الآيــة

بسم الله الرحمن الرحيم

أَلَمْ تَرَوْا أَنَّ اللَّهَ سَخَّرَ لَكُم مَّا)
فِي السَّمَاوَاتِ وَمَا فِي الأَرْضِ
وَأَسْبَغَ عَلَيْكُمْ نِعَمَهُ ظَاهِرَةً
وَبَاطِنَةً وَمِنَ النَّاسِ مَن يُجَادِلُ
فِي اللَّهِ بِغَيْرِ عِلْمٍ وَلا هُدًى وَلا
(كِتَابِ مُّنِيرِ

سورة لقمان (ابة 20)

DEDICATION

- To the spirit of my father that did not go away, never
- To my mother who always accompanied me to the path of success
 - To all my family and
 - To all my friends and my loved ones

ACKNOLEDGMENT

First, I thank and praise my God (**ALLAH**) for accomplishing this work.

I would like to acknowledge, to my thesis supervisor Dr. Ibrahim Khider, for his support and encouragement which has made the completion of this thesis possible. Throughout my work with this thesis, I have received so much help from him.

Also I would like to thanks and extend my heartfelt gratitude, any person help me or Moral supports me to make this work.

ABSRACT

Long Term Evolution is currently being standardized in 3GPP with the aim of more than twice the capacity over High-Speed Packet Access. The chosen multiple access for uplink is Single Carrier FDMA, which avoids the intra-cell interference typical of CDMA systems, but it is still sensitive to inter-cell interference.

As a result, the role of the power control becomes decisive to provide the required SINR, while controlling at the same time the interference caused to neighboring cells. This is the target of the Fractional Power Control (FPC) algorithm lately approved in 3GPP.

In this thesis, the OLPC is studied in detail to obtain a reference performance, and then all techniques are proposed with the aim of improving it. All techniques are implemented on a static simulator that models slow variations.

The comparison of the result among the different techniques is carried out by considering key performance indicators like the cell outage and cell throughput.

المستخلص

التطور على المدى الطويل ويجري حاليا ضمن وحدة **3GPP** بهدف قدرة أكثر من مرتين خلال وصول الحزم عالية السرعة

تم اختيار تقسيم إشارة تردد ناقل الوصول المتعدد كتقنية وصوله في الارسال لانه يمنع التداخل الداخلي للخلية لكنها لاتزال حساسة اتجاه التداخل بين الخلايا

نتيجة لذلك قاعدة التحكم فى القدرة لها دور فعال فى اعطاء نسبة الاشارة الى التداخل و الضوضاء بقيمة مطلوبة بينما يتم فى نفس الوقت التحكم فى التداخل الذى يحدث بين الخلايا المجاورة .هذا هو الهدف من خوارزمية تحكم القدرة الجزئى والذى (**3GPP**) صدق مؤخرا عن طريق في هذه الأطروحة، تدرس قاعدة التحكم للحلقة المفتوحة بالتفصيل للحصول على أداء المرجعية ، ومن ثم يتم اقتراح جميع التقنيات وذلك بهدف تحسينه .ويتم تنفيذ جميع التقنيات عن طريق استخدام نظام محاكاة ثابت. ويتم مقارنة النتيجة بين تقنيات مختلفة عن طريق النظر في مؤشرات الأداء الرئيسية مثل انقطاع خلية و الخلية الإنتاجية.

Table of Contents

اللّية	I
	П
Dedication	Ш
Acknowledgment	IV
	V
Abstract	VI
المستخلص	IX
	Χ
Table of	
Contents	
List of Tables	
List of	1
Figures	2
List of Acronyms	3
	3
Chapter 1: Introduction	5
1.1 Introduction	6
1.2 Thesis	
objective	7
1.3 Problem	8
Description	8
1.4 Proposed solution	8
	9
1.5 Assessment methodology	9
	10

1.6 The	esis					11
outline	S				••	12
						13
Chapt	er 2: Bac	kgroun	d and r	elated work		14
2.1 Intr	roduction					14
						16
2.2	LTE	ph	ysical	layer	(PHY)	19
						19
	1. Multiple	_				20 21
	es					21
	2.1.1 Dow					22
						~ ~
	2.1.2					
•						25
۷.۷.	2 Frame s	cructure				25
2.5.2						26
2.5.3	3 Physical	uplink s	shared ci	nannel – PUSCI	H	29
2.2						29
	4 Physical					30
DIOCK				 Reference	Signals	32
		2.2.6	Fast	 scheduling	and	39
AMC						40
			2.	2.7No	Soft(er)	41
hando	ver					

		anagement	in LTE			42	
				_		42	
		Control		in	LTE		
						44	
		of	power		control	44	
2.5.1 Be	tter capacit	у				45 45	
2.5.2	Battery	pow		consu	mption		
	LTE	PUSCH	powe	r	control		
						46	
	ver spectral	•				50	
						53	
2.6 Other	Studies					57	
		•••••					
Chapter 3	3: power c	ontrol Tech	nniaues			63	
3.1 Introdu	-					65	
	l power con	trol				66	
	•					70	
		ontrol Conc)			
3.4 Interfe	erence Base	d Power Cor	ntrol (IPC)			

3.4.1 Limit				Interference
	Generali			(G-IPC)
3.5 Cell Inte	rference Base	ed Powe	er Control (C-IPC)
Chapter 4:	Simulation	Part		
4.1Simulati	ion			
Desecratio	n			
4.2	Use	er.		Generation
4.3 Default 9	System Simu	lation		
Parameters.				
4.4System C	Calculations			
4.4.1Path				
calculatio	n			
4.4.2 Thro	oughput map	ping		
				SINR
calculat	4 ion			
	Throughput (
4.4.40011	Tilloughput (Jaiculat	.1011	
	4.4.5	Cell	Outage	Calculation

4.5	Cumulative	Dis	stribution	Function
Chapter	5: Results a	nd Disc	ussion	
5.1Perfor	mance	of	FPC	Parameters
5.2 outag	e and cell thr	oughput	performanc	æ
5.3 SINR	power			
distr	ibution			
5.3 Effect	s of power co	ntrol tec	hniques on	the
Transmiss	sion Power			
Chapter	6:conclusio	n and fu	iture works	5
6.1concl	lution			
6.2		future		works
Reference	ce			
Appendi	x			

List of Tables

4.1	Default simulating Assumptions	41

List of Figure

1.1	3GPP project Evolution - LTE is planned to	
	coexist with future	2
1.2	networks	4
2.1	Shadow fading	10
2.2	problem	11
23	LTE generic frame	12

2.4	structure	
	Different Modulation	13
2.5	Techniques	15
2.6	LTE uplink resource	17
	grid	
2.7	Resource element mapping of reference	18
	signals for single antenna	
2.8	only	23
3.1	Subset of RRM functionaries	26
4.1		40
5.1	Block diagram of uplink power using the open-	48
5.2	loop power control	49
5.3		50
5.4	•••••	51
5.5	Block diagram of uplink power using the Closed-	52
5.6	loop power	54
5.7	control	55
5.8	power control schemes categorized based on	56
	the value of	
5.9	PUSCH power control parameters broadcasted	57
5.10		59
5.11	UEs	60
5.12	Distribution	61
5.13	PSD compensation with	62
	Pathloss	
	Effect of P0 on SINR	

distribution
Effect of α on SINR
distribution
Outage Throughput vs Average Cell Throughput
for FPC
Outage Throughput vs Average Cell Throughput

Outage Throughput vs Average Cell Throughput for IPC.....

SINR distribution vs. cdf for FPC

SINR distribution vs. cdf for IPC

SINR distribution vs. cdf for GIPC

SINR distribution vs. cdf forC IPC
UE Transmitting power distribution vs. cdf for
FPC

UE Transmitting power distribution vs. cdf for IPC
UE Transmitting power distribution vs. cdf for
GIPC

UE Transmitting power distribution vs. cdf for CIPC