DEDICATION

To my father and mother, To my family and friends

ACKNOWLEDGMENTS

My praise to Allah who gave me knowledge in this life, I would like to express my deep gratitudes to my supervisor Dr. Mubarak ELmahal for his guidance and supervision.

Also a special thanks to Ustaz. Abd-Alsakhi Suleiman Mohamed and Dr. Abdalfatah Mohamed.

I would also like to thank all members of the school of physics and Applied Physics at AL-Neelain University.

Grate thanks to my family, and everybody who helped me to complete this work.

Abstract

The primary goal of this research is to obtain laser radiation from two dyes, (Coumarin500 & Rhodamine 6G), study the resulted laser properties and study the effect of different solvents on the laser output. In this work, two dyes (Coumarin500 & Rhodamine 6G) were dissolved each separately in three different solvents (acetone, methanol and ethanol) with two concentration levels values (1.4 & 1.6 g/l). Optical properties of dyes solvents and solutions (transmission, absorption and emission) were successfully determined. These solutions optically pumped by nitrogen laser of wavelengths (337nm) using Hansch cavity configuration to produce laser.

In the case of the first Dye, (Coumarin 500) no laser radiation obtained for all solutions (acetone, methanol and ethanol) in all concentrations, While trials with the second dye (Rhodamine 6G), we produced laser successfully when the dye dissolved in all solvents used in this work with the concentration 1.6g/l.

مستخلص البحث

الهدف الأساسي من هذا البحث هو إنتاج ضوء ليـزر مـن صـبغتين مختلفـتين، همـا الكـومرين 500 والرودميـن 6Gثـم دراسة خواص الليزر الناتج، ودراسـة تـأثير المـذيبات المختلفـه على الخرج الليزري.

في هذا البحث اذيبت صبغتا الكومرين 500 والرودمين 6G كـل علـى حـده فـي ثلاث مـذيبات مختلفـه (الاسـيتون، الميثـانول، والايثانول) بتركيزين مختلفين (1.4 و 1.6 جرام/ لتر).

عينت الخواص الضوئيه للمذيبات والصبغات بنجاح. ضخت هذه المحاليل ضوئيا بواسطة ليزر النيتروجين ذي الطول الموجي (337 نانوميتر)حيث استخدمت منظومة هانش لإنتاج الليزر.

في حالة الصبغة الأولى (الكومرين 500) لم نتحصل منها على أي ليزر لكل المحاليل (الاسيتون والايثانول والميثانول) لكل التراكيز.

بينما الصبغة الثانية (الرودمين 6G) أنتج منها الليزر بنجـاح عنـد إذابـة الصـبغة فـي الاسـيتون والايثـانول والميثـانول (تركيـز 1.6جرام/ لتر).

Table of contents

Subject	Page	
Dedication	i	
Acknowledgement	ii	
Abstract	iii	
مستخلص البحث	iv	
Table of Contents	V	
CHAPTER ONE		
INTRODUCTION AND BASIC CONCEPTS		
1.1 Introduction	1	
1.2 Laser properties	2	
1.3 Types of lasers	4	
1.4 Elements of laser	5	
1.5 Lasing mechanism	6	

1.6 Developments in laser	8	
1.7 Motivation	10	
1.8 Literature Review	10	
CHAPTER TWO		
DYE LASERS		
2.1 General description	11	
2.2 Types of dye lasers	16	
2.3 Applications of dye lasers	17	
2.4 Solvents	18	
2.4.1 Acetone	19	
2.4.2 Methanol	19	
2.4.3 Ethanol	20	
CHAPTER THREE		
EXPERIMENTAL PART		
3.1 Dyes	21	
3.1.1 Coumarin500	21	
3.1.2 Rhodamine 6G	22	
3.2 UV-VIS spectrophotometer	22	
3.3 USB2000 fiber optics spectrometer	23	
3.4 Transmission, absorption and emission	26	

measurements		
3.5 N₂LASER	26	
3.6 Hansch cavity	26	
3.7 The procedure	27	
CHAPTER FOUR		
RESULTS		
4-1 Characteristics of the materials used	28	
4-1-1 Transmissions of solvents	28	
4.2 Absorption and emission of dyes	30	
4.2.1 Coumarin500	31	
4.2.2 Rhodamine 6G	33	
4-3 The output obtained with Hansch Cavity	35	
CHAPTER FIVE		
DISCUSSION, CONCLUSION AND RECOMMENDA	TION	
5-1 Discussion	44	
5-2 Conclusion	45	
5-3 Recommendation	46	
References	47	
Appendix A		
Appendix B		

Appendix C	
Appendix D	