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ABSTRACT

Liquid-Liquid extraction is a separating unit operation process
which is well known and well investigated, however, the equilibrium data
For mutual solubility and tie lines are difficult to correlate and be
applied. Many workers including Othmer and Tobias, Ishida, and Hand
introduced methods that predict Liquid-Liquid tie-line data, but the
mutual solubility data is still plotted on binodal curve on equilateral
triangle.

The construction of the tie —line on the binodal curve to determine
the number of theoretical stages, has to be made graphically using the
relevant correlations. This requires experimental determination of the
mutual solubility and tie-line data.Treybal even prior to Hand and other
workers introduced a method of construction without using tie-lines data
of binodal curves to determine the number of theoretical stages. This
method is investigated and proved to be correct, rapid and does not
require experimental determination of tie-line data.

Treybal method is used in the present work and proved to be

accurate and easy to apply. The number of stages is determined using this
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method and all other design parameters of a sieve tray extraction column
are obtained.

A complete design by hand calculation procedure is realized and
Outlined. The number of theoretical stages is calculated using ASPEN
PLUS SOFT WARE and it is found to be in agreement with the method
investigated in this thesis.

This work also investigates the preparation of the data required to
design a distillation column .It is known from the literature and practice
that distillation is well known and well investigated ,However, different
techniques have been used to determine the design parameters. These
include the minimum reflux ratio, the actua reflux ratio, the number of
theoretical stages, the number of actual stages, the feed stage location,
,the flooding velocity,the liquid-vapor flow factor,the maximum
volumetric flow rate,the net area,the active area ,the hole area,the weir
length,the entertainment,the weeping,the weir crest and actual minimum
vapor velocity are lastly determined.

The design of adistillation column requires experimental
determination and correlation of equilibrium data. The equilibrium data
and component balance are used to calculate the number of theoretical
stages and consequently the other design parameters. An adequate
literature is cited covering the activity coefficient models such as NRTL,
UNIOUAC and UNIFAC. Data obtained by these methods are used to
design a distillation using ASPEN PLUS SOFTWARE .The design is
also made through hand calculations and found to be asatisfactory
agreement with ASPEN PLUS SOFTWARE result .Acomplete procedure

by hand calculations for designing extraction and distillation columns .
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Figure(D.1.10): Hand's correlation for system(Cyclohexane(A)-
Benzene (C)-furfural (S))at 298.15k

Figure(D.1.11): Hand's correlation for system(1,1,2-trichloroethane
(A)-Acetone (C)-water (S))at 298.15k

Figure(D.2.1):Vapor-Liquid Equilibria of Methyl acetate(1)-
Methanol at 101.3kpa

Figure(D.2.2):Vapor-Liquid Equilibria of p-xylene(1)-o-xylene(2) at
101.3kpa

Figure(D.2.3):Vapor-Liquid Equilibria of Butanone(1)-N,N-dimethyl
-formamide (2) at 79.99kpa

Figure(D.2.4):Vapor-Liquid Equilibria of Cyclohexane(1)-n-
heptane(2) at 100.65kpa

Figure(D.2.5):Vapor-Liquid Equilibria of m-xylene(1)-o-xylene(2) at
100.65kpa
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Figure(D.2.6): Vapor-Liquid Equilibria of Mesitylene(1)-1-octanol(2)
at 97.3kpa

Figure(D.2.7): Vapor-Liquid Equilibria of Mesitylene(1)-1-
Heptanol(2) at 97.3kpa

Figure(D.2.8): Vapor-Liquid Equilibria of 2-
Methyltetrahydrofuran(1)- Cumene (2) at 97.3kpa

Figure(D.2.9): Vapor-Liquid Equilibria of Carbon tetra chloride (1) -
Benzene (2) at 101.3kpa

Figure(D.2.10): Vapor-Liquid Equilibria of 1,1,1,2,3,3,3heptafluoro
proane(1)-ethyl fluoride(2) at 101.3kpa

Figure(E.1.1):Ternary map for water-acetic acid-DIISO
Figure(E.2.1):Temperature profile

Figure(E.2.2):Vapor compostion profiles

LIST OF NOMENCLATURE

Diluent

Solute
Solvent

Concentration of diluent in diluent rich phase
Concentration of solute in diluent rich phase
Concentration of solvent in solvent rich phase
Concentration of solute in solvent rich phase
Concentration of diluent in solvent rich phase
Concentration of solvent in diluent rich phase
Feed

Extract

Raffinate

Mixture

Non-Random Two Liquid model

Universal Quasi-Chemical Theory model
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Universal Functional Activity Coefficient
Weight fraction of substance (C) in Feed
Weight fraction of substance (C) in Solvent
Weight fraction of substance (C) in Extract
Weight fraction of substance (C) in Raffinate
Weight fraction of substance (C) in Mixture
The difference point
The correlation factor
Jet diameter
Orifice diameter
Density of continuous phase
Density of dispersed phase
Interfacial tension
The velocity through perforations (orifice)
Perforation area
Volumetric rate of dispersed solution
Volumetric rate of continuous solution
Number of perforations
Plate area for perforations
The continuous phase velocity
The terminal velocity
Viscosity of continuous solution
Acceleration of gravity
Conversion factor
Downspout area
Total plate area
Tower Diameter
Stage Efficiency
The number of actual stages
The number of theoretical stages
Tower Height
The tray spacing
Molar flow rate of feed
Molar flow rate of over head product
Molar flow rate of bottom product
Mole fraction of light liquid
Mole fraction of light in over head product
Mole fraction of light in bottom product
The minimum reflux ratio
The Reflux Ratio
Liquid flow in rectifying section
Vapor flow in rectifying sections
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Liquid flow in stripping sections
Vapor flow in stripping sections
Flooding vapor velocity

Density of liquid

Density of vapor

The liquid-vapor flow factor
Volumetric flow-rate

Molecular weight

Net area required

Down comer area

Column diameter

Cross-sectional area of downcomer
Net area

Active area

Hole area

Weir length

Entrainment

Minimum vapor velocity through the holes
Hole diameter

Weir crest
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