI-KA, 
To: FIALA at PARC-MAXC, FICKAS at USC-ISIC, AFIELD at I4-TENEX, 
To: FIKES at PARC-MAXC, REF at SU-AI, FINK at MIT-MULTICS, 
To: FINKEL at USC-ISIB, FINN at USC-ISIB, AFGWC at BBN-TENEX, 
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To: FLINT at SRI-KL, WALSH at SRI-KL, DRXAN at SRI-KA, 
To: FOX at SRI-KL, FRANCESCHINI at MIT-MULTICS, 
To: SAI at USC-ISIC, FREDRICKSON at RAND-RCC, ETAC at BBN-TENEXB, 
To: FREYLING at BBN-TENEXE, FRIEDLAND at SUMEX-AIM, 
To: FRIENDSHUH at SUMEX-AIM, FRITSCH at LLL-COMP, ME at SU-AI, 
To: FURST at BBN-TENEXB, FUSS at LLL-COMP, OP-FYE at USC-ISIB, 
To: SCHILL at USC-ISIC, GAGLIARDI at USC-ISIC, 
To: GAINES at RAND-UNIX, GALLENSON at USC-ISIB, 
To: GAMBLE at BBN-TENEXE, GAMMILL at RAND-UNIX, 
To: GANAN at USC-ISI, GARCIA at SUMEX-AIM, 
To: GARDNER at SUMEX-AIM, MCCUTCHEN at SRI-KL, 
To: GARDNER at MIT-MULTICS, GARLICK at SRI-KL, 
To: GARVEY at SRI-KL, GAUTHIER at USC-ISIB, 
To: USGS-LIA at BBN-TENEX, GEMOETS at I4-TENEX, 
To: GERHART at USC-ISIB, GERLA at USC-ISIE, GERLACH at I4-TENEX, 
To: GERMAN at HARV-10, GERPHEIDE at SRI-KA, DANG at SRI-KL, 
To: GESCHKE at PARC-MAXC, GIBBONS at CMU-10A, 
To: GIFFORD.COMPSYS at MIT-MULTICS, JGILBERT at BBN-TENEXB, 
To: SGILBERT at BBN-TENEXB, SDAC at USC-ISI, 
To: GILLOGLY at RAND-UNIX, STEVE at RAND-UNIX, 
To: GLEASON at SRI-KL, JAG;BIN(1525) at UCLA-CCN, 
To: GOLD at LL-11, GOLDBERG at USC-ISIB, GOLDGERG at SRI-KL, 
To: GROBSTEIN at SRI-KL, GOLDSTEIN at BBN-TENEXB, 
To: DARPM-NW at BBN-TENEXB, GOODENOUGH at USC-ISIB, 
To: GEOFF at SRI-KL, GOODRICH at I4-TENEX, GOODWIN at USC-ISI, 
To: GOVINSKY at SRI-KL, DEAN at I4-TENEX, TEG at MIT-MULTICS, 
To: CCG at SU-AI, EPG-SPEC at SRI-KA, GRISS at USC-ECL, 
To: BJG at RAND-UNIX, MCCUTCHEN at SRI-KL, GROBSTEIN at SRI-KL, 
To: MOBAH at I4-TENEX, GUSTAFSON at USC-ISIB, GUTHARY at SRI-KL, 
To: GUTTAG at USC-ISIB, GUYTON at RAND-RCC, 
To: ETAC-AD at BBN-TENEXB, HAGMANN at USC-ECL, HALE at I4-TENEX, 
To: HALFF at USC-ISI, DEHALL at MIT-MULTICS, 
To: HAMPEL at LLL-COMP, HANNAH at USC-ISI, 
To: NORSAR-TIP at USC-ISIC, SCRL at USC-ISI, HAPPY at SRI-KL, 
To: HARDY at SRI-KL, IMPACT at SRI-KL, KLH at SRI-KL, 
To: J33PAC at USC-ISI, HARRISON at SRI-KL, WALSH at SRI-KL, 
To: DRCPM-FF at BBN-TENEXB, HART at AMES-67, HART at SRI-KL, 
To: HATHAWAY at AMES-67, AFWL at I4-TENEX, BHR at RAND-UNIX, 
To: RICK at RAND-UNIX, DEBE at USC-ISIB, HEARN at USC-ECL, 
To: HEATH at UCLA-ATS, HEITMEYER at BBN-TENEX, ADTA at SRI-KA, 
To: HENDRIX at SRI-KL, CH47M at BBN-TENEXB, HILLIER at SRI-KL, 
To: HISS at I4-TENEX, ASLAB at USC-ISIC, HOLG at USC-ISIB, 
To: HOLLINGWORTH at USC-ISIB, HOLLOWAY at HARV-10, 
To: HOLMES at SRI-KL, HOLSWORTH at SRI-KA, HOLT at LLL-COMP, 
To: HOLTHAM at LL, DHOLZMAN at RAND-UNIX, HOPPER at USC-ISIC, 
To: HOROWITZ at USC-ISIB, VSC at USC-ISI, HOWARD at LLL-COMP, 
To: HOWARD at USC-ISI, PURDUE at USC-ISI, HUBER at RAND-RCC, 
To: HUNER at RADC-MULTICS, HUTSON at AMES-67, IMUS at USC-ISI, 
To: JACOBS at USC-ISIE, JACOBS at BBN-TENEXB, 
To: JACQUES at BBN-TENEXB, JARVIS at PARC-MAXC, 
To: JEFFERS at PARC-MAXC, JENKINS at PARC-MAXC, 
To: JENSEN at SRI-KA, JIRAK at SUMEX-AIM, NICKIE at SRI-KL, 
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To: JOHNSON at SUMEX-AIM, JONES at SRI-KL, JONES at LLL-COMP, 
To: JONES at I4-TENEX, RLJ at MIT-MC, JURAK at USC-ECL, 
To: KAHLER at SUMEX-AIM, MWK at SU-AI, KAINE at USC-ISIB, 
To: KALTGRAD at UCLA-ATS, MARK at UCLA-SECURITY, RAK at SU-AI, 
To: KASTNER at USC-ISIB, KATT at USC-ISIB, 
To: UCLA-MNC at USC-ISI, ALAN at PARC-MAXC, KEENAN at USC-ISI, 
To: KEHL at UCLA-CCN, KELLEY at SRI-KL, BANANA at I4-TENEX, 
To: KELLOGG at USC-ISI, DDI at USC-ISI, KEMERY at SRI-KL, 
To: KEMMERER at UCLA-ATS, PARVIZ at UCLA-ATS, KING at SUMEX-AIM, 
To: KIRSTEIN at USC-ISI, SDC at UCLA-SECURITY, 
To: KLEINROCK at USC-ISI, KLEMBA at SRI-KL, CSK at USC-ISI, 
To: KNIGHT at SRI-KL, KNOX at USC-ISI, KODA at USC-ISIB, 
To: KODANI at AMES-67, KOOIJ at USC-ISI, KREMERS at SRI-KL, 
To: BELL at SRI-KL, KUNZELMAN at SRI-KL, PROJX at SRI-KL, 
To: LAMPSON at PARC-MAXC, SDL at RAND-UNIX, JOJO at SRI-KL, 
To: SDC at USC-ISI, NELC3030 at USC-ISI, 
To: LEDERBERG at SUMEX-AIM, LEDUC at SRI-KL, JSLEE at USC-ECL, 
To: JACOBS at USC-ISIE, WREN at USC-ISIB, LEMONS at USC-ISIB, 
To: LEUNG at SRI-KL, J33PAC at USC-ISI, LEVIN at USC-ISIB, 
To: LEVINTHAL at SUMEX-AIM, LICHTENBERGER at I4-TENEX, 
To: LICHTENSTEIN at USC-ISI, LIDDLE at PARC-MAXC, 
To: LIEB at USC-ISIB, LIEBERMAN at SRI-KL, STANL at USC-ISIE, 
To: LIERE at I4-TENEX, DOCB at USC-ISIC, LINDSAY at SRI-KL, 
To: LINEBARGER at AMES-67, LIPKIS at USC-ECL, SLES at USC-ISI, 
To: LIS at SRI-KL, LONDON at USC-ISIB, J33PAC at USC-ISI, 
To: LOPER at SRI-KA, LOUVIGNY at SRI-KL, LOVELACE at USC-ISIB, 
To: LUCANIC at SRI-KL, LUCAS at USC-ISIB, DCL at SU-AI, 
To: LUDLAM at UCLA-CCN, YNGVAR at SRI-KA, LYNCH at SRI-KL, 
To: LYNN at USC-ISIB, MABREY at SRI-KL, MACKAY at AMES-67, 
To: MADER at USC-ISIB, MAGILL at SRI-KL, KMAHONEY at BBN-TENEX, 
To: MANN at USC-ISIB, ZM at SU-AI, MANNING at USC-ISI, 
To: MANTIPLY at I4-TENEX, MARIN at I4-TENEX, SCRL at USC-ISI, 
To: HARALD at SRI-KA, GLORIA-JEAN at UCLA-CCN, MARTIN at USC-ISIC, 
To: WMARTIN at USC-ISI, GRM at RAND-UNIX, MASINTER at USC-ISI, 
To: MASON at USC-ISIB, MATHIS at SRI-KL, MAYNARD at USC-ISIC, 
To: MCBREARTY at SRI-KL, MCCALL at SRI-KA, MCCARTHY at SU-AI, 
To: MCCLELLAND at USC-ISI, DORIS at RAND-UNIX, MCCLURG at SRI-KL, 
To: JOHN at I4-TENEX, MCCREIGHT at PARC-MAXC, MCCRUMB at USC-ISI, 
To: DRXTE at SRI-KA 
cc: BPM at SU-AI 
 
 
 

Appendix B 

B.1 Suggested English Keywords for Spam Filters 
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Free!, 50% off!, Click Here, Call now!, Subscribe, Earn $, Discount!, Eliminate Debt, 
enlargement, Double your income, You're a Winner!, Reverses Aging, "Hidden", 
Information you requested, "Stop" or "Stops", Lose Weight, medication, Multi level 
Marketing, Million Dollars, Opportunity, Compare, Removes, Collect 
Amazing, Cash Bonus, Promise You, Credit, Loans, Satisfaction Guaranteed, Serious 
Cash, Search Engine Listings, Act Now!, All New, All Natural, Avoid Bankruptcy, As 
Seen On..., Buy Direct, Casino, Cash, Consolidate Your Debt, Special Promotion, Easy 
Terms, Get Paid, Guarantee, Guaranteed, Great offer, Give it away, Giving it away, Join 
millions, Meet Singles, MLM, mortgage, No cost, No fees, Offer, One time, Online 
pharmacy, Online marketing, Order Now, Please Read, Don't Delete, Save up to, Time 
limited, Unsecured debt or credit, Vacation, Viagra, Visit our web site, While Supplies 
last, Why pay more?, Winner, Work at home, You've been selected. 

B.2 Arabic Spam Keywords for Spam Filters 

Table B.1 Arabic spam words for spam filters 
إضافیةمكاسب نقدیة  كلمة السر التمویل مرحبا قریبا %100طبیعي   
 عضویة حره زیارة موقعنا على الانترنت الارباح المحتملة رخیص اتصل انتبھ

اقل % 50 استثمار الانترنت ائتمان الانترنت علىلاعمال التجاریة ا   الوصول الحر 
 ھدیة مجانیة درجة علمیة على الانترنت الدخل الاضافي أسھم صدیق مشتریات

مجاني% 100 دخلك افتح قرار  النقد السریع الربح الخالص 
 اخسر وزنك اسعار معقولة إنضم للملایین البطاقة عروض تخفیضات

 السعر الأقل الكسب خلال اسبوع ضاعف دخلك اكسب اربح تسوق
 عضویة حره قارن بین الاسعار صدیقي العزیز تجارة الفوز زیارة

رائعةصفقة  مكاتب الائتمان السعر الأفضل حلول فرصة مال  
%50تخفیضات تصل الى  سعر الاسھم قبول عطلة ملیون  لا تتردد 
 الدخل المنزل البطاقات المقبولة كسب المال السریع حریة تجریبي نجاح

 انھا فعالة بطاقات الائتمانیة اعادة التمویل معجزة مجانا شریك
المراھقةسن  الأعمال التجاریة المنزلیة التوظیف المنزلي حیاة معتمد معدل  

 الوصول الحر قارن بین الأسعار التحمیل المجاني ضمان مئھ تحمیل
 عرض رائع الاشتراك مجانا الیوم التثبیت المجاني عاجل محدود فوریھ
 منحھ مالیھ الالغاء فى اى وقت إنخفاض شدید شھادة تھنئھ مدھش
 عینة مجانیة خالیة من المخاطر استشارة مجانیة وصول علاوة شراء

 البرید المجاني إستضافة مجانیة التركیب مجاني مبیعات كلفة بالمجان
  مره واحدة في العمر أسعار مزھلة فقط طلبات اعدكم
  إحصل علیھ الآن تنتھى العروض اداء احفظ قرض

  العلامة التجاریة الجدیدة برامج مجانیة فرصة صفقة عروض
    الف نجاح تثبیت

Appendix C 

C.1 Personalized Spam Detection Email Code 
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Personalized Spam Detection Email Home page 
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" 
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> 
<html xmlns="http://www.w3.org/1999/xhtml"> 
<head> 
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" /> 
<title>Home Page</title> 
<link href="spam.css" rel="stylesheet" type="text/css" /> 
<link href="oneColLiqCtrHdrhome.css" rel="stylesheet" type="text/css" /> 
<style type="text/css"> 
.container.content h3 { 
 font-family: Verdana, Geneva, sans-serif; 
} 
.container.content p { 
 font-family: Verdana, Geneva, sans-serif; 
} 
.container.content p { 
 font-family: Times New Roman, Times, serif; 
} 
.container.content p { 
 font-family: Courier New, Courier, monospace; 
} 
.container.content.promo a strong samp { 
 font-family: Verdana, Geneva, sans-serif; 
} 
.container.content.promo a strong samp { 
 font-family: Georgia, Times New Roman, Times, serif; 
} 
 
.container.content h3 { 
 font-family: Verdana, Geneva, sans-serif; 
} 
.container.content p { 
 font-family: Verdana, Geneva, sans-serif; 
} 
.container.content p { 
 font-family: Times New Roman, Times, serif; 
} 
.container.content p { 
 font-family: Courier New, Courier, monospace; 
} 
.container.content.promo a strong samp { 
 font-family: Verdana, Geneva, sans-serif; 
} 
.container.content.promo a strong samp { 
 font-family: Georgia, Times New Roman, Times, serif; 



  

 103 

} 
</style> 
</head> 
<body> 
<div class="container"> 
 <div class="header"> 
 <h1 align="center"><span class="promo">Personalized Spam Detection 
Email</span></h1> 
 <!-- end.header --></div> 
 <div class="content"> 
 <h1 align="center">&nbsp;</h1> 
 <h1 align="center" class="promo"><a href="login.asp"><strong><samp>User 
Login</samp></strong></a></h1> 
 <p align="center">&nbsp;</p> 
 <p><strong>welcome to your family mail</strong></p> 
 </div> 
 <div class="footer"> 
 <div align="center"><font face="Arial Black, Gadget, sans-serif"><font face="Georgia, 
Times New Roman, Times, serif">All right resevied Personalized 2013</font></font> © 
</div> 
 <!-- end.footer --></div> 
 <!-- end.container --></div> 
</body> 
</html> 
Create New User 
<%@LANGUAGE="VBSCRIPT" CODEPAGE="65001"%> 
<!--#include file="Connections/emailcn.asp" --> 
<% 
' *** Validate request to log in to this site. 
MM_LoginAction = Request.ServerVariables("URL") 
If Request.QueryString <> "" Then MM_LoginAction = MM_LoginAction + "?" + 
Server.HTMLEncode(Request.QueryString) 
MM_valUsername = CStr(Request.Form("Login")) 
If MM_valUsername <> "" Then 
 Dim MM_fldUserAuthorization 
 Dim MM_redirectLoginSuccess 
 Dim MM_redirectLoginFailed 
 Dim MM_loginSQL 
 Dim MM_rsUser 
 Dim MM_rsUser_cmd 
 MM_fldUserAuthorization = "" 
 MM_redirectLoginSuccess = "inbox.asp" 
 MM_redirectLoginFailed = "login.asp" 
 MM_loginSQL = "SELECT login, pwd" 
 If MM_fldUserAuthorization <> "" Then MM_loginSQL = MM_loginSQL & "," & 
MM_fldUserAuthorization 
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 MM_loginSQL = MM_loginSQL & " FROM login WHERE login =? AND pwd =?" 
 Set MM_rsUser_cmd = Server.CreateObject ("ADODB.Command") 
 MM_rsUser_cmd.ActiveConnection = MM_emailcn_STRING 
 MM_rsUser_cmd.CommandText = MM_loginSQL 
 MM_rsUser_cmd.Parameters.Append MM_rsUser_cmd.CreateParameter("param1", 
200, 1, 255, MM_valUsername) ' adVarChar 
 MM_rsUser_cmd.Parameters.Append MM_rsUser_cmd.CreateParameter("param2", 
200, 1, 255, Request.Form("pwd")) ' adVarChar 
 MM_rsUser_cmd.Prepared = true 
 Set MM_rsUser = MM_rsUser_cmd.Execute 
 If Not MM_rsUser.EOF Or Not MM_rsUser.BOF Then 
 ' username and password match - this is a valid user 
 Session("MM_Username") = MM_valUsername 
 If (MM_fldUserAuthorization <> "") Then 
 Session("MM_UserAuthorization") = 
CStr(MM_rsUser.Fields.Item(MM_fldUserAuthorization).Value) 
 Else 
 Session("MM_UserAuthorization") = "" 
 End If 
 if CStr(Request.QueryString("accessdenied")) <> "" And false Then 
 MM_redirectLoginSuccess = Request.QueryString("accessdenied") 
 End If 
 MM_rsUser.Close 
 Response.Redirect(MM_redirectLoginSuccess) 
 End If 
 MM_rsUser.Close 
 Response.Redirect(MM_redirectLoginFailed) 
End If 
%> 
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" 
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> 
<html xmlns="http://www.w3.org/1999/xhtml"> 
<head> 
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" /> 
<title>Home Page</title> 
<link href="spam.css" rel="stylesheet" type="text/css" /> 
<link href="oneColLiqCtrHdrhome.css" rel="stylesheet" type="text/css" /> 
<style type="text/css"> 
.container.content h3 { 
 font-family: Verdana, Geneva, sans-serif; 
} 
.container.content form div table tr td { 
 font-family: Tahoma, Geneva, sans-serif; 
} 
.container.content form div table tr td { 
 font-family: Georgia, Times New Roman, Times, serif; 
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} 
.container.content form div table tr td { 
 font-family: Georgia, Times New Roman, Times, serif; 
</style> 
</head> 
<body> 
<div class="container"> 
 <div class="header"><!-- end.header --> 
 <h1 align="center"><span class="promo">Personalized Spam Detection 
Email</span></h1> 
 </div> 
 <div class="content"> 
 <h2 align="center">New User</h2> 
 <p><strong>Please enter all the Information on the form 
 </strong></p> 
 <table width="361" border="1" bgclor="#99CC99"> 
 <tr> 
 <td width="162" bgcolor="#669999"><strong>Login</strong></td> 
 <td width="183" bgcolor="#669999"><strong> 
 <input type="text" name="uid" id="uid2" /> 
 </strong></td> 
 </tr> 
 <tr> 
 <td bgcolor="#669999"><strong>Password</strong></td> 
 <td bgcolor="#669999"><strong> 
 <input type="password" name="uid2" id="uid2" /> 
 </strong></td> 
 </tr> 
 <tr> 
 <td bgcolor="#669999"><strong>Renter Password</strong></td> 
 <td bgcolor="#669999"><strong> 
 <input type="password" name="uid9" id="uid9" /> 
 </strong></td> 
 </tr> 
 <tr> 
 <td bgcolor="#669999"><strong>First Name</strong></td> 
 <td bgcolor="#669999"><strong> 
 <input type="text" name="fnid" id="fnid" /> 
 </strong></td> 
 </tr> 
 <tr> 
 <td bgcolor="#669999"><strong>Last Name</strong></td> 
 <td bgcolor="#669999"><strong> 
 <input type="text" name="lnid" id="lnid" /> 
 </strong></td> 
 </tr> 
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 <tr> 
 <td bgcolor="#669999"><strong>Job</strong></td> 
 <td bgcolor="#669999"><strong> 
 <select name="jid" id="jid"> 
 <option>Student</option> 
 <option>Teacher</option> 
 <option>Employee</option> 
 </select> 
 </strong></td> 
 </tr> 
 <tr> 
 <td bgcolor="#669999"><strong>Date of Birth</strong></td> 
 <td bgcolor="#669999"><strong> 
 <input type="text" name="uid6" id="uid6" /> 
 </strong></td> 
 </tr> 
 <tr> 
 <td bgcolor="#669999"><strong>Gender</strong></td> 
 <td bgcolor="#669999"><strong> 
 <input type="radio" name="radio" id="mid" value="mid" /> 
 <label for="mid">Male 
 <input type="radio" name="radio" id="mid2" value="fid" /> 
 Female</label> 
 </strong></td> 
 </tr> 
 <tr> 
 <td bgcolor="#669999"><strong>Country</strong></td> 
 <td bgcolor="#669999"><strong> 
 <select name="cid" size="1" id="cid"> 
 <option>Egypt</option> 
 <option>Oman</option> 
 <option>Saudi</option> 
 <option>Kwait</option> 
 <option>Sudan</option> 
 </select> 
 </strong></td> 
 </tr> 
 <tr> 
 <td bgcolor="#669999"><input type="submit" name="sid" id="sid" value="Send" 
/></td> 
 <td bgcolor="#669999">&nbsp;</td> 
 </tr> </table> 
 <div align="center">&nbsp;</div> 
 </p> 
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 <div align="center"><font face="Arial Black, Gadget, sans-serif"><font face="Georgia, 
Times New Roman, Times, serif">All right resevied Personalized 2013</font></font> © 
</div> 
 </div><div class="footer"> 
 <!-- end.footer --></div> 
 <!-- end.container --></div> 
</body> 
</html> 
User Login 
<%@LANGUAGE="VBSCRIPT" CODEPAGE="65001"%> 
<!--#include file="Connections/emailcn.asp" --> 
<% 
' *** Validate request to log in to this site. 
MM_LoginAction = Request.ServerVariables("URL") 
If Request.QueryString <> "" Then MM_LoginAction = MM_LoginAction + "?" + 
Server.HTMLEncode(Request.QueryString) 
MM_valUsername = CStr(Request.Form("Login")) 
If MM_valUsername <> "" Then 
 Dim MM_fldUserAuthorization 
 Dim MM_redirectLoginSuccess 
 Dim MM_redirectLoginFailed 
 Dim MM_loginSQL 
 Dim MM_rsUser 
 Dim MM_rsUser_cmd 
 MM_fldUserAuthorization = "" 
 MM_redirectLoginSuccess = "inbox.asp" 
 MM_redirectLoginFailed = "login.asp" 
 MM_loginSQL = "SELECT login, pwd" 
 If MM_fldUserAuthorization <> "" Then MM_loginSQL = MM_loginSQL & "," & 
MM_fldUserAuthorization 
 MM_loginSQL = MM_loginSQL & " FROM login WHERE login =? AND pwd =?" 
 Set MM_rsUser_cmd = Server.CreateObject ("ADODB.Command") 
 MM_rsUser_cmd.ActiveConnection = MM_emailcn_STRING 
 MM_rsUser_cmd.CommandText = MM_loginSQL 
 MM_rsUser_cmd.Parameters.Append MM_rsUser_cmd.CreateParameter("param1", 
200, 1, 255, MM_valUsername) ' adVarChar 
 MM_rsUser_cmd.Parameters.Append MM_rsUser_cmd.CreateParameter("param2", 
200, 1, 255, Request.Form("pwd")) ' adVarChar 
 MM_rsUser_cmd.Prepared = true 
 Set MM_rsUser = MM_rsUser_cmd.Execute 
 If Not MM_rsUser.EOF Or Not MM_rsUser.BOF Then 
 ' username and password match - this is a valid user 
 Session("MM_Username") = MM_valUsername 
 If (MM_fldUserAuthorization <> "") Then 
 Session("MM_UserAuthorization") = 
CStr(MM_rsUser.Fields.Item(MM_fldUserAuthorization).Value) 



  

 108 

 Else 
 Session("MM_UserAuthorization") = "" 
 End If 
 if CStr(Request.QueryString("accessdenied")) <> "" And false Then 
 MM_redirectLoginSuccess = Request.QueryString("accessdenied") 
 End If 
 MM_rsUser.Close 
 Response.Redirect(MM_redirectLoginSuccess) 
 End If 
 MM_rsUser.Close 
 Response.Redirect(MM_redirectLoginFailed) 
End If 
%> 
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" 
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> 
<html xmlns="http://www.w3.org/1999/xhtml"> 
<head> 
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" /> 
<title>Home Page</title> 
<link href="spam.css" rel="stylesheet" type="text/css" /> 
<link href="oneColLiqCtrHdrhome.css" rel="stylesheet" type="text/css" /> 
<style type="text/css"> 
.container.content h3 { 
 font-family: Verdana, Geneva, sans-serif; 
} 
.container.content form div table tr td { 
 font-family: Tahoma, Geneva, sans-serif; 
} 
.container.content form div table tr td { 
 font-family: Georgia, Times New Roman, Times, serif; 
} 
.container.content form div table tr td { 
 font-family: Georgia, Times New Roman, Times, serif; 
</style> 
</head> 
<body> 
<div class="container"> 
 <div class="header"><!-- end.header --> 
 <h1 align="center"><span class="promo">Personalized Spam Detection 
Email</span></h1> 
 </div> 
 <div class="content"> 
 <h1 align="center">&nbsp;</h1> 
 <form ACTION="<%=MM_LoginAction%>" METHOD="POST" name="loginfr"> 
 <div align="center"> 
 <table width="413" border="0"> 
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 <tr> 
     <td width="94" bgcolor="#99CC99"><strong>Login</strong></td> 
 <td width="309" bgcolor="#99CC99"><input name="Login" type="text" id="Login" 
size="18" /> 
 @<strong>permail.com</strong></td> 
 </tr> 
    <tr> 
  <td width="94" bgcolor="#99CC99"><strong>Password</strong></td> 
 <td bgcolor="#99CC99"><input name="pwd" type="password" id="pwd" size="18" 
/></td> 
 </tr> 
    <tr> 
  <td bgcolor="#99CC99"><input type="submit" name="log" id="log" value="Login" 
/></td> 
 <td bgcolor="#99CC99"><input type="button" name="button" id="button" value="New 
User" /></td> 
 </tr> 
    </table> 
 </div> 
 </form> 
 <div align="center">&nbsp;</div> 
 </p> 
 <div align="center"><font face="Arial Black, Gadget, sans-serif"><font face="Georgia, 
Times New Roman, Times, serif">All right resevied Personalized 2013</font></font> © 
</div> 
 </div><div class="footer"> 
 <!-- end.footer --></div> 
 <!-- end.container --></div> 
</body> 
</html> 
User Inbox 
<%@LANGUAGE="VBSCRIPT"%> 
<% 
' *** Logout the current user. 
MM_Logout = CStr(Request.ServerVariables("URL")) & "?MM_Logoutnow=1" 
If (CStr(Request("MM_Logoutnow")) = "1") Then 
 Session.Contents.Remove("MM_Username") 
 Session.Contents.Remove("MM_UserAuthorization") 
 MM_logoutRedirectPage = "index.htm" 
 ' redirect with URL parameters (remove the "MM_Logoutnow" query param). 
 if (MM_logoutRedirectPage = "") Then MM_logoutRedirectPage = 
CStr(Request.ServerVariables("URL")) 
 If (InStr(1, UC_redirectPage, "?", vbTextCompare) = 0 And Request.QueryString <> "") 
Then 
 MM_newQS = "?" 
 For Each Item In Request.QueryString 
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 If (Item <> "MM_Logoutnow") Then 
 If (Len(MM_newQS) > 1) Then MM_newQS = MM_newQS & "&" 
 MM_newQS = MM_newQS & Item & "=" & 
Server.URLencode(Request.QueryString(Item)) 
 End If 
 Next 
 if (Len(MM_newQS) > 1) Then MM_logoutRedirectPage = MM_logoutRedirectPage & 
MM_newQS 
 End If 
 Response.Redirect(MM_logoutRedirectPage) 
End If 
%> 
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" 
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> 
<html xmlns="http://www.w3.org/1999/xhtml"> 
<head> 
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" /> 
<title>User Inbox</title> 
<link href="spam.css" rel="stylesheet" type="text/css" /> 
<link href="twoColLiqLtHdrinbx.css" rel="stylesheet" type="text/css" /><!--[if lte IE 
7]> 
<style> 
.content { margin-right: -1px; } /* this 1px negative margin can be placed on any of the 
columns in this layout with the same corrective effect. */ 
ul.nav a { zoom: 1; } /* the zoom property gives IE the hasLayout trigger it needs to 
correct extra whiltespace between the links */ 
</style> 
<![endif]--> 
<style type="text/css"> 
.container.sidebar1.nav li a { 
 font-family: Verdana, Geneva, sans-serif; 
} 
.container.sidebar1.nav li a { 
 font-family: Georgia, Times New Roman, Times, serif; 
} 
</style> 
</head> 
<body> 
<div class="container"> 
 <div class="header"><!-- end.header --> 
 <div align="center"> 
 <h3><strong> Personalized Spam Detection Email </strong></h3> 
 </div> 
 </div> 
 <div class="sidebar1"> 
 <ul class="nav"> 
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 <li><a href="login.asp">login by other user</a></li> 
 <li><a href="junk.asp">Junk Mail</a></li> 
 <li><a href="whitelist.asp">Whitelist</a></li> 
 <li><a href="blacklist.asp">Blacklist</a></li> 
 <li><a href="<%= MM_Logout %>">Logout</a></li> 
 </ul> 
 <!-- end.sidebar1 --></div> 
 <div class="content"> 
 <h2>User Inbox</h2> 
 <p> 
<% 
 set email=server.CreateObject("ADODB.Connection") 
 set rs=server.CreateObject("ADODB.RecordSet") 
 set rs1=server.CreateObject("ADODB.RecordSet") 
 set rslog=server.CreateObject("ADODB.RecordSet") 
 dim sqlstr 
 dim sqlbl 
 dim sqlwl 
 logsess = Session("MM_Username") 
 response.write("<font color=red><b>"& logsess &"@permail.com") 
 mbox=Request("mbox") 
 response.write(""& mbox &"") 
 nspm=Request("nspm") 
 response.write(""& nspm &"") 
 page=request("page") 
 email.open "permail" 
 rslog.open "Select * from login where login= '"& logsess &"'",email 
 user = "" & rslog(0) &"" 
 rs.open "SELECT * FROM message INNER JOIN usermsg ON 
message.msid=usermsg.msid WHERE usermsg.uid = "& user &"",email 
 response.write("<p align=left>") 
 on error resume next 
 rs.pagesize= 22 
 response.write("<p align=left><tap align=left><form name=msgfr 
action=junk.asp method= post>") 
 response.write("<p align=left><table align=center cellspacing=2 cellpadding=0 
border=0 >") 
 Response.Write("<font color=#000000><tr bgcolor=#99CC99><th 
align=center>No<th align=center>Delete Message<th>Is Spam<th>From<th 
align=center>Date<th>Subject") 
 if len(page)>0 then 
  rs.absolutepage=page 
 else 
  rs.absolutepage=1 
 end if 
 bgflip=true 
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 for i=1 to rs.pagesize 
 if not rs.EOF then 
  if bgflip then 
   Response.Write("<tr bgcolor=#eeeeee>") 
  else 
   Response.Write("<tr bgcolor=#eeeeff>") 
  end if 
  bgflip=not bgflip 
 Response.Write("<td align=center><li><td align=center><a href=msgdel.asp?msgid=" 
& rs(0) & "><font size=4 face=Times New Roman color = blue> Delete <td 
align=center><a href=msgspm.asp?msgid=" & rs(0) & "><font face=Times New Roman 
size=4 color=red>Spam<td align=left ><font face=Times New Roman size=4>" & rs(1) 
& " <td align=left ><font face=Times New Roman size=4>" & rs(3) & " <td 
align=left ><font face=Times New Roman size=4><a href=msgcont.asp?msgid=" & 
rs(0) & ">" & rs(4) & " <td align=left >") 
  rs.MoveNext 
 end if 
 next 
 response.write("</table>") 
 response.write("</table>") 
 response.write("</form>") 
 rs.Close 
 rs1.Close 
 email.Close 
 set rs=nothing 
 set rs1=nothing 
 set email=nothing 
 %> 
 <!-- end.content --></div> 
 <div class="footer"> 
 <p align="center"><font face="Arial Black, Gadget, sans-serif"><font face="Georgia, 
Times New Roman, Times, serif">All right resevied Personalized 2013</font></font> 
©</p> 
 <!-- end.footer --></div> 
 <!-- end.container --></div> 
</body> 
</html> 
User Junk Mail 
<%@LANGUAGE="VBSCRIPT"%> 
<% 
' *** Logout the current user. 
MM_Logout = CStr(Request.ServerVariables("URL")) & "?MM_Logoutnow=1" 
If (CStr(Request("MM_Logoutnow")) = "1") Then 
 Session.Contents.Remove("MM_Username") 
 Session.Contents.Remove("MM_UserAuthorization") 
 MM_logoutRedirectPage = "index.htm" 
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 ' redirect with URL parameters (remove the "MM_Logoutnow" query param). 
 if (MM_logoutRedirectPage = "") Then MM_logoutRedirectPage = 
CStr(Request.ServerVariables("URL")) 
 If (InStr(1, UC_redirectPage, "?", vbTextCompare) = 0 And Request.QueryString <> "") 
Then 
 MM_newQS = "?" 
 For Each Item In Request.QueryString 
 If (Item <> "MM_Logoutnow") Then 
 If (Len(MM_newQS) > 1) Then MM_newQS = MM_newQS & "&" 
 MM_newQS = MM_newQS & Item & "=" & 
Server.URLencode(Request.QueryString(Item)) 
 End If 
 Next 
 if (Len(MM_newQS) > 1) Then MM_logoutRedirectPage = MM_logoutRedirectPage & 
MM_newQS 
 End If 
 Response.Redirect(MM_logoutRedirectPage) 
End If 
%> 
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" 
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> 
<html xmlns="http://www.w3.org/1999/xhtml"> 
<head> 
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" /> 
<title>Junk Mail</title> 
<link href="spam.css" rel="stylesheet" type="text/css" /> 
<link href="twoColLiqLtHdrinbx.css" rel="stylesheet" type="text/css" /><!--[if lte IE 
7]> 
<style> 
.content { margin-right: -1px; } /* this 1px negative margin can be placed on any of the 
columns in this layout with the same corrective effect. */ 
ul.nav a { zoom: 1; } /* the zoom property gives IE the hasLayout trigger it needs to 
correct extra whiltespace between the links */ 
</style> 
<![endif]--> 
<style type="text/css"> 
.container.sidebar1.nav li a { 
 font-family: Georgia, Times New Roman, Times, serif; 
} 
</style> 
</head> 
<body> 
<div class="container"> 
 <div class="header"> 
 <div align="center"><strong>Personalized Spam Detection Email </strong></div> 
 <!-- end.header --></div> 
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 <div class="sidebar1"> 
 <ul class="nav"> 
 <li><a href="login.asp">login by other user</a></li> 
 <li><a href="inbox.asp">Inbox</a></li> 
 <li><a href="whitelist.asp">Whitelist</a></li> 
 <li><a href="blacklist.asp">Blacklist</a></li> 
 <li><a href="<%= MM_Logout %>">Logout</a></li> 
 </ul> 
 <!-- end.sidebar1 --></div> 
 <div class="content"> 
 <h2>Junk Mail</h2> 
 <p> 
<% 
 set email=server.CreateObject("ADODB.Connection") 
 set rs=server.CreateObject("ADODB.RecordSet") 
 set rs1=server.CreateObject("ADODB.RecordSet") 
 set rslog=server.CreateObject("ADODB.RecordSet") 
 dim sqlstr 
 dim sqlbl 
 dim sqlwl 
 logsess = Session("MM_Username") 
 response.write("<font color=red><b>"& logsess &"@permail.com") 
 mbox=Request("mbox") 
 response.write(""& mbox &"") 
 nspm=Request("nspm") 
 response.write(""& nspm &"") 
 page=request("page") 
 email.open "permail" 
 rslog.open "Select * from login where login= '"& logsess &"'",email 
 user = "" & rslog(0) &"" 
 rs.open "SELECT * FROM junk INNER JOIN userjn ON junk.jid=userjn.jid 
WHERE userjn.uid = "& user &"",email 
response.write("<p align=left>") 
 on error resume next 
 rs.pagesize=15 
 response.write("<p align=left><tap align=left><form name=msgfr 
action=junk.asp method= post>") 
 response.write("<p align=left><table align=center cellspacing=2 cellpadding=0 
border=0 >") 
 Response.Write("<font color=#000000><tr bgcolor=#99CC99><th 
align=center>No<th align=center>Move to Inbox<th>Not Spam<th>From<th 
align=center>Date<th>Subject") 
 if len(page)>0 then 
  rs.absolutepage=page 
 else 
  rs.absolutepage=1 
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 end if 
 bgflip=true 
 for i=1 to rs.pagesize 
 if not rs.EOF then 
  if bgflip then 
   Response.Write("<tr bgcolor=#eeeeee>") 
  else 
   Response.Write("<tr bgcolor=#eeeeff>") 
  end if 
  bgflip=not bgflip 
Response.Write("<td align=left><li><td align=center><font face=Times New Roman 
size=4><a href=jnkmbox.asp?msgid=" & rs(0) & "><font color=#cc00ff> To Inbox<td 
align=left><a href=jnknspm.asp?msgid=" & rs(0) & "><font face=Times New Roman 
size=4 color=#ff6666>Not Spam<td align=left ><font face=Times New Roman size=4>" 
& rs(1) & " <td align=left >" & rs(3) & " <td align=left ><font face=Times New Roman 
size=4><a href=jnkcont.asp?msgid=" & rs(0) & ">" & rs(4) & " <td align=left >") 
  rs.MoveNext 
 end if 
 next 
 response.write("</table>") 
 response.write("</table>") 
 response.write("</form>") 
 '-------------------------- Action ----------------------------------- 
 rs.Close 
 rs1.Close 
 email.Close 
 set rs=nothing 
 set rs1=nothing 
 set email=nothing 
 %> 
 &nbsp;</p> 
 
 <p>&nbsp;</p> 
 <!-- end.content --></div> 
 <div class="footer"> 
 <p align="center"><font face="Arial Black, Gadget, sans-serif"><font face="Georgia, 
Times New Roman, Times, serif">All right resevied Personalized 2013</font></font> 
©</p> 
 <!-- end.footer --></div> 
 <!-- end.container --></div> 
</body> 
</html> 
User Whitelist 
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" 
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> 
<html xmlns="http://www.w3.org/1999/xhtml"> 



  

 116 

<head> 
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" /> 
<title>User Withelist</title> 
<link href="spam.css" rel="stylesheet" type="text/css" /> 
<link href="twoColLiqLtHdrinbx.css" rel="stylesheet" type="text/css" /><!--[if lte IE 
7]> 
<style> 
.content { margin-right: -1px; } /* this 1px negative margin can be placed on any of the 
columns in this layout with the same corrective effect. */ 
ul.nav a { zoom: 1; } /* the zoom property gives IE the hasLayout trigger it needs to 
correct extra whiltespace between the links */ 
</style> 
<![endif]--> 
<style type="text/css"> 
.container.sidebar1.nav li a { 
 font-family: Georgia, Times New Roman, Times, serif; 
} 
</style> 
</head> 
<body> 
<div class="container"> 
 <div class="header"> 
 <div align="center"><strong>Personalized Spam Detection Email </strong></div> 
 <!-- end.header --></div> 
 <div class="sidebar1"> 
 <ul class="nav"> 
 <li><a href="login.asp">login by other user</a></li> 
 <li><a href="inbox.asp">Inbox</a></li> 
 <li><a href="junk.asp">Junk Mail</a></li> 
 <li><a href="blacklist.asp">Blacklist</a></li> 
 <li class="promo"><a href="vocablist.asp">Vocabulary list</a></li> 
 <li><a href="<%= MM_Logout %>">Logout</a></li> 
 </ul> 
 </div> 
 <h2>User Whitelist Address</h2> 
 <p> 
<% 
 set email=server.CreateObject("ADODB.Connection") 
 set rs=server.CreateObject("ADODB.RecordSet") 
 set rs1=server.CreateObject("ADODB.RecordSet") 
 set rslog=server.CreateObject("ADODB.RecordSet") 
 dim sqlstr 
 dim sqlbl 
 dim sqlwl 
 logsess = Session("MM_Username") 
 response.write("<font color=red><b>"& logsess &"@permail.com") 
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 mbox=Request("mbox") 
 response.write(""& mbox &"") 
 nspm=Request("nspm") 
 response.write(""& nspm &"") 
 page=request("page") 
email.open "permail" 
 rslog.open "Select * from login where login= '"& logsess &"'",email 
 user = "" & rslog(0) &"" 
 rs.open "SELECT whitelist.wlid, whitelist.wladd FROM whitelist INNER JOIN 
(login INNER JOIN userwl ON login.uid = userwl.uid) ON whitelist.wlid = userwl.wlid 
where login.uid= "& user &"",email 
 response.write("<p align=left>") 
 on error resume next 
 rs.pagesize=15 
 response.write("<p align=left><table align=center cellspacing=2 cellpadding=0 
border=0 >") 
 Response.Write("<font color=#000000><tr bgcolor=#99CC99><th 
align=center>No</th><th align=center>Whitelist Address") 
 if len(page)>0 then 
  rs.absolutepage=page 
 else 
  rs.absolutepage=1 
 end if 
 bgflip=true 
 for i=1 to rs.pagesize 
 if not rs.EOF then 
  if bgflip then 
   Response.Write("<tr bgcolor=#eeeeee>") 
  else 
   Response.Write("<tr bgcolor=#eeeeff>") 
  end if 
  bgflip=not bgflip 
 Response.Write("<td align=center><li></td><td align=left><font face=Times New 
Roman size=4>" & rs(1) & " ") 
  rs.MoveNext 
 end if 
 next 
 response.write("</table>") 
 rs.Close 
 rs1.Close 
 email.Close 
 set rs=nothing 
 set rs1=nothing 
 set email=nothing 
 %> 
 &nbsp;</p> 
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 <p>&nbsp;</p> 
 <!-- end.content --></div> 
 <div class="footer"> 
 <p align="center"><font face="Arial Black, Gadget, sans-serif"><font face="Georgia, 
Times New Roman, Times, serif">All right resevied Personalized 2013</font></font> 
©</p> 
 <!-- end.footer --></div> 
 <!-- end.container --></div> 
</body> 
</html> 
User Blacklist 
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" 
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> 
<html xmlns="http://www.w3.org/1999/xhtml"> 
<head> 
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" /> 
<title>User Blacklist</title> 
<link href="spam.css" rel="stylesheet" type="text/css" /> 
<link href="twoColLiqLtHdrinbx.css" rel="stylesheet" type="text/css" /><!--[if lte IE 
7]> 
<style> 
.content { margin-right: -1px; } /* this 1px negative margin can be placed on any of the 
columns in this layout with the same corrective effect. */ 
ul.nav a { zoom: 1; } /* the zoom property gives IE the hasLayout trigger it needs to 
correct extra whiltespace between the links */ 
</style> 
<![endif]--> 
<style type="text/css"> 
.container.sidebar1.nav li a { 
 font-family: Georgia, Times New Roman, Times, serif; 
} 
</style> 
</head> 
<body bgcolor="#333333"> 
<div class="container"> 
 <div class="header"> 
 <div align="center"><strong>Personalized Spam Detection Email </strong></div> 
 <!-- end.header --></div> 
 <div class="sidebar1"> 
 <ul class="nav"> 
 <li><a href="login.asp">login by other user</a></li> 
 <li><a href="inbox.asp">Inbox</a></li> 
 <li><a href="junk.asp">Junk Mail</a></li> 
 <li><a href="whitelist.asp">Whitelist</a></li> 
 <li class="promo"><a href="vocablist.asp">Vocabulary list</a></li> 
 <li><a href="<%= MM_Logout %>">Logout</a></li> 
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 </ul> 
 </div> 
 <div class="content"> 
 <h2>User Blacklist Address</h2> 
 <p> 
<% 
 set email=server.CreateObject("ADODB.Connection") 
 set rs=server.CreateObject("ADODB.RecordSet") 
 set rs1=server.CreateObject("ADODB.RecordSet") 
 set rslog=server.CreateObject("ADODB.RecordSet") 
 dim sqlstr 
 dim sqlbl 
 dim sqlwl 
 logsess = Session("MM_Username") 
 response.write("<font color=red><b>"& logsess &"@permail.com") 
 mbox=Request("mbox") 
 response.write(""& mbox &"") 
 nspm=Request("nspm") 
 response.write(""& nspm &"") 
 page=request("page") 
 email.open "permail" 
 rslog.open "Select * from login where login= '"& logsess &"'",email 
 user = "" & rslog(0) &"" 
 rs.open "SELECT blacklist.blid, blacklist.bladd FROM blacklist INNER JOIN 
(login INNER JOIN userbl ON login.uid = userbl.uid) ON blacklist.blid = userbl.blid 
where login.uid= "& user &"",email 
 response.write("<p align=left>") 
 on error resume next 
 rs.pagesize=15 
 response.write("<p align=left><table align=center cellspacing=2 cellpadding=0 
border=0 >") 
 Response.Write("<font color=#000000><tr bgcolor=#99CC99><th 
align=center>No<th align=center>Blacklist Address") 
 if len(page)>0 then 
  rs.absolutepage=page 
 else 
  rs.absolutepage=1 
 end if 
 bgflip=true 
 for i=1 to rs.pagesize 
 if not rs.EOF then 
  if bgflip then 
   Response.Write("<tr bgcolor=#eeeeee>") 
  else 
   Response.Write("<tr bgcolor=#eeeeff>") 
  end if 
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  bgflip=not bgflip 
 Response.Write("<td align=left><li><td align=left><font face=Times New Roman 
size=4> " & rs(1) & " ") 
  rs.MoveNext 
 end if 
 next 
 response.write("</table>") 
 rs.Close 
 rs1.Close 
 email.Close 
 set rs=nothing 
 set rs1=nothing 
 set email=nothing 
 %> 
 &nbsp;</p> 
 <p>&nbsp;</p> 
 <!-- end.content --></div> 
 <div class="footer"> 
 <p align="center"><font face="Arial Black, Gadget, sans-serif"><font face="Georgia, 
Times New Roman, Times, serif">All right resevied Personalized 2013</font></font> 
©</p> 
 <!-- end.footer --></div> 
 <!-- end.container --></div> 
</body> 
</html> 
User Vocabulary list 
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" 
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> 
<html xmlns="http://www.w3.org/1999/xhtml"> 
<head> 
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" /> 
<title>User Vocabulary list</title> 
<link href="spam.css" rel="stylesheet" type="text/css" /> 
<link href="twoColLiqLtHdrinbx.css" rel="stylesheet" type="text/css" /><!--[if lte IE 
7]> 
<style> 
.content { margin-right: -1px; } /* this 1px negative margin can be placed on any of the 
columns in this layout with the same corrective effect. */ 
ul.nav a { zoom: 1; } /* the zoom property gives IE the hasLayout trigger it needs to 
correct extra whiltespace between the links */ 
</style> 
<![endif]--> 
<style type="text/css"> 
.container.sidebar1.nav li a { 
 font-family: Georgia, Times New Roman, Times, serif; 
} 
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</style> 
</head> 
<body> 
<div class="container"> 
 <div class="header"> 
 <div align="center"><strong>Personalized Spam Detection Email </strong></div> 
 <!-- end.header --></div> 
 <div class="sidebar1"> 
 <ul class="nav"> 
 <li><a href="login.asp">login by other user</a></li> 
 <li><a href="inbox.asp">Inbox</a></li> 
 <li><a href="junk.asp">Junk Mail</a></li> 
 <li><a href="whitelist.asp">Whitelist</a></li> 
 <li class="promo"><a href="blacklist.asp">Blacklist</a></li> 
 <li><a href="<%= MM_Logout %>">Logout</a></li> 
 </ul> 
 </div> 
 <div class="content"> 
 <h2>User Vocabulary List</h2> 
 <p> 
<% 
 set email=server.CreateObject("ADODB.Connection") 
 set rs=server.CreateObject("ADODB.RecordSet") 
 set rs1=server.CreateObject("ADODB.RecordSet") 
 set rslog=server.CreateObject("ADODB.RecordSet") 
 dim sqlstr 
 dim sqlbl 
 dim sqlwl 
 logsess = Session("MM_Username") 
 response.write("<font color=red><b>"& logsess &"@permail.com") 
 mbox=Request("mbox") 
 response.write(""& mbox &"") 
 nspm=Request("nspm") 
 response.write(""& nspm &"") 
 page=request("page") 
 email.open "permail" 
 rslog.open "Select * from login where login= '"& logsess &"'",email 
 user = "" & rslog(0) &"" 
 rs.open "SELECT bvocab.vocid, vocab.word FROM vocab INNER JOIN (login 
INNER JOIN ((junk INNER JOIN bvocab ON junk.jid = bvocab.jid) INNER JOIN 
userjn ON junk.jid = userjn.jid) ON login.uid = userjn.uid) ON vocab.vocid = 
bvocab.vocid WHERE (((login.uid)= "& user &"))",email 
 response.write("<p align=left>") 
 on error resume next 
 rs.pagesize=15 
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 response.write("<p align=left><table align=center cellspacing=2 cellpadding=0 
border=0 >") 
 Response.Write("<font color=#000000><tr bgcolor=#99CC99><th 
align=center>No<th align=center>Spam Vocabulary") 
 if len(page)>0 then 
  rs.absolutepage=page 
 else 
  rs.absolutepage=1 
 end if 
 bgflip=true 
 for i=1 to rs.pagesize 
 if not rs.EOF then 
  if bgflip then 
   Response.Write("<tr bgcolor=#eeeeee>") 
  else 
   Response.Write("<tr bgcolor=#eeeeff>") 
  end if 
  bgflip=not bgflip 
 Response.Write("<td align=left><li><td align=left><font face=Times New Roman 
size=5> " & rs(1) & " ") 
  rs.MoveNext 
 end if 
 next 
 response.write("</il></ol></td>") 
 response.write("</table>") 
 rs.Close 
 rs1.Close 
 email.Close 
 set rs=nothing 
 set rs1=nothing 
 set email=nothing 
 %> 
 &nbsp;</p> 
 <p>&nbsp;</p> 
 <!-- end.content --></div> 
 <div class="footer"> 
 <p align="center"><font face="Arial Black, Gadget, sans-serif"><font face="Georgia, 
Times New Roman, Times, serif">All right resevied Personalized 2013</font></font> 
©</p> 
 <!-- end.footer --></div> 
 <!-- end.container --></div> 
</body> 
</html> 

C.2 Personalized spam detection algorithm interface code 



  

 123 

c.1.1 Functions of algorithm 
MATLAB code functions are as the following: 
 
function vocabList = getVocabList(n) 
%GETVOCABLIST reads the fixed vocabulary list in vocab.txt and returns a 
%cell array of the words 
% vocabList = GETVOCABLIST() reads the fixed vocabulary list in vocab.txt 
% and returns a cell array of the words in vocabList. 
 %% Read the fixed vocabulary list 
fid = fopen('vocab.txt'); 
 % Store all dictionary words in cell array vocab{} 
if n>1899 
 n = 1899; 
end 
% For ease of implementation, we use a struct to map the strings => integers 
% In practice, you will want to use some form of hashmap 
vocabList = cell(n, 1); 
for i = 1:n 
 % Word Index (can ignore since it will be = i) 
 fscanf(fid, '%d', 1); 
 % Actual Word 
 vocabList{i} = fscanf(fid, '%s', 1); 
end 
fclose(fid); 
 end 
=================================================== 
function stem = porterStemmer(inString) 
% Porter, 1980, An algorithm for suffix stripping, Program, Vol. 14, 
% no. 3, pp 130-137 
% Original code modeled after the C version provided at: 
% http://www.tartarus.org/~martin/PorterStemmer/c.txt 
% The main part of the stemming algorithm starts here. b is an array of 
% characters, holding the word to be stemmed. The letters are in b[k0], 
% b[k0+1] ending at b[k]. In fact k0 = 1 in this demo program (since 
% matlab begins indexing by 1 instead of 0). k is readjusted downwards as 
% the stemming progresses. Zero termination is not in fact used in the 
% algorithm. 
 % To call this function, use the string to be stemmed as the input 
% argument. This function returns the stemmed word as a string. 
 % Lower case string 
inString = lower(inString); 
global j; 
b = inString; 
k = length(b); 
k0 = 1; 
j = k; 
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% With this if statement, strings of length 1 or 2 don't go through the  stemming process. 
Remove this conditional to match the published  algorithm. 
stem = b; 
if k > 2 
 % Output displays per step are commented out. 
 %disp(sprintf('Word to stem: %s', b)); 
 x = step1ab(b, k, k0); 
 %disp(sprintf('Steps 1A and B yield: %s', x{1})); 
 x = step1c(x{1}, x{2}, k0); 
 %disp(sprintf('Step 1C yields: %s', x{1})); 
 x = step2(x{1}, x{2}, k0); 
 %disp(sprintf('Step 2 yields: %s', x{1})); 
 x = step3(x{1}, x{2}, k0); 
 %disp(sprintf('Step 3 yields: %s', x{1})); 
 x = step4(x{1}, x{2}, k0); 
 %disp(sprintf('Step 4 yields: %s', x{1})); 
 x = step5(x{1}, x{2}, k0); 
 %disp(sprintf('Step 5 yields: %s', x{1})); 
 stem = x{1}; 
end 
% cons(j) is TRUE <=> b[j] is a consonant. 
function c = cons(i, b, k0) 
c = true; 
switch(b(i)) 
 case {'a', 'e', 'i', 'o', 'u'} 
 c = false; 
 case 'y' 
 if i == k0 
 c = true; 
  else 
  c = ~cons(i - 1, b, k0); 
 end 
end 
% mseq() measures the number of consonant sequences between k0 and j. If 
% c is a consonant sequence and v a vowel sequence, and <..> indicates 
% arbitrary presence, 
 % <c><v> gives 0 
% <c>vc<v> gives 1 
% <c>vcvc<v> gives 2 
% <c>vcvcvc<v> gives 3 
function n = measure(b, k0) 
global j; 
n = 0; 
i = k0; 
while true 
 if i > j 
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 return 
 end 
 if ~cons(i, b, k0) 
 break; 
 end 
 i = i + 1; 
end 
i = i + 1; 
while true 
 while true 
 if i > j 
 return 
     end 
 if cons(i, b, k0) 
 break; 
     end 
 i = i + 1; 
 end 
 i = i + 1; 
 n = n + 1; 
 while true 
 if i > j 
 return 
     end 
 if ~cons(i, b, k0) 
 break; 
     end 
 i = i + 1; 
 end 
 i = i + 1; 
end 
% vowelinstem() is TRUE <=> k0,...j contains a vowel 
function vis = vowelinstem(b, k0) 
global j; 
for i = k0:j, 
 if ~cons(i, b, k0) 
 vis = true; 
 return 
 end 
end 
vis = false; 
%doublec(i) is TRUE <=> i,(i-1) contain a double consonant. 
function dc = doublec(i, b, k0) 
if i < k0+1 
 dc = false; 
 return 
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end 
if b(i) ~= b(i-1) 
 dc = false; 
 return 
end 
dc = cons(i, b, k0); 
% cvc(j) is TRUE <=> j-2,j-1,j has the form consonant - vowel - consonant 
% and also if the second c is not w,x or y. this is used when trying to 
% restore an e at the end of a short word. e.g. 
% 
% cav(e), lov(e), hop(e), crim(e), but 
% snow, box, tray. 
function c1 = cvc(i, b, k0) 
if ((i < (k0+2)) || ~cons(i, b, k0) || cons(i-1, b, k0) || ~cons(i-2, b, k0)) 
 c1 = false; 
else 
 if (b(i) == 'w' || b(i) == 'x' || b(i) == 'y') 
 c1 = false; 
 return 
 end 
 c1 = true; 
end 
% ends(s) is TRUE <=> k0,...k ends with the string s. 
function s = ends(str, b, k) 
global j; 
if (str(length(str)) ~= b(k)) 
 s = false; 
 return 
end % tiny speed-up 
if (length(str) > k) 
 s = false; 
 return 
end 
if strcmp(b(k-length(str)+1:k), str) 
 s = true; 
 j = k - length(str); 
 return 
else 
 s = false; 
end 
% setto(s) sets (j+1),...k to the characters in the string s, readjusting 
% k accordingly. 
function so = setto(s, b, k) 
global j; 
for i = j+1:(j+length(s)) 
 b(i) = s(i-j); 
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end 
if k > j+length(s) 
 b((j+length(s)+1):k) = ''; 
end 
k = length(b); 
so = {b, k}; 
% rs(s) is used further down. 
% [Note: possible null/value for r if rs is called] 
function r = rs(str, b, k, k0) 
r = {b, k}; 
if measure(b, k0) > 0 
 r = setto(str, b, k); 
end 
% step1ab() gets rid of plurals and -ed or -ing. e.g. 
% caresses -> caress 
% ponies ->  poni 
% ties   ->  ti 
% caress ->  caress 
% cats   ->  cat 
% feed   ->  feed 
% agreed ->  agree 
% disabled -> disable 
% matting -> mat 
% mating ->  mate 
% meeting -> meet 
% milling -> mill 
% messing -> mess 
% meetings -> meet 
function s1ab = step1ab(b, k, k0) 
global j; 
if b(k) == 's' 
 if ends('sses', b, k) 
 k = k-2; 
 elseif ends('ies', b, k) 
 retVal = setto('i', b, k); 
 b = retVal{1}; 
 k = retVal{2}; 
 elseif (b(k-1) ~= 's') 
 k = k-1; 
 end 
end 
if ends('eed', b, k) 
 if measure(b, k0) > 0; 
 k = k-1; 
 end 
elseif (ends('ed', b, k) || ends('ing', b, k)) && vowelinstem(b, k0) 
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 k = j; 
 retVal = {b, k}; 
 if ends('at', b, k) 
 retVal = setto('ate', b(k0:k), k); 
 elseif ends('bl', b, k) 
 retVal = setto('ble', b(k0:k), k); 
 elseif ends('iz', b, k) 
 retVal = setto('ize', b(k0:k), k); 
 elseif doublec(k, b, k0) 
 retVal = {b, k-1}; 
 if b(retVal{2}) == 'l' || b(retVal{2}) == 's' ||... 
 b(retVal{2}) == 'z' 
 retVal = {retVal{1}, retVal{2}+1}; 
 end 
    elseif measure(b, k0) == 1 && cvc(k, b, k0) 
 retVal = setto('e', b(k0:k), k); 
 end 
 k = retVal{2}; 
 b = retVal{1}(k0:k); 
end 
j = k; 
s1ab = {b(k0:k), k}; 
% step1c() turns terminal y to i when there is another vowel in the stem. 
function s1c = step1c(b, k, k0) 
global j; 
if ends('y', b, k) && vowelinstem(b, k0) 
 b(k) = 'i'; 
end 
j = k; 
s1c = {b, k}; 
% step2() maps double suffices to single ones. so -ization ( = -ize plus 
% -ation) maps to -ize etc. note that the string before the suffix must give 
% m() > 0. 
function s2 = step2(b, k, k0) 
global j; 
s2 = {b, k}; 
switch b(k-1) 
 case {'a'} 
 if ends('ational', b, k) s2 = rs('ate', b, k, k0); 
 elseif ends('tional', b, k) s2 = rs('tion', b, k, k0); end; 
 case {'c'} 
 if ends('enci', b, k) s2 = rs('ence', b, k, k0); 
 elseif ends('anci', b, k) s2 = rs('ance', b, k, k0); end; 
 case {'e'} 
 if ends('izer', b, k) s2 = rs('ize', b, k, k0); end; 
 case {'l'} 
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 if ends('bli', b, k) s2 = rs('ble', b, k, k0); 
 elseif ends('alli', b, k) s2 = rs('al', b, k, k0); 
 elseif ends('entli', b, k) s2 = rs('ent', b, k, k0); 
 elseif ends('eli', b, k) s2 = rs('e', b, k, k0); 
 elseif ends('ousli', b, k) s2 = rs('ous', b, k, k0); end; 
 case {'o'} 
 if ends('ization', b, k) s2 = rs('ize', b, k, k0); 
 elseif ends('ation', b, k) s2 = rs('ate', b, k, k0); 
 elseif ends('ator', b, k) s2 = rs('ate', b, k, k0); end; 
 case {'s'} 
 if ends('alism', b, k) s2 = rs('al', b, k, k0); 
 elseif ends('iveness', b, k) s2 = rs('ive', b, k, k0); 
 elseif ends('fulness', b, k) s2 = rs('ful', b, k, k0); 
 elseif ends('ousness', b, k) s2 = rs('ous', b, k, k0); end; 
 case {'t'} 
 if ends('aliti', b, k) s2 = rs('al', b, k, k0); 
 elseif ends('iviti', b, k) s2 = rs('ive', b, k, k0); 
 elseif ends('biliti', b, k) s2 = rs('ble', b, k, k0); end; 
 case {'g'} 
 if ends('logi', b, k) s2 = rs('log', b, k, k0); end; 
end 
j = s2{2}; 
% step3() deals with -ic-, -full, -ness etc. similar strategy to step2. 
function s3 = step3(b, k, k0) 
global j; 
s3 = {b, k}; 
switch b(k) 
 case {'e'} 
 if ends('icate', b, k) s3 = rs('ic', b, k, k0); 
 elseif ends('ative', b, k) s3 = rs('', b, k, k0); 
 elseif ends('alize', b, k) s3 = rs('al', b, k, k0); end; 
 case {'i'} 
 if ends('iciti', b, k) s3 = rs('ic', b, k, k0); end; 
 case {'l'} 
 if ends('ical', b, k) s3 = rs('ic', b, k, k0); 
 elseif ends('ful', b, k) s3 = rs('', b, k, k0); end; 
 case {'s'} 
 if ends('ness', b, k) s3 = rs('', b, k, k0); end; 
end 
j = s3{2}; 
% step4() takes off -ant, -ence etc., in context <c>vcvc<v>. 
function s4 = step4(b, k, k0) 
global j; 
switch b(k-1) 
 case {'a'} 
 if ends('al', b, k) end; 
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 case {'c'} 
 if ends('ance', b, k) 
 elseif ends('ence', b, k) end; 
 case {'e'} 
 if ends('er', b, k) end; 
 case {'i'} 
 if ends('ic', b, k) end; 
 case {'l'} 
 if ends('able', b, k) 
 elseif ends('ible', b, k) end; 
 case {'n'} 
 if ends('ant', b, k) 
 elseif ends('ement', b, k) 
 elseif ends('ment', b, k) 
 elseif ends('ent', b, k) end; 
 case {'o'} 
 if ends('ion', b, k) 
 if j == 0 
  elseif ~(strcmp(b(j),'s') || strcmp(b(j),'t')) 
 j = k; 
         end 
 elseif ends('ou', b, k) end; 
 case {'s'} 
 if ends('ism', b, k) end; 
 case {'t'} 
 if ends('ate', b, k) 
 elseif ends('iti', b, k) end; 
 case {'u'} 
 if ends('ous', b, k) end; 
 case {'v'} 
 if ends('ive', b, k) end; 
 case {'z'} 
 if ends('ize', b, k) end; 
end 
if measure(b, k0) > 1 
 s4 = {b(k0:j), j}; 
else 
 s4 = {b(k0:k), k}; 
end 
% step5() removes a final -e if m() > 1, and changes -ll to -l if m() > 1. 
function s5 = step5(b, k, k0) 
global j; 
j = k; 
if b(k) == 'e' 
 a = measure(b, k0); 
 if (a > 1) || ((a == 1) && ~cvc(k-1, b, k0)) 
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 k = k-1; 
 end 
end 
if (b(k) == 'l') && doublec(k, b, k0) && (measure(b, k0) > 1) 
 k = k-1; 
end 
s5 = {b(k0:k), k}; 
====================================================== 
function [eta I]= indicateEmail(email_contents,vocabList,vocabScore) 
%PROCESSEMAIL preprocesses a the body of an email and 
%returns a list of word_indices 
% word_indices = PROCESSEMAIL(email_contents) preprocesses 
% the body of an email and returns a list of indices of the 
% words contained in the email. 
%% S = 1; 
% H = 1; 
eta = 0; 
% ============= Preprocess Email ============== 
% Find the Headers ( \n\n and remove ) 
% Uncomment the following lines if you are working with raw emails with the 
% full headers 
% hdrstart = strfind(email_contents, ([char(10) char(10)])); 
% email_contents = email_contents(hdrstart(1):end); 
% Lower case 
email_contents = lower(email_contents); 
% Strip all HTML 
% Looks for any expression that starts with < and ends with > and replace 
% and does not have any < or > in the tag it with a space 
email_contents = regexprep(email_contents, '<[^<>]+>', ' '); 
% Handle Numbers 
% Look for one or more characters between 0-9 
email_contents = regexprep(email_contents, '[0-9]+', 'number'); 
% Handle URLS 
% Look for strings starting with http:// or https:// 
email_contents = regexprep(email_contents,... 
 '(http|https)://[^\s]*', 'httpaddr'); 
% Handle Email Addresses 
% Look for strings with @ in the middle 
email_contents = regexprep(email_contents, '[^\s]+@[^\s]+', 'emailaddr'); 
% Handle $ sign 
email_contents = regexprep(email_contents, '[$]+', 'dollar'); 
% =========== Tokenize Email =========== 
% Output the email to screen as well 
%fprintf('\n==== Processed Email ====\n\n'); 
% Process file 
 while ~isempty(email_contents) 
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 % Tokenize and also get rid of any punctuation 
 [str, email_contents] =... 
 strtok(email_contents,... 
 [' @$/#.-:&*+=[]?!(){},''">_<;%' char(10) char(13)]); 
 % Remove any non-alphanumeric characters 
 str = regexprep(str, '[^a-zA-Z0-9]', ''); 
 % Stem the word 
 % (the porterStemmer sometimes has issues, so we use a try catch block) 
 try str = porterStemmer(strtrim(str)); 
 catch str = ''; continue; 
 end; 
 % Skip the word if it is too short 
 if length(str) < 1 
 continue; 
 end % Look up the word in the dictionary and add to word_indices if 
 % found 
% Instructions: Fill in this function to add the index of str to 
 % word_indices if it is in the vocabulary. At this point 
 % of the code, you have a stemmed word from the email in 
 %   the variable str. You should look up str in the 
 %   vocabulary list (vocabList). If a match exists, you 
 %  should add the index of the word to the word_indices 
 vector. Concretely, if str = 'action', then you should 
 %   look up the vocabulary list to find where in vocabList 
 %   'action' appears. For example, if vocabList{18} = 
 %   'action', then, you should add 18 to the word_indices 
 %   vector (e.g., word_indices = [word_indices; 18]; ). 
  % Note: vocabList{idx} returns a the word with index idx in the 
 %   vocabulary list. 
  % Note: You can use strcmp(str1, str2) to compare two strings (str1 and 
 %  str2). It will return 1 only if the two strings are equivalent. 
   %word_indices = [word_indices; find(strcmp(str,vocabList))]; 
 ind = find(strcmp(str,vocabList)); 
 if ~isempty(ind) 
 eta  = eta + log(1-vocabScore(ind))-log(vocabScore(ind)); 
% S = S * vocabScore(ind); 
% H = H * (1-vocabScore(ind)); 
 end 
end 
% I = (1+S-H)/2; 
 I = 1/(1+exp(eta)); 
% Print footer 
% fprintf('\n\n=========================\n'); 
End 

C.3 Arabic Spam Detection Program Code 
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import csv 
import os 
import math 
import random 
""" 
utils.py 
""" 
#------------------------------------------------------------------------------ 
#no need stop words because ISRIStemmer add 60 Arabic stopwords 
#stop_words = [] 
# Punctuation marks 
forbidden_words = [",", "+", "&", "-", "_", ".", ")", "(", ":", "=", "/", "'", "\"", "*"] 
def counter(word_list): 
 """Given a list of words, return a dictionary 
 associating each word with the number of times it occurs""" 
 counts = {} 
 for word in word_list: 
 # Intialise dictionary 
 counts[word] = 0 
 for word in word_list: 
 # Calculate word counts 
 counts[word] += 1 
    return counts 
def norm_dist(value, mean, sd): 
 """Calculates the probability density of a normal distribution 
 given the mean and standard deviation of the distribution.""" 
 if sd == 0.0: 
 # If SD = 0, return a small non-zero number 
 # as discussed in the report. 
 return 0.05 
 else: 
 # PDF for normal distribution 
 result = math.exp(-float((value - mean)**2) / (2.0*(sd**2))) * 1.0/(sd * math.sqrt(2 * 
math.pi)) 
 return result 
def mean(data): 
 if data == []: 
 return 0.0 
 else: 
 """Calculates the mean of a list""" 
 sum = 0.0 
 for item in data: 
 sum += item 
 #return str(float(sum)/len(data)) 
 return float(sum)/len(data) 
def sd(data): 
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 if data == []: 
 return 0.0 
 else: 
 "Calculates the standard deviation of a list" 
 data_mean = mean(data) 
 sums = 0.0 
 for item in data: 
 sums += (item-data_mean)**2 
 return math.sqrt(float(sums)/(len(data)-1)) 
#------------------------------------------------------------------------------ 
#!/usr/bin/env python 
# encoding: cp1256 
""" 
Message.py 
""" 
from utils import * 
import math 
import Stemmer 
#------------------------------------------------------------------------------ 
class Message(): 
 """Implements the message class. 
 Attributes 
 subject - subject data 
 body - body data 
 subject word count - dictionary containing word --> count for subject 
 body word count - dictionary containing word --> count for body 
 spam - identifier if message is spam or non-spam""" 
 def __init__(self, filename): 
 # Initialise data 
 file = open("./Data/" + filename, 'r') 
 data = file.readlines() 
 file.close() 
 self.subject = data[0][9:].strip() 
 self.body = [line.strip() for line in data[1:]][0] 
       # Perform the Stemmer and numeric methods to further process the data 
 self.stem_data() 
 self.numeric_filter() 
        # Calculate word counts for the data 
 self.subject_word_count = counter(self.subject.split()) 
 self.body_word_count = counter(self.body.split()) 
       # Message attributes 
 self.filename = filename 
 self.spam = self.spam_class() 
#------------------------------------------------------------------------------------- 
    def spam_class(self): 
  """From the filename, classes the message as spam or non-spam""" 
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 if self.filename[:6] == 'spamar': 
 return "Spam" 
 else: 
  return "Non-spam" 
 def stem_data(self): 
 """Stems the data, using ISRIStemmer algorithm""" 
 # The stemming object 
 stemmer = Stemmer.Stemmer() 
 def stem_string(string): 
 """Input a string, returns a string with the 
 words replaced by their stemmed equivalents""" 
           stemmed_list = [] 
 for word in string.split(): 
 stemmed_word = stemmer.stemWord(word) 
 stemmed_list.append(stemmed_word) 
           stemmed_string = " ".join(stemmed_list) 
 return stemmed_string 
        self.body = stem_string(self.body) 
 self.subject = stem_string(self.subject) 
    def numeric_filter(self): 
 """Replaces instances of numbers in a string with 
 a "NUMERIC" placeholder 
 e.g.("112", "22" ---> "NUMERIC")""" 
 def num_filter_string(string): 
 """Input a string, returns a string with 
 strings of digits replaced with "NUMERIC" 
 """ 
        filtered_list = [] 
 for word in string.split(): 
 if word.isdigit(): 
 filtered_list.append("NUMERIC") 
 else: 
          filtered_list.append(word) 
            filtered_string = " ".join(filtered_list) 
 return filtered_string 
        self.body = num_filter_string(self.body) 
 self.subject = num_filter_string(self.subject) 
 def tf_idf(self, corpus): 
 """Input a corpus (with its list of document frequencies) 
 calculates the tf-idf score for the message for every feature""" 
 top100list = [(word, count) for count, word in corpus.top100] 
     if corpus.type == "subject": 
 word_count = self.subject_word_count 
 else: 
 word_count = self.body_word_count 
       self.tf_idf_scorelist = [] 
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 # print word_count 
 for word, document_frequency in top100list: 
 if word not in word_count: 
 # If word does not appear in the message, tf-idf == 0 
 self.tf_idf_scorelist.append([word, 0]) 
 else: 
      # calculate the tf-idf score for the word, appending the pair (word, score) to the list 
 tf_idf_score = word_count[word] * math.log10(corpus.length / 
float(document_frequency)) + 1.0/100 
 self.tf_idf_scorelist.append([word, tf_idf_score]) 
       return self.tf_idf_scorelist 
 #------------------------------------------------------------------------------ 
def testing(): 
 pass 
#------------------------------------------------------------------------------ 
if __name__ == '__main__': 
 testing() 
-------------------------------------------------------------------------- 
# -*- coding: cp1256 -*- 
#!/usr/local/bin/python 
""" 
Stemmer.py 
""" 
import unittest, re 
from api import StemmerI 
from isri import * 
import codecs 
#regexp = re.compile(r"[^aeiouy]*[aeiouy]+[^aeiouy](\w*)") 
def isri_stem(word): 
 isristem = ISRIStemmer() 
 word = unicode(word,'cp1256') 
 word = isristem.stem(word) 
 return word 
class Stemmer: 
 """An instance of a stemming algorithm. 
 When creating a Stemmer object, there is one required argument 
 the appropriate stemming algorithm using ISRIStemming for Arabic 
 language. 
 """ 
max_cache_size = 10000 
 def __init__ (self, cache_size=None): 
 if cache_size: 
 self.max_cache_size = cache_size 
 def stemWord(self, word): 
 """Stem a word. 
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 The ISRI Stemmer requires that all tokens have Unicode string types. If you use Python 
IDLE on Arabic Windows you have to decode text first using Arabic '1256' coding. 
 """ 
    return Stemmer._stem(word) 
 def stemWords(self, words): 
 """Stem a list of words. 
 This takes a single argument, words, which must be a sequence, iterator, generator or 
similar. The entries in words should either be UTF-8 encoded strings,  or a unicode 
objects. The result is a list of the stemmed forms of the words. If the word  supplied was 
a unicode object, the stemmed form will be a Unicode  object: if the word supplied was a 
string, the stemmed form will be a UTF-8 encoded string. 
 """ 
    return [self.stemWord(word) for word in words] 
 @classmethod 
 def _stem(cls, word): 
       was_unicode = False 
        if isinstance(word, unicode): 
 was_unicode = True 
 word = word.encode('cp1256') 
 word = isri_stem(word) 
 if len(word) <= 2: 
 return word 
 #word = isri_stem(word) 
        if was_unicode: 
 return  word.decode('cp1256') 
 return word 
 class TestISRIStem(unittest.TestCase): 
 def setUp(self): 
 pass 
  def testModule(self): 
       stemmer = Stemmer() 
if __name__ == '__main__': 
 unittest.main() 
------------------------------------------------------------------ 
# /usr/bin/env python 
# encoding: cp1256 
""" 
Corpus.py 
""" 
from utils import * 
from Message import * 
import Stemmer 
import nltk.tokenize.regexp 
#------------------------------------------------------------------------------ 
class Corpus(): 
 """Corpus class. A superclass for the classes SubjectCorpus and BodyCorpus""" 
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 def csv_write(self): 
 """Writes a csv file 
 101 columns - 100 features and class identifier 
 191 rows - header (f1, f2...f100, class) and 190 examples""" 
   headers = [] 
 for index in xrange(len(self.top100)): 
 # Create the list [f1, f2,..., f100] 
 headers.append("f" + str(index + 1) ) 
       headers.append("Spam Class") 
 # Create the list [f1, f2..., f100, Spam Class] 
       csv_file = [] 
 csv_file.append(headers) 
       for message in self.messages: 
 # Append the row of tf-idf scores for each feature 
 msg_scores = [scores[1] for scores in message.tf_idf_scorelist] 
           # Append the spam class in the last column 
 msg_scores.append(message.spam) 
           # Append the row to the file 
 csv_file.append(msg_scores) 
       csv_filename = self.type + ".csv" 
 writer = csv.writer(open(csv_filename, "wb")) 
 for row in csv_file: 
 writer.writerow(row) 
 # Write the CSV file 
    def get_length(self): 
 """Find the number of examples in the corpus""" 
 self.length = len(self.data) 
 #-------------------------------------------------------------------------------------- 
 def tf_idf_scores(self): 
 """Calculate tf-idf scores for all messages in the corpus""" 
 for message in self.messages: 
 message.tf_idf(self) 
    def DF_score(self): 
 """Calculate the document frequency score for all words in the corpus""" 
 self.DF_counts = {} 
       for message in self.cleaned_data: 
 for word in nltk.word_tokenize(message): 
 # Initialise the dictionary 
 self.DF_counts[word] = 0 
       for message in self.cleaned_data: 
 word_added_already = [] 
 for word in nltk.word_tokenize(message): 
 if word not in word_added_already: 
 # Avoids double counting a word if it appears twice in a message 
 self.DF_counts[word] += 1 
 word_added_already.append(word) 
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       word_list = sorted((value,key) for (key,value) in self.DF_counts.items()) 
 # Sort our list, in order of least prevalent to most prevalent 
       word_list.reverse() 
 # Reverse this list 
       self.top100 = word_list[:100] 
 # Return the top 100 words 
   return self.top100 
 def word_count(self): 
 """Counts the number of unique words in the corpus""" 
 word_string = [] 
 for message in self.data: 
 for words in nltk.word_tokenize(message): 
 word_string.append(words) 
     word_counts = counter(word_string) 
 return word_counts 
 #------------------------------------------------------------------------- 
 def remove_stop_words(self): 
 """Performs the filtering described in the data preprocessing 
 section of the report. 
 Removes punctuation 
 Stems words 
 Filters numeric data 
 """ 
 self.cleaned_data = [] 
 stemmer = Stemmer.Stemmer() 
 for data in self.data: 
 words = data.split() 
 stemmed_words = [stemmer.stemWord(word) for word in words \ 
 if word not in forbidden_words] 
 # Perhaps an overly complex line - returns a list of stemmed words, 
 # if the word is not a stop word or forbidden 
 words = [] 
 for word in stemmed_words: 
 # Filters out our numeric features 
 #   e.g "112" --> "NUMERIC" 
 if word.isdigit(): 
 words.append("NUMERIC") 
 else: 
          words.append(word) 
           clean_data = " ".join(words) 
 # Converts list to string 
           self.cleaned_data.append(clean_data) 
       return self.cleaned_data 
 #------------------------------------------------------------------------- 
 def creation(self): 
 """A container method, performing the following operations: 
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 filtering  punctuation 
 performing the stemming algorithm 
 calculates tf-idf scores 
 writes the CSV file 
 """ 
 self.remove_stop_words() 
 self.DF_score() 
 self.tf_idf_scores() 
 self.csv_write() 
     print " - {0} CSV File For Arabic Email Created".format(self.type) 
#------------------------------------------------------------------------------ 
class SubjectCorpus(Corpus): 
 """Subject Corpus 
 Message data is the subjects of the individual messages 
 """ 
 def __init__(self, message_list): 
 self.messages = message_list 
 self.data = [message.subject for message in message_list] 
 self.get_length() 
 self.type = "Subject" 
class BodyCorpus(Corpus): 
 """Body Corpus 
 Message data is the body of the individual messages 
 """ 
 def __init__(self, message_list): 
 self.messages = message_list 
 self.data = [message.body for message in message_list] 
 self.get_length() 
 self.type = "Body" 
#------------------------------------------------------------------------------ 
def Create_BC_SC_CSV(): 
 file_list = [(file, file[-3:]) for file in os.listdir("./Data")] 
 proper_files = [file for file, extension in file_list if extension == "txt"] 
 # Filters out files that are not text files 
 message_list = [Message(file) for file in proper_files] 
 # Our list of message objects 
 SC = SubjectCorpus(message_list) 
 SC.creation() 
 BC = BodyCorpus(message_list) 
 BC.creation() 
if __name__ == '__main__': 
 Create_B 
C_SC_CSV() 
======================== 
# encoding: cp1256 
#!/usr/bin/env python 
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""" 
NaiveBayesClassifier.py 
""" 
import sys 
import os 
import csv 
from utils import * 
import math 
import random 
#------------------------------------------------------------------------------ 
class NaiveBayesClassifier(): 
 """Naive Bayes Classifier class 
 Implements the methods: 
 CSV Read - reads a data file 
 Train   - Trains on messages 
 Feature_class_mean_sd - Calculates mean and sd 
 for FEATURE when CLASS = SPAM CLASS 
 Classify - Classifies a message 
 P_spam_not_spam - Calculates probabilities a message 
 is spam or non-spam 
    Classification_test - tests if a message is correctly 
 classified 
        Stratification_test - Performs 10-fold cross validation""" 
    def __init__(self, corpus): 
 # Reads the corpus data 
 self.type = corpus # Type of corpus - body or subject 
 self.corpus_header, self.corpus_data = self.csv_read(corpus) 
 self.corpus_data = self.cosine_normalisation() 
#----------------------------------------------------------------------------------- 
 def csv_read(self, corpus): 
 """Reads a CSV file. Outputs two lists: 
 corpus_float_data - a list of messages 
 corpus_header - a list of headers""" 
 corpus_data = [] 
 corpus_file = self.type + ".csv" # e.g. subject.csv 
 reader = csv.reader(open(corpus_file)) 
 for row in reader: 
 # Scans through the rows, appending to the file 
 corpus_data.append(row) 
 corpus_header = corpus_data[:1] # Header data "f1, f2..." 
 corpus_data = corpus_data[1:] # Message data with TF-IDF scores 
 corpus_float_data = [] 
 for row in corpus_data: 
 # Converts strings to floats 
 float_row = [float(i) for i in row[:-1]] 
 float_row.append(row[-1]) 
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 corpus_float_data.append(float_row) 
 return corpus_header, corpus_float_data 
#----------------------------------------------------------------------------------------- 
 def cosine_normalisation(self): 
 """Performs the cosine normalisation of data""" 
    self.normalised_data = [] 
 for message in self.corpus_data: 
 normalised_scores = [] 
 tf_idf_scores = message[:-1] 
 normalisation_factor = math.sqrt(sum([i**2 for i in tf_idf_scores])) 
 # Calculate \sum_{k} tf-idf(t_k, d_j)^2 
 if normalisation_factor == 0: 
 # Prevents dividing by zero 
 self.normalised_data.append(message) 
 else: 
 for score in tf_idf_scores: 
 normalised_scores.append(score/float(normalisation_factor)) 
 normalised_scores.append(message[-1]) 
 self.normalised_data.append(normalised_scores) 
 return self.normalised_data 
#--------------------------------------------------------------------------------------------- 
    def train(self, training_set): 
 """Trains the classifier by calculating the prior normal distribution 
 parameters for the feature sets and TRUE/FALSE""" 
 # The set of training messages 
 training_messages = [self.corpus_data[i] for i in training_set] 
       # Empty dictionary to hold mean and sd data 
 self.mean_sd_data = {} 
        for feature in range(100): 
 self.mean_sd_data[feature] = {"Non-spam":[0, 0], "Spam":[0, 0]} 
 for spam_class in ["Non-spam", "Spam"]: 
 self.mean_sd_data[feature][spam_class] = [] 
 # Initialise the dictionary 
        for feature in range(100): 
 for spam_class in ["Non-spam", "Spam"]: 
 # Fill the dictionary with values calculated from the feature_class_mean_sd method 
 self.mean_sd_data[feature][spam_class] = self.feature_class_mean_sd(spam_class, 
feature, training_messages) 
        # Calculate the a-priori spam and non-spam probabilities 
 spam_count = 0 
 for message in training_messages: 
 if message[-1] == "Spam": 
 spam_count += 1 
       self.mean_sd_data["Spam"] = spam_count / float(len(training_set)) 
 self.mean_sd_data["Non-spam"] = 1 - (spam_count / float(len(training_set))) 
#---------------------------------------------------------------------------------------------------------- 
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    def feature_class_mean_sd(self, spam_class, feature, training_messages): 
 """Calculates the mean and standard deviations for: 
 FEATURE when CLASS = SPAM CLASS""" 
 feature_list = [] 
 for message in training_messages: 
 # Loop through all messages 
 if spam_class == message[-1]: 
 # If our message is in the right class 
 feature_list.append(message[feature]) 
 # Take of the corresponding feature TF-IDF score 
 # Return the summary statistics of the relevant feature / class 
 return [mean(feature_list), sd(feature_list)] 
#---------------------------------------------------------------------------------- 
    def classify(self, message): 
 """Classify a message as spam or non-spam""" 
 # Probability that message is spam 
 p_spam = self.bayes_probability(message, "Spam") 
 # Probability that message is non-spam 
 p_not_spam = self.bayes_probability(message, "Non-spam") 
       # print p_spam, p_not_spam 
 if p_spam > p_not_spam: 
 return "Spam" 
 # Message is spam 
 else: 
  return "Non-spam" 
 # Message is non-spam 
#--------------------------------------------------------------------------------------- 
 def bayes_probability(self, message, spam_class): 
 """Probability that a message is or is not spam""" 
       a_priori_class_probability = self.mean_sd_data[spam_class] 
 #Probability that a single message is spam or non-spam i.e. P(spam_id) 
 #print "Commencing Bayes Probability on Message 0" 
 #print "A priori Class Probability of {0} class is {1}".format(spam_class, 
a_priori_class_probability) 
 class_bayes_probability = a_priori_class_probability 
 body_best_features = [ 6,8,11,34,35,45,48] 
 # Feature selection from WEKA 
 subject_best_features = range(1,100) 
    if self.type == "Body": 
 """Converts the features f1, f2,...fn into Python list indices""" 
 best_features = map(lambda x :x -1, body_best_features) 
 else: 
  best_features = map(lambda x :x - 1, subject_best_features) 
 for feature in best_features: 
 # For all features 
       message_tf_idf_score = message[feature] 
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 # Message tf_idf value 
       tf_idf_mean = self.mean_sd_data[feature][spam_class][0] 
 tf_idf_sd = self.mean_sd_data[feature][spam_class][1] 
 # Get the parameters of the probability distribution governing this class 
           prob_feature_given_class = norm_dist(message_tf_idf_score, tf_idf_mean, 
tf_idf_sd) 
 # Find the probabilty P(tf-idf_feature = score | msg_class = class) 
 class_bayes_probability = class_bayes_probability * prob_feature_given_class 
 # Multiply together to obtain total probabilitiy 
 # as per the Naive Bayes independence assumption 
return class_bayes_probability # Our probability that a message is spam or non-spam 
    def classification_test(self, message): 
 """Tests if a message is correctly classified""" 
 if self.classify(message) == message[-1]: 
 return True 
 else: 
  return False 
   def stratification_test(self): 
 """Performs 10-fold stratified cross validation""" 
 already_tested = [] 
 test_set = [] 
 for i in range(10): 
 """Create the set of 10 sixtylement random bins""" 
 sample = random.sample([i for i in range(190) if i not in already_tested], 19) 
 already_tested.extend(sample) 
 test_set.append(sample) 
        results = [] 
 for validation_data in test_set: 
 """Create the training set (171 elements) and the validation data (19 elements)""" 
 training_sets = [training_set for training_set in test_set if training_set is not 
validation_data] 
 training_data = [] 
 for training_set in training_sets: 
 training_data.extend(training_set) 
            self.train(training_data) 
 # Train the probabilities of the Bayes Filter 
           count = 0 
 for index in validation_data: 
 """Calculate the percentage of successful classifications""" 
 if self.classification_test(self.corpus_data[index]): 
 count += 1 
         results.append(float(count)/len(validation_data)) 
 return results 
#------------------------------------------------------------------------------ 
def print_results(results): 
 """Formats results and prints them, along with summary statistic""" 
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 for result, index in zip(results, range(len(results))): 
 print "Stratification Set {0} \t {1:.1f}% Classified Correctly.".format(index+1, 
result*100) 
 print "**"*30 
 print "--"*30 
 print "\n\tOverall Accuracy is {0:.1f}%".format(mean(results) * 100) 
if __name__ == '__main__': 
 import random 
 random.seed(18) 
 #  Sets the seed, for result reproducibility 
 test = NaiveBayesClassifier("subject") 
 print "\tTesting Arabic Subject Corpus" 
 print "**"*30 
 print "--"*30 
 results = test.stratification_test() 
 print_results(results) 
 print 
 print "\tTesting Body Arabic Corpus" 
 print "**"*30 
 print "--"*30 
 test = NaiveBayesClassifier("body") 
 results = test.stratification_test() 
 print_results(results) 
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Appendix D 
Screenshots 

In this section we present screen shots of the implemented Permail systems 
D.1 Permail General Screenshots 
 

 
Figure D.1 Permail user home page. The home page it gives the user the 
ability to enter the mail system. 
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Figure D.2 Permail login user page 
 

 
Figure D.3 Permail spam detection new user. User can create a new account 
by entering his full information on the form. 
 
D.2 User Inbox Screenshots 
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Figure D.4 Permail user Inbox (a). This page retrieves all messages from 
user Inbox. 
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Figure D.4 Permail user Inbox (b). This page retrieves all messages from 
user Inbox. 
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Figure D.4 Permail user Inbox (c). This page retrieves all messages from 
user Inbox. 
 

 
Figure D.5 User Read Message. When user click on the subject of any 
message he can read this message. 
 

 
Figure D.6 User Delete Message 
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 Figure D.7 Message process 
 

 
Figure D.8 The user selects title words to delete message 



  

 152 

  
Figure D.9 The user selects body words to delete message 

 
Figure D.10 The user selects all body words to delete message. 
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D.3 User junk mail Screenshots 

 
Figure D.11 Permail user's junk mail (a). This page retrieves all messages 
from the user's junk mail. 

 
Figure D.11 Permail user's junk mail (b). This page retrieves all messages 
from the user's junk mail. 
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Figure D.11 Permail user's junk mail (c). This page retrieves all messages 
from the user's junk mail. 
 

 
Figure D.12 Message has been moved to the Inbox 
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Figure D.13 User reads Junk Message 
 

 
Figure D.14 Junk message not spam 
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Figure D.15 Junk message not spam from the title 
 

 
Figure D.16 Junk message not spam from vocabulary words 
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Figure D.17 Junk message not spam from all body 

D.4 User lists Screenshots 

This section presents user whitelist, blacklist and vocabulary lists 
D.4.1 Whitelist 
The following figures show the different whitelist between users a, b, and c. 
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Figure D.18 User (a) whitelist examples  
 

 
Figure D.18 User (b) whitelist examples  
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Figure D.18 User (c) whitelist examples  

D.4.2 Blacklist 
The following figures show the different blacklist between users a, b, and c. 

Figure D.19 User (a) blacklist example  



  

 160 

 
 Figure D.19 User (b) blacklist example  
 

 
Figure D.19 User (c) blacklist examples  
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D.4.3 Vocabulary list 
The following figures show the different vocabulary list between users  

 
Figure D.20 User (a) vocabulary list example  
 

 
Figure D.20 User  (b) vocabulary list example 
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Figure D.20 User  (c) vocabulary list example 
 


