DEDICATION

To my beloved family My parents,
Ismail
Safaa
Alaa
Mohammed

Fatima

Acknowledgement

Praise be to Allah the Merciful, the compassionate. Had it not been due to His will and help, this work never been possible.

My gratefulness and appreciation to Dr. Ahmed Khalil Ahmed for his guidance, supervision and support throughout the course of study.

I would like to express my great thanks, sincere appreciation and deep gratitude to Prof. Amera Hussian Hamra, the Co-supervisor, who patiently corrected and reformed this work with the dedication of a true scientist.

I would like to thanks Dr. Ismail Fagiri who suggested the research project and encouraged me to register for this degree.

I would like also thank Dr. Faisal Awawda of AAAID for his strong support to avail the animals for the experiment in this respect.

I would like also to thank Dr. Ibrahim Ahmed of Azaheer Company and Dr. Faisal Hassan for their strong financial support.

I should also mention here my great appreciation to the work done by Dr. Mohamed Kheir A.. Ahmed of University of Khartoum in the statistical analysis of data and Dr.Sharaf Eldin Makkawi for strong academic support. Also thanks extended to Prof. Hassan Suliman Ibrahim and Dr. Amna El-Sobiki for correcting the transcript.

I will never be able to express my thanks to my colleagues,
Hassan Muhielelin, Elsir Abdelhadi, Abass Abdelgadir and the worker
Sulum Elnur of ACAPP.

I would like also to show my gratitude to Mr. Abdelhamed Abdelrahim, who patiently typed and revised the transcript.

My great thanks and appreciation to the staff of Animal Production department and to my dear colleagues Samia Mohamed A.. Rahman for her help.

I should confess here that I could not have finished this work without the help of my sister Samia A.. Rahman Mohayad, who shouldered the responsibility of the household, my children, mother and father she had done a great job.

ABSTRACT

The aim of this study was to investigate the possibility of using broiler manures as a cheap source of rumen degradable protein for raising Holstein Friesian heifers. In addition to study the effect of feeding chicken manures on some productive and reproductive performance of heifers.

Thirty heifer calves ranging between 2–3 month of age were chosen from the dairy herd of the Arab Company for Agricultural Production and Processing (ACAPP). They were divided into two equal groups, offered concentrates and roughages from weaning until the age of 15-17 months.

The control group was fed on the farm conventional ration, which consisted of wheat bran 32 %, groundnut cakes 10%, sorghum grains 40%, molasses15%, lime2 %, and sodium chloride 1% with 16.6% C.P. and energy 11.98 MJ/kg DM. While, the experimental group was fed on 30% poultry manures ration, which was introduced gradually within a two weeks adaptation period. The ration consisted of poultry wastes30%, groundnut hulls 7%, sorghum grains 50%, lime 2% and sodium chloride 1 % with 16.79 % C.P and ME 11.21 MJ/kg DM.

Some of the productive and reproductive performance was recorded as follows:

- 1. The mean final live weight of the control group was 241.9 \pm 1.28 kg and of the treatment group was 234.77 \pm 1.36 kg. These means were significantly different (P < 0.01).
- 2. The mean daily gain for the control group was 0.78 ± 0.02 kg. While for the experimental groups was 0.76 ± 0.03 kg. Differences were not significant (P > 0.05).
- 3. Age and weight at puberty for the control group were 292.13 ± 7.78 day and 233.4 ± 5.4 kg while for the treatment group was 297.33 ± 7.78 day and 239.00 ± 5.40 kg. Differences were not significant (P > 0.05).
- 4. Age and weight at successful service for the control group was 456.60 ± 3.10 day and 343.2 ± 4.9 kg while the results for the experimental group was 454.2 ± 4.9 day and 253.00 ± 4.9 kg. Differences were not significant (P > 0.05).
- 5. Number of services/conception for the control group is less than the experimental group they were 1.2 ± 0.13 and 1.7 ± 0.13 respectively with a significant difference (P < 0.05).
- 6. Gestation length for the control group was 275.8 ± 1.3 day while for the treatment group was 277.00 ± 1.34 day. Difference was not significant (P > 0.05).
- 7. Age at first calving for the control and treatment groups were 730.4 ± 3.81 and 741.86 ± 3.81 day respectively, with a significant difference (P < 0.05).

- 8. Birth weights of newly born calves for the control and treatment groups were 32.8 ± 1.03 kg and 31.17 ± 0.95 kg, respectively without significant difference (P > 0.05).
- 9. Mean milk yield for the first hundred days for the control group was 1637.27 ± 130.89 litre while for the treatment group was 1730.03 ± 107.73 litre with no significant difference (P > 0.05).

Estimation of economical advantage of feeding poultry manure indicated that, the cost of growing the experimental group is less by 28% from the cost of the control group.

This study ended without any harmful effects of health hazards. In conclusion, feeding poultry manure up to 30% in growing heifers dairy heifers was practical, economic and without any significant side effect on production, reproduction and health of animals.

بسم الله الرحمن الرحيم خلاصة الأطروحة

أجريت هذه الدراسة بغرض البحث في تغذية العجلات النامية في مزارع الألبان باستخدام بدائل علفية ذات قيمة غذائية جيدة وبتكلفة أقل كمخلفات الدواجن وأثرها علي بعض الصفات الإنتاجية والتناسلية. وقد استخدم في هذه الدراسة (30) عجلة فطيمة تتراوح أعمارها ما بين 2 – 3 شهور من مزرعة الشركة العربية لإنتاج والتصنيع الزراعي والتي تمتلك أبقار من سلالة الهولستين فريزيان. وقد تم تقسيمها إلى مجموعتين متساويتين وتمت تغذيتها على المركزات والأعلاف الخضراء من الفطام وحتى عمر 15 – 17 شهر.

وقد غذيت مجموعة الشاهد بعلائق المزرعة التقليدية والتي تتكون من ردة القمح 32%, أمباز الفول السوداني 10% ، وحبوب الذرة 40% والمولاس 15% والحجر الجيري 2 % وملح الطعام 1% وتحتوي على 16.6% من البروتين الخام وطاقة مقدراها 11.98 ميقاجول / كيلوجرام.

أما مجموعة التجربة فقد تم إدخال مخلفات الدواجن تدريجياً لمدة اسبوعين كفترة انتقالية بنسبة 30% كبديل لأمباز بذرة الفول السوداني حيث تكونت العليقة من الآتي: مخلفات الدواجن اللاحمة 30% وقشرة الفول السوداني 7 % وحبوب الذرة 50 % والحجر الجيري 2 % وملح الطعام 1 %. وتحتوى على بروتين خام بنسبة 16.79 % وطاقة قدرها 11.21ميقاجول/كيلوجرام

وقد أوضحت النتائج المتعلقة ببعض الصفات الإنتاجية والتناسلية كما يلى:

- 1. معدل الوزن الحى النهائى كان 1.28 \pm 241.49 \pm 25م لمجموعة الشاهد ولمجموعة التجربة 234.77 \pm 25م وكان الفرق معنوياً (P < 0.01).
- 2. مقدار الزيادة الوزنية اليومية $0.03 \pm 0.78 \pm 0.76$ كجم لمجموعة الشاهد أما فى مجموعة التجربة فكانت $0.70 \pm 0.76 \pm 0.76$ وكان الفرق غير معنوى (P > 0.05).

- \pm 7.78 بلغ معدل العمر والوزن عند البلوغ لمجموعة الشاهد 7.78 بلغ معدل العمر والوزن عند البلوغ لمجموعة المعاملة فقد 292.13 يوم و \pm 239.00 ± كجم وكان الفرق غير معنوى (\pm 20.05).
 - 4. بلغ معدل العمر والوزن عند أول تلقيحه ناجحة لمجموعة الشاهد $343.2 \pm 4.9 \pm 456.60 \pm 3.10 \pm 456.60 \pm 3.10$ كان لمجموعة التجربة $6.9 \pm 454.2 \pm 253.2 \pm 254$ وكان الفرق غير معنوي (P > 0.05).
 - 5. وقد كان عدد مرات التلقيح اللازمة للإخصاب لمجموعات الشاهد اقل من مجموعة التجربة وهي كالآتي $2.0.13 \pm 0.13 \pm 0.13$ النوالي وكان الفرق معنوياً $2.0.13 \pm 0.05$.
 - 6. بلغ طول فترة الحمل لمجموعة الشاهد 1.3 $\pm 275.8 \pm 275.8 \pm 275.8 \pm 275.8$ ولمجموعة التجربة 1.3 $\pm 277.0 \pm 277.0 \pm 275.0$ معنوياً ($\pm 277.0 \pm 275.0$).
- 7. كما بلغ العمر عند الولادة الأولي لمجموعتي الشاهد والتجربة كالآتي: $730.4 \, 3.81 \pm 741.86 \, 3.81 \pm 741.86$ التوالى وقد كان الفرق معنوياً (P < 0.05).
 - 8. أما أوزان المواليد لمجموعتي الشاهد والتجربة كانت كالآتي $\pm 31.17 \, 0.95 \pm 32.8 \, 1.03 \pm 32.8 \, 1.03$ الفرق غير معنوى ($2.0.05 \, 0.05$).
- 9. بلغ معدل اللبن للمائة يوم الأولي لمجموعة الشاهد 130.89 \pm 1730.03 لتر ولمجموعة التجربة 1730.03 \pm 1637.27 \pm وقد كان الفرق غير معنوى (P > 0.05).

وعند حساب الجدوي الاقتصادية باستخدام فضلات الدواجن في تغذية العجلات النامية فقد إتضح أن تكلفة عجلات التجربة أقل عن تكلفة عجلات مجموعة الشاهد بنسبة 28% كما لم تلاحظ أى أعراض مرضية. من كل ما تقدم نستنتج أن استخدام فضلات الدواجن بنسبة تصل 30% من العليقة المركزة للعجلات النامية ذو فائدة ً إقتصاديةً وليس له تأثير سلبي على الصفات الإنتاجية والتناسلية والصحة العامة للحيوانات.

LIST OF CONTENTS

	Page
Dedication	i
Acknowledgements	ii
Abstract	iv
Arabic Abstract	vii
List of Contents	X
List of Tables.	xii
List of Figures	xiv
CHAPTER ONE: INTRODUCTION	1
CHAPTER TWO: LITERATURE REVIEW	3
2.1. Poultry manure	4
2.2. Chemical composition	4
2.2.1. Chicken manure incorporated with concentrates	8
2.2.2. Chicken manure ensiled with straws	28
2.3. Effect of protein on some reproductive performance	33
2.4. Methods of evaluating reproductive efficiency	36
2.4.1. Age and weight at puberty	36
2.4.2. Conception rate and number of cervices/conception	38
2.4.3. Gestation length	39
2.4.4. Age at first calving	40
CHAPTER THREE: MATERIALS AND METHODS	42
3.1. Location and history	42
3.2. Experimental animals	43

3.3. Feeding treatment	44
3.4. Parameters studied	47
3.5. Statistical analysis	51
CHAPTER FOUR: RESULTS	53
4.1. Productive traits	53
4.1.1 Weight at puberty and successful service	61
4.1.2 Birth weights of calves born to the two treatment groups	61
4.1.3. Milk yield for the first hundred days	65
4.2 Reproductive traits	70
Correlation Analysis	78
Correlations between different traits	78
CHAPTER FIVE: DISCUSSION	83
CONCLUSIONS	90
RECOMMENDATIONS	91
REFERENCES	92

LIST OF TABLES

Table	Title	No
1.	Ration formulation of the control and treated group	46
2.	Chemical analysis of chicken manure	46
3.	Means and standard errors of final live weight and	
	weight gains	54
4.	The analysis of variance for the treatment , age (weeks)	
	and the interaction of treatment on body weight and	
	weight gain / day (Kg)	55
5.	Means and standard errors of cumulative weight gain in	
	the control and treatment groups	59
6.	Means and standard errors of weight at puberty and	
	weight at successful service in the control and treatment	
	groups	62
7.	Analysis of variance for the effect of treatment ration on	
	weight at puberty and weight at successful service	63
8.	Means and standard errors of birth weights of calves	
	born to control and treatments groups	64
9.	Analysis of variance for the effect of treatment ration on	
	birth weight of calves	64
10	Means and standard errors of 100 – days milk yield of	
	the control and treatment group	65
11.	Analysis of variance of the effect of treatment and age at	
	first calving on milk yield	66
12.	The regression of milk yield on week of lactation	67
13.	Mean milk yield and standard errors of the three age	
	groups	68
14.	Individual and overall means and standard errors of some	
	reproductive traits	71
15.	Analysis of variance for the effect of the treatment ration	
	and reproductive traits	73
16.	Correlations between various productive and	
	reproductive traits	79

17.	Correlations between various productive and	
	reproductive traits and milk yield	81

LIST OF FIGURES

Fig.	Title	No.
1.	The relationship between age and mean final live	
	weight	57
2.	The relationship between age and mean live weight	
	gain	58
3.	The relationship between age and cumulative weight gain	60
4.	The effect of ration and age on milk yield	69
5.	The relationship between weight at puberty and age at	
	first calving	75
6.	The relationship between age at puberty and age at	
	successful services	76
7.	The relationship between age at puberty and weight at	
	puberty	77