
I 
 

Sudan University of Science and Technology 

College of Graduate Studies 

 

 

 

 

 

Offline Fraud Call Detection 

By Using Artificial Neural 

Network 

 
الاتصال الكشف عن مكالمات الاحتيال في وضع عدم 

 باستخدام الشبكات العصبية الاصطناعية
 

 

A Thesis Submitted in Partial fulfillment for the Requirements of the Degree 

of M.Sc. in Electronics Engineering (Computer and Networks Engineering) 

 

 

Prepared By: 

Hafsa Hassan Abdalmomen Mosa 

 

Supervised By: 

Dr. Elsadiq Saeid 

June 2022 



II 
 

ـةـــــالآيـ  
 بسم الله الرحمن الرحيم

 
  قـــال تعالــــى

 

ا عَلامْتنََ   مَالاا إِ ا )قَالوُاْ سُبْحَانكََ لاَ عِلْمَ لَنَ 

 إِناكَ أنَتَ الْعلَِيمُ الْحَكِيمُ(
 

 

 صدق الله العظيم

 (32الآية ) –سورة البقرة 

  



III 
 

Dedication 
 

Dedication to my mother…With warmth and faith... 

Dedication to my father…With love and respect … 

Dedication to my friends…Whom we cherish their friendship 

Dedication to my special people…Who mean so much to me… 

Dedication to all my teachers …In whom I believe so much … 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



IV 
 

Acknowledgement 

 

I extend my thanks to all who stood with me to achieve this research which it 

comes because of grace of God and reconcile.I would like to give special thanks 

to my SupervisorDr. Elsadig Saeid for his great help and support. And my 

teachers that gave me information and all staff in Sudan University.Finally, yet 

importantly I dedicate this project for everyone that helped me to be at the place 

that I am today. 

  



V 
 

Abstract 

Telecommunication Fraud can be defined as an illegal use of 

telecom infrastructure likemobile communications with an intention 

for not paying services, misuse of voice calls (or data, SMS, MMS), 

cheating in subscriptions and using illegally services in the networks 

of telecom providers. 

Telecommunication fraud has continuously been causing 

significant financial loss to telecommunication customers in the world 

for several years.Traditional approaches to detect telecommunication 

frauds usually rely on constructing a blacklist of fraud telephone 

numbers. However, attackers can simply evade such detection by 

changing their numbers, which is very easy to achieve through VoIP 

(Voice over IP). 

To solve  this problemfeed-forward neural network is usedas a 

software capable of detecting fraud call for offline data, calldetailed 

recordswere collected, prepared to be coded and analyzed through 

extracting features, then rules has been built to check whether the call 

was normal or fraud. constituting Feed-forward neural network system 

was done, data has beendivided into two datasets which were Training 

data and Testing data, learning and validation for neural network were 

done, then the mean square error has been measured.This technique 

was designed for telecommunication fraud call detection, depending 

on analyzing contents of a call Instead of relying on call type and 

caller number then constructing a blacklist of fraud numbers.It was 

found that the mean square error has reduced by increasing the 

percentage of testing data, as well as increasing training data leads to 

minimizing the validation and the mean square error would be 



VI 
 

minimized, the obtained results had led to increased system accuracy 

to detect fraud call. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



VII 
 

مستخلصال  

 

بيرة كلية يتسبب الاحتيال في مجال الاتصالات السلكية واللاسلكية باستمرار في خسائر ما

ت عمليا التقليدية للكشف عن الطرقالعالم منذ عدة سنوات. تعتمد لعملاء الاتصالات في 

لين الاحتيال في مجال الاتصالات عادة على إنشاء قائمة سوداء بأرقام هواتف المتص

 تهرب منال ببساطة م الهاتف ونوع المكالمة. ومع ذلك ، يمكن للمهاجمينالمحتالين وفقا لرق

بر هذا الكشف عن طريق تغيير أرقامهم  و هو أمر ممكن جدا من خلال تقنية الصوت ع

ات لحل هذه المشكلة وتطوير برنامج قادر على اكتشاف عمليVoIPبروتوكول الانترنت 

لعملاء انات نترنت ، تم جمع سجلات تفاصيل بياالاحتيال التي تتطلب بيانات غير متصلة بالإ

ذات ة عصبي، وإعدادها لتحليلها من خلال استخراج الميزات ، ثم تم تشكيل نظام الشبكة ال

تم  .رالاختبايب و، وتم تقسيم البيانات إلى مجموعتين من البيانات وهما التدرالتغذية الامامية

لتقنية ذه اهة ، ثم تم قياس الخطأ. تم تصميم إجراء التعلم والتحقق من صحة الشبكة العصبي

على  ماداللكشف عن المكالمات الاحتيالية في مجال الاتصالات السلكية واللاسلكية ، اعت

 نشاءإتحليل محتويات المكالمة بدلا من الاعتماد على نوع المكالمة ورقم المتصل ثم 

ق ن طريلتربيعي قد انخفض عوقد وجد أن متوسط الخطأ ا. و قائمةسوداء بأرقام الاحتيال

 .زيادة النسبة المئوية لبيانات الاختبار ، مما أدى إلى زيادة دقة النظام

 

 

 

 

 

 

 

 

 



VIII 
 

Table ofContents 

 II................................................................................................................................ الآيــة

Dedication .....................................................................................................................III 

Acknowledgement ........................................................................................................ IV 

Abstract ......................................................................................................................... V 

 VII ....................................................................................................................... المستخلص

1.1 Preface ......................................................................................................................3 

1.2 Problem Definition ....................................................................................................4 

1.4 Objectives .................................................................................................................5 

1.5 Methodology .............................................................................................................5 

1.6 Thesis outline ............................................................................................................5 

2.4 Artificial Neural Network ...........................................................................................9 

2.4.2 

Training……………………………………………………………………………………………………………..10 

2.5. Components of Artificial Neural Networks………………………………………………………..11 

2.10.1 Fraud Detection .................................................................................................. 21 

2.11 Data Analysis Techniques for Fraud Detection ....................................................... 24 

3.1Introduction ............................................................................................................. 29 

3.2 Methodology Framework ........................................................................................ 29 

3.3 Neural Network -Detecting with prediction Customer Data Record Fraud Data ....... 30 

3.5 Implementation of MATLAB Code............................................................................ 32 

Step 2: Neural Network Structure……………………………………………………………………………..33 

Step 3: Creating the Neural Network Structure in MATLAB……………………………………34 

Step 4: Training the Network…………………………………………………………………………………37 

Step 5: Testing the Trained Output Data………………………………………………………………..39 

3.6 Steps Implementing Artificial Neural Network ................................................. 42 

3.6.1 Starting with Neural Network ....................................................................... 42 

3.6.3 Fitting App Form ........................................................................................... 43 

3.6.4 Selecting Data ............................................................................................... 44 

3.6.5 Loading Comma File ...................................................................................... 44 

3.4.5 Setting the Hidden Layers ............................................................................. 45 

3.5 Network Training……………………………………………………………………………………………….46 

3.7 Measures for Performance: ...................................................................................... 46 

CHAPTER FOUR ............................................................................................................. 49 

RESULT AND DISCUSSION .............................................................................................. 49 



IX 
 

4.1 Running the Neural Network Training ...................................................................... 50 

4.2 Best Validation of Training ....................................................................................... 51 

4.3 Validation ................................................................................................................ 52 

4.4 Histogram of Error ................................................................................................... 52 

4.5 Iterations and Error Reduction ................................................................................ 53 

4.6 Performance Matrices ............................................................................................. 54 

Chapter Five .................................................................................................................. 56 

Conclusion and Recommendations................................................................................ 56 

5.1 Conclusion............................................................................................................... 57 

5.2 Recommendations .................................................................................................. 58 

References .................................................................................................................... 59 

Appendix....................................................................................................................... 61 

 

 

 

 

 

 

 

 

 

 

 

 



X 
 

 

List of Figures 

Figure 2.1 Features Extraction………………………………………10 

Figure 2.2 Single Layer Feed-forward Neural Network…….………16 

Figure 2.3 Multi-layer Feed-forward Neural Network…….………...16 

Figure 2.4 Growth in Modular Neural Network………….…………18 

Figure 2.5 Growth in Neural Network………………………………18 

Figure 2.6Multi-layer Perceptron Neural Network…………………19 

Figure 2.7 Structure of Deep Neural Network ……...………………22 

Figure 3.1 Methodology Framework………………..………………25 

Figure 3.2 Neural Network Structure ……………………………….29 

Figure 3.3 Starting Artificial Neural Network………………………39 

Figure 3.4 Artificial Neural Network Wizard ………………………39 

Figure 3.5 Neural Network Fitting………………………………….40 

Figure 3.6 Selecting Data Inputs and Target……………………….40 

Figure 3.7 Importing Data to Matlab Workspace…...………………41 

Figure 3.8 Selecting Validation and Testing Samples………………42 

Figure 3.9 Set number of Hidden Layers……………………………42 

Figure 3.10 Train the Neural Network………………………………43 

Figure 4.1 Detecting Mean Square Error…....………………………51 

Figure 4.2 Result of Epoch…………………………………………52 



XI 
 

Figure 4.3 Error Histogram………………………………………….53 

Figure 4.4 Detection of Error while Iteration……..…………………54 

Figure 4.5 Performance Measurement……………………………..55 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



XII 
 

 

 

List of Tables 

Table 3.1         Call Duration 

Table 3.2         Call Repetition 

Table 3.3        Call Source 

Table 3.4      Call Destination 

Table 3.5       Number Reachability 

Table 3.6          Time during the Day 

Table 4.1        Parameter Setting 

Table 4.2 Case1: Testing, Training and Validation 

Table 4.3 Case2: Testing, Training and Validation 

Table 4.3 Case3: Testing, Training and Validation 

 

 

 

 

 

 

 

 

 

 

 



XIII 
 

 

 

LIST OF ABBREVIATION 

 

AC  Accuracy 

ANN Artificial Neural Network 

BPBack Propagation 

CDRCall Data Record 

CNN Convolutional Neural Network 

CSV Comma Separated Values 

FP False Positive 

FN False Negative 

FFNNFeed-forward Neural Network 

KDDKnowledge Discovery in Databases 

MCC Mathew’s Correlation Coefficient 

MNN Modular Neural Network 

MMSMultimedia Messaging Services 

NNNeural Network 

SE Sensitivity 

SMS Short Message Services 

SPSpecificity 

TN  True Negative 

TP True Positive 

USD United States Dollar 

VoIP Voiceover Internet Protocol 

  



XIV 
 

 

 

 



2 
 

 

 

 

 

 

 

 

 

 

 

Chapter One 

Introduction 
 

 

 

 

 

 

 

 

 

 

 

 

 

 



3 
 

 

 

 

 

 

 

Chapter One 

Introduction 
1.1 Preface 

Due to the increased development of new technologies recently, 

many fraudulent activities have been arisingincluding online 

banking,e-commerce credit card transactions frauds, in addition to the 

telecommunicationfraud, leading to multi-billion losses worldwide 

every year. 

In fact, Fraud is very costly to all telecom carriers in term of 

capacity and income lost. According to the reportAccording to the 

data released by the Ministry of Public Securitypublished recently by 

Neural Technologies in 2016, the average loss of telecom industry 

was estimated to $249 billion dollars USD due to fraud activities. 

Telecom companies generate a huge amount of raw data including 

voice calls, SMS, recharge events, subscriptions and other services. 

The high volume of data collected and available in each day, which 

needs to be processed and manipulated, constitutes a big challenge in 

the telecom industry, and as a consequence, many fraudulent events 

can take place at any service, leading to a considerable loss of revenue 

to companies. Therefore, designing an accurate machinelearning 



4 
 

model is essential to improve service usage monitoring and show 

significant revenue protection, in order to detect fraudulent events and 

activities in time[1]. 

In order to detect telecommunication frauds, most of the current 

approaches are based on labeling the caller numbers that are identified 

as frauds by customers. At the same time, there are also many 

researchers who use machine learning techniques to detect fraudulent 

calls. They select features based on factors such as phone numbers and 

call types. They use machine learning algorithms to train models, and 

use these models to detect fraudulent calls, which can also achieve 

good detection accuracy. However, as the number change software is 

widely used, fraudsters use software to change their phone number 

constantly or disguise their number as the official number of 

government agencies [2].  

These reasons make it possible for conventional telephone 

number-based detection methods can be easily bypassed. However, 

learn of the telecommunication fraud from the reports and news on the 

Internet for understanding the contents of a call. Particularly, first, a 

collect of descriptions of telecommunication fraud from the Internet 

and network operators. In our study, offline data was collected from 

network operators and saved into CSV filesin order to be analyzed.[2] 

1.2 Problem Definition 

Telecommunication fraud has continuously been causing severe 

financial loss to telecommunication customers in the world for several 

years. Traditional approaches to detect telecommunication frauds 

usually rely on call type and phone number. However, attackers can 



5 
 

simply evade such detection by changing their numbers, which is very 

easy to achieve through VoIP (Voice over IP). 

1.3 Proposed Solution 

In this research it intended to detect telecommunication fraud through 

analyzing the contents of a call by using artificial neural network. 

However, this is quite challenging, mainly due to the complexity of 

the contents of a call impedes the analysis. 

1.4 Objectives 

Themain goal isanalyzingoffline data for a given subscriber or 

customer and classified it as fraudster based on his features derived 

from the CDR and identify telecommunication frauds only through the 

contents of a call, and increasing system accuracy by reducing error 

value. 

1.5 Methodology 

Feed-forward neural network has been used for  detecting fraud call 

depending on analyzing the content of call data record instead of 

relying on source caller number and has passed through different 

steps, call data record  has been collected, then data has been 

analyzed, coded to be readable for matlab software and divided into 

sub sets such as testing dataset and training dataset, natural language 

has been used to extract  features from the call data records, rules have 

been built to identify similar contents within the same call, the feed-

forward neural network structure has been built which contained three 

layers which were input layer, hidden layer and output layer. Then 

back propagation algorithm has been used to apply learning to neural 

network, validation has been done and the error value has been 

measured by calculating the difference between the obtained result 

and the target output. 

1.6 Thesis outline 

The project thesis is divided into five chapters, in chapter one 

an introduction with project problems, proposed solution and 



6 
 

objectives were written, while chapter two represents the background 

and literature review of the study,chapter three represents the 

methodology and requirements are listed, chapter four show the 

design of ANN and implementation were written, while chapter five 

represents a conclusion and recommendations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



7 
 

 

 

 

 

 

 

 

 

 

 

Chapter Two 

Background and literature Review 
  



8 
 

Chapter Two 

Background andLiterature Review 

2.1 Background 

2.2 Fraud 

Fraud can be defined as an illegal use of telecom infrastructure 

likemobile communications with an intention for not paying services, 

misuse of voice calls (or data, SMS, MMS), cheating in subscriptions 

and using illegally services in the networks of telecom providers [10]. 

2.3 Types of Frauds 

There are numerous types of fraud on the e-commerce naturethat 

introduce telecommunication frauds, Credit card frauds, computer 

intrusion, Bankruptcy fraud, Theft fraud/counterfeit fraud, Application 

fraud and behavioral fraud[10]. 

 Credit Card Fraud: 

Credit card fraud has been split into two types: Offline fraud and On-

line fraud. Offline Fraud is because of by using a stolen physical card 

at any place. Online Fraud is because of via internet, phone, shopping 

or web[10]. 

 Telecommunication Fraud Call:  

Telecommunication fraud involves the misuse, who has intention to 

harm someone by mobile phone fraud and fixed line fraud[10]. 

 Computer Intrusion: 

The act entering without invitation by any outsider or hacker and 

insider who knows the system structure any Environment is defines 



9 
 

asintrusion. That Means “Potential Possibility of Unauthorized 

Attempt to Access Information, Manipulate Information 

Purposefully”[10]. 

 Bankruptcy Fraud:  

Bankruptcy fraud is difficult to predict the fraud, when bank send a 

customer an order, user will be of personal bankruptcy fraud. Also, it 

becomes difficult to get unwanted loans. One of the potential ways to 

avoid this fraud is by doing a pre-check with credit bureau. This 

informed about the past banking history of its customers[10]. 

 Theft Fraud/Counterfeit Fraud: 

If the used cards are not yours then the fraud is called theft. The bank 

will take measures to check the thief when the owner gives some 

feedback and contact the bank. Likewise, remotely use of the credit 

card leads to counterfeit fraud. Use of your codes via various web-

sites and copied card number, where no physical cards or signature are 

required[10].  

 Application Fraud:  

Application fraud is defined as when someone applies for a credit card 

with wrong information. Detection can be done by either when 

applications come from a same user with the same details, termed as 

duplicates and when applications come from different individuals with 

similar details, called as identity fraudsters [10]. 

2.4Artificial Neural Network 

Artificial neural networks (ANNs), usually simply called neural 

networks (NNs), are computing systems vaguely inspired by 

the biological neural networks that constitute human brains [12].An 

ANN is based on a collection of connected units or nodes 



10 
 

called artificial neurons, which loosely model the neurons in a 

biological brain [11]. Each connection, like the synapses in a 

biological brain, can transmit a signal to other neurons. An artificial 

neuron that receives a signal then processes it and can signal neurons 

connected to it. The "signal" at a connection is a real number, and the 

output of each neuron is computed by some non-linear function of the 

sum of its inputs. The connections are called edges. Neurons and 

edges typically have a weight that adjusts as learning proceeds[13]. 

The weight increases or decreases the strength of the signal at a 

connection. Neurons may have a threshold such that a signal is sent 

only if the aggregate signal crosses that threshold. Typically, neurons 

are aggregated into layers. Different layers may perform different 

transformations on their inputs. Signals travel from the first layer (the 

input layer), to the last layer (the output layer), possibly after 

traversing the layers multiple times[14]. 

2.4.2 Training 

Neural networks learn (or are trained) by processing examples, 

each of which contains a known "input" and "result," forming 

probability-weighted associations between the two, which are stored 

within the data structure of the net itself. The training of a neural 

network from a given example is usually conducted by determining 

the difference between the processed output of the network (often a 

prediction) and a target output. This is the error. The network then 

adjusts its weighted associations according to a learning rule and using 

this error value. Successive adjustments will cause the neural network 

to produce output which is increasingly similar to the target output. 

After asufficient number of these adjustments the training can be 

terminated based upon certain criteria. This is known as supervised 

learning [15]. 

Such systems "learn" to perform tasks by considering examples, 

generally without being programmed with task-specific rules. For 

example, in image recognition, they might learn to identify images 



11 
 

that contain cats by analyzing example images that have been 

manually labeled as "cat" or "no cat" and using the results to identify 

cats in other images. They do this without any prior knowledge of 

cats, for example, that they have fur, tails, whiskers and cat-like faces. 

Instead, they automatically generate identifying characteristics from 

the examples that they process [16]. 

2.5. Components of Artificial Neural Networks 

2.5.1 Neurons 

ANNs are composed of artificial neurons which are 

conceptually derived from biological neurons. Each artificial neuron 

has inputs and produces a single output which can be sent to multiple 

other neurons. The inputs can be the feature values of a sample of 

external data, such as images or documents, or they can be the outputs 

of other neurons. The outputs of the final output neurons of the neural 

net accomplish the task, such as recognizing an object in an 

image[17]. 

To find the output of the neuron, first we take the weighted sum 

of all the inputs, weighted by the weights of the connections from the 

inputs to the neuron. We add a bias term to this sum. This weighted 

sum is sometimes called the activation. This weighted sum is then 

passed through a (usually nonlinear) activation function to produce the 

output. The initial inputs are external data, such as images and 

documents. The ultimate outputs accomplish the task, such as 

recognizing an object in an image [18]. 

2.5.2 Connections and weights 

The network consists of connections, each connection providing the 

output of one neuron as an input to another neuron. Each connection is 



12 
 

assigned a weight that represents its relative importance. A given 

neuron can have multiple input and output connections  

2.5.3 Organization 

The neurons are typically organized into multiple layers, especially 

in deep learning. Neurons of one layer connect only to neurons of the 

immediately preceding and immediately following layers. The layer 

that receives external data is the input layer. The layer that produces 

the ultimate result is the output layer. In between them are zero or 

more hidden layers. Single layer and un-layered networks are also 

used. Between two layers, multiple connection patterns are possible. 

They can be fully connected, with every neuron in one layer 

connecting to every neuron in the next layer. They can be pooling, 

where a group of neurons in one layer connect to a single neuron in 

the next layer, thereby reducing the number of neurons in that 

layer. Neurons with only such connections form a directed acyclic 

graph and are known as feed-forward networks. Alternatively, 

networks that allow connections between neurons in the same or 

previous layers are known as recurrent networks [18][19]. 

2.5.4 Hyper-parameter 

A hyper parameter is a constant parameter whose value is set before 

the learning process begins. The values of parameters are derived via 

learning. Examples of hyper parameters include learning rate, the 

number of hidden layers and batch size. The values of some hyper 

parameters can be dependent on those of other hyper parameters. For 

example, the size of some layers can depend on the overall number of 

layers [18][19]. 

 



13 
 

2.6 Types of Artificial Neural Network  

2.6.1 Feed-forward Neural Network 

Feed-forward Neural Network are the mostly encountered type of 

artificial neural networks and applied to many diverfields. ANNs, are 

inspired from their biological counterparts, the biological brain and 

the nervous system. Biological brain is entirely different than the 

conventional digital computer in terms of its structure and the way it 

processes information. The most important distinctive feature of a 

biological brain is its ability to learn and adapt while a conventional 

computer does not have such abilities. There are two categories of 

network architectures depending on the type of the connection 

between the neurons, “feed-forward neural network” and the 

“recurrent neural network”. If there is no “feedback” from the output 

of the neurons towards the inputs throughout the network, then the 

network is referred to as “feed-forward neural network”. Otherwise, if 

there exist such a feedback, i.e., a synaptic connection from the out 

towards the input, then the network called a “recurrent neural 

network”. Usually, neural networks are arranged in the form of a 

“layer” s feed-forward neural networks fall into two categories 

depending on the number of the layers, either “single layer” or “multi-

layer”. 



14 
 

 

Figure 2.1 Single Layer Feed-forward Neural Network 

In Figure 2.2, a single layer feed-forward neural network is shown, 

including the input layer, there are two layers in this structure. Input 

signals are passed on to the output signals. 

 

Input Layer                                     Hidden Layer                    Output Layer 

Figure 2.2 Multi-layer Feed-forward Neural Network 

In Figure 2.3 a Multi-layer Feed-forward Neural Network with one 

“hidden layer” is depicted. As opposed to a single-layer network, there 

is (at least) one layer of “hidden neurons” between the input and the 

output layers. In both Figure 2.2 and Figure 2.3, network is “fully 

connected” because every neuron in each layer is connected to every 

other neuron in the next forward layer. If someof the synaptic 

connections were missing, the network would be called as “partially 

connected”[20]. 



15 
 

2.6.2 Modular Neural Network 

A Modular Neural Network (MNN) is a Neural Network (NN) that 

consists of several modules, each module carrying out one sub-task of 

the NN’s global task, and all modules functionally integrated. A 

module can be a sub-structure or a learning sub-procedure of the 

whole network. The network’s global task can be any neural network 

application, e.g., mapping, function approximation, clustering or 

associative memory application.MNN is a rapidly growing field in 

NNs research. Researchers from several backgrounds and objectives 

are contributing to its growth. For example, motivated by the “non-

neuromorphic” nature of the current artificial NN generation, some 

researchers with a biology-background are suggesting modular 

structures. Their goal is either to model the biological NN itself, i.e., a 

reverse engineering study, or to try to build artificial NNs which 

achieve the high capabilities of the biological system. Motivated by 

the psychology of learning in the human system, some other 

researchers modularize the NN’s learning in an attempt to achieve 

clearer representation of information and less amount of internal 

interference. Another group of researchers develop modular NNs to 

fulfill the constraints put by the current hardwareimplementation 

technology. Nevertheless, most of the work in the MNN field aims to 

enhance the computational capabilities of thenonmodular alternatives, 

e.g., enhancing the networks’ generalization, scalability, 

representation, and learning speed. Figure 1 shows the growth of the 

MNN field in a profile very much similar to the growth in the NN 

field. Notice that 44% of the MNNs research is done in the last two 

years. This illustrates the recent high interest in the field. Biologists 

have studied modularization of the natural brain long time ago. 

However, the first two attempts to build artificial modular neural 

networks, we are aware of, were in November 1987. E. Micheli-

Tzanakou2 outlined, briefly, a model he built of the vertebrate retina 

using an artificial MNN. He designed a collection of modules 

connected in series and parallel and used them to study the effects of 

lateral connectivity. In the same month, the Third Conference of 

ArtificialIntelligence for Space Applications, Huntsville, Al, USA, 

published an abstract written by E. Fiesler and A. Choudry,3 in which 

they suggested NNs as “a possible architecture” for building 



16 
 

multimodular space systems.[21]

 

 

Figure 2.3 Growth in Modular Neural Network 

 

Figure 2.4 Growth in Neural Network 

2.6.3 Multi-Layer Perceptron 

 Feed Forward Neural Network contains neurons and edges that form 

a network. The neurons are set of nodes and are of three types: input, 

hidden and output. Each node is a unit of processing. The edges are 

the links between two nodes and they have associated weights. In 

Multi-layer perceptron the network consists of multiple layers of 

computational units, usually connected in a feed-forward way. Each 

neuron in one layer has direct connections to the neurons of the 



17 
 

subsequent layer although not to other nodes in the same layer. There 

might be more than one hidden layer. A neuron has a number of inputs 

and one output. It combines all the input values (Combination), does 

certain calculations, and then triggers an output value (activation). 

There are different ways to combine inputs. One of the most popular 

methods is the weighted sum, meaning that the sum of each input 

value is multiplied by its associated weight. Therefore, for a given 

node g we have: 

 

wherexij represents the ith input to node j, wij represents the weight 

associated with the ith input to node j and there are Iinputs to node j. 

The value obtained from the combination function is passed to non-

linear activation function as input.  

 

Figure 2.5 Multi-layer Perceptron 

2.6.4 Convolutional Neural Networks   

Convolutional Neural Networks (CNNs) are analogous to traditional 

ANNs in that they are comprised of neurons that self-optimize through 

learning. Each neuron will still receive an input and perform an 

operation (such as a scalar product followed by a non-linear function) 

- the basis of countless ANNs. From the input raw image vectors to 



18 
 

the final output of the class score, the entire of the network will still 

express a single perceptive score function (the weight). The last layer 

will contain loss functions associated with the classes, and all of the 

regular tips and tricks developed for traditional ANNs still apply. The 

only notable difference between CNNs and traditional ANNs is that 

CNNs are primarily used in the field of pattern recognition within 

images. This allows us to encode image-specific features into the 

architecture. The basic functionality of the example CNN above can 

be broken down into four key areas.  

1. As found in other forms of ANN, the input layer will hold the pixel 

values of the image.  

2. The convolutional layer will determine the output of neurons of 

which are connected to local regions of the input through the 

calculation of the scalar product between their weights and the region 

connected to the input volume. The rectified linear unit aims to apply 

an element activation function such as sigmoid to the output of the 

activation produced by the previous layer. 

 3. The pooling layer will then simply perform downsampling along 

the spatial dimensionality of the given input, further reducing the 

number of parameters within that activation. 4. The fully-connected 

layers will then perform the same duties found in standard ANNs and 

attempt to produce class scores from the activations, to be used for 

classification. It is also suggested that ReLu may be used between 

these layers, as to improve performance[23]. 

There for, a set of desired outputs must be available for training. For 

the reason, back-propagation is a supervised learning rule[21]. 

2.6.5 Deep Neural Network  



19 
 

Due to practical limitation of single-layer network on the linear 

separable problem, deep neural network (DNN) was introduced to 

solve an arbitrary classification problem. It contains one or more 

hidden layers whose computational nodes are called hidden nodes. 

The depth of the model refers to the number of hidden layers. Figure 

2.6shows the topology of deep neural network with two hidden layers 

and an output layer. The input information enters the first hidden layer 

and the outputs of this layer are transferred as inputs to the second 

hidden layer and so on. Each layer receives outputs from previous 

layer as inputs, thus the input signal propagates forward on layer-by-

layer base until the output layer. An error signal is produced at 

neurons in the output layer which is propagated backward through the 

network. Deep neural network can be used for pattern recognition and 

classification. The input layer consists of the components of a feature 

vector to be classified. Each hidden layer of neurons processes on a 

different set of features that are output of the previous layer. The more 

hidden layers the network has, the more complicated features that can 

be detected by neurons since they collect and combine information 

generated by previous layer. The nonlinearity from training data gives 

the network greater computational power and can implement more 

complex functions than network without hidden neurons[23]. 

 

                     Input Layer             Hidden Layer1           Hidden Layer2         Output Layer 

Figure2.6 Structure of Deep Neural Network with Two Hidden Layers 



20 
 

2.7 Learning Methods 

The two key learning paradigms in image processing tasks are 

supervised and unsupervised learning. Supervised learning is learning 

through pre-labeled inputs, which act as targets. For each training 

example there will be a set of input values (vectors) and one or more 

associated designated output values. The goal of this form of training 

is to reduce the model’s overall classification error, through correct 

calculation of the output value of training example by training.  

Unsupervised learning differs in that the training set does not include 

any labels. Success is usually determined by whether the network is 

able to reduce or increase an associated cost function. However, it is 

important to note that most image-focused pattern-recognition tasks 

usually depend on classification using supervised learning. 

2.8 Back-Propagation Algorithm 

Among many other learning algorithms, “back-propagation 

algorithm” is the most popular and the mostly used one for the 

training of feed forward neural networks. It is in essence, a mean of 

updating networks synaptic weight by back-propagating a gradient 

vector in which each element is defined as the derivatives of an error 

measure with respect to a parameter. Error signals are usually defined 

as the difference of the actual network outputs and the desired 

outputs[23]. The propagation function computes the input to a neuron 

from the outputs of its predecessor neurons and their connections as a 

weighted sum. A bias term can be added to the result of the 

propagation [19]. 

2.9 Sigmoid Function 



21 
 

One of the most common activation functions used by Neural 

Network is the sigmoid function. This is a nonlinear functions and 

result in nonlinear behavior. Sigmoid function is used in this study. 

Following is the definition of sigmoid function:  

 

Where x is the input value and eis the base of natural logarithms, 

equal to about 2.718281828. The output value from this activation 

function is then passed along the connection to the connected nodes in 

the next layer. Back-propagation algorithm is a commonly used 

supervised algorithm to train feed-forward networks. The whole 

purpose of neural network training is to minimize the training 

errors[22]. 

2.10 Literature Review 

2.10.1 Fraud Detection 

Fraud detection has always been the subject of some surveys and 

commentary articles because of the severe damage to the society. 

Delamaire et al. (2009) proposed different types of credit card frauds, 

such as bankruptcy fraud, theft fraud/counterfeit fraud, application 

fraud and behavioral fraud, discussing the feasibility of various 

techniques to combat this type of fraud, such as decision tree, genetic 

algorithms, clustering techniques and neural networks. Rebahi et al. 

(2011) proposed the VoIP fraud and the fraud detection systems to it 

checking their availability in VoIP environments in various fields [2]. 

These detection systems are classified as two categories: rule-based 

supervised and unsupervised methods [3]. LookmanSithic and 

Balasubramanian (2013) investigated the categories of fraud in 



22 
 

medical field and vehicle insurance systems [4]. Various types of data 

mining techniques were used to detect fraud in these areas according 

to the results. The financial fraud detection has become the most 

popular topic in the area of fraud detection (Abdallah et al. 2016) 

which usually leads to high economic losses [3][4]. 

A purpose to the detection of telecommunication fraud is that 

they could be warned by the notification from the application on 

Android platform when users receive fraudulent calls [5]. The whole 

process is divided into three parts: the first is the collection and pre-

processor of telecommunication fraud data. The second part is 

extracting features and building rules of detection. The last part is the 

implementation of telecommunication fraud alert applications [5]. The 

overview of our approach is shown in Fig. 2.7 

 

Figure 2.7: Feature Extraction 

The first step is the collection of telecommunications fraud data. 

In order to analyze the characteristics and modes of 

telecommunication fraud, the first thing to do is collecting textual 

data. Data collection is mainly to collect telecommunication fraud-

related calls. The target data includes the case of fraudulent calls, the 

description language of telecommunication fraud, and the news on the 



23 
 

media. In the data collection process, web crawler technology is used 

to collect data, and search engines (such as Baidu, etc.) are helped to 

collect textual data on telecommunication fraud on the Internet [6]. 

The second step is feature extraction and rule-building. After 

the data collected in the first step, it is important to extract the features 

and build rules for detecting telecommunication fraud. This research 

uses natural language processing technology to extract features which 

are keywords from fraud call. And we use machine learning 

algorithms to prove the appropriateness of textual data we collected 

and the validity of keywords we extract [7]. Then, according to the 

features which are extracted from the call, this research builds the 

detection rules of telecommunication fraud [8]. 

The last part is the implementation of telecommunication fraud 

detection. A telecommunication fraud alert application on the Android 

platformdeveloped. In detail, the application first starts to monitor the 

incoming call when a call coming to the users’ phone. Then the 

application uses speech recognition technology to convert the caller’s 

voice into text. After that, the application uses the detection rules that 

built in the previous step to determine if it is a fraudulent call or not. If 

the application predicates that it is a fraudulent call, a warning 

information will pop up on the smartphone’s screen to prompt the user 

to pay attention to this call.[9] 

Fawcett and Provost (1997) present fraud rule generation from 

each cloned phone account’s labelled data and rule selection to cover 

most accounts. Each selected fraud rule is applied in the form of 

monitors (number and duration of calls) to the daily legitimate usage 

of each account to find anomalies. The selected monitors’ output and 



24 
 

labels on an account’s previous daily behavior are used as training 

data for a simple Linear Threshold Unit. An alarm will be raised on 

that account if the suspicion score on the next evaluation day exceeds 

its threshold. In terms of cost savings and accuracy, this method 

performed better than other methods such as expert systems, 

classifiers trained without account context, high usage, collision 

detection, velocity checking, and dialed digit analysis on detecting 

telecommunications superimposed fraud. [23] 

2.11 Data Analysis Techniques for Fraud Detection 

Fraud that involves cell phones, insurance claims, tax 

return claims, credit card transactions, government procurement etc. 

represent significant problems for governments and businesses and 

specialized analysis techniques for discovering fraud using them are 

required. These methods exist in the areas of Knowledge Discovery in 

Databases (KDD), Data Mining, Machine Learning and Statistics. 

They offer applicable and successful solutions in different areas of 

electronic fraudcrimes[9][11]. 

The classification module was designed with a hierarchical tree 

structure, including three layers and six nodes, as shown in Figure 2.8 

 

Figure 2.8 Fee-forward Neural Network 



25 
 

The first layer consists of the root node, which discriminates 

between fraudulent and normal subscribers, but assigns the insolvent 

subscribers to any of the two groups. The second layer has two nodes. 

Node N/I discriminate between normal and insolvent cases. Node F/I 

discriminate between fraudulent and insolvent cases. The third layer 

has two nodes that discriminate among subscription fraudulent, 

otherwise fraudulent and insolvent cases. Node I/O distinguishes 

between insolvent and otherwise fraudulent. Node S/O discriminates 

between subscription fraudulent and otherwise fraudulent.as well as to 

design fuzzy rules to discriminate among the categories.the proposed 

system is predictive and operates at the application time. 

Demographics and commercial antecedents, as well as other 

characteristics associated to the application for a new phone line, were 

used as predictors. The predictive module was able to identify 3.5% of 

the subscribers containing 56.2% of the true fraudsters. A manual 

analysis of errors showed that most of the FP cases corresponded to 

the insolvent category. One third of these corresponded to customers 

that never paid the bills but had a typical residential average 

expenditure. This pattern corresponds to the category of fraud for 

personal usage, and couldbe considered as kind of subscription fraud. 

[24].the contact phone number which is required by the telecom in the 

application process, allowed the detection of sequences of cases of 

subscription fraud. Fig2.3 shows a sequence of seven fraud cases 

committed within a period of three months which are related to each 

other through the contact phone number used for ordering new lines. 

Typically a fraudster ordered a new phone line and committed fraud a 

few days after the installation. In the meantime, previous to the 



26 
 

blocking, the fraudster ordered another line using the first line 

installed as the contact phone number. 

Fraud cases would generally be detected online triggered by traffic 

measures by the commercial fraud detection system, and confirmed 

later on as such during the billing process. In order to generate a 

database of known fraudulent/legitimate cases, it was necessary to 

formalize the definition of subscribers’ categories. Consequently, the 

following four categories of subscribers were defined: 

 Subscription fraudulent. Most of the users in this category do not 

pay their bills at all, but if they do, the debt/payment ratio is very 

high. The line is typically blocked due to suspicious behavior in 

long distance calls within 6 months after the installation date. 

 Otherwise, fraudulent. Subscribers for more than a year who 

present a sudden changein their calling behavior, generating an 

abnormal rise in their newer billing accounts. Insolvent. 

Subscribers with a total debt of less than 10 times their monthly 

payments, having two or more unpaid bills. This category includes 

new customers that have never paid their bills but whose monthly 

expenditures are similarto average residential lines. 

 Normal Customers with their bills up to date or at most asingle 

unpaid bill for less than 30 days after due date. 

The proposed system for preventing subscription fraud consists of two 

modules: a classification module and a prediction module. The 

classification module separates subscribers according to their 

historical behavior into one out of four of the defined categories: 

subscription fraudulent, otherwise fraudulent, insolvent or normal. 

This module uses as inputs the information available about bills, 

payments, phone line blockings. The main purpose of the 



27 
 

classification module is to generate a database of known 

fraudulent/legitimate cases. The prediction module allows the 

identification of potential fraudulent subscribers at the time of 

application. This module uses as inputs the information available 

about new subscribers, such as demographics and commercial 

antecedents, as well as application and account information [25]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



28 
 

 

 

 

 

 

 

 

 

 

 

CHAPTER THREE 

Methodology 
 

 

 

 

 

 

 

 

 

 



29 
 

Chapter Three 

Methodology 

3.1 Introduction 

This chapter represents the methodology of the project including the 

creation of artificial neural network, loading and preparing data. 

3.2 Methodology Framework 

The framework illustrates the steps designing and building the code to 

detect frauds  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: Framework of Methodology 

Collecting Call Details Record 

Preparing of Data (Data Coding) 

Feature Selection and rule 

building 

Building Neural Network 

Apply Learning to Neural 

Network 

Validating Neural Network 

 

Testing and Error Detection 



30 
 

3.3 Neural Network -Detecting with prediction Call Data 

Record Fraud Data 

A neural network is essentially a highly variable function for mapping 

almost any kind of linear and nonlinear data. It can be used to 

recognize and analyze trends, recognize images, data relationships, 

and prediction of intrusions. It is one of the largest developments in 

artificial intelligence. 

A simple neural network design was created based on three-layers 

neural network in MATLAB, and using it to detect and predict trends 

in CDR data in order to predict fraud. Sample dataset that used is real 

CDR records, in which contains some important parameters, such as 

 Call duration 

 Repeating  

 Call source  

 Same number to multi-destinationnumber with a time duration 

almost fixed 

 day time call was placed 

 is the number reachable  

 during part of the day 

 number is Listed in international spam numbers 

3.4 Preparing of Data (Data Coding) 

Table 3.1 Call Duration 

Option  Value 

Less than minute -1 

Between 1 to 9 0 

More than 9 minutes 1 

 

Table 3.2 Call Repeating 



31 
 

Option  Value 

More than 18 time or equal or 

greater than 36(yes) 

0 

More than 18 time or equal or 

greater than 36(No) 

1 

 

Table 3.3 Call Source 

Option  Value 

Call source is the same (Yes) 0 

Call source is the same (No) 1 

 

Table 3.4 Single Number to Multi Number International 

Option  Value 

Single number to multi number 

international (Yes) 
0 

Single number to multi number 

international (No) 
1 

 

Table 3.5 Number Reachability 

Option  Value 

Reachable number (Yes) 0 

Reachable number (No) 1 

 

Table 3.6 Time During the Day 

Option  Value 

Morning -1 

Mid-day 0 

End of the Day 1 

 

 



32 
 

3.5 Implementation of MATLAB Code 

Step 1: Importing Data into MATLAB 

Call duration: 1) less than min, 2) between 1 to 3, 3) between 3 to 9, 4) fall. (-1, -0.33, 0.33, 1) 

Call repeating. 18 time or equal or greater than 36 (0, 1) 

Call source is the same:  1) yes, 2) no. (0, 1) 

Single number to multi number international 1) yes, 2) no. (0, 1) 

Reachable number 1) yes, 2) no. (0, 1) 

Time during the day 1) morning, 2) mid-day, 3) end of the day. (-1, 0, 1) 

The data is already in a computer-readable format, and looks like: 

-0.33,0.69,0,1,1,0,0.8,0,0.88,N 

-0.33,0.94,1,0,1,0,0.8,1,0.31,O 

-0.33,0.5,1,0,0,0,1,-1,0.5,N 

-0.33,0.75,0,1,1,0,1,-1,0.38,N 

-0.33,0.67,1,1,0,0,0.8,-1,0.5,O 

-0.33,0.67,1,0,1,0,0.8,0,0.5,N 

-0.33,0.67,0,0,0,-1,0.8,-1,0.44,N 

In order to make reading it for MATLAB easier, it’s required to need 

to modify the document a bit. The instructions list the output as either 

a "N" for normal, or an "O" for Fraud.So, a change of the two values 

to a 0 and a 1, respectively. Now it should look like: 

-0.33,0.69,0,1,1,0,0.8,0,0.88,0 

-0.33,0.94,1,0,1,0,0.8,1,0.31,1 

-0.33,0.5,1,0,0,0,1,-1,0.5,0 

-0.33,0.75,0,1,1,0,1,-1,0.38,0 

-0.33,0.67,1,1,0,0,0.8,-1,0.5,1 

-0.33,0.67,1,0,1,0,0.8,0,0.5,0 

-0.33,0.67,0,0,0,-1,0.8,-1,0.44,0 

 



33 
 

Now data is ready to be imported MATLAB. A creation of MATLAB 

script and imported the data with the following code: 

% input data 

    filename = 'CDR_Diagnosis.txt'; 

delimiterIn = ','; 

Data = importdata(filename,delimiterIn); 

Step 2: Neural Network Structure 

 

Figure 3.2 Neural Network Structure 

Starting on the left, represent the input nodes (circles). Into these 

nodes the feeding subject data such as the  

 Call duration 

 Repeating  

 Call source  



34 
 

These nodes are connected to the ones to the right by synapses (lines). 

These synapses can be reprogrammed (by changing their value) to 

change the behavior of the function (neural network). Modifying these 

synapses is the function of train the neural network. 

Next layer is what is called the hidden layer. It adds depth to the 

processing and a sort of "second layer of abstraction" to processing 

data. Some neural networks do not have hidden layers, but for a neural 

network to be able to graph non-linear data relationships, it is a 

necessity.The hidden layer nodes sum all the numbers fed to it by the 

synapses and sends it through a non-linear mapping function.  

In this project sigmoid function was used, this function takes any real 

number and maps it to a number between 0 and 1.The choosing to use 

7 neurons for our hidden layer because its medium between the input 

layer (9 neurons) and the output layer (1 neuron). 

Next is another layer of synapses, which connects to our last node, our 

output neuron. This output neuron can have a value of 0 to 1, and will 

be used as an output for predicting whether or not our subject is likely 

fraud. Just like the hidden layer, it maps the sum of the synapses 

through the sigmoid function. 

Above is a basic neural network, but they can become very complex 

in high level applications. For instance, google's image classification 

algorithm. Their neural network is what is called a "deep neural 

network" because it has many hidden layers, and therefore many 

layers of abstraction necessary for classifying an image. (Think one 

layer for edge detection, one layer for shape detection, one layer for 

depth, etc.) 

Step 3: Creating the Neural Network Structure in MATLAB 



35 
 

To create the neural network structure in MATLAB, first create two 

separate sets of data from the original. This step is not necessary to 

make a functional neural network, but is necessary for testing its 

accuracy on real world data. Creation of set aside two sets, in which 

the training set has 90% of the data, and the testing set contains 10%. 

In doing so, also a creation of two other matrices for each set, one for 

our input data, and our output data. 

Listing 3.1. Neural network planning 

% create training and testing matrices 

    [entries, attributes] = size(Data); 

entries_breakpoint = round(entries*.90); %set breakpoint for training and testing data at 90% of 

dataset 

inputlayersize=9; 

outputlayersize=attributes-inputlayersize; 

trainingdata = Data(1:entries_breakpoint,:); %truncate first 90% entries for training data 

trainingdata_inputs = trainingdata(:,1:inputlayersize); %90%x9 matrix input training data 

trainingdata_outputs = trainingdata(:,inputlayersize+1:end); %90:1 matrix output training data 

testingdata = Data(entries_breakpoint:end,:); %truncate last 10 entries for testing data 

testingdata_inputs= testingdata(:,1:inputlayersize); %10:9 matrix input testing data 

testingdata_outputs= testingdata(:,inputlayersize+1:end); %10:1 matrix output testing data 

in this project the storing of data is saved as matrices as MATLAB’s 

built-in matrix multiplication functions significantly speed up 

processing. 

Next initializing the two sets of synapses as a matrix of random 

numbers (for now) 



36 
 

%initialize random synapse weights with a mean of 0 

hiddenlayersize=7; 

    syn0 = 2*rand(inputlayersize,hiddenlayersize) - 1; %random matrix, inputlayersize X 

hiddenlayersize 

    syn1 = 2*rand(hiddenlayersize,outputlayersize) - 1; %random matrix, hiddenlayersize X 

outputlayersize 

As a preliminary step, feeding data through the network (with random 

synapse values) and check for accuracy. It is training the network 

which is the hard part. 

Listing 3.2 Feeding data through network  

%feedforward training data 

layer0=trainingdata_inputs; 

layer1=(1)./(1+exp(-1.*(layer0*syn0))); %multiply inputs by weights and apply sigmoid activation 

function 

layer2=(1)./(1+exp(-1.*(layer1*syn1))); %multiply hidden layer by 2nd set of weights and apply 

sigmoid activation function 

%check for accuracy 

err = immse(layer2, trainingdata_outputs); 

fprintf("Untrained: Mean Squared Error with Trainingdata: %f\n", err) 

%feedforward testing data 

layer0=testingdata_inputs; 

layer1=(1)./(1+exp(-1.*(layer0*syn0))); %multiply inputs by weights and apply sigmoid activation 

functoin 

layer2=(1)./(1+exp(-1.*(layer1*syn1))); %multiply hidden layer by 2nd set of weights and apply 

sigmoid activation function 

%check for accuracy 



37 
 

err = immse(layer2, testingdata_outputs); 

fprintf("Untrained: Mean Squared Error with Testingdata: %f\n", err) 

these values will be used to compare the accuracy values later to view 

how effective the neural network training has been. 

Step 4: Training the Network. 

Training the network requires feeding data through the network, 

measuring error, and adjusting the synapses in a way that will 

decrease the error the fastest. Rinse and Repeat. 

First, a loop will be created which will repeat a set number of times, 

constantly re-training the network. Repeat until it either reaches a 

specific threshold of error or times out. Using a very large value for 

the for loop for ease of debugging. 

foriter=[1:1000000] 

end 

Now we may begin writing the training code which will reside within 

the loop. The first step is to first feed data through the network. We 

can do this with the same way we did it before. 

layer0=trainingdata_inputs; 

            layer1=(1)./(1+exp(-1.*(layer0*syn0))); %multiply inputs by weights and apply sigmoid 

activation functoin 

            layer2=(1)./(1+exp(-1.*(layer1*syn1))); %multiply hidden layer by 2nd set of weights and 

apply sigmoid activation function 

The training algorithm works using an already established method 

called backpropagation. The output of the untrained network is 

measured against what the output should be. This is called our cost 

function. Our specific cost function is very simple: 



38 
 

%cost function (how much did we miss) 

            layer2_error=layer2-trainingdata_outputs; 

Next, we must do some mathematical to find out which weights will 

reduce the error the fastest. To do this, calculus will be used, 

measuring the rate at which the cost function changes with respect to 

the rate at which each synapse changes. By modify each value of each 

synapse depending upon how fast it reduces the error (cost function). 

The synapses with the biggest impact on the error get modified the 

most, and the synapses with the least impact on the error get modified 

the least. This process works through all layers of the neural network. 

In our case, the contribution of error of the first set of synapses to the 

second set of synapses is calculated. This method of using calculus to 

determine which weights (synapses) need to be modified the most is 

called gradient descent. 

Listing 3.3 Cost Function 

%which direction is the target value 

            layer2_delta = layer2_error.*(exp(layer2)./(exp(layer2)+1).^2); 

        %how much did each l1 value contribute to l2 error 

            layer1_error = layer2_delta*syn1.'; 

        %which direction is target l1 

layer1_delta = layer1_error.*(exp(layer1)./(exp(layer1)+1).^2); 

Next, synapse values are modified using out error that was calculated 

from above. The variable "alpha" is set to 0.001 in our case because it 

sets a good rate for training this specific neural network. This value is 

soft-coded into the program to make debugging easier and is a default 

value. 



39 
 

Listing 3.4 Adjust Synapses 

%adjust values 

errorval = mean(abs(layer2_error)); 

            syn1 = syn1 - alpha.*(layer1.'*layer2_delta); 

            syn0 = syn0 - alpha.*(layer0.'*layer1_delta); 

Rinse and Repeat. 

setting a diagnosis/debugging code snippet that outputs the current 

error value to the console with the following code, included within the 

for loop. Variable "errorval" references the variable created in the 

above code snippet. 

%print out debug data 

            if iter==1 || mod(iter,100000) == 0 

fprintf("\titer=%.0f, Error: %f\n", iter, errorval) 

                %syn0 

                %syn1 

end 

 

 

Step 5: Testing the Trained Output Data. 

After training (after the for loop), accuracy of the neural network can 

be tested with the real-world data that set aside from before. 

Listing 3.5 Testing the Trained Output Data 



40 
 

%feedforward training data 

layer0=trainingdata_inputs; 

layer1=(1)./(1+exp(-1.*(layer0*syn0))); %multiply inputs by weights and apply sigmoid activation 

function 

layer2=(1)./(1+exp(-1.*(layer1*syn1))); %multiply hidden layer by 2nd set of weights and apply 

sigmoid activation function 

%check for accuracy 

err = immse(layer2, trainingdata_outputs); 

fprintf("Trained: Mean Squared Error with Trainingdata: %f\n", err) 

%feedforward testing data 

layer0=testingdata_inputs; 

layer1=(1)./(1+exp(-1.*(layer0*syn0))); %multiply inputs by weights and apply sigmoid activation 

functoin 

layer2=(1)./(1+exp(-1.*(layer1*syn1))); %multiply hidden layer by 2nd set of weights and apply 

sigmoid activation function 

%check for accuracy 

err = immse(layer2, testingdata_outputs); 

fprintf("Trained: Mean Squared Error with Testingdata: %f\n", err) 

the code the for loop used to set up preliminary benchmarks on the 

accuracy of the neural network. 

Running the code, the following information on the console can be 

gathered. 

Listing 3.6Accuracy of the Neural Network 

Untrained: Mean Squared Error with Trainingdata: 0.267557 

Untrained: Mean Squared Error with Testingdata: 0.273381 



41 
 

Training with alpha: 0.001000 

 iter=1, Error: 0.515190 

 iter=100000, Error: 0.167916 

 iter=200000, Error: 0.130336 

 iter=300000, Error: 0.098990 

 iter=400000, Error: 0.079489 

 iter=500000, Error: 0.068687 

 iter=600000, Error: 0.057204 

Stopping at: 0.050000 error 

Value Below Tolerance found: 0.050000 

Trained: Mean Squared Error with Trainingdata: 0.016290 

Trained: Mean Squared Error with Testingdata: 0.219258 

The fully trained neural network significantly minimized the error 

when fed with the training data. The testing data error was improved, 

but definitely did not have as drastic an effect as the training data. 

This is because the neural network was specifically trained to imitate 

the training data, and did only as good a job as it could've in 

predicting the testing data. 

Final Step: 

The included Matlab file is fully functional out of the box, and is 

included with the CDR data. Using a non-random seed for debugging 

purposes, as it makes it easier to predict values with which to train the 

neural network: 



42 
 

%set non-random seed 

rng('default'); 

rng(1); 

Another thing is the error-tolerance value, which I added as a measure 

to prevent overtraining of the neural network. (So, the for loop would 

stop if the error fell below a certain value) 

error_tolerance = 0.05; 

iferrorval<error_tolerance 

fprintf("Stopping at: %f error\n", errorval) 

break 

end 

3.6 Steps Implementing Artificial Neural Network 

3.6.1 Starting with Neural Network 

first open the MATLAB software and wait till it is ready, in the 

command windows write NNSATRT to start GUI of ANN in 

MATLAB. 

 

 

Figure 3.3: Starting Artificial Neural Network in MATLAB 



43 
 

3.6.2 Artificial Neural Network Wizard  

The following figure is the automatic creation wizard of ANN, >> press Fitting App 

 

 

Figure 3.4: Artificial Neural Network Wizards 

3.6.3 Fitting App Form 

The following form is information about neural network press next 

 

Figure 3.5: Neural Fitting 

 



44 
 

3.6.4 Selecting Data 

In this step user must enter the dataset by browsing for data set, to 

load comma separated file that is ready prepared for neural network. 

 

Figure 3.6Selecting Data Inputs and Targets- 

3.6.5 Loading Comma File 

In this step the comma file is loaded into matlab workspace in order 

to use it as input to the ANN

 

 



45 
 

Figure 3.7: Importing Data to MATLABWorkspace 

Selecting Validation and Percentage from the Records 

In this step the user must select the percentage of validation records 

and testing records 

 

Figure 3.8: Selecting Validation and Testing Samples 

3.4.5 Setting the Hidden Layers 

 



46 
 

Figure 3.9: Set Number of Hidden Layers 

3.5 Network Training 

In this step a network training is done so the network can validate the 

performance  

 

Figure 3.10: Training the Neural Network 

3.7 Measures for Performance: 

A number of different measures are commonly used to evaluate the 

performance of the proposed method. These measures including 

classification, sensitivity, specificity, Mathew’s correlation coefficient 

(MCC) calculated from confusion matrix.  

True Positive (TP) – counts of all samples which are correctly called 

by the algorithm as normal call.  

False Positive (FP) –counts of all samples which are incorrectly called 

by the algorithm as fraud call while they are normal.  

True Negative (TN) – counts of all samples which are correctly called 

by the algorithm as fraud call.  

False Negative (FN) – count of all samples which are incorrectly 

called by the algorithm as normal call while they are fraud call. 

The performance of the classification algorithms was evaluated by 

computing the percentages of Sensitivity (SE), Specificity (SP), 



47 
 

Accuracy (AC) and Mathews Correlation Coefficient (MCC), The 

respective definitions are as follows: 

SE= TP/ (TP+FN)*100 (1)  

SP= TN/ (TN+TP)*100 (2)  

AC= (TP+TN)/ (TN+TP+FN+FP)*100 (3) 

MCC= (TP×TN-FP×FN)/ √ (TP+FP) (TP+FN) (TN+FP) (TN+FN) (4) 

Artificial Neural Network is an artificial representation of the human 

brain that tries to simulate its learning process. To train a network and 

measure how well it performs, an objective function must be defined. 

A commonly used performance criterion function is the sum of 

squares error function. 

(5) 

Where, p represents the patterns in the training set, yp is the output 

vector (based on the hidden layer output), tp is the training target. The 

above equation represents the output nodes, tpi and ypi are, 

respectively, the target and actual network output for the ith output 

unit on the pth pattern. The network learns the problem at hand by 

adjusting weights. The process of adjusting the weights to make the 

Neural Network learn the relationship between the inputs and the 

targets is known as learning or training. There are several methods of 

finding the weights of which the gradient descent method is most 

common[19]. 

 

 

 

 

 

 

 

 



48 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



49 
 

 

 

Chapter Four 

Result and Discussion 

 

 

 

 

 

 

 

 

 

 

 

Chapter Four 

Results and Discussion 

 

In this chapter the results and discussion were included along with the 

analysis to the accuracy of detection of the program. 

Three basic criteria are considered to evaluate the results in form of 

Performance, Mean Square Error (MSE) and Regression which are 

Testing, Training and Validation. 

4.1 Artificial Neural Network Basic Configuration 

Table4.1 Parameter Setting Table 

Parameters Options 



50 
 

Input Layer Size 9 Neurons 

Hidden Layer Size 7 Neurons 

Output Layer Size 1 Neurons 

Activation Function Back propagation Function 

Neural Network Type Feed-forward Neural Network 

4.2Running the Neural Network Training 

After setting the network training screen view the performance, time 

and regression, it was found that Mean Square Error and regression 

have been reduced, according to increasing the testing and validation 

samples. 

Table 4.2 case 1: Training, Testing and Validation with associated 

Mean Square Error and Regression Value 

Feature  (10 Samples) Percentage Mean Square 

Error 

Regression 

Training 8 90% 4.01716e-1 4.05901e-1 

Validation  1 5% 5.33483e-1 1.80909e-1 

Testing 1 5% 2.82459e-0 1.39926e-2 

 

Table 4.3 case 2: Training, Testing and Validation with associated 

Mean Square Error and Regression Value  

Feature  (10 Samples) Percentage Mean Square 

Error 

Regression 

Training 6 70% 8.25951e-1 1.93857e-1 

Validation  2 15% 1.09469e-0 5.95325e-2 

Testing 2 15% 6.42803e-1 -1.57506e-1 

 

Table 4.4 case 3: Training, Testing and Validation with associated 

Mean Square Error and Regression Value  



51 
 

 

Feature  (10 Samples) Percentage Mean Square 

Error 

Regression 

Training 4 50 1.70276e-1 5.92323e-1 

Validation  3 25% 1.2647e-0 1.48749e-1 

Testing 3 25% 1.66778e-0 1.00170e-1 

 

Tables 4.2, 4.3 and 4.4 illustrate how the mean square error and 

regression changed and inversely proportion with the training 

samples, And direct proportion with Testing and Validation. 

4.3Best Validation of Training 

It was found that the error reduced at the 3 epochs  

 

 

Figure 4.1: Detecting Mean Square Error 

Figure 4.2 illustrates that the best validation Performance foundat the 

epoch 3. 

It was found that the mean square error is minimized by maximizing 

the percentage of testing data, as well as increasing training data leads 



52 
 

to minimizing the validation and the mean square error would be 

minimized. 

4.4 Validation 

It was found that the epoch at 3 is the best validation area with a lower 

error 

 

 

Figure 4.2: Results of 9 Epochs 

Figure 4.2 illustrate how the learning rate (mu)gradient changes  

during time and how it affects the validation value. And it was found 

that the best validation was at instant 9 which learning rate took its 

lowest value. 

4.5 Histogram of Error 

The following graph represents the error histogram of the neural 

network and also it is increases after 3 epoch. 



53 
 

 

Figure 4.3: Error Histogram 

Figure 4.3 shows the correlation betweenthe target output and the 

calculated output for training data and testing data. And it is found 

that zero error has been obtained when target and result output are 

becoming so close to each other, which means the regression value 

would become very high. 

4.6 Iterations and Error Reduction 

It is found that after each iteration the error are reduced and the best is 

0.10282 

 



54 
 

Figure 4.4: Detection of Error While Iterations 

Figure 4.4 illustrates the regression value calculated for training data, 

testing data, validation data and all data, it is noted that whenever the 

difference between the result output and target output is maximized in 

term of error value that means the relation ' regression 'between them 

is so far, in contrast whenever the difference between the result output 

and target output is minimizedthe relation between the target and 

result is so close which refer to the regression. 

4.7 Performance Matrices  

Table 4.5: System Validation Test 

Measure Value Derivations 

Sensitivity  0.9435 TPR = TP / (TP + FN)  

Specificity  0.7000 SPC = TN / (FP + TN)  

Accuracy  0.9333 ACC = (TP + TN) / (P + N)  

Matthews Correlation 

Coefficient  
0.4652 

TP*TN - FP*FN / sqrt((TP+FP)*(TP+FN) 

*(TN+FP) *(TN+FN))  

this system capable of determining the true positive value, the true 

negative value, the false positive value, and the false negative value. 

The true positive value which refers to the number of normal call and 

classified correctly as normal call by neural network, the true negative 

which refers to the number of normal call and classified in correctly as 

fraud call by neural network, the true negative which refers to the 

number of fraud call and classified correctly as fraud call by neural 

network, false negative which refers to the number of fraud call and 

classified in correctly as normal call by neural network. 



55 
 

 

Figure 4.5: Performance Measurement 

Figure 4.5 shows the main factors that play more  important role to 

enhance neural network  performance  as  follow: 

Sensitivity it measures how the neural network system is able to 

identify the new input data according to the defined features for fraud 

call.  

Specificity it measures how the neural network system is able to 

determine whether the input data record was normal or fraud call 

record.  

Accuracy it measures the account of predictions where the predict 

value is equal to the true value. 

Neural network system is able to determine whether the input data 

record was normal or fraud call record.  

The Matthews Correlation Coefficient (MCC) is one of the popular 

measurements for classification accuracy. It has been generally 

regarded as a balanced measure which can be used even if the classes 

are of very different sizes. MCC deteriorates seriously when the 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Sensitivity Specificity Accuracy Matthews Correlation
Coefficient

Performance Measurment

Series 1

https://www.sciencedirect.com/topics/computer-science/classification


56 
 

dataset in classification are imbalanced. Finally,the obtained results 

were led to increased system accuracy to detect fraud call. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter Five 

Conclusion and Recommendations 

 



57 
 

 

 

 

 

 

 

 

 

 

Chapter Five 

Conclusion and Recommendations 

5.1 Conclusion 

In this project, an analyzing offline call data record has been done in 

order to classify and detect telecommunication fraud call, by 

analyzing the content of the call data record Instead of relying onthe 

source caller number and call type, and then constructing a blacklist of 

fraud numbers. The project solves this problem, first a detection of 

telecommunication frauds through analyzing and extracting features 

from the contents of a call. Particularly, descriptions and features 

ofcall data record had been collected, rules had been built and applied 

on testing data then training data then error value has been calculated 

through obtaining the difference between the target output and the 

result output. In this project feed-forward artificial neural network had 

been used to analyze data and to high-quality descriptions had selected 

from the data collected previously to construct datasets. Then the 

performance metrics had been measured such as False Positive, true 

positive, false negative and true negative. Finally, sensitivity, 

specificity and accuracy had beendetermined.  



58 
 

It was found that the mean square error and regression changed and 

inversely proportion with the training samples, And direct proportion 

with Testing and Validation, the mean square error is minimized by 

maximizing the percentage of testing data, as well as increasing 

training data leads to minimizing the validation and the mean square 

error would be minimized, the learning rate (mu) gradient changes   

during time and how it affects the validation value.  

And it was found that the best validation was at instant 9 which 

learning rate took its lowest value, shows the correlation between the 

target output and the calculated output for training data and testing 

data. And it is found that zero error has been obtained when target and 

result output are becoming so close to each other, which means the 

regression value would become very high. 

It was found that the correlation between the target output and the 

calculated output for training data and testing data. And it is found 

that zero error has been obtained when target and result output are 

becoming so close to each other, which means the regression value 

would become very high. 

Figure 4.3 shows the correlation between the target output and the 

calculated output for training data and testing data. And it is found 

that zero error has been obtained when target and result output are 

becoming so close to each other, which means the regression value 

would become very high. 

 

5.2 Recommendations 

After the research was completed, it requires more development 

such as applying the automatic updates to the system for increasing 

the system accuracy. And more use of classification techniques and 

detection methods such as support vector machine, fuzzy logic and 

genetic algorithms and to develop a tool to secure the remote 

connection. 

 

 



59 
 

 

 

 

 

 

 

 

 

 

 

 

References 

 
1- Chouiekh,Alae, and EL HassaneIbn EL Haj, (2018)Convnetsfor fraud detection 

analysis.  Procedia Computer Science 127: 133-138. 

2- Zhao, Qianqian, et al, (2018)Detecting telecommunication fraud by 

understanding the contents of a call. Cybersecurity 1.1 : 1-12. 

3- REBAHI, Yacine, et al, (2011) A survey on fraud and service misuse in voice 

over IP (VoIP) networks. Information Security Technical Report, 16.1: 12-19. 

4- Azad, Muhammad Ajmal, and Ricardo Morla, (2013)Caller-rep: Detecting 

unwanted calls with caller social strength. Computers & Security 39: 219-236. 

5- Chen, Kuang-Hua, and Hsin-Hsi Chen, (2001) Cross-language Chinese text 

retrieval in NTCIR workshop: towards cross-language multilingual text 

retrieval.ACM SIGIR Forum. Vol. 35. No. 2. New York, NY, USA: ACM,. 

6- Delamaire, Linda, Hussein Abdou, and John Pointon, (2009)Credit card fraud 

and detection techniques: a review.Banks and Bank systems 4.2 57-68. 

7- Geng, Yingchao, (2017)  Research on How to Deal with the Dilemma of Global 

Cooperative Governance of Cross-Border Telecom Network Fraud in China. 

Chinese Studies 6.04 249. 

8- Gao, Jianfeng, Mu Li, and Chang-Ning Huang, (2003) Improved source-channel 

models for Chinese word segmentation.  

9- Jackson, Peter, and Isabelle Moulinier, 2002Natural language processing for 

online applications. Philadelphia: John Benjamins. 



60 
 

10- Jiang, Nan, et al, (2012) Isolating and analyzing fraud activities in a large 

cellular network via voice call graph analysis. Proceedings of the 10th 

international conference on Mobile systems, applications, and services.  

11- Rana, Priya J., and JwalantBaria, (2015) A survey on fraud detection techniques 

in ecommerce.  International Journal of Computer Applications 113.14. 

12- Jiang, Nan, et al. (2013)  Greystar: Fast and Accurate Detection of {SMS} Spam 

Numbers in Large Cellular Networks Using Gray Phone Space.22nd USENIX 

Security Symposium (USENIX Security 13). 

13- Kolan, Prakash, Ram Dantu, and Joao W. Cangussu. (2008) Nuisance level of a 

voice call. ACM Transactions on Multimedia Computing, Communications, and 

Applications (TOMM)5.1 : 1-22. 

14- Fan, Yuchen, et al. (2014) TTS synthesis with bidirectional LSTM based 

recurrent neural networks.Fifteenth annual conference of the international 

speech communication association.  

15- Zen, Heiga, and HaşimSak. (2015) Unidirectional long short-term memory 

recurrent neural network with recurrent output layer for low-latency speech 

synthesis. IEEE International Conference on Acoustics, Speech and Signal 

Processing (ICASSP). IEEE. 

16- Fan, Bo, et al. (2015) Photo-real talking head with deep bidirectional LSTM. 

2015 IEEE International Conference on Acoustics, Speech and Signal 

Processing (ICASSP). IEEE. 

17- Silver, David, et al, (2017)Mastering chess and shogi by self-play with a general 

reinforcement learning algorithm.arXiv preprint arXiv:1712.01815. 

18- Goodfellow, Ian, et al. (2014) Generative adversarial nets. Advances in neural 

information processing systems 27. 

19- Sun, Jian. SOSPCNN: Structurally Optimized Stochastic Pooling Convolutional." 

20- Sazli, M. H. (2006). A brief review of feed-forward neural 

networks. Communications Faculty of Sciences University of Ankara Series A2-

A3 Physical Sciences and Engineering, 50(01). 

21- Auda, Gasser, and Mohamed Kamel. "Modular neural networks: a 

survey." International journal of neural systems 9.02 (1999): 129-151. 

22- Elmi, A. H., Ibrahim, S., &Sallehuddin, R. (2013). Detecting sim box fraud using 

neural network. In IT Convergence and Security 2012 (pp. 575-582). Springer, 

Dordrecht. 

23- O'Shea, K., & Nash, R. (2015). An introduction to convolutional neural 

networks. arXiv preprint arXiv:1511.08458. 

24- Phua, Clifton, et al. (2010) A comprehensive survey of data mining-based fraud 

detection research. arXiv preprint arXiv:1009.6119. 



61 
 

25- Estévez, Pablo A., Claudio M. Held, and Claudio A. Perez. "Subscription fraud 

prevention in telecommunications using fuzzy rules and neural networks, (2006) 

 Expert Systems with Applications 31.2 :337-344. 

 

 

 

 

 

 

 

 

 

Appendix 

%{ 

USING CDR DATASET 

Call duration: 1) less than min, 2) between 1 to 3, 3) between 3 to 9, 4) fall. (-1, -

0.33, 0.33, 1) 

Call repeating. 18 time or equal or greater than 36 (0, 1) 

Call source is the same:  1) yes, 2) no. (0, 1) 

Single number to multi number international 1) yes, 2) no. (0, 1) 

Reachable number 1) yes, 2) no. (0, 1) 

Time during the day 1) morning, 2) med-day, 3) end of the day. (-1, 0, 1) 

Output: Diagnosis normal (N-->0), Fraud (O-->1) 

%} 

clc 

clear 

%set non-random seed 



62 
 

rng('default'); 

rng(1); 

% input data 

filename = 'data.txt'; 

delimiterIn = ','; 

    Data = importdata(filename,delimiterIn); 

% create training and testing matrices 

    [entries, attributes] = size(Data); 

entries_breakpoint = round(entries*.90); %set breakpoint for training and testing 

data at 90% of dataset 

inputlayersize=9; 

outputlayersize=attributes-inputlayersize; 

trainingdata = Data(1:entries_breakpoint,:); %truncate first 90% entries for 

training data 

trainingdata_inputs = trainingdata(:,1:inputlayersize); %90%x9 matrix input 

training data 

trainingdata_outputs = trainingdata(:,inputlayersize+1:end); %90:1 matrix output 

training data 

testingdata = Data(entries_breakpoint:end,:); %truncate last 10 entries for testing 

data 

testingdata_inputs= testingdata(:,1:inputlayersize); %10:9 matrix input testing 

data 

testingdata_outputs= testingdata(:,inputlayersize+1:end); %10:1 matrix output 

testing data   

error_tolerance = 0.05; 

hiddenlayersize=7; 



63 
 

%initialize random synapse weights with a mean of 0 

    syn0 = 2*rand(inputlayersize,hiddenlayersize) - 1; %random matrix, 

inputlayersize X hiddenlayersize 

    syn1 = 2*rand(hiddenlayersize,outputlayersize) - 1; %random matrix, 

hiddenlayersize X outputlayersize 

%feedforward training data 

layer0=trainingdata_inputs; 

layer1=(1)./(1+exp(-1.*(layer0*syn0))); %multiply inputs by weights and apply 

sigmoid activation functoin 

layer2=(1)./(1+exp(-1.*(layer1*syn1))); %multiply hidden layer by 2nd set of 

weights and apply sigmoid activation function 

%check for accuracy 

err = immse(layer2, trainingdata_outputs); 

fprintf('Untrained: Mean Squared Error with Trainingdata: %f\n', err) 

%feedforward testing data 

layer0=testingdata_inputs; 

layer1=(1)./(1+exp(-1.*(layer0*syn0))); %multiply inputs by weights and apply 

sigmoid activation functoin 

layer2=(1)./(1+exp(-1.*(layer1*syn1))); %multiply hidden layer by 2nd set of 

weights and apply sigmoid activation function 

%check for accuracy 

err = immse(layer2, testingdata_outputs); 

fprintf('Untrained: Mean Squared Error with Testingdata: %f\n', err) 

%best alpha for fertilitydata = 0.001 

for alpha=[0.001] 

fprintf('Training with alpha: %f\n', alpha) 



64 
 

foriter=1:1000000 

        %feed-forward 

            layer0=trainingdata_inputs; 

            layer1=(1)./(1+exp(-1.*(layer0*syn0))); %multiply inputs by weights and 

apply sigmoid activation functoin 

            layer2=(1)./(1+exp(-1.*(layer1*syn1))); %multiply hidden layer by 2nd set 

of weights and apply sigmoid activation function 

 

        %cost function (how much did we miss) 

            layer2_error=layer2-trainingdata_outputs; 

 

        %which direction is the target value 

            layer2_delta = layer2_error.*(exp(layer2)./(exp(layer2)+1).^2); 

        %how much did each l1 value contribute to l2 error 

            layer1_error = layer2_delta*syn1.'; 

        %which direction is target l1 

            layer1_delta = layer1_error.*(exp(layer1)./(exp(layer1)+1).^2); 

%adjust values 

errorval = mean(abs(layer2_error)); 

            syn1 = syn1 - alpha.*(layer1.'*layer2_delta); 

            syn0 = syn0 - alpha.*(layer0.'*layer1_delta); 

 

iferrorval<error_tolerance 

fprintf('Stopping at: %f error\n', errorval) 

break 



65 
 

end 

        %print out debug data 

ifiter==1 || mod(iter,100000) == 0 

fprintf('\titer=%.0f, Error: %f\n', iter, errorval) 

                %syn0 

                %syn1 

end 

end 

iferrorval>error_tolerance 

fprintf('Value Below Tolerance not found, please adjust alpha\n\n') 

else 

fprintf('Value Below Tolerance found: %f\n\n', errorval) 

end 

end 

%feedforward training data 

layer0=trainingdata_inputs; 

layer1=(1)./(1+exp(-1.*(layer0*syn0))); %multiply inputs by weights and apply 

sigmoid activation functoin 

layer2=(1)./(1+exp(-1.*(layer1*syn1))); %multiply hidden layer by 2nd set of 

weights and apply sigmoid activation function 

%check for accuracy 

err1 = immse(layer2, trainingdata_outputs); 

fprintf('Trained: Mean Squared Error with Trainingdata: %f\n', err1) 

%feedforward testing data 

layer0=testingdata_inputs; 



66 
 

layer1=(1)./(1+exp(-1.*(layer0*syn0))); %multiply inputs by weights and apply 

sigmoid activation functoin 

layer2=(1)./(1+exp(-1.*(layer1*syn1))); %multiply hidden layer by 2nd set of 

weights and apply sigmoid activation function 

%check for accuracy 

err2 = immse(layer2, testingdata_outputs); 

fprintf('Trained: Mean Squared Error with Testingdata: %f\n', err2) 

%[layer2.'; testingdata_outputs.'].' 

gold_data=randint(400,400,2,200) 

test_data=randint(400,400,2,1.5) 

 

% sigmoid_std=(1)./(1+exp(-1*input)); 

% sigmoid_deriv=(exp(input)./(exp(input)+1).^2); 

% sigmoid_deriv=(sigmoid_std)(1-sigmoid_std) 

TP=0;FP=0;TN=0;FN=0; 

fori=1:400; 

for j=1:400; 

if(gold_data(i,j)==1 &test_data(i,j)==1); 

                  TP=TP+1; 

elseif(gold_data(i,j)==0 &test_data(i,j)==1); 

                  FP=FP+1; 

elseif(gold_data(i,j)==0 &test_data(i,j)==0); 

                  TN=TN+1; 

else 

                  FN=FN+1; 



67 
 

end 

end 

end 

 


	الآيـــــــة
	Dedication
	Acknowledgement
	Abstract
	المستخلص
	1.1 Preface
	1.4 Objectives
	Themain goal isanalyzingoffline data for a given subscriber or customer and classified it as fraudster based on his features derived from the CDR and identify telecommunication frauds only through the contents of a call, and increasing system accuracy...
	1.5 Methodology
	1.6 Thesis outline
	2.1 Background
	2.4Artificial Neural Network
	2.4.2 Training
	2.5. Components of Artificial Neural Networks
	2.5.1 Neurons
	2.5.2 Connections and weights
	2.5.3 Organization
	2.5.4 Hyper-parameter


	2.10.1 Fraud Detection
	Figure 2.7: Feature Extraction

	2.11 Data Analysis Techniques for Fraud Detection
	3.1 Introduction
	3.2 Methodology Framework
	Figure 3.1: Framework of Methodology

	3.3 Neural Network -Detecting with prediction Call Data Record Fraud Data
	3.5 Implementation of MATLAB Code
	Step 2: Neural Network Structure
	Figure 3.2 Neural Network Structure

	Step 3: Creating the Neural Network Structure in MATLAB
	Step 4: Training the Network.
	Step 5: Testing the Trained Output Data.
	3.6 Steps Implementing Artificial Neural Network
	3.6.1 Starting with Neural Network
	Figure 3.3: Starting Artificial Neural Network in MATLAB
	Figure 3.4: Artificial Neural Network Wizards

	3.6.3 Fitting App Form
	Figure 3.5: Neural Fitting

	3.6.4 Selecting Data
	Figure 3.6Selecting Data Inputs and Targets-

	3.6.5 Loading Comma File
	In this step the comma file is loaded into matlab workspace in order to use it as input to the ANN
	Figure 3.7: Importing Data to MATLABWorkspace
	Figure 3.8: Selecting Validation and Testing Samples

	3.4.5 Setting the Hidden Layers
	Figure 3.9: Set Number of Hidden Layers


	3.5 Network Training
	Figure 3.10: Training the Neural Network


	3.7 Measures for Performance:
	Chapter Four
	Result and Discussion
	4.2Running the Neural Network Training
	4.3Best Validation of Training
	Figure 4.1: Detecting Mean Square Error

	4.4 Validation
	Figure 4.2: Results of 9 Epochs

	4.5 Histogram of Error
	Figure 4.3: Error Histogram

	4.6 Iterations and Error Reduction
	Figure 4.4: Detection of Error While Iterations

	4.7 Performance Matrices
	Figure 4.5: Performance Measurement

	Chapter Five
	Conclusion and Recommendations
	5.1 Conclusion
	5.2 Recommendations
	Appendix

