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Abstract 

       The concept of energy in special relativity does not satisfy Newton limit. It does not 

also conforms to observations. The aim of this work is to use generalized special 

relativity to formulate a new expression for the linear energy. One also needs to construct 

a new quantum relativistic Klein Gordon equation, which can describe spin phenomena 

instead of using two different quantum equations to describe particles having integral and 

half-integral spin quantum numbers, one is the Klein- Gordon equation, while the other is 

the Dirac equation. 

       The energy conservation of the potential dependent special relativity has been 

developed. The energy expression can be simplified and the conservation can be secured 

when using vector four-dimensional representation with the fourth time component is 

imaginary and related to the momentum.  Treating particles as strings an imaginary 

energy has been found to be quantized and proportional to the harmonic energy .This 

resembles the imaginary wave number reflecting the energy liberated by electromagnetic 

waves that interact with matter. 

         Potential dependent energy- momentum relativistic relation was utilized to derive 

new quantum Klein- Gordon equation. This equation reduces to the ordinary Klein- 

Gordon equation in the absence of potential. Treating nucleons as strings, a new energy-

quantized expression was obtained. This energy resembles that of Schrödinger harmonic 

oscillator with additional term representing the rest mass. This model also predicts the 

magic numbers.  

The conservation of energy in potential dependent special relativity has been found using 

4- dimensional representation. In this version, the square of the momentum multiplied by 

the square of the free speed of light subtracted from the curved space energy is invariant 

and constant everywhere. The quantum equation derived from this equation in a weak 

field limit shows that the momentum is quantized and the energy is reduced to that of 

Schrodinger harmonic oscillator when neglecting the rest mass term. 

        In addition, the proposed model shows the possibility of using potential dependent 

Klein-Gordon equation to find the magic numbers. This shows that, this equation can 

describe fermions as well as bosons.  
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 مستخلص البحث
يوم الطاقة في النسبية الخاصة التقريب النيوتني . وىي لا تتفق أيضاً مع لا يستوفي مف           

المشاىدات.  ييدف ىذا البحث لاستخدام النسبية الخاصة المعممة لصياغة صيغة جديدة لمطاقة 
الخطية.  وىناك رغبة أيضاً في صياغة معادلة كمية نسبية جديدة لكلاين  وقوردون  يمكن أن 

لًا من استخدام معادلتين كميتين لوصف العدد الكمي  المغزلي الصحيح تصف ظاىرة المغزل بد
 والكسري ،أحداىما ىي معادلة كلاين وقوردون  الأخرى ىي معادلة ديراك .

طُور حفظ الطاقة لمنسبية الخاصة المعتمدة عمى الجيد. حيث بُسطت صيغة الطاقة              
متجيى الرباعي، باعتبار المركبة الرابعة الزمنية تخيمية واستخمصت صيغة الحفظ باستخدام التمثيل ال

وذات علاقة بالاندفاع. باعتبار الجسيمات أوتار وُجد أن الطاقة التخيمية مكممو وتتناسب مع طاقة 
المتذبذب. وىذا يشبو العدد الموجي التخيمي الذي يعكس الطاقة المتحررة بالموجات الكيرومغناطيسية 

 دة.التي تتفاعل مع الما
استخدمت علاقة الطاقة والاندفاع لمنسبية المعتمدة عمى الجيد لاستنباط معادلة جديدة             

لكلاين وقوردون. ىذه المعادلة تؤول لمعادلة كلاين وقوردون العادية في غياب الجيد. باعتبار 
لمعادلة شورد ينجر النيوكمونات أوتار وجدت صيغة جديدة مكممو لمطاقة. ىذه الطاقة تشبو تمك التي 

لممتذبذب التوافقي مع وجود حد إضافي يمثل كتمة السكون. ىذا النموذج يتنبأ أيضا بالأرقام 
 السحرية.

وُجدت صيغة حفظ الطاقة في النسبية الخاصة المعتمدة عمى الجيد باستخدام التمثيل             
الاحداثي الرباعي. في ىذا المنحى يكون مربع الاندفاع مضروباً في مربع سرعة الضوء في الفراغ 

معادلة مطروحاً منو الطاقة في الفراغ المحدب مقدار لا متغير وثابت في أي مكان. وقد بينت ال
الكمية المشتقة من ىذه المعادلة في تقريب المجال الضعيف أن الاندفاع مكمم وأن الطاقة تختزل 

 لتمك التي لممتذبذب التوافقي لشوردينجر عند إىمال حد كتمة السكون.
بالإضافة إلى ذلك بين النموذج المقترح إمكانية استخدام معادلة كلاين وقوردون المعتمدة         
جيد لإيجاد الأرقام السحرية، وىذا يوضح أن ىذه المعادلة تصف الفيرميونات بنفس القدر عمى ال

 الذي تصف بو البوزونات.
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Chapter One  

Introduction  

 

 1.1 Quantum Mechanics and Relativity  

                  Quantum mechanics describes, atoms, the building blocks of 

matter [1] .Quantum mechanics is been based mainly on the particle, wave 

dual nature of atomic particles. The first one who recognize the word 

quantum is Max Plank .He propose that light behaves as discrete quanta. 

Thus, light behaves   sometimes as waves and sometimes as particles. The 

same holds for particles, which behaves sometimes as waves. This dual 

nature can be described by Schrödinger nun relativistic equations beside 

Klein Gordon and Dirac relativistic equations [2, 3, 4]. 

                 The law of quantum mechanics predicts energy quantization 

beside quantization of other physical quantities .these quantization‘s leads to 

explain a wide variety of matter and atoms physical phenomena. This leads 

to appearance of many technical applications in atomic spectroscopy, 

mineral exploration, electronic, medicine and industry [5, 6, 7]. 

                 The emergence of quantum mechanics is associated with 

emergence of special relativity theory, which makes radical modification in 

the concepts of space and time, beside the notion of energy [8, 9]. 

                 It leads to understand some atomic interaction like energy 

production from mass defects, pair production, a halation, photo electronic 

effect and nuclear radiation [10, 11]. 

              Despite these remarkable successes, SR suffers from the lack   of 

expression recognizing the field potential. Thus, its energy expression does 

not reduce to the Newtonian one far law speed particles [12]. 

             This defect was to cured by some author to construct generalized SR 

version that accounts for the effect of potential   of the fields and space, time 

and mass[13,14]. 

        Physical system are been described by the equation of motion and 

conserved quantities, like energy and momentum.  



2 

The equation of motion describes the time evolution, while conserved 

quantities describe those constant physical quantities that does not change 

with space or time [15]. 

          One of the most important one is the concept of energy. In Newtonian 

mechanics, the energy is the equal to the sum of kinetic and potential energy 

[16]. In Special Relativity (S R), the total energy is related to the rest mass 

energy and momentum, without recognizing the potential energy. This 

situation is in direct conflict with observations , beside Newton‘s laws and 

quantum laws .According to (SR) version two identical particle moving with 

same velocity ,one in vacuum and the other revolves around  a nucleus have 

the name total energy . This is in direct conflict with observed atomic 

spectra of different atoms. The electron total energy was directly affected by 

its potential energy. This result does not conform to SR energy from which 

does not recognize potential energy [17, 18].  

               This situation encourages some scientists to cure this defect by 

constructing new models [19, 20, 21]. One of the most popular one is the 

one proposed by Mubarak Dirar, which recognize the effect of the potential. 

His original work was be based on the energy expression in a curved space-

time [22]. Later on the utilized Lorentz transformation to incorporate 

potential   energy in the total energy from [23, 24]. Those models succeeded 

in bridging the gap between relativity and quantum beside Newtonian 

mechanics. Even same models tries to study conservation laws for this 

potential dependent special relativity and quantum beside Newtonian 

mechanics. Even some models tries to study conservation laws for this 

potential dependent special relativity (psr) [25]. However, no ultimate 

regions version is been obtained. 

          Atoms are the building blocks of matter. The bulk matter were 

described by using classical laws like Newton laws and Maxwell‘s equations 

[26].the experiments done that they consist of small tiny particles revolving 

around the nucleus known as electrons. The nucleus consists of protons and 

neutrons of almost equal numbers. The excitation of these atoms by any 

energy source causes them to emit electromagnetic radiation. One of the 

important atomic radiations was called black body radiation, due to 

excitation by heat. The spectra of black body, is the first challenge that 

shows the failure of classical laws in describing the behavior of the atomic 
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world [27]. This encourages Max Plank to propose a new concept to 

describe the black body radiation. He proposes that light is emitted as 

discrete quanta called photons. The energy of each quanta is directly 

proportional to the light frequency. This new quantum concept opens a new 

horizon in physics. It encourages De- Brogglie to prose also that particles 

like electrons behave as discrete quanta. This new concept of quanta 

encourages Schrodinger and Heisenberg in dependently, to formulate the so-

called quantum laws [28, 29]. These quantum laws open a new era in physic 

s and succeed in explaining a large number of atomic phenomena. 

           Later on Schrodinger equation, based on classical Newton energy for 

slow particles, has promoted to describe fast particles. Klein –Gordon and 

Dirac made this development where they formulated relativistic quantum 

mechanics [30]. Klein nonlinear equation describes spin less bosons, while 

Dirac linear one describes fermions [31, 32]. 

Although both relativistic equation describe fast particle, but they suffer 

from the lack of a simple expression which recognized all potentials. 

Another problem is relate to the fact that, ion no single equation can describe 

the behavior of bosons at the same time. 

        Different attempts have made to modify quantum relativistic equation 

to widen their scope in describing physical phenomena [33]. 

  The relativistic modified version of Nagua [34]. Utilized the quantum 

relativistic equation beside periodicity condition to find the harmonic 

oscillator solution.  A paper published by Fatima [35]. 

Showed that relativistic potential dependent equation derived from 

Generalized Special Relativity (GSR) can described the behavior of bio 

photons as well as photons propagated in free space.  

1.2 Research Problem:  

        The concept of energy in general relativity does not satisfy Newton 

limt.it does not also conform to observations. The particle spin plays an 

important role in quantum mechanics. According to relativistic quantum 

mechanics [36], two different quantum equations was been used to describe 

integral and half-integral spin quantum numbers. The former one is Klein- 

Gordon equation, while the later one is Dirac equation. This make the spin 

mathematical for one work complex [37]. 
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 1.3 Aim of the work: 

          The aim of this work is to use generalized special relativity to 

formulate new expression for the linear energy. One also need to construct a 

new relativistic Klein Gordon equation, which can describe spin phenomena.  

1.4 Thesis layout: 

The thesis consists of five chapters. Chapter one is introduction, while 

chapter two is concerned with theoretical background, Chapter three is 

devoted for Dirac equation, and Klein Gordon equation. The literature 

Review is in chapter four. The new models, discussion and conclusion are in 

chapter five. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



5 

Chapter Two 
Nuclear Model 

 

2.1 Introduction 
These chapter covers the physics need to understand the nuclear structure, 

application of nuclear physics, the atoms and nuclear. The difference in 

energy between the nuclear ground state and the first excited state is 

especially large for these nuclei; we find magic number and models.  

2.2 Nuclear Models and Stability       
The aim of this is to understand how certain combinations of N neutrons and 

Z protons form ground states and to understand the masses, spins and 

parities of those states. The known (N, Z) combinations are shown in Fig. 

2.1. The great majority of nuclear species contain excess neutrons or protons 

and are therefore  -unstable. Many heavy nuclei decay by α-particle 

emission or by other forms of spontaneous fission into lighter elements. 

Another aim of this to understand why certain nuclei are stable against these 

decays and what determines the dominant decay modes of unstable nuclei. 

Finally, forbidden combinations of (N, Z) are those outside the lines in Fig. 

2.1 marked ―last proton/neutron unbound.‖ Such nuclei rapidly (within ∼ 

10
−20

s) shed neutrons or protons until they reach a bound configuration. 

        The problem of calculating the energies, spins and parities of nuclei is 

one of the most difficult problems of theoretical physics. To the extent that 

nuclei can be considered as bound states of nucleons (rather than of quarks 

and gluons), one can start with empirically established two-nucleon 

potentials, and then, in principle, calculate the eigenstates and energies of 

many nucleon systems. In practice, the problem is intractable because the 

number of nucleons in a nucleus with A > 3 is much too large to perform a 

direct calculation but is too small to use the techniques of statistical 

mechanics. We also note that it is sometimes suggested that intrinsic three-

body forces are necessary to explain the details of nuclear binding.  

         However, if we put together all the empirical information we have 

learned, it is possible to construct efficient phenomenological models for 

nuclear structure. In addition, this provides an introduction to the 

characteristics and physical content to the simplest models. This will lead us 

to a good explanation of nuclear binding energies and to a general view of 

the stability of nuclear structures [38]. 

        Much can be understood about nuclei by supposing that, inside the 

nucleus, individual nucleons move in a potential well defined by the mean 

interaction with the other nucleons. Mean potential model and derive some 
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important conclusions about the relative binding energies of different 

isobars. To complement the mean potential model, we will introduce the 

liquid-drop model that treats the nucleus as a semi-classical liquid object. 

When combined with certain conclusions based on the mean potential 

model, this will allow us to derive Bethe and Weizs¨acker‘s semi-empirical 

mass formula that gives the binding energy as a function of the neutron 

number N and proton number Z. also we will come back to the mean 

potential model in the form of the Fermi-gas model. This model will allow 

us to calculate some of the parameters in the Bethe–Weizs¨acker formula. 

In the shell model, we will further modify the mean-field theory to explain 

the observed nuclear shell structure that lead to certain nuclei with ―magic 

numbers‖ of neutrons or protons to have especially large binding energies. 

Armed with our understanding of nuclear binding, in β- instability we will 

identify those nuclei that are observed to be radioactive either via β- decay 

or  -decay [38].  
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Fig. 2.1. The nuclei. The black squares are long-lived nuclei present on 

Earth. Combinations of (N, Z) that lie outside the lines marked ―last 

proton/neutron unbound‖ are predicted to be unbound by the semi-

empirical mass formula [38].  
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2.3 Mean Potential Model 
The mean potential model relies on the observation that, to good 

approximation, individual nucleons behave inside the nucleus as 

independent particles placed in a mean potential (or mean field) due to the 

other nucleons.  

            In order to obtain a qualitative description of this mean potential V 

(r), we write it as the sum of potentials v(r – r
-
_) between a nucleon at r and 

a nucleon at r
-
: 

V (r)  ∫ (    ) (  )   .                                   (2.3.1) 

In this equation, the nuclear density ρ ( (  )), is proportional to the 

probability per unit volume to find a nucleus in the vicinity of r
-
. It is 

precisely that function. 

       One now recall what one know about v and ρ. The strong nuclear 

interaction  (    ) is attractive and short range. It falls to zero rapidly at 

distances larger than ∼ 2 fm, while the typical diameter on a nucleus is 

―much‖ bigger, of the order of 6 fm for a light nucleus such as oxygen and 

of 14 fm for lead. In order to simplify the expression, let us approximate the 

potential v by a delta function (i.e. a point-like interaction). 

 (    )     (    )                                           (2.3.2) 

The constant    can be taken as a free parameter but we would expect that 

the integral of this potential be the same as that of the original two-nucleon 

potential: 

   ∫     ( )                                              (2.3.3) 

Where we have used the values. The mean potential is then [1]. 

Simply 

V (r) = −  ρ(r).                                                              (2.3.4) 

Using ρ ∼ 0.15 fm
-3,

 we expect to find a potential depth of roughly 

V (r < R) ∼ −30MeV,                                                    (2.3.5) 

Where R is the radius of the nucleus. 

             Suggest that in first approximation the mean potential has the used 

analytic expression is the Saxon–Woods potential 

V (r) = −                         V0 

                               1 + exp(r − R)/R                             (2.3.6)  

Where V0 is a potential depth of the order of 30 to 60 MeV and R is the 

Radius of the nucleus R ∼ 1.2A
1/3 

fm. An even simpler potential which leads 

to qualitatively similar results is the harmonic oscillator potential drawn on: 

 ( )    *  (
 

 
)+      

 

 
                      (2.3.7) 
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With   
 

 
      , and V (r > R) = 0. Contrary to what one could believe 

from Fig. 2.2, the low-lying wave functions of the two potential wells (a) 

and (b) are very similar. Quantitatively, their scalar products are of the order 

of 0.9999 for the ground state and 0.9995 for the first few excited states for 

an appropriate choice of the parameter ω in b. The first few energy levels of 

the potentials a  and b hardly differ. 

 

 
 

Fig 2.2 the mean potential and its approximation by a harmonic 

potential. 

         In this model, where the nucleons can move independently from one 

another, and where the protons and the neutrons separately obey the Pauli 

principle, the energy levels and configurations are obtained in an analogous 

way to that for complex atoms in the Hartree approximation. As for the 

electrons in such atoms, the proton and neutron orbitals are independent 

fermion levels. 

       It is instructive, for instance, to consider, within the mean potential 

notion, the stability of various A = 7 nuclei, schematically drawn on Fig. 2.3. 

The figure reminds us that, because of the Pauli principle, nuclei with a large 

excess of neutrons over protons or vice versa require placing the nucleons in 

high-energy levels. This suggests that the lowest energy configuration will 

be the ones with nearly equal numbers of protons and neutrons, 7Li or 7Be. 

We expect that the other configurations can β-decay to one of these two 

nuclei by transforming neutrons to protons or vice versa. The observed 

masses of the A = 7 nuclei, shown in Fig. 2.4, confirm this basic picture: 

• The nucleus 
7
Li is the most bound of all. It is stable, and more strongly 

Bound than its mirror nucleus be which suffers from the larger Coulomb 

repulsion between the 4 protons. In this nucleus, the actual energy levels of 

the protons are increased by the Coulomb interaction. The physical 
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properties of these two nuclei, which form an isospin doublet, are very 

similar. 

• The mirror nuclei 
7
B and 

7
He can β-decay, respectively, to 

7
Be and 

7
Li. In 

fact, the excess protons or neutrons are placed in levels that are so high that 

neutron emission is possible for 
7
He and 3-proton emission for 

7
B and these 

are the dominant decay modes. When nucleon emission is possible [38]. 

 

 

 
Fig. 2.3. Occupation of the lowest lying levels in the mean potential for 

various isobars A = 7.  

The level spacing‘s are schematic and do not have realistic positions. The 

proton orbitals are shown at the same level as the neutron orbitals whereas in 

reality the electrostatic repulsion raises the protons with respect to the 

neutrons. The curved arrows show possible neutron–proton and proton–

neutron transitions. If energetically possible, a neutron can transform to a 

proton by emitting a e−¯ve Pair. If energetically possible, a proton can 

transform to a neutron by emitting a e+ve pair or by absorbing an atomic e− 
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and emitting a ve. As explained in the text, which of these decays is actually 

energetically possible depends on the relative alignment of the neutron and 

proton orbitals [38].  

 

 

 
 

      This picture of a nucleus formed with independent nuclei in a mean 

potential allows us to understand several aspects of nuclear phenomenology. 

• For a given A, the minimum energy will be attained for optimum numbers 

of protons and neutrons. If protons were not charged, their levels would be 

the same as those of neutrons and the optimum would correspond to N = Z 

(or Z ± 1 for odd A). This is the case for light nuclei, but as A increases, the 

proton levels are increased compared to the neutron levels owing to 

Coulomb repulsion, and the optimum combination has N > Z. For mirror 

nuclei, those related by exchanging N and Z, the Coulomb repulsion makes 

the nucleus N >Z more strongly bound than the nucleus Z >N. 

• The binding energies are stronger when nucleons can be grouped into pairs 

of neutrons and pairs of protons with opposite spin. Since the nucleon– 

nucleon force is attractive, the energy is lowered if nucleons are placed near 

each other but, according to the Pauli principle, this is possible only if they 

have opposite spins. There are several manifestations of this pairing effect. 

Among the 160 even-A, β-stable[1] nuclei, only the four light nuclei, 
2
H, 

6
Li, 

10
B

, 14N
, are ―odd-odd‖, the others being all ―even-even.‖ 1 

• The Pauli principle explains why neutrons can be stable in nuclei while 

free neutrons are unstable. Possible β-decays of neutrons in 7n, 7H, 7He and 
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7
Li are indicated by the arrows in Fig. 2.3. In order for a neutron to 

transform into a proton by β-decay, the final proton must find an energy 

level such that the process n → pe−¯ve is energetically possible. If all lower 

levels are occupied, that may be impossible. This is the case for 
7
Li because 

the Coulomb interaction raises the proton levels by slightly more than (mn 

−mp −me) c
2
 = 0.78MeV. Neutrons can therefore be ―stabilized ‖ by the Pauli 

principle. 

• Conversely, in a nucleus a proton can be ―destabilized‖ if the reaction 

p → n+e+ve can occur. This is possible if the proton orbitals are raised, via 

the Coulomb interaction, by more than (mn+me−mp) c
2
 = 1.80MeV with 

respect to the neutron orbitals. In the case of 
7
Li and 

7
Be shown in Fig. 2.4, 

the proton levels are raised by an amount between (mn +me −mp) c2 and 

(mn−me−mp) c
2
 so that neither nucleus can β-decay. (The atom 

7
Be is 

unstable because of the electron-capture reaction of an internal electron of 

the atomic cloud 
7
Be e− →

7
 Li ve.) 

       One now come back to equation (2.3.7) to determine what value should 

be assigned to the parameter ω to reproduce the observed characteristics of 

nuclei. The two forms in this equation, one find 

ω (A)  (
   

 
)
 

 ⁄
                                                                 (2.3.8) 

Equation (2.3.5) suggests that V0 is independent of A while empirically we 

know that R is proportional to A
1/3

. Equation (2.3.8) then tells us that ω is 

proportional to A
−1/3

. To get the phenomenologically correct value, we take 

V0 = 20MeV and R = 1.12A
1/3

 which yields 

   (
   

    *

 
 ⁄   

 
        

  
 ⁄                                    (2.3.9) 

     One can now calculate the binding energy B (A = 2N = 2Z) in this model. 

The levels of the three-dimensional harmonic oscillator are En = (n+3/2)¯hω 

with a degeneracy gn = (n+1)(n+2)/2. The levels are filled up to n = nmax  

such that: 

A =  ∑    
     

 

 
⁄    

                                                         (2.3.10)    

i.e. nmax ∼ (3A/2)
1/3.

 (This holds for A large; one can work out a simple but 

clumsy interpolating expression valid for all A‘s.) The corresponding energy 

is 

E = −AV0 + 4∑   
    
   (   

 ⁄ )        
    

 
         (2.3.11) 

Using the expressions for ¯hω and nmax we find 

∼ −8MeV × A                                                                         (2.3.12) 
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i.e. the canonical binding energy of 8MeV per nucleon[38]. 

2.4   The Nuclear Force 
The force that binds protons and neutrons together in the nucleus, despite the 

electrical repulsion of the protons, is an example of the strong interaction 

that we mentioned in the context of nuclear structure, this interaction is 

called the nuclear force. Here are some of its characteristics. First, it does not 

depend on charge; neutrons as well as protons are bound, and the binding is 

the same for both. Second, it has short range, of the order of nuclear 

dimensions— that is, (Otherwise, the nucleus would grow by pulling in 

additional protons and neutrons). However, within its range, the nuclear 

force is much stronger than electrical forces; otherwise, the nucleus could 

never be stable. It would be nice if we could write a simple equation like 

Newton‘s law of gravitation or Coulomb‘s law for this force. The nearly 

constant density of nuclear matter and the nearly constant binding energy per 

nucleon of larger nuclides show that a particular nucleon cannot interact 

simultaneously with all the other nucleons in a nucleus, but only with those 

few in its immediate vicinity. This is different from electrical forces; every 

proton in the nucleus repels every other one. This limited number of 

interactions is called saturation; it is analogous to covalent, bonding in 

molecules and solids. Finally, the nuclear force favors binding of pairs of 

protons or neutrons with opposite spins and [39]. Of pairs of pairs—that is, a 

pair of protons and a pair of neutrons, each pair having opposite spins. 

Hence, the alpha particle (two protons and two neutrons) is an exceptionally 

stable nucleus for its mass number. We will see other evidence for pairing 

effects in nuclei in the next subsection. We described an analogous pairing 

that binds opposite-spin electrons in Cooper pairs in the BCS theory of 

superconductivity.)  
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Fig 2.5 Approximate binding energy per nucleon as a function of mass 

number A [39].  

           The analysis of nuclear structure is more complex than the analysis of 

many electron atoms. Two different kinds of interactions are involved 

(electrical and nuclear), and the nuclear force is not yet completely 

understood. Even so, we can gain some insight into nuclear structure by the 

use of simple models. We will discuss briefly two rather different but 

successful models, the liquid-drop model and the shell model [39]. 

2.5 Models and Theories of Nuclear Physics 
           Nuclei are held together by the strong nuclear force between 

nucleons, so we start this topic by looking at the form of this, which is more 

complicated than that generated by simple one-particle exchange. Much of 

the phenomenological evidence comes from low-energy nucleon–nucleon 

scattering experiments which we will simply quote, but we will interpret the 

results in terms of the fundamental strong interaction between quarks. The 

rest of the chapter is devoted to various models and theories that are 

constructed to explain nuclear data in particular domains [40]. 

2.6 The Nucleon -- Nucleon Potential 
The existence of stable nuclei implies that over all the net nucleon -nucleon 

force must be attractive and much stronger than the Coulomb force, although 

it cannot be attractive for all separations, or otherwise nuclei would collapse 

in on themselves. Therefore, at very short ranges there must be a repulsive 

core. However, the repulsive core can be ignored in low-energy nuclear 

structure problems because low-energy particles cannot probe the short-
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distance behavior of the potential. In lowest order, the potential may be 

represented dominantly by a central term (i.e. one that is a function only of 

the radial separation of the particles), although there is also a smaller non-

central part. One know from proton–proton scattering experiments1 that the 

nucleon–nucleon force is short-range, of the same order as the size of the 

nucleus, and thus does not correspond to the exchange of gluons, as in the 

fundamental strong interaction. A schematic diagram of the resulting 

potential is shown in Figure 2.6. In practice, of course this strong interaction 

potential must be combined with the Coulomb potential in the case in the 

case of protons [40]. 

 
Figure 2.6 Idealized square well representation of the strong interaction 

nucleon-nucleon potential. 

 The distance R is the range of the nuclear force and ∂≤ R is the distance at 

which the short-range repulsion becomes important. The depth V0 is 

approximately 40 MeV. 
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          A comparison of nn and pp scattering data (after allowing for the 

Coulomb interaction) shows that the nuclear force is charge symmetric (pp = 

nn) and almost charge-independent (pp = nn = pn)
2
 , that there is also 

evidence for this from nuclear physics. Charge-symmetry is seen in 

comparisons of the energy levels of mirror nuclei and evidence for charge-

independence comes from the energy levels of triplets of related nuclei with 

the same A values. Nucleon–nucleon forces are, however, spin [3] 

dependent. The force between a proton and neutron in an overall spin-1 state 

(i.e. with spins parallel) is strong enough to support a weakly bound state 

(the deuteron), whereas the potential corresponding to the spin-0 state (i.e. 

spins antiparallel) has no bound states. Finally, nuclear forces saturate. This 

describes that fact that a nucleon in typical nucleus experiences attractive 

interactions only with a limited number of the many other nucleons and is a 

consequence of the short-range nature of the force. The evidence for this is 

the form of the nuclear binding energy curve. 

           Ideally, one would like to be able to interpret the nucleon–nucleon 

potential in terms of the fundamental strong quark–quark interactions. It is 

not yet possible to give a complete explanation along these lines, but it is 

possible to go some way in this direction. If we draw an analogy with atomic 

and molecular structure, with quarks playing the role of electrons. Then 

possibilities are: an ionic-type bond, a van der Waals type of force, or a 

covalent bond.3 The first can be ruled out because the confining forces are 

too strong to permit a quark to be ‗lent‘ from one nucleon to another and the 

second can also be ruled out because the resulting two-gluonex change is too 

weak. This leaves a covalent bond due to the sharing of single quarks 

between the nucleons analogous to the covalent bond that binds the 

hydrogen molecule. However, nucleons have to remain ‗colour less‘ during 

this process and so the shared quark from one nucleon has to have the same 

colour as the shared quark from the other nucleon. The effect of this is to 

reduce the effective force (because there are three possible colour states) and 

by itself, it is unable to explain the depth of the observed potential. In 

addition to the three (valence) quarks within the nucleon there are also 

present quark–antiquark pairs due to vacuum fluctuations.4 Such pairs can 

be colour less and so can also be shared between the nucleons. These quarks 

actually play a greater role in generating the nuclear strong interaction than 

single quarks. The lightest such diquarks will be pions and this exchange 

gives the largest contribution to the attractive part of the nucleon–nucleon 

force [40]. 

       In principle, the short-range repulsion could be due to the exchange of 

heavier diquarks (i.e. mesons), possibly also in different overall spin states. 
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Experiment provides many suitable meson candidates, in agreement with the 

predictions of the quark model, and each exchange would give rise to a 

specific contribution to the overall nucleon–nucleon potential, by analogy 

with the Yukawa potential resulting from the exchange of a spin-0 meson,. It 

is indeed possible to obtain excellent fits to nucleon–nucleon scattering data 

in a model with several such exchanges. Thus, this approach can yield a 

satisfactory potential model, but is semi-phenomenological only, as it 

requires the couplings of each of the exchanged particles to be found by 

fitting nucleon–nucleon scattering data. (The couplings that result broadly 

agree with values found from other sources.) Boson-exchange models 

therefore cannot give a fundamental explanation of the repulsion. The reason 

for the repulsion at small separations in the quark model lies in the spin 

dependence of the quark–quark strong interaction, which like the 

phenomenological nucleon– nucleon interaction, is strongly spin-dependent. 

We have discussed this in the context of calculating hadron masses. When 

the two nucleons are very close, the wave function is effectively that for a 6-

quark system with zero angular momentum between the quarks, i.e. a 

symmetric spatial wave function. Since the colour wave function is 

antisymmetric, it follows that the spin wave function is symmetric. 

However, the potential energy increases if all the quarks remain in the L = 0 

state with spins aligned.6 The two-nucleon system will try to minimize its 

‗chromomagnetic‘ energy, but this will compete with the need to have a 

symmetric spin wave function. The optimum configuration at small 

separations is when one pair of quarks is in an L = 1 state, although the 

excitation energy is comparable to the decrease in chromomagnetic energy, 

so there will still be a net increase in energy at small separations. 

      Some tantalizing clues exist about the role of the quark–gluon interaction 

in nuclear interactions, such as the small nuclear effects in deep inelastic 

lepton scattering mentioned. There is also a considerable experimental 

programme in existence [40], to learn more about the nature of the strong 

nucleon–nucleon force in terms of the fundamental quark–gluon strong 

interaction and further progress in this area may well result in the next few 

years. Meanwhile, in the absence of a fundamental theory to describe the 

nuclear force, specific models and theories are used to interpret the 

phenomena in different areas of nuclear physics. In and, we will discuss a 

number of such approaches [40].  

2.7 The Liquid-Drop Model 
One of the first nuclear models, proposed in 1935 by Bohr, is based on the 

short range of nuclear forces, together with the additivity of volumes and of 

binding energies. It is called the liquid-drop model.  Nucleons interact 
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strongly with their nearest neighbors, just as molecules do in a drop of water. 

Therefore, one can attempt to describe their properties by the corresponding 

quantities, i.e. the radius, the density, the surface tension and the volume 

energy [37, 38].  

            The individual nucleons are analogous to molecules of a liquid, held 

together by short-range interactions and surface-tension effects. We can use 

this simple picture to derive a formula for the estimated total binding energy 

of a nucleus. We will include five contributions: 

1. We have remarked that nuclear forces show saturation; an individual 

nucleon interacts only with a few of its nearest neighbors. This effect gives a 

binding energy term that is proportional to the number of nucleons. We write 

this term as C1A where C1 is an experimentally determined constant. 

2. The nucleons on the surface of the nucleus are less tightly bound than 

those in the interior because they have no neighbors outside the surface. This 

decrease in the binding energy gives a negative energy term proportional to 

the surface area 4πR
2
 Because R is proportional toA

1/3, 
this term is 

proportional to A
2/3 

we write it asC2A
2/3 

where is –C2,another constant. 

3. Every one of the Z protons repels every one of the (z-1) other protons. 

The total repulsive electric potential energy is proportional to z (z-1) and 

inversely proportional to the radius R and thus to this energy term [39], is 

negative because the nucleons are less tightly bound than they would be 

without the electrical repulsion. We write this correction as -C3Z (Z-1) A1
/3.

 

4. To be in a stable, low-energy state, the nucleus must have a balance 

Between the energies associated with the neutrons and with the protons. This 

means that N is close to Z for small A and N is greater than Z (but not too 

much greater) for larger A. We need a negative energy term corresponding 

to the difference [N-Z]. The best agreement with observed binding energies 

is obtained if this term is proportional to (N-Z)
2
 If we use N=A-Z  to express 

this energy in terms of A and Z, this correction is –C4 (A-2Z)
2
/A. 

5. Finally, the nuclear force favors pairing of protons and of neutrons. This 

energy term is positive (more binding) if both Z and N are even, negative 

(less binding) if both Z and N are odd, and zero otherwise. The best fit to the 

data occurs with the form+-C5A
-4/3

 for this term. The total estimated binding 

energy EB is the sum of these five terms: 

(Nuclear binding energy)[2]. 

         
 

 ⁄    
 (   )

 
 

 ⁄
   

(    ) 

 
    

  
 ⁄       (2.7.1) 

The constantsC1, C2, C3, C4 and C5, chosen to make this formula best fit the 

observed binding energies of nuclides, are 

C5 = 39 MeV 
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C4 = 23.69 MeV 

C3 = 0.7100 MeV 

C2 = 17.80 MeV 

C1 = 15.75 MeV 

C1, C2, C3, C4, C5, 

     The liquid-drop model and the mass formula derived from it are quite 

successful in correlating nuclear masses, and we will see later that they are a 

great help in understanding decay processes of unstable nuclides. Some 

other aspects of nuclei, such as angular momentum and excited states, are 

better approached with different models [39]. 

2.7.1 The Bethe–Weizs¨acker Mass Formula 

         An excellent parametrization of the binding energies of nuclei in their 

ground state was proposed in 1935 by Bethe and Weizs¨acker. This formula 

relies on the liquid-drop analogy but also incorporates two quantum 

ingredients we mentioned in the previous section. One is an asymmetry 

energy, which tends to favor equal numbers of protons and neutrons. The 

other is a pairing energy, which favors configurations where two identical 

fermions are paired. The mass formula of Bethe and Weizs¨acker is 

B (A, Z) = av A − asA
2/3

 – ac Z
2
 /A

1/3 
– aa (N − Z)

    
 A + δ (A) .    (2.7.2) 

The coefficients ai are chosen so as to give a good approximation to the 

Observed binding energies. A good combination is the following: 

av = 15.753 MeV 

as = 17.804 MeV 

ac = 0.7103 MeV 

aa = 23.69 MeV 

And 

   {

                             

       
 

 
                  

                             

  

. 

      The numerical values of the parameters must be determined empirically 

(other than ac), but the A and Z, dependence of each term reflects simple 

physical properties. 

• The first term is a volume term which reflects the nearest-neighbor 

interactions, and which by itself would lead to a constant binding energy per 

nucleon B/A ∼ 16 MeV. 

• The term as, which lowers the binding energy, is a surface term. Internal 

nucleons feel isotropic interactions whereas nucleons near the surface of the 

nucleus feel forces coming only from the inside. Therefore, this is a surface 
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Tension term as, proportional to the area 4πR
2
 ∼ A

2/3
. 

• The term ac is the Coulomb repulsion term of protons, proportional to 

Q2/R, i.e. ∼ Z
2
/A

1/3
. This term is calculable. It is smaller than the nuclear 

terms for small values of Z. It favors a neutron excess over protons. 

• Conversely, the asymmetry term aa favors symmetry between protons and 

neutrons (isospin). In the absence of electric forces, Z = N is energetically 

favorable [38]. 

• Finally, the term δ (A) is a quantum pairing term.  

           The existence of the Coulomb term and the asymmetry term means 

that for each A there is a nucleus of maximum binding energy found by 

setting ∂B/∂Z = 0. As we will see below, the maximally bound nucleus has Z 

= N = A/2 for low A where the asymmetry term dominates but the Coulomb 

term favors N >Z for large A. 

         The predicted binding energy for the maximally bound nucleus is 

shown in Fig. 2.5 as a function of A along with the observed binding 

energies. The figure only shows even–odd nuclei where the pairing term 

vanishes. The figure also shows the contributions of various terms in the 

mass formula. We can see that, as A increases, the surface term loses its 

importance in (favor of the Coulomb term. The binding energy has a broad 

maximum in the neighborhood of A ∼ 56 which corresponds to the even-Z 

isotopes of iron and nickel [38].  

               Light nuclei can undergo exothermic fusion reactions until they 

reach the most strongly bound nuclei in the vicinity of A ∼ 56. These 

reactions correspond to the various stages of nuclear burning in stars. For 

large A‘s, the increasing comparative contribution of the Coulomb term 

lowers the binding energy. This explains why heavy nuclei can release 

energy in fission reactions or in α-decay. In practice, this is observed mainly 

for very heavy nuclei A > 212 because lifetimes are in general too large for 

smaller nuclei. 

         For the even–odd nuclei, the binding energy follows a parabola in Z 

for a given A. The minimum of the parabola, i.e. the number of neutrons and 

protons which corresponds to the maximum binding energy of the nucleus 

gives the value Z (A) for the most bound isotope [38]. : 
  

  
        ( )  

 

       
 
     

∼
   

            
 

 ⁄   
            (2.7.3) 
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Fig. 2.7. The observed binding energies as a function of A and the 

predictions of the mass formula (2.13). 

 For each value of A, the most bound value of Z is used corresponding to Z 

= A/2 for light nuclei but Z < A/2 for heavy nuclei. Only even–odd 

combinations of A and Z are considered where the pairing term of the mass 

formula vanishes. Contributions to the binding energy per nucleon of the 

various terms in the mass formula [38].  

      Into account the neutron–proton mass difference in order to make sure of 

the stability against β-decay. The only stable nuclei for odd A are obtained 

by minimizing the atomic mass m (A, Z)+Zme [38],(we neglect the binding 

energies of the atomic electrons). This leads to a slightly different value for 

the Z (A) of the stable atom: 
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 ⁄
)                                        (2.7.4) 

Where δnpe = mn−mp−me = 0.75MeV. This formula shows that light nuclei 

have a slight preference for protons over neutrons because of their smaller 

mass while heavy nuclei have an excess of neutrons over protons because an 

extra amount of nuclear binding must compensate for the Coulomb 

repulsion. For even A, the binding energies follow two parabolas, one for 

even–even nuclei, the other for odd–odd ones. An example is shown for A = 

112 on Fig. 2.6. In the case of even–even nuclei, it can happen that an 

unstable odd-odd nucleus lies between two β-stable even-even isotopes. The 

more massive of the two β-stable nuclei can decay via 2β-decay to the less 

massive. The lifetime for this process is generally of order or greater than 

1020 yr so for practical purposes there are often two stable isobars for even 

A. 

        The Bethe–Weizs¨acker formula predicts the maximum number of 

protons for a given N and the maximum number of neutrons for a given Z. 

The limits are determined by requiring that the last added proton or last 

added neutron be bound, i.e. 

B (Z + 1, N) − B (Z, N) > 0, B (Z, N + 1) − B (Z, N) > 0    (2.7.5)  

Or equivalently 
   (   )

  
     

   (   )

  
                                                       (2.7.6) 

The locus of points (Z, N) where these inequalities become equalities 

establishes determines the region where bound states exist. The limits 

predicted by the mass formula are shown in Fig. 2.1. These lines are called 

the proton and neutron drip-lines. As expected, some nuclei just outside the 

drip-lines are observed to decay rapidly by nucleon emission. Combinations 

of (Z, N) far outside the drip-lines are not observed. That nucleon emission 

is observed as a decay mode of many excited nuclear states [38]. 

2.8 The Fermi Gas Model 
          The Fermi gas model is a quantitative quantum-mechanical 

application of the mean potential model discussed qualitatively. It allows 

one to account semi-quantitatively for various terms in the Bethe–

Weizs¨acker formula. In this model, nuclei are considered to be composed of 

two fermion gases, a neutron gas and a proton gas. The particles do not 

interact, but they are confined in a sphere, which has the dimension of the 

nucleus. The interactions appear implicitly through the assumption that the 

nucleons are confined in the sphere. 
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               The liquid-drop model is based on the saturation of nuclear forces 

and one relates the energy of the system to its geometric properties. The 

Fermi model is based on the quantum statistics effects on the energy of 

confined fermions. The Fermi model provides a means to calculate the 

constants av, as and aa in the Bethe–Weizs¨acker formula, directly from the 

density ρ of the nuclear matter. Its semi-quantitative success further justifies 

for this formula [38]. 

 

 
Fig. 2.8 The systematics of β-instability. 

 The top panel shows a zoom of Fig. 2.1 with the β-stable nuclei shown with 

the heavy outlines. Nuclei with an excess of neutrons (below the β-stable 

nuclei) decay by β− emission. Nuclei with an excess of protons (above the 

β-stable nuclei) decay by β+ emission or electron capture. The bottom panel 

shows the atomic masses as a function of Z for A = 111 and A = 112. The 

quantity plotted is the difference between m (Z) and the mass of the lightest 

isobar. The dashed lines show the predictions of the mass formula (2.13) 

after being offset to pass through the lowest mass isobars. Note that for 

even-A, there can be two β-stable isobars, e.g. 112Sn and 112Cd. The former 
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decays by 2β-decay to the latter. The intermediate nucleus 112In can decay 

to both. 

       In this model, the protons and neutrons that make up the nucleus are 

assumed to comprise two independent systems of nucleons, each freely 

moving inside the nuclear volume subject to the constraints of the Pauli 

principle. The potential felt by every nucleon is the superposition of the 

potentials due to all the other nucleons. In the case of neutrons, this is 

assumed to be a finite-depth square well; for protons, the Coulomb potential 

modifies this.  

         For a given ground state nucleus, the energy levels will fill up from the 

bottom of the well. The energy of the highest level that is completely filled 

is called the Fermi level of energy EF and has a momentum pF = (2MEF)
1/2

, 

where M is the mass of the nucleon. Within [40]. The volume V, the number 

of states with a momentum between p and p +  dp is given by the density of 

states factor [40]. 

 

 
Figure 2.9 Proton and neutron potentials and states in the Fermi gas 

model [40]. 

 ( )   
   

(   ) 
                                                          (2.8.1) 

        which is derived in Appendix A. Since every state can contain two 

fermions of the same species, we can have (using n = 2ʃ0
Pf

 dn) 
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Neutrons and protons, respectively, with a nuclear volume 

  
 

 
    

 

 
   

                                                            (2.8.3) 

Where experimentally R0 = 1:21 fm, as we have seen from electron and 

hadron scattering experiments Assuming for the moment that the depths of 

the neutron and proton wells are the same, we find for a nucleus with 

Z = N = A/2, the Fermi momentum 
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         .                                 (2.8.4) 

 

Thus, the nucleons move freely within the nucleus with quite large 

momenta. The Fermi energy is 

EF =p2F/2M   33 MeV                                                       (2.8.5) 

        The difference between the top of the well and the Fermi level is 

constant for most heavy nuclei and is just the average binding energy per 

nucleon.  
~
B = B/A = 7–8 MeV.  The depth of the potential and the Fermi energy= 

       ̃                                                                       (2.8.6) 

Heavy nuclei generally have a surplus of neutrons. Since the Fermi levels of 

the protons and neutrons in a stable nucleus have to be equal (otherwise the 

nucleus can become more stable by β decay) this implies that the depth of 

the potential well for the neutron gas has to be deeper than for the proton 

gas, as shown in Figure 2.9. Protons are therefore on average less tightly 

bound in nuclei than are neutrons. 

         We can use the Fermi gas model to give a theoretical expression for 

some of the dependence of the binding energy on the surplus of neutrons, as 

follows. First, we define the average kinetic energy per nucleon as [40]. 

(    )  [∫     
  

 
    ][∫     

 
  ]

  
                                (2.8.7) 

Evaluating the integrals gives: 
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The total kinetic energy of the nucleus is then 

    (   )   〈  〉   〈  〉  
 

   
* (  

 )
 
+   (  

 )
 
     (2.8.9) 

Which may be re-expressed as 
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Where again we have taken the radii of the proton and neutron wells to be 

equal. This expression is for fixed abut varying N and has a minimum at N = 

Z. Hence, the binding energy gets smaller for N ≠ Z. If we set N = (A +∆)/2, 

where ∆= N - Z, and expand Equation (2.8.8) as a power series in ∆/A we 

obtain: 
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    +            (2.8.11) 

 

Which gives the dependence on the neutron excess. The first term 

contributes to the volume term in the semi-empirical mass formula (SEMF), 

while the second describes the correction that results from having N ≠Z. 

This is a contribution to the asymmetry term we have met before in the 

SEMF and grows as the square of the neutron excess. Evaluating this term 

from Equation (2.8.11)  

2.9 Collective Model 
The Rainwater model is equivalent to assuming an aspherical liquid drop 

and A age Bohr (the son of Neils Bohr) and Mottelson showed that many 

properties of heavy nuclei could be ascribed to the surface motion of such a 

drop. However, the single particle shell model cannot be abandoned because 

it explains many general features of nuclear structure. The problem was 

therefore to reconcile the shell model with the liquid-drop model. The 

outcome is the collective model. 

       This model views the nucleus as having a hard core of nucleons in filled 

shells, as in the shell model, with outer valence nucleons that behave like the 

surface molecules of a liquid drop. The motions of the latter introduce non-

sphericity in the core that in turn causes the quantum states of the valence 

nucleons to change from the unperturbed states of the shell model. Such a 

nucleus can both rotate and vibrate and these new degrees of freedom give 

rise to rotational and vibrational energy levels. For example, the rotational 

levels are given by EJ = (J+1)   _h
2
/2I, where I is the moment of inertia and J 

is the spin of the nucleus. The predictions of this simple model are quite 

good for small J, but overestimate the energies for larger J. Vibrational 

modes are due predominantly to shape oscillations, where the nucleus 

oscillates between prolate and oblate ellipsoids. Radial oscillations are much 

rarer because nuclear matter is relatively incompressible. The energy levels 

are well approximated by a simple harmonic oscillator potential with 

spacing        where! Is the oscillator frequency. In practice, the energy 

levels of deformed nuclei are very complicated, because there is often 
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coupling between the various modes of excitation, but nevertheless many 

predictions of the collective model are confirmed experimentally[41]. 

 

 

2.10 Shell Model 
Atomic theory based on the shell model has provided remarkable 

clarification of the complicated details of atomic structure. In this model, we 

fill the shells with electrons in order of increasing energy [42]. 

         In spite of the shell model is successes to expression for nuclear spins 

for ground state, but we find many type cannot be       for the theoretical 

value for the shell model with experimental measured [43]. 

       The nuclear shell model is based on the analogous model for the orbital 

structure of atomic electrons in atoms. In some areas, it gives more detailed 

predictions than the Fermi gas model and it can address Questions that the 

latter model cannot. Firstly, we recap the main features of the atomic case 

[40]. 

         The shell model of nuclear structure is analogous to the central-field 

approximation in atomic physics, we picture each nucleon as moving in a 

potential that represent the averaged-out effect of all the other nucleons. This 

may not seem to be a very promising approach; the nuclear force is very 

strong, very short range, and therefore strongly distance dependent. 

However, in some respects, this model turns out to work fairly well [39].  

          The potential-energy function for the nuclear force is the same for 

protons as for neutrons. The corners are somewhat rounded because the 

nucleus does not have a sharply defined surface. For protons, there is an 

additional potential energy associated with electrical repulsion. We consider 

each proton to interact with a sphere of uniform charge density, with radius 

R and total charge we shows the nuclear, electric, and total potential energies 

for a proton as functions of the distance r from the center of the nucleus 

questions that the latter model cannot. Firstly, we recap the main features of 

the atomic case [39]. 

2. 10.1 Shell Structure of Atoms 

The binding energy of electrons in atoms is due primarily to the central 

Coulomb potential. This is a complicated problem to solve in general 

because in a multi electron atom we have to take account of not only the 

Coulomb field of the nucleus, but also the fields of all the other electrons. 

Analytic solutions are not usually possible. However, many of the general 

features of the simplest case of hydrogen carry over to more  complicated 

cases, so it is worth recalling the former [39,44].  
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          Atomic energy levels are characterized by a quantum number n = 1, 2, 

3, 4, . .   

Called the principal quantum number. This is defined so that it determines 

the energy of the system.. For any n there are energy-degenerate levels with 

orbital angular momentum quantum numbers given by: 

L=0, 1, 2, 3 … (n-1)                                                     (2.10.1) 

  (This restriction follows from the form of the Coulomb potential) and for 

any value of L there are (2L+   1) sub-states with different values of the 

projection of orbital angular momentum along any chosen axis (the magnetic 

quantum number): 

mL=-L,-L+1,…..,0,1,2….,L-1,L                                   (2.10.2) 

Due to the rotational symmetry of the Coulomb potential, all such sub-states 

are degenerate in energy. Furthermore, since electrons have spin-1/2, each of 

the above [40]. 
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Figuer2.10.binding energy per nucleon for even value of A: the solid 

curve is the SEMF (fromBo69) [40]. 

2.10.2 The Shell Model and Magic Numbers 

In atomic physics, the ionization energy EI , i.e. the energy needed to extract 

an electron from a neutral atom with Z electrons, displays discontinuities 

around Z = 2, 10, 18, 36, 54 and 86, i.e. for noble gases. These 

discontinuities are associated with closed electron shells [38]. 
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     An analogous phenomenon occurs in nuclear physics. There exist many 

experimental indications showing that atomic nuclei possess a shell-structure 

and that they can be constructed, like atoms, by filling successive shells of 

an effective potential well. For example, the nuclear analogs of atomic 

ionization energies are the ―separation energies‖ Sn and Sp which are 

necessary in order to extract a neutron or a proton from a nucleus 

Sn = B(Z,N) − B(Z,N − 1) Sp = B(Z,N) − B(Z − 1,N) . (2.10.3) 

       These two quantities present discontinuities at special values of N or Z, 

which are called magic numbers. The most commonly mentioned are: 

2 8 20 28 50 82 126                                                       . (2.10.4) 

As an example, Fig. 2.11.  Gives the neutron separation energy of lead 

isotopes (Z = 82) as a function of N. The discontinuity at the magic number 

N = 126 is clearly seen. 

 

 
Fig 2.11 The neutron separation energy in lead isotopes as a function of 

N. The filled dots show the measured values and the open dots show the 

predictions of the Bethe–Weizs¨acker formula. 

     The discontinuity in the separation energies is due to the excess binding 

energy for magic nuclei as compared to that predicted by the semi-empirical 

Bethe–Weizs¨acker mass formula. One can see this in Fig. 2.12 which plots 

the excess binding energy as a function of N and Z. Large positive values of 

B/A(experimental)-B/A(theory) are observed in the vicinity of the magic 

numbers for neutrons N as well as for protons Z , Figure 2.13 shows the 
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difference as a function of N and Z in the vicinity of the magic numbers 28, 

50, 82 and 126. 

     Just as the energy, necessary to liberate a neutron is especially large at 

magic numbers, the difference in energy between the nuclear ground state 

and the first excited state is especially large for these nuclei. Table 2.1 gives 

this energy as a function of N (even) for Hg (Z = 80), Pb (Z = 82) and Po (Z 

= 84). Only even–even nuclei are considered since these all have similar 

nucleon structures with the ground state having J
P
 = 0

+
 and a first excited 

state generally having J
P
 = 2

+
. The table shows a strong peak at the doubly 

magic 
208

Pb. As discussed in Sect. 1.3, the large energy difference between 

rotations [38]. 
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Fig. 2.12. Difference in MeV between the measured value of B/A and the 

value calculated with the empirical mass formula as a function of the 

number of protons Z (top) and of the number of neutrons N (bottom).  

The large dots are for β-stable nuclei. One can see maxima for the magic 

numbers Z, N = 20, 28, 50, 82, and 126. 
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The largest excesses are for the doubly magic nuclides as indicated. Fig. 

 

 
Fig. 2.13. Difference between the measured value of B/A and the value 

calculated with the mass formula as a function of N and Z. The size of 

the black dot increases with the difference. 
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         One can see the hills corresponding to the values of the magic numbers 

28, 50, 82 and 126. Crosses mark β-stable nuclei [38]. 

2.10.3 The Shell Model and the Spin-Orbit Interaction 

It is possible to understand the nuclear shell structure within the framework 

of a modified mean field model. If we assume that the mean potential energy 

is harmonic, the energy levels are: 

En = (n + 3/2)¯hω    n = nx + ny + nz = 0, 1, 2, 3 . . . ,      (2.10.5) 

where nx,y,z are the quantum numbers for the three orthogonal directions and 

can take on positive semi-definite integers. If we fill up a harmonic well 

with nucleons, 2 can be placed in the one n = 0 orbital, i.e. the (nx, ny, nz) = 

(0, 0, 0). We can place 6 in the n = 1 level because there are 3 orbitals, (1, 0, 

0), (0, 1, 0) and (0, 0, 1). The number N (n) are listed in the third row of 

Table 2.2.  

       We note that the harmonic potential, like the Coulomb potential, has the 

peculiarity that the energies depend only on the principal quantum number n 

and not on the angular momentum quantum number l. The angular 

momentum states, |n, l,m_ can be constructed by taking linear combinations 

of the |nx, ny, nz_ states .  The allowed values of l for each n are shown in the 

second line of Table 2.2. 

Table 2.10.1 The number N of nucleons per shell for a harmonic 

potential. 

 

n 0 1 2 3 4 5 6 

1 0 1 0,2 1,3 0,2,4 1,3,5 0,2,4,6 

N(n) 2 6 12 20 30 42 56 

∑N 2 8 20 40 70 112 168 

                                                                                          (2.10.6) 

       The magic numbers corresponding to all shells filled below the 

maximum n would then be 2, 8, 20, 40, 70, 112 and 168. It might be 

expected that one could find another simple potential that would give the 

correct numbers. In general, one would find that energies would depend on 

two quantum numbers: the angular momentum quantum number [45]. l and 

a second giving the number of nodes of the radial wave function. An 

example of such a l-splitting is shown in Fig. 2.10. Unfortunately, it turns 

out that there is no simple potential that gives the correct magic numbers. 

The solution to this problem, found in 1949 by M. G¨oppert Mayer, and by 

D. Haxel J. Jensen and H. Suess, is to add a spin orbit interaction for each 

nucleon [1]. 

 ̂      ( )  ̂  ̂                                                           (2.10.7) 
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    Without the spin-orbit term, the energy does not depend on whether the 

nucleon spin is aligned or anti-aligned with the orbital angular momentum. 

The spin orbit term breaks the degeneracy so that the energy now depends 

on three quantum numbers, the principal number n, the orbital angular 

momentum quantum number l and the total angular momentum quantum 

number j = l±1/2. We note that the expectation value ofˆ ̂  ̂ is given by: 

 

 
 ̂  ̂
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                                                 (2.10.8) 

 

 For a given value of n, the energy levels are then changed by an amount 

proportional to this function of j and l. For Vs−o < 0 the states with the spin 

aligned with the orbital angular momentum (j = l+1/2) have their energies 

lowered while the states with the spin anti-aligned (j = l − 1/2) have their 

energies raised. 

      The orbitals with this interaction included (with an appropriately chosen 

Vs−o) are shown in Fig. 2.10. The predicted magic numbers correspond to 

orbitals with a large gap separating them from the next highest orbital. For 

the lowest levels, the spin-orbit splitting (2.40) is sufficiently small that the 

original magic numbers, 2, 8, and 20, are retained. For the higher levels, the 

splitting becomes important and the gaps now appear at the numbers 28, 50, 

82 and 126.. We note that this model predicts that the number 184 should be 

magic.  

         Besides predicting the correct magic numbers, the shell model also 

correctly predicts the spins and parities of many nuclear states. The ground 

states of even–even nuclei are expected to be 0+ because all nucleons are 

paired with a partner of opposite angular momentum. The ground states of 

odd–even nuclei should then take the quantum numbers of the one unpaired 

nucleon. For example, 
17

 9 F8 and 
17

8 O9 have one unpaired nucleon outside a 

doubly magic 
16

 8 O8 core [1]. Figure 2.10 tells us that the unpaired nucleon 

is in a l = 2, j = 5/2. The spin parity of the nucleus is predicted to by 5/2+ 

since the parity of the orbital is −1l. This agrees with observation. The first 

excited states of 
17

 9 F8 and 
17

 8 O9, corresponding to raising the unpaired 

nucleon to the next higher orbital, are predicted to be 1/2+, once again in 

agreement with observation [39]. 

       On the other hand, 
15

 8 N7 and 
15

 8 O7 have one ―hole‖ in their 
16

O core. 

The ground state quantum numbers should then be the quantum numbers of 
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the hole which are l = 1 and j = 1/2 according to Fig. 2.14. The quantum 

numbers of the ground state are then predicted to be 1/2−, in agreement with 

observation [38]. 

 

 
 

Fig. 2.14. Nucleon orbitals in a model with a spin-orbit interaction. 

 The two leftmost columns show the magic numbers and energies for a pure 

harmonic potential. The splitting of different values of the orbital angular 
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momentum l can be arranged by modifying the central potential. Finally, the 

spin-orbit coupling splits the levels so that they depend on the relative 

orientation of the spin and orbital angular momentum. The number of 

nucleons per level (2j + 1) and the resulting magic numbers are shown on 

the right. 

  The shell model also makes predictions for nuclear magnetic moments. As 

for the total angular momentum, the magnetic moments results from a 

combination of the spin and orbital angular momentum. However, in this 

case, the weighting is different because the gyromagnetic ratio of the spin 

differs from that of the orbital angular momentum.  

      Shell model calculations are important in many other aspects of nuclear 

physics, for example in the calculation of β-decay rates. The calculations are 

quite complicated and are beyond the scope of this book. Interested readers 

are referred to the advanced textbooks [38]. 

2.10.4 Some Consequences of Nuclear Shell Structure 

Nuclear shell structure is reflected in many nuclear properties and in the 

Relative natural abundances of nuclei. This is especially true for doubly 

magic nuclei like 4He2, 
16

O8 and 
40

Ca20 all of which have especially large 

binding energies. The natural abundances of 
40

Ca is 97% while that of 
44

Ca24 

is only 2% in spite of the fact that the semi-empirical mass formula predicts 

a greater binding energy for 
44

Ca. The doubly magic 
100

Sn50 is far from the 

stability line (
100

Ru56) but has an exceptionally long half-life of 0.94 s. The 

same can be said for, 
48

Ni20, the mirror of 
48

Ca28 which is also doubly magic. 
56

Ni28 is the final nucleus produced in stars before decaying to 
56

Co and then 
56

Fe. Finally, 
208

 82 Pb126 is the only heavy double magic. It, along with its 

neighbors 
206

Pb and 
207

Pb,. 

     Nuclei with only one closed shell are called ―semi-magic‖: 

• Isotopes of nickel, Z = 28; 

• Isotopes of tin, Z = 50; 

• Isotopes of lead, Z = 82; 

• Isotones N = 28 (
50

Ti, 
51

V, 
52

Cr,
54

Fe , etc.) 

• Isotones N = 50 (
86

Kr, 
87

Rb
, 88

Sr, 
89

Y, 
9
0Zr, etc.) 

• Isotones N = 82 (
136

Xe, 
13

8Ba, 
139

La, 
140

Ce, 
141

Pr, etc.) 

These nuclei have [1]. 

• a binding energy greater than that predicted by the semi-empirical mass 

formula, 

• a large number of stable isotopes or isotones, 

• a large natural abundances, 

• a large energy separation from the first excited state, 

• a small neutron capture cross-section (magic-N only).  



38 

         The exceptionally large binding energy of doubly magic 
4
He makes α 

decay the preferred mode of A non-conserving decays. Nuclei with 209 < A 

< 240 all cascade via a series of β and α decays to stable isotopes of lead and 

thallium. Even the light nuclei 
5
He, 

5
Li and 

8
Be decay by α emission with 

lifetimes of order 10−16 s. 

    While 
5
He rapidly α decays, 

6
He has a relatively long lifetime of 806 ms. 

This nucleus α particle. This system has the peculiarity that while being 

stable, none of the two-body subsystems (n-n or n-α) are stable. Such 

systems are called ―Borromean‖ after three brothers from the Borromeo 

family of Milan. The three brothers were very close and their coat-of-arms 

showed three rings configured so that breaking any one ring would separate 

the other two. 

         Shell structure is a necessary ingredient in the explanation of nuclear 

deformation. We note that the Bethe–Weizs¨acker mass formula predicts that 

nuclei should be spherical, since any deformation at constant volume 

increases the surface term. This can be quantified by a ―deformation 

potential energy‖ as illustrated in Fig. 2.15. In the liquid-drop model, a local 

minimum is found at vanishing deformation corresponding to spherical 

nuclei. If the nucleus is unstable to spontaneous fission, the absolute 

minimum is at large deformation corresponding to two separated fission 

fragments. 

           Since the liquid-drop model predicts spherical nuclei, observed 

deformation must be due to nuclear shell structure. Deformations are then 

linked to how nucleons fill available orbitals. For instance, even–even nuclei 

have paired nucleons. If the nucleons tend to populate the high-m orbitals of 

the outer shell of angular momentum l, then the nucleus will be oblate. If 

they tend to populate low-m orbitals, the nucleus will be prolate. Which of 

[1].these cases occurs depends on the details of the complicated nuclear 

Hamiltonian. The most deformed nuclei are prolate. Because of these 

quantum effects, the deformation energy in Fig. 2.15 will have a local 

minimum at non-vanishing deformation for non-magic nuclei. It is also 

possible that a local minimum occurs for super-deformed configurations. 

These metastable configurations are seen in rotation band spectra.  

         We note that the shell model predicts and ―island of stability‖ of super 

heavy nuclei near the magic number (A, N, Z) = (298, 184, 114) and (310, 

90 2.184, 126). The lifetime are  estimated to be as high as 106 yr making 

them of more than purely scientific interest. 
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Fig. 2.15. Nuclear energies as a function of deformation. The liquid drop 

model predicts that the energy has a local minimum for vanishing 

deformation because this minimizes the surface energy term, in high-Z 

nuclei the energy eventually decreases for large deformations because of 

Coulomb repulsion, leading to spontaneous fission of the nucleus.) As 

explained in the text, the shell structure leads to a deformation of the ground 

state for nuclei with unfilled shells. Super-deformed local minima may also 

exist [38]. 

      Finally, we mention that an active area or research concerns the study of 

magic number for neutron – rich nuclei far from the bottom of the stability 

valley. It is suspected that for such nuclides the shell structure modified .this 

effect is important for the calculation of the nucleosynthesis in the r-process 

[38]. 

2.11 Nuclear Magic Numbers 
   In nuclear physics, there is also evidence for magic numbers, i.e. Values of 

Z and N at which the nuclear binding is particularly strong. This can been 

seen from the B/A curves of Figure 2.14. Where at certain values of N and Z 

the data lie above the SEMF curve. This is also shown in Figure 2.10, where 

the inset shows the low-A region magnified. (The figure only shows results 

for even values of the mass number A.) The nuclear magic numbers was 

found from experiment to be [40]. 

N = 2; 8; 20; 28; 50; 82; 126 

Z = 2; 8; 20; 28; 50; 82                                                     (2.11.1) 
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      and correspond to one or more closed shells, plus eight nucleons filling 

the s and p sub-shells of a nucleus with a particular value of n. Nuclei with 

both N and Z having one of these values are called doubly magic, and have 

even greater stability. An example is the helium nucleus, the α particle [40]. 

     Shell structure is also suggested by a number of other phenomena. For 

example: ‗magic‘ nuclei have many more stable isotopes than other nuclei; 

they have very  small electric dipole moments, which means they are almost 

spherical, the most tightly bound shape; and neutron capture cross-sections 

show sharp drops compared with neighbouring nuclei. However, to proceed 

further we need to know something about the effective potential [38, 40].  

      A simple Coulomb potential is clearly not appropriate and we need some 

form that describes the effective potential of all the other nucleons. Since the 

strong nuclear force is short- ranged, we would expect the potential to follow 

the form of the density distribution of nucleons in the nucleus. For medium 

and heavy nuclei, we have seen that the Fermi distribution fits the data and 

the corresponding potential is called the Woods–Saxon form [40]. 

        ( )  
   

   (   )  
                                                   (2.11.2)  

    However, although these potentials can be shown to offer an explanation 

for the lowest magic numbers, they do not work for the higher ones. This is 

true of all purely central potentials. The crucial step in understanding the 

origin of the magic numbers was taken in 1949 by Mayer and Jensen who 

suggested that by analogy with atomic physics there should also be a spin–

orbit part, so that the total potential is 

 Vtotal = Vcentral(r) +    Vls(r)L . S                                       (2.11.3)  

          where L and S are the orbital and spin angular momentum operators 

for a single nucleon and Vls(r) is an arbitrary function of the radial 

coordinate.8 This form for the total potential is the same as that used in 

atomic physics except for the presence of the function Vls(r). Once we have 

coupling between L and S then mL and ms are no longer ‗good‘ quantum 

numbers and we have to work with eigenstates of [40].The Total angular 

momentum vector J, defined by J = L +  S. Squaring this, we have 

                                                                   (2.11.4) 

    
 

 
(        )                                                   (2.11.5) 

Hence the expectation value of L. S, which we write as LS, is 
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                                                                                        (2.11.6)                  
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 (We are always dealing with a single nucleon, so that s  ½) The splitting 

between the two levels is thus; 

     
    

 
  (   )                                                       (2.11.7) 

    Experimentally, it is found that V‗sr is negative, which means that the 

state wit   j=   
 

 
  has a lower energy than the state with j =   

 

 
. This is 

the opposite of the situation in atoms.  In addition, the splitting are 

substantial and increase linearly with ‗. Hence for higher L crossings 

between levels can occur. Namely, for large L the splitting of any two 

neighbouring degenerate levels can shift the j =   -  
 

 
  state of the initial 

lower level to lie above the j =   
 

 
    level of the previously higher level.  

       An example of the resulting splittings up to the 1G state is shown in 

Figure 2.16, where the usual atomic spectroscopic notation has been used, 

i.e. levels are written n‗j with S, P, D, F, G, . . . : used for L= 0, 1, 2, 3, 4, . . 

.. Magic numbers occur when there are particularly large gaps between 

groups of levels. Note that there is no restriction on the values of ‗for a given 

n because, unlike in the atomic case, the strong nuclear potential is not 

Coulomb-like. 

        The configuration of a real nuclide (which of course has both neutrons 

and protons) describes the filling of its energy levels (sub-shells), for protons 

and for neutrons, where k is the occupancy of the given sub-shell. 

Sometimes, for brevity, the completely filled [40]. 
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Figure 2.16 Low-lying energy levels in a single-particle shell model using 

a Woods—Saxon potential plus spin--orbit term.    

circled integers correspond to nuclear magic numbers sub-shells are not 

listed, and if the highest sub-shell is nearly filled, k can be given as a 

negative number, indicating how far from being filled that sub-shell is. 

Using the ordering diagram above, and remembering that the maximum 

occupancy of each sub-shell is 2j +  1, we predict, for example, the 

configuration for 
17

8O to be: 

(   
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(   

 

*
 

                                            (2.11.8) 
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                                (2.11.9) 

    Notice that all the proton sub-shells are filled, and that all the neutrons are 

in filled sub-shells except for the last one, which is in a sub-shell on its own. 

Most of the ground state properties of 
17

 8O can therefore be found from just 

stating the neutron configuration as (   

 

*
 

 [3]. 
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2.12 Spins, Parities and Magnetic Dipole Moments 
The nuclear shell model can be used to make predictions about the spins of 

ground states.A filled sub-shell must have zero total angular momentum, 

because j is always an integer-plus-a-half, so the occupancy of the sub-shell, 

2j+1, is always an even number. This means that in a filled sub-shell, for 

each nucleon of a given mj=( jz) there is another having the opposite mj. 

Thus the pair have a combined mj of zero and so the complete sub-shell will 

also have zero mj. Since this is true whatever axis we choose for z, the total 

angular momentum must also be zero. Since magic number nuclides have 

closed sub-shells, such nuclides are predicted to have zero contribution to 

the nuclear spin from the neutrons or protons or both, whichever are magic 

numbers. Hence magic-Z/magic-N nuclei are predicted to have zero nuclear 

spin. This is indeed  found to be the case experimentally[40]. 

             In fact, it is found that all even-Z/even-N nuclei have zero nuclear 

spin. We can therefore make the hypothesis that for ground state nuclei, 

pairs of neutrons and pairs of protons in a given sub-shell always couple to 

give a combined angular momentum of zero, even when the sub-shell is not 

filled. This is called the pairing hypothesis. We can now see why it is the last 

proton and/or last neutron that determines the net nuclear spin, because these 

are the only ones that may not be paired up. In odd-A nuclides there is only 

one unpaired nucleon, so we can predict precisely what the nuclear spin will 

be by referring to the filling diagram. For even- A/odd-Z/odd-N nuclides, 

however, we will have both an unpaired proton and an unpaired neutron. We 

cannot then make a precise prediction about the net spin because of the 

vectorial way that angular momenta combine; all we can say is that the 

nuclear spin will lie in the range[ jp – jn] to (jp   jn). 

          Predictions can also be made about nuclear parities. First, recall the 

following properties of parity: (1) parity is the transformation r--r; (2) the 

wave function of a single-particle quantum state will contain an angular part 

proportional to the spherical harmonic Y
l
m (θ,ϕ)and under the parity 

transformation[3]:      
 (   )  ( )  

 (   )  

 a single-particle state will also have an intrinsic parity, which for nucleons 

is defined to be positive. Thus the parity of a single-particle nucleon state 

depends exclusively on the orbital angular momentum quantum number with 

P = (-1)
L
 The total parity of a multi particle state is the product of the parities 

of the individual particles. A pair of nucleons with the same ‗will therefore 

always have a combined parity of  1. The pairing hypothesis then tells us that 

the total parity of a nucleus is found from the product of the parities of the 

last proton and the last neutron. Therefore, we can predict the parity of any 

nuclide, including the odd/odd ones, and these predictions are in agreement 
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with experiment. Unless the nuclear spin is zero, we expect nuclei to have 

magnetic (dipole) moments, since both the proton and the neutron have 

intrinsic magnetic moments, and the proton is electrically charged, so it can 

produce a magnetic moment when it has orbital motion. The shell [40] 

model can make predictions about these moments. Using a notation similar 

to that used in atomic physics, we can write the nuclear magnetic moment 

as: 

         

where    is the nuclear magneton that was used in the discussion of hadron 

magnetic moments in Section 3.3.3, gj is the Lande´ g-factor and j is the 

nuclear spin quantum number. For brevity we can write simply _    nuclear 

magnetons. We will find that the shell model does not give very accurate 

predictions for magnetic moments, even for the even–odd nuclei where there 

is only a single unpaired nucleon in the ground state.We will therefore not 

consider at all the much more problematic case of the odd–odd nuclei having 

an unpaired proton and an unpaired neutron. For the even–odd nuclei, we 

would expect all the paired nucleons to contribute zero net magnetic 

moment, for the same reason that they do not contribute to the nuclear spin. 

Predicting the nuclear magnetic moment is then a matter of finding the 

correct way to combine the orbital and intrinsic components of magnetic 

moment of the single unpaired nucleon. We need to combine the spin 

component of the moment, gss, with the orbital component, gll (where gs and 

gl are the g factors for spin and orbital angular momentum.) to give the total 

moment gj j. The general formula for doing this is: 

   
 (   )  (   )  (   )

  (   )
   

 (   )  (   )  (   )

  (   )
         (2.12.1) 

    

Which simplifies considerably because we always have     
 

 
 Thus 

         
  

 
        

 

 
 

 

       (  
 

    
)     (

 

    
)         

 

 
             (2.12.2) 

Since gl = 1 for a proton and 0 for a neutron, and gs is approximely + 5.6 for 

the proton and -3.8 for the neutron, Equations (2.11.3) yield the results 

(where g proton(neutron) is the g-factor for nuclei with an odd 

proton(neutron))[40]. 
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                                                                                             (2.12.3)              
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             (2.12.4) 

 

Accurate values of magnetic dipole moments are available for a wide range 

of nuclei and plots of a sample of measured values for a range of odd-Z and 

odd-N nuclei across [40]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



46 

Chapter Three 

Equations of Quantum Mechanics 

 3.1 Introduction 

This chapter is explain the equation of quantum mechanics, firstly with 

derivation Schrodinger equation, Klein-Gordon equation, and Dirac 

equation.   

 3.2 Schrodinger Equation 

       The Schrodinger equation is a linear particle differential, that describes 

the wave function or state function of quantum mechanical system, its useful 

key result in quantum in quantum mechanics, its fundamental equation , also 

Schrodinger equation describe the dynamics of a system of  N particle . This 

description can be obtained from generalization of dynamics of single 

particle [46]. 

The Schrodinger Equation Has Two Form 

One in which time explicitly appears, and so describes how wave function of 

particle will evolve in time. In general, the wave function behaves like a 

wave, and so the equation is often referred to as the time dependence [46]. 

3.2.1 Derivation Schrodinger Wave Equation 

      The other is the equation in which he time dependent has been removed 

and hence is known as the time independent Schrodinger equation and is 

found to describe. These are not separate, independent equation, the time 

independent equation can be derived readily from the time dependent 

equation [46, 47]. 

The time dependent Schrodinger equation wave equation of the discussion 

of the particle in an infinite potential well, it was observed the wave 

functions of a particle fixed energy E, the form of the wave function 

 (   )     (     )                                               (3.2.1) 
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The particle of momentum 

                
 

  
(
  

 
)     

         
 

 
     

    

  
 

  

  
   

 

   
 

 
      

  

  
     

  
  

  
                                                                            (3.2.2) 

    (     )                                                                     (3.2.3) 

Differential equation  

  

  
      (     )                                                       (3.2.4) 

   

   
                                                                             (3.2.5) 

Which can be written, using: 

  
  

  
 

    

  
            

   

  

   

   
 

  

  
                                                                     (3.2.6) 

Similarly: 
  

  
                                                              (3.2.7) 

Which can be written using E=                      

  
  

  
                                                                    (3.2.8) 

We now generalize this to the situation in which there is both a kinetic 

energy and potential energy present, then 

   
  

  
  ( )               

    
  

  
   ( )                                                           (3.2.9) 
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Where   is now the wave function particle moving in the presence of a 

potential v(x). If we assume that the result equation (3.2.6) and (3.2. 8) still 

apply in this case, then we have [47, 48]. 

 
  

  

   

   
  ( )    

  

  
                                                 (3.2.10) 

Which is the famous time dependent Schrodinger wave equation, it is setting 

up and solving this equation. Even though this equation does not look like 

the familiar wave equation that describes, for instance, the harmonic wave 

function for a free particle of energy E and momentum[37,47]. 

 (   )      (     )                                                       (3. 2.11) 

Is a solution of this equation with for particle, v(x) =0, when the wave 

express for the body in three domination, the equation of free body: 

    (     )                                                                    (3.2.12) 

               

The Schrodinger equation for general formula: 

  
    

   
  

  

  
                                                        (3.2.13) 

    
  

  
                                                                            (3.2.14) 

H: Called Hamiltonian                               

The Time in Dependent Schrodinger Equation: 

We have seen that the wave function looks like for a free particle of energy 

E, one or the other of the harmonic wave function. In both cases, the time 

dependent entered into the wave function via a complex exponential factor 

eEp[-iEt/   ] a solution into the Schrodinger wave equation of the form[47]    

 (   )   ( ) 
   

 ⁄                                                          (3.2.15) 

1f we substitute this trail solution into Schrodinger wave equation, and make 

use of the meaning of particle derivation, one get 

   

  

   ( )

   
  ( ) ( )    ( )                                        (3.2.16) 

If we rearrange the terms, we end up with 
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   ( )

   
 (   ( )) ( )                                         (3.2.17) 

Which is the time independent Schrodinger equation, we note hear the 

quantity E. Which have identified as the energy of the particle is a free 

parameter in this equation [47]. 

3.3 The Klein –Gordon Equation 

      One can obtained in exactly the same way, being with relativistic energy 

momentum relation, the energy of particle [21, 48]: 

  
  

  
                                                                         (3.3.1) 

Applying the quantum prescription: 

  
 

 
            

 

  
                                                         (3.3.2) 

And letting the resulting operator act on the wave function    

    
  

  
       

   

   
 

  

  
                                        (3.3.3) 

    
 

 
(     )

                                                                 (3.3.4) 

   

  
    

  

  
   

Substitute (3.3.1) at   on (3.3.3) we obtained: 

     
  

  
     

  
  

  
 

    

  
                                                             (3.3.5) 

     

  
       

  

  
                                                       (3.3.6) 

The equation is Schrodinger equation, the Klein-Gordon had given by 

           
      

  √       
                                                              (3.3.7) 

E=Energy of particle        p=momentum,   m0=electron mass constant 

                                                                         (3.3.8) 
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One leave out the potential energy, we will stick to free particle surprisingly, 

and the quantum prescription requires no relativistic modification in four –

vector notion .it reads [49]. 

                                                                                   (3.3.9) 

   
 

  
                                                                              (3.3.10) 

   
 

 

 

  
        

 

  
    

 

  
     

 

  
                             (3.3.11) 

Putting equation (3.3.7) into equation (3.3.8) and letting the derivation 

Acton a wave function , we obtain:  

                                                                  (3.3.12) 

Or  
 

  

   

   
     (

  

 
)
 
                                             (3.3.13) 

The equation (3.3.13) is Klein –Gordon equation free particle, and find 

electromagnetic field, the equation become: 

(     )  (     )    
                                        (3.3.14) 

This equation equivalence the classical equation: 

  
 

  
(  

 

 
 )

 
                                                        (3.3.15) 

A=magnetic field,     normal electric field  

    
 

 

 

  
  ̅       ̅    

Multiply equation (3.3.14) at   we obtained: 

(     )  (     )     
                                 (3.3.15) 

Let: 

  
   

   
       

  ̅

 
                                                            (3.3.16) 

Let equation (3.3.16) in equation (3.3.15) we 0btained the general Klein-

Gordon equation [49]. 

  [(  
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   ]    
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     )  

(                       ̅          
   )   (3.3.17) 

3.4 The Dirac Equation 

Perpetration itself flawed in relativistic quantum theory, and restored the 

Klein –Gordon equation to its rightful place, while keeping the Dirac 

equation for particle of spine ½. 

Dirac‘s basic strategy was to factor the energy, momentum relation, this 

would be easy if we had only p
0
 (that is powered zero), the relativistic 

energy equation [50].  

  √       
                                                             (3.4.1) 

(  )       (     )(     )                       (3.4.2) 

When then obtain two first order equation: 

(     )          (     )                                   (3.4.3) 

Either one of which guarantees that; 

              , but it is a different matter when the other three 

components of    are included, in that case we are looking for something of 

the form [48, 51]. 

(         )  (       )(       )                 (3.4.4) 

Where           eight coefficients to be determined, multiplying out the 

right –hand side, we have: 

            (     )        

We don‘t want any terms linear in   , so we must choose (     ) to 

finish the job, we need to find coefficient    such that; 

(              

Which is to say: 

(  )  (  )  (  )  (  )  (  ) (  )  (  ) (  )  
(  ) (  )  (  ) (  )  (         )     (         )     
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(         )     (         )     (         )     

(         )        

                                                                                             (3.4.5)                                                                     

We could pick                      we just might be able to find 

a set such that [48]: 

(  )    (  )  (  )  (  )     

                                                                 (3.4.6) 

Or more succinctly: 

{                                                                              (3.4.7) 

Write equation (3.4.4) out (long hand). 

(  )  (  )  (  )  (  )      

 (                   

   )(                   

   ) 

Where     is the Minkowski metric? 

{A, B}= AB+BA                                                                  (3.4.8) 

We will used the standard ―Bjor-Ken and Drell‖ convention: 

  (
  
   

)  (
   

    
)                                                      (3.4.9) 

Where   (       )   

The relativistic energy momentum relation does factor: 

(         )  (       )(       )                (3.4.10) 

We obtain the Dirac equation, now by peeling of one term (it does not really 

matter which one but this is conventional choice. 

                                                                              (3.4.11) 

           And let the result act on the wave function   

                                                                         (3.4.12) 
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Dirac Equation 
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)    (
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)                                                      (3.4.13) 
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)                                    (3.4.14) 

Note: Dirac function that is now a four-element column Matrix: 

  (

  
  
  
  

)                                                                             (3.4.15) 

              
   

Substitute:   
  

  
    

 

 
      

Equation: 

     
 

 
(     )

   

      
   

   
 

  

  
  

We find the Dirac equation time: 

  
  

  
   

 

 
      

   
  

 
       

                        (3.4.16) 
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We find the Dirac equation UN dependent time of form [43] 

[    
 

 
 ]         ] ( )      ( )                    (3.4.17) 

       
   

    ( ) 

3.5 Equation of Spherically Symmetric Potential 

For Spherically Symmetric Potential Schrodinger equation gives [17] 

   ̈  
  

  
       

   

  

 

 
                                                 (3.5.1) 

   ̈  
  

  
         

  

  
                                                (3.5.2) 

Where u stand for the radial part of wave function, while   

   
   

  
  

   
 

  
                               

     (   )

  (  )
                              (3.5.3) 

Re arranging (3.5.2) yields 

   ̈     
       

  

  
                                                (3.5.4) 

One can redefine the variables such that to get 

                                         
 

 
       

    
   

   
 

 

  

   

   
 

 

  
 ̈ 

There fore  

 ̈                                                                                    (3.5.5) 

In view of equation (3.5.4) one gets 

        
       

  

  
     

     
   

 

  
      

   
 

  
     

Hence 
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                                               (3.5.6) 

With 

                   
  

  
                

   

   
                                   (3.5.7) 

Therefore, equation (3.5.6) reduces to  

   (    )  
  

  
                                                     (3.5.8) 

To solve this equation assume  

     
 

 
  

  

   (             )  
 

 
  

                                  (3.5.9) 

Sub (3.5.9) in (3.5.8) to get 

                     
  

  
      

        (   )  
  

  
     

The function H can be defined to be  

  ∑           ∑    
     

   ∑ (   )        

∑  (   )         ∑      (   )∑       ∑    
                 

(3.5.10) 

In first and last term let 

       

∑(   )(   )     
 ∑ [      ]   

     ∑     
     (3.5.11) 

Equating   ea e ff  of  y
s 

[(   )(   )    ]     [      ]  
   

     
[      ]  

(   )(   )   

    
           

Since the last term is     , thus  
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Therefore  

       
[      ]  

(   )(   )   

 
        

                                        
       

In view of equation (3.5.7) and (3.5.3)  

  
  

  
    

   √   √
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                                  (3.5.12) 

Thus, the energy have given by   
                    

  
 

 
  (    )    (  

 

 
)                                                    

(3.5.13) 

The total angular momentum have given by   
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(    )      

                          
  

 
[     ]                                        (3.5.14) 

Also 
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 )       

          (3.5.15) 

 The orbital angular momentum Eigen equation satisfies    

L
2
Y =ay                                 (   )                      (3.5.16) 
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The spins and angular momentum L multiplication gives  

S.L =  
 

 
 √ (   )  

 

 
    

           
 

 
  (   )                                        (3.5.17) 

 3. 6 Generalized Special Relativistic Quantum Equation  

The GSR energy is given by 

  
   

 

√    
  

  

 
   

 

√    
          

    

                                      (3.6.1) 

Thus 

  
   

  

√    
      

                                                           (3.6.2) 

Since the time component of the matric is given by  

    (  
  

  )                                                              (3.6.3) 

Where   is potential per unit mass, it follows that  

    
         

     

 (  
  

  )          
     

(  
   

   )           
     

(  
  

 
)           

     

Hence  

              
     

                 
                                     (3.6.4) 

The quantum equation can be obtained by suggesting the wave function to 

be  

      
 

 
(     )

 

Differentiating    w.r.t time gives  
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In addition, w.r.t coordinate gives   

 

 
                  

Inserting in (4.5.20) gives  

      

   
     

  

  
            

               (3.6.5) 

Splitting the time and coordinate parts gives  

   
  

 
   ( )         

  

  
  

 

 
              

   

   
  

 

  
    

  

 
  

  

Inserting again in (3.6.4) gives   

(        ) 
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Rearranging yields  

    

 
           

  
   

 
      

For large rest mass 

          
  

Thus, one gets 

  

  
              

      

    
  

    
  

   

    
  

  
   

    
                          (3.6.6) 

In spherical coordinate. This equation can be written using (3.5.4) to be  

 ̈         
   

  

  
     

Where  
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And 
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Also  
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If one neglect     , it follows that  
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However       , one gets  
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   (    )      
    (    )                  (3.6.8) 

        The magnetic moment of atom μ can be used to find the nuclear 

magnetic flux density B, which interacts with proton and neutron magnetic 

moment, in terms of well-known parameters to be 

       (   )  
  

  
   

A is the orbital area, r  is the radius. The current i is  given by  

  
 

   
  

  
   

  
 

   

    
 

    

     
                                           (3.6.9) 

        The interaction potential between nucleon spin and nuclear magnetic 

field is given by 

              
 

 
         

Thus  
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(  )√ (   )       (  )√ (   )         (3.6.10) 

Numerically  

                                                        

                   

                         

                      

                        

   
                

           
                          

      

Thus: 

       (  )√ (   )      
 

 
     √ (   )      

    
 

 
     √ (   )      

If   ns is integer such that: 

                        

Thus, θ can adjust itself, such that:  

     
   

    √ (   )
     To get: 

        

The Hamiltonian of nuclear spin magnetic interaction is given by: 

  ̂     ̂    ̂ 

Where the time independent equation become  

  ̂                                                                           (3.6.11) 

The wave function is given by 

   ( ) (   )                                                             (3.6.12) 
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Hence  

  ̂      ̂       

  ̂      ̂        

Thus: 

 ̂  (  ̂    ̂)   (  ̂ )   (  ̂  ) 

                  (     )   

 ̂  (     )                                                        (3.6.13) 
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Chapter Four 

Literature Review 

4.1 Introduction  

Different attempts was made to explain the nuclear models and the magic 

number. 

 4.2 Determination of Nuclear Potential Radii and   Its 

Parameter from Finite – Size Nuclear Model 

     The atomic nucleus is not a point source. Thus, the assumption of a finite 

size for a nucleus leads to a departure from Coulomb potential between 

electron and nucleus. In this work, the nuclear potential charge radius by 

virtue of the modified finite size nuclear potential. Has been found. The 

volume of the nuclear potential charge exceeded the nuclear radius by factor 

√3. Due to the extension of the nuclear potential charge, a new and simple 

Z
1/3

 dependent formula for calculating the radii of the extension of nuclear 

potential charge is proposed. This work offers a simple way to predict the 

nuclear charge radius from the assumption of nuclear finite sized model [52]. 

       This work also revealed the important advantage of finite – size nuclear 

model in determining the nuclear charge radius. The ―spherical nuclear‖ 

radius R can be replaced by Rp for the distribution of proton charge beyond 

the radius of the atomic nucleons. 

Methodology: 

       The size of a nucleus is characterized by, Rrms or by the radius R of the 

uniform sphere [53]. Both the quantities are related. The mean squared radii 

of neutron, proton, charge and mass distribution can be defined as follows: 

〈 〉 
  

∫       ( )  
 

 

∫  
 

 
    ( )  

  

 

       Where ρ(r) is the nuclear charge density [54]. For a uniformly Charged 

sphere [ρ(r) = constant] of radius R. For r > R, this Gives: 

〈 〉  
∫     
 

 

∫     
 

 

 
 

 
    

So that the radius of a sphere  
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〈  

 〉
 

                                                                    (4.2.1) 
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       The root-mean-square nuclear matter radii (Rrms) and the density 

distributions contain an important insight on nuclear potentials and nuclear 

wave functions [55]. If the nucleus is a point charge with the distance of 

electron from the nucleus, r and k = (4πε0,)
-1

 then its potential is given by: 

 ( )    
   

 
                                                            (4.2.2) 

The nuclear potential and electron wave function change when the nucleus is 

described as a finite-size source with a uniform distribution of charges [3] of 

radius R, then the electron wave function can penetrate to r ≤ R, and thus the 

electron spends part of its time inside the nuclear charge distribution, there it 

feels a very different interaction [56]. Therefore, the potential appropriate for 

the perturbed electron is no longer of the pure Coulomb form. This is 

because the electrostatic potential , is no longer due just to the point charge 

nucleus of electric charge |e|Z [57]. 

          The potential inside a spare of radius r due to a point charge qinside = 

e(r/R)
 3
, located at the origin is from Coulomb‘s law: 

 (   )   
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)
 
                                              (4.2.3) 

The perturbative potential difference between r and R is defined by 

 (   )  ∫
      

 

 

 
 

    

  

  

 
 
 
 
        

  
    

   
 (     )                                                     (4.2.4) 

          Where ρ = 3q/4πR3 is the nuclear charge distribution and in this case 

it is constant [58]. And: 

     
 

                                                                       (4.2.5) 

Thus, for r ≤ R we have the potential: 

 ( )   
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)
 
 

    

   
 (     )    

           =  
    

   
 (      )                                          (4.2.6) 

       Equation (3.2.6) represents the potential for a finite-size charge nucleus 

[59]. Now we have seen that due to the finite nuclear size, the electric 

potentials U(R) and U(r) of the nucleus are different [60]. Therefore, the 

spherical electrostatic potential function U(R), corresponding to a nuclear 

charge density distribution, will then be used to replace the common 

Coulomb potential for a point-like nucleus, [61]. Also compared to a point-

like nucleus, the extended nuclear charge distribution also leads to a shift in 

the energy levels of electron [62, 63].  

           Assuming uniform charge distribution, one have for a nucleus of 

charge +Ze, the volume. 
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  ∫    ∫   ∫    
 

 

  

 

 

 

 √  
  

  

 
                         (4.2.7) 

Hence the density: 

  
   

     
                                                                        (4.2.8) 

     The intrinsic quadrupole moment of a symmetry charged distribution is 

defined by the relation. 

   
 

 
∫ ( )[ ( )  ( ) ]                                      (4.2.9) 

      The nucleus is assumed to have asymmetry axis along z′ and e is the 

charge on each proton [64]. Using the fact that r′ 
2
 = x′ 

2
 +y′ 

2
+z′ 

2
 = ρ′ 

2
 + z′ 

2
 and dv = ρ′ dρ′ dφ′ dz′, we find: 

   
   

      
∭ ( )[         ]dv  

  
 

 
 (     )                                                            (4.2.10) 

A non-zero quadrupole moment Q0 indicates that the proton distribution is 

not spherically symmetric. By convection, the value of Q0 is taken to be 

positive (i.e. when ɑ > b) if the ellipsoid is prolate and negative (i.e. when ɑ 

< b) if the ellipsoid is oblate and zero (i.e. when ɑ = b) if the ellipsoid is a 

sphere. Figure 2 depicts the possible charge (shape) distribution of nuclei. 

       Nuclear deformation has an influence on the nuclear charge radii. The 

effective deformation parameters (βeff) are deduced from the intrinsic 

quadrupole moment (Q0), which is related to the spectroscopic quadrupole 

moment (Q) via the well-known formula 

  
    (    )

(   )(    )
                                                             (4.2.11) 

     Thus, the effective deformation parameters can be deduced the 

quadrupole moments and the charge radii are known. βeff has been deduced 

for light mirror nuclei . 

 

 
Figure (4. 1) Electric quadrupole moments for different charge 

distribution. 
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4.3 Nuclei at or Near Drip-Lines 
                The magic number and halo and /or skin (neutron) of the nuclei at 

or near neutron drip-line are studied using axially deformed relativistic mean 

field model. The density profiles of some of selected nuclei in the light mass 

region of nuclear landscape are plotted for the purpose. A considerable 

difference in the densities of neutron and proton can be seen easily in all the 

cases studied. In addition, single particle energy levels show the visible shell 

gaps at N = 28 and 40 which corresponds the sudden decrease in the two 

neutron separation energy. The two results are consistent with each other, 

while the shell gaps corresponding to the numbers N = 32 and 34 seem not 

to be supporting the magicity at these numbers in the isotopes considered 

here [65]. 

        The halo character and the magic number in the nuclei close to or on 

the neutron drip-line, has been studied also.  The density profiles show that 

the nuclei considered here are having considerable difference in the densities 

of neutron and proton, which is a clear indication of halo structure. The other 

part of investigation is magic number in this mass region. The shells at N = 

32 or 34 are separated by energy ~1.6 MeV only, as compared to the gaps of 

~4.5 MeV at N = 28. The shell gap of ~1.6 is small enough to create the 

stability required for the number to be a magic number. Therefore, these 

numbers do not seem show the magic number character. 

Formalism: 

        One use axially deformed relativistic mean field (RMF) model to study 

the properties of the nuclei. The RMF model has been proved to be a very 

powerful tool to explain the properties of finite nuclei and infinite nuclear 

matter [66, 67, 68] for the last two decades. We start with the relativistic 

Lagrangian density for a nucleon-meson many-body system, 
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(4.3.1) 

 

 The quadrupole deformation parameter β2 is evaluated from the resulting 

quadrupole moment [4] using the formula, 

        √
 

  
                                                               (4.3.2) 

   Where, R=1.2A
1/3

. The total binding energy of the system is,  
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                                                     (4.3.3) 

 

Where Epart is the sum of the single-particle energies of the nucleons and Eσ, 

Eω, Eρ, Ec and Epair are the contributions of the mesons fields, the Coulomb 

field and the pairing, energy respectively. For the open shell nuclei, effect of 

pairing interactions is added in the BCS formalism. The pairing gaps for 

proton (Δp) and neutron (Δn) are calculated from the relations [69] 

        
 

  (     )  

        
 

   (     ))                                                                 (4.3.4) 

    Where r=5.72 MeV, s=0.118, t=8.12, b_s=1, and I= (N-Z)/ (N+Z). 

4.4 Three-Dimensional Simulations Of pure Deflagration 

Models for Thermos Nuclear Supernovae 
       This work is concerned with a systematic study of the pure deflagration 

model of Type Ia supernovae (SNe Ia) using three-dimensional, high-

resolution, full-star hydrodynamical simulations. Nucleosynthetic yields 

were calculated using Lagrangian tracer particles, and light curves calculated 

using radiation transport [70].   

      One tests the effects of the initial conditions on results by varying the 

number of randomly selected ignition points from 63 to 3500.  In addition, 

the radius of the centered sphere they are confined in from 128 to 384 km. 

The results show that the rate of nuclear burning depends on the number of 

ignition points at early times. The density of ignition points at intermediate 

times. In addition, the radius of the confining sphere later. The results 

depend primarily on the number of ignition points, but we do not expect this 

to be the case in general. The simulations with few ignition points release 

more nuclear energy Enuc, have larger kinetic energies EK, and produce 

more 56Ni than those with many ignition points, and differ in the 

distribution of 56Ni, Si, and C/O in the ejecta. The MB and light curves 

resemble those of under-luminous SNe  Iax, while those for simulations with 

many ignition points are not.. 
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Figure a (4.2): the nuclear burning rate as a function of time. (b): the 

burned mass Mb as a function of time. Blue, green, and brown lines 

correspond to the pairs of simulations with confining spheres of radii 

Rsph = 128, 256 and 384 km. 
         The simulations with a small fraction f of the volume of the confining 

sphere filled by ignition point bubbles are shown as dashed lines, while 

those with nearly the largest possible fraction are shown as solid lines. 



68 

 

 
 

Figure (4.3) Evolution of the internal energy, EI, the negative of the 

gravitational potential energy, −EG, and the kinetic energy, EK, for all 

six simulations. 

 In the simulations with Nign ∼ 100, EI and −EG decrease slowly at first, 

reflecting the initially low burning and the low rate of expansion of the star 

in these simulations. The opposite is the case in the simulations with Nign ∼ 

103. 

4.5 Investigation of the Shell Effect on Neutron Induced Cross 

Section of Actinides  
          Investigations has been made concerning the development of the 

effect of shell structure on neutron induced cross section, evaluations for 

Actinides elements in the energy range of 0-30 MeV. The EXIFON code, 

which is based on the analytical model for statistical multistep direct and 

multistep compound reactions, was used for the calculation of the cross 

section for (n-2n), (n-p) and (n-α) reaction channels. Results are compared 

with data from the experimental database, EXFOR from the IAEA nuclear 

data bank to deduce the shell effect. An empirical relation for the reaction 

cross section has been established for magic numbers nucleus in the (n-2n) 

reaction channel in the energy range. Results shows that the odd-even effect 

has also been observed as the cross section for odd-even nuclei are higher 

than their neighbouring even-even nuclei and with comparison in term of 

Shell correction, the cross section is higher when the Shell correction is not 

considered [71]. 
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Figure (4.4) Graphical representation of the comparison between the 

Exofor and the calculated values for (2, 2n) reaction channel for PU-239 

 
Figure (4.5) Graphical representation of the comparison between the 

Exofor and the calculated values for (2, 2n) reaction channel for Th-232 
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Figure (4.6) Graphical representation of the comparison between the 

Exofor and the calculated values for (2, 2n) reaction channel for Th 232. 

4.6   Nuclear and Neutron Matter Properties Using BHF 

Approximation  
           Results of cold and hot symmetric nuclear matter and pure neutron 

matter calculations are presented. The Brueckner-Hartree-Fock (BHF) 

approximation + two-body density dependent Skyrme potential which is 

equivalent to three-body interaction are used.  Various modern nucleon-

nucleon (NN), CD-Bonn potential, Nijm1 potential, Reid 93 potential and 

Argonne V18 potential were used. The bulk properties of asym-metric 

nuclear matter are computed such as the equation of state (EOS) at (T = 0), 

pressure at (T = 0, 5 and 10 MeV), single particle potential, free energy at (T 

= 5 and 10 MeV), nuclear matter incompressibility and the symmetry 

energy. In addition, the bulk properties of pure neutron matter are computed 

such as the EOS at (T = 0), pressure at (T = 0, 3 and 6 MeV), single particle 

potential, free energy at (T = 3 and 6MeV). Good agreement is obtained in 

comparison with previous theoretical models [72]. 

4.6.1 BHFA and BGE  

The G-matrix is defined by: 

 ( )     
 

       
                                                 (4.6.1) 

    This is known as the Beth-Goldstone equation (BGE);etial for more 

deaital,[73] ω is the starting energy which is usually the sum of the single 

particle energies of the states of the interacting nucleons  

   ( )   (  )                                                         (4.6.2) 
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     V is the bare NN potential, η is an infinitesimal small number, H is the 

unperturbed energy of the intermediate scattering states. Q is the Pauli 

projection operator, it pro-jects out states with two nucleons above the Fermi 

level, and it is given by:  

 (    )  (    ( ))(    ( 
 ))                                (4.6.3) 

      Where ӨF (k) = 1 for k < kF and zero otherwise, ӨF (k) is the occupation 

probability of a free Fermi gas with a Fermi momentum kF. In the 

Brueckner-Goldstone expansion, the average binding energy per nucleon is 

expanded in a series of terms as follows: 
 ( )

 
 〈 ̅〉  〈 ̅〉  ∑

    

    
 

 
∑   ̅  | ( ( )   ( ̅))|  ̅ (4.6.4) 

where |kk' > refers to antisymetrized two-body states. This first order is 

known as the Brueckner-Hartree-Fock approximation (BHFA). To 

completely determine the average binding energy one has to define the 

single particle potential U (k) which contributes to the single particle 

energies ap-pearing in the G-matrix elements. The structure of the 

expression (2.4) suggests choosing the following BHF single particle 

potential 
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   ( )                                                                   (4.6.6) 

The G-matrix itself depends on U (k) through the starting energy ω, defined 

in Eq.(4.6.2) and the lowest order approximation (4.6.4) along with the 

choice (for the single particle potential. The single particle energy e (k) is 

defined 

 ( )     ( )  
    

  
  ( )                                           (4.6.7) 

where Γ is the kinetic energy. In the conventional choice for the single 

particle potential one normally takes the BHF potential for the hole states (k 

< kF) and zero for particle states (k > kF) 

 ( )  ∑    ̅ | ( ( )   (  ̅))|   ̅    
)                   

                                                                                                (4.6.8)           

The use of the continuous choice potential implies that the G-matrix 

elements needed in the self-consistent calcula-tion are complex and the 

prescription advocated by Mahaux is 

 ( )    ∑    ̅ | ( ( )   (  ̅))|   ̅    
)                   (4.6.9) 
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Eqs. (4.6.1) and (4.6.8) represent the main equations that one needs to solve 

self-consistently. In order to obtain such a self-consistent solution one often 

assumes a quadratic dependence of the single-particle energy on the 

momentum of the nucleon in the form 

 ( )  {

    

   
      

     

   
     

                                                 (4.6.10) 

Where m* is the effective mass of the nucleon and Δ is a constant. Starting 

with an appropriate choice for the pa-rameters for the effective m* and the 

constant Δ, one can solve the Bethe-Goldstone equation and evaluate the sin-

gle-particle energy [74].  

4.6.2 EOS of the Symmetric Nuclear Matter at (T = 0)  

The EOS is the relationship between energy per nucleon and Fermi 

momentum kF or density ρ, the minimum point of the curve is called the 

saturation point. In the present work, one may introduce a Skyrme effective 

interaction density dependent term in addition to the BHF potential. 

 (  ̅   ̅)  ∑   (      ) 
   

    (  ̅    ̅)                   (4.6.11) 

              This is a two-body density dependent potential which is equivalent 

to three-body interaction. Where ti and xi are interaction parameters, Pσ is 

the spin exchange operator, ρ is the density, r1and r2 are the position vectors 

of the particle (1) and particle (2) respectively and αi = (1/3, 2/3, 1/2 and 1).  

                The results are shown in the figure (3.7), where the energy per 

particle (E / A) in MeV is plotted against density ρ in fm-3, for symmetric 

nuclear matter using different potentials in comparison with Freidman and 

Pandharipande (F and P) [25]. 
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Figure (4.7) E / A in MeV for symmetric nuclear matter at (T=0) as a 

function of density using different potentials for conventional choice in 

comparison with F and P [25]  

4.6. 3 Pressure of the Symmetric Nuclear Matter at (T = 0) 

   The pressure for symmetric nuclear matter at T = 0 is de-fined in terms of 

the energy per particle as   

 ( )    
 (

 

 
)( )

  
                                                                  (4.6.12)   

          The results are shown in Fig. (3.8). The values of the pressure are 

plotted against the density ρ for symmetric nuclear matter for conventional 

choice using the CD-Bonn potential, the Nijm1 potential, the Argonne v18 

potential and the Reid 93 potential in comparison with F and P[25]. From 

figure (4.8) it is observed that when the density of symmetric nuclear matter 

increases the pressure of nuclear matter increases.  

 

 
 

Figure (4.8): The pressure of symmetric nuclear matter at (T = 0) as a 

function of density using different potentials for conventional choice in 

comparison with F and P [25]. 

 



74 

 
Figure (4.9) the single particle potential for symmetric nuclear as a 

function of momentum k at (kF = 1.333 fm-1) for different potentials for 

conventional choice. 

4.7 A Calculation Method of Nuclear Cross-Sections of Proton 

Beams by the Collective Model and the Extended Nuclear-Shell 

Theory with Applications to Radiotherapy and Technical 

Problems. 
        An analysis of total nuclear cross-sections of various nuclei is 

presented, which yields detailed knowledge on the different physical 

processes such as potential/resonance scatter and nuclear reactions. The 

physical base for poten-tial/resonance scatter and the threshold energy 

resulting from Coulomb repulsion of nuclei are collective/oscillator models. 

The part pertaining to the nuclear reactions can only be determined by the 

microscopic theory (Schrödinger equation and strong interactions). The 

physical impact is the fluence decrease of proton beams in different media, 

the stopping power of secondary particles, and a ‗translation‘ of the results 

of the microscopic theory to the collective model.  

      The presented results show that a suitable combination of the collective 

model with extended nuclear shell theory can be adequate to solve problems, 

which are rather outstanding in many practical problems. Besides the 

radiotherapy with protons, it should be mentioned that the cross-sections of 

those nuclei/isotopes are important to reduce the half times of the 

corresponding isotopes significantly. The storage of long-existing isotopes 

should be avoided [75].  
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 Figure 4.10. Total nuclear cross-section Qtot of oxygen [1 - 5] 

4.8 Review on the progress in nuclear fission—experimental 

methods and theoretical descriptions 

       New approaches have considerably extended the availability of 

fissioning systems for the experimental study of nuclear fission, and have 

provided a full identification of all fission products in A and Z for the first 

time. In particular, the transition from symmetric to asymmetric fission 

around 
226

Th, some unexpected structures in the mass distributions in the 

fission of systems around Z  =  80–84, and an extended systematics of the 

odd–even effect in the fission fragment Z distributions have all been 

measured[76]. 

       Three classes of model descriptions of fission presently appear to be the 

most promising or the most successful. Self-consistent quantum-mechanical 

models fully consider the quantum-mechanical features of the fission 

process. Intense efforts are presently being made to develop suitable 

theoretical tools [77].For modeling the non-equilibrium, large-amplitude 

collective motion leading to fission. Stochastic models provide a fully 

developed technical framework. The main features of the fission-fragment 

mass distribution have been well reproduced from mercury to fermium and 

beyond [78]; however, limited computer resources still impose restrictions, 
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for example, on the number of collective coordinates and on an elaborate 

description of the fission dynamics. In an alternative semi-empirical 

approach [79], considerable progress in describing the fission observables 

has been achieved by combining several theoretical ideas, which are 

essentially well known.   This approach exploits 

 (i) The topological properties of a continuous function in multidimensional 

space.   

(ii) The separability of the influence of fragment shells and the macroscopic 

properties of the compound nucleus. 

 (iii)  The properties of a quantum oscillator coupled to a heat bath of other 

nuclear degrees of freedom.   

(iv)  An early freeze-out of collective motion.  

(v) The application of statistical mechanics for describing the thermalization 

of intrinsic excitations in the nascent fragments. This new approach reveals a 

high degree of regularity and allows the calculation of high-quality data that 

is relevant to nuclear technology without specifically adjusting the empirical 

data of individual systems [80]. 

4.9 Systematic study of the α decay preformation factors of 

the nuclei around the Z = 82, N = 126 shell closures within 

the generalized liquid drop model 

            This study is devoted for the decay preformation factors,  and 

the  decay half-lives of 152 nuclei around Z = 82, N = 126 closed shells 

based on the generalized liquid drop model (GLDM) with  being 

extracted from the ratio of the calculated  decay half-life to the 

experimental one. The results show that there is a remarkable linear 

relationship between  and the product of valance protons (holes)  and 

valance neutrons (holes) . At the same time, it extract the  decay 

preformation factor values of the even–even nuclei around the Z = 82, N = 

126 closed shells from the study of Sun  [81]. In which the  decay 

was calculated by two different microscopic formulas. We find that 

the  decay preformation factors are also related to . Combining with 

our previous studies.  Therefore, seifetal the phenomenon of linear 
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relationship for the nuclei around the above closed shells is model-

independent. This may be caused by the effect of the valence protons (holes) 

and valence neutrons (holes) around the shell closures. Using the formula 

obtained by fitting the  decay preformation factor data calculated by the 

GLDM, to calculate the  decay half-lives of these nuclei. The calculated 

results agree with the experimental data well [82]. 

4.10 A search for neutron magicity in the isotopic series 

of Z = 122, 128 super heavy nuclei  

            The superheavy nuclei have been examined systematically in the 

region 158 ≤ N ≤ 218, 162 ≤ N ≤ 212 for Z = 122 and 128, respectively. The 

explicit density-dependent meson-exchange (DD-ME) and point-coupling 

(DD-PC) models within the framework of covariant density functional 

theory (CDFT) have been used to study the structural and decay properties 

of the isotopic series which includes the separable form of a finite range of 

pairing interaction. From the potential energy curves, the ground state 

properties of nuclei are predicted. Due to the importance of the shell effect in 

the superheavy region, the Strutinsky shell correction method has been 

employed for a better understanding of the extra stability of nuclei.      The 

results from neutron pairing energy, two-neutron separation energy (S2n ), 

single-particle energy levels, and total shell-correction energy strongly 

support N = 168, 174, and 178 as deformed neutron-magic numbers from 

both the force parameter, in both the isotopic series. N = 172 and 184 are 

predicted as spherical magic with DD-ME2 interaction in the Z = 122 

isotopic series. Using three different semi-empirical approaches named 

UNIV2, SemFIS2, and ImSahu, the α-decay properties are studied and 

compared with available experimental data, FRDM2012 and the WS4 mass 

model. The stability of synthesized super heavy nuclei can be determined by 

comparing spontaneous fission half-lives with α-decay half-lives. [83]. 

4.11 A new View of Nuclear Shells 

               The nuclear shell structure that has served as a fundamental 

framework for understanding the arrangement of nucleons exhibits dramatic 

changes as the neutron to proton ratio in nuclei increases. This paper 

describes how reaction spectroscopy of the neutron- and proton-rich nuclei 

has brought about a new revolution towards a more global view of nuclear 

shells. The relationship between changes in shell structure and the discovery 

of exotic forms of nuclei such as nuclear halo and skin is discussed. It is 
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shown that the well-known shell gaps (magic numbers) N = 8 and 20 

disappear. The discovery of a new magic number at N = 16 at the limit of 

nuclear binding is discussed [84]. 

 

 

 

Figure (4.11) (a) Neutron orbitals for nuclei with A/Z = 3 calculated in a 

Woods–Saxon potential [3]. (b) The pairing energy for neutrons 

(1n, squares) and protons (1p, circles), according to the definition in [4], 

plotted against functions of neutron–proton asymmetry A/Z. 

Adapted from [5]. (c) The neutron pairing energy of the Hf isotopes as a 

function of isospin (Tz ), adapted from [6]. The neutron pairing energy in (b) 

and (c) is seen to decrease as the neutron–proton asymmetry increases. 
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Figure (4.12) (a) Demonstrative distorted wave born approximation 

(DWBA) calculations of a (d,p) transfer reaction. 

 The different curves as indexed in the figure show angular distributions for 

different angular momentum transfers (l = 0, 1 and 2). (b) Demonstrative 

calculations showing the width of the longitudinal momentum distribution 

for one-neutron removal from a nucleus plotted as a function of the one-

neutron separation energy. 
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Figure (4.13) (a) Two-neutron separation energies for different isotopes 

plotted against the neutron number. (b), (c) One-neutron separation 

energy for different isospin chains plotted against the neutron number. 

 To avoid fluctuations due to pairing, only the isotopes with N = odd and Z = 

even are plotted for identifying possible magic numbers. The circled points 

are masses not measured but taken from evaluation systematics. 

4.12   Exotic nuclei and nuclear forces 

                 The shell structure of nuclei has been proposed by Mayer and 

Jensen, and has been considered to be kept valid basically for all nuclei, with 
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well-known magic numbers, 2, 8, 20, 28, 50,.. Nuclear forces were shown, 

very recently, to change this paradigm. One descrier the shell evolution in 

terms of the monopole interaction of nuclear forces. One will discuss three 

types of nuclear forces. The first one is the tensor force. The tensor force is 

one of the most fundamental nuclear forces, but its first-order effect on the 

shell structure has been clarified only recently in studies on exotic nuclei. 

The tensor force can change the spin–orbit splitting depending on the 

occupation of specific orbits. These results in changes of the shell structure 

in many nuclei, and consequently some of Mayer–Jensen's magic numbers 

are lost and new ones emerge, in certain nuclei. This mechanism can be 

understood in an intuitive way, meaning that the effect is general and robust. 

The second type of nuclear forces is central force. One shows a general but 

unknown property of the central force in the shell-model Hamiltonian that 

can describe nuclear properties in a good agreement with experiment.. 

Actually, by combining the central force with the tensor force, one can 

understand and foresee how the same proton–neutron interaction drives the 

shell evolution, for examples such as Sn/Sb isotopes, N = 20 nuclei and 

Ni/Cu isotopes. The distribution of single-particle strength is discussed also 

in comparison to (e,e'p) experiment on 
48

Ca. The shell evolution affects 

shapes of nuclei through Jahn–Teller-type mechanism, and a very interesting 

example with exotic Si isotopes is discussed. The third type of nuclear force 

is a three-body force, which originates in the Δ particle excitation as 

proposed by Fujita and Miyazawa many years ago. This force is shown to 

produce a repulsive interaction between valence neutrons after averaging 

effects from the third nucleon in the core. The same three-body force is 

responsible for neutron stars. By including such effects of the three-body 

force, one can predict the correct drip line of oxygen isotopes, for instance. 

Thus, the landscape of atomic nuclei varies in going from stable to exotic 

nuclei due to particular nuclear forces, leading to a paradigm shift [85].  

          The effects of nuclear forces on the shell structure can be studied in 

terms of monopole component or interaction of a given two body 

interaction,  ̂ We first define the monopole matrix element of an interaction, 

 ̂, as: 

   
∑

   ̅〈    ̅̅̅̅̅ | ̂||   ̅| ̅〉

∑    ̅

                                          (4.12.1) 

Where j and   ̅denote single-particle orbits with k and  ̅ being their magnetic 

substate, respectively, and·| ̂| is the antisymmetrized two-body matrix 

element. Equation (4.12.1) implies an averaging over all possible 
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orientations of two interacting particles in the orbits j and,   ̅ while the 

antisymmetrization (Pauli principle) is taken into account. 

          The monopole component of  ̂is written, for j    ̅ as: 

 ̂     ̅         ̅  ̂    ̂  ̅                                       (4.12.2) 

Where ˆ  ̂    ̂  ̅ is the number operator of orbit j ( )̅. The monopole 

interaction, denoted ˆVM, is defined as the operator consisting of  ̂     f̅or 

all possible pairs of j and j- for j    ̅and slightly more complicated terms for 

all pairs of j = j- (see footnote 1). 

             As we mentioned, the monopole component of the interaction   is 

nothing but the average of effects of  , and it depends only on the number 

operators of these orbits. Its initial idea was introduced by Bansal and 

French [86]. 

 while its relevance to the effective shell-model interaction was 

discussed by Poves and Zuker [87]. 

               The importance of the monopole interaction for exotic nuclei 

originates in its linearity. As the orbit   ̅ is occupied, the single-particle 

energy (SPE), Ej of an orbit j is shifted by (see footnote 1), 

           ̅  ̂  ̅                                                    (4.12.3) 

For     ̅for identical nucleons, slightly different forms are used. 

spin–isospin interaction was considered, which was a central force with spin 

dependence: 

   (  ⃗⃗  ⃗   ⃗⃗  ⃗)(  ⃗⃗  ⃗    ⃗⃗  ⃗) ( )                                         (4.12.4) 

           Where     ⃗⃗ ⃗⃗ ⃗⃗   (    ⃗⃗ ⃗⃗ ⃗⃗  ) denotes the isospin (spin) of nucleons 1 and 2, and 

the symbol (·) means a scalar product. Here, c(r) is a function of the relative 

distance, r. For the long-range limit of the central force [88]. 

            The tensor force due to one-pion exchange is written as: 

   (  ⃗⃗  ⃗   ⃗⃗  ⃗)(|  ⃗⃗  ⃗   ⃗⃗  ⃗|)  
( ) ( )                                (4.12.5) 

f (r ) is a function of the relative distance, r . Equation (4.12.5) is equivalent 

to the usual expression containing the S12 function. Because the spins   ⃗⃗  ⃗and 

  ⃗⃗  ⃗ are dipole operators and are coupled to rank 2, the total spin       ⃗⃗  ⃗  
  ⃗⃗  ⃗of two interacting nucleons must be S = 1. This plays a crucial role in the 

shell evolution by the tensor force as pointed out later. If both of the bra and 

ket states of VT have L = 0, with L being the relative orbital angular 

momentum, their matrix element vanishes because of the Y 
(2)

 coupling. 

These properties are used later also. 

        Their wave numbers are k1 and k2, while their coordinates are denoted 

by x1 and x2. The wave function,   consists of products of two plane 

waves.We take a system of a proton and a neutron in total isospin T = 0. The 
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antisymmetrization is imposed. Because of S = 1, the coordinate wave 

function must be symmetric as: 

                                {          }            (  )                                                          

(4.12.6) 

     Where center-of-mass and relative momenta are defined, respectively, as  

                                                                      (4.12.7) 

   In addition, center-of-mass and relative coordinates are likewise as, 

    
(      )

 
                                                              (4.12.8) 

 From these equations, we see that the relative motion is expressed by the 

wave function: 

 ( )     (  )                                                              (4.12.9) 

And the center-of-mass motion has a wave number K. 

For the orbits j and j
-
, the following identity has been derived for the tensor 

force in [40], 

 (    )       
  (     )      

                            (4.12.10) 

    Where T = 0 and 1, and j 
-
 is either j 

-
 > or j 

-
 <. Note that this identity is in 

the isospin formalism 

      The same property holds for a spin–spin central interaction. If only 

exchange terms remain, the spin-coordinate part of the T = 0 and 1 matrix 

elements are just opposite. Combining this with(  ⃗⃗  ⃗   ⃗⃗  ⃗)) in equation (4.12.5), 

one obtains: 

       
             

               ̅                               (4.12.11) 

       Thus, the proton–neutron tensor monopole interaction is twice as strong 

as the T = 1 interaction. 

       The tensor force is due to pion (π_) exchange, but the rho meson (p_) 

contributes also. In the following, we use the (π +p) meson exchange 

potential [89]. The coupling constants are taken from [90]. 

                In order to incorporate these features, we introduce a central 

Gaussian interaction as: 

   ∑                ( (
 

 
)
 
)                                     (4.12.12) 

      Where S (T) means spin (isospin), P denotes the projection operator onto 

the channels (S, T), and f, r and μ stand for the strength, inter nucleon 

distance and Gaussian parameter. 
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Figure (3.14) nuclear chart. Each nucleus is expressed by a box with the 

neutron number (N) and the proton number (Z).  

 
 

 

Figure (3.15) Left-lower part of the nuclear chart. A nucleus is 

expressed by a box located at its neutron number (N) and proton 

number (Z). The year of discovery of most neutron-rich isotope is shown 

at far right as well as the name of the element. 
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4.13 Investigation of The Existence of New Nuclear Magic 

Number in Even-Even O Isotopes Using Shell Model and 

Hartree–Fock Bogoliubov Method 
                In the present work, the features of some excited states in some 

even–even 
14-26

O isotopes have been investigated. The aim is to predict the 

evaluated existence of magic numbers in these isotopes using shell model 

and Hartree-Fock Bogoliubov method based on SLy4, SkC, SkD Skyrme 

parameterizations. In particular, root mean square radius, binding energies, 

one and two neutron separation energies, pairing gaps, transition 

probabilities, excitation energies, energy levels, transition densities and 

quadrupole deformation parameters have been investigated. The results are 

compared with the available experimental data. 

               From the research that has been carried out, it is possible to 

conclude that the SM with HF method is probably the best method for the 

investigation magicity of neutron rich nuclei. In particular, in the region far 

from stability, the HF method is probably the best model for anticipating the 

total binding energies and single-particle energies of the closed-shell nuclei. 

This work demonstrated connecting HF and large-basis SM calculations and 

used it for the system of valence neutrons in the sd and p-sd shell model 

spaces and HFB method on the evolution of quadrupole deformation. The 

calculated results for 18-26O isotopes are promising. The obtained results 

reproduced nicely the available experimental data, which based on the 

binding energies, one- and two-neutron separation energies, rms radii, low 

laying excitation energies, pairing gaps, transition probabilities, as well as 

quadrupole deformation, we reproduced the classic magic numbers and 

confirmed the existence of N=16 is a new one in the oxygen isotopes. The 

findings suggest that this approach could also be associate many more 

excited levels with the experiment, especially in the nuclear island of 

inversion region and near the proton and neutron driplines [91]. 

Theory and Methodology: 

 4.13.1 Shell Model Method 

       The many-particles reduced matrix elements of the electric multipole 

transition operator Tˆ for an n particles model space wave function of multi 

polarity λ can be expressed as the sum of the product of the elements of the 

one-body density matrix (OBDM) times reduced single-particle matrix 

elements, and is given by [92]: 

〈 ‖ ̂ ‖ 〉  〈     ‖ ̂
 ‖     〉 

                   ∑     (         
        )〈   ‖ ̂

 ‖  〉                  

                                                                                     (4.13.1) 
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       Where ki and kf are the single particles states for the initial and final 

model space states (     i) and (     ), respectively. The   indices 

distinguish the various basis states with the same J value.      The OBDM in 

the proton-neutron formalism is given by [93]: 

      (                  )  〈
     ‖[       

          
∼ ]

 

‖     

√    
〉    

                                                                                   (4.13.2) 

        Where tz =1/2 for neutron and tz = -1/2 for proton. Two different shell 

model spaces have been used in our work. The first one is the sd model 

space, which consists of the active shells 1d5/2, 2s1/2, and 1d3/2 above the 

inert 
16

O nucleus core which remains closed. That model space interactions 

are USDA, USDB and USDE. While the other one is the p-sd model space, 

which consists of the active shells 1p3/2, 1p1/2, 1d5/2, 1d3/2, and 2s1/2 

above the inert 
4
He nucleus core which remains closed with PSDMK 

interaction. 

4.13.2 Hartree–Fock Bogoliubov Method 

In HFB method, a two-body Hamiltonian of a system of fermions can be 

expressed in terms of a set of annihilation and creation operators (c, c†) [96]. 

 ̂  ∑      
     

 

   ∑      
   

    
    

   
 

            (4.13.3) 

    With the first term corresponding to the kinetic energy,  

     
  〈  | | 〉, are anti-symmetrized two body interaction matrix-

elements. The Skyrme interaction for nuclear structure calculations, which is 

the central potential, was developed from the idea that the energy functional 

could be expressed in terms of a zero-range expansion, which lead to a 

simple derivation of the HF equations that the exchange terms have the same 

mathematical structure as the direct terms. Thus, when solving the equations, 

this approximation greatly reduces the number of integrations over single-

particle states. The Skyrme effective interaction which leads to a two-body 

density-dependent interaction that models the strong force in the particle-

hole channel and contains central, spin-orbit and tensor contributions in 

coordinate space and called the standard analytical form, is given by [94] 

     (  ⃗⃗⃗     ⃗⃗  ⃗)    (      
 ) (  ⃗⃗⃗     ⃗⃗  ⃗) 

                  =  
 

 
  (      

 )[    
 (  ⃗⃗⃗     ⃗⃗  ⃗)   (  ⃗⃗⃗     ⃗⃗  ⃗)  

  

                     =  (      
 )[    (  ⃗⃗⃗     ⃗⃗  ⃗) 

  
 

 
  (      

 ) (  ⃗⃗⃗   

  ⃗⃗  ⃗) 
 (

  ⃗⃗  ⃗   ⃗⃗  ⃗

 
)     (  ⃗⃗  ⃗    ⃗⃗⃗⃗ ) ̂ (  ⃗⃗⃗     ⃗⃗  ⃗) ̂               (4.13.4) 
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         Where W0, tn and xn are the free parameters describing the strengths of 

the different interaction terms which are fitted to nuclear structure data. The 

t0 term indicates a zero-range central potential, and the t1 and t2 terms are 

non-local, because these depend on the gradient of the densities and have 

both central and exchange components with the range of the potential 

associated with
  

  
 [95]. The term consisting of W0 indicates the spin-orbit 

part of the nucleon-nucleon interaction and an effective density dependent 

three-body interaction is represented by the t3 term. K, k' are the relative 

momentum operators with k acting on the right, while k' is the operator 

acting on the left [95]. In order to estimate the HF equations, we have to 

estimate the expectation value of the HF Hamiltonian in a Slater determinant 

HF It is given by: 

  〈   | ̂|   〉 

∑ 〈 | ̂|  〉  ∑ 〈   | (   )|   〉                                  (4.13.5) 

Where T is the kinetic energy operator and V(i,j) is the nucleon nucleon 

interaction. The full expression for the expectation value of the HF equation 

with the Skyrme force after substituting the Skyrme interaction terms into 

the full energy expression is [94]: 
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 (    )  (     )(  ( ̅)
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[         ] 

  (     )(  
 ⃗⃗  ⃗     

 ⃗⃗  ⃗)  

                                                                                      (4.13.6)                                                

The Hamiltonian in Eq. (4.13.3) can be expressed in terms of the generalized 

quasiparticle operators as [96]. 
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      )        
            (4.13.7) 

Thus, the HFB equations can be written in matrix form since it is a 

variational theory that treats in an unified fashion MF and pairing 

correlations, as: 

[
    
        

] *
  

  
+    *

  

  
+                                 (4.13.8) 
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where Ek are the quasiparticle energies,   is the chemical potential, h and Δ 

are the HF Hamiltonian and the pairing potential, respectively, and the uk 

and vk are the upper and lower components of the quasiparticle wave 

functions. 

 

 
Figure(4.16) Proton, neutron, charge and mass root mean square radius 

for even- even 
14-24

O isotopes plotted as a function of neutron number 

(N) obtained from HFB calculations with SLy4, SkC and SkD 

parameterizations represented in pink, red and blue lines, respectively. 

The black circle is the experimental data of charge rms . 

 

 
Figure (4.17): (a) single and (b) two-neutron separation energies as a 

function of neutron number (N) for the oxygen isotopes. Black circles 

are the experimental values taken from [21] and red squares obtained 

using SM with Skyrme interactions 
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Chapter Five  

5. 1 Introduction  

           This chapter is concerned with the theoretical model based on 

potential dependent special relativity to explain the origin of magic number. 

This was achieved by using modified Klein – Gordon equation.  

5.2   Energy Conservation for Potential Dependent special 

Relativity and string Quantum Energy with Imaginary Energy 

         It is well known that the suitable quantity, which simplify the equation 

of motion, is the lagrangian L, which is defined b 

      
 

 
                                                            (5.2.1) 

With         stands for kinetic energy, potential energy mass and velocity. 

The lagrangian and the equation of motion are related to the action I, which 

is extremum, reflecting the tendency of the system to select a path that 

enable it to give minimum or extract  maximum energy from the 

surrounding via changing the generalized coordinates due to the change of 

trajectories at affixed space – time point. The state of physical systems can 

also be simplified by extracting from the action integrand quantities that are 

invariant under space and time transition like momentum and energy E 

which is given by: 

   E=T+V                                                                                (5.2.2) 

Which the Newtonian expression for energy using GSR energy mass relation 

(see equation)  (3.5.20) 

      
   

 

√  
  

  
 

  

  

    
 (  

  

  
 

  

  )
  

 ⁄

                 (5.2.3) 

For a weak field and macroscopic world: 

   
  

  
         ,  

  

  
                                                              (5.2.4)  

Using the identity: 

   (1+x)
n
=1+nx                                                                        (5.2.5) 
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For small x. 

Setting: 

       
     

 
                                                                           (5.2.6) 

In equation (3) then using (5) yields: 

       
 (  

 

  
 

 

 

  

  )       
 

 
   

     
  

            
                                                              (5.2.7) 

With kinetic energy T and potential energy V given by: 

     
 

 
   

  ,                                                             (5.2.8) 

But according to Newtonian and classical mechanics, that energy in equation 

(5.2.7) is the lagrangian:           

   L=T-V                                                                                 (5.2.9) 

Hence: 

   E=L                                                                                     (5.2.10) 

Where see equation (3.5.18) 
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                                             (5.2.11) 
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√    
      

                              

    (√    
      )

 
   

    

    ∼      
         

                                             (5.2.12) 

         
   (       

   )                                            (5.2.13)  

Thus, the energy conservation requires: 

   E= constant                                                                       (5.2.14) 

      
  (       

   )= constant                                          (5.2.15) 
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One can also look at the conservation 0f energy using space-time language. 

In view of equation (5.2.12) for a particle at rest in free space: 

                                   ̃     ̃                    (5.2.16) 

In this case, equation (5.2.12) reduces to: 

    ̃     ̃          
   

     ̃        
                                                             (5.2.17) 

The energy can written using complex notation as [see equation (5.2.12)] 

     
      

 ̃    ̃        ̃  (   )                       (5.2.18) 

     
      ̃    

                                                              (5.2.19) 

Where: 

                                                                                   (5.2.20) 

One can write (5.2.18) in the form: 

    ̃     ̃    ̃                                                                   (5.2.21) 

Where the subscript stands for a complex quantity, thus a cording to the 

vector notion, one can written equation (5.2.21) in the form: 

    ∼    ̃  ̂    ̃  ̂    ̃  ̂    ̃  ̂                                  (5.2.22) 

     ̃          ̃       ̃       ̃                                 (5.2.23) 

     ̃    
      ̃    ̃    ̃    ̃ 

     
       

      
                                       (5.2.24) 

This means that the square of the components of the energy in the four-space 

time dimension is conserved, provided that: 

      ̃  (  ̃   ̃   ̃   ̃)  (  )̃    ̃                                  (5.2.25) 

  One can re write equation (5.2.18), in a complex form [see equation 

(5.2.12)]. 

    ̃              
                                                 (5.2.26) 

By suggesting: 
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       ̃                                                                       (5.2.27) 

                      
                                               (5.2.28) 

Thus, the complex energy representation is  given by: 

                                                                          (5.2.29) 

Thus: 

      |  |
    ̃    

    
         

                     (5.2.30) 

Comparing the vector and the complex representation looks more convenient 

with additional time component. 

       ̃      

Compared to the convention three-dimensional one. Generalized Potential 

dependent Weak Field Quantum  

Klein Gordon equation 

The g p s r energy momentum relation in a weak field is given by equation 

(5.2.7).  

  
 

 
   

       
  

  

  
       

                  (5.2.31) 

Using the wave function:    

          
 

 
(     )

                                                          (5.2.32) 

Clearly: 

   
  

  
 

  

  
               

   

   
  

 

 
  

      
 

 
                  

  

  
  

     
  

  
                

   

   
        

   
 

 
                                                        (5.2.33) 

Multiplying both sides of (5.2.31) by   and using equation (5.2.33) given: 
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                            (5.2.34) 

This equation resembles ordinary Schrodinger equation with V replaced by 

   
     

        
                                                                (5.2.35) 

The Schrodinger equation, r dependent part, for spherically symmetric 

potential is given by: 

   
  

  
 ̈   ( )      

 

  
                                           (5.2.36) 

To study behavior of the nucleons, one consider nucleons as oscillators. 

Where for harmonic oscillator, the potential taken the form: 

    ( )  
 

 
   

                                                                (5.2.37) 

Rearranging equation (5.2.36) and setting for Schrodinger equation 

      
   

  
     

      
 

  
 

              
   

                  

   (   )  

    
  (   )       (5.2.38) 

Or using the gsr potential lagrangian Schrodinger equation (5.2 34), and in 

view of equation (5.2.35).equation (5.2.36) become  

  

  
   ̈   ( )  (     

 )  
  

  
                             (5.2.39) 

Using equation (37) equation (39) becomes: 

      ̈  
 

  
   

  
  

  
(     

 )  
  

  

 

  
                   (5.2.40) 

Taking and setting: 

        
 

  
                              

  
   

  
(     

 )     (   )  (5.2.41) 

Equation (5.2.36) becomes: 

      ̈     
       

  

  
                                          (5.2.42) 

This equation can be simplified by defining the variable y to satisfy: 
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 ̈

  
                                                                   (5.2.43) 

Inserting (5.2.43) in (5.2.42) given: 

   
  

  
    

  

  
  

  

  
                                               (5.2.44) 

The simplification can be a achieved by choosing    to satisfy: 

               

  
  

  
 

  

    
(     

 )                                                  (5.2.45) 

Thus inserting equation (5.2.45) in equation (5.2.44) given: 

      (    )  
  

  
                                                  (5.2.46) 

This equation can be solved by taking u to be in the form: 

           
 

 
  

                                                                     (5.2.47) 

      ̅  ( ̅    )  
 

 
  

 

      (        )  
  

   (    ) 
  

             

      (             )  
  

                                   (5.2.48) 

Inserting equation (48) in equation (46) given: 

                     
  

  
                  (5.2.49) 

If one consider (L=0), thus according to equation (5.2.38). 

                                                                                        (5.2.50) 

Thus, equation (5.2.49) becomes: 

           (   )  
  

  
                                     (5.2.51) 

Let: 

     ∑             ∑    
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      ∑  (   )                                                           (5.2.52) 

Substituting equation (5.2.52) in equation (5.2.5.51) given: 

∑  (   )         ∑      (   )∑       ∑    
         

                                                                                                 (5.2.53)                                                   

Replacing s-2 by s in the first term gives: 

∑(   )(   )     
 ∑ [      ]   

 
                   (5.2.54) 

Equation the powers of    on both sides: 

[(   )(   )]     [      ]                             (5.2.55) 

     
[      ]

(   )(   )
                                                                  (5.2.56) 

Since the wave function is finite, there for H should be a finite series with 

finite terms. This requires to terminate H, such that the last term is (s=n). 

This means that 

                                            (5.2.57)
 

       
(s=n) in equation (5.2.56) yields 

       
[      ]  

(   )(   )

 
                                                            (5.2.58) 

This requires: 

                                                                                     (5.2.59) 

To find the energy E, one uses equations (5.2.45) and (5.2.41) to get: 
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There fore 
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  (  

 

 
)          

                                               (5, 2.62) 

   
     (  

 

 
)                                           

                         (5.2.63) 

This resembles the representation of four-space time relativistic energy in 

equation (5.2.22) and (5.2.23) with 

  ̃         ̃        (  
 

 
)                                          

(5.2.64) 

 ̃    ̃  ̂    ̃  ̂     ̂  (  
 

 
  )    ̂                       (5.2.65) 

Thus, the real energy has given according to equation (5.2.24) to be  

  ̃    
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                                           (5.2.66) 

  ̃  |  ̃|
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  ̃  |  ̃|
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                                      (5.2.67) 

Where  

| |̃     
                                                                         (5.2.68) 

Thus  

  
       (  

 

 
)
 
                                                (5.2.69) 

Here    
  is real  

Since at rest p=0,    v=0,        
   

 

√  
  

  

=   
       

  ̃          ((  
 

 
)                                                                

(5.2.70) 

Which requires 

                                                                                                                               
(5.2.71) 

Thus a direct substitution of (5.2.70) and (5.2.71) in (5.2.63) gives 

   
     

                                                                (5.2.72) 
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Thus according to equation (5.2.69): 

   [  
    (  

 

 
)
 
                                         (5.2.73)  

For small rest mass 

                                                                             (5.2.74) 

   (  
 

 
)                                                             (5.2.75) 

Thus according to equation (5.2.75) 

And according to the representation (23) the energy results mainly from the 

kinetic momentum quantized part. It also shows that the momentum is the 

relativistic energy momentum relation: 

     
                                                              (5.2.76) 

Can be written in the complex form:  

     
                                                               (5.2.77) 

Such that  

   | |    
                                                  (5.2.78) 

In view of equation (5.2.62)  
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)                                                (5.2.79) 

   | |    
    (  

 

 
)
 
                              (5.2.80) 

For small rest mass (    ), equation (5.2.77) gives  

                                                                             (5.2.81) 

Comparing equations (75) and (81)  

      (  
 

 
)                                                   (5.2.82) 

Which stands for the time energy component [see equation (5.2.64)], while 

E represents the spatial components (        ) as equation (5.2.64)indicates 

, where [see equation(5.2.69)] 

     
    

    
                                                      (5.2.83) 
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With  

      
       

      
 )                                          (5.2.84) 

Thus according to equation (5.2.69), as far as    
  is a constant , the fourth 

dimensional energy including time coordinate is conserved according to 

equations (5.2.62),(5.2.63),(5.2.69) and (5.2.82). 

 It is also very important to note that when the rest mass part is very small 

equation (5.2.81) gives 

  (  
 

 
)                                                               (5.2.85) 

Which is the ordinary expression for the harmonic oscillator. Neglecting the 

rest mass term.  

5.3 Using Potential Dependent Klein Gordon Equation to Find 

Magic Quantum Number  

         Consider a particle moving with repulsive electric field a way from 

afield source. This resembles the case of motion of an electron away from a 

negatively charged capacitor , where its field is uniform .In this case the 

final speed v can be written in terms of the initial speed v0 and the  

acceleration a, beside displacement x in the from  

     
                                                                    (5.3.1) 

However, the force per unit mass is defined  

   
  

  
                                                                    (5.3.2) 

Thus: 

  ∫    ∫                                       

For uniform acceleration  

                                                                               (5.3.3) 

Thus equation (     ) gives  

     
        

                      

  
                                                                        (5.3.4) 
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Using the ordinary SR mass formula and inserting equation (5.3.4) gives 
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√  
(     )

  

                                    (5.3.5) 
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                                              (5.3.6) 

Where the potential V is related to the potential per unit mass   according to 

the relation. 

                                                                              (5.3.7) 

    
 

 
(     )

                                                               (5.3.8) 

  
  

  
                       

       

   
     

 

 
   

 

 

  

  
     

                                                                       (5.3.9) 

Multiplying both sides of (5.3.6) by   gives: 

                 
                                    (5.3.10) 

A direct substitution of equation (5.3.9) gives 

      

   
              

  

  
   

                    (5.3.11) 

To simplify the equation consider the solution: 
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                                                                   (5.3.12) 

Inserting equation (5.3.12) in (5.3.11) gives: 
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   ) ]                    

    

                                                                                   (5.3.13) 

Let  

                                                                         (5.3.14) 

To get: 
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For simplicity, let us consider  
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                                                                    (5.3.16) 

To get  

                                                         (5.3.17) 

In spherical coordinate 
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   ] (5.3.18) 

Inserting (5.3.18) in (5.3.17) and writing  (     ) 

In the form 

 (     )   ( ) (   )                                          (5.3.19) 

Yields 
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(5.3.20) 
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For simplicity let  
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  )                                       (5.3.28) 

For a harmonic oscillator oscillating in a radial direction: 

  
 

 
   

                                                                  (5.3.29) 

Equation (5.3.28) becomes 
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  )                                  (5.3.30) 

Further simplification can be made by defining 
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    ̈  (   
    

   
   

  

  )             



102 

  ̈  (
  

  
 

    

   
   

  

  )                                   (5.3.32) 

  Can be adjusted to be such that   

    

   
                                                                       (5.3.33) 

In view of equation (5.3.16) and the definition of    
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                                                                    (5.3.34) 

Defining [see equation (16) and (34) 
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                                                                     (5.3.36) 

A direct insertion of equation (5.3.36) and equation (5.3.3) and (5.3.35) in 

equation (5.3.32) yields  
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To make all term raised to the power s, one can replace sbysts in the first and 

last terms on the left hand side of equation (5.3.39), to get [∑  (  )(   

 )     
  (      )   

  ∑       
     

                                                                                       (5.3.40) 

Equating the coefficients of equal powers 

[(   )(   )    ]     (      )           (5.3.41) 

Since the wave function     , u are finite. Thus the series must be finite, such 

that the last term is (s=n).  

There fore  

                                                                 (5.3.42) 

From equation (41) 

     
(      )  

(   )(   )   
                                                        (5.3.43) 

Setting (s=n) 

       
(      )  
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                                                (5.3.44) 

Since       , it follows that  

                                                                             (5.3.45) 

In view of equation (5.3.35) 

  
(  (

  
   

 
)

  
                                                                    (5.3.46) 

Thus in view of equations (5.3.45, 5.3. 46) 

  
 

         
 

 
 (    )                                                (5.3.47) 

For very small rest mass or very large energy resulting from the nuclear 

potential is given by 

     (    )                                                     (5.3.48) 

This describes the effect of the nuclear electric field on nucleons energies. 
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       Another additional energy is effect of the agnatic field. This can be 

achieved by using perturbation theory. To do this, one can find the nuclear 

magnetic flux nuclear magnetic moment      , which is define in term of the 

current i and area A to be: 

      (   )  
  

  
                                               (5.3.49) 

Thus  

  
 

   
                                                                          (5.3.50) 

    But the magnetic flux density B can be found due to a circulation of 

current i in a circular path of the radius r, in a medium having magnetic 

permeability     . Thus, B has given by: 

  
   

    
 

   

     
                                                      (5.3.51) 

           The Interaction potential between nucleon spin,       and nuclear 

magnetic field is given by:  

          
 

 
                                                (5.3.52) 

   
   

 

     
     

 
    
 

     
       ( )                  (5.3.53) 

There for the a additional magnetic moment gained by the nucleons is given 

by 

   ∫  ̅        (∫  ̅   ( )   )                    (5.3.54) 

 Where  

    
 

    
 

     
                                                          (5.3.55) 

But the total orbital angular momentum is given by  

J=L+S                                                                           (5.3.56) 

There for  
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[              )                                 (5.3.56) 

There fore  

J=L+s                                                                         (5.3.57) 
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                                                                        (5.3.58) 

Hence  
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     Thus from equation (5.3.48), (5.3.50) and (5.3.59), the total energy is 

given  

        (    )   
    

 
                        (5.3.60) 

       The magic number can be explained using this expression as shown by 

M. GOppert Mayer and by D Haxel  J.Jensen and  H.suess. 

L=n, n-2, n-4… n-2i    , i=0, 1, 2, 3                           (5.3.61) 

Table (5.3) explained magic number can be using this expression as 

shown by M. GOppert Mayer and by D Haxel  J.Jensen and  H.suess. 

n =0 1 2 3 4 5 6 

L= 0 1 0. 2 1.3 0.2.4 1.3.5 0.2.4.6 

 

n=0         (nx, ny, nz) 

(0, 0, 0)                                                proton  

                                                          Neuton 

n= nx+ ny+ nz 

n =1      (nx, ny, nz) 
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              (1,0,0), (0,1,0), (0,0,1) 
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5.4 Conclusion 

      The conservation of energy in potential dependent special relativity has 

been found using 4- dimensional representation with the time part 

recognizing the momentum. In version, the square of momentum multiplied 

by the square of the free speed of light subtracted from the curved space 

energy is invariant and constant everywhere. The quantum equation derived 

from this equation in a weak field limit shows that the momentum is 

quantized and the energy reduced to that of Schrodinger harmonic oscillator 

where neglecting the rest mass term.  

          In addition, the proposed model shows the possibility of using 

potential dependent Klein-Gordon equation to find the magic number. This 

shows that, this equation can describe fermions as well as bosons.  
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5.5 Recommendation 

1. The complex energy representation can be extend to include other physics 

quantities like the momentum. 

2. The energy of potential dependent SR can be extend to include 

temperature and pressure. 

3. The relativistic quantum model need also examined for new physical 

phenomena like super conductivity.     
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