ملخص

في هذا البحث تم تطوير برنامج حاسوب (NUSAP) بطريقة العناصر المحددة لتحليل المنشآت الوحية (مسائل الإجهاد/الانفعال المستوي). المعرضة للأحمال الاستاتيكة.

تم ربط النظام بمعالجين مرنين: لإدخال البيانات (معالج الإدخال) ولعرض المخرجات (معالج الإخراج) اللذين أعدا خصيصاً لهذه الدراسة وذلك لتوفير طريقة سهلة لإدخال البيانات للبرنامج عن طريق قوائم تحاور مباشر وقوالب إدخال، ولعرض المخرجات للمستخدم بيانياً وفي شكل جداول مصاغة بطريقة سلسة.

في هذه الدراسة تم التركيز على التحليل الخطي والتحليل اللاخطي للمنشآت الغشائية المستوية (مسائل الإجهاد/الانفعال المستوي) تم استخدام عنصر ذو أربع عقد (QPM4) وعنصر ذو ثمان عقد (QPM8).

تم تطوير التقنين اللاخطي هندسيا (بناءً علي تقنين لاقرانج الكلي) باستخدام انفعال قرين (GNLGS) والانفعال اللوغريثمي (GNLGS) وطبقت هذه الصيغ في برنامج الحاسوب (NUSAP). تم حل مجموعة المعادلات اللاخطية باستخدام طريقة نيوتن- رابسون

تم التحقق من دقة نتائج البرنامج باستخدام أمثلة عددية حيث أظهرت النتائج المتحصل عليها موافقة مع النتائج المنشورة في عدة أوراق علمية.

وتم الحصول علي الاجهادات الناتجة من التحليل الاخطي من الصيغ المختلفة للانفعال وتأكيد دقتها بمقارنتها مع النتائج المنشورة.

ومن ثم تم الحصول علي الاجهاد الحقيقى المرافق للانفعال اللوغريثمي وذلك لأحمال تؤدي المي إزاحات كبيرة جدا.

ABSTRACT

In this research, a general-purpose finite element system (NUSAP) is developed for the analysis of plate structures (plane stress/strain problems) subjected to static loading.

The program is linked to two processors: Pre-Processor, developed specially to supply the program with the necessary data through an interactive menu and dialogue boxes, and Post-processor for presenting the out put results in formatted sense.

This study focused on the linear and nonlinear analysis of plane stress/strain structures using 4-node (QPM4) and 8-node (QPM8) plane stress/strain elements.

A geometric nonlinear formulation based on the total Lagaregian formulation and using Green's strain (GNGRS), geometric strains (Engineering strains) (GNEGS) and Logarithmic strains (GNLGS) was adopted. The formulations were implemented into the nonlinear finite element program (NUSAP). The solution of nonlinear equations was obtained by the Newton-Raphson method.

The accuracy of the results of the formulation is demonstrated by using four numerical examples and the results are in agreement with other available published solutions.

The non-linear stresses from the different strain formulations were obtained. A comparison was made between the obtained strains and published results

The true stress associated with the logarithmic strain was thus obtained for loads that result in very large displacements.

TABLE OF CONTENTS

		Page
Abs	tract in Arabic	i
Abs	tract	ii
Tab	le of Contents	iii
List	of Tables	vii
List	of Figures	ix
List	of Symbols	xiii
List	of Abbreviations	XV
СН	IAPTER ONE: General Introduction	
1.1	Introduction	1
1.2	Objectives of research	4
1.3	General description of work	4
1.4	Outlines of thesis	5
СН	IAPTER TWO: Literature Review	
2.1	Introduction	7
2.2	Finite element programs	8
2.3	Geometric nonlinearity	10
2.4	Stress-strain measures	13
2.5	Brief description of the finite element method	16
	2.5.1 Introduction	16
	2.5.2 Description of the method	15
2.6	General formulation of the finite element method	18
	2.6.1 Virtual displacements approach	18
	2.6.2 Variation principles formulation	20

	2.6.3	Weighted	residual	method
--	-------	----------	----------	--------

21

CHAPTER THREE: Nonlinear Finite Element Method

3.1 I	ntroduction	22
3.2 N	Nonlinear solution techniques	23
	3.2.1 Newton-Raphson method	24
	3.2.2 Modified Newton-Raphson method	25
	3.2.3 Pure incremental	27
3.3	Finite element formulation of 4-node isoparametric	29
	plane stress/strain elements	
	3.3.1 Introduction	29
	3.3.2 Stress-strain relations	30
3.4 (Geometrically nonlinear Finite Element Formulations for	37
	plane stress/strain elements	
	3.4.1 Introduction	37
	3.4.2 Stress-strain relation	37
	3.4.3 Strain- displacement relations	38
	3.4.4 Green Lagrangian strains	39
	3.4.5 Tangent Stiffness matrix due to Green's strains	40
	3.4.6 Geometric strains	43
	3.4.7 Tangent stiffness matrix due to geometric strains	44
3.5 F	Relation between geometric and logarithmic (true) strains	47
	3.5.1 Tangent Stiffness matrix due to Logarithmic strains	48
CH	APTER FOUR: General Description of the Program	l
4.1 I	ntroduction	56
4.2 N	Modeling considerations:	57

4.3 Description of the core program 58	
4.4 Program layout	
4.5 Element library	63
4.6 Solution technique	63
4.6.1 Linear analysis and governing equation	63
4.6.2 Nonlinear analysis	64
4.6.2.1 Material nonlinear analysis	64
4.6.2.2 Geometrically nonlinear analysis	64
4.6.3 Frontal solver	64
4.7 Modifications in the program	65
CHAPTER FIVE: The Pre-processor and Post-pro Interface	ocessor
5.1 Introduction	74
5.2 The element of the pre-processor	74
5.2.1 Project command	75
5.2.1.1 New project	75
5.2.1.1.1 Units command	76
5.2.1.2 Open project	76
5.2.2 Options	76
5.2.3 The Element (topologies) item	77
5.2.4 The Nodes command	79
5.2.5 The Properties item	80
5.2.6 The Support menu	82
5.2.7 The Load item	82
5.2.8 Nonlinear control	84
5.2.9 The data item	85
5.3 The Post-processor	86
5.3.1 Results menu	86

5.3.2 The significance of Results	88
5.4 Conclusion:	89
CHAPTER SIX: Verification of Nonlinear Formulation	1
6.1 Introduction	90
6.2 Example 1:Cantilever under pure bending	91
6. 2.1 Discussion of results	102
6.3 Example 2: Two-dimensional plate with hole	103
6. 3.1 Discussion of results	111
6.4 Example 3: Cantilever plate with vertical load at free end	112
6. 4.1 Discussion of results	132
6.5 Example 4Clamped beam under point force	133
6.5.1 Discussion of results	154
CHAPTER SEVEN: Summary, Conclusions and Recommendations	
7.1 Summary	156
7.2 Conclusions	157
7.3 Recommendations	159
References	166
Appendix A: Listing of Stiffness Matrix and load vector	166
Appendix B: Listing of Stresses	179
Appendix C: Sample of input data	188

LIST OF TABLES

Table	Description	page
Table (6.1)	Deflection at point A	92
Table (6.2)	Deformed shape along center line when load	93
Table (6.3)	Displacements V/L, L-U/L at point A	94
Table (6.4)	Direct stress in x-direction minimum load p=3000	96
Table (6.5)	Direct stress in y-direction minimum load p=3000	97
Table (6.6)	Direct stress in x-direction maximum load p=30000	98
Table (6.7)	Direct stress in y-direction maximum load p=30000	99
Table (6.8)	Stress plot along x=0, unit load	105
Table (6.9)	Percentage error of stress along x-axis	106
Table (6.10) Maximum stress at point A	107
Table (6.11) Cantilever under vertical load,	
	vertical displacement QPM4	113
Table (6.12) Cantilever under vertical load,	
	horizontal displacement QPM4	115
Table (6.13) Cantilever under vertical load,	
	vertical displacement QPM8	117
Table (6.14) Cantilever under vertical load,	
	horizontal displacement QPM8	119
Table (6.15	Direct stress in x-direction, QPM4 load p=4000	121
Table (6.16	Direct stress in y-direction, QPM4 load p=4000	122
Table (6.17	Direct stress in x-direction, QPM4 load p=10000	123
Table (6.18	Direct stress in y-direction, QPM4 load p=10000	124
Table (6.19	Direct stress in x-direction, QPM8 load p=4000	125
Table (6.20	Direct stress in v-direction, OPM8 load p=4000	126

Table (6.21) Direct stress in x-direction, QPM8 load p=10000	127
Table (6.22) Direct stress in y-direction, QPM8 load p=10000	128
Table (6.23) Vertical displacement at point A	133
Table (6.24) Direct stress in x-direction minimum load p=100	134
Table (6.25) Direct stress in y-direction minimum load p=100	135
Table (6.26) Direct stress in x-direction load p=465.25	137
Table (6.27) Direct stress in y-direction load p=465.25	138
Table (6.28) Vertical displacement at mid span (point A)	140
Table (6.29) Average nodal stress in x-direction (point A)	141
Table (6.30) Average nodal stress in y-direction (point A)	142
Table (6.31) Average nodal shear stress in xy-direction (point A)	143
Table (6.32) Average nodal stress in x-direction node 1	146
Table (6.33) Average nodal stress in y-direction node1	147
Table (6.34) Average nodal shear stress in xy-direction node 1	148

LIST OF FIGURES

Figure	Description	page
Fig (3.1)	Newton-Raphson method	24
Fig (3.2)a	The modified Newton-Raphson method with	
	initial tangent in increment	26
Fig (3.2)b	The modified Newton-Raphson method with	
	initial problem tangent	27
Fig (3.2)c	Pure incremental solution	28
Fig (3.3)	4-node rectangular element	29
Fig (3.4)	Deformed and undeformed shape	38
Fig (4.1)	Flow diagram of main program	61
Fig (4.2)	Primary and secondary overlay structure of	62
	the core program system	
Fig (4.3)	Flow chart to calculate stiffness (Green's strain)	67
Fig (4.4)	Flow chart to calculate stiffness (geometric strain)	69
Fig (4.5)	Flow chart to calculate stiffness (logarithmic strain	71
Fig (4.6)	Flow chart to set up strain matrix [B] and to	72
	calculate the stress for geometric strain	
Fig (4.7)	Flow chart to set up strain matrix [B] and to	73
	calculate the stress for logarithmic strain	
Fig (5.1)	The main menu of the pre-processor	75
Fig (5.2)	Project menu (New project)	76
Fig (5.3)	Option menu	77
Fig (5.4)	Input data for QPM4 & QPM8	78
Fig (5.5)	The node command screen	79
Fig (5.6)	The screen for spacing arc ratio	80

Fig (5.7)	The element of the properties menu	80	
Fig (5.8.)	The geometric properties of the 2D problems	81	
Fig (5.9.)	The material properties form	82	
Fig (5.10)	The support node conditions	83	
Fig (5.11)	The concentrated load data for certain load case	83	
Fig (5.12)	The uniformly distributed load form	84	
Fig (5.13)	Nonlinear menu	85	
Fig (5.14)	View data file	86	
Fig (5.15)a	Form for output (Results menu)	87	
Fig (5.15)b	Form for stresses output (Results menu)	87	
Fig (6.1)	Cantilever under pure bending	91	
Fig (6.2)	The path followed by the point A with load step	92	
	increments for cantilever beam under pure bending		
Fig (6.3) a	Deformed shape along centre line	93	
Fig (6.3) b I	Displacements V/L, L-U/L at point A	95	
Fig (6.4)	Direct stress in x-direction minimum load p=3000	96	
Fig (6.5)	Direct stress in y-direction minimum load p=3000	97	
Fig (6.6)	Direct stress in x-direction maximum load p=30000	98	
Fig (6.7)	Direct stress in y-direction maximum load p=30000	99	
Fig (6.8)	Stress in x-direction Green's strain	100	
Fig (6.9)	Stress in x-direction Geometric strain	100	
Fig (6.10)	Stress in x-direction logarithmic strain	100	
Fig (6.11)	Stress in y-direction Green's strain	101	
Fig (6.12)	Stress in y-direction Geometric strain	101	
Fig (6.13)	Stress in y-direction logarithmic strain	101	
Fig (6.14)	Plate with central hole, problem statement	103	
Fig (6.15)	QPM4 mesh	104	
Fig (6.16)	Stress plot along x=0, unit load	105	
Fig (6.17)	Percentage error of stress along x-axis	106	

Fig (6.18)	Maximum stress at point A	107	
Fig (6.19)	Stress in x-direction Green's strain	108	
Fig (6.20)	Stress in x-direction Geometric strain	109	
Fig (6.21)	Stress in x-direction logarithmic strain	110	
Fig (6.22)a	Cantilever plate with vertical load at free end	113	
Fig (6.22)b	Mesh 1×4 (QPM4)	113	
Fig (6.22)c	Mesh 1×4 (QPM8)	113	
Fig (6.23)	Cantilever under vertical load,	115	
	vertical displacement QPM4		
Fig (6.24)	Cantilever under vertical load,	117	
	horizontal displacement QPM4		
Fig (6.25)	Cantilever under vertical load,	119	
	vertical displacement QPM8		
Fig (6.26)	Cantilever under vertical load,	121	
	horizontal displacement QPM8		
Fig (6.27)	Direct stress in x-direction, QPM4 load p=4000	122	
Fig (6.28)	Direct stress in y-direction, QPM4 load p=4000	123	
Fig (6.29)	Direct stress in x-direction, QPM4 load p=10000	124	
Fig (6.30)	Direct stress in y-direction, QPM4 load p=10000	125	
Fig (6.31)	Direct stress in x-direction, QPM8 load p=4000	126	
Fig (6.32)	Direct stress in y-direction, QPM8 load p=4000	127	
Fig (6.33)	Direct stress in x-direction, QPM8 load p=10000	128	
Fig (6.34)	Direct stress in y-direction, QPM8 load p=10000	129	
Fig (6.35)	Stress in x-direction Green's strain	130	
Fig (6.36)	Stress in x-direction Geometric strain	130	
Fig (6.37)	Stress in x-direction logarithmic strain	130	
Fig (6.38)	Stress in y-direction Green's strain	131	
Fig (6.39)	Stress in y-direction Geometric strain	131	
Fig (6.40)	Stress in y-direction logarithmic strain	131	

Fig (6.41)	Clamped beam under point load	133	
Fig (6.42)	Vertical displacement at point A	133	
Fig (6.43)	Direct stress in x-direction minimum load p=100	137	
Fig (6.44)	Direct stress in y-direction minimum load p=100	137	
Fig (6.45)	Direct stress in x-direction load p=465.25	138	
Fig (6.46)	Direct stress in y-direction load p=465.25	138	
Fig (6.47)	Vertical displacement at mid span (point A)	143	
Fig (6.48)	Average nodal stress in x-direction (point A)	143	
Fig (6.49)	Average nodal stress in y-direction (point A)	144	
Fig (6.50)	Average nodal shear stress in xy-direction (point A	146	
Fig (6.51)	Average nodal stress in x-direction node 1	150	
Fig (6.52)	Average nodal stress in y-direction node1	150	
Fig (6.53)	Average nodal shear stress in xy-direction node 1	151	
Fig (6.54)	Stress in x-direction Green's strain	152	
Fig (6.55)	Stress in x-direction Geometric strain	152	
Fig (6.56)	Stress in x-direction logarithmic strain	152	
Fig (6.57)	Stress in y-direction Green's strain	153	
Fig (6.58)	Stress in y-direction Geometric strain	153	
Fig (6.59)	Stress in y-direction logarithmic strain	153	

LIST OF SYMBOLS

а	Set of discretization parameters
a_n	converged solution at a previous load level or time step
a	vector of nodal displacements
\boldsymbol{A}	matrix containing displacements derivatives w.r.t.
	Cartesian displacements
\boldsymbol{B}_{o}	matrix contains shape function derivatives w.r.t ξ , η , ζ
${\pmb B}_L$	matrix of nonlinear displacement components
D	Elastic matrix
$oldsymbol{E}$	young's modulus
$\boldsymbol{g}_{x,}\boldsymbol{g}_{y}$	displacement gradient vector
\boldsymbol{G}	matrix containing shape function derivatives
G	shear modulus
h	thickness
i, j, k	unit vectors in direction of global coordinates
j	jacobian matrix
K	stiffness matrices
K_{T}	tangent stiffness matrix due to green strains
K_{σ}	additional geometric stiffness matrix
K_{σ}^{*}	additional geometric stiffness matrix (geometric strains)
K_{σ}^{**}	additional geometric stiffness matrix (logarithmic
	strains)

 K_{GT}^* tangent stiffness matrix due to geometric strains

 K_{TL}^* tangent stiffness matrix due to logarithmic strains

l,m,n components of unit vectors (direction cosines)

M additional initial stress matrix

 N_i shape function at node i

P additional initial

r, s, t natural coordinates

T transformation matrix

u nodal displacement vector

u,*v*,*w* displacement in global Cartesian coordinates

X,*Y*,*Z* global Cartesian coordinates

 θ vector containing displacement's derivatives w.r.t.

Cartesian coordinates

 σ 2nd piola - kirchhoff stress vector

 σ_1, σ_2 vector containing engineering stress

Ψ residual forces

 γ_{xz}, γ_{yz} green strains (shear component)

 $\gamma'_{xz}, \gamma'_{yz}$ geometric strains (shear component)

 $\delta \varepsilon, \delta A, ...,$ etc. variation of $\varepsilon,$ etc.

 α_i, β_i nodal rotation

 $\gamma'.\gamma$ shear angle

 ξ, η, ζ element curvilinear

 $\boldsymbol{\varepsilon}_{x,}\boldsymbol{\varepsilon}_{y}$ and $\boldsymbol{\gamma}_{xy}$ green strains

 $\varepsilon_{x}, \varepsilon_{y}$ and γ_{xy} geometric strains

 ε_{xlx} , ε_{ylx} and γ_{xylx} logarithmic strains

LIST OF ABBREVIATIONS

CBF Constant Body Force

CL <u>C</u>oncentrated <u>L</u>oad

DLNORM Limit of **D**isp**L**acement **Norm**

GNGRS Geometric Nonlinear Green's Strain

GNGES Geometric Nonlinear Geometric Strain

GNLGS Geometric Nonlinear Logarithmic Strain

INCOUT INCrement interval for **OUT**put of results

ISOFLEX ISOtropic FLEXural Element

MAR Limit of **M**aximum **A**bsolute **R**esidual (RMAXAL)

NALPS Maximum no. of conjugate Newton iteration

NIT Maximum **N**o. of **IT**eration for each load increment

NITOUT No. of ITeration interval for OUTput of results

NRIT Maximum no. of <u>Newton-Raphson IT</u>eration

NUSAP NUha Structural Analysis Program

QAX4 Quadrilateral $\underline{\mathbf{AX}}$ i-symmetric element with $\underline{\mathbf{4}}$ node

QAX8 Quadrilateral $\underline{\mathbf{AX}}$ i-symmetric element with $\underline{\mathbf{8}}$ node

QF4 Quadrilateral plate $\underline{\mathbf{F}}$ lexural element with $\underline{\mathbf{4}}$ nodes

QF8 Quadrilateral plate $\underline{\mathbf{F}}$ lexural element with $\underline{\mathbf{8}}$ nodes

QF9 Quadrilateral plate Flexural element with 9 nodes

QPM4 Quadrilateral Plane Membrane element with 4 nodes

QPM8 Quadrilateral Plane Membrane element with 8 nodes

QPM9 Quadrilateral Plane Membrane element with 9 nodes

RLNORM limit of **R**esidual **NORM**

RMS	Limit for \underline{R} oot \underline{M} ean \underline{S} quare of residual (RNORAL)
TAX3	$\underline{\mathbf{T}}$ riangular $\underline{\mathbf{A}}\underline{\mathbf{X}}$ i-symmetric element with $\underline{3}$ nodes
TAX6	$\underline{\mathbf{T}}$ riangular $\underline{\mathbf{A}}\underline{\mathbf{X}}$ i-symmetric element with $\underline{6}$ nodes
TF3	$\underline{\mathbf{T}}$ riangular Plate $\underline{\mathbf{F}}$ lexural element with $\underline{3}$ nodes
TF6	$\underline{\mathbf{T}}$ riangular $\underline{\mathbf{P}}$ late $\underline{\mathbf{F}}$ lexural element with $\underline{6}$ nodes
TPM3	$\underline{\mathbf{T}}$ riangular $\underline{\mathbf{P}}$ lane $\underline{\mathbf{M}}$ embrane element with $\underline{3}$ nodes
TPM6	$\underline{\mathbf{T}}$ riangular $\underline{\mathbf{P}}$ lane $\underline{\mathbf{M}}$ embrane element with $\underline{6}$ nodes
UDL	$\underline{\mathbf{U}}$ niformly $\underline{\mathbf{D}}$ istributed $\underline{\mathbf{L}}$ oad