Sudan University of Science and Technology
College of Graduate Studies

Asymptotic Toeplitz Operators and Coburn
Type Theorem with Brown—Halmos
Theorem on Hardy Spaces

009 9 Bl 30 (3 7950 99 Mk g ALl gl Ol e
Sayka Slelad s wgkial |

A Thesis Submitted in Fulfillment of the Requirements for the
Degree of Ph.D in Mathematics

By
Mubark Adam Haroon Osman

Supervisor
Prof. Dr. Shawgy Hussein AbdAlla

2022



Dedication

To my Family.



Acknowledgements

I would like to thank with all sincerity Allah, and my family for their
supports throughout my study. Many thanks are due to my thesis guide.
Prof. Dr. Shawgy Hussein AbdAlla of Sudan University of Science and
Technology. Thanks are due to Sudan University of Science and
Technology for permission to use the facilities required. My deep thanks are
due to many mathematicians. I'm grateful to all of them for their time, advice

and help.

II



Abstract

We study the Toeplitz and asymptotic Toeplitz operators on Hardy
space of the multidisk. The commuting and products of Toeplitz operators
on the polydisk are determined. The Coburn-Simonenko theorem for
Toeplitz operators acting between Hardy type subspaces of different Banach
function spaces with Toeplitness of composition operators in several
variables and Toeplitz projections with essential commutants are explained.
The operator theory, the Berger-Shaw theorem and a Coburn type theorem
in the Hardy space and module over the bidisk are given. The pointwise
multipliers of Orlicz function spaces and factorization are introduced. The
Toeplitz operators with the density of analytic polynomials and Brown-

Holmos theorem for a pair of abstract Hardy spaces are dealt with.
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Introduction

An asymptotic Toeplitz is an operator T such the sequence {U™TU™} is
strongly convergent, where U is the unilateral shift. Every element of the norm-
closed algebra generated by all Toeplitz and Hankel opertors together is an
asymptotic Toeplitz operator. We obtain characterizations of (essentially)
commuting Toeplitz operators with plurtharmonic symbols on the Bergman space
of the polydisk. We study products of Toeplitz operators on the Hardy space of
the polydisk. We show that T;T, = 0 if and only if T¢T is a finite rank if and
only if T¢ or Ty is zero.

We identify the vector valued Hardy space with the Hardy space over the
Bidisk and construct a universal model for the contractive analytic functions. It
is well known that the Hardy space over the bidisk D? is an A(ID?) module and
that A(ID?) is contained in H2(ID?). Suppose (h) c A(ID?) is the principal ideal
generated by a polynomial h, then its closure [h](c H?(D?)) and the quotient
H?(D?) © [h] are both A(D?) modules. We let R,,R,, be the actions of the
coordinate functions z and w on [h], and let S,, S, be the actions of z and w on
H?(D?) © [h].

For X be a Banach function space over the unit circle T and let [X] be the
abstract Hardy space built upon X. If the Riesz projection P is bounded on X and
a € L, then the Toeplitz operator T,f = (af) is bounded on [X]. We extend
well-known results by Brown and Halmos for X = L?. For I' be a rectifiable
Jordan curve, let X and Y be two reflexive Banach function spaces over I' such
that the Cauchy singular integral operator S is bounded on each of them, and let
M(X,Y) denote the space of pointwise multipliers from X to Y. Consider the
Riesz projection P = (I + S)/2, the corresponding Hardy type subspaces PX and
PY, and the Toeplitz operator T(a) : PX — PY defined by T(a)f = P(af) fora
symbola € M(X,Y). We show thatif X & Y anda € M(X,Y)\{0}, thenT(a) €
L(PX,PY) has a trivial kernel in PX or a dense image in PY.

Motivated by the work of Nazarov and Shapiro on the unit disk, we study
asymptotic Toeplitzness of composition operators on the Hardy space of the unit
sphere in C*. We construct a Toeplitz projection for every regular A-isometry
T € B(H)™ on a complex Hilbert space Hand use it to determine the essential
commutant of the set of all analytic Toeplitz operators formed with respect to an
essentially normal regular A-isometry. We show that the Toeplitz projection
annihilates the compact operators if and only if T possesses no joint eigenvalues.
We initiate a study of Toeplitz operators and asymptotic Toeplitz operators on
the Hardy space H%(D™) (over the unit polydisc D™ in C™). Our main results on
Toeplitz and asymptotic Toeplitz operators can be stated as follows: Let T,
denote the multiplication operator on H2(ID™) by the it" coordinate function
z;,i =1,...,n, and let T be a bounded linear operator on H2(D™").

We show a continuation of a project of developing a systematic operator
theory in H?(D?). A large part of it is devoted to a study of evaluation operator
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which is a very useful tool in the theory. A number of elementary properties of
the evaluation operator are exhibited, and these properties are used to derive
results in other topics such as interpretation of characteristic operator function in
H?(D?), spectral equivalence, compactness and compressions of shift operators.
A famous theorem of Coburn says that a nonzero Toeplitz operator on the Hardy
space of the unit disk is injective or its adjoint operator is injective. We study the
corresponding problem on the Hardy space of the bidisk.

We show that the space of pointwise multipliers between two distinct
Musielak—Orlicz spaces is another Musielak—Orlicz space and the function
defining it is given by an appropriately generalized Legendre transform. Let {F,}
be the sequence of the Fejér kernels on the unit circle T. It was proved that if X
is a separable Banach function space on T such that the Hardy-Littlewood
maximal operator M is bounded on its associate space X', then ||f * E, — f||x —
0 for every f € X as n — oo. This implies that the set of analytic polynomials P,
is dense in the abstract Hardy space H[X] built upon a separable Banach function
space X such that M is bounded on X’'. Let H[X] and H[Y] be abstract Hardy
spaces built upon Banach function spaces Xand Yover the unit circle T. We prove
an analogue of the Brown—Halmos theorem for Toeplitz operators T, acting from
H[X] to H[Y] under the only assumption that the space X is separable and the
Riesz projection P is bounded on the space Y.
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Chapter 1
Asymptotic with Commuting and Products of Toeplitz Operators on the Polydisk

We study the relations among Hankel algebra, the classical Toeplitz algebra, the
set of all asymptotic Toeplitz operators, and the essential commutant of the unilateral
shift. They offer several examples of operators in some of these classes but not in others.
We show that commuting and essential commuting properties are the same for
dimensions bigger than 2, while they are not for dimensions less than or equal to 2. Also,
the corresponding results for semi-commutators are obtained. We show that the product
T¢T, is still a Toeplitz operator if and only if there is a h € L (T™) such that T; T, — T},
is a finite rank operator. We also show that there are no compact semi-commutators with
symbols pluriharmonic on the polydisk.

Section (1.1): Asymptotic Toeplitz Operators:

What is the essential commutant of the unilateral shift? The experts are convinced
that, whatever it is, it is huge. The purpose of this paper is to call attention to an
asymptotic property of some operators, use that property to show that certain concrete
operators that do not belong to the Toeplitz algebra do belong to the essential commutant
of the shift, discuss some related examples, and pose a few unsolved problems.

The underlying Hilbert space is H? of the unit circle. The unilateral shift U is
defined on H? by Uf(z) = zf(z). The essential commutant of U is, by definition, the
set E of all those operators T on H? for which UT — TU € K (where K is the ideal of
all compact operators on H?).

Since U is essentially unitary (i.e., both U*U and UU™* are congruent to 1 mod K),
it follows that T € E if and only if U*TU — T € K. This reformulation of the definition
of E is convenient in matrix calculations. (For operators on H?, all matrices in the sequel
will be formed with respect to the basis {eg, €1, €,,...} defined by e,(z) = z",n =
0,1,2, ...) Since, in terms of the Kronecker delta, the matrix of U is (61-' j+1), the matrix
of a product TU is obtained from the matrix of T by erasing the first column, and the
matrix of U*T is obtained from that of T by erasing the first row. (Caution: "erase"
means literally what it says; it does not mean "replace by 0's".) The matrix of U*TU,
therefore, is obtained from that of T by "moving one step to the southeast"; to say that
T € E is the same as to say that, mod K, the matrix is not changed by the move.

The essential commutant of every operator is a norm-closed algebra. Since E
contains every Toeplitz operator (recall a possible definition: U*TU = T), it follows that
the Toeplitz algebra (the norm-closed algebra T generated by the set of all Toeplitz
operators) is included in E. Question, with a not immediately obvious answer: is E equal
to T? The experts' conviction (E is huge) means, among other things, that the answer is
no; some concrete examples of operators in E but not in T will become visible presently.
(The most important earlier work on a closely related problem is [3].)

In view of the role that K plays in the definition of essential commutativity, the
relation K C E is even more obvious than the relation T c E. It is not only obvious: it
contains no new information. Reason: K < T. This inclusion can be inferred from a
sophisticated fact about irreducible C*-algebras [4, p. 141], or can be proved directly.
[Note that since U is essentially unitary, it follows that E is closed under the formation
of adjoints and is therefore a C*-algebra. Since U is irreducible and U € E, it follows
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that E is irreducible.] Here is an elementary direct proof. Since U € T, therefore E =
1 —UU* € T; the operator E is, in fact, the projection ey & e, of rank 1. For arbitrary
operators S and T, the product S(eq @ ey)T is equal to (Sey) & (T " ep); it follows that
if S and T are in T, then so is (Sey) & (T*ey). If, in particular, p and q are arbitrary
polynomials, and if S = p(U) and T = q(U)*, then (p(U)ey) & (q(U)ey) € T. Since
the set of all vectors obtained by applying a polynomial in U to e, is dense in H?, it
follows that every operator of rank 1 is in T, and so therefore is every compact operator.

If ¢ € L® of the unit circle, write M, for the multiplication operator defined on

L? by My,f = @f, and T, for the compression defined on H 2 by Tof = PM,f (where
P is the projection from L? onto H?). The compression T, is a Toephtz operator, and
every Toeplitz operator is obtained this way. If M, is expressed as an operator matrix

with respect to the decomposition L? = H 2* @ H?, the result is of the form
M. = (T<7> H<p)
¢ Hg Ty/
where @(z) = @(z*), the diagonal entries are Toeplitz operators, and the others are
Hankel operators. (The latter can be defined by this remark; alternatively a Hankel
operator H is one for which U*H = HU.) If ¢ and ¢ are in L%, then M, = M, + My,
and therefore (mulitply matrices and compare lower right corners)

What is most important about this equation is that the product of two Toeplitz
operators differs from a Toeplitz operator by the product of the two Hankel operators,
and every product of two Hankel operators arises in this way. A related formula with a
related proof (compare upper right corners) can also be useful:

Hankel operators are an essential part of Toeplitz theory. An effective way to welcome
them is to consider the Hankel algebra (the norm-closed algebra T* generated by all
Toeplitz operators and all Hankel operators together).

It is natural to define an asymptotic Toeplitz operator as an operator T such that
the sequence {U T U™} is strongly convergent. The limit is clearly a Toeplitz operator,
and hence of the form T, for some ¢ in L*. The function ¢ will be called the symbol
of T and will be denoted by a(T). The simplest examples are the Toeplitz operators; the
next simplest the Hankel operators.

Lemma (1.1.1)[1]: If H is a Hankel operator, then HU™ — 0 (strong).

Proof. From the matrix point of view the statement is almost obvious: the matrix of
HU™ is obtained from that of H by erasing the first n columns. [Note that each entry
occurs in a Hankel matrix only a finite number of times.| Alternatively, HU™ = U*"H,
and U™ — 0 (strong).

Theorem (1.1.2)[1]: Every element of the Hankel algebra is an asymptotic Toeplitz
operator.

Proof. The main step is to show that if ¢4, ..., @, are in L, if T = T<P1' . T(pk, and if
® = @1, e, Pk, then UTU™ - T, (strong). The argument is based on a telescoping
sum:

T,

oo r T,

<Pk_T

PPl T

<P1T

DoyenP T‘P1 (©2,--9k)
2



+T, (To, Toso0r = T30

+T<p1 T<pz (T¢3T<p T‘P3(‘P4'---"Pk))

+Tp,Tp, T, (Tor . Tor = T sn)-
In view of this, equation (1) implies that
T—-T,=HH+ THH + TTHH +--+ TT ..T HH,

Where each T on the right side indicates a Toeplitz operator and each H a Hankel
operator; since the actual subscripts are useless, they are omitted. Multiply by U™ on
the left and U™ on the right; since T, is invariant under that operation, and since (by
Lemma (1.1.1)) the right side converges strongly to 0 as n — oo, the main step is
complete.

Consider next a finite product all whose factors are either Toeplitz or Hankel
operators, with at least one Hankel factor present. If the rightmost factor is a Hankel
operator, the asserted strong convergence (to 0) follows from Lemma (1.1.1). In the
remaining cases, the first Hankel factor from the right occurs in a context HT, where, as
before, the symbols H and T indicate generic Hankel and Toeplitz operators
respectively. In such a case, use (2) to replace HT by H — TH (subscripts still omitted),
and thus replace the given operator by two others, in each of which the rightmost Hankel
factor is one step nearer to the right end; the desired convergence now follows by
induction.

The rest is easy. Let T¢ be the (unclosed) algebra consisting of all finite sums of
finite products of Toephtz and Hankel operators. If T € T¢, convergence follows from
the strong continuity of operator addition. For norm limits of operators in T,

4,...,(pk -

convergence follows from the standard techniques of "§" analysis.

Corollary (1.1.3)[1]: The restriction of the symbol map a to the Hankel algebra is a
contractive *-homomorphism from T+ onto L.

Proof. That a is a contraction is immediate from the strong lower semicontinuity of
norm: if U""TU™ - T,, (strong), then

lo(Mlleo = ll@lleo = [|Ty| < lim infllu=TU™ | < IT.

That o preserves sums and products in Ty follows from the main step in the
preceding proof; that it preserves sums and products for all operators in the Hankel
algebra follows from the (norm) continuity of operator addition and multiphcation and
the (just proved) continuity of o. As for adjoints, there seems to be a difficulty;
adjunction is not strongly continuous. Suppose, however, that T € T* and U*"TU™ —
T, (strong); the weak continuity of adjunction imphes that U™'T*U™ — T, = T~
(weak). Since T* € T*, the sequence {U*"T*U™} converges strongly to something, say
Ty Conclusion: Ty, = T+, and therefore o(T*) = oa(T)".

The symbol map was originally defined for Toeplitz operators only; the existence
of a homomorphic extension to the entire Hankel algebra yields a slight improvement
of a curious result of Douglas [5, p. 9].

Corollary (1.1.4)[1]: If a finite sum of finite products of Toeplitz or Hankel operators
is compact, then the corresponding finite sum of finite products of their symbols is zero
almost everywhere.



Proof. If K is compact, then KU™"e; = Kej,,, = 0 as n — oo and therefore o (K) = 0;
in other words K C ker o.

An important part of Toephtz theory concerns the commutator ideal Q of the
algebra T (see [4, p. 181]); the following characterization of Q might be useful.
Theorem (1.1.5)[1]: An operator T in the Toeplitz algebra T belongs to the commutator
ideal Q of T if and only if U"*TU™ — 0 (strong); equivalently Q = ker o.

Proof. Suppose first that ¢4, ..., @y are in L=, T = Ty, Ty, and Y = @4, ..., Q-

Assertion: T — Ty € Q. The proof is induction on k. For k = 1, the assertion is
trivial. To pass from k — 1 to k assume, temporarily, that ¢, = a8 where a and [ are
in H*; then

T - Tlp T(pl’ B T(pk—lTa*B - T "(pk—la*ﬁ
= Tpy o T<pk To TB Ta*T<p1 o118
( Q17 "t <Pk 1 Ta T<P1 W Pr— 1)TB

= ([ @17 — T Ty s Ty 1] + [T o1 Loy — Ta*T<p1,---.<pk_1DTB-

The first square bracket is a commutator, and therefore belongs to Q. The second square
bracket is Ty+. times an operator of the same form as T — Ty, except with k — 1 instead
of k, and, consequently, (by the induction hypothesis) it too belongs to Q. At this point
it seems necessary to use a relatively deep tool, namely the approximation theorem [4,
p. 163] according to which functions of the form a*f are dense in L*. With the use of
that theorem the proof of the assertion is obviously complete; if T — Ty, € Q whenever
ox = a’B,thenT — Ty, € Q for all @y.

The preceding paragraph implies that if T belongs to the (unclosed) algebra T,
consisting of all finite sums of finite products of Toeplitz operators, and if = o (T),
then T — Ty, € Q. Indeed, suppose that T =T; + -+ + T, where each T; is a finite
product of Toeplitz operators. It follows that ¥ =1, + -+, where Y; =
G(Tj),j =1,...,m, and hence that T — Ty = (T1 — T¢1) + -+ (Tm — Twm) € Q.

Suppose now that T is an arbitrary operator in T with a(T) = 0. Let {T,,} be a
sequence, each term of which is an operator in Ty, such that T,, = T (norm). If ¢,, =
a(Ty), then ¥, > 0 in L* (because o(T) = 0), and therefore T, — Ty, — T (norm).
Since T, — Ty, € Q for each n (by the preceding paragraph), it follows that T € Q.

What was proved so far was that ker ¢ € Q. Since T/ ker ¢ is commutative, the
reverse inclusion is trivial.

The condition U*TU —T € K is (necessary and) sufficient for T € E; the

condtion that the sequence {U*"TU™} be strongly convergent is necessary for T € T.
Are these conditions sharp enough to distinguish between E and T?
Example (1.1.6)[1]: The Hankel operator H whose matrix is (1/(i +j +1)),i,j =
0,1,2,..., (usually known as the Hilbert matrix) is a famous one; it is quite easy to see
that it belongs to E. Indeed, the matrix of U*HU is (1/(i + j + 3)); the difference
U*HU — H has matrix

((i+j+1;(2i+j+3))'



Elementary analysis shows that the sum of the squares of all the entries in this difference
is finite; in other words, U"HU — H is a Hilbert-Schmidt operator.

Conclusion: U"HU — H € K, so that H € E.

Is H an asymptotic Toeplitz operator? The answer is yes, and the proof is easy.

The necessary convergence condition is satisfied, and, for all that is visible at this
stage, it could be that H € T.

The fact is that H does belong to the Toeplitz algebra; the proof goes as follows.

Since 1/(i+j+1) = fol x'x/ dx, the matrix of H is a Gramian and therefore

positive. The operator H2, being the product of two Hankel operators, belongs to T (by
(1)). Since T is a C*-algebra, it contains the unique positive square root of each of its
positive elements, and therefore, in particular, T contains the positive square root H of
H>.

The Hilbert matrix is an illuminating example, but in an attempt to get new
information about E and T, it turned out to be a failure. It is, however, not a trivial
failure. It belongs to T, to be sure (and hence to E), but not for the trivial reason; it
doesn't belong to K.

Proof. if f, is the vector in H? whose first k coordinates are 1/v/k and all other
coordinates are 0 (k = 1,2,3,...), then f; is a unit vector and f; — 0 (weak). Since

: 1
elementary estimates show that (H fy, fi,) > p be compact. the operator H cannot

Example (1.1.7)[1]: There are some near relatives of the Hilbert matrix that deserve
examination. For each complex number a of absolute value 1, let H, be the operator

with
ot

If f, is the vector whose initial coordinates are 1/(a/vk) (j = 0,...,k —1) and all
other coordinates are 0 (k = 1,2,3,...) then, as before, f; tends to 0 weakly but H, fj,
does not tend to 0 strongly; the operator H, is not compact. Does it belong to E? The
answer depends on . If @ = +1, then H, € T; otherwise H, doesn't even belong to E.
Reason: straightforward computation shows that U*H,U — H,, is a scalar multiple of
H, plus a compact operator. Consequence: U*H,U — H, is just as non-compact as H,.
Example (1.1.8)[1]: The classically important Cesaro operator C is defined by the

matrix
0

Wl RPN R
Wl © o

Wl RN =

533 )

Is C in E? Yes, it is. Proof (straightforward computation): U*CU — C is a Hilbert-
Schmidt operator.

Since C is known to be hyponormal [2] and, in fact, subnormal [7], it follows that
C is not compact. Question: is € in T,? Answer: no. Reason: if T € T, then U*TU — T



has finite rank, but U*CU — C has a triangular matrix with all diagonal entries different
from 0, and therefore has infinite rank.

The preceding two comments are evidence, however weak, that C does not belong
to T. There is a bit of evidence that C does not belong to T, namely that C is an
asymptotic Toeplitz operator. (In fact 6(C) = 0, which shows incidentally that ker ¢ #
K.

Example (1.1.9)[1]: Which diagonal operators are in E? Which ones are in T? (In this
context a diagonal operator is not just one that can be diagonalized, but one whose
matrix with respect to the standard basis is diagonal.)

The answers are easy. If T = diag(a,, a4, ay,...), then

U'TU — T = diag(a, —ay, a, — ay, a3 — ay,...),
and therefore a necessary and sufficient condition that T € E is that a,,,1 — a,, — 0.

Since U™TU™ = diag(@,,, Xy 4+1, Xpyo, - ), it follows that T is an asymptotic
Toeplitz operator if and only if the sequence {a,} is convergent. Note: if {a,} is
convergent, then T € T. Proof: if an a;,, — «, then

T=a+daglag—a, 0, —a,a, —,...),
and the diagonal summand is compact. Consequence: a diagonal operator is an
asymptotic Toeplitz operator if and only if it belongs to the Toeplitz algebra.

Conclusion: T € T if and only if {a,,} is convergent.

Here at last is a source of decisive examples: to get an operator that is in E but
not in T, just construct a sequence that does not converge but whose first differences
tend to 0. That is easy, of course; form a sequence that oscillates between 0 and 1 more
and more slowly. Concrete example:

010121201 3132 0
’2’ 13131 131 14;4;4; ;4;4; )y men
Example (1.1.10)[1]: Is the adjoint of an asymptotic Toeplitz operator another one? No,

not necessarily.

Consider an isometry S defined on H2 by Se,, = e,,,,n = 0,1,2,...,and write T =
S*. It follows that Te,,, = e, and Te,,,.; = 0,n = 0,1,2, ... Consequence: for each k,
the result of applying the "far southeast corner" U**TU™ to e, results in the zero vector.
Precisely, U'*"TU" e, = 0 as soon as n > k. Conclusion: U"*TU™ — 0 (strong), so that
T is an asymptotic Toeplitz operator. The adjoint T*(= S) is not.

Reason: U™SU"e, = U™"Se,, = U™"e,, = e,, and the sequence {e,} is not
strongly convergent.
Example (1.1.11)[1]: Is the product of two asymptotic Toephtz operators another one?
No, not necessarily. An example can be obtained by modifying Example (1.1.9); the
first such modification was suggested by C. Foias.

Let S; be the square matrix of size 2k defined as follows: all entries are 0 except

the first k in the last row, and they are equal to 1/vk(k = 1,2,3,...). Let S be the
operator whose matrix is the direct sum of all the S;,’s, and let T be the adjoint of S.

Since Se,, » 0asn — 0, it follows that |[SU" e || = ||Se,,+x]| = 0 asn — oo, and
hence that [|[USU"e;|| —» 0 as n — oo (for each k). This in turn implies that S is an
asymptotic Toeplitz operator (with a(S) = 0). So far the exact sizes of the boxes S, are
irrelevant.



Consider next the matrix of the operator T. Since the only non-zero entry of Sy is
in the first row of Sy, it follows that both T and U*TU begin with a column of 0’s, and,
in fact, so does U"*TU™ whenever n > 0. Since the only non-zero entries of S are in
the first two rows of S it follows that U*2TU? begins with two columns of 0’s, and so
does U™™TU™ whenever n > 2. Inductively: U™TU™ begins with k columns of 0’s
whenever n > k(k + 1). Consequence: U"TU"e, =0 as soon as n > k(k + 1)
(usually sooner—the estimates are generous), so that T is an asymptotic Toeplitz
operator.

The product ST is not an asymptotic Toeplitz operator. Reason: the diagonal
entries of ST are 0 most of the time, but 1 infinitely often. This implies that
U™ (ST)Ume, = 0 most of the time but e, infinitely often, and, consequently, that the
sequence {U™(ST)U™} is not strongly convergent.

Example (1.1.12)[1]: Typically a projection has a diagonal matrix with diagonal entries
equal to 0 or 1. Such a matrix can correspond to an asymptotic Toeplitz operator only if
its rank is finite or cofinite. Are there any other asymptotic Toeplitz projections?

Yes, there are. If M is a subspace of H? invariant under U, then the projection
from H? onto M is in the Toeplitz algebra. Reason: by Beurhng's theorem [6, Problem
125] there exists an inner function ¢ such that M = ran T, it follows that the projection
in question is the product T, T,;. (This observation is due to Sheldon Axler.)

There are asymptotic Toeplitz projections that do not seem to arise in the natural
ways described in the preceding two paragraphs. Here is one. Let T, be the matrix of
size k all whose entries are equal to %, and form the matrix

T,
0
Ty

T3

that is the direct sum of the sequence obtained by interlacing a sequence of 0's (of size
1) with the T}, ’s. Clearly the operator T with that matrix is a projection.

Assertion: it is an asymptotic Toeplitz projection, with o(T) = 0. Reason: if the
integer n is such that the nth column of T contains the first column of Ty, then ||Te, || =

Jk/k? = 1/k; for all larger n, the norm ||Te,, || is even smaller.

The reason the 0's were inserted into T was to make it easier to compute U*TU —
T. The computation has no virtues other than being easy to carry out. The result is that
U*TU —T is block diagonal, and that the Hilbert-Schmidt norm of the nth block is of
the order 1/+/n. Conclusion: U*TU — T is not a Hilbert-Schmidt operator, but it is at
least compact, and therefore T € E. Does T belong to T or to T* ? Nobody knows.
Questions (1.1.13)[1]: Two unsolved test problems have been posed already (see
Examples (1.1.9) and (1.1.2)); each of them asks whether a certain operator belongs to
T. That seems to be the crux of the matter in much of this subject. The important
question is not "what is E?" but "what is T?". There is, after all, a way to decide whether
or not an operator T belongs to E; just form U*TU — T and see whether it is compact.
It's debatable whether this should be called an algorithm, but not even anything as good
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as that is known for T. The Hilbert matrix yields essentially the only non-trivial known
example of an operator in T; all others are either in T 5, or compact, or both.

Other non-trivial examples are easy enough to construct (e.g. non-trivial
continuous functions of operators in T(), but the experts seem to agree that the algebra
T is far from well understood. The four questions below are special cases or
reformulations of the general problem of characterizing the Toeplitz algebra.

The important classes discussed above are: the essential commutant E, the
Toeplitz algebra T, the Hankel algebra T™, and the set T® of all asymptotic Toeplitz
operators. The inclusion relations among them can be summarized by the Venn diagram
blow.

@ @ ®

Operators corresponding to four of the indicated regions are known to exist;
namely, (a) Example (1.1.9), (b) Example (1.1.7), (c) Example (1.1.10), and, for (d),
any Toeplitz operator. Till now, however, no operators have been proved to belong to
the classes (¢) and (f).

Questions (1.1.14)[1]:Is there an operator in E N T™ that is not in T?

Questions (1.1.15)[1]:Is there an operator in E N T* that is not in T+ ?

For each operator T in the Toeplitz algebra, consider the difference U*TU — T, and let
D be the set of all such differences. Since T C E, it follows that D c K.

Questions (1.1.16)[1]:Which compact operators belong to D?

The reason the question is interesting is that it is a reformulation of the question
"which operators belong to T?". That is, the set D characterizes T. More clearly said, an
operator S belongs to T if and only if U*SU — S belongs to D. Indeed, if S € T, then
U*SU — S € D by definition. If, conversely, U*SU — S € D, then, by definition, there
exists an operator T in T such that U*SU —S =U*TU—T. It follows that
U*(S—T)U =S —T, hence that S — T is a Toephtz operator, and hence that S — T €
T. Conclusion: S € T.

Example (1.1.12) describes a projection in T*, and asks if it is in T. It would be
good to know the facts in the general case.

Questions (1.1.17)[1]:Which projections belong to T?

Problems frequently become more manageable, not less, if they are embedded in

a suitable enlarged context. The last question to be raised here is vague; it isn't easy to



formulate a crisp, yes-or-no subquestion, but it might give a hint to a suitably general
context in which Toeplitz theory can be embedded.

Begin with the observation that Toephtz operators are the solutions of the
equation U*XU = X. This suggests consideration of the mapping I' from operators to
operators defined by

rX) =U"XU
Toeplitz operators are the "Eigen operators" of I' corresponding to the eigenvalue 1.

Vague question: what is the spectral theory of I'? What, in particular, can be said
about eigenoperators T (generalized Toeplitz operators), U*TU = AT, corresponding to
eigenvalues A other than 1? What algebraic properties do they have, and what can be
said about algebras generated by such operators?

Section (1.2): Commuting Toeplitz Operators:

For D be the unit disk in the complex plane C. For a fixed positive integer n, the
unit polydisk D™ is the cartesian product of n copies of D. Let LP = LP(D™) denote the
usual Lebesgue space with respect to the volume measure V on D™ normalized to have
total mass 1. The Bergman space A? is then the closed subspace of L? consisting of all
holomorphic functions on D™. Let P be the Bergman projection from L? onto A2. For a
function u € L, the Toeplitz operator T,, with symbol u is defined by

Tuf = P(uf)
for f € A%. It is clear that T,;: A2 —» A? is a bounded linear operator.

We consider the problem of when two Toeplitz operators with pluriharmonic
symbols commute or essentially commute. Recall that a complexvalued function u €
C2(D™) is said to be pluriharmonic if its restriction to an arbitrary complex line that
intersects D™ is harmonic as a function of single complex variable. So, the notions of
harmonicity and pluriharmonicity coincide on D. It turns out that every pluriharmonic
function on D™ can be expressed, uniquely up to an additive constant, as the sum of a
holomorphic function and an antiholomorphic function. See Chapter 2 of [15] for
details. Also, recall that two bounded linear operators S;, S, on a Hilbert space X are
said to be essentially commuting on X if the commutator S; S, — S,5; is compact on X.
The problem of characterizing commuting Topelitz operators has been studied on
various settings. Axler and Cuckovic [9] first obtained a complete description of
harmonic symbols of commuting Toeplitz operators on D: If two Toeplitz operators
with harmonic symbols commute, then either both symbols are holomorphic, or both
symbols are antiholomorphic, or a nontrivial linear combination of the symbols is
constant (the converse implication is also true and trivial). Later, some extensions of
this characterization were obtained on higher-dimensional balls as in [11], [17] or [25].
Also, the same problem was considered on the annulus [14] and for more general
symbols [10]. For related results on the (pluri)harmonic Bergman space, see [13] and
[18].

For essentially commuting Toeplitz operators, Stroetho [21] obtained
characterizations of harmonic symbols on D. Choe and Lee [12] extended the result of
Stroetho to pluritharmonic symbols on the ball. On the other hand, the polydisk case was
studied by Sun and Zheng [22]. However, Sun and Zheng considered holomorphic or
antiholomorphic symbols only. They proved that given f, g € H®, the following three



conditions are equivalent for n > 1: (i) T and Ty are commuting, (ii) Tr and Ty are
essentially commuting, (iii) for each j, either d;f = 0 or d;g = 0. Here, H* denotes the
class of bounded holomorphic functions on D™ and d; denotes the partial differential
operator with respect to the j-th variable.

Our results obtained characterizations of general pluriharmonic symbols of
commuting or essentially commuting Toeplitz operators. For n > 3, as in the result of
Sun and Zheng mentioned above, our results show that the commuting property and the
essential commuting property are the same for Toeplitz operators with pluriharmonic
symbols. However, they are different for n = 2. Our method, whose main idea is
adapted from [12], is entirely different from that of Sun and Zheng.

Following [19], we say that a complex-valued function u € C2(D™) is
n —harmonic if u is harmonic in each variable separately. More explicitly, u is
n —harmonic if

;0u=0, j=12,..,n
For a characterization of plurtharmonic symbols of commuting Toeplitz operators, we
have the following. In what follows H(D™") denotes the class of all holomorphic
functions on D™.

In addition, we obtain characterizations of functions f, g, h, k € H(D™) for which
fk — hg is n —harmonic. Before stating our result.

Let I ={1,2,...,n}. For ] c I, we write H(J) for the set of all holomorphic
functions independent of variables z; with j € I\J. Also, for J; € J, c I, we write
H(J,) = H(J,) for the set of all holomorphic functions in H(J,) whose power series (at
the origin) do not contain any nonzero terms in H(J;).

Our next result is the essential version of Theorem (1.2.14). To state it, we need
some more notation. First, we let

Zju(z) = (1 — |zj|2) 6j5ju(z)
forj =1,...,n and u € C%(D™). Here and elsewhere, zj denotes the j —th component
of z € D™. Note that u is n —harmonic if and only if u is annihilated by all Zj.
Thus, we will say that u is boundary n —harmonic if aLiB% _Aju(a) = 0 for all j.

Here, D™ denotes the topological boundary of D™. Also, we let ® denote a class
of functions related to the maximal ideal space of H*.

Theorem (1.2.1)[8]: Let u,v € L* be pluriharmonic symbols and assume u = f +
gv=h+k for some f,g,hk € H(D™). Then the following statements are
equivalent:

(a) T,, and T,, are essentially commuting on A2

(0) Tyo Tvop = Tyog Ty ON A? for every ¢ € ®.

(c) fk — hg is boundary n —harmonic.

Finally, only for n > 3, we show that the commuting property and the essential
commuting property of Toeplitz operators with pluriharmonic symbols are equivalent.
This will follow from Theorem (1.2.11) which asserts that the n —harmonicity and the
boundary n —harmonicity are equivalent for functions of the form fk —hg under
consideration.
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Theorem (1.2.2)[8]: (n = 3). Let u,v € L* be pluriharmonic symbols. Then the
following statements are equivalent:

(a) T,T, = T,T, on A2,

(b)T,, and T,, are essentially commuting on A2

We arranged as follows. We collect basic materials which we need. We prove
Theorem (1.2.8). Also, we show that the n —harmonicity and the boundary
n —harmonicity of functions of certain forms are equivalent for n > 3. We prove
Theorem (1.2.14). As an application we obtain a characterization of normal Toeplitz
operators with plurtharmonic symbols.

We prove Theorem (1.2.1). As a consequence we obtain Theorem (1.2.2). As an
application we obtain a characterization of essentially normal Toeplitz operators with
pluriharmonic symbols. As another application we recover the result of Sun and Zheng
[22] mentioned above. We modify our arguments used in previous to obtain (essentially)
semi-commuting Toeplitz operators with plurtharmonic symbols. It turns out that the
semi-commuting property and the essential semi-commuting property are equivalent for
nz=2.

We collect several basic facts which we need.

Since every point evaluation is a bounded linear functional on AZ, there
corresponds to every a € D™ a unique function K, € A% which has the following
reproducing property:

fla) ={f,Ko), f €A (3)
where the notation (,) denotes the inner product in [? with respect to the measure V.

The function K, is the well-known Bergman kernel and its explicit formula is given by
n

K,(z) = n;z, z,a € D™.
j=r (1= a7
The Bergman projection P is the orthogonal projection from L? onto AZ. Thus, by the
reproducing property (3), the projection P can be represented by

Py(a) = f YK,dV, a€D",
DTL

for functions ¥ € L2. It follows that P naturally extends via the above formula to an
integral operator from L' into H(D™). Moreover, we have Pf = f for functions f €
Al.Here, AP = LP n H(D™). Also, it is well known that P: LP — AP is bounded for p >
1. See, for example, Theorem 4.2.3 of [26] for details on the disk.

The same proof works on D™.

For each a = (a4, ...,a,) € D™, we let ¢,(2) = ((pal(zl), ) (pan(zn)), where

each ¢, is the usual Mobius map on D given by
a; — zj

(z;) =———, z,€D.
Pa;(2;) 1—az &

Then ¢, € Aut(D™), the set of all automorphisms of D™. Moreover, ¢, © @,is the
identity on D™. Now, it is clear that if u is n —harmonic, then so is u o ¢, for each a €
D™. Therefore, every n —harmonic function u € L! satisfies the invariant mean value

property
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f(u oy )dV =u(a), a€D™

DTL
However, the converse of the invariant mean value property is known to hold only for
n = 1. See [16]. The converse turns out to be true in general with a certain additional

hypothesis. To state it, we associate with each u € L! its so-called radialization Ru
defined by

RU(Z) = f u(Z1Z1; iZnZn)dO-(Zli ] Zn)
TTL
for z = (z4, ..., z,) € D™ Here and elsewhere, T™ denotes the cartesian product of n
copies of the unit circle T and ¢ = g, is the normalized Haar measure on T™.
The following is taken from Corollary 3.7 of [16].
Proposition (1.2.3)[8]: Let u € L. Then u is n —harmonic on D" if and only if

f (Wo 9) dV = u(@)
DTL

and R(u o ¢ ) € L for every a € D™,
We let k, denote the normalized kernel, namely,

n
ka =K | [(1-1al’)
j=1

First, we mention that the set {k,:a € D"} spans a dense subset of A2, because its
orthogonal complement is {0} by (3). Next, since the real Jacobian of ¢, is given by
|k,|%, we have a change-of-variable formula,

f(hO(pa)dV= fhlkalde,a € D™, (4)
pn pn
whenever the integrals make sense. In particular, we have by the mean value property
fflkaIZdV=f(a), a € D™, (5)
DTL

for functions f € A
Given p > 0, the Hardy space H? = HP(D™) is the space of all f € H(D") for
which

0=r<1

IFI%, = sup f FGOIP do(?) < o
TTL

By an integration in polar coordinates using n —subharmonicity, we have HP c AP.
It is well known that if f € HP, then f({) = lirq f (rQ) exists at almost all points
r—

{ € T™. Moreover, we have log|f| € L1(T™) for any nontrivial f € HP. In particular, if
the boundary function of f € HP vanishes on a set of positive measure in T", then f
itself must be identically 0 on D™. See Theorem 3.4.2 of [19].

From the above definition, one can easily verify

R(fg)eL>,  f,g€H (6)
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Also, by using the LP —boundedness of the Cauchy projection, one can easily verify the
following.

Proposition (1.2.4)[8]: Let f,g € H(D™) and assume f + g € L*. Then we have
f,g € HP forallp > 0.

Let M be the maximal ideal space of H* which is defined to be the set of all
multiplicative linear functionals on H*. As is well known, the space M becomes a
compact Hausdor space as a subset of the dual of H* with weak-star topology. See
Theorem 11.9 of [20] for details. Identifying z € D™ with the multiplicative evaluation
functional f +— f(z), we can regard D™ as a subset of M.

Given z € D™, since D" is a subset of M, we can think of ¢, as a map from D"
to M. In other words, @, € MP". Equipped with product topology, the function space
MP" is compact by Tychono's theorem. Hence, for any net {‘Pza} of automorphisms,

there is a subnet {(pz B} of {‘Pza} such that Pz, converges (pointwise) to a map ¢: D™ —

M. Now, we let
® = closure{p,:z € D"}\{¢,:z € D"}
where the closure is taken in MP".

We will use a couple of basic facts concerning the maximal ideal space M and
the class ®. First, note that H* < C(M) via the Gelfand transform. For bounded
pluritharmonic functions, we have the following.

Proposition (1.2.5)[8]: Each bounded pluriharmonic function on D" extends to a
continuous function on M.

We will use the same notation for a bounded pluriharmonic function and its
continuous extension on M.

Proposition (1.2.6)[8]: If a net {‘Pza} of automorphisms converges to some ¢ € @, then
for any pluriharmonic function u € L”, the function u o ¢, converges to uo @
uniformly on every compact subset of D™. So, u o ¢ € L* is also pluriharmonic on D",

The above two prsopositions are proved in [24] on the ball. The same proofs work
on the poly disk and thus proofs are omitted.

We prove Theorem (1.2.8), which will play an essential role in the proof of
Theorem (1.2.14). We begin with a simple lemma.

Lemma (1.2.7)[8]: Suppose Jo,/1,J, are pairwise disjoint subsets of I. Let p; €

H(J, U]j)/H(IO) for j = 1,2 and assume p; + p, = 0. Thenp; = p, = 0.

Proof. Let z/ = (2,),¢ j; for j = 0,1,2. Changing the coordinate system if necessary,

we may write p; = p;(z° z’) for j = 1,2. Now, taking z? = 0, we have p,(2°,z") =
H(JoVJ;)

p,(z°,0) and thus p, € THOD N H(J,) = {0}. So, we have p; = p, = 0. The proof is

complete.
We are now ready to prove Theorem (1.2.8).
Theorem (1.2.8)[8]: Let f,g,h,k € H(D™). Then the following statements are
equivalent:
(a) fk — hg is n —harmonic.
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(b) There are pairwise disjoint sets Iy, ..., I, with UjZy [; = I for some nonnegative

integer m < n, functions fy, hg, 9o, Ko» P1, - » Pm Q1 - » §m holomorphic on D",
and constants ay, ..., a,, with the following properties:
(b1) fo, ho, 9o, ko € H(p) and p;,q; € H(Iy U I;)/H(I,) for each j.

(b2) We have
m m
f=f0+zpj; h=h0+zajpj;
j=1 j=1

m m
g=go+ij'; k=ko+zé_¥jqj',
=1 j=1

(b3) For each r € I, one of the following four cases holds:
(1) 0rfo = 0yhy = 0and d,p; = 0 forall j.
(i) 0rko = 0rgo = 0 and d,.q; = 0 for all .
(iii) 0rfo = 0,go = 0 and 0,p; = 0,q; = 0 for all .
(iv) 0rky = 0rhg = 0 and 0,p; = d,q; = 0 forall .
(c) There are subsets /4, ..., J, of I for some integer £ > 1, and holomorphic functions
Ay, ..., Ap By, ..., By with A; € H(J;) and B; € H(I\J;) for each i such that
2

i=1
Proof. First suppose (a) and show (b). So, assume that the function fk — hg is
n —harmonic. Then, for each r € I, we have 6r6_r( f l_c) — 0,0, (hg) and thus
0.£)(9,k) = (9,1)(3:9). 7)
Let I be the set of all r € I with (9,-f)(9,-h)(0,g)(0,k) = 0. Then, for eachr & I, we
have

d,.h (6rk)
orf \0rg
and therefore there exists a constant 5, # 0 such that
Orh = B0rf, Ork = ﬁrarg-
Now, define an equivalence relation on I\/, by r~s if and only if 5, = 5 and let
I, ..., I, be the equivalence classes induced by ~. It follows that there are nonzero
constants 1, ..., m such that
Orh = a;0.f, 0yk=a;o.g, rEI (8)

foreachj > 1.

Note that, forr € I;,s € I with i,j = 1 and i # j, we have

(a; — @;)0,0sf = @;0,0sf — a;0,05f = 050,h — 8,0sh =0

and thus 0,05f = 0. This means that the power series of f cannot contain any terms
involving both z, and zg with r € [;, s € I; whenever i,j = 1and i # j.

Similarly, the same is true for g. Also, since a;'s are nonzero, the same holds for

h and k. Therefore, we may decompose functions f, g, h and k as
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m m
f= zf,, g= zg,, h=Zh k= zkj,
= =
where fy, go, ho, ko € H(IO) and fJ gj hj, kj € H(IO U I) for j > 1. Since we have
fo, 9o, ho, ko € H(ly), we may further assume f;, g, hj, k; € H(I,uI; )/H(IO) for j >
1.
Now, we prove (bl) and (b2). Fix j = 1. Note that we have by(8)
0 (hj — ajf;) = 0-(h = a;f) = 0
for all r € I;. It follows that h; — a;f; € H(Iy U ;) = H(Ip) N H(I;) = {0} and thus
h; = a;f;. Similarly, we have k; = a;g;. Thus, (bl) and (b2) hold withp; = f; and q; =
gjforj =1
Finally, we prove (b3). Let r € I,. Then by(7), one of the following four cases
should occur:
()" o,f =0,h=0, (ii))" 9,k = 0,9 =0,
(iii)" a,f = 0,9 =0, (iv)" 0,k h
In the case (i)', we have by (b2)

rfo+zarp,—a h0+2a, 0 = 0.

Note that, for each j, we have d,p; € H(Iyu I )/H(IO), because p; € H(Iyu Ij)/
H(I,). Also, we have 0, fy, d,.hy € H(Iy). Thus, by repeated applications of Lemma
(1.2.7), we conclude 0, f; = dhy = 0 and d,p; = 0 for each j, which is just the case
(i). Similarly, the remaining cases (i), (iii)’ and (iv) correspond to the cases (ii), (iii),
and (iv), respectively. Therefore, we have (b).

Now, suppose (b) and show (¢). By (b3), given r € I, we have either d,.f, =
d,p; = 0 forall j or d,ky = 0,q; = 0 for all j. This means that we can decompose I, =
J1UJ, where J;NJ, =@ such that fy € H(J;), ko € H(,),p; € H(JV L), q; €
H(]2 U I) for all] Since

fk Za]qu] fkkO + z a]qu] + ijko + z a]p]q]

i#j
by (b2), we see the functlon fk—Ya p ;q; can be wrltten as a finite sum of functions
of desired form. Also, a similar argument shows that the same is true for hg — ¥ a;p;q;.
Hence, we conclude (c).
Finally, it is trivial that (c) implies (a). The proof is complete.
As a special case of Theorem (1.2.8), we have the following consequence.
Corollary (1.2.8)[8]: Let f, g € H(D™). Then the following statements are equivalent:
(@) |f]? — |g|? is n —harmonic.
(b) There are pairwise disjoint sets I, ..., I, with U;-"=1 I; =1 for some positive
integer m < n, functions p;, ..., py, With p; € H (Ij) for each j, and unimodular
constants ay, ..., &, such that
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m m
f=zpj: g=z:04j’10j‘|')L
=1 =

for some constant A.
Proof. By Theorem (1.2.8) with h=g and k = f, we see that |f|? —|g|? is
n —harmonic if and only if there are pairwise disjoint sets Iy, ..., [, with U =1 for
some nonnegative integer m < n, functions f,, g, € H(l,), constants ay, ..., @,,, and
D1, -, Pm With p; € H(I,uI; )/H(IO) for each j, such that

f= fo+ZpJ, g= go+za1pj

| | bj =Dy, Orfo = 0,90 = arpj =0
for all r €, and j > 1. By the first equation of the above, we may take
oy = 1.

By the second equation, we see that functions f;, g, are constant. Thus, we may
take fo = 0,Ip =@ and p; € H(Ij) for all j = 1. The proof is complete.

For functions of the form fk — hg with a certain regularity, the n —harmonicity
and the boundary n —harmonicity turn out to be equivalent in the case n > 3, while they
are different for n = 2. In order to see this, we need the following lemma which might
be known. A proof is included here for completeness.

Lemma (1.2.9)[8]: Let m, £ be integers with 1 < m, £ > 0 and assume f € H?.
Then, 0%f(z,) € H*(D™™™) for each z € D™. Furthermore, there exists a set E C
T ™ with 0,,_,(E) = 1 with the following properties:

(@) 0 f(z,n) = llm 0{ f(z,mm) exists for each z € D™ andn € E.

(b) The function 61 f(-,m) is holomorphic on D™ for eachn € E.

In the proof below we will use well-known facts about maximal functions. For a
measurable function i on D™, let Ny be the nontangential maximal function of with
respect to nontangential approach region of a fixed aperture. Also, givenu € L1(T™™™),
let Mu be the Hardy-Littlewood maximal function of u. As is well-known, the operator
M is bounded on L?(T™™ ™). Also, it is well known that if is the Poisson integral of some
u € LY(T™™™), then Ny < CMu for some constant C independent of wu.

Proof. Let z = (z%,...,z™) € D™ andn € T™ ™. Let max |z;| <t < 1.

1<jsm

Then, for arbitrary 0 < r < 1, we have by the Cauchy integral formula

¢ _ fg,rn) C15 e
01 f(z,mm) —ﬁ!Ti =120 §'n=1(1 12,2 (t™' ¢ dop (D)

and

And therefore
2
[ lotre )l donman
Tn—m
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Ce
< |f(t€:rn)lzdo_m(Z)do_n—m(n)
(t - |le)2{} ;n=1(t - |Z]|)2 Tn'[m T-T[l
C
< : 7 I 1Z.

(t =1z DI, (e — |2])
Hence, 0{ f(z,") € H>*(D™™™).
Now, pick a sequence of positive numbers {tj} increasing to 1 and let K; =
{tjz: Z € ﬁm} forj = 1. Fix j and t; <t < 1. Then the above estimate shows

02w’ < ¢ f (2, 7w) Ao (@) )
Tm

forallz € K;,0 <r < 1andw € D"™™. Here and in what follows, the letter C; = C;(t)

denotes various constants independent of f,z,7 and w. Let z € D™ and 0 < r < 1.
Then, it follows from(9) that

2
(Séllp Naffz,r(”)) < Cj fotC,r(n)zdo_m(() , NE T,
VA j m

where we use the notation h, ,.(w) = h(z,rw) for holomorphic functions h on D™.
Integrating both sides of the above on T"™™, we have

2
f (svm N 0ffz,r(n)> dop—m (1)

ZEK]'
Tn—m

<G f f N fegr(M)?doy_m (@) dom ()

Tm Tn—m

< f f M feg ()2 d oy _m(m)dom({)

Tm Tn—m

IA

6 [ [ Ve donmdon )

Tm Tn—m

¢ [ [ 11 mdo, o)

Tm Tn—m

< Cj||f||12.12-
Thus, by Fatou's lemma, we have
2
f (5;? Naffz,l(”)) dop_m(M) < Cj”f”12.12 (10)
ZERj

TTL—m
Having the above inequality, one may now follow the well-known proof of Fatou's
theorem to conclude that there exists a set E; < T"™™ with oy,_p, (EJ) = 1 such that
nontangential limits of 8% f (z,-) exist at all points in E ; foreachz € Kj. LetE = ﬂ‘;’;l E;.
Then we still have o,,_,,(E) = 1 and nontangential limits of 8 f (z,) exist at all points
in E for each z € D™. This proves (a).
Note that (10) yields
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sup Vi f;1 (1) < o

ZEK]'
for almost all points 7 in T™~™. We may assume the above holds forn € E;. Thus, given
a compact set K € D™, we have

sup N9 f, 1 () < o0

ZEK
for each € E. In particular, given n € E, we see that functions 8% f(-,rn) form a

normal family and thus (b) holds. The proof is complete.
The following is taken from Lemma 9 of [11].
Lemma (1.2.10)[8]: Let Q be a given connected open subset of C". If A; and
B;(1 <i <) are holomorphic functions such that ¥ ,A4;B; =0 on Q, then
leAi(z)Ei(w) =0 forallz,w € Q.
Now, we prove the following theorem, which does not extend ton < 2. Forn =
1, it is not hard to find counterexamples. For n = 2, we have a counterexample:
f=—9=0-2z)A—-2), h=k=(1+2z)1+ z). (11)
Theorem (1.2.11)[8]: (n = 3). Let f, h,k, g € H?. Then the following statements are
equivalent:
(a) fk — hyg is n —harmonic.
(b) fk — hg is boundary n —harmonic.
Proof. The implication (a) = (b) is trivial. We prove (b) = (a). So, assume (b).
By symmetry we only need to prove
(0:1)(0:k) = (3:1)(2:9). (12)
First, let us introduce some notation. For simplicity, put F = d,f,G = 0,9, H =
d0.h and K = 0,k. Then, by Lemma (1.2.9), there exists a set E ¢ T with o,(E) =1
such that, givenn € E, the functions F (-, 1), G(-,nn), H(-,n) and K (-, n) are holomorphic
on D™ 1. Also, we may assume that, given { € E, the functions F(.,{,),G(-,¢,), H(:
,{,) and K (-, {,") are holomorphic on D1 = D""2 x D,
Now, since we have
lim A,(fk —hg)(a) =0

a—0oD"
by assumption, it follows that
lti_r)r%(FI? —HG)(z,tn) =0
forall z € D™ and n € T. In particular, we obtain
(FK—HG)(z,n) =0
forallz € D™ ! and n € E. Thus, we have by Lemma (1.2.10)
F(z,mKWw,n) = H(z,mMG(w,mn) (13)

forallz,w € D" ! andn € E.

Let Ef be the set of all n € E such that F(-,n) = 0. Define the sets Eg, E}, and E),
in a similar way. First, consider the case where one of the sets Ef, Eg, Ej, and Ej is of

positive o; —measure. Without loss of generality, assume oy (Ef) > 0. Let z€ D",

Note that F(z,-) € H*(D) by Lemma (1.2.9). Since the boundary function of F(z,)
vanishes on a set of positive g; —measure, we have F(z,-) = 0 on D. It follows that F =
0 on D™. Thus, we see from (13) that
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H(z,n)G(z,1n) =0
forall z € D™ 1 and n € E. This means that, for each z € D™ 1, the boundary function
of H(z,)G(z,) € HY(D) vanishes on E. Hence, HG = 0 on D™. So, we have (12).

Now, assume that all the sets Ef, Eg, E, and Ej, are of g; —measure 0. We may
further assume that, for each n € E, all the functions F(-,n),G(-,n), H(-,n) and K(-, 1)
are not identically 0 on D™1. Thus, we see from (13) that, for each n € E, there exists
a constant a(n) such that

F(b,A,n) = a(m)H(b,4,n) (14)
forallb € D™ 2 and A1 € D.

Repeating exactly the same argument as above, we may assume that, given { €
E, the functions F(-,{,-), H(:,{,") are not identically 0 on D™ 1 and there is a constant
B(Q) such that

F(b,3,2) = B(OH(D, () (15)
forallb € D" 2 and A € D.

Now, choose by € D™ 2 for which F(b,,") and H (b,,") are not identically 0. By
Lemma (1.2.9), we have F(by,"), H(bo,-)H*(D?) (it is in this step where we use the
hypothesis n = 3). Hence, F (by,") and H (by,) have nonzero boundary values at almost
all points of T2. Therefore, we may further assume that F(by,") and H(by,) have
nonzero boundary values on E X E. Thus, given 1,{ € E, we obtain a(n) = B({) by
(14) and (15). It follows that a(n) = «a is also independent of 7.

We now have

F(z,m) = aH(z,n)
for all z € D™ ! and n € E. This yields F = aH on D™ as before. Similarly, we have
G = aK. So, (12) holds. The proof is complete.

Now, Theorem (1.2.2) follows from Theorem (1.2.14), Theorem (1.2.1) and
Theorem (1.2.11).

Also, as a corollary of the proof of Theorem (1.2.11), we have the following.
Corollary (1.2.12)[8]: (n = 2). Let f,g € H?. Then the following statements are
equivalent:

(a) fg is n —harmonic.
(b) f g 1s boundary n —harmonic.

We prove Theorem (1.2.14). The following fact is very useful for our purpose.
Proposition (1.2.13)[8]: Let f,g € A% If d;f = 0ord;g = 0 for each j, then we have

P(fg_Ka) = fg(a)Ka (16)
for a € D™. The converse also holds for f, g € H?.
Proof. Suppose 0;f = 0 or d;g = 0 for each j. Then there are disjoint sets /4, J, with
J1 UJ, =1 such that f € H(J;) and g € H(J,). Write z/ = (Zr)rejj for j = 1,2. By
changing the coordinate system if needed, we may write z = (z%,z%) for z € D™. By
assumption, we may regard f and g as functions holomorphic on lower-dimensional
polydisks. That is, we may write f(z) = f(z!) and g(z) = g(z?) for z € D™. Also,
note K, (z) = K1 (z)K ,2(z?) for z,a € D™. Here, we abuse the notation K ;1 and K ;2
for the kernel functions on the corresponding lower dimensional polydisks. Thus, for
every a,z € D", we have
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(fKy gK,) = {fK 1K 2, gK,1K ,2)
= (fKa1KZ1)(Ka2,ngz)
= (fK 1K, 1){gK ,2, K;2)
— (2K (2D (@D Ko@)
= f(2)g(a)Ky(2)

and therefore L
P(fgKa)(z) = (fgKa K2) = (fKa 9K;) = f(2)g(@)K,(2)
for every a,z € D™.
Now, let f, g € H? and assume (16) holds. Let a € D™ be an arbitrary point.
Then, by (5) we have

On the other hand, we have
(P GKa), ko) = (fGKarked = [ (£0) o gad
DTL

by (4). It follows that

f (F) ° padV = f(@)g(a).
DTL

Note R( f l_c) € L” by (6). Now, by Proposition (1.2.3), we conclude that fg is
n —harmonic and therefore 9;f = 0 or d;g = 0 for each j. This completes the proof.
We now turn to the proof of Theorem (1.2.14).

Theorem (1.2.14)[8]: Let u,v € L be pluriharmonic symbols and assume u = f +
g, v=h+k for some f,g,hk € H(D™). Then the following statements are
equivalent:

(a)T,T, = T,T, on A2,

(b) fk — hg is n —harmonic.
Proof. We first prove (a)= (b). So, assume T,,T, = T, T, on A
Since u and v are bounded, the functions f, g, h and k are all in H? and hence in A2 by

g(a)k, and hence e
Trygka = PI(f + ko] = [f + g(@) ]k,

Therefore, we have ) o
ThirTrrgka = P[(h + k)(f + g(a))ka]

Similarly, we also have
Tf+gTh+Eka = fhk, + fk(@k, + g(a) k(a)k, + P(hgk,).
It follows that
[Tr4gThek = TherTreglka = [fk(@) — hg(@]ks — P[(fk = hg)ka].  (17)
Since Ty, 5Thek — ThekTr+g by assumption, we get
P[(fk — hg)ka] = [fk(@) — hg(a)]k,.
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Now, as in the proof of the second part of Proposition (1.2.13), the above leads to the
n —harmonicity of fk — hg.

Next, we prove (b)=>(a). So, assume fk — hg is n —harmonic. Note that the set
{k,:a € D"} spans a dense subset of A%. Thus, in order to prove T,T, = T,T,, it is
sufficient to show

P[(fk — hg)ke] = [fk(a) — hg(@]kq, a € D™, (18)
by (17).
Now, write fk —hg = Y. A;B; where A;, B; are functions as in (c) of Theorem
(1.2.8). Let z,a € D™ Then, by Lemma (1.2.10) we have

fFR@ — h(2)9(@ = ) 4@B@.
We may assume 4;, B; € A2. It follows from Proposition (1.2.13) that

PI(FE - ha)ka] @) = ) P(AiBIe)(@)

So, we conclude (18), as desired. The proof is complete.
Note that the adjoint of T}, is Ty. It follows that T;, is normal if and only if T, T; =
T;T,. Thus, by Theorem (1.2.14) and Corollary (1.2.8), we have the following.
Corollary (1.2.15)[8]: Let u € L* be a pluriharmonic symbol. Then the following
statements are equivalent:
(a) T, is normal on A2,
(b) There are pairwise disjoint sets Iy, ..., I, with UjL;[; =1 for some positive
integer m < n, functions py, ..., py, With p; € H (Ij) for each j, and unimodular

constants &y, ..., &, such that
m

U= Z“J‘(Pj +p;) +2 (19)
j=1
for some constant A.
We prove Theorem (1.2.1). The proof will be completed by proving the following
sequence of implications:
(@)= (b) = (¢) = (b) = (a).
Since proofs are somewhat long, we will prove each implication separately.
For the proof of the implication (a) = (b), we introduce some notation. For each
a € D", we define a linear operator U, on L? by
Ugh = (@ o 9a)kq
for y € L2. One can readily see that U, is an isometry taking A onto itself. Also, since
@4 © @, is the identity on D™, one can see that U, U, is the identity. Moreover, for u €
L, we have
Tyop, = UgT Uy, a € D™ (20)
This is proved in [9] on D and the same proof works on D™,
Proof of (a) = (b). Let ¢ € ®. Since the set {k,: a € D™} spans a dense subset of A2,
it is sufficient to show that
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(TuepToop — TvopTuop)ka =0, a € D™ (21)

Choose a net {w, } in D™ such that ¢, — @. First, noteu o ¢,, > uo@anduvo
®w, — U ° ¢ uniformly on every compact subset of D™ by Proposition (1.2.6).

Moreover, since u and v are bounded, we have

Uo@, —uey, vop, —vop inl?

Fix a € D™. Then it follows from the above that (v ° (pwa)ka - (Vo @)k, in L2

So, P[(vo (pwa)ka] — P[(v o @)k,] in L*. Since ueo ¢, is bounded and
converges point wise to u o ¢, it is not hard to see

Pluo g, P(vo @, ki) > Plue@P(epky)] in L%

In other words,

Tu°‘Pwa TU°<Pwa ka - Tuo(pT‘Uo(pka in LZ.
Similarly, we have
Tv°‘PwaTu°(Pwa ka - T‘UO(pTuo(pka in LZ.

It follows from (20) that
||(Tu°<pTv°<p o Tv°<pTu°<p)ka”2 = licrrn ” (Tuowwavapwa o TvowwaTuowwa) ka”2
= licrxn”Uwa (TuT, — TvTu)Uwaka”2
= lim||(T,T, — LT Uw,kall,
where || ||, denotes the L? —norm. It is easy to see that Uw,kq converges to 0 weakly in
A?. Hence, the compactness of T, T, — T, T,, yields (21). This completes the proof.
For the proof of equivalence (b) & (c), we first prove the following lemma. In
the proof below, we will use the well-known fact that
Ai(uop) = (Z]-u) o, j=1,..,n, (22)
forall ¢ € Aut(D™) and u € C%(D™).
Lemma (1.2.16)[8]: Let u = f + g,v = h+ k be as in the hypothesis of Theorem
(1.2.1).
Suppose {(pwa} is a net such that ¢, > @ € ®. lfuecp =F + G,vop=H+
K where F,G,H,K € H(D™), then
Z](fl_c — hg_) ° Py, = Zj(FI? — HG)
for each j.
Proof. Fix j. Put f = f o @, — f(wg) and k, = k © ¢, — k(w,) for simplicity.
First, by (22), we have
Zj(fal_ca - hag_a) = ZJ[(fl_c - hg—) ° (pwa] = Zj(fl_c - hg—) ° Pw,
Thus, it remains to show
Ai(foky — hags) - &;(FK —HG) (23)
Note that
o Py, —ulwg) > uop —uog(0)
uniformly on every compact subset of D™. In particular, since u and v are bounded,
uo @y, —ulwy,) > uep—uoe0)in L2
Now, using the L? —boundedness of the Bergman projection P, we have
Pluo Pw, — u(wg)] = Pluog —uo@(0)]in L2
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Note that an application of Proposition (1.2.13) yields

P[u°(pwa_u(wa)] = far P[u°(P_u°(p(0)] = F —F(0).
Hence, f,, » F — F(0) in L% It follows that f, » F — F(0) uniformly on every
compact subset of D™ and therefore d;f,, = 9;F. Applying the same reasoning to U, we

have 0k, — 0;K. Since
_ — 2 -
K (fuka)@ = (1= |z|") 9fdika

it follows that
~ = 2\2 | —— =
A (fuka) = (1 — |z ) 9,Fo;K, = 4;(FK).
Similarly, we have Zj (hedo) = Zj(HE) Hence, (23) holds. This completes the proof.
We now prove that (b) implies (c) and vice versa.
Proof of (b) = (c). It is sufficient to show that, for a given net {w, } such that ¢, — ¢
for some ¢ € P,
Ki(fk = hg)(we) > 0 (24)
holds for each j. So, fix a net {w, } such that ¢, — ¢ for some ¢ € ® and let F, G, H, K
be as in Lemma (1.1.16). Since Ty.p, and Ty., commute by assumption, Theorem
(1.2.14) shows the function FK — HG is n —harmonic. Hence A;(FK — HG) = 0 for
each j. Consequently, by Lemma (1.1.16) with evaluation at the origin, we have (24) as
desired. The proof is complete.
Proof of (¢) = (b). Let ¢ € ® and assume ¢, > ¢. Letuec g =F + Gandv=H +
K as before. Fix an arbitrary point a € D™ and put z, = ¢, (a).
Since Qg © @y, ° @, Aut(Dn) fixes the origin, it is a unitary transformation, say
Uq o Thus we have
P2y = Pwy © Pa° Uga (25)
Since the set of all unitary transformations is compact, we may assume U, , converges
to some unitary transformation U,. Now, for a given functiony) € H*, since i © ¢, —
Y o @ uniformly on every compact subset of D™ and @, o U, o = @, © Uy, we see that
Yoy, c@goUsq =Yoo @oq@,e U, This, together with (25), shows ¢, — @ where
@ = @ ° @4 © Uy. By the same argument, we haveu o ¢, - ue@andveqp, - veod
uniformly on every compact subset of D™. Note that ¢ € ® implies w, = dD™ and thus
Z, = 0D™. So, @ € P,
Now, since uo@ =Fo@,olU,+Go@p,oU, and vodp =Hoq,oU, +
K o @, 0 U, it follows from Lemma (1.1.16) and (22) that
0 = lim4; [fk — hg](2)
= L[(FK = HG) © ¢q © Ug](0)
= Aj[FK — HG(@q © Ua(0))
= A;[FK — HG](a)
for all j. So, the function FK — HG is n —harmonic. Thus, Ty.,, and Ty., commute by
Theorem (1.2.14). The proof is complete.
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For the proof of the implication (b) = (a), we introduce some notation. Given a
pair of bounded pluriharmonic symbols u = f + g and v = h + k where f,g,h k €
H(D™), welet
for z,a € D™. The significance of the function R, , lies in the fact that the commutator
T, T, — T, T, can be expressed as an integral operator given by

(T = TT)@ = [ Ruy (R @W() dV (2) (26)
DTL
fory € A? and a € D™. Recall that the functions f, g, h and k are all in H? and hence
in AP for all p > 0 by Proposition (1.2.4). In particular, we have R(:,a) € L? for each
fixed a € D™. Thus, the above integral is well defined. The above representation is well
known. See, for example, [12] for details on the ball. The same proof works on D™,
Finally, we prove that (b) implies (a).

Proof of (b) = (a). Put R = R, and Ry, = Ry.¢,pee for ¢ € ®. First, we claim the
following:

a—oD"

lim inf f|R((pa(z), a) —R,(z, a)|14 dV(z) = 0. (27)
PED
DTL
Suppose not. Then there exists a net {w,} such that w, — dD™ and
. 14
¢l>re1cf1> f|R((pwa(z), wa) —R,(z, a)| dV(z) >0 (28)
DTL

for all w,. Now, by taking a subnet if necessary, we may assume ¢,, — ¢ for some
@ € ®. Note that
uey, _u(Wa) —>uo<p—uo<p(0)
uniformly on every compact subset of D™. In particular, since u and v are bounded,
uo @y, —uw,) »uep—uocep(0)in L?°
Now, using the LP —boundedness of the Bergman projection P for p > 1, we have in
particular
Pluo Pw, — u(wg)] > Plucp —uop(0)]in L.

On the other hand, lettingu o @ = F + G andv o ¢ = H + K, we see that an application
of Proposition (1.2.13) yields

P[uo(pwa _u(Wa)] =f°(pwa _f(Wa); P[u°(p —uo<p(0)] = F_F(O)-
Hence, f o ¢, — f(Wy) = F — F(0) in L?®. Similarly, we have k o @, — k(w,) =
K — K(0) in L?8. It follows that

Also, the same is true for functions h, g. Hence, we have
R(pw, (), wg) — R,(-,0) in L™,
which is a contradiction to (28). Thus, we have (27).
Fix ¢ € ® and 3 € A% Then Tyop and Ty, , are commuting by assumption.

Hence, a simple application of (20) yields Tyopop, Tvepop, = Tvepop, Tuspop, fOr a €
D™. In particular, we have
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(Tuo(po(paTvo(po(pa - Tvo(po(pa uo(po(pa)lp(a) = 0 a € D™,

Note that
Ruo<po<pa,vo<po<pa (z,a) = Ruo<p,vo<p ((Pa(Z), (Pa(a)) = Ruo<p,vo<p ((pa(Z),O)
Thus, (26) shows

f Roa@0) iy —o

?:1(1 — a;z; )
It follows from (26) again that

T, =T = [ 2

pn j=1(1 B ajz—j)

“R@aD O vy @9

fora € D™
For each p € (0,1), let M,:L? —» L? be the multiplication operator by the

characteristic function of pD™. Here, pD™ = {pz: z € D"}. Then M, is compact when
restricted to A2. Thus, the operator M »(TyT, — T,T,,) is also compact. Put

S, =(1-M,)(T,T, - T,T)
for simplicity. We note from (29) that

R(z,a) — R, (¢,
Sp(a) = x,(a) f (2,) = Ry (9a(2), )l/J( )dV(z),a € D™,

pn ?=1(1 K J)

Where x, = Xpn\ppn-
By (4) and simple manipulations, one obtains

2
|R(Z, a) - R¢(‘Pa(z);0)| dV(Z)

2 2
D™ ;-l=1|1 - aij| 1-— |Z]|
IR(0a(2), @) — Ry (z,0)|" Ika(2)I?

5 Ty |1 = oy ()| 1= [ ()]

1 IR(0a(2), @) — R,y (z,0)°

— | ———
=1 1—|aj|2D" a1 —az| |1 -z

1

—|/
?:1 1_|aj| pr

dV(z)
% f 7/6
s 1 - 4" (1= |7
where the inequality holds by Holder's inequality with the conjugate exponents 7=6 and
7. On the other hand, by an application of Lemma 4.2 of [26], we can see

dV(Z)

dV(z)

1/7

IR(9a(2),@) = Ry(z,0)|" dV(2)

IA

6/7

2)7/12
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1

_7/6
pn i=1 |1 - 4z (1 — |zl
for some constants C. Here and in the rest of the proof, we use the same letter C for
various constants depending only on n. It follows that

|R(Z, a) - R(p (‘Pa(z); 0) |2

2)7/12 dvV(z) <C

dV(z)
_ 2 2
o [T |1 — z] "1 - |z
1/7
C 14
< - f|R((pa(z),a) —R,(z, 0)| av(z)
fea 1= || \om
Now, the Cauchy-Schwarz inequality yields
2
2 R(z,a) — Ry, (94 (2),0)
1S,9(@]” < | xp(@) | E | [P (2)|dV(2)
pn j=1| - ij|
2
/ a)|R(z,a) — R z),0 \
<| f)(p( )|R(z,a) — Ry(9,(2),0)| v |
_ 2 2
\Dn il = ez 1- |z
/ Ja=1a)
|| ]_[ Dwerae |
\Dn Jj= aJZJ|
1/7
Xp(a) 14
<cC P f IR(¢a(2),@) — R,(z,0)| " dV(2)
j=141 |aJ|
| ]_[ |¢<z)|2dv<z) ,
\Dn j= aJZJ| /
It follows from Fubini's theorem that
1/7
2 14
f|5p1p| dV <C sup f|R((pa(z), a) —R,(z, 0)| dV(z)
aeD™\pD"
pn pn
dV(a)
< | ]_[ e [ 2 v
pn j= pn ;l=1|1—aJZ_J| 1-— |aj|
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Moreover, by an application of Lemma 4.2.2 of [26], we have
dV(a)

C
[ ———
_ 12
b ?=1|1_ajzj| 1—|alj|2 =1 1_|Zj|2

and therefore, we have

z € D™,

1/7
2 14
f|5p1p| dV <C sup i f|R((pa(z), a) — R,(z,0)| adv(2) fl(pIZdV.

a€eD™\pD

Note that the above holds for all ¢ € ® and y € A2. So, we finally have

1/14
ISl <€ sup (Sgg f'R((Pa(Z);a)_R¢(Z,O)|14dV(z)) |
(Y on

aeD™\pD™"
Now, taking the limit p — 1, we conclude S, — 0 in the operator norm by (27).

Hence, T, T, — T, T,, can be approximated by compact operators, so it is compact,
as desired. The proof is complete.

We say that a bounded linear operator L on a Hilbert space is essentially normal
if L and its adjoint operator are essentially commuting. As a consequence of Theorem
(1.2.1) and Corollary (1.2.15), we have the following.

Corollary (1.2.17)[8]: Let u € L* be a pluriharmonic symbol and assume u = f + g
for some f, g € H(D™). Then, the following statements are equivalent:

(a) T, is essentially normal on A2.

) 1f1? — |lg|? is boundary n —harmonic.

(c) For each ¢ € ®, there are pairwise disjoint sets I, ..., I, with
U;-n=1 I; = I for some positive integer m < n, functions py, ..., py, With p; € H(Ij) for
each j, and unimodular constants a4, ..., a,, such that

m
ucy =Z“1(Pj+ﬁj)+/1
j=1
for some constant A.
As a consequence of Theorem (1.2.2), Corollary (1.2.15) and Corollary (1.1.17),

we obtain the following.
Corollary (1.2.18)[8]: (n = 3).Letu € L” be a pluriharmonic symbol and assume u =
f + g for some f,g € H(D™). Then, the following statements are equivalent:

(a) T, is normal on A2,

(b) T, is essentially normal on AZ.

©) If]? = |lg|? is n —harmonic.

(d)|f]? — |lg|? is boundary n —harmonic.
Also, as an immediate consequence of Theorem (1.2.14), Theorem (1.2.1) and
Corollary (1.2.12), we recover the result of Sun and Zheng [22] mentioned in the
Introduction.
Corollary (1.2.19)[8]: (n = 2). Let f,g € H™. Then, the following statements are
equivalent:

(a) TyTy = T4Ty on A,
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(b) For each j, we have either d;f = 0 or d;g = 0.
(c) Tr and T} are essentially commuting on A%,

Example (1.2.20)[8]: Corollary (1.1.18) does not extend to n = 2, either. To see an

example, let
[0¢]

F@ =) a| ). #dd ). 2= @),

£=0 i+j=t
where coefficients a, # 0 are chosen so that the series converges on all of C2. Then, a
little manipulation yields

[oe]

nf @ =) ana| D AT |+ 9,
£=0 i+j=¢
Where (1) = X952 ,a,A" L. Define g(z) = z,f(z) — ¥ (z;). By symmetry, we have
9(z) = z,f(z) —Y(z,). Hence, we have 0,9(z) = z,0,f(2),0,9(z) = z,0,f(z) and
thus N , ,
E(f12 =191 = (1-|z]") 1 = 1z = 1229, 2)|
for j = 1, 2. Consequently, |f|? — |g|? is boundary 2-harmonic, but not 2-harmonic.

For Toeplitz operators T;, and T;,, we call T, T, — Ty, the semi-commutator. For
Toeplitz operators with pluriharmonic symbols, the commuting property is very closely
related to the semi-commuting property.

To see what is going on, let us begin with functions f, g, h,k € H®.Putu = f +
g and v = h + k. Then, one can easily verify that

T,T, — Ty = TfTx — T Ty.
Hence, the semi-commuting problem of T, and T;, simply reduces to the commuting
problem of Tr and T. Thus, for n = 2, the essentially semi-commuting property is the
same as the semi-commuting property by Corollary (1.1.19).

For general pluritharmonic symbols, our arguments used can be easily modified
to conclude the same. Lemma (1.2.21) and Lemma (1.2.22) below are valid even for
n = 1. For other characterizations on the disk and ball, see [23] and [24].

Lemma (1.2.21)[8]: Let u,v € L be pluriharmonic symbols and assume u = f +
gv=h+k for some f,g,hk € H(D™). Then, the following statements are
equivalent:

(a) T, T, = T, on A2

(b) For each j, we have either d;f = 0 or d;k = 0.
Proof. As in the proof Theorem (1.2.14), one obtains

which is in turn equivalent to the fact that d;f = 0 or d;k = 0 for each j by Proposition

(1.2.13), because f,k € H? by Proposition (1.2.4). The proof is complete.
For essentially semi-commuting Toeplitz operators, we also have the following.
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Lemma (1.2.22)[8]: Let u,v € L* be pluriharmonic symbols and assume u = f +
g,v=nh+k for some f,g,hk € H(D™). Then, the following statements are
equivalent:

(a) T, T, — Ty, is compact on A2,

(0) Tyo Tvop — Tuv)o ON A? for every ¢ € .

(¢) fk is boundary n —harmonic.
Proof. As in (26), we have the following representation:

(TT, - T) (@) = f (F2) - F@) (k@D — k(@ Yea@p(2)dvV ()
D'n.

fora € D™ and Y € A% Hence, one can easily modify the proof of Theorem (1.2.1) to
conclude the theorem. The proof is complete.

Now, combining Corollary (1.2.12), Lemma (1.2.21) and Lemma (1.2.22), we
see that the essentially semi-commuting property is the same as the semi-commuting
property forn > 2.

Theorem (1.2.23)[8]: (n = 2). Let u,v € L* be pluriharmonic symbols and assume
u=f+g,v=h+k for some f, g,h, k € H(D™). Then, the following statements are
equivalent:

(a)T,T, = T, on A2

(b)For each j, we have either d;f = 0 or djk = 0.

(¢c)T,T, — T,, is compact on A2,

(d) Ty Tvop — Tuv)o ON A? for every ¢ € .

(e) fk is boundary n —harmonic.
Section (1.3): Products of Toeplitz Operators:

For D be the open unit disk in the complex plane C. Its boundary is the unit circle
T. The polydisk D™ and the torus T™ are the subsets of C™ which are Cartesian products
of n copies D and T, respectively. Let do(z) be the normalized Haar measure on T™.
The Hardy space H2(D™) is the closure of the polynomials in L*(T™, do) (or L*(T™)).
Let P be the orthogonal projection from L?(T™) onto H2(D™). The Toeplitz operator
with symbol f in L* is defined by Tgh = P(fh), for all h € H?(D™) and the Hankel
operator with symbol f is defined by Hch = (I — P)fh, for all h € H 2(D™). We
consider the problem when the product T¢ T, of two Toeplitz operators Tr and Ty is zero
on the Hardy space. Also we will characterize when the product T¢ T, of two Toeplitz
operators Tf and T, on the Hardy space H*(D™) is still a Toeplitz operator. Furthermore
we will see that there are no compact semi-commutator TT; — Tr, of two Toeplitz
operators with bounded pluriharmonic symbols. As is well known, for f and g in L%,
Brown and Halmos [29] have shown that T¢ T} is a Toeplitz operator if and only if either

f € H® or g € H*. In other words, either Hz or Hy is zero. It was shown in [31] that
for Toeplitz operator Ty and T; on H 2(D), T¢Ty — Trgy 1s a finite rank if and only if either

f or g is an analytic function plus a rational function.

Since the function theory on the polydisk D™ is quite different from the function
theory on the unit disk [32], there exist some differences in Toeplitz operator theory
between on the polydisk and on the disk ([33], [30]).
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Now we give some preliminaries for our main results.

K210”1)==

is called the reproducing kernel of at the point z; in D and

(1-z3wy)
1, 12)1/2
(wy) = % the normalized reproducing kernel of H2(D) at the point z; in D.
—41W1

It is easy to check that the reproducing kernel of H*(D™) at the point z in D™ is the
product K, (w) = [} K,,(w;). So the normalized reproducing kernel k, of H 2(D™) at
the point z in D™ is an also the product k, (w) = [[} K, (w;). We observe that k, weakly
converges to zero in H2(D™) as z tends to the boundary of D™.

We denote by Aut(D™) the group of all biholomorphic automorphisms of D™.
The automorphisms of D™ forn > 2 are generated by the following three subgroups:
rotations in each variable separately Rg(z) = (eielzl, ...... ,eienzn), where Mobius

transformations are in each variable separately ¥,,(z) = (‘{’Wl (1), P, (zn)), and

the coordinate permutations. Here 6 € [0 27‘[] and w € D" are ﬁxed Mobius

transformations are in the form ¥, (z) =
Aut(D™) can be written in the form

Y(z) = (ew“{",,,1 (za(l)),...,eienl{’wn(za(n)))

for some w = (wq,...,w,) € D™, 0 = (64,...,0,) €[0,2n]", and o is a coordinate
permutations. The Poisson integral of f € L*(T") is

PIfIC) = ff(()l_[ el ff(f)uc ©12do ().

JJ
Lemma (1.3.1)[27]: Let fE L1(T") ¥ € Aut(D™), then

P[f o ¥](z) = P[f] > ¥(2),
Where ¥, (w) = (npzl W), ¥y (Wn)) W, (w;) € Aut(D) (see [4]).
Corollary (1.3.2)[27]: For any z = (24, Z3,...,2,) € D™, we have

f FOlk, Q) 2do () = f f oW, (Q)do(?).

™ ™"
Proof. In fact, by Lemma (1.3.1), P[f o ¥,;](0) = P[f] e ¥,(0) and ¥,(0) = z, it
follows that

f FOlk,(Q2do () = f f oW, (Q)do(?).

Let Z denote the set of all integers, Z, denote the set of all nonnegative integers and Z_
denote the set of all negative integers. We recall that by using multiple Fourier series,

12(T) = {f:f = > f@e, Y @ < oo].

aezZ™ a€ezZ™
We note that for every {=({y,...,¢) €T a = (ay,...,a,) € Z", (% =5%. ..
Zan,fj_ ! Z L0 = |(J| = 1. So we can write also f as
F=1GD= ) f@ie
aeZl}
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Where {; = {j or {; = (.
Theorem (1.3.3)[27]: Let
f=f@D =) f@ieel?am,
aezl
Then
PfK,(w) = f(w,2)K,(w) € H*(D™)
for every z € D™.

Proof.
PP = (K ) = [ FG DR, )do(d)
2
= [ [ 160K, GIR, G IGIK IR G,
where 2’ = (z,...,2,) D1 Since f is harmonic in variable {;, we can write f as
F=F@D =) A6+ LT3
Hence 20 =
[ 160K, GRG0 K (R (Do)
TR-1T
- | l= > RGO+ Y BT K WK Ry (o)
A & -
= [ o0 2 KRGO, ()
Furthermore F(wy,¢',Z,,7) is harmonic in the variables {y, (s, ..., {,, Tespectively.

In the same way as above, we can obtain that
PfKZ(W) = f(Wll' W Zyy :Z_n)Kzl(Wl) T Kzn(Wn)-
This completes the proof of the theorem.
Note that if f € L*(T™), then the Toeplitz operator Ty is densely defined on

H?(D™). Next we consider Toeplitz operators with symbol in L% (T™).
Theorem (1.3.4)[27]: Let f and g be in L>(T™), then for any z; € D, ; € T, we
have

lim f(Tngkzleie k,, kzleig k,Ye™?do

Z17MU
T
— . , im@
= f(Tf(ulelg_)Tg(ﬂlelg.)kZI’kZI)e d@,
T

Where 8 € [0,27], forallm € Z and z’' € D™ are fixed.
Proof. We write f and g as

f = fl((ll{,i {_’) + fZ({_ll{,l {_’)
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= Z fl(jl Z,l Z_’)le + Z fZ(ji Z,l Z_’)Z—{ ’
jz0 j=0
g = gl((li Z,l Z_’) + gZ (Z_li Z,i Z_’) .
= Z g\l(ji Z,i ?)Z{ + Z gAz(]';(’, Z_’)Z—{;
By Theorem (1.3.3), %0 =0

(Tngkz: kz) = (Tgkz:Tsz) = (g(f;Z_)kz; f(Z: Z—)kz)

B f f[gl(ZbZ,lZ_’) +gZ(Z_11(,'Z_,)]

TR-1T
(2 2, ) + £(G0 0 Dy, (G0 do (@) ey (D12 do ()
- f f (0120, iz 2,7 + 92 (@ O I fi (20, 2 T)

Tn-1T

+ gZ (Z_li Z,: Z_’)fZ (Z—li Z,i Z_,)] Ikz’ (Z,) |2d0(§') .
+ f 0100 oG 2, T ey () 12do(Q)

TTl
Replacing z; by z;e'? in above equation yields
(Tng kzlzleie, kzlzleie )

= f [91(Z1ei9;(’:Z_’)f1(z1ei9:Z’:Z_’) +92(2_13_i9;(’:Z_’)f1(z1ei9:Z’:f_')

TTL—I
+gZ(Z—1€_i91Z,iz_l)fl(z—le_ieizli Z_’)] |kz’(§’)|d0'(§’)
+ [ 91608 G2 Dk, 0 @) Ao ()

- Tn
Multiplying by e‘™? in above equation and then integrating with respect to 8 imply
21

f <Tngkzlei9 Kyt kg eto k,)e™0de =
0

2
f f [gl(zleieiZ,iz—l)fl(zleieizliz_,)
0 Tn-t

+95(2167%,8,2') fo(z167%, 2", ") 1k, (§)2da (e ™0 d

21
+ f f 92(2167°,¢",2') fi(2z€%, 2", {") 1k ({2 da(§)e™0 do
0

Tn—l

21
+f f 910,821 7', 0 k010 (6l €] da(§)e ™ .

o 1"

Note that the measure is a rotation-invariant positive Borel measure on T™.
Interchanging the order of the above integration, we have
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2T

f <Tngkzlei9 Kyt kg eto k,)e™0do
0

21
- f f [91(z:€%. 8, 2')fi (21,2, (')
Th-1Q

+ gz(z_%e_iel (’:Z_’)fz (Z_1e_i9: z', (_’)] e™0dg|k, (¢)I*da({")

+ f f gZ(Z—le_ieiZ,lz—l)fl(zleieizli Z—,)eimedelkz’(Z,)Izdo-((,)

-1
2T
+ [ [ 91660 2)lGe, 2. 8 a0l O do ).
" 0
Also write
91(Z1ei9:(’12_’) = Z 910, f’;Z_’)Z{eije )
j=0
gZ(Z—le_iei ZIIZ—,) = Z g\Z(ji Z,:Z_,)Z—{e_ijg )
j=0
f1(Z1ei9:€’:Z_’) = Zfl(f:zlwf_’)zieije ,
j=0
fo(2:679,¢,2') = Zfz(j,z’,(_’)z_{e_ije.
j=0
We let

2T

Hp1(21) =f [91(Z1ei9:(’:Z_’)f1(z1ei9:Z’:f_’)

0
+ 92 (Z_le_iei Z,; Z—,)fz (Z_le_iei Z,; Z—,)]eime de.
If m > 0, then
Hml = z g\Z(j' ZIIZ—,)fZ(liZ,iZ—,)Z—m;
j+l=m
If m = 0, then
Hml = 91(0,(’,2_’)f1(0,2’,(’) + gz(O;ZI;Z_’)fz(O;Z’;(’);
If m <0, then
Hml = Z g\l(j,Z’,Z_’)fl(l,Z’, Z—,)Z_l_m
Jjt+l=—m
Since

_ g\Z (j; Z,l Z_’) € L2 (Tn_l);
PG.(, ¢, ¢NK,({) = ﬁzU:(',Z_')Kzl'(f') € H*(T™™).
For any fixed z' € D™, we have (Kzr((’))_ € H®(T™), hence §,(j,{',Zz") €
H?(T™™Y). Similarly )
f2',8),8:1G.¢",2),and f1(1,2',{") € HA(T™ ).
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Thus
Z 132G, ¢",2)f2(1,2',{")]|, and Z 16:G, 7,202, ()| € LH(T™ ).

j+l=m j+l=_m —
This implies that H,,; (z;) is continuous in variable z; on the closure D. We take a net

{z,14} € D converging to u;. For every subsequence {Zlaj} of the net {z;,}, by the
dominated convergence theorem, we thus have

i [ s (716, Ve G120 @)

Z1a]-_)ﬂ1

TTL—l
_ f oy () ey (0 20 ()
TTL—l
21
- ff[91(M16i9;f':Z_')fl(ﬂleie'Z"(_’)
Tn-10
+ g2(e™®,0,2') fo(e™?,2', ") ] €™ db |k, (3)|*do((")
21
[ [ lostuse. 67, 2.2)
0 Tnt
+g, (ﬁle_ie,Z',Z_')fz(ﬁ1€_i9;2', Z—’)] |kZ’(Z’)|2dO'(Z’)eim9d9-
Let
21
s = [ 020,826, 2/, 7)eim o
0
= ) BGIACET A
—j+l=—m
Then J
HnaGOI< Y 10:6.,2950,2.8)
—j+l=—m 1 1
2 ,\2
<( D1a.6.¢. 0% | | Y 1Az
j=0 j=0

By using the orthogonality of {Z { }j, we have
2

loall? = [ [ 8206628281 | do@dos?

Tn-1T |j=0

= [ a0 do e,
Tn-1 j=20
Because

P32, 3", Nk, () = 2. ¢, 20k, (3,
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3:G.¢" z")—k,(Z P§20i,¢' { e (€
1_[( 29 79040 €
j= ( |ZJ|
For fixed z’' € D™ 1,
1
A ool FT - 1+|ZJ| 2
192G, ¢, ¢DI < (1 ) 1PG2(, ¢, ¢k, (EN.
=2 — |z
Thus we have
1+
15.G, ¢, Z2)I* < (1 IZ D I1PG2Gi, ¢ ¢k (DI
j=2 M1
1+
< (1 |Z |> 1820, ¢, &y (I
L \T=g]
. 1,2
n n 2\2
1+|Zj|> A e 3 ( _|ZJ|)
= 32U,¢",¢") da ()
7=‘2‘<1_|ZJ‘| Tl i 1_[ (1 JZJ)
= 1+|Z 5
s7=2_<1 )Tf 192,40 do ¢
This implies that
219:G.5. 71\ < D 18.G.¢, 211
j=0 j=20
1+ |ZJ >
< 1920601 do§).
H(l—ljl JZO i

That is, for any z’ € D™1 ZJ>0|g2(] ¢',ZN|? e LX(T™ D).
Also Pfl(]( Nk, (D) = fG,2',0Dk, (") and similarly we have
ijo|fA1(f:Z;()| isin L'(T™1).

Therefore
1/2
A (o7 = 2ore 1 o5y ]2 -
D1a:6:5.012 ) D1AGO ) ey,
Jjz0 j=0

Thus we conclude that H,,,, (z,) is continuous in variable z; on the closure D. For
every subsequence {Zlaj} of the net {z,,}, by the dominated convergence theorem

again, we thus have
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i [ e (71, Ve GI20G)

Z1aj_>ﬂ1Tn_1
= [ Heu ks @R
TTL—l
21
=f fgz(ﬁ1e_i9:ZIJZ_’)f1(.U1ei9:Z’;(_’)|kz’((’)|2d0(€’)eim9d9-
0 Tn-t
Also let
21
Hm3((1) =f gl((leielZ,;Z_,)fZ(Z_le_ielzli Z—,)eimede
0
= > 8GR,
j—l=—m
Then
HnsGOI < Y 180G,8, 295078
j—l=—m
1/2 1/2
A (o7 = £ s+ 1 =1 2
<( D1aG.e.r) | DIRG2O1)
Jjz0 j=0
Using the same argument as the proof of H,,,, (z,), we have
1/2 1/2
A (7 = r 1z 2
D1aGenr ) | Ylsea ol | enam.
Jjz0 j=0

It follows that H,,,3({;) is continuous in variable z; on the closure D. For every
subsequence {Zlaj} of the net {z;,}, by the dominated convergence theorem again and

Corollary (1.3.2), we have
2
lim | His (60 [ks, 7' @) do (@)

Z1aj—>ﬂ1 )
T

= lim H,3 (cDij ({1)> |k, ({)I?do(Q)

Z1aj—>ﬂ1
TTL

B mez(Ml)Ikz'(Z’)lsz(f')

TTL—l

2
= f f gl(.uleiei{IIZ—,)fZ(.ale_ieiZ,i {_, )eimedelkz’({,)lzdo-({,)

Tn-10
2T

=f fgl(ule“’,Z’,Z”)fz(ﬂle‘“’,Z’,Z_’)Ikzr({’)|2da(q')eim9d9_
0 Tn1
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Summarizing the statement above, we obtain
2

imé
Zlilrllﬂlf (TrTyk, ]elekz kg ]eiekzl)elm do

27'[

[ [ losGue®, 67, .2)
0 Tn-1

+ gz (e ®,8.2") (e, 2", )] Ik (G2 da () e™P do

+f fgz(ﬁle_w'("Z_’)fl(ﬂleieyzllf_')|kZ'(Z')|2da((’)eim9d9

0 Tn—l
21

+ f f g91(me, ¢, 2") (e, 2", Tk, (()I*do(()e™ db

0 Th-1
f( Fugeid,)T (Mleie',)kzr,kzr)eimede.

Because fo (TrTyk,,  ciokyt k,  cioky) e'™9dp converges to the same number
] aj

f (T (uaei®,) To(ueto, ot Ko €70 A8

for every subsequence of the net {z;,}. Hence
2

lim f(TfT k., eiekzr,kzleiekzr)eimede

Z17U1

f (T F(uet®, )Tg(ﬂleie'_)kzr,kzr)eimede.

This completes the proof of the theorem.
Corollary (1.3.5)[27]: Let f, g € L”(T™), if T¢T, is compact, then f(u)g(u) = 0, for
almost u € T™.
Proof. Since T;Ty is compact, so forany z; € D,u €T,
lim (T;T, kZ RTY. ,kZ g0k, ) =0

Z17HU
and

(T Tokz k)| < (7Tl

Thus we have
2T

llm f (TfT k eleZ ’kZ ele )elmede — 0
aj aj

Z1a —~H1

by dominated convergenee theorem for every converges sequence. By Theorem (1.3.4),
we have

37



f (Tr(upeio )T (Mleie'_)kzl,kzl)eimede =0, for anym € Z.

The inj ectlon of the Fourier transformation implies that
(T Fuget, ) (ﬂleie'.)kzl,kzl) = 0, for almost 8 € [0, 2m].
Hence
(Treuy,)Tg(u,, 2%z kz) = 0, for almost yy € T.
Using Theorem (1.3.4) n — 1 times, we obtain
Tt Guatiz, =19 Tg s bz sin1,) Kz Kz} = 0,
foralmostu; € T,u, €T, -+, up_1 €T.
By well-known fact of Toeplitz operators on H*(D), we immediately see that
f(u)g(u) = 0 for almost u € T™. This completes the proof.
Theorem (1.3.6)[27]: Let f, g € L*(T™). Then T(¢Ty is a finite rank operator if and only
if either f or g is zero.
Proof. Only we need to prove that “only if” part. Since f and g are functions in n
variables, we will show that “only if” part by methods of mathematical induction for
variables number.
(a) When n = 1, if T¢ T}, is a finite rank operator on H 2(D), then by a result in [29],
we have that either f = 0 or g = 0.
(b) Assume n > 1 and the result is truth for n — 1, we will prove that the result must
be true for n.
Assume f, g € L*(T™) and T;Ty, is a finite rank operator on H*(D™). Thus we

know that T¢ T, is a bounded operator on H*(D™). It follows that |(Tng kg k)| < T¢Ty
Using Theorem (1.3.4), we easily obtain that, fg = 0. This implies that H;Hg =Trg —
T¢T, is also a finite rank operator on H*(D™). We write f, g as

f= i fi(z)zi,g i 9:(z)z}.

i=—oc0 i=—o00

Letk,l € Z,,a, B € Z} 1. Using the similar methods as in [3], we have
(H;ngfz’a,ziz’ﬁ) = (Hyzfz'%, HfZ{Z’B)

= ) (g ke ) + E«I—P)gl(z')z”k " Hpziz'’)

is—(k+1)

= D (e fz ) + Z«Iz PG ()7 A, frl®)
is—(k+1)

= > (g i@+ Z«Iz—Pz)gxz')z'“,f(i+k_l><z')z'ﬁ>,

is—(k+1) >
Where I, is the identity on L2(T™™1) and P, is the projection from L?(T™"1) onto
H?(D™™1). Therefore
(Hyzfz' Hj Zz2'Py — (Hyzf*'z'% Hrzi* 'z ’B)
= <g—(k+1)(Z )z’ ,f—(l+1)(Z )z’ )
= (Pzg—(k+1) (Z')Z'a,f—(l+1)(z')2'ﬁ)
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= (Tr_qs+Tg-tesnyz'“ 2'F).
Let S; denote the multiplication by z; on H2(D™), i.e., S;h = z,h for h € H?>(D™).
The above relation implies that
(SitH:HgSE — S VHHG S ) h(2') = Tr_ e Ty-ernyh(2")
forall h € H2(D™ 1),

Therefore Tr_(;41)Ty—(k+1) is @ finite rank operator on H*(D™™1). Assume, as
induction hypothesis of n — 1, that either f_ ;1) = 0 or g_(x41) = O forall , k € Z,.

Hence either f_;4.1) =0 for any [ =0 or g_(x41) =0 for any k = 0. This
implies that either f or g is analytic in variable z;. Similarly either f or g is analytic in
variable z;(2 < j < n). Without loss of generality, suppose that f is analytic in
variables zy,...,z; and g is analytic in variables zj,4,..., z,. Since f(u)g(u) = 0 for
almost u € T", so let E X F € T/ X T™ 7/ be zero set of f and E have positive measure
in T/. By the assumption, f is analytic in variables zy, ..., zj and f € L*(T™), hence for
each fixed (zj+1,. .o, Zn) € T"J, we have f € H*(T7).

Thus f = 0 for almost (Zl, : ..,Zj) €T/ and (Zj+1,...,Zn) €EF, ie,E=T.fis
zero on T/ X F. If the measure of F in T™/ is 1, then f = 0 on T". Assume that the
measure of F in T™/ is less than 1, then g iszeroon T" —= T/ X F = T/ x (T™/ — F)
and the measure of T/ — F is positive. But g is analytic in Zj41,- .+, Zy and for every
fixed (Zl,...,Zj) € T/, we have g € H? (T"_j). This implies that g = 0 for almost
(zj+1,...,zn) €T /. Thuswehave T"/ —F =T"J,ie.,g=0onT" =T/ x T"7,
Thus we shown that “only if” part holds for n. By the principle of mathematical
induction, it follows that “only if” part is true for all n > 1. This completes the proof of
the theorem.

Corollary (1.3.7)[27]: Let f, g € L>(T™). The following are equivalent:
(@) TfTy = 0.
(b)T¢Ty is a finite rank operator.
(c) Either f or g is zero.
Theorem (1.3.8)[27]: Let f and g be two bounded pluriharmonic function on D™
forn > 1. Then T¢T, is compact if and only if f or g is zero.
Proof. First we write
f=fithh=) fiG.2)2h+ ) f0.202,
20 j=0
g=91%tg2= z 9.0, 2"z, + Z 920, 2"z,
j=0 j=0
Where f;, g; all in H*(D™), f;(j,z") € H*(D™1) and g;(j,z") € H*(D™™1) for i =
1,2,z" = (z4,...,Zp_1). It is only to prove that “only if” part. In fact, using Theorem
(1.3.3), we know

21
f <Tf(ﬂ1ei9,')Tg(u1ei9,-)kz’:kz’) emidg =
0
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2T

lim f<Tngkzlei9kz’:kzleigkz’) eimb 1g = 0.
0

Z17H

It is follows that (Try, ) Tg(u,)kz, kz7) = 0, for almost py € T. The limits can now
proceed. Last we obtain (T, )T g(u 9Kz, Kz ) = 0, for almost u" = (uq,..., upn—1) €
T" 1 and all z,, € D. That is

fl (ﬂ’, Zn_)gl(.u’: Zn) + f2 (ﬂ’, Zn)g_z (ﬂ’, Zn)

+P[glf2] (Zn) + g_Z (ﬂ’, Zn)fl (ﬂ’, Zn) =0
forall z,, € D.

Since f; (U, 2)91(W', 20) + (W', 20) G2 (4, 21) + P[g1f2](2,) is harmonic in
Zn, We have (9_2 W' zn) — gz(H’JO))(ﬁ(ﬂ’:Zn) — il 0)) = 0. In addition
f(uw)g(u) = 0 by Theorem (1.3.3), we can see that either f(u’,z,) = 0org(y’, z,) =
0 for all z,, € D. Hence there is set E € T™ ! which have positive measure, such that
either f(u) or g(u) is zero on E X T. For explicit, let

g= z 9:1G, 1w, + z 92U, 1),
j=0 j=0
be zero on E X T. This implies that all g, (j, u') and g,(j, u") are zero on E. But E have
positive measure in T"" %, g,(j, ') and g,(j, u’) all in H*(T™ 1), hence all g,(j,u")
and g, (j, u") are zero on T™ L. This implies that g = 0 on D™. This completes the proof
of the theorem.

Note that when n = 1, the pluriharmonic function on D is harmonic. Any f €
L*(T) can be extended as harmonic function on D. It is well-known that there are two
Toeplitz operators such that their product is compact but none of them is compact. So
Theorem (1.3.8) is false when n = 1.

Theorem (1.3.9)[27]: let f and g be in L*(T™). If there is a h € L”(T™"), such that
T¢T, — Ty is a compact operator, then f(u)g(u) = h(u) for almost u € T™.
Proof. Since T, = T; T}, using Theorem (1.3.3), we have

2T

lim ((Tng — Th)kzleie Kyt ky, ete k,)e™0deg
Z17H
0 2

= f <(Tf(ﬂlei9')Tg(ulei9-) - Th(ﬂleig-)) kZ,’ kZ’) eim@ deo.

0
As TTy — Ty, 1s compact, so

2T

lim | ((TfTy = Th)ky, piokyr, k, giok,1)e™0d6 = 0.

rze
Z17U 1

0
It is follows that

2T

| Tt = i) srh ™6 =0

0
The injection of the Fourier transformation implies that
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(T (urei® ) T o) = Tn(ugero ) o) = 0.
Also we have
2T

0= Zli_r)rpltz (Tru ) Toeuy) — Th(ul.))kzzeie kyi, kg g0 k,n)e'™ dg
0
21

J— . . —_— i 124 n J 9
__f <(Tf(ﬂ1'ﬂzelg')Tg(ﬂpﬂzew') Th(ﬂhﬂzelg'))kz ’kZ )elm do.

0
Hence

<(Tf(ﬂ1;ﬂzei9')Tg(ﬂpﬂzeie') - Th(ﬂpﬂzeig')) k,m, k) eimf 4p — 0
for almost (y4, 4,) € T?. Using the above argument, we can obtain
<(Tf(ﬂ1'ﬂ2w-'ﬂn—1')Tg(ﬂl'ﬂz'"-'ﬂn—f) o Th(ﬂpﬂzw-'ﬂn—r))kzn’ an) =0
for almost (g, ..., 4,—1) € T L.
It implies that f(u)g(p) = h(u) for almost u € T™. This completes the proof of
the theorem.
Theorem (1.3.10)[27]: Let f and g be in L (T™). The following are equivalent:
(a) There is a h € L” such that TfTy, = Ty,.
(b) There is a h € L” such that T¢ T, = Ty, is finte operator.

(c) The Hankel product H ;Hg is a finte rank operator.

(d)For every i(1 < i < n), either f or g is analytic in variable z;.
Proof. We first show that (d) implies (a). Without loss of generality, assume that f is
analyticin zy, ..., z;, g is analytic in Z;, 4, ..., Z,. Then by a straightforward computation,

for every hy, h, € H?>(D™), we have
I-P)ghd= > an™,

m=(m1,m2)EZf><Zf_]

(I—=P)(fhy) = z b,z™.
m=(m1,m2)EZi><Z”‘f
Thus
(thl,H]?hz) = 0.

It follows that HzHy =0, ie., TfTy — Try = —HzHy = 0. Thus we put h = fg, it
follows that (a) holds.

Using Theorem (1.3.9), if T T, — T}, is finte rank operator, then h = fg, it is easy
to see that (b) implies (c). It is obvious that (a) implies (b).

Now we prove that (c) implies (4). We write f and g as

f= Z fi(z")zi,and g = Z g;(z"zk,

i=—o0 i=—o0
Let S;h = z,h be multiplication operator on H?(D™). Using the same argument as
Theorem (1.3.6), we have

(SitHzHgSE — STV HIHG S ) h(2') = Ty Ty—eanyh(2")
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for h € H*(D™™1). Thus TF_(141)Ty—(k+1) is a finte rank operator on H*(D™1).

Using Theorem (1.3.6), either f_(;4+1)(z') = 0 or g_(x4+1)(z") = 0, for any [ >
0,k = 0. Therefore either f_(;41y(z") = 0 forany [ > 0 or g_(x41)(z') = O forany k >
0.

That is either f or g is analytic in z;. This finishes the proof of the theorem.

In [30], Caixing Gu and Dechao Zheng give an example that T;T, — Tf, is
compact but is not zero. But if f and g are two bounded pluriharmonic functions on D",
this case does not take place.

Theorem (1.3.11)[27]: Let f and g be two bounded pluriharmonic functions on D™.

The following are equivalent:

(@) TfT, — Try = 0.

(b)TfTy — Trg4 is compact.

(c) H}Hg is compact.

(d)||HF Hgke,|| = 0 (as z - aD™).

(e) Zl)i([)rll)n(H;Hng, k,)=0.

(f) For every z;(1 < i < n), either f or g is analytic in z;.
Proof. We only prove that (e) implies (f). Suppose the condition (e) holds, then using
Corollary (1.3.2), we have <(Tf(u’,-)Tg(u’,-) — Tf(ﬂr',)gur',)kzn, k)= 0 for almost u" €
T"™ 1 and every z, € D. For fixed y’, both Tru, and Ty, .y are Toeplitz operators on
H?(D). It is easy to prove that T, 3 Tgcur ) = Tr(u g )

By a result in [29], we have that either f(u’, z,) or g(u’, z,,) is analytic in z,.
This implies that there is positive measure set E € T™ 1, such that for every u’' € E,

either f(u’, z,) or g(u', z,,) is analytic in z,,. Since f is bounded pluriharmonic function,
we can write
F=) fa@z+ ) o),
=0 =0

where fi;(z") and f;,(2") are all in H2(D™1). Thus f;;(z") is zero on E. It follows that
fi1(z") is zero on T™ 1, Hence for almost u € T™ 1, f is analytic in z,. This finishes
the proof of the theorem.

Note that when n = 1, Theorem (1.3.11) is false. In fact, whenn = 1,if f or g
isin H* + C, then H}Hg is compact.
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Chapter 2
The Hardy Space and Module over the Bidisk

We study some elementary properties of the submodules and show, in some
cases, how the operator theoretical properties are related to the module theoretical
properties. The last part focus on the study of double commutativity of compression
operators. We will show that R, and R,,, as well as S, and S,,, essentially doubly
commute. Moreover, both [R},, R,] and [S,,, S, ] are actually Hilbert-Schmidt.

Section (2.1): Operator Theory:

In operator model theory the vector-valued Hardy space H*(E) is used to
construct models for contractions (of. [38], [47]). Without loss of generality we can let
E be the Hardy space over the unit disk and identify H?(E) with the Hardy space over
the bidisk H2(D?). This identification, on the one hand, can give us a better
understanding of some elements in model theory, while, on the other hand, it brings new
techniques into the study of H2(D?). We will construct a universal model for contractive
analytic functions and give an application to a submodule problem in H%(D?). We study
some elementary properties of submodules in H%(D?). We focuses on the almost donble
commutativity of compression operators on a quotient module H2(D?) © M.

We let € denote the complex plane and C? be the cartesian product of two copies
of C.

Thus the points of C? are the ordered pairs (z,w). We let Z, denote the set of
nonnegative integers.

The ring of polynomials of z and w will be denoted by R, though sometimes the
standard notation C[z, w] is also used to avoid possible confusion. The ideal generated
by polynomials py, py, ..., P is denoted by (p4, P2, -, Pn)-

The unit bidisk in €? is denoted by D? with distinguished boundary T2, where D
is the unit disk and T is the unit circle. The closure of the polynomials over D? under
the supremum norm will be denoted by A(D?) and is said to be the bidisk algebra. We
let |dz| denote the normalized Lebesgue measure on the unit circle T and |dz||dw| =
dm be the product measure on the torus T2,

The Hardy space H?(D?) is the Hilbert space of holomorphic functions over D?
which satisfy the inequality

0=r<1

sup flf(rz, rw)|?dm < oo.
T2
The norm ||f|| of a function f € H?(D?) is defined by
A7 = sup |1z, rw)ldm
T2

0=sr<1

The inner product induced by this norm will be denoted by (-,-).
By Fatou's theorem, every function in H2(D?) has nontangential limits at almost
every point of T2. If we let f denote the boundary function of f € H2(D?), then
f € H3(T? dm) = span{z‘w/:z,w € T,i,j € Z,},
where the closure is taken in L?(T?, dm). And it is also well known that each function
in H?(T?,dm) has a unique analytic extension to D? which belongs in H*(D). For
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convenience, we identify H2(D?) with H?(T? dm) and will use f to denote its
boundary value f as well.

For any bounded function ¢ in A(D?), we define the Toeplitz operator T
mapping H?(D?) to itself such that

Te(f) = P(9f),
where P is the orthogonal projection from L?(T?, dm) to H?(D?).
We let H®(D?) be the space of all bounded holomorphic functions in D? with
Ifllo =sup{lf(zw)l,  (zw) € D?}
It is easily seen that H*(D?) is a Banach algebra with pointwise multiplication and
addition. The collection of invertible elements in the algebra H*(D?) is denoted by
(H=(D?))".

It is well known that the space H?(D?) is an A(D?) —module with action defined
by point wise multiplication by A(D?) functions. A closed subspace M € H?(D?) is
said to be w invariant if it is invariant under multiplication by w. M is said to be a
submodule if it is invariant under the module action, or equivalently, M is invariant
under multiphcation by both z and w.

Restrictions of T, and T,, to a submodule M will be denoted by R, and R,
respectively.

For any subset X ¢ H2(D?), we let

[X]: = span{4A(D?) X}
denote the submodule generated by X.
If M is a proper submodule of H2(D?) and
p:H?*(D?) > M, q:H*(D?) - H*(D*)©6 M
are the orthogonal projections, then one checks that the map S:A(D?) -
B(H?*(D?) © M) defined by
Stg = alg
for f € A(D?) and g € H*(D?) © M is a homomorphism which tnrrts H2(D?) © M
into a quotient A(D?) —module. One sees that the operators S,, S,, are compressions of
the Toeplitz operators T, T,, to H2(D?) © M.

If E is a separable complex gilbert space with an orthonormal bases {r] j}, we can
identify the E —valued Hardy space H?(E) with H?(D?) in the following way:

Let u be the unitary map from E to H2(D) defined by

wn; = z/,j = 0.
Then U = I @ u is a unitary from H2(D) ® E to H?(D) ® H?(D) such that
U(Winj) = ziw/, [,j = 0.

We will take a look at some facts in model theory in the context of H2(D?) in
Section 1.

The following family of evaluation operators is very important in our study and
will be used often.

Definition (2.1.1)[34]: For 2 € D, we define the evaluation operator N (1) from H2(D?)
to H*(D) by
NDf(2) = f(z,2),f € H*(D?).
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It is easy to see using the Cauchy integral formula that N(A) has an integral
representation from which we get [[N(1)|| = (1 — |1]|?)~/2,

We will be mainly interested in the restrictions of N(A) to certain subspaces and
will use the same notation to denote these restrictions.

The evaluation operator was studied in [48] but later we found that it can be
viewed as a universal model for contractive analytic functions.

For any function f(z,w) = Z‘f:o 2 fiw) in H 2(D?), we define

2
(W) = flf(z,w)lzldzl - Z|fj(w)| w €D,
It is easy to check that @ is subharmonie on D, and by the Fubini theorem we have
| @p@lawl = 17112

Definition (2.1.2)[34]: A functign f € H?(D?) will be said to be R —inner if ®(w) =
1 almost everywhere on T.
One sees that if f is R —inner, then by the subharmonicity, ®¢(1) < 1 forall1 €
D, and ®¢(1) = 1 for some A € D if and only if & is a constant.
If @ is a constant, then
92,
"~ owow

Z'ff (w)| wED,

which implies that the f;'s are all constants and hence f is a function ill z only.
If M is w —invariant, then for every f € M © wM,

| @smwilaw] =f(f|f<z,w)|2|dz|)wi|dw|
T T

T

= [ wirGw)FGw) ldzlldw

T2

=(W'f,f)=0, i>1.
This implies

o (w) = (IfII?
almost everywhere on T since @ is real. The computation above yields the following
Proposition (2.1.3)[34]: If M c H?(D?) is an invariant subspace for w, then every
function in M © wM with norm 1 is R —inner.
Definition (2.1.4)[34]: A B(E’, E)-valued analytic function 8(w) on D is called left-
inner(inner)if its boundary values on the unit circle T are almost everywhere isometries
(unitaries) from E’ into E.

If M is w-invariant in H>(D?) = H*(D) ® H?(D), then the Lax-Halmos theorem
asserts that
M = 0(w)H?*(E)

for some Hilbert space E and a B(E, H*(D)) —valued left inner function 0. Proposition
(2.1.3) enables us to restate the Lax-Halmos theorem in H2(D?).
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Corollary (2.1.5)[34]: (Lax-Halmos) If M is any w-invariant subspace of H?(D?), then
the evaluation operator N is left inner from M © wM to H*>(D) and
M = Nw)H?(E),
where E = M © wM.
Proof. If f € M © wM, then

INDPI? = f f (2 )Pldz] = ;)
T

and the corollary follows from the remarks preceeding Proposition (2.1.3) and the fact
that
M =2, w' M S wM).

If S,, is the compression of multiplication by w to H2(D?) © M, then it is well
known in model theory that the N in Corollary (2.1.5) is equivalent to either the
characteristic operator function for S, or its direct sum with a constant untary. This
observation and the spectral relation between a contraction and its characteristic
function give us the following
Corollary (2.1.6)[34]: If M is a w —invariant subspace of H?>(D?) and S,, is the
compression of multiplication by w to H>(D?) © M, then

o(Sy) = a(N),
where g(N) is the set of points A € D for which the operator N(4) is not boundedly
invertible from M © wM to H2(D), together with those A € T not lying on any of the
open arcs of T on which N(A) is a unitary operator valued analytic function of A.

If M is w —invariant, then the evaluation operator N is left-inner when restricted
to M © wM by Corollary (2.1.5). It turns out that every left-inner function is of this
form for some w —Invariant subspace M © H?(D?). Actually a general statement holds
which provides a universal model for contractive analytic functions.

Proposition (2.1.7)[34]: If (E ,H?(D), Q(W)) is a contractive analytic function, then
there is a subspace H ¢ H2(D?) and a constant contraction S from E to H such that S
has dense range and

8(1) =NQ)S,VEOED.
When 6 is left-inner, S is a unitary and H is of the form M © wM for some w —invariant
subspace M.
Proof. We define S: E - H%(D?) by

Sx = 0(w)x, Vx € E
and let H be the closure of the range of S. Then

NA)(Sx) =N (Ox) =0(1)x, Vx€EE,

i.e., (1) = N(1)S and S is a contraction follows from the fact that 6(w) is contractive.

When 6 is left-inner, we let M be the w —invariant subspace generated by H and
one checks that

M © wM = 6E.

If I[INCO)f|l <|If]l for an f € M © wM, f # 0, then N is said to be purely
contractive and it is well known that in this case N is equivalent to the characteristic
operator function for S,,,.

For any f € H?(D?), we can write
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fz,w) = f(z,0) + wg(z,w)
for some g € H2(D?). So [I[IN(0)f|l = |If|l ifand only if g = 0, e.g. f is independent
of variable w.

Corollary (2.1.6) has an interesting application which reveals how a module
theoretical invariant is related to the operator theoretical properties of the compression
operators S, and S,,, .

The proof requires a lemma from [48].

Lemma (2.1.8)[34]: ([48]) If M < H?(D?) is z —invariant, then N (1) restricted to M ©
zM is Hilbert-Schmidt for every 4 € D.

Let us first have an intuitive look at this lemma. If M is z —invariant, then the
functions in M © zM depend largely on the variable w and hence they don't vary much
if the w variable is fixed. Let us consider an example.

If M = ¢pH?(D?) for some inner function ¢, then

MO zM = {¢p(z,w)g(w): g € H*(D)}
and N(DH(M © zM) = Cy(z,1).

We now go to the application which we state as
Theorem (2.1.9)[34]: If M is a submodule of H2(D?) with M © (zM + wM) infinite
dimensional, then

o(S,) =ad(S,) =D.
Proof. If {g,,n=>0cMOE zM+wM)=(M S zM)n (M & wM) is anortho
normal basis, then for every A € D,

D IN@)gal? < oo
j=0

by Lemma (2.1.8). In particular, this implies that
Tim [N gall = 0
and hence 1 € a(s,,)o by Corollary (2.1.6).
On the other hand S,,,, is clearly a contraction, so in conclusion
a(S,) =D.
The proof for S, is similar.

In the one variable case, if M is an A(D) submodule of H2(D) or the Bergman
space L% (D), respectively, then M © wM is a generating set for M by Beurling's
theorem or by the results of Aleman, Richter and Sunderberg in [35]. In H2(D?),M ©
(zM 4+ wM) is a natural analogue of 'M © wM' in the one variable case. However, M ©
(zM + wM) is not, in general, a generating set for M. We will give one simple example
at the end. Here we show the existence of a submodule in H?(D?) which has infinite
rank but for which M © (zM + wM) is finite dimensional.

This submodule is constructed by Rudin in [46].

Corollary (2.1.10)[34]: There is a submodule M ¢ H?(D?) of infinite rank with
dimM 6 (zM + wM) < oo,

Proof. If M is the collection of all the functions in H?(D?) that have a zero of order

greater than or equal to n at (0,a,) = (0,1 —n"3) forn = 1,2,3,.., then M is a

submodule of H2(D?) of infinite rank by Rudin ([46, pp 71-72]). We now prove that

dim(M © (zM + wM)) < o by showing
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o(S,) ={1}u{a,:n > 1}.
For the study of the spectra for compression operators on more general quotient spaces,
see [37] and [40].
First of all, for each n every function in N, (M) vanishes at z = 0 and hence
N, (M) is a proper subset of H*(D). Therefore
oS, >{1}uf{a,:n=>1}
by Corollary (2.1.5).
If we let

[oe]

w—a, \"
B = [(7===)
14 1—-a,w
then B(w) is a Blaschke product and B € M from the construction of M. If A € D and
B(4) # 0, then
B(w)—B() =(w—-A)b(w)
for some bounded analytic function b and therefore for every f € M © wM
(Sw = DSpf = q((w — D)bf)
= q(Bf —B(Df)
= —B(Dqf = —BDf.

Thus we have A € p(S,,).

If |A] =1 and 1 # 1, then B(w) extends analytically into a neighborhood of A
and the same argument carries over. In conclusion, we have

o(S,) ={1} U {a,:n = 1}.

This implies that dim(M e (zM + WM)) < oo by Theorem (2.1.9) and hence
[M © (zM + wM)] is a proper submodule of M.

We showed in Corollary (2.1.10) that for Rudin's submodule M M ©
(zM + wM) is finite dimensional. Here is a question that may have an interesting
answer.
Question (2.1.11)[34]: If M is Kudin's submodule as in the proof of Corollary (2.1.10),
then what is dim(M © (zM + wM))?

Another way to look at the spectrum of S,,, in the proof of Corollary (2.1.10) is
through the theory of C, class operators. Let us give the definition first.
Definition (2.1.12)[34]: A completely non-unitary contraction a is said to be in the class
C, if there is a non-zero ¢ € H* (D) such that ¢p(a) = 0.

See [47] and [36] for a detailed treatment of C, operators.

From the construction of M, S, is an operator in the class C, with B as its minimal
function. Proposition 4.2 in [38] then implies that

o(S,) ={1}u{a,:n = 1}.
We finish with a proposition on €, operators. It should be a known fact.
Proposition (2.1.13)[34]: If M is a submodule in H2(D?), then S,, on H2(D?) © M is
in C, if and only if there is bounded function ¢p(w) € M.
Proof. If ¢ (w) is a bounded function in M, then it is easy to check that
¢(Sw) = qu = 0.
Conversely, if there is a ¢ € H* (D) such that ¢(S,,) = 0, then
q(¢) = qp(ql) = ¢(Sy)(q1) =0
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and hence ¢p(w) € M.

Proposition (2.1.13) will be needed to give a necessary condition for [S,, S, ] =
0.

We study some elemexttary properties of submodules of H2(D?). We first give
an estimate of the dimension of the quotient M © IM, where M is any submodule of
H?(D?) and I c R is any ideal. Then we will give some applications.

If M is a submodule, then zZM + wM is proper in M. More generally, if | C R is
an ideal whose zero variety V(I) intersects D? nontrivially, then I - M is a proper
subspace of M.

The following theorem gives an estimate of the dimension of M © IM.
Theorem (2.1.14)[34]: If I R is an ideal and M < H?(D?) is a submodule, then

dim(M © IM) < dim(R/I) rank(M).
Proof. We assume dim(R/I) = m; < oo with a basis {vy, vy, ...,Up, } for R/I and
rank(M) = m, < o with a generating set {e;, e,, ..., emz} for M.
If $ e M ©IM, then thereis a sequence of polynomials { fj": n=0,j=

1,2,3, ... ,mz} such that
m;
. n =
im ) S
j=1

in H*(D?). For each f;", we write

fi* = £+
With fJ 1 €1 and 7; "eR/I If we let P: M — M @ IM be the orthogonal projection,
then

m;
p=ro=r(lim) iy
j=1
m;

= lim ) P(fe +17"e;)
j=1
m;

= 1 ng.

= lim ) P(r"¢;).
j=1

Since {vl, Uy, wr) vml} is a basis for R/I we can write
my

n _

i=1
n=201<i<m;,1<j< mz are constants. Then,

m;
:mZZ 1P (vie).

j=1i=
and hence ¢ € span{P (viej), 1<i<myl S Jj=< mz}. Therefore,
dim(M & IM) < m;m, = dim(R/I) rank(M).

Where cJ )
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Corollary (2.1.15)[34]: If M € H?2(D?) is a submodule, then
dim(M 6 (zM + WM)) < rank(M).
Proof. Let ] = (z,w) c R, thendim(R/I) = 1 and IM = zM + wM. The corollary then
follows directly from Theorem (2.1.16).
Corollary (2.1.16)[34]: If I, I,, ..., I} are ideals in R and we set
=Ll Liqliyg Dy, J=L+L++1,
Then

K k k
dim ﬂ[lj] e 1_[ I;j| | £ dim(R/I) rank ﬂ[lj] .

j=1 j=1 j=1
Proof. We denote ﬂﬁ?:l[lj] by N. For any ¢ € N, there is a sequence of polynomials

{p}':1 <j < k,n = 0} such that {p}':n = 0} c I; and

lim pi' = ¢
n—-oo
foreach1 <j <k.Iff; €l;,j = 1,2,...,k, then

k k
2,1 #= 2 Jim .
j=1 j=1

But for each j, fjp}' € LLi=1,1 .1y, s0

k k
>hleel] [u)
j=1 j=1
This shows JN © [H;‘zllj] and hencs
k
dim| N © 1_[ ;|| < dim(v © TW).
j=1

The corollary then follows from Theorem (2.1.14).

The equality in Corollary (2.1.6) holds in some cases.
Example (2.1.17)[34]: If I, = I, = (z,w), then S = (z, w) and hence dim(R/]) = 1.
It is also easy to see that [I;1,] = [(z2, zw,w?)] and one checks that

[(z w)] © ([(z% zw,w?)]) = span{z, w}.

Therefore,
dim[(z, w)] © ([(z2,zw,w?)]) = 2 = dim(R/]) rank([(z, w)]).

By Corollary (2.1.6), if] = R, then ﬂ;-‘zl[lj] = [H;‘zl Ij] and we can improve this
result a little bit. For simplicity we state the improved result for k = 2.
Corollary (2.1.18)[34]: If I, I, are ideals of R such that (I; + I,) N (H®(D?)) " # 9,
then

1] n[1;] = [ L].
Proof. In the proof of Corollary (2.1.6), we see that (I; + L,)([I;] n [,]) c [I11,]. If
(I +1,) n (H*(D?)) ™" # @ then
(L] n[L] =+ L)L) N [L]) < [Ih1] €[] n[lL].
Hence,
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1] n[1,] = [ L].

We now use Corollary (2.1.18) to give a simple example to show that M ©
(zM + wM) is in general not a generating set for M.

Ifa = (a;,a,) € D?is not equal to (0, 0) and H,, is the collection of all functions
in H?(D?) which vanish at «, then H, = [(z — a1, w — ;)] and

zH, + wH, = [(z,w)(z — a;,w — a,)].
Since (z,w) and (z — a;,w — a,) have no common zero, by the Nullstellensatz
(z,w) + (z — a;,w — a,) = C[z,w] and hence
[z w)(z —a,w—ay))] = [Zw)]n[(z-a,w—a,)]

by Corollary (2.1.18). This means that zH, + wH,, is the collection of all the functions
in H?(D?) which vanish at both 0 and a and therefore its codimension in H2(D?) is 2.
But the codimension of H, is 1, so H, © (zH, + wH,) is one dimensional and
therefore it can not be a generating set for H,,.

It is not clear to us whether M © (zM + wM) is a generating set for M when M
has rank 1. This question is raised by T. Nakazi in [44].

The condition (I; + ;) N (H® (Dz))_1 # @ in Corollary (2.1.18) means in
particular that the two ideals I; and I, have no common zero in D?. What happens if
they have only a finite number of common zeros?

Question (2.1.19)[34]: If V(I;) N V(1,) is a finite set, then is [I;] N [I,] & [I;],] finite
dimensional?

We recall that for any submodule M, R, and R,, are the restrictions of T, and T,
to M respectively. In [43] it was shown that if M is a submodule in H?(D?), then R,
doubly commutes with R, on M if and only if M is of the form

M = ¢pH%(D?)

for some inner function ¢, we will study the conditions on M under which S, doubly
commutes with S,, on H2(D?) © M.

In view of the decomposition

H*(D*) = (H*(D) O M) @ M,

we can decompose the Toeplitz operators on H(D?) correspondingly.

If we regard w as a multiplication operator on H?(D?), then

qwqg 0
= (owq pwp)
pwq pwp
(it )
* \pzq pzp
Where p and q are the orthogonal projections onto M and H?(D?) © M respectively.
Therefore
T*T _T.T* = (CI‘/‘_’CIZCI + qwpzq — qzqwq qWpzp — qzZqwp )

wes SEaw pwpzq — pzqwq pWpZp — pzZqWwp — pZwp)’

It is well known that T;T, — T,T,;, = 0 on H2(D?), so we have that
qwqzq + qwpzq — qzqwq =0,
or equivalently,
SwSz = $z8w = —qwpzq.
We can now state and prove the following
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Proposition (2.1.20)[34]: If M is a submodule such that [S,S}] = 0onK = H2(D?) ©
M, then either S, or S, is in the class Cj.
Proof. By the identity preceding the statement of Proposition (2.1.20),
[SZS\:/] =1- p)wPZ'
So for f,g in K,
0 =<[S;Sw1f, 9 =< (1 — p)wpzf,g >
=< pzf,pwg >.
One also checks that for every h € M,
<pzf,zh >=< zf,zh >=< f,h >= 0,
1.e. pz maps K into M © zM and similarly pw maps K into M © wM. Since
MOezM)NMOwM)=MO (zM + wM) + {0},
either pz(K) is not dense in M © zM or pw(K) is not dense in M © wM. We assume
pz(K) is not dense in M © zM, and then there is a p € M © zM such that
<zf,p >=<pzf,¢p >=0,
for all f € K. Therefore ¢ is orthogonal to both zM and zK and hence is orthogonal to
zM @ zK = z(M @ K) = zH?*(D?). So ¢ is a function in w only. Since M is invariant
for w, the inner factor of ¢ is also in M and hence the corollary follows from Proposition
(2.1.13).
Corollary (2.1.21)[34]: M is a submodule such that K = H2(D?) © M is invariant for
multiplication by z if and only if
M = ¢pH?*(D?)
for some inner function ¢ depending on w only.
Proof. If K is invariant for z, then by the proof of Proposition (2.1.20) every function
in M © zM depends only on w, and hence M © zM is invariant for multiplication by
w. By Beurling's Theorem,
M O zM = pH?*(D)
for some inner function ¢ depending on w only. Hence,
M =@®2,z'(M © zM) = ¢ B2, z'H*(D) = pH*(D?).
Conversely, if M = ¢pH?(D?) for some inner function ¢p depending only on w
and f is any function in K = H*(D?) © M, then obviously
<zf,¢pw >=0
forj > 0.Foranyi>1andj >0,
(zf, pz'w!) = (f, pz""Tw/) = 0.
In conclusion, zf € K and hence K = H?(D?) © M is invari~nt under multiplication
by z.
If M is generated by a polynomial, then Proposition (2.1.20) gives a
characterization of M in the case S, doubly commutes with S,,,.
Corollary (2.1.22)[34]: If h is a polynomial in R, then [S,, S,,] = 0 on H2(D?) © [h]
if and only if
[h] = GH?(D?)
with G a finite Blaschke product depending only on one variable.
Proof. We let Z(h) denote the zero set of h.
First of all if Z(h) N D? = @ then h is outer(e.g. [A] = H2(D?)) by [40]. So we
assume Z(h) N D? # Q.
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If [S,,S;] = 0 on H2(D?) = [h], then by Proposition (2.1.20) either S, or S,,, is
Co. We now assume S, is C and therefore by Proposition (2.1.13) there is a non-zero
bounded function ¢p(w) € M.

If {Wj: 1<j<N< OO} are the distinct zeros of ¢ in D, then

N
Z(WnD*c| |D x{w;}

We assume {Wj: 1<) < k} is the set of all the zeros of ¢ such that
Z(h) nD x {w;} = @.

Since h can't have isolated zeros, we have

h(q.')z,wj) =0, VzeD,1<j<k.
But since h is a polynomial, w — w; must be a factor of h which we write as

(w—w;) =0lh(z,w), 1 <j <k,
and now it is clear that k must be finite. If for each j, we let

n; = max{n: (W — Wj)nlh(Z, W)},

Then
k
h(z,w) = H(W —w,)"p(z,w),
j=1
For some polynomial p. From the construction above,
Z(p)ND*=¢
Which means p is outer. If we let
w— wj \"
Gw) == 1_[ — | ,
| 1-ww
j=1

Then
k
[h] = (w —w,)"H?(D?) | = GH*(D?).
H J

Conversely, if [h] = GH?(D?) with G an inner function depending only on w,
then H2(D?) © [h] is invariant under multiplication by z by Corollary (2.1.15) and
hence

[Sz, Sw] = —(1 — p)wpz = 0.

Corollary (2.1.15) actually implies that T, and T,, cannot have a common
reducing subspace which, in the module language, can be stated as
Corollary (2.1.23)[34]: H?(D?) can not be decomposed as a direct sum of two proper
submodules.

Proof. If M and K = H?(D?) © M are both submodules then by Corollary (2.1.15),

M = ¢H?*(D?) = ¢p,H*(D?),
for some inner functions ¢, in z and ¢, in w. But this is possible only if ¢p; and ¢, are
both scalars, hence M = H%(D?).
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Corollary (2.1.18) is actually true for every submodule of H2(D?), not just
H?(D?) itself, and if we use a result in [42] we can prove more. In fact, no two
submodules can even have positive angle. It is an easy consequence of the following
Lemma (2.1.24)[34]: If M c H?(D?) is a nontrivial submodule, then the joint minimal
unitary dilation of z and w on M are the multiplications by z and w respectively on
L?(T?, dm), where dm is the normalized Lebesgue measure on the torus T2.

Proof. If we let

M = span{z'w/f: f € M, i,j: intergers},
where the closure is taken in L?(T?,dm), then z and w on M are the joint minimal
unitary dilation of z and w respectively on M. Since M < L?(T?,dm) and M is jointly
invariant for the multiplications by z, w and zZ, w, by Lemma 3 in [42],

M= 1,12,

for some measurable subset E € T2. But M contains M and it is well known that nonzero
functions in H?(D?) cannot vanish on a subset of T2 with positive measure. So
m(T?\E) = 0 and therefore M = L2,
Corollary (2.1.25)[34]: No two submodules of H?(D?) can have positive angle.
Proof. Since two submodules M, N are said to have positive angle if

sup{{f.@:f eM,geN,[Ifll =llgll=1} <1,
we need to show that

sup{{f,g):f eM, g e N,|Ifll = llgll=1} = 1.
If f € M,g € N are any two nonzero functions, then by Lemma (2.1.24),
[f]=1g1 =12
So for any small positive number e we can find polynomials p; and p, in four variables
z,w, Z,w such that
lpfl = llp2gll = 1
and

I1-pifll<e lI1—pygll <e
Then,
p1fip29)l = {1+ pif = 1L1 4 pog — 1)
=1 —llpsf — 1l = llpzg — 1l = llpf — lllpzg — 1l
>1—2e —€?
We now choose a sufficiently large integer n such that z"w™p;, z"w™p, are
polynomials in z,w only taking zZ =1 and ww = 1. Then z"w"p,f € M and
z"w"p,g € N and
[(z"W"psf, 2" W g)| = (pof,p29) = 1 — 26 — €2,
This implies
sup{l{f, g:feM, geNIfll =lgll=1}=1
since e is arbitrary.
We feel Corollary (2.1.25) is a known result but we were not able to find it in the
literature.
We finish by raising a question suggested by Corollary (2.1.16).
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Section (2.2): The Berger Show Theorem:

The Berger-Shaw theorem says that the self-commutator of a multicyclic
hyponormal operator is trace class ([50]). It is interesting to study the multivariate
analogue of this theorem. [55] reformulated the theorem in an algebraic language and
showed that if the spectrum of a finite rank hyponormal module is contained in an
algebraic curve then the module is reductive. They also gave examples showing that it
is generally not the case if the spectrum of the module is of higher dimension. However,
many examples show that the cross commutators do not seem to have a close relation
with the spectra of modules and are generally “small”. This suggests that the following
general questions may have positive answers.

Questions. Suppose Ty, T, are two doubly commuting operators acting on a separable
Hilbert space H and R4, R, are the restrictions of them to a jointly invariant subspace
that is finitely generated by T, T5.

(a) Is the cross commutator [R], R,] in some Schatten p-class?

(b)Is the product [R, R,], [R5, R,] also small?

(c) What about the compressions of T, T, to the orthogonal complement of M?

A special case of the first question was studied by Curto, Muhly and Yanin [52].
The second question was raised by R. Douglas. The third one appears naturally from
the study of essentially reductive quotient modules. Note that when T;, T, the first tow
question are answered positively by the Berger-Shaw theorem.

We will make a study of these questions in the case H = H?(D?), the Hardy
space over the bidisk, and Ty, T, are the multiplications by the two coordinate functions
zand w. Then a closed subspace of H?(ID?) is jointly invariant for T and T> if and only
if it is an A(D?) submodule. We will have a look at the third question first because it
turns out to be the easiest. The answer to the second question is a consequence of the
answer to the first one. Some related questions will also be studied. We now begin the
study by doing some preparations.

We let E', E be two separable Hilbert spaces of infinite dimension and
{6]’ :j =0}, {6j: Jj = 0} are orthonormal bases for E’and E respectively. We let H? (E)

denote the E-valued Hardy space, i.e. H(E) = {Z;‘;O ijj: |z| = 1,2‘;’;0”9@-”2 < oo}

It is well known that every function in H?(E) has an analytic continuation to the whole
unit disk ID. For our convenience, we will not distinguish the functions of H%(E) from
their extensions to . We let T: be the Toeplitz operator on H*(E) such that for any
f € H*(E),
Tzf(Z) = zf(2)

One sees that T, is a shift operator of infinite multiplicity. A B(E’, E)-valued analytic
function 8(z) on D is called left-inner (inner) if its boundary values on the unit circle 7
are almost everywhere isometries (unitaries) from E’ into E. Therefore, multiplication
by a left-inner 8 defines an isometry from H2(E") into H*(E).

A closed subspace M c H2(E) is called invariant if T,M < M. The Lax-Halmos
Theorem gives a complete discription of invariant subspaces in terms of left-inner
functions.
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Theorem (2.2.1)[49]: (Lax-Halmos) M is a nontrivial invariant subspace of H%(E) if
and only if there is a closed subspace E' c E and a B(E’', E)-valued left-inner function
6 such that
M = 6H?*(E") (1)
The representation is unique in the sense that
OH?(E") = 0'H*(F") 0 =0'V
where V' is a unitary from E’ onto E"'.

In order to make a study of the Hardy modules over the bidisk, we identify the
space E with another copy of the Hardy space. Then H?(E) = H*(D) ® E will be
identified with H2(D) ® H?(ID) = H2(D?). We do this in the following way.

Let u be the unitary map from £ to H?(ID) such that

u6j =u/, j=0
Then U = I Qu is a unitary from H2(D) & E to H*(D) ® H?(D) such that
U(zi(SJ-) = ziw/, ,j=0

It is not hard to see that M c H?(E) is invariant if and only if M c H?(DD) is invariant
under multiplication by the coordinate function z. This identification enables us to use
the Lax-Halmos theorem to study certain properties of sub-Hardy modules over the
bidisk which we will do. We will let d|z| denote the normalized Lebesgue measure on
the unit circle T and d|z|d|w| be the product measure on the torus T2

We prove two technical lemmas and an important corollary.

Suppose 6 is left inner with values in B(E', E)- and § is any fixed element of E.
We now define an operator N from E’ to the Hardy space H*(ID) over the unit disk as
the following:

N[ 6@ Y o) | =60 ) e, @
7=0 =0

Where Z‘f:o ajc?j' is any element in E’.
Lemma (2.2.2)[49]: N is Hilbert-Schmidt and

(VN = [ 10° el dlz] 3)

T
Proof. Since 6 is left inner, {QSJ- |j = 0} is an orthonormal basis for 8E’. To prove the
lemma, one suffices to show that Y ieo{N*NOS;,08;) g is finite. In fact,

(N"NQ(S-’,Q(S-’) 1= (N95’,N95 ) 2
j/0E H
=0

Z f 08}, 5)[" al

j=0rT
Zf|(6-’,9*(z)6)Er|2d|z| - fZ|(5.’,9*(z)5)E,|2d|z|
j=or T Jj=0
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- f 16*()511% dlz|
T

So in gerenal
tr(N*N) = [16]1%,

and the equality holds when @ is inner.

Back to the H?(DD?) case, this lemma has an important corollary. Let us first
introduce some operators.

For any bounded function f we let Ty := Pf be the Toeplitz operator on H?(ID?),
where P is the projection from L?(T?) to H?>(D?). For every non-negative integer j and
A € D, we let operators N; and N, from H?(D?) to H?>(D) be such that for any

fw) =) fu@wk € H(D?)
NF@) =@, Nf@ = f(z1)

Then one verifies that N; is a contraction for each j and |[INy|l = (1 — |A]2)~1/2
Furthermore,
z T,cN, =1 on H*(D?) (4)
k=0 .
N, = z AKN, (5)
k=0

In what follows we will be mainly interested in the restrictions Nj, N; to certain
subspaces and will use the same notations to denote these restrictions.
Corollary (2.2.3)[49]: For any A(D?) submodule M c H*(ID?), N; and N, are Hilbert-
Schmidt operators restricting on M © zM for eachj > 0and A € D and
tr(N*N) <1,
1 2
pro—| S (Vi) < (- A1)
where p is the projection from H?(ID?) onto M © zM.
Proof. Because M is invariant under the multiplication by z, U*M is invariant under 7z,
where U is defined in the last paragraph, and hence
U*M = 6H?*(E")
for some Hilbert space E’and a left inner function 8 Then
U*(M © zM) = 6H?*(E") © z8H?*(E') = 6H?*(E") © zH?*(E') = 0E’ .
Let us first deal with the operator N;. In Lemma (2.2.2), if we choose

6=) Vo ek
=0

then for any f(z,w) = Z‘fzofj(z)wj inside M © zM, U*f = Y57, fj (2)6; is in OF'.
and
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NUF@) =N | ) @8 | = O [)8:,8) = ) [ = Nif @),
=0 =0 j=0

So N; = NU™ hence is Hilbert-Schmidt by Lemma (2.2.2), and

tr(N;N;) = tr(U*N*NU) = tr(N*N).
The inequality tr(N; N;) < (1 — |4|?)™! comes from the remarks following the proof
of Lemma (2.2.2). We now show the inequality

1 ” < tr(N;,N;)
— <tr ,
p 1— Iw YRR
Let {9y, 91, 92, - -- } be an orthonormal basis for M © zM. Then
gk(z,w)
1—-Aw

Nygu(@) = gi(z,2) = f dlwl,

T
and therefore

8

tr(N;, Ny) = ka fg1k(—,1_ diw|| dlz|
”g"(z wldlz Z|<gk(1 aw) ™[
T

L 1 i
P aw
For operators N, j = 0,1,2,..., we choose §to be 6;,j = 0,1,2, ... ... correspondingly in
Lemma (2.2.2). Similar calculations will establish the assertion and the inequalities.

If £? denotes the collection of all the Hilbert-Schmidt operators acting on some
Hilbert space K, then for any a,b in L2, {a, b) % trace(b*a) defines an inner product
which turns (£2(.,.)) into a Hilbert space. If |.| is the norm induced from this inner
product, then

v
Ms

a-t
Il

0

Ixay| < lixllllylllal. (6)
forany a € £? and any bounded operators x and y ([56], p. 79), where ||. || is the operator
norm.

Lemma (2.2.4)[49]: Suppose 4,B are two contractions such that [4, B] = AB — BA is
Hilbert-Schmidt and f(z) = X%, c;jz’ is any holomorphic function over the unit disk

such that Z‘f’:o j |cj| converges, then [f (A4), B] is also Hilbert-Schmidt.

Proof. We observe that for any positive interger n,
[A™, B]
= A"B — BA™
= A"B — A" 'BA + A" 'BA — BA"
= A"'[A,B] + [A"',B]A

= A" '[A,B] + A"7?[A,B]A + -+ + A[A,B]A" % + [4,B]A™ ",
hence
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114", B]| < nl[A, B]|
by inequality (6) if we let f,(z) = Xj_oc;z/ then [f,(4)] is in L? and

12 (4),B] = [F(4),B] = |[ ) ¢ 49,B]
] =n+1
Z| Bl < > lglita, Bl
j=n+1 j=n+1
From the assumption on f,
lim jl¢i|I[A,B]l =0
n—->oo
j=n+1

hence [f(A), B] is also in £LZ, i.e. Hilbert-Schmidt.

Corollary (2.2.3) is crucial for the rest and Lemma (2.2.4) will enable us to get
around some technical difficulties.

We will define the compression operators and decompose their cross
commutators.

For any h € H2(D?), we let
denote the submodule generated by 4. Here we note that h is called inner if

|h(z,w)| =1 a.e.on T2
It is not hard to see that
[h] = hH?(D?)
when h is inner. Further, h is called outer in the sense of Helson (H) if
[h] = H?(D?).
Given any submodule M, we can decompose H?(ID?) as H*(D?) = (H?(D*) © M) ©
M, and let
p:H?*(D?) > M, q:H*(D?*)-> M
be the projections. For any f € H*(D?) we let Sy and Ry be the compressions of the
operator Ty to H*(D?) © M and M respectively, i.e.
5r=afe  Rr =0l

We will prove that when M = [h] with h a polynomial, the cross commutators [S,;, S,]
and are [R;,, R,] are both Hilbert-Schmidt. To avoid the technical difficulties, we prove

the assertion for the operators [S(pl,S ] and [Rm' R ] first, where ¢, (w) = % with

some A € D such that h(z, A) # 0 for all z € T and then apply Lemma (2.2.4).
First we need to have a better understanding of the two cross commutators
[S;,S,] and [R}, R,] In view of the decomposition
H?(D?) = (H*(D*)) O M) & M
we can decompose the Toeplitz operators on H?(ID?) correspondingly.
If we regard ¢, as a multiplication operator on H*(ID?), then

_(qpaq O _(9zq O
T<P/1 - > T, = >
PPrq  PPAP pzq pzZp
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£ mo_ « _(99292q + q;pzq — qzqP,q qPAPZp — qZqP;p
Ty, T, — T,T,, A e
PYapzq — pzqPaq PPAPZD — PZqPaP — PZP PP
It is well known that 7> doubly commutes with T\, on H?(D?). Because @, is a function
of w only, it is then not hard to verify that
Ty, T, — T, T, =0,
so we have that
492929 + qPpzq — qzqPaq =0, and  pPpzp —pzqPap — pzpPap = 0,
i.e.
CI‘T’_AQ“I - qu(f’/lp = _q(ﬁ/ﬂzzq;
PPAPZD — PZPPAP = PZ4Pip,
Thus we have a following:
Proposition (2.2.4)[49]::
SprSz = S28¢, = —APap2q, (7)
R Rz — RRg, = pzqpsp, (8)
We will prove the essential commutativity of S;, and S, on H*(D?) © [h].
when 7 is a polynomial. As we noted, we first prove the assertion for S, and S,.
We first observe that for any f € H*(ID?) © [h] and any g € [h]
(pzf,z9)y> = (2f, 29> = {f, 9w
So pz actually maps H*(D?) © [h] into[h] © z[h]. Therefore, S,, S, — S,S,, can
be decomposed as
2 (m)2 bz 9 12 2
H*(D*) © [h] — [h] © z[h] = H*(D*) © [A] 9)
This observation has an interesting corollary when h is inner.
Corollary (2.2.5)[49]: If & is inner, then S, S, — S, S,, is at most of rank 1 on
H*(D?) © [h]
Proof. First we note that when A = 0, ¢,(w) = w.If h is inner, [h] = hH?(ID?), and

fwhhin=10,1,2,......... } is an orthonormal basis for [h] © z[h] For any function
f(z,w) = z cjwjh inside [h] © z[h]
j=0

qwf = qwcoh + q z cw/th | = coqwh
j=1

This shows that qw is at most of rank one and hence S,,S, — S,S,, = —qWwpz is at most
of rank one.

This corollary enables us to give an operator theoretical proof of an interesting
fact first noticed by W. Rudin ([60], p. 123).
Corollary (2.2.6)[49]:: h(z,w) = z — w has no inner-outer (H) factorization.
Proof. As before, we let S,,,S,, be the compressions of T,,, T,, to H?(D?) © [h] and

set
__1 n n+1 n+1 n _
e, = m(z +z" w4+ Zw +wh,n=0172,........
One verifies that{e, | n = 0,1, 2,...} is an orthonormal basis for H*(D?) © [z — w].
Experts will know that H2(ID?) © [z — w] is actually the Bergman space over

the unit disk. One then easily checks that
60




Swen = . €n+1
Vn
Syen = e,_,n=>1
wtn \/m n-—1
Therefore
[Sw, Swlen n=012,.....

nn—1)’
If z—w had an inner-outer factorization, then [z — w] = gH?(D?) for some inner
function g and
[Sw, Sw] = [Sw, Se]
would be at most a rank one operator which conflicts with the above computation.
Similar methods can be used to show that the functions like z — uw”, for |u| < 1
and n a nonnegative integer, have no inner-outer (H) factorization.
We now come to the main theorem.
Theorem (2.2.7)[49]: If h € H?(ID?)and there is a fixed A € D and a positive constant
L such that
L < |h(z, )| (10)
for almost every z € T then S, S,, — S, S,, on H2(D?) © [h] is Hilbert-Schmidt.
Proof: We first show that S;, S, — S, S,, is Hilbert-Schmidt. From (9), it will be
sufficient to show that
q@a: [h] © z[h] - H*(D?) © [A]
is Hilbert-Schmidt.
Let us recall that the operator N; from [h] © z[h] to H? (D) is defined by

Ng =g9(, 1)
and it is Hilbert-Schmidt by Corollary (2.2.1). Suppose
hfo, hf1, Afo, e oo e

is an orthonormal basis for [h] © z[h] . We first show that h(z, w)f,(z, 4) € [h] for
every k. In fact,

f |fie(z, D)|?d|z| < L7 f (2, ) fie (2. D)2 d|z] = L2 [Ny (hfi)lI? < oo
T
T

i.e. fi(z, 1) € H*(D) and hence h(z, A) f;, (z, 1) € [h] since & is bounded Furthermore,

IAC, D fe G DI S NRIENf G DN < TRIZLT2 N (RN, (11)
Next, we observe that
qPahfi = a@rh(fi — fi (. D)) + qPhfi (D). (12)

Since fi (z,w) — fix(z,1) vanishes at w = A for every z € D it has ¢,(w) as afactor,
and hence

Prh(fe — [ (L) =0 (13)
Combining (11) and (14)

Zuq@hfkni,z@z) = leq@h(fk ~ £ (o) + a@ahfieC D e ey
k=0 k=0
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= > 1a@ahfil Dy < D IAC,Dfel, Dl g
k=0 k=0

< NAIBL2 ) ARG, el DIz ey = IRIZL-2Er (NN
k=0

This shows that @, and hence [S,,, Sz]is Hilbert-Schmidt.

Assuming q@;(w) = @, (W) one verifies that Sp, = ©2(Sy). The fact that

(o)) = w
and an application of Lemma (2.2.4) with f = @, then imply that [S;,,S,] is Hilbert-
Schmidt.

In theorem (2.2.7), if h is continuous on the boundary of D X D, then the
inequality (10) will hold once there is a A € D such that h(z, A) has no zero on 7. This
idea leads to the assertion that S;,S; — S, S;i, is Hilbert-Schmidt on H%(ID?) © [h] for
any polynomial h in two complex variables. But we need to recall some knowlege from
complex analysis before we can prove it.

Suppose G is a bounded open set in the complex plane C. We let A(G) denote the
collection of all the functions that are holomorphic on G and are continuous to the
boundary of G, Z(f) denotes the zeros of f.

To make a study of zero sets of polynomials, we need a classical theorem in
several complex variables.

Theorem (2.2.8)[49]: Let h(z,w) =z"+a,(W)z" 1+ -+ a,(w) be a pseudo
polynomial without multiple factors, where the a;(w)’s are all in A(G).
Further let
Dy = {w € G|Ap(w) = 0}
where Dy (w) is the discriminant of 4. Then for any wy € G — D;, there exists an open
neighborhood of U(w,) € G — Dy, and holomorphic functions f;, f5, ..., f, on U with
filw) # fj(w) fori # j andw € U such that
h(z,w) = (z = fi(w)(z = (W) ... (z = f(W))
for all w € U and all complex number z.

This theorem is taken from [57], but similar theorems can be found in other
standard books on several complex variables. It reveals some information on the zero
sets of polynomials which we state as
Corollary (2.2.9)[49]: For any polynomial p(z, w) not having z — A with [A| =1 as a
factor, the set

Y, = {w € C|p(z,w) = 0 for some z € T}
has no interior.
Proof. We first assume that p is irreducible and write p(z,w) as
p(z,w) = ag(W)n + a;(W)n-1 + -+ ... ...y (2)
with a;(w) polynomials of one variable and ag(w) not identically zero. Then on
C\Z(ay), we have
W) i aaWw)

p(zw) = a(W)(" + s T ag(w)

)
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Let A, be the discriminant (see [57] for the definition) of p. If p is irreducible, A,, is not
identically zero, and so neither is the discriminant of
q(z,w) = z" + &W)Z"_1 + ot @ (W)

ao(w) ap(w)
This implies that the pseudopolynomial g(z,w) has no multiple factor either.

We now prove the corollary for the irreducible polynomial p. We do it by showing
that given any open disk B € C, there isa w € B which is not in Y.

Given any small open disk B and a point wy in B\{Z (Ap)uZz (ao)}, the above
theorem shows the existence of an open neighborhood U < B of wy and holomorphic
functions f1, f5, . . ., fo on U with fi(w) # fj(w) for i#jand w € U such that

p(z,w) = agw)(z — LW)(z— L)) . (z— fw)).  (14)
for all z € C. Then fi(w) can not be a constant A of modulus 1 because p does not have
factors of the form z — A from the assumption. So we can choose a smaller open disk
B; < U such that f;(B;) N T is empty. Carrying the same argument out for f> on B;, we
have an open disk B> € B;such that f>(B;) NT is empty.

Continuing this procedure, we have disks B, B, . . . ,Bn such that B; < B;_ for
Jj = 2,3,...,n. Then for any w € By, p(z,w) will have no zero on 7 and hence w is not
in ¥,.

If p is an arbitary polynomial not having z — A with |1| = las a factor, we
factorize p into a product of irreducible polynomials as

d, d dm
p(z,w) =p;'py% oo Dy
If we let
Y, = {we Clpj(z,w) = 0 for some z € T}
Then

m
Y, c U Y;
j=0
hence it has no interior.
We feel it may be interesting to have a closer look at the set Yy, but that is not the
purpose. The result in Corollary (2.2.9) is good enough for us to state
Theorem (2.2.10)[49]: For any polynomial 4SS, —S,S,,is Hilbert-Schmidt on
H*(D?) © [h].
Proof. Suppose 4 is any polynomial. If /4 is of the form (z — 4)g for some polynomial
g and some A of modulus 1, then /] = [g] because z — A is outer (H).
So without loss of generality, we assume that h does not have this kind of factor.
Then from the above corollary, A(z, 1) has no zeros on T for any u € D\Y,.
Theorem (2.2.10) and the observations immediately after it then imply that
[SwS] is Hilbert-Schmidt.
For any function f € A(ID?), we can define an operator Syby S x & qfx for any
x € H?(D?) © [h]where g is the projection from H?(D?) onto H*(D?) © [h].
One checks that this turns H?(D?) © [h] into a Hilbert A(D?) quotient module.
The module is called essentially reductive if Sf is essentially normal for every
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f € A(D?) It is easy to see that H2(ID?) & [h] is essentially reductive if and only if
both [S,S,] and [S,,S,,] are compact. Currently we do not know how to characterize
those functions 4 for which H*(ID?) © [h]is essentially reductive, even though some
partial results are available. [53] and [54] are good references on this topic. However, if
we consider H? (ID?) © [h] as a module over the the subalgebra A(D) c A(D?).
Corollary (2.2.11)[49]: Assume 4 is a polynomial. If there isa g € A(D) and a f €
[A] N H® (D) such that z = g(w) + f(z,w), then H*(D?) © [h] is an essentially
reductive module over A(ID) with the action defined by f.x & £(S,)x forall f € A(D)
and all x € H?(ID?) © [h]

Proof. It suffices to show that Sz is essentially normal. From the assumption on f; Sy is
equal to 0. Since z — g(w) = f(z,w), we have that S, = S5 = g(Sy).

Suppose {pn/} is a sequence of polynomials which converges to g in supremum
norm, then [S;,p,,(S,,)] is compact for each n and it is also not hard to see that
[S5, P, (S,)] converges to [S;,g(S,)]in the operator norm, and hence [S,,S,] =
[S;,9(Sy)] is compact.

This corollary shows in particular that H?(D?) © [h] is essentially reductive
over A(ID?) when h is linear.

We proved that the module actions of the two coordinate functions z,w on the
quotient module H?(ID?) © [h] essentially doubly commute when / is a polynomial.
It is then natural to ask if there is a similar phenomenon in the case of submodules. A
result due to Curto, Muhly and Yan ([52]) answered the question affirmatively in a
special case and Curto asked if it is true for any polynomially generated submodules
([51]). Since C[z, w] is Noetherian, one only needs to look at the submodules generated
by a finite number of polynomials.

We will answer Curto’s question partially and a complete answer will be given.

At first, we thought that the submodule case should be easier to deal with than
the quotient module case because z,w act as isometries on submodules. But it turns out
that the submodule case is more subtle and needs a finer analysis.

Suppose M is a submodule and R, and R: are the module actions by coordinate
functions z and w. It is obvious R, and R. are commuting isometries. In [52], curto,
Muhly and Yan made a study of the essential commutativity of operators R;,, R, in the
case that M is generated by a finite number of homogeneous polynomials. They were
actually able to show that [R,,, R,] is Hilbert-Schmidt. We will show that this is also
true when M is generated by an arbitrary polynomial. The same result for the case that
M is generated by a finite number of polynomials is a corollary of this result and will be
treated.

We suppose 4 is a polynomial that does not have a factor z—u with |u| = 1.

Then there is a A € D such that h(z, A1) is bounded away from 0 on T. we will see
that this is crucial in the development of the proofs.

For a bounded analytic function f{z,w) over the unit bidisk, we recall that Ry is
the restriction of the Toeplitz operator Ty onto [h] and,

Ry Rz — Ry Ry, = pzqsp.
We let
p1:H?(D?) > @a[h],  qi: H*(D?) - [h] © @a[h]
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be the projections; then p = p; + g4 It is not hard to see that
(Rp,Rz — Rz Ry )p1 = pzqPap1 = 0.

Moreover,
T,To, = T2 T, = Tou Ty = Tp, Ty
and hence,
Rp,Rz — Rz Ry, = pzqPa(p1 + q1) = p2qPaqs = pz(P — p)Pra1
= pTg, 1291 — PZPP2q1 = PP2Zq1 — PZPPaq1s (15)
where P is the projection from L?(T?) to H*(ID?). For any f € [h] © @,[h] and
g € [h]
. (p@af.9) = {f,029) =0
i.e.
PPrq1 =0 (16)

Combining equations (15) and (16) we have that
Ro,R; — R, R;A = PZq P

Furthermore, equation (16) also implies that

P@i2q1 = pPa(p1 + q1)2q1 = PPap12q1 + PP2q12q1 = PPaP12G4
Since pp,; actson ¢@,[h] as an isometry, the above observations then yield.
Proposition (2.2.12)[49]: [Ry,,, R,] is Hilbert-Schmidt on /A] if and only if pizq; is
Hilbert-Schmidt and

tr([Rg,, Rz1"[Rp, Rz]) = tr((p12q1)* (P1241)) (P1241))-
We further observe that, for any f € [h] © @;[h] and g € @, [h],
(p12f,z9) =(f,9) =0
So the range of operator p,zq; is a subspace of @;[h] © z@,[h] If we let p, be the
projection from ¢;[h] onto @,[h] © z@;[h] then
P1Z2q1 = P12q, 17)

We will prove that p, zq; is Hilbert-Schmidt after some preparation. Suppose

m
h = z a; (2)w/
j=0

lh(z, )| = ¢ (18)
for some fixed positive € and all z€T. Assume H to be the L’-closure of
span{h(z,w)z’|j = 0}, then < [h] and we have the following
Lemma (2.2.13)[49]: H = {h(z,w)f (2)|f € H*(D)} = hH?* (D).

Proof. It is not hard to check that hH* (D) c H.

For the other direction, we assume /f is any function in H'and need to show that
f € H*(D). In fact, if p,(z),n=1is a sequence of polynomials such that
h(z,w)p, (z),n = 1 converges to h(z,w)f(z,w) in L*(T?), then h(z, )p, (z),n = 1
converges to h(z,A)f (z,w) in L2(T) by the boundedness of N;.

The assumption on /4 then implies that p,(z),n = 1, converges to f(z,4) in
L?(T), and in particular, f(z,1) € H*(ID)This in turn implies that h(z, )p, (z),n = 1,
converges to h(z,w)f(z, ) in L>(T?) since h is a bounded function. Hence by the
uniqueness of the limit,

is a polynomial and the

65



h(z w)f (2, w) = h(z,w)f (2, 2),
and therefore
fzw)=f(zA2)
It is interesting to see from this lemma and Corollary (2.2.9) that hH? (D) is actually
closed in H%(ID?) for any polynomial h not having a factor z — u with |u| = 1.
Lemma (2.2.14)[49]: The operator V:[h] = H defined by V(hf) = h(z,w)f(z, 1) is
bounded.
Proof. First of all h(z, w)f (z,1) = N;(hf) is in H?>(ID) and hence so is f(z, 1) since
|h(z,A)| = € on T. So V'is indeed a map from [h] to .
Next we choose a number M sufficiently large such that

flh(z,w)|2d|w| < Me? < M|h(z,1)|?

T
for all z € T. Then for any h(z,w)f (z,w) € [h]

WA = f Ih(z, w)f (2, D) 2|zl dIw] = f f Ih(z, w)2dlw | If (2 D)1?d |2]
']I‘Z

T T
<M f h(z, Df (2, D12 dlz] < M1 — A1) |Af]12
T

This lemma enables us to reduce the problem further.
For any h(z,w)f (z,w) € [h] © @,[h],
pizhf =p,2V(hf —Vhf)

zh(z,w)f(z,w) — zV(hf)(z,w) = zh(z,w)f(z,w) — f(z, 1)

and since f(z,w) — f(z,4) vanishes at w = A for every z, it has ¢, as a factor, hence
z(hf — V(hf)) € z@;[h]. Therefore by the definition of p,

przhf =p,zV(hf) + prz@ahg = p.zV (hf). (19)
To prove that p, zq4 is Hilbert-Schmidt, one then suffices to show that p, z restricted to
H is Hilbert-Schmidt. Before proving it, we make another observation and state a
lemma.

Since h(z,w) is a polynomial and

But

[ wdwl =Y a1
T k=0

the Riesz-Fejér theorem implies that there is a polynomial Q(z) such that

Q)P =f|h<z,w)|2d|w|
T

on T. If Q vanishes at some n € T, then a, () = 0 for each &, and hence % has a factor
(z — p). But this contradicts our assumption on h. So we can find a positive constant,
say 11 such that

Q@) =7 (20)
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forallz €T
Suppose {h(z,w)f,,(z) | n > 0} is an orthonormal basis for /£ , then

6u=fh@wm@MGWE@wmmm

']I'Z

=jmwwWﬂmm@EGMM
T

=fQ(z)fl (D@D, 2)d|z]

T

So {Q(2)fx(2) | k > 0} is orthonormal in H?(ID), but of course it may not be complete.

Lemma (2.2.15)[49]: The linear operator J : span{Q f |k = 0} - H?(ID) define by
JQfi) = fir k=0

is bounded.
Proof. By inequality (20), for any function Qf € span{Qf|k = 0},.

fvdeMSn*fm@vwWﬂﬂ
T

Now we are in the position to prove

Proposition (2.2.16)[49]: p, z restricted to H is Hilbert-Schmidt.

Proof. Assume {gy|k = 0} c [h] © z[h] is an orthonormal basis and, as above,
{h(z,w)f,,(z)In = 0}is an orthonormal basis for H. Since ¢; is inner,
{o,(w)gx(z,w)|k = 0} is an orthonormal basis for ¢, [h] © z@,[h]. Therefore, by
identity (9) and the expression of /4,

0 m 0
pizhf, = Z<thn  029k) PaGk = z (Z za;w'fy, 0z z T,i»Nigk) P29k
k=0 k=0 i=0 =0

Note that a;’s and f, are functions of z only, so Y, za;w'f, is orthogonal to
Y iem+1 W OaN; gk because the later has the factor w™* 1t then follows that

pizhfy, = z <Z zaw'fy, ; z T,i»Njgi) 029k
l

k 0

= z (Z zZa; Wlfn,z <P,1W N]gk) Prdk
= i=0

J=0 T

z Cl]<fn: za; gk)Hz(D) PrGk
i,j=0
Where
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T
If c := max{|ci i | |0 <1i,j< m}, then the Cauchy inequality yields
2

(0] m
Ipuzhfull® = D 1D cilfu TraNigide
k=0 |i,j= 0
2
< (mc)? z z [{fr Toa,Nigie) w2 (|
0 l]

=(mc)ZZZ|U(an) NG @

(mc)zz z |(an;] za; N, gk)H2(1D))|2

where | is the operator defined in Lemma (2.2.15). Therefore, by the fact that
{Qf,,In = 0} is orthogonal in H?(ID) and the fact that N; is Hilbert-Schmidt on [h] ©

z[h] for each j,

zllmzhntIZS(mc)ziiil(an,] a9 o
n=0

n=0k=01,j=0
[ee] [ee]

= (mc)zz Z|<an:]*T;aiNjgk)H2(D)|2

k=01i,j=0n=0

3

o] m
< (mc)? z Ta, Jgk||H2(]D))
= (mc)? zall Z” Jgk”HZ(m))
1] 0
= (mc)2 za; |2tr(1VJ*IVJ) <@
i,j=0

Theorem (2.2.17)[49]: [R,,, R,] is Hilbert-Schmidt on [h] for any polynomial h.
Proof. If h = (z — A)h, for some polynomial 4#; and A € T, then [h] = [hy].

If &, is a nonzero constant then [h;] = H*(ID?) and hence

R, =Ty, R,=T,

Therefore [R;,, R,]. So without loss of generality, we may assume 4 does not have
a factor z — A for some A € T. Propositions (2.2.12), (2.2.16) and Equality (17) together
imply that [Ry,, R,] is Hilbert-Schmidt. An argument similar to that in the end of the
proof of Theorem (2.2.7) establishes our assertion.

We are going to use the result of the last section to prove the following:
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Theorem (2.2.18)[49]:The operator [R;, R,] [Ry,, R, ].is Hilbert-Schmidt on /i] when
h is a polynomial.

Proof. For the same reason as in the proof of Theorem (2.2.17), we assume that /# does
not have a factor z — u for u € T. Then by Corollary (2.2.9), h(z, A1) is bounded away
from zero on T for some A € D.To make our computations clearer, we assume that
h(z,0) is bounded away from 0 on 7. Then one sees that for any hf € [h], h(f — f(.,0))
is a function in w[h]. Therefore,

[Rw, Rwlhf = hf — Ry,Ryhf
= hf = RyRyh(f = £(,0) + f(,0)) = hf — h(f — £(,0)) — RwRLAf(,0)
= hf( :0) - RWR\TVhf( :0) = [R\TVI Rw]h( , - )f( 10)1 (21)
Similarly,
[Rz, R, 1Af(.,0) = hf(.,0) — R,Rzhf (.,0)
= hf(.,0) = h(f(.,0) — f(0,0) — R,R;hf(0,0) (22)
= hf(0,0) — f(0,00R,Rzh = f(0,0)[R7, R,]h
By the essential commutativity of R, andR,, and Equalities (21), (22),
[RZ, R.] [Rw, Rwlhf = [Rz, R,] [Rw, Rw]h(.,.)f(.,0)
= [Rw, Rw] [Rz, R.Ih(.,.)f(,0) + khf(.,0), (23)
where K a Hilbert-Schmidt operator from Theorem (2.2.17).If we let A, B be operators
from [h] to itself such that for any hf € [h]
Ahf = f(0,0)h; Bhf = h(.,.)f(.,0)
then the above computation shows that
[Rz, R.] [Rw, Rw]= [Rw, Rw] [Rz, R;]A + KB,

We observe that 4 is a rank one operator with kernel z[h] + w[h] and one verifies that

[h] © (z[h] + w[h]) is one dimensional, hence 4 is a bounded. Thus to prove that
[R;, R;] Ry, Ry].is Hilbert-Schmidt, it suffices to check that B is bounded, but this is
clear from our assumption on h and Lemma (2.2.13).

If h(z, A)is bounded away from zero on T for some non-zero A € D, then similar
computations will show that [R;, R,] [R,,, R, ], is Hilbert-Schmidt. Then applying
Lemma (2.2.4) twice will establish the assertion.

One sees that the proof of Theorem (2.2.18) depends heavily on the fact that
R,, R,, are isometries. A corresponding study for the product [S;, S,] [Sw, Sw], is thus
expected to be harder and we plan to return to that at a later time.

We will generalize the major theorems obtained so far to the case when [h] is
replaced by submodules generated by a finite number of polynomials.

Here we need a fact from commutative algebra which we state in a form that fits
into the work. We may find more information in [58].

Lemma (2.2.19)[49]: Suppose p1,P2,--., Pk are polynomials in C[z, w] such that the
greatest common divisor GCD(pq,pz,.--,Px) = 1, then the quotient C[z,w]/
(p1,D2,-- -, Pr) 1s finite dimensional.

Proof. First of all, C[z, w] is a Unique Factorization Domain (UFD) of Krull dimension
2.

We denote the ideal (p4, py,---, px) by I and suppose
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n

I = ﬂls
s=1

is the irredundant primary representation of /. If we let /g = \/I_S be the radical of I,
s=1,2,...,n, then each J is prime and it is either maximal or minimal since the Krull
dimension of C/z,w/ is 2. In an UFD, every minimal prime ideal is principal ([61], p.
238). Since GCD(p4,p2,---,Pr) = 1, the associated prime ideals J;, J>, . . ., Js must all
be maximal and hence each J; must have the form (z — z;, w — wg) with (z, wg) €
C%,s = 1,2,.......n, mutually different. Therefore, we can choose an integer, say m,
sufficiently large such that
J$t =2 = zgw—wg)" C g

for each s. Then,

and therefore,

dim(Clz,w] /) < dim(Clz,w] / (] 7)
s=1

By the Nullstellensatz, one easily checks that
Jt I =Clzwli# )
The Chinese Remainder Theorem then implies that

(Clzwl/ (”]Jm) = ]_[ Clzwl /I3
s=1 s=1

n

dim(C[z,w]/I) < r dim(C[z,w]/JT) = (m(m_—l—l)) .

) 2
s=1

It would be interesting to generalize this lemma to polynomial rings of higher Krull
dimensions.
If hq, hy, ..., hy are polynomials and we set

G = GCD(hy,hy,...,h,) and fj=h; /G (24)
j=1,2,.......k then GCD(fy,fo,...,fx) =1. If {e4,e;,...,e,n} is a basis for
Clz,w]/(fi, f2,-- -, fx), then for any polynomial g (z, w),

m

glz,w) = z ciei(z,w) +r(z,w)

and hence

i=1
with r € (f3, f2, .- ---- fr) and some constants ¢;,i = 1, 2,...,m. Therefore,
m
C(z,w)g(z,w) = z c;G(z,w)e(z,w) + G(z,w)r(z,w) (25)
i=1
It is easy to see that G(z,w)r(z,w) € (hy, hy, ... ... ,hy) and hence (G)/
(hy, hy, .. ... , hy) is also finite dimensional.
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Corollary (2.2.20)[49]: If M is a submodule of H?(D?) generated by a finite number of
polynomials, then

(i) [Ss,S,]is Hilbert-Schmidt on H2(D?) © M;

(i1) [R, R, ] is Hilbert-Schmidt on M,

(iii) [R}, R,][R;,, R,,] is Hilbert-Schmidt on M.
Proof. Suppose hy, hy, ... ... , hy, are polynomials and M = [hy, hy, ... ... , hi ] is the closed
submodule generated by hq, ho, ... ... ,yhi. We assume G, f;,i = 1,2,...,k, and ¢;,j =
1,2,...,m tobe asin (24) and (25). Consider the space

K = span{ej/j = 1,2, ....,m} +M
Itis closed because span{e; | j = 1,2,...,m} is finite dimensional. For any polynomial
g, identity (25) implies that G, € X, and hence [G] < K. The inclusion
[G1&EMcKEM
then forces [G] © M to be finite dimensional. We let
PG: H*(D?) - [G], qG:H*(D?) - H*(D?) © [G]
PM:H?(D?) > M, qm:H?*(D?) - H?*(D?) &M
pi:H*(D?) - [G]©OM
be the projections. Then p, is of finite rank and
pG =PM+ p,, qG =qM —p,
One verifies that
pGzpG = pMzpM + pMzp, + p,zpM +p,zp,,
qGzqG = qMzqM — qMzp, —p,zqM + p,zp,,

and consequently pGzpG — pMzpM, and qGzqG — qMzqM are of finite rank.
Similarly, gGwqG = qMwgM and qGwqG = gMwgM are also of finite rank. The
assertion in this corollary then follows easily from Theorems (2.2.10), (2.2.17) and
(2.2.18).

71



Chapter 3
Toeplitz Operators with Density and Coburn-Simonenko Theorem

We show that, under certain assumptions on the space X, the Toeplitz operator T,
is bounded (resp., compact) if and only if a € L (resp., a = 0). Moreover, ||a||» <
ITallsmixp < [IPllgcxllall~.These results are specified to the cases of abstract Hardy
spaces built upon Lebesgue spaces with Muckenhoupt weights and Nakano spaces with
radial oscillating weights. For X be a separable Banach function space on the unit circle
T and H[X] be the abstract Hardy space built upon X. We show that the set of analytic
polynomials is dense in H[X] if the Hardy-Littlewood maximal operator is bounded on
the associate space X'. In particular, if 1 < g <p < 1,1/r=1/q—1/p,anda € L" =
M(LP, L?) is a nonzero function, then the Toeplitz operator T (a), acting from the Hardy
space HP to the Hardy space H?, has a trivial kernel in HP or a dense image in HY.
Section (3.1): Abstract Hardy Spaces Built Upon Banach Function Spaces:

The Banach algebra of all bounded linear operators on a Banach space E will be
denoted by B(E). Let T be the unit circle in the complex plane C. For n € Z, =
{0,1,2,...}, a function of the form p(t) = Yr__, a,t®, where a; € C for all k €
{—n,..., n} and t € T, is called a trigonometric polynomial of order n. The set of all
trigonometric polynomials is denoted by P. The Riesz projection is the operator P which

is defined on P by
P: z ath — z atk. (D

Forl < p < oo, let LP :=LP (’]I‘) be the Lebesgue space on the unit circle T in the
complex plane. For f € L1, let

. 1 . .
f(n) = Eff(el‘p) e "dp, n€Z, (2)

s

be the sequence of the Fourier coefficients of f. The classical Hardy spaces HP are given

by
HP :={fELp:f(n)=0Vn<0}. (3)
It is well known that the Riesz projection extends to a bounded linear operator on LP if

and only if 1 < p < oo,

For a € L”, the Toeplitz operator T, with symbol a on HP,1 < p < o, is given

by
Tof = P(af). (4)
Toeplitz operators have attracted the mathematical community for the many decades
since by Toeplitz [63]. Brown and Halmos [64, Theorem 4] proved that a necessary and
sufficient condition that an operator on H? is a Toeplitz operator is that its matrix with
respect to the standard basis of H? is a Toeplitz matrix, that is, the matrix of the form
(ak_ j)j kez,’ The norm of T, on the Hardy space H? coincides with the norm of its

symbol in L (actually, this result was already in a footnote of [63]). Brown and Halmos

also observed, as a corollary, that the only compact Toeplitz operator on H? is the zero
operator. We here mention [65, Part B, Theorem 4.1.4] and [66, Theorem (3.1.7).8] for
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the proof of the Brown-Halmos theorem. An analogue of this result is true for Toeplitz
operators acting on H?,1 < p < o [67, Theorem 2.1.7].

We will consider the so-called Banach function spaces X in place of LP. As usual,
we equip the unit circle T with the normalized Lebesgue measure dm(t) = |dt|/(2m).
Denote by L° the set of all measurable complex valued functions on T, and let L% be the
subset of functions in L° whose values lie in [0, ]. The characteristic function of a
measurable set E c T is denoted by I. A mapping p: L% — [0, o] is called a function
normif, for all functions f, g, f,(n € N) in L%, for all constants ¢ = 0, and for all
measurable subsets E of T, the following properties hold:

@ p(f) = 0= f=0ae,plcf) =cp(H),p(f +9) < p(f) + p(g),

b)0 < g < fae=p(g) < p(f) (the lattice property),

©)0 < f,T fa.e.=> p(f,) T p(f) (the Fatou property),

() p(Ilg) < oo, [ f(@dm(x) < Cep(f),
with Cg € (0, ) depending on E and p but independent of f.When functions differing
only on a set of measure zero are identified, the set X of all functions f € L° for which
p(|f|) < oo is a Banach space under the norm ||f||x == p(|f]).

Such a space X is called a Banach function space. If p is a function norm, its
associate norm p’ is defined on L% by

p'(g) = sup U f@ g@dm(r):f € L3, p(f) < 1t,g € LS. (5)
T

The Banach function space X’ determined by the function norm p’ is called the associate
space (or Kothe dual space) of X. The associate space X' is a subspace of the dual space
X*. The simplest examples of Banach function spaces are the Lebesgue spaces LP,1 <
p < oo. The class of all Banach function spaces includes all Orlicz spaces, as well as
all rearrangement-invariant Banach function spaces (see, e.g., [69, Chap. 3]). We are
mainly interested in non-rearrangement-invariant Banach function spaces. Two typical
examples of non-rearrangement-invariant Banach function spaces are weighted
Lebesgue space and weighted Nakano spaces (weighted variable Lebesgue spaces)
considered.

Following [70, p. 877], we will consider abstract Hardy spaces H[X] built upon
a Banach function space X over the unit circle T as follows:

H(X] ={f €X:f(n) =0vn < 0}. (6)
This definition makes sense because X is continuously embedded in L! in view of axiom
(d). It can be shown that H[X] is a closed subspace of X. It is clear that if 1 < p < oo,
then H[LP] is the classical Hardy space HP.

It follows from axiom (d) that P ¢ L* < X. We will restrict ourselves to Banach
function spaces X such that the Riesz projection defined initially on P by formula (1)
extends to a bounded linear operator on the whole space X. The extension will again be
denoted by P.If a € L* and P € B(X), then the Toeplitz operator defined by formula
(4) is bounded on H[X] and

ITallzarxn < Pl llall . (7)

The Brown-Halmos theorem [64, Theorem 4] was extended by [71, Theorem 4.5]

to the case of reflexive rearrangement-invariant Banach function spaces with nontrivial
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Boyd indices. Note that the nontriviality of the Boyd indices implies the boundedness
of the Riesz projection.

We show that the Brown- Halmos theorem remains true for abstract Hardy spaces
H[X] built upon reflexive Banach function spaces X (not necessarily rearrangement-
invariant) if P € B(X). Further, we show that, under mild assumptions on a Banach
function space X, a Toeplitz operator T, is compact on the abstract Hardy space H[X]
built upon X if and only ifa = 0.

These results are specified to the case of Hardy spaces built upon Lebesgue spaces
with Muckenhoupt weights and upon Nakano spaces with certain radial oscillating
weights. Both classes of spaces in our examples are not rearrangement invariant.

For f € X and g € X', we will use the following pairing:

(f,g) = f FOg@dm(). ®)
T

Forn € Z and t € T, put y,(t) = t". Then the Fourier coefficients of a function f €
L* can be expressed by f(n) = (f, x,,) forn € Z.

We need the notion of a function with absolutely continuous norm to formulate
the result on the noncompactness of nontrivial Toeplitz operators. Following [69, Chap.
1, Definition 3.1], a function f in a Banach function space X is said to have absolutely

continuous norm in X if || f I, ||X — 0 for every sequence {E, }nen of measurable sets

satisfying Iz — @ almost everywhere as n — co. The set of all functions in X of
absolutely continuous norm is denoted by X,,. It is known that a Banach function space
X is reflexive if and only if X and X' have absolutely continuous norm (see [69, Chap.
1, Corollary 4.4]).

We contains results on the density of the set of all trigonometric polynomials P
(resp., the set of all analytic polynomials P4) in a Banach function space X (resp., in the
abstract Hardy space H[X] built upon X). We also show that the norm of a function f
in X can be calculated in terms of (f,p), where p € P, under the assumption that X' is
separable.

Further, we prove that every bounded linear operator on a separable Banach
function space, whose matrix is of the form (ak_ j)j - is an operator of multiplication

by a function a € L* and the sequence of its Fourier coefficients is exactly {a }rez-
Finally, we prove that if the characteristic functions of all measurable sets E € T have
absolutely continuous norms in X, then the sequence { y;} kez, converges weakly to zero
on the abstract Hardy space H[X]. We provide proofs of our main results, using auxiliary
results from the previous. We specify our main results to the case of Hardy spaces built
upon weighted Lebesgue spaces LP (w) with Muckenhoupt weights w and to the case of
weighted Nakano spaces LP()(w) with certain radial oscillating weights. In both cases,
it is known that the Riesz projection is bounded.

The following statement can be proved by analogy with [72, Lemma 1.3].
Lemma (3.1.1)[62] Let X be a Banach function space over the unit circle T. The
following statements are equivalent:

(a) the set P of all trigonometric polynomials is dense in the space X;
(b) the space C of all continuous functions on T is dense in the space X;
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(c) the Banach function space X is separable.

Let m € Z,. A function of the form q(t) = X7, a,t®, where a), € C forall k €
{0,...,m} and t € T, is said to be an analytic polynomial on T. The set of all analytic
polynomials is denoted by P,.

Lemma (3.1.2)[62]: Let X be a separable Banach functions space over the unit circle
T. If the Riesz projection P is bounded on X, then the set P, is dense in H [X].
Proof. If f € [X] < X, then by Lemma (3.1.1), there exists a sequence p,, € P such
that ||f — pullx = 0 asn — oo. It is clear that f = Pf and Pp,, € P,. Since P € B(X),
we finally have

If = Ppallx = 1P = Ppallx < IPllsgollf = pallx = 0 ©)
As n — oo. Thus P, is dense in X.
Lemma (3.1.3)[62]: Let X be a Banach function space over the unit circle T. If the
associate space X' is separable, then for every

Ifllx = sup{l{f,p)l:p € P, Ipllx < 1}. (10)
Proof. By [69, Theorem 1.7 and Lemma 2.8], for every f € X
Ifllx = sup{l{f, g): g € X", lIgllx < 1}. (11)

By the lattice property of the associate space X', we have P c X'. Hence, equality (11)
implies that for f € X

If1lx = sup{l{f.p):p € P, lIpllx < 1}. (12)
Fix g € X' such that 0 < ||g||x’ < 1. Since X' is separable, it follows from Lemma
(3.1.1) that there exists a sequence q, € P\{0} such that ||q, — glly» = 0 as n = oo,

Forn € N, put p,, = (llllc;g”nX, ) qn € P. Then for everyn € N
nlilx/
Ipnllx = llgllx < 1, (13)
lgllx
lg —pnllx < llg = aullx + llgnllx {1 - : (14)
llgnllx:
Hence
lim llg = pylly = 0. (15)

It follows from Holder’s inequality for Banach function spaces (see [69, Chap. 1,
Theorem 2.4]) and (15) that

lim (£, g — {f, pa)] < lim Ifllxllg = pallxr = 0. (16)

Thus, taking into account (13) and (16), we deduce for every function g € X' satisfying
0 <|lgllx < 1 that

(£, 9)1 = lim [{f, p,)| < supl(f, pn)l

neN
< sup{[{(f,p)l: p € P, lIpllx" < 1}. (17)
This inequality and equality (11) imply that
Ifllx < sup{l{f,p)l:p € P, lIpllx < 1}. (18)

Combining inequalities (12) and (18), we arrive at equality (10).
We start this with the following result by Maligranda and Persson on
multiplication operators acting on Banach function spaces.
Lemma (3.1.4)[62]: (see [73, Theorem (3.1.7)]). Let X be a Banach function space over
the unit circle T. If a € L°, then the multiplication operator
Mg: X = X,
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f—af, (19)

is bounded on X if and only if a € L* and [|[Mgllpx) = llall .
It is easy see that
(Maxj i) = (@ xi—j) = @k = ) V), k € L. (20)
The following lemma shows that every bounded operator with such a property is
a multiplication operator.
Lemma (3.1.5)[62]: Let X be a separable Banach functions space over the unit circle
T. Suppose A € B(X) and there exists a sequence {a, },ey Of complex numbers such
that
(A)(j,)(k) = Ay_j Vj, k € Z. (21)
Then there exists a function a € L™ such that A = M, and d(n) = a,, for all n € Z.
Proof. Put a := Ay, € X. Since X c L}, we infer from (21) that
an) =(a, xn) = (Ax0, Xn) = ap,n € ZL. (22)
If f=Y"__ f(k)xyx €P, then af € X c L' and the jth Fourier coefficient of af is
calculated by

m

@)= Y aG-fl0 = > a4 f (). (23)
On the other hand, from (21), wekgezt forj € Z e

UFrG) = (af. ) = ) FUOAxe ;)

k=—m
m

= > guf. 24)
k=—m
By (23) and (24), (af)"(j) = (Af)"(j) for all j € Z. Therefore, Af = af forall f € P
in view of the uniqueness theorem for Fourier series (see, e.g., [74, Chap. I, Theorem
1.7]). Since the space X is separable, the set P is dense in X by Lemma (3.1.1).

Therefore Af = af for f € X. This means that A = M, € B(X). It remains to
apply Lemma (3.1.4).

Recall that the annihilator of a subspace S of a Banach space E is the set S* of all
linear functionals A € E* such that A(x) = 0 forall x € S (see, e.g., [75, p. 110]).
Lemma (3.1.6)[62]: If X is a Banach function space such that Iy € X, for every
measurable subset E c T, then {) }rez, converges weakly to zero on H[X].

Proof. By [75, Theorem 7.1], ([X])* is isometrically isomorphic to X*/(H[X])*. Since
Xk € [X] forallk > 0, in view of the above fact, it is sufficient to prove that {); }xez,
converges weakly to zero on the whole space X instead of the subspace H[X].

By [69, Chap. 1, Corollary 3.14], if [ € X, for every measurable subset E c T,
then (X,)* is isometrically isomorphic to X'. In view of [69, Chap. 1, Theorem
(3.1.8).2], X' is a Banach function space, which is continuously embedded into ! due
to axiom (d) of the definition of a Banach function norm. Thus, for every A € X, there
exists a function g € X' c L! such that A(f) = (f, g) forall f € X. In particular, if f =
Xk With k > 0, then

AQee) = X 9) = €9, xi) = G (k). (25)
76



By the Riemann-Lebesgue lemma (see, e.g., [74, Chap. I, Theorem 1.8]) and (25),
A(xy) = 0 as k > oo for every A € X*; that is, {)}xez, converges weakly to zero on
X, which completes the proof.
Theorem (3.1.7)[62]: (main result 1). Let X be a reflexive Banach function space over
the unit circle T such that the Riesz projection P is bounded on X. Suppose A € B(H[X])
and there is a sequence {a,, },,cz of complex numbers such that
(A)(j,)(k) =ax-; Vjk€L,. (26)
Then there is a function a € L* such that A =T, and @(n) = a, for all n € Z
Moreover
lall e < ITallpxy < lIPllsollall e (27)
We follow the scheme of the proof of [71, Theorem 4.5] (see also [68, Theorem
(3.1.8).7]). Without loss of generality, we may assume that the operator A is nonzero.
Forn € Z,, put b, := y_,Axy.- Then taking into account Lemma (3.1.4) and that A €
B(H[X]), we get
Ibullx < lx-nllze lAXnllx = N1AX )
< llAllparxn Ixnllaixy = NAllsrx 11x- (28)
Consider the following subset of the associate space:

Ve=1lyeXx:|ylly < }
{y S Al
It follows from Holder’s inequality for Banach function spaces (see [69, Chap. 1,

Theorem (3.1.8).4]) and (28) and (29) that

[(b, M| < llbyllixllyllxr <1Vy €V,n€Z,. (30)
Since X is reflexive, in view of [69, Chap. 1, Corollaries 4.3-4.4], we know that X' is
canonically isometrically isomorphic to X*. Applying the Banach-Alaoglu theorem (see,
e.g., [76, Theorem 3.17]) to V, X", and {b,}pez, € X = X™ = (X')", we deduce that

of {by}nez, convergesto b

(29)

there exists a b € X such that some subsequence {bnk }kEZ
+

in the weak topology on X. In particular

klirpw(bnk,xj) = (b, x;) Vj € L. (31)
On the other hand, the definition of b,, and equality (26) imply that
(bnk,)(j) = (A)(nk,)(nk+j) = a; whenever ny +j € Z,. (32)
It follows from (31) and (32) that
(b,)(j) = q; Vj € L. (33)
Now define the mapping B by
B:P - X,
f — bf. (34)

Assume that f and g are trigonometric polynomials of orders m and r, respectively.
Then
m
f= 2 fox.
K

=—m



Tr

9= 5()x;. (35)
j=-1

It follows from (26) and (33) that for n = max{m, r}
m T

Bf.g = D D 10050 (b ;)
k=—m j=—r1
= z z f(k)g(f) aj—k
k=—m j=—r1

= i zr: FUGG) (Aticsn Xjin)

k=—m j=—r

k=—m j=-r

= (X-nAnf) , 9)- (36)
It is clear that y,,f € H[X] for n = max{m, r}. Therefore, taking into account Lemma
(3.1.4), we see that for n = max{m, r}

”M)(—nAM)(nf”X < ||X—n”L°°”Aan”H[X]
< [1All gy xnf N mpx
< lAllpapxpllxnllzee 11 1l x

= lAllerxn I 1l x- (37)
By Holder’s inequality for Banach function spaces (see [69, Chap. 1, Theorem

(3.1.8).4]) from (36) and (37), we obtain
I(Bf:g)l < Tll_r}go Sup|<M)(—nAM)(nf:g>|
< lim sup|[My_nAM,, f|| llgllx
< 1Al lfllxIlgll (38)
Since a Banach function space X is reflexive and the Lebesgue measure is separable, it
follows from [69, Chap. 1, Corollaries 4.4 and 5.6] that the spaces X and X' are
separable. Then Lemma (3.1.3) and inequality (38) yield
IBfllx = sup{l{Bf,g):g € P,llgllx < 1}
< [[Allpaaxpllflix, (39)
for all f € P. In view of Lemma (3.1.1), P is dense in X. Then (39) implies that the
linear mapping B defined in (34) extends to an operator B € B(X) such that
IBllpcxy < lIAllacaxy- (40)
We deduce from (33) that
(Bxj» xx) = (b, X—j) = ax—; Vj, k € Z. (41)
By Lemma (3.1.5), there exists a function a € L” such that B = M, and a,, = d(n) for
all n € Z. Moreover

I1Bllacxy = IMallpe) = llall . (42)
It follows from the definition of the Toeplitz operator T, that
(Taxjxe) = atk =), jk €L, (43)

78



Combining this fact with equality (26), we arrive at
(TaniXk> = ak—j = (AX]iXk>i ],k € Z+' (4'4)
Since Toxj,Axj € H[X] € H 1 by the uniqueness theorem for Fourier series (see, e.g.,
[74, Chap. I, Theorem (3.1.8).7]), it follows from (44) that T, x; = Ay; for all j € Z,.
Therefore
T,p = Ap Vp € P,. (45)
In view of Lemma (3.1.2), the set P, is dense in H[X]. This fact and equality (45) imply
that T, = A and
ITallsaxn = Al saix)- (46)
Combining inequality (40) with equalities (42) and (46), we arrive at the first inequality
in (10). The second inequality in (10) is obvious.
Theorem (3.1.8)[62]: (main result 2). Let X be a Banach function space over the unit
circle T such that [; € X, for every measurable subset E C T. If the Riesz projection P
is bounded on X and a € L*, then the Toeplitz operator T, € B(H[X]) is compact if and
only ifa = 0.
Proof. It is clear that if a = 0, then T, is the zero operator, which is compact. Now
assume that T, is compact. Then it maps weakly convergent sequences in H[X] into
strongly convergent sequences in H[X] (see, e.g., [77, Section 7.5, Theorem 4]). Since
{Xx}kez, converges to zero weakly on H[X] in view of Lemma (3.1.6), we have

Ili_f)glo”Tan”H[x] = 0. (47)
By [69, Chap. 1, Theorem 2.7 and Lemma 2.8], for k € Z,,,

I Taxillax) = WTaxillx = sup{Taxr, g): g € X', llgllxy <1} (48)
Since L” c X', there exists a constant ¢ € (0, o) such that

¢ Hixmllx < e =1, meZ (49)
Foralln € Z and all k € Z, such that k +n € Z, we have
a(n) = (Ta)(k;)(k+n)- (50)
Then from (48)—(50) we obtain foralln € Z and all k € Z, such thatk +n € Z,
ITaxilluix) = KTaXio € Xicand] = cHa@)|. (51)

Passing in this inequality to the limit as k — oo and taking into account (47), we see
that @(n) = 0 for all n € Z. By the uniqueness theorem for Fourier series (see, e.g., [74,
Chap. I, Theorem 2.7]), this implies that a = 0 a.e. on T.

A measurable function w: T — [0, o] is referred to as a weight if 0 < w(7) < o
almost everywhere on T. If X is a Banach function space over the unit circle and w is a
weight, then

X(w) :={f € L% fw € X} (52)
is a normed space equipped with the norm || f [ xy = |l fwllx.

Moreover, if w € X and 1/w € X', then X(w) is a Banach function space (see
[78, Lemma 2.5]).

Let 1 < p < o and w be a weight. It is well known that the Riesz projection P is
bounded on the weighted Lebesgue space LP (w) if and only if the weight w satisfies
the Muckenhoupt 4,, —condition; that is,
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1/p
L[ wr@am@
o m(l)lf W

1 1/p’
. (mf W_p,(‘[)dm(‘[)> < o0, (53)
1

where the supremum is taken over all subarcs I of the unit circle Tand 1/p + 1/p’ =1
(see [79] and also [68, Section 1.46], [65, Section 5.7.3(h)]). In the latter case, we will
write w € A,(T). It is clear that if w € A,(T), then w € LP and 1/w € LP". Hence
LP(w) is a Banach function space whenever w € A, (T). It is well known that if 1 <
p < oo, then LP (w) is reflexive. We denote the corresponding Hardy space by HP (w) :=
HI[LP (w)].
Corollary (3.1.9)[62]: Let 1 < p < oo and w € 4,(T). If A € B(HP(w)) and there
exists a sequence {a,},ez of complex numbers satisfying (26), then there exists a
function a € L* such that A = T, and @(n) = a,, for all n € Z. Moreover
lalle < ITall e < IPHs@ray) lalls. (54)

This is an immediate consequence of Theorem (3.1.7). For the weight w =1, it is
proved in [68, Theorem (3.1.8).7].
Corollary (3.1.10)[62]: Let 1 <p < o and w € A,(T). If a € L*, then the Toeplitz
operator T, € B(HP(w)) is compact if and only if a = 0.

This corollary follows from Theorem (3.1.8).

We denote by P-(T) the set of all continuous functions p: T — (1, o). For p €
P.(T), let LPO) be the set of all functions f € L° such that

p(7)
f @ dm(t) < oo, (55)
T

A
for some A = A(f) > 0. This set becomes a Banach function space when equipped
with the Luxemburg-Nakano norm
f f(@)

A
T
(see, e.g., [80, p. 73] or [81, p. 77]). If p is constant, then LP® is nothing but the
Lebesgue space LP. The spaces LP®) are referred to as Nakano spaces. See Maligranda
[82] for the role of Hidegoro Nakano in the study of these spaces.

Since T is compact, we have
1< min p(t) ) max p(t) < co. (57)

p(©)
Wl per = inf{ﬂ > 0:

dm(t) < 1}, (56)

In this case, the space LPO) is reflexive and its associate space is isomorphic to
the space LP'O), where 1/p(t) + 1/p'(r) = 1forallt € T (see, e.g., [80, Section 2.8]
and [81, Section 3.2]).
Let Sf be the Cauchy singular integral of a function f € L*(T) defined by
1 f(@)
(SH®) = lim—

-0 TTi T—1t
T\T(t,&)
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dr,t € T, (58)



Where T(t,e):={t € T:|t—t| < e}. For a weight w:T — [0,0], consider the
weighted Nakano space

POw) = {f € L°: fw € 1PV}, (59)
It follows from [78, Theorem 6.1] that if the operator S is bounded on LP) (w), then
1
sup—s Ilwxill pollw ™ xill oo < oo, (60)

where the supremum is taken over all subarcs I c T. In particular, in this case, w € Lo

and 1/w € LP'O whence LPO) (w) is a Banach function space by [78, Lemma 2.5(b)].

We say that an exponent p € P.(T) is locally log-H6lder continuous (cf. [80,
Definition 2.2]) if there exists a constant Cy,.y € (0, ) such that

p(©) - p@)] < — 20

p p ~ —logl|t — 1|
The class of all locally log-Holder continuous exponents will be denoted by LH (T).
Notice that some authors also denote this class by P8 (T) (see, e.g., [83, Section
1.1.4)).

Following [84, Section 2.3], denote by W the class of all continuous functions
0:[0,2] —» [0,0) such that ¢(0) =0,(x) >0, if 0 <x <2m, and o is almost
increasing; that is, there is a universal constant C > 0 such that o(x) < Co(y) whenever
x < y.Further, let W be the set of all functions g: [0,27] — [0, o] such that x*o(x) €
W and xP /o(x) € W for some @, B € R. Clearly, the functions o(x) = x? belong to W
forall y € R. For g € W, put

1
Vt,t € T satisfying |t — 7| < > (61)

. o(xy)
®%(x) :=lim su ,x € (0,00). 62
¢ y—>p0 o(y) (0, (62)
Since o € W, one can show that the limits
_ log ®3(x)
m(e) = lim—
log ®2(x
M(p) = lim g—g() (63)

x—o  logx
exist and —oo < m(g) < M(p) < +oo. These numbers were defined under some extra
assumptions on ¢ by Matuszewska and Orlicz [85, 23] (see also [87] and [88, Chapter
11]).

We refer to m(p) (resp., M(g)) as the lower (resp., upper) Matuszewska-Orlicz
index of o. For o(x) = x¥, one has m(g¢) = M(p) = y. Examples of functions o € W
with m(p) < M(p) can be found, for instance, in [88, p. 93]. Fix pairwise distinct points

ti,...,t, € I' and functions wy,...,w, € W.
Consider the following weight:
n
w(t) = ﬂwk(u: —t.]) ,teT. (64)
k=1

Each function wy (|t — t;|) is a radial oscillating weight.
This is a natural generalization of the so-called Khvedelidze weights w(t) =
[1%_,|t — t;|*, where 4, € R (see, e.g., [68, Section 5.8]).
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Theorem (3.1.11)[62]: Let p € LH(T). Suppose wy,...,w,, € W and the weightwis

given by (64).The Cauchy singular integral operator S is bounded on LP)(w) if and
only if forallk € {1,...,n}

1 1
0<——+mwg),——+ M(w,) < 1. 65
p(e ) gy * M) (65)
The sufficiency portion of Theorem (3.1.11) was obtained by Kokilashvili et al. [84,

Theorem 4.3] (see also [83, Corollary 2.109]) for more general finite Carleson curves
in place of T. The necessity portion was proved by [89, Corollary 4.3] for Jordan
Carleson curves.
Lemma (3.1.12)[62]: Let p € LH(T). Suppose wy,...,w,, € W and the weight w is
given by (64).Then the weighted Nakano space LP*) (w) is a reflexive Banach function
space and the Riesz projection P is bounded on LPO (w).
Proof. In view of Theorem (3.1.11), the operator S is bounded on the space POwW).
As was observed above, the boundedness of the operator S on the space LP©) (w) implies
thatw € LPO) and 1/w € LP'Ow) by [78, Theorem 6.1]. Hence LPO) (w) is a reflexive
Banach function space thanks to [78, Lemma 2.5 and Corollary 2.8]. By [78, Lemma
1.4], the operator P = (I + S)/2 is bounded on LPO) (w).
Consider the Hardy space HPO(w) :== H [Lp(') (w)] built upon the weighted
Nakano space LPO (w), where p € LH(T) and w is a weight as in Theorem (3.1.11).
Theorem (3.1.7) and Lemma (3.1.12) yield the following.
Corollary (3.1.13)[62]: Let p € LH(T). Suppose wy, ..., w, € W and the weight w is

given by (64). If A € B (Hp(') (W)) and there exists a sequence {a, },ez of complex

numbers satisfying (26), then there exists a function a € L* such that A = T, and
a(n) = a,, for all n € Z. Moreover

lalle < 1Tl ,(0p0 <Pl ., o0y lall oo (66)
B(H (w)) B(L (w))

Similarly, Theorem (3.1.8) and Lemma (3.1.12) imply the following.
Corollary (3.1.14)[62]: Let p € LH(T). Suppose wy, ..., w, € W and the weight w is

given by (64). If a € L”, then the Toeplitz operator T, € B (Hp(') (W)) is compact if

and only if a = 0.

Lesnik posted in [90], where among other results he proved analogues of
Theorems (3.1.8) and (3.1.7) for Toeplitz operators acting between abstract Hardy
spaces H[X] and H[Y] built upon distinct rearrangement invariant Banach function
spaces X and Y.The set of allowed symbols in [90] coincides with the set M(X,Y) of
pointwise multipliers from X to Y, which may contain unbounded functions. Thus, his
results complement ours in a nontrivial way but are not more general than ours, because
Lesnik restricts himself to rearrangement-invariant spaces X and Y only. On the other
hand, the main aim is to consider the questions of the boundedness and compactness of
Toeplitz operators on an abstract Hardy space H[X] in the case when X is an arbitrary,
not necessarily rearrangement invariant, Banach function space.
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Section (3.2): Analytic Polynomials in Abstract Hardy Spaces:
For 1 < p < oo, let LP: = LP(T) be the Lebesgue space on the unit circle T: =
{z € TC: |z|] = 1} in the complex plane C. For f € L1, let
s

R 1 . .
f(n):= > ff(el‘p)e_m‘p dp,n €,

be the sequence of the Fourier coefficients of f. The classical Hardy spaces HP are given
by
HP:={f € LP:f(n) = Oforalln < 0}.

A function of the form
n

q(t) = z aptt t €T, ay,...,a, €C,
k=0
is said to be an analytic polynomial on T. The set of all analytic polynomials is denoted

by P,. It is well known that that the set P, is dense in HP whenever 1 < p < oo (see,
e.g., [93, Chap. III, Corollary 1.7(a)]).

Let X be a Banach space continuously embedded in L. Following [107, p. 877],
we will consider the abstract Hardy space H[X] built upon the space X, which is defined
by

H[X]:= {f €X:f(n) =0foralln < 0}.
It is clear that if 1 < p < oo, then H[LP] is the classical Hardy space HP. The aim is to
find sufficient conditions for the density of the set P, in the space H[X] when X falls
into the class of so-called Banach function spaces.

We equip T with the normalized Lebesgue measure dm(t) = |dt|/(2m).

Let L° be the space of all measurable complex-valued functions on T. As usual,
we do not distinguish functions, which are equal almost everywhere (for the latter we
use the standard abbreviation a.e.). Let LS be the subset of functions in L° whose values
lie in [0, oo]. The characteristic function of a measurable set E < T is denoted by y.

Following [91, Chap. 1, Definition 1.1], a mapping p: LS — [0, o] is called a
Banach function norm if, for all functions f, g, f, € L% with n € N, for all constants
a = 0, and for all measurable subsets E of T, the following properties hold:

ADp(f) =0 f=0a.ce.,plaf) =ap(f),p(f + g) < p(f) +p(g),

(A2) 0< g < fu — a.e.= p(g) < p(f)(the lattice property),

(A3)0 < f,, T fa.e.= p(f,) T p(f)(the Fatou property),
(A4)m(E) < o0 = p(xg) < o,

(45) f FOAm® < Cep(f)
E

with the constant Cp € (0, ) that may depend on E and p, but is independent of f.
When functions differing only on a set of measure zero are identified, the set X of all
functions f € L° for which p(|f]|) < oo is called a Banach function space. For each f €
X, the norm of f is defined by ||f|lx: = p(If]).
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The set X under the natural linear space operations and under this norm becomes
a Banach space (see [91, Chap. 1, Theorems 1.4 and 1.6]). If p is a Banach function
norm, its associate norm p’ is defined on L% by

p'(g):=sup U f®I®Au®): f € L%, p(f) < 1¢,g € LS.
T

It is a Banach function norm itself [91, Chap. 1, Theorem 2.2]. The Banach function
space X' determined by the Banach function norm p’ is called the associate space (Kothe
dual) of X. The associate space X' can be viewed a subspace of the (Banach) dual space
X*.

The distribution function mf of an a.e. finite function f € L° is defined by

mg(A):=mit € T:|f ()| > 1}, 1 = 0.
Two a.e. finite functions f, g € L° are said to be equimeasurable if
mg(A) = mgy(4) forall A = 0.
The non-increasing rearrangement of an a.e. finite function f € L° is defined by
f*(x): = inf{ﬂ: me(A) < x},x > 0.
See [91, Chap. 2, Section 1] and [101, Chap. II, Section 2] for properties of distribution
functions and non-increasing rearrangements. A Banach function space X is called
rearrangement-invariant if for every pair of a.e. finite equimeasurable functions f, g €
L°, one has the following property: if f € X, then g € X and the equality ||f]lx = llgllx
holds. Lebesgue spaces LP, 1 < p < oo, as well as, more general Orlicz spaces, Lorentz
spaces, and Marcinkiewicz spaces are classical examples of rearrangement invariant
Banach function spaces (see [91, 11]). For more recent examples of rearrangement-
invariant spaces, like Cesaro, Copson, and Tandori spaces, See Maligranda and Lesnik
[103].

One of our motivations in the study of Harmonic Analysis in the setting of
variable Lebesgue spaces [94, 96,100]. Let B(T) be the set of all measurable functions
p: T - [1,0]. Forp € B(T), put

']I'go('): = {t € T: p(t) = }.
For a measurable function f: T — C, consider

o= | IFOPOIND + 1fll o)
T\11450(-) ”
According to [94, Definition 2.9], the variable Lebesgue space LP®) is defined as the set
of all measurable functions f: T — C such that g,(f/4) < oo for some 4 > 0. This
space is a Banach function space with respect to the Luxemburg-Nakano norm given by
Ifllpo: = inf{2 > 0: 0,5 (/1) < 1}

(see, e.g., [94, Theorems 2.17, 2.71 and Section 2.10.3]). If p € B(T) is constant, then
LPO) is nothing but the standard Lebesgue space LP. If € B(T) is not constant, then Lo
is not rearrangement-invariant [94, Example 3.14].

Variable Lebesgue spaces are often called Nakano spaces. See Maligranda [104]
for the role of Hidegoro Nakano in the study of variable Lebesgue spaces. The associate

space of LP®) is isomorphic to the space LP ), where p’ € B(T) is defined so that
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1/p(t) + 1/p'(t) = 1fora.e. t € T with the usual convention 1/c0 := 0 [96, Theorem
(3.2.8).13]. For p € B(T), put

p- = essier Infp(t), p4+ 1= esseer sup p(t).
The space variable Lebesgue space LPO is separable if and only if p, < oo (see, e.g.,
[94, Theorem 2.78]).
Theorem (3.2.1)[90]: Let X be a separable rearrangement-invariant Banach function
space on T. Then the set of analytic polynomials P, is dense in the abstract Hardy space
H[X]. Moreover, for every f € H[X], there is a sequence of analytic polynomials {p,}
such that ||p,|lx < ||f]lx for alln € N and p,, = f in the norm of X as n — oo.

We could not find in the literature neither Theorem (3.2.1) explicitly stated nor
any result on the density of P, in abstract Hardy spaces H[X] in the case when X is an
arbitrary Banach function space beyond the class of rearrangement-invariant spaces.
The aim is to fill in this gap.

Given f € L!, the Hardy-Littlewood maximal function is defined by

1
(Mf)(t): = sup flf(r)ldm(r),t € T,
i

1t m(I)

where the supremum is taken over all arcs I € T containing ¢ € T. The operator f +
Mf is called the Hardy-Littlewood maximal operator.

Theorem (3.2.2)[90]: (Main result). Suppose X is a separable Banach function space
on T. If the Hardy-Littlewood maximal operator M is bounded on the associate space
X', then the set of analytic polynomials P, is dense in the abstract Hardy space H[X].

To illustrate this result in the case of variable Lebesgue spaces, we will need the
following classes of variable exponents. Following [94, Definition 2.2], one says that
r:' T = Ris locally log-Holder continuous if there exists a constant Cy > 0 such that

Ir(x) —r(y)| = Co/(=loglx —y])) forallx,y € T, |x —y| < 1/2.
The class of all locally log-H6lder continuous functions is denoted by LH,(T).

If p, < oo, thenp € LHy(T) ifand only if 1/p € LHy(T). By [94, Theorem 4.7],
if p € B(T) is such that 1 <p_ and 1/p € LHy(T), then the Hardy-Littlewood
maximal operator M is bounded on LPO), This condition was initially referred to as
“almost necessary” (see [94, Section 4.6.1]). However, Lerner [102] constructed an
example of discontinuous variable exponent such that the Hardy-Littlewood maximal
operator is bounded on LPO).

Kapanadze and Kopaliani [97] developed further Lerner’s ideas. They considered
the following class of variable exponents. Recall that a function f € L! belongs to the
space BMO if

1
, ‘= su
Il = 5

where f; is the integral average of f on the arc I and the supremum is taken over all arcs
[ c T. For f € BMO, put

1
VFri= sup —o [1F©) = fildm(@).
I

flf(t) — fildm(t) < oo,
I

m(D<r

Let VMO8 | be the set of functions f € BMO such that
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y(f,r) =0(1/|logr|) asr — 0.

Note that VM0/°8 | contains discontinuous functions. We will say that p €
B(T) belongs to the Kapanadze-Kopaliani class K(T) if 1 <p_ <p, <ocoandp €
vMo1/Mog | It is shown in [97, Theorem 2.1] that if p € &(T), then the Hardy-
Littelwood maximal operator M is bounded on the variable Lebesgue space LPO,
Corollary (3.2.3)[90]: Suppose p € B(T). If p, < o andp € LHy(T) orifp’ € K(T),
then the set of analytic polynomials P, is dense in the abstract Hardy space H [Lp(')]

built upon the variable Lebesgue space LPO,

We prove that the separability of a Banach function space X is equivalent to the
density of the set of trigonometric polynomials P in X and to the density of the set of all
continuous functions C in X. Further, we recall a pointwise estimate of the Fejér means
f * K,,, where K, is the n —th Fejér kernel, by the Hardy- Littlewood maximal function
Mf. We show that the norms of the operators F,f = f * K, are uniformly bounded on
a Banach function space X if X is rearrangement-invariant or if the Hardy-Littlewood
maximal operator is bounded on X'. Moreover, if X is rearrangement-invariant, then
|F.llpx) < 1 for all n € N. Further, we prove that under the assumptions of Theorem
(3.2.1)or (3.2.2), |If * K, — fllx = 0 asn — oo. It remains to observe that f * K,, € P,
if f € H[X], which will complete the proof of Theorems (3.2.1) and (3.2.2).

We start with the following elementary lemma, whose proof can be found, e.g.,
in [93, Chap. III, Proposition 1.6(a)]. Here and in what follows, the space of all bounded
linear operators on a Banach space E will be denoted by B(E).

Lemma (3.2.4)[90]: Le E be a Banach space and {T;,} be a sequence of bounded
operators on E such that

sup||T,llp ) < o.
neN

If D is a dense subset of E and for all x € D,

IT,x —x||g > 0asn — oo, (67)
then (67) holds for all x € E.
A function of the form
n
q(t) = z aptk, teT,a_,,...,a, €C,
k=—n

is said to be a trigonometric (or Laurent) polynomial on T. The set of all trigonometric
polynomials is denoted by P.
Lemma (3.2.5)[90]: Let X be a Banach function space on T. The following statements
are equivalent:
(a) The set P of all trigonometric polynomials is dense in X;
(b) the space C of all continuous functions on T is dense in X;
(c) the Banach function space X is separable.
Proof. The proof is developed by analogy with [98, Lemma 1.3].
(a) = (b) is trivial because P c C c X.
(b) = (c). Since C is separable and C € X is dense in X, we conclude that X is
separable.
(c) = (a). Assume that X is separable and P is not dense in X. Then
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by the corollary of the Hahn-Banach theorem (see, e.g., [92, Chap. 7, Theorem 4.2]),
there exists a nonzero functional A € X* such that A(p) = 0 for all p € P. Since X is
separable, from [90, Chap. 1, Corollaries 4.3 and 5.6] it follows that the Banach dual X*
of X is canonically isometrically isomorphic to the associate space X'. Hence there exists
a nonzero function h € X' < L! such that

fp(t)h(t)dm(t) =0 forallp € P.
T
Taking p(t) = t™ for n € Z, we obtain that all Fourier coefficients of h € L! vanish,
which implies that h = 0 a.e. on T by the uniqueness theorem of the Fourier series (see,
e.g., [99, Chap. I, Theorem 2.7]). This contradiction proves that P is dense in X.
Recall that L' is a commutative Banach algebra under the convolution
multiplication defined for f,g € L! by
s

. 1 I . .
(f xg)(e?) = o= ff(ele_“p)g(e“p)d(p,ele € T.

Forn € N, let
n . n+1 2
. |k| . 1 Sin 0 .
K,(e"):= z 1——— el = 2 ,e? e,
n+1 n+1 .0
k=—n sin

be the n —th Fejér kernel. It is well-known that || K, || ;2 < 1.For f € L*, then —th Fej’er
mean of f is defined as the convolution f * K,,. Then
n
. . k . .
(f xKy)(e®) = z f(k)(l— Ll >e19k,e19 €T (68)
e n+1

(see, e.g., [99, Chap. I]). This means that if f € L!, then f * K,, € P. Moreover, if f €
H' = H[L], then f * K,, € P,.
Lemma (3.2.6)[90]: Forevery f € L' and t € T,

sur>|(f Kn) ()] <Z (M . (69)

Proof. Since |sin ¢| = 2|(p|/7'[ for lp| < m/2, we have for 6 € [—m, 7],

n+1
Kn(eie) < n7:—2 2 ( 9)

2

4 m+1 N\
( )
T n+1 \ 2
S—(n-l—l)mm{l,( > 9) }
2 n+1

e (25 20)

5 =: ¥, (6). (70)

It is easy to see that
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1 m?
o ftpn(a)de < 5 foralln € N. (71)

-1
From [105, Lemma 21] and estimates (70)—(71) we immediately get estimate (69).
First we consider the case of rearrangement-invariant Banach function spaces.
Lemma (3.2.7). Let X be a rearrangement-invariant Banach function space on T. Then
for each n € N, the operator F,f = f * K, is bounded on X and
sup||Fullpx) < 1.
neN

Proof. By [90, Chap. 3, Lemma 6.1], for every f € X and everyn € N,

If * Knllx < 1K1l 2 11f 1l -
It remains to recall that ||K, ||, < 1 foralln € N.

Now we will show the corresponding results for Banach function spaces such that
the Hardy-Littlewood maximal operator is bounded on X".
Theorem (3.2.8)[90]: Let X be a Banach function space on T such that the Hardy-
Littlewood maximal operator M is bounded on its associate space X'. Then for eachn €
N, the operator F,,f = f * K,, is bounded on X and

supIIF sy < m2lIMIl ok

Proof. The idea of the proof is borrowed from the proof of [94, Theorem 5.1].
Fix f € X and n € N. Since K,, = 0, we have |f * K,,| < |f]| * K,,. Then from the
Lorentz-Luxemburg theorem (see, e.g., [90, Chap. 1, Theorem 2.7]) we deduce that

If * Kullx < HF1* Kullx = £+ Kllxe
= sup U(Ifl *K)(Olg@®)dm(): g € X', llglly < 1¢.
Hence there exists a function h € )gr, such that h = 0, || ||, < 1, and
If * Kullx < 2f(lfl * Kp) (Oh(©)dm(). (72)

T
Taking into account that Kn(elg) = Kn(e_le) for all 8 € R, by Fubini’s theorem, we
get

f (f] * KD (DR dm(E) = f (h * K) (O£ (O ldm(D).

T T
From this identity and Holder’s inequality for X (see, e.g., [90, Chap. 1, Theorem 2.4]),
we obtain

f(lfl * Kn) (©Oh@®)dm(t) < |Ifllxllh* Knllx. (73)

Applying Lemma (3 26)toh € X' c L, by the lattice property, we see that

lh * K, ”X’ < _”Mh”)(’ (74)

Combining estimates (72)—(74) and taking 1nt0 account that M is bounded on X' and
that ||| x» < 1, we arrive at

If * Knllx < 2 IM g oxr I f 1l x-
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Hence

If * Knllx
supllFyllpco = sup sup ———% < 2| M|y 5 < oo,
neN neN fex\{o} ”f”X

which completes the proof.
We have the following for the proof of the main results.
Theorem (3.2.9)[90]: Suppose X is a separable Banach function space on T. If
X is rearrangement-invariant or the Hardy-Littlewood maximal operator is bounded on
the associate space X', then for every f € X,
lim [If « Ky — fllx = 0. (75)
Proof. It is well-known that for every f € C,
i@g;”fj* K, —fllc=10
(see, e.g., [93, Chap. III, Theorem 1.1(a)] or [99, Theorem 2.11]). From the definition
of the Banach function space X it follows that C ¢ X < L1,
Where both embeddings are continuous. Then, for every f € C, (75) is fulfilled.
From Lemma (3.2.5) we know that the set C is dense in the space X. By Lemma (3.2.7)
and Theorem (3.2.8),

supl|F,llpix) < oo,
neN

where F,f = f * K,,. It remains to apply Lemma (3.2.4).

This statement for rearrangement-invariant Banach function spaces is contained,
e.g., in [95, p. 268]. Notice that the assumption of the separability of X is hidden there.

Now we formulate the corollary of the above theorem in the case of variable
Lebesgue spaces.
Corollary (3.2.10)[90]: Suppose p € B(T). If p, < oo and p € LH,(T) or if p’ €
K(T), then for every f € LP(-),

lim [|f K = fllpy = 0.

For variable exponents p € B(T) satisfying p, < oo and p € LH,(T), this result was
obtained by Sharapudinov [106, Section 3.1]. For p € &(T), the above corollary is new.

If f € H[X], then p,, = f *K,, € P, for all n € N in view of (68). By Theorem
(3.2.9), llp, — fllx = 0 as n — oo. Thus the set P, is dense in in the abstract Hardy
space H[X] built upon X.

Moreover, if X is a rearrangement-invariant Banach function space, then from
Lemma (3.2.7) it follows that ||p,|lx < ||f|lx foralln € N.
Section (3.3): Toeplitz Operators Acting Between Hardy Type Subspaces of
Different Banach Function Spaces:

For T be a Jordan curve, that is, a curve that homeomorphic to a circle. We
suppose that T is rectifiable and equip it with the Lebesgue length measure |dt| and the

counter-clockwise orientation. The Cauchy singular integral of a measurable function
f:T — C is defined by

e—0 Tl T—t
I\I'(¢t,&)

(SF)(0): = lim— f f@ rer (76)

where the “portion” I'(t, €) is
I'(t,e):= {teT:|t—t| <e}e>N0.
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It is well known that (Sf)(t) exists a.e. on I' whenever f is integrable (see [118,
Theorem (3.3.3)2]).

For two normed spaces X and Y, we will write X & Y if there is a constant ¢ €
(0, ) such that ||f]ly < cllfllx forall f € X,X = Y if X and Y coincide as sets and
there are constants ¢y, ¢, € (0, ) such that ¢;||fllx < llflly < c,llfllx for all f € X,
and X =Y if X and Y coincide as sets and ||f||x = |[|f|ly for all f € X. As usual, the
space of all bounded linear operators from X to Y is denoted by L(X,Y). We adopt the
standard abbreviation L(X) for L(X, X).

Let y be a measurable subset of I of positive measure. The set of all measurable
complex-valued functions on y is denoted by M(y). Let M*(y) be the subset of
functions in M(y) whose values lie in [0,o0]. The characteristic function of a
measurable set E C y is denoted by yg.

Following [109, Chap. 1, Definition 1.1], a mapping p,: M*(y) — [0, 0] is
called a Banach function norm if;, for all functions f, g, f;, € M*(y) with n € N, for all
constants a = 0, and for all measurable subsets E of y, the following properties hold:

ADp,(f) =0 f=0ae,p,(af) =ap,(f),p(f +9) < p,(f) +p,(9),

(A2)0 < g < fa.e.=> p,(g) < p,(f) (the lattice property),

(43)0 <f, T fa.e.= p,(fy) T p,(f) (the Fatou property),

(A4)py()(E) < oo,

(45) f F@ldtl < Cop, ()
E

with the constant Cg € (0, 0) that may depend on E and p,, but is independent of f.
When functions differing only on a set of measure zero are identified, the set X(y) of
all functions f € M(y) for which p(|f|) < o is called a Banach function space. For
each f € X(y), the norm of f is defined by

I lx():= pdfD.

The set X (y) under the natural linear space operations and under this norm becomes a
Banach space (see [109, Chap. 1, Theorems 1.4 and 1.6]) and

L) © X)) o L'().
If p, is a Banach function norm, its associate norm py, is defined on M*(y) by

0 (g): = sup f F@g@ldl: f € MY @), () <1%,g € MT ().
Y

It is a Banach function norm itself [109, Chap. 1, Theorem (3.3.3)]. The Banach function
space X' (y) determined by the Banach function norm p’ is called the associate space
(Kothe dual) of X(y). The associate space X' (y) can be viewed a subspace of the dual
space X (y).

Recall that, since the Lebesgue length measure |dz| is separable (see, e.g., [120,
Section 6.10]), a Banach function space X(y) over y is separable if and only if its Kothe
dual space X'(y) is isometrically isomorphic to the Banach dual space X*(y) (see, e.g.,
[109, Chap. 1, Corollaries 4.3, 4.4]). A Banach function space X (y) reflexive if and only
if X(y) and X'(y) are separable (see, e.g., [109, Chap. 1, Corollary 5.6]).
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For Banach function spaces X(y) and Y (y), let M (X )Y (y)) denote the space
of point wise multipliers from X (y) to Y (y) defined by

M(X(),Y()):={f € M(y): fg € Y(y) forall g € X(y)}.
It is a Banach function space with respect to the operator norm

1 lucxopre = supllifgllyn: g € X0 ligllxgy < 1)
In particular, M (X ), X (y)) = L”(y). Note that it may happen that the space
M (X ), Y(y)) contains only the zero function. For instance, if 1 < p < g < oo, then

M (Lp (y), L1 (y)) = {0}. The continuous embedding L* (y) © M (X ), Y(y)) holds if
and only if X(y) © Y(y). For example, if 1 < q < p < oo, then LP(y) & L1(y) and
M(LP(y),Li(y)) = L' (y), where 1/r =1/q—1/p. For these and many other
properties and examples, see [124,126,128,129,130].

We will write X:= X(T') if T is a rectifiable Jordan curve. If X is a reflexive
Banach function space over a rectifiable Jordan curve I' and the Cauchy singular integral
operator defined by (76) is bounded on X, then in view of [121, Theorem 6.1] and the
Hoélder inequality for Banach function spaces (see, e.g., [109, Chap. 1, Theorem 2.4]),
the curve I is a Carleson curve (or Ahlfors-David regular curve), that is,

IT(t, )l
sup sup
tel’ >0 €
Moreover, by [121, Lemma 6.4], the operators

P:=({ 4+ 5)/2,Q:= (I—-S5)/2
are bounded projections both on X and on X', the latter means that P2 = P and Q2 = Q.
Then we can define Hardy type subspaces PX, QX of X and PX', QX' of X'.

In what follows we will always assume that X and Y are reflexive Banach function
spaces and S is bounded on both X and Y. For a € M(X,Y), define the Toeplitz operator
T(a): PX — PY with symbol a by

T(a)f = P(af),f € PX.
It is clear that T (a) € L(PX, PY) and
T @l px.py) < PNl coryllallyex y)-

We note that there is a huge literature dedicated to Toeplitz operator acting
between the same Hardy spaces HP = PLP,1 < p < oo, see, e.g., the monographs by
Douglas [115], Bottcher and Silbermann [111], Gohberg, Goldberg, Kaashoek [119],
Nikolski [131] for Toeplitz operators on Hardy spaces over the unit circle and the
monograph by Bottcher and Karlovich [110] for Toeplitz operators on weighted Hardy
spaces over Carleson curves.

We could find by Tolokonnikov [135] dedicated to Toeplitz operators acting
between different Hardy spaces HP and HY? over the unit circle. In particular, he
described in [135, Theorem 4] all symbols generating bounded Toeplitz operators from
HP to H? for 0 < p,q < oo. Lesnik [125] proposed to study Toeplitz and Hankel
operators between abstract Hardy spaces H[X] and H[Y] built upon different separable
rearrangementin variant Banach function spaces X and Y over the unit circle such that
X © Y and the space Y has nontrivial Boyd indices. Notice that the latter condition is
equivalent to the boundedness of the operator S on the space Y, whence H[Y] = PY.

< oo
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Lesnik obtained analogues of the Brown-Halmos and Nehari theorems (see [125,
Theorem 4.2] and [125, Theorem 5.5], respectively), extending results of [122] for the
case of a reflexive rearrangement-invariant Banach function space X (that is, X =Y)
with nontrivial Boyd indices. He also proved [125, Theorem 6.1] that a Toeplitz operator
T(a): H[X] — H[Y] is compact if and only if a = 0.

Inspired by Lesnik [125], we prove the following analogue of the Coburn-
Simonenko theorem for Toeplitz operators T(a): PX — PY in the case when X and Y
are different Banach function spaces. Notice that we do not assume that the spaces X
and Y are rearrangement-invariant.

The above result was proved by Coburn [112] for the case of X = Y = L? over
the unit circle and by Simonenko [134] in a more general of setting of X =YV = LP,1 <
p < oo, over so-called Lyapunov curves. See [110, Theorem 6.17], where the above
theorem is proved in the case X = Y = LP(w), where LP (W), 1 < p < oo, is a Lebesgue
space with a Muckenhoupt weight over a Carleson Jordan curve.

The statement of Theorem (3.3.10) has a more precise form for concrete Banach
function spaces X,Y when M(X,Y) can be calculated and conditions for the
boundedness of S are known. Here we mention only the case of Toeplitz operators acting
from the Hardy space HP = PLP to the Hardy space H? = PLY as the simplest example.
Corollary (3.3.1)[108]: Let 1 <g<p <o and 1/r =1/q —1/p. Suppose I' is a
Carleson Jordan curve. If a € L"\{0}, then the Toeplitz operator T(a) € L(HP,H?) has
a trivial kernel in HP or a dense image in HY.

It seems that the above corollary is new even in the case of the unit circle.

We collect properties of Banach function spaces and their Hardy type subspaces
proved elsewhere. We first relate the triviality of the kernel (resp. the density of the
image) of a Toeplitz operator T(a) € L(PX, PY) with the density of the range (resp.
triviality of the kernel) of its companion operator T(a): L(QY’,QX') defined by
T(@f = Q(af). ]

Then show that one of the operators T (a) or T (a) is injective with the aid of the
Lusin-Privalov theorem and other results stated. We recall the definition of variable
Lebesgue spaces LPO), which give a non-trivial example of Banach function spaces.
Further, we describe the space M (Lp('), Lr(')) and formulate conditions for the
boundedness of the operator Cauchy singular operator S on LPO) . These results allow us
to reformulate Theorem (3.3.10) for Toeplitz operators between PLPO and PL1O) in
terms of variable exponents p,q:T' = (1,0). In particular, we immediately get
Corollary (3.3.1), taking all exponents constant.

Let I be a rectifiable Jordan curve. It divides the plane into a bounded connected
component D* and an unbounded connected component D~. We provide ' with the
counter-clockwise orientation, that is, we demand that D stays on the left of I' when
the curve is traced out in the positive direction. Without loss of generality we suppose
that 0 € D*. Put

LY := {fELl:ff(T)Tnd‘L':OfOI'TlZO )
¥
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(IH? := {f € Ll:ff(‘[)‘[nd‘[ =0forn < 0¢,

r
L= (M) P

From [132, pp. 202-206] one can extract the following result.
Lemma (3.3.2)[108]: We have L1 n (L})? = {0} and L} n Lt = C.

The proof of the following important theorem is contained in [132, p. 292] or
[117, Theorem 10.3].
Theorem (3.3.3)[108]: (Lusin-Privalov). Let I" be a rectifiable Jordan curve. If f € Ll_,
then f vanishes either almost everywhere on I' or almost nowhere on T.

We collect some well known properties of Banach function spaces and pointwise
multipliers between them.
Lemma (3.3.4)[108]: ([109, Chap. 1, Proposition 2.10]). Let X, Y be Banach function
spaces over a rectifiable Jordan curve T' and let X',Y’ be their associate spaces,
respectively. If X © Y, then Y’ & X',
Lemma (3.3.5)[108]: ([124, Section 2, property (vii)]). Let X,Y be Banach function
spaces over a rectifiable Jordan curve T' and let X',Y’ be their associate spaces,
respectively. Then M(X,Y) = M(Y', X").
Lemma (3.3.6)[108]: Let X,Y be separable Banach function spaces over a rectifiable
Jordan curve ' and a € M(X,Y). Then the adjoint of the operator al € L(X,Y) of
multiplication by the function a is the operator (al)* = al € L(Y', X").
Proof. Since X (resp., Y) is separable, its Banach dual space X* (resp., Y*) is
isometrically isomorphic to the associate (Kothe dual) space X' (resp., Y') and

G(f) = f F@g@lde]

gives the general form of a linear functional on X (resp., Y) and [|G||x- = [Igllx* (resp.,
IGlly- = llglly?), see, e.g, [109, Chap. 1, Corollary 4.3]. The desired statement follows
immediately from the above observation and Lemma (3.3.5).

Suppose X is a reflexive Banach function space in which the Cauchy singular
integral operator S is bounded. Put

X.=PX, X%:=0X, X_:=X°@C.

The corresponding subspaces X/ , (X")?, X are defined analogously.

For f € X c I}, consider the Cauchy type integrals

(C.)(2) =—f @

It is well known [132, p. 189] that the functlons (C+f)(2) are analytic in D¥, they have
nontangential boundary values (C;f)(t) as z = t almost everywhere on I".
These boundary values can be found by the Sokhotsky-Plemelj formulas

(€N ® =5 £©) +—ff( 2

z € D,

that s,

(€)@ = PH®), (€)= (QNHD.
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Since the function f € X, (respectively, f € X°) coincides on I' with the boundary
value of the function C, f (respectively, C_f) defined in D™ (respectively, D7), we will
think of functions from X, (respectively, X°) as of functions defined in D7
(respectively, in D7) by f(2): = (C,f)(2) (respectively, by f(z): = (C_f)(2)).
Lemma (3.3.7)[108]: ([121, Lemma 6.9]). Let ' be a rectifiable Jordan curve and X be
a reflexive Banach function space in which the Cauchy singular integral operator S is
bounded.
(@)If f € X, and g € X}, then fg € LL. If, in addition, f € X° or g € (X")?, then
fg € (IH)°.
(b) We have
X, =1L nx, X0 =N nXx,X_ =1 nX.
On a rectifiable Jordan oriented curve I', we have
dr = e'r@|dq|,
Where 0r-(7) is the angle made by the positively oriented real axis and the naturally
oriented tangent of I' at T (which exists almost everywhere). Let X be a Banach function
space over I'. Define the operator Hp: X — X by
Note that the operator Hy is additive but Hr(af) = @ - Hpf fora € Cand f € X.
It is clear that Hp is bounded on X and HE = I.
Lemma (3.3.8)[108]: ([121, Lemma 6.6]). Let I' be a rectifiable Jordan curve and X be
a reflexive Banach function space in which the Cauchy singular integral operator S is
bounded. Then the adjoint of S € L(X) is the operator S* = —HpSHp € L(X') and
consequently,
P* = HyQHp, Q* = HpPH.
Let X and Y be reflexive Banach function spaces over a rectifiable Jordan curve
I". Suppose a € M(X,Y) = M(Y’',X") and the operator S is bounded on X and on Y. In
view of Lemma (3.3.8), the operator S is also bounded on Y’ and on X'. Then, along
with the Toeplitz operator T(a): X, = Y,, we consider its companion operator
T(a): (Y)? - (X")? defined by
T()f = Q(af),f € (Y)2.
It is obvious that T(a) € £L((Y")?, (X")?) and
”T(a) ”L((Y’)‘l,(x’)‘l) < ”Q ”L(X’)”a”M(X,Y)'
Lemma (3.3.9)[108]: Let X and Y be reflexive Banach function spaces over a rectifiable
Jordan curve. Suppose X < Y and the Cauchy singular integral operator S given by (76)
is bounded on X and on Y. If a € M(X,Y), then the Toeplitz operator T (a): X, = Y,
has a trivial kernel in X, (resp., a dense image in Y,) if and only if its companion
operator T(a): (Y')2 — (X")° has a dense image in (X")? (resp., a trivial kernel in
(Y"Ho).
Proof. Let Im A and ker A denote the image and the kernel, respectively, of a bounded
linear operator A acting between Banach spaces.
Since X © Y, wehave Q € L(X,Y) and PaP + Q € L(X,Y). The spaces X and Y
decompose into the direct sums X = X, @ X° and Y =Y, @ Y°. Accordingly, the
operator PaP + @Q may be written as an operator matrix
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("6 9): ()~ (3)

Im(PaP + Q) = ImT(a) @ Y° ker(PaP + Q) = kerT(a). (77)
On the other hand, Y’ & X' by Lemma (3.3.4)and a € M(Y',X") by Lemma (3.3.5).
Then P € L(Y',X") and P + QaQ € L(Y',X"). Since the spaces Y' and X' decompose
into the direct sums Y’ = (Y"); @ (Y")? and X' = (X"), @ (X)?, the operator P +
QaQ@ may be written as an operator matrix

(1 0 )_((Y')+) R ((X')+)
0 T(a)) \(v")° XN
Im(P + QaQ) = (X"), @ ImT (a),ker(P + QaQ) = ker T(a). (78)
Lemmas (3.3.6) and (3.3.8) yield
(PaP + Q)" = P*aP" + Q" = (HrQHr)(HraHr) (HrQHr) + HpPHy
= Hr(P + QaQ)Hr. (79)
From the second identity in (77) it follows that T(a) € £L(X,,Y,) has a trivial
kernel in X, if and only if PaP + Q € L(X,Y) has a trivial kernel in X. On the other
hand, from (79) and HZ = I we deduce that the latter fact is equivalent to the fact that
P+ QaQ € L(Y',X') has a dense image in X' (see, e.g., [133, Section 4.12]). In turn,
in view of the first identity in (78), the operator P + QaQ has a dense image in X' if and
only if the operator T(a) € L((Y")?, (X")?) has a dense image in (X')°.
The proof of the equivalence of the density of the image of T (a) in Y, and the
triviality of the kernel of e T(a) in (Y")? is analogous.
Theorem (3.3.10)[108]: Let X and Y be reflexive Banach function spaces over a
rectifiable Jordan curve. Suppose X © Y and the Cauchy singular integral operator S
given by (76) is bounded on X and on Y. If a € M(X,Y)\{0}, then T(a) € L(PX, PY)
has a trivial kernel in PX or a dense image in PY.
Proof. In view of Lemma (3.3.9), it is sufficient to show that T(a): X, — Y, is injective
onX, orT(a): (Y2 - (X")? is injective on (Y")°.
Assume the contrary, that is, that there exist f, € X, and g_ € (Y')? such that
fr #0,9_#0,and

Hence

Therefore

Paf, =0,Qag_ = 0. (80)
By Lemma (3.3.7)(b), f+ € X, c L} and g_ € (Y'); < L1. Since f, # 0 and g_ # 0,
from the Lusin-Privalov Theorem (3.3.3) it follows that f, # 0 a.e.on'and g_ # 0
a.e.onT.
Put f_ := af, and g, := ag_. Then from (80) it follows that Paf, = Pf_ =0
and Qag_ = Qg, = 0. Therefore,
f- = af, = Paf, + Qaf, = Qaf, € Y2,
gy =ag_ =Pag_+ Qag_ =Pag_€ (X'),.

f+9+ = fr(ag-) = (fra)g- = f_g_. (81)
From Lemma (3.3.7)(a) we deduce that f.g, € L% and f_g_ € (L})°. Lemma (3.3.2)
and identity (81) imply that f, g, = f_g_ = frag_ = 0. Since f, # Oa.e.onand g_ #

Then
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0 a.e. on I', we conclude that a = 0 a.e. on I, but this contradicts our hypothesis and,
thus, completes the proof.
Given a rectifiable Jordan curve T, let P(T') be the set of all measurable functions
p:T > [1,00]. For p € P(T') and a measurable subset y < T, put
Y2V = {t € y: p(t) = oo},
For a measurable function f:y — C, consider

eo0r (D= [ IFOPOIde] + 11 0

P\r2d

According to [113, Definition 2.9], the variable Lebesgue space LP©)(y) is defined as
the set of all measurable functions f:y — Csuch that gy, (f /1) < oo for some 4 > 0.
This space is a Banach function space with respect to the Luxemburg-Nakano norm
given by
”f”Lp(-)(y): = inf{ﬂ > 0: Qp(-),y(f/ﬂ-) < 1}

(see, e.g., [113, Theorems 2.17, 2.71 and Section 2.10.3]). If p € P(T') is constant, then
LPO(y) is nothing but the standard Lebesgue space LP (y). Variable Lebesgue spaces
are often called Nakano spaces. See Maligranda [127] for the role of Hidegoro Nakano
in the study of variable Lebesgue spaces.

The following property of the unit ball of variable Lebesgue spaces is well known
(see, e.g., [113, Corollary 2.22]).
Lemma (3.3.11)[108]: Let y be a measurable subset of a rectifiable Jordan curve I'. If
p € P(I) and f is a measurable function on y, then the inequalities ©,,(f) < 1 and

£l POG) S 1 are equivalent.
For the brevity, we will simply write LP® for LPO(T"). For p € P(I), put
p_ 1= ess %rellfp(t),er 1= esssup p(t).

ter
Lemma (3.3.12)[108]: ([113, Corollary 2.81]). Let I' be a rectifiable Jordan curve and

p € P(D).

Then LP® is reflexive if and only if 1 < p_ < p, < oo.

Embeddings of variable Lebesgue spaces are characterized as follows.

Lemma (3.3.13)[108]: ([113, Corollary 2.48]). Let I' be a rectifiable Jordan curve.
Suppose p,q € P(I). Then LP®) & 190 if and only if q(t) < p(t) for almost all t €
I.

We will describe the space of pointwise multipliers between variable Lebesgue
spaces. The next lemma follows from [129, Section 2, Property (f) and Theorem 1] and
the fact that variable Lebesgue spaces are Banach function spaces [113, Section 2.10.3].
Lemma (3.3.14)[108]: Let y be a measurable subset of a rectifiable Jordan curve I' and
p € P(I"). Then

M (L=, POW) = PO, M (PO, 1POM)) = 120,
Now we state the following two simple statements.
Lemma (3.3.15)[108]: Let I" be a rectifiable Jordan curve and y4,..., ¥ be measurable
sub-sets of I such that
yiny;=0fori,je{l,....k}, yyU--- Uy, =T. (82)
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If p € P(T), then
PO = PO ) @ - @ LPO(y),
where the norm in the direct sum LPO)(y,) @ - - - @ LPO) (y,,) is defined by
”f”Lp(')(76)EB-"EBLp(')(k) = ”f)(h”Lp(-)(yl) Tt ”fXVk”Lp(-)(yk)'
Lemma (3.3.17)[108]: Let I be a rectifiable Jordan curve and y4, ..., y; be measurable
sub-sets of T satisfying (82). If p,q € P(T') and q(t) < p(t) for almost all t € T, then

MO ® - @ POW), 100 @ - ® L10W)

= M (PO, 1990)) @ - @& M (PO, 199 ().
The proofs of the above two lemmas are straightforward.
We will need the following generalized Holder inequality.
Lemma (3.3.18)[108]: ([113, Corollary 2.28]). Let I' be a rectifiable Jordan curve.

Suppose p, q,r € P(I') are related by
1 1

= + )
qt) p) r@®)
Then there exists a constant C > 0 such that forall f € LP®) and g € L™®, one has fg €
190 and

terl. (83)

Ifgll e < Clfllpollgllro.
The following result was obtained by Nakai [130, Example 4.1] under the additional
hypothesis
sup r(t) < o
ter\rl’

(and in the more general setting of quasi-Banach variable Lebesgue spaces spaces over
arbitrary measure spaces). Nakai also mentioned in [130, Remark 4.2] (without proof)
that this hypothesis is superfluous. We provide a proof here.

Theorem (3.3.19)[108]: Let I be a rectifiable Jordan curve. Suppose p, q,r € P(I') are

related by (83). Then M(LP®), [40)) = [0,
Proof. Let y;: = Fg,('),yz: = (1“;’,(') U Foro(')) \1“;’,('), and
y3:=T\(y1 Uyz2) =T\ (1“3,(') U Fo%(.) U F;('))-
From (83) it follows that p(t) = o and q(t) = r(t) fort € y,. Then by Lemma (3.3.14),
M (17O, 1990 ) = M (L2 G, 17O () = 17O (). (84)

Similarly, from (83) we also obtain Ffo(') C 1“;’,(') N Foro('), whence y, = 1“;(')\1“5,(').
Therefore, p(t) = q(t) < oo and r(t) = oo for t € y,. Then, from Lemma
(3.3.14) we get

M (27O (y,), 199 (1)) = M (LPO(2), PO () = L2(v;) = O(yz). - (85)
The rest of the proof is developed by analogy with the proof of [129, Theorem 4]. Let
feEM (Lp(') (y3), L3O (y3)). The multiplication operator T g = fg maps LPO (y3)

into L90(y3) and has a closed graph. Hence there exists a constant ¢ € (0, 0) such
that

||fg||Lq(-)(y3) < C||g”Lp(-)(y3) forall g € Lp(.)(VB)- (86)
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Fore > 0, put

c+e (IO
O ={F® (m) it rm=0, (87)
0, if f(¢£) = 0.
Let us show that
Op()ys (fo) < 1. (88)

Assume the contrary, that is,0,() 4, (fe) > 1. Then from [116, Propositions A.1 and A.8]
it follows that there exists a measurable set y C y5 such that

0Oty fe) = 1. (89)
From (83) and (87) we get
-1
|f (t)l _ If(t)l r(t)/q(t) _ If(t)l r(t)/p(t) e (90)
e e+ e “\c+e ’ v
Equality (89) and Lemma (3.3.11) imply that ||, f£||Lp(,) (4 = 1. Applying (86) with
3
g = Xyfe, we obtain
Xyﬁzf
< <1
| c lpogy ”ny'S”Lp(')(Vs)
Then, in view of Lemma (3.3.11), we get
Xylef
0q(),y ( . > < 1. (91)

Combining (89), (87), (83), and (91), we arrive at
Xy f Xylef
1= 0p00 (W fe) = €roms <—y ) = 0400y ( ’ )

c+e c+e

C Xyﬁzf ¢
< < 1
_c+qu(')"’3< c >_c+e< ’

and we get a contradiction. Hence (88) is fulfilled. Applying Lemma (3.3.11) to (88),
we deduce that || £; [, q0 o = L. Then, in view of (86), we obtain

”f:*zf”LCI(-)(yg) < C”f:g ”Lp(')(y3) < c.
Taking into account the above inequality, equality (87) and Lemma (3.3.11), we see that

f fef fef
erOys (c + e) = CaOhrs (c + e) = Qa0 (T) =L
Whence ”f”Lr(-)(y3) < c + &. Letting € —» 0, we obtain ”f”Lr(-)(y3) < c. It remains to

observe that the smallest constant in inequality (86) coincides with
||f||M(Lp()(]/3),Lq()(]/3)) S C. Hel’lce

M (PO, 1900s)) & LOs).
The embedding
LO@s) o M (LPO(y3), 199 () )
follows from the generalized Holder inequality (Lemma (3.3.18)). Thus,
M (17O (y5), 199 (p3) ) = 1O (). (92)

98



Finally, from (84), (85), (92) and Lemmas (3.2.16)-(3.2.17) we obtain
M(179,190) = M (170 (ry) @ 17O (1) @ 17O (1), 199 (1) @ L19 (1) @ 110 (1))
= M (PO, 1990)) & M (PO 1), L99()) @ M (1PO(y3), 199 ()

=L"O0) &L V0) @& L"O(ys) = 170,
Which completes the proof.

The above proof can be extended without any change to the case of variable
Lebesgue spaces over arbitrary nonatomic measure spaces. The theorem itself is also
true for arbitrary measure spaces. However the proof for not necessarily nonatomic
measure spaces is more complicated. It can be developed by analogy with [128].

David’s theorem [114] (see also [110, Theorem 4.17]), says that the Cauchy
singular integral operator S is bounded on the standard Lebesgue space LP,1 < p < oo,
over a rectifiable Jordan curve I' if and only if I is a Carleson curve. To formulate the
generalization of this result to the setting of variable Lebesgue spaces, we will need the
following class of nice variable exponents.

Let I be a rectifiable Jordan curve. We say that an exponent p € P(I') is locally
log-Holder continuous (cf. [113, Definition 2.2]) if 1 < p_ < p, < o and there exists
a constant Cpyr € (0, ) such that

Cporr
lp(®) —p(D)| < “loglt — 1]
The class of all locally log-H6lder continuous exponent will be denoted by LH (I').

Notice that some also denote this class by P18 (), see, e.g., [123, Section 1.1.4].
Theorem (3.3.20)[108]: ([123, Theorems 2.45 and 2.49]). Let " be a rectifiable Jordan
curve and p € LH(T). Then the Cauchy singular integral operator S is bounded on LP®)
if and only if T is a Carleson curve.

Now we are in a position to give a more precise formulation of Theorem (3.3.10)
in the case of Toeplitz operators acting between Hardy type subspaces PLPO) and PLIO)
of variable Lebesgue spaces LP®) and LI%), respectively.

Theorem (3.3.21)[108]: Let I be a Carleson Jordan curve. Suppose variable exponents
p,q € LH() and r € P() are related by (83). If a € L"®O\{0}, then the Toeplitz
operator T(a) € L(PLp('),PLq(')) has a trivial kernel in PLP®) or a dense image in
pra®).

Proof. We know from Lemma (3.3.12) that the spaces LPO and LIO) are reflexive
because 1 < p_,q_ and p,, q, < o (inview of p,q € LH(I')). Since r € P(I'), we have
1< r(t) < oo for almost all t € I'. Then we deduce from (83) that q(t) < p(t) for
almost all t € T'. Therefore, by Lemma (3.3.13), LPO) & 190 1t follows from Theorem
(3.3.20) that the Cauchy singular integral operator S is bounded on LP®) and L1,

Now we observe that L' = M (Lp('),Lq(')) in view of Theorem (3.3.19). It
remains to apply Theorem (3.3.10).

Corollary (3.3.1) follows immediately from Theorem (3.3.21) if we take all
exponents p, g, and r constant.

forall t, T € T satisfying |t — 7| < 1/2.
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Chapter 4
Toeplitzness and Toeplitz Projections

We extend some of asymptotic Toeplitzness of composition operator's results but
we also show that new phenomena appear in higher dimensions. We deduce an essential
version of the classical Hartman—Wintner spectral inclusion theorem, give a new proof
of Johnson and Parrot’s theorem on the essential commutant of abelian von Neumann
algebras for separable Hilbert spaces and construct short exact sequences of Toeplitz
algebras. T is a Toeplitz operator (that is, T = Py2pnyM|y2@pr), where M, is the
Laurent operator on L?(T") for some ¢ € L*(T™)) if and only if T, TT, =T for all
i=1,...,n. We show that T is an asymptotic Toeplitz operator if and only if T =
Toeplitz+ compact. The case n = 1 is the well known results of Brown and Halmos,
and Feintuch, respectively. We also present related results in the setting of vector-valued
Hardy spaces over the unit disc.
Section (4.1): Composition Operators:

For B,, denote the unit ball and S,, the unit sphere in C"*. We denote by the surface
area measure on S,,, so normalized that o(S,) = 1. We write L* for L*(S,,, do) and L?
for L*(S,,, do). The Hardy space H? consists of all analytic functions h on B,, which
satisfy

o<r<i

Irll? = sup flh(()lzda(() < oo,
Sn

It is well known that such a function h has radial boundary limits almost everywhere.
We shall still denote the limiting function by h. We then have h({) = li¥r11 h(r{) for a.e.
T

¢ € Sand
107 = [ 1@ Pdo(@) = Il

Sn
From this we may consider H? as a closed subspace of L2. We shall denote by P the
orthogonal projection from L? onto H2. See [146, Section 5.6] for more details about
H? and other Hardy spaces.

We shall also need the space H*, which consists of bounded analytic functions
on B,,. As before, we may regard H* as a closed subspace of L™.

For any f € L*, the Toeplitz operator Ty is defined by Trh = P(fh) for h in H?.
It is immediate that T is bounded on H? with ||Tf || < 1f |l co-

(The equality in fact holds true but it is highly nontrivial. See [141].) We call f
the symbol of Tr. The following properties are well known and can be verified easily
from the definition of Toeplitz operators.

(a) Ty =Ty forany f € L.
(b)Ts = Mg, the multiplication operator with symbol f, for any f € H*.
(c)TyTs = Tyr and Tf Ty = Tf, for f € H* and g € L.

The other class of operators that we are concerned with is the class of composition
operators. Let ¢ be an analytic mapping from B,, into itself. We shall call ¢ an analytic
selfmap of B,,. We define the composition operator C, by C,h = h o ¢ for all analytic
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functions h on B,,. Note that C,, is the identity if and only if ¢ is the identity mapping
of B,,. In the one dimensional case, it follows from Littlewood Subordination Principle
that C,, is a bounded operator on the Hardy space H 2, In higher dimensions, C » may not
be bounded on H? even when ¢ is a polynomial mapping. See [139, 147] for details on
composition operators.

We discuss the case of one dimension, that is, n = 1. It is a well known theorem
of Brown and Halmos [138] back in the sixties that a bounded operator T on H? is a
Toeplitz operator if and only if

T,TT, =T. (D
Here T, is the Toeplitz operator with symbol f(z) = z on the unit circle T.

This operator is also known as the unilateral forward shift. There is a rich
literature on the study of Toeplitz operators and see, for example, [142].

In their study of the Toeplitz algebra, Barra and Halmos [137] introduced the
notion of asymptotic Toeplitz operators. An operator A on H? is said to be strongly
asymtotically Toeplitz (‘‘SAT’”) if the sequence {TJ*AT,"};n—, converges in the strong
operator topology. It is easy to verify, thanks to (1), that the limit A, if exists, is a
Toeplitz operator. The symbol of A, is called the asymptotic symbol of A. Barra and
Halmos showed that any operator in the Toeplitz algebra is SAT.

In [143], Feintuch investigated asymptotic Toeplitzness in the uniform (norm)
and weak topology as well. An operator A on H? is uniformly asymptotically Toeplitz
(““UAT”’) (respectively, weakly asymptotically Toeplitz (‘““WAT”’)) if the sequence
{TI*AT]"} converges in the norm (respectively, weak) topology.

It is clear that
UAT = SAT = WAT
and the limiting operators, if exist, are the same.

The following theorem of Feintuch completely characterizes operators that are
UAT. A proof can be found in [143] or [145].

Theorem (4.1.1)[136]: (Theorem 4.1 in [143]). An operator on H? is uniformly
asymptotically Toeplitz if and only if it has the form *‘Toeplitz + compact’.

Recently Nazarov and Shapiro [145] investigated the asymptotic Toeplitzness of
composition operators and their adjoints. They obtained many interesting results and
open problems. We list here a few of their results, which are relevant to our work.
Theorem (4.1.2)[136]: (Theorem (4.1.1) in [145]). C, ="Toeplitz + compact™ (or
equivalently by Feintuch's Theorem, C,, is UAT) if and only if C, = I or C,, is
compact.

It is easy [145, page 7] to see that if w € dD\{1} and ¢(z) = wz (such a @ is
called a rotation), then C,, is not WAT. On the other hand, Nazarov and Shapiro showed
that for several classes of symbols ¢, the operator C, is WAT and the limiting operator
is always zero. The following conjecture appeared in [145].

If ¢ is neither a rotation nor the identity map, then C, is WAT with asymptotic
symbol zero.

We already know that the conjecture holds when C, is a compact operator.
Nazarov and Shapiro showed that the conjecture also holds when (a) ¢ (0) = 0; or (b)
|| = 1 on an open subset V of T and |¢| < 1 a.e. on T\V.
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For the strong asymptotic Toeplitzness of composition operators, Nazarov and
Shapiro proved several positive results. On the other hand, they showed that if ¢ is a
non-trivial automorphism of the unit disk, then C,, is not SAT.

Later, Cuckovic and Nikpour [140] proved that Cy, is not SAT either. We combine
these results into the following theorem.

Theorem (4.1.3)[136]: Suppose ¢ is a non-identity automorphism of D. Then C,, and
Cy are not SAT.

A more general notion of asymptotic Toeplitzness has been investigated by
Matache in [144]. An operator S on H? is called a (generalized) unilateral forward shift
if S is an isometry and the sequence {S*™} converges to zero in the strong operator
topology. An operator A is called uniformly (strongly or weakly) S —asymptotically
Toeplitz if the sequence {S*™AS™} has a limit in the norm (strong or weak) topology.
Among other things, the results in [144] on the S —asymptotic Toeplitzness of
composition operators generalize certain results in [145].

Motived by Nazarov and Shapiro's work discussed in the previous, we would like
to study the asymptotic Toeplitz-ness of composition operators on the Hardy space H?
over the unit sphere in higher dimensions.

To define the notion of asymptotic Toeplitzness, we need a characterization of
Toeplitz operators. Such a characterization, which generalizes (1), was found by Davie
and Jewell [141] back in the seventies. They showed that a bounded operator T on H?
is a Toeplitz operator if and only if T = }7_; Tz TTy,.

We define a linear operator ® on the algebra B(H?) of all bounded linear
operators on H? by

D(4) = z T, AT, )
=1

for any A in B(H?). It is clear that ® is a positive map (that is, ®(A4) > 0 whenever 4 >
0) and @ is continuous in the weak operator topology of B(H?). Let S be the column
operator whose components are T, , ..., T, .
Then S maps H? into the direct sum (H?)™ of n copies of H2. In dimension n =
1, the operator S is the familiar forward unilateral shift. The adjoint $* = [TZ1' ) TZn]
is a row operator from (H?)™ into H2. Since
S*S =Ty Ty ++Tg Ty =Tpyiizg, =1,

we see that S is a co-isometry. In particular, we have [|S|| = ||S*|| = 1.
From the definition of ®, we may write
A0 . o]t A0 .. o0
®(4) =Ty, T, ]|0 A . Ol ; |=5"|0 4 = OIs
0 0 .. Al 0 0 A

It follows that ||®(A)]| < IIS*INIANIS]] < ||A]| for any A in B(H?). Hence ® is a
contraction. For any positive integer m, put ®™ = @ o ... o ®, the composition of m
copies of ®. Then we also have [|[®@™(A)|| < [|A]l.
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The aforementioned Davie{Jewell's result shows that a bounded operator T is a
Toeplitz operator on H? if and only if T is a fixed point of ®, which implies that
®™(T) =T for all positive integers m.

We now define the notion of asymptotic Toeplitzness. An operator A on H? is
uniformly asymptotically Toeplitz (‘‘UAT’’) (respectively, strongly asymptotically
Toeplitz (““SAT”’) or weakly asymptotically Toeplitz (‘*“WAT’’)) if the sequence
{®@™(A)} converges in the norm topology (respectively, strong operator topology or
weak operator topology). As in the one dimensional case, it is clear that

UAT = SAT = WAT
and the limiting operators, if exist, are the same. Let A, denote the limiting operator. It
follows from the continuity of & in the weak operator toplogy that ®(A,) = A.
Therefore, A, is a Toeplitz operator. Write Ao, = T for some bounded function on S,,.
We shall call g the asymptotic symbol of A.

In the definition of the map @ (and hence the notion of Toeplitzness), we made
use of the coordinate functions z, ..., Z,. It turns out that a unitary change of variables
gives rise to the same map. More specifically, if {u4, ..., u,} is any orthonormal basis of
C™ and we define fi (z) =z, uj) forj = 1, ...,n then a direct calculation shows that

n
D) = ) Ty ATy,
j=1

for every bounded linear operator A on H.

We devoted to the study of the Toeplitzness of composition operators in several
variables. Our focus is on strong and uniform asymptotic Toeplitzness. It turns out that
while some results are analogous to the one dimensional case, other results are quite
different.

Let ¢ = (¢4, ..., ¢) and n = (4, ..., Ny) be two analytic selfmaps of B,,.

We also use ¢ and 17 to denote their radial limits at the boundary. We will assume
that both composition operators C, and C,, are bounded on the Hardy space H 2 (Recall
that in dimensions greater than one, composition operators may not be bounded. See
[139, Section 3.5].) Suppose g is a bounded measurable function on §,,. Using the
identities C(pTZ]. = T(p].C(p and TZ—].C,’; = C,’;Tﬁj forj =1, ...,n, we obtain

n n
O™ (CpT,C,) = z Ty, ChTgCyTy, = z CaT, TgTp,Co
: =

j=1
n
=Gy ZTﬁjgwj Co = CnTgtomCo-
j=1

Here (¢, n) is the inner product of ¢ = (@4, ..., ,,) and n = (n4, ..., M,,) as vectors in
C™. By induction, we conclude that

d™(CpT,Cp) = CpTy(pmmC, forany m > 1. (3)
As an immediate application of the formula (3), we show that certain products of
Toeplitz and composition operators on H? are SAT.
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Proposition (4.1.4)[136]: Suppose that [{¢@,n)| < 1 a.e. on S,,. Then for any bounded
function g on S, the operator C;T,C,, is SAT with asymptotic symbol zero.

Proof. By assumption, (¢,n)™ — 0 a.e.on S,, as m — oo. This, together with Lebesgue
Dominated Convergence Theorem, implies that Ty, ym — 0, and hence,
CaTg(pmmCy — 0 in the strong operator topology. Using (3), we conclude that

d)m(C,’;Tg C(p) — 0 in the strong operator topology. The conclusion of the proposition
follows.

As suggested by (3), the following set is relevant to the study of the asmytotic
Toeplitzness of C;T, Cyy:

E(p,n) ={{ € Sp:{p(0),n(0)) = 1}
={{ € S,:0({) =n({) and [p({)| = 1}

To obtain the second equality we have used the fact that [@({)| = 1 and |n({)| < 1 for
{ € S,. Note that E(¢, @) is the set of all { € S,, for which |@({)| = 1. On the other
hand, by [146, Theorem 5.5.9], if ¢ # 1, then E (¢, n) has measure zero.
Proposition (4.1.5). For any analytic selfmaps ¢, n of B,, and any bounded function g
on S, we have

m

1 .

— E i(cx* * -

— o (CnTgC(p) - CnTgXE<<p,n) C, in the strong operator topology
j=1

asm — 1.
Proof. By (3), it suffices to show that (1/m) = ;-"zlg((p,r])j converges to gXg(pn)
a.e. on S,,. But this follows from the identity

1 i g() if{ & E(p,m)

— > 9@y ={1 (1 —(<p(€),n(€))m“> .

ms mI O\ T @@y ) EEem

forany { € S,,.

Proposition (4.1.5) says that any operator of the form C;T,C,, is mean strongly
asymptotically Toeplitz (‘“MSAT’’) with limit C,’;Tg XECom) C,- We now specify 7 to be
the identity map of B,, and g to be the constant function 1 and obtain
Corollary (4.1.6)[136]: Let ¢ be a non-identity analytic selfmap of B,, such that C, is
bounded on H2. Then Cyp 1s MSAT with asymptotic symbol zero.

This result in the one-dimensional case was obtained by Shapiro in [148]. In fact,
Shapiro considered a more general notion of MSAT. It seems possible to generalize
Proposition (4.1.5) in that direction and we leave this.

Theorem (4.1.3) asserts that for ¢ a non-identity automorphism of the unit disk
D, the operators C, and Cy, are not SAT. In dimensions greater than one, the situation
is different.

Let A(B,) denote the space of functions that are analytic on the open unit ball
B,, and continuous on the closure B,,. We also let Lip(a) (for 0 < a < 1) be the space
of @ —Lipschitz continuous functions on B, that is, the space of all functions f: B,, —
C such that
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sup{lf(li)__bflib)l ra,b €B,,a# b} < o0,

We shall need the following result, see [146, p.248].
Proposition (4.1.7)[136]: Suppose n > 2. If% <a<1landf € A(B,) N Lip(a) is not

a constant function, then
o({¢ € Sp:If (DI = lIfllo}) = 0.
Before giving a proof of the theorem, we present here an immediate application.
For any n > 1, a linear fractional mapping of the unit ball B,, has the form
Az+ B
¢(z) = m,
where A is a linear map, B, C are vectors in C" and D is a non-zero complex number. It
was shown by Cowen and MacCluer that C,, is always bounded on H 2 for any linear
fractional selfmap @ of B,,. We recall that when n = 1 these operators and their adjoints
are not SAT in general by Theorem (4.1.3).

In higher dimensions it follows from Theorem (4.1.9) that the opposite is true.
Corollary (4.1.8)[136]: For n = 2, both C, and Cg, are SAT with asymptotic symbol
zero except in the case ¢ (z) = Az for some 1 € T.

Theorem (4.1.9)[136]: Suppose n = 2. Let A: C"* — C™ be a linear operator and b be a
vector in C™. Let f be in A(B,,) N Lip(a) for some% <a<l

Suppose @(z) = f(z)(Az + b) is a selfmap of B,, and ¢ is not of the form
@(z) = Az with |A] = 1. Then both C,, and C;, are SAT with asymptotic symbol zero.
Proof. We claim that under the hypothesis of the theorem, the set

€={{€Sy:lgD =1}
is a 0 —null subset of S,,. We may then apply Proposition (4.1.4).

There are two cases to consider.

Case 1. A = 41 for some complex number § and b = 0. To simplify the notation, we
write @(z) = g(z)z, where g(z) = 6f(z). Then the set £ can be written as £ =

{{ €S (D), O] =1}

Since ¢ is a selfmap of B,,, we have ||g||lc < 1. Now if ||g|l, < 1, then € = @
so 0(€) = 0.1If ||g|l = 1, then g is a non-constant function since ¢ is not of the form
@(z) = z for some |A| = 1. Proposition (4.1.7) then gives d(€) = 0 as well.

Case 2. A is not a multiple of the identity or b # 0. Since |@p({)| < 1 for { € S,,, we
see that { belongs to € if and only if there is a unimodular complex number y({) such
that ¢ (¢) = y(¢){. This implies that f({) # 0 and

(A=y@/f()S+b=0. 4)

Equation (4) shows that £ is contained in the intersection of S,, with the set

M={zeC“(A—AD)z+b=0forsomeA € C}= U(A — D7 1{-b)).

A€C
Now decompose M as the union M = M; U M,, where

M= ) @a-n7@m and My (] @a-pmtdaeny,
AeC\sp(4) Aesp(4)
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We have used sp(4) to denote the spectrum of A, which is just the set of eigenvalues
since A is an operator on C". We shall show that both sets M;\S,, and M,\S,, are -null
sets.

For 1 € C\sp(A), the equation (A — A1)z + b = 0 has a unique solution whose
components are rational functions in A by Cramer's rule. So M; is a rational curve
parametrized by A € C\sp(A4). Since the real dimension of S,, is 2n — 1, which is at
least 3 when n > 2, we conclude that 0 (M;\S,,) = 0.

For A € sp(A), the set (4 — A)~1({b}) is either empty or an affine subspace of
complex dimension at most n — 1 (hence, real dimension at most 2n — 2). Since M, is
a union of infinitely many such sets and the sphere S,, has real dimension 2n — 1, we
conclude that 6(M, N S,,) = 0.

Since £Ec (M, UM,)NS, and c(M;NS,) =M, NS,) =0, we have
o(E) = 0, which completes the proof of the claim.

Nazarov and Shapiro [145] showed in the one-dimensional case that if ¢ is an
inner function which is not of the form Az for some constant A, and ¢ (0) = 0, then Co
is not SAT but Cy, is SAT. While we do not know what the general situation is in higher
dimensions, we have obtained a partial result.

Proposition (4.1.10)[136]: Suppose f is a non-constant inner function on B, and
¢(z) = f(z)z for z € z such that C,, is bounded on H?. Then C, is not

SAT but C,, is SAT.

Proof. By formula (3), we have d)m(C(p) = TfmC, and d)m(C(;,) = C(:,T;m for all
positive integers m.

It then follows that ||<Dm(C¢,)(1)|| = ||TfmC<p1|| = [[f™]| = 1. Hence d)m(C(p)
does not converge to zero in the strong operator topology. Since ¢ is a non-identity
selfmap of B,,, Corollary (4.1.6) implies that C,, is not SAT.

On the other hand, we claim that as m — oo, T;m, and hence, dJm(C(;‘,), converges
to zero in the strong operator topology. This shows that Cg, is SAT with asymptotic
symbol zero. The proof of the claim is similar to that in case of dimension one ([145,
Theorem 4.2]). We provide here the details. For any a € B,,, there is a function K, €
H? such that h(a) = (h, K,) for any h € H?. Such a function is called a reproducing

kernel. It is well known that T;mKa = f™(a)K, for any integer m > 1. Since |f(a)| <
Ifleo = 1 by the Maximum Principle, it follows that ||T;mKa || — 0 asm — oo, Because
the linear span of {K,:a € B,,} is dense in H? and the operator norms of ”T;m” are
uniformly bounded by one, we conclude that T;m — 0 in the strong operator topology.

It follows from the characterization of Toeplitz operators and the notion of
Toeplitzness that any Toeplitz operator is UAT. The following lemma shows that any
compact operator is also UAT. Hence, anything of the form ‘‘Toeplitz + compact’’ is
UAT. This result may have appeared in the literature but for completeness, we sketch
here a proof.

Lemma (4.1.11)[136]: Let K be a compact operator on H2. Then we have
lim [[@™(K)| = 0.
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As a consequence, for any bounded function f, the operator Tr + K is uniformly
asymptotically Toeplitz with asymptotic symbol f.

Proof. Since ®™ is a contraction for each m and any compact operator can be
approximated in norm by finite-rank operators, it suffices to consider the case when K
is a rank-one operator. Write K = u @ v for some non-zero vectors u,v € H2. Here
(u ® v)(h) = (h,v)u for h € H?. Since polynomials form a dense set in H?, we may
assume further that both u, v are polynomials.

For any multi-index a, we have Tza(u @ v)T,a = (Tzau) Q (Tzav). Since v is a
polynomial, there exists an integer m, such that T;«v = 0 for any a with |a| > mg. If
m is a positive integer, the definition of @ shows that ®"(K) = ®™(u @ v) is a finite
sum of operators of the form Tza(u @ v)T,« with |a| = m. This implies that @™ (K) =
0 for all m > m,. Therefore, r}liinooH(Dm(K) || = 0.

Now for f a bounded function on S,;, we have
O™ (T; + K) = @™(Tf) + @™(K) = T + @™(K) - T
in the norm topology as m — co. This shows that Tr + K is UAT with asymptotic
symbol f.

In dimension one, Theorem (4.1.1) shows that the converse of Lemma (4.1.11)
holds. On the other hand, Theorem (4.1.1) fails when n = 2. We shall show that there
exist composition operators that are UAT but cannot be written in the form ‘“Toeplitz +
compact’’.

We first show that composition operators cannot be written in the form *“Toeplitz

+ compact" except in trivial cases. This generalizes Theorem (4.1.2) to all dimensions.
Theorem (4.1.12)[136]: Let ¢ be an analytic selfmap of B,, such that C, is bounded on
H%. If C, can be written in the form ““Toeplitz + compact™, then either C,, is compact
or it is the identity operator.
Proof. Our proof here works also for the one-dimensional case and it is different from
Nazarov-Shapiro's approach (see the proof of Theorem 1.1 in [145]). Suppose C, is not
the identity and C,, = Tr + K for some compact operator K and some bounded function
f. By Lemma (4.1.11), C, is UAT with asymptotic symbol f on the unit sphere. This
then implies that C,, is also MSAT with asymptotic symbol f. From Corollary (4.1.6)
we know that C,,, being a non-identity bounded composition operator, is MSAT with
asymptotic symbol zero. Therefore f = 0 a.e. and hence C, = K. This completes the
proof of the theorem.

We now provide an example which shows that the converse of Lemma (4.1.11)
(and hence Theorem (4.1.1)) does not hold in higher dimensions.

Example (4.1.13)[136]: For z = (z4, ..., z,) in B,,, we define
9(2) = (0:1(2), ..., 0,(2)) = (0,2,0, ...,0).

Then ¢ is a linear operator that maps B,, into itself. It follows from [139, Lemma

8.1] that C,, is bounded on H? and C;, = Cy, where 1 is a linear map given by ¥ (z) =

(Y1(2), ..., ¥n(2)) = (25,0, ...,0).
We claim that <D(C¢,) =0 Forj # 2, C¢,TZ]. = T(ij(p = 0 since ¢; = 0 for such

j. Also, (C5,C,) =CyT,, = CyT,, =Ty Cy = 0.Hence T;,C, = 0.

107



It follows that ®(C,) =Tz CyT,, + - +T; C,T, =0, which implies
dJm(C(p) = 0 for allm = 1. Thus, C, is UAT with asymptotic symbol zero.

On the other hand, since (¢ © Y)(z) = (0, 2,0, ...,0), we conclude that for any
non-negative integer s,

CpCp(z5) = CyCy(23) = Cpoy(23) = 23.
This shows that the restriction of C,, on the infinite dimensional subspace spanned by
{1,2,,25,23, ...} is an isometric operator. As a consequence, C,, is not compact on H,
Theorem (4.1.12) now implies that C,, is not of the form ““Toeplitz + compact’” either.

Theorem (4.1.2) shows that on the Hardy space of the unit disk, a composition
operator C, is UAT if and only if it is either a compact operator or the identity. Example
(4.1.13) shows that in dimensions n = 2, there exists a non-compact, non-identity
composition operator which is UAT. It turns out that there are many more such
composition operators. We study uniform asymptotic Toeplitzness of composition
operators induced by linear selfmaps of B,,.

We begin with a proposition which gives a lower bound for the norm of the
product T¢Cy, when ¢ satisfies certain conditions. This estimate will later help us show
that certain composition operators are not UAT.

Proposition (4.1.14)[136]: Let ¢ be an analytic selfmap of B, such that C, is bounded.
Suppose there are points {,n € S,, so that (¢(z),n) =(z,{) fora.e.z € S,,. Let f be a
bounded function on §,, which is continuous at ¢.

Then we have

|T5Coll = 1£ 1.
Proof. For an integer s > 1, put g;(z) = (1 +(z,1))* is and hy = C,g,. Then for a.e.
ZES,,

hs(h) = gs(0(2)) = (1 +(@(2),7)° = (1 +(z,0))°.
Because of the rotation-invariance of the surface measure on S,,, we see that ||hg|| =
lgsll. Now, we have

(TrCogs, hs)|  [(Trhs, hs)]  1{fh, )l
llgsllAsll lgsllAsll llhslI?
Js, f@I1 +(z,0)|**do(2)
Jo 1+ (@ OPdo()
We claim that the limit as s = oo of the quantity inside the absolute value is f({). From

this the conclusion of the proposition follows.
To prove the claim we consider

fgnf(z)ll + (Z, ()lZSdg(z) fSnIf(Z) _f(Z)l . |1 + (Z,Z)IZSdO'(Z)
Js 1+ Qo) ‘ S A PR CF I
(fu + Jsu ) If (@) = FOI- 11 + (2, O)|*da(2)
5,11+ (2.0)|*do(2)

17 Coll =
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3 B L A e .
< ilel’ll:l)lf(Z) Ol +21flle fgnll +(z,)|>do(2) ()
Where U is any open neighborhood of { in §,,. By the continuity of f at , the first term
in (5) can be made arbitrarily small by choosing an appropriate U. For such a U, we
may choose another open neighborhood W of { with W € U such that
sup{|1 +(z,{)|:z € S,\U} < inf{|1 + (z,{)|:z € W}
This shows that the second term in (5) converges to 0 as s — oo. The claim then follows.

Using Proposition (4.1.14), we give a sufficient condition under which C,, fails
to be UAT.

Proposition (4.1.15)[136]: Let ¢ be a non-identity analytic selfmap of B,, such that C,,
is bounded. Suppose that ¢ is continuous on B, and there is a point { € S,, and a
unimodular complex number A so that (¢ (2), {) = A(z,{) for all z € S,,. Then C,, is not
UAT.

Proof. Since ¢ is a non-identity map, Corollary (4.1.6) shows that C,, is MSAT with
asymptotic symbol zero. To prove that C,, is not UAT, it suffices to show that C, is not
UAT with asymptotic symbol zero.

Let f(z) = (p(2), z) for z € S,,. By the hypothesis, the function f is continuous
onS,, and f({) = {p({),{) = A({,{) = A.For any positive integer m, formula (3) gives
d)m(C(p) = TymC,,. Since @ satisfies the hypothesis of Proposition (4.1.14) with n = A{
and f™ is continuous at {, we may apply Proposition (4.1.14) to conclude that

[o™(Co)ll = ITnColl 2 1771 = 1.
This implies that C,, is not UAT with asymptotic symbol zero, which is what we wished
to prove.

Our last result provides necessary and sufficient conditions for a class of
composition operators to be UAT.

Theorem (4.1.16)[136]: Let ¢(z) = Az where A: C* — C" is a non-identity linear map
with ||A|| < 1. Then C,, is UAT if and only if all eigenvalues of A lie inside the open
unit disk.

Proof. Since ||A]| < 1, all eigenvalues of A lie inside the closed unit disk.

We first show that if A has an eigenvalue A with || = 1, then Cj, is not UAT. Let
{ € S,, be an eigenvector of A corresponding to 2. We claim that A* = A{. In fact, we
have

2 - =12
(A" = 2)¢|" = 147¢1* — 2R(A", A¢) + | A¢ |
= |A*{1? — 2%, AAQ) + [¢1?
= |A"71? — 2R({, AA0) + [¢|?
) =]A*¢|?-1<0.

This forces A*{, A{ as claimed. As a result, for z € S, we have
(9(2),8) = (4z2,0) = (2, A7) = (2, A{) = Xz, {).
We then apply Proposition (4.1.15) to conclude that C,, is not UAT.
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We now show that if all eigenvalues of A lie inside the open unit disk then C,, is
UAT. Put f(z) ={(p(2),z) =(Az,z) for z € S,. Since |Az| <1 and Az is not a
unimodular multiple of z, we see that |f(z)| < 1 forz € S,,.

Since f is continuous and S,, is compact, we have || f|| (s, ) < 1. For any integer
m = 1, formula (3) gives

lom™ ()l = 1T Coll < 1Tl Coll < (flimcs,)) "I |-
Since |[f]l(s,) < 1, we conclude that r}lirréo”d)m(C(p)” = 0. Therefore, C, is UAT

with asymptotic symbol zero.
Section (4.2): The Essential Commutants:

A result of K. Davidson [156] from 1977, answering a question of R. Douglas,
shows that the essential commutant 7.2¢ of the set T, = {Tf; fEH” (’]I‘)} c B(H 2 (’]I‘))
of all analytic Toeplitz operators on the Hardy space H?(T) of the unit circle is given
by

T ={T; + K; f € H°(T) + C(T) and K € X (H?(T))},

Where K (H) denotes the set of all compact operators on a given Hilbert space H. It was
observed by X. Ding and S. Sun [161] that the result of Davidson remains true on the
Hardy space H2(S) of the unit sphere S = dB,, in dimension n > 1 when the symbol
algebra H®(T) + C(T) is replaced by the closed subalgebra S = {f €
L*(S); Hy is compact} c L*(S), that is,

T ={Tr + K; f € Sand K € K (H?(S))}.
It is well known that H*(S) + C(S) & S is a proper subalgebra in every dimensionn >
1 (see [158]) and that therefore the higher dimensional version of Davidson’s result fails
if the algebra Sis replaced by the smaller algebra H*(S) + C(S).

In [160] the above results were extended to Toeplitz operators formed with
respect to a quite general class of subnormal tuples on arbitrary Hilbert spaces
containing, as a very particular case, Toeplitz operators on strictly pseudoconvex
domains in C".

Let A € C(K) be a closed subalgebra of the Banach algebra of all C —valued
continuous functions on a compact subset K < C™ such that A contains at least the
polynomials. A subnormal tuple T € B(H)" is called an A —isometry [163] if the
spectrum of the minimal normal extension U € B(ﬁ )n of T is contained in the Shilov
boundary d4 of A and if A4 is contained in the restriction algebra Ry of T. In this setting
concrete T —Toeplitz operators are defined as compressions Ty = Py Wy (f)|y, where
Wy: L”(u) - B(H) is the L —functional calculus of U and f € L (u), while abstract
T —Toeplitz operators are defined as those operators X € B(H) which satisfy the
Brown—Halmos condition

ToXTg =X
for all 4 —inner functions 6.

By results of A. Athavale [152] and T. It6 [164] the A(BB,,) —isometries on a
given Hilbert space. Hare the spherical isometries on H, that is, the commuting tuples
T € B(H)" satisfying the identity Y\1<;<, T; T; = 1y and the class of A(D™)-isometries
on H is given by the commuting tuples of isometries on H. For any strictly
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pseudoconvex or symmetric domain D < C", the tuple T, = (Tzl,...,TZn) €

B(H? (0))n on the Hardy space H?(o) formed with respect to the canonical probability
measure ¢ on the Shilov boundary of the domain algebra A(D) = {f € C(D); f|p €
O(D)} is an example of an A(D) —isometry. Finally, every commuting tuple N €
B(H)" of normal operators on a Hilbert space H is a C(a(N)) —isometry.

Under a suitable regularity condition on T, which is satisfied in all the above
examples and which is needed to apply results of Aleksandrov [150] on the existence of
sufficiently many p —inner functions, it follows that the set T (T) of abstract
T —Toeplitz operators is given by the compressions

T(T) = Py(U)|u
of the operators in the commutant (U)" = W*(U)" of the von Neumann algebra
generated by U, while by the very definition, the concrete T —Toeplitz operators are
given by the compressions of all operators in W*(U).

It follows from results of B. Prunaru [168] on families of spherical isometries that
there is a completely positive unital projection @;: B(H) — B(H) onto the set 7' (T) of
all abstract T —Toeplitz operators [160]. In this note we give a much more direct and
straightforward construction of Toeplitz projections @. We use the properties of these
projections to improve the main result of [160] on the essential commutant of analytic
Toeplitz operators and to extend a number of classical results on Toeplitz operators to
our general setting.

After constructing Toeplitz projections, we show that every operator S in the
essential commutant of the analytic Toeplitz operators associated with an essentially
normal regular A —isometry T € B(H)™ is a compact perturbation of the Toeplitz
operator @4(S). Thus we improve a corresponding result obtained in [160] under the
additional condition that T possesses no joint eigenvalues. We obtain complete
characterizations of the essential commutant of essentially normal regular
A —isometries and give, as a direct application, a new proof of a classical theorem of
Johnson and Parrot [165] on the essential commutant of abelian von Neumann algebras
in the case of separable Hilbert spaces. We show that the Toeplitz projection associated
with an arbitrary regular A —isometry annihilates the compact operators if and only if T
possesses no joint eigenvalues. We conclude that the Toeplitz calculus associated with
aregular A —isometry T with empty point spectrum satisfies the essential version of the
Hartman—Wintner spectral inclusion theorem and that the semi-commutator ideal of
Toeplitz algebras T generated by arbitrary symbol algebras Bnecessarily contains every
compact operator in Jp.

Let T € B(H)™ be a subnormal tuple on a complex Hilbert space H, that is, a
commuting tuple that can be extended to a commuting tuple of normal operators on a

larger Hilbert space. We denote by U € B(ﬁ )n the minimal normal extension of T
which is unique up to unitary equivalence [155], and fix a scalar spectral measure u for
U. The measure u is a positive regular Borel measure on the normal spectrum o, (T) =
o(U) of T. By the spectral theorem for normal tuples there is an isomorphism of von
Neumann algebras ¥y;: L (1) » W*(U) < B(H) extending the polynomial calculus of
U. The restriction algebra
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Rr={f € L”(W);¥y(f)H c H} c L ()
is a weak* closed subalgebra. For f € L*(u), we define the T —Toeplitz operator with
symbol fas the compression
Ty = Py¥y(f)|u-

Toeplitz operators of this form will be called concrete T-Toeplitz operators in the sequel.

Let Ac C(K) be a unital closed subalgebra of the Banach algebra of all
C —valued continuous functions on a compact subset K < C" such that A contains at
least the co-ordinate functions. Then a subnormal tuple T € B(H)™ as above is called
an A —isometry if 0,,(T) is contained in the Shilov boundary d,4 of A and A|5, C Ry.
Here the Shilov boundary d, € K is the smallest closed set such that ||f||., K =
|f1loo,5, for every f € A and we regard the scalar spectral measure u of U as a positive
measure on d, via trivial extension. Since Ry € L* (u) is weak* closed and contains A,
it also contains the dual algebra

HP () = A% < 12 ().
The unimodular elements in Hy° (), that is, the elements of the set
I, ={6 € H(w); 16| = 1 4 — almost everywhere on d,}

will be called u —inner functions. In [150] Aleksandrov gives a sufficient condition for
Hz°(u) to contain a rich supply of p —inner functions. The triple (4, K,u) is called
regular in the sense of Aleksandrov if, for every function ¢p € C(K) with ¢ > 0 on K,
there is a sequence (¢,) of functions in A with |[¢p,| < ¢ on K and Ili_r)rolol(].’)kl =

¢ p —almost everywhere on K. It follows from the results of Aleksandrov that the
regularity of the triple (4, K, u) implies that the set I, c H,° (1) of u —inner functions
generates L™ (u) as a von Neumann algebra, that is, L™ (u) = W*(Iﬂ) (Corollary 2.5 in
[159]). Wecall T € B(H)™ a regular A —isometry if T is an A —isometry and the triple
(A, K, u) is regular in the sense of Aleksandrov. It was observed by Aleksandrov [150]
that, for every regular positive measure ¢ on the Shilov boundary of the domain algebra
A(D) of a strictly pseudoconvex or symmetric domain D c C", the triple (A(D), D, u)
is regular.

Let T € B(H)™ be a regular A —isometry with minimal normal extension U €
B(ﬁ )n and scalar spectral measure 4 € M*(d,). Since L' () is separable, its dual unit
ball Beo () = {f e LW If Nl W = 1} equipped with the relative weak* topology of
L®(u) = I*(u)’ is a compact metrizable space. Hence B o) and its subset I,
consisting of all 4 —inner functions are separable metrizable spaces in the relative weak*
topology. For any countable weak* dense subset I c I, the von Neumann algebra
generated by [ in L” (u) satisfies

W) =w*(1,) = L*W).
Let us fix any sequence (6y)g»1 in I, with the property that
W*({Or; k = 1}) = L*(w).

For r = 0, the norm-closed ball B, = {X € B(ﬁ ); X < r} equipped with the relative
topology of the weak* topology of B(ﬁ ) is a compact Hausdorft space. For X € B(ﬁ ),
the averages
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1 . o . . R
Py X) = % z Wy (0. 0.1) XWy(0,r ... 6,%) € B(H)
1<iq,.,ixsk

form a sequence (‘Du,k(X))k in B)jx|- Since by Tychonoff’s theorem the topological

product [Ixepm) Bjx| is compact and since convergence in the product topology is
equivalent to component wise convergence, there is a subnet ((DU.ka)a of the sequence
(CDU' k) X such that the weak* limits
o,(X) =w* — 1i£n dy i, (X) € B(H)
exist simultaneously for every X € B(ﬁ ) Each choice of such a subnet yields a well-
defined map ®: B (ﬁ ) - B (ﬁ ) with the properties that will be deduced in the sequel.
Theorem (4.2.1)[149]: The mapping
®,:B(H) - B(H),X — oy(X)
constructed above is a completely positive unital projection with
ran(®y) = (U)'.
Proof. Obviously, the mappings
®y:B(H) > B(H),X — &y (X)
are completely positive and unital. Since, for each N € N, weak* convergence for a net
in B(ﬁN ) identified with the space M (N ,B(ﬁ )) of all N X N matrices over B(ﬁ ) is

equivalent to coefficient wise weak* convergence in B (ﬁ) and since the set of all
positive operators on a Hilbert space is weak+ closed, it follows that
®,(X) =B(H) - B(H), X—w"- 1i£n Dy ke, (X)
is completely positive and unital. By construction the mappings ®y, ;, and hence also
@, act as the identity operator on the commutant (U)" = W*(U)'. To complete the
proof, it suffices to show that ran(®,) < (U)'.
For 1<j<k and i= (il,...,ij_l,ij+1,...,ik) €{1,....,k}* 1, we use the

abbreviation
k
Rij = IIUU 1_[ 911/1/
v=1

VEj)

Note that, for X € B(ﬁ), k>1and 1 <j <k, the estimates
”WU(Q')‘DUk(X)’z”U(@') el

_kk ZRU Zwu 5" ) xwy (61 Zwu )xwy(6) |Ry

ol 211

=2lxl = =—

hold. Hence forj > 1 and X € B (ﬁ ), we obtain
Yy (6)) Py (X)¥y(8;) = w * —lim ¥y (6)) Py i, X)Wy (6)) = Py (X),
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or equivalently, ®;(X) ‘{’U(Qj) =¥y (Qj)CDU(X). It follows that
oy (X) e W ({wy(6,);j 2 1)) = w*U)' = (U’
forall X € B(ﬁ ) This observation completes the proof.

A projection onto the space of all Toeplitz operators on the Hardy space of the
unit circle was constructed by Arveson in [151] using a generalized limit argument. In
[168] Prunaru used invariant means to construct a completely positive unital projection
onto the set of Toeplitz operators associated with a commuting family of spherical
isometries. In our setting, a projection onto the set of all abstract T —Toeplitz operators
is obtained by compressing ®; to H.

For X € B(H), we denoteby X = X @ 0 € B(ﬁ ) its trivial extension to H. Then
for k = 1 and X € B(H), the operators

1
P = Y T quXT g € BGD
1<y, ig <k
are the compressions of the corresponding operators @y  (X), that is,
D7 (X) = Py®y (X)) 4(k = 1,X € B(H)).
As before we denote by I, the set of all p-inner functions 6 in Hg° (i) and write
T(T) = {X € B(H);TyXTg =X forall 6 € I}
for the set of all abstract T —Toeplitz operators on H.
Corollary (4.2.2)[149]: The mapping
&:B(H) » B(H),X — &:(X) =w* — ligl Or ., X) = Py®@y(X)ly
is a well-defined completely positive unital projection with
ran(®;) = T(T).
Proof. Since the compression mapping B(H) —» B(H),X — PyX|y, is weak*
continuous, completely positive and unital, it follows that
w* — lim Orp (X) = Py®y(X)|y

for X € B(H) and that the map ®7: B(H) - B(H),X — Py®y(X)|y, is completely
positive and unital. Since @7, (X) = X for each abstract T —Toeplitz operator X €
T(T) and every k =1, it follows that ®;(X) =X for X € 7(T). Using Theorem
(4.2.1), we obtain that
To®r(X)Ty = Pu¥y(8) Pu®y(X)Py(@)ln
= PHWU(Q)*(DU(X)WU(Q)IH = PH(DU(X)IH = ‘DT(X)
for every operator X € B(H) and each u —inner function 6 € I,. Hence ran(®r) =
T(T), and the proof is complete.
As a direct application of Theorem (4.2.1) and Corollary (4.2.2) we obtain a
natural description of the abstract T —Toeplitz operators.
Corollary (4.2.3)[149]: Let T € B(H)™ be aregular A —isometry with minimal normal
extension U € B(ﬁ )n. Then we have
T(T) = Py(U)'|n-
Proof. By Corollary (4.2.2) and Theorem (4.2.1) we have T(T) < Py(U)'|y.
Conversely, if X € (U)" and 6 € I, is a u —inner function, then
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To(PyX|p)Tg = Py¥y(0) PuXWy(0)|y = Py¥y(0) X¥y(0) |y = PuX|p.
Hence also the reverse inclusion Py (U)'|y < T (T) holds.
Let @, and @1 be defined as above. Then
f:B(H) » B(H),X — @y (X)

defines a completely positive linear mapping with ®(X) = Pyft(X)|y for all X €
B(H) and ran(@) c (U)'. To see that equality holds here, we need some more
preparations. Note that

Iy =¥y(1,) c w*(U)
defines an abelian semigroup of unitary operators with W*(I;) = W*(U). The mini-
mality of U as a normal extension of T implies that

H= \/(V*H; VEIy).
To see this it suffices to observe that the space on the right-hand side is invariant under
w*(Iy) = W*U).
Corollary (4.2.4)[149]: The compression mapping

0: (U) = T(T),X — PyX|y
defines a completely isometric linear isomorphism with inverse given by
T(T) - (U),X — (X).
Proof. We know from Corollary (4.2.3) that o is well-defined and surjective. As a
compression mapping is completely contractive. Since
(XV*h, W*k) = {(o(X)Wh, Vk)

forallX € (U)',V,W € IU and h, k € H, the remarks preceding the corollary imply that
o is injective. The observation that

(X)) = @r(X) = X
for all X € T(T) shows that 7(T) -» (U)', X — 7(X), defines the inverse of the
bijection g: (U)" - T(T). Since also 7 is completely contractive as a composition of
completely contractive mappings, it follows that g is completely isometric.

The restriction of #: B(H) —» B (ﬁ ) to the C *-algebra C *(T (T)) generated by all
abstract T —Toeplitz operators is even a C*-algebra homomorphism.
Theorem (4.2.5)[149]: The restriction
T = ¢ (rery): € (T (T)) > B(H)
is the minimal Stinespring dilation of the completely positive unital projection
C*(T(T)) - c*(T(T)), X &r(X).
ForX € B(H) andY € C*(T(T)), we have
A (XY) = a(X)(Y).
Proof. We know that 7: B(H) —» B (ﬁ ), and hence also its restriction 7, are completely
positive maps. To prove that 7 is a homomorphism of Cx-algebras, it suffices to check
its multiplicativity. Fix operators X € B(H) and Y € T(T). Since ran(#) ¢ W*(U)’, it
follows that
(T(XY)V*h, k) = licrxn(V*d)U'ka (XY)h, k)

forV € Iy and h € H,k € H. Applying Corollary (4.2.4) to the operator Y € T(T), we
obtain the identity

Y, (0) XY Wy (6)h = Wy (0)* XP,W,(0)7(Y)h
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for & € I, and h € H. Using the definition of #(X) = d)U()?), we find that
(TXY)V*h, k) = (V*A(X)ARY)h, k) = (#(X)7(Y)V*h, k)
forV € Iy and h € H,k € H. By the remarks preceding Corollary (4.2.4) it follows that
(XY) = a(X)R(Y).
Inductively one obtains that
Xy .. X)) =a(Xy) ..o T(X,)
holds for any finite number of operators X;,...,X, € T(T). Since C*(T(T)) is the
norm-closed linear span of products of this type and since 7 is norm-continuous, the
multiplicativity of m = 7| ¢+(7(r)) follows.

Using the definition of m(1y) = &y (15 @ 041), one easily finds that m(1) acts

as the identity operator on H. Since
T(1)V'h=V't(1y)h =V*h
forall V € I; and h € H, it follows that m(15) = 15. As an application of Corollary
(4.2.4) one obtains that ﬂ(Tf) = W, (f) for all f € L*(u). Hence the minimality of U
implies that 77 is the minimal Stinespring dilation of ®r|¢- (7 (7). To see that 77 possesses
the additional multiplicativity property claimed in the theorem, it suffices to observe
that
XY, - %) =07, - 72(,) = XM, - - ¥;)

forX € B(H),Yy,...,Y, € T(T), and to use the norm-continuity of 7.

For Y € (U)', we define the Toeplitz operator T,y € T (T) with symbol Y as the
compression Ty = PyY|y. In the particular case that Y = Wy, (f) with f € L*(u) we
obtain that Ty = Ty is the Toeplitz operator with symbol f.

Corollary (4.2.6)[149] : Let T € B(H)" be aregular A —isometry with minimal normal
extension U € B(ﬁ)n and scalar spectral measure u € M*(0,). Let ®;: B(H) —» B(H)
and T: C*(T(T)) - B(ﬁ) be defined as before.

(a) For X € T7(T), the operator m(X) is the unique element in (U)" with X = T x).

ForY € (U)', we have n(Ty) =Y.

(b)ForY € (U)' and f € L*(u), we have
ITyll = Y1l and [|T[| = 111l (.-
(c)ForY;; € (U),1<i<r,1<j<s,wehave
T

S
CDT z TYij = TZ%‘=1 Z-]S=1 Yij .
] =1

i=1j
Proof. Part (a) and part (b) follow immediately from Corollary (4.2.4). Since by
Theorem (4.2.5) the restriction m = ﬁlC*(fT(T)) is a Cx-algebra homomorphism, we
obtain that

T

s T S
O Z Tyy | = Pu Z Z & (TYif) v = T3, 55,y
=1

for Y;; € (U) as in part (c).
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Since the C*-algebra C *(T (T)) is the norm-closure of the set of all finite sums of
finite products of Toeplitz operators of the form Ty with Y € (U)’, part (c) of Corollary
(4.2.6) shows in particular that the action of any Toeplitz projection ®: B(H) — B(H)
defined as above is uniquely determined by T on the Toeplitz C*-algebra C*(T(T)).

If W*(U) is a maximal abelian W* —algebra, or equivalently, W*(U) =
W*(U)', then the abstract and concrete Toeplitz operators coincide, that is,

T(T) = {Ty; f € L (W }.
This can be seen as a generalization of the classical Brown—Halmos characterization
[152] of the Toeplitz operators on H2(T).
Let T € B(H)™ be a regular A —isometry with minimal normal extension U €

B(ﬁ )n and scalar spectral measure u € M*(d,). Throughout the rest of this paper we
denote by ®:B(H) — B(H) a Toeplitz projection defined. Recall that ®; is the
compression
7 (X) = Py®y(X)|u(X € B(H))

of a projection ®: B(ﬁ) - B(ﬁ) with ran(®y;) = (U)’ and that

m: C*(T(T)):» B(H),X — oy(X)
is the minimal Stinespring dilation of the completely positive and unital mapping
@r|c+(r(r))- We denote by

To(T) = {Ty; f € HY (W} < B(H)

the weak* closed subalgebra consisting of all analytic Toeplitz operators. We calculate
the essential commutant 7, (T)®¢ of the set of all analytic Toeplitz operators.
Lemma (4.2.7)[149]: Suppose that M c H is a closed reducing subspace for T (T).
Then

Or(X) = Pr(PyX|p) © (PprX|pye)
for every operator X € B(H).
Proof. We denote by M the set of all operators X € B(H) with the property that XM c
M* and XM+ c M. Fix an operator X € M. Then T;XTy € M for all p-inner functions
6 € I, and hence also ®7(X) € M (see Corollary (4.2.4)). On the other hand, the space
M is reducing for the operator @, (X) € T (T). Therefore ®;(X) = 0 and the assertion
follows.

Let S € T,(T)®¢ be arbitrary. It follows from Corollary (4.2.4) that Y = 7(S) is
the unique operator in (U)" with ®4(S) = PyYs|y. Our aim is to show that, under
suitable conditions on T, the operator Sis a compact perturbation of an abstract
T —Toeplitz operator. Since ®1(S) € T(T), it suffices to show that

S—®:(S) € K(H).
To prove this, we shall use the map
F:L®(w) - B(H), f > TpS — Pu(Ys¥y(F)la-
Note first that S — ®;(S) = F(1) and that
for every function f € Hy°(u). It clearly suffices to find conditions which ensure that
the whole image of F consists of compact operators. Since F is continuous linear, we
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only need to show that F maps the characteristic function y,, of each Borel set w € d,
into K (H). We begin with a very modest first step.

Lemma (4.2.8)[149]: For every point z € d,4, the operator F ()({Z}) is compact.

Proof. We may suppose that u({z}) > 0, since otherwise F(x(;;) = 0. As shown in
[159, Proposition 2.3] the regularity of T implies that y(,; € Hy* (1). Exactly as in [159],
it follows that the eigenspace H, of T associated with the joint eigenvalue z coincides
with the eigenspace of U associated with z, that is,

ﬂ ker(z; — T;) = ﬂ ker(z; —

and that B, = @, (x(z)|u E B(H) is the orthogonal projection onto H,. The space H, =
P,H is reducing for T (T), since

(PHXlH)PZ = PHWU(X{z})PHX|H = Pz(PHX|H)
forall X € (U)'. Let S = (Sl- j)ij=1 5 be the matrix representation of S with respect to
the decomposition H = (H © H,) @ H,. Since P, = Ty € T,(T), it follows that

SP, — P,S € K(H), or equivalently, that S;, and S,; are compact. Using Lemma (4.2.7)
and passing to the equivalence classes in the Calk in algebra, we find that

[F ()] = [P(S11 @ S35) = @2 (B] = [R,(0 D S35) — Pr(S11 D Sp2)B].
For each yu —inner function 6 € I, we have
(T9*(511 D SZZ)TG)IHZ = (T9*522T9)|HZ = S22
Hence the definition of ®; implies that ®7(S;; @D S32)|n, = Sz2. But then
B,(0 @ Sy3) — @1 (S11 D S52)PB, = 0 and therefore F(y(,) is compact.
Let us suppose in addition that T is essentially normal. Then it follows from
Lemma 3.9 (¢) in [160] that all operators in the image of the map

F:L2(u) > B(H), f — T¢S = Py (Ys¥u (F)lu
belong to the essential commutant (T) of T. Hence we can apply the following
consequence of the Allan-Douglas localization principle to every operator in ran(F).
Proposition (4.2.9)[149]: Suppose that the regular A —isometry T € B(H)™ is
essentially normal. Then for every operator X € (T)®‘, we have

IXlle = sup inf{[|T,X|| ; f € C(0,) with f(2) = 1},
VA

Proof. By Lemma 3.9 (¢) and Lemma (4.2.7) in [160], the essential normality of T yields
that D = (T)®C is a Cx-algebra containing 7(T) U K (H), that the C*-algebra
a=(c*({Ty; f € COWY) + K(H)) /K (H)
is contained in the center of the C*-algebra T = D/K(H) and that the mapping
7:C(0y) 2 A f— [Tf], is a surjective C*-algebra homomorphism. Hence, for each
functional A € A, in the character space of 4, there is a unique point z(4) € d4 with
A([Tr]) = f(zD)(f € €(3n)-

For A € A4 and z € 94, let [} € T be the closed ideal generated by all elements [Tf]
where f € C(d4) and A([Tf]) = 0, and let I, € T be the closed ideal generated by all
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elements [Tf] such that f € C(d,) satisfies f(z) = 0. Then I = I,(;) for all 1 € 4y,
and the Allan-Douglas localization principle (Theorem 7.47 in [162]) implies that
I1Xlle = sup [[[X] + Lilly/r, < supll[X] + Lz,

/‘lEAA ZE(')A

for every X € (T)%. But for X € (T)® and f € C(d,) with f(z) = 1, the estimate
IIXT + Ll e, = ITeX] + LN, < (176X,
holds. This observation completes the proof.

An application of the dominated convergence theorem (Lemma 3.4 in [160])
shows that the mapping
F:L®(u) = B(H), f — T¢S — Py(Ys¥y(F)lu
is point wise boundedly SOT-continuous, that is, for every bounded sequence (fi ) in
L”(u) converging point wise y —almost everywhere to some function f € L (u), it
follows that F(f) = 111_)rr010 F(fy) in the strong operator topology.

Corollary (4.2.10)[149]: Suppose that the regular A —isometry T € B(H)"™ is
essentially normal. For a given operator S € T,(T)®¢, let F: L (u) —» B(H) be defined
as above. If F (L°° (,u)) & K(H), then there is a sequence (fi); of continuous functions
fx € C(0y,[0,1]) with pairwise disjoint supports such that

Inf|[F (fi)ll > 0.

Proof. Suppose that F (L°° (,u)) & K(H). Since every bounded measurable function can
be approximated uniformly by linear combinations of characteristic functions of Borel

sets, we can choose a characteristic function y of some Borel set in d4 such that p =

_”F(f—)”e > 0. By Proposition (4.2.9) there is a point z € d, with

IEEON = T FO, > o
forall f € C(d,) with f(z) = 1. Here the first equality follows from Lemma 3.9 (c) in
[160]. Let k = 0 be an integer. Suppose that gy,..., gx € C(0y4,[0,1]) are functions
with pairwise disjoint supports such that ||F (g j)()” >p and z ¢ supp(g j) for j =
0,...,k. Choose a function f € C(04,[0,1]) with f(z) =1 and supp(f) N
supp(gj) =@ forallj =0,...,k. Let (Qj)j be a sequence of functions in C(d,, [0, 1])
with z & supp(6;) for all j such that §;(w) — 1 as j — oo for every pointw € d,\{z}.
Since F is point wise boundedly SOT-continuous, it follows that

F(Xefx) = SOT — lim F(6;fx).
As an application of Lemma (4.2.8), we obtain that
IFCeeaef )N = IFGEONe > o

Hence there is an integer j = 1 such that ||F 0;f )()” > 0.

Inductively one obtains a sequence of functions g, € C(d,, [0, 1]) with pairwise
disjoint supports and [|[F(g,x)|l > o for all j. In the inductive step, one can define
Jgik+1 = 0;f with f and 6; as above. A standard application of Lusin’s theorem

(Theorem 7.4.3 and Proposition 3.1.2 in [154]) shows that there is a sequence (hj)j in
C(04, [0, 1]) such that hj — x for j — oo u —almost everywhere. Since
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F(gix) = SOT — lim F(gih;) (k = 1),
]—)00

for each k > 1, there is an index j, = 1 with ||F(gkhjk)|| > o. But then the resulting
functions fi = gy hj, have all the required properties.

After these preparations we are able to prove the main result.
Theorem (4.2.11)[149]: Let T € B(H)™ be an essentially normal regular A —isometry.
Then for every operator S € T,(T)®¢, we have

S — ®.(S) € K(H).

Proof. Let F:L*(u) » B(H), f +— TS — PH(YSSUU(f))|H, be the map considered
above. Since S — @1 (S) = F(1), it suffices to show that F(L°° (,u)) c K(H). Let us
assume that this inclusion does not hold. Then by Corollary (4.2.10) there are a positive
real number ¢ > 0 and a sequence of functions f;, € C(d,, [0, 1]) with pairwise disjoint
supports A, = supp(fi) such that [|F(fi)|| > o forall k > 1.

Exactly as in the proof of Theorem 4.6 in [160], one can use the regularity of T
to replace (fi ) by a sequence (gy ), of functions in A such that

_ Q
lgilleoa, < 2,1 gilleo0,0a, <2 “NF (gl > z
forall k > 1.Recall that F (g j) =Ty,S - Dr(S) Ty, is the weak* limit of a net consisting
of operators of the form
1 *
ngS — ﬁ z Tg(i)STg(i)ng
ie{1,. k}¥*

1 *
=2k o Z (Tg,-e(i>5 - 5Tg,-9(i>)
ie{1,.k}¥*
with suitable u —inner functions 8(i) € I,. Hence, for each j = 1, there is a function

6;:d4 - C with |9j| = 1 on d4 such that 6; € I, and such that the function h; = g;6; €
Hy° (u) satisfies

I < 2105, <27 [T = 5T [ > &
By hypothesis the commutators K; = [Thj, S] are compact. By passing to a subsequence,
one can achieve that the limit
= lim K] € [4,)
exists. Since the sequence (hj)j is uniformly bounded on d4 and converges to zero
point-wise on 04, it follows that the sequences (KJ)J and (KJ*)J converge to zero

strongly. A result due to Muhly and Xia (Lemma 2.1 in [166]) shows that, by passing
to a subsequence again, one can achieve that the series

K=ZKJ-
j=1

converges in the strong operator topology and satisfies ||K||, = ¢ > 0. Since each point
of 04 belongs to at most one of the sets Aj, the partial sums of the series Y72, h; are

uniformly bounded on d4 and converge point wise to a function h:d, — C. By the
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dominated convergence theorem it follows that h € H;°(u). Again using Lemma 3.4
from [160], one obtains that

T, = SOT — z Ty, [Th,S]=SOT - z [Th}.,S] = K.
j=1 j=1

But then T}, € T, (T) would be an operator with non-compact commutator [T}, S] = K.
This contradiction completes the proof.

Let T € B(H)™ be a regular A —isometry with minimal normal extension U €
B(ﬁ)n and scalar spectral measure u € M*(d,). Suppose that W*(U) c B(ﬁ) is a
maximal abelian von Neumann algebra, that is, W*(U) = (U)’. Then Corollary (4.2.3)
implies that T(T) = {Tf; feL” (,u)}. As a consequence, we obtain a complete
characterization of the essential commutant T, (T)®¢ of the analytic Toeplitz operators
in this case.

Corollary (4.2.12)[149]: Let T € B(H)" be an essentially normal regular A —isometry
with minimal normal extension U € B (ﬁ )n and scalar spectral measure u € M*(9,). If
w*(U) c B(ﬁ) is a maximal abelian von Neumann algebra and S € B(H), then
equivalent are:
(i) S eT,(T)*.
(i)) S = T + K with a compact operator K € K(H) and a symbol f € L* (1) with
the property that the associated Hankel operator Hy is compact.

Proof. First, suppose that S € T,(T)®“. Then ®1(S) = Ty with a suitable function f €
L” (u). The proof of Theorem (4.2.11) shows that the image of the bounded linear map
F:L° () - B(H), g = TyS — Py(Yy(g))In

is contained in K (H). It follows that K = F(1) =S — T is compact and the identity
F(f) = T7S = Tipp
=TT =Typ2 + TFK
= Py¥y(F)Pu¥u(lu — Pu?u(f)¥u(Pln + TFK
= —Py¥u(F)Pyr¥y(ly + TfK
= —HfHy + TfK
shows that also the operator Hy is compact.

In order to prove the remaining implication, it suffices to verify that all Toeplitz
operators Ty such that the corresponding Hankel operators Hy are compact essentially
commute with T, (T). But this follows from the formula

TeTy — TgTy = Tygr — TyTy = Py¥y(g)Hy
which holds for all f € L*(u) and g € Hy° ().

By considering Hankel operators Hy = (1 — Py)Y |y € B(H, H') with symbol
Y € (U)’, we obtain a similar characterization of the essential commutant of the analytic
Toeplitz operators in the general case.

Corollary (4.2.13)[149]: If T € B(H)™ is an essentially normal regular A —isometry
with minimal normal extension U € B(H )n and scalar spectral measure yu € M*(d,),
then the following statements are equivalent:
(i) S eT,(T)*.
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(i) S = Ty + K with a compact operator K € K(H) and a symbol Y € (U)" such
that the associated Hankel operator Hy has the property that H }HY is compact

for every f € L (u).
(iii) S = Ty + K with a compact operator K € K(H) and a symbol Y € (U)' such
that the associated Hankel operator Hy has the property that H ;HY is compact

for every f € Hy° ().
Proof. For arbitrary symbols f € L™ (u) and Y € (U)’, an elementary calculation shows
that
—H}HY =TTy — Pu¥u(f)Y|n-

Suppose that S € T,(T)®¢. Then Theorem (4.2.11) implies that S = Ty + K is a sum of
the Toeplitz operator Ty = ®1(S) € B(H) with symbol Y € (U)" and the compact
operator K = S — ®+(S) € K(H). By the proof of Theorem (4.2.11) the range of the
mapping

F:L*(w) = B(H), f — T¢S = Pp¥y(F)Y |u
is contained in K (H). Consequently, H }HY = T¢K — F(f) is compact for every symbol
f € L”(u). To complete the proof note that the identity
H];Hy =Py¥Yy( )Yy =TTy =Ty Tf — TfTy
holds for f € Hy°(u) and Y € (U)'.

[165], Johnson and Parrott characterized the essential commutant U¢ of an
abelian von Neumann algebra U ¢ B(H) as the sum U’ + K(H) of its commutant and
the compact operators. This result has been generalized in [167] to the non-abelian case.
We present an alternative proof of Johnson and Parrott’s result for finitely generated
abelian von Neumann algebras. To this end, let us observe that, for every compact subset
K < C", the Shilov boundary of C(K) is equal to K itself and the triple (C (K), K, ) is
regular [150] for every choice of u € M*(K). Consequently, every commuting tuple
N = (Ny,...,N,,) € B(H)™ of normal operators is a regular C(G(N)) —isometry.
Corollary (4.2.14)[149]: (Johnson—Parrott). The essential commutant of a finitely
generated abelian von Neumann algebra I © B(H) is given by

ucc =u' + K(H).
Proof. Since U is abelian, its generators Ny, ..., N,, € B(H) form a commuting tuple of
normal operators and hence a normal regular C (O‘(N)) —isometry N € B(H)™. By
Theorem (4.2.11), the inclusion T,(N)¢ < T(N) + K(H) holds. Hence it suffices to
check that the analytic Toeplitz operators associated with N coincide with U = W*(N)
and that the abstract N —Toeplitz operators are precisely those operators that commute
with U. Let u € M*(o(N)) denote the scalar spectral measure associated with N. Then

C (O'(N )) is weak*-dense in L (1), which implies that H ‘C’% s(V)) (u) = L*(u) and hence

W) = ¥y (L7 W) = ¥ (el 1) = Tal®).
To conclude the proof, we combine the fact that (N)' = W*(N)" = U’ with Corollary
(4.2.4) to obtain the remaining identity T(N) = L.
By [157, Lemma I1.2.8], the preceding result applies in particular to every abelian
von Neumann algebra on a separable Hilbert space.
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We characterize those regular A —isometries for which the associated Toeplitz
projection @7 vanishes on the compact operators. By following the lines of the proof of
[159, Theorem 3.3] and adapting it to the setting of regular A —isometries, we observe
that a regular A —isometry T € B(H)™ has empty point spectrum if and only if

T(T) n K(H) = {0}.
Corollary (4.2.15)[149]: The Toeplitz projection ®; associated with a regular
A —isometry T € B(H)™ vanishes on K (H) if and only if g, (T) = @.
Proof. Recall that the Toeplitz projection acts as the identity on the Toeplitz operators.
Thus, if T has an eigenvalue, we can choose a compact Toeplitz operator X # 0
satisfying ®(X) = X # 0. On the other hand, the minimal normal extension U €

B(ﬁ)n of T is a normal regular A —isometry. Moreover, the mapping @ is the
corresponding Toeplitz projection. A look at Theorem (4.2.11) reveals that

S—d,(S) e K(H)
for every element S € T,(U)®. Now assume that K € K(H) is a compact operator. Then
K=K@®O0€K(H) is compact and thus belongs to T,(U)¢. Hence the above

calculation implies that ®;(K) € K (ﬁ ) NT(U) is a compact U —Toeplitz operator.
Assuming that o,,(T) = @, we infer that @7 (K) = Py ®,(K) |y = 0.

Using Corollary (4.2.15) we prove an essential spectral inclusion theorem for
Toeplitz operators.
Theorem (4.2.16)[149]: Let T € B(H)" be a regular A —isometry with minimal normal

extension U € B(ﬁ )n. Then T has empty point spectrum if and only if the spectral
inclusion ¢ (Y) < g, (Ty) holds for every operator Y € (U)'.
Proof. Suppose that g,,(T) = @ and fix an operator Y € (U)". We first show that the left
spectrum of Y is contained in the left essential spectrum of Ty. To prove this inclusion
it suffices to verify that Y is left invertible in B (ﬁ ) whenever Ty is left invertible in the
Calkin algebra C(H) = B(H)/K(H). Let us suppose that X € B(H) is an operator with
XTy — 15 € K(H). Using Corollary (4.2.4) and the proof of Theorem (4.2.5), we find
that

A(X)Y = a(X)a(Ty) = #(XTy) = 15 + (XTy — 1y).
Since a,(U) = 0,(T) = @, it follows from Corollary (4.2.15) applied to U that @y
annihilates the compact operators. But then, using the definition of 7 (see Corollary
(4.2.4)), we find that

#XOY =15 + Oy ((XTy — 15) D 0) = 1.

Thus we have shown that the left spectrum of Y is contained in the left essential
spectrum of Ty. Applying the same argument to Y* € (U)’, we obtain that the left
spectrum of Y* is contained in the left essential spectrum of Ty = Ty+. By standard
duality results this means precisely that the right spectrum of Y is contained in the right
essential spectrum of Ty. In total we have shown that o(Y) < ¢,(Ty) for every operator
Y € (U)" under the hypothesis that the point spectrum of T is empty. If x is a joint
eigenvector for T, then the orthogonal projection Y of H onto the one-dimensional
subspace spanned by x belongs to the commutant (U)" and Ty is the corresponding
rank-one projection on H. Then 1 € o(Y) while o,(Ty) c {0}. Hence the essential
spectral inclusion result does not hold.
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Note that, for regular A —isometries with empty point spectrum, we even proved
spectral inclusion theorems for the left (essential) spectra and right (essential) spectra
separately. If 0,,(T) = @ and p denotes the scalar spectral measure of the minimal

. A\ o .
normal extension U € B(H ) , then we obtain in particular that

essran(f) = 0,20 () = o(¥y(1)) < 0,(Ty)
for every function f € L* (u). For the particular case of Toeplitz operators on the Hardy
space of the unit disc or the unit ball, this result is contained in [162] and [158].
For a given subalgebra B c (U)', we denote by
Ty = alg({Ty; X € B}) c B(H)
the smallest norm-closed subalgebra containing all operators Ty with X € B. The semi-
commutator ideal SC (T3) of T3 is defined as the norm-closed ideal in T generated by
all operators TxTy — Txy with X,Y € B. Since T3 is the norm-closure of the set of all
finite sums of finite products of operators of the form Ty with X € B, a straightforward
argument using part (¢) of Corollary (4.2.6) shows that 7 is invariant under the Toeplitz
projection @1 and that
SC(T3) = ker(®r ITB) = ker(ﬂ|TB).
The last equality follows from Theorem (4.2.5) together with Corollary (4.2.4).
Corollary (4.2.17)[149]: Let T € B(H)"™ be a regular A —isometry with minimal
normal extension U € B(H)". For each subalgebra B c (U)’, there is a short exact
sequence

0 - SC(Ty) © Ty 5= B - 0
of Banach algebras with 7(Ty) = X for all X € B. If 6,,(T) = @, then
T N K(H) c SC(Tp).
Proof. The existence of the short exact sequence follows from the remarks preceding
the corollary. The last assertion is a consequence of Corollary (4.2.15).

Using part (b) and part(c) of Corollary (4.2.6) one obtains that, for every regular

A —isometry T € B(H)™ and each subalgebra B  (U)’, the direct sum decomposition
T = SC(Tp) @ {Tyx; X € B}

holds with SC(J3) = ker(®r7,) and {Tyx; X € B} = ®1(Jp). If in addition the

subalgebra B < (U)' is self-adjoint in the sense that X* € B whenever X € B, then the

sequence described in Corollary (4.2.17) is a short exact sequence of C *-algebras.

Section (4.3): Asymptotic Toeplitz Operators on H2(D"):

Although concrete bounded linear operators on Hilbert spaces exist in great
variety and can exhibit interesting properties, one of the main concerns of function
theory and operator theory has generally been the study of operators which are
connected with the spaces of holomorphic and integrable functions. The class of
Toeplitz and analytic Toeplitz operators have turned out to be one of the most important
classes of concrete operators from this point of view.

Toeplitz operators on the Hardy space (or, on the [? space) were first studied by
O. Toeplitz (and then by P. Hartman and A. Wintner in [185]). However, a systematic
study of Toeplitz operators was triggered by Brown and Halmos [173] on algebraic
properties of Toeplitz operators on H?(ID). Here H?(D) denote the Hardy space over
the open unit disc D in C. The study of Toeplitz operators on Hilbert spaces of
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holomorphic functions, like the Hardy space, the Bergman space and the weighted
Bergman spaces, on domains in C" is also one of the very active area of current research
that brings together several areas of mathematics. For more information on this direction
of research, see [177], [178], [179], [180], [186], [190].

Recall that a bounded linear operator T on H?(ID) is said to be a Toeplitz operator
if T = Py2pyMy|y2(p), where M,, is the Laurent operator on L?(T) for some ¢ €
L™ (T).

Here Pz (py denotes the orthogonal projection of L?>(T) onto H?(D). The well-
known Brown-Halmos theorem characterizes Toeplitz operators on H2(ID) as follows
(see the matricial characterization, Theorem 6 in [173]): Let T be a bounded linear
operator on H2(ID). Then T is a Toeplitz operator if and only if

T, TT,=T.

One of the main results the following generalization of Brown-Halmos theorem
(see Theorem (4.3.2)): A bounded linear operator T on H2(ID™) is a Toeplitz operator
if and only if

TZ*].TTZ]. =T,
forallj = 1,...,n.

The notion of Toeplitzness was extended to more general settings by Barr'ia and
Halmos [171] and Feintuch [181]. Also see Popescu [182] for Toeplitzness in the non-
commutative setting.

Accordingly, following Feintuch (and Barria and Halmos [171]) we shall say that
a bounded linear operator T on H*(DD) is (uniformly) asymptotically Toeplitz if
{T,;™ TT]"},,»1 converges in operator norm. The following theorem due to Feintuch
[181] gives a remarkable characterization of asymptotically Toeplitz operators: A
bounded linear operator T on H?(D) is asymptotically Toeplitz if and only if T =
Toeplitz + compact.

After the Hardy space over unit polydisc, we introduce the asymptotic Toeplitz
operators in polydisc setting (see Definition (4.3.4)). In Theorem (4.3.5), we prove the
following generalization of Feintuch’s theorem: A bounded linear operator T on
H?(D™) is asymptotically Toeplitz if and only if T = Toeplitz + compact.

We investigate Toeplitzness and asymptotic Toeplitzness of compressions of the
n —tuple of multiplication operators (TZ1' e, Tzn) to Beurling type quotient spaces of
H?(D").

More specifically, let & € H*(ID™) be an inner function, that is, || = 1 on the
distinguished boundary T" of D™. Set

Q6 = H2(D™) © OH2(D™),

and

CZi = PQeTZilQe'
Where Py, denotes the orthogonal projection from H*(D™) onto Qp. A basic question
is now to characterize those T € B(Qg) for which

C;TC, =T.

Similarly, characterize those T € B(Qyp) for which

C;"TCy - A,
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in norm, for some A € B(Qg) and for all i = 1,...,n (given a Hilbert space H, we
denote by B(H) the C* —algebra of all bounded linear operators on H). In this general
setting, to remedy the subtlety of the product domain D", we modify the above condition
by adding another natural condition. The main content is the following: Let T, A €
B(Qg). Then C; AC, = A for all i = 1,...,n, if and only if A = 0. Moreover, the
following are equivalent:

(i) C;"TCr —> Aand C;(T — A)CZr - O innorm foralli,j = 1,...,n;

(i) C;"TCz' —» Oinnorm foralli = 1,...,n;

(111) T 1s compact.

We study the above questions in the vector-valued Hardy space over the unit disc
setting. To be precise, let E be a Hilbert space, and let O € Hg’(g) (D) be an inner
multiplier [187]. Then the model space and the model operator are defined by Q, =
HZ(D) © OHZ(D) and S, = Py, T;|q,, respectively. We prove that for every T €
B(Qp), the following holds: (i) STS, = T if and only if T = 0, and (ii) {Sg™ TS5 } =1
converges in norm if and only if T is compact.

Let n > 1 and D" be the open unit polydisc in C". In the sequel, z will always
denote a vector z = (zy,..., 2,) in C". The Hardy space H?(D™) over D" is the Hilbert
space of all holomorphic functions f on D" such that

1/2
. . 2
1l 2 (omy: = ( sup f|f(rel@1,...,relen)| d9> < oo,
0sT<1 4

where df is the normalized Lebesgue measure on the torus T", the distinguished
boundary of D™. Let (TZ1' e Tzn) denote the n —tuple of multiplication operators by
the coordinate functions {z;}-,, that is,
(Tzif) (W) = Wif(w);
for all w € D™ and i = 1,...,n. We will often identify H2(D™) with the n —fold
Hilbert space tensor product of one variable Hardy space as H2(D) ® - - - @ H(ID).
In this identification, T, can be represented as
Lrpy @ - Q T, Q- Qlym)

ith ;l’ace
foralli = 1,...,n. Also one can identify the Hardy space (via the radial limits of
functions in H2(D™)) with the closed subspace of L?(T™) in the following sense: Let
{ex: k € Z"} be the orthonormal basis of L2(T™), where k = (kq,...,k,) € Z" and
e = e'91k1. .. ¢lOnkn Then a function

axex € L*(T™),
kezn
is the radial limit function of some function in H2(D™) if and only if a; = 0 whenever
at least one of the kj, j = 1,...,n, is negative. In particular, the set of all monomials
{Zk: ke Zﬁ} form an orthonormal basis for H2(D"), where k = (k4,...,k,) € Z% and

z* = Zfl e Z’,:” (cf.[170], [189]). We use Pyz(pny to denote the orthogonal projection

from L?(T™) onto H?(D™"), that is,
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Pz (Z akek) = Z ager,

kez™ kez?}

for all Y egn agey in L2(T™).

For ¢ € L*(T"), the Toeplitz operator with symbol ¢ is the operator T, €
B(H?(D")) defined by

Tof = Puzaomy(Mof)(f € H*(DM),

Where M,, is the Laurent operator on L? (T™) defined by M,,g = ¢g forall g € L*(T™).

Therefore

T(p = PHZ(]D)n)M(p IHZ(]D)n)'

For the relevant results on Toeplitz operators on H2(D™), see [172, 175, 178, 186, 188].

The following lemma will prove useful in what follows.
Lemma (4.3.1)[169]: Let H be a Hilbert space and A € B(H) be a compact operator. If
R is a contraction on H, and if R*™ — 0 in strong operator topology, then R*™A — 0 in
norm.
Proof. This is a particular case of ([172], 1.3 (d), page 3).

kl

In what follows, for each k € Z? and I € Z", we write T} = T, -
. Mln TZ*k — T*k1 . T*kn and M:fe — M*l1 . M*ln

eien: Zq Zn ei91 eien'

T, Mg =

ll .o

0if1
In the following we prove a generalization of Brown and Halmos characterization

[173] of Toeplitz operators on H*(ID). This result should be compared with the algebraic

characterization of Guo and Wang [ 184] which states that T in B (H 2 (]D)")) is a Toeplitz

operator if and only if T;TT,, = T for all inner function ¢ € H*(D").

Theorem (4.3.2)[169]: Let T € B(H 2(]]))")). Then T is a Toeplitz operator if and only

ifTZ*].TTZ]. =T forallj = 1,...n.

Proof. For each k € Z,, define k; € Z} by ky; = (k,..., k). From TZ*].TTZ]. =T,j =

1,...n, we obtain that

M

T, TTk = T,

which implies that
(Teisiy Cisiy) = (TT; %e;, T, %¢;)
=(Te;, €),
forall k € Z, and i,j € Z7. Now for each [, m € Z", there exists t = (t,,...t,) € Z}
such that 1+ kg,m + kg € Z} for all k; >t (that is, k > t; for all j = 1,...,n).
Hence setting
A = M i TPy omyM.5,
foreach k > 1, we have
(Axer, em) iz (my = (TPy2 (Dn)MZ% el Mfi% er) iz ()

= (TPy2(pm)€ltky Cmtkg ) 12(T7)s

and therefore, for all k; = t, we have that
(Aker, em) 2y = (Tersky) €mrk, Y2 (DY)
= (Terrt em+t) B2 (D™)-
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This implies in particular that
(Arep, em) = (Tepyr, emye) as k — oo.
Let the bilinear form 7 on the linear span of {es: s € Z"} be defined by
n(ey em) = lim (Ayey, em),

for all [, m € Z". Since ||Ai|| < |IT|l,k = 1, it follows that n is a bounded bilinear
form.

Therefore, n can be extended to a bounded bilinear form (again denoted by 77) on
all of L2(T™), and hence there exists a unique bounded linear operator A, on L?(T™)
such that

n(f,9) ={Axf,9) = Ilijgo(Akf,g),
forall f,g € L>(T™). Now let j € {1,...,n},I,m € Z™ and set

6j=<0,..., 1 ,...,0).
“
jth place

Then for all k sufficiently large (depending on [, m and ), we have
xk xk
((MeiedTPHZ(D”)Meied) Cltej em+ej)L2(T”) = <TP1-12(]D)”)el+kd+ej; em+kd+ej)L2(']I‘”)
= <Tel+kd+6j’ em+kd+ej)H2(]D)”)
= <TZ*]TTZ]el+kd’ em+kd)H2 (]D)n)
= <Tel+kd:em+kd)H2 (D™)
= (Akel, em)Lz(Tn).
Therefore
. xk xk
<Aooel+ej: em+ej)L2(']1"”) = Ill_)nolo <Mei9dTPH2(]D)”)MeiedeHej: em+ej)L2 (")
= (Awer, em) 2 (),
and consequently M*jg AocM 9, = A, that is, AoM 9, = M is;As. Hence there
e J e’J e J e ]
exists ¢ in L (T™) such that Ae, = M,, [187]. Finally, we note that for f, g € H*(D™),
. xk xk
(Aoof;g)Lz(Tn) = Ill_)rrolo (MeiedTPm(]D)”)Meiedf;g)]}(qrn)
. xkgmk
= Ill—trolo(TZ de df: g)HZ(]D)”)'
that s,
(Af) iz = Tf, @ uzmn),
and hence
(PrzomyAwf, nzom) = (Awf, 9)12(1m)
= (Tf,g)HZ(]DTL).
Therefore, T = Pyzpn)Awluzr) = Puzn)Mypluz@n), that is, T is a Toeplitz
operator.
Conversely, let ¢ € L*(T™) and T = PyzpnyM,|y2pny Then for f,g €
H?(D™) andj = 1,...n, we have
((T;jTsz) .9 z@my = (pe'®if, e g) iz m)
={(of, 9z,
that s,
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((T;jTsz) fr @2 = PuzmMolnz@m f) 9n2 @m),
and therefore TZ*].TTZ]. =T forallj = 1,...n, as desired.

We now characterize compact operators on H2(ID™) in terms of the multiplication
operators {TZ NIy Tzn}' This characterization was proved by Feintuch [181] in the case
ofn = 1.

Theorem (4.3.3)[169]: A bounded linear map T on H?(D") is compact if and only if
Tz*l.mTTZ’]’.l — 0 innorm foralli,j € {1,....,n}.
Proof. Let T on H?(ID") be a bounded operator. First observe that for each m > 1, we
have
TZm T;lz = IH2 (b) — Pg:m,

Where

Frn=C@HzCDH---@zm1C,
is an m-dimensional subspace of H? (D). For eachm > 1, set

n
Fm = H(IHZ(]D)TL) - TZTTLTZtm .
i=1

Then
n
Fm = IHZ(]D)) ®® (IHz(]D))—TZm Tz*m)®® IHZ(]D))
i=1 \ ithplace
=| ||l ® @ (Pr,) ® @ Iyzp)
i=1 \ ithplace
=Pr ® QP

which gives that F,, is a finite rank operator and hence
E,=TE,+E,T —E,TE,,
is a finite rank operator, m = 1. Moreover
T—-FE,=T-(TE, +E,T — E,TE,)
= (IHZ(]D)TL) — Fm)T(IHZ(]D)n) — Fm)
Finally, observe that

[n2@ry = B = Z (—1)l+1TZ’i’1 TR T

1<iy <-<ijsn

= Z (-1t (Tzl_1 . Tzil)m (Tzi1 e Tzil)*m:

1<i;<-<ijsn
for all m > 1. Hence, by hypothesis and the triangle inequality we have
|7 = Eull = (142 = Bn)T(azcomy = Bl = 0,

as m — oo, that is, T is a compact operator.

The converse follows from Lemma (4.3.1). This completes the proof.

In view of the preceding theorem, it seems reasonable to define asymptotic
Toeplitz operators as follows (compare this with Feintuch [181] and Barr’1a and Halmos
[171)):
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Definition (4.3.4)[169]: A bounded linear operator T on H%(D™") is said to be an
asymptotic Toeplitz operator if there exists A € B(H?(D™)) such that T,"TT;' > A
and T;™(T — A)TZ’]’.l —- 0asm - ooinnorm,1 < i,j < n.

We close by characterizing asymptotic Toeplitz operators on H?(D") as
analogous characterization of asymptotic Toeplitz operators on H(ID) (see [181]).
Theorem (4.3.5)[169]: Let T be a bounded linear operator on H2(D™). Then T is an
asymptotic Toeplitz operator if and only if T is a compact perturbation of Toeplitz
operator.

Proof. Let A € B(H*(D™)), T,/ TT;! — A and T;™(T — A)T;? - 0 in norm, as m -
©,and 1 < i,j < n.Thenforallm =1,

|4 -1 41, | < |4 - V| + | T - 1 AT,

< |a-m ™ rrme|| + || T - A,
yields TZ*].ATZ]. = A forallj =1,...,n. Also by Theorem (4.3.3), T — A is compact on
H?(D").

The converse follows from Lemma (4.3.1) and Theorem (4.3.2). This completes
the proof.

The more interesting question now is to describe bounded linear operators T on
H?(D") (in terms of Toeplitz and Hankel operators) such that ;™ TT;' —> A and
T;™(T — A)TZ’]’.l — 0 for some A € B(H2 (]D)")) and asm - 0,1 < i,j < n, in the
weak or strong operator topology.

We extend some of the results in the case when the ambient operator is the
compression of (TZ1' e Tzn) to a quotient space of H?(D™), that is, a joint

(TZ*1’ e Tz*n) —invariant closed subspace of H?(D™). Note that a rich source of
n —tuples of commuting contractions comes from quotient Hilbert spaces of H*(D™).
Let Q be a joint (TZ*I, o) Tz*n) —invariant subspace of H2(DD"). Set
CZi = PQTZilQ’
foralli = 1,...,n. Note that Q+ is a joint invariant subspace for (Tzl' e Tzn) and so
In the case n = 1, C, is called a Jordan block [187]. In the several variables quotient

space setting, we have the following analogue of Theorem (4.3.5).
Theorem (4.3.6)[169]: Let T,A € B(Q). Then C;* TC;' - A and C;" (T — A)CZ’? -
0 in norm for all i,j = 1,...,n if and only if T = A + K, where K € B(Q) is a
compact operator and C; AC, = Aforalli =1,...n.
Proof. We first note that, as in the proof of Theorem (4.3.5), the assumption C Z*l.mTC Z’? -
A as m — oo implies that

C;AC, = A,
foralli = 1,...n.Now it follows from the definition of C,, that

Cz*lm = Tz*l-le;
and hence

Cz*l-m(T - A)Czr;-l = Tz*l-m(T - A)PQTZT;1|Q,
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foralli,j = 1,...,nand m = 1. By once again using the fact that
one sees that
T;™(T — A)PoTI" = T;™(T — A)PTPy.
Hence C;™(T — A)CZ’? -0 in B(Q) if and only if T,™(T — A)PQTZ’? -0 in
B(H*(D")) asm - .

Therefore, if C;/" (T — A)CZ’? — 0asm — oo innormforalli,j = 1,...,n,then
;" (T —A)PQTZ’]’.l > 0 in B(H?*(D")) as m - o, and consequently by Theorem
(4.3.3), (T — A)| is a compact operator on H?(D™). Therefore

(T —A4) = (T —-Alg
is a compact operator on @, which proves the necessary part.

Conversely, let T — A be a compact operator on Q and C;,AC, = A for all i =
1,...n.
Since C;™ — 0 as m — o in the strong operator topology, Lemma (4.3.1)
implies that

C;(T — A)CZ’? - 0,
as m — oo. In particular, foralli = 1,...n
C;"TCt - C; ACTT.
But C; AC, = A,i = 1,...n,yields us
C;MTC - A.
This completes the proof.

Considering the particular case Qg = H*(D") © 6H*(D™), the so called
Beurling type quotient space of H2(D™), where 8 € H* (D™) is an inner function, we
get the following result.

Theorem (4.3.7)[169]: Let 8 € H*(D™) be an inner function and Qy = H*(D") ©
6H?(D") and A € B(Qp). Then C; AC, = Aforalli = 1,...n,ifand only if A = 0.
Proof. Let C; AC, = A foralli = 1,...,n. Since
Qg = OH*(D™),
is a joint invariant subspace for (TZ e Tzn)' it follows that
PQeTz*iIQe = Tz*l'PQe'
and hence
APQe = (CZ*iACZi)PQQ
= (PQQTZ*ilQQAPQQTZilQQ)PQQ
= T;iAPQQTZiPQQ
= Tz*iAPQeTZi
= Tz*i(APQe)TZi'
foralli = 1,...,n. This and Theorem (4.3.2) implies that APy, is a Toeplitz operator.
Consequently, there exists ¢ € L*(T™") such that
On the other hand, since Ty is an analytic Toeplitz operator, it follows that
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Hence, using [Theorem 1, C. Gu [183]], we conclude that
TI,DG = T¢T9
= APQ19 Tg
= 0.
This completes the proof of the theorem.

Summing up the above two results and Lemma (4.3.1), we have the following
generalization of Theorem 1.2 in [174].

Theorem (4.3.8)[169]: For an inner function 8 € H*(ID™) and bounded linear
operators T and A on Qg = H*(D™) © OH?(D"), the following are equivalent:

(i) C;"TC;' — Aand C;™(T — A)CZ’? — 0 innorm foralli,j = 1,...,n;

(i) ;" TCmzi —» 0 innorm foralli =1,...,n;

(111) T 1s compact.

For asymptotic Toeplitzness of composition operators on the Hardy space of the
unit sphere in C™ see Nazarov and Shapiro [188], and Cuckovic and Le [176].

We characterize the compact operators on the model space H(%p (b)) © @H(gp (D),
where ® € H ;o((cp)(]D)) is an inner function. We note that this result for p =1 case can be
found in [174]. Moreover, our proof seems more shorter and conceptually different (for
instance, compare Theorem 5.5 with Proposition 2.10 in [174]).

We begin with the definition of a Toeplitz operator with operator-valued symbol.
Definition (4.3.9)[169]: Let £ be a Hilbert space. A bounded linear operator T on
HZ(D) is said to be Toeplitz if there exists an operator-valued function ® in Lc;(g) (T)
such that T = PHg (]D))Md)lH&g(]D))'

Here let us observe, before we proceed further, the following characterization of
Toeplitz operators on a vector-valued Hardy space. Since the result follows from
concepts and techniques used in the proof of Theorem (4.3.2), we give a sketch of the
proof.

Theorem (4.3.10)[169]: Let & be a Hilbert space and T € B (HZ(D)). Then T is a
Toeplitz operator if and only if T, TT, = T.
Proof. Note first that {e,n:m € Z,n € £} is a total set in L2(DD), where e, =
e™® m € 7Z.Foreach k > 1, set
Ap = M TPMY,

where M ,:6 is the bilateral shift on LZ(T) and P is the orthogonal projection from L2 (T)
onto H(D).If T; TT, = T and k € Z,, then

(Teirin, €+ ) = (Tem, €4),
foralli,j = 0. Then for each [, m € Z, as in the proof of Theorem (4.3.2), there exists
t = Osuchthatl+k,m+ k>0 forall k > t, and so

(Aen, en{) = (Tepm, emied),
as k — oo. Then

(eﬂl: em() = Ili—r}olo(Akeln’ em();

defines a bounded bilinear form on the span of {e;n: | € Z,n € &}.
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Therefore, there exists (again, following the proof of Theorem (4.3.2)) A, €
B (ng (’]I‘)) such that

(Anf,g) = lim (A, f, g),

forall f, g € L%(T). This yields

AxM ,io = M ,igA.
Hence there exists a ® € L5 (¢)(T) such that

Aoo = Md);

and hence

T'=PrzyMoluzm)-
The proof of the converse part proceeds verbatim as that of Theorem (4.3.2). This
completes the proof of the theorem.

Following Feintuch [181] we now define an asymptotic Toeplitz operator on a

vector-valued Hardy space.
Definition (4.3.11)[169]: Let £ be a Hilbert space. A bounded linear operator T on

HZ(D) is said to be an asymptotic Toeplitz operator if there exists A € B (H 2 (]D))) such

that T, TT," - A as m — o in norm.

In the theorem below, we generalize the Feintuch’s characterization [181] (see
also Theorem F, page 195, [188]) of asymptotic Toeplitz operators on Hardy space to
asymptotic Toeplitz operators on CP —valued Hardy space. However, the method of
proof here is adapted from the original proof by Feintuch.

Theorem (4.3.12)[169]: Let T, A € B (Hép(u)))). Then T;™ TT;® - A in norm if and

only if A is a Toeplitz operator and (T — A) is compact.
Proof. Suppose that T,*TT,™ — A in norm. It follows that

as m — oo, This and the triangle inequality yields A = T, AT,. Now let R,, = T," T,;™
and

Qm=1—R,,.
Further, let P, denote the orthogonal projection of H(%p (D) onto the space of (Cp-

valued) constant functions. Since T,T, = I uz () ~ Pc, it follows that
14

m-—1
Qn = ) TEP,T(m = 1)
k=0

Then Q,,, m = 1, is a finite rank operator, and therefore
Fn=(T—-A4)Qm+ QT —A) — Qun(T —A)Qn(m = 1),
is also a finite rank operator. Moreover
(T —A) —Ep =Rp(T — ARy(m 2 1),
yields
I(T — A) = Exll = IR (T — ARyl < 1T, TT;™ — All = 0,

asm — 0. So T — A is compact as desired.

The converse follows from Lemma (4.3.1). This completes the proof.
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Given a Hilbert space £ and an inner multiplier ® € H ,;"(5) (D), the model space

Qe and the model operator Sg are defined by

Qo = H3(D) © OHZ(D),
and

Se = PQ@MZ|Q@’

respectively. Model spaces (and hence model operators) represent a wide and very
important class of bounded linear operators [187]. We have the following result in the
model space setting.
Proposition (4.3.13)[169]: Let O € Hg’(g) (D) be an inner multiplier and T € B(Qyp).

Assume that @(eie) is invertible a.e. Then SgTS, = T if and only if T = 0.
Proof. The proof goes exactly along the same lines as the proof of Theorem (4.3.7).
Since
TPQ@ =T; (TPQ@)TZ'
it follows from Theorem (4.3.10) that TP, is a Toeplitz operator. Consequently, there
exists ¥ € Li(¢)(T) [187] such that
TPy, = Ty.

Since Ty is an analytic Toeplitz operator, again as in the proof of Theorem (4.3.7), it
follows that

Tyy =0,
and hence

Yo = 0.
Since O is invertible a.e., it follows that ¥ = 0 a.e. and hence T = 0. This completes
the proof.

Not only is this proposition a considerable generalization of Proposition 2.10 of
[174], but our proof is much simpler. The principal tool is the identity Sg = T, |4, -

We have the following characterization which generalizes the characterization of
compact operators on Q, for p = 1 (see the implication (i) and (iii) in Theorem 1.2 in
[174]).

Theorem (4.3.14)[169]: Let O € Hgo((cp)(]D)) be an inner multiplier and T € B(Qp).
Then T is compact if and only if {S;™T Sy },,,51 converges in norm.

Proof. If T is compact on Qg, then by Lemma (4.3.1), ||[S5™ TS|l = 0 as m — oo. To
prove the converse, let A € B(Qg) and S;™TSS* = A, as m — oo, in norm. Then by the
same argument used in the proof of Theorem (4.3.6), we have SzAS, = A. It now
follows from Proposition (4.3.13) that A = 0 and therefore T,"T Py, T," — 0 as m —

. Now Theorem (4.3.12) implies that TPy,  is a compact operator on Hép(]D)).
Therefore T = TPy, is a compact operator on Q. This completes the proof.
Theorem (4.3.14) and Lemma (4.3.1) give us the following generalization of

Theorem 1.2 in [174].
Theorem (4.3.15)[169]: Let © € Hgcpy(ID) be an inner multiplier and T € B(Qp).
Then the following are equivalent:

(i) {Sg™TSJ'}m=1 converges in norm;

(i) Sg™TSEZ* — 0 in norm;

(i11) T is a compact operator.
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Chapter 5
Hardy Space over the Bidisk

We show some results reflect the two variable nature of H2(D?). We show that
manifest a close tie between the operator theory in H%(D?) and classical single operator
theory. The unilateral shift of a finite multiplicity and the Bergman shift will be used as
examples to illustrate some of the results. We first show the Coburn type theorem fails
generally on the bidisk. But, we show that certain plurtharmonic symbols or product
symbols of one variable functions induce Toeplitz operators satisfying the Coburn type
theorem.

Section (5.1): Operator Theory:

Non-selfadjoint operator theory has been greatly enriched by the introduction of
Hilbert spaces of analytic functions. On the one hand, analytic function theory maizes
it possible to reformulate and solve many classical operator theoretical problems; on the
other hand, it opens many new fields of study in which algebra, geometry and topology
also play fundamental roles. A very illustrative example is the study of the unilateral
shift operator of the Hardy space over the unit disk, the results of which have found
many important applications. In recent years, many attempts have been made to explore
a multi-variate analogue of this study. One line is the study of commuting operator
tnples in which the dilation (cf. [203)]), joint similarity (cf. [213]), joint hyponormality
(cf. [202][214][215]), joint spectrum (ct. [199][201]) and functional calculus (ct. [201])
are very interesting topics. Another line is the coordinate free approach in which the
language of module theory is adopted (cf. [198[200][205][206][212]). This module
language emphasizes some key problems in the multlvariate operator theory from a
module theoretical viewpoint and makes clear its connections with algebraic geometry
and commutative algebra.

[207] and [217] start a project of building a systematic operator theory in H2(D?).
This project is based on the module language. Its ultimate goal is to make H?(D?) into
a concrete model in multi-varlable operator theory in which, on the one hand, the two
variable nature of H%(D?) has a clear operator theoretical representation; on the other
hand, the transition from single operator theory to a multivariable theory becomes
natural. The study of H2(D?), and in general H(D™), is not new. Its function theory
was laid down in [215], and some operator theoretical problems were studied, see [192],
[196], [197], [208], [209], and [210]. But the operator theory in H2(D?) is still far from
being fully developed.

We devoted to a study of the evaluation operator. In the process of exhibiting
elementary properties of the evaluation operator in H?(D?), some general techniques
are also developed. These techniques are used to obtain results in other topics.

We give an interpretation of characteristic operator function in H2(D?) using
evaluation operator. This interpretation is a basis for the development of some useful
techniques.

Difference quotient operator is closely related to the evaluation operator. Its
properties are used in many places.

Results are used to prove a spectral equivalence in our setting of H2(D?). This
proof is another important source of techniques.

135



Some sufficient conditions for the compactness of evaluation operators on
quotient modules H%(D?) © M are studied. A necessary condition will be given.

Multiplications by coordinate functions z and w in H*(D?) are two unilateral
shift operators of infinite multiplicity. We study compressions of the two shift operators
to quotient spaces. Many results will be used here. In functional model theory,
compressions of the shift operators to quotient spaces serve as canonical models for a
large class of operators.

From this point of view, the study, has a useful generality. We will take the
Bergman shift and the unilateral shift of finite multiplicity as examples to illustrate some
of the results.

We let C denote the complex plane and C ? be the Cartesian product of 2 copies
of C. The points of C 2 are thus the ordered 2-tuples (z,w). Z,is the set of nonnegative
integers. D? will be the unit bidisk in C 2 with distinguished boundary T2, where D is

oo : . d :
the nnit disk and T is the unit circle. % denotes the normalized Lebesgue measure on
_ ldz| law|

the unit circle T and dm := Py be the product measure on the torus T2. H2(D?),

which is equal to H2(D)®H?(D), is the Hardy space over the bidisk. No distinction
will be made between H?(D?) and H?(T?). Bidisk algebra A(D?) is the closure of
polynomials in z and w under the norm of C (T?).

A(D?) acts on H2(D?) by pointwise multiplication of functions which turns
H?(D?) into an A(D?) module. A closed subspace M of H?(D?) is a submodule if M is
invariant under the module action, or equivalently, M is invariant under multiplications
by both z and w(denoted by T, and T,, respectively). A subspace invariunt for
T,(orT,,)alone will be called z-Invariant (or respectively w-invariant). For any subset
X © H?(D?), we let clos{X} denote the closure of X in H?(D?) and

[X] = clos{span{A(D?)X}}
denote the submodule generated by X. For example [h] is the submodule generated by
function h.

A function h € H?(D?) is said to be inner if |h(z, w)| is almost everywhere equal
to 1 on t%; and it is said to be H-outer if [h] = H*(D?). It is easy to see that when h is
inner, [h] = hH?(D?).

If we denote H2(D?) © zH?*(D?) by H,, and H*(D?) © wH?(D?) by H,, then

H, = clos{span{wj:j = 0}}, H, = clos{span{zj:j = 0}}
One sees that both H,, and H, are the Hardy space over the unit disk, but they are
different subspaces in H2(D?). These two subspaces will be used in the definition of
evaluation operators and some other places.

If M is a closed proper subspace of H*(D?) and

p:H*(D?) - M, q:H*(D?) -» H* (D> )©O M
are orthogonal projections, then we define a map
S : A(D?) - B(H*(D?*) &6 M)
by
Stg = af g,
where f € A(D?) and g € H2(D?) © M. One sees that the operators S,,S,, are
compressions of the Toeplitz operators T,, T, to H*(D?) © M. When M is a
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submodule, S is a homomorphism which turns H2(D?) © M into a quotient A(D?)-
module and in particular S, commutes with S,,,.

It is easy to check that a closed subspace N of H?(D?) © M is invariant for
S,(orS,,) if and only if N @ M is z-invariant(or resp. w-invariant) in H2(D?). We will
see that S, and S, have a very close tie with the evaluation operators.

Definition (5.1.1)[191]: For every A € D, we define a left evaluation operator L(A)
from H?(D?) to H,, and a right evaluation operator R(1) from H?(D?) to H, by

LAOfw) =fAw), RAf(2) =f(z D, fe€H (D).
It is easy to see that L(A) and R(A) have integral representations using the Canchy
integral formula from which we see that L(1) and R(A) are operator valued analytic
functions in A and

ILDI = IRWI = @ - 141H)~Y2,

As manifested in [207] and [217], evaluation operators play important roles in the study
of the compression operators. On the one hand, the restriction of evaluation operators
to the quotient space M © zM is the characteristic operator function of S,; on the other
hand, the restriction of evaluation operators to the quotient space H2(D?) © M is in
many cases compact. These two facts lead to some interesting results.

We will be mainly interested in restrictions of L(A) and R(A) to quotient spaces
like H*(D?) © M and M © zM. For simplicity, we denote these restrictions also by
L(A) and R(A) in cases in which their meanings are clear from the context.

We have the following lemma.

Lemma (5.1.2)[191]: If f € H*(D?), then |IL(O)f|l = |If|| if and only if f € H,,.

We mentioned that L (A1) is an operator-valued analytic function in 1. An operator-
valued analytic function u(z) over D is said to be contractive if ||[u(z)|| < 1 for every
z € D. If u(z) is contractive, then it has non-tangential limit to almost every point in
0D = T. If H is a closed subspace of H?(D?) such that L| is contractive and

ILCOYFI < IF I
for every nonzero f € H, then L(z) is said to be purely contractive on H. Lemma (5.1.2)
shows that if L|y is contractive and H contains no nonzero function which is
independent of z, then L|y is purely contractive. We will need this fact.

The following lemma in [217] will be used.

Lemma (5.1.3)[191]: If M < H?(D?) is z-invariant, then R(Q) restricted to M © zM
is Hilbert-Schmidt for every A € D, and
tr(R*(HRW) < 1 — 4D

Similarly if M € H?(D?) is w-invariant, then L(1) restricted to M © wM is Hilbert-
Schraidt for every A € D. This lemma reflects the two-variable nature of H2(D?)--if M
is z-invariant, then the functions in M © zM depends largely on variable w and hence
they do not have much 'room' to vary if w variable is fixed. For example, if M =
H?*(D?), then M © zM = H,, and R(1)|yozm is of rank 1 for every 1 € D.

The following lemma describes the adjoints of L(A)|p2p2yom and
R(D)|y2(p2yom- Its proof is simple.

Lemma (5.1.4)[191]: If M is a subspace of H*(D?) and L(2), R(1) are restrictions of
evaluation operators to quotient H*(D?) © M, then for every ¢ € H,,, Y € H,,
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LD$ =q(1-72) ¢, R*DY = q(1—w) ¥.
We will use this lemma often later on.

For every contraction T, one can associate with it two defect operators Dy =
(1-T*T)Y2 Dy = (1 —TT*)'2, and two defect spaces Dy and Dy which are the
closure of the ranges of D and D¢+ respectively. The operator-valued analytic function

0r(1) =[-T+ADr-(1 = AT*) *]|p,, AED (1D
is called the characteristic operator function for T.

In functional model theory (cf. [214][204][216]), the defect operators and the
characteristic operator functions are very useful too]s in determining the structure of
contractions. In [207] it is shown that if M is a z-invariant subspaee of H2(D?), then the
evaluation operator L is left inner from M © zM to H,, and

M = L(z2)H?*(E),
where E = M © zM. By [216], there are constant unitaries U, V, W such that
LD mozm = (Ubs,(DV) ® W, )
and by Lemma (5.1.2), W # 0 if and only if M contains nonzero functions independent
of variable.

An analytic formula for L(4) |y gy, Which is parallel to the formula for 5 , can
be deduced from (2) and a known result in the vector-valued Hardy space setting (cf.
Theorem 5.2 in [194]). But the following treatment fits better into the context.

We first observe that in Lemma (5.1.4),

— (-1 — -1 — -1
LMDp=q(1-22z) ¢=q(1—-22z) qp =(1-2S,) L(0)¢,
and therefore we have the following
Lemma (5.1.5)[191]: For every f € H*(D?) © M,L(A)f = L(0)(1 — AS;)~1f.
Lemma (5.1.5), apart from giving analytic representations of L(A4), displays a
connection with the compression S,. More connections will be exihibited in Section 5.

F=10) o, every f € H?(D?). We will make a study

Z
of it next. Here we need the fact that when M is z-invariant D, maps M © zM into

H*(D?) © M.
Corollary (5.1.6)[191]: On M © zM

L(A) =L(0) +AL(0)(1 — AS)1D,. (3)
Proof. For f € M © zM, if we write

fz,w) =f(0,w) +z9(z,w),
then g = D,f which is in H*(D?) © M by a remark following the definition of
difference quotient operators. It is easy to see that
AL(D)D,f = Ag(4,w)
= (L) - L(O)f,

In the following corollary, D, f =

and hence
LIS = LO)f + AL(D)D,f.

Lf = LO0)f + AL(0)(1 — AS;) 7' D, f.

By Lemma (5.1.5),
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This representation of the characteristic operator function for S, is very useful since in
many cases L(0) and D, are easy to compute, and this leads to a better understanding
of S,. We will see examples later. A comparison of (3) with (1) suggests that the defect
operators for S, may have a clearer expression in terms of L(0) and D,,.

If M is z-invariant, then S, on H2(D?) © M can be very general (cf. [211][216]).
In fact, if S is any contraction in class C g, that is Tlll_r)rc}o (§)™ - 0 in strong topology, then

there is a z-invariaalt subspace M such that S is unitarily equivalent to S, on H2(D?) ©
M. But if M is a submodule, S, is much less general, and there exist C, class
contractions which are not unitarily equivalent to S, for any submodule M. The
following Theorem (5.1.7) shows that submodules which make S, compact are rare. A
function ¢ is said to be a factor of M if ¢ is a factor of every function in M. A submodule
M is said to be generic if it contains no non-trivial one-variable function and has no one-
variable inner factor.
Theorem (5.1.7)[191]: If M is a generic submodule, then S, is not compact.
Proof. For a generic submodule, remarks preceeding Lemma (5.1.5) says that L|y o=y
differs from tile chtaracteristic operator fuuction of S, by constant unitaries, e.g.,
LM mozm = Ubs, (D)V,
for some unitary operators U and V. So by the formula for 6 , if S, is compact then
L(0)|yozm is compact. Since L(0)(zM) = {0}, L(0) is compact oll M. We show that
this is impossible. In fact, since functions in M do not have common factor z and
M=®2,w' MO wM),
we can pick a f € M © wM such that f(0,w) # 0 and ||f|| = 1. One checks that
{Wj f:j= 0} is an orthonormal set and
lL@wirl= [ wroml 5= [ 1rowr o
T ’ 21 T ’ 2w’
for every j = 0. This means that L(0) can't be compact on M.

So if S, is compact on H2(D?) © M, then the submodule M must be non-generic.
Some study was made for non-generic submodules in the next. A non-generic
submodule is special and also simple. However it is not clear if non-generic submodules
are able to produce all compact strict contractions.

Another related question is the following
Question (5.1.8)[191]: If M is a submodule with codimension dim(H?*(D?) @ M) >
1, then can S, be normal?

If M is a submodule of H?(D?), then compressions S, and S,, on H2(D?) © M
are a closely related pair. In studies of operator pairs, an important problem is the jointly-
invariant subspace problem. The jointly-invariant subspace problem for the pair
(S, S,,) is very hard. Actually it is tied up with the invariant subspace problem for
Hilbert space operators.

However, if either S, or S, is in C, class, which means there is a non-zero r i €
H® (D) such that either ¥(S,) = 0 ory(S,,) = 0, then (S,, S,,) has a non-trivial jointly-
invariant subspace. We first state a lemma. This lemma will also be used.

Lemma (5.1.9)[191]: If ¢ is an inner function in H,, then

HZ(DZ) © ¢H2(D2) = (Hz © ¢Hz) X H,y,.
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Proof. Forevery f € H, © ¢H,and g € H,,
<fg, ¢pz'wl >=<f, ¢z} ><g,w/ >=0, Vi,j > 0.
This implies that
(H, © $H,) ® H,, © H*(D*) © ¢pH*(D?).
Conversely, if f(z,w) = Z‘f:o w/ fj(2) is any function in H 2(D?) © ¢pH?*(D?) then for
ecachi > 0and k = 0,
0=<f, ¢pz‘w* >= z < wjfj,q.’)ziwk >
j=0
=< kak, q.')ziwk >
=< fi, Pz* >.

This shows that f;, € H, © ¢ H, for every k = 0 and therefore f € (H, © ¢H,) ® H,,,.
Theorem (5.1.10)[191]: If M c H?(D?) is a submodule of infinite codimension and
either S, or S, is in class C,, then S, and S,, have a non-trivial jointly-invariant
subspace.
Proof. If S, is in C,, then S, has a minimal function ¢(w) € H* (D). Since

q¢ = qp(ql) = ¢(Sy)(ql) =0, (4)
¢ isin M. If ¢ = PF is the inner-outer factorization, then i is in M because M is a
submodule. So without loss of generality we assume ¢ is inner. There are two cases.
Case 1. If ¢ can be factorized nontrivially into a product of two inner functions as

p(w) = p; (W), (w),

then by the minimality of ¢ and the arguments in (4) neither ¢, nor ¢, is in M. If we
set

M = clos{¢yH*(D?) + M}
then clearly M is a submodule which contains M properly.

We now show that M # H?(D?). In fact if M = H?(D?), then there is a sequence
{9, : n = 0} € H*(D?) and a sequence {h,, : n = 0} c M such that
711_{%0 $19n + hy = 1.

This implies that

Tll_r)rolo 20190 + P20y = Ps.
But {¢pg,, p2h,, : n = 0} is a subset of M, so ¢, needs to be in M which contradicts the
minimality of ¢ So M © M is a non-trivial jointly invariant subspace of S, and S,, by
the remarks.

Case 2. If ¢p =
Lemma (5.1.9)

w-A1
1—zw

for some A € D, then H?*(D?) = (w — A)H?(D?) € M and by

1
H?*(D*) © (w — DH?*(D?) = ——=—H,.
1—-Aw
This in particular implies that H2(D?) © (w — 2)H?(D?) is invariant for T,. Since M
is invariant for T,, and
MO w-DH*(D?) = M n (H*(D*) © (w — DH*(D?)),
M © (w — A)H?(D?) is also invariant for T,. By Beurling's theorem,
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l/J(Z_) u

z

MO w—A)H*(D?) =

— Aw
for some inner function ¥ € H, and therefore
z
M=¢&?@®w—@Ww%
1-2Aw

IfyY(z) = f_;ﬁ”z for some u € D, then M will be of codimension i which contradicts the

assumption, so Y must have a non-trivial inner factor, say ;. If we let
=2 H,@0w- DD,

_ 1—Aw
then M © M is a non-trivial invariant subspace for S,. Moreover, since w — 4 €
M,S,, = Al on H*(D?) © M, M © M is also invarint for S,,,.

It is shown in [207] that if S, doubly commutes with S,,,,, e.g., S,S,, = S, S, and
S,Sw = SyS,, then either S, or S, is in class C,. So Theorem (5.1.10) has the following
Corollary (5.1.11)[191]: If S, and S,,, doubly commute on a quotient module H*(D?) ©
M, then they have a non-trivial jointly-invariant subspace.

In the study of the evaluation operator, it is necessary to make a study of another
kind of operator, the difference quotient operators. For every A € D we define
difference, quotient operators D, 4 and D, ; from H*(D?) to itself by

z,w)—f(Aw zZ,w) — f(z, A
D,afaw) =LEMZIEN) 1y ooy L ZTED
One verifies that D, and D, ; are operator valued analytic functions in A. The

following lemma describes the adjoints of the difference quotient operators.
Lemma (5.1.12)[191]: For every f € H?(D?),

z
D;,f = —f; D .f = —
Z,/lf 1— ﬂ.Zf W,/lf 1— Iw
Proof. We prove the first equality. For every f,g € H2(D?),
<g D;,/lf >=< Dz,/lg: f>
g—9QA°)
=<2 227 >
z—A /
f

Z_

f.

>

=<g—g@A,),

zf zf
=<g—g,),——>=<g, =
g9 1-1z g 1—-1z

Since ”#” = (1 — |A])71, it follows from Lemma (5.1.12) that

1Dzl = [[D2al = = 1404 [Dwall = D5l = @ = 12D
The following lemma is easily checked.
Lemma (5.1.13)[191]: For all A andn in D,
(a) L(A) commutes with T,, and R(A) commutes with T,,;
(b) D, 5 commutes with T,, and D, ; commutes with T,
(¢) D, 5 commutes with R(n) and D,, ; commutes with L(n).
Lemma (5.1.13)(a) can be used to generalize Lemma (5.1.3).
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Corollary (5.1.14)[191]: If M is z-invariant, then R(A) restricted to M © z™M is
Hiilbert-Schmidt for every A € D and every integer n.
Proof. It follows directly from Lemma (5.1.3), Lemma (5.1.13)(a) and the fact that
MO z"M = ®"-5z/ (M © zM).

For simplicity, we denote D, o by D, and D, oby D,,. D, and D,, are contractions.

The difference quotient operators are related to the compression operators in
many ways.

One example is that when restricted to quotient modules, they are the analytic
extensions of S, and S.,. If M is z-invariant and f € H2(D?) © M, then Zf is
orthogonal to M and

S;f = qzf
= Pzf —pzf
= Pzf
— f(Z,W) _f(O,W)

=D,f.
- f

This shows that D, |y2(p2yom = S;.

Another important property of D, is that it maps space M © zM into H*(D?) ©
M when M is z-invariaalt. We state this fact as
Lemma (5.1.15)[191]: If M is z-invariant, then D,(M © zM) c H*(D?) © M.
Proof. It suffices to show that D,h is orthogonal to M for every h € M © zM.

In fact for every ¢ € M,

< D,h,p >=<zD,h, z¢p >=< h—h(0,), zp >= 0.
By using Lemma (5.1.12) and the idea of Lemma (5.1.15), one easily checks the
following
Proposition (5.1.16)[191]: If M is z-invariant, then D¥ maps M © z M into H*(D?) ©
M and
D7 \mozrm = qEnlMean = (pZnIHZ(DZ)@M)*

for every natural number n.

D, ; has an analytic expression in terms of D, and S;.
Lemma (5.1.17)[191]: For every g € M © zM, D, 9 = (1 — AS;)™'D,g.
Proof.

. _.9g—9@A>)
(1—-24S;)D, 9 = q(1 — ﬂz)?
_Z(g-9())
=qg(1-2A -
qg Z_) 1-1z
=qzg — qzg(4,)
=qzg = D,g.

The next corollary follows directly from Lemma (5.1.15) and Lemma (5.1.17).
Corollary (5.1.18)[191]: If M is z-invariant, then D, , maps M © zM into H*(D?) ©
M for every A € D.

Corollary (5.1.18) will be used.

We study the essential spectrum of S,.

We begin by proving the first statement of the following
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Theorem (5.1.19)[191]: If M is z-invariant and A € D, then S, — A is Fredholm on
H*(D*) © M ifand only if L(A)|yozm is Fredholm, and moreover

ind(S,_;) = ind(L(1)).
Proof. If A is an operator on a separable Hilbert space H, then it is well known that A4 is
not Fredholm if and only if there is a sequence {x, : n = 0} € H which converges
weakly to 0 and is bounded below(e.g., ||x,|| = ¢ > 0 for some constant'e and all
interger n sufficiently large) such that

lim [|Ax, || = 0.

We now assume S, — A is not Fredholm and {f;, : n = 0} ¢ H?(D?) © M is a sequence
that converges weakly to 0 and is bounded below such that

Tlli_r}gollsz—/lfn” = 0. (5)
Since
Seafn =G =Dy —0p(z—-Dfy
= (z—-Dfy —vzfp (6)

Ipzfull? = 1z = D full? = 1S, full?
which implies that {pzf,, : n = 0} is bounded below by (5). Since pzf € M © zM for
all f € H*(D?) © M, {pzf, :n >0} is a sequence in M © zM. By Proposition
(5.1.16), forevery h € M © zM,
<pzfp,h>=<f,, D,h>.
So {pzf, : n = 0} also converges weakly to 0. Moreover, by (6)

LD(Sz-afn) = LD (pzf)

we have that

and therefore
lim [ILD (pzf)ll < (1= 1172 lim IS, _2full = 0.

So L(A)|yozm is not Fredholm.

Conversely, if {h,, : n = 0} ¢ M © zM weakly converges to 0 and is bounded
below such

lim [IL() Ayl = 0, (7)

then first of all {DZ' ahp in > 0} converges wealdy to 0, and by Corollary (5.1.18) it is
a sequence in H2(D?) © M. Since

h, — L(A)h
D] = || 222
1
> (IR [l = L) Ry D,

1+ |4
{DZ' ahpin > 0} is bounded below by (7). Moreover,
SZ—/IDZ,Ahn = q(hn - L(A)hn) = _q(L(A)hn)
and hence
lim [[S, 3D ahy || < lim [ILAA, || = .
This shows that S,_; is not Fredholm. Thus we conclude that S,_, is Fredholm if and
only if L(4) | yozm is Fredholm.
We now prove the second statement of Theorem (5.1.19).
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If S,_; and L(A) |yozm are Fredholm, we now show that ind (S,_;) = ind(L(2))
by proving that

dim(Ker(SZ_,l)) = dim (Ker(L(A)))
and that
dim(CoKer(SZ_,l)) =dim (CoKer(L(A))).
We first define amap X : Ker(S,_3) = Ker(L(A)) by
Xf = (z-Df.
If feKer(S,_;), then (z—A)f €M, and since (z—A)f is orthogonal to
zM,(z—)f € M © zM. 1t is obvious that (z—)f € Ker(L(1)). So X is well
defined. It is not hard to see that X is bounded and injective. If h € K er(L(A)), then

Puah =723
which is in H*(D?) © M by Corollary (5.1.18). Moreover S,_;D, ,h = gh = 0 and
XD, yh = h. This shows that X is also surjective and hence

dim(Ker(SZ_,l)) = dim (Ker(L(A))).

To show that dim(CoKer(S,_;)) = dim (CoKer(L(A))), we define a map Y :
CoKer(L(A)) — CoKer(S,_,) by
gw)
1-2z
where g € CoKer(L(A)) c H,,. Foreveryh € M,

[ gw) ldz| |dw| h(z,w) ldz| [dw|
<Yg’h>_sz1_,12h( )___f (w )f — )z 2m 2nm
= f gw)h(4, W)% =< g,L(A)h >.
T
Since L(A)(M © zM) = L(A)(M) (cf. [207]) and g € CoKer(L(2)),< g,L(A)h >=
0. This shows that Yg € H*(D?) © M.
Moreover, for every f € H2(D?) © M,

<Y9,S;-af >=<Yg,(z—-Df >= fg(W)
T T

Yg =

(z=Df(z,w) |dz| |dw|
1- 2z 2T 21

_f ()0|dW|—O
—Tgw - = 0.

This concludes that Yg € CoKer(S,_,) forall g € CoKer(L(A)) and hence Y is well
defined. It is not hard to see that Y is bounded and injective. If 1 is any function in
CoKer(S,_,), then first of all ¥ is orthogonal to (z — A) M. Moreover, for every f €
H*(D*) © M,

0=<Y,S,_1f >=<¢,(z—-Df >.
This concludes that 1 is orthogonal to (z — )M + (z — 1) (H?>(D?) © M) which is
equal to (z — A)H?(D?), and hence by Lemma (5.1.9) and the fact that

— -1
H, © (z—M)H, = C(1-2z)
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we have that

_gw)
vzw) = 1— Az

for some g € H,,. To show that 1 is in the range of Y, we only need to check that g €
CoKer(L(A)). In fact, for every h € M,

l[dw]
< g,LAA)h = f gw)h({,w) —

T 21
= f g(w_) h(z, w)@M
21— Az 2m 27w
=<y,h >=0.
This concludes that Y is surjective and hence
dimCoKer(S,_;) = dimCoKer(L(A)).
We point out that based on Equality (2) and techniques in functional model theory (cf.
[216]) one may give a simpler proof of Theorem (5.1.19). But the proof here fits into
our setting and it contains ideas and techniques that are useful in other places.
The proof of the following corollary is similar to that of Theorem 2.6 in [207],
but since it is short, we include it here.
Corollary (5.1.20)[191]: If M is a submodule of H?*(D?) with M © (zM + wM)
infinite dimensional, then

Ge(Sz) = Ge(Sw) = 5
Proof. If {g,:n=0cMOGEM+wM)=MOzM)N(M ©@wM) is an
orthonormal basis, then for every A € D,

D IR gall? < oo
j=0

by Lemma (5.1.3). This in particular implies that
lim IR gl = 0
which means A € ,(S,,) by Theorem (5.1.19) and the first few lines of its proof. S,, is
clearly a contraction and g, (S,,) is a closed set, so we have
Ge(Sw) = D.
The proof of 6, (S,) = D is similar.
Corollary (5.1.21)[191]: If M is z-invariant and L(Q) is compact on H*(D?) © M, then
S,_a is Fredholm if and only if S, is Fredholm, and in which case
ind(S,) = ind(S,_j).
Proof. For every f € M © zM, we can write

fz,w) = f0,w) +z(D,f)(z,w),
LOf = f@A,w) =LO)f + AL(D)D,f.

and therefore,

Soon M © zM,

L(A) — L(0) = AL(A)D,.
Since D, maps M © zM into H?>(D?) © M, if L(A)|y2(pzyom compact, then
L(A) |mozm — L(0)|yozm is compact, and the corollary follows from Theorem (5.1.19).
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Corollary (5.1.21) suggests that the compactness of the evaluation operators on
H?(D?) © M has implications on the spectral properties of the compressions. We will
study some sufficient conditions under which the evaluation operators are compact on
the quotient H2(D?) © M.

One necessary condition will be given for singly generated submodules after a
study of compression operators.

Lemma (5.1.5) implies that for any A € D, L(4) is compact if and only if L(0) is
compact. So we only need to study the compactness of L(0) on H%(D?) © M, and we
assume except in Theorem (5.1.27), M stands for submodules in H*(D?).

We now study some sufficient conditions for the compactness of evaluation
operators on quotient H2(D?) © M.

The simplest case is M = [p] where p is a polynomial in H,. The following
corollary is a consequence of Lemma (5.1.9).

Corollary (5.1.22)[191]: If p(2) is a polynomial of degree N, then the right evaluation
R(A) from H*(D?) © [p] to H, is of at most rank N for every A € D.
Proof. If p(z) = ¢(2)F(z) is the inner-outer factorization of p, then ¢(z) is a finite
Blaschke product with at most N zeros in D and the dimension of H, © ¢H, is less
than or equal to N (cf. [216]). By Lemma (5.1.9),

H*(D*) © [p] = H*(D?) © H*(D?) = (H, © ¢H,) ® H,,
and hence the range of R(1) on H2(D?) © [p] is H, © ¢H, and therefore the rank of
R(A) is less than or equal to N.

Since R(0) maps H2(D?) © M to H,, its adjoint R(0)* maps H, to H*(D?) ©
M. And it is conceivable that functions in the range of R (0)* depends largely on variable
z. The following lemma reflects this phenomenon.

Lemma (5.1.23)[191]: L(0)R*(0) : H, = H,, is Hilbert-Schmidt.
Proof. For every h € H*(D?) © M and every f € H,,
< R*(0)f,h >=<f,R(0)h >=< f,h >=<qf,h >.

So R*(0)f = qf and hence

LO)R*(0)f = L(0)qf = L(O)(f — pf).
Since pf € M © wM for every f € H,, L(0)p|y, is Hilbert-Schmidt by a parallel
statement of Lemma (5.1.3) for the left evaluation on M © wM, and the corollary
follows easily from the additional fact that L(0) |y, is of rank 1.
Corollary (5.1.24)[191]: If there is a bounded invertible linear map V : H, — H,, such
that for all f € H*(D*) ©O M

L(0)f = V.R(0)f,

then both L(0) and R(0) are compact.
Proof. Since VR(0)R*(0) = L(0)R*(0), VR(0)R*(0) is Hilbert-Schmidt by Lemma
(5.1.23), and hence R(0)R*(0) is Hilbert-Schmidt since V is invertible. Therefore R(0)
is compact, and so is L(0).

This corollary means that if functions in H 2(D?) © M have certain symmetries
in z and w then the evaluation operators are Hilbert-Schmidt on H 2(D?») © M.
Example (5.1.25)[191]: The submodule M = [z — w] is mentioned in many papers.
One feature of H2(D?) © M is that functions in it are symmetric in z and w, e.g.,
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f(z,w) = f(w,z) on D? for every f € H>(D?) © M. So if V is the map which sends
every g(z) € H, to g(w) in H,,, then V is unitary and

L(O)f =VR(2)f,
and hence by Corollary (5.1.24) L(0) and R(0) are compact. We will give another proof
to this fact by using a direct computation.

Another sufficient condition follows, but are need the following simple fact.
Lemma (5.1.26)[191]): If A : . X = Y is a bounded linear map and ||Ax|| = c||x|| for a
fixed positive constant ¢ and every x € X, then A*A is invertible.

Proof. It is easy to see that A*A is injective and has dense range. We now show that A*A
has closed range by showing it is bounded below. In fact, for every x € X with ||x]|| =
1,
|A*Ax|| = sup)y <1< A™Ax,y >|

>< A*Ax, x >

= lAx|I? = c?|Ix]|* = ¢?.
Theorem (5.1.27)[191]: If M is z-invariant and there is an integer n such that ||S}|| <
1 on H>(D?) © M, then R(A) is Hilbert-Schmidt on H*(D?) © M for every A € D.
Proof. Since S}'f + pz"f = z"f,

ISZAIZ + Nz F112 = NIf 11

lpz"fII7 = (1 = ISZIDIFIZ.
By Proposition (5.1.16) and Lemma (5.1.26), D : M © z"M - H?*(D?) © M is onto.
Since for every A € D R(A) restricted to M © z"M is Hilbert-Schmidt by Corollary
(5.1.14) and R(A) comnmtes with D,, R(A)D}' is Hilbert-Schmidt. But D is onto, so
R(A) restricted to H?(D?) © M is Hilbert-Schmidt.

The following corollary is more concrete.

Corollary (5.1.28)[191]: If h(z,w) = z™ + ¢(z,w) for some natural number n and
¢ € H*(D?) with |||l < 1, then R(A) restricted to H*(D?) © [h] is Hilbert-Schmidt
forevery A € D.
Proof. Since H(D?) © [h] is a quotient module,

SZn +S¢ = Szn+¢ = Sh = 0.

Therefore,

It follows that
ISZ1 = IS4l < llpller <1

and the corollary follows from Theorem (5.1.27).

The simplest case of Corollary (5.1.28) is the following
Example (5.1.29)[191]: If M = [z — uw] for some u € D, then S, = uS,, on
H?(D?) © M and hence ||S,]| < |u| < 1. So R(A) is Hilbert-Schmidt for every 1 € D.
However, computation shows that L(4) is not compact for any A € D. We now give a
direct proof.

Ifeg = 1and

e,(z,w) = c,(u2)" + )" w+ -+ uzw™ 1 +w"),n >0,

- 2
where ¢,, = /1_1|M||P2LL — , then, with some computations, one checks that {e,, : n > 0} is
an orthonormal basis for H2(D?) © [z — uw] and
R(0)e, = cp(uz)™.
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It follows that

D IROeyl? < o0
n=0

and hence R(0) is ttilbert-Schmidt._
However
L(0)e, = c,w™.

lim ¢, =+1—|ul?>>0,
n—0o
L(0) is not compact.

The following corollary generalizes Theorem (5.1.27) in the case whenn = 1.
Corollary (5.1.30)[191]: If there is a « € D such that ||S,_,|| < 1 — |a|, then R(A) is
Hilbert-Schmidt for every , A € D.

Proof. Since

Since

Sz-af =z —-a)f —pz—-a)f = (z—-a)f —pzf,
1S2-af I + lpzf1I? = lI(z — Of II%.

IpzflI? = Iz — )f1I* = IS, o f1I?
= (1= laD?IIfI? = lIS;—alI”lIf1I%.
If ||S,_4ll <1 — |a|then D; = pz is bounded below and the corollary follows from the
proof of Theorem (5.1.27).

This kind of submodules are subjects of many studies. It was shown in [193] that
if M is unitarily equivalent to H?(D?) as A(D?)-modules, then there is a inner function,
say r such that M = ¢pH?(D?). One useful corollary of this fact is that modules of this
kind have simple reproducing kernels. To be precise, if ¢ is inner and K, (z) is the

reproducing kernel of M = ¢ H?(D?), where n = (n1,1,),z = (24, 2,) in D? then one

. _ d(2)Pp(1) 1 _ 1-¢(2) (1) .
verifies that If K, (z) = o Ton) and Ky (z) is the

(1-7m121)(1-7323)
reproducing kernel of H2(D?) © ¢pH?*(D?).
The Kilbert-Schmidtness of L(0) on H?(D?) © ¢pH?(D?) can be completely
determined. We need a lemma to move on.
Lemma (5.1.31)[191]: 4 bounded linear operator T : H*(D?) © M — H,, is Hilbert-

Schmidt if and only if
d d dw
[f |TK,,l(rw)|2| Ml | 772|]| |<oo
T2

we have

This implies that

SUPo<r<1 f

)
T T T 2T

and moreover

x 2 [dn1l ldn, || ldw|
trT*T = Supger<t fT[ T2|TK,,L(7‘W)| |5

Proof. If {¢;|j > 0} is an orthonormal basis for H*(D?) © M, then

Ki(2) = ) ¢ @5m)

J=0
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and

TR = ) Te(Mg(), A€ D.

j=0
Since for every f € H>(D) and 1 € D,
I£1I?
N? <
|f (DI ST

and T is Hilbert-Schmidt,

Sraor =y J14 <.

and therefore TK;;(4), as a function in 7, is in H 2(D?), and

2 |dn, | |d -
f TK,f-(A)| ldn, || n2|=Z|Tej(A)|2-
T2 T T J=0

Since |Tej ()t)|2 is subharmonic in A for all j > 0,

SUPo<r<1 f

T T 2T

= Suppcras f ZlTe,( w24
=mJEw<tW'
rlggl_ZflTe( )|2|dw|
D lim | [re w12 ZMT

j=0
The second equality from the bottom needs explanat10n The 1nequahty

llm zf |Tej(rw)| z 11m f |Tej (rw)|ZM

comes from Fatou's lemma On the other hand by the subharmonicity

lim f |Tej(rw)| f|TeJ(rw)|2 ldw|

r-1

for each j and all 0 < r <1, therefore

llmf|Te (rw )| —> f|T (r )|2|dw|

Jj=
which implies that
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J llm f|TeJ(rw)| —> 11m zf|TeJ(rw)|

Example (5.1.32)[191]. If M = ¢H?(D?) for some inner function ¢, then
—¢(2)p(m)
(1 =11z —1325)

2 |dW|

Ki(2) =
So

L(O)K;— — K#(O,Zz) — 1- ¢(0122)¢(7]1: 772)’

(1 —132,)
and one checks that
dn4||d 1—|6(0,7rz,)|?
f |Knl(0 2)|2| Ml 7]2| | ( 22)| .
T2 T 1—T

So if L(0) is Hilbert-Schmidt on H? (Dz) © M, then by Leman (5.1.31) and its proof,
dnl ldn,|ldz 1—1¢00,72,)|%|dz
© > sup f |k (0,7 z)|2| Ml ldn| |2, limf 1$(0,725)|° |dz,|
T2 =17 o

o<r<1 T 1—r? T
f . 1=1¢(0,72,)|? |d22|
= | lim 5
Y 1—r s
which is possible only if ¢ (0, z,) is almost everywhere equal to 1 on T. Therefore,

Il = ILO)ll =1,
and this implies that ¢ (z,w) = ¢ (0, w).

For simplicity we denote ¢p(0, w) by ¢(w) and continue to find out more about
this ¢(w). Since ¢ is inner, ¢pH,, is a dosed subspace of H,, which is invariant for
multiplicaton by w and it is easy to check that H,, © ¢H,,is a subset of H*(D?) © M.
Since functions in H,, © ¢H,, are independent of z, L(0) is an isometry acting on it.
The compactness of L(0) implies that H,, © ¢H,, is finite dimensional, which is
possible only if ¢ is a finite Blaschke product.

On the other hand if ¢ is a finite Blaschke product with zeros a4, ay, ..., ay,
counting multiplicity, then

—a ¢(W) = ¢1 ¢n:
where ¢; = _F‘:}. Since
1—|pGw)|?
= 1= |p1w)I? + (1 (W) > (1 = [ (W)[?) + -+
. + 1 - P (W2 (1 = |9, rW)1?),
an

1 |¢;rw)|” 1= ||
1—12 N

1 rawl”
we have that

n
L1 1gGwl? Z 1— o
T 1-r? ]=1|1_ajw|
So by Lemma (5.1.31), L(0) is Hilbert-Schmidt on H2(D?) © M.
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It is convenient to calculate the trace for L*(0)L(0) at this point. By Lemma
(5.1.31) and the argument above

n 2
trL*(0)L(0) =le_|“f| ldwl _
T 4
£

1 —a_jw 21
=0

We conclude this example by

Corollary (5.1.33)[191]: If ¢ is inner, then L(0) is tfilbert-Schmidt on H*(D?) ©

GH?(D?) if and only if ¢ is a finite Blaschke product in w, and in which case
trL*(0)L(0) = n,

where n is the number of zeros of ¢ in D counting multiplicity.

When M is rank 1, e.g. M = [h], a good necessary condition can be given.

We first study the relations among the compression operators, the evaluation
operators and the difference quotient operators, we then show that the compactness of
evaluation operators leads to interesting spectral properties of the compression
operators.

Here we note that most of the results are stated for S,, but at some places we will
use the corresponding results for S,,,.

The following proposition is not hard to cheek.

Proposition (5.1.34)[191]: If M is a z-invariant subspace of H*(D?), then for every f
fEH*(D*)OMandg € M © zM

(@) SzS:f +D.Df =f; i

(b) stz*f + (L(0)|H2(D2)9M) *(L(O)lHZ(DZ)@M)f = fi

(C) SZDZg + (L(O)lHZ(DZ)@M) (L(O)lMezM)g =0;

(d) D;ng + (L(O)IM@ZM) (L(O)IM@ZM)g = g'
Proof. (a).
S;S.f = qz(zf — pzf)
= q(f —zpzf)
= f —qzpzf = f = D,D,f
by Proposition (5.1.16).

(b). Since f € H2(D?) © M, zf is orthogonal to M and hence
qzf = Pzf
= Pz(f — L(0O)f + L(0)f) =z(f — L(0) /).

S8 f = qzqzf
=qzz(f —L(0)f) = f —qL(0)f
= f — L(0)"L(0)f.

The last equality follows from Lemma (5.1.4) in the case 4 = 0.

Therefore,

(c). 0
g—9g(@0,

S,D,g = z— ——

=qg —qL(0)g

= —(LO |z pnom) LO)g
by Lemma (5.1.4).
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(d). By Proposition (5.1.16),
- 0’.
D;D,g = pZ%() =g —pL(0)g.
Since g is arbitrary and for any ¢ € H,,
<pp, g>=<¢, g>=<¢, L(0)g >,
Plu, is the adjoiat of L(0)|yg,m and therefore
D;D.g = g = (L0 luozm) (L(Oluem)g.
The following corollary follows quickly from Proposition (5.1.34).
Corollary (5.1.35)[191]: If M is z-invariant with H*(D?) © M is infinte dimensional
and L(0) is compact on H*(D?) © M then ||S,|| = 1.
Proof. Lemma (5.1.34)(b) shows that on H2(D?) © M
S,S;=1—L"(0)L(0).
If H2(D?) © M is infinite dimensional and L(0) is compact, then the spectrum of S,S,
contains 1 and hence ||S,]|2 = ||S,S;|| = 1. But S, is a contraction, so ||S,]| = 1.
If M is a submodule such that S~ is a strict contraction, then R(0) is Hilbert-
Schmidt on H?(D?) © M by Theorem (5.1.27) which implies that [|S, || = 1 by

Corollary (5.1.35) when H2(D?) © M is infinite diraension. We state this observation
as the following

Corollary (5.1.36)[191]: If M is a submodule such that S, and S,, are both strict
contractions then H*(D?) © M is finite dimensional.
If L(0) is compact on H?(D?) © M, then a generalization of Proposition
(5.1.34)(b) gives a spectral picture of S,,.
Theorem (5.1.37)[191]: If M is z-invariant and L(0) restricted on H*(D?) © M is
compact, then
a(S;) N D c 0,(S;) Ua,(S;).
Proof. If 1 € D and ¢;(z) = 12_;;2 then for any g € H2(D?) O M,
Sp:9 = 4929

= Poig _

= Pgi(g — 9(A.)) + PoiL(N)g

=0a(g —9()) + PoL (D) g.
One checks that

P L(Dg = Ppig(A,) = —2g(A,),
and hence

Sp:S0,9 = (9 =9 (1)) - qlpa9(A7)
=g —q(1+29;)L(Dg ,
=g—-(1-1UHq(1-22) LDg
=g— Q- [AHL*WDL)g

by Lemma (5.1.4). So

Sp,Sp, =1—(1 - AL (D) L). (8)
Since L(4) is compact, S, Sy, is Fredholm. Moreover,
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S(p)l = S(l_zz)_l z—A

and S (1-72) is invertible, so S,_3S,_; is Fredholm.If S;_; has trivial kernel, then

S,_2S,_, is invertible and therefore S,_ is onto. So if S,_, also has trivial kernel then
A is in the resolvant set of S,,.

We give some sufficient conditions for the compactness of the evaluation
operators on quotient spaces. If M is a submodule of rank 1, e.g., M = [h] for some h €
H?(D?), then behaviors of S, and L(0) on H?(D?) © M reflect properties of h. We
now give a necessary condition for the compactness of L(0) in terms of h. We state a
lemma first.

Lemma (5.1.38)[191]: If {F3|A € D} is a norm continuous:family of selfadjoint
Fredholm operators on a Hilbert space H, then dim(KerF,) is a lower semi-continuous
function in A.

Proof. Let 4, € D be any point and P, be the projection from H to KerF, , then one
verifies that Fy  + P is invertible. If 1, is a sequence in D converging to Ay, then F;  +
Py converges to Fy + Py in operator norm which implies that F; + P, is invertible for
all A,, dose enough to A,.

Since

Polkerr,, = (Flln + P0)|KerF,1n:
Po maps KerF, injectively into KerF. - This implies that

dim(KerF,ln) < dim(KerF,lo)
when A, is sufficiently close to A;.

A definition is needed in order to state our next theorem. For every fixed A € D
and h € H2(D?) we let Z;, (1) denote the number of zeros of h(1,w) in D. So Z;, (1) is
an integer-valued function in A.

Theorem (5.1.39)[191]: If L(0) is compact on H*(D?) © [h], then Z, (1) is a constant.

Proof. If4 € D and ¢(2) = ==, then
S, S¢, + (1 — AL DL =1

by Equality (8). If L(0) is compact on H2(D?) © [h] then by Lemma (5.1.5), L(A) is

compact on H2(D?) © [h] for every A € D, which implies that S¢,S :;5/1 is Fredholm for

all A€ D. Since Sy, = 51__1125z—/15z—/15;—,1 is Fredholm for all A € D and it is easy to

see that{S,_3S,_; : 4 € D} is anorm-continuous family of setfadjoint operators. So by
Lemma (5.1.38) dim(KerS,_,S,_,) is a finite lower semi-continuous function in 1. By
the Fredholmness of S,_;S,_;, range(S,_;) is closed and its codimension is equal to
dim(KerS,_,S,_,). By the relation between L(A)|yg,y and S, (cf Equality (2)),
L(A)(M © zM) is closed in H,,, and moreover it was shown that

dimCoker(S, — 1) = dimCoker(L(A)|yozm ),

SO
LM © zM) = L()M = [h(4,)],
and
dim(H,, © [R(A,)]) = dimCoker (L(A) |mozm)
= dimCoker (S, — 1) = dimr(S,_;S,_,),
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where [h(A,)] is the submoduie in H,, generated by function h(A, w). Since
Zp(A) = dimH,, © [h(4,)],
Zy(A) is a finite lower semi-continuous function in A.
We now show that Z, (1) is a constant. If we fix a r € (0,1) and let
N = sup{Z,(1) : A € rD},
then by the lower semi-continuity of Z, (1) over D, N is finite. We define
Ey={1€rD: Z,(1) = N}.
for every fixed A € Ey, we can choose an 1 € (0,1) such that the zeros of h(4, w) lie
inside nD.

By complex function theory, if u in D is close enough to A then Z; (1) and Z,, (1)
have the same number of zeros in nD which follows that Z,, (1) = N and this is possible
only if Z,(u) = N and therefore u is in Ey. This shows that E is open. But by the
lower semi-continuity of Z, (1)Ey is also closed, so Ey = rD, and hence Z, (1) = N
forall A € rD. The proof is finished if we letr — 17.

Example (5.1.40)[191]: If h(z, w) = z — 0.5w, then
0, 0.5<1] <1;
Zn(A) = {1, |A] < 0.5.
This implies that L(A) is not compact on H2(D?) © [z — 0.5w].

The following example shows that the condition in Theorem (5.1.39) is not

sufficient.

Example (5.1.41)[191]: Let h(z,w) = ¢p(2)p(w) where ¢p(w) = exp (LX—:) which

is a singular inner function, and set M = hH?(D?). It is not hard to check that H,, ©
¢ (W)H,, € H*(D?) © M, and since ¢p(w) is a singular inner function, H,, © ¢p(w)H,,
is infinite dimensional. Since L(0) acts on H,, © ¢(W)H,, as an isometry, it is not
compact.But Zj, (1) is constant 0.

Question (5.1.42)[191]: What is a necessary and sufficient condition for the
compactness of L(0) on H*(D?) © M in the case M is of rank 1?

The case when h is a polynomial seems more interesting. If p is a polynomial in
C(z,w) for which L(0) is compact on H2(D?) © [p], and q is a factor of p, then L(0)
is compact on H2(D?) © [q] since H2(D?) © [q] is a subspace of H2(D?) © [p]. This
means that if p satisfies certain conditions which make L(0) compact then so does every
factor of p.

Since the evaluation operators and S, S, are closely related, the compactness of
L(0) has an effect on their behaviors. The following theorem is an example.

Theorem (5.1.43)[191]: If L(0) is compact on H*(D?) © M and dim(kerS,) < oo,
then

(@) Dz|lmozm is compact;

(b) [S;,S,]is compact;

(¢) [S;,S,]is compact.
Proof. (a). Since

S,S;, =1—L"(0)L(0),

S,S, is Fredholm, and hence has closed range with finite codimension. This implies that
S,has closed range with finite codimension. If dim(kerS,) < oo then S, is Fredholm.
Since by Proposition (5.1.34)(c)
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SZDZ = _(L(O)IHZ(DZ)@M)*L(O)|M@zM
which is compact under the condition, D, |y g2y 1s compact.

(b) Since for every f € H*(D?*) © M pzf = 0,S;f = qzf = Pzf, where P is
the orthogonal projection from L?(T2) onto H2(D?). Therefore

[S7, Swlf = qzqwf — qwPzf = qzqwf — qwzf
= —qzwf —qwf) = —qzpwf = —D,D,f,
where the last equality comes from a parallel statement of Proposition (5.1.16) for D,,,.
Since D, |y oz is compact, [S;, S, ] is compact.
(c) Since by Proposition (5.1.34)
[Sz, S.]1=L"(0)L(0) — DD,
the assertions in ¢ also follows from the fact that D, |y go,p 1s compact.

Note that if we assume in Theorem (5.1.43) that L(0) is tlilbert-Schmidt on
H?(D?) © M then the operators in assertions a and b are both Hilbert-Schmidt, and
[S;, S,] is trace class.

Many results obtained so far have manifested a close tiec between S, and L(0).
This tie is not only theorectically interesting, but also practically useful. Examples show
that in some cases it is much easier to calculate L(0), but in other cases it is much easier
to deal with S,. The relationship between the two makes it possible to study them even
in the hard cases.

Remarks preceeding Theorem (5.1.7) say that S, serves as a canonical model for
a large class of contractions. It will be interesting to see how the results apply to some
concrete examples. In the following we will take a look at the unilateral shift of a finite
multiplicity and the Bergman shift. Both operators have been extensively studied. The
following two examples show that we can get new results if we study these two
operators of H2(D?).

Example (5.1.44)[191]: We first look at the unilateral shift. If n is any integer and we
let
K = H*(D?) © w"H?(D?),

then by Lemma (5.1.9)

K=H,®wH, ® - dw'lH,
which is equivalent to the vector valued Hardy space H%(T,C?), and H, on Kis
equivalent to z®I,,. It is easy to see that for every A € D,

L) (K) = span{l,w,w?, ...,w"}
and hence L(4) is of rank n when restricted to K.
Example (5.1.45)[191]: If M = [z — w], then H?>(D?) © [z — w] is equivalent to
L2 (D), the Bergman space over the unit disc (cf. [215]), and S, on H2(D?) © [z — w],
whirll is equal to S,,, is unitarily equivalent to the Bergman shift. We see in Example
(5.1.25) that evaluation operators on H?(D?) © M are compact. This fact is also
obtained by the following computation. It is known that

e,(z,w) = "+ z" w2z W), n >0

Vn +1

is an orthonormal basis for H2(D?) © [z — w] and from which it is easy to see that the
left evaluations behave similarly as the right evaluations do. We suffice to check the
compactness for R(0).
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If f = Y72 cje; is any function in H*(D?) © [z — w], then

C
R(0)f = Z ¢ R(0)e, = Z n_m
n=0 n=0 n+ 1

If welet U : H%(D?) © [z —w] — H, be the operator defined by
U(e,) =2z" n=0;
and K : H, » H, be the map defined by

K(z") =

n

z' n=0
Vn+1

then U is a unitary map and K is compact. Computations above actually yield the polar
decomposition of R(0):

R(0)f = KUf.
This implies that R(1) : H>(D?) © [z — w] - H, is compact.

The observations in Example (5.1.44), (5.1.45), Corollary (5.1.21), Corollary (5.1.36)
and Theorem (5.1.37) are combined to give the following
Theorem (5.1.46)[191]: We assume that H is H*(T,C™) or L%(D) and X is the
multiplication by the coordinate function z in H. If N is an invariant subspace of S and
X is the compression of S to the quotient space H © N then

(a) H © N is finite dimensional if X is a strict contraction;

(b)a(X) N D < 0,(X) U g, (X*);

(c) if X is Fredholm, then X — A is Fredholm with ind ind(X) = ind(X — 1) for all

A€D.

Proof. If a bounded linear operator is compact, then it is compact when restricted to
any closed subspace. Example (5.1.44) and (5.1.45) show that the evaluation operators
are compact on H and hence they are compact on H © N. The theorem then follows
from Corollary (5.1.21), Corollary (5.1.36) and Theorem (5.1.37).

We look at in Theorem (5.1.46)(a) in the case H = H?(T).

If N is a invariant subspace of z in H%(T), then By Beurling's Theorem N =
@H?(T) for some inner function ¢p The compression of z to H2(T) @ N is of class C,
and its spectrum is equal to the spectrum of ¢ (cf. [194][204]).If the compression is a
strict contraction, then ¢ has no singular part and its zero set has no accummulation
point on the unit circle which is possible only if ¢ is a finite Blaschke product and hence
H?(T) © N is finite dimensional.

Section (5.2): A Coburn Type Theorem:

For T be the boundary of the open unit disk D in the complex plane C. The bidisk
D? and torus T? are the cartesian products of 2 copies of D and T respectively. We let
LP(T?) = LP(T?,0) denote the usual Lebesgue space on T? where o = g, is the
normalized Haar measure on T?. The Hardy space H?(D?) is the closure of the
holomorphic polynomials in L?(T?). As is well known, we can identify a function in
H?(D?) with its holomorphic extension to D? via the Poisson extension. Thus, we will
use the same notation for a function f € H?(ID?) and its holomorphic extension f on
D2, Let Pdenote the orthogonal projection from L? (T?) onto H2(ID?). For a function
u € L*(T?), the Toeplitz operator T,, with symbol u is defined by
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Tuf = P(uf)
for functions f € H?(D?). Then clearly T, is a bounded linear operator on H?(ID?).

On the Hardy space of the unit disk, a celebrated theorem of Coburn asserts that
for a nonzero Toeplitz operator, we have either it is injective or its adjoint operator is
injective. This theorem is implicit in the proof of Theorem 4.1 of [219]. See also
Proposition 7.2.4 of [220]. Later, Vukoti¢ [224] reproved the theorem by making the
statement above more explicit by showing that the range of a nonzero Toeplitz operator
which is not injective contains the set of all analytic polynomials.

We naturally consider the corresponding problem for Toeplitz operators acting
on the Hardy space of the bidisk. First of all, we should mention that the Coburn type
theorem fails generally on the bidisk. For an example, one can see

TZZVT/Z (Z) =0= TZ*ZVTIZ (Z)

on H?(D?) where S* denotes the adjoint operator of a bounded operator S. Thus the
Toeplitz operator T 252 doesn’t satisfy the Coburn type theorem. On the other hand, we
can easily see that a Toeplitz operator with a nonzero (anti-)holomorphic symbol
satisfies the Coburn type theorem on H?(ID?). Also, one can check that a Toeplitz
operator induced by a symbol depending only one variable satisfies the Coburn type
theorem on H?(D?); see Corollary (5.2.16). In view of this observation, we naturally
pose the following problem: For which symbol, does the corresponding Toeplitz
operator satisfy the Coburn type theorem on H? (ID?)?

Motivated by examples mentioned above, we consider three classes of symbols
as outlined below:

(i) symbols of the form u = ¢ + 1 where @, are bounded holomorphic on D? and

(a) ¢ isbounded by 1 and v is inner,

(b) Or ¢ = @(z) is general and Y = Y (w) is inner,

(¢c) Ory is not assumed to be inner.

(ii)symbols of the form u = f(z) g(w) where f, g are bounded on T.
(iii) symbols of the form u = Z?:o EJ (z)w’ where h; is holomorphic on .

We then provide several sufficient conditions on the symbols u for which T,
satisfies the Coburn type theorem on H?(D?). More explicitly, we first consider
pluriharmonic symbols of the form ¢ + ¥ where ¢ € H* (ID?) and ) is a non-constant
inner function. Here the space H® (ID?) denotes the space of all bounded holomorphic
functions on D? and we write ||@||, for the essential supremum norm for a function
@ € L®(ID?). Also we say that a function in H® (ID?) is called inner if the modulus of
its radial limit is equal to 1 a.e. on T?; see [223]. For such a pluriharmonic symbol u =
@ + 1, if ||@llew < 1, then we first show that T, is injective but T, is not injective.
Moreover we describe the kernel of T,;; see Theorem (5.2.2).

Specially, for symbols of the form u = ¢@(z) + 1 (w) where ¢ and 1 depend on
a different single variable, we show that the boundedness condition [|@]|, < 1 can be
removed. More explicitly, we characterize the injectivity of T, and then, as an
application, we show that the corresponding Toeplitz operator satisfies the Coburn type
theorem on H%(ID?); see Theorem (5.2.3) and Corollary (5.2.4).

We also consider general Y other than inner functions. For such symbols u =
@(2) + (W), if |9l # lYlleo or ll@lleo = [P leo = 1 together with certain boundary
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conditions, then we show that T,, satisfies the Coburn type theorem; see Theorem (5.2.5)
and Theorem (5.2.9). But we don’t know whether a Toeplitz operator with general
pluriharmonic symbol satisfies the Coburn type theorem on H?(D?).

We consider symbols which are products of two one variable functions depending
on a different single variable. We consider symbols of the form u = f(z)g(w) where
f,g € L*(T) are nonzero functions. For such a symbol, we first describe the kernel of
T,, and then, as immediate consequences, obtain several kinds of symbols of Toeplitz
operators satisfying the Coburn type theorem; see Theorem (5.2.13) and its corollaries.

We consider the symbols of the form u = Z‘;’;O f_zj (z)w’/ where h; is holomorphic
on D. We then show that the dimension of kernel of T;, can be 0 or o according to
choices of h;; see Theorem (5.2.19). We were not able to characterize the injectivity for
Toeplitz operators with general symbol.

We let H2(ID) for the Hardy space of the unit disk I and LP(T) = LP(T, 0;)
denote the usual Lebesgue space on T where oy is the normalized Lebesgue measure on
T. Also we write Q for the orthogonal projection from L?(T) onto H?(DD). With the
identification of a function in H?(ID) with its holomorphic extension on ID, for each z €
D, the reproducing kernel K, for H2(ID) is the well known Cauchy kernel given by

K,({) = (EeT.

Thus the projection Q can be written as

0@ = [ oFzdo,
T
for ¢ € L?(T). Given u € L*(T), the 1-dimensional Toeplitz operator t,, with symbol
u is the bounded linear operator on H%(ID) defined by

tuf = Quf)

1-2z(’

for functions f € H? (D).

Recall that we can also identify a function in H2(ID?) with its holomorphic
extension on D2. With this identification, given x = (z,w) € D?, the reproducing
kernel R, for H?(ID?) is given by

1 2
R,(y) = a=zoa-wn"”’ = ¢ €ET
and thus we can write the projection P as  Pp(x) = [, pR,da, for ¢ € L*(T?). See
Chapter 3 of [223] or Chapter 9 of [225] for details and related facts. Noting
Rizw) (€, 1m) = K;({K,, (1), we have
for every f, g € L?(T). Since Qf = £(0) for every f € H?(ID), it follows that
T,252(2) = P(2°W?) = Q(z°)Q(W?) = 0.
Similarly, since T,; = Ty for every u € L*(T?), one sees that T 2p2(2) = Tpep2(2) =
0. This shows that both T ,2;2 and its adjoint operator are not injective and hence the
Coburn type theorem fails on H?(ID?).

We consider several kinds of pluriharmonic symbols and then study the problem
of when the corresponding Toeplitz operators are injective. Given a function f €
H?(D?), we let
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1/2

71 = s [IFGe I doyGom)
0sr<1
be the usual H?(ID?)-norm of f.

We start with the following simple and useful lemma.
Lemma (5.2.1)[218]: Let u = ¢ + 1, where 1 is an inner function on D? and ¢ €
L* (D?) with ||@]|le < 1.If u # 0, then T,; is injective on H?(D?).
Proof. Suppose T,;h = 0 for some h € H(ID?) and then P(ph) + h = 0. Since P is
inner, we note

Al = llyhll = [IP(@M)l < llghll < IRl
and then ||P(@h)|| = ||@hl|. Thus P(@h) = @h and
h = @h + Yh = P(@h) + ph = 0.

Since u = 0, we have h = 0 and T}; is injective, as desired. The proof is complete.

In addition, if ||@||, < 1, then T, is not injective as shown in the following. The
notation ker L stands for the kernel of an operator L.
Theorem (5.2.2)[218]: Let Y be a non-constant inner function on D? and ¢ € H® (ID?).
Assume ||@|l, < 1 and put u = @ + . Then T is injective but T, is not injective on
H?(D?). Moreover we have

kerT, =

g [ (D) © pH @) ©

and dim ker T;, = oo.
Proof. By Lemma (5.2.1), Ty; is injective on H*(ID?). To prove (9), we first note that
1/(1 + o) € H*(ID?) because ||¢]lo, < 1. Since ¥ is inner, u = ¢ + P = PP +
1) a.e.on T? and hence T,, = TyT11py- Since 1 + @i is invertible in H*(ID?), we have
1
kerTy, = ———KkerTy =

1
1+ oy T gp 1 (D) ©wHADD)]

because ker Ty = (ran TII,)l = [H2(D?) © YH?*(D?)], so (9) holds as desired. The
proof is complete.

We don’t know whether condition ||¢||, < 1 in Theorem (5.2.2) is essential. But,
if ¢ and Y depend on a different variable each other, we will show that one of T, and
T,; is injective. Thus the corresponding Toeplitz operator satisfies the Coburn type
theorem on H?(D?).

We let H%(z) and H?(w) be the z and w variable Hardy spaces respectively.
Also, we write H(z) and H* (w) for the spaces of all bounded holomorphic functions
depending on only z and w variable respectively.

We denote by ball H* (z) the closed unit ball of H*(z). It is well known that
@ €ball H”(z) is an extreme point of ball H* (z) if and only if

[ 108 - 19D doy = oo

T
Moreover, if ¢ € ball H*(z) is not an extreme point of ball H*(z), then there is an
outer function 1 € ball H* (z) satisfying |@|? + |n|?> = 1 a.e. on T. See Chapter 9 of
[222] for details and related facts.
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Let i € H?(w) be a non-constant inner function and put
KyW):= H*(w) © Y(w)H*(w).
(0]

Then it is known that K, (w) # {0} and H*’(w)= @ Ky (w)yp(w)™.
n=20
Moreover, we have

H2(0%) = D) [H2(0?) © YW H DD p(w)"

n=20
(00]

= P 1122 ® Kyl

n=20
Let {ey:k = 0} denote an orthonormal basis of Ky, (w). Since {e,yp™:n, k > 0} is an

orthonormal basis of H?(w), it follows that

HA(D?) © pwH2 (D) = ) et (2)
k=20
and
H2(D?) = () empw)"H2(2) (10)
k=20

The following result characterizes non-injective Toeplitz operators in case when such
¢ and 1Y depend on a different variable each other.
Theorem (5.2.3)[218]: Let » € H*(w) be a non-constant inner function and ¢ €
H®(z).Put u(z,w) = ¢(z) + P (w). Then the following statements are equivalent.

(i) T, is not injective on H?(D?).

(ii) [l¢@lle < 1 and ¢ is not an extreme point of ball H* (z).
In which case, we have

kerTy = —— B ___[12(D) © pw)H(D?)]
Y1+ @y (w)

and dimkerT, = o, where 1 € ball H*(z) is an outer function satisfying |¢@|* +
In]> =1a.e.onT.
Proof. First assume (i) and then T,,f = 0 for some nonzero function f € H2(D?). By
(10), we may write

F= ) fu@aWpw, zweD (1)

n,k=0
where f;, 1 (z) € H*(2) for every n,k = 0. Since ¥ is inner, we note that

0=Tuf =0@f + ) Plfuxert™P)

n,k=0
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=0 + ). ) fu@ecw) pwy

n=1k=0
(o] (o]

= > 0@ De @YW + Y fras kDo WP

n,k=0 n,k=0

= D (0@ k@ + frsai@er W]

n,k=0
for all z,w € . It follows that ¢f, ; + f+1x = 0 for every n,k = 0 and hence, for
eachk >0, f, p = for(—¢)™ for all n. Thus

f= D for@(-p@) exwyp)™

n,k=0
Since f € H?(D?) and {exy™: n, k > 0} is an orthonormal basis of H%(w), we see

> A1 = D fosC-0)"I" = | ( |f0,k|2> (me) dar,
k=0 n=0

n,k=0 T
Since f # 0, we have f; , # 0 for some £ > 0. Thus the above shows that |p(z)| < 1
a.e. on T and then |||, < 1. Also, we have

- 2
—Zi‘j"{:;'l’;' do; < oo (12)
and
1 [00]
f=1o ¢(Z)¢(W);fo,k<z)ek<w). (13)

Now, noting

Srolfor @ _ iolfox @

2
lo (2)| <lo = ’
lfor (I <log = o < S on

we have by the Jensen inequality

2 2
—0 < flog|f0ﬂu| do; < flogz|f0ﬂu| doy — flog(l — |pl|?) doy
k=0

T T T

_ ([ ZEeolfou]”

< do, < 0.
1—|pl2 1
T

We also have

—Q00 < flog'fo'[ |2d0-1 S flogz|f0'k |2d0-1
k=0

T T
and

0< —flog(l — |p|) do; < oo.
T
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Then, the above inequalities imply —oo < fT log(1 — |@|) do; and hence ¢ is not an
extreme point of ball H* (z). Thus (ii) holds.

Now assume (i1) and show (1). By the remark just before this proposition, there is
an outer function n € ball H* (z) satisfying |@|? + |n|? = 1 a.e. on T. Thus

>
P 1 a.e.onT. (14)
To prove (1), it suffices to show
n(2) [H2(D?) © Yy(w)H?*(D?)] < ker T,,. (15)
1+ @ (w) “

To do this, we let g € H?(z) and h € Ky, (w). Note
n(2)g(z)h(w) i n
= (2)g(@2)h(W)(—@(2)) pw)"
forall z,w € D. Since h € K, (W), we have hyp™ L hyp* for every n, k > 0 with n # k
and then

n(Z)g(Z)h(W)HZ - i||n<z)g<z)(—<p<z))"||2||h<w)¢<w)"||2
L = s
— 2 | 1M82)g\z — 2 2 ¢
= IO | TG o1 = IR IPlg I <
and hence
_ 1@)g@hw)
x(z,w):= T+ 0@vw) € H?(D?).

Moreover we see

Tux=@x+P (z ngh(— w)"lP"l/?) =@y + z ngh(—= )" 1y"
n=0 n=0

= Z[(p(—q))" + ()" Inghy™ = 0
n=0

and thus (15) follows as desired.

To complete the proof, we need to show that the reverse inclusion of (15) holds.
To prove this, let f € ker T, and then T}, f = 0. Then, using the same notation asin (11),
we have from (12) and (14)

Z/oc°=o|f0,k|2 _ Inl? Z}?=0|f0,k/77|2 _ N fox ?
“7 e T ) Tl d“l‘lkzon o
Thus fy . € nH?*(z) for every k = 0 and (13) shows
TI(Z) 2 _ T](Z) 2 2 2 2

because {e, (W)} k=0 is an orthonormal basis of Ky, (w). Thus we get
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n(z)
kerT, © [H?(D?) & y(w)H?(D?)]
“ S TT @) v
as desired. The proof is complete.
Having Theorem (5.2.3), we have two remarks by using the same notations being
there.
(a) If ¢ is an extreme point in ball H*(z), Theorem (5.2.3) shows ker T,, = {0}.

If |||l < 1 and ¢ is not an extreme point of ball H*(z), we have by Theorem (5.2.3)

_ TI( ) 2 2 2 2
If |ol|lo < 1, then 7 is 1nvert1b1e in H °°(Z) and hence
1
kerT, = = Tro@vm )[ 2(D*) © y(w)H*(D?)],

which is already noticed in (a). Also, if ||@|| = 1, then 1 is not invertible in H* (z), so
we have
n(z)

— 2 2 2 2
kerT, 12MHM)U1®)9¢WM(DH

2 2 2 2
S ot () © pwH (D)

(b) Given a non-constant function 6 € L*(T), it turns out that kerty =
p[H?*(D) © zqH?*(D)] for an outer function p and an inner function q on T. Also, it
has been known that the map

H?(D) © zqH?*(D) 3 f > pf € kerty
is an isometry; see [22 1] for details. In view of Theorem (5.2.3) together with this result,
we remark that the map

HA(D) © YW HA(DV)f - -
is an isometry. To see this, let f € H?2(D?) © Y (w)H?(ID?) and write

fw) = fe@ew), fi(2) € H(2),
k=0

U

l/)f € ker T,

Then we note

n(z) ~ > ) . )
T+ opmw) W) _kﬁzon(z)f"(z)( 0(2))" e (WIpW)".

Since e, Y™ L e;p’ for (k,n) # (i,j), we have

@ fe(@)(—0(@) e WPpW)" L n(z)fi(z)(_(/)(z))jei W)y w)’
for (k,n) # (i,j). Hence
2

I = ;Onnfk(—m"ekw"nz
2
- lenfkq)"llz Z ulk T o, = p1
kn=0

As a simple application of Theorem (5.2.3), we have the following.
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Corollary (5.2.4)[218]: Let ¥ € H*(w) be a non-constant inner function and ¢ €
H®(z).Putu = ¢(2z) + Y(w). Then either T, or T} is injective on H?(ID?).

Proof. Suppose T, is not injective. Theorem (5.2.3) shows |||l < 1 and then T;; =
T4y 1s injective by Lemma (5.2.1). The proof is complete.

We don’t know whether the condition “y is inner” in Corollary (5.2.4) is
essential. So we have a natural question: For non-constant u = @ (z) + (w) where
@, € H* (D), is either T, or T, injective? In the rest, we will discuss this question
under certain conditions on the essential sup-norms of ¢, Y.

We let H* (ID) denote the space of all bounded holomorphic functions on D and
use the same notation ||@||, = sup|@(z)]| for ¢ € H* (D). Also, for ¢ € H* (D), put

z€eD

E(p) ={e'9 e T: |p(e”)| = 1}
and write |S| for the Lebesgue measure of a Borel set S < T.
Theorem (5.2.5)[218]: Let ¢, € H* (D) be non-constant and u = ¢(z) + Pp(w). If
l@lle = l1)]lo, then either T,, or T,; is injective on H?(ID?).
Proof. We may assume that 0 < |||l < 1 < ||@|lo. We shall prove that T, is
injective. To prove this, suppose not. Then T,,f = 0 for some f € H?(ID?) with f # 0.
Since

0="Tuf =Plof +¥f) = of + Tyf,
we see Ty, f = —¢f and hence
thzf = Ty (0D f) = =@ Tyenf = (—p)?f.

Repeating the same argument, we have T f = (—@)"f for each n = 1,2, Since
llolle > 1, we have g,(E(¢@) X T) > 0 and then

UWN=MWW=]W“W%@2~fVW@>0
']I‘Z

E(@)xT
for each n because f is nonzero. On the other hand, since [|Y]|, < 1, we have

Il < sl < Mwliziifll - o

as n — oo, which is a contradiction. The proof is complete.
As an immediate consequence of Theorem (5.2.5), we have the following,

Corollary (5.2.6)[218]: Let ¢,y € H* (D) be non-constant and u = ¢ (z) + Pp(w). If
llo + clloo # || — Cll for some ¢ € C, then either T,, or T, is injective.

The following lemma is quite well known. For the sake of completeness we
provide a proof.
Lemma (5.2.7)[218]: Let ¢ € H*(ID) be a non-constant function with ||@]||, < 1.
Then | t(’;,"f” — 0 asn - o for every f € H2(D).
Proof. For each z € D and each integer n = 1, we first have
|| = lo@IMIK, I
Since ||@||, < 1 and ¢ is non-constant, we have |@(z)| < 1. It follows that t(’;,"KZ” -
0 as n — oo. Since the set of all linear combinations of reproducing kernels is dense
H?(D) and ||t3" | < 1 for all n, we have the assertion. The proof is complete.

In case when ||@|| = |||, We have the following.
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Lemma (5.2.8)[218]: Let ¢, € H*(ID) be non-constant functions satisfying that
ol = 1Yl = 1. Put u(z,w) = @(2) + Y(w). If |[E(p)| > 0, then T, is injective
on H?(D?).

Proof. Suppose there exists a nonzero f € H*(D?) satisfying that T,,f = 0. By the
proof of Theorem (5.2.5), we have Ty, f = (—(p(z))n f and hence

on 12

Iritfl = [lornifitas = [ 1o > o (16)
T2 E(@)XT

for every n > 1. Writing f(z, w) = X%, fi (W)z* where f, (W) € H?(w), we have

Tyt @w) = ) PG W) = ) (5 fi) W)z
k=0 k=0
forall z,w € D and hence
|2 . 2
7517 = D Negr el < D fell? = 712 < e
k=0 k=0

By Lemma (5.2.7), applying the Lebesgue dominated convergence theorem, we have
| Tj,"f” — 0 as n — oo, which contradicts to (16). The proof is complete.

As an immediate consequence, we have the following.

Theorem (5.2.9)[218]: Let ¢,y € H*(ID) be non-constant functions satisfying that
@l = IYllee = 1. Putu(z, w) = ¢(2) + Pp(w). If either [E(p)| > 0 or [E(¥)| >0,
then either T, or T,; is injective on H?(ID?).

In view of Theorem (5.2.9), we ask a natural question: For u = ¢ (2) + Y (w)
where ¢, € H®(D), [[pllew = Pl = 1and |[E(@)| = |[E@)| = 0, iseither T, or T;
injective on H?(ID?)?

We close with another observation. Before doing this, we have the following
which can be easily checked.

Lemma (5.2.10)[218]: Let ¥ = ¢¥(z) € H®(ID) be a nonzero function. Then the
following statements are equivalent.

(1) W is an outer function.

(ii) ty is injective on H 2(D).

(iii) Ty, is injective on H?(ID?).
Proposition (5.2.11)[218]: Let ¢,y € H*(ID) be non-constant functions and u =
©(z) + Y(w). If ¢ has a non-constant inner factor and ¥ is an outer function, then T,
is injective on H?(ID?).
Proof. Suppose there exists a nonzero f € H*(ID?) such that T,,f = 0. Write ¢(z) =
1(z)0(z) for the inner-outer factorization of ¢. Since

[oe]

(%) = () (120 © 1H )G,

n=20
we may write f = Yo, f,1(2)™, where f;, € H2(D?) © 1(z)H?(ID?) for some £ = 0
with f, # 0. Then we have
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0=Tuf = of +Tjf = Z 0l ()™ + Z(wan)uz)"

Since Ty f, € H*(D?) © I(Z)Hz(]D)Z) for everyn > £, we have Ty fe = 0. But, since 1
is outer, we have f, = 0 by Lemma (5.2.10). This is a contradiction and therefore T, is
injective on H?(ID?). The proof is complete.

We consider symbols which are products u = @(2)¥(w) of two bounded
functions ¢,y on T.

The following lemma will be useful in our applications.
Lemma (5.2.12)[218]: Let ¢, € L”(T) and put u = @(z)(w). Then we have T,, =

To Tyw) = Ty Tp()-
Proof. Let f,g € H*(D) and write Yy(w)gw) = g;(w) + tyw)g(w) for some

g1(w) € L3(T) with g;(w) L H?(w). Then we have
T.f(2)gw) = P |p(2)f (@) (9:W) + tyaygw))]

= Plo@)f(@)typwgW)]

= To [ (Dtyn g W) = Tpe) Tyw) f(2)gw).
Similarly T,,f (2) g(W) = Ty Tp(2)f (2)g(w). Since H?(D?) = H*(2) @ H*(w), we
have T, = Ty Tyw) = Tyw) To(z), as desired. The proof is complete.

We describe the kernel of a Toeplitz operator whose symbol is a product of one

variable functions.

Theorem (5.2.13)[218]: Let ¢, € L*(T) be nonzero functions and u = @(z)yY(w).
Then we have
kerT, = [kert,;) @ H2W)] + [H*(2) @ kerty] -
Moreover if ker T, # {0}, then dim ker T, = oo.
Proof. By Lemma (5.2.12), we see

[kert,;) ® H*W)] + [H?(2) @ kertyw) | € ker T,
To prove the reverse inclusion, we note that

H?*(D?) = [kert,) ® H2(w) + H*(2) @ ker tyq)]

@ (H?(2) © kerty(z) @ (H*(W) © (kertyaw))-
Thus, to complete the proof, it suffices to show that T, is injective on
E:= (H*(2) ©kerty) @ (H2(w) © (ker tyaw)).

To do this, suppose T, f = 0 for some f € E and let {e;(2)};»¢ be an orthonormal basis
of H*(z) © kert,(,). Then we may write

f= Z fiwlei(2), i € H2(w) © ker ty .

By Lemma (5.2.12), we have

0="T,f = (z)szp(w)fl(W)el(Z) = ¢(Z)Z(t¢(w)fl (w)e;(2).

Also, since
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D (tpen W) € (H(2) © kerty) ® HA(w),
i=0

we write

> (Eponf) e = ) g,wl,g; € H2) © kertyq,
i=0 =0

Then, we have

0="Ty) Z gi@w = Z(%(z)gj)(Z)wf,
j=0 j=0

so we have t,g; = 0 for every j = 0. Since g; L kert,, we have g; = 0 for every j.

Therefore

Y (tponf) W@ = o,

i=0
which shows that t,,f; = 0 for every i = 0. Also, since f; L kerty, we see f; = 0 for
every i, so f = 0. Thus T, is injective on E, as desired. The proof is complete.

We remark in passing that Theorem (5.2.13) can be generalized to tensor products
of bounded linear operators on Hilbert spaces by the same way as in the proof: If A and
B are bounded linear operators on Hilbert spaces H and K respectively, then

ker(A @ B) = [ker(4) ® K] + [H & ker(B)].
As immediate consequences of Theorem (5.2.13), we have several applications.
Corollary (5.2.14)[218]: Let ¢, € L*(T) be nonzero functions and u = @(z)yY(w).
Then T, is injective on H?(ID?) if and only if both t, and ty, are injective on H 2(D).
Corollary (5.2.15)[218]: Let ¢,y € L*(T) be nonzero functions. Put u; = @(2)y¥(w)
and u, = @ (z)yY(w). Then one of Ty, Ty, Ty, and Ty, is injective on H?(D?).
Proof. By the Coburn theorem, we see that either t,, or tg is injective on H 2(D). Also
either ty, or ty; is injective on H 2(D). Hence there are four cases to consider and then
the result follows from Corollary (5.2.14). The proof is complete.

Taking ¢ = 1 ory = 1 in Corollary (5.2.15), we see that Toeplitz operators with
symbols which depend on only one variable satisfy the Coburn type theorem.
Corollary (5.2.16)[218]: Let u € L®(T?) be a symbol depending on only one variable.
Then either T, or T, is injective on H?(ID?).

For symbols which are products of holomorphic and antiholomorphic functions,
we have the following.

Corollary (5.2.17)[218]: Let ¢,y € H”(ID) be nonzero functions and put u =
@ (2)y (w). Then T, is injective on H?(ID?) if and only if ¥ is an outer function.
Proof. Since ¢ € H* (D) is nonzero, we note t,,,) is injective. By Corollary (5.2.14),
we see Ty, is injective if and only if t;‘b(w) is injective, which is in turn equivalent to that
1 1s an outer function by Lemma (5.2.10). The proof is complete.

As an immediate consequence of Corollary (5.2.17), we have the following.
Corollary (5.2.18)[218]: Let ¢,y € H® (D) be nonzero and put u = ¢ (z)1p(w). Then,
either T, or T;; is injective on H?(ID?) if and only if either ¢ or v is a outer function.
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We consider symbols of the formu = Z‘f’:o f_zj (z)w’ with certain h; € H®(z) and
then characterize the kernels of the corresponding Toeplitz operators.
Theorem (5.2.19)[218]: Let u € L*(T?) be a nonzero function having the following
form; u = 7%, f_zj(z)wj where h; € H®(z) for every j =0 and hy # 0. Then the
following statements hold.
(i) For f € H?(D?) with f = X%, fi (z)w* where each f;, € H?(z), we have f €
ker T, if and only if ¥4—¢ t,_ fi = 0 for every £ > 0.
(ii) If hy is an outer function, then T, is injective on H?(ID?).
(i11) Suppose that h is a non-constant inner function and 0 < r < % If ||hj ||oo <l
forevery j > 1, then dimker T}, = oo.
(iv) Suppose h is a non-constant inner function and h; = ¢ for some constant ¢ with
¢ > 1. Then T, is injective on H?(D?).
(v) If {hj}j>0 has a non-constant common inner factor, then T, is not injective on
H?(D?) and dim ker T, = oo.
Proof. (i) Noting

© oo oo £
rf =P ) ) K@ flw ™ |=p( 3| > Rer@fi@) |w!
j=0k=0 £=0 \ k=0
0 £
A DXACIS
£=0 \ k=0

we see that (1) holds.
(i) Let f = X%, fi (2)w* € H?(D?) be any nonzero function and m > 0 be the
smallest integer such that f,, # 0. Since hOis outer, tj  is injective by Lemma (5.2.10).

It follows that

m

>t fie = Ghfin # 0.
k=0
By (), f € ker T,, and (ii) holds.
(iii) Since hy is a non-constant inner function, we may take f, € H?(z) such that
th,fo = 0 and [|foll = 1. Inductively we define

{
frr@ = =ho@ ) i, S @)+ arafo(2) € HA ()
k=0

where |ap41| < 711 for every £ > 0. Then we have

? ?
Z t;;,f+1_kfk = Z t;;,f+1_kfk + t;;,of‘g'i‘l = 0
k=0 k=0
for every £ = 0. Also note
Ifill = [|= hoti, fo + asfo |l < halleollfoll + lagllifoll < 2r.
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By induction, we shall show that ||f;|| < 2¢r? for every £ > 1. Suppose that ||f,|| <
2¢r? for every 1 < £ < m. Then we note

m m
il 7 < D sl il + 77

Vfmsall <

k=0 k=0
m

< z rmtl-kok, .k + M+l = pm+l,m+1

k=0
and hence ||f;|| < (2r)¢ for every £>10. Set f(z,w) =Y5%, fx(Z2)wk. By the

observation above, we have
00 2 00 00
112 = | > fe@wH|| = D IA@IF < ) @n¥ <.
k=0 k=0 k=0

Hence f € H>(D?) and f # 0. Now, by (i), we have f € kerT, and kerT, # {0}.
Moreover, the construction of f above shows that dim ker T, = oo.

(iv) Suppose there is a nonzero f € H*(D?) such that T, f = 0. Write f =
> o fr (2)W¥ where each f;, € H?(z) and let m > 0 be the smallest integer such that
fm # 0. Then, by (1)

£

Z th, o Jie (2) = 0 17)

k=0
for every £ = 0. When £ = m in (17), we have 0 = YyLoty _ fi =ty fm-
Since hy is inner, it follows that f,, € H2(z) © hoH?(z). Also, if we take £ =
m+ 1 in (17), we have
m

0= sl = hfin + thofonss = Sfon + o frnen

k=0
and hence f,41 = —Chofin + Gma1 for some g1 € H*(2) © hoH?(z). We also have
m

0= thsific = thofin + i fonss + i fons:
k=0
= ti*szm + cfintr + t;LOfm+2 = t;;zfm + CO9m+1 — szm + ti*tofm+2-

Hence

fm+z = _ho(t;;zfm + COm+1 — Czhofm) + Im+2
for some g, € H*(2) © hoH*(2). Since t;, fin € H*(2) © hoH?(2), we have

fm+2 = [gm+2 - hO(t}*szm + Cgm+1)] + Czh%fm

€ [H?(2) © h§H?(2)] © hgH?(2).

Repeating the same argument, we may write

fsi = Gy + c'hifin € [H*(2) © RHH?(2)] © h{H? (2)
forevery i > 1. Hence
ooi o
o > IF12 = Wl + D msill? = Wl + D cZillfll? = o0
i=1 i=1
because ¢ = 1, which is a contradiction. Thus ker T, = {0} by (i).
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(v) Let n(z) be a non-constant common inner factor of {hj}j>0. For each j > 0,

we may write h; = r]f_lj for some ﬁj € H®(z). Take a nonzero function g in H%(z) ©
nH?(z). Note g L H?(z) and h;g L H?(z) for each j. Hence for each nonnegative
integer m, we have

T,(gw™) = P Zﬁj(z)g(z)wj”” = 0.
=0

Therefore T, is not injective and [H?(z) © nH?(z)] ® H2(w) c ker T,

Hence dim ker T;, = 0. The proof is complete.

In conjunction with Theorem (5.2.19), we finally have the following which is a
consequence of Lemma (5.2.1).
Proposition (5.2.20)[218]: Let ¢ be a non-constant inner function on D and put u =
z — @(z)w. Then T, is injective on H?(D?).
Corollary (5.2.21)[307]: Let u,. = ¢, + Y,,where 1, be an inner functions on D? and
@y € L*(D?) with |||l < 1. Ifu, Z 0, then T;;  is injective on H*(ID?).
Proof. Suppose T h, = 0 for some h, € H*(D?) and then P(@;h,) + Y,h, = 0.
Since 1, is inner, we note

eIl = llprhe Il = 1P (@rh)ll < ll@rhell < IRyl
and then [|P(@7h )|l = Ilgyh, ||. Thus P(g;h,) = @;h, and
U h, = @rhy + Y h,. = P(@rh,) + YPrh = 0.
Since u, = 0, we have h,, = 0 and T, is injective, as desired. The proof is complete.
Corollary (5.2.22)[307]: Let ¥, be a non-constant inner functions on D? and ¢, €
H®(D?). Assume [|¢,|lco < 1 and put u, = @, + ... Then T;;_is injective but T, is
not injective on H%(ID?). Moreover we have
— 1 2 (M2 22
kerTy, = - [H*(0) © y, H2(@2)],
and dim ker T;, = oo.
Proof. By Lemma (5.2.1), T;;_ is injective on H?(D?). To prove (1), we first note that
1/(1 + @, ,) € H®(D?) because ||@, ||, < 1. Since 1, is inner, u, = @, + P, =
Yy, + 1) ae. on T? and hence Ty, = Ty Ti4p,y,- Since 1+ @1, is invertible
in H® (D?), we have
kerT, =

_ __ 1 2 ()2 2(m2
1+ Yy ker Tl’br B 1+@riy [H (]D) )e ler (]D) )]’

because ker Ty~ = (ran Td,r)l = [H?(D?) © y,.H*(D?)], so (1) holds as desired. The
proof is complete.
Corollary (5.2.23)[307]: Let . € H*(z + €) be a non-constant inner functions and
¢, € H*(2).Putu,(z,z + €) = ¢,(z) + ,.(z + €). Then the following statements are
equivalent.

(i) T, is not injective on H*(D?).

(ii) |loyll < 1 and @, are not an extreme points of ball H* (z).
In which case, we have
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_ Tlr(Z)
kerT, = TN OTNCEY) [H2(D?) © Y, (z + e)H*(D?)]

and dim ker T, = oo, where 1,- € ball H® (z) are an outer functions satisfying |¢, |* +
12 =1a.e.onT.
Proof. First assume (i) and then T;,_f = 0 for some nonzero functions f. € H 2(D3).

By (2), we may write

=) Bn@e G+ G+ zz+z€D

n,k=0
where (f)nx(2) € H?(z) for every n, k = 0. Since ), are inners, we note that

0=Tyfp =@ + ) P((FInierth?¥y)

nk=0

= ¢ (Dfr + z z(fr)n,k(z)ek z+e)yY,(z+e)™1?

n=1k=0

= ) @D EIe@Denlz + iz + )"

(o]
n,k=0
(o]

+ ) FnraaDe + e,z + "

n,k=0
(o]

= z [‘Pr(z)(fr)n,k(z) + (fr)n+1,k(z)ek z+ ey, (z+ S)n]

n,k=0
for all z,z + ¢ € D. It follows that @, (f;)nx + (i )n+1x = 0 for every n,k = 0 and

hence, foreachk > 0, () = (ff)ox (—¢;)" for all n. Thus

=) o@D (-0:) ez + 0z + )"
n,k=0
Since f,. € H?>(D?) and {e,: n, k > 0} is an orthonormal basis of H2(z + €), we see

0 > ”fr”2 — z ”(f;’)o,k(_(/)r)nnz — f <z|(ﬂ)0'k|2> (z |ﬁ*|2n> do;.
k=0 n=0

n,k=0 T
Since f, # 0, we have (f;-)o,, # 0 for some £ > 0. Thus the above shows that |¢,(z)| <

1 a.e. on T and then ||¢, || < 1. Also, we have

% ol ol
1 - |(pr|2

do; <

and

fr

- 1+ ‘Pr(Z)l/Jr(Z + 8) kzzo(ﬁ”)o,k(z)ek (Z + 8).

Now, noting
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2ol (o @] _ Zieol (o @)
1-le,@1F = 1-le@*

2
log|(£)o.r (2)|” < log
We have by the Jensen inequality

2 2
~o < [ log|(f)o [*dn < [ 10g Y| [ dor — [ 10g(1 = I, ) doy
k=0

T T = 5 T
= [ Ziol (ol
B 1- |(Pr|2

do; < oo,
We also have

—oo < flog|(fr)0ﬁg |2d01 < flogz|(fr)0,k |2d01.
k=0

T T
and

0< —flog(l — |o,|) doy < .

T
Then, the above inequalities imply —oo < fT log(1 — |, |) do, and hence ¢, are not an
extreme points of ball H*(z). Thus (ii) holds. Now assume (ii) and show (i). By the
remark just before this proposition, there is an outer functions 7, € ball H*(z)
satisfying |@,|2 + [n,|2 = 1 a.e. on T. Thus
In,|?
1- |(pr|2
To prove (1), it suffices to show
1y (2)
[H?(D?) © Y, (z + e)H*(D?)] c ker T,, .
T+ 9,9, (2 1 9 prie+ DEEO] S ler Ty,

To do this, we let g, € H*(2) and h, € Ky, (z + €). Note

mr(2)gr (hy (@ + €) Z 1 (@)gr@Dhe (2 + &)~ (D))" Yy (z + )"
n=0

=1 a.eonT.

1+ ¢ (2) Yr(z + &)

for all z,z + € € D. Since h, € Ky, (z + €), we have hap, " L hrlpr" for every n, k >
0 with n # k and then

N (2)gr(2)h-(z + )
1+ @Y, (z+¢)

= 11 gD (=9 )| Wy 2 + ) .z + )™
n=0

|77r(Z)gr(Z)|2
J 1-lor(2)I?

2

= |lh(z + O)I? doy = l|he(z + I*l g, (D]I* < oo

and hence
n(2)g-(2)h,(z + &)
1+ (pr(Z) l/)r(Z + ¢)

x(z,z+¢€):= € H%(D?).

Moreover we see
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Tur)( = QrX + P (Z Nr grhr(_ (pr)nlppl_/;;) = QrX + z nrgrhr(_ (pr)n-l-ll/)p
n=0

2[%( @ + (=) gy b, = 0

and thus (7) follows as desired.
To complete the proof, we need to show that the reverse inclusion of (7) holds.
To prove this, let f, € kerT,, and then T,,_f,. = 0. Then, using the same notation as in

(3), we have from (4) and (6)
. 2
Zk=0|(fr)0,k| _ 1> Xie- o|(fr)0 k/TIr
o > > do‘1 = 2 d 01 =
T 1- |(pr| T 1- |(Pr|
Thus (f;-)ox € N-H?(z) for every k = 0 and (5) shows
(0]

(fr)Ok

Tlr(Z)
T o @bz 9 g_}oe"(z +OH()

_ n-(2)
14 (Pr(Z)lpr(Z + ¢) [HZ(]D)Z) S l/)r(Z + S)Hz (]D)Z)]

because {ey (z + €)}=0 is an orthonormal basis of Ky, (z + €). Thus we get

Tlr(Z)
kerT, c TN OTRCEYS [H2(D?) © Y,(z + e)H*(D?)]

as desired. The proof is complete.

Corollary (5.2.24)[307]: Let 3, € H*(z + €) be a non-constant inner functions and
¢, € H*(2). Put u, = ¢, (2) + Y, (z + €). Then either T, or T, is injective on
H?(D?).

Proof. Suppose T, is not injective. Theorem (5.2.3) shows |[@, |l < 1 and then T;; =
Tg- 4y, 1s injective by Lemma (5.2.1). The proof is complete.

Corollary (5.2.25)[307]: Let ¢,, ¢, € H®(ID) be non-constant and u, = ¢,(z) +
P, (z+ ). If lorllo = Iy ]leo, then either T, or T, 1is injective on H?(D?).

Proof. We may assume that 0 < [|{p[|e <1 < |[t)|lo. We shall prove that T, is
injective. To prove this, suppose not. Then T, f;, = 0 for some f, € H*(D*) with f;. #
0. Since

fr

0="Tyfr = P(o fr +Urfy) = 0pfy + Tzzrfr:
we see Ty, fr = —@,f, and hence

(Tzzr)zfr = Tzzr(z+s)(_(pr(z)fr) = _(pr(Z)Tzzr(z+s)fr = (_(pr)zfr-
Repeating the same argument, we have (Ty, )"f, = (—@)"f for each n =1,2,--.
Since ||y |l > 1, we have 0, (E(¢,.) X T) > 0 and then

[T, = 0252 = [lo, 152, > [ 15 Pda, > 0
2 E(@,)XT
for each n because f, is nonzero. On the other hand, since ||, ||, < 1, we have
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T el < 1T, 17 < el lA = 0

as n — oo, which is a contradiction. The proof is complete.
Corollary (5.2.26)[307]: Let ¢, € H*(ID) be a non-constant function with ||, |[e <
1. Then ||(t(’;,r)"fr|| — 0 asn — o for every f,. € H2(DD).
Proof. For each z € D and each integer n = 1, we first have

It )"k || = lor (DI
Since ||yl <1 and ¢, is non-constant, we have |@,(z)| < 1. It follows that
||(t:;,r)"KZ|| — 0 as n — oo. Since the set of all linear combinations of reproducing
kernels is dense H?(ID) and || (t(’;,r)"” < 1 for all n, we have the assertion. The proof is

complete.

Corollary (5.2.27)[307]: Let ¢,, 3, € H*(ID) be non-constant functions satisfying
that [[@rlle = [YPrlle = 1. Put u,(z,z + &) = @ (2) + Y(z + ). If |E(p,)| >0,
then T, is injective on H 2(D?).

Proof. Suppose there exists a nonzero f, € H*(D?) satisfying that T,,_f, = 0. By the
proof of Theorem (5.2.5), we have (Ty, )74¢fr = (—(pr(z))n f and hence

|30 = [lomisrdo= [ 1f1do >0
T2 E(op)XT
for every n > 1. Writing f,.(z,z + &) = Yo o(fi )k (z + €)z* where (f)(z+¢) €
H?(z + ¢€), we have

[oe]

T3 ez z+ e = ) P )@+ 28 = ) (6, (i) @ + &)
k=0

k=0
forall z,z + € € D and hence

g m I = > N m el < D NN = NG < o
k=0 k=0

By Lemma (5.2.7), applying the Lebesgue dominated convergence theorem, we have
|| (Typ )" fr” — 0 as n — oo, which contradicts to (8). The proof is complete.

Corollary (5.2.28)[307]: Let ¢,,, € H*(ID) be non-constant functions and u, =
¢, (z) + P, (z + €).If @, has a non-constant inner factor and 1, are an outer functions,
then T, is injective on H 2(D?)

Proof. Suppose there exists a nonzero f, € H*(D?) suchthat T, f;, = 0. Write ¢,(2) =
1(z)0(z) for the inner-outer factorization of ¢,.. Since

(%) = (P 1200 © 1 H I,
=0
we may write f, = Zf{;[(fr)nr;(z)", where (f,), € H2(D?) © I1(z)H?*(D?) for some
£ > 0 with (f;), # 0. Then we have

0 =Ty fo = oufy + Ty fo = ) 0@ U @™+ Y (T, ()"
n="¢ n=~¢
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Since Ty, (f;)n € H*(D?) © 1(z)H?*(D?) for every n = £, we have Ty, (f;.), = 0. But,
since 1, is outer, we have (f,), = 0 by Lemma (5.2.10). This is a contradiction and
therefore T, _ is injective on H?(ID?). The proof is complete.
Corollary (5.2.29)[307]: Let ¢,, ¥, € L”(T) and put u, = @,(2),(z + €). then we
have Ty, = Ty )Ty, z+e) = Ty z+e) o, (-
Proof. Let f.g,€ H?*(D) and writey,(z+¢&)g,(z+¢)=(g,).(z+¢)+
ty, (z+e)9r (2 + €) for some (g,)1(z + &) € L*(T) with (g,)1(z+ &) L H*(z + ¢).
Then we have
T fr(@gr(z+ &) = Pl @)@ (01 + &) + ty, 19,2 + )|

= P[¢r(Z)ﬂ(Z)t¢T(z+g)gr(Z + 8)]

= T(pr(z)f;’(z)ttpr(z+s)gr(z + €)

= T, Ty, z+e)fr(2)gr (2 + €).
Similarly T, f(2)g,(z + €) = Ty z+6)Tp. ) fr(2)gr(z + €). Since H*(D?) =
H?(z) @ H*(z + €), we have Ty, = Ty (T (z+e) = Tp.(z+e) T, (2)» @S desired. The
proof is complete.

Corollary (5.2.30)[307]: Let ¢,, Y, € L(T) be nonzero functions and u, =
¢y (z) Y- (z + €). Then we have
kerT, = [kert, ;) @ H*(z + &)]| + [H*(2) @ kerty, (z10)]-
Moreover if ker T, # {0}, then dim ker T, = oo.
Proof. By Lemma (5.2.12), we see

[ker to, () @ H(z+ &) + [H*(2) ® kert .y (z+) | c ker Ty,
To prove the reverse inclusion, we note that
H?(D?) = [ker to. () @ H*(z + €) + H*(2) ® ker tlpr(zﬂ)]

@ (H?(2) © kerty, () ® (H*(z+€) © (kerty_(z4+s))-
Thus, to complete the proof, it suffices to show that T, is injective on

E:= (H?(z) © ker t%(l)) ® (H*(z + ¢) © (ker twr(2+£))'
To do this, suppose Ty, f, = 0 for some f, € E and let {€;(2)};>¢ be an orthonormal
basis of H2(z) © ker ty, (2. Then we may write

fro= ) (0 +0)e(@), (F) € H (2 4+ &) O kerty, ey,
(=0

i=
By Lemma (5.2.12), we have

0= Turf;” = T(pr(z) z Ttpr(z+s) (ﬁ’)l(z + S)Qi (z)
i=0

= T‘PT(Z) z(tlpr(z"‘s) (f;')l)(z + S)Qi (Z)
i=0

Also, since

(ty, (i) (2 + )ei(2) € (H?*(2) O kerty, () ® H2 (2 + ),

1=0
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we write

D (a0 ()@ + Der(@)
i=0

= Z(gr) i@ (z+e), (g, € H2(2) O kerty, ().
=0

Then, we have

0= Ty, (2) Z(gr)j(z)(z + g)j = Z(twr(z)(gr)j)(z)(z + g)j:
=0 j=0

so we have t, (g,); = 0 for every j = 0. Since (g,); L kert, , we have (g,); =0
for every j. Therefore

Y (b0 ()G + D) = 0,

i=0
which shows that t,, (f-); = 0 for every i = 0. Also, since (f;-); L kerty, , we see
(fr)i = 0 for every i, so f, = 0. Thus T, is injective on E, as desired. The proof is

complete.
Corollary (5.2.31)[307]: Let ¢, ¢, € L(T) be nonzero functions. Put (u,); =
0. (2P, (z + &) and (), = @, (2),(z + ). Then one of Taw,) 1,T(*L,¢)1,T(u¢) , and
T(*u”2 is injective on H%(ID?).
Proof. By the Coburn theorem, we see that either ¢, or t5- is injective on H 2(D). Also
either t, or ty;- is injective on H 2(D). Hence there are four cases to consider and then
the result follows from Corollary (5.2.14). The proof is complete.
Corollary (5.2.32)[307]: Let ¢,, ¢, € H*(ID) be nonzero functions and put u, =
¢y (2)P,(z + €). Then T, is injective on H?(D?) if and only if ¥, are an outer
functions.
Proof. Since ¢, € H® (D) is nonzero, we note t,, (,) is injective. By Corollary (5.2.14),
we see T, is injective if and only if ¢, () is injective, which is in turn equivalent to
that ,- are an outer functions by Lemma (5.2.10). The proof is complete.
Corollary (5.2.33)[307]: Let u,. € L*(T?) be a nonzero functions having the following
form; u, = Z‘f:omj(z)(z + €)/ where (h,); € H®(2) for every j = 0 and (h,), #
0. Then the following statements hold.

(i) For f, € H2(D?) with £ = X% o(f)k(2)(z + ) where each (f,.), € H%(2),

we have f, € ker T,,_if and only if Y5 _o t(n,,_, (i)x = 0 for every £ = 0.
(i) If (hy)o is an outer function, then Ty, is injective on H 2(D?).
(ii1) Suppose that (h,)p i1s a non-constant inner function and 0 <7r < ; If
”(hr)j“oo < r/ for every j = 1, then dim ker T, = oo.

(iv) Suppose (h, ), is a non-constant inner function and (h,.); = ¢ for some constant
c with ¢ = 1. Then T, is injective on H 2(D?).
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(v) If {(hr) j}jzo has a non-constant common inner factor, then T, is not injective

on H*(D?) and dimkerT,, =
Proof. (i) Noting

T fio =P D)) i@ (@ + &)

j=0k=0

00 £
=P( D D Tk @ BN |+ o)

£=0 \ k=0
o [ ¢
- z z iy, )k (@) |z + ),
=0 \ k=0

we see that (1) holds.
(i) Let f = X5 () (2)(z + €)% € H?(ID?) be any nonzero function and m >
0 be the smallest integer such that (f,-),,, # 0. Since (h; ) is outer, t€hr)o is injective by

Lemma (5.2.10). It follows that

2 o e = (6320 # 0.

By (1), fr € kerT,,_and (11) holds.

(1i1) Since (hr)o is a non-constant inner function, we may take (f;.), € H?(z)
such that t(, ) (fr)o = 0 and ||(f)oll = 1. Inductively we define
?

(fr)es1(2) = —(hy)o(2) z tr ) m-k ik (2) + api1(f;)o(2) € H*(2)

where |ap41| < 711 for every £ > 0. Then we have
¢

D dmwlie = ) €)oo+ gy (idera = 0
=0 k=0

for every £ = 0. Also note

Il = (= (Aot iny, (o + ar(Fdoll < 1A 1lleol(F)oll + lag (£ )oll < 275

By induction, we shall show that ||(f.),|| < 2¢r¢ for every £ > 1. Suppose that
N(F)ell < 27¢ for every 1 < £ < m. Then we note

1 meall < le(r:h I (B + 7 < Zu(hr)mﬂ el NG + 7742
m
< z rgn+1—k2kréc + rgn+1 — 2m+1rgn+1
k=0
and hence || (f,.),]l < (2rg)¢ forevery £ = 0.Set £.(z,z + €) = Yoro(f)r(2) (z + €)F.
By the observation above, we have
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II = Z(ﬁ)k<z)<z+e)k an)k(z)nz Z<2r0)2k<oo

Hence f, € HZ(]D)Z) and f # 0. Now, by (1) we have f, € kerT and ker T, # {0}.
Moreover, the construction of f, above shows that dim ker T, = co.
(iv) Suppose there is a nonzero f. € H*(ID?) such that Ty fr = 0. Write f, =

Yo o(fi)k(@)(z + £)* where each (f,),, € H%(z) and letm > 0 be the smallest integer
such that (f;);, # 0. Then, by (i)

2 i, (i (@) =0

forevery £ > 0. When £ = m in (9) we have 0 = Xyio tiny  (fdk = t(n),(frm-

Since (h,), is inner, it follows that (f,.),, € H*(z) © (h,)oH?*(2). Also, if we
take £ = m + 1 in (9), we have

0= Z ity B = Eingyy o + gy Fodmes = € + gy Fodm
k=0
and hence (Fmis = =c(hdo(fdm + (@)mer for some (g mis € HA(2) ©
(h,)oH?(2). We also have

0= Z e G = Einya i + €y, s + €y, i

- t(hr)z dm+ c(fidmer + t(hr)(,(f;”)m+2
= tn,), )m + €@ mer — Udm + ), mez-

Hence

rdm+z = _(hr)O(tEFhr)z (fdm + c(@r)m+1 — Cz(hr)o(f;”)m) + (9r)m+2
for some (g, )m+2 € H*(z) © (h,)oH?(2). Since thy, fr)m € H?(z) © (hy)oH?(2),
we have

Fmrz = [ me2 = (Ao (En, ), fdm + €(@rImea)] + 2 (B fdm
€ [H*(2) © (h)§H?(2)] @ (h,)§H? ().

Repeating the same argument, we may write

fdmsi = Gi + ' (h)o(f)m € [H*(2) © (h)oH? (2] © (hr)oH? (2)

forevery i > 1. Hence

@ > 12 = ¢ Imll? +Z||<fr)m+l||2 16 mll? +z AN (Imll? = o0

because ¢ = 1, which is a contradlctlon Thus ker T,, = {0} by (1)
(v) Let n,-(2) be a non-constant common inner factor of {(h,) f}j>0' For eachj >

0, we may write (h,); = n,(h;.); for some (h,); € H®(z). Take a nonzero function g,
in H2(z) © n,H?(2). Note 7,9, L H?(z) and (h,);g, L H?(2) for each j. Hence for
each nonnegative integer m, we have
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T, (gr + O™ = P ) () (gr@(z + &)™ | = 0.
j=0

Therefore T, is not injective and [H?(z) © n,H*(2)] ® H*(z + €)  kerT,,,. Hence
dimker T;, = oo. The proof is complete.
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Chapter 6
Pointwise Multipliers with Density and Brown—Halmos Theorem

We obtain characterization of pointwise multipliers between Nakano spaces. We
also discuss factorization problem for Musielak—Orlicz spaces and exhibit some
differences between Orlicz and Musielak—Orlicz cases. We show that there exists a
separable weighted L! space X such that the sequence f * F,, does not always converge
to f € X in the norm of X. On the other hand, we prove that the set P, is dense in H[X]
under the assumption that X is merely separable. We specify our results to the case of
variable Lebesgue spaces X = LPO) and Y = L90) and to the case of Lorentz spaces X =
Y =1P9(w),1<p <o,1=<q < oo with Muckenhoupt weights w € A4, (T).

Section (6.1): Orlicz Function Spaces and Factorization:

Given two Orlicz spaces L%t , L? over the same measure space, the space of point
wise multipliers M (L¥t, L?) is the space of all functions x, such that xy € L? for each
y € L¥1, equipped with the operator norm. The problem of identifying such spaces was
investigated by many, starting from Shragin [240], Ando [227], O’Neil [237] and
Zabreiko—Rutickii [242], who gave a number of partial answers.

These investigations were continued in number of directions and results were
presented in different forms. One of them is the following result from Maligranda—
Nakaii [234], which states that if for two given Young functions ¢, ¢, there is a third
one ¢, satisfying

o1ipz o, (D
Then
M(L%:,L?) = L=, (2)
This result, however, neither gives any information when such a function ¢, exists, nor
says anything how to find it. Further, it was proved in [231, Cor. 6.2] that condition (1)
is necessary for a wide class of ¢, ¢, functions satisfying some additional properties,
but at the same time Example 7.8 from [231] ensures that in general it is not a case, i.e.
there are functions ¢, @, such that no Young function ¢, satisfies (1), while
M(L%t,L?) = L, which is also Orlicz space generated by the function ¢, defined as
@, () =0for0 <t <1and@,(t) = forl < t.In particular, these functions do not
satisfy (1), although (2) holds.

On the other hand, there is a natural candidate for a function ¢, satisfying

M(L‘P1’L<P) = L%z
Such a function is the following generalization of Young conjugate function (a kind of
generalized Legendre transform considered also in convex analysis, for example in
[241]) defined for two Orlicz functions ¢, ¢ as

® O @(t) = sglg{w(st) — @1(s)}

The function ¢ — ¢4 is called to be conjugate to ¢ with respect to ¢.

Also in [231] this construction was compared with condition (1) and it happens
that very often ¢, = @ © ¢ satisfies (1) (cf. [231, Thm. 7.9]), but once again Example
7.8 from [231] shows that ¢, = ¢ © @, need not satisfy (1). In that example, anyhow,
there holds L® = L?©91, so that M (L¥1, L?) = L?©%1, Therefore, it is natural to expect
that in general

M(L?:,L?) = L9O%1, (3)
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as was already conjectured in [231]. In fact, such theorem was stated for Orlicz N
functions by Maurey in [236], but his proof depends heavily on the false conjecture, that
the construction ¢ © ¢, enjoys involution property, i.e. ¢ © (¢ © @,) = @, (see
Example 7.12 in [231] for counterexample).

On the other hand, the formula (3) was already proved for Orlicz sequence spaces
by Djakov and Ramanujan in [230], where they used a slightly modified construction
@ © @4 (the supremum is taken only over 0 < s < 1). This modification appeared to
be appropriate for sequence case, because then only behaviour of Young functions for
small arguments is important, while cannot be used for function spaces. Anyhow, we
will borrow some ideas from [230].

We show that (3) holds in full generality for Orlicz function spaces, as well over
finite and infinite nonatomic measure. Then we use this result to find that ¢, = ¢ © ¢,
satisfies (1) if and anly if L% factorizes L?, which completes the discussion from [232].

Let L° = L°(Q, %, 1) be the space of all classes of equivalence (with respect to
equality u —a.e.) of 4 —measurable, real valued functions on , where (Q, X, u) is a
o —finite complete measure space. A Banach space X c L° is called the Banach ideal
space if it satisfies the so called ideal property, i.e. x € L%,y € X with |x| < |y| implies
x € X and ||x||x < |lyllx (here |x| < |y| means that |x(t)| < |y(t)| for u —ae. t €
), and it contains a weak unit, i.e. a function x € X such that x(t) > 0 foru —a.e. t €
Q. When (Q, Z, 1) is purely nonatomic measure space, the respective space is called
Banach function space (abbreviation B.fs.), while in case of N with counting measure
we shall speak about Banach sequence space. A Banach ideal space X satisfies the Fatou
property when given a sequence (x,) € X, satisfying x,, T x u —a.e. and sup||x,||x <

n

oo, there holds x € X and ||x||x < supl|x,||x-
n

Writing X =Y for two B.f.s. we mean that they are equal as set, but norms are
just equivalent. Recall also that for two Banach ideal spaces X, Y over the same measure
space, the inclusion X c Y is always continuous, i.e. there is ¢ > 0 such that |[x||y <
cl|x|lx for each x € X.

Given two Banach ideal spaces X,Y over the same measure space (, X, i), the
space of point wise multipliers from X to Y is defined as

M(X,Y) = {y €eL%:xy € Yforall y € X}
with the natural operator norm
IYlicer = sup lleylly

Il x =
When there is no risk of confusion we will just write ||-||,, for the norm of M(X,Y).

A space of point wise multipliers may be trivial, for example for nonatomic
measure space M(LP, L?) = {0} when 1 < p < ¢, and therefore it need not be a Banach
function space in the sense of above definition. Anyhow, it is a Banach space with the
ideal property (see for example [235]). To provide some intuition for multipliers let us
recall that M(LP,L?) = L" when p >q>1,1/p+1/r = 1/q and M(X,L*) = X,
where X is the Kothe dual of X (see [231,232,235]).

A function ¢: [0,0) — [0, ] will be called a Young function if it is convex,
non-decreasing and ¢ (0) = 0. We will need the following parameters

a, = sup{t = 0: ¢(t) = 0} and b, = sup{t = 0: ¢(t) < oo}.
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A Young fuction ¢ is called Orlicz function when b, = 0. For a Young function ¢ by

@~1 we understand the right-continuous inverse defined as ¢~ 1(v) = inf{u >

0: p(u) > v} forv = 0.
Let ¢ be a Young function. The Orlicz space L? is defined as
L? = {x € L°:1,(Ax) < oo for some 1 > 0},
where the modular /, is given by

1@ = [ wlixDau
Q
and the Luxemburg—Nakano norm is defined as

lxll, = inf{A > 0:1, G) <1},

We point out here that the function ¢ = 0 is excluded from the definition of Young
functions, but we allow ¢ (u) = o for each u > 0 and understand that in this case LY =
{0}.

We will often use the following relation between norm and modular. For x € L?

lxlly < 1= 1,(x) < lIxlly, (4)

(see for example [233]).

Given two Orlicz functions ¢, ¢4, the conjugate function ¢ © ¢4 of ¢, with
respect to ¢ is defined by

® © @1 () = sup{p(su) —@,(s)},

0<s
for u = 0. Since we need to deal with Young functions, one may be confused by

possibility of appearance of indefinite symbol co — oo in the above definition, when
by, by, < 0. To avoid such a situation we understand that for Young functions ¢, ¢,
the conjugate function ¢ © ¢, is defined as

sup {p(su) — ¢;(s)}, when b, = oo,

0<s<oo

su su) — s)},when b, < oo and b, )= oo,
0O @ (u) = 0<s<l;))(p1{(p( ) — ¢1(s)} 01 (P1( <P1)

sup {p(su) — ¢;(s)},whenb, < coand (P1(b<p1) < oo,
0<ssby,
Notice that it is just a natural generalization of conjugate function in a sense of Young,
i.e. when ¢(u) =u we get the classical conjugate function @i to ¢,. Of course,
functions ¢, ¢ and @ © @, satisfy the generalized Young inequality, 1.e.
o) < 9 © o, () + p1(v)
for each u,v = 0.
We will also need the following construction.
Definition (6.1.1)[226]: For two Young functions ¢, ¢; and 0 < a < b, we define

® Oq¢@1(u) = sup {p(su) — @1(s)},u>=0.

0<s=a

Such defined function ¢ &, ¢, enjoys the following elementary properties.
Lemma (6.1.2)[226]: Let ¢, ¢, be two Young functions.

(1) ¢ ©4 @1 is Young function for each0 < a < b, .

(i) Foreacht = 0 there holds
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lim ¢ S, ¢1(w) = ¢ Oq p1(W.
P1
Notice that dilations of Young functions do not change Orlicz spaces, i.e. when

@ is a Young function and 1 is defined by Y (u) = ¢(au) for some a > 0, then LY =
L¥. Tt gives a reason to expect that dilating ¢, ¢, results in dilation of ¢ © ;.
In fact, let ¢, ¢, be Young functions and put Y (u) = ¢ (auw), P, () = ¢, (bw).
Then
aus

Y © Y1 (w) = sup(@(aus) — ¢, (bs)) = sup ((p (T) - <p1(s)>
0<s 0<s

= ¢ © p1(au/b).
Moreover, if b, = b, < o, then supremum in the definition of ¢ © ¢, is attained for
eachu < 1,ie. foreachu < 1thereis 0 <s < b, suchthatp © ¢, (u) = @(us) —
®1(s). In particular, by,g,, = 1.
Let us also recall that a fundamental function f,, of an Orlicz space L? is defined
for 0 <t < u(Q) as f,(t) = llxAll, where u(A4) = t. Notice that it is well defined,
since ||xAll, does not depend on particular choice of measurable set A c Q with

u(A) = t (in general Orlicz spaces belong to the class of the so called rearrangement

invariant spaces—see for example [228] for respective definitions).
1

pToyn for0 <
t <u(Q) and f,(0) = 0. In particular, the fundamental function of L? is right-
continuous at 0 if and only if b, = o, or equivalently, b, = oo if and only if for each
g€ >0thereisd > Osuchthatif A € X, u(A) < & then [[yAll, < e.

Since now on we are interested only in Orlicz function spaces, so that the
underlying measure space (£, Z, 1) is understood to be purely nonatomic for all spaces
below.

Lemma (6.1.3)[226]: Let ¢, ¢ be Young functions such that b, < co and b, = co.
Then

Further, it is well known that f,, is given by the formula f, (¢) =

M(L%,L?) ={0}.
Proof. The proof follows immediately from Proposition 3.2 in [231], since under our
assumptions L¥1 ¢ L* but LY c L™,
Lemma (6.1.4)[226]: Let ¢, ¢, be Young functions and b, < co. Then

M(L?,L?) c L.
Proof. Suppose that M (L%, L?) ¢ L. Then there exists 0 < y € M(L%1, L?) such that
[yl = 1 and foreachn > 0

u({t € Q:y(t) =n}) > 0.

Denote A, = {t € Q: y(t) = n} forn € N. Then ||n)(An||M < 1 and for A, chosen in
such a way that ,u(AnO) < oo, it follows
n n nby'

)

bl -
”)(Ano”(p1 At molly, ||XAnO o
1

for each n > n,. This contradiction shows that M (L1, L¥) c L*.
We are in a position to prove the main theorem.

Iyl = [|nxa,ll, =
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Theorem (6.1.5)[226]: Let ¢, ¢, be Young functions. Then

M(L®:,L?) = LPOP1
Proof. The inclusion

LPOP1 = M(L®:,L?) (5)
is well known (see [227,231,234] or [237]) and follows from equivalence of generalized
Young inequality and inequality ¢71(¢ © ¢;)™! < ¢~ 1. For the completeness of
presentation we present the proof which employs the generalized Young inequality
directly. If ¢ © ¢, (u) = oo for each u > 0 then L?©%1 = {0} and inclusion trivially
holds.

Suppose L?O91 # {0}, i.e. ¢ © ¢, (u) < oo forsomeu > 0.Let y € L#O%1 and

x € L1 be such that

1 1

¥lpop, <5 and lxlly, <

Then generalized Young inequality gives
I,(yx) < lpyge, @) +1,, (x) < 1.
Consequently yx € L? and ||yx||, < 1. Therefore, L?©%1 ¢ M(L#1,L?) and
Iylin < 4llyllpoqp,-

To prove the second inclusion it is enough to indicate a constant ¢ > 0 such that for
each simple function y € M (L%, L?) there holds

IYllpop, < cllylly. (6)
In fact, it follows directly from the Fatou property of both L#©¢1 and M (L¥1, L) spaces
(it is elementary fact that M (X, Y) has the Fatou property when Y has so). Let0 < y €
M(L?1,L?)and 0 <y, T y u —a.c., where y, are simple functions. Then, by (6),
Iynllpoe, < cllynlly = cllylly
and so the Fatou property of L ©%1 implies y € L¥©¢1 and Iyllpoe, < cllyllm.
The proof of (6) will be divided into four cases, depending on finiteness of b,
and b, .
Consider firstly the most important case b, = b, = %.Let0 <y € M(L?,L?)

be a simple function of the form y = ¥ ay xg, and such that [[y]|,, < % We will show
that for eacha > 1

PERACONE
Let a > 1 be arbitrary. For each a;, there exists b, = 0 such that

plarbr) = ¢ ©4 p1(ax) + ¢1(br).
This is, for x = X by xg,, there holds ¢ (xy) = ¢ ©, ¢1(x) + ¢,(¥). Note that from

definition of ¢ ©4 @, we have x(t) < a for each t € Q. Further, since b, = oo, there

exists t, > 0 such that || x,[,, < % for each A c Q with u(A4) < t,. Suppose u(Q) =

oo, Since (Q, X, u) is o —finite and atomless, we can divide Q into a sequence of pairwise
disjoint sets (4,,) with u(A4,,) = t, foreachn € Nand Q = U A,,. In the case of u(Q) <
oo the sequence (4,,) may be chosen finite and such that u(A4,) = § < t, foreachn =
1,...,N with Q = U 4,,.

In any case, for each 4,, we have
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1

lyza,l, < Whlleea,ll, <5 lxall,, <5

because u(A,) <t, and x(t) < a for t€ Q In consequence using inequality
¢, (x) < @(yx), we have for each A4,

1
oy (¥x4,) < Ip(yx24,) < |yxxa, |, < 5 (7)
Define now
n
Xy = z XX,
k=1

We claim that [, (xy,) < % for each n. It will be shown by induction. Forn = 1 it comes
from (7). Let n > 1 and suppose

1
(xn 1) <E

It follows
I<P1 (Xn) = I<P1 (xn_l) + I<P1 (xXAn) =1
thus [|x,[l,, < 1. Moreover, inequality

1

1
”yxn”<p = ”xn”<p1 E

together with ¢ (x) < @(yx) imply
1
I<p1 (xn) < I(p(yxn) < ”yxn”<p < E
It means we proved the claim and can proceed with the proof.
Clearly, x, T x u —a.c., thus from the Fatou property of L¥1 we obtain that x €
L®t and

<1

Ixllyp, < Slrllpllxnllq)1 <

Finally, inequalities ¢ ©4 ¢, (¥) < @ (yx) and [lyx||, < z ||x||¢,1 < % give

lpo 0, ) < 1,(yx) < |lyxll,
Applying the Fatou Lemma we obtain

o 1
lpoe,(y) = f(p © 1 (y)du < lim mff ¢ Qa9:1(du <.

In consequence y € L¥O91 with || Yllpoe, < 1. This gives also constant for inclusion,
1.e.

=2

IVllpop, < 2[lyliu,
When y € M(L?%1, L?).
Let us consider the second case, this is b, = o and b, < co. Without loss of
generality we can assume that b, > 1. Let 0 <y € M (L%, L?) be a simple function

e 1 . : :
satisfying ||y|[y < T Notice that b, = o with b, < oo imply that b,g,, = o°.

Moreover, as before, there exists a simple function x such that 0 < x(t) < b,,, for each
t € Qand
pyx) =9 © p1(y) + ¢1(x)
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As before, we can find ¢, > 0 such that u(A) < t, implies || x4ll,, < 1.

Selecting the sequence (A,,) like previously, but with u(4,) < t, for each A,,
we obtain

b 1
||yxXAn||(p S Tq; ||XATL||(p1 S E
Define further
n
xn= z XX 4+

k=1
Then it may be proved by the same induction as before, that I, (x,) < % for each n.

Following respective steps from previous case we get
”y”<p9<p1 < 2b<p1 ”y”M
Let now b, b, < . We can assume that b, = b, = 1.
From Lemma (6.1.4) it follows that there exists a constant ¢ = 1 such that for
eachy € M(L%1,L?) we have
IVlleo < cllylly-
Let 0 <y e M(L?,L%) be a simple function and ||y]|y < 4—16. We have y(t) < i <

b(pi(pl' for almost every t € (, therefore ¢ © ¢, (y(t)) < co.

Consequently, we can choose a simple function x satisfying
p(yx) = ¢ © 9:1(y) + @1 (x).
Then x(t) < b, = 1 for each t € Q. Further, we can find t, > 0 so that inequality
lxally, <2
is fulfilled for each A with u(A) < t,, just because tli%l+ fo () = b, = 1. Choosing a

sequence (4,,) as in previous cases we get
1

< ! <
||yxXAn||(p - 4‘_C ||XAn||(p1 - E

Once again we can show by induction that for each x, = X}_; xXa, there holds
Iy, (xp) < % Therefore [[x,|[,, < 1 and, by the Fatou property of L%, [|x|[,, < 1.1t
follows
lyxll, <1
and by inequality ¢ © ¢,(y) < @(yx) we obtain
I(p@(pl(y) = I(p(yx) = ”yx”<p <L
In consequence
IYllpop, < 4cllylin

Finally, there left the trivial case of b, < o,b, = o to consider. However,

Lemma (6.1.4) with the embedding (5) give
LPOP1 = M(L%1, L?) = {0}

and the proof is finished.

Recall that given two B.f.s. X,Y over the same measure space, we say that X

factorizes Y when
XOMX,Y) =Y,
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Where

XOMX,Y)={z€l%z=xyforsomex € X,y € M(X,Y)}.
The idea of such factorization goes back to Lozanovskii, who proved that each B.fis.
factorizes L!. For more informations on factorization and its importance see [229,232]
and [239] which are devoted mainly to this subject.

Also in [232] one may find a discussion on factorization of Orlicz spaces (and
even more general Calderdn—Lozanovskii spaces). Having in hand our representation
M(L?1,L?) = L9O%1 we are able to complete this discussion by proving sufficient and
necessary conditions for factorization in terms of respective Young functions.

We say that equivalence @71, =~ ¢~ holds for all [large] arguments when there are
constants ¢, C > 0 such that
cop™ (W) < o7 Wz (W) < Co~t(w)
for all u = 0 [for some uy > 0 and all u > uy].
Theorem (6.1.8)[226]: Let ¢, ¢, be two Young functions. Then L% factorizes L%, i.e.
L?1 O M(L?1,L%) = L? if and only if
(i) equivalence p71(p © @)1 ~ @1 is satisfied for all arguments when u(Q) =
00,
(i) equivalence @7'(p © ¢;)™" = ¢~ " is satisfied for large arguments when
n(Q) < oo,
Proof. In the light of Theorem (6.1.7)
L9 O M(L%,L®) = L% © LPOP1
Therefore L® factorizes L? if and only if LY1 O L?©%: = L?, The latter, however, is
equivalent with @71 (@ © ¢,)™1 ~ ¢~ for all, or for large arguments, depending on
(), as proved in Corollary 6 from [232].
Section (6.2): Analytic Polynomials in Abstract Hardy Spaces:

For 0 <p < oo, let LP:= LP(T) be the Lebesgue space on the unit circle

T:{z € C: |z| = 1} in the complex plane C. For f € L, let
s

fn) = % ff(eie)e_mede, n ez,

be the sequence of the Fourier coefficients of f. Let X be a Banach space continuously
embedded in L. Following [264, p. 877], we will consider the abstract Hardy space
H[X] built upon the space X, which is defined by

H[X]:= {f €EX:f(n) =0 forall n< 0}.
It is clear that if 1 < p < oo, then H[LP] is the classical Hardy space HP.

A function of the form
n

q(t) = z apth, teT, ay, .., a, €C,
k=0
is said to be an analytic polynomial on T. The set of all analytic polynomials is denoted
by P,. It is well known that the set P, is dense in HP whenever 1 < p < o (see, e.g.,
[254, Chap. 111, Corollary 1.7(a)]). The density of the set P4 in the abstract Hardy spaces
H[X] was studied by [259] for the case when X is a so-called Banach function space.
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We recall the definition of a Banach function space. We equip T with the
normalized Lebesgue measure dm(t) = |dt|/(2m). Let L° be the space of all
measurable complex-valued functions on T. As usual, we do not distinguish functions
which are equal almost everywhere (for the latter we use the standard abbreviation a.e.).
Let L% be the subset of functions in L° whose values lie in [0, oo]. The characteristic
function of a measurable set E € T is denoted by y.

Following [252, Chap. 1, Definition 1.1], a mapping p: L% — [0, 0] is called a
Banach function norm if, for all functions f, g, f,, € L% with n € N, for all constants
a = 0, and for all measurable subsets E of T, the following properties hold:

ADp(f) =0 f=0a.e.,plaf) =ap(f),p(f +g) < p(f) + pg),

(42)0 < g < f a.e.= p(g) < p(f) (the lattice property),

(A3)0< £, T fa.e.= p(f,) T p(f) (the Fatou property),

(A4)m(E) < o0 = p(yE) < oo,

(45) f F(Odm(©) < Cop(f)
E

with a constant C; € (0, ) that may depend on E and p, but is independent of f. When
functions differing only on a set of measure zero are identified, the set X of all functions
f € L° for which p(|f]) < o is called a Banach function space. For each f € X, the
norm of f is defined by ||f||x = p(f]).

The set X under the natural linear space operations and under this norm becomes
a Banach space (see [252, Chap. 1, Theorems 1.4 and 1.6]). If p is a Banach function
norm, its associate norm p’ is defined on L% by

p'(g) = SUPU f®g®)dm(t):f € L%, p(f) < 1;,g € LS.
T

It is a Banach function norm itself [252, Chap. 1, Theorem 2.2]. The Banach function
space X' determined by the Banach function norm p’ is called the associate space (Kothe
dual) of X. The associate space X' can be viewed as a subspace of the (Banach) dual
space X ™.

Recall that L' is a commutative Banach algebra under the convolution
multiplication defined for f,g € L* by

1 . .
(f () =5 f F(e0-9)g(e*)dg, ¢ €T.

Forn € N, let
2
. - k| \ 1 [sin™F g .
E (619) — z 1— elek — 2 ) el@ €T,
n n+1 n+1 .0
k=—n sin >

be the n —th Fejer kernel. For f € L', the n —th Fejer mean of f is defined as the
convolution f * E,.
Given f € L1, the Hardy-Littlewood maximal function is defined by
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1
(Mf)(D): sup
where the supremum is taken over all arcs I € T containing ¢ € T. The operator f +—
Mf is called the Hardy-Littlewood maximal operator.
Theorem (6.2.1)[251]: (|259, Theorem 3.3]). Suppose X is a separable Banach
function space on T. If the Hardy-Littlewood maximal operator is bounded on the
associate space X', then for every f € X,

lim |If « F, = flix = 0. (8)
It is well known that for f € L! one has

ﬁﬂﬂ@ﬂﬂiem
1

. = kl\ o,
(f % Fn)(ele) — kz f(k) (1 _ %) el@k’ 6,19 eET
=-n

(see, e.g., [260, Chap. I]). This implies that if f € H[X] ¢ H[L'] = HY, then f * E, €
P4. Combining this observation with Theorem (6.2.1), we arrive at the following.
Corollary (6.2.1)[251]:: (|8, Theorem 1.2]). Suppose X is a separable Banach function
space on T. If the Hardy-Littlewood maximal operator M is bounded on its associate
space X', then the set of analytic polynomials P, is dense in the abstract Hardy space
H[X] built upon the space X.

Note that if a Banach function space X is, in addition, rearrangement invariant,
then the requirement of the boundedness of M on the space X’
can be omitted in Corollary (6.2.1) (see [259, Theorem 1.1] or [262, Lemma 1.3(c)]).

Lesnik [261] conjectured that the same fact should be true for arbitrary, not
necessarily rearrangement-invariant, Banach function spaces.

We first observe that Theorem (6.2.1) does not hold for arbitrary separable
Banach function spaces. For a function K € L1, consider the convolution operator Cy
with kernel K defined by

Cxf =f*K, fe€L.

It follows from [263, Theorem 2] that there exists a continuous function

p: T[1, ) such that the sequence of the convolution operators Cf is not uniformly

bounded in the variable Lebesgue space LPO) defined as the set of all f € L° such that
[1r@POam@ <.
T

It is well known (see, e.g., [255, Propostion 2.12, Theorem 2.78, Section 2.10.3]) that if

p: T - [1,) is continuous, then PO isa separable Banach function space equipped
with the norm

T
Since the norms of the convolution operators Cr may not be uniformly bounded on

p(t)
— t
”f”Lp(') = lnf{A > 0: f( )

dm(t) < 1}

LPO, the standard argument, based on the uniform boundedness principle, leads us to
the following.
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Theorem (6.2.3)[251]:: There exist a separable Banach function space X on T and a
function f € X such that (8) is not fullled.

We show that the separable Banach function space in Theorem (6.2.3) can be
chosen as a weighted L space, that is, the techniques of variable Lebesgue spaces can
be omitted.

In spite of the observation made in Theorem (6.2.3) and Theorem (6.2.7), we
show that the requirement of the boundedness of the Hardy-Littlewood maximal
operator M on the associate space X' of a separable Banach function space X in
Corollary (6.2.1) can be omitted. Thus, Lesnik's conjecture [261] is, indeed, true.

We prove that a convolution operator Cx with a nonnegative symmetric kernel
K € L' is bounded on a Banach function space X if and only if it is bounded on its
associate space X'. Further, we consider a special weight w € L! such that w™1 € L®.
Then X = L'(w) is a separable Banach function space with the associate space X' =
L*(w™1). We show that the sequence of convolution operators {C Kn} with nonnegative
bounded symmetric kerels K,,, satisfying ||K,||;»+ =1 and a natural localization
property, is not uniformly bounded on X' = L®°(w™1), and therefore, on its associate
space X" = X = L'*(w). Applying this result to the sequence of the Fejer kernels {F,},
we prove Theorem (6.2.7) with the aid of the uniform boundedness principle.

We recall that the separability of a Banach function space X is equivalent to X ™ =
X'. Further, we collect some facts on the identification of the Hardy spaces HP on the
unit circle and the Hardy spaces HP (ID) of analytic functions in the unit disk ID. Finally,
we give a proof of Theorem (6.2.11) based on an application of the Hahn-Banach
theorem, a corollary of the Smirnov theorem and properties of the identification of H!
with H1(D).

The Banach space of all bounded linear operators on a Banach space E is denoted
by B(E).

Lemma (6.2.4)[251]: Let X be a Banach function space on T and K € L! be a
nonnegative function such that K (eie) =K (e_ie) for almost all 8 € [—m, m].

Then the convolution operator Ck is bounded on the Banach function X if and

only if it is bounded on its associate space X'. In that case

”CK”B(X’) = ”CK”B(X)- €))
Proof. Suppose Cg is bounded on X'. Fix f € X\{0}. Since K = 0, we have |f * K| <
|f| * K. According to the Lorentz-Luxemburg theorem (see, e.g., [252, Chap. 1,
Theorem 2.7]), X = X"" with equality of the norms. Hence

If * Kllx < IIf = Kllx = Nf1*Kllx
= sup U(lfl *K)®)]g©ldm(t): g € X', llglly < 1¢.
Then for every € > 0 there exists a f:inction h € X' suchthat h = 0, ||h||x» < 1, and
If *Kllx <1+ f(lfl * K)()h()dm(t) (10)

T
Taking into account that K (e'®) = K(e™?) for almost all 8 € R, by Fubini's theorem,
we get
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f (If] * K) (DD dm(t) = f (h * YO IF©ldm(D).
T T

From this identity, Holder's inequality for X (see, e.g., [252, Chap. 1, Theorem 2.4]),
and the boundedness of Cx on X', we obtain

f(lfl * K)(©Oh(®)dm(e) < [Iflixllh Kllx < IfllxllCxllpexy- (11)
T

It follows from (10)-(11) that

If * Kllx
ICkllgey = sup ———— <A+ €)||CK||B(X’)
rexfzo  fllx
for every € > 0, which implies the boundedness of Cx on X and the inequality
”CK”B(X) < ”CK“B(X’) (12)

If Ck is bounded on X, then using the Lorentz-Luxemburg theorem and (12) with X’ in
place of X, we obtain that Cy is bounded on X’ and

”CK”B(X’) = ”CK”B(X”) = ”CK”B(X) (13)
Combining (12)-(13), we arrive at (9).
Lemma (6.2.5): Let

T
_ \/ﬁ,z—s|9|sz 1,mEN
w(e') = T " (14)
1, <l <=—,meN
am+1 O <gpm
Then the spaces
Iw)y={fel’:fwell}, L>wH)={fel’fwtel”}
are Banach function spaces on T with respect to the norms
Wy = Wfwlle, I llioq-1y = Ifw ™I,
and (L*(w)) = L®(w™'). Moreover, the space L' (w) is separable.
Proof. It is clear that w™! € L* and, since
Vs
1 .
[lw]| 1 =% fw(ele)de
OO_T[ (o]
1 1 1 1
= — — 15
Z (Zm 2m+1)+zm(2m—1 2m)<°°’ (15)
m=1 m=1

we also have w € L. Then it follows from [258, Lemma 2.5] that L' (w) and L* (w™1)

are Banach function spaces and (L* (w))’ = L®(w™1). Finally, the separability of the
space L1 (w) follows from [258, Proposition 2.6] and [252, Chap. 1, Corollary 5.6].
Theorem (6.2.6)[251]: Let {K,,} be a sequence of bounded functions K,,: T — C such
that

K,(e®) =0, K,(e®) = K,(e™®) a.e. on [-m,7], (16)
s
1 .
- K,(e®)do =1, (17)

—T1T
and
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lim sup K,(e?)=0 foreache > 0. (18)

N> e<lgsm
If w is the weight given by (14), then the convolution operators Cy_ are bounded on
L®(w™1) and on L' (w) for all n € N, however,

flléIN)”CKn”B(LOO(W_l)) = o0, (19)
supl|Cic, 511y = (20)
Proof. By (14)-(15), w € L' and w™1 € L®. Therefore, for every n € N,

[ e )£ ao

-1

1
€k f Iy < 5

L'(w)

< f 1 ()] ()6

< % K [l oo Wl 2 11 £ 11 2

= % Kl o Wl 2 llw = fw | 2
< Kl Wl w2
Hence

1 1
1Ctllp(12 ) < 2z MKl lWllisliw ™ llue, € N.

It follows from (16) and Lemmas (6.2.4)-(6.2.5) that the operators C_ are bounded on

L*(w™1) for all n € N. Moreover, (19) implies (20).
Let us prove (19). Consider the sequence

T
: Vmo sso o
U (e?) = m m-= m € N.

0, 6 € [—T[,T[\[%,Zm_l

Then it follows from (14) that ||vp, || o, -1) for allm € N.
Fix m € N. According to (17) and the localization property (18), there exists
n(m) € N such that

Y

0 (2m)?
. 1 . 1
f Kn(elg)de =37 f Kn(ele)de > 3 for all n = n(m).
~(2m)? @m)?
Since K,, € L, for every n > n(m), there exists &,, > 0 such that
-6,
i0 1
K,(e®)do > 2
s
~(2m)?
Therefore, for almost all ¥ € [— — Op ;n] one gets
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(C, vm)(ew)—\é—_ | Kale®-)ao

A
\/_Zm (2m)2
m
> — f Kn( i le)dg
s
s
% s
9=2m
Vm .
=— K, (e™)dn
s
9— s _ s
2m (2m)?
-8,
Vm . Vm
> — n >
> 2" [T Kn(eM)dn = 2 (21)
- (2m)?
In view of (14), W(eie) =1 foralld € (max {% — é}l,ﬁ} 2” ) Hence, it follows

from (21) that

m
||CKnvm||L°°(W_1) > e forall n = n(m),

while ”Um”L°°(w‘1) = 1. SO,

Vm
||CKn”B(L°°(w-1)) > - forall n = n(m)

Since m € N is arbitrary, the latter inequality immediately implies (19).

Theorem (6.2.7)[252]: (Main result 1). There exist a nonnegative function w € L

such that w™1 € L* and a function f in the separable Banach function space
X=L1Ww)={fel’fwell}

such that (8) is not fullled.

Proof. Let X = L' (w), where w is the weight given by (14). By Lemma (6.2.5), X is a

separable Banach function space. It is well known (and not difficult to check) that the

sequence {F,} of the Fejer kernels is a sequence of bounded functions satisfying (16)-

(18). By Theorem (6.2.6), the operators Cy, are bounded on X for every n € N.

Assume that (8) is fullled for all f € X. Then, for all f € X, the sequence {C £ S }
is bounded in X. Therefore, by the uniform boundedness principle, the sequence

{” Cr, ||B (X)} is bounded, but this contradicts (20).

Thus, there exists a function f € X such that (8) does not hold.

Combining [252, Chap. I, Corollaries 4.3 and 5.6] and observing that the measure
dm is separable (for the definition of a separable measure, see, e.g., [252,p. 27] or [257,
Chap. I, Section 6.10]), we arrive at the following.
Theorem (6.2.8)[251]: Let X be a Banach function space on T. Then X is separable if
and only if its dual space X* is isometrically isomorphic to the associate space X'.
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Let D denote the open unit disk in the complex plane C. Recall that a function F
analytic in D is said to belong to the Hardy space HP(D),0 < p < oo, if the integral

mean
1/p

Vs
1 .
M,(r,F) = o f|F(relg)|pd9 , 0<p<o
-

My (r,F) = max |F(rei9)|,

—n<O<m

remains bounded asr —» 1. If F € H? (D), 0 < p < oo, then the nontangential

exists for almost all 6 € [—m, ] (see, e.g., [256, Theorem 2.2]) and the boundary
function f = f(eie) belongs to LP.

The following lemma is an immediate consequence of the Smirnov theorem (see,
e.g., [256, Theorem 2.11]).
Lemma (6.2.9)[251]: If F € H?(ID) for some p € (0,1) and its boundary function f
belongs to L, then F € H1(D).

Recall that if f € H! then its analytic extension F into D, given by the Poisson
integral

T
) 1 .
F(rele)=ﬁ fP(r,Q—(p)f(e“p)d(p, 0<r<1,-m<0<m,
-

where
1—172
P(r.0) = 1—2rcosf +r?’
is the Poisson kernel, belongs to H1(ID) and the boundary function of F coincides with
fae.onT (see,e.g., [256, Theorem 3.1]).

It is important to note that the Taylor coefficients of F € HP (D) coincide with
the Fourier coefficients of its boundary function f € LP. One has the following.
Theorem (6.2.10)[251]: (][256, Theorem 3.4]). Let F(z) = Y7_,a,z" belong to
H'(D) and let {f (n)} be the sequence of the Fourier coefficients of its boundary
function f € L'. Then f(n) = a,, foralln > 0 and f(n) = 0 forn < 0.

Theorem (6.2.11)[251]: (Main result 2). If X is a separable Banach function space on
T, then the set of analytic polynomials P, is dense in the abstract Hardy space H[X]
built upon the space X.

Proof. Suppose P, is not dense in H[X]. Take any function f € H[X] that does not
belong to the closure of P4 with respect to the norm of X. Since X is separable, it follows
from Theorem (6.2.8) that X* is isometrically isomorphic to X'. Then, by a corollary of
the Hahn-Banach theorem (see, e.g., [253, Chap. 7, Theorem 4.1]), there exists a
function g € X' < L! such that

0<r<1, —-m<06<nmn

ff(eie)g(eig)de %0 (22)
and -

194



Vs

fp(eie)g(eie)de # 0 forallp € P,.
-
In particular, if p(e?) = e withn = 0,1,2, ..., then
g(—n) =0 foralln =0,1,2, ... (23)
Hence g € H[X'] © H!. For functions f € H[X] c H' and g € H[X'] < HY, let F and
G denote their analytic extensions to the unit disk D by means of their Poisson integrals.
Then F,G € HX(D). It follows from (23) and Theorem (6.2.10) that G(0) = 0. Since
F,G € HY(ID), by Holder's inequality, FG € H*/?(ID). On the other hand, since f € X
and g € X', it follows from Holder's inequality for Banach function spaces (see [252,
Chap. 1, Theorem 2.4]) that fg € L. Then it follows from Lemma (6.2.9) that FG €
HY(D).
Since (FG)(0) = F(0)G(0) = 0, applying Theorem (6.2.10) to FG, we obtain
fg(0) = 0, that s,

f £(e9)g(e®)do = 0

which contradicts (22).
Section (6.3): A pair of Abstract Hardy Spaces:

For 1 < p < oo, let LP: = LP(T) represent the standard Lebesgue space on the
unit circle Tin the complex plane C with respect to the normalized Lebesgue measure
dm(t) = |dt|/(2m). For f € L1, let

f(n):=— ff(e“p)e ¢ de,n € 7,

be the sequence of the Fourier coefflclents of f. For 1 < p < oo, the classical Hardy
spaces HP are defined by

HP:={f € LP: f(n) = 0 foralln < 0}.
Consider the operators S and P, defined for a function f € L* and an a.e. point t € T by

1 S
$N@:==pov. [ L2 ar, oy 0= LD

T

respectively, where the integral is understood in the Cauchy principal value sense. The
operator S is called the Cauchy singular integral operator. It is well known that the
operators P and S are bounded on LP if p € (1, ) and are not bounded on L? if p €
{1,0} (see, e.g., [270, Section 4.4] or [271, Section 1.42]). Note that using the
elementary equality

(24)

ei@ 1 —
m=5(1+lcot
one can write for f € [* and 9 € [ 7T, 7],

, 1 6\ ,io
(SH(e") =2p-v fgee )40 = F0) +iCH(),

-1

where the operator C, called the Hilbert transform, is defined for f € L! by

) ,0,9 € [—m, ],
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€cr(e?):= %p. V. ff(eie)cotﬁ ; o de,9 € [—m,m]. (25)

Hence the definition of Pf for f € L! in terms of the Cauchy singular integral operator
given by the second equality in (24) is equivalent to the following definition in terms of
the Hilbert transform and the zeroth Fourier coefficient of f (cf. [278, p.104] and [271,
Section 1.43]):

1 1.
Pfi=5(f +iCH +5f(0). (26)
If f € L! is such that Pf € L, then
Pf(n) = f(n) forn > 0,Pf(n) = 0 forn < 0. (1.4)

Since we are not able to provide a precise reference to this well known fact, we will give
its proof. Note that definitions (24) can be extended to more general Jordan curves in
place of T (see, e.g., [270] and also [281,282,286]), while definitions (25) and (26) are
used only in the case of the unit circle. If 1 < p < oo, then the operator P projects L?
onto HP. In view of this fact, the operator P is usually called the Riesz projection.

For a € L, the Toeplitz operator T, with symbol aon HP,1 < p < oo, is defined
by

T.f = P(af),f € HP.

The theory of Toeplitz operators has its origins in Otto Toeplitz [303]. Brown and
Halmos [272, Theorem4] proved that an operator on H? is a Toeplitz operator if and
only if its matrix with respect to the standard basis is a Toeplitz matrix, that is, an infinite

matrix of the form (alj_k);"’k=0 (see also [298, Part B, Theorem 4.1.4] and [300,

Theorem 1.8]). An analogue of this result is true for Toeplitz operators acting on
HP,1 < p < o (see [271, Theorem 2.7]). Tolokonnikov [304] was the first to study
Toeplitz operators acting between different Hardy spaces HP and H9. In particular, [304,
Theorem 4] contains a description of all symbols generating bounded Toeplitz operators
from HP to H? for 0 < p,q < oo.

Let X be a Banach function space. For the moment, we observe only that it is
continuously embedded in L. Following [305, p.877], we consider the abstract Hardy
space H[X] built upon the space X, which is defined by

H[X]:= {f €X:f(n) =0 forall n < 0}.
It is clear that if 1 < p < oo, then H[L?] is the classical Hardy space HP.
Lemma (6.3.1)[265]: If the operator P defined by (24) is bounded on a Banach function
space X over the unit circle T, then its image P(X) coincides with the abstract Hardy
space H[X] built upon X.

Since X c L1, this lemma follows immediately from formula (27) and the
uniqueness theorem for Fourier series (see, e.g., [289, Chap.1, Theorem 2.7]).

Thus, the operator P projects the Banach function space X onto the abstract Hardy
space H[X]. We will call P the Riesz projection as in the case of the spaces LP with 1 <
p < oo,

The Brown—Halmos theorem was extended by the first to abstract Hardy spaces
H[X] built upon reflexive rearrangement-invariant Banach function spaces X with non-
trivial Boyd indices [283, Theorem 4.5]. Under this assumption, the Riesz projection P
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is bounded on X. Further, it was shown in [284, Theorem 1] that the Brown—Halmos
theorem remains true for abstract Hardy spaces built upon arbitrarily, not necessarily
rearrangement-invariant, reflexive Banach function spaces X under the assumption that
the Riesz projection is bounded on X. In particular, it is true for the weighted Hardy
spaces HP (w), 1 < p < oo, with Muckenhoupt weights w € A, (T) [284, Corollary 9].

The space of all bounded linear operators from a Banach space E' to a Banach
space F is denoted by B(E, F). We adopt the standard abbreviation B(E) for B(E, E).
We will write E = F if E and F coincide as sets and there are constants ¢, c, € (0, )
such that ¢, || fllz < lIfllF < ;lIfl|gforall f € E,and E = F if E and F coincide as sets
and ||fllg = lIfll forall f € E.

We study Toeplitz operators acting between abstract Hardy spaces H[X] and
H[Y] built upon different Banach function spaces X and Y over the unit circle T. We
extend further the results by Lesnik [293], who additionally assumed that the Banach
function spaces X and Y are rearrangement-invariant. Let L° be the space of all
measurable complex-valued functions on T. Following [295], let M(X,Y) denote the
space of point wise multipliers from X to Y defined by M(X,Y):={f € [%: fg €
Y for all g € X} and equipped with the natural operator norm

ooy = 1Ml ) = Sup lfglly.
X<

Here M stands for the operator of multiplication by f* defined by (Mf 9)®) =f)g®)
fort € T.

In particular, M(X,X) = L*. Note that it may happen that the space M(X,Y)
contains only the zero function. For instance, if 1 < p < q < o, then M(L?, L?) = {0}.
The continuous embedding L < M(X,Y) holds if and only if X c Y continuously. For
example, if 1 <q <p < oo, then LP c LT and M(LP,L?) = L", where 1/r = 1/q —
1/p. For these and many other properties and examples, we refer to [291,294,295,297].

If the Riesz projection P is bounded on the space Y, then one can define the
Toeplitz operator T, with symbol a € M(X,Y) by

Tof = P(af),f € HIX]
(cf. [293]). It follows from Lemma (6.3.1) that T,f € H[Y] and, clearly,
I Tallpaixy,mrvn < 1Pl llallmex,y)-
Let X' be the associate space of X. For f € X and g € X', put

(f.9%= [ F©g@dmo.
T

Forn € Z and 7 € T, put y,,(7) := t". Then the Fourier coefficients of a function f €
! can be expressed by f(n) = (f, x,,) for n € Z. With this notation, the main result
reads as follows.
Theorem (6.3.2)[265]: (a la Brown—Halmos). Let X, Y be two Banach function spaces
over the unit circle T. Suppose that X is separable and the Riesz projection P is bounded
on the space Y. If A € B(H[X], H[Y]) and there exists a sequence {a, },ez of complex
numbers such that

(Axj, xx) = ax_jforall j, k =0, (28)
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then there is a function a € M(X,Y) such that A =T, and a(n) = a,, for all n € Z.
Moreover,

lallmxyy < ITallsxaryn < IPIswyllalley- (29)
Under the additional assumption that the Banach function spaces X and Yare
rearrangement-invariant, this result was recently obtained by Les$nik [293, Theorem
4.2].

The above theorem and the fact that M(X,X) = L” (see [295, Theorem 1])
immediately imply the following.

Corollary (6.3.3)[265]: Let X be a separable Banach function spaces over the unit
circle T and let the Riesz projection P be bounded on X. If A € B(H[X]) and there is a
sequence {a, }nez of complex numbers satisfying (28), then there exists a function a €
L” such that A = T, and d(n) = a,, for all n € Z. Moreover,

lalli < Tallzrxny < IPllsellall .

Note that Corollary (6.3.3) is also new. Under the additional assumption that the Banach
function space X is reflexive, it was proved by [284, Theorem 1]. On the other hand,
under the additional hypothesis that X is rearrangement-invariant, it is established in
[293, Corollary 4.4].

We collect preliminary facts on Banach function spaces X, including results on
the density of the set of all trigonometric polynomials P in X and the density of the set
of all analytic polynomials P4 in the abstract Hardy space H[X] built upon X. Further,
we show that if each function in the closure (X'),; of all simple functions in the associate
space X' has absolutely continuous norm, then the norm of any function f € X can be
expressed as follows:

Ifllx = sup{l{f,p):p € P, llpllx < 1}. (30)

We conclude several facts from complex analysis on the Hilbert transform and
inner functions. In particular, we recall a result by Qiu [301, Lemma 5.1] (see also [273,
Theorem 7.2]) saying that, for every measurable set E € T and an arc y < T of the same
measure, there exists an inner function u such that u~1(y) and E coincide almost
everywhere.

We start the consequences of the boundedness of the operator P defined by (24)
with a discussion of operators of weak type. It is easy to see that if the Riesz projection
P is bounded on X, then the Hilbert transform C is of weak types (L, X) and (L™, X").
Using the existence of the inner function umentioned above and properties of the Hilbert
transform, we show that if C is of weak types (L, X) and (L, X"), then each function
in the closures X, and (X'), of the simple functions in X and X', respectively, has
absolutely continuous norm. Thus, for every f € X, formula (30) holds under the only
assumption that P € B(X).

We present a proof of Theorem (6.3.2). Armed with the density of the set of
analytic polynomials P, in the abstract Hardy space H [X] built upon a separable Banach
function space X and formula (30) with Y such that P € B(Y) in place of X, we can
adapt the proofs given in [271, Theorem 2.7] (for X =Y = LP with 1 <p < o) and
in [293, Theorem 4.2] (for the case of separable rearrangement-invariant spaces X C Y
such that Y has non-trivial Boyd indices) to our setting.

198



We specify the result of Theorem (6.3.2) to the case of variable Lebesgue spaces
(also known as Nakano spaces) X = LPO and Y = L3O, 1t is known that if 1 /q(t) =
1/p(t) + 1/r(t) fort € T, then M(Lp('), Lq(')) = L™ and that the Riesz projection P
is bounded on LI®) if the variable exponent q is sufficiently smooth and bounded away
from 1 and oo. Since the spaces LPO) and L0 are not rearrangement-invariant, in
general, the main result cannot be obtained from [293, Theorem 4.2].

We apply Corollary (6.3.3) to the case of Lorentz spaces LP1(w),1 <p <
©,1 < q < o, with Muckenhoupt weights w € A,(T). Under these assumptions,
LP9(w) is a separable Banach function space and the Riesz projection P is bounded on
LP9(w). The space LP'1(w) is not reflexive and not rearrangement-invariant. Hence the
earlier results of [284, Theorem 1] and [293, Corollary 4.4] are not applicable to the
space LP'1(w), while Corollary (6.3.3) is.

Let L% be the subset of functions in L° whose values lie in [0,o0]. The
characteristic (indicator) function of a measurable set E € T is denoted by .

Following [266, Chap.1, Definition 1.1], a mapping p: L% — [0, o] is called a
Banach function norm if, for all functions f, g, f, € L% with n € N, for all constants
a = 0, and for all measurable subsets E of T, the following properties hold:

ADp(f) =0 f=0a.e.,plaf) =ap(f),p(f +g) < p(f) + p(9),

(A2) 0 < g < f a.e.= p(g) < p(f)(the lattice property),

(A3)0< f,, T fa.e.= p(f,) T p(f)(the Fatou property),
(A4)m(E) < oo = p(lg) < oo,

(45) f £ < Cep(f)
E

with a constant C; € (0, ) that may depend on E and p, but is independent of f. When
functions differing only on a set of measure zero are identified, the set X of all functions
f € L° for which p(|f]) < oo is called a Banach function space. For each f € X, the
norm of f is defined by ||f|lx:= p(|f]). The set X under the natural linear space
operations and under this norm becomes a Banach space (see [266, Chap.1, Theorems
1.4 and 1.6]). If p is a Banach function norm, its associate norm p’ is defined on LS by

p'(g):= SUPU f®g®)dm(t):f € L%, p(f) < 1;,g € LS.
T

It is a Banach function norm itself [266, Chap.1, Theorem 2.2]. The Banach function
space X' determined by the Banach function norm p’ is called the associate space (K6the
dual) of X. The associate space X' can be viewed as a subspace of the (Banach) dual
space X ™.

Forn € Z,:={0,1,2,...}, a function of the form }}}}__, a; x), where a;, € C for
all k € {—n,...,n}, is called a trigonometric polynomial of order n. The set of all
trigonometric polynomials is denoted by P. Further, a function of the form X.7_, ax xx
with @, € C for k € {0,...,n} is called an analytic polynomial of order n. The set of all
analytic polynomials is denoted by P,.

Following [266, Chap.1, Definition 3.1], a function f in a Banach function space
X i1s said to have absolutely continuous norm in X if || fL,. ||X — 0 for every sequence
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{¥n}nen of measurable sets such that fI, — 0 almost everywhere as n — oo. The set of

all functions of absolutely continuous norm in X is denoted by X,. If X, = X, then one
says that X has absolutely continuous norm. Let S, be the set of all simple functions on
T. Following [266, Chap.1, Definition 3.9], let X}, denote the closure of S, in the norm
of X.

Lemma (6.3.4)[265]: Let X be a Banach function space over the unit circle T. If X, =
X, then the set of trigonometric polynomials P is dense in X,

Proof. The proof is analogous to the proof of [285, Lemma 2.2.1]. Assume that P is not
dense in X},. Then, by a corollary of the Hahn—Banach theorem (see, e.g., [267, Chap.7,
Theorem 4.2]), there exists a nonzero functional A € (X},)* such that A(p) = 0 for all
p € P. It follows from [266, Chap.1, Theorems 3.10 and 4.1] that if X, = X}, then
(Xp)* = X'. Hence there exists a nonzero function h € X' < L! such that

fp(t)h(t)dm(t) =0 forall p € P.

T
Taking p(t) = t™ for n € Z, we obtain that all Fourier coefficients of h € L' vanish,
which implies that h = 0 a.e. on T by the uniqueness theorem of the Fourier series (see,
e.g., [289, Chap. I, Theorem 2.7]). This contradiction proves that P is dense in Xj,.

Combining the above lemma with [266, Chap.1, Corollary 5.6 and Theorem
3.11], we arrive at the following well known result.

Corollary (6.3.5)[265]: A Banach function space X over the unit circle Tis separable if
and only if the set of trigonometric polynomials P is dense in X.

The analytic counterpart of the above result had a hard birth. First, observe that
under the additional assumption that the Riesz projection P is bounded on X, the density
of the set of analytic polynomials P, in the abstract Hardy space H[X] trivially follows
from (27), Lemma (6.3.1), and Corollary (6.3.5) (see [284, Lemma 4]). Le$nik [292]
conjectured that the boundedness of P is superfluous here and P, must be dense in the
abstract Hardy space H[X] under the hypothesis that X is merely separable.

If X is a separable rearrangement-invariant Banach function space, then

If *E, — fllxy = 0foreveryf € Xasn — oo, (31)
Where {E,} is the sequence of the Fejér kernels on the unit circle T. The property in (31)
implies the density of P, in H[X] (see, e.g., [293, Lemma 3.1(c)] or [285, Theorem
1.0.1]). If X is an arbitrary separable Banach function space, then (31) is true under the
assumption that the Hardy—Littlewood maximal operator M is bounded on its associate
space X' [285, Theorem 3.2.1], whence Py is dense in H[X] (see [285, Theorem 1.0.2]).
Finally, in [287, Theorem 1.4] we constructed a separable weighted L' space X such
that (31) does not hold. On the other hand, we proved Le$nik’s conjecture.
Lemma (6.3.6)[265]: ([287, Theorem 1.5]). If X is a separable Banach function space
over the unit circle T, then the set of analytic polynomials P, is dense in the abstract
Hardy space H [X] built upon the space X.

Let X be a Banach function space over the unit circle T and X' be its associate
space. Then for every f € X and h € X', one has the following well known formulae:

Ifllx = sup{l{f,.g): g € X', llgllx < 1}, (32)
Ifllx = sup{l{f,s): g € So, lIsllx < 13, (33)
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Al = supf{l{h, s)|: g € So, lIsllx < 1}. (34)
Equality (32) follows from [266, Chap.1, Theorem 2.7 and Lemma 2.8]. Equality (33)
can be proved by a literal repetition of the proof of [288, Lemma 2.10]. Equality (34) is
obtained by applying formula (33) to h € X' and recalling that X = X"’ in view of the
Lorentz—Luxemburg theorem (see [266, Chap.1, Theorem 2.7]).
Lemma (6.3.7)[265]: Let X be a Banach function space over the unit circle T. If
(X")q = (X")p, then for every f € X,

Ifllx = sup{l{f,p): p € P, llpllx < 1}. (35)
Proof. Since P c X', equality (32) immediately implies that
Ifllx = sup{l{f,p): p € P, Ipllx < 1}. (36)

Take any g € (X'), such that 0 < |[|g|ly» < 1. Since (X'), = (X"),, it follows from
Lemma (6.3.4) that there is a sequence g,, € P\{0} such that ||g,, — gllxy* = 0 asn —
oo. Forn € N, put pp: = (llgllx'/llgnllx") g, € P. Then, arguing as in [284, Lemma 5],
one can show that

f, g = lim [{f, pu)| < supl{f, pn)| < sup{l{f,p)|:p € P, lIplly < 1}.

neN
This inequality and equality (32) imply that
Ifllx < sup{l{f.p}):p € P, lIplly < 1}. (37)
Combining inequalities (36) and (37), we arrive at equality (35).

Note that Le$nik proved formula (35) for arbitrary rearrangement-invariant
Banach function spaces X (see [293, Lemma 3.2]). His proof relies on the interpolation
theorem of Calderon (see [266, Chap.3, Theorem 2.2]), which allows one to prove that
for f € X', the sequence p,, = f * E, € P satisfies ||p,|lx’ < ||f|lx’ foralln € N. In the
setting of arbitrary Banach function spaces, the tools based on interpolation are not
available, but one can prove (35) for translation-invariant Banach function spaces and
their weighted generalizations with positive continuous weights (cf. [288, Corollary
2.13]). We show that if the Riesz projection P is bounded on a Banach function space
X, then (X"), = (X'),, whence formula (35) holds.

Let D denote the open unit disk in the complex plane C. Recall that a function F

analytic in D is said to belong to the Hardy space H? (D),0 < p < oo, if
1/p

Vs
1 9\ |P
IF ey = sup | =— f|F(rel )| do < 0,0 < p < oo, |[F|lgem:
osr<i\ 2T
—TT

= sup|F (z)| < .
zeD

Recall that an inner function is a function u € H*(ID) such that |u(ei9)| = 1 for a.e.
0 € [—m, ).

The following important fact was observed by Nordgren (see corollary to [299,
Lemma 1] and also [274, Remark 9.4.6]).
Lemma (6.3.8)[265]: If u is an inner function such that u(0) = 0, then u is a measure-
preserving transformation from T onto itself.
Proof. We include a sketch of the proof for the readers’ convenience. Let G be an
arbitrary measurable subset of T and let h be the bounded harmonic function on D with
the boundary values equal to I;. Then h o u is the bounded harmonic function on D
with the boundary values equal to I,,-1(G), and
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1 [,
m(G) = o fHG(ele)dQ = h(0) = h(u(0))

s

1

= Iy-1i6)(e%)do = m(u™1(6)),

-1

which completes the proof.

The next result is one of the most important ingredients in our proof. It appeared
in [301, Lemma 5.1] and [273, Theorem 7.2].
Theorem (6.3.9)[265]: If E c T is a measurable set and y € T is an arc such that
m(E) = m(y), then there exists an inner function u satisfying u(0) = 0 and such that
the sets u™1(y) and E are equal almost everywhere.

For9 € [—m,m] and r € [0, 1), let

1—1r? 2rsind
B @)= 1—2rcosd +r?’ Qr(@): = 1—2rcos? +r?

be the Poisson kernel and the conjugate Poisson kernel, respectively.
Theorem (6.3.10)[265]: Let 1 <p < oo.

(a) If f € L? is a real-valued function, then the function defined by

Vs

u(re®) = % ff(eie)(Pr +iQ) —0)do,9 € [-m,m],r €[0,1), (38)

belongs to the Hardy space HP (D). Its nontangential boundary values u(e®) as z -
e’ exist fora.e. 9 € [—m, ] and
Re u(ew) = f(ew),lm u(ew) = (Cf)(ew) fora.e.9 € [-m, @], (39)

Where C is the Hilbert transform defined by (25).

(b) If u € HP(ID) and Imu(0) = 0, then there is a real-valued function f € LP
such that (38) holds.

This statement is well known (see, e.g., [291, Chap. I, Section D and Chap.V,
Section B.2°)).
Proof of formula (27). Since f € L', the Cauchy integral

1 T
2ni ) tT—2z
T
belongs to HP (D) for all 0 < p < 1 (see, e.g., [277, Theorem 3.5]). By Privalov’s

theorem (see, e.g., [279, Chap. X, §3, Theorem1]), the nontangential limit of F(z) as
z — e coincides with (Pf) (ew) for a.e. ¥ € [—m, ). Hence, taking into account that
Pf € L}, by Smirnov’s theorem (see, e.g., [279, Chap. IX, §4, Theorem 4] or [277,
Theorem 3.4]), F € H(ID). Then (27) follows from [277, Theorem 3.4] and the formula
for the Taylor coefficients of F:

T

1 1 [ f(@ 1 o R

EF(n)(O) = % Tn+1 dt = % ff(el‘p)e ing d(p = f(n),n = 0,
-1

dt,z € D,

D
Which completes the proof.
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Let X and Y be Banach function spaces over the unit circle. Following [268], we
say that a linear operator A: X — L° is of weak type (X, Y) if there exists a constant C >
0 such that forallA > 0 and f € X,

£l

IMgeriap@isall, < €=~ (40)
We denote the infimum of the constants C satisfying (40) by ||Allw x) and the set of
all operators of weak type (X,Y) by W(X,Y).
Lemma (6.3.11)[265]: Let X, Y be Banach function spaces over the unit circle T.If A €
B(X,Y),then A € W(X,Y) and [|Allwcx,y) < Allpxy)-
Proof. Forall 1 > 0, f € X and almost all T € T, one has

AH @I _ 1AH@
Iger:1an@en) = Igerjan@sn(0) fl =< fl =

It follows from the above inequality, the lattice property, and the boundedness of the
operator A that
Il ||x

igeriap@sall, < ”/1” < lAllsen =

which completes the proof.
For aset G ¢ [—m, ], we use the following notation
i 1,0 € G,
I5(e"):= {0,9 € [-m,7] \G.
Let |G| denote the Lebesgue measure of G.
Lemma (6.3.12)[265]: For every measurable set E c [—m, ] with 0 < |E| < @/2,
there exists a measurable set F < [—m, 7] with |F| = 7 such that

|(c1;)(e™)] > % log (\/E sin?)

Proof. Let £ := {ei" ET:Tt—|E|<n< T[}. By Theorem (6.3.9), there exists an inner
function V such that V(0) = 0 and

fora.e. Y €E. (41)

; ffora.e.V € E
i9 ]
V(e ) € {’]I‘\# fora.e.9 € [—m, m]\E. (42)
Consider the set
F:={0 € [-m,n]: Im V(e?) < 0}. (43)

Since VV(0) = 0 and V is inner, it defines a measure-preserving transformation of T onto
itself due to Lemma (6.3.8). Therefore,

|F| = |{19 € [-m, 7]: Im e? < 0}| = TI.
Forn € [—m, ] and r € [0, 1) let

w(re™): = —— f [0 (%) (P +1Q,) (n — Ddg.

By Theorem (6.3.10), the functlon w € H?(ID) has nontangential boundary values
W(el") as z — el fora.e.n € [—m, ] and
Rew(e) = Hf_n'o](ei") fora.e.n € [-m, 7], (44)
Imw(e™) = (CIj_, o) (e™) fora.e.n € [-m, 7], (45)
It is clear that forn € (m — |E|, ),
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0

. 1 - 1 1 +m
(CIi_q) (™) = > fcotn 5 ¢ d{ = Elogsin%—;logsinn o (46)

—TT
Since |E| € (0,1/2], we have foralln € (m — |E|, ),

1 E +m
log sing > log sinZ = —logV2 > log sin% > log sinn > (47)
It follows from (45)—(47) that for a.e. n € (mw — |E|, ),

. 1 E 1 E
[tm w(e™)| > E(—log\/i - logsin|2—|> = log (ﬁsin%)‘. (48)

Consider now the function W = w o V, which belongs to H?(ID) (see, e.g., [277, Section
2.6]). In view of (43) and (44), we have

: i
ReW(ew) _ {1 1.fIm V(e .19) <0,
01fImV(el )> 0
Then, by Theorem (6.3.10),
Im W(ew) = (CH}‘;)(ew) fora.e.9 € [—m, m]. (49)
If 9 € E, then it follows from (42) that V(ew) € £. In this case inequality (48) implies
that fora.e.9 € E,

[Im W (e®?)| = [ImwV (e®?)| > %llog (\/EsinE) (50)

= H}‘;(ew) fora.e. 9 € [—m, m].

2
Combining equality (49) and inequality (50), we arrive at (41).
Lemma (6.3.13)[265]: Let X be a Banach function space over the unit circle T. If the
Hilbert transform C is of weak type (L, X), then for every measurable set E c [—, 7]
with 0 < |E| < m/2, one has
Tl Cllw e x)

”HE”XS IEI ' (51)
log(ﬁsin7)|
Proof. Let
1 |E]|
A=—|l 2sin—||.
- og(x/_sm > )‘

By Lemma (6.3.12), there exists a measurable set F < [—m, ] with |F| = 7 such that
fora.e.T €T,

Iz (™) < Igericm@>a (@)
Therefore, by the lattice property, taking into account that C € W (L™, X), we obtain
/| Cllw i x)

log (\/E sin %)|

1
gl < ||H{ze1r;|(cu;)(z)|>z}||x << I Cllw e x) Tl =

which completes the proof.

Theorem (6.3.14)[265]: Let X be a Banach function space over the unit circle T. If the
Hilbert transform C is of weak type (L, X), then X, = X,,.

Proof. Let I' € T be a measurable set. Consider a sequence of measurable subsets
{¥n}nen of T such that I, — 0 a.e. on T. By the dominated convergence theorem,
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m(y,) = f I, (x)dm(z) - 0asn — co.
T
Without loss of generality, one can assume that 0 < m(y,,) < 1/4 for all n € N. For
every n € N, there exists a measurable set E, ¢ [—m, 7] such that I, (7) = Iy, () for
all T € T. It is clear that |E,| = 2mm(y,,) < /2 for n € N. By Lemma (6.3.13), for
everyn € N,

et I, < iy, = mhClwasn _ mlCllwasr
nily nlly

log (\/E sin %) B log(v2sin(mm(y,)))|

Since m(y,,) = 0 as n — oo, the above estimate implies that ||H,~Hyn||X — 0asn — oo.

*
Ig, ||,

Thus the function [~ has absolutely continuous norm. By [266, Chap.1, Theorem 3.13],
X, = Xp.
Lemma (6.3.15)[265]: Let X be a Banach function space over the unit circle T and X'
be its associate space. If C € B(X,,, X), then C € B((X"),,X’) and

ICsx, 0 < ICBx,%)- (52)
Proof. It is well known that the operator iC is a self-adjoint operator on the space L?
(see, e.g., [298, Section 5.7.3(a)]). Therefore, for all s,v € S, < L?, one has

(Cv,s) = —(v,Cs). (53)
It follows from equalities (34), (53), and Holder’s inequality (see [266, Chap.l1,
Theorem 2.4]) that for every v € S,
ICullxr = sup{l{Cv,s)|:s € S, lIsllx < 1} = sup{l{v, Cs)|:s € Sy, lIsllx < 1}
< sup{|[vllx/ICsllx: s € S, lIsllx < 1} < ”C”B(Xb,X)”U”X"
Since S, is dense in (X'),, we conclude that C € B((X"),, X") and (52) holds.
Lemma (6.3.16)[265]: Let X be a Banach function space over the unit circle T and X'
be its associate space. If the Riesz projection P is bounded on X, then C € W (L™, X)
and C € W(L®, X").
Proof. Since X is continuously embedded into L!, the functional f +— £(0) is
continuous on the space X. Then it follows from (26) that P € B(X) if and only if C €
B(X). Since L™ is continuously embedded into X, one has B(X) c B(L”,X). By
Lemma (6.3.11), B(L”,X) € W(L*, X). These observations imply that C € W (L™, X)
if P € B(X). Since X}, is a Banach space isometrically embedded into X (see [266,
Chap.1, Theorem 3.1]), we see that C € B(X) € B(X,,X) if P € B(X). Then, by
Lemma (6.3.15), C € B((X')p,X'). Taking into account that L* is continuously
embedded into (X'), (see, e.g., [266, Chap.1, Proposition 3.10]), we get C €
B((X"),,X") € B(L*,X"), which implies that C € W(L*,X") in view of Lemma
(6.3.11).
Now we are in a position to formulate the main result.

Theorem (6.3.17)[265]: Let X be a Banach function space over the unit circle T. If the
Riesz projection P is bounded on X, then X, = X, and (X'), = (X'),.
Proof. If the Riesz projection P is bounded on a Banach function space X, then the
Hilbert transform C is of weak types (L, X) and (L”,X") in view of Lemma (6.3.16).
In turn, C € W (L™, X) implies that X, = X;, and C € W (L*, X") implies that (X'), =
(X")p due to Theorem (6.3.14).
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Combining Theorem (6.3.17) and Lemma (6.3.7), we immediately arrive at the
following.

Corollary (6.3.18)[265]: Let X be a Banach function space over the unit circle T. If the
Riesz projection P is bounded on X, then for every f € X,
If|lx = sup{l{f.p):p € P, lIpllx < 1}.

Lemma (6.3.19)[265]: Let X,Y be Banach functions spaces over the unit circle T.
Suppose X is separable and A € B(X,Y). If there exists a sequence {a,, },,ez of complex
numbers such that

(Axj, xi) = ay_j forall j, k € Z, (54)
then there exists a function a € M(X,Y) such that A = M, and

a(n) = a, foralln € Z.

Proof. This statement was proved in [293, Lemma 4.1] under the additional hypothesis
that X and Y are rearrangement-invariant Banach function spaces. Put a:= Ay, €Y.
Then, one can show exactly as in [293] that (af)"(j) = (Af)"(j) forall j EZ and f €
P. Therefore, Af = af forall f € P in view of the uniqueness theorem for Fourier series
(see, e.g., [289, Chap.1, Theorem 2.7]).

Now let f € X. Since the space X is separable, the set P is dense in X by Corollary
(6.3.5). Then there exists a sequence p,, € P such that p,, = f in X and, whence, Ap,, —
Af in X as n = . By [266, Chap.1, Theorem 1.4], p,, = f and Ap,, = af in measure
as n — oo. Then ap,, = af in measure as n — o (see, e.g., [269, Corollary 2.2.6]).
Hence, the sequence Ap,, = ap,, converges in measure to the functions Af and af as
n — oo, This implies that Af and af coincide a.e. on T (see, e.g., the discussion
preceding [296, Theorem 2.2.3]). Thus Af = af forall f € X. This means that A = M,
and a € M(X,Y) by the definition of M(X,Y).

We present a proof of our extension of the Brown—Halmos theorem. Although it
follows the scheme of the proof of [271, Theorem 2.7] with modifications that are
necessary in the setting of different spaces X and Y(cf. [293, Theorem 4.2]), it uses
results obtained (e.g., Theorem (6.3.17) and Corollary (6.3.18)) and in [287] (see
Lemma (6.3.6) above). We provide details for the sake of completeness.

Since P € B(Y), it follows from Theorem (6.3.17) that (Y'), = (Y')p. Then, by
Lemma (6.3.4), the set of trigonometric polynomials P is dense in (Y'),. Therefore,
(Y"), is separable. It follows from [266, Chap.l, Theorems 3.11 and 4.1] that
((Y')p)* =Y". On the other hand, by the Lorentz—Luxemburg theorem (see [266,
Chap.1, Theorem 2.7]), Y"' =Y. Thus, the Banach function space Y is canonically
isometrically isomorphic to the dual space ((Y'),)* of the separable Banach space
Y.

Forn = 0, put b,,;: = y_,Axn- Then b, €Y and

Ially = IAxally = IAxalluty) < NAllsgupmplalx

= NAllspe vl . (55)
Put
v {e(y’) Iylly < ! }
=1y ylly -
b Y ||A||B(H[X],H[Y])||1||X

It follows from the Holder inequality (see [266, Chap.1, Theorem 2.4]) and (55) that
[{by, V)| < llbyllyllyllyr < 1forally € V,n = 0.
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Applying a corollary of the Banach—Alaoglu theorem (see, e.g., [302, Theorem 3.17])
to the neighborhood V' of zero in the separable Banach space (Y'), and the sequence

{b}henC Y = ((Y’)b)*, we deduce that there exists a function b € Y such that some
subsequence {bnk}keNof {b,,}nen converges to bin the weak-* topology of ((Y'),)". It
follows from [266, Chap.1, Proposition 3.10] that x; € (Y"),, for all j € Z. Hence

klirp (bn,, xj) = (b, x;) for all j € Z. (56)
On the other hand, we get from the definition of b,, and (28) forn, +j = 0,
(bnk;)(j) = (X—nkAXnk;Xj) = (A)(nk;)(nk+j) = a;. (57)
It follows from (56) and (57) that
(b, xj) = a; forall j € Z. (58)

Now define the mapping B by
B:P->Y,f — bf. (59)
Assume that f and g are trigonometric polynomials of order m and r, respectively.
Using equalities (28) and (58) and definition (59), one can show that forn > max{m, r},
(Bf,g) = (x-nACtnf), 9)- (60)
It is clear that for those n, one has y,,f € H[X]. Since A € B(H[X], H[Y]), we obtain
IAC ) ly = IACHND ) < WAl xS aix)
= lAllpcapxr,mpvp I |l x- (61)
Hence, by the Holder inequality (see [266, Chap.1, Theorem 2.4]), we deduce from (61)
that
X -nACUnf), D < IX-nACD v llgllyr = TACRNllyllglly
< llAllpapxapen I Ixllglly (62)
It follows from (60) and (62) that
I(Bf, g)| < lim sup [(x-nA(xnf), 9)|

n—->oo
< lAllpxyamn 1 llxllglly. (63)
Since the Riesz projection P is bounded on Y, inequality (63) and Corollary (6.3.18)
imply that for every f € P,
IBflly = sup{l(Bf,g):g € P,lIgllyr <1} < llAllpxyavpllfllx-
Since X is separable, the set P is dense in X in view of Corollary (6.3.5). Hence the
above inequality shows that the linear mapping defined in (59) extends to an operator
B € B(X,Y) with
IBllzx,y)y < lAllgcaix),HivD)- (64)
We deduce from (58)—(59) that
(Bxj, xix) = {bxj, xx) = (b, x—j) = ay_j for all j, k € Z.
Then, by Lemma (6.3.19), there exists a function a € M(X,Y) such that B = M, and
a(n) = a,, for all n € Z. Moreover,
IBllsx,v) = IMallpx,yy = llallm,y)- (65)
It follows from the definition of the Toeplitz operator T, that
(Taxj, xi) = a(k — j) forall j, k = 0.
Combining this identity with (28), we obtain
(Taxj» xx) = ax—j = (Ax;, xx) forall j, k = 0. (66)
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Since T x;, Ax; € H[Y] c H*, it follows from (66) and the uniqueness theorem for
Fourier series (see, €.g., [289, Chap.1, Theorem 2.7]) that T, x; = Ay; for all j = 0.
Therefore,
T,.f = Af forall f € P,. (67)
By Lemma (6.3.6), P, is dense in H[X]. This observation and (67) imply that T, = A on
H[X] and
| Tellpcaix,aivd = lAlseixaiyD- (68)
Combining inequality (64) with equalities (65) and (68), we arrive at the first inequality
in (29). The second inequality in (29) is obvious.
Let B(T) be the set of all measurable functions p: T — [1, oo]. For p € B(T), put
T£('): = {t € T: p(t) = oo}
For a function f € L%, consider

o= [ IFOP@dm@ + Ifll ooy
T\Tfo(') ”

The variable Lebesgue space LPO is defined (see, e.g., [275, Definition 2.9]) as the set
of all measurable functions f € L° such that 0p()(f/A) < oo forsome A > 0. This space
is a Banach function space with respect to the Luxemburg—Nakano norm given by

1fll oo = inf{A > 0: 0,y (f/2) < 1}
(see [275, Theorems 2.17,2.71 and Section 2.10.3]). If p € B(T) is constant, then LrO
is nothing but the standard Lebesgue space LP. Variable Lebesgue spaces are often
called Nakano spaces. See Maligranda [296] for the role of Hidegoro Nakano in the
study of variable Lebesgue spaces.

For p € B(T), put
p- := essinfp(t),py := ess infp(t).

It is well known that the variable Lebesgue space LPO(T) is separable if and only if
p+ < o and is reflexive if and only if 1 < p_,p, < oo (see, e.g., [275, Theorem 2.78
and Corollary 2.79]).
The following result was obtained by Nakai [297, Example 4.1]Junder the
additional hypothesis
sup r(t) <oo

teT\T"
(and in the more general setting of quasi-Banach variable Lebesgue spaces over
arbitrary measure spaces). Nakai also mentioned in [297, Remark 4.2] (without proof)
that this hypothesis is superfluous. One can find its proof in the present form in [286,
Theorem 4.8].
Theorem (6.3.20)[265]: Let p, q,r € B(T) be related by

1

1 1
@ 00 T tET (69)

Then M(Lp('),Lq(')) 0}
We say that an exponent g € B(T) is log-Holder continuous (cf. [275, Definition
22])if1 < q_ < q4 < o and there exists a constant Cy(.y € (0, ) such that
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4(0) — q(@)] < —20

1 7T — —logl|t — 1|
The class of all log-Holder continuous exponent will be denoted by LH(T). Some
authors denote this class by P'°8 (T) (see, e.g., [290, Section 1.1.4]). The following
result is well known (see, e.g., [290, Section 10.1] or [284, Lemma 12]).
Theorem (6.3.21)[265]: If ¢ € LH(T), then the Riesz projection P is bounded on L1,
Applying Theorems (6.3.2), (6.3.20), and (6.3.21), we arrive at the following.
Theorem (6.3.22)[265]: Let p, q,r € B(T) be related by (69). Suppose g € LH(T) and
p+ < oo. If a linear operator A is bounded form H [Lp(')] to H [Lq (')] and there exists a
sequence {a, },ez of complex numbers such that

(Axj, xi) = ay_jforall j,k = 0,

then there is a function a € L'® such that A =T, and d(n) = a,, for all n € Z
Moreover, there exist constants ¢, 4, C, 4 € (0, ) depending only on p and q such that

for all t,7 € T satisfying |t — 7| < 1/2.

cpallallro < W Tallggproyppao)) S CpqllPlipao)llallpro.
Note that if p,q € LH(T) coincide, then the constants ¢, , and C,, in the above
inequality are equal to one (cf. [284, Corollary 13]).
The distribution function m; of an a.e. finite function f € L? is given by
mg(A):=m{t € T:|f ()| > 1}, 1 = 0.
The non-increasing rearrangement of an a.e. finite function f € L is defined by
fr (x):= inf{ﬂ: me(A) < x},x € [0, 1].
We refer to [266, Chap.2, Section 1] for properties of distribution functions and non-
increasing rearrangements.

Two a.e. finite functions f,g € L° are said to be equimeasurable if their
distribution functions coincide: m¢(1) = mgy(4) forall A = 0. A Banach function space
X over the unit circle T is called rearrangement-invariant if for every pair of
equimeasurable functions f,g € L%, f € X implies that g € X and the equality ||f]ly =
llg|l x holds. For a rearrangement-invariant Banach function space X, its associate space
X' is also rearrangement-invariant (see [266, Chap.2, Proposition 4.2]).

Let f be an a.e. finite function in L°. For x € (0, 1], put

X

e =< [ roay
0

Suppose 1 < p < oo and 1 < g < oo. The Lorentz space LP? consists of all a.e. finite
functions f € L° for which the quantity

( 1 1/q
| ) dx _
f(x /pf**(x))7 Jifl < g < oo,
fllpa =< )
L sup (xl/pf**(x)),ifq = o0,
0<x<1

is finite. It is well known that LP is a rearrangement-invariant Banach function space
with respect to the norm ||-||»a (see, e.g., [266, Chap.4, Theorem 4.6], where the case
of spaces of infinite measure is considered; in the case of spaces of finite measure, the
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proof is the same). It follows from [266, Chap.2, Proposition 1.8 and Chap.4, Lemma
4.5] that LPP = LP (with equivalent norms).

For q € [1, ], put ¢' = q/(q — 1)with the usual conventions 1/0 = o and
1/00 = 0. A function w € LS is referred to as a weight if 0 < w(t) < oo forae. T €
T.

Letl <p<oandl < q < oo.Suppose w: T — [0, oo] is a weight such that w €
LP9 and 1/w € LP"9'. The weighted Lorentz space LP4(w) is defined as the set of all
a.e. finite functions f € L° such that fw € LP4,

The next lemma follows directly from well known results on Lorentz spaces.
Lemma (6.3.23)[265]: Let 1 <p < 0,1 <q <o and w: T - [0,0] be a weight
such that w € LP9,1/w € Lpha

(a) The space LP9(w) is a Banach function space with respect to the norm

Wfllpaewy = lIfwllppa and Lp"q’(l/w) is its associate space.

(b)If 1 < q < oo, then the space LP9(w) is reflexive.

(c) The space LP'1(w) is separable and non-reflexive.
Proof.(a) In view of [266, Chap. 4, Theorem 4.7], the associate space of the Lorentz
space LP%, up to equivalence of norms, is the Lorentz space LP 4", It is easy to check
that LP9(w) is a Banach function space and LA (1/w) is its associate space.

(b) Note that LP9(w) 3 f +— wf € LP4 is an isometric isomorphism of LP-4(w)
and LP9. Hence these spaces have the same Banach space theory properties, e.g.,
reflexivity and separability. If 1 < p,q < oo, then LP? is reflexive in view of [266,
Chap.4, Corollary 4.8]. Then the weighted Lorentz space LP9(w) is reflexive too.

() If 1<p < oo, then LP! has absolutely continuous norm and (LP1)* =
LP"®(see [266, Chap. 4, Corollary 4.8]). Then LP! is separable in view of [266, Chap.1,
Corollary 5.6]. It is known that

Lp,l(Lp,OO)* — (Lp,l)**
(see [276, p.83]). Hence LP'! is non-reflexive. Therefore, LP'1(w) is also separable and
nonrefexive.

Let 1 <p < o and w be a weight. It is well known that the Riesz projection P
is bounded on the weighted Lebesgue space LP (w): = {f € L°: fw € LP}if and only if
the weight w satisfies the Muckenhoupt A,, —condition, that is,

1

1/p

sup Lf wP(t)dm(1) ;f W_p’(‘[)dm(‘[) < o0
ycT m(y) ’ m(y) . '

where the supremum is taken over all subarcs y of the unit circle T (see [280]and also
[270, Section 6.2], [271, Section 1.46], [298, Section 5.7.3(h)]). In this case, we will
write w € A, (T).

Lemma (6.3.24)[265]: Let 1 <p <o and 1 < q < oo. If w € A,(T), then w € LP4
and 1/w € LP"7,

Proof. By the stability property of Muckenhoupt weights (see, e.g., [270, Theorem
2.31]), there exists € > 0 suchthatw € A4(T) foralls € (p — &, p + €). Therefore,w €
IS and 1/w € LS foralls € (p — &,p + €). In particular, if s, s, are such that p — & <
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S <p<s,<p+egthenwe€ L2 =L[%%2 c[P9and 1/w € 151 = 5151 ¢ [P i
view of the embeddings of Lorentz spaces (see, e.g., [266, Chap.4, remark after
Proposition 4.2]).

Lemmas (6.3.23)(a) and (6.3.24) imply that if w € A,(T), then LP9(w) is a
Banach function space.

Theorem (6.3.25)[265]: Let 1 <p < oand1 < q < o.Ifw € A,(T), then the Riesz
projection P is bounded on the weighted Lorentz space LP9(w).

Proof. It follows from [266, Chap.4, Theorem 4.6] and [281, Theorem 4.5] that the
Cauchy singular integral operator S is bounded on LP-4(w). Thus, the Riesz projection
P is bounded on LP9(w) in view of (24).

The next theorem is an immediate consequence of Corollary (6.3.3), Lemmas
(6.3.23) and (6.3.24), and Theorem (6.3.25).

Theorem (6.3.26)[265]: Let 1 <p < 0,1 < q < o, and w € A,(T). If an operator
A is bounded on the abstract Hardy space H[LP*9(w)] and there exists a sequence
{a, }nez of complex numbers such that
(A)(j,)(k) = qy_; forall j,k =0,
then there is a function a € L such that A = T, and @(n) = a,, for alln € Z.Moreover,
lall - < ”Ta”B(H[Lp'q(W)]) < ||P||B(an(w))||a||L°°-

For p = q this result is contained in [284, Corollary 9]. For 1 < g < oo, this result
as well follows from [284, Theorem1]. The most interesting case is when g = 1 because
in this case the weighted Lorentz space LP'1(w) is separable and non-reflexive.
Moreover, it is not rearrangement-invariant. Therefore [284, Theorem 1] and [293,
Corollary 4.4] are not applicable, while Corollary (6.3.3) works in this case.

Corollary (6.3.27)[307]: Let X be a Banach function space over the unit circle T. If
Xgr = Xpr, then the set of trigonometric polynomials P is dense in Xpr.

Proof. The proof is analogous to the proof of [285, Lemma 2.2.1]. Assume that P is not
dense in X,r. Then, by a corollary of the Hahn—Banach theorem (see, e.g., [267, Chap.7,
Theorem 4.2]), there exists a nonzero functional A, € (X,r)* such that A,.(p) = 0 for
all p € P. It follows from [266, Chap.1, Theorems 3.10 and 4.1] that if X, = X, then
(X,r)* = X'. Hence there exists a nonzero function h,. € X’ c L! such that

fzp(t)hr(t)dm(t) =0 forallp € P.
T

Taking p(t) = t™ for n € Z, we obtain that all Fourier coefficients of h, € L! vanish,
which implies that h,, = 0 a.e. on T by the uniqueness theorem of the Fourier series
(see, e.g., [289, Chap. I, Theorem 2.7]). This contradiction proves that P is dense in X r.
Corollary (6.3.28)[307]: Let X be a Banach function space over the unit circle T. If
(X")qr = (X')pr, then for every f, € X,

If-llx = sup{l{fr, p): p € P, lIpllx < 1}.
Proof. Since P c X', equality (32) immediately implies that

1/ llx = sup{l{f, p)|: p € P, lIpllx < 1}.
Take any g, € (X')pr such that 0 < [|g,|[x» < 1. Since (X'),r = (X'),r, it follows
from Lemma (6.3.4) that there is a sequence q,, € P\{0} such that ||q,, — g, |lx* = 0 as
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— oo, Forn € N, put p,,;: = (Il g+l x' /1@l x")q,, € P. Then, arguing as in [284, Lemma
5], one can show that

(e, g ) = lim [{fr, )| < Sugl(fr,pn)l < sup{l{fr,1+&)l:p € P, [I1 +ellxy < 1}.
—00 ne

This inequality and equality (32) imply that

Ifrllx < sup{l{fr, 1+ &):p € P11 +elly <1}
Combining inequalities (36) and (37), we arrive at equality (35).
Corollary (6.3.29)[307]: If u, is an inner function such that u,.(0) = 0, then u, is a
measure-preserving transformation from T onto itself.
Proof. We include a sketch of the proof for the readers’ convenience. Let G, be an
arbitrary measurable subset of T and let h,. be the bounded harmonic function on D with
the boundary values equal to I; . Then h, o u,. is the bounded harmonic function on D

with the boundary values equal to I, -1(G,), and

m(G,) = f D 16, (¢)d0 = D h(0) = > he(u,(0))

= % fz L, -1, (e?)do = Z m(u, " (G)),

which completes the proof.

Corollary (6.3.10)[307]: Let X, X + € be Banach function spaces over the unit circle T.
IfA, € B(X,X +¢),then 4, € W.(X,X + &) and ”Ar”WT(X,X+£) = ”Ar”B(X,X+£)-
Proof. Forall 1 > 0, f,, € X and almost all T € T, one has

(A, £) (D) |(4,£) (D)
z Iger: 14,10 @1>1 (1) < z Lcer: 14 £)@ 1523 (7) TT < z TT

It follows from the above inequality, the lattice property, and the boundedness of the

operator A, that
-1l x
Sz”Ar”B(X'X"'E)Z ;L ’
X+e

||Z liget: 14, £)@1>2) || = z |
X+e
which completes the proof.
Corollary (6.3.31)[307]: For every measurable set E c [—m, ] with 0 < |E| < /2,
there exists a measurable set F. ¢ [—m, ] with |E.| = 7 such that
. 1 E

(¢, 15 ) (e™)] > —[log (\/E sin %)

Proof. Let £ := {e" € T : m — |E| <7 < m}. By Theorem (6.3.9), there exists an inner

function V,. such that V,.(0) = 0 and

. ffora.e.9 €EE
i ’
V() € {T\{) fora.e.d € [-m, w]\E.

Arfr
A

fora.e. 9 €E.

Consider the set
F:=1{0 € [-m,n]: ImV.(e') < O}
Since V.(0) = 0 and V, is inner, it defines a measure-preserving transformation of T
onto itself due to Lemma (6.3.8). Therefore,
|E.| = |{19 € [-m,7]: Ime? < 0}| = T.
Forn € [—m, ] and ry € [0, 1), let
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s

) 1 .
Wr(roel"): = Hf_n'o](elz)(Pro + iQrO) (n — Qdd.

By Theorem (6.3.10), the functign w, € H?(D) has nontangential boundary values
w,.(e™) as z - e fora.e.n € [, 7] and
Re Wr(ei") = Hf_n'o](ei") fora.e.n € [-m, 7],
Imw;(e™) = (C,Ij_r o)) (e™) fora.e.n € [-m, 7).
It is clear that forn € (m — |E|, ),
0

n—¢ 1 n 1 n+m

i . 1 _ _
(CI}_ro))(e™) = fcot > d(=;logsmz—glogsm I

-1
Since |E| € (0,1/2], we have foralln € (m — |E|, ),
1 T _|E| - ntm
logsmz > logsmz = —logv2 > logsmT > log sin >

It follows from (45)—(47) that for a.e. n € (m — |E|, ),
. 1 |E| 1 |E|
n —| — — in— | =— in —

|Im Wr(e )| > ﬂ( log V2 — log sin > > - log (\/2 sin > I

Consider now the function W, = w,. o V,, which belongs to H*(D) (see, e.g., [277,
Section 2.6]). In view of (43) and (44), we have

ReW; () = {1 ifim Vi (e®) <0
0 if Im Vr(ew) >0
Then, by Theorem (6.3.10),
Im W, (e") = (Cr]l}r)(ew) fora.e.9 € [—m, m].
If 9 € E, then it follows from (42) that V. (ew) € £. In this case inequality (48) implies
that fora.e.9 € E,

) ) 1 E
tm W ()] = fim w1, (e12)] > 2 log (ﬁsin'z—')

Combining equality (49) and inequality (50), we arrive at (41).

Corollary (6.3.32)[307]: Let X be a Banach function space over the unit circle T. If the
Hilbert transform C,. is of weak type (L, X), then for every measurable set E c [—, 7]
with 0 < |E| < m/2, one has

ITEllx <

= H}T(ew) for a.e. ¥ € [—m,m].

7T”Cr”WT(L°°,X)
lo (\/7 I ﬂ)|
g sin =

1 E
log (\/E sin |2—|> ‘

Proof. Let

A=—
is
By Lemma (6.3.12), there exists a measurable set F,. ¢ [—m, ] with |F.| = 7 such that
fora.e.T €T,

(D) < Iger|(c,1,) @)l (-
Therefore, by the lattice property, taking into account that C,. € W,.(L™, X), we obtain
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|| Cr”WT(L°°,X)

log (\/E sin %)|

L°

1
Igllx < ||H{€ET:|(CTHPT)(Z)|>/1}”X = 1 I Crllw, 220, x) I,

which completes the proof.

Corollary (6.3.33)[307]: Let X be a Banach function space over the unit circle T. If the
Hilbert transform C,. is of weak type (L™, X), then X,r = X,r.

Proof. Let I' € T be a measurable set. Consider a sequence of measurable subsets
{¥ntnen of T such that I, — 0 a.e. on T. By the dominated convergence theorem,

m(y,) = f I, (t)dm(r) » 0asn - oo.
T
Without loss of generality, one can assume that 0 < m(y,,) < 1/4 for all n € N. For
every n € N, there exists a measurable set E,, ¢ [—m, 7] such that I, (7) = I (7) for
all T € T. It is clear that |E,| = 2mrm(y,) < /2 for n € N. By Lemma (6.3.13), for
everyn € N,

”HFHVn“X = ”H)/n“)( = ﬂ||Cr||WT(L°°,X+£) = ﬂ”Cr”Wr(Loo,X+£)

log (\/7 sin %) B log(v2sin(mm(y,)))|

Since m(y,,) = 0 as n — oo, the above estimate implies that ”HFHVn”X - 0asn — oo,

*
I, <

Thus the function [ has absolutely continuous norm. By [266, Chap.1, Theorem 3.13],
XaT = XbT.
Corollary (6.3.34)[307]: Let X be a Banach function space over the unit circle T and
X' be its associate space. If C,. € B(Xpr, X), then C,, € B((X")pr, X') and
”CT’”B((X’)br,X) < ”CT'”B(Xbr,X)'
Proof. It is well known that the operator iC, is a self-adjoint operator on the space L?
(see, e.g., [298, Section 5.7.3(a)]). Therefore, for all s,v € S, < L?, one has
(CrU: S) = _<U; Crs)
It follows from equalities (34), (53), and Holder’s inequality (see [266, Chap.1,
Theorem 2.4]) that for every v € S,
ICrvllx = sup{l{Crv, s)|: s € Sy, lIsllx < 1} = sup{[{v, C;s): s € Sp, IIsllx < 1}
< sup{llvllx [1Csllx: s € S, lIslly < 13 < Il px,, 0l
Since S, is dense in (X'),r, we conclude that C,. € B((X'),r, X') and (52) holds.
Corollary (6.3.35)[307]: Let X be a Banach function space over the unit circle T and
X' be its associate space. If the Riesz projection P is bounded on X, then C,. € W,.(L™, X)
and C, € W,.(L, X").
Proof. Since X is continuously embedded into L!, the functional f. — £-(0) is
continuous on the space X. Then it follows from (26) that P € B(X) if and only if C,. €
B(X). Since L™ is continuously embedded into X, one has B(X) c B(L”, X). By
Lemma (6.3.11), B(L”, X) < W,.(L*, X).These observations imply thatC, € W,.(L*, X)
if P € B(X). Since X,r is a Banach space isometrically embedded into X (see [266,
Chap.1, Theorem 3.1]), we see that C, € B(X) € B(X,r,X) if P € B(X). Then, by
Lemma (6.3.15), C, € B((X")pr,X'). Taking into account that L* is continuously
embedded into (X'),r (see, e.g., [266, Chap.1, Proposition 3.10]), we get C, €
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B((X")yr,X') € B(L*,X"), which implies that C, € W,.(L*,X") in view of Lemma
(6.3.11).
Corollary (6.3.36)[307]: Let X be a Banach function space over the unit circle T. If the
Riesz projection P is bounded on X, then X, = Xpr and (X') ;v = (X")pr.
Proof. If the Riesz projection P is bounded on a Banach function space X, then the
Hilbert transform C,. is of weak types (L, X) and (L, X") in view of Lemma (6.3.16).
In turn, C, € W,(L”,X) implies that X, = X,r and C, € W,.(L*,X") implies that
(X)), = (X')pr due to Theorem (6.3.14).
Corollary (6.3.37)[307]: Let X, X + € be Banach functions spaces over the unit circle
T. Suppose X is separable and A, € B(X, X + ¢). If there exists a sequence {a}, },,ez of
complex numbers such that

(A Xi) = az_j forall j, k € Z,
then there exists a function a” € M(X, X + €) such that A, = M~ and

a”(n) = a’, foralln € Z.

Proof. This statement was proved in [293, Lemma 4.1] under the additional hypothesis
that X and X + ¢ are rearrangement-invariant Banach function spaces. Puta”: = A, y, €
X + €. Then, one can show exactly as in [293] that (a” £.)"(j) = (4, £.)"(j) forall j € Z
and f, € P. Therefore, A, f, = a’ f; for all f. € P in view of the uniqueness theorem for
Fourier series (see, e.g., [289, Chap.1, Theorem 2.7]).

Now let f,- € X. Since the space X is separable, the set P is dense in X by Corollary
(6.3.5). Then there exists a sequence p, € P such that p, — f,. in X and, whence,
Aypp = A, f, in X asn — 0. By [266, Chap.1, Theorem 1.4],p,, = f and A, p, = a’ f;
in measure as n - . Then a’p,, = a' f, in measure as n - o (see, e.g., [269,
Corollary 2.2.6]). Hence, the sequence A,p, = a’p,, converges in measure to the
functions A, f, and a’" f, as n — oo. This implies that A4,.f, and a” f, coincide a.e. on
T(see, e.g., the discussion preceding [296, Theorem 2.2.3]). Thus A,.f,, = a" f, for all
f € X. This means that A, = M, and a”" € M(X,X + &) by the definition of
M(X, X + ¢).

Corollary (6.3.38)[307]: Let0 < & < o, and w,.: T — [0, o] be a weight such that
w, € [1+e1+2¢ 1y, g [1+el+2e
(a) The space L1T®1%2¢(w,) is a Banach function space with respect to the norm
| frllp1rensaeqyy = |l frwyllp1+ersze and L5128 (1/w,) is its associate space.

(b)If 0 < € < o, then the space L1&172¢(w,) is reflexive.

(c) The space Lt&1*2¢(w.) is separable and non-reflexive.
Proof. (a) In view of [266, Chap.4, Theorem4.7], the associate space of the Lorentz
space L1812 yp to equivalence of norms, is the Lorentz space L1T&1+2¢ It is easy to
check that L1t&1%2¢ () is a Banach function space and L**&1%2¢(1 /w,.) is its associate
space.

(b) Note that I[M*eM2e(yw) 3 £+ w,f. € L1812 i an  isometric
isomorphism of L1t&1+2¢(y,. ) and L1 t&1%2¢ Hence these spaces have the same Banach
space theory properties, e.g., reflexivity and separability. If 0 < & < oo, then L1T&1+2¢
is reflexive in view of [266, Chap.4, Corollary 4.8]. Then the weighted Lorentz space
L1128y, ) is reflexive too.
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(c) If 0 < & < oo, then L& has absolutely continuous norm and (L1*&1)* =
[1t&%(see [266, Chap.4, Corollary 4.8]). Then L'+ is separable in view of [266,
Chap.1, Corollary 5.6]. It is known that

L1+£,1(L1+£,00)* — (L1+£,1)**
(see [276, p.83]). Hence L1*&1 is non-reflexive. Therefore, L1*1(w,.) is also separable
and nonrefexive.
Corollary (6.3.39)[307]: Let 0 < £ < 0. If w, € (4,)14-(T), then w, € L1+&1%2€ 3pd
1/w, € j1+e1+2e’
Proof. By the stability property of Muckenhoupt weights (see, e.g., [270, Theorem
2.31]), there exists € > 0 such that w,. € (4,)s(T) foralls € (p — &, p + €). Therefore,
w, € LS and 1/w, € L forall s € (p — &,p + €). In particular, if sy, s, are such that
p—e<s;<p<s,<p+e¢g then w,€L%2=L[52%2c[P9 and 1/w, € LSt =
L5151 < P4 in view of the embeddings of Lorentz spaces (see, e.g., [266, Chap.4,
remark after Proposition 4.2]).

Lemmas (6.3.23)(a) and (6.3.24) imply that if w, € (4;,)14¢(T), then
[1*+&1%22(y ) is a Banach function space.

Corollary (6.3.40)[307]: Let 1 <& <oo. If w, € (A,)14¢(T), then the Riesz
projection P is bounded on the weighted Lorentz space L*+&1+2¢(y,).

Proof. It follows from [266, Chap.4, Theorem 4.6] and [281, Theorem 4.5] that the
Cauchy singular integral operator S is bounded on L'*&1*2¢(w.). Thus, the Riesz
projection P is bounded on L**&1*2¢(w.) in view of (24).

216



List of Symbols

Symbol Page
L> : Essential Lebesgue space 1
H? : Hardy Space 1
mod : module 1
® : Tensor product 2
&) : Direct Sum 2
12 : Hilbert Space 2
inf : infimum 3
Ker : Kernel 4
HP : essential Hardy space 4
diag : diagonal 6
LP : Lebesgue Integral 9
A? : Bergman Space 9
Lt : Lebesgue integral on the Real line 11
Aut : Automorphism 11
sup : Supremum 12
HP : Hardy space 12
max : Maximum 16
S) : Direct difference 43
1% : Bergman Space 47
dim : dimension 48
tr : trace 56
a.e : almost everywhere 59
G.C.D : greatest common divisor 70
UFD : Unique Factorization Domain 70
L1 : Dual of Lebesgue Space 72
H1Y : Dual of Hardy Space 72
min : minimum 80
ess : essential 85
BMO : Bounded Meau Oscillation 85
VMO : Vanishing Meau Oscillation 56
Im : Imaginary 95
SAT : Strongly Asymptotically Toepliz 102
UAT : Uniformly asymptotically Toepliz 102
WAT : Weakly asymptotically Toepliz 102
MSAT : Strongly Asymptotically Toepliz 102
Lip : Lopschtiz 105
SP : Spectrum 105
ec : essential commutant 107
ran : range 111
SOT : strong operator topology 114
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supp : support 120
alg : algebra 121
SC : Semi Commutator 125
1?2 : Hilbert Space of Sequences 126
clos : closure 138
ind : index 145
B.F.S : Banach Function Space 174
LPA : Lorentz spaces 192
Re : Real 195
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