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Abstract

The design of a smart electric power grid is a challenge. One of the famous
problems in this field is the Economic load dispatch (ELD) problem. ELD is a
challenge optimization problem to minimize the total cost of the thermally
generated power that satisfies a set of equality and inequality constraints. To
solve this problem, we need to maximize the power network load under several
operational constraints. Meanwhile, we need to minimize the cost of power
generation and minimizing the loss in the network transmission. Traditional
optimization methods were used to solve such problems as linear programming.
Meta-heuristic search algorithms have shown encouraging performance in
solving various real-life complex problems. This thesis attempts to provide a
comprehensive comparison between nine meta-heuristic search algorithms
including Genetic Algorithms (GAs), Particle Swarm Optimization (PSO), Crow
Search Algorithm (CSA), Differential Evolution (DE), Salp Swarm Algorithm (SSA),
Harmony Search (HS), Sine Cosine Algorithm (SCA), Multi-Verse Optimizer (MVO),
and Moth-Flame Optimization Algorithm (MFO). Our developed results
demonstrated that meta-heuristics search algorithms (i.e., CSA and DE) can offer
the optimal set of power for each power station. These are computed power fulfill
the supply needs and maintain both minimum power cost and minimum power
losses in power transmission. In the future, we hope to continue to solving the
power generation problem area like unit commitment problems by apply on Meta-
heuristics algorithm and explores the best minimums fuel cost.
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Chapter 1

Introduction

1.1 Preface

The main aim of power system supply utility has been identified to provide a smooth
power generation system to the consumers. It will be ensured that the electrical
power is generated with minimum cost. That is mean to achieve an economic
operation of the power system; the total demand must be appropriately shared
among the units. This will minimize the total generation cost for the power system
with the voltage level maintained at the safe operating limits. Economic dispatcher
defined as the process of allocating generation levels to the generating units in the
mix so that the system load is fully supplied most economically. The method of
economic dispatch for generating units at different loads must have total fuel cost at
the minimum point.

Meta-heuristics are global search algorithms and their goal is to find an acceptable
solution within a reasonable time frame when the problem is very complex and the
search space is extremely large (Yang 2008). In their essence, meta-heuristics
incorporate randomness and a local search in their process (ye 2017). These features
support meta-heuristics to find a suboptimal solution when applying traditional
algorithms for evaluating every possible solution is impossible. In general, nature-
inspired algorithms can be classified into two main categories: Evolutionary
Algorithms and Swarm Intelligence algorithms. Evolutionary algorithms are mainly
inspired by the Darwinian theory of evolution and natural selection. This research will
talk about nine techniques of nature-inspired algorithms to solve the problem of high
fuel cost in the smart grid, and shows the results of implement three units’ system,
six-unit system, and IEEE thirty bus on nine algorithms to reach the general aim of the
proposed research.

1.2 Problem Statement

The mathematical principle of the ELD problem depends on formulating the power cost
as a minimization of an optimization function. The primary goal of the ELD problem is to
decrease the generation cost of power distribution and the allocated power network not
reliable and cannot fulfill the customer’s needs and minimize power losses during

transmission.



1.3 Proposed Solution

The proposed solution for the ED Problem by using the mathematical formulating of the
power cost to a provided the minimization of an optimization function by testing various
(nine) algorithms to known the convergence performance of proposed search algorithms
to get the best algorithms.

1.4 Objectives

The objectives of this study are to decrease the generation cost of power distribution. For
a particular thermal system that consists of n generators, the total generation cost use
meta-heuristic search algorithms adopted in this study shall be used to optimize the cost
function of the generated power. This function can be presented as given in Equation to
testing nine algorithms. This was reported in terms of the total cost, time, and load
fulfillment accuracy.

1.5 Methodology

This study shall be used MATLAB to execute optimize the cost function of the generated
power to solve multi-objective optimization procedures using LP. The LP technique with
piecewise linearization provided an overall economic benefit.

1.6 Scope
The scope of this Study for using Optimization Techniques to Minimizing Fuel Cost in the
Smart Grid.

1.7 Thesis Outlines

The rest of this thesis prospectus is structured as follows:

Chapter 2: Review of Relevant Literature. This chapter describes scholarly articles and
journals that explain a variety of concepts that are Meta-heuristics Algorithms.

Chapter 3: Problem Formulation. This chapter emphasizes the explains the minimize
fuel cost formulating to economic dispatch problem.

Chapter 4: Nature-inspired Meta-heuristics Search Algorithms. This section describes
scholarly articles and journals that explain a variety of concepts that are Meta-heuristics
Algorithms.

Chapter 5: Experimental Results. This chapter shows the results of implement three
units system, six unit system, and IEEE thirty bus on nine algorithms to reach the general
aim of the proposed research.

Chapter 6: Conclusions and Future work. This chapter shows the conclusion and Future
work of this research.

Chapter 7: Bibliography. A list of references
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Chapter 2

Literature Review

Meta-heuristics are widely known as efficient approaches for many hard optimization
problems. The classification of meta-heuristic divided to single solution and
population. We determine optimization problems as problems that cannot be solved
to optimal, by any exact method within a reasonable time limit.

Can be divide problems into several categories depending on whether they are
continuous or discrete, constrained or unconstrained, mono or multi-objective, static
or dynamic. Meta-heuristics can be used to solve all these problems. Meta-heuristics
define an algorithm designed to solve a wide range of hard optimization problems
without having to deeply adapt to each problem.

Indeed, the Greek prefix” meta” is used to indicate that these algorithms are
“higher-level” heuristics, in contrast with problem-specific heuristics. Meta-heuristics
are generally applied to problems for which there is no satisfactory problem-specific
algorithm to solve them.

One pioneer contribution is the proposition of the simulated annealing method by
(S. Kirkpatrick 1983). In 1986, the tabu search was proposed by (Glover 2008), and
the artificial immune system was proposed by (J.D. Farmer 1986). In 1988, Koza
registered his first patent on genetic programming, later published in 1992(Koza
1992). In 1989, Goldberg published a well-known book on genetic algorithms
(Goldberg 1989). In 1992, Dorigo completed his PhD thesis,in which he describes his
innovative work on ant colony optimization(Dorigo 1992).In 1993, the first algorithm
based on bee colonies was proposed by Walker et al (A. Walker 1993).Another
significant progress is the development of the particle swarm optimization by
Kennedy and Eberhart in 1995 (J. Kennedy 1995).The same year, Hansen and
Ostermeier proposed CMAES(N. Hansen 1995).In 1996, Mu'hlenbeinand Paaf3
proposed the estimation of distribution algorithm(Mu"hlenbein 1996). In 1997, Storn
and Price proposed differential evolution (R.M. Storn 1997). In 2002, Passino
introduced an optimization algorithm based on bacterial foraging (Passino
2002).Then, Simon proposed a bio-geographybased optimization algorithm in
2008(Simon 2008).

2.1  Single-solution based metaheuristics

Called trajectory methods are Reverse from population-based metaheuristics, they
start with a single initial solution and move away from it, describing a trajectory in

12



the search space. Trajectory methods mainly encompass the simulated annealing
method, the tabu search, the GRASP method, the variable neighborhood search, the
guided search, the iterated local search, and their variants.

2.1.1 Simulated Annealing

The origins of the Simulated Annealing method (SA) are in statistical mechanics
(Metropolis algorithm (N. Metropolis 1953). It was first proposed by Kirkpatrick et
al. (S. Kirkpatrick 1983), and independently by Cerny (Cerny 1985).

SA is inspired by the annealing technique used by the metallurgist s to obtain a”
well ordered” solid state of minimal energy (while avoiding the” meta-stable”
structures, characteristic of the local minimum of energy). This technique consists of
carrying a material at a high temperature, then in lowering this temperature slowly.

SA transposes the process of the annealing to the solution of an optimization
problem: the objective function of the problem, similar to the energy of a material,
and then minimized, by introducing a fictitious temperature T, which is a simple
controllable parameter of the algorithm.

SA has been successfully applied to several discrete or continuous optimization
problems, though it has been found too avid or unable to solve some combinatorial
problems. The adaptation of SA to continuous optimization problems has been
particularly studied in a wide bibliography can be found in (Alba 2005) (H.G. Beyer
2002) (N.E. Collins 1988) (Fleischer 1995) (C. Koulamas 1994) (P.V. Laarhoven 1987)
(Ed 2008).

2.1.2 Tabusearch

Tabu Search (TS) was formalized in 1986 by Glover (Glover 2008). TS was designed to
manage an embedded local search algorithm. It explicitly uses the history of the search,
both to escape from local minima and to implement an explorative strategy. Its main
characteristic is indeed based on the use of mechanisms inspired by human memory. It
takes, from this point of view, a path opposite to that of SA, which does not use memory,
and thus is unable to learn from the past.

2.2  Population-based meta-heuristics

Population-based meta-heuristics deal with a set (that means a population) of
solutions rather than with a single solution. The most studied population-based
methods are related to Evolutionary Computation (EC) and Swarm Intelligence (SI).
EC algorithms are inspired by Darwin’s evolutionary theory, where a population of
individuals is modified through recombination and mutation operators. In SI, the idea
is to produce computational intelligence by exploiting simple analogs of social
interaction, rather than purely individual cognitive abilities.

13



221 Evolutionary Computation

Evolutionary Computation (EC) is the general term for several optimization
algorithms that are inspired by the Darwinian principles of nature’s capability to
evolve living beings well adapted to their environment. Usually found grouped under
the term of EC algorithms (also called Evolutionary Algorithms (EAs)), are the
domains of genetic algorithms (Holland 1975a), evolution strategies (Rechenberg
1973), evolutionary programming (L.]. Fogel 1966), and genetic programming (Koza,
Bennett, Andre, Keane, and Dunlap 1997). Despite the differences between these
techniques, which will be shown later, they all share a common underlying idea of
simulating the evolution of individual structures via processes of selection,
recombination, and mutation reproduction, thereby producing better solutions.

2.2.2  Genetic algorithm

The Genetic Algorithm (GA) is the most well-known and most used evolutionary
computation technique. It was originally developed in the early 1970s at the
University of Michigan by John Holland and his students, whose research interests
were devoted to the study of adaptive systems (Holland 1975b). The basic GA is very
generic, and there are many aspects that can be implemented differently according to
the problem: representation of solution (chromosomes), selection strategy, type of
crossover and mutation operators, etc. The most common representation of the
chromosomes applied in GAs is a fixed-length binary string. Simple bit manipulation
operations allow the implementation of crossover and mutation operations.

These genetic operators form the essential part of the GA as a problem-solving
strategy. Emphasis is mainly concentrated on the crossover as the main variation
operator, which combines multiple (usually two) individuals that have been selected
together by exchanging some of their parts. There are various strategies to do this,
e.g., n-point and uniform crossover. An exogenous parameter personal computer
(crossover rate) indicates the probability per individual to undergo crossover. Typical
values for personal computer are in the range [0.6,1.0] (B"ack and Schwefel 1993).

Individuals for producing offspring are chosen using a selection strategy after
evaluating the fitness value of each individual in the selection pool. Some of the
popular selection schemes are roulette-wheel selection, tournament selection,
ranking selection, etc. A comparison of selection schemes used in GAs is given in (T.
Blickle 1995) (D.E. Goldberg 1991). After crossover, individuals are subjected to
mutation. Mutation introduces some randomness into the search to prevent the
optimization process from getting trapped into local optima. It is usually considered
as a secondary genetic operator that performs a slight perturbation to the resulting
solutions with some low probability.

Typically, the mutation rate is applied with less than one percent probability, but
the appropriate value of the mutation rate for a given optimization problem is an open
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research issue. The replacement (survivor selection) uses the fitness value to identify
the individuals to maintain as parents for successive generations and is responsible
to assure the survival of the fittest individuals. Interested readers may consult the
book by Goldberg (Goldberg 1989) for more detailed background information on GAs.

2.2.3 Differential evolution

The Differential Evolution (DE) algorithm is one of the most popular algorithms for
continuous global optimization problems. It was proposed by Storn and Price in the
'90s (R.M. Storn 1997) in order to solve the polynomial fitting problem and has
proven to be a very reliable optimization strategy for many different tasks. Like any
evolutionary algorithm, a population of candidate solutions for the optimization task
to be solved is arbitrarily initialized. For each generation of the evolution process,
new individuals are created by applying reproduction operators (crossover and
mutation). The fitness of the resulting solutions is evaluated and each individual
(target individual) of the population competes against a new individual (trial
individual) to determine which one will be maintained into the next generation.

The trial individual is created by recombining the target individual with another
individual created by mutation (called mutant individual). Different variants of DE
have been suggested by Price et al. (K.V. Price 2005) and are conventionally named
DE/ x/ y/ z, where DE stands for Differential Evolution, x represents a string that
denotes the base vector, i.e. the vector being perturbed, whether it is “ rand” (a
randomly selected population vector) or “ best” (the best vector in the population
with respect to fitness value), y is the number of difference vectors considered for
perturbation of the base vector x and z denotes the crossover the scheme, which may
be binomial or exponential. The DE/rand/1/bi n-variant, also known as the classical
version of DE, is used later on for the description of the DE algorithm.

2.2.4 Swarm intelligence

The Swarm Intelligence (SI) is an innovative distributed intelligent paradigm for
solving optimization problems that takes inspiration from the collective behavior of
a group of social insect colonies and of other animal societies. SI systems are typically
made up of a population of simple agents (an entity capable of performing/executing
certain operations) interacting locally with one another and with their environment.
These entities with very limited individual capability can jointly (cooperatively)
perform many complex tasks necessary for their survival. Although there is normally
no centralized control structure dictating how individual agents should behave, local
interactions between such agents often lead to the emergence of global and self-
organized behavior. Several optimization algorithms inspired by the metaphor s of
swarming behavior in nature are proposed. Ant colony optimization, Particle Swarm
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Optimization, Bacterial foraging optimization, Bee Colony Optimization, Artificial
Immune Systems, and Bio-geography-Based Optimization.

Fundamentals of Computational Swarm Intelligence Book (Engelbrecht 2006)
introduces the reader to the mathematical models of social insects’ collective behavior
and shows how they can be used in solving optimization problems. Another book by
Chan et al. (F.T.S. Chan 2007) aims at presenting recent developments and
applications concerning optimization with SI, making a focus on Ant and Particle
Swarm Optimization. (S. Das 2008) provide a detailed survey of the state-of-the-art
research centered around the applications of SI algorithms in bioinformatics. (A.
Abraham 2008) deals with the application of SI in data mining.

Particle swarm optimization

The Particle Swarm Optimization (PSO) was initially introduced in 1995 by James
Kennedy and Russell Eberhart as a global optimization technique (J. Kennedy 1995).
It uses the metaphor of the flocking behavior of birds to solve optimization problems.
There are a number of differences between PSO and evolutionary optimization
illustrated in (Angeline 1998), where some of the philosophical and performance
differences are explored.

In the PSO algorithm, many autonomous entities (particles) are stochastically
generated in the search space. Each particle is a candidate solution to the problem,
and is represented by a velocity, a location in the search space, and has a memory that
helps it in remembering its previous best position. A swarm consists of N particles
flying around in a D-dimensional search space. Moreover, every particle swarm has
some sort of topology describing the interconnections among the particles. The set of
particles to which a particle i is topologically connected is called i’'s neighborhood. The
neighborhood may be the entire population or some subset of it. Various topologies
have been used to identify “some other particle” to influence the individual. The two
most commonly used ones are known as gbest (for “global best”) and lbest (for “local
best”). The traditional particle swarm topology known as gbest was one where the
best neighbor in the entire population influenced the target particle.

While this may be conceptualized as a fully connected graph. The lbest topology,
introduce d in (R.C. Eberhart 1995), is a simple ring lattice where each individual is
connected to K = 2 adjacent members in the population array, with toroidal wrapping
(naturally, this can be generalized to K ; 2) (J. Kennedy 1995). pointed out that the
gbest topology had a tendency to converge very quickly with a higher chance of
getting stuck in local optima. On the other hand, the lbest topology was slower but
explored more fully, and typically ended up at a better optimum (J. Kennedy 2002).
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Chapter 3

Economic Dispatch of Thermal Units

The complication of interconnections and the scope of the areas of electric power
systems that are controlled in a synchronized way is fast increasing. This requires
optimal allocation of the outputs of a great number of active generators. Whether a
generator should participate in sharing the load at a given break of time is a problem
of unit commitment. when the unit commitment problem has been solved, it becomes
a problem of optimal allocation of the available generations to meet the predicted load
demand for the current interval. At a current-day energy management center, highly
developed optimization techniques are used to govern not only the optimal outputs
of the active generators, but also the optimal settings of various control devices such
as the tap settings of load tap changers (LTCs), outputs of VAR compensating devices,
desired settings of phase convert etc.

The favorite objective for such optimization problems can be many, such as the
minimization of the cost of generation, minimization of the total power loss in the
system, minimization of the voltage deviations, and maximization of the reliability of
the power supplied to the customers. One or more of these objectives can be
considered while formulating the optimization strategy. Determination of the real
power outputs of the generators so that the total cost of generation in the system is
minimized is traditionally known as the problem of economic load dispatch (ELD).
popular of generating systems are of three types: nuclear, hydro, and thermal (using
fossil fuels such as coal, oil and gas). Nuclear plants tend to be operated at constant
output power levels. Operating cost of hydro units do not change much with the
output. The operating cost of thermal plants, however, change great with the output
power level. In this chapter, we will discuss the problem of ELD for power systems
consisting of thermal units only as generators.

3.1 Economic Dispatch Problem

Primary we formulate the ELD problem neglecting transmission losses. This is
justified when a group of generators are connected to a particular bus-bar, as in the
case of individual generating units in a power plant, or when they are physically
located very close to each other. This ensures that the transmission losses can be
neglected due to the short distance involved. One such system configuration is shown
in Figure 3.1, where N thermal units are connected to a single bus-bar that is
supplying a load Pload. Input to each unit is expressed in terms of cost rate (say $/h).

17



The total cost rate is the sum of cost rates of individual units. The essential operating
constraint is that the sum of the power outputs must be equal to the load (note that
we are neglecting power losses here).

Boiler Turbine Generator

A A
3

<O

Fuel costs

Figure 3.1: N thermal units connected to a bus to serve a load Pioad

3.1.1 Fuel Cost Characteristics

The economic dispatch problem is the determination of generation levels such that
the total cost of generation becomes minimum for a defined level of load. Now, for
thermal generating units, the cost of fuel per unit power output varies significantly
with the power output of the unit. So, one needs to consider the fuel cost
characteristics of the generators while finding their optimal real power outputs. The
fuel cost characteristics is shown below Figure.

Mostly, the cost of work, supply and maintenance are fixed. Pmin is the output
level below which it is uneconomical or technically infeasible to operate the units.
Pmax is the maximum output power limit. For formulating the dispatch problem, fuel
costs are usually represented as a quadratic function of output power, as shown
below.

F(P)=aP?+bP +c (3.1)
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Figure 3.2: Typical fuel cost characteristics

3.1.2 Problem Formulation

The total fuel cost of operating N generators is given by
N

Fr=F1(P1) + F2(P2) +... + Fn(Pn) = XFi(Pi)
i=1

Neglecting transmission losses, total generation should meet the total load. Hence,
the equality constraint is,

Pi= PiLoad (32)

i=1

Based on the maximum and minimum power limits of the generators, following
inequality constraints can be imposed:

Pimin < Pi< Pimax (33)

This is a constrained optimization problem that can be solved by multiple method.

Economic Operation of Power Systems (A. ]. Wood 2006) (Kirchmayer 1979)

e Swarm-based algorithms such as particle swarm optimization (Gaing 2003; Kuo
2008; Rahmani, Othman, Yusof, and Khalid 2012; Dewangan, Jain, and Huddar 2010),
cuckoo search (Nguyen and Vo 2015; Sen and Acharjee 2016), ant colony optimization
(Aristidis 2006),
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e Evolutionary-based algorithms such as evolutionary algorithms (Sahoo, Dash,
Prusty, and Barisal 2015), genetic algorithm (Gaing 2003; Chen and Chang
1995), harmony search algorithm (Chakraborty, Roy, Panigrahi, Bansal, and
Mohapatra 2012), biogeography-based optimization (Bhattacharya and
Chattopadhyay 2010), and ¢ Trajectory-based algorithms such as simulated
annealing (Bhattacharya and Chattopadhyay 2011).

3.2 Mathematical Formulation of ELD

In this section, we start by providing a formulation to the ELD problem. The economic
dispatch problem objective is to maximize the economic welfare of a power network
under various operation constraints. Assume we have a network with n buses
(nodes). The unconstrained ELD problem can be formulated as:

Min Ck(Pr) = Ci(P1) + - + C1(Pn)

n

=XCi(Py) (3.4)
k=1

where [krepresents the net power injection at bus k, and Cx(Px) is the cost function

of producing power at bus k. A power system with this given configuration can be
presented as in Figure 3.3 where n thermal units are connected to a single bus-bar
that is supplying a load power Px. The input to each unit is expressed in terms of cost
rate (say $/h) Pk. k = 1,..,n, n is the number of power generator units. The cost
presented in Equation 3.4 can be approximated in a quadratic form as given in
Equation 3.5 for minimization purposes (Bergen 1986; Wood and Wollenberg 2010).

Busl

(@) B

Bus2 Bus3 Load

Figure 3.3: Two generators and Three Bus power system

n

Min Ci(P) = XaxPi2 + BiPi+ vk (3.5)
k=1
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Pk is the generated power from generator unit k, akfk and yk are the fuel cost
coefficients of unit i. Two types of constraints shall be considered while solving this
problem; equality constraints and inequality constraints.

3.2.1 Power Balance Equality Constraints

A real power system has to generate enough power such that it covers both the
demand and the transmission lines power loss. It is known that the power produced
at any power station go through large and complex networks such as transformers,
transmission lines, cables and additional equipment to supply the end users of their
demand. Therefore, it is always the case that the power units in a network always
produce extra power not only to match the demand but also to recover the waste of
transmission power. This difference in the generated and distributed power Pg is
recognized as Transmission and Distribution loss power Pi. Any lack in the generated
power P¢ will cause shortage in feeding the power in demand Pp which could be a
reason for several problems for the system and loads (See Equation 3.6).

PC:ZZPA:ZPD+PL
k=1 (3.6)

where Ppis the load demand and P.is the transmission lines loss, while n and Pk
have the same definition as in Equation 3.5.

To consider the effect of transmission losses in our cost computation, we adopted
the loss coefficient method which proposed by Kron and Kirchmayer (Bergen 1986;
Wood and Wollenberg 2010). In this method, a matrix { is defined as "the transmission
loss coefficients matrix” used to include the power loss. { is a square matrix with a
dimension of R™n while n is the number of power generation units in the system.
Equation 3.7 describes the definition of P.based the transmission loss {-matrix.

n n

PL = XXPiijPj (3.7)
i=1j=1

where PLossis the transmission power loss, P; Pjare the power generated from any two

power generator units ij. Meanwhile, jis the elements of the matrix { between i and
J power generator units.

3.2.2 Generation Limit Inequality Constraints

The generated power from the power generation system should satisfy number of
constraints based on the capacity of the generation unit. For instance, the generation
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units cannot exceed a certain power generation unit since this nay cause instability
for the synchronous generators. Meanwhile, generating less power than a minimum
limit may cause the rotor to over speed. These limitations for the k' generator are
described in Equation 3.9 and presented in (Saadat 2008).

P <P <P k=1, (38)

where Pxmin and Pimex are the limitation of generation for the kth generation unit.

3.2.3 Generation Limit Inequality Constraints

The generated power from the power generation system should satisfy number of
constraints based on the capacity of the generation unit. For instance, the generation
units cannot exceed a certain power generation unit since this nay cause instability
for the synchronous generators. Meanwhile, generating less power than a minimum
limit may cause the rotor to over speed. These limitations for the k' generator are
described in Equation 3.9 and presented in (Saadat 2008).

Pymin< Py< Pymaxk = 1,..,n (3.9)

where! 7" andi"** are the limitation of generation for the kt" generation unit.
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Chapter 4

Nature-inspired Meta-heuristics Search Algorithms

Meta-heuristics are global search algorithms and their goal is to find an acceptable
solution within a reasonable time frame when the problem is very complex and the
search space is extremely large. In their essence, meta-heuristics incorporate
randomness and a local search in their process. These features support meta-
heuristics to find a suboptimal solution when applying traditional algorithms for
evaluating every possible solution is impossible. However, this does not grantee that
meta-heuristics will always find the optimal solution neither that they will work.
Basically, there are two main components of the meta-heuristics algorithms:
exploration and exploitation. In the exploration component, the algorithm tries to
explore and test different areas in the search space, while on the other hand, in the
exploitation component, the algorithm tries to focus the search around some
suboptimal found solutions (Yang 2008).

Most of nature-inspired algorithms are population-based algorithms where they
start by randomly generating a predetermined number of candidate solutions (also
called individuals) then they start to iteratively update the generated solutions using
a specific designed mechanism. In every iteration, the algorithm evaluates all
individuals using a fitness function to assess their quality considering them as
possible solutions for the targeted problem. In some meta-heuristics, fitness values
affect the search direction of the algorithm.

In general, nature-inspired algorithms can be classified into two main categories:
Evolutionary Algorithms and Swarm Intelligence algorithms. Evolutionary algorithms
are mainly inspired by the Darwinian theory on evolution and natural selection. Best
example of this type is the well-regarded Genetic Algorithm (GA). GA was first
proposed and designed in the works of John Holland (Holland 1992). GA is
distinguished by its reproduction operators namely; the crossover and mutation
operators. On the other side, most of the Swarm Intelligence algorithms are inspired
by the movement or interaction of some families of birds, fish or animals in nature. A
well-regarded example of this category is the Particle Swarm Optimization (PSO). PSO
was first introduced by Kennedy and Eberhart in 1995 (J. Kennedy 1995; Polj,
Kennedy, and Blackwell 2007). In PSO, individuals (or particles) are updated based
on the best-found solution by all individuals and the best solution found by the
updated individual itself.
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4.1 Genetic Algorithm

GA is an evolutionary approach, which applies evolutionary operators and a
population of solutions to achieve a global optimal solution. Gas includes selection,
recombination and mutation. Candidate solutions to the problem are encoded as
chromosomes, and then a fitness function inversely proportional to the mean squared
error value is applied to determine the chromosomes surviving likelihood in the next
generation. In GA we use a model of the natural selection in real life, where an initial
population of solutions called individuals is randomly generated. The algorithm
produces new solutions of the population by genetic operations, such as
reproduction, crossover and mutation (?). The new generation consists of the possible
survivors with the highest fitness score, and new individuals estimated from the
previous population using the genetic operations.

GA search the solution space of a function through the use of simulated evolution,
i.e., the survival of the fittest strategy (?). GAs was used to solve linear and nonlinear
problems by exploring all regions of the state space and exponentially exploiting
promising areas through mutation, crossover, and selection operations applied to
individuals in the population. which are individual solutions (analogous to
chromosomes) of the state space. These operators, which rely on probability rules,
are applied to the population, and successive generations are produced.

In general, the starting search for an optimal solution begins with a randomly
generated population of chromosomes. Each generation will have a new set of
chromosomes obtained from the application of the operators. A fitness, or objective
function, is defined according to the problem. The parent selection process ensures
that the fittest members of the population have highest probability of becoming
parents, in the hope that their offspring will combine desirable features, and have
superior fitness, to both. The algorithm terminates either when a set of generation
number is reached, or the fitness has reached a” satisfactory” level. The use of a GA
requires the determination of six fundamental issues:

1. Representation

2. Distribution of initial population

3. Fitness Function

4. Selection Mechanism

5. Reproduction Parameters (i.e., Crossover and Mutation)

6. Termination Criteria
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The main steps for GA procedure can be summarized as follows:

1. Generate an initial population.

2. Evaluate the fitness of each individual according to the given fitness function.
3. Select the fittest individual for mating.

4. Apply reproductive operators (e.g., crossover, mutation) to create offspring.

5. Evaluate the fitness of the offspring and select the fit individuals from the
current generation and the offspring. They form the population of the next
generation.

6. Stop if stopping criterion is met, else go to step 3.

The GA can be presented as in Figure 4.1.
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Figure 4.1: Flowchart for GAs
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4.2 Particle Swarm Optimization

PSO belongs to a class of swarm intelligence techniques that are used to solve

optimization problems (J. Kennedy 1995). Each particle in PSO is updated by
following two” best” values:

e pbest: Each particle keeps track of its coordinates in the solution space which are

associated with the best solution (i.e fitness) that has achieved so far by that
particle. This value is called personal best, pbest.

e gbest: It is tracked by the PSO is the best value obtained so far by any particle in
the neighborhood of that particle. This value is called Global Best, gbest.

Initialize location and velocity

vector of particle swarm

!

Calculate fitness
function values

Update particle velocity and
location vector

Calculate fitness
function values

Update individual optimal value and
global optimal value

No

Judge termination
conditions

Yes

Figure 4.2: Flowchart for PSO
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The PSO Algorithm works as follows:

Let X and V denote the particles position and its corresponding velocity in search
space respectively. At iteration K, each particle i has its position defined by XiX

= [Xi1,Xi2,....,Xin] and a velocity is defined as Vi€ = [V;1,Vi2,...,Vin] in search space N.
Velocity and position of each particle in the next iteration can be calculated as:

Vinks1= W * Vink+ C1* rand1 * (pbestin — Xink ) + C2 * rand2 x (gbestn — Xink ) (4.1)

wherei=1,2...m and n=12,..N
in

Xi,nk+1 = XXmin,i,nk + V,i,nk+1,ifXI'inkmin,i,n+1 < X<min,i,n: Xik+1 <= Xmax,i,n (42)

Xmax,i,n, I'ink+1 > Xmax,i,n

Algorithm for PSO initialize each particle to contain Nc randomly selected cluster
means. t=1 to tmax(maximum number of iterations) each particle i each pixel Zp
calculate d(Zp,mj)foraliclusterscij Assign ZptoCij where d(Zp,mij) = minvc=1,.,N. d(Zp,mic)
d(Zp,mj) represents the euclidean distance between the p-th pixel Zp and the centroid
of j-th cluster of pixel i Calculate the fitness function f(xi(t),Z) where Z is a matrix
representing the assignment of pixels to clusters of particle i Update the personal best
and the global best positions Update the cluster centroids

The inertia weight W is an important factor for the PSO convergence. It is used to
control the impact of previous history of velocities on the current velocity. A large
inertia weight factor facilitates global exploration (i.e., searching of new area) while
small weight factor facilitates local exploration. Therefore, it is better to choose large
weight factor for initial iterations and gradually reduce weight factor in successive
iterations. This can be done by using

Iter

W = H‘fma;y - I’Vma.r - I'/I'rmin T
( ) % Iter oz (4.3)

where max and Wmin are initial and final weight respectively, Iter is current
iteration number and Itermaxis maximum iteration number.

Acceleration constant C1 called cognitive parameter pulls each particle towards
local best position whereas constant C2 called social parameter pulls the particle
towards global best position (ye 2017). The particle position is modified by Equation
(4.2). The process is repeated until stop-ping criterion is reached.
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The number of threshold levels is the dimension of the problem. For example, if
there are "m” threshold levels, the it" particle is represented as follows:

Xi= (Xi1,Xi2,...,Xim) (4.4)

Its implementation consists of the following steps:

e [nitialization of the swarm: For a population size p, the particles are randomly
generated between the minimum and the maximum limits of the threshold
values.

e Evaluation of the objective function: The objective function values of the
particles are evaluated using the objective functions.

e Initialization of pbest and gbest: The objective values obtained above for the
initial particles of the swarm are set as the initial pbest values of the particles.
The best value among all the pbest values is identified as gbest.

e Evaluation of velocity: The new velocity for each particle is computed using the
Equation.

e Update the swarm: The particle position is up-dated using Equation 4.1. The
values of the objective function are calculated for the updated positions of the
particles. If the new value is better than the previous pbest, the new value is set
to pbest. Similarly, gbest value is also updated as the best pbest. ¢ Stopping
criteria: If the stopping criteria are met, the positions of particles represented
by gbest are the optimal threshold values. Otherwise, the procedure is repeated
from step 4.

There are many advantages of PSO. They include:

1. PSO is easy to implement and only few parameters have to be adjusted.
2. Unlike the GA, PSO has no evolution operators such as crossover and mutation.

3. In GAs, chromosomes share information so that the whole population moves
like one group, but in PSO, only global best particle (gbest) gives out information
to the others. It is more robust than GAs.

4. PSO can be more efficient than GAs; that is, PSO often finds the solution with
fewer objective function evaluations than that required by GAs (P. R. Lorenzo
2017).
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5. Unlike GAs and other heuristic algorithms, PSO has the flexibility to control the
balance between global and local exploration of the search space.

4.3  Crow Search Algorithm

The CSA is a recent nature-inspired metaheuristic which was proposed in
(Askarzadeh 2016). The abstract ideas of CSA are inspired by the behavior of crows
birds in nature. Crows are considered as one of the most intelligent birds. It was
reported in different studies that crows show clever behaviors such as the ability to
hide their exceeded food and the ability to find it again. Moreover, crows
communicate in sophisticated way and they have good memory to recognize objects.
As a search algorithm, CSA was implemented based on the following four main points:

Crows exist in nature as flocks so the CSA is formed as a population-based
algorithm.

e Crows can remember the place where they hide their food and retrieve it again.

Crows can watch other animal to steal their food.

e Crows manage to protect their store of food with a ratio.

In CSA, a solution for a targeted problem is represented as the position of the crow
ata given time as shown in Equation 4.5, where x;¢is the position of crow i at iteration
G. Note that we used G to denote the concept of iteration which is analogous to
generation in GA or DE. xicis consisted of D variables which represents the dimension
of the problem.

(4.5)

CSA is a population-based metaheuristic. As most of optimizers that belong to this
family, it starts by randomly generating a group of possible solutions of size N called
flock of crows. Therefore, the size of the population is NxD. CSA incorporates also the
concept of memory, which represents the qualities of the positions of the crows. The
quality of each position is measured by the fitness function and stored in an array as
given in Equation 4.6.
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Crows in the flock update their position using the following mechanism: each crow
i selects another crow j from the flock to follow in a hope to find the food hidden by
the latter crow nmv. This movement is represented as given in Equation 4.7.

AG oy G e (d G _ L AGY . e
SGHT {;r,‘ + 1 x fI0Y % (-mJ —a' ) ri > AP?

a random position otherwise

(4.7)

where rjis a random generated number drawn from uniform distribution between 0
and 1, while APi¢is the awareness probability of crow j at iteration G.

The fitness of the new position is checked, if its quality is better than the current
one then the position is updated. Otherwise, the crow stays in the same position. Then,
the memory can be updated as given in Equation 4.8.

1G11 {:L"’*G“ f ("G HY) is better than f (m"“)
m" =
m Otherwise (4.8)
where f denotes the value of fitness function. Similarly, if the fitness value of the new
position is better than the memorized position then the crow updates its memory
accordingly. The processes of generating new positions, evaluating them and
updating memories are repeated until a predefined termination condition is met.

4.4 Differential Evolution

Differential Evolution (DE) is one of the most well-regarded evolutionary algorithms
(R-M. Storn 1997). Similarity to other evolutionary algorithms, DE first initializes the
first population. It then performs difference-vector based mutation, crossover, and
selection. During the optimization process each solution is evaluated by an objective
function and assigned an objective value. Each of these steps are discussed as follows
(Das and Suganthan 2011).
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4.4.1 Initialization

DE is considered as a real-parameter optimization algorithm. Therefore, each variable
has a minimum and maximum. The following vector is initialized considering the
lower and upper bounds of each variable:

~Xi,G = [X1iG,X2,Gyu.., XDiG] (4.9)

where i is an index to refer to ith vector in the population, G is the generation number,
and D indicates the number of dimension (variables of the problem).

The initialization is done using the following equation:

Xji0 = ubj+ r - (ubj- Ibj) (4.10)
where ubjis the upper bounds in the jt" dimension and Ib;shows the lower bout in the
jthdimension.

4.4.2 Mutation

Mutation in nature occurs in genome with random changes in the genes. In DE, if a
solution faces mutation, it is called donor. To perform mutation in DE, three vectors

are sampled randomly: Xyt Xops Xt This means the indices of these three vectors
are randomly chosen between one and the maximum number of vectors in the
population. To perform mutation, the difference between two of these vectors are
calculated (and normalized) for each donor vector. Their difference are then added
up to the third vector, which give the final donor vector. These steps can be
represented in an equation as follows:

Vie=Xiqg+F- (Xv-g,c: - XT_;,(_;) (4.11)

where F is a scalar number and normally chosen in the interval of [0.4,1].

4.4.3 Crossover (reproduction)

Crossover is the main operator to promote exploration in any evolutionary algorithm.
In DE, crossover is done after mutation. The resulting vector in DE is called the trial
vector. There are different crossover operators in the literature which mainly varies
in the crossover point in the vectors. Regardless of the crossover starting point, it can
be formulated as follows:
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Upic = VjiG (4.12)
for j=<n>p..<n+L-1>p
vje|[1,D
X6 j € [1,D]
where L shows the donor’s number of components, n is randomly chosen in the
interval of [1,D], and <>pis a modulo function.

4.4.4 Selection

The selection operator eventually selects the best solutions and allow them to move
the the next generation. In DE, if a solution becomes better than its parents, it is
replaced by them immediately. Otherwise, the solution is move the the next
generation intact. The mathematical formulation for this operator is as follows for
minimization problems:

Xicr1 =19 = - .
Xa‘,G f(U‘,;:(;) > f(X,;‘(;)
(4.13) if

= {Uf,(; if f0a) < f(Xic)

For maximization problems, this equation should be written as follows:

b% _ {LE--G if f([{agc:) > f()gc)
i6r1(4.14)
XiG if f{Uic) < f(Xic)

The DE algorithm repeatedly runs these steps until the satisfaction of an end
criterion.

4.4.5 Fitness Function

Our objective is to find estimate the optimal power units values Pk = 1,..,n, n is the
number of power units, which minimize the objective criterion L (see Equation
4.15).

L=> Ci(P)+Ax[> Pi—Pp—Pp
k=1 k=1 ] (4.15)

where Ck(Px) is the cost of power generated from generator Pk, Ppis the demand

load, P.is the transmission lost power. A is an arbitrary chosen parameter with high
value to penalize the losses in the cost computation. In our case, A was set to 100.
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4.5 Salp Swarm Algorithm

The Salp Swarm Algorithm (SSA) is a recent nature-inspired optimizer proposed by
Mirjalili et al.(Mirjalili 2017). The purpose of SSA is to develop a population-based
optimizer by mimicking the swarm behavior of salps in nature (Abbassi 2019).

The performance of the original SSA as an ELM trainer has not been investigated
to date. SSA algorithm reveals satisfactory diversification and intensification
propensities that make it appealing for evolving ELM training tasks. The unique
advantages of SSA cannot be obtained by using some traditional optimizers such as
PSO, GWO, and GSA techniques.

The SSA can be considered as a capable, flexible, simple, and easy to be understood
and utilized in parallel and serial modes. Furthermore, it has only one adaptively
decreasing parameter to make a fine alance between the diversification and
intensification inclinations.

In order to avoid immature convergence to local optima (LO), the position vectors
of salps are gradually updated considering other salps in a dynamic crowd of agents.
The dynamic movements of salps enhance the searching capabilities of the SSA in
escaping from LO and immature convergence drawbacks. It also keeps the elite salp
found so far to guide other members of swarm towards better areas of the feature
space.

The SSA has an iterative generates nature and evolves some random individuals
(that means salps) inside the bounding box of the problem. Then, all salps should
update their location vectors. The leader salp will attack in the direction of a food
source, while all followers can move towards the rest of salps (and leader directly or
indirectly) (Mirjalili 2017).

4.6 Harmony Search

4.6.1 Diversification and Intensification

In reviewing other metaheuristic algorithms, we have repetitively focused on two
major components: diversification and intensification. They are also referred to as
exploration and exploitation (C and A 2003) (M and C 2005). These two components
are seemingly dictating each other, but their balanced combination is crucially
important to the success of any metaheuristic algorithms (C and A 2003) (M and C
2005).

The best diversification or exploration makes sure the search in the parameter
space can explore as many locations and regions as possible in an efficient and
effective manner.
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It also ensures that the evolving system will not be trapped in biased local optima.
Diversification is often represented in the implementation as the randomization
and/or additional stochastic component superposed onto the deterministic
components. If the diversification is too strong, it may explore more accessible search
space in a stochastic manner, and subsequently will slow down the convergence of
the algorithm.

If the diversification is too weak, there is a risk that the parameter space explored
is so limited and the solutions are biased and trapped in local optima, or even lead to
meaningless solutions.

On the other hand, the appropriate intensification or exploitation intends to
exploit the history and experience of the search process. It aims to ensure to speed up
the convergence, when necessary, by reducing the randomness and limiting
diversification.

Intensification is often carried out by using memory such as in Tabu search and/or
elitism such as in the genetic algorithms. In other algorithms, it is much more
elaborate to use intensification such as the case in simulated annealing and firefly
algorithms. If the intensification is too strong, it could result in premature
convergence, leading to biased local optima or even meaningless solutions, as the
search space is not well explored. If the intensification is too weak, convergence
becomes slow.

The optimal balance of diversification and intensification is required, and such a
balance itself is an optimization process.

Fine-tuning of parameters is often required to improve the efficiency of the
algorithms for a particular problem. A substantial number of studies might be to
choose the right algorithms for the right optimization problems (Yang2008), though
it lacks systematic guidance for such choices.

4.6.2 Analyze the Harmony Search algorithm

when we analyze the Harmony Search algorithm in the context of the major
components of meta-heuristics and try to compare it with other metaheuristic
algorithms, we can identify its ways of handling intensification and diversification in
the HS method, and probably understand why it is a very successful metaheuristic
algorithm.

In the HS algorithm, diversification is essentially controlled by the pitch
adjustment and randomization, here there are two subcomponents for diversification,
which might be an important factor for the high efficiency of the HS method.
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The first subcomponent of composing ‘new music’, or generating new solutions,
via randomization would be at least at the same level of efficiency as other algorithms
by randomization.

Pitch adjusting is carried out by adjusting the pitch in the given bandwidth by a
small random amount relative to the existing pitch or solution from the harmony
memory. Essentially, pitch adjusting is a refinement process of local solutions. Both
memory considering and pitch adjusting ensure that the good local solutions are
retained while the randomization and harmony memory considering will explore the
global search space effectively.

The subtlety of this is that it is a controlled diversification around the good
solutions (good harmonics and pitches), and it almost acts like an intensification
factor as well. The randomization explores the search space more efficiently and
effectively; while the pitch adjustment ensures that the newly generated solutions are
good enough, or not too far away from existing good solutions.

The intensification is mainly represented in the HS algorithm by the harmony
memory accepting rate accept. A high harmony acceptance rate means the good
solutions from the history/memory are more likely to be selected or inherited.

Obviously, if the acceptance rate is too low, the solutions will converge more
slowly. As mentioned earlier, this intensification is enhanced by the controlled pitch
adjustment. Such interactions between various components could be another
important factor for the success of the HS algorithm over other algorithms.

In addition, the implementation of HS algorithm is also easier. There is some
evidence to suggest that HS is less sensitive to the chosen parameters, which means
that we do not have to fine-tune these parameters to get quality solutions.

Furthermore, the HS algorithm is a population-based metaheuristic, which means
that multiple harmonics groups can be used in parallel. Proper parallelism usually
leads to better implantation with higher efficiency.

The good combination of parallelism with elitism as well as a fine balance of
intensification and diversification is the key to the success of the HS algorithm, and in
fact, to the success of any metaheuristic algorithms.

These advantages make it very versatile to combine HS with other metaheuristic
algorithms such as PSO to produce hybrid meta-heuristics and to apply HS in various
applications (Geem ZW and GV 2001) (KS and ZW 2005) (ZW 2006) (M and Mahdavi
2008) (ZW 2008) (ZW 2007).
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4.7  Sine Cosine Algorithm

The Sine Cosine Algorithm (SCA)is a novel population-based optimization algorithm
for solving optimization problems. The SCA creates multiple initial random candidate
solutions and requires them to fluctuate outwards or towards the best solution using
a mathematical model based on sine and cosine functions. Several random and
adaptive variables also are integrated to this algorithm to emphasize exploration and
exploitation of the search space in different milestones of optimization.

The performance of SCA is benchmarked in three test phases. Firstly, a set of well-
known test cases including unimodal, multi-modal, and composite functions are
employed to test exploration, exploitation, local optima avoidance, and convergence
of SCA.

Secondly, several performance metrics (search history, trajectory, average fitness
of solutions, and the best solution during optimization) are used to quantitatively and
qualitatively observe and confirm the performance of SCA on shifted two-dimensional
test functions.

Finally, the cross-section of an aircraft’'s wing is optimized by SCA as a real
challenging case study to verify and demonstrate the performance of this algorithm
in practice.

The results of test functions and performance metrics prove that the proposed
algorithm is able to explore different regions of a search space, avoid local optima,
converge towards the global optimum, and exploit promising regions of a search
space during optimization effectively.

The SCA algorithm obtains a smooth shape for the airfoil with a very low drag,
which demonstrates that this algorithm can highly be effective in solving real
problems with constrained and unknown search spaces (Mirjalili 2017).

The SCA algorithm theoretically is able to determine the global optimum of
optimization problems due to the following reasons:

SCA creates and improves a set of random solutions for a given problem, so it
intrinsically benefits from high exploration and local optima avoidance compared to
other single-solution-based algorithms.

Different regions of the search space are explored when the sine and cosine
functions return a value greater than 1 or less than -1.

Promising regions of the search space is exploited when sine and cosine return
value between -1 and 1.

The SCA algorithm smoothly transits from exploration to exploitation using
adaptive range change in the sine and cosine functions.
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The best approximation of the global optimum is stored in a variable as the
destination point and never get lost during optimization.

Since the solutions always update their positions around the best solution
obtained so far, there is a tendency towards the best regions of the search spaces
during optimization

Since the proposed algorithm considers optimization problem as black boxes, it is
readily incorporable to problems in different fields subject to proper formulation of
the problem (Mirjalili 2017).

4.8 Multi-Verse Optimizer

4.8.1 Inspiration

The big bang theory (Khoury ] 2002) discusses that our universe starts with a massive
explosion. According to this theory, the big bang is the origin of everything in this
world, and there was nothing before that. The multi-verse theory is another recent
and well-known theory among physicists (M 2004). It is believed in this theory that
there is more than one big bang and each big bang causes the birth of a universe. The
term multi-verse stands opposite of universe, which refers to the existence of other

universes in addition to the universe that we all are living in (M 2004).

Multiple universes interact and might even collide with each other in the

multiverse theory.

The multi-verse theory also suggests that there might be different physical laws in

each of the universes.

We chose three main concepts of the multi-verse theory as the inspiration for the
MVO algorithm: white holes, black holes, and wormholes. A white hole has never seen
in our universe, but physicists think that the big bang can be considered as a white
hole and maybe the main component for the birth of a universe (DM 1974). It is also
argued in the cyclic model of multi-verse theory (Steinhardt P] 2002) that big bangs
white holes are created where the collisions between parallel universes occur. Black
holes, which have been observed frequently, behave completely in contrast to the
white wholes. They attract everything including light beams with their extremely high

gravitational force (PC 1978). Wormholes are those holes that connect different parts
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of a universe together. The wormholes in the multi-verse theory act as time/space
travel tunnels where objects are able to travel instantly between any corners of a

universe (or even from one universe to another) (Morris MS 1988).

Every universe has an inflation rate that causes its expansion through space (AH
2007). The inflation speed of a universe is very important in terms of forming stars,
planets, asteroids, black holes, white holes, wormholes, physical laws, and suitability
for life. It is argued in one of the cyclic multi-verse models (Steinhardt PJ 2005) that
multiple universes interact via white, black, and wormholes to reach a stable
situation. This is the exact inspiration of the MVO algorithm, which is conceptually

and mathematically modeled in the following subsection.

4.9 Moth-Flame Optimization Algorithm

In the anticipated MFO algorithm, we assume that the candidate solutions are the
moths and their positions in space are variables of the problem. Consequently, the
moths can fly in a 1-Dimensional, 2-Dimensional, 3-Dimensional, or hyper-
dimensional Barea by altering their positions. As the MFO algorithm is a population-

based procedure.

One pointto be observed here is that both the moths and the flames are considered

as solutions and both are updated and treated differently in every iteration.

The real search agents are the moths that fly in the search space while the finest
spot of moths attained thus far is represented by the flames. Put it in another way, the
flames are regarded as pins or flags which are released by the moths while looking
through the search space. Consequently, every moth explores nearby a flame (flag)
and revises it whenever it finds a superior solution. A moth will not miss its best

solution by applying this procedure (YASIR ALI SHAH1 and NAWAZ3 2018).
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Chapter 5

Experimental Results

5.1 Planning of a Three Units Power System

The three-unit system as a case study problem selected from (Saadat 2008) was
utilized to explore the performance of CSA and DE as optimization methods to identify
the best set of power generation of the unit power system. The adopted system is
expected to produce a demand power of approximately 150 megawatts (MW). Table
5.1 displays the cost coefficients of the fuel of the three units system under
investigation, or identified as P1, Pzand P3 generators, and the coefficient matrix of the
power loss ({) for the three units system are given next.

Table 5.1: Cost fuel coefficient of the three units system
Pi i ,Bi Yi Pmin Pmax
(S/MWZ) | ($/MW2Z) | ($/MW?) | (MW) | (MW)

P1 0.0080 7.00 200 10 85
P2 0.0090 6.30 180 10 80
Ps3 0.0070 6.80 140 10 70

Table 5.2: Coefficient matrix of the power loss ({) for the three units

0.000218  0.000093 0.000028
¢ =10.000093 0.000228 0.000017
0.000028 0.000017 0.000179

Table 5.1 shows the computing power of the three units system based nine
metaheuristic search algorithms with a demand power of 150 MW, where table 5.2
shows losses of transmission lines have been taken into account in these calculations.
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The cost results are shown in Table 5.1 support that the load estimation methods
- based CSA, and achieved better cost results than the algebraic method on the same
three units power system, demonstrating their sensible capacities. The performance
of proposed search algorithms for the three units power system is shown for up to
500 iterations in Figure 5.1. This convergence curve represents the fitness function
created by nine meta-heuristic search algorithms for the power load estimation for

three units’ system.

Best score obtained so far Best score obtained so far Best score obtained so far

2000 i
. . MFO|| MVO
£ 1000 g 170 € 1610
+ + +
= =] =
0 1600 1600
0 500 0 500 0 500
Iteration Iteration Iteration
Best score obtained so far Best score obtained so far Best score obtained so far
2000 1620
s 2 1615 GA s PSO
2 1000 g (610 g 1610
= = R=
0 1605 1600
0 500 0 500 0 500
Iteration Iteration Iteration
2%88t score obtained so far Best score obtained so far Best score obtained so far
1605
£ 1800 g £ 1610
=] = 1600 =
1600 3 1600 L,
0 500 0 500 0 500
Iteration Iteration

[teration
Figure 5.1: Three Units System: Convergence of evolutionary process of several

metaheuristic search algorithms
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Table 5.3: Cost Coefficient of Six Units System

SSA MFO MVO SCA GA PSO HS CSA DE
P 3552 | 23.9847 | 32.6064 |27.2953 |57.3072 | 255111 |53.4052 |32.8112 | 32.8101
P2 59.71 80 65.0719 | 67.4894 | 72.084 | 61.0358 |56.4331 |64.5944 | 64.595
P 57.07 | 485765 | 54.6698 | 57.5698 |23.5098 | 65.7379 | 43.1074 |54.9365 | 54.9369
PP; 15229 | 15256 | 15235 | 15235 | 15290 | 15228 | 15295 | 15234 | 152.34
Pp 150.00 | 150.00 | 150.00 | 150.00 | 150.00 | 150.00 | 150.00 | 150.00 | 150.00
Cost 1597.83 | 1600.93 | 1597.53 | 1598.12 | 1612.05 | 1599.11 | 1656.28 | 1597.48 | 1597.48
($/hr)
5.2 Planning of a Six Units Power System

A set of experiments on six units’ system consisting of six thermal power plant units
was performed to illustrate the effectiveness of several meta-heuristics search
algorithms in estimating the generation unit power. The prime goal is to find an
estimate for the power load for each ith unit system, P;iso that the cost is reduced.

Table 5.4: Cost Coefficient of Six Units System

P; Qi Bi Yi Pmin Prmax
(5/MW?) (5/MW?) (S/MW?) (MW) (MW)
P1 0.0070 7.0 240.0 100 500
P2 0.0095 10 200.0 50 200
Ps3 0.009 8.5 220.0 80 300
Pa 0.009 11 200.0 50 150
Ps 0.008 10.5 220.0 50 200
Pe 0.0075 12 190.0 50 120

41



of the thermal units cost coefficient given in Table 5.3, and Table 5.4 show the
coefficient matrix ({) is provided next.

Nine meta-heuristic search algorithms were executed to allocate the best
performance and compute the estimated power load by each algorithm. The
performance of proposed search algorithms for the three units power system is
shown for up to 500 iterations in Figure 5.2. This convergence curve represents the
fitness function created by nine meta-heuristic search algorithms for the power load
estimation for six units system.

Table 5.5: Coefficient matrix of the power loss ({) for the six units

0.0170  0.0120 0.0070 -0.0010 -0.0050 -0.0020 T
0.0120 0.0140 0.0090 0.0010 -0.0060 -0.0010
0.0070 0.0090 0.0310 0 -0.0100 -0.0060
7= 0.0010 0.0010 0 0.0240 -0.0060 -0.0080 |x 10-3
-0.0050 -0.0060 -0.0100 -0.0060 0.1290 _0.0020
L -0.0020  -0.0010 -0.0060 -0.0080 -0.0020 (.1500 .
Table 5.6: Optimal generations power of various algorithms
Power | SSA MFO MVO SCA GA PSO HS CSA DE
P 4435555 | 500 452.8114 | 417.6776 | 2889704 | 471.9346 | 409.6441 | 4469736 | 447.5787
P 173.5464 | 200 182.2327 | 200 315.0599 | 187.8771 | 193.7739 | 173319 | 173.0238
Ps 269.286 | 236.0095 | 263.0214 | 300 1163195 | 272913 | 2852534 | 263.7248 | 263.9873
Ps 131.7837 | 150 135484 | 150 160.0623 | 140.4767 | 147.215 | 138.9444 | 139.1728
Ps 182.4648 | 128.8926 | 1525703 | 134.1542 | 259.6067 | 100.0305 | 124.6418 | 165.6265 | 165.0263
Ps 7515023 | 603902 | 89.25042 | 73.43134 | 137.9263 | 1022144 | 1147046 | 86.8287 | 86.62046
PPi 1275787 | 1275292 | 127537 | 1275263 | 1277.945 | 1275446 | 1275233 | 1275417 | 1275.409
Po 1263 1263 1263 1263 1263 1263 1263 1263 1263
Cost | 1544754 | 154982 | 15445.69 | 15488.04 | 161355 | 1549494 | 15490.75 | 15442.66 | 15442.66
($/hr)
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Figure 5.2: Six Units System: Convergence of evolutionary process of several
metaheuristic search algorithms

5.3 Planning for the IEEE 30 Bus System

To further illustrate the efficacy of both CSA and DA in solving the ELD problem, both
are practiced to a standard IEEE 30 bus consisting of a system of six units thermal
power plant. The goal is to locate the best generated power of the it generator, P;, for
the IEEE 30 Bus with six generator test system shown in Figure 5.7.
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Figure 5.3: IEEE 30 Bus consisting of six generators test system

The thermal units characteristics of the IEEE 30 bus system are shown in Table
5.3 and the coefficient matrix ({) indicating the losses is introduced below.

Table 5.7: Cost Coefficient of IEEE 30 Bus System

P; Qa; Bi Yi Pmin Pmax
(5/MW2) | (5/MW2) | (5/MW?) | (MW) | (MW)

P1 | 15.240 38.53973 756.79886 | 10 125
x10-2 x102

P> | 10.587 46.15916 451.32513 | 10 150
x10-2 x102

Ps; | 2.803 40.39655 1049.9977 | 35 225
x10-2 x10?2

P, | 03.546 38.30553 1243.5311 | 35 210
x10-2 x102

Ps | 2.111 36.32782 1658.5596 | 130 325
x10-2 x10?2

Ps | 1.799 38.27041 | 1356.6592 | 125 315
x10-2
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Table 5.8: Coefficient matrix of the power loss ({) for IEEE 30 Bus System

[0.1400 0.0170 0.0150 0.0190 0.0260 0.02207
0.0170 0.0600 0.0130 0.0160 0.0150 0.0200
0.0150 0.0130 0.0650 0.0170 0.0240 00190 |x 10-3

¢ 0.0190 0.0160 0.0170 0.0710 0.0300 .0250

0.0260 0.0150 0.0240 0.0300 0.0690 0320

- 0.02200.0200 0.0190 0.0250 0.0320 g 0gs5Q.

It is evident from Table 5.3 that the CSA and DE-based methods reported the best
performance regarding the best load results. The computed values for each power
unit P; (i = 1,2,..,,6) for the standard IEEE 30 Bus shown in Table 5.3. The performance
of proposed meta-heuristic search algorithms for the IEEE30 Bus system is shown for
up to 500 iterations in Figure 5.4. This convergence curve represents the fitness
function created by nine meta-heuristic search algorithms for the power load
estimation for [IEEE30 Bus system.
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Figure 5.4: IEEE 30 Bus: Convergence of evolutionary process of several
metaheuristic search algorithms
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Table 5.9: Cost Coefficient of IEEE 30 Bus system

Power SSA MFO MVO SCA GA PSO HS CSA DE

Py 31.3561 27.71748 | 33.05922 | 23.49077 | 120.4477 | 125 21.56365 | 32.59279 | 32.60999
P, 13.29429 | 21.9596 13.88867 | 14.34295 | 103.4747 | 125 105.1503 | 14.49964 | 14.36192
P3 144.0152 | 130.5341 | 139.9768 | 135.2147 | 115.2445 | 125 204.1934 | 141.6495 | 141.6919
P4 135.9548 | 125.1346 | 134.5273 | 157.3899 | 124.2421 | 125 100.7099 | 136.0354 | 135.7933
Ps 263.4618 | 255.0508 | 262.7322 | 262.9998 | 124.5823 | 125 193.4693 | 257.5987 | 257.7318
Pe 237.2559 | 265.3226 | 241.2151 | 231.2804 | 121.2529 | 125 196.193 2429515 | 243.1477
PP; 825.338 825.7192 | 825.3993 | 824.7184 | 709.2442 | 750 821.2795 | 825.3275 | 825.3366
Pp 800 800 800 800 800 800 800 800 800

Cost 41898.68 | 41925.3 41897.52 | 41962.89 | 50023 48639.58 | 43143.66 | 41896.63 | 41896.63
($/hr)

The results are compared in terms of the operating cost of generators and power

generation. Wide simulation results are observed to minimum operation cost,

minimum standard deviation among best, mean, and worst solution showing that

both CSA and DE provided good ex-portability, fast convergence with iteration leads
to robustness and good solution quality.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this thesis, we provided an innovative model to manage a smart electric power grid
to increase the quality of top service and reduce the cost of operation. This is a
complex adaptive system design problem for distributed power generation. This
work focused on solving optimization problems in the smart grid by using
Metaheuristic search algorithms. This research explored the Economic dispatch (ED)
problem aiming to distribute the load demand between all of the various generation
units in an electrical system such that the total cost of generation is very minimum.
To solve the ED problem, we used nine search algorithms and compared their results.
The efficiency and effectiveness of the nine techniques are bench-marked for different
test cases consisting of IEEE 30 bus, three, six for generating units with high
nonlinearity. The results are compared in terms of the operating cost of generators
and power generation. Wide simulation results are observed to minimum operation
cost, minimum standard deviation among best, mean, and worst solution showing
that both CSA and DE provided good ex-portability, fast convergence with iteration
leads to robustness and good solution quality.

6.2 Future Work

In the future, we hope to continue to solving the power generation problem area like
unit commitment problems by apply on Meta-heuristics algorithm and explores the
best minimums fuel cost.
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