

To the soul of my father And to my mother

Acknowledgment

I am sincerely grateful to Dr. Shadia Abdalati Omer for her supervision, continuous support, help and kindness.

Thanks are extended to Dr. Mohammed Taj Eldeen Ibrahim for his valuable advices and help in the statistical analysis of the data.

I would like to appreciate the skilled technical assistance of Ustaza Rawda Hassan for her generous and technical support concerning this study and help in the analysis of the samples.

Great thanks to Ustaz Mukhtar, (SUST) - College of Vet. Medicine and Animal Production for his assistance and co- operation during the excusion of this study.

Special thanks and love are extended to my friends Esraa Mohammed Hassan and Mayada Mohammed Elmahde for always loving, encouraging and supporting attitude.

This work was kindly financed by the Ministry of Higher Education and Scientific Research.

List of Contents

No.	Contents	Page
	Dedication	I
	Acknowledgment	II
	List of Contents	III
	List of Tables	V
	List of Figures	VII
	Appendices	
	Abstract	VIII
	Arabic Abstract	IX
	Introduction	1
	Chapter One: Literature Review	3
1.1.	Livestock	3
1.2.	Oilseeds	4
1.2.1.	Soya bean Meal	5
1.2.2	Cotton Seed	5
1.2.3.	Sunflower Seed	5
1.2.4.	Sesame Seed Meal	6
1.3.	Groundnut	6
1.4.	Digestion in the Ruminants	7
1.4.1.	Deglutition and Destination of the Bolus	9
1.4.2.	Carbohydrates Digestion	9
	Glucose Metabolism Disorders	11
1.4.3.	Lipids Digestion and Metabolism	11
1.4.4.	Hydrolysis of Dietary Lipids	12
1.5.	Proteins	12
	(a) Fibrous proteins	13
	(b) Globular proteins	13
	(c) Conjugated proteins	13

1.5.1.	Sources of Proteins for Dairy Cows	13					
	(a) Sources of non-protein nitrogen (NPN)	13					
	(b) Sources of ruminally degraded protein (RDP)	13					
	(c) Sources of ruminally undegraded protein (RUP)	13					
	Definitions:						
	Crude protein (CP)	14					
	Soluble protein (SCP)	14					
	Non protein nitrogen (NPN)	14					
	Ruminal undegraded protein ((RUP)	14					
	Ruminal microbial protein	14					
	By pass protein	15					
	Metabolizable protein (MP)	15					
1.5.2.	Protein Digestion in Ruminants	15					
1.5.3	Ammonia Metabolism	15					
1.5.4	Metabolism of Urea	16					
1.5.5	Protein Digestion in the Small Intestine	16					
1.5.6.	Protection of Dietary Protein	16					
	Chapter Two: Materials and Methods	20					
2.1.	Preparation of Untreated GNC	20					
2.2.	Chemical Treatment GNC	20					
2.3.	Animal Preparation and Surgery	21					
2.4.	In Situ Study	21					
2.5.	Statistical Analysis	22					
	Chapter Three: Results	23					
3.1.	Dry Matter Degradability	23					
3.2.	Crude Protein Degradation	33					
	Chapter Four: Discussion						
	Conclusion and Recommendations	46					
	Appendices						

List of Tables

No.	Contents					Page	
(1)	Insitu dry matter disappearance percentage of GNC					24	
	treated	with dif	ferent	HCl treat	ments.		
(2)	Insitu	GNC	dry	matter	rumen	degradation	25

	characteristics from fitted model for different HCl	
(3)	treatments. Insitu dry matter disappearance percentage from	26
	incubated bags for GNC treated with different NaOH	
(4)	treatments. Insitu GNC dry matter rumen degradation	27
	characteristics from fitted model for different NaOH	
(5)	treatments. Insitu GNC dry matter disappearance percentage from	29
	incubated bags for 0.5N HCl, 0.5N NaOH or	
(6)	formaldehyde treatments. Insitu dry matter rumen degradation characteristics from	30
	fitted value of untreated and 0.5N NaOH, 0.5N HCl or	
(7)	formaldehyde treated GNC. In sacco dry matter disappearance percentage from	31
	incubated bags for 0.5N NaOH or 0.5N HCl treated	
(8)	GNC combined with heat (100c°). Insitu dry matter rumen degradation characteristics	32
	from fitted model of acid and alkali treated GNC	
(9)	heat dried. Effect of heat, acid or alkali treatments on insitu	34
(10)	GNC degraded protein percentage. Protein degradation kinetics of chemically treated	35
(11)	(NaOH or HCl) and heat dried GNC from fitted odel. Effect of different HCl treatments on insitu GNC	36
(12)	degraded protein percentage. Effect of different HCl treatments on insitu GNC	37
(13)	degraded protein percentage from fitted model. Effect of different NaOH treatments on insitu GNC	39
(14)	degraded protein percentage. Effect of different NaOH treatments on insitu GNC	40
	protein degradation characteristics from Fitted	
(15)	values. Insitu protein degradation percentage of	41
(16)	formaldehyde treated GNC. Protein degradation characteristics of GNC treated	42

with $\,$ 0.3% formaldehyde $\,$ from fitted model.

List of Figures

0.	Contents
(1)	Dry matter disappearance of untreated and HCl treated GNC
(2)	from incubated bags. Effect of Insitu dry matter disappearance on GNC treated with
(3)	different NaOH treatments. Dry matter disappearance of untreated and chemicals treated
(4)	GNC from incubated bags. Dry matter disappearance of untreated and chemicals treated
(5)	GNC combined with heat. Effect of heat and chemical treatments of GNC on in sacco
(6)	degraded protein. Degraded protein of untreated and HCl treated GNC from

- incubated bags.
- (7) Degraded protein of GNC treated with NaOH.
- (8) Crude protein disappearance for untreated & formaldehyde treated GNC from incubated bags.

Abstract

The study was conducted to determine the effect of chemical treatment or combined chemical and physical treatments on dry matter (DM), crude protein (CP) degradation characteristics, and effective degradability of groundnut cake GNC. Chemical treatments were used 0.3% formaldehyde, 0.5N NaOH or 0.5N HCl. GNC was either soaked in the chemical or sprayed with it. The 0.5N NaOH or 0.5N HCl treated cake were either air dried or oven dried at (100°c). Nylon bags technique was employed using three castrated calves.

Treating with 0.3% formaldehyde, 0.5N NaOH or 0.5N HCl significantly (P < 0.01) decreased insitu dry matter and crude protein degradation rate as well as the effective degradability.

Treatment with 0.5N HCl heat dry was more effective than identical treatment with 0.5N NaOH in lowering the effective degradability, and the protein degradation rate. Both treatments had the same CP washing loss.

Soaking GNC in any of the used chemicals was significantly (P < 0.05) more effective than spraying it with the same chemicals. It can be concluded that combining chemical and physical treatments was effective in protecting GNC from rumen degradation. The results of this work were compared and discussed with other similar researchers findings.

ملخص الدراسة

المعامله الكيميائيه المستخدمه 3.% فورمالدهايد ،0.5محلول نظامي هايدروكسيد صوديوم او 0.5 محلول نظامي حمض الهايدروكلوريك تمت المعامله اما بتشريب كسب الفول بالمواد الكيميائيه أو برشها. جفف جزء من الكسب المعامل بالهواء في درجة حرارة الغرفه والجزء الاخرجفف بالحراره باستخدام فرن بدرجة 100م وقد استخدمت تقنية اكتاس النابلون باستخدام ثلاثه عجول مخصيه

المعامله بكل المواد الكيميائيه اظهرت انخفاض معنوي في معدل تكسير المعامله بكل المواد الكيميائيه اظهرت انخفاض معنوي في معدل السوداني .p<0.01 المعالجه بحمض الهايدروكلوريك المجفف بالحراره اكثر فاعليه في تقليل التكسير الفعال ومعدل تكسير البروتين من المعالجه بهايدروكسيد الصوديوم المجفف بنفس الطريقه ,بينما كلتا المعاملتين قللت من البروتين الذائب .

كانت (p<0.05)تشريب الكسب بأي من المواد الكيميائيه المستخدمه معنويا اكثر فاعليه من رشه بنفس المواد. يمكن القول ان استخدام المعاملات الكيميائيه مع الفيزيائيه كان فعالا في حماية كسب الفول السوداني من تكسير الكرش.نتائج هذه الدراسه قورنت ونوقشت مع نتائج باحثين اخرين مشابهة.