Dedication

To my family, mother, father, brothers, sisters, and

To all my friends with love and respect

Acknowledgments

I would like to express my sincere gratitude and thanks to my supervisor Dr. Abdelgadir Ahmed Osman for his guidance, patience, keen interest and continuous participation throughout this study.

I am also grateful to all members of Department of Plant Protection, College of Agricultural Studies, Sudan University of Science and Technology (SUST), Shambat.

Grateful thanks are due to my sincere friends Loai Mohamed Elamien, and Abdelmalik jama Gaadayare. Thanks are also extended to all those who gave hand and help in producing this work.

List of Contents

	Page
Dedication	I
Acknowledgement	II
List of contents	III
List of tables	IV
List of figures	V
List of plates	VI
English abstract	VII
Arabic abstract	IX
Chapter one: Introduction	1
Chapter Two: literature review	3
2.1 Storage pest studied	3
2.1.1 The flour beetle	3
2.1.2 Description	3
2.1.3 Taxonomic position	4
2.1.4 Life cycle	4
2.1.5 Economic importance	4
2.1.5.1 Importance and type of injury	5
2.1.5.2 Original sources of stored grain insects	5
2.2 Control practices	5
2.2.1 Hygiene methods	6
2.2.2 Physical control measure	6
2.2.2.1 High and low temperatures	6
2.2.2.2 Cooling	6
2.2.2.3 Heat as a control measure	6
2.2.3 Mechanical control measure	6
2 2 3 1 Airtight storage	6

2.2.3.2 Centrifugal force	7
2.2.4 Insecticides of natural origin	7
2.2.5 Biological control	8
2.2.6 Chemical control	8
2.2.6.1 Residual insecticides for granaries	8
2.2.6.2 Spraying and sprayers	8
2.2.6.3 Fumigants	9
2.2.6.4 Hydro cyanic acid	9
2.2.6.5 Methyl Bromide	9
2.3 Neem Tree	10
2.3.1 Distribution and characters	10
2.3.2 Repellent activity	10
2.3.3 Medical uses of neem	11
2.3.4 The Neem toxicity	12
2.3.5 The growth regulator and hormonal effects	10
of Neem 2.3.6 NeemAzal-T/S	12 13
	13 14
2.3.7 NeemAzal and its combinations 2.4 Malathion	15
	15 15
2.4.1 Empirical formula2.4.2 Structural formula	15 15
2.4.2 Structural formula 2.4.3 Uses of Malathion	15
2.4.4 Toxicity of Malathion	16
Chapter three: Materials and methods	18
3.1Insect rearing	18
3.2 Effects of NeemAzal-T/S on red flour beetle	18
3.3 Effects of the malathion 57 on red flour beetle	20
3.4 Effects of the combination of NeemAzal-T/S	20
and malation57 Red flour beetle	20
3.5 Statistic Analysis	20
Chapter four: Results	22
4.1 The effect of NeemAzal-T/S against larvae and	
adults of <i>Tribolium castaneum</i>	22
4.2 The effect of malation57 against larvae and adults	
of Tribolium castaneum	27
4.3 The effect of NeemAzal-T/S and malathion57	

	on against Larvae and adults of <i>Tribolium castaneum</i> ive: discussion es	31 35 37
List of Ta	bles	
Table Titl	e	Page
Table 1:	The mean of mortality (%) of NeemAzal-T/S against larva and adult <i>Tribolium castaneum</i> (2	3-24)
Table 2:	The mean of mortality (%) of Malathion57 against larva and adult of <i>Tribolium castaneum</i>	28
Table 3:	The mean of Mortality (%) of Combination	
	Malathion57 and NeemAzal-T/S compared	
	with the Recommended Doses of malathion57	
	and NeemAzal-T/S against larva and adult of	
	Tribolium castaneum	
	32	

List Of figures

Title		page
Figure 1:	Metabolic fate of Malathion	17
Figure 2:	The effects of NeemAzal T-/S against the larvae of <i>Tribolium castaneum</i> (Herbst)	25
Figure 3:	The effect of NeemAzal-T/S against the adults of <i>Tribolium castaneum</i> (Herbst)	26
Figure 4:	The effect of Malathion57 against the Larvae Of <i>Tribolium castaneum</i> (Herbst)	29
Figure 5:	The effect of Malathion57 against the adults of <i>Tribolium castaneum</i> (Herbst)	30
Figure 6:	The effect of NeemAzal-T/S and Malathion57 combination against the larvae of <i>Tribolium</i> castaneum (Herbst)	33
Figure 7:	The effect of NeemAzal-T/S and Malathion57 combination against the adults of <i>Tribolium castaneum</i> (Herbst)	34

List Of Plates

Title		Page
Plate 1:	Plastic container for mass rearing of Adults <i>T. castaneum</i>	19
Plate 2:	Plastic container for mass rearing of Larvae <i>T. castaneum</i>	21

Abstract

This research was conducted at the laboratory of the department of Plant Protection College of Agricultural Studies (Shambat) Sudan University of Science and Technology.

The purpose of this study was to evaluate the efficacy of different concentrations of NeemAzal-T/S, Malathion57 and a combination of both insecticides against larvae and adults of the red flour beetle *Tribolium castaneum*. All concentrations of NeemAzal-T/S gave a significantly higher mortality percentage among the 3rd instar larvae than the adults.

In fact the recommended dose of NeemAzal-T/S did not cause any mortality among the adults until the 7th day (6.7%) and it reaches (13.3%) by the 11th day. On the other hand the larvae experienced mortality since the first day (3.3%) and reaches 43.3% on 7th day, 63.3% on the 8th day and 83.3 on the 11th day.

On the other hand the recommended dose of Malthion57 caused 43% mortality among the larvae on the 1st day as opposed to 87% mortality among the adults. By the 2nd day all treated adults were dead compared to 83% of the larvae, on the 3rd day the percentage mortality among the larvae reach 97% and on the 4th day it reaches 100%.

The mortality percentage of the combination of Malathion57 and NeemAzal-T/S showed that 60% of the adult died on the first day as opposed to 57% of the larvae, the percentage mortality among the adults on the 2nd, 3rd, 4th day was 80, 93 and 100% respectively. Where the mortality percentage among the larvae for the same days was 70, 77 and 97% respectively. It is clear from the results that Malathion57 caused a fast mortality compared to NeemAzal-T/S which start to kill the pest after along period of exposure.

ملخص البحث

تم تنفيذ هذا البحث فى قسم و قاية النبات كلية الدراسات (شمبات) الزراعيه جامعة السودان للعلوم والتكنولوجيا.

والغرض من هدا البحث هو تقييم تأثير التراكيز المختلفة للنيمازال والملاثيون 57 والخلطة بين المبيدين ضد الير قات والحشرات الكاملة لخنفساء الد قيق الحمراء castaneum

جميع التركيز للنيمازال أدت فرو قات معنوية للنسبة المؤيه للموت على الطور الثالث م قارنه بالحشرات الكاملة .

أظهرت النتائج أن الجرعة الموصى بها للنيمازال لم تعمل اى موت بالنسبة للحشرات الكاملة إلى ان وصل إلى اليوم السابع بحيث كانت نسبة الموت (6.7%) وفى اليوم الحادي عشر وصلت (13.3%) ومن الناحية الأخرى أن الير قات فى اليوم الأول حصل نسبة موت (3.3) واليوم السابع (43.3%) واليوم الثامن (63.3%) حتى اليوم الحادي عشر وصلت نسبة الموت (83.3%). على الجانب الأخر أن الجرعة الموصى بها للملاثيون 57 أدى نسبة موت (43%) للير قات قى اليوم الأول با الم قارنة مع (87%) موت للحشرة البا لغة. وفى اليوم الثاني جميع الحشرات الكاملة ماتت بينما الير قات وصلت (83%). وفى اليوم الثالث وصلت نسبة الموت فى الير قات إلى (97%).

أما اليوم الرابع وصلت نسبة الموت (100%).

أما النسبة المؤيه للموت في حالة الخلطة بين الملاثيون 57 والنيمازال أدت نسبة موت (60%) للحشرة الكاملة

با الم قارنة (57%) للير قات. أما نسبة الموت في الحشرات الكاملة في اليوم الثاني والثالث والرابع كانت (80%), (93%) و (100%)على التوالي بينما الير قات في نفس الأيام وصلت نسبة موتها (70%), (77%) و (97%) بالتوالي. كما هو موضح في النتائج فان الملاثيون أدى نسبة موت أسرع م قارنة بالنيمازال والدي أدى موت للافه بعد فترة طويلة من المعا ملة.