
Sudan University of Science & Technology
College of Graduate Studies

 A Personalized Arabic Spam Detection
Model

الالكترونیة غیر مشخصن لاكتشاف رسائل البرید نموذج عربي
 المرغوبة

A Thesis Submitted in Fulfillment of the Requirements for the Degree of

Doctor of Philosophy in Computer Science

By:
 Asma Ibrahim Gamar Eldeen Mohammad

Supervised by:
 Prof. Izzeldain Mohammed Osman

May 2014

ABSTRACT
In a free multicultural society a spam message is different from one user to
another, i.e. certain content may be acceptable to one user but not be
acceptable to another. So what is “unwanted” by one user may be liked by
another user, what is classified as spam by one user at sometime may not be
classified by the same user at other time. Therefore, there is a need to extend
the standard spam filters to incorporate the different interests of the users
and the changing interests of each user.

In this thesis an attempt is made to extend the spam detection to follow the
liking of the user. This is termed personalized spam detection. Thus the main
objective of this work is to design a user personalized algorithm to detect
English spam and modify it according to the complexity of Arabic language
to detect Arabic and mixed (Arabic and English) spam emails.

A dataset of Arabic emails which includes spam and non-spam is built. The
data set is used to train Naïve Bayesian classifier to build Arabic spam
detection model. Cross validation experiments are used to evaluate the
model.

 A personalized spam detection web based, Permail, is developed and used
for comparison against the spam filtering capabilities of Microsoft Hotmail,
Google Gmail, and Yahoo Mail and to determine the effectiveness of spam
filtering for each provider. The criteria used in the comparison are the
quantity and percentage of spam in the Inbox.

In this work three models are presented, the first one is an English spam
detection model which uses a Naïve Bayesian algorithm where the model is
trained using a large corpus of spam and non-spam messages and then tested
using a standard dataset (From the Second Conference on Email and Anti-
Spam CEAS 2005, Stanford University, Palo Alto, CA). The results are
comparable to those obtained from other models. The model is then
extended and modified to handle second model of Arabic and mixed
(English and Arabic) data model. It is then tested against the Arabic corpus.
A personalized web based spam detection system which was developed to
provide a more personalized mail system to filter spam emails. Third model
is personalized mail system (Permail). Which is classify spam message

 II

based on the behavioral of each user and it can provide a more personalized
mail system to filter spam emails.

The result of comparing performance of three classification techniques,
Decision Tree J48, ZeroR, and Logistic Regression with the proposed
Arabic spam detection shows the success criteria for text classification have
significantly increased by using the proposed spam detection model.

The result of using the corpus of the body of the message is better than that
of the subject. The result of comparing the web based spam detection system
with three known mail systems showed that the proposed system is the best
one.

 III

 ص لخستمال

من ف .المزعج تختلف من مستخدم لآخرالالكتروني رسالة البرید إنمتعدد الثقافات ال في المجتمع
من قبل " غیر المرغوب فیھ"حتى ما ھو .یكون مقبولا لآخر لایكون مقبولا لمستخدم ماالمحتوى

غیر مرغوبة رسائل مستخدم واحد قد یكون محبوبا من قبل مستخدم آخر، أي ما تصنف على أنھا
ھناك فولذلك .من قبل نفس المستخدم في وقت آخرتصنیفھا یتمفي وقت ما قد لا من قبل مستخدم

في ھذه الأطروحة تم إجراء . المستخدمین رغبات لتتماشى معالمرشحات القیاسیة دمجحاجة إلى
على ویطلق . كشف البرید الغیر مرغوب لمتابعة الرغبات المتغیرة للمستخدمل لتطویر نموذجمحاولة

 صنكشف الرسائل المزعجة المشخ ذلك

غیر مرغوب لمتابعة لكتروني كشف البرید الال لتطویر نموذجفي ھذه الأطروحة تم إجراء محاولة
الھدف . صنالمشخ غیر المرغوبةكشف الرسائل على ذلكویطلق . الرغبات المتغیرة للمستخدم

غیر الالكتروني البریدبناء نظام مشخصن للمستخدم لكشف رسائل الرئیسي من ھذا العمل ھو
 الإنجلیزیة وتعدیلھ وفقا لمدى تعقید اللغة العربیة للكشف عن رسائل البرید الإلكتروني ةالمرغوب

 .)العربیة والإنجلیزیة(والمختلطة العربیة مرغوبالر غی

الالكتروني عربیة واستخدمت لاختبار نموذج الكشف عن البرید الكتروني تم تجمیع رسائل برید

لبناء)Naive Bayes(لتدریب مصنف الرسائلتم استخدام مجموعة . العربیةغبر المرغوب
جارب التحقق من صحة تستخدم وت. مرغوبالیر عن البرید الالكتروني غ لكشفلعربي النموذج ال

 .ھذا النموذج

، للمقارنة Permail، وب لبرید المزعج على الن اعم تطویر واستخدام نظام الكشف المشخصن ت

 Microsoft Hotmail, Google Gmail, Yahoo(ضد قدرات مرشحات البرید المزعج من
Mail(كانت المعاییر المستخدمة في المقارنة . منتجالبرید المزعج لكل ترشیح، لتحدید مدى فعالیة

 .الوارد قائمة البریدكمیة و نسبة البرید المزعج في

لبرید المزعج للرسائل اعن ماذج ، الأول ھو نموذج الكشف یتم عرض ثلاثة ن البحثفي ھذا
حیث تم تدریب النموذج باستخدام) Naïve Bayesian(الانجلیزیة الذي یستخدم خوارزمیة

من رسائل البرید المزعج وغیر المرغوبة ومن ثم اختبارھا باستخدام مجموعة بیانات مجموعة
، 2005عام CEASمن المؤتمر الثاني على البرید الالكتروني و مكافحة البرید المزعج (قیاسیة

وكانت النتائج مماثلة لتلك التي تم الحصول علیھا من) . جامعة ستانفورد ، بالو ألتو ، كالیفورنیا
 و لغة العربیةرسائل اللتعامل مع النموذج الثاني لو تعدیل نموذج تطویرثم جرى . نماذج أخرى

تم .عة من الرسائل العربیةوثم تم اختباره ضد مجم .)العربیة والإنجلیزیة (مختلطة الالرسائل
 (Permail)نظام الكشف المشخصن للبرید المزعج على الشبكة العالمیةالنموذج الثالث وھو تصمیم

والذي تم تطویره لتوفیر نظام برید أكثر تخصیصا لتصفیة رسائل البرید الإلكتروني غیر مرغوب
 .فیھا

 Decision Tree J48, ZeroR, and Logistic(نتیجة لمقارنة أداء ثلاث تقنیات التصنیف،

Regression (معاییر النجاح اتضح ان عن البرید المزعج العربي المقترحمع نموذج الكشف

 IV

 .لتصنیف النص قد زادت بشكل كبیر عن طریق استخدام النموذج المقترح للكشف عن البرید المزعج
 .موضوع الرسالة استخدام كانت نتیجة استخدام مجموعة بیانات نص الرسالة أفضل منقد و

 .نص الرسالة ھو افضل من موضوع الرسالةعلي اظھرت نتیجة استخدام مجموعة بیانات
أنظمة من أظھرت نتیجة المقارنة بین نظام الكشف عن البرید المزعج على الشبكة العالمیة مع ثلاثةو

 .فضلالأالبرید المعروف أن النظام المقترح كان

 V

ACKNOWLEDGEMENTS

Thanks to Allah for giving me the power and help to accomplish this
research. Without the grace of Allah, I was not able to accomplish
this work.

I would like to express my thanks to my supervisor, Prof Izz Eden,
for his advice, support, guidance, and assistance throughout the work
of this research.

The most special thanks go to my husband, he gave me his
unconditional support and love through all this long process, I also
extend my thanks to all my family members for their motivation and
support.

 VI

DEDICATION

To My Big Family and My Children Shreef & Asail

 VII

TABLE OF CONTENTS

ABSTRACT ... I
 III ..المستخلص
ACKNOWLEDGEMENTS ... V
DEDICATION ... VI
TABLE OF CONTENTS .. VII
LIST OF FIGURES... X
LIST OF TABLES .. XII
LIST OF ABBREVIATIONS ... XIV
CHAPTER 1: INTRODUCTION .. 1

1.1 Motivation ... 2
1.2 Problem Statement .. 3
1.3 Objectives .. 4
1.4 Methodology ... 5

1.4.1 English spam detection model ... 5
1.4.2 Arabic spam detection model .. 5
1.4.3 Web based spam detection system .. 6
1.4.4 Creation of Arabic corpus .. 6

1.5 Thesis Importance ... 7
1.6 Contributions ... 7

1.6.1 Publications ... 7
1.6.2 Other Contributions .. 7

1.7 Thesis Organization .. 8
CHAPTER 2: LITERATURE REVIEW.. 9

2.1 Spam Solutions Approach .. 10
2.1.1 Rule Based Approach ... 10
2.1.2 Blacklist Approach ... 11
2.1.3 Whitelist Approach ... 11
2.1.4 Signature-based Approach ... 12
2.1.5 Filters Fight Back ... 12
2.1.6 Content-Based Filters ... 13

2.2 Naïve Bayesian Researchs ... 14
2.2.1 Advantages of the NB classifier .. 18

2.3 Arabic Spam .. 18
2.3.1 Arabic Web Pages Spam Researches .. 19
2.3.2 Information Science Research Institute’s Stemmer ... 21

2.4 Email Services... 22
2.4.1 Google Mail .. 22

2.4.1.1 Gmail spam filter technologies... 22
2.4.1.2 Gmail spam filter is insufficient ... 23

2.4.2 Microsoft Mail .. 23
2.4.2.1 Hotmail spam filter technologies ... 24
2.4.2.2 Hotmail spam filter is insufficient.. 24

2.4.3 Yahoo Mail ... 25

 VIII

2.4.3.1 Yahoo Mail spam filter technologies ... 25
2.4.3.2 Yahoo Mail spam filter insufficient ... 25

2.5 Conclusion ... 26
CHAPTER 3: ARABIC EMAIL CORPUS .. 27

3.1 Introduction ... 28
3.2 Corpus in Natural Language Processing ... 28
3.3 Email Corpus ... 28

3.3.1 English Email .. 29
3.3.2 Arabic Email ... 29

3.4 Arabic Email Corpus .. 30
3.4.1 Goal of AEC ... 30
3.4.2 Design of AEC .. 30
3.4.3 Description of AEC .. 30

CHAPTER 4: ARABIC SPAM DETECTION MODEL 32
4.1 Spam Detection Process ... 33
4.2 Model Datasets .. 35
4.3 Arabic Spam Detection Model ... 36

4.3.1 Preprocessing .. 36
4.3.2 Document frequency .. 37
4.3.3 Term frequency ... 38
4.3.4 Cosine Normalization (TFxIDF weights) ... 39
4.3.5 Classification Based on Naïve Bayesian ... 40

4.3.5.1 CSV files .. 42
4.3.5.2 Training .. 44
4.3.5.3 Message classification .. 44
4.3.5.4 Test classification .. 44

4.4 ASDM Examples .. 45
4.4.1 Example (1) ... 45
4.4.2 Example (2) ... 49

4.5 Mixed Spam Detection Model ... 51
4.6 Result and Experiments of the Model ... 52

4.6.1 Experiment (1) Comparison of Three Datasets: ... 52
4.6.2 Experiment (2) Applying To The Arabic Mode ... 53
4.6.3 Experiment (3) Applying On English Model ... 54
4.6.4 Discussion Results or Arabic and English Spam Detection 56
4.6.5 Experiments in Mixed Spam Detection Model .. 56

4.6.5.1 Experiment (1) applying to the body of the email 57
4.6.5.2 Experiment (2) applying on the subject of the email 57

4.6.6 Discussion of Results for Mixed Spam Detection .. 58
4.7 Comparison between Models and various Classifiers .. 59

CHAPTER 5: PERSONALIZED SPAM DETECTION ALGOITHM . 63
5.1 Personalized Spam Detection System ... 64

5.1.1 System Architecture ... 64
5.1.2 System Description ... 66

5.1.2.1 Personalized algorithm.. 66
5.1.2.2 Personalized web pages .. 69

 IX

5.1.2.2.1 Permail database .. 69
5.1.2.2.2 Permail description .. 71

5.1.3 Advantages of Personalized Spam Detection ... 73
5.1.4 Permail experiment ... 74

5.2 Spam Classification Model Based on Naïve Bayesian... 76
5.2.1 Naïve Bayesian ... 76
5.2.2 Training Phase .. 77
5.2.3 Testing Phase .. 78
5.2.4 Rare Words ... 78
5.2.5 Functions of Algorithm .. 78
5.2.6 Spam Classification Model Interface .. 79
5.2.7 Evaluation Matrix ... 81
5.2.8 Evaluation Of Recall And Position ... 82

CHAPTER 6: CONCLUSION ... 85
6.1 Summary ... 86
6.2 Conclusion ... 88
6.3 Recommendations for Further Work ... 88

REFERENCES ... 89
APPENDIXES ... 97

Appendix A ... 97
A.1 Word Spam.. 97
A.2 First Spam Message .. 98

Appendix B .. 100
B.1 Suggested English Keywords for Spam Filters... 100
B.2 Arabic Spam Keywords for Spam Filters .. 101

Appendix C .. 101
C.1 Personalized Spam Detection Email Code .. 101
C.2 Personalized spam detection algorithm interface code 122
C.3 Arabic Spam Detection Program Code ... 132

Appendix D ... 146
D.1 Permail General Screenshots ... 146
D.2 User Inbox Screenshots .. 147
D.3 User junk mail Screenshots .. 153
D.4 User lists Screenshots ... 157

D.4.1 Whitelist ... 157
D.4.2 Blacklist ... 159
D.4.3 Vocabulary list ... 161

 X

LIST OF FIGURES
Figure 4.1 Spam detection Process. 34
Figure 4.2 Architecture of Arabic spam detection model. 36
Figure 4.3 Bag of words representation. 41
Figure 4.4 Creation Comma Separated Value (CSV) file

algorithm.
42

Figure 4.5 CSV file for message body. 42
Figure 4.6 CSV file for message subject. 43
Figure 4.7 "Read CSV" files algorithm. 43
Figure 4.8 Arabic spam message sample. 45
Figure 4.9 Architecture of mixed spams detection model. 51
Figure 4.10 Percentage classification of Arabic model of the

Body.
53

Figure 4.11 Percentage of Arabic model on the subject of email. 54
Figure 4.12 Percentage of English model of the body of email. 55
Figure 4.13 Percentage of English model on the subject of

email.
56

Figure 4.14 Result of mixed model on the subject of email. 58
Figure 4.15 Results of mixed model of the body of email. 59
Figure 4.16 Performance of English model comparison. 60
Figure 4.17 Performance of Arabic model comparison. 61
Figure 4.18 Performance of Mixed model comparison. 62
Figure 5.1 Architecture of personalized spam detection. 64
Figure 5.2 Personalized spam detection Algorithm (User

Opens Inbox).
67

Figure 5.3 Personalized spam Detection Algorithm (User
Reviews junk Mail).

68

Figure 5.4 Database tables of Permail system. 69
Figure 5.5 Database relationship of Permail system. 70
Figure 5.6 Permail sitemap. 71
Figure 5.7 General interface of spam classification model. 79
Figure 5.8 Interface to classify the spam email. 80
Figure 5.9 Interface to classify the non-spam email. 81
Figure 5.10 Precision of the classification model. 83
Figure 5.11 Recall metric algorithm for classification model. 84
Figure D.1 Permail spam Message. 146
Figure D.2 Permail login user page. 146
Figure D.3 Permail spam detection new user. 147
Figure D.4 Permail user Inbox (a). 147

 XI

Figure D.4 Permail user Inbox (b). 149
Figure D.4 Permail user Inbox (c). 149
Figure D.5 The user reads the message. 150
Figure D.6 User deletes the message. 150
Figure D.7 Message process. 151
Figure D.8 The user selects title words to delete message. 151
Figure D.9 The user selects body words to delete message. 152
Figure D.10 The user selects all body words to delete message. 152
Figure D.11 Permail User's junk mail (a). 153
Figure D.11 Permail User's junk mail (b). 153
Figure D.11 Permail User's junk mail (c). 154
Figure D.12 The message has been moved to the Inbox. 154
Figure D.13 The user reads junk the message. 155
Figure D.14 Junk message not spam. 155
Figure D.15 Junk message not spam from the title. 156
Figure D.16 Junk message not spam from vocabulary words. 156
Figure D.17 Junk message not spam from all body. 157
Figure D.18 User (a) whitelist example. 158
Figure D.18 User (b) whitelist example. 158
Figure D.18 User (c) whitelist example. 159
Figure D.19 User (a) blacklist example. 159
Figure D.19 User (b) blacklist example. 160
Figure D.19 User (c) blacklist example. 160
Figure D.20 User (a) vocabulary list example. 161
Figure D.20 User (b) vocabulary list example. 161
Figure D.20 User (c) vocabulary list example. 162

 XII

LIST OF TABLES
Table 2.1 Whitelist and blacklist Advantages. 11
Table 2.2 Whitelist and blacklist Disadvantages. 12
Table 2.3 Summarize of the comparison of some spam filtering

approach.
14

Table 2.4 Different interpretation of the Arabic word كتب (ktb) in
the presence of diacritics.

19

Table 4.1 Summary of Arabic and English datasets. 35
Table 4.2 Occurrence of words on messages. 37
Table 4.3 Words dictionary of the message. 38
Table 4.4 Example of the document frequency. 39
Table 4.5 Calculation of ݂ݐ × ݂݅݀. 39
Table 4.6 Calculations of Normalized tf x idf Example. 40
Table 4.7 Tokens spam Message. 45
Table 4.8 Tokens without stop words. 45
Table 4.9 Tokens with preprocessing step. 45
Table 4.10 Tokens dictionary of the message. 47
Table 4.11 Token probability and Spamicity of the message. 48
Table 4.12 Spam messages Collection. 49
Table 4.13 Spam Message Token Frequency. 49
Table 4.14 Spam Message Token Frequency and Spamicity. 50
Table 4.15 Results of spam Detection model for three datasets

(English, Arabic and mixed) on Body of the Email.
52

Table 4.16 Results of spam Detection model for three datasets
(English, Arabic and mixed) on Subject of the Email.

52

Table 4.17 Results of Arabic model of the body of Email. 52
Table 4.18 Results of Arabic model on the subject of Email. 53
Table 4.19 Results of English model of the body of Email. 54
Table 4.20 Results of English model on the subject of Email. 55
Table 4.21 Results of mixed model on the subject of Email. 57
Table 4.22 Results of mixed model of the body of Email. 58
Table 4.23 Comparison between English model with various

classifiers.
59

Table 4.24 Comparison between Arabic model with various
classifiers.

60

Table 4.25 Comparison between Mixed model with various
classifiers.

61

Table 5.1 Advantages and disadvantages of mail services. 73
Table 5.2 Mail Services with spam Inbox. 75

 XIII

Table 5.3 Mail Services with spam in junk. 75
Table 5.4 Mail Services with False Positive. 75
Table 5.5 Result accuracy of the classification model. 83
Table 5.6 Result of spam classification recall. 84
Table B.1 Arabic spam words for spam filters. 101

 XIV

LIST OF ABBREVIATIONS
SPAM Unsolicited bulk email.
SMTP Simple Mail Transfer Protocol.
POP Post Office Protocol.
IMAP Internet Message Access Protocol.
DEC Digital Equipment Corporation.
WEKA Waikato Environment for Knowledge Analysis.
UTF Unicode Transformation Formats.
MatLab Matrix Laboratory.
GUI Graphical User Interface.
MTA Mail Transfer Agent.
ISP Internet Service Provider.
URL Uniform Resource Locator.
NB Naïve Bayesian.
SVM Supported Vector Machines.
NNet Neural Network.
kNN k-Nearest-Neighbor.
SFFS Sequential Forward Floating Selection.
MLE Maximum Likelihood Estimate.
OCR Optical Character Recognition.
NL Natural Language.
NLP Natural Language Process.
NLTK Natural Language Toolkit.
IDLE Interactive DeveLopment Environment.
WSIS World Sumiton Information Society.
IM Instant Messaging.
PCA Principal Component Analysis.
ISRI Information Science Research Institute.
IR Information Retrieval.
DF Document Frequency.
TF- IDF Term Frequency - Inverse Document Frequency.
CSV Comma Separated Value.
Spim Spam delivered through IM.
SMS Unsolicited text messages.
TREC Text REtrieval Conference.
ARPANET Advanced Research Projects Agency Network.
ODBC Open Database Connectivity.
CLAWS Constituent Likelihood Automatic Word-tagging System.
HPSG Head-driven Phrase Structure Grammar.

 XV

MSA Modern Standard Arabic.
ACA Arabic Content Analysis.
AEC Arabic Email Corpus.
ASP Active Server Pages.
CA Content Analysis.
FB Flexible Bayesian.
ICA International Corpus of Arabic.
SEO Search Engine Optimizations.
SPF Sender Policy Framework.
WCSIT World of Computer Science and Information Technology.
ASDM Arabic Spam Detection Model.
CAPTCHA Completely Automated Public Turing-test to tell

Computer and Humans Apart.
CSS Cascade Style Sheet.
DKIM DomainKeys Identified Mail.
SERP Search Engine Results Page.
SUST Sudan University of Science and Technology.
PASDP A Personalized Arabic spam Detection Project.

CHAPTER 1: INTRODUCTION

 2

CHAPTER ONE
INTRODUCTION

1.1 Motivation
To understand the problem of spam, we must first establish common
definitions, explain why the problem exists, discuss limitations of current
solutions, and make suggestions of work that can lead to solutions that
minimize the effect of the spam problem.

Email is a method of sending and receiving messages over electronic
communication systems such as the internet. The modern day protocol for
sending email is the Simple Mail Transfer Protocol (SMTP), proposed in
1982[1]. The most commonly used protocols for email retrieval by client
programs are the Post Office Protocol (POP) [2] and Internet Message
Access Protocol (IMAP) [3], which were proposed in 1984 and 1996
respectively.

Spam “unsolicited bulk email,” is email which the user does not want and it
comes without his permission and he cannot easily stop receiving it. The
story of the origin of the slang word spam details in Appendix A. Spamming
in the electronic communications medium is the action of sending
unsolicited commercial messages in bulk without the explicit permission or
desire of the recipients [4] . A person engaged in spamming (sending spam)
is called a spammer [5].

It is important to note that spam is not only annoying to the individual user,
but also represents a security risk and resource drain on the system. It is
noteworthy that in developing countries where the bandwidth is limited
spam can create unwanted traffic amounting to a kind of denial of service.
Email is a cost effective method of marketing legitimate products or services
to millions of users, but it can also be used to conduct scams and confidence
schemes to steal user information[6].

We assume that in a free multicultural society a spam message is different
from one user to another i.e. certain content may be more acceptable to one
user but not be acceptable to another. So what is “unwanted” by one user
may be liked by another user i.e. what is classified as spam by one user may
not be classified by another and by the same user what is classified as spam
sometimes with some conditions may not be classified as spam if this

 3

condition changed so the liking of the user changes dynamically. Therefore,
there is a need to extend the standard filters to incorporate the interest of the
users and the dynamic of opinion change. In this thesis an attempt is made to
extend the spam detection to dynamically follow the liking of the user. It is
termed personalized spam detection [7].

Most current spam filtering systems have worked in English spam message
by relying on the content of the email message there is missing on dynamic
English spam detection which would classify spam differently from one user
to another. There is a need to have a dynamically user spam detection. It is
important to have such detection system for the other languages. People
whose mother tongue is a language other than English cannot be forced to
use English. They resort to using their mother tongue (e.g. Arabic) or a
mixture of English and their mother language (e.g. English and Arabic). This
is particularly significant following the new accelerating friendly trend of
multilingualism in the internet which is a consequence of the World Summit
on Information Society (WSIS)[8]. There are no published detection models
on Arabic messages. Currently this situation creates an unjustified
disadvantage in the community of Arabic users.

Due to the immense amount of Arabic emails as well as the number of
internet Arabic language users, this thesis aims and attempts to provide
Arabic spam detection.

1.2 Problem Statement

Spam or unsolicited email is defined by the fact that the recipients did not
request the mail or reveal their email addresses for the purposes of receiving
such mail. Email has seen explosive growth of usage in the last years, a
considerable number of people all around the world use email as a very
quick, handy and cheap way of communication. Internet users face many
problems in this case. Spam continues to be a growing problem accounting
for over 90% of all email today[9]. While spam filters have become more
effective and widespread, many spam messages continue to be delivered to
end users. This problem has negatively impacted consumers, businesses, and
Internet Service Providers (ISPs) because spam represents a security risk and
resource drain on the system. It is noteworthy that in developing countries
where the bandwidth is limited spam can create unwanted traffic amounting
to a kind of denial of service. A possible cause of this problem is that
producers most continuously seek new ways for advertising their products in

 4

order to maximize their sales. Therefore, sending emails to people would be
a reasonable way of advertising products since it is very cheap, quick and an
effective way for organizations and businesses spam handling results in huge
financial losses, in addition to being a source of annoyance. A 1000 user
organization spends more than $1.8 million to take care of spam, according
to the estimates provided in[10].
The usage of the internet throughout the Arab world is witnessing a rapid
increase every day. The total of population in Arab countries is around 350
million people (5% of the World population), and the total of Arab internet
users is around 65 million users (3.3% of the total internet users) [11]. In
recent years, the ratio of Arabic email spam messages has increased a lot and
the users of Arabic emails face the problem of spam on a very large scale but
the research in this area is not as advanced as its counterpart for English
spam.
The basic problem of this thesis is to create a model that can dynamically
classify spam (English and Arabic) from legitimate messages.
In this thesis, a dataset of Arabic emails is collected and I used them to train
different algorithms in order to classify between spam and non-spam. Naïve
Bayesian is used to classify English emails (developed model by the Matrix
laboratory (Matlab)) [12] and modified to classify Arabic emails using a
Python programming language [13] is used to build an Arabic spam
detection model. Cross validation experiments are used to evaluate the
model. An Active Server Pages (ASP) [14] programming language is used to
develop a web based spam detection system we called it Permail.

1.3 Objectives
The main objectives of this thesis are to:

 Build a dynamic and personalized model to detect English spam
emails and then test the model against a standard data set.

 Modify the English model to detect Arabic and mixed (English and
Arabic) spam emails.

 Collect and build an Arabic corpus for testing the Arabic spam
detection model.

 Create Arabic spam words for using in spam filters.
 Develop Personalized spam detection web based (Permail) and

compare the spam filtering capabilities of Microsoft Hotmail, Google
Gmail, Yahoo Mail and Permail to determine the effectiveness of

 5

spam filtering for each provider. The key measurements for this thesis
are the quantity and percentage of spam in the Inbox.

1.4 Methodology
The methodology of this thesis is to build spam detection framework include
English spam detection model, Arabic spam detection model, web based
personalized spam classification system, and create Arabic spam corpus.

1.4.1 English spam detection model
1. Use Matrix laboratory (Matlab) [12] to develop a personalized English

spam detection model
 Use emails corpus from Second Conference on Email and Anti-

Spam CEAS 2005, Stanford University, Palo Alto, CA [15]
 Apply Naïve Bayesian (NB) to the proposed model to gain the

advantage of the Naïve Bayesian classifier.
 Perform the preprocess step and eliminated the common words

from the message which we are going to classify.
 Since different users receive different types of legitimate

emails, the training process of model probabilities of spaminess
of words is computed differently and as a result we would have
different classification for each user.

 On the test phase, we find out the most interesting words of that
message. Afterwards, we find out the spam message which
contains this word. From Bayes rule.

 Design graphical user interface (GUI) to check whether the
given email is classify as either spam or non-spam email.

 Evaluate the model by using recall and precision Matrix
algorithms[16].

1.4.2 Arabic spam detection model
2. Use Python programming language [13] to build an Arabic spam

detection model
 Modify the Naïve Bayesian model built for English spam

emails to create the Arabic spam detection model.
 Build a dataset of Arabic emails include spam and non-

spam. The first part is called a training dataset to use to

 6

build the model, and contains around 700 messages.
While the second part is called a test data set, contains
around 300 messages, and used to evaluate the model.

 Extract a set of features from the Arabic dataset.
 Perform feature selection.
 Evaluate Naïve Bayesian algorithms to classify incoming

email as spam or non-spam.
 Use 10-fold cross validation to calculate the accuracy of

the classifiers as the following:
 Break data into 10 datasets of size n/10, where n

is the data size.
 Train the model on 9 datasets and test it on one

dataset.
 Repeat 10 times and take a mean accuracy[17].

1.4.3 Web based spam detection system
3. Use an ASP programming language to build a spam detection web

based system we call it Permail
 Use MS Access to build an email database.
 Use Object Database Connectivity (ODBC) [18] to

create a connection string.
 Develop ASP program files that can perform the

transactions between the front end (web pages) and
back end (database).

 Examine the performance of personalized spam
detection email by creating many users and see the
dynamic content of whitelist, blacklist and vocabulary
list which is different from one user to another, this
showed the dynamic performance of the system and
personalized user lists.

 Use English published corpus to send about 102 emails
(spam and non-spam) to Permail, Hotmail, Yahoo and
Gmail systems.

 Compare the classification results of Permail, Hotmail,
Yahoo and Gmail to identify the best classifier to
detect spam emails.

1.4.4 Creation of Arabic corpus

 7

Collect and build an Arabic corpus for testing the Arabic spam detection
model. Create Arabic spam words for using in spam filters.
1.5 Thesis Importance

This thesis tacks his importance from the following main point for the
Arabic spam detection, there is no:

 Standard Arabic emails corpus and Arabic spam words use in spam
filters.

 Spam detection model for Arabic emails.
 Dynamic spam detection web based email system.
 Published literature for Arabic spam classification.

1.6 Contributions

This section presents the contributions and contains papers, publications and
others as follows:

1.6.1 Publications

This thesis has produced three papers
 Asma Ibrahim, Izzeldin Mohamed Osman, "A Behavioral spam

Detection System", Advances in Intelligent and Soft Computing,
Future Computer, Communication, Control and Automation ABC,
ISBN 978-3-642-25537-3, ICEA Conference- Shanghai, China 2011.

 Asma Ibrahim, Izzeldin Mohamed Osman, "Arabic spam detection
model", Submitted for publication to World of Computer Science and
Information Technology Journal (WCSIT).

 Asma Ibrahim, Izzeldin Mohamed Osman, "Personalized spam
Detection model."

1.6.2 Other Contributions

In addition to publishing the papers mentioned in the above paragraph the
thesis has the following additional contributions

Build an international Arabic email corpus – An Arabic emails data set
was collected to perform training and testing of Arabic detection models.

 8

Arabic spam detection model – A model to detect and classify Arabic
emails into spam and legitimate was developed. This model used Naïve
Bayesian algorithm to classify the messages.
Personalized Spam Detection Web Based System - A dynamic email
system to classify spam message into spam and legitimate was developed.
This system depended on the behavior of the user and built dynamically,
personalized whitelist, blacklist and vocabulary list.
Create Arabic spam words – This words can use in Arabic spam filters.

1.7 Thesis Organization

This thesis is divided into six chapters: Introduction, Literature review,
Arabic email corpus, Arabic spam detection model, personalized spam
detection algorithm, and Conclusion.

Chapter 2: Literature Review
This chapter gives a review of (all spam solutions) the well known spam
detection methods with their advantages and disadvantages; also presented
the machine learning algorithms and discuss the Naïve Bayesian in details.

Chapter 3: Arabic Email Corpus
This chapter gives a short review of English email corpus, presents the
importance of corpus in Natural Language Processing (NLP) process; also
shows the lack of Arabic email corpus, shows the need of Arabic email
corpus and describes the proposed corpus.

Chapter 4: Arabic Spam Detection Model
This chapter discusses in details the Arabic spam detection model, testing
the model, the experiments and results.

Chapter 5: Personalized Spam Detection Algorithm
This chapter discusses in detail the architecture of the personalized spam
detection model, present all screens of the dynamic email system which is
used to detect spam messages dynamically, testing the model, the
experiments and results.

Chapter 6: Conclusion
This final chapter contains a summary of the content of the thesis, and
recommends areas for future research.
A list of references follows and Appendixes.

 9

CHAPTER 2: LITERATURE REVIEW

 10

CHAPTER TWO

 LITERATURE REVIEW
The problem of unsolicited bulk email, or spam, gets worse with every year.
The big amount of spam being sent wastes resources on the internet and
wastes time for users. This development has stressed the need for spam
filters [19], several filters have been built to protect from this problem.
This chapter gives a review of the well known spam solutions with their
advantages and disadvantages. There are many studies to filter spam of
English email which use the Naïve Bayesian because it is the one of the best
spam filter algorithms and NB classifier can outperform other powerful
classifiers when the sample size is small [20]. There are many studies of
Arabic web pages spam but there is a scarcity of published studies of Arabic
email spam and there is a need for personalized spam detection system that
produced a new personalized feature not found on the other famous email
systems(Gmail, Hotmail or Yahoo).The following literature review attempt
to present the previous studies and related works.

2.1 Spam Solutions Approach
Many different spam filtering approaches have been tried in filtering models.
Most of these have a degree of effectiveness and drawbacks. The six most
significant spam filters are discussed below, along with their strengths and
weaknesses.

2.1.1 Rule Based Approach
With the rule based approach, each email is compared with a set of rules to
determine whether it is spam or not. A rule set contains rules with various
weights given to each rule. Initially, each incoming email message has a
score of zero, then, the message is passed to detect the presence of any rule.
If any rule is found in the message, its weight is added to the final score of
the email. In the end, if the final score is found to be above some threshold
value, the email is declared as spam[21]. Rules are observations of features
that are found more frequently in spam than in legitimate messages.

Advantages
This approach can be very effective with a given set of rules. It can achieve
90 to 95 percent efficiency. The filter is easy to install, it requires copying
the rule set. It requires neither training nor any sort of personal tuning.

 11

Further, the rule set can be updated by copying an additional set of rules to
challenge the current trend of spam [22].

Disadvantages
The disadvantage to the rule based approach is there is no self learning
facility available for the filter. Spammers with knowledge of the rule set can
design a spam to deceive the method. For example, if there is a rule for
classifying a message as a spam if the message contains the word “Wine”
more than five times, the spammer can easily circumvent the rule by using
the term “W*i*n*e” instead of “Wine.” Rules cannot be kept secret. The
best option is to go through every spam and update the rule set by manually
adding new found rules. Unfortunately, this updating process is never
ending, as the spammers continually devise new procedures to deceive the
spam filters. This process requires personal effort, time, and some level of
expertise, qualities not found in every email user [23].

2.1.2 Blacklist Approach
This technique simply involves organizations manually keeping a list of the
Internet Protocol (IP) addresses of known spammers (a “black list”) so that
emails from those addresses are blocked [24].

2.1.3 Whitelist Approach
Whitelists contain legitimate addresses. The email messages arriving from
any of these addresses are allowed to pass into the recipient’s mailbox. The
messages with sources that are not whitelisted are considered to be spam. It
is difficult to maintain an exhaustive list of all legitimate addresses. The
better option would be to share whitelists among correspondents, friends and
relatives. However, this, too, can be an easy route for a spammer to get a big
list of legitimate addresses [25].

Table 2.1 Whitelist and Blacklist Advantages [26]

Blacklist Advantages Whitelist Advantages
Easty to manage More secure
Easy to install More accurate
Can download update quickly Minimizes false positive

Can be created at various levels
within the enterprise
Easy to customize

 12

Table 2.2 Whitelist and Blacklist Disadvantages [26]
Blacklist Disadvantages Whitelist Disadvantages

Exponential growth More time to manage
Many false positives. Requires additional time install.

Reviews all new IP address Continual updates are required
Hard to switch to whitelist

2.1.4 Signature-based Approach

The signature-based approach compares every new incoming email with the
known set of spam [27]. The signature-based approach works in this way
each character in an email carries weight. So, the summation of all
characters would give a final score that is used as the signature of that email.
Thus, every new message’s signature is compared with that of a spam’s
signature. If the signatures match, then the new email is classified as spam
[28].

Advantages
The signature-based approach rarely generates false positives. It is usually
very fast to compute[29].

Disadvantages
These filters are easy to defeat. Since they are backward looking, they take
action only after they become aware of a spam. A small change in emails
might make the filter useless. Just by adding some random characters to each
spam, the signatures of each will be different from the original spam. Thus,
all such spam messages will pass for legitimate messages. In addition, these
filters can only be used at the Internet Service Provider (ISP) level as first
pass filters [30].

2.1.5 Filters Fight Back

The filters fight back approach is the most aggressive among all the
approaches adopted for filtering spam. It employs the policy of “attack is the
best self-defense.” A spam message usually includes Uniform Resource
Locator (URLs) for the readers to visit a site. The purpose may be
commercial or social. The filters fight back approach works in this way once
a message is detected as a spam, these filters send a number of requests to
those URL-specified sites. A user can personally configure the number of

 13

requests. If any spam is sent to thousands of users, there is a high possibility
that the server hosting that site would receive millions of requests increasing
the cost and the bandwidth, effectively shutting down all its services [31].

Advantages
Since spam it has been the reason for the spammer’s loss, spammers would
hesitate to send spam to unknown users. More recipients of the spam would
create more loss to the spammer’s web server [32].

Disadvantages
The job prior to fighting back is to detect a spam. Any URL sent to
thousands of users mainly indicates a spam. However, at the bottom of every
message, there are many advertisements, such as Yahoo, MSN, etc., many of
which are legitimate URLs. If the site turns out to be legitimate, negatively
affecting the site might involve legal proceedings. To avoid such confusion,
auto-retrieval filters should refer to blacklists for servers that are banned.
Further, the servers need to be blacklisted by human intervention, thus
ensuring that the auto-retrieval filters send requests only to web servers that
are blacklisted.
With this approach, there is an easy way out for spammers. They need to
include only active unsubscribe links in their messages. In that way, the
senders with auto-retrieval filters will be unsubscribed from the program,
which is good news. However, the spam is not reduced globally. There is
also the possibility that spammers might include their contact information
and their image for marketing purposes instead of their URLs. Doing so,
would wholly eliminate the danger of auto-retrieval filters. To make this
filter more effective, one needs to fine-tune the filter to each user’s incoming
message. Fine-tuning a filter requires time and expertise, both of which are
often hard to come by. Thus, one needs a filter that is adaptive in nature, one
that self learns from the given legitimate messages and spam [32].

2.1.6 Content-Based Filters

Content filtering was one of the first types of anti-spam filters to be used. An
example of such filter is spam Assassin [33], which works by scanning the
textual content of the email against each rule and adds the scores for all
matching rules. If the total score of the email exceeds some set threshold
score, then the message is considered spam.
The simplest of content-based rules flag emails if a specific string or
expression was matched. For example, one type of content filtering rule

 14

would be to match all emails that contained a variation of the word WINE in
the body or subject line[34].
Content-based filters can also match keywords or expressions in other parts
of the email such as the headers or the base64 encoding of email attachments
and embedded images. Email headers are typically used to determine where
an email came from and how it was delivered from the initial source to the
current destination[35].

 Table2.3: A Summary of the comparison of some spam filtering approachs
[36]

No Approach Good Bad

1 Complaining to
Spammers' ISPs

Raises cost of spamming. Laborious

2 Mail Server
Blacklists

Block spam right at the
server.

Incomplete, sometimes
irresponsible

3 Signature-based
Filtering

Rarely blocks legitimate
mail.

Catches only 50-70% of
spam.

4 Naïve Bayesian
Filtering

Catchs 99% to 99.9% of
spam, low false positives.

Has to be trained.

5 Rule based
Filtering

The best catch 90-95% of
spam, easy to install.

Static rules, relatively
high false positives.

6 Challenge-
Response
Filtering

Stops 99.9% of spam. Rude, delays or drops
legitimate email.

2.2 Naïve Bayesian Researchs
Taninpong and Ngamsuriyaroj [37] proposed a model for an incremental
adaptive spam filtering that would improve the classification accuracy and
reduce the misclassification rates. Two significant issues where considered
(1) adaptation: the model should be adaptable to rapid and constant changes
of spam patterns, and (2) performance: the learning process should be fast
and does not require lots of memory. This work used Naïve Bayesian
classifier based on a single word representation since it had good
performance, simplicity and auto-adaptability. It was modeled as an
incremental scheme that received a stream of emails, and applied the
concept of sliding window to train only the last few emails for testing new
incoming messages. Subsequently, the new features of tested messages were
added to the existing features so that the model will be adapted to future
incoming emails which gave good performance, simplicity and adaptability.

 15

The proposed model was tested on two corpora: Trec05p-1 and Trec06p
[15]. The parameters were the window size and the number of features, and
the evaluation metrics were the processing time per message and the non-
spam and spam misclassification rates.
The results in this study was that the overall accuracy of the Naïve Bayesian
is was better than that obtained from the batch off-line training and the
processing time is was reduced significantly. Also the experimental results
showed that the number of features has little impact whereas the window
size has had significant effects on misclassification rates and the processing
time.
Chen et al [38] constructed different filters using three types of
classification, including Naïve Bayes, SVM, and KNN. They compared the
pros and cons between these three types and used some approaches to
improve them to get a better spam filter.
The result indicated that the Naïve Bayesian is a good method of spam
filtering, and the time costs less on training (about 1-2 seconds). The result
also indicated that testing an input message required much time using Naïve
Bayesian, but the result is good enough [38].

Hovold [19] presented the results of using a variety of the Naïve Bayesian
classifier for spam filtering. The effects of various forms of attribute
selection were explored, as were the effects of considering not only single
tokens, but rather sequences of tokens, as attributes. An efficient scheme for
cost-sensitive classification is also introduced. All experiments were
conducted on several publicly available corpora, thereby making a
comparison with previously published results possible.
The result in this study has shown that it is possible to achieve very good
classification performance using a word-position-based variety of NB.
Results also showed the simplicity and low time complexity of the algorithm
thus makes NB a good choice for end-user applications also the results
indicated that using the word- position- based attribute vectors gave very
good results when tested on several publicly available corpora.

Katirai [39] compared the performance of genetic programming and NB
classifiers in the spam filtering domain. The training set for this experiment
had seven times as many junk messages after removing duplicate spam. The
corpus was tokenized into words, applying both stemming and a stop list.
The best results showed genetic programming with junk precision of 95.45%
and recall of 70% while Na¨ıve Bayes stood at 95.83% precision and
76.67% recall. Katirai also noted that if certain regular punctuation

 16

sequences (such as signatures and boundaries of forwarded messages) are
removed, repeated punctuation is an information-rich feature.

Gee [40] evaluated the effectiveness of a classifier incorporating Latent
Semantic Indexing ("LSI") to filter spam email, using a corpus used
inprevious studies. This study sought to compare the results of using a Naïve
Bayesian classifier with the results from using an LSI-inspired classifier.
While using LSI leads to precision roughly equal to that of using a Naïve
Bayesian approach, the LSI technique has a substantially higher recall and
was generally more effective under certain conditions.
The results shown that using LSI as the basis for an email classifier to filter
out spam enjoys a very high degree of recall as well as a high degree of
precision, no matter if the corpus was treated using a stop list or a
lemmatizer. Also the results of an email classification test where both the
recall and precision measurements are both very high and fall into
acceptable levels.

Brien and Vogel [41] compared NB to the “Chi by degrees of Freedom”
approach. The latter is often used in author detection, and is used under
suspicion that most spam is sent by a small number of prolific profiteers.
They also compared the effectiveness of both classifiers working on words
or characters as features. NB with words produced spam precision of 100%
and recall of 76.9%, while operating on characters produced 100% in both
categories (on a test corpus of less than 70 messages). The Chi approach
produced 100% precision and recall when operating on words and 97.5%
precision/100% recall working with characters.

Metsis et al [42] discussed and evaluated experimentally in a spam filtering
context five different versions of the (NB) classifier. Their investigation
included two versions of NB Flexible Bayesian (FB) and the multinomial
NB with Boolean attributes. They emulated the situation faced by a new user
of a personalized learning-based spam filter, adopting an incremental
retraining and evaluation procedure. They used six datasets, which they
make publicly available, were created by mixing freely available non-spam
and spam messages in different proportions. The mixing procedure emulates
the unpredictable fluctuation over time of the non-spam spam ratio in real
mailboxes.
The result indicated that the most interesting result of the evaluation was a
very good performance of the two NB versions that have been used less in
spam filtering, i.e., FB and the multinomial NB with Boolean attributes;

 17

these two versions collectively obtained the best results in the experiments.
Taking also into account its lower computational complexity at run time and
its smoother trade-off between non-spam and spam recall, they tend to prefer
the multinomial NB with Boolean attributes over FB, but further
experiments are needed to be confident. The best results in terms of
effectiveness were generally achieved by the largest attribute set (3000
attributes), as one might have expected, but the gain was rather insignificant,
compared to smaller and computationally cheaper attribute sets.

Deshpande et al [31] examined the effectiveness of statistically-based
approaches Naïve Bayesian anti-spam filters, as it is content-based and self
learning (adaptive) in nature. Additionally, they designed a derivative filter
based on relative numbers of tokens. They trained the filters using a large
corpus of legitimate messages and spam and they tested the filter using new
incoming personal messages.More specifically they evaluated different
threshold values in order to find an optimal anti-spam filter configuration.
The result indicates that the based on cost-sensitive measures, additional
safety precautions are needed for a Bayesian anti-spam filter to be put into
practice. However, the technique can make a positive contribution as a first
pass filter.

Stone [43] explored and examined the effect of several parameters including
corpus size, training set size, feature extraction method, and message
portions to filter spam email presented by applying the NB algorithm. He
compared the results to several published statistical spam filtering
approaches.
The result showed that the best classifier variant classifies messages with
100% legitimate recall and 92.9% legitimate precision with room for
improvement — comparable to or better than most published results.

Khalid and Osman [44] introduced a simple feature selection algorithm to
construct a feature vector on which the classifier will be built. They
conducted an experiment on the SpamAssassin public email corpus to
measure the performance of the NB classifier built on the feature vector
constructed by the introduced algorithm against the feature vector
constructed by the Mutual Information algorithm which is widely used in the
literature. The effect of the stop list and the phrases-list of the classifier
performance were also investigated.
The results of the experiment showed that the introduced algorithm
outperforms the Mutual Information algorithm.

 18

Braganza [45] investigated variable in Naïve Bayesian spam filters. The
main focus was to create a method for better spam detection by combining
the classical Naïve Bayesian filter with a neural network that analyzes
various characteristics of the email body.
The results indicated that the analyzed and the method deemed effective in
conditions were very strong thresholds must be set or where the training data
is not exhaustive.

Androutsopoulos et al [46] were trained the Naïve Bayesian classifier
automatically to detect spam messages, they tested this approach on a large
collection of personal email messages, which they made publicly available
in "encrypted" form contributing towards standard benchmarks. They
introduced appropriate cost-sensitive measures, investigating at the same
time the effect of attribute set size, training corpus size, lemmatization, and
stop lists, issues that had not explored in previous experiments. Finally, the
NB filter was compared, in terms of performance, to a filter that uses
keyword patterns, and which was part of a widely used email reader.
The results indicate that NB filter outperforms by far the keyword-based
filter, even with very small training corpora.

2.2.1 Advantages of the NB classifier

The main advantage of Bayesian classifiers is that they are probabilistic
models, robust to noise found in real data. The NB classifier presupposes
Independence of the attributes used in classification. However, it was tested
on several artificial and real data sets, showing good performances, even
when strong attribute dependencies are present. In addition, the NB classifier
can outperform other powerful classifiers when the sample size is small[20].
Since it also has advantages in terms of simplicity, learning speed,
classification speed, storage space [46]. Therefore, it is considered one of the
best spam classifications Algorithm.

2.3 Arabic Spam
Arabic is a very rich language with complex morphology. The Arabic
language is different from other Indo-European languages in terms of its
syntax, morphology and semantics[47]. The writing system of Arabic has 25
consonants and three long vowels. The Arabic text is written from right to
left and the written letters change shapes according to their position in the
word.

 19

The Arabic language consists of three types of words; nouns, verbs and
particles.
For instance, a word in Arabic consisting of three consonants like (ك ت ب
ktb) “to write” can have many interpretations with the presence of diacritics
[48] such as has shown in Table 2.3. Actually the diacritics should be written
as they are part of the Arabic word but they are not shown in the common
popular Arabic.

Table 2.4 Different interpretation of the Arabic word generated from the text
 using diacritics (ktb) كتب

Arabic word Transliteration Part of speech English meaning

 Kataba Verb Wrote كَتبََ

بُ Kutub Noun Books كُت

بَِ Kutiba Passive(verb) Written كُت

َّبَ Kattaba Verb Make someone to كَت
write

In comparison to English, Arabic language is recognized to be sparser,
meaning that the Arabic words are repeated less than the English words for
the same text length. Thus, in this sense, sparseness results in less weight for
Arabic terms (features) compared to the English features. Since the
difference of weight for the Arabic word is less than that of the English
words, it becomes more difficult to differentiate between the different
Arabic words, which consequently may negatively affect Arabic text's
classifier’s effectiveness [49].

2.3.1 Arabic Web Pages Spam Researches

Wahsheh et al [11] have analyzed the behaviors of the spammers in the
content based Arabic web pages, through analyzing the weight of the most
ten popular Arabic words used by Arabic users in their queries. Decision
Tree was used to evaluate this behavior and it obtained the degree of
accuracy which is equal to 90%.
The results showed that the behavior of the spammers in the Arabic web
pages can be unique and distinguished in comparison to other languages.

 20

Al-Kabi et al [50] had investigated four different classification algorithms
(NB, Decision Tree, SVM and K-NN) to detect Arabic web spam pages,
based on content. They used three groups of datasets, with 1%, 15% and
50% spam contents, and were collected using a crawler that was customized
for that study. Spam pages were classified manually.

Wahsheh et al [51] extended an Arabic spam dataset previously built by the
authors of Arabic content-based spam web pages. The authors applied the
Decision Tree classifier (J48) which is shown to be the best classifier to
detect content-based Arabic web spam.The Decision Tree algorithm yields
an accuracy of 99.521%, and error rate of 0.479%. A content based Arabic
web spam detector is also developed, which extracts the content features of
web pages, and compares their features with the rule based (graph structure)
of Decision Tree. The content-based web spam detector presents a solution
to clean the search engines from Arabic spam web pages.
The results indicated that the content-based Arabic web spam detection
showed an accuracy of 83%, using a dataset of 2,500 spam web pages.

Jaramh et al [52] collected a corpus of Arabic web pages(spam and non-
spam) manually using search engines such as Google, Bing, AltaVista,
Maktoob, Ayna. They proposed a set of new features to enhance the
classification of Arabic web pages into spam and non-spam under different
classification algorithms, namely Decision Tree, Naїve Bayesian, and
LogitBoost. They compared their features, which they called Arabic Content
Analysis (ACA) features, to state of the art Content Analysis (CA) features
for spam detection in the English web.
The result showed that augmenting the CA features with ACA features
achieved an increase in detection accuracy of Arabic spam pages compared
to CA features alone. When combined, ACA and CA feature correctly
identified 5,536 pages of the 5,645 Arabic spam pages that they used for
testing with a false positive rate of 1.9% using the Decision Tree classifier.
They also identified the top-ranked features using the Gain Ratio method
[52].

Wahsheh et al [53]discussed the current spamming techniques, ranking
algorithms of web pages, applied three algorithms (K-nearest neighbor, NB
and Decision Tree) that detected Arabic spam pages, and a comparison
between their different results.
The result showed that the K-nearest neighbor is better than other used
algorithms.

 21

Wahsheh et al [54] said "there are some web sites developers act as
spammers and try to mislead the search engines by using illegal Search
Engine Optimizations (SEO) tips to increase the rank of their web
documents, to be more visible at the top 10 Search Engine Results Page
SERP". The main goal of this study was to solve the Arabic web spam
detection problem. They discussed the relation between the Arabic web
spam types. This study is a continuation of a series of Arabic web spam
studies conducted by the authors, where this study was dedicated to building
the first Arabic content/link web spam detection system. The constructed
dataset contains three groups with the following three percentages of spam
contents: 2%, 30%, and 40%. These three groups with varying percentages
of spam contents were collected through the embedded crawler in the
proposed system. This Novel system is capable of extracting the set of
content and link features of web pages, in order to build the largest Arabic
web spam dataset. The automated classification of spam web pages used
based on the features in the benchmark dataset. The proposed system used
the rules of Decision Tree; which is considered the best classifier to detect
Arabic content/link web spam. The proposed system helps to clean the
SERP from all URLs referring to Arabic spam web pages [54].
The result indicated that the study produced accuracy of 90.1% for Arabic
content-based, 93.1% for Arabic link-based, and 89% in detecting both
Arabic content and link web spam, based on the collected dataset and
conducted the analysis.

2.3.2 Information Science Research Institute’s Stemmer

A stemming is a technique used to reduce words to their root form, by
removing derivational and inflectional affixes. The stemming is widely used
in information retrieval tasks. Many researchers demonstrate that stemming
improves the performance of information retrieval systems [55]. The Khoja
Arabic Stemmer is a fast Arabic stemmer that works by removing the
longest prefix and suffix present in the input word and then matching the rest
of the word with known verb and noun patterns using a root library. The
stemmer attempts to take into account the unavoidable irregularities in the
language in order to extract the correct root from words that do not follow
the general rules[56].
The Information Science Research Institute’s (ISRI) stemmer uses a similar
approach to word rooting as the Khoja stemmer, but does not employ a root
dictionary for lookup. Additionally, if a word cannot be rooted, the ISRI
stemmer normalizes the word and returns a normalized form (for example,

 22

removing certain determinants and end patterns) instead of leaving the word
unchanged. [57]. The ISRI Stemmer requires that all tokens have Unicode
string types. If the user uses Python IDLE on Arabic Windows he has to
decode text first using Arabic 'cp1256' coding.

2.4 Email Services
Electronic mail (E-mail) is an essential communication tool that has been
greatly abused by spammers to disseminate unwanted information
(messages) and spread malicious contents to Internet users [58]. Users can
access any free email service such as Yahoo Mail, Gmail, Hotmail. There
are various technical measures that are currently available, and each can play
a role in the battle against spam When combined, these measures can
provide a “good enough” solution to the spam problem for email users[59].

2.4.1 Google Mail

Gmail's filters allow users to manage the flow of incoming messages, can
automatically label, archive, delete, star, or forward mail [60].
When one user clicks a message as spam the system learns to blocking
similar messages and it can use the behavior with all Gmail users to block
similar future messages. Gmail uses machine learning algorithms to combine
hundreds of factors to classify spam, supports multiple authentication
systems[61].
Gmail spam filter is made of many factors depending on various
actions/events such as Whenever Gmail system detects that the message has
malicious links and trying to scam user through a phishing mail, When the
message is sent from unknown/unconfirmed sender, When the user has
already marked any such similar mail as spam, When the message is in
different language, When many people marked same message as spam,
When the message is sent lesser known domain, When it has similarity to
suspicious messages and proactive words like “Get Rich Quickly” or “Free
Goodies”[62].

2.4.1.1 Gmail spam filter technologies
Gmail team used priority Inbox to automatically sort incoming email and
help users to focus on the messages that matter most. Also, they launched
smart labels, which help users to classify and organize their email[63].
To protect Gmail users from spam images, Gmail used Optical Character
Recognition (OCR) developed by the Google Book Search team [64].

 23

Machine learning algorithms developed to merge and rank large sets of
Google search results allow to combine hundreds of factors to classify spam.
Gmail supports multiple authentication systems, including Sender Policy
Framework(SPF), Domain Keys, and Domain Keys Identified Mail
(DKIM)[65], so user can be more certain that the mail is from who is says it
is from. Also, Gmail puts all senders through the same rigorous checks[66].
Gmail used Completely Automated Public Turing-test to tell Computers and
Humans Apart (CAPTCHA). CAPTCHA is introduced in 2000 by Luis von
Ahn and his colleagues. A CAPTCHA is a challenge response test used to
ensure that the response is generated by humans. CAPTCHA test are
administrated by machines to differentiate between humans and machine
[67].

2.4.1.2 Gmail spam filter is insufficient
Unrealistic to expect users to configure an individual filter for each domain
so the spam keeps coming in after added filters for specific hosts[68]. Some
users think that maybe Google give the spammers the email address of the
users. Or sell it, because they never use the account but got spam[69].

2.4.2 Microsoft Mail

Early versions of the Windows Live Hotmail spam filter consider all mail
that does not come from trusted sources as spam and move it to
the junk folder. It is not perfect, so a one of spam will arrive in the Windows
Live Hotmail Inbox, but the majority will go to the junk folder
automatically. At the same time only few legitimate emails will be filtered
out by mistake. It decomposes an email into tokens, normally words, but
sometimes other markers and then uses the frequency of each word's
appearance in that given email against a know sample to determine if it is
spam or not[70].
It is great to keep spam out of the Inbox, but user still needs to visit his junk
folder every now and theun to make sure he/she has not missed something
important. Hotmail not only keeps more spam out of Inbox, it keeps obvious
spam out of the junk folder to make this job easier. In fact, they reduced the
size of customers’ junk folders by more than 50% - that is about a half a
billion fewer pure spam messages per day [71].
Microsoft office produces Outlook 2007 contains a junk email filter
designed to reduce the unwanted email presented in user Inbox. The junk
email filter evaluates each incoming message to assess whether it may be
spam, based on several factors. The Outlook junk email filter does not stop

 24

junk email from being delivered, but rather diverts suspected spam to the
user's junk email folder instead of Inbox [72].
Outlook 2013 uses Microsoft word as its rendering engine, HTML and
Cascade Style Sheet (CSS). There are five different user-controlled lists that
can determine whether the email will hit the junk folder or not:

 Safe Senders List – Email addresses and domain names in this list are
never treated as junk,

 Safe Recipients List – Users can add the mailing lists and distribution
lists that they are part of to this list,

 Blocked Senders List – Once users add an email address or domain to
this list, messages from that source are automatically sent to the junk
Email folder,

 Blocked Top-Level Domains List – To block messages from another
country or region, users can add country/region codes to this list and

 Blocked Encodings List – To block messages that contain another
character set or alphabet, users can add encodings to this list [73].

2.4.2.1 Hotmail spam filter technologies
Early versions of email spam filters were very primitive and the mere
presence of a word in an email was enough to push it into the spam queue.
Those simple measures have been replaced by the more robust Bayesian
spam filtering [71].

2.4.2.2 Hotmail spam filter is insufficient
There is no personalization because some messages come to even junk
folder when it's deleted them daily[71].
Another failure in this spam filter is what is called ‘Dr Oz’ emails that are
getting through partly because the spammer is taking advantage of a key
failure in Outlook’s junk Email filter. The built-in filter that is configurable
by the user works by matching the apparent email address of the sender.
That is fairly useless because spammers change the ‘From’ email address
very regularly. Each of the messages has the same ‘From’ name but the
address itself is different for each email – spammers do that because they
know Outlook’s mail filters are based around the email address [74].
Hotmail filter use Bayesian which it searches for spammers' words, if the
spammers' word does not have a space or recognized word separator on
either side of it, it will not be picked up[70]. The spammers are no longer
using domain names with words that’d be clearly identified as spam. If the

 25

domain itself is not in a common format the spam classifier is not smart
enough to identify that.

2.4.3 Yahoo Mail

Collaborative spam filtering in open membership systems, such as Yahoo
Mail, depends on user generated label information. Users provide feedback
by labeling emails as spam or not spam. These labels are then used to train a
spam filter. Although the majority of users provide very little data, as a
collective the amount of training data is very large (many millions of emails
per day). Unfortunately, there is a substantial deviation in the users'
understanding and liking of what constitutes spam and non-spam. As a
result, spam filtering based on a global classifier will be sub-optimal.
Conversely, there is often insufficient personal information to train an
individual classifier for all users. [75].

In this thesis, we will show that IP address is possible to start initially with
the global black list and then can edit this list for each user individually.

2.4.3.1 Yahoo Mail spam filter technologies
In the early Yahoo spam filter, the filter consided all mail that did not come
from trusted sources as spam and moved it to the junk folder. Recently
Yahoo used many techniques to detect and filter spam such as Spam Guard
is a feature that automatically moves the spam email to the spam folder.
Spam Guard adapts to the individual preferences every time user marks an
email using the "spam" and "Not spam" buttons.
Filters function according to rules that the user sets up because the user can
automatically filter incoming email into the folders of his choice., A user can
block an email address (or domain), if he/she does not want to get emails
from that address in Yahoo Mail, Opting to not display images in his
received emails can help fight against spam [76].
Thus, this spam Guard makes a good attempt towards personalizing the
filter. However, this is done manually.

2.4.3.2 Yahoo Mail spam filter insufficient
There are many failures in the Yahoo spam filter for example each time user
ticks spam message and "report as spam" and get thanked for improving
"Spam Guard" but it comes straight through to the Inbox [77].
Spammers can log into Yahoo accounts because Yahoo stores password in
clear text and having them stolen by hackers. This has been a real headache,

 26

mine spammers for email addresses, and then sends email from those
accounts. Then they have been creating other fake accounts that are similar
using those names so even if you change your password there may be a
Gmail or Hotmail account owned by the spammer using your contact list and
name [78].

2.5 Conclusion

many years ago, established progressive principles for detection and filtering
spam for English email and some in spam for Arabic web pages. The above
studies, while tracing the English spam and Arabic web spam, do not
address the important part of non-English or Arabic spam. More studies in
the spam of Arabic email should be done.

A second section of the literature review presents the spam filters of the
famous mail systems are used by most email users like Gmail, Hotmail or
Outlook and Yahoo and their successor and failure or insufficient in filtering
spam from user Inbox.

Taken together, the results indicate that spam filter of the big free mail
systems that are used by most mail user worked very hard to fight the
spammers and always developed new techniques to stop spam or to reduce
false positive from mail users, but as presented above there are many
complaints from users and this system still needs much hard work to solve
and end the problem completely.

In proposing mail services "Permail" attempted to give new and more
sufficient spam filter depend basically on personalized behavior and can
filter spam message from Inbox using many factors.

The concept of automate personalizing of detecting and filtering spam is not
addressed in the literature and not yet satisfied by products.

 27

CHAPTER 3: ARABIC EMAIL CORPUS

CHAPTER THREE

 28

CHAPTER THREE
 ARABIC EMAIL CORPUS

3.1 Introduction
A number of large corpora have been assembled in the last few years, but the
idea itself is not new. It can be traced back to the German linguist Kading,
who in 1897 used a large corpus of German - 11 million words - to collate
frequency distributions of letters and sequences of letters [79].
The importance of corpora to language and linguistics studies is aligned to
the importance of empirical data. As language and linguistics studies cannot
rely on intuition or small samples of language; they require empirical
analysis of large database of texts as in the corpus-based approach.
Modern computers have made it possible to store a large number of texts and
to analyze a large number of linguistic features in those texts [80].

3.2 Corpus in Natural Language Processing
Natural Language Processing (NLP) is an area of computational linguistics
which is interesting to use corpora in computationally than linguistic [81] the
researchers in NLP have their own distinct interests and there are a
limitations of the corpora created by researchers in NLP especially in Arabic
language.
Examples of corpora in NLP are:
In Lancaster University there is a group of descriptive and computational
linguists who worked together not only to create the British National Corpus
but also to develop the tagger (CLAWS) that was used to tag the corpus
[82].
BulTreeBank project Head-driven Phrase Structure Grammar (HPSG-based
Syntactic Treebank of Bulgarian) created a high quality set of syntactic
structures of Bulgarian sentences within the framework of HPSG it aims to
contain samples of all the syntactic structures of the language. These
sentences should serve as templates for future corpora development, become
the basis for the development of a more comprehensive test suite for NLP
applications they can also be used as a source for grammar extraction and for
linguistic research [83].

3.3 Email Corpus
This section gives a brief description of the famous English emails corpus.

 29

3.3.1 English Email

 TREC05 Corpus
TREC’s spam Track introduces a standard testing framework that
presents a chronological sequence of email messages, one at a time, to
a spam filter for classification. The filter yields a binary judgment
(spam or ham [i.e.non-spam]) [84].

 Enron Email Corpus
This dataset was collected and prepared by the A Cognitive Assistant
that learns and Organizes Project (CALO). It contains data from about
150 users, mostly senior management of Enron, organized into
folders. The corpus contains a total of about 0.5M messages. This data
was originally made public, and posted to the web, by the Federal
Energy Regulatory Commission during its investigation of Enron
[85].

 Enronsent Email Corpus
The EnronSent corpus is a special preparation of a portion of
the Enron Email Dataset designed specifically for use in Corpus
Linguistics and language analysis. Divided across 45 plain text files,
this corpus contains 2,205,910 lines and 13,810,266 words. This
preparation was created by cleaning up a portion of the original Enron
Corpus [85].

 TREC07 Corpus
TREC-7 corpus is made up of 75,419 real emails, comprising 25,220
ham and 50,199 spam emails. All emails were arranged in
chronological order to simulate a real spam filtering scenario in which
training emails are older than testing ones[86].

3.3.2 Arabic Email

NLP, including information retrieval, Machine Translation and other Natural
Language-related disciplines, is showing more interest in the Arabic
language in recent years [81]. Suitable resources for Arabic are becoming a
vital necessity for the progress of this research. Corpora are an important
resource, but Arabic lacks sufficient resources in this field, so a research

 30

project needs to compile a corpus, which represents the state of the Arabic
language at the present time and the needs of end users. Many trials have
been conducted to build Arabic corpora, but some of them were
unsuccessful trials and others were for limited commercial purposes[80].
Due to all the previous discussion about the need for Arabic corpus in
general and the absence of an Arabic email corpus, and as there is no Arabic
email corpus made to be used in spam classification studies there is an
urgent need to fill this gab.

3.4 Arabic Email Corpus
Over the past decade, there has been some important progress in the
computational processing of Arabic. However, Arabic is still lacking Arabic
email corpus. Arabic NLP is still in its infancy, due to the problem of
obtaining large amounts of text data [87]. This section will describe the steps
that used to build the first Arabic Email Corpus (AEC).

3.4.1 Goal of AEC

We have planned AEC to contain 2000 emails. The collection of samples is
of written Modern Standard Arabic (MSA). Demonstrating those corpora
have proven to be very useful resources for linguists who believe that their
theories and descriptions of Arabic should be based on real, rather than
contrived data.

3.4.2 Design of AEC

We built a corpus of Arabic emails containing 1066 messages, 512 spam and
554 non-spam. We collected them from October 2012 to July 2013. The
corpus was collected manually from user emails (e.g., Gmail, Hotmail and
Yahoo mail). Then we classified it manually as spam and non-spam.
Non-spam emails, messages collected from my personal email and some
colleagues whereas spam email messages collected from email of my
supervisor (Hotmail), my husband's email and some of my personal email
accounts (Gmail and Hotmail).

3.4.3 Description of AEC

This was collected and prepared by the A Personalized Arabic spam
Detection Project (PASDP). It contains data from about 8 users accounts,
organized into two folders (spam and non-spam). The corpus contains a total

 31

of about 1.29M messages. This data was originally made public and posted
to the Sudan University of Science and Technology website and known as
SUST corpus at http:/www.susteh.edu/sustcorpus.

 32

CHAPTER 4: ARABIC SPAM DETECTION MODEL

 33

CHAPTER FOUR
 ARABIC SPAM DETECTION MODEL

4.1 Spam Detection Process
Email is a cheap method of sending and receiving messages over electronic
communication systems such as the internet[88]. Spam “unsolicited bulk
email”, is email which the user does not want and it comes without his
permission and he cannot easily stop receiving it[89].

There are many techniques have been implemented for English spam emails.
Most spam filters use the Naïve Bayesian [19][31][37-46] recently
automated anti-spam filters have become a familiar method in spam
detection. Since such filters are quite effective, we believe that this classifier
they proposed can be implemented by Arabic spam emails to gain better
performance.

Developing text classification systems for Arabic documents in general and
Arabic emails is a challenging task due to the complex and rich nature of the
Arabic language [90]. The Arabic language consists of 28 letters, and written
from right to left and it has complex morphology [91]. Arabic exhibits two
genders: masculine and feminine, three number categories: singular, dual,
and plural. Whereas singular and plural are familiar categories of most
Western learners, the dual is less familiar. The dual in Arabic is used
whenever the category of two applies, where it is in nouns, adjectives,
pronouns, or verbs. The Arabic plurals are divided into two categories:
regular and broken. A noun has three cases, the nominative, accusative, and
genitive [92].

There is a large Arabic community of users using email services were safer
getting rich of the Arabic spam email problem. They need sufficient and a
power Arabic spam filter. In the Arabic spam area many Arabic authors
worked on Arabic web spam and had many published work [11][50-54], but
in fact Arabic email spam area is very poor no published research [93].

This chapter discusses the spam detection model architecture for detection of
Arabic emails and mixed (English to Arabic) emails as shown in Figure 4.1.
In addition, it presents the importance of preprocessing for Arabic

 34

emails. The first available spam filtering system built upon the principles of
the Naïve Bayesian [94].

 Figure 4.1 Spam Detection Process

The NB method was used to filter email by both Androutsopoulos et al. [46]
and Graham [95].
In NB classification, each email is represented by a vector

ݔ⃗ = 	 ,ଶݔ,ଵݔ〉 ,ଷݔ … , 〉 -----(1)	௡ݔ

Where ݔଵ, … , ௡ Are the values of attributes X1,. .. , Xn, and n is the numberݔ
of attributes in the corpus of emails that has been collected, each attribute
represents a particular word occurring or not. If the email contains the word
corresponding to ݔ௜, then ݔ௜ = 1 otherwise ݔ௜= 0. By [96] using Bayes’s
theorem and the theorem of total probability, that given the vector
,ଶݔ,ଵݔ〉	 ,ଷݔ … , ௡ݔ 	〉 of a document d, and where k ∈ {spam, non-spam}, the
probability that d belongs to category c is as given in (2)[41].

(ݔ⃗|ܿ)ܲ = ௉(௖).௉(௫⃗|௖)
∑ ௉(௞).௉(௫⃗|௞)ೖ

 ----(2)

(ݔ⃗|ܿ)ܲ = 	 ௉(௖).∏௉	(௫೔|௖)
∑ ௉(௖).∏௉	(௫೔|௞)ೖ

 ---(3)

Emails
Corpus

Tokenize Text Stemming

Feature Selection

Vector Representation

Learning Algorithm

 35

The probabilities	ܲ(⃗ݔ|ܿ) (ie. The probability of vector 〈1, 0, 0, 1, 0, 1, . . . 〉
Given C) are almost impossible to calculate, due to the fact that there are too
many possible values for ܺ⃗	Even though it is binary in nature. There are also
data sparseness problems [96]. Instead, the NB classifier makes the
assumption that X1,. .. , Xn are conditionally independent of category C. This
means that we can change the above equation to the one given in (3). It is
much easier to calculate ܲ(ݔ௜|ܿ) Than to calculate ܲ(⃗ݔ|ܿ).

For example, it is far less difficult to calculate P (“word”|Category A) than
to calculate P (1, 0, 0, 1, 0, 1,. ..) |Category A).
In this instance, P(Xi |C) and P(C) can easily be calculated using the relative
frequencies from the training corpus. This is a computationally efficient
classifier.

The NB filter calculates the likelihoods of all the words in the given
email[97]. The probability of the mail being spam is estimated using
equation (3). An effective way to combat false positives is to regard as spam
only mails that have a probability higher than a named threshold [41].

4.2 Model Datasets
As any classifier on text documents first we need an Arabic email collection
as presented in chapter three we built a corpus of Arabic emails.
English corpus which contains 1200 samples divided into two categories
(spam and non-spam) This English corpus is provided by Stanford university
[15].

Table 4.1 Summary of Arabic and English datasets

English dataset (Standford University)
 Number of messages Percentage
Spam 400 33.3%
Legitimate 800 66.7%
Total 1200

Arabic dataset
 Number of messages Percentage
Spam 100 33.3%
Legitimate 200 66.7%
Total 300

 36

There are not corpus published for Arabic emails we collect this dataset for
this study. Legitimate messages can easily be misclassified as spam. This
makes the situation more challenging, as the cost of false positives is much
higher than that of false negatives. We feel that by minimizing the false
positives in such a situation, we have achieved an efficient Bayesian spam
filter. Moreover, by recording tokens from such a huge number of spam, we
have covered almost all the topics for spam and are in a pretty good position
to classify new incoming mails.
This thesis creates an Arabic spam keywords list contain about 150
keywords which used in Arabic spam filters as shown in appendix B.2.

4.3 Arabic Spam Detection Model

Figure 4.2 Architecture of Arabic spam detection model

We proposed Arabic Spam Detection Model (ASDM) in short, to build the
detecting Arabic spam emails. We first perform data preprocessing in the
data set, calculate the Document Frequency (DF) given a list of words, we
count the number of unique words in the corpus, build a Comma Separated
Value (CSV) file to use in the classification process, perform 10-fold
stratified cross validation.

4.3.1 Preprocessing

Preprocessing is a very important step before the categorization documents
to get knowledge from massive data and reduce the processing operations.
[98]. A huge number of features or keywords in the documents lead to a poor
performance in accuracy and time [99]. The preprocessing is the first step in
data processing of Arabic emails is. It consist of

- Tokenizing

Inputs email from corpus Performs preprocessing Creates
dictionary

words

Calculates
Normal

distribution

Trains on data Classifies a message
Tests if a

message is
correctly
classified

Writes and reads CSV file

 37

Split each email into words.
- Removal of stop words create a list of stop words such as (etc … ،من،

 (في،الى،التي ،الذین ،ھذا ،ھذه،إن أن
- Removal of punctuation:

Create a list contains all punctuation marks (such as (!), (?), (,), (:) …
etc.) and then remove anyone from email if it appears.

- Stemming
We use ISRIStemmer (open source package) [57] written in python
script and then we build method to take a single argument, word,
which should either be a cp1256 encoded string, or a Unicode object.
Which should either be a cp1256 (windows codepage number 1256
which encodes languages which use the Arabic script) string, or a
Unicode object.
The result is the stemmed form of the word. If the word supplied is a
Unicode object, the result will be a Unicode object. If the word
supplied is a string, the result will be a cp1256 encoded string.

- The normalization
This step includes converting different form of letters to standardize
form such as (إ ،آ ،أ) to (ا) and changing (ي) to (ى) and finally
converting (ة) to (ه). This step aims to unify words typed differently.

- Numeric filter
Filter all numbers from strings (such as (1), (0.2), (100)… etc)

4.3.2 Document frequency

After the preprocessing of the data we calculate the document (here
message) frequency (DF) score for all words in the corpus as sample data
shown in the example in Table 4.2. Count number of words in the body and
subject, return a dictionary associates each word with the number of times it
occurs as shown in the example in Table 4.3. Then count the number of
unique words in the corpus.

 38

 Table 4.2 Occurrence of words on messages
Word

 Msg

 تخفیضات دردشة أغاني تحمیل العاب مجاني بیع تسوق أخبار تجارة

1 4 0 2 1 2 0 0 0 0 5
2 0 4 0 0 4 0 3 6 0 0
3 0 3 6 0 0 0 0 0 2 3
4 2 0 0 2 0 4 2 0 0 0
5 0 7 0 0 2 6 4 1 0 0

DF Example
In this example, there is a list of five messages. The number of occurrences
of each word in all the messages calculates follows:
 occurs 4 times in message 1 "تجارة"
 occurs 2 times in message 4 "تجارة"
 occurs 3 times in message 2 "تحمیل"
 occurs 6 times in message 3 "تسوق"

Table 4.3 Words dictionary of the message
Word Frequency
 6 تجارة
 14 اخبار
 8 تسوق
 3 بیع
 8 مجاني
 10 العاب
 9 تحمیل
 7 اغاني
 2 دردشة
 8 تخفیضات

In Table 4.3 for each word on the Table 4.2 the frequency is calculated.

4.3.3 Term frequency

A collection of (n) emails can be represented in the vector space model by a
term-email Matrix which it represent for each message the frequency of the
words that it contains as shown in the Table 4.2 An entry in the Matrix

 39

corresponds to the “weight” of a term in the email; zero means the term has
no significance in the email or it simply does not exist in the email [100].
The most useful terms are those that are of intermediate frequency so most
of their occurrences are in a small number of documents in the collection
[101].

4.3.4 Cosine Normalization (TFxIDF weights)

Now we can use document frequencies and term frequency to get the term
frequency- inverse document frequency (tf-idf) score for every feature
(word) of the corpus’s message [102].

…….(4)

N: total number of document in a collection.
df(w) : document frequency for feature w (the number of documents that
contain w).
idf(w) : inverse of the document frequency.

As shown in the Table 4.4 calculation of document frequency using some
words from Table 4.3
N= corpus size = 5

Table 4.4 Example of the document frequency

Word Tf IDF
 Log(5/9) 9 تحمیل
 Log(5/6) 6 تجارة
 Log(5/8) 8 تسوق
 Log(5/3) 3 بیع

 Log(5/10) 10 العاب

Calculate weighted term frequency with IDF as show below

݀݅−݂ݐ ௧݂ௗ = ݐ ௧݂ௗ × ݅݀ ௧݂ ---(5)
Where
ݐ ௧݂ௗ: term frequency for term t in document d
݅݀ ௧݂: inverse document frequency of term t in the corpus.

 40

Table 4.5 Calculation of ݂ݐ × ݂݅݀
msg ݐ (݂ଵ) ݐ (݂ଶ) ݐ (݂ଷ) ݅݀ (݂ଵ)

log ൬
ܰ
݊1
൰

݅݀ (݂ଶ)

log ൬
ܰ
݊2
൰

݅݀ (݂ଷ)

log ൬
ܰ
݊3
൰

 (ଷ)ݓ (ଶ)ݓ (ଵ)ݓ

1 4 0 2 0.398 0.222 0.398 1.592 0 0.786

2 0 4 0 0.398 0.222 0.398 0 0.888 0

3 0 3 6 0.398 0.222 0.398 0 0.444 2.388

4 2 0 0 0.398 0.222 0.398 0.798 0 0

5 0 7 0 0.398 0.222 0.398 0 1.554 0

Normalize the term weight (so longer vectors are not unfairly given more
weight). forces all values to fall within a certain range usually between 0 and
1.

௜௞ݓ =
௧௙೔ೖ ୪୭୥ቀே ௗ௙ೖൗ ቁ

ට∑ (௧௙೔ೖ)మቔ୪୭୥ቀே ௗ௙ೖൗ ቁቕ
మ೟

ೖసభ

 ---(6)

Table 4.6 Calculations of Normalized tf x idf Example

 A B C D E F G H
ܣ 2^(3)݂ݐ 2^(2)݂ݐ 2^(1)݂ݐ × ܤ 2^݂݀݅ × ܥ 2^݂݀݅ × ݂݅݀^2 D+F+E ܩ ቀଵ

ଶ
ቁ෢

Msg1 16 0 4 2.534 0 0.634 3.168 1.584
Msg2 0 16 0 0 0.789 0 0.789 0.394

5
Msg3 0 9 36 0 0.443 5.702 6.146 3.073
Msg4 4 0 0 0.634 0 0 0.634 .317
Msg5 0 49 0 0 2.414 0 2.414 1.207

After calculating (tf x idf) we will organize the data in the tablet format so
we will create a CSV file with201 columns - 200 features and class
identifier, 301 rows - header (f1, f2...f200, class) and 1066 examples. All
sections discussed above have been developed and the source code of all
programs on in the Appendix C.3.

4.3.5 Classification Based on Naïve Bayesian

Definition of message classification
Input:
 A message m
 A fixed set of classes C = {non-spam, spam}

 41

Output:
 A predicted class

The Naïve Bayesian classification method based on Bayes rule which relies
on representation of a document is a bag of words as shown in Figure 4.3
[103]. Bayes’ Formula used in email message being filtered to classify the
email messages [104].
As mentation before NB represent data in a bag of words here in Figure 4.3
section (a) we shown short messages which we need to classify.

Y = C
 (a)

Y = C

 (b)
In Figure 4.3 section (b) we selected some words that will classify the
message if spam or non-spam.

Y = C

 (c)

Figure 4.3 Bag of words representation

اھم الاخبار التجاریة قامت
مجموعة شركات الصافي للتجارة

بعرض بضائع والعاب ضمن
موسم التسوق و التخفیضات كما

ني یمكن تحمیل مجموعة من الاغا
. واللالعاب المجانیة

اھم الاخبار التجاریة قامت
مجموعة شركات الصافي للتجارة

بعرض بضائع والعاب ضمن
موسم التسوق و التخفیضات كما

یمكن تحمیل مجموعة من الاغاني
 واللالعاب المجانیة.

أخبار - 2
تجارة - 2
العاب - 2

 1 - تخفیضات
 1 - تسوق
 1 - تحمیل
 1 - اغاني
 1 - مجاني

 42

In Figure 4.3 section (c) we counted the number of occurrences for each
word that selected in (b).

4.3.5.1 CSV files
A CSV is an organized file format use in the text information processing
where categorization can be done at word level [105]. On a CSV file each
line is interpreted as a text document (here it is email) [106]. We created a
CSV file consisted of columns (features and class identifier) rows (header
(f1, f2...fn, class) and examples of emails).
First we found the number of examples in the corpus and then calculate
tf-idf scores of all messages in the corpus to get the weight of the features
then we used this data to create a CSV file consisting of columns.
Create headers
 For each index feature in the corpus
 Create the list of [f1, f2,..., fn]
 Append spam class
 Create the list [f1, f2..., fn, spam Class]
Create CSV file
 Append headers to the CSV file
For each message in the corpus
 Append the row of tf-idf scores for each feature
 Append the spam class in the last column
 Append the row in the CSV file
Write the CSV file
 For each row in CSV file
 Write CSV file

Figure 4.4 Creation CSV file algorithm

The result of organized data file (CSV) is presented in the Figure 4.5 for
body (which contained the data in the body) and Figure 4.6 for the subject
(which contained the subject data of the each message) with features (f1..fn)
and term class.

 43

Figure 4.5 CSV file for message body

 Figure 4.6 CSV file for message subject

In the first step, the classification process retrieved data from CSV, Outputs
will be two lists: a list of messages and a list of headers.

 44

 Read CSV file
 Read from the body and a subject CSV file into the reader
 For row in reader
Scans through the rows (header & message), appending to the file (corpus
data)
 Header data "f1, f2...
 Message data with TF-IDF scores
 For row in corpus data
 Converts strings to floats
 Return corpus header, corpus float data

Figure 4.7 "Read CSV" files algorithm

4.3.5.2 Training

In the training phase, the model is trained using a known corpus of spam and
non-spam emails. It keeps track of each word that occurs only in spam, only
in non-spam messages, and in both. Based on these word occurrence
statistics, incoming unseen messages are processed and classified
accordingly. We trained the classifier by calculated the prior normal
distribution parameters for the feature sets and true/false and calculates the
mean and standard deviation for each feature in training messages when
class equal spam class. At the end calculate the priori spam and not spam
probabilities.

4.3.5.3 Message classification

To find the classification of the message we calculate the probability that a
message is or is not spam, we commenced Bayes probability on message and
get a priori class probability of the message. Used feature selection method
from WEKA [107] to get feature reduction, finally used tf-idf for each
feature of the message to find the probability of the feature and then multiply
together to obtain the probability that a message is spam or not spam.

4.3.5.4 Test classification

Once the model is trained using a dataset of spam and non-spam messages, it
is ready to perform its basic functionality of classifying new incoming
unseen messages.

 45

We used standard deviation technique which emphasized the spam
probability of tokens rather than the number of tokens (words). The specialty
of the technique is that it assigns the score to the email independent of its
size. The same token should not be considered more than once to avoid any
interference from the specific token if it had occurred a few times in the
message. The processing time for classification would vary according to the
size of the email[31].

4.4 ASDM Examples

In this section we presented two examples for spam classification based on
ASDM model.

4.4.1 Example (1)

This example uses spam message as shown in Figure 4.8 from Arabic
emails corpus, which it uses in ASDM. To classify the email message as
spam or non-spam ASDM looks at the subject and the body of the message
and apply Bayes rule formula.

Figure 4.8: Arabic spam message sample

At the first ASDM must split the message into tokens and build a table of
all the tokens, the table would be as shown in Table 4.7 then we remove all
the stop words as shown in the Table 4.8 finally we perform preprocessing
step as shown in the Table 4.9:

 46

Tale 4.7: Tokens of Spam Message
 المخابرات بتأھیل نقوم استصلاح أفراد وضباط
 لیتحولوا الى مواطنین صالحین كتاب نشطاء
 الانترنت غصن ھم الذین انضجوا اطلقوا
 الثورات العربیة یدي على الارض تسقطوا
 الزیتون من لا كلما تجاھلنا الظالمون

 كلما ازددنا رغبة في تحطیمھم والمستبدون

Tale 4.8: Tokens without stop words
 الثورات العربیة نقوم استصلاح والمستبدون وضباط
 الزیتون ازددنا مواطنین صالحین كتاب نشطاء
 المخابرات رغبة یدي انضجوا اطلقوا
 لیتحولوا بتأھیل أفراد الارض تسقطوا
 الانترنت غصن تحطیمھم تجاھلنا الظالمون

Tale 4.9: Tokens with preprocessing step

 ثورة عرب قم اصلح استبد ضبط
 زیتون زد مواطن صلح كتب نشط
 خبر رغبة یدي نضج اطلق
 حول أھل فرد ارض سقط
 نت غصن حطم جھل ظلم

Once the ASDM has the list of tokens in the message, it searches for the
spam and non-spam from the token file.
The file of tokens is created and updated whenever the ASDM is “trained”
on a new message.
If a token from the message is found in the file, the ASDM calculates the
token’s spamicity based on the following variables:

 The frequency of the token in spam messages that the model has been
trained on.

 The frequency of the token in non-spam messages that the model has
been trained on.

 The number of spam messages that the model has been trained on.
 The number of non-spam messages that the model has been trained

on.

The token’s spamicity is calculated from these pieces of data as follows:

 47

Non-spam probability =
Token frequency in non-spam messages / Number of non-spam messages trained on

Spam probability =
 Token frequency of spam messages / Number of spam messages trained on

If either non-spam probability or spam probability are greater than 1.0, we
set them equal to 1.0.

Spamicity = Spam probability / (Non-spam probability + Spam probability)

The ASDM was trained on 100 spam messages and 200 non-spam messages.
In this example, if we use the token “مخابرات” from the non-spam words of
the message, the value will be:

Non-spam probability = 120/200
Spam probability = 0/100
Spamicity = 1.2

This tells us that there’s only a 1.2 chance that a message containing the
word “مخابرات” is a spam message.

Repeating this process for each of the tokens in our sample message, we get
the following frequencies and spamicities:
Table 4.10: Tokens dictionary of the message

Token Spam
Frequency

Non-Spam
Frequency

 63 322 ضبط
 30 236 نشط
 11 120 اطلق
 10 560 سقط
 22 220 ظلم
 10 145 استبد
 140 120 كتب
 29 790 نضج
 51 230 ارض
 10 590 جھل
 43 240 اصلح
 29 90 صلح

 48

 18 470 یدي
 20 350 فرد
 29 530 حطم
 15 140 قم

 45 240 مواطن
 30 140 رغبة
 98 240 أھل

 50 130 غصن
 44 430 ثورة
 29 430 عرب
 30 140 زد
 0 120 خبر
 20 340 حول
 78 140 زیتون

Table 4.11: Token probability and Spamicity of the message
Token Spam probability Non-Spam probability Spamicity

 3.49 0.27 3.22 ضبط
 2.76 0.4 2.36 نشط
 1.8 0.6 1.2 اطلق
 6 0.4 5.6 سقط
 3.3 1.1 2.2 ظلم
 1.65 0.2 1.45 اسبد
 1.26 0.06 1.2 كتب
 8.295 0.395 7.9 نضج
 2.5 0.2 2.3 ارض
 6.195 0.295 5.9 جھل
 2.845 0.445 2.4 اصلح
 9.45 0.45 9 صلح
 4.85 0.15 4.7 یدي
 3.9 0.4 3.5 فرد
 5.715 0.415 5.3 حطم
 1.5 0.1 1.4 نقم

 2.55 0.15 2.4 مواطن

 49

 2.1 0.7 1.4 رغبة
 2.565 0.165 2.4 أھل

 1.365 0.065 1.3 غصن
 4.635 0.335 4.3 عرب
 1.47 0.07 1.4 زد
 1.2 0 1.2 خبر
 3.5 0.1 3.4 حول
 5.8 0.2 5.6 ثورة
 2.05 0.15 1.9 زیتون

From Table 4.11 the model has calculated the spamicity value for each token
in the message.

This message has probability of 92.754 % chance that means the message is
spam. If this message was sent to an email server protected by ASDM, it
would be tagged as spam.

4.4.2 Example (2)

In this example we use a set of email messages as shown in Table 4.12 for
training and testing.

Table 4.12: Spam Messages Collection
 Message Words Class
Training msg1 “صحة.” non-spam
Training msg2 “ الاطفالصحة .” non-spam
Training msg3 “العاب مجانیة.” Spam
Training msg4 “تحمیل العاب.” Spam
Training msg5 “ تحمیل العاب مجانیة“ Spam
Test msg6 “ العاب الاطفال..تحمیل ” ?

The first step is to split all the messages into tokens and build a table as
shown in Table 4.13 of all the tokens.

 50

Table 4.13: Spam Message Token Frequency

Naïve Bayes Learning begins by calculating the prior probability
ܲ(ܿ௜) = 	 ௖௢௨௡௧(௖೔)

∑ ௖௢௨௡௧(௝)ೕ
 ----(7)

Applying prior probability equation of spam and non-spam data

(݉ܽ݌ݏ)ܲ = 	
3
5

݊݋݊)ܲ − (݉ܽ݌ݏ = 	
2
5

Then we have to calculate the conditional probabilities

(ܿ|ݓ)ܲ = 	 ௖௢௨௡௧(௪,௖)	ାଵ
௖௢௨௡௧(௖)ା	|௏|

 ----(8)
Table 4.14: Spam Message Token Frequency and Spamicity
Word Conditional probabilities Result
1 ܲ൫ʹتحمیلʹห݊݊݋ − ൯ ଴ାଵ݉ܽ݌ݏ

ହାହ
 = 0.1

2 ܲ൫ʹ عبل ʹห݊݊݋ − ൯ ଴ାଵ݉ܽ݌ݏ
ହାହ

 = 0.1
3 ܲ൫ʹطفلʹห݊݊݋ − ൯ ଵାଵ݉ܽ݌ݏ

ହାହ
 = 0.2

4 ܲ൫ʹتحمیلʹห݉ܽ݌ݏ൯ ଶାଵ
଻ାହ

 = 0.25
5 ܲ൫ʹلعبʹห݉ܽ݌ݏ൯ ଷାଵ

଻ାହ
 = 0.33

6 ܲ൫ʹطفلʹห݉ܽ݌ݏ൯ ଴ାଵ
଻ାହ

 = 0.083
The last step is to choose a class for the test message

݊݋݊)ܲ − ଶ = (6݃ݏ݉|݉ܽ݌ݏ

ହ
× ଵ

ଵ଴
× ଵ

ଵ଴
× ଶ

ଵ଴
 = 0.0008

Word Frequency
 2 ''صحة''

"طفل" 1
"تحمیل " 2

"لعب" 3
"مجاني " 2

 51

ଷ = (6݃ݏ݉|݉ܽ݌ݏ)ܲ
ହ

× ଷ
ଵଶ

× ସ
ଵଶ

× ଵ
ଵଶ

 =0.0041

This test message has probability of 0.0041 chance that means the message
is spam.

4.5 Mixed Spam Detection Model
To evaluate the spam detection model that is presented above in mixed
dataset English and Arabic spam messages first we need to mix the Arabic
and English emails after they classified manually.

Second step we perform data preprocessing separately for each type of
message (English and Arabic).

We modify the English spam detection model (from the previous section) to
work on mixed datasets.

Figure 4.9 Work flow of the mixed spam detection model

N Y

New Email

English
Email

English Email Preprocessing Arabic Email Preprocessing

English Email Detection Algorithm Arabic Email Detection Algorithm

 52

4.6 Result and Experiments of the Model
This section explains the set of experiments carried out to evaluate the
Arabic spam detection model that we used to classify Arabic spam
messages.
In all experiments, 10-fold cross validation was employed. The dataset was
partitioned randomly into ten parts, each experiment was repeated ten times,
each time reserving a different part for testing, and using the remaining nine
parts for training [108]. The final results are the average of the ten iterations.
This process produces more reliable results and uses the entire corpus for
both training and testing phases [93].
In proposed model we created the set of 10 thirty element random bins after
that created the training set (270 elements) and the validation data (30
elements) then train the probabilities of the Bayes filter and calculate the
percentage of successful classifications.

4.6.1 Experiment (1) Comparison of Three Datasets:

The first experiment was designed to compare the effectiveness of using the
Naïve Bayesian in English, Arabic and mixed in two sections body and
subject of the message. The datasets used in these experiments are
preprocessed. Table 4.15 and Table 4.16 have shown the results.

Table 4.15 Results of spam detection model for three datasets (English,
Arabic and mixed) on Body of the Email

Dataset Correct
Classification

Incorrect
Classification

Accuracy

Error

English 577 23 96.2% 3.8%
Arabic 287 13 95.8% 4.2%
English & Arabic 481 19 96.2% 3.8%

 53

Table 4.16. Results of spam detection model for three datasets (English,
Arabic and mixed) on Subject of the Email

Dataset

Correct
Classification

Incorrect
Classification

Accuracy

Error

English 549 51 91.5% 8.5%
Arabic 284 16 94.7% 5.3%
English and Arabic 451 49 90.2% 9.8%

4.6.2 Experiment (2) Applying To The Arabic Mode
The second experiment was designed to get the result when the Arabic spam
detection model applied to the body and the subject of the email Table 4.17
and Table 4.18 shown the results.

Table 4.17 Results of Arabic model on the body of email

Stratification
set

1 2 3 4 5 6 7 8 9 10

Percentage of
Correct

classification

94.7%

94.7%

89.5%

100%

100%

89.5%

89.5%

100%

100%

100%

Percentage of
Incorrect

classification

5.3%

5.3%

10.5%

5.3%

0

10.5%

10.5%

0

0

0

Overall
accuracy

95.8%

Figure 4.10 Percentage classification of Arabic model of the body

 54

Table 4.18. Percentage of Arabic model on the subject of Email

Stratification
set

1 2 3 4 5 6 7 8 9 10

Percentage of
Correct

classification

100%

94.7%

100%

94.7%

89.5%

84.2%

94.7%

94.7%

100%

94.7%

Percentage of
Incorrect

classification

0

5.3%

0

5.3%

10.5%

15.8%

5.3%

5.3%

0

5.3%

Overall
accuracy

94.7%

Figure 4.11 Percentage of Arabic model on the subject of email

4.6.3 Experiment (3) Applying On English Model

The third experiment was designed to get the result when applied English
spam detection model on the body and the subject of the email Table 4.19
and Table 4.20 shown the results.

 55

Table 4.19 Results of English model of the body of email
Stratification

set
1 2 3 4 5 6 7 8 9 10

Percentage of
Correct

classification

96.7%

100%

95%

93.3%

95%

95%

98.3%

98.3%

93.3%

96.7%

Percentage of
Incorrect

classification

3.3%

0%

5%

6.7%

5%

5%

1.7%

1.7%

6.7%

3.3%

Overall
accuracy

96.2%

Figure 4.12 Percentage of English model of the body of email

Table 4.20 Percentage of English model on the subject of email

Stratification
sets

1 2 3 4 5 6 7 8 9 10

Percentage of
Correct

classification

100%

94.7%

89.5%

100%

98%

89.5%

89.2%

94.7%

100%

98%

Percentage of
Incorrect

classification

0

5.3%

10.5%

5.3%

2%

10.5%

10.8%

5.3%

0

2%

Overall
accuracy

91.5%

 56

Figure 4.13 Percentage of the English model on the subject of email

4.6.4 Discussion Results or Arabic and English Spam Detection

Accuracy the ratio of correctly classified messages is used as a combined
measure. All experiments were conducted using 10-fold cross validation.
The reported figures are the means of the values from the ten iterations [19].

The result of model showed that the Naïve Bayesian algorithm is the most
effective way to use in detecting Arabic and English spam emails. It is
shown that main point effect on the Arabic spam detection is the collection
of Arabic corpus and the limit of the size of Arabic dataset.

The results showed that the applied of English and Arabic detection models
on the body of the message gave an accuracy of 96.2% of the English
messages and 95.8% of the Arabic messages whereas the subject gave less
of this accuracy.

4.6.5 Experiments in Mixed Spam Detection Model

This section explains the set of experiments carried out to evaluate the
mixed (English & Arabic) spam detection model discussed above that we
used to classify spam messages.

 57

In all experiments, 10-fold cross-validation was employed. The final result is
the average of the ten iterations. This process produces more reliable results
and used the entire corpus for both training and testing phases [93].

4.6.5.1 Experiment (1) applying to the body of the email
The first experiment was designed to get the result when applied mixed
spam detection model on the subject of the email Table 4.21 shown the
results.

Table 4.21 Results of mixed model on the subject of Email

4.6.5.2 Experiment (2) applying on the subject of the email

The second experiment was designed to get the result when applied mixed
spam detection model on the body of the email Table 4.22 shown the results.

Figure 4.14. Result of mixed model on the subject of email

Stratification
sets

1 2 3 4 5 6 7 8 9 10

Percentage of
Correct

classification

89.2%

100%

89.5%

100%

97%

89.2%

94.7%

94.7%

100%

98%

Percentage of
Incorrect

classification

10.8%

 0

10.5%

 0

3%

10.8%

5.3%

5.3%

0

2%

Overall
accuracy

90.2%

 58

Table 4.22 Results of mixed model of the body of email
Stratification

sets
1 2 3 4 5 6 7 8 9 10

Percentage
of Correct

classification

98.3%

93.3%

95%

100%

95%

95%

96.7%

98.3%

96.7%

93.3%

Percentage
of Incorrect

classification

1.7%

6.7%

5%

0%

5%

5%

3.3%

1.7%

3.3%

6.7%

Overall
accuracy

96.2%

Figure 4.15. Results of mixed model of the body of email.

4.6.6 Discussion of Results for Mixed Spam Detection
The result of model showed that the Naïve Bayesian algorithm is the most
effective way to use in detecting mixed (Arabic and English) emails. The
mixed spam detection based on the collection of Arabic and English dataset.
The model used different preprocess for each dataset and that effect on the
end result. The results showed that the applied to the mixed detection model
of the body of the message gave an accuracy of 96.2% of the English
messages and Arabic messages.

 59

The result of model showed that the Naïve Bayesian algorithm is the most
effective way to use in detecting mixed (Arabic and English) emails. The
model used different preprocessor foreach dataset. The results showed that
the applied to the mixed detection model of the body of the message gave an
accuracy of 96.2%.

4.7 Comparison between Models and various Classifiers
The CSV file is generated from the corpus and presented in the Excel file.
The resultant classify is tested on Decision Tree J48, Logistic Regression
and ZeroR classification techniques on 10-fold cross validation and
tabulated in Table 4.23.

We experimented with three classifiers Decision Tree J48, Logistic
Regression and ZeroR. The best results we obtained using proposed English
model as shown in Table 4.23.

Table 4.23 Comparison between English model with various classifiers
Classifier Body Section Subject Section

Correctly
Classified
Instances in %

Incorrectly
Classified
Instances in %

Correctly
Classified
Instances in
%

Incorrectly
Classified
Instances in
%

English
Model

96.2 3.8 91.5 8.5

J48 92.5 7.5 80.2 19.8
ZeroR 66.7 33.3 66.7 33.3
Logistic 79.7 20.3 82.9 17.1

 60

Figure 4.16 Performance of English model comparison

The results from Table 4.23 indicate English model classification gives
better performance than the other three classifiers. Figure 4.16 shows the
performance curves of English model, Decision Tree J48, ZeroR, and
Logistic Regression classification techniques. The success criteria for text
classification have significantly increased by using the proposed English
detection model. The results showed an English spam detection model using
Naïve Bayesian which yielded an accuracy of 96.2%.

Table 4.24 Comparison between Arabic model with various classifiers
Classifier Body Section Subject Section

Correctly
Classified
Instances in %

Incorrectly
Classified
Instances in %

Correctly
Classified
Instances in %

Incorrectly
Classified
Instances in %

Arabic
Model

95.8 4.2 94.7 5.3

J48 92.8 7.2 92.8 7.2
ZeroR 92.8 7.2 92.8 7.2
Logistic 93.8 6.2 93.8 6.2

0

20

40

60

80

100

120

Correctly
Classified

Instances in %

Incorrectly
Classified

Instances in %

Correctly
Classified

Instances in %

Incorrectly
Classified

Instances in %

Body Section Subject Section

English model

J48

ZeroR

Logistic

 61

Figure 4.17 Performance of Arabic model comparison

The results from Table 4.24 indicate Arabic model classification gives better
performance than the other three classifiers. Figure 4.17 shows the
performance of Arabic model, Figure 4.17 shows the performance curves of
Arabic model, Decision Tree J48, ZeroR, and Logistic Regression
classification techniques. The success criteria for text classification have
significantly increased by using the proposed Arabic detection model. The
results showed an Arabic spam detection model using Naïve Bayesian which
yielded an accuracy of 95.8%.

Table 4.25 Comparison between Mixed model with various classifiers
Classifier Body Section Subject Section

Correctly
Classified
Instances in %

Incorrectly
Classified
Instances in %

Correctly
Classified
Instances in %

Incorrectly
Classified
Instances in %

Mixed
Model

96.2 3.8 90.2 9.8

J48 93.7 6.3 78.5 21.5
ZeroR 66.7 33.3 66.7 33.7
Logistic 83.2 16.8 84.7 15.3

0

20

40

60

80

100

120

Correctly
Classified

Instances in %

Incorrectly
Classified

Instances in %

Correctly
Classified

Instances in %

Incorrectly
Classified

Instances in %

Body Section Subject Section

Arabic Model

J48

ZeroR

Logistic

 62

Figure 4.18 Performance of Mixed model comparison

The results from Table 4.25 indicate English and Arabic model classification
gives better performance than the other three classifiers. Figure 4.18 shows
the performance curves of English and Arabic model, J48, ZeroR, and
Logistic Regression classification techniques. The success criteria for text
classification have significantly increased by using the proposed English and
Arabic detection model. The results showed an Arabic and English spam
detection model using Naïve Bayesian which yielded an accuracy of 96.2%.
The final results show that proposed model achieves high levels of accuracy.
In addition, it can minimize the number of legitimate emails that are
misclassified and is also able to detect a high number of spam messages.
Nevertheless, several points of discussion are important regarding the
suitability of the proposed method. It is also important to consider efficiency
and processing time. Our system compares each email against a big dataset.

0

20

40

60

80

100

120

Correctly
Classified

Instances in %

Incorrectly
Classified

Instances in %

Correctly
Classified

Instances in %

Incorrectly
Classified

Instances in %

Body Section Subject Section

Mixed Model

J48

ZeroR

Logistic

 63

CHAPTER 5: PERSONALIZED SPAM
DETECTION ALGOITHM

 64

CHAPTER FIVE
PERSONALIZED SPAM DETECTION

ALGORITHM
This chapter presents a personalized spam detection algorithm, which is
based on the behavior of the user towards different types of message content
[109].
The classification of the message is dynamically made based on what each
user is like. The personalized email is abbreviated as Permail it is the web
based spam detection system.
In this chapter we also present personalized spam classification model build
on MATLAB [12].
5.1 Personalized Spam Detection System
Personalized spam detection algorithm integrates spam solution methods
(whitelist, blacklist, keyword, and content filter) and web based solutions to
classify the message.

5.1.1 System Architecture
The incoming email message passes through levels of classification and ends
up in either the mail is spam or non-spam as shown in Figure 5.1.

A. Whitelisting

Initially, it has a set list of email addresses user "whitelist" ensures that all
his important email addresses and web addresses will never be blocked. Most
user whitelists consist of major legitimate newsletters and email address
books. Messages that pass the filters be added to the whitelist, if they are not
already there[110].

B. Blacklist

Initially, it has a set list of email addresses. Any message that failed to pass
the whitelist level and then sent to this level will be checked against the
blacklist, which contains email addresses that users never accepted email
email addresses of the users who aren't accepts messages from [111]. If there
is a match, the message will be sent to the junk mail.
C. Keyword filtering

By creating keyword lists, messages can be filtered based on a variety of
words, phrases, and sentences extracted from the message header (subject).

 65

[112]An example of a general type of keywords list is suggested by [113] and
is presented in Appendix B.1. In our proposed listing a keyword list is
created for each user and is populated and updated by keywords extracted
from the messages identified as junk mail at the following level.

D. Content filtering

The proposed content filter acts on the content, the information contained in
the mail body, to classify, accept or reject a message [33-35]. A user content
filter is created for each user based on his behavior which requires
information to be compiled and maintained for each user.

Whitelist

Blacklist

New email

If
Favorit

e

Y

N

Keyword &
Content

Y

N

If
Spam

Y
N

Junk Mail

Inbox

If
Spam

 66

Figure 5.1 Flow work of personalized spam detection model

5.1.2 System Description

This section describes personalized spam detection algorithm and web page
application as follow:

5.1.2.1 Personalized algorithm

The algorithm initially contains three lists:

 Whitelist: It contains Favorite email addresses (family, friends,
related…. Etc.) Which are different from user to the other.

 Blacklist: At the beginning contains some spam email addresses and it
will change dynamically with each user according to what he want to
receive email from.

 Vocabulary list: It contains standard spam words each user can add or
remove from the list to be as he like and the list will contain only the
spam words.

The next paragraph presents the two main algorithms:
(1) When the user opens the Inbox

- If the user deletes the email

 The email address is added to the black list.

- If the user reads the email

 If the user then clicks delete
Address candidate to be blacklist, after satisfying
blacklist criteria, add an email address to the blacklist

- If the user then clicks, spam button then he is given the
following choices:

Title: processed spamming words added to
Vocabulary list. Or,
Words: user clicks the particular word. Or,
Whole body: body processed spamming words sent
to the vocabulary list.

 67

Title process: selects spam words from the title and
adds to Vocabulary list. Or,
Words process: selects the particular word from the
title and adds to Vocabulary list. Or,
Whole body: selects all body and adds to
Vocabulary list.

Now vocabulary list will acquire the words that this particular user classified
as spam.

-

Figure 5.2 Personalized spam detection Algorithm (User Opens Inbox)

Y

Email Address
candidate to be

Blacklist
N

User Reads Email

Satisfy
Blacklist
criteria (4
times)

Y Click
Delete

N

N

Click
Spam

Y

Add Email Address
to Blacklist

Y

Title : title processed spaming words added to
Vocabulary list. Or, Words : user click the
particular word. Or, Whole body: body processed
spaming words sent to the vocabulary list.

End

Delete
Email

User Opens Inbox

 68

(2) The user reviews the junk list
- When the user selects a certain junk email and move it to the

Inbox:

 Delete email address from the blacklist, Add to whitelist.
- When a user selects a certain junk email and clicks not spam:

 The email address is deleted from the blacklist.

- When a user chooses words (which the user consider legitimate
and not spam). He clicks the words:

 Words are deleted from the vocabulary list.

The User Reviews Junk Mail

Y Move to
Inbox

N

Delete email address from
blacklist, Add to whitelist

N

Y

Click not
Spam

Y

Delete Words from Vocabulary list

 End

Choose
Words

 69

Figure 5.3 Personalized Spam Detection Algorithm (User Reviews Junk
Mail)

The vocabulary list is dynamically changed to resemble the liking of each
individual user. I.e. the vocabulary list is different from a user to the other.
Hence, this is a personalized spam detection algorithm.

5.1.2.2 Personalized web pages
We attempted to build web based spam detection email system based on the
user and his personalized like on websites and emails.

5.1.2.2.1 Permail database
We used a Microsoft Access database to build the system database
consisting of about 15 tables the database schema is shown in Figure 5.4 and
the database relationship as shown in Figure 5.5. The following is the list of
database tables.

Candy Table
PK Cdid Number
 bladd Text

Userbl Table
PK uid Number
Pk blid Number

Usermsg Table
PK Uid Number
PK Msid Number

Junk Table
PK Jid Number
 From Text
 To Text
 edate Date/time
 subject Text
 body Memo

Message Table
PK mid Number
 from Text
 To Text
 edate Date/time
 subject Text
 body Memo

User Table
PK uid Number
 fname Text
 lname Text
 bod Date/time
 mobile Text
 job Memo
 country Text

Userjn Table
PK uid Number
PK jid Number

Bvocab Table
PK jid Number
PK vovid Number

Wvocab Table
PK vocid Number
PK Msid Number

Userwl Table
PK Uid Number
PK Wild Number

Whitelist Table
PK Wild Number
 wladd Text

Blacklist Table
PK Blid Number
 bladd Text

Vocab Table
PK Vocid Number
 Word Text
 Type Text

Login Table
PK Uid Number
 Login Text
 Pwd Text

Candadd Table
PK Cdid Number
 Isdel y/n

Figure 5.4 Database tables of Permail system

 70

Figure 5.5 Database relationship of Permail system

∞

login

userbl

uid blid

blacklist

blid bladd

1

user

countr

bod job

lnam

fnam
uid

1

candy candadd

cid isdel add cdid

1 1

wvocab bvocab vocab

vocid

type

word

vocid mid jid vocid

∞
∞ ∞

∞
1 1

userjn

junk

jid
uid

jid body

subject

edate

from

to

∞

1

usermsg

uid mid

∞
∞

login

uid

pwd

∞

userwl

uid wlid

∞
whitlist

wlid wladd

1

1
1

1

1

1

message

to

edate

subject

body from

mid

1

1

1

∞

 71

5.1.2.2.2 Permail description
This section explains Permail web application that provides personalized
features on the email build. Figure 5.6 shows the sitemap.
All sections discussed above have been developed and the source code of all
programs on in the Appendix C.1.

Figure 5.6 Permail sitemap

We developed web based application using ASP [14] this technology gives
us ability to insert, update and retrieve data from database on the web page.
We used ODBC [18] to create the connection between the database and the
web pages.

All figures will mention next have been developed in the Appendix D. The
home page is shown in Figure D.1 gives the ability to enter the mail system.
When the user clicks on user login he will go into the login page as shown in
Figure D.2 and if he is already registered he can enter his user name and
password. Otherwise, he can create a new account as shown in Figure D.3
by entering his full information on the form. The following sections show
the main processes of the web pages:

A. User Inbox

There are many users account created in the Permail. Each user has his
different Inbox list message, whitelist, blacklist and vocabulary list and each
list changes dynamically. When the user enters the correct login ID and
password Permail open user Inbox page and this page contains many
functions:

 Home Page
index.asp

User Inbox
inbox.asp

User Junk
junk.asp

User Whitlist
whitelist.asp

User Blacklist
blaclist.asp

User
Vocabulary

list
vocablist.asp

 72

- If the user wants to view the message this page retrieves all
messages from user Inbox. Figure D.4 shows different Inbox users
a, b and c these users have a different Inbox.

- If the user clicks on the subject of any message he can read this
message as shown in Figure D.5. After the user reads the message
page, he can do the following:

 Delete it by click on the delete button as shown in Figure
D.6 or

 If a user classifies this message as spam he can click on
spam button and he will go to spam message as shown in
Figure D.7 then he must select words to add into the
vocabulary list:

o Either from the title of the message as shown in
Figure D.8 or

o Select some words from body as shown in Figure D.9
or

o Add all body to the vocabulary list as shown in
Figure D.10.

B. User junk

User junk mail page retrieves all junk mail and contains many functions as
follows:

- If the user wants to view the message he can retrieves all messages
from the user's junk mail as show in Figure D.11 shows different
users.

- If the user knows some message is not junk mail he can clicks to
move the message to Inbox as shown on Figure D.12 and email
address will be deleted from blacklist and added to the whitelist.

- If the user clicks on the subject of any message he can read this
message as shown in Figure D.13. After the user reads the message
page, he can do the following:

 Delete it by click on the delete button or

 73

 If the user finds this message not spam he can click on not
spam button and go to the page shown in Figure D.14 to
select the non-spam words from:
o If the words of the title as shown in Figure D.15, the

user can select these words and delete from blacklist
and add to the whitelist or

o If the words on the body as shown in Figure D.16, the
user can select these words and delete these words
from blacklist words and add to the whitelist or

o If all the words of the body are non-spam words as
shown on Figure D.17, the user can select all the body
and delete these words from blacklist words and add
them to the whitelist.

C. User list

This section presents user whitelist, blacklist and vocabulary lists. Figure
D.18 (a, b and c) shown the different whitelist between users a, b, and c.

Figure D.19 (a, b and c) shown the different blacklist between users a, b, and
c.
Figure D.20 (a, b and c) shown the different vocabulary between users a, b,
and c.

5.1.3 Advantages of Personalized Spam Detection

Table 5.1 Advantages and disadvantages of mail services
Mail

service
Advantages Disadvantages

Permail - Personalize performance.
- Body spam list.
- User dynamic whitelist

email address.
- User dynamic blacklist

email address.
- User dynamic white

vocabulary list.

- - Used locally.
-

 74

- User dynamic black
vocabulary list.

Hotmail - All users share same spam
blacklists.

Gmail - Bayesian - All users share same
spam blacklists.

Yahoo
Mail

- Spamgraud feature.
- No false positive.

 - All users share same spam
blacklists.

5.1.4 Permail experiment

This section compared Yahoo Mail, Hotmail, and Gmail with proposed
Permail to test to his features and advantages.
This section compared Yahoo Mail, Hotmail, and Gmail with proposed
Permail.

 We created three email accounts on Yahoo Mail, Hotmail, and Gmail.
 We created suspicious email accounts on the top free email such as

outlook.sa, mail.com, gmx.com, shortmail.com, myway.com and
aim.com.

- abc.dd@aim.com
- Freeone98@gmx.com
- buyone@shortmail.com
- Topten10@myway.com
- Abc.abc2@outlook.sa
- Shop123@mail.com
- Free.mony@lycos.com

 We used above emails to send a message to Yahoo Mail, Hotmail, and
Gmail, we used email corpus gets from the Second Conference on
Email and Anti-Spam CEAS 2005, Stanford University, Palo Alto,
CA [15].

 75

 We used valid mail accounts on Gmail, Yahoo Mail and Hotmail (my
own accounts) to send spam messages.

 We sent equal numbers of spam and non-spam emails for all mail
services.

 All three valid mails allow send spam message, that means there is no
filter to send and they only filter the receive spam emails.

Comparison aimed to count the amount and percentage of spam and non-
spam that showed up in the accounts' inboxes.

Table 5.2 Mail service with spam in the Inbox

Mail
service

Total
Inbox

Non-spam
Inbox

Spam % of
Inbox

Non-spam
% of Inbox

Permail 32 30 6.25% 93.75%
Gmail 54 24 55.66% 44.44%
Hotmail 59 23 61.02% 38.98%
Yahoo 72 32 55.66% 44.44%

Table 5.3 Mail service with spam in junk

Mail
service

Total
junk

Non-
Spam
in junk

Spam % of
junk

Permail 72 2 2.77%
Gmail 48 40 83.33%
Hotmail 44 34 77.27%
Yahoo 30 0 0

Table 5.4 Mail service with false positive and false negative
Mail
service

False
negative

False
positive

Permail 2 2
Gmail 30 8
Hotmail 36 10
Yahoo 40 0

 76

Compare the classification results of Permail, Hotmail, Yahoo and Gmail it
identify that the Permail is the best classifier to detect spam emails. The
results indicated that the Permail web spam detection showed the less false
positive.
5.2 Spam Classification Model Based on Naïve Bayesian

Since different users receive different types of legitimate emails, the process
of the training of the algorithm would be different for different users. Certain
words may have more occurrences in the legitimate emails of one user;
however, for another user, these words may have more occurrences in spam
emails. Therefore, in the training process of algorithm probabilities of
spaminess of words are computed differently and as a result, we would have
different classification for each user. This is needed the personalization of
the model. Our proposed model is based on Naïve Bayesian (NB)
algorithm[114].

5.2.1 Naïve Bayesian

As could be assumed by its name, the main idea of Naïve Bayesian spam
classifier is the use of Bayes theorem which is used widely in the context of
probability [115]. As such, assuming that given a specific word, we would
like to find out what is the probability of being spam for a message which
contains this word. From Bayes rule, we may write:

.(1)
Where
P(spam|word) is the probability of being spam for a message which
contains the specific word. Moreover,
P(spam) is the probability that a message is spam in general and is equal to
the number of spam emails we have in our data set divided by the total
number of emails.
P(word|spam) is the probability of occurrence of a specific word in spam
messages. We find this value from our training set or we may check the
frequency of occurring of this word in the spam emails.
P(word|non-spam) is the probability of occurrence of a specific word in
non-spam message. Similarly, we find this value from our training set or we
may check the frequency of occurring of this word in the non-spam emails.
Finally,

 77

P(non-spam) is the probability that a message is non-spam in general. This
value is equal to the number of non-spam emails we have in our training set
[115].

In the context of machine learning, the problem of classifying emails as
spam or non-spam is translated into a classy set of objects (emails in here).

For each object (email), we have a feature vector. For the emails, the
components of feature vectors are words. We choose these words according
to our training set. We find out the most frequently occurring words in our
training set. Then we form a vector size.

For each new email that we would like to classify as either spam or non-
spam email we first form its corresponding feature vector such that we put 1
for each word which is contained in the message and 0 for each word which
is not contained in the message.

A useful preprocess is to consider the message body and try to consider
features which help us to make the algorithm more efficient, we can consider
the words which belong to the same family as one word. For this aim, we
can first convert the message to a new message in which words of a same
family appear as one unique word. As an example, instead of words like
“Dealer”, “dealing” and “deal”, we may only use one word like “deal”
which is the root of this family [115].
All sections discussed above have been developed and the source code of all
programs on in the Appendix C.2.

5.2.2 Training Phase

If we compare the spam emails and non-spam emails, we will find out that
they are certain words, e.g. business related words, which have more
occurrence in spam emails than in non-spam emails. The proposed model is
to first provide a set of training examples containing both spam and non-
spam emails. This set has been downloaded from the Second Conference on
Email and Anti-Spam CEAS 2005, Stanford University, Palo Alto, CA [15].
Then the model will find out for each word the probability of occurring in
spam and non-spam emails in that training set.

 78

5.2.3 Testing Phase

As a result, when we have a new email which we would like to classify as
either spam or non-spam, first we find out the most interesting components
of that email (rather than pretty common words like: and, or, the, etc.).
Afterwards, we find out the probability of those components or words with
the values we found in the training process [116].

5.2.4 Rare Words

These words are the ones which cause the term 0/0 in the product term we
had previously for computation of the probability of spaminess. Since these
words are not available in our training set, there is no information about their
occurrence in spam and non-spam emails. Therefore, we may discard these
rare words when seeing them for the first time. In addition, we have neutral
words like “a”, “an”, “the”, “some” and etc. which are very common in
either spam or non-spam emails [117].

5.2.5 Functions of Algorithm

We used MATLAB to build proposed spam classification model. We list
function with short description as is shown follow:

Vocalist = getVocabList(n)

This function loads the pre-defined vocabulary list. n indicates the length of
our vocabulary list. This length-n vector is our general feature vectors where
features in spam classifications are different words. We got this vocabulary
list from Stanford online machine learning course computer assignments
[118].

Posting = porterStemmer (inString)

This function converts the words which have the same stem and belong to
the same family (e.g. dealing, dealer, deal) in one word which is the stem of
the family. The algorithm is called Porter Stemming algorithm[119].

[vocabList vocabHist] processEmail(email_contents,vocabList,vocabHist)

 79

This function converts each email into a vector of features (defined by
"vocalist" function mentioned previously) and removes unnecessary
characters such as punctuation marks. In addition, it returns the distribution
of the words from "vocalist" function in the email which we would like to
classify it. This function can update the vocabulary list if the algorithm faces
a new word which is not available in our vocabulary list.

[Inmail]= indicateEmail(email_contents,vocabList,vocabScore)

This function indicates whether the given email is spam or a legitimate email
based on the vocabulary list and the spamicity of the corresponding words of
the message.

5.2.6 Spam Classification Model Interface

For better understanding of the process, we have designed GUI as shown on
Figure 5.7. Through the GUI, users can provide the program with their own
email and check whether they are given email is classified as either spam or
legitimate email.
Figure 5.7 shows the screen that user can enter his message and click on
classify to classify messages as spam or non-spam.

 80

Figure 5.7 General interface of spam classification model

If a user writes message " dear, we give you big free wine gift" and write the
sender address" freeabc@free.com" and subject "free gift", then click on
classify button he will get the result shows that this message is spam as
shown on Figure 5.8 change on the color of the spam word from the brown
color to red color indicate the classification of the message.

Figure 5.8 Interface to classify the spam email

If a user writes message " Eid Mubark mum" and write the sender address"
shreef@yahoo.com" and subject "Eid Mubark", then click on classify button
he will get the result shows that this message is non-spam as shown in
Figure 5.9 when the color of the word non-spam will be white green color.

 81

Figure 5.9 Interface to classify the non-spam email

5.2.7 Evaluation Matrix

For tasks like email classifying that amounts of spam and non-spam emails
are different to each other, we have skewed classes. The metrics which we
evaluate classification algorithms with skewed classes are as the following:

The metrics which evaluate classification algorithms are as the following:
True positive
 Emails which are spam and we have classified them correctly.
True negative
 Emails which are not spam and we have classified them correctly.
False positive
 Emails which are not spam and we have classified them as spam
incorrectly.
False negative:
 Emails which are spam and we have classified them as non-spam
incorrectly.
Precision:
 Of all emails we have classified as spam, what fraction of them is really
spam spamming emails?[120]

 82

Here are the formulas of above metric:

݊݋݅ݏ݅ܿ݁ݎܲ =
݁ݒ݅ݐ݅ݏ݋݌	݁ݑݎݐ

݁ݒ݅ݐ݅ݏ݋݌	݁ݑݎݐ + ݁ݒ݅ݐ݅ݏ݋݌	݁ݏ݈݂ܽ
… . . (2)

Recall:
 Of all emails which are really spam, what fraction of them have been
classified correctly by the algorithm? [121]

Here are the formulas of above metric:

݈݈ܽܿ݁ݎ = ௧௥௨௘	௣௢௦௜௧௜௩௘
௧௥௨௘	௣௢௦௜௧௜௩௘ା௙௔௟௦௘	௡௘௚௔௧௜௩௘

 ……(3)

We call the metric through which we can compare performance of different

Algorithms as F1 score. F1 scores are given by the following formula:

1ܨ = 2	 × ௣௥௘௖௜௦௜௢௡	×௥௘௖௔௟௟
௣௥௘௖௜௦௜௢௡	ା	௥௘௖௔௟௟

………(4)

5.2.8 Evaluation Of Recall And Position

We have a large data set which we should use it for both trainings the
algorithm and testing the algorithm.

Based on the fraction of the data set to which we dedicate to training set, we
might see different performance of our algorithm.

The following Figure 5.10 shows the precision of the algorithm based on the
percentage of data dedicated to the training set.

 83

Table 5.5 Result accuracy of the classification model

Percentage of training set Accuracy (%)
0.1 94.9
0.2 97.6
0.3 97.8
0.4 98.3
0.5 98.7
0.6 98.9
0.7 98.5
0.8 98.8
0.9 99

Figure 5.10 Precision of the classification model

The next Figure 5.11 is corresponding to the second recall metric.

0

20

40

60

80

100

120

1 2 3 4 5 6

Accuracy (%)

Percentage of training
set

 84

Table 5.6 Result of Recall metric algorithm for classification model

Percentage of training set Spam recall (%)
0.1 77.5
0.2 91
0.3 92
0.4 95
0.5 96.5
0.6 100

Figure 5.11 Recall metric algorithm for classification model

0

20

40

60

80

100

120

1 2 3 4 5 6

Accuracy (%)

Percentage of training
set

 85

CHAPTER 6: CONCLUSION

 86

CHAPTER SIX
CONCLUSION

This chapter consists of a summary of the thesis followed by a conclusion
and recommendations for further research.

6.1 Summary

 The study was set out to build a user personalized spam detection
model.

 The first model to detect English spam, second to detect Arabic and
mixed (Arabic and English) spam emails

 And third personalized spam web based detection system, the reasons
and motivation for spam detection models, the limitation of the
resources for Arabic spam detection, no publish studies in this field,
there is some problem on performance on the most of famous free
mail systems and the negative economic effect of the spam problem.

 The study has also sought to know whether a proposed spam detection
solution can result in effective compared with any mail system like
Yahoo, Hotmail and Gmail, an algorithm used in the proposed Arabic
spam detection can give better result than others algorithms.

 The study sought to collect and build an Arabic corpus for testing the
Arabic spam detection models.

The main findings are summarized within the respective chapters: Arabic
spam detection model and personalized spam detection algorithm. This
section will synthesize the findings to obtain the study’s four research
objective.
1. Build a dynamic and personalized model to detect English spam

emails and then test the model against a standard data set.
 Design GUI to check the email classification.
 Apply Naïve Bayesian (NB) to the proposed model.
 Perform the preprocess.
 Probabilities of spaminess of words are computed differently

and as a result we would have different classification for each
user.

 87

 On the test phase, we find out the most interesting words of a
message.

 Evaluated the model by using recall and precision Matrix
algorithms [16].

2. Modified the English model to detect Arabic and mixed (English and
Arabic) spam emails.

 Extracted a set of features from the Arabic dataset. And
performed feature selection.

 Evaluated Naïve Bayesian algorithms to classify incoming
email as spam or non-spam.

 Used 10-fold cross validation to calculate the accuracy of the
classifiers.

3. Collected and built an Arabic corpus for testing the Arabic spam
detection model.

 Built a larger dataset of Arabic emails include spam and non-
spam. The first part is called a training dataset used to build
the model, and contains around 1066 emails, 512 spam
messages. While the second part is called a test data set, and
contains around 554 non-spam messages, and used to evaluate
the model.

 Build an Arabic spam words which are used in spam filtering,
it contains about 200 of foumase spam words.

4. Developed personalized spam detection web based (Permail) and

compare the spam filtering capabilities of Microsoft Hotmail, Google
Gmail, Yahoo Mail and Permail to determine the effectiveness of
spam filtering for each provider. The key measurements for this mail
system are the quantity and percentage of spam in the Inbox.

 Build an email database.
 Create a connection string.
 Develop ASP program files that can perform the transactions

between the front end (web pages) and back end (database).
 Examined performance of personalized spam detection.
 Compare the classification results of Permail, Hotmail, Yahoo

and Gmail to identify the best classifier to detect spam emails.

 88

One main point with existing theoretical on the spam detection and filtering
was the truth of that most the published literature on the English email and
there are no published detection models on Arabic messages. Currently this
situation creates an unjustified disadvantage in the community of Arabic
users. This thesis seems to point to the fact that Arabic spam detection has
still not covered from the researchers and also in this thesis an attempt is
made to extend the spam detection to dynamically follow the liking of the
user. It is termed personalized spam detection [7]. This study has used data
mining algorithm to show that the current published research and studies of
spam detection and filter are not working on the Arabic emails. The
theoretical arguments for this justification suggest the need for more
algorithms and models which will enable researchers to work on this poor
area.

6.2 Conclusion
This thesis has achieved the following:

 Provided a personalized spam detection mode and tested it.
 And compared it to the known filters : Yahoo,Hotmail and Gmail.

The proposed model outperformed these known filters
 Built an Arabic spam corpus.
 Provided a personalized spam detection mode for Arabic messages

and for mixed messages. Again, the proposed model outperformed the
above mentioned known filters.

6.3 Recommendations for Further Work

 Evaluate the algorithm on live mail systems.

 Collect a larger dataset of Arabic emails (spam and legitimate) to use
in the training Arabic model and build an international Arabic email
corpus and Arabic spam words which can be used in Arabic spam
filters.

 Use multi-level classification based on another technique (such as
ANN, SVM, etc.) to build the spam detection model.

 Build international Arabic spam detection system.

 89

REFERENCES
[1] J. B. Postel, “Simple Mail Transfer Protocol,” 1982.

[2] J. Myers, “Post Office Protocol,” 1996.

[3] M. R. Crispin, “Internet Message Access Protocol,” 2003.

[4] P. Sawers, “The Origin Of The Word Spam,” 2010.

[5] M. B. Prince, W. Adams, L. Holloway, E. Langheinrich, B. M. Dahl, and A. M.
Keller, “Understanding How Spammers Steal Your E-Mail Address : An
Analysis of the First Six Months of Data from Project Honey Pot,” no. March,
2003.

[6] S. Hershkop and S. J. Stolfo, “Identifying spam without peeking at the
contents,” Crossroads, vol. 11, no. 2, pp. 3–3, Dec. 2004.

[7] A. Ibrahim and I. M. Osman, “A Behavioral Spam Detection System,” pp. 77–
81, 2011.

[8] “World Summit on the Information Society [Online]
Availabe :http://www.itu.int/wsis/implementation/igf/ , [Accessecd,” no.
March, p. 2013, 2013.

[9] B. Stone, “Spam Doubles , Finding New Ways to Deliver Itself,” p. 404482,
2006.

[10] L. Y. A. Ve, P. A. L. O. A. Lto, and C. A. T. E. L. F. Ax, “Email Statistics
Report ,” pp. 2009–2013, 2013.

[11] H. A. Wahsheh and M. N. Al-kabi, “Analyzing the Popular Words to Evaluate
Spam in Arabic Web Pages,” vol. II, no. Ii, pp. 22–26.

[12] E. W. Kamen and B. S. Heck, “Fundamentals of Signals and Systems Using the
Web and MATLAB, ” ISBN-10: 0131687379, 3rd Edition, Pearson Edtion
Intrnational,2006 .

[13] B. S. Bird, E. Klein, E. Loper, and C. S. Bird, “Natural Language Processing
with Python,” p. 95472, 2009.

[14] U. M. Frontpage and C. Asp, Using Microsoft FrontPage to Create ASP pages
For example ... 2000.

[15] G. Cormack and T. Lynam, “Spam Corpus Creation for TREC,” pp. 0–1, 2005.

 90

[16] N. Nakashole, M. Theobald, and G. Weikum, “Scalable Knowledge Harvesting
with High Precision and High Recall,” no. 1955, 2010.

[17] S. Kale, R. Kumar, and S. Vassilvitskii, “Cross-Validation and Mean-Square
Stability.”

[18] B. Ripley, “ODBC Connectivity,” Source, pp. 1–34, 2012.

[19] J. Hovold, “Naive Bayes Spam Filtering Using Word-Position-Based
Attributes.”

[20] L. De Ferrari and S. Aitken, “Mining housekeeping genes with a Naive Bayes
classifier.,” BMC Genomics, vol. 7, p. 277, Jan. 2006.

[21] S. Dumais, “A Bayesian Approach to Filtering Junk E-Mail,” no. Cohen, 1996.

[22] J. S. Park and H. Lu, “Anti-Spam Approaches : Analyses and Comparisons
Anti-Spam Approaches : Analyses and Comparisons,” pp. 36–47, 2009.

[23] R. Kamboj, “A Rule Based Approach for Spam Detection,” 2010.

[24] C. Lucas, “An Overview of Spam Blocking Techniques.”

[25] S. Hird, “Technical Solutions for Controlling Spam,” pp. 4–6.

[26] “Blacklist vs . Whitelist.”
http://www.processor.com/articles/P2724/33p24/33p24chart1.pdf?guid

[27] I. Santos, C. Laorden, X. Ugarte-pedrero, B. Sanz, and P. G. Bringas, “Spam
Filtering through Anomaly Detection.”

[28] A. Ko, A. Chowdhury, and J. Alspector, “The Impact of Feature Selection on
Signature-Driven Spam Detection.”

[29] D. S. Eth-tutor, B. T. Supervisor, and B. Plattner, “Signature-based Extrusion
Detection,” no. August, 2008.

[30] J. Yan and P. Cho, “Enhancing Collaborative Spam Detection with Bloom
Filters,” 2006 22nd Annu. Comput. Secur. Appl. Conf., pp. 414–428, Dec.
2006.

[31] V. P. Deshpande, R. F. Erbacher, and C. Harris, “An Evaluation of Naïve
Bayesian Anti-Spam Filtering Techniques,” 2007 IEEE SMC Inf. Assur. Secur.
Work., no. June, 2007.

 91

[32] B. V. P. Deshpande, “An Evaluation Of Filtering Techniques In A Naïve
Bayesian Anti- Spam Filter,” p. 2004, 2004.

[33] A. Schwartz, “SpamAssassin,” 2008.

[34] J. Carpinter and R. Hunt, “Tightening the net : a review of current and next
generation spam filtering tools,” 1978.

[35] J. Basilico and T. Hofmann, “Unifying collaborative and content-based
filtering,” Twenty-first Int. Conf. Mach. Learn. - ICML ’04, p. 9, 2004.

[36] P. Graham, “Stopping Spam,” no. August, 2003.

[37] P. Taninpong and S. Ngamsuriyaroj, “Incremental Adaptive Spam Mail
Filtering Using Naive Bayesian Classification,” 2009 10th ACIS Int. Conf.
Softw. Eng. Artif. Intell. Netw. Parallel/Distributed Comput., pp. 243–248,
2009.

[38] Y. Chen, C. Lu, C. Huang, and P. R. A. Pproaches, “Anti-Spam Filter Based on
Naïve Bayes ,” pp. 1–5, 2009.

[39] H. Katirai, W. Ontario, L. Programming, and A. I. Group, “Filtering Junk E-
Mail :,” 1999.

[40] K. R. Gee, “Using latent semantic indexing to filter spam,” Proc. 2003 ACM
Symp. Appl. Comput. - SAC ’03, p. 460, 2003.

[41] C. O. Brien and C. Vogel, “Spam Filters : Bayes vs . Chi-squared ; Letters vs .
Words,” no. September, 2002.

[42] V. Metsis, “Spam Filtering with Naive Bayes – Which Naive Bayes ?,” 2006.

[43] T. Stone, “Parameterization of Na ¨ ıve Bayes for Spam Filtering,” 2003.

[44] A. Khalid, “A Multi-Phase Feature Selection Approach for the Detection of
SPAM,” vol. 1, no. 3, pp. 96–99, 2011.

[45] S. Braganza, “Variable Thresholding In Naïve Bayesian Spam Filters.”

[46] I. Androutsopoulos, J. Koutsias, K. V. Chandrinos, and C. D. Spyropoulos, “An
experimental comparison of naive Bayesian and keyword-based anti-spam
filtering with personal e-mail messages,” Proc. 23rd Annu. Int. ACM SIGIR
Conf. Res. Dev. Inf. Retr. - SIGIR ’00, pp. 160–167, 2000.

 92

[47] M. Gridach and N. Chenfour, “Developing a New Approach for Arabic
Morphological Analysis and Generation 2 . Overview of Arabic morphology,”
no. 1.

[48] M. Park, “CROSS-DIALECTAL ACOUSTIC DATA SHARING FOR
ARABIC SPEECH RECOGNITION Katrin Kirchhoff Department of Electrical
Engineering University of Washington , Seattle , WA , USA Dimitra Vergyri
SRI International.”

[49] P. Garthwaite and W. Hall, “Easy measures for evaluating non-English corpora
for language engineering. Some lessons from Arabic and Bengali.,” 2004.

[50] M. Al-Kabi, H. Wahsheh, I. Alsmadi, E. Al-Shawakfa, a. Wahbeh, and a. Al-
Hmoud, “Content-based analysis to detect Arabic web spam,” J. Inf. Sci., vol.
38, no. 3, pp. 284–296, Apr. 2012.

[51] H. A. Wahsheh and M. N. Al-kabi, “Spam Detection Methods for Arabic Web
Pages,” pp. 486–490, 2012.

[52] R. Jaramh, T. Saleh, S. Khattab, and I. Farag, “Detecting Arabic Spam Web
Pages Using Content Analysis Publication of Little Lion Scientific R & D ,
Islamabad PAKISTAN,” vol. 6, no. July 2010, 2011.

[53] H. A. Wahsheh and M. N. Al-kabi, “Detecting Arabic Web Spam,” no. 631, pp.
1–8, 2011.

[54] H. a. Wahsheh, M. N. Al-Kabi, and I. M. Alsmadi, “A link and Content Hybrid
Approach for Arabic Web Spam Detection,” Int. J. Intell. Syst. Appl., vol. 5,
no. 1, pp. 30–43, Dec. 2012.

[55] W. Ben and A. Karaa, “A NEW STEMMER TO I MPROVE I NFORMATION
RETRIEVAL,” vol. 5, no. 4, pp. 143–154, 2013.

[56] S. Khoja, “Stemming Arabic Text,” 1999.

[57] K. Taghva, R. Elkhoury, and J. Coombs, “Arabic Stemming Without A Root
Dictionary.”

[58] T. Subramaniam, H. A. Jalab, and A. Y. Taqa, “Overview of textual anti-spam
filtering techniques,” vol. 5, no. 12, pp. 1869–1882, 2010.

[59] O. Verview, “ITU WSIS T HEMATIC M EETING ON C OUNTERING S
PAM C URBING S PAM VIA T ECHNICAL M EASURES : A N.”

 93

[60] W. H. Y. U. S. E. Chrome, “Gmail Intermediate : Increasing Efficiency,” pp. 1–
9, 2012.

[61] M. Soranamageswari, “Histogram based Image Spam Detection using Back
propagation Neural Networks,” vol. 9, no. 5, 2010.

[62] N. Abhishek, “How Gmail Spam Filter Work ?,” 2010.

[63] B. S. Shaked, “Power User Guide to Gmail,” no. 800, p. 95472, 2012.

[64] L. Vincent, “Google Book Search: Document Understanding on a Massive
Scale,” Ninth Int. Conf. Doc. Anal. Recognit. (ICDAR 2007) Vol 2, pp. 819–
823, Sep. 2007.

[65] A. Kennedy, “Email Authentication Policy and Deployment Strategy for
Financial Services Firms,” 2013.

[66] “How Gmail Blocks Spam,” p. 2007, 2007.

[67] S. E. Pawar, P. P. S. E, and B. M. M, “CAPTCHA : A SECURITY MEASURE
AGAINST SPAM ATTACKS,” no. May, pp. 854–857, 2013.

[68] F. Aldrich, “Increase in spam , current controls are insufficient.”

[69] B. Slattery, “Google Explains Gmail ’ s Spam Filtering Process,” 2012.

[70] H. Long, “Windows Live Hotmail Spam Filter Lacking How Do Email Spam
Filters Work ? Sender Name,” 2011.

[71] D. Craddock, “We aren ’ t surprised that Hotmail ’ s spam protection is the best
in the business,” 2012.

[72] J. E. F. Lists, “Overview of the Junk E-mail Filter,” 2007.

[73] L. Smith, “Outlook 2013 Junk Email Filter,” 2013.

[74] “Deleting Dr . Oz,” 2013.

[75] J. Attenberg, K. Weinberger, A. Dasgupta, A. Smola, and M. Zinkevich,
“Collaborative Email-Spam Filtering with the Hashing-Trick,” Conf. Email
Anti-Spam, pp. 1–4, 2009.

[76] “Filters in Yahoo Mail ,” no. October, p. 3225, 2013.

[77] “Yahoo mail - spam filter failure,” p. 75.

 94

[78] “Yahoo is really creating a lot of problems,” p. 2012, 2012.

[79] G. Kennedy, “Corpus Linguistics,” pp. 2816–2820, 2001.

[80] S. Alansary, “Building an International Corpus of Arabic (ICA): Progress of
Compilation Stage.”

[81] J. Weston and M. Karlen, “Natural Language Processing (Almost) from
Scratch,” vol. 12, pp. 2493–2537, 2011.

[82] C. F. Meyer, “English Corpus Linguistics An Introduction.”

[83] K. Simov, G. Popova, P. Osenova, and A. G. B. Str, “HPSG-based syntactic
treebank of Bulgarian (BulTreeBank) The BulTreeBank Project Linguistic
Modelling Laboratory - CLPPI , Bulgarian Academy of Sciences,” p. 561.

[84] G. Cormack and T. Lynam, “TREC 2005 Spam Track Overview,” no. 2, pp. 1–
17, 2005.

[85] B. Klimt and Y. Yang, “Introducing the Enron Corpus.”

[86] G. V Cormack and T. R. Lynam, “TREC 2007 Public Corpus,” p. 2007, 2007.

[87] K. Duh and K. Kirchhoff, “POS Tagging of Dialectal Arabic : A Minimally
Supervised Approach.”

[88] V. Telephone and W. Sites, “Communicating with Patients Electronically,” vol.
20001, no. August, 2008.

[89] U. C. Email, U. B. Email, M. Marketing, G. R. Quick, M. M. Fast, M. Python,
F. S. One, and D. Rhodes, “What is Spam ? The History of Spam,” 1990.

[90] A. H. Wahbeh and M. Al-kabi, “Comparative Assessment of the Performance
of Three WEKA Text Classifiers Applied to Arabic Text,” vol. 21, no. 1, pp.
15–28, 2012.

[91] L. Khreisat, M. Ave, and M. Nj, “Arabic Text Classification Using N-Gram
Frequency Statistics A Comparative Study.”

[92] K. C. Ryding, “A Reference Grammar of Modern Standard Arabic,” no. 1998.

[93] S. Sohail, E. Hassanain, and S. Arabia, “Arabic Email Spam Detection
Techniques and Related Arabic Text Preprocessing Options : A Survey,” pp.
245–254.

 95

[94] B. R. Bornstein and D. Miao, “Bayesian Spam Filtering,” pp. 1–8, 2011.

[95] P. Graham, “Better Bayesian Filtering,” vol. 2003, no. January, 2003.

[96] I. Androutsopoulos, J. Koutsias, K. V Cbandrinos, and C. D. Spyropoulos, “An
Experimental Comparison of Naive Bayesian and Keyword-Based Anti-Spam
Filtering with Personal E-mail Messages,” pp. 160–167, 2000.

[97] “C. Elkan, ‘Naïve Bayesian Learning’, Technical Report No. CS97-557,” p.
557.

[98] M. I. Hussien, F. Olayah, M. Al-dwan, and A. Shamsan, “ARABIC TEXT
CLASSIFICATION USING SMO , NAÏVE BAYESIAN , J48
ALGORITHMS,” vol. 9, no. November, pp. 306–316, 2011.

[99] “R. M. Duwairi ‘Arabic Text Categorization’, The International Arab Journal
of Information Technology , Vol. 4, No.2, April 2007.,” vol. 4, no. 2, p. 2007,
2007.

[100] R. J. Mooney and L. Roy, “Content-Based Book Recommending Using
Learning for Text Categorization,” no. June, 2000.

[101] B. Glushko, T. V. Model, T. Weighting, and S. Calculation, “Plan for Today ’ s
Class The Boolean Model Boolean Search with Inverted Indexes,” no.
November, 2008.

[102] H. Joho and M. Sanderson, “Document frequency and term specificity,” 1972.

[103] T. Task and T. Classifica, “Text Classification and Naïve Bayes.”

[104] G. Bhagyashri, “A UTO E- MAILS C LASSIFICATION U SING B
AYESIAN,” vol. 3, no. 4, 2013.

[105] I. Feinerer, K. Hornik, and D. Meyer, “Text mining infrastructure in R,” vol.
25, no. 5, 2008.

[106] S. Manne and S. S. Fatima, “A Novel Approach for Text Categorization of
Unorganized data based with Information Extraction,” Int. J. Comput. Sci.
Eng., vol. 3, no. 7, pp. 2846–2854, 2011.

[107] M. Feld, M. Kipp, A. Ndiaye, and D. Heckmann, “Weka : Practical machine
learning tools and techniques with Java implementations,” 2007.

[108] I. Androutsopoulos, J. Koutsias, K. V Chandrinos, G. Paliouras, and C. D.
Spyropoulos, “An Evaluation of Naive Bayesian Anti-Spam Filtering.”

 96

[109] A. Gray and M. Haahr, “Personalised , Collaborative Spam Filtering.”

[110] D. Erickson and N. Mckeown, “The Effectiveness of Whitelisting : a User-
Study,” 2007.

[111] J. Jung and E. Sit, “An empirical study of spam traffic and the use of DNS
black lists,” Proc. 4th ACM SIGCOMM Conf. Internet Meas. - IMC ’04, p.
370, 2004.

[112] H. Wang, F. Meng, H. Jia, J. Cheng, and J. Xie, “A Keyword Filters Method
for Spam via Maximum Independent Sets,” vol. 7, no. 3, pp. 301–310, 2013.

[113] J. Dow, “Suggested Keywords For Spam Filters,” p. 2009, 2009.

[114] D. Zhang, “An Example of Text Classification with Naïve Bayes,” pp. 3–6,
2006.

[115] B. Vidakovic, “Probability , Conditional Probability and Bayes Formula,” pp.
1–13, 2004.

[116] B. G. Robinson, “A Statistical Approach to the Spam Problem,” 2003.

[117] S. Yifrah and G. Lev, “Machine Learning Final Project Spam Email Filtering,”
no. March, 2013.

[118] “Stanford Engineering Everywhere CS229 - Machine,” p. 2008, 2008.

[119] M. F. Porter, “The Porter Stemmer Algorithm,” vol. 14, no. 3, p. 1980, 1980.

[120] J. N. Prakash, “Precision and Relative Recall of Search Engines : A
Comparative Study of Google and Yahoo,” Singapore Journal of Library &
Information Management ,vol. 38, pp. 124–137,2009.

[121] D. M. W. Powers, “Evaluation : From Precision, Recall and F-Measure To Roc,
Informedness, Markedness & Correlation,” J. Mach. Learn. Technol., vol. 2,
no. 1, pp. 37–63, 2011.

 97

APPENDIXES

Appendix A

A.1 Word Spam

 98

The word spam comes from an old Monty Python Sketch first aired on
television in 1970 and written by Michael Palin and Terry Jones in which a
two customers are in a greasy café trying to order breakfast from a menu.
Spam is in almost every dish on the menu. The sketch shows the woman
trying to order something without spam, because she hates it. The word
spam for unwanted messages and electronic mail was derived from this
sketch. It became so famous for being disgusted and unwanted, that it
became a term for junk mail that no one wants, but always get[5]. The first
spam ever was a message from a Digital Equipment Corporation (DEC)
marketing rep to every Arpanet address on the west coast, or at least the
attempt that, they sent it on May 1978.

A.2 First Spam Message

Mail-from: DEC-MARLBORO rcvd at 3-May-78 0955-PDT
Date: 1 May 1978 1233-EDT
From: THUERK at DEC-MARLBORO
Subject: ADRIAN@SRI-KL
To: DDAY at SRI-KL, DAY at SRI-KL, DEBOER at UCLA-CCN,
To: WASHDC at SRI-KL, LOGICON at USC-ISI, SDAC at USC-ISI,
To: DELDO at USC-ISI, DELEOT at USC-ISI, DELFINO at USC-ISI,
To: DENICOFF at USC-ISI, DESPAIN at USC-ISI, DEUTSCH at SRI-KL,
To: DEUTSCH at PARC-MAXC, EMY at CCA-TENEX, DIETER at USC-ISIB,
To: DINES at AMES-67, MERADCON at SRI-KL, EPG-SPEC at SRI-KA,
To: DIVELY at SRI-KL, DODD at USC-ISI, DONCHIN at USC-ISIC,
To: JED at LLL-COMP, DORIN at CCA-TENEX, NYU at SRI-KA,
To: DOUGHERTY at USC-ISI, PACOMJ6 at USC-ISI,
To: DEBBY at UCLA-SECURITY, BELL at SRI-KL, JHANNON at SRI-KA,
To: DUBOIS at USC-ISI, DUDA at SRI-KL, POH at USC-ISI,
To: LES at SU-AI, EAST at BBN-TENEX, DEASTMAN at USC-ECL,
To: EBISU at I4-TENEX, NAC at USC-ISIE, ECONOMIDIS at I4-TENEX,
To: WALSH at SRI-KL, GEDWARDS at SRI-KL, WEDWARDS at USC-ISI,
To: NUSC at SRI-KL, RM at SU-AI, ELKIND at PARC-MAXC,
To: ELLENBY at PARC-MAXC, ELLIS at PARC-MAXC, ELLIS at USC-ISIB,
To: ENGELBART at SRI-KL, ENGELMORE at SUMEX-AIM,
To: ENGLISH at PARC-MAXC, ERNST at I4-TENEX,
To: ESTRIN at MIT-MULTICS, EYRES at USC-ISIC,
To: FAGAN at SUMEX-AIM, FALCONER at SRI-KL,
To: DUF at UCLA-SECURITY, FARBER at RAND-UNIX, PMF at SU-AI,
To: HALFF at USC-ISI, RJF at MIT-MC, FEIERBACH at I4-TENEX,
To: FEIGENBAUM at USC-ISI, FEINLER at SRI-KL,
To: FELDMAN at SUMEX-AIM, FELDMAN at SRI-KL, FERNBACH at LLL-COMP,
To: FERRARA at RADC-MULTICS, FERRETTI at SRI-KA,
To: FIALA at PARC-MAXC, FICKAS at USC-ISIC, AFIELD at I4-TENEX,
To: FIKES at PARC-MAXC, REF at SU-AI, FINK at MIT-MULTICS,
To: FINKEL at USC-ISIB, FINN at USC-ISIB, AFGWC at BBN-TENEX,

 99

To: FLINT at SRI-KL, WALSH at SRI-KL, DRXAN at SRI-KA,
To: FOX at SRI-KL, FRANCESCHINI at MIT-MULTICS,
To: SAI at USC-ISIC, FREDRICKSON at RAND-RCC, ETAC at BBN-TENEXB,
To: FREYLING at BBN-TENEXE, FRIEDLAND at SUMEX-AIM,
To: FRIENDSHUH at SUMEX-AIM, FRITSCH at LLL-COMP, ME at SU-AI,
To: FURST at BBN-TENEXB, FUSS at LLL-COMP, OP-FYE at USC-ISIB,
To: SCHILL at USC-ISIC, GAGLIARDI at USC-ISIC,
To: GAINES at RAND-UNIX, GALLENSON at USC-ISIB,
To: GAMBLE at BBN-TENEXE, GAMMILL at RAND-UNIX,
To: GANAN at USC-ISI, GARCIA at SUMEX-AIM,
To: GARDNER at SUMEX-AIM, MCCUTCHEN at SRI-KL,
To: GARDNER at MIT-MULTICS, GARLICK at SRI-KL,
To: GARVEY at SRI-KL, GAUTHIER at USC-ISIB,
To: USGS-LIA at BBN-TENEX, GEMOETS at I4-TENEX,
To: GERHART at USC-ISIB, GERLA at USC-ISIE, GERLACH at I4-TENEX,
To: GERMAN at HARV-10, GERPHEIDE at SRI-KA, DANG at SRI-KL,
To: GESCHKE at PARC-MAXC, GIBBONS at CMU-10A,
To: GIFFORD.COMPSYS at MIT-MULTICS, JGILBERT at BBN-TENEXB,
To: SGILBERT at BBN-TENEXB, SDAC at USC-ISI,
To: GILLOGLY at RAND-UNIX, STEVE at RAND-UNIX,
To: GLEASON at SRI-KL, JAG;BIN(1525) at UCLA-CCN,
To: GOLD at LL-11, GOLDBERG at USC-ISIB, GOLDGERG at SRI-KL,
To: GROBSTEIN at SRI-KL, GOLDSTEIN at BBN-TENEXB,
To: DARPM-NW at BBN-TENEXB, GOODENOUGH at USC-ISIB,
To: GEOFF at SRI-KL, GOODRICH at I4-TENEX, GOODWIN at USC-ISI,
To: GOVINSKY at SRI-KL, DEAN at I4-TENEX, TEG at MIT-MULTICS,
To: CCG at SU-AI, EPG-SPEC at SRI-KA, GRISS at USC-ECL,
To: BJG at RAND-UNIX, MCCUTCHEN at SRI-KL, GROBSTEIN at SRI-KL,
To: MOBAH at I4-TENEX, GUSTAFSON at USC-ISIB, GUTHARY at SRI-KL,
To: GUTTAG at USC-ISIB, GUYTON at RAND-RCC,
To: ETAC-AD at BBN-TENEXB, HAGMANN at USC-ECL, HALE at I4-TENEX,
To: HALFF at USC-ISI, DEHALL at MIT-MULTICS,
To: HAMPEL at LLL-COMP, HANNAH at USC-ISI,
To: NORSAR-TIP at USC-ISIC, SCRL at USC-ISI, HAPPY at SRI-KL,
To: HARDY at SRI-KL, IMPACT at SRI-KL, KLH at SRI-KL,
To: J33PAC at USC-ISI, HARRISON at SRI-KL, WALSH at SRI-KL,
To: DRCPM-FF at BBN-TENEXB, HART at AMES-67, HART at SRI-KL,
To: HATHAWAY at AMES-67, AFWL at I4-TENEX, BHR at RAND-UNIX,
To: RICK at RAND-UNIX, DEBE at USC-ISIB, HEARN at USC-ECL,
To: HEATH at UCLA-ATS, HEITMEYER at BBN-TENEX, ADTA at SRI-KA,
To: HENDRIX at SRI-KL, CH47M at BBN-TENEXB, HILLIER at SRI-KL,
To: HISS at I4-TENEX, ASLAB at USC-ISIC, HOLG at USC-ISIB,
To: HOLLINGWORTH at USC-ISIB, HOLLOWAY at HARV-10,
To: HOLMES at SRI-KL, HOLSWORTH at SRI-KA, HOLT at LLL-COMP,
To: HOLTHAM at LL, DHOLZMAN at RAND-UNIX, HOPPER at USC-ISIC,
To: HOROWITZ at USC-ISIB, VSC at USC-ISI, HOWARD at LLL-COMP,
To: HOWARD at USC-ISI, PURDUE at USC-ISI, HUBER at RAND-RCC,
To: HUNER at RADC-MULTICS, HUTSON at AMES-67, IMUS at USC-ISI,
To: JACOBS at USC-ISIE, JACOBS at BBN-TENEXB,
To: JACQUES at BBN-TENEXB, JARVIS at PARC-MAXC,
To: JEFFERS at PARC-MAXC, JENKINS at PARC-MAXC,
To: JENSEN at SRI-KA, JIRAK at SUMEX-AIM, NICKIE at SRI-KL,

 100

To: JOHNSON at SUMEX-AIM, JONES at SRI-KL, JONES at LLL-COMP,
To: JONES at I4-TENEX, RLJ at MIT-MC, JURAK at USC-ECL,
To: KAHLER at SUMEX-AIM, MWK at SU-AI, KAINE at USC-ISIB,
To: KALTGRAD at UCLA-ATS, MARK at UCLA-SECURITY, RAK at SU-AI,
To: KASTNER at USC-ISIB, KATT at USC-ISIB,
To: UCLA-MNC at USC-ISI, ALAN at PARC-MAXC, KEENAN at USC-ISI,
To: KEHL at UCLA-CCN, KELLEY at SRI-KL, BANANA at I4-TENEX,
To: KELLOGG at USC-ISI, DDI at USC-ISI, KEMERY at SRI-KL,
To: KEMMERER at UCLA-ATS, PARVIZ at UCLA-ATS, KING at SUMEX-AIM,
To: KIRSTEIN at USC-ISI, SDC at UCLA-SECURITY,
To: KLEINROCK at USC-ISI, KLEMBA at SRI-KL, CSK at USC-ISI,
To: KNIGHT at SRI-KL, KNOX at USC-ISI, KODA at USC-ISIB,
To: KODANI at AMES-67, KOOIJ at USC-ISI, KREMERS at SRI-KL,
To: BELL at SRI-KL, KUNZELMAN at SRI-KL, PROJX at SRI-KL,
To: LAMPSON at PARC-MAXC, SDL at RAND-UNIX, JOJO at SRI-KL,
To: SDC at USC-ISI, NELC3030 at USC-ISI,
To: LEDERBERG at SUMEX-AIM, LEDUC at SRI-KL, JSLEE at USC-ECL,
To: JACOBS at USC-ISIE, WREN at USC-ISIB, LEMONS at USC-ISIB,
To: LEUNG at SRI-KL, J33PAC at USC-ISI, LEVIN at USC-ISIB,
To: LEVINTHAL at SUMEX-AIM, LICHTENBERGER at I4-TENEX,
To: LICHTENSTEIN at USC-ISI, LIDDLE at PARC-MAXC,
To: LIEB at USC-ISIB, LIEBERMAN at SRI-KL, STANL at USC-ISIE,
To: LIERE at I4-TENEX, DOCB at USC-ISIC, LINDSAY at SRI-KL,
To: LINEBARGER at AMES-67, LIPKIS at USC-ECL, SLES at USC-ISI,
To: LIS at SRI-KL, LONDON at USC-ISIB, J33PAC at USC-ISI,
To: LOPER at SRI-KA, LOUVIGNY at SRI-KL, LOVELACE at USC-ISIB,
To: LUCANIC at SRI-KL, LUCAS at USC-ISIB, DCL at SU-AI,
To: LUDLAM at UCLA-CCN, YNGVAR at SRI-KA, LYNCH at SRI-KL,
To: LYNN at USC-ISIB, MABREY at SRI-KL, MACKAY at AMES-67,
To: MADER at USC-ISIB, MAGILL at SRI-KL, KMAHONEY at BBN-TENEX,
To: MANN at USC-ISIB, ZM at SU-AI, MANNING at USC-ISI,
To: MANTIPLY at I4-TENEX, MARIN at I4-TENEX, SCRL at USC-ISI,
To: HARALD at SRI-KA, GLORIA-JEAN at UCLA-CCN, MARTIN at USC-ISIC,
To: WMARTIN at USC-ISI, GRM at RAND-UNIX, MASINTER at USC-ISI,
To: MASON at USC-ISIB, MATHIS at SRI-KL, MAYNARD at USC-ISIC,
To: MCBREARTY at SRI-KL, MCCALL at SRI-KA, MCCARTHY at SU-AI,
To: MCCLELLAND at USC-ISI, DORIS at RAND-UNIX, MCCLURG at SRI-KL,
To: JOHN at I4-TENEX, MCCREIGHT at PARC-MAXC, MCCRUMB at USC-ISI,
To: DRXTE at SRI-KA
cc: BPM at SU-AI

Appendix B

B.1 Suggested English Keywords for Spam Filters

 101

Free!, 50% off!, Click Here, Call now!, Subscribe, Earn $, Discount!, Eliminate Debt,
enlargement, Double your income, You're a Winner!, Reverses Aging, "Hidden",
Information you requested, "Stop" or "Stops", Lose Weight, medication, Multi level
Marketing, Million Dollars, Opportunity, Compare, Removes, Collect
Amazing, Cash Bonus, Promise You, Credit, Loans, Satisfaction Guaranteed, Serious
Cash, Search Engine Listings, Act Now!, All New, All Natural, Avoid Bankruptcy, As
Seen On..., Buy Direct, Casino, Cash, Consolidate Your Debt, Special Promotion, Easy
Terms, Get Paid, Guarantee, Guaranteed, Great offer, Give it away, Giving it away, Join
millions, Meet Singles, MLM, mortgage, No cost, No fees, Offer, One time, Online
pharmacy, Online marketing, Order Now, Please Read, Don't Delete, Save up to, Time
limited, Unsecured debt or credit, Vacation, Viagra, Visit our web site, While Supplies
last, Why pay more?, Winner, Work at home, You've been selected.

B.2 Arabic Spam Keywords for Spam Filters

Table B.1 Arabic spam words for spam filters
إضافیةمكاسب نقدیة كلمة السر التمویل مرحبا قریبا %100طبیعي
 عضویة حره زیارة موقعنا على الانترنت الارباح المحتملة رخیص اتصل انتبھ

اقل % 50 استثمار الانترنت ائتمان الانترنت علىلاعمال التجاریة ا الوصول الحر
 ھدیة مجانیة درجة علمیة على الانترنت الدخل الاضافي أسھم صدیق مشتریات

مجاني% 100 دخلك افتح قرار النقد السریع الربح الخالص
 اخسر وزنك اسعار معقولة إنضم للملایین البطاقة عروض تخفیضات

 السعر الأقل الكسب خلال اسبوع ضاعف دخلك اكسب اربح تسوق
 عضویة حره قارن بین الاسعار صدیقي العزیز تجارة الفوز زیارة

رائعةصفقة مكاتب الائتمان السعر الأفضل حلول فرصة مال
%50تخفیضات تصل الى سعر الاسھم قبول عطلة ملیون لا تتردد
 الدخل المنزل البطاقات المقبولة كسب المال السریع حریة تجریبي نجاح

 انھا فعالة بطاقات الائتمانیة اعادة التمویل معجزة مجانا شریك
المراھقةسن الأعمال التجاریة المنزلیة التوظیف المنزلي حیاة معتمد معدل

 الوصول الحر قارن بین الأسعار التحمیل المجاني ضمان مئھ تحمیل
 عرض رائع الاشتراك مجانا الیوم التثبیت المجاني عاجل محدود فوریھ
 منحھ مالیھ الالغاء فى اى وقت إنخفاض شدید شھادة تھنئھ مدھش
 عینة مجانیة خالیة من المخاطر استشارة مجانیة وصول علاوة شراء

 البرید المجاني إستضافة مجانیة التركیب مجاني مبیعات كلفة بالمجان
 مره واحدة في العمر أسعار مزھلة فقط طلبات اعدكم
 إحصل علیھ الآن تنتھى العروض اداء احفظ قرض

 العلامة التجاریة الجدیدة برامج مجانیة فرصة صفقة عروض
 الف نجاح تثبیت

Appendix C

C.1 Personalized Spam Detection Email Code

 102

Personalized Spam Detection Email Home page
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>Home Page</title>
<link href="spam.css" rel="stylesheet" type="text/css" />
<link href="oneColLiqCtrHdrhome.css" rel="stylesheet" type="text/css" />
<style type="text/css">
.container.content h3 {
 font-family: Verdana, Geneva, sans-serif;
}
.container.content p {
 font-family: Verdana, Geneva, sans-serif;
}
.container.content p {
 font-family: Times New Roman, Times, serif;
}
.container.content p {
 font-family: Courier New, Courier, monospace;
}
.container.content.promo a strong samp {
 font-family: Verdana, Geneva, sans-serif;
}
.container.content.promo a strong samp {
 font-family: Georgia, Times New Roman, Times, serif;
}

.container.content h3 {
 font-family: Verdana, Geneva, sans-serif;
}
.container.content p {
 font-family: Verdana, Geneva, sans-serif;
}
.container.content p {
 font-family: Times New Roman, Times, serif;
}
.container.content p {
 font-family: Courier New, Courier, monospace;
}
.container.content.promo a strong samp {
 font-family: Verdana, Geneva, sans-serif;
}
.container.content.promo a strong samp {
 font-family: Georgia, Times New Roman, Times, serif;

 103

}
</style>
</head>
<body>
<div class="container">
 <div class="header">
 <h1 align="center">Personalized Spam Detection
Email</h1>
 <!-- end.header --></div>
 <div class="content">
 <h1 align="center"> </h1>
 <h1 align="center" class="promo"><samp>User
Login</samp></h1>
 <p align="center"> </p>
 <p>welcome to your family mail</p>
 </div>
 <div class="footer">
 <div align="center"><font face="Georgia,
Times New Roman, Times, serif">All right resevied Personalized 2013 ©
</div>
 <!-- end.footer --></div>
 <!-- end.container --></div>
</body>
</html>
Create New User
<%@LANGUAGE="VBSCRIPT" CODEPAGE="65001"%>
<!--#include file="Connections/emailcn.asp" -->
<%
' *** Validate request to log in to this site.
MM_LoginAction = Request.ServerVariables("URL")
If Request.QueryString <> "" Then MM_LoginAction = MM_LoginAction + "?" +
Server.HTMLEncode(Request.QueryString)
MM_valUsername = CStr(Request.Form("Login"))
If MM_valUsername <> "" Then
 Dim MM_fldUserAuthorization
 Dim MM_redirectLoginSuccess
 Dim MM_redirectLoginFailed
 Dim MM_loginSQL
 Dim MM_rsUser
 Dim MM_rsUser_cmd
 MM_fldUserAuthorization = ""
 MM_redirectLoginSuccess = "inbox.asp"
 MM_redirectLoginFailed = "login.asp"
 MM_loginSQL = "SELECT login, pwd"
 If MM_fldUserAuthorization <> "" Then MM_loginSQL = MM_loginSQL & "," &
MM_fldUserAuthorization

 104

 MM_loginSQL = MM_loginSQL & " FROM login WHERE login =? AND pwd =?"
 Set MM_rsUser_cmd = Server.CreateObject ("ADODB.Command")
 MM_rsUser_cmd.ActiveConnection = MM_emailcn_STRING
 MM_rsUser_cmd.CommandText = MM_loginSQL
 MM_rsUser_cmd.Parameters.Append MM_rsUser_cmd.CreateParameter("param1",
200, 1, 255, MM_valUsername) ' adVarChar
 MM_rsUser_cmd.Parameters.Append MM_rsUser_cmd.CreateParameter("param2",
200, 1, 255, Request.Form("pwd")) ' adVarChar
 MM_rsUser_cmd.Prepared = true
 Set MM_rsUser = MM_rsUser_cmd.Execute
 If Not MM_rsUser.EOF Or Not MM_rsUser.BOF Then
 ' username and password match - this is a valid user
 Session("MM_Username") = MM_valUsername
 If (MM_fldUserAuthorization <> "") Then
 Session("MM_UserAuthorization") =
CStr(MM_rsUser.Fields.Item(MM_fldUserAuthorization).Value)
 Else
 Session("MM_UserAuthorization") = ""
 End If
 if CStr(Request.QueryString("accessdenied")) <> "" And false Then
 MM_redirectLoginSuccess = Request.QueryString("accessdenied")
 End If
 MM_rsUser.Close
 Response.Redirect(MM_redirectLoginSuccess)
 End If
 MM_rsUser.Close
 Response.Redirect(MM_redirectLoginFailed)
End If
%>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>Home Page</title>
<link href="spam.css" rel="stylesheet" type="text/css" />
<link href="oneColLiqCtrHdrhome.css" rel="stylesheet" type="text/css" />
<style type="text/css">
.container.content h3 {
 font-family: Verdana, Geneva, sans-serif;
}
.container.content form div table tr td {
 font-family: Tahoma, Geneva, sans-serif;
}
.container.content form div table tr td {
 font-family: Georgia, Times New Roman, Times, serif;

 105

}
.container.content form div table tr td {
 font-family: Georgia, Times New Roman, Times, serif;
</style>
</head>
<body>
<div class="container">
 <div class="header"><!-- end.header -->
 <h1 align="center">Personalized Spam Detection
Email</h1>
 </div>
 <div class="content">
 <h2 align="center">New User</h2>
 <p>Please enter all the Information on the form
 </p>
 <table width="361" border="1" bgclor="#99CC99">
 <tr>
 <td width="162" bgcolor="#669999">Login</td>
 <td width="183" bgcolor="#669999">
 <input type="text" name="uid" id="uid2" />
 </td>
 </tr>
 <tr>
 <td bgcolor="#669999">Password</td>
 <td bgcolor="#669999">
 <input type="password" name="uid2" id="uid2" />
 </td>
 </tr>
 <tr>
 <td bgcolor="#669999">Renter Password</td>
 <td bgcolor="#669999">
 <input type="password" name="uid9" id="uid9" />
 </td>
 </tr>
 <tr>
 <td bgcolor="#669999">First Name</td>
 <td bgcolor="#669999">
 <input type="text" name="fnid" id="fnid" />
 </td>
 </tr>
 <tr>
 <td bgcolor="#669999">Last Name</td>
 <td bgcolor="#669999">
 <input type="text" name="lnid" id="lnid" />
 </td>
 </tr>

 106

 <tr>
 <td bgcolor="#669999">Job</td>
 <td bgcolor="#669999">
 <select name="jid" id="jid">
 <option>Student</option>
 <option>Teacher</option>
 <option>Employee</option>
 </select>
 </td>
 </tr>
 <tr>
 <td bgcolor="#669999">Date of Birth</td>
 <td bgcolor="#669999">
 <input type="text" name="uid6" id="uid6" />
 </td>
 </tr>
 <tr>
 <td bgcolor="#669999">Gender</td>
 <td bgcolor="#669999">
 <input type="radio" name="radio" id="mid" value="mid" />
 <label for="mid">Male
 <input type="radio" name="radio" id="mid2" value="fid" />
 Female</label>
 </td>
 </tr>
 <tr>
 <td bgcolor="#669999">Country</td>
 <td bgcolor="#669999">
 <select name="cid" size="1" id="cid">
 <option>Egypt</option>
 <option>Oman</option>
 <option>Saudi</option>
 <option>Kwait</option>
 <option>Sudan</option>
 </select>
 </td>
 </tr>
 <tr>
 <td bgcolor="#669999"><input type="submit" name="sid" id="sid" value="Send"
/></td>
 <td bgcolor="#669999"> </td>
 </tr> </table>
 <div align="center"> </div>
 </p>

 107

 <div align="center"><font face="Georgia,
Times New Roman, Times, serif">All right resevied Personalized 2013 ©
</div>
 </div><div class="footer">
 <!-- end.footer --></div>
 <!-- end.container --></div>
</body>
</html>
User Login
<%@LANGUAGE="VBSCRIPT" CODEPAGE="65001"%>
<!--#include file="Connections/emailcn.asp" -->
<%
' *** Validate request to log in to this site.
MM_LoginAction = Request.ServerVariables("URL")
If Request.QueryString <> "" Then MM_LoginAction = MM_LoginAction + "?" +
Server.HTMLEncode(Request.QueryString)
MM_valUsername = CStr(Request.Form("Login"))
If MM_valUsername <> "" Then
 Dim MM_fldUserAuthorization
 Dim MM_redirectLoginSuccess
 Dim MM_redirectLoginFailed
 Dim MM_loginSQL
 Dim MM_rsUser
 Dim MM_rsUser_cmd
 MM_fldUserAuthorization = ""
 MM_redirectLoginSuccess = "inbox.asp"
 MM_redirectLoginFailed = "login.asp"
 MM_loginSQL = "SELECT login, pwd"
 If MM_fldUserAuthorization <> "" Then MM_loginSQL = MM_loginSQL & "," &
MM_fldUserAuthorization
 MM_loginSQL = MM_loginSQL & " FROM login WHERE login =? AND pwd =?"
 Set MM_rsUser_cmd = Server.CreateObject ("ADODB.Command")
 MM_rsUser_cmd.ActiveConnection = MM_emailcn_STRING
 MM_rsUser_cmd.CommandText = MM_loginSQL
 MM_rsUser_cmd.Parameters.Append MM_rsUser_cmd.CreateParameter("param1",
200, 1, 255, MM_valUsername) ' adVarChar
 MM_rsUser_cmd.Parameters.Append MM_rsUser_cmd.CreateParameter("param2",
200, 1, 255, Request.Form("pwd")) ' adVarChar
 MM_rsUser_cmd.Prepared = true
 Set MM_rsUser = MM_rsUser_cmd.Execute
 If Not MM_rsUser.EOF Or Not MM_rsUser.BOF Then
 ' username and password match - this is a valid user
 Session("MM_Username") = MM_valUsername
 If (MM_fldUserAuthorization <> "") Then
 Session("MM_UserAuthorization") =
CStr(MM_rsUser.Fields.Item(MM_fldUserAuthorization).Value)

 108

 Else
 Session("MM_UserAuthorization") = ""
 End If
 if CStr(Request.QueryString("accessdenied")) <> "" And false Then
 MM_redirectLoginSuccess = Request.QueryString("accessdenied")
 End If
 MM_rsUser.Close
 Response.Redirect(MM_redirectLoginSuccess)
 End If
 MM_rsUser.Close
 Response.Redirect(MM_redirectLoginFailed)
End If
%>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>Home Page</title>
<link href="spam.css" rel="stylesheet" type="text/css" />
<link href="oneColLiqCtrHdrhome.css" rel="stylesheet" type="text/css" />
<style type="text/css">
.container.content h3 {
 font-family: Verdana, Geneva, sans-serif;
}
.container.content form div table tr td {
 font-family: Tahoma, Geneva, sans-serif;
}
.container.content form div table tr td {
 font-family: Georgia, Times New Roman, Times, serif;
}
.container.content form div table tr td {
 font-family: Georgia, Times New Roman, Times, serif;
</style>
</head>
<body>
<div class="container">
 <div class="header"><!-- end.header -->
 <h1 align="center">Personalized Spam Detection
Email</h1>
 </div>
 <div class="content">
 <h1 align="center"> </h1>
 <form ACTION="<%=MM_LoginAction%>" METHOD="POST" name="loginfr">
 <div align="center">
 <table width="413" border="0">

 109

 <tr>
 <td width="94" bgcolor="#99CC99">Login</td>
 <td width="309" bgcolor="#99CC99"><input name="Login" type="text" id="Login"
size="18" />
 @permail.com</td>
 </tr>
 <tr>
 <td width="94" bgcolor="#99CC99">Password</td>
 <td bgcolor="#99CC99"><input name="pwd" type="password" id="pwd" size="18"
/></td>
 </tr>
 <tr>
 <td bgcolor="#99CC99"><input type="submit" name="log" id="log" value="Login"
/></td>
 <td bgcolor="#99CC99"><input type="button" name="button" id="button" value="New
User" /></td>
 </tr>
 </table>
 </div>
 </form>
 <div align="center"> </div>
 </p>
 <div align="center"><font face="Georgia,
Times New Roman, Times, serif">All right resevied Personalized 2013 ©
</div>
 </div><div class="footer">
 <!-- end.footer --></div>
 <!-- end.container --></div>
</body>
</html>
User Inbox
<%@LANGUAGE="VBSCRIPT"%>
<%
' *** Logout the current user.
MM_Logout = CStr(Request.ServerVariables("URL")) & "?MM_Logoutnow=1"
If (CStr(Request("MM_Logoutnow")) = "1") Then
 Session.Contents.Remove("MM_Username")
 Session.Contents.Remove("MM_UserAuthorization")
 MM_logoutRedirectPage = "index.htm"
 ' redirect with URL parameters (remove the "MM_Logoutnow" query param).
 if (MM_logoutRedirectPage = "") Then MM_logoutRedirectPage =
CStr(Request.ServerVariables("URL"))
 If (InStr(1, UC_redirectPage, "?", vbTextCompare) = 0 And Request.QueryString <> "")
Then
 MM_newQS = "?"
 For Each Item In Request.QueryString

 110

 If (Item <> "MM_Logoutnow") Then
 If (Len(MM_newQS) > 1) Then MM_newQS = MM_newQS & "&"
 MM_newQS = MM_newQS & Item & "=" &
Server.URLencode(Request.QueryString(Item))
 End If
 Next
 if (Len(MM_newQS) > 1) Then MM_logoutRedirectPage = MM_logoutRedirectPage &
MM_newQS
 End If
 Response.Redirect(MM_logoutRedirectPage)
End If
%>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>User Inbox</title>
<link href="spam.css" rel="stylesheet" type="text/css" />
<link href="twoColLiqLtHdrinbx.css" rel="stylesheet" type="text/css" /><!--[if lte IE
7]>
<style>
.content { margin-right: -1px; } /* this 1px negative margin can be placed on any of the
columns in this layout with the same corrective effect. */
ul.nav a { zoom: 1; } /* the zoom property gives IE the hasLayout trigger it needs to
correct extra whiltespace between the links */
</style>
<![endif]-->
<style type="text/css">
.container.sidebar1.nav li a {
 font-family: Verdana, Geneva, sans-serif;
}
.container.sidebar1.nav li a {
 font-family: Georgia, Times New Roman, Times, serif;
}
</style>
</head>
<body>
<div class="container">
 <div class="header"><!-- end.header -->
 <div align="center">
 <h3> Personalized Spam Detection Email </h3>
 </div>
 </div>
 <div class="sidebar1">
 <ul class="nav">

 111

 login by other user
 Junk Mail
 Whitelist
 Blacklist
 <a href="<%= MM_Logout %>">Logout

 <!-- end.sidebar1 --></div>
 <div class="content">
 <h2>User Inbox</h2>
 <p>
<%
 set email=server.CreateObject("ADODB.Connection")
 set rs=server.CreateObject("ADODB.RecordSet")
 set rs1=server.CreateObject("ADODB.RecordSet")
 set rslog=server.CreateObject("ADODB.RecordSet")
 dim sqlstr
 dim sqlbl
 dim sqlwl
 logsess = Session("MM_Username")
 response.write(""& logsess &"@permail.com")
 mbox=Request("mbox")
 response.write(""& mbox &"")
 nspm=Request("nspm")
 response.write(""& nspm &"")
 page=request("page")
 email.open "permail"
 rslog.open "Select * from login where login= '"& logsess &"'",email
 user = "" & rslog(0) &""
 rs.open "SELECT * FROM message INNER JOIN usermsg ON
message.msid=usermsg.msid WHERE usermsg.uid = "& user &"",email
 response.write("<p align=left>")
 on error resume next
 rs.pagesize= 22
 response.write("<p align=left><tap align=left><form name=msgfr
action=junk.asp method= post>")
 response.write("<p align=left><table align=center cellspacing=2 cellpadding=0
border=0 >")
 Response.Write("<tr bgcolor=#99CC99><th
align=center>No<th align=center>Delete Message<th>Is Spam<th>From<th
align=center>Date<th>Subject")
 if len(page)>0 then
 rs.absolutepage=page
 else
 rs.absolutepage=1
 end if
 bgflip=true

 112

 for i=1 to rs.pagesize
 if not rs.EOF then
 if bgflip then
 Response.Write("<tr bgcolor=#eeeeee>")
 else
 Response.Write("<tr bgcolor=#eeeeff>")
 end if
 bgflip=not bgflip
 Response.Write("<td align=center><td align=center><a href=msgdel.asp?msgid="
& rs(0) & "> Delete <td
align=center><font face=Times New Roman
size=4 color=red>Spam<td align=left >" & rs(1)
& " <td align=left >" & rs(3) & " <td
align=left ><a href=msgcont.asp?msgid=" &
rs(0) & ">" & rs(4) & " <td align=left >")
 rs.MoveNext
 end if
 next
 response.write("</table>")
 response.write("</table>")
 response.write("</form>")
 rs.Close
 rs1.Close
 email.Close
 set rs=nothing
 set rs1=nothing
 set email=nothing
 %>
 <!-- end.content --></div>
 <div class="footer">
 <p align="center"><font face="Georgia,
Times New Roman, Times, serif">All right resevied Personalized 2013
©</p>
 <!-- end.footer --></div>
 <!-- end.container --></div>
</body>
</html>
User Junk Mail
<%@LANGUAGE="VBSCRIPT"%>
<%
' *** Logout the current user.
MM_Logout = CStr(Request.ServerVariables("URL")) & "?MM_Logoutnow=1"
If (CStr(Request("MM_Logoutnow")) = "1") Then
 Session.Contents.Remove("MM_Username")
 Session.Contents.Remove("MM_UserAuthorization")
 MM_logoutRedirectPage = "index.htm"

 113

 ' redirect with URL parameters (remove the "MM_Logoutnow" query param).
 if (MM_logoutRedirectPage = "") Then MM_logoutRedirectPage =
CStr(Request.ServerVariables("URL"))
 If (InStr(1, UC_redirectPage, "?", vbTextCompare) = 0 And Request.QueryString <> "")
Then
 MM_newQS = "?"
 For Each Item In Request.QueryString
 If (Item <> "MM_Logoutnow") Then
 If (Len(MM_newQS) > 1) Then MM_newQS = MM_newQS & "&"
 MM_newQS = MM_newQS & Item & "=" &
Server.URLencode(Request.QueryString(Item))
 End If
 Next
 if (Len(MM_newQS) > 1) Then MM_logoutRedirectPage = MM_logoutRedirectPage &
MM_newQS
 End If
 Response.Redirect(MM_logoutRedirectPage)
End If
%>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>Junk Mail</title>
<link href="spam.css" rel="stylesheet" type="text/css" />
<link href="twoColLiqLtHdrinbx.css" rel="stylesheet" type="text/css" /><!--[if lte IE
7]>
<style>
.content { margin-right: -1px; } /* this 1px negative margin can be placed on any of the
columns in this layout with the same corrective effect. */
ul.nav a { zoom: 1; } /* the zoom property gives IE the hasLayout trigger it needs to
correct extra whiltespace between the links */
</style>
<![endif]-->
<style type="text/css">
.container.sidebar1.nav li a {
 font-family: Georgia, Times New Roman, Times, serif;
}
</style>
</head>
<body>
<div class="container">
 <div class="header">
 <div align="center">Personalized Spam Detection Email </div>
 <!-- end.header --></div>

 114

 <div class="sidebar1">
 <ul class="nav">
 login by other user
 Inbox
 Whitelist
 Blacklist
 <a href="<%= MM_Logout %>">Logout

 <!-- end.sidebar1 --></div>
 <div class="content">
 <h2>Junk Mail</h2>
 <p>
<%
 set email=server.CreateObject("ADODB.Connection")
 set rs=server.CreateObject("ADODB.RecordSet")
 set rs1=server.CreateObject("ADODB.RecordSet")
 set rslog=server.CreateObject("ADODB.RecordSet")
 dim sqlstr
 dim sqlbl
 dim sqlwl
 logsess = Session("MM_Username")
 response.write(""& logsess &"@permail.com")
 mbox=Request("mbox")
 response.write(""& mbox &"")
 nspm=Request("nspm")
 response.write(""& nspm &"")
 page=request("page")
 email.open "permail"
 rslog.open "Select * from login where login= '"& logsess &"'",email
 user = "" & rslog(0) &""
 rs.open "SELECT * FROM junk INNER JOIN userjn ON junk.jid=userjn.jid
WHERE userjn.uid = "& user &"",email
response.write("<p align=left>")
 on error resume next
 rs.pagesize=15
 response.write("<p align=left><tap align=left><form name=msgfr
action=junk.asp method= post>")
 response.write("<p align=left><table align=center cellspacing=2 cellpadding=0
border=0 >")
 Response.Write("<tr bgcolor=#99CC99><th
align=center>No<th align=center>Move to Inbox<th>Not Spam<th>From<th
align=center>Date<th>Subject")
 if len(page)>0 then
 rs.absolutepage=page
 else
 rs.absolutepage=1

 115

 end if
 bgflip=true
 for i=1 to rs.pagesize
 if not rs.EOF then
 if bgflip then
 Response.Write("<tr bgcolor=#eeeeee>")
 else
 Response.Write("<tr bgcolor=#eeeeff>")
 end if
 bgflip=not bgflip
Response.Write("<td align=left><td align=center><font face=Times New Roman
size=4> To Inbox<td
align=left><font face=Times New Roman
size=4 color=#ff6666>Not Spam<td align=left >"
& rs(1) & " <td align=left >" & rs(3) & " <td align=left ><font face=Times New Roman
size=4>" & rs(4) & " <td align=left >")
 rs.MoveNext
 end if
 next
 response.write("</table>")
 response.write("</table>")
 response.write("</form>")
 '-------------------------- Action -----------------------------------
 rs.Close
 rs1.Close
 email.Close
 set rs=nothing
 set rs1=nothing
 set email=nothing
 %>
 </p>

 <p> </p>
 <!-- end.content --></div>
 <div class="footer">
 <p align="center"><font face="Georgia,
Times New Roman, Times, serif">All right resevied Personalized 2013
©</p>
 <!-- end.footer --></div>
 <!-- end.container --></div>
</body>
</html>
User Whitelist
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">

 116

<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>User Withelist</title>
<link href="spam.css" rel="stylesheet" type="text/css" />
<link href="twoColLiqLtHdrinbx.css" rel="stylesheet" type="text/css" /><!--[if lte IE
7]>
<style>
.content { margin-right: -1px; } /* this 1px negative margin can be placed on any of the
columns in this layout with the same corrective effect. */
ul.nav a { zoom: 1; } /* the zoom property gives IE the hasLayout trigger it needs to
correct extra whiltespace between the links */
</style>
<![endif]-->
<style type="text/css">
.container.sidebar1.nav li a {
 font-family: Georgia, Times New Roman, Times, serif;
}
</style>
</head>
<body>
<div class="container">
 <div class="header">
 <div align="center">Personalized Spam Detection Email </div>
 <!-- end.header --></div>
 <div class="sidebar1">
 <ul class="nav">
 login by other user
 Inbox
 Junk Mail
 Blacklist
 <li class="promo">Vocabulary list
 <a href="<%= MM_Logout %>">Logout

 </div>
 <h2>User Whitelist Address</h2>
 <p>
<%
 set email=server.CreateObject("ADODB.Connection")
 set rs=server.CreateObject("ADODB.RecordSet")
 set rs1=server.CreateObject("ADODB.RecordSet")
 set rslog=server.CreateObject("ADODB.RecordSet")
 dim sqlstr
 dim sqlbl
 dim sqlwl
 logsess = Session("MM_Username")
 response.write(""& logsess &"@permail.com")

 117

 mbox=Request("mbox")
 response.write(""& mbox &"")
 nspm=Request("nspm")
 response.write(""& nspm &"")
 page=request("page")
email.open "permail"
 rslog.open "Select * from login where login= '"& logsess &"'",email
 user = "" & rslog(0) &""
 rs.open "SELECT whitelist.wlid, whitelist.wladd FROM whitelist INNER JOIN
(login INNER JOIN userwl ON login.uid = userwl.uid) ON whitelist.wlid = userwl.wlid
where login.uid= "& user &"",email
 response.write("<p align=left>")
 on error resume next
 rs.pagesize=15
 response.write("<p align=left><table align=center cellspacing=2 cellpadding=0
border=0 >")
 Response.Write("<tr bgcolor=#99CC99><th
align=center>No</th><th align=center>Whitelist Address")
 if len(page)>0 then
 rs.absolutepage=page
 else
 rs.absolutepage=1
 end if
 bgflip=true
 for i=1 to rs.pagesize
 if not rs.EOF then
 if bgflip then
 Response.Write("<tr bgcolor=#eeeeee>")
 else
 Response.Write("<tr bgcolor=#eeeeff>")
 end if
 bgflip=not bgflip
 Response.Write("<td align=center></td><td align=left><font face=Times New
Roman size=4>" & rs(1) & " ")
 rs.MoveNext
 end if
 next
 response.write("</table>")
 rs.Close
 rs1.Close
 email.Close
 set rs=nothing
 set rs1=nothing
 set email=nothing
 %>
 </p>

 118

 <p> </p>
 <!-- end.content --></div>
 <div class="footer">
 <p align="center"><font face="Georgia,
Times New Roman, Times, serif">All right resevied Personalized 2013
©</p>
 <!-- end.footer --></div>
 <!-- end.container --></div>
</body>
</html>
User Blacklist
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>User Blacklist</title>
<link href="spam.css" rel="stylesheet" type="text/css" />
<link href="twoColLiqLtHdrinbx.css" rel="stylesheet" type="text/css" /><!--[if lte IE
7]>
<style>
.content { margin-right: -1px; } /* this 1px negative margin can be placed on any of the
columns in this layout with the same corrective effect. */
ul.nav a { zoom: 1; } /* the zoom property gives IE the hasLayout trigger it needs to
correct extra whiltespace between the links */
</style>
<![endif]-->
<style type="text/css">
.container.sidebar1.nav li a {
 font-family: Georgia, Times New Roman, Times, serif;
}
</style>
</head>
<body bgcolor="#333333">
<div class="container">
 <div class="header">
 <div align="center">Personalized Spam Detection Email </div>
 <!-- end.header --></div>
 <div class="sidebar1">
 <ul class="nav">
 login by other user
 Inbox
 Junk Mail
 Whitelist
 <li class="promo">Vocabulary list
 <a href="<%= MM_Logout %>">Logout

 119

 </div>
 <div class="content">
 <h2>User Blacklist Address</h2>
 <p>
<%
 set email=server.CreateObject("ADODB.Connection")
 set rs=server.CreateObject("ADODB.RecordSet")
 set rs1=server.CreateObject("ADODB.RecordSet")
 set rslog=server.CreateObject("ADODB.RecordSet")
 dim sqlstr
 dim sqlbl
 dim sqlwl
 logsess = Session("MM_Username")
 response.write(""& logsess &"@permail.com")
 mbox=Request("mbox")
 response.write(""& mbox &"")
 nspm=Request("nspm")
 response.write(""& nspm &"")
 page=request("page")
 email.open "permail"
 rslog.open "Select * from login where login= '"& logsess &"'",email
 user = "" & rslog(0) &""
 rs.open "SELECT blacklist.blid, blacklist.bladd FROM blacklist INNER JOIN
(login INNER JOIN userbl ON login.uid = userbl.uid) ON blacklist.blid = userbl.blid
where login.uid= "& user &"",email
 response.write("<p align=left>")
 on error resume next
 rs.pagesize=15
 response.write("<p align=left><table align=center cellspacing=2 cellpadding=0
border=0 >")
 Response.Write("<tr bgcolor=#99CC99><th
align=center>No<th align=center>Blacklist Address")
 if len(page)>0 then
 rs.absolutepage=page
 else
 rs.absolutepage=1
 end if
 bgflip=true
 for i=1 to rs.pagesize
 if not rs.EOF then
 if bgflip then
 Response.Write("<tr bgcolor=#eeeeee>")
 else
 Response.Write("<tr bgcolor=#eeeeff>")
 end if

 120

 bgflip=not bgflip
 Response.Write("<td align=left><td align=left><font face=Times New Roman
size=4> " & rs(1) & " ")
 rs.MoveNext
 end if
 next
 response.write("</table>")
 rs.Close
 rs1.Close
 email.Close
 set rs=nothing
 set rs1=nothing
 set email=nothing
 %>
 </p>
 <p> </p>
 <!-- end.content --></div>
 <div class="footer">
 <p align="center"><font face="Georgia,
Times New Roman, Times, serif">All right resevied Personalized 2013
©</p>
 <!-- end.footer --></div>
 <!-- end.container --></div>
</body>
</html>
User Vocabulary list
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>User Vocabulary list</title>
<link href="spam.css" rel="stylesheet" type="text/css" />
<link href="twoColLiqLtHdrinbx.css" rel="stylesheet" type="text/css" /><!--[if lte IE
7]>
<style>
.content { margin-right: -1px; } /* this 1px negative margin can be placed on any of the
columns in this layout with the same corrective effect. */
ul.nav a { zoom: 1; } /* the zoom property gives IE the hasLayout trigger it needs to
correct extra whiltespace between the links */
</style>
<![endif]-->
<style type="text/css">
.container.sidebar1.nav li a {
 font-family: Georgia, Times New Roman, Times, serif;
}

 121

</style>
</head>
<body>
<div class="container">
 <div class="header">
 <div align="center">Personalized Spam Detection Email </div>
 <!-- end.header --></div>
 <div class="sidebar1">
 <ul class="nav">
 login by other user
 Inbox
 Junk Mail
 Whitelist
 <li class="promo">Blacklist
 <a href="<%= MM_Logout %>">Logout

 </div>
 <div class="content">
 <h2>User Vocabulary List</h2>
 <p>
<%
 set email=server.CreateObject("ADODB.Connection")
 set rs=server.CreateObject("ADODB.RecordSet")
 set rs1=server.CreateObject("ADODB.RecordSet")
 set rslog=server.CreateObject("ADODB.RecordSet")
 dim sqlstr
 dim sqlbl
 dim sqlwl
 logsess = Session("MM_Username")
 response.write(""& logsess &"@permail.com")
 mbox=Request("mbox")
 response.write(""& mbox &"")
 nspm=Request("nspm")
 response.write(""& nspm &"")
 page=request("page")
 email.open "permail"
 rslog.open "Select * from login where login= '"& logsess &"'",email
 user = "" & rslog(0) &""
 rs.open "SELECT bvocab.vocid, vocab.word FROM vocab INNER JOIN (login
INNER JOIN ((junk INNER JOIN bvocab ON junk.jid = bvocab.jid) INNER JOIN
userjn ON junk.jid = userjn.jid) ON login.uid = userjn.uid) ON vocab.vocid =
bvocab.vocid WHERE (((login.uid)= "& user &"))",email
 response.write("<p align=left>")
 on error resume next
 rs.pagesize=15

 122

 response.write("<p align=left><table align=center cellspacing=2 cellpadding=0
border=0 >")
 Response.Write("<tr bgcolor=#99CC99><th
align=center>No<th align=center>Spam Vocabulary")
 if len(page)>0 then
 rs.absolutepage=page
 else
 rs.absolutepage=1
 end if
 bgflip=true
 for i=1 to rs.pagesize
 if not rs.EOF then
 if bgflip then
 Response.Write("<tr bgcolor=#eeeeee>")
 else
 Response.Write("<tr bgcolor=#eeeeff>")
 end if
 bgflip=not bgflip
 Response.Write("<td align=left><td align=left><font face=Times New Roman
size=5> " & rs(1) & " ")
 rs.MoveNext
 end if
 next
 response.write("</il></td>")
 response.write("</table>")
 rs.Close
 rs1.Close
 email.Close
 set rs=nothing
 set rs1=nothing
 set email=nothing
 %>
 </p>
 <p> </p>
 <!-- end.content --></div>
 <div class="footer">
 <p align="center"><font face="Georgia,
Times New Roman, Times, serif">All right resevied Personalized 2013
©</p>
 <!-- end.footer --></div>
 <!-- end.container --></div>
</body>
</html>

C.2 Personalized spam detection algorithm interface code

 123

c.1.1 Functions of algorithm
MATLAB code functions are as the following:

function vocabList = getVocabList(n)
%GETVOCABLIST reads the fixed vocabulary list in vocab.txt and returns a
%cell array of the words
% vocabList = GETVOCABLIST() reads the fixed vocabulary list in vocab.txt
% and returns a cell array of the words in vocabList.
 %% Read the fixed vocabulary list
fid = fopen('vocab.txt');
 % Store all dictionary words in cell array vocab{}
if n>1899
 n = 1899;
end
% For ease of implementation, we use a struct to map the strings => integers
% In practice, you will want to use some form of hashmap
vocabList = cell(n, 1);
for i = 1:n
 % Word Index (can ignore since it will be = i)
 fscanf(fid, '%d', 1);
 % Actual Word
 vocabList{i} = fscanf(fid, '%s', 1);
end
fclose(fid);
 end
===
function stem = porterStemmer(inString)
% Porter, 1980, An algorithm for suffix stripping, Program, Vol. 14,
% no. 3, pp 130-137
% Original code modeled after the C version provided at:
% http://www.tartarus.org/~martin/PorterStemmer/c.txt
% The main part of the stemming algorithm starts here. b is an array of
% characters, holding the word to be stemmed. The letters are in b[k0],
% b[k0+1] ending at b[k]. In fact k0 = 1 in this demo program (since
% matlab begins indexing by 1 instead of 0). k is readjusted downwards as
% the stemming progresses. Zero termination is not in fact used in the
% algorithm.
 % To call this function, use the string to be stemmed as the input
% argument. This function returns the stemmed word as a string.
 % Lower case string
inString = lower(inString);
global j;
b = inString;
k = length(b);
k0 = 1;
j = k;

 124

% With this if statement, strings of length 1 or 2 don't go through the stemming process.
Remove this conditional to match the published algorithm.
stem = b;
if k > 2
 % Output displays per step are commented out.
 %disp(sprintf('Word to stem: %s', b));
 x = step1ab(b, k, k0);
 %disp(sprintf('Steps 1A and B yield: %s', x{1}));
 x = step1c(x{1}, x{2}, k0);
 %disp(sprintf('Step 1C yields: %s', x{1}));
 x = step2(x{1}, x{2}, k0);
 %disp(sprintf('Step 2 yields: %s', x{1}));
 x = step3(x{1}, x{2}, k0);
 %disp(sprintf('Step 3 yields: %s', x{1}));
 x = step4(x{1}, x{2}, k0);
 %disp(sprintf('Step 4 yields: %s', x{1}));
 x = step5(x{1}, x{2}, k0);
 %disp(sprintf('Step 5 yields: %s', x{1}));
 stem = x{1};
end
% cons(j) is TRUE <=> b[j] is a consonant.
function c = cons(i, b, k0)
c = true;
switch(b(i))
 case {'a', 'e', 'i', 'o', 'u'}
 c = false;
 case 'y'
 if i == k0
 c = true;
 else
 c = ~cons(i - 1, b, k0);
 end
end
% mseq() measures the number of consonant sequences between k0 and j. If
% c is a consonant sequence and v a vowel sequence, and <..> indicates
% arbitrary presence,
 % <c><v> gives 0
% <c>vc<v> gives 1
% <c>vcvc<v> gives 2
% <c>vcvcvc<v> gives 3
function n = measure(b, k0)
global j;
n = 0;
i = k0;
while true
 if i > j

 125

 return
 end
 if ~cons(i, b, k0)
 break;
 end
 i = i + 1;
end
i = i + 1;
while true
 while true
 if i > j
 return
 end
 if cons(i, b, k0)
 break;
 end
 i = i + 1;
 end
 i = i + 1;
 n = n + 1;
 while true
 if i > j
 return
 end
 if ~cons(i, b, k0)
 break;
 end
 i = i + 1;
 end
 i = i + 1;
end
% vowelinstem() is TRUE <=> k0,...j contains a vowel
function vis = vowelinstem(b, k0)
global j;
for i = k0:j,
 if ~cons(i, b, k0)
 vis = true;
 return
 end
end
vis = false;
%doublec(i) is TRUE <=> i,(i-1) contain a double consonant.
function dc = doublec(i, b, k0)
if i < k0+1
 dc = false;
 return

 126

end
if b(i) ~= b(i-1)
 dc = false;
 return
end
dc = cons(i, b, k0);
% cvc(j) is TRUE <=> j-2,j-1,j has the form consonant - vowel - consonant
% and also if the second c is not w,x or y. this is used when trying to
% restore an e at the end of a short word. e.g.
%
% cav(e), lov(e), hop(e), crim(e), but
% snow, box, tray.
function c1 = cvc(i, b, k0)
if ((i < (k0+2)) || ~cons(i, b, k0) || cons(i-1, b, k0) || ~cons(i-2, b, k0))
 c1 = false;
else
 if (b(i) == 'w' || b(i) == 'x' || b(i) == 'y')
 c1 = false;
 return
 end
 c1 = true;
end
% ends(s) is TRUE <=> k0,...k ends with the string s.
function s = ends(str, b, k)
global j;
if (str(length(str)) ~= b(k))
 s = false;
 return
end % tiny speed-up
if (length(str) > k)
 s = false;
 return
end
if strcmp(b(k-length(str)+1:k), str)
 s = true;
 j = k - length(str);
 return
else
 s = false;
end
% setto(s) sets (j+1),...k to the characters in the string s, readjusting
% k accordingly.
function so = setto(s, b, k)
global j;
for i = j+1:(j+length(s))
 b(i) = s(i-j);

 127

end
if k > j+length(s)
 b((j+length(s)+1):k) = '';
end
k = length(b);
so = {b, k};
% rs(s) is used further down.
% [Note: possible null/value for r if rs is called]
function r = rs(str, b, k, k0)
r = {b, k};
if measure(b, k0) > 0
 r = setto(str, b, k);
end
% step1ab() gets rid of plurals and -ed or -ing. e.g.
% caresses -> caress
% ponies -> poni
% ties -> ti
% caress -> caress
% cats -> cat
% feed -> feed
% agreed -> agree
% disabled -> disable
% matting -> mat
% mating -> mate
% meeting -> meet
% milling -> mill
% messing -> mess
% meetings -> meet
function s1ab = step1ab(b, k, k0)
global j;
if b(k) == 's'
 if ends('sses', b, k)
 k = k-2;
 elseif ends('ies', b, k)
 retVal = setto('i', b, k);
 b = retVal{1};
 k = retVal{2};
 elseif (b(k-1) ~= 's')
 k = k-1;
 end
end
if ends('eed', b, k)
 if measure(b, k0) > 0;
 k = k-1;
 end
elseif (ends('ed', b, k) || ends('ing', b, k)) && vowelinstem(b, k0)

 128

 k = j;
 retVal = {b, k};
 if ends('at', b, k)
 retVal = setto('ate', b(k0:k), k);
 elseif ends('bl', b, k)
 retVal = setto('ble', b(k0:k), k);
 elseif ends('iz', b, k)
 retVal = setto('ize', b(k0:k), k);
 elseif doublec(k, b, k0)
 retVal = {b, k-1};
 if b(retVal{2}) == 'l' || b(retVal{2}) == 's' ||...
 b(retVal{2}) == 'z'
 retVal = {retVal{1}, retVal{2}+1};
 end
 elseif measure(b, k0) == 1 && cvc(k, b, k0)
 retVal = setto('e', b(k0:k), k);
 end
 k = retVal{2};
 b = retVal{1}(k0:k);
end
j = k;
s1ab = {b(k0:k), k};
% step1c() turns terminal y to i when there is another vowel in the stem.
function s1c = step1c(b, k, k0)
global j;
if ends('y', b, k) && vowelinstem(b, k0)
 b(k) = 'i';
end
j = k;
s1c = {b, k};
% step2() maps double suffices to single ones. so -ization (= -ize plus
% -ation) maps to -ize etc. note that the string before the suffix must give
% m() > 0.
function s2 = step2(b, k, k0)
global j;
s2 = {b, k};
switch b(k-1)
 case {'a'}
 if ends('ational', b, k) s2 = rs('ate', b, k, k0);
 elseif ends('tional', b, k) s2 = rs('tion', b, k, k0); end;
 case {'c'}
 if ends('enci', b, k) s2 = rs('ence', b, k, k0);
 elseif ends('anci', b, k) s2 = rs('ance', b, k, k0); end;
 case {'e'}
 if ends('izer', b, k) s2 = rs('ize', b, k, k0); end;
 case {'l'}

 129

 if ends('bli', b, k) s2 = rs('ble', b, k, k0);
 elseif ends('alli', b, k) s2 = rs('al', b, k, k0);
 elseif ends('entli', b, k) s2 = rs('ent', b, k, k0);
 elseif ends('eli', b, k) s2 = rs('e', b, k, k0);
 elseif ends('ousli', b, k) s2 = rs('ous', b, k, k0); end;
 case {'o'}
 if ends('ization', b, k) s2 = rs('ize', b, k, k0);
 elseif ends('ation', b, k) s2 = rs('ate', b, k, k0);
 elseif ends('ator', b, k) s2 = rs('ate', b, k, k0); end;
 case {'s'}
 if ends('alism', b, k) s2 = rs('al', b, k, k0);
 elseif ends('iveness', b, k) s2 = rs('ive', b, k, k0);
 elseif ends('fulness', b, k) s2 = rs('ful', b, k, k0);
 elseif ends('ousness', b, k) s2 = rs('ous', b, k, k0); end;
 case {'t'}
 if ends('aliti', b, k) s2 = rs('al', b, k, k0);
 elseif ends('iviti', b, k) s2 = rs('ive', b, k, k0);
 elseif ends('biliti', b, k) s2 = rs('ble', b, k, k0); end;
 case {'g'}
 if ends('logi', b, k) s2 = rs('log', b, k, k0); end;
end
j = s2{2};
% step3() deals with -ic-, -full, -ness etc. similar strategy to step2.
function s3 = step3(b, k, k0)
global j;
s3 = {b, k};
switch b(k)
 case {'e'}
 if ends('icate', b, k) s3 = rs('ic', b, k, k0);
 elseif ends('ative', b, k) s3 = rs('', b, k, k0);
 elseif ends('alize', b, k) s3 = rs('al', b, k, k0); end;
 case {'i'}
 if ends('iciti', b, k) s3 = rs('ic', b, k, k0); end;
 case {'l'}
 if ends('ical', b, k) s3 = rs('ic', b, k, k0);
 elseif ends('ful', b, k) s3 = rs('', b, k, k0); end;
 case {'s'}
 if ends('ness', b, k) s3 = rs('', b, k, k0); end;
end
j = s3{2};
% step4() takes off -ant, -ence etc., in context <c>vcvc<v>.
function s4 = step4(b, k, k0)
global j;
switch b(k-1)
 case {'a'}
 if ends('al', b, k) end;

 130

 case {'c'}
 if ends('ance', b, k)
 elseif ends('ence', b, k) end;
 case {'e'}
 if ends('er', b, k) end;
 case {'i'}
 if ends('ic', b, k) end;
 case {'l'}
 if ends('able', b, k)
 elseif ends('ible', b, k) end;
 case {'n'}
 if ends('ant', b, k)
 elseif ends('ement', b, k)
 elseif ends('ment', b, k)
 elseif ends('ent', b, k) end;
 case {'o'}
 if ends('ion', b, k)
 if j == 0
 elseif ~(strcmp(b(j),'s') || strcmp(b(j),'t'))
 j = k;
 end
 elseif ends('ou', b, k) end;
 case {'s'}
 if ends('ism', b, k) end;
 case {'t'}
 if ends('ate', b, k)
 elseif ends('iti', b, k) end;
 case {'u'}
 if ends('ous', b, k) end;
 case {'v'}
 if ends('ive', b, k) end;
 case {'z'}
 if ends('ize', b, k) end;
end
if measure(b, k0) > 1
 s4 = {b(k0:j), j};
else
 s4 = {b(k0:k), k};
end
% step5() removes a final -e if m() > 1, and changes -ll to -l if m() > 1.
function s5 = step5(b, k, k0)
global j;
j = k;
if b(k) == 'e'
 a = measure(b, k0);
 if (a > 1) || ((a == 1) && ~cvc(k-1, b, k0))

 131

 k = k-1;
 end
end
if (b(k) == 'l') && doublec(k, b, k0) && (measure(b, k0) > 1)
 k = k-1;
end
s5 = {b(k0:k), k};
==
function [eta I]= indicateEmail(email_contents,vocabList,vocabScore)
%PROCESSEMAIL preprocesses a the body of an email and
%returns a list of word_indices
% word_indices = PROCESSEMAIL(email_contents) preprocesses
% the body of an email and returns a list of indices of the
% words contained in the email.
%% S = 1;
% H = 1;
eta = 0;
% ============= Preprocess Email ==============
% Find the Headers (\n\n and remove)
% Uncomment the following lines if you are working with raw emails with the
% full headers
% hdrstart = strfind(email_contents, ([char(10) char(10)]));
% email_contents = email_contents(hdrstart(1):end);
% Lower case
email_contents = lower(email_contents);
% Strip all HTML
% Looks for any expression that starts with < and ends with > and replace
% and does not have any < or > in the tag it with a space
email_contents = regexprep(email_contents, '<[^<>]+>', ' ');
% Handle Numbers
% Look for one or more characters between 0-9
email_contents = regexprep(email_contents, '[0-9]+', 'number');
% Handle URLS
% Look for strings starting with http:// or https://
email_contents = regexprep(email_contents,...
 '(http|https)://[^\s]*', 'httpaddr');
% Handle Email Addresses
% Look for strings with @ in the middle
email_contents = regexprep(email_contents, '[^\s]+@[^\s]+', 'emailaddr');
% Handle $ sign
email_contents = regexprep(email_contents, '[$]+', 'dollar');
% =========== Tokenize Email ===========
% Output the email to screen as well
%fprintf('\n==== Processed Email ====\n\n');
% Process file
 while ~isempty(email_contents)

 132

 % Tokenize and also get rid of any punctuation
 [str, email_contents] =...
 strtok(email_contents,...
 [' @$/#.-:&*+=[]?!(){},''">_<;%' char(10) char(13)]);
 % Remove any non-alphanumeric characters
 str = regexprep(str, '[^a-zA-Z0-9]', '');
 % Stem the word
 % (the porterStemmer sometimes has issues, so we use a try catch block)
 try str = porterStemmer(strtrim(str));
 catch str = ''; continue;
 end;
 % Skip the word if it is too short
 if length(str) < 1
 continue;
 end % Look up the word in the dictionary and add to word_indices if
 % found
% Instructions: Fill in this function to add the index of str to
 % word_indices if it is in the vocabulary. At this point
 % of the code, you have a stemmed word from the email in
 % the variable str. You should look up str in the
 % vocabulary list (vocabList). If a match exists, you
 % should add the index of the word to the word_indices
 vector. Concretely, if str = 'action', then you should
 % look up the vocabulary list to find where in vocabList
 % 'action' appears. For example, if vocabList{18} =
 % 'action', then, you should add 18 to the word_indices
 % vector (e.g., word_indices = [word_indices; 18];).
 % Note: vocabList{idx} returns a the word with index idx in the
 % vocabulary list.
 % Note: You can use strcmp(str1, str2) to compare two strings (str1 and
 % str2). It will return 1 only if the two strings are equivalent.
 %word_indices = [word_indices; find(strcmp(str,vocabList))];
 ind = find(strcmp(str,vocabList));
 if ~isempty(ind)
 eta = eta + log(1-vocabScore(ind))-log(vocabScore(ind));
% S = S * vocabScore(ind);
% H = H * (1-vocabScore(ind));
 end
end
% I = (1+S-H)/2;
 I = 1/(1+exp(eta));
% Print footer
% fprintf('\n\n=========================\n');
End

C.3 Arabic Spam Detection Program Code

 133

import csv
import os
import math
import random
"""
utils.py
"""
#--
#no need stop words because ISRIStemmer add 60 Arabic stopwords
#stop_words = []
Punctuation marks
forbidden_words = [",", "+", "&", "-", "_", ".", ")", "(", ":", "=", "/", "'", "\"", "*"]
def counter(word_list):
 """Given a list of words, return a dictionary
 associating each word with the number of times it occurs"""
 counts = {}
 for word in word_list:
 # Intialise dictionary
 counts[word] = 0
 for word in word_list:
 # Calculate word counts
 counts[word] += 1
 return counts
def norm_dist(value, mean, sd):
 """Calculates the probability density of a normal distribution
 given the mean and standard deviation of the distribution."""
 if sd == 0.0:
 # If SD = 0, return a small non-zero number
 # as discussed in the report.
 return 0.05
 else:
 # PDF for normal distribution
 result = math.exp(-float((value - mean)**2) / (2.0*(sd**2))) * 1.0/(sd * math.sqrt(2 *
math.pi))
 return result
def mean(data):
 if data == []:
 return 0.0
 else:
 """Calculates the mean of a list"""
 sum = 0.0
 for item in data:
 sum += item
 #return str(float(sum)/len(data))
 return float(sum)/len(data)
def sd(data):

 134

 if data == []:
 return 0.0
 else:
 "Calculates the standard deviation of a list"
 data_mean = mean(data)
 sums = 0.0
 for item in data:
 sums += (item-data_mean)**2
 return math.sqrt(float(sums)/(len(data)-1))
#--
#!/usr/bin/env python
encoding: cp1256
"""
Message.py
"""
from utils import *
import math
import Stemmer
#--
class Message():
 """Implements the message class.
 Attributes
 subject - subject data
 body - body data
 subject word count - dictionary containing word --> count for subject
 body word count - dictionary containing word --> count for body
 spam - identifier if message is spam or non-spam"""
 def __init__(self, filename):
 # Initialise data
 file = open("./Data/" + filename, 'r')
 data = file.readlines()
 file.close()
 self.subject = data[0][9:].strip()
 self.body = [line.strip() for line in data[1:]][0]
 # Perform the Stemmer and numeric methods to further process the data
 self.stem_data()
 self.numeric_filter()
 # Calculate word counts for the data
 self.subject_word_count = counter(self.subject.split())
 self.body_word_count = counter(self.body.split())
 # Message attributes
 self.filename = filename
 self.spam = self.spam_class()
#---
 def spam_class(self):
 """From the filename, classes the message as spam or non-spam"""

 135

 if self.filename[:6] == 'spamar':
 return "Spam"
 else:
 return "Non-spam"
 def stem_data(self):
 """Stems the data, using ISRIStemmer algorithm"""
 # The stemming object
 stemmer = Stemmer.Stemmer()
 def stem_string(string):
 """Input a string, returns a string with the
 words replaced by their stemmed equivalents"""
 stemmed_list = []
 for word in string.split():
 stemmed_word = stemmer.stemWord(word)
 stemmed_list.append(stemmed_word)
 stemmed_string = " ".join(stemmed_list)
 return stemmed_string
 self.body = stem_string(self.body)
 self.subject = stem_string(self.subject)
 def numeric_filter(self):
 """Replaces instances of numbers in a string with
 a "NUMERIC" placeholder
 e.g.("112", "22" ---> "NUMERIC")"""
 def num_filter_string(string):
 """Input a string, returns a string with
 strings of digits replaced with "NUMERIC"
 """
 filtered_list = []
 for word in string.split():
 if word.isdigit():
 filtered_list.append("NUMERIC")
 else:
 filtered_list.append(word)
 filtered_string = " ".join(filtered_list)
 return filtered_string
 self.body = num_filter_string(self.body)
 self.subject = num_filter_string(self.subject)
 def tf_idf(self, corpus):
 """Input a corpus (with its list of document frequencies)
 calculates the tf-idf score for the message for every feature"""
 top100list = [(word, count) for count, word in corpus.top100]
 if corpus.type == "subject":
 word_count = self.subject_word_count
 else:
 word_count = self.body_word_count
 self.tf_idf_scorelist = []

 136

 # print word_count
 for word, document_frequency in top100list:
 if word not in word_count:
 # If word does not appear in the message, tf-idf == 0
 self.tf_idf_scorelist.append([word, 0])
 else:
 # calculate the tf-idf score for the word, appending the pair (word, score) to the list
 tf_idf_score = word_count[word] * math.log10(corpus.length /
float(document_frequency)) + 1.0/100
 self.tf_idf_scorelist.append([word, tf_idf_score])
 return self.tf_idf_scorelist
 #--
def testing():
 pass
#--
if __name__ == '__main__':
 testing()
--
-*- coding: cp1256 -*-
#!/usr/local/bin/python
"""
Stemmer.py
"""
import unittest, re
from api import StemmerI
from isri import *
import codecs
#regexp = re.compile(r"[^aeiouy]*[aeiouy]+[^aeiouy](\w*)")
def isri_stem(word):
 isristem = ISRIStemmer()
 word = unicode(word,'cp1256')
 word = isristem.stem(word)
 return word
class Stemmer:
 """An instance of a stemming algorithm.
 When creating a Stemmer object, there is one required argument
 the appropriate stemming algorithm using ISRIStemming for Arabic
 language.
 """
max_cache_size = 10000
 def __init__ (self, cache_size=None):
 if cache_size:
 self.max_cache_size = cache_size
 def stemWord(self, word):
 """Stem a word.

 137

 The ISRI Stemmer requires that all tokens have Unicode string types. If you use Python
IDLE on Arabic Windows you have to decode text first using Arabic '1256' coding.
 """
 return Stemmer._stem(word)
 def stemWords(self, words):
 """Stem a list of words.
 This takes a single argument, words, which must be a sequence, iterator, generator or
similar. The entries in words should either be UTF-8 encoded strings, or a unicode
objects. The result is a list of the stemmed forms of the words. If the word supplied was
a unicode object, the stemmed form will be a Unicode object: if the word supplied was a
string, the stemmed form will be a UTF-8 encoded string.
 """
 return [self.stemWord(word) for word in words]
 @classmethod
 def _stem(cls, word):
 was_unicode = False
 if isinstance(word, unicode):
 was_unicode = True
 word = word.encode('cp1256')
 word = isri_stem(word)
 if len(word) <= 2:
 return word
 #word = isri_stem(word)
 if was_unicode:
 return word.decode('cp1256')
 return word
 class TestISRIStem(unittest.TestCase):
 def setUp(self):
 pass
 def testModule(self):
 stemmer = Stemmer()
if __name__ == '__main__':
 unittest.main()
--
/usr/bin/env python
encoding: cp1256
"""
Corpus.py
"""
from utils import *
from Message import *
import Stemmer
import nltk.tokenize.regexp
#--
class Corpus():
 """Corpus class. A superclass for the classes SubjectCorpus and BodyCorpus"""

 138

 def csv_write(self):
 """Writes a csv file
 101 columns - 100 features and class identifier
 191 rows - header (f1, f2...f100, class) and 190 examples"""
 headers = []
 for index in xrange(len(self.top100)):
 # Create the list [f1, f2,..., f100]
 headers.append("f" + str(index + 1))
 headers.append("Spam Class")
 # Create the list [f1, f2..., f100, Spam Class]
 csv_file = []
 csv_file.append(headers)
 for message in self.messages:
 # Append the row of tf-idf scores for each feature
 msg_scores = [scores[1] for scores in message.tf_idf_scorelist]
 # Append the spam class in the last column
 msg_scores.append(message.spam)
 # Append the row to the file
 csv_file.append(msg_scores)
 csv_filename = self.type + ".csv"
 writer = csv.writer(open(csv_filename, "wb"))
 for row in csv_file:
 writer.writerow(row)
 # Write the CSV file
 def get_length(self):
 """Find the number of examples in the corpus"""
 self.length = len(self.data)
 #--
 def tf_idf_scores(self):
 """Calculate tf-idf scores for all messages in the corpus"""
 for message in self.messages:
 message.tf_idf(self)
 def DF_score(self):
 """Calculate the document frequency score for all words in the corpus"""
 self.DF_counts = {}
 for message in self.cleaned_data:
 for word in nltk.word_tokenize(message):
 # Initialise the dictionary
 self.DF_counts[word] = 0
 for message in self.cleaned_data:
 word_added_already = []
 for word in nltk.word_tokenize(message):
 if word not in word_added_already:
 # Avoids double counting a word if it appears twice in a message
 self.DF_counts[word] += 1
 word_added_already.append(word)

 139

 word_list = sorted((value,key) for (key,value) in self.DF_counts.items())
 # Sort our list, in order of least prevalent to most prevalent
 word_list.reverse()
 # Reverse this list
 self.top100 = word_list[:100]
 # Return the top 100 words
 return self.top100
 def word_count(self):
 """Counts the number of unique words in the corpus"""
 word_string = []
 for message in self.data:
 for words in nltk.word_tokenize(message):
 word_string.append(words)
 word_counts = counter(word_string)
 return word_counts
 #---
 def remove_stop_words(self):
 """Performs the filtering described in the data preprocessing
 section of the report.
 Removes punctuation
 Stems words
 Filters numeric data
 """
 self.cleaned_data = []
 stemmer = Stemmer.Stemmer()
 for data in self.data:
 words = data.split()
 stemmed_words = [stemmer.stemWord(word) for word in words \
 if word not in forbidden_words]
 # Perhaps an overly complex line - returns a list of stemmed words,
 # if the word is not a stop word or forbidden
 words = []
 for word in stemmed_words:
 # Filters out our numeric features
 # e.g "112" --> "NUMERIC"
 if word.isdigit():
 words.append("NUMERIC")
 else:
 words.append(word)
 clean_data = " ".join(words)
 # Converts list to string
 self.cleaned_data.append(clean_data)
 return self.cleaned_data
 #---
 def creation(self):
 """A container method, performing the following operations:

 140

 filtering punctuation
 performing the stemming algorithm
 calculates tf-idf scores
 writes the CSV file
 """
 self.remove_stop_words()
 self.DF_score()
 self.tf_idf_scores()
 self.csv_write()
 print " - {0} CSV File For Arabic Email Created".format(self.type)
#--
class SubjectCorpus(Corpus):
 """Subject Corpus
 Message data is the subjects of the individual messages
 """
 def __init__(self, message_list):
 self.messages = message_list
 self.data = [message.subject for message in message_list]
 self.get_length()
 self.type = "Subject"
class BodyCorpus(Corpus):
 """Body Corpus
 Message data is the body of the individual messages
 """
 def __init__(self, message_list):
 self.messages = message_list
 self.data = [message.body for message in message_list]
 self.get_length()
 self.type = "Body"
#--
def Create_BC_SC_CSV():
 file_list = [(file, file[-3:]) for file in os.listdir("./Data")]
 proper_files = [file for file, extension in file_list if extension == "txt"]
 # Filters out files that are not text files
 message_list = [Message(file) for file in proper_files]
 # Our list of message objects
 SC = SubjectCorpus(message_list)
 SC.creation()
 BC = BodyCorpus(message_list)
 BC.creation()
if __name__ == '__main__':
 Create_B
C_SC_CSV()
========================
encoding: cp1256
#!/usr/bin/env python

 141

"""
NaiveBayesClassifier.py
"""
import sys
import os
import csv
from utils import *
import math
import random
#--
class NaiveBayesClassifier():
 """Naive Bayes Classifier class
 Implements the methods:
 CSV Read - reads a data file
 Train - Trains on messages
 Feature_class_mean_sd - Calculates mean and sd
 for FEATURE when CLASS = SPAM CLASS
 Classify - Classifies a message
 P_spam_not_spam - Calculates probabilities a message
 is spam or non-spam
 Classification_test - tests if a message is correctly
 classified
 Stratification_test - Performs 10-fold cross validation"""
 def __init__(self, corpus):
 # Reads the corpus data
 self.type = corpus # Type of corpus - body or subject
 self.corpus_header, self.corpus_data = self.csv_read(corpus)
 self.corpus_data = self.cosine_normalisation()
#---
 def csv_read(self, corpus):
 """Reads a CSV file. Outputs two lists:
 corpus_float_data - a list of messages
 corpus_header - a list of headers"""
 corpus_data = []
 corpus_file = self.type + ".csv" # e.g. subject.csv
 reader = csv.reader(open(corpus_file))
 for row in reader:
 # Scans through the rows, appending to the file
 corpus_data.append(row)
 corpus_header = corpus_data[:1] # Header data "f1, f2..."
 corpus_data = corpus_data[1:] # Message data with TF-IDF scores
 corpus_float_data = []
 for row in corpus_data:
 # Converts strings to floats
 float_row = [float(i) for i in row[:-1]]
 float_row.append(row[-1])

 142

 corpus_float_data.append(float_row)
 return corpus_header, corpus_float_data
#---
 def cosine_normalisation(self):
 """Performs the cosine normalisation of data"""
 self.normalised_data = []
 for message in self.corpus_data:
 normalised_scores = []
 tf_idf_scores = message[:-1]
 normalisation_factor = math.sqrt(sum([i**2 for i in tf_idf_scores]))
 # Calculate \sum_{k} tf-idf(t_k, d_j)^2
 if normalisation_factor == 0:
 # Prevents dividing by zero
 self.normalised_data.append(message)
 else:
 for score in tf_idf_scores:
 normalised_scores.append(score/float(normalisation_factor))
 normalised_scores.append(message[-1])
 self.normalised_data.append(normalised_scores)
 return self.normalised_data
#---
 def train(self, training_set):
 """Trains the classifier by calculating the prior normal distribution
 parameters for the feature sets and TRUE/FALSE"""
 # The set of training messages
 training_messages = [self.corpus_data[i] for i in training_set]
 # Empty dictionary to hold mean and sd data
 self.mean_sd_data = {}
 for feature in range(100):
 self.mean_sd_data[feature] = {"Non-spam":[0, 0], "Spam":[0, 0]}
 for spam_class in ["Non-spam", "Spam"]:
 self.mean_sd_data[feature][spam_class] = []
 # Initialise the dictionary
 for feature in range(100):
 for spam_class in ["Non-spam", "Spam"]:
 # Fill the dictionary with values calculated from the feature_class_mean_sd method
 self.mean_sd_data[feature][spam_class] = self.feature_class_mean_sd(spam_class,
feature, training_messages)
 # Calculate the a-priori spam and non-spam probabilities
 spam_count = 0
 for message in training_messages:
 if message[-1] == "Spam":
 spam_count += 1
 self.mean_sd_data["Spam"] = spam_count / float(len(training_set))
 self.mean_sd_data["Non-spam"] = 1 - (spam_count / float(len(training_set)))
#--

 143

 def feature_class_mean_sd(self, spam_class, feature, training_messages):
 """Calculates the mean and standard deviations for:
 FEATURE when CLASS = SPAM CLASS"""
 feature_list = []
 for message in training_messages:
 # Loop through all messages
 if spam_class == message[-1]:
 # If our message is in the right class
 feature_list.append(message[feature])
 # Take of the corresponding feature TF-IDF score
 # Return the summary statistics of the relevant feature / class
 return [mean(feature_list), sd(feature_list)]
#--
 def classify(self, message):
 """Classify a message as spam or non-spam"""
 # Probability that message is spam
 p_spam = self.bayes_probability(message, "Spam")
 # Probability that message is non-spam
 p_not_spam = self.bayes_probability(message, "Non-spam")
 # print p_spam, p_not_spam
 if p_spam > p_not_spam:
 return "Spam"
 # Message is spam
 else:
 return "Non-spam"
 # Message is non-spam
#---
 def bayes_probability(self, message, spam_class):
 """Probability that a message is or is not spam"""
 a_priori_class_probability = self.mean_sd_data[spam_class]
 #Probability that a single message is spam or non-spam i.e. P(spam_id)
 #print "Commencing Bayes Probability on Message 0"
 #print "A priori Class Probability of {0} class is {1}".format(spam_class,
a_priori_class_probability)
 class_bayes_probability = a_priori_class_probability
 body_best_features = [6,8,11,34,35,45,48]
 # Feature selection from WEKA
 subject_best_features = range(1,100)
 if self.type == "Body":
 """Converts the features f1, f2,...fn into Python list indices"""
 best_features = map(lambda x :x -1, body_best_features)
 else:
 best_features = map(lambda x :x - 1, subject_best_features)
 for feature in best_features:
 # For all features
 message_tf_idf_score = message[feature]

 144

 # Message tf_idf value
 tf_idf_mean = self.mean_sd_data[feature][spam_class][0]
 tf_idf_sd = self.mean_sd_data[feature][spam_class][1]
 # Get the parameters of the probability distribution governing this class
 prob_feature_given_class = norm_dist(message_tf_idf_score, tf_idf_mean,
tf_idf_sd)
 # Find the probabilty P(tf-idf_feature = score | msg_class = class)
 class_bayes_probability = class_bayes_probability * prob_feature_given_class
 # Multiply together to obtain total probabilitiy
 # as per the Naive Bayes independence assumption
return class_bayes_probability # Our probability that a message is spam or non-spam
 def classification_test(self, message):
 """Tests if a message is correctly classified"""
 if self.classify(message) == message[-1]:
 return True
 else:
 return False
 def stratification_test(self):
 """Performs 10-fold stratified cross validation"""
 already_tested = []
 test_set = []
 for i in range(10):
 """Create the set of 10 sixtylement random bins"""
 sample = random.sample([i for i in range(190) if i not in already_tested], 19)
 already_tested.extend(sample)
 test_set.append(sample)
 results = []
 for validation_data in test_set:
 """Create the training set (171 elements) and the validation data (19 elements)"""
 training_sets = [training_set for training_set in test_set if training_set is not
validation_data]
 training_data = []
 for training_set in training_sets:
 training_data.extend(training_set)
 self.train(training_data)
 # Train the probabilities of the Bayes Filter
 count = 0
 for index in validation_data:
 """Calculate the percentage of successful classifications"""
 if self.classification_test(self.corpus_data[index]):
 count += 1
 results.append(float(count)/len(validation_data))
 return results
#--
def print_results(results):
 """Formats results and prints them, along with summary statistic"""

 145

 for result, index in zip(results, range(len(results))):
 print "Stratification Set {0} \t {1:.1f}% Classified Correctly.".format(index+1,
result*100)
 print "**"*30
 print "--"*30
 print "\n\tOverall Accuracy is {0:.1f}%".format(mean(results) * 100)
if __name__ == '__main__':
 import random
 random.seed(18)
 # Sets the seed, for result reproducibility
 test = NaiveBayesClassifier("subject")
 print "\tTesting Arabic Subject Corpus"
 print "**"*30
 print "--"*30
 results = test.stratification_test()
 print_results(results)
 print
 print "\tTesting Body Arabic Corpus"
 print "**"*30
 print "--"*30
 test = NaiveBayesClassifier("body")
 results = test.stratification_test()
 print_results(results)

 146

Appendix D
Screenshots

In this section we present screen shots of the implemented Permail systems
D.1 Permail General Screenshots

Figure D.1 Permail user home page. The home page it gives the user the
ability to enter the mail system.

 147

Figure D.2 Permail login user page

Figure D.3 Permail spam detection new user. User can create a new account
by entering his full information on the form.

D.2 User Inbox Screenshots

 148

Figure D.4 Permail user Inbox (a). This page retrieves all messages from
user Inbox.

 149

Figure D.4 Permail user Inbox (b). This page retrieves all messages from
user Inbox.

 150

Figure D.4 Permail user Inbox (c). This page retrieves all messages from
user Inbox.

Figure D.5 User Read Message. When user click on the subject of any
message he can read this message.

Figure D.6 User Delete Message

 151

 Figure D.7 Message process

Figure D.8 The user selects title words to delete message

 152

Figure D.9 The user selects body words to delete message

Figure D.10 The user selects all body words to delete message.

 153

D.3 User junk mail Screenshots

Figure D.11 Permail user's junk mail (a). This page retrieves all messages
from the user's junk mail.

Figure D.11 Permail user's junk mail (b). This page retrieves all messages
from the user's junk mail.

 154

Figure D.11 Permail user's junk mail (c). This page retrieves all messages
from the user's junk mail.

Figure D.12 Message has been moved to the Inbox

 155

Figure D.13 User reads Junk Message

Figure D.14 Junk message not spam

 156

Figure D.15 Junk message not spam from the title

Figure D.16 Junk message not spam from vocabulary words

 157

Figure D.17 Junk message not spam from all body

D.4 User lists Screenshots

This section presents user whitelist, blacklist and vocabulary lists
D.4.1 Whitelist
The following figures show the different whitelist between users a, b, and c.

 158

Figure D.18 User (a) whitelist examples

Figure D.18 User (b) whitelist examples

 159

Figure D.18 User (c) whitelist examples

D.4.2 Blacklist
The following figures show the different blacklist between users a, b, and c.

Figure D.19 User (a) blacklist example

 160

 Figure D.19 User (b) blacklist example

Figure D.19 User (c) blacklist examples

 161

D.4.3 Vocabulary list
The following figures show the different vocabulary list between users

Figure D.20 User (a) vocabulary list example

Figure D.20 User (b) vocabulary list example

 162

Figure D.20 User (c) vocabulary list example

