
Sudan University of Science and Technology

College of Graduate Studies

A Safety-Based Architectural Design Method

for Software Product Lines

 طريقة تصميم معماري مبني عمى الدلامة لخطهط إنتاج البرمجيات

Thesis submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

by

Mozamil Ebnauf Elgodbe Suliman

Sudan University of Science and Technology, Sudan

Supervised by

Prof. Hany H. Ammar

West Virginia University Morgantown, WV, USA

Co-Supervised by

Prof. Aisha Hassan

I I U M, Kuala Lumpur, Malaysia

December 2022

بسم الله الرحمن الرحيم

 :ال الله عز وجل في كتابه العظيمق

(3)اقْزَأْ وَرَبُّكَ الْأَكْزَمُ (2)خَلَقَ الْإِنْسَانَ هِنْ عَلَقٍ (1)اقْزَأْ بِاسْنِ رَبِّكَ الَّذِي خَلَقَ)

 ((5)عَلَّنَ الْإِنْسَانَ هَا لَنْ يَعْلَنْ (4)الَّذِي عَلَّنَ بِالْقَلَنِ

. من سورة العلق5 إلى 1الآيات من

Declaration

I declare that the research described in this thesis is original work and has been done

by myself under the general supervision of my supervisor which I undertook at the

Sudan University of Science and Technology.

This work has not previously been presented for an award at this, or any other,

University. All sources are acknowledged as References. I have followed the

guidelines provided by the Institute in writing the thesis.

I have conformed to the norms and guidelines given in the Ethical Code of Conduct

of the University.

Some of the material presented in this thesis has been published in the following

papers:

 Mozamil Ebnauf, W. Abdelmoez , Aisha Hassan, Hany H. Ammar, M.

Abdelhamid, ―State-driven Architecture Design for Safety–critical Software

Product Lines,‖ in 2019 7th IEEE International Conference on Mechatronics

Engineering (ICOM), October 2019, Kuala Lampur, Malaysia.

 Mozamil Ebnauf, Hany H. Ammar , ‖Safety-driven Software Product Line

Architectures Design (SSPLA) Methodology for Embedded Systems‖, the

Red Sea University Journal of Basic and Applied Science, Vol.2 Special

Issue (1), 18 June 2017.

 الوجلة العلوية ‖هنهجية التصوين الوقاد بالسلاهة لوعواريات خط الإنتاج‖, هاني عوار, هزهل ابنعىف ،

لاتصالات الجوعية العربية للحاسبات، الجزء الخاص للوؤتور الذولي لعلىم وهنذسة الحاسىب

(ICCA 2016) 2016العذد الأول هن الوجلذ التاسع .

 Mozamil Ebnauf, Hany H. Ammar , ‖Safety-driven software product line

architecture design, A survey paper‖, International Journal of Computer

Applications Technology and Research (IJCATR), Volume 5, Issue 10,

October 2016.

Signature _____________________________ Date:

Declaration of the thesis’ supervisor:

I, the signing here-under, declare that I‘m the supervisor of the sole author of the

thesis for the Doctor of Philosophy entitled:

A Safety-Based Architectural Design Method for Software Product Lines

Supervisor‘s name: Prof. Hany Ammar

Supervisor‘s signature: __________________________

Date: ___________________________

Assigning the copy-right to CGS

I, the signing here under, declare that I‘m the sole author of the thesis for the Doctor

of Philosophy entitled ―A Safety-Based Architectural Design Method for Software

Product Lines‖, which is an original intellectual work. Willingly, I assign the

copyright of this work to the College of Graduate Studies (CGS), Sudan University

of Science and Technology (SUST). Accordingly, SUST has all the rights to publish

this work for scientific purposes.

Candidate‘s name :Mozamil Ebnauf Elgodbe Suliman

Candidate‘s signature: ___________________________

Date: : ___________________________

vi

DEDICATION

I dedicate this work to

my parents,

wife,

children,

and siblings

for their love, encouragement and support.

vii

ACKNOWLEDEMENT

The Ph.D. study is a great learning and self-discovery experience. I owe my gratitude

to a great many people who helped me through this journey.

It has been a great pleasure working with the faculty, staff, and students at the Sudan

University of Science and Technology, during my tenure as a doctoral student.

First and foremost, I would like to express my heartfelt gratitude and sincere thanks

to my principal supervisor, Professor Dr. Hany H. Ammar for his kind guidance,

helpful advices, valuable information and constant support throughout the course of

my research. His insight, determination, dedication, and desire to explore new ideas

has been an inspiration. His approach to graduate students helps to create more than

just a thesis, but to create a researcher.

I would also like to thank my external supervisor Prof. Aisha Hassan for her

considerable guidance and supervision during the period of my research I spent in

Malaysia. She provided me the chance to study at International Islamic University

Malaysia for an year under Visiting Student Programme.

My special thanks also go to many other researchers I have worked with: Dr. Walid

Abdelmoez, Arab Academy for Science Technology and Dr. M. Abdelhamid,

Maritime Transport Egypt P.O.BOX1029, for their time and effort. Their thoughtful

and insightful opinions provided many ideas for me to advance my research work.

I am grateful to my colleagues at the Faculty of Computer Science and Information

Technology, Sudan University of Science and Technology for their feedback.

I thank also the Ministry of the High Education-Sudan and Omdurman Islamic

University for funding the research reported in this thesis.

Additionally, I want to thank the International Islamic University Malaysia (Garden

of Knowledge and Virtue) for providing me the chance to study in Kulliyyah of

Engineering which helped me in successfully completing my thesis work. I also

thank Qatar Research Fund (a member of Qatar Foundation) for its support which

helped us to complete a part of my research work successfully which has been

published in a scientific paper.

Finally, I deeply thank my parents, my wonderful wife and my family for their love,

encouragement and support during the entire period of my study.

viii

ABSTRACT

The safety is considered one of the most critical issues in the design of the modern

systems (e.g. cyber-physical systems). With the increasing attention of software

safety, how to improve software safety has already become a more important

concerned issue, especially for the safety-critical systems. The Software Product-

Line (SPL) and reusable software components are suitable approaches for these

systems, which are often re-engineered from existing systems. Currently, the

influence of the architecture in assurance of software safety is being increasingly

recognized. However, the safety-based architectural design methods are limited in

SPLs because of the complexity and variabilities existing in SPL architectures. For

that, this work seeks to find an efficient and effective method that can be used into

the design process of the safety-critical SPLAs which enhances and manages the

safety of SPLs. The work proposed a method for safety-driven software product line

architecture design (SSPLA). For efficiency, a number of efforts have been made. In

this context the proposed design method mentioned above is configured and adapted

to be state-based architecture design method. Also as a pattern based development of

the reference architecture can support the development and application process of the

product lines a new safety design pattern of statechart is developed. The result is an

object-oriented design pattern which handles the safety attribute. Additionally, as

there is a tight interplay between safety and security, and in order to address the

influence of the security issues in the safety design using patterns, a pattern

development approach is proposed which is then used to enhance the proposed safety

design pattern of statechart. In order to show the applicability of our work as well as

evaluate it, a simplified safety assessment model is developed as well as using of two

case studies. The evaluation results show that there is a considerable improvement in

the safety design of the SPLA after applying our work. The results have proved that

the state-based approach highly supports the development of the safety critical

systems and it is effective to handle the safety and security together in the design of

the safety pattern which provides more benefits as it is a high level reuse. Finally,

this research will benefit both architects and safety engineers who can design SPLAs

or develop software products.

ix

 المدتخمص

مثل الأنعسة الفيديائية الديبخانية)واحجة مؼ أىػ القزايا في ترسيػ الأنعسة الحجيثة (Safety)تعتبخ الدلامة
(CPS) وأنعسة إنتخنت الأشياء(IoT) .) مع تدايج الاىتسام بالدلامة(Safety) في البخمجيات، أصبحت كيفية

-Safety) ، خاصة بالشدبة للأنعسة الحخجة للدلامة بخر تحديؼ أمان البخامج بالفعل قزية ذات أىسية
critical Systems). إنتاج البخمجيات طؽطعج خت (SPL) ومكؽنات البخامج القابلة لإعادة الاستخجام

 قج ،حالياً . مشيجيات مشاسبة ججاً ليحه الأنعسة، والتي غالباً ما تتػ إعادة ىشجستيا أوترسيسيا مؼ أنعسة مؽجؽدة
ومع ذلغ، فإن طخق الترسيػ السعساري . تػ بذكل متديج إدراك تأثيخ السعسارية في ضسان سلامة البخمجيات

السبشي على الدلامة محجودة في خطؽط إنتاج البخمجيات وذلغ بدبب التعقيج والتبايشات السؽجؽدة في معساريات
يسكؼ استخجاميا بحيث لحلغ، يدعى ىحا البحث إلى إيجاد طخيقة فعالة وذات كفاءة .خطؽط إنتاج البخمجيات

في عسلية ترسيػ معساريات خطؽط إنتاج البخمجيات الحخجة للدلامة، والتي تعدز وتجيخ سلامة وأمان خطؽط
 طريقة تصميم معماري قائمة عمى الدلامة لخطهط إنتاج البرمجيات قجم البحثقج عليو ف. إنتاج البخمجيات

(SSPLA .)فإن الطخيقة في ىحا الدياق، . عجد مؼ السجيؽداتولتعديد فعالية وكفاءة طخيقة الترسيػ تػ بحل
طريقة تصميم صبحتل تػ تحديشياالسقتخحة للترسيػ السعساري لبخمجيات خطؽط الإنتاج السحكؽرة أعلاه قج

)التطؽيخ القائػ على الشسط كحلغ وبسا أن (.State-based Design)معماري مبني عمى حالة النظام
Pattern-based Development) للسعسارية السخجعية يسكؼ أن يجعػ عسلية التطؽيخ والتطبيق لخطؽط

 Safety Pattern of)نمط جديد لتصميم الدلامة قائم عمى مخطط الحالةم تطؽيخ إنو قج ت ف،الإنتاج
Statechart) .ىي نسط ترسيػ كائؼ السشحى قج كانت الشتيجة و(OO) والحي يعالج أو يجيخ خاصية الدلامة.

 في عسلية الدخية لسعالجة تأثيخ قزايا إضافة إلى ذلغ ولكؽن أن ىشاك إرتباط قؽي بيؼ الدلامة والدخية و
 والتي تخبط بيؼ أنساط الدلامة وأنساط منهجية تطهير أنماط تػ اقتخاح ،الترسيػ السعساري باستخجام الأنساط

السحكؽر أعلاه وذلغ لسعالجة السقتخح و لتحديؼ نسط ترسيػ الدلامة ومؼ ثػ تػ إستخجام ىحه السشيجيةً . الدخية
 Safety & Security)كنمط جديد لمدلامة والأمنمؼ الشسط تعتبخ ىحه الشدخة السطؽرة . في الشسطالدخية

Pattern).إلى تطؽيخ نسط مبدط لتقييػ الدلامة بالإضافة ه تػإظيار قابلية تطبيق أخيخاً، ولتقييػ عسلشا و
وقج أظيخت نتائج التقييػ أن ىشاك تحدشاً كبيخاً في ترسيػ سلامة الشعام بعج تطبيق . استخجام حالتيؼ دراسيتيؼ

 (State-based Method)المنهجية القائمة عمى حالة النظاموفقًا ليحه الشتائج يسكششا إثبات أن و. عسلشا
وقج أثبتت الشتائج أيزًا أنو مؼ الكفاءة التعامل مع . تجعػ بذكل كبيخ تطؽيخ الأنعسة الحخجة للدلامة والأمؼ

لكؽنو إعادة استخجام على الفعالية يؽفخ السديج مؼ قجالدلامة والأمؼ معًا في ترسيػ نسط الدلامة والحي
أخيخاُ، سيفيج ىحا البحث كلًا مؼ السيشجسيؼ السعسارييؼ وميشجسي الدلامة في مجال .السدتؽر العالي

البخمجيات والحيؼ يقؽمؽن بترسيػ معساريات خط إنتاج البخمجيات أو حتى بتطؽيخ مشتج بخمجي في مجال
. الأنعسة السجمجة والأنعسة الفيديائية الديبخانية

x

TABLE OF CONTENTS

DEDICATION ………………………………………………………….….....…… vi

ACKNOWLEDEMENT…………………………...……………………..……...… vii

ABSTRACT ……………..………………………………………....……...………viii

ABSTRACT IN ARABIC ……………………………….…………………...……. ix

TABLE OF CONTENTS ………………………………………….….……………. x

LIST OF TABLES ...xvi

LIST OF FIGURES .. xvii

LIST OF ABBREVIATIONS ... xx

CHAPTER I: INTRODUCTION 1

 1.1 Introduction ………………………...……………………………….……1

 1.2 Problem Statement and Its Significance ……………………….……...…3

 1.3 Research Objectives ……………………………….……………..………4

 1.4 Research Questions ……………………..……………………..…………5

 1.5 Scope of Research ……………………………….……………..…...……5

 1.6 Thesis Structure …………………………………..………..…….………6

1.7 Bibliographic Notes ………………………………….………..…………7

CHAPTER II: LITERATURE REVIEW 8

 2.1 Introduction ………………………………………………………………8

 2.2 Background ………………………………………………………..…..…9

2.2.1 Safety and Software Safety …………..………...………...……9

2.2.2 Cyber-physical Systems ………………………...……….……14

2.2.3 Software Architectures Design …………..…………...………15

2.2.4 Software Product Line …………………………….………….16

2.2.5 The Complexity in Software Product Lines Development……16

2.2.6 Software Product Lines Architectures Design …………..……18

2.2.7 Safety–based SPLAs Design …………………………….....…20

xi

2.2.8 Scenario-based Architecture Design for SPL ………...………23

2.2.9 Safety-related Test Cases ……..………………….…….......…25

2.3 Literature Survey ……………………………………………..……….. 26

2.3.1 Research Method ……………………...……………...………26

2.3.1.1 Research Questions ……………..…………..………27

2.3.1.2 Research Tasks ……………………….………..……27

2.3.1.3 Literature Search Process …………….……….…… 28

2.3.1.4Threats to Validity …………………………….…… 29

2.3.2 Taxonomy and Classification …………………………..…… 29

2.3.2.1 First classification scheme …………...……….…… 29

2.3.2.2 The second classification scheme in term of SPLA

design …………………………………...………….……… 31

2.3.3 Mapping …………………………………………….……….. 44

2.3.4 Survey Results and Discussion ……...…………………......…45

2.4 Architectural design patterns …………………………………….……..45

2.4.1 Safety Design Pattern and Statechart Pattern ………….…..…45

2.4.2 Safety Pattern with Security Control …………………………46

2.5 Chapter Summary and Open Research Issues ………………….47

CHAPTER III: RESEARCH METHODOLOGY 49

3.1 Introduction ……………………………………………………….…… 49

3.2 Research Methodology ………………………………...……………… 49

3.3 Languages, Notations and Used Tools ………………………………….52

3.3.1 Language and Notations ……………………………..……… 52

3.3.1.1 UML Language ……………………………….….…52

3.3.1.2 The Statechart Semantic ……..………………..……53

3.4 Evaluation Notations, Metrics and Tools ………………………….……55

3.4.1 The Relative Safety Improvement- a safety assessment metric 55

3.4.2 Markov Chain methods ………...………………………….….55

xii

3.5 Software Tools …………….……………………………………………56

3.5.1 UML Modeling Tools ………………………………...…..…..56

3.5.2 Matlab ……………………….....…………..…………………58

3.5.3 MS Excel ……………………………………..……………….60

3.5.4 Academic and Scientific Writing Tools ………………………61

3.6 Brief Description of the Case Studies……………………..…………….62

CHAPTER IV: ARHITECTURE DESIGN FOR SAFETY-CRITICAL SPLs 63

4.1 Introduction ………………………………………………………….….63

4.2 Overview of Software Architecture Design ……………………….……64

4.2.1 Safety-based Architecture Design ………………………...…. 64

4.2.2 A Comparison between Some of the More Related Works .….65

4.2.3 Safety-based Software Product line Architecture Design

Methods ……………………………………………………….….....67

4.2.4 Safety Patterns for product lines ……………………...……... 68

4.3 The Proposed SSPLA Design Method ………………………………… 69

4.3.1 The method Process ………………………………...……….. 69

4.3.2 The Process Steps ………………………………….…..……..70

4.4 State-driven Architecture Design for Safety-critical SPLs ….…….……77

4.5 Addressing the variability of the SPLs in the statechart ………………..78

4.6 Illustrative Example ……………………………………………….……79

4.7 Chapter Summary ………………………………………………………88

CHAPTER V: SAFETY PATTERN OF STATECHART FOR SPLAs 90

5.1 Introduction ……………………………………………………………..90

5.2. Overview of the Architectural and Design Patterns …………...………92

5.2.1 Pattern composition …………………………………………. 95

5.2.1.1 Safety Pattern and Statechart Patterns ………..…… 95

5.2.1.2 Safety Pattern with a Security Control ………..…… 96

5.2.2 Pattern-based SPLAs Development …………………...…….. 97

xiii

5.3 Safety Design Pattern of Statechart - a proposed pattern ……….….…..93

5.3.1 Pattern Description ……………………………………………99

5.3.2 The Statechart Pattern Extension to Capture the Variability in

the SPLs ………………………….…………………………....…103

5.4 Chapter Summary ………………...…………………………….……103

CHAPTER VI: ENHANCING THE SAFETY DESIGN TO ADDRESS THE

SECURITY ISSUES USING PATTERNs 104

6.1 Introduction ……………………………………………………………104

6.2. Related Works ………………………………………………...………106

6.3 The Proposed Pattern Development Approach for Safety and Security 108

6.3.1 A Proposed Pattern Development Engineering Lifecycle .….109

6.3.2 The Process Steps ……………………..………………….…109

6.4 Developing a Safety and Security Pattern ………………………….…112

6.4.1 The Safety Design Pattern of Statechart ……………….....…112

6.4.2 Applying the proposed pattern Development Approach ……112

6.4.3 The Development Process …………………………..………113

6.4.4 The Enhanced Version of our Safety Pattern of Statechart …115

6.5 Chapter Summary ……………………………………………...…...…119

CHAPTER VII: SAFETY ASSESSMENT FOR SSPLAs 120

7.1 Introduction ……………………………………………………………120

7.2 The proposed Safety Assessment Model for SPLAs ………...……..…123

7.2.1 The Model Steps …………………………………….………124

7.2.2 The Mathematical Calculations of the assessment process….124

7.2.2.1 Specifying a Markov Chain Process …........………124

7.2.2.2 Maximum Likelihood Estimation for Markov Chains

(MLE) ……………………………………….…………… 125

7.3 A Scenarios-based Assessment ……………………………………..…126

7.4 Defining the Final Results- The Relative Safety Improvement ……….127

7.5 Illustrative Example ……………………………………………...……128

xiv

7.5.1 The EBS SPL System …………………………….…………128

7.5.2 The implementation of the Assessment Model ………...……130

7.5.3 The calculations of the Safety Assessment Process ……..…..132

7.5.4 The Results and Discussion ………………..………..………135

7.6 Chapter Summary ………………………………………..……………135

CHAPTER VIII: IMPLEMENTATION AND EVALUATION 136

8.1 Introduction ……………………………………………………………136

8.2 The Case Study 1 …………………………………………...…………137

8.2.1 The EBS SPL Architecture Development Life Cycle …...…..138

8.2.1.1 The method Process ……………………….………138

8.2.1.2 The Inputs of the process ………………….………138

8.2.1.3 Applying the Development Process Steps .…..……144

8.2.2 The description of the developed EBS SPL Architecture …...154

8.3 The Case Study 2 ………………………………………………...……156

8.3.1 Safety and Security Issues ……………………..……………156

8.3.2 Safety and Security Risk Scenarios ………..………..………157

8.3.3 The Statechart Models ………………………………………158

8.3.4 The description of the developed Microwave Oven SPLA.…159

8.4 The Evaluation …………………………………….……….…….……162

8.4.1 The Evaluation-Using Individual Risk Scenarios-With Example

1 …………………………….…………………………………...…163

8.4.2 The Evaluation Using Individual Risk Scenarios-With Example

2 ……………………………………………….………………...…169

8.4.3 The Final Results and Discussion …………………...………172

8.5 Chapter Summary ……………………………………………..………175

CHAPTER IX: CONCLUSION 176

9.1 Thesis Summary …………….…………………………………………176

9.2 Thesis Contributions ………..…………………………………………178

xv

9.3 Future Work ……………………………………….……..……………179

LIST OF PUBLICATIONS …………………………………..…………………181

REFERENCES …………………………………………………………...………182

xvi

LIST OF TABLES

2.1 Papers on architecture design approaches (high level taxonomy/a

broad classification) ……………………………………………….. 28

2.2 Papers on quality-oriented architecture design approaches ………… 32

2.3 Papers on software product line architecture design approaches …... 34

2.4 Distribution over research focus …………………………………… 37

2.5 Papers on SPLA design. ……………………………………………. 37

2.6 Papers on Quality-based SPLA design……………………………… 39

2.7 Papers on Safety-based SPLA design………………………………. 39

4.1 A comparison table between a more related works………………… 62

7.1 The abbreviations of the Markov states……………………..………. 128

8.1 Feature/Use Case Dependencies……………………………..……… 138

8.2 The abbreviations of the Markov states………………………..……. 160

8.3 The probability of the system to be in each state for scenario 1 that

before and after using the safety and security pattern-Example 1...… 164

8.4 The probability of the system to be in each state for scenario 1 that

before and after using the safety and security pattern-Example 2..…. 167

xvii

LIST OF FIGURES

2.1 : Product Line Architecture for a Microwave Oven [18] ……………......... 15

2.2 : High level taxonomy of Architecture Design Approaches ………………… 26

2.3 : The taxonomy Related to SPLA Design Approaches ..……………..……… 26

2.4 : Map of research focus on software product line design. Research focus on

the Y axis; contribution type on the left side of the X axis, and research type

on the right side of the X axis ………………………..…….…...............….. 40

3.1 : Elements of design of a ―real world‖ research project (based on (Mustapiʹc,

2004)(Robson, 2002)) …………………………………..………………… 47

4.1 : An overview of our proposed method (SSPLA) …………..…..………… 68

4.2 : Door Control Software product line use cases ………..…….……………. 77

4.3 : The Feature Model foe Door Control Software product line …….............. 78

4.4 : A part of the statechart specifications for Door Control PL System.............. 80

4.5 : Abstract view of safety-driven statechart specification of the system …….. 82

4.6 : The architecture of the Door Control PL developed by our proposed

method …..…………………………………………………………………… 83

4.7 : Architecture of the Door Control PL developed by traditional method

(Feng and Lutz, 2005)………………………………………….…………….. 84

5.1 : Safety-driven design pattern of statechart -the structure of the solution in

term of statechart diagram …………………………………………………... 97

5.2 : Safety-driven design pattern of statechart-the design solution structure in

UML notation ………………………………………………….…………….. 98

6.1 : Software Architecture Pattern development model for Safety with Security

Control ……………………………………………………………………… 107

6.2 : Three-step authentication for secure connection between external entities

(user devices) and ECUs (CAN) (Han, Weimerskirch and Shin, 2014)……...
110

6.3 : The Safety and Security Design Pattern-the structure of the solution in

term of statechart diagram ……………………...…………………...............
113

6.4 : The Safety and Security Design Pattern-the design solution structure in

UML notation ……………………………………………………...................
114

7.1 : The Safety Assessment Model Steps………………………………………
119

7.2 : The Statechart Design Model of Automated Electromechanical Braking

System (EBS) Software Product Line after Using the Pattern ………...........
125

xviii

7.3 : The Statechart Design Model of Automated Electromechanical Braking

System (EBS) Software Product Line after Using the Pattern …...………….
126

7.4 : A compact Discrete Time Markov Chain Family of the EBS product line,

designed normally without safety control and before using our safety design

pattern ……………………………..………………...……………………….
127

7.5 : A compact Discrete Time Markov Chain Family of the EBS product line,

designed with safety control or after using our safety design pattern………..
127

7.6 : The Markov model of the common behavior of EBS product line without

using the proposed safety design pattern …………………………...………..
128

7.7 : The Markov model of the common behavior of EBS product line after

using the proposed safety design pattern ……………………………….…...
130

8.1 : EBS Product Line Use Cases Model……………………………….............
136

8.2 : The feature model of EBS product line Using UML Notations…..………...
138

8.3 : The Statechart Model of the EBS SPL before using safety control/without

using our proposed safety and security design pattern……………………….
139

8.4 : The Statechart Model of the EBS software product line after using our

safety and security pattern…………………………………………………
145

8.5 : The Statechart Model of the Scenario 1 (Scenario of usage)- before using

our safety and security pattern- Example 1 …………………………………..
146

8.6 : The Statechart Model of the Scenario 1 (Scenario of usage)- after using our

safety and security pattern- Example 1 ………………………………………
147

8.7 : The Statechart Model of the Scenario 2 (Scenario of usage)- before using

our safety and security pattern- Example 1 ………………………………
148

8.8 : The Statechart Model of the Scenario 2 (Scenario of usage)- after using our

safety and security pattern- Example 1 ………………………………
149

8.9 : An abstract view of the EBS product line architecture after using our safety

design pattern- A design solution structure in UML notation ……………….
151

8.10 : The Statechart Model of the Smart Microwave Oven product line after

Using our Safety Pattern ……………………………………………………..
156

8.11 : An abstract view of the Microwave Oven product line architecture after

using our safety design pattern- A design solution structure in UML notation
157

8.12 : The Markov model of scenario 1 before using the safety security pattern- 160

xix

Example 1 ……………………………………………………………………

8.13 : The Markov chain with the transition probabilities - scenario 1 before

using the safety and security pattern-Example 1 …………………………….
161

8.14 : An equation containing the produced Transition Probabilities Matrixes of

Scenario 1 before using the safety and security pattern-Example 1………….
161

8.15 : The Markov model with transition probabilities of scenario 1 after using

the safety security pattern-Example 1 ……………………………………….
163

8.16 : An equation containing the produced Transition Probabilities Matrixes of

Scenario 1 after using the safety and security pattern-Example 1……………
163

8.17 : Comparison between the probability of the system to be in unsafe state in

each scenario before and after using the pattern-Example 1 ………………
164

8.18 : The Markov model with transition probabilities of scenario 1 after using

the safety security pattern-Example 2 ………………………………………
166

8.19 : An equation containing the produced Transition Probabilities Matrixes of

Scenario 1 after using the safety and security pattern-Example 2 …………...
166

8.20 : Comparison between the probability of the system to be in unsafe state in

each scenario before and after using the pattern-Example 2 ……………
167

8.21 : The Relative Safety Improvement after using the developed pattern-

Example 1 …………………………………………………………………..
170

8.22 : The Relative Safety Improvement after using the developed pattern-

Example 2 ……………………………………………………………………
171

xx

LIST OF ABBREVIATIONS

ADV+ Advantages

C.C Cruise Control system

CAN Controller Area Network

CHASSIS Combined Harm Assessment of Safety and Security for Information

Systems

CPS Cyber-Physical Systems

CU Control Unit

CVs Commonalities and Variabilities

CVA Commonality and Variability Analysis

DFs Design Faults

DoS Denial of service

DTMCF Discrete Time Markov Chain Family

DTMC Discrete Time Markov Chain

EBS Electromechanical Braking System

ECUs

FFA Functional Failure Analysis

FMEA Failure Mode and Effect Analysis

FSM Finite State Machine

FTA Fault Tree Analysis

GP Gateway Pattern

ICEAS201

7

Some of the content in this Chapter has been presented at 1st

International Conference on Engineering and Applied Sciences,

ICEAS2017,Red See, Sudan

ICOM201

9

7th IEEE International Conference on Mechatronics Engineering, ICO

M2019, Putrajaya, Malaysia

xxi

ID IDentification

IEEE Institute of Electronic and Electrical Engineers

IoT Internet of things

MBD Model-Based Design

MCs Markov Chains

MLE Maximum Likelihood Estimation for Markov Chains

MOODS Models for Object-Oriented Design of State

OO Object-Oriented

OODP Object-oriented Design Pattern

PLUS Product Line UML-based Software

QADA Quality-driven Architecture Design and quality Analysis

RA Reference Architecture

REF Reference

RFs Random Failures

RI Relative Improvement

RQ Research Question

RSI Relative Safety Improvement

SAD State-driven Architectural Design

SAM Safety Assessment Model

SDP Safety-driven design pattern

SE Smart Environments (SE)

SGP Security Gateway Pattern

SHARD Software Hazard Analysis and Resolution in Design

SPL Software Product Line

SPLA Software Product Line Architecture

SSPLA Safety-driven Software Product Line Architecture

xxii

TPM Transitions Probabilities Matrix

TCAS Aircraft Collision Avoidance System

UML Unified Modeling Language

VP Variation Point

XCA Extended Commonality and Variability Analysis

1

1.1 Introduction

At the last decades, technological developments have enabled to be taken classic

systems place by automatic and advanced systems (Karthika, Rahamtula and

Anusha, 2018). Cyber-physical systems (CPS) and Internet of Things (IoT) have

distinct origins but overlapping definitions and both combine the word embedded

systems (Burns, 2019). These systems contain computational (software),

communication and physical components. However, such systems are at least

partially controlled by software. The software has a major role and responsibility in

such systems. The difficult design problems are often assumed to be readily solved

using software; and the software must compensate for any deficiencies in hardware

platforms (Sommerville, 2009), (Bures T. et al, 2017).

As the high quality, short delivery time, and high productivity have become more

and more important in developing embedded software for modern products

(Nagamine, Nakajima and Kuno, 2016), the Software Product-Line (SPL) and

reusable software components are suitable approaches for such systems, which are

often re-engineered from existing systems. A successful SPL supports systematic

software reuse and reduces the development effort, meanwhile, improves the quality

of the member products.

Software architecture design is one of the critical steps in software development

process. Developing a reference architecture which represents the base structure of

C
H

A
P

T
E

R
 I

INTRODUCTION

2

the member products is the main task of the software product line architecture

design.

The safety is considered one of the most critical issues in the design of the modern

systems, specifically the cyber-physical systems (CPS). And as product-line

engineering becomes more widespread, more safety-critical software product lines

are being built.

With the increasing attention of software safety, how to improve software safety

has already become a more important concerned issue, especially for the safety-

critical systems (Huang, 2013). Safety-based design at architecture level can

effectively improve software or system safety. Safety-based methods have received

increasing attention and have been well developed for single system architecture

designs. However, the safety-based design methods are limited in SPLs because of

the complexity and variabilities existing in SPL architectures.

For that, this work searches to define an effective and efficient method to enhance

and manage the architecture design process of the software product line systems. The

research firstly focused on how to consider safety in SPL in the architecture design

phase and proposed a safety-driven SPL architecture design method. The key aspect

of this method is the use of the concept, design patterns, which improves the design

process. A number of efforts have been made to make the method effective and

efficient. One of the critical effort is making the design process activities of the

method compatible and consistent (e.g. state-based design).

As the Unified Modeling Language (UML) statechart diagram is a powerful tool

for specifying the dynamic behavior of reactive objects, this facility can be used to

describe the system behavior in term of safety. Based on this facility the proposed

SPL architecture design method mentioned above is configured and adapted to be

state-based architecture design method. This adaptation results in a new state-driven

architectural design method. This adaptation means that most of the process steps

should be based on or around the statechat semantic.

Design patterns can be used to enhance the design of systems in different

application domains. It is evidence that a pattern based development of the reference

architecture can support the development and application process of the product

lines. In this context a new statechart-based safety design pattern is developed. The

proposed design pattern is called Safety Design Pattern of Statechat. This pattern

3

extends capabilities of both the statecharts design patterns and safety patterns. The

pattern allows an object to alter its behavior and change its internal state when there

is a safety violation, and to protect it from introducing in unsafe states. The result is

an object-oriented design pattern which handles the safety attribute. To extend the

statechart pattern to capture the variability existing in the SPLs and because the

complexities exist in the PL the thesis proposed using of parameterization approach

(proposed in (Gomaa, 2011)).

Due to the tight interplay between safety and security, combining safety and

security in the engineering process has become a critical process. In this context, the

thesis aims at addressing the influence of security issues in the safety design process

using patterns. A Pattern Development Approach that interlinks safety and security

patterns has been proposed. This approach is then used to enhance our proposed

safety design pattern of statechart (presented in Chapter 5) to address the security in

the pattern (see Sec. 6.4). This developed version is considered as a new safety and

security pattern.

To evaluate our work, a simplified safety assessment model (SAM) is developed.

Finally, we have motivated our work with the help of two case studies. These two

case studies are to illustrate how all these works can improve the safety design of the

SPLAs. The evaluation results show that there is a considerable improvement in the

system safety design after applying our work.

1.2 Problem Statement and Its Significance.

Software has become responsible for most of the critical functions of complex

systems. The safety is considered one of the most critical issues in the design of the

modern systems (e.g. cyber-physical systems (CPS), Internet of things (IoT)). The

number of products with embedded software increases across all application areas

continuously. Thus, the complexity between the hardware and software is steadily

increasing. This leads to an increment of software defects. Therefore, effective

approaches are needed to ensure the product quality. The Software Product-Line

(SPL) and reusable software components are suitable approaches for these systems,

which are often re-engineered from existing systems.

4

Software architecture design is one of the critical steps in software development

process (Sommerville, 2009). Developing a reference architecture which represents

the base structure of the member products is the main task of the software product

line architecture design (Systems, 2000).

With the increasing attention of software safety, how to improve software safety

has already become a more important concerned issue, especially for the safety-

critical systems. Currently, the influence of the architecture in assurance of software

safety is being increasingly recognized. However, the safety-based architectural

design methods are limited in SPLs because of the complexity and variabilities

existing in SPL architectures. For that, this work seeks to find an efficient and

effective method that can be used into the design process of the safety-critical

software product line architectures which enhances and manages the safety of

software product lines.

The significance of this research is that it presents several significant advances to

the fields of safety engineering and design. It presents a process of concurrently

developing a system concept from the safety and functional perspective. We believe

this work presents an important step in making the design and safety processes more

efficient and effective for the software product line. Finally, this research will benefit

both architects and safety engineers who can design software product line

architectures or develop software product in domain of embedded systems and cyber-

physical systems.

 1.3 Research Objectives

From the literature it is clear that the existing methods for the safety-based

architectural design are not adequate to enhance the architectures design of the

modern software product line systems. The limitation is because of the complexity

and variabilities existing in SPL architectures. The main objective of this research is

to find an efficient and effective architectural design method that can be used into the

design process of the safety-critical software product line architectures.

Other specific objectives are highlighted as follows:

 Developing safety design pattern that can be adapted and used in the design

of the safety-critical SPLA.

5

 Enhancing the safety design to address the influence of the security issues on

the safety using patterns.

 Defining a safety assessment model to show the Relative Improvement (RI)

in the safety design of the SPLA after using the proposed method and the

safety design pattern.

1.4 Research Questions

Based on the objectives described in the previous section, there are some research

questions have been derived.

The main question that is addressed in this research is: how can we define

efficient and effective architectural design method that can be used into the design

process of the safety-critical software product line architectures?

There are additional sub-questions as follows:

 How can we develop an Object-oriented Design Pattern (OODP) to address

the safety attribute in the system?

 How can the safety design be enhanced to address the influence of the

security issues on the safety using patterns?

 How to effectively evaluate and assess the safety-driven software product line

architectures in order to show the relative safety improvement in the design

after using our method as well as addressing the safety risks?

 1.5 Scope of Research

From the literature it is clear that the existing methods for quality-oriented

architectural design are not sufficient for software product line design. Also the

safety-based design methods are limited in software product line architectures design

and that because of the complexity existing in SPL architectures.

We are seeking to find an efficient and effective method that can be used into the

design process of the safety-critical software product line architectures which

enhances and manages the safety of software product lines. We have to use a

powerful tool for specifying the dynamic behavior of reactive objects. The facility of

this tool can be used to describe the system behavior in term of safety.

6

In order to support the design process of the safety-critical SPL architectures the

work searches to extend the capabilities of both the traditional safety patterns and

statechart design patterns to develop a new safety-driven design pattern of statechart.

As there is a high impact of the security on the safety, especially in the smart

environments (e.g. Cyber-physical Systems and Internet of Things), the research also

seeks for how to effectively address this issue in the design process of the software

product line architectures.

According to above, the thesis only considers the software architectures design for

safety-critical product lines and does not include the operational, maintenance and

decommissioning phases of the product line lifecycle.

1.6 Thesis Structure

The rest of this thesis is organized as follows: Chapter 2 presents research

background and number of past efforts related to the current work. Existing literature

on architectural design for Safety-critical software product line is also surveyed. The

survey includes an analysis of closely related researches for software product line

architectures design. The chapter also mentions some of open research issues. The

research methodology, tools, languages and case studies description are covered in

Chapter 3.

Chapter 4 defines one of the main contributions of this thesis. It describes safety-

driven SPL architecture design (SSPLA) method proposed for the designing process

of the safety-critical software product line architectures. Also the chapter presents the

adaptation of this method to be a statechart-centric method which is then called

State-driven Architectural (SAD) Design Method for Safety-critical Software

Product Lines. At the end, the chapter shows how to address the variability of the

product line in the statechart.

The developed safety design pattern—Safety-driven design pattern of statecharts

which constitutes an essential part of this work is presented in Chapter 5. This pattern

extends capabilities of both the statecharts design patterns and safety patterns.

Chapter 6 describes our solution of how to address the influence of the security

issues on the safety design. It presents a systematic pattern development approach

which proposed to interlink safety and security patterns which has been developed in

7

order to enhance the safety patterns. It also describes the using of this pattern

approach to develop a new safety and security pattern.

Chapter 7 describes a proposed safety assessment model. This model is a

simplified mathematical model for safety assessment of the product lines

architectures. Adapting this assessment model to be a scenario-based assessment

method and adding a metric or the concept of Relative Safety Improvement RSI) are

also presented in this chapter. Chapter 8 describes the implementation and evaluation

processes. The chapter presents an evaluation of the main contributions of the

research presented in the previous chapters. This evaluation is carried out by means

of tools support and case studies. The chapter also presents the final results of the

evaluation process as well as a short discussion on the all results.

Finally, the thesis is concluded by summarizing the main conclusions of the

research and contributions of the thesis as well as providing some future

recommendations in Chapter 9.

1.7 Bibliographic Notes

Some parts of this thesis are based on work that has been previously presented in

earlier publications. The survey study which considered as a systematic literature

review of software product line architecture design was published in (Mozamil

Elgodbe and Ammar, 2016). The new safety-driven design method for software

product line architectures was published in (Mozamil Ebnauf and Hany H. Ammar,

2017). The adaptation and configuration to this method to be state-based

architectural design method was published in (Ebnauf and Al., 2019). The new safety

design pattern of statechart was published in (Ebnauf and Al., 2019). A simplified

safety assessment model that is used to show the safety improvement in the design

after using our work and also to facilitate the evaluation process of the architecture

for safety-critical software product line systems was published in (Ebnauf and Al.,

2019).

8

2.1 Introduction

(Some of the content in this Chapter has been published in the International

Journal of Computer Applications Technology and Research, Volume 5, Issue 10, pp

627 - 640, ISSN: 2319-8656, Oct. 2016), (Mozamil Elgodbe and Ammar, 2016).

The work presented in this thesis is based on the overlapping areas of software

product-line architectures design, safety-based design, architectural design patterns,

statechart semantic and safety with security control. The focus is on the use of state-

based design for safety-critical software product line architectures.

To connect the knowledge and provide a comprehensive overview of the current

state of the art, this chapter provides a systematic literature review of the existing

research on software product line architecture (SPLA) design based on quality

attributes. The chapter primarily aims at surveying existing research on software

product line architecture (SPLA) design, and to give an overview of the intersection

of the areas of software product line architecture design and safety-driven design in

order to classifying existing work, and discover open issues for further research. Also

this chapter presents the basic concepts of the architectural design patterns and offers

a brief literature review of statechart design patterns.

In general, with the chapter we aim to achieve the following objectives:

 to give an overview of the intersection of the areas of software product

line architecture design and safety attribute.

 provide a basic classification framework in form of a taxonomy to classify

existing architecture design approaches.

C
H

A
P

T
E

R
 I

I

LITERATURE REVIEW

9

 offer a brief literature review of statechart design patterns.

 point out current trends, gaps, and directions for future research.

The rest of the chapter is organized as follow. First, Section 2.2 presents the

overview of cyber-physical systems, software architectures design, software product

line, software product lines architectures design and safety–based SPLAs design. A

survey study is presented in Section 2.3 which considered as a systematic literature

review of software product line architecture design. Section 2.4 presents the basic

concepts of architectural design patterns as well as offering a brief literature review

of statechart design patterns. Finally, Section 2.5 presents the chapter summary and

identifies future research directions based on the survey results.

2.2 Background

This section reviews the research background information. In this section we

present an overview of the main concepts that are frequently relevant in the context

of safety, software safety, cyber-physical systems, software architectures design,

software product line, software product lines architectures design and safety–based

SPLAs design.

2.2.1. Safety and Software Safety

In this Sub section we present an overview of the main concepts that are

frequently relevant in the context of Safety and software safety.

2.2.1.1 The Safety

Definition. ―Safety is the ability of an item not to cause unacceptable

consequences during its use" (Rehn, 2009).

Safety and reliability represent the main non-functional requirements that should

be provided in the design of safety-critical applications (Armoush, 2010). The safety

is one of the most important quality attributes of today's software and their

importance is even increasing (Rehn, 2009). It is absence of catastrophic

consequences on the user(s) and the environment (Armoush, 2010). The current work

in systems engineering methods has focused on supporting a safety-centric design

10

process (Jan Bosch, 2001). The General idea of these approaches is that safety should

be a driver for design.

2.2.1.2 The Safety-critical Systems

The term Safety Critical System (SCS) refers to the system which has potentially

destructive power. Once such a system produced a failure, many serious

consequences may be caused, such as casualties, property loss and environmental

damage etc (Huang, 2013).

 Recently, software application in SCS is more and more extensive, and the scale

also increasingly grows. From railway transit field to the aerospace field and from

the power system to the medical system, this type of software plays a key role in

command and control aspect for software safety (Huang, 2013). The research in the

domain of SCS safety focus on how to reduce the probability of unsafe system

conditions that various SCS elements lead to, or weaken the SCS‘s consequences that

failures produce, through using a variety of management, organization, technical

measures (Huang, 2013). We can divide the safety design of SCS into structural

design optimization and fault-tolerant design. The former aims to reduce software

defects, while the later aims to prevent a number of the known software failure.

Safety tactics can combine with the existing safety design technique to effectively

guide the selection of protective mechanisms to improve the safety (Huang, 2013).

The Following are Some Examples of the Safety-critical Systems

1. The Door Control System. The Door Control System is a safety-critical

product line. The software must function correctly to prevent intruders from entering

and must respond correctly to life-threatening scenarios such as fires. A Smart Home

system serves as an invisible housekeeper: it has sensors and agents to interact with

humans and the environment to offer people convenience and safety. For example,

the entrance doors can be opened only by inputting fingerprints or voiceprints.

2. ATP System. According to the definition of the CBTC system (Huang, 2013),

ATP is Automatic Train Protection system, which includes the follow aspects for the

safety protection function: Train self-checking, Speed measure and locate, Speed

supervision, Train safe stopping, Safe direction and door control, CBTC operation

mode and Runaway protection, for more details see reference ((Huang, 2013)).

11

3. The EBS SPL System. The EBS system is considered one of the subsystems of

Cruise Control System (C.C). The main function of EBS system is to automatically

stop the car or the vehicle and in safely way when there is an obstacle in front of the

vehicle. In such braking systems, sensors, communication media, and actuators

replace mechanical devices (Varshosaz and Khosravi, 2013). In reality, there could

be malfunctions with nonzero probabilities. For example, failure of the sensors to

detect obstacles in an admissible interval, possible message loss, and (Control Unit)

CU failure are some examples of undesirable but possible characteristics of such

systems.

4. The Smart Microwave Oven Control System. In this thesis and as a second

case study, we use the Smart Microwave Oven Control Systems Software Product

Line. The Smart Microwave Oven is a special home appliance that has several

operations, such as setting command, setting timer, starting and so on, and that can

be operated remotely. The microwave oven will form the basis of this product line,

which will offer options from basic to top-of-the-line (Gomaa, 2004).

Sometimes the device may malfunction. Example, the microwave may keep

cooking for an hour, which is not required by the users. Another risk example, the

Microwave oven may blow up or become too hot to touch. Additionally, some of

unauthorized influences (e.g. DoS- (Denial of Service), the use of IoT devices for

malicious purposes) lead to failures and failures of the critical systems that are part

of the IoT. For example, disconnect the line between the remote system and the

Microwave oven which can lead to dangerous situations. Consequently, we need a

safety and security control. The control means it can detect such malfunctioning or

even attacks and deal with that by updating the state of the devices, stop it (using

operate use case), and inform the user what happened. Also it can address the

security issues that influence the safety of the system.

2.2.1.3 Safety Patterns and Tactics

For this sub section the following definitions are used:

A. Patterns

12

Definition. A pattern describes a particular recurring design problem that arises in

specific design contexts, and presents a well-proven generic scheme for its solution.

The solution scheme is specified by describing its constituent components, their

responsibilities and relationships, and the ways in which they collaborate" (Armoush,

2010).

From the software engineering point of view, a design pattern is a description or

template for how to solve a problem that can be used in many different situations

(Buschmann and Maunier, 2001). It is a general reusable solution to a commonly

occurring problem in software design. A design pattern is not a finished design that

can be transformed directly into code (Buschmann and Maunier, 2001).

A design pattern describes a design problem which repeatedly occurred in

previous designs, and then describes the core of the solution to that problem.

B. A tactic

Definition. A tactic is a design decision for realizing quality goals at the

architectural level (Rehn, 2009). Tactics are rather simple ideas. They are _ne

grained but abstract and thus as opposed to patterns expressible in just a few

sentences. Although tactics are fine grained, they are not atomic. They can be

refined, so there is a hierarchical structure of tactics (Rehn, 2009). For example

redundancy is a tactic which can be specialized by the tactics replication, functional

redundancy and analytic redundancy.

Patterns tend to be much more complex, because they package several tactics and

this in a more concrete way. So tactics are building blocks for patterns.

2.2.1.4 The Software Safety

While modeling software safety it is important to note that no software works in

isolation. The entire system must be designed to be safe. The system components

may be software, hardware, users, and the environment. All must be given

consideration when developing software. All parts of the system must be safe.

Functional and operational safety starts at the system level. Safety cannot be assured

if efforts are focused only on software. The software can be totally free of 'bugs' and

employ numerous safety features, yet the equipment can be unsafe because of how

the software and all the other parts interact in the system (Swarup and Ramaiah,

13

2009)[27]. Thus safety and security are major issues in software engineering and

their importance is even increasing (Rehn, 2009).

With the increasing attention to software safety, improving software safety has

already become a more important issue, especially for safety-critical systems.

Software safety design process always starts with the system or platform hazards

identified by preliminary hazard analysis.

Over the last few years, embedded systems have been increasingly used in safety

critical applications where failure can have serious consequences. The design of

these systems is a complex process, which is requiring the integration of common

design methods both in hardware and software to fulfill functional and non-

functional requirements for these safety-critical applications (Armoush, 2010).

Nowadays Software is used not only in offices and living-rooms but also in

safety-critical environments and for tasks where sensitive data or huge amounts of

money are involved. On the other hand software becomes more and more networked,

distributed and ubiquitous. So the risk of failing or compromised software increases

as well as the severity of the possible consequences. Thus safety and security are

major issues in software engineering and their importance is even increasing (Rehn,

2009).

Software is an integral and increasingly complex part of modern safety critical

systems. Therefore, it is essential to analyse software safety in a system context to

gain a comprehensive understanding of the roles of software and to identify the

software-related risks that can cause hazards in the system. Leveson (Leveson, 1991)

noted that software by itself is not hazardous and cannot directly cause damage to

human life or the environment; it can only contribute to hazards in a system context.

Software can create hazardous system states through erroneous control of the system

or by misleading the system operators when taking actions (Leveson, 2011).

2.2.1.5 The safety-based Development

Software safety assurance refers to a series of quality assurance activities during

software development life cycle, which aims to eliminate the potential dangers.

The specification of safety constraints is the first step of the safety-constraint

centered design approach (Swarup and Ramaiah, 2009).

14

To develop safe software, therefore, we first need to identify and analyse

software-related hazards and the unsafe scenarios and develop the corresponding

software safety requirements at the system level.

(Huang, 2013) The first step in the safety-constraint centered design approach is

the specification of safety constraints (Bass, Klein and Bachmann, 2001). In

hardware systems, redundancy and diversity are the most common ways to reduce

hazards. Hardware detection and control includes mechanisms such as failsafe

designs, self-tests, exception handling, warnings to operators or users, and

reconfigurations. For software intensive safety-critical systems, software design must

enforce safety constraints. Reviewers should be able to trace from requirements to

code and vice versa. In addition to the specific safety constraints developed for the

system being designed, the design should incorporate basic safety design principles.

Safety, like any quality, must be built into the system design. The most effective way

to ensure that a system will operate safely is to build safety in from the start, which

means that system operation must not lead to a violation of the constraints on safe

operation. System accidents result from interactions among components that lead to a

violation of these constraints -- in other words, from a lack of appropriate

enforcement of constraints on the interactions. Because software often acts as a

controller in complex systems, it embodies or enforces the constraints by controlling

the components and their interactions. Software, then, can contribute to an accident

by not enforcing the appropriate constraints on behavior or by commanding behavior

that violates the constraints. The requirement for software to be safe is not that it

never "fails" but that it does not cause or contribute to a violation of any of the

system constraints on safe behavior. This observation leads to the suggested

approach to handling software in safety-critical systems, i.e., first identify the

constraints on safe system behavior and then design the software to enforce those

constraints. The software-specific analysis should provide specific mitigation

approaches for each potential hazard identified.

2.2.2 Cyber-physical Systems

Cyber-Physical Systems (CPS) is an emerging paradigm (Paulo Leita˜o, Luis

Ribeiro and Thomas Strasser, 2016). The term cyber-physical systems (CPS) refer to

15

a new generation of smart systems that integrate computational and physical

components to implement a process in the real world. They are present in quite

diverse areas, such as automotive electronics, aerospace systems, railways,

telecommunication, health sector, security, fabrication equipment, smart buildings,

robotics, and military applications (Shi et al., 2011). They bring innovation to many

industries, they have potential to integrate technologies from various sectors,

transform traditional processes in several application areas, and enable new processes

(Wan et al., 2011).

Since the nature of CPSs is the interaction with the physical world, so they must

operate dependably, safely, securely, and efficiently and in real-time (Peter, 2011).

The safety is considered one of the most critical issues in such systems. These

systems are directly connected to the physical environment and have an immediate

impact on the environment (Amorim et al., 2017).

In the other hand, CPSs contain computational (software), communication and

physical components however these systems are at least partially controlled by

software. The software has a major role and responsibility in such systems (Bures T.

et al, 2017). The difficult design problems are often assumed to be readily solved

using software; and the software must compensate for any deficiencies in hardware

platforms (Bures T. et al, 2017) and (Sommerville, 2009).

2.2.3 Software Architectures Design

One of the critical steps in software development process is software architecture

design (Sommerville, 2009). The output of this process is software architecture

(Sommerville, 2009).

Importance of software architecture -―Software architecture is not only

concerned with structure and behavior, but also with usage, functionality,

performance, resilience, reuse, comprehensibility, economic and technology

constraints and tradeoffs‖ - The Rational Unified Process, 2002.

Software architecture is the structure of the software system. "It describes the

software elements, their characteristics and how interact with each other" (Len Bass

and Paul Clements and Rick Kazman, 2003) and (Systems, 2000). Qualified software

16

architecture provides a blueprint for system construction and composition. It is a

main factor to a successful software development (L Tan, Lin and Ye, 2012). There

are many challenges in software architecture design for example, modeling the non-

functional requirements, especially those requirements on the quality of the software.

Non-functional requirements and quality attributes (e.g. maintainability,

performance, reliability, safety and product evolution) are important parameters of

software products. Quality requirements of a system serve as a bridge between

business goals and software architectures (L Tan, Lin and Ye, 2012). There is a

major role of Software architecture in the determination of software quality

(Medvidovic, Malek and Mikic-Rakic, 2003; Peter Wallin, 2012).

2.2.4 Software Product Line

Software product line (SPL) engineering is about developing a collection of

systems which share great commonalities (Bayer, Flege and Gacek, 2000; L Tan, Lin

and Ye, 2012).

Software product line is defined as ―A set of software-intensive systems sharing a

common managed set of features that satisfy the specific needs of a particular market

segment or mission (Pär J Ågerfalk, 2006)‖. These systems are developed from a

common core of assets (e.g. a common architecture) in a prescribed way.

The idea of SPL was initiated by Parnas (Parnas, 1976) and has been further

developed by Kang et al (Kang et al., 1998). The concept of SPL is to discover both

commonalities and variabilities (CVs) among member products of the product

family.

(Liliana Dobrica, Eila Niemela,2003) (Liliana Dobrica, 2000).Product-line (PL)

and reusable software components are suitable approaches for embedded systems,

which are often re-engineered from existing systems. Important issues in the

development and maintenance of these software systems are functionality and

quality. Although there are some similarities between embedded systems regarding

quality attributes, there are also differences. If a quality attribute is important to one

product-line domain, it does not necessarily mean it is important to another one.

2.2.5 The Complexity in Software Product Lines Development

17

In general, the complexity of systems makes the software development activities

difficult in practice. There are number of issues or "practice areas" affect an

organization's success in fielding a software product line (Len Bass and Paul

Clements and Rick Kazman, 2003). These issues may also face the development of

the single-system, but in the product line context these issues take on a new

dimension (Len Bass and Paul Clements and Rick Kazman, 2003). Examples of

these practice areas are architecture definition and configuration management

(Andrade, 2013).

The large scale and complexity of today‘s software-intensive systems make the

variability management become increasingly complex to conduct (Bashroush et al.,

2017).

The term architecture refers to the structure of a system, consisting of software

elements, externally visible properties, and the relationships among elements (Bass et

al., 2003a) (Bass, Klein and Bachmann, 2001). Developing a reference architecture

which represents the base structure of the member products is the main task of the

software product line architecture design. As we are dealing with families of

products the architecture model contains the functionality for a whole family of

variants.

The PLA is considered to be a key aspect in SPL engineering, through which the

complexity of a variability-based environment can be managed.

Architecture design is an important activity for any project but, it needs to

emphasize variation points in a software product line. This design process is more

complex for a software product line that because of the variability existing in the

product line.

The very high number of possible combinations emphasizes the high variability

and the great complexity of the SPLs that can be managed with the effective

approaches (Urli, Blay-Fornarino and Collet, 2014).

In the context of product line architecture model, Mannion and Camara in

(Mannion, 2002) and (Mannion, M., Camara, 2004) argue that constructing and

validating a product line model is difficult due to the size and linkage complexity of

such models.

18

Variability models tend to be very large in size, in many cases comprising

thousands of features, and complex in nature due to the myriad of relationships that

could exist among the features (Bashroush et al., 2017).

In fact, the creation of a model-based product line from a historically grown

product family requires large effort and that due to size and complexity existing in

the product family (Polzer et al., 2012).

In the testing aspect, the complexity of software makes testing a challenging

process because practically impossible to test all possible execution paths of

software.

For that large effort is required to address this complexity. The variability

management mechanism is one of these efforts.

2.2.6 Software Product Lines Architectures Design

Two main steps when the decision to initiate a software product line has been

taken, the domain analysis as a first step to describe the variability in the

requirements, the second important step is the definition of the product line software

architecture (Heymans and Trigaux, 2003).

Developing a reference architecture which represents the base structure of the

member products is the main task of the software product line architecture design

(Systems, 2000).

The software product line architecture (SPLA) (L Tan, Lin and Ye, 2012)

provides a coarse grain picture of structure in the software product family. It initiates

the architecture design for the member product. In the architecture design of a

product line, it must accommodate the variability and dependency of functionality in

the components that is derived from the feature model (L Tan, Lin and Ye, 2012).

Recently, software product line architectures have been used successfully in

industry for building families of systems of related products, maximizing reuse, and

exploiting their variable and configurable options (Capilla et al., 2014)(Behjati et al.,

2013)(White et al., 2013).

The creation and validation of product line software architectures are inherently

more complex than those of software architectures for single systems.

19

The importance of reference architectures increases by the increase of different

domains in which embedded systems become a dominant part, and in which software

becomes the most important component. This does not happen only in ‗‗classical‘‘

domains such as automotive industry, avionics or telecommunication, but also in new

areas such as Internet of Things, e-health, environment, smart houses and smart cites,

etc. The Reference Architectures improve the reusability of methods and artifacts,

but also brings new research challenges such as finding the principles and methods

for the Reference Architecture (RA) deployment with guarantees for domain-specific

functional and extra-functional properties (Crnkovic and Stafford, 2013).

There are two main role of the software product line architecture as follow: first, it

must describe the commonalities and variabilities of the products contained in the

software product line and, secondly, it must provide a common overall structure

(Heymans and Trigaux, 2003).

Figure 2.1 illustrates examples of product line architecture for embedded system

(Ammar, 2013), which is the Product Line Architecture for a Microwave Oven.

DoorSensor
<<kernel>>

+Door Opened()
+Door Closed()

WeightSensor
<<kernel>>

Keypad
<<kernel>>

+Cooking Time Selected()
+Cooking Time Entered()
+Start()

HeatingElement
<<kernel>>

Lamp
<<optional>>

Display
<<kernel>>

Beeper
<<optional>>

Turntable
<<optional>>

BooleanWeightSensor
<<default>>

+Item Placed()
+Item Removed()

AnalogWeightSensor
<<variant>>

One-levelHeatingElement
<<default>>

Multi-levelHeatingElement
<<variant>>

One-lineDisplay
<<default>>

+Read()

Multi-lineDisplay
<<variant>>

MicrowaveOvenSystem

Figure 2.1: Product line architecture for a Microwave Oven (Ammar, 2013)

20

Definition of Terms Used in the Example Class Diagram:

Kernel: Kernel in product lines represents the mandatory features for the product

line members. i.e.: they cannot be omitted in products.

 The stereotype <<kernel>> is used to specify Kernel in UML class

diagrams.

Optional: Optionality in product lines means that some features are elective for

the product line members, which means they can be omitted in some products and

included in others.

 The stereotype <<optional>> is used to specify optionality in UML class

diagrams.

 The optionality can concern classes, packages, attributes or operations. So

the <<optional>> stereotype can be applied to Classifier, Package and

Feature meta-classes.

Variant: Variant classes are modeled using UML inheritance and stereotypes.

Each variation point will be defined by an abstract class and a set of subclasses.

 The abstract class will be defined with the stereotype <<variant>> and

 each subclass will be stereotyped <<variant>>, or <<optional>>, the

default value being variant.

2.2.7 Safety–based SPLAs Design

―From a safety viewpoint, the software architecture is where the basic safety

strategy is developed in the software.‖ It is very significant to study how the non-

functional attribute ―safety‖ to be described, analyzed and verified during the

architecture construction process (Capilla et al., 2014).

Software safety assurance refers to a series of quality assurance activities during

software development life cycle, which aims to eliminate the potential dangers.

The specification of safety constraints is the first step of the safety-constraint

centered design approach (Ramakrishna and Satish et. al., 1996).

While modeling software safety it is important to note that no software works in

isolation. The entire system must be designed to be safe. The system components

may be software, hardware, users, and the environment. All must be given

consideration when developing software. All parts of the system must be safe.

21

Functional and operational safety starts at the system level. Safety cannot be assured

if efforts are focused only on software. The software can be totally free of 'bugs' and

employ numerous safety features, yet the equipment can be unsafe because of how

the software and all the other parts interact in the system (Swarup and Ramaiah,

2009).

Currently, the influence of architecture in assurance of software safety is being

increasingly recognized. As product-line engineering becomes more widespread,

more safety-critical software product lines are being built (Engström and Runeson,

2011).

As product-line engineering becomes more widespread, more safety-critical

software product lines are being built (Feng and Lutz, 2005).

The study shown that, nowadays, there are various design methods available and

each is focusing on certain perspective of architecture design. Especially, safety-

based methods have received a lot of attentions and have been well developed for

single system architecture design. However, the use of safety-based design methods

is limited in software product line (SPL) because of the complexity and variabilities

existing in SPL architecture. In the next lines we briefly present and discuss some of

the related works.

(Donald Firesmith, 2004) (Firesmith, 2004). His work concerned with the

Engineering Safety Requirements, Safety Constraints, and Safety-Critical

Requirements. He used the concept of a quality model to define safety as a quality

factor. Thus, safety (like security and survivability) is a kind of defensibility, which

is a kind of dependability, which is a kind of quality. Next, he discussed the structure

of quality requirements and showed how safety requirements can be engineered

based on safety‘s numerous quality subfactors. Then, he defined and discussed safety

constraints (i.e., mandated safeguards) and safety-critical requirements (i.e.,

functional, data, and interface requirements that can cause accidents if not

implemented correctly).

However, no tasks or attentions related to how design the software product line

architecture based on safety analysis.

(David C. Jensen, Irem Y. Tumer, 2013) (Jensen and Tumer, 2013), their work

presented a method of explicit inclusion of safety into a model-based design (MBD)

for cyber physical systems. This approach enables an analysis where component-

22

level failures can be mapped to potential system-level hazards. This work presented a

method of representing the safety property of a system by the introduction of the

concept termed "safety function". Further, the function of achieving safety is mapped

to the performance functions of the system. They presented a process of concurrently

developing a system concept from the safety and functional perspective. The end

result of this process is a system architecture where components of the system are

explicitly mapped to both the functions they perform and the role they play in

ensuring safe system operation. The benefit of this approach is having a system

representation that allows for analysis of critical events and off-nominal component

behavior to identify potential losses in function and safety constraint violations. The

perspective of these approaches is that safety should be a driver for design. Thus the

objective of this work is to introduce a safety-centric method of developing a design

based on the functional modeling paradigm.

However, this work does not address the design of software architecture. The

proposed method focus on inclusion of safety into design level in general without

focusing on a specific design activity.

(Yuling Huang, 2013) (Huang, 2013). Safety design at the architecture level can

effectively improve software or system safety. This work addresses the problem of

how to consider safety in software architecture design phase and proposed a safety-

oriented software architecture design approach. Through the system hazard analysis,

this design approach uses the selected combination of safety tactics to effectively

improve the software or system safety, providing a new way of thinking for software

safety architecture design.

However, this work does not take in account the concepts of a family of

architectures, namely, Product line Architectures.

Although a considerable number of safety analysis techniques have been proposed

to aid software design such as Software Hazard Analysis and Resolution in Design

(SHARD) (Fenelon et al., 1994), there is little analysis work focusing on an

architectural level to aid software architecture design.

 (Weihang Wu, Tim Kelly, July 2004) (Wu and Kelly, 2004) Safety design

concerns the identification and management of hazards. Hazards are caused by

failures. A distinction is often made between causes of failures in physical devices

(e.g., random failures (RFs)) and failures in software. Software does not fail

23

randomly; its ―failures‖ are due to its systematic nature (e.g., design faults (DFs)). In

software systems, safety is thus achieved by avoiding, or protecting against, these

failures. As a result, the focus of attention in their analytic model is the relationship

between the safety attribute and software architecture with respect to failures (Wu

and Kelly, 2004).

 (Lei Tan, Yuqing Lin, Huilin Ye, 2012) (Lei Tan, Lin and Ye, 2012). Quality-

driven Architecture Design and quality Analysis (QADA) is a traceable quality based

method to design and evaluate software architecture. QADA contains scenario-based

quality analysis to evaluate if the architecture design options meet the quality

requirements. QADA consists of three viewpoints: structural view, behavior view,

and deployment view at two levels of abstractions: conceptual level and concrete

level. It contains several views at different levels to separate concerns and it provides

a quality-driven link between software requirement and architecture. This work

extended QADA method by adding an extra view to improve this quality based PLA

design method.

In this framework, the quality attributes of a software system will be taken into

account in the early stage of architecture design and the reference architecture of SPL

will be elicited based on quality-related consideration.

However, their work is just extending to QADA method by adding an extra view

to improve this quality based PLA design method. This work may be a direction of

more open researches, especially in field of product line, that by focusing on a

specific quality attribute or other architectural attributes.

2.2.8 Scenario-based Architecture Design for SPL

It is evidence that the scenario-based development is an effective mechanism

which supports the overall the software development process. Numbers of scenario-

based development methods for software architecture have been developed. The

methods include different aspects of the development activities, e.g. method for

architecture design, evaluation and reconstruction, (Lei Tan, Yuqing Lin, Huilin Ye,

2012) (Lei Tan, Lin and Ye, 2012). Quality-driven Architecture Design and quality

Analysis (QADA) is a traceable quality based method to design and evaluate

24

software architecture. QADA contains scenario-based quality analysis to evaluate if

the architecture design options meet the quality requirements.

This section describes how our proposed method presented in this thesis supports

the scenario-base development. In this thesis, a safety-driven architectural design

method for software product line architecture is presented (Chapter 4). It is a

scenario-oriented method and it will done activities of development in an iterative

manner of the design product line architecture. In this method the architecture is

created in a number of iterations by stepwise application of scenarios and by using

proven solutions to recurring problems such as architectural patterns. Iterations are

performed until all scenarios have been applied and no problems arose from the final

assessment of the architecture. We need to extract a limited number of scenarios that

should be used in the iterations. Indeed, the scenarios describe the functional and

safety requirements of the product family the architecture is designed for. In the

context of product families, scenarios are generic that they do not only capture

common but also variable requirements of the instances in the product family.

The architecture creation process, however, can only be finished once all

scenarios have been applied successfully (i.e. no problems have been detected in the

assessment) and all assessment criteria have been fulfilled. If the assessment of the

architecture showed that at least one of the defined assessment criteria was not

fulfilled, the underlying problem has to be examined in order to determine how the

architecture creation process can continue. In the best case, changing just the last

iteration may solve the problem. In the worst case, if a solution supporting all

scenarios in all variants even exists it is necessary to track back to the first iteration.

However, if the assessment doesn‘t have any problem, the next scenario in the

priority list is entered into next cycle and reconstruction cycle continues.

The evaluation process is one of the critical steps in our proposed design method

for the software product line architectures (Chapter 4). To facilitate the evaluation

process of the architecture for safety-critical software product line systems a

simplified safety assessment model is developed. This assessment model is also used

to show the safety improvement in the design after using our work.

The safety assessment model (Chapter 7) is interconnected with the system model

and potential attack and failure (risk) scenarios are described through the models. We

use the statechart models to describe the system design or the risk scenarios. And

25

then we use these statechart models to define the Markov chain corresponding to

each model (e.g. Fig. 8.15). These Markov models are then used in the mathematical

calculations in the assessment process, see Sec. 8.4.

As we mentioned in the introduction, that this thesis aims to make the overall

architecture development activities compatible and consistent with each other. In this

context and in order to achieve this objective, numbers of efforts are made, (e.g. state

and scenario-based method, state and scenario-based safety assessment model).

2.2.9 Safety-related Test Cases

Often the test cases are define early that because we need creating a document as a

plan to asses or evaluate the architecture. The output of this step is a definition of

architecture evaluation plan. This plan is used to evaluate the architecture in the end

of the each iteration and in the last evolution of the architecture. Integration and

system test cases should also be based on use cases. statecharts can also be used to

depict the states and transitions for a state-dependent use case (Gomaa, 2011).

Because the proposed method process presented in this thesis is a safety-driven

design, the most process steps (or activities) are based on the safety attribute. For

instance, define test cases is defined based on the safety attribute, select a safety-

driven architectural pattern(s), evaluate the architecture if met the safety

requirements or not.

In a product line context, instance- and family-specific test cases have to be

distinguished. The test plans, test cases or test data must consider variation points

and multiple instances of the product line. The domain test cases for system tests

must be defined. A set of test cases for the parts of the architecture should be

designed based on number of artifacts in the domain. One of these artifacts is a

requirements document. The variability in the domain artifacts should be preserved

i.e. should be adequately introduced into the test case design (Pohl, Böckle and van

der Linden, 2005).

In our method and in general, the given architecture is checked with respect to

functional and quality requirements and the achievement of business goals. In case

an architecture assessment (or evaluation) should be performed at the end of the

iteration, assessment (or evaluation) criteria have to be defined according to the

26

business and quality goals. Defining assessment criteria before the actual design

begins has several advantages such as a better understanding of the requirements and

avoidance of specifying criteria that, due to an already influenced perspective,

merely support what has been developed. For each group of scenarios, test cases are

defined that will be used to evaluate the architecture at the end of each iteration.

Here, the main assessment criterion, quality goal is the safety attribute. This safety

attribute play a central, critical role for the appropriateness of reference architecture.

Define test cases is based on safety. However, it is extremely difficult to assess the

degree to which this attribute is achieved by a given architecture.

2.3 Literature Survey

This section presents a survey study which considered as a systematic literature

review of the existing research on Software Product Line Architecture (SPLA)

design based on quality attributes

The section 2.3.1 outlines the research method and the underlying protocol for the

systematic literature review. The first contribution of this study, a taxonomy of

architecture design approaches that has been derived from an iterative analysis of the

existing research literature is presented in Section 2.3.2. The second contribution, a

classification of existing architecture design approaches according to this taxonomy,

is presented in Section 2.3.3. Finally, Section 2.3.4 provides a discussion and results

of the survey.

2.3.1 Research Method

The stages involved in our literature review are structured into three phases:

planning, conducting, and reporting the review, based on the guidelines proposed by

Kitchenham (Kitchenham, 2004).

A systematic mapping study is launched to find as much literature as possible, and

the 22 papers found are classified with respect to focus, research type and

contribution type.

Based on the guidelines, Kitchenham (Kitchenham, 2004), this section details the

research questions, the performed research steps, and the protocol of the literature

review. First, Section 2.3.1.1 describes the research questions underlying our survey.

27

Then, Section 2.3.1.2 derives the research tasks we conducted, and thus describes our

procedure. Section 2.3.1.3 then details the literature search step and highlights the

inclusion and exclusion criteria. Finally, Section 2.3.1.4 discusses threats to the

validity of our study.

However, the reported results are fragmented over different research communities,

multiple system domains, and multiple quality attributes. Based on this survey, a

taxonomy has been created which is used to classify the existing research.

Furthermore, the systematic analysis of the research literature provided in this review

aims to help the research community in consolidating the existing research efforts

and deriving a research agenda for future developments.

2.3.1.1 Research Questions

Based on the objectives described in the introduction, the following research

questions have been derived, which form the basis for the literature review:

 RQ1: How can the current research on software architecture design be

classified?

 RQ2: What is the current state of the art of software architecture design

research with respect to this classification? And the SPLA design, Quality-

driven SPLA design, Safety-driven SPLA design methods in the existing

methods?

 RQ3: What can be learned from the current research results that will lead

to topics for further investigation?

2.3.1.2 Research Tasks

To answer the three research questions RQ1-3, numbers of tasks have

been conducted: one task to set up the literature review, and others

research tasks dedicated to the identified research questions.

28

2.3.1.3 Literature Search Process

The search strategy for the review was primarily directed toward finding

published papers in journals and conference proceedings via the widely accepted

literature search engines and databases Google Scholar, IEEE Explore, and Elsevier

ScienceDirect. For the search we focused on selected keywords, based on the aimed

scope of the literature review. Examples of the keywords are: Software Architecture,

Quality attributes, Safety analysis, Architectural Design, Software Product Line

Architectures, Safety-driven software product line architecture design.

The keywords were refined and extended during the search process. In the

subsequent phase, we reviewed the abstracts (and keywords) of the collected papers

with respect to the defined set of inclusion and exclusion criteria (Look the lines

below), and further extended the collection with additional papers based on an

analysis of the cited papers and the ones citing it (forward and backward citation

search).

 Inclusion Criteria:

The focus of this literature review is on software architecture quality attributes,

safety analysis, architectural design, software product line architectures, and safety-

driven software product line architecture design. A summary of the inclusion and

criteria is: Peer reviewed publications with a clear focus on some aspect of software

product line architecture design.

 Exclusion Criteria:

We excluded papers that: (a) design a software with no relation to software

architecture, (b) focus on an architecture-irrelevant problem, (c) focus on software

architecture design for single program without considering any quality attribute, (d)

focus on a product line-irrelevant problem.

We did not exclude papers for quality reasons, because the quality of the papers

was generally acceptable. A summary of the exclusion criteria is: Publications where

either architecture design focus or software product line focus is lacking.

29

2.3.1.4 Threats to Validity

One of the main threats to the validity of this literature review is the

incompleteness. The risk of this threat highly depends on the selected list of

keywords and the limitations of the employed search engines. To decrease the risk of

an incomplete keyword list, we have used an iterative approach to keyword-list

construction. A well-known set of papers was used to build the initial taxonomy

which evolved over time. New keywords were added when the keyword list was not

able to find the state-of-the-art in the respective area of study. Another important

issue is whether our taxonomy is robust enough for the analysis and classification of

the papers. To avoid the taxonomy with insufficient capability to classify the selected

papers, we used an iterative content analysis method to continuously evolve the

taxonomy for every new concept encountered in the papers. New concepts were

introduced into the taxonomy and changes were made in the related taxonomy

categories. Furthermore, in order to make the taxonomy a better foundation for

analyzing the selected papers, we allowed multiple abstraction levels for selected

taxonomy concepts.

2.3.2 Taxonomy and Classification

The quality of a literature review project highly depends on the selected taxonomy

scheme, which influences the depth of knowledge recorded about each studied

approach (Aleti et al., 2012).This section, presents the identification of the taxonomy

categories and provides an answer to the first research question (RQ1).

In this survey we provided a basic classification framework in form of taxonomy

to classify existing architecture design approaches. As mentioned in the previous

sections, here we present two schemes of broad classifications of software

architecture design approaches, the two sections bellow are illustrate that.

2.3.2.1 First classification scheme

As the first step of our survey, we classify existing approaches for software

architecture design into three broad categories depending on whether they attempt to

30

address the architecture of single product or product line or quality attributes of

architecture.

Each of these categories contains one or more subcategories based on the high-

level strategies used to realize its goal. Some of these sub-categories are further

divided indicating the specific intention adopted. Fig. 2.2 and Fig. 2.3 illustrate this

classification framework through which the results of the survey are presented.

Figure 2.2: High level taxonomy of architecture design approaches

Figure 2.3: The taxonomy related to SPLA design approaches

The papers are published between 1998 and 2014, and summarized in Table 2.1,

Tables 2.2 and 2.3. The total number of classification items in Table 2.1 is 29.

Table 2.1 lists all papers on term of architecture design approaches. Table 2.2 lists

all papers on quality-oriented architecture design approaches. Table 2.3 lists all

papers on software product line architecture design approaches.

Software Architecture Design Methods

Architectural Design Methods

for a Single Software

Product Line

Architecture Design
Methods

Quality-oriented

Architecture Design

Methods

SPLA Design Approaches

Quality-oriented Architecture Design

Quality-less Architecture Design

Multi-quality attributes Architecture Design Single-quality attribute

Safety-based Architecture Design

31

2.3.2.2 The second classification scheme in term of SPLA design

Here, the publications are classified into categories in three different dimensions:

research focus, type of contribution and research type, Table 2.4. This structure is

presented by Petersen et al. (Petersen et al., 2008), (Engström and Runeson, 2011).

However we adopt different categories in our study. We established a scheme and

mapped publications iteratively and added them as new primary studies. When the

scheme was finally set, we reviewed all classifications again.

We identified Three categories of research focus: (i) SPLA design, (ii) quality-

based SPLA design, (iii) safety-based SPLA design, Contribution type is classified

into five categories: Tool, Method, Model, Metric, and Open Items (see Tables 2.5-

2.7).

The classification of research types is based on a scheme proposed in (Engström

and Runeson, 2011) (Wieringa et al., 2006). And the research has been classified into

six categories: (i) validation research, (ii) evaluation research, (iii) solution

proposals, (iv) conceptual proposals, (v) opinion papers, and (vi) experience papers

(see Tables 2.5-2.7).

32

Table 2.1: Papers on architecture design approaches (high level taxonomy/a broad classification)

No Authors [Ref] Paper Title year

Architectural

Design for a

Single

Software

PLA

Design

Quality-oriented

Architecture

Design

1
David C et al. (Jensen and

Tumer, 2013)
Modeling and Analysis of Safety in Early Design 2013  

2
Lei Tan et al. (L Tan, Lin and

Ye, 2012)

Modeling Quality Attributes in Software Product

Line Architecture
2012  

3 Yuling Huang (Huang, 2013)
Safety-Oriented Software Architecture Design

Approach
2013  

4
Len Bass et al. (Bass, Klein

and Bachmann, 2001)

Quality Attribute Design Primitives and the

Attribute Driven Design Method
2001   

5
Made Murwantara Tangerang,

Indonesia (Murwantara, 2012)

Hybrid ANP: Quality Attributes Decision

Modeling of a Product Line Architecture Design
2012  

6
Qian Feng, Robyn R. Lutz

(Feng and Lutz, 2005)
Bi-Directional Safety Analysis of Product Lines 2005  

7

Joachim Bayer, Oliver Flege,

and Cristina Gacek (Bayer,

Flege and Gacek, 2000)

Creating Product Line Architectures 2000 

8 Lei Tan, Yuqing Lin, Huilin

Ye (Lei Tan, Lin and Ye,
 Quality-Oriented Software Product Line 2012  

33

2012) Architecture Design

9
Weihang Wu, Tim Kelly (Wu

and Kelly, 2004)
Safety Tactics for Software Architecture Design 2004  

10

Liliana Dobrica, EILA

Niemela (Liliana Dobrica,

2000)

Attribute-based product-line architecture

development for embedded systems
2003  

11

Bass, L.; Clements, P.; &

Kazman, R. (Len Bass and

Paul Clements and Rick

Kazman, 2003)

Software Architecture in Practice. Reading ,

Attribute Driven Design method (ADD)
2003  

12
John Ryan O‘Farrell (John

Ryan O‘Farrell, 2009)

Development of A Software Architecture

Method for Software Product Families and its

Application to the AubieSat Satellite Program

2009 

13

J¨urgen Meister, Ralf

Reussner, Martin Rohde

(Meister, Reussner and Rohde,

2004)

Applying Patterns to Develop a Product Line

Architecture for Statistical Analysis Software
2004 

14
P. America et al. (Obbink et

al., 2000)

COPA: A Component-Oriented Platform

Architecting Method for Families of Software

Intensive Electronic Products

2000 

15
D. Weiss et al. (Weiss and Lai,

1999)
a family-based software development process. 1999 

34

16
K. C. Kang et al. (Kang et al.,

1998)

FORM: A Feature-Oriented Reuse Method with

Domain- Specific Reference Architectures
1998 

17
C. Atkinson et al (Atkinson

and Muthig, 2002)

Component-based product line engineering with

UML
2002 

18
Mikael Svahnberg et al.

(Svahnberg et al., 2003)

A Quality-Driven Decision-Support Method for

Identifying Software Architecture Candidates
2003  

19

M. Matinlassi et al. (Mari

Matinlassi and Eila Nieme and

Liliana Dobrica, 2002)

Quality-driven architecture design and quality

analysis method
2002  

20
F. Bachmann et al. (Bachmann

et al., 2000)
The Architecture Based Design Method 2000  

21 Hassan Gomaa (Gomaa, 2004)

Designing Software Product Lines with UML

2.0: From Use Cases to Pattern-Based Software

Architectures

2006 

22
Jianli Dong et al. (Dong et al.,

2008)

The Research of Software Product Line

Engineering Process and Its Integrated

Development Environment Model

2008 

23
Jiayi Zhu et al. (Zhu et al.,

2011)

 Improving Product Line Architecture Design

and Customization by Raising the Level of

Variability Modeling

2011 

24
M.Sharafi, S.Dadollahi

(M.Sharafi, 2013)

A Scenario-Based Approach for Architecture

Reconstruction of Product Line
2013 

35

25
Hataichanok Unphon (Unphon,

2009)

Making Use of Architecture throughout the

Software Life Cycle – How the Build Hierarchy

can Facilitate Product Line Development

2009 

26

Jing Liu, Josh Dehlinger,

Robyn Lutz (Liu, Dehlinger

and Lutz, 2007)

Safety analysis of software product lines using

state-based modeling
2007  

27 Jan Bosch (Jan Bosch, 2001)
Software Product Lines and Software

Architecture Design
2001  

28

 Thelma Elita Colanzi, Silvia

Regina Vergilio (Colanzi and

Vergilio, 2013)

Representation of Software Product Line

Architectures for Search-Based Design
2013 

29 Broerse, C et al. (Pinzger et al.,

2004)

Architecture Recovery for Product Family 2004 

36

Table 2.2: Papers on quality-oriented architecture design approaches

No Authors [Ref] Paper year Single/Product

line

1 M. Matinlassi, E. Niemel, and L. Dobrica

(Mari Matinlassi and Eila Nieme and Liliana

Dobrica, 2002)

Quality-driven architecture design and quality analysis method 2002 Product line

2 L. Bass, et al. (L. Bass, M. Klein, 2002) Quality Attribute Primitives and the Attribute Driven Design

Method

2002 Support all

3 David C. Jensen, Irem Y. Tumerb (Jensen

and Tumer, 2013)

Modeling and Analysis of Safety in Early Design 2013 Single

4 Lei Tan, Yuqing Lin and Huilin Ye (L Tan,

Lin and Ye, 2012)

Modeling Quality Attributes in Software Product Line Architecture 2012 Product line

5 Yuling Huang (Huang, 2013) Safety-Oriented Software Architecture Design Approach 2013 Single

6 Len Bass, Mark Klein, and Felix Bachmann

(Bass, Klein and Bachmann, 2001)

Quality Attribute Design Primitives and the Attribute

Driven Design Method

2001 Single

7 Made Murwantara Tangerang, Indonesia

(Murwantara, 2012)

Hybrid ANP: Quality Attributes Decision Modeling of a Product

Line Architecture Design

2012 Product line

8 Qian Feng, Robyn R. Lutz (Feng and Lutz,

2005)

Bi-Directional Safety Analysis of Product Lines 2005 Product line

9 Lei Tan, Yuqing Lin, Huilin Ye (Lei Tan, Quality-Oriented Software Product Line Architecture Design 2012 Product line

37

Lin and Ye, 2012)

10 Weihang Wu, Tim Kelly (Wu and Kelly,

2004)

Safety Tactics for Software Architecture Design 2004 Single

11 LILIANA DOBRICA, EILA NIEMELÄ

(Liliana Dobrica, 2000)

Attribute-based product-line architecture development for

embedded systems

2003 Product line

12 Mikael Svahnberg, Claes Wohlin, Lars

Lundberg, Michael Mattsson (Svahnberg et

al., 2003)

A Quality-Driven Decision-Support Method for Identifying

Software Architecture Candidates

2003 Single

13 Jing Liu, Josh Dehlinger, Robyn Lutz (Liu,

Dehlinger and Lutz, 2007)

Safety analysis of software product lines using state-based modeling 2007 Product line

14 Jan Bosch (Jan Bosch, 2001) Software Product Lines and Software Architecture Design 2001 Product line

38

Table 2.3: Papers on software product line architecture design approaches

No Authors [Ref] Paper Title Date Quality-less

Architecture

Design

Quality-

oriented

Architecture

Design

Single-

quality

attribute

Multi-quality

attributes

Architecture

Design

1 P. America et al. (Obbink

et al., 2000)

COPA: A Component-Oriented

Platform Architecting Method for

Families of Software Intensive

Electronic Products

2000



2 D. Weiss, C. Lai, and R.

Tau (Weiss and Lai, 1999)

 Software product-line engineering: a

family-based software development

process.

1999


3 K. C. Kang et al. (Kang et

al., 1998)

FORM: A Feature-Oriented Reuse

Method with Domain- Specific

Reference Architectures

1998


4 C. Atkinson et al.

(Atkinson and Muthig,

2002)

Component-based product line

engineering with UML

2002


5 Lei Tan et al. (L Tan, Lin

and Ye, 2012)

Modeling Quality Attributes in

Software Product Line Architecture

2012
 

6 Len Bass, Mark Klein, and

Felix Bachmann (Bass,

Klein and Bachmann,

2001)

Quality Attribute Design Primitives and

the Attribute Driven Design Method

2001

 

7 Made Murwantara

Tangerang, Indonesia

(Murwantara, 2012)

Hybrid ANP: Quality Attributes

Decision Modeling of a Product Line

Architecture Design

2012
 

8 Qian Feng, Robyn R. Lutz Bi-Directional Safety Analysis of 2005  

39

(Feng and Lutz, 2005) Product Lines

9 Joachim Bayer et al.

(Bayer, Flege and Gacek,

2000)

Creating Product Line Architectures 2000


10 Lei Tan, Yuqing Lin,

Huilin Ye (Lei Tan, Lin

and Ye, 2012)

 Quality-Oriented Software Product

Line Architecture Design

2012
 

11 Liliana Dobrica, Eila

NIEMELÄ (Liliana

Dobrica, 2000)

Attribute-based product-line

architecture development for embedded

systems

2003

 

12 John Ryan O‘Farrell (John

Ryan O‘Farrell, 2009)

Development of A Software

Architecture Method for Software

Product Families and its Application to

the AubieSat Satellite Program

2009



13 J¨urgen et al. (Meister,

Reussner and Rohde, 2004)

Applying Patterns to Develop a Product

Line Architecture for Statistical

Analysis Software

2004


14 Hassan Gomaa (Gomaa,

2004)

Designing Software Product Lines with

UML 2.0:

From Use Cases to Pattern-Based

Software Architectures

2006



15 Jianli Dong et al. (Dong et

al., 2008)

The Research of Software Product Line

Engineering Process and Its Integrated

Development Environment Model

2008


16 Jiayi Zhu et al. (Zhu et al.,

2011)

Improving Product Line Architecture

Design and Customization by Raising

the Level of Variability Modeling

2011


17 M.Sharafi, S.Dadollahi A Scenario-Based Approach for 2013 

40

(M.Sharafi, 2013) Architecture Reconstruction of Product

Line

18 Hataichanok Unphon

(Unphon, 2009)

Making Use of Architecture throughout

the Software Life Cycle – How the

Build Hierarchy can Facilitate Product

Line Development

2009



19 M. Matinlassi, E. Niemel,

and L. Dobrica (Mari

Matinlassi and Eila Nieme

and Liliana Dobrica, 2002)

Quality-driven architecture design and

quality analysis method

2002

 

 

20 F. Bachmann et al.

(Bachmann et al., 2000)

The Architecture Based Design Method 2000


21 Jing Liu, Josh Dehlinger,

Robyn Lutz (Liu,

Dehlinger and Lutz, 2007)

Safety analysis of software product

lines using state-based modeling

2007

  

22 Jan Bosch (Jan Bosch,

2001)

Software Product Lines and Software

Architecture Design

2001
 



23 Thelma Elita Colanzi,

Silvia Regina Vergilio

(Colanzi and Vergilio,

2013)

Representation of Software Product

Line Architectures for Search-Based

Design

2013



24 Broerse, C et al. (Pinzger et

al., 2004)

Architecture Recovery for Product

Families

2004



41

Table 2.4: Distribution over research focus

Research focus 1998-2008 2009-2014 Total

SPLA design 10 5 15

Quality-based SPLA design 4 3 7

Safety-based SPLA design 2 - 2

Total 16 8 24

Table 2.5: Papers on SPLA design

Authors [Ref] Title Paper Type Contribution

type

John Ryan O‘Farrell (John Ryan

O‘Farrell, 2009)

Development of A Software Architecture Method for Software Product

Families and its

Application to the AubieSat Satellite Program

Conceptual

proposal

Method

Joachim Bayer et al. (Bayer,

Flege and Gacek, 2000)

Creating Product Line Architectures Solution

proposal

Method

J¨urgen Meister, Ralf Reussner,

Martin Rohde (Meister,

Reussner and Rohde, 2004)

Applying Patterns to Develop a Product Line Architecture for Statistical

Analysis Software

Experience

report

Tool

Hassan Gomaa (Gomaa, 2004) Designing Software Product Lines with UML 2.0:

From Use Cases to Pattern-Based Software Architectures

Solution

proposal

Model

Jianli Dong et al. (Dong et al.,

2008)

The Research of Software Product Line Engineering Process and Its Integrated

Development Environment Model

Opinion

paper

Model

Jiayi Zhu et al. (Zhu et al.,

2011)

 Improving Product Line Architecture Design and Customization by Raising the

Level of Variability Modeling

Conceptual

proposal

Open items

42

M.Sharafi, S.Dadollahi

(M.Sharafi, 2013)

A Scenario-Based Approach for Architecture Reconstruction of Product Line Conceptual

proposal

Method

Hataichanok Unphon (Unphon,

2009)

Making Use of Architecture throughout the Software Life Cycle – How the

Build Hierarchy can Facilitate Product Line Development

Opinion

paper

Open items

P. America et al. (Obbink et al.,

2000)

COPA: A Component-Oriented Platform Architecting Method for Families of

Software Intensive Electronic Products

Conceptual

proposal

Model

D. Weiss, C. Lai, and R. Tau

(Weiss and Lai, 1999)

Software product-line engineering: a family-based software development

process.

Conceptual

proposal

Open items

K. C. Kang, et al. (Kang et al.,

1998)

FORM: A Feature-Oriented Reuse Method with Domain- Specific Reference

Architectures

Conceptual

proposal

Model

C. Atkinson et al. (Atkinson and

Muthig, 2002)

Component-based product line engineering with UML Conceptual

proposal

Tool

F. Bachmann et al. (Bachmann

et al., 2000)

The Architecture Based Design Method Solution

proposal

Model

 Thelma Elita Colanzi, Silvia

Regina Vergilio (Colanzi and

Vergilio, 2013)

Representation of Software Product Line Architectures for Search-Based

Design

Experience

report

Open items

Broerse, C et al. (Pinzger et al.,

2004)

Architecture Recovery for Product Family Solution

proposal

Method

43

Table 2.6: Papers on Quality-based SPLA design

Authors [Ref] Title Paper Type Contribution Type

Lei Tan, Yuqing Lin and Huilin

Ye (L Tan, Lin and Ye, 2012)

Modeling Quality Attributes in Software Product

Line Architecture

Conceptual

proposal

Method

I Made Murwantara

Tangerang, Indonesia

(Murwantara, 2012)

Hybrid ANP: Quality Attributes Decision Modeling of a Product

Line Architecture Design

Conceptual

proposal

Model

 Lei Tan, Yuqing Lin, Huilin Ye

(Lei Tan, Lin and Ye, 2012)

 Quality-Oriented Software Product Line Architecture Design Solution proposal Method

Liliana Dobrica, Eila Niemela

(Liliana Dobrica, 2000)

Attribute-based Product-line Architecture Development for

Embedded Systems

Solution proposal Method

Len Bass, Mark Klein, and Felix

Bachmann (Bass, Klein and

Bachmann, 2001)

Quality Attribute Design Primitives and the Attribute Driven

Design Method

Opinion paper Open items

M. Matinlassi, E. Niemel, and L.

Dobrica (Mari Matinlassi and Eila

Nieme and Liliana Dobrica, 2002)

Quality-driven architecture design and quality analysis method Conceptual

proposal

Method

Jan Bosch (Jan Bosch, 2001) Software Product Lines and Software Architecture Design Experience report Method

Table 2.7: Papers on Safety-based SPLA design

Authors [Ref] Title Paper Type Contribution type

Qian Feng, Robyn R. Lutz (Feng

and Lutz, 2005)

Bi-Directional Safety Analysis of Product

Lines

Conceptual proposal Method

Jing Liu, Josh Dehlinger, Robyn

Lutz (Liu, Dehlinger and Lutz,

2007)

Safety analysis of software product lines using

state-based modeling

Solution proposal Method

44

2.3.3 Mapping

In Fig. 2.4, we show, based on the second classification in section 2.3.2.2, a

mapping between the research focus and the contribution type and the research type.

The research focus items include SPLA design, Quality-based SPLA design, and

Safety-based SPLA design. The contributions types include tools, methods, models,

and metrics. The research types include experience reports, opinion papers,

conceptual or solution proposals, and validation and evaluation research. The

Research focus is on the Y axis, the contribution type is on the left side of the X axis,

and research type on the right side of the X axis.

2

SPLA design

Quality-based

SPLA design

Safety-based

SPLA design

Contribution Type Research Focus Research Type

T
o
o
l

M
et

h
o
d

M
o
d
el

 M
et

ri
c

O
p
en

 i
te

m
s

E
x
p
er

ie
n
ce

 r
ep

o
rt

 S
o
lu

ti
o
n
 p

ro
p
o
sa

l

C
o
n
ce

p
tu

al
 p

ro
p
o
sa

l

E
v
al

u
at

io
n
 r

es
ea

rc
h

V
al

id
at

io
n
 r

es
ea

rc
h

O
p
in

io
n
 p

ap
er

1 1

4 2 5 4

1 1 5

2 4 7

1 2 3

2

1

Figure 2.4: Map of research focus on software product line design. Research

focus on the Y axis; contribution type on the left side of the X axis, and

research type on the right side of the X axis.

45

2.3.4 Survey Results and Discussion

The surveyed research work indicates safety based software product line design

being rather an immature area.

Safety-driven software product line architecture design seems to be a

‗‗discussion‖ topic. There is a well-established understanding about challenges.

However, when looking for solutions to these challenges, we mostly find proposals.

The mapping shows that 74% of the papers found include proposals, which contain

ideas for solutions of the identified challenges.

The study shows that there are various design methods available and each is

focusing on certain perspective of architecture design and there is a large number of

SPLA design methods. Especially, quality-based methods have received a lot of

attention. However, the use of safety-based design methods is limited in software

product lines (SPL) due to the variability property that can potentially result in a

large number of possible systems.

2.4 Architectural design patterns

The design patterns concepts are important in the systems design process. They

are used to support and help designers and system architects choose a suitable

solution for a recurring design problem among available collection of successful

solutions.

Developing a reference architecture which represents the base structure of the

member products is the main task of the software product line architecture design

(Systems, 2000). It is evidence that a pattern based development of the reference

architecture can support the development and application process of product lines.

2.4.1 Safety Design Pattern and Statechart Pattern

Design patterns can be used to enhance the design of systems in different

application domains. Design patterns are popular in the field of software engineering

and there are plenty of patterns (Rauhamäki, Vepsäläinen and Kuikka, 2012).

Contradictorily, in the field of control, safety and security engineering patterns have

46

not been studied and published in such volumes. Therefore, one of the objectives of

the work in this thesis is to answer the call, for more details see Chapter 4 and 5.

In the other hand, and because it is very efficiency to address the safety of the

system considering the changing of the system from a state to another state, so we

can monitor and control the safety of the system in each state. The challenge is how

to combine the concepts of the traditional safety patterns with the concepts of

statechart patterns.

2.4.2 Safety and Security Patterns

In (Amorim et al., 2017) they argue that there is lack of experience with security

concerns in context of safety engineering in general and in automotive safety

departments in particular. To remediate this problem, they propose a pattern-based

approach that provides guidance with respect to selection and combination of both

types of patterns in context of system engineering. However this work focuses on the

systems development engineering specifically, for developing a safety-critical

systems with respect to the influence of security issues and not for patterns

development. Therefore, extra work is needed to use the experience at the pattern

design level which adds more generality and spread the using of the experience.

Ensuring safety and security of complex integrated systems requires coordinated

approaches that involve different stakeholder groups going beyond safety and

security experts and system developers. The authors in (Raspotnig, Karpati and

Opdahl, 2018) have therefore proposed CHASSIS (Combined Harm Assessment of

Safety and Security for Information Systems), a method for collaborative

determination of requirements for safe and secure systems.

In the context of the statechart patterns, especially the safety patterns of statechart,

it evidence that there is no explicit consideration of the influence of the security on

the safety which is the most important thing. Therefore, in this work and in order to

enhance the existing safety patterns or even develop new ones, to address the

influence of the security issues on the safety, a pattern development approach that

interlinks safety and security patterns is proposed.

To the best of our knowledge, there are various pattern approaches in the context

of patterns composition, specifically at the architectural design level. In comparison

47

to our work, none of the aforementioned approaches show clearly the pattern

composition process to develop the patterns. Pattern composition is considered as a

challenge. In the other words, these approaches are limited at patterns development

level, especially, for safety and security patterns development because this area still

considered as an emergent research area.

2.5 Chapter Summary and Open Research Issues

Because a product line reference software architecture is the central artifact in

product line engineering which provides the framework for developing and

integrating shared assets [47], the creation and validation of such architecture are

inherently much more complex. The study presented in this chapter aims at

surveying existing research on Software Product Line Architecture (SPLA) based on

quality attributes in order to identify useful approaches and needs for future research.

We investigated safety analysis at the architectural level, and Safety-driven Software

Product Line Architecture SSPLA design approaches.

The chapter shows that there are various design methods available and each is

focusing on certain perspective of architecture design. The quality-based methods

have received a lot of attentions and have been well developed for single system

architecture design. However, the use of quality-based design methods is limited in

software product line (SPL) because of the complexity and variability existing in the

SPL reference architecture [22]. With the increasing attention to software safety,

improving software safety has already become a much more important issue,

especially for safety-critical systems [26]. We identify the following open research

issues as related to specific key publications surveyed in this chapter:

 The methodology presented by Jensen and Tumer [25] focuses on the

inclusion of safety into design level in general without focusing on a

specific design activity such as the design of reference architectures.

 In [22], Lei Tan et al, presented a framework for Quality-Oriented

Software Product Line Architecture Design. The framework is defined at a

high level without specifying any modeling techniques or tools.

 The work of Huang in [26] provides a rather complex process for safety-

oriented design using Fault Tree Analysis techniques and safety tactics

48

that would be difficult or intractable to use with the concept of variability

in product lines where the space of possible faults is very large. It remains

an open issue to research if the FTA techniques combined with safety

tactics can be used with fault classification techniques for safety-driven

design of reference architectures.

 In the context of the safety patterns, especially the safety patterns of

statechart, it evidence that there is no explicit consideration of the

influence of the security on the safety which is the most important thing.

Therefore, this point needs more work to address the influence of the

security issues on the safety.

The last point is still considered as an emergent research area.

49

3.1 Introduction

This chapter describes the methodology according to which this research was

completed. The chapter presents the methodology in terms of its phases, the

languages, the notations and tool-support used for the development of the context. A

brief description about the case studies conducted in this thesis is also presented in

this chapter.

3.2 Research Methodology

This section describes the research method applied in this thesis. A number of

conceptual research design frameworks were considered to put the methodology in

context (e.g. the description of a constructive research process by Kasanen et al.

(Kasanen, Lukka and Siitonen, 1993), building and evaluating system techniques and

methods iteratively and incrementally based on cases by (Hevner et al. 2004)

(Hevner et al., 2004) and the software engineering paradigms identified by Mary

Shaw (2001)) (Shaw, 2003). In this thesis the overall research design is basically

based on the conceptual research design framework described by Robson in (Robson,

2002) and guidelines by Shaw (Shaw, 2001) (Shaw, 2003). The most important

elements of the research design are depicted in Figure 1 and described in the

following lines.

The phases of the research process are realized as follows:

C

H
A

P
T

E
R

 I
II

RESEARCH METHODOLOGY

50

1. Define the research problem:

The research problem and its significant were described in Chapter 1.

2. Understand the context of the problem.

To obtain a good understanding about the problem the previous results related to the

research problem were searched for. Literature studies were needed to obtain a

sufficient level of understanding. An amount of relevant literature was found,

studied, and analysed. The analysis results were reported in a number of publications

(Mozamil Elgodbe and Ammar, 2016), (Mozamil Ebnauf and Hany H. Ammar,

2017).

3. Innovate, i.e., construct a solution idea.

This is discussed in Chapter 4, 5 and 6

4. Demonstrate that the solution works, i.e., their applicability.

Hence in Shaw‘s terminology (Shaw, 2001), the form of validation is

implementation. We motivate our work with the help of two application examples of

two case studies. In Chapter 8 and in order to show the applicability of this work the

developed safety and security design pattern is applied on the design process of two

software product line architectures, a simplified Automated Electromechanical

Braking Systems product line and the Smart Microwave Oven Control Systems

Software Product Line.

To evaluate our work, a simplified safety assessment model (Chapter 7) is developed

and applied on the two case studies.

5. Show theoretical connections and research contribution

The contribution of this thesis is present through its chapters (mainly, Chapter 4, 5, 6

and 7). The contribution is also summarized in the last chapter (Chapter 9).

The final step of our evaluation process is to compute the Relative Safety

Improvement. Section 8.4.3 describes how all these works can improve the safety

design of the software product line architectures. The section also shows the

effectiveness of our work.

6. Examine the scope of applicability.

According to the evaluation results discussed in the fourth point, the applicability of

the methods is discussed in Chapter 9.

51

Figure 3.1: Elements of design of a ―real world‖ research project (based on

(Mustapiʹc, 2004)(Robson, 2002))

Real World

Industrial

Context/

Project

Research Context/

Project

Problem

development

process

Solution

validation

Research

product/ result

Research

methods/

approaches

Research

Strategy

Setting/purpose

Research

Questions

hypotheses

theory

Apply to

characterize questions

motivates

input to

tentative

answers

to questions

decide on

determine technique

validate

motivation

improvements

input

validation

52

3.3 Languages, Notations and Used Tools

To support the process of completing the research some languages and tools were

needed.

In the other words, we need to add the appropriate support, in the development

environment, e.g. tools, languages. The first required languages are modeling

languages. The important language used in this thesis is the Unified Modeling

Language (UML). Also the second required tool is a software capable of create and

edit UML models.

Another example of such a tool is a tool that used in the evaluation process to

analyze and present the results. Finally, we also need academic and scientific writing

tools.

This subsection describes the UML language, notations and some used tools.

3.3.1 Language and Notations

3.3.1.1 UML Language

‖According to the Object Modeling Group (OMG), ―modeling is the designing of

software applications before coding.‖ (Gomaa, 2011).

With the model-based software design and development, software modeling is used

as an essential part of the software development process. The models can help

understanding of the systems which specify the system from different perspective.

The Unified Modeling Language (UML) is one of the graphical modeling languages.

The UML helps in developing, understanding, and communicating the different

views (Gomaa, 2011).

The Object Management Group (OMG) governs the UML, and Sparx Systems is an

active member and contributor to the process of managing and improving the

language (Sparx Systems, 2016).

The Unified Modeling Language (UML) highly supports the object-oriented

modeling. It was developed to provide a standardized graphical language and

notation for describing object-oriented models (Gomaa, 2011).

53

In context of the product line engineering the UML efficiently addresses the

variability existing in the product line. For example: In UML, the use cases are

labeled with the stereotype «kernel», «optional» or «alternative» [23]. In addition,

variability can be inserted into a use case through variation points, which specify

locations in the use case where variability can be introduced (Gomaa, 2004).

 3.3.1.2 The Statechart Semantic

In the UML notation, a state transition diagram is referred to as a state machine

diagram. The UML state machine diagram notation is based on Harel‘s statechart

notation (Harel 1988; Harel and Politi 1998) (Harel, 1987)(Gomaa, 2011).

The UML provides two different kinds of state machine formalisms: statecharts and

activity diagrams. They differ in the kinds of situations to which they are applied.

Statecharts are used when the transition from state to state takes place primarily

when an event of interest occurs. Activity diagrams are appropriate when the object

(or operation) changes state primarily upon completion of the activities executed

within the state rather than the asynchronous occurrence of events.

Statecharts, introduced by Harel in the late 1980s , have become a popular means for

specifying the behavior of embedded, reactive systems (von Hanxleden et al., 2014).

The visual syntax of statecharts is intuitively understandable for application experts

from different domains who are not necessarily computer scientists.

A statechart is an alternative means of system specification. This specification

methodology is particularly oriented to ―reactive systems‖ — that is, systems that

respond to a series of events rather than transforming an input into an output (Niaz

and Tanaka, 2003). Such systems may incorporate concurrent processing, and

statecharts encompass this capability. The OO methodologies using statecharts

describe in sufficient detail the steps to be followed for describing the behavior of

objects (Niaz and Tanaka, 2003). In most OO methodologies, when people think of

object behavior, they consider the functionality of the object. But in many real world

applications this definition is insufficient — the internal state of an object and the

quality attributes should also be considered (e.g. the safety in safety-critical systems).

As (UML) statechart diagram is a powerful tool for specifying the dynamic behavior

54

of reactive objects, we can use this facility to describe the system behavior in term of

safety.

Because it is very efficiency to address the safety of the system considering the

changing of the system from a state to another state, so we can monitor and control

the safety of the system in each state. Also the dynamic modeling – in the same time

we can model the system with dynamic modeling. Many systems, such as real-time

systems, are highly state-dependent; that is, their actions depend not only on their

inputs but also on what has previously happened in the system.

We have already developed a new safety-driven design pattern, see Section 5.3.

This design pattern support the design process in context of software architectures

considering one of the software quality attribute which is safety attribute. This

pattern extends capabilities of both the statecharts design patterns and safety patterns.

The extension of the pattern is by addressing the security issues to develop an

enhanced version of the pattern. The pattern addresses the safety attribute in the

behavior of the objects to improve the safety of applications. The pattern allows an

object to alter its behavior and change its internal state when there is a safety

violation or even security violation that influence the safety, and to protect it from

introducing in unsafe states. The result is an object-oriented design pattern which

handles the safety attribute.

In the context of dynamic state machine modeling for software product lines -

When variable classes are developed, there are two main approaches to consider,

specialization or parameterization. In product line development, however, there can

be a large degree of variability. Consider the issue of variability in state-dependent

control classes, which are modeling using state machines and depicted on statecharts

(Gomaa, 2011)(Gomaa, 2004). To capture state machine variability and evolution, it

is necessary to specify optional states, events and state transitions, and actions. It is

often more effective to design a parameterized state machine, in which there are

feature-dependent states, events, and transitions. Optional state transitions are

specified by having an event qualified by a Boolean feature condition, which guards

entry into the state. Optional actions are also guarded by a Boolean feature condition,

which is set to True if the feature is selected and False if the feature is not selected

for a given SPL member See reference (Gomaa, 2011)(Gomaa, 2004).

55

3.4 Evaluation Notations, Metrics and Tools

3.4.1 The Relative Safety Improvement- a safety assessment metric

The final step of our evaluation process is to compute the Relative Safety

Improvement (RSI). The Relative Safety Improvement (RSI) is a safety assessment

metric proposed by Ashraf in (Armoush, 2010) which gives an indication about the

safety improvement that can be achieved by the pattern. This metric (RSI) is defined

as ―the percentage improvement in safety (reduction in probability of unsafe failure)

relative to the maximum possible improvement which can be achieved when the

probability of unsafe failure is reduced to the minimum possible value (0)‖. Based on

this definition, the relative safety improvement for a design pattern (or system

design) can be expressed as shown in the following equation (Equation 1):

 RSI: Relative Safety Improvement.

 PUF(old): Probability of unsafe failure in the basic system.

 PUF(new): Probability of unsafe failure in the design pattern.

We assume that the probability of the system to be in unsafe state is equivalent to

the probability of the unsafe failure by considering that all failures are unsafe

failures. By this assumption we do the calculation of the RSI for all the individual

scenarios in the two examples of the two case studies used in this thesis, see Chapter

8 (Section 8.4.3, Fig. 8.21 and Fig. 8.22).

3.4.2 Markov Chain methods

As such domains include safety critical systems which exhibit probabilistic behavior,

there is a major need for modeling and verification approaches dealing with

probabilistic aspects of systems. In the other words, we need a probabilistic model

  

 

1%100)1













oldUF

newUF

P

P
RSI

56

that captures statistical properties of system usage, and can make runtime

probabilistic estimations.

State based formalisms are a more powerful alternative to combinatorial formalisms.

Markov models and their underlying matrix algebra have been proposed as a means

of evaluating usability at design-time (Kostakos et al., 2016).

Markov chains (MCs) is one of the most common methods. They are effective tools

that used for evaluating the safety and reliability of architectures (Varshosaz and

Khosravi, 2013). After defining the Markov chains then they will be evaluated

regarding the probabilities that the system is in a certain state at time t. As

mentioned in Sec. 7.2.2.1 that in this thesis we used the steady state evaluation

technique which calculates the probabilities for t → ∞.

Because of the variabilities existing in the product line systems, the authors in

(Varshosaz and Khosravi, 2013), introduce a mathematical model, Discrete Time

Markov Chain Family (DTMCF), which compactly represents the probabilistic

behavior of all the products in the product line. In (Dabrowski and Hunt, 2011) they

describe how a Discrete Time Markov chain simulation and graph theory concepts

can be used together to efficiently analyze behavior of complex distributed systems.

Note that, in the solution that used in this thesis, the calculation is based on some

hypothesis and solutions of other works on Markov chain. We use the Discrete Time

Markov Chain (DTMC) theory (Kassir, 2018) to efficiently analyze behavior and

safety of the critical systems in term of software system architecture. The safety

assessment method used in this work (See Sec. 7.2) is distinguishable from the well-

known use of DTMCs to provide quantitative measures of system performance and

reliability, which has reviewed in (Dabrowski and Hunt, 2011). Instead of measuring

system reliability, we use DTMCs to examine safety in dynamic systems in order to

identify the probability of system being in safe execution or in unsafe state.

3.5 Software Tools

3.5.1 UML Modeling Tools

UML is a Unified Modeling Language. UML is considered as an industry

standard general-purpose modeling language for software engineering. It is used to

https://en.wikipedia.org/wiki/General-purpose_modeling
https://en.wikipedia.org/wiki/Software_engineering

57

create meaningful, object-oriented models for a software application (International

Organization for Standardization and International Electrotechnical Commission,

2005).

A UML tool is a software application that supports some or all of the notation and

semantics associated with the Unified Modeling Language (UML). The UML

tools are used broadly to include application programs which are not exclusively

focused on UML, but which support some functions of the Unified Modeling

Language, either as an add-on, as a component or as a part of their overall

functionality (International Organization for Standardization and International

Electrotechnical Commission, 2005). There are numerous tools available for

designing UML diagrams. Some of these tools are commercial and the others are

open-source.

Bellow is examples for these tools:

1. Magic Draw

Magic Draw is one of the most popular UML CASE tool. It is used to model UML

diagrams, SysML, BPMN, and UPDM that supports the dynamic collaboration of the

team. This tool is meant for business analysts, software analysts. It also facilitates

analyzing and designing object-oriented systems and databases.

2. StarUML

StarUML is an open-source software modeling tool, which is provided by MKLab.

It is a sophisticated software modeler aimed to support agile and concise modeling.

It has come up with eleven different types of modeling diagrams. It also supports

UML2.0 specified diagrams. If you use StarUML(tm), you can easily and quickly

design exact software models which is based on UML standard. It will guarantee to

maximize the productivity and quality because of generating numerous results

automatically from it (Documentation.help, 2022).

The key features of StarUML are (javatpoint, 2022):

- It let you create Object, Use case, Deployment, Sequence, Collaboration, Activity,

and Profile diagrams.

https://en.wikipedia.org/wiki/Application_software
https://en.wikipedia.org/wiki/Unified_Modeling_Language

58

- It is a UML 2.x standard compliant.

- It offers multiplatform support (MacOS, Windows, and Linux).

https://www.javatpoint.com/uml-tools

3.5.2 Matlab

MATLAB (matrix laboratory) is a numerical computing environment and fourth-

generation programming language. Developed by MathWorks, MATLAB allows

matrix manipulations, plotting of functions and data, implementation of algorithms,

creation of user interfaces, and interfacing with programs written in other languages,

including C, C++, Java, and Fortran. Matlab is a software package used primarily in

the field of engineering for signal processing, numerical data analysis, modeling,

programming, simulation, and computer graphic visualization (Dr. Ali Assi, 2011). It

can be very useful when applied in the model-based design of dynamic systems,

especially in the domain of power electronics systems (Dr. Ali Assi, 2011).

The authors in (Dr. Ali Assi, 2011) explain how MatLab/Simulink, with its

toolboxes, is well adapted to solve the issues of defining the design requirements, at

developing different components‘ models for the physical evolution processes and,

through the combination of various sub-systems, how it enables engineers to verify

that the overall performance satisfies the requirements.

The safety assessment model (Chapter 7) is interconnected with the system model

and potential attack and failure (risk) scenarios are described through the models. We

use the statechart models to describe the system design or the risk scenarios. And

then we use these statechart models to define the Markov chain corresponding to

each model (e.g. Fig. 8.15). These Markov models are then used in the mathematical

calculations in the assessment process, see Sec. 8.4.

After defining the Markov chains then it can be evaluated regarding the probabilities

that the system is in a certain state at time t. In this thesis we used the steady state

evaluation technique which calculates the probabilities for t → ∞. So the reliability

and safety can be calculated by summing up the probabilities of the reliable

respective safe states. One of the possible methods to do the analysis for both the

59

transient and the steady state is Monte Carlo (Dabrowski and Hunt, 2011). In this

thesis we used the normal mathematical calculation of the steady state. So the results

are not exact even with using Monte Carlo simulation since the accuracy depends on

the number of simulation runs.

In this work we use Matlab in the following situations:

 Perform the simulation processes

Matlab can be used to perform the simulation processes that are partial step of the

evaluation process. The evaluation process is one of the critical steps in our proposed

design method for the software product line architectures (Chapter 4).

The critical point of the assessment solution proposed in this thesis is the method of

defining or estimating the transition probabilities between the states in the Markov

model. So we proposed a derived technique extracted from the previous works

(Varshosaz and Khosravi, 2013) and (Dabrowski and Hunt, 2011) called (Maximum

Likelihood Estimation for Markov Chains (MLE)). The following lines conclude the

idea:

By using simulation technique, execute the Markov model for a period of time.

And then we observe the execution to compute the number of transition between the

states. State transition probabilities were derived as follows. Given states si, sj, i,j=

1…n where n= the number of the system states, pij, is the probability of transitioning

from state i to state j, written as si →sj. This probability is estimated by calculating

the frequency of si→sj, or fij, and dividing by the sum of the frequencies of si to all

other states sk, as shown in equation (2), Chapter 7. Finally, we use the equation to

calculate the transition probabilities on the Markov chain.

 Conducting the mathematical Calculations

Conduct the calculation processes of the safety assessment process using

mathematical methods upon the resulted Markov model. This step includes creation

of the Transition Probability Matrix for each Markov model. When the transition

probability matrix p is created, other Markov processes are used like steady state

operation. Finally we calculate the probability of each state for the system states

60

before and after using the proposed design pattern. And finally we will observe the

calculation results and then write the assessment results.

3.5.3 MS Excel

Among the computer programs which exist, Microsoft Excel is one of the most

important because of the key role it plays in many sectors (Training.org, 2021).

Excel is a spreadsheet program from Microsoft and a component of its Office

product group for business applications. Microsoft Excel enables users to format,

organize and calculate data in a spreadsheet (TechTarget, 2021).

By organizing data using software like Excel, data analysts and other users can

make information easier to view as data is added or changed (TechTarget, 2021).

Microsoft Excel provides a grid interface to organize nearly any type of information.

The power of Excel lies in its flexibility to define the layout and structure of the

information you want to manage (Opengatesw.net, 2021).

Major uses for Excel are:

 to create budgets.

 to produce graphs and charts.

 Excel uses a large collection of cells formatted to organize and manipulate

data and solve mathematical functions.

 Within business spreadsheet software is used to forecast future

performance, calculate tax, completing basic payroll, producing charts and

calculating revenues

 graphing, this package plays a very important role in graphing as it has the

ability to produce a variety of different charts, which may be used

to represent statistical data in more visual way.

 Predictions / Simulations

 Statistical analysis

 Explore and interpret data in order to draw conclusions for business

61

3.5.4 Academic and Scientific Writing Tools

3.5.4.1 Microsoft Word

One of the most widely used programs of Microsoft Office suite, MS Word is a

word processor developed by Microsoft.

Microsoft Word is a power tool to create research and scientific documents. Many

academics and scientists use Microsoft Word to write up their research and prepare it

for publication in books, scholarly journals and online. Certainly the program is an

excellent tool for authors (Tetzner, 2021).

3.5.4.2 References Management- Mendeley

Mendeley is a reference manager and academic social network that can help us

organize our documents and references. It provides the free references manager for

our publishing requirements.

Mendeley is free academic software that is available on all major platforms and in all

modern browsers. This point means it can be used on Mac, PC, or in Linux.

Mendeley offers us a desktop application that we run on our computer, a web library

for when we are not at our own computer, and an iOS application, so (we can work

on the go).

Mendeley helps us collaborate with our fellow researchers online by joining and

working together in groups. It can provide us with readership statistics and

recommendations. Using Mendeley allows you to collect, manage, store, share and

use research papers and articles, as well as generate bibliographies in the citation

style of your choice. It can be used with MS Word to add citations as you type as

well as compile a reference list at the end of your assignment (Canterbury Christ

Church University, 2019).

62

3.6 Brief Description of the Case Studies

We have motivated our work with the help of two case studies. These two case

studies are presented to illustrate how all this work can improve the safety design of

the SPLAs. In Chapter 8 and in order to show the applicability of our work the

developed safety and security design pattern (Sec. 6.4) is applied on the design

process of two software product line architectures, a simplified Automated

Electromechanical Braking Systems product line and the Smart Microwave Oven

Control Systems Software Product Line. Using our proposed safety and security

pattern require developing a statechart to specify the entity's behavior without safety

and security violation. Therefore, it is efficient to use a state-based architectural

design approach in the overall SPLAs design lifecycle. For that the state-driven

architecture design method for safety–critical software product lines (Sec. 4.4) is

used in the architectural design process of these two SPLs. As we mentioned in the

lines above that the two examples of the two case studies are presented to illustrate

how this work can improve the safety design of the SPLAs.

Furthermore, to evaluate our work, a simplified safety assessment model proposed

in Chapter 7 is applied on the running examples. The results show that by using our

proposed design method and after using the proposed safety and security design

pattern we can achieve a considerable improvement in the system safety design.

63

4.1 Introduction

Some of the content in this Chapter has been presented at 1st International

Conference on Engineering and Applied Sciences, ICEAS2017,Red See, Sudan, and

published at the Sea University Journal of Basic and Applied Science, 2(1) (Mozamil

Ebnauf and Hany H. Ammar, 2017). And the contents of the two sections (Section

4.4 and 4.5 has been presented at

7th IEEE International Conference on Mechatronics Engineering, ICOM2019,

Putrajaya, Malaysia (Ebnauf and Al., 2019).

This chapter introduces the proposed method for safety-driven software product

line architecture design (SSPLA). This comprehensive method to the architectural

design process of software product line systems is focusing on cyber-physical and

embedded systems in safety-critical applications. The key aspect of this method is

the use of the concept design patterns which improves the design process. In Chapter

5 we present our proposed safety-driven design pattern.

A modification to the traditional SPL architecture design method is proposed with

the use of the statechart patterns and safety-based design concepts. In the other

words, the method has been adapted to be a state-driven method. This adaptation

means that most or all process steps should be based on or around the statechart

semantic.

The remainder of this chapter is organized into four main sections. Section 4.2

describes some important topics related to the software architecture design. Section

4.2.1 shows the importance of safety-based design. A short overview of some

C

H
A

P
T

E
R

 I
V

ARCHITECTURAL DESIGN FOR SAFETY-CRITICAL SPLs

64

existing works in the field of software architecture design with a comparison

between some of the more related works is presented in Section 4.2.2. Section 4.2.3

gives a brief overview of software product line architecture design methods. Section

4.2.4 describes the basic idea of safety pattern for product line. A detailed overview

of the proposed Safety-driven Software Product Line Architecture Design Method

(SSPLA) and its process steps with the interpretation of each step is presented in

Section 4.3. Section 4.4 shows how the aforementioned safety-driven software

product line architecture design method can be adapted to be statechart-centric

architectural design method which is called "State-driven Architectural Design

Method for Software Product Lines SAD". The idea of how to address the

variability in the statechart is explained in Section 4.5. Section 4.6 shows a simple,

illustrative example to explain how the process steps of the proposed method has

been implemented. Finally, Section 4.7 summarizes the chapter.

4.2 Overview of Software Architecture Design

Software architecture is the structure of the software system. It describes the

software elements, their characteristics and their interactions with each other (Len

Bass and Paul Clements and Rick Kazman, 2003; Systems, 2000). Qualified software

architecture provides a blueprint for system construction and composition. It is a

main factor to a successful software development (L Tan, Lin and Ye, 2012).

Software architecture design is a critical step of software development. There are

many challenges in software architecture design for example, modeling the non-

functional requirements, especially those requirements on the quality of the software.

Non-functional requirements and quality attributes are important parameters of

software products. Quality requirements of a system serve as a bridge between

business goals and software architectures (L Tan, Lin and Ye, 2012).

4.2.1 Safety-based Architecture Design

The safety attribute is one of the important quality attributes. There are increasing

in the attention of software safety, so how to improve software safety has already

become a more important concerned issue, especially for the safety-critical systems

65

(Capilla et al., 2014). Software safety assurance refers to a series of quality assurance

activities during software development life cycle, which aims to eliminate the

potential dangers. Currently, the influence of architecture in assurance of software

safety is being increasingly recognized (Capilla et al., 2014). Safety-based design at

architecture level can effectively improve software or system safety.

4.2.2 A Comparison between Some of the More Related Works

There are a number of architectural design approaches or methods each one

focuses on a specific perspective of the architecture design. Some of them are to

design the architecture of single software where others for product line (M.Sharafi,

2013). In the other side, some of them do not address the quality attributes in the

architecture and others address the single or multiple quality attributes (quality-

oriented methods). Especially, quality-based methods have received a lot of

attentions and have been well developed for single system architecture design.

However, the use of quality-based design methods is limited in software product line

(SPL) because of the complexity and variabilities existing in SPL architecture (Lei

Tan, Lin and Ye, 2012) (Lei Tan, Lin and Ye, 2012). Our work is related to

contributions from several other areas mainly architecture design, product line

architecture and safety engineering. In the following table (Table 4.1) we will show

in a briefly way the much related works which we built our method base on them.

The summarized table presents some information about the works as well as

advantages and limitations of each. Note that our method is mainly based on the

work (Huang, 2013; Bayer, Flege and Gacek, 2000; M.Sharafi, 2013; Liu, Dehlinger

and Lutz, 2007; Pinzger et al., 2004; Jensen and Tumer, 2013), also the works

(Yacoub, 1998) and (Rauhamäki, Vepsäläinen and Kuikka, 2012) considered as a

basic for the next works of our research (e.g. developing a safety-oriented

architectural pattern(s) for the SPLAs).

Our proposed process presented in this chapter is a safety-driven software product

line architecture design method; the following points are the differences of this

method in comparison with the other existing methods:

66

- In this method, the safety attribute of a software product line system will be

taken into account in the early stage of architecture design and the reference

architecture of SPL will be elicited based on safety-related consideration.

- The key aspect of this method is the using of the architectural patterns which are

safety-driven architectural patterns to improve the design process of the software

product line architectures.

Table 4.1: A comparison table between the more related works

REF DATE ADV+ LIMITATION

(Huang,

2013)

2013 - uses the selected combination of

safety tactics to effectively improve

the software or system safety,

- providing a new way of thinking

for software safety architecture

design.

the weakness of this work is not take

into account the family of architecture

(Bayer,

Flege and

Gacek,

2000)

2000 - It iss an integrated, iterative, and

quality-centered method for the

design and assessment of product

family.

- It is covers the whole product

family development life cycle and

can be introduced incrementally

It is difficult and time consuming.

Also the approach considers multi

quality attributes not focuses on

specific one (e.g. the safety attribute)

 (Pinzger et

al., 2004)

2004 Easy method - The architecture of all the existing

products is reconstructed before the
beginning of the reference architecture

design, which requires considerable

time and effort.

- Don‘t address any quality attribute

(M.Sharafi,
2013)

2000 Saves time, effort and also helps
product family architect to evaluate

the architecture easily.

Not addressing the safety attribute as a
key factor in the design process

(Liu,

Dehlinger
and Lutz,

2007)

2007 - More practical to check that

safety properties for the product
line hold in the presence of

variations through scenario-guided

execution, or animation, of the

model.

- allows safety engineers to

discover faults early enough to

design mitigation strategies before
implementation and deployment.

Just technique to the safety analysis.

67

(Jensen

and Tumer,

2013)

2013 They presented a process of

concurrently developing a system

concept from the safety and

functional perspective.

the weakness of this work is not take

into account the family of architecture

(Armoush,

2010)

2010 It is a good approach for the

adoption of the design pattern

concept for safety-critical

embedded systems design.

It is just addresses the single

architecture

(Yacoub,

1998)

1998 Using sate-based modeling

(statecharts) which is a good way

to address the safety attribute.

It is just addresses the single

architecture

4.2.3 Safety-based Software Product line Architecture Design Methods

Software Product Line (SPL) engineering is about developing a collection of

systems which share great commonalities ((L Tan, Lin and Ye, 2012; Bosch, 2000)

and (Pleuss et al., 2012)). (Liliana Dobrica, Eila Niemela, 2003; Liliana Dobrica,

2000). Product-line (PL) and reusable software components are suitable approaches

for embedded systems, which are often re-engineered from existing systems.

Developing a reference architecture which represents the base structure of the

member products is the main task of the software product line architecture design

(Engström and Runeson, 2011). The software product line architecture (SPLA) (L

Tan, Lin and Ye, 2012) provides a coarse grain picture of structure in the software

product family. It initiates the architecture design for the member product. Important

issues in the development and maintenance of these software systems are

functionality and quality. As product-line engineering becomes more widespread,

more safety-critical software product lines are being built (Feng and Lutz, 2005).

On the other hand, there are various design methods available and each is

focusing on certain perspectives of architecture design. Safety-based methods have

received increasing attention and have been well developed for single system

architecture designs. However, the safety-based design methods are limited in SPLs

because of the complexity and variabilities existing in SPL architectures.

There are two main questions we can address:

RQ1: Why the traditional quality-oriented architectural design methods (for single

software) are not sufficient?

68

RQ2: How can we efficiently design safety-based product line architectures?

Based on the above, one of the main objectives of this research is to develop

efficient and effective method that can be used into the design process of the safety-

driven software product line architectures which enhances and manages the safety of

software product line. This method characterizes the safety attribute as a central

attribute in the design and captures the architectural patterns that are used to achieve

this attribute.

4.2.4 Safety Patterns for product lines

Design patterns are popular in the field of software engineering and there are

plenty of patterns. Contradictorily, in the field of safety engineering patterns have not

been studied and published in such volumes (Rauhamäki, Vepsäläinen and Kuikka,

2012). And unfortunately, it is a complex task to build safe systems (Rehn, 2009).

For safety the problem seems to be not that severe because fewer non-experts write

software for safety-critical systems. But nevertheless building safe systems is

evidently a complex task, too. In software-engineering reuse is a major means of

reducing development effort and increasing quality by using existing solutions that

are known to be well engineered. At the software architecture level this is done by

so-called patterns and tactics (Rehn, 2009).

A statechart is an alternative means of system specification. This specification

methodology is particularly oriented to ―reactive systems‖ — that is, systems that

respond to a series of events rather than transforming an input into an output (Niaz

and Tanaka, 2003). Such systems may incorporate concurrent processing, and

statecharts encompass this capability. The OO methodologies using statecharts

describe in sufficient detail the steps to be followed for describing the behavior of

objects (Niaz and Tanaka, 2003). In most OO methodologies, when people think of

object behavior, they consider the functionality of the object. But in many real world

applications this definition is insufficient — the internal state of an object and the

quality attributes should also be considered (e.g. the safety in safety-critical systems).

In other words, because the Unified Modeling Language (UML) statechart diagram

is a powerful tool for specifying the dynamic behavior of reactive objects, we can use

this facility to describe the system behavior in term of safety.

69

In this research we have developed a new Safety-driven design pattern (SDP).

This pattern extends capabilities of both the statecharts design patterns and safety

patterns. This pattern allows an object to alter its behavior and change its internal

state when there is a safety violation, and to protect it from introducing in unsafe

states. In this pattern we show how to solve recurring design problems in

implementing safety-based statechart specification of an entity in object-oriented

application mainly safety-critical applications.

This pattern is presented in more details in Chapter 5. In chapter 6 the assessment

of this pattern is conducted by using a new safety assessment method to show the

safety improvement after using this pattern. Then and because this pattern is for

single software architecture we extended and adapted this pattern to be software

product line design pattern and that in order to address the variability existing in the

product line, See chapter 7.

4.3 The Proposed Safety-driven SPLA Design Method

In this research we have developed a new method to safety-driven software

product line architectures design process (SSPLA). This method characterizes the

safety attribute as a central attribute in the design and captures the architectural

patterns that are used to achieve this attribute. The proposed process of our new

method for safety-driven software product line architecture design is shown in Figure

4.1, which take a snapshot for the suggested method. The output of this method is a

safety software product line architecture. Note that our method is based on a number

of previous approaches or methods (Huang, 2013; Bayer, Flege and Gacek, 2000;

M.Sharafi, 2013; Liu, Dehlinger and Lutz, 2007; Pinzger et al., 2004; Jensen and

Tumer, 2013) in context of architectures design in general, product line architecture

design, safety-based design, and etc. In the following subsection we will describe the

steps of the proposed process in our method.

4.3.1 The Method Process

Because this process is a safety-driven development, the most process operations

or steps are based on the safety attribute. For instance, define test cases based on the

70

safety attribute, select a safety-driven architectural pattern(s), evaluate the

architecture if met the safety requirements or not.

The architecture is created in a number of iterations by stepwise application of

scenarios and by using proven solutions to recurring problems such as architectural

patterns. Iterations are performed until all scenarios have been applied and no

problems arose from the final assessment of the architecture. The input is a domain

model and a scope definition, where the former defines the business case for the

development of the product line and the latter describes commonalities and variations

of applications within the product line. The Output of SSPLA is a safety product line

architecture as defined in the introduction. Basis for the development of architecture

are a prioritized list of business goals, functional and quality requirements

(specifically, the safety). In the context of product families, the commonalities and

variabilities among those goals and requirements also have to be known. Designing

architectures requires software architecture experts to study a system and an active

involvement of stakeholder representatives, such as testers, developers, manager, the

business owning the system, and system users. The process steps are described in the

following subsection.

4.3.2 The Process Steps

This method is based on a hierarchical system model. It is a process for creation

and evaluation of product line architectures. The inputs of this process are the

requirements or requirement specifications. It will be possible to define two types of

the general requirements which are the domain model and scope definition. In

general, we can say that the inputs of the process are domain model and scope

definition of the product line.

Domain Model. Define the main requirements of the specific applications domain

or family of products. And it is a requirements model. The system requirements are

defined based on customer needs and or through development perspective from the

developers. The requirements model is used to define the scenarios (scenarios of

usages). So to build any architecture we must have a domain model which often

created by modeling tools or languages (e.g. Use case model or Unified Modeling

71

Language). Example of domain model is a features model, it is an important

modeling view for product line engineering because it addresses SPL variability.

The domain model is a domain model of a product line consists of two elements:

1) generic workproducts, for instance, products that describe the requirements in

terms of common, variable features, like (the feature models).

2) Decision model, it is address the variability in the product line by determine the

open decisions and possible solutions. In the other side, the domain decision

determines the decisions about the common, variable features, non-functional

requirements and etc. which must take into account. We should define the features

structures that must select which define the features model, some of the structures

can be right and others are not. Sometimes, the decisions is determine based on

development view of the expected system and customer requirements.

Scope Definition. Define the commonality and variability of the deferent

applications in product line. There are internal variable features between the

components of the applications itself (Internal Variabilities) and others are variability

features with respect to the environment (External Variabilities). So, some

variabilities may be produced in the product line due to the differences in the

environment, internal or external variabilites must be defined. Scope definition

concerned with the process that searches to determine which of the system functions

are essential in product line and which are optional. The scope shows the

organization for the types of the developed products and for the others that will

developed in future. The inputs for producing the scopes are come from

organizational strategic plans, market staff and analysis and technology experts in the

domain. The product scope is one of the main factors to determine the success to the

product line. The major problem to define the scope is the definition of the similarity

in the systems which decreases the development cost of the system for the

organization.

Each step of the design process is briefly described in the following lines.

72

Figure 4.1: An overview of our proposed method (SSPLA)

domain model

 safety requirements elicitation and analysis

create scenarios

generic workproducts

domain decision model scope definition

generic scenarios

group and sort scenarios

architecture creation plan define safety-related test cases

architecture evaluation plan apply scenarios to select safety-

driven architectural pattern

elaborate architecture

 evaluate architecture architecture

ok?

 Analyze

 problem

No Yes

architecture finished

backtrack

iterate

backtrack

safety requirments

 Rank scenarios based on safety analysis

ranked scenarios based on safety

safety design pattern

1

Architecture

description

Architecture

decision model

Architecture

prototype

architecture

2

5

4

3

6

7

8

9

Legend

Process Product
Decision Control

Flow

Product/

Consume

Optional

Product

73

Step 1: Safety requirements elicitation and analysis

This stage is one of the important stages in the process and all the next stages are

depend on the success of this stage. The elicitation and analysis of the safety

requirements for the product line is doing here. So, this step is to analyze the

software requirement belong to one layer, and then according to the requirements

specification, we should elicit functional requirements and safety requirements.

However, not all the safety requirements can be individually extracted as some of

them are often reflected in the functional requirements. There are many safety

analysis methods or approaches in SPL domain (e.g. (Feng and Lutz, 2005) (Liu,

Dehlinger and Lutz, 2007)). We can select a suitable and success analysis method

from the available methods for safety analysis in product line domain. From product

line point of view the safety requirements analysis is the commonality and

variability, that means there is a commonalities and variabilities in the requirements

of the safety attribute. For example the applications in product line share in some

safety requirements (e.g. safety tactics or mechanisms) and differ in other. After

completion of this step, the safety requirements of the software product line will have

accomplished. And then go to the next stage (Step 2).

Step 2: Create Scenarios

As we mentioned above, that this process is a scenario-oriented process, so the

architecture is created in iteration manner, by take the scenarios and then ranked and

making it in a sorted groups (step 3 and 4 respectively).

The second step in the architecture creation is to determine the most important

requirements. The input for this step would be a product line model consisting of

generic workproducts (i.e., products describing requirements in terms of

commonalities and variabilities) and a decision model, in addition to safety

requirements. Now, the problem is analyzed, we should determine the architectural

information required to solve the problem and the way to derive this information

(Here the architecture information is driven by safety attribute).

We need to extract a limited number of scenarios that should be used in iterations.

Indeed, the scenarios describe the functional and safety requirements of the product

family the architecture is designed for. In the context of product families, scenarios

74

are generic that they do not only capture common but also variable requirements of

the instances in the product family.

Step 3: Rank scenarios based on safety analysis

This step is to determine which scenarios are important than others based on

safety requirements. By doing safety-based analysis of the scenarios we can rank the

scenarios using any ranking technique. Prioritizing scenarios should follow a simple

and basic rule: the bigger the impact of a scenario on the architecture safety, the

higher the scenario‘s priority.

The next step is based on this step and that to group and sort the scenarios. Note

that, sorting based on safety requirements - the scenarios which have more critical in

term of safety than others. The output of this step is ranked scenarios, based on safety

hazard.

Step 4: Group and sort scenarios

Note that, the order in which scenarios are addressed in the previous step is very

important, those scenarios that are considered to have the highest significance for the

architecture should be selected for the first iteration. In the next iteration, the second

most important group is selected and so forth. This step yields the architecture

creation plan that defines the iterations in which the architecture development is

performed. The first iteration deals with the most important group of scenarios, the

second one with the second most important group and so forth. The judgment of a

scenario‘s importance cannot be based on its expected impact on the architecture

alone, but mainly based on a safety. The sorting in which the scenarios addressed is

very important, that because all the decisions of the iterations design impose

constraints on the architecture which determine its next development. Resulted

architecture creation plan from this step used to begin the creation of the architecture,

and then over time we develop it and add other components or sub components of the

other set of scenarios.

And then go to the next two steps (step 5 and 6) where often are executed

concurrently, that means define an evaluation plan or method for any resulted

architecture in each iteration.

Step 5: Define safety-related test cases

75

In case an architecture assessment (or evaluation) should be performed at the end

of the iteration, assessment (or evaluation) criteria have to be defined according to

the business and quality goals. Defining assessment criteria before the actual design

begins has several advantages such as a better understanding of the requirements and

avoidance of specifying criteria that, due to an already influenced perspective,

merely support what has been developed. For each group of scenarios, test cases are

defined that will be used to evaluate the architecture at the end of each iteration.

Here, the main assessment criterion, quality goal is the safety attribute. This safety

attribute play a central, critical role for the appropriateness of reference architecture.

Define test cases is based on safety. However, it is extremely difficult to assess the

degree to which this attribute is achieved by a given architecture.

Often the test cases are define early that because we need creating a document as a

plan to asses or evaluate the architecture. The output of this step is a definition of

architecture evaluation plan. This plan is used to evaluate the architecture in the end

of the each iteration and in the last evolution of the architecture.

Step 6: Apply scenarios to select safety-driven architectural pattern

Scenarios based on their priorities are entered into the design cycle. In this step

and based on the sorted scenarios we need to select appropriate safety-driven

architectural pattern(s) that based on safety analysis. In other words, we should select

an architectural pattern(s) which suit each scenario. And defining the decision model

which includes the architectural decisions about the determination of the scenarios

and the architectural patterns, for instance what are the selection criteria of the

architectural pattern. Note that the main criterion is the safety. Note that one of the

main contributions of our research is a developing of a safety-based architectural

pattern (s), (see Chapter 5 and 6).

Step 7: Elaborate architecture

The group of scenarios associated with the current iteration and by using the

selected architectural pattern(s) in the previous step is used to create the initial

architecture, refine/extend an already existing or partial architecture. In this step, the

architecture's elements or components and their relationships are defined, that for the

selected group of scenarios. That result in either an initial architecture (initial

architectural product) or a part of the architecture in the other iterations, or

76

improvement to the architecture. This process is continues until the completion of the

architecture. In addition, this step consists in each iteration an architecture

descriptions (all or part) and architectural decision model. The decision model

includes the architectural decision about the definition and selection of resulted

architecture.

Step 8: Evaluate architecture

In general, the given architecture is checked with respect to functional and quality

requirements and the achievement of business goals. In this step, the architecture

resulting from the previous step is evaluated according to the architecture evaluation

plan which is based on safety. Evaluating architecture is based on test cases which

based on the safety (Checking, if the safety requirements are met or not). If the

evaluation is successful (i.e., all tests are passed), the architecture development

continues with the next iteration or is finished once the last group of scenarios has

been applied. If, however, at least some tests failed, the process continues with step 9

―Analyze Problem‖ then go back to do another iteration. The ease of deriving

instance from the product line system is necessary and also refers to the efficiency of

the architecture. So, the ease of the derivation must also be evaluated. In the other

side, the evaluation process for the optimization of the architecture is hard because

we need the optimization for all the products derived from the product line

architecture. According to above, we can distinct three cases might be happened in

the evaluation:

1. The architecture is ok. There are no problems in the resulted architecture. In

this case a simple iteration is happens for taking another scenarios to add components

or elements to the architecture which it started actually. Then go to step 6.

2. The evaluation shows that there is a need to improve the architecture, so we

can go to step 6 too. This to repeat the architecture building process and then it could

evaluate again.

3. There is a problem(s) in the resulted architecture. In this case the problem(s)

will be analyzed in (step 9).

Step 9: Analyze problem

At least one of the tests for evaluating the current architecture failed. This step is

to analyze the architectural problem that emerged. Examples of the problems are: the

77

problem in the attributes conflict or the required quality. But the main problem is the

achieved level of safety attribute. In this step, the underlying problem is examined in

order to determine how the architecture development process can be continued. The

examination focuses on whether the current group of scenarios could be applied

successfully to the architecture that resulted from the previous iterations. If this is

deemed to be the case, only the current iteration needs to be reiterated. Otherwise,

some design decisions from an earlier iteration are presumed to impose constraints

that are too stringent for the current set of scenarios. Therefore, extended

backtracking is needed, which may include reformulating, regrouping, and

reordering of some scenarios and then reentering the process in the appropriate

iteration. we can need going to the step 6 in case the problem is in the using or

applying of the scenarios or in building of the architecture, or requiring to come back

to step 4 if there is a possibility that there is a problem in the scenarios itself, or

needing for some modifications in it.

4.4 State-driven Architecture Design for Safety-critical SPLs

As the Unified Modeling Language (UML) statechart diagram is a powerful tool

for specifying the dynamic behavior of reactive objects, we can use this facility to

describe the system behavior in term of safety.

In the previous section (Section 4.3) we describe our proposed safety-driven SPL

architecture design method. In this method process the architecture is created in a

number of iterations by stepwise application of scenarios and by using proven

solutions to recurring problems such as architectural patterns. The output of this

method is SPL architecture. Because this process is a safety-driven development, the

most process operations or steps are based on safety attribute. This method is

considered a generic safety-oriented software product lines architectures design

method.

Since our work searches to define an effective and efficient method to enhance the

development of the safety-critical software product lines the mentioned method has

been adapted to be a statechart-centric method; which means most of method steps

should be based on or around the statechart semantics.

78

For example: in step 1 we use the system statechart model to elicit and analysis

the safety; in step 2 create the scenarios from the statechart; Also in step 6 and in the

architecture elaboration step we can select safety-driven statechart pattern. And

finally the architecture analysis and evaluation step can also be based on the

statechart design model.

This resulted method is called State-driven Architectural Design for Software

Product Lines.

In this context and in term of using architectural pattern, we present in Chapter 5 a

proposed safety pattern of statechart. This pattern extends capabilities of both the

statecharts design patterns and safety patterns. The pattern allows an object to alter

its behavior and change its internal state when there is a safety violation, and to

protect it from introducing in unsafe states. The critical aspect of the pattern is the

ability to capture the dynamic nature of the safety attribute. By this pattern we can

monitor and control the safety of the system in each state.

The critical issue of using the statechart modeling for the software product line is

how to address the variability (Gomaa, 2011). This issue is addressed in some works

(see (Gomaa, 2011)) and it is presented in Section 4.5 bellow.

4.5 Addressing the variability of the SPLs in the statechart.

As we mentioned above, that the critical issue of using the statechart modeling for

the software product line is how to address the variability (Gomaa, 2011). This issue

is addressed in some works, e.g. (Gomaa, 2011). We will give a brief overview

about it in this section.

The works in (Gomaa, 2011) (Gomaa, 2004) show that there are two main

approaches we can used when variable classes are developed, specialization or

parameterization. In the case when there are small number of changes to be made

then we can select specialization as we can manage the specialized classes (Gomaa,

2011) (Gomaa, 2004).

Based on these works and because the complexities exist in the PL we also

propose using of parameterization approach. It is obvious that it is more effective to

design a parameterized state machine, in which there are feature-dependent states,

events, and transitions. Optional state transitions are specified by having an event

79

qualified by a Boolean feature condition, which guards entry into the state. Optional

actions are also guarded by a Boolean feature condition, which is set to true if the

feature is selected and false if the feature is not selected for a given SPL member, for

more detail see reference (Gomaa, 2011)Gomaa, 2004).

4.6 Illustrative Example

This section present a simple application example to briefly show how to use our

architectural design method.

In the other words, in order to illustrate our method for designing the software

product line architectures, we use the Door Control Product Line System for a Smart

Home. This is done to give a more comprehensive presentation of how the method

can be used. We would like to point out that our example data have been taken from

the (Feng and Lutz, 2005), ―Qian Feng, Robyn R. Lutz, Bi-Directional Safety

Analysis of Product Lines, 2005".

We have summarized the example by getting a general description for how to

apply our methodology in a real system.

The Door Control System is a safety-critical product line. The software must

function correctly to prevent intruders from entering and must respond correctly to

life-threatening scenarios such as fires. A Smart Home system serves as an invisible

housekeeper: it has sensors and agents to interact with humans and the environment

to offer people convenience and safety. For example, the entrance doors can be

opened only by inputting fingerprints or voiceprints. We restrict our discussion in

this example to the Door Control System software product line with three products: a

FrontDoor, a BedRoomDoor, and a SecurityDoor. This system does not address

some of the more complex door features, such as maintenance modes, but is rich

enough to be interesting.

4.6.1 The Process inputs:

As we mentioned in section 3.1, that the input of our method are the requirements

or requirement specifications. It will be possible to define two types of the general

requirements which are the domain model and scope definition. In general, we can

80

say the inputs of the process are domain model and scope definition of the product

line.

4.6.1.1 General System Requirements

4.6.1.1.1 Commonality and Variability Analysis

The Commonality and Variability Analysis (CA) of a product line provides a

requirements specification for the product line. The CA consists of the terminology

used, the commonalities, the variabilities, and the dependencies among the

variabilities. The dependencies are constraints that the choice of one features places

on the choices of other features (Feng and Lutz, 2005). Note that we here exclude

any non-behavioral commonalities and variabilities to focus on the software. The CA

serves as a requirement specification for the product line and as an input to the

product line‘s architecture design.

In this section we show the use case model and features model.

 For single systems, use case modeling is the primary vehicle for describing

software functional requirements. For SPLs, feature modeling is an additional

important part of requirements modeling. The strength of feature modeling is in

differentiating between the functionality provided by the different family members of

the product line in terms of common functionality, optional functionality, and

alternative functionality (Gomaa, 2011).

4.6.1.1.2 Use Case Modeling for the Door Control SPL

For a single system, all use cases are required. In a SPL, only some of the use

cases, which are referred to as kernel use cases, are required by all members of the

family. Other use cases are optional, in that they are required by some but not all

members of the family. Some use cases might be alternatives to each other (i.e.,

different versions of the use case are required by different members of the family).

In UML, the use cases are labeled with the stereotype «kernel», «optional» or

«alternative» (Gomaa, 2011). In addition, variability can be inserted into a use case

through variation points, which specify locations in the use case where variability

can be introduced (Gomaa, 2011).

81

The main use cases are:

1. Registration: registering the users‘ ID to the Door Control system

(Commonality)

2. Entry: entering the house from the outside (Including recognition from outside,

opening the door, closing the door after the people pass, also including the illegal

entrant handling) (Commonalities)

3. Exit: exit the house from the inside (Including recognition from inside, opening

the door, closing the door after the people pass, also including the illegal going out

handling) (Commonalities)

4. Fire alarm: the door‘s response to the fire alarm (Commonality)

5. Bolt: lock door from inside (Variability)

The kernel and optional product line use cases for the Door Control SPL are given

in Figure 4.2.

Variation points are provided for both the kernel and optional use cases. One

variation point concerns the methods of registration: fingerprint or voiceprint.

FrontDoor: fingerprint; BedRoomDoor: voiceprint; SecurityDoor: fingerprint and

voiceprint. This variation point is of type mandatory alternative, which means that a

selection among the alternative choices must be made.

…………………………………………………………………………

Variation point in Identification use case:

Figure 4.2: Door Control Software product line use cases

82

Name: Type of Registration Method.

Type of functionality: Mandatory alternative.

Description of functionality: There is a choice of the type of method for

identification. The alternatives are: fingerprint, voiceprint, fingerprint and voiceprint.

4.6.1.1.3 Feature Modeling

Feature modeling is an important modeling view for product line engineering,

because it addresses SPL variability. Features are incorporated into UML in the

Product Line UML-based Software (PLUS) method using the meta-class concept, in

which features are modeled using the UML static modeling notation and given

stereotypes to differentiate between «common feature», «optional feature», and

«alternative feature» (Gomaa, 2011)(Gomaa, 2004).

The feature model for the Door Control SPL is shown in Figure 4.3.

<<common feature>>

Door Control System

<<optional feature>>

 Lock Door

Inside

<<optional feature>>
 Door Alarm

<<exactly one of feature>>

 People Registration and

Recognition

<<alternative feature>>

 Finger

<<alternative feature>>

 Voice

<<alternative feature>>

 Finger and Voice

<<one-or-more Group of feature>>
 Way to Open Door From

Inside

<<alternative

feature>>

Finger

<<alternative

feature>>

Voice

<<alternative feature>>

 Finger and Voice

<<one-or-more feature Group>>
 Response to the Fire

Alarm

<<alternative feature>>

 Open from Inside by Pushing

<<alternative feature>>

 Safe Open from

Outside

requires

requires

require

requires

requires

Figure 4.3: The Feature Model foe Door Control Software product line

83

4.6.1.2 Analysis Modeling for the Door Control SPL

As with single systems, analysis modeling consists of both static and dynamic

modeling. However, both modeling approaches need to address modeling SPL

variability.

4.6.1.3 Dynamic Modeling for the Door Control PL System-Using Statechart

Modeling

When variable classes are developed, there are two main approaches to consider,

specialization or parameterization (Gomaa, 2011). In product line development,

however, there can be a large degree of variability. Consider the issue of variability

in state-dependent control classes, which are modeling using state machines and

depicted on statecharts. To capture state machine variability and evolution, it is

necessary to specify optional states, events and state transitions, and actions. It is

often more effective to design a parameterized state machine, in which there are

feature-dependent states, events, and transitions. Optional state transitions are

specified by having an event qualified by a Boolean feature condition, which guards

entry into the state. Optional actions are also guarded by a Boolean feature condition,

which is set to True if the feature is selected and False if the feature is not selected

for a given SPL member See reference (Gomaa, 2011).

Figure 4.4 presents a part of the statechart specification for Door Control PL

which depicts seven states (Waiting for ID, Door Opening from outside, Door

Opening from inside, Door Opened, Door Closing, Door Closed, and Door Locked

Inside). Locking the door from inside is an optional door control feature. In the

statechart, Door locked is a feature-dependent state transition from Door Closed state

to Door Locked Inside state. This state transition is guarded by the feature condition

"an inside lock door button" which is True if the feature is selected.

84

All the data above (Sec. 4.6) are considered to be an input to our methodology.

Below, we describe how each step of the methodology is applied in the study.

The following lines describe in general how to apply the process steps of our

method for developing a product line architecture of a given system.

Waiting for ID

Entery/ insert ID

Door Opening

from outside

Door
Closing

Door Locked

Inside

Door

Opened

Door
Closed

D
o
o
r

lo
ck

ed
 [

L
o
ck

]

Entered IDs [IDs is ok] / open

door()

D
o
o
r o

p
e

n
e

d
 / S

ta
rt T

im
e
r to

 C
lo

s
e

D
o
o
r A

u
to

m
a

tic
a

lly

Door

Closed

Door Opening

from inside

After (Elapsed Time) [Closedown

Not Requested]

After (Elapsed Time)
[Closedown Not Requested]

Signal from Timer

to Close Door /
CloseDoor()

E
n
tered

 ID
 [ID

s is o
k
] / o

p
en

d
o
o
r()

S
ig

n
al fro

m
 T

im
er to

C
lo

se D
o
o
r /

C
lo

seD
o
o
r()

Figure 4.4: A part of the statechart specifications for Door Control PL System

85

In step 1: (Safety requirements elicitation and analysis) we can use any safety

analysis method(s) for product line to do the step of safety analysis in our method.

Here in this example we used the "Bi-Directional Safety Analysis of Product Lines"

proposed by [Qian Feng, Robyn R. Lutz] in (Feng and Lutz, 2005). It is a sufficient

methodology and a bi-directional in that it combines a forward analysis (from failure

modes to effects) with a backward analysis (from hazards to contributing causes).

This methodology of the software safety analysis uses the Extended Commonality and

Variability Analysis (XCA) and a hazards list to drive the bi-directional safety

analysis (Feng and Lutz, 2005). Findings from application of the bi-directional

safety-analysis method included new safety-related software requirements both for

all the systems in the product line (commonalities) and for only some of the product-

line systems (variabilities), as well as discovery of a new hazard, that people can be

pinned by the door.

Step 2, 3, and 4: Second we can summarize the works that have done in step 2, 3,

and 4 as follow:

Here and after the safety analysis in step1 we repeat the analysis process again in

order to create revised scenarios. And as we mentioned above, that this process is a

scenario-oriented process, so the architecture is created in iteration manner, by take

the scenarios and then ranked and making it in a sorted groups. Figure 4.5 can

present one of the final results for these steps. As we see, Figure 4.5 is a statechart

specification and a safety-oriented solution. That leads to the question "why we use

the statechart modeling?" The answer is "because we want to select a safety-driven

design pattern of statechart which enhances the safety in the software architecture".

Step 5: Define safety-related test cases: The test cases are defined early that

because we need creating a document as a plan to asses or evaluate the architecture.

The output of this step is a definition of architecture evaluation plan. This plan is

used to evaluate the architecture in the end of the each iteration and in the last

evolution of the architecture.

Step 6: Apply scenarios to select safety-driven architectural pattern:

In this system we selected a safety-driven architectural pattern. We used our new

proposed pattern see (section 5.3) which presented in Figure 5.2.

86

Step 7, 8, 9: After applying the steps 7, 8, and 9 the final architecture is produced.

Figure 4.6 shows an abstract view of the final architecture of the Door Control PL

which depicts it in an object-oriented design. Figure 4.7 shows an architecture of the

Door Control PL developed by traditional methods. The reader can compare between

this (the architecture in Figure 4.7) and the architecture developed by our method

(the architecture in Figure 4.6).

Figure 4.5: Abstract view of safety-driven statechart specification of the system

87

Entity_Interface

Astate

SimpleState

Entity_State

Entity_Ref

*
$ Entity_Ref : Entity_Interface *

Num_States : int

NextStates : AState**

$ Conditions

set_entity_state (New_State : AState*)

set_super_state (New_State : AState*)

entry ()

exit ()

Add (state : AState*)

VirtualState

*

NextState

Entity_State :

AState*

Event_Dispatcher

(Event)

UpdateState(New_
State : AState*)

IndependentStat
es : AState**

1

CurrentState

RootSuperState

IntermediateSuperState LeafState

1

Currentstate: AState*

MySuperState : AState*

CurrentState : AState*

 set_super_state (NewState :

AState*)

MySuperState : AState*

System_Operation

System_Safety_Operation

Action

Event

Failed ()

Repaired ()

Failed ()

Repaired ()

SafetyMonitoring

Failed ()

Repaired ()

entry ()

exit ()

ProcessingSafety

Operation

 Failed ()

Repaired ()

entry ()

exit ()

System_Functioning

Failed ()

Repaired ()

entry ()

exit ()

Operating

Failed ()

Repaired ()

FireAlarmOn

Failed ()

Repaired ()

entry ()

exit ()

Normal

Failed ()

Repaired ()

entry ()

exit ()

DoorAlarming

Failed ()

Repaired ()

entry ()

exit ()

Add (State :
AState*)

Figure 4.6: The architecture of the Door Control PL developed by our proposed method

88

4.7 Chapter Summary

As mentioned in the previous chapters that the main objective of this research is to

find an efficient and effective method that can be used into the design process of the

safety-critical software product line architectures which enhances and manages the

safety of the software product lines. In this chapter, a Safety-driven Architectural

Design Method for Safety-critical Software Product Line has been proposed. This

method characterizes the safety attribute as a central attribute in the design and

captures the architectural patterns that are used to achieve this attribute. The method

is based on a number of previous approaches or methods (Huang, 2013; Bayer, Flege

and Gacek, 2000; M.Sharafi, 2013; Liu, Dehlinger and Lutz, 2007; Pinzger et al.,

2004; Jensen and Tumer, 2013) in context of architectures design in general, product

line architecture design, safety-based design, and etc. A detailed overview of the

proposed Safety-driven Software Product Line Architecture Design Method

Figure 4.7: An architecture of the Door Control PL developed by

traditional method (Feng and Lutz, 2005)

89

(SSPLA) and its process steps as well as the interpretation of each step is also

presented in this chapter. The key aspect of this method is the use of the concept

design patterns which improves the design process. The next two chapters, Chapter 5

and 6, show the research contributions in the context of the design patterns. The

adaptation of the safety-driven SPLA design method to be a State-driven, Statechart-

centric Method has been also presented in this chapter. Finally, a simple application

example to briefly show how to use our architectural design method is also presented

in this chapter.

The implementation and evaluation processes to the overall research works are

described in Chapter 8.

90

5.1 Introduction

Some of the content in this Chapter has been presented at

7th IEEE International Conference on Mechatronics Engineering, ICOM2019,

Malaysia (Ebnauf and Al., 2019).

As mentioned in previous chapters that this research focuses on how to consider

safety in software product line at the architecture design phase. It searches to define

an effective and efficient method to enhance the development of safety-critical

product lines systems. The research proposed a safety-driven SPL architecture design

method, Chapter 4 (Sec. 4.3). And then this method has been configured and adapted

to be state-driven architecture design method, Chapter 4. The main idea is to make

this method a state-centric method, as described in Chapter 4 (Sec. 4.4). The key

aspect of this method is the use of the concept design patterns which improves the

design process.

In the other hand considering the design pattern paradigm, the research extends

the capabilities of both the traditional safety patterns and statechart design patterns to

develop safety-driven design pattern of statechart. This last point constitutes one of

the main contributions of this thesis. The contribution is to develop a safety pattern

based on the statechart which can be used to enhance the architectural design process

for the safety-critical software product lines.

C

H
A

P
T

E
R

 V

SAFETY PATTERN OF STATECHART FOR SPLAs

91

The developed safety design pattern—Safety-driven design pattern of statecharts

constitutes one of the essential parts of this research. The pattern allows an object to

alter its behavior and change its internal state when there is a safety violation, and to

protect it from introducing in unsafe states. The result is an object-oriented design

pattern which handles the safety attribute. The critical aspect of the pattern is the

ability to capture the dynamic nature of the safety attribute. By this pattern we can

monitor and control the safety of the system in each state.

To illustrate the effect of the design pattern in the PLA design, two case studies

are used as running examples, Chapter 8. In Chapter 7 the thesis describes a new

simplified safety assessment model which is used to evaluate the safety improvement

in the design of the SPLA after using the proposed safety design pattern, specifically,

the using the enhanced version of the pattern. As we will see in Chapter 8 that the

results show that there is a considerable improvement in the system safety design

after using the safety pattern.

The increased interactivity between cyber and physical systems and connectivity

lead to a new safety and security challenges. And as there is a tight interplay between

safety and security, combining safety and security in the engineering process for

cyber-physical system has become a critical process. Regarding this criticality with

the context of the safety patterns the research tried to enhance the proposed safety

pattern (s) and that by proposing a new pattern development approach.

This chapter introduces the proposed safety design pattern and Chapter 6

describes how to improve this safety pattern to address the influence of the security

issues on the safety. Chapter 6 also presents another version of the proposed safety

pattern of statechart which contains addressing of the security that causes safety risks

to the systems. The idea of how to extend the statechart pattern to capture the

variability in the software product lines is also described in this chapter.

The remainder of this chapter is organized into four main sections. Section 5.2

presents overview of the architectural design patterns. Section 5.3 describes the

proposed safety pattern of statechart. The section also describes the pattern

description and gives a brief overview of the idea of the statechart pattern extension

to capture the variability in the software product lines, Subsections 5.3.1 and 5.3.2

respectively. The chapter ends with a summary in Section 5.4.

92

5.2. Overview of the Architectural and Design Patterns

The pattern-based approach proposes patterns as a method of capturing expert

solutions to many common software problems (Jamal and Eric, 2003). Patterns help

you build on the collective experience of skilled software engineers (Buschmann and

Maunier, 2001).

From the software engineering point of view, a design pattern is a description or

template for how to solve a problem that can be used in many different situations

(Buschmann and Maunier, 2001). It is a general reusable solution to a commonly

occurring problem in software design. A design pattern is not a finished design that

can be transformed directly into code (Buschmann and Maunier, 2001).

A design pattern describes a design problem which repeatedly occurred in

previous designs, and then describes the core of the solution to that problem.

Solutions are expressed in terms of classes of objects and interfaces (object-

oriented design patterns).

Particularly, in the object-oriented community, patterns have been used as a

methodology to document the best practices and experiences of object-oriented

software systems (Hautamäki, 2005).

 Object-oriented design patterns typically show relationships and interactions

between classes or objects, without specifying the final application classes or objects

that are involved (wikibooks).

Every pattern deals with a specific, recurring problem in the design or

implementation of a software system (Buschmann and Maunier, 2001). Patterns can

be used to construct software architectures with specific properties (Buschmann and

Maunier, 2001).

Some Advantages of the design pattern:

 Design patterns can speed up the development process by providing tested,

proven development paradigms.

 Design pattern support the effective software design process by addressing

the issues which may not become visible until later in the implementation.

 Design patterns allow developers to communicate using well-known, well

understood names for software interactions.

93

 Reusing design patterns helps to prevent subtle issues that can cause major

problems.

 They capture existing, well-proven experience in software development

and help to promote good design practice (Buschmann and Maunier,

2001).

The pattern can simply be described as follow: "a pattern is a named

problem/solution pair that can be applied in new context, with advice on how to

apply it in novel situations and discussion of its trade-offs.", Frank Buschmann et al.

(Buschmann and Maunier, 2001).

Types of design patterns:

 Structural patterns address concerns related to the high level structure of

an application being developed.

 Computational patterns address concerns related to the identification of

key computations.

 Algorithm strategy patterns address concerns related to high level

strategies that describe how to exploit application characteristic on a

computation platform.

 Implementation strategy patterns address concerns related to the

realization of the source code to support how the program itself is

organized and the common data structures specific to parallel

programming.

 Execution patterns address concerns related to the support of the execution

of an application, including the strategies in executing streams of tasks and

building blocks to support the synchronization between tasks.

Frank Buschmann et al. in (Buschmann and Maunier, 2001), and in order to refine

the above classification, they have grouped patterns into three categories:

1. Architectural patterns

2. Design patterns

3. Idioms

Each category consists of patterns having a similar range of scale or abstraction.

The following sub sections present a summary of each category.

1. Architectural Patterns

94

The architectural patterns help in the architectural design process. Viable software

architectures are built according to some overall structuring principle. These

principles are described with architectural patterns.

Architectural patterns are templates for concrete software architectures. They

specify the system-wide structural properties of an application, and have an impact

on the architecture of its subsystems. The selection of an architectural pattern is

therefore a fundamental design decision when developing a software system.

Example:

The Model-View-Controller pattern is one of the best-known examples of an

architectural pattern. It provides a structure for interactive software systems.

2. Design Patterns

Design patterns are medium-scale patterns. They are smaller in scale than

architectural patterns, but tend to be independent of a particular programming

language or programming paradigm. The application of a design pattern has no effect

on the fundamental structure of a software system, but may have a strong influence

on the architecture of a subsystem.

Many design patterns provide structures for decomposing more complex services

or components. Others address the effective cooperation between them, such as the

following pattern: Observer (Gama, Helm, Johnson, 1995) or Publisher-Subscriber

(339).

"An architectural pattern expresses a fundamental structural organization

schema for software systems. It provides a set of predefined subsystems,

specifies their responsibilities, and includes rules and guidelines for

organizing the relationships between them.", Frank Buschmann et al.

(Buschmann and Maunier, 2001)

"A design pattern provides a scheme for refining the subsystems or

components of a software system, or the relationships between them. It

describes a commonly-recumng structure of communicating components that

solves a general design problem within a particular context [GHJV95],"

Frank Buschmann et al. (Buschmann and Maunier, 2001)

95

3. Idioms

Idioms deal with the implementation of particular design issues.

Patterns are normally not invented but discovered (Rauhamäki, Vepsäläinen and

Kuikka, 2012). Someone realizes that a recurring problem was solved the same way

several times. This already is the pattern, the recurring solution to the recurring

problem. It can then be named, formalized and documented in order to make reuse

possible (Rauhamäki, Vepsäläinen and Kuikka, 2012).

5.2.1 Pattern Composition

In general, most software systems cannot be structured according to a single

architectural pattern and they must support several system requirements that can only

be addressed by different architectural patterns (e.g. design for flexibility and

adaptability) (Buschmann and Maunier, 2001). Therefore, we must combine several

patterns to structure such systems. The selection of an architectural pattern, or a

combination of several, is only the first step when designing the architecture of a

software system (Buschmann and Maunier, 2001). Pattern composition has been

shown as a challenge to applying design patterns in real software systems (Hallstrom,

Soundarajan and Tyler, 1995).

5.2.1.1 Safety Patterns and Statechart Patterns

To the best of our knowledge, there are various pattern approaches in the context

of patterns composition, specifically at the architectural design level. In comparison

to our work, none of them approaches shows clearly the pattern composition process

to develop the patterns. Pattern composition is considered as a challenge.

In the other side of our work, the statechart patterns, MOODS is one well-known

work on Object-Oriented state machines which presents an alternative technique of

"An idiom is a low-level pattern specific to a programming language. An

idiom describes how to implement particular aspects of components or the

relationships between them using the features of the given language,"

Frank Buschmann et al. (Buschmann and Maunier, 2001)

96

selecting the most optimal design among different state machine patterns (Ran,

1995). Yacoub in (Yacoub, 1998) has attempted to combine multiple state machine

design patterns into a cohesive unit. His work is based on the concept of statecharts

developed by Harel. His work is considered as a first attempting in this context. In

(Adamczyk, 2003) The work shows how different design patterns solve different

problems given a specific context and a set of expectations (e.g. flexibility of design,

loose coupling between elements, performance, etc). The uniform format of

presentation aims to help software designers select the FSM (Finite State Machine)

most appropriate for their needs.

The object of the proposed design method (Sec. 4.3) is to enhance and manage the

safety of software product line. In the other hand, considering the design pattern

paradigm, our work search for extending the capabilities of both, the traditional

safety patterns and statechart design patterns to develop a new safety-driven design

pattern of statechart. The last point constitutes one of the essential parts of this work.

The developed safety design pattern—Safety-driven design pattern of statecharts

(Sec. 5.3) constitutes an essential part of this chapter. This pattern extends

capabilities of both the statecharts design patterns and safety patterns. The pattern

allows an object to alter its behavior and change its internal state when there is a

safety violation, and to protect it from introducing in unsafe states. The critical aspect

of the pattern is the ability to capture the dynamic nature of the safety attribute. By

this pattern we can monitor and control the safety of the system in each state.

5.2.1.2 Safety Pattern with Security Control

The modern systems cannot be reliable and safe if they are not secure. In the field

of control, safety and security engineering patterns have not been studied and

published in such volumes. In this context, the issue is how to effectively address the

influence of the security in the safety design process using patterns. A Pattern

Development Approach that interlinks safety and security patterns has been

proposed, Chapter 6 (Sec. 6.3). The approach is then used to enhance the proposed

safety design pattern of statechart described in this chapter that in order to address

the security in the pattern (see Sec. 6.4). This developed version is considered as a

new safety and security pattern.

97

5.2.2 Pattern-based SPLAs Development

Developing a reference architecture which represents the base structure of the

member products is the main task of the software product line architecture design

(Systems, 2000). It is evidence that a pattern based development of the reference

architecture can support the development and application process of product

lines(Philippow, 2003).

 5.3 Safety Design Pattern of Statechart- a Proposed Pattern

The design patterns concepts are important in the systems design process. They

are used to support and help designers and system architects choose a suitable

solution for a recurring design problem among available collection of successful

solutions (Jamal and Eric, 2003). Design patterns are popular in the field of software

engineering and there are several patterns. Contradictorily, in the field of safety

engineering patterns have not been studied and published in such volumes.

Therefore, we have now answered the call.

In the other hand the design pattern approach is widely used in object-oriented

software design. It defines reusable mechanisms for collaboration and interaction

among classes or among objects to solve common object-oriented problems in

different domains (Niaz and Tanaka, 2003). In this context there is several design

patterns have been proposed to implement statecharts.

Three major questions we can address here:

Q1: How can we develop an Object-oriented Design Pattern to address the safety

attribute in the system?

Q2: Why we should use the statecharts semantics in modeling safety-critical

software?

Q3: How the variability of product line addressed in the statechart?

This section presents a new design pattern — Safety-driven design pattern. This

pattern extends capabilities of both the Statecharts design patterns and Safety

patterns. This pattern allows an object to alter its behavior and change its internal

state when there is a safety violation, and to protect it from introducing in unsafe

states.

98

In this part, we show how to solve recurring design problems in implementing

safety-based statechart specification of an entity in an object-oriented application

mainly safety-critical application.

A statechart is an alternative means of system specification. This specification

methodology is particularly oriented to ―reactive systems‖ — that is, systems that

respond to a series of events rather than transforming an input into an output (Niaz

and Tanaka, 2003). Such systems may incorporate concurrent processing, and

statecharts encompass this capability. The OO methodologies using statecharts

describe in sufficient detail the steps to be followed for describing the behavior of

objects (Niaz and Tanaka, 2003). In most OO methodologies, when people think of

object behavior, they consider the functionality of the object. But in many real world

applications this definition is insufficient — the internal state of an object and the

quality attributes should also be considered (e.g. the safety in safety-critical systems).

In other words, because the Unified Modeling Language (UML) statechart diagram

is a powerful tool for specifying the dynamic behavior of reactive objects, we can use

this facility to describe the system behavior in term of safety.

Because it is very efficiency to address the safety of the system considering the

changing of the system from a state to another state, so we can monitor and control

the safety of the system in each state. Also the dynamic modeling – in the same time

we can model the system with dynamic modeling. Many systems, such as real-time

systems, are highly state-dependent; that is, their actions depend not only on their

inputs but also on what has previously happened in the system.

We have developed a new safety-driven design pattern. This work on safety

pattern presented in this thesis is based on the works in (Yacoub, 1998; Armoush,

2010; Gomaa, 2011).

This design pattern support the design process in context of software architectures

considering one of the software quality attribute which is safety attribute. This

pattern extends capabilities of statechart design patterns to include the quality

attribute (Safety). This pattern addresses the safety in the behavior of the objects to

improve the safety of applications. The main idea of this new pattern is combining

the concepts of the traditional safety patterns with the concepts of statechart patterns.

The result is a new object-oriented design pattern which handles the safety attribute.

99

There are several benefits of this pattern, for example: the ability of this pattern to

capture the dynamic nature of the safety attribute, so, by this pattern we can monitor

and control the safety of the system in each state. Another important is the ability to

capture the variability existing in the software product lines as it is an object-oriented

design pattern. Also support the maintainability and performance attributes.

In the following sub sections (Section 5.3.1, 5.3.2) we will give a short description

of the pattern and the idea of the statechart pattern extension to capture the variability

in the SPLs.

5.3.1 Pattern Description

Pattern Name:

Safety-driven Design Pattern of Statechart.

Type:

Software Pattern.

Intent:

Allow an object to alter its behavior when there is a safety violation and enter into

a safety state to take necessary actions.

Context:

Your system is a safety-critical system and contains an entity whose behavior

depends on its state. You need to develop fault-tolerant software for a highly safety-

critical system. The considered system has at least one fail-safe state, or an additional

safety processing module has to be used to overtake necessary actions when there is

a safety violation.

Problem:

The problem is how to address the safety in the system design in terms of Object-

oriented design.

Solution:

100

Our solution is to combine the concept of a traditional safety patterns with the

concepts of satechart patterns to develop a safety-driven design pattern (refer to the

references (Yacoub, 1998)(Armoush, 2010)).

Using this pattern requires developing a safety-based statechart to specify the

entity's behavior without safety violation. Figure 5.1 below describes the structure of

the solution in term of statechart diagram (general structure of the pattern).

Define a Virtual superstate called Operating state. There are two concurrent

regions of Operating composite state. In the other words, the Operating state is a

collection of the two orthogonal state which process same events. The first one is

System_Operation state which represents the normal operations of the system to do

its functionality and if there is a safety problem the system changes to the Safe_Mode

state. And the next one is a System_Safety_Operation state which includes the

behavior of the system to handle the safety. In the composite

System_Safety_Operation state initially the system is in the monitoring state that to

monitor the safety in the system. If there is any safety violation the system changes

to Processing_Safety_Operation state to overtake necessary actions to protect the

system to enter in unsafe state or to handle the safety.

Pattern Architecture

Figure 5.2 shows the design solution structure in UML notation. Distinguish the

events, conditions, actions, and entry and exit procedures in each state class.

A virtual class called "Operating" is created, which contains the two superstates

"System_Operation" and "System_Safety_Operation", events received by the

interface is dispatched to the " Operating " class which dispatches them to both the

"System_Operation" and "System_Safety_Operation" classes.

As we see in Figure 5.2, Operating class becomes the context for the two

concurrent regions System_Operation and System_Safety_Operation.

System_Operation and System_Safety_Operation classes provide the interface for the

two concurrent regions. Safe_Mode, System_Functioning, Monitoring, and

Processing_Safety_Operation become the concrete substate or

IntermediateSuperState classes for Operating composite state. The Operating object

will keep the references of the current active substate within each concurrent region

101

in System_Operation and System_Safety_Operation objects. The concrete state

objects will maintain two references for the two contexts Operating and

Entity_Interface.

The Entity_Interface (context) object delegates all incoming events to its current

state object (state). On receiving an event in the Operating state, the Operating

object will delegate the request to the current active substate. The active substate will

execute the corresponding action on the transition and then change the substate by

calling the appropriate set substate method of the Operating object. On receiving a

fault event from the System_Operation state, the operating object will delegate the

request to the safe_Mode substate and Processing_Safety_Operation substate in

System_Safety_Operation composite state. If the target of a transition is the

composite state then it is executed by the composite state but if the target is the

substate then the composite state object will delegate the request to the active

substate. The active substate will execute the corresponding action on the transition

and then executes the exit action and then sets the next substate by calling the

setSub() method of the composite Operating object.

Figure 5.1: Safety-driven design pattern of statechart -the structure of the solution in

term of statechart diagram

102

Figure 5.2: Safety-driven design pattern of statechart-the design solution structure in

UML notation

103

5.3.2 The Statechart Pattern Extension to Capture the Variability in the SPLs.

As we mentioned in the previous chapter that the critical issue of using the

statechart modeling for the software product line is how to address the variability.

The works in (Gomaa, 2011) (Gomaa, 2004) proposed a method to address this issue.

It shows that there are two main approaches we can use when variable classes are

developed, specialization or parameterization. In the case when there are small

number of changes to be made then we can select specialization as we can manage

the specialized classes (Gomaa, 2011) (Gomaa, 2004). Based on this mentioned work

and because the complexities exist in the PL we propose using of parameterization

approach. It is obvious that it is more effective to design a parameterized state

machine, in which there are feature-dependent states, events, and transitions.

Optional state transitions are specified by having an event qualified by a Boolean

feature condition, which guards entry into the state. Optional actions are also guarded

by a Boolean feature condition, which is set to true if the feature is selected and False

if the feature is not selected for a given SPL member, for more detail see reference

(Gomaa, 2011) (Gomaa, 2004).

5.4 Chapter Summary

Chapter 4 mentioned that the key aspect of the proposed SSPLA design method

is the use of the design patterns concept which improves the design process. A

Safety-driven design pattern of statecharts has been presented in this chapter. The

pattern extends capabilities of both the statecharts design patterns and safety patterns.

This point constitutes one of the main contributions of this thesis.

This chapter also described the description of the developed pattern, Subsection

5.3.1, and gave a brief overview of the idea of the statechart pattern extension to

capture the variability in the software product lines, 5.3.2. The next chapter (Chapter

6) describes our solution of how to address the influence of the security issues on the

safety pattern. In Chapter 8, two application examples of two case studies are

presented to illustrate the effect of the design pattern in the PLA design and to

illustrate how all the research works can improve the safety design of the SPLAs.

104

6.1 Introduction

At the last decades, technological developments have enabled to be taken classic

systems place by automatic and advanced systems (Karthika, Rahamtula and

Anusha, 2018). Cyber-physical systems (CPS) and Internet of Things (IoT) have

distinct origins but overlapping definitions and both combine the word embedded

systems (Burns, 2019). These systems contain computational (software),

communication and physical components. However such systems are at least

partially controlled by software. The software has a major role and responsibility in

such systems. The Difficult design problems are often assumed to be readily solved

using software; and the software must compensate for any deficiencies in hardware

platforms (Sommerville, 2009), (Bures T. et al, 2017). One of the critical steps in

software development process is software architecture design (Sommerville, 2009),

(Li, Safe and Université, 2018). Currently, the influence of architecture in assurance

of software safety is being increasingly recognized.

As the high quality, short delivery time, and high productivity have become more

and more important in developing embedded software for modern products

(Nagamine, Nakajima and Kuno, 2016), product-line (PL) and reusable software

components are suitable approaches for these embedded systems, which are often re-

engineered from existing systems (Nagamine, Nakajima and Kuno, 2016).

Developing a reference architecture which represents the base structure of the

member products is the main task of the software product line architecture design

(Systems, 2000). It is evidence that a pattern based development of the reference

architecture can support the development and application process of product lines.

C
H

A
P

T
E

R
 V

I

ENHANCING THE SAFETY DESIGN TO ADDRESS THE

SECURITY ISSUES USING PATTERNs

105

Most of the modern systems are considered to be safety-critical when failure

events can lead to human lives losses or high valued asset losses (Vaccare Braga et

al., 2012). The security of these modern systems affects its safety. For example, an

attacker who can send custom commands or modify the software of the system may

change its behavior and send it into various unsafe situations (Li, Safe and

Université, 2018). For that it is necessary to ensure security since failures in this type

of systems can lead to catastrophic results.

Due to the tight interplay between safety and security, combining safety and

security in the engineering process for Cyber-physical system (CPS) has become a

new interesting research topic in recent years (Schmittner et al., 2015).

The pattern-based approach proposes patterns as a method of capturing expert

solutions to many common software problems (Jamal and Eric, 2003). In general,

most software systems cannot be structured according to a single architectural pattern

and they must support several system requirements that can only be addressed by

different architectural patterns (e.g. design for flexibility and adaptability)

(Buschmann and Maunier, 2001). Therefore, you must combine several patterns to

structure such systems. The selection of an architectural pattern, or a combination of

several, is only the first step when designing the architecture of a software system

(Buschmann and Maunier, 2001). Pattern composition has been shown as a challenge

to applying design patterns in real software systems (Hallstrom, Soundarajan and

Tyler, 1995).

To the best of our knowledge, there are various pattern approaches in the context

of patterns composition, specifically at the architectural design level. For example, In

(Amorim et al., 2017) their pattern-based approach is to provide guidance with

respect to selection and combination of both types of patterns in context of system

engineering, specifically, at the architectural design level. However, these

approaches are limited at patterns development level, especially, for safety and

security patterns development because this area still considered as an emergent

research area.

In this thesis and in order to enhance the safety patterns to address the influence of

the security issues on the safety, a pattern development approach that interlinks

safety and security patterns is proposed, see Sec. 6.3. This approach is considered as

one of the main contributions of this thesis.

106

 The approach is then used to enhance the proposed safety design pattern of

statechart (presented in Chapter 5) to address the security in the pattern (see Sec.

6.4). The work is highly supports the object-oriented software architectures

development for the product lines.

The remainder of this chapter is organized as follows. Section 6.2 provides a short

overview of some of the most related works. Section 6.3 presents a description of the

proposed pattern development approach for safety and security. Using this approach

to develop a safety and security patterns is presented in Section 6.4 which shows how

the approach can be used to enhance a safety design pattern of statechart to address

the security in the pattern. And finally, Section 6.5 concludes the chapter and

identifies future research directions.

6.2 Related Works

Multiple studies and surveys showed that today's systems are vulnerable to

security threats which can adversely affect the safety (Schmittner et al., 2015). Due

to the tight interplay between safety and security, combining safety and security in

the engineering process for cyber-physical system (CPS) has become a new

interesting research topic in recent years (Schmittner et al., 2015). In the past, the

safety and security communities developed quite differently and almost

independently, and the resulting standards, guidelines and methods were also limited

to safety or security (Schmittner et al., 2015). In the context of software safety the

software architecture is where the basic safety strategy is developed in the software.

Design patterns can be used to enhance the design of systems in different

application domains. Design patterns are popular in the field of software engineering

and there are plenty of patterns (Rauhamäki, Vepsäläinen and Kuikka, 2012).

Contradictorily, in the field of control, safety and security engineering patterns have

not been studied and published in such volumes. Therefore, we have now answered

the call.

Patterns are normally not invented but discovered (Rauhamäki, Vepsäläinen and

Kuikka, 2012). Someone realizes that a recurring problem was solved the same way

several times. This already is the pattern, the recurring solution to the recurring

107

problem. It can then be named, formalized and documented in order to make reuse

possible (Rauhamäki, Vepsäläinen and Kuikka, 2012).

Ensuring safety and security of complex integrated systems requires a coordinated

approaches that involve different stakeholder groups going beyond safety and

security experts and system developers. The authors in (Raspotnig, Karpati and

Opdahl, 2018) have therefore proposed CHASSIS (Combined Harm Assessment of

Safety and Security for Information Systems), a method for collaborative

determination of requirements for safe and secure systems.

The work in (Schmittner et al., 2015) investigates an integral part of the safety &

security co-engineering approach called safety & security co-analysis, which aims to

identify and analyze safety and security risk in a holistic approach. They focus on the

methods that enable the assessment of safety effects from security threats and vice

versa.

In (Amorim et al., 2017) they argue that there is lack of experience with security

concerns in context of safety engineering in general and in automotive safety

departments in particular. To remediate this problem, they propose a pattern-based

approach that provides guidance with respect to selection and combination of both

types of patterns in context of system engineering. However this work focuses on the

systems development engineering specifically, for developing a safety-critical

systems with respect to the influence of security issues and not for patterns

development. Therefore, our work is to use the experience at the pattern design level

which adds more generality and spread the using of the experience.

In the other side of our work, the statechart patterns, MOODS is one well-known

work on Object-Oriented state machines which presents an alternative technique of

selecting the most optimal design among different state machine patterns (Ran,

1995). Yacoub in (Yacoub, 1998) has attempted to combine multiple state machine

design patterns into a cohesive unit. His work is based on the concept of statecharts

developed by Harel. His work is considered as a first attempting in this context. In

(Adamczyk, 2003) The work shows how different design patterns solve different

problems given a specific context and a set of expectations (e.g. flexibility of design,

loose coupling between elements, performance, etc). The uniform format of

presentation aims to help software designers select the FSM (Finite State Machine)

most appropriate for their needs.

108

To the best of our knowledge, there are various pattern approaches in the context

of patterns composition, specifically at the architectural design level. In comparison

to our work, none of the aforementioned approaches show clearly the pattern

composition process to develop the patterns. Pattern composition is considered as a

challenge. In the other words, these approaches are limited at patterns development

level, especially, for safety and security patterns development because this area still

considered as an emergent research area. Our work is differ from the other existing

works as it focuses on enhancing safety pattern itself in context of security issues to

develop a new version of the pattern.

In the context of the safety patterns, especially the safety patterns of statechart, it

evidence that there is no explicit consideration of the influence of the security on the

safety which is the most important thing. Therefore, in this thesis and in order to

enhance the existing safety patterns or even develop new ones, to address the

influence of the security issues on the safety, a pattern development approach that

interlinks safety and security patterns is proposed.

6.3 The Proposed Pattern Development Approach for Safety with Security

Control

In this chapter we define a pattern development approach that interlinks safety and

security patterns in order to enhance the safety patterns to address the influence of

the security on the safety. This proposed approach is considered as a one of the main

contributions of this thesis. It mainly focuses on enhancing safety pattern itself in

context of security to develop a new version of the pattern. The enhanced safety

pattern is considered as a new safety and security pattern.

The pattern approach uses the selected combination of safety and security patterns

to effectively improve the safety pattern (s). It provides a new way of thinking for

safety patterns development with respect to security. The approach supports the

variability of product line in the point of selecting of an appropriate security pattern

(s). Also by using this pattern approach we can develop a new safety security

patterns.

Apart from the systematic interlinking of safety and security patterns, we

elaborate how these patterns can be combined in order to enhance the safety patterns.

109

In the subsection (Sec. 6.3.1) bellow and for this approach we propose a safety and

security pattern engineering lifecycle that aims at combining the two engineering

processes for safety pattern development and allows for the necessary interaction and

focusing on safety with respect to the influence of security issues.

In order to show the applicability of this approach we have used it to enhance the

proposed statechart-based safety pattern and we have developed a new safety and

security pattern.

6.3.1 A Proposed Pattern Development Engineering Lifecycle

The Pattern Development Engineering Lifecycle is a development model of the

pattern development approach which defined to help engineers developing effective

safety patterns that address the safety with presence of security issues influence the

safety.

In general the lifecycle contains three main processes: Safety engineering process

which comes before Security Engineering, the second process. The rationale for this

is that the approach explicitly focuses on ―security for safety‖ (i.e., safety concerns

are the main engineering drivers). However, security measures can influence pattern

architecture properties that can alter safety. For this reason, the Safety and Security

Co-Engineering Loop is introduce, the third process of the lifecycle.

6.3.2 The process steps

We proposed a process model that guides the overall process. Figure 6.1 bellow

shows the model steps. Notice that the development process is done in iterative

manner. Each step contains some engineering activities. The input of this model is

the description of the safety pattern that needs to improve, or to use to develop a new

safety and security pattern.

Step 1: Safety and Security Pattern Co-analysis:

The main purposes of the safety and security co-analysis step are: to deeply

understand and analyze the safety pattern under consideration in order to identify the

110

security issues which cause safety risks to the pattern. And based on this we have to

find an appropriate security pattern(s) that can be used to interlink with the safety

pattern to achieve the safety requirements for the safety pattern considering the

security problems.

 This step includes two main activities. The first one is the safety and security co-

analysis which includes safety pattern analysis process and security patterns analysis

for the safety pattern. The other main activity is a definition and selection of a

suitable security pattern(s).

In step 1 and after determine the specific safety pattern that needs to improve, we

analyze this pattern. This step is one of the important steps in the pattern

development process and all the next stages are depend on the success of this step.

The analysis also includes definition of how the security factors affect the safety.

After these two activities and at the end of this step a suitable security pattern(s) is

defined. This appropriate security pattern is used latter to deal with the influencing of

the security on the safety. After completion of this step we move to step 2 (the design

phase).

Step 2: Safety and Security Pattern Co-design

There are two main activities in this step; Applying/Instantiating the security

pattern(s) and Designing and modeling the new version of the safety pattern. The

construction of the new version of the safety pattern is done in this step. The two

engineering aspects, safety and security are considered in this step.

The specific safety pattern and the selected security pattern defined in the

previous step are combined to create the initial architecture of new version of the

safety pattern or to refine the existing one. In this step also, the architecture's

elements or components and their relationships are defined, that for the produced

pattern. That results in either an initial architecture model (initial version) or the final

one. This process is continues until the completion of the pattern architecture. Also in

this step the architecture descriptions of the produced pattern are defined.

Step 3: Evaluate and Assess the Produced Version of the Safety Pattern

111

This is an engineering process usually conducted by using assessment or

evaluation methods.

In this step, and in general, the resulted pattern architecture is checked with

respect to functional and quality requirements. In addition, the pattern architecture

resulting from the previous step is evaluated according to the architecture evaluation

plan which is based on safety and security. Here, in this process model, evaluating

architecture is based on test cases which based on safety and security, if the safety

and security requirements are met or not.

We can distinct three cases might be happened in the evaluation:

1. The architecture of the produced version of the safety pattern is ok. There are

no problems in the resulted pattern architecture. In this case documentation for this

new pattern is created.

2. The evaluation shows that there is a need to improve the pattern architecture,

so we can go to step 2. This to repeat the pattern architecture building process and

then it could evaluate again.

3. There is a problem(s) in the resulted pattern architecture. In this case the

problem(s) will be analyzed in (step1).

In this context we developed a new safety assessment model proposed to show the

relative safety improvement in the design after using a specific safety pattern, see

Chapter 7. The implementation of this safety assessment model is illustrated using

case studies, see Chapter 7. The results show that there is a considerable

improvement in the design of the system architecture after using this pattern.

Figure 6.1: Software Architecture Pattern development model for Safety with

Security Control

112

6.4 Developing a Safety and Security Pattern

In this section we describe how the proposed pattern development approach

(mentioned in Section 6.3 above) helps to develop an effective safety and security

patterns that address the safety with presence of security issues influence the safety.

The approach is applied on our proposed safety pattern of statechart mentioned in

chapter 5, and it is published in (Ebnauf and Al., 2019). In the following sub sections

we present in briefly way how the pattern development process is applied as well as a

description of the enhanced version of the safety pattern of statechart. Note that the

developed version is considered as a new safety and security pattern.

6.4.1 The Safety Design Pattern of Statechart

In this section we apply the proposed pattern development approach on our

proposed safety-driven design pattern mentioned in chapter 5 (it is published in

(Ebnauf and Al., 2019)).This pattern extends capabilities of both the statecharts

design patterns and safety patterns. The pattern allows an object to alter its behavior

and change its internal state when there is a safety violation, and to protect it from

introducing in unsafe states. The critical aspect of the pattern is the ability to capture

the dynamic nature of the safety attribute. By this pattern we can monitor and control

the safety of the system in each state. The result is an object-oriented design pattern

which handles the safety attribute. In the context of the product lines, there is an idea

of the statechart pattern extension to capture the variability in the SPLs (See

reference (Gomaa, 2011)).

6.4.2 Applying the Proposed Pattern Development Approach

The previous pattern (presented in Sec. 6.4.1 and published in (Ebnauf and Al.,

2019)) is a general safety pattern which means that there is no consideration of the

impacts of the other specific non-functional requirements. As there is a high impact

of the security on the safety, especially in the smart environments (e.g. Cyber-

physical Systems and Internet of Things), we need an improved safety patterns to

address this issue. In this chapter and in order to achieve that, we have applied the

113

pattern approach mentioned above. As mentioned above, by applying this approach

an enhanced version of the safety pattern under consideration is produced. The

developed version is considered as a new safety and security pattern.

The following lines show the development process of a safety and security pattern

using this pattern development approach.

6.4.3 The Development Process:

The following lines describe briefly how to conduct the development process with

the proposed safety pattern (Sec. 6.4.1):

 After analysis of the safety pattern (Step 1: Safety and Security Pattern Co-

analysis) we observed that we need a security monitoring technique. This monitoring

technique is to prevent the system against attacks and check the internal state of the

system in context of security.

The security analysis shows that the Gateway Pattern (GP) (Han, Weimerskirch

and Shin, 2014) is a suitable pattern to achieve the security monitoring and it is a

light pattern also. Here, we proposed using the Security Gateway Pattern (SGP) with

some modifications for checking the system internal state and notifications. This last

point leads to the end of the step 1.

- Security Gateway Pattern

The security gateway is a security pattern that is placed between an unprotected

internal network and un-trusted external entities when communication to the outside

is inevitable. As a repeatable solution, the security gateway is not limited to the

specific interface. In (Han, Weimerskirch and Shin, 2014) and (Schmittner et al.,

2015) they proposed a three-step authentication protocol that provides secure

communication between the external device and the ECUs in the vehicle (See Fig.

6.2). Adding the Security Gateway (SG) as an additional component supports the

maintainability of the security solution. In the other hand, updates to the gateway do

not impact the safety pattern directly.

114

Figure 6.2: Three-step authentication for secure connection between external

entities (user devices) and ECUs (CAN) (Han, Weimerskirch and Shin, 2014)

And then in Step 2: (Safety and Security Pattern Co-design) The selected

Gateway Security Pattern is instantiated and incorporated into the existing design of

our safety pattern architecture. In this process we have needed to adapt the Gateway

Security pattern in order to integrate it with our safety pattern (presented in Sec. 6.4.1

and published in (Ebnauf and Al., 2019)). This integration has leaded us to

performing some changes and configuration on the architecture of our safety pattern

as shown in Fig. 6.3. Depending on the analysis result of the safety pattern under

consideration, we decided to modify the System_Safety_Operation Super state in the

pattern structure to be a System_SafetyandSecurity_Control Super state. The

modification is by adding SecurityMonitoring Sub_Super state.

Fig. 6.3 below describes the structure of the solution in term of statechart diagram

(general structure of the enhanced safety pattern). This figure (Fig. 6.3) also shows

the new version of the pattern after applying step 3 (Evaluate an Assess the Produced

Version of the Safety Pattern). In addition, this last model is used to develop the

model of the design solution structure in UML notation, see Fig. 6.4. The model

describes the architectural view of the developed pattern in object-oriented design. In

115

the following lines we present the architectural models of the pattern and the

description of the developed pattern. For more details about how to develop a UML

class diagram from a statechart model, refer to the work in (Ebnauf and Al., 2019) or

Sec. 5.3.1.

Finally, in Step 3 and for the evaluation of the produced pattern, a safety

assessment method developed in (Ebnauf and Al., 2019), Sect. 7.2, is used. As this

development process is done in iterative manner, we continue until there are no

problems in the resulted pattern architecture or there is no need to improve it more.

To illustrate the effect of this improved safety pattern in the PLA design, a Smart

Microwave Oven product line and a simplified Automated Electromechanical

Braking System (EBS) are used as running examples, see chapter 8. We used our

safety assessment method presented in Sect. 7.2 to show the relative safety

improvement after using the developed safety and security pattern. The results show

that there is a considerable improvement in the system safety design after using the

developed safety and security pattern.

6.4.4 The Developed Version of our Safety Pattern of Statechart

- Safety and Security Design Pattern of Statechart:

Other Names:

Safety and Security Pattern, Safety and Security Pattern of Statechart

Type:

Software Pattern.

Abstract:

The Safety and Security Pattern is considered as an enhanced version of the

previous Safety Pattern of Statechart mentioned in Section 6.4.1 which is used to

address the safety with presence of security issues influence the safety in the pattern.

A security pattern is configured and adapted to the safety pattern context and

requirements that in order to integrate both safety and security patterns. The major

configurations which have done in the previous version of the safety pattern are

described briefly as follow:

116

"As shown in Fig. 6.3, the System_Safety_Operation supper state in the previous

version (look Fig. 5.1) is configured to be System_SafetyandSecurity_Control supper

state which includes a new sub supper state called Security_Monitoring state added

to address the influence of security issues and to add some security control. Notice

that this point explains how the instantiated security pattern is incorporated into the

safety pattern. So, as we mentioned that with our safety pattern we have proposed a

security monitoring technique. This monitoring technique is to prevent the system

against attacks and check the internal state of the system in context of security.

According to this, the proposed Gateway Security Pattern is used with some

modifications for checking the system internal state and notifications processes. This

technique with the overall safety control prevents the system against the security

risks regarding to the safety and protects it to inter in an unsafe state."

Context:

Developing an effective safety architecture for the safety-critical system which

addresses the safety with security control.

Problem:

The problem is how to address the safety in the system design with presence of

security issues influence the safety and that in terms of Object-oriented design.

Pattern Structure:

Fig. 6.3 shows the structure of the new solution of the enhanced version in term of

statechart diagram (general structure of the pattern). The model describes the

architectural view of the developed pattern in object-oriented design is shown in Fig.

6.4. The model shows the design solution structure in UML notation.

The other details about the enhanced version of the safety pattern are similar to

the description of the previous version, see Sec. 5.3.1.

Implication:

117

It is observed that the performance is a little bit improved as there is a security

monitoring and notifications happen (in advance) which lead to take appropriate

actions early. This last point is the other benefit of this version.

Figure 6.3: The Safety and Security Design Pattern-the structure of the solution in

term of statechart diagram

118

Figure 6.4: The Safety and Security Design Pattern-the design solution structure in

UML notation

119

6.5 Chapter Summary

In this chapter, our work is concerned with the addressing of the security in the

safety design patterns in order to improve the safety design using patterns, and its

applicability is on the SPL architectures design. In order to address the influence of

the security issues on the safety, a pattern development approach that interlinks

safety and security patterns is proposed, Section 6.3. This pattern approach can be

used to enhance the existing safety patterns or even develop new ones. It is evidence

that the pattern approach can support the variability of product line in the point of

selecting of the appropriate security pattern(s).

The pattern development approach is applied on the proposed safety pattern of

statechart which described in Section 5.3. By applying the pattern approach, an

enhanced version of the safety pattern is produced, Section 6.4. This version is

developed to address the security issues in the safety pattern. The developed version

is considered as a new safety and security pattern. The enhanced pattern version

developed by this approach is called safety and security pattern of statechart.

Finally, to illustrate the effect of this enhanced pattern in the PLA design, two

application examples of two case studies are used, Chapter 8. For future work, this

research can be applied to other patterns domains.

120

"Achieving reliability and safety is hard, but what is even tougher is assessing

those qualities". J M Voas (Thane, 1999).

7.1 Introduction

Some of the content in this Chapter has been presented at

7th IEEE International Conference on Mechatronics Engineering, ICOM2019,

Putrajaya, Malaysia.

Safety is not a software issue; rather, it is a system issue (Place and Kang, 1993).

It is an abstract concept. We mean by "the system is safe" that it will not cause harm

either to people or property (Place and Kang, 1993). All parts of the system must be

safe. Functional and operational safety starts at the system level. Safety cannot be

assured if efforts are focused only on software (Huang, 2013). After the designers

have applied measures to mitigate mishap risk to a basic system, they must determine

if the modified system design meets an acceptable level of mishap safety risk (W.R.

Dunn, 2002).

[John McDermid] in (McDermid, 2002) argues that the software safety analyses

are a special portion of the overall system safety analyses and are not conducted in

isolation. In essence there are four safety-relevant parts of a system development

process (McDermid, 2002):

1) Identifying hazards and associated safety requirements.

2) Designing the system to meet its safety requirements.

C

H
A

P
T

E
R

 V
II

SAFETY ASSESSMENT FOR SSPLAs

121

3) Analyzing the system to show that it meets its safety requirements.

4) Demonstrating the safety of the system by producing a safety case.

Software safety analysis does not look at functional and safety requirements

simultaneously. For example the functional specifications can modeled with a UML

state diagram and other tool can used to delineate the causes of hazards like a Fault

Tree Analysis (FTA). So, there is a need for an integration approach. Creating a

model that shows how a system is designed to work, while also describing where

issues can occur, leads to a better, safer system.

It is evidence that the definition of safety becomes related to risk. Risk may be

defined as (Place and Kang, 1993):

 (2)

where ɛ (hazard) is a measure of the effects that may be caused by a particular

mishap and P(hazard) is the probability that the mishap will occur (Place and Kang,

1993).

The authors in (Goseva-Popstojanova et al., 2003) developed a methodology for

risk assessment of software architectures based on the Unified Modeling Language

(UML). In the methodology the probability of software components/connectors

failures is estimated by measuring the complexity/coupling of the UML dynamic

specifications. Severity is estimated using the classical technique of Failure Mode

and Effect Analysis (FMEA). While the authors in (Hassan, Goseva-Popstojanova

and Ammar, 2005) propose a severity assessment methodology which is performed

combining three different hazard analysis techniques: Functional Failure Analysis

(FFA), Failure Mode and Effect Analysis (FMEA), and Fault Tree Analysis (FTA)

(Hassan, Goseva-Popstojanova and Ammar, 2005).

Statecharts is a specification tool derived from finite-state machines (Bogdanov

and Holcombe, 2001). It is a power tool to specify the dynamic behavior of the

system. Due to the graphical nature and a variety of constructs, statecharts have been

widely used in projects (Bogdanov and Holcombe, 2001).

122

As (UML) statechart diagram is a powerful tool for specifying the dynamic

behavior of reactive objects, we can use this facility to describe the system behavior

in term of safety.

In (Leveson et al., 1991) The authors has described some of the lessons learned

and issues raised while building a model using statecharts of a real aircraft collision

avoidance system. Once the system requirements specification is completed, safety

analysis procedures will be derived for the modeling language and evaluated using a

specific test case tool called (TCAS tesbed) (Leveson et al., 1991).

As such domains include safety critical systems which exhibit probabilistic

behavior, there is a major need for modeling and verification approaches dealing

with probabilistic aspects of systems in the presence of variabilities. The authors In

(Varshosaz and Khosravi, 2013), introduce a mathematical model, Discrete Time

Markov Chain Family (DTMCF), which compactly represents the probabilistic

behavior of all the products in the product line.

Although a considerable number of safety analysis techniques have been proposed

to aid software design such as Software Hazard Analysis and Resolution in Design

(SHARD) (Fenelon et al., 1994), there is little analysis work focusing on an

architectural level to aid software architecture design. In the other side, while several

assessment methods have been used to evaluate safety-critical systems, most of these

methods cannot be used to assess safety-critical design software product lines due to

the complexity and variability of these systems. We thus need a suitable safety

assessment method that is able to characterize the architectural elements at different

architectural levels.

The objective of this part of our thesis is to provide a safety assessment model that

can be used to facilitate the assessment process of the architecture for safety-critical

software product line systems and also to show the safety improvement in the design

after using our work. The assessment method to be described here is particularly

suited for testing an architecture design against a detailed specification.

The remainder of this chapter is organized as follows. Section 7.2 presents a

proposed safety assessment model. It is a simplified mathematical model for safety

assessment of the product lines architectures. Adapting this assessment model to be

a scenario-based assessment method and adding a metric (or the concept) of Relative

Safety Improvement RSI is presented in Section 7.3. The final step of the evaluation

123

process is to compute the Relative Safety Improvement (RSI), this is described in

Section 7.4. The illustration of the safety assessment model using a simplified

Electromechanical Break System software product line as an application example is

presented in Section 7.5. And finally, Section 7.6 concludes the chapter and

identifies future research directions.

7.2 The proposed Safety Assessment Model for SPLAs

As we mentioned in the above sections that the thesis aims to make the overall

architecture development activities compatible and consistent. For that a new safety

assessment model is proposed. This model is considered as a state-based model. The

effectiveness of this model is that it is a dynamic model which means it assesses the

system safety at the runtime.

The proposed Safety Assessment Model presented in this section is a simplified

mathematical model for safety assessment of the product lines architectures which

has been developed based on some of the previous approaches (Dabrowski and Hunt,

2011; Nunes et al., 2012; Varshosaz and Khosravi, 2013). It is for using in the

evaluation process step in our proposed design method (presented in Chapter 4). And

it is also used to evaluate our work to show the improvement in the safety design of

the product line architecture after using our work, see Chapter 8. The following sub

sections mention and describe the model steps and the mathematical calculation in

the model. Figure 7.1 bellow shows the safety assessment model steps.

Figure 7.1: The Safety Assessment Model Steps.

124

7.2.1 The Model Steps:

Step 1: Define the statechart design model of the given software product line

system.

Step 2: Define the Discrete Time Markov Model Family (DTMCF) based on the

statechart design model of the PLA which is defined in the previous step. The

resulted DTMCF compactly represents the probabilistic behavior of all the products

in the product line.

Step 3: By using a variability-aware approach which takes into account the

common behavior between products in a SPL, create the Markov model which

models the common behavior of all the products in the product line.

Step 4: Conduct the calculation processes of the safety evaluation using

mathematical methods upon the resulted Markov model.

7.2.2 The Mathematical Calculations of the assessment process

In this solution, the calculation is based on some hypothesis and solutions of other

works on Markov chain. We use the Discrete Time Markov Chain (DTMC) theory

(Kassir, 2018) to efficiently analyze behavior and safety of the critical systems in

term of software system architecture. The safety assessment method used in this

work is distinguishable from the well-known use of DTMCs to provide quantitative

measures of system performance and reliability, which we review in (Dabrowski and

Hunt, 2011). Instead of measuring system reliability, we use DTMCs to examine

safety in dynamic systems in order to identify the probability of system being in safe

execution or in unsafe state.

7.2.2.1 Specifying a Markov Chain Process

State based formalisms are a more powerful alternative to combinatorial

formalisms. Markov chains (MCs) is one of the most common methods. Markov

chains are effective tools that used for evaluating the safety and reliability of

architectures (Varshosaz and Khosravi, 2013).

After defining the Markov chains then it can be evaluated regarding the

probabilities that the system is in a certain state at time t. In this thesis we used the

steady state evaluation technique which calculates the probabilities for t → ∞. So the

125

reliability and safety can be calculated by summing up the probabilities of the

reliable respective safe states. One of the possible methods to do the analysis for both

the transient and the steady state is Monte Carlo (Dabrowski and Hunt, 2011). In this

thesis we used the normal mathematical calculation of the steady state. So the results

are not exact even with using Monte Carlo simulation since the accuracy depends on

the number of simulation runs.

7.2.2.2 Maximum Likelihood Estimation for Markov Chains (MLE)

The critical point of this solution is the method of define or estimating the

transition probabilities between the states in the Markov model and form the

transitions probabilities matrix TPM . So we proposed a derived technique extracted

from the previous works (Varshosaz and Khosravi, 2013) and (Dabrowski and Hunt,

2011) called (Maximum Likelihood Estimation for Markov Chains (MLE)). The

following lines conclude the idea:

By using simulation technique, execute the Markov model for a period of time.

And then we observe the execution to compute the number of transition between the

states. State transition probabilities were derived as follows. Given states si, sj, i,j=

1…n where n= the number of the system states, pij, is the probability of transitioning

from state i to state j, written as si →sj. This probability is estimated by calculating

the frequency of si→sj, or fij, and dividing by the sum of the frequencies of si to all

other states sk, as shown in equation (3)

)3(

1 


n

k ik

ij

ij

f

f
p

Here i and j may be equal, to allow for self transitions, which are counted if the

task process remained in a state longer than a discrete time step.

In this thesis and to simplify the process, we suppose that the frequencies of the

transitions from any state i to any of its adjacent states (states connected directly) are

equals. By this suggestion the probability is estimated by dividing the number of

direct links state i connect directly to state j (ijN) to the total of all direct transition

links from state i to other adjacent states
j

ijN . By this suggestion we can derive

126

equation 4. This can lead to a low accuracy, but for more accuracy we can use a

simulation technique.

)4(




j

ij

ij

ij
N

N
p

7.3 A Scenarios-based Assessment

As we mentioned in the previous chapters that a number of efforts have been made to

make the method effective and efficient. One of the critical efforts is making the

design process activities of the method compatible and consistent (e.g. state-based

design, scenario-based design and assessment). So, this section describes how the

safety assessment model (described in Section 7.2 above) can be adapted and

configured to be a scenario-based assessment model.

To accomplish the evaluation process of the safety and security pattern (our

enhanced pattern version) using two application examples of the two case studies

(see Chapter 8), we have adapted and configured the safety assessment model

mentioned above (Sec. 7.2) to be a scenario-based assessment method as well as

adding the metric or the concept of Relative Safety Improvement RSI). We have

used the safety and security risk scenarios of the two software product lines, Smart

Microwave Oven and the simplified Automated Electromechanical Braking System

(See Chapter 8).

The safety assessment process model presented in Section 7.2 is a simplified

mathematical model for safety assessment of the product lines architectures. The

following lines mention and describe in briefly way the major steps of the model

after adapting it to be a scenario-based assessment model:

- Define the statechart models for each defined scenario in the given software

product line system.

- Developing the Markov chain models before and after using the proposed

pattern for each scenario- These models can elicit by using the statechart model

defined in the above step.

127

- Conduct the calculation processes of the safety assessment process using

mathematical methods upon the resulted Markov model. This step includes Creation

of the Transition Probability Matrix for each Markov model.

Markov chains are effective tools that used for evaluating the safety and reliability

of architectures (Varshosaz and Khosravi, 2013). After defining the Markov chains

then they will be evaluated regarding the probabilities that the system is in a certain

state at time t. As mentioned in Sec. 7.2.2.1 that in this thesis we used the steady

state evaluation technique which calculates the probabilities for t → ∞.

Note that in our work and for both examples (presented in Chapter 8), we applied

this assessment process by using the kernel system, an advanced product of the

Software Product Lines as well as the individual risk scenarios. In this chapter and in

Section 7.5 we applied the assessment model using the kernel system of the EBS

product line as illustrative example of the model. In Chapter 8 we will present in

more details the implementation and evaluation of our work, with the using of

individual risk scenarios.

7.4 Defining the Final Results- The Relative Safety Improvement

The final step of our evaluation process is to compute the Relative Safety

Improvement (RSI). The Relative Safety Improvement (RSI) is a safety assessment

metric proposed by Ashraf in (Armoush, 2010) which gives an indication about the

safety improvement that can be achieved by the pattern. This metric (RSI) is defined

as ―the percentage improvement in safety (reduction in probability of unsafe failure)

relative to the maximum possible improvement which can be achieved when the

probability of unsafe failure is reduced to the minimum possible value (0)‖. Based on

this definition, the relative safety improvement for a design pattern (or system

design) can be expressed as shown in the following equation (Equation 1) (Armoush,

2010):

  

 

)1(%100)1













oldUF

newUF

P

P
RSI

128

 RSI: Relative Safety Improvement.

 PUF(old): Probability of unsafe failure in the basic system.

 PUF(new): Probability of unsafe failure in the design pattern.

We assume that the probability of the system to be in unsafe state is equivalent to

the probability of the unsafe failure, by considering that all failures are unsafe

failures. By this assumption we do the calculation of the RSI for all the individual

scenarios in the two examples of the two case studies, see Chapter 8 (Section 8.4.3,

Fig. 8.21 and Fig. 8.22).

A scenario-based assessment model can be used for assessing the quality

attributes which are safety and security. In this context the produced scenarios are

based on the safety and security requirements. The evaluation process includes

analysis of how well software architecture satisfies safety and security requirements.

In Chapter 8, the sections (Sec. 8.4.1 and 8.4.2) present the analysis results of the

individual risk scenarios for the two case studies. These results are shown in Fig.

8.17 and Fig. 8.20 (for example 1 and example 2 respectively). For all the specified

scenarios of the two examples, the Fig. 8.17 and Fig. 8.20 show a comparison

between the probabilities of the systems to be in the Unsafe states, and that before

and after using the proposed pattern in the case of executing the systems for a long

time.

7.5 Illustrative Example

To illustrate the applicability of the safety assessment model for product line

architecture, we have chosen a very simplified automated Electromechanical Braking

System (EBS) product line (Varshosaz and Khosravi, 2013), as an example. In this

section we applied this assessment process by using the kernel system of the EBS

product line.

7.5.1 The EBS SPL System

The EBS system is considered one of the subsystems of Cruise Control System

(C.C). The main function of EBS system is to automatically stop the car or the

129

vehicle and in safely way when there is an obstacle in front of the vehicle. In such

braking systems, sensors, communication media, and actuators replace mechanical

devices (Varshosaz and Khosravi, 2013). In reality, there could be malfunctions with

nonzero probabilities. For example, failure of the sensors to detect obstacles in an

admissible interval, possible message loss, and (Control Unit) CU failure are some

examples of undesirable but possible characteristics of such systems.

From applying our proposed design method (presented in Chapter 4), the dynamic

analysis step processes results in dynamic models such as the communication and

statechart models. Figures 7.1 and 7.2 are two statechart design models of the EBS

SPL system which show the system design structure without safety control, and after

using the new safety design pattern respectively. For more details see Chapter 8, the

application example 1 of the first case study.

The next section (Sec. 7.5.2) presents the implementation of the safety assessment

model using the EBS product line mentioned above. The result shows the

improvement in the product line design after using the proposed safety design

pattern.

Figure 7.2: The Statechart Design Model of Automated Electromechanical Braking

System (EBS) Software Product Line after Using the Pattern.

130

Figure 7.3: The Statechart Design Model of Automated Electromechanical Braking

System (EBS) Software Product Line after Using the Pattern.

7.5.2 The implementation of the Assessment Model

This section presents the implementation of our proposed safety assessment model

that mentioned above. To illustrate that we apply the assessment model on a

simplified automated Electromechanical Braking System (EBS) product line. The

section also shows briefly the safety improvement on the product line system after

using our proposed safety design pattern presented in Chapter 5. Figure 7.3 below is

a compact Discrete Time Markov Chain Family (DTMCF) of the EBS product line,

designed normally without safety control and before using the proposed safety design

pattern. The compact Discrete Time Markov Chain Family of the EBS product line

after using the proposed safety design pattern is shown in Figure 7.4. Figure 7.5

shows the Markov model of the common behavior (kernel system) of EBS product

line without using the new safety design pattern. The Markov model of the common

behavior (kernel system) of EBS product line after using the proposed safety design

pattern is shown in Fig. 7.6.

131

Key: S, L: Short, Long-Rang Radar R, ¬R: Redundancy, Un-redundancy in Control Unit

Detection Computing

Unsafe

State

Actuating

Safe

Brake

Initiating

State

S

L

¬R

R

S

L

¬R

Safe

State

Detection Computing

Unsafe

State

Actuating
Safe

Brake

Initiating

State

S

L

¬R

R

S

L

¬R

Key: S, L: Short, Long-Rang Radar R, ¬R: Redundancy, Un-redundancy in Control

Unit

Figure 7.4: A compact Discrete Time Markov Chain Family of the EBS

product line, designed normally without safety control and before using our

safety design pattern.

Figure 7.5: A compact Discrete Time Markov Chain Family of the EBS

product line, designed with safety control or after using our safety design

pattern.

132

7.5.3 The calculations of the Safety Assessment Process

We used above equation (Equation 3) to calculate the transition probabilities on

the Markov chain. And then we created the transition probability matrix p. Other

Markov processes are used like steady state operation. Finally we calculate the

probability of each state for the system states before and after using the proposed

design pattern. And finally we will observe the calculation results and then write the

assessment results.

Firstly: The calculation results of the system safety design before using the

proposed pattern

Here we need to calculate the probability of each state for the system states before

using the proposed design pattern. The process is conducted in the steps as follows:

Step 1: Calculate and define the transitions probabilities for the given Markov

chain. We use the maximum likelihood estimation method (MLE) mentioned above

to do that, See Fig. 7.5. We can use the states abbreviations in Table 7.1.

Table 7.1: The abbreviations of the Markov states

Figure 7.6: The Markov model of the common behavior (kernel system) of EBS

product line without using the proposed safety design pattern.

133

Step 2: Conduct the transitions probability matrix TPM. Below is the transition

probabilities matrix P.

Step 3: Define the Markov process. By using the concept steady state we define

the probability of each state of the Markov model which present the abstract state of

the system.

Step 4: Solving the given Markov chain to obtain the steady state probability

vector.

So:

0.5 S4 + 0.5 S5 = S0 --- (1)

0.5 S0 = S1 --- (2)

0.5 S1 = S2 --- (3)

0.5 S2 = S3 --- (4)

134

0.5 S3 + 0.5 S4 = S4 --- (5)

0.5 S0 + 0.5 S1 + 0.5 S2 + 0.5 S3 + 0.5 S5= S5 ------------------------ (6)

S0 + S1 + S2 + S3 + S4 + S5 = 1 --- (7)

After solving the resulted equations system, the steady state probabilities obtained

as follows:

S0 = 0.258, S1 = 0.129, S2 = 0.065, S3 = 0.033, S4 = 0.033, and S5 = 0.484

That shows that the probability the Unsafe State is significant at 0.484 and the

system safety is not achieved in this design.

Secondly: The calculation results of the system safety design after using the

proposed pattern

we calculate the probability of each state for the system states after using the

proposed design pattern. Calculate and define the transitions probabilities for the

given Markov chain, see Fig. 7.6. We use the maximum likelihood estimation method

(MLE) as before.

Figure 7.7: The Markov model of the common behavior (kernel system) of EBS

product line after using the proposed safety design pattern

135

Solving the given Markov chain (Fig. 7.6) to obtain the steady state probability

vector.

The new results are shown as follows:

S0 = 0.2686, S1 = 0.1343, S2 = 0.045, S3 = 0.015, S4 = 0.0025, S5 = 0.266 and S6 =

0.2686

7.5.4 Results Discussion:

The results above show that the probability of the system being in unsafe state

before using the pattern is 0.484, and after using the safety pattern is 0.266. So, the

different between these two values of the probabilities is 0.218, which means,

approximately, the improvement on the safety is more than or equal 21%. Finally,

and with considering the relative safety improvement factor it obvious there is a

considerable improvement in the safety of the system after using the safety pattern.

7.6 Chapter Summary

In this chapter, a new Safety Assessment Model (SAM) is presented. This model

is considered as a state-based safety assessment model. It is a simplified

mathematical model for safety assessment of the product lines architectures.

Adapting this assessment model to be a scenario-based assessment method and

adding a metric or the concept of Relative Safety Improvement (RSI) are also

presented in this chapter.

This model has been proposed to use in the evaluation process step in the

proposed design method (SSPLA) (presented in Chapter 4). It is also used to evaluate

our research. In addition, the model is used to show the improvement in the safety

design of the product line architecture before and after applying our work, see

Chapter 8.

Finally, the chapter described the illustration of the safety assessment model using

a simplified Electromechanical Break System software product line as an application

example. For future work, further research is needed to assess other product line

issues such as the complexity and reusability.

136

8.1 Introduction

In the last decades, technological developments have enabled to be taken classic

systems place by automatic and advanced systems (Karthika, Rahamtula and

Anusha, 2018). The term cyber-physical systems (CPSs) refers to a new generation

of smart systems with integrated computational and physical capabilities that can

interact with humans through many new modalities (Sadiku et al., 2017). The

Internet of Things (IoT) and Smart Environments (SE) have attracted a lot of

research and development activities during the last decade (Ray, 2018). In this

context we aim at controlling physical entities through the Internet of Things.

As shown in multiple studies and surveys (Burns, 2019) (Li, Safe and Université,

2018) (Surkovi, 2018) (Ray, 2018) today's systems are vulnerable to security threats

which can adversely affect the safety. Since the nature of CPSs is the interaction with

the physical world, so they must operate dependably, safely, securely, and efficiently

and in real-time.

We motivate our approach with the help of two application examples of two case

studies. In this chapter and in order to show the applicability of this work the

developed safety and security design pattern (Sec. 6.4) is applied on the design

process of two software product line architectures, a simplified Automated

Electromechanical Braking Systems product line and the Smart Microwave Oven

Control Systems Software Product Line. Using our proposed safety and security

pattern requires developing a statechart to specify the entity's behavior without safety

and security violation. Therefore, it is efficient to use a state-based architectural

C

H
A

P
T

E
R

 V
II

I

IMPLEMENTATION AND EVALUATION

137

design approach in the overall SPLAs design lifecycle. For that the proposed state-

driven architecture design method for safety–critical software product lines (Sec. 4.4)

is used in the architectural design process of these two SPLs. The two examples are

presented to illustrate how this work can improve the safety design of the SPLAs

with the influence of the security issues.

Furthermore, to evaluate our work, a simplified safety assessment model proposed

in Chapter 7 is applied on the running examples. The results show that there is a

considerable improvement in the system safety design after using our proposed

method and by using the proposed safety and security design pattern, as described in

the following sub sections.

The remainder of this chapter is organized into four main sections. The following

successive sections (Sec. 8.2 and Sec. 8.3) illustrate the applicability of our work

with the help of two application examples of two case studies. Section 8.4, describes

the evaluation process using the application examples as well as the final results and

discussion. Finally, Section 8.5 summarizes the chapter.

8.2 The Case Study 1

In order to show the applicability of our work as well as evaluate it we have used

a simplified automated Electromechanical Braking Systems (EBS) Software Product

Line as a first case study.

The EBS system is considered as one of the subsystems of Cruise Control System

(C.C). The main function of EBS system is to automatically stop the car or the

vehicle and in safely way when there is an obstacle in front of the vehicle. In such

braking systems, sensors, communication media, and actuators replace mechanical

devices (Varshosaz and Khosravi, 2013). The common functions (Kernel features)

that the perfect kernel system in this SPL generally does are: (Detection) the first

function is the detection of an obstacle which can be done alternatively by the short

range or long range radar sensors. The range of detection obviously differs in these

two kinds of sensors. (Computing) When an obstacle is detected, a signal will be sent

to the CU via communication media. After receiving the signal, the CU computes

some required parameters aiming to control the speed of the vehicle and braking

safely. (Actuating) Then, the CU sends the necessary commands to the actuators via

138

communication media which eventually result in the required actuation. This is the

functionality in the case that every component performs perfectly. As known in

reality, there could be malfunctions with nonzero probabilities. For example, failure

of the sensors to detect obstacles in an admissible interval, possible message loss,

and CU failure are some examples of undesirable but possible characteristics of such

systems.

In the following sub sections we will present some important details of the case

study specifically, how to implement our work. The main UML development models

that have been developed through the case study are also presented. The main details

include the safety and security issues, presenting of some individual risk scenarios,

as well as presenting of some development models produced through the design

process such as the statechart models and the statechart design model in UML class

diagram. The statechart design model in UML class diagram describes the

architecture of EBS software product line.

8.2.1 The EBS SPL Architecture Development Life Cycle

This section is to generally illustrate the implementation of the adapted design

method for the SPLAs (Chapter 4) and the Safety & Security design pattern (Chapter

6). It also gives a general understanding of the implementation process. The

following lines describe the development steps and show the main models with a

short description for each one.

8.2.1.1 The Method Process

As we mentioned in Section 4.3.2 that the method is based on a hierarchical

system model. It is a process for creation and evaluation of product line architectures.

The inputs of this process are the requirements or requirement specifications. It will

be possible to define two types of the general requirements which are the domain

model and scope definition (see Sec. 4.3.2).

8.2.1.2 The Inputs of the Process:

139

As we mentioned in Section 4.3, that the input of our method are the requirements

or requirement specifications. It will be possible to define two types of the general

requirements which are the domain model and scope definition. In general, we can

say that the inputs of the process are domain model and scope definition of the

product line (for more details see Section. 4.3).

- Domain Model:

The domain model defines the main requirements of the specific applications

domain or family of products. It is a requirements model. These requirements model

is later used to define the scenarios (scenarios of usages).

- Scope Definition:

The scope definition defines the commonality and variability of the deferent

applications in product line. There are internal variable features between the

components of the applications itself (Internal Variabilities) and others are variability

features with respect to the environment (External Variabilities). The scope shows

the organization for the types of the developed products and for the others that will

have been developed in future.

In the following lines, the section briefly presents a descriptions of the

requirements engineering, dynamic modeling (Dynamic Analysis results) for the

EBS PL System using statechart modeling and some other models:

1) The Requirements Modeling:

A. Commonality and Variability Analysis

The Commonality and Variability Analysis (CVA) of a product line provides a

requirements specification for the product line. The CVA consists of the terminology

used, the commonalities, the variabilities, and the dependencies among the

variabilities. The dependencies are constraints that the choice of one features places

on the choices of other features (Feng and Lutz, 2005). Note that we exclude any

non-behavioral commonalities and variabilities to focus on the software. The CVA

serves as a requirement specification for the product line and as an input to the

140

product line‘s architecture design. In this section we show the use case model and

features model.

 For single systems, use case modeling is the primary vehicle for describing

software functional requirements. For SPLs, feature modeling is an additional

important part of requirements modeling. The strength of feature modeling is in

differentiating between the functionality provided by the different family members of

the product line in terms of common functionality, optional functionality, and

alternative functionality (Gomaa, 2011).

B. Use Case Modeling for the EBS SPL

For a single system, all use cases are required. In a SPL, only some of the use

cases, which are referred to as kernel use cases, are required by all members of the

family. Other use cases are optional, in that they are required by some but not all

members of the family. Some use cases might be alternatives to each other (i.e.,

different versions of the use case are required by different members of the family).

In UML, the use cases are labeled with the stereotype «kernel», «optional» or

«alternative» (Gomaa, 2011). In addition, variability can be inserted into a use case

through variation points, which specify locations in the use case where variability

can be introduced (Gomaa, 2011) (Gomaa, 2004).

The kernel and optional product line use cases for the EBS SPL are given in

Figure 8.1.

Figure 8.1: EBS Product Line Use Cases Model

141

Variation points are provided for both the kernel and optional use cases. One

variation point concerns the methods of detection: which can be done alternatively

by the short range or long range radar sensors. The range of detection obviously

differs in these two kinds of sensors. This variation point is of type mandatory

alternative, which means that a selection among the alternative choices must be

made.

…………………………………………………………………………

Variation point in Detect use case:

Name: Type of Detection Method.

Type of functionality: Mandatory alternative.

Description of functionality: the first function is the detection of an obstacle

which can be done alternatively by the short range or long range radar sensors. The

range of detection obviously differs in these two kinds of sensors.

C. Feature Modeling

The feature model is used to model the product line requirements in addition to

the use case model. Feature modeling is an important modeling view for product line

engineering, because it addresses SPL variability. Features are incorporated into

UML in the PLUS method using the meta-class concept, in which features are

modeled using the UML static modeling notation and given stereotypes to

differentiate between «common feature», «optional feature», and «alternative

feature» [23]. Feature dependencies are depicted as associations with the name

requires (Gomaa, 2011)(Gomaa, 2004).

Fig. 8.2 below shows the feature mode of EBS Software Product Line. Table 8.1

presents the Feature/Use Case Dependencies.

142

Figure 8.2: The feature model of EBS product line Using UML Notations

Table 8.1: Feature/Use Case Dependencies

Feature Name

Feature

Category

Use Case

Name

Use Case

Category/Varia

tion Point (VP)

Variation

Point Name

EBS Kernel Common Detect Kernel

 Control Kernel

 Compute Kernel

 Actuate Kernel

Short-Range

Radar Sensing

Default All Use

Cases

VP Range Radar

Sensing

Long-Range

Radar Sensing

Alternative All Use

Cases

VP Range Radar

Sensing

143

2. Dynamic Modeling for the EBS PL System-Using Statechart Modeling

The dynamic analysis and design processes result in dynamic models such as the

communication and statechart models. Using the proposed pattern require developing

a safety-based statechart to specify the entity's behavior without safety violation.

Figure 8.3 is a statechart model of the EBS SPL system which shows the general

structure view of the system design without safety control (before using our proposed

pattern).

Figure 8.3: The Statechart Model of the EBS SPL before using safety

control/without using our proposed safety and security design pattern.

All the data above are considered to be an input to our methodology. Below, we

describe how each step of the architecture design method is applied in the study.

Detecting

Do/

LongRangDetction [Long Range

Radar];

ShortRangDetction [Short Range

Radar];

Computing

Do/

ControllingCom
putaion ();

Failure

EBS Software Product line

Initiate

EBS System Functioning

Failing

Control Signal

Actuating

Do/

Actuate ();

Obstacle

Detection Signal

BrakeSafely

Brake

Successfull

y

Initiating

Checked

144

8.2.1.3 Applying the Process Steps

The application of each step of the proposed architectural design method is

described in the following lines and sections.

Step 1: Safety requirements elicitation and analysis

In step 1: (Safety requirements elicitation and analysis), we can use any safety

analysis method(s) for product line to do the step of safety analysis. In this example

we used the "Bi-Directional Safety Analysis of Product Lines" proposed by Qian

Feng and Robyn R. Lutz (Feng and Lutz, 2005). It is a sufficient methodology and a

bi-directional in that it combines a forward analysis (from failure modes to effects)

with a backward analysis (from hazards to contributing causes). The methodology

for software safety analysis of a product line proposed here uses the Extended

Commonality and Variability Analysis (XCA) and a hazards list to drive the bi-

directional safety analysis (Feng and Lutz, 2005). Findings from application of the

bi-directional safety-analysis method included new safety-related software

requirements both for all the systems in the product line (commonalities) and for

only some of the product-line systems (variabilities), as well as discovery of a new

hazard (s).

8.2.1.3.A Safety and Security Issues

As mentioned above that since the nature of CPSs is the interaction with the

physical world, so they must operate dependably, safely, securely, and efficiently and

in real-time.

In the EBS SPL system case study, and as known in reality, there could be

malfunctions with nonzero probabilities. For example, failure of the sensors to detect

obstacles in an admissible interval, possible message loss, and CU failure are some

examples of undesirable but possible characteristics of such systems. The attackers

could remotely hack into the dashboard system of the vehicle, using software

vulnerability. The dashboard system is also connected to the internal network of

connected ECUs using a popular network standard known as Controller Area

145

Network (CAN) (Siddiqui et al., 2017). This gives access to all the other actuation

units such as the brakes, accelerator, steering control etc. (Siddiqui et al., 2017). In

the other words, because there is an interconnection between outside area and the

vehicle, the modern vehicles are vulnerable to security threats which can adversely

affect the safety (Schmittner et al., 2015). Therefore, we can reason that if an

attacker is able to access the in-vehicle network either directly or remotely, safety

and security of the vehicle are endangered (Schmittner et al., 2015). For that we need

a safety control as well as including sufficient security features to resist security

attacks.

Step 2, 3, and 4:

We can summarize the works that have done in step 2, 3, and 4 as follow:

After conducting the safety analysis in step1 we repeat the analysis process again

in order to create revised scenarios. And as we mentioned above, that this process is

a scenario-oriented process, so the architecture is created in iteration manner, by take

the scenarios and then ranked and make them in sorted groups. Fig. 8.4 presents one

of the final results for these steps (a general scenario). As we see, Fig. 8.4 is a

statechart specification and a safety-oriented solution. That leads to the question

"why we use the statechart modeling?" The answer is "because we want to select a

safety-driven design pattern of statechart which enhances the safety in the software

architecture".

8.2.1.3.B Safety and Security Risk Scenarios

This section describes how statecharts can be used to model state-dependent

interaction scenarios.

The safety assessment model is interconnected with the system model and

potential attack and failure (risk) scenarios are described through the models. We

used the statechart models to describe the risk scenarios, see Sec. 8.2.1.3.C. And then

we used these models to define the Markov chain of each scenario (e.g. Fig. 8.15).

These Markov models are then used in the mathematical calculations in the

assessment process, see Sec. 8.4.

146

We can classify the risk scenarios into two categories: security-less safety risk

scenarios and security safety risk scenarios. Here we can consider all the defined

scenarios are safety and security risk scenarios. The following are some important

and general safety risk scenarios.

The scenarios for the car suggested in this work are however different from that

for a typical car. This meant that scenarios for this work had to be defined. We

assume that in each risk scenario there may be a hazard (s) which can lead to

dangerous situation like an accident. Examples of such hazards are: unintended take-

off, unintended standstill, unintended braking, loss of brake function, loss of brake

trigger function. As all the aforementioned hazards can cause by an attacker we can

consider all the defined scenarios are safety and security risk scenarios. These

scenarios are later used in the safety assessment process, see Sec. 8.4.

The following are some of the most important risk scenarios:

Scenario 1: The EBS system is in Initiating state and an unintended take-off

occurred when there is an obstacle in front of the vehicle that can cause an accident.

Example of the security effect: Denial of service attack on in-vehicle CAN blocks

the information transmission on-board. And this situation implies that the vehicle

would not be able apply correct commands which may lead to hazards.

Scenario 2: The vehicle is not able to gain real time information from its sensors

about its surroundings.

Example of the security effect: With the successful DoS attack, communication

channels are blocked with sufficient amount of irrelevant data packets. This would

cause command inputs to either be lost in the transmission or be delayed long enough

for a hazard to occur.

Scenario 3: Failure to detect or late detection of an object. (Similar to that

happens with scenario 2)

Example of the security effect: Hazard which can be also caused by DoS attack on

in-vehicle CAN is a failure to detect or late detection of an object.

Scenario 4: Failure in the computing process

Example of the security effect: As mentioned in Section 8.2 that when an obstacle

is detected, a signal will be sent to the CU via communication media. After receiving

147

the signal, the CU computes some required parameters aiming to control the speed of

the vehicle and braking safely. But in situation if the in-vehicle CAN is flooded with

DoS information packets, the EBS sub-system will not be able to perform safety

critical functions such as computing. This is the highest degree severity attack since

it blocks one of the core safety functions of the EBS sub-system. Other example of

the failure is: failing to trigger the actuator.

Scenario 5: Failure in the actuating process

Example of the security effect: Latency of system functions can be introduced by

loading other applications to the processor and hence reducing performance of the

overall system. If this is introduced to the processor which is being used for the

actuation, severity of the attack increases.

Scenario 6: Manipulating the detection message by the attacker which leads to

incorrect command issued by the control unit.

Example of the security effect: The attacks where attacker(s) manipulates the

message being sent to other vehicles in the network (OR to other ECUs in the in-

vehicle network) for the purpose of creating an illusion of an accident on the road

and/or for initiating emergency braking (Surkovi, 2018). In this scenario the hazard

like "unintended standstill" and "unintended braking" may be occur which may cause

an accident.

Step 5: Define safety-related test cases:

The test cases are defined early that because we need creating a document as a

plan to asses or evaluate the architecture. The output of this step is a definition of

architecture evaluation plan. This plan is used to evaluate the architecture in the end

of the each iteration and in the last evaluation of the architecture.

Step 6: Apply scenarios to select safety-driven architectural pattern:

In this system we have selected a safety-driven architectural design pattern. We

used our proposed safety and security design pattern; see Chapter 6 (Sec. 6.4.4, Fig.

6.3 and 6.4).

148

8.2.1.3.C The Design-oriented Statechart Models

Chapter 6 shows how the proposed pattern development approach is used to

develop a new safety and security pattern. As we mentioned in the previous chapter

that using our proposed safety and security pattern require developing a statechart to

specify the entity's behavior without safety and security violation. This pattern allows

an object to alter its behavior and change its internal state when there is a safety or

security violation, and to protect it from introducing in unsafe states. Therefore, it is

efficient to use a state-based architectural design approach in the overall SPLAs

design lifecycle. For that the state-driven architecture design for safety–critical

software product lines presented in Chapter 4 is used.

There are different statechart models have been created through the architectural

design process of the EBS SPLA. These statecharts are to model different aspects or

artifact. Examples of these models are:

 the statechart model of the EBS software product line before using our

proposed safety and security pattern, Fig. 8.3;

 the statechart model of the EBS product line after using the safety and

security pattern, Fig. 8.4;

 the statechart models of the different risk scenarios (that before and after

using of the proposed pattern), e.g. Fig. 8.5 and 8.6.

Note that, in this thesis the risk scenarios have been used in the safety assessment

process, see Sec. 8.4.

For limitation and closed similarity between the different statechart models, we

just present some of these statechart models, as follows:

 The statechart model of the EBS SPL before using the developed pattern is

depicted in Fig. 8.3.

 The statechart model in Figure 8.4 describes the structure of the EBS

software product line after using the safety and security pattern in term of

statechart diagram (the general structure of the EBS SPL).

 Figures 8.5, 8.6, 8.7 and 8.8 model two of the individual scenarios of

usage (Scenario 1 and Scenario 2 respectively) that before and after using

the proposed safety and security design pattern. The sequences determined

by the red dashed arcs describe the main activities in the scenarios in the

149

case there is a safety and security control (or after using the safety and

security pattern), and also where there is no a safety and security control.

 The statechart models of the other individual scenarios have been

developed in a similar way to that of scenario 1 and scenario 2.

Figure 8.4: The Statechart Model of the EBS software product line after using our

safety and security pattern.

Detecting

Do/

LongRangDetction [Long Range
Radar];

ShortRangDetction [Short
Range Radar];

Computing

Do/

ControllingComputaio
n ();

Failure

EBS Software Product line

Initiate

EBS System Functioning

SafeMode

Control Signal

 Actuating

Do/

Actuate ();

Obstacle

Detection Signal

BrakeSafely

Brake

Successfull

y

Monitoring

System_Safety_Security_Operation

Processing Safety Operation

Failure

Handled

SecurityMonitoring

Initiating

Checked

SafetyMonitoring

150

Figure 8.5: The Statechart Model of the Scenario 1 (Scenario of usage)- before

using our safety and security pattern- Example 1.

Detecting

Do/

LongRangDetction [Long
Range Radar];

ShortRangDetction [Short

Range Radar]; Computing

Do/

ControllingComputaio
n ();

Failure

EBS Software Product line

Initiate

EBS System Functioning

SafeMod

e

Control Signal

Actuating

Do/

Actuate ();

Obstacle

Detection

Signal

BrakeSafely

Brake

Successfull

y
Unsafe

Failure

Initiating

Checked

151

.

Figure 8.6: The Statechart Model of the Scenario 1 (Scenario of usage) - after

using our safety and security pattern- Example 1.

Detecting

Do/

LongRangDetction [Long
Range Radar];

ShortRangDetction [Short
Range Radar];

Computing

Do/

ControllingComputaion

();

Failure

EBS Software Product line

Initiate

EBS System Functioning

SafeMode

Control Signal

 Actuating

Do/

Actuate ();

Obstacle

Detection Signal

BrakeSafely

Brake

Successfull

y

Monitoring

System_Safety_Security_Operation

Processing Safety Operation

Failure

Handled

SecurityMonitoring

Unsafe

Failure

Initiating

Checked

SafetyMonitoring

152

Figure 8.7: The Statechart Model of the Scenario 2 (Scenario of usage) - before

using our safety and security pattern- Example 1.

Detecting

Do/

LongRangDetction [Long

Range Radar];

ShortRangDetction [Short

Range Radar];
Computing

Do/

ControllingComputaion
();

Failure

EBS Software Product line

Initiate

EBS System Functioning

SafeMode

Control Signal

Actuating

Do/

Actuate ();

Obstacle

Detection

Signal

BrakeSafely

Brake

Successfull
Unsafe

Failure

Initiating

Checked

153

Figure 8.8: The Statechart Model of the Scenario 2 (Scenario of usage) - after

using our safety and security pattern- Example 1

Detecting

Do/

LongRangDetction [Long
Range Radar];

ShortRangDetction [Short
Range Radar];

Computing

Do/

ControllingComputaion
();

Failure

EBS Software Product line

Initiate

EBS System Functioning

SafeMode

Control Signal

Actuating

Do/

Actuate ();

Obstacle

Detection Signal

BrakeSafely

Brake

Successful

ly

Monitoring

System_Safety_Security_Operation

Processing Safety Operation

Failure

Handled

SecurityMonitoring

Unsafe

Failur

e

Initiating

Checked

SafetyMonitoring

154

Step 7, 8 and 9:

After applying the steps 7, 8, and 9 the final architecture is produced. Figure 8.9

shows an abstract view of the final architecture of the EBS SPL which depicts it in

an object-oriented design.

The statechart design model in UML class diagram is described in Section 8.2.2

bellow, and depicted in Fig. 8.9. This UML class diagram describes the architecture

of the EBS software product line after using the safety and security pattern.

Note that, due to similarities among the produced models the other models and

details are not presented.

8.2.2 The description of the developed EBS SPL Architecture

As we mentioned in Chapter 4 that the output of our architectural method is a

software product line architecture. This section presents the final output of the design

process.

The main goal of the Object-oriented methodologies using statecharts is to

describe in sufficient detail the steps to be followed for describing the behavior of

objects (Niaz and Tanaka, 2003). We can implement the statecharts, which specify

the dynamic behavior of the classes to implement the behavior of an object-oriented

system (Niaz and Tanaka, 2003). In this context we have to implement the UML

statecharts in an object oriented design structure. Number of approaches are defined

for implementing the statecharts in the object-oriented design. For more detail about

this context see references (Yacoub, 1998) (Niaz and Tanaka, 2003)(Ammar, 2013).

This section presents an abstract view of the developed EBS SPL Architecture

after using our safety design pattern- A design solution structure in UML notation.

Figure 8.9 bellow shows the statechart design model of the EBS SPLA in UML class

diagram. This UML class diagram describes the architecture (the reference

architecture) after using the safety and security design pattern.

155

Figure 8.9: An abstract view of the EBS product line architecture after using our

safety design pattern- A design solution structure in UML notation.

156

8.3 The Case Study 2

In this thesis and as a second case study, we use the Smart Microwave Oven

Control Systems Software Product Line. The Smart Microwave Oven is a special

home appliance that has several operations, such as setting command, setting timer,

starting and so on, and that can be operated remotely. The microwave oven will form

the basis of this product line, which will offer options from basic to top-of-the-line

(Gomaa, 2004).

The process used with this second case study is similar to that used with the first

case study. So, and due to lack of space, in the following sections we will just present

a short descriptions about the important aspects of the case study, including the

safety and security issues, presenting of some individual risk scenarios, as well as

presenting of some models produced through the design process such as the

statechart models and the statechart design model in UML class diagram. Note that,

due to the similarity among the models the other models and details have not been

presented.

8.3.1 Safety and Security Issues

Sometimes the device may malfunction. Example, the microwave may keep

cooking for an hour, which is not required by the users. Another risk example, the

Microwave oven may blow up or become too hot to touch. Additionally, some of

unauthorized influences (e.g. DoS- (Denial of Service), the use of IoT devices for

malicious purposes) lead to failures and failures of the critical systems that are part

of the IoT. For example, disconnect the line between the remote system and the

Microwave oven which can lead to dangerous situations. Consequently, we need a

safety and security control. The control means it can detect such malfunctioning or

even attacks and deal with that by updating the state of the devices, stop it (using

operate use case), and inform the user what happened. Also it can address the

security issues that influence the safety of the system.

157

8.3.2 Safety and Security Risk Scenarios

The scenarios for this work had to be defined. We assume that in each risk

scenario there may be a hazard (s) which can lead to dangerous situation, for

example the microwave oven might blow up or become too hot to touch. As we

mentioned above that we can consider all the defined scenarios are safety and

security risk scenarios. These scenarios are later used in the safety assessment

process, see Sec. 8.4.

The following are some important and general safety risk scenarios.

1. The cooking with door opened scenario.

In normal situation the cooking is possible only when the door is closed. But

sometimes and due to some hardware malfunctions the heating element can execute

while the door is opened. Also the attackers can send fake signals (for example signal

appears that the door is closed)

2. The Cooking is permitted when there is no an item in the oven.

Every microwave oven has a weight sensor. Cooking is permitted only when there

is an item in the oven. The risk here is a permission of cooking when there is no an

item in the oven. In this case the microwave oven may blow up or become too hot to

touch. And that maybe happen due to hardware failures or security problems (like,

sending a fake signal inform that there is an item in the oven).

Other safety risk scenarios include:

Note that and due to lack of space we omitted the full description of these

scenarios.

3. The continuing of cooking without stop – due to system failure (e.g. failure in

the Heating Element).

4. Changing in the cooking recipe by attacker scenario – Security and optional

scenario.

5. Failure in the timer that makes system does not stop cooking the food.

6. The attacker send two signals to the microwave oven control object the first one

indicates that the door is closed and second one is a start cooking command.

158

7. Attacker frequently sends a Minute Plus signals when the system is in the

Cooking state, which increases the time of cooking.

8. Changing in power level.

9. Unexpected shutdown to the microwave oven due to software failure and that

when the system is in one of its critical states (specify just the critical states).

10. The system changes from Ready to Cook state to unsafe state, e.g. due to a big

time value to cook, or changing to Cook state when the door is opened.

8.3.3 The Statechart Models

There are different statechart models created through the architectural design

process of the Smart Microwave Oven SPLA. These statecharts are to model

different aspects or artefacts. Examples of these models are: the statechart model of

the Smart Microwave Oven software product line before using our proposed safety

and security pattern, the statechart model of the Smart Microwave Oven product line

after using the safety and security pattern, Fig. 8.10; the statechart model of the

different risk scenarios (and that before and after using of the proposed pattern). As

we mentioned in the above section (Sec. 8.2.1.3.B) that these risk scenarios are later

used in the safety assessment process.

For limitation and closed similarity between the different statechart models, we

just present one statechart model. This model (Fig. 8.10) describes the structure of

the Smart Microwave Oven software product line after using the safety and security

pattern in term of statechart diagram (the general structure of the SPL). The other

statechart models have not been presented. In the following lines we explain some of

the models using Figure 8.10:

 The statechart model of the Smart Microwave Oven SPL before using the

developed pattern is similar to that model in Fig. 8.10 except the existent

of the System_Safety_Security Control super state in this Figure.

 For Scenario 1: in Fig. 8.10, the sequences determined by the red dashed

arcs describe the main activities in Scenario 1 in the case there is a safety

and security control.

 The statechart models of the other individual scenarios are developed in

similar way to that of scenario 1.

159

The statechart design model in UML class diagram (Fig. 8.11) is described in

Section 8.3.4. This UML class diagram describes the architecture of the Smart

Microwave Oven software product line after using the safety and security pattern.

Finally, and as we mentioned in the above sections that due to similarity among the

models and details the other models and details are not presented.

8.3.4 The description of the developed Microwave Oven SPLA

As we mentioned in Chapter 4 that the output of our architectural method is a

software product line architecture. This section presents the final output of the design

process. The section presents an abstract view of the Smart Microwave Oven SPL

Architecture using our safety design pattern- A design solution structure in UML

notation. Figure 8.11 bellow shows the statechart design models of the Smart

Microwave Oven SPLA in UML class diagram. This UML class diagram describes

the produced reference architecture after using the proposed safety and security

pattern.

160

Idl

e

User

Comman

d sent

Comma

nd

Execute

d

MicrowaveOven_System_Functioning

Monitoring

Processing_Safety_Operation

Faile

d

Repaire

d

SecurityMonitoring

SafetyMonitoring

System_Operat

ion

Virsual_Operating_and_Controlli

ng

Safe

Mod

e

Repair

ed

Faile

d

Smart Microwave Oven Control Systems Software Product

Line Statechart

Door

Shut

Door Open

Door Open with

Item

Door

Shut

with

Item

Ready to

Cook

Cooking

entry/

Start

Cooking,

Start

Turning

[turntabl

e],

Switch

On

[light]

exit/

Stop

Cooking,

Beep

[beeper]

, Stop

Turning

[turntabl

e]

{featur

e=

recipe}

Recipe

Door Opened/ Switch On

[light]

Door Closed/ Switch Off

[light]

Item

Placed

Item

Removed

Item Removed/

Cancel Recipe,

Display Recipe

Canceled

Door Closed [Time

Remaining]/ Switch Off

[light]

Door Opened/ Switch On

[light]
Door

Opened/

Switch On

[light] Recipe

Entered

[recipe]/

Select

Recipe,

Display

Recipe

Door Closed

[Zero Time]/

Switch Off

[light]
Timer Expired/

Clear Power Level

[power], Switch

Off [light]

Door Opened/

Stop Timer

Minute

Plus[minute

Plus]/ Start

Minute

Cancel/

Stop

Timer,

Switch Off

[light]

Cooking Time

Entered/

Display

Cooking,

Update

Cooking Time

Start/ Start

Timer

Cancel/

Cancel

Recipe,

Display

Recipe

Canceled Timer

Expired/ Clear

Recipe, Switch

Off [light]

Cancel/ Cancel

Timer

Cooking Time

Entered/ Display

Cooking Time,

Update Cooking

Time

Minute

Plus

[minut

e

plus]/

Add

Minute

Cancel/ Cancel

Timer

Unsafe

Cooking
Failure

Start

[failure]

System_Safety_Security_Cont

rol

Figure 8.10: The Statechart Model of the Smart Microwave Oven product line after Using

our Safety Pattern

161

Figure 8.11: An abstract view of the Microwave Oven product line architecture

after using our safety design pattern- A design solution structure in UML notation.

162

8.4 The Evaluation

The above sections (Sec. 8.2 and Sec. 8.3) illustrate the applicability of our work.

This section shows its evaluation process with the using of the developed safety and

security pattern (presented in Chapter 6) and by using the two application examples

of the tow case studies. The final results of the evaluation process and the discussion

of these results are shown in Section 8.4.3.

To accomplish this evaluation process we used the proposed safety assessment

method presented in Chapter 7 with some adaptations (e.g. adapting the method to be

a scenario-based assessment method, adding the metric or the concept of Relative

Safety Improvement RSI). The safety and security risk scenarios of the two software

product lines, the simplified Automated Electromechanical Braking PL and the

Smart Microwave Oven PL defined respectively in Sec. 8.2 and 8.3 above have been

used.

The safety assessment process model used here is a simplified mathematical

model for safety assessment of the product lines architectures. The effective of this

model is that it is a dynamic model which means it addresses the system safety at the

runtime. The major steps of the assessment model after its adaptation to be a

scenario-based model are mentioned and described briefly in the following lines:

- Define the statechart design models before and after using the proposed

pattern for each defined scenario in the given software product line system.

- Developing the Markov chain models before and after using the proposed

pattern for each scenario- These models can elicit by using the statechart model

defined in the above step.

- Conduct the calculation processes of the safety assessment process using

mathematical methods upon the resulted Markov model. This step includes

Creation of the Transition Probability Matrix for each Markov model.

Markov chains are effective tools that used for evaluating the safety and reliability

of architectures (Varshosaz and Khosravi, 2013). After defining the Markov chains

then they will be evaluated regarding the probabilities that the system is in a certain

state at time t. In this thesis we used the steady state evaluation technique which

calculates the probabilities for t → ∞.

163

Notes:

Note 1: Here we have used Equation 4 (presented in Chapter 7) to calculate the

transition probabilities on the Markov chain. And then we created the Transition

Probability Matrix p. Other Markov processes have been used like steady state

operation. Finally we calculate the probability of each state for the system states

before and after using the proposed design pattern for each scenario. And finally we

will observe the calculation results and then write the assessment results. For more

explanation refer to the Illustrative Example in Sec. 7.5

Note 2: In our work and for both examples we have applied this assessment

process by using the kernel system, an advanced product of the Software Product

Lines as well as the individual risk scenarios. As mentioned above, for chapter lines

limitation, we have just presented the results of using the individual risk scenarios.

8.4.1 The Evaluation-Using Individual Risk Scenarios-With Example 1

The final result of this evaluation is to show the improvement in the system safety

design with the influence of the security issues and that after using the proposed

safety and security pattern. This means that the calculations process must be

conducted in both two cases, before and after using the pattern and that for each

scenario.

To explain how the calculations in the assessment process are conducted we

describe this by using scenario 1. And these calculations are then repeated for all the

other scenarios. For the other scenarios the process is similar to that with scenario 1.

The selected scenario is scenario 1 (The EBS system is in Initiating state and an

unintended take-off occurred when there is an obstacle in front of the vehicle that can

cause an accident (see the Sub Sec. 8.2.1.3.B)

As we mentioned in the above lines that for lines limitation the section just

presents the calculations details of the scenario 1, that in the two cases, before and

after using the proposed safety and security pattern.

The details of the evaluation process are as follow:

164

Firstly: The calculation results of scenario 1- before using the proposed pattern

The process can be conducted in a steps as follows:

Step 1: Define the statechart model scenario 1 in the SPL system before using

the proposed pattern.

The statechart in Fig. 8.5 shows the description model of the scenario (The red

dashed arcs in the statechart).

Step 2: Create the Markov Chain from the statechart model presented in Fig.

8.5.

Fig. 8.12 shows the Markov chain for scenario 1 before using the proposed safety

design pattern. We can use the states abbreviations in Table 8.2.

Table 8.2: The abbreviations of the Markov states

Figure 8.12: The Markov Chain model of scenario 1 before using the safety

security pattern-Example 1

Legend: - Sn = The System States; Pij = The Transition Probability

165

Step 3: Calculate and define the transitions probabilities for the given

Markov chain.

We use the maximum likelihood estimation method (MLE) mentioned in Chapter

7 (Sec. 7.2.2.2) to do that. Fig. 8.13 shows the Markov chain with the transition

probabilities.

Figure 8.13: the Markov chain with the transition probabilities - scenario 1 before

using the safety and security pattern-Example 1

Step 4: Create the Transition Probabilities Matrix TPM

Then we create the Transition Probabilities Matrix (P) of the Markov model. The

matrix in Fig. 8.14 is the TPM (p) .

 S0 S1 S2 S3 S4 S5

 S0 0.0 0.5 0.0 0.0 0.0 0.5

 S1 0.0 0.0 1.0 0.0 0.0 0.0

 S2 0.0 0.0 0.0 1. 0 0.0 0.0

[S0 S1 S2 S3 S4 S5 S6] * S3 0.0 0.0 0.0 0.0 1.0 0.0 = [S0 S1 S2 S3 S4 S5]

 S4 0.5 0.5 0.0 0.0 0.0 0.0

 S5 0.5 0.0 0.0 0.0 0.0 0.5

Figure 8.14: An equation containing the produced Transition Probabilities Matrix

of Scenario 1 before using the safety and security pattern-Example 1

166

Step 5: Define the Markov process.

By using the concept steady state we define the probability of each state of the

Markov model which present the abstract state of the system.

Step 6: Solving the given Markov chain to obtain the steady state probability

vector.

After solving the resulted equations system produced from the equation in Fig.

8.14, the steady state probabilities are obtained. Table 8.3 shows the probability of

the system to be in each state after the execution of the system for long time (in case

of scenario 1).

Secondly: The calculation results of scenario 1- after using the proposed

pattern

These calculations have been also conducted for the same scenario (scenario 1) of

the system in the case there is a safety and security control in the design of the

system (or after using the safety and security pattern). The details are as follow: Fig.

8.6 shows the description model of the scenario (The red dashed arcs in the

statechart), Fig. 8.15 shows the Markov chain with the transition probabilities. Then

we create the Transition Probabilities Matrix of this Markov model, Fig. 8.16. The

Table 8.3 also shows the probability of the system to be in each state after the

execution of this system for long time that after using the pattern. The reason is to

make a comparison between the two results. This step is to show the Relative

improvement in the safety design. As we mentioned above that the overall

calculations are then repeated for all the other scenarios. Figure 8.17 presents a

comparison between the probability of the system to be in unsafe state for each

scenario before and after using the developed pattern. It is obvious that there is a

considerable improvement in the system safety design after using the proposed safety

and security pattern. In Sec. 8.4.3 discussions of the final results as well as

summarizing of the overall evaluation process of our work have been presented.

167

Figure 8.15: The Markov model with transition probabilities of scenario 1 after

using the safety security pattern-Example 1

 S0 S1 S2 S3 S4 S5 S6

 S0 0.0 0.333 0.0 0.0 0.0 0.333 0.333

 S1 0.0 0.0 1.0 0.0 0.0 0.0 0.0

 S2 0.0 0.0 0.0 1.0 0.0 0.0 0.0

[S0 S1 S2 S3 S4 S5 S6] * S3 0.0 0.0 0.0 0.0 1.0 0.0 0.0 = [S0 S1 S2 S3 S4 S5 S6]

 S4 0.5 0.5 0.0 0.0 0.0 0.0 0.0

 S5 0.5 0.0 0.0 0.0 0.0 0.5 0.0

 S6 0.5 0.0 0.0 0.0 0.0 0.0 0.5

Figure 8.16: An equation containing the produced Transition Probabilities Matrix

of Scenario 1 after using the safety and security pattern-Example 1

168

Table 8.3: The probability of the system to be in each state for scenario 1 that

before and after using the safety and security pattern-Example 1

The probability of the
system to be in each

state for scenario 1 that

before and after using

the safety and security

pattern

Initiating Detecting Computing Actuating
Brake

Safely

Unsafe

State

Safe

State

S0 S1 S2 S3 S4 S5 S6

Before using the pattern 0.1667 0.1667 0.1667 0.1667 0.1667 0.1667 ----

After using the pattern 0.2 0.1334 0.1334 0.1334 0.1334 0.1333 0.1333

Figure 8.17: Comparison between the probability of the system to be in unsafe

state in each scenario before and after using the pattern-Example 1

169

8.4.2 The Evaluation Using Individual Risk Scenarios-With Example 2

The evaluation process with example 2 is executed in a similar way to that used

with example 1. This section presents summarized details of the process. It just

presents the calculations details of the scenario 1 (The cooking with door opened

scenario, see Sec. 8.3.1) and that after using the proposed safety and security pattern.

The details are as follow:

Fig. 8.8 shows the description model of the scenario (The red dashed arcs in the

statechart); Fig. 8.18 shows the Markov chain with the transition probabilities; then

defining of Transition Matrix, Fig. 8.19.

After defining the Markov chain then it can be evaluated regarding to the

probabilities that the system is in a certain state at time t. In this thesis we used the

steady state evaluation technique which calculates the probabilities for t → ∞.

In the last, the Table 8.4 shows the probability of the system to be in each state

after the execution of this system for long time (in case of scenario 1). Table 8.4 also

shows the probability of the system to be in each state after the execution of this

system for long time that in case there is no safety and security control (or before

using the pattern). Fig. 8.20 presents a comparison between the probability of the

system to be in unsafe state in each scenario and that before and after using the

developed pattern. It is obvious that there is a considerable improvement in the

system safety design after using the proposed safety and security pattern.

In Section 8.4.3 discussions of the final results as well as summarizing of the

overall evaluation process of our work have been presented.

170

Figure 8.18: the Markov model with transition probabilities of scenario 1 after using

the safety security pattern-Example 2

Figure 8.19: An equation containing the produced Transition Probabilities

Matrixes of Scenario 1 after using the safety and security pattern-Example 2

171

Table 8.4: The probability of the system to be in each state for scenario 1 that

before and after using the safety and security pattern-Example 2

The
probability

of the

system to

be in each

state for

scenario 1

that before

and after

using the

safety and

security
pattern

Door

Shut

Door

Opened

Door

Opened

with

Item

Door

Shut

with

Item

Ready

to

Cook

Cooking Recipe Unsafe

State

Safe

State

S0 S1 S2 S3 S4 S5 S6 S7 S8

Before

using the

pattern

0.3097 0.1909 0.1108 0.0667 0.075 0.0471 0.0167 0.1826

After using

the pattern
0.357 0.198 0.075 0.036 0.0405 0.0255 0.009 0.129 0.129

Figure 8.20: Comparison between the probability of the system to be in unsafe

state in each scenario before and after using the pattern-Example 2

172

8.4.3 The Final Results and Discussion

This section presents the final results of the evaluation process as well as a short

discussion on the overall results. The section also shows the effectiveness of our

work. The final step of our evaluation process is to compute the Relative Safety

Improvement RSI. The Relative Safety Improvement RSI is a safety assessment

metric proposed by Ashraf in (Armoush, 2010) which gives an indication about the

safety improvement in the design which can be achieved by the pattern. This metric

is defined as ―the percentage improvement in safety (reduction in probability of

unsafe failure) relative to the maximum possible improvement which can be

achieved when the probability of unsafe failure is reduced to the minimum possible

value (0)‖. Based on this definition, the relative safety improvement for a design

pattern can be expressed as shown in the following equation, (Equation 1, mentioned

in Chapter 3):

  

 

1%100)1













oldUF

newUF

P

P
RSI

 RSI: Relative Safety Improvement.

 PUF(old): Probability of unsafe failure in the basic system (or in the system

before using a safety control).

 PUF(new): Probability of unsafe failure in the design pattern (or in the

system after using a safety control).

In this thesis we assume that the probability of the system to be in unsafe state is

equivalent to the probability of the unsafe failure. This assumption is achieved by

considering that all failures are unsafe failures. By this assumption we do the

calculation of the RSI for all the individual scenarios in the two examples of the two

case studies.

After applying that we will show the final results presented in the figures bellow

(Fig. 8.21 and Fig. 8.22). The final results depicted in the figures (Fig. 8.21 and Fig.

8.22) show that there is a considerable improvement in the safety design of the

systems after using our proposed safety and security pattern of statechart in the

design process.

173

As we mentioned in the beginning of this chapter, that this part of our work

concerns with the implementation and evaluation of our research contributions. So,

In order to show the applicability of this work, the proposed state-driven design

method for SSPLAs with the using of the proposed safety and security design pattern

is applied on the design process of two software product line architectures. To

evaluate our work, a simplified safety assessment model is developed and applied on

these case studies.

The research argues that how efficient to use a safety and security design patterns

of statechart in the software architectural design process of the safety-critical

systems.

The scenario-based assessment method is used for assessing the quality attributes

which is the safety attribute. In this context the produced quality scenarios are based

on the safety and security requirements. The evaluation process includes analysis of

how well software architecture satisfies safety and security requirements. The above

sections (Sec. 8.4.1 and 8.4.2) present the analysis results of the individual risk

scenarios for the two case studies. These results are shown in Fig. 8.17 and Fig. 8.20

(for example 1 and example 2 respectively). For all the specified scenarios of the two

examples, the Fig. 8.17 and Fig. 8.20 show a comparison between the probabilities of

the systems to be in the Unsafe states, and that before and after using the proposed

pattern in the case of executing the systems for a long time.

To make an investigation on our work in the stage of the architectural evaluation

we will take both scenario 1 and 2 of the first case study as an example.

In the following lines we will present some discussions on the results as

follow:

The results show that the probabilities of the system to be in Unsafe state before

using our design pattern for Scenario 1 and Scenario 2 are: (0.1667, 0.2353

respectively); and after using our design pattern are: (0.1333, 0.16 respectively). It is

clear from these results that the probabilities of the system to be in Unsafe states for

Scenario 2 are higher than them for Scenario 1. The last point means that Scenario 2

is a high risk scenario if it is compared with the risk Scenario 1 and that may give an

indicator to the developer (or the architect) to deal with this situation. And this

situation may require coming back to do more analysis, in order to reduce the

probability of transition to the Unsafe state or may lead to update the design of the

174

resulted architecture. In this case the updating or reconfiguration process is easily

executed, as it is just achieved by adding, deleting or reconfiguring of states, evens or

action. The developer (architect) repeats all the activities in this context with each

risk scenario.

In the other hand, by observing the results of the Relative Safety Improvement

(RSI) we find that the results depicted in Fig. 8.21 shows that the relative safety

improvement (RSI) achieved with Scenario 2 is higher than that achieved with

Scenario 1. One can observe that the risk Scenario 2 has higher Relative Safety

Improvement rate than the one to the risk Scenario 1 despite it is a higher risk. This

point proves that by adding more safety and security control in each system state one

can achieve a considerable improvement in the system safety and security design.

Also by adding safety and security control we can reduce the risk and increase the

safety and security level in the entire system design.

According to above, we can conclude that this state-based approach is highly

supports the development of the safety-critical SPLAs or the development of the

safety and security critical systems in general. By using the state-driven development

it is efficient to address the dynamic behavior of the reactive systems and we can use

this facility to describe the system behavior in term of safety and security as well as

finding the risks, non-risks and sensitivity points. This point is considered as one of

the strengths of our work. The results also have proved that it is effective to handle

the safety and security together in the design of the safety pattern and that provides

more benefits as it is a high level reuse.

Figure 8.21: The Relative Safety Improvement after using the developed

pattern-Example 1

175

Figure 8.22: The Relative Safety Improvement after using the developed pattern-

Example 2

8.5 Chapter Summary

In order to show the applicability of our work as well as evaluate it, two case

studies are presented in this chapter. The chapter presented an evaluation of the five

main contributions of the research presented in this thesis. The final conclusions of

this research are presented in the next chapter.

176

This chapter summarizes work presented in this thesis, followed by a description

of the contributions and future directions.

9.1 Thesis Summary

The high quality, short delivery time, and high productivity have become more

and more important in developing embedded software for modern systems

(Nagamine, Nakajima and Kuno, 2016).

The Software Product-Line (SPL) and reusable software components are suitable

approaches for such systems, which are often re-engineered from existing systems. A

successful SPL supports systematic software reuse and reduces the development

effort, meanwhile, improves the quality of the member products.

Software architecture design is one of the critical steps in software development

process. One of the effective approaches which are needed to ensure the product

quality is Reference Architectures (called also Product Line Architectures).

Developing a reference architecture which represents the base structure of the

member products is the main task of the software product line architecture design.

The safety is considered one of the most critical issues in the design of the modern

systems, specifically the cyber-physical systems (CPS). And as product-line

engineering becomes more widespread, more safety-critical software product lines

are being built.

C

H
A

P
T

E
R

 I
X

CONCLUSION

177

With the increasing attention of software safety, how to improve software safety

has already become a more important concerned issue, especially for the safety-

critical systems (Huang, 2013). Safety-based design at architecture level can

effectively improve software or system safety.

From the literature (Chapter 2) it is clear that the existing methods for the safety-

based architectural design are not adequate to enhance the architectures design of the

modern software product line systems. In the other words, the safety-based

architectural design methods are limited in SPLs because of the complexity and

variabilities existing in SPL architectures.

For that, in this thesis we have searched to define an efficient and effective

method that can be used into the design process of the safety-critical software

product line architectures. The thesis proposed a method for safety-driven software

product line architecture design (SSPLA). The method is to enhance and manage

the safety of software product lines. The key aspect of this method is the use of the

concept design patterns which improves the design process.

As the Unified Modeling Language (UML) statechart diagram is a powerful tool

for specifying the dynamic behavior of reactive objects, this facility can be used to

describe the system behavior in term of safety. Based on this facility the proposed

SPL architecture design method mentioned above is configured and adapted to be

state-based architecture design method.

The thesis has illustrated how the use of statechart semantics and patterns can

effectively address and improve the safety of the SPLA design. According to the

evaluation results, we can conclude that the state-based approach is highly supports

the development of the safety and security critical systems. And by using the state-

based development it is efficient to address the dynamic behavior of the reactive

systems and we can use this facility to describe the system behavior in term of safety

and security as well as finding the risks, non-risks and sensitivity points.

The significance of this research is that it presents several significant advances to

the fields of safety engineering and design. It presents a process of concurrently

developing a system concept from the safety and functional perspective. We believe

this work presents an important step in making the design and safety processes more

efficient and effective for the software product line.

178

In general, the work is highly supports the object-oriented software architectures

development for the product lines. The research will benefit both architects and

safety engineers who can design product line architectures or develop software

product in domain of embedded systems and cyber-physical systems.

We review the concrete contributions of our research in more detail in the

following section (Sec. 9.2):

9.2 Thesis Contributions

The contribution of this thesis involves method for safety-driven software product

line architecture design (SSPLA). The method is to enhance and manage the safety

of software product lines. More specifically, the main contributions of this thesis are

as follows:

 We have surveyed the literature on software product line architectures

design. The survey study provided in Chapter 2 is considered as a

systematic literature review of the existing research on software product

line architecture (SPLA) design based on quality attributes.

 We have defined a new safety-driven SPLA design method (Chapter 4).

The key aspect of this method is the use of the design patterns concept

which improves the design process.

 For efficiency, a number of efforts have been made. In this context the

proposed design method mentioned above is configured and adapted to be

state-based architecture design method (Chapter 4). As the Unified

Modeling Language (UML) statechart diagram is a powerful tool for

specifying the dynamic behavior of reactive objects, this facility can be

used to describe the system behavior in term of safety. The adaptation

results in a new state-driven architectural design method. This adaptation

means that most of the process steps should be based on or around the

statechat semantic.

 It is evidente that a pattern based development of the reference architecture

can support the development and application process of the product lines.

In this context a new statechart-based safety design pattern has been

developed (Chapter 5). The proposed design pattern is called safety design

179

pattern of statechat. This pattern extends capabilities of both the

statecharts design patterns and safety patterns. The pattern allows an

object to alter its behavior and change its internal state when there is a

safety violation, and to protect it from introducing in unsafe states. The

result is an object-oriented design pattern which handles the safety

attribute. To extend the statechart pattern to capture the variability existing

in the SPLs, and because the complexities exist in the PL the thesis

proposed using of parameterization approach (proposed by Gomaa,

(Gomaa, 2011)).

 As there is a tight interplay between safety and security, and in order to

address the influence of the security issues in the safety design using

patterns, a pattern development approach that interlinks safety and

security patterns is proposed (Chapter 6). This pattern approach is then

used to enhance our proposed safety design pattern of statechart (presented

in Chapter 5) to address the security in the pattern (see Sec. 6.4). This

developed version is considered as a new safety and security pattern.

 To evaluate our work we have defined a simplified safety assessment

model (Chapter 7) which is used to evaluate the safety improvement in the

design of the SPLA after using the proposed safety design pattern.

 Finally, In order to show the applicability of our work as well as evaluate

it, two case studies are presented (Chapter 8).

9.3 Future Work

This section discusses future work to improve or complement the research in this

thesis. There are several potential courses for furthering the research presented in this

thesis, some of which are discussed in this section. The following research and

development topics are good candidates for future work:

 The work proposed a method for safety-driven software product line

architecture design (SSPLA). The thesis has introduced some efforts to

make the make this method more efficient (e.g. making the process

activities compatible and consistent). For future work, more efforts are

180

needed, for example addressing of the other product line aspects (like

reusability and maintainability).

 We have developed a new safety-driven design pattern of statechart. The

main idea of this new pattern is combining the concepts of the traditional

safety patterns with the concepts of statechart patterns. Further research

could be conducted to extend the idea of the safety design pattern of

statechart to develop a complete product line quality pattern language.

 In this thesis and in order to enhance the safety patterns to address the

influence of the security issues on the safety, a pattern development

approach that interlinks safety and security patterns is proposed (Chapter

6). The introduced approach for pattern development still needs more

work to address other issues such as the reliability, complexity and the

impact on execution time.

 In Chapter 7 a new Safety Assessment Model is presented. This model is

considered as a state-based safety assessment model. It is a simplified

mathematical model for safety assessment of the software product lines

architectures. It has been developed to show the safety improvement in the

design of the software product line architectures after using our design

method, and the safety design pattern. A further work is needed to assess

other product line issues such as the complexity and reusability. Also a

further research is needed to calculate the safety risk in the software

product line architectures.

181

LIST OF PUBLICATIONS

Refereed Journal Articles:

1. Mozamil Ebnauf, Hany H. Ammar ,‖Security and Safety Patterns in Software

Product Lines Architectures‖, Now in the publishing progress.

Mozamil Ebnauf, Hany H. Ammar , ‖Safety-driven Software Product Line

Architectures Design (SSPLA) Methodology for Embedded Systems‖, the Red

Sea University Journal of Basic and Applied Science, Vol.2 Special Issue (1), 18

June 2017.

2. Mozamil Ebnauf, Hany H. Ammar , ‖Safety-driven software product line

architecture design, A survey paper‖, International Journal of Computer

Applications Technology and Research (IJCATR), Volume 5, Issue 10, October

2016.

، الوجلة العلوية ‖هنهجية التصوين الوقاد بالسلاهة لوعواريات خط الإنتاج‖, هاني عوار, هزهل ابنعىف. 3

 ICCA)لاتصالات الجوعية العربية للحاسبات، الجزء الخاص للوؤتور الذولي لعلىم وهنذسة الحاسىب

 .2016العذد الأول هن الوجلذ التاسع (2016

Refereed Conference Proceedings:

1. Mozamil Ebnauf, W. Abdelmoez , Aisha Hassan, Hany H. Ammar, M.

Abdelhamid, ―State-driven Architecture Design for Safety–critical Software

Product Lines,‖ in 2019 7th IEEE International Conference on Mechatronics

Engineering (ICOM), October 2019, Kuala Lampur, Malaysia.

2. Mozamil Ebnauf, Hany H. Ammar,‖ Safety-driven Software Product Line

Architectures Design (SSPLA) Methodology for Embedded Systems‖ , CSIT 705,

First International Conference on Engineering and Applied Sciences, February

2017, Port Sudan, Sudan.

3. Mozamil Ebnauf, Hany H. Ammar, ― هنهجية التصوين الوقاد بالسلاهة لوعواريات خط

 Paper No 4, International Conference of Computer in Arabic (ICCA ,‖الإنتاج

2016), March 2016, Khartoum, Sudan.

182

REFERENCES

Adamczyk, P. (2003) ‗The Anthology of the Finite State Machine Design Patterns‘,

in Pattern Languages of Programming conference.

Aleti, A. et al. (2012) ‗Software Architecture Optimization Methods: A Systematic

Literature Review‘, IEEE Transactions on Software Engineering, 99, p. 1.

doi:10.1109/TSE.2012.64.

Ammar, H.H. (2013) ‗Lectures :The Software Product Line Architectures‘.

Amorim, T. et al. (2017) ‗Systematic pattern approach for safety and security co-

engineering in the automotive domain‘, in Lecture Notes in Computer Science

(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in

Bioinformatics), pp. 329–342. doi:10.1007/978-3-319-66266-4_22.

Andrade, H.S. De (2013) ‗Software Product Line Architectures : Reviewing the

Literature and Identifying Bad Smells‘, (September), p. 99.

Armoush, A. (2010) Design Patterns for Safety-Critical Embedded Systems, Thesis.

RWTH Aachen University.

Atkinson, C. and Muthig, D. (2002) ‗Component-Based Product-Line Engineering

with the UML‘, in Proceedings of the 7th International Conference on Software

Reuse: Methods, Techniques, and Tools. Berlin, Heidelberg: Springer-Verlag

(ICSR-7), pp. 343–344.

Bachmann, F. et al. (2000) ‗The Architecture Based Design Method‘, p. 61.

Bashroush, R. et al. (2017) ‗CASE Tool support for variability management in

software product lines‘, ACM Computing Surveys, 50(1). doi:10.1145/3034827.

Bass, L.J., Klein, M.H. and Bachmann, F. (2001) ‗Quality Attribute Design

Primitives and the Attribute Driven Design Method‘, in PFE.

Bayer, J., Flege, O. and Gacek, C. (2000) Creating Product Line Architectures.

Behjati, R. et al. (2013) ‗SimPL: A product-line modeling methodology for families

of integrated control systems‘, Information and Software Technology, 55(3), pp.

607–629. doi:https://doi.org/10.1016/j.infsof.2012.09.006.

Bogdanov, K. and Holcombe, M. (2001) Statechart testing method for aircraft

control systems, Test. Verif. Reliab.

Bosch, J. (2000) Design & Use of Software Architectures—Adopting and Evolving a

Product Line Approach.

Bures T. et al (2017) ‗Software Engineering for Smart Cyber-Physical Systems:

Challenges and Promising Solutions‘, ACM SIGSOFT S.E Notes. 42. 19-24.

10.1145/3089649.3089656 [Preprint].

Burns, M. (2019) ‗Cyber-Physical Systems and Internet of Things NIST Special

Publication 1900-202 Cyber-Physical Systems and Internet of Things‘.

Buschmann, F. and Maunier, R. (2001) Pattern-Oriented Software Architecture,

Volume 1, Architecture.

Canterbury Christ Church University (2019) ‗Mendeley‘. Available at:

learning.research.support@canterbury.ac.uk.

Capilla, R. et al. (2014) ‗An overview of Dynamic Software Product Line

architectures and techniques: Observations from research and industry‘, Journal

of Systems and Software, 91(1), pp. 3–23. doi:10.1016/J.JSS.2013.12.038.

Colanzi, T. and Vergilio, S. (2013) ‗Representation of Software Product Line

183

Architectures for Search-Based Design‘, in 2013 1st International Workshop on

Combining Modelling and Search-Based Software Engineering, CMSBSE 2013 -

Proceedings, pp. 28–33. doi:10.1109/CMSBSE.2013.6604433.

Crnkovic, I. and Stafford, J. (2013) ‗Embedded Systems Software Architecture‘,

Journal of Systems Architecture: the EUROMICRO Journal, 59, pp. 1013–1014.

doi:10.1016/j.sysarc.2013.11.005.

Dabrowski, C. and Hunt, F. (2011) ‗Using Markov chain and graph theory concepts

to analyze behavior in complex distributed systems‘, in The 23rd European

Modeling and Simulation Symposium. Citeseer.

Documentation.help (2022) No Title, documentation.help. Available at:

https://documentation.help/StarUML/documentation.pdf.

Dong, J. et al. (2008) ‗The Research of Software Product Line Engineering Process

and Its Integrated Development Environment Model‘, in 2008 International

Symposium on Computer Science and Computational Technology, pp. 66–71.

doi:10.1109/ISCSCT.2008.100.

Dr. Ali Assi (2011) Engineering Education and Research Using MATLAB. Edited by

D.A. Assi. InTech.

Ebnauf, M. and Al., E. (2019) ‗State-driven Architecture Design for Safety–critical

Software Product Lines‘, in 2019 7th IEEE International Conference on

Mechatronics Engineering (ICOM). Putrajaya-Malaysia.

Engström, E. and Runeson, P. (2011) ‗Software product line testing–a systematic

mapping study‘, Information and Software Technology, 53(1), pp. 2–13.

Fenelon, P. et al. (1994) ‗Towards integrated safety analysis and design‘, ACM

SIGAPP Applied Computing Review, 2(1), pp. 21–32.

Feng, Q. and Lutz, R.R. (2005) ‗Bi-directional safety analysis of product lines‘,

Journal of Systems and Software, 78(2), pp. 111–127.

doi:10.1016/J.JSS.2005.02.028.

Firesmith, D. (2004) ‗Engineering Safety Requirements, Safety Constraints, and

Safety-Critical Requirements‘, J. Object Technol., 3, pp. 27–42.

Gama, Helm, Johnson, V. (1995) Design Patterns Elements of Reusable Object-

Oriented Software. Edited by V. Gama, Helm, Johnson.

Gomaa, H. (2004) Designing Software Product Lines with UML: From Use Cases to

Pattern-Based Software Architectures. 350 Bridge Pkwy suite 208 Redwood

City, United State: Addison Wesley.

Gomaa, H. (2011) Software Modeling and Design: UML, Use Cases, Patterns, and

Software Architectures. Cambridge University Press.

Goseva-Popstojanova, K. et al. (2003) ‗Architectural-level risk analysis using UML.

IEEE Trans Software Eng‘, Software Engineering, IEEE Transactions on, 29,

pp. 946–960. doi:10.1109/TSE.2003.1237174.

Hallstrom, J.O., Soundarajan, N. and Tyler, B. (1995) ‗Monitoring Design Pattern

Contracts‘.

Han, K., Weimerskirch, A. and Shin, K. (2014) ‗Automotive Cybersecurity for In-

Vehicle Communication‘, IQT Quarterly, 6(1), pp. 22–25. Available at:

https://kabru.eecs.umich.edu/papers/publications/2014/IQT Quarterly_Summer

2014_Han et al.pdf.

von Hanxleden, R. et al. (2014) ‗SCCharts: Sequentially Constructive Statecharts for

Safety-Critical Applications‘, ACM SIGPLAN Notices, 49, pp. 372–383.

doi:10.1145/2666356.2594310.

Harel, D. (1987) ‗Statecharts: a visual formalism for complex systems‘, Science of

184

Computer Programming, 8(3), pp. 231–274. doi:https://doi.org/10.1016/0167-

6423(87)90035-9.

Hassan, A., Goseva-Popstojanova, K. and Ammar, H. (2005) ‗UML based severity

analysis methodology‘, in, pp. 158–164. doi:10.1109/RAMS.2005.1408355.

Hautamäki, J. (2005) ‗Pattern-based tool support for frameworks towards

architecture-oriented software development environment‘.

Hevner, A.R. et al. (2004) ‗Design science in information systems research‘, MIS

quarterly, pp. 75–105.

Heymans, P. and Trigaux, J.-C. (2003) Software Product Lines: State of the art.

Huang, Y. (2013) ‗Safety-Oriented Software Architecture Design Approach‘, Atlantis

Press [Preprint].

International Organization for Standardization and International Electrotechnical

Commission (2005) ‗Information technology - Open Distributed Processing -

Unified Modeling Language (UML) Version 1.4.2‘, Iso/Iec 19501:2005(E),

4(1), p. 454. Available at:

http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Unified+Mod

eling+Language+Specification#2.

Jamal, S. and Eric, S. (2003) Pattern-Based Approach for Object Oriented Software

Design.

Jan Bosch (2001) ‗Software product lines and software architecture design‘, in

Proceedings of the 23rd International Conference on Software Engineering

(ICSE’01) . LOS ALAMITOS: IEEE (The Institute of Electrical and Electronics

Engineers).

javatpoint (2022) No Title. Available at: https://www.javatpoint.com/uml-tools.

Jensen, D.C. and Tumer, I.Y. (2013) ‗Modeling and Analysis of Safety in Early

Design‘, Procedia Computer Science, 16, pp. 824–833.

doi:10.1016/J.PROCS.2013.01.086.

John Ryan O‘Farrell (2009) Development of A Software Architecture Method for

Software Product Families and its Application to the AubieSat Satellite

Program. Graduate Faculty of Auburn University.

Kang, K.C. et al. (1998) ‗FORM: A Feature-Oriented Reuse Method with Domain-

Specific Reference Architectures‘, Ann. Softw. Eng., 5(1), pp. 143–168.

Karthika, R.A., Rahamtula, S. and Anusha, Y. (2018) ‗Internet of things for industrial

monitoring and control applications‘, International Journal of Engineering and

Technology(UAE), 7(2.21), pp. 280–282. doi:10.14419/ijet.v7i2.21.12381.

Kasanen, E., Lukka, K. and Siitonen, A. (1993) ‗The constructive approach in

management accounting research‘, Journal of management accounting research,

5(1), pp. 243–264.

Kassir, A. (2018) UC Irvine UC Irvine Electronic Theses and Dissertations Title

Absorbing Markov Chains with Random Transition Matrices and Applications.

IRVINE. Available at: https://escholarship.org/uc/item/52h7q78h.

Kitchenham, B.A. (2004) ‗Procedures for Performing Systematic Reviews‘, Keele,

UK, Keele University, 33, pp. 1--26.

Kostakos, V. et al. (2016) ‗Modelling smartphone usage: A Markov state transition

model‘, UbiComp 2016 - Proceedings of the 2016 ACM International Joint

Conference on Pervasive and Ubiquitous Computing, pp. 486–497.

doi:10.1145/2971648.2971669.

L. Bass, M. Klein, and F.B. (2002) ‗Quality Attribute Primitives and the Attribute

Driven Design Method‘, in 4th International Workshop on Software Product-

185

Family Engineering,. Berlin Heidelberg: Ed. Springer.

Len Bass and Paul Clements and Rick Kazman (2003) Software Architecture in

Practice (2nd Edition). Addison-Wesley Professional.

Leveson, N. (2011) Engineering A Safer World, Medicine, conflict, and survival.

London, England: Massachusetts Institute of Technology.

doi:10.1080/13623699.2017.1382166.

Leveson, N.G. et al. (1991) ‗Experiences using statecharts for a system requirements

specification‘, in Proceedings of the Sixth International Workshop on Software

Specification and Design, pp. 31–41. doi:10.1109/IWSSD.1991.213079.

Leveson, N.G. (1991) ‗Software safety in Embedded Computer Systems‘,

Communications of the ACM, 34(2), pp. 34–46. doi:10.1145/102792.102799.

Li, L., Safe, L.L. and Université, S. (2018) ‗Safe and secure model-driven design for

embedded systems To cite this version : HAL Id : tel-01894734 ´ Mod eles

Approche Orient ee pour la ´ et la S ecurit S uret e ˆ e Embarqu es‘.

Liliana Dobrica, E.N. (2000) ‗Attribute-Based Product-Line Architecture

Development for Embedded Systems‘, in the 3rd Australasian Workshop on

Software and Systems Architectures. IEEE. Sydney, pp. 76–88.

Liu, J., Dehlinger, J. and Lutz, R. (2007) ‗Safety analysis of software product lines

using state-based modeling‘, Journal of Systems and Software, 80(11), pp.

1879–1892. doi:10.1016/J.JSS.2007.01.047.

M.Sharafi, S.D. (2013) ‗A Scenario-Based Approach for Architecture Reconstruction

of Product Line‘.

Mannion, M., Camara, J. (2004) ‗Theorem Proving for Product Line Model

Verification‘, in Proceedings of the 5th International Workshop on Product

Family Engineering (PFE-5). Springer, Berlin-Heidelberg, pp. 211-224, pp.

211–224.

Mannion, M. (2002) ‗Using First-Order Logic for Product Line Model Validation‘, in

Proceedings of the Second International Conference on Software Product Lines.

Berlin, Heidelberg: Springer-Verlag (SPLC 2), pp. 176–187.

Mari Matinlassi and Eila Nieme and Liliana Dobrica (2002) Quality-driven

architecture design and quality analysis method: A revolutionary initiation

approach to a product line architecture. Finland: VTT Technical Research

Centre of Finland.

McDermid, J. (2002) ‗Software Hazard and Safety Analysis‘, in Damm Wernerand

Olderog, E.-R. (ed.) Formal Techniques in Real-Time and Fault-Tolerant

Systems. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 23–34.

Medvidovic, N., Malek, S. and Mikic-Rakic, M. (2003) ‗Software Architectures and

Embedded Systems‘, in.

Meister, J., Reussner, R.H. and Rohde, M. (2004) ‗Applying patterns to develop a

product line architecture for statistical analysis software‘, Proceedings. Fourth

Working IEEE/IFIP Conference on Software Architecture (WICSA 2004), pp.

291–294.

Mozamil Ebnauf and Hany H. Ammar (2017) ‗Safety-driven Software Product Line

Architectures Design (SSPLA) Methodology for Embedded Systems‘, The Red

Sea University Journal of Basic and Applied Science, Vol.2(1).

Mozamil Elgodbe and Ammar, H.H. (2016) Safety-driven Software Product Line

architectures Design, A Survey Paper, International Journal of Computer

Applications Technology and Research. Available at: www.ijcat.com.

Murwantara, I.M. (2012) ‗Hybrid ANP: Quality attributes decision modeling of a

186

product line architecture design‘, in 2012 2nd International Conference on

Uncertainty Reasoning and Knowledge Engineering. IEEE, pp. 30–34.

Mustapiʹc, G. (2004) Architecting software for complex embedded systems : quality

attribute based approach to openness. Mälardalen University . Available at:

http://www.es.mdh.se/publications/667- (Accessed: 20 December 2021).

Nagamine, M., Nakajima, T. and Kuno, N. (2016) ‗A case study of applying software

product line engineering to the air conditioner domain‘, in ACM International

Conference Proceeding Series, pp. 220–226. doi:10.1145/2934466.2934489.

Niaz, I. and Tanaka, J. (2003) ‗Code Generation From Uml Statecharts‘, Proceedings

of the IASTED International Conference on Software Engineering and

Applications, 7.

Nunes, V. et al. (2012) ‗Variability management of reliability models in software

product lines: An expressiveness and scalability analysis‘, in 2012 Sixth

Brazilian Symposium on Software Components, Architectures and Reuse. IEEE,

pp. 51–60.

Obbink, H.T. et al. (2000) ‗A component-oriented platform architecting method for

families of software-intensive electronic prod‘, in.

Opengatesw.net (2021) Microsoft Office Excel. Available at:

https://www.opengatesw.net/ms-excel-tutorials/What-is-Excel-Used-For.htm.

Pär J Ågerfalk, B.F.B.L.B.L.L.O. and S.T. (2006) ‗Open Source in the Software

Product Line: An Inevitable Trajectory‘, in 10th International Software Product

Line Conference. Baltimore, Maryland, USA.

Parnas, D.L. (1976) ‗On the Design and Development of Program Families‘, IEEE

Transactions on Software Engineering, SE-2, pp. 1–9.

Paulo Leita˜o, Luis Ribeiro and Thomas Strasser (2016) ‗Smart Agents in Industrial

Cyber–Physical Systems‘, in Proceedings of the IEEE. IEEE, pp. 1086–1101.

Peter, M. (2011) Embedded Systems Foundations of Cyber-Physical Systems. 2nd

Edition. Springer Science+Business Media B.V.

Peter Wallin, S.L.J.F.J.A. (2012) ‗Problems and their mitigation in system and

software architecting‘, Information and Software Technology , 54.

Petersen, K. et al. (2008) ‗Systematic mapping studies in software engineering‘, in

12th International Conference on Evaluation and Assessment in Software

Engineering (EASE) 12, pp. 1–10.

Philippow, I. (2003) ‗Design pattern recovery in architectures for supporting product

line development and application‘, … Variability for OO Product …, pp. 42–57.

Available at: http://www.theoinf.tu-ilmenau.de/~riebisch/home/publ/04-phil.pdf.

Pinzger, M. et al. (2004) Architecture Recovery for Product Families.

Springer_verlag Berlin Heidelberg. doi:10.1007/978-3-540-24667-1_26.

Place, P.R.H. and Kang, K.C. (1993) Safety-Critical Software: Status Report and

Annotated Bibliography. Pennsylvania.

Pleuss, A. et al. (2012) ‗Model-Driven Support for Product Line Evolution on

Feature Level‘, J. Syst. Softw., 85(10), pp. 2261–2274.

doi:10.1016/j.jss.2011.08.008.

Pohl, K., Böckle, G. and van der Linden, F. (2005) Software Product Line

Engineering, Software Product Line Engineering. doi:10.1007/3-540-28901-1.

Polzer, A. et al. (2012) ‗Managing complexity and variability of a model-based

embedded software product line‘, Innovations in Systems and Software

Engineering, 8(1), pp. 35–49. doi:10.1007/s11334-011-0174-z.

Ramakrishna and Satish et. al. (1996) ‗Run time Assertion Schemes for Safety

187

Critical Systems‘, in Ninth IEEE Symposium on Computer Based Medical

Systems. Ann Arbor, Michigan.

Ran, A. (1995) ‗MOODS, Models for Object-Oriented Design of State‘, PLoPD

[Preprint].

Raspotnig, C., Karpati, P. and Opdahl, A.L. (2018) ‗Combined assessment of

software safety and security requirements: An industrial evaluation of the

CHASSIS method‘, Journal of Cases on Information Technology, 20(1), pp. 46–

69. doi:10.4018/JCIT.2018010104.

Rauhamäki, J., Vepsäläinen, T. and Kuikka, S. (2012) ‗Architectural patterns for

functional safety‘, in.

Ray, P.P. (2018) ‗A survey on Internet of Things architectures‘, Journal of King Saud

University - Computer and Information Sciences, 30(3), pp. 291–319.

doi:10.1016/j.jksuci.2016.10.003.

Rehn, C. (2009) ‗Software Architectural Tactics and Patterns for Safety and

Security‘, TU Kaiserslautern, 67663. Available at: http://www.christian-

rehn.de/downloads/seminar_safe_sec.pdf.

Robson, C. (2002) Real world research : a resource for social scientists and

practitioner-researchers. Oxford, UK; Madden, Mass.: Blackwell Publishers.

Sadiku, M.N.O. et al. (2017) ‗Cyber-Physical Systems: A Literature Review‘,

European Scientific Journal, ESJ, 13(36), p. 52.

doi:10.19044/esj.2017.v13n36p52.

Schmittner, C. et al. (2015) ‗A Case Study of FMVEA and CHASSIS as Safety and

Security Co-Analysis Method for Automotive Cyber-Physical Systems‘, in

Proceedings of the 1st ACM Workshop on Cyber-Physical System Security. New

York, NY, USA: Association for Computing Machinery (CPSS ‘15), pp. 69–80.

doi:10.1145/2732198.2732204.

Shaw, M. (2001) ‗The coming-of-age of software architecture research‘, in

Proceedings of the 23rd International Conference on Software Engineering.

ICSE 2001, pp. 656–664. doi:10.1109/ICSE.2001.919142.

Shaw, M. (2003) ‗Writing Good Software Engineering Research Papers:

Minitutorial‘, in Proceedings of the 25th International Conference on Software

Engineering. USA: IEEE Computer Society (ICSE ‘03), pp. 726–736.

Shi, J. et al. (2011) ‗A Survey of Cyber Physical Systems‘, Proc. of the Int. Conf. on

Wireless Communications and Signal Processing [Preprint].

doi:10.1109/WCSP.2011.6096958.

Siddiqui, A.S. et al. (2017) ‗A secure communication framework for ECUs‘,

Advances in Science, Technology and Engineering Systems, 2(3), pp. 1307–

1313. doi:10.25046/aj0203165.

Sommerville, I. (2009) Software Engineering. Nine editi. Addison-Wesley.

Sparx Systems (2016) UML Models Enterprise Architect User Guide Series

CREATED WITH. Available at: https://sparxsystems.com (Accessed: 20

December 2021).

Surkovi, A. (2018) ‗AN ATTACK MODEL OF AUTONOMOUS SYSTEMS OF Dˇ

zana Hani ´ Amer Surkovi ´ Supervisor : Aida Cauˇ‘.

Svahnberg, M. et al. (2003) ‗A Quality-Driven Decision-Support Method for

Identifying Software Architecture Candidates.‘, International Journal of

Software Engineering and Knowledge Engineering, 13, pp. 547–573.

doi:10.1142/S0218194003001421.

Swarup, M. Ben and Ramaiah, P.S. (2009) ‗A Software Safety Model for Safety

188

Critical Applications‘, in.

Systems, I. recommended practice for architectural description of software-intensive

(2000) ‗IEEE-Std-1471-2000.‘

Tan, L, Lin, Y. and Ye, H. (2012) ‗Modeling Quality Attributes in Software Product

Line Architecture‘, in 2012 Spring Congress on Engineering and Technology,

pp. 1–5. doi:10.1109/SCET.2012.6341971.

Tan, Lei, Lin, Y. and Ye, H. (2012) ‗Quality-Oriented Software Product Line

Architecture Design‘, Journal of Software Engineering and Applications, 05, pp.

472–476.

TechTarget (2021) Microsoft Office Excel, Excel. Available at:

https://searchenterprisedesktop.techtarget.com/definition/Excel.

Tetzner, R. (2021) How to Get Research Published in Journals. Available at:

https://www.linkedin.com/pulse/using-word-its-functions-academic-scientific-

writing-rene-tetzner.

Thane, H. (1999) ‗Safe and Reliable Computer Control Systems Concepts and

Methods‘, in.

Training.org (2021) The Importance of MS Excel, Training.org. Available at:

https://www.1training.org/blog/importance-ms-excel/.

Unphon, H. (2009) ‗Making Use of Architecture throughout the Software Life Cycle

- How the Build Hierarchy Can Facilitate Product Line Development‘, in

Proceedings of the 2009 ICSE Workshop on Sharing and Reusing Architectural

Knowledge. USA: IEEE Computer Society (SHARK ‘09), pp. 41–48.

doi:10.1109/SHARK.2009.5069114.

Urli, S., Blay-Fornarino, M. and Collet, P. (2014) ‗Handling complex configurations

in software product lines: A tooled approach‘, ACM International Conference

Proceeding Series, 1, pp. 112–121. doi:10.1145/2648511.2648523.

Vaccare Braga, R.T. et al. (2012) ‗The ProLiCES Approach to Develop Product

Lines for Safety-Critical Embedded Systems and its Application to the

Unmanned Aerial Vehicles Domain‘, CLEI Electronic Journal, 15(2), pp. 1–13.

doi:10.19153/cleiej.15.2.8.

Varshosaz, M. and Khosravi, R. (2013) ‗Discrete time Markov chain families:

Modeling and verification of probabilistic software product lines‘, ACM

International Conference Proceeding Series, (August 2013), pp. 34–41.

doi:10.1145/2499777.2500725.

W.R. Dunn (2002) Practical Design of Safety-Critical Computer Systems. William

Dunn (July 1, 2002).

Wan, J. et al. (2011) ‗Advances in cyber-physical systems research‘, KSII

Transactions on Internet and Information Systems (TIIS), 5(11), pp. 1891–1908.

Weiss, D.M. and Lai, C.T.R. (1999) Software Product-Line Engineering: A Family-

Based Software Development Process. USA: Addison-Wesley Longman

Publishing Co., Inc.

White, J. et al. (2013) ‗Evolving feature model configurations in software product

lines‘, Journal of Systems and Software, pp. 119–136.

doi:10.1016/j.jss.2013.10.010.

Wieringa, R. et al. (2006) ‗Requirements engineering paper classification and

evaluation criteria: a proposal and a discussion‘, Requirements engineering,

11(1), pp. 102–107.

Wu, W. and Kelly, T. (2004) ‗Safety tactics for software architecture design‘, in

Proceedings - International Computer Software and Applications Conference,

189

pp. 368–375. doi:10.1109/cmpsac.2004.1342860.

Yacoub, S. and H.A. (1998) ‗A Pattern Language of Statecharts‘, in Third

Conference on Pattern Languages of Programming, p. [1] S. and H. A. Yacoub,

―A Pattern Language of St.

Zhu, J. et al. (2011) ‗Improving Product Line Architecture Design and Customization

by Raising the Level of Variability Modeling‘, in, pp. 151–166.

doi:10.1007/978-3-642-21347-2_12.

