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ABSTRACT 

In computer vision, image segmentation is defined as the process of partitioning an 

image into several regions with homogeneous features. The region of our interest here in 

this thesis is the liver.  

The main goal of the liver segmentation process is to divide the pixels of the medical 

image depending on specific criteria into two groups: pixels that belong to the object of 

interest (liver) and the rest of pixels that don't belong to the liver. It is an essential task in 

oncological therapy monitoring and radio-therapeutic treatment where tumor 

information is vital for correct dosimetry calculations. 

Usually, the liver segmentation has been done manually by trained clinicians but it is 

time-consuming and requires much effort also different from one clinician to another 

because of the observer variability; as a result of that, an automatic liver segmentation 

system would thus be a great boon for performing these tasks. Because of the 

complexity of liver shapes and variable liver sizes among patients, the segmentation of 

the liver from medical images is very difficult and also due to low contrast between the 

liver and surrounding organs like the stomach, pancreas, kidney, and muscles.  

Before the deep learning revolution, traditional handcrafted features were used for liver 

segmentation but with deep learning, the features are obtained automatically. There are 

numerous semi-automatic and fully automatic methodologies that have been proposed to 

improve liver segmentation some of them use deep learning techniques for segmentation 

and others use a classical based method for segmentation but still, there are no none of 

them achieve a hundred percent of accuracy.  

In this thesis, we use the deep learning technique in particular U-net architecture to 

enhance the Automatic Liver Segmentation process. MICCA and 3D-IRCAD datasets 

are used to training and testing the model. The proposed Unet model, it was able to 

achieve the Dice similarity coefficient for MICCA dataset is equal to 0.97% and for a 

3D-IRCAD dataset is equal to 0.96%. 
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 مستخلص البحث

، ٌتٌ تؼشٌف تجزئت اىظ٘سة ػيى أّٖا ػَيٍت ىتقسٌٍ اىظ٘سة فً ػذد  computer visionسؤٌت اىنَبٍ٘تش  ٍجاه فً

 .ٍِ اىَْاطق راث اىٍَزاث اىَتجاّست. ٍْطقت إتَاٍْا ْٕا فً ٕزٓ الأطشٗحت ًٕ اىنبذ

اىبنسو ىيظ٘سة اىطبٍت اػتَاداً ػيى ٍؼاٌٍش ٍحذدة إىى اىٖذف اىشئٍسً ىؼَيٍت تجزئت اىنبذ ٕ٘ تقسٌٍ ٗحذاث 

ٍجَ٘ػتٍِ: ٗحذاث اىبنسو اىتً تْتًَ إىى ٍ٘ض٘ع الإتَاً )اىنبذ( ٗبقٍت ٗحذاث اىبنسو اىتً لا تْتًَ إىى اىنبذ. 

إّٖا ٍٖاً أساسٍت فً ٍشاقبت ػلاج الأٗساً ٗاىؼلاج الإشؼاػً حٍث تنُ٘ ٍؼيٍ٘اث اى٘سً حٌٍ٘ت ىحساباث قٍاس 

 .ىجشػاث اىظحٍحتا

ػادة ، ٌتٌ إجشاء تجزئت اىنبذ ٌذًٌٗا ب٘اسطت أطباء ٍذسبٍِ ، ٗىنْٖا تستغشق ٗقتاً طٌ٘لاً ٗتتطيب اىنثٍش ٍِ اىجٖذ ، 

مَا أّٖا تختيف ٍِ طبٍب إىى آخش بسبب تباٌِ اىَشاقب ؛ ّٗتٍجت ىزىل ، فإُ ّظاً تجزئت اىنبذ اىتيقائً سٍنُ٘ بَثابت 

اىَٖاً. بسبب تؼقٍذ أشناه اىنبذ ٗتغٍش أحجاً اىنبذ بٍِ اىَشضى ، فإُ تجزئت اىنبذ ٍِ اىظ٘س ّؼَت مبٍشة لأداء ٕزٓ 

اىطبٍت أٍش طؼب ىيغاٌت ٗأٌضًا بسبب قيت اىتباٌِ بٍِ اىنبذ ٗالأػضاء اىَحٍطت ٍثو اىَؼذة ٗاىبْنشٌاس ٗاىنيى 

 ٗاىؼضلاث

ْ٘ػت ٌذًٌٗا ىتجزئت اىنبذ ٗىنِ ٍغ اىتؼيٌ اىؼٍَق ، ٌتٌ قبو ث٘سة اىتؼيٌ اىؼٍَق ، تٌ استخذاً اىٍَزاث اىتقيٍذٌت اىَظ

اىحظ٘ه ػيى اىٍَزاث تيقائًٍا. ْٕاك اىؼذٌذ ٍِ اىَْٖجٍاث شبٔ الأٗتٍ٘اتٍنٍت ٗاىتيقائٍت باىناٍو اىتً تٌ اقتشاحٖا 

ذًٌا ىيتجزئت ىتحسٍِ تجزئت اىنبذ ، بؼضٖا ٌستخذً تقٍْاث اىتؼيٌ اىؼٍَق ىيتجزئت ٗاىبؼض اَخش ٌستخذً أسي٘بًا تقيٍ

 ٗىنِ لا ٌزاه لا ٌ٘جذ أي ٍْٖا ٌحقق ٍائت باىَائت ٍِ طحت.

ػَيٍت الاّقساً اىتيقائً  حسٍِػيى ٗجٔ اىخظ٘ص ىت U-netبٍْت  ,ت ، ّستخذً تقٍْت اىتؼيٌ اىؼٍَقفً ٕزٓ الأطشٗح 

اىْشد  ٍؼاٍو تشابٔىتذسٌب اىَْ٘رج ٗاختباسٓ.  MICCA ٗ D-IRCAD3ىينبذ. تستخذً ٍجَ٘ػاث اىبٍاّاث 

(Diceىـ ) َْ٘رجUnet  ػْذ استخذاً ٍجَ٘ػت بٍاّاث 0..7ماُ قادسًا ػيى تحقٍق ٍؼاٍو تشابٔ ىيْشد اىَقتشح ٪

MICCA  ً3% ػْذ استخذاً ٍجَ٘ػت بٍاّاث 0..7ٗ تحظو ػيD-IRCAD3 . 
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CHAPTER 1    

INTRODUCTION 

1.1 BACKGROUND 

 In the computer vision field, images are considered as one of the most important of 

moderate carrying information. Extracted information from these images can be used for 

many tasks for example identification of particular features, recognition of objects, 

detection of cancerous cells, finding injurious tissues from body scans, or segmentation. 

Image segmentation is a method used to understand an image and extract information or 

objects (Agrawal, 2014) and also could be defined as the process of a partition of an 

image in several regions with homogeneous features. These regions might be a set of 

border pixels grouped into such structures or can be defined as groups of pixels having 

both a border and a particular shape. These regions are named Regions of Interest 

(ROIs) (Pratt, 2000). Every pixel in an image is allocated to one of these regions. A 

good segmentation is typically one in which the pixels in the same regions have similar 

greyscale of multivariate values and form a connected region, and neighboring pixels 

which are in different regions have dissimilar values.(Glasbey, C.A. and Horgan, 1995) 

Medical images are considered as a set of techniques, processes of creating visual 

representations (images) inside a body for clinical analysis and medical intervention. 

Medical imaging is today an invaluable tool for diagnosis and treatment planning. 

Imaging modalities such as X-ray, Ultrasound (US), and Single-photon emission 

computed tomography (SPECT), Positron emission tomography (PET), computed 

tomography (CT), and magnetic resonance imaging (MRI). Almost all specialties of a 

modern hospital handled some kind of image on your clinical routine. The increasing 

introduction of digital imaging modalities allows efficient storage thereof and what is 

more important, the possibility of image processing and analysis to obtain quantitative 

data from them (P, 2015). 
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Modern surgeries rely on Computer-Aided Diagnosis (CAD) systems to assist doctors in 

the diagnosis of medical images, surgical planning, and simulation. CAD has become a 

part of the routine clinical work in medical imaging and diagnostic radiology therefore it 

has become one of the major research subjects (Fujita et al., 2008). Because any 

successful treatment depends on preoperative such as planning to understand the 

complex internal structure of the liver and precisely localize the liver surface and its 

segments, the tumors, the topography of blood vessels to do that an automatic Liver 

segmentation is required which aim to divide the pixels (voxel) of the image depending 

on certain criteria into two groups: voxels that belong to the object of interest (liver) and 

the rest of voxels that don't belong to the liver. Liver pathologies such as cirrhosis, liver 

cancer, and fulminant hepatic failure can be diagnosed by using Medical imaging which 

is a non-invasive technique.   

The diagnosticians prefer the CT images because of their higher signal to noise ratio, 

better spatial resolution and they provide more accurate anatomical information about 

the visualized structures (Campadelli, Casiraghi and Esposito, 2009). Computed 

Tomography (CT) was developed by British engineers named Sir Godfrey Houns_eld 

and Dr. Alan Cormack and has since had a profound effect on medicine. CT uses 

sophisticated X-ray technology to aid in the detection of a variety of diseases and 

conditions and is fast, painless, non-invasive, and accurate (Lawrence M. Davis, 2019) . 

CT scanning employs numerous X-ray beams and a set of electronic X-ray detectors 

which rotate around the patient, measuring the amount of radiation being absorbed 

throughout the body. A large volume of data is processed and creates 2D cross-sectional 

images of the body referred to as slices which are reassembled by computer software to 

produce a detailed multidimensional view of the body's anatomy. 

Accurate, efficient, and automatic methods for liver segmentation are demanded because 

traditionally the radiologists and physicians have to manually delineate the liver region 

slice by slice, which is tedious and time-consuming due to a large amount of data 

(Nakayama et al., 2006). There are several clinical applications for automatic liver 

segmentation such as measuring the graft volume before living donor liver 

transplantations(Hermoye et al., 2005) , locating vessels and tumors, it also useful to 

monitor patients with liver metastases, where the disease is related to an enlargement of 

the liver, and it plays an important role in surgery planning where it is the most time- 
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consuming step (Heimann, Wolf and Meinzer, 2006). Information about precise size for 

liver, localize the tumors and accurate liver surface segmentation  required in liver local 

treatment (Massoptier and Casciaro, 2008) 

In the last few decades, a large variety of semiautomatic and fully automatic approaches 

have been proposed to improve the liver segmentation procedure, such as region 

growing, clustering, deformable models or level sets, statistical shape models (SSMs), 

probabilistic atlases, graph cuts and recently, deep convolution neural networks 

(Nakayama et al., 2006) (Litjens et al., 2017). Because of the complexity of liver shapes 

and variable liver sizes among patients, the segmentation of the liver from medical 

images is very difficult and also due to low contrast between the liver and the 

surrounding organs like stomach, pancreas, kidney ,and muscles (Zhang et al., 2010). 

Moreover, challenge is the presence large tumors and other liver pathologies because the 

livers with pathologies are different from healthy ones and that may result either under- 

segmentation or over-segmentation.  

Recently, deep learning has achieved state-of-the-art performance in medical image 

analysis (Lakhani et al., 2018). Deep learning techniques have been applied to medical 

image analysis  to let computers learn the features that optimally represent the problem 

data at hand (Litjens et al., 2017). The main applications that deep learning techniques 

are used for are classification, detection ,and segmentation (Mazurowski and Buda, 

2018). Within classification, deep learning techniques have been used for image 

classification where an image is taken as input and a single output is produced stating 

which class the image belongs to. Another application is object or lesion classification. 

The use of deep learning for object, region, and landmark localization in CAD, entails 

finding a region, object, or lesion of interest, which forms a key part of a diagnosis. 

Segmentation of an organ or its substructures allows for quantitative analysis which may 

lead to empirical medical findings to the organ of interest. An example of this is the 

segmentation of lesions which play an important role in the diagnosis and prognosis of 

diseases and abnormalities. Other applications are image registration, content-based 

image retrieval, image generation, and enhancement as well as combining image data 

with reports. 
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The organ of interest in this research work is the liver. The focus is on segmenting the 

liver from abdominal CT scans. Segmentation of the liver from these CT scans plays an 

important role in the study of liver functions and can assist in the diagnosis of liver 

diseases. Accurately detecting and delineating the liver separates the liver from its 

surrounding organs and isolates it for intricate analysis (Gotra et al., 2017). Segmenting 

the liver may reduce the computation time required in the analysis as the liver only 

occupies a portion of the abdominal CT scan. Accurate liver segmentation ensures that 

the whole liver is analyzed and the surrounding organs and tissues are eliminated from 

the region of interest. Inspired by the use of deep learning and its success in organ 

segmentation, two automatic segmentation models using convolutional neural networks 

for liver segmentation are proposed in this research work. Wikipedia defines the 

convolutional neural network as: "a convolutional neural network (CNN or ConvNet) is 

a class of deep neural networks, most commonly applied to analyzing visual imagery". 

They have applications in image and video recognition, recommender systems, image 

classification, medical image analysis, natural language processing, and financial time 

series. 

1.2 PROBLEM STATEMENT 

Liver segmentation is an essential task in oncological therapy monitoring and radio 

therapeutic treatment where tumor information is vital for correct dosimetry calculations 

(Wong et al., 2008). Typically, this has been manually done by trained clinicians but it is 

time-consuming and requires much effort, and also it subjective because of observer 

variability; as a result of that, an automatic liver segmentation system would thus be a 

great boon for performing these tasks. The existence of tumors in the liver poses further 

difficulty. The tumor should be segmented as part of the liver and show affected parts 

and healthy parts of the liver. Each method has challenges; either depends on training 

examples which could be computationally expensive or depending on the experience 

level of the users (Peng, Zhang and Yang, 2010) which could be observer variability. 

Until now there is still a gap in the process of liver segmentation because none of the 

current research work achieves a hundred percent of accuracy. Bridging this gap is an 

open research problem. 
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1.3 RESEARCH OBJECTIVES 

The main objective of this work is to propose a model for liver segmentation using deep 

learning techniques in particular U-net architecture to enhance the accuracy of 

Automatic Liver Segmentation process. Deep learning techniques have gained 

significant attention for solving computer vision tasks such as object recognition, 

classification, and segmentation (Long, Shelhamer and Darrell, 2015)  The proposed 

method is considered as a binary labelling problem which assigning the labels to each 

voxel in the original image into either belonging to the liver or not, and it will be carried 

out by using a convolutional neural network; resulting in a probability map which it 

identifying the initial liver surface. Therefore, the particular objectives pursued in this 

work include the following: 

1. To conduct a thorough survey of the state-of-the-art of liver segmentation. 

2. To build a model for automatic liver segmentation using deep learning. 

3. To compare the results of the model with other similar model.  

1.4 MOTIVATION 

 Despite the vast amount of research available on the techniques explored to achieve 

accurate liver segmentation, it seems challenging to develop methods that will achieve 

higher accuracy rates. Many successful methods have been proposed however; they 

have their advantages as well as disadvantages. Different types of techniques exist such 

as Classical-based methods and learning-based methods. Classical-based methods which 

include region growing, graph-cut and level set methods, they have a drawback in that 

they need user interaction, more refinement, and may be sensitive to initial contours (Hu 

et al., 2016a). It stem from the fact that they are mainly based on gray-level information.   

 

learning-based methods which include CNNs. Examining the learning-based methods, 

either a series of 2D slices of the CT scan or a while 3D CT scan volume is fed as input 

into the neural network models in current methods. Generally, they are lacking in the 

size of the dataset and some techniques fail to segment special cases due to the complex 

liver shape, so there are needs for more accurate model to enhance the accuracy of liver 

segmentation process. 

 



6 

 

1.5 CONTRIBUTIONS OF THE RESEARCH 

The main contributions of this dissertation are the implementation of two models for 

liver segmentation with two different datasets. These contributions are described as 

follows:  

 

 We introduce an enhance Unet model for automatic segmentation of the liver 

using CT scans on MICCAI and 3Dircadb datasets. This was achieved by using 

network 19 convolution layers, 18 BatchNormalization layers, and 4 max-pooling 

layers, 4 concatenate layers, 4 dropout layers, and 4 Transposed convolution 

layers (Deconvolution layer) as well as a softmax layer. 

 

 We show a quantitative assessment of the segmentation results based on metrics: 

Dice Similarity Coefficient (Dice), Volume Overlap Error (VOE), Relative 

Volume Difference (RVD), Average Symmetric Surface Distance (ASD), And 

Maximum Surface Distance (MSD) 

 

 This thesis provides a comparative analysis between the proposed Unet-model 

with some other work results. 
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1.6 RESEARCH ORGANIZATION 

The organization of the following chapters in this research is as follows: 

Chapter 2: Deep learning: presents definitions of the deep learning and convolutional 

neural networks (convnet). 

 

Chapter 3: Literature Review: This chapter investigates background clinical background 

on the liver and related work to the current methods of liver segmentation. 

  

Chapter 4: Liver Segmentation Model: presents the idea and implementation of the 

proposed model and the details of it. 

Chapter 5: Results And Discussion: presents and discuss the research results of the 

model and compare it with some other related works. 

Chapter 6: Conclusion and Future Work 
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CHAPTER 2  

DEEP LEARNING 

2.1 INTRODUCTION 

Deep learning is a specific subfield of machine learning. In this chapter, we define deep 

learning and how it works and defines what is the Convolutional neural networks 

(ConvNets). Deep Learning is a new area of Machine Learning research, as seen in 

Figure 2.1 that explains the relationship between artificial intelligence, machine 

learning, and deep learning (Chollet, 2011).  

 

Figure2. 1: Relation between the AI, ML and DL 
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2.2 MACHINE LEARNING 

Machine learning is aim to discover rules to execute a data-processing task, it 

transforms its input data into meaningful outputs, a process that is “learned” from 

publicity to known samples of inputs and outputs. Consequently, the central problem in 

machine learning and deep learning is to meaningfully transform data: to learn useful 

representations of the input data at hand, these representations get us closer to the 

predicted output. All Machine-learning models are focused on data transformation 

which is finding appropriate representation for input data. 

 

2.3 DEEP LEARNING 

Deep learning is a new subfield of machine learning that admits to learning 

representations from data that puts an emphasis on learning successive layers of 

increasingly meaningful representations. There is no longer a need for the term “just 

like our minds” which hypothetical links between deep learning and biology.  Deep 

learning is a mathematical framework for learning representations from data (Chollet, 

2011).  

Liu, Tianyi also define Deep learning as it refers to a subfield of machine learning that 

is based on learning levels of representations, corresponding to a hierarchy of features, 

factors, or concepts, where higher-level concepts are defined from lower-level ones, 

and the same lower-lever concepts can help to define many higher-lever concepts. Deep 

learning is learning multiple levels of representation and abstraction, which helps to 

understand the data such as images, audio, and text. The concept of Deep Learning 

comes from the study of Artificial Neural networks; Multilayer Perceptron which 

contains more hidden layers is a Deep Learning structure (Liu et al., 2015) 

Deep learning is a type of machine learning in which a model learns to perform 

classification tasks directly from images, text, or sound, it is usually implemented using 

neural network architecture, and the term “deep” refers to the number of layers in the 

network. Traditional neural networks contain only 2 or 3 layers, while deep networks 

can have hundreds (Mathworks, 2017). 
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The representations learned by a deep-learning algorithm look like in Figure 2.2, which 

explains how the layers represent the image. The network transforms each image into 

representations that are increasingly different from the original image and increasingly 

informative about the final result. So, we can think of a deep network as a multistage 

information distillation operation, where information goes through successive filters 

and comes out increasingly purified.  So deep learning is a multistage way to learn data 

representations. 

  

 Figure2. 2: Representations Learned By Deep-Learning 

To explain how deep learning works, we can visualize it as seen in Figure 2.3, which is 

composed of layers that are chained together which maps the input data to predictions. 

Then, the loss function compares these predictions to the targets, producing a loss 

value: a measure of how well the network‟s predictions match what was expected. The 

optimizer uses this loss value to update the network‟s weights; which is called the 

Backpropagation algorithm: the central algorithm in deep learning. 
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 Figure2. 3: How Deep Learning Work  

Deep learning has several properties that justify its status as an AI revolution. These 

important properties can be:  

1. Simplicity: Deep learning removes the need for feature engineering, replacing 

complex, brittle, engineering-heavy pipelines with simple, end-to-end trainable 

models that are typically built using only five or six different operations 

 

2. Scalability: Deep learning is highly amenable to parallelization on GPUs or 

TPUs. In addition, deep-learning models trained by iterating over small batches 

of data, allowing them to trained on datasets of arbitrary size.   

 

3. Versatility and reusability: deep-learning models can train on additional data 

without restarting from scratch, making them viable for continuous online 

learning. Furthermore, trained deep-learning models are re-purposely and thus 

reusable: for instance, it is possible to take a deep-learning model trained for 

image classification and drop it into a video processing pipeline. This allows us 

to reinvest previous work into increasingly 

 

 

 



12 

 

 

2.3.1 CONVOLUTIONAL NEURAL NETWORK 

Convolutional networks are also known as convolutional neural networks (convnet or 

CNNs) are a specialized kind of neural network for processing data that has a known, 

grid-like topology. Examples include image data, which can be thought of as a2D grid 

of pixels, and time-series data, which can be thought of as a 1D grid taking samples at 

regular time intervals. The name "convolutional neural network" indicates that the 

network employs a mathematical operation called "convolution" which is a specialized 

kind of linear operation. So we can define the Convolutional networks as are simply 

neural networks that use convolution in place of general matrix multiplication in at 

least one of their layers. Convolutional networks have been tremendously successful in 

practical applications and have shown excellent performance in many computer vision, 

machine learning, and pattern recognition problems (Goodfellow Ian and Courville 

Aaron, 2019). (Mathworks, 2017), they define the convolutional neural network 

(ConvNet) as one of the most popular algorithms for deep learning with images and 

video. Like other neural networks, it's composed of an input layer, an output layer, and 

many hidden layers in between. 

 

 

2.3.1.1 CONVNET ARCHITECTURE 

ConvNets are designed to process data that come in the form of multiple arrays, for 

example, a colour image composed of three 2D arrays containing pixel intensities in the 

three colour channels. Many data modalities are in the form of multiple arrays: 1D for 

signals and sequences, including language; 2D for images or audio spectrograms; and 

3D for video or volumetric images. There are four key ideas behind ConvNets that take 

advantage of the properties of natural signals: local connections, shared weights, 

pooling, and the use of many layers. (Lecun, Bengio and Hinton, 2015) 
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A Convolutional Neural Network (ConvNet) architecture shown in Figure 2.4, it 

typically has convolutional layers combined with pooling (or sub-sampling) layers and 

then followed by fully connected layers as in a standard. is designed to better utilize 

such spatial and configuration information by taking 2D or 3D images as input (Hung-

Il, 2017). 

 

 Figure2. 4: ConvNet Architecture  

Convnet has two main operations: convolution operation and sampling operation as 

shown in Figure 2.5. The Convolution operation: use a trainable filter Fx, 

deconvolution of the input image to output with the feature image of each layer, namely 

Feature Map, then it adds a bias bx, we can get convolution layer Cx. A sampling 

operation: n pixels of each neighborhood through pooling steps, become a pixel, and 

then by scalar weighting     Wx + 1 weighted, add bias bx + 1, and then by an activation 

function, produce a narrow n times feature map Sx + 1 (Liu et al., 2015). 

 

 Figure2. 5: Convnet Operations  
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(Mathworks, 2017), they divide the layers of ConvNet into two types: Feature 

Detection Layers and Classification Layers. The Feature Detection Layers are 

performing one of three types of operations on the data: convolution, pooling, or 

rectified linear unit (ReLU). These three operations are repeated over tens or hundreds 

of layers, with each layer learning to detect different features.  

1-  The convolution layer computes the output of neurons that are connected to local 

regions or receptive fields in the input, each computing a dot product between their 

weights and a small receptive field to which they are connected to in the input 

volume (Albawi, Mohammed and Al-Zawi, 2018). Each computation leads to 

extraction of a feature map from the input image, as shown in Figure2. 6. 

 

 

 

                 Figure2. 6: 2D convolution process on input volume (7x7x3) 
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In other words, visualise you have an image represented as a 5x5 matrix of values, 

and you take a 3x3 matrix and slide that 3x3 window or kernel around the image. 

At each position of that matrix, you multiply the values of your 3x3 window by the 

values in the image that are currently being covered by the window. As a result, 

we'll get a single number that represents all the values in that window of the 

images. You use this layer to filtering: as the window moves over the image, you 

check for patterns in that section of the image. This works because of filters, which 

are multiplied by the values outputted by the convolution. 

 

One of the drawbacks of the convolution step is the loss of information that might 

exist on the border of the image. Because they are only captured when the filter 

slides, they never have the chance to be seen. A very simple, yet efficient method 

to resolve the issue is to use zero-padding. The other benefit of zero padding is to 

manage the output size. For example, in Figure2. 7, with N=7 and F=3 and stride 1, 

the output will be 5×5 which shrinks from a 7×7 input. (Albawi, Mohammed and 

Al-Zawi, 2018). 

 

 

Figure2. 7: the Zero-padding process 
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2- The Pooling layer simplifies the output by performing nonlinear downsampling to 

reducing the number of parameters that the network needs to learn about. The 

objective of subsampling is to get an input representation by reducing its 

dimensions, which helps in reducing overfitting. One of the techniques of 

subsampling is max pooling. With this technique, we select the highest pixel value 

from a region depending on its size. In other words, max-pooling takes the largest 

value from the window of the image currently covered by the kernel. For example, 

you can have a max-pooling layer of size 2 x 2 that will select the maximum pixel 

intensity valuze from the 2 x 2 region as shown Figure 2.8. The only difference 

between the pooling layer and the convolution layer is the function that is applied 

to the kernel and the image window isn't linear. 

 

 

Figure2. 8: The Pooling layer 

 

3- Rectified linear unit (ReLU) allows for faster and more effective training by mapping 

negative values to zero and maintaining positive values.  
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After feature detection, the architecture of a CNN shifts to classification. The next-to-

last layer is a fully connected layer (FC) that outputs a vector of K dimensions where K 

is the number of classes that the network will be able to predict. This vector contains 

the probabilities for each class of any image being classified. The final layer of the 

CNN architecture uses a softmax function to provide the classification output. 

The objective of the fully connected layer is to flatten the high-level features that are 

learned by convolutional layers and combining all the features. It passes the flattened 

output to the output layer where you use a softmax classifier or a sigmoid to predict the 

input class label. 

 

2.4 EVALUATION METRIC  

The two models are evaluated during training and after training. During the training, 

training and validation errors (loss) are used to evaluate the network. After training the 

model, the networks are used to segment the liver. Thereafter, the resulting segmented 

images are evaluated using some popular and well-approved evaluation metrics in the 

field of medical image processing including the Dice Similarity Coefficient (Dice), 

Volume Overlap Error (VOE), Relative Volume Difference (RVD), Average Symmetric 

Surface Distance (ASD) And Maximum Surface Distance (MSD) (Seo et al., 2020).  

Dice Similarity Coefficient (Dice): is a statistic that measures the similarity and overlap 

between two samples A and B. where A is stand for the segmentation results achieved. 

And B stands for the ground truth segmentation. The performance index ranges from 

zero to one with an index zero signifying no overlap between A and B  while index one 

signifies a perfect overlap between them. Equation (2.1) defines Dice. 

      
   

| | | | 
                                           (2.1) 

Volume Overlap Error (VOE): VOE is a type of error measurement usually expressed in 

percentage. VOE is calculated as the ratio of the intersecting area between the 

segmentation volume and the ground truth volume as shown in Equation (2.2). This 

calculates the percentage of regions where the two volumes do not overlap with each 

other. A perfect segmentation produces an overlap error percentage of 0.  
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       (    
   

    
)                                             (2.2) 

 

Relative Volume Difference (RVD): the relative volume difference is the percentage of 

the difference between the segmentation volume and the ground truth volume. The value 

is in the range of [-1, +1]. The perfect segmentation produces a 0 percent. The Negative 

values suggest that the segmentation result is smaller than the ground truth which 

denotes under-segmentation whereas positive values suggest that the segmentation result 

is larger than the ground truth denoting over-segmentation.it is calculated by using 

Equation (2.3).    

       ( 
| | | |

| | 
)                                         (2.3) 

 

Average Symmetric Surface Distance (ASD): The average symmetric surface distance is 

calculated in millimeters using Equation (2.4).   For a perfect segmentation, this distance 

is 0. Let us consider S (A) as a set of surface voxels of A and S (B) as a set of surface 

voxels of B. The shortest distance of a voxel in S (B) to S (A) is defined as d (S; S(A)) 

and a voxel in S(A) to S(B) is defined as d(S; S(B)). 

     
 

| ( )| | ( )| 
 ∑  (     ( ))         ( )

∑  (    ( ))       ( )              (2.4) 

 

Maximum Surface Distance (MSD): MSD is the surface-based evaluation method and 

it's calculated between the segmentation volume and the ground truth volume in 

millimeters as in Equation (2.5). Unlike average in ASD, in MSD the maximum distance 

is taken. Let us consume that the A is the segmented volume, B is the ground truth 

volume, S (A) is the set of surface voxels of A, S(B) is the set of surface voxels of B. 

The distance of a voxel in S(B) to S(A) is defined as d(SB; S(A)) and the distance of a 

voxel in S(A) to S(B) is defined as d(SA; S(B)). For a perfect segmentation, this 

distance is 0.  

              ( )(     ( ))            ( )  (    ( ))                     (2.5) 



19 

 

CHAPTER 3  

LITERATURE REVIEW 

3.1 INTRODUCTION 

 This research focuses on the localization and segmentation of the liver in abdominal CT 

scans using deep learning through the implementation of two convolutional neural 

networks. Various methods have been proposed to achieve liver segmentation however; 

many of the existing techniques have some kind of limitation (Lu et al., 2016). There are 

interactive methods, semi-automatic methods as well as automatic methods. Interactive 

methods are dependent on user input to perform liver segmentation whereas automatic 

methods can perform liver segmentation independently of user input. 

 Liver segmentation methods can be categorized as anti-learning-based methods, 

classical learning-based methods, and deep learning methods. In the most recent work 

done in liver segmentation, the use of deep learning is very popular for feature 

extraction (Litjens et al., 2017). To gain a better understanding of how to choose an 

efficient technique for liver segmentation, it is important to have some knowledge about 

the liver anatomy and its appearance in CT scans. It is also important to conduct a study 

of related literature. In this chapter, the anatomy of the liver and the abdominal CT scan 

are briefly introduced, related literature regarding liver segmentation, and the various 

methods of liver segmentation were discussed. 
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3.2 CLICICAL BACKGROUND ON LIVER 

The liver is one of the largest and vital organs in the human body. It is shaped like a 

cone and is located in the upper right-hand portion of the abdominal cavity, below the 

diaphragm, and above the stomach, right kidney, and intestines. More than 500 bodily 

functions have been associated with the liver and some of them include regulation of 

most chemical levels in the blood, excretion of bile and filtering blood that comes from 

the digestive tract(Johns Hopkins Medicine, 2019).  

The liver consists of four distinct lobes; the left, right, caudate, and quadrate lobes. The 

left and right lobes are the largest lobes and the right lobe is about five to six times 

larger than the tapered left lobe. The small caudate lobe extends from the posterior side 

of the right lobe and wraps around the inferior vena cava while the small quadrate lobe 

is inferior to the caudate lobe and extends from the posterior side of the right lobe and 

wraps around the gallbladder (Barclay, 2019). The liver anatomy is illustrated in Figure 

3.1.  

 

 

 

 

  

Figure3. 1: Human Liver Anatomy 
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The liver is a high variability organ, these variability even increases with many types of 

pathologies. Because of its specific location, the liver is responsible for the highest 

number of functions, and a very important one is to keep the body pure from toxins and 

harmful substances (Dixit and Pruthi, 2014).  The tumor is an abnormal growth or mass 

found in the liver. There are several liver pathologies and most of them are related to 

liver tumors.  Some examples of liver pathologies are liver cancer such as 

Hepatocellular Carcinoma (HCC), Cirrhosis, metastases, fatty liver, and fulminant 

hepatic failure.    

 

When the liver contains a tumor it will be unable to function properly; these tumors can 

be secondary or primary. The primary tumor is that originates in the liver may be 

benign or malignant and the secondary tumor is that has spread to the liver from its 

source of origin in another part of the body. More than 40000 persons per year in the 

world suffer from the liver tumor (Deore, 2014).  The liver is a challenging organ for 

surgery and requires preoperative planning before any liver operation because of: 

highly shape variations of the liver, inhomogeneous appearances, liver pathologies, 

liver tumors especially that reside near the boundary, liver subregions, fuzzy 

boundaries, and low contrast between liver and surrounding tissues. 

 

3.3 CT IMAGE 

 3D imaging techniques have made a generous contribution in medicine in areas such as 

visualization, analysis, and diagnostics. Computed Tomography (CT) scans are 

commonly used for scanning large areas of the body. In this dissertation, the types of 

CT used are abdominal CT scans which are used to view the anatomical structures 

within the abdominal cavity. A beam of X-rays is aimed and rotated around the body to 

generate individual slices called tomographic images. These tomographic images 

contain more detailed information than conventional X-rays because they gather detail 

from multiple angles (Abdominal and Pelvic CT, 2018).  
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During the scan, different body parts absorb the X-rays in varying degrees and it is this 

crucial difference in absorption that allows the body parts to be distinguished from one 

another on an X-ray film or CT electronic image. A series of slices are produced and 

these can be viewed in two ways, either as individual slices or they can be stacked to 

produce an image volume. The abdominal CT scan can be viewed from the axial view, 

sagittal view or coronal view. The slices in this study are from the axial view. The 

different CT views are showed in Figure 3.2. 

 

 

Figure3. 2: Liver in abdominal CT scan 
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3.4 LIVER SEGMENTATION METHOD  

 Liver segmentation is aim to divide the pixels of the image depending on certain 

criteria into two groups: pixels that belong to the object of interest (liver) and the rest of 

pixels that don't belong to the liver. Because of the complexity of liver shapes and 

variable liver sizes among patients, the segmentation of the liver from medical images 

is very difficult and also due to low contrast between the liver and surrounding organs 

like the stomach, pancreas, kidney, and muscles (Hermoye et al., 2005). Moreover, the 

challenge is the presence of tumors and other liver pathologies because the livers with 

pathologies are different from healthy ones, and that result either under segmentation or 

over-segmentation.  

In the last few decades, a large variety of semiautomatic and fully automatic 

approaches have been proposed to improve the liver segmentation procedure, such as 

region growing, clustering, deformable models or level sets, statistical shape models 

(SSMs), probabilistic atlases, graph cuts and recently, deep convolution neural 

networks (Heimann, Wolf, and Meinzer, 2006)(Massoptier and Casciaro, 2008a). There 

are many efforts to survey the methods for liver segmentation and each one of them 

divides and categories the methods based on the different points of view, such as in 

(Litjens et al., 2017); they divide the automatic liver segmentation methods according 

to the image feature it works on, into three main classes including gray level based 

method, structure-based method and texture-based method as shown in Figure 3.3. 
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Figure3. 3: Liver Segmentation Methods Categorizing   

 

The various algorithms used for liver segmentation can be categorized depending on 

the degree of automation into three groups: automatic methods, semiautomatic 

methods, and interactive methods (Massoptier and Casciaro, 2007a). Also the 

algorithms can be categorized into two groups: propagation approaches based on 2D 

slices and direct 3D. Generally, 3D segmentation-based methods can be classified into 

two classes: image-based and prior model-based (Hu et al., 2016a).  

Some examples for image-based methods are region growing, thresholding, level-set-

based methods, graph-cut-based methods, and others (Wu et al., 2016c). The graph cuts 

based methods are numerously treated problems in computer vision, such as 

regularization and denoising (Boykov, Veksler and Zabih, 1998) (Boykov, Veksler and 

Zabih, 2001), segmentation (Boykov and Kolmogorov, 2003)(Boykov and Jolly, 

20010)(Rother, Kolmogorov and Blake, 2004) (Shi and Malik, 2000). 
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Recently, deep learning techniques are also used to solve the segmentation problems 

(Long, Shelhamer and Darrell, 2015)(Ronneberger, Fischer and Brox, 2015)(Çiçek et 

al., 2016)(Milletari et al., 2017). 

 

3.5 SEMIAUTOMATIC AND FULLY AUTOMATIC 

APPROACHES  

Many semiautomatic and fully automatic approaches have been proposed to improve 

the liver segmentation procedure some of them use a Classical Based method for 

segmentation and other one-use deep learning techniques for segmentation which are 

summarized in Table 3.1 and Table 3.2, respectively. 

3.5.1 CLASSICAL METHOD FOR LIVER SEGMENTATION    

 A novel method was proposed in (Wu et al., 2016a) for automatic segmentation of the 

liver using super voxel-based graph cuts. They automatically extracted the Liver 

Volume of Interest (VOI) and the foreground/background seed points for graph cuts. 

Firstly, they were determining the region of the abdomen by using the Maximum 

Intensity Projection (MIP) and thresholding methods. And extract the specific liver 

VOI from the region of the abdomen according to prior knowledge about locating of 

liver organ and by using a histogram-based adaptive thresholding method and 

morphological operations. They generated the super voxels of the liver VOI by using 

the Simple Linear Iterative Clustering (SLIC) method. Secondly, 

foreground/background seeds for graph cuts were selected on the largest liver slice, and 

the graph cuts algorithm was applied to the VOI super voxels.    

A single-block linear detection algorithm (SBLDA) for automatic liver segmentation 

from abdominal CT images was proposed in (Huang et al., 2016) they successfully 

reveal satisfactory segmentation results in abdominal CT images with low contrast, also 

it decreases the computational time because it does not require iteration and 

initialization. Mainly their proposed method consists of three major parts: image pre-

processing, liver edge extraction with SBLDA, and image post-processing.  
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They compared their proposed algorithm with Shi‟s method (MLR-SSC); where their 

method is not affected by initial shapes and saves considerable runtime, on the 

contrary, Shi‟s method is affected by initial shapes which result in leading to significant 

segmentation error.   

 The authors (Peng et al., 2015) proposed a novel 3D liver segmentation method based 

on multi-region appearance and graph cuts approach to reducing user interaction and 

improving the accuracy and efficiency. The liver could contain tumor or metastasis 

which results in the liver with multiple sub-regions, for such a case they introduced a 

novel multi-region-appearance model and appearance selection scheme to segment the 

target multi-region object. The graph cuts approach was used to optimize the proposed 

energy function. They had compared their work with other graph cuts-based methods, 

state-of-the-art semiautomatic and interactive methods, and prior model-based methods. 

They found that the proposed model needs only initial seeds in the liver when 

compared with the other graph cuts methods and it required low interactive compared 

with the other semiautomatic and interactive methods and also the proposed model can 

be applied to livers with any shape because it was not restricted by specific training 

data when compared with prior model-based methods.  

Liver tumors detection and segmentation method were developed in (Huang et al., 

2013), using the fast learning algorithm Extreme Learning Machine (ELM). A two-

class ELM classifier was used to detect and segment the suspicious region of the tumor 

which firstly was learned for voxel classification using the tumor/non-tumor samples 

selected by the user, followed with erosion and dilation operation to morphological 

smoothing. They also proposed one-class ELM for tumor detection where the user only 

needs to select healthy liver samples; and compared them with two-class ELM. A semi-

automatic approach is used to extract the boundary of a tumor by randomly selecting 

samples within a limited region of interest for classifier training where each voxel is 

associated with set features such as entropy, Law‟s features, and sum-and-difference 

histograms. Their proposed kernel-based ELM achieves encouraging results when 

compared with traditional ELM, and is also faster than SVM. And because of the 

available more tumor information in two-class ELM; it had shown a relatively higher 

accuracy when compared with one-class ELM, but not in the case of an unknown 

tumor. 
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 A Fully automatic CT liver segmentation using a novel statistical shape model 

approach was presented by (Erdt et al., 2010) that combines learned local shape 

constraints with observed shape deviation during adaptation.  

(Massoptier and Casciaro, 2008a), Presents a new hybrid fully automatic method for 

fast segmentation of the liver and the lesions inside the liver by using a statistical 

model-based approach and active contour technique. There is no required interaction 

with the user. The role of the statistical model approach was to distinguish the liver 

tissue from other surrounding abdominal organs. On the other hand, the active contour 

technique is used in order to obtain more natural and smoother liver surface 

segmentation.  They compared the length of processing time of their work and the 

accuracy with a manual contour-drawing approach made by an expert radiologist who 

delineated each liver slice using a public-domain image processing program (ITK-

SNAP).  The assessment expressed a good result but the algorithm faced some 

limitations in special pathological and anatomical situations, such case is when the 

heart and the liver were in close contact, so difficult to distinguish the limit between 

these two organs, as a result of that part of the heart included into the liver 

segmentation. 

A semi-automatic method to identify tumors from 3D CT scans based on 2D region 

growing with knowledge-based constraints was proposed by (Wong et al., 2008). 

Firstly, they decompose the 3D scan image into component slices. Then, they apply 2D 

region growing with knowledge-based constraints on each slice. Finally, they load up 

the individual segmented lesions together to generate a 3D volume. The region-growing 

approach is used to calculate the seed point and feature vectors and also to label the 

voxels. The Knowledge-based constraints were used to ensure that the segmented 

region size and shape are within acceptable parameters. The method required minimal 

user involvement in order to define an approximate region of interest around the lesion 

in each slice image which improved the performance of region growth, as well as 

reduced computational requirements.   

A supervised learning algorithm for liver segmentation in CT image is presented in 

(Seghers et al., 2007), which is the minimal cost path segmentation method; and also it 

is similar to Active Shape Model segmentation methods in the sense that it models the 

object as a set of landmarks (vertices) and connections between neighboring landmarks 
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(edges), but it differs in applying multiple local shape models instead of using a global 

shape model. For the local shape and gray-level appearance, statistical models were 

built based on a set of training images and corresponding surface meshes. The proposed 

work demonstrates the potential of segmenting the liver in contrast-enhanced CT 

images when validated in the first implementation and it participated in the Grand 

Challenge on 3D segmentation (MICCAI 2007). 

Lipková et al. propose an unsupervised method for liver lesions segmentation using a 

phase separation approach (Lipková et al., 2017). They were depending on assumption 

that the liver is a combination of two parts: healthy liver and lesions, represented by 

dissimilar image intensities polluted by noise. To remove this noise and also to separate 

the liver part into two distinct phases with well-defined interfaces they used the Cahn-

Hilliard separation (CHS) method. The 3Dircadb and LITS dataset was used to test the 

proposed method. 

A semiautomatic method based on improved fuzzy C-means (FCM) and graph cuts was 

proposed by Wu et al for liver tumor segmentation in CT images (Wu et al., 2017). 

Their algorithm consists of two major steps: first, the tumor volume of interest (VOI) is 

extracted using a confidence-connected region growing algorithm to reduce 

computational cost. Then, initial foreground/background regions were labeled 

automatically, and a kernelized FCM with spatial information was incorporated in 

graph cuts segmentation to increase segmentation accuracy. They evaluate their work 

on the public clinical dataset (3Dircadb) and achieved an accurate result for 3D liver 

tumor segmentation with a reduction of processing time. 

An application of minimal surfaces and Markov random fields to the segmentation of 

liver tumors were presented in (Stawiaski et al., 2017) (Stawiaski et al., 2017). They 

were using a region graph instead of a pixel graph in applying these models which 

leads to an interactive method used to segment tumors in 3D CT. their strategy 

depended on the manual definition of a sub-volume containing one or more tumors that 

need to be segmented based on simple observation which is: the liver presents two 

types of tissues: tumoral and healthy tissues to classification the liver pixels they were 

model the liver pixels as a Markov Random Field and the classification is performed 

through the maximum a posteriori estimation. But this classification step is supervised 

by a user in defining the markers that specify both tumoral and healthy tissues. These 



29 

 

markers are used to locate the tumors and to estimate the grey levels characteristics of 

these structures. However, the extracted liver boundaries are needs also in the liver 

classification. This is done by computing a minimal surface based on user defined 

markers. So finally the user has to specify this information: normal liver tissues, 

tumoral tissues, and external tissues surrounding the liver if necessary. Have compared 

their work with the radiologist's segmentation on a set of 5 CT images presenting 10 

tumors and found that the mean surface distance between their segmentations and the 

radiologists is approximately 1.5 mm. approximately 71 % of their segmentations is in 

perfect match with the radiologist's segmentation. The total mean score obtained on the 

training data set was equal to 88. And the computation time needed for the tumor 

segmentation is approximately equal to five, up to eight minutes. 

Table 3. 1: Classical Based methods for liver Segmentation 

Authors Year Used Method Datasets Result 

 

 

 

W. Wu 

et al. 

 

 

2016 

Supervoxel Based 

Graph Cuts 
Sliver07 

VOE = 7.87% 

RVD = 1.31% 

ASD = 1.286 mm 

RMSD = 2.498 mm 

MaxD = 23.563 mm 

 

L. Huang 

et al. 

 

2016 

Single-Block Linear 

Detection Algorithm 

(SBLDA) 

 

3D-

IRCAD 

sensitivity =96.59% 

accuracy= 98.65% 

specificity = 99.03% 

 

Peng J et al. 

 

 

2015 

 

A Novel Region-

Appearance And 

Graph Cuts. 

MICCAI 

+ 

MICCAI 

2007 

+ 

local 

hospitals 

VOE = 4.58%±0.51% 

RVD = 1.08%±0.80% 

ASD = 0.68±0.14 mm 

RMSD = 1.45±0.36 mm 

MSD = 16.89±3.69 mm 

overall score = 83.4±3.1 

 

W. Huang 

et al. 

 

2013 

fast learning 

algorithm Extreme 

Learning Machine 

(ELM), 

From 

Different 

Hospitals 

mean VO =67.15% 

mean VD =14.16% 

mean ASD =2.27mm 

mean RMSD=2.47mm 

mean MSD= 8.46mm 

 

Erdt et al. 
2010 

 

learned local shape 

constraints with 

observed shape 

deviation 

 

3D-

IRCAD 

average mean surface 

distance =1.3---1.85 mm 

processing time =45 s 



30 

 

Authors Year Used Method Datasets Result 

 

Massoptier 

 et al. 

 

2008 

 

Statistical Model-

Based Approach And 

Active Contour 

Technique 

 

From 

Different 

Hospitals 

VO = 94.2% 

Sensitivity= 82.6% 

specificity =87.5%, 

accuracy of liver surface 

segmentation = 3.7 mm 

 

D. Wong 

 et al. 

 

2008 

2D region growing 

with knowledge-based 

constraints 

From 

Different 

Hospitals 

Ave Overlap Error =39.40 % 

AVD= 24.20% 

ASD=2.20mm 

RMSSD =3.02mm 

MSD=12.69mm 

Total Score =64 

Seghers et al 2007 
Supervised Learning 

Algorithm 

 

Sliver07 

 

The method has potential to 

result validated segmentation 

Lipková et al 2017 
Cahn-Hilliard 

separation (CHS) 

3Dircadb 

and LITS 

Dice = 0:61     

Sensitivity =0:64   

Specificity =0:99   

Precision    =0:65  

Detection   =0:73 

Wu et al 2017 
fuzzy C-means 

(FCM) and graph cuts 
3Dircadb 

VOE =29.04%  

RVD = 2.20% 

ASD =0.72 mm 

RMSD  =1.10 mm 

MaxD = 4.25 mm 

DICE =  0.83 

Stawiaski 

et al 
2017 

graph-cuts and a 

watershed 

Sliver07 

 

VOE =29.49  %  

RVD =  23.87 % 

ASD = 1.50  mm 

RMSD  =2.07  mm 

MaxD =8.29 mm 
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3.5.2 DEEP LEARNING TECHNIQUES FOR LIVER 

SEGMENTATION 

A fully automatic framework was proposed for liver segmentation based on a 3D 

convolutional neural network (CNN) and globally optimized surface evolution (Hu et 

al., 2016a). Firstly, the deep 3D CNN gives the initial liver surface after it was trained 

to learn a subject-specific probability map of the liver. Then, refining the initial liver 

segmentation by using the prior information about novel energy function; finally, 

propagated the initial liver surface to the optimal position by minimizing the energy 

function using a global optimization-based approach. 

Lu et al. develop a fully automatic liver segmentation framework without any user 

interaction (Lu et al., 2016). This combines a deep learning algorithm and graph cut 

approach; mainly their framework consists of two main steps: (1) liver detection and 

segmentation using convolutional neural networks(CNN) model which is used to learn 

the liver likelihood map to automatically identify the liver surface. (2) Refinement the 

initial liver segmentation from the first step by incorporating the learned liver 

probability map into a graph cut model. To evaluate their framework they use 40 

contrast-enhanced CT volumes from two public databases MICCAISliver07 and 

3Dircadb. They found that their framework can increase the efficiency of the physician. 

Christ et al. present a combined automatic segmentation of the liver and its lesions in 

CT and MRI abdomen images using two cascaded fully convolutional neural networks 

(CFCNs) one for the segmentation of the liver and the other for its lesions (Christ et al., 

2017a). They use an abdominal CT dataset comprising 100 hepatic tumor volumes for 

training the CFCN models. In the first step of their work, they pre-processed the 

CT/MRI image with HU-windowing or N4 bias correction. Then in the second step, 

segmenting the liver from abdomen CT/MRI scans using first pertained FCN after that 

they use the output of the last step to be input for a second FCN which segments lesions 

from the given segmented liver ROI. And finally, the last step was the post-processing 

using 3D Conditional Random Field (3D CRF). Their results show that the CFCN 

achieves Dice scores over 94% for the liver with computation times below 100s per 
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volume. And in contrast to prior work, their method could be generalized to segment 

multiple organs in medical data using multiple cascaded FCNs. 

Vivanti et al presented a new automatic algorithm for liver tumor segmentation in 

follow-up CT studies (Vivanti et al., 2015). This method combines a follow-up-based 

detection with CNN-based segmentation where the inputs are a baseline CT scan and a 

delineation of the tumors in it and a follow-up scan and the outputs are delineated 

tumors in the follow-up scan. The presented method consists of registration, deep 

learning, and segmentation. The registration stage begins with automatically computing 

a liver mask using a liver segmentation method that relies on Bayesian classification, 

adaptive morphological operations, and active contours. This segmentation is 

performed for baseline and follow-up scans. Next, an ROI is defined that contains the 

follow-up tumor with high probability. The baseline delineation is transferred to the 

follow-up scan and the follow-up tumor ROI is doubled in each direction to account for 

possible tumor growth. A CNN is used to classify each voxel as being healthy liver or 

tumor. The classification is based on voxel intensities in an axis-aligned square 

centered at the voxel. The segmentation of the ROI is done by classifying all its voxels 

in four steps. First, the trained CNN is run in feed-forward to classify each patch. Then, 

the non-liver voxels are classified as healthy tissue using the liver mask of the follow-

up scan. The experiments were carried out by two metrics: VOE and ASD. The results 

obtained were 16.75% for VOE and 2.05mm for ASD. The overall success rate for this 

method was 90.47%. 

A novel 3D deeply supervised network (DSN) for automatic liver segmentation was 

presented by Dou et al (Dou et al., 2016). This method employs a fully convolutional 

architecture to produce a high-quality score map which is processed further by the 

employment of a conditional random field (CRF) to obtain a refined segmentation. A 

per-pixel-wise binary classification error minimization problem concerning the ground-

truth mask is formulated for the learning of the 3D network. Additional supervision is 

injected into some hidden layers to counteract the effects of gradient vanishing which 

makes the loss back-propagation ineffective in the first few layers. Some lower-level 

and middle-level feature volumes are up-scaled using additional de-convolutional 

layers and then the softmax layer is employed to obtain dense predictions for 

calculating classification errors. Gradients are derived from these branch predictions 
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and the last output layer alleviates the effects of gradient vanishing. Although the 3D 

DSN generates high-quality probability maps, a graphical model is employed to re-new 

segmentation results due to imprecise segmentation in ambiguous regions. A fully 

connected CRF model on the transverse plane is exploited which solves an energy 

function to re-new the segmentation. The MICCAI-SLiver07 dataset was used. This 

method was trained on twenty CT scans and tested on ten CT scans. The learning 

process of the proposed 3D DSN showed that it converges much faster and achieves 

lower training/validation errors than that of a pure 3D CNN. The segmentation results 

achieved were a VOE of 5.42% and an average symmetric surface distance of 0.79mm. 

It can be concluded that the presented framework is effective and efficient and achieves 

competitive segmentation results to state-of-the-art approaches. 

Ben-Cohen et al explored the use of a fully convolutional network (FCN) for liver 

segmentation and liver metastases detection in CT examinations (Avi Ben-Cohen, Idit 

Diamant, Eyal Klang, Michal Amitai2, 2016). They proposed a network architecture 

that has 16 layers where all fully connected layers are converted to convolutions. The 

initial network used is an FCN-8s DAG network which learned to combine coarse, high 

information with fine, low layer information. The addition of a lower level linking layer 

was also explored creating an FCN-4s DAG network. Input images and their 

corresponding segmentation maps are used for training with stochastic gradient descent 

and GPU acceleration. Two networks are trained here, one for liver segmentation and 

the other for lesion detection. The softmax log-loss function was calculated pixel-wise 

with different weights for each pixel class. Two framework variations were used for 

evaluation as well as the initial framework. The segmentation performance was 

evaluated using the Dice index, sensitivity, and positive predicate values (PPV). The 

FCN-8s with 3 slices produced a Dice of 0.89, the FCN-8s produced a Dice of 0.88, 

and the FCN- 36 4s with 3 slices produced a Dice of 0.87. The FCN-8s with 3 slices 

produced the best results with an average sensitivity 0f 0.86 and an average PPV of 

0.95. The lesion detection performance was evaluated using two metrics: true positive 

rate (TPR) and false positive per case (FPC). The dataset used is the MICCAI-SLiver07 

challenge dataset. Here, the FCN-4s with 3 slices performed the best producing a TPR 

of 0.88 and an FPC of 0.74. The method presented here is promising for both lesion 

detection and liver segmentation. However, it should be noted that no significant pre-
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processing or post-processing was implemented which could have improved the results 

achieved by the presented method. 

This study (Chung et al., 2020) introduced a CNN for liver segmentation on abdominal 

computed tomography (CT) images with focusing on the performance of 

generalization. They show high generalization performance and accuracy. They 

proposed an auto-context neural network; it achieved an effective estimation to obtain 

the shape prior. They use a self-supervised contour scheme to extend their network. 

They achieved a better accuracy when compared to the state-of-the-art networks by 

reducing 10.31% of the Hausdorff distance. 

In this paper (Ibtehaz and Rahman, 2020), the authors propose some modifications to 

U-net model architecture by developing a novel model called MultiResUNet which is 

an enhanced version of U-net. The hypothesis was that there was a contradiction 

between the features passed from the encoder network and the features propagating 

through the decoder network and to harmonize these contradictions they proposed 

additional processing called Respaths, also to increase the ability of multi-resolution 

analysis they proposed MultiRes blocks which were inspirations from Inception blocks. 

They test their model using five variety medical image datasets of different modalities. 

The five datasets are Murphy Lab, ISBI-2012, ISIC-2018, CVC-ClinicDB, and 

BraTS17. They had obtained a relative improvement in performance of 10.15%, 5.07%, 

2.63%, 1.41%, and 0.62% respectively. They also experimented with a 3D version of 

MultiResUNet, and it outperforms the standard 3D U-net as well.    

A literature review of medical image segmentation based on U-net was presented by 

(Du et al., 2020). They were focused on the successful segmentation experience of U-

net in six medical imaging systems including computed tomography (CT), magnetic 

resonance imaging (MRI), ultrasound, X-ray, optical coherence tomography (OCT), 

and positron emission computed tomography (PET). There are many kinds of lesion 

regions extracted by this application. Also in this study, they have introduced the 

method of combining the original U-net architecture with deep learning and a method 

for improving the U-net network. They came out that the six imaging systems 

mentioned in their article, are not perfect in some imaging systems. Consequently, it 

needs to be improved in future studies for application in various imaging systems. 
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A new, more powerful deeply-supervised encoder-decoder segmentation architecture 

based on nested and dense skip connections named U-net++ was proposed by (Zhou et 

al., 2018). U-net++ is different from U-net in that the feature maps of the encoder are 

directly received in the decoder in U-net but the U-net++ model makes them undergo a 

nested convolution block. They evaluated their proposed architecture in comparison 

with U-net and wide U-net architectures across four medical imaging datasets including 

lung nodule segmentation, colon polyp segmentation, cell nuclei segmentation, and 

liver segmentation. They came out that U-net++ with deep supervision achieved an 

average IoU gain of 3.9 for U-net and 3.4 points for wide U-net. According to the 

results of their experiments, the proposed architecture in this study was effective, 

yielding significant performance gain over U-net and wide U-net. U-net++ was used in 

comparison in this study (Shrivastava et al., 2020) where it was compared with two 

other deep learning models: CE-Net and MultiResUNet for the segmentation of Corpus 

Callosum in the Brain MRI images. 

Two deep encoder-decoder convolutional neural networks (EDCNN) were constructed 

and trained to cascade segments of both the liver and lesions in CT images in this paper 

(Budak et al., 2020). The first EDCNN was responsible for segmenting the liver image 

which was been input for the training of a second EDCNN; where it then responsible 

for segments the tumor regions within the liver ROI regions as predicted by the first 

EDCNN. To evaluate their performance the proposed EDCNN networks produced an 

average DICE score of 95.22% for the test set of CT images using a public dataset 

(3DIRCADb) and it was compared with some of the existing methods. The 

experimental results demonstrated that the proposed EDCNN achieved improved 

performance in segmentation accuracy over some existing methods. 

Modified U-net (mU-net) network architecture was proposed by (Seo et al., 2020), they 

were dependent on processing an object-dependent upsampling and restructures the 

residual path and the skip connection by combining features in the residual path into 

features in the skip connection. The mUNet is differ from the U-net architecture it 

handles edge information and morphologic information of the objects more effectively 

than the U-net. Furthermore, to extract high-level global features of small object inputs 

the proposed architecture has additional convolution layers in the skip connection.  The 

proposed modified U-Net (mU-net) was evaluated using two public datasets which are 
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Liver tumor segmentation (LiTS) challenge 2017 and 3D Image Reconstruction for 

Comparison of Algorithm Database (3Dircadb). They came out of this result for liver 

segmentation respectively:  DSC of 98.51 %, DSCs was 96.01 % for the liver. 

 Table 3. 2: Deep learning methods for liver Segmentation 

Authors Method 

 

Detailed 

Architecture 

Datasets Result 

 

 

Hu P et al. 

2016 

3D Convolutional 

Neural Network 

(CNN) and 

Globally 

Optimized Surface 

Evolution. 

 

----- 
 

Sliver07   

and 

local 

hospitals 

VOE = 5.35±1.23% 

RVD = - 0.17 ±1.34% 

ASD = 0.84±0.25 mm 

RMSD = 1.78 ±0.56 mm 

MSD = 19.58± 3.07 mm 

overall score = ±80.34.5 

Lu et al., 

2016 

Deep learning 

algorithm and 

graph cut 

 

 

11 conv layer 

 

  2 pool layer 

MICCAI and 

3Dircadb 

For MICCAI-Sliver07 : 

mean VOE =5.9%  

mean RVD =2.7%  

mean ASD  =0.91% 

mean RMSD = 1.88 mm  

mean  MSD= 18.94 mm 

For 3Dircadb  

mean VOE =9.36%  

mean RVD =0.97%  

mean ASD  =1.89% 

mean RMSD = 4.15 mm  

mean  MSD= 33.14 mm 

Christ et al., 

2017 

two cascaded fully 

convolutional 

neural networks 

 

 

----- 
3Dircadb 

Dice=93.1 

VOE=12.8 

RVD=-3.3 

ASD=2.3  

MSD=46.7 

Vivanti et 

al,2015 

 

convolutional 

neural networks 

 

 

----- 

From 

different 

patient 

VOE =16.75% 

ASD=2.05mm  

overall success rate for 

this method was 90.47% 

Dou et al, 

2016 

A novel 3D deeply 

supervised 

network (DSN) 

 

 

----- 
MICCAI 

 

VOE =5.42%  

ASD=0.79mm 

Ben-Cohen 

et al 

2016 

fully 

convolutional 

network (FCN) 

 

8 conv layer 

5 pool layer 

2 Upsample 

layer 

MICCAI 

 

Dice of 0.89 

average sensitivity=0.86  

average PPV =0.95 
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Authors Used Method 

 

Detailed 

Architecture 

Datasets Result 

Chung et al. 

2020 

auto-context 

neural network; 

 

 

----- 
From 

different 

datasets 

DSC =0.96  

Precision= 0.95   

 Sensitivity =0.97   

HD [mm] =14.96    

ASSD [mm]=0.82   

Ibtehaz and 

Rahman 

2020 

modifications to  

U-Net model 

(MultiResUNet) 

 

 

----- 

From 

different 

datasets 

Dice =0.0802 

 Accuracy = 0.7971  

Sensitivity=0.9813 

Specificity= 0.7955 

Zhou et al., 

2018 

deeply-supervised 

encoder-decoder 

 

 

 

----- 

From 

different 

datasets 

IoU=82.90 

Budak et al., 

2020 

Two deep 

encoder-decoder 

convolutional 

neural networks 

(EDCNN) 

  

10 conv layer 

5 pool layer 

5 Up-pool  

Softmax layer 

3Dircadb 

VOE =9.05 % 

RVD=7.03 % 

ASSD=1.43 mm 

MSD=19.37 mm 

DICE=95.22% 

Seo et al., 

 

2020 

Modified U-Net  

(mU-Net) 

17 conv layer 

4 pool layer 

3 Upsample 

4 deconv layer 

LiTS and 

3Dircadb 

 

(LiTS) 

DSC =98.51 %  

(3Dircadb) 

DSCs =96.01 %  
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CHAPTER 4  

PROPOSED MODEL FOR LIVER SEGMENTATION  

4.1 INTRODUCTION 

In this chapter, we will explore the model for liver segmentation through a 

convolutional neural network based on the U-net model. The U-net structures will be 

described and applied to real CT-Scan data from MICCAI and 3Dircad datasets and 

check how it performs. 

4.2 MICCAI DATASET 

The datasets used in this research are the Medical Image Computing and Computer-

Assisted Intervention (MICCAI) 2007 grand challenge dataset and 3D Image 

Reconstruction for Comparison of Algorithm Database (3D-IRCAD).  All CT images 

in MICCAI enhanced with a different operator and scanned in the focal venous stage on 

an assortment of scanners (Styner et al., 2008). As it is CT, all datasets acquired in the 

crossover direction. The pixel dispersing varied somewhere in the range of 0.55 and 

0.80 mm and inter-slice distance varied from one to three mm. The majority of the 

images pathological and include tumors, metastasis, and sores of different sizes. The 

dataset used for preparing is the MICCAI 2007 grand challenge preparing set 

(MICCAI-Training) which comprises 20 volume images with corresponding ground 

truth segmentations. The dataset used for testing is the MICCAI 2007 grand challenge 

testing data (MICCAI-Testing) which comprises 10 volume images.  
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4.3 3D-IRCAD DATABASE 

The 3D Image Reconstruction for Comparison of Algorithm Database (3D-IRCAD) 

database is composed of the CT scan of 20 patients (10 men and 10 women) with 

hepatic tumors in 75% of cases.  The images are provided by the authors in DICOM 

and VTK format in 512x512 pixels. It also contains handmade true segmentation for 

liver, bones, tumors, and others by medical specialists for all images of the 20 patients. 

The CT image  in 3D-IRCAD is 512x512 but may take a very long time to complete 

training such images on the personal computer, so the images were scaled down to 

128x128 pixels. 

Each patient data is distributed across two folders Inside each of these two folders, 

there are 20 folders numbered from 1 to 20 representing each one of the patient's 

numbers. The first folder is the PATIENT_DICOM folder containing the real CT scan 

image and another folder is the MASKS_DICOM folder which contains the 

corresponding segmentation mask files. For each patient data in the 

MASKS_FOLDER, there is one folder per segmented biological structure (i.e.: liver, 

bones, tumors, etc.). Thus our ROI is only liver we only kept the liver file in the 

MASKS_DICOM folder.   

 

4.4 U-NET  

U-net is an artificial neural network kind of Convolutional Neural Networks 

(ConvNets) approach that is able to produce visual information. When visualize U-net 

architecture it appears similar to the letter U so it takes its name from here. U-nets were 

first proposed by Olaf Ronneberger, Phillip Fischer, and Thomas Brox in 2015 for Bio 

Medical Image Segmentation for three different segmentation tasks, the first task is the 

segmentation of neuronal structures in electron microscopic recordings. Second task 

was on a cell segmentation task in light microscope images (Ronneberger, Fischer and 

Brox, 2015). An example of their obtained segmentation result is displayed in      

Figure 4.1. 
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Figure 4. 1: example of obtained segmentation result by (Ronneberger et al., 2015). 

 

U-net is an image segmentation technique developed originally for image segmentation 

tasks and it was adoption as the primary tool for segmentation tasks in medical imaging 

because it is success of evident in its widespread use in nearly all major image 

modalities, from CT scans and MRI to X-rays and microscopy. The great idea about U-

net is that it is able to receive an image as input and produce another image as output 

with size equal to the size of input , which is pretty useful for generating segmentation 

images. Furthermore, while U-net is largely a segmentation tool, there have been 

instances of the use of U-net in other applications (Siddique et al., 2021).   

U-net architecture shown in Figure 4.2, it contains two paths: contraction path (also 

called as the encoder) and expanding path (also called as the decoder). The encoder part 

is used to capture the context in the image using convolutions layer. The decoder part is 

used to enable precise localization using transposed convolutions (Ronneberger, 

Fischer and Brox, 2015). (Lamba, 2019) show a detailed explanation of the original 

architecture which shown in Figure 4.3.  

The main idea behind the U-net is that during the training phase the first half which is 

the contracting path is responsible for producing the relevant information by 

minimizing a cost function related to the operation desired and at the second half which 

is the expanding path the network it would be able to construct the output image. 
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Figure 4. 2: U-net Architecture (Ronneberger et al., 2015). 
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Figure 4. 3: Detailed architecture (Lamba, 2019) 
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4.5 METHODOLOGY 

The Methodology of proposed Unet model is shown in the flowchart in   Figure 4.4. It 

consists of four steps: First is pre-processing the CT images. The second step is training 

the proposed Unet model for liver segmentation. Then, testing the trained network 

produces a probability map as a subject-specific prior, which assigns each pixel the 

likelihood of being the liver for the target image. The last step is the post-processing 

step to maximize the resulting efficiency. 
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Figure 4. 4: The flowchart of our proposed Unet model. 
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4.5.1 PRE-PROCESSING 

CT image is firstly resized to 128x128 before fitting to the network because all CT 

images in MICCAI and 3D IRCAD datasets are 512x512, but training such images on 

the personal computer may take a very long time to complete. Also, any empty images 

were discarded from both the original image and its mask because they would not assist 

in the training process.  

Although convnet requires significantly less image pre-processing than traditional 

methods, this is still an essential task that can improve training results. CT Windowing 

is an important procedure in a CT scan, also known as grey-level mapping, or contrast 

enhancement is the process in which the CT image Grayscale component of an image is 

manipulated via the CT numbers, Pixel intensity measured in Hounsfield Units (HU). 

The value of the "Liver Window" given by Sahi et al is [-62, 238] HU (Sahi et al., 

2014) and P. F. Christ et al. was truncated the image intensity of all CT scans to the 

range    [-100, 400] HU (Christ et al., 2017b) .As such, our CT scans range was set to 

the range [-150, 230] HU as shown in Figure 4.5. 

 

  

 Figure 4. 5: Overview of the applied CT Windowing 
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4.5.2 THE ARCHITECTURE OF MODEL  

In 2016, Christ et al worked for automatic liver segmentation on CT scan images using   

U-net and get 93.1% for Dice (Christ et al., 2016). We propose some changes to the 

original architecture to enhance the Dice that got it by the original U-net, where we add 

a batch normalization layer after each convolutions layer. The Batch Normalization 

layer used to normalize the values going into each activation function by applying a 

transformation that maintains the mean output close to zero and the output standard 

deviation close to one; which enhance the overall segmentation result. Our proposed 

model architecture consists of four parts: The contracting path (convolutions), the 

Middle layer, the expanding path (De-convolutions), and the output layer.  

The contracting path follows the typical architecture of the U-net network with adding a 

dropout layer after 2 convolutions and one max-pooling layer. It consists of 3×3 

convolutions repeated two times, each one followed by a batch normalization layer and 

a rectified linear unit (ReLU) activation, which it followed by a 2×2 max-pooling layer 

and dropout layer. The purpose of the dropout layer is to avoid overfitting problems. 

This block of two convolutions, one max-pooling layer, and the dropout layer repeated 

four times. After the contracting path, there is a middle layer consisting of convolutions 

layers.  

The expansive path consists of a transpose convolutional layer known as De- 

convolution layers and concatenation with the corresponding cropped feature map from 

the contracting path, followed by 3×3 convolution repeated two times. This block of De-

convolution layers, concatenation, and two 3×3 convolutions layers repeated four times.  

At the final layer, 1×1 convolution used to map each component feature vector to the 

desired number of classes. In total the proposed Unet model consists of 19 convolution 

layers, 18 BatchNormalization layers, and 4 max-pooling layers, 4 concatenate layers, 4 

dropout layers, and 4 Transposed convolution layers (Deconvolution layer) as well as a 

softmax layer. 
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 Figure 4. 6: Architecture of proposed Unet Model  

 



48 

 

4.5.3 POST-PROCESSING 

Post-processing is used to refine the segmentation results produced by the previous 

segmentation step. To enhance the overall segmentation results we did a post-processing 

step, which remove the small area in the final segmentation mask by following two 

steps. First, we calculate the largest connected area in the final segmentation mask to set 

it as the threshold volume by setting the background pixel intensity to zero, and each 

area that is not zero within the mask labeled. Then, remove all the areas that are less 

than the threshold. 

 

A. Thresholding 

The Binary Thresholding is used to eliminate the pixels with a probability below 50 

percent in the probability map, which in our case is a pixel value 127 which is 50% 

of the maximum pixel value of 255 to do that we use a cv2.threshold() function in 

OpenCV library. The result of the thresholding post-processing can be seen in 

Figure 4.7 where (a) and (b) are slices before and after thresholding, respectively. 

 

 

(a) 

 

 

(b) 

Figure 4. 7: Show result of the thresholding. 
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B. Largest Connected Component Selection (LCCS) 

The Largest connected component selection (LCCS) technique has been used as a 

primary segmentation or as post-processing. In our case, we used it as post-

processing to refine the final result. We calculate the Largest connected component 

in the resulting segmentation volume by setting the background pixel intensity to 

zero and each component that is not zero within the volume is labeled. Then using 

python Image Processing Toolbox to calculate the volume of each component and 

the component with the largest volume is selected.  

This volume is then set as the threshold volume and all components with a volume 

less than this threshold volume are removed using morphological operators, this is 

done using the remove_small_objects()function in the image processing Python 

package scikit-image. The result of the LCCS can be seen in Figure 4.8 were (a) 

and (b) are slices before and after the LCCS process, respectively. 

 

 

(a) 

 

     

(b) 

 Figure 4. 8: Show the result of the LCCS process. 
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C. Filling The Hole 

After the largest connected component is detected and the smaller components are 

removed, the resulting volume is processed using Morphological closing to remove 

the hole from it by using the remove_small_holes() function in scikit-image. The 

result of the holes filling process can be seen in Figure 4.9 were (a) and (b) are 

slices before and after the process, respectively. 

 

 

(a) 

     

(b) 

 Figure 4. 9: Show the result of the Holes Filling process. 
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CHAPTER 5  

RESULTS AND DISCUSSION 

5.1 INTRODUCTION 

The summary of the proposed Unet Model is well described in this chapter; the results 

and experimental setup are also described.  

5.2 EXPERIMENTAL SETUP 

The Liver Segmentation model were implemented and run on a laptop with Intel 

Core(TM) i7-6500U processor and CPU @ 2.59 GHz with 8.00 GB RAM and 64-bit 

operating system. The implementation is done using Python Programming Language 

and OpenCV library for programming functions with Keras and TensorFlow open-

source neural-network library for the implementation of deep learning techniques. 

 

5.3 PROPOSED UNET MODEL  

The proposed Unet Model architecture is based on the U-net architecture described in 

section 4.2 with some differences which are that each convolutions layer in our 

proposed network is followed by Batch Normalization layer and it consists of 19 

convolution layers, 18 BatchNormalization layers, 4 max-pooling layers, 4 concatenate 

layers, 4 dropout layers and 4 Transposed convolution layers (Deconvolution layer) as 

well as a softmax layer. 

5.3.1 TRAINING AND VALIDATION 

The MICCAI and 3DIRCAD datasets used in the experimental of the proposed Unet 

Model. The experiments were configured with processor Intel Core(TM) i7-6500U, 8.00 
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GB memory. For training the network, we employed an Adam optimizer with a learning 

rate of 1e-3. For the MICCAI dataset, the network trained for 25 epochs with a batch 

size of 41 as shown in the accuracy and loss curves in Figure.5.1, and for the 3DIRCAD 

dataset, the network trained for 250 epochs with a batch size of 41 as shown in the 

accuracy and loss curves in Figure 5.2. 

 

Figure 5. 1:Training, validation loss and accuracy curves for MICCAI dataset 

 

Figure 5. 2:Training ,validation loss and accuracy curves for 3DIRCAD dataset 
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5.3.2 TESTING PROPOSED UNET MODEL 

The Dice Similarity Coefficient (Dice), Volume Overlap Error (VOE), Relative Volume 

Difference (RVD), Average Symmetric Surface Distance (ASD), And Maximum 

Surface Distance (MSD) utilized to evaluate the proposed Unet model. After training the 

model, results of some samples from MICCAI and 3D-IRCAD datasets shown in    

Table 5.1 and Table 5.2, respectively. The average results using MICCAI are 97.88%, 

4.50%, 0.04%, 0.05mm, and 0.08mm for Dice, VOE, RVD, ASD, and MSD, 

respectively. In addition, the average results using 3D-IRCAD are 96.71%, 11.50%, 

0.08%, 0.14mm, and 0.16mm for Dice, VOE, RVD, ASD, and MSD, respectively. 

Table 5.1: Results of proposed Unet Model for MICCAI dataset. 

#image Dice VOE RVD ASD MSD 

0 0.976 8.197 0.089 0.082 0.082 

1 0.981 3.789 0.028 0.033 0.033 

2 0.986 2.475 0.010 0.017 0.017 

3 0.982 3.762 0.032 0.035 0.035 

4 0.987 1.913 0.019 0.019 0.019 

5 0.983 2.691 0.018 0.023 0.023 

6 0.979 3.805 0.031 0.034 0.034 

7 1.040 2.933 0.030 0.029 0.029 

8 0.985 4.607 0.048 0.046 0.046 

9 0.993 1.802 0.017 0.017 0.017 

10 0.987 2.335 0.005 0.014 0.014 

11 0.978 6.650 0.071 0.066 0.066 
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12 0.981 3.614 -0.001 0.018 0.019 

13 0.986 3.160 0.026 0.028 0.028 

14 0.983 3.031 -0.005 0.013 0.022 

15 0.986 3.704 0.038 0.037 0.037 

16 0.992 1.478 0.007 0.011 0.011 

17 0.989 2.096 0.017 0.019 0.019 

18 0.288 85.000 -0.231 0.965 2.001 

19 0.981 3.438 0.023 0.028 0.028 

20 0.992 2.070 0.013 0.017 0.017 

21 0.990 2.126 0.008 0.015 0.015 

22 0.988 2.867 0.025 0.027 0.027 

23 1.076 4.134 0.043 0.042 0.042 

24 0.980 4.097 0.006 0.024 0.024 

25 0.977 5.285 0.052 0.060 0.060 

26 0.990 2.698 0.028 0.027 0.027 

27 0.976 5.128 0.029 0.040 0.124 

28 0.992 2.130 0.018 0.020 0.020 

29 0.993 1.924 0.014 0.017 0.017 

30 0.988 2.415 0.009 0.017 0.017 

Average Result for 

MICCAI 
97.88% 4.50% 0.04mm 0.05mm 0.08mm 
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Table 5. 2: Results of proposed Unet model for 3D-IRCAD dataset. 

#image Dice VOE RVD ASD MSD 

0 0.802 34.783 -0.100 0.167 0.250 

1 0.953 9.589 -0.069 0.015 0.083 

2 0.923 14.420 -0.103 0.025 0.230 

3 0.976 8.071 0.065 0.091 0.091 

4 0.986 5.121 0.046 0.050 0.050 

5 0.975 7.103 0.036 0.057 0.057 

6 1.033 25.358 0.340 0.370 0.370 

7 0.982 7.858 0.068 0.078 0.078 

8 0.980 8.511 0.079 0.082 0.082 

9 0.978 4.374 -0.007 0.019 0.027 

10 0.964 29.870 0.426 0.509 0.509 

11 0.987 5.735 0.051 0.060 0.060 

12 0.980 3.923 -0.016 0.013 0.028 

13 0.967 8.979 0.032 0.064 0.064 

14 0.970 9.019 0.078 0.098 0.098 

15 0.951 16.026 0.191 0.175 0.175 
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16 0.980 6.898 0.040 0.061 0.061 

17 0.956 8.434 0.038 0.062 0.062 

18 0.978 4.294 -0.008 0.018 0.028 

19 0.982 6.776 0.055 0.067 0.067 

20 0.969 5.990 0.019 0.040 0.040 

21 0.983 5.986 0.059 0.152 0.152 

22 0.973 7.456 0.067 0.079 0.079 

23 0.855 54.286 1.000 0.608 0.608 

24 0.970 5.938 -0.038 0.012 0.105 

25 0.853 26.316 0.129 0.229 0.229 

26 0.971 8.964 0.062 0.080 0.080 

27 0.985 4.912 0.041 0.047 0.047 

28 0.967 9.593 0.066 0.084 0.084 

29 0.964 10.285 0.078 0.163 0.163 

30 0.976 7.706 0.031 0.057 0.057 

Average Result for 3D-

IRCAD 
96.71% 11.50%  0.08mm 0.14mm 0.16mm 
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The results are compared with some of the related works including Cascaded U-net 

(Christ et al., 2017a), EDCNN (Budak et al., 2020), H-DenseUNet (Li et al., 2018), and 

mU-net (Seo et al., 2020) as shown in Table 5.3. It was obvious from  Table 5.3 that our 

model is outperformed the other state-of-the-art model for Dice evaluation metrics 

which equals 97.88% when tested using the MICCAI database and it equals 96.71% 

when tested using the 3D-IRCAD database. Also for VOE evaluation metrics, it is equal 

to 4.50% using MICCAI and 11.50% using 3DIRCAD.   

For RVD evaluation metric, which it is equal to 0.04% using MICCAI database and it 

equals to 0.08% using 3DIRCAD database. Also our proposed model is outperformed 

the other state-of-the-art model for ASD evaluation metric which equals 0.05mm when 

tested using the MICCAI database and it equals 0.14mm when tested using the 3D-

IRCAD database and 0.08mm for MSD using MICCAI and 0.16mm using 3DIRCAD.   

 Table 5. 3: Comparison between proposed Unet model and some of related works 

Related Work Dice VOE RVD ASD MSD 

Cascaded U-net (Christ 
et al., 2017) 

93.1 12.8 -3.3 2.3 46.7 

Cascaded U-net + 3D 
CRF (Christ et al., 2017) 

94.3 10.7 -1.4 1.5 24.0 

EDCNN (Budak et al., 
2020) 

95.22 9.05 7.03 1.43 19.37 

H-DenseUNet (Li et al., 
2018) 

94.7 10.02 -0.01 4.06 9.63 

mU-net (Seo et al., 2020) 
96.01 9.73 0.38 3.11 9.20 

Result for MICCAI 97.88% 4.50% 0.04% 0.05mm 0.08mm 

Result for 3D-IRCAD 96.71% 11.50% 0.08% 0.14mm 0.16mm 
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Figure.5.3 and Figure.5.4 are showing some of the Segmentation results for the proposed 

Unet model using MICCAI and 3DIRCAD respectively. The left column shows original 

image slices, the middle column shows the ground truth mask and the right column shows 

the segmentation map obtained using the proposed Unet model. 

 

Figure 5. 3: Segmentation results of the proposed Unet model for MICCAI dataset.  
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 Figure 5. 4: Segmentation results of the proposed Unet model for 3DIRCAD dataset. 
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CHAPTER 6  

CONCLUSION AND FUTURE WORK 

 

6.1 INTRODUCTION 

In this chapter, we conclude the thesis. In Section 6.2, we describe the background of 

this research work, the objective, the contribution, and list the results obtained by this 

thesis. Section 6.3 discusses limitations and ideas about improvement and in Section 6.4 

discusses the future work. 

6.2 SUMMARY 

The Computer-aided diagnosis (CAD) systems in the medical field are the most 

advanced expertise and intelligence systems in the interface of medicine and computer 

science. one of the CAD systems processes is the Segmentation process is considered 

the most important task in computer vision one of the most recognized research areas in 

medical image analysis.  When having a good segmentation approach may lead to a 

more objective diagnostic performance.  If segmentation is insufficient, then a CAD 

system may misdiagnose. Many types of methods and algorithms developed to handle 

segmentation in medical imaging (Yanase and Triantaphyllou, 2019). 

 Liver segmentation from abdominal CT scan images is the main goal of this thesis, 

which is a key task for many clinical applications. The segmentation of the liver is a 

very challenging task due to the complexity of the liver surface, variation in liver and 

tumor size throughout the CT image slices, ambiguity in boundaries of like intensity 

tissues and nearby organs. Automatic methods for Liver segmentation is reduce time, 

effort and provide quality assistance to experts. 
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In this research work, a Unet model for liver segmentation proposed for enhances the 

accuracy of the segmentation process. The model is implemented using Python 

Programming Language and OpenCV library for programming functions with Keras and 

TensorFlow Open-Source Neural-Network library. 

 The Methodology of the model is consists of four steps: First is pre-processing the CT 

images. The second step is training the models for liver segmentation. Then, testing the 

trained networks produces probability maps as subject-specific prior, which assigns each 

pixel the likelihood of being the liver for the target image. The last step is the post-

processing step to maximize the results efficiency of each model.  

Based on the U-net architecture described in section 4.4 we built our proposed model, it 

consists of 19 convolution layers, 18 BatchNormalization layers, and 4 max-pooling 

layers, 4 concatenate layers, 4 dropout layers, and 4 Transposed convolution layers 

(Deconvolution layer). All convolutions layer in our proposed network followed by 

Batch Normalization layer, which is responsible for normalizing the input values going 

into each layer by applying the transformation.  

MICCAI and 3D-IRCAD datasets used in the experimentation and evaluation of the 

model. The average results obtained by the Unet model using MICCAI are 97.88%, 

4.50%, 0.04%, 0.05mm and 0.08mm. In addition, results using 3DIRCAD are 96.71%, 

11.50%, 0.08%, 0.14mm and 0.16mm. For this evaluation metric respectively: DICE, 

VOE, RVD, ASD, and MSD. 

 In comparison, we compared it with some of the related works including Cascaded U-

net (Christ et al., 2017a), EDCNN (Budak et al., 2020), H-DenseUNet (Li et al., 2018), 

and mU-net (Seo et al., 2020). It was obvious from Table 5.3 that our model is 

outperformed the other state-of-the-art model for Dice evaluation metrics which equals 

97.88% when tested using the MICCAI database and it equals 96.71% when tested using 

the 3D-IRCAD database. Also for VOE evaluation metrics, it is equal to 4.50% using 

MICCAI and 11.50% using 3DIRCAD.   
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6.3 CONCLUSION  

After trying many experiments for the architecture of our network, we come out with 

proposing to employment of deep learning especially the Unet network, which has been 

the most promising method for the accurate segmentation of a liver.  

We exploit the benefit of the Unet architecture and propose a new method for liver 

segmentation by applying the concept of the Batch Normalization process. According 

to Ioffe and Szegedy (Ioffe and Szegedy, 2015), the Batch Normalization is increase 

the constancy of the network, which normalizes the inputs to a layer in the network by 

applying a transformation that subtracting the batch mean and dividing by the batch 

standard deviation. It has accelerated the training process of the network and has 

improved the performance of the model.  We proposed a Unet model based on the U-

net architecture by adding the Batch Normalization layer after each convolutions layer. 

We compare it with other state-of-the-art models and it has outperformed them. We 

concluded that the two presented models take a significant step in providing 

discernment in the field of medical image processing for automatic liver segmentation. 

 

6.4  FUTURE WORK 

In the future, we recommend increasing the number of medical images in the dataset 

used for the training of the convolutional network models. In addition, using some 

other features such as 3D Convolutional Neural Networks known as Volumetric CNNs 

in trained and tested the model. In addition, we recommend the use of the same model 

to detect both liver and the tumors that reside at the liver boundary. 
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APPENDIX A - RESEARCH CODES 

1- Architecture of the Proposed U-Net Model 
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2- Training the Proposed U-Net model 
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3- Plotting the accuracy curve  

 

 

4- Plotting the loss curve 
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5- Results of proposed Unet Model for MICCAI dataset 
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6- Segmentation results of the proposed Unet model for MICCAI dataset 
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7- Segmentation results of the proposed Unet model for 3D-IRCAD dataset 

 


