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ABSTRACT 
 

This research aimed at comparing different models of parametric Proportional 

Hazards (PH) models mainly (Weibull, Exponential, Gompertz) and Accelerated 

Failure Time (AFT) models mainly (Lognormal and log logistic) in patients with 

hemodialysis to determine the best model for assessing the survival of patient and 

identify significant risk factors for mortality. Recently in Sudan the end –stage renal 

disease (ESRD) has become a major health problem .The Study consists of 325 

hemodialysis patients who were collected from the records at governmental 

hospitals in Khartoum State in the period from December 2005 to December 2015. 

Data was used to estimate the survival function with view to identify risk factors 

such as (age ( date of diagnosis of the disease) , Sex , Marital Status, Education 

status, occupation, Address, regular , Dialysis frequency per week, Hospitals , 

Diabetes Mellitus, Hypertension , polycystic kidney disease, Renal obstructions, 

Shrunken kidneys, Uncertain, Other)  influencing among the end-stage renal disease 

(ESRD) population. The result show that the univariate and multivariate analysis, 

According to hazard ratio and time ratio, the variables including age, diabetes 

mellitus, diabetes mellitus +hypertension, urea and serum creatinine were 

considered to be highly significant factors and increased the risk of death in patients 

(shorter survival) so that they could influence survival in hemodialysis patients in 

the five models used in this research. Whereas other factors, such as regular, 

hospital, hypertension, shrunk kidneys, dialysis frequency per week, other  have 

decreased the risk of death (longer survival) and have a direct effect on the survival 

of the hemodialysis patient. The median overall survival time was estimated at 84 

months. Based on the log rank test, the variables considered to be important with p-

value < 0.05 were regular, dialysis frequency per week, hospitals, diabetes mellitus 

, hypertension, diabetes mellitus and hypertension, shrunken kidneys, other. The 
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Gompertz model, which is based on Cox-Snell Residuals, Akaike Information 

criterion (AIC) and the Bayesian Information Criterion (BIC),is useful among 

others models. Furthermore, hypertension (HR=0.612, p-value=0.039), regular 

(HR=0.485, p-value=0.003), urea (HR=1.004, p-value=0.045), and hospitals 

(HR=0.842, p-value=0.003) were found to have a significant impact on survival 

(P<0.05). The Gompertz model was found to have the smallest BIC values in 

multivariate analysis, so it was chosen as the best model for hemodialysis patients. 
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 المستخلص
 

p-value < 0.05
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1-0. Preface: 

Statistical methods for survival data analysis have continued to flourish in the last two 

decades. Survival analysis focuses on estimating the probability about individual who 

exposed to hazard for a given length of time until death. Survival analysis is particularly 

useful when the probability of occurrence of the event under study changes with time 

(Kleinbaum & Klein, 2012; Collett, 2003; Lee & Wang, 2003). Parametric models are 

always used for the analysis of survival data to assess the risk of death or chance of 

survival in a chronic hemodialysis patient. For physicians, making scores is really 

helpful, and the predictive method of choice for making such scores will be vital to 

producing accurate outcomes. In other words, the use of a mathematical model 

strengthens these approaches by allowing for simultaneous measurement of survival in 

relation to many factors and, moreover, produces estimates of the intensity of effect for 

each constituent element. 

In the last decade, Sudan has seen the expansion of its renal facilities both in the capital 

and in provincial hospitals. However, the shortage of needs remains strong and the 

demand for transplantation facilities is even higher due to the effects of the international 

embargo, as well as the epidemiological transformation marked by a resilient burden of 

infectious diseases, which has resulted in chronic diseases such as chronic renal failure. 

End Stage Renal Disease (ESRD) is one of the world's most important causes of 

morbidity and death observed last year. There is a drastic rise in renal failure among 

Sudanese citizens in Khartoum. Sudan's frequency-reported rate of new cases (ESRD) 

is 70-140 per million inhabitants/year (Elamin, et al., 2012; Banaga, et al., 2015) . 

The research focuses on one of the most common health conditions in both developed 

and developing countries, particularly ESRD, a term used when the kidney approaches 

a total or nearly complete inability to function; kidneys can no longer expel waste, 

regulate and concentrate urine. Dialysis therapy is a treatment intended to remove 

excrement and toxic compounds in the body to compensate for the lack of kidney 

function. One class of dialysis is hemodialysis (PAGE, 2007).  It has been has been 
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estimated that over 1.1 million patients are estimated to have ESRD globally, with an 

addition of percent each year. Incidence and prevalence rates in the United States, for 

example, are expected to grow by 44 percent and 85 percent, respectively, from 2000 

to 2015, and incidence and prevalence rates by 32 percent and 70 percent per million 

people. Tre comparable patterns in the progress of ESRD patients in developed 

countries. (Elsharif & Elsharif, 2011; Elamin, et al., 2012; Gilbertson, et al., 2005)  

Scientific studies have uncovered major causes of end stage renal disease in survival 

time. These causes are affecting in the survival of hemodialysis patients for a live long 

time. 

 

1-1. Research Problem 

Survival analysis is one of the most important applications in Biostatistics. Analysis of 

the data that measures lifetime or the length of time until the occurrence of the event, 

generally focuses on estimating the probability about individual who will survive for a 

given length of time until death. Scientific studies have uncovered major causes of end 

stage renal disease in survival time. These causes are affecting in the survival of 

hemodialysis patients for a live long time. Millions of people are being affected with 

outbreak of kidney disease around the world. As consequences many of those patients 

lost their life. Due to lack of community awareness about the related risk factors such 

as age, gender and other disease might increase the potential risk that lead to kidney 

failure, these factors reduce the hazard ratio. Thus has an effect in the survival 

hemodialysis patient for a live long time. When parametric models to estimate the 

hazard ratio we know the hazard ratio for each factor. And the application of these 

models helps to identify the characteristics that lead to an increased probability of 

survival. 
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1-2. Research Importance  

This research is a few of the research applications in the field of bio-statistics, and also 

compares the performance of various parametric models of the survival of hemodialysis 

patients. Parametric models were selected to estimate the survival probability and 

determine the most influential factors in the survival for hemodialysis patient. 

 

1-3. Research Objectives: 

The main objective of this study is to estimate the best survival model for analyzing the 

factors of the hemodialysis patients. 

 

Other objectives: 

1. To estimate survival and hazard functions using Kaplan-Meier estimator. 

2. To estimate of median and quartiles for survival time of hemodialysis patients. 

3. To estimate the median of survival time for age. 

4. To estimate the median of survival time for sex. 

5. To compare between survival functions for male/female patients. 

6. To compare between survival functions for dialysis frequency by week. 

7. To compare between survival functions for diabetes mellitus. 

8. To compare between survival functions for hypertension. 

9. To compare between survival function for both diabetes mellitus and 

hypertension. 

10. To Estimate   the risk factors affecting the hemodialysis patient using 

parametric models. 

 

 1-4. Research Hypotheses: 

1. There is no difference between parametric  models when compare the fitness of 

the models based on AIC, and  Cox-Snell residual 

2. There is no differences between  the hazard ratio in terms of  regular 
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3. There is no differences between  the hazard ratio in terms of  dialysis frequency 

by week  

4. There is no differences between  the hazard ratio in terms of  age 

5. There is no differences between  the hazard ratio in terms of both  diabetes 

mellitus and hypertension 

 

1-6. Limits of the research: 

The limits of research are within the limits of the applied side .this study is limited to 

patients with hemodialysis patients who receive treatment in government hospitals 

(Ahmed Gasim, Ibn Sienna, Omdurman, Selma center, Ribat ,Bahri) who were  

diagnosed with the disease from December 2005 to December 2010 and followed up 

until  December 2015. 

 

 1-7. Target Population: 

Data of the study were collected from the biggest and well-known governmental 

hospitals (Ahmed Gasim, Ibn Sienna, Omdurman, Selma center, Riba  Bahri) in these 

three cities named (Khartoum, Khartoum north and Omdurman).  In the period 

December (2005-2015).Data of all patients were collected based on patients’ medical 

records, and the collected data included the following information: age ( date of 

diagnosis of the disease) , Sex , Marital Status, Education status, occupation, Address, 

regular , Dialysis frequency per week, Hospital , Diabetes Mellitus, Hypertension , 

polycystic kidney disease, Renal obstructions, Shrunken kidneys, Uncertain, Other, 

survival status even death or the date of last follow-up per months, was defined as the 

interval between the date of diagnosis of the disease and the date of death or date of 

follow- up time in December 2015(the end of the study). 
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1-7-1. Inclusion Criteria 

Data were obtained from records for hemodialysis patients who regularly visited centers 

in the six governmental hospitals from December 2005 to December 2015, 1 to 90 years 

of aged patients were included. 

 

1-7-2. Exclusion Criteria 

Hemodialysis patients with acute renal disease, insufficient medical records, 

hemodialysis patients who have only stayed for a short period and people in emergency 

cases were also disqualified. 

 

1-5. Research Methodology: 

A descriptive method was used to describe research data using tables , figures  which 

helps to arrive the general characteristics of the study data The analytical and inferential 

method is also used to study survival analysis and it is use in finding survival function 

, hazard function, building parametric models for hemodialysis patients and knowing 

the importance of variable the risk death .In addition to reaching the results through the 

applied side and conclusions thereof and then making recommendations and 

conclusions. To analyze the study data we will use the statistical software EXCEL, 

SPSS and STATA packages. 

 

1-8.Ethical Considerations: 

The study protocol was authorized by the ethics and research committees of the Ministry 

of Health of Khartoum (serial number: KMOH-REC-1-2020). Hospitals received 

informed consent. 

 

 

1-9.Previous Studies: 

1- In 2015 the researchers J D Urrutia, W S Gayo, L A Bautista and E B Baccay 

Publishing  a scientific paper in Journal of Physics entitled "Survival Analysis of 

Patients with End Stage Renal Disease "This study aimed to determine what variables 
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affect the probability of survival of Chronic Kidney Disease patients diagnosed with 

ESRD and to assess the effectiveness of the developed survival model to provider 

reasonably accurate failure analysis and failure forecasts of the conditional status of 

patient. Conclusion According to the results, the researchers conclude that having 

End Stage Renal Disease (ESRD) with complications increases the probability of 

death. In addition, The developed probability risk of death in ESRD patients 

generated by Cox regression and Weibull Distribution at certain age will help medical 

experts to improve the quality of medications and technologies that will lessen the 

risk of death in ESRD and to patients with or without ESRD as a base of healthy 

lifestyle living. 

 

2- In 14 October 2012 the researchers Maryam Siddiqa, Mueen - ud -Din Azad, 

Muhammad Khalid Pervaiz Muhammad Ghias, Gulzar H. Shah, Uzma Hafeez 

Publish a scientific paper in Electronic Journal of Applied Statistical Analysis entitled 

"Survival Analysis of Dialysis Patients under Parametric and Non-Parametric 

approaches (in Pakistan)". The objective of this study has estimated the median 

survival time of male/females patients separately by parametric and nonparametric 

approaches. Moreover, comparison of survival time to patients (≤ 50 years and >50 

years) was also compared. We find that the probability distribution of our real life 

time data is Weibull distribution. Finding suggested that the Kaplan-Meier method 

and Weibull model based on Anderson-Darling test provided a very close estimate of 

the survival function in both genders and age groups.  

 
 

3- 1n 2007 Asian Pacific J Cancer Prev, 8, 412-416. the researchers Mohamad Amin 

Pourhoseingholi, Ebrahim Hajizadeh, Bijan Moghimi Dehkordi, Azadeh Safaee, 

Alireza Abadi, Mohammad Reza Zali Publish a scientific paper in Asian Pacific J 

Cancer entitle “Comparing Cox Regression and Parametric Models for Survival of 

Patients with Gastric Carcinoma” .The objective of this study was to compare two 

survival regression methods – Cox regression and parametric models - in patients 
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with gastric a denocarcinomas who registered at Taleghani hospital, Tehran. Results: 

The survival results from both Cox and Parametric models showed that patients who 

were older than 45 years at diagnosis had an increased risk for death, followed by 

greater tumor size and presence of pathologic distant metastasis. 

4- In Pakistan Vet. J., 2007, 27(4): 194-198  . the researchers M. AKRAM, M. AMAN 

ULLAH AND R. TAJ Publish a scientific paper in Pakistan. Entitled "SURVIVAL 

ANALYSIS OF CANCER PATIENTS USING PARAMETRICAND NON-

PARAMETRICAPPROACHES "In this study, a retrospective simple random sample 

design was used; the lifetime data on 202 male and 145 female patients of cancer 

belonging to different classes was selected. These 347 patients of cancer were treated 

in Nishtar Hospital Multan during January, 1997 to December, 2001 .Using the non-

parametric and parametric modeling strategies. The Kaplan-Meier method and 

Weibull model based on Anderson-Darling test were applied to the real life time data. 

Findings suggested different sex-superiority of survival pattern among different 

groups of cancer patients. Interestingly, Kaplan-Meier and Weibull model provided 

a very close estimate of the survival function and other. 
 

5- In 2015 the researchers   Deepapriya. S and Ravanan. R Publish a scientific paper in 

International Journal of Scientific and Research Publications entitled SURVIVAL 

ANALYSIS OF UIS PAIENTS UNDER PARAMETRIC NON-PARAMETRIC 

APPROACHES USING R SOTWARE. The study deals with the survival analysis of 

University of Massachusetts AIDS Research Unit (UMARU) Impact Study (UIS) 

data under non Parametric and parametric method. Conclusion of study there is no 

significance difference between the estimates of survivorship function obtained by 

parametric and non-parametric method. On a comparison with the parametric 

distributions log normal is found to be a better fit in accordance with the AIC value 

for the UIS data, moreover the scale parameter obtained by Weibull is nearly 1 which 

can be reduced to exponential survival function so obtained for the UIS data. 
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6- InJ Ayub Med Coll Abbottabad 2015; 27(1):205–7 Zahid Ahmad, Isaac Shahzad 

Publish a scientific paper entitled SURVIVAL ANALYSIS OF DIALYSIS 

PATIENTS IN SELECTED HOSPITALS OF LAHORE CITY This study was done 

to analyses the survival rate of ESRD patients in Lahore city, and to evaluate the 

influence of various risk factors and prognostic factors on survival of these patients. 

Methods: A sample of 40 patients was taken from the Jinnah Hospital Lahore and 

Lahore General Hospital by using the convenience sampling technique. The Log 

Rank Test was used to determine the significant difference between the categories of 

qualitative variables of ESRD patients. Multivariate Cox Regression Analysis was 

used to analyses the effect of different clinical and socio-economic variables on the 

survival time of these patients. Results: Different qualitative variables like: age, 

marital status, BMI, comorbid factors, diabetes type, gender, income level, place, risk 

factor like diabetes, ischemic heart disease, hypertension and Hepatitis status were 

analyzed on the basis of Log Rank Test. While age and comorbid factors were found 

to be statistically significant which showed that the distribution of age and comorbid 

factors were different. By using the Cox Regression analysis the coefficient of Mass, 

serum albumin and family history of diabetes were found to be significant. 
 

7- 2012 the researchers HSIN-HUNG LIN, CHING-WEI TSAI, PAO-HSUAN LIN, 

KUANG-FU CHENG, HONG-DAR WU, I-KWAN WANG, CHING-YUANG LIN, 

WALTER CHEN and CHIU-CHING HUANG Publish a scientific paper in 

Nephrology 17 (2012) 621–627 entitled "Survival analysis of pediatric dialysis 

patients in Taiwan "Aim: The long-term survival of Taiwanese children with end-

stage renal disease (ESRD) has not been reported before. This study aimed to 

determine the long-term survival, mortality hazards and causes of death in pediatric 

patients receiving dialysis. Conclusion: We conclude that there was no significant 

difference of pediatric ESRD patient survival between HD and PD treatment in 

Taiwan. The older pediatric ESRD patients had better survival than younger patients. 
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8- In 1993 the researchers KuNIT0sHI ISEKI, NOBUYUKI KAWAZOE, AKI1t 

OSAWA, and KOSHIRO FUKIYAMA Publish a scientific paper in Kidney 

International entitled Survival analysis of dialysis patients in Okinawa, Japan 

(1971—1990) the objectives of the present study were to describe the characteristics 

of patients on chronic dialysis therapy over the last two decades in Okinawa and to 

provide a longitudinal analysis of survival using the Cox proportional hazard 

analysis. Maintenance hemodialysis was initiated from 1971 in Okinawa. Before this, 

uremic patients were occasionally treated by intermittent peritoneal dialysis. 

Currently, there are 27 dialysis units and six of them are freestanding. 

 

9- In (2016), the researchers Mohsen Vahedi, Mahmood Mahmoodi1, Kazem 

Mohammad, Sharzad Ossareh2 &Hojjat Zeraati Publish a scientific paper in Global 

Journal of Health Science entitled "What Is the Best Parametric Survival Models for 

Analyzing Hemodialysis Data?   " .Exponential, Weibull, Gompertz, lognormal and 

log-logistic were used for analyzing survival of hemodialysis patient . Results: 

According to the both criteria (AIC and Cox-Snell residual), Weibull survival model 

manifested better results as compared with other models. In our analysis Gompertz 

distribution, which had the lowest AIC value, was selected as the most suitable. 
 

10- In (2017), the researchers Enayatollah Bakhshi,Reza Ali Akbari Khoei, Azita 

Azarkeivan, Maryam Kooshesh, Akbar Biglarian Publish a scientific paper in Medical 

Journal of the Islamic Republic of Iran (MJIRI) entitled “Survival analysis of 

thalassemia major patients using Cox, Gompertz proportional hazard and Weibull 

accelerated failure time models"The present study was conducted to apply the semi-

parametric Cox PH model and use parametric proportional hazards (PH) and 

accelerated failure time (AFT) models to identify the risk factors related to survival of 

TM patients. Results: the Gompertz model, birthplace and age at onset of the disease 

were significant factors (p= 0.035, and p= 0.005) in survival time. The Akaike 

Information Criterion (AIC) for Weibull model was 158.51, which was lower than other 
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parametric models. Conclusion: According to the results, the Weibull AFT model was 

found to be a better model for identifying the risk factors related to survival of patients 

with TM disease. 

 

1-10. Research Organization: 

The research includes five chapters; the first chapter contains problem, importance, 

objectives, hypotheses, methodology, research limits, target population, ethical 

consideration and previous studies. The second chapter contains: Theoretical 

framework for research contains definition of survival analysis, nonparametric, semi-

parametric approaches and parametric approach. The chapter third contains: definition 

of kidney, kidney’s function, renal diseases, causes of kidney disease, kidney failure, 

chronic kidney disease and end-stage renal failure diagnosis, risk factors, treatment for 

end stage kidney disease. The fourth chapter contains: the practical side of the research. 

The fifth chapter includes the conclusions and recommendations, and then references 

and appendices. 
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2-0. Preface: 

In this chapter will be addressed to all the statistical techniques to be used in the 

practical side of this research. The main part of this chapter is to find a survival function; 

hazard function, parametric models of relative risk, best model and the comparison 

between two or more groups of data survive. 

 

2-1. Definition of survival analysis 

Survival analysis is a collection of statistical methods that are used to describe, explain, 

or predict the occurrence and timing of events. The name survival analysis stems from 

the fact that these methods were originally developed by biostatisticians to analyze the 

occurrence of deaths. However, these same methods are perfectly appropriate for a vast 

array of social phenomena including births, marriages, divorces, job terminations, 

promotions, arrests, migrations, and revolutions. Other names for survival analysis 

include event history analysis, failure time analysis, hazard analysis, transition analysis, 

and duration analysis. Although some methods of survival analysis are purely 

descriptive (e.g., Kaplan-Meier estimation of survival functions), most applications 

involve estimation of regression models, which come in a wide variety of forms. A key 

feature of all methods of survival analysis is the ability to handle right censoring, a 

phenomenon that is almost always present in longitudinal data. Right censoring occurs 

when some individuals do not experience any events, implying that an event time cannot 

be measured. Introductory treatments of survival analysis for social scientists can be 

found in Teachman (1983), Allison (1984, 1995), Tuma and Hannan (1984), Kiefer 

(1988), Blossfeld and Rohwer (2001), and Box-Steffensmeier and Jones (2004) 

(Vallinayagam, et al., 2014). 

2-2 Survival data: 

The Expression describe the data that measure the time until the event referred to as 

survival data , and the outcome variable is the time until the event that take a positive 

real values, which is known as time to stay (Kalbfleisch & L.Prentice, 2002) . 
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2-2-1. Survival time 

Survival time can be defined broadly as the time to the occurrence of a given event. 

This event can be the development of a disease, response to a treatment, relapse, or 

death. Therefore, survival time can be tumor-free time, the time from the start of 

treatment to response, length of remission, and time to death (Lee & Wang, 2003). 

 

2-2-2. Special features of survival data 

We must first consider the reasons why survival data are not amenable to standard 

statistical procedures used in data analysis. One reason is that data are generally not 

symmetrically distributed. Typically, a histogram constructed from the survival times 

of a group of similar individuals will tend to be positive skewed, that is the histogram 

will have a longer "tail" to the right of the interval that contains the largest number of 

observations. As a consequence, it will not be reasonable to assume that data of this 

type have a normal distribution. This difficulty could be resolved by first transforming 

the data to give a more symmetric distribution (collett, 2003).Second reason is that the 

main features of survival data that renders standard methods in appropriate is that 

survival times are frequently censored Cox and Oakes (1984). 

The survival time of an individual is said to be censored when the end point of interest 

has not been observed for that individual. This may be because the data from a study 

are to be analyzed at a point in time when some individuals are still alive. Alternatively, 

the survival status of an individual at the time of the analysis might not be known 

because that individual has been lost follow-up. The only information available on the 

survival experience of that patient is the last date on which he or she was known to be 

alive. This date may well be the last time that patient reported to a clinic for regular 

check-up. An actual survival time can also be regarded as censored when death is from 

a cause that is known to be unrelated to the treatment. However, it can be difficult to be 

sure that death is not related to a particular treatment that the patient is receiving. In 

each of these situations, a patient who entered a study at time t0 dies at time   t0 + t, 

however, t  is unknown, either because the individual is still alive or because he or she 
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has been lost to follow-up. If the individual was last known to be alive at time  t0 + c , 

the time c is called a censored time. This censoring occurs after the individual has been 

entered into a study that is to the right of the last known survival time, and is therefore 

known as right censoring. The right-censored survival time is then less than the actual, 

but unknown survival time. Another form of censoring is left censoring, which is 

encountered when the actual survival time of an individual is less than that observed 

.Yet another type of censoring is interval censoring. Here individuals are known to have 

experienced an event within an interval of time (collett, 2003) . 

 

2-2-3. Time origin  

Most methods of survival analysis (e.g., Cox regression) require that the event time be 

measured with respect to some origin time. The choice of origin time is substantively 

important because it implies that the risk of the event varies as a function of time since 

that origin. In many cases, the choice of origin is obvious. In demography studies if the 

event is a divorce, the natural origin time is the date of the marriage.  

In drug trials original time for the disease is the beginning of taking the treatment history 

(Allison, 2010). 

 

2-2-4. Event  

The first step in any application of survival analysis is to define the event. In medical 

research this event can be the development of a disease, response to a treatment, relapse 

from remission, or death, and when the end point not fatal, the event can be relief of 

pain or the recurrence or any designated experience of interest that may  happen to an 

individual (Kleinbaum & Klein, 2012; collett, 2003). 

 

2-2-5. Patient time and study time 

In atypical study, patients are not all recruited at exactly the same time. But accrue over 

a period of months or even years. After recruitment, patients are followed up until they 

die, or until a point in calendar time that marks the end of the study. When the data are 
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analyzed, after recruitment some patients may be lost to follow up, while others will 

still be alive at the end of the study. The calendar time period in which an individual is 

in the study is known as the study time. The period of time that patient spends in the 

study, measured from that patient’s time origin is often referred to as patient time 

(Collett (2003)). 

 

2-3. Survival time distribution: 

Survival time data measure the time to a certain event, this time are subject to random 

variations, and like any random variables, form a distribution. The distribution of 

survival times is usually described or characterized by three functions: the survivorship 

function, the probability Density function and the hazard function. These three 

functions are mathematically equivalent if one of them is given, the other two can be 

derived (Lee & Wang, 2003). 

 

2-3-1. Survival function and hazard function 

The actual survival time of an individual t, can be regarded as the value of a variable T, 

which can take any non-negative value. The different values that T can take have a 

probability distribution and we call the random variable associated with the survival 

time. Now suppose that the random variable T has a probability distribution with 

underlying probability density functionf(t).The distribution function of T Continuous 

variable is then given by Cumulative Distribution function is 

F(t) = P(T < t)   = ∫ f(u)du
t

0

, 

It represents the probability that the survival time is less than some value t.  

The survival function, S(t) is defined to be the probability that the survival time is 

greater than or equal to t and so 

 

S(t) =  P(T ≥ t) =  1 − F(t)                             (2.1) 
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(collett, 2003) .Here S(t) is a nonincreasing function of time t with the properties 

S(t) = 1 for   t = 0 

 

S(t) = 0 for   t = ∞ 

 

That is, the probability of surviving at least at the time zero is 1 and that of surviving 

an infinite time is zero (Lee & Wang, 2003). 

Sometimes, for example, when lifetimes are grouped or measured as a number of cycles 

of some sort, T may be treated as a discrete random variable. Suppose T can take on 

values t1,t2  … ,with 0 ≤ t1, < t2…,   and let the probability Density function be 

 

f(tj) =  Pr (T =  tj)           j =  1, 2 

 

The survivor function is then 

 

S(tj) = Pr (T ≥ t)  = ∑ f(tj)

j:tj>t 

 

 

2-3-2. Probability density function (Density function) 

Like any other continuous random variable, the survival time T has a probability density 

function defined as the limit of the probability that an individual fails in the short 

interval t to t+∆t per unit width ∆t, or simply the probability of failure in a small interval 

per unit time. It can be expressed as: 

 

 

f(t) =
∆t

lim
→ 0 P[ (t, t + ∆t)]

∆t
                                         (2.2) 
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The density function has the following two properties: 

1. f(t)  is a nonnegative function: 

 

            f(t) ≥ 0      Forallt ≥ 0      

 

                = 0        For t <  0 

 

2. The area between the density curve and the t axis is equal to 1. 

 

The density function is also known as the unconditional failure rate (Lawless & , 2003). 

The hazard function is widely used to express the risk or the hazard of death at some 

time t, and is obtain from the probability that the individual dies at time t, conditional 

on he or she having survived to that time. For formal definition of the hazard function 

consider the probability that the random variable associated interval with an individual 

survival time T lies between tand  t + ∆t, conditional on T being greater than or equal 

to t, written: 

 

P(t ≤ T < t + ∆t|T ≥ t)  (Lawless & , 2003). 

This conditional probability is then expressed as a probability per unit time by dividing 

by the time interval ∆t to give a rate. The hazard function h(t)is then the limiting value 

of this quantity, as ∆t tends to zero, so that 

 

h(t) =  ∆t
lim
→ 0 {

P(t ≤ T < t + ∆t|T ≥ t

∆t
}                                 (2.3) 

 

The function h(t)  is also known as the hazard rate, the instantaneous death rate, the 

intensity rate, or the force of mortality.  

From equation (2.3) h(t)∆t is the appropriate probability that an individual dies in the 

interval (t, t + ∆t), conditional on that person having survived to time t. 
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From the definition of the hazard function in equation (2.3) we can obtain some useful 

relationships between the survival and hazard functions. According to a standard result 

from probability theory, the probability of an event   A, conditional on the occurrence 

of an event B, is given by 

 

P(A|B) =
P(AB)

P(B)
   

 

where   P(AB)   is the probability of joint occurrence of A and B (collett, 2003) .Using 

this result, the conditional probability is the definition of the hazard function in equation 

(2.3) is 

 

P(t ≤ T < t + ∆t)

P(T ≥ t)
 

 

This is equal to 

 

F(t + ∆t) − F(t)

S(t)
 

 

Where F(t) is the distribution function of  T  

 

Then  

 

h(t)  = ∆t
lim
→ 0{

F(t + ∆t) − F(t) 

∆t
}
1

S(t)
 

 

Now 
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∆t
lim
→ 0{

F(t + ∆t) − F(t) 

∆t
} 

 

Is the definition of the derivative of F(t) with respect to t, which is  f(t), and so 

 

h(t) =   
f(t)

s(t)
                                (2.4) 

 

It then follows that: 

 

h(t) = −
d

dt
{log S(t)}                  (2.5)  

 

 

And so 

 

S(t) = exp{−H(t)}                       (2.6) 

 

Where 

 

H(t) = ∫h(u)du.

t

0

                        (2.7) 

 

The function H(t) features widely in survival analysis, and is called the Integrated of 

cumulative hazard. From equation (2.6), the cumulative hazard can be obtained from 

the survival function since: 

 

H(t) = − log S(t)               (2.8) 
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In the analysis of survival data, the survival function and hazard function are estimated 

from the observed survival times (collett, 2003). 

 

2-4.Nonparametric and semi parametric approaches: 

2-4-1. Estimate of the survival function 

Suppose that we have a single sample of survival times, where none of observations are 

censored. The survivor function  S(t), defined in equation (1, 1) is the probability that 

an individual survives for time greater than or equal to t .This function can be estimated 

by empirical survivor function given by (Lawless & , 2003): 

 

Ŝ(t) =  
number of individuals with survival times ≥ t

number of individuals in the dataset
                 (2.9) 

 

Equivalently, Ŝ (t) = 1 − F̂ (t),   where F̂(t) is empirical distribution that is, the ratio 

of the total number of individuals at time to the total number of individuals in study 

.Notice that the empirical survivor function is equal to unity for values of t before the 

first death time, and zero after the final death time .The estimated survivor function  

Ŝ (t) is assumed to be constant between two adjacent death time, and so a lot of  Ŝ (t) 

against  t is step function. It decreases immediately after each observed survival time. 

 

2-4-2.The Kaplan-Meier estimate of the survival function 

Non-parametric method for estimating survivor function which can be used in the 

presence of censored times are life - table and Kaplan- Meier estimate (collett, 2003) . 

The only difference is that the Kaplan- Meier estimate is based on individual survival 

times, whereas in the life-table method, survival times are grouped into intervals  (Lee 

& Wang, 2003) but the grouping of the survival times does result in some loss of 

information. This particularly so when the number of patients is small, less than about 

30, says (collett, 2003).  

For this reason Kaplan- Meier best method for estimate survival data analysis. 
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To obtain the Kaplan-Meier estimate, series of time intervals is constructed, as for the 

life- table estimate and each interval includes the one death time, although there could 

be more than one individual who dies at any particular death time. 

 We suppose that there are n individuals with observed survival times  t1, t2,… , tn some 

of this observation may be right censored, and there may also be more than one 

individual with the same observed survival times. We therefore suppose that there are r 

death times amongst the individuals. Where (r ≤ n)  .After arranging these death times 

in ascending order the jth is denoted tj, forj = 1, 2,… , r, and so the r ordered death times 

are t(1) < t(2) < t(3) < ⋯ < t(r). The number of individuals who are alive just before 

timetj, including those who are about to die at this time, will be denoted  nj, forj =

1, 2… r and dj will denote the number who die at this time. We count the total number 

of individuals alive at the start of the interval (nj;  j =  1, 2. . . r) and the number of 

individuals who died (dj) in the time interval. The Kaplan-Meier estimate of the 

survival function is given by: 

 

Ŝ(t)  =∏(
nj−dj

nj
)                (2.10)

k

j=1

 

 

The Kaplan-Meier estimate is formed as a product of a series of estimated of 

probabilities .in fact Kaplan-Meier estimate is the limiting value of the life- table 

estimate and also when the number of intervals tends infinity and their width tends to 

zero is known as the product- limit estimate of survivor function (collett, 2003). 

 

2-4-3.Nelson -Aalen estimate of survivor function 

An alternative estimate of the survivor function, which is based on the individual event 

times, is the Nelson- Aalen estimate given by: 
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Ŝ(t)  =∏exp(−dj nj⁄ )

k

j=1

 

 

For j = 1, 2… r and dj will denote the number who die at this time and so r ordered the 

death time. 

nj    the number of individuals who are alive just before time  tj the number of 

individuals at risk at    tj  (Kalbfleisch & L. Prentice, 2002;  collett, 2003) . 

 

2-4-4.Standard error of the estimated survivor function 

The Kaplan-Meier estimate of the survival function for any value of 𝑡 in the interval 

from 𝑡(𝑘) 𝑡𝑜 𝑡(𝑘+1) can be written as: 

 

Ŝ(t)    =     ∏p̂
j

k

j=1

 

 

Fork =  1, 2. . . , r where p̂
j
 = (

nj−dj

nj
) 

 

Is the estimated probability that an individual survives through the time interval that 

begins at  tj, j =  1, 2. . . , r. taking logarithms.  

 

log Ŝ(t) =∑log

k

j=1

p̂
j
 

And so the variance of log Ŝ(t) is given by: 

var{log Ŝ(t)}  =   ∑var {log p̂
j
}

k

j=1

.                     (2.11) 
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Now the number of individuals who survive through the interval beginning at tjcan be 

assumed to have a binomial distribution with parameters  nj  and  pj,  where  pj the true 

probability of survival through that interval is. The observed number who survives is   

nj − dj, and using the result that the variance of a binomial random variable with 

parameters n, p  is: 

 

np(1 − p) , the variance of  nj − dj is given by  

 

var(nj − dj)  =  njpj(1 − pj) 

 

 Since  p̂
j
 = (

nj−dj

nj
) 

 

The variance of  �̂�𝑗 is 

 

var (
nj−dj

nj
2
) =  

1

nj
2
var(nj − dj) =

1

nj
2
njpj(1 − pj) 

 

The variance of   p̂
j
  Maythen estimated by  

 

p̂(1 − p̂j)

nj
                         (2.12) 

 

In order to obtain the variance of  log p̂
j
 , we make use of a general result for the 

approximate variance of a function of a random variable. According to this result the 

variance of a function g(X)   of the random variable x is given by: 

var{g(X)} ≈ {
dg(X)

dX

2

} var(X)                            (2.13) 
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This is known as the Taylor series approximation to the variance of a function of a 

random. Using equation (2.13), the approximate variance of   log p̂
j
 is var (p̂

j
) p̂

j
2⁄  and 

using (2.12), the approximate estimate variance of    log p̂
j
 is 

     

 
1−pĵ

(njpĵ)
 

 

which on substitution for  p̂
j
  , reduces to: 

 

dj

nj(nj − dj)
  .                                                              (2.14) 

 

From equation (2.11), 

 

var{log Ŝ(t)} ≈∑
dj

nj(nj − dj)
  ,                              (2.15)   

k

j=1

 

 

And a further application of the result in equation (2.13) gives 

 

var{log Ŝ(t)} ≈
1

[Ŝ(t)]
2 var{Ŝ(t)}   , 

 

So that  

 

var{Ŝ(t)}  ≈   [Ŝ(t)]
2
∑

dj

nj(nj − dj)
   .                                (2.16)  

k

j=1

 

Finally the standard error of the Kaplan-Meier estimate of the survivor function, defined 

to be the square root of the estimated variance of the estimate is given by: 
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se{Ŝ(t)}    ≈      Ŝ(t) {∑
dj

nj(nj − dj)

k

j=1

}

1
2

,                                (2.17)      

 

For tk   ≤  t < tk+1.This result is known as Greenwood's formula. 

If there are no censored survival times nj − dj   =   nj + 1, and expression (2.14) 

becomes 

 

(nj − nj+1) njnj+1⁄ .  Now, 

 

∑
nj − nj+1

njnj+1

k

j=1

=∑[
1

nj+1
−
1

nj
] =

k

j=1

nj − nj+1

njnj+1
, 

 

This can be written as  

 

1 − �̂�(𝑡)

𝑛1�̂�(𝑡)
 

 

  (Kalbfleisch & L. Prentice, 2002;  collett, 2003) 

 

2-4-5. Confidence intervals for the survival function 

Once of standard error of an estimate of the survival function has been calculated a 

confidence interval for the corresponding value of the survival function at a given time 

t can be found. A confidence interval is an interval estimate of survival function, and is 

the interval which is such that there is a prescribed probability that the value of the true 

survivor function is included within it.  

A confidence interval for the true value of the survival function at a given time t is 

obtained by assuming that the estimated value of the survival function at t is normally 

distributed with mean 𝑆(𝑡) and estimated variance given by equation (2.16). 
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 The interval computed from percentage points of the standard normal distribution. 

Thus, if Z is a random variable that has a standard normal distribution, the upper (one 

– sided) α/2-point, or the (two sided) á-point, of this distribution is that value zα 2⁄  

which is such that Pr (Z > zα 2⁄ )  = α/2. This probability is the area under the standard 

normal curve to the right of  zα 2⁄ , for example the two-sided 5% and 1% points of the 

standard normal distribution z0.025  and   z0.005, are 1.96 and 2.58, respectively. 

 

A 100(1 − α)% confidence interval for S(t), for a given value of t is the interval from 

 

Ŝ(t) − zα 2⁄ se{Ŝ(t)}toŜ(t) + zα 2⁄ se{Ŝ(t)} , Wherese{Ŝ(t)}  is found from equation  

 

(2.17)(Kalbfleisch & L. Prentice, 2002;  collett, 2003). 

 

2-5. Estimate of the hazard function: 

There are many ways to estimate the hazard function, but the most commonly used is a 

Kaplan –Meier estimate. 

 

2-5-1. Kaplan –Meier of estimate the hazard function 

A natural way of estimating the hazard function for unground survival data is to take 

ratio of the number of death at a given death time to the number of individuals at risk 

at that time. If the hazard function is assumed to be constant between successive death 

times, the hazard per unit time can be found by further dividing by the time interval. 

Thus if there are 𝑑𝑗 deaths at the jth death time,tj  , j = 1,2,… , r, and  nj at risk at 

time𝑡𝑗, the hazard function in the interval from 𝑡𝑗      𝑡𝑜     𝑡j+1 can be estimated by: 

 

ĥ(t) =  
dj

njтJ
                                   (2.18) 

 



26 
 

For        tj ≤  t < tj+1 

 

Where 

 

тJ = tj+1 − tj . (Kalbfleisch & L. Prentice, 2002;  collett, 2003). 

 

Notice that is not possible to use equation (2.18) to estimate the hazard in the interval 

that begins at the final death time, since this interval is open ended. 

The estimate in equation (2.18) is referred to as a Kaplan-Meier type estimate, because 

the estimated survival function derived from it is the Kaplan-Meier estimate. To show 

this, note that since  ĥ(t) , tj ≤  t < tj+1, is an estimate of the risk of death per unit time 

in the jth interval, the probability of death in that interval is  ĥ(t)тJ, that is   
dj

nj
  . Hence 

an estimate of the corresponding survival probability in that interval is 1 − (dj nj⁄ ) and 

the estimated survival function is as given by equation (2.10). 

The approximate standard error of ĥ(t) can be found from the variance of dj,   which 

may be assumed to have a binomial distribution with parameters 

 

nj  and pj, where pj is the probability of the death in the interval of length T. 

Consequently,  var(dj) =  njpj(1 − pj) ,    and estimating   pj by dj nj⁄  

Gives 

 

se{ĥ(t)} =  ĥ(t)√
nj − dj

njpj
 .                (2.19)   

 

(Collett, 2003). 
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2-5-2. Estimate the cumulative hazard function 

The cumulative hazard function is important in the identification of models for 

survival 

data .In addition since the derivative of cumulative hazard function is hazard function. 

The cumulative hazard at time𝑡, 𝐻(𝑡) was defined in equation (2.7) to be the integral 

of 

the hazard function, but is more conveniently found using equation (2.8). According 

to this result. 

 

H(t) = − log S(t), 

 

and so if  Ŝ(t) is used the Kaplan-Meier estimate or Nelson -Aalen estimate of 

survival function. 

 

Ĥ(t) = − log Ŝ(t) 

 

If the Nelson -Aalen estimate of survival function is used, the estimate cumulative 

hazard function, 

 

Ĥ(t) = − log Ŝ(t)   is given by: 

 

 

Ĥ(t)    =  ∑
dj

nj

k

j=1  

 

 

This is the cumulative sum of the estimated probabilities of death from the first to the 

kth time interval, k = 1,2,… r.   

(Kalbfleisch & L. Prentice, 2002;  collett, 2003). 
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2-6. Median and Percentiles of survival times: 

Since the distribution of survival times tends to be positively skew, the median is the 

preferred summary measure of the location of the distribution. Once the survival 

function has been estimated it is straight forward to obtain an estimate of the median 

survival times. This is the time beyond which 50% of the individuals in the population 

under study are expected to survive, and is given by that value 𝑡(50) which is such that   

𝑆{𝑡(50)} = 0.5.   

 Because the non-parametric estimates of 𝑆(𝑡) are step- functions, it will not usually be 

possible to realise an estimated survival time that makes the survival function exactly 

equal to 0.5.instead, the estimated Median Survival Time, �̂�(50) is defined to be the 

smallest observed survival times for which the value of the estimated survival function 

is less than 0.5.In mathematical terms. 

 

t̂(50)  =   min{ti|Ŝ(ti) < 0.5}, 

 

where  ti is the observed survival time for ith individual, i = 1,2,… , n. 

Since the estimated survival function only changes at a death time, this is equivalent to 

the definition 

 

t̂(50)  =  min{tj|Ŝ(tj) < 0.5}, 

 

Where 𝑡𝑗 is the jth ordered time,  j = 1,2,… , 𝑟. 

In the particular case where the estimated survival function is exactly equal to 0.5 for 

values of  𝑡  in the interval from   tj to tj+1,   the median is taken to be the half-way 

point in this interval, that is 

 

(tj + tj+1)
2
⁄ .  
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In the situation where there are no censored survival times, the estimated median 

survival time will be the smallest time beyond which 50% of the individuals in the 

sample survive. 

A similar procedure to that described above can be used to estimate other percentiles of 

the distribution of survival times. The 𝑝𝑡ℎ percentile of the distribution of survival times 

is defined to be the value   𝑡(𝑝) which is such that: 

 

F{t(p)} =  
p

100
. 

 

In terms of the survival function t(p) is such that: 

 

s{t(p)}   =  1 − [
p

100
]. 

 

Respectively. Using the estimated survivor function, the estimatedpth percentile is the 

smallest observed survival time   ,t̂(p),  for which  

 

ŝ̂̂{t̂(p)} < 1 − [
p

100
]. 

 

(collett, 2003). 

 

2-6-1. Confidence interval for the median and percentiles 

Approximate confidence intervals for the median and percentiles of a distribution of 

survival times can be found once the variance of the estimated percentile has been 

obtained. An expression for the approximate variance of a percentile can be derived 

from a direct application of the general result for the variance of a function of a random 

variable in equation (2.13). Using this result 
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var{t(p)} =   (
1

f̂{t(p)}
)

2

var[ŝ{t(p)}]                   .    (2.20) 

 

Where  t(p)  is the pth percentile of the distribution,  ŝ{t(p)} is the Kaplan- Meier 

estimate of the survival function at t(p)  and  f̂{t(p)} is estimate the probability density 

function of the survival times at t(p) 

The standard error of  t̂(p) the estimated pth  percentile is therefore given by. 

 

se{t̂(p)} =
1

f̂{t̂(p)}
se[ŝ{t̂(p)}]                                 .      (2.21)               

 

the standard error of  ŝ{t̂(p)} is found using Greenwood’s formula for the the standard 

error of Kaplan-Meier estimate of survivor function ,given in equation(2.17),while an 

estimate of the probability density function at  �̂�(𝑝) is   

 

f̂{t(p)}  =    
ŝ{û(p)} − ŝ{l̂(p)}

l̂̂(p) − û(p)
, 

 

Where 

 

û(p)  =  max {tj|ŝ(tj) ≥ 1 −
p

100
+ ϵ}, 

And 

 

L̂(p)  =  min {tj|ŝ(tj) ≤ 1 −
p

100
+ ϵ}, 

 

for j = 1 ,2 , … , r , 

 

∈   is small values in many cases taking 0.05  
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In particular for equation (2.21), the standard error the median survival time is given by  

 

se{t̂(50)} =   
1

f̂{t̂(50)}
se[ŝ{t̂(50)}]                              (2.22) 

 

Where   f̂{t̂(50)} can found from  

 

f̂{t̂(50)}  = =     
ŝ{û(50)} − ŝ{l̂(50)}

l̂(50) − û(50)
      .                               (2.23)               

 

�̂�(50)  is the largest survival time which the Kaplan –Meier estimate of the survivor 

function exceed 0.55. 

l̂(50)  is the smallest survival time for which survivor function is less than or to 0.45. 

Once the standard error of the estimated  𝑝𝑡ℎ  percentile has been found a 100(1 −

𝛼)% Confidence interval for  𝑡(𝑝) has limit of 

 

t̂(p)   ± zα 2 ⁄ se{t̂(p)}                                                  (2, 24)      

 

Where 

 zα 2 ⁄   is the upper (one − sided) α 2 ⁄ -point of the standard normal distribution 

(collett, 2003). 

 

2-7. Comparison of two or more groups of survival data: 

The simplest way of comparing the survival times obtained from two or more groups 

of individuals is to plot the corresponding estimates of the two or more survival 

functions on the same axes.In the comparison of two groups of survival data, there are 

a number of methods that can be used to quantify the extent of between group 

differences. Two non-parametric procedures will now be considered, namely the log-

rank test and the Wilcoxon test ( Mantel, 1966; collett, 2003). 
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2-7-1. Log-rank test for comparison of two groups of survival data 

In order to construct the long-rank test, we begin by considering separately each death 

time in two groups of survival data. These groups will be labeled Group I and, Group 

II. Suppose that there are r distinct death times t1 < t2 < …  < tr , across the two 

groups and that at time  tj  , d1j  individuals   in Group I and  d2j individuals in Group II 

die for j = 1,2,… , r. Unless two individuals in a group have the same recorded death 

time, the value of , d1j and d2j will either be zero or unity. Suppose further that there 

are n1j  individuals at risk of death in Group I just before time   tj, and that there are n2j 

at risk in Group II. Consequently at time   tj, there are dj = d1j + n2j  deaths in total 

out of   nj = n1j + n2j individuals at risk. We can therefore regard d1j as a random 

variable, which can take any value in the range from zero to the minimum of  djn1j. In 

fact d1j has hypergeometric distribution, according to which probability that the random 

variable associated with the number of deaths in the Group I takes the value d1j is ( 

Mantel, 1966; collett, 2003). 

 

(
dj
d1j
) (

nj−dj
n1j−d1j

)

( nj
n1j
)

                                                                   (2.25) 

 

The expression 

 

(
dj
d1j
) 

 

  represents the number of different ways in which d1j times can be chosen from 𝑑𝑗 

times and is read as “d1jCdj ”. It is given by: 
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(
dj
d1j
)  =

dj!

d1j! (dj − d1j)!
 

 

The mean of the hypergeometric random variable d1j is given by: 

 

e1j   =  n1jdj nj⁄  

 

So that  e1j  is the expected number of individuals who die at time   tj in Group I. 

The most straight forward way of doing this is to sum the differences  

d1j − e1j   over the total number of death time r in the two groups is given by:  

 

UL   =∑(d1j − e1j)

r

j=1

.                                               (2.26) 

 

Notice that is   d1j − e1j which the difference between the total observed and expected 

numbers of death in Group I. this statistic will have zero mean, since  E(d1j) = e1j. The 

variance of  UL is simply the sum of the variances of the    d1j. The variance of d1j is 

given by: 

 

𝒱1j   =   
n1jn2jdj(nj − dj)

nj
2(nj − 1)

,       (2.27)  

 

So that the variance of  UL is: 

 

var(UL) =∑𝒱1j = VL

r

j=1

,                            (2.28) 
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It can be shown that 𝑈𝐿 has an approximate normal distribution when the number of 

death times is not too small. It then follows that  UL √VL⁄  has a normal distribution with 

zero mean and unit variance N (0, 1). 

 

UL √VL⁄ ∽ N (0, 1), 

 

( Mantel, 1966; collett, 2003). 

The square of a standard normal random variable has a chi square distribution on one 

degree of freedom, denote  𝜒21 (collett, 2003) so we have that: 

 

UL
2

VL
~χ21  .                                      ( 2.29) 

 

2-7-2.comparison of three or more groups of survival data 

The long-rank test can be extended to enable three or more groups of survival data to 

be compared. Suppose that the survival distribution of g groups of survival, for g ≥2.we 

then define analogues U - Statistic for comparing the observed numbers of death in 

groups  1, 2  . . . ,   g − 1   with expected values given by: 

 

UwK  = ∑nj  (dkj −
nkjdj

nj
) ,

r

j=1

 

 

for  k =  1, 2. . .  g − 1  these quantities are then expressed in the form of a vector (g −

1)   components, which we denote by  𝑈𝐿 and 𝑈𝑊 . 

 

We also need expression for the variances of the   , 𝑈𝐿𝐾  𝑎𝑛𝑑 𝑈𝑊𝐾   , and for the 

covariance between pairs of values. The covariance between  𝑈𝐿𝐾 for   and  𝑈𝐿𝑘′ is 

given by: 
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VLkk′  = ∑
nkjdj(nj−dj)

nj(nj−1)
(δkk′−

nk′j

nj
) ,

r

j=1

 

 

For 𝑘 , 𝑘′ =  1,2,… , 𝑔 − 1 , where  𝛿𝑘𝑘′ is such that: 

 

δkk′  = {
 1 if  k =  k′

0  othermise
} 

 

These terms are assembled in the form of a variance –covariance matrix,𝑉𝐿 which is 

asymmetric matrix that has the variance of 𝑈𝐿𝐾 .for example in the comparison of three 

groups of survival data, this matrix would be given by: 

 

VL  =   (
VL11 VL12
VL12 VL22

), 

 

where  VL11 and  VL22 are the variances of  UL1  and  UL2 , respectively, and VL12  is 

their covariance.   

Finally, in order to test the null hypothesis of no group differences, we make use of the 

result that the test statistic  U′LV
−1
LUL   has a chi- squared distribution  

(g − 1)   degrees of freedom, when the null hypothesis is true (collett, 2003). 

 

2-8. Cox’s regression model: 

In the analysis of extent data, interest centers on the risk or hazard of death at any time 

after the time origin of the study. As a consequence, the hazard function is modeled 

directly in survival analysis. There are two broad reasons for modeling survival data. 

One objective of modeling process is to determine which combinations of potential 

explanatory variables affect the form of the hazard function. In particular, the effect that 

the treatment has on the hazard of death can be studied, as can the extent to which other 

explanatory variables affect the hazard function. Another reason for modeling the 

hazard function is to obtain an estimate of the hazard function itself for individual 
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(collett, 2003).The basic mode for survival data to be considered is proportional hazards 

model .this model was proposed by Cox (1972) and has also come to be known as the 

Cox regression model. Although the model is based on the assumption of proportional 

hazards, no particular form of probability distribution is assumed for survival time .The 

model is therefore referred to as a semi-parametric model (collett, 2003) is  usually 

written in terms of the hazard model formula 

 

h(t, X) = ho(t)e
∑ βiXi
p
i=1                   (2.30) 

 

Where 

 

 X = X1, X2, … Xp 

 

This model gives an expression for the hazard at time t for an individual with a given 

specification of a set of explanatory variables denoted by X. That is X represents a 

collection of predictor variables that is being modeled to predict an individual’s hazard . 

The Cox model formula says that the hazard at time t is the product of two quantities 

.the first of these,ho(t), is called the baseline hazard function. The second quantity is 

the exponential expression e to the linear sum of  βiXi , where the sum is over the  p 

explanatory X variables. 

An important feature of this formula, which concerns the proportional hazards (PH) 

assumption, is that the baseline hazard is function of  t , does not involve the  X′s .In 

contrast ,the exponential expression involves the X′s , but does not involve t .the X′s   

here are called time –independent X′s (Kleinbaum & Klein, 2012). 

 

2-8-1.Assumption of proportional hazards 

The PH assumption requires that the hazard ratio (HR) is constant over time, or 

equivalently, that the hazard for one individual is proportional to the hazard for any 
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other individual, where the proportionality constant is independent of time. The formula 

for HR is. 

 

𝐻𝑅(𝑡, 𝑥) =  
ℎ̂(𝑡, 𝑥∗)

ℎ̂(𝑡, 𝑥)
  =

ℎ̂𝑜(𝑡) [𝑒
∑ �̂�𝑖𝑥

∗
𝑖

𝑝
𝑖=1 ]

ℎ̂𝑜(𝑡) [𝑒
∑ �̂�𝑖𝑋𝑖
𝑝
𝑖=1 ]

                       

              

= 𝑒𝑥𝑝 [∑ β̂i(x
∗
i − xi)

p

i=0  

]                                           (2.31) 

 

ho(t)  is baseline hazard function appears in both the numerator and denominator of the 

hazard ratio and cancels out of formula, the final expression does not involve time t . 

 

 Let x∗ = (x∗1, x
∗
2…x

∗
p)   and    x = (x1, x2, … xp)  

 

(Kleinbaum & Klein, 2012)Taking   x∗i = x + 1 , the hazard ratio reduces to  

HR = exp(β) and corresponds to the effect of one unit increase in the explanatory 

variable X on the risk of event.  

Hence the survival function from hazard function using function (2.30) is 

 

s(t, x) =  e−H(t,x) 

 

Since the cumulative proportional hazards model from equation (2.7) is: 

 

H(t, x) = ∫ h(t, x)
t

0

 

 

            = e∑ βiXi
p
i=1 ∫ ho(t)

t

0
dt 
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              = e∑ βiXi
p
i=1 Ho(t) 

 

S(t, x)   = e−Ho(t) e∑ βiXi
p
i=1 = (e−Ho(t)) e∑ βiXi

p
i=1  

 

So(t) = e
−Ho(t) 

 

So(t) is baseline survival function  

 

S(t, x) is Cox PH model survival function   

 

         = So(t)e
∑ βiXi
p
i=1                           

 

(collett, 2003). 

 

2-9.Fitting the proportional hazards model: 

2-9-1. Partial Likelihood function for Survival times: 

To estimate the coefficients,b1, … bp, Cox (1972) proposes a partial likelihood function 

based on a conditional probability of failure, assuming that there are no tied values in 

the survival times. However, in practice, tied survival times are commonly observed 

and Cox’s partial likelihood function was modified to handle ties (Kalbfleisch and 

Prentice, 1980; Breslow, 1974; Efron, 1977). In the following we describe the 

estimation procedure without and with ties. 

 

2-9-1-1 .Estimation procedures without tied survival times 

Suppose that k of the survival times from n individuals are uncensored and distinct, and 

n-k are right-censored.t(1) < t(2) < ⋯t(k)Be the ordered k distinct failure times with 

corresponding covariates   x(1),x(2), … x(k). Let  R(t(i)) be the risk set at timet(i) . R(t(i))    

consists of all persons whose survival times are at least t(i). For the particular failure at 
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timet(i), conditionally on the risk set  R(t(i)) , the probability that the failure is on the 

individual as observed is: 

 

exp (∑ bjxj(i)
p
j=1 )

∑ exp (∑ bjxjl
p
j=1 )lϵR

(t(i))

(=
exp (b́x(i))

∑ exp (b́x(l))lϵR
(t(i))

) 

 

Each failure contributes a factor and hence the partial likelihood function is 

 

𝑙(𝑏) =∏
𝑒𝑥𝑝(∑ 𝑏𝑗𝑥𝑗(𝑖)

𝑝
𝑗=1 )

∑ 𝑒𝑥𝑝 (∑ 𝑏𝑗𝑥𝑗𝑙
𝑝
𝑗=1 )𝑙𝜖𝑅

(𝑡(𝑖))

𝑘

𝑖=1

(=∏
 𝑒𝑥𝑝 (�́�𝑥(𝑖))

∑ 𝑒𝑥𝑝 (�́�𝑥(𝑙))𝑙𝜖𝑅
(𝑡(𝑖))

𝑘

𝑖=1

)   (2.32)  

 

 

And the log-partial likelihood is 

 

l(b) = logl(b) =∑∑bjxji −∑log

k

i=1

[ ∑ exp(∑bjxjl

p

j=1

)

lϵR
(t(i))

]

p

j=1

k

i=1

 

 

=∑ {b́x(i) − log [∑ exp (b́x(l))lϵR
(t(i))

]}                            (2.33)k
i=1  

 

The maximum partial likelihood estimator (MLE) b̂ of  b .That is, b 1̂, … , b ̂pare 

obtained by solving the following simultaneous equations, which are obtained by taking 

the derivative of l(b) 

 

∂l(b)

∂b
= 0                                      

   Or 
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∂l(b)

∂bu
=∑[xu(i) − Aui(b)] = 0

k

i=1

u = 1,2,… , p      (2.34) 

 

Where 

 

Aui(b) =

∑ xulexp (∑ bjxjl
p
j=1 )lϵR

(t(i))

∑ exp (∑ bjxjl
p
j=1 )lϵR

(t(i))

  =

∑ xulexp (b́x(l))lϵR
(t(i))

∑ exp (b́x(l))lϵR
(t(i))

                (2.35) 

 

By applying the Newton-Raphson iterated procedure. The second partial derivatives 

of  l(b)respective to  bu and  bv,    u, v = 1,2, … , p,in the Newton-Raphson iterative 

procedure is:   

 

Iuv =
∂2l(b)

∂bu ∂bv
= −∑C(uvi)(b1, … , bp)

k

i=1

= −∑C(uvi)(b)

k

i=1

u, v = 1,2,… , p (2.36) 

 

Cuvi(b) =

∑ xulxvlexp (∑ bjxjl
p
j=1 )lϵR

(t(i))

∑ exp(∑ bjxjl
p
j=1 )lϵR

(t(i))

− Aui(b)Avi(b)       (2.37) 

 

The covariance matrix of the MPLE   b̂, defined similarly as V̂(b) 

 

V̂(b̂) = cov̂(b̂) = [−
∂2l(b̂)

∂b∂b́
]

−1

                          (2.38) 

 

Where 
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−
∂2l(b̂)

∂b ∂b́
 

 

  is called the observed information matrix with −luv(b̂) as its  (u, v) 

 

Element and where   luv(b)  is defined in (2.36). Let the(i, j) element of   V̂(b̂) in (2.38) 

be  vij Then the 100(1 − α)% confidence interval for  b̂i  is, according to 

 

(b̂i − Z∝ 2⁄ √
vii , b̂i + Z∝ 2⁄ √

vii)                                                 (2.39) 

 

2-9-1-2. Estimation procedure with tied survival times 

Suppose that among the 𝑛 observed survival times there are 𝑘 distinct uncensored times 

𝑡(1) < 𝑡(2) < ⋯𝑡(𝑘) .Let 𝑚(𝑖) denote the number of people at 𝑡(𝑖) .let 𝑅(𝑡(𝑖))denote the 

set of people at risk at time𝑡(𝑖) and   𝑟𝑖be the number of such persons. To approximate 

the exact partial likelihood function, the following two likelihood functions can be used 

when each𝑚(𝑖)is small compared to𝑟𝑖  Breslow (1974) provided the following 

approximation 

 

LB(b) =∏
exp(źu∗(i)b)

[∑ exp(x́lb)l∈R(t(i))
]
m(i)

k

i=1

                                   (2.40) 

 

An alternative approximation was provided by Efron (1977) 

 

LE(b) = ∏
exp((źu∗(i)b))

∏ [∑ exp(x́lb)−[(j−1) m(i)⁄ ]∑ exp(x́lb)l∈u∗(i)l∈R(t(i))
]

m(i)
j=1

k
i=1                   (2.41)  

 

(Lee & Wang, 2003). 
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2-9-2. Tests of hypotheses: 

Two approaches to testing hypotheses about  β̂ 

 

2-9-2-1. Likelihood ratio test 

This test is denoted by G and is calculated by means of double difference between  the 

logarithm of  partial maximum likelihood of the model containing  variables (full)  and  

the logarithm  of  the partial that does not contain variables (reduced) and the test 

formula is given as follows:  

 

G = −2ln[Lp(β̂) − Lp(0)] ~χ
2
r,α                       (2.42)     

 

The value of this statistic G follows the distribution of the Chi-Squares  (𝜒2) with one 

degree of freedom. Thus, it can be used to test the estimated model. 

 

2-9-2-2. A Wald test 

A Wald test is known as Z statistic (standard normal distribution), which is one of two 

test statistics typically used with ML estimates. For unvaried the null hypothesis that 

𝛽 = 0 Can be tested by calculating the value of statistic  

 

𝑍 =
�̂�

𝑠𝑒(�̂�)
,                                     or    [𝜒2 =

�̂�

𝑠𝑒(�̂�)
]
2

      (2.43)     

 

where Z is standard normal distribution,  𝜒2 is chi-square distribution on one degree of 

freedom and  𝑠𝑒(𝛽)  is standard error of  �̂� 

When given a set of covariates X and a corresponding set of coefficient 𝐵, 

�̂�𝑗 = 0  in presence of all other terms that in the model. Can be tested by calculating the 

value of statistic 
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𝑍 =
�̂�𝑗

𝑠𝑒(�̂�𝑗)
      or     [𝑋2 =

�̂�𝑗

𝑠𝑒(�̂�𝑗)
]
2

   (collett, 2003; Lemeshow, et al., 2008).  

 

 

2-10. Interpretation of parameter estimates: 

The proportional hazards model used in the analysis of survival data, the coefficient of 

explanatory variables in the model can be interpreted as logarithms of the ratio of hazard 

of death to the baseline hazard. 

 

2-10-1. Models with a variable  

The proportional hazards model contains a single continuous variable 𝑋, so that the 

hazard function for the  𝑖𝑡ℎ of on n individuals, for whom 𝑋, takes values𝑥𝑖, is  

 

ℎ𝑖(𝑡) = 𝑒
𝛽𝑥𝑖ℎ0(𝑡), 

 

The coefficient of 𝑥𝑖 in this model can then be interpreted as logarithm of a hazard ratio, 

the ratio of hazard of death for whom the value 𝑥 + 1  is recorded on   𝑋,   relative to 

one for whom the value 𝑥  obtained is. This is  

 

𝑒𝑥𝑝[𝛽(𝑥+1)]

𝑒𝑥𝑝(𝛽𝑥)
= 𝑒𝛽, 

 

And so �̂� in the fitted proportional hazards model is the estimated change in the 

logarithm of the hazard ratio when the value of  𝑋 is increased by one unit.when a 

continuous variable 𝑋is included in a proportional hazards model, using a similar 

argument, the estimated change in log hazard ratio when the value of the variable𝑋 is 

increased by 𝑟  units is 𝑟𝛽,̂ and the corresponding estimate of the hazard ratio is 

𝑒𝑥𝑝(𝑟�̂�),from which confidence intervals for true hazard ratio can be derived (collett, 

2003). 
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2-10-2. Models with a factor 

When individuals fall into of   𝑚  groups,  𝑚 ≥ 2, which correspond to categories of 

an explanatory variable, the groups can be indexed by the levels of a factor .under a 

proportional hazards model, the hazard function for an individual in the group,  j =

1,2,…m, is given by: 

 

hj(t) = exp(γj)h0(t), 

 

Where  γ𝑗  is the effect due to the  𝑗   level of the factor, and   ℎ0(𝑡)   is the baseline 

hazard function, we take   γ1   = 0 . 

The baseline hazard function then corresponds to the hazard of death at time  𝑡  for an 

individual in the first group. The ratio of the hazards at time is  𝑡  for an individual in 

the 𝑗𝑡ℎ group,  ≥ 2 , relative to an individual in the first group , is then    𝑒𝑥𝑝(γ𝑗) . 

Consequently, the parameter  γ𝑗   is the logarithm of this relative hazard is,    

 

γj = log [
hj(t)

h0(t)
⁄ ] 

 

The estimated logarithm of relative hazard for an individual in group  𝑗 , relative to an 

individual in group 1, is then  γ̂𝑗  , and find A100(1 − 𝛼)% confidence interval for the 

ture log-hazard ratio is the interval from 

 

  γ̂j − zα 2 ⁄ se(γ̂j) to  γ̂j + zα 2⁄  se(γ̂j), 

 

where  zα 2⁄     is the upper α 2⁄   -point of the standard normal distribution. 

In some applications, the hazard ratio relative to the level of a factor other than the first 

is required. 

The hazard functions for individuals at level  j and j′ of the factor are  
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exp(αj) h0 (t) and  exp(αj′) h0 (t)  , respectively, and so the hazard ratio for an 

individual at level  j, relative to one at level  j′ , is  exp(αj − αj′). The hazard ratio is 

then  αj − αj′ , which is estimated by   α̂j − α̂j′.  To obtain the standard error of estimate, 

we use the result that the variance of the difference α̂j − α̂j′ is given by 

  

var(á̂j − α̂j′) = var(α̂j) + var(α̂j′) − 2cov(α̂jα̂j′)   

 

then estimate the covariance between �̂�𝑗  𝑎𝑛𝑑 �̂�𝑗′ ,as well as estimates of their variance 

and  compute 𝑠𝑒(�̂�𝑗 − �̂�𝑗′)  (collett, 2003). 

 
 

2-10-3 .Model with combination of terms 

A fitted model will contain terms corresponding to number of variates factors or 

combination of two, with suitable coding of indicator variables corresponding to factor 

in model, the parameter estimates can again be interpreted as logarithm of hazard ratios. 

When model contain more than one variable, the parameter estimate associated with a 

particular effect is said be adjusted for other variables in model, and so estimates are 

log-hazard, adjusted for the other terms in the model. The proportional hazards can 

therefore be used to estimate hazard ratios, taking account of other variables included 

in the model. 

When interactions between factor or mixed terms involving factors and variates, are 

fitted, the estimated log-hazard ratios for particular factor will differ according to the 

level of any factor, the value of variate with which it interacts (collett, 2003).  
 

2-11. Model checking in the Cox regression model: 

After a model has been fitted to an observed set of data, the adequacy of fitted model 

needs to be assessed. Indeed, the use of diagnostic procedures for model checking is an 

essential part of the modeling process. Many model checking procedures are based on 

quantities known as residuals. These are values that can be calculated for each 

individual in the study, and have the feature that their behavior is .known, at least 
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approximately, when the fitted model is satisfactory .A number of residuals have been 

proposed for use in connection with the Cox regression Model. 

 

2-11-1. Cox- Snell residuals 

The residual that is most widely in the analysis of survival data is the Cox- Snell 

residuals, so called because it is a particular example of the general definition of 

residuals given by Cox and Snell (1968). 

The Cox- Snell residuals for the 𝑖𝑡ℎ individual  𝑖 = 1,2,… , 𝑛, is given by  

 

rCi = exp(β́̂xi) Ĥo(ti)                                          (2.44) 

 

Where �̂�𝑜(𝑡𝑖) is an estimate of the baseline cumulative hazard function at time  𝑡𝑖 , the 

observed survival time of that individual Nelson –Aalen estimate   generally used, The 

Cox-Snell residual, 𝑟𝐶𝑖is the value of   

 

Ĥi(ti) = −logŜi(ti), 

 

Where�̂�𝑖(𝑡𝑖) and �̂�𝑖(𝑡𝑖) are the estimated values of cumulative hazards and survivor 

function of the 𝑖𝑡ℎ individual at  𝑡𝑖 (collett, 2003). 

 

2-11-2. Martingale residuals 

The modified residuals �́�𝐶𝑖a mean of unity for uncensored observations accordingly, 

these residuals might be further refined by relocating the �́�𝐶𝑖 so that they have a mean 

zero when an observations is uncensored .if addition the resulting values are multiplied 

by -1, we obtain the residuals. 

 

𝑟𝑀𝑖 = 𝛿𝑖 − 𝑟𝐶𝑖                             ( 2.45)                     
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Martingale residuals take values between −∞ and unity, with residuals for censored 

observations, where 𝛿𝑖 = 0,being negative. It can also be shown that these residuals 

sum to zero and, in large samples, the Martingale value of zero. 

 

2-11-3.Deviance residuals  

Although martingale residuals share many of the properties possessed by residuals 

encountered in other situations, such as in linear regression analysis. They are not 

symmetrically distributed about zero, even when the fitted model is correct. Residuals, 

which were introduce by T Herneau et al. (1990), are 

 

rDi = sgn(rMi)[−2{rMi + δilog(δi − rMi)}]
1
2⁄ ,           (2.46) 

 

Where 𝑟𝑀𝑖 is the martingale residual for the 𝑖𝑡ℎ individual, and 𝑠𝑔𝑛(. ) is the sign 

function. 

This is the function that takes the value +1 if its argument is positive and -1if negative 

(collett, 2003). 

 

2-11-4.Schoenfeld Residuals 

These residual differs from those considered previously in one other important respect 

.this is that there is not a single value of the residual for each individual, but a set of 

values ,one for each explanatory variable included in  the fitted Cox regression model. 

The𝑖𝑡ℎ partial or schoenfeld residual for  Xj, the 𝑗𝑡ℎ explanatory variable in the model 

is given by: 

 

𝒓𝑷𝒋𝒊 = δi{xji − âji},     (2.47) 

 

Where 

 𝑥𝑗𝑖 is the value of the 𝑗𝑡ℎ explanatory variable,  𝑗 = 1,2,… , 𝑝, for the 𝑖𝑡ℎ individual in 

the study 
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âji =
∑ xjiexp (β́̂xl)lϵR(ti)

∑ exp (β́̂xl)lϵR(ti)

 ,                                                     (2.48)     

 

And𝑅(𝑡𝑖) is the set of all individuals at risk at time𝑡𝑖 .The 𝑖𝑡ℎ schoenfeld residual, for 

the explanatory variable 𝑋𝑗 is an estimate of the 𝑖𝑡ℎ component of the derivative of the 

logarithm likelihood function with respect to 𝐵𝑗 ,which, from equation (2.34) is given 

by: 

 

∂logL(b)

∂bj
   =        ∑δi{xji − aji}

n

i=1

,                         (2.49) 

 

Where 

 

aji =
∑ xjiexp(β́xl)l

∑ exp(β́xl)l

                                                                (2.50) 

 

The 𝑖𝑡ℎ term in this summation evaluated at �̂�, is the schoenfeld residual for 𝑋𝑗, given 

in (2.47).since the estimates of the 𝛽′𝑠 are such that  

 

∂logL(b)

∂bj
|β̂ = 0 

 

The schoenfeld residual must sum to zero. These residuals also have the property that, 

in large sample, the expected value of 𝑟𝑃𝑗𝑖is zero, and they are uncorrelated with one 

another. Grambsch and Therneau (1994) proposed a scale version of the schoenfeld 

residual, is more effective in detecting departures from the assumed model. Let the 

vector of schoenfeld residual.For the 𝑖𝑡ℎ individual be denoted  
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𝑟𝑃𝑖 = (𝑟𝑃1𝑖 , 𝑟𝑃2𝑖 , … , 𝑟𝑃𝑝𝑖)
′
. The scale, or weighted, schoenfeld residual  𝑟∗𝑃𝑖 , are then 

the components of vector 

 

r∗Pi = rvar(β̂)rPi, 

 

Where 𝑟 is the number of deaths among the 𝑛 individuals, and 𝑣𝑎𝑟(�̂�) is the variance 

-covariance matrix of the parameter estimates in the fitted Cox regression model. These 

scaled schoenfeld residual are therefore quite straight-forward to compute (collett, 

2003). 

 
 

2-12.Assessment of model fit: 

A number of plots based on residuals can be used in the graphical assessment of the 

adequacy of fitted model. Many graphical procedures that are analogues of residual 

plots used in linear regression analysis have not proved to be very helpful this is because 

plots of residuals a giants quantities such as the observed survival times, or rank order 

of these times, often exhibit a define pattern ,even when correct model has been fitted. 

 

2-12-1 .Plots based the Cox-Snell residuals 

After computing the Cox-Snell residuals,𝑟𝐶𝑖 , the Kaplan Meier estimate of the survivor 

function of these values is found. This estimate is computed in similar manner to the 

Kaplan Meier estimate of survivor function of survival times, except that the data on 

which the estimate is based are now the residualsrCi. Residuals obtained from censored 

survival times are themselves taken to be censored .denoting the estimate by �̂�(𝑟𝐶𝑖), the 

values of �̂�(𝑟𝐶𝑖) =  − 𝑙𝑜𝑔 �̂�(𝑟𝐶𝑖)are plotted against𝑟𝐶𝑖. This gives a cumulative hazard 

plot of residuals. A straight line with unit slope and zero intercept will then indicate that 

the fitted survival model is satisfactory (collett, 2003). 
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2-12-2. Plots based on martingale and deviance residuals 

An index plot of the martingale residuals will highlight individuals whose survival time 

is not well fitted by the model. Such observations may be termed outliers. The data from 

individuals for whom the residual is unusually large in absolute value, will need to be 

subject of further scrutiny. The plots theses residuals against the survival time, the rank 

order of the survival times, or explanatory variable, may indicate whether there are 

particular times, or values of variables, where the model does not fit well. 

The deviance residuals are symmetrically distributed than the martingale residuals, 

plots based on these residuals tend to be easier to interpret .consequently, an index plot 

of the deviance residuals may also be used to identify individuals whose survival times 

are out of line. By reconciling information about individuals whose survival times are 

out line, with the values of their risk score, useful information can be obtained about 

the characteristics of observations that are not well fitted by the model. Plot of deviance 

residuals against the risk score is particularly helpful diagnostic (collett, 2003). 

 

2-13.Testing the assumption of proportional hazards: 

A crucial assumption made when using the Cox regression model is that of proportional 

hazards. If hazard are not proportional, this means that the linear component of the 

model varies with time in some manner. We must therefore consider how the validity 

of this assumption can be examined. This is followed by description of how diagnostics 

derived from a fitted model can be used in examining the proportional hazards 

assumption.  
 

2-13-1.Log –cumulative hazard plot 

According to Cox regression model, the hazard of death at any time 𝑡 for the 𝑖𝑡ℎ 

individual is given by  

 

hi(t) = exp(β
′xi)h0(t)  ,                                               (2.51) 

 

𝑤ℎ𝑒𝑟𝑒𝑥𝑖is the vector of values of explanatory variables for that individual 
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âIs the corresponding vector of coefficients, and ℎ0(𝑡) is the baseline hazard function 

.integrating both sides of this equation over 𝑡 give  

 

∫hi(u)

t

0

du = exp(β′xi)∫h0(u)

t

0

du. 

 

And so, using equation (3.6), 

 

Hi(t) = exp(β
′xi)H0(t), 

 

Where𝐻𝑖(𝑡) and 𝐻0(𝑡) are the cumulative hazard function .taking logarithms of each 

side of this equation, we get 

 

logHi(t) = β
′xi + logH0(t) 

 

The differences in the log-cumulative hazard do not depend on time .this means that if 

the log-cumulative hazard functions for individuals with different values of their 

explanatory variables are plotted against time, the curves so formed will parallel if 

proportional hazards model (2.50) is valid. This provides the basis of a widely used 

diagnostic for assessing the validity of the proportional hazards assumption. To use this 

plot, the survival data are first grouped according to the levels of one or more factors. 

If continuous variable are to be feature in this analysis, their values are will first need 

be grouped in some way to give a categorical variable (collett, 2003). 

 

2-13-2. Schoenfeld residuals 

The schoenfeld residuals, defined in section (2.11.4) are be particularly useful in 

evaluating the assumption of proportional hazard after fitting a Cox regression model. 

Grambsch and Therneau (1994) have shown that the expected value of the ith scale 

schoenfeld residuals, for the𝑗𝑡ℎ  explanatory variable, 𝑋𝑗 in the model,𝑟∗𝑃𝑖 ,  is given by 
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E(r∗Pi) ≈ βj(ti) − β̂j, 

 

Where Bj(t) is taken to be a time-varying coefficient of , Xjβj(ti) is the value of the 

coefficient at ith  death time,tiand  β̂j  is the estimated value of  β̂j   in the fitted Cox 

regression model. Consequently, a plot of the values of  r∗Pi + β̂j against the death times 

should give information about the form of the time –dependent coefficient of   Xj, βj(t). 

In particular, a horizontal line will suggest that the coefficient of Xj is constant, and the 

proportional hazards assumption is satisfied. A smoothed curve can be superimposed 

on this plot to aid interpretation .this plot can also be supplemented by fitted a straight 

lines, and testing if the slope of this is zero (collett, 2003). 

 

2-13-3.Adding a time - dependent variable 

To examine the assumption of proportional hazard in the regression model a time –

dependent variable can be added the model. Consider a survival study in which each 

patient has been allocated to one of two groups, corresponding to standard and a new 

treatment. Interest may then Centre on whether the ratio of hazard of death at time 𝑡 in 

one treatment group, relative to the other, is independent of survival time. 

 

hi(t) = exp(β1x1i)h0(t)                                  (2.52) 

Where𝑥1𝑖 is the value of an indicator variable 𝑋1 that is zero for the standard treatment 

and unity for the new treatment .the relative hazard of death at any time for a patient on 

the new treatment, relative to one on the standard is then 𝑒𝛽1 ,  which is independent of 

survival time. 

Define a time-dependent explanatory variable 𝑋2 where  𝑋2 = 𝑋1𝑡. if this variable is 

added to model in equation (2.51), the hazard of death at time 𝑡 for the 𝑖𝑡ℎ individual 

becomes. 

hi(t) = exp(β1x1i + β2x2i)h0(t),                               (2.53)    
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Where 

 

x2i = x1it   is the value of  X1t for the ithindividual.  

The relative hazard at  t is  

exp(β1 + β2t),                                                              (2.54) 

 

Since X2 = t under the new treatment, and zero otherwise.  

logt Might use in place t in definition of time dependent variable X2  equation (2.53) a 

test of hypothesis is that β2 = 0 is that a test of proportional hazards, alternative 

hypothesis is that the hazard ratio is dependent on the logarithm of time. 

The test can be carried out using either a Wald a statistic or likelihood ratio statistic .in 

either case, the test statistic has chi – square distribution with one degree of freedom 

under the null hypothesis (collett, 2003; Kleinbaum & Klein, 2012). 

 

2-14.Parametric approach: 

Parametric approaches are used either when a suitable model or distribution is fitted to 

the data or when a distribution can be assumed for the population from which the sample 

is drawn. Commonly used survival distributions are the exponential, Weibull, 

lognormal, log logistic and gamma (Ravanan, 2015).  

 

2-14-1.Parametric model 

A parametric survival model is one in which survival time (the outcome) is assumed to 

follow a known distribution ,do make assumptions about the distribution of failure times 

and the relationship between covariates and survival experience but semi-parametric 

models make no assumption about the distribution of failure times . Parametric models 

fully specify the distribution of the baseline hazard/survival function according to some 

(defined) probability distribution. Parametric models are useful when we want to predict 

survival rather than identify factors that influence survival. Parametric models can be 

expressed in: (1) proportional hazard form, where a one unit change in an explanatory 



54 
 

variable causes proportional changes in hazard; and (2) accelerated failure time (AFT) 

form, where a one unit change in an explanatory variable causes a proportional change 

in survival time. Examples of distributions that are commonly used for survival time 

are: the Weibull, exponential (a special case of the Weibull), Gompertz, log-logistic, 

lognormal. For parametric survival models, time is assumed to follow some distribution 

whose probability density function f (t) can be expressed in terms of unknown 

parameters. Once a probability density function is specified for survival time, the 

corresponding survival and hazard functions can be determined (Kleinbaum & Klein, 

2012; Abdelaal & Zakria, 2015; George, et al., 2014) . 

 

2-14-2.Parametric PH models: 

Parametric PH models similar in concept and interpretation to the Cox (PH) model. The 

key difference between the two is that the hazard is assumed to follow a specific 

statistical distribution when a fully parametric PH model is fitted to the data, whereas 

the Cox model enforces no such constraint. Other than this, the two model types are 

equivalent. Hazard ratios have the same interpretation, whether derived from a Cox or 

a fully parametric regression model, and the proportionality of hazards is still assumed. 

A number of different parametric PH models may be derived by choosing different 

hazard functions. The commonly used models are exponential, Weibull, or Gompertz 

models. (Bradburn, et al., 2003; Lawless & , 2003). 

 

2-14-2-1. Models for the hazard function 

Once distribution model for survival times has been specified in terms of probability 

density function, the corresponding survivor and hazard functions can be obtained from 

the relations 

Once 

 

S(t)  =  1 − F(t) 
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So 
 

F(t) = P(T < t)   = ∫ f(u)du
t

0

, 

 

Then 

 

S(t) =   1 − ∫ f(u)
t

0

dy                                      (2.55) 

 

And 

 

h(t) =     
f(t)

s(t)
   = −

d

dt
[logS(t)],                                      (2.56) 

 

Where 𝑓(𝑡)is the probability density function of the survival times these relationships 

were derived in 3.1.alternative approach is to specify functional form for the hazard 

function, from which the survivor function and probability density function can be 

determined from the equations 

 

S(t) = exp{−H(t)},                                                                          (2.57)            

 

And 

 

f(t) = h(t)S(t) = − 
dS(t)

dt
 ,                              (2.58) 

 

where 

 

H(t)  =  ∫ h(u)
t

0

du 

is integrated hazard function (collett, 2003). 
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2-14-2-2. Exponential distribution 

The simplest and most important distribution in survival studies is the exponential 

distribution. In the late 1940s, researchers began to choose the exponential distribution 

to describe the life pattern of electronic systems.  In addition is often referred to as a 

purely random failure pattern. It is famous for its unique ‘‘lack of memory,’’ which 

requires that the age of the animal or person does not affect future survival.  

The exponential distribution is characterized by a constant hazard rate λ, its only 

parameter. A high λ value indicates high risk and short survival; a low λ value indicates 

low risk and long survival. When λ =1, the distribution is often referred to as the unit 

exponential distribution.  

When the survival time T follows the exponential distribution with a parameter λ, the 

probability density function is referred as 

 

f(t)   =   {λe
−λt          
0

t ≥  0  , λ >  0  

t < 0
                                  (2.59)   

 

Survivorship function is then 

 

S(t) =  exp[−λt]                 t ≥  0                                    (2.60) 

 

 

The hazard function is 

 

h(t) =  λ.                              t ≥  0                                    

 

 a constant, independent of   𝑡. 

The mean and variance of the exponential distribution with parameter are λ, 

Respectively; 
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𝟏

λ  
   𝑎𝑛𝑑   

𝟏

λ𝟐
   

 

The coefficient of variation is 1 ((Lee & Wang, 2003; Lee & Wang, 2003). 

The median of exponential distribution   𝑡(50), is such that  

 

𝑠{𝑡(50)} = 0.5 

 

That is  𝑒𝑥𝑝{−𝜆𝑡(50)} = 0.5, 

 

So that        𝑡(50) = 1 λ ⁄ 𝑙𝑜𝑔2. 

 

More generally, the 𝑝𝑡ℎ  percentile of the survival time distribution is the value 𝑡(𝑝) 

such That  

  

𝑆{𝑡(𝑝)} = 1 −
𝑝

100
  , 

 

 and using equation (3. 60), this is  

 

𝑡(𝑝) =  
1

𝜆
𝑙𝑜𝑔 (

100

100−𝑝
)  .   (collett, 2003). 

 

2-14-2-3 .Weibull distribution 

The Weibull distribution is a generalization of the exponential distribution. However, 

unlike the exponential distribution, it does not assume a constant hazard rate and 

therefore has broader application. The distribution was proposed by Weibull (1939) and 

its applicability to various failure situations discussed again by Weibull (1951). It has 

then been used in many studies of reliability and human disease mortality. 
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The Weibull distribution is characterized by two parameters γ and λ .The value of 

γ determines the shape of the distribution curve and the value of λ determines its 

scaling (Lee & Wang, 2003)  . 

Amore general form of hazard function is such that 

 

h(t) = λγtγ−1,                                     (2.61) 

 

for    0 ≤ 𝑡 < ∞, function that depends on two parameters 𝜆  and   𝛾  , which are both 

greater than zero.In the particular case where γ = 1, the hazard function takes a constant 

value 𝜆  , and the survival times have an exponential distribution. For other values of γ, 

the hazard function increases or decreases monotonically, that is, it does not change 

direction. The shape of the hazard function depends critically on the value of 𝛾  , and 

so 𝛾   is known as the shape parameter, while the parameter 𝜆 is scale parameter. 

 

The Survivor function is given by 

 

S(t) = {−∫λγuγ−1
t

0

du} =  exp(−λtγ)           (2.62) 

 

The density function is then  

 

f(t) = λγtγ−1exp(−λtγ),                                       (2.63)  
 

For  0 ≤ t < ∞, is the density of a random variable that has a Weibull distribution with 

scale parameter λ and shape parameter  γ  This distribution will be denoted 𝑊(λ, γ) .the 

right hand -tail of this distribution is longer than the left -hand one, and so the 

distribution is positively skewed 

The mean, or expected value, of random variable 𝑇 that has a   𝑤(𝜆, 𝛾) distribution can 

be shown  (collett, 2003) to be given by 
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E(T) = λ
−1

γ⁄ Γ(γ−1 + 1) 

 

and the variance is 

 

σ2 =
1

λ2
[Γ (1 +

2

γ
) − Γ2 (1 +

1

γ
)] 

 

Where 𝛤(𝛾) is the well-known gamma function defined is  

 

Γ(γ) =  ∫ xγ−1
∞

0
e−xdx = (γ − 1) !     

    

When  𝛾 is positive integer 

Values of 𝛤(𝛾) can be found in Abramowitz and Stegun (1964). The coefficient of 

variation is then 

 

CV =  [
Γ(1+2 γ⁄ )

Γ2(1+1 γ⁄ )
− 1]

1
2⁄

 (Lee & Wang, 2003) 

 

However, since the Weibull distribution is skewed, a more appropriate and more 

tractable, summary of the location of the distribution is the median survival time. This 

is the value  𝑡(50) such that  

 

𝑆{𝑡(50)} = 0.5 , so that 

 

exp{−λ[t(50)]γ}  = 0.5, 

And  

t(50) =  {
1

λ
log2}

1
γ⁄
                         (2.64)     . 
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More generally, the  𝑝𝑡ℎ percentile of the weibull distribution,  𝑡(𝑝) is such that 

 

t(p) = {
1

λ
log (

100

100−p
)}
1
γ⁄
                   (2.65)             

 

The median and other percentiles of the Weibull are therefore much simpler to compute 

than the mean of the distribution. 

 Since the Weibull hazard function can take a variety of forms, depending on the value 

of the shape parameter, 𝛾 , and appropriate summary statistics can be easily obtained, 

this distribution is widely used in the parametric analysis of survival data. 

 

2-14-2-4.Gompertz distribution 

The Gompertz model has found application in demography and the biological sciences. 

Indeed the distribution was introduced by Gompertz in 1825, as a model for human 

mortality. The hazard function of the Gompertz distribution is given by  

 

h(t) = λeγt                                        (2.66)             
 

 

for 0 ≤ t < ∞ and λ > 0   .in the particular case where  γ = 0, the hazard function has 

a constant value   𝜆, and the survival times then have an exponential distribution.  The 

parameter 𝛾 determines the shape of hazard function, positive 𝛾 > 0 values leading to 

a hazard function that increases with time, decreases if γ < 0 . The hazard function can 

also be expressed as 

 

 h(t) = exp (λ + γt), (collett, 2003) 

 

 which shows that the log-hazard function is linear in 𝑡 .  

The Gompertz hazard increase or decreases monotonically. The survival function of the 

Gompertz distribution is given by  
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S(t) = exp [−
 eλ

γ
(eγt − 1)]  ,                                            (2.67)  

 

and the corresponding density function is  

 

f(t) = exp [(λ + γt) −
1

γ
(eλ+γt−eλ)]  ,                     (2.68) 

 

The 𝑝th percentile is such that  

 

 

t(p) =
1

γ
log [1 −

γ

λ
log (

100 − p

100
)]                 (2.69) 

 

From which the median survival time is  

 

𝑡(50) =
1

𝛾
log [1 +

𝛾

𝜆
log 2]              (2.70)         

 

 (collett, 2003; Lee & Wang, 2003). 

 

2-14-3.Parametric accelerated failure time models: 

Accelerated failure time (AFT) model is a failure time model which can be used for the 

analysis of time to event data. The model works to measure the effect of covariate to 

“accelerate” or to “decelerate” survival time. AFT model is one such model, and most 

commonly used are Exponential, Weibull, Log logistic, Lognormal and Generalized 

Gamma AFT models. Exponential and Weibull parametric models can work both in 

proportional hazards metric and in AFT metric. Log Logistic, Lognormal and 

Generalized Gamma models work only in AFT metric. AFT models are an alternative 

to the PH model for the analysis of survival data. Under AFT models, we measure the 

direct effect of explanatory variables on the survival time instead of hazards, as we do 

(Karimi, et al., 2016), (Subrat K. Acharya, 2014). 
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(x1, x2…xp)  can be expressed as: 

 

    S(t) = S0(φt)                                    (2.71)       

 

 where S0(φ)  is the baseline survival function and  φ is an acceleration factor defined 

to be: 

 

φ = exp {( b 1x1 + b2x2 +⋯+ bpxp)}. 

 

The ratio of two survival time is constant for any given survival probability. In order to 

explain this concept for the case of a single covariate (x1) with two levels for example  

x1 = 0,    for a placebo group and x1 = 1,  for a new treatment group, The survival 

probabilities S(t), for the placebo and new treatment groups are   S0(t)and S0(φt), 

respectively. The proportion of patients who are event-free in the placebo group at any 

time point t1  is the same as the proportion of those who are event-free in the new 

treatment group at a time    t2 = φt1.The ratio of time  
t1
t2
⁄ = φ   or time ratio (TR) 

constant, where φ > 1 and φ < 1, which represent situations where the length of 

survival is increased and decreased in the new treatment group compared with the 

placebo, respectively.  

 

Log –linear form of the accelerated failure time model 

The AFT model is commonly rewritten as being log-linear with respect to time, giving 

 

log Ti = μ + b 1x1 + b2x2 +⋯+ bpxp + σ ∈           (  2.72) 

 

Ti   random variable  associated with the lifetime of the individual in a survival study . 

In this model,  b 1, b2, … bp are unknown confidents of the values of  p explanatory 
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variables  , x1, x2…xp,    and    μ, σ are two further parameters, known as intercept and 

scale parameter, respectively. The quantity  ∈ is a random variable used to model the 

deviation of the values of log 𝑇𝑖 from the linear part of the model, and ∈ is assumed to 

have a particular probability distribution. In this formulation of the model, the b-

parameters reflect the effect that each explanatory variable has on survival times 

positive values suggest that the survival time increases and negative values survival 

time decrease (collett, 2003), assumed to have a particular probability distribution 

according to the probability distribution supposed to be followed by the survival time 

under study.  

The AFT model is fitted by applying the maximum likelihood estimation method by 

using iterative Newton- Raphson procedure. For the sake of simplicity and ease of 

interpretation, the exponentiated regression coefficients (exp(β )  called time ratio (TR) 

is recommended to report like HR is reported in proportional hazards models. TR > 1 

for a covariate implies that this slows down or prolongs the time to the event and TR < 

1 for a covariate indicates the occurrence of earlier event is more likely to occur.  

(William Aknaus, 1993; collett, 2003; Lemeshow, et al., 1999; Moechberger M.L, 

1997). 

 

2-14-3-1 .Lognormal Distribution 

In its simplest form the lognormal distribution can be defined as the distribution of a 

variable whose logarithm follows the normal distribution, its origin may be traced as 

far back as 1879, when McAlister (1879) described explicitly a theory of the 

distribution. Most of its aspects have since been under study. Gaddum (1945a, b) gave 

a review of its application in biology, followed by Boag’s (1949) applications in cancer 

research. Consider the survival time T such that log T is normally distributed with mean 

𝜇  and variance   𝜎2. We then say that T is lognormally distributed and write T as 

Ʌ(𝜇, 𝜎2) that is mean lognormally distributed with parameters 𝜇 and 𝜎2.It should be 

noted that 𝜇 and 𝜎2 are not the mean and variance of the lognormal distribution 
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The probability density function and survivorship function are, respectively, 

 

f(t) =  
1

tσ√2π
exp [−

1

2σ2
(log t − μ)2]     t > 0   , σ > 2        (2.73) 

 

And 

 

     S(t) =
1

σ√2π
∫

1

x

∞

t

exp [−
1

2σ2
(log x − μ)2]  dx                (2.74) 

 

let a = exp(−μ) . Then – μ = log a  , (2.60) and (2.61)can be written as 

 

f(t) =
1

tσ√2π
exp [−

1

2σ2
(log at)2]                                                  (2.75) 

 

S(t) =
1

σ√2π
∫

1

x

∞

t

exp [−
1

2σ2
(log ax)2]  dx                            

 

                        = 1 − Φ(log
at

σ
)                                                ( 2.76) 

 

Where  

 

Φ(y) is the cumulative distribution function of a standard normal variable. 

 

𝛷(𝑦) =
1

√2𝜋
∫ 𝑒

−𝑢2

2

𝑦

0

𝑑𝑢                                                              (2.77)   

 

The hazard function, from (2.62) and (2.64), has the form 

 

h(t) =

1

tσ√2π
exp [−

1
2σ2

(log at)2]

1 − Φ(log
at
σ)

                                               (2.78) 
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The hazard function increases initially to a maximum and then decreases (almost as 

soon as the median is passed) to zero as time approaches infinity (Watson and Wells 

1961). Therefore, the lognormal distribution is suitable for survival patterns with an 

initially increasing and then decreasing hazard rate. 

The mean and variance of the two-parameter lognormal distribution are, respectively, 

 

exp (μ +
1

2
σ2) 

 

 and 

 

 [exp(σ2) − 1] exp(2μ + σ2) 

 

The coefficient of variation of the distribution is then 

 

[exp(σ2) − 1]
1
2 

 

The median survival time under this distribution is simply 

 

  𝑡(50) = 𝑒𝜇                                                 (2.79) 

 

And 

 

The mode is exp(μ + σ2) 

Where 

Φ(𝑧) is the standard normal distribution function given by  
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Φ(𝑧) =
1

√2𝜋
∫𝑒

−𝑢2

2

𝑧

−∞

𝑑𝑢                                                                                    

 

The 𝑝𝑡ℎ percentile of the distribution is then  

 

t(p) = exp[σΦ−1(p 100⁄ ) + μ]                                  (2.80) 

 

Where    Φ−1(p 100⁄ ), the  pth  percentile of the standard normal distribution is often 

called the probito    f p 100⁄ . 

 

The popularity of the lognormal distribution is due in part to the fact that the cumulative 

values of  y = log t can be obtained from the tables of the standard normal distribution 

and the corresponding values of  𝑡  are then found by taking antilog. Thus, the 

percentiles of the lognormal distribution are easy to find (Lee & Wang, 2003; collett, 

2003). 

 

2-14-3-2.Log –logistic distribution 

One limitation of the Weibull hazard function is that it is monotonic function of time 

.however, situations in which the hazard function changes direction can rise. A 

particular form of unimodal is hazard the function 

 

h(t) =  
αγtγ−1

1 + αtγ
                                         (2.81) 

 

  For     0 ≤ t < ∞ , γ > 0. This hazard function decreases monotonically if γ ≤

1 , but if γ > 1 ,  the hazard has a single mode. The survivor function corresponding to 

the hazard function in equation (2.81) is given by 

 

S(t) = [1 + αtγ]−1                                                                (2.82) 
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and the probability density function is 

 

f(t) =  
αγtγ−1

(1 + αtγ)2
                                                                    (2.83) 

 

This is the density of a random variable  T  that has a log-logistic distribution, with 

parameters  α, γ . The distribution is so called because the variable log T has a logistic 

distribution, a symmetric distribution whose probability density function is very similar 

to that of the normal distribution. 

The pth  percentile of the log-logistic distribution is  

 

t(p) = (
pe−α

100 − p
)

1 γ⁄

                                                                       (2.84) 

 

and so the median of the distribution is  

 

t(50) = e
−α

γ                   ⁄                                                   (2.85). 

 

 (Lee & Wang, 2003; collett, 2003). 

 
 

2-15.Assessment the suitability of parametric model: 

Amore informative way of assessing whether a particular distribution for the 

survival times is plausible is to compare the survivor function for data of chosen 

model. This is greatly helped by transforming the survivor function to produce a 

plot that should give a straight line if assumed model is appropriate (collett, 2003). 

The basic idea of the three graphical methods is to see if the survival time itself, or 

a function of it, has a linear relationship with the distribution function and the 

cumulative hazard function of a given parametric distribution, or a function of the 

distribution function and the cumulative hazard function. If such a linear 
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relationship exists, it can be demonstrated graphically as a straight line. Thus, if one 

chooses the appropriate distribution and makes a probability, or hazard, plot, the 

result will be a straight line fit to the data. Parameters of the distribution chosen can 

be estimated from the probability or hazard plots without tedious numerical 

calculations (Lee & Wang, 2003). 

 

2-15-1. Assessment the suitability of Weibull model  

Since the survivor function for a Weibull distribution is. 

 

S(t)   = exp(−λtγ)                                      (2.86)                      

 

Taking logarithm of S(t), multiplying by  −1 , and taking logarithm a second time, 

gives. 

 

log{−logS(t)} = logλ + γlogt.    (2.87)  

 

We now substitute the Kaplan- Meier estimate of survivor function,   Ŝ(t) for S(t)   in 

equation (2.87). 

This property allows a graphical evaluation of the appropriateness of a Weibull model 

by plotting 

log{−logŜ(t)}    a against    log t   would then give an approximately straight line, the 

intercept and slope of the straight line will be  log(λ)and slope γ , respectively (collett, 

2003). 

2-15-2. Assessment the suitability of Exponential model 

The exponential cumulative distribution function is 
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F(t) = 1 − exp[−(λt)]t > 0                                   (2.88) 

 

The probability plot for the exponential distribution is based on the relationship between 

t and F(t), from (3.88), 

 

t =
1

λ
log

1

1 − F(t)
                                        (2.89) 

 

This relationship is linear between t and the function  log [
1

(1−F(t))
]  

Thus, an exponential probability plot is made by plotting the  ith ordered observed 

survival time t(i) versus  log [
1

(1−F̂(t(i)))
]    

 where   F̂(t(i))is an estimate of   F(t(i)) (collett, 2003), 

 

2-15-3. Assessment the suitability of Gompertz model 

From hazard function of Gompertz distribution, given equation 

log h(t) =  λ + γt,  

 

If log of empirical hazard against. Time is linear, underlying distribution may be 

Gompertz 

Empirical hazards:  

 

  ĥ(ti) =
−[log(S(ti))−log(S(ti−1))]

ti−ti−1
                                   (2.90) 
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2-15-4. Assessment the suitability of lognormal model 

From the survivor function of the lognormal distribution, given in equation (2.76) 

 

Φ−1{1 − S(t)} =
logt − μ 

σ
                              (2.91) 

 

Where   Φ−1(. )   is standard normal distribution function, and so a plot of  

Φ−1{1 − S(t)}  against  logt should given a straight line, if the lognormal model is 

appropriate. The slope and intercept of this line provide estimate of   σ−1 ,
−μ

σ
,     

respectively (collett, 2003).     

 

2-15-5. Assessment the suitability of Log logistic model 

The log logistic distribution function is 

 

F(t) =
αtγ

1 + αtγ
                    t > 0, γ > 0,      α > 0           (2.92) 

 

A probability plot for the log-logistic distribution is based on the following relationship 

obtained from (2.92): 

 

log t =
1

γ
log [

1

1 − F(t)
− 1] −

1

γ
log α                              (2.93) 

 

Thus a log logistic probability pot is graph of log(t(i)) versus log ({
1

[1−F̂(t(i))]
} − 1) 

where F̂(t(i)) is estimate of F(t(i)) (Lee & Wang, 2003). 
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2-16.Fitting a parametric model to a single sample: 

Parametric models can be fitted to an observed set of survival data using the method of 

maximum likelihood, first the situation where actual survival times have been observed 

for n individuals, so that there are no censored observations. If the probability density 

function of random variable associated with survival time isf(t), the likelihood of the n 

observations 𝑡1, 𝑡2, . . . , 𝑡𝑛 is simply the product  

 

∏f(ti)

n

i=1

 

 

This likelihood will be a function of the unknown parameters in the probability density 

function, and the maximum likelihood estimates of these parameters are those values 

for which the likelihood function is maximum .in practice, it is generally more 

convenient to work with the logarithm of likelihood function  

 Suppose that r of the n individuals die at times t1, t2, … , tr,  and that survival times of 

the remaining n − r individuals,  t1
∗, t2

∗, … , t∗n−r,   are right –censored .therdeath times 

contribute a term of the form  

 

∏f(tj)

r

j=1

 

 

To the overall likelihood function .Naturally, we cannot ignore information about the 

survival experience of  n − r individuals for whom a censored survival time has been 

recorded if a survival time is censored at time  t∗ , and the probability of this event is  

p(T ≥ t∗) , which is  S(t∗) .thus each censored observation contributes a term of 

likelihood of  𝑛  observations the total likelihood function is therefore  
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∏f(tj)∏S(t∗)  

n−r

i=1

r

j=1

                                     (2.94)                    

 

In which the first product is taken over the 𝑟 death and the second over the  𝑛 − 𝑟 

censored survival times. Suppose that the data are regarded as 𝑛 pairs of observation, 

where the pair for 𝑖𝑡ℎ individual is 

(𝑡𝑖 , δi)  , 𝑖 = 1,2,… , 𝑛 .In this notation, 

δi is an indicator variable that take the value zero when the survival time  𝑡𝑖 is censored 

and unity when 𝑡𝑖  is an uncensored survival time. The likelihood function can then 

written as  

 

∏{f(ti)}
δi{S(ti)}

1−δi                (2.95)                 

n

i=1

 

 

An alternative expression for the likelihood function can be obtained by writing 

expression (2.95) 

 

∏{
f(ti)

S(ti)
}

δi

    ,

n

i=1

 

 

So that from equation (2.4) becomes 

 

∏[h(ti)]
δi

n

i=1

S(ti)  .                                             (2.96) 

Estimates of the unknown parameters in this likelihood function are then found by 

maximizing the logarithm of likelihood function (collett, 2003). 
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2-16-1.Fitting the Exponential distribution 

Suppose that the survival times of n individuals, t1, t2,. . . , tn, are assumed to have an 

exponential distribution .further suppose that the data give the actual death times of r 

individuals ,and that remaining n-r survival times are right –censored (collett, 2003).  

For the exponential distribution, 

 

f(t)   =   λe−λt  ,     S(t)  = e−λt 

 

The likelihood function for the n observations is given by 

 

ℒ(λ) = ∏ (λe−λti)
δi
(e−λti)

1−δin
i=1  , 

 

Where 

 δi is zero if the survival time of the ith individual is censored and unity  otherwise.  

After some simplification, 

 

 

ℒ(λ) = ∏ λδin
i=1 e−λti , 

 

And the corresponding log-likelihood function for uncensored individuals is 

 

logℒ(λ) =  ∑ δi log λ −  λ∑ ti
n
i=1

n
i=1  . 

 

Since the data contain r deaths, ∑ δi
n
i=1 = r and the likelihood function becomes 

 

logℒ(λ) =  r log λ − λ∑ ti
n
i=1  . 
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We now need to identify the value   λ̂, for which the log-likelihood function is a 

maximum .Differentiation with respect to λ  gives 

 

d logℒ(λ)

d λ
 =
r

λ
−∑ti

n

i=1

 , 

 

And equating the derivative to zero and evaluating it at λ̂ gives 

 

λ̂ =  
r

∑ ti
n
i=1

                                                  (2.97) 

 

For the maximum likelihood estimator of λ .The mean of an exponential distribution is  

μ =  λ−1 , and so the maximum likelihood estimator of  μ is 

 

   �̂�  =  λ−1 =  
1

𝑟
∑ti 

n

i=1

 

 

where  ∑ ti
n
i=1   is the total time survived by the n individuals in the data set and  𝑟  is 

number of deaths observed. 

The standard error of either λ̂or �̂�  can be obtained from the second derivative of the of 

the log-likelihood function. Differentiating  𝑙𝑜𝑔 ℒ(λ) a second time gives 

 

𝑑2 log ℒ(𝜆) 

𝑑𝜆2
  =  −

𝑟

𝜆2
 

 

 and so asymptotic variance of  λ̂ is  

 

𝑉𝑎𝑟(λ̂) =   {−E(
𝑑2 log ℒ(𝜆)

𝑑𝜆2
)}

−1

= 
𝜆2

𝑟
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Consequently, the standard error of  λ̂ is given by 

 

𝑠𝑒(λ̂) =  λ̂
√𝑟
⁄                                       (2.98 )         

         

This result could be used to obtain a confidence interval for mean survival time. The 

limits of A 100(1 − 𝛼)% Confidence interval for λ are. 

 

λ̂ ± zα 2⁄ 𝑠𝑒(λ̂)  ,     

 

where   zα 2⁄    is the upper α 2⁄ -point of the standard normal distribution (collett, 2003). 

Once an estimate of 𝜆 has been found, the estimated hazard function is ℎ̂(𝑡) =  λ̂   and 

the estimated survivor function is   �̂�(𝑡) = exp (−λ̂𝑡). In addition, the estimated 𝑝 𝑡ℎ 

percentile is given by 

 

�̂�(𝑝) =  
1

 λ̂
𝑙𝑜𝑔 (

100

100−𝑝
)                          (2.99)                                  

 

and the estimated median survival time is that   

�̂�(50) = 1
λ̂
⁄ log2    .               (2.100) 

 

The standard error of an estimate of the 𝑝 𝑡ℎ percentile of distribution of survival times 

can be found using the result for the approximate variance of a function of a random 

variable given in equation (2.13).according to this result, an approximate to the variance 

of a function g(λ̂) of λ̂ 

Is such that 

 

var{g(λ̂)} ≈ {
dg(λ̂)

dλ̂
}
2

  var(λ̂)                                    (2.101)                                         
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Using this result, the approximate variance of the estimated 𝑝𝑡ℎ percentile is given by  

 

var{t̂(p)} ≈ {−
1

λ̂2
log (

100

100 − p
)}
2

  var(λ̂) 

 

On simplifying this and taking the square root, we get 

 

𝑠𝑒{t̂(p)} =  
1

λ̂2
log (

100

100−p
) 𝑠𝑒(λ̂), 

 

and on further substituting for 𝑠𝑒(λ̂) from equation (2.98) and �̂�(𝑝) from equation 

(2.100) we find 

 

𝑠𝑒 {t̂(p)} =  
t̂(p)

√𝑟
         .                                    (2.102) . 

 

In particular, the standard error of the estimated median survival is  

 

𝑠𝑒 {t̂(50)} =  
t̂(50)

√𝑟
.                                                   (2.103) 

 

Confidence, intervals for a true percentile are best obtained from exponentiating the 

confidence limits for the logarithm of the percentile. This procedure ensures that 

confidence limits for the percentile will be non-negative. Again making use of the result 

in equation (2.101), the standard error of log t̂(p) is given by 

 

𝑠𝑒{𝑙𝑜𝑔 t̂(p)} =  �̂�(𝑝)−1 𝑠𝑒{t̂(p)}, 

 

and after substituting for  𝑠𝑒{t̂(p)} from equation (2.102), this standard error becomes 

 

𝑠𝑒{𝑙𝑜𝑔 t̂(p)} =  1
√𝑟
⁄  
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Using this result, 100(1 − 𝛼)% confidence limits for 100 𝑝th percentile are 

 

𝑒𝑥𝑝 {𝑙𝑜𝑔 t̂(p) ± zα 2⁄
1
√𝑟
⁄ } ,      that is t̂(p)𝑒𝑥𝑝 {±zα 2⁄

1
√𝑟
⁄ }, 

 

Where  zα 2⁄   is upper α 2⁄ -point of standard normal distribution. 

 

2-16-2.Fitting the Weibull distribution 

The survival times of n individuals are now taken to be censored sample from a Weibull 

distribution with scale parameter   𝜆 and shape parameter  γ . Suppose that there are 𝛾 

deaths among the 𝑛  individuals and n − r right censored survival times. To obtain the 

likelihood of the sample data .the probability density, survivor and hazard function of a 

W (𝜆, 𝛾) (collett, 2003) distribution are given by  

 

f(t) =  λγtγ−1exp (−λtγ) 

 

S(t) =  exp (−λtγ) 

 

h(t) =  λγt(γ−1) 

 

and so, from expression (2.95),the likelihood of 𝑛 survival times is  

 

∏{λγti
γ−1exp (−λti

γ}δi

n

i=1

{exp (−λti
γ)}1−δi , 

 

 

where δi is zero if the  ith a survival time is censored and unity otherwise.  Equivalently, 

from expression (2.96), the likelihood function is 
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∏{λγti
γ−1}δi

n

i=1

ex p(−λti
γ). 

 

This is regarded as a function of  𝜆 and   𝛾  , the unknown parameters in the weibull 

distribution, and so can be written  𝐿( 𝜆, 𝛾). The corresponding log-likelihood function 

is given by  

 

log L(λ, γ) =  ∑δilog (λγ

n

i=1

) + (γ − 1)∑ δi log ti
n

i=1
− λ∑ti

γ

n

i=1

, 

 

And noting that   ∑ δ =   ri
n
i=1 , the log-likelihood becomes  

 

Log L (λ, γ) = rLog(λγ) + (γ − 1)∑δi log ti

n

i=1

−  λ∑ti
γ

n

i=1

. 

 

The maximum likelihood estimate of  𝜆 and 𝛾 are found by differentiating this function 

with  respect to 𝜆  and 𝛾 , equating the derivatives to zero , and evaluating them at  �̂� 

and  𝛾 . The resulting equations are  

 

r

λ̂
 − ∑ti

γ̂

n

i=1

= 0,                                               (2.104)     

                                           

And 

 

r

γ̂
+∑δi log ti 

n

i

− λ̂∑ti
γ̂ log ti 

n

i=1

= 0.           .   (2.105)     

 

From equation (2.104), 

λ̂ =
r

∑ ti
γ̂n

i=1

 ,                                               (2.106) 
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and on substituting for �̂� in equation (3.105), we get equation 

 
r

γ̂
+ ∑ δi log ti

n
i −

r

∑ ti
γ̂n

i=1

∑ ti
γ̂n

i=1 log ti = 0                         (2.107)             

 

This is a non – linear equation in  𝛾 , which can only be solved using an iterative 

numerical procedure. Once the estimate, 𝛾,̂  which satisfies equation (2.107), has been 

found, equation (2.106) can be used to obtain   �̂� . In practice, a numerical procedure, 

such as the Newton-Raphson algorithm, is used to find the values �̂� and  𝛾  which 

maximize the likelihood function simultaneously. 

Once estimate of the parameters 𝜆 and 𝛾 have been fitting the Weibull distribution to 

the observed data, percentiles of the survival time distribution can be estimated using 

equation (2.65). The estimated   pth percentiles of distribution is  

 

�̂�(𝑝) = {
1

λ̂
𝑙𝑜𝑔 (

100

100 − 𝑝
)}

1
γ̂⁄

                     (2.108)       

 

and so the estimate median survival time is given by 

t̂(50) = {
1

λ̂
log2}

1
γ̂⁄

                                             (2.109) 

 
 

The standard error of the estimated 𝑝𝑡ℎ  percentile can obtained using a generalization 

of the result in equation (2.101) to the case where the approximate variance of a function 

of two estimates is required.  

 

se{ t̂(p)} =  
t̂(p)

λ̂γ̂2
{γ̂2 var(λ̂) + λ̂2(cp − log λ̂)

2
var(γ̂) + 2λ̂γ̂(cp −

log λ̂)cov(λ̂, γ̂)}

1

2
.                                                                                                 (2.110)      
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where   

    

 c
p =  log log(

100

100−p
)
 

 

The variances of λ̂  and  γ̂  , and their covariance, are found form the variance covariance 

matrix of estimate. 

A confidence interval for the true value of the pth percentile,  t(P), is best obtained 

from the corresponding interval for  log t(P)  .The standard error of  log t̂(p) is 

 

se {log t̂(p)} =  
1

 t̂(p)
se{ t̂(p)}                                 (2.111)                           

 
and   100(1 − α)%  confidence limits for  log t(P)  are 

 

 log t̂(p) ± zα 2⁄ se {log t̂(p)}, 

 

2-16-3.Fitting Gompertz distribution 

Estimation of λ   and  γ for data with or without censored observations 

Assume that t1, t2, … , tn are the observed survival times from n individuals and the 

survival times follow the Gompertz distribution, without loss of generality, and assume 

that  t1, t2, … , tr are uncensored and t+r+1, t
+
r+2, … , t

+
n right-censored. The MLE of λ 

and γ can be obtained by solving the equations (Lee & Wang, 2003).Using the survival 

function and density function of the Gompertz distribution is given from equation (2.67) 

and (2.68).  

 

 

r +
eλ

γ
{∑[1 − exp(γti)]

r

i=1

+ ∑ [1 + exp(γti
+)]

n

i=r+1

} = 0     (2.112) 
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∑ti

r

i=1

−
eλ

γ2
 {∑[1 + (γti − 1)exp(γti)] +

r

i=1

∑ [1 + (γti
+ − 1)]

n

i=r+1

exp(γti
+)}

= 0                                                                                             (2.113) 

 

Using the Newton-Raphson iterative procedure 

 

2-16-4.Fitting lognormal distribution 

When the data are progressively censored, let  𝑡1, 𝑡2, … , 𝑡𝑟 be uncensored and 

𝑡+𝑟+1, 𝑡
+
𝑟+2, … , 𝑡

+
𝑛be censored observations, the likelihood function (Lee & Wang, 

2003), using (2.73), (2.80) 

 

l(μ, σ2) =
rlog(2πσ2)

2
−∑(log ti +

(log ti − μ)
2

2σ2
)

r

i=1

+ ∑ log {∫  
1

x√2πσ2

∞

ti
+

exp [−
1

2σ2
(log x − π)2] dx}

n

i=r+1

 

 

And the MLE of  μ and σ2 can be obtained by solving the following two equations 

 

∑
log ti − μ

σ2

r

i=1

+ ∑  
∫  
∞ 

ti
+  

log x − μ

xσ2√2πσ2
exp [−

1
2σ2

(log x − μ)2] dx

∫  
1

x√2πσ
 exp

∞ 

ti
+    

[−
1
2σ2

(log x − μ)2] dx

n

i=r+1

= 0    (2.114 ) 

 

−
𝑛

2𝜎2
+∑

(𝑙𝑜𝑔 𝑡𝑖 − 𝜇)
2

2𝜎4

𝑟

𝑖=1
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Again this can be done by applying the Newton-Raphson iterative procedure. 
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2-16-5.Fitting log logistic distribution 

let  𝑡1, 𝑡2, … , 𝑡𝑟 be uncensored and 𝑡+𝑟+1, 𝑡
+
𝑟+2, … , 𝑡

+
𝑛be censored observations, the 

likelihood function, using the censored observations from n persons and the survival 

times follow the log-logistic distribution. Then the MLE of  𝛼 and   𝛾 can be obtained 

from solving the following two simultaneous equations (Lee & Wang, 2003): 

 

r − α(2∑
ti
γ

1 + αti
γ + ∑

ti
+γ

1 + α ti
+γ

r

i=r+1

r

i=1

) = 0          ( 2.116) 

 

r

γ
+∑log(ti) − α [2∑

ti
γ log(ti)

1 + αti
γ + ∑

ti
+γ log ti

+

1 + α ti
+γ

n

i=r+1

r

i=1

]

r

i=1

= 0    (2.117 ) 

 

Using the Newton-Raphson iterative procedure, if all the survival times observed 

are uncensored, the respective equations for all the MLE of  𝛼 and   𝛾 can be obtained 

simply by replacing  𝑟 𝑤𝑖𝑡ℎ 𝑛 in (2.116) and (2.117). 

 

2-17. Strategy for model selection: 

One of these criteria is the information criterion of Akaike (AIC), the Baysian 

Information Criterion (BIC) and the Cox-Snell Information Criterion (CSIC), the latter 

of which is a graphic rather than a mathematical criterion, many of the criteria used to 

choose the best model from different models deal with the same data for prediction in 

the future. 

 

2-17-1. Akaike’s Information Criterion(𝐀𝐈𝐂) 

AIC: Comparisons may also be made on the basis of statistics between a varieties 

of potential models which do not necessarily need to be nested (Klein & 

Moeschberger, 1997; Pourhoseingholi, et al., 2007; Akaike, 1974; Collett, 2003). 
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AIC =  −2(log likelihood) +  2(P +  K)          (2.118)     .  

 

Where P is the number of parameters, and K is the number of (excluding constant) 

coefficients in the model. For P=1, for P=2, for Weibull and Gompertz, for the 

exponential. The smaller the value of this statistic, the better the model, and the better 

this statistic is known as Akaike’s knowledge criterion. 

 

  The statistic −2log L̂ = −2(log likelihood ) 

 

 To compare alternative models fitted to an observed set of survival data, a statistic that 

measures the extent to which the data are fitted by a particular model is required. For 

reasons given in sequel it is more convenient to use minus twice the logarithm of the 

maximized likelihood in comparing alternative models. If the maximized likelihood for 

a given model is denoted by  L̂  , the summary measure of agreement between the model 

and the data is    −2log. 

L̂  is in fact the product of a series of conditional probabilities, and so this statistic will 

be less than unity .in consequence, −2log will always be positive, and for a given data 

set, the smaller the value of  −2log , the better the model. 

The statistic −2log L̂ cannot be used on its own as a measure of model adequacy. The 

reason for this is that the value of   L̂ , and hence of −2log L̂ is dependent upon the 

number of observation in data set. The value −2log L̂ is only useful when making 

comparisons between models fitted to the same data (collett, 2003). 

 

2-17-2. Baysian Information Criteria (BIC)  

 

BIC =  −2(log likelihood) + (P + K) ∗ log(n)       (2.119)           

 

In the distribution, where P is the number of parameters, K is the number of 

coefficients and n is the number of observations. As the best-fit model, the distribution 
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that has the lowest BIC value is considered is given by (Saikia & Barman, 2017; 

Schwarz, (1978)) . 

 

2-17-3. residuals for parametric models: 

Suppose that Ti is the random variable associated with the survival time of the ith 

individual. i = 1,2,…n,   and that   x1i,x2i, … , xpi 

Are values of p explanatory variables,x1, x2, … xp for this individual .assuming an 

accelerated failure time model for  Ti, we have that  

log Ti = μ − σ1x1i +σ2x2i +⋯+ σpxpi + σϵi, 

 

2-17-3-1.Cox-Snell residuals 

The Cox-Snell residuals are essentially the estimated values of cumulative hazard 

function for  𝑖𝑡ℎ observation, at the corresponding event time,  𝑡𝑖 . Residuals that have a 

similar form may also be used in assessing the adequacy of parametric models .the main 

difference is that now the survivor and hazard functions are parametric functions that 

depend on the distribution adopted for survival times. In particular, the estimate 

survivor function for 𝑖ℎ individual, on fitting an accelerated failure time model given 

by 

 

Ŝi(t) = Sϵi (
log t − μ̂ − α̂1x1i − α̂2x2i −⋯− α̂pxpi

σ̂
),            (2.120) 

 

Where   

Sϵi is the survivor function of ϵi in accelerated failure time model, α̂j   is the estimated 

coefficient of  xji , j =  1, 2, … , p, and μ̂, σ̂ are estimated values of  μ and σ.The form   

Sϵi(t)  for some commonly . 

 

 

The Cox-Snell residuals for parametric model are defined is given by (Saikia & Barman, 

2017; Cox & Snell, 1968) . 
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rCi = Ĥi(ti) = −logŜi(ti),                                 (2.121) 

 

where Ĥi(ti) is estimated cumulative hazard function, and Ŝi(ti) is the estimated 

survivor function in equation (3.61), for ih individual, on fitting an accelerated failure 

time mode, evaluated at  ti . 

 

2-17-3-2.Martingale residuals 

The Martingale residuals provide a measure of difference between the observed number 

of deaths in the interval  (0, ti) which is either 0 or 1 , and the number predicted by the 

model .observations with unusually large Martingale residuals are not well  fitted by the 

model .the analogue  of the Martingale residuals defined for the Cox regressions model 

. In question (3.43) is such that  

 

rMi = δi − rCi,                               (2.122) 

 

Where δi is the event indicator for the ith observation, so that δi is unity if that 

observation is an event and zero if censored, and now  rCi  is the Cox -Snell given in 

equation (2.63) (collett, 2003). 

2-17-3-3.Deviance residuals 

 

The deviance residuals can regard as an attempt the martingale residuals symmetrically 

distributed about zero, and defined by  

 

rDi = sgn(rMi)[−2{rMi + δilog(δi − rMi)}]
1
2⁄  ,                         (2.123) 

 

It is important to note that these quantities are not components of the deviance for the 

fitted parametric model, but nonetheless it will be convenient to continue to refer to 

them as deviance residuals (collett, 2003). 

 

 



 
 

 

 

 

 

 

 

 

 

Chapter Three 

Basic Concept of Kidney Failure Disease 
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3-0 Preface: 

The human kidneys are two relatively small but vital organs, located at the end of the 

rib cage, one on each side of the spine, behind the peritoneal cavity .Their main roles 

are removal of waste products from the blood, maintenance of homeostatic balance in 

the body, and secretion of important hormones. In order to perform their tasks, the 

kidneys have evolved over thousands of years into organs of an unusually sophisticated 

anatomy and physiology (Boulpaep, 2004), Kidney or renal failure means that the 

kidneys stop removing the waste from the blood. Stage 5 kidney failure is, also, known, 

as End- Stage Renal Disease (ESRD) and it is treated by dialysis or a kidney transplant 

(Prevention, 2014). 

 

3-1. Kidney’s function 

The Kidney’s function is filtering the blood. All the blood in our bodies passes 

through the kidneys several times a day. The kidneys remove wastes, control the 

body's fluid balance, regulate the balance of electrolytes, and the kidneys balance 

the salts and minerals such as calcium, phosphorus, sodium, and potassium that 

circulate in the blood. Your kidneys also make hormones that help control blood 

pressure, make red blood cells, and keep your bones strong. As the kidneys filter 

blood, they create urine, which collects in the kidneys' pelvis funnel shaped 

structures that drain down tubes called ureters to the bladder. Each kidney contains 

around a million units called nephrons, each of which is a microscopic filter for 

blood. It's possible to lose as much as 90% of kidney function without experiencing  

any symptoms or problems. (Matthew Hoffman, 2016; Cente, 2016). 

 

3-2. Renal diseases 

Considering their importance and complexity, it is not surprising that the 

impairment of the kidney functions has serious consequences for the organism. The 

most fundamental is dysfunction of other tissues and organs caused by the waste 

https://www.niddk.nih.gov/Dictionary/H/hormone
https://www.niddk.nih.gov/Dictionary/B/blood-pressure
https://www.niddk.nih.gov/Dictionary/B/blood-pressure
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products accumulating in the blood. Without appropriate treatment, that will very 

likely lead to a prompt death. Sadly, in Western countries renal diseases are 

becoming increasingly widespread. It has been estimated that 1 in 10 people has 

some kind of kidney disease, and 1% of them will in due course develop end stage 

renal disease and will need renal replacement therapy (either dialysis or 

transplantation) to stay alive. Although the final tragic outcome, the end stage renal 

disease, characterized by the loss of nephrons and deposition of extracellular 

matrix, is common for all sorts of non-malignant kidney diseases if they are not 

stopped at an earlier stage, the initial causes vary greatly. Renal disease may start 

with hypertension, glomerulonephritis (inflammation in the glomerulus, usually 

resulting from an infection or autoimmune reaction), formation of large cysts 

gradually replacing the normal tissue (like in the most frequent inherited kidney 

disease known as polycystic kidney disease), or overuse of medicines or “street” 

drugs]. The most common cause, however, is poorly controlled diabetes (Boulpaep, 

2004) 

 

3-3. Causes of kidney disease 

There are many causes of kidney disease. In the United States, diabetes and high 

blood pressure are the two leading causes. Some conditions are inherited (run in 

families); people may be born with abnormal kidneys. The following are some of 

the most common causes of kidney damage. 

Diabetes is a disease in which your body does not make enough insulin the hormone 

that processes sugar or cannot properly use normal amounts of insulin. The result 

is a high blood sugar level, which can cause problems in many parts of your body. 

High blood pressure (also known as hypertension) is another common cause of 

kidney disease and other illnesses, such as heart attacks and strokes. When high 

blood pressure is controlled, the risk of kidney disease is decreased. 
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Glomerulonephritis (glo-mer-yoolow- nef-rite-iss) is a disease that causes 

inflammation of the kidney’s tiny filtering units the glomeruli. Glomerulonephritis 

may happen suddenly, for example after a bout of strep throat, and the individual 

may get well again. However, the disease can also develop slowly over several years 

and it may cause loss of kidney function. 

Polycystic kidney disease is the most common inherited kidney disease. It is 

characterized by the formation of cysts in the kidneys. These cysts enlarge over 

time and can seriously damage the kidneys or even cause kidney failure. 

Kidney stones are a common problem. Having kidney stones may or may not lead 

to long-term kidney problems. Stones result from a build-up of extra wastes in the 

blood. The most common wastes are oxalate and uric acid. Sometimes extra fluid, 

diet, and medications can help prevent stones from forming. Kidney stones may 

cause severe pain in your back and side. Stones are sometimes too large to pass out 

of your body in urine. In these cases, the stones can be removed surgically or broken 

down into smaller pieces that can pass out of the body in urine. 

Urinary tract infections (UTIs) happen when germs enter the urinary tract and 

multiply. Symptoms include feeling an increased need to urinate, pain and/ or 

burning during urination, cloudy or blood-stained urine, and a strong odor to the 

urine. These infections happen most often in the bladder, but they sometimes spread 

upwards to the kidneys. This causes fever and back pain. Kidney infections are 

serious and must be treated right away to avoid scarring kidney tissue. 

Congenital diseases, ones that people are born with, may also affect the kidneys. 

These diseases usually begin with a problem that happens in a baby’s urinary tract 

when it is growing in the womb. One of the most common congenital diseases 

happens when a valve in the bladder fails to work and allows urine to back up to 

the kidneys, causing infections and possible kidney damage over time. 
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Drugs and toxins can also cause kidney problems. Using large amounts of over-

the-counter pain relievers (non-steroidal anti-inflammatory drugs (NSAIDs)) for a 

long time can be harmful to the kidneys. Certain other damage (Foundation, 2015). 

 

3-4. Kidney Failure 

In kidney failure, the kidneys lose their ability to filter enough waste products from 

the blood and to regulate the body's balance of salt and water. Eventually, the 

kidneys slow their production of urine, or stop producing it completely. Waste 

products and water accumulate in the body. This can lead to potentially life‐

threatening complications. Excess fluid can accumulate in the lungs and extreme 

changes in blood chemistry can affect the function of the heart and brain. General 

categories of kidney failure (also called renal failure) (Publications, 2017). 

 

3-4-1.Acute renal failure 

 Kidney function stops or is abruptly reduced because of a sudden illness, a medication, 

a toxin or a medical condition that causes one of the following: 

 which can occur during major surgery, severe burns with fluid loss through 

burned skin, massive bleeding ﴾hemorrhage﴿ or a heart attack that severely 

affects heart function 

 Direct damage to kidney cells or to the kidneys' filtering units, which can be 

caused by inflammation in the kidneys, toxic chemicals, medications, 

contrast dye used for computed tomography ﴾CT﴿ scans and certain 

procedures ﴾such as angiograms﴿ that are guided by x‐ray, and infections. 

 Blocked urine flow from the kidney, which can occur because of obstructions 

outside the kidney, such as kidney stones, bladder tumors or an enlarged 

prostate (Publications, 2017). 

  
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3-4-2.Chronic kidney disease (chronic renal failure) 

Chronic kidney disease (CKD) means your kidneys are damaged and can’t filter 

blood the way they should. The disease is called “chronic” because the damage to 

your kidneys happens slowly over a long period of time. This damage can cause 

wastes to build up in your body. CKD can also cause other health problems (Cente, 

2016). 

Chronic kidney disease (CKD) is classified into five stages (stages 1–5) according 

to the Glomerular filtration rate (GFR).which can easily be estimated (eGFR), from 

measurement of the blood creatinine level, and taking into account, age, ethnicity 

and gender (Day, 2017). GFR is a test that measures the glomerular filtration rate. 

It compares the levels of waste products in the patient's blood and urine. GFR 

measures how many milliliters of waste the kidneys can filter per minute. The 

kidneys of healthy individuals can typically filter over 90 ml per minute. 

Glomerular filtration rate (GFR) is classified kidney disease five stages: 

Stage 1 - GFR rate is normal. However, evidence of kidney disease has been 

detected. 

Stage 2 - GFR rate is lower than 90 milliliters, and evidence of kidney disease has 

been detected. 

Stage 3 - GFR rate is lower than 60 milliliters, regardless of whether evidence of 

kidney disease has been detected. 

Stage 4 - GRF rate is lower than 30 milliliters, regardless of whether evidence of 

kidney disease has been detected. 

Stage 5 - GFR rate is lower than 15 milliliters. Renal failure has occurred 
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3-4-3. End-stage renal disease  

End-stage renal disease (ESRD) is the last stage of chronic kidney disease and is 

characterized by permanent irreversible kidney failure. Patients with ESRD include 

those who are treated with dialysis is a process that removes wastes and fluid from 

the body—and those who have a functioning kidney transplant. Because of the 

limited number of kidneys available for transplantation and variation in patients’ 

suitability for transplantation, 70 percent of ESRD patients undergo maintenance 

dialysis (services, 2015) 

End-stage renal disease (ESRD) which corresponds to GFR of 15 mL , initiation of 

maintenance dialysis or receipt of preemptive renal transplantation is classified as 

CKD stage 5.This also is called end stage renal failure .it’s  occurs when kidney 

function has deteriorated to the point that if dialysis treatments do not begin, the 

person will die.  

 

3-4-3-1.Causes of end stage renal disease 

The main causes of end stage renal disease are diabetes mellitus, renal vascular 

diseases, glomerulonephritis and hypertension (American, 2002). The risk of 

chronic kidney disease increases with ageing, but also lifestyle factors may play a 

role in the development of chronic kidney disease. It is known that obesity leads to 

chronic kidney disease through diabetes mellitus and hypertension, but emerging 

evidence indicates that obesity may also contribute directly to kidney damage 

through a cascade of additional hemodynamic, metabolic, and inflammatory 

mechanisms as well as by mechanical compression. (Iseki, et al., 2004).In addition, 

there is evidence that smoking may be a risk factor for chronic kidney disease. 

Furthermore, the prevalence of chronic kidney disease is 1.5 times increased in men 

compared with women, suggesting a sex difference in susceptibility (Vupputuri S, 

2003). 
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3-4-3-2 .Symptoms chronic kidney disease and end-stage renal failure 

 Because the kidney damage in chronic renal failure occurs slowly over a long time, 

symptoms develop slowly, usually beginning when more than 80% of kidney 

function is lost. When this occurs, symptoms can include: 

Headache, Fatigue, Weakness, Lethargy, Itching, Poor appetite, Vomiting, 

Increased thirst, Pale skin, High blood pressure, Slowing of growth in children, 

Bone damage in adults (publications, 2017) 

 

3-5.Chronic kidney disease and end-stage renal failure diagnosis 

The diagnosis of CKD starts with a medical history. A family history of kidney 

failure, high blood pressure, or diabetes may alert your doctor. However, other tests 

are necessary to confirm that you have CKD, such as:  

 

Complete blood count 

A complete blood count can show anemia. Your kidneys make erythropoietin, 

which is a hormone. This hormone stimulates your bone marrow to make red blood 

cells. When your kidneys are severely damaged, your ability to make erythropoietin 

decreases. This causes a decline in red blood cells, or anemia 

 

Electrolyte level test 

CKD can affect your electrolyte levels. Potassium may be high and bicarbonate 

levels may be low if you have CKD. There may also be an increase of acid in the 

blood (Elizabeth & Verneda Lights, 2017). 
 

Blood test - a blood test may be ordered to determine whether waste substances are 

being adequately filtered out. If levels of urea and creatinine are persistently high, 

the doctor will most likely diagnose end stage kidney disease. 
 

Urine test - a urine test helps find out whether there is either blood or protein in the 

urine. 
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Kidney scans - kidney scans may include a magnetic resonance imaging scan, 

computed tomography (CT) scan or an ultrasound scan. The aim is to determine 

whether there are any blockages in the urine flow. These scans can also reveal the 

size and shape of the kidneys - in advanced stages of kidney disease the kidneys are 

smaller and have an uneven shape. 
 

Kidney biopsy - a small sample of kidney tissue is extracted and examined for cell 

damage. An analysis of kidney tissue makes it easier to make a precise diagnosis of 

kidney disease. 

Chest X-ray - the aim here is to check for pulmonary edema (fluid retained in the 

lungs). 

 

3-6. Risk factors 

Factors that may increase your risk of chronic kidney disease include: 

 Diabetes 

 High blood pressure 

 Heart and blood vessel (cardiovascular) disease 

 Smoking 

 Obesity 

 Being African-American, Native American or Asian-American 

 Family history of kidney disease 

 Abnormal kidney structure 

 Older age.(staff, 2017) 
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3-7.Treatment for end stage kidney disease 

If your kidneys can't keep up with waste and fluid clearance on their own and you 

develop complete or near complete kidney failure, you have end stage kidney 

disease. At that point, you need dialysis or a kidney transplant. 

 

3-7-1. Dialysis  

Dialysis is a procedure that is performed routinely on persons who suffer from acute 

or chronic renal failure, or who have ESRD. The process involves removing waste 

substances and fluid from the blood that are normally eliminated by the kidneys. 

Dialysis may also be used for individuals who have been exposed to or ingested 

toxic substances to prevent renal failure from occurring. There are two types of 

dialysis that may be performed, including the following: 

 

3-7-1-1.Peritoneal dialysis 

Peritoneal dialysis is performed by surgically placing a special, soft, hollow tube 

into the lower abdomen near the navel. After the tube is placed, a special solution 

called dialysate is instilled into the peritoneal cavity. The peritoneal cavity is the 

space in the abdomen that houses the organs and is lined by two special membrane 

layers called the peritoneum. The dialysate is left in the abdomen for a designated 

period of time which will be determined by your doctor. The dialysate fluid absorbs 

the waste products and toxins through the peritoneum. The fluid is then drained 

from the abdomen, measured, and discarded.  There are three different types of 

peritoneal dialysis: continuous ambulatory peritoneal dialysis (CAPD), continuous 

cyclic peritoneal dialysis (CCPD), and intermittent peritoneal dialysis (IPD). CAPD 

does not require a machine. Exchanges often referred to as passes, can be done three 

to five times a day during waking hours. CCPD requires the use of a special dialysis 

machine that can be used in the home. This type of dialysis is done automatically, 
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even while you are asleep. IPD uses the same type of machine as CCPD, but 

treatments take longer. IPD can be done at home, but usually is done in the hospital. 

 Possible complications of peritoneal dialysis include an infection of the 

peritoneum, or peritonitis, where the catheter enters the body. Peritonitis causes 

fever and stomach pain. Your diet for peritoneal dialysis will be planned with a 

dietitian, who can help you choose meals according to your doctor's orders (Library, 

2017).  

 

3-7-1-2 Hemodialysis 

Hemodialysis can be performed at home or in a dialysis center or hospital by trained 

health care professionals. A special type of access, called an arteriovenous (AV) 

fistula, is placed surgically, usually in your arm. This involves joining an artery and 

a vein together. An external, central, intravenous (IV) catheter may also be inserted, 

but is less common for long- term dialysis. After access has been established, you 

will be connected to a large hemodialysis machine that drains the blood, bathes it 

in a special dialysate solution which removes waste substances and fluid, then 

returns it to your bloodstream. Hemodialysis is usually performed several times a 

week and lasts for four to five hours. Because of the length of time hemodialysis 

takes, it may be helpful to bring reading material, in order to pass the time during 

this procedure. During treatment you can read, write, sleep, talk, or watch TV. At 

home, hemodialysis is done with the help of a partner, often a family member or 

friend. If you choose to do home hemodialysis, you and your partner will receive 

special training possible complications of hemodialysis include muscle cramps and 

hypotension (sudden drop in blood pressure). Hypotension may cause you to feel 

dizzy or weak, or sick to your stomach. Side effects are avoided by following the 

proper diet and taking medications, as prescribed by your doctor. A dietitian will 

work with you to plan your meals, according to your doctor's orders  (Library, 

2017). 
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3-7-2. Kidney transplant 

A kidney transplant is a better option than dialysis for patients who have no other 

conditions apart from kidney failure. Even so, candidates for kidney transplant will 

have to undergo dialysis until they receive a new kidney. 

The kidney donor and recipient should have the same blood type, cell-surface 

proteins and antibodies, in order to minimize the risk of rejection of the new kidney. 

Siblings or very close relatives are usually the best types of donors. If a living donor 

is not possible, the search will begin for a cadaver donor (dead person) (C. Poinier, 

et al., 2015). 

 

3-8. Global summary of End-stage renal disease 

End-stage renal disease (ESRD) is a major public health problem worldwide and is 

associated with considerable morbidity and mortality (Halle, et al., 

2015).According to the 2010 Global Burden of Disease study chronic kidney 

disease was ranked 27th in the list of causes of total number of global deaths in 

1990 (age- standardised annual death rate of 15・7 per 100 000), but rose to 18th 

in 2010 (annual death rate 16・3 per 100 000) (Jha, et al., 2013).Chronic kidney 

disease is at least 34 times more frequent in Africa than in developed countries. 

Hypertension affects approximately 25% of the adult population and is the cause of 

chronic kidney failure in 21% of patients on renal replacement therapy in the South 

African Registry. The prevalence of diabetic nephropathy is estimated to be 

14%16% in South Africa, 23.8% in Zambia, 12.4% in Egypt, 9% in Sudan, and 

6.1% in Ethiopia. The current dialysis treatment rate ranges from 70 per million 

populations (pmp) in South Africa to < 20 pmp in the most of sub Saharan Africa. 

(Naicker, 2009). 

End stage renal failure (ESRF) has become a major health problem in Sub Saharan 

Africa (SSA). There are limited data on the prevalence and incidence of ESRF in 

SSA due to lack of renal registries. Several studies pointed out to the magnitude of 
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the problem in SSA. In Nigeria a study reported an increase of hospital admissions 

because of ESRF from 6 to 16 % between the years 1989 and 2003 ( FA, et al., 

2011). In Senegal only 8.23 % of ESRF patients receive renal replacement therapy 

(RRT) (Diopt T, et al., 2003). In Ghana, a study pointed out that 5 % of total hospital 

admissions had renal disease of whom 27.1 % died, usually of ESRF (Plange-Rhule, 

et al., 1999). Hypertension is a leading cause of ESRF in Senegal and Ghana ( Diouf 

B, et al., 2000; Matekole M, 1993) . 

 

3-9. Kidney failure in Sudan  
Very limited data are available about the causes of renal diseases leading to chronic 

renal diseases in all states of Sudan (Elsharif & Elsharif, 2011). However, 

hypertension and diabetes mellitus are the most commonly reported cause of kidney 

failure (Sarra Elamin ،2010 ؛Elsharif & Elsharif, 2011). Intermittent peritoneal 

dialysis (IPD) was introduced in Sudan in 1968. In the same year, a personal set-up 

for home hemodialysis (HD) marked the start of HD in Sudan. The first renal unit 

was opened in Khartoum Teaching Hospital in 1970, where the first kidney 

transplant in Sudan and the second kidney transplant in the Middle East took place 

in 1974 (Suliman SM, 1995). Although it's early dialysis in Sudan, but now there 

are some problems of renal failure in Sudan. 

 

3-10. Problems of renal failure in Sudan 

There are no accurate statistics on the causes of the outbreak of the disease clearly 

in Sudan .But the important reasons come at the forefront of pressure and diabetes, 

especially among the elderly. And glomerulonephritis in both young and middle 

age, as well as diseases common in Sudan such as kidney stones and bacterial 

infections of kidneys. 
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There is a complete absence of such a record, making it difficult to real, but through 

simple studies in some hospitals to find out the real reasons for the spread of such 

phenomenon in Sudan. 
 

The absence of a regular follow-up system in the Sudan, many patients arrive in the 

late stages of kidney weakness and are waiting to dialysis. Simple medical 

interventions, such as urine testing, kidney functions, and regular sugar and pressure 

control, may enrich the human being from reaching this stage that needs dialysis. 

The suffering of patients undergoing dialysis in the Sudan is mostly of many 

difficulties linked to financial support despite free Hemodialysis in Sudan, however, 

the patient needs a large number of persistent drugs, the cost of which has recently 

risen, forcing some patients to dispense with each other 
 

In addition, some important drugs have been cut off from the market as a result of 

the non-importation of companies with regard to economic conditions and the 

instability of the exchange rate.  
 

The state has recently opened some dialysis centers in the States of the Sudan, but 

the vast majority of dialysis centers are stationed in Khartoum, which creates 

considerable pressure on it as we note a large number of state patients who have to 

relocate their residency to Khartoum to continue dialysis. The opening of other state 

centers could greatly help to reduce pressure on the services of the centers in 

Khartoum. Hemodialysis treatment in Sudan is free and paid by the government 

(banaga, 2012). 

 

There are limited data on the prevalence and causes of ESRF in Sudan apart from 

few studies. (Banaga, et al., 2015). 
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4-0. Preface: 

In this chapter we will use statistical methods mentioned in chapter three on the 

research data to obtain the required results of the study. The Microsoft Excel 

software 2013, SPSS 24 and STATA 2014 packages were used to analysis the study 

data. 

 

 4-1. Data research: 

Data were collected from records in  the governmental hospitals in Khartoum state 

for hemodialysis Patients, in the period from 2005 until December 2010 taking all 

available data for all patients in this period and patients were followed up until 

December 2015 .The study variables included age( date of diagnosis of the disease) 

, survival status even death or the date of last follow-up per months, Sex , Marital 

Status, Education status, occupation, Address, regular , Dialysis frequency per 

week, Hospitals , Diabetes Mellitus (yes or no), Hypertension (yes or no), 

Hypertension and Diabetes Mellitus (yes or no),polycystic kidney disease(yes or 

no), Renal obstructions (yes or no), Shrunken kidney(yes or no) Uncertain(yes or 

no), Other (yes or no). 

 

4-2. Descriptive analysis of the variables of the study: 

The descriptive statistical analysis, percentage, and frequency were measured 

using Microsoft Excel software and SPSS. 

 

4-2-1.Qaltitative variables: 
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Table (4-1). Sex: 

 

 

 

 

Source: prepared by the researcher by using SPSS 

 

Figure (4-1) .Bar chart of sex 

 
Source: prepared by the researcher by using Excel 

 

Seen from the table (4-1) and figure (4-1) that 194 patients by 59.7%   were male, 

followed by female 131 patients by 40.3%. Note that the frequency of male 

hemodialysis patients more than female. 
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Male 194 59.7% 

Female 131 40.3% 

Total 325 100.0% 
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Table (4-2). Marital status: 

Marital status Frequency Percentage% 

Divorced 8 2.5% 

Married 232 71.4% 

Single 78 24% 

Widowed 7 2.2% 

Total 325 100% 

Source: prepared by the researcher by using SPSS 

 

 

Figure (4-2). Bar chart of marital status  

 
Source: prepared by the researcher by using Excel 

 

Seen from the table (4-2) and figure (4-2) that 8 divorced patients by 2.5%, followed 

by 232 patients by 71.4%   were married, followed by single 78 patients by 24%, 

followed by widowed 7 patients by 2.2%. We note that the frequency of married 

patients is the largest among the other recurrences, in addition to the fact that most 

of them contracted the disease after their marriage 
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Table (4-3) .Education status: 

Source: prepared by the researcher by using SPSS 

 

Figure (4-3) .Bar chart of education status  

 
Source: prepared by the researcher by using Excel 

 

Seen from the table (4-3) and figure (4-3) that 106 patients by 32.6%   were basic, 

followed by Illiterate 25 patients by 7.7%, followed by intermediate 15 patients by 

4.6%, followed by Secondary 127 patients by 39.1%, followed by university 52 

patients by 16%. We note that the frequency of Secondary patients is the largest 

among the other recurrences. 
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basic 106 32.6% 

Illiterate 25 7.7% 

intermediate 15 4.6% 

Secondary 127 39.1% 

university 52 16% 

Total 325 100% 
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Table (4-4) .Occupation: 

Occupation Frequency Percentage% 

Employee 61 18.8% 

Free job 45 13.8% 

Not working 134 41.2% 

Police man 11 3.7% 

Retirement 14 4.3% 

Student 24 7.4% 

Worker 36 11.1.8% 

Total 325 100% 

Source: prepared by the researcher by using SPSS 

 

 

Figure (4-4) .Bar chart of occupation 

 
Source: prepared by the researcher by using Excel 

 

Seen from the table (4-4) and figure (4-4) that 61 patients by. 18.8%   were 

employee, followed by free job 45 patients by 13.8%, followed by not work 134 

patients by 41.2%, followed by police man 11 patients by 3.7%, followed by 

retirement 14 patients by 4.3%, followed by student 24 patients by 7.4%, followed 
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by   worker 36 patients by 11.8.we noted that the number of the not work is large 

compared to others, and this indicates their inability to work and they suffer from 

kidney failure. 

 

Table (4-5) .Address: 

Address Frequency Percentage% 

Khartoum 162 49.8% 

Omdurman 75 23.1% 

Bahri 69 21.2% 

outside Khartoum state 19 5.8% 

Total 325 100% 

Source: prepared by the researcher by using SPSS 

 

Figure (4-5) .Bar chart of address 

 
Source: prepared by the researcher by using Excel. 

 

Seen from the table (4-5) and figure (4-5) that 162 patients by 49.8%   were in  

Khartoum, followed by Omdurman 75 patients by 23.1%, followed by Bahri 69 

patients by 21.2%, followed by outside 19 patients by 5.3. 
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Table (4-6). Regular 

 

 

 

 

 

Source: prepared by the researcher using by SPSS 

 

Figure (4-6) .Bar chart of regular: 

 
Source: prepared by the researcher by using Excel 

Seen from the table (4-6) and figure (4-6) that 36 patients by 11.1%   were not 

regular, followed by regular 289 patients by 88.9%,  

Table (4-7). Dialysis frequency per week: 

Source: prepared by the researcher by using SPSS 
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Not regular 36 11.1% 

Regular 289 88.9% 

Total 325 100% 
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Table (4-8).Status * Dialysis frequency per week crosstabulation 

 

 

 

 

 

Source: prepared by the researcher by using SPSS 

 

Count 

Dialysis frequency 

Total 2 times 3 times 

status Death 55 115 170 

Alive 6 149 155 

Total 61 264 325 

Source: prepared by the researcher by using SPSS 

 

Figure (4-7) .Bar chart of Dialysis frequency per week  

 

Source: prepared by the researcher by using Excel 
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Total 325 100% 
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Seen from the table (4-7), (4-8) and figure (4-7) that 61 patients were (2) frequency 

dialysis in week their Percentage is 18.8%   of whom 55 died, and the survivors are 

6. They are followed by 264 patients with (3) frequency dialysis in week, their 

Percentage is 81.2%. 115 of them died and 149 survived. 

 

Table (4-9).Survival status 

 

 

 

 

 

Source: prepared by the researcher by using SPSS 

 

Figure (4-8) .Bar chart of survival status: 

 
Source: prepared by the researcher by using Excel 

 

Seen from the table (4-8) and figure (4-8) that 155 patients by 47.7% were alive or 

censored, followed by dead 170 patients by 52.3%. 
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censored   155 47.7% 

Dead 170 52.3% 

Total 325 100% 
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Table (4-10). Hospital 

Hospital Frequency Percentage% 

Ahemd Gasim 50 15.4% 

Bhari 70 21.5% 

Ebn Sena 74 22.8% 

Omdurman 62 19.1% 

Ribat 25 7.7% 

Salma Center 44 13.5% 

Total 325 100% 

Source: prepared by the researcher by using SPSS 

 

Figure (4-9). Bar chart of hospital: 

 

Source: prepared by the researcher by using Excel 

 

Seen from the table (4-9) and figure (4-9) that 50 patients by 15.4%   were in Ahemd 

gasim, followed by Bahri 70 patients by 21.5%, followed by ebn sena 74 patients 

by 22.8%, followed by Omdurman 62 patients by 19.1%, followed by ribat 25 

patients by 7.7%, followed by Selma center 44 patients by 13.5%. 
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Table (4-11). Diabetes mellitus: 

diabetes mellitus Frequency Percentage% 

No  236 72.6 

Yes  89 27.4 

Total 325 100.0 

Source: prepared by the researcher by using SPSS 

 

Table (4-12).Status * diabetes mellitus crosstabulation 

 

Diabetes mellitus 

Total No Yes 

status Death 109 61 170 

Alive 127 28 155 

Total 236 89 325 

Source: prepared by the researcher by using SPSS 

 

Figure (4-10).Bar chart of diabetes mellitus: 

 
Source: prepared by the researcher by using Excel 
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Seen from the table (4-11), (4-12) and figure (4-10) that 236 patients were non- 

diabetes mellitus their Percentage is 72.6%, of whom 109 died, and the survivors 

are 127. They are followed by 89 patients with diabetes, their Percentage is 27.4%. 

61 of them died and 28 survived.  

 

 

Table (4-13). Hypertension: 

Hypertension Frequency Percentage% 

No 229 70.5% 

Yes 96 29.5% 

Total 325 100.0% 

Source: prepared by the researcher by using SPSS 

 

 

 

Table (4-14).Status * hypertension crosstabulation 

 

 

Hypertension 

Total No Yes 

status Death 134 36 170 

Alive 95 60 155 

Total 229 96 325 

Source: prepared by the researcher by using SPSS 
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Figure (4-11). Bar chart of hypertension: 

 
Source: prepared by the researcher by using Excel 

 

Seen from the table (4-13), (4-14) and figure (4-11) that 229 patients were non 

hypertension their Percentage is 70.5%, of whom 134 died, and the survivors are 

95 .They are followed by 96 patients with hypertension, their Percentage is 29.5%. 

36 of them died and 60 survived.  

 

 Table (4-15) .Polycystic kidney disease: 

Source: prepared by the researcher by using SPSS 
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No 308 94.8% 

Yes 17 5.2% 

Total 325 100.0% 
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Table (4-16) .Status * polycystic kidney disease crosstabulation 
 

 

Polycystic kidney disease  

Total No Yes 

status Death 158 12 170 

Alive 150 5 155 

Total 308 17 325 

Source: prepared by the researcher by using SPSS 

 

Figure (4-12) .Bar chart of polycystic kidney disease: 

 
Source: prepared by the researcher by using Excel 

 

Seen from the table (4-15) , (4-16)  and figure (4-12) that 308 patients were non - 

polycystic kidney disease their Percentage is 94.8%, of whom 158 died, and the 

survivors are 150.They are followed by 17 patients with polycystic kidney disease, 

their Percentage is 5.2%. 12 of them died and 5 survived.  
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Table (4-17). Diabetes mellitus and hypertension: 

 

 

 

 

 

Source: prepared by the researcher by using SPSS 

 

Table (4-18) .Status * diabetes mellitus and hypertension crosstabulation 

 

Diabetes mellitus and hypertension 

Total No Yes 

status Death 143 27 170 

Alive 149 6 155 

Total 292 33 325 

Source: prepared by the researcher by using SPSS 

 

Figure (4-13). Bar chart of diabetes mellitus and hypertension:  

 

 

 

 

 

 

 

 

 

 

 

Source: prepared by the researcher by using Excel 

Diabetes mellitus and 

hypertension 

Frequency Percentage% 

No 292 89.8% 

Yes 33 10.2% 

Total 325 100.0% 
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Seen from the table (4-17), (4-18) and figure (4-13) that 292 patients were non - 

Diabetes mellitus and hypertension their Percentage is 89.8%, of whom 143 died, 

and the survivors are 149. They are followed by 33 patients with Diabetes mellitus 

and hypertension, their Percentage is 10.2%. 27 of them died and 6 survived.  

 

Table (4-19). Renal obstructions: 

Source: prepared by the researcher by using SPSS 

 

Table (4-20) .Status * renal obstructions crosstabulation 

 

 

Renal obstructions 

Total No Yes 

status Death 156 14 170 

Alive 142 13 155 

Total 298 27 325 

Source: prepared by the researcher by using SPSS 

 

 

 

 

Renal obstructions Frequency Percentage% 

N0 298 91.7 % 

Yes 27 8.3% 

Total 325 100.0% 
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Figure (4-14) bar chart of renal obstructions:  

 
Source: prepared by the researcher by using Excel 

 

Seen from the table (4-19) , (4-20)  and figure (4-14) that 298 patients were non - 

renal obstructions their Percentage is 91.7%, of whom 156 died, and the survivors 

are 142. They are followed by 27 patients with renal obstructions, their Percentage 

is 8.3%. 14 of them died and 13 survived.  

 

Table (4-21) .Shrunken kidneys: 

shrunken kidney Frequency Percentage% 

No 314 96.6% 

Yes 11 3.4% 

Total 325 100.0% 

Source: prepared by the researcher by using SPSS 
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Table (4-22) .Status * shrunken kidneys crosstabulation 

 

Shrunken kidneys 

Total No Yes 

status Death 169 1 170 

Alive 145 10 155 

Total 314 11 325 

Source: prepared by the researcher by using SPSS 

 

Figure (4-15) bar chart of shrunken kidneys: 

 
Source: prepared by the researcher by using Excel 

 

Seen from the table (4-21), (4-22) and figure (4-15) that 314 patients were non - 

shrunken kidney their Percentage is 96.6%, of whom 169 died, and the survivors 

are 145. They are followed by 11 patients with shrunken kidney, their Percentage 

is 3.4%. 1 of them died and 11 survived.  
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Table (4-23) .Uncertain: 

uncertain Frequency Percentage% 

No 300 92.3% 

Yes 25 7.7% 

Total 325 100.0% 

Source: prepared by the researcher by using SPSS 

 

Table (4-24) .Status * uncertain crosstabulation 

 

Uncertain 

Total No Yes 

status Death 160 10 170 

Alive 140 15 155 

Total 300 25 325 

Source: prepared by the researcher by using SPSS 

Figure (4-16) bar chart Uncertain 

 
Source: prepared by the researcher by using Excel 
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Seen from the table (4-23) , (4-24)  and figure (4-16) that 300 patients were non - 

uncertain their Percentage is 92.3%, of whom 160 died, and the survivors are 140. 

They are followed by 25 patients with uncertain, their Percentage is 7.7%. 10 of 

them died and 15 survived. . 

Table (4-25). Others: 

Source: prepared by the researcher by using SPSS 

 

 

Table (4-26) .Status * other crosstabulation 

 

Others 

Total No Yes 

status Death 195 5 170 

Alive 141 14 155 

Total 306 19 325 

Source: prepared by the researcher by using SPSS 

 

 

 

 

 

 

other Frequency Percentage% 

No  306 94.2% 

Yes  19 5.8% 

Total 325 100.0% 



119 
 

Figure (4-17). Bar chart of other:  

 
Source: prepared by the researcher by using Excel 

 

Seen from the table (4-25), (4-26) and figure (4-17) that 306 patients were non – 

other their Percentage is 94.2%, of whom 195 died, and the survivors are 141. They 

are followed by 19 patients with other include (Systemic lupus erytherematosus, 

tropical disease (malaria), Gout, Food poisoning, cardiovascular disease, NSAID) 

their Percentage is 5.8%. 4 of them died and 14 survived. . 
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4-2-2.Quantitative variable 

Table (4-27). Summarize of age  

Source: prepared by the researcher by using SPSS 

Seen from the table (4-27) that the min age 6, the max age 88.the first quartile age 

46.03, the median age 45, the third quartile 75. 
 

 

Table (4-28). Summarize of urea: 

Source: prepared by the researcher by using SPSS 

 Seen from the table (4-28) that the min urea 41, the max 385, the first quartile urea 

113, the median urea 150, the third quartile urea 182.50. 
 

 

Table (4-29). Summarize of creatinine grouping: 

Serum 

creatinine 

N Minimum Maximum First quartile  Median Third quartile 

325 2 25 6 8 10.85 

Source: prepared by the researcher by using SPSS 

Seen from the table (4-29) that the min creatinine 2, the max creatinine 25, the first 

quartile creatinine 6, the median creatinine 8, the third quartile creatinine 10.85. 

 

 

 

age 

N Minimum Maximum First quartile  Median Third quartile 

325 6 88 46.03 45 75 

 

Urea 

N Minimum Maximum First quartile  Median Third quartile 

325 41 385 113 150 182.50 
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4-2.3.Normality distribution test 

Table (4-30) Normality Test of Ahmed Gasim hospital 

variable Kolmogorov-Smirnova 

Statistic df Sig. 

urea 0. 236 50 0.200* 

serum creatinine 0.199 50 0.200* 

age 0.187 50 0.200* 

*. This is a lower bound of the true significance. 

 

 

Table (4-31). Normality test of Bahri hospital 

 

 

 

 

 

Table (4-32) .Normality test of Ebn Sena hospital 

 

 

 

 

 

 

 

 

variable Kolmogorov-Smirnova 

Statistic df Sig. 

urea 0.084 70 0.200* 

serum creatinine 0.099 70 0.088 

age 0.088 70 0.200* 

*. This is a lower bound of the true significance. 

variable Kolmogorov-Smirnova 

Statistic df Sig. 

urea 0.085 74 0.200* 

serum creatinine 0.080 74 0.200* 

age 0.082 74 0.200* 

*. This is a lower bound of the true significance. 
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Table (4-33). Normality test of Omdurman hospital 

 

 

 

 

 

Table (4-34). Normality test of Alribat hospital 

  

 

 

 

 

Table (4-35). Normality test of Selma Center 

variable Kolmogorov-Smirnova 

Statistic df Sig. 

urea .098 44 0.200* 

serum creatinine .097 44 0.200* 

ages .101 44 0.200* 

*. This is a lower bound of the true significance. 

Source: prepared by the researcher by using SPSS 

The Kolmogorov-Smirnov test was used to determine whether the data follow the 

normal distribution or not .the results are as shown in the tables (4-30) to (4-35). 

Show that the probability value (sig) is greater than level of significance 0.05.thus, 

the distribution of data follows the normal distribution, so the parametric tests were 

uses. 

variable Kolmogorov-Smirnova 

Statistic df Sig. 

urea 0.079 62 0.200* 

serum creatinine 0.087 62 0.200* 

age 0.087 62 0.200* 

*. This is a lower bound of the true significance. 

variable Kolmogorov-Smirnova 

Statistic df Sig. 

urea 0.122 25 0.200* 

serum 

creatinine 

0.128 25 0.200* 

age 0.098 25 0.200* 

*. This is a lower bound of the true significance. 
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4-3. Kaplan-Meier to estimate survival function, standard error 

and             confidence intervals at the 5% level of significance: 

 

Table (4-36): Kaplan-Meier to estimate survival function, standard error and 

confidence intervals at the 5% level of significance for patient’s hemodialysis 

Time Total event sensors 
Survivor 

Function 
Std .Error 

[95% Conf. Int.] 

lower upper 

1 325 0 7 1.0000 . . .  

2 318 2 2 0.9937 0.0044 0.9751 0.9984 

3 314 3 1 0.9842 0.0070 0.9625 0.9934 

4 310 2 0 0.9779 0.0083 0.9541 0.9894 

5 308 2 0 0.9715 0.0094 0.9460 0.9851 

6 306 7 1 0.9493 0.0124 0.9186 0.9686 

7 298 2 0 0.9429 0.0131 0.9109 0.9637 

8 296 1 0 0.9397 0.0134 0.9071 0.9611 

10 295 3 0 0.9302 0.0144 0.8959 0.9535 

11 292 2 1 0.9238 0.0149 0.8885 0.9483 

12 289 20 10 0.8599 0.0196 0.8163 0.8938 

13 259 1 1 0.8566 0.0198 0.8127 0.8909 

14 257 3 1 0.8466 0.0204 0.8016 0.8821 

15 253 1 0 0.8432 0.0206 0.7979 0.8791 

16 252 2 2 0.8365 0.0210 0.7906 0.8732 

17 248 1 2 0.8331 0.0211 0.7869 0.8702 

18 245 1 0 0.8297 0.0213 0.7831 0.8672 
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20 244 1 2 0.8263 0.0215 0.7794 0.8642 

21 241 1 0 0.8229 0.0217 0.7757 0.8611 

22 240 4 3 0.8092 0.0224 0.7607 0.8489 

23 233 2 0 0.8023 0.0227 0.7532 0.8426 

24 231 16 13 0.7467 0.0250 0.6936 0.7920 

25 202 1 3 0.7430 0.0252 0.6897 0.7886 

26 198 4 2 0.7280 0.0258 0.6737 0.7748 

27 192 0 2 0.7280 0.0258 0.6737 0.7748 

30 190 1 1 0.7242 0.0259 0.6696 0.7713 

31 188 1 0 0.7203 0.0261 0.6655 0.7677 

33 187 0 2 0.7203 0.0261 0.6655 0.7677 

34 185 1 0 0.7164 0.0262 0.6613 0.7642 

36 184 6 2 0.6930 0.0270 0.6366 0.7426 

37 176 1 0 0.6891 0.0272 0.6324 0.7389 

40 175 1 0 0.6852 0.0273 0.6282 0.7353 

44 174 1 1 0.6812 0.0274 0.6241 0.7316 

46 172 1 1 0.6773 0.0276 0.6199 0.7279 

48 170 5 5 0.6574 0.0281 0.5990 0.7093 

50 160 1 0 0.6532 0.0283 0.5947 0.7055 

55 159 1 0 0.6491 0.0284 0.5904 0.7016 

58 158 0 1 0.6491 0.0284 0.5904 0.7016 

59 157 0 1 0.6491 0.0284 0.5904 0.7016 

60 156 20 28 0.5659 0.0302 0.5044 0.6227 

61 108 1 0 0.5607 0.0304 0.4989 0.6178 
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62 107 0 1 0.5607 0.0304 0.4989 0.6178 

63 106 0 2 0.5607 0.0304 0.4989 0.6178 

64 104 0 1 0.5607 0.0304 0.4989 0.6178 

65 103 0 2 0.5607 0.0304 0.4989 0.6178 

67 101 0 2 0.5607 0.0304 0.4989 0.6178 

71 99 0 1 0.5607 0.0304 0.4989 0.6178 

72 98 6 12 0.5263 0.0316 0.4626 0.5861 

75 80 1 1 0.5198 0.0319 0.4555 0.5801 

76 78 2 1 0.5064 0.0324 0.4412 0.5680 

84 75 10 9 0.4389 0.0344 0.3707 0.5050 

89 56 1 0 0.4311 0.0347 0.3624 0.4978 

96 55 9 10 0.3605 0.0361 0.2903 0.4310 

108 36 12 7 0.2404 0.0372 0.1715 0.3158 

120 17 6 11 0.1555 0.0368 0.0918 0.2345 

Source: prepared by the researcher by using STATA ,2014 

Seen from table (4-36) that the first survival time observed is (1) month, and there 

are (325) individuals at risk, (0) individual is deaths, (7) individual is lost follow-

up and the value of the estimated survival function is (1). The value of the function 

remains at this value until the time of death observed below. The second observed 

survival time is (2) months there are (318) individuals at risk, (2) individual is 

deaths, (2) individual is lost follow-up and the value of the estimated survival 

function is (0.9937), with standard error (0.0044) and confidence intervals (0. 

0.9751 - 0.9984) at 5% significance level. The value of the function remains at this 

value until the time of death observed below. The third observed survival time is 

(3) months, and the number of individuals at risk is (314), there is (3) death, (1) 

individual is lost follow-up and the value of the estimated survival function is 
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(0.9842), with standard error (0.0070) and confidence intervals (0.9625– 0.9934) at 

5% significance level. The value of the function remains at this value until the time 

of death observed below. This process continues until the last time of death (120) 

months, where there are (17) individual at risk and (6) died, (11) individual is lost 

follow-up and the value of the estimated survival function is (0.1555), with standard 

error (0.0368) and confidence intervals (0.0918– 0.2345) at 5% significance level. 

 

Figure (4-18): Kaplan-Meier to estimate survival function, confidence 

intervals at the 5% level of significance for hemodialysis patients  

 
Source: prepared by the researcher by using STATA, 2014. 

 

The above figure is obtained from the survival function estimated in the table (4-

35) and shows that there is a decreasing function defined by the estimated survival 

function, which decreases at the observed death times and Is fixed between these 

times because the estimated survival function curve is approximately zero at the last 

time of survival and 17 patients are at risk .The greatest time is a time of survival 
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4-4. Kaplan-Meier to estimate hazard function, standard error and 

confidence intervals at the 5% level of significance: 

 

Table (4-37): Kaplan-Meier to estimate hazard function, standard error and 

confidence intervals at the 5% level of significance for patient’s hemodialysis 

 

Time Total event sensors 
hazard 

Function 
Std. Error 

[95% Conf. Int.] 

Lower upper 

1 325 0 7 0.0000 . .. . . 

2 318 2 2 0.0063 0.0044 0.0016 0.0249 

3 314 3 1 0.0158 0.0070 0.0066 0.0375 

4 310 2 0 0.0221 0.0083 0.0106 0.0459 

5 308 2 0 0.0285 0.0094 0.0149 0.0540 

6 306 7 1 0.0507 0.0124 0.0314 0.0814 

7 298 2 0 0.0571 0.0131 0.0363 0.0891 

8 296 1 0 0.0603 0.0134 0.0389 0.0929 

10 295 3 0 0.0698 0.0144 0.0465 0.1041 

11 292 2 1 0.0762 0.0149 0.0517 0.1115 

12 289 20 10 0.1401 0.0196 0.1062 0.1837 

13 259 1 1 0.1434 0.0198 0.1091 0.1873 

14 257 3 1 0.1534 0.0204 0.1179 0.1984 

15 253 1 0 0.1568 0.0206 0.1209 0.2021 

16 252 2 2 0.1635 0.0210 0.1268 0.2094 

17 248 1 2 0.1669 0.0211 0.1298 0.2131 

18 245 1 0 0.1703 0.0213 0.1328 0.2169 
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20 244 1 2 0.1737 0.0215 0.1358 0.2206 

21 241 1 0 0.1771 0.0217 0.1389 0.2243 

22 240 4 3 0.1908 0.0224 0.1511 0.2393 

23 233 2 0 0.1977 0.0227 0.1574 0.2468 

24 231 16 13 0.2533 0.0250 0.2080 0.3064 

25 202 1 3 0.2570 0.0252 0.2114 0.3103 

26 198 4 2 0.2720 0.0258 0.2252 0.3263 

27 192 0 2 0.2720 0.0258 0.2252 0.3263 

30 190 1 1 0.2758 0.0259 0.2287 0.3304 

31 188 1 0 0.2797 0.0261 0.2323 0.3345 

33 187 0 2 0.2797 0.0261 0.2323 0.3345 

34 185 1 0 0.2836 0.0262 0.2358 0.3387 

36 184 6 2 0.3070 0.0270 0.2574 0.3634 

37 176 1 0 0.3109 0.0272 0.2611 0.3676 

40 175 1 0 0.3148 0.0273 0.2647 0.3718 

44 174 1 1 0.3188 0.0274 0.2684 0.3759 

46 172 1 1 0.3227 0.0276 0.2721 0.3801 

48 170 5 5 0.3426 0.0281 0.2907 0.4010 

50 160 1 0 0.3468 0.0283 0.2945 0.4053 

55 159 1 0 0.3509 0.0284 0.2984 0.4096 

58 158 0 1 0.3509 0.0284 0.2984 0.4096 

59 157 0 1 0.3509 0.0284 0.2984 0.4096 

60 156 20 28 0.4341 0.0302 0.3773 0.4956 

61 108 1 0 0.4393 0.0304 0.3822 0.5011 



129 
 

62 107 0 1 0.4393 0.0304 0.3822 0.5011 

63 106 0 2 0.4393 0.0304 0.3822 0.5011 

64 104 0 1 0.4393 0.0304 0.3822 0.5011 

65 103 0 2 0.4393 0.0304 0.3822 0.5011 

67 101 0 2 0.4393 0.0304 0.3822 0.5011 

71 99 0 1 0.4393 0.0304 0.3822 0.5011 

72 98 6 12 0.4737 0.0316 0.4139 0.5374 

75 80 1 1 0.4802 0.0319 0.4199 0.5445 

76 78 2 1 0.4936 0.0324 0.4320 0.5588 

84 75 10 9 0.5611 0.0344 0.4950 0.6293 

89 56 1 0 0.5689 0.0347 0.5022 0.6376 

96 55 9 10 0.6395 0.0361 0.5690 0.7097 

108 36 12 7 0.7596 0.0372 0.6842 0.8285 

120 17 6 11 0.8445 0.0368 0.7655 0.9082 

 Source: prepared by the researcher by using STATA, 2014. 

Seen from table (4-37) that the first deaths time observed is (1) month, and there 

are (325) individuals at risk, (0) individual is deaths, (7) individual is lost follow-

and the value of the estimated hazard function is (0.0000). The second observed 

deaths time is (2) months there are (318) individuals at risk, (2) individual is deaths, 

(2) individual is lost follow-up and the value of the estimated hazard function is 

(0.0063), with standard error (0.0044) and confidence intervals (0.0016–0.0249) at 

5% significance level. The value of the function remains at this value until the time 

of death observed below. The third observed deaths time is (3) months, and the 

number of individuals at risk is (314), there is (3) death, (1) individual is lost follow-

up and the value of the estimated hazard function is (0.0158), with standard error 

(0.0070) and confidence intervals (0.0066– 0.0375) at 5% significance level. The 
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value of the function remains at this value until the time of death observed below. 

This process continues until the last time of death (120) months, where there are 

(17) individual at risk, (6) individual is deaths, (11) individual is lost follow-up and 

the value of the estimated hazard function is (0.8445), with standard error (0.0368) 

and confidence intervals (0.7655– 0.9082) at 5% significance level. 

 

Figure (4-19): Kaplan-Meier to estimate hazard function, confidence 

intervals at the 5% level of significance for hemodialysis patients  

 
Source: prepared by the researcher by using STATA, 2014 

 

The above figure is obtained from the hazard function estimated in the table (4-36) 

and shows that there is an increasing function defined by the estimated hazard 

function, which increases at the observed death times and is fixed between these 

times because the estimated hazard function curve is approximately equal one at the 

last time of survival and 17 patients are at risk .The greatest time is a time of 

survival. 
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4-5. Estimation of Median and Quartiles: 
 

4-5-1. Estimation of median and quartiles for survival time: 

 

 

Table (4-38): Quartiles estimated for survival time: 

 

Quartile Estimate Std. Error [95% Conf. Int.] 

Lower Upper 

25 24 2.905 24   36 

50 84 3.659      61 89 

75 108 4.527         108 120 

Source: prepared by the researcher by using STATA, 2014 

 

The first quartile of each individual is (24) months, this means that 25% of the 

individuals will live (24) months and it does not at least 24 months and not more 

than 36 months. The median of each individual is (84) months, this means that 50% 

of the individuals will live (84) months and it does not at least 61 months and not 

more than 89 months. The third quartile of each individual is (108) months, this 

means that 75% of the individuals will live (108) months and it does not at least 

108months and does not more than 120 months. 
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4-5-2.Estimation median of survival time for sex: 

Table (4-39): Estimation median of survival time sex 

Source: prepared by the researcher by using STATA, 2014 

 

The median estimation for patients male is (84) months, this means that 50% of the 

patient’s male will live (84) months and it does not at least 72 months and not more 

than 108 months. The median estimation for patients female is (75) months, this 

means that 50% of the patient’s female will live (75) months and it does not at least 

60 months and not more than 84 months. 

 

4-5-3. Estimation median of survival time for age:      

Table (4-40): Estimation median of survival time age  

 

age  Number of 

Patients 

Estimate St. error  

95% Confidence intervals 

 

Lower Upper 

total 325 84 3.659 61 89 

Source: prepared by the researcher by using STATA, 2014 

 

The median estimation for patient’s age is (84) months, this means that 50% of the 

patient’s male will live (84) months and it does not at least 61 months and not more 

than 89 months.  

 

 

sex Number 

of patients 

 

 

Estimat

e 

50% 

Std. Error 

 

[95% Conf. Int.] 

lower upper 

male 194 84 6.257           72 108 

female 131 75 4.301  60 84 

total 325 84 3.659            61 89 
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4-6. Univariate analysis: 

The Kaplan –Meier survival curves for different patient groups, and introduced the 

log-rank test to investigate differences between them. Both these methods are 

examples of univariate analysis; they describe the survival with respect to the factor 

under investigation, but necessarily ignore the impact of any others. It is more 

common, at least in clinical investigations, to have a situation where several 

(known) quantities or covariates, potentially affect patient prognosis. When 

investigating survival in relation to any one factor, it is often desirable to adjust for 

the impact of others (Bradburn, et al., 2003) 

  

4-6-1. Log-rank test for equality of survival functions: 

The log-rank test is a statistical test used to compare the survival distributions of 

two or more groups used to test the hypothesis where there is no difference between 

the categories for and variable. It does not provide any estimation of the actual size 

of the effect; in other words, it provides a statistical, but not a clinical, assessment 

of the effect of the factor. The use of a statistical model improves on these methods 

by allowing survival to be assessed with respect to several factors simultaneously, 

and in addition, offers estimates of the strength of effect for each constituent factor 

(Bradburn, et al., 2003). 
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4-6-1-1. Log-rank test for equality of survival functions for sex: 

  

Table (4-41) Log-rank test for equality of estimated survival functions for sex 

Source: prepared by the researcher by using STATA, 2014 
 

We note from the table (4-41) that the value of chi-square test was (0.66), and the 

significant value to it (P-value = 0.42 <   0.05), there is no significant difference 

between the estimated survival functions for male and female in study. 

 

Figure (4-20): survival curves of patient’s sex 

 

 
Source: prepared by the researcher by using STATA, 2014 

sex 
Events Observed 

Events Expected 

Chi-square 

test 
P-value 

 (male) 100 104.92 

0.66 0.4164  (female) 70 65.08 

total 170 170.00 

0.00 

0.25 

0.50 

0.75 

1.00 

0 50 100 150 
Analysis time 

Female Male 

Kaplan-Meier survival estimates 
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We note from figure (4-20) there is no difference between the curves of Kaplan - 

Meier survival functions for sex. Thus, the probability of survival does not vary 

according to sex. 

 

4-6-1-2. Log-rank test for equality of survival functions for dialysis frequency 

per week: 

 

Table (4-42) Log-rank test for equality of estimated survival functions for dialysis 

frequency per week 

Source: prepared by the researcher by using STATA, 2014 
 

 

We note from the table (4-42) that the value of chi-square test was (21.65), and the 

significant value to it (P-value = 0.000 > 0.05), there is significant difference 

between the estimated survival functions dialysis frequency per week 

 

 

 

 

 

 

 

 

 

dialysis frequency per 

week 

Events 

Observed 
Events Expected 

Chi-square 

test 
P-value 

2 55 32.26 

21.65 0.0000 3 115 137.74 

total 170 170.00 
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Figure (4-21): survival curves of patient’s dialysis frequency per week  

 

 
Source: prepared by the researcher by using STATA, 2014 

 

We note from figure (4-21) there is difference between the curves of Kaplan - Meier 

survival functions for dialysis frequency per week, since the estimated curve for 

those who dialysis three times a week is higher than the estimated curve, which is 

dialysis twice a week. Therefore ,at any point in time the survival rate those who 

dialysis three times is estimated to be longer than those who dialysis  twice. Thus, 

the probability of survival does vary according dialysis frequency per week.  
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4-6-1-3. Log-rank test for equality of survival functions for diabetes mellitus: 

Table (4-43) Log-rank test for equality of estimated survival functions diabetes 

mellitus 

Source: prepared by the researcher by using STATA, 2014 
 

We note from the table (4-43) that the value of chi-square test was (7.21), and the 

significant value to it (P-value = 0.007 > 0.05), there is significant difference 

between the estimated survival functions diabetes mellitus. 

 

Figure (4-22): survival curves of patients diabetes mellitus 

 

Source: prepared by the researcher by using STATA, 2014 
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We note from figure (4-22) there is difference between the curves of Kaplan - Meier 

survival functions for diabetes mellitus, since the estimated curve for those who no 

diabetes mellitus is higher than the estimated curve, which is diabetes mellitus. 

Therefore, at any point in time the survival rate those who no diabetes mellitus is 

estimated to be longer than those who have diabetes mellitus. Thus, the probability 

of survival does varies according to diabetes mellitus. 

 

4-6-1-4. Log-rank test for equality of survival functions for hospitals: 

 

Table (4-44) Log-rank test for equality of estimated survival functions hospitals  

Source: prepared by the researcher by using STATA, 2014 
 

 

We note from the table (4-44) that the value of chi-square test was (88.57), and the 

significant value to it (P-value = 0.000 > 0.05), there is significant difference 

between the estimated survival functions hospitals. 

 

 

 

 

marital status Events Observed Events Expected 
Chi-square test P-value 

Ahmed gasm         27 25.73 

88.57 
0.0000 

 

Bahri   49 16.47 

Ebn sena     43 40.52 

Omdurman 26 37.68 

Ribat 4 10.03 

Selma 21 39.57 

total 170 170.00 
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Figure (4-23): survival curves of hospitals 

 

Source: prepared by the researcher by using STATA, 2014 

We note from figure (4-23) there is difference between the curves of Kaplan - Meier 

survival functions for hospitals, since the estimated curve for those who Ribat 

,Salma center  are higher than the estimated curve, which is Omdurman, Ebn Sana, 

and Bahri hospital under these curves estimated curve. Therefore, at any point in 

time the survival rate those whose higher estimated to be longer survival time than 

.Thus, the probability of survival does varies according to hospitals. 
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4-6-1-5. Log-rank test for equality of survival functions for hypertension: 

Table (4-45) Log-rank test for equality of estimated survival functions 

hypertension 

Source: prepared by the researcher by using STATA, 2014 

 

We note from the table (4-45) that the value of chi-square test was (4.70), and the 

significant value to it (P-value = 0.03 > 0.05), there is no significant difference 

between the estimated survival functions for no and yes hypertension in study.  

 

Figure (4-24): survival curves of hypertension 

 

Source: prepared by the researcher by using STATA, 2014 

 

0.
00

0.
25

0.
50

0.
75

1.
00

es
tim

at
ed

  s
ur

vi
va

l  
pr

ob
ab

ili
ty

0 50 100 150
survival time (months)

hypertension=No hypertension=Yes

Kaplan-Meier survival estimates

hypertension Events Observed Events Expected 
Chi-square test P-value 

No 134 121.80 

4.70 0.0302 Yes 36 48.20 

total 170 170.00 



141 
 

We note from figure (4-24) there is no difference between the curves of Kaplan - 

Meier survival functions for hypertension. Thus, the probability of survival does 

vary according to hypertension. 

 

 

4-6-1-6. Log-rank test for equality of survival functions for diabetes mellitus 

and hypertension: 

 

Table (4-46) Log-rank test for equality of estimated survival functions diabetes 

mellitus and hypertension 

Source: prepared by the researcher by using STATA, 2014 

 

We note from the table (4-46) that the value of chi-square test was (20.31), and the 

significant value to it (P-value = 0.000 > 0.05), there is significant difference 

between the estimated survival functions diabetes mellitus and hypertension. 

 

 

 

 

 

 

 

 

diabetes 

mellitus and 

hypertension 

Events Observed 

Events Expected 
Chi-square test 

P-value 

No 143 157.66 

20.31 0.0000 Yes 27 12.34 

total 170 170.00 



142 
 

 

Figure (4-25): survival curves of functions diabetes mellitus and hypertension 

 

Source: prepared by the researcher by using STATA, 2014 

 

We note from figure (4-25) there is difference between the curves of Kaplan - Meier 

survival functions for diabetes mellitus and hypertension, since the estimated curve 

for those who no diabetes mellitus and hypertension is higher than the estimated 

curve, which is diabetes mellitus and hypertension. Therefore, at any point in time 

the survival rate those who no diabetes mellitus and hypertension is estimated to be 

longer than those who have diabetes mellitus and hypertension. Thus, the 

probability of survival does varies according to diabetes mellitus and hypertension, 
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4-6-1-7. Log-rank test for equality of survival functions for regular: 

 

Table (4-47) Log-rank test for equality of estimated survival functions regular 

Source: prepared by the researcher by using STATA, 2014 

 

We note from the table (4-47) that the value of chi-square test was (27.38), and the 

significant value to it (P-value = 0.000 > 0.05), there is significant difference 

between the estimated survival functions not regular and regular. 

 

Figure (4-26): survival curves of regular 

 

Source: prepared by the researcher by using STATA, 2014 
 

We note from figure (4-26) there is difference between the curves of Kaplan - Meier 

survival functions for regular, since the estimated curve for those who regular is 

higher than the estimated curve which is not regular. Therefore, at any point in time 

0
.0

0
0

.2
5

0
.5

0
0

.7
5

1
.0

0

e
st

im
a

te
d
  
su

rv
iv

a
l  

p
ro

b
a
b

ili
ty

0 50 100 150
survival time (months)

not regular regular

Kaplan-Meier survival estimates

regular Events Observed Events Expected 
Chi-square test P-value 

not regular 27 10.94 

27.38 0.0000 regular 143 159.06 

total 170 170.00 



144 
 

the survival rate those who regular is estimated to be longer survival time than those 

who not regular. Thus, the probability of survival does vary according to regular. 

 

4-6-1-8. Log-rank test for equality of survival functions for other: 

 

Table (4-48) Log-rank test for equality of estimated survival functions other 

Source: prepared by the researcher by using STATA, 2014 
 
 

We note from the table (4-48) that the value of chi-square test was (7.63), and the 

significant value to it (P-value = 0.006 > 0.05), there is significant difference 

between the estimated survival functions no, yes other. 

 

Figure (4-27): survival curves of other 

 
Source: prepared by the researcher by using STATA, 2014 
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We note from figure (4-27) there is difference between the curves of Kaplan - Meier 

survival functions for regular, since the estimated curve for those who regular is 

higher than the estimated curve which is not regular. Therefore, at any point in time 

the survival rate those who regular is estimated to be longer survival time than those 

who not regular. Thus, the probability of survival does vary according to regular 

 
 

4-6-1-9. Log-rank test for equality of survival functions for shrunken 

kidneys: 

 

Table (4-49) Log-rank test for equality of estimated survival functions shrunken 

kidneys 

Source: prepared by the researcher by using STATA, 2014 

 

We note from the table (4-49) that the value of chi-square test was (6.39), and the 

significant value to it (P-value = 0.012 > 0.05), there is significant difference 

between the estimated survival functions no, yes for shrunken kidneys 

 

 

 

 

 

 

 

Shrunken 

kidneys 

Events Observed 
Events Expected 

Chi-square test 
P-value 

No 169 162.57 

6.39 0.0115 Yes 1 7.43 

total 170 170.00 
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Figure (4-28): survival curves of shrunken kidneys 

 

 
Source: prepared by the researcher by using STATA, 2014 

 

We note from figure (4-28) there is no difference between the curves of Kaplan - 

Meier survival functions for shrunken kidneys. Thus, the probability of survival 

does vary according to shrunken kidneys 
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4-7.Estimate parametric models 

4-7-1.Estimate parametric models for univariate analysis in hemodialysis 

patients: 

Based on the log rank test, the variables considered to be important with p-value < 

0.05 were entered in the parametric models, while other variables were not 

significantly excluded from the parametric models. The variables used in the 

parametric model were regular, dialysis frequency per week, hospitals, diabetes 

mellitus, hypertension, diabetes mellitus and hypertension, shrunken kidneys, 

other.in addition the urea and age and Serum creatinine 

 

4-7-1-1. Estimate Exponential model for univariate analysis-- log relative-

hazard form: 

 

Table (4-50): Coefficient and hazard ratio 

 

 

Variable 

  

Coef. 95%Conf.Interval Haz. 

Ratio    

95% Conf. 

Interval 

z P-

value 

Prob 

<chi2 

upper lower upper lower 

Age 0.021 0.011 0.030 1.020 1.011 1.030 4.36 0.000 0.000 

Regular -1.031 -1.442 -0.620 0.357 0.236 0.538 -4.91 0.000 0.000 

Hospital -0.225 -0.320 -0.131 0.798 0.727 0.877 -4.670 0.000 0.000 

Diabetes mellitus 0.410 0.097 0.724 1.507 1.102 2.062 2.570 0.010 0.012 

Diabetes mellitus 

and hypertension 0.833 0.422 1.244 2.300 1.525 3.471 3.970 0.000 0.003 

Hypertension -0.423 -0.791 -0.055 0.655 0.453 0.946 -2.250 0.024 0.019 

Shrunken kidneys -2.061 -4.027 -0.096 0.127 0.018 0.909 -2.060 0.040 0.002 

Dialysis 

frequency per 

(wk) -0.735 -1.056 -0.413 0.480 0.348 0.661 -4.480 0.000 0.000 

Urea 0.006 0.004 0.009 1.006 1.004 1.009 4.510 0.000 0.000 

Serum creatinine 0.077 0.044 0.110 1.080 1.045 1.116 4.550 0.000 0.000 

Other -1.076 -1.966 -0.186 0.341 0.140 0.830 -2.370 0.018 0.005 

Coef; coefficient, HR; Hazard Ratio, p=value significant at < 0.05 level of significance, Other= 

(Systemic lupus erytherematosus, tropical disease (malaria), Gout, cardiovascular disease, NSAID).  

Source: prepared by the researcher by using STATA, 2014  
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We note from the table (4-50), the variable age is significant value of Wald test (P-

value=0.000<0.05), so estimated coefficient is significant. That means the 

difference in the log hazard between ages is 0.021 , and it does not at least 0.011 

and not more than 0.030 with 95% confidence interval, the hazard ratio is 1.020, 

means that at any time during the study, the per-month rate of death among age  is 

increase by 2% in the risk of age group. Prob <chi2 for univariate exponential model 

for age is significant (p-value = 0.000< 0.05). 

 The variable regular is significant value of Wald test (P-value=0.000<0.05), so 

estimated coefficient is significant. That means the difference in the log hazard 

between regular is -1.031. , and it does not at least -1.442   and not more than -0.620 

with 95% confidence interval, the hazard ratio is 0.357, means that at any time 

during the study, the per-month rate of death among regular patient  is reduction by 

64.2% in the risk of death of regular. Prob <chi2 for univariate exponential model 

for regular is significant (p-value = 0.000< 0.05). 

 

The variable hospital is significant value of Wald test (P-value=0.000<0.05), so 

estimated coefficient is significant. That means the difference in the log hazard 

between regular is -0.225. , and it does not at least -0.320 and not more than -0.131 

with 95% confidence interval, the hazard ratio is 0 .798, means that at any time 

during the study, the per-month rate of death among hospital is reduction by 20.2% 

in the risk of death for hospital. Prob <chi2 for univariate exponential model for 

hospital is significant (p-value = 0.0000< 0.05). 

 

The variable diabetes mellitus is significant value of Wald test (P-value=0.010     

<0.05), so estimated coefficient is significant. That means the difference in the log 

hazard between diabetes mellitus is 0.410. , and it does not at least 0.097 and not 

more than 0.724 with 95% confidence interval, the hazard ratio is 1.507   , means 

that at any time during the study, the per-month rate of death among diabetes 
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mellitus is increase  by 50.7%  in the risk of death for diabetes mellitus. Prob <chi2 

for univariate exponential model diabetes mellitus is significant (p-value = 0.012< 

0.05). 

 

The variable diabetes mellitus and hypertension is significant value of Wald test (P-

value=0.000<0.05), so estimated coefficient is significant. That means the 

difference in the log hazard between diabetes mellitus and hypertension is

 0.833, and it does not at least 0.422 and not more than 1.244 with 

95%confidence interval, the hazard ratio is   2.300, means that at any time during 

the study, the per-month rate of death is increase by 130% in the risk of death for 

of diabetes mellitus and hypertension. Prob <chi2 for univariate exponential model 

diabetes mellitus and hypertension is significant (p-value = 0.0003< 0.05). 

 

The variable hypertension is significant value of Wald test (P-value=0.024<0.05), 

so estimated coefficient is significant. That means the difference in the log hazard  

hypertension is -0.423, and it does not at least -0.791 and not more than -0.055  with 

95% confidence interval, the hazard ratio is  0.655 , means that at any time during 

the study, the per-month rate of death is reduction by 35.5% in the risk of death for 

hypertension . Prop <chi2 for univariate exponential model for hypertension is 

significant (p-value = 0.019< 0.05). 

 

The variable shrunken kidneys is significant value of Wald test (P-value=0.040    

<0.05), so estimated coefficient is significant. That means the difference in the log 

hazard  shrunken  is -2.061, and it does not at least -4.027 and not more than -

0.096-with 95% confidence interval, the hazard ratio is 0.127, means that at any 

time during the study, the per-month rate of death is reduction by 87.3% in the risk 

of death for shrunken kidneys. Prob <chi2 for univariate exponential model for 

shrunken kidneys is significant (p-value = 0.002< 0.05). 
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The variable dialysis frequency per week is significant value of Wald test (P-

value=0.000<0.05), so estimated coefficient is significant. That means the 

difference in the log hazard dialysis frequency per week is -0.735, and it does not 

at least -1.056 and not more than -0.413 with 95% confidence interval, the hazard 

ratio is 0.480, means that at any time during the study, the per-month rate of death 

is reduction by 52% % in the risk of death for dialysis frequency per week. Prob 

<chi2 for univariate exponential model for dialysis frequency per week significant 

(p-value = 0.0000< 0.05). 

 

The variable urea is significant value of Wald test (P-value=0.000    <0.05), so 

estimated coefficient is significant. That means the difference in the log hazard        

urea is 0.006, and it does not at least 0.004 and not more than 0.009 with 95% 

confidence interval, the hazard ratio is 1.006, means that at any time during the 

study, the per-month rate of death is  increase by 0.6% %  in the risk of death for 

urea. Prob <chi2 for univariate exponential model for urea significant (p-value = 

0.0000< 0.05). 
 

The variable serum creatinine is significant value of Wald test (P-value=0.000    

<0.05), so estimated coefficient is significant. That means the difference in the log 

hazard Serum creatinine is 0.077, and it does not at least 0.044 and not more than 

.110 with 95% confidence interval, the hazard ratio is 1.079, means that at any time 

during the study, the per-month rate of death is increase by 8%  in the risk of death 

for Serum creatinine. Prob <chi2 for univariate exponential model for serum 

creatinine significant (p-value = 0.0000< 0.05). 

 

The variable other is significant value of Wald test (P-value=0.018<0.05), so 

estimated coefficient is significant. That means the difference in the log hazard  

other  is -1.076, and it does not at least -1.966 and not more than -0.186 with 95% 

confidence interval, the hazard ratio is 0.341, means that at any time during the 
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study, the per-month rate of death is  reduction by 65.5% in the risk of death for 

other. Prop <chi2 for univariate exponential model for other is significant (p-value 

= 0.005< 0.05). 

 

4-7-1-2. Estimate Weibull model for univariate analysis-- log relative-hazard 

form: 

 

Table (4-51): Coefficient and hazard ratio 

 

We note from the table (4-51) for the variable age is significant value of Wald test 

(P-value=0.000<0.05), so estimated coefficient is significant. That means the 

difference in the log hazard between ages is 0 .021, and it does not at least 0.012 

and not more than 0.030 with 95% confidence interval, the hazard ratio is 1.021, 

means that at any time during the study, the per-month rate of death among age  is 

increase by 2.1% in the risk of death. Prob <chi2 for univariate Weibull model for 

age is significant (p-value = 0.000< 0.05). 

variable Coef. 
[95% Conf. 

Interval] 

HR 

[exp(coef)] 

[95% Conf. 

Interval] 
z 

P-

value 

Prob 

<chi2 

Age 0.021 0.012 0.030 1.021 1.012 1.031 4.420 0.000 0.000 

Regular -1.091 -1.503 -0.678 0.336 0.222 0.508 -5.180 0.000 0.000 

Hospital -0.242 -0.336 -0.148 0.785 0.715 0.863 -5.040 0.000 0.000 

Diabetes mellitus 0.415 0.101 0.728 1.514 1.107 2.071 2.590 0.009 0.011 

Diabetes mellitus 

and hypertension 0.878 0.465 1.290 2.405 1.592 3.632 4.170 
0.000 0.000 

Hypertension -0.418 -0.786 -0.050 0.658 0.456 0.951 -2.230 0.026 0.021 

Shrunken kidneys -2.077 -4.043 -0.111 0.125 0.018 0.895 -2.070 0.038 0.002 

Dialysis frequency 

per (wk) -0.736 -1.057 -0.415 0.479 0.347 0.661 -4.490 
0.000 0.000 

Urea 0.006 0.004 0.009 1.006 1.004 1.009 4.570 0.000 0.000 

Serum creatinine 0.078 0.045 0.111 1.081 1.046 1.117 4.630 0.000 0.000 

Other -1.115 -2.005 -0.225 0.328 0.135 0.799 -2.450 0.014 0.003 

Coef; coefficient, HR; Hazard Ratio, p=value significant at < 0.05 level of significance, Other= (Systemic 

lupus erytherematosus, tropical disease (malaria), Gout, cardiovascular disease, NSAID).  

Source: prepared by the researcher by using STATA, 2014 
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 The variable regular is significant value of Wald test (P-value=0.000<0.05), so 

estimated coefficient is significant. That means the difference in the log hazard 

between regular is -1.091, and it does not at least -1.503 and not more than 

- 0.672 with 95% confidence interval, the hazard ratio is 0.336, means that at any 

time during the study, the per-month rate of death among regular  is reduction  by 

66.4% in the risk of death for regular. Prob <chi2 for univariate Weibull model for 

regular is significant (p-value = 0.000< 0.05). 

 

The variable hospital is significant value of Wald test (P-value=0.000<0.05), so 

estimated coefficient is significant. That means the difference in the log hazard 

between hospital is -0.240 , and it does not at least -0.334  and not more than -0.146 

with 95% confidence interval, the hazard ratio is 0.716, means that at any time 

during the study, the per-month rate of death among hospital is reduction by  28.4% 

in the risk of death for hospital . Prob <chi2 for univariate Weibull model for 

hospital is significant (p-value = 0.000< 0.05). 

 

The variable diabetes mellitus is significant value of Wald test (P-value=0.009     

<0.05), so estimated coefficient is significant. That means the difference in the log 

hazard between diabetes mellitus is 0.415. , and it does not at least 0.101 and not 

more than 0.728 with 95% confidence interval, the hazard ratio is 1.514, means that 

at any time during the study, the per-month rate of death among diabetes mellitus 

is increase by 51.4% in the risk of death for diabetes mellitus. Prob <chi2 for 

univariate Weibull model diabetes mellitus is significant (p-value = 0.011< 0.05). 

 

The variable diabetes mellitus and hypertension is significant value of Wald test (P-

value=0.000<0.05), so estimated coefficient is significant. That means the 

difference in the log hazard between diabetes mellitus and hypertension is 0.878, 

and it does not at least 0.465 and not more than 1.290 with 95% confidence interval, 

the hazard ratio is 2.405, means that at any time during the study, the per-month 
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rate of death is increase by 140.2% in the risk of death for diabetes mellitus and 

hypertension. Prob <chi2 for univariate Weibull model diabetes mellitus and 

hypertension is significant (p-value = 0.026 < 0.05). 

 

The variable hypertension is significant value of Wald test (P-value=0.026 <0.05), 

so estimated coefficient is significant. That means the difference in the log hazard  

hypertension is -0.418, and it does not at least -0.786 and not more than -0.050  with 

95% confidence interval, the hazard ratio is 0.658, means that at any time during 

the study, the per-month rate of death is reduction by 34.2% in the risk of death for 

hypertension. Prob <chi2 for univariate Weibull model for hypertension is 

significant (p-value = 0.021< 0.05). 

 

The variable shrunken kidneys is significant value of Wald test (P-value=0.038    

<0.05), so estimated coefficient is significant. That means the difference in the log 

hazard shrunken is -2.077, and it does not at least -4.043 and not more than -0.111 

with 95% confidence interval, the hazard ratio is 0.125   , means that at any time 

during the study, the per-month rate of death is reduction by 87.5% in the risk of 

death for shrunken Prob <chi2 for univariate Weibull model for shrunken is 

significant (p-value = 0.002<0.05) 

 

The variable dialysis frequency per week is significant value of Wald test (P-

value=0.000<0.05), so estimated coefficient is significant. That means the 

difference in the log hazard dialysis frequency per week is -0.736, and it does not 

at least -1.057 and not more than -0.415 with 95% confidence interval, the hazard 

ratio is 0.479, means that at any time during the study, the per-month rate of death 

is reduction by 52.1%   in the risk of death for dialysis frequency per week. Prob 

<chi2 for univariate Weibull model for dialysis frequency per week significant (p-

value = 0.000< 0.05). 
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The variable urea is significant value of Wald test (P-value=0.000 <0.05), so 

estimated coefficient is significant. That means the difference in the log hazard  urea 

is 0.006, and it does not at least 0.004 and not more than 0.009 with 95% confidence 

interval, the hazard ratio is 1.006, means that at any time during the study, the per-

month rate of death is increase by  0.6% in the risk of death for urea . Prob <chi2 

for univariate Weibull l model for urea significant (p-value = 0.0000< 0.05). 

 

The variable serum creatinine is significant value of Wald test (P-value=0.000    

<0.05), so estimated coefficient is significant. That means the difference in the log 

hazard Serum creatinine is 0.078, and it does not at least 0.045 and not more than 

0.111with 95% confidence interval, the hazard ratio is 1.081, means that at any time 

during the study, the per-month rate of death is increase by 8.1% in the risk of death 

for serum creatinine. Prob <chi2 for univariate Weibull model for Serum creatinine 

significant (p-value = 0.0000< 0.05). 

 

The variable other is significant value of Wald test (P-value=0.014<0.05), so 

estimated coefficient is significant. That means the difference in the log hazard  

other  is -1.115, and it does not at least -2.005 and not more than -0.225 with 95% 

confidence interval, the hazard ratio is 0.328, means that at any time during the 

study, the per-month rate of death is  reduction by 67.2% in the risk of death for 

other. Prob <chi2 for univariate Weibull model for other is significant (p-value = 

0.003< 0.05). 
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4-7-1-3. Estimate Gompertz model for univariate analysis-- log relative-

hazard form: 

 Table (4-52): Coefficient and hazard ratio 

variable Coef. 95% Conf. 

Interval 

Haz. 

Ratio    

95% Conf. 

Interval 

z P>|z| Prob  

<chi2 

age 0.021 0.012 0.031 1.022 1.012 1.031 4.500 0.000 0.000 

regular -1.076 -1.488 -0.664 0.341 0.226 0.515 -5.120 0.000 0.000 

hospital -0.254 -0.348 -0.160 0.776 0.706 0.852 -5.290 0.000 0.000 

diabetes mellitus 0.415 0.101 0.728 1.514 1.107 2.071 2.590 0.009 0.011 

diabetes mellitus 

and hypertension 0.900 0.487 1.313 2.459 1.628 3.716 4.270 

0.000 0.000 

hypertension -0.406 -0.774 -0.038 0.666 0.461 0.963 -2.160 0.031 0.025 

shrunken kidneys -2.072 -4.038 -0.106 0.126 0.018 0.899 -2.070 0.039 0.002 

dialysis frequency 

per( wk) -0.726 -1.048 -0.405 0.484 0.351 0.667 -4.430 

0.000 0.000 

urea 0.006 0.004 0.009 1.006 1.004 1.009 4.660 0.000 0.000 

Serum creatinine 0.078 0.045 0.111 1.081 1.046 1.117 4.630 0.000 0.000 

other -1.137 -2.027 -0.246 0.321 0.132 0.782 -2.500 0.012 0.003 

Coef; coefficient, HR; Hazard Ratio, p=value significant at < 0.05 level of significance, Other= 

(Systemic lupus erytherematosus, tropical disease (malaria), Gout, cardiovascular disease, NSAID).  

Source: prepared by the researcher by using STATA, 2014  

 

We note from the table (4-52), the variable age is significant value of Wald test (P-

value=0.000<0.05), so estimated coefficient is significant. That means the 

difference in the log hazard between ages is 0.021, and it does not at least 0.012    

and not more than 0.031 with 95% confidence interval, the hazard ratio is 1.022, 

means that at any time during the study, the per-month rate of death among age is 

increase by 2.2% in the risk of death for age. Prob <chi2 for univariate Gompertz 

model for age is significant (p-value = 0.000< 0.05). 

 The variable regular is significant value of Wald test (P-value=0.000<0.05), so 

estimated coefficient is significant. That means the difference in the log hazard 

between regular is -1.076 , and it does not at least -1.488   and not more than -0.664 
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with 95% confidence interval, the hazard ratio is 0.341 , means that at any time 

during the study, the per-month rate of death among regular  is reduction by  65.9%   

in the risk of death for regular. Prob <chi2 for univariate Gompertz model for 

regular is significant (p-value = 0.000< 0.05). 

The variable hospital is significant value of Wald test (P-value=0.000<0.05), so 

estimated coefficient is significant. That means the difference in the log hazard 

between regular is -0.254, and it does not at least -0.348   and not more than -0.160 

with 95% confidence interval, the hazard ratio is 0 .776, means that at any time 

during the study, the per-month rate of death among hospital is reduction by 22.4% 

in the risk of death for hospital. Prob <chi2 for univariate Gompertz model for 

hospital is significant (p-value = 0.000< 0.05). 

The variable diabetes mellitus is significant value of Wald test (P-value=0.009     

<0.05), so estimated coefficient is significant. That means the difference in the log 

hazard between diabetes mellitus is 0.415. , and it does not at least 0.101 and not 

more than 0.728 with 95% confidence interval, the hazard ratio is 1.514   , means 

that at any time during the study, the per-month rate of death among diabetes 

mellitus is increase by 51.4% in the risk of death for diabetes mellitus. Prob <chi2 

for univariate Gompertz model diabetes mellitus is significant (p-value = 0.011< 

0.05). 

The variable diabetes mellitus and hypertension is significant value of Wald test (P-

value=0.000 <0.05), so estimated coefficient is significant. That means the 

difference in the log hazard between diabetes mellitus and hypertension is 0.900, 

and it does not at least 0.487 and not more than 1.313 with 95% confidence interval, 

the hazard ratio is   2.459, means that at any time during the study, the per-month 

rate of death is increase by 145.9% in the risk of death for diabetes mellitus and 

hypertension. Prob <chi2 for univariate Gompertz model diabetes mellitus and 

hypertension is significant (p-value = 0.000 < 0.05). 
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The variable hypertension is significant value of Wald test (P-value=0.031    <0.05), 

so estimated coefficient is significant. That means the difference in the log hazard  

hypertension is -0.406, and it does not at least -0.774 and not more than -0.038  with 

95% confidence interval, the hazard ratio is 0 .666 means that at any time during 

the study, the per-month rate of death is reduction by 33.4%  in the risk of death for 

hypertension. Prob <chi2 for univariate Gompertz model for hypertension is 

significant (p-value = 0.025 < 0.05). 

The variable shrunken kidneys is significant value of Wald test (P-value=0.039 

<0.05), so estimated coefficient is significant. That means the difference in the log 

hazard shrunken kidneys is -2.072, and it does not at least -4.038 and not more than 

-0.106 with 95% confidence interval, the hazard ratio is 0.126, means that at any 

time during the study, the per-month rate of death is reduction by 87.4% in the risk 

of death for shrunken. Prob <chi2 for univariate Gompertz model for shrunken 

kidneys is significant (p-value = 0.002<0.05) 

The variable dialysis frequency per week is significant value of Wald test (P-

value=0.000<0.05), so estimated coefficient is significant. That means the 

difference in the log hazard dialysis frequency per week is -0.726, and it does not 

at least -1.048 and not more than -0.405 with 95% confidence interval, the hazard 

ratio is 0.484, means that at any time during the study, the per-month rate of death 

is reduction by 51.6% in the risk of death for dialysis frequency per week. 

Prob<chi2 for univariate Gompertz model for dialysis frequency per week 

significant (p-value = 0.0000< 0.05). 

The variable urea is significant value of Wald test (P-value=0.000 <0.05), so 

estimated coefficient is significant. That means the difference in the log hazard        

urea is 0.006, and it does not at least 0.004 and not more than 0.009 with 95% 

confidence interval, the hazard ratio is 1.006 , means that at any time during the 

study, the per-month rate of death is increase by 0.6% in the risk of death for urea.   
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Prob <chi2 for univariate Gompertz model for urea significant (p-value = 0.000< 

0.05). 

The variable serum creatinine is significant value of Wald test (P-value=0.000    

<0.05), so estimated coefficient is significant. That means the difference in the log 

hazard serum creatinine is 0.078, and it does not at least 0.045 and not more than 

0.111 with 95% confidence interval, the hazard ratio is 1.081, means that at any 

time during the study, the per-month rate of death is increase by 8.1% in the risk of 

death for serum creatinine  . Prob <chi2 for univariate Gompertz model for Serum 

creatinine significant (p-value = 0.0000< 0.05). 

The variable other is significant value of Wald test (P-value=0.012 <0.05), so 

estimated coefficient is significant. That means the difference in the log hazard  

other  is -1.137 , and it does not at least -2.027 and not more than -0.246 with 95% 

confidence interval, the hazard ratio is 0.321, means that at any time during the 

study, the per-month rate of death is reduction by 67.9%  in the risk of death for 

other. Prob <chi2 for univariate Gompertz model for other is significant (p-value = 

0.003 < 0.05). 
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4-7-1-4. Estimate Lognormal model for univariate analysis-- accelerated 

failure-time form: 

Table (4-53): Coefficient and time ratio 

variable Coef. [95% Conf. 
Interval] 

time 
Ratio    

[95% Conf. 
Interval] 

z P>|z| Prob  
<chi2 

         age -0.009 -0.019 0.000 0.990 0.981 1.000 -2.010 0.044 0.041 

  regular 1.181 0.731 1.631 3.258 2.078 5.108 5.150 0.000 0.000 

 hospital 0.269 0.175 0.362 1.308 1.192 1.436 5.650 0.000 0.000 

diabetes mellitus  -0.356 -0.693 -0.019 0.700 0.500 0.981 -2.070 0.038 0.038 

  diabetes mellitus 
and hypertension -0.855 -1.327 -0.384 0.425 0.265 0.681 -3.560 0.000 0.000 

hypertension 0.332 -0.024 0.689 1.394 0.976 1.991 1.830 0.068 0.065 

other 1.158 0.396 1.921 3.185 1.485 6.828 2.980 0.003 0.002 

shrunken 2.028 0.572 3.483 7.597 1.770 32.576 2.730 0.006 0.001 

dialysis frequency 
per(wk) 0.588 0.215 0.962 1.801 1.240 2.616 3.090 0.002 0.002 

        urea -0.007 -0.010 -0.003 0.993 0.990 0.997 -3.850 0.000 0.000 

Serum creatinine -0.074 -0.111 -0.036 0.929 0.894 0.965 -3.810 0.000 0.000 

Coef ; coefficient, HR; Hazard Ratio, p=value significant at < 0.05 level of significance 
Other= (Systemic lupus erytherematosus, tropical disease (malaria), Gout, cardiovascular disease, NSAID).  

Source: prepared by the researcher by using STATA, 2014 

 

 

We note from the table (4-53), for the variable age is significant value of Wald test 

(P-value=0.044 <0.05), so estimated coefficient is significant. That means the 

difference in logarithm of ratios of survival times between ages is -0.009, and it 

does not at least -0.019   and not more than 0.000 with 95% confidence interval, the 

time ratio is 0.990, mean decreases the time of death (shorter survival) at any time 

during the study per-month rate is 1%. Prob <chi2 for univariate lognormal model 

for age is significant (p-value = 0.0000< 0.05). 

The variable regular is significant value of Wald test (P-value=0.000<0.05), so 

estimated coefficient is significant. That means the difference in logarithm of ratios 

of survival times between regular is 1.181, and it does not at least 0.731   and not 

more than 1.631 with 95% confidence interval, the time ratio is 3.258, associated 

with prolonged survival time (longer survival) at any time during the study per-



160 
 

month rate is 225.8%. Prob <chi2 for univariate lognormal model for regular is 

significant (p-value = 0.0000< 0.05). 

 The variable hospital is significant value of Wald test (P-value=0.000<0.05), so 

estimated coefficient is significant. That means The difference in logarithm of ratios 

of survival times between hospital is 0.269   , and it does not at least .175    and not 

more than 0.362 with 95% confidence interval, the time ratio is 1.308, associated 

with prolonged survival time (longer survival) at any time during the study per-

month rate is 30.8%. Prob <chi2 for univariate lognormal model for hospital is 

significant (p-value = 0.0000< 0.05). 

The variable diabetes mellitus is significant value of Wald test (P-value=0.038    

<0.05), so estimated coefficient is significant. That means the difference in 

logarithm of ratios of survival times between diabetes mellitus is -0.356, and it does 

not at least -0.693   and not more than -0.019 with 95% confidence interval, the time 

ratio is 0.700, mean decreases the time of death (shorter survival) at any time during 

the study per-month rate is 30%. Prob<chi2 for univariate lognormal model for 

diabetes mellitus is significant (p-value = 0.038< 0.05). 

The variable diabetes mellitus and hypertension is significant value of Wald test (P-

value=0.000 <0.05), so estimated coefficient is significant. That means the 

difference in logarithm of ratios of survival times between diabetes mellitus and 

hypertension is -0.855, and it does not at least -1.327   and not more than -0.384 

with 95% confidence interval, the time ratio is 0.425, mean decreases the time of 

death (shorter survival) at any time during the study per-month rate is 57.5%. Prob 

<chi2 for univariate lognormal model for diabetes mellitus and hypertension is 

significant (p-value = 0.000< 0.05). 

The variable hypertension is insignificant value of Wald test (P-value=0.068    

<0.05), so estimated coefficient is insignificant. That means the difference in 

logarithm of ratios of survival times between hypertension is 0.332, and it does not 
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at least -0.024 and not more than 0.689 with 95% confidence interval, the time ratio 

is 1.394, associated with prolonged survival time (longer survival) at any time 

during the study per-month rate is 39.4%. Prob <chi2 for univariate lognormal 

model for hypertension is insignificant (p-value = 0.065< 0.05). 

The variable other is significant value of Wald test (P-value=0.003<0.05), so 

estimated coefficient is significant. That means the difference in logarithm of ratios 

of survival times between other is 1.158, and it does not at least 0.396 and not more 

than 1.921with 95% confidence interval, the time ratio is 3.185, associated with 

prolonged survival time (longer survival) at any time during the study per-month 

rate is 218.5%. Prob <chi2 for univariate lognormal model for other is significant 

(p-value = 0.0018< 0.05). 

The variable shrunken is significant value of Wald test (P-value=0.006 <0.05), so 

estimated coefficient is significant. That means The difference in logarithm of ratios 

of survival times between shrunken is 2.028 , and it does not at least 0.572    and 

not more than 3.483 with 95% confidence interval, the time ratio is 7.597, 

associated with prolonged survival time (longer survival) at any time during the 

study per-month rate is 659.7%. Prob <chi2 for univariate lognormal model for 

shrunken is significant (p-value = 0.001< 0.05). 

The variable dialysis frequency is significant value of Wald test (P-value=0.002     

<0.05), so estimated coefficient is significant. That means the difference in 

logarithm of ratios of survival times between dialysis frequencies is 0.588, and it 

does not at least 0.215 and not more than 0.962 with 95% confidence interval, the 

time ratio is 1.801, associated with prolonged survival time (longer survival) at any 

time during the study per-month rate is 80.1%. Prob <chi2 for univariate lognormal 

model for dialysis frequency is significant (p-value = 0.002< 0.05) 

The variable urea is significant value of Wald test (P-value=0.000<0.05), so 

estimated coefficient is significant. That means the difference in logarithm of ratios 
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of survival times between urea is -0.007, and it does not at least -0.010   and not 

more than -0.003 with 95% confidence interval, the time ratio is 0.993, mean 

decreases the time of death (shorter survival) at any time during the study per-month 

rate is 0.7%. Prob<chi2 for univariate lognormal model for urea is significant (p-

value = 0.000< 0.05). 

The variable serum creatinine is significant value of Wald test (P-value=0.000   

<0.05), so estimated coefficient is significant. That means The difference in 

logarithm of ratios of survival times between variable Serum creatinine is -0.074   , 

and it does not at least -0.111 and not more than -0.036 with 95% confidence 

interval, the time ratio is 0.929, mean decreases the time of death (shorter survival)  

at  any time during the study per-month rate is 7.1%. Prob <chi2 for univariate 

lognormal model for serum creatinine is significant (p-value = 0.000< 0.05). 
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4-7-1-5. Estimate log Logistic model for univariate analysis-- accelerated 

failure-time form: 

 Table (4-54): Coefficients and time ratio  

     

We note from the table (4-54) for the variable age is significant value of Wald test 

(P-value = 0.017 <0.05), so estimated coefficient is significant. That means the 

difference in logarithm of ratios of survival times between ages is -0.012, and it 

does not at least -0.012and not more than -0.021   with 95% confidence interval, the 

time ratio is 0.988, mean decreases the time of death (shorter survival) at any time 

during the study per-month rate is 1.2. Prop <chi2 for univariate Log logistic model 

for age is significant (p-value = 0.011< 0.05). 

The variable regular is significant value of Wald test (P-value=0.000<0.05), so 

estimated coefficient is significant. That means the difference in logarithm of ratios 

of survival times between regular is 1.196, and it does not at least 0.749   and not 

Variable Coef. 

[95% Conf. 

Interval] 

time 

Ratio 

[95% Conf. 

Interval] z 

P-

value 

Prob  

<chi2 

age -0.012 -0.021 -0.003 0.988 0.979 0.997 -2.51 0.012 0.011 

regular 1.196 0.749 1.643 3.307 2.115 5.172 5.24 0.000 0.000 

hospital 0.265 0.173 0.356 1.303 1.189 1.428 5.68 0.000 0.000 

diabetes mellitus -0.367 -0.691 -0.043 0.693 0.501 0.958 -2.22 0.026 0.026 

diabetes  mellitus 

and hypertension -0.834 -1.297 -0.371 0.434 0.273 0.690 -3.53 0.000 0.004 

hypertension 0.394 0.044 0.744 1.482 1.045 2.103 2.21 0.027 0.026 

Shrunken kidneys 1.819 0.335 3.304 6.167 1.398 27.210 2.4 0.016 0.001 

dialysis frequency 

per(wk) 0.630 0.283 0.976 1.877 1.328 2.654 3.56 0.000 0.000 

urea -0.007 -0.010 -0.003 0.993 0.990 0.997 -3.81 0.000 0.000 

Serum creatinine -0.073 -0.110 -0.036 0.930 0.896 0.965 -3.87 0.000 0.000 

other 1.026 0.286 1.767 2.791 1.331 5.851 2.72 0.007 0.003 

Other= (Systemic lupus erytherematosus, tropical disease (malaria), Gout, cardiovascular disease, 

NSAID).  

Source: prepared by the researcher by using STATA, 2014 
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more than 1.643 with 95% confidence interval, the time ratio is 3.307, associated 

with prolonged survival time (longer survival) at any time during the study per-

month rate is 230.7%. Prob<chi2 for univariate Log logistic model for regular is 

significant (p-value = 0.000< 0.05). 

The variable hospital is significant value of Wald test (P-value = 0.000<0.05), so 

estimated coefficient is significant. That means The difference in logarithm of ratios 

of survival times between hospital is 0 .265 , and it does not at least 0.173 and not 

more than 0.356 with 95% confidence interval, the time ratio is 1.303, mean 

associated with prolonged survival time (longer survival) at  any time during the 

study per-month rate is 30.3%. Prob <chi2 for univariate Log logistic model for 

hospital is significant (p-value = 0.000< 0.05). 

The variable diabetes mellitus is significant value of Wald test (P-value=0.026    

<0.05), so estimated coefficient is significant. That means the difference in 

logarithm of ratios of survival times between diabetes mellitus is -0.367   , and it 

does not at least -0.691   and not more than -0.043 with 95% confidence interval, 

the time ratio is 0.693, mean decreases the time of death (shorter survival) at any 

time during the study per-month rate is 30.7%. Prob <chi2 for univariate Log 

logistic model for diabetes mellitus is significant (p-value = 0.026< 0.05). 

The variable diabetes mellitus and hypertension is significant value of Wald test (P-

value = 0.000<0.05), so estimated coefficient is significant. That means the 

difference in logarithm of ratios of survival times between diabetes mellitus and 

hypertension is -0.834   , and it does not at least -1.297   and not more than -

0.371with 95% confidence interval, the time ratio is 0.434, mean decreases the time 

of death (shorter survival) at any time during the study per-month rate is 

56.6%.Prob<chi2 for univariate Log logistic model for diabetes mellitus and 

hypertension is significant (p-value = 0.0004< 0.05). 
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The variable hypertension is significant value of Wald test (P-value=0.027<0.05), 

so estimated coefficient is significant. That means the difference in logarithm of 

ratios of survival times between hypertension is 0.394, and it does not at least 0.044   

and not more than 0.743with 95% confidence interval, the time ratio is 1.482, mean 

associated with prolonged survival time (longer survival) at any time during the 

study per-month rate is 48.2%. Prob <chi2 for univariate Log logistic model for 

hypertension is significant (p-value = 0.026< 0.05). 

The variable shrunken kidneys is significant value of Wald test (P-

value=0.016<0.05), so estimated coefficient is significant. That means The 

difference in logarithm of ratios of survival times between shrunken is 1.819, and 

it does not at least 0.335   and not more than3.304 with 95% confidence interval, the 

time ratio is 6.167, associated with prolonged survival time (longer survival) at  any 

time during the study per-month rate is 516.7%. Prob<chi2 for univariate Log 

logistic model for shrunken is significant (p-value = 0.001< 0.05). 

The variable dialysis frequency is significant value of Wald test (P-value = 

0.000<0.05), so estimated coefficient is significant. That means The difference in 

logarithm of ratios of survival times between dialysis frequency is 0.630, and it does 

not at least 0.283   and not more than 0.976with 95% confidence interval, the time 

ratio is 1.877, associated with prolonged survival time (longer survival) at  any time 

during the study per-month rate is 87.7% . Prob <chi2 for univariate Log logistic 

model for dialysis frequency is significant (p-value = 0.000< 0.05). 

The variable urea is significant value of Wald test (P-value = 0.000<0.05), so 

estimated coefficient is significant. That means the difference in logarithm of ratios 

of survival times between urea is -0.007, and it does not at least -0.010   and not 

more than -0.003 with 95% confidence interval, the time ratio is 0.993, mean 

decreases the time of death (shorter survival) at any time during the study per-month 

rate is 0.7%. Prob <chi2 for univariate Log logistic model for urea is significant (p-

value = 0.0001< 0.05). 
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The variable Serum creatinine is significant value of Wald test (P-value = 

0.000<0.05), so estimated coefficient is significant. That means The difference in 

logarithm of ratios of survival times between Serum creatinine is -0.073, and it does 

not at least -0.110   and not more than -0.036 with 95% confidence interval, the time 

ratio is 0.929, mean decreases the time of death (shorter survival)  at  any time 

during the study per-month rate is 7.4%. Prob <chi2 for univariate Log logistic 

model for Serum creatinine is significant (p-value = 0.000< 0.05). 

The variable other is significant value of Wald test (P-value=0.007<0.05), so 

estimated coefficient is significant. That means the difference in logarithm of ratios 

of survival times between other is 1.026, and it does not at least 0.286   and not 

more than 1.767 with 95% confidence interval, the time ratio is 2.791, associated 

with prolonged survival time (longer survival) at any time during the study per-

month rate is 179.1%. Prob <chi2 for univariate Log logistic model for other is 

significant (p-value = 0.003< 0.05). 

4-7-2. Estimate parametric models for multivariate analysis in hemodialysis 

patients: 

The estimate multivariate models include all statistically significant variables, 

according to the log-rank test used in the study. 

 

4-7-2-1. Estimate multivariate Exponential mode- log relative-hazard form: 

 
 

Table (4-55): Chi-square test: 

 

 From table (4-55) the multivariate exponential model is significant (p-value=0.000 

<0.05). 

 

 

Model 
 

Chi-square test 
 

P-value 
 

83.11 0.0000 
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Table (4-56). Coefficients 

 

variable Coeffic

ient 

Std. 

Err. 

[95% Conf. 

Interval] 

z P-

value 

age 0.009 0.006 -0.002 0.020 1.660 0.098 

regular -0.756 0.242 -1.231 -0.282 -3.130 0.002 

hospital -0.141 0.058 -0.254 -0.028 -2.440 0.015 

diabetes mellitus 0.017 0.212 -0.398 0.433 0.080 0.934 

diabetes mellitus and  

hypertension 
0.116 0.275 -0.424 0.656 0.420 0.674 

hypertension -0.488 0.237 -0.952 -0.024 -2.060 0.039 

shrunken -1.753 1.015 -3.742 0.237 -1.730 0.084 

dialysis frequency 

per(wk) 
-0.342 0.179 -0.692 0.008 -1.910 0.056 

urea 0.004 0.002 0.000 0.008 2.110 0.035 

Serum creatinine 0.025 0.021 -0.015 0.066 1.220 0.224 

other -0.820 0.477 -1.754 0.115 -1.720 0.086 

 Intercept -2.863 0.735 -4.304 -1.422 -3.890 0.000 

Source: prepared by the researcher by using STATA, 2014 

 

The table (4-56) .Based on multivariate analysis it was assessed that the risk  

Factors including regular (Coef=-0.756, p-value=0.002 <0.05), hospital (coef=-

0.141, p-value=0.015 <0.05), hypertension (coef=-0.488, p-value=0.039 <0.05), 

Urea (coef = 0.004, p-value=0.001 <0.035), were significant results Wald test (P-

value <0.05) comparing with other variables and it will be included in the 

multivariate model. 
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Table (4-57). Hazard ratios 

 

variable   

Haz. 

Ratio Std. Err. 

[95% Conf. 

Interval] 

age 1.009 0.006 0.998 1.021 

regular 0.469 0.114 0.292 0.754 

hospital 0.869 0.050 0.776 0.973 

diabetes mellitus 1.018 0.216 0.672 1.541 

diabetes mellitus and 

hypertension 1.123 0.309 0.655 1.926 

hypertension 0.614 0.145 0.386 0.976 

shrunken 0.173 0.176 0.024 1.267 

dialysis frequency per(wk) 0.710 0.127 0.501 1.008 

urea 1.004 0.002 1.000 1.008 

Serum creatinine 1.025 0.021 0.985 1.068 

other 0.441 0.210 0.173 1.122 

Source: prepared by the researcher by using STATA, 2014 

 

According to hazard ratio (HR) variables including age (HR=1.009), that means the 

hazard of age at any time in study increase by 0.9%. The 95% CI indicates that the 

hazard ratio could be low as 0.998 or as large as 1.021. 

Diabetes mellitus (HR=1.018), that means the hazard of diabetes mellitus at any 

time in study increase by 1.8%. The 95% CI indicates that the hazard ratio could be 

low as 0.672or as large as 1.541. 

diabetes mellitus and hypertension (HR=1.123), that means the hazard of diabetes 

mellitus and hypertension at any time in study increase by 12.3%.The  95% CI 

indicates that the hazard ratio could be low as 0.655 or as large as 1.926. 

Urea (HR=1.004), that means the hazard of urea at any time in study increase by 

0.4%.The 95% CI indicates that the hazard ratio could be low 1.000 or as large as 

1.008. 
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serum creatinine (HR=1.025) that means the hazard of serum creatinine at any time 

in study increase by 2.5%.the 95% CI indicates that the hazard ratio could be low as 

0.985 or as large as 1.068.were higher significantly factor in hemodialysis patients.  

On the other hand it was noted that other factors such as regular (HR=0.469), that 

means the hazard  rate of regular at any time in study decreased by 53.1%.The 95% 

CI indicates that the hazard ratio could be low 0.292or as large as 0.754 

hospital (HR=0.973), that means the hazard  rate of hospital at any time in study 

decreased by 2.7%.The 95% CI indicates that the hazard ratio could be low 0.776or 

as large as 0.973. 

hypertension (HR=0.614), that means the hazard rate of hypertension at any time in 

study decreased by 38.6%.The 95% CI indicates that the hazard ratio could be low 

0.386 or as large as 0.976 

 

shrunken kidneys (HR=0.173), that means the hazard of shrunken kidneys at any 

time in study decreased by 82.7%.The 95% CI indicates that the hazard ratio could 

be low 0.024 or as large as 1.267. 

 

 dialysis frequency per (wk) (HR=0.710), that means the hazard of dialysis 

frequency per (wk)  at any time in study decreased by 29%.The 95% CI indicates 

that the hazard ratio could be low 0.501 or as large as 1.008. 

 
other (HR=0.441), that means the hazard rate of other at any time in study decreased 

by 55.9%.The 95% CI indicates that the hazard ratio could be low 0.173 or as large 

as 1.122, had significant lower survival rate  
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4-7-2-2. Estimate multivariate Weibull model-log relative-hazard form: 

 

Table (4-58). Chi-square test: 

 

From table (4-58) the multivariate Weibull model is significant (p-value=0.000 

<0.05). 

 

Table (4-59): Coefficients 

 

variable Coefficient Std. 

Err. 

z P>|z| [95% Conf. 

Interval] 

age 0.009 0.006 1.640 0.101 -0.002 0.021 

daily dialysis -0.775 0.244 -3.170 0.002 -1.254 -0.296 

hospital -0.159 0.058 -2.750 0.006 -0.272 -0.045 

diabetes mellitus 0.014 0.212 0.070 0.946 -0.402 0.431 

diabetes mellitus 

and  hypertension 
0.088 0.280 0.320 0.752 -0.459 0.636 

hypertension -0.506 0.238 -2.130 0.033 -0.972 -0.040 

shrunken -1.785 1.015 -1.760 0.079 -3.775 0.204 

dialysis frequency 

per(wk) 
-0.328 0.179 -1.830 0.067 -0.678 0.023 

urea 0.004 0.002 2.000 0.045 0.000 0.007 

Serum creatinine 0.026 0.021 1.240 0.213 -0.015 0.068 

other -0.846 0.477 -1.770 0.076 -1.780 0.089 

Intercept -3.843 0.804 -4.780 0.000 -5.419 -2.267 

/ln_p 0.224 0.063 3.580 0.000 0.101 0.346 

p 1.251 0.078   1.106 1.414 

1/p 0.800 0.050   0.707 0.904 

Other= (Systemic lupus erytherematosus, tropical disease (malaria), Gout, Food 

poisoning, cardiovascular disease, NSAID).  

Source: prepared by the researcher by using STATA, 2014 

 

The table (4-59) .Based on multivariate analysis it was assessed that the risk  

Model 
 

Chi-square test 
 

P-value 
 

87.46 0.0000 
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Factors including regular (Coef=-0.775, p-value=0.002 <0.05), hospital (coef=-

0.159, p-value=0.006 <0.05), hypertension (coef=-0.506, p-value=0.033 <0.05), 

Urea (coef = 0.004, p-value=0.045 <0.05), were significant results Wald test (P-

value <0.05) comparing with other variables were insignificant. It will be 

incorporated into the multivariate model  

 

Table (4-60): hazard ratios 

 

variable Hazard 

Ratio 

Std. 

Err. 

[95% Conf. 

Interval] 

age 1.009 0.006 0.998 1.021 

regular 0.461 0.113 0.285 0.744 

hospital 0.853 0.049 0.762 0.956 

diabetes mellitus 1.014 0.215 0.669 1.538 

diabetes mellitus and 

hypertension 1.092 0.305 0.632 1.889 

hypertension 0.603 0.143 0.378 0.960 

shrunken kidneys 0.168 0.170 0.023 1.227 

dialysis frequency per(wk) 0.721 0.129 0.508 1.023 

urea 1.004 0.002 1.000 1.008 

Serum creatinine 1.027 0.022 0.985 1.071 

other 0.429 0.205 0.169 1.093 

Source: prepared by the researcher by using STATA, 2014 

Source: prepared by the researcher by using STATA, 2014 

 

According to hazard ratio (HR) variables including age (HR=1.009), that means the 

hazard of age at any time in study increase by 0.9%. The 95% CI indicates that the 

hazard ratio could be low as 0.998 or as large as 1.021. 

 

Diabetes mellitus (HR=1.014), that means the hazard of diabetes mellitus at any 

time in study increase by 1.4%. The 95% CI indicates that the hazard ratio could be 

low as 0.669or as large as 1.538. 
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diabetes mellitus and hypertension (HR=1.092), that means the hazard of diabetes 

mellitus and hypertension at any time in study increase by 9.2%.The  95% CI 

indicates that the hazard ratio could be low as 0.632 or as large as 1.889. 
 

Urea (HR=1.004), that means the hazard of urea at any time in study increase by 

0.4%.The 95% CI indicates that the hazard ratio could be low 1.000 or as large as 

1.008. 
 

serum creatinine (HR=1.027) that means the hazard of serum creatinine at any time 

in study increase by 2.7%.the 95% CI indicates that the hazard ratio could be low as 

0.985 or as large as 1.071.were higher significantly factor in hemodialysis patients.  

 

On the other hand it was noted that other factors had significant lower hazard rate 

such as regular (HR=0.461), that means the hazard  rate of regular at any time in 

study decreased by 53.9%.The 95% CI indicates that the hazard ratio could be low 

0.258 or as large as 0.744 

 

hospital (HR=0.853), that means the hazard  rate of hospital at any time in study 

decreased by 14.7%.The 95% CI indicates that the hazard ratio could be low 0.762or 

as large as 0.956. 

 

hypertension (HR=0.603), that means the hazard rate of hypertension at any time in 

study decreased by 39.7%.The 95% CI indicates that the hazard ratio could be low 

0.378 or as large as 0.960 

 

shrunken kidneys (HR=0.168), that means the hazard of shrunken kidneys at any 

time in study decreased by 83.2%.The 95% CI indicates that the hazard ratio could 

be low 0.023 or as large as 1.227. 

 

 dialysis frequency per (wk) (HR=0.721), that means the hazard of dialysis 

frequency per (wk)  at any time in study decreased by 27.9%.The 95% CI indicates 

that the hazard ratio could be low 0.508 or as large as 1.023. 
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other (HR=0.429), that means the hazard rate of other at any time in study decreased 

by 57.1%.The 95% CI indicates that the hazard ratio could be low 0.169 or as large 

as 1.093, had significant lower survival rate  

4-7-2-3.Estimate multivariate Gompertz model - log relative-hazard form: 
 

Table (4-61): Chi-square test: 

Source: prepared by the researcher by using STATA, 2014 

 

From table (4-61) the multivariate Gompertz model is significant (p-value=0.000 

<0.05). 

Table (4-62): Coefficients: 

variable Coefficient Std. 

Err. 

z P-

value 

[95% Conf. 

Interval] 

age 0.010 0.006 1.760 0.079 -0.001 0.021 

regular -0.723 0.246 -2.940 0.003 -1.205 -0.242 

hospital -0.172 0.058 -2.970 0.003 -0.286 -0.059 

diabetes mellitus 0.018 0.213 0.090 0.931 -0.398 0.435 

diabetes mellitus and 

hypertension 
0.093 0.280 0.330 0.741 -0.457 0.642 

hypertension -0.491 0.238 -2.060 0.039 -0.957 -0.025 

other -0.848 0.477 -1.780 0.075 -1.783 0.087 

shrunken -1.783 1.015 -1.760 0.079 -3.773 0.207 

dialysis frequency 

per(wk) 
-0.301 0.179 -1.680 0.093 -0.652 0.050 

urea 0.004 0.002 2.000 0.045 0.000 0.007 

Serum creatinine 0.026 0.021 1.200 0.230 -0.016 0.068 

_ Intercept -3.418 0.754 -4.530 0.000 -4.895 -1.940 

       

/gamma 0.011 0.003 4.440 0.000 0.006 0.016 

Other= (Systemic lupus erytherematosus, tropical disease (malaria), Gout, Food 

poisoning, cardiovascular disease, NSAID).  

Source: prepared by the researcher by using STATA, 2014 

 

Model 
 

Chi-square test 
 

P-value 
 

88.59 0.0000 
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The table (4-62) .Based on multivariate analysis it was assessed that the risk Factors 

including regular (Coef=-0.723, p-value=0.003 <0.05), hospital (Coef=-0.172, p-

value=0.003 <0.05), hypertension (Coef=-0.491, p-value=0.039 <0.05), Urea (Coef 

= 0.004, p-value=0.045 <0.05), were significant results Wald test (P-value <0.05) 

comparing with other variables were insignificant. It will be incorporated into the 

multivariate model. 

 

Table (4-63): Hazard Ratios  

variable Hazard 

Ratio 

Std. 

Err. 

[95% Conf. 

Interval] 

age 1.010 0.006 0.999 1.022 

regular 0.485 0.119 0.300 0.785 

hospital 0.842 0.049 0.752 0.943 

diabetes mellitus 1.018 0.217 0.671 1.545 

diabetes mellitus and 

hypertension 
1.097 0.307 0.633 1.900 

hypertension 0.612 0.146 0.384 0.975 

shrunken kidneys 0.168 0.171 0.023 1.230 

dialysis frequency per(wk) 0.740 0.133 0.521 1.051 

urea 1.004 0.002 1.000 1.008 

Serum creatinine 1.026 0.022 0.984 1.070 

other 0.428 0.204 0.168 1.091 

Source: prepared by the researcher by using STATA, 2014 

 

According to hazard ratio (HR) variables including age (HR=1.010), that means the 

hazard of age at any time in study increase by 1%. The 95% CI indicates that the 

hazard ratio could be low as 0.999 or as large as 1.022. 
 

Diabetes mellitus (HR=1.018), that means the hazard of diabetes mellitus at any 

time in study increase by 1.8%. The 95% CI indicates that the hazard ratio could be 

low as 0.671or as large as 1.545. 
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diabetes mellitus and hypertension (HR=1.097), that means the hazard of diabetes 

mellitus and hypertension at any time in study increase by 9.7%.The  95% CI 

indicates that the hazard ratio could be low as 0.633 or as large as 1.900. 
 

Urea (HR=1.004), that means the hazard of urea at any time in study increase by 

0.4%.The 95% CI indicates that the hazard ratio could be low 1.000 or as large as 

1.008. 

serum creatinine (HR=1.026) that means the hazard of serum creatinine at any time 

in study increase by 2.6%.the 95% CI indicates that the hazard ratio could be low as 

0.984 or as large as 1.070.were higher significantly factor in hemodialysis patients.  

On the other hand it was noted that other factors had significant lower hazard rate 

such as regular (HR=0.485), that means the hazard  rate of regular at any time in 

study decreased by 51.5%.The 95% CI indicates that the hazard ratio could be low 

0.300 or as large as 0.785 

hospital (HR=0.842), that means the hazard  rate of hospital at any time in study 

decreased by 15.8%.The 95% CI indicates that the hazard ratio could be low 0.752 

or as large as 0.943. 

hypertension (HR=0.612), that means the hazard rate of hypertension at any time in 

study decreased by 38.7%.The 95% CI indicates that the hazard ratio could be low 

0.384 or as large as 0.975 

shrunken kidneys (HR=0.168), that means the hazard of shrunken kidneys at any 

time in study decreased by 83.2%.The 95% CI indicates that the hazard ratio could 

be low 0.023 or as large as 1.230. 

dialysis frequency per (wk) (HR=0.740), that means the hazard of dialysis 

frequency per (wk)  at any time in study decreased by 26%.The 95% CI indicates 

that the hazard ratio could be low 0.521 or as large as 1.051 
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other (HR=0.428), that means the hazard rate of other at any time in study decreased 

by 57.2%.The 95% CI indicates that the hazard ratio could be low 0.168 or as large 

as 1.091, had significant lower survival rate . 

  

4-7-2-4. Estimate multivariate lognormal model - accelerated failure-time 

form: 

 

Table (4-64): Chi-square test: 

 

From table (4-64) the multivariate Lognormal model is significant (p-value=0.000 

<0.05). 
 

Table (4-65): Coefficients: 

 

variable  Coefficient Std. 

Err. 

z P-

value 

 

[95% Conf. 

Interval] 

age -0.002 0.005 -0.390 0.693 -0.011 0.007 

regular 0.993 0.231 4.300 0.000 0.540 1.445 

hospital 0.163 0.050 3.240 0.001 0.065 0.262 

diabetes mellitus -0.068 0.199 -0.340 0.732 -0.458 0.322 

diabetes mellitus and 

hypertension 
-0.470 0.258 -1.820 0.068 -0.976 0.035 

hypertension 0.263 0.206 1.280 0.201 -0.140 0.667 

shrunken kidneys 1.478 0.715 2.070 0.039 0.076 2.879 

dialysis frequency 

per(wk) 
0.194 0.179 1.080 0.278 -0.156 0.545 

urea -0.004 0.002 -2.490 0.013 -0.008 -0.001 

Serum creatinine -0.041 0.019 -2.140 0.032 -0.078 -0.003 

other 0.772 0.383 2.010 0.044 0.021 1.523 

Intercept 2.262 0.741 3.050 0.002 0.809 3.715 

/ln_sig 0.088 0.056 1.570 0.117 -0.022 0.197 

sigma 1.092 0.061   0.978 1.218 
Other= (Systemic lupus erytherematosus, tropical disease (malaria), Gout, Food poisoning, 

cardiovascular disease, NSAID).   

Source: prepared by the researcher by using STATA, 2014 

Mode Chi-square test 

 

P-value 

 

94.76 0.0000 
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Shown in table (4-65), The Wald test is significant for regular (Coef =0.993,p-

value=0.000<0.05) hospital (Coef=0.163,p-value=0.001<0.05), shrunken kidneys 

(Coef=1.478,p-value=0.039<0.05), and urea (Coef=-0.004,p-value=0.013<0.05), 

Serum creatinine (Coef=-0.041, p-value=0.032<0.05), other (Coef=0.772,=p-

value=0.032<0.05). As a result, the calculated coefficients for these variables are 

significant. It will be incorporated into the multivariate model  

 

Table (4-66): Time Ratio: 
 

variable  Time Ratio Std. 

Err. 

[95% Conf. Interval] 

age 0.998 0.005 0.989 1.007 

regular 2.699 0.623 1.717 4.243 

hospital 1.178 0.059 1.067 1.300 

diabetes mellitus 0.934 0.186 0.632 1.380 

diabetes mellitus and 

hypertension 
0.625 0.161 0.377 1.036 

hypertension 1.301 0.268 0.869 1.949 

shrunken 4.382 3.133 1.079 17.793 

dialysis frequency per(wk) 1.214 0.217 0.855 1.724 

urea 0.996 0.002 0.992 0.999 

Serum creatinine 0.960 0.018 0.925 0.997 

other 2.164 0.829 1.021 4.586 

Source: prepared by the researcher by using STATA, 2014 
 

 

We note from the table (4-66), that time ratio of regular (2.699), hospital (1.178), 

hypertension (1.301), shrunken kidneys (4.382), dialysis frequency per week 

(1.214), and other (2.164) the factors improved the survival time to the event, 

implying that an investigator would wait longer for the event to occur. In the other 

hand, with certain factors such as age (0.998), diabetes mellitus (0.934), both 

diabetes mellitus, hypertension (0.625), urea (0.996) and Serum creatinine (0.960) 

a time ratio shorter than one leads to a patient's time to death being accelerated. 
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4-7-2-5. Estimate multivariate Log logistic model- accelerated failure-time 

form: 

 

Table (4-67): Chi-square test: 

Source: prepared by the researcher by using STATA, 2014 

 

 

From table (4-67) the multivariate Log logistic model is significant (P value = 

0.000 <0.05). 

 

Table (4-68): Coefficients  

variable  Coefficient 
Std. 

Err. 
z 

P-

value 

[95% 

Conf.Interval] 

age 
-0.001 0.005 

-

0.310 
0.755 -0.010 0.008 

regular 0.975 0.238 4.100 0.000 0.509 1.441 

hospital 0.159 0.050 3.170 0.002 0.061 0.258 

diabetes mellitus 
-0.027 0.190 

-

0.140 
0.887 -0.399 0.345 

diabetes mellitus and 

hypertension 
-0.434 0.268 

-

1.620 
0.105 -0.958 0.091 

hypertension 0.334 0.202 1.660 0.097 -0.061 0.729 

shrunken 1.335 0.689 1.940 0.053 -0.016 2.686 

dialysis frequency per(wk) 0.252 0.176 1.440 0.151 -0.092 0.597 

urea 
-0.004 0.002 

-

2.340 
0.019 -0.008 -0.001 

Serum creatinine 
-0.036 0.019 

-

1.940 
0.053 -0.073 0.000 

other 0.670 0.361 1.860 0.063 -0.038 1.378 

Intercept 2.082 0.760 2.740 0.006 0.593 3.570 

/ln_gam -0.481 0.063 
-

7.610 
0.000 -0.605 -0.357 

gamma 0.618 0.039   0.546 0.700 

Other= (Systemic lupus erytherematosus, tropical disease (malaria), Gout, Food poisoning, 

cardiovascular disease, NSAID). Uncertain=unknown reason 

Source: prepared by the researcher by using STATA, 2014 

 

 

Model 
 

Chi-square test 
 

P-value 
 

 

93.37 

 

0.0000 
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Shown in table (4-68), The Wald test is significant for regular (Coef =0.975, p-

value=0.000<0.05) hospital (Coef=0.159, p-value=0.002<0.05), and urea (Coef=-

0.004, p-value=0.019<0.05), As a result, the calculated coefficients for these 

variables are significant. It will be incorporated into the multivariate model 

 

 

Table (4-69): Time Ratio: 
 

_t Time 

Ratio 

Std. 

Err. 

[95% Conf. 

Interval] 

age 0.999 0.005 0.990 1.008 

regular 2.652 0.630 1.664 4.226 

hospital 1.173 0.059 1.063 1.294 

diabetes mellitus 0.973 0.185 0.671 1.412 

diabetes mellitus and 

hypertension 
0.648 0.173 0.384 1.095 

hypertension 1.397 0.282 0.941 2.074 

other 1.955 0.706 0.963 3.968 

shrunken 3.801 2.620 0.984 14.676 

dialysis frequency per(wk) 1.287 0.226 0.912 1.817 

urea 0.996 0.002 0.992 0.999 

Serum creatinine 0.964 0.018 0.930 1.000 

Source: prepared by the researcher by using STATA, 2014 

 
 

We note from the table (4-69), that time ratio of regular (2.652), hospital (1.173), 

hypertension (1.397), shrunken kidneys (3.801), dialysis frequency per week 

(1.287), and other (1.955) the factors improved the survival time to the event, 

implying that an investigator would wait longer for the event to occur. In the other 

hand, with certain factors such as age (0.999), diabetes mellitus (0.973), both 

diabetes mellitus, hypertension (0.648), urea (0.996) and Serum creatinine (0.964) 

a time ratio shorter than one leads to a patient's time to death being accelerated. 
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4-8.Goodness of Fit of the multivariate parametric models  

Cox-Snell Residuals and Akaike Information Criterion were used to assess these 

models 

 

4-8-1. Akaike information Criterion (AIC) and The Baysian Information 

Criteria (BIC) 

 

Table (4-70) Akaike information Criterion (AIC)  

models Exponential Weibull Gompertz Lognormal Log logistic 

AIC 671.6734 662.0275 654.8547     667.4715     669.9081 

BIC 

 

717.0793 

 

711.2172 

 

704.0445 716.6612 719.0978 

 

Source: prepared by the researcher by using STATA, 2014 
            

Seen from the table (4-70), shows Akaike information Criterion (AIC) for the 

different considered methods. According to this Criterion, among the desired 

models, a model that has the lowest AIC, is the best and the most efficient one 

therefore, the Gompertz model was the best fitted model for hemodialysis patients 

data among other parametric models. The final multivariate Gompertz proportional 

hazard model is then given by: 

 

h(t, x, β) = λ̂e�̂�teβx 

h(t, x, β)

=  30.51 e.90.91te(−0.723   regular+−0.172  hospital+−0.491 hypertension+0.004urea)  

 

In the analysis of Gompertz find Stata provides estimate Shape parameter is the 

reciprocal of γ (gamma =
1

γ
)  rather than for 𝛾.the estimate of gamma is 

0.011.there for, the estimate for 𝛾 is  1 ( 0.011) = 90.91⁄  

(KALBFLEISCH & , 2002) 
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 The shape parameter estimate is 90.91, so the hazard exponentially increases over 

time hazard  (𝑠ℎ𝑎𝑝𝑒 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 > 0). 

 

λ̂   = 𝑒𝑥𝑝(−𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡) = 𝑒𝑥𝑝(3.418) = 30.51 .See table (4-54) 

 

 The final model is  

h(t, x, β)

= e(−0.723   regular+−0.172  hospital+−0.491 hypertension+0.004urea)     30.51 e.90.91t 

 

 

4-8-2. Cox-Snell residual plot  

The overall fit of the models are evaluated by using the diagnostic plot of Cox-Snell 

residuals. Cox-Snell residuals evaluated and compare models (Exponential, 

Weibull gompertz, log normal, and Log logistic). For each model, we calculated the 

Cox-Snell residuals, estimated their survival functions using Kaplan-Meier method 

and, then calculated the cumulative hazard functions for these estimations. 

According to Cox-Snell residuals considering that the closer the graph to the 

bisector the better fitted model to the data, there is some evidence of a systematic 

deviation from the straight line which gives us some concern about the adequacy of 

the fitted model. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (4-29) Cox -Snell residuals for Exponential  
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Source: prepared by the researcher by using STATA, 2014 

 

We saw in figure (4-29) concluded that the Exponential   model does not fit these 

data adequately. 

 

 

 

 

 

 

 

 

0
2

4
6

C
u

m
u
la

ti
v
e

 h
a
z
a

rd
 f
u

n
c
ti
o
n

0 2 4 6
Cox-Snell residual

H Cox-Snell residual

Exponential



183 
 

Figure (4-30). Cox -Snell residuals for Weibull  

 

 
Source: prepared by the researcher by using STATA, 2014 

 

We saw in Figure (4-30) concluded that the Weibull model does not fit these data 

adequately 
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Figure (4-31) .Cox -Snell residuals for Gompertz 

 

 
Source: prepared by the researcher by using STATA, 2014 

 

 

We saw in Figures (4-31) the Gompertz model was the best fitted model for these 

data 
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Figure (4-32) Cox -Snell residuals for Lognormal 

 

Source: prepared by the researcher by using STATA, 2014 

 

We saw in figure (4-32) concluded that the Lognormal AFT model does not fit 

these data adequately. 
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Figure (4-33) .Cox -Snell residuals for Log logistic 

 

Source: prepared by the researcher by using STATA, 2014 
 

 

We saw in figure (4-33) concluded that the lognormal AFT model does not fit 

these data adequately. 
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CHAPTER FIVE 

Conclusions and Recommendations 
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5-0. Preface: 

This chapter contains the results that have been reached through the practical side 

of the research, in addition to the proposed recommendations. 

 

5-1. Conclusions:  

1-  The descriptive analysis showed that a total of 325 patients with hemodialysis 

were enrolled in this study. The demographic characteristics of the targeted 

patients showed that 59.7 % were male, 40.3 %, were female in terms of sex. By 

December 2015, 52.3 % of patients had died and 47.7 % were still alive, 

according to survival status. The marital status of the patients showed that 2.5% 

were divorced, 71.4% were married, 24% were single and 2.2% were widowed. 

Education revealed that 7.7 % of patients were illiterate, 32.6 % received basic 

education, 4.6 % were intermediate, 39.1 % completed secondary education and 

16 % graduated. Patients’ occupation wise shows that 18.8 % were employees, 

13.8 % were freelancers, 41.2 % were unemployed, 3.7 % were police man, 4.3 

% were retired 7.4 % were students, 11.8 % were workers .In regard to the 

qualitative variables such as age; the minimum age was 6years. The maximum 

age was 88years. The median age was 45years. Results of clinical characteristics 

showed that 88.9 % of patients with hemodialysis were regular and 11.1 % were 

irregular patients with hemodialysis, 27.4 % were diabetic mellitus and 72.6 % 

were not diabetic mellitus. 29.5 % had hypertension and 70.5 % had no 

hypertension. .89.8% had neither diabetes mellitus nor hypertension, and 10.2% 

had both diabetes mellitus and hypertension. 3.4 % had shrunken kidneys and 

96.6 % had no shrunken kidneys. Dialysis frequency per week found that two 

times (8.8%) and three times (81.2%) had polycystic kidney disease and 94.8% 

had no polycystic kidney disease. 8.0 % had renal obstruction and 92.0 % had no 

renal obstruction. 9.5 % were uncertain and 90.5 % were uncertain. 5.8 % had 

each other, and 94.2 % had no other 



188 
 

2-  The median overall survival time was estimated at 84 months and the trust level 

was found at 95% (61-89). 

3-  Based on the log rank test, the variables considered to be important with p-value 

< 0.05 were entered in the mean parametric model, while other variables were 

not significantly excluded from the parametric model. The variables used in the 

parametric model were regular, dialysis frequency per week, hospitals, diabetes 

mellitus , hypertension, diabetes mellitus and hypertension, shrunken kidneys, 

other. 

4-  The univariate analysis study, for five models (Exponential, Weibull, Gompertz, 

lognormal and log logistic) in term of hazard ratio and time ratio, all variables 

were significant effects but age wasn’t in lognormal.  

5-  In univariate and multivariate analysis, According to HR and TR, the variables 

including age, diabetes mellitus, diabetes mellitus +hypertension, urea and serum 

creatinine were considered to be highly significant factors and increased the risk 

of death in patients (shorter survival) so that they could influence survival in 

hemodialysis patients in the five models used in this research. Whereas other 

factors, such as regular, hospital, hypertension, shrunk kidneys, dialysis 

frequency per week, other  have decreased the risk of death (longer survival) and 

have a direct effect on the survival of the hemodialysis patient. 

6-  In Multivariate analysis for three models (Exponential, Weibull and Gompertz), 

that many variables were significance such as, regular, hospital, hypertension and 

urea but hypertension wasn’t in lognormal and logistic.  In addition to found the 

Serum creatinine and other were significant in lognormal but weren’t in log 

logistic  

7-  The Gompertz model, which had the lowest AIC, BIC value, was selected as the 

most appropriate model. Although the AIC values of the parametric models 

(Exponential, Weibull, Gompertz, Lognormal and Log-logistic) were very close 
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to each other, so it is conclude that the Gompertz distribution is the best model 

for survival analysis of hemodialysis patients. 

 

5-2. Recommendations: 

The study recommended the following: 

1. The possibility of using the root causes of kidney failure in Sudan should be 

conducted using the Cox Proportional Hazard model. 

2. Estimation of Survival of kidney failure Patients, in the Presence of 

Prognostic Factors Using Accelerated Failure Time Model as an Alternative 

to Proportional Hazard Model. 

 

3. The possibility of using the Accelerated failure time models, in the Presence 

of the economic, demographic and social consequences of kidney failure 

Patients and other chronic diseases.  

 

4. Use analysis to keep in similar studies. 
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sex age 
Edcation_ 

status occupation 
martial_ 
status hospital DM HTN 

DM+ 

HTN other 
Plocycstic 
kidney shrunken uncertain 

Renal 
obstructions regular Urea 

Dialysis 

Frequency 

per(wk) 

Serum 

Creatinine 

Survivl 
time status 

male 76 illiterate free job married eb sana yes no no no no no no no regular 155 2 11 120 dead 

male 55 illiterate free job married eb sana yes no no no no no no no regular 190 2 9 60 dead 

female 35 secondary not work single eb sana yes no no no no no no no regular 99 3 8 60 live 

female 24 secondary student single eb sana no no no no yes no no no regular 99 2 7.5 96 live 

male 65 university employee married eb sana no no yes no no no no no regular 150 2 11 72 dead 

male 43 university employee married eb sana no no no no no no no yes regular 177 2 14 108 dead 

male 51 secondary worker married eb sana yes no no no no no no no regular 206 2 15 12 dead 

female 30 secondary employee single eb sana yes no no no no no no no regular 190 3 7 84 live 

male 55 secondary not work married eb sana yes no no no no no no no regular 200 2 15 96 dead 

male 32 secondary free job single eb sana no no no no no no no yes regular 99 3 4 24 live 

male 40 secondary free job single eb sana no no yes no no no no no regular 130 3 6 24 live 

female 36 secondary not work divorced eb sana no no yes no no no no no regular 140 3 9 72 live 

female 44 secondary employee married eb sana no no yes no no no no no regular 168 3 8.5 96 live 

female 64 basic employee married eb sana yes no no no no no no no regular 200 2 14 12 dead 

female 25 secondary not work single eb sana no no no no no yes no no regular 200 3 5.6 48 live 

female 27 university employee single eb sana no no yes no no no no no regular 156 3 6.6 60 live 

female 50 basic not work married eb sana no no yes no no no no no regular 179 3 8 12 live 

female 75 university employee divorced eb sana no no no no yes no no no regular 140 2 11 31 dead 

male 21 secondary worker single eb sana no no yes no no no no no regular 180 2 9.8 12 dead 

male 48 secondary worker married eb sana no no no no yes no no no regular 150 2 9 18 dead 

male 44 basic worker married eb sana no no yes no no no no no regular 136 3 5 84 live 

female 20 university student single eb sana no no no no no yes no no regular 145 2 4.3 24 live 

male 34 university free job single eb sana no yes no no no no no no regular 165 2 6 12 dead 

male 24 basic free job single eb sana no no yes no no no no no regular 160 2 8 14 dead 

male 25 basic free job single eb sana no no yes no no no no no regular 200 3 9 13 live 



 
 

male 55 university employee married eb sana no no no no yes no no no regular 220 2 15 25 dead 

male 69 university employee married eb sana no yes no no no no no no regular 220 2 12 48 dead 

male 44 secondary free job married eb sana yes no no no no no no no regular 189 2 9.9 72 dead 

male 27 basic employee single eb sana yes no no no no no no no regular 166 3 7 108 live 

male 52 secondary employee married eb sana no no no no no no yes no regular 183 3 8 24 live 

female 31 secondary not work married eb sana no no no no no no no yes regular 185 2 8 24 live 

female 46 illiterate not work married eb sana yes no no no no no no no regular 200 2 10 108 dead 

female 27 basic not work married eb sana yes no no no no no no no regular 199 2 12 24 dead 

female 69 secondary not work married eb sana no no no yes no no no no regular 179 2 10 24 dead 

female 49 secondary not work married eb sana no no no no no no no yes regular 160 2 7 108 dead 

male 59 secondary not work married eb sana no no no no no no yes no regular 145 2 6 36 dead 

male 58 intermediate not work married eb sana yes no no no no no no no regular 182 2 8.2 84 dead 

male 36 intermediate free job married eb sana no no no no no no yes no regular 178 2 10 22 dead 

male 70 illiterate employee married eb sana no no no no no no no yes regular 193 2 9 24 dead 

male 58 secondary employee married eb sana no no no no no no no yes regular 157 2 7 30 dead 

female 37 basic employee divorced eb sana yes no no no no no no no regular 190 2 4 20 live 

male 68 intermediate free job married eb sana no yes no no no no no no regular 130 2 8 22 dead 

male 61 university employee married eb sana no yes no no no no no no regular 145 2 6 23 dead 

female 64 secondary not work married eb sana yes no no no no no no no regular 175 3 7 96 dead 

female 67 intermediate employee widowed eb sana no yes no no no no no no regular 188 2 8 11 live 

male 59 basic not work married eb sana no no no no no no no yes regular 162 2 6 108 dead 

female 36 basic worker married eb sana no no no no no no yes no regular 143 3 9 84 live 

female 37 illiterate worker married eb sana no no yes no no no no no regular 158 2 7 84 live 

male 58 illiterate free job married eb sana yes no no no no no no no regular 167 2 8 96 dead 

male 43 university employee married eb sana no no no no no no no yes regular 190 3 9 12 live 

female 57 intermediate not work married eb sana no yes no no no no no no regular 168 2 15 14 dead 

female 54 secondary not work married eb sana yes no no no no no no no regular 205 2 11 20 dead 

male 50 basic not work married eb sana yes no no no no no no no regular 210 3 8 96 live 

male 68 illiterate worker married eb sana no yes no no no no no no regular 163 3 6.4 72 live 

male 64 basic not work married eb sana no no no yes no no no no regular 182 2 7.5 108 dead 



 
 

male 80 university employee married eb sana no no yes no no no no no regular 166 3 7 36 live 

male 60 basic worker married eb sana no no yes no no no no no regular 145 2 10 72 dead 

male 45 secondary employee single eb sana no no no no yes no no no regular 163 3 6 120 live 

female 40 secondary free job married eb sana no no no no no no no yes regular 130 3 5.5 24 live 

male 37 secondary free job single eb sana no no yes no no no no no regular 140 3 6 22 live 

male 68 secondary employee married eb sana no no yes no no no no no regular 172 2 12 72 dead 

female 42 secondary employee married eb sana yes no no no no no no no regular 190 3 7 72 live 

female 60 illiterate not work married eb sana no no no no no no no yes regular 200 2 12 84 dead 

male 62 secondary not work married eb sana no no yes no no no no no regular 220 2 11 60 dead 

male 38 university free job married eb sana no no no no no no no yes regular 163 3 6 48 live 

female 47 university employee married eb sana no no yes no no no no no regular 96 3 7.9 60 live 

female 37 secondary employee single eb sana yes no no no no no no no regular 159 2 14 44 dead 

female 56 illiterate not work married eb sana yes no no no no no no no regular 180 2 3 55 dead 

female 76 basic not work married eb sana yes no no no no no no no regular 200 2 11 50 dead 

female 30 university not work married eb sana yes no no no no no no no regular 99 3 6.6 44 live 

male 83 basic not work married eb sana yes no no no no no no no regular 119 3 5.8 48 dead 

female 78 university employee widowed eb sana yes no no no no no no no regular 145 3 8 60 dead 

male 60 illiterate worker married eb sana yes no no no no no no no regular 177 3 15 12 dead 

female 65 illiterate not work married eb sana no yes no no no no no no regular 180 3 14 60 dead 

male 55 illiterate worker married salma no yes no no no no no no regular 140 3 18 36 dead 

female 65 basic not work married salma no no no no yes no no no regular 170 3 8 60 dead 

male 65 illiterate worker married salma no no no no yes no no no regular 136 3 4 96 dead 

female 36 secondary not work married salma no no no yes no no no no regular 140 3 7.5 120 live 

male 40 university not work married salma no no no no yes no no no regular 99 3 7.5 120 live 

male 33 university not work married salma no no no yes no no no no regular 95 3 5.8 108 live 

female 52 secondary not work married salma yes no no no no no no no regular 142 3 9.8 60 dead 

female 70 illiterate not work married salma no no no no yes no no no regular 111 3 10 60 dead 

male 17 secondary not work married salma no no no no no no yes no regular 71 3 5.8 120 live 

male 32 basic not work married salma no no yes no no no no no regular 118 3 6.6 96 live 

male 14 basic not work single salma yes no no no no no no no regular 63 3 3.9 72 live 



 
 

male 16 secondary not work single salma no no yes no no no no no regular 41 3 8 60 live 

female 14 basic student single salma no no no no no yes no no regular 41 3 5.3 48 live 

male 43 basic employee married salma no no yes no no no no no regular 97 3 6.6 12 live 

male 23 secondary student single salma no no no yes no no no no regular 101 3 7 96 live 

female 52 secondary not work married salma no no no no no no yes no regular 142 3 9.8 12 dead 

male 14 basic not work single salma no no no no no no yes no regular 63 3 3.9 120 live 

female 70 illiterate not work married salma yes no no no no no no no regular 111 3 10 60 dead 

female 65 illiterate not work married salma no yes no no no no no no regular 156 3 15 4 dead 

male 32 secondary not work single salma no no no no no yes no no regular 53 3 8 60 live 

female 29 university not work single salma no no no no no no yes no regular 95 3 11 108 live 

female 40 secondary not work married salma no no yes no no no no no regular 210 3 13 12 dead 

male 60 intermediate not work married salma yes no no no no no no no regular 199 3 9.9 120 dead 

male 50 university employee married salma no no no no yes no no no regular 150 3 10 120 dead 

male 72 basic not work married salma no no no no no no no yes regular 180 3 18 96 dead 

female 30 secondary not work single salma yes no no no no no no no regular 177 3 10 12 dead 

female 45 secondary not work married salma no no no no no yes no no regular 95 3 6.6 60 live 

male 50 intermediate free job married salma no no yes no no no no no regular 119 3 10 10 dead 

female 32 secondary not work married salma no no no yes no no no no regular 147 3 12 60 live 

male 34 secondary not work single salma yes no no no no no no no regular 155 3 12 120 dead 

male 66 university not work married salma yes no no no no no no no regular 135 3 11 84 dead 

male 50 intermediate free job married salma yes no no no no no no no regular 141 3 11 108 dead 

male 42 intermediate not work married salma no no no yes no no no no regular 63 3 8 108 live 

female 24 secondary not work single salma no no no yes no no no no regular 170 3 10 120 live 

female 30 university not work married salma no no yes no no no no no regular 103 3 4.7 120 live 

female 71 secondary not work widowed salma no no no no no no no yes regular 111 3 3 84 dead 

female 77 basic not work married salma no no yes no no no no no regular 137 3 8.5 12 dead 

male 55 university employee married salma no no no no no no no yes regular 155 3 12 48 dead 

female 40 basic not work married salma yes no no no no no no no regular 189 3 6.5 120 live 

female 60 basic not work married salma no no yes no no no no no regular 86 3 9.9 60 live 

female 39 secondary not work married salma no no yes no no no no no regular 113 3 8.5 120 live 



 
 

male 38 basic free job married 
ahmed 
gasm no yes no no no no no no regular 115 3 8 60 live 

male 47 secondary retirement married 
ahmed 
gasm no no yes no no no no no regular 119 3 4.2 60 live 

male 35 basic worker married 
ahmed 
gasm no no yes no no no no no regular 82 3 10 62 live 

male 35 basic worker married 
ahmed 
gasm yes no no no no no no no regular 250 3 10 4 dead 

male 53 basic worker married 
ahmed 
gasm yes no no no no no no no regular 250 3 3.5 16 dead 

male 53 university employee married 
ahmed 
gasm yes no no no no no no no regular 190 3 8 15 dead 

female 65 basic not work married 
ahmed 
gasm yes no no no no no no no regular 321 3 14 75 dead 

female 60 basic not work married 
ahmed 
gasm no no no yes no no no no regular 84 3 11 60 live 

male 24 basic not work married 
ahmed 
gasm yes no no no no no no no regular 91 3 6 60 live 

female 80 basic not work married 
ahmed 
gasm no yes no no no no no no regular 186 3 10 37 dead 

male 32 secondary not work married 
ahmed 
gasm no no no no no no yes no regular 150 3 8 60 live 

female 35 basic not work married 
ahmed 
gasm no no no no no no no yes regular 53 3 7.5 72 live 

female 57 basic not work widowed 
ahmed 
gasm no yes no no no no no no regular 184 3 5 60 dead 

male 45 basic worker married 
ahmed 
gasm no no no no yes no no no regular 122 3 6.2 96 live 

female 36 secondary not work divorced 
ahmed 
gasm no no no no no no no yes regular 108 3 5 60 live 

male 20 secondary student single 
ahmed 
gasm yes no no no no no no no regular 111 3 6 36 dead 

male 50 secondary worker married 
ahmed 
gasm yes no no no no no no no regular 91 3 9.5 24 live 

male 64 university free job married 
ahmed 
gasm no yes no no no no no no regular 217 3 15 60 dead 

female 45 secondary not work married 
ahmed 
gasm no no no no yes no no no regular 200 3 12 60 dead 

female 42 illiterate not work divorced 
ahmed 
gasm yes no no no no no no no regular 250 3 9 24 dead 

male 34 secondary free job married 
ahmed 
gasm yes no no no no no no no regular 88 3 3 12 live 

female 28 university student widowed 
ahmed 
gasm yes no no no no no no no regular 89 3 8.7 12 live 

male 17 secondary student single 
ahmed 
gasm no no no no yes no no no regular 105 3 6 24 dead 

female 30 university student single 
ahmed 
gasm no no no no yes no no no regular 150 3 7 24 dead 

male 29 secondary free job single 
ahmed 
gasm no yes no no no no no no regular 113 3 6 12 dead 



 
 

female 35 basic not work married 
ahmed 
gasm yes no no no no no no no regular 210 3 9.2 12 dead 

male 39 secondary worker single 
ahmed 
gasm no no no no yes no no no regular 202 3 12 34 dead 

male 43 secondary free job married 
ahmed 
gasm no no no no no no no yes regular 150 3 2.9 22 dead 

female 39 university employee married 
ahmed 
gasm no no no no no no no yes regular 130 3 5 60 dead 

male 40 basic not work divorced 
ahmed 
gasm no no no no no no no yes regular 113 3 7 24 dead 

male 37 secondary free job married 
ahmed 
gasm no no no no no no no no regular 102 3 8 84 live 

male 58 university employee married 
ahmed 
gasm yes no no no no no no no regular 140 3 5 60 dead 

female 48 basic not work married 
ahmed 
gasm yes no no no no no no no regular 161 3 7 12 dead 

male 34 basic free job married 
ahmed 
gasm yes no no no no no no no regular 102 3 6 24 dead 

female 48 basic free job married 
ahmed 
gasm no no no yes no no no no regular 156 3 3.2 36 dead 

female 55 basic worker single 
ahmed 
gasm yes no no no no no no no regular 239 3 15 48 dead 

female 42 secondary not work married 
ahmed 
gasm yes no no no no no no no regular 235 3 10 12 dead 

female 18 secondary student single 
ahmed 
gasm no no no no no no yes no regular 200 3 8 72 live 

female 44 university employee married 
ahmed 
gasm no no yes no no no no no regular 180 3 8 60 live 

female 45 basic not work married 
ahmed 
gasm no yes no no no no no no regular 206 3 11 60 dead 

male 61 secondary free job married 
ahmed 
gasm no yes no no no no no no regular 123 3 4 108 dead 

female 48 basic worker married 
ahmed 
gasm no no yes no no no no no regular 80 3 3.5 120 live 

male 19 secondary free job single 
ahmed 
gasm no no yes no no no no no regular 180 3 8 60 live 

male 35 secondary employee single 
ahmed 
gasm yes no no no no no no no regular 215 3 7 60 live 

female 17 secondary student single 
ahmed 
gasm no no no yes no no no no regular 113 3 6 60 live 

male 31 secondary free job single 
ahmed 
gasm no no yes no no no no no regular 125 3 7 120 live 

male 55 university employee married 
ahmed 
gasm no no yes no no no no no regular 385 3 25 84 dead 

female 28 university student single 
ahmed 
gasm yes no no no no no no no regular 111 3 6.3 72 live 

female 15 basic student single 
ahmed 
gasm no no no no no yes no no regular 111 3 6.3 72 live 

male 28 secondary free job single 
ahmed 
gasm no no yes no no no no no regular 131 3 6 96 live 

male 38 illiterate free job married omderman no no no no no no yes no regular 214 3 8 108 live 



 
 

female 40 basic free job widowed omderman yes no no no no no no no regular 120 3 14 96 dead 

male 36 basic free job married omderman no no no no no no no no regular 190 3 5 60 live 

male 60 university employee married omderman no no no no no yes no no regular 76 3 6 108 live 

female 28 secondary student single omderman yes no no no no no no no regular 200 3 7 84 dead 

male 56 illiterate not work married omderman yes no no no no no no no regular 250 3 23 108 dead 

male 80 basic not work married omderman yes no no no no no no no regular 144 3 17 12 dead 

female 52 basic not work married omderman yes no no no no no no no regular 150 3 5 24 dead 

male 53 basic not work married omderman no no no no no no yes no regular 130 3 5 22 dead 

male 33 secondary not work married omderman no no yes no no no no no regular 188 3 8 30 live 

female 53 intermediate not work married omderman no no yes no no no no no regular 120 3 7 60 live 

female 42 secondary not work married omderman no no yes no no no no no regular 145 3 4 60 live 

male 29 university employee single omderman yes no no no no no no no regular 150 3 6 72 live 

male 71 secondary not work married omderman no no no no no no yes no regular 199 3 6 2 live 

female 70 illiterate not work married omderman no no yes no no no no no regular 230 3 7 84 dead 

male 18 basic not work single omderman no no no no yes no no no regular 139 3 8 84 live 

female 18 basic not work single omderman yes no no no no no no no regular 205 3 9 59 live 

female 13 basic not work single omderman no no no no no yes no no regular 130 3 6 75 live 

male 18 basic not work single omderman no no no no no no yes no regular 190 3 6 84 live 

male 84 secondary student single omderman no yes no no no no no no regular 189 3 3 60 dead 

male 60 secondary student single omderman yes no no no no no no no regular 156 3 6 61 dead 

female 56 basic student single omderman yes no no no no no no no regular 166 3 6 64 live 

male 38 secondary student single omderman no no no no no no yes no regular 136 3 3 71 live 

male 27 secondary free job married omderman no no yes no no no no no regular 147 3 8 72 live 

male 34 basic worker married omderman yes no no no no no no no regular 170 3 7 96 live 

male 48 secondary not work married omderman no no yes no no no no no regular 190 3 8 60 live 

male 42 basic free job married omderman no no yes no no no no no regular 189 3 8 108 live 

female 53 secondary not work married omderman no no yes no no no no no regular 199 3 11 84 dead 

male 66 secondary retirement married omderman no no no no no no yes no regular 185 3 7 96 dead 

female 50 university not work married omderman no no yes no no no no no regular 156 3 5 84 dead 

male 64 basic free job married omderman no no yes no no no no no regular 168 3 6 108 dead 



 
 

female 38 university employee married omderman no no no yes no no no no regular 119 3 5 84 live 

male 39 secondary free job single omderman yes no no no no no no no regular 102 3 4 60 live 

male 33 secondary not work single omderman no no yes no no no no no regular 164 3 9 96 live 

male 67 basic worker divorced omderman yes no no no no no no no regular 164 3 12 108 dead 

female 63 secondary worker married omderman no no yes no no no no no regular 176 3 11 60 dead 

male 57 basic worker married omderman no no yes no no no no no regular 197 3 11 60 dead 

male 36 basic not work married omderman no no no yes no no no no regular 111 3 4 60 live 

male 57 secondary employee married omderman no no yes no no no no no regular 189 3 9 24 dead 

female 31 intermediate not work married omderman no yes no no no no no no regular 65 3 10 22 live 

male 44 intermediate employee married omderman no no no no no no yes no regular 175 3 7 24 live 

male 65 basic employee single omderman no no no no no no no yes regular 189 3 10 60 live 

male 80 secondary retirement divorced omderman yes no no no no no no no regular 250 3 10 24 live 

male 50 basic employee married omderman no no yes no no no no no regular 150 3 11 27 live 

male 6 university employee married omderman no no yes no no no no no regular 159 3 5 67 live 

female 7 basic employee married omderman no no yes no no no no no regular 125 3 7 24 dead 

male 14 basic worker married omderman no no no no yes no no no regular 125 3 9 72 dead 

male 7 basic worker married omderman no no no no no no yes no regular 161 3 5 46 dead 

female 31 basic not work married omderman no no no yes no no no no regular 150 3 8 65 live 

male 40 university not work married omderman no no no no no yes no no regular 65 3 8 33 live 

male 47 basic worker married omderman no no yes no no no no no regular 95 3 10 63 live 

female 59 secondary not work married omderman no no yes no no no no no regular 130 3 9 60 dead 

male 58 secondary employee single omderman no no yes no no no no no regular 119 3 6 17 live 

male 57 secondary not work married omderman no no yes no no no no no regular 112 3 9 48 live 

male 65 intermediate not work married omderman no no no yes no no no no regular 215 3 8 76 dead 

female 47 basic not work single omderman yes no no no no no no no regular 90 3 9 26 live 

male 56 basic not work married omderman no no no yes no no no no regular 250 3 18 12 live 

male 52 university employee single omderman yes no no no no no no no regular 90 3 10 25 live 

female 29 secondary not work married omderman no no yes no no no no no regular 115 3 7 108 dead 

male 49 secondary free job married omderman yes no no no no no no no regular 114 3 17 24 dead 

male 53 secondary not work married omderman yes no no no no no no no regular 209 3 16 36 dead 



 
 

female 60 basic worker married omderman no no no yes no no no no regular 161 3 7 76 dead 

female 35 basic not work widowed bahri no no yes no no no no no regular 50 3 14 60 live 

male 50 illiterate worker married bahri no no no no no no yes no regular 65 3 9.2 84 live 

male 40 basic worker married bahri no no yes no no no no no regular 80 3 7 6 live 

female 48 basic free job married bahri no no yes no no no no no regular 160 3 14 12 dead 

male 53 secondary employee married bahri yes no no no no no no no regular 370 3 10 2 dead 

male 46 secondary free job married bahri no no no no no no yes no regular 177 3 11 24 dead 

male 55 secondary retirement married bahri yes no no no no no no no regular 111 3 5.4 6 dead 

male 65 basic worker married bahri no no no no no no no yes regular 96 3 8.5 2 live 

female 48 illiterate not work married bahri no no yes no no no no no regular 106 3 7 1 live 

male 49 university employee married bahri no yes no no no no no no regular 153 3 9.3 17 dead 

female 70 illiterate not work married bahri no no no no no no no yes 
not 
regular 90 3 14 1 live 

male 16 secondary student single bahri no no no no no no yes no 
not 
regular 105 3 9.9 13 dead 

male 47 illiterate free job single bahri yes no no no no no no no 
not 
regular 115 3 4 48 dead 

female 70 illiterate not work married bahri no no no no no no yes no 
not 
regular 80 3 14 1 live 

female 57 university retirement married bahri no yes no no no no no no 
not 
regular 150 3 10 89 dead 

male 43 secondary free job married bahri no no yes no no no no no 
not 
regular 68 3 12 12 live 

male 38 basic free job married bahri no no no no no no no no regular 100 3 15 5 dead 

male 35 basic free job married bahri no no yes no no no no no single 147 3 9.3 6 dead 

female 60 secondary free job single bahri no no yes no no no no no regular 197 3 13 23 dead 

male 65 basic retirement married bahri no no yes no no no no no regular 130 3 5.6 12 dead 

female 43 secondary employee married bahri no yes no no no no no no regular 190 3 8 16 dead 

male 20 basic worker single bahri no yes no no no no no no regular 73 3 6 1 live 

female 68 basic not work single bahri no yes no no no no no no regular 140 3 4 6 dead 

female 23 university student married bahri no no yes no no no no no 
not 
regular 150 3 12 3 dead 

male 58 secondary retirement single bahri no no yes no no no no no 
not 
regular 111 3 12 1 live 

male 32 secondary employee married bahri no yes no no no no no no regular 170 3 15 6 dead 

female 40 basic not work single bahri yes no no no no no no no regular 170 3 4.8 6 dead 

male 25 university employee married bahri no no no no no no yes no regular 119 3 8.2 7 dead 



 
 

male 25 basic worker married bahri no yes no no no no no no 
not 
regular 160 3 7.5 3 dead 

male 68 secondary employee married bahri no yes no no no no no no 
not 
regular 118 3 2.7 40 dead 

female 40 secondary not work married bahri yes no no no no no no no 
not 
regular 180 3 5.1 26 dead 

female 57 basic not work married bahri yes no no no no no no no 
not 
regular 176 3 2.6 26 dead 

male 14 basic student married bahri yes no no no no no no no 
not 
regular 160 3 7.3 5 dead 

female 39 secondary employee married bahri yes no no no no no no no 
not 
regular 188 3 2 24 dead 

male 88 basic retirement married bahri no no yes no no no no no 
not 
regular 99 3 8.8 14 live 

female 50 secondary not work married bahri no yes no no no no no no regular 138 3 7.8 7 dead 

male 22 basic student married bahri no no no no no no no no regular 91 3 8.8 3 live 

male 67 university retirement single bahri yes no no no no no no no regular 100 3 13 10 dead 

female 50 basic not work married bahri yes no no no no no no no regular 89 3 10 1 live 

male 17 basic student married bahri no no no no no no no no regular 170 3 14 12 dead 

male 27 university student single bahri no no no no no no no no regular 102 3 10 12 dead 

male 57 university retirement single bahri no no yes no no no no no 
not 
regular 100 3 11 2 dead 

male 57 basic retirement married bahri yes no no no no no no no 
not 
regular 112 3 7 108 dead 

female 40 university not work married bahri no no yes no no no no no 
not 
regular 163 3 4.8 6 dead 

female 50 secondary not work married bahri yes no no no no no no no regular 76 3 4 20 live 

female 63 basic not work married bahri yes no no no no no no no 
not 
regular 170 3 3 21 dead 

female 23 secondary student married bahri no no yes no no no no no 
not 
regular 144 3 3 3 dead 

male 30 university employee single bahri no no yes no no no no no 
not 
regular 130 3 4 14 dead 

male 32 secondary employee single bahri no no no no no no no yes 
not 
regular 122 3 5 24 dead 

male 27 basic worker single bahri no no no no no no no no 
not 
regular 88 3 5 36 live 

male 42 university employee single bahri no no yes no no no no no 
not 
regular 68 3 7.7 58 live 

male 49 university employee married bahri no no yes no no no no no 
not 
regular 160 3 13 96 dead 

male 43 secondary free job married bahri no no yes no no no no no 
not 
regular 98 3 8.9 16 live 

female 75 secondary not work married bahri no no yes no no no no no 
not 
regular 170 3 12 12 dead 



 
 

female 65 secondary not work married bahri yes no no no no no no no 
not 
regular 130 2 19 26 dead 

male 24 basic worker married bahri no no no no no no no no 
not 
regular 130 2 25 11 dead 

male 15 secondary employee single bahri yes no no no no no no no regular 192 2 8.8 10 dead 

female 40 basic not work married bahri no no yes no no no no no regular 68 3 8.8 25 live 

male 32 secondary worker married bahri no no yes no no no no no regular 87 3 9.9 12 live 

female 28 secondary not work single bahri no no yes no no no no no regular 175 3 6 1 live 

male 67 secondary retirement single bahri no no no no no no yes no 
not 
regular 130 2 14 8 dead 

male 55 basic retirement married bahri no yes no no no no no no 
not 
regular 140 2 12 120 dead 

male 53 secondary employee married salma no no no no no no no yes regular 71 3 5.5 24 live 

female 65 secondary not work married bahri no no yes no no no no no 
not 
regular 120 2 11 96 dead 

male 66 university not work married salma no no no no no yes no no regular 160 2 13 120 dead 

female 68 basic not work single bahri no yes no no no no no no regular 112 2 13 72 dead 

male 43 secondary free job married bahri no no yes no no no no no 
not 
regular 98 3 8.9 16 live 

female 75 secondary not work married bahri no no yes no no no no no 
not 
regular 170 2 7.7 12 dead 

female 65 secondary not work married bahri yes no no no no no no no 
not 
regular 130 2 19 26 dead 

male 24 basic worker married bahri no no no no no no no yes 
not 
regular 130 2 25 11 dead 

male 32 secondary employee married salma no no yes no no no no no regular 118 3 4 96 live 

male 73 basic retirement married bahri no no yes no no no no no regular 180 2 15 84 dead 

male 32 secondary employee married bahri no yes no no no no no no regular 170 2 15 6 dead 

male 84 secondary not work married ribat no yes no no no no no no regular 189 2 20 60 dead 

male 60 secondary employee married ribat no no no yes no no no no regular 156 3 6 24 live 

female 56 basic not work married ribat yes no no no no no no no regular 166 3 13 22 live 

male 38 secondary police man married ribat no no no no no no no yes regular 136 3 5 24 live 

male 27 secondary police man single ribat no no yes no no no no no regular 147 3 6 60 live 

male 45 basic police man married ribat no no yes no no no no no regular 190 3 13 72 live 

male 34 secondary police man married ribat no no yes no no no no no regular 170 3 7 27 live 

male 48 basic police man married ribat no no yes no no no no no regular 190 3 13 67 live 

female 42 secondary police man married ribat no no yes no no no no no regular 189 3 12 24 live 



 
 

male 53 secondary police man married ribat yes no no no no no no no regular 199 3 14 72 live 

male 66 university police man married ribat no no yes no no no no no regular 185 3 10 46 live 

female 50 basic not work married ribat no no yes no no no no no regular 156 3 5 65 live 

male 64 basic not work married ribat no no no yes no no no no regular 168 3 14 33 live 

male 38 secondary police man married ribat yes no no no no no no no regular 119 3 6 63 live 

female 39 secondary not work married ribat no no yes no no no no no regular 102 3 3 60 live 

male 33 secondary employee single ribat no no yes no no no no no regular 164 3 6 17 live 

male 63 basic not work married ribat no no yes no no no no no regular 176 3 8 48 live 

male 57 basic not work married ribat no no no no no yes no no regular 197 3 13 76 live 

female 36 secondary not work single ribat no no yes no no no no no regular 111 3 10 26 live 

male 57 intermediate not work married ribat no yes no no no no no no regular 189 3 12 12 live 

male 31 intermediate police man single ribat no no no no no no yes no regular 215 3 8 25 live 

female 44 basic not work married ribat no no no no no no no yes regular 175 3 7 12 live 

male 65 secondary not work married ribat yes no no no no no no no regular 189 2 14 24 dead 

male 80 basic not work married ribat no no yes no no no no no regular 250 2 17 36 dead 

female 50 university police man married ribat no no yes no no no no no regular 150 2 10 60 Dead 

DM= Diabetes Mellitus, HTN= Diabetes Mellitus 

 

 

 

 

 

 



 
 

 

 

 

 

 

 

 

 


