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Abstract

The Mordell exponential sum estimates and sets of large
trigonometric sums are presented. The exposition of Bourgain 2-source
extractor and subspace of the Bourgain-Dellaen space are given. We
study the generalized N-property and Morse-Sard theorem for the sharp
case of Sobolev mappings and the trace theorem with Luzin N and
Morse-Sard properties for the sharp case of Sobolev-Lorentz mappings.
We also study Dubovitskii-Sard and Dubovitskii—Federer theorems in
Sobolev spaces and the coarea formula. The operators in tight by
support Banach spaces and an additive combinatorics approach relating
rank to communication complexity with the structure of the spectrum
of small sets and the uniform structure of the separable essential
Lebesgue spaces are introduced. The Hereditarily indecomposable
essential Lebesgue spaces and unconditionally saturated Banach space
and that solves the scalar—plus—compact problem and property are

discissed.



Gl s aalaal Gl s o )50 daul pan Gl i apaiy Lidd

sliadl Jijall ebadll 5 (a5l 2 — e jAis i je slhae & 5 S
b — ()50 A8 500 g daazall N — dpald Al Hay Lad cply — Gl ) 5
N st paibad ae V) 48 jaas Cid gogu and g5 dabaldl) AW JaY
Cilia pae L pa Lol 555 ) of — ol g3 s sl 5 1 daalal) ANl o b — () 50
Arpay il gpgw Clelial ()08 — (Suddoen 5 ojle — Sl g g
aaleall C\_a\_a Gilelizad ddais) g Buall @ G il Ja) I~ Analiaddl dalidll
Calal 33035 e VLY Lyiad ) A Aieial) Apmanl 280 531 5yl 5
Adilie o Aliadiad)l LpuluY) Gl Cleliadl alaiidl auill g 5 yuea cildl
A8 (50 Arpdiall UL Cleliad o T 5 Jlaill AL e dualia) Gadd Cileliad

Al Al — ) — al il Alae a3 5 da



Introduction

A construction of Bourgain [19] gave the first 2-source extractor to break
the min-entropy rate 1/2 barrier. We write an exposition of his result, giving a
high level way to view his extractor construction.

We some recent extensions of the Lusin N-property and the Sard theorem
for Sobolev maps, which have been obtained in a joint work with M. Csornyei,
E. D’Aniello, and B. Kirchheim. We establish Luzin N- and Morse—Sard
properties for mappings v : R® - R™ of the Sobolev—Lorentz class Wp’fl with

k=n-m+ landp = %(this Is the sharp case that guaranties the continuity
of mappings).

It is shown that every infinite-dimensional closed subspace of the
Bourgain-Delbaen space X, ,, has a subspace isomorphic to some £7.

We show the existence of non-trivial solutions of the equation r; + 1, =
r3 + 14, Where 11, 1, 13 and r, belong to the set R of large Fourier coefficients of
a certain subset A of Z/NZ. For a {0, 1}-valued matrix M let CC(M) denote the
deterministic communication complexity of the boolean function associated with
M. It is well-known since the work of Mehlhorn and Schmidt [STOC 1982] that
CC(M) is bounded from above by rank(M) and from below by log rank(M) where
rank(M) denotes the rank of M over the field of real numbers. Determining where
in this range lies the true worst-case value of CC(M) is a fundamental open
problem in communication complexity. The state of the art is
log!®31 rank(M) < CC(M) < 0.415rank(M), the lower bound is by
Kushilevitz [unpublished, 1995] and the upper bound is due to Kotlov [Journal
of Graph Theory, 1996]. Lovasz and Saks [FOCS 1988] conjecture ~ that CC(M)
is closer to the lower bound, i.e., CC(M) < log®(rank(M)) for some absolute
constant ¢ — this is the famous “log-rank conjecture” — but so far there has been
no evidence to support it, even giving a slightly nontrivial (o(rank(M))) upper
bound on the communication complexity. Our main result is that, assuming the
Polynomial Freiman-Ruzsa (PFR) conjecture in additive combinatorics, there
exists a universal constant ¢ such that CC(M) < ¢ - rank(M)/ log rank(M).
Although our bound is stated using the rank of M over the reals, our proof goes
by studying the problem over the finite field of size 2, and there we bring to bear
a number of new tools from additive combinatorics which we hope will facilitate
further progress on this perplexing question. For G be a finite Abelian group and
A a subset of G. The spectrum of A is the set of its large Fourier coefficients.
Known combinatorial results on the structure of spectrum, such as Chang’s
theorem, become trivial in the regime |A| = |G|* whenever o <c, where ¢ > 1/2
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IS some absolute constant. On the other hand, there are statistical results, which
apply only to a noticeable fraction of the elements, which give nontrivial bounds
even to much smaller sets.

We show Luzin N- and Morse—Sard properties for mappings v : R® —» R¢
of the Sobolev—Lorentz class Wp’fl,p = % (this is the sharp case that guarantees

the continuity of mappings). The Sard theorem from 1942 requires that a mapping
f:R*>R™ is of class C*,k > max(n — m,0). In 1957 Duvovitskii
generalized Sard’s theorem to the case of C* mappings for all k. Namely he
proved that, for almost all y € R™, H(Cf n f —1(y)) = 0 where £ =
max(n — m — k + 1,0), H? denotes the Hausdorff measure, and Cf is the set
of critical points of f. In 2001 De Pascale proved that the Sard theorem holds true

for Sobolev mappings of the class Wlf)"cp (R™®,R™),k > max(n —m,0) and
p > n. The Morse-Sard theorem requires that a mapping v : R® - R™ is of
class C*,k > max(n — m,0). In 1957 Dubovitskii generalized this result by
proving that almost all level sets for a Ck mapping have Hs-negligible
intersection with its critical set, where s = max(n — m — k + 1,0). Here
the critical set, or m-critical set is defined as Z,,,, = {x € R": rank Vv(x) <
m}. Another generalization was obtained independently by Dubovitskii and
Federer in 1966, namely for C* mappings v : R™® — R¢ and integers m < d they

proved that the set of m-critical values v(Z,, ,,,) is H?° -negligible forq, = m —

1 + n-m+1
k

category.

. They also established the sharpness of these results within the C*

Answering the question of W. T. Gowers, we give an example of a bounded
operator on a subspace of Gowers unconditional space, which is not a strictly
singular perturbation of a restriction of a diagonal operator. We give an example
of two non-isomorphic separable £L,-spaces which are uniformly homeomorphic.
This answers a question of Johnson, Lindenstrauss and Schechtman [89]. We
construct a Bourgain—Delbaen L, -space Xy, with structure that is strongly
heterogeneous.

Vi
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Chapter 1
Mordell Exponential Sum and an Exposition

We include a proof of a generalization of Vazirani’s XOR lemma that seems
interesting in its own right, and an argument (due to Boaz Barak) that shows that any two
source extractor with sufficiently small error must be strong.

Section (1.1): Exponential Sum Estimate Revisited
Theorem (1.1.1)[1]: Let p be prime. Given r € Z, and € > 0, there is 6 = §(r,e) > 0
satisfying the following property: If

T

f0) =) apkielx] and (a,p) =1
i=1
where the exponents 1 < k; < p — 1 satisfy
(kj,p—1)<p'® forall 1<i<r, (1)
(ki —k,p—1)<p'™® forall 1<i#j<r, (2
then there is an exponential sum estimate
p—1

> ()| <p'? 3

x=1
2niy
(denoting e, (y) =e » ).
Proof. Let1 < k; <p —1(1 <i < r) satisfy (1) and (2).
We prove that

p—1
max z e,(a;x*t + o+ q.xk)| < pt-or 4
play r p (4)

(aq,--arp)=1 ~

for some §,- > 0, by induction on'r.
The case r = 1 appears in [5] and r = 2 was treated. Thus assume r > 3.
Let
H = {(x*, ..., x*)|x € ]F;‘,} = (]F;)r (5)
With
p—1

H="—=, d=(4..k,p-1D.

where &, is Dirac at y € IFj,.
To establish (4), we may assume all a; € F,(1 < i <), since otherwise the problem

reduces to r — 1 terms. Assume
p—-1

1 k k ~ -6
| @+t g = (@) > p7 (6)
1
The same argument leading to (81) (now applied on IF},) implies

L2602
(1@ u)(0) > p7z%°". (7)
On the other hand, letting £< r, <r (r = 3), proceeding as in the binomial case, we
estimate



(1@ = u9)(0)
= (- D[ 00 € (F) | = x4+ —xgi = 0@ s i <
<p-D {00 e (F) i-xi+ - xi=0a izl ®

To bound (8), express the quantity by exponential sums that may be estimated nontrivially
from the induction hypothesis, since r; < r. Thus clearly

p—1 2¢
=p- D Y Y ep(ar e+ 1)
$1,08r, EFp |x=1
| <p" + (p _ 1)—2{’p2€(1—8r1) <p T+ Zp—zmrl_ (9)
Taking
P = |2 (10)
- 8r1 ’
(7). (9) imply i
pT P <2py
hence, from the choice of r;
1 82,
8 = :
4427 4r?
Taking r; = E] + 1, we proved that
8t
§]+1
&y > 472 (11D)
implying Theorem (1.1.1) with
8, > (SZ)M 12
T \4r (12)
where 6, = §,(¢).
Remarks (1.1.2)[1]: (i) The result for r = 1 (Gauss sums) was obtained in [5]. Thus
p—1
z e,(ax®)| ifa€F, and (k,p—1)<p'= (13)
x=1
More precisely, it was shown in [5] that if G < F}, and |G| > p'~%, then
Z e,(ax)| > |G|*"%  fora€F;. (14)
XEG
See also [2] for further extensions to exponential sums of the form
t1
z e, (a6%) (15)
s=1
And
t1
e,(ag° + bo**) (16)
s,s'=1

where a, 8 € F* and 6 is of multiplicative order t,t > t; > p9.
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The methods involved here are closely related to those used in [5] and [2] (while the results
in [12] and [8] depend on Stepanov's method).

(ii) Theorem (1.1.1) improves upon the results from [7] and [8] when the exponents {k;} are
large. Notice that the recent [7] already contains a substantial improvement over Mordell's
original [13].

(iii) The role of condition (ii) above is made clear by the following example from [7] (see
Example 1.1 in [7]). Let r be even and let

2
flx) = z (xpT_lH — xi>. (17)
Then -
p—1
p—1
2 e, (f(x)) — —— = r\/p. (18)
x=1

(iv) As mentioned above, our argument follows the same pattern as in [5] and [2]. The key
combinatorial ingredient in [5] is a 'sum-product’ theorem for subsets A of the field IF,, (see
also [6]).
Proposition (1.1.3)[1]: Given € > 0, there is § > 0 such that if A c [F,, and

1< |A] < p's, (19)
then

|A + A| + |A. A] > C|A|*FS. (20)
We denote here A+ A ={x+y|x,y € A} and A.A = {x.y|x,y € A} for the sum and
product sets (and will use the same notation if, more generally, A is a subset of a
commutative ring R).
Given G < Iy, consider the probability measure v on IF,, defined by

1
. :WZ 5. 1)

SEG
As shown in [5], one may then derive from Proposition (1.1.3) uniform bounds on the

convolution powers
v =psx kv

R
. k—fold
denoting

() = ) vl = yu®)

yeF,
and those bounds translate in exponential sum estimates such as (14).
It turns out that in order to establish Theorem (1.1.1) for general r, it suffices to treat the
monomial (r = 1) and the binomial case (r = 2). Thus we are left with the problem for
r = 2. Following the scheme used for r = 1, we need to establish a sum-product theorem
for subsets A of the product F,, x IF,,. Clearly if A is a subset of the form

A={a}xF, A=F,x{a}or A= {(x, ax)|x € ]Fp},

one has |A| =]|A+A|=|A.Al =p. It turns out that these are essentially the only
‘exceptions’ to be taken into account when reformulating Proposition (1.1.3) for [F, X [F,,.
Proposition (1.1.4)[1]: Let A c F,, X [F, satisfying for some &, > 0

|A] > p®o. (22)

3



Assume that
|A + Al + |A. A| < pé|Al. (23)
Proof. Decomposing A as (A N (F; x IF;‘,)) U (A n ({0} x IFp)) U (A N (F, x {0})), we
may, in view of alternative (27), assume |A N (]F;, X Fy)| > %lAl and hence A c Fy, X [F;,.
Fix ¢’ > 0 small and k € Z, (to be specified). Take ¢ in (49) small enough to obtain from
Lemma (1.1.10) a subset A; c A satisfying
|A,] > p_SIIAI, (24)
|kA%| < p~¢ |44l (25)
Next, apply Lemma (1.1.9) to the set A; with e = ¢’.
If (42) fails, say |, (A))| < pf' , Obviously for some a € I,
|An ({a} xF,)| > |4, n ({a} x F,)| > p~¢'|14,] > p~2¢'|A]
and hence (51) holds.

Otherwise, either (43) or (44) holds. If (44) and assuming k > k(&") (=the integer in (44)),
we get

25
PZ = |kAk| < p® |4l
And hence
4,1 > p?~¢
and (26) holds.
Assume (43). Since then
A; c {(x,ax)|x € F,} forsomea € F;,

(234)
|An{(x,ax)|x € F,}| = |4;] > p~|A|and (28) holds.
Assuming (27) or (28), the upperbound in (29) is clear and the lower bound follows from
Proposition (1.1.3).
This proves Proposition (1.1.4).
Then one of the following cases occurs:
14| > p?~¢. (26)
There is a € IF,, such that either (27)
|A N ({a} X ]Fp)| > p‘gllAl
Or
|An (F, x {a})| >p~¢|Al.
There is a € IF), such that (28)
|40 {(x,ax)|x € F,}| > p~*'|4]
where ¢’ = ¢'(g) - 0 for ¢ —» 0 with g, (22) fixed.
In cases (27), (28)
p' ™ < |Al <p'*¢ (29)
(v) Theorem (1.1.1) has the following reformulation.
For 6 € I}, denote by 0(8) the multiplicative order of 8 in IF},.
Corollary (1.1.5)[1]: Let Fy, ..., IF,. € [F}, satisfy for some £ > 0
0(6;) > p® foralli=1,...,r, (30)
0(6;6;") >p* forall 1<i#j<r. (31)
Then



p_

1 T
_ 1-8
Crlrile%é Z ey (Z a19> <p (32)
r=

s=1
with § = §(¢).
Indeed, let y be a generator of I, and write 6; = ¥, where thus
p—1
000, =———, 33
(6:) o—1, ki% (33)
_ p—
0(0,6:1) = : (34)
(l] ) (p_]-;kl_k])
Clearly

p—1 r T
Z ey (2 ag/ﬁ"i) = Z e, (Z al-xki>.
s=1 i=1 SEF, i=1

Since (30), (31), (33), and (34) ensure conditions (1), (2) on the exponents k;, (32) is
equivalent to (3).

The Corollary (1.1.5) remains valid for incomplete sums (the case » = 1 appears in [2]).
Theorem (1.1.6)[1]: Lete > 0 and 6,,..., 0, € IF,, satisfy (30), (31). Then for t > p®

S (Sae)

s=1 i=1

max
aieIF;;

<pSt (35)

Where § = §(¢).
We will prove Proposition (1.1.4). We contain the proof of Theorem (1.1.1) for
f(x) = ax® + bx* a binomial. The general case (r arbitrary) is treated. We point out the
modifications to obtain Theorem (1.1.6).
We illustrate applications to uniform distribution issues for power generators in
cryptography, in the spirit of [10] and [9]. Since the module is assumed to be a product of
two distinct primes (a Blum integer), we first show how to extend Theorem (1.1.6) to
composite moduli which factor in distinct large primes.
We denote fork € Z,
kA=A+A+--+A (k- fold),
AF =A.A..A (k — fold)
where sum and product sets are defined as
A+B={x+y|x€AyeEB}
A.B={x.y|lx e A,y € B}.
3

Lemma (1.1.7)[1]: (i) Let S © F,, |S| > p+. Then

F, =3S.5. (36)
(ii) Let S € [Fp, |S| > p*. Then
F, = k.S* for k> k(e). (37)
Proof. (1) We may of course assume S € IF,. Introduce the function
F@ = D xsoy) (38)
yes—1

satisfying supp f  S.S.
If ¢ € F),, we have



A 1
@) = ) epdf ) =1 ) %09

x€Fp YyES

and for f € IF,
1

Juy

2 2
FOI <1517 Y18GOr | =151z Y lzml? | =p2  39)
YES neF,

Write (F = /)(2) = Zyer, f (£ = Y)f () and
1 A
(F=f DG = ) F©)e,xd)

§EF,
Hence for all x € F,

1
\(f*f*f)(x) ~ ISP

B9 1 . (2.3)
< Z2IFOF = VoIl < Jisl. )

. i 3 f .
Since p ISI® > /p|S| from assumption on S,

F, = supp(f = f * F) € 3supp f € 35.S
proving (36).
(ii) From the sum-product theorem in [F,, (Proposition (1.1.3)), there is k; = k; (¢) such that

3
|k - S*1] > p=. Here we just iterate (20) using the fact that (A + A) - (A + A) € 4A?. Next
apply part (i) to get F,, = S(k,S*i(k,S%1) c 3kiS,
Lemma (1.1.8)[1]: If S c FF, X [F,, satisfies
S| > p™*e,

Then

kS* =F, xF, for k€Z,k=k(e). (41)
Proof. Denote by =;: IF, X [F,, — IF,, the coordinate projections. From the assump tion, there
are aj, a, € I, so that

Si; = {x € S[m;(x) = a;}
Satisfies

|Si| = |m3_; (S >p* (@@ =1,2).
From Lemma (1.1.7), there is k; = k,(¢) € Z, s.t.
F, = k7, Sk = ”2(k15f1)
And
]Fp == le[l(Sz)kl == T[l(leé(l .
Writing then
2k, S 2 Jey S+ key S = ({kyal™} x Fp) + (F, x {kyab'}) = F,, x F,

(41) follows.
Lemma (1.1.9)[1]: Let A c F}, x [, satisfy for some ¢ > 0

|7;(A)| > p® and |m,(A)] > p*. (42)
Then either
A c{(x,ax)|x € F,} forsome a€F; (43)
Or
kA* =F, xF, forsome k= k(e) € Z. (44)
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Proof. Applying Lemma (1.1.7) to S = m;(4) c F,, we have for some k, € Z,.

1y (kgA¥0) = koSko = F, (45)
and similarly
1, (kyA%0) = F,. (46)
Clearly (45), (46) remain valid for k > k. In particular
|kAk| = p for k> k. (47)

Assume k > k, and |kA"| > p. Then 74|, 4« is not one-to-one and there are z,w € kA*
such that z; = w; and z, # w,. Hence
2kA** — {z — w)(kA*) = {(x1,x; — (2, — w2)y,)
x = (x1,x;) € 2kA**,y = (y1,y,) € kA*} =Fp xF_p
since m(2kA?*) = F,, = m,(kA*). Thus
F, x F, = 2kA** — (kA* — kA*)(kA®)

And

Fp, X F, = kA% — k A¥r for k, = 3k2. (48)
Prom the Plannecke-Ruzsa sum set inequalities (see [14]) applied in the additive group IF,, X
[F, and (48)

2k, AR\
p? = |k A* — ki AR| < (|IkllTll|> |kyAF1|

And hence by (47)

|2k A%1| > p%. (49)
We may then apply Lemma (1.1.8) to S = 2k, A** c F, x F, and get k, € Z, s.t. k,A*z =
F, X IF,, hence (44).
Fix z € kyA% and let P = kyA% — z. Thus 0 Pc P+ P and |P| >p by (47). If
|P + P| = |2k0A"0| > p, it follows from the preceding that we are in alternative (44).
Assume thus |P + P| =p = |P|,so that P = P + P and P is closed under addition. Since
w1 (P) = F, by (45), there is c € F,, s.t. (1,¢) € P and
P ={(t,ct)|t € F,},
koA¥o ={(z; + t,z, + ct)|t € F,} = {(t,ct + d)|t € F,}  (50)
withd = z, — cz, € IF,,. By (46), ¢ # 0. Assume d # 0. Writing
(koAKo). (koAKo) = {(tyt,, t; + cd(ty + t,) + d?)|ty, t, € F,},
it follows that
2
|kZA%ko| = |{(t1ty, ty + t5)|t1, b, € Fp}| > % (51)
putting us again in alternative (44).
Assume d =0 in (50), i.e., koA¥o = {(t,ct)|t € F,}. Fix an element w = (w;,w,) €
koA%o~1 with w, = 0. Then, for all x = (x;,x,) € A, wx € kyA* and w,x, = cw; x4,
implying that A c {(¢, at)|t € F,} with a = cw, w3 This is alternative (43).
Lemma (1.1.10)[1]: Let A c F}, X [}, satisfying

|A] > p*o, (52)
|A+ A| + |A. A]| < pfl|A| (53)
(e K &).

fix k € Z,. There is a subset A; c A such that
7



|4;] > p~%4|, (54)
|kAT| < P14 (55)
-0
where § = 6, () and 8, (¢) ~25 0 for given k.

(Observe that |kA¥| is nondecreasing in k).

Proof. Recall that A F, X IF,,. Write
1
2

1
A2 =Z|xA| < |A.AlZ

XEA

Z |xA N x"A|

x,x'€A

and by (53)
z XA x'Al > p¢|Al*. (56)

x,x'€A
Lemma (1.1.10) may be proven by an adjustment of the argument in [6] for subsets of I,
(the main point in the present is to avoid problems due to zero-divisors). We give a different
argument, in particular not relying on Gowers' proof of the Balog-Szemeredi theorem.
Lemma (1.1.11)[1]: Let A,, A,, A5 be finite subsets of an additive group, satisfying

1
|40 A5] > 144, (57)
1
142 0 A3 > =14, (58)
1 .
|Ai + All < E |Al| (l = 1,2,3) (59)
Then
|A; + A, < K9|A3. (60)
Proof. Write fori = 1,2
1
Xa; < AN A z Xy+(A;nAs) (61)
U yea Stainas)
Hence
1
XAj+A, = |4, N A,||A, N A, Xy1+y,+(A1NA3)+(A2NA3)
1otz T8y en, Tinas)
i=1,2

and therefore

41 — Aq14; — A, 143 + 45| _ K7|A1114,]145]

|A; + A5 < < — = K°|A;|
! ? |A1 nAs”Az ﬂA3_|_ K=2|A4]14,| ;
from (57)-(59) and the sum-difference inequalities; (see [14]).
From (56), we may specify x G A such that
A, ={x€A|.|xAan| >%p‘€|A|} (62)

Satisfies
|A1| > p~¢|Al
If x;,x, € A1, apply Lemma (1.1.11) with A; = x;4,4, = x,A,A; = XA and K = 2p°.
From (60)
X1 A + x,A] < p'¢|A4|, (63)

8



Next, let x;, x5, x3, x4, € A;. Since

1
|x,x34 N x XA| = |x34 N XA| > Ep‘slAl,

1
|x2x4A N x,XA| > EP_£|A|,

we may apply Lemma (1.1.11) with A; = x;x34, A, = x,x,4,A; = x; XA U x,xAand K =
p1o€ from (63). Hence

|x1x3A + x,x,A4] < p°°¢|A. (64)
Straightforward iteration implies that

[y14 + ¥, Al < p°?|A] (65)

whenever y,, y, € A% and with C = C,, in (65).
The same statement holds clearly also if y;, y, € A71A¥.
Write now

1
< E
XAIf —= |A1| XyAl (66)

1
)(A’1‘+A'1c = W Z_l kXJ’1A1+J’2A1
Y1,Y2€A71 A7
and using (65)
] A (67)
1Al . Al
From (53) and the Plannecke-Ruzsa inequalities applied multiplicatively in the group
F;, % F;, we have |(A U A™1)¥| < p¢|A|. Thus (67) gives
|A% + A¥| < pce|A| (68)

and (65) follows from (68), applying again the sum set inequalities.

We prove Theorem (1.1.1) for r = 2. The case r = 1 was treated in [5]. First we
recall a few results from combinatorics and harmonic analysis.
Lemma (1.1.12)[1]: (The Balog-Szemeredi-Gowers theorem; see [11]). Let A be a finite
subset of an additive group, |A| = N, and assume for some 0 < § < 1—10 that

{(xl,xz,x3,X4) €A4|x1 +x2 ZX3 +x4}| > 5N3 (69)
Then there is a subset A; c A satisfying

|A¥ + 4F| < pe|A| < pee

|A;| > 6N (70)
And
|A; + Ar] < 57C A, (71)
where C is an absolute constant.
See [11].
Later on we will apply this result in the additive group IF,, X IF,, and also in the multiplicative
group I, x IF;, (both cases may in fact be derived from the statement for subsets of Z, +).
Next, we give an elementary fact about the Fourier transform of probability measures.
Lemma (1.1.13)[1]: Let v be a probability measure on an Abelian group G and assume
Y1, -, Ym € T(=dual group) such that
m

D 10Gral > om.
i=1

Then



m
Z o(v: —¥;)| > 82m?.
ij=1
Proof. Take a € C, |a;| = 1, such that a;D(y;) = |9(y;)|. Hence, identifying y; with the
character function G — {z € C||z| = 1},
m
z a;yi(x)
i=1

6m<J
G

v(dx),

2 m m
§*m?* < j zai)’i(x) v(dx) < z |J(Vi]7j)(x)v(dx)| = z |9(Yi - Yj)|-
Gli=1 ij=1 ij=1
Returning to the exponential sum estimate, assume 1 < k; < k, < p — 1 satisfying
(kpp =D <p™™ (=12) (72)
And
(ky —kyp—1) <p'¥ (73)
For some y > 0. Let a,, a, € [F;, and assume
p—1
z ep(a;x*1 + ayx*2)| > P17, (74)

1
Our purpose is to get a contradiction for € < (y),e(y) > 0in (74).
Consider the multiplicative subgroup H < IF,, X IF}, defined by
H = {(x*1,x*2)|x € F3}.
Hence
p—1

Define the probability measures p, u_ on IF, X IF,, by

_ 25
I"l |H| )

YEH
_1 z s
“TTHIL
YEH
where §,, stands for the Dirac measure at y. Rephrase (74) as
lACa)| > p~*. (76)

Notice that by invariance, fi(¢) = ja(yé) fory € H.
Let? € Z,. From (76)

D RO > |HIp, (77)

YEH
Since |A()1% = (u® » uD)(&), iterated application of Lemma (1.1.13) with v = u® «
1P implies

1 . 2¢ -

T Z (1 —y2 + = yap)a)|” >p7*rt (78)
) V1i,--Y2r€H
assuming ¢ € Z,. to be a power of 2.
Hence

10



pHT < RO (R 1))
yEF;
< (mu® « u0)(0) ) 1A
§€F5
= p?(u)(0). (u® * u®)(0).
Taking r = ¢, it follows that
(‘u(r) % ,ug))(O) > p—1—2£r2.

On the other hand, there is the upperbound

(1 = )0 = IHI" WO y2r) € HY Iy =32+
k4

+ = 0
_ -1 {(xl,...,xZT) e (/) [ i xzr
x2 +-l-€-—x2r =0
= (p — 1)—27‘ {(xl; ---;er) (= (]FP)Zr 1 - le + =
to which the Gauss sum estimate applies. Write
p—1 2r
(82) =~ 1Dp™ ) | ep(Ex*)
§EF, |x=1
p 2r p-1
< — -1 _ =21 2 k
< (p — 1) p+(@-1) max 1ep(fx 1)
xX=
In view of assumption (72), by (13), there is 6§, = §(y) > 0 such that
p—-1
k < 1-6 P —
gré%% Zlep(fx Dl <p'7°% (i=12)
xX=
Taking r > 1y,
5]
Th = |—
0 60

and it follows that (82) <~
Summarizing

2
p712r < (u® « uP) (0) < S forrzm
Define the sets

={{ €F; |14 >p~°}

(1@ 5 ) (y) > p~1s}.

And

A s={y€eF;
From (85) with r = r,

2
DI < p?= = 2p.
3 p

Hence
|-Q§| < p1+2r06.
Obviously

11

= 0}

}\

2y =0}

2r

(79)

(80)

(81)

(82)

(83)

(84)

(85)

(86)

(87)



|Ar,5| < p1+6
Apply (79) with £ = 1,r = ry. Thus

p~HET < z lAya) |2 (1) « pTo))(y)

y€EF;
Implying
1 —4erg (o) 4 ;(T0) 2
Ep < z (,u 0 *.‘1—0)()7) < E|-QB£T0|
ay€Qzer,
And

|Qs| > p1=>¢" for & > 3ery,.
Next, writing (79) with £ = r,

p~4ETTo < z |atya) 2o (u « u)(y) = Z + 2 :

yE]F%, YE€Ars Y€Ars
Since

(86)
> e Y e < 2p,
YEArs yEFp
It follows from (90) that for § > 4err,
|Ars| > p 140 if T =1,6 > derry
and hence
|Ar 5| > P if T > 1,8 > derr.
Notice also that, by (83), if § < 6,
Qs (Fp x Fp) = {(0,0)};
hence Q5 = Q5 U {(0,0)}, denoting
Q5 = Q5 N (Fy X F).
Put
6, = Sery
and let ¢ € Q. Replacing in (79) aby ¢ and & by 45,

p~*rt < Z A2 (u™ « ) (y)

2
yEIFp

Taking £ = 1 in (93),
1
SpTT < E (0 * ) ()

3’5592617"

(88)

(89)

(90)

(91)

(92)

(93)

(94)

Since |Qys,| < p***%170" by (87), in (94) we may further restrict the y summation to

Ay 55, @nd conclude that

1
|Ar,561r0r N (5_192617")' > Zp1_48lr fOT r2 To-

From (87), (89)
p1—61 < |Q61| < p1+2r061_
Inequality (95) is valid for all ¢ € Q5 . Taking r = 7, (95), (96) imply

Z |(El_1'0'2517”o) n Ar,5617"§| > p2—561r0
fengl
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and the left side is bounded by

N =

1

vl D 1 5,0, 0 (57,0,
§1.62€Q5,

|A

Therefore

_ 2 - * . ;
p3 15517"() < Z (fl 192511-0) N (52 192517"0)
51,525931

< {28008 € (Vs,r,) 616 = S84 (97)

With e sufficiently small, we may make &,in (92) arbitrarily small. Applying Lemma
(1.1.12) to the set 2,5 . in the multiplicative group F;, x [y, there is a subset 6 < (255 .

satisfying

d Q| > ptocits (98)
An
0. Q| < pl+Creds, (99)
We reduce Q further to also obtain a small additive doubling set. From Lemma (1.1.13)
D 1A — &) > premlal (100)
) §1,62€0
Implying

2
{61 62) € 02 [§ = & € 55, }] > p*CT0%11 Q)2
and since | (255, | < p1*1°7%, it also holds that

(61, 62,63, 60) € 0ME — & = & — &I >p* % (101)
Now applying Lemma (1.1.12) to Q in the additive group [F,, x [F, gives a subset A c Q

such that
p1+4r§81 > 4] > |Q|p—Cr0281 > pl—Cr§81' (102)
1A+ A| < p€Ted1|4] (103)
(here we use C to denote various numerical constants).
By (99), it also holds that

|A. A| < p€Te81|A. (104)
Since A satisfies (103), (104), we may apply Proposition (1.1.4). Notice that by (92), &' =
e'(6,) =¢€'(e) = 0. Either (27) or (28) holds. Assume (27), say for some b € F,,
(3.34)

lan (b} xF,)| = |An ({b}xF,)|>p~¢|A] > p'~%'. (105)
Applying (100) with Q replaced by O n ({b} X F,,), we obtain

3
{1, &) € [Fzz)l(o' $1—§2) € '(2581r0}| > p?o4' %m0 > p2
contradicting the fact that 255 ., = £255.,,, U {(0,0)}.
Assume (28). Thus there is ¢ € [F, s.t. if
Ay = An{(t ct)|t € F,}, (106)
Then
|4,] > p~¥'[A] > pt72E (107)
Recalling that A; < 255 . write
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!

= (3.39)
DI ) = Ay fpHiro S pise (108)
t=0

Where

p—1
1
f(t, ct) = pTlZ €p (t(Zk1 + CZkZ)).
zZ=

Hence (108) implies
{(z,w) € F) X Fp|z*1 + cz*2 = wh + cwke}| > p?73¢", (109)
Writing w = v. z, there is v € IF, such that
vkz £ 1 (110)

and the equation
1— vk
kp—=ky —
z Y (111)
has at least p*~3¢ solutions in z € FF,.
72
To ensure (110), we used that x*2 = 1 has (k,,p — 1) (<) p1~Y < p1=3¢’ solutions in Fp.
By (73), (111) has at most (k, — k;,p — 1) < p1~7 solutions, a contradiction for £’ (hence
€ in (74)) small enough.
This completes the proof of Theorem (1.1.1) in the binomial case.
(i) We comment on how & in (iii) according to the preceding argument depends on € in (i),
(if). For r = 1 (the monomial case) it was shown in [5] that we may take
8, > exp(—Ce™ %), (112)
for some constants C,, C, (see [5]).
A more careful analysis of the proof of Proposition (1.1.4) and the binomial case gives a
similar lower bound for S2. Therefore (11) implies
8, > exp(—Csr(e7% + logT)). (113)
(i1) Next we indicate the proof of Theorem (1.1.6). As already mentioned, the case r = 1
appears in [2] (these and related exponential sums have their importance in issues related to
cryptography, such as the DifRe-Hellman distributions; see [2]).
We first treat the case r = 2. The general case is then obtained using the same strategy as
described.
Also the proof of the r = 2 case is almost identical.
Let y > 0 and assume

0(61) > p¥,0(6,) > pY¥,0(6,6;") > p”. (114)
Take
t =[p"]. (115)
Introduce
H={(67,65)s =1,...,t} c F, X Fj. (116)

H is not a subgroup of IF;, X I, (but an ‘approximative' subgroup in the sense of [2]).
Clearly |H| = t. Define u, u_ and assume a € [}, x [F;, such that

la(a)| >p~* (117)
with € > 0 small enough. Justifying (77) requires an additional argument, since there is no

true invariance under H-multiplication. Let t; = 1—t0p‘8 andwritefor1 <s; <t
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2s 1
|ﬁ(9igla1' 9?“2) — fi(a,, az)| <1< gp_s;

t
Hence
1

|a(6,ay, 05 a;)| > Lt (118)
Therefore

t1

. . 2¢ o _
Zlu(ya)lz*" > Z (61 ay, 05" a,)|” > 6,47 p72% < [H|p~3* (119)

YEH s1=1
providing (77).
Inequality (83) is substituted by the r = 1 case of Theorem (1.1.6) (established in [2]); thus

t

> ey (569)

s=1

<tp~d (r=12) (120)

max

§€Fy
Where 6, = 6,(y) > 0.
We establish (85) again and continue verbatim the argument until invoking Proposition
(1.1.4).
Assuming alternative (28), we obtain instead of (109) that

[{s,s" = 1,...,t|6F + cO5 = 65 + 05 }| > t2p~3¢ (121)

for some ¢ € IF;,. Writing s” = s + §, the equation becomes
65 —1
1-065
Since 5,5 <min(0(6,),0(0,),0(6,671)) equation (122) has at most t solutions,
contradicting (121).

The combinatorial methods introduced here (sum-product theorems) permit us to
extend the results from [4] (in particular estimates on Gauss sums) and the results from for
sparse polynomials to the case of certain composite moduli g. We assume the factorization
of g involves only a bounded number of prime factors. Details will appear in [3].

If g factors as a (simple) product of a bounded number of distinct prime factors, i.e., g =
pi - Py, the residue ring Z, identifies with Z,, X ...x Z,, and the argument simplifies
significantly. It is basically an easy variant of the methods described earlier. In view of
cryptographical applications, the special case where g = p€ with p, £ distinct primes, p~4,
Is of particular interest (such q are called Blum integers). Our first aim is to extend the proof
of Theorem (1.1.6) to such moduli. The argument extends easily to products of several
(boundedly many) distinct primes involving only notational complications.
Proposition (1.1.14)[1]: Let g = p.£ with p,¢ as above and 0,,...,0, € Z; where Zg
denotes the multiplicative group of Z,. Assume for some S > 0
0,(6;) > q°,0,(6,) >q° (1<i<r), (123)
0,(6:67") > q° (0,(6:,6;") >q° (A<i#j<r). (124)

(0,071) =c71

(122)

Then for | > q°
J

max )zeq(a19{+~-+are,{') <Jq°. (125)
=1

where 6’ = §'(r,6) > 0.
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We first specify the identification of Z,, and the product Z,, X Z,. Take a € Z, s.t. af =
1(modp) and B € Z, st. Bp = 1(mod¥). Denote by m,:Z,p — Z,,mp: Ly, —> L, the
quotient maps. If a € Z,,, clearly

a =m,(a)fa+ m,(a)pp (modp?) (126)
providing a factorization of the identity on Z,, as ¢(m, X m,) where @:Z,, X Z, > L, is

the ring isomorphism given by ¢(4,B) = Afa + BpB. Writing % = O;TA = ﬁTB(A =

m,(a),B = T[g(a)), we get for the exponential sum

T
> (Z asaz) =D e (Z(aAs)ez) er (Z(ﬁ&)ez) . azn
Jj=<J \s=1 j s S

We outline the proof of Proposition (1.1.14).

In order to treat the binomial case, we also need the sum-product result in Z, X Z,,p, £
distinct primes. It turns out that the situation is even simpler than for p = #.

Lemma (1.1.15)[1]: Let S c Z,, X Z,, where p, £ are distinct primes as above. Assume

p® <|S| < (pO)'~° (128)
and (¢ > 0 assumed small enough depending on &)
IS + S| +1S.5] < |S|**¢ (129)

(addition and multiplication refer to the Z,, X Z, (product) ring structure).
Then one of the following two alternatives holds:
|S N (Zp X {a})| > p~€'|S] for some a € Z,, (130)
IS N ({a} X Zp)| > p‘gllSl for some a € Z, (131)
where ' = ¢'(e) » 0 with e - 0.
Moreover, in case (130) (resp. (131)), pX~" < |S| < p'*€ (resp.£17¢' < |S| < #1+€).
Notice that if p # £, we do not have to consider alternative (28) in Proposition (1.1.4).
Sketch of the proof. We follow essentially the same argument as when p = £. Assume
(130), (131) do not hold. We may in particular assume S € Z;, X Z,.
By (129), there is a subset S; S s.t. |S;| > p~¢¢|S| and

)
|keSE| < pCeISINS P ()8 < (p£)'707C¢ < (p)' 2 (132)

(here k is specified, depending on €', and the constant C depends on k).
Denote by m,:Z, X Z, > Z, and m,:Z, X Z, > Z, the projections. If (130) fails,

max|S; N (Z, x {a})| < p~'|S| < p~2'*¢*|S;| <p~2|Sy| and hence |m,(S;))| > p=.
a

Similarly |, (S;)| > pg?.
By the sum-product theorem in prime fields and Lemma (1.1.7) we may thus (replacing S,
by kOSf" = S, for some k, € Z,., depending on &) assume
,(S;) = Z, and m,(S;) = Z,. (133)
Suppose |S,| > p > 2. There are distinct elements x, # x; in S, s.t. wp(xy) = mp(xy). Then
by (133)
S5 4 (S; — 5208, 2 S5 4 (xg — x1)S, = S5 + (”p(xo - x1)ﬂp(52) X {0})
=S2+(z,x{0}) =Z, X Z, (134)
and therefore
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1257 — S31 = pt
contradicting (132).
Also, if (130), it follows from (129) and |S| > p? that |S n (Z, % {a})| > p*~*'; hence
pl—s’ <|S| < p1+£’.
This proves Lemma (1.1.15).
With Lemma (1.1.15) at hand, we obtain the exponential sum estimate.
Lemma (1.1.16)[1]: Let p, ¥ be as above, p # £. Let 6 € Z,,y € Z, satisfying for some
$>0
0,(¥) > p°,
If ] > p%,a €Z,b €7} then
J

Z e,(a8”)e,(by’)| < Jp~¢ (135)

j=0
for some 6’ = §'(6) > 0.
The proof is similar to the argument explained but no condition on % Is involved, since (28)

IS not an issue here.
More generally, following the argument, we get
Lemma (1.1.17)[1]: Let p, £ be as above, p # €. Let 0, ..., 0, € Zy,; Py, ..., s € Zj satisfy
for some 6 > 0
0,(6)>p° (1<i<1),0,(0,67")>p°(A<i#j<r) (136)

And

0,(W)>p° (1<i<s),0,(Yip;')>p° (A<i#j<s) (137)
Letay,...,a, € Z,and by, ..., by € Zj. Let ] > p®. Then

J

Z ep(a10] + -+ a,6) e, (b + -+ bapl)| < Jp=0"  (138)

j=1
With §' = 6/,4(5) > 0.
As in the proof of Theorems (1.1.1) and (1.1.6) we proceed by induction on r + s. Again
the case r + s = 1 follows from [4]. Let r + s = 2. There are three cases. If r =2 or s =
2, we are in the situation p = ¢ discussed. If r = s = 1, apply Lemma (1.1.16). The case
r + s = 3 is treated inductively.
From the identification of Z,,, and Z,, X Z,, in particular (127), Proposition (1.1.14) follows
from Lemma (1.1.17).

We now discuss a few cryptographical applications related to [10], [9].
Let g = pf with p # £,p ~¢ prime, be a Blum integer. Fix e € Z; and consider the
sequence u = {u,,} defined by
Up41 = Uy withinitial uy = 6 € Zg,.

If e = 2,u is the Blum-Blum-Shub generator.
If (e,(p — 1)(¥ — 1)) = 1, @ is called an RSA generator.
Let A(q) be the smallest common multiple of p —1,¢ — 1 (the Carmichael function).
Denote T = 0,(6) and = = Or(e). Thus T|A(q). Recall the result from [9] stating that
almost surely in p, ¢, 8, e we have
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T>» ql ¢ (139)
for any fixed € > 0.
From (139) and the results from [9], and [10] the wuniform distribution of
{uy,...,u,_1} (modq). Using Proposition (1.1.14), we establish also the joint distribution,
i.e., the uniform distribution of (w,,, U1, ..., Unyj—;) in Z4, for any fixed J > 1.
This will be an immediate consequence of the corresponding exponential sum estimate.
Proposition (1.1.18)[1]: Assume p, ¢, 8, e satisfy (139). Then for some § > 0

-1

Z eq(aoly + aUpyq + -+ Ay )| <7q7° (140)
n 0

forall (ao,...,a,_;) € 7. 4 \{0}.

Proof. Denote 4 = {unln =0,1,...,1—1}c G ={07|0 < j < T} < Z, and denote by yx,
the indication function of A. Let 1 <V < t be an integer to specify and let v = 0,1,..., V.
Write

-1 -1

Z eq(..) = z eq(aoun+v + ot a]—lun+v+]—1) +0(V)
n=0 n=0
V-11-1
eVt]-
VZ Z eq(aoun +a;_quf * 1) 0(V)
v 0n=

VZZQCI(QOX + ot g x® - Vxal) +0W). (141)

v=0 x€G
In order to remove the restriction x € A in the first term of (141), proceed in the usual way.

Thus estimate by

1
V-1 2\ 2
1 1 1 5
AV Z zeq(...) <z l4f2 H(VIG] + (7.4))
x\inG lv=0
Where
= z z eq(aox®" + -+ a]_lx"fvﬁ]_1 —qgx€t = — a]_lxev2+]_1) . (142)
V1 #V,<V IxeG
Rewrite the inner sum in (142) as
T-1
> eq (@008 — 98 + -+ a1 (670 — ¥7)) (143)
s=0
Where
9] _ eev1+] and 1/)1 _ He(vz+]). (144)
In order to apply Proposition (1.1.14) to (143), we need to ensure that for some y > 0
Op (Hi); Op (lljl) > p]/ (fOT' all i); (145)
0,(6:67"), 0,(Wi; ") >p¥ (i #)), (146)
0p(6:;") >p¥  (forall ij) (147)

and similarly replacing p by #.
By (144), these conditions are equivalent to
18



(et),p—1) < p'7?,
(ev2+j,p — 1) < pl_y’
(ev1+i _ ev1+j'p _ 1) < pl—y (i ij),
(ev1+i _ ev1+j,p _ 1) < pl—y,
and similarly with p replaced by #.

(148)
(149)
(150)
(151)

Conditions (148), (149) are obviously satisfied since (e,p —1) =1 = (e,? —1). Also

(150), (151) are equivalent to
(e/=1,p—-1)<p¥ (0<j<))
And
(e t1,p—1) <p'™  (ljl <))
If(e¥” —1,p—1)=&>p7,w=0,clearly
#{e¥(modp — 1)} < |W|.u

3
and recalling (139)
w

gl ¢ < 07(e) < #{e*mod(p — DN -1} < |€ | q.

—&

1_
Therefore |€] < qf|w|and |w| > q 7
1
Takey = >
1
Thus (152) holds, since j = w < J < g+ ©. Since
vy —v, +jI <V +],
1
choosing V = [qE] will also ensure (153) if |v; — v,| > J.
Returning to (142), it follows from Proposition (1.1.14)
(7.4) < V2|G|*™9 +].V|G|
where §' = §'(y) = &' G) Therefore

1 1 L

(141) < Vﬁ(]VlGl +V2|GI*%)? + 0(V)
i1 1 78

s V2(tT)z2 + 12T 2 + 0(V).

9 5’ (8,1
Sqio+qi77 < qu (2/\10)

This proves (140).

(152)

(153)

(154)

(155)

We establish an unconditional result for the Blum-Blum-Shub gen erator. First, we choose

appropriate primes p, €. Fix r and let p, £ be distinct primes of the form

p=1+c3,
£=1+4d3,
with ¢,d € Z, and
p~€<320r

(which exist by Linnik's theorem).
Clearly 3"|A(q), q = p? and we take 6 = u, € Zg s.t.
1
0,(6) =T = 3" > q20.
Hence
T=07(2)~T.
We verify conditions (148)-(151).
19
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From (156)-(158)
, . ] 19
(244, = 1) = (2%4,¢37) (24, ¢) < 3 < po.
Condition (152) is obviously satisfied. We verify (153).
Let(2¥ —1,p—1) =& > p™%,w # 0. Again
-1
37 < (2%(mod37)} < #{2%(mod p — 1)} < |w| pT <priwl;  (161)
Hence

1
|lw| > p2077,
The same holds with p replaced by #.

1
It suffices thus to choose y = ﬁ andV = [qs_o] in (155). We proved

Proposition (1.1.19)[1]: Take p, £ distinct primes as in (156)-(158) and let u, = 6 satisfy
(160). Thus the Blum-Blum-Shub generator {u,,} satisfies (140) (for any fixed J) and hence
u is jointly uniformly distributed.
Section (1.2): Bourgain 2-Source Extractor

The min-entropy of a distribution is Kk if

max Pr[X=x]=27%
x€Supp(X)

We say that a function Ext: {0, 1} x {0,1}" — {0, 1}'" is a 2-source extractor for entropy
k if given any 2 independent distributions (a.k.a. sources) (X,Y) with min-entropy Kk,
Ext(X,Y) is close to being uniformly random. We say that the extractor is strong if it

satisfies the properties:
PrX HExt(X,y) — Upl > €]l <e€

y<R

Pr [|Ext(x,Y) —U,| > €] <e€

Y<R
with low e for arbitrary independent min-entropy k distributions X,Y.

Another way to view 2-source extractors is as boolean matrices (obtained in the natural
way from the truth table of the extractor) which look random in a strong sense: Every 2-
source extractor for entropy k gives an N X N boolean matrix in which every K x K minor
has roughly the same number of 1°s and 0’s, with N = 2", K = 2k,

The probabilistic method shows that most functions are 2-source extractors requiring
entropy that is just logarithmic in the total length of each of the sources, though explicit
constructions of such functions are far from achieving this bound.

The question of finding explicit deterministic polynomial time computable functions

that match the random construction. This question was first considered by [21], [26], [27].
The classical Lindsey Lemma gives a 2-source extractor for sources on n bits with entropy
slightly greater than n/2. No significant progress was made in improving the entropy
requirements over this, until recently. In the last few years, sparked by new results in
arithmetic combinatorics [20], there were several results [16], [17], [25], [19], [24], [18] on
constructing extractors for a few independent sources.
Today, the 2 source extractor that requires the lowest amount of entropy in every source is
due to Bourgain [19], who showed how to get an extractor for 2 sources, when the sum of
the min-entropies of both sources is large than 2n(1/2 — a) for some universal constant a.
Bourgain’s construction relies on bounds coming from arithmetic combinatorics. While
Bourgain’s bound may not seem like a big improvement over the earlier result, it turns out
to be crucial to the Ramsey graph construction of [18].
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first we describe Bourgain’s argument. Then we give a proof of a generalization of
Vazirani’s XOR lemma, that can be used to improve the output length of Bourgain’s
extractor. At the end we include a simple argument due to Boaz Barak that shows that any
two source extractor with small enough error must be strong.
We will reserve the variable p to denote primes.
IF,, will denote the field of size p.
C will denote the complex numbers.
U,,, will denote the uniform distribution on m bits.
G will denote a finite abelian group.
We use the convention that N = 2", M = 2™,
For two elements of a vector space x,y, we will use x - y to denote the dot product ); x;y; .
For a complex number x, we will use x to represent its complex conjugate.
We state several facts without proof though all of them can be worked out easily.
Let f:G —» C and g: G — C be two functions from a finite abelian group G to the
complex numbers.

We define the inner product (f, g) = (ﬁ) Y () g (x).
The #P norm of f is defined to be ||f|l,p = Cyeclf ()PP .

- 1
The LP norm of f is defined to be ||f||,» = (%fl(x)lp)p = |G| ?|If]le.

The £° norm is defined to be ||f]||p» = max]|f (x)].
X
We have the following basic relations between the norms:

1
Fact (L2 DIST: [Ifllo= = (=) I =
Fact (1.2.2)[15]: [Ifl,= = (ﬁ) £ 12
Fact (1.2.3)[15]: (Triangle Inequality). [{f, g)] < IIfIl,21lg]l¢=-

The Cauchy Schwartz inequality will play a central role in the proof.

Proposition (1.2.4)[15]: (Cauchy Schwartz). For any two functions f, g as above, |[(f, g)| <
112 llgll 2.

Let F be any field. Let ¥: G — F* be a group homomorphism. Then we call ¥ a

character. We call ¢ non-trivial if y # 1. Unless we explicitly state otherwise, all characters
will map into the multiplicative group of C.
Definition (1.2.5)[15]: (Bilinear maps). We say a map e: G X G — C is bilinear if it is a
homomorphism in each variable (for every &, both e(-,¢) and e(¢,-) are homomorphisms).
We say that it is non-degenerate if for every &, e(&,-) and e(-, &) are both non-trivial. We
say that it is symmetric if e(x,y) = e(y, x) forevery x,y € G.

Let Z, denote the ring Z/(r). It is easy to check that if we let e be the map that maps
(x,y) — exp(2mxyt/r), then e is a symmetric non-degenerate bilinear map. Let G =
H, é@ H, be the direct sum of two finite abelian groups. Let e;: H; X H; —» C and €,: H, X
H, — C be symmetric nondegenerate bilinear maps. Then it is easy to see that the map
(x1 B y1,x, B y,) — e, (x4, x,)e,(yy,y,) is a symmetric non-degenerate bilinear map.
By the fundamental theorem of finitely generated abelian groups, every finitely generated
abelian group is isomorphic to a direct sum of cyclic groups. Thus the previous discussion
gives that:
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Fact (1.2.6)[15]: For every abelian group G, there exists a symmetric non-degenerate
bilineare: G X G = C.

It can be shown that the characters of a finite abelian group G themselves form a finite
abelian group G” (called the dual group of G), where the group operation is pointwise
multiplication. Now fix any symmetric, non-degenerate, bilinear map e. For every x € G,
let e, denote the character e(x,-). The map x — e, can then be shown to be an isomorphism
from G to G".

Fact (1.2.7) (Orthogonality)[15]: For any two characters e,, e,,, we have that (e, e,) =
1 x=y

{0 XFYy

We define the fourier transform of f (with respect to the above e) to be the function f: G —

Cto be: £(&) = (f, eg). Then it is easy to check that this is a linear, invertible operation on

the space of all such functions. We get that:

Fact (1.2.8) (Parseval)[15]: lIfll;z = [|f]| .-

3. 4
Proposition (1.2.9)[15]: lIfll,x < |G [2[|f]] -
Proof.

£ |2

< JVIGIIfl2
= GIlIf 2
= |GI||f]| - by Parseval(Fact (1.2.8))

3 .
< 1GI2[I£]l
Fact (1.2.10)[15]: (Fourier Inversion). f (x) = |G|f(—x) = Yece f () eg (x).
Fact (1.2.11)[15]: (Preservation of Inner Product). (f, g) = |G|{f, §).

By the additive characters of a vector space over a finite field, we mean the characters
of the additive group of the vector space. In our applications for 2-source extractors, the
characters will always be additive characters of some such vector space. The following
proposition is easy to check:

Proposition (1.2.12)[15]: Let F' be a vector space over a finite field FF. Let i be any non-
trivial additive character of IF. Then the map e(x,y) = ¥(x - y) = ¥(3; x;y;) is symmetric,
non-degenerate and bilinear.

Note that we can view every distribution on the group G as a function that maps every
group element to the probability that the element shows up. Thus we will often view
distributions as real valued functions in the natural way: X(x) = Pr[X = x].

Fact (1.2.13)[15]: Let X be any random variable over G. Then H.,,(X) = k simply means

k
that || X, < 27% and implies that || X||,- < 27=.
Fact (1.2.14)[15]: Let X be any random variable over G, then Ex(f (X)) = |G|(f, X).
Fact (1.2.15)[15]: If X is a distribution, X(0) = 1/|G].
Let U denote the uniform distribution. Then note that |G |U is simply the trivial character e,.

Thus:
1

Fact (1.2.16)[15]: U (&) = {E ¢=0
0 &%#0

Let IF be a finite field.
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We will call a subset £ c F X IF a line if there exist two elements a, b € F s.t. the elements
of ¢ are exactly the elements of the form (x, ax + b) for all x € F.

Let P € F X IF be a set of points and L be a set of lines. We say that a point (x, y) has an
incidence with a line € if (x,y) € £. A natural question to ask is how many incidences can
we generate with just K lines and K points. Bourgain, Katz and Tao [20] proved a bound on
the number of incidences for special fields when the number of lines and points is high
enough. Konyagin [23] improved the bound to eliminate the need for K to be large.
Theorem (1.2.17)[15]: (Line Point Incidences). [20], [23] There exists universal constants
B, a > 0 such that for any prime field IF,,, if L,P are sets of K lines and K points respectively,

3
with K < p?~Fo, the number of incidences I(L, P) is at most O (KT“).

An interesting thing to note is that the theorem above does not hold for pseudolines (sets
with small pairwise intersections) over finite fields, though a similar theorem does hold over
the reals.

When the field is of size 2P for a prime p a weaker version of the line point incidences
theorem holds.

Theorem (1.2.18)[15]: (Line Point Incidences). [20], [23] There exists a universal constant
B > 0 such that for any field F,p of size 2P for prime p, if L, P are sets of K lines and K
points respectively with 2= < K < 2(0=A)P the number of incidences I(L, P) is at most

3

0 (k%)

We describe Bourgain’s construction. We start by revisiting the argument for why the
hadamard matrix gives a good 2 source extractor for higher min-entropy.

We recall how to extract from two sources when the min-entropy is high. For a finite
field F, let Had: F* x F* — T be the dot product function, Had(x,y) = x - y.
We have the following theorem.
Theorem (1.2.19)[15]: [21], [27] For every constant § > 0, there exists a polynomial time

algorithm Had: ({0,1}™)? - {0,1}™ s.t. if X,Y are independent (n, G + 6) n) sources,

Ey[||Had(X,Y) — Up|l,1]] < e withm = Q(n) and € = 279,

Proof. For a convenient |, we treat both inputs as elements of F(so |F|' = N) and then use
the dot product function as described above.

We can view the random variable X as a function X: F' — [0, 1], which for each element of
F! assigns the probability of taking on that element. We will prove the theorem by using the
XOR lemma. To use the lemma, we need to bound bias,(X,Y) = |E[¢(Had(X,Y))]| for
every non-trivial character .

Fix such a character i and let e(x,y) be the symmetric non-degenerate bilinear map
e(x,y) = ¥(x - y) (Proposition (1.2.12)). Recall that e,. denotes the character e(x,-). Below
we will use Fourier analysis according to e.

Note that

biasy (X, V) = | DY) ) X(wGx-y) (162)

y€eF! x€F!
Now observe that ¥, gt X ()¢ (x - y) = |Fl|Xe,, X) = |F|'X(y). Thus we get that
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bias, (X, V) = [FI" | ) Y()XO)| = IFIZ (v, 2)]
y€eF!
Using the Cauchy Schwartz inequality and the fact that ||f||§z = |]F|l||f||fz forevery f: F' -
C, we obtain the bound:

bias, (X,Y)? < |FI4||Y||%|| %],
= [FP2Y 1% %],
= [FIPYIY 111X 1% by Parseval(Fact (1.2.8))
= [FIHIY IZ11X117
< 2n2kip~ke
Where the last inequality is obtained by Fact (1.2.13), assuming X,Y have min-entropy
ki, k,. Thus, as long as k; + k, > n, the bias is less than 1.

1
Set [ so that Nt = M = |F|. By the XOR lemma Lemma (1.2.26) we get m bits which
n—-ki1—kz+m

are2~ 2z close to uniform. The fact that the extractor is strong follows from Theorem
(1.2.30).

One question we might ask is: is this error bound just an artifact of the proof? Does the
Hadamard extractor actually perform better than this bound suggests? If [ = 1, the answer
is clearly no, since the output must have at least n bits of entropy to generate a uniformly
random point of [F. If | is large the answer is still no; there exist sources X, Y with entropy
exactly n/2 for which the above extractor does badly. For example let X be the source which
picks the first half of its field elements randomly and sets the rest to 0. Let Y be the source
that picks the second half of its field elements randomly and sets the rest to 0. Then each
source has entropy rate exactly 1/2, but the dot product function always outputs 0.

A key observation of Bourgain’s is that the counterexample that we exhibited for the
Hadamard extractor is just a pathalogical case. He shows that although the Hadamard
function doesn’t extract from any sources with lower entropy, there are essentially very few
counterexamples for which it fails. He then demonstrates how to encode any general source
in a way that ensures that it is not a counterexample for the Hadamard function. Thus his
extractor is obtained by first encoding each source in some way and then applying the
Hadamard function.

For instance, consider our counterexamples from the last. The counterexamples were
essentially subspaces of the original space. In particular, each source was closed under
addition, i.e. the entropy of the source X + X obtained by taking two independent samples
of X and summing them is exactly the same as the entropy of X. We will argue that when
the source grows with addition (we will define exactly what we mean by this), the Hadamard
extractor does not fail.

Our proof of Bourgain’s theorem will be obtained in the following steps:

e First we will argue that for sources which grow with addition, the Hadamard extractor

succeeds.

e Then we will show how to encode any source with sufficiently high entropy in a way

that makes it grow with addition.

To show that the Hadamard extractor succeeds, we were trying to bound the bias of the
output distribution of the extractor biasy, (X, Y) Equation 1:
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biasy (X, V) = | DY) ) X((x-y) (163)
y€eF! x€F!
Now for any source X, let X — X be the source that samples a point by sampling two points
independently according to X and subtracting them.
Lemma (1.2.20)[15]: biasy, (X,Y)?* < biasy, (X — X,Y)
Proof.

bias,(X,Y) = Z Y(y) z Xp(x - y)

y€eF! x€F!
<D YO X -y)
y€EF! x€FF!

Then by convexity,

biasy(X,Y)? = ) Y()

y€eF!

PR LCITERY

x€eF!

- Z Y(y) Z X(x)X () (e - )P (=% - y)

y€eF! X1,%,EF!
= Z Y(y) Z X)X () — x2) - y)
y€F! X1,%,EF!

Now let X' denote the source X — X. Then by grouping terms, we see that the last expression
Is simply:

bias, (X, Y)? < z Y(y) z X')Y(x - y)| = bias(X — X,Y)
yeF! x€F!

Notice the magic of this “squaring the sum” trick. By squaring the sum for the
expectation via Cauchy Schwartz, starting with our original bound for the error of the
extractor, we obtained a bound that behaves as if our original source was X’ = X — X instead
of X! If X' has much higher entropy than X, we have made progress; we can follow the rest
of the proof of Theorem (1.2.19) in the same way and obtain an error bound that is a bit
worse (because we had to square the bias), but now assuming that our input source was X'
instead of X.

For one thing, we see that we can easily compose this trick with itself. Applying the lemma
again we obtain  biasy(X,Y)* < biasy,(X — X,Y)? < biasy,(X —X - X+ X,Y) =
bias, (2X — 2X,Y).

Applying the lemma with respect to Y (by symmetry), we obtain bias,(X,Y)® <
biasy, (2X — 2X,Y —Y).

In general, we obtain the following lemma:

Lemma (1.2.21)[15]: There exists a polynomial time computable function Had: F* x F! —
{0, 1}™ s.t. given two independent sources X,Y taking values in F! and constants c,, ¢, with

25



the property that the sources 21X — 2°1 X and 2°2Y — 2°2Y have min-entropy k4, k,, then
|E[Y(Had(X,Y))]| < (|FY|2-%atka))A(1/2¢%¢2*2 for every non-trivial character .
Note that X — X has at least as high min-entropy as X, thus if it is convenient we may simply
ignore the subtraction part of the hypothesis; it is sufficient to have that 2¢1X,2¢2Y have
high min-entropy to apply the above lemma.

Given Lemma (1.2.21) We find a way to encode X, Y in such a way that the resulting
sources grow with addition. Then we can apply the dot product function and use the lemma
to prove that our extractor works. How can we encode a source in a way that guarantees that
it grows with addition? Our main weapon to do this will be bounds on the number of line
point incidences (Theorem (1.2.17) or Theorem (1.2.18)). We will force the adversary to
pick a distribution on lines and a distribution on points with high entropy. Then we will
argue that if our encoding produces a source which does not grow with addition, the
adversary must have picked a set of points and a set of lines that violates the line point
incidences theorem.

We will use the following corollary of Theorem (1.2.17), which is slightly stronger than a
theorem due to Zuckerman [28]. We will follow his proof closely.

Corollary (1.2.22)[15]: Let F and K = 2(2+®k pe sych that a line point incidences theorem
holds for [F,K, with a the constant from Theorem (1.2.17). Suppose L, X are two independent
sources, with min-entropy 2k, k with L picking an element of F? and X picking an element
of F independently. Then the distribution (X, L(X)) where L(X) represents the evaluation
of the L’th line at X is 27 _close to a source with min-entropy (1 + a/2)2k.

Proof. Every source with min-entropy k is a convex combination of sources with min-
entropy k and support of size exactly 2%. So without loss of generality we assume that
supp(L) is of size 22¥ and that supp(X) has size 2.

Suppose (X,L(X)) is e-far from any source with min-entropy (1 + a/2)2k in terms of

(1+%)2k st

statistical distance. Then there must exist some set H of size at most 2
Pr[(X,L(X)) € H] = €.
Then we have
(i) A setof points H: 22k+ke points
(i) A set of lines supp(L): 22¥ lines.
Now we get an incidence whenever (X, L(X)) € H. Thus the number of incidences is at least
Pr[(X,L(X)) € H]|supp(L)||supp(X)| = e2%¢

However, by the line point incidences theorem (Theorem (1.2.17)), the number of
a ka
incidences is at most 2(z-@)@k+ka) _ psk+ska/z-zka-ka® < 3k(1-5) = 5(57) 3k
3ka

These two inequalities imply that € < 2'(7).

Given this corollary, we now describe several ways to encode a source so that it grows with
addition. It suffices to understand any one of these encodings to complete the proof for the
extractor.

Encoding 1: x — (x, g*) We treat the input x from the source as an element of F* for a
field in which a version of the line point incidences theorem holds. Then we encode it into
an element of F2 as (x, g*) where g is a generator of the multiplicative group F*. Now fix
an adversarially chosen source X. Consider the source X obtained by performing the above
encoding.
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X is adistribution on points of the form (x, g*) where x # 0. By doing a change of variables,
we think of every such point as (log, %, X).
First consider the distribution of 2X. An element of supp(2X) is of the form
(logg (k1%5), %, + fz) for some x,, x, in the support of X. Notice that for each a, b with
a = XX, and b = x; + X,, there are at most two possible values for (i, X,), since for the
solutions for x; must satisfy some quadratic equation in a, b. This means that the min-
entropy of 2X is at least 2k — 1 since the probability of getting a particular (a, b) is at most
twice the probability of getting a single pair from X, X. By changing k, in the rest of this
discussion we assume that the min-entropy of 2.X is 2k.
Now for each a, b € F with a, b # 0 define the line

Loy ={(ax,b+x) EF*|x e F} = {(x%+ b) € ]F2|x € [F}
Every (a, b) in our encoding then determines the line £, ,. Let L = 2X be a random variable
that picks a line according to 2X.
Every element of supp(3X) is of the form (log,(%;%,%5), %, + ¥, + ¥3) and determines
the point (X, %,%5,%; + X, + X3) € F2.

Now think of the distribution of 3X as obtained by first sampling a line according to 2X

and then evaluating that line at an independent sample from X and outputting the resulting
point. Then we see that we are in a position to apply Corollary (1.2.22) to get that the
encoding does grow with addition.
Encoding 2: x — (x,x?) Again we treat X as an element of the multiplicative group of a
field [F* with charactersitic not equal to 2 in which a version of the line point incidences
theorem holds. Now fix an adversarially chosen source X. Let X denote the source obtained
by encoding X in the above way.

First consider the distribution of 2X. An element of supp(2X) is of the form
(X, + X,, X% + x5) for some x,, X, in the support of X. Notice that for each a, b with a =
%, + X, and b = xZ + x2, there are at most two possible values for (x;, x,). This means that
the min-entropy of 2X is at least 2k — 1 since the probability of getting a particular (a, b)
is at most twice the probability of getting a single pair from X, X. By changing k, in the rest
of this discussion we assume that the min-entropy of 2X is 2k.

Now for each a, b € F with a, b # 0 define the line
Loy ={(Qax+a* —b,a +x) € F*|x € F}
= {(x,x/(2a) + (a® + b)/(2a)) € F? |x € F}
Every (a, b) in our encoding then determines a unique line £, ;. Let L = 2X be a random
variable that picks a line according to 2X.
Every element of supp(3X) is then of the form (¥, + X, + X3, X7 + X2 + x5) and
determines the point
(X, + %, +%3)% — (X2 + X2 + %2),%, + X, + X3)
= (2(x; + x2)%5 + (% + JE2)2 - (f12 + Jz22)» (% + X)) + X3)
= (2ax; + a®* — b,a + x3)

Now think of the distribution of 3.X as obtained by first sampling a line according to 2X and
then evaluating that line at an independent sample from X and outputting the resulting point.
Then we see that we can apply Corollary (1.2.22) to get that the encoding does grow with
addition.

By picking an appropriate constant y, we obtain the following lemma:
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Lemma (1.2.23)[15]: There is a universal constant y s.t. if X is any source that picks an
element of [F with min-entropy (% — y) log|F|, 3X is |F|~*(M-close to a source with min-

entropy G + y) log|IF?|.
Putting together the results from the two previous and applying Lemma (1.2.25), we
obtain the theorem for Bourgain’s extractor.
Theorem (1.2.24)[15]: [19] There exists a univeral constant y > 0 and a polynomial time
computable function Bou: ({0, 1}*)% — {0, 1} s.t. if X, Y are two independent (n, (1/2 —
y)n) sources, Ey[||Bou(X,Y) — Uy ll,2] < €, with e = 27 im = Q(n).
We will prove a generalization of Vazirani’s XOR lemma.

We reserve G for a finite abelian group.
The lemma we will prove is the following:
Lemma (1.2.25) (XOR lemma for cyclic groups)[15]: For every cyclic group G = Zy and
every integer M < N, there is an efficiently comptable function ¢:Zy — Z,, = H with the
following property: Let X be any random variable taking values in Zy s.t. for every non-
trivial character ¥:Zy — C*, we have |[E[¥(X)]| <e, then o(X) is O(logN VM) +
O(M/N) close to the uniform distribution.
It is easy to extend this result to work for any abelian group G, though it’s hard to state the
result for general abelian groups in a clean way. We will discuss the proof of the above
lemma and just make a few remarks about how to extend it to general abelian groups.

Before we move on to prove Lemma (1.2.25), let us first prove a special case of this
lemma which is a generalization of Vazirani’s XOR lemma. For the proof of this case below,
we essentially follow the proof as in Goldreich’s survey [22].
Lemma (1.2.26)[15]: X be a distribution on a finite abelian group G s.t. |E[¢(X)]| < € for

every non-trivial character y. Then X is /|G| close to the uniform distribution:

IX = Ull,2 < e/]G].

Proof. By the hypothesis, for every non-trivial character y of G, |(¢,X)| =
(z) IEx (O < €/1G]. Then note that if v = 1, 1%, X — U)| = [, X) — (@, U)| =

|G|
(Y, X)| < €/|G|. Also, since X, U are distributions, (1,X —U) = (1,X) —(1,U) = 0.

Thus we have shown that ||X — U||{,oo < €/|G|. Proposition (1.2.9) then implies that

I1X = Ullx < 1G],

In Lemma (1.2.26), given a bound of on the biases, the statistical distance blows up by a

factor of \/|G|. This is too much if € is not small enough. Lemma (1.2.25) gives us the
flexibility to tradeoff this blowup factor with the number of bits that we can claim are
statistically close to uniform. As M is made smaller, the blowup factor is reduced, but we
get “less” randomness. Our proof for the general case will work (more or less) by reducing
to the case of Lemma (1.2.26).

Note that if o is an onto homomorphism, for every non-trivial character ¢ of H, ¢ o g is
a non-trivial character of G. Thus the bounds on the biases of X give bounds on the biases
of (X) and we can reduce to the case of Lemma (1.2.26). The problem is that we cannot
hope to find such a homomorphism o for every M. For instance, if G = Z,, for p a large
prime, G contains no non-trivial subgroup and so ¢ cannot be a homomorphism for M =
[p/2]. Instead, we will show that we can find a 6 which approximates a homomorphism in
the sense:
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(i) For every non-trivial character ¢ of H, ¢ o o is approximated by a few characters of
G. Formally, this is captured by bounding || oo, (observe that if o is a

homomorphism, this quantity is 1/|G|).
(i)  We’ll ensure that o(U) is the close to the uniform distribution on H.
Then we will be able to use the bounds on the biases of X to give bounds on the biases of
o(X) — a(U), where U is the uniform distribution. This will allow us to apply Proposition
(1.2.9) to conclude that X is a pseudorandom generator for o, i.e. ||a(X) — o(U)]||,: is small,
which implies that o (X) is close to uniform, since o (U) is close to uniform.
The following lemma asserts that every -biased distribution is pseudorandom for any
function o that satisfies the first condition above.
Lemma (1.2.27)[15]: Let G, H be finite abelian groups. Let X be a distribution on G with
|Ex[Ww(X)]| < € for every non-trivial character i of G and let U be the uniform distribution
on G. Let o: G — H be a function such that for every character ¢ of H, we have that

|¢ ool </lGl
Then [lo(X) — a(U)|l,2 < te/|H].

Proof. First note that the assumption on X is equivalent to ||X = U||,.., < €/IG|. Let ¢ be
any non-trivial character of H. Then
(¢, 0 (X) — a(U)})| = (¢, a(X)) — (¢, a(VU))
= LB (o) by Fact (1.2.14) applied to 6(X) and o(U)
_ [Ex[¢(e )] — Ey[¢(c )]
|H|

l'Z'l (¢ 07, X) — (o 7, U)] by Fact (1.2.14) applied to X and U

G|

— ocg, X—U

] (¢ )]
= % (P oo, X—U) by preservation of inner product (Fact (1.2.11))
< ||G|| ool . [IX =0l - by the triangle inequality (Fact (1.2.3))
< t¢/|H| since ||@ o o| , < 7/IGland || X =TU|| ., < €/IG|

On the other hand, (1, (X)) — a(U)) = 0, since o(X) and a(U) are distributions. Thus,
we have shown that ||a(X) — a(U)|| ., < te/|H|, which by Proposition (1.2.9) implies that

lo(X) = ol < ve/H].

Note that when o is the identity function (or any surjective homomorphism onto a group H),
T = 1. Thus Vazirani’s XOR lemma corresponds exactly to the case of ¢ being the identity
function.

Next we show that in the special when G 1is a cyclic group, we can find a ¢ which satisfies
the hypothesis of Lemma (1.2.27) with small t.

Lemma (1.2.28)[15]: Let M, N be integers satisfying N > M. Let 0:Zy — Z, be the
function o(x) = x mod M. Then for every character ¢ of Z,,, ||¢ © o||,» < O(logN)/N
Proof. Note that if M divides N, the statement is trivial, since ¢ is a homomorphism. Below
we show that even in the general case, this expectation is small. Define the function p(x) =
exp(2mix). Then note that p(a + b) = p(a)p(b).

£ =
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First let ¢ be any character of Z,,. Then ¢(y) = p(%) for some w € Z,. Clearly,
(o) = p ().

el = () 3| oo (5] = ) 3 |3 o (S5

tEZN |XEZN tEZN |XEZN

, N_
Recall that for any geometric sum YN, brt = b:_lb, aslong asr # 1. The inner sum in this

expression is exactly such a geometric sum. Thus we get:

o< () 3 | o (R

tEZN,t;tWWN XELN

(o)

TeER

1 2 1 _
< (F) Z M —wN + N since
P (T )

‘ +1/N by simplifying the geometric sum

(N(tM — wN))
p -1

1 p
- (F) ZtezN,ti“I’w—N

<2
NM -

1 2
< | —
_<N2> Z t — (WN/M) 1 +1/N
teZN,t:tV;/[—N p N o

Now write wN /M = c + d, where c is an integer, and d € [0, 1]. Then, by doing a change

of variable from t to t — c, we get that the above sum is

1 2

<F) Z t—d TN
teZy,t=d |P (T) —1

We will bound two parts of this sum separately. Let r be a constant with 0 < r < 1/4. Now

note that |p (%) - 1| > Q(1) when rN <t < (1—-7r)N, since in this situation the

quantity is the distance between two points on the unit circle which have an angle of at least
2mr between them.
. . . . t—d . . . . .
When t is not in this region, |p (T) — 1| > |sm( )| since the sin function gives
the vertical distance between the two points. This is at least (t —d)/100N for r small

enough, since we have that |sinx| > |x| for —m/2 <x <m/2. Thus, choosing r
appropriately, we can bound the sum:

2n(t—d)

1
(m P— + 1/N
teZy,t=d |P (T) -1

_ (L 2 2 .
B (ﬁ) z t—d + z t—d +1/
t#d,te[rN,(1-r)N] |P (T) -1 t#d,tg[rN,(1-r)N] |P (T) -1
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( 1 800N

N2 (t—d +
t#d,te[o0,r t#d,t¢[rN,(1-1r)N]

< ( )(O(NlogN) +O0(N)) +1/N

Here the last inequality used the fact that )i, 1/i = 0(logn). Overall this gives us a bound
oft<0 (101%1\’).

On uniform input the distribution o (U) is quite close to uniform. Specifically, if N =
qM + r, with g, r the quotient and remainder of N on dividing by N, we have that ¢(U) is
2r((g+1)/N —-1/M) = 2r/M)(M(q +1)/N —1) = 2r/M)(M —r)/N = 2M /N
close to the uniform distribution. Thus, overall we get that this ¢ turns any distribution which
fools characters with bias at most into one that is € log NVM + 0 (%) close to uniform.

Now we discuss the situation for general abelian groups. The basic observation is that
approximate homomorphisms can be combined to give a new approximate homomorphism:
Lemma (1.2.29)[15]: Let G = G, @ G, and H = H, @ H, be finite abelian groups. Let
0.:G; » H; and o,:G, —» H, be two functions that satisfy the hypotheses of Lemma
(1.2.27) with constants 7, and 7, respectively. Then the function o:G — H defined as
o(x @ y) =0,(x) @ o,(y) satisfies the hypotheses of the lemma with parameters 7, 7,.

Given this lemma, it is clear how to get for every abelian group. Simply write the abelian
group as a direct sum of cyclic groups. Then depending on how much randomness is
needeed, we can compose several homomorphisms with approximate homorphisms to get a
function ¢ that does the job.

We give an argument due to Boaz Barak showing that every 2 source extractor which

has sufficiently small error is in fact strong.
Theorem (1.2.30)[15]: Let IExt: ({0,1}™)? — {0, 1}™ be any two source extractor for min-
entropy k with error . Then IExt is a strong two source extractor for min-entropy k'’ (strong

with respect to both sources) with error 2™ (e + 2K7%"),

Proof. Without loss of generality, we assume that X, Y have supports of size k’. Then we
need to bound:

o) |+1/Nn

27| 1Ext (X, y) = Unll 2
yesupp(Y)
Forany z € {0, 1}, define the set of bad y’s for z
B, = {y:|Pr[IExt(X,y) = z] — 27™| = €}
Claim (1.2.31)[15]: For every z, |B,| < 2%
Suppose not, then the flat distributions on B,, X are two independent sources for which the
extractor IExt fails. Now let B =U, B,. We see that |B| < 2¥2™. Thus,

27K IExt (X, y) — Upyll 1
yesupp(Y)
= ) ZMUEREDG-Unla+ ) 27 IEXY) = Uyl

yesupp(Y)NB yEsupp(Y)\B
< 27K gkHm 4 epm = om (20K 4 ¢),
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Chapter 2
Generalized N-Property and Morse-Sard Theorem

Investigate the questions related to the uniqueness of weak solutions for the continuity
equation associated to a vector field with Sobolev regularity. We show that almost all level
sets are finite disjoint unions of C1-smooth compact manifolds of dimension n — m.
Section (2.1): Sard Theorem for Sobolev Maps

We describe some extensions of the Lusin N-property and the Sard theorem for
Sobolev maps which have been recently obtained in collaboration with M. Csornyei, E.
D’Aniello, and B. Kirchheim [32], [33];

The N-property has been widely studied, mostly in connection with the area formula for

Sobolev maps and other classes of weakly differentiable maps. However, the variant of this
property that we are interested in arises as a key ingredient of our proof of the optimal form
of Sard theorem for Sobolev maps. We consider this version of Sard theorem in the
attempt—which eventually failed—to produce a counterexample to a certain uniqueness
statement for the flow associated to a vector field with Sobolev regularity; this statement is
in turn related to the uniqueness of weak solutions of the continuity equation (or the transport
equation) associated to the same vector field.
We plan to explain the connections between these problems (Nproperty, Sard Theorem,
uniqueness for the flow and for the continuity equation associated to a divergence-free
vector field), and then illustrate some of our results at least in simple cases, giving when
possible an outline of the proof. In writing this We tried to improve readability at the
expenses of precision by omitting most technical details.

Let me finally add that similar results on the N-property and the Sard theorem for Sobolev
maps have been obtained by J. Bourgain, M.V. Korobkov, and J. Kristensen [37] at about
the same time as us (but with different motivations in the background).

We consider the continuity equation

u; +div(bu) =0 (D
where b is a vector field on R™ and the unknown u is a scalar function on [0, T) X R™ subject
to the initial condition u(0,-) = u,, with u, a given initial datum.

To understand what follows it is convenient to keep in mind the standard mechanical
interpretation of (pde): consider a continuous distribution of point particles in R™ such that
the trajectory x = x(t) of each particle satisfies the ordinary differential equation

x = b(x), (2)
and let u = u(t, x) be the corresponding density—that is, mass per unit volume at time t
and position x. Then u satisfies (pde).
This interpretation suggests that existence and uniqueness of solutions of the Cauchy
problem for (pde) are strictly related to existence and uniqueness for the Cauchy problem
for (ode).

Assume for the time being that b is bounded and smooth. Under these assumptions
we can construct the flow associated to (ode), namely the oneparameter family of
diffeomorphisms of R"

{Pe}e20
defined by the fact that for every x € R™ the map t — @, (x) solves the equation (ode) with
initial value @,(x) = x.
If b is divergence-free then the flow is volume-preserving (that is, each diffeomorphism @,
is volume-preserving), and therefore a solution of (pde) with initial datum v, is
u(t, x): =3 ;to(qbt‘ 1) (3)



It follows immediately that if u, is bounded then
lu(@ o < lluglle,  forallt. (4)

Assume now that the vector field b is bounded, divergence-free (in the sense of distribution)
but no longer smooth. We construct a solution of (pde) with initial datum wu, as follows: let
b, be a regularization of b by convolution (so b, is bounded, divergence-free, and smooth),
and let u, be the solution of (pde) with b, in place of b given by formula (3); then we can
use the bound (4) to pass to the limit in u, as € — 0, and obtain bounded function u that
solves (pde) for all positive times (in the sense of distribution).
To make this argument work it is not needed that div b = 0, but it suffices that div b > —m
for some finite m; in this case (3) should be replaced by

u(t, x): = up (P71 (x)) - det(Ve; 1 (x)),
and since the derivative of det(V(Dt(x)) with respect to the variable t agrees with div b(x),
which is larger than —m, then the bound (4) becomes

lut)llo < e™lluglle  forall t.

Note that without assumptions on the divergence of b the existence of bounded solutions
for all times may no longer hold, because it can happen that all particles end up in the same
point and remain there; therefore after some time the particle density becomes a measure
with an atom, and is no longer represented by a function (let alone a bounded function). For
example, this is the case when

X
b(x):=1 x|
0 if x=0.

Under the only assumption that b is bounded and has bounded (or even vanishing)
divergence there is in general no uniqueness for the Cauchy problem for the continuity
equation (pde). However, in [41], R.J. DiPerna and P.-L. Lions proved that uniqueness holds
under the additional assumption that b is (locally) of Sobolev class W1, and later on L.
Ambrosio [34] improved this result by showing that it suffices that b is (locally) of class
BV.

Note that in both uniqueness is proved within the class of distributional solutions of (pde)
that are functions for all times (actually some additional bound on the solution u is also
needed, for example ||u(t,-)||, uniformly bounded in t for all finite time-intervals). In other
words, the possibility that particles concentrate in a negligible set is excluded a priori, and
not proved impossible.

It should also be noted that both results give conditions which are sufficient for unigueness,
but not necessary.

In view of the mechanical interpretation described above, one would expect that
uniqueness for (pde) is related to uniqueness for (ode), and the heuristic argument should be
the following: let N be the set of non-uniqueness associated to b, that is, the set of all points
z € R™ such that the differential equation (ode) has at least two solutions x,(t) and X,(t)
with initial datum z. Consider now an initial distribution of particles contained in N: there
are at least two possible evolutions of this distribution, one obtained by moving each particle
initially located at the point z according to the trajectory x,(t), and the other one obtained
by moving it according to %,(t). We thus expect that the densities u and # associated to
these two evolutions give different solutions of (pde) with the same initial datum.

Now, this would certainly be the case if our notion of solution included measurevalued
solutions, that is, if we allowed the particle density at time t to be represented by a measure
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instead of a function. But since by solutions we mean functions, and sometimes even
bounded functions, we quickly realize that to make the previous constructions work we need
some additional assumptions.

First of all we need an initial distribution of particles with positive total mass whose
density is a function and not a measure, and therefore we must assume that the non-
uniqueness set N has positive measure.

Secondly, we need that at every time t > 0 the densities of the two distributions
considered above are functions and not measures, which is obtained by assuming that the
families of trajectories {x,} and {X,} do not “concentrate”, where non-concentration (for
{x,}) means that for every set E with positive measure contained in N and every t > 0, the
set E.:={x,(t):z € E} has positive measure. (This is the weakest notion of non-
concentration: to makes sure that the solutions u and # constructed above are bounded
functions, and not just functions, one has to impose some explicit lower bound for the
measure of E;, such as meas(E;) = m meas(E) for some positive constant m.)

The argument We have just presented has been made rigorous by Ambrosio in [34] using
a suitable weak notion of flow a regular Lagrangian flow associated to a vector field b on
R™ is a family of maps @,: R™ — R™ parametrized by time t such that

(i) t — @.(x) solves (ode) for almost every x € R™,

(ii)there exists a positive constant m such that meas(®,(E)) = m meas(E) for every

set E and every time t (non-concentration).

Two Lagrangian flows are said to be equivalent if they agree for almost every x and every
t, and, as shown in [34], the existence of two non-equivalent regular Lagrangian flows
implies non-uniqueness of bounded solutions for (pde). In particular, the uniqueness result
for (pde) in [41] and [34] imply the uniqueness of regular Lagrangian flows up to
equivalence.

For more details on the connection between (pde) and flows for (ode), and for a review of
related uniqueness results | refer the reader to [38], [35].

The uniqueness of regular Lagrangian flows (up to equivalence) can be loosely
interpreted as uniqueness for (ode) for almost every initial position. However, these two
conditions are not equivalent: while the latter clearly implies the former (because of
assumption (i) in the definition of regular Lagrangian flow), the converse is not true
(essentially because for certain vector fields b there exist flows that satisfy condition (i) but
not (ii)).

In particular, it is not know whether the uniqueness results for (pde) in [41] and [34] imply
unigueness for (ode) for almost every initial position.

We are thus led to the following question, which is still open: Is there a continuous vector
field b on R™ with bounded divergence and of class WP for some p > 1 (that is, a vector
field to which the uniqueness result in [41] applies) such that the non-uniqueness set N has
positive measure?

We restrict our attention to vector fields b on R™ that are bounded and divergence-
free. Under these assumptions there exists a Lipschitz function f: R™ — R, called potential
of b, such that

b= ()" (5)
where v stands for the rotation of the vector v by ninety degrees counterclockwise (f exists
because the rotation of b by ninety degrees clockwise is curl-free).
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In [30] it is proved that the vector fields b such that there is uniqueness for the corresponding
continuity equation (pde) can be characterized in terms of the critical set of the potential f.
In view of the mechanical interpretation of (pde) given at the beginning, we can rephrase
the first step of this proof as follows: a particle that belongs to some level set f~1(y) at time
0, remains for all subsequent times in the same level set, and in the same connected
component of the same level sets. This is not surprising because b is orthogonal to VVf and
therefore tangent to the level sets of f at almost every point.
It follows that solving (pde) is equivalent to solve a partial differential equation similar to
(pde) on every nontrivial connected component E of a generic level set f~1(y) (here
“nontrivial” means “containing more than one point”; “generic” means “for almost every
Y’
Moreover a nontrivial connected component E of a generic level set is a simple rectifiable
curve (see [31]) and therefore uniqueness for (pde) reduces to uniqueness for a family of
variants of the continuity equation in one space dimension. It turns out that uniqueness for
these one-dimensional continuity equations is strictly related to the intersection of the
connected component E and the set of critical points
S:={x:Vf(x) =0}

In particular, if a generic level set of f does not contains critical points (that is, if f has the
Sard property) then there is uniqueness for all these onedimensional equations, and therefore
also for the original two-dimensional equation (pde).

Let f: R™ - R be a Lipschitz function of class W2? and with compact support, and let
V be the set of all values y € R such that there exists a nontrivial connected component E,,
of the level set f~*(y) which contains one and only one critical point of f, denoted by x,,.
Finally let b be the vector field with potential f, that is, the one defined by (5), and let N be
the non-uniqueness set associated to b.
We claim that if the set V has positive measure then the set N has positive measure, and
therefore the answer to the question is negative.
Let me argue in favour of this claim. We first recall that for almost every y € R the set E,,
Is a rectifiable, simple, closed curve, and We observe that

(i) a particle that moves along E,, reaches x,, in finite time;

(ii) after the particle has reached the critical point x,, it can stay there for any given

amount of time and then start moving again.

Statement (ii) is essentially a consequence of statement (i) (applied with reversed time) and
of the fact that b vanishes in x,,. To prove statement (i), note that the time T, taken by the

particle to go all the way through the curve E, is

b=l m= LA
Y g bl S VAL T )y IVST

+00 1
navs [
j;/ Y Y —0co f~1(y) |Vf|

(the second inequality follows by the coarea formula and the fact that f~*(y) is contained
in the support of f for all y + 0; the last inequality is due to the fact that the support of f is
assumed to be compact, and therefore it has finite measure).

Hence T, is finite for almost every y € V, which implies statement (i). Now notice that

statements (i) and (ii) together imply that for every point z contained in E,, with y € V there
35
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dy < meas(supp(f)) < +




are infinitely many solutions of (ode) with initial datum z, and therefore E,, is contained in
the non-uniqueness set N of the vector field b. Finally, the coarea formula and the fact that
V has positive measure imply that the union of all E;, with y € V, and therefore also N, are
sets of positive measure in the plane.

The fact that the set V in the previous construction has positive measure implies that
the function f does not have the Sard property. When we started working on these problems
it was only known that Sard theorem holds for functions f: R* — R of class W#? with p >
2 but nothing was known for p < 2. So we looked for a counterexample, with the hope that
it would eventually lead to a negative answer to the question raised We found out in the end
that there are no counterexamples, and that Sard theorem holds for all p > 1.

Given a function f: R™ — R™ with m < n, the critical set of fis

S:= {x: rank(Vf(x)) < m}
We say that f has the Sard property if £(S) is negligible, that is, if a generic level set of f
contains no critical points.
In the classical form (see [47]), Sard theorem states that if f is of class C*~™*1 then it has
the Sard property. Note that the regularity exponent n — m + 1 is sharp: there exist maps of
class C™~™ without the Sard property (see [48], [42]).
A more precise version of Sard theorem was given in [42]: given a map f: R™ - R™ of
class C* (without restrictions on nand m) and h = 0, 1, ..., then the set

Spi={x:rank(Vf(x)) < h} (6)

IS %HnTh-negligible, where $€? denotes the d-dimensional Hausdorff measure. This result
was later extended in [36] to maps of class C*“.

Concerning Sobolev maps, L. De Pascale proved in [39] that continuous maps of class
wn-m*tLp with p > n > m have the Sard property. A simpler proof of this statement was
later given in [43]. Note that the counterexamples mentioned before show that the
differentiability exponent n —m + 1 is sharp. On the other hand, there are no examples
showing that the bound p > n on the summability exponent is optimal (and indeed it is not,
as | am going to explain).

In the rest restrict for simplicity to the case n = 2 and m = 1, that is, to functions f on
R? to R. (For n = m Sard theorem is just a consequence of the area formula, and therefore
the “interesting” cases are those with n > m; among these the case n = 2 and m = 1 is the
simplest, and is also the one which is relevant to the construction explained.

In this case the critical set S agrees with the set S, of all points where the gradient Vf
vanishes, and the result by De Pascale states that a continuous function in W2? with p > 2
has the Sard property. We give a detailed outline of the proof of this result, and then indicate
how it can be extended to W21,

Let f:IR? - R be a continuos function of class W2? for some p > 2; we assume for
simplicity that the singular set S, ha finite measure.
The starting point is the following estimate: for every ball B = B(x,r) with center x and

radius r there holds
1

ose(f, B) s rlvf Gl + 7 (FI72 1P ) )

where osc(f, B) stands for the oscillation of f over the set B (that is, the difference between
the supremum and the infimum), the symbol < means that the inequality holds up to some
(universal) multiplicative factor, and the dashed integral stands for the average.
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Since estimate (7) is scaling and translation invariant, it suffices to prove it when B =
B(0,1). Since W 2P embeds in L*, we can bound the oscillation of f by its W2P-norm (on
B). Now recall that an equivalent norm on W27 is given by the sum of the LP -norm of V2f
and any continuous seminorm ¢ on W?%? which does not vanishes on nontrivial affine
functions, for example ¢ (f): = |f(0)| + |Vf(0)] (the equivalence with the usual norm of
W 2P follows by a standard argument, see [49]). Thus

osc(f, B) < |F(O)| + [VF(O)] + IV fll.pcs). 8)
Since osc(f, B) is invariant under the addition of a constant to f, we can assume f(0) =0
and drop the first addendum on the right-hand side of this inequality, and so we finally
obtain (7).

Note that if x belongs to S, then Vf(x) = 0 and (7) becomes
1

_2 P
osc(f,B) S 777 ( | IVZpr> . 9
B
We now choose an open set A that contains S,, and cover S, with a collections of balls B; =
B(x;, ;) such that x; € S, and B; < A. Thus the sets f(B;) cover the set f(S,), and we can
use this cover to estimate the measure of f(50):

meas(f(So)) < z 'meas(f(Bl-)).

l
Since the measure of the set f(B;) is less than its diameter, which is osc(f, B;), using (9)

we get 1 1
w5 (o] (L)

-1 P
< meas(4) P<f|l72f|p> ) (10)
A

where the second inequality follows by applying Holder inequality in the form Y a;b; <

1 1
(X al)a(T b?)e, and the third one holds provided that the balls B; do not overlap too
much—a property that can be obtained by the Besicovitch covering theorem.
To conclude the proof, note that we can choose the open set A so that meas(A) is
arbitrarily close to meas(S,), which is finite, while fA|l72f|P is arbitrarily close to f50||72f|p

, which is null because Vf = 0 on S, implies V?f = 0 a.e. on S,.

All versions of Sard theorem We mentioned so far apply to classes of maps that are
differentiable at every point, and for which, consequently, the definition of critical set carries
no ambiguity. However for 1 < p < 2 the space W2?(R?) embeds in C° but not in C?,
and therefore a function f in this space admits a continuous representative which in general
Is differentiable almost everywhere but not everywhere. Thus for such f we should consider
two sets:

So: = {x: f is differentiable at x and Vf(x) = 0},
N: = {x: f is not differentiable at x}. (11)
It turns out that Sard theorem holds in the strongest form (see [33], [37]): if f is a continuous
function of class W2 then f (S, U N) is negligible.
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The only information readily available on the set N is that it cannot be too large, and
€' (N) = 0. Therefore we could obtain that £ (N) is negligible if we knew that for every set
E in R?

FE(E)=0 = % (f(E)) =0. (12)
This is exactly a particular case of the generalized N-property.
We show how to adapt the proof to obtain that £ (S,) is negligible, too. First of all, notice
that this proof, as it is, does not work. The point is that we no longer have estimate (7),
because for p < 2 the space WP does not embeds in €1, and therefore the value of Vf at a
given point x is not well-defined.
The idea is to replace the term [V f(x)| in (7) with

jB IV fldps

where pj is a probability measure supported on B that belongs to the dual of W1, in the
sense that u — [ u dpg is a well-defined bounded functional on W%, and therefore u —
[ |u|dpg is a well-defined continuous seminorm on W (for more details on measures in
the dual of W11 see [49]). Then we have the following variant of (7):

osc(f,B) S f 7fldus + 12~ 17211, (13)
B

Let now S’ be the set of all x € S, with the following property: there exists a sequence of
balls B = B(x,r;) with r; = 0 such that on each of these balls we can find a measure ug as
above, supported on S, N B.
With this choice of pj the first integral at the right-hand side of (13) vanishes, and therefore
we get once again estimate (9) (with p = 1). We can now repeat the rest of the proof as it
is, and obtain that f(S") is negligible. It remains to show that f(5,\S") is negligible. We
obtain this using (12) and

FE(So\S) = 0. (14)
To prove (14), we first need to understand when a point x belongs to S’, which in turn
implies understanding when the set S, N B(x,r) can support a probability measure pg in
the dual of W1 and how small the dual norm of this measure can be.

So, when does a set E in R? support a probability measure p in the dual of W12
Intuitively, a necessary condition should be that the set E has positive W1 -capacity, or,
equivalently, that €' (E) > 0. It turns out that a sufficient condition is that 5, (E) > 0,
where €, are the Hausdorff pre-measures that appear in the definition of Hausdorff
measures (see [49]).

Using this sufficient condition we obtain that x belongs to S’ if

56%0(50 N B(x, r)) -
" >

lim sup 1/2, (15)
r—0

and therefore for all x € Sy\S' the limsup in (15) is necessarily strictly smaller than 1, which
implies that
o He(S\S) NB(x,1)
lim sup <

-0 r
The last step of the proof consists in showing that (16) implies (14).

1. (16)
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In [33] we prove the following Take n, k, and p so that the Sobolev space W*? (R™)
embeds in C° (that is, kp >n or p = 1 and k = n), let f: R™ - R™ be a continuous map
of class W*?, and define the sets S, and N as in (11). Then

n
F(f(Sy UN)) = 0. (17)
This result is optimal, in the sense that
(i) the dimension n/k in (17) cannot be lowered;
(ii)if n, k, and p do not satisfy the condition above, then there are maps f on R" of class
WP n c*=1 for which the Hausdorff dimension of £(S,) is strictly larger than n/k,
and in particular (17) fails.
To obtain the optimal statement of Sard theorem we should then prove similar estimates for
the sets S;, defined in (6).

A map f:R™ > R™ with m >n has the Lusin N-property if the following
implication holds for every set E contained in R":

F(E)=0=F"(f(E))=0.

This property has been widely studied in the past years, mostly in relation to the area
formula. Indeed, the following statement holds: let f be a map which is differentiable (in
the approximate sense) at almost every point and has the Nproperty; then the area formula
holds, that is

| 1Y ew|dwo =] ecpwaewm  as)
yER™M xef1(y)nE X€EE

where ¢ is any positive Borel function on R", E is any Borel subset of R", and J is the
Jacobian of f (defined at every point where f is differentiable).
The proof of this statement is elementary: since f is a.e. differentiable, it has the Lusin
approximation property with Lipschitz maps, that is, there exist a sequence of Borel sets F;
and of Lipschitz maps f; such that the sets F; cover almost all of R" and f = f; on F; (see
[42]). Using the area formula for Lipschitz maps (see [42]) we obtain that (18) holds when
E is contained in the union of all F;. It remains to show that (18) holds when E is contained
in the complement of the union of all F;. Since E is #€"-negligible, the integral at right-hand
side of (18) vanishes, and to prove that also the integral at the left-hand side vanishes it
suffices to show that f(E) is #€"-negligible, which is precisely what the N-property says.

Concerning Sobolev maps, a continuous map f:R"™ — R™ of class WP has the N-
property if p > n (see [45]) and this bound on the summability exponent is sharp (however,
homeomorphisms of class W™ also have the N-property; for this and other results on the
N-property see [44]).
We focus on a generalization of the N-property that naturally arises when dealing with the
Sard theorem for Sobolev maps.

Given a map f between metric spaces and positive numbers «, 5, we say that f has the
(a, B)-N-property if the following implication holds for every set E contained in the domain
of f:
H(E) = 0= 5 (f(E)) = 0.

It follows from elementary facts that a Lipschitz map has the (a, a)-N-property for every
a > 0 and, more generally, an Halder map with exponent y has the (a, a/y) — N-property
for every a > 0.
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Concerning Sobolev maps, in [32] we prove the following: Take n, k, and p so that the
Sobolev space W*P(R™) embeds in C° (that is, kp >n or p =1 and k = n), and let
f:R™ = R™ be a continuous map of class WP, Then

(i) f has the (a, B)-N-property with 8: = kpfz_n fora <n— (k- 1)p;

(if) f has the (a, a)-N-property fora > n — (k — 1)p.
Moreover this result is sharp, in the sense that

(iii) the value of S in (i) cannot be lowered;

(iv) if we take n, k, and p so that the Sobolev space W*? (R™) does not embed in

€O, then there are continuous maps f: R™ — R™ of class W*? that do not have the
(a, B)-N-property for any a > 0 and f < m, in other words, these maps take some
sets of dimension arbitrarily close to 0 into sets of dimension m.

We have two different methods for proving statements (i) and (ii) above. Even though
the proof can be achieved by either methods for most k, p, a, 8 in the range where the N-
property holds, yet neither approach covers all cases (or so it seems).

Let me illustrate the first method in the case of the (1, 1)-N-property for maps f: R? - R™
of class W21, The starting point is the following estimate (the proof is essentially the same
as that of estimates (7) and (13)): for every ball B = B(x, r) there holds

osc(f,B)Sr£|7f|+r2£|\72f|. (19)

We now fix a set E with #€'(E) = 0 and, given € > 0, we choose a family of balls B; =
B(x;,r;) which cover E and satisfy Y.r; < €. Then the sets f(B;) cover f(E), and we use
this cover to estimate the Hausdorff measure of f(E):

IE(f(B)) < ) diam(f(BY).
i
Since the diameter of f(B;) agrees with the oscillation of f on B;, using (19) we obtain

#(FE) s ) j|\7f|+2j V2£1. (20)

We want to show that both sums at the right-hand S|de of (20) tends to 0 as € tend to O
(provided the covers {B;} are suitably chosen).

If the balls B; do not overlap too much (and this can be obtained by Besicovitch covering
lemma) we can estimate the second sum by the integral of |72f| over the union A of the
balls B;, and since the area of A tends to 0 as € — 0, the same happens to the integral.

The difficult part is to handle the first sum. First of all we write it as [ |Vf|du where p is
given by the Lebesgue measure multiplied by the density

._le
P a1 oY

l

and then we show that p1 belongs to the dual of W11(R?) in the sense of [49] (the key step
is to prove that u(B) < r for every ball B = B(x,r)). Then the proof is concluded by a
careful estimate of the norm of this measure as element of the dual of W11 (RR?).

Concerning the second method, let me just hint that it is related to estimates for the local
Halder exponent of Sobolev maps. The simplest version of such estimates reads as follows:
if o is a real number with 0 < @ < n and f: R™ - R™ is a continuous map of class W1?
with p > n, then for “-almost every x € R™ and every ball B = B(x,r) there holds
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1
D +a—n
osc(f,B) Sr (flVflp)p =0(Y) with y:= pT (21)
B

The inequality in (21) can be proved in the same way as estimate (7), and the equality is

obtained by applying the following elementary statement with g: = |V f|?:given a positive

function g in LY(R™) and 0 < a < n, for #*-almost every x € R™ and every ball B =

B(x,r) there holds

Lg=ov%

(the estimate applies in the regime r — 0, and it is clearly not uniform in x).

Now, estimate (21) says more or less that we can find a sequence of sets such that the
restriction of f to each of these sets is Halder continuous of exponent y, and the sets cover
R" except for a residual set which is $€%-negligible. If we neglect this residual set, we

Immediately obtain that f has the (a, %)—N—property, and a/y is exactly the value of £ in
statement (i) for k = 1.
Section (2.2): The Sharp Case of Sobolev Mappings

The Morse—Sard theorem is a fundamental result with many applications. In its
classical form it states that the image of the set of critical points of a €™ ™*1 smooth
mapping v : R™ - R™ has zero Lebesgue measure in R™. Assuming that n > m the set of
critical points for vis Z, = {x € R" : rankVv(x) < m} and the conclusion is that

L"(w(Z,)) = 0. (43)

The theorem was proved by Morse [69] in the case m = 1 and subsequently by Sard [47]
in the general case. It is well-known since the work of Whitney [48] that the C"~™*1
smoothness assumption on the mapping v cannot be weakened to C/ smoothness with j less
thann —m + 1. While this is so Dubovitskii [59] obtained results on the structure of level
sets for ¢/ mappings v including the cases where j is smaller thann — m + 1 (also see [53]).
An important generalization of the Morse—Sard theorem is the following result that we
display as it, together with the classical result, forms the starting point for our investigations
here.

Theorem (2.2.1)[50]: (Federer [61]). Letm € {1,...,n},d,k € N, and let v : R® - R% be
a Ck—smooth mapping. Denote g, = m — 1 + 2=2*%  Then

HY (v(Zv,m)) =0, (44)
where Hf denotes the f—dimensional Hausdorff measure and Z,, ,,, denotes the set of m—
critical points of v: Z,, ,, = {x € R" : rankVv(x) < mj}.
The Morse—Sard—Federer results have subsequently been generalized to mappings in more
refined scales of spaces, including Holder and Sobolev spaces. For H older spaces we
mention ~ in particular [36], [53], [68], [70], [78] where essentially sharp results were
obtained, including examples showing that the smoothness assumption on v in Federer’s
theorem cannot be weakened within the scale of C/ spaces. However, it follows from [36]
that the conclusion (44) remains valid for C*~* mappings v, and according to [68] it fails
in general for C*~1% mappings whenever a < 1. (For k € N, and a € (0, 1] we say that the
mapping v is of class C** when v is C* and the k—th order derivative of v is locally a—
Halder continuous.) One interpretation of ~ these results is that for the validity of (44) one
must assume existence of k derivatives of v in a suitably strong sense. At a heuristic level
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the general problem is then to prove analogs of the Morse—Sard—Federer results where we
replace the assumption that the mapping is k times continuously differentiable by a
corresponding Sobolev assumption: v has weak derivatives up to and including order k and
these weak derivatives must satisfy a suitable integrability condition. The aforementioned
examples show that we cannot in general reduce the degree k of differentiability. The
question we wish to address here concerns the optimal local integrability condition that the
k—th order weak derivative must satisfy for the validity of (44). Previous works on the
Morse—Sard property of Sobolev spaces include [53], [57], [39], [43], [63], [71], [76], [77],
[37], [56]. The first Morse—Sard result in the Sobolev context that we are aware of is [39].
It states that (43) holds for mappings v € W’g’loc(Rn ,R™)when k > max(n—m+1,2)
and p > n. Note that by the Sobolev embedding theorem any mapping on R™ which is
locally of Sobolev class ka for some p > n is in particular C*~1 | so the critical set Z,, can
be defined as usual. When in the scalar case m = 1 we consider functions in Wy, (R™)
with p € [1,n] we are in general only assured everywhere continuity whereas the
differentiability can fail at some points. Hence for such functions one must adapt the
definition of critical set accordingly. We define the sets A, := {x e R": v is not
differentiable at x} and Z, := {x € R"\ 4, : Vv(x) = 0}. In these terms the results of
[37], [56] imply that (43) holds with m =1 for all v € W, ,(R") and that also
L'(v(4,)) = 0. The latter is a consequence of a more general Luzin N property with respect
to one—dimensional Hausdorff content that W, functions are shown to enjoy. In fact the
results of [37], [56] even yield (43) with m = 1 and an appropriate definition of the critical
set, and the Luzin N property within the more general framework of functions of bounded
variation BV, ;,.(R™).

We shall be concerned with the vectorial case m > 1.1t is very natural to assume, that the
inclusion v € W,ﬁ‘(]R{" ,R%) should guarantee at least the continuity of v. For values k €

{1,...,n — 1} itis well-known that v € Wé‘(Rn ,R%) is continuous for p > % and could
be discontinuous for < % . So the borderline case is = p, = % . It is well-known (see for

instance [62]) that really v € WIQ‘O(R" ,R%) is continuous if the derivatives of k-th order
belong to the Lorentz space L, ;, we will denote the space of such mappings by
W (R, RY).

We prove the precise analog of the above Federer’s theorem for mappings v : R" —
R4 locally of class W;if,,l Jk€{2,...,n},me{2,...,n}(the case k = 1, and, consequently,
q. = n, was considered in [62], It is easy to see (using well-known results such as [58]) that
such a function is (Frechet—)differentiable ~ H4- —almost everywhere, where g, = m — 1 +
BZM*L is the same as in above Federer’s theorem. The critical set Z, m 1s defined as the set
of points x, where v is differentiable and rankVv(x) < m. As our main result we prove that
H%*(v(Z,)) = 0. In fact, the result in Theorem (2.2.18) is slightly more general and
concerns mappings locally of Sobolev class Wp’j :

We also establish a related Luzin N property with respect to Hausdorff content in Theorem
(2.2.14). When the mapping v : R® - R% is of class Wp’ful we find forany e >0aé6 >0
such that for all subsets E of R™ with HX' (E) < & we have HY (v(E)) < &. Here HY is the
q.—dimensional Hausdorff content. In particular, it follows that H°(v(E)) = Owhenever
H%(E) = 0. So the image of the exceptional “bad” set, where the differential is not defined,
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has zero g°—dimensional Hausdorff measure. This ties nicely with our definition of the
critical set and our version of the Federer result.

Finally, using these results we prove that if v € W’go,l (R™,R™) with k = n —m + 1 then

for L™—almost all y € R™ the preimage v~1(y) is a finite disjoint union of C-smooth
compact manifolds of dimension n — m without boundary.
The results are in particular valid for functions v from the classical Sobolev spaces
W (R™, RY) with p > p, = =
We emphasize again that the similar results were proved for k = 1 (i.e., g, = n for any €
{1,...,n}) in [62] and for m = 1,k = n in [37], [56]. We do not prove the analogs of
Federer’s theorem for the cases k > n or m = 1,k < n. In fact, these cases remain open.
While we have formulated all our results of euclidean spaces it is clear that the results are
local and hence could, with the appropriate modifications, be formulated for Sobolev
mappings between smooth Riemannian manifolds instead.
Our proofs rely on the results of [67] on advanced versions of Sobolev imbedding theorems
of [51] on Choquet integrals of Hardy-Littlewood maximal functions with respect to
Hausdorff content, and of [78] on the entropy estimate of near—critical values of
differentiable functions. The key step in the proof of the Morse—Sard—Federer Theorem
(2.2.18) is contained in Lemma (2.2.19), and it expands on a similar argument used in [56].

By an n—dimensional interval we mean a closed cube in R™ with sides parallel to the
coordinate axes. If I is an n—dimensional interval then we write £(1I) for its sidelength.
For a subset S of R™ we write L™(S) for its outer Lebesgue measure. The m—dimensional
Hausdorff measure is denoted by H™ and the m—dimensional Hausdorff content by HZ..
Recall that for any subset S of R™ we have by definition

H™(S) = llmHm(S) =sup HJ'(S),

a>0
where for each 0 < a < oo,

HT'(S) = 1nf{Z(dlamS )™ sdiam S; < a,S C US

It is well known that H™(S) ~ H" (8) ~ L™"(S) forsets S c R™.
To simplify the notation, we write ||f||Lp instead of ”f”Lp(Rn) , etc.

The Sobolev space W, (R™,R%) is as usual defined as consisting of those R? -valued
functions f € L,(R™) whose distributional partial derivatives of orders [ < k belong to
L, (R™) (for detailed definitions and differentiability properties of such functions see, e.g.,
[60], [79], [58]). Denote by V*f the vector-valued function consisting of all k-th order
partial derivatives of f arranged in some fixed order. However for the case of first order
derivatives k = 1 we shall often think of V£ (x) as the Jacobi matrix of f at x, i.e., the d X
n matrix whose r-th row is the vector of partial derivatives of the r-th coordinate function.
We use the norm

W e = ML, + NV AN, +- - + ||\7"f||Lp,

and unless otherwise specified all norms on the spaces R®(s € N) will be the usual
euclidean norms. We state the following result, and only remark that it is well-known and
follows from the definition of Sobolev spaces. In its statement we denote by C:°(R™) the
space of C* smooth and compactly supported functions on R™ .
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Lemma (2.2.2)[50]: Let f € Mé,"(R”). Then for any &€ > 0 there exist functions f, €
CZ(R™) and f; € W(R™) such that f = f;, + f; and Ifillwx <e.

Working with locally integrable functions, we always assume that the precise
representatives are chosen. If w € L, ;,.(Q), then the precise representative w* is defined
by

i lim J w(z) dz, if the limit exists and is finite,
w (x) = {70 B(x,1)

(45)

0 otherwise,
where the dashed integral as usual denotes the integral mean,

w(z)dz = ——— w(z) dz ,
-fB(x,r) L (B (x, T‘)) B(x,r)
and B(x,r) = {y : |y — x| < r} is the open ball of radius r centered at x. Henceforth we
omit special notation for the precise representative writing simply w* = w.
We will say that x is an L,, Lebesgue point of w (and simply a Lebesgue point when p = 1),
if

fB(x’r) lw(z) — w(x)|Pdz - 0asr \ 0.
If k < n, then it is well-known that functions from Sobolev spaces Wp" (R™) are continuous
for p > % and could be discontinuous for p < p, = %(see, e.g., [67], [79]). The Sobolev—

Lorentz space Wp’i,l([R") c Wp’j (R™) is a refinement of the corresponding Sobolev space
that for our purposes turns out to be convenient. Among other things functions that are
locally in Wp’fnl on R™ are in particular continuous.

Given a measurable function f : R™ = R, denote by f,: (0,00) — Rits distribution
function

fu(s) :== L™ {x € R™ : [f(x)| > s},

and by f* the nonincreasing rearrangement of f, defined for t > 0 by

F(t) = inf{s = 0: f.(s) < t}.

Since f and f* are equimeasurable we have for every 1 < p < oo,

1/p +0o0 1/p
( f If(x)lpdx> _ ( f*(t)pdt> |
(R™) 0

The Lorentz space L, ,(R"™) for 1 <p < o,1 < g < oo can be defined as the set of all
measurable functions f : R® — R for which the expresssion

+00 /q
ﬂ 1/p £* 1 ﬂ)l
Wflle,, = <Pfo (t ! (t)) t if1<qg<o
suptPfr(t)  if q=oo

t>0
is finite. See [65], [74] or [79] for information about Lorentz spaces. However, let us remark

that in view of the definition of ||-||Lp’q and the equimeasurability of f and f* we have an
identity ||f||Lp = ||f||Lp,p so that in particular L, ,(R™) = L,(R™). Further, for a fixed
exponent p and g, < g, we have an estimate ||f||Lp,q2 < IIfIILp,q1 , and, consequently, an
embedding L, 4, (R™) < L 4,(R™) (see [65]). Finally we recall that ||-||,, ~is a norm on
L, ,(R™) forall g € [1,p] (see [65]).
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Here we shall mainly be concerned with the Lorentz space L, ; and in this case one may
rewrite the norm as (see [65])

+ o0

1
Ifllpa = j [L*(fx € R™ : [f(x)| > tD]P dt. (46)
0

We need the following subadditivity property of the Lorentz norm.
Lemma (2.2.3) (see, e.g., [72] or [65])[50]: Suppose that 1 <p < wand = UjenE],
where E; are measurable and mutually disjoint subsets of R™ . Then for all f € L,, ; we have

z”f 1|} <10

where 1 denotes the |nd|cator function of E.
Denote by 1t,,l(]R”) the space of all functions v € VI4,"(R”) such that in addition the

Lorentz norm |||7v"||L | is finite. For given dimensions n,m,€ N,1<m <n, and k €
p’

{1,...,n}, we denote the corresponding critical exponents by
p=—andqo—m—1+nm+1—p°+(m—1)(1—k‘1). (47)
By direct calculation, from m=>1,k=>1we fmd
Po=(q. = M. (48)
Note that in the double inequality (48) we have equality in the first inequality iffm = 1 or
k = 1, while in the second inequality equality holds iff k = 1. In particular,
p. <q, <nfork,me{2,...,n} (49)
For a mapping u € L, (I, R%),I c R", define the polynomial P;[u] = P, ,_,[u] of degree
at most k — 1 by the following rule:

j Y u(y) - Pul() dy =0 (50)

for any multi-index a« = (a4,...,a,) oflength |a| = a; + -+ -+ @, < k — 1.

The following well-known bound will be used on several occasions.

Lemma (2.2.4)[50]: Suppose v € W<, (R™ ,R?). Then v is a continuous mapping and for
any ndimensional interval I ¢ R™ the estimate

Sylé};lv(y) Pl < Cl[1; - \7ka| (D

holds, where C is a constant depending on n,d only. Moreover, the mapping v;(y) =
v(y) — P[v](y),y € I, can be extended from I to the whole of R™ such that the extension
(denoted again) v; € W, (R™,R%) and
7%
where C, also depends on n, d only.

Proof. By well-known estimates (see for instance [58] or [65]) we have for any Lebesgue
point y € I of v,

L@ < Goll7vll, o) (52)

VR (x|

L
[v) = Pilv (y)|<cfmd =t - 7ol Sy

— . |n-k
ly = 1",

Lpl

= C,”ll ) Vk'l?”Lp 1

From this estimate the continuity of v follows in a routine manner, and thus (51) holds.
Because of coordinate invariance of estimate (52), it is sufficient to prove the assertions
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about extension for the case when I is a unit cube: I = [0,1]™. By results of [67] for any
u € WkP-(I) the estimate

”u”Wzi(’) < c(l[P;[u ]||L1(I) + ||l7ku||L ' (53)

holds, where ¢ = c(n, k) is a constant. Taking u(y) = v;(y) = v(y) — P;[v](y), the first
term on the right hand side of (53) vanishes and so we have

haallg o < ell7*ull, - (54)

By the Sobolev Extension Theorem, every functionu € Wp’j(l) on the unit cube I =
[0, 1] can be extended to a function U € W;¢(R™) such that the estimate [|7*U|| 'Y S

C”u”Wé‘o(l) holds, see [67]). Applying this result coordinatewise to u = v, and taking into
account (54), we obtain the required estimate (52).

From Lemma (2.2.4) we deduce the following oscillation estimate.
Corollary (2.2.5)[50]: Suppose v € Wp’fnl([R" ,R%). Then for any n-dimensional interval
I < R™ the estimate

| Iwol
diamv(l) <C < g(,)ilg) ”11 : Vkv“Lpo,l)

vl
< C—22+|
()4

holds for every q € [1,n], where C depends on n, k only.

Proof. Because of coordinate invariance of estimate (34)it is sufficient to prove the
estimates for the case when I is a unit cube: I = [0, 1]™ . But for a such fixed interval I the
estimate follows from (51) and from the fact that the coefficients of the polynomial P;[u]
depend continuously on u with respect to L,-norm.

We need a version of the Sobolev Embedding Theorem that gives inclusions in Lebesgue
spaces with respect to suitably general positive measures. Very general and precise
statements are known, but here we restrict attention to the following class of measures. For

B € (0,n) denote by MP the space of all nonnegative Radon measures p on R™ such that
Hklllp = sup £(D~Pu) < oo,
cRn

where the supremum is taken over all n-dimensional intervals I ¢ R".
Theorem (2.2.6) (see [67])[50]: Let u be a positive Radon measure on R™ and p(k — 1) <
n,1 < p < q < co. Then for any function v € Wp"(R") the estimate

[Ivvl?du < clilulllg - [7%]]; (35)
holds with B = (g — k + 1)q, where C depends on n, p, g, k.

We use also the following important strong-type estimate for maximal functions.
Theorem (2.2.7) (see Theorem A, Proposition 1 and it's Corollary in [51])[50]: Let 8 €
(0,n). Then for nonnegative functions f € C,(R™) the estimates

f HE((x e R": Mf(x) =t} dt < le HE((x e R™: f(x) > t}) dt
0

0
< Cysup{f fdu: peMF ||lul|lg <1},
hold, where the constants C;, C, depend on £, n only and

1, - Vky|| (34)

Lp,a

46



Mf(x) = supr—™ f _rolay

r>0
Is the usual Hardy-L.ittlewood maximal function of f.

Applying the two foregoing theorems for p = p, = % q=p=q =m-—1+
obtain the first key ingredient of our proof.

Corollary (2.2.8)[50]: Let m,k € {2,...,n}. Then for any function v € Wp’j(Rn) the
estimates

n-m+1
K )

we

o q.
1l G < Clllullla [P<elly vie Mo, (36)

fooHo‘;({x € R™: M(|Vv|%)(x) 2 t}) dt < C||[7*v||" .(37)
0 Do

hold, where the exponents p,, g, are defined by (47) and the constant C depends on n, k, m
only.

For a subset A of R™ and € > 0 the e—entropy of A, denoted by Ent(g, A), is the minimal
number of balls of radius & covering A. Further, for a linear map L: R™ —» R< denote by
Ai(L),j =1,...,d, the lengths of the semiaxes of the ellipsoid L(B(0, 1)) ordered by the

rule 4, = 4, = - - = A,4. Obviously the numbers 4; are exactly the eigenvalues repeated

according to multiplicity of the symmetric nonnegative linear map vLL* : R¢ —» R4 . Also
for a differentiable mapping f : R™ — R put 4;(f, x) = A;(d,f), where by d, f we denote
the differential of f at x. The next result is the second basic ingredient of our proof .
Theorem (2.2.9) ([78])[50]: For any polynomial P : R™ — R¢ of degree at most k, for each
ball B ¢ R" of radius r > 0, and any number £ > 0 the estimate

Ent (er,{P(x):ix €B,A, <1+¢,..., 41 <1+, <¢,...., 44 < €})

<Cy(1+et™m),

holds, where the constant Cy, depends onn, d, k only and for brevity we wrote 1; = A;(P, x).
The application of Corollary (2.2.8) is facilitated through the following simple estimate (see
for instance Lemma 2 in [58]).
Lemma (2.2.10)[50]: Let u € W(R™). Then for any ball B(z,7) € R", B(z,1) 3 x, the
estimate

< Cr(MVu)(x).

u(x) — f u(y)dy
(B(z1))

holds, where C depends on n only and MVu is the Hardy-Littlewood maximal function of
|Vul.
By use of the triangle inequality we then deduce the following oscillation estimate (cf. [55]).
Corollary (2.2.11)[50]: Let u € WL(R™,R%). Then for any ball B ¢ R" of radius r > 0
and for any number & > 0 the estimate

diam({u(x) : x € B,(MVu)(x) < &}) < Cyer
holds, where C,, is a constant depending on n, d only.
Finally, recall the following approximation properties of Sobolev functions.
Theorem (2.2.12)[50]: (see, [79] or [54]). Let p € (1,0),k,l€{1,...,n},l <k, (k —
Dp < n.Then forany f € W*(R™) and for each ¢ > 0 there exist an open set U c R" and
a function g € C'(R™) such that
(i)  each point x € R™\ U is a Lebesgue point for f and for vV’ f,j =1,...,1;
(i) f=gVf=vVgonR*\Uforj=1,...,[;
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@) L"(U)<eifl =k;
(iv)  By_1p(U) < eifl <k, where B, ,(U) denotes the Bessel capacity of the set U.
Since for 1<p <o and 0 <n—ap < <n the smallness of B,,(U) implies the

smallness of Hﬁ(U) (see, e.g., [52]), we have
Corollary (2.2.13)[50]: Letk € {2,...,n}and v € VI/p’j([R”). Then there exists a Borel set
A, € R"™ such that HY(4,) = 0for every q € (p,,n] and all points of R"™\ A4, are
Lebesgue points for Vv. Further, for every € > 0 and q € (p., n] there exist an open set
U o A, and a function g € C*(R") such that HZ (U) < eand v = g,Vv = Vg on R™ \U.
The main result is the following Luzin N—property with respect to Hausdorff content
for W, ;—mappings:
Theorem (2.2.14)[50]: Let k € {2,...,n},q € (p.,n], and v € Wp"ml(Rn,Rd). Then for
each & > 0 there exists § > 0 such that for any set E c R" if HL(E) <6, then
HI(v(E)) < e. In particular, H1(v(E)) = 0 whenever H4(E) = 0.
Proof. Fix ¢ > 0 and take § = 6 (¢, v) from Lemma (2.2.17). Then by Corollary (2.2.5) for
any regular family {I,} of n—dimensional dyadic intervals we have if Y, €([,)? <6,
thenY, (diam v(I,))" < Ce. Now we may conclude the proof of Theorem (2.2.14) by use
of Lemmas (2.2.15) and (2.2.16). Indeed they allow us to find a §, > 0 such that if for a
subset E of R™we have HI (E) < 6,, then E can be covered by a regular family {I,} of n—
dimensional dyadic intervals with )., £(1,)? < 6.
Forthecased = 1,k = n,and g = p, = 1 the assertion of Theorem (2.2.14) was obtained
in [56], and the argument given there easily adapts to cover also the cases k = n,q = 1,
and d > 1. Our proof here for the remaining cases follows and expands on the ideas from
[56]. We fix k€ {2,...,n},q € (p,,n], and a mapping v in Wp";l([R{”,[R{d) To prove
Theorem (2.2.14), we need some preliminary lemmas that we turn to next. By a dyadic

interval we understand an interval of the form [% ,klzfl] X - X [’;—’; ,%], where k; , 1
are integers. The following assertion is straightforward, and hence we omit its proof here.
Lemma (2.2.15)[50]: For any n-dimensional interval I ¢ R™ there exist dyadic intervals
Qi,...,Q,nsuchthat/ c Q; U---UQ,nand £(Q,) =:--=£(Q,n) < 22(D).

Let {I,},ca be a family of n-dimensional dyadic intervals. We say that the family {I,} is

regular, if for any n-dimensional dyadic interval Q the estimate

(@7 ) 2y (38)

a:l,cqQ
holds. Since dyadic intervals are either disjoint or contained in one another, (38) implies
that any regular family {I,} must in particular consist of mutually disjointl intervals.
Lemma (2.2.16)[50]: (see Lemma (2.2.16) in [56]). Let {I,} be a family of n—dimensional
dyadic intervals. Then there exists a regular family {/z} of n—dimensional dyadic intervals

suchthat U, I, © UgJp and
Ze(]ﬁ)q < Zma)q .
B a

Lemma (2.2.17)[50]: For each € > 0 there exists § = &(¢&, v) > 0 such that for any regular
family {I,} of n—dimensional dyadic intervals we have if

Z{)(la)q <5, (39)

48




then
Dl vl < (40)
a

and

1 Vv|1 41
ZWLJ v[1<e. (41)

Proof. Fix e € (0,1) and let {I,} be a regular family of n—dimensional dyadic intervals
satisfying (39), where § > 0 will be specified below.
We start by checking (40). Of course, for sufficiently small § we can achieve that

||1,a : V"v||L . iIs strictly less than say 1 for every a. Then in view of the inequalities g >
Do’

p. and Lemma (2.2.3) we have
Dl 7l < D Pl < (g P

a (24
Using (46), we can rewrite the last estimate as
Do

A Y

1
+o0 Do
S 7ol = [ (e el e terecor>
a per 0 a

Since

[T e prvca] > e <oo

0
it follows that the integral on the right—hand side of (42) tends to zero as L" (U, [a) — 0.
In particular, it will be less than ¢ if the condition (39) is fulfilled with a sufficiently small
6. Thus (40) is established for all § € (0, 8, ], where §; = §,(¢,v) > 0.
Next we check (41). By virtue of Lemma (2.2.2), applied coordinate—wise, we can find a

decomposition v = v, + vy, where [|7, || ., < K = K (e, v) and
”V’%”Lm <e. (43)
Assume that § € (0, 6;] and

1
q

Z€(Ia) <6<z e (44)

a

1
E)e @

where 1, denotes the indicator function of the set I,,.
The estimate

Define the measure p by

sup{£()~9u(l) < 2™*1 (46)

holds, where the supremum is taken over all n—dimensional intervals. Indeed, write for a

dyadic interval Q
? )"
@= Y €+ Y %r;«)z .

al,cQ ala-¢—Q
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By regularity of {/,} the first sum is bounded above by £(Q)4 . If the second sum is nonzero
then there must exist an index a such that I, £ Q and I,, Q overlap. But as the intervals
{I,} are disjoint and dyadic we must then precisely have one such interval I, and I, © Q.
But then the first sum is empty and the second sum has only the one term £(Q)™ /¢ (1,)™ 4
, hence is at most#(Q)? . Thus the estimate pu(Q) < #(Q)? holds for dyadic Q. The
inequality (46) in the case of a general interval I follows from the above dyadic case and
Lemma (2.2.15). The proof of the claim is complete.

Now return to (41). By properties (43), (35) (applied to the mapping v, and parameters

20=190,ﬁ’=(pl —k+1)q =q), we have

5 e < Y e
e M Skay1° e )
a a a a

<C'e+ | |Vv|9du<C's.
IC{
Since € > 0 was arbitrary, the proof of Lemma (2.2.17) is complete.

Letk,me {2,...,n}and v € Wp’f”loc (Q, R%), where Q is an open subset of R™ . Then,
by Corollary (2.2.13), there exists a Borel set A,, such that H, (4,) = 0 and all points of
the complement Q \ A,, are Lebesgue points for the gradient Vv (x). We remark that with
the assumed Sobolev regularity the mapping v need not be differentiable at any point of (Q,
and that Vv (x) simply is the precise representative of the weak gradient of v. There are of
course many other ways to give pointwise meaning to Vv(x), but as these play no role in
our considerations here we omit any further discussion. Denote Z,,, = {x € Q\ 4, :
rankV, (x) < m}.

Theorem (2.2.18)[50]: If k,m e {2,...,n},Q is an open subset of R™ , and v €
Wi 10c (2, RY), then HE: (v(Z,,n)) = 0.

The exponents occuring in the theorem are the critical exponents that were defined in (47):
n-m+1

n
Do —;andqo—m—1+ P

We emphasize the fact that, in contrast with the Luzin N— property with respect to
Hausdorff content of Theorem (2.2.14), the Morse—Sard—Federer Theorem (2.2.18) is valid
within the wider context of Wp"—SoboIeV spaces (finiteness of the Lorentz norm is not
required).
Before embarking on the detailed proof let us make some preliminary observations that
will enable us to make some convenient additional assumptions. Namely because the result
is local we can without loss in generality assume that 0 = R™ and that v € W, (R", R?).
Indeed note that it suffices to prove that

HE (v(Zym N 2)) =0 (47)
for all smooth domains €’ whose closure Q' is compact and contained in €. Now such
domains Q' are extension domains for W, and so v|y can be extended to V €
W (R™,R?) and hence proving the statement for VV we deduce (47) and therefore prove
the theorem.
We fix k,m € {2,...n} and a mapping v € W,(R™,R?) In view of the definition of
critical set adopted here we have that
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Zv,m = U{x € Zv,m : |l7v(x)| S]}
jEN
Consequently we only need to prove that H°(Z,, ) = 0, where
Zy,={x€Z,nm: |Vv(x)| <1}
The following lemma contains the main step in the proof of Theorem (2.2.18).

Lemma (2.2.19)[50]: For any n-dimensional dyadic interval I ¢ R" the estimate
1- m+q

HE(w(Z,n D) < C(||l7kv||z LdOkias 147 (48)
holds, where the constant C depends on n,m, k, d only
Proof. By virtue of (52) it suffices to prove that
, o 1-m+
HE (w(Zy n D) < C(||[7*v, || oy FEDT |k, ’(’;n? ) (49)
Do

for the mapping v, defined in Lemma (2.2.4), where C = C(n,m, k,d) is a constant. Fix
an n-dimensional dyadic interval I ¢ R™ and recall that v;(x) = v(x) — P;(x) for all x €

I. Denote
||1 m+q

o= |||7kv,|| 0, = (D™t ||vkv

)

and foreachj € Z
E; ={x e R": (M|Vv;|%)(x) € (2/7*,2/ |} and §; = HE (E)).
Then by Corollary (2.2.8),
> 82 <co

j=—o0
for a constant C depending on n,m, k, d only. By construction, for each j € Z there exists
a family of balls B;; ¢ R™ of radii r” such that

E; CUBU andz it < 2%6;

By construction Z;, n I = U; Z; andZ U;Z;; .Put

Denote

o= g5 7o,

f(l
and let j, be the integer satisfying el e (27 ‘1 21 ]. Denote Z, =Uj<;, Z;,Z,, =
Uj»j, Z;. Then by construction
Z'nl=2Z,UZ,,Z,c{xe€Z,nl:(M|Vv]|%)(x) < X}
Since VP,(x) = Vv(x) — Vv, (x), |Vv;(x)]| < 2//% ,|Vv(x)| <1, and A,(v,x) = 0 for
x € Zjjandv € {m,...,d}, we have
Ziyc{x€By: 4P, x) < 1+2//%, Ay (P, x) <1+ 2//%,2,(P,x)
<2/, Aq(Py,x) < 2074},
Applying Theorem (2.2.9) and Corollary (2.2.11) to mappings P, , v, , respectively, with
B=B;ande=¢; = 27/4- e find a finite family of balls T, c R%,s = 1,...,s; with
sj < Cy(1+&!™™), each of radius (1 + Cy)gr;; , such that
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Sj

U TS D U(ZU)

s=1
Therefore, for j > j, we have

HE (v(2y)) < Cusjgl 17 = Co(1+ & 7™)20 7
<C,(1+ 51 ™2J r U°, (50)

where all the constants C, above depend on n,m,d only. By the same reasons, but this
time applying Theorem (2.2.9) and Corollary (2.2.11) with € = ¢, and instead of the balls
B;; we take a ball B o [ with radius r = Vn#(I), we have

HEXw(z,) < ;1 + e ™)eke(D% = C3(1 + eF"™)o = C3(0 + 0,). (51)
From (50) we get immediately

HE@Z)) S ) ) U+ ™Yl <) G +elm )2l
jzje 1 J2j«
<Cy(1+el"™o =Cu(0+0,).

The last two estimates combine to give HX (v(Z, n 1)) = HY (v(Z, U Z,.,)) < C(o + 0,),
and hence finish the proof of the lemma.

Corollary (2.2.20)[50]: For any € > 0 there exists § > 0 such that for any subset E of R"
we have H (v(Z, N E)) < ¢ provided L"(E) < §. In particular, HE(v(Z,NE)) =0
whenever L"(E) = 0.

Proof. Let L (E) < 6, then we can find a family of disjoint n-dimensional dyadic intervals
I, such that E < U,I,and ), ¢"(l,) < Cé. Of course, for sufficiently small § the
estimate ||7*v|| < 1 is fulfilled for every a. Then in view of ¢, > p. and Lemma

Ly, (Ia)
(2.2.3) we have
k k

el o <175 52)
Analogously, by Hdlder inequality and by virtue of the equalities1 —m+q, =
"m+1and(1 m+q.) —3= we have

9 n-m+1 Do,
n— m+1
1-m+
Z{’(Ia)m t|vke “ . (2 {)(I“)n> (2 ||l7"v|| Lpa(ia ))

n-m+1
<5 ||‘7k”||Lp .

The last two estimates together with Lemma (2.2.19) allow us to conclude the required
smallness of

Y HE@Z 1) = HE(Z, 0 E).

a
Invoking Federer’s Theorem for the smooth case g € C¥(R™), Theorem (2.2.12) (iii)
(applied to the case k = 1) implies
Corollary (2.2.21) (see, e.g., [39])[50]: There exists a set Zev of n-dimensional Lebesgue
measure zero such that H9-(v(Z,\Z,)) = 0. In particular, H%(v(Z})) = H%(v(Z,)).
From Corollaries (2.2.20) and (2.2.21) we conclude that Hq°(v(Z,’,)) = 0, and this ends
the proof of Theorem (2.2.18).
Theorem (2.2.18) implies the following analog us of the classical Morse—Sard Theorem:
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Corollary (2.2.22)[50]: Let Q be an open subset of R® . If m e {1,...,n}and v €
WrET (Q,R™), then L™ (v(Zym)) = 0.

n-— m+1

This assertion follows directly from Theorem (2.2.18) for m > 1 and from the results of
[56] form = 1.

We start with the following simple technical observation.
Lemma (2.2.23)[50]: If k € {2,...,n}and v € Wp’i'l(Rn ,R%), then for HP- —almost all
x € R™,
; -1 k —
limr || lgery -V 17||ch“1 =0

N0
holds.
Proof. Fix e > 0. Let {B,} be a family of disjoint balls B, = B(x,,1,) such that

k
|| 1p, -V v||]%1 > £y,
and supr, <6 for some & >0, whered is choosen small enough to guarantee

a
sup|| 15, - Vkv||Lp < 1.Then by Lemma (2.2.3) we have
a o,

Z ‘<t an 7|

< g1 ||1uaBa Vk””L,,OJ . (53)

Since the last term tends to 0 as L* (U, B, ) — 0,and L (U, By) < 6™ P ¥, 1P, we get
easily that Y, 7° — 0as & — 0. Using this fact and some standard covering lemmas we
arrive in a routine manner at the required assertion
HP-{x € R": lri{%sup r-1 ” T l7k17||Lpo,1 > ¢} =0.
From the last lemma, Corollary (2.2.13) and estimate (34) we obtain the following result
that is probably well-known to specialists:
Theorem (2.2.24)[50]: Let k € {2,...,n}and v € WX, (R",R?). Then there exists a
Borel set A, € R™ such that H1(A,,) = 0 for every q € (p,,n] and forany x € R™ \ 4, the
function v is differentiable (in the classical Frechet sense) at x, furthermore, the classical
derivative coincides with Vv (x), where
lim |Vv(z) —Vv(x)|dz = 0.
N0 B(x,7)

The case k = 1,9 = p, = n is a classical result due to Stein [73] (see also [62]), and for
m = 1,k = n the result is also proved in [58].

Applying Theorems (2.2.14) and (2.2.18) in combination with the Corollary (2.2.13),
we obtain
Corollary (2.2.25)[50]: Letk,m € {2,...,n},v € W ; (R™,R%), and rankVv(x) < m for
all x € R™\ 4,,. Then for any £ > 0 there exist an open set V ¢ R? and a mapping g €
C.(R™,R%) such that HEY(V)<ev(d,)cV and |,-1(RN\V) = gl,-1(RY\
V), Vv|,-1(RN\V) = Vg|,-1(R¥\V ), and rankVv|,-1 (R\V ) = m.
Here A, is the Borel set with H?°(A,,) = 0 from Theorem (2.2.24).
Theorem (2.2.26)[50]: Letk,m € {2,...,n}and v € Wp’i’l(Rn , R™). Then for L™—-almost
all y € v(R™) the preimage v~ () is a finite disjoint family of (n — m)-dimensional C*
-smooth compact manifolds (without boundary) S; ,j = 1,..., N(y).
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Proof. The inclusion v € Wp’ful(]R“ ,R™) and Lemma (2.2.4) easily imply the following
statement (see also Remark 1.4):
(i) For any & >0 there exists R, € (0,+o)such that |v(x)| <e for all x €
R™\ B(0,R,).
Fix an arbitrary ¢ > 0. Take the corresponding set V < R™ and mapping g €
C'(R™,R™) from Corollary (2.2.25). Let 0 # y € R™\ V. Denote F, = v='(y), F, =
g~ 1(y). We assert the following properties of these sets.
(i)  F, is a compact set;
(iii) F, c Fy
(iv) Vv =TVgandrankVv =rankVg = mon F,;
(v)  The function v is differentiable (in the classical sense) at each x € F,, and the
classical derivative coincides with
Vv(x) = lim f(B o) Vv(z) dz.
Indeed, (ii) follows by continuity and from (i) since y # 0, (iii)-(iv) follow from Corollary
(2.2.25), and (v) follows from the condition v(A,) c V of Corollary (2.2.25) (see also
Theorem (2.2.24)). We require one more property of these sets:
(vi) Forany x, € F, there exists r > 0 such that F, N B(x,,7) = F; N B(xo, 7).
Indeed, take any point x, € F, and suppose the claim (v;) is false. Then there exists a
sequence of points F; \ F, 3 x; - x,. For r > 0 we put

H, = (ker dxog)l NnB(0,1),S,, = (ker dxog)l N JdB(0,7),
H,(x)=x+H,,S,x)=x+S,,

where (ker dy, g)l is the orthogonal complement of the (n — m)-dimensional linear
subspace ker d,. g. Evidently, for sufficiently small > 0 we have Hp,(x) N F; = {x} for
any x € F; N B(xo,7). Then by construction

Hyp(x)NE, =0 (54)
for sufficiently large i. Since v is differentiable (in the classical sense) at x, with Vv (x,) =
Vg(x,), for sufficiently small » >0 we have v(x)#y for all x € S,,(x,),and
deg(v, H,,(xy),y) = £1, where we denote by deg(v, H,,,(x,), y) the topological degree of
Vg, (x,) aty. Then for sufficiently large i we must have v 1) NS, (x) =0 and
deg(v, H,,(x;),y) = deg(v, H,,(x,),y) = £1. But this contradicts (54) and finishes the
proof of (vi).
Obviously, (ii)—(vi) imply that each connected component of the set E, = v~1(y) is a
compact (n — m)-dimensional C*- smooth manifold (without boundary).
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Chapter 3

Subspaces and Hereditarly Indecomposable L*-Space

We construct a hereditarily indecomposable Banach space with dual space
isomorphic to #,. Every bounded linear operator on this space is expressible as AI + K with
A ascalar and K compact.

Section (3.1): The Bourgain—Delbaen Space

In 1980, Bourgain and Delbaen [85], [84] introduced some separable £* spaces with
surprising properties: all have the Radon—Nikodym property, and so certainly do not have
subspaces isomorphic to c,; some of them (the spaces of “Cflass X”) have the Schur
property; the others (Clas.s Y”) have dual spaces isomorphic to £ Despite their importance,
these spaces wore not much studied subsequently, and it became habitual to remark that they
were “not well-understood”. There has been some renewed interest recently, partly because
these spaces are interesting test-cases for questions about uniform homeomorphisms [89],
[86] and smooth surjections [82], [87]. Alspach [81] has investigated their Szlenk index. An
attempt to understand a bit better the subspace structure of the spaces of Class Y, that is to
say, in Dourgain’s notation, the spaces Xp¢ With b < 1/2 < a < 1and a + b >
1. Bourgain and Delbaen showed that every infinite-dimensional subspace of such a space
has an infinite-dimensional reflexive subspace; however, they did not characterize which
reflexive spaces occur as subspaces of X, ,; Bourgain [84] raised the question of whether
Xo 6 has a subspace with no unconditional basic sequence. The main result of the present
answers these questions by showing that each infinite-dimensional subspacc cf X,,,, has a
subspacc isomorphic to P. The p in question is determined by 1/p + 1/p’ = 1 where
a?’ 4+ b?" = 1.

We follow modern practice by saying that vectors x,,x,,...are successive linear
combinations (or blocks) of a sequence (Y,,) if there are integersm; < n; <m, < n, <

ms < ...and scalars ay, a,... such that X, = 7%, ;Y.

Closely associated with the Bourgain—Delbaen spaces are some spaces with
unconditional basis, which we shall denote by U, ,. We shall study these spaces, eventually
showing that they are just er-spaces with equivalent norms. The norm ||.| |, is defined by
a recursion similar to (but simpler than!) the one that leads to the Tsirelson space [88]. We

fix real numbers a, b witha,b < 1,a + b > 1.
For a vector x € RY, or a finitely-supported vector x € R™), we define (recursively)

el , = mase{ ] maze (1o, 11 o + 1 ol + 1,00, )}
That is to say that the norm ||x0,x, . "Xdllab of a vector in R4*1 is whichever is greater of

It is an elementary exercise to see that this is indeed an unambiguous definition. We then
define to be the completion of R(N) with respect to this norm. It should be noted that in the
definition of the space We do not need to suppose that b < 1/2 (a condition essential for the
Bourgain-Delbaen construction). However, it will be convenient in all that follows to
assume that b a. The symmetry of the definition of the norm Il IL,, means that the main
result, Theorem (3.1.2), remains true when a <b, though with a replacing b in the final
estimates. The recursive calculation of norms in the space Ua,b leads naturally to the
construction of a finite dyadic tree of intervals of natural numbers, and it will be useful to
have a standard notation for such trees. We write For the set of all finite strings of Os and
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I’s, including the empty string ). In our intended application, a “O” in a string o’ will always
be associated with a move to the left and a “1” with a move to the right.

We shall accordingly denote the number of 0’s and the number of 1’s in a string o by and
r(a-) respectively. For We write o’ < ‘r and say that u precedes r if 0’ is an initial segment
of r. Each element o- of E has two immediate successors, which we may denote by 0O and
o-l. By an admissible subtree of E we shall mean a non-empty, finite subset T of E having
the property that, whenever, ail predecessors of u are also in r and, of the two immediate
successors of o’, either both are in T, or else neither 1s. Those a’ with no successors in T
form the set maxT of maximal element s of T.

A dyadic tree of intervals is a family 1(a) of non-empty intervals in N, indexed by some
admissible subtree T, with the property that whenever a’ E T is non-maxima], the interval
((cr) is the disjoint union of its subintervals and I(crl), with lying to the left of We note that
the intervals i(r) corresponding to form a partition of the original interval O+

If x is a finitely supported vector in R™) and I(¢) (¢ € T) is any dyadic

tree of intervals, it is dear from the recursive definition of the norm that

il = ), @@l

. remxT
Moroovef ,for a suitably chosen tree, we have

ixl],, = > @b O]

remxT

Notice that in the case where ||x|| _ |lx||_ this latter equality holds for the trMaltrce T{0}.
We shall now proceed to establish the inequality |lx||,, <{lxI[ < Cllxl|_, for an
arbitrary finitely-supported vector x in R™) thus showing that ||-| |ab. Is equivalent to the
2P -norm, where 1/p + 1/p' = L = a? + b?'.

A few naive remarks will perhaps help to clarify the calculations that follow. The inequality
||x||ab < ||x||p Is easy to establish by induction the size of the support of a. Indeed,

||x||abis equal either or to ||x|| orto a||x[o, k)||ab + b||xI(T)||ab and this latter quantity

IS at most

, s 1/p! 1/ 1/
(@ +67)"" (JIxl0, I, + [l ooI[”, ) < (JIx[0, I +[Ixlk, o))

= [lxl],,.
p
by Holder’s inequality and our inductive hypothesis. There are, of course, some vectors for
which ||x| |ab = ||x| p;they may be characterized using the condtiion for equality to occur

In Holder’s inequality Indeed, they are exactly those vectors where a norm calculation uf
the kind described thorn leads to a dyadic tree of intervals with the property that the ratio

|1x[0, k)||p: |1x[0, k)||pis precisely a?'~1:bP' =1 for every non-maximal , and such
that||x[0, k)||Zb = |Ix[o, k)||Zb for each maximal .
If we are thinking of || - | |, as an approximation to || - ||, then, every time that we arc

obliged to split an interval ocher than in the ratio a?'~1: b?'~1 with respect to the 7 —in,
We introduce an underestimate. The proof we give proceeds by constructing a certain dyadic
tree and keeping fairly careful accounts of the accumulated underestimation- It will be
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convenient to write a = af’and g = bF ' sothata + B = 1. As already remarked, we
lose no generality in supposing that a > b.

LEMMA (3.1.1)[80]: Let Y € R™ (be a non-zero vector, with support contained in the
finite interval /. Assume that i satisfies

i 2 1yIp -
We may choose a natural number k, not an end- pomt of the interval J, an a natural number
I (equal either to k orto k — 1) in such a way that

< onp L [U
P syl

That is to say, either

11| [allyL0, 1], + blIYLk,co]i] }

11| < exp |—FL 1 Laliyto, = 171+ b|1YIk, o] ]
P 5pp’||y||z p 1%
or __ __
1 |Yil?
< 0,kll| + b||Y[k + 1,
||y||p< exp 5PP’|Iy||§ [a||y[ ]||p+ ||y[ + ]||p]

Notice that in either case k is an end-point of the subinterial
J N [0,k}or] N [k, o) which contains it.
Proof. It will simplify notation to suppose k that the interval J is [1, n]

We choose k to be the unique natural number that satisfies
k—1

k
> wr<aill <> yp
j=1

j=1

Our assutuption implies that ||y||1:o<ﬁ||y||§and hence that |Y|P < ﬂ||y||;s
allyI| andZi=t 1Y1P = [IYI]) = [1Yall? = 1Yal? > (1 = OIYI. Thus k canno be

either of te end points 1, n of the supporting interval /. By choosing [
to be either k — 1 or k, we may arrange that
l

|Z [Y;1" —alyll; s% YIP.
So if we write w = Y[io, ij ar;d z = Y[(+],0)1 we have
lwrl]) = (@ + o |IYI][151]; = (8
where |g| < = (lykl/ 1Yl ) . We can now calculate as follows:
a||W|| +b||Z|| a(a+€)1/p+b(ﬁ—€)1/p||yl|
[a(1 +e/)VP + B(1 - s/ﬂ)l/p]llyllp-

Of course, for small values of ,

a(l + +ea)'’? + (1 — ef)'? =~ exp [— - (l + 1)32]
N _ 2pp'\a " B
and it is an elementary exercise to see that
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a(l + +ea)? + (1 —B)? > exp [— p;' (% +%)€2]

whenever |g| < B/5.In our case, since we axe assuming that ||y||fo < (%) 1Y

quantity e as defined above is indeed smaller thang /5.
We are thus led to the inequality

P the
p

||y||p < exp [pi?’ (%+%> 52] [a|lw||p + b||Z||p]

Ys
Y|

1
< exp T T [a||w||p +b||Z||p],

using once again the fact that

Theorem (3.1.2)[80]: Let a, b be real numbers satisfyinga,b < 1,a+ b > 1and

Let p,p’ be determined by 1/p+ l/p’ =1 = a?’ + bP'. The norm || -1 |4 equivalent
to the usual #P-norm.

Proof. As in the preceding lemma, we may suppose that b < a and we retain the notation

a = ap',ﬁ = bP',We consider an arbitrary non-zero x € R™ and give a recursive
definition of an admissible tree T a dyadic tree of intervals (I(o))o € T and elements
i(o) of I(0), which we shall use to estimate ||x| |a . We start by taking I(7) to be any finite

interval that contains the support of x. if a string 7 is already in T and I(7) has already been
defined we need to specify whether 7 is going to be a maximal element of T and, if not)
what the two “daughter” intervals I(t,) and I(z;) are going to be.

There will be two criteria involved in deciding if T is maximal. First, » will be declared to
be maximal if the following condition holds:

[l = @B/SVP||xlien -
If this condition does not hold, then of course LEMMA (3.1.1) is applicable to the vector
y = x[;y- We let i(7) be the unique i € I(7) such that for every r in the tree. Indeed,
otherwise the recursive construction would have been terminated (by criterion (B)) at a
predecessor of .
In the event that neither (A) nor (B) holds) we choose [ as in LEMMA (3.1.1) and define
the daughter intervals by I(r0) = I(r)N[0,1],1(r1) = I(r) N[l + 1,00). We notice
that i(r) is an end-point of one or other of these intervals, and hence also of any interval
I(v), with v > r, which contains it.
This completes the recursive construction of T, (o) and i(o). The set Max T of maximal
elements may be partitioned as AUB, where A is the set of r for which condition (A) holds.
We notice that the natural numbers i(r), defined for r € T \ A4, are all distinct. Indeed, if v
and r are incomparable elements of T, then i(v) and i(r) are elements of the disjoint
intervals I(v) and I(r); on the other hand, if r < v and i(r) € i(v) then i(r) is an end-
point of I(v) while i(v) is not.
It follows from That, whenever ¢ is a non-maximal element of T
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exp 1 |
5p0" ||x1(o)||”

We deduce from this inequality, together with the remark we made following the
introduction of criterion (B), that

1
< 1(r) pr(r) 1(0)
||x||p E a explg 500 [l (o )|| |1x ()||

lx 1] < ] |allxi@O)I| )+ blIxi(aDI] |

remxT o<r
< o1/@D") Z A pr@) .
remxT 1
< /P z alMpr) (2&;) ||xI(r) || + Z I(r)br(r)al(r)br(r)]
remxT reB

= el(p/p,) [HA + HB]"
In an obvious notation. It follows from the relationship between trees and norm calculations

that Hy < (5/(2,8))1/p | | x| | . On the other hand, we may use Holder’s inequality and the
factthat a?’ + bP* = 1to show that

1/p 1/p
S(Z ||x1(r)||z> — Z |xj|p ’
TrEB jeJ
where
i )|p
]=U I(r)=<j€I(): ELAICH) S
TEB owithjel(o) ||XI(O')||p
We that have
p \P
sHp<y XYy (M)
Jj€J owithj€el(o) | [xI (o)l |p
p |xi(a)|p ’
< z b z i@l
jejC ) owithj€l(o) ||XI(J)||p
P - p
= ), Wil IW@IL” D bol” =) i
oeT Jjel(o) o€ET

and this is at most ||x| |§since as we noted before, the i(o) are all distinct.
We have finally obtained the following inequalities:
e/@) ||x|| < Hy +Hp < (52/)"" |Ixl|, + 5=3/7 ||,
whence
(e~ 1/P — 5‘1/P)||x||p < (S(Z/ﬁ))l/P
which leads to a final estimate of the form
l1xl] < cpb™/|1x1] .

with C a cow-tant independent of p sud b (and smaller than 50).

||x||a.b'
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A study of various generalizations of the spaces U, ;, will appear [83].

We shall recall the contrction of the spaces X, ,, using a notation consistent with the
original, but differing somewhat from it. As well seeming (to the author at least!) somewhat
clearer, this notation appears to be better suited to poenbie generalization. The ingredients
needed in a construction of this kind are a sequence of sets Ay, 44, ... and linear mappings
that we shall denote by u,,. The next paragraph sets out the properties that these sets and
mappings have to satisfy.

We suppose that the sets Ay, A4, ... are disjoint and finite, end that the unionI' = U,ey Ay 1S
infinite. For n > 0, we write I, = U,,,<n, Ay FOr each n > 0, we need to have a linear
operator u,, : £*°(I3,) = £ (A,+,) and we define i,,#*(I},) = € (T;,41) by setting
: fQ) ifyerl,
DD =0, /1) if v € b
We define i,, ,: € (I3,,) — £*(I},) to be the composition i,,_5o0,,,,,,0 i, i,,_1 0 and note
that, form <n <pand f € £*(I},) we have
(im,pf)rn+1 = im,pf-
It follows that we may well-define a linear mapping j,,,: % (T,,) = R by setting
Umf) = (im,nf)(5) (6 €IL).
We now make the further assumption that the mapping w,,, have been defined in such way
that the norms of all the compositions i, ,, are bounded by some constant A .This tells us
that the mapping j,,take values in £*(T") a finite-dimensional subspace X,, = imj,, of
£ (') with
[IF1] < |limf1| < A|IF1]

Finally, we take X to be the closure in £ (T") of the union of the increaseing sequence of
subspace X, .Since the subspace X,,, are A-isomorohic to £ (I") ,the space X is a separable
L°-space, whose properties are determined (in a way that is not always straightforward to
decide ) by the operators u,,, The tricky part of the construction lies in finding u,,,is which
are such that the norm condition on the i, ,, , satisfied.
However the u,, are defined, the space X obtained in this way has some useful structure.
Each of the subspaces X, is the range of a projection §,,, defined by S,,x = j, (xlrn). If we
set Py = Sy and B, = S,, —S,,_; (for n = 1), then the subspaces M,, = im P, form a
finite-dimensional decomposition of X. We refer to the support of a vector x € X, we shall
be thinking in terms of this f.d.d. Thus, if x = }.,,, z,,, with z,, € M,,, then supp(x) will
mean the set of m for which z,, # 0. Similarly, we shall say that the vectors x;, x,, ... are
successive if there exist natural numbers m; < n; < m, < n, <my < - such that
supp x, € [my, ni]. There is a relationship between this notion of support and the more
obvious one where we are thinking of the vector x as a function on I'; namely, supp x N
[0,n] = @ & x|, = 0. It is also worth noting that, since the spaces M, = {j,(x) :
x € ¢%(I,)and x| _ = 0} are A-isomorphic to £ (A,) and so have uniformly bounded
basis constant, the space X has a basis. Such basis vectors occur as the w,, in below (though
the fact that they form a basis is not crucial there).
We now pass to the details of the Bourgain—Delbaen construction, Let a, b be real constants
with0 < b< 1/2 <a <landa+b > 1. We shall show how to construct the space
Xqp by defining (recursively) the sets A,, and the mappings u,,. We start by taking A, to be
a set with just one element, say Ay= {0}. Now we define
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Appp ={n+1} % U {k} x I, x I, x {£1}.
0<k<n
So an element of A,, is a 5-tuple of the form

5§ ={né&n +1}.
This notation replaces the explicit enumeration that appears in [84] and [85].
It will be convenient to have names for the five coordinates of 6:
n =rank(d),k = cut(§),& = base(d),n = top(d),+1 = sign(d).

The mapping u,, : 2°(l;) = £*(A,4,) defined by

unf)(Je, &, £1) = af (&) £b(F) — (Gen(flr,)) (D).
It is shown in [84], [85] that with the above definitions, the composite mappings i,, ,, are
indeed uniformly bounded with

limn|| < 2= a/(1 — 2b).

It is perhaps worth repeating the original argument in our modified notation.
We assume inductively that, for some n, all the mappings i,,, , (m < n) have norm at most
A. We now consider some f € £*°([;,) and some y = (n + 1,k,&,n,+1) € A,41. By
definition,
|(im,n+1f) (V)l = (unim,nf) (V)

< a|(imnf) @] + b|Gmaf)M) — (n(GmafHIr)) @]
If the cut k is greater than m, then ip,of = ixn((imif) = ikn ((im,nf)|pk) so that the

second term above vanishes, leaving |(im 11 /)¥)| < allimaf ||, which is at most aal|f ||
by our inductive hypothesis. If, on the other hand, k < m, itmustbethat € I, € I, SO
that |(imaf)E] = IfFEI < NIfIl. Also, (imnf)lr, = flr, an element of (L)
satisfying f|, < |[f]l. Applying our inductive hypothesis to the two mappings i, and
[}, n We obtain

|(im,n+1f)(]/)| < al(im,nf) (f)' + bl(im,nf) (7’) - (ik,nfll"k (7’)|

< allfll + 2bAl|f||

Sincea = (1 — 2b)A, this is at most A||f]|, as required.
The following proposition can also be found in [84].
PROPOSITION (3.1.3)[80]: Let k,m,n be natural numbers, with m < n, let x be an
element of X,,,, and let y be an element of I with rank(y) = n, cut (y) = k.

x| < allxlr |l + BIUT — Sdxll < ISexll + bIU— Sxll.

Proof. Since x € X,,, x has the form j,,, f, for some f € £*([;,), and so
X(]/) = (im,nf)(y) = (in—l Oim,n—lf) (]/)
= a(im,n—lf) (S;) + b[(im,n—lf) - (ik,n—l(fll"k)] (77)
= ax(§) = b(I — S)x(m),
where ¢ = base(y) andn = top(y) as usual. The inequality is now obvious.
COROLLARY (3.1.4)[80]: Forany m and any x € X, either [|x|| = ||x|,|| or
l|lx]| = m,gX[leIrkII + bl = Sxl].

It is apparent from the construction that for a general f € £°(1;,,) we may need to go to [,
with n significantly larger than m, in order to find a coordinate y at which j,,, f comes close
to attaining its norms However, it is worth remarking that if f € £ ([;,) and f is zero,
except on A, (the “last” of the sets that make up I;,), then ||i. o f|| = IIfIl for all n. Thus
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in this set-up the subspaces M,, that make up the finite-dimensional decomposition of X are
actually isometric to £ (4,).

It is implicitly shown in [84] that certain sequences in X, , admit lower U, ;,-estirnates
(and thus, as we can now see, lower £P-estimates). These are sequences of vectors which
are successive (with respect to the f.d.d. (M,,)) and which have supports sufficiently well
spread out. To make this precise we choose a function F : N — N having the property that,
for every n and every non-zero x € X,

1
%10 || > 5 11x1
This is possible by compactness of the unit ball of the finite dimensional space X,,. We shall

say that a (finite or infinite) sequence (y;) in X is F-admissible if there are integers m,, and

ny, satisfying my, < n,, F(ng) +k < my,4, with y, € Xnk'yk|Fp(mk) = 0. In terms

ofthe f.d.d. (M,,) introduced earlier, we are saying that y, €®.,, <n<n, M, for all k, or
equivalently that supp(yy) € [my, + 1,n,]. Evidently, if (y,) is admissible then so is any
sequence of successive linear combinations. The following lemma is related to Lemma 3.20
of [84].

LEMMA (3.1.5)[80]: If (y;) is an F-admissible sequemee, then, for any [,
l

Yy

k=1
In particular, ||y;|| < 6||Zk=1vk| foreach1 < j < L

Proof. For each k let us write p, and g; for the minimum and maximum, respectively, of
the support of y,.. The hypothesis of F-admissibility implies that p;.; > F(qx) + k. We
shall show that, for each subinterval I = [j, k] of [1,1], there exists y € (g, )+k—; Such
that

1
> Myl - MyeDllap.

k
1
> 5| > gl sl el
i=j

We may suppose, by induction on the length of I and a possible re-indexing, that I = [1, (]
and that the result has already been proved for all proper subintervals of [1, [].
When we come to calculate ||(|ly4 1|, - - lly:1) |l o 5, there are two possibilities, the first being

where this norm equals ||y;|| for some j. By the defining property of the function F, there is
some y € Ir(q)) with
1
;] > 5 [y
Fori < j,y;(y) = 0 by F-admissibility, and so

Zl:yi(y) = Z]:yi(y) :

Now if this quantity is at least % || ||, we are home. Otherwise, is must be that
j_

MIE iym > |y, ()] - im) > (5-2) sl =31l

i=1 i=
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Now we see that there exists § € Te(q;_0) such that

Iyl - = yedDlles = allCllyall: - l1yelDllap + bUAYeeall: = 1yidDlab-
By our inductive hypothesis, there exist & € I, )+k—1 and N € Irg,)+1-k—1 Such that

k
1
D n®[> hayall - 1Dl
i=1

l

1

> 5| > 21l Dl

. i=k+1

If we now consider the element
y=F@)+1-kF(q)+k—1¢n+1)

of I'r(qp+1-k (With an appropriate choice of sign), we see that

l

k k
D nm| =) w@|+b] > nn
i=1 i=1 i=k+1
1 1
> Zall Ayl - 1elDllap + ¢ BI Al - 1D s
1
= 2110yl 10D

It is also shown in [84] that, for certain carefully chosen admissible sequences,

there is an upper estimate as well. This is the way in which Bourgain and Delbaen show that
Xgp is not isomorphic to X, ,» if b # b’ (and then deduce the existence of a continuum of
non-isomorphic separable L£*- spaces). Of course we can now see that these special
sequences are £P-bases.

We shall shortly show that from every admissible sequence we can form a normalized
sequence of successive linear combinations which is an #P-basis. Before going on to that,
however, let us note that not every normalized admissible sequence is itself an £7 basis. We
note that the same calculation shows that X, ;,, with min supp y; > m, such that

2k—1 2k—1
Dyl =1 |z
j=1 j=1
Proof. We shall prove the statement by induction on k and shall show, moreover, that the

construction may be carried out in such a way that the vector Z?Z]l y; attains a value of at

least k1/?" at some element ¢ of I'. The construction will use some special vectors w, (y €
I') which we shall now define. For each y € I' we set n = rank (y) and let e, be the usual
unit vector in £*°(I;,) define by e, (§) = 1 if § = y and 0 otherwise. We then define w,, =
jn(e,), noting that ||w, || = 1.

We now pass to the inductive proof. For k = 1 there is of course no real problem, but in
order to be sure about attainment of the norm, we might as well be specific, taking y; to be
w,, with rank (y) sufficiently large.

Now suppose that the result is true for k. Given m there exist successive, F-admissible
Vectors y, ..., ¥ k_,, With min supp y; > m, together with an element ¢’ of I' such that
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2k—1 2k—1

DIl =1 Y vz
j=1 j=1

We now use our inductive hypothesis again to obtain y;',...,y,x_, and &' satisfying the
same conditions, and with
min supp y; > max{rank &), F(max supp y;k_l + 2k — 1)}
We choose n > max{rank (§""), F(maxsupp y,i_, + 2** —2)}and take & € A, to be
E = (n’ rank (5,)’ 5,’ 5”1 1)'

Finally, we define y,, ..., y,k+2_, by
(qP —1)1/p

(k+ 1)i/p
Vi =3 pP' -1k 1/p

(1<j<2k-1),

my;'_zk_l (2 <j< 2t = 2),
(k + DYPw; (G =2F-1).
By construction, the sequence ys,..., ¥ k+1_4 IS F-admissible and
2k+1_q p' 2k—1

el
2”%” k+12”%” k+12” T

_ ka”’ - kb? +1

k+1
When we evaluate at E we obtain
2k—1

—1[1/p
JZ Y@ = a gy Z G

bp ‘1k1/p . 1
(k (ke + 1D)i/P z O T (k + 1)1/

aP k/p . bpP'kP )
SRR 1 ) - RR— 1 Y ) A R —
~(k+1)/p (k + 1)/p (k + 1)/p
. (a® + b )k s 1
(k + 1)i/p +(k+1)1/P_( +DEE
COROLLARY (3.1.6)[80]: There exist normalized F-admissible sequences that are not
equivalent to the usual £P-basis.
Proof. It is clear that such sequences may be constructed by normalizing and sticking
together finite sequences of the kind obtained.
In view of what we have just seen it is clear that we shall have to work a bit harder in order
to find £P-bases in X, ,. We shall start with an arbitrary normalized F-admissible sequence
(yy,) and then form further linear combinations. As a piece of temporary terminology, we
shall say that a vector x has height h, and write h(x) = h, if x is a linear combination
n

X :::§: ay

l=m
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with h = max|a;|. When I is a non-empty finite interval of integers, we shall write 1* for
l

the subinterval obtained by removing the end-points of I: thus I* = I\{max [, min /}.
PROPOSITION (3.1.7)[80]: There is a constant ¢ > 0, depending only on a and b, with
the following property: for any normalized F-admissible sequence (y,,), any sequence (x,.)
of successive linear combinations, any finite interval I and any y € I, we have

1/p
IRIE (uxmm,np +2) 6lulP + ||xmax,||p> )

i€l ier*
moreover, for y with rank(y) > max supp x.x;, We have

1/p
RIGE (nxmm,up +2) 6l + ||xmaxl||p)

i€l Ler-

C

C

3
4 B0 + 5 hCtmax)
ler*

In fact, the constant ¢ may be taken to be whichever is smaller of b and 271/’

Proof. We proceed by induction on the length of the interval I, assuming that (1) and (2)
hold for all sequences of successive linear combinations of the y;, and all intervals shorter
than 1. (Of course, the case of an interval containing only one natural number is trivial.) For
convenience, we shall take I to be the interval [1, []; let us write x for the sum ¥!_, x;. We
consider an arbitrary y € I'; our aim is to show that

-1 1/p
clx(y)| < <||x1||p + Zz 6P ||x; [P + ”xmaxlllp)
i=2
-1
+4Z h(x,) + 3h(x)), )
. i=2
with
-1 1/p
clx(y)| < <||x1||p + Zz 6P ||x;|[P + ”xmaxlllp)
i=2
-1 3
+4Z h) + 5 h(xo), 3)
i=2

in the special case where rank(y) > max supp x;.
We may assume that rank(y) = min supp x;. Indeed, otherwise we have x(y) =
};11 x;(y) and our inductive hypothesis may be applied. This assumption about the rank of

y will be useful since it will allow us to apply PROPOSITION (3.1.3) to vectors like j'-;ll X;j.
Let us now write k = cut(y); we shall deal first with the two cases k < min supp x, and
k > max supp x;_;. In the first of these cases, we may estimate |x(y)| as follows:

i-1

X < lloxa |l + ZXz(V) + [l

i=2

65



< lxqll + x| + a +b (by Prop. 1)

-1
Sk ( xi>
i=2

-1

3

= lleall + N2l + b

-1
(I — S) ( xi)
=2
=2

Now the interval [2,1 — 1] is one to which our inductive hypothesis is applicable, so that
we obtain

1-2 1/p
clx)I < cllxg Il + cllx |l + b (lllelp + 22 6P || ||P + ”xi—1”p>
i=3
+4bz h(x;) + 3bh(x;_y)
i=3
1/p

-2
/ IN1/p'
< (2¢”' +b7) <||x1||P + bl +2 ) 6Pl dlP + llxi P + ||xl-||p>

-1
+4bz h(x,),

=3
by Holder’s inequality. Comparing terms and recalling that b < 1/2, we see that this
implies inequality (2), provided that 2¢?’ + bP' < 1, or equivalently ¢ < 272/7'(1 -
\1/p'
pp ) /p

The argument in the case k > max supp x;_; is similar:
i—1

] < cllxll +¢| Y 5

=2

= 27Up'q,

-1 1
< c||x;|| + ac |[Sk (z ) + be |[(I — Sk) (Z ) (by Prop. 1)
i=2 =2
-1
= clla|l + ac z
i=1
1-2 1/p
<cllxll +a <||x1||p + 22 6P [|x;|IP + ||xl-_1||P>
i=2

+4az h(x;) + 3ah(x;_,),
= 1/p

1—2
p' p'\ /P’ p P||x,||P p p
< (C +a ) 21 llP +2 > 6P|lx; 1P + |[x;—1 1P + |2l

+4z h(x)),
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which implies inequality (2) provided c? +af <1or equivalently ¢ < b.

From now on, we shall assume that min supp x, < k = cut(y) < max supp x;_;. We
consider next the case where rank(y) > max supp x; and need to establish inequality (2).
An easy case is where the cut k lies between the supports of consecutive x; ‘s, say max supp
x; <k < min supp x;+;; (Where 2 <i* <1 —2 by what we have just proved). By our
inductive hypothesis, we have inequality (1) for each of the intervals [1,i*] and [i* + 1,1].
Moreover, PROPOSITION (3.1.3) is applicable, giving

2, e x

i<i* i>i*

1/p
<a <||x1||p+2 > 6p||xi||p+||xi*||r’) +4 ) R +3h0x)

clx(y)| < cal|Spx]|| + cb||(I — Sp)x]|| = ac + bc

<i<i* <i<i*
1/p
+b <||xi*+1||p+z > 6p||xi||p+||xl-||P> +4 ) R+ 3h(x)
F+ii<l +1ii<l

1/p

3

< (nxlnp +2 ) ellnl + ||xi||P> +4 " he) +5hCx),
<i<i* i<i<l

by Holder’s inequality and the facts thata < 1,b < 1/2.

A slightly more complicated case arises if min supp x; < k < max supp x; forsomei =

i*, say. By what we proved earlier, it mustbe that 1 <i* < L.

We now study the fine structure of the vector x;-, recalling that

Xix = z a]y]

Njx_1<J<N;x

We may suppose that k is somewhere between min supp y;- and max supp y;+, for some j*.

We then set
xXf = z a;Yj, xft = Z a;Yj,

np_1<j<j* jr<jsng
Xt =+ x4 Axp_g Hxpb, XR=af 4 x4
By minimality of [ and the factthat 1 < i* < [, inequality (1) is true for the vectors x® and
x’. Hence we have

1/p
cllxtll < <||x1||p +2 ) 6llgllP + ||k ”) +4 " hx) +3h(xk)
<i<i* <i<i*

1/p
< <||x1||p +2 z 67 |lx 117 + | ’”) +4 Z h(x) + 3h(x;),

<i<i* <i<i*
since h(x~) < h(x;+) by the definition of the function h, and

1/p
b
cllx”| S(IIxfiII +2 ) 6P||xl-||v+||xi||p> +4 ) R +3h(xe).
i*<i<l i*<i<l

If we now write x* + x* + x® = x — a;-y;+, and apply PROPOSITION (3.1.3), we obtain
cle)| < clx* I + c|aj| < acllSex* || + bell(I = S)x* || + ch(x;)
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= ac||x¥|| + bc||x®|| + ch(x;+)

1/p
p
<a <||x1||p+2 Z 67 |lx 1P + ||k | ) +4 z h(x;) + 3h(x;)

<i<i* i<i<i*

1/p
+b (leﬁ P2 2 67 ||x:|IP + I|x, ||P> +4 Z h(x) + 3h(x;) | + ch(x;)
i*<i<l

i*<i<l

1/p
p p
s<||x1||p+z D 6l + [+ +2 ) 6Pl + i, ||p>

i*<i<l *<i<l

+4 2 h(x) + (3 + )h(x;) + 4 z h(x,) + 3bh(x,)
i< i <i<l _
using Holder’s inequality and the values of a and b as before. LEMMA (3.1.5), applied to
the admissible sequence (x}, a;y;,xf), implies that each of [|x%|| and ||x%|| is at most

6||x;+|| so that we can finally write

1/p
3
clx ()] < <||x1||p +2 ) 6P+ ||xl||p> +4 ) R +h(),
. L . i*_<i<l 1<i<l
which is inequality (2) as requiredl (Of course, we have also used the facts that b < 1/2

and3+c<4)

To finish the proof, we now need to look at |x(y)| where rank(y) max sup x; and show that
inequality (1") holds. We do this by another induction, this time on the number n; — n;_;
of non-zero coefficients in the expression for the last vector x; as a linear combination of
the y;. We set

xX; = Z QY =X — Au, Y, X" = Z X+ X =X — QpYn,
ni—1<j<n; 1<i<l
Our additional inductive hypothesis is applicable to x*, and if rank(y) < minsupp y,, , we
have x(y) = x*(y), giving the result immediately. If, on the other hand, rank(y) =
min supp y,, > maxsupp x7, it is inequality (2) which holds for x*. Thus we obtain

clx@ < cle* N + clanyn, @)

1/p
< (||x1||p+z > 6p||xl-||P+||xl*||p>

i*<i<li

3
+4 )" R +ShOD +c|ay

1<i<li

1/p
s(||x1||p+z > 6p||xi||p+||xl||p> +llx -

*<i<l

3
+4 Z h(x;) + Eh(xl*) + c|anl| (by Minkowski’s inequality)

1<i<l

1/p
< (||x1||p+z > 6p||xi||p+||xl||p>

i*<i<l
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+4 z h(x;) +%h(xz*) + (¢ + D)|ay,|

1<i<l
1/p
< <||x1||P+z > el + ||xl||p) +4 " h(x) +3h(x)
i*<i<l 1<i<l

since ¢ < 1/2 and h(x;) = max({|ay,, |, h(x;)}. We have thus established inequality (2) as
required.

Theorem (3.1.8)[80]: Let a, b be real constants satisfying0 < b <1/2<a<1l,a+b >
1 and let np,p’ be given by 1/p+1/p'=1= a?’ + b?'. Every closed infinite-
dimensional subspace of X, ;, has a subspace isomorphic to £7.

Proof. By a standard approximation argument, it is enough to consider the case of a
subspace Y which is the closed linear span of a normalized F-admissible sequence (y;).
Because of the lower estimates of LEMMA (3.1.5) and Theorem (3.1.2), we may construct
successive linear combinations z; with ||z;|| = 1 and h(z;) very small, say )72, h(z;) < 1.
Now, for arbitrary [ € N and arbitrary scalars f;, we may apply the above proposition to the
vectors x; = ,BzZu obtaining

Zﬁl <12 (Zw) v 42|ﬁl|h<zl) < 16(2|ﬂl|p)

On the other hand from LEMMA (3.1.5) and Theorem (3.1.2) again, we get the lower
1/p
Z.Bzi

estimate
. l
‘ = g”(ﬁp---,ﬁz)”a,b =d (Z|.3i|p) ,
i=1 i=1

where d is a strictly positive constant.
Section (3.2): The Scalar-Plus—Compact Problem

The question of whether there exists a Banach space X on which every bounded linear
operator is a compact perturbation of a scalar multiple of the identity has become known as
the “Scalar—plus—Compact Problem”. It is mentioned by Lindenstrauss as Question 1 in his
1976 list of open problems in Banach space theory [114]. Lindenstrauss remarks that, by the
main theorem of [101] or [115], every operator on a space of this type has a proper non-
trivial invariant subspace. Related questions go further back: for instance, Thorp [123] asks
whether the space of compact operators K (X;Y) can ever be a proper complemented
subspace of L(X;Y). On the Gowers—Maurey space Xy, [111], every operator is a strictly
singular perturbation of a scalar, and other hereditarily indecomposable (HI) spaces also
have this property. Indeed it seemed for a time that X4, might already solve the scalar—
plus—compact problem. However, after Gowers[110] had shown that there is a strictly
singular, non-compact operator from a subspace of X,, to X, Androulakis and
Schlumprecht [95] showed that such an operator can be defined on the whole of X,
Gasparis [108] has done the same for the Argyros—Deliyanni space X,4 of [96].
We solve the scalar—plus—compact problem by combining techniques that are familiar from
other HI constructions with an additional ingredient, the Bourgain— Delbaen method for
constructing special #..-spaces [85]. The initial motivation for combining these two
constructions was to exhibit a hereditarily indecomposable predual of £;; such a space is, in

l
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some sense, the extreme example of a known phenomenon—that the HI property does not
pass from a space to its dual [107], [100], [97]. it turned out that the additional structure was
just what we needed to show that strictly singular operators are compact. It is interesting,
perhaps, to note that the Schur property of £, does not play a role in our proof and, indeed,
we have no general result to say that an HI predual of £, necessarily has the scalar—plus—
compact property. We use in an essential way the specific structure of the BD construction,
which embeds into our space some very explicit finite-dimensional £.,-spaces. As well as
the (now) classical machinery of HI constructions—a space of Schlumprecht type, Maurey—
Rosenthal coding and rapidly increasing sequences based on #,-averages—we add the
possibility of splitting an arbitrary vector into pieces of comparable norm, while staying in
one of these ¢7,’s. This allows us to introduce two additional classes of rapidly increasing
sequences, and these in turn lead to the stronger result about operators.

If A is any set, £, (A) is the space of all bounded (real-valued) functions on A,
equipped with the supremum norm ||-||, and £, (A) is the space of all absolutely summable
functions on A, equipped with the norm ||x||; = Y.4ea |x(a)|. The support of a function x
is the set of all a such that x(a) # 0; cyo(A) is the space of functions of finite support. We
shall write ¢,, for the space £,,(N), where N is the set {1,2, 3,... } of positive integers, and

¢y for £,({1,2,...,n}). Even when we are dealing with these sequence spaces we shall use

function notation x(m), rather than subscript notation, for the m™ coordinate of the vector
X.
When x and y are in ¢,y (A) (and more generally) we shall write (y, x) for },c4 x(a)y(a).

If we are thinking of y as a functional acting on x* (rather than vice versa) we shall usually
choose a notation involving a star, denoting y by f*, or something of this kind. In
particular, e, and e; are two notations for the same unit vector in cy,(A) (given by
eq,(a’) = 6,44), 1o be employed depending on whether we are thinking of it as a unit vector
or as the evaluation functional x - (e;, x) = x(a).
We say that (finitely or infinitely many) vectors z;, z,, ... In ¢y are successive, or that (z;)
Is a block-sequence, if max supp x; < min supp x;,, for all i. In a Banach space X we say
that vectors y; are successive linear combinations, or that (y;) is a block sequence of a basic
sequence (x;) if thereexist 0 = q; < q, <--- such that, for all j = 1,y; is in the
linear span [x; : q;—; <i < q;]. If we may arrange that y; € [x;: q;—; < [ < q;] we
say that (y;) is a skipped block sequence. More generally, if X has a Schauder decomposition
X = @nen F, We say that (y;) is a block sequence (resp. a skipped block sequence) with
respect to (F,) if there exist 0 = qo < g, < e e such that y; isin Dy, <nsq; Fn (resp.
Dy, <n<q; Fn- A block subspace is the closed subspace generated by a block sequence.

A Banach space X is indecomposable if there do not exist infinite-dimensional closed

subspacesY and Z of X withX = Y @ Z, and is hereditarily indecomposable (HI) if every
closed subspace is indecomposable. The following useful criterion, like so much else in this
in this area, goes back to the original of Gowers and Maurey [111].
Proposition (3.2.1)[91]: Let X be a an infinite dimensional Banach space. Then X is HI if
and only if, for every pair Y, Z of infinite-dimensional subspaces, and every € > 0, there
exist y € Y and z€ Z with |ly + z|| > 1 and ||y — z|| < e. If X has a finite-
dimensional decomposition (F,),en it IS enough that the above should hold for block
subspaces.
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We shall make use of the following well-known blocking lemma, the first part of which can
be found as Lemma 1 of [116]. The proof of the second part is very similar, and, as Maurey
remarks, both can be traced back to R.C. James [112].

Lemma (3.2.2)[91]: Letn > 2 be an integer, lete € (0, 1) be a real number and let N be
an integer that can be written as N = n* for some k > 1. Let (x;)Y_, be a sequence of
vectors in the unit sphere of a Banach space X.

(i) If |2, £x;|| = (n — €)* forall choices of signs +1, then there is a block sequence
Y1, V2,0,V € [x;+ 1< i < N]whichis (1 — €)~!-equivalent to the unit-vector basis
of ¢1.

(ii) If |2, £x;|| < (1 + ) for all choices of signs +1, then there is a block sequence
Y1, V2,--Yn € [x;: 1< i < N]whichis (1 + €)-equivalent to the unit-vector basis
of #1.

A separable Banach space X is an L, -space if there is an increasing sequence
(E,)ney Of finite dimensional subspaces of X such that the union U,,cy E, is dense in X and,
for each n, F,, is A-isomorphic to {’fo’mF" . It is known [113] that if a separable L, space X
has no subspace isomorphic to #,, then the dual space X* is necessarily isomorphic to #;.
This implies that the dual of a separable, hereditarily indecomposable L..-space is
isomorphic to 4.

The Bourgain—Delbaen spaces X, ;,, Which inspired the construction given, were the first
examples of L, spaces not containing c.

All existing HI constructions have, somewhere at the heart of them, a space of
Schlumprecht type; rather than working with the original space of [122], we find it
convenient to look at a different mixed Tsirelson space. We recall some notation and

terminology from [99]. Let (lj)j be a sequence of positive integers and let (Qj)j be a

sequence of real numbers with 0 < 6,, < 1. We define W [(Alj, 6;) ;] to be the smallest
subset W of ¢y, with the following properties

(i) ze,€ Wiorallk € N;

(i)  whenever f7',f5,..., fm € W are successive vectors, 8, Y.<, f;” € W , provided
m < .

We say that an element f* of W is of Type O if f* = +e, for some k and of Type |
otherwise; an element of type | is said to have weight 8; if f* = 6; X, f;" for a suitable
sequence (f;) of successive elements of W/ .

The mixed Tsirelson space T [(Alj, 6;) ;] is defined to be the completion of ¢, with respect

to the norm
lxll = sup{(f*,x) : f* € W [(Ay,6);1}.
We may also characterize the norm of this space implicitly as being the smallest function
x ~ ||x]| satisfying
Lj
il = max{ llxlls sup 6; ) [lxxe,|
i=1
where the supremum is taken over all j and all sequences of finite subsets E; < E, < -+ <
E;.. Schlumprecht’s original space is the result of taking [; = j and 6; = (log,(j +
J

D)
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We shall choose to work with two sequences of natural numbers (m;) and (n;). We require
m; to grow quite fast, and n; to grow even faster. The precise requirements are as follows.
Assumption (3.2.3)[91]: We assume that (m; ,nj)jEN satisfy the following:

i m =4

(i) my, = mf;

2 2/+1

(i) nj = mi(4n;)" .

A straightforward way to achieve this is to assume that (m;, n;) is some subsequence of the
sequence (2%, 22f2+1)]_EN. From now on, whenever m; and n; appear, we shall assume we

are dealing with sequences satisfying (3.2.3).
The following lemma can be found as 11.9 of [99]. The proof is not affected by the small
change we have made in the definition of the sequences (nj)j and (mj)j .

Lemma (3.2.4)[91]:IfjeNand f € W [(A4nj,mj‘1)j] Is an element of weight m,,, then

Njo

-1... -1 or - .
(f* n—lz e ) < th ij ifi < Jo
) Iy l — _ P .
Jo = mhl lfl = Jo-
-1 vo

In particular, the norm of n; * ¥ e; in T[(A4nj,m]-‘1)j | is exactly m; *
If we restrict attention to f € W[(A4nj,mj‘1)j¢jo] then

"o -1...-2 e .
. -1 2my"m; ifi < jg
(fmj en| <
Jo m; ifi > j
-1 v"o

In particular, the norm of n; * ¥ e; in T[(Aan; M 1) j2j,] Is at most m; 2.

We shall present a generalization of the Bourgain—Delbaen construction of separable
L-spaces. Our approach is slightly different from that of [102] and [85], but the
mathematical essentials are the same. We choose to set things out in some detail partly
because we believe our approach yield new insights into the original BD construction, and
partly because the calculations presented here are a good introduction to the notations and
methods we use later. It is perhaps worth emphasizing here that BD constructions are very
different from the majority of constructions that occur in Banach space theory. Normally we
start with the unit vectors in the space ¢y, and complete with respect to some (possibly
exotic) norm. The only norms that occur in a BD construction are the usual norms of £,
and ¢;. What we construct here are exotic vectors in £,, whose closed linear span is the
space we want.

The idea will be to introduce a particular kind of (conditional) basis for the space £, and to
study the subspace X of £, spanned by the biorthogonal elements. Since #, is then in a
natural way a subspace of (and in some cases the whole of ) X*, we shall be thinking of
elements of ¢, as functionals and, in accordance with the convention explained earlier,
denote them b*, c* and so on. In our initial discussion we shall consider the space ¢, (N)
(which we shall later replace with £, (T") with T" a certain countable set better adapted to our
needs).

Definition (3.2.5)[91]: We shall say that a basic sequence (d;,),en IN€1(N) is a triangular
basis if suppd, < {1,2,...,n}, for all n. We thus have
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n

* *
dn_ E Anm€m »

m=1
where, by linear independence, we necessarily have a, ,, # 0. Notice that the linear span
[di,d5,...,dy ] isthe same as [eq, e5,..., e,], that is to say, the space ¢, (n), regarded as a
subspace of #,(N) in the usual way. So, in particular, the basic sequence (d;,) is indeed a
basis for the whole of #;. The biorthogonal sequence in £, will be denoted (d,,); it is a
weak™ basis for ¢, and a basis for its closed linear span, which will be our space X.
Proposition (3.2.6)[91]: If (d;,) is a triangular basis for £, (N), with basis constant M, then
the closed linear span X = [d, : n € N]isa Ly -space. If (dy,) is boundedly complete,
or equivalently (d,,) is shrinking, then X* is naturally isomorphic to £, (N) with [|g*[|x+ <
lg™lly < Mllg*llx-
Proof. In accordance with our “star” notation, let us write P, for the basis projection £; —
£, associated with the basis (d;,). Thus P, (d;,) equals d;, ifm < nand 0 otherwise;
because e;,, € ¢;(n) = [d],...,d;], we also have Pye,, = e, when m < n. If we
modify P, by taking the codomain to be the image im B, = #;(n), rather than the whole
of £,, what we have is a quotient operator, which we shall denote g,,, of norm at most M .
The dual of this quotient operator is an isomorphic embedding in : £, (n) = ¢4 (N), also
ofnormatmost M . If m < nandu € #,(n) we have
(in wW(M) = (em,inu) = (quem u) = (em,u) = u(m).
So in is an extension operator %, — £, (N) and we have
lulleo < llinulle < Mlullo
forallu € #%.In particular, the image of i,,, which is exactly [d,, ..., d,] is M -isomorphic
to £%,, which implies that X is a L, »,-space.
In the case where (d},) is a boundedly complete basis of £, then X* may be identified with
£, by standard result about bases. Moreover, for g* € #,, we have
lg*llx = sup{{g”,x): x € Xand [|x[l, < 1} <||g"]l.

On the other hand, if g* has finite support, say suppg* € {1, 2,...,n}, we can choose u €
L% with [lu]l = 1and{g*,u) = ||g*|l,. The extension x = i,,(u) isnow in X and satisfies
Ixll < M,(g",x) = llg]l.

We shall say that (d;,) is a unit-triangular basis of £, (N) if it is a triangular basis and the

non-zero scalars a,, ,, are all equal to 1. We can thus write

dn = en — Cp,
where ¢; = 0 and suppc, c {1,2,...,n—1} for n = 2. The clever part of the
Bourgain—Delbaen construction is to find a method of choosing the c;, in such a way that
(d;) is indeed a basic sequence. The idea is to proceed recursively assuming that, for some
n = 1, we already have a unit-triangular basis (d;,)m<n Of 1. The value of P’b* is thus
already determined when1 < r < nand b* € #7}.
Definition (3.2.7)[91]: In the set-up described above, we shall say that an element c* of
£, (n) is a BD-functional (with respect to the triangular basis (d;,)7,-,) if there there exist
real numbersa € (0,1]and 8 € [0, %) such that we can express c* in one of the following
forms:
(i) ae withl <j < n,
(i) BU — PH)b*with0 < k < nand b* €ball ¢,(k + 1,...,n),
(i) ae/ + B(I — P)b*withl < j < k < nandb* €ball £,(k + 1,...,n).
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The non-negative constant S will be called the weight of the functional c¢* (“weight 0” in
case (0)). Note that (0) and (i) are “almost” special cases of (ii), with S (resp. ) equal to 0.
In the construction presented, we do not use functionals of type (0) and the constant « in
case (i) is always equal to 1. However, it may be worth stating the following theorem in full
generality.

Theorem (3.2.8) ([102], [85])[91]: Let 6 be a real number with 0 < 6 < % and let d;, =

e, — ¢, in¥¢; be such that, for each n,c;,; € ¢7 is a BD-functional of weight at most 8
with respect to (d;,)7=1 - Then (d;),en IS a triangular basis of £;, with basis constant at
mostM = 1/(1 — 20).

The subspace X = [d,, : n € N]of £, isthus a L y-space.

Proof. Despite the disguise, this is essentially the same argument as in the original of
Bourgain and Delbaen. What we need to show is that P is a bounded operator, with || P || <
M for all m. Because we are working on the space ¢, it is enough to show that || By e, || <
M for every m and n.

First,ifn < m,Pye;, = e;, sothereisnothingto prove. Now let us assume that ||Pkej*
M forall k < mandallj < n; we then consider P, e, ,,. We use the fact that

*

en+1 = dns1 + Cnyr
with c,,,; € £} a BD-functional. We shall consider a functional of type (2), which presents
the most difficulty. We thus have
Cny1 = @€j + B(I — P)b",
where 1 < j < k < n and a,B,b" are as in Definition (3.2.7), and 8 < 6 by our
hypothesis. Now, becausen + 1 > m we have P, d,,,; = 050
Pnens1 = aPnej + B(Byn — Poa)b”™.

If Kk = m the second term vanishes so that

I1Prenll = al||Pre;
which is at most M by our inductive hypothesis.
If, on the other hand, k < m, we certainly have j < m so that Bye; = e/, leading to the
estimate

<

<|

* ok
Pmej ,

1Prensill < allef || + BlIPD* || + BlIPe".
Now b* is a convex combination of functionals +e; with [ < n, and our inductive
hypothesis is applicable to all of these. We thus obtain

|Preniill <a +MB <1 +2MB =M,
by the definition of M = 1/(1 — 260) and the assumptionthat0 < f < 6.
The L., spaces of Bourgain and Delbaen, and those we construct are of the above type.
However, the “cuts” k that occur in the definition of BD-functionals are restricted to lie in
a certain subset of N, thus naturally dividing the coordinate set N into successive intervals.
As in [80], it will be convenient to replace the set N with a different countable set I having
a structure that reflects this decomposition. This will also enable us later to use a notation in
which an element y € T" automatically codes the BD-functional associated with it.

Theorem (3.2.9)[91]: Let (Aq)qEN be a sequence of non-empty finite sets, with

#4; =1, write I, = Uj<p<qAp, T = UpenA,. Assume that there exists 6 <§ and a
mapping 7 defined on I'\A,, assigning to each y € A, a tuple of one of the forms:
0 (o,&)withd < a < 1and €T ;
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(1) @B b)withd < p < q,0 < p < Bandb* €hall £;(T,\I},);

2) (@é&pBbY)withd <a<1,1<p<gqé€ p0d<pP <0Oandb* € hall
£, (T,\Ly).

Then there exist d, =e;, —c, € ¢;(I') and projections P(*O,q] on £,(T) uniquely
determined by the following properties:

d; ify€er
(VP qdy = {OV ; f£ 2 r\rC;
( 0 ify €A
) ae; if () = (a,%)
@)y = { BU = Pop)b*  if T() = .B,b)

\ae; + B(I — Pl )b*  if t¥) = (a,&,B,b%) withé € A,
The family (d,’i)(yer) is a basis for £, (I") with basis constant at most M = (1 — 26)7".

The norm of each projection P, is at most M. The biorthogonal elements d, generate a
Lo,y —subspace X(T',7) of £, (I'). For each g and each u € £, (I}), there is a unique
ig(w) € [d,: v €T,] whose restriction to q is u; the extension operator i, : £, (I;) —
X(I',7) has norm at most M . The subspaces M,, = [d, : ¥ €[] = ij [f«(44)] forma
finite-dimensional decomposition (FDD) for X; if this FDD is shrinking then X™ is naturally
isomorphic to £, (I).

Proof. We shall show that, with a suitable identification of I' with N, this theorem is just a
special case of Theorem (3.2.8). Let k,, = #I}, and letn » y(n) : N — T be a bijection
with the property that ~ A;= {y(1)}, while, foreachq = 2,A,= {y(n) : k4—y < n <
kq}. There is a natural isometry: J: £;(N) — ¢,(I) satisfying J(ep) = e, (- It is
straightforward to check that if d;, = *(d;.,) = en —cp, then the hypotheses of
Theorem (3.2.8) are satisfied. (The cuts k that occur in the BD-functionals c;, are all of the
form k = k,.) All the assertions in the present theorem are now immediate consequences.
The projections P(*O,q] whose existence is claimed here are given by P(*O,q] = ]P,;“q J~1, where
P is the basis projection of Theorem (3.2.8).

When ordered as (d,,(n))nEN the vectors d,, form a basis of their closed linear span, which
is a Lo, v -space. The extension operator that (by abuse of notation) we here denote by i, is
just Ji, J~". The assertions about the subspaces My = [d )t kq—1 <71 < k] follow
from the fact that (d, ¢,)) is a basis.

We now make a few observations about the space X = (T, 7) and the functions d,,, taking

the opportunity to introduce notation that will be used in the rest. We have seen that for each
Y € A,4q the functional dj, has support contained in I}, U {y}. Using biorthogonality, we

see that d,, is supported by {y} U T \I3,;,. It should be noted that we should not expect the
support of d,, to be finite; in fact, in all interesting cases, we have X N ¢,(I) = {0}.

As noted above the subspaces M, =[d,: y €4,] form a finite-dimensional
decomposition for X. For each interval I © N we define the projection P, : X - @,¢; M,
in the natural way; this is consistent with our use of P(, ,,; in Theorem (3.2.9). Most of our

arguments will involve sequences of vectors that are block sequences with respect to this
FDD. Since we are using the word “support™ to refer to the set of y where a given function
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IS non-zero, we need other terminology for the set of n such that x has a non-zero component
in M,,. We define the range of x, denoted ran x, to be the smallest interval I < N such that
X €Dne; My, . Itis worth noting that if ran x = (p, q] then we can write x = i,(u) where
u = x [T, € £, (Iy) satisfies I}, N suppu = @.

We now set about constructing specific BD spaces which will be modelled on mixed
Tsirelson spaces, in rather the same way that the original spaces of Bourgain and Delbaen
have been found to be modelled on ¢,,. We shall adopt a notation in which elements y of
A, 4 automatically code the corresponding BD-functionals. This will allow us to write X (I")
rather than X (T, t) for the resulting L.,-space. An element y of A,,,, will be a tuple of one
of the forms:

i) y=m+ 1,B,b"), inwhichcaset(y) = (0,8,b");

i) vy =m+ 1,§B,b")inwhichcase t(y) = (1,§ ranké, S, b").

In each case, the first co-ordinate of y tells us what the rank of y is, that is to say to which
set A, it belongs, while the remaining co-ordinates specify the corresponding BD-
functional.

It will be observed that BD-functionals of Type 0 do not arise in this construction and that
the p in the definition of a Type 1 functional is always 0. In the definition of a Type 2
functional that the scalar a that occurs is always 1 and p equals rank . We shall make the
further restriction the weight g must be of the form m]-‘l, where the sequences (m;) and (n;)

satisfy Assumption (3.2.3). We shall say that the element y has weight mj‘1 (sometimes
dropping the —1 and referring to “weight m; ™). In the case of a Type 2 elementy = (n +
1,¢,mi*, b*) we shall insist that ¢ be of the same weight m; ! asy.

To ensure that our sets A,,,; are finite we shall admit into 4,,,; only elements of weight m;
with j < n + 1. A further restriction involves a recursively defined function which we
call “age”. For a Type 1 elementy = (n + 1,5,b") we define agey = 1. Fora Type 2
elementy = (n + 1,§,m;%, b*), we defineagey = 1 + age ¢, and further restrict the
elements of A, ; by insisting that the age of an element of weight m; may not exceed n;.

Finally, we shall restrict the functionals b* that occur in an element of A, ; by requiring
them to lie in some finite subset B,, of £, (I},). It is convenient to fix an increasing sequence
of natural numbers (N,) and take B,, to be the set of all linear combinations b* =

Yperar, @y, where Yula,| < 1andeach isarational number with denominator dividing
N,,!. We may suppose the N,, are chosen in such a way that B,, ,, is a 27"-net in the unit ball
of £;(I,\I},). The above restrictions may be summarized as follows.

Assumption (3.2.10)[91]:

n
Api1E U{(n + 1,m;,b*):b* € By}
j=1

p
U U U{(n + 1,§,m;',b*):§ € A, weight§ =m;',age £ <n;,b* € B, ,}

o<p<n j=1
We shall also assume that A, ; contains a rich supply of elements of “even weight”, more
exactly of weight m; with j even.

Assumption (3.2.11)[91]:
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[(n+1)/2]
Apiq2 U {(n + 1,m3},b*):b* € B}
j=1

p
U U U{(n + 1,¢, mz_jl,b*):f € A, weight§ = mz_jl,age §<mny;,b* e Bn,p}
1<p<n j=1

For our main HI construction, there are additional restrictions on the elements with “odd
weight” m,;_; . However, there is some interest already in the space we obtain without
making such restrictions. We denote this space B,,t; it is an isomorphic predual of £ that
is unconditionally saturated but contains no copy of ¢, or £,. An analogous space Br,
modelled on the standard Tsirelson space, rather than a mixed Tsirelson space.

Definition (3.2.12)[91]: We define B,,r = %mT[(mj,nj)jeN] to be the space X (I") where
[ = I'™# js defined by the recursion A; = {1},

n+1

Apoq= U{(n + 1,m;%,b*):b* € Bpo}
j=1

n-1
U U U {(n + 1,&EmiL )€€ A,, weighté = m; ' age & <n;,b* € Bn,p}

j=1 jsp<n
The extra constraints that we place on “odd-weight” elements in order to obtain hereditary
indecomposability will involve a coding function that will produce the analogues of the
“special functionals” that occur in [111] and other HI constructions. In our case, all we need
Is an injective function ¢ : I' — N satisfying 40(y) > rank y for all y. This may easily
be included in our recursive construction of I'. We then insist that a Type 1 element of odd
weight must have the form

(n + L,m3i )
with weightn = my;_, > ngj_l, while a Type 2 element must be
(n + 1,&m3) 4, ep)

with WelghtT] = Myg()-

Definition (3.2.13)[91]: We define X [(mj ,nj)jEN] to be the space X(I'") where I’ = T'¥ is

defined by the recursion A, = {1},
l(n+1)/2]

Apq= U {(n + 1,m3},b*):b" € By}
j=1

n p/2]
U U U {(n + 1,¢, m2_j1; b*): § € Ap,weighté = mz—}’ age £ <nyj,b* € Bn,p}
p=1 j=1
[(n+2)/2]
U U {(n + 1,¢, mz‘jl_l,e;;):n € I}, and weightn = my;_, > n%j—l}
j=1
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n l(p+1)/2]
U U {(n + 1,&m3} 4, ep):€ €Ay, weightE =m3} j,age & <nyj_y,7

€ I,\I,, weightn = m4a(g)}
With the definition readily at hand, this is a convenient moment to record an important “tree-
like” property of odd-weight elements of I'¥, even though we shall not be exploiting these
special elements until later on.
Lemma (3.2.14)[91]: Let y,y’ be two elements of T'¥ both of weight my;_, and of ages

a > a',respectively.  Let (p; e ,&;) resp. (p{,e;g,f{) , be the analysis of

. 1
1<i<a 1siSa’
!

Y, resp. y'. Thereexists [ with1 < [ < a'suchthat &' = & wheni < [, while
weightn; # weightn; forall jwhenl < i < a'.
Proof. If weight n; # weight n; foralli > 2 and all j there is nothing to prove (we may
take [ = 1). Otherwise, let 2 < | < a be maximal subject to the existence of j such that
weightn; = weight n;. Now this weight is exactly Myl ) which means that j cannot
be 1 (because the weight of n; has the form my,_,). Thus o(§;_;) = o(§;_1), which
impliesthat §;_, = &;_,.Sincel — 1 =age&/_;andj — 1 =age ¢;_;, we deduce that
= [. Moreover, since the elements &; withi < | — 1 are determined by &,_;, we have
éi = & fori < L
Although the structure of the space X (I") is most easily understood in terms of the basis (d,,)
and the biorthogonal functionals d, , it is with the evaluation functionals e, that we have to
deal in order to estimate norms. The recursive definition of the functionals d, can be
unpicked to yield the following proposition.
Proposition (3.2.15)[91]: Assume that the set satisfies Assumption (3.2.10). Let n be a
positive integer and let y be an element of A, ; of weight m; and age < n; . Then there
exist natural numbers 0 = py < p; < < p, = n + 1, elements &,...,&, = y of
weight m; with &. € A, and functlonals b, € ball €1(F ~1\Ip _1) such that

_1 *

st +m Zp(p—loo)b
-1 *

zdg +m Zp(pr_lpr)b

Proof. Given the assumption (3 2. 10) this is an easy inductionontheageaofy. Ifa = 1
then y has the form (n + 1,m; %, b*) and

e, =d, + ¢,
where ¢, is the Type 1 BD-functional
C; = mj_lp(*o,oo)b*'

with b* € B(n,0) < ball £,(I},). Since b* is in the image of the projection P, ,,; we have
Pimb* = b™andso
* __ % -1 p* * __  J% -1 p* *
ey = dg, + M P )i = dg, + M Py, b1,
If a > 1 theny hasthe form (n + 1,¢, mj‘1 ,b*) and ¢, is the Type 2 BD-functional

* __ % —1p* *
C)/ = ef +m] P(p,oo)b .
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If we apply our inductive hypothesis to the element ¢ of weight m;, rank p and age a — 1,
we obtain the desired expression for e .

We shall refer to the identity presented in the above proposition as the evaluation analysis
of y and shall use it repeatedly in norm estimations. The form of the second term in the
evaluation analysis, involving a sum weighted by mj‘l, indicates that there is going to be a
connection with mixed Tsirelson spaces; the first term, involving functionals d;, with no
weight, can cause inconvenience in some of our calculations, but is an inevitable feature of
the BD construction.

The data (p,, by, &) 1<r<q Will be called the analysis of y. We note thatif 1 < s < a the
analysis of & is just (py, by, & )1<r<s-

We shall be dealing with a space X = X(I') and shall be making the assumptions (3.2.10)
and (3.2.11). Our results thus apply both to B,,r and Xk.

We note that, since the weights m]-_l are all at most% , the constant M in Theorem (3.2.9)

may be taken to be 2. This leads to the following norm estimates for the extension operators
i,, and for the projections P, associated with the FDD (M,,):

= ”P[t‘ankf,oo)eék” = 3.

The assumption (3.2.11) enables to write down a kind of converse to Proposition (3.2.15)
which will lead to our first norm estimate.

Proposition (3.2.16)[91]: Let j, a be positive integers with < n,; ,let0 = py, < p; <
py, << p, be natural numbers with p; > 2j and let b; be functionals in B(p, —
1,pr—1) for 1 < r < a. Then there are elements ¢, € I}, such that the analysis of y =
Ea iS (pr; b;‘kl Er)lsrsa-

Proposition (3.2.17)[91]: Let (x,.)%-, be askipped block sequence (with respect to the FDD
(My)) in X. If j is a positive integer such that a < n,; and 2j < min ran x,, then there

exists an element y of weight m,; satisfying
a

Hence
a

1 .\
PRIOESLDY AT
r=1 r=1
> x| = 5m3 anru
r=1

Proof. Let p, = 0, and choose p;,p,,..., P, such that ran x, € (py—1,0,). Thus x, =
iy —1(u,) where the element u, = x, I'T;, _; has support disjoint from I}, _; . Since

li,|| < 2 forall n we have ||u,| > % ||, || and so there exist 1, € T}, —1\Tp, _, With

1
lur ()| 2 5 Il
The functional by = +e, is certainly in B, _;,,  and with a suitable choice of sign we
may arrange that

1
(b;:xr) = |ur(n‘r)| = E ”xr”
By Proposition (3.2.16) there is an element y of A,  whose analysis is (pr., by, &) 1<r<q- We
shall use the evaluation analysis to calculate
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a a

D k0 = (e Y x).

s=1 s=1
Forany rands,xs € [df: ps—y <rank¢ < pg], while rank &, = p,. , whence
(d;r ,xg) = 0 forallr,s,
while
<P(*pr—1:pr)b;’x5> = <b:'P(*pr—1'pr) xS) =0
forall r # s. In the case r = s we have
(Plp, o0 br %) = Abr, Pgy, )y Xr) = (br, xp).
The evaluation analy5|s thus simplifies to yield

x(y) =myj ) (by xr)> >M2j ) Il
> > D

r=1
The lower estimate we have just obtalned |nd|cates that there i |s a close connection between
our space X and mixed Tsirelson spaces of the kind considered. We can show that a
normalized skipped-block sequence in X dominates the unit vector basis of
T[(An,; m7})jen-

We continue to work with the space X = X(I'), where satisfies the assumptions
(3.2.10) and (3.2.11). We saw that skipped block sequences admit useful Mixed Tsirelson
lower estimates. We now pass to a class of block sequences that admit upper estimates of a
similar kind. The following definition is a variant of something that is familiar from other
HI constructions.

Let I be an interval in N and let (x;),¢; be a block sequence (with respect to the FDD
(M,,)). We say that (x;) is a rapidly increasing sequence, or RIS, if there exists a constant
C such that the following hold:

(i) llx,]l < Cforallk €N,
and there is an increasing sequence (ji) such that, for all k,
(i) jrsq1 > maxran x;
(iii))  |x, ()| < Cm;* whenever weighty = m; andi < ji
If we need to be specific about the constant, we shall refer to a sequence satisfying the above
conditions as a C-RIS.
Lemma (3.2.18)[91]: Let (x;) be a C-RIS and let (j;) be an increasing sequence of natural
numbers as in the definition. If y € ' and weight y = m; then, for any natural number s
1 oape
|<e)t :P(s,oo)xk)l = { SCT?; , lf:l < .]k
3CM if i 2 i

Proof. We first consider the case where i > ji,,, noting that this implies that i > max ran
x, by RIS condition (ii). As in Proposition (3.2.15), we may write down the evaluation

analysis of y as
ey = Z gy +mi* z dy o Pp,_y,w)

where0 = py < p; < q; < ;2 < .-+, and l;; Is a norm-1 element of ¢, (T"), supported
by I, —1\I,_, , While &, is of rank p,. and weight m;. Since A, contains no elements of
weight mi unless g > i, it must be that p; = i. Thus p; > max ran x; , from which it
follows that P (), o) © P(s500)Xk = P(svp,.c0)Xx = 0 for all » = 1. For the same reason, we
also have
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(dgr 'P(S,oo)xk> = (egr'P(qur,oo)P[pr,oo)xk> =0
for all . We are left with
ey, Psooytid| = mit (g, Psooytic)] < mi || Pis o [[lIx]l < 3Cmy
In the case where i < j,, we again use the evaluation analysis, but need to be more careful
about the value of s. Since we shall need this argument again, we state it as a separate lemma.
Clearly the second part of the present lemma is an immediate consequence.
Lemma (3.2.19)[91]: Let i be a positive integer and suppose that x € X has the property
that [|x|]] < C and |x(&)| < & whenever weight ¢ = m;. Then for any s and any y of
weight m; we have
ey, P(s.ooyX)| < 28 + 3Cm;t.
Proof. As before we consider the evaluation analysis

zder+m zb ° Pp,_y,0)

Ifs = pg then P yey, = 0. IfO < s < pq, by applylng P(; ) to each of the terms in the
evaluation analysis, we see that
P(s.c0y€y = €y — m; 'P(y qbi,
which leads to
|(e;'} ,P(s,oo)xk)| <& +m;tb;
by our assumptions.
In the remaining case, there is some t with 1 < t < a such that p; < s while p;,; > s.

We may rewrite the evaluation analysis of y as
a

-1
ey =eg + zdfr"'m Zb ° P, _y,00),

r=t+1 r=t+1

| <6+ 3Cmj?,

which gives us
* * * * -1 p* *
Pisoyey = ey — eg, — my Ppy gbeia

When we recall that weight &, = weight y this yields

|(e;§ ,PsooyXi)| < 26 +3Cm; Y,
as above.
Proposition (3.2.20) (Basic Inequality)[91]: Let (x;)re; be a C-RIS, let A, be real
numbers, let s be a natural number and let y be an element of I'. There exist k, € I and and
a functional g* € W[(A3nj,mj‘1)jeN] such that:
(i) either g* = 0 or weight (g*) = weight (y)andsuppg* € {k € 1: k > ky};

(i) |<e;»P(s,oo) Yrer Arxi)| < 5C|Ak,| + 5C(g", XrlAxlek)
Moreover, if j, is such that

; <
|(e; ;z/lkxk)l <2C YITCISJXMM )
kej
for all subintervalsJ of I and all ¢ €T of weight m; , then we may choose g*

to be in W[(A3nj'mj_1)jijo]'
Proof. We proceed by induction of the rank of y, noting that if y is of rank 1 we have
P(s )€y = 0 whenever s > 1, so that
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Aix () ifr =0
Thus k, = 1and g* = 0 have the desired property.
Now consider an element y of rank greater than 1, of age a and of weight mh. Taking (j;)
to be a sequence as in the definition of a RIS, we shall suppose that there issome [ € I such
that j, < h < j;4,. (The cases where h < j, forall k € I and where h > j,,, for all
k € I are simpler.)
We split the summation over k into three parts as follows:

(ey, P(s,00) Z LX)

kel

0 if r=21
(8; ;P(s,oo) Z}lkxk> = { f —
kel

A€y, Pis o) Xi) (€5, Ps oy lix)) +{€) , P(s,00) z Aje Xic)
_ 13k<l1 13k>1
and estimate the three terms separately.

Whenk < lwehaveh > j; = ji4+1 SO that
|(6’; rP(s,oo)Akxk>| < 3Cmyt Al <3C mﬁ&l/lkl,
by Lemma (3.2.18). Thus

1D Jitey Ploonil <3C ) mitail <3C ) mit maxid,] < € maxidy

13k<l k<l j=1
For the second term, we have the immediate estimate

|<e;;P(s,oo))llxl>| < ||P s, || 1Aul 2]l < 3C1A1.
Thus putting the first two terms together we have
I(e;,P(s,m)ZAkxk)| < Cr}clglxl/lkl +3C|4| < 4C|A,|. (4)

k<l
for a suitably chosen k, < L.

We now have to estimate the last term

ey, ) duxidl,
kel ) )
where I' = {k € I: k > l}and xj, = P5«)X, . We shall use the evaluation analysis of

y
zd€r+mh Eb ° P(p,_y 000

Letl) ={k € I':ran xkcontalns rank &, for some r} noting first that #I) < a and

secondly that for k € I'\ I; the interval ran x, meets (p,_,, p,-) for at most one value of r.

If we set Il = {k € I' : ran x;, meets (p,_4,p,] but no other (p,'_,,p,)} then each I,
is a subinterval of I’ and we have

(e;j, xllc> = mﬁl(b;:P(pr_l,OO)xllc) = mﬁl<b;:P(SVpr_1,w)xk)
ifk € I, while

(epx})=0 if ke 1'\U1;
T

Thus (e, , Z Arxi) = {ey, Z Axxy) +my Z (br, z AjeXye)

kel kel =1 kel
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Applying Lemma (3.2.18), we see that

ey, ) Juid)| < 5Cmit ) (Al +mz! Z<br,Zakxk> (5)

kel kel =1 keI,
Now, for each r, the functional b is a convex combination of functionals te; withp,_; <
rank n < p,, SO we may choose 7, to be such an n with
B ) M| < Kess ) Akl

kel kel
For each r, we may apply our inductive hypothesis to the element n,. € T and the RIS
(%K) ker, Obtaining k,. € I and g; € W [(Agnj,mj‘l)jeN] supportedon{k € I.:k > k,}
satisfying

ez, P(svpy.0) z Aexi)| < 5C| A, | + 5C (g5, Z | Aler). (6)

kel kel

We now define g* by setting

g —mhl(z ek"‘z(ek +gr))

kel
This is a sum, weighted by m;,, of at most 3n,, functlonals in W[(Agnj, mj‘l)jeN], supported

by disjoint intervals, and is hence itself in W[(A3nj,mj‘1)]-EN]. Putting together (3.2.18),
(3.2.19) and (3.2.20), we finally obtain

o5 Piseny Y Miki)| < 4C|A, | + 5Cmi? Z|zk|+mgl|2<b szx,zn

kel keIo =1 kel
< 4C|Ay, | + 5Cmj z ] +my |Z €5 )P s Z Lexe)]
kel kel

< 4C|Ag, | + 5Cmy? z || + E(IAkrl + (97, Z | Ak lex))

kel kel

< 5C|A, | +5C(g", z|,1k|ek>.
kel
If j, satisfies the additional condition set out in the statement of the theorem, we proceed by

the same induction. The base case certainly presents no problem and if weighty = m,;, with
h = j, we have a simple way to estimate

(ey, P(s,00) Z ArXi)

kel
Indeed there is at most one value of k, [ say, for which s is in ran x; and P .)x, = 0 for

k<L
Ifweset/] = {k € I: k > [} we then have

|(e;:P(s,oo)z/1kxk)| < |/11|”P(s,oo)||||xz|| + |e]’;(2 Aexi)l,

kel kej]
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By our usual estimate ||Ps«)|| < 3 and the assumed additional condition, this is at most
5C|Ag,| forsome | < k, € I. We can then take g* = 0.

Corollary (3.2.21)[91]: Any RIS is dominated by the unit vector basis of
T[(Agnj,mj‘l)jeN]. More precisely, if (x;) is a C-RIS then, for any real 4;, we have

1) Juxell < 101 Al
k k

where the norm on the right hand side is taken in T[(Agnj,mj‘l)jeN].
As well as this domination result, we shall need the following more precise lemma.
Proposition (3.2.22)[91]: Let (xk)Zfl be a C-RIS. Then
(i) Foreveryy €T withweighty = m; we have
Jo -1...-1 , ,
LIRS b EM A
o h = Jo

_ k=1
In particular,
Jo
it > 5l < 6Cmi,
_ k=1
ifh > j,and
Mjo
It ) xll < 6CmY,
k=1

(i) IfA,(1 < k < n; ) are scalars with |Ax] < 1 and having the property that

<
> Do) < 26 maxil,

kej
for every y of weight mj, and every interval ] < {1, 2,.. M} then

Jo
I ) deell < 6Cm;2
k=1

Proof. This is a direct application of the Basic Inequality, with all the coefficients A, equal
to n;)l. Indeed, for (i) there exists g* € W[(A3nj,mj‘1)jeN] (either zero or of weight m;,)
such that
Mjo Mjo
In; ! z xx ()| < 5Cn;t +5Cg" (n z er),
: k=1 : : k=1
Using Lemma (3.2.4) to estimate the term involving g*, we obtain
n.
| _12”: - {5an;1 +10Cm'mpt i h<j
n; X (V)| < _ _ . ,
Jo ] 5Cn; ' + 5Cmy" if h=j,
The formulae given in (i) follow easily when we note that n; is (much) larger than Smjz0
when j, > 2.
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If the scalars 4, satisfy the additional condition, then the g* whose existence is guaranteed
by the Basic Inequality may be taken to be in W[(A3nj, mj‘l) j=j,] S0 that the second part of
Lemma (3.2.4) may be applied, yielding

Njy

-1 -1,.-1 . .
|n-_1zx 0] < 5Cn;~ + 10Cm; “my if h<jy
o L ST sent4sempt i h=

This leads easily to the claimed estimate for ”n;jlo Z:ﬁ’l A Xy ||

It turns out that in our space there are three useful types of RIS. One of these is based on an
idea that will be familiar from other constructions, that of introducing long #,-averages. We
defer our discussion of this construction until. We shall deal first with the other two types
of RIS, which involve the L, structure of our space, and provide the extra tool that we
eventually use to solve the scalar-plus-compact problem.

We have already remarked that the support of an element of X is not of great interest —
indeed the support of any nonzero element of X is an infinite set, and contains elements y
of I of all possible weights. There is, however, a related notion which is of much use. Recall
that an element x whose range is contained in the interval (p, q] can be expressed as i, (u)

where u € {’oo(l“q) and supp (u) < I,\I,. It turns out that the support of u contains a lot
of information about x. We shall refer to supp (u) as the local support. A formal (and
unambiguous) definition may be formulated as follows.

Definition (3.2.23)[91]: Let x be an element of @,, M,, and let g = max ran x; thus x may
be expressed as i, (u) withu = x T I},. The subsetsuppu = {y € I';: x(y) # 0} is defined
to be the local support of x.

The following easy lemma uses an idea that has already occurred in Lemma (3.2.18).
Lemma (3.2.24)[91]: Let y € T be of weight mh and assume that weight (&) # my, for all
& in the local support of x. Then |x(y)| < 3mj*||x]|.

Proof. Let ¢ = max ran X so that x = lq(x I' T;) and, by hypothesis, weight & # m,,
whenever ¢ € I, and x(¢) # 0. Ifranky < qwe thus have x(y) = 0 and there is nothing
to prove. OtherW|se we consider the evaluation analy5|s of y

zd5r+mh zb ° Plp,_y,0)

and let s be chosen maximal subject to p, = rank &< q. (Sincey = ¢, suchans
certainly exists.) Forr = swehaver >maxranx, whenced; (x) =0andP (, o)X =
0. Thus
1y . :
x(y) = (ey,x) = {m_hl <bflp(p_s_1'oi)1x> j_ o) %f ’ i '
my, (b1, x) = my by, Py, 0)x) if s=1.
Since, in the first of the above cases, we have rank ¢é._, < g and weight ¢é,_, = m,,, which
imply e;__ (x) = 0, we deduce that in both cases
x| = my (b3, Pp,_, 00pX)| < 3mztlIx]l.
We can now introduce two classes of block sequence, characterized by the weights of the
elements of the local support.

Definition (3.2.25)[91]: We shall say that a block sequence (x;) ey in X has bounded local
weight if there exists some j; such that weight y < m;_forall y in the local support of x,

, and all values of k. We shall say that (x;).ey has rapidly increasing local weight if, for
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each k and each y in the local support of x;.,.;, we have weight y > m;, where i; = max

ran xy .
Proposition (3.2.26)[91]: Let (x;)ren be a bounded block sequence. If either (x;) has
bounded local weight, or (x;) has rapidly increasing local weight, the sequence (x;) is a
RIS.

Proof. We start with the case of rapidly increasing local weight and let m;,be the minimum
weight of an element y in the local support of x,. By hypothesis, j;.; > max supp x; S0
that RIS condition (2) is satisfied. Also, if h < jj, and y is of weight m;, then |x,(y)| <
3m;, | x, || by Lemma (3.2.24). So (xy) is a C-RIS with C = 3 supl||x,]|.

k

Now let us suppose that weight y < m; for all y in the local support of x; and all k. For
k > 2 definej, =1 + max supp xj_q, thus ensuring that RIS condition (2) is satisfied. If
weight y = m,; where h < j, there are two possibilities: if i > j; then |x,(y)| <
3m; x|l by Lemma (3.2.24); if i < j; then |x, ()| < llxill < mi my |lx,|l. Thus
(x;) is a C-RIS, where C is the (possibly quite large) constant mj‘l1 Sl;pllxkll-

Proposition (3.2.27)[91]: Let Y be any Banach space and T : X(I') — Y be a bounded
linear operator. If [|T(x;,)|| = 0 forevery RIS (x;)xen IN X(T) then ||T (x;)|| — O for every
bounded block sequence sequence in X(I).

Proof. It is enough to consider a bounded block sequence (x;) and show that there is a
subsequence (x;) such that ||T(x;)|| = 0. We may write x; = i, (u;) with u, = x;, I T,
supported by T, \TI;, -1 . For each k and each N € N, we split u; as vy +wy , where, for
Y €Ty

N (y) = {uk(y)ifweighty < my

(() it ot}ilerwise
N _ [ur(y)if weighty > my
Wi (¥) { 0 otherwise

and set
Vi =g W),z =g, (vi).

We notice that ||y7|| SEHU}{VH < gllxkll, with a similar estimate for ||z ||, so that the
sequences (y), and (z}), are bounded. We note also that weight y < N for all y in the
local support of vy and weight y > N for all y in the local support of z

So for each N, the sequence (y») has bounded local weight and is thus a RIS, by
Proposition (3.2.26). By hypothesis, ||T(y{)|| — 0 for each N. Hence we can choose a
sequence (k) tending to oo such that ||T(y¢)|| - 0. If we put n; =1 and then,

recursively, setn;,; = qy, , itis easy to see that the sequence (sz ) has rapidly increasing
] nj
local weight. Thus this sequence is a RIS and we hence have ||T(z:j )|l = 0. Since
nj
X, =, +z, ,wehave found asubsequence (x/) = (x;, ) of (x)  with
j nj n; j

]
ITGeDIl = .
The above proposition will play an important role in proving compactness of operators, but
in the mean time we shall use it to give our promised proof that the dual of X is #;. There is
an alternative approach using £, -averages.
Proposition (3.2.28)[91]: The dual of X(I") is £, (T).
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Proof. As we have already noted in Theorem (3.2.9) it is enough to show that the FDD (M,,)
Is shrinking, that is to say, that every bounded block sequence in X is weakly null. So let ¢
be an element of X*. By the upper estimate of Proposition (3.2.22) we see that ¢(x;,) — 0
for every RIS (x;) xen- NOW Proposition (3.2.27), applied with T = ¢, shows that ¢ (x;,) —
0 for every bounded block sequence (x;).

We shall still only be using the assumptions (3.2.10) and (3.2.11), so that our results
will apply when X is either of the spaces B, and Xk. The special properties of the second
of these spaces will come into play only from Definition (3.2.38) onwards.

Definition (3.2.29)[91]: An element x of X will be called a C-#7 average if there exists a
block sequence (x;)%_, in X such that x =n~1¥7%_. x;, and ||x,|| < C for all k. We say
that x is a normalized C-¢#7 average if, in addition, ||x|| = 1.

A standard argument (c.f. 11.22 of [99]) using the lower estimate of Lemma (3.2.17) and
Lemma (3.2.2) leads to the following.

Lemma (3.2.30)[91]: Let Z be any block subspace of X. For any n and and € > 1,Z
contains a normalized C-#} average.

Proof. Write C = (1 — €)™ and choose an integer [ with n(1 — e/n)! < 1; next choose

J sufficiently large as to ensure that n,; > (Zmzj)l ; finally let k be minimal subject to
my; < (1 —e/n)7*
Since%(l —e/n)7*F < (1 —¢e/n)7** < my,; wehave
nyj > 2my)l = (1 —e/n)™® > nk.

If (x;) is any normalized skipped-block sequence in Z, we can apply Lemma (3.2.17) to see
that

n
IIZ xill = myin* > m — e)F.
i=1

It now follows from Lemma (3.2.2) that there are normalized successive linear combinations

Y1,---, Yn OF (x;) such that
n n
1 ayillz (1= &) lad,
i=1 i=1

for all real a;. In particular, there is a normalized C-£} average.
Lemma (3.2.31)[91]: Let x be a C-£,” average. Forall y € T' we have |(d}, x)| < 3¢n;t.
If ¥ is of weight m; withi < jand p € N then |x(y)| < 2Cm;?.
Proof. Let = nj‘1 ZZ’% Xy , as in the definition of a C-# average. For any y there is some
k such that (d;, x) = n;*(dy, x;). Thus

[(d;, )| < nit||d; || lIxell < 3Cn;
Let us now consider the case where weight y = m,;, with i < j. From the evaluation

analysis
a a
* __ * -1 *
€y = Z dfr + m; Z br ° P(pr—1;°°)’
r=1 r=1

a a
01 < D g )+ mit ) [P, pxl 7)
r=1 r=1
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By what we have already observed, we have
a

Z|(d;§r,x)| < 3(3anj_1 (8)
=1

To estimate the second term in (7) we follow the argument of page 33 of [99], letting I,
(resp. /,-) be the set of k such that ran x;, is contained in (resp. meets) the interval (p,_1, py)-
We have #]. < #I,. + 2 and Z,.#I,, < n; . Moreover, for each r, we have P¢, _ , yXx =
x, ifk € I.,while P(p,_1,p-)x, = 0if k & Jr and
1P, poxi|| < 4llxill < 4C  if k € J\L.

It follows that

1P, pXell < niH(CHI . +8C)) < Cnj(#I, + 8).
Summing over r leads us to

D 1Py ool < €7 (y + 80) 9

r<a

Combining our inequalities, and using the fact that a < n; we obtain

Ix(P)| < 3Can;* + mi'n;(Cn; +8Ca) < Cm;' + 5Cnn;* < 2Cm; ™
Lemma (3.2.32)[91]: Let I be an interval in N, et (x;)xe; be a block sequence in X and let
(Ji) k=1 be an increasing sequence of natural numbers. Suppose that, for each k, x; isa C-

€:j" -average and that j,,.; > max ran x;. Then (x;) isa 2C-RIS.
Corollary (3.2.33)[91]: Let Z be a block subspace of X, and let C > 2 be a real number.
Then X contains a normalized C-RIS.
Definition (3.2.34)[91]: LetC > Oandlete € {0,1}. Apair (x,y) € X X Tissaidto be
a (C,j, e)-exact pair if
(i) |(dgx)| < Cmj*forallé €T;
(i)  weighty = my,||lx|]| < C,x(y) = ¢,
(iii) for every element y’ of T with weight y' = m; # mj , we have
, Cmitif i < j

(Ol < {(ij‘1 ifi > j.
It will be seen that these estimates, as well as those in the definition, have much in common
with those of Lemma (3.2.18). We show how we can construct (C, 2j, 1)-exact pairs, starting
from a RIS.
Lemma (3.2.35)[91]: Let j be a positive integer and let (xk):ij1 be a skipped-block C-RIS,
such that min ran x, > 2j and |[|x,|| = 1 for all k. Then there exists 8 € R, with [8] < 2,
and there exists y € T, such that (x,y) is a (22C, 2j, 1)-exact pair, where x is the weighted

sum
nzj

x = Hmzjnz'jlzxk :

k=1
Proof. We may apply the construction of Lemma (3.2.17) to obtain an element y of T" of

weight m,; such that

nzj 1
nz_jl Z xk(y) = Emgjl'
k=1
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For a suitably chosen 6 € R with 0 < 6 < 2 we have x(y) = 1, where x =
omy g} .7 xi

We thus have condltion (i) in the definition of an exact pair.

There is no problem establishing condition (i) since, for any &, there is some k satisfying
(dg,x) = Omyjny;(d;,
Hence [(d;, x,)| < 6Cm,my} < Cmj].

To establish condition (3), we shall use the fact that (x;) is a C-RIS and apply Proposition
(3.2.22), with j, = 2j. If weighty’ = m; with i # 2j, we thus have

nzj
22Cm;t ifi < 2j
= 19|m.. ‘.12 N < l
lx()| = | |m2ﬂl2] kzoxk(]/) {1OCm2]-n2_j1+1OCm2jm{1 < 11Cm%j ifi > 2j.

Using Lemma (3.2.33) we now immediately obtain the following.

Lemma (3.2.36)[91]: If Z is a block subspace of X then for every j € N there exists a

(45, 2j, 1)-exact pair (x,n) withx € Z.

The proof of the following Iemma IS very similar.

Lemma (3.2.37)[91]: Let (xk)k be a skipped-block C-RIS,andletgqy < q; < Q, < -+ <
Iny; be natural numbers such that ran x, < (qx-1,qy) for all k.Let z denote the Welghted

sum x = my;ny; ZZijl xy. Foreach k let by be an element of By, _; 5, . With by (x;) =

0. Then there exist {; € Aqi(l <i< nzj) such that the element n = Cny; has analysis

(41, b}, {)1<isny; and (z,7) (12C, ny, 0)-exact pair.

We are finally ready to make use of the special conditions governing “odd-weight” elements

of I'. We need to consider a special type of rapidly increasing sequence whose members

belong to exact pairs.

Definition (3.2.38)[91]: Consider the space Xy = X (I") where I' = I’y as defined in (3.2.13).

We shall say that a sequence (xi)isnzjo_1 iIsa (C,2j, — 1, ¢)-dependent sequence if there

exist 0 = pg < p; < py << Pnyj s together with n; € I,,_1 \I},,_, and ¢; €

A, (1 < i < nyj,_4)suchthat

(i) foreach k, ran x;, S (Pr—1,P1);

(i) theelement$ = & 4 of Ay, hasweightm,; _; and analysis (pies, El)zn") !

(i)  (xq,m) isa(C,4j, — 2, &)-exact pair;

(iv) foreach2 < i < ny;_4,(x;,m;)isa(C,4j;,)-exact pair, with ran x; S (p;_1, ;).

We notice that, because of the special odd-weight conditions in (3.2.13), we necessarily

have m,; _, = weightn, >n3; _,, and weightn;,; = my;,, ,whereji,; = o(§;) for1 <

< nzjo_l.

Lemma (3.2.39)[91]: A(C, 2j, — 1, €)-dependent sequence in Xk isa C-RIS.

Lemma (3.2.40)[91]: Let (xl)l<n2 . bea(C, 2j, — 1,1)-dependent sequence in Xy and

let / be a sub-interval of [1, "210—1] For anyy" €T of weight m,; _; we have

> DG

i€l
Proof. Let &;,n;,p;,j; be as in the definition of a dependent sequence and let y denote
&2j,-1, an element of weight m,; _;. Let (p;, e;,,fi’) 1<i<q’ De the analysis of y' and let

< 4C.
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the weight of §; be m,;r_, wheni = 1Lm,ywhenl < i < a’.Wenotethata’ < ny; 4
because y’ is of weight m,; _;. We may thus apply the tree-like property of Lemma (3.2.14)
deducing that there exists 1 < [ < a' such that (p;,n;,&;) = (p;,n;, &) for i < L while
je#=jiforalll < i < ad'andalll < k < nyj 4. Since

ey °Popii1 =€, =€, = e °Paopy
we have
— — -1 * — - — -1
x (v =x(y) = myj —1€n;, ° Pog_r,00Xk = mzj'lo—lxk(flk) = Myjy-1
forl < k < L
We may now estimate as follows

D 0RO ) mah  CDRR GO+ GO+ Y 5 G)
kel k€EJ k<l k€EJ k>l
<mzboal Y DM+l Y ) |dimah e o Poy myd
keLk<l kejk<li<a'

<1+C+n3 _, max
Jo=t 1<kejiza

Now we know that, provided k > [, weight n,, # weight n; for all i, so by the definition of
an exact pair, we have
d:;;( (x;) + mz_j%)—lp(pk_l,oo]xi(n;c)|
< C(weightn;)~! + 5Cm;} _; max{(weight n;)~", (weight n;)~"}

< 2C max{(weightn;)™1, (weight n}) 1}

= 2 max{m;}_,mh_}<20n;?_,,
using the fact that m,;, , and m,;:_, are both at least lejo—1- We now deduce the inequality
i, (—Dix;(y")| < 4C as required.
Let (xl-)isnzj_1 be a (C, 2jp — 1, 1)-dependent sequence in Xk. Then

* -1 *
ds Xy + M2jp—1€pn! © P(pl{_l,oo)xk|.

Lemma (3.2.41)[91]:
N2jo-1 N2jo-1
Inhos ) wllZmzy but gy ) (Dl < 120mz}

i=1 i=1
Proof. Using the notation of Definition (3.2.38) is easy to show by induction on a, as in
Lemma (3.2.17), that

=1
whence we immediately obtain
N2jo-1 a
-1 -1
||n2j0—1 Z xill = in(fzj'oq) =Myj 1
i=1 i=1

To estimate ||n2] 121 "2jo- '(—=1)x;|| we consider any y €T and apply the second part of
Lemma (3.2.22), with /1 = (— 1)”n2] _, and with 2j, — 1 playing the role of j,. Lemma
(3.2.40) shows that the extra hypothesis of the second part of Lemma (3.2.22) is indeed
satisfied, provided we replace C by 2C. We deduce that ||n2]0_12n2]° "(=Dixl <
1ZCm2j0_1, as claimed.
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A very similar proof yields the following estimate.
Lemma (3.2.42)[91]: Let (xi)is,,LZj_1 bea (C,2j, — 1,0)-dependent sequence in Xg. Then
N2jo-1

||nz_j10—1 z x|l < 4C'm_jzo—1
We finish the proof of one of our main tlhéorems.
Lemma (3.2.43)[91]: Let Y and Z be block subspaces of Xk. Then, for each € > 0, there
existy € Yandz € Zwith|ly — z|| <e€lly + z|l.
Proof. We start by choosing jo, j; with my; 4 > 540¢~1 and Myj o > ngjo_l.
Next we use Lemma (3.2.36) to choose a (45, m,;, _,, 1)-exact pair (x;,n;) with x; € Y.
Now, for some p; > rank n; V max ran x,, we define £; € A, to be (p;, myj -1, €5, ).
We now set j, = a(&;) and choose a (45, m,;,, 1)-exact pair (x,,7n,) with x, € Z and min
ran x, > p;. We pick p, > rank n, v max ran x, and take &, to be the element
(P2, €1, myj,—16p,) OF A, . Notice that this tuple is indeed in 4, ,; because we have ensured
that weight n, = My (e ).
Continuing in this way, we obtain a (45, 2j, — 1)-dependent sequence (x;) such that x; €
Y when i is odd and x; € Z when i is even. We define y = Y}, oqq xi and z = Y even Xi
and observe that, by Lemma (3.2.38),

N2jo-1
Iy +2l =1 Y xll = nyjpymzh s, while
i=1
ano—l
by =zl =1y~ < 12 X 45ny),_ym3? .

i=1
Proposition (3.2.1) now yields the theorem.
Theorem (3.2.44)[91]: The space Xk is hereditarily indecomposable.

For technical reasons it will be convenient in the first few results to work with
elements of Xk all of whose coordinates are rational, that is to say with elements of Xx N
QT . Since (as may be readily checked) each dz isiin Xg N QF, as are all rational linear
combinations of these, we see that ¥, N QT is dense in ¥g.

Lemma (3.2.45)[91]: Let m < n be natural numbers and let x € X, n QF,y € Xk be
such that ran x, ran y are both contained in the interval (m, n]. Suppose that dist(y, Rx) >
&. Then there exists b* € ball ¢, (I}, \[3;,), with rational coordinates, such that b*(x) = 0

and b*(y) > %6.

Proof. Let u, v € £, (I},\I},,) be the restrictions of x, y respectively. Then x = i,,u,y =
i,,v and so, for any scalar 4, ||y — Ax|| < |li,,|[llv — Au||. Hence dist(v, Ru) > %6 and so,
by the Hahn— Banach Theorem in the finite dimensional space €, (I’;;\I}y,), there exists a* €
ball ¢,(T,,\[;;,) with a*(u) = 0 and a*(v) > %6. Since x has rational coordinates our
vector u is in Q\I'=_ It follows that we can approximate a* arbitrarily well with b* €
QT\I'm retaining the condition b*(u) = 0.

Lemma (3.2.46)[91]: Let T be a bounded linear operator on X, let (x;) be a C-RIS in Xk N

Q and assume that dist(Tx;, Rx;) > & > 0 for all i. Then, for all j,p € N, there exist
z € [x;: i € N],q > pandn € A, such that
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(i) (z,n)isa(12C,2j,0)-exact pair;

(i) (T2 > 6

(i) ||U = Ppo)Tz|| <m3z}é;

(V) (Pl qen Tz) >=6.

Proof. Since the sequence (Tx;) is weakly null, we may, by taking a subsequence if

necessary, assume that there exist p < q, < q, < q2 .- such that, forall i > 1, ran
x; € (qi—1,q) and ||(I — Peg,_,q0)Txi|| <= m226 < — mz‘} < 1—6 It certainly follows
from this that dist(P(,,_ 4, Tx:, Rx;) > 12—;06 We may apply Lemma (3.2.45) to obtain
b; € ball £1(T;,_1\I},_,), with rational coordinates, satisfying
1279
(b{,x;) =0, (bi, Pg,_qpTxi) > %5

Taking a further subsequence if necessary, we may assume that the coordinates of b; have
denominators dividing N,._4!, so that b; € B,,__ 4.1, and we may also assume that q; =
2j.
We are thus in a position to apply Lemma (3.2.37), getting elements &; of weight m,; in
A, . such that the elementn = ¢, . of A, has evaluation analysis

qj 2j anj

nzj nzj

_ * -1 * *
€n = Z dsﬂ' + My Z P(Qi—leh')bi'

=1 =1
and such that (x,n) is a (12C, 2j, 0)-exact pair, where z denotes the weighted average

lej
X =mym;; z X;.
i=1
We next need to estimate (Tz)(n). For each k, we have ||(I — Py, 00)T k|| < = mzj )
so that

1 —
(T)() = (e, Pgyyqp k) = g5 ma} 6
1 1247

=m, l(bk, P(lk—lilk)Txk> — 16 > %m_lé‘

It follows that

(1)) = nzfmy, E(Txk)(n) > s

For inequality (3) in which we are taking g = qnzj, we note that p < qi_1 < qx < q forall
k so that
(7 = Pea) Txicl| = [[(Peo) + Pg.oo) Tk

= [|(Pop1 + Pige))(I — P (qk_l,qk))szk”
= 5”(1 - P(Qk—l'Qk))Txk” < My 5,
using our usual estimates for norms of FDD projections. The inequality for the weighted
average z follows at once. Inequality (iv) follows from (ii) and (iii) thus
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. 7 _ 3
(Pip.q1€m T2) 2 (T2)() = ||(I = Ppq))T2|| > 726 — myj6 = 60
Proposition (3.2.47)[91]: Let T be a bounded linear operator on Xy and let (x;);eny be a
RIS in ¥g.
Then dist(Tx;, Rx;) > 0asi — oo,
Proof. It will be enough to prove the result for a RIS in ¥x N QT . Suppose, if possible, that
dist(Tx;, Rx;) > & > 0 foralli. The idea is to obtain a dependent sequence in rather the
same way as we did in Lemma (3.2.43), except that this time it will be a 0-dependent
sequence, rather than a 1-dependent sequence.
We start by choosing j, such thatm; > 256C||T||6~" and j, suchthatm,; _4 >m3; _,
Taking p = po = 0 and j = 2j; —1 in Lemma (3.2.46) we can find g; and a
(12C, 4j; — 2,0)-exact pair (zy,n,) with rank n; = qq, (Tz)(ny) > %6 and |[|(1 -
P,q1)(Tz)|| <mz}_,8. Letp; = gy + 1and let & be the special Type 1 element of A,
given by & = (py, myj,—1, €5,)-
Now, recursively for 2 < i <n,; _4, define j; = o(§;—1), and use the lemma again to
choose ¢q; and a (12C,4j;0)-exact pair (z;,n;) with rank 7, =g¢q;, ran z; C
* % 3 _ .
Pi-1,9i). {Pp,_, g€ T21) > 5 6 and (I = Ppyqu) (T2 || < m3}.6. We now define p; =
q; + 1 and let &; to be the Type 2 element (pi, fi_l,mz‘]{)_l, er*n) of 4,,.
It is clear that we have constructed a (12C, 2j, — 1, 0)-dependent sequence (Zi)lsisnzjo_l-
By the estimate of Lemma (3.2.42) we have
llz|| < 48Cm3} _,
for the average

N2jo-1
— 1
Z =Ny 4 z Z;.
- i:1 - - -
However, let us consider the elementy = fnz-; 1oprn ~, which has evaluation analysis
Jo— 2jo—1
N2jo-1 N2jo-1
* * -1 *
&y = Z d€i+m2jo—1 Z P(m_l.pi)eﬁi'
i=1 i=1

Noting that py = q, + 1 for k = 1, and that m,;, > my,; _, > ngjo_l, we may estimate
(Tz)(y) as follows

DY) =nzhs ) T20W)

217t D (Pl T2 = [0 = Py, a)T1)
k=1

N2jo-1
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N2jo-1

-1 3 -1 -2 1 -1
k=1
So

1 _
ITzll 2 Zmzj > - €7 8maj, el
which is a contradiction because ﬁ C‘l(szjo_1 > ||T|| by our original choice of j,.

Theorem (3.2.48)[91]: Let T be a bounded linear operator on Xk. Then there exists a scalar
Asuchthat T — Al is compact.
Proof. We start by considering a normalized RIS (x;) in Xk. By Proposition (3.2.47) there
exist scalars A; such that ||[Tx; — A;x;|| = 0. We claim that A; necessarily tends to some
limit A. Indeed, if not, by passing to a subsequence, we may suppose that |A;,; — A;| > &
for all i. Now the sequence (y;) where y; = x,;_1 + x,; 1S again a RIS, so that there exist
w; with ||Ty; — w;y:ll = 0 by Proposition (3.2.47) again. We thus have

|(A2i — r)x2i + (Ai—1 — M) X2l

< Txp; — Agixaill + ITxzi-1 — Azi—1 X254 |l + [ITy; — wiyill = 0.

Since the RIS (x;) is a block sequence, there exist [; such that P, y; = x2;—, and
P, 0)Yi = Xo;. Using the assumption that the sequence (x;) is normalized we now have

1A2i1 — Wil = 1Qgim1 — 1) X2i-1 ]l < ||Peosg 1Az — m)x2i + (Aaig — m) %254 I,
with a similar estimate for |A,; — ;|. Each of these sequences thus tends to O, so that A,; —
A,;_4 also tends to 0, contrary to our assumption.

We now show that the scalar A is the same for all rapidly increasing sequences. Indeed, if
(x;) and (x;) are RIS with ||[Tx; — Ax;|| = 0 and ||Tx; — A'x;|| — 0, we may find i; <
i, < ---such that the sequence (yj) defined by
{ X; if k is odd
Yie =

k
l

Xi, if k is even
is again a RIS. By the first part of the proof we must have 1 = 1’
We have now obtained A such that ||[(T — Al)x;|| — 0 for every RIS. By Proposition
(3.2.27), we deduce that || (T — AI)x;|| — 0 for every bounded block sequence in X. This,
of course, implies that T — AI is compact.

We devote to a proof that Xy is saturated with reflexive HI subspaces having HI duals.
The proof involves reworking much of the construction of a subspace of Xk and its dual. By
standard blocking arguments, it is enough to prove the following theorem.
Theorem (3.2.49)[91]: Let L = {l,,1;,1,,...} be asetof natural numbers satisfying [,,_; +
1<1,, and for each n > 1 let F, be a subspace of the finite-dimensional space
Pa,_.1.)%k =@, ,<k<1,, M. Then the subspace W =@,cy F, of X is reflexive and has
HI dual.
We note in passing the following corollary, which gives an indication of the “very
conditional” nature of the basis of #; that we have constructed. For the purposes of the
statement we briefly abandon the “T notation” and revert to the notation of Definition (3.2.5)
and Theorem (3.2.8).
Corollary (3.2.50)[91]: There exist a basis (d;,),en Of £; and natural numbers k; < k, <
--- with the property that the quotient ¢, /[d;, : n € M ] is hereditarily indecomposable
whenever the subset M of N contains infinitely many of the intervals (k,, kp44].
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The rest will be devoted to the proof of Theorem (3.2.49). We have already remarked at the
end that the subspace W defined in the statement of the theorem is reflexive. The subspaces
E, form a finite-dimensional decomposition of W, the corresponding FDD projections being
Qemnl = Papi) T W= Pq,ip)" W,when0 < m < n.The dual space W* has a dual
FDD (F;) and corresponding projections Q- We shall establish hereditary

indecomposability of W™ via the criterion Proposition (3.2.1). We write R for the quotient
mapping Xx = £; —» W* and observe thatif f,; € F,; for1 < n < Nthenthenormof f* =

N_. f,; in W* is given by
|2, =inflg'l+ " € % andRg" = £

Lemma (3.2.51)[91]: If f* € im Q3 y; =B um <n<n Fr © W then there exists h* € X =

£1() with supp h* € I}, _1\I3,, and [|h*[[; < 4[If*|| and RP;,, 1, h" = RPg,, )R = [

Proof. We extend f* by the Hahn—Banach theorem to obtain g* € X = £,(I') with Rg* =

f*and llg*llx = Ilf*llw+. We set h* = P 1yg* € £1(Ty—1) and b* =Ry, _r,

noting that

Ib*[ly < lIR*]ly < 2lg7[ly < 4llg™llx; = 4llFI.
To check that RP(;, ; yh* = RP(,, «)b™ = f~, we first note that
Plye0)b™ = Pyt
because P(;, «)k™ = 0 whenever supp k < I;,,. Since both b* and h* are supported by [,
we have
PpinyP™ = Py, Plony 0™ = Pligg,e00b™ = Pligy,e0h” = Playe0)Prosyh” = Py 9™
It follows that
R*P(*lm.lzv)b* = R*P(*IMJN)'g* =g e P(lM:lN) W =g Q(M,N] =f"
Lemma (3.2.52)[91]: Letj = 1,1 < a < ny; andM <My < M; <M, <-- <M, be
natural numbers, with 2j < M,. Foreachi < a,letf"beinball @y,  «n<m, F*and
write f* = Y-, fi".
Then there exists y € T with p(y, ey =0 and |[4m ,;R(e;) — f*
particular  [[f*[ly~ < 5my;.

Proof. By Lemma (3.2.51) there exist h; € ¢, (FIM._l\FlM._l) with |[h;][; < 4 and
R(P(*

Im;_yolm;

< 273 p

)=fi*. Since BZM,_LZM,_1 IS an e-net in ball ¢, (FIM._l\FlM._l)’ with € =

27+l < p=lm=2i+1 e can choose b; € By, i, _, SUCh [Ih] — 4b{ll; < 27 lm—21+3

Now write p; = Iy, for 1 < i < a and apply the construction of Proposition (3.2.16) to
obtain y € A, with evaluation analysis

a a
* * 1 * *
ey = Z de, +my; z Py, 00)Pic
i=1 i=1

Sincerank &; = p; € L for all i, we have Rd; = 0andso

a
| D (= 2Ry opbi)
i=1

f = 2ma;R ()| =
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nzj

<z|lRP(*p _ueolhi
<32”h _2b ”<322 ly—2i+2 _ = 2~ lM+2

It follows that ||f*]| < ||4m2]
Lemma (3.2.53)[91]: Let Y be any block subspace of W™ and let n, M be positive integers.
For every C > 1 there exists a 4C-f7-average w € W, with Qw = 0, and a
functional g* € ball Y with Q9™ = 0and (g",w) = 1.

Proof. The proof is a dualized version of Lemma (3.2.30). We suppose, without loss of
generality, that C < 2 and choose [,j such that C' > n and n,; > (10n2]-)l; we take k
minimal subject to C* > 5m,; noting that

ny; > (10my,) = (21! = cK > nk
Now take (f;")i2; to be a normalized block sequence in Y n ker Q(OM we may apply
Lemma (3.2.52) to obtain

||z 71 < Smy; <

So by part (ii) of Lemma (3.2.2) (W|th C = 1 + e€)thereare successive linear combinations
Ji,---, gy suchthat || g/|| = ¢~ for all i, while
n

1) tgill <1,

for all choices of sign. Since (g*) is at block sequence in ker Q, ,;; We can choose M <
N, < N; < ---. such that QE‘NL,_LNi]gg‘ = g;. Now we choose, for each i an element w; of
W such that [lw;|| < C and (g;,w;) = 1.1fwesetw; = Q(y,_ v w; then we have |lw/|| <
4C and (gf,w’) = (g;,w;) =1, while (g;,w;,) =0 when h #i. The element w =
n~t Y, w; is thus a 4C-£7 average, with Qo ,yw = 0, and satisfies (g*,w) = 1, where

g = 21_1 g; €EballY.
Lemma (3.2.54)[91]: Let Y be any block subspace of W* and let N, j be positive integers.

There exists a (600, 2j, 1)-exact pair (z,y) withz € W,Q¢nz = 0,Py;, e, =0 and

dist(Re;,Y) < 27,

Proof. By repeated applications of Lemma (3.2.53), we construct natural numbers N <

My < M; < M, <---and j; < j, <--, elements w; = Quu,_, m,ywi Of W, and functionals

9i = Quu,_, m79i € ballY such that

(|) w; is a5—£’:"i—average;

(i) (gi,wi)= 1,

(i) jiv1 > M;.

It follows from Lemma (3.2.32) that (w;) is a 10-RIS.

\ﬁVriting g = 2:;2’1 g; and applying Lemma (3.2.52) we find y of weight m,; such that
4‘ij
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1
dist(Re;,Y) < ||Re; — Zmz_jlg*ll < 27Wnthmyt <27,
and

nzj nzj

4m, 2 wi(y) 2 Z<g*,wi) — 273 > ny; —16.
i=1 i=1

We now set z = Om,;ny; 211 w; wWhere 6 is chosen so that z(y) = 1; by the above
inequality 0 < 6 <4 + 128n;} <5.
To estimate ||z|| and |z(y")| when weight y* = m,, # m,; we return to Lemma
(3.2.22) deducing that
lz|] < 606 and |z(y')| < {1109m,§1 ith < 2j
- ~ |600my;  ifh > 2).
So (z,y) is certainly a (600, 2j, 1)-exact pair.
Lemma (3.2.55)[91]: Let Y; and Y, be block subspaces of W™ and let j, be a natural number.
There exists a sequence (xi)isnzjo_1 in W, together with natural numbers 0 = p, <p; <
P2 < < Dny o and elements n; € I, _41\I,,_,& €4, (1 < i < nyj _4), satisfying

the conditions (i) to (iv) of Definition (3.2.38) with C = 600, = 1, and such that, for all
i = 1, the following additional properties hold

() rank$; =p; € L;

(i) Po,_,pgen = 0Py pg () = x5

(iii) dist(Re;,Y,) < 27Pi-r ,where k = 1foroddiand k = 2 foreveni.

Proof. We start by choosing j; such that m,; _, > n%io_l and then applying Lemma
(3.2.54) to obtain a (600, 4j; — 2, 1)-exact pair (x;,n,) with x; € W. Set p; = ly , where
N, is large enough to ensure that P, yx; = Qo n,1X1 = X1, rank ny < p; and 2Pt >

2Ny, Lt = (P1:m2_j10—1:771) € Ap,.

Continuing recursively, if for some i < n,; _;, we have defined &; € A, where p; = Iy,
we set j;., =a(&) and apply Lemma (3.2.54) to get a (600,4j;,,,1)-exact pair
(XirMie)  With x40 € W, Q0 ngXi+1 = PopgXis1 = 0, Piop€nis, =0 and
dist(R*ep,, . Yx) < 27P¢ where k depends on the parity of i + 1. We now take N,
large enough, set p;,.; = ly,,, and define &;,; = (pi+1,€i,m2‘j10_1,ni+1) €N, .-

We are now ready to finish the proof of the theorem. We consider any two infinite-
dimensional subspaces Y; and Y, of W* and apply Lemma (3.2.55) obtaining a dependent
sequence satisfying (i) to By property (7) we may choose, for each i, an element y;" of Y},
with

v — Req || < 27Pt.
We set
— -1 — -1
y'= myj -1 z yi €Yy, 2" = myj,—1 z Yi €Yy,
] i odd ) ] i even
If y is the element $nyj -1 then the evaluation analysis of y is
0
N2jo-1 N2jo-1

* * -1 * *
ey = z dfi + M2jo-1 z P(Pi-pPi) €ni
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N2jo-1 N2jo-1

— * -1 *
= Z de; + Mz jo-1 z eni
i=1

= i=1
because P(*O,pi_l]e;i = 0. Since rank ¢; = p; € L for all i we have
N2jo—1
* __ -1 *
Re, =my; _4 Z Rey ,
i=1
which leads to
anQ—l
Iy + 27 <1+ lmzhoy ) Repll=1+]|Rey| < 2.

i=1
We shall prove that ||y* — z*|| is very large by estimating (y* — z*, x), where x is the
average

N2jo-1

X = nz_jlo—1 2 (—1)*xy,

k=1
about which we know from Lemma (3.2.41) that

x|l < 7200m5; _,.
and the definition of a 1-exact pair, we have
(e"n, x >={1 i_fi_= k
bk 0 ifi #k,
so that

(y* - Z*,X) = nz_]%)—1m2_j10—1 2 l'k<yl* - xk)

2 M3jy-1Mzjo-1 Z((e*m,xk) — 27Pi)
i,k

1

> myj1(1—nyj,-42771) 2 > 2o
the last step following from our choice of p; with 2P > 2n,; _;.
We can now deduce that
b oxll = TR2jo-1
ly* —z*|| = 12400
We have shown that the subspaces Y; and Y, of W, contain elements y,, z, with ||y* + z*|| <
2 and ||y* — z*|| arbitrarily large. By Proposition (3.2.1), we have established hereditary
indecomposability of W*.

If we are looking at a bounded linear operator T : Y — Xy defined only on a
subspace Y of X, rather than on the whole space, then, as in other HI constructions, the
arguments of the preceding can be used to show that T can be expressed as Al, + Swith S
strictly singular. However, as we shall now see, in this case the perturbation need not be
compact.

Proposition (3.2.56)[91]: There exists a subspace Y of Xk and a strictly singular, non-
compact operator T from Y into Xk. In fact, for a suitably chosen Y, we may choose T
mapping Y into itself.

Proof. By a theorem of Androulakis, Odell, Schlumprecht and Tomczak-Jaegermann [94],
in order to find Y and a strictly singular, non-compact T : Y — Xy, it is enough to exhibit
normalized sequences (x;) and (y;) in Xk such that (y;) has a spreading model equivalent
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to the usual #,-basis, while (x;) has a spreading model that is not equivalent to that basis.
For (x;) we may take any normalized RIS; indeed, by Proposition (3.2.20), the spreading
model associated with any RIS is dominated by the unit vector basis of the Mixed Tsirelson
space I[(Asnj,mj‘l)jeN], and so is not equivalent to the #,-basis. For (y;) we may take a

specific sequence , setting
Yn = :E: df.

ey
The result we need is a lemma about norms of linear combinations of these vectors.

Lemma (3.2.57)[91]: Let F be a finite set of natural numbers with min F > j and #F <
2n,; . Then, for all real scalars a,,

1
1) @yl 27 lanl.

ner ner
Proof. Without loss of generality, we may suppose that Y cpat > - Zneplanl and we may
choose py,p,,...,p- In F, with p; 4 > pi, T p21, and

ner
Since p; = min F = 2j,A,, does contaln Type 1 elements of the form (p1,m2‘j1, ie;;l),

with n; € I, _;. We take ¢; to be such an element, and continue recursively, for 1 < i <
r, taking n;.,; to be any element of A, ~—and ., to be the Type 2 element
(pi+1,§’i,m2‘j1,ie;;1) of A, . Ify = & then the evaluation analysis of is

T

T
— * —1 * *
€y = z dfi + my; z ip(ni—bni)eni'

If we write y = Y ,,cr @, Vs, WE have (dz,y) = an for each i, so that

ey(y) = zap +myj z-l'P(nl npen; (V)

i=1 i=1
We have not until now been explicit about how the signs + were chosen, but it is now clear

that this may be done in such a way that e, (y) = Xi_; ap, = ZnEFlanl

It is now clear that the theorem of Androulakis et al may be applied. In order to get the
refined version where T takes Y into itself, it is enough to look a little more closely at the
proof given in [94]. It turns out that we may take (y;) as above and Y to be the closed linear
span [y; : i € N]J. It may be shown that, for any RIS (x;), the mapping y; ~ x; extends to
a bounded linear operator from Y to Xk. Since Y, like all other infinite dimensional
subspaces, contains a RIS, we may choose the x; to liein Y.

The original spaces X, ;, of Bourgain and Delbaen provided, for the first time, a
continuum of non-isomorphic L, spaces. It has also been noted [92] that if we take Y to be

Hilbert space and X to be X, ;, with (for instance) 0 < b <% <a<la*+ b* =1,

then all operators from X to Y and all operators from Y to X are compact. The constructions
allow us to exhibit a continuum of spaces X, (a € ¢) such that, for all a # B, L(Xy, Xp) =

K (X Xp).
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We start by taking an almost-disjoint family (L,),e. Of infinite subsets of N. For each «
we enumerate L, in increasing order as [* and define
a

— a __
m] — mljl,nj — nl;l,

where (mj,n;) = (2%/,22/°*1) iis the sequence mentioned.

Now we may take X, to be either Bt [(Anjzc, 1/mj‘?‘)jeN] or Xy [(An?, 1/m]‘-")jEN].
Proposition (3.2.58)[91]: Assume that « #  and let T : X, — X be a bounded linear
operator. For any RIS (x;);en in X, We have ||T(x;)|| » Oasi — oo.

Proof. Let (x;) be a C-RIS in X, and suppose, if possible, that ||Tx;|| > & > 0 for all i.
Since (Tx;) is weakly null we may, by taking a subsequence, assume that (Tx;) is a small
perturbation of a skipped-block sequence in Xz. Thus, if [ = l € Lg, we may apply
Proposition (3.2.17) to conclude

1
In ZTxruXB_ mfng Z||Txr|> 7 om3}

On the other hand, Corollary (3.2. 21) tells us that
nj

i zxruxa <10 ) el

i=1 i=1
where the norm on the right-hand side is calculated in T[(A3nj,mj‘1)jELa]. If Lisnotin L,

then this norm is at most m; % by Lemma (3.2.4), so that

I Zxrllxa < 10Cm;*
i=1
By the assumed almost-disjointness of Lz and L, we can certainly choose j such that lf ;i €
L, and m; > 40||T||6 71, yielding a contradiction.

The spaces L(X) and K (X) of bounded (respectively compact) linear operators on an
infinite-dimensional Banach space X are always decomposable. (Indeed, for finite
dimensional subspaces E ¢ X and F < X", the subspaces X* @ E and F @ X are
complemented.) So we must not hope for too much exotic structure in these spaces of
operators. We shall look briefly at subspaces of L(Xk). Certainly, L(Xx) = K(¥g) @ RI
has HI subspaces, such as those isomorphic to Xk, and subspaces isomorphic to X = 2. It
has no subspace isomorphic to ¢, by a result of Emmanuele. (The main result of [104] shows
that c, does not embed into K (Xa,b) and the same proof works for Xx.) We shall now see
that (X) does have other subspaces with unconditional basis. It is a general fact that if (x;,)
is a basic sequence in a Banach space X then the injective tensor product £; ®. X contains
a sequence equivalent to the “unconditionalization” of the basic sequence (x,,). This follows
immediately from the following exact formula for the norm of a finite sum of elementary

tensors in £; &, X
1) ¢ @xlle =supll ) £l
=1 j=1

where the supremum is over all choices of signs.
In the case of Xy the space of compact operators K (¥k) is isomorphic to £; ®,. X and so
contains the unconditionalization of any basic sequence in Xg. An interesting special case
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is that of the basis (d,); we have chosen to prove the following proposition in a way that
does not depend on the general theory of tensor products.
Proposition (3.2.59)[91]: The family (e;; X d],)yEF Is an unconditional basis of a reflexive

subspace of K (Xx).
Proof. Let us write U, = e, ® d,, considered as the rank—1 operator
U, : X = X x — x(y)d,.
For a finite linear combination W = ¥, w(y)U (y) and any x € ball Xk we have

W@ =11 W@l < maxll Y wid I
YEr, o Yer,
We shall write |||W ||| for the last expression on the line above. We have thus shown that

Wil < W]l
On the other hand, if we choose u(y) = +1 for y €T, in such a way as to achieve the
maximum in the definition of |||W ||| and then set y = i,,(u) we have

Wil = | z u@d, |l = Wl < Wil < 2w

145%%
Thus the operator norm |[|-|| and the unconditionalized norm |[||-]|| are equivalent on

[Uy 1y € F].

It will be convenient to work with the latter norm.

Given a linear combination = Y, v(y)U, , any vector },, + v(y)d, in X, (whether or not
the signs achieve the supremum in the definition of the unconditionalized norm), will be
called a realization of W.

If the subspace [Uy 1y E F] Is not reflexive then by unconditionality there is a skipped
block sequence equivalent to the unit vector basis of either c, or £,. We shall treat the case
of ;.

We consider a normalized skipped block sequence with V; = Zyerpi_l\rpi—l v(y)U, and
suppose, if possible, that (V;) is C-equivalent to the usual #,-basis for the norm |||-|]|.
suppose that [||V;||| < C for all i and that

11 a@Vlll 2 Y la@)

l l
for all scalars a;. Let us note that if W is a linear combination of the form
l+n

W:Tl_l z Vi'

i=l+1
then any realization W of W is a C-#, -average as in Definition (3.2.29)). Indeed W is
expressible as n~t Y,1X7 | V; where the V; are realizations of V;, and so satisfy ||[W;|| <
[|W;]l] < C forall i.
We now look at Lemma (3.2.32). It should be clear that, by choosing sequences (j) jeny and

(L) jen growing sufficiently fast, we may define
lj+njk

i=lj+1
in such a way that any realizations W, form a 2C-RIS in ¥. In particular
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Njy Njo

gt > Wielll =l > Wl
k=1 k=1

for suitable realizations W, yielding

Mo
-1 -1
et > Welll < 12€ mi
k=1

by Proposition (3.2.22). On the other h?md,

Mjo Mo L+ Ty,
g > Wil = it Y it > Vil
k=1 k=1 i=lp+1

which is at least 1, by our assumption on (V;).
So we have a contradiction for suitably large values of j,.

The constructions give no clue as to whether there exists a reflexive Banach space on

which all operators are scalar—plus—compact. The construction of such a space, if one exists,
will need new ideas. We thus have no example of a reflexive space on which all operators
have non-trivial proper invariant subspaces. It is piquant to observe that, at the other end of
the spectrum, the construction of a reflexive space on which some operator has no non-
trivial proper invariant subspace has also proved to be very resistant to attack. See Enflo
[105], [106] and Read [119], [120] for more about the Invariant Subspace Problem, noting
the more recent [121] of Read, in which a strictly singular operator is constructed which has
no non-trivial proper invariant subspace.
We do not know whether an isomorphic predual of #; which has the “few-operators”
property in the scalar—plus—strictly-singular sense necessarily also has this property in the
scalar—plus—compact sense. An answer to this would follow from an affirmative solution to
the following more general problem.
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Chapter 4
Sets and an Additive Combinatorics Approach

We discuss generalizations and applications of the results obtained. We study of the
“approximate duality conjecture” which was suggested by Ben-Sasson and Zewi and studied
there in connection to the PFR conjecture. We improve the bounds on approximate duality
assuming the PFR conjecture. Then we use the approximate duality conjecture (with
improved bounds) to get our upper bound on the communication complexity of low-rank
martices. We show a theorem (due to Bourgain) goes as follows. For a noticeable fraction
of pairs y4, y, in the spectrum, y; + y, belongs to the spectrum of the same set with a smaller
threshold. Here we show that this result can be made combinatorial by restricting to a large
subset. We show that for any set A there exists a large subset A , such that the sumset of the
spectrum of A has bounded size. Our results apply to sets of size |A| = |G|* for any
constant « > 0, and even in some sub-constant regime
Section (4.1): Large Trigonometric Sums

For N be a positive integer. We denote by Zy = 7Z/NZ the set of residues modulo
N.Let f : Zy — C be an arbitrary function. The Fourier transform of f is given by the
formula

) = ) fave-n), (1)

. NneZy
where e(x) = e~2™*/N The following Parseval equality holds for the Fourier

coefficients of f:
YVOF =N Y irmp @

T€Zy NeEZy

Let 6 and a be real numbers, 0 < a < § < 1, and let A be a subset of Z, of cardinality
6N. The symbol A will also stand for the characteristic function of this set. Consider the
set R, of large trigonometric sums of A:

Re = Ro(A) = {r € Zy: |A(r)| > aN}. 3)
For many problems of the combinatorial theory of numbers it is important to know the
structure of R, it is important to know its properties, as will be indicated below. We only
mention the fact that this problem was posed by Gowers in [125].
The elementary properties of R, are as follows. The definition implies that
0 € R,and R, = —R,, Whichmeansthat —r € R, if r € R,. Further, Parseval’s
equality (2) implies that |R,| < &/a?.Has R, any other non-trivial properties?
It turns out that the answer to this question is positive.
We denote by log the logarithm to the base 2.
In 2002, M.-C. Chang proved the following theorem [126].
Theorem (4.1.1)[124]: (M.-C. Chang). Let § and a be real numbers,0 < a < § < 1,
let A be an arbitrary subset of Z, of cardinality SN and let R, be the set defined by (3).

2

ThenthereisasetA = {A,..., 44} € Zy,|A] < 2 (g) log(1/6), such that every
element r of R, can be represented in the form

4]

r = Z giA; (mod N), (4)

i=1

where g; € {—1,0,1}.
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Developing the approach suggested in [127] (see also [128]), Chang applied her result to
the proof of Freiman’s theorem [129] on sets with small sum. Recall that Q < Z is called
a d-dimensional arithmetic progression if

Q ={nyg + Ay +--- +ngAy: 0 < 4 < my},
where the m; are positive integers and the n; are integers.
Theorem (4.1.2)[124]: (G. A. Freiman). Let C > 0 be some number, let A € Z be an
arbitrary setand let |A + A| < C|A|. Then one can find numbers d and K depending
only on C and a d-dimensional arithmetic progression Q such that |Q| < K|A|and A <
Q.
Another application of Theorem (4.1.1) was given by B. Green in [130] (see [131], [132]
and [133]). One of the main results of [130] can be stated as follows.
Theorem (4.1.3)[124]: (B. Green). Let A be an arbitrary subset of Z, of cardinality §N.
Then A + A + A contains an arithmetic progression whose length is greater than or equal to

-2
1 2
2—2465 <10g (5)) Na /(250 log(l/a))_ (5)

(See [134]), Green showed that Chang’s theorem is, in a sense, exact. Let E =
{e1,...,eg} € Zy be an arbitrary set. We denote by Span(E) the set of all sums of the

form 31! &;e;, where g, € {~1,0,1}.
Theorem (4.1.4)[124]: (B. Green). Let 6 and a be real numbers, § < 1/8,0 < a <
6/32.
Assume that
1 21 1_ logN
(6) %85 S loglog N’ (6)
Thenthereisan A € Zy, |A| = [6N], such that the set R, defined by (3) is not contained
2
in Span(A) for any A with [A] < 272 (2)  log(1/8).
The structure of R, in the case when «a is close to § was studied in [135]-[137] (see also
[138]).
We see that results on the structure of R, are of importance in the combinatorial theory of
numbers. We prove the following theorem.
Theorem (4.1.5)[124]: Let 6§ and a be real numbers, 0 < a < §, let A be an arbitrary
subset of Z, of cardinality SN, let k > 2 be an even number and let R, be the set defined
by (3). Assume B € R, \ {0} is an arbitrary set. Then the quantity
To(B) := {(ry,..., 1007 1,0 0smi) EB¥ i+ =1/ +--- +1} (7)
Is greater than or equal to
Sa®* ok
Sagar 1B (8)
Proof: First we prove an analogue of Lemma (4.1.6).
We claim that the assertion of Theorem (4.1.5) is non-trivial in the case when § tends to
zero as N tends to infinity (if 6 does not tend to zero as N — oo, then the structure of R,
can be arbitrary [139]-[141]). Consider the simplest case k = 2. Let the order of the
cardinality of R, be equal to 6 /a?. By Theorem (4.1.5), the order of the number of solutions
of the equation

ot =13+, 11,72, 73,7 € Ry \ {0}, 9)
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is greater than or equal to §/a®*. Among these solutions there are three series of trivial
solutions. In the first seriesr;, = 13,1, = 1y, Inthesecond r;, = r, 1, = 13 and, finally,
in the third , = —n,, 73 = —r,. Therefore, equation (9) has at most 3|R,|? trivial
solutions. The cardinality of R, does not exceed &6/a?. Therefore, 3|R,|? is less than
362 /a*. We see that this quantity is less than § /a* as & tends to zero. Thus, Theorem (4.1.5)
states that equation (9) has non-trivial solutions.
Hence, R, has some additive structure.
The proof of Theorem (4.1.5), where we begin with a detailed consideration of the case
when k = 2 and then prove it in the general situation.

We generalize Theorem (4.1.5) to systems of linear equations. In our proof we use
properties of the Gowers norms (see [142]).

We apply the main result to some problems in the combinatorial theory of numbers.
We show that M.-C. Chang’s theorem can be derived from Theorem (4.1.5) and Rudin’s
inequality [143].

Let N be a positive integer and let A(r) be the Fourier transform of the characteristic
function A. As mentioned above, the following equality holds for the Fourier coefficients of
A:

z IA()|* = NA|. (10)
TEZLN
Are there any non-trivial relations between the Fourier coefficients A(r) other than (10)? It
IS obvious that the answer to this question is positive.
Consider a slightly more general situation. Let f: Zy — C be an arbitrary complex
function. The following inversion formula holds for the Fourier coefficients of f(x):

1 A
FO) =5 ) few). (11)
TEZN
The function f(x) is the characteristic function of some subset of Z,, if and only if

IfFCOI? = f(x) (12)

for all x in ZN Substituting (11) into (12), we obtain that

1 A
3 R elrx — ) = =) fe(us). (13)

I II u

Hence,

Z ( Z Ffer— u)) e (ux) = Z f(ue(ux). (14)

Since (14) holds for all x € Zy, We have
1 A AT
fa =5 FOFe-w. (15)

r
Hence, f : Zy — C is a characteristic function if and only if equality (15) holds for its
Fourier coefficients. It is clear that (15) also holds for the characteristic function A(x) of the
set A. Moreover, (15) contains all the relations between the Fourier coefficients of A: for
example, Parseval’s equality (2) can be obtained by putting u = 0.
We shall need the following generalization of (15). Let f, g: Zy — C be arbitrary complex
functions. Then
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1 " - -
= FFT—w = ) fgte(-xw), (16)

T

and (15) obviously follows from (16).

We explain the basic idea of the proof of Theorem (4.1.5). Let A S Z, be an arbitrary set,
|A| = &N, and let R, be the set of large trigonometric sums given by (3). Consider a model
situation. Assume that |A(r)] = aN forallr € R, \ {0} and let A(r) = Oforallr ¢
R, v #+ 0 (the justification of such a hypothesis will be discussed below). Let § < 1/4
and let u be an arbitrary non-zero residue belonging to R,. Then |A(u)| = aN. Using
formula (15) and the triangle inequality, we obtain that

“ 1 N N
aN = |A@w)| <% ) [A@||AG - )|

T
1 R 1, . 1 A N
< —=ON|A(—w)|+=|[AW)|6N +— z |AM|| A - w|.  @a7)
N N N
r+#0,u
Hence,
=S Am|lAe - w] > 2
N T T u - 2 .
. r+0,u
We have |A(r)| = aNR,(r) forall r # 0. Therefore,
1
Z Re(Ry(r — ) > (18)
r+0,u @

It follows from (18) that for all u € R, \ {0} the equation r; — r, = u, where ry, 1, €
R, \ {0}, has at least 1/(2«) solutions. Therefore, R, has non-trivial additive relations.
We now proceed to the rigorous proof of Theorem (4.1.5). We shall prove it first in the case
when k = 2 and then in the general case. Let k = 2 and let B be an arbitrary subset of
R, \ {0}. We denote by [N] the segment {1, 2,..., N} of the positive integers.

We need the following lemma.

Lemma (4.1.6)[124]: Let § and a’ be real numbers, 0 < a’ < §, and let A be an arbitrary
subset of Z, of cardinality §N. Assume also that

R, = {r € Zy: a'N < |A(r)| < 2a'N} (19)
and let B' be an arbitrary subset of R, \ {0}. Then
N CONL

Proof. Let
For(x) = % z A(r)e(rx).

reB’
Generally speaking, fz/(x) is a complex function. It is obvious that f,/(r) = A(r)B’(r).
Consider the sum
2

o = z szr(r)A(r —3s)| . (20)
Using formula (16) and Parseval’s equaslity, rwe obtain that
2
o= N2 ) 1D f@A@e(-xs)| = N3 Y |y (P4 (). (21)
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We estimate Y, |f Br(r)|2A2 (x) from below using Parseval’s equality and the definition of

R
(ngr(xmm) =( ng (r)A(r)> ( ng (r)|2>

> (N(a’) |B')* = (a")*|B'|? N2 (22)
On the other hand, we have

2
(Z fo (x)A(x)) < (ZIfB'(x) |2A2<x)) (Z AZ(x))
= oN (ZIfB'(x) |2A2<x>>. (23)

Using inequalities (22) and (23), we obtain that
—=|B'|*N&. (24)
To obtain an upper bound for o2, we note that

= 2 For ) MAG — HAG —s)

= Z(Z for (o (r — u)) (2 A(r)m), (25)
< Y | fe s = w 22 > AAGC - w

Using formula (15) and Parseval’s equality, we obtain that
o, = N22|A(u)|2 — SN*. (27)

u
Since fg/(r) = A(r)B’(r)and B’ < R., \ {0}, we have |f (r)| < 2a'B'(r)N.
Hence,

whence
2

= 0,0,. (26)

o, < 16(a")*T,(B")N*. (28)
Substituting (27) and (28) into (24), we obtain that T, (B') > (a')*|B’|*/(1663).
The lemma is proved.
Let

B; = {r € B:2"'aN < |A(r)| < 2!aN}, i » 1.
Itis clear that B = [[;»1 B;. Applying Lemma (4.1.6) to every B;, we obtain that T, (B;) >

(2i-1a)*|B;|*/(165%), i > 1.Hence,

4

T,(B T,(B) ¥ —— ) 24|B;|* 29
2(B) > ) To(BY) » 5553 ) 2MIBiI". (29)
We have |B| = );|B;|- The Cauchy—Bunyakovskymequalltylmplles that

B|* = (Z 2i2-iB, |> (2 24|, |4> (Z 2-‘“'/3>3 < Z 24|BJ*.  (30)

l l
Substituting (30) into (29), we obtain the inequality
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4

a
T,(B) >

53 1B 3D

Now consider the general case when k > 2.
Lemma (4.1.7)[124]: Let § and a’ be real numbers, 0 < a’ < §, let A be an arbitrary
subset of Z,, of cardinality N and let k > 2 be an even number. Assume also that

R,={r € Zy: a'N < |A(r)| < 2a'N} (32)
and let B’ be an arbitrary subset of R, \ {0}. Then

BN > 5(0(')2k|B'|2k
k( ) - (26)2k

Proof. Let f 5 (x) be the function defined by the formula

1 A
for@ =1 > A@)e(r)

reB’

k
o= (2 fB'(x)A(x)> . (33)

Estimating ¢ from below as in Lemma (4.1.6), we obtain that

a = ((a')?|B'|N)". (34)
Since k is an even number, it has the form k = 2k’, k' € N. Using Holder’s inequality, we
obtain that

Consider the sum

2k’ k-1
7= (Z fo<x>A(x)> < (ZlfBr(x)Pk’AZ(x)) (Z A(x))
- (ZlfBr(x)lz"'Az(x)) BN+ (35)
Hence, ’
"2 2k’ g2 2( )4k 2k pr2
(0 = zlfg(x)l i) »o BN (36)

On the other hand, the inversmn formula (11) implies that
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o' = ) I (I 4 (0)

:N21'+ZZ Z ZfB’(ﬁ)"' fBr(rk/)fB,—(rl’) .

! !
LI CUTI Ry Tht v,z

- for(ri)AA(Z) x e (x(r1 do g =1 — —r,é,)) e(x(y — 2))
1 il ; A /
= ). > for) -+ far (o) o G -
uy T T el ot
ok AT =T = =T U

- e () AOA(lY —w)

= ) A W
y

u

x| D for@) = o (re o G) -

xz z Z for@) - forG)fe@)

_ 1
o N 4k'+2
Using formula (15) and Parseval’s equality, we obtain that

o, = NZZ|A(u)|2 — 5N*.
u

Since B’ < R!,\ {0}, we have |f5(r)| < 2a’B’'(r)N. Hence,

0105.
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5 < (@aM*) Y| > B'(ry) -+ B'(r)B' (1) -+~ B' (i)

! !
y LTI W o

Tit AT —T{— T
= (2a’'N)?*T,(B"). (40)
Using equalities (38), (39) and inequalities (36), (40), we obtain that
5(a')?*|B'|*
(25)2k

-u

Ty (B") >

(41)
The lemma is proved.
Let
B; = {r € B:2"'aN < |A(r)| < 2!aN}, i » 1.
Itis clear that B = [[;», B;. Applying Lemma (4.1.7) to every B;, we obtain that T, (B;) >

5(271a)**|B;|2k /(28)8%%, i > 1.Hence,
2k

oa 2ki| . |2k
Tk(B)>ZTk(B)>24k—52kZZ |B;|**. (42)

i i
We have |B| = );|B;|. Using Holder’s inequality, we obtain that

2k 2k—1
|B|2k — <Z 2i2—i|Bi|) < (Z 22ki|Bi|2k> <z 2—2ki/(2k—1)>
i

< ) 22|,k (43)
i
Substituting (43) into (42), we obtain the inequality
CZZk
T, (B) >W|B|2k. (44)

The theorem is proved.
Let k be a positive integer and let d > 0 be an integer. Let A = (a;;) be the
29%1k % (d + 1) matrix whose elements a;; are defined by the formula
aij
(1 ifthe (i — 1)st coefficient in the binary expansion of (j — 1)
isequaltoland1 < j < 2%,
= { —1 ifthe (i — 1)st coefficient in the binary expansion of (j — 1) (45)
isequalto 1and 2% < j < 29+,
\0 otherwise.
Recall that the binary expansion of a positive integer n is defined by the rule n =
Ynl - 271, wherel > 1andn;, € {0,1}.
For example, when k = 2andd = 2 we have
11111111 -1 -1 -1 -1 -1 -1 -1 -1
A =< 0 1 )
1 0

0 1 01 0 1 o -1 0 -1 0 -1 O -1
0 011 0 o 0 -1 -1 0 O -1 -1

0
We prove the following theorem.
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Let d > 0 be an integer and let {0,1}* = {w = (wy,...,wy) * w; €{0,1}, j =
1,2,...,d} be the ordinary d-dimensional cube. If w € {0,1}%, then |w| is defined to be
Wi+ Fwy. Ifh = (hy,...,hy) € Z&, thenw - h := w h; + - - +wzhy.

Let C be the operator of complex conjugation. If n is a positive integer, then C™ stands for

the nth power of this operator. Let ||w|| = Y%, w; - 2" + 1.Foreveryw € {0,1}% we

define a map from Z,Z\,d to Z,, which we denote by the same symbol w, by the rule: if 7 €

Z,Z\,d, then w(7) is the ||w]|th component of the vector 7.
Definition (4.1.8)[124]: Let f : Zy — C be an arbitrary function. The uniform Gowers

norm (or, briefly, the Gowers norm) of f is defined to be
1/24

Py = e Y. || €“fatom) . (46)
x€Zy,heZ$ we(0,1}¢
We shall need the following lemma (see [142]).
Lemma (4.1.9) (the motonicity inequality for Gowers norms)[124]: Let f : Zy — Che
an arbitrary function and let d be a positive integer. Then
Ifllye < 11fllyass. (47)
Other properties of the Gowers norms can be found in [142].
We show the following lemma.
Lemma (4.1.10)[124]: Let § and a' be real numbers, 0 < a’ < 6, let A be an arbitrary
subset of Z, of cardinality 6N, let k be a positive integer and let d > 0 be an integer.
Assume, moreover, that
R, = {r € Zy: a'N < |A(r)| < 2a'N} (48)
and let B be an arbitrary subset of R \ {0}. Then the number of solutions of the system
(46) with r; € B’ is greater than or equal to

N2k 24
<6(a )2 |BI|2k> ) (49)

22k §2k
Proof. Let f(x) be the function defined by the formula

1o .
fO) =+ Z A(r)e(rx).

Using Holder’s inequality, we obtain that

2k 2k—-1
Y fwAw)| < (ZIf(x)IZ") (Z A(x))
- (Z|f<x>|2k> (BN, (50)

On the other hand, using Parseval’s equality and the definition of R/, we obtain that
1 A — 1 A 2 , ,
Y F@A =5 ) F0A® =1 Y |F@] = @)?IBIN. (51)
X T T

Consider the sum
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1
o = 1F1]lyo = NFZ] e =5 D IFCOE.

It follows from (50) and (51) that
5(a1)4k

e 1B

o 7

Using Lemma (4.1.9), we obtain that

02d<%z 2 1_[ F(x + - )|

x€LN heZ$ wef0,1}¢

Y S| T o

x€LN hezd |we(0,1}4
Using the inversion formula (11), we obtain that

2k

1—[ fx+ w- h)—7z 1_[ flo@®)e(w@)(x + w-h).

w€e{0,1}4 TEZzzvd w€e{0,1}4

=) IDNEEDY
0" =——
N2t k+d+1

XELN heZ r(1),. () r (kD) rRezdt

Hence,

k

x 1_[ 1_[ F0@r®))e@®(r®)(x + w® - b))

i=1 w®e{0,1}4
2k

X 1 l l l (0O )e(=0®(rO) (x + 0®

i=k+1 w®ef0,1}d

“h)). (56)
We denote by Z the system of equations

w®(r®) = w®(r®),
Z PGOE Z > WO

i=1 w®e{0,1}¢ i=k+1 w®ef0,1}4
k 2
z z wO(r®) = Z z 0O (r®)
=1 »efo,1}4,0P=1 i=k+1 ,(ef0,1}4,0P=1

zk: z w®O(r®) = Z z WO (r®).

=1 »(Def0,1}%,0P=1 i=k+1 4,0 ef0,1)4,0P=1
Then
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d
0.2

e > [T [] Fe®coy

r@,. 0 pletn) reoegz? =1 0Def0,1}
2k

N

i'=k+1 (,(Nefo,1}4

x 2 Z (@O (rO)(x + 0D - h) — 0O O)(x + 0 - 1))

x€LN heZ$,

k

1 A .
r@,. 0 kD) ez =1 wWef0,1}4
2k
X f(a)(l)(r(l))). (57)
i=k+1 w®ef0,1}d
The sum in (57) is taken over the ¥, ..., r®) &+ K that satisfy Z. It is easy to
verify that this system coincides with (46).
Since fg/(r) = A(r)B’(r)and B < R., \ {0}, we have |f (r)| < 2a'B'(r)N.
Hence,

2d

a2 < (2% (a2 2N, (58)
Using inequalities (53), (54) and (58), we finally obtain that
d
s(@)™ B,|2k>2 !
(

b2k 22k(ar)2k)2d

1><
r@ ) pk+1)  2Kex

d
sy o\
- (—22k52k B2k ) . (59)

The sum in (59) is taken over the r®,i = 1,2,..., 2k, whose components belong to B'. In
other words, the number of solutions of the system (46) with r; € B’ is greater than or equal

to
5@y o\
a
< |B/|2k> )
22k52k
The lemma is proved.
Theorem (4.1.11)[124]: Let § and « be real numbers, 0 < a < §, let A be an arbitrary
subset of Z, of cardinality 6N, let k be a positive integer, let d > 0 be an integer and let
R, be the set defined by (3). Let B < R, \ {0} be an arbitrary set. Consider the system of
equations
2d+1k
Dayn =0 i=12..d+1, (60)
j=1
where the elements a;; of the matrix A are defined by formula (45) and r; € B for all j.
Then the number of solutions of the system (46) is greater than or equal to
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5 2k 24

a

<24k52k |B|2k> ' (61)
To make it clear that Theorem (4.1.11) is a generalization of Theorem (4.1.5), it is sufficient
to put the d in Theorem (4.1.11) equal to zero.

To prove Theorem (4.1.11), we need some properties of the Gowers norms (see [142]).
Proof: Let

B; = {r € B:2"'aN < |A(r)| < 2!aN}, i ¥ 1.
Itis clear that B = [[;»1 B;.
Let E be a set. We denote by S, 4 (E) the number of solutions of the system (46) with r; €
E. Applying Lemma (4.1.10) to every B;, we obtain that

d
s@-a)™ Y
Ska(Bi) = Sak gk |B;| :

wherei > 1. Hence,

sa? \* 2ki|p 12k 2"
Ska(B) = Zsk,d(Bi) 7 (W) Z(Z B |12F)T . (62)
i i
We have |B| = Y;|B;|. Using Hélder’s inequality, we obtain that

2d+1k
B = (ZZ"Z‘%Ba)
i d+1
2 k-1
< (Z(ZZkilBi|2k)2d> <z 2_(2d+1ki)/(2d+1k_1)>
i

l
) d
< Z(szllBi|2k)2 ) (63)
[
Substituting (63) into (62), we obtain the desired inequality

50{2k 29
Ska(B) = (W|B|2k> : (64)

The theorem is proved.
In the proof of Theorem (4.1.1), Chang used Rudin’s theorem [143] (see also [144])
on the dissociative subsets of Zy. AsetD = {dy,...,dp|} € Zy issaid to be dissociative

if the congruence
D

Z ed; =0 (mod N), (65)
i=1
where g; € {—1,0, 1}, implies that all the ¢; are equal to zero.
Theorem (4.1.12) (W. Rudin)[124]: There is an absolute constant C > 0 such that for any
dissociative set D < Z, and any complex numbers a,, € C the inequality

) p p/2
23 | anetwo < e (St (66)

X€Zy IneD nebd
holds for all integers p > 2.
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The proofs of Theorem (4.1.12) and Chang’s theorem can also be found in [133], [145]. We
shall use Rudin’s theorem and Theorem (4.1.5) to derive an analogue of Theorem (4.1.1),
which only differs from Chang’s theorem in that it gives a somewhat weaker estimate for
the cardinality of A.

Proposition (4.1.13)[124]: Let § and «a be real numbers, 0 < @ < § < 1, let A be an
arbitrary subset of Z, of cardinality §N and let R, be the set defined by (3). Then there is a

2
setD = {dy,...,djp;} S Zy,|D| < 28C? (g) log(1/48), such that every element r of R,

can be represented in the form
D]

r = z gd; =0 (modN), (67)
i=1
where g; € {—1,0,1} and C is the absolute constant occurring in Rudin’s inequality
(66).
Proof. Let k = 2[log(1/6)] and let D < R, be a maximal dissociative set. Since D is
dissociative, we have 0 € D. Using Theorem (4.1.5), we obtain the estimate

2k
Te(D) * sz DI (68)
On the other hand,
T (D) < C2R2F KK DX, (69)

where C is the absolute constant occurring in Theorem (4.1.12). Indeed, let the a,, in (66)
be equal to D(n) and let p = 2k. Then the left-hand side of (66) is T, (D) while the right-
hand side is equal to CZ"Z"k"ll)lk. We have k = 2[log(1/8)]. Using (68) and (69), we

obtain that |D| < 28C? ( ) log(1/8). Since D is a maximal dissociative subset of R,

every element r of R, can be represented in the formr = Z'D' gd; =0 (mod N), where
d; € Dand¢g; € {—1,0,1}. Note that it is only the constant factors in the estimate |D| <

2
28C* (g) log(1/6) that are different from those in the corresponding estimate in Chang’s

theorem. The proposition is proved.

We shall now strengthen Chang’s theorem. Our method of proof has much in common with

the methods used in [146]-[148].

Corollary (4.1.14)[124]: Let N be a positive integer, (N,6) = 1, let § and a be real
1

numbers, 0 < a < dlogz(1/9), and let R, be the set defined by (3). Then thereisa A* <
Zy, |N*| < 212(6/a)?log(1/6), such that for any residue r € R, thereisaset A} ,..., A},
of at most 8log(1/8) elements of A* such that r = Y™, £47 (mod N), where ¢; €
{—-1,0,1}.
In the proof of Theorem (4.1.19) we shall use several auxiliary assertions and definitions.
Definition (4.1.15)[124]: Let k and s be positive integers. Consider a family A(k,s) of
subsets of Zy that has the following property. If A = {A;,..., )5} belongs to A(k, s), then
the congruence

|Al Al

z/l :s; =0 (modN), A; €A, s; €EZ, Is;| <'s, Z|si| <2k, (70)

|mpI|es that all the s; are equal to zero.
The definition of A(k, 1) can be found in [149].
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Note that forevery A € A(k,s)wehave0 ¢ Aand A n (—A) = @. Itisimplicit in what
follows that the equality of two elements of Z,, will always mean that they are equal modulo
N. For sets belonging to A(k, s), the following upper bound holds for the quantities T,.
Assertion (4.1.16)[124]: Let k and s be positive integers, let A be an arbitrary set belonging
to the family A(k, s) and assume that |[A| > k. Then

k
T, (M) < 23Kk max{l <If\l> |A|k/s} (71)

Proof: Let x € Zjy be an arbitrary residue and let N, (x) be the number of (4,,...,4;) such
thatthe A; belongtoAand A, +--- + 4, = x.ThenT,(A) = X ez, Ni(x).Letsy,...,s
be positive integers such that s; +- - - +s; = k.

To fix ideas, we assume that s,,...,s; are arranged in descending order: s; > s, >--- =
S > 1.

Let E(sy,...,s)(x) = {(A4,...,4,):among Ay, ..., 4 there are precisely s; numbers equal
to A, preusely s, numbers equal to A,,... and precisely s; numbers equal to A;, so that
s;Ay +--- +5;4;, = x,and the 1; are all distinct}. For brevity we denote E(sy, ..., s;)(x)
by E(s)(x) Recall that the numbers Si,...,S; in the definition of E(5)(x) =
E(sy,...,5)(x) aresuch that ¥!_, s; = k. Then

M) = 2|E(§)(x)|,

where the sum is taken over all vectors for WhICh > _.s; = k. Hence,

2
o=TM)= ) (2|E(§)<x)|) . (72)

X€ZN \ S
Let § = (sq4,...,s;)) and G = G(S) = {i: s; < s},B = B(5) = {i: s; > s}. Then
|G(S)| + |B(S)| = I(5) = I. We claim that
| < k — s|B|. (73)
Indeed,

k= si+ Y si=I6l+ (s + DIBI = L + slB|, 74)
IEG IEB
and (73) follows.
Example (4.1.17)[124]: Let log |A| > log? k and let A be an arbitrary set belonging to the
family A(k, 3). Using the inequality (71), we obtain that T, (A) < 220kkX|A|%,
It is obvious that the order of this estimate cannot be improved, which means that T}, (A)

>
(lAl) (kD? » e *Kkk|Al* for every A and every positive integer k such that log |A| =

log? k.
Lemma (4.1.18)[124]:

|
EG) ()] < — e |A]B®) (75)
St 5!

forallswithY!_,s; =kandallx € Zj.

Proof. Let (14,..., ;) be an arbitrary set belonging to E(5)(x). Then X}_, s;4; = x, where

the 1; € {Al,.. , A} are distinct. Consider another element (43,...,4;) of E(8)(x) with
kA=Yt s;A} = x, where the A} € {1},..., A},} are distinct. Assume that 1; = A} for
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alli € B(5).Weclaimthat; = A} foralli € G(5).WehaveY!_ s;A, =x =3, s;1.

Hence,
Z Si/:{i = z Sl'j.;.

lEG lEG

Moreover, A N (—A) = @. Therefore,

251'/:{1' — ZSii'i = ZS{A? = 0,

iEG IEG ieG
where s/ € Z,|s]| < s,Y;|s/| < 2k and the A € A are distinct. The definition of A(k, s)
implies that all the s/ are equal to zero. Hence, 4; = A} foralli € G(3).
Therefore, (13, ..., ;) can be obtained from (4, ..., ;) by a permutation. By the definition
of E(5)(x),among A4, ..., A, there are precisely s, equal to A;, s, equal to 1,, ... and s; equal
to A, and s;4; +- - - +s;4; = x, where the 4; are all distinct.

Therefore, the number of permutations of (44,...,4;) isequal to k!/(s;! - -+ s;1).

Hence, for a fixed A;,i € B, the number of (1,,...,1;) belonging to E(5)(x) does not
exceed k!/(s;! --- s;!). Therefore, the cardinality of E(S)(x) does not exceed
IA|BONK/(s,! -+ 5;1). The lemma is proved.

We now return to the proof of the assertion and estimate the sum o. Let b be a non-negative

integer and let
2

w= > | D IEG®I|. (76)

x € Zy \5:|B(5)|=b
It follows from (73) that |B(S)| < [k/s] for all 5. Combining this with the Cauchy—

Bunyakovsky inequality, we obtain that o < ([(k — 1)/s] + 1)? Zbk/j o,. We now fixab

and estimate a;, as follows. We have

w<( ) D E@I | mx Y IEG@®I ). (77)
X €Ly § |BG)|=b V5 1BE)I=b
Let P.(3) = k!/(sy! -+ s,1). Then

Zpk(s) z z Zl"<2k" (78)

.»S1=0 i=1
51+ -+s1=k

Using Lemma (4.1.18), we obtain that |E(3)(x)| < Px(35)|A|'B®)!. Combining this with
inequality (78), we obtain that

max z IE(D)(x0)| < 2kK|A]. (79)

X €
S:|B(S)|=b

=

Consider the sum

|E(S) (). (80)
x €Zy §:|B(5)|=b
It follows from (73) that this sum is bounded above by the number of (1,...,4,) € A¥ such
that at most k — sb of the numbers A,,..., A are distinct. Therefore,

> D EE®I< (M) - shyk

X €Zy s:|B(S)|=b
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|A|k—sb
S —sh)! (k — sb)* < e*ksP|A[*==P. (81)

Combining this with (79), we obtain that
sb

k
< 2efKkk|A|P (IAI) |A|. (82)

Hence,
[(k—l)/S] ks b

< _ 2 ,kLk|ALK
2([(k — 1)/s] + 1)2ekkk|A| bZ (IAIH)
= 2([(k = 1)/s] + 1)%e*k*|A] o (83)
We estimate o* as follows. If kS < |A|571, then it is obV|ous thato* < [(k—1)/s] + 1.
If k5 > |A]S71, theno™ < ([(k — 1)/s] + D) (k/IAD¥ |AI*/5|AIY 1/S/k In any case we
have o* < ([(k — 1)/s] + 1) max{(k/|A]¥ |A]*/S|A|*=1/3 /k}. Therefore,
o = T (A) < 23%KF|A* max{(k/|AD¥|A|*/5}. (84)
The assertion is proved.
Theorem (4.1.19)[124]: Let N be a positive integer, (N,2) = 1, let § and a be real
numbers,0 < a < § < 1/16, let A be an arbitrary subset of Z, of cardinality N and let
R, be the set defined by (3). Then thereisa A* € Z,,
|A*| < max(21?(6/a)?log(1/6),2%10g?(1/6)), (85)
such that for any residue r € R, thereisaset 47 ,..., 4}, of at most 8log(1/6) elements
of A* such that
M
r = z gA; (modN), (86)
i=1
where ¢; € {—1,0,1}.
If, moreover, N is a prime, then there isaset A S Zy,
|A| < 212(5/a)?log(1/6),2%log?(1/5), (87)
such that for every residue r € R, thereisaset A,,..., A, of at most 8 log(1/8) elements
of A such that

r =) gA; (modN), (88)

=

=1
where ¢; € {—1,0,1}.

Proof: Letk = 2[log(1/6)], lets = 2andlet A = {44,..., 4} be a maximal subset of
R, \ {0} belonging to A(k,s). If R, = {0}, then the proof is obvious. If R, \ {0} is non-
empty, then A is also non-empty. Let A* = (Uj-;j~*A) U {0}. Then |A*| < 4|A]and 0 €

A*. We claim that forany x € R, \ {0} thereisaj € [s] such that
|A| |A|

xj = ZA .S;, S; EL, |s;| <'s, ZISiI < 2k. (89)

1=

Then since j~1A; € A* for all i € [|A|],j € [s], the desired assertion will follow from
(89).

Thus, let x be an arbitrary element of R, \ A,x # 0. Consider relations of the form
YA 2is; =0, where 1; € ALl{x} and s; € Z,|s;| < 5,22 s;] < 2k. If all these
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relations are trivial, that is, if for each of them we have s; = 0,i € [|A] + 1], then we
obtain a contradiction to the maximality of A. Hence, there is a non-trivial relation of the
form (89) such that j, s4,..., s, are not all equal to zero. We have j € [—s,...,s]. If j =
0, then we obtain a contradiction to the fact that A belongs to A(k, s). Therefore, we can
assume that j € [s]. Since 2k < 8log(1/68), we obtain that for any x € R, there is a
{A1,..., Ay} € A", M < 8log(1/9), such that (71) holds.

We claim that |A*| < max(2%(6/a)?log(1/6),2%1og?(1/45)).

If |A] < k2 then |A] < 2%*log?(1/6), whence |[A*| < 2° log?(1/6). If |A| < k2, then
Assertion (4.1.16) implies that T, (A) < 23%k¥|A|*. On the other hand, using Theorem

(4.1.5) we obtain that T, (A) > Sa?¥|A|?*/(2*k§2k). Therefore, |A] < 210 (g)z log(1/
8), whence |A*] < 212(6/a)? log(1/6).

In any case we have |A*| < max(22(6/a)?log(1/6),2%1og?(1/6)).

We now prove the existence of A. Let s = [loglog(1/8)] and let A, be a maximal subset
of R, \ {0} belonging to A(k, s),k = 2[log(1/8)]. Let A = U3, j A

Then |A| < s|A;|. Arguments similar to those used above enable us to show that for any
residue r € R, thereisaset{A;,...,1y} € A, M < 8log(1/6), such that (73) holds.
We prove (72) as follows. If |A;| < k¥/G~D, then |A;| < 2'°log(1/68) and |A] <
s|A;| < 2%%1og(1/6)loglog(1/68). We see that in this case (72) is proved.

Now let [A;] > kS/~D, Using Assertion (4.1.16), we obtain that T, (A;) < 23%k¥|A,|%.
On the other hand, Theorem (4.1.5) implies that T,(A;) = Sa?f|AL|?F/(2%k5%K),
Therefore, A < 219(8/a)? log(1/6), whence 1A] <
212(6/a)?log(1/68) loglog(1/6). The

theorem is proved.

We shall now apply problems in the combinatorial theory of numbers.

Let K be an arbitrary subset of Z,, and ¢ € (0, 1) any real number. Then the corresponding
Bohr set is defined as

B(K,¢) ={x € Zy: ”%” <e€ VT‘EK},

where || - || denotes the integer part of a real number. Information on the properties of Bohr
sets can be found in [150], where, in particular, it is proved that
1
B(K,¢) > Ee”{'N. (90)

In her proof of the quantitative version of Freiman’s theorem (see [126] and [133]), Chang
used the following proposition.

Proposition (4.1.20)[124]: Let N be a positive integer, § € (0,1) a real number and A an
arbitrary subset of Z, with |A|] = &6N. Then 24 — 2A contains a Bohr set B(K, €) with
K| < 86 1log(1/6) and ¢ = 1/(28 log(1/6)).

We claim that Proposition (4.1.20) can be strengthened as follows.

To prove Proposition (4.1.21) we need the following definition.

Definition (4.1.22)[124]: Let f,g : Zy — C be arbitrary functions. The convolution of f
and g is defined to be the function

f© = ) fOgT—. (91)
It is obvious that T
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(f*g)@) = f)gm. (92)
Proposition (4.1.21)[124]: Let N be a positive integer, (N,2) = 1,let0 < § < 272%¢
be a real number and let A be an arbitrary subset of Z, with |[A| = SN. Then 24 — 2A
contains a Bohr set B(K, €) with |K| < 21§71 log(1/8) and ¢ = 1/(28 log(1/6)).
Using formula (90), we obtain that the cardinality of B(K, ¢) in Proposition (4.1.20) is
greater than or equal to (1/2) - 289 '(0g(1/8)* N The cardinality of the Bohr set in
Proposition (4.1.21) is greater than or equal to (1/2) - 272°°6" " log(1/8)loglog (1/8)
Proof: Leta = §3%/2/(2+/2). Applying Corollary (4.1.14) to R, (A), we obtain a set A* <
Zy, |N| < 215671 1og(1/6), such that for any residue r € R, thereisaset A} ,..., A}, of
at most 8 log(1/48) elements of A* such that (71) holds.
Let R, = R, \ {0}. Consider the Bohrset B, = B(R,,1/20).Forallx € B;andallr €

R}, we have
2t 1

|1 — e(rx)| =2 |sm (nrx)| S —=<-= (93)

_ 20 2
The expression (A* A+ A A)(x) is obviously equal to the number of quadruples
(a;,a,,a3,a,) € A*suchthata, +a, —a; —a, = x.Hence, (A* Ax Ax A)(x) >
Oifandonly if x € 24 — 2A. Using formulae (11) and (92), we obtain that x belongs to

2A — 2Aifand only if ZT|A(7’)|4 e(rx) > 0. Letx € B;. Then, using Parseval’s equality

(2)), we have
Z|A(r)|“ e(rx) = Z|A(r)|4 _ Z|A(r)|4 (10e(rx))

r r

1 A 4 A 4 2 A 4

>SY MO -2 Y A" > 64N4—2Té1}%%0|A(r)| LG
r T€R,r+0 r

53N2 54N4

1
F=6*N*—-2- SN2 = 0. 94
2 8 4 > O4)

It follows from (94) that the Bohr set B; is contained in 24 — 2A. Consider another Bohr

set B, = B(A*,1/(281log(1/6)). We claim that B, € B,. Since for any residue r € R,
there is a set A3,..., Ay, of at most 8 log(1/6) elements of A* such that (71) holds, the
1) 1 1

inequality
15 ” S 8l°g(5 28log(1/8) 20 (95)

holds for all x € B,. Hence, every X € B, belongs to B,, and we have obtained a Bohr set
B, € 2A — 2A with the desired properties. The proposition is proved.
Section (4.2): Relating Rank to Communication Complexity

We present a new connection between communication complexity and additive
combinatorics, showing that a well-known conjecture from additive combinatorics known
as the Polynomial Freiman-Ruzsa Conjecture (PFR, in short), implies better upper bounds
than currently known on the deterministic communication complexity of a boolean function
in terms of the rank of its associated matrix. The results show that the PFR Conjecture
implies that every boolean function has communication complexity O(rank(M)/
log rank(M)) where rank(M) is the rank, over the reals, of the associated matrix. We
view this result as interesting not only due to its being the first sublinear bound (and the first
advance on this problem since 1997) but also because of its suggestion of a new connection
between the two vibrant, yet seemingly unrelated, fields of communication complexity and
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additive combinatorics. The analysis relies on the study of approximate duality, a concept
closely related to the PFR Conjecture, which was introduced in [152].

The main technical contribution improves the bounds on approximate duality, assuming the
PFR Conjecture, and it does so with simpler proof than in [152]. We view this contribution
as being of independent interest because of the growing number of applications of the
“approximate duality method” to theoretical computer science. These include so-far the
construction of bipartite Ramsey graphs and two-source extractors [152], communication
complexity (this work), and the subsequent lower bounds for matching vector locally
decodable codes [153].

In the two-party communication complexity model two parties — Alice and Bob —
wish to compute a function f: X x Y — {0, 1} on inputs x and y where x is known only to
Alice and y is known only to Bob. In order to compute the function f they must exchange
bits of information between each other according to some (deterministic) protocol. The
(deterministic) communication complexity of a protocol is the maximum total number of
bits sent between the two parties, where the maximum is taken over all pairs of inputs x, y.
We henceforth omit the adjective “deterministic” from our discourse because our results
deal only with the deterministic model. The communication complexity of the function f,
denoted by CC(f), is the minimum communication complexity of a protocol for f.

For many applications it is convenient to associate the function f: X X Y — {0,1} with the
matrix M € {0,1}X x Y whose (x, y) entry equals f (x, y). For a {0, 1}-valued matrix M, let
CC(M) denote the communication complexity of the boolean function associated with M.
Let rank(M) denote the rank of M over the reals. We will occasionally consider the rank
of M over the two-element field IF, and will denote this by rankg, (M).
It is well-known since the work of Mehlhorn and Schmidt [154] that

log rank(M) < CC(M) < rank(M) (96)
and it is a fundamental question to find out what is the true worst-case dependency of CC (M)
on the rank. The famous log-rank conjecture due to Lovasz and Saks [155] postulates that
the true answer is closer to the lower bound of (96).
Conjecture (4.2.1) (Log-rank)[151]: For every {0,1}-valued matrix M CC(M) =
log®® rank(M).
Lovasz and Saks also point out that the above conjecture has several other interesting
equivalent formulations. One of them, due to Nuffelen [156] and Fajtlowicz [157], is the
following:
Conjecture (4.2.2)[151]: For every graph G, x(G) < log®™ rank(G), where y(G) is the
chromatic number of the complement of G, and rank(G) is the rank of the adjacency matrix
of G over the reals.

Though considerable effort has been made since 1982 in an attempt to narrow the gap
between lower and upper bounds in (96), the state of the art is not far from where it was 30
years ago and currently stands at

Q(log1°g3 6 rank(M)) < CC(M) <log (%) rank(M) (97)

where log; 6 = 1.63 ... and log G) ~ 0.41 ... The upper bound is due to Kotlov [158] and

improves on the previous best bound of CC(M) < rank(M)/2 by Kotlov and Lovasz [159].
The lower bound is due to Kushilevitz (unpublished, cf. [160]) and improves on a previous
bound of 2(log!°823 rank(M)) = 2(log*® rank(M)) due to Nisan and Wigderson
[160].
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Our main result is stated next. It assumes a wellknown conjecture from additive
combinatorics — the Polynomial Freiman-Ruzsa (PFR) conjecture — discussed.

Quoting the (current) Wikipedia definition, additive combinatorics studies
“combinatorial estimates associated with the arithmetic operations of addition and
subtraction”. As such, it deals with a variety of problems that aim to ’quantify’ the amount
of additive structure in subsets of additive groups. One such a problem is that which is
addressed by the Polynomial Freiman-Ruzsa conjecture (we shall encounter a different
problem in additive combinatorics when we get to “approximate duality” later on).

For A € 7, let A + A denote the sum-set of A

A+A:={a+a'|la,a’ € A}
where addition is over [F,. It is easy to see that |A + A| = |A]| if and only if A is an affine
subspace of F%. The question addressed by the Freiman-Ruzsa Theorem is whether the ratio
of |A + A| to |A]| also ’approximates’ the closeness of A to being a subspace, or in other
words, whether the fact that A + A is small with respect to the size of A also implies that
span (A) is small with respect to the size of A. The Freiman-Ruzsa Theorem [161] says that
this is indeed the case.
Theorem (4.2.3)[151]: (Freiman-Ruzsa Theorem [161]). If A € F} has |A + A| < K|A],
then |span (4)| < K22K"|4].

The above theorem was improved in a series of works [162]-[164], culminating in the
recent work [165] which proved an upper bound on the ratio % of the form 22k /(2k).
This bound can be seen to be tight (up to a multiplicative factor of 2) by letting A =
{uy,uy,...,u}, whereuy, u,, ..., u, € IF% are linearly independent vectors. Then in this case
we have |A + A| ~ g |Al, while |span (4)] = 2¢.
|span(4)|

|A]
However, it does not rule out the existence of a large subset A" € A for which the ratio
W is just polynomial in K, and this is exactly what is suggested by the PFR
Conjecture:

Conjecture (4.2.4) (Polynomial Freiman-Ruzsa (PFR))[151]: There exists an absolute
constant r, such that if A c IF} has |A + A| < K|A]|, then there exists a subset A" < A of size
at least K~"|A| such that |[span (A")| < |A].

Note that the above conjecture implies that |span (4")| < |A| < K"|A'|. The PFR
conjecture has many other interesting equivalent formulations, see the survey of Green [166]
for some of them. It is conjectured to hold for subsets of general groups as well and not only
for subsets of the group F% but we will be interested only in the latter case. Significant
progress on this conjecture has been achieved recently by Sanders [167], using new

techniques developed by Croot and Sisask [168]. Sanders proved an upper bound on the

ratio W which is quasi-polynomial in K:

Theorem (4.2.5) (Quasi-polynomial Freiman-Ruzsa Theorem (QFR) [167])[151]: Let
A c F% be asetsuch that |[A + A| < K|A|. Then there exists a subset A" € A of size at least
K 0008’ K)| 4| such that |span (4")| < |Al.

We mentioning several other recent applications of the PFR Conjecture to theoretical

computer science. The first application, due to Samorodnitsky [169], is to the area of low-
degree testing, with further results by Lovett [170] and Green and Tao [171]. The second
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application is to the construction of twosource extractors due to Ben-Sasson and Zewi [152].
The latter also introduced the notion of approximate duality which plays a central role in
our proof method as well. The approximate duality method has recently found another
application to proving lower bounds on locally decodable matching vector codes in the
subsequent work by Bhowmick, Dvir and Lovett [153]. We describe the approximate duality
conjecture and our new contributions to its study.
We improv the bounds on approximate duality, assuming the PFR conjecture. The new
bound lies at the heart of our proof of the Main Theorem (4.2.20). We believe that Lemma
(4.2.8) and its proof are of independent interest since they improve and simplify the proof
of [152], and have already found new interesting applications to the study of locally
decodable codes [153].

For, B < F7, we define the duality measure of A, B in (98) as an estimate of how ‘close’
this pair is to being dual

D(4,B):= |Egenpep| (—D)*2]], (98)
where (a, b), denotes the binary inner-product of a,b over FF,, defined by (a,b), =
. a; - b; where all arithmetic operations are in F,.

It can be verified that if D(A4, B) = 1 then A is contained in an affine shift of B+ which
Is the space dual to the linear [F,-span of B. The question is what can be said about the
structure of A, B when D(A4, B) is sufficiently large, but strictly smaller than 1. The
following theorem from [152] says that if the duality measure is a constant very close to 1
(though strictly smaller than 1) then there exist relatively large subsets A" € A, B’ € B, such
that D(A',B") = 1.
Theorem (4.2.6) (Approximate duality for nearly-dual sets, [152])[151]: For every § >
0 there exists a constant € > 0 that depends only on 8, such that if A, B € F} satisfy

D(A,B) = 1 — ¢, then there exist subsets A" € A, |A"| = % |A| and B’ € B, |B'| = 27%"|B|,

suchthat D(A’,B") = 1.

It is conjectured that a similar result holds also when the duality measure is relatively
small, and in particular when it tends to zero as n goes to infinity. Furthermore, the following
theorem from [152] gives support to this conjecture, by showing that such bounds indeed
follow from the PFR conjecture.

Theorem (4.2.7) (Approximate duality assuming PFR, exponential loss [152])[151]:
Assuming the PFR Conjecture (4.2.4), for every pair of constants & > § > 0 there exists a
constant ¢ > 0, depending only on a and &, such that the following holds. If A, B € F}
satisfy |A|, |B| > 2™ and D (A4, B) = 27", then there exist subsets A’ € 4, |A’'| = 279"|A|
and B’ € B, |B’| = 27"|B| such that D(4’,B") = 1.

Our main technical contribution is the following generalization of the above theorem.
Lemma (4.2.8) (Main technical lemma)[151]: Assuming the PFR Conjecture (4.2.4) there
exists a universal integer r such that the following holds. Suppose that A, B € {0, 1}" satisfy
D(A,B) = €. Then for every K > 1 and t = n/logK, there exist subsets A’, B’ of A,B
respectively such that D(A’,B') = 1, and

4] >( @ (4n)‘t\‘ 5] >/ g Zt) (99)

ITl‘\ nk "IB] T\ nK
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The proof of the above lemma appears. To see that it is indeed a generalization of

on
Theorem (4.2.7) set K = 23r,t = %T,( =2 = 53r,e = 27%" and note that in this case

3r-2t 3725
the above lemma assures the existence of |A'| = 27%"|A|,|B’| = 27%"|B| such that
D(A',B") = 1. Note that Lemma (4.2.8) actually improves on the previous Theorem (4.2.7)
even in this exponential range of parameters in that its parameters do not depend on the sizes
of the sets A and B as was the case in Theorem (4.2.7).

However, the main significance of Lemma (4.2.8) is that it allows one to tradeoff the loss
in the sizes of A" and B’ with the value of e for a wider range of parameters. More
specifically it allows one to achieve a loss in the sizes of A’ and B’ which is only sub-
exponential in n by requiring € be a bit larger. In particular, the following corollary of
Lemma (4.2.8) will enable us to prove the new upper bound of O (rank(M)/log rank(M))
on the communication complexity of {0, 1}-valued matrices assuming the PFR conjecture.
Corollary (4.2.9) (Approximate duality assuming PFR, sub-exponential loss)[151]:

Suppose that A,B < F} satisfy D(4,B) = 27V Then assuming the PFR Conjecture
(4.2.4), there exist subsets A’, B’ of A, B respectively such that D(A’,B') =1, and |A'| =

2 logn |A|,|B’| = 2 loen|B| for some absolute constant c.

4in
Proof: Follows from Lemma (4.2.8) by setting K = 2logn, t = loffn, =27V,
Note that in Corollary (4.2.9) the ratios |A’|/|A|, |B'|/|B| are bounded from below by

cn

2 logn \whereas in Theorem (4.2.7) we only get a smaller bound of the form 274" for some
constant § > 0. However, this improvement comes with a requirement that the duality
measure D(A, B) is larger — in the above corollary we require that it is at least 27V while
in Theorem (4.2.7) we only require it to be at least 275" « 27V \We note that the bound
D(4,B) = 27V can be replaced by D(4, B) = exp(—n'~¢) for any € > 0 at the price of a
larger constant ¢ = c(e).

We stress that a benefit of the proof of Lemma (4.2.8) is that it simplifies the original
proof of Theorem (4.2.7) in [152]. Indeed, we believe that the presentation of the proof that
appears is clearer and less involved than that in [152]. Also, the fact that the parameters in
Lemma (4.2.8) do not depend on the sizes of A and B allows us to deduce new equivalence
between approximate duality and the PFR conjecture in the exponential range that was not
previously known. We elaborate on this equivalence in the full version of [173].

First we show how our Main Theorem (4.2.20) is deduced from the improved bounds
on approximate duality in Corollary (4.2.9). Then we give an overview of the proof of
Lemma (4.2.8) itself.

a) From approximate duality to communication complexity upper bounds.: We follow
the approach of Nisan and Wigderson from [160]. Let the size of a matrix M be the number
of entries in it and if M is {0, 1}-valued let §(M) denote its (normalized) discrepancy,
defined as the absolute value of the difference between the fraction of zero-entries and one-
entries in M. Informally, discrepancy measures how “unbalanced” is M, with 6(M) =1
when M is monochromatic — all entries have the same value — and § (M) = 0 when M is
completely balanced.

Returning to the work of [160], they observed that to prove the log-rank conjecture it
suffices to show that a {0, 1}-valued matrix M of rank r always contains a monochromatic

sub-matrix of size |M|/qpoly(r) where gpoly(r) = 7108”1 means quasi-polynomial in
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r. Additionally, they used spectral techniques (i.e., arguing about the eigenvectors and
eigenvalues of M) to show that any {0, 1}-valued matrix M of rank r contains a relatively
3

large submatrix M’ — of size at least |M|/rz — that is somewhat biased — its discrepancy

3

Is at least 1/rz. We show, using tools from additive combinatorics, that M’ in fact contains
a pretty large monochromatic submatrix (though not large enough to deduce the log-rank
conjecture).

We start by working over the two-element field F,. This seems a bit counter-intuitive
because the log-rank conjecture is false over IF,. The canonical counterexample is the inner
product function IP(x, y) = (x, y), — Itis well-known (see e.g. [174]) that rankg, (M;p) =
n while CC(IP) = n. However, rather than studying M over F, we focus on the biased
submatrix M’ and things change dramatically. (As a sanity-check notice that M,;, does not
contain large biased submatrices and this does not contradict the work of [160] because the
rank of M;, over the reals is 2™ — 1.)

Thus, our starting point is a large submatrix M’ that has large discrepancy. It is well-
known that rankp,(M") < rank(M") < r and that this implies M’ can be written as M =
AT - B where A, B are matrices whose columns are vectors in F5. Viewing each of A, B as
the set of its columns, we have in hand two sets that have a large duality measure as defined

3

in (98), namely, D(A,B) = 6§(M") = 1/rz. This is the setting in which we apply Corollary
(4.2.9) and deduce that A, B contain relatively large subsets A’, B" with D(A’,B') = 1. One
can now verify that the submatrix of M’ whose rows and columns are indexed by A’, B’
respectively is indeed monochromatic, as needed. We point out that to get our bounds we
need to be able to find monochromatic submatrices of M’ even when M’ is both small and
skewed (i.e., has many more columns than rows or vice versa). Fortunately, Corollary
(4.2.9) is robust enough to use in such settings.

b) Improved bounds on approximate duality assuming PFR.: We briefly sketch the proof
of our Main Technical Lemma (4.2.8). We use the spectrum of a set as defined in [175]:
Definition (4.2.10) (Spectrum)[151]: For a set B € % and a € [0, 1] let the a-spectrum
of B be the set

Specy(B): = {x € F||Epep[(—1)*P2]| = a}. (100)

Notice that A € Spec.(B) implies D(A4,B) = € (cf. (98)). In the other direction,

Markov’s inequality can be used to deduce that D(A, B) = € implies the existence of A" <

A of relatively large size — |A"| = §|A| — such that A" € Spece(B). To prove our lemma
2

we start with A; = A’ and establish a sequence of sets

Ay C A +4,, As;CA,+A,..
such that A; < Spec,, (B) for all i. This holds by construction for A; with e; = €/2, and we
show that it is maintained throughout the sequence for increasingly smaller values of €;(we
shall use €; = €7 ,).

Moving our problem from the field of real numbers to the two-element field IF, now pays
off. Each A; is of size at most 2™ so there must be an index i < n/log K for which |4;;,| <
K|A;|, let t be the minimal such index. We use the PFR conjecture together with the Balog—
Szemeredi—Gowers Theorem “ 11.1 from additive combinatorics to show that our assumption
that |[A;;+1| < K|A,| implies that a large subset A}’ of A; has small span (over [F,).

We now have in hand a set Ay which is a relatively large fraction of its span and
additionally satisfies D(A{, B) = €, because by construction A;' € Spec.,(B). We use an
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approximate duality claim from [152] (Lemma (4.2.12)) which applies when one of the sets
is a large fraction of its span (in our case the set which is a large fraction of its span is A}).
This claim says that Ay and B each contain relatively large subsets A;, B satisfying
D(A:, B{) = 1. Finally, recalling A; is a (carefully chosen) subset of A,_, + A;_;, we argue
that A;_, contains a relatively large subset A;_ that is “dual” to a large subset B;_; of B,
where by “dual” we mean D(A;_,, B{_;) = 1 (in other words A;_, is contained in an affine
shift of the space dual to span (B;_;)). We continue in this manner to find pairs of “dual”
subsets for t — 2,t — 3,..., 1 at which point we have found a pair of “‘dual” subsets of A, B
that have relatively large size, thereby completing the proof.

The new connection between additive combinatorics and communication complexity
seems to us worthy of further study. In particular, the exciting recent advances in additive
combinatorics [165], [167], [168] use a rich palette of tools that may yield further insights
into problems in communication complexity. We end by briefly pointing out a few
directions we find interesting.

¢) Improved unconditional bounds on communication complexity: Given the recent
QFR result of [167] (Theorem (4.2.5)) which comes very close to proving the PFR
conjecture, it is interesting to see if it implies any unconditional improvement on
communication complexity of low-rank matrices. Looking at our proof of Lemma (4.2.8),
we apply the PFR conjecture to a subset A; of A, which satisfies |A; + A;| < K'|A;| for

K' = K/ezt. Fore < %this gives a non-trivial bound only if t = O(logn). Since t could be

as large as n/log K we are forced to choose K = 20(@) which implies in turn K' =

29(@) Thus, Sander’s QFR Theorem (4.2.5) does not yield any non-trivial bounds in our
case. However, for purposes of improving the unconditional upper bound of Kotlov (cf. 2)
say, to CC(M) < rank(M)/4, it suffices to improve the loss in the size of A in Theorem
(4.2.5) from K ~0008: K) g g =clogK for g sufficiently small constant c.

d) Improved conditional bounds: The bounds on approximate duality in can possibly be

significantly improved. For all we know, the exponential loss of 2-0(Vn) shown May be
tight, and this would lead to an improved version of Corollary (4.2.9) in which the sizes of

n

|A’|,|B'| are a 2-°(") fraction of A and B respectively, instead of the 2_0(@) loss we
currently have. Such a result would translate directly to an upper bound on communication

complexity of the form CC(M) < 0O (\/rank(M)). In order to make further progress one

might want to also consider working over finite fields that are larger than 2, or over the reals.
As a first step in this direction, one may wish to investigate whether there are interesting
approximate duality statements over such fields.

e) Does the log-rank conjecture imply the PFR conjecture?: Alternatively, does it have
any other nontrivial consequences in additive combinatorics? We believe the answer to this
question is positive and make a step in this direction by showing an equivalence between
approximate duality and PFR statements in the exponential range, namely, when the losses
in the sizes of sets in both approximate duality and PFR is exponential in n (See [173] for
an exact statement and details of the proof.)

We contain the proof of the Main Technical Lemma (4.2.8). The proof of Main
Theorem (4.2.20) given Corollary (4.2.9).

We prove our Main Technical Lemma (4.2.8). We start with some additive
combinatorics.
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f) Additive combinatorics preliminaries: In what follows all arithmetic operations are
taken over F,. For the proof of Lemma (4.2.8) we need two other theorems from additive
combinatorics. The first is the well-known Balog—Szemeredi—Gowers Theorem of [176],
[11].

Theorem (4.2.11)[151]: (Balog—Szemeredi—Gowers). There exist fixed polynomials
f(x,v),9(x,y) such that the following holds for every subset A of an abelian additive
group. If A satisfies Pr [a+a' € S] = 1/K for |S| < C|A|, then one can find a subset

a,a’eA[
A' € Asuchthat |A'| = |A|/f(K,C),and |A" + A"| < g(K, C)]|A].
The second is a lemma from [152] which can be seen as an approximate duality statement
which applies when one of the sets has small span:
Lemma (4.2.12)[151]: (Approximate-duality for sets with small span, [152]). If D(4,B) =

2
€, then there exist subsets A’ € A,B' € B, |A’| = 5|A|, |IB'| > < 4] |B]|, such that
4 4 |span(4)|
D(A",B") = 1. If A C Spec,(B) then we have 4’| > |A|/2 and |B'| = € |spc|:ll(A)| IB| in

the statement above.
Recall the definition of the spectrum given in (100):

Specg(B): = {x € F}||Epes[(—1)*P2]| = a}.
Finally, for S c F} and x € F} let reps(x) be the number of different representations of x
as an element of the form s + s’ where s,s’ € S.reps(x) can also be written, up to a
normalization factor, as 15 * 15(x) where 15 is the indicating function of the set S and *
denotes convolution.

g) Proof overview: We construct a decreasing sequence of constants

€ €2 €2
€1 == 62=7, E3=7,...

and a sequence of sets A;:= A N Spec. (B),A; € (A; + A1) N Spec,,(B),A; € (A, +
Ay) N Spec,,(B), ...
Since each of the sets in the sequence is of size at most 2™ there must be an index i <
n/log K for which

|4i+1] < K|4;] (101)
and let t be the minimal such index. The PFR Conjecture (4.2.4) together with the Balog—
Szemeredi-Gowers Theorem (4.2.11) will be used to deduce from (101) that a large subset
A¢ of A, has small span. Applying Lemma (4.2.12) to the sets A; and B implies the
existence of large subsets A; € A; and B{ € B such that D (A}, B{) = 1. Finally we argue
inductively fori =t — 1,t — 2,...,1 that there exist large subsets A; € A; and B; € B
such that D(A;, B;) = 1. The desired conclusion will follow from the i = 1 case. To be able
to “pull back™ and construct a pair of large sets A;_,, B;_, from the pair A;, B; we make sure
every element in 4; is the sum of roughly the same number of pairsin A;_; X A;_;.

h) The sequence of sets: Lete;: = €/2,A4,: = AN Spec., (B). Assuming A;_4, €;_, have
been defined set ¢; = €?,/2 and let j; € {0,...,n — 1} be an integer index which
maximizes the size of

{(a,a") € Aj_1]|a+a € Spece,(B)and 2/i < rep,,_ (a+a') < 2/it1}(102)
and set

A= {a +a’ (103)

a,a’ € A;_;,a+a’ € Spec.,(B) and
2/i <rep,,_ (a+a') < 2/in
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Claim (4.2.13)[151]: For i = 1 we have |4;]| = (g) |A|. Fori > 1 we have

Pr [a+a €A;]]=¢€/n (104)
a,a’€dj_4
and additionally
141l 2 i 1Al (105)

Proof: The case of i = 1 follows directly from Markov’s inequality. For larger i we argue
that

[a + a’ € Spec,, (B)] > €;.

aa EAL 1
To see this use Cauchy-Schwarz to get

1} 2
Eoaen, [Eves(—D' | = Epep(Baea,, [(-D?])" 2 (o, | rayem) = €1
and apply Markov’s inequality to deduce that an ¢;-fraction of (a,a’) € A;_; X A;_; sum
to an element of Spec, (B). Selecting j; to maximize (102) yields inequality (104). Since

every element x € A; can be represented as x = a + a’ with a,a’ € A;_; in at most 2/i*1
different ways we deduce (105) from (104) and complete the proof.

i) The inductive claim: Let t be the minimal index such that |A;,,| < K|A;| and note
that t < n/log K because all sets A; are contained in [F%;. We shall prove the following claim
by backward induction.

Claim (4.2.14) (Inductive claim)[151]: Fori = t,t — 1,..., 1 there exist subsets
A; € A, B, S B
such that D(A4;, B;) = 1 and A;, B; are not too small:

t
+3mmﬁﬂ(fkhﬂmm

=i
t+1 —(t=0)
1B = poly () 20 )

We split the proof of the claim to two parts. The base case (Proposition (4.2.15)) is proved
using the tools from additive combinatorics listed in the beginning. The inductive step is
proved in Proposition (4.2.16) using a graph construction. Before proving Claim (4.2.14)
we show how it implies Lemma (4.2.8).

Proof of Main Technical Lemma (4.2.8): Set i = 1 in Claim (4.2.14) above. Recall that
€41 = €7 /2 forall i, so

, €
|41 = poly (—

£
_ 2t jn2t—q f ?
€pp1 = €° /2 > (2)
2t 2t+1
Thus we have €;,; = G) and [T5_, €p4q = (g) . This gives the bounds on A’, B’ stated
in (99).

Proposition (4.2.15) (Base case of Claim (4.2.14) (i = t))[151]: There exist subsets A; <
A;, B{ € B, such that D(A;, B;) = 1 and A, B; are not too small:

1451 = poly (=£2) 14,1,

|&1>pdy(“”)W|

Proof:
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By assumption |A;,1| < K|A;| and BEA l[a+a' € A;iq] = €:41/n by (105). Hence we
a,a t

can apply the Balog—Szemeredi—Gowers Theorem (Theorem (4.2.11)) to the set A, to obtain
a subset A, € A, such that

4| = poly (Z2) 14,1,
And
|4, + 4| <poly( >|A | —poly( )|A |
€t41

Now we can apply the PFR Conjecture (4.2.4) to the set 4, which gives a subset A} € 4,
such that

4| = poly( )14 = poly (= ) 14dl
And

nkK
[span (A7) < 4| = poly (=) 1471
€t+1

Recall that A;" € Spec,,(B), and in particular D(A¢', B) = €,. Applying Lemma (4.2.12) to
the sets Ay and B we conclude that there exist subsets A; € A/,B’ € B such that
D(A;, B") = 1, and which satisfy |A;| = = |A”| and

| t+1
B!| > 2— B| = poly B
| tl Et |Span(A2’)|| | pO (n )l |

This completes the proof of the base case.
Proposition (4.2.16) (Inductive step of Claim (4.2.14))[151]: Foreveryi=t — 1,...,1

there exist subsets A; € A;, B; < B such that D(4;, B;) = 1 and A;, B; are not too small:

t
147 = poly (1) (4m) e (1_[ e“l) 14,

=i
1B/l = poly (=) 27«95,

Proof: Suppose that the claim is true for i and argue it holds for index i — 1. Let G =
(A;_1, E) be the graph whose vertices are the elements in 4;_,, and (a,a’) isan edge if a +
a' € A;. We bound the number of edges in this graph from below. Recall from (103) that
every a € A; (Where A € A;) satisfies 2/t < rep,,__(a) < 2/t*1. Using this we get

t

Et+1)0(1) |4;]

nK/  (am)cDn] |
=i

|E|22fi-|A|>21(

t
R TIRTNA O NN V: VRN -
22”( t+1) | i 1|. .'l —[E{7+1
nkK (4n)t-D 2Ji+1n L

l
t

=2. (Et+1)0(1) |Ai—1? .
T \nk /(o) L1
=i

The first inequality follows because rep,,  (x) = 2Ji for all x € A}, the second uses the
induction hypothesis and the third follows by (105).
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Let M: = poly (%) (4n)~(=C-D)([T5_._, €,44). Since our graph has at least 2M|A;_, |2
edges and |A4;_,| vertices, it has a connected component with at least 2M|A;_, | vertices and
denote by A;"; the set of vertices in it.

Choose an arbitrary element a in A;_,. Partition B; into two sets B;, and B; ; such that
all elements in B; , have inner product 0 with a, and all elements in B; ; have inner product
1 with a. Let B;_, be the larger of B;,, B;,, and note that |B;_,| = |B;|/2. Recall that our
assumption was that D(A;, B;) = 1. Abusing notation, let (A;, B;), denote the value of
(a',b"), for some a’ € A;, B; (the choice of a’, b’ does not matter because D(A4;, B;) = 1).
Next we consider two cases — the case where (4;, B;), = 0, and the case where (4;, B;), =
1.

In the first case we have that for every a,a’ € A;_; which are neighbors in the graph,
a + a' € A;, and therefore (a + a’, b), = 0 for every b € B;_,. This implies in turn that
(a,b), = (a', b), for all elements a,a’ € A;"; which are neighbors in the graph, b € B;_;.
Since A;"; induces a connected component, and due to our choice of B;” ;, this implies that
D(A;_,,Bi_;) =1sowesetA;_; = A;" ;.

In the second case we have that (a + a’,b), = 1 for every a,a’ € A;_; which are
neighbors in the graph, b € B;_,. In particular this implies that (a, b), = (a’, b), + 1 for
every elements a,a’ € A;”; which are neighbors in the graph, b € B;_,. This means that
A;", can be partitioned into two sets A;_, o, A;_1 ;, where the first one contains all elements
in A;"; that have inner product 0 with all elements in B;”;, while the second set contains all
elements in A;"; that have inner product 1 with all elements in B;_;. We set A;_, to be the
larger of these two sets and get D(A4;_,,B;_;) = 1and |A;_;| = M|A;_4].

Concluding, in both cases we obtained subsets A;_,, B;_; of A;_,, B respectively, such that
D(A;_{,B;_;) = 1and A;_,, B;_, are not too small:

t
|A,'—1| €t+1 0() —(f—(i—

f=i—1

and

|B{_4| _ 11B;| _ 1 €t+1\ H_(t—i) _ €t+1\ —(t—(i-1
B 228 2200 Gig) 27 = poy () 27
This concludes the proof of the inductive claim.
We prove our main theorem, Theorem (4.2.20) given Corollary (4.2.9). The proof of
the main technical lemma is deferred.

We start by repeating the necessary definitions. For a {0, 1}-valued matrix M, let CC (M)
denote the communication complexity of the boolean function associated with M. Let
rank(M) and rankg, (M) denote the rank of M over the reals and over I, respectively. We
denote by |M| the total number of entries in M, and by |M,| and |M,| the number of zero
and non-zero entries of M, respectively. We say that M is monochromatic if either |M| =

|M,y| or |[M| = |M,]|. Finally, we define the discrepancy 6 (M) of M to be the ratio 1ol =123

|M|
. Recall the statements of Theorem (4.2.20) and Corollary (4.2.9).
Assuming the PFR conjecture (Conjecture (4.2.4)), for every {0, 1}-valued matrix M,

COOMY = 0 rank (M)
(M) = <logrank(M)>'

130



Suppose that A, B < % satisfy D(A,B) > 27V Then assuming the PFR conjecture,
there exist subsets A',B’ of A, B respectively such that D(A’,B’) =1, and |A'| =

cn cn

2 logn|A|,|B'| = 2 leen|B| for some absolute constant c.

We first prove that the above corollary is equivalent to the following one:

Lemma (4.2.17) (Main technical lemma, equivalent matrix form)[151]: Let M be a
{0, 1}-valued matrix with no identical rows or columns, of rank at most r over IF,, and of

discrepancy at least 2V Then assuming the PFR conjecture (Conjecture (4.2.4)), there

exists a monochromatic submatrix M’ of M of size at least 2 logr|M| for some absolute
constant c.

Proof: We prove only the Corollary (4.2.9) = Lemma (4.2.17) implication. The proof of
the converse implication is similar. Denote the number of rows and columns of M by k, £
respectively. It is well known that the rank of M over a field [F equals r if and only if M can
be written as the sum of r rank one matrices over the field F. Since ranky, (M) < r this
implies in turn that there exist subsets A,B € F,, A = {a,,a,,...,a;},B = {by,b,,..., b}
such that M; ; = {a;, bj), forall 1 <i < k,1 <j <. Since M has no identical rows or

columns we know that |4| = k, |B| = €. Note that D(4, B) = §(M) = 27V
Corollary (4.2.9) now implies the existence of subsets A" € A,B' S B,|A'| =

2 logr|A|,|B’| = 2 leer|B|, such that D(A’,B') = 1. Let M’ be the submatrix of M whose
rows and columns correspond to the indices in A" and B’ respectively. The fact that
D(A’,B") = 1 implies that M; ; = (a;, b;), = constforall a; € A, b; € B'. Therefore M is

a monochromatic submatrix of M of which satisfies
2CTr 2CTr

IM'| = |A'||B'| = 2 187 |A||B| = 2 lo8T|M]|,
as required.

In order to prove Theorem (4.2.20) we follow the highlevel approach of Nisan and
Wigderson [160] which was explained. They showed that in order to prove the log-rank
conjecture it suffices to prove that every {0, 1}-valued matrix of low rank has a large
monochromatic submatrix. We start with the following lemma.

Theorem (4.2.18)[151]: (Existence of submatrix with high discrepancy [160]). Every
3

{0, 1}-valued matrix M has a submatrix M’ of size at least (rank(M)) 2|M| and with

3
§(M") = (rank(M)) >.
Lemma (4.2.19)[151]: (Existence of large monochromatic submatrix assuming PFR).

Assuming the PFR conjecture, every {0, 1}-valued matrix M with no identical rows or
rank(M)

columns has a monochromatic submatrix of size at least 2_0(logmnk(M)) |M|.

In order to prove the above lemma we use Lemma (4.2.17), together with the following

theorem from [160], which says that every {0, 1}-valued matrix M contains a submatrix of

high discrepancy:

Proof: Let r = rank(M). Theorem (4.2.18) implies the existence of a submatrix M of M’
3

-2 3
with |M'| > (rank(M)) 2|M|, and §(M") > r 2 > 27V". Note also that
rankg,(M) < rank(M') < rank(M) =r.
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Lemma (4.2.17) then implies the existence of a monochromatic submatrix M of M’ of size

at least 2 loer|M’| for some absolute constant c. So we have that M"' is a monochromatic

submatrix of M which satisfies
cr cr 3

r
IM"| = 27 Tog7|M'| > 2 1087 Z|M| = 2‘0(@>|M|
Theorem (4.2.20) (Main)[151]: Assuming the PFR Conjecture (4.2.4), for every {0,1}-
valued matrix M

CoM) = 0( rank (M) >

log rank (M)
Proof:
Let M be a {0, 1}-valued matrix. We will construct a deterministic protocol for M with

communication complexity O _rankM) . We may assume w.l.0.g that M has no repeated
P y log rank(M) y 9 p

rows or columns, otherwise we can eliminate the repeated row or column and the protocol
we construct for the “compressed” matrix (with no repeated rows/columns) will also be a
protocol for M.

We follow the high level approach of the proof of Theorem 2 from [160]. We will show

a protocol with 20(@) leaves. This will suffice since it is wellknown that a protocol with t
leaves has communication complexity at most O(logt) (cf. [174]).

Now we describe the protocol. Let Q be the largest monochromatic submatrix of M.
Then Q induces a natural partition of M into 4 submatrices Q, R, S, T with R sharing the
rows of Q and S sharing the columns of Q.

_(Q R
M=(5 1)
Let U; be a subset of the rows of (Q|R) whose restriction to the columns of R span the

rows of R. Similarly, let U, be a subset of the rows of (§|T) whose restriction to the columns
of S span the rows of S. Note that if Q is the all zeros matrix then the rows of U, are
independent of the rows of U,. Otherwise, if Q is the all ones matrix then the rows of U, are
independent of all the rows of U, except possibly for the vector in U, whose restriction to
the columns of S is the all ones vector (if such vector exists). Thus since Q is monochromatic
we have that rank(R) + rank(S) = |U,| + |U;| < rank(M) + 1.

If rank(R) < rank(S) then the row player sends a bit saying if his input belongs to the
rows of Q or not. The players continue recursively with a protocol for the submatrix (Q|R)
or the submatrix (S|T) according to the bit sent. If rank(R) = rank(S) the roles of the row
and column players are switched.

Suppose without loss of generality that rank(R) < rank(S). Then after sending one bit
we continue with either the matrix (Q|R) which is of rank at most rank (M) /2 or with the
matrix (S|T) which — thanks to Lemma (4.2.19) — is of size at most (1 — &§)|M| for § >

2_logr_
Let L(m,r) denote the number of leaves in the protocol starting with a matrix of area at
most m and rank at most r. Then we get the following recurrence relation:

L(m,7) < {L (mg) +L(m(1 — 6),r) r>1
1 r=1
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T

It remains to show that in the above recursion (m,r) = 270 ( ) Applying the recurrence

logr

iteratively 1/6 times to the right-most summand we get
1 cr
L(m,r) <6 L(m,r/2) + L (m(l — 8)3, r) < 2logML(m,r/2) + L(m/2,1).

2cr

Set A(m,r):= 2 legrL(m,r). Then we have A(m,r) < A(m,r/2) + A(m/2,7) which

: : logm + logr
together with A(1,7),A(m,1) < 1 imply A(m,r) < ( logr
the recursion iteratively at most log r times to the left term and log m times to the right term

. . 1 ]

before we reach A(1,r) or A(m,1). This in turn implies A(m,r) < ( Ogrﬁ);—rOgr) <
r20087) due to the fact that r < m < 227, since we may assume there are no identical rows
or columns in the matrix M.

) since we may apply

2cr
i =——+0(log?
Concluding, we have (m,r) < 2legr (log? 1)

as claimed.
Section (4.3): The Structure of the Spectrum of Small Sets

For G be a finite Abelian group, and let A be a subset of G. For a character y € G,
the corresponding Fourier coefficient of 1,

T4 = ) v,
- - XEA - - -
The spectrum of A is the set of characters with large Fourier coefficients,

Spec.(A) = {y € G: |T ,()| = elAl}.
Note that the spectrum of a set is a symmetric set, that is Spec.(A) = —Spec.(A), where
we view G as an additive group (which is isomorphic to ¢). Understanding the structure of
the spectrum of sets is an important topic in additive combinatorics, with several striking
applications discussed below. As we illustrate, there is a gap in our knowledge between
combinatorial structural results, which apply to all elements in the spectrum, and statistical
structural results, which apply to most elements in the spectrum. The former results apply
only to large sets, typically of the size |A| = |G|¢ for some absolute constant ¢ > 0, where
the latter results apply also for smaller sets. The goal is to bridge this gap.
Our interest in this problem originates from applications of it in computational complexity,
where a better understanding of the structure of the spectrum of small sets can help to shed
light on some of the main open problems in the area, such as constructions of two source
extractors [19], [15], [152] or the log rank conjecture in communication complexity [151].
We refer to a survey by applications of additive combinatorics in theoretical computer
science [179]. We focus on the core mathematical problem, and do not discuss applications
further.
We assume from now on that |[A| = |G|* where a > 0, > 0 are arbitrarily small
constants, which is the regime where current techniques fail. In fact, our results extend to
some range of sub-constant parameters, but only mildly. First, we review the current results
on the structure of the spectrum, and their limitations.
Size bound The most basic property of the spectrum is that it cannot be too large. Parseval’s
identity bounds the size of the spectrum by

, which implies in turn CC(M) = O(r/logr)

Gl _ 61"

|SpeC€(A)| S £2|A| - 82
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However, this does not reveal any information about the structure of the spectrum, except
from a bound on its size.
Dimension bound A combinatorial structural result on the spectrum was obtained by Chang
[126]. She discovered that the spectrum is low dimensional. For a set I' S G, denote its
dimension as the minimal integer d, such that there exist y4,...,¥4 € G with the following
property: any element y € I can be represented as y = Y¢;y; withg; € {—1,0,1}. With
this definition, Chang’s theorem asserts that

dim(Spec.(4)) < 0(e7* log(|G|/IAl)).
Chang [126] used this result to obtain improved bounds for Freiman’s theorem on sets with
small doubling, and Green [130] used it to find arithmetic progressions in sumsets.
Moreover, Green [145] showed that the bound in Chang’s theorem cannot in general be
Improved, at least when A is not too small. Recently, Bloom [178] obtained sharper bounds
for a large subset of the spectrum. He showed that there exists a subset I' € Spec.(A) of
size [I'| = € - |Spec.(A)] such that

dim(I') < 0(e~*log(|G|/IA])).

He applied these structural results to obtain improved bounds for Roth’s theorem and related
problems. However, we note that in our regime of interest, where |A| = |G|% with 0 <
a < 1, both results become trivial if € is a small enough constant. This is because both give
a bound on the dimension of the form 0(¢™¢(1 — «)) - log |G| with ¢ € {1,2}. However,
any set I' < G trivially has dimension at most log |G|. As our interest is in the regime of
any arbitrarily small constant @, ¢ > 0, we need to turn to a different set of techniques.
Statistical doubling Bourgain [1] showed that for many pairs of elements in the spectrum,
their sum lands in a small set. Concretely,

> 2
yl'yzegyrecg(ﬂ) [v1 + v2 € Specez),(A)] = €°/2,
where we note that by Parseval’s identity, |Spec,z,,(A)| < O0(|G|17* /e%). He used these
results to obtain improved bounds on exponential sums. Similar bounds can be obtained for

linear combinations of more than two elements in the spectrum, for example as done by
Shkredov [124]. If we assume that |Spec,z,,(A)| < K|Spec,(A)|and apply the Balog—
Szemerédi—Gowers theorem [176], [11], this implies that there exists a large subset I' <
Spec.(A) suchthat [ + I'| < (K/&)°(%)|T|. However, it does not provide any bounds
on the sumset of the entire spectrum, that is on |Spec.(A) + Spec.(A)|. In fact, we will
later see an example showing that this sumset could be much large than the spectrum,
whenever ¢ < 1/2.
The motivating question for the current work is to understand whether the statistical
doubling result described above, can be applied for the entire spectrum. That is, can we
obtain combinatorial structural results on the sumset of the entire spectrum Spec.(4) +
Spec.(A).
As a first step, we ask for which a, & > 0 is is true that, for any set A of size |A| = |G|%,
the sumset Spec.(4) + Spec.(A) is much smaller than the entire group. There are two
regimes where this is trivially true. First, when @ > 1/2, it is true since by Parseval’s
identity, Spec.(A) is smaller than the square root of the group size, and hence
2

|Spec.(A) + Spec.(4)| < |Spec.(A)|?> < w.
Also, when € > 1/2 then Spec.(A) + Spec.(A) S Spec,._,(A) (see, e.g., [175] for a
proof) and hence again by Parseval’s identity, the size of the sumset is bounded by
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| |1—a

|Spng(A) + Specs(A)l < |SpeC£(A)|2 =< (28 _ 1)2'

As the following example shows, the thresholds of @ = 1/2,¢ = 1/2 are tight.
Example (4.3.1)[177]: LetG = Z3™and A = (Z% x {0™}) U ({0™} X Z}).Then|A| =
2|G|*? — 1,Spec;,(A) = AandA + A = G.

So, it seems that such structural results are hopeless when a, ¢ < 1/2. However, there is
still hope: in the example, if we restrict to a large subset A =Z% x {0"} < A, then
Specy2(A) = {0"} X Z7 is a subgroup, and specifically the size of Spec;,,(A) +
Specy/2(A ) is bounded away from the entire group. Our first result is that this is true in
general. In fact, the size of the sum set is close to the bound given by Parseval’s identity,
which is approximately |G|*~¢.

A more refined notion of structure is that of bounded doubling. Here, we say that a
set I" has a doubling constant K if |I' + I'| < K|I'|. Note that if |Spec.(A )| has size close
to the bound given by Parseval’s identity, which is roughly |G|1~%, then Theorem (4.3.3)
would show that Spec.(A4 ) has a small doubling constant K = C|G|®. We conjecture that
this is always the case. However, we could only show it if we are allowed to change the
value of € somewhat. We state both the theorem and the conjecture below.

Conjecture (4.3.2)[177]: Fix 0 <d<a < 1/2and 0 < ¢ < 1/2. Let A € G of size

|A| = |G| a. Then there exists a subset A’ € A of size |[A"| = |A|/C such that
Spece(A") + Spec.(A")| < CIG|® - |Spec.(4")],

where C = C(¢,6).

We use big-O notation. For two quantities x, Y, the expression x = 0(Y) means
x < ¢l for an unspecified absolute constant ¢ > 0. We also use c,c’, c;, etc. to denote
unspecified absolute constants, where the big-O notation may be confusing. The value of
these may change between different instantiations of them. We make no effort to optimize

constants. Also we use E as average operator, i.e., E, € Af = ﬁ Yaca f(a).

We prove Theorem (4.3.3) and Theorem (4.3.13).
Theorem (4.3.3)[177]: FiXx 0 <d<a< 1/2and 0 < € < 1/2. Let A € G of size
|A| = |G| a. Then there exists a subset A € A of size |[A| = |A|/C such that
G 1+6
|SpeC8(A’) + Specs(A)l < (1/8)0(1/6) ’ | |1|4'|
where C < exp((1/£)°01/%),
Proof: We begin by introducing some notation. For A € G and I' € G, define an |A| x
|I’| complex matrix M = M(A, I'), with rows indexed by A and columns by I, as follows.
First, denote by y(A) := E,c4[y(a)] the average value of the character y on A. Define
y(4)
M,, = y(a) —=.
v = YL@

With this definition, we have that forany I' € Spec.(4),

M@ =) | y@

YEr la€A
We next define a notion of regularity for M (A, I').

> ¢|A|IT). (106)
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Definition (4.3.4) (Regularity for M(A,I'))[177]: Let A € G,I’ € G. The matrix M =
M(A,TI') is called A-regular if for every pair of functions f: A - C,g: I' = C such
that(f,1, ) = 0or(g,1,) = 0 or both, it holds that
If"Mgl < 2If1] |lgl] _IAIIT].

It is conventional to use the L,-norm in definition of regularity, however in our case, the use
of L,-norm makes the argument more straightforward and gives better bounds. The
argument informally goes as follows. We divide into two cases. First, we show if M =
M (A, Spec.(A)) is A-regular for a suitable choice of A, then Spec.(A4) has bounded
doubling. Otherwise, if M is not A-regular, we find large subsets A’ € A,I""
Spec.(A) such that M(A',I'") has higher average. This allows us to revert to study
M(A’,Spec, (A')) where &' = & + 191199 and iterate.
First, we analyze the case where M is regular.
Lemma (4.3.5)[177]: Fix some 0 < ¢,p < 1 and I' € Spec,(A).IfM = M(A,T) is
ep/150-regular, then forany y € Spec, (A),thereisasubsetl;, < I',|I;,| = 0.9|I'| such
that

y + I, c S'pecgp/z(A).
Proof. Suppose towards contradiction that there is some y - € Spec.(A4) for which the
claim does not hold. That is, there exists a subset I'' € I" of size |I'| > 0.1|I| such that
vy e r’,

Y. + v & Specg,,(A).
Define a pair of functions f : A - Candg: I' = C by

fl@=y.(,
gly) = llllj,ll 1 (7).
We have o
fTMg =; LZEA Y. (a)y(a)% % 1 ()
- Illf’ll £ % ; y- (@y(@1p (¥)
N % y;, % ; . +v") (@)

By our assumption, vy’ € I',y. + ¥ & Spec,,,,(A). Therefore
fTMg| < (ep/2) - IT|IA|. _

Decompose fas f = f; + fowith f; = E calf(a)] - 14and gas g = g; + g, with
g1 = Eyerlg(y)] - 1 = 1. Then

fTMg = fi' Mg, + f; Mg, + fi' Mg, + f; Mg,. (107)
We have that (f,,14 ) = 0,(g,, 1) = 0and

Iff Mgy | = |Eaeaf (@) - (IAM1p)| = |Eqealy © (@]l - pITI|Al = ep|T||Al].

We show that the other terms in Equation (107) are too small to cancel out the contribution
of ff M, . Consequently, we reach a contradiction.
In each one of the terms ff Mg,, f.f Mgy, ff Mg, at least one of the functions are
orthogonal to the identity function. Therefore, we can bound the size of these terms using
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|f2||oo < 21

the % -regularity  assumption. We have ||fil| <1, lg.l] <

1|lg.1| . < 10, and hence
Iff Mgy + fif Mg, + f; Mg, | < (20 + 10 + 20) - (ep/150)|A]|T|
= (6p/3)2|AI|FI-
This implies that |fTMg| > 3 ep|A||T’|, which is a contradiction.

Next, we show how to use Lemma (4.3.5) to infer that if M = M(4, Spec,(A)) is % -

regular then [Spec.(A) — Spec.(A)| is small as long as |Spec,,/2(A)| =~ |Spec,(A)].
Lemma (4.3.6)[177]: If M = M(4, Spec,(4)) is % -regular, then

|Specep/2 (A) |2

|Spec,(A)|
Proof. Fix arbitrary y;,y, € Spec.(4). By Lemma (4.3.5) there exist sets 3,1,
Spec,(A) of size ||, |I3| = 0.9]|Spec,(A)| such that y; + I3,y, + [
Spece,/,(A). Forany y € I; N I we can then write

Vi = Y2 =01 +v)— (2 +7)
where y; + v,¥2 + v € Spece,/2(A). This gives |I7 N I;| = 0.8]|Spec,(A)| distinct
ways to write y; — y, as the difference of a pair of elements in Spec,, , (A). Consequently

|Spngp/2(A)|2 < |Spngp/2(A)|2

I NI~ 0.8|Spec,(4)|
Next, we consider the case that the matrix M is not A-regular for A = ep/150. In the
following we denote E[M] := E,, [M,, ].

Assumingthat M = M(A,T) is not A-regular, there are functionsf : A - Cand g :

I - cwith ||f]|_ =]|lgl|_ = 1, at least one of which is orthogonal to the identity
function, such that |[fTMg| = A|A||’|. As a first step towards proving Lemma (4.3.8), we
approximate f, g by step functions f and g, respectively.
Claim (4.3.7)[177]: Fixn > 0.Letf : A - Cbeafunctionwith||f]|_ = 1.Then there

exists a function f: A — C such that
IF = FIl <
with f =Y5, a;1,, ,where 4; € A are disjoint subsets and «; € C with |o;| < 1.

100
Moreover, k < 77

|Spec.(A) — Spec.(A)| < 2

N N

|Spec.(A) — Spec.(A)| <

Proof. We partition A based on the phase and magnitude of f. For r = [10/n] define
Aip ={a € A: j/r <|f(a)] = ( + 1)/rand 2nk/r < arg f(a)
< 2n(k + 1)/r}.
We partition A to subsets A; ; for j,k € {0,...,7 — 1}. Define the step function f as

r—1
f= Z j/r - eFmkIT 14

j,k=0
It is easy to verify that for all a € A,|f(a) — f(a)] < n as claimed.
We proceed with the proof of Lemma (4.3.8).
Lemma (4.3.8)[177]: If M = M(A,T')is not A-regular, then there exist subsets A <
A, € T such that
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|E[M(A", ")) = |E [M(A, D] + cA®,

where |A"| = cAS|A|,|I"| = cA¥®|I|,and ¢ > 0 is an absolute constant.

Proof: Let p := E[M'] be the average of M, and define a matrix M by M,,, = M,, — p,
so that E[M'] = 0. Note that [M;,| < 2 for all a € A,y € I'. We may assume for
simplicity that p is real and nonnegative, by multiplying all entries of M by an appropriate
phase e?, as this does not change any of the properties at hand.

As we assume M is not A-regular, there exist functions f: A - C,g: I' = Cwith
I£1]_.|lgl| . = 1,0ne of which at least sums to zero, such that || f"Mg| = A|A||T'|. Note

that fTM' g = fTMg.Let f,§ be their step function approximations given by Claim
(43.7)forn = A/8,where f =Y, a;1,,,§ =X, Bilr,andk s%. Moreover
FfMgl = |fT™M gl—I(f —HTM gl=If"M' (g — @I = 2/2 - |A|II'].

That is,
k

2 aB M| = A2 - AT
ij=1
In particular, there must exist A;, I; such that
LM 1| = (A/2k%) - |A|IT] = e 2° - |A|IT],
where ¢c; > 0 is an absolute constant.
If we knew that 1/T1i M'1 r; is real and nonnegative, say, then we would be done by choosing
A'= A,I'" = Tjasthen E[M(A',I")] = p + ¢;A°. However, it may be that its real part
is negative, canceling the average. To overcome this, we consider choosing A’ €
{A, A7 T € {I;, [°} (where A7 = A\ A;, [ = I'\I;)and show that one of the
choices satisfies the required properties. Set
ap = 1M1, a; = 1§é M1l as = 1£iM’1rjc,a4 t= 155 M'1r¢
and
B = AL Bz = |AS 1 |, Bs += 1A |, Ba = AT IITF .
Fix § = cA'® for an absolute constant ¢ > 0 to be chosen later. We will show that for
some i € {1,2,3,4}, we have |B;| = S|A||l'| and |a; + pBi| = (p + §)B;. This
implies that if we take A, I to be the corresponding sets, then |A"| = 6|A|, || =
6|l and [LuM1pr | = |a; + pBil = (p + OIA"||II7].
In order to show that, let us note that Ya; = 0, |a;| = ¢;A%|A||T|, B, = c,A%|A||T|, and
the £3; are real nonnegative numbers with '8, = |A||I"|. If for some i we have Re(«;) =
S|A||l| then |a; + pB;| = Re(a; + pfi) = S|AIC| + pBi = (p + 6)B; and we are
done. If Re(a;) < —6|A||T’| then, since ), a; = 0, there exists some j # i for which
Re(a;j) = 6/3 - |A]|I'|, and we are done by the previous argument. So, we may assume
that |[Re(a;)| < 6&|A||’| for all i. In particular |Re(a;)| < (6/c,A%)pB; . Hence
lay + pBil? = |pBy + Re(a)|® + Im(ay)* = p?Bf + lai|* — 2pBi|Re(al)]
> pf (p? + A0 = 28/¢12°) = Bf (p* + (cf — 2¢/c)A'),
where we used our choice of § = cA®®. If we choose ¢ > 0 small enough, we conclude
that also in this case, |a; + pBi| = (p + &)p;. Note that the condition B; = ¢;A°|A||T|
is automatically satisfied for all i, by making sure, let’s say, |4;| < |A|/2and |[; | <
1’1 /2.
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We now combine Lemma (4.3.6) and Lemma (4.3.8) in order to prove Theorem (4.3.3). The
high level idea is the following. Initialize p = ¢,I' = Spec.(A).If M(A,TI') is A-regular
for A = ep/150,and [Spec,,,» (A)| = |I'|, then the proof follows from Lemma (4.3.6)
and Parseval’s identity. Otherwise, one of two cases must occur. The first case that could

occur is that M(A,I') is not A —regular. Then by Lemma (4.3.8) we can replace A, I" with
A", I'" and increase p by a noticeable amount. This cannot occur too many times, as p < 1.
The second case that could occur is that [Speceo(A)| > |I'| = Spec,(A). Insuch a case,

2

we set p — &p/2 and increase the spectrum of A by a noticeable amount. As the spectrum
Is bounded by |G|, this again cannot happen too many times. Combining these steps together
requires a somewhat delicate balance act.
Let K = K(&, &) be a parameter to be optimized later. We define a sequence of sets A; <
A and parameters p; € [0,1] fori = 1, whereinitially A, = A,p, = €. Given 4;, p; set
A; = &p;/150 and run the following procedure:
(1) If M(A;, Spec,,, (A;)) is A;-regular and |Specepi(A;)| < K|Spec,, (A;)],thenset A* =
2
A; and finish.
(i) If M(A;, Spec,, (A;)) is not A;-regular then apply Lemma (4.3.8) to A; and Spec,, (4;).
Let A" < A;, " S Spec,, (A;) be the resulting sets such that |A"| = cA}® |4, || =
cAP | and |E[M(A,T)]| = p; + cA}®.Setd;, = A and Pis1 = p; +
G) A5 . Return to step (i).
(iii) If |Speceri(A;)| > K|Spec,, (A;)| thenset A;; = A;and p;pq = €p;/2. Return to
2
step (i).
Next, we analyze this procedure. First, note that if the procedure ends with A* = A; then
by Lemma (4.3.6) and Parseval’s identity we have that
G|

Spece(4”) = Speco(4)| < 2K [specep, (40| < 5 T 1Al . (108
g2p;

So, we need to show that p;, |4;| are never too small. Suppose that stages (ii) and (iii) occur
k, and k, times, respectively. Letn : {1,...,k,} = {1,...,k; + k,}bethe orderedindices
of occurrences of stage (iii). We first bound k;.

Claim (43.9)[177]: If i < nG)thenp; = () .

Proof. The value of p; increases in step (ii), and decreases in step (iii) by a factor of £/2. If
i < n(j) then we applied step (iii) at most j — 1 times, hence p; = (g/2)/71 p, =
(e/2) .

Claim (4.3.10)[177]: ForVj € {1,...,k, — 1},|n(G + 1) — n()| < (1/e)°D .
Proof. Consider a step i for n(j) < i < n(j + 1).We have that p;,; = p; +

15 .
G) (%) > p; + c'et®U*2) where ¢,c’ > 0 are absolute constants. As p; never

o 1\ (1\15G+2) |
exceeds 1 for all i, this process cannot repeat more than (E) (;) times. As we assume

£ < 1, this is bounded by (1/£)¢"/ for a large enough ¢’ > 0.
Corollary (4.3.11)[177]: k; < (1/&)0%2),

Combinatorial Theory, Series A 148 (2017) 1-14 11

Proof. By Claim (4.3.10), k; < Z;Zl (1/6)°V) < (1/)0k2)
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We next upper bound k,. To do so, we will show that in step (ii)) we have that
Spec,., . (Ai41) is not much smaller than Spec,, (4;).
Claim (4.3.12)[177]: Assume that we run step (ii) in iteration i. Then

A1l = cAP® |4
and

ISpecy,,, (Air1)| = cAi® [Spec,, (A,

where ¢ > 0 is an absolute constant.
Proof. We apply in step (ii) Lemma (4.3.8) to A;, Spec,, (A;). We get subsets A;,; <
A, T' S Spec, (4;) such that |Ajq] = cAP |4 IT"| = cA;° |Spec,, (4;)] and
pir1 < [EM(Ar, Tl = (¢/2)21° .LetS = T n Specy,,, (Aisr). Then

) N N
|E[M(A;41, Tl < +11 ——= | Pit+1-

|| ||
Hence |Spec,,, . (Ai+1)| = |S| = (c¢/2)A}° |T' | and the claim follows.
Combining Claim (4.3.10) and Claim (4.3.12), we deduce that, for any j € {1,...,k, —
1}, the ratio in the size of the spectrums immediately after the j-th application of step (iii),
and immediately before the j + 1 application of step (iii), is lower bounded by

NG +1)-2 .30\ NU+1D-1n0)
[specpuy (nn)] M <t (0.2
a |S ec (A )| B N S o Ve gltt
PECoyan-1 AnGi+1)-1) i=n()) '
< (1/8)0(1(1/8)00)) < exp ((1/8)0(]))) .
We will choose K large enough so that T; < K/ forall K <k, , and hence

1
1Specp, vy Angr)l 2 K - ISpecy, .y, (Aneny — DI = K2 - [Specy,, ) (Ay)l-
Fix K = |G|® and € = exp((1/£)°(/9)), We may assume that |G| = C, as otherwise
our bounds are trivial. Then, we must have k, < 2/6 and hence k; < (1/¢)°(/9)  We

conclude that
ki +k;

|A] 1—[ 1
< < 1 0(1/9)
IA*l = C/E-ls = exp(( /8) )

i=1

and that plugging these estimates into Equation (108) implies that

ISpece(A*) — Spec.(A")| < (1/e)°/® - |G| 1+ 6/]47).
Since the definition of the spectrum is symmetric, Spec.(4*) = —Spec.(A"), this implies
the same bounds on |Spec.(A*) + Spec.(A")|.
Theorem (4.3.13)[177]: Fix 0 <éd<a < 1/2and 0 < ¢ < 1/2. Let A € G of size
|A| = |G|®. Then there exists asubset A’ € Aofsize|A’| = |A|/Cand &' > £2'/9 such
that

|Spece (A")| = |Spec:(A)|/C
and
|Spec,s (A") + Specy A = C|G|(S - |Specy (A1,
where C < exp ((1/3)0(2‘*/5)) .
Proof: The proof of Theorem (4.3.13) is very similar to the proof of Theorem (4.3.3), with

a few small tweaks. First, we use Lemma (4.3.5) and Lemma (4.3.6) in the special case of
p = &.We restate Lemma (4.3.6) in this special case.
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Lemma (4.3.14)[177]: If M = M(A, Spec.(A)) is %20 -regular, then

[spece o
|Spec.(A) — Spec.(A)| < 2 Spec. ()]
We combine Lemma (4.3.14) with Lemma (4.3.8) to prove Theorem (4.3.13). The
difference is in the iterative refinement process. Here, instead of setting 4; = €p; /150, we
instead set A; = p? /150.To, initialize I' = Spec,.(4). I M(A,I') is A-regular for 1 =
£%2/150, and |Spec,z,,(A)| ~ |I'|, then the proof follows from Lemma (4.3.14) and
Parseval’s identity. Otherwise, one of the following two cases must occur. The first case
that could occur is that M(A,I") is not A-regular. In this case, by Lemma (4.3.8) we can
replace A,I" with A", I'" and increase ¢ by a noticeable amount. This can not occur many
times as ¢ < 1. The other case that can occur is that [Spec,z ,(A)| > |I'| = Spec.(A).
Inthis case, we set e = &£2/2 and increase the spectrum of A. Since the spectrum is bounded
by |G|, this also can not occur too many times. In the following we formalize this high level
argument.
Let K = K(g,6) be a parameter to be optimized later. Define a sequence of sets 4; € A
and parameters p; € [0,1] fori = 1, and initialize A, = Aand p, = . Recall that § is
a parameter, chosen so that the final doubling constant is bounded by |G| 6. Given A4;, p; set
A; = p? /150 and run the following procedure:
(i) If M(A;, Spec,, (A;)) is A;-regular and |Specpi2 2(A)| < K|Spec,, (4;)], then set
A* = A; and finish.
(ii) If M(A;, Specy,, (A;)) is not A;-regular then apply Lemma (4.3.8) to 4;, Spec,, (4;). Let
A" € A, T" € Spec,, (A;) be the resulting sets such that |A"| > cAP AT | =
cAIS || and |E[M(A',I")]| 2 p; + cA®.Set Ay = A'and pyyy = p; + (c/
2)A7° .
(iii) If |Spec,z ,(A)| > K|Specp; (A)|thenset A, ; = A;and piyq = p? /2.
The analysis of this procedure is similar to the analysis of the procedure in the proof of
Theorem (4.3.3). First note that if the procedure ends with A* = A; and €* = p; then by
Lemma (4.3.14) we have that

|Spece: (A") — Spece- (A7) < 2K|Spece;/2(A7)| < 2K?|Spec.-(A7)]. (4)
Therefore, we need to show that ¢* and |A*| are not too small. Suppose that stages (ii) and
(iii) occur k; and k, times, respectively. Let n: {1,--,k,} = {1,-,k; + k,} be the
ordered indices of occurrences of stage (iii). We first bound k;.
Claim (4.3.15)[177]: If i < n(j) thenp; = (g/2)? .
Proof. The value of p; increases in step (ii), and decreases in step (iii). If i < n(j) then we
applied step (iii) at most j — 1 times, hence p; > (g/2)? .
Claim (4.3.16)[177]: ForVj € {1,....k, — 1},[n(G + 1) — n())| < (1/£)°@)
Proof. Consider a step i for n(j) < i < n( + 1). We have that p; +1 > p; +
c(p? )15 > p; + c((¢/2)3%? ). As p; never exceeds 1 for all i, this process cannot repeat
more than (1/¢)(2/€)3%% times.
Corollary (4.3.17)[177]: k; < (1/£)°@")
Proof. By Claim (4.3.16), k; < Y2, (1/6)°?) < (1/)°@k2)
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We next upper bound k,. To do so, we will show that in step (ii)) we have that
Spec,.,, (Ai41) is not much smaller than Spec,, (A;). We restate Claim (4.3.12) which was
proved before.
Claim (4.3.18)[177]: Assume that we run step (ii) in iteration i. Then
|Ajial = cAP® - 1A

and

|Specy,,, (Air)l = €23 - |Specy, (A).
As in the proof of Theorem (4.3.3), if we combine Claim (4.3.16) and Claim (4.3.18), then
foranyj € {1,...,k, — 1}, the ratio in the size of the spectrums immediately after the j-
th application of step (iii), and immediately before the j + 1 application of step (iii), is
lower bounded by

Spec,ncin (Anci ;
= [Specone) (Anp))| exp (1£) @)
|Specpn(j+1)—1(An(j+1)—1)|
1
We will choose K large enough so that T; < Kz for all j < k,, and hence

2
|5P‘3Cpn<,-+1> (An(j+1))| = K - |5Pecpn(,-+1)_1 (Aygen-1)| = K2 |5Pecpn(,-)(f4n(j))|-
Fix K = |G|%/? and C = exp((1£)°?*/9)) We may assume that |G| > C, as otherwise

our bounds are trivial. Then we deduce that k, < 4/6,k; < (2/£)°(?4/% We get that

A 1 4/8
||A*|| < 1_[ —c()u')15 = exp ((1/3)0(2 / ))

=1

and then by plugging these estimates into Equation (4) we conclude that
|Spece: (A) — Spece: (A)] < exp ((1/2)°@)) |61 - |Spece: (A7)

Since the definition of the spectrum is symmetric, Spec.- (A*) = —Spec. (A"), this
implies the same bounds on |Spec.- (A*) + Specg+ (A¥)|.
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Chapter 5
Trace Theoreaith, the Luzin N- and Morse-Sard Properties with Dubovitskii-Sard
Theorem and the Coarea Formula

We show a new trace theorem for Riesz potentials of Lorentz functions in a limiting
case. Using these results, we find also some very natural approximation and differentiability
properties for functions in Wp’fl with exceptional set of small Hausdorff content. We will

show that Dubovitskii theorem can be generalized to the case of Wl(')"'f (R™, R™) mappings

forall k € Nandp > n. Here we prove that Dubovitskii’s theorem can be generalized to
the case of continuous mappings of the Sobolev—Lorentz class Wp’fl (R*, RY),p = % (thisis

the minimal integrability assumption that guarantees the continuity of mappings). In this
situation the mappings need not to be everywhere differentiable and in order to handle the
set of nondifferentiability points, we establish for such mappings an analog of the Luzin N-
property with respect to lower dimensional Hausdorff content. Finally, we formulate and
prove a bridge theorem that includes all the above results as particular cases. As a limiting
case in this bridge theorem we also establish a new coarea type formula: if E ¢ {x € R":
rank Vv(x) < m}, then [ Jpv(x)dx = [, H"™(E n v=1(y))dH™(y). The
mapping v is R%-valued, with arbitrary d, and the formula is obtained without any
restrictions on the image v(RR™) (such as m-rectifiability or o-finiteness with respect to the
m-Hausdorff measure). These last results are new also for smooth mappings, but are
presented here in the general Sobolev context.
Section (5.1): The Sharp Case of Sobolev-Lorentz Mappings

We continue the study of the Luzin N- and Morse—Sard properties for the Sobolev
mappings under minimal integrability assumptions initiated in [9]-[56], [50], see also [62].
It is very natural to restrict attention to continuous mappings, and so require from the
considered function spaces that the inclusion v € Wp" (R, R%) should guarantee at least the

continuity of v. For values k € {1,...,n — 1} it is well-known that v € W,*(R", R?) is
continuous for p > % and could be discontinuous for p < % So the borderline case is p =

Do = % It is well-known (see [62]) that v € Wp’j (R, R%) is continuous if the derivatives of

k-th order belong to the Lorentz space L,, ;, we will denote the space of such mappings by
Wy 1 (R",RY).

We prove the following Luzin N property with respect to Hausdorff content:
Theorem (5.1.1)[180]: Let k € {1,...,n},q € [p.,n], and v € W,° ; (R",R%). Then for
each & > 0 there exists § >0 such that for any set E c R" if HI(E) <&, then
HL(v(E)) < e. In particular, H9(v(E)) = 0 whenever H4(E) = 0.

Here 7.1 (E) is as usual the g—dimensional Hausdorff content:

HI(E) = inf{z(diam E)D?:E c U Ei}.

i=1
Note that the case k = 1 was considered in [62], and the case k > 1,q > p, in [50], so we
omit them and consider here only the remaining limiting case q = p,, k > 1.
To study this limiting case, we need a new version of the Sobolev Embedding Theorem that
gives inclusions in Lebesgue spaces with respect to suitably general positive measures. This
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result might also be interesting in its own right, and it is the main contribution. For g €
(0,7n) denote by M# the space of all nonnegative Borel measures g on R" such that

llullly = sup (D)) < oo, (1)

where the supremum is taken over all n—dimensional cubic intervals I ¢ R™ and £(I)
denotes side—length. Recall the following classical theorem proved by D.R. Adams [181]
(see also, e.g., [67]).

Theorem (5.1.2)[180]: Let p be a positive Borel measure on R"and a > 0,1 <p < q <
o, ap < n. Then for any f € L,(R") the estimate

[Vaf1odn < clms - s, )

holds with 8 = (n — ap)% , Where C depends on n, p, g, a only.
Here

I F () :J f)

re |y — x|

is the Riesz potential of order a. The above estimate (2) fails for the limiting case g = p.
Namely, there exist functions f € L, (R™) such that I, f (x) = +co on some set of positive
(n — ap)—Hausdorff measurel , see, e.g., [187]. We prove the following result for this
limiting case q = p:

Theorem (5.1.3)[180]: Let p be a positive Borel measure on R" and a > 0,1 <p <

o, ap < n. Then forany f € L, ; (R™) the estimate
1

e fll,qo < CHIRNTE - NIf L, . (3)

holds with § = n — ap, where C depends on n, p, a only.

In view of the definition of the Lorentz spaces, it is sufficient to prove the above assertion
for the simpler case when f coincides with the indicator function of some compact set:
Theorem (5.1.4)[180]: Let p be a positive Borel measure on R" and a > 0,1 <p <
oo, ap < n. Then for any compact set E ¢ R" the estimate

(AN ) < CllIullls meas(E), 4)
holds with 8 = n — ap, where 1 is the indicator function of the set E and C depends on
n,p, a only.

We emphasize that our proof of Theorem (5.1.4), and hence of Theorem (5.1.3), is self-
contained, is independent of the previous proofs of this type of results, and uses only very
natural and elementary arguments.

From the definition of the space Wp’jll(]l%”, R4) of Sobolev—Lorentz mappings and the
classical estimate |Vv| < C|I,_, V¥, Theorem (5.1.3) implies

Theorem (5.1.5)[180]: Let u be a positive Borel measure on R™, k € {1,...,n}. Then for
any function v € WX ; ((R™)) the estimate

[ 1wt < cllialy, - |7+, 5)

holds, where C depends on n, k only.

From these results we deduce also some new differentiability and approximation properties
of Sobolev-Lorentz mappings v € Wp’i,l(Rn). Namely, for m < n the m—order derivatives
V™v are well-defined ™P- -almost everywhere, a function v is m-times differentiable (in
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the classical Frechet—Peano sense) H ™P- -almost everywhere, and, finally, it coincides with
Cc™-smooth function on R™\U, where the open exceptional set U has small H.,?°-Hausdorff
content. Note that for mappings of the classical Sobolev space Wp’j (R™) the corresponding
exceptional set U has small Bessel capacity By, , (U) < &, and, respectively, the gradients
V™ v are well-defined in R™ except for some exceptional set of zero Bessel capacity By,
(see [79] or [54]).

We discuss Morse—Sard type theorems for Sobolev—Lorentz mappings. Namely, for an open
set O ¢ R™ and a mapping v € Wpli,l,loc('QJ R™) denote Z,, ,, = {x € Q: v is differentiable
at x and rankVv(x) < m} (recall, that by previous results v is differentiable H?- a.e.). We
state:

Theorem (5.1.6)[180]: If k,m e {1,...,n},Q is an open subset of R", and v €

WY 1 10c (@ R), then 3% (v(Z,)) = 0.

Here
n n—-m+1

po=7 and q=m-1+————=p.+m-DA-k). (6)

The theorem was proved for C*-smooth functions by Morse [69] in 1939 for the case k =
n,m=d = q, = 1, and subsequently by Sard [47] in 1942 fork =n—m+1,m=d =
q.. For arbitrary values k,n,m € N and C*-smooth functions the result was proved almost
simultaneously by Dubovitski1 [183] in 1967 and Federer [61] in 1969.

The Morse-Sard Theorem for Sobolev spaces VI@,"([R", R™) with p > n (i.e., when
VI/J(]R”) o Ck=1(R™)) was obtained in [39] (see also [48] for a simple proof), and for
Lipschitz and Holder continuous mappings C** see, e.g., in [36] and [53] respectively. See
[9], [56], [50], where the above Theorem (5.1.6) was proved in the Sobolev context Wp’j (R™)
for k,m € {2,...,n}. Since the case k = 1 (i.e.,q, = n) can be considered folklore (see,
e.g., [190]) we shall in only consider the casesm = 1,k > 1,q, = p, = %

Let us end by noting an interesting phenomenon that occurs for functions of the Sobolev—
Lorentz space Wp"o’l(Rn, R4). On the one hand, the order of integrability of the k—th
derivative, Lebesgues index p, and Lorentz index 1, is the minimal one on the Lorentz scale
that guarantees continuity of mappings. On the other hand, these mappings a posteriori have
many additional analytical regularity properties: the Luzin N—property, differentiability and
approximation properties, and the Morse—Sard property (see above).

For instance, if k=n—m+ 1, then almost all level sets of mappings v €
Wp'f,,1 (R, R%) are C*-smooth manifolds [50]. The result should be contrasted with the fact
that mappings of class Wpli,l(Rn' R™) are continuous only and need not to be C1-smooth in
general. This property recently found some applications in mathematical fluid mechanics
(see [188]).

By an n—dimensional cubic interval we mean a closed cube in R" with sides parallel
to the coordinate axes. If Q is an n—dimensional cubic interval then we write £(Q) for its
sidelength.

For asubset S of R" we write L™(S) for its outer Lebesgue measure. The m— dimensional
Hausdorff measure is denoted by H™ and the m—dimensional Hausdorff content by H 2.
Recall that for any subset S of R" we have by definition

H™(S) = imHG'(S) = sup H* (),

a>0
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where for each 0 < a < oo,

HI(S) = inf{Z(diam S)M:diam S; < a,S C USi}.
i=1 i=1
It is well known that H"™(S) = HZ(S) ~ L™(S) for sets ¢ R™.
To simplify the notation, we write ||f||Lp instead of ”f”Lp(Rn), etc.

The Sobolev space Wp"(Rn, R%) is as usual defined as consisting of those R%-valued
functions f € L,(R™) whose distributional partial derivatives of orders [ < k belong to
L, (R™) (for detailed definitions and differentiability properties of such functions see, e.g.,
[60], [67], [79], [58]). Denote by V* f the vector-valued function consisting of all k—th order
partial derivatives of f arranged in some fixed order. However, for the case of first order
derivatives k = 1 we shall often think of 7/ (x) as the Jacobi matrix of f at X, thus the d X n
matrix whose r—th row is the vector of partial derivatives of the r—th coordinate function.
We use the norm

1 g = 1f U, +I7F D+ +7F]

and unless otherwise specified all norms on the spaces R*(s € N) will be the usual euclidean
norms.
Working with locally integrable functions, we always assume that the precise
representatives are chosen. If w € L ;,.(£), then the precise representative w* is defined
for all x € Q by
w*(x) = li{ro1 By W(2)dz,if the limit exists and is finite, 0 otherwise, (7)
T

where the dashed integral as usual denotes the integral mean,
f w@dz=————= w(z)dz,
B(xr) L(B(x, 1) Jper
and B(x,r) = {y: |y — x| < r}isthe open ball of radius r centered at x. Henceforth we omit
special notation for the precise representative writing simply w* = w.
We will say that x is an L,—Lebesgue point of w (and simply a Lebesgue point when p =
1), if

f w@ —w®)IPdz - 0 as 1r\O0.
B(x,r)

If kK <n, then it is well-known that functions from Sobolev spaces Wf(R”) are
continuous for p > % and could be discontinuous for p < p, = % (see, e.g., [67], [79]). The

Sobolev—Lorentz space Wp"ml(Rn) c Vl/p’j (R™) is a refinement of the corresponding Sobolev

space that for our purposes turns out to be convenient. Among other things functions that

are locally in Wp’f”l on R" are in particular continuous.

Given a measurable function f: R™ — R, denote by f.: (0, 0) — R its distribution function
fuls):= LMx € R™:|f(x)| > s},

and by f* the nonincreasing rearrangement of f, defined for ¢t > 0 by

£*(t) = inf{s > 0: £.(s) < t}.

Since |f| and f* are equimeasurable, we have for every 1 < p < oo,
1 1

( |f(x)|pdx>5 - ( f +Oof*(t)pdt>§.
R" 0
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The Lorentz space L, ,(R™) for 1 < p < o,1 < q < oo can be defined as the set of all
measurable functions f: R™ — R for which the expresssion

1
rq too 1 th a
—f trfr(t) | — if 1<qg<o
IfllL,, =4 \P7o t
1
sup t? f*(t) if g =0
\ >0

Is finite. See [65], [74] or [79] for information about Lorentz spaces. However, let us remark
that in view of the definition of ||-||Lp_q and the equimeasurability of f and f* we have

||f||Lp = ||f||Lp'p so that in particular L, ,,(R™) = L,(R™). Further, for a fixed exponent p
and g, < g, we have the estimate ||f1[,,, < IIfll.,q, » and, consequently, the embedding
Lyq,(R") C L, . (R™) (see [65]). Finally we recall that ||-||Lm is a norm on L, ,(R™) for

all g € [1, p] and a quasi—norm in the remaining cases q € (p, o] (see [65]).
Here we shall mainly be concerned with the Lorentz space L, ;, and in this case one may
rewrite the norm as (see for instance [65])

400 1
Ifllpa = j [L7"({x € R™: |f(x)| > t}]Pdt. (8)
0
We record the following subadditivity property of the Lorentz norm for later use.
Lemma (5.1.7)[180]: (see, e.g., [72] or [65]). Suppose that 1 <p < oo and = Ujen Ej ,
where E; are measurable and mutually disjoint subsets of R". Then forall f € L, . we have

LT < 1al?
P LR N AR A

]
where 1 denotes the indicator function of the set E.
Denote by Wp’fl(Rn) the space of all functions v € W,(R™) such that in addition the

Lorentz norm |||7kv||L is finite.
p1

For amapping u € L;(Q,R?),Q c R",m € N, define the polynomial P, ,,, [u] of degree at
most m by the following rule:

Lrﬂww—%mmwﬁw=o 9)

for any multi-index a = (ay,...,a;,) of length |a| = a; +- - - +a,, < m. Denote Py[u] =
PQ,k—l[u]-

The following well-known bound will be used on several occasions.

Lemma (5.1.8)[180]: Suppose v € Wp’i,l(]R", R4) with k€ {1,...,n}. Then v is a
continuous mapping and for any n-dimensional cubic interval Q < R" the estimate

sup|v(y) — Po[vIm)| < C||14 - l7k17||L (10)
yeQ Pol

holds, where C is a constant depending on n, d only. Moreover, the mapping v, (y) =
v(y) — Pylvl(y),y € Q, can be extended from Q to the whole of R" such that the extension
(denoted again) v, € W ; (R", R?) and

I7*vell, ,@ny < Coll7*0|

(11)

Ly, 1(Q)’
where C, also depends on n, d only.
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Proof. For continuity and the estimate (10) see [50]. Because of coordinate invariance of
estimate (11), it is sufficient to prove the assertions about extension for the case when Q is
a unit cube: Q = [0, 1]™. Put u(y) = vo(y) = v(y) — Po[v](y) fory € Q.

By Peetre theorem (see Theorem 6.5 in [65]) it is easy to deduce that

7™ ull,, ,(Q) < C||l7""u||Lp°1(Q) vm=0,1,....k—1. (12)

Using the standard Extension operator for Sobolev spaces (the well-known finite-order
reflection” procedure, see, e.g., [67]), function u on the unit cube Q = [0,1]" can be
extended to a function U € Wﬁ}l(Rn) such that the estimate

L < Z 7™l o

holds. Taking into account the |dent|ty Vku = V"v on Q and (12), we obtain the required
estimate (11).

Corollary (5.1.9)[180]: (see, e.g., [50]). Suppose v € Wp’i,l(R", RY) with k € {1,...,n}.
Then v is a continuous mapping and for any n-dimensional cubic interval Q ¢ R" the
estimate

Ir<ull,

@)t

Vvl (@
<C (W)Z‘l + ”]‘Q . Vkv”mel) (13)

74
diam v(Q) < C (M +|11q - 7oy, )
Po,1

holds.

The above results can easily be adapted to give that v € C,(R™), the space of continuous
functions on R" that vanish at infinity (see [65]).

Analogously, from previous estimates one could deduce

Corollary (5.1.10)[180]: Suppose v € Wp’f”l(IRi", R4) with k € {1,...,n}. Then forall m €

{1,..., k} and for any n-dimensional cubic interval Q c R™ the estimate

su |1]( ) p ]( )l <C ”va“Lpo(Q) n ”1 -VkU” (14)
yEp y Qm-— 1 V)| = ’B(Q)k_m Q Lp,1

holds.
Theorem (5.1.11)[180]: (Boundedness of the maximal operator, see [65]). Let f €
Ly,q,(R™"),1<p<o0,1<q <o Then

461l < ClfllL,
Here

r>0
is the usual Hardy-L.ittlewood maximal function of f.
Corollary (5.1.12)[180]: (Regularization in Lorentz spaces [65]). Let f € L, ,(R™),1 <
p < 9,1 < g < oo. Suppose that f € L, ,(R™) and i € C;°(R") is a standard mollifier.
Thenys * f > finL, ,(R")asd — 0.
Here and henceforth C,°(R™) denotes the space of C* smooth and compactly supported
functions on R".
Corollary (5.1.13)[180]: (Regularization in Sobolev—Lorentz spaces). If f €
Mg,’fq (R™"),1 <p < o,1<q < o, then there exists a sequence of smooth functions f; €
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Co° (R™) such that [[V™(f — fi)ll,,@m — 0 for m =0, L. k|

asi — oo,

We need also the following important Adams strong-type estimates for maximal
functions.
Theorem (5.1.14)[180]: (see Theorem (5.1.2), Proposition 1 and its Corollary in [51]). Let
B € (0,n). Then for nonnegative functions f € C,(R™) the estimates

j w}[fj({x €H:MF(x) =t} dt < G j wmf;({x € M: f(x) = t}dt
0 0

Vk(f_fi)”Lp (R™) -0

q

< Cysup{ [ £ dusw € A Il < 1},

hold, where the constants C,, C, depend on 8, n only.

We need also the following classical fact (cf. with [55]).

Lemma (5.1.15)[180]: (see Lemma 2 in [58]). Let u € W™ (R"™), m < n. Then for any n—

dimensional cubic interval Q ¢ R™, x € Q, and forany j = 0,1,...,m — 1 the estimate
|VIu(x) = 7 Py s [ul ()] < CEQ™ I (MV™)(x)  (15)

holds, where the constant C depends on n, m only.

Theorem (5.1.4) plays the key role among other results. Its proof splits into a number
of lemmas. Fix parameters m > 0,1 < p < 00,0 < ap < n, and a positive Borel measure
K on R" satisfying

u(B(x, r)) < rhaep (16)
for every ball B(x,r) < R™. Fix also a compact set ¢ R™. Denote by I the corresponding
Riesz potential 1,(1g).

It is very easy to check by standard calculation that

0 <Ip(x) < GlER, (17)
where the constant C, depends on n,
only. Denote also t,,, = 2™ (here m € 7Z),

E,, ={x € E:Iz(x) € [t,,, 2t,,]},
Eh={x€Elz(x)<tyn}, Epn={x€Eilgy >tn}

We will write f < g, iIf f < Cg, where C depends on n,a,p only (really, most of the
corresponding constants below up to Lemma (5.1.21) depends on n, a only).
Lemma (5.1.16)[180]: There exists a positive constant m, € N depending on n, a only such
that forany m € Z and x € R™ if I;(x) = t,,, then IE;A_mO (x) = t,,.
Proof. The claim follows from the well-known maximum principle: I/ (x) < 2"~ %t,, for
every m € Z (see [186]).

Lemma (5.1.17)[180]: Forany x,y € R"if [z(y) = tand |x — y| < (2t)a then Iz (x) = t.
Proof. Let I;(y) =t and |

1
ly — x| < (2t)a, (18)
Denoter = |y — x|,B = B(y,r) = {z € R™: |z — y| < r}. Then by construction
t =1Ig(y) = Igng(y) + Ipnp (). (19)

Consider two possible situations.
(D.Ignp(¥) < % then Ip\s(y) = % For any z € E\B we have |z—y|>71r = |x — |,
thus, |x — z| < |x —y| + |z — y| < 2|z — y|, consequently,
Ig(x) 2 Ip\p(x) = 2" %Ig\p(y) = 2" %71t (20)
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(). Igap(y) = 7. Then (17) implies = < Co|B N E[». Since B N E < B(x, 2r), by
elementary estimates we have

n n
|IBNE| C'ta 23)(C"ta

I > > >
() 2 (2ryn-a = yn-a = t%_l
Denote E,, = {x € R™: I;(x) € [t,;,, 2t,, 1}, W = W(E,), W, (1) = uo E,,. By construction,

AR o~ > thttm

m=—oo

So our main purpose below is to estimate tmum. Of course, t,, 1, < fRn Iz (x)dp,,(x). By
Fubini Theorem we have

- Czt

(0]

f 15 (1) it () = j pU |EnB<x.p)|dum(x)]dp
R 0 RM

= [ prre [ [ 1m B0, p)]dy] dp. (21)
0 E
Lemma (5.1.18)[180]: The estimate
tnbm = f p et [ |Emn—m, N B(x, p)ldum(x)] dp (22)
0 R"

holds, where m,, is a constant from Lemma (5.1.16).
Proof. By Lemma (5.1.16), IE,',:_mOZCNm on FE,, therefore ¢t,u, <

C fRn IE;,;_mo(x)de(x), and the last inequality implies in conjunction with Fubini’s

Theorem (22).
Lemma (5.1.19)[180]: There exists a constant m,; € N such that

tmbm S jl pnrert [j |Erlr,1—m0 N B(x, p)ldUm(x)] dap. (23)
t R™

a
m-mq

Proof. Let m; € N, its exact value will be specified below. We have |E n B(x, p)| < w,,p",
where w,, is a volume of a unit ball in R". Thus
1

1

a
tm—ml

t%_ml -n+a-1 a-1 “n
p |E N B(x, p)ldum(x)|dp < wpiy, peTdp = — " Mmbm—m,
0 R™ 0

= 27 Wntm-

So the target estimate (23) follows from (22) provided that 1 wy, 27 ™ is sufficiently small.
a

Lemma (5.1.20)[180]: There exists a constant i, € N such that for all i > m — m, the
equality

t(l
f p et ! . |Ep—mg 0 B(x,p)ldum(x)] dp

tl n

i+ig t?“
= f . pTnre [ j |E; 0 B(x, p>|dum(x)] dp (24)
j=m—-my ' R
holds, where m,, m; are the constants from Lemma (5.1.16), respectively.
Proof. Leti > m — m,,
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p* < tivq, (25)

and y € E; N B(x, p), x € E,, = supp W,,. Then by definitions of these sets
I;(x) < 2t,, (26)

and Iz(y) = t; . Suppose j = i + 1. Then (25) implies |x — y|* < t;;, < t;, therefore, by
Lemma (5.1.17) (applying for t = t;) we have Ig(x) = C,t;. Thus by (26) we obtain j <
m + m, for some constant m, depending on a, n only.
Finally we have j < max(i + 1,m + m,) < max(i + 1,i + m; + m,) finishing the proof
of the Lemma.
Lemma (5.1.21)[180]: The estimate

(0]

oy S z |Ej|t;2F (27)

j=m-m,
holds for all m € Z, where m,, i, are the constants from Lemmas 2.1, respectively.
Proof. We have

—n+a 1 "
mllm z j [ |Em —my
t“ R™

i=m-— miq
l+lo

nB(x,p)|dum(x) z z Jt:l —n+a- 1[ Rn|E

i=m-m4 j=m-my

nB(x,p>|dum<x) dp

l+l0

Fubini Z Z fta —n+a— 1[[ w.[By,p)ldy|d

meljmmo

l+l()

= i+1
Z Z f —n+a—1+(n—ap)|Ej|dp <
, t

i=m-m; j=m-m,
co i+ip

changing order of summation iej
N S

meljmmo

geometrlc prOgFESSIOH d 1_p
< z |E;| z (t)'P = z 1Bl (-i,) - (28)

j=m-mg i=j—ig j=m-m,
Lemma (5.1.22)[180]: The estimate

[00]

> thin s IE] (29)
m=—oo
holds.
Proof. We have
® (2.12)
NN
m=-—oo m=—co j=m-mg
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. . +m
changing order of summation mej Jtmo

< ZIEIZ(

J s

j=—o00 m——oo ] fo
geometric progression X t: -1 def1n1t10n of t;
+m 1
< Z |E]|< j 0) Z |E |2(m0+10)(10 )
ti_:
< |E]. (30)

Using the established Theorem (5.1.3) and Adam’s estimate from Theorem (5.1.14) with
f =n — (k — )p, we obtain the following estimates, which are key ingredients in the proof
of N—property.

Corollary (5.1.23)[180]: Let p € (1,00),k, L € {1,...,n},l < k,(k —Dp <n. Then for
any function f € Wp’fl(]R{") the estimates

I7FI1L o < Cllllgv rll;, - vwe s, 31

" B n. p p
fo 75 ({x e REM(|VHf ") () = t}) de < clivirly, | (32)

hold, where § = n — (k — l)p and the constant C depends on n, k, p only.
The main result is the following
Theorem (5.1.24)[180]: Letp € (1,),k, L € {1,...,n},l < k, (k — D)p < n. Then for any
f € Wp’fl(Rn) and for each £ > 0 there exist an open set U ¢ R™ and a function g € C'(R")
such that

(i) Ho TPy < &

(ii)each point x € R™\U is an L,-Lebesgue point for V; f,j = 0,...,[;

(iii) f=9Vf=VgonR"\Uforj=1,..,L
Note that in the analogous theorem for the case of Sobolev mappings f € Wp"(]R%") the
assertion (i) should be reformulated as follows:

(i") By-1p(U) < e if I <k, where B, ,(U) denotes the Bessel capacity of the set U

(see [79] or [54]).
Recall that for 1 < p < o and 0 < n — ap < n the smallness of H .. “F(U) implies the
smallness of B,,(U), but that the opposite is false since B,,(U) =0 whenever
H™ P (U) < 0. 0Ontheotherhand,for1 <p < cand0 < n — ap < f < nthe smallness
of B, (U) implies the smallness of }[f,(U) (see, e.g., [52]). So the usual assertion (i’) is

essentially weaker than (i).
Proof: Let the assumptions of the Theorem be fulfilled. By Theorem (5.1.11) and Corollary

(5.1.13), we can choose the sequence of mappings f; € C,°(R™) such that ||\7"f—
|7kfi||L &) < 47t Denote f; = f — f;. Then by Corollary (5.1.23)
p,1

3o P ({x e REM(|Pf") (@) = 271)) < € 271
Then one could repeat almost word by word the proof of Theorem 3.1 in [56]. Since there
are no essential differences.

We start with the following simple technical observation.
Lemma (5.1.25) (see, e.g., Lemma 4.1 in [50])[180]: If [,k € {1,...,n},l < k,and v €

Wp’fn1 (R, R%), then for any € > 0 there exists an open set U c R" such that }[cfom(U) <¢€
and the uniform convergence
-1 k
r ||1B(x,r) % 17||Lm1 -0 as N0
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holds for x € R™\U.

Proof. The proof of the Lemma follows standard arguments, we reproduce it here for
reader’s convenience. Fix > 0. Let {B,} be a family of disjoint balls B, = B(x,, ) such
that

k l
15, -7 17||Lpor1 > or}
and supra < § for some § > 0, where & is chosen small enough to guarantee that

a
sup||1p, - V"v||L < 1. Then We have
a Po,1

Zrﬁ% < 0_p°2||13 TRy < o1y 5 - VRY| . (33)
a Lpo.l ata Lpo,l
(4 (04
Since the last term tends to 0 as £L*(U,B,) — 0, and L*(U,By) < c 8™ P Y, roip° , We
get easily that ), roﬁp" — 0as d N 0. Using this fact and some standard covering lemmas we
infer in a routine manner that for a set

Agsi= {x eR™3re (0,6] 77Y 1peerm - \7"v||L > O'}
Dol

the convergence

HLP(Az5) >0 as N0
holds for any fixed o > 0. The rest part of the proof of the lemma is straight forward.
From the last lemma (for [ = 1), Theorem (5.1.24) (ii) and estimate (13) we obtain the
following result:
Theorem (5.1.26)[180]: Let k € {1,...,n} and v € W ;(R", R?). Then there exists a
Borel set A, ¢ R™ such that H?-(4,) =0 and for any x € R™\A, the function v is
differentiable (in the classical Frechet sense) at x, furthermore, the classical derivative
coincides with Vv(x) (x is a Lebesgue point for V'v).
The case k = 1,p, = n is a classical result due to Stein [73] (see also [62]), and for k =
n,p, = 1 the result is also proved in [58].
We have the following extension of Theorem (5.1.26).
Theorem (5.1.27)[180]: Let k,L € {1,...,n},l <k, and v € Wp’i,l(]R%", R4). Then there
exists a Borel set 4, ¢ R™ such that 7'?-(4,) = 0 and for any x € R™\A4, the function v
is I-times differentiable (in the classical Fr'echet—Peano sense) at X, i.e.,

. |v(y) - Tv,l,x(y)l

lim sup =

™0 yeB(x,r)\{x} |X - yll
where T, , () is the Taylor polynomial of order | for v centered at x (which is well defined
H'?--a.e. by Theorem (5.1.24)).
Proof. We consider only the case | < n; for [ = n the arguments are similar and becomes
even simpler. Below we follow methods of [9] and [56]. By Theorem (5.1.24), there exists
a set A; such that 'P-(4;) = 0 and the derivatives V/v(x) are well-defined for all x €
R™\A4; and j = 0,1,..., L. Further, by Lemma (5.1.25) there exists a sequence of open sets
U, c R™ such that U; D U,,,, HP*(U;) < 2~ and the uniform convergence

r Y 1per) - Vkv||Lp°1 -0 as rNO

0,

holds for x € R™\U;. It means that there exists a function w;: (0,400) = (0,400) such that
w;(r)—>0asr N 0and
rH1pem V||, < wi()  vxeRMU; (34)
Po,1
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Take a sequence of mappings v;: R® - R? from Corollary (5.1.13), i.e., v; € C°(R™) and
V¥ (v - vi)”L oy < 47', Denote ¥; = v — v; and
Po,1

B; = {x e R:M(|715]7) (%) = z—ipo}, G;=A,UU; U U B; |.

Jj=1
Then by estimate (32) we have
HP(B) < ¢, (35)
therefore,
K (G) < c27. (36)
By construction,
75,00 < M(|7H 5,7 (x) < 2777 (37)

for all x € R™\G; and all j = i. Moreover, since v; € Cy°(R"), there exists constants M;
such that |7*v;(x)| < M; Vx € R™ , this fact and (34) implies

r Y 1peer - Vkﬁj||me1 < wi(r) + Mr™t vx € R™\G,. (38)
We start by estimating the remainder term 7; (y) — T,;J.,l,x(y). Fixy e R",x € R"\G; ; =

i, and an n-—dimensional cubic interval Q such that x,y € Q,|x —y| ~ £(Q). By
construction and Lemma (5.1.15), for any multi-index a with || < [ we have

1095, (x) — 0%Py,_1[7;](x)| < CL(Q)V 1 (MV'F; ) (x)
< Cri-lai2™, (39)
where r = |x — y|. Consequently,
|77j(J’) - Tl,ﬁj,x(y)| < |17j(}’) - PQ,1—1[77j](3’)| + |PQ,1—1[17j](3’) - Tl,ﬁj,x(y)| <
< [C277rt + w;(M)rt + Mr™]
1
+ 3 (095 - 0Py [7] ) - (v = 0)°

||l

< (C12_j + w;(r) + Mjr”‘l) rl, (40)
Finally from the last estimate and equality v = ¥; + v; we have

V) = T )| < 15,00 = T_(L 7, x0)| + [0 = Ty, )]
< (€127 + wi(r) + Mr™Hrt + Wy, (r)r!
= (612‘j + w;(r) + M]-r”‘l + a)vj(r)> rt,
where w;(r) = 0 and w,,(r) - 0 as r — 0 (the latter holds since v; € C5°(R™)). We
emphasize that the last inequality is valid for all y € R",j > i, and € R™\G;. Therefore

|U(Y) - Tl,v,x(y)l

lx — yl|*
uniformly for all x € R™\G;. This means, that v is uniformly [-times differentiable (in the
classical Frechet—Peano sense) at every € R™\G;. Then the estimate (36) finishes the proof.
We aim to prove the assertion of Theorem (5.1.1), namely the Luzin N— property for
Wp’i,l—mappings with respect to Hausdorff content 72 (i.e., when g = p, = %). Let us for

emphasis restate the result:

-0 as y—-x
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Recall that for the case k = 1 this assertion was proved in [62], and for k = n it was
proved in [56], so we omit these cases. Our proof here for the remaining cases follows and
expands on the ideas from [56].

We fix k € {2,...,n — 1}, and a mapping v in Wg‘ml([R{”, R%). To prove Theorem (5.1.31),
we need some preliminary lemmas that we turn to next. Applying Corollary (5.1.23) for the
case p = p, ==, = 1, we obtain

. Do .
1717 g < CllWlL 740} vie s, (41)

where C depends on n, p,, d only.
By a dyadic interval we understand a cubic interval of the form [

where k; , m are integers. The following assertion is straightforward.

Lemma (5.1.28)[180]: For any n—dimensional cubic interval /] ¢ R™ there exist dyadic
intervals Q4,...,Q,nsuchthat] c Q; U---UQ,nand £(Q,) = - = £(Q,n) < 2£()).

Let {Q,},ca be a family of n-dimensional dyadic intervals. We say that the family {Q,} is
regular, if for any n-dimensional dyadic interval Q the estimate

(P ) 40 (42)

a:QqacQ
holds. Since dyadic intervals are either nonoverlapping or contained in one another, (42)
implies that any regular family {Q,} must in particular consist of nonoverlapping intervals.
Lemma (5.1.29) (see Lemma (5.1.18) in [56])[180]: Let {Q,} be a family of n—dimensional
dyadic intervals. Then there exists a regular family {Jz} of n—dimensional dyadic intervals

such that U, Q, < Ug Jp and

IR(DEEDRICHI
B @

Lemma (5.1.30)[180]: For each € > 0 there exists § = (&, v) > 0 such that for any regular
family {Q,} of n—dimensional dyadic intervals we have if

ky Kyl kn Jntl
ki K ]x _nn_]

2m’ pm am’ om

> Qo <6, (43)
a
then
ko, ||Pe
D llg, veol) < (44)
a
and
> e | 17 < (45)
— VT E.
- 2(Qe)" P Qu

Proof. Fix € € (0,1) and let {Q,} be a regular family of n—dimensional dyadic intervals
satisfying (43), where § > 0 will be specified below.
Let us start by checking (44). We have

Qe 7l < ltuee 7ol

a
Using (8), we can rewrite the last estimate as
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1 p.

L" ({x € U Qu: [VFv ()| > tD " dt | . (46)

jm[L"({x € R™ [V*v(x)| > t})]idt < oo,
0

it follows that the integral on the right-hand side of (46) tends to zero as £L™*(U, Q,) tends
to zero. In particular, it will be less than ¢ if the condition (43) is fulfilled with a sufficiently
small 6. Thus (44) is established for all § € (0, 8,], where §; = §,(g,v) > 0. Next we check
(45). By virtue of Corollary (5.1.13), applied coordinate—wise, we can find a decomposition
v = vy + vy, Where ||Vl 0 < K = K(g,v) and

||Vkv1||Lp°1 <e. (47)

Do
2le 7ol <

Since

Assume that § € (0, ;] and

1
ZKQa)pf’ <6< (48)

1
n= (ZW 1Qa>L , (4‘9)

where 1, denotes the indicator function of the set Q.
The estimate

Define the measure u by

51]1p{€(])‘p°u(l)} < 2MFPe (50)

holds, where the supremum is taken over all n—dimensional cubic intervals. Indeed, write
for a dyadic interval Q

w@= Y Y Sehld

2(Q)" P
a:QqcQ @:Qa%Q

By regularity of {Q,} the first sum is bounded above by £(Q)P-. If the second sum is nonzero
then there must exist an index a such that Q, € Q and Q,, Q overlap. But as the intervals
{Q,} are nonoverlapping and dyadic we must then precisely have one such interval Q, and
Q, D Q. But then the first sum is empty and the second sum has only the one term
2(Q)"/£(Q,)™P-, hence is at most £(Q)P-. Thus the estimate u(Q) < £(Q)?- holds for
every dyadic Q. The inequality (50) in the case of a general cubic interval J follows from
the above dyadic case and Lemma (5.1.28). The proof of the claim is complete.

Now return to (45). By properties (41), (47) and (48) (applied to the mapping v1), we have

zf(Qa)n - j vl < ;p 1+i ““*23((222)"11? jalvv1|p°

< C e + flellpf’du) < (C'"e.

Since € > 0 was arbitrary, the proof of Lemma (5.1.30) is complete.

Theorem (5.1.31)[180]: Let k € {1,...,n}, and v € WX, (R", R?). Then for each € > 0
there exists § > 0 such that for any set E ¢ R™ If HX (E) < 6, then 2 (v(E)) < &. In
particular, #?-(v(E)) = 0 whenever H?-(E) = 0.

156



Proof: Fix e > 0 and take § = 6 (¢, v) from Lemma (5.1.30). Then by Corollary (5.1.9) for
any regular family {Q,} of n—dimensional dyadic intervals we have if ), £(Q,)? < &, then
Yo diam v(Q,))"" < Ce. Now we may conclude the proof of Theorem (5.1.31) by use of

Indeed they allow us to find a 8, > 0 such that if for a subset E of R" we have #2°(E) <
&y, then E can be covered by a regular family {Q,} of n— dimensional dyadic intervals with

2a?(Qa)P < 6.

Let kme{l,...,n} and v € Wpl)(o,l,loc(ﬂr R%), where Q is an open subset of R".
Then, by Theorem (5.1.24) (ii), there exists a Borel set 4,, such that H?-(4,,) = 0 and all
points of the complement Q\A,, are L,, -Lebesgue points for the gradient Vv(x). Moreover,

v is differentiable (in the classical Frechet sense) at every point of Q\A4,,.
Denote Z,,,, = {x € Q\A,:rankVv(x) < m}. The purpose is to prove the assertion of
Theorem (5.1.6):

3% (v(Zym)) = 0. (51)
The exponents occurring in the Theorem (5.1.2)re the critical exponents that were defined
in (6):

n n—-m+1
p°:E and q°=m—1+T
By an easy calculation, assumptionsn > m > 1,k = 1 imply
Po < Q. S . (52)

Note that in the double inequality (52) we have equality in the first inequality iff m = 1 or
k = 1, while in the second inequality equality holds iff k = 1. In particular,
po< qo<nforkme{2,..,n}.
By results obtained in [9]-[56], [50] (see Theorem (5.1.6) We need only consider the case
n

m=1,qo=po=z.

Before embarking on the detailed proof let us make some preliminary observations that will
enable us to make some convenient additional assumptions. Namely because the result is
local we can without loss in generality assume that O = R™. We fix k € {2,...n} and a
mapping v € Wp’i,l(R”, R™). In view of the definition of critical set we have form = 1

Zy, =Z,; = {x € R"\4,:,(x) = 0}.
The following lemma provides the main step in the proof of Theorem (5.1.6). Lemma
(5.1.16)2. For any n-dimensional dyadic interval Q c R™ the estimate

HE(v(Z, N Q)) < C|||7kv||f;°1 © (53)

holds, where the constant C depends on n, m, k, d only.
Proof. By virtue of (11) it suffices to prove that

HE(v(Z, N Q) < C||\7ka||f;m1 - (54)

for the mapping v, defined in Lemma (5.1.8), where C = C(n,m, k,d) is a constant. To
establish (54) it is possible to repeat almost verbatim the proof of Lemma 3.2 in [50]. One
must observe the following minor changes: first g, = p,, and next, instead of Corollary 1.8
from [50] one must use Corollary (5.1.23) established above. Note that in the present
situation the calculations simplify since for m = 1 many of terms from [50] disappear.
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Corollary (5.1.32)[180]: For any &€ > 0 there exists § > 0 such that for every subset E of
R" we have H2' (v(Z, N E)) < & provided L™(E) < §. In particular, HP-(v(Z, N E)) =
0 whenever L*(E) = 0.

Proof. Let L™"(E) < &, then we can find a family of nonoverlapping n-dimensional dyadic
intervals @, such that £ cu, Q, and )., £"*(Q,) < C4§. Of course, for sufficiently small 5
the estimate ||7*v|| < 1is fulfilled for every a. Then in view of Lemma 1.1 we have

Z”Vkv”f;o,lwa) = ”Vkv”f;o,l(uoa) (55)

(24
This estimate together with Lemma (5.1.16)2 allow us to conclude the required smallness
of

Lp,1(Qa)

> 322, 00) = HE(Z, N B).

(24
Invoking Dubovitskii—Federer’s Theorem (see commentary to the Theorem (5.1.6) for the
smooth case g € C*(R", R%), Theorem (5.1.24) (iii) (applied to the case [ = k) implies
Corollary (5.1.33) (see, e.g., [39])[180]: There exists a set Z,, of n-dimensional Lebesgue

measure zero such that H?- (v(Zv\Zv)) = 0. In particular, H?-(v(Z,)) = HP- (v(Zv))

We conclude that #£7-(v(Z,)) = 0, and this ends the proof of Theorem (5.1.6).
Section (5.2): Sobolev Spaces

Originally proven in 1942, Arthur Sard’s [47] famous theorem asserts that the set of
critical values of a sufficiently regular mapping is null. We will use the following notation
to represent the critical set of a given smooth map f: R" - R™:

Cr = {x € R*|rank Df (x) < m}.

We will assume that m and n are integers at least 1.
Theorem (5.2.1)[192]: (Sard). Suppose f: R® — R™ is of class C*. If k > max(n —m, 0),
then

7™ (f(cr)) =o.

Here and in what follows by H'* we denote the k-dimensional Hausdorff measure.
Several results have shown that Sard’s result is optimal, see e.g. [194], [197], [198], [200],
[203], [48]. In 1957 Dubovitskii [194], extended Sard’s theorem to all orders of smoothness
k. See [53] for a modernized proof of ths result and some generalizations.
Theorem (5.2.2)[192]: (Dubovitski). Fix n,m, k € N. Suppose f: R® - R™ is of class C¥.
Write £ = max(n —m — k + 1,0). Then

H* (Cf nf‘l(y)) =0 for a.e. y €R™
This result tells us that almost every level set of a smooth mapping intersects with its critical
set on an £-null set. Higher regularity of the function implies a reduction in the Hausdorff
dimension of the overlap between f~'(y) and C; for a.e. y € R™.
Notice that if k > max(n —m,0),thenn —m —k + 1 < 0,andso H*¢ = H % issimply the
counting measure on R". That is, if f: R"® - R™ is of class C* and additionally k >
max(n — m, 0), Dubovitski1’s theorem implies that f~*(y) N Cy is empty for almost every

y € R™. In other words, H™ (f(Cf)) = 0. Thus Sard’s theorem is a special case of
Dubovitskii’s theorem.
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Recently, many mathematicians have worked to generalize Sard’s result to the class of
Sobolev mappings [29], [53], [37], [56], [39], [43], [50], [191]. Specifically, in 2001 De
Pascale [39] proved the following version of Sard’s theorem for Sobolev mappings.
Theorem (5.2.3)[192]: Suppose k > max(n —m,0). Suppose Q c R™ is open. If f €
W,5P(Q, R™) forn < p < oo, then H™ (f(Cf)) = 0.

We will use the usual notation W*? (R™, R™) to indicate the Sobolev class of L? (R", R™)
mappings whose first k weak partial derivatives have finite L? norm.

We show that also the Dubovitskii theorem generalizes to the case of Wzs'cp mappings when

n < p < o. We must be very careful when dealing with Sobolev mappings because the set
f~1(y) depends on what representative of f we take. If k > 2, then Morrey’s inequality

implies that f has a representative of class Ck_1’1_5, so the critical set Cr is well defined. If
k = 1, then D¢ is only defined almost everywhere and hence the set C; is defined up to a set
of measure zero. We will say that f is precisely represented if each component fi of f satisfies
1
fi(x) = ll_r)%m B(x,r)fi ()dy
for all x € Q at which this limit exists. The Lebesgue differentiation theorem ensures that
this is indeed a well defined representative of f. In what follows, we will always refer to the

e representative of f when k > 2 and a precise representation of f when k = 1.
(Notice that the precise representative of f and the smooth representative of f are the same
fork = 2.)

The main result reads as follows.

If m > n, then since p > n we may apply Morrey’s inequality combined with
Halder’s inequality to show that H™(f(Q)) < oo forany cube Q € Q,andso K™(f(Q)) =
0. Thus f~1(y) is empty for almost every y € R™, and the theorem follows.

We will now discuss the details behind the argument that :]-[”(f(Q)) < oo forany cube Q €
Q. Fix § > 0, and cover Q with 2™ congruent dyadic cubes {Q]-}]Z_=1 with pairwise disjoint
interiors. According to Morrey’s inequality (see Lemma (5.2.8)),

1

P

diam £(Q;) < C(diam Qj)l‘z< |Df(z)|pdz>
Qj

for every 1 <j <2". Since diam Q; = 27V diam Q, choosing v large enough gives
sup diam f(Q;) < &, and so we can estimate the pre-Hausdorff measure
J

onv . TV n %
HF(F(Q) < cz (diam £(Q))) < Cz(diam o)™ p)< |Df(z)|pdz>
j=1 j=1 @
nv 1_% nv %
<c| ) (diame)"| () | Inf@Irdz
j=1 j=1"9

n P
< CH™(Q) p(] |Df(z)|pdz> .
Q
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We used Holder’s inequality with exponents p/n and p/(p — n) to obtain the third line.
Since the right hand estimate does not depend on §, sending § — 0% yields H™(f(Q)) <
co. This completes the proof of Theorem (5.2.13) when m > n. Hence we may assume that
m < n.

We will now discuss the case k = 1 to avoid any confusion involving the definition of Cy.
Since m < n, we may apply the following co-area formula due to Maly, Swanson, and
Ziemer [203]:

Theorem (5.2.4)[192]: Suppose that 1<m <n,Qc R™ is open, p>m, and f €
Wli'cp(ﬂ, R™) is precisely represented. Then the following holds for all measurable E c Q:

j UnfCOldx = [ 2™ ™(E 0 F2())dy
E RM

where |/,,,f| is the square root of the sum of the squares of the determinants of the m x m
minors of Df.
Notice that |/,,,f| is equals zero almost everywhere on the set = C. Therefore the above

equality with E = Cf reads
0= [ s (garrm)ay = [ #(Gnfro)d.
R™ R™
That is, #* (Cf N f‘l(y)) = (0 for a.e. y € R™, and the theorem follows.

Therefore, we may assume for the remainder that m < nand k > 2.

Most proofs of Sard-type results typically involve some form of a Morse Theorem [69]
in which the critical set of a mapping is decomposed into pieces on which the function’s
difference quotients converge quickly. See [206] for the proof of the classical Sard theorem
based on this method. A version of the Morse Theorem was also used by De Pascale [39].
However, there is another approach to the Sard theorem based on the so called Kneser-
Glaeser Rough Composition theorem, and this method entirely avoids the use of the Morse
theorem. We say that a mapping f: W c R” —» R of class C* is s-flaton A c W for 1 <
s<kifD*f =0onAforevery1 < |a| <s.

Theorem (5.2.5) (Kneser-Glaeser Rough Composition)[192]: Fix positive integers s, k, r,
n with s < k. Suppose V < R” and W < R™ are open. Let g:V — W be of class ¥~ and
f:W - R be of class C*. Suppose A* ¢ V and A ¢ W are compact sets with

(i) g(A*) c A and

(i) f is s-flat on A.

Then there is a function F: R” —» R of class C* so that F = f o g on A* and F is s-flat on
A*. This theorem ensures that the composition of two smooth maps will have the same
regularity as the second function involved in the composition provided that enough of the
derivatives of this second function are zero. After a brief examination of the rule for
differentiation of composite functions, such a conclusion seems very natural. Indeed, we can
formally compute D*(f o g)(x) for all |a|] < k and x € A* since any ‘“non-existing”
derivative D g(x) with |B] > k — s is multiplied by a vanishing DY f(g(x)) term with
lyl = || — |B] < s. Thus we can formally set DY f(g(x))D# g(x) = 0. However the proof
of this theorem is not easy since it is based on the celebrated Whitney extension theorem.
That should not be surprising after all. The existence of the extension F is proven by
verification that the formal jet of derivatives of f o g up to order k defined above satisfies
the assumptions of the Whitney extension theorem.
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In 1951, Kneser presented a proof of this composition result in [201]. We proved a
theorem which may be obtained as an immediate corollary to the theorem of Sard, though
he did so without any reference to or influence from Sard’s result. The composition theorem
Is also discussed in a different context in a 1958 by Glaeser [196]. See [193], [202], [204].
Thom [207], quickly realized that the method of Kneser can be used to prove the Sard
theorem. See also [193], [202], [205]. Recently Figalli [43] used this method to provide a
simpler proof of Theorem (5.2.3). Our proof of Theorem (5.2.13) we will also be based on
the KneserGlaeser result.

We will explain notation and prove some technical results related to the Morrey
inequality that will be used in the proof of Theorem (5.2.13).
Consider f: R™ - R. By D*f we will denote the partial derivative of f with respect to the
multiindex a« = (aq4,..., a,). In particular D5if =df /ox;,i.e.6; =(0,...,0,1,0,...,0) is
a multiindex with 1 on ith position. Also |a| = a;+... +a, and a! = a;! - - - a,,|. D*f will
denote the vector whose components are the derivatives D*f, |a| = k. The classes of
functions with continuous and a-Haolder continuous derivatives of order up to k will be
denoted by C* and C*¢ respectively. The integral average over a set S of positive measure
will be denoted by

1
fr = §10dx = o L fF@)dx.

The characteristic function of a set E will be denoted by yz. The k-dimensional Hausdorff
measure will be denoted by #*. In particular 2° is the counting measure. The Lebesgue
measure in R" coincides with /™. In addition to the Hausdorff measure notation we will
also write |S| for the Lebesgue measure of S. We say that a set is k-null if its kdimensional
Hausdorff measure equals zero. By H§,6 > 0, we denote the pre-Hausdorff measure
defined by taking infimum over coverings of the set by sets of diameters less than 6 so
HEE) = SIL%L HE(E). Cubes in R™ will always have sides parallel to coordinate

directions. The symbol C will be used to represent a generic constant and the actual value
of C may change in a single string of estimates. By writing C = C(n, m) we indicate that
the constant C depends on n and m only.

We will use the following elementary result several times.

Lemma (5.2.6)[192]: Let E c R™ be a bounded measurable set and let-co < a < n. Then
there is a constant C = C(n, a) such that for every x € E

a
_dy {ClEll_ﬁ if0<a<n
g1x—=y1* 7 ((diam E)~%|E| if a < 0.

Proof. The case a < 0 is obvious since then |x — y|™® < (diam E)~%. Thus assume that
0 < a < n. Inthis case the inequality is actually true for all x € R™ and not only for x € E.

Let B = B(0,r),|B| = |E|. We have

r

f [, f t-etn1dt = Crm = C|E|"n,
E IX - yla B |y|a 0

The following result [195] is a basic pointwise estimate for Sobolev functions.

Lemma (5.2.7)[192]: Let D c R™ be a cube or a ball and let S © D be a measurable set of

positive measure. If f € WP (D),p = 1, then

lf(x) — fs] < C(n) lllS)ll fDl IDf(2)] dz a.e. (56)

x —z|m 1
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When p > n, the triangle inequality |f(y) — f(¥)| < |f(¥) — fol + |f(x) — fp|, Holder
inequality, and Lemma (5.2.6) applied to the right hand side of (56) yield a well known

Lemma (5.2.8) (Morrey’s inequality)[192]: Supposen < p < coand f € WP (D), where
D c R™ Is a cube or a ball. Then there is a constant C = C(n, p) such that
1

If (y) — f(x)| < C(diam D)l_% (f |Df(z)|pdz>5 forall x,y € D.
D

In particular,
1

diam f(D) < C(diam D)l_% (J |Df(z)|pdz>p.
D

Since p > n, the function f is continuous (Sobolev embedding) and hence the lemma does

indeed hold for all x,y € D.

From this lemma we can easily deduce a corresponding result for higher order derivatives.

The Taylor polynomial and the averaged Taylor polynomial of f will be denoted by
Tkxf(y)=X|a|<kDaf(x)(y—x)aa!, TkSf(y)=ZSTkxf(y)dx.

Lemma (5.2.9)[192]: Suppose n < p < o,k > 1 and f € W*P(D), where D c R" is a

cube or a ball. Then there is a constant C = C(n, k, p) such that

S

n
|f &) — TE1F(y)| < C(diam D)k_5 <f |Dkf(z)|pdz> forall x,y € D.
D
Proof. Given y € D let

Ver=THT ) = 2 Def(x) —— (y — ) € WP (D).
Observe that p(y) = fy)and
s v — x)“

0= ) DI

la|=k-1
where §; = (0,...,1,...,0). Indeed, after applying the Leibniz rule to dv/dx; the lower
order terms will cancel out. Since

IDY(2)| < C(n, k)| D*f(2)|ly — 2|,

Lemma (5.2.8) applied to vy yields the result.
Applying the same argument to Lemma (5.2.7) leads to the following result, see [53].
Lemma (5.2.10)[192]: Let D < R™ be a cube or a ball and let S c D be a measurable set of
positive measure. If f € W*P(D),p = 1,k > 1, then there is constant C = C(n, k) such
that

k
lf ) —TEf0)| < ¢ ISllj || fz(l?lkdz fora.e. x€D. (57)

We will improve the above estimates under the additional assumption that the derivative D f
vanishes on a given subset of D. For a similar result in a different setting see [199].
Lemma (5.2.11)[192]: Let D ¢ R™ be a cube or a ball and let f € W*P(D),n <p <
o,k > 1. Let
A ={x €D|Df(x) = 0}.

Then for any € > 0 thereis § = 6(n, k,p, &) > 0 such that if

|D\A| <8

D] '
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then
1

diam f(D) < e(diam D)k_% <f |Dkf(z)|pdz>5.

Proof: Although only the first order derivatives of f are equal zero in A, it easily follows
that D*f = Oa.e.in Aforall 1 < |a| < k. Indeed, if a Sobolev function is constant in a set,
its derivative equals zero a.e. in the set, [195], and we apply induction. Hence

Tk"1f(x) = fA forall x € R™.

k 1 1

Let £ > 0. Choose 0 < § < 1/2 with max{STﬁ,(Sl_E} < &.Since § < 1/2,|D|/|A| < 2.

Thus Lemma (5.2.10) with S = A yields
p—1
dz P

(n-k)52g

Dkf(Z)
|——z|n—|kdz < C(n)”Dkf“LP(D) JD\Al |
X —Z

Now the result follows directly from Lemma (5.2.6). Indeed, if k < n, Lemma (5.2.6) and
the estimate

If(x) = fAl < C(n)

D\4 |x

ID\A| < §|D| < C(n)é(diam D)™

yield
p-1
P
dz 1. k1 _n
j 5 < C(n, k,p)lD\AI"(k P) < C(n,k,p)é™ p(diam D)k p,
D\A |y — Z|("‘k)ﬁ
If kK > n, then we have
p-1
dz ’ p-1 ! o
j 5 < (diam D)*""|D\A| » < C(n,p)§ P(diam D) P.
D\A |y — 7| M p-T

Hence

diam f(D) = sup |f(x) = f(¥)| < 2sup|f(x) — fA|

xX,YED X€ED
_h
< C(n, k,p)e(diam D) 7P ||Dkf||Lp(D).

The proof is complete.
We will also need the following classical Besicovitch covering lemma, see e.g. [49]
Lemma (5.2.12) (Besicovitch)[192]: Let E c R™ and let {B,},cz be a family of closed

balls B, = B(x,r,) so that sup{r,} < o. Then there is a countable (possibly finite)
X€E

subfamily {Bxi}z1 with the property that

E c U By,
i=1

and no point of R" belongs to more than C(n)_ balls.
Theorem (5.2.13)[192]: Fix n,m, k € N. Suppose 2 c R™ is open and f € WZ'O“CP(Q, R™)
forsomen < p < oo. If £ = max(n —m — k + 1, 0), then

H* (Cf ﬂf‘l(y)) =0 fora.e. y € R™
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Proof: As we pointed out in Introduction we may assume that m < n and k > 2. Itis also
easy to see that we can assume that O = R™ and f € W*P(R"™ R™). Indeed, it suffices to
prove the claim of Theorem (5.2.13) on compact subsets of Q and so we may multiply f by
a compactly supported smooth cut-off function to get a function in WP (R™, R™).

We will prove the result using induction with respect to n.
Ifn=1,thenm=n=1.Thisgivesn—m—-k+1=1—-k<0foranykeN,so? =
0. Thus the theorem is a direct consequence of Theorem (5.2.4).

We shall prove now the theorem for n > 2 assuming that it is true in dimensions less than
or equal ton — 1.

Fix p and integers m and k satisfying n <p <oco,m<n, and k > 2. Write £ =
max(n —m —k + 1,0). Let f € WEP(R® R™),

We can write
CF=KUA;U..UA,_4,
where
K:= {x € Cf|0 < rank Df (x) < m}
And

Ag:={x e R*"|D*f(x) =0 forall 1< |a|<s}
Note that A, o A, D -+ D A, _, is a decreasing sequence of sets.
In the first step, we will show that 4,_; N f~1(y) is ¢-null for a.e. y € R™. Then we will
prove the same for (4,_;\4;) N f~1(y) fors = 2,3,...,k — 1. To do this we will use the
Implicit Function and Kneser-Glaeser theorems to reduce our problem to a lower
dimensional one and apply the induction hypothesis. Finally, we will consider the set K and
use a change of variables to show that we can reduce the dimension in the domain and in

the target so that the fact that 2*(K n f~1(y)) = 0 will follow from the induction
hypothesis.

Claim (5.2.14)[192]: H*(Ap_y N f~1(y)) = 0 fora.e. y € R™

Proof. Suppose x € A,_,. Notice that TX¥~1f(y) = f(x) for any y € R™ since D*f(x) =
0 for every 1 <|a| <k—1. By Lemma (5.2.9) applied to each coordinate of f =

(fireees fond

we have for any cube Q  R™ containing x and any y € Q,
1

FO) = FGO < C(diam Q)P ( | |D"f(Z)|de>p- (58)
Q

Hence
1

diam f(Q) < C(diam Q)k_% (j |Dkf(z)|pdz>§. (59)
Q

Let F;: = {x € A,_,|x isadensity point of A;_,} and F,: = Aj,_,\F;. We will treat the sets
F, 0 f~1(y) and F, n f~1(y) separately.

First we will prove that H*(F, n f~*(y)) = 0 for almost every y € R™.
Let 0 < & < 1. Since H™(F,) = 0, there is an open set F, c U c Q such that H™"(U) <
ep-Lm. For any j > 1 let {Qif}:1 be a collection of closed cubes with pairwise disjoint
interiors such that
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QNF#0 Fc UQU cU,  diamQ; <
Since F, N Q;; # @, (59) yields

m

_n p
H™ (f(Qij)) <C (diam f(Qij))m < C(diam Ql-j)m(k P)( |D"f(x)|pdx> .
Qij

Caseen—m—-k+1<0so¢=0.
This condition easily implies that mk >n so we also have p’f—’:n(k —g) > n, and by
Holder’s inequality,

Hm(f(Fy) < Z:H‘m r(@y) <Cz(dlamQU) (f ID*F () dx>
b— m
% n T P
=¢ (Z(dtam Qif)”(k_5)> (f s (’“)'pdx>p
i=1 U2, Qij
< car )’ ( [[1o*sc0) dx) <celorfl, oo

Since € > 0 can be arbitrarily small, ™ (f(F,)) = 0 and hence F, n f~1(y) = @, i.e.
H(F,nf~(y)) =0forae.y € R™.
Case:Y=n—-m—-k+1>0.
The sets {Qij N f‘l(y)}j:1 form a covering of F, N f~1(y) by sets of diameters less than
1/j. Since

diam (Qyy 0 f 7)) < (diam Quy)xs(q,) )
the definition of the Hausdorff measure yields

HE(F 0 f7H() < C“j“lio“fz diam (@ 0 f1))’

<C limian(diam Qij)f)(f(Qij)(y). (61)

]—)OO
=
We would like to integrate both sides with respect to y € R™. Note that the function on the
right hand side is measurable since the sets f(Qij) are compact. However measurability of

the function y +— H*’(F2 N f‘l(y)) is far from being obvious. To deal with this problem
we will use the upper integral which for a non-negative function g: X — [0, o] defined p-
a.e. on a measure space (X, p) is defined as follows:

f gdu= inf{fqbdu:o <g< q')andcl)isu—measurable}.
X X

An important property of the upper integral is that if f;g dp = 0, then g = 0 p-a.e. Indeed,
there is a sequence ¢p; = g = 0 such that fX ¢; du — 0. That means ¢p; — 0 in L1 (). Taking
a subsequence we get ¢i; = 0 p-ae. which proves that g = 0 p-a.e.
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Applying the upper integral with respect to y € R™ to both sides of (61), using Fatou’s

lemma, and noticing that
_P_ L+m (k — E) =>n
p—m p

f HE(F, 0 fF71(y))dH™(y) < 61ijrgionfz(dzam Qi) Hu (£(Q1)))
R™ i=1

< Clim ian(dlam QU)Hm( b) (L

]—)OO

gives

|D*f(x)| dx> <Ce||Dkf||p

by the same argument as in (60). Again, since € > 0 can be arbitrarily small, we conclude
that H*(F, n f~1(y)) = 0 fora.e. y € R™,

It remains to prove that H*(F, n f~1(y)) = 0 for almost every y € R™.
The proof is similar to that in Step 1 and the arguments which are almost the same will be
presented in a more sketchy form now. In Step 1 it was essential that the set F, had measure
zero. We will compensate the lack of this property now by the estimates from.

It suffices to prove that for any cube Q,H?* (Q N F, nf‘l(y)) =0 for a.e. y € R™.

Assume that Q is in the interior of a larger cube Q € Q.

Foreachx € Q N F; and j € N there is 0 < Tjx < 1/j such that
1
. 1

_n p
diam f (B(x r]x)) Sj‘lgl; P (j |D"f(z)|pdz> .
B(x,7jx)

We may further assume that B(x,7;,) € Q.

Denote B}, = B(x,1;,). According to the Besicovitch Lemma (5.2.12), there is a countable
subcovering {Bjxi};of Q N F; so that no point of R™ belongs to more than C (n) balls Bjyi.
Caseen—m—-k+1<0s0¢=0.

We have (k — —) > n as before, so

S
|
S|3

<cj ™ (i?}-’;i)T (ijB .|Dkf(z)|pd2> :

Since the balls are contained in Q and no point belongs to more than C (n) balls we conclude
that

- p-m m
H™ (F(@NnF))<cj™H™(Q ® [ID*fI]
Since j can be arbitrarily large, 7™ (f(Q N Fl)) =0,ie H? (Q NF N f‘l(y)) = 0 for

a.e.y € R™,
Case:¥=n—-m-k+1>0.

The sets {B]-xl. N f‘l(y)}z1 form a coveringof 0 N F; N f~*(y) and
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diam (Bjxi nf ‘1(y)) <C X g (3 )(y)-

i

The definition of the Hausdorff measure yields
(A -~ o L
H (Q NF Nf 1(y)) < Clljrr_lﬂljonle: rjxi)(f(Bjxi)(y).
=
Thus as above

j H* (Q N F, nf‘l(y)) dH™(y) < Clir_ninfz rjfcl,f}[m
R e

> £+m k—E
< C liminf j~™ E o (=) (f
]—)oo ]xl B

i=1

~

f(Bjxi))

SIE

|Dkf(z)|pdz>

jxi

p—-m
< C liminf j™3"(Q) P |[D*f|" =0
]—)OO

since p_im<{’ +m (k - g)) > n. Therefore H* (Q NF N f‘l(y)) =0 for a.e. y € R™.
This completes the proof that .‘H“’f’(F1 N f‘l(y)) = (0 for a.e. y € R™ and hence that of
Claim (5.2.14)

Claim (5.2.15)[192]: H*((4s-1\ As) N f1(y)) =0forae.y e R™,s =2,3,... .,k — 1.
In this step, we will use the Kneser-Glaeser composition theorem and the implicit function
theorem to apply the induction hypothesis in R,

Fixs€{2,3,...,k—1}and x € A,_;\A;. It suffices to show that the £-Hausdorff measure
of W n (4,_1\A45) N f~1(y) is zero for some neighborhood W of x and a.e. y € R™.
Indeed, A;_,\A; can be covered by countably many such neighborhoods.

By the definitions of A; and A;_;,DYf(x) =0forall 1< |y|<s—1,and DPf(x) =0
for some |B| = s. That is, for some |[y| =s—1andj € {1,...,m}, D(Dij)(f) #+ 0 and

D'f; € wk—(-Dp < C’H»l—%_
Hence, by the implicit function theorem, there is some neighborhood U of x and an open set
V c R*sothat U n{DYf; = 0} = g(V) for some g: V — R™ of class C*~*. In particular,
UNAs_y c g(V)since D'f; = 0on A_;.
Choose a neighborhood W € U of x and say A*: = g~ 1(W n A,_,) so that A* is compact.
Since fis s — 1 flat on the closed set A,_., f is of class C¥~1, g is of class Ck~D~(s=1) and
g(A*) c A,_,, we can apply Theorem (5.2.5) to each component of f to find a C¥~? function
F:R™ 1 - R™ so that, for every x € A*, F(x) = (f o g)(x) and D*F(x) = 0 for all |A| <
s — 1. Thatis, A* c Cr. Hence

HY(A* NF1(y) <H!'(C-nF(y)) =0.
for almost every y € R™. In this last equality, we invoked the induction hypothesis on F €
CL(R™T,R™) € WETVP(R™L,R™) with £ = max((n—1) —m — (k — 1) +1,0).
Since g is of class C?, it is locally Lipschitz, and so #* (g(A* N F‘l(y))) = 0 for almost
every y € R™. Since N A;_; € g(A™), we have

WA nf () cg(A" nF' ()

for all y € R™, and thus
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HEW N Ao \A) N ) S H (W n Ao, nfH(y)) = 0
for almost every y € R™. The proof of the claim is complete.
Claim (5.2.16)[192]: W(K Nnf1(y)) =0forae y e R™
Proof. Write K = U™ 1 K, where K,: = {x € R"*|rank Df (x) = r}. Fix x, € K, for some
re{l,....m-—1}. For the same reason as in Claim (5.2.15) it suffices to show that
H((VnK,) N f1(y)) = 0 for some neighborhood V of x, for a.e. y € R™.

af; 1
- ] formed by the first r rows

Without loss of generality, assume that the submatrix [—
ax](xo) i;j:1

and columns of Df has rank r. Let

Y(x) = (fi(x), f,(x),..., (), Xp41,...,X,) forall x € R™ (62)
Y is of class C*~1 since each component of f is. Also, rank DY (x,) = n, so by the inverse
function theorem Y is a C*~?* diffeomorphism of some neighborhood V of x0 onto an open
set V < R™ . From now on we will assume that Y is defined in V only.

Claim (5.2.17)[192]: Y~1 € WP (7, R™).

loc

Lemma (5.2.18)[192]: Let Q c R™ be open. If g,h € Wlﬁf(ﬂ), where p >n and £ > 1,
then gh € W27 (Q).

Proof. Since g,h € C*71, it suffices to show that the classical partial derivatives
Df(gh),|8] =€ —1 belong to W,P(Q) (when £=1,8=0 so Df(gh) = gh). The
product rule for C*=* functions yields

DB(gh) = 2 - P prgpen. (63)

y+6= ﬁ
Each of the functions DY g, D%h is absolutely continuous on almost all lines parallel to
coordinate axes, [60], so is their product. Thus D# (gh) is absolutely continuous on almost
all lines and hence it has partial derivatives (or order 1) almost everywhere. According to a
characterization of W, - by absolute continuity on lines, [60], it suffices to show that partial

loc
derivatives of D8 (gh) (of order 1) belong to LY . This will imply that D# (gh) € Wllp for

all 8, |B] —f—lsOgheroc
If D* = D%DA | then the product rule applied to the right hand side of (63) yields

D%*(gh) = z '6'DVgD5h
Y+6=a
If |y] < |a] = € and |§] < |a| = £, then the function DY gD h is continuous and hence in

L} .. The remaining terms are hD%g + gD%h. Clearly this function also belongs to L7,

because the functions g, h are continuous and D*g, D%h € L .
of the lemma.

Now we can complete the proof of Claim (5.2.17). Since Y is a diffeomorphism of class
C*=1, we have

loc

loc
This completes the proof

D(Y™H(y) = [le(Y‘l(y))]_1 for every y e V. (64)
It suffices to prove that (Y~1) € W,“~"P. It follows from (64) and a formula for the inverse
matrix that

1y _ (PPN
D(Y )_<P2(—Df)>oy ’
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where P, and P, and polynomials whose variables are replaced by partial derivatives of f.
The polynomial P,(Df) is just det DY.
Since Df € Wl’(fc_l"’ and p > n, it follows from Lemma (5.2.18) that
P, (Df), P,(Df) € Wy, 7.
Note that P,(Df) = det DY is continuous and different than zero. Hence
1 k-1

——ew P

P,(Df) ~ e
as a composition of a W,'(fc_l’p function which is locally bounded away from 0 and oo with a
smooth function x — x~1. Thus Lemma (5.2.18) applied one more time yields that

P,(Df)/P,(Df) € W,X-™P  Finally
D(Y 1) = (

oY 1lewktr

loc

P, (Df ))
2107

because composition with a diffeomorphism Y =1 of class C*~1 preserves W,“?. The proof
of the claim is complete.
It follows directly from (62) that

f(Y‘l(x)) = (xl, . ..,xr,g(x)) (65)

for all x € V and some function g: V - R™",

Claim (5.2.19)[192]: g € W, “P(7, R™~7).

This statement is a direct consequence of the next

Lemma (5.2.20)[192]: Let Q c R™ be open, p >nand k= 1. If @ € Wl'(f'f(ﬂ, R™) is a
diffeomorphism and u € W, (#(Q)), then u o & € W7 ().

loc

Proof. When k = 1 the result is obvious because diffeomorphisms preserve W,.7. Assume
thus that k > 2. Since p > n,® € C*~1 so @ is a diffeomorphism of class C*~1, but also
u € C*1 c ¢ and hence the classical chain rule gives

D(uo®) = ((Du) @) - Do. (66)

Since Du € Wllgc_l’p and @ is a diffeomorphism of class C¥~1, we conclude that (Du) o @ €

W5~ Now the fact that D@ € W<~ ” combined with (66) and Lemma (5.2.18) yield that
the right hand side of (66) belongs to W,“-"" so D(u - ®) € W, and hence - @ €
Wlf'cp. This compltes the proof of Lemma (5.2.20) and hence that of Claim (5.2.19).
Now we can complete the proof of Claim (5.2.16). Recall that we need to prove that
H(WNKINF () =0 forae y€eR™ .(67)
The diffeomorphism Y 1 is a change of variables that simplifies the structure of the mapping
f because foY~1 fixes the first r coordinates (see (65)) and hence it maps (n — r)-
dimensional slices orthogonal to R" to the corresponding (m — r)-dimensional slices
orthogonal to R". Because of this observation it is more convenient to work with f oY1
rather than with f. Translating (67) to the case of f o Y1 it suffices to show that

H* ((17 N Y(Kr)) N(fo Y‘l)‘1> (y)=0 fora.e. y €R™
We used here a simple fact that the diffeomorphism Y preserves £-null sets.
Observe also that

rank D(fo Y™ VD)(x)=r for x€VnY(K,). (68)
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Forany X € R" and A c R", we will denote by A; the (n — r)—dimensional slice of A with
the first r coordinates equal to %. That is, Az: = {z € R""|(%,z) € A}. Let gz V; - R™™"
be defined by gz (z) = g(&, z). With this notation

(f e Y™N(X,2) = (%, 9:(2))

and hence for y = (¥,w) € R™
(FnY®))n(For™Hm =gz w)n (7 nY(K)) .

The set on the left hand side is contained in an affine (n — r)-dimensional subspace of R"
orthogonal to R" at ¥ while the set on the right hand side is contained in R"™" but the two
sets are identified through a translation by the vector (%,0) € R™ which identifies R"™" with
the affine subspace orthogonal to R" at ¥.

According to the Fubini theorem it suffices to show that for almost all ¥ € R" the following
Is true: for almost all w € R™™"

H? (g,gl(w) n(7n Y(Kr),z)) = 0. (69)
As we will see this is a direct consequence of the induction hypothesis applied to the
mapping gp: Xz = R™ " defined in a set of dimension n —r < n — 1. We only need to
check that g5 satisfies the assumptions of the induction hypothesis.
It is easy to see that for each x = (¥,2z) € V
o V-1 — drxr 0 )
Py = ("7 pgom)
This and (68) imply that for each ¥ € R" ,Dg; = 0 on the slice (17 N Y(Kr))~. Hence the
X
set (17 ny (KT))~ Is contained in the critical set of g; so
X
3¢ (g7t w) n (7 n Y(Kr))x) < H!(g7'w) n C,.). (70)
It follows from the Fubini theorem applied to Sobolev spaces that for almost all X €
R"™, gz € WP (7, R™") and hence the induction hypothesis is satisfied for such
mappings
WEP 3 ge: Ve c RPT —» R™,
Since
f=max(n—-m—k+1,0) =max((n—71)—(m—1)—k+1,0),
for almost all w € R™™™ the expression on the right hand side of (70) equals zero and (69)
follows. This completes the proof of Claim (5.2.16) and hence that of the theorem.
Section (5.3): Abridge Between Dubovitskii —Federer Theorems
The Morse—Sard theorem in its classical form states that the image of the set of critical
points of a C*~™*1 smooth mapping v : R® — R™ has zero Lebesgue measure in R™.
Assuming that n > m, the set of critical points for vis Z, = {x € R" :rank Vv(x) <
m} and the conclusion is that
L™(v(Z,)) = 0. (71)
The theorem was proved by Morse [69] in the case m = 1 and subsequently by Sard [47]
in the general vector-valued case. The celebrated results of Whitney [48] show that the
Cc™™+*1 smoothness assumption on the mapping v is sharp. However, the following result
gives valuable information also for less smooth mappings.
Theorem (5.3.1)[208]: (Dubovitskii 1957 [59]). Letn,m,k € N, and let v : R™ - R™ be
a C*-smooth mapping. Puts = n — m — k + 1. Then
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HS(Z, n v i(y)) =0 for a.ay € R™ (72)
where ' denotes the s-dimensional Hausdorff measure and Z,, is the set of critical points
of v.

Here and in the following we interpret ## as the counting measure when 8 < 0. Thus for
k>n—m+ 1wehaves < 0,and H* in (72) becomes simply the counting measure,
so the Dubovitskii theorem contains the Morse—Sard Theorem (5.3.1)s particular case.

A few years later and almost simultaneously, Dubovitskii [183] in 1967 and Federer [61] in
19692 published another important generalization of the Morse—Sard theorem.

Theorem (5.3.2)[208]: (Dubovitskii—Federer). Forn, k,d € Nletm € {1,...,min(n,d)}

and v : R® —» R? be a C*-smooth mapping. Put g, = m + % . Then

3% (v(Zym)) = 0, (73)
where, as above,s = n — m — k + 1and Z,,, denotes the set of m-critical points of v
defined as Z,,,, = {x € R":rankVv(x) < mj}.
In view of the wide range of applicability of the above results it is a natural and compelling
problem to decide to what extent they admit extensions to classes of Sobolev mappings. The
first Morse—Sard result in the Sobolev context that we are aware of is due to L. De Pascale
[39] (though see also [63]). It states that (71) holds for mappings v of class Wp’floc (R™, R™)
when k > max(n — m + 1,2) and p > n. Note that by the Sobolev embedding
Theorem (5.3.1)ny mapping on R™ which is locally of Sobolev class Wp" forsomep > n
is in particular C¥~1, so the critical set Z,, can be defined as usual.
In [192] P. Hajtasz and S. Zimmerman proved Theorem (5.3.1) under the assumption that
v E Wp’floc(Rn, R™),p > n, which corresponds to that used by L. De Pascale [39].
In view of the existing counter-examples to Morse—Sard type results in the classical C*
context the issue is not the value of k, — that is, how many weak derivatives are needed.
Instead the question is, what are the minimal integrability assumptions on the weak
derivatives for Morse—Sard type results to be valid in the Sobolev case. Of course, it is
natural here to restrict attention to continuous mappings, and so to require from the
considered function spaces that the inclusion v € VI/p" (R", R%) should guarantee at least
the continuity of v (assuming always that the mappings are precisely represented). For
values k € {1,...,n— 1} itis well-known that v € W,*(R", R%) is continuous for p > %

and could be discontinuous forp < % . Sothe borderline caseis = p, = % It is well-known

(see for instance [62], [50]) that v € Wp’j(]Rn, R%) is continuous if the derivatives of k-th
order belong to the Lorentz space L, ;, we will denote the space of such mappings by
Wy 1 (R™, RY).
In [180] it was shown that mappings v € W;;i,l(]Rn' R%) are differentiable (in the classical
Fréchet—Peano sense) at each point outside some HP- -negligible set A,.. Thus we define
for integers m < min{n, d} the m-critical set as

Zym ={x € R"\ 4, : rank Vv(x) < m}. (74)
In previous joint of two of the authors with J. Bourgain [37], [56] and in [50], [180] this
definition of critical set was used and a corresponding Dubovitskii—Federer Theorem (5.3.2)
was established for mappings of Sobolev class W*(R™ R?). If, in addition, the highest
derivative V*v belongs to the Lorentz space L, 1 (in particular, if k = nsince Ly, = L;),
also the Luzin N-property with respect to the p,-dimensional Hausdorff content was proven.
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It implies, in particular, that the image of the set A,, of nondifferentiability points has zero
measure, and consequently, C1-smoothness of almost all level sets follows. These facts
found fruitful applications in fluid mechanics (see, e.g., [188]).
We prove the Dubovitskii Theorem (5.3.1) for mappings of the same Sobolev— Lorentz class
Wy, and with values in R? for arbitrary d > m.
Theorem (5.3.3)[208]: Let k,m € {1,...,n},d = mand v € W) ;(R",R?). Then the
equality

H5(Zym N v () = 0 for H™ —a.a.y € R (75)
holds, where asaboves = n — m — k + 1and Z,,, denotes the set of m-critical points
ofv:iZ,, = {x € R*"\ 4, : rank Vv(x) < m}.
The result is new even when the mapping v : R® — R is of class C* since we allow here
m < d (compare with Theorem (5.3.1)). However, the main thrust of the result is the
extension to the Sobolev—Lorentz context that we believe is essentially sharp. We also wish
to emphasize that the result is in harmony with our definition of critical set (recall that
HP- (A,) = 0)and the following new analog of the Luzin N-property:
Theorem (5.3.4)[208]: Let k,m € {1,...,n},d = mand v € Wy ,(R",R%). Then for
any set A with P> (A) = 0 we have

HSANnviy) =0 for H™—a.a.y € RY, (76)

whereagains = n — m — k + 1.
We end with remarks about the possibility to localize our results.

We extend the Dubovitskii Theorem (5.3.1) to the Sobolev context (since the
Federer—Dubovitskii Theorem (5.3.2) had been extended before in [50], [180]). The very
natural question arose. Theorem (5.3.1) asserts that H ™ -almost all preimages are small
(with respect to H *-measure), and Theorem (5.3.2) claims that - -almost all preimages
are empty. Could we connect these results? could we say something about H -almost all
preimages for other values of q, say, for ¢ € [m — 1,q,]? The affirmative answer is
contained in the next theorem.

Theorem (5.3.5)[208]: Let k,m € {1,...,n},d = mand v € W, ,(R™,R?). Then for
any g € (m — 1, ) the equality

HHa (Zv,m nv-— 1(y)) =0 for H9—a.a.y € R? (77)
holds, where

Hg:i=s+k(m-gq), s=n-m-k+1, (78)

and Z,,, again denotes the set of m-critical points of v:Z,, = {x € R"\A4,:
rank Vv(x) < m — 1}.
Let us note, that the behavior of the function u, is very natural:

= 7: *1 (Dubovitskii-Federer Theorem (5.3.2))

pg = 0forqg = qg.=m — 1 +
ng < 0forq > q, [ibid.]
ng = sforgq = m (Dubovitskii Theorem (5.3.1))

g =n—m+1 forq =m — 1. (79)
The last value cannot be improved in view of the trivial example of a linear mapping
L:R"* - R4 ofrankm — 1.
Thus, Theorem (5.3.5) contains all the previous theorems as particular cases and it is new
even for the smooth case.
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We emphasize the fact that in stating Theorem (5.3.5) we skipped the borderline case g =
m—1,u, = n—m+ 1. For this case we cannot assert that H™ L-almost all preimages
in the m-critical set Z,, have zero H™ ™*!-measure as the above mentioned
counterexample with a linear mapping L: R* — R¢ of rank m — 1 shows. But for this
borderline case we obtain instead the following analog of the classical coarea formula:
Theorem (5.3.6)[208]: Let n,d € N,m € {0,...,min(n,d)}, and v € W, (R", R%).
Then for any Lebesgue measurable subset E of Z,, ,,,.1 = {x € R*"\ 4, : rank Vv(x) <
m} we have

| mveodx = [ (e 0 vi)arn ), (@0)

where J,,v(x) denotes the m-Jacobian of v defined as the product of the m largest singular
values of the matrix Vv (x).

The proof relies crucially on the results of [219] and [214] that give criteria for the validity
of the coarea formula for Lipschitz mappings between metric spaces, see also [209] and
[66], [203].

Thus, to study the level sets for the borderline case g = m — 1 in Theorem (5.3.5), one
must take m" = m — 1 instead of m in Theorem (5.3.6).

From the Coarea formula (80) it follows directly, that the set of y € R% where the
integrand in the right-hand side of (80) is positive, is H ™—o-finite. Indeed, from Theorem
(5.3.6) and [214] we obtain immediately the following more precise statement:

Corollary (5.3.7)[208]: Letm € {0,...,min(d,n)}and v € W, ,(R", R%). Then the set

{y e R : 37 (Z,000 0 v7H () > 0
Is H ™-rectifiable, i.e., it is a union of a set of H'™-measure zero and a countable family of
images g;(S;) of Lipschitz mappings g; : S; € R™ — R?. Here again Z, .1 = {x €
R™\ 4, : rank Vv(x) < m}.
Again In harmony with our definition of critical set (recall that H?-(4,) = 0)
because of the following analog of the Luzin N-property:
In particular,
}[p(v(E)) = 0 whenever HP(E)=0,p € [p.,n]. (81)
By a simple calculation we have for g € [0, q,] that
pg=n—m—k +1+ k(m — q)
= pPo—qQk + (m — 1)(k — 1) = max(p. — q,0). (82)
Theorem (5.3.24) then yields
Corollary (5.3.8)[208]: Letk,m € {1,...,n}andv € Wpli,l(Rn' R%). Then foreveryq €
[0, +0) and for any set E with HP-(E) = 0 we have
H*¥(E nviy) =0 for Hi-a.a.y € R% (83)
Consequently, for every g € [0, +o0)
Hb (A, n v I(y) =0 for H9—a.a.y € RY  (84)
where we recall that A4, is the set of nondifferentiability points of v (cf. with (77)).
Finally, applying the N-property (Theorem (5.3.24)) forp = n,q = m < n, we obtain
Corollary (5.3.9)[208]: Let n,d € N,m € [0,n], and v € W, (R™ R%). Then for any
set E of zero n-Lebesgue measure L™ (E) = 0 the identity
H"™E Nnvi(y)=0 for H™—a.a.y € R (85)
holds.
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Thus the sets of n-Lebesgue measure zero (in particular, the set of nondifferentiability points
Av) are negligible in the Coarea formula (80).

Finally, let us comment briefly on the proofs that merge ideas from the previous [56], [50],
[180] and [192]. In particular, the joint [37], [56] by two with J. Bourgain contain many of
the key ideas that allow us to consider nondifferentiable Sobolev mappings. For the
implementation of these ideas one relies on estimates for the Hardy—L.ittlewood maximal
function in terms of Choquet type integrals with respect to Hausdorff capacity. In order to
take full advantage of the Lorentz context we exploit the recent estimates from [180]
(recalled in Theorem (5.3.13) below, see also [51] for the case p = 1). As in [56] (and
subsequently in [50]) we also crucially use Y. Yomdin’s (see [78]) entropy estimates of near
critical values for polynomials (recalled in Theorem (5.3.14) below).

In addition to the above mentioned there is a growing number on the topic, including [29],
[210]-[53], [57], [22], [213], [68], [70], [71], [76], [191].

By an n-dimensional interval we mean a closed cube in R™ with sides parallel to the
coordinate axes. If Q@ is an n-dimensional cubic interval then we write £(Q) for its
sidelength.

For a subset S of R™ we write L™(S) for its outer Lebesgue measure. The m-dimensional
Hausdorff measure is denoted by H™ and the m-dimensional Hausdorff content by H 2.
Recall that for any subset S of R™ we have by definition
H™(S) =lim HI'(S) =sup H(S),
aN0 a>0
where foreach0 < a < oo,

HM(S) = inf {z (diam S)™ : diam S; < a,S U si}.
i=1 i=1
It is well known that H™(S) = HZ(S) ~ L™(S) forsetsS ¢ R".
To simplify the notation, we write ||f||Lp instead of ”f”Lp(Rn), etc.

The Sobolev space I/I/p"(R", R%) is as usual defined as consisting of those R%-valued
functions f € L,(R™) whose distributional partial derivatives of orders [ < k belong to
L, (R™) (for detailed definitions and differentiability properties of such functions see, e.g.,

[60], [218], [79], [58]). Denote by V¥ f the vector-valued function consisting of all k-th order
partial derivatives of f arranged in some fixed order. However, for the case of first order
derivatives k = 1 we shall often think of Vf(x) as the Jacobi matrix of f at x, thus the
d X n matrix whose r-th row is the vector of partial derivatives of the r-th coordinate
function.

We use the norm

1f g = Wflle + WVFNle + -+ [[VEF]
and unless otherwise specified all norms on the spaces R® (s € N) will be the usual
euclidean norms.
Working with locally integrable functions, we always assume that the precise
representatives are chosen. If w € Ly ;,.(£2), then the precise representative w* is defined
forall x € 2 by

. lim f w(z)dz, if the limit exists and is finite,
w (x) =470 B(x,1)

(86)
0 otherwise,
where the dashed integral as usual denotes the integral mean,
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w(z)dz = —————= w(z)dz,
L(x,r) Ln(B (x, T')) B(x,r)

and B(x,v) = {y: |y — x| < r}isthe open ball of radius r centered at x. Henceforth
we omit special notation for the precise representative writing simply w* = w.

We will say that x is an L,-Lebesgue point of w (and simply a Lebesgue point when p =
1), if

j lw(z) — w(x)|Pdz - 0 as r N\ 0.
B(x,r)

If £ < n, then it is well-known that functions from Sobolev spaces Wp" (R™) are continuous
forp > % and could be discontinuous forp < p, = % (see, e.g., [218], [79]).

The Sobolev-Lorentz space Wp’fnl(]Rn) c Wp’j (R™) is a refinement of the corresponding
Sobolev space that for our purposes turns out to be convenient. Among other things
functions that are locally in Wp’f”1 on R™ are in particular continuous.

Here we shall mainly be concerned with the Lorentz space L, ;, and in this case one may
rewrite the norm as (see [65])

+ 00 1
Ifls = [ 7Gx € R+ IF 1> D de (87)
0
We record the following subadditivity property of the Lorentz norm for later use.
Lemma (5.3.10)[208]: (see, e.g., [72] or [65]). Suppose that1 < p < coand = Ujey Ej
, Where E; are measurable and mutually disjoint subsets of R™. Then for all f/ € L, we
have

15, , = r-ve
PO IR R VAL I

]
where 1 denotes the indicator function of the set E.
Denote by Wp’fl(]R") the space of all functions v € W, (R™) such that in addition the

Lorentz norm |||7kv||L is finite.
p1

For a mappingu € LL(Q, R%),Q c R®,m € N, define the polynomial Pgy,m[u] of degree
at most m by the following rule:

f YU — Pomlul)) dy = 0 (88)
Q

for any multi-index a« = (a4,...,a,) of length |a| = a; + - +a, < m. Denote
Polu] = Por-1lul.

The following well-known bound will be used on several occasions.

Lemma (5.3.11)[208]: (see, e.g., [180]). Suppose v € Wy, (R™, R*) withk € {1,...,n}.
Then v is a continuous mapping and for any n-dimensional cubic interval Q c R" the
estimate

sup |[v(y) — Polvi| < € |14 -Vkv”L (89)
yeQ Po,1

holds, where C is a constant depending on n,d only. Moreover, the mapping v, (y) =
v(y) — Po[v](¥),y € Q, can be extended from @ to the whole of R™ such that the
extension (denoted again) v, € Wp’ful(]R{”, R%) and

||kaQ||Lpo,1(Rn) < G |1, ‘Vk””Lpo,l , (90)
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where C, also depends on n, d only.
Corollary (5.3.12)[208]: (see, e.g., [50]). Suppose v € Wp";l(IR{",[R{d) with k €

{1,...,n}. Then v is a continuous mapping and for any n-dimensional cubic interval Q c
R™ the estimates

_ IVvllL,,
diamv(Q) < C <W),’;_1 +14 -Vkv“Lpo,l)
V]|
—an(Ql) + |1 - Vel GL)
- — Do,1
£(Q)P

hold for every p € [p., n].
The above results can easily be adapted to give that v € C,(R™), the space of continuous
functions on R™ that vanish at infinity (see [65]).

Let MP be the space of all nonnegative Borel measures x on R™ such that
lull] = sup e Fu() < o, (92)
B IcR"

where the supremum is taken over all n-dimensional cubic intervals I < R™ and £(I)
denotes side-length of I. We need the following important strong-type estimates for
maximal functions (it was proved in [180] based on classic results of D.R. Adams [51] and
some new analog of the trace theorem for Riesz potentials of Lorentz functions for the
limiting case g = p, see Theorems 0.2-0.4 and Corollary (5.3.7) in [180]).

Theorem (5.3.13)[208]: ([180]). Let p € (1,:),k,l € {1,...,n},l < k,(k — Dp <
n. Then for any function f € Wp’fl (R™) the estimates

19 £1 = € el 94717, e f o3

j Ho(fx € R : M(|VEFD)@ 2 thde < C||[VEfF|P (99
0 p1
hold, where § = n — (k — [)p, the constant C depends on n, k, p only, and

Mf@ =sw [ ir@ldy

>0 JB(x,r)

is the usual Hardy—L.ittlewood maximal function of f.

The resultistrue also for p = 1,k > L and is in this case due to D.R. Adams [51].

For a subset A of R™ and ¢ > 0 the g-entropy of A, denoted by Ent(e, 4), is the minimal
number of closed balls of radius & covering A. Further, for a linear map L: R® —» R% we
denote by A; (L),j = 1,...,d, its singular values arranged in decreasing order: A;(L) =
A, (L) == A4(L). Geometrically the singular values are the lengths of the semiaxes of
the, possibly degenerate, ellipsoid L(dB(0,1)). We recall that the singular values of L
coincide with the eigenvalues repeated according to multiplicity of the symmetric
nonnegative linear map vVLL* : R — R%. Also for a mapping f : R® — R? we denote
by 4; (L),j = 1,...,d, itssingular values arranged in decreasing order: A, (L) = A,(L) =
> A4(L). Geometrically the singular values are the lengths of the semiaxes of the,
possibly degenerate, ellipsoid L(dB(0,1)). We recall that the singular values of L coincide
with the eigenvalues repeated according to multiplicity of the symmetric nonnegative linear
map VLL*: R* —» R4 Also for a mapping f: R®™ — R¢ that is approximately
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differentiable at x € R™ put 4; (f,x) = A; (d.f), where by d,f we denote the
approximate differential of f at x. The next result is the second basic ingredient of our proof.
Theorem (5.3.14)[208]: ([78]). For any polynomial P : R™® — R< of degree at most k, for
each ball B ¢ R™ of radius r > 0, and any number £ > 0 we have that
Ent(er,{P(x):x € BA,<1+4+¢,...,4,_1<14+1,<¢,...,A; <¢€})
< Cy (1 + &t™m),
where the constant C, depends on n, d, k, m only and for brevity we wrote 1; = A; (P, x).
The application of Theorem (5.3.13) is facilitated through the following simple estimate (see
for instance Lemma 2 in [58], cf. with [55]).
Lemma (5.3.15)[208]: Letu € W (R" R%). Then forany ball B ¢ R™ of radiusr > 0
and for any number € > 0 the estimate
diam({u(x) : x € B,(MVu)(x) < €}) < Cyer
holds, where C,, is a constant depending on n, d only.
We need also the following approximation result.
Theorem (5.3.16)[208]: (see Theorem (5.3.5) in [180]). Let p € (1,»)k,l €
{1,...,n},l < k,(k — D)p <n. Then for any f € Wp’fl(]R%") and for each € > 0 there
exist an open set U « R™ and a function g € C'(R") such that
(i) Ho TP ) < &
(ii) each point x € R™\ U is an L,-Lebesgue point for Vif,j =0,...,1
(i) f = g, Vf = VigonR*\Uforj = 1,...,1.
Note that in the analogous theorem for the case of Sobolev mappings f € I/I/Z,"(]R{") the
assertion (i) should be replaced by
(") By-1p(U) < €ifl <k,
where B, ,,(U) denotes the Bessel capacity of the set U (see [79] or [54]).
Recall that for 1 < p < oo and 0 < n — ap < n the smallness of 7. *?(U) implies the
smallness of B, ,(U), but that the opposite is false since B,,(U) = 0 whenever
H™(U) < oo, Onthe otherhand, forl < p < ocand0 < n —ap < B < nthe
smallness of B, ,(U) implies the smallness of HB°(U) (see, e.g., [52]). So the usual
assertion (1’) 1s essentially weaker than (i).

We briefly recall some theorems from [50], [180] which we need. The following
result is an analog of the Luzin N-property with respect to the Hausdorff content.
Theorem (5.3.17)[208]: ([50], [180]). Let k € {1,...,n},q € [p,,n], and v €
Wp’i,l(R”, R4). Then for each e > 0 there exists § > 0 such that for any set E ¢ R" if
HI(E) < 68, then HI(v(E)) < e. In particular, H9(v(E)) = 0 whenever H9(E) =
0.

The next asertion is the precise analog of the Dubovitskii—Federer Theorem (5.3.2) which
includes the Morse—Sard result.

Theorem (5.3.18)[208]: ([50], [180]). If k,m € {1,...,n}, 2 is an open subset of R™, and
v € W, 10c(2,RY), then H%(v(Z,,,)) = 0.

Recall that in our notation

n S
Z%:E,S =n-m-—k+1qg,=m +E:po+(m - 1)(1_k_1)'(95)

and Z,,,, = {x € 2: rank Vv(x) < m}.
Finally, here we recall some differentiability properties of Sobolev—Lorentz functions.
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Theorem (5.3.19)[208]: ([50], [180]). Let k € {1,...,n}and v € Wp"ml(]Rn, R%). Then
there exists a Borel set A, ¢ R" such that H?-(4,) = 0 and for any x € R"\ 4, the
function v is differentiable (in the classical Fréchet sense) at x, furthermore, the classical
derivative coincides with Vv(x) (x is an L, -Lebesgue point for V'v).
Really the last assertion of the Theorem — that H'?- -almost all points x € R™ are the L,,
-Lebesgue points for the gradient Vv — follows from Theorem (5.3.16) (ii).
Thecase k = 1,p, = nof the Theorem (5.3.19) is a classical result due to Stein [73] (see
also [62]), and for k = n,p, = 1 the result is due to Dorronsoro [58].
Theorem (5.3.19) admits the following generalization.
Theorem (5.3.20)[208]: ([50], [180]). Let k,l € {1,...,n},l < k, and v €
Wy 1 (R™, R%). Then there exists a Borel set 4,; c R" such that #'* (4,,) = 0 and
each point x € R"\ 4, is an L, -Lebesgue point for V/f,j = 0,...,1, moreover, the
function v is I-times differentiable (in the classical Fréchet—Peano sense) at x, i.e.,
. |U(Y) - Tv,l,x(y)|
lim sup =
™0 yeB(x,r)\{x} lx — :V|l
where T, () is the Taylor polynomial of order [ for v centered at x.

Note that the Taylor polynomial of order [ for v centered at x is well defined #'P- — a.e.
by Theorem (5.3.16).

We are going to prove Theorem (5.3.24) and as a consequence Theorem (5.3.4). Now
fixn eN,k € {1,...,n},p € [p,n]and g € [0,p].

0,

p=p-gq (96)
Fix also a mapping v € Wp"ml([R{", R%). Foraset E c R™ define the set function
®(E) = Eirbf Dy, Z (diam Dy )*[diam v(D,)]4, (97)

(24

where the infimum is taken over all countable families of compact sets {D,},en Such that
E < U, D,. By Theorem (5.3.33), &@(+) is a countably subadditive set-function with the
property

®(E)=0 = [HH*E nvi(y) =0 forH9—almostally € R%].(98)
Thus the assertion of Theorem (5.3.24) amounts to

®(E) = 0 whenever HP(E) = 0. (99)

The proof of this follows the ideas of [50].
By a dyadic interval we understand a cubic interval of the form [% ,kl;{l] ';—’} ,k"Z—J{l],

where k;, [ are integers. The following assertion is straightforward.

Lemma (5.3.21)[208]: For any n-dimensional cubic interval /] < R™ there exist dyadic
intervals Q4,...,Q,n suchthat] € Q U---U Q,n and £(Q,) == £(Q,n) < 2£()).
Let {Q,},ca be a family of n-dimensional dyadic intervals. We say that the family {Q,} is
regular, if for any n-dimensional dyadic interval Q the estimate

(P = ) Q) (100)

a:QqcQ
holds. Since dyadic intervals are either nonoverlapping or contained in one another, (100)
implies that any regular family {Q,} must in particular consist of nonoverlapping intervals.
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Lemma (5.3.22)[208]: (see Lemma 2.3 in [56]). Let {Q,} be a family of n-dimensional
dyadic intervals. Then there exists a regular family {Jz} of n-dimensional dyadic intervals

suchthat U, Q. < Uy Jp and

PRI IEPIRICSY
B a

Lemma (5.3.23)[208]: (see Lemma 2.11 in [180] and Lemma 2.4 in [50]). Let v €
Wp":,l(]R{”, R%). For each € > 0 there exists § = §(e,v) > 0 such that for any regular
family {Q,} of n-dimensional dyadic intervals we have if

Z 200, < 6, (101)
Then ¢
(102)

N [EPRR [ wor|<
%" VPN, i’(Qa)“‘p 0 v ©

Theorem (5.3.24)[208] Letk € {1,...,n},p, = n/kand v € Wp"ml(]R”, R%). Then for
everyp € [p.,n],q € [0,p]and foranyset E ¢ R™ with HP(E) = 0 we have
HP~YE nvi(y) =0 for H9—a.a.y € R% (103)
Proof: Let HP(E) = 0.Takee > 0and § = 6(g,v) < 1 from Lemma (5.3.23). Take
also the regular family {Q,} of n-dimensional dyadic intervals such that E < U, Q, and

2 2(0)P < 6 (104)

a
where the existence of such family follows directly from Then by Lemma (5.3.23) the
estimate (102) holds. Denote 7, = £(Q,). By estimate (91),

Vv IILp(Qa)

[diam v(Q)]? < C W ||1Qa-vkv||2’p . (105)
D 0,1
ra
Therefore, by definition of @ (E) (see (97)), we have
IIV 17
®(E) < cz .+ e, vl
Po,1
p=q a
pu_q p 1 ko, |19 P
Sch_ Z—f Vvl + (|1, - Vv
a ({)(Qa)n_p ol g, vl )
(4 a
p—q
Pq
< c<z rf) ep
a
P-4 4q
< c6P -¢gp, (106)

Sincee > 0and § > 0 are arbitrary small, (106) turns to the equality @(E) = 0 and by
(98) the required assertion is proved.

Fixintegersk,m € {1,...,n},d > mandamappingv € Wp’fnl(Rn, R%). Then, by
Theorem (5.3.19), there exists a Borel set A,, such that H?-(4,,) = 0 and all points of the
complement R™ \A, are L, -Lebesgue points for the weak gradient Vv. We can arrange
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that v is differentiable (in the classical Fréchet sense) at every point x € R™ \Av with
derivative Vv (x) (so the classical derivative coincides with the precise representative of the
weak gradient at x).
Denote Z,,,, = {x € 2\ A, : rank Vv(x) < m}. Fixanumber
q € [m— 1,q.,).
=y, =n-m-k+1+(m— gk (107)
-m

Sinceg<qg.=m—14"1 k+1,wehavey>0.

We prove the assertion of the bridge Dubovitskii—Federer Theorem (5.3.5) which is
equivalent (by virtue of Theorem (5.3.33)) to

d(Z,m) =0 if q>m — 1, (108)
where for each fixed g € [m — 1, q,) we denoted
®d(E) = . inf Z (diam Dy )*[diam v(D,)]4 . (109)

(24
As indicated the infimum is taken over all countable families of compact sets {D,, },en Such
that E < U, D,. Note that the case ¢ = q.,1; = 0 was considered in [50], [180].
Before embarking on the detailed proof we make some preliminary observations that allow
us to make a few simplifying assumptions. In view of our definition of critical set we have
that

Zv,m = U {X € Zv,m: |Vv(x)| < ]}
jEN
Consequently we only need to prove that ®(Z,,) = 0forqg € (m — 1,q.), where
Zy,={x € Z,, : |Vv(x)| < 1}.
For convenience, below we use the notation ||f||Lp°’1(,) instead of [|1; -fllem1 . The
following lemma contains the main step in the proof.
Lemma (5.3.25)[208]: Let g € [m — 1,q,). Then for any n-dimensional dyadic interval
I < R" the estimate

®(ZynI)<C (f([)””V"v”Z
po ()
holds, where the constant C depends on n,m, k, d only.
Proof. By virtue of (90) it suffices to prove that
/ q _ q—-m+1
PZy 1) < CENH Vvl gy + €D HVEy | ") (111
for the mapping v, defined in Lemma (5.3.11), where C = C(n,m, k,d) is a constant.

Fix an n-dimensional dyadic interval I < R"™ and recall that v;(x) = v(x) — P;(x) for
all x € I. Denote

q-m+1

N g(,)u+m—1||vkv||Lp°1m) (110)

o = [[vEull, . =),
and foreachj € Z
Ej={x€l: (M|Vy[P)(x) € (271,2/]} and & =HZ (E;).
Then by Theorem (5.3.13) (applied for the case p = p. = ,1 = 1,8 = p.),

Z 520 < CoP- (112)
j=—o0
for a constant C depending on n,m, k, d only. By the definition of the Hausdorff measure,
for each j € Z there exists a family of balls B;; < R™ of radii r;; such that
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E; cU ,; and Z P < cd;. (113)

Denote -
Zy=Z,NE  and zl-j=zjnBij.

By construction Z;, N I = U; Z; andZ =U; Z;; . Put
=~ vul, =2,
Lp,1 r
and let j, be the integer satlsfylng sf € (2/-71,2/<]. Denote Z, = U
Uj»j. Z;- Than by construction

Z'nl=27,UZ, Z, € {x € Z, n I: (M|Vv,|P)(x) < &}
Since VP, (x) = Vv(x) — Vv, (x), |[Vv,(x)| < 2//7-,|Vv(x)| < 1,andA,,,(v,x) = O for
X € Zl],we have

Zic{x€Byj: (P,x) < 1+2//P Ap_1(P,x) <1421/P 2, (P,x)
< ZI/PO}_
Applying Theorem (5.3.14) and Lemma (5.3.15) to mappings P;,v; , respectively, with
B = Bjjande = g = 2//P> we find afinite family of balls 7, ¢ R%, s = 1,...,s; with
sj < CY 1+ &~ m) each of radius (1 + Cy )¢ ry; , such that
Sj

U TS 2 U(ZU)
=1
Therefore, for every j > j, we have

®(Z;;) < Gs; ]" lj”“ C,(1 + &'~ m)zv atH

j<ic Ljplas =

<C,(1+¢€l ’“)21j rlj”“, (114)
where all the constants C, above depend on n,m, k, d only. By the same reasons, but this

time applying Theorem (5.3.14) and Lemma (5.3.15) with ¢ = &, and instead of the balls
B;; we take a ball B © I with radius Vnr, we have
®(Z) < C3(1 + el ™)elrtth & (1 + g ™r™m Vgirt
= C3(rto + r#tm-1ga-m+1y - (115)
From (114) we get immediately

®(Z,) < C(1 + &™) z Z 20, rit, (116)
jzje
Further estimates splits into the two possibilities.

Casel.q = p,. Then
q

Do Do
O(Z.) £ GA + M| ) Y 2

Jjzj. i
q
Do
< C(1 + &M, Z z 21rp°
jzjs 1
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q
Do
< C,(1 + gl™™)r# z 276;
JEIR

< Cs(1 + el™)rkol = Cs(rto + rHtm-1ga-m+1) (117)

Case Il. g < p,. Recalling (107) we get by an elementary calculation
qtu=q+n-m—-k+1D)+(m-qk=pP.—q+m-1)(k—1) +p, = p.,

therefore,

; ; 47Do
D(Z,) < C,(1+el™™) z z 2iyPeij |patu—p.2p

jzje i
o\ 47 Do
< Co(1 + el Mot (D) = Co(1 + el Motk
= Cy(rto + rHtm-1lga-m+1y (118)

Now for both cases (1) and (II) we have by (117), (118) that ®(Z,,) < C(r*c?+
ritm=-1gqa-m+1y "and, by virtue of the earlier estimate (115), we conclude that
d(Z,n1) = &(Z, U Z,) < P(Z)+ D(Z,,) < C(rtod + rHtm-lga-m+ly,

The lemma is proved.

Corollary (5.3.26)[208]: Letg € [m — 1,q.). Then for any € > 0 there exists § > 0

such that for any subset E of R™ we have ®(Z, N E) < & provided L"(E) < 6. In

particular, ®(Z,,,, N E) = 0 whenever L"(E) =

Proof. We start by recording the following elementary identity (see (107)):
wrm=-Vp (119)
p.—q+m—1

Let L"(E) < &, then we can find a family of nonoverlapping n-dimensional dyadic

intervals I, suchthat E < U, I,and),, ¢"(l,) < Cé. Of course, for sufficiently small

é the estimates

Ve || <1, 2(ly) < 57 (120)

Lp,1(g)
are fulfilled for every a. Denote

r, =4(,), 04= ||Vkv|| o = ”Vkv”Lpo’1 . (121)

Ly, 1)’
In view of Lemma (5.3.25) we have
D(E) < Cz ptm=1 pq-mil | Cz (122)
Now let us estimate the first sum. Smce by our assumptions
n—-m+1
q<q°=m—1+TSm—1+po hencep, >q — m + 1
we have
g-m+1 ( H po—gq+m-—1
. +m— .
Z pHFm=1 g-m+l Holder ineq.C (Z Jpo> Do (Z rptl—q+m—zi> p
(24 a < a a
(24 - (24 a + 1
Po—q+m-—
(119), Lemina (5.3.10) €' gd-m+1 -(L"(E)) D, . (123)

The estimates of the second sum are again handled by consideration of two separate cases.
Casel.q = p,. Then
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<

u u
Z rhgd (1i0) sn z o Lemma (5.3.10)0200 . 5q (124)

(4 a
Case Il. g < p, . Recalling (107) we get by an elementary calculation
Up, n—qgk+ [mk —-—m—k + 1]
— .

P.—q kn—qk Nk 1
—_ _l_ — —
_ .. (m )( ) > n (125)
n — gk

Then

q 4
Z Holder ineq. (2 Jgo)po ) (Z rg%) .
(24 a (24

Lemma (S.i.lO), (125) 0‘16% . (126)
Now for both cases (I) and (1I) we have by (122)-(126) that ®(E) < h(d), where the
function h(6) satisfies the condition h(8) N 0 as § ™ 0. The lemma is proved.
By Theorem (5.3.16) (iii) (applied to the case k = 1), our mapping v coincides with a
mapping g € C*(R", R%) off an exceptional set of small n-dimensional Lebesgue
measure. This fact, together with Corollary (5.3.26) and Dubovitskii Theorem (5.3.1),
finishes the proof of Theorem (5.3.3) for the case d = m. But since Theorem (5.3.5) was
not proved for C*-smooth We have to do this step now.
Lemma (5.3.27)[208]: Letq € (m — 1,q.) and g € C*(R",R%). Then

S, (Zym) =0, (127)

where @ is calculated by the same formula (109) with g instead of v and Z,,, = {x €
R™: rank Vg(x) < m}.
Proof. We can assume without loss of generality that g has compact support and that
[Vg(x)| < 1forallx € R™ We thenclearly havethatg € Wp’ill(Rn, R%), hence we can
in particular apply the above results to g. The following assertion plays the key role:
() For any n-dimensional dyadic interval I < R™ the estimate

+1
O (Zym 1) < C (PTG L+ e [Teg 1)
holds, where the constant C depends on n, m, k, d only, and we denoted

1
V) () = V900~ gy | V000 .

The proof of () is almost the same as that of Lemma (5.3.25), with evident modifications
(we need to take the approximation polynomial P,(x) of degree k instead of k — 1, etc.).
By elementary facts of the Lebesgue integration theory, for an arbitrary family of
nonoverlapping n-dimensional dyadic intervals I, one has

z |V kg’“||L;°,1(1a) - 0 as sgp £(,) — 0. (128)

The proof of this estimate is really elementary since now V¥ g is continuous and compactly
supported function, and, consequently, is uniformly continuous and bounded.

From () and (128), repeating the arguments of Corollary (5.3.26), using the assumptions
on g and taking
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Ogq = ||ngla||Lpo,1(la), gPe = Z O'go

(24
in definitions (121), we obtain that ®,(Z,,,) < ¢ for any ¢ > 0, hence the sought
conclusion (127) follows.
By Theorem (5.3.16) (iii) (applied to the case k = 1), the investigated mapping v equals a
mapping g € C*(R", R%) off an exceptional set of small n-dimensional Lebesgue
measure. This fact together with Lemma (5.3.27) readily implies
Corollary (5.3.28)[208]: (cp. with [39]). Letq € (m — 1,q.). Then there exists a set Z,,
of n-dimensional Lebesgue measure zero such that ®(Z,\ Z,) = 0. In particular,
D(Zy) = P(Zy).
From We conclude that ®(Z,) = 0, and this concludes the proof of Theorem (5.3.5).
Fix v € Wl (R", R%)). Applying Lemma (5.3.25) for k = 1,p, = n,u = n —
m + landqg = m — 1, and afterwards making the shift of indices (im — 1) - m, we
obtain the following key estimate:
Letm € {0,...,n — 1}. Then for any n-dimensional dyadic interval I c R" the estimate
o@zynn < cemm v remr)  (29)
Po,1
holds, where Z,={x € 2\ A, : rank Vv(x) < m,|Vv(x)| < 1}, the constant C
depends on n, m, d only, and
d(E) = . inf Z (diam D)™ ™[diam v(D,)]™. (130)
a a o
This implies (by the same arguments as in the proof of Corollary (5.3.26)) that for any
measurable set E ¢ R™ with L"(E) < oo the inequality
Y(Z, N E) < o (131)
holds, where W(E) is defined as

WE) =lim | inf z (diam D)™ ™[diam v(D)]™, (132)

diam Dy<6 @
here the infimum is taken over all countable families of compact sets {D,},cyn Such that
E c U, D,anddiam D, < ¢ forall a.
By Theorem (5.3.34), the bound (131) implies the validity of the following assertion:

theset{y e RY: H™™(E n Z, n f~1(y)) >0} isH™ o — finite. (133)
Since

Zym+1 = {x € N\A, : rankVv(x) < m} = U {x € Zym+1 t VU (X)| Sj},
j

we infer from (133) that in fact
the set {y € R4 : H ™ (Zv,mﬂ nf‘l(y)) > 0} is H™ o — finite. (134)

Next we prove that the sets where rank Vv < m — 1 are negligible in the coarea formula.
Lemma (5.3.29)[208]: The equality

Hnm (Zv,m N v‘l(y)) =0 for H™ — almostally € R¢ (135)
holds, where Z,,, = {x € R"\ 4, : rankVv(x) < m — 1} is the set of m-critical
points.

Proof. We apply Theorem (5.3.5) with the parameters ¢ = m,k = 1,p, = n. Then by
(77)
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HHa (Zv,m N v‘l(y)) =0 for H™ — almostally € R%,  (136)

where u;, = n—m-—k+1+ (m—q)k = n—m. The last identity taken together with
(136) concludes the proof.

[219], [214] identified criteria for the validity of the Coarea formula for Lipschitz mappings.
Theorem (5.3.30)[208]: (see, e.g., Theorem 1.4 in [214]). Letm € {0,1,...,n},and g €
C1(R™ R%). Suppose thatthe set E ¢ R™ is measurable and rank Vg(x) = mforallx €
E. Assume also that the set g(E) is H™-o-finite. Then the coarea formula

| moGdx = [ aevm(E 0 groNaxne) s

holds, where J,,,g(x) denotes the m-Jacobian of g.

(134) and (135) are in particular valid also for C*-smooth mappings. So from Theorem
(5.3.30) and properties (134)—(135) we obtain the following result which surprisingly is new
even in this smooth case.

Theorem (5.3.31)[208]: Let m € {0,...,n} and g € C*(R",R%). Then for any
measurable set E € Z;,.1 = {x € R": rankVg(x) < m} the coarea formula

f Jmg (O)dix = j H M (E 0 g1 (3))dH™ () (138)
E R4

holds, where J, ., (x) again denotes the m-Jacobian of g.
By Theorem (5.3.16) (iii) (applied to the case k = | = 1), the investigated mapping v €
Wi, (R™ R?) coincides with a smooth mapping g € C*(R", R%) off a set of small n-
dimensional Lebesgue measure. This fact together with Corollary (5.3.26) easily imply the
required assertion of Theorem (5.3.6).
Fix numbersn,d € N,u € (0,n],q € (0,d], and a continuous function f : R" —
R<. Foraset E c R™ define the set function
d(E) = ECiUnfD Z (diam D, )#*[diam v(D,)]?, (139)
a
where the infimum is taken over all countable families of compact sets {D,},en Such that
E c U, D,.
We devoted to the proof of following assertion:
We start by recalling the following technical fact from [211]:
Lemma (5.3.32)[208]: Forany set E ¢ R", if E = Uj2, E;and E; c E;, forall i €
N, then
HA(E) = lim HE(ED. (140)
Theorem (5.3.33)[208]: The above defined set function ®(-) is countably subadditive and
P(E)=0 = [H*(E n f71(y)) = 0 for H? —almostally € R%|. (141)
Proof: The first assertion is evident. Let us prove the second one, i.e., the implication (140).
Without loss of generality we can assume that f is compactly supported, and more
specifically that f~1(y) is a compact subset of the closed unit ball B(0,1) for every y €
R% \ {0}.

Let E ¢ R™ and assume that ®(E) = 0. Without loss of generality we can assume that

0¢ f(E)and
== ()

[00]
j=1 i=1
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where D;; are compact sets in R™ and

Z (dlamDU) [dlamf(DU)] J—o o 0. (142)

Of course, then E isa Borel set. Suppose that the assertion (140) is false, then we can assume
without loss of generality that there exists a set F < f(F) such that
5
HUF)>0 and HL(E N i) = 5 forally €F. (143)

Unfortunately, we can not assume right now that the set F is Borel, so we need some careful
preparations.

Denote Ej,, = UL, D, E; = U2, Dyj.Inthis notation = Nj=1 E;.Evidently, all these
sets are Borel. By Lemma (5.3.32),
HE (Ej N f‘l(y)) = Il:rg) HE (Ekj nf‘l(y)> for each y € f(EJ) (144)
Denote further Fy, = f (Ekj). Fix an arbitrary point y with the property
HH(E, 0 f71)) < 1.
Since Ey; IS a compact set, the set Ey; N f~1(y) is compact as well. Then it follows by
elementary means that the sets Ey, N f~1(2) lie in the e-neighborhood of the set Ey, N

f~1(y),wheres N Oasz — y,z € f(Ekj).Therefore,there existsd = §(y) > 0such
that

HE <Ekj nf‘l(z)) < 2 iflz — y| < @. (145)

Hence, there exists a relatively open set ij c Fy (i.e., F“kj Is open in the induced topology
of the set Fi; ) such that

{yerd: }[”(Ek nf- 1(y))< 1} c R,

{y € RY: HE (Ek nf- 1(y)> < 2} (146)
Since by construction Fy; IS a compact set and ij Is relatively open in Fy; , we conclude
that the set Fy; is Borel (this fact plays an important role here). Further, since Ey, c Ej,
we have foreach k € N,
y eRY: HL(ENf () S c{yeR: HE(E, N ) <1} € Ky,
and therefore,
{y € R": HL(E n ') < 1} € K, (147)
where we denote F = Npeq Fk On other hand, (144) and the second inclusion in (146)
imply F; c {y € ]Rd HELE; n f71(y)) < 2}, 50 we have
{yE]Rd }[“(E nf- 1(y))<1} c F;
c{y eR?: Ho(Enf'(y) <2} (148)
Denote now G; = f(E;) \ F; . Then we can rewrite (148) as
{yE]Rd 3t (B nfio)>2} g
c{yeR?: HE(Enf1(y) > 1} (149)
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Since c E; , we have from (143) that F c {y € R*:\sHL(E;nf~*(y)) > 2} c G;
forall j € N, therefore

F c G, (150)
where we denote G = ﬂ‘fl G On the other hand, the second inclusion in (149) yields
G cf{yeR: HE(E n f1(y) > 1} (151)

for each j € N. Since G is a Borel set and by (150), (143) the inequalities H9(G) >
HI(F) > 0hold, by [212] there exists a Borel set G = G and a positive constant b € R
suchthat 0 < HI(G) < oo and

HUG n B(y,r)) < brt (152)
for any ball B(y,r) = {z € R%: |z —y| < r} with the center y € G. Of course, by
(151)

G c{y eRV::HEE n fHy) > 1} (153)
forallj € N. For S < R™ consider the set function
56 = [ wh (s 0 p0) dnew), (154)
G

where [ " means the upper integral. Standard facts of Lebesgue integration theory, ®(-) is
a countably subadditive set-function (see, e.g., [60], [192]).
From (142) and (152) it follows that

Z (diam D;;)"[diam £(D;;)]* = cz (diam ;)" #£9[G n £(D;;)]

> CZ B(D;) = € B(E).
i=1
Consequently,&)(Ej) — 0asj — oo.0Onthe other hand, from (153) and (154) we conclude
CD(E) >J dH(y) = H1G) > 0O,

which is the desired contradiction. The proof of the Theorem (5.3.33) is finished.
Now again fix numbersn,d € N,u € (0,n],q € (0,d] and a continuous mapping
f: R* - R4 We define the set function by letting foraset E ¢ R",
W(E) = lim _ inf Z (diam Dy)#[diam f(D)]?, (155)

60 EcUg Dg,
diam Dg<s @

where the infimum is taken over all countable families of compact sets {D,},cn Such that
E c U, D,anddiam D, < ¢ forall a.
We devoted to the following assertion:
Theorem (5.3.34)[208]: The above defined W(-) is a countably subadditive set-function and
forany A > 0 the estimate
Y(E)

Hi{yeRY: HHE n f1(y) = 1} < 5T (156)
holds.
Proof. The first assertion is evident and we focus on proving the estimate (156). Without
loss of generality we can assume that f~1(y) is a compact subset of the closed unit ball
B(0,1) foreveryy € R4\ {0}. Let E ¢ R" and

Y(E) = 0 < oo,
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Without loss of generality assume also that 0 € f(E) and

E = ﬂ U Dijr
j=1 i=1

where D;; are compact sets in R™ satisfying

> (diam )" [diam (D))" 75 o, (157)
And -
diam D;; + diam f(D;;) < ]1 : (158)
Of course, E is a Borel set. Fix A > 0 and take aset F < f(E) such that
He (En f7i(y) = ; A forall y €F. (159)
Further we assume that
HIF) > 0 (160)

since if 7{9(F) = 0, there is nothing to prove. Denote E; = U;2; D;; . Repeating almost
verbatim the arguments from the proof of the previous Theorem (5.3.33), we can construct
a Borel set G ¢ R< such that
FcGefy e RT*: HE(ENnf(y) > 1} (161)
for each j € N. Since G is a Borel set and since, by (161) and (160), the inequalities
HI(G) = HI(F) > 0hold, we deduce by [212] the existence of a Borel set G < G such
that 0 < H9(G) < oo.Put
G ={x € G: HI(G n B(x,r)) < 2r? vr € (0,1/D}. (162)
Then by construction all the sets G, are Borel, G; < G,,,, moreover, by [60] we have

el el
=1
and consequently,

HI(G) = lim HI(G)). (163)
For S < R™ consider the set function
W) = [ HE(snF0)) dnrw), (164)
Gy

where [ " means the upper integral. routine arguments of Lebesgue integration theory it
follows that W(-) is a countably subadditive set-function (see, e.g., [60], [192]).
From (157), (158) and (162) it follows for j > [ that

1
Z (diam Dij)”[diam f(Dij)]q > > z (diam Dij)“j-[q[Gl N f(Dl-j)]

1 1
> Ez ¥, (Dy;) = 5 ¥, (E;). (165)
=1
On the other hand, the second inclusion in (161) ilmplies
W(E)=A| dHU(y) = AHUG)). (166)
Gy
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From (165), (166), (157) we infer

HUG) < (167)

o
2
and therefore, by (163),

20
HUG) < - (168)
Since this estimate is true for any Borel set G © G with H9(G) < oo, and since G is Borel
as well, we infer from [212] that

~ 20
H(G) < - (169)
In particular, by the inclusion F < G, this implies
2
HI(F) < 70 , (170)

or in other words,

IA

5 Y(E
H1 (y € R*: HH(E n f1(y)) 2z /‘1) 2%. (171)
The proof of Theorem (5.3.34) is complete.

Corollary (5.3.35)[260]: Let k € {1,...,n},p, = n/k and v, € Wp’fnl(]R{", R™+€),
Then for every € > 0 and for any set E ¢ R™ with H1*2¢(E) = 0 we have

z HEE N vy (¥)) =0 for H'€ —a.a.y € R™, (172)

In particular,
z HP+ (1, (E)) = 0 whenever HP*(E)=0, e>0.  (173)

mo

By a simple calculation we have for e > —1 that
Wee =N —m —k +1+ k(m — 1—¢€)
= p.—1—¢6)k + (m — 1)(k — 1) = max(p. — 1 —¢€,0). (174)
Corollary (5.3.35) then yields
Proof. (See [208]) Let HPo™€(E) = 0. Take ¢ > 0 and § = (&, vpy,) < 1 from
Lemma (5.3.23). Take also the regular family {Q,} of n-dimensional dyadic intervals such
that E < U, Q, and

Z 2(Q)'*¢ < 6 (175)

a
where the existence of such family follows directly from Lemmas (5.3.21) and (5.3.22).
Then by Lemma (5.3.23) the estimate (102) holds. Denote r, = £(Q,). By estimate (91),

1+€

(N
z [diam v, Q)] < z D 2@ g vkvmoll”e . (176)
m m (1+26_1)1+E
0 0 T

a

Therefore, by definition of @ (E) (see (97)) we have

o <Yy (I

a my

1+€
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€
ﬂ(1+26)>1+26

Holderlneq €

1+€
Tt2e
1+2€ Kk 1+e
IZ > (s ol o, vam 1)
1+2¢
1+2€
;5.1),(5.7)C<z r0}+26>  eTiae
¢ 1+
€ €
Sjs)c51+26- gl+2€ | (177)

Sincee > 0and § > 0 are arbitrary small, (177) turns to the equality @(E) = 0 and by
(5.3) the required assertion is proved.

Corollary (5.3.36)[260]: Let 14+ € € [m — 1,1+ 2¢). Then for any n-dimensional
dyadic interval I < R™ the estimate

z (z,,, n1)

mo

< CZ (7w 1} ) + ey rm=2 [vivy, ) a78)

holds, where the constant C depends on n,m, k, m + € only.
Proof. By virtue of (90) it suffices to prove that

z (2, nI)
< cz (e ||v'<<vm0)1||”6

for the mapping (vm ); defined in Lemma (5.3.11), where € = C(n,m,k,m+¢€) is a

constant.
Fix an n-dimensional dyadic interval I < R™ and recall that (v, );(x) = v, (x) —

P,(x) forall x € I. Denote

= E [V @mill, 1+e =+¢(),
po,l
mo

24+€e—m

+ e ]

. (179)

and foreachj € Z

E={xel: z MV )0 € @421 and & = HP(E;).

Then by Theorem (5.3. 13) (applied forthecase 1 + 2 = p, =—-,1 = 1,8 = p.),

Wlﬁ

Z 520 < CoP- (180)

j=—c0
for a constant C depending on n,m,k,m + € only. By the definition of the Hausdorff
measure, for each j € Z there exists a family of balls B;; < R™ of radii r;; such that
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E; cU ,; and Z P < cd;. (181)

i=1
Denote
Z] =Z{,m0 ﬂE] and ZU =Z]ﬂBU

By construction Z{,m0 NIl =U; ZandZ; =U; Z;.Put

k
1+eZ”V (Umo)’” pr  1+€’

and let j, be the integer satlsfylng eP* e (2/+71,2/-]. Denote Z, = U
Uj»;, Zj- Than by construction

Zyy N =2, U Zooy Z. © {x € Z},, N I:Z (]V[|V(vmo),|p°)(x) < &Pl

*

j<jo Ljpan =

mo

Since VP, (¥) = Ty (Wing () = V(¥mg) GO [Emy V(vm,), ()] < 2,
|Zmg Vm, ()| <1, and A, (v, x) = 0forx € Z;;, we have
Zij C{x €Bjj: 4(P,x) < 14+21/P Ay (P, x) <1427/P 2, (P ,x)
< 27/ 3}
Applying Theorem (5.3.14) and Lemma (5.3.15) to mappings P; , (vp,,); , respectively, with
B = Bjjand ¢ = g = 2//P-  we find a finite family of balls T, ¢ R™*¢,s = 1,...,s;

with s; < Cy (1 + 51 ™), each of radlus (1 + Cy)ej1yj , suchthat

U TS ) va(Zl-j).

Therefore, for every j > j, we have
j(1+e€)

CD(ZU) < C1$] glte J+e+u Cz(l + 81 m)z s 7}}+6+M
—](1 ) 1+€e+
<C,(1+el™2 po gy TTH (182)

tj
where all the constants C, above depend on n, m, k, m + € only. By the same reasons, but
this time applying Theorem (5.3.14) and Lemma (5.3.15) with ¢ = ¢, and instead of the
balls B;; we take a ball B o I with radius \/n(1 + €), we have

®(Z,) S C;(1 + el ™elte(1 + )ttt ¥ (1 + o™ + )™ Dol (1 + e)H

= C3((1+ e)“a”e + (1 4+ e)#tm-1g2te-m), (183)
From (182) we get immediately
d(Z.) < A+ &™) z Z 2 e rl””“ (184)
jzj. 1

Further estimates splits into the two possibilities.
Casel.14+€ = p,. Then

1+€

Do

®(Z.,) < G + &™) z Z 2, (“”“)“E

Jjzj.
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P
< C(1 + &™), Z Z 21r
jzj« i
1te
p

< C,(1 + ™)1 + o) Z 216,
j2Jj
< Cs(1 + el + e)Holte = C((1 + e)Holte + (1 + )kt 1g2te~m) (185)
Case ll. 1 + € < p,. Recalling (107) we get by an elementary calculation
l+e+u=1+e+(n—-m—-k+1)+(m—-1-e)k=(p,—2—e+m)(k—1) +p,

2 Po,
therefore,
. 1+e—p,
P(Z.) < C(A+e™) 2 2 271+ e)Pu | (1 + e)trerur2)
JZJs i
g \1t€-D.
< Ce(1 + e*l—m)apo(l_l_e)uew—po (I——I—e) =Cs(1 + g*l—m)0.1+6(1 + €)M
= C6((1 + 6)u0.1+6 + (1 + €)u+m—10.1+e—m+1) . (186)

Now for both cases (1) and (11) we have by (185), (186) that ®(Z,,) < C((1 + e)*ol*c +
(1 + e)#tm-1g2te~m) "and, by virtue of the earlier estimate (183), we conclude that
®(Zy, N1 = O(Z, U Z.) < O(Z) + P(Z..)
< C((1+ e)tolte + (1 + e)ptm1g2te-m) |
The lemma is proved.
Corollary (5.3.37)[260]: [208] Let 1+ € € [m — 1,1+ 2¢€). Then forany € > 0 there
exists § > 0 such that for any subset E of R™ we have Y, CID(Z{,m0 NE) < & provided

L"(E) < 6.1In particular,CID(Zm0 ( Vg () E)) = 0 whenever L*(E) =

Proof. We start by recording the following elementary identity (see (107)):

(u + m — Dp,

p°—2—6+m_n' (187)
Let L*(E) < &, then we can find a family of nonoverlapping n-dimensional dyadic
intervals I, suchthat E ¢ U, I,and),, ¥"(I,) < Cé&. Of course, for sufficiently small
& the estimates

1
Z V<0, <1,  ¢0,) < on (188)

m
0 Lpo,l(la)

are fulfilled for every a. Denote
r, =2, o, =Z Vv, oy © =z Vv, - (189
mo

mo
In view of Corollary (5.3.36) we have
D(E) < Cz (rfmT g2vemm | Rl tey (190)

a
Now let us estimate the first sum. Since by our assumptions
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n—-m+1

e>0:m—1+TSm—1+po hencep, >2+€ — m
we have
2+€e-m ( Py BB
) ) \ p+m-1)p Do
z r£+m—1 gHe-m Holde: ineq. (Z 050> p (Z rfo—2—6+m)
a - a a > +
Po—2—€+m
(187),Lemina (5.3.10) Clgtem . (L”(E))ipo _ (191)

The estimates of the second sum are again handled by consideration of two separate cases.
Casel.14+€ = p,. Then

I I
Z rhglte (138) sn z o Lemma<(5.3.10)apo S5 (192)
(4 o (04 o
Case ll. 1 + € < p, . Recalling (5.11) we get by an elementary calculation
UDp, B n—A+ek + mk —m — k + 1]
po—l—e_n n-(1+e)k
n—(14+ek+ (m- 1k - 1)
=n- > n, 193
n —(1+e)k " (193)
Then
1te Po—1-€
) : Do Po Pe
Z rhglte Holde<r ineq. (z Jgo) (2 r£°—1—e>
a - a a "
Lemma (5.3.10), (193) sltesn (194)

<
Now for both cases (I) and (I1I) we have by (190)—(194) that ®(E) < h(d), where the
function h(6) satisfies the condition ~(8) v 0as § N 0. The lemma is proved.
Corollary  (5.3.38)[260]: [208] Let (1+e€) € (m — 1,1+2¢) and gp, €

Ck(R™, R™*€). Then
z g, (Zg m) =0, (195)

my

where q’gmo is calculated by the same formula (109) with g, instead of v, and ngo'm =
{x € R": rankV(Zm0 gmo(x)) < m}.

Proof. We can assume without loss of generality that g,, has compact support and that
| Xm, (ngo (x)) | <1 for all x€eR" We then clearly have that g, €

Wp'f,,1 (R™, R™*€), hence we can in particular apply the above results to g, . The following
assertion plays the key role:
() For any n-dimensional dyadic interval I < R™ the estimate

Z ®(Zgomnl)<C z (i’(l)”IIV"(gmo)III:OElU) + e(l)*”m—l||vk@,||z;i—$)
mg r—

holds, where the constant C depends on n, m, k, m + € only, and we denoted

D PG ()= D Vg, = s [ D Pm, )
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The proof of () is almost the same as that of Corollary (5.3.36), with evident modifications
(we need to take the approximation polynomial P,(x) of degree k instead of k — 1, etc.).
By elementary facts of the Lebesgue integration theory, for an arbitrary family of
nonoverlapping n-dimensional dyadic intervals I, one has

zz V(g )1 ||p° -0 as sup ¢(I,) - O. (196)
0 allLp,,1(a) a
a my
The proof of this estimate is really elementary since now V¥ (Zmo gmo) IS continuous and
compactly supported function, and, consequently, is uniformly continuous and bounded.
From () and (196), repeating the arguments of Corollary (5.3.37), using the assumptions
on g,,, and taking

o, = Z ||Vk('gm0)1a||Lp°_1(Ia)' gPe = Z ol
m

a

0
in definitions (189), we obtain that Y., Dy, (ngo,m) < ¢ for any ¢ > 0, hence the

sought conclusion (195) follows.
Corollary (5.3.39)[260]: The equality

mo

holds, where Zym = {x € R™ \ 4y, : rank Ym, VVm,(x) < m — 1} is the set of
m-critical points.

Proof. We apply Theorem (5.3.5) with the parameters 1 + € =m, k = 1, p, = n. Then by
(77)

Z HHate (vaojm N v;li(y)) =0 for X™ — almostally € R™*¢,  (198)
mo
where gy, = n—m—-—k+1+ (m—1-¢€)k = n—m.The lastidentity taken together
with (198) concludes the proof.
Corollary (5.3.40)[260]: The above defined set function ®(-) is countably subadditive and

PE)=0 = Z HH (E N f,;ol(y)) = 0 for H1*¢ —almostally € R™*¢|. (199)
mo

We start by recalling the following technical fact from [211]:

Proof. The first assertion is evident. Let us prove the second one, i.e., the implication (198).

Without loss of generality we can assume that f,, is compactly supported, and more

specifically that f,,;ol(y) IS @ compact subset of the closed unit ball B(0,1) for every y €

Rm+6 \ {O}

Let E < R™ and assume that ®(E) = 0. Without loss of generality we can assume that

0 & fm,(E) and

E = ﬂ Dl] )
j=1 i=1
where D;; are compact sets in R™ and
z Z (diam Dij)”[diam me(Dij)]1+€ ,J = oo. (200)

=1 my
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Of course, then E is a Borel set. Suppose that the assertion (199) is false, then we can assume
without loss of generality that there exists aset ¥ < f,, (E) such that

1+€ u -1 5
HT€(F)> 0 and Z H,, (E N fin, (y)) ZE forally € F. (201)
mo
Unfortunately, we can not assume right now that the set F is Borel, so we need some careful
preparations.
Denote Ej, = UL, Dij, Ej = U2, Dy . In this notation = Nj=1 Ej . Evidently, all
these sets are Borel.
z HE (Ej N f,,jol(y)) = ]ll_)r?o z HE (Ekj N f,;ol(y)) foreachy € me(Ej). (202)
mo mo

Denote further Fie; = fin, (Ek].). Fix an arbitrary point y with the property
> HEE 0 i) < 1
mo

Since Ey; IS a compact set, the set Ey; N fma (¥) is compact as well. Then it follows by
elementary means that the sets Ey, N fma () lie in the e-neighborhood of the set Ey, N
frma ), where eNOas 3 = y,5 € me(Ekj). Therefore, there exists § = §(y) > 0
such that

» (Ekj nf,,;;(z)) <2 iflz -yl <8 (203)

mo
Hence, there exists a relatively open set ij c Fy (i.e., F“kj Is open in the induced topology

of the set ij) such that

yeR™e: Y gtk (B0 frl)) < 1f € Ry,

my

c{y € R™*€: Z L (Ekj nfg(}(y)) <2 (204)
mo
Since by construction Fy; IS a compact set and F“kj is relatively open in F; , we conclude
that the set Fy; is Borel (this fact plays an important role here). Further, since Ey, c Ej,
we have for each k € N,
(v € R™: Y AE Nl S By e R™E: Y Hh(E, 0 frl ()
my _ mg
<1} c Fy,
and therefore,
v e R™<: Y HE(E 0 frlo) < 1} € B, (205)
mo

where we denote F"] = Ni=1 F"kj . On other hand, (202) and the second inclusion in (204)
imply F; ¢ {y € R™€: ¥, HE(E; N finl(¥)) < 2}, 50 we have
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y € Rm+€:z HE (Ejnfnjol(y)) <1;ck

mg

C{y €R™: > ICAE N fl () < 2} (206)

mo
Denote now G; = f, (E;) \ F; . Then we can rewrite (206) as

y € R™*e : 2 34 (B 0 fml ) > 2 € G

mo

c {y eR™ Z HEE 0 frt ) > 1} (207)

Since ¢ E; , we have from (201) that F ¢ {y € R™€: ¥, HE(ENfrl(y) > 2}
G; for aII] € N, therefore

F c G, (208)
where we denote G = N5Z1 Gj.On the other hand, the second inclusion in (207) yields
G c {y € R™*e : z HEE 0 fl) > 1) (209)
mo

for each j € N. Since G is a Borel set and by (208), (201) the inequalities H1*€(G) >
HIE(F) > 0 hold, by [212] there exists a Borel set G < G and a positive constant b €
Rsuchthat 0 < H1*¢(G) < oo and

HM™(G n B(y,1+¢€)) < b(1+¢e)l*e (210)
for any ball B(y,1+¢€) = {3 € R™*¢: |3 —y| < 1+ €} with the center y € G. Of
course, by (209)

G c {y € R™e: Z HEE 0 frl()) > 1) (211)
forallj € N. For S < R" consider the set function

)= [ D w0 frl0) ax) (212)
G m

where [ " means the upper integral. Standard facts of Lebesgue integration theory, ®(-) is
a countably subadditive set-function (see, e.g., [60, 192]).
From (200) and (210) it follows that

> (diam byy)*[diam £, (D) 2 ci > (diam D) 3G 0 fy (D)

i=1 m, o i=1 m,
> Cz ®(D;;) = € 3(E;)
Consequently, EIVJ(E; — 0asj — oo.0Onthe other hand, from (211) and (212) we conclude
d(E) = J dHE(y) = H*E(G) > 0,
which is the desired contradiction. The proof of the Corollary (5.3.40) is finished.
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Corollary (5.3.41)[260]: The above defined W(+) is a countably subadditive set-function
and forany 4 > 0 the estimate
Y(E)

HIe(y € RMHE ; z HA(E 0 frl() 2 2} < 5—— (213)
mo
holds.
Proof. The first assertion is evident and we focus on proving the estimate (213). Without
loss of generality we can assume that f,;ol (y) iIs a compact subset of the closed unit ball
B(0,1) forevery y € R™*€\ {0}. LetE < R™and
Y(E)= o0 < oo,

Without loss of generality assume also that 0 & fm (E) and

l]'

IID

where D;; are compact sets in R™ satlsfyl g

Z Z (diam Dij)”[diam fmg (Dij)]HE] — 00 7, (214)
i=1 my
and
1
diam D;; + dlamz fme (DU) < (215)
Of course, E is a Borel set. Fix 4 > 0 and take a set F C fm, (E) such that
5
2 Hi(E 0 fri()) =52 forally €F. (216)
mo

Further we assume that

HI*TE(F) > 0, (217)
since if H'*€(F) = 0, there is nothing to prove. Denote E; = U2, D;; . Repeating
almost verbatim the arguments from the proof of the previous Corollary (5.3.40), we can
construct a Borel set G ¢ R™*€ such that

FcGcly € R™e: z HEE N fal () > A) (218)

for each j € N. Since G is a Borel set and since, by (218) and (217), the inequalities
HIYE(G) = HE(F) > 0 hold, we deduce by [212] the existence of a Borel set G < G
such that 0 < H'1+€(G) < 0. Put

G={x € G: (G n B(x,1+¢)) < 2(1+ €)' V(1+¢) € (0,1/D} .(219)
Then by construction all the sets G, are Borel, G; < G,,,, moreover, by [60] we have

AR

=1

7‘(1+E

and consequently,
HITE(G) = lim HH(G)). (220)

For S < R™ consider the set function
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B(S) = j Y (s i) dateey) (221)
Gy mg
where | " means the upper integral. By routine arguments of Lebesgue integration theory it
follows that W(-) is a countably subadditive set-function (see, e.g., [60, 192]).
From (214), (215) and (219) it follows for j > [ that

Z 2 (diam D;;)" [diam fmo(Dij)]1+E

i=1 m

%i z (diam Dy;)*H*€[G, N fon, (Dy)]

i=1 mo
> ZZ (D) = = Lpl(E) (222)
On the other hand, the second |nclu3|on |n (218) |mpI|es
W, (E;) = /1[ dH1te(y) = AHIHE(G). (223)
Gy
From (222), (223), (214) we infer
20
HI*TE(G) < 0 (224)
and therefore, by (220),
20
H*E(G) < — (225)

A
Since this estimate is true for any Borel set G G with H1*€(G) < oo, and since G is

Borel as well, we infer from [212] that

20

H1e(G < (226)

In particular, by the inclusion F < G, this implies

20
HEF) <=, (227)
or in other words,
5 Y(E

H*te|y € R™*e: z HH (E N f,;ol(y)) 25/1 < 2%. (228)

my

The proof of Corollary (5.3.41) is complete.
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Chapter 6
Operators in Tight and Uniform Structure with Unconditionally Saturated Banach
Space

We make some observations on operators in arbitrary tight by support Banach space,
showing in particular that in such a space no two isomorphic infinitely dimensional
subspaces form a direct sum. We exhibit a separable £.,-space whose uniform structure
determines, at least, three different linear structures. We show that any bounded operator on
Xius 1S @ compact perturbation of a multiple of the identity, whereas the space Xy, IS
saturated with unconditional basic sequences.

Section (6.1): Support Banach Spaces

In [111], Gowers and Maurey built the first hereditarily indecomposable (HI) Banach
space X, that is, a space whose none infinitely dimensional subspace admits a non-trivial
bounded projection. They also proved that any operator on a subspace of X, is a strictly
singular perturbation of a multiple of the identity. Recall that an operator is strictly singular
if none of its restriction to an infinitely dimensional subspace is an isomorphism onto its
Image. Gowers— Maurey construction opened the field of study of spaces with a small family
of bounded operators. The celebrated space of Argyros and Haydon [91] provided an
extreme example in the area; their space is an , HI space, on which any bounded operator
Is a compact perturbation of a multiple of the identity.

A natural question arises how small family of bounded operators on Banach spaces with
an unconditional basis could be. Obviously, all diagonal operators with uniformly bounded
entries are continuous on such a space, therefore the most one can expect is a hereditary
‘diagonal+strictly singular’ property: any bounded operator on a subspace of the space is a
strictly singular perturbation of a restriction of a diagonal operator.

Among the properties to be considered are different types of tightness, studied in [224],
[225], which describe the structure of the family of isomorphisms inside the space. The
strongest type is tightness by support. Recall that a Banach space X with a basis is tight by
support if no two disjointly supported infinitely dimensional subspaces of X are isomorphic
[224]. Any tight by support basis is necessarily unconditional. The typical example of a tight
by support Banach space is Gowers unconditional space Xy, the unconditional version of
Gowers—Maurey space [225], [227]. It follows easily that the hereditary ‘diagonal+strictly
singular’ property implies tightness by support. Gowers asked if the implication can be
reversed [229], in particular if X;; has the hereditary ‘diagonal+strictly singular’ property
[229]. It is known that any bounded operator on the whole space X, is a strictly singular
perturbation of a diagonal operator [230]. Adapting arguments from [222], one can prove
an analogous result for any bounded operator T: Y — Y, where Y is a block subspace of X,.
Gowers [228] also proved that any isomorphism between block subspaces of a tight by
support Banach space is a strictly singular perturbation of a restriction of an invertible
diagonal operator. We answer the questions by constructing a bounded projection on a direct
sum of two block subspaces of X, which is not a strictly singular perturbation of a restriction
of a diagonal operator. The construction uses the block sequence of [231] in Schlumprecht
space generating an £, -spreading model and canonical properties of Gowers unconditional
space, thus can be easily adapted to other spaces of Gowers—Maurey type, and leaves the
question on an example of a Banach space with the hereditary ‘diagonal + strictly singular’
property open. Next we reproduce the construction in an arbitrary block subspace of X,
using the results of [226].
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We also prove positive results on bounded operators on arbitrary Banach space X with a
tight by support basis. We show that any bounded operator on a subspace generated by a
weakly null sequence (x,,) in such a space has a restriction to a subspace generated by some

subsequence (xkn) of the form S + D|[xkn]' with S strictly singular and D diagonal. If we

allow restricting to a block subspace, then we can replace the diagonal operator D by a
multiple of the identity, which implies that no two isomorphic infinitely dimensional
subspaces of X form a direct sum.

In the case of Gowers unconditional space, one can strengthen Theorem (6.1.3), we prove
that any bounded operator on a block subspace Y of X;; into X}, is of the form +D|, , with
S strictly singular and D diagonal, generalizing earlier results.

Givenany E, F c N, we write E < min F. Let X be a Banach space with a basis (e;). Given
any G c N by P., we denote the projection X — [e;:i € G]. The support of a vector x =
Y.ix;e; is the set supp x = {i € N: x; # 0}. The support of a subspace Y is the union of
supports of all elements of Y . We write x < supp y. Any sequence (x,,) € X with x; <
x, <---is called a block sequence, a closed subspace spanned by an infinite block sequence
(x,) is called a block subspace. Given any basic sequence (x,) by [x,], we denote the
closed vector space spanned by (x,,).

We show some positive results on bounded operators on Banach spaces which are
tight by support. We recall the following definition.
Definition (6.1.1)[220]: ([224]). A basis of a Banach space is called tight by support, if no
two infinitely dimensional subspaces with disjoint supports are isomorphic.
X denotes a Banach space with a tight by support basis (e;). The main tool is provided by
the following decomposition result, which uses the notion of a diagonal-free operator. We
call an operator R defined on a block subspace [x,,] € X into X diagonal-free provided
supp x, N supp Rx, = @ forany n € N.
Proposition (6.1.2)[220]: Let X be a Banach space with a tight by support basis (e;). Let
(x,) < X be a block basis and T: [x,,] — X be a bounded operator. Then T = D[, 1+ S +
R for some bounded operators D, S, R with D diagonal, S strictly singular and R diagonal-
free.
Moreover, if T satisfies supp Tx,, N supp x,, = @ for any n # m, then the above formula
holds with R = 0.
Proof. Let (x,) be a normalized block basis and T: [x,,] = X be a bounded operator with
IT]| = C > 0. Since X is tight by support, the operator P o T, where P is the projection on
[e;: i €U supp (x,,)] is strictly singular. Thus we can assume that U,, supp (x,,) = N.
Forany n,k € N, put

1

Ange = i € supp 203110 (D] < 5 IT 20 O}

and Ak :UnEN An,k: k € N,
Forany k € N, put T, = P, o T, where P, is the projection from X onto [e;: i € A;], and
let D;: X — X be the diagonal operator defined by D, (e;) = A;e;, where
0 if i €Ay,
A n(_ ) if i € supp x,\Ax = supp x,\A, x -
X (1)

By the definition of the sets 4, ;, we have ||D; || < 2*.
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Fix k € N and assume that T}, is not strictly singular. Thus T} is an isomorphism between
some infinitely dimensional subspaces U c [x,] and W c P, (X). Consider a bounded
operator Ry, = (Id — Py) o (T |y )™ 1:W - [e;:i € A ].

As X is tight by support and supp R,(W) Nnsupp W = @, there is some infinitely
dimensional subspace V c W such that ||Rx |, |l < (2€)71. As (Tx |y )1 is an isomorphism,
the subspace Z = (T,)~1(V) is also infinitely dimensional. Take x € (T)~*(V) and
compute

ITexll < ITx]l < Cllx|l < ClIPex|l + Cllx — Pex|l = ClIPexl|l + ClIRy (Tyex) |

1
< CliPixll + 5 1Tl

Hence ||T,x|| < 2C||P,x]|| forany x € Z. As Z c U also Ty |, is an isomorphism onto its
image. On the other hand, for any x € [x,,] and i € supp P,x < A, we have

1 1
IPx(D] < 5 ITx (D] = 7 Tex (D1

It follows that for any x € [x,,] we have ||P,x|| < (zik) | T%x||, which for sufficiently big k

gives contradiction for any non-zero x € Z. Therefore, for sufficiently big k the operator Tk
Is strictly singular.

Now we have
(Dk|[xn] +T—T) (Z anxn) = Z a, Z Aixn(De; + z a, Py Tx, — z a,Tx,
n LESUpPY xn
= Z a, Z Tx,(i)e; + Z a, Z Tx,(i)e; + z a, z Tx,(i)e;
n LESUpp xp\Ank iEAL ieN
_ Z a, z Tx,(e;.

n iEN\(ArUsupp x;,)
Therefore, the operator R =T — Dy|.,) — Tx is diagonal-free. Now let T satisfy
supp Tx,, N supp x, = @ for n = m. Then, as we assumed that supp[x,] = N, we have
that supp Tx,, € supp x,, foranyn € N.
It follows that T = Dy|(x,] + Tk, as

(Dk|[xn] + Tk) (Z anxn) = z a, z Aix,(De; + z a, P Tx,
n

iESUpP x,

— z a, z Tx,()e; + Z a, Z Tx,(i)e; = Z a,Tx,.

LESupp xn\An k [EAL
For the last equality, recall that supp Tx,, € supp x, for any n € N.
Proposition (6.1.2) implies immediately the following result.
Theorem (6.1.3)[220]: Let X be a Banach space with a tight by support basis. Let T: [x,,] —
X be a bounded operator on a subspace spanned by a weakly null sequence (x,) < X. Then
there exists a subsequence (x,)ney Such that T .nem) = Dlix,:nemy + S, Where D: X —
X is a bounded diagonal operator and S: [x,:n € M] = X is a bounded strictly singular
operator.
In particular, the assertion holds if (x,,) is a block sequence.
We can replace diagonal operator by a multiple of the identity, if we allow passing to a block
sequence instead of subsequence.
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As for any isomorphism T, any scalar o given by the above theorem is non-zero, we obtain
the following corollary.

Corollary (6.1.4)[220]: Let X be a Banach space with a tight by support basis.

Then for any isomorphic infinitely dimensional subspaces Y, Z c X, we have inf{y — z:y €
Y,zeZ |yl = llzll = 1} = 0.

Theorem (6.1.5)[220]: Let X be a Banach space with a tight by support basis. Let T: [x,,] =
X be a bounded operator on a block subspace [x,] € X. Then there is an infinitely
dimensional block subspace W c [x,] such that T|,, = ald|, + S, for some scalar o and
bounded strictly singular operator S: [x,] = X.

Proof: We can assume that the basis of X is 1-unconditional and the sequence (x,,) is
normalized. Passing to a further subspace by Theorem (6.1.3), we can assume that T'| [, | =

D]y, 1 + S with D bounded diagonal with entries (4,,) and S compact. Let A = sup|4,| and
n

assume A > 0.
We shall prove the following claim.
Claim (6.1.6)[220]: For any € > 0 in any block subspace of [x,,], there are a further block
subspace [y,,] and a scalar a, with |a.| < A such that

(D — agld)|[ym] <E.
Assuming Claim (6.1.6), consider a cluster point a, of (a,).~, and pick some sequence
(a,) and descending sequence of block subspaces Y,, such that |a, — ay| < 1/2™ and
(D — ayId)|y, <1/2™. Thus||(D — aold)|y, || < 1/2™* and on the diagonal subspace Y,
of (¥,,) the operator (D — ald)|y, is compact, which ends the proof.
Proof: Fix £ > 0 and consider a partition of {1: |1] < A} =U%, A; into pairwise disjoint
subsets of diameter smaller than /2. For every n, put I, ; = {k € supp x,: A, € A;} and
Xn,i = Xnl1,, - By the unconditionality, we get ||x,;|| < 1. As X is tight by support, for
every i # j any restriction to a linear subspace spanned by a block sequence of (xm-)n of
the operator

M; ;: lin{xn’i: ne N} 3 z ApXpi = Z AnXn,j € lin{xn,j: ne N}

n n
Is either non-bounded or strictly singular. Using this observation in any block subspace of
(x,,), we can find a further block sequence (y,,,) satisfying for some i, < d the following:

- 0,m = oofori # i.

[l untns, | = 1meN and ||ymluyi,
The above statement can be easily proved by induction on d. Passing to a subsequence of
(¥m), We can assume that ||P,\,\Un,nli0 |yl ” < g/(44).

Pick any scalar A, € A;, and compute for any vector Y., b,x,, € [yp,,] of norm 1:
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nxn ( bnxn>

<Dt D e momBe|+ D b > Aedxaloe

n k€ln i, n ké&ln i,
< max |4, — 4] nXn || + max|A, — A z 2 bpXn i
ke Unln,ig k
n iiio
1) b 24
< 2 nXnl|| T PN\UnIn_i0 o] <&
n

which proves that (D — A Id)|, 1 < €

Let X be a Banach space with an unconditional basis (e;). We shall use the following
general observation concerning the form of a projection on one of the component of a direct
sum formed by two block subspaces with possibly coinciding supports. Assume that we
have block subspaces Y = [y,] and Z = [z,,] with
(D1) min{supp Y41, SUPP Zpy1} > max{supp y,, supp z,},n € N;
(B2) inf{lly — z[I: llyll = llzll = 1,y € Y,z € Z} > 0.
Consider projections Py:Y+Z3y+z—yeY,PY+Z3y+zw-z€Z. By (D2),
these projections are bounded.
Lemma (6.1.7)[220]: In the situation as above, the projection Py is of the form P, =
D|y,z + S, with S strictly singular and D: X — X diagonal if and only if there is a partition
N = F U G such that P; |, and Pg|, are strictly singular. Moreover, if either of the conditions
hold, the diagonal operator D can be chosen to be a projection onto a subspace spanned by
a subsequence of the basis.
Proof. Assume that Py is of the form Py = D|y,, + S, with S strictly singular and D: X —
X diagonal with entries (4;). Let

1 1
F={ieN:|Ai|>§}, G={ieN:|Ai|<§}
Thenforanyy =), a,y, € Y,wehave y = P,y = Dy + Sy, sO

Zan Z yn(De; = zan z Aiyn(De; + S (Z anyn>-

iESUPD Yn LESUPD Yn
Thus
Z an z (1- Ai)Yn(i)ei =S (Z anyn>-
n LESUDPD Yn n

Applying the projection P, we get

Zan > a- A)yn(o(el—(PGoS)(zanyn)

LESUpp ynNG
thus by uncondltlonallty of (e;)
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(Ps ©9) (Z anyn) Z ) (= 2)m0e
LEsupp yn,NG
z anPGyn

Zan 2 yn(De; =%

LESUupp ynNG
As S is strictly smgular, also P |y is strictly singular. Analogously, we prove that Pg|, is
strictly singular.
The reverse implication is straightforward. Given suitable F, G, we write P, = Pr|y + Z +
P; o Py — Pr o P,. By the assumption on projections P, P; on corresponding subspaces, the
operator P; o Py — Pr o P, is strictly singular. This reasoning proves also the ‘moreover’
part of the lemma.

We answer Gowers’ question [229] by giving an example of an operator T on a
subspace W of Gowers unconditional space X;;, which is not of the form D|,,, + S with D
diagonal and S strictly singular. We present first the list of canonical properties of the class
of spaces of Gowers—Maurey type that are needed for our construction and proceed to the
proof of the main result. Next we generalize the construction to any block subspace of X,
proving that an operator which is not a strictly singular perturbation of a restriction of a
diagonal operator can be built inside any infinitely dimensional subspace of X;;. However,
performing the construction inside block subspaces requires more technical background
concerning spaces of Gowers—Maurey type, thus we present it separately. We close with
proving that even though the ‘diagonal + strictly singular’ property does not hold for any
infinitely dimensional subspace of the space Xy, it is satisfied for block subspaces of X;;.

We recall now the definition of Schlumprecht space S, [122], and Gowers unconditional
space Xy (see [227]). The spaces are defined as the completion of ¢, under a suitable norm,
defined as a limit of an increasing sequence of norms.

Let f denote the function x = log,(x + 1). The norm ||-||s of Schlumprecht space S satisfies
on ¢y, the following equation:

n
lels = max{nxnw,sup ORG {ZuEixus:El << E}}
i=1

It is straightforward that the basis (&,) of S is 1-unconditional and subsymmetric, that is,
equivalent to any of its infinite subsequences.
We shall sketch the definition of Gowers unconditional space Xy, referring to [227] for
details, and present properties of the space we need in a list of facts given below.
The norm of X}, satisfies on ¢y, the following implicit equation:

x| = max{llxlloo,supf( )Sup{zllExll E, << Ey }

sup{|x*(x)|: x* special functional of length k,k € K}

for some fixed infinite and co-infinite K < N. Special functionals are described with the use

of a so-called coding function o defined on the family Q of finite sequences of vectors with
rational coordinates with modulus at most 1, taking values in N\K and satisfying certain

k__x*. for some

1
7) S

2

P (z y> |

n

growth condition. A special functional of length k is of the form (
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block sequence (xj,...,x;) with each x; of the form x; = (#n])) ZZ; 1 Xjn, Where

* *

xj,1»---»xj,n,-) is a block sequence in Q of vectors with norm at most 1, and n;,; =
o(lxil,..., |x j=2,...k

Recall that in the case of Gowers—Maurey space the coding function depends on
(x1,...,x7), noton (|x],..., |x;|), which makes the space HI. In the case of Gowers space

the basis is 1-unconditional, but including special functionals in the norming set forces
tightness by support.
The basic tools are formed by sequences of ¢;-averages. A vector x € X;; is called an £7-

average withconstantc > 1,n € N, ifx = (1) (xq ++++ +x,,) for some block sequence x; <

< x,, With ||x;]| < 1and ||x]| > 1/c. A block sequence of {’;"‘-averages ()Y c Xy is
a rapidly increasing sequence (RIS) of £, -averages, if, roughly speaking, (n;) increases fast
enough, with the length n; of average x; depending not only on K, but also on the support
of x;_4, and the length N of the sequence is small with respect to the length n, of the first
average, with all relations described in terms of the function f.

We list now the properties of the space X needed in the sequel. This list indicates that the
results can be easily adapted to the case of other spaces of Gowers—Maurey type.

First we recall the standard.

Fact (6.1.8)[220]: ([227]). For any n € N and ¢ > 1, every block subspace of X;; contains
an £}-average with constant c.

We shall need also the following simple observation.

Fact (6.1.9)[220]: For any sequence (z,,) of £,-averages of increasing length and a common
constant and any sets (D,,) in N with igf||PDnzn|| > 0, the sequence (P, z,) is a sequence

of £, -averages of increasing length and a common constant.
We state now the canonical property of the space Xy, whose variations in different spaces
of Gowers—Maurey type or Argyros—Deliyanni type are responsible for the irregular
properties of the spaces, such as having a small (in different meanings) family of bounded
operators.
Fact (6.1.10)[220]: (a) Fix a seminormalized block sequence (u,) c X, and a
seminormalized block sequence (v,) c X, of £T-averages with a constant c, satisfying
supp v, N supp u,, = @, for all n,m € N. Then there are sequences (w;) < [u,], (zx) C
[v,,] of the form wy = Ye;, anity, Zk = Xnej, Ann, SUch that ||lwy|| = 1,k € Nand z, —
0,as k — oo,
(b) Fix a subsequence (ein) of the basis of X;. Then there is a normalized sequence (wy) C
lei, |, Wk = Zuej, anei, . such that s(up)) Ynej, An€j, = 0, as k — oo, where the supremum
In

is taken over all sequences (j,) € Nwith {j,:n e N}n{i,:n €N} =0

The proof of (a) follows directly the lines of the proof in [227] of the fact that the space
Xy satisfies assumptions of [227]. First we pass to an infinite set N c N such that any finite
subsequence (v, ..., Vg, ) Of (Vy)nen With k; > N forms an RIS of £, -averages. Now it
suffices to take for any k € N a special functional of length k of the form

WE ) 2

nECj
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where uy (u,) = 1, #C; = n; , min C; > n; and the corresponding vector
k
_ \/f(k)zf(n,) Z
k k -

nECJ

Then for any (v,,) as above, we have

— k
fk(k)zf(n,) Z v, < e(k,c),
=1

nEC]

for some e(k,c) - 0 as k — oo.

In the case of subsequences of the basis, the proof is even simpler.

Recall that Facts (6.1.8) and (6.1.10) imply immediately the following theorem.

Theorem (6.1.11) ([224], [229])[220]: The unit vector basis of Gowers unconditional space
Xy is tight by support.

The next fact allows us to transfer an example of a sequence needed in Theorem (6.1.14)
from Schlumprecht space to Gowers unconditional space. Recall that a basic sequence (x;,)
generates some subsymmetric basic sequence (%,) as a spreading model, if for any

(al)l 1 k € N, we have
k

z al-xnl. 2 aifi .
i=1 i=1

We say that a basic sequence generates an £, -spreading model, if it generates as a spreading
model some basic sequence equivalent to the unit vector basis of 4;.

Fact (6.1.12)[220]: The basis of X, generates the basis of Schlumprecht space as a
spreading model.

The proof of this fact follows the lines of the proof of [221], where the result is proved in
the case of Gowers—Maurey space.

Now we are ready to prove the main result.

By Lemma (6.1.7), we obtain the following answer to Gowers’ (and thus also Problem 5.12)
[229].

Corollary (6.1.13)[220]: There is a bounded operator on a subspace of Gowers
unconditional space X;; which is not a strictly singular perturbation of a restriction of a
diagonal operator on X;;.

Theorem (6.1.14)[220]: There are block subspaces Y =[y,],Z = [z,] in Gowers
unconditional space X satisfying (D,), (D,) and (D5) for any partition F U G = N with
Pr|, strictly singular the operator Pg|y is not strictly singular.

Proof: We shall use the seminormalized block sequence of [231] generating an £, -spreading
model in Schlumprecht space. Recall that two vectors u, v have the same distribution, if for
some increasing bijection p:supp u — supp v we have v(p(i)) = u(i) for each i€

k

lim lim -+ lim

71—00 Ny—00 ni— o

supp u. Letu; = (fi,])) .1 €;. Take (3,) c S to be the block sequence [231], that is, ¥, =

71 Un,j, Where (7, j)j:1 have carefully designed pairwise disjoint supports and each ¥, ;
has the same distribution as Up; /2, for some fixed p; 7 oo. The sequence (3,) generates an
£1-spreading model, as ||17n1,j +-- +17np,j|| ~ p/2 for j > p (cf. [231]).

206



Write §, = X%, (%)) Zie,]. & ,#I; = j, for each n and consider sequence (y,) < Xy

defined as
n n .
LT Ly L
j=1 j=1 IEK;

where the sets K; with #K; = j are pushed forward along the basis (e;), so that by Fact
(6.1.12) the vectors (y,) form a seminormalized block sequence with the property
”vnlJ ot ” ~ p/2 for j > p, therefore also generating an #;-spreading model.
We define the sequence (z,,) in the following way. Take a mapping 7:U,, supp y,, = N such
that

(1) Tlsupp v, SUPP ¥ — {1,2,..., #supp y, } is a bijection for any n € N;

(j2) T(r) > t(s) ifand only if y,,(r) < y,(s) foranyn € Nand r, s € supp y,.

Note that (j1) and (j2) imply the following property:

(43) T(supp vn,j) = T(supp vm’j) foranyj <n<m.

Let
z, (i) = ﬁyn(i) forany i € supp y, and z, (i) = 0 otherwise.

In this way, we obtain two seminormalized block sequences (y,,) and (z,,) with supp y,, =
supp z,, thus in particular satisfying (D1).

Roughly speaking, the proof of Theorem (6.1.14) relies on the following three properties of
the above sequences: for any (i_n) € N with i, € supp y,, n € N, the projection
Py . nenyly is strictly singular (Claim (6.1.15)), whereas Py; . nenylz i not strictly singular
provided infz, (i,,) > 0 (Claim (6.1.16)). Moreover, the projection on the set containing

n

supports of almostall (v,, ;) forany jrestricted to Y is not strictly singular (Claim (6.1.17)).
J)n

Proof of (D2)[220]: Assume towards contradiction that inf{||y — z||: ||yl| = l|z]| = 1,y €
Y,z € Z} = 0. Thus there are some normalized block sequences (wy) < [y,,] and (v,)
[z,] with ||w, — v, || < 1/16%,k € N. Thus for any (¢,) c [—1, 1], we have ||Xx cxwy —
2k Vil < %-
Take (ci) c [—1,1], let w =YWy, v =DrckV, and I ={i € supp w:|w(i)| >
2|v(i)|} and compute, using 1-unconditionality of the basis of X

Z w(i)e;

Z CrkWx — z CrVk z(W(i) —v(i))e
K K iel

i€l
Analogously compute for | = {i € supp w: |v(i)| > 2|w(i)|}.
Thus for any w = Y, ¢, wy, with norm 1 and v = )} ¢, vy, We have

> w(i)e|[ >

i€supp w:%lv(i)|<|w(i)|< 21v()|

Wy = Z AnYn = Z an z yn(De;,

nely (nely)b IESUPP Y

1 1
§> > >§

=

Let
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Uk = Z dnz, = Z dn z 4_T(i)Yn(i)ei-

nely nely LESUPD Yn
Foranyi € supp w, we have

~ v < [w(D)] < 2[v(@)] if and only if - |d,| < 4°D]a,| < 2|d,,| where i € supp y,.
Givenn € N, there is at most one i € supp v, satisfying % |d,| < 4" @|a,| < 2|d,]|, denote
it by in. Hence

e D w(ie, ch D annline,|

i€supp wig|v(D)I<w(DI< 2[v ()| vElL
which implies that for any (c;) we have

2 Ck 2 AnYn < 2 Ck z anyn(ln)eln ,

nelyg nelyg

that is, (e, any")k and (Zner, anyn(ln)ein)k are equivalent.

On the other hand, we have the following claim, which yields a contradiction. Whereas the
above reasoning holds for any (y,,) and (z,,) related by means of a suitable function 1, the
next claim uses only the fact that the spreading models of the basis of X;; and of the chosen
sequence (y,) are quite different, and the basis of a variant of Schlumprecht space
dominates the basis of X;;.

Claim (6.1.15)[220]: The mapping (y,,), — ()’n(in)ein)n extends to a strictly singular

operator.
Proof. We shall prove that the mapping carrying (y,,),, to the standard basis (e,,) of some

variant of Schlumprecht space, defined by the function f(x) = +/log,(x + 1) instead of
f(x) =log,(x + 1), is strictly singular. As the basis of such a variant of Schlumprecht
space is subsymmetric and dominates the basis of Gowers space, it follows that the mapping

dn = (O (in)ein)n is strictly singular.
We apply results of [233] taking into account that the basis (é,,) of a variant of Schlumprecht

space is subsymmetric. By [233], the basis (e,,) is strongly dominated by £, (according to
[233]) and by [233] satisfies for some 6, 7 0 and any scalars (a;,) the following:

n
Now in order to show that the mapping M: (y,,),, = (€,), 1S strlctly singular, we repeat part

of the proof of [233]. Take any normalized block sequence (u,,) of (y,), u,, =
Yies, @iyi,»m € N. Passing to a further block sequence, as X, does not contain c,, we can

assume that IrelaX|al| — 0 as m — oo, Given k, € N, estimate the norm of v,, = M(u,,)

using the fact that (y,,) is unconditional and generates an ¢,-spreading model:

Y aal<mal p s Y lendpes, Y e

i€Jm k<n < <npni€/m k<n<<nni€Jm

<max{61k0 m?xlall , 20, ||um||} max{61k0 m?xlal 26,(0}

m

< maxo max Z a
Sk k k<n,<n,--<ng | n‘
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As §;, — 0, choosing sufficiently big k, and m we can force the norm of v,, to be as small
as needed, which proves that v,,, = 0 and finishes the proof of strict singularity of M and
thus the proof of Claim (6.1.15).

Proof of (D3)[220]: First we introduce some notation. Given n € N and t € t(supp y,),
let i,,, € supp y, be the unique index i € supp y, with 7(i) = t. Note that (j3) by the

definition of (Un]) ; implies the following.
(j4) forany i € supp Yo, k € supp y,, with t(i) = 7(k), we have y,, (i) = y,, (k).
Thus we can write y, = Xter(supp y,) Ve€i,, fOr SOme scalars (y,):en < [0, 1]. Given any

t €N, letalso N, = {n € N:t € t(supp y,)}.

The property (D3) follows from the next two claims. The first one is based only on properties
of the subsequences of the basis described in Fact 2.3(b).

Claim (6.1.16)[220]: Take F c N with Pg|, strictly singular. Then for any t € N the set
{inc:m € Ne} N F s finite.

Proof. Assume that for some t, € N, the set H = {i,,, :n € N, } n F is infinite. We shall

prove that the projection Py |, is not strictly singular, which will end the proof of the claim.

Let N ={n € Ny :i,, € 1}. Apply Fact 2.3(b) to the sequence (einto) obtaining a
’ neN

suitable normalized sequence (wy) with elements of the form wy, = ¥.,.¢;, ane, . ,k €N,

Now note that

, Vi Vt
Z anzn(ln,to)ein,to = Z an4_tzein,t0 — ” will = 4t =

nejg nejg
Whereas
. . Vi
Z an (Zn - Zn(ln,to)einlto) = Z Z anzn(ln,t)ein,t < 2 E anein_t
nejy teN,t#ty n€J teN,t#t, nEJg
< sup ane; .-
teN ’
nejy

Since the vectors Y.ne;, ane;,, have disjoint support with wy, for any k € N, the last term

converges to zero as k — oo. It follows that the projection Py|, is not strictly singular.
The next claim seems to be a rather natural requirement.

Claim (6.1.17)[220]: Take G < N with each of the sets {i,,,:n € N )\G ¢ € N, finite. Then
the projection P |y is not strictly singular.
Proof. Note that by (j3) for each j € N, we have supp v, ; c G for all but finitely many

integers n. Let G' =UjcyUpen Supp v, ; N G. We shall prove that the projection Py is
not strictly singular, which will end the proof of the claim.

Recall that for j > p, we have ”an,j +-- +vnp'j|| ~ p/2 (see [231]). Therefore, by the
assumption on G for any s, € N and € > 0 we can pick L ¢ N with #L = s and j € N, so
that ( )ZnEL Vp,2j and ( 1L) YnelL Vn2j+1 are seminormalized £3-averages with constant 2,
with supp v, ,; € G and supp v, ,; > r forany n € L. By the definition of (y,,) (precisely

since ||v| >%), it follows that also (ﬁ) Ynernler) and (i)ZnEL(ynlN\G’) are

209



seminormalized #3-averages with constant 4. It follows that we can pick a successive

sequence (L) such that the sequences (u,) and (v,) defined by the formula
1

1
us:#LSz(Yan’)» USZEZ(ynlN\G')' seN

NeELg NELg
are seminormalized ¢3-averages with constant 4, for any s € N.

Now apply The sequences (us) and (vs), obtaining a normalized sequence

> a2 Onled |

SEJk NELg KEN

1
zas_Z(ynlN\G’)_)O' k — co.
#L,

SEJk NeElLg

This shows that the projection P |y is not strictly singular and ends the proof of the claim.
In order to prove (D3), take a partition F U G = N and assume that Pg|, is strictly singular.
By Claim (6.1.16), for any ¢t € N the set {i,;:n € N,JNF = {i,;:n € NJ\G is finite,
whereas by Claim (6.1.17) the projection P, |y is not strictly singular. This ends the proof of
(D3) and thus the proof of Theorem (6.1.14).

A natural question arises if one can find an operator which is not a strictly singular
perturbation of a restriction of a diagonal operator inside any infinitely dimensional
subspace of X;. We shall discuss the proof of the above construction in any block subspace,
with infinite RISs of special type playing the role of the basis of X, in the previous
reasoning.

The construction of an operator not of the form D|,, + S in the space X;; was based on
the existence of a sequence generating an #,-spreading model. As we have written above,
the existence of such a sequence in Schlumprecht space was shown in [231], and the proof
was based on the finite representability of ¢, in Schlumprecht space. The finite
representability of ¢, in every block subspace of Schlumprecht space was later proved in
[232], and recently a new proof of this property concerning a variant of Gowers—Maurey
space was given in [226]. Moreover, they show that the space c§,n € N can be reproduced
on a block sequence of a special type which also generates the basis of Schlumprecht space
as a spreading model [226]. These block sequences of special type, which can be found in
any block subspace, were called a special RIS (SRIS) according to their structure [226]. The
proof rewritten in the case of Gowers unconditional space yields the first part of the
following fact (let us note here that the technical modification of the definition of the original
Gowers—Maurey space required for the main result of [226] are not needed for proving that
SRIS generates as a spreading model the basis of Schlumprecht space).

Fact (6.1.18)[220]: Every block subspace of X;; contains a seminormalized SRIS (x;) such
that

(i)  (x;) generates the basis (&;) of Schlumprecht space as a spreading model;

(ii)  the mapping ¢é; = x;,i € N, where (e;) is the canonical basis of a variant of

Schlumprecht space defined with the use of the function \/f instead of f, extends
to a bounded operator on a Schlumprecht space.

such that
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The proof of the second part of the above fact follows the lines of the proof of [232]. In the
sequel, we shall use also the following simple observation: for an SRIS (x;) any finite
sequence (xy,, ..., xx, ) With k; > N forms an RIS of ¢;-averages.

Taking any sequence (x;) as in Fact (6.1.18), we can again transfer the sequence (;,) of
[231] generating an ¢, -spreading model from Schlumprecht space to [x;] by substituting the
basis (&;) with (x;) and repeat the construction of (z,). Recall that ¥, = ¥7_,(f(j)/

2j) Zie,j é;, #I; = j, for each n, and take a sequence (y,) < [x;] defined as

n n )
_ N0
Yn = Unj = 2._ X, n €N
= a9 i€K;

again with the sets K; with #K; = j pushed forward along the sequence (x;) to guarantee

that the vectors (y,,) form a seminormalized block sequence generating an #,-spreading
model.

Repeat the definition of the function 7:U,, supp|,jy» = N, taking into account the supports
of (y,,) with respect to the basic sequence (x;) instead of (e;). Set

n
' 1
znzzf(],)z —X;, n €N
o 2] L 4"0
j=1

lEKj

and letY = [y,],Z = [z,].

In order to repeat the proof of Theorem (6.1.14), we shall need the following observation,
which is a more precise formulation.

Fact (6.1.19)[220]: Fix a seminormalized block sequence (u,) € X;. Then forany ¢ > 1
and & > 0, there is a normalized vector w = Y,,¢; ayuy, such that ||X.e; anvn|| < e, for

any RIS of ¢;-averages (vy,...,vy;) with constant ¢ and with supp u, N supp v, =
@,n,m € N.

The proof of the property (D2) for Y,Z can be rewritten in our case since (x;) generates (é;)
as a spreading model by Fact (6.1.18)(a), (y,,) generates an #,-spreading model by [231],
and the basis of a suitable variant of Schlumprecht space dominates (x;) by Fact (6.1.18)(b).
The proof of the property (D3) requires more attention since considered projections can split
also the supports of (x;). However, a small modification allows us repeat the reasoning. We
repeat the notation of i,,, for any n,t € N, and N, for any t € N. Again for some scalars
(Ye)ten < [0, 1], we have

Vi
Yn = z ytxin’t ) Zy = Z Exin’t, n € N.

cex{sunpic 1) ter{supic )
Then we have the following version of Claim (6.1.16).

Claim (6.1.20)[220]: Take F c N with Pg|, strictly singular. Then forevery e > 0and t €
N, the set {in:n € Ny, ||Prx;, || > €} is finite.

Proof. On the contrary, assume that ||Pinn Wl =€ for some ¢,t € N and infinitely many

n’s. The collection of the indices i,, ;, denote by H. We shall prove that the mapping P, | is
not strictly singular, where | =U;cy supp Xipe, NF, which will finish the proof.

Assume first that ((I—PF) xint) IS seminormalized. Then by Fact (6.1.9) ((I—
L0 n

Pr) xin,to)n Is a sequence of #,-averages of increasing length. Pick an infinite M c N so
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that any N elements of the sequence ((1 — Pp) x; to) starting after Nth element form an
’ neMm

RIS of #,- averages. Now by Fact (6.1.19) for any k € N choose a vector w; =
Yney anPpxi,, ,suchthat Xnej, anx;,, < 1/2% foranyt € N, t # t, and ”ank a, (I —

Pe)xi,, || < 1/2k. It follows that
Vi Vt
P | = || an 1wt || = 2wl = 22
nejg nejg
Whereas
|4 Yt
(1- P]) Z anZy || = Z z O 75 Xin, + z (I—Pp) 4;’ Xip e
nejy teN,t#ty nejg nej
1 1 1
< > 2D arr |t (D) el - Pover,,, || <50
teN,t#t, nej nejy

If lim inf, ”(I _PF)xinto = 0, then passing to a subsequence we can assume that
(1 — PF)xl-n’t0 < 1/2". It follows straightforward that in the above inequality we can again

estimate ”Zne Je (I — PF)xin,to ” Therefore, in both cases the above estimates prove that

the projection P;| is not strictly singular, which yields a contradiction.
On the other hand, we have the following version of Claim (6.1.17).
Claim (6.1.21)[220]: Take G c N with (I — Pg)x;,, 2 0 forany t € N. Then P;|y is not

strictly singular.
Proof. For G, as in the claim by the definition of (y,,) and 1, we have (I — Pg)vy, ; —2 0

for every j. Now we repeat the reasoning from the proof of Claim (6.1.17) defining G’ in the
same way and choosing successive L, € N in such a way that the vectors

Ws = #L zvnm» Xs = #L Zvn2]+1: sEN

nELS neLS
are seminormalized #3-averages with constant 4 and satisfying additionally the estimate
|(I = Pa)vnoj|| < 1/2™. The last condition guarantees that (ws)s and (Pgrws), are
equivalent, which allows for repeating the rest of the proof of Claim (6.1.17).
Now in order to obtain the property (D3) for Y and Z, take any partition F U G = N and
assume that Pg|, is strictly singular. Then by Claim (6.1.20) for any t € N, we have
Pe(x;,,) —— 0, which by Claim (6.1.21) implies that Pg|y is not strictly singular. Thus we

proved that subspaces Y = [y,,] and Z = [z,] satisfy (D1)—(D3). As by Fact (6.1.18), such
block subspaces can be found in any block subspace of X;;, by Lemma (6.1.7) and a standard
perturbation argument we get the following theorem.

Theorem (6.1.22)[220]: For any infinitely dimensional subspace X of Gowers
unconditional space X, there is an operator defined on a subspace of X which is not a
strictly singular perturbation of a restriction of a diagonal operator on X;.

We close with an observation that the ‘diagonal + strictly singular’ property holds for block
subspaces of X;;. Namely, we prove the following version of [222] in the case of Gowers
unconditional space, generalizing [230].
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Proposition (6.1.23)[220]: Let X;; be Gowers unconditional space, Y be a block subspace
of X;;. Then

(i)  any bounded diagonal-free operator T: Y — Xy, is strictly singular;

(i)  any bounded operator T: Y — X, is a strictly singular perturbation of a restriction

of a diagonal operator on X;.

Proof. By Proposition (6.1.2), as X, is tight by support, the second part follows from the
first part. The proof of the first part is a variant of the proof of [222] in our setting, which
uses technique of [223]. We include it for the sake of completeness.
Take a bounded operator : Y — X, , where Y = [y, ] is a block subspace of X;;. Assume that
T is diagonal-free, that is, supp Ty, N supp y, = @ for each k € N. We shall prove that
for any sequence of (x,,) of normalized ¢7}-averages Tx,, converges to zero. It follows that
T is strictly singular, which ends the proof of the proposition.
Fix a block sequence (x,) < [y,] of normalized £7-averages. Passing to subsequence, after
small perturbation, we can assume that (Tx,, + x,,),y IS @ block sequence. Write each x,,
as Xp = Ykea, QxYr. FoOr every B c N, denote by Rp the projection on [ej:j €
Uies SUpp ;-
Claim (6.1.24) (cf. [222])[220]: For any partitions A, = B, U C,,n € N, we have
li,?l R TRg x, = 0.
Proof. Take partitions A_n = B,, U C,,,n € N, and assume 11121{/ R¢, TRg x, > 0 for some
infinite N c N. Then, as T is bounded, 111215 Rg x, > 0. By Fact (6.1.9), the sequence

(Rann)nEN Is also a sequence of £, -averages of increasing length with a common constant.
Apply Fact (6.1.10)(a) to the seminormalized block sequence u,, = R¢ TRp x, and v, =
Rp xn,n € N, inorder to obtain sequences (z;) and (wy) with z, = Y..c;, bpRp Xy, Wy =
Ynej, bnRc, TRp xn, Wi = 1,k € Nand z, — 0. This contradicts the boundedness of T and

ends the proof of the claim.
Let now

A
{(B,C):B UC=A,BNC =0 #B = #(C = #7”} if A, iseven,

{(B,C):BUC =4, BNC=0,|#B—#C| =1} if A, isodd,
and set L,, to be the integer part of #4,,/2.
Claim (6.1.25) (cf. [222])[220]: Ry T x,, = (#%") Y 5.0)ep, ReT ReXn, Where

Pn =

2L, (2L, — 1
n( LG ) if A, iseven,
Ay = n
n 2(2L, + 1) ] ]
LnT lf An is odd.

Proof. Note first that

Ry Txn =Ry, Z a Z e; (Tyx)e; | since supp y, N supp Ty, = @

k JEsupp yi
— *
€Ay JESUPD Vi “k:k+#i
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whereas for any partition (B, C) of A,, we have

RgTR: x, = Z Z (2 akej*(Tyk)> ej.

IEB jesupp y; \keC
Fixi € A, and j € supp y;. We shall prove that

A
Z akej* (T yi) = #; z ej*(RBTRan)-

K:k#i " (B,CO)eP,
Indeed, by the definition of Rp, if e/ (RgTR¢ x,,) # 0, theni € B. Thus for any k # i, there
are as many terms aye; (Tyy) in the sum X5 cyep, € (RgT Rcxy) as is the cardinality of
the set {(B,C) € P,:i € B,k € C}. The latter is equal to ##,,/1,,, which ends the proof of
the claim.
The following claim ends the proof of Proposition (6.1.23).
Claim (6.1.26)[220]: lirrlnT x, = 0.

Proof. Assume ig{l”T X, || > 0 for some infinite N c N. Note that 4,,Tx,, — 0. Indeed, by
n

Claim (6.1.25), A, Tx,, = (;?") 25,c)ep, ReT Rc x,, for some 0 < A, < 4. On the other

hand, by Claim (6.1.24) we have
lim(sup{||R:TRgx,||: (B, C)partition of A,}) = 0.
n

Hence, after small perturbation, we can assume that supp Tx,, N supp x,, = @®,n € N with
N being infinite. Apply Fact (6.1.10)(a) tou,, = T x,, and v,, = x,,,n € N, in order to obtain
sequences (z;) and (wy) With z, = ¥1¢;, bnXn , Wi = Xney, bnTxy, [lwi |l = 1,k € Nand
7, — 0, which contradicts boundedness of T.
Section (6.2): Separable L ,-Spaces

Aharoni and Lindenstrauss gave in [235] an example of two non-isomorphic £.-
spaces which are uniformly homeomorphic. The spaces considered in such an example were
non-separable. They asked whether a similar result holds in the separable setting or not. It
was asked if ¢, and C[0, 1] (or ¢, and C(w®)) could be uniformly homeomaorphic. This last
equation was answered negatively by Johnson, Lindenstrauss and Schechtman [89] who
proved the following fundamental result on the uniform structure of C(K)-spaces:
Theorem (6.2.1)[234]: If a C(K)-space is uniformly homeomorphic to c,, then it is
isomorphic to c,.
However, the uniform structure of separable £.-spaces seems to be not completely clear.
Actually, the following general question about the uniform structure of Banach spaces was
raised in [89]: Is every separable £,-space, with 1 < p < oo, determined by its uniform
structure? A Banach space is determined by its uniform structure if it is isomorphic to every
Banach space to which it is uniformly homeomorphic. We are interested only in the case
p = oo. In this case, there is a partial result due to Kalton. He gave an example of two non-
isomorphic separable L,-spaces which are coarsely homeomorphic, see [245]. So, as far as
we know, the problem to decide if every separable £,-space is determined by its uniform
structure remains open. We give an example of two separable L.-spaces which are
uniformly homeomorphic but not linearly isomorphic. This completes Kalton’s result. The
approach is based on a deep construction of Kalton in the nonlinear setting. The main idea
Is to combine such a construction with one of the exotic Bourgain—Pisier spaces [103]. The
way to do it is to use a well-known technique of homological algebra: The push-out space.
This technique has the skill to mix nicely the two quoted constructions. On one hand, the
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resulting push-out space inherits the nonlinear properties of Kalton’s construction. On the
other hand, it receives the L.-structure and the Schur property of the Bourgain—Pisier
spaces. This is enough to show that separable £,-spaces are not uniquely determined by its
uniform structure. However, it follows from the procedure that one of the spaces in the
example is a Schur space. We go a step further giving a second example: There exist two
non-isomorphic separable £L,-spaces containing c, (and thus failing to be Schur spaces)
which are uniformly homeomorphic. This construction is much more delicate. It involves
the uncomplemented copy of #; inside #; given by Bourgain [237] and the twin brother of
the push-out space: The pull-back space. The juxtaposition of these two examples gives an
unexpected result: We find that there are separable £.-spaces whose uniform structure
determines, at least, three different linear structures.

We contain all the necessary background to follow. We gathered in three devoted to
homological algebra, linear Banach space theory and nonlinear theory respectively. We
contain our first example while deal with the second and much more elaborated example.
The end contains the aforementioned result about an L,-space whose uniform structure
determines, at least, three different linear structures.

We recall some basic tools from homological algebra in the Banach space setting. The reader
can find all the necessary details in [238]. LetV ,W, X,Y , Z be Banach spaces. A short exact
sequence is a diagram like

0 z 2oy Lx 0 (1)
where the morphisms are linear and such that the image of each arrow is the kernel of the
next one. This condition implies that Z is a subspace of Y and thanks to the Open Mapping
Theorem we find that X is isomorphic to Y /j (Z). We usually refer to Y as a twisted sum of
Z and X (in that order). The twisted sum Y is trivial if j (Z) is complemented in ; otherwise
Is nontrivial. In the same line, we say the sequence (1) splits or is trivial if there is a bounded
linearmap R : Y — Z such that R o j = Id,. R receives the name of a retraction for j .
In this case, it is not hard to check that Y is isomorphicto Z @ X. Of course, trivial twisted
sums correspond to trivial sequences. We say P is a three space property if for every short
exact sequence (1) where Z, X have property P then Y has also property 2. Let us introduce
the Push-out and Pull-back constructions as in [241].

A commutative diagram

L — Y

(2)

is called a push-out of
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provided that for every commutative diagram

j

L —— Y

e
VL} %%

there is a unique morphism w: PO — W sothata = w/, = wl . There is a short
description for the space PO in (2) called canonical push-out and defined directly as

PO = (Y &, V)/D
Endowed with the natural quotient norm; and with I and J the compositions of the natural
mappings of Y and V into Y @, V with the quotient map from Y @, V onto PO. Given

the sequence (1) and an into-isomorphismi : Z — V , we may complete (2) to produce a
commutative push-out diagram

0 0
J q
e Z e Y X 0 (1)
i I |
J o
0 —— Vv —— PO X 0 (Push-out sequence)
| ai
Viiizy = V/i(Z)
0 0.

The sequence in the second row of the diagram above is called the push-out sequence of the
sequence (1) and i.
A commutative diagram

)
PB —=% 5V
Pl ‘“l
y —1 . x.

(3)
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Is called a pull-back of

V
7|
q %

Y
provided that for every commutative diagram

w2 . v

|

YL:»X

there is a unique morphismw : W — PB sothat a = Qw,f = P w. There is a short
description for the space PB of (3) called the canonical pull-back and defined as

PB = (yyv)EY B V: q(y) = p(v).
Given the sequence (1) and a quotient map p : V — X, we may complete the diagram (3)
to produce a commutative pull-back diagram

0 0
Ker p = Ker p
I i
J 0
0 Z PB —— V. —— 0  (Pull-back sequence)
|| P L
J q

0 0.

The sequence in the first row of the diagram above is called the pull-back sequence of the
sequence (1) and p.

We need to introduce the notion of a quasi-linear map and some basic facts related.
This notion is necessary only to follow our proof of the technical Lemma (6.2.13). This
lemma is essential to construct our second example but not the first Quasi-linear maps

The theory developed by Kalton [242] and Kalton and Peck [246] establishes that there
Is a correspondence between exact sequences

0 Z Y > X > 0,
and quasi-linear maps F from X to Z. By a quasi-linear map F from X to Z, we mean a
homogeneous map from X with values in Z and satisfying
IF(x + %) — F)— F Dz < K lxll + [lx"[D,
for some constant K and all x,x" € X. Given a quasi-linear map F from X to Z we can
construct a short exact sequence 0 Z Y X 0; the space Y may be
identified with Z @ X endowed with the quasi-norm
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IOl =1z = F @Iz + llxllx-
It is usual to denote Y as Z @ X to make explicit the role of F. The converse also holds,
actually it can be proved:
Theorem (6.2.2)[234]: There is a correspondence between twisted sums Z @+ X and
quasi-linear maps from X to Z.

Full details can be found in [242], [246] or [238]. According to the previous theorem it

is useful to write

0 Z Y X »0= F,
to make explicit the role of the correspondence between the exact sequence and F — the
corresponding quasi-linear map provided by Theorem (6.2.2). This notation works nicely to
identify quasi-linear maps in commutative diagrams. More specifically, in a pull-back
diagram we may identify the quasi-linear maps as follows

0O —— Z PB X O=Fot (Pull-back sequence)
|| | (|
0O —— Z Y X O=F (1).

That is, if F denotes the quasi-linear map representing the sequence (1), then the pull-back
sequence with the operator t can be identified with F o t. This fact follows from a close
inspection of the proof of Theorem (6.2.2).
It is also very useful to introduce the notion of equality, that is, when two quasi-linear maps
are “the same”. We shall say that two quasi-linear maps F, G from X to Z are equivalent,
and write

F = G,
if there is a bounded linear map T : Z @+ X — Z @, X making commutative the
following diagram:

0 —— 72 —— 7Z7hr X > X > ()
|| |7 ||
0O —— Z —— ZPc X > X > 0,

If such a T exists then it must be an isomorphism by the 3-lemma (see e.g. [238]). Note that
iIf F = 0 then F induces the ordinary topological direct sum Z @ X; or equivalently, the
short exact sequence 0 — Z —Z @ X — X — 0 splits. We recall the following
important theorem [246]:
Theorem (6.2.3)[234]: Let F, G be quasi-linear maps from X to Z. The following conditions
are equivalent:
VF = G.
(ii) There exists a constant M and a linear (not necessarily bounded) map A : X — Z such
that
IF () — G(x) — Al < Mllx|l,x € X.

Given two quasi-linear maps F, G from X to Z it is a routine to check thatalso F — G is
a quasi-linear map from X to Z. Equipped with the theorem above it is trivial to check
Corollary (6.2.4)[234]:

F=6G6eF-G =0.
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Our notation for Banach spaces is standard, see e.g. [249]. We need to recall a few
classes of operators acting between Banach spaces: strictly singular, approximable, compact
and weakly compact. Recall that an operator is said to be strictly singular if it is never an
isomorphism when restricted to an infinite dimensional subspace. An operator t : X
— X is said to be an approximable operator if there exists a sequence (t,,),=, of finite
rank operators suchthat ||t — t,|| — 0 asn — oo.Closely related to this is the concept
of compact operator. We say that T : X — X is compact (respectively weakly compact)
If T (B(X)) is arelatively compact (respectively weakly compact) set. We will use the well-
known fact that every compact operator T : ¢, — ¢, IS approximable; see [249].

We also need to recall a few isolated properties of some Banach spaces: the Schur
property, to be an £, -space and to have Pelczynski’s property (V). We recall that a Banach
space ~ X has the Schur property (or X is a Schur space) if weak and norm sequential
convergences coincide in X. We say that Z is an L, ;-space if and only if the following
holds: For every finite dimensional subspace F of Z one may find a further finite
dimensional subspace G of Z such that # < G and d(G, #4™¢ ) < A. Then we write that
Z is an Ly-space if Z is an L, 3-space for some A. To finish, a Banach space X has
Petczy'nski’s property (V) if every operator on X is either weakly compact or an
iIsomorphism on a copy of c,. It is well known that C (K)-spaces have Petczynski’s property
(V) " [251].

We finish by quoting a couple of deep results that we will need later. The first one is
due to Bourgain and Pisier and will be employed in the first example; while the second
result, due to Bourgain, will be used only in our second example. In [103], Bourgain and
Pisier showed that for every separable Banach space X and A > 1, X can be embedded into
some L, 3-space, namely L, ;(X), in such a way that the corresponding quotient space
L 2(X)/X has the Schur property. In other words,

Theorem (6.2.5)[234]: (Bourgain—Pisier). Given a separable Banach space X, there is a
short exact sequence

0 —X— L, ;(X)— S —0 (BP),
where S = L, ;(X)/X has the Schur property.

As mentioned before, our second example requires a deep result of Bourgain [237].
Roughly speaking, this result provides uncomplemented copies of £, in £;. We may state
the result as follows:

Theorem (6.2.6)[234]: (Bourgain). There exists a nontrivial exact sequence

0 —4, (1) — 41(f7) —41(4) — 0 (B).
Since Bourgain’s proof is local and it is well known that cy(€%,) is isomorphic to c, it is
not hard to see that the sequence above has a nontrivial predual. This is Corollary (6.2.4).

There exists a nontrivial exact sequence

0 — co( Ay) — cg —— co — 0 (B.).

In other words (B,) * = (B). The sequence (B,) is the new ingredient for the second
example. Observe that, by the definition of short exact sequence, we infer that c,(4y,) is a
subspace of c,. It is well known that every subspace of c, contains a further isomorphic
copy of c,; see e.g. [236]. Thus cy(A4;,) contains an isomorphic copy of c,. This last fact
will be used later.

Let X,Y be Banach spaces and suppose ¢ : X — Y is any mapping. We define the
modulus of continuity of ¢ by
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we(t) = sup{llp(x) — dWl: llx — yll < t} ,£> 0.
We say that ¢ is uniformly continuous if
limwg(t) = 0.

t—-0
The following notion will be frequently used through. Given a quotientmap Q : ¥ — X,

we say that Q admits or has a uniformly continuous section if there is a uniformly continuous
map

p: X —Y
such that Q o ¢ = Idy. The following easy proposition shows that the existence of
uniformly continuous sections provides uniformly homeomorphic spaces.

Proposition (6.2.7)[234]: Assume we have a short exact sequence

0 Z Y i X > 0,

where the quotient Q admits a uniformly continuous section. Then Z @ X and Y are
uniformly homeomorphic.

Proof. Let us denote by ¢ a uniformly continuous section for Q. We define ¢ : Z @
X — Y by therule

~

$(zx) =z + ¢
1) =0 - ¢ (1), Q).

It is a routine calculation to check that ¢ gives a uniformly continuous homeomorphism.

The rest of definitions we need are taken from [243]. See [243] for further details. We
define a gauge to be a function w : [0,00) — [0, o) which is a continuous increasing
subadditive function with w(0) = 0 and w(t) >t for 0 < t < 1. We say w is strongly
normalized if w(t) = tforall t > 1 and nontrivial if lt1_1>13 w(t)/t = oo.

with inverse

Let X be a Banach space and let us denote by d the natural metric d(x,y) = ||lx — y|l.
If w is a gauge then we can form a new metric replacing d by w o d. We denote Lip,, (X) :
= Lip(X,w o d) the space of real-valued Lipschitz functions over X for which f (0) = 0

under the Lipschitz norm
f)—f Q) }
ip,, = Su PX F :

Fo(X) = Fy(X,w o d)

as the canonical predual of Lip(X,w o d), that is, the closed linear span of the point
evaluations 6, (f) = f (x) in Lip,(X)*. The space F,,(X) is known as the Arens—Eells
space or free-Lipschitz space on the metric space (X, w o d).

Let us recall a couple of key facts that are necessary through. The first one is that F,, (X)
Is a Schur space if w is nontrivial [243]. As it was observed in [243], the barycentric map
p: F,(X) — Xis a quotient map for a strongly normalized w. Consequently, the
evaluationmap § : X — F,(X) is a uniformly continuous section for the quotient map S
with modulus of continuity w. All these can be summarized in the following deep result of
Kalton which is the key for our construction:
Theorem (6.2.8) (Kalton)[234]: Fix w a nontrivial strongly normalized gauge. Given a

Banach space X, there exists a short exact sequence

0 — Kerp — F,(X) d X 0 (K),

verifying the following conditions:

In this case we write
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(i) E,(X) is a Schur space.
(if) £ admits a uniformly continuous section with modulus of continuity w.

If we apply Proposition (6.2.7) to the exact sequence of the theorem above, we find that
Kerf @ X is uniformly homeomorphic to F,,(X). If moreover, X fails the Schur property
then F,(X) and Kerp @ X are not linearly isomorphic; otherwise X would inherit the
Schur property. This is Kalton’s strategy to provide examples of non-isomorphic but
uniformly homeomorphic Banach spaces. We use the same idea in the first counterexample.

Our first example follows trivially from the next proposition that can be regarded as an
L -analogue of [243].

Proposition (6.2.9)[234]: Let X be a separable L.-space. There is a separable L-space
with the Schur property Y and a separable £-space Z which contains a complemented
copy of X so that Y and Z are uniformly homeomorphic.

Proof. Fix w a nontrivial strongly normalized gauge and pick a separable L.-space X.

Theorem (6.2.8) provides us with a short exact sequence

0 — Kerf — E,(X) d X 0 (K),

where F,, (X) isa Schur space and § — the evaluation map — is a uniformly continuous section
for £ with modulus of continuity w. Since Kerp is separable, we may isometrically embed
such a kernel into a Bourgain—Pisier space, namely L. (Kerf), and thus produce a short
exact sequence

0 — Kerp — Lo(Kerf) — S — 0,
where S has the Schur property. We combine both sequences and obtain a push-out diagram:

0 0
! !
0 —~ Kerf — FyX) —— X 0 (K)
{i 4 I
0 —— L(Kerf) —— PO B X 0 (Push-out sequence)
! !
S = S
! !
! o 4

The push-out sequence

0 — L,(Kerf) — PO ? X 0 (Ky)
is the key. Actually, let us check that Y := PO and Z := L (Kerf) @ X satisfy the
requirements of the proposition. Since “to be an L.,-space” is a three space property [238],
a quick inspection to (Ky) shows that PO is an L.-space. The Schur property is also a three
space property [238]. So, we infer from the second column in the push-out diagram
0 — F,(X) — PO — S —0,

that PO is a Schur space; recall that F,, (X) and S have the Schur property by Theorem (6.2.8)
and Theorem (6.2.5) respectively. All together yields that PO is a separable L.-space with
the Schur property. Next we observe that the quotient B in the push-out sequence (Ky)
admits a uniformly continuous section: Since § is a uniformly continuous section for 5 with
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modulus w, we find that I o § is a uniformly continuous section for B with modulus w.
Indeed, since the push-out diagram is commutative it must be Bo [ = B;thus fo § =
Idy implies Bo [ o § = Idy. To finish, we just need to apply Proposition (6.2.7) to the
section [ o § of the quotient B : PO —— X; we find that L. (Kerf) @ X is uniformly
homeomorphic to PO.

If we apply the previous proposition to any separable £,-space X which fails the Schur
property, we immediately obtain:

Corollary (6.2.10)[234]: There are two non-isomorphic separable £..-spaces which are
uniformly homeomorphic.

Theorem (6.2.11)[234]: Every infinite dimensional Banach space X can be isometrically
embedded into an £.,-space Y of the same density X such that the quotient Y /X has the
Radon—Nikodym and the Schur properties.

Therefore the separability assumption of Proposition (6.2.9) can be removed. The same
proof works in the non-separable setting using Theorem (6.2.11) instead of Theorem (6.2.5).
In particular, as in Corollary (6.2.10), this gives (new) examples of non-separable £, -spaces
which are non-isomorphic but uniformly homeomorphic. Since the aim is to give
counterexamples in the separable setting we have decided to introduce Proposition (6.2.9)
in the separable case.

According to Kalton’s approach, one of the two separable non-isomorphic £,-spaces
which are uniformly homeomorphic must be always a Schur space. Let us go a step further
and show that one may find separable non-isomorphic £L,-spaces failing the Schur property
which are uniformly homeomorphic. Let us prove the following:

To prove this proposition we need a couple of preliminary lemmas. The first one was
already observed in [244]; we give an independent proof.

Lemma (6.2.12)[234]: Assume we have a commutative pull-back diagram

0 Z PB—2 . X —— 0
|| | (|
0 Vi y — 1 . x — ..

If g admits a uniformly continuous section then so does Q.
Proof. Let us denote by ¢ a uniformly continuous section for g. By the very definition of
the canonical pull-back space PB = {(y,x;) € Y @, X::q(y) = t(x;)}, the map ¢ :
X, — PB given by
P(xy) i= (¢ (t (1) ,x1)
is a uniformly continuous section for Q. Recall that Q is just the map Q(y,x;) = x;.
The second lemma traces back to [240].

Lemma (6.2.13)[234]: Assume we have a commutative diagram
J q

0 Z Y X 0
|| | (|
0 z L.y 2. x 0.
If t is an approximable operator then the sequence
J q

0 —Z > Y > X — 0
splits.
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Proof. Assume momentarily that ¢t is a finite rank operator and form the commutative
diagram

0 Z PB X 0=Fot
|| r| |
0 z ! y —2 . x 0=F.

Let us check that F o t = 0. Since the rank of t is finite dimensional, one may lift ¢t to T :
X — Ysuch that qT* = t.For the map T — T'Q: PB — X, we have q(T —
T1Q) = 0.ThereforethereisalinearmapR : PB — ZsuchthatjR = T — T'q.Then
jJRI =T -Tq)] =T] =j
and hence RJ] = Id,, i.e., R is a linear retraction for J . In other words, we have proved
that F ot = 0 whenever t is a finite rank operator. We perform now the general case. Let
us call by F a quasi-linear map representing our exact sequence. Recall that we may identify
the pull-back of F with the approximable operator t as the new quasi-linear map F o t. Since

the diagram _
7 4q

0O ——s 7 Y X O=Fot
|| r| /|
i q
0O —— Z Y X O0=F,

is indeed a pull-back diagram, the hypothesis of the lemma can be writtenas F o t = F or
equivalently by Corollary (6.2.4)

Fo (Idy — t)= 0. (5)
So the claim of the lemma is that condition (5) implies F = 0. Set t = lim t,, with ¢,

n—oo
finite rank operators. Then
0=Fo(ldy —t)= Fo (Idy — (t — t,)) — Fo t,.
Since t,, is a finite rank operator, F o t, = 0 as we already checked. Hence 0 = F o
(Idxy — (t — t,)) .
For n large enough,|| t — ¢t,|| < 1and we find that Idy — (t — t,) is invertible. This
last fact gives F = 0.

Lemma (6.2.12) in [240] contains a stronger statement for compact operators. The given
proof for approximable operators originates in preliminary versions of [240]. Its proof is
much simpler than [240] and enough for our purposes. We are ready now to give a proof for
Proposition (6.2.14).

Proposition (6.2.14)[234]: There are two separable uniformly homeomorphic L,-spaces
containing an isomorphic copy of ¢, which are non-isomorphic.

Proof: We follow here an idea of [240]. Pick the push-out diagram (4) given in Proposition
(6.2.9) for the particular choice X = c¢,:
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0 ——  Kerf —— Fulco) —— co 0 (K)
1 I
0 —— Lo(Kerf) —— PO —2 5 o 0 (Ko
S = S
0 0 (6)

And recall that B admits a uniformly continuous section. Now, let us consider

0 — (A7) —co — g — 0 (B,
which is the natural predual of the nontrivial exact sequence given by Bourgain in [237]
(see Corollary 2 for further details on this sequence). Form the pull-back diagram of the
sequences (K., ) and (B,):

0 0

! !

co(Ay) = co(A))
P

0 — Loo(Kerf) ——> PB —L s ¢ —— 0 (Pull-back sequence)

I |» |7

0 —— Loo(Kerf) ——> PO —2 % ¢ —— 0 (Key).

! !

0 0

(Bx)- ( (7)
The pull-back sequence

0 — L, (Kerp) PB > Cp 0
is now the key. We just need to check that £, (Ker) @ c, and PB satisfy the conclusions
of the proposition. The only thing immediately obvious is that L., (Kerf) @ cy is an L,-
space and contains an isomorphic copy of c,. We divide the rest of the proof in four steps.

(i) PB isan L,-space. A quick look at the pull-back sequence and a three space argument
(as given in Proposition (6.2.9)) confirms this.

(ii) Let us prove that PB and L, (Kerf) @ c, are uniformly homeomorphic. Let us
recall again that the quotient B in (Kc, ) admits a uniform section. Applying Lemma
(6.2.12) to the pull-back diagram (7), one may find a uniformly continuous section for the
quotient B : PB — c¢,. Thus, we are in position to apply Proposition (6.2.7) and conclude:
PB and L (Kerf) @ c, are uniformly homeomorphic.

(iii) Let us check now that PB contains an isomorphic copy of c,. By the definition of short
exact sequence, it is trivial to check that c,(4y,) is a subspace of PB and also a subspace of
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Co- Thus, since every subspace of ¢, contains an isomorphic copy of ¢, (see e.g. [236]), we
find that ¢, (A45,) contains an isomorphic copy of c,; hence also PB contains a copy of c,.

(iv) The last but delicate point is to show that PB is not linearly isomorphic to
Lo (Kerp) @ c,. We divide the argument into two claims: Claim (6.2.15) and Claim
(6.2.16). For the convenience of the reader, let us rewrite the two columns in the pull-back
diagram (7):

P

0 —— co(AY) —— ¢ co 0 (B,)
|| 5] 5]
0 —— co(A)) LI PB P PO O (lst column of the pull-back diagram)

Claim (6.2.15)[234]: Every operator T : cy(4;) — L (Kerf) @ c, can be extended to
¢, through i.
Proof. First of all we need to observe that L., (Kerf) is a Schur space. Consider the first
column in the push-out diagram (6) (which is the Bourgain—Pisier sequence of Theorem
(6.2.5)):

0 — Kerp — L,(Kerp) — S — 0.
Recall that by Theorem (6.2.8), F,,(c,) is a Schur space and thus also Ker is a Schur space.
Since S is also a Schur space by Theorem (6.2.5), a three space argument applied to the
sequence above immediately gives that L., (Ker) is a Schur space. By Petczynski property
(V) every operator T : cy(Ay) — L (Kerp)is either weakly compact or an
iIsomorphism on a copy of ¢, (see [251]). But Schur spaces do not contain c,; therefore such
a T must be weakly compact. Since L, (Kerf) is a Schur space then T is indeed compact.
Thus by Lindenstrauss’ extension theorem for compact operators [247], the operator T :
co(45) — L (Kerp) can be extended to c, through i. If the operator is of the form T :
co(45) — ¢ then Sobczyk’s theorem provides an extension to cy. All together proves
trivially Claim (6.2.15).
Claim (6.2.16)[234]: The operator I : c4(A;,) — PB cannot be extended to ¢, through
l.
Proof. Assume on the contrary, I, : ¢, — PB is an extension of I through i. Since I, o
i = I, I, induces a morphism Tl making commutative the following diagram

g

0 —— co(A¥) —— ¢ co 0 (B.)
[ |n li

0 —— co(A)) ! PB z PO 0 (1st column of the pull-back diagram)
|| 8| L

0 — co(A¥) —— ¢ —2 5 ¢ 0 (B.).

Therefore we have a commutative pull-back diagram
i q

0 —— CU{A;) co co 0 (B.)
| J'Sfl J'Bl?l
0 —— co(A¥) ——s g —21 ¢ . 0 (By).

(8)

225



The idea is to show that B [, is an approximable operator; therefore one may apply Lemma

(6.2.13) to the diagram above and show that (B,) splits which is absurd. Thus, let us check
that B I, is approximable. The first thing we observe is that B is strictly singular because
PO is a Schur space. Hence B [; is weakly compact by Petczynski property (V). By
Gantmacher’s theorem (B ;)" is also weakly compact. Butactually (B I,)" : €, — #, is
compact because ¢, is a Schur space and we find B [; also to be compact. Since every
compact operator T : ¢, — ¢, is approximable (see [249]), we find that B[, is
approximable. Therefore we may apply Lemma (6.2.13) to our pull-back diagram (8)
witht = B o [; which shows us that the sequence (B,) must split. This last statement is
absurd and Claim (6.2.16) is proved.

Claim (6.2.15) and Claim (6.2.16) immediately show that PB and L.,(Kerf) @ c, are
not linearly isomorphic: Assume they are isomorphic; then, by Claim (6.2.15), every
operator T : cy(A;,) — PB can be extended to c, through i. But using Claim (6.2.16) for
T = I we reach a contradiction and part (4) is proved.

The steps (1)—(4) yield that PB is an L -space containing cy; PB and L. (Kerf) &
c, are uniformly homeomorphic but non-isomorphic.

The proof above gives a bit more of information. To explain us, We recall that in [239] it
was isolated a nontrivial subclass of L.-spaces. This class termed as Lindenstrauss—
Petczy 'nski spaces is defined as those spaces X for which every X-valued operator from a
subspace of c, admits an extension to c,. This class contains C (K)-spaces by Lindenstrauss—
Petczynski’s extension theorem [248]. We observe that in particular it has been proved the
following:

Corollary (6.2.17)[234]: The class of Lindenstrauss—Petczy nski spaces is not preserved
under uniform homeomorphisms.

Proof. Consider the spaces L., (Kerf) @ c, and PB from Proposition (6.2.14). We are
about to see that L. (KerpB) @ c, (which is a Lindenstrauss—Petczynski space) is
uniformly homeomaorphic to PB (which is not a Lindenstrauss—Petczynski space): The step
(ii) of the proof of Proposition (6.2.14) shows that L., (Kerf) @ c, and PB are uniformly
homeomorphic. Observe that Claim (6.2.15) of the previous proof works replacing c,(4y)
for any subspace of c, (see [251]); thus L, (KerB) @ c, is a Lindenstrauss—Pelczynski
space. On the other hand, ~ Claim (6.2.16) asserts that PB is not a Lindenstrauss—Petczynski
space.

We summarize the information of the two examples in the next proposition: Proposition

(6.2.18)[234]: There exist separable L.-spaces Z,,Z,,Z; verifying the following
conditions:

(i) Z,,Z, and Z5 are uniformly homeomorphic.
(i)  Z; and Z, are not isomorphic for j # k where j,k = 1,2,3.

Proof. Consider the spaces Z; := L, (Kerf) @ c, and Z, := PO from the push-out
diagram (6). As Z pick the space PB from the pull-back diagram (7). Let us prove first part
(i):

(i.1) Z; and Z, are uniformly homeomorphic: It was proved in Proposition (6.2.9) that
L (KerB) @ cy and PO are uniformly homeomorphic.

(1.2) Z; and Z; are uniformly homeomorphic: The step (2) in the proof of Proposition
(6.2.14) shows that L., (KerpB) @ c, and PB are uniformly homeomorphic.

(1.3) Z, and Z5 are uniformly homeomorphic: By transitivity, using (i.1) and (i.2), Z, and
Z5 must be uniformly homeomorphic.
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We pass to the proof of part (ii):
(ii.1) Z, and Z, are not isomorphic: It was proved in Proposition (6.2.9) that PO has the
Schur property; hence L., (Kerf) @ c, and PO are not isomorphic.
(ii.2) Z, and Z5 are not isomorphic: The step (4) in the proof of Proposition (6.2.14) shows
that L, (KerB) @ c, and PB are not isomorphic.
(ii.3) Z, and Z are not isomorphic: As was already quoted PO is a Schur space. But the step
(iii) of Proposition (6.2.14) shows that PB contains an isomorphic copy of ¢, what makes
impossible that PB and PO are linearly isomorphic.

The spaces Z;,Z,,Z5 given in the proof of the previous proposition “live” in different
subclasses of £,-spaces. The following picture might be useful to understand the classes
involved.

C3

C; = { Lindenstrauss—Petczy nski spaces} ,
C, = {L,-spaces with the Schur property},
C; = {L-spaces containing c, }
Section (6.3): The Scalar-Plus-Compact Property

In [85] a brilliant method of constructing L.,-spaces with peculiar structure. Their
method relies on a careful choice of an increasing sequence of finite dimensional subspaces
(E)y of (M), with countably infinite I" and each F,, uniformly isomorphic to fgfmF” A
suitable choice of (E,), guarantees that the space U, F, is an L.-space with no
unconditional basis. The Bourgain—Delbaen example contains no isomorphic copy of c,,
answering an old problem in the theory of L, -spaces.
Later R. Haydon [80] proved that this space is saturated with reflexive ¢, spaces and
introduced the notation used nowadays. The Bourgain—Delbaen method was used to
construct Banach spaces that solved several other long-standing conjectures on the structure
of Banach spaces and showed that one may not hope for an ordinary classification of L,-
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spaces as it happens in the C (K)-spaces case, see [253]-[91], [257]. See [102] and [85] for
the properties of the classical Bourgain—Delbaen spaces.

In [254] a general Bourgain—Delbaen-L,, -space is defined and they show a remarkable fact
that any separable L,-space is isomorphic to such a space. We recall from [254] that a BD-

L.-space is a space X c ¥, (I'), with I' countable, associated to a sequence (Fq, iq)qEN,
where (Fq)q is an increasing sequence of finite sets with I' = Ugey I;; and (iq)q are
uniformly bounded compatible extension operators i, : £ (I3) = € (1), i.€. iq(x)|pq =
x and i (x) = i (ig(¥)|5,)) forany ¢ <pand x € £o,(I). The space X = X (I, iq)q

is defined as X = (d, : y € I'), where d, is given by d, = i,(e,), with q chosen so
thaty € I \ I;—,. An efficient method of defining particular examples of BD-L,-spaces
as quotients of canonical BD-L,-spaces was given in [255]. They proved that given a BD-
Lo-space X c ¥, (I') any so-called self-determined set I'' < I'" produces a further L,-
space Y = (d, : y € I'\T'") and a BD-L,-space /Y , with the quotient map defined by
the restrictionof I'to I'" .

S.A. Argyros and R. Haydon in [91] used the Bourgain—Delbaen method in order to produce
an L.,-space X4y Which is hereditary indecomposable (HI) i.e. contains no closed infinitely
dimensional subspace which is a direct sum of further two closed infinitely dimensional
subspaces (in particular the space X, admits no unconditional basic sequence), and with
dual isomorphic to #,. Moreover, using in an essential way the local unconditional structure
imposed by the f‘jij " -spaces they proved that the space X, has the scalar-plus-compact
property i.e. every bounded operator on the space is of the form Al + K, with K compact
and A scalar.

Although it readily follows that there does not exist a Banach space with an unconditional
basis and the scalar-plus-compact property, the latter property does not exclude rich
unconditional structure inside the space. This is witnessed in [253], where it was shown that,
among other spaces, any separable and uniformly convex Banach space embeds into an L, -
space with the scalar plus compact property. Therefore, a naturally arising question is
whether there exists a Banach space with the scalar-plus-compact property that is saturated
with unconditional basic sequences.

Recall here that the first example of a space with an unconditional basis and a small family
of operators is due to W.T. Gowers, who “unconditionalized” in [227] the famous Gowers—
Maurey space, [111], producing a space X, with unconditional basis that solved the
hyperplane problem. Afterwards, W.T. Gowers and B. Maurey, [230], proved that any
bounded operator on the space X, is of the form D + S, with D diagonal and S strictly
singular. Gowers asked if an analogous property holds for the operators defined on
subspaces of X, and if such property characterises a class of so-called tight by support
Banach spaces, as it is in the case of complex HI spaces according to [256]. This question
was answered negatively by the first two named authors [220].

An example of a space with rich unconditional structure and a small family of bounded
operators of a different type was presented in [98], where they built a Banach space saturated
with unconditional sequences and satisfying the following property: any bounded operator
on the space is a strictly singular perturbation of a multiple of identity (recall that an operator
Is strictly singular provided none of its restriction to an infinitely dimensional subspace is
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an isomorphism onto its range). The construction used the saturated norms technique in a
mixed Tsirelson space setting.

We continue the study of Banach spaces with a small family of operators by showing the
existence of a Banach space with a strongly heterogeneous structure. We construct a BD-
L.-space Xg, s With a basis satisfying the following properties:

(i) Any bounded operator T : Xg,s = Xgys 1S Of the form T = Ald Xy, + K, with K
compact and A scalar.

(if) The space X, is saturated with unconditional basic sequences.

(ili) The dual space to X, is isomorphic to ;.

The structure of the space of bounded operators B(Xx,) implies that the space Xy, IS
indecomposable, however, being unconditionally saturated, it admits no HI structure. The
space X, IS thus the first example of a Banach space with the scalar-plus-compact
property failing to have any HI structure. We recall that M. Tarbard in [259] constructed an
indecomposable BD-L,-space X, that is not HI, but the Calkin algebra B(X,)/K(X)
Is isomorphic to ¢;.

In order to build X, we adapt the idea of a construction of a Banach space X;,,; of [98] to
the scheme of the Argyros—Haydon construction of Bourgain—Delbaen spaces [91]. This
framework allows to pass from strictly singular operators to compact ones, however, in order
to profit from this key property of the Argyros—Haydon construction we need to strengthen
some results of [98] in the following way: we prove that if a bounded operator on the space
converges to zero on the basis, then it converges to zero on any element of a special class of
basic sequences, called RIS, instead of a saturating family of RIS. In order to avoid a
technical inductive construction of the space X, s we follow the scheme of [255], defining
Xxus as a suitable quotient of some variation of the canonical BD-L,-space 8B,,,T defined
in [91].

The balance between unconditional saturation and the restricted form of bounded operators
on the whole space in the case of X;,; was guaranteed by the form of so-called special
functionals — the major tool in the construction of saturated norms. Any special functional
in the norming set of X;, ¢ is a weighted average of a sequence of functionals, where the odd
parts are weighted averages of the basis. The choice of the next functional of the weighted
average is determined by the previously chosen odd parts and supports of the even parts.
The freedom on the side of even parts allows changing signs of parts of even functionals of
the weighted average, which in turn provides saturation by unconditional sequences. On the
other hand, the control over the supports of the even parts guarantees the typical property of
such construction, i.e. in our case given two RIS (x,,) and (y,,) with pairwise disjoint ranges
and € > 0 one is able to built on (y,) an average )., a,y, of norm 1, such that
1Y, a,x,|l < e. This last property is crucial for proving the form of a bounded operator
on a space.

The direct translation of the special functionals described above into the setting of BD-
spaces is impossible, as any change of signs of a part of a norming functional changes its
support. In order to overcome this obstacle we use in the definition of functionals on the
space Xk, projections on finite intervals instead of projections on right intervals of the
form [p, o) and substitute the equality of supports of even parts of special functionals by
tight relation between tree-analysis of even parts (definition of special nodes). The latter
notion in the setting of the Argyros—Haydon construction comes from [258] and proves to
be a very efficient tool in our case.
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We describe the construction of the general space we shall use, including different
kinds of analyses of norming functionals. We devoted to the properties the basis, including
the notion of neighbour nodes, within the general framework. We give the definition of
Xxus- We study the rapidly increasing sequences (RIS) and the dependent sequences
respectively. We contain the results on bounded operators on the space, whereas the proof
of unconditional saturation.

We present a BD-L,-space X, which is a minor modification of the space B,,,T
defined in [91]. We shall define later the space Xy, as determined by some set I' ¢ I
following the general scheme of [255].

Pick (my) s, M)k, (L) 7 +oo suchthatm; = 4,n, =4,1l; = 2and

lk

L [ Mk-1 L%

MMy < M ( ) <— ,k €N. (9)
mk_l mk_lmk

2
For example take (sz) ,(sz ) ,(29),..
k k . _ .
Following [91] we shall define recursively finite sets of nodes A, and I; = A; U---U
A, q € N. Along with each set A, we define functionals (C_;)yezq c ¢,(I;) and further

(J;)yezq c ¢,(I) as d; = e; — ¢;. Having defined all sets A,,q €N, we let [ =
U, I

We proceed now to the inductive construction. We let A; = {1},¢; = 0 and thus dj = ey.
Assume we have defined sets A,,...,A,. By (e;)yefq we denote the standard unit vector

basis of £, (I;;). We enumerate the set Zq using {#I;_, + 1,...,#I} as the index set and in
the set fq we consider the corresponding enumeration. Thus we can regard the sets Zq and
I as intervals of N. We use the notation (y;,),, to refer to this enumeration. For any interval
I c I let P be the projection onto (d;, : n € I). For simplicity forany n € N by B; we
denote the projection P, -

For each g € N let Net, , be a finite symmetric 1/4n(21 -net of [—1, 1] containing +1. We

set

Byq ={Aey: 1 € Netq,n € L\ I}

where forp = 0we let I = @. For simplicity we write B, = By,,q € N.
The set A1 is defined to be the set of nodes

q
Agiq = U {(q+1,0,m;,l,€,b*) : linterval c I,e € {~1,1},b* € B, and P} b*
j=1
# 0}

U U U {(g + 1L,E,mj,Le b):& €Ay, w(é) =m]-'1,age(f) < nj,
1sp<q j=1

€ € {-1,1},b" € By,

Foranyy € Zq we define ¢, as follows.

Iinterval c I\ I, P; b* # 0}.
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(L pp .
EGP] b foryz(q + 1,0,mj,1,e,b)
¢ = ’1 ) (10)
keg +Ej ePf b* fory = (¢ + 1,§,m;,1,€,b%)
We letalsod, = e; — ;.

Forany y = (¢ + 1,0,m;,l,¢6,b") we define age(y) = 1 and for y = (q +
1,¢,m;,1,¢,b") we define age(y) = age(§) + 1L.Foranyy = (¢ + 1,0,m;,l,€,b")
ory = (q + 1,¢,m;,1,¢,b*) we define rank(y) = g + 1and weight (y) = mj‘l.

Adapting the reasoning of [91] we obtain the following two lemmas.

Lemma (6.3.1)[252]: (d;, : i < n) = (ey,: i < n)foreveryn €N.
Lemma (6.3.2)[252]: || Py |l < — = 2 foreverym € N.

The above lemma vyields that (J;;n )nEN Is a triangular basis of £, (I") (in the sense of [91],

m1—2

Def. (6.3.8)). Let (c?],n)nEN be its biorthogonal sequence. Regarding each projection P as
an operator ¢,(I') — ¥} we consider the dual operator t,, : €%, — €. (I"), which is an
isomorphic embedding satisfying ||7,,|| < 2. We are ready to define the following.
Definition (6.3.3)[252]: Let X = (d,, : n € N) c £,(I).

Repeating the results of [91] in our setting we obtain the following.

Theorem (6.3.4)[252]: The space X7 is a BD-L,-space defined by the sequence (fq Tq)q.

For any interval ] ¢ N we denote by P, the canonical projection P; : X7 —
(dy,: i € I).Incase] = {1,...,n},n €N, we write simply P,.

Givenany g € N we let Mq = Tnaxa, [€oo (Zq)]. We shall consider supports and ranges of
vectors, thus also block sequences, with respect both to the basis (Jyn)neN of X and to the
FDD (1\7Iq)qEN of XF. In the first case we shall use for any x € X the notation supp x, rng

x, whereas in the second we write suppzpp x and rngzpp x.
Definition (6.3.5)[252]: We say that a block sequence (x,,),, © X is skipped provided
max rgrpp X, + 1 < minrnggpp X,,4+1 for each n.

We introduce different types of analysis of a node following [91] and [258], adjusting
their scheme to our situation.
The evaluation analysis of e,,.
First we notice that every y € I' admits a unique analysis as follows (Prop. (6.3.17) [91]).
Let (y) = m]-‘1 . Then using backwards induction we determine a sequence of sets

* a *
(Ii, €, b77i ’Ei)i=1 so that Ea =%, 51 = (ql +1, O,m] ,11,61 ’bnl) and Ei = (ql +
1,1, mj, I, €, by ) forevery1 < i < a,where by = A;ep forsome 4; € Net, 4, .
Repeating the reasoning of [91], as e; = c?;f + c; foreach & € T, with the above notation

we have
a a a

a
ey = z dg, +m;* Z €;Piby. = z dg, +m;? z €A Pl ey,

i=1 i=1 =1 i=1
Definition (6.3.6)[252]: Let y € I. Then the sequence (I;, €;, A;e;, ,51-)?:1 satisfying all
the above properties will be called the evaluation analysis of y.
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We define the bd-part and mt-part of e;, as

a
bd(e}) =Z d; , mt(e;) = m!
i=1
The I (interval)-analysis of a functional e;.
Let I cN and y €Tl with Pfey#0. Let w(y) =m',a<n and
(Ii, €, Aien., Ei)il the evaluation analysis of y. We define the I-analysis of e, as follows:

(a) If for at least one i we have 13,*in, ep. # 0, then the I-analysis of ey is of the following
form

i

D * *
EiAiPIi eni .
i=1

(Ii n I, Ei:Aie;i ’fi)iEAI ’

where A; = {i : P/ ep. # 0}. In this case we say that e is I-decomposable.
(b) If P;ep, = Oforalli = 1,...,a, then we assign no I-analysis to e, and we say that
e, is I-indecomposable.

Now we introduce the tree-analysis of e; analogous to the tree-analysis of a functional
in a mixed Tsirelson space (see [99]).
We denote by (T, <) a finite tree, whose elements are finite sequences of natural numbers
ordered by the initial segment partial order. Given t € T denote by S, the set of immediate
successors of ¢.
Let (I;):es be atree of intervals of N such that t < siffI; © I and t, s are incomparable
iff I, n I, = @. For such a family (It).c and t, s incomparable we write t < s iff I, <
I; (i.e. max I; < minly).
The tree-analysis of a functional e,,.
Lety € I.The tree-analysis of e, is a family of the form (1., €;, ;) ¢c7 defined inductively
in the following way:
(i) 7 is a finite tree with a unique root denoted by @.
(ii) Set ng = v, Iy = (1, max Aygnky], €4 = 1 and let (Ii, €, Aiep, ,Ei)?zl be the
evaluation analysis of e; . Set Sy = {(1),(2),...,(a)} and for every s = (i) €
So» (s € Ms) = (Ii» €, ni)-
(i) Assume that for ¢ € T the tuple (I;,€.,n,) is defined. Let (I, €;, Ae;, ,Ei)l_ be the
evaluation analysis of ey, . Consider two cases:

(a) If e, is I,-decomposable, let (1, €;, 4,5, &;) be the I,-analysis of e; . Set S, =

i€A;
{(t7): i € A} Foreverys = (t7i) € &, let (Isi €,Ns) = (I;,€,1mi).
(b) If ey, is I;-indecomposable, then ¢ is a terminal node of the tree-analysis.
Definition (6.3.7)[252]: Given any y € T, in notation Let
mt —suppe, = {{: t €T ,tterminal} = {&;: t € T,PI’; ey, = cf;‘»t}

and bd — supp e, = supp e, \ mt — supp e,.

We present here estimates on the averages of the basis (dyn)n

The result is crucial for the estimates in.
Definition (6.3.8)[252]: We shall call two nodes &, &, neighbours if there exists y € I
with bd(e;) = X%, c?gj suchthat§; = ¢;, forsome j; < j,.

eN’
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Note that from the definition it follows that for any neighbours &;, &, we have w(§;) =

w($2).

Lemma (6.3.9)[252]: Let (afyn)nEN be a subsequence of the basis. Then there exists infinite

M c N such that no two nodes y,,, ¥, n,m € M, are neighbours.

The proof is based on the fact that the age is uniquely determined for each node.

Proof. If there are infinitely many nodes with different weights we are done. So assume that
for all but finite nodes we have w(y,) = m;* for some fixed k.

Applying Ramsey theorem we obtain an infinite set such that either no two nodes from this
set are neighbours or any two are neighbours.

In the first case we are done. Otherwise passing to a further subsequence we may assume
that rank(y,,) < rank(y,,,) for every n.

Since we have that y; , y;.1 are neighbours it follows by a simple induction that

age(yj+1) = age(y;)+1 = j + L
Take j = n, + 1and pick e, of the form

a

a
e, = z di + mg' Z erAren P
=1

r=1

withdy, = dg for some r. Then age(¢,) < ny which yields a contradiction and ends

Ynp+1

the proof.
In [91] it is proved that the sequence (Zfeﬂn &f)neN generates an #,-spreading

model in the space X 5. We show that the norm of the vector = n]-‘1 YicF ngi , Where &;’s
are pairwise non-neighbours, is determined by the mt-part of the nodes.

We shall use basic properties of mixed Tsirelson spaces. Recall that the mixed Tsirelson
space T[(Ay, ,m;l)kEN] is the completion of c,, with the norm defined by a norming set
D, which is the smallest set in ¢, that contains the unit vectors {+e, } and satisfies for any
k € N the following condition: for any block sequence f; << f;,d < ny, of elements
of D the weighted average mj;*(f; + -+ + f;) also belongs to D. For further details see
[99].

Lemma (6.3.10)[252]: Let = nj‘lzl-EG in , be such that no two &;’s are neighbours and
#G < n; . Thenforanyy € I'withw(ey) = m;* we have the following

1 N 2 P
* . if k 2]
eyl <17,
if k < j.
—— if j
In particular
nj
-1 7 -1
i=1

Proof. We shall construct functionals ¢, in the norming set of the mixed Tsirelson space
Xowe = T[(An, ,m;l)kEN] such that

ey ()| < ¢, () +

mjmj_l
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wherey = 2 Yyee ex/nj € coo(N).
Take y € I and consider its evaluation analysis e, = Y.7_; J;r +mpt Yioy € Ae; P
Let g, = bd(ey) and f, = mt(e,).
We shall consider two cases.
Case 1.w(y) < m;*.
Since the nodes (&;); are pairwise non-neighbours and (f;); are pairwise neighbours it
follows that

9y ()| < . (11)
Also for every r < a using that |e; (c?ﬁ)l < 2forall { S, we get

#{i + rng(d;,) c I}

ey P (x)| < 2 m (12)
j
It follows from (11), (12), using that |A,.| < 1 for every r, that
1 ) . #{i : rng(dz.) cl} 1 2
e{j(x)|£;+2mk Z — : <—4+—. (13

j o~ j o My
Taking ¢, = mi' Yner e Where F = U, {n |y, = &,rng(dg,) < I, for some i €
G}itfollowsthat #F < n; < n; and ¢, belongs to the norming set of the mixed Tsirelson
space X qy-
From (13) we get
en(en)

1 1
e;j(x)| < - + 2m;;? z = n_] + ¢, (). (14)

n.
J ner

]
Case 2. w(y) = mi' > m;*.
Let (I, &, m¢) e be the tree-analysis of e, and 77 be the subtree of T consisting of all nodes
t of height at most [;. We will describe how to define certain functionals (¢.);e7 in the
norming set of T[(A,,, m;l)kEN] that we will use to obtain the desired estimate.
As in the previous case we get

19, ()| < njt. (15)
Usingthate, = g, + f, and |4,] < 1 forevery r, we get

a
le; (Ol < nt + [0 < + mz?lz leg, P (x)]. (16)
r=1

We shall split now the successors e, of ey into those with weight smaller or equal to mj‘1
and those with weight bigger that mj‘1 . For a node y we set

Sya=1{r €S,:wmn) <m'} and Sy, = S,\S,,
From (16) we get

ley ()| < nit +my! z ey P, ()| + Z
TESy1 TESy 2

Using (14) forther € S, ;, (16) forther € S, , andthat #S,; + #5,, < ng, k <j,we
get

e;;rplr (X) |
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NS+ D 600+ Y wen) Y T
T€Sy1 TESy> SES,
1 —_
< n_] (1+ <m] 1) TEZS}A ¢r(y) + r;yg W(enr) SZST Pls(x)| ) (17)

Note that the functional mj* (Zresy_l qbr) belongs to the norming set of the mixed Tsirelson

space X, and has room for #5,, , more functionals.
We shall replay the above splitting for every e,*,sﬁ,s . To avoid complicated notation we shall
setn, = #S;and mg*' = w(e, ). From (17) using e;;sﬁ,s in the place of e, we get

_ 1 n;_
|e,’;SP,S(x)|Sn—<1+m] 1)

j j—1
> e+ ) mit Y e Al a8
tESS'l tESS,Z uESt
It follows that
_ 1
> wle) ) lenP@l< ) mt Y n<1+m 1) (19)
TESy 2 SES, TESy 2 ses, J=1
+Zresy2 myt Yses, ms (Ztesyl ¢t(y)+ZtESy2 mg? Dues, PIu(x)l)

n,. 1 ni_q _
<n,——|(1+ since #5,,, < ny and #5, < n,

r 1y m;_q
) mt y mt Y g o)+ ) mit ) e, B, ()
TESY 2 SES,- tES-y'l tESy’z uESr
By (17) and (19), using that— Dk < DL e get
mk mj—q
1 nj_l nj_l 2 nj_l 3
les ()] < —( 1+ + + (20)
nj mj_l mj_l mj_l
z ér(¥)
TESy 1
O mt w6 )
TESy 2 SES; t€Ss1
F 0wty e, A (21)
tESs’Z uESt

Note that the functional
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¢y:mik+ Z ¢r(y)z mr‘lz ms_lz Pey)

TESy 1 TESy 2 SESy t€Ss
belongs to the norming set of the mixed Tsirelson space X,,, and the functional
mgt Yies,, ¢ has room for #S; , more functionals.
We continue this splitting at most [; times, see (9) for the choice of [; , or till 5;, = @ i.e.
we do not have nodes with weight > mj‘1 :
If we stop before the [;-th step we get that |e; (x)| is dominated by ¢, (v) plus the errors in
(20), where the sum end to the [;-th power of n;_; /m;_;. Since ¢, belongs to the norming
set of the mixed Tsirelson space X, it follows from [99], Lemma 11.9, that

¢y () < dmptmit.

If we continue the splitting [; -times, then there exists some node with (y,) > m]-‘1 . For
every such node we have

[ (e Jleicol = ()

s<t

AU di)c I, nG
o (0| < 2mpt w0 TM9dz) € 1 0 G)

j .
n;

. -1 -1
sincem, ’ < (mym;_;) , see (9).
Summing the estimation of all those nodes we get upper estimate equal to Z#G/mkmjnj

z/mkm] .
The remaining nodes provide us with a functional in the norming set of the mixed Tsirelson
space X, By [99] its action on y is bounded by 4m;* m;* .
It remains to handle the errors (20). In each case we have

2 l; li+1
e P <nj_1> + oo +<nj_1>1 1 (yoa/myn)” -1 1
n; m;_q mj—q mj—q n; ("j/mj—l)
2
< .
mjmj_1
_1 .

Summing all the above estimates we get an upper estimate 7mj,* m;

Corollary (6.3.11)[252]: Let x = mjnj'l Zgl dfi such that no two ¢;’s are neighbours.

Leti < J, (e;;p):=1

be nodes such that w (e,’;p) =my, #m, and my, <my,,, forallp <

n;. Then

ni
o 14
z le5, Py (Ol < — . (22)
p=1 D1

Proof. From Lemma (6.3.10) we get

ng
e,’;pﬁlp (x)| < Z

> er Pyl + D len, Pl

p=1 pilp<j pilp>Jj

< z A Z —
. my 4 nj o My




7 n 2 14
< — 4+ —+ Z <—
pilp<j mp le pilp>Jj mp—l mp1
We define the space X, . We shall need the following notion from [255].
Definition (6.3.12)[252]: Let X be a BD-L,-subspace of £, (I"). A subset I of I" is called

selfdetermined provided (d;: y € I') ={(e; : y € I'), where (&;)yer denotes the
biorthogonal sequence to the basis (&V)yer and for y € TI', e, denotes the element e, of

£, (I restricted to X.

Now we proceed to the choice of a self-determined subset I" of I" which will determine the
space Xy,s- This set will consist of regular and special nodes.

We introduce first the notion which will describe the “freedom” in choosing special nodes.

Forany y € I' we write rank(bd(e;)) = {rank¢&;,i € A}, wherebd(e;) = Yiea dg, -
Definition (6.3.13)[252]: We say that the functionals ey, e5, v,V € ', have compatible
treeanalyses if
(CT1) ey, e; have tree-analyses (I, &, M) ter » (s, &, 7ie) ter respectively,
(CT2)w(n;) = w(i,) forany € T,
(CT3) mt-supp e;, = mt — supp e, forany € T,
(CT4) rank(n;) = rank(ij,;) forany € T,
(CT5) rank(bd(ey,)) = rank(bd(ez,)) forany € 7.
Foreveryy = (¢ + 1,§,my,€,1,e;) € 'andx € X7 we set

. {een(_xz) if en(x).;& 0 (23)

eny, otherwise.

Notice that in the above formula we do not use the projection P; , which in particular yields
that |A, | < 1 for x with ||x]| < 1. On the other hand, for any x with rng(x) < I we
have ey (x) = epP; (x) and we shall use the above notion in such context.

Definition (6.3.14) (The tree of the special sequences)[252]: We denote by Q the set of all
finite sequences of pairs {({y, %), ..., ({x, X))} satisfying the following:

(i) ¢; € ' withrank({;) = q; = minrnggpp X; fori = 1,...,k,

(i) (%,,...,%,) are vectors with rational coefficients with respect to the basis (&V)yel_"’

successive with respect to the FDD (Mq)q.

We choose a one-to-one function o : @ — N, called the coding function, so that
o ({1, %), -+, (G %) }) > w(Gi) ™ max supprpp Xi Y{($1, %1), -, (o %)}

€ Q. (24)
Definition (6.3.15)[252]: A finite sequence ({;, ;)% , € Q is called a j-special sequence,
j €N,ifd < n,;_; and the following conditions are satisfied.
()¢ =(q; + 1,0, mzj—1;11,€1;€;;1) and {; = (q; +1, (i_1,m2j_1,1i,€i,/1i€;i) for every
i < d,
(iii) if i isodd then 4; = 1and ||x;|| < 1,
(iv) if i iseventhen €; = 1,n; is chosen to satisfy
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4o ((5 prfp);;ll)

* _ -1 ] Tk
mt(em) = m40'(((p,fp);_=11) Z dﬁr )

r=1
where (dﬁr)r are pairwise non-neighbours. Moreover, we let

"0 (¢ kr’_fk);;ll)

m = yi—1 _
x_l — n40'((€k'ick)ik_=11 Z dﬁr

46(({k!xk)k=1 r=1
and A; € Nety g, IS chosen to satisfy |A; — A(i—l’fi—ll < 1/ AnZ
di—1

We denote by U the tree of all special sequences, endowed with the natural ordering “C=” of
initial segments.

Fix I =u,I,,I;, c I, A j-special sequence ({y,%;), with § = (q +
1,0,my;_ 1,11,6 en) IS called (I, j)-special ifn € I;,. Aj-special sequence (¢ x)E,,d <
Naj—1, With ¢ = (q; + 1,{y,myjq, 1, €144 em) is called (I,j)-special if n,; €
g\ TIq,-1,8a-1 € I5,_,+1 and ({;, )& Ltisa (I, a4_1»J)-special sequence.

Now we are ready to define inductively on g € N the families of nodes (Aq)q and (I“q)q
satisfying 4, ¢ Aqand I =ul_, 4, forany g €N.

SetI; = A, = A,. Fix ¢ € N and assume we have defined all objects up to g-th level.
The set of regular nodes is defined as

l(g+q)/2]
A(Tﬁgl = U {(qg + 1,0,my;,l,¢e5) ELTqH: n € I}
j=1
l(g+1)/2]
v | U ((@+1&myy 1 e e;) € gyt £ €4y € [\T)

1=p<

Now we deflzrjleq[he speual nodes, i.e. the nodes compatible to the special sequences defined
above (counterparts of special functionals in [98]). We start with the notion of compatibility,
which is defined recursively on age(y).

Definition (6.3.16)[252]: We say that anode y = (q + 1,0,my;_4,1,€,€;) € Agiq is
compatible  with a (I, j)-special ~ sequence  ({y,%;), Wwhere {3 =(q +
1,0,myj_4,1,€4,€p ), ifn € I3 and n,n, have compatible tree-analyses.

We say thatanodey = (q + 1,§,myj_q,1,€,1ey) € A4+1 is compatible with a (I, j)-

special sequence (EDres : where Cagety) = (@ +
1, (age(y)—p myj—1, I, €age(y) Aage(y) Uage(y))’ prOVidEd
)n.¢ € I,

(ii) € is compatible with the (Iqukce),j)-Special sequence (j, 7)29¢® (recall that
age(y) = age($) + 1),

(iii) if age(y) isodd then 1 = 1(= Agge(y)) aNd 1, Mg ge() have compatible tree-analyses,
(iv) if age(y) iseventhen e = 1,1 = 744, and 1 € Net, 4 is chosen to satisfy |1 —

) 1
Af,xage(g)l s / 4n12‘ank(f ) |
The set of special nodes is defined as
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[(q+1)2]

Afer = U y=(q+1,0,my_y,1,ee) € Agpy
j=1
: y is compatible with some (I'q, j) — special sequence ({;, x;)}
l(q+1)/2]

q
U U U {y =(q+1,&Emy_4,1,62e)) €A,y
p=1 j=1
: y is compatible with some (I}, j)

— special sequence ({;, fi)?‘:gf(’/)}. (25)

Finally we set

g = AL VA and Ty =T, U 4g,.
Obviously 4, < 4, forany g € N. We set I' = U, I},. Following [255] we denote by R
the restriction on X7 of the restriction operator £, (I') = ¢.,(I") and for any g € N we let
ig: Lu(ly) = €o(I") be defined by i, (x) = R(i;(x)) for any x. Given any g € N we
let Mg = imax Iy [fw(Fq)]'
Proposition (6.3.17)[252]: The set I' is a self-determined subset of I, hence it defines a
BD-L,-space X(rq’iq) .

q

Moreover, the restriction R : X7 — x(rq,iq) is a well-defined operator of norm at most 1
q

inducing the isomorphism between X(rq,iq) and X7/Y ,whereY = (d, : y € r\r).
q

Proof. According to Proposition 1.5 [255] it is enough to show that for every y € 4,,, the
following holds

¢, €E{eyoPz:y € I,E cN U {0}}
This follows readily from the definition of ¢;, see (10), using that ci; = ey ° Prrankm)}-
The second part of Proposition follows by Proposition 1.9 [255].
Definition (6.3.18)[252]: We let Xk,s = X(Fq'iq)q :

We shall use the casual notation, cy, dy, d,, etc for the objects in the space Xj,;. We shall
use also notation P; for the projections onto (d, : y € I}, notice here that we can consider
I to be an interval in I' instead of I". Henceforth, by (y,,),, we shall denote the enumeration
of I' instead of the one of I".

Where the last term in the square brackets appears if a € 2N + 1, and with each e, .
having the mt-part of the following form

mt(eszi) = W(TIZi) Z Pjrank(ﬁk ) eEk'i - W(nZi) z d'z’k’i.
k * k

Now we make some comments concerning the possible modification of the mt-part of a
functional.

From now on we shall work in the space X, . We introduce the basic canonical tool,
I.e. Rapidly Increasing Sequences and state their properties, in particular the fundamental
property of Bourgain—Delbaen spaces in the Argyros—Haydon setting that allows to pass
from strictly singular operators to compact ones. As the proofs of all the results stated here
follows directly the reasoning of [91], we do not present them here.

Recall that skipped block sequences are defined with respect to the FDD (Mq)qu.
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Definition (6.3.19)[252]: Let I be an interval in N and (xj)xe; © Xgys b€ askipped block
sequence. We shall say that (x;),¢; is a Rapidly Increasing Sequence with constant C > 0
(C-RIS) if there exists an increasing sequence (ji)ne; < N such that

(i) |lxe]l < Cforallk € I,

(i) rngrpp Xk < Js1s

(i) |x, ()| < Cm7tforally withw(y) = mjtandi < jk

Lemma (6.3.20) (Proposition (6.3.24) [91])[252] Let (xk)k“’ beaC-RISands € N.
a)Ify € r'andw(y) = m;* then

Njy

b 1 Z - 16Cm; m; if i<j, 26
e o) | — X || = _ _ e
vE (seo) nj, &= & 5Cni ' + 6Cm; ! if > j,. (26)
In particular for i > j, we have
Njo
1 _
ey n_z X, || < 10Cm;? (27)
Jo je=1
and also
Njo
1 -1
— z Xe|| < 10Cm; " . (28)
Mo =1

b) If 4,1 < k < n;_ arescalars with |1,| < 1, satisfying the property

e Ax < Cmax |4
i D awne )| = cmax 14

ke]
foreveryy € I'withw(y) = m]j)l and every interval ] < {1,...,n; } then we have
"
1 i’: || o xoe
— kXK S — .
njo k=1 ijO

The following result is proved in a manner similar to how Lemma (6.3.10) is proved.
Corollary (6.3.21)[252]: Let i < j €N, (x),., be a C-RIS, x =’:—]{' .l x and

n;
* * _ -1
(e,,p)p=1 be nodes such that w(e, ) = m; " and my #m;,m, <m,  foralp < n,.

Then for every choice of intervals I ,p < n;, we have

Z e, (P )| < 64C/m,, . (29)

Lemma (6.3.22) (Corollary (6341) [91])[252]: For every block subspace Y c
Xkus»C > 2 and every interval ] < N there exists a normalised C-RIS (xy)ge; in
Moreover, for any ¢ > 0 and C > 2 the sequence (x;)ke; Can be chosen to satisfy
|dy(xx)| < eforanyk € Jandy € T.

Notice that if x € @] _, M,, with ¢ minimal then there exists a unique u € £, (I3) such
that i, (w) = x. The local support of x is defined to be the set {y € I}, [u(y) # 0}. Next
results are again quoted from [91].
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Lemma (6.3.23) (Lemma (6.3.26) [91])[252]: Let y € T be of weight m;* and assume
that w(&) # m;,* for all € in the local support of x. Then |x(y)| < 4m;* ||x]|.

We recall the two classes of block sequences, characterised by the weights of the elements
of the local support.

Definition (6.3.24) (Definition (6.3.27) [91])[252]: We say that a block sequence (xx)xen
In Xk, has bounded local weight if there exists some j; such that w(y) = mj_ll for all y
in the local support of x;,, and all values of k.

We say that a block sequence (x;)ren IN Xkys has rapidly increasing local weight if, for
each k and each y in the local support of x;.,, we have w(y) < mi‘k1 where i, =
max Mmggpp Xg-

Proposition (6.3.25) ([91])[252]: Let (x;)xeny S Xxus b€ @ bounded block sequence. If
either (x;) has bounded local weight, or (x;) has rapidly increasing local weight, then the
sequence (xj) isaRIS.

Corollary (6.3.26) ([91])[252]: Let Y be any Banach space and T : Xg,s — Y be a
bounded linear operator. If ||Tx,|| = 0 for every RIS (x;); In Xy then [|Tx,|| — 0 for
every bounded block sequence (xi) in Xiys-

Corollary (6.3.27) ([91])[252]: The basis (d;‘;n)n Is shrinking. It follows that the dual space

to Xk, 1S iIsomorphic to £, (I).

We introduce the classical tools in the study of spaces defined with the use of saturated
norms.
Lemma (6.3.28)[252]: a) Letj € Nandk < mn,;.Letalso (xx)x © Xk, beanormalised
skipped block sequence such that rngrpp (xx) = (Pr-1,Px] for some strictly increasing
(pr) withp; = 2j — 1. Then there exists anode y € I such that

lej naj

* * -1 *

e, = Z dg, + my; Z Exen, Pr,
k=1 k=1

with the following properties
(i) rank(¢,) = p, + 1 foreachk,

(ii) ecen, Pr (xx) = 1/2 andn, € I, \TI,, . foreachk,

. lej nzj
(iii) e; (2,7, xx) = P

b) Let (dfl)::]l be a finite subsequence of the basis such that rank(&;) + 1 < rank(&;,;)

for every i and rank(&;) = 2j — 1.
Then the node

nzj n2]
ep = di+myl ) d (30)
i=1 i=1

n

with rank({;) = rank(¢;) + 1isaregular node and e; (X2} d;) = :1—2211
Proof. a) (see [91], Proposition 4.8) Let x, = ix(uy) Where u, € I, \ I, _, is the
restriction of x; on I, . Since
2|lwll = ||ip, || = llxell = 1
we can choose 1, € I, \ I, . such that |e; (u;)| = 1/2. Setting I, = rnggpp (xx) =

Uik, .+1 Ais choose g, € {—1,1} such that
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len P (i)l = exen P () = exes, () = /5. (3D
The nodes yx = (px + L, ¥k-1.M2j Ik, &s€p, ), Yo = 0,k = 1,...,n,; give the node y =
Vna; with the properties (i)—(iii).
b) Take the nodes ¢; = (rank(§;) + 1,{;_1,my;,1;,1,e;),{o = 0, where [; =
Arank(fi)-
Definition (6.3.29)[252]: Fix j € N,C > 1 with n,;_; = 200C and let (y;, %), be a
(', j)-special sequence.
A sequence (Vi Xp)f—p,d < myj_q,  With  xp € Xgys  and  y = (qx +
1,¥k-1,Maj_1, 1y, 1,€;, ) foreach k, wherey, = 0,q; = 4j; — 2,27% < 1/4n3;_,,is
called a j-dependent sequence with a constant C of length d with respect to (y, ¥, )%, if
the following conditions are satisfied.
(i) if k iseven then x;,, = Ry, rng(x,) = I,

(i) if k is odd then x;,, = C';ml" ZZ’; X1, where (x;,;), is a normalised skipped block
I

sequence which is a C-RIS of length n;, ,m; =w(n),m, Znﬁj_l,llxkll =
1/2,rng(xk) c Iy and ey, () = 1/40C'

(iii) ley (xXx) — ey(xp)| < 1/4712 forevery y € I' and every k,

dk
(iv) (Vi x1) 221 is j-dependent of length d — 1 with respect to the (I, j)-special sequence
Vi T )1
We say that a sequence (v, x; )%, is a j-dependent sequence of length d, if it is j-dependent
with respect to some (I, j)-special sequence.
Remark (6.3.30)[252]: Take (x,,), as in (ii) of Definition (6.3.29) with max

mgppp(x;) = 21, — 1foreachk € N.ThenLemmas (6.3.20)a) and (6.3.28)a) yield that
there is anode n;, € I such that

nlk nlk
1 . mlk mlk
=< enk(_ Xk l) < ||— XK1 < 10C. (32)
2 n ’ n ’
k 1=1 k=1

Therefore c;, in Definition (6.3.29) satisfies /ZOC <c <1

Moreover, the last condition in the property (ii) of Definition (6.3.29), i.e. e (xx) =
1/406’ follows from (32) using the lower bound of cj.

Lemma (6.3.31)[252]: Let (3;), be a normalised block sequence in X, and (dfn) be

neM
a subsequence of the basis. Then for every j € N there exists a j-dependent sequence of

length ny;_4, (yi,xi)isnzj_l ,suchthat x,;_; € (3, : k EN)andx,; € (d; : n € M).
Proof. Passing to a further subsequence we may assume that
dg_ are pairwise non — neighbours and rank($,) + 1 < rank(§,;41). (33)

Letj; besuchthatmy; _, > nﬁj_l and choose g, big enough to guarantee that 4j, — 2 <

g < 1
g, and 270 < /471%]-_1'

Let (xl,k)::ijll_z be a normalised skipped block sequence of (z, : [ > g) whichisa C-RIS.
Setting
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Nyji-2
CiMyj -2 .
=22 N e with gl = 1,
Naji—2 &

from Remark (6.3.30) we get 1/206 < <2 and that there exists a node n; € I' with

1
w(n,) = mg} _, such that

1
enlpll(xl) 2 m,

where I, = U {4, : p € rngppp(x1)}.
Using that R is a quotient operator of norm 1 take a block y; € X7 such that x; = R(¥,)
and ||¥,|l £ 1. Then choose a vector x; with rational coefficients in the unit ball of
(d,: y € I,)suchthat [|%, — 7|l < 1/4715 .
1
Note that R(x;) = R(x; — y;) + R(¥;) = R(k; — ¥;) + x, and hence foreveryy € T,
|e;j(f1) - e;(x1)| = e;R(f1) - e;R(x1)|
< leg o R = Tl < /g2 - (34)

We take y, to be the node
y1 = (¢ + 1,0, mz_jl_l,ll, 1, e,’;l).
From the above we get that (y4, x;) is a j-dependent couple of length 1 with respect to the
(", j)-special sequence (y;, x;).
Set j, = o(y1,%;1) and choose x,, e;, such that

— -1 * _ -1 *
Xy = Myj, Ny z de, 1 € Xgus and mt(ey,) = my;, z de,

kEF, kEF,
where |F,| = n,;, and q; + 2 < minrnggpp(x;). Such a node exists by Lemma

(6.3.28)(b) since rank(§,,)) + 1 < rank(§,.,,). We also take the node

Y2=04q2 + Ly mgj_q, 13,1, e5,) ET
where I, = [p,, q2] is the range of x, with respect to the basis and 1, € Net, , ischosen
such that

e 1
|42 —en, (X1)| = /47,16211 -
From the above equation and (34) we get

|/1 7, ( )| < 1 Ay, =€k (xq) 1 > - > !

— —_— — - — —_—

27 2nz 2 = &, 2nz — 2 2nZ ~ 45C

Pick x, to be the corresponding average of (ngrk)ker . It follows that x, = Rx, (recall that

d, =Rd, for each y € I') and %; < &,. Then we get that (y;, x;)7—, is j-dependent of
length 2 with respect to the (I, j)-special sequence (y;, %;)2_;.

Set j; = o(y;, %;)2.,. We continue to choose X3, €y, , X4, €y, iN the same way we have
chosen x,, e, , x5, ey, taking care that x4, x,, x3, x4 is a skipped block sequence (with respect
to the FDD) and repeat the procedure obtaining the desired dependent sequence.

Notice that for a dependent sequence (yi,xi)isnzj_1 with a constant C we have

Mmaj—1 oN2j-1 . 1 . . * .
P =3 X | > /450 Indeed, consider the functional €y determined by the
nodes (y,);~2 ", i.e. of the form
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Nyj—1 Nyj—1/2

* _ * -1 * p*
e(nzj_l - z d]/i + Maj-1 z (eﬂzi—1plzi—1 + AZlenziplzi)’

_ i=1 i=1
and notice that

Nzj-1 1 Nyj—1/2
* ij—l * *
RIS i=1 M2j-1 i=1

naj—1/2
> 1 Z (Czi—1+czi—1_ 1 >> 1
T L 2 2 22 )T 4sC

using that c,;_; > 1/206'
Lemma (6.3.32)[252]: Let (yi,xi)isnzj_l be a j-dependent sequence. Then

1 250
z (1)t || < =—.
n2]—1 i=1 2]—1

Proof. Let J be an interval of {1,...,n,;_1}and 3 = X,¢, (—1)"1x;. We shall verify the
assumption (b) in Lemma (6.3.20) for j, = 2j — 1.

2j-1

Let (yk,fk)zzl be the special sequence associated with the dependent sequence

Noj— *
(Yk;x_k)kijllryk = (C_Ik + 1'Vk—_1;m2j—1' {k» €, A en,) for each k, where y, = 0.
Consider a node £ with evaluation analysis

Npj—1 Nyj—1/2
= * -1 2 ¥ - 1..el P-
€p = Z dfi T Myjq z (621—1352i_1P12i_1 + /1216521.13121-)

which is produced from a (T, j)-special sequence ((k,z‘k)kSnzj_l . Let
ko =min{k < nyj_q: (Y, Xx) # ($ks Bx)}
if such a k exists. We estimate separately |e/§ko_1(z)| and | (eg — e;,ko_l) (2)].
We start with |e§k0_1(z)|. Notice that e[;ko_l, if k, > 1, has the following evaluation
analysis

ko—1 |(ko—1)/2]
* — * -1 ~ * 7 *
eﬁk0—1 - Z dfi T myiq z (EZi—leSZi_lplzi—l + AZienziPIZi)
i=1 i=1
+ [Eko—legko_lplko_l]’
where 6'8*2- ) and ey, have compatible tree-analyses and the last term in square brackets
i

appears if k, — 1 is odd. By the definition of nodes we have rank(¢;) = rank(y;) €

(max rnggpp (x;), min rnggpp(x;41)) forevery i < k. Therefore

z dg, Z (—1)Hx; = 0. (35)
i=1 i

We partition the indices P = {1,2,...,|(ko — 1)/2]} into the sets A = {i € P:
es P (X3—1) # 0} and its complement B.

82i-1
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For every i € A from the choice of 1,;, the fact that rng(x,;,_;) < I,;_; and (3) of
Definition (6.3.29) we have

/:{Zl — € 1352 1(9521 D < and (36)

4n2] 1
les  (¥zi—1) — eg*

It follows that

1P12i_1(x2i—1)| |352 1(x2i—1) - e§2i_1(x2i-1)| S —.

6 i—
2i-1 2i 4n2j—1

|€2i—1e§2i_lplzi_1(xZi—l) + Azien, . Pr, (—x3;)|

= |€2i_1e§2i_1P,2i_1(le-_l) - ;121' < W by (6.7). (37)
j—

Similarly foreveryi € B,
|€2i_1e§2i_1P12i L(x2i-1) + Az, Pr (—x2;) |

. 1
= |62i—195 P, 1(le 1) — /121| < T]l (38)
Foraninterval J = [I,m] using that [|x;_ |l = 1/,, llxll < 7 (by Lemma (6.3.10)) and

inequalities (35), (38) we obtain

z (—1)i*1y, || < 10.
i€]
Now we proceed to estimate |(eg — egko_l)(z)L
Observe that as x,;_; is a weighted average of a normalised C-RIS of length n;, _ we have

Nzj-1
Z dg (X21-1)| < 3npj_1¢5;1C Dates = ijzl < n2_j3—1 (39)
i= kO ]2l 1
The same inequality holds also for the averages of the basis i.e.
Nzj-1
X m;,,
Y )| < s md<ngt, L (40)
i:ko J21
We shall distinguish the cases when k, is odd or even. Assume first that k, = 2i, — 1 for

some iy.
Then for every i < iy andevery k > k,,

(52i—1e’§2i_1pizi_1 + izl'egzipiz-)(xk) = 0.
From the injectivity of o it follows that w(egzi_l),w(e )€ { ( ,)| i" > iy} for every

i > i,. Hence by Corollary (6.3.21), using that |1,;| < 1 and ¢, < 2, we get for every
odd k > k, the following

Nyj—1/2

~ * 3 *
Z (€2i—1egzi_1P72i_1 + Azl'egzipiﬂ) (%)

i2i,
< 64c,C w(§;) < 128Cny7 ;. (41)
Also from Corollary (6.3.11) we obtain for every even k > k,, the following
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Nyj—1/2

| Z (€2i—1e§2i_lpizi_1 +22ie§2ipi2i)(xk)| = 14”5;‘2—1- (42)

i>i,

For x,, we also obtain the following
Nyj—1/2

z (éZi—legzi_lpiziﬂ + ZZieg*ziPizi) (xko) (43)

i=ig
< les, Pry, (k)]

Nyj—q1/2
H Aegra®i,  Prowt ) (G185, Pra, + T3, Pr,) | Gty

i>i,
< 4 + 128Cn;?

j-1

using that ||x;, || < 1and|

bound as in (41).

The case where k is even is similar, except that |e§k P, ()l = 7.
0

ey o Pi|| < IIP;|l < 4 while for the second term we get the upper

Splitting Jto /; = J N [1,i],J, = ] N (ip,npj—1) and considering the cases when min
J; is odd or even we get |(e§ — eEko—l) (Zie; (—1)i+1xi)| < 15, using that ny;,, >
200C.
The lemmas above imply the following.
Proposition (6.3.33)[252]: Let M < N be infinite and (v ), € Xk, be a normalised
block sequence. Then
inf{llx —yll : x €{dy, : n € M),y €y, k €N),[lx[| =yl =1} = 0.
We show that the space X, has the scalar-plus-compact property.
Proposition (6.3.34)[252]: Let T : Xyys — Xkus b€ a bounded operator and (dyn)nEM be
a subsequence of the basis. Then
Ma%rjl+w dlst(Tdyn ,]Rdyn) = 0.
Proof. Assume that dist(Td,, ,Rd, ) > 46 forinfinitely manyn € M andsomeé > 0.

By Corollary (6.3.27) and Lemma (6.3.9) passing to a further subsequence and admitting a
small perturbation we may assume that

(P1) (Td,,n)nEM is a skipped block sequence and setting R,, to be the minimal interval
containing rng(7Td,, ) and {n} we have
max rank(R,,) + 2 < minrank(R,,1),
(P2) no two elements of (dyn)neM are neighbours.
By the assumption that dist(Td,,,Rd, ) > 46 it follows that either
|PooaTd,, || =28 or||( — B)TA,, || =26
(recall that P, denotes the canonical projection onto {(d,,, : i < m),m €N).

Passing to a further subsequence we may assume that one of the two alternatives holds for
anyn € N. Let

max rank(Pn_lT dyn) in the first case

In = max rank ((I — Pn)Tdyn) in the second case.
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In the first case we take I, = [min rng(Td, ),n — 1]. Also Py_4Td, =i, (uy) where
u, =1, (P,-1Td, ) and hence we may choose €, € {—1,1} and n, € I \
Fmax rank(R,_1)+1 such that
eney P (Td, ) = €qep (Pp_1Td, ) = €pey (u,) = 6 (44)

using that 26 < ||i,, (un)| < 2lluyll-
In the second case we take I, = [n + 1, max rng(Td_y,)]. Also since (I — Pn)Tdyn =
iq, (uy) whereu, = r, (I — P)Td, )wegete, € {—1,1},n, € I}, \Imaxrngr, ,+1
such that

enen P_I,(Td, ) = €ney (I — BJTd, ) = €qep (u,) = 6. (45)
Given any j € N we shall build a vector y with [|Ty|l = §/28m,;_; and [ly|l <
420/mj3,_, which for sufficiently big j yields a contradiction.

Assume the first case holds. The second case will follow analogously. Notice that by (P1)
foranyi e Nand A ¢ M with #4 = n,; and max rank(R i, 4) = 2i — 1 thereis a
functional e,, associated to a regular node of the form

ell’ Z dfn-l_mzl z Ene;klnpln

nea neA
with rank(¢,) = max rank(R,) + 1foreachn € A.Let = myn3 Ypea d,, .

It follows that

ITx|| = ey, (Tx) = z d€n+m2i Z €nen P 1 z Td,

nea TliA nea
e Z i (Tdy,) +— 2 enes P (Td, )
nef 2L neaA
= e_ne;npkn—l (Tdyn) =
Ny;
NneA

Fix j € N and choose inductively, as in Lemma (6.3.31), a j-dependent sequence
((i,xi),{i = (ql + 1,{i_1,m2j_1,]i,1,1/1i),i = 1,...,7’12]'_1,With {0 = 0,W|th respeCttO
a (', j)-special sequence ({;, x;), so that it satisfies for any i the following

l/’21 1 Z dfn + m: Z Ene;;nPIn ’
J2i-1

NeA; NeA;

C2i-1My2i-1
Xyios = D Il = 1/,

n;
J2i-1 nea;

with rank(¢,) = maxrank(R,) + 1 for each n € U; 4;. Lemma (6.3.10) yields that
1/14 < c,;—1 < 1. Recall that by definition each vector x,;_, satisfies
ley (Xi1) — ey (xpi1)| < 4ng?_ | vy € T.

Forany i let J,;_; = rng(ey,, ). We demand also that supp e;, . N supp x,,_; = @ for
any i, k, thus the even parts of the chosen special functional play no role in the estimates on
the weighted averages of (x,;_;). We assume also m; /m; ,; < 1/n§j_1.
By the previous remark we have for each i the following

ey, (Tx2i-1) = 6/14. (46)

Let
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Npj—1/2 Npj-1/2

1 1 m;_.
J2i-1
y = é X2i-1 = § C2i-1 E dy
Nyj_1 Nyj_1 n; . n

i=1 i=1 J2i-1 nea;
and consider the functional associated to the special node OV I.e. of the form
Nzj—1 Ngzj—12
* * 1 * *
e(nzj_1 = Z d(i + Mo : Z (e¢2i—1P]2i—1 + AZiel/)zipfzi)'
i=1 -1 3
Then
> *
Iyl = e, (T)
Nzj-1 Naj-1/2
* 1 * *
z d(i + ] z (ellfzi—1P]2i—1 + )’Zielpzipfzi)
. Mmyj_q1 4
=1 =1
nj-1)/2
ST
X2i-1
M2j-1 o

Notice that J5; N Trank(p,;,_,) = @, whereas by the choice of R, and the node ¢,;_; we

have rng(Tx,;_,1) C I}ank(¢2i_1).Therefore
Nyj—1 Nyj—1/2 Nnaj—1/2

a (z d(l z Txpi1) + ———— Z e{;)zi—1P]2i—1(Tx2i—1)
Naj-1 Nyj—1Myj_1

i=1 i=1 i=1
where in the last line the first sum disappears by the choice of (gy;_1), as

rank(bd(e;.  )) N rank(Tx,;_;) = @ for any i. Therefore we have
an
j-1

)
Iyl = 5o—. (47)

2] 1
On the other hand we estimate ||y||. We shall prove that ||y|| < 420/m§j_1 yielding for
sufficiently big j a contradiction. By (P2) and Lemma (6.3.10) we get that (x;) is 7-RIS. By
Lemma (6.3.20) it is enough to estimate |ez ()|, where eg is associated to a (', j)-special
sequence (6;,3;)i=1, and z = Y;e; Xxp;—q forsomeinterval | < {1,...,n,;_4}.

Let ez have the following form
la2]

z d; + — z (&2i-1€5,_ Proicy + A2i€3, Pr,y) + [€a€ Pr.]

g =
i=
witha < nzj_l,where the Iast term appearsifaisodd. Letiy, = max{i < a: ({;,x;) =

(6, 2;)} if such i exists. We estimate |ez(3z)| assuming i, is well-defined. We estimate
separately | B, d (2)], Imt(ez, ) ()| and | (mt(ez) — mt(e;, ))(2)].

First notice that taking into account coordinates of z with respect to the basis (d,) and that
Cri—1 < 1, we have

a

). %@

i=1

< n,; b 48
= Maj-17 (48)
J1
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Now consider the tree-analysis of eg, , recall that it is compatible with the tree-analysis of
lo
egio . Then by the definition of a special node we have
—— Z (EZi—lefpzi_lP]zi-l + AZiewzinzi) if iy, even
* — =
mt (e{io) = lio/2]

> @i1€d, Pl + Luiei P + &g ey B if i odd

\ i=1
~ *
Z €nes P, .

where for each 2i — 1 < i, we have
NeEA;

z d; +
neA; " m]21 1
Notice thatas M n I, = @ for any n and by the choice of e,, . and ranks of &, thus also
ranks of &, we get, assuming that i, is even,

)

Z (E2i1€5, Pracs + ai€i, PLO@| (49

myj_q

Imt(ez, ) ()| = |

Mmyj_q
l02
121 1 —
- Z Gica ) di)( ) cua Y d )] =0
2j-1 neA; 2i—1€J Yai-a nea;

The same holds if i, |s odd.
Now consider mt(eg) — mt(egio) assuming that i, < a. Notice that

(1) wp,) #= w(y;) foreach s,i > i, provided at least one of the indices s, i is bigger than
ip + 1,

(2) (mt(eg) — mt (e§i0)> (xX95-1) =0forany 2k — 1 < i,

Using Corollary (6.3.11) for the terms imig+1 |e P]L(ka )| and that
|el%i0+1P]~i0+1(xi0+1)| < 4, it follows that

Nzj-1

Z > leh Pl (50)

|(mt(ep) — mt(eg, ))(3)| <

M2j-1 ;2 io+1 2k-1=ig+1
4 1 14 5
< + Nyj—1 < .
Maj—1  Mzj—1 My v Mzja

Therefore by (48), (49), (50) and the choice of j; we have |ez(z)| < 6/m;;_, thus we can
apply Lemma (6.3.20) obtaining that ||y|| < 60 - 7/m§j_1 . For sufficiently big j we obtain
contradiction with (47) and boundedness of T.

Proposition (6.3.35)[252]: Let T : Xyys — Xgyus b€ a bounded operator. If Td, - 0,

then Ty, — 0 for every RIS (y,,).
Proof. Take T : Xyys — Xgyus WithTd,, — 0 and suppose there are a normalised C-RIS

(yn)n and & > 0 such that ||Ty,|| > 6 for all n € N. Passing to a subsequence we may
assume as in the proof of Proposition (6.3.34) that

max rank R, + 2 < minrank R,,,; where R, = rng(Ty,) U rng(y,).
Pick (u,) < {1} and nodes (¥,) with ppey, (Tyn) > 6.
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Case 1. There exist a constant ¢ > 0, an infinite set M < N and nodes (¢,,),epn Such that
leg, ()| > candeg, ey, have compatible tree-analyses.

Pick signs (vp)nem With vyeg, (v) = leg (yn)| > ¢ for each n. We may pass to a

subsequence (y«. ) of (y,), sothat [|Td < 27" foralln.Forafixedj € N,n,;,; >
q n)y Yk j

200C, we pick, as in Lemma (6.3.31), a j-dependent sequence ({;, x;); where {; = (q; +
1, (i—li mzj_l,]i, 1, T]i), i =1,... 'an—li with {0 = 0, satisfies

1
mt(e";zi—l) = z vnefpn PIn

TLEAZl 1

C2i- 1m]
X2i—1 = — z Ynor ”x21 1” - /2:

n;
J2i-1 n€dqi_q
where [,, = [min R,, max R, ], so that the functional associated to the special node Cng i

with mt-part of the form

1 Nyj—1/2
mt (efn i ) = ] z (eT}Zi_lP]zi—l + AZieTIZl‘PJZi) ’
2j-1 Myjt1 4 4
e

satisfies  J,;_1 D rng(Txy;_1),/2i N rﬁg(Tka—l) =@ and rank(bd(e§n2j+1)) n

rank(Tx,;_,) = @ forany i, k.
From Remark (6.3.30) we get
1/20C < Cri—1 < 2.
Using gaps between sets R,, we pick nodes (Ezl-_l)zl-_lsnzj+1 , With

1
mt(efziﬂ = m; z ‘unell’nPIn ’
2i-1

NE€Azi—1

It follows that egzi_l(TxZi_l)m} 5/206 for each i.
Notice also that for x,; = %ZYLEAH d, ,A; < {k,: n €N}, by the condition on

JZL

(Tdykn) we have ||Tx,;|| < n’z‘ < 27! for each i.

J2i

moij— Noyi— moij— Neyi— 2
Letx = —==.% /2 Xy, andd = 223 @ v/ x,;. We have

nyj_y =1 nyj_q =1
mo,i_
ITd|| < —= (51)
Nyj—1
and by Lemma (6.3.32)
250
lx —dll < — (52)
2j—-1

On the other hand by the choice of (¢,,) and (¥,,) there is a well-defined special node £,
associated to the same j-special sequence as Cng with

1 Npj-1/2
mt(eﬁ) = Myj_1 Z efzi—1P]2i—1 + /121-8,721.13]21. ’
i=1

so that rank(bd(eg)) N rank(Tx,;_,) = @ for any i. Thus

o
ITxll = €5 (T%) = 7o
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which contradicts (51) and (52) for sufficiently big j as T is bounded.

Case 2. Case 1 does not hold. Applying this assumption for ¢ = n;/_ym;',k €N, we
pick inductively an increasing sequence (p,) < N such that for any node ¢ andn > p; so
that e,, ey, have compatible tree-analyses we have e, (y,)| < n‘z}_l met . Let M =
(Pr k-

Now we repeat the proof of Proposition (6.3.34), using (y,,) instead of (d,, ). For a fixed
j €N we pick a j-dependent sequence ({;,x;),{; = (q; + 1,{i—1,mpj_q,Ji L), 0 =
1,...,n25_1, With (0 = 0, such that for each i we have

C2i-1My,,
2 Hneyp, Pr, X291 = —21 Z Yo %2511l = 1/2'

m; n;
2i-1 pea. J2i-1 NnEA;
withA; € M, #A; = n;,, J,i—1 = rng(ey,, ).J2i N supp xz_q = @forany i, k, I, =
[min R,, max R,] and rank(§,) = maxrngR,, + 1 for any n. As in the previous case,
/ZOC < ¢y-1 < 2.Pick jy withm; /m; 41 < 1/n3;_; and let

naj—1/2

_ 1 Z
y_nzj—1 X2i-1

i=1
As in the proof of Proposition (6.3.34) it follows that

mt(ey,, ,) =

lej_12

1 & g
ol > o S S Sz —. (53
Iyl 65"21—1()]) Myj—1M2j-1 i=1 2C211 80CmMyj— )

We shall estimate now ||y||. As before we consider a special node £ which is compatible
with a (I, j)-special sequence (6;,2;)i=1,a < n,j_y, and estimate |e;(z)| where z =

Yiej Xzi—, for some mterval] c {1,...,np;_1}. Writing
laZJ

ﬁ o Z dCL t mzj 1 z (gZi_leﬁzi—1Pj2i—1 + AZieﬁZipjzi)

witha < ny;_; we pICk as before i, = mm{i < a: ({;,x;) # (6;3;)} (if such i exists)
and estimate separately | % ; dgi(w)|, |mt(ez*i0)(w)| and |(mt(eg) — mt(egio))(w)|.
Repeating the reasoning of the proof of Proposition (6.3.34), as (y;,) have norm bounded by
< 3, we obtain

Z ds Comy < 54
¢ ()] < Naj-1 n My . (54)
Using Corollary (6.3.21) and the fact that |e, P, (xlo+1)| < 4 we obtain that
64C 5
|(mt(eﬁ) mt (e )) @) <= mz,-_1 Mo S (59

using that m;* < n3._, andny, . > 200C.

Now conS|der es recall this functional and ez

z, have compatible tree-analyses. Therefore
Lo 0

Gi
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( lo

2
1 -
- Z(EZi—le’ﬁzi—l szi_l + Ay _nZinzi ) if iy even
* _ J=1=1
1 2
o Z (621_16.,72 . szl T /'lzienzi szi ) + &, eg,, P]io if ipodd
i~ i=1

where for each foreach 2i — 1 < i, we have

d: +
hia= Y
2t in m]21 1

NeA;
By choice of the objects above we have

| me(e,) @)

n
i=1 neEA; / 21 1€J J2i-1 NEA;

Mmz;—1 "le_l

: Om)| -
2i—1€] neA;

As for each n the nodes y,,, @,, have compatible tree-analyses the last sum can be estimated
by Zmz‘}_l. The first sum equals 0 by the condition on ranks of &,,, thus also &, Therefore

we have
me (¢, ) @] < 72—

As before by (54), (55), (56) we have |ez(2)| < 8/m2]_1, thus we can apply Lemma
(6.3.20) obtaining that ||y|| < 806/m§j_1. For sufficiently big j we obtain contradiction
with (53) and boundedness of T.

Theorem (6.3.36)[252]: Let T : Xy, — Xgys b€ abounded operator. Then there exist a
compact operator K : Xg,s = Xgys and a scalar A such that T = Ald + K.

Proof. By Proposition (6.3.34) any (d,,, )nEN has a further subsequence (an)neM such

that Td,, —Ad,, » 0asM 3n — oo, for some L. By Proposition (6.3.33) there is a
universal A so that Td,,, — Ad,, » 0asn — co. Applying Proposition (6.3.35) to the
operator T — Ald we get that Ty,, — Ay, — 0 for any RIS (y,,) and thus, by Proposition
(6.3.26), for any bounded block sequence (y,,). It follows that the operator T — AId is
compact.

The above theorem implies immediately the following.

Corollary (6.3.37)[252]: The space X, is indecomposable, i.e. it is not a direct sum of
two its infinitely dimensional closed subspaces.

We devoted to the proof of saturation of the space Xy, by unconditional basic
sequences. We follow the idea of the proof of the corresponding fact from [98] with
additional work in order to control the bd-parts of norming functionals. Below we present a
construction of unconditional sequences in Xy,.

~ *
Z €n€op, P,n

NeAi;

(56)
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Fix a block subspace Y © Xy, and pick sequences ji, < jr1 < jrz2 << jkn] k €
N, with (j, ) increasing, and a block sequence (x;), < Y ,withx, = m”‘ Zn”“ X i

where for some fixed C > 2 and for each k € N the sequence (xk'i)i c Y |s aC—RIS

with parameters (ji,;), | <
/ . foranyi < n; andy € I. Therefore

ld, (x| < C/n? o foranyk € N,y € T. (57)

We fix the sequence (x; ) and the node y with the tree-analysis (I, €., n;) er for the sequel.

Recall that S; denotes the set of immediate successors of t in the tree . We order the sets S;
with the order on (/5)ses, and we write s_ for the immediate predecessor of s.

Definition (6.3.38)[252]: A couple of nodes (ns_,n,) is called a dependent couple with
respecttoyifs_s € S;,w(n;) = m;}ﬂ for some j € N and s is at the even position in
the mt-part of e, .

LetE, = {s € T: (ns_,n,) is adependent couple with respect to y}.

Definition (6.3.39)[252]: For k € N a couple of nodes (n, ,n,) is called a dependent
couple with respect to y and x; if (ns_,ns) is a dependent couple with respect to y and
moreover

min supp(x,4,) > max su,pp(eg‘P,S ) > min supp(xy),
max supp(xx-,) = minsupp(es_ P ).
Let F, = {s € T | (ns_,n,) is a dependent couple with respect to y and x, for some k}
and let Q, = ZSETY P, . Then we define y, = Q,x, and x; = x; — yi. As our basis
(dy)yel" is not unconditional, the projections (Qy)y are not uniformly bounded. However,

we have the following lemma that is proved along the lines of [98].
Lemma (6.3.40)[252]:
(i) Foreveryk e Nandt € T we have |e; P, (yi)| < 10C/m;, .

(i) Foreveryk € Nandt € T withw(n,) < m;'wehave|e; P, (x;)| < 11C/my,

Proof. Concerning (i), notice first that for any s € F, we have |e;_ P (x)| < 10C/m;,

Indeed, for w(ns) = m,; for some j, we considerthe following two cases. Ifmz‘]1 < m‘1

then the estimate follows by (26). If m; ]-1 > ]k , then by the form of e, _and (57) we have
len, Pr, Ce)| < 2y max|dy (i) | < 2C/m,

Now, as each of the sets{s € F, | |s| = [,rng(xy) N I, # @},i € N, has at most two

elements, we have

leaPre 1 D (Mesuss W) e, Py, G|

SEF,

Z Z (He<u<s wm))|es. P, ()| < ZOCZ_ _ 10C

i S€EF|s|=i

Condition (ii) follows from Lemma (6.3.20) and (i).
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Lemma (6.3.41). For every choice of signs (&) there exists anode ¥ € I" such that @, =
Qy and e € {*1}so that

— ee{;(dkx,’()| <X forany k € N.
m]-k

Proof. Define

D ={t €T |rng(xyx) N rng(e;P,) # @ for at most one k and if t €
Sy thenrng(x;) N rng(e, P, ) + @ foratleasttwo i}.

Since for every branch b of 7" the set b N D has exactly one element we can define a subtree
T of T such that D is the set of terminal nodes for * . Notice that (T\7") n F, = 0.

If y € D, then we pick the unique k, with rng(ey) N rng(xy,) # @ (asly =
[1,max Ayqnkn]) and let 7 = y and e = §;, . Then we have the estimate in the lemma
forany k € N.

Assume that y & D. Using backward induction on 7 we shall define a node ¥ with a tree-
analysis (I, é,7)eer and associated scalars (4¢),_. . by modifying the nodes
(I¢, €:,m¢) e and scalars (A;),e5+ Starting from elements of D such that

(T1) ey, , e5, have compatible tree-analyses for any € T,

(T2) Fz, = Fn.forany € 77,

(T3) €& e5,. Py, (Sixy ) = €cen, P, (x3) for any t € D\ E, and K, Acep P, (Spxy) =
Aeen P, (x) foranyt € D n €, andk,

(Td) €, = ¢, foranyt € T'\ D.

We need to modify only €,,t € D, changing signs of some of them. These modifications
determine changes in the rest of the tree, i.e. n,,u € 7' \D according to the rules of
producing nodes and

Let ¥ = #js. Notice that by conditions (T1)-(T2) we have Q5 = @Q,. Now we proceed to

show the estimate part of the lemma. Fix k € N. For any nonterminal u € 7 let
Suk = {s € S, |rng(xx) N rng(esP, ) = @}.
Let G be the set of minimal nodes u of 7/ withu € D or (n,) < m;,% . By "' denote the
subtree of 7 with the terminal nodes in G. We shall prove by induction starting from G that
foranyu € 7' we have

|Eue; PI (xllc)_ 3 e% PIu (5kxk)| (58)
This will end the proof as it follows by (T4) that |egey, (xk) ,m (Orxxr)| =
ley(xr) — ey(Skxi)|. Thus taking e = 1 we obtain the estimate of the Iemma
Stepl.u € G.If w(n,) < m},% then the estimate (58) holds true by Lemma (6.3.40) (ii).
Ifu eD then the estimate (58) holds true by (T3). Step 2. u € 7" \ G. In particular
(M) = mj ObV|oustS cT".
Case 2a. W(Uu) = mzj . We estimate, using (T3) fors € S, N D

|e};u Py, (Orxk) — en, P, €]

1
= E dfs +— E €seq P, +— E €seq. P (Orxy)
mzj

SESY SESu,knD

22C
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1 ~ * 1 ~ * !
— z dfs +m—2j z €sen P +m—2j Z €sen P (x|

SESuyk\D

1 / * !/
F1D @l ) [Ees Py (Bxi) — eses, Py, (1))
SESy 2 SESy k\D
<

The first two sums are estimated using (57) and #S,, < n,; < ny , for the third element

use the inductive hypothesis and the fact that #(S,, , \ D) < 2, obtaining the following

C 2 22C 22C

Wi M2j My Mg
Case 2b. w(n,) = m, ]-1+1. Recall that by (T3) we have e_ey P (x) =
€_eq I (6kx) for any s € S, néE, with s_ € D and Agep P (xp) =
Ases I(8x' k) for any s e S, néE nD. Moreover E\D c F thus
en, P, (x) = 0 = eg P_I; (6,x) forany s € (S, n &)\ D. Therefore we have

|e;‘,—u P, (6kxp) — ey P, €58]

1 1 )
= d: + Z € e: P+ z Ases P Spx;,
|2 a4 € Py b Py | G

SES, S_ESy k.SEEY SESyKNEyY
1 1
* ~ * * !/
— z dz, +m2- ) Z €s_en, P +mz_+1 z Asen. P ()l
SESy J* s_ESu,k,seey J sESu,kney
1
_ * ~ * /
= | Z dg + — z &_ex P | (Skxi)
SESy, 2j+1 S_€Sy k\D,SEEy,

1 !
- Z d; + z e es P | ()l

SESy m2j+1 S_€Suk\D,SEEy,
< | D) d G |+ | ) di G|+
SESy SESy

~

és_ eq, P (Grxy) — €s_en. P (xp)

1
+ ).
Mmyjtq

S_€Suk\D,SEEy,
<

Proceeding as in Case 2a we obtain
< In.. C 4 2 .226<226
B ank Maje1 Mk My
Theorem (6.3.42)[252]: The space X, is unconditionally saturated.
Proof. In every block subspace of X, pick a sequence (x ) as above withm;; > 400C.
We claim that such a sequence is unconditional. To this end consider a finite sequence of
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scalars (a;) with |[Y, arx, || = 1and (8;) < {Z£1}. We want to estimate the norm of the
vector Y, 8xa,xy. Takey € I'withey(Xx arx, ) = 3/4. Define Qy, (yk) and (x;) and
consider ¥ and e provided by Lemma (6.3.41). Notice that as @ = @Q,, the projection Qy

defines also (¢k) and (x;, ). Estimate, applying Lemma (6.3.41) and Lemma (6.3.40) (1)
both for y and ¥, as follows

e (2 s ) — ee} ( Z 8y )

e; (Z L ) _ ees (Z 5y ) e ( Zk: WY )

eey(6kxk)|

< + +

(gow)

y(5k3’k)|

< 4- 24sz,k < 200Cm7 < 12/

k
where in the last line we use the fact that each |a, | is dominated by twice the basic constant
of the basis (dy). Therefore || Xy Sxarxy | = |ey( Xk Skaxxy )| = 1/4, which ends the

proof.
Corollary (6.3.43)[260]: [252] Let (J; j> be a subsequence of the basis. Then there

n/ neN
exists infinite M < N such that no two nodes y;},y,,,n,m € M, are neighbours.
The proof is based on the fact that the age is uniquely determined for each node.
Proof. If there are infinitely many nodes with different weights we are done. So assume that

for all but finite nodes we have w(y;)) = mj?! for some fixed k.

Applying Ramsey theorem we obtain an infinite set such that either no two nodes from this
set are neighbours or any two are neighbours.

In the first case we are done. Otherwise passing to a further subsequence we may assume

that rank(y,{ ) < rank(y,{ +,) forevery n.
Since we have that yj’ ,yjf+1 are neighbours it follows by a simple induction that

age(yjjﬂ) > age(yj") +1>j+ 1.
Takej = n, + 1and pick e;j of the form

a a
— zz i + m;lz:z e Ae; P!
r=1 j r=1 j

with ¥ ;= Y &é: for some r. Then age(é,) < n, which yields a contradiction

nre+1

and ends the proof.

Corollary (6.3.44)[260]: [252] Let x/ = nj* Y6 X cfgi , be such that no two &;’s are
neighbours and #G < n; . Then for any y/ € I' with w(ey;) = m;® we have the
following
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1 2

T +m—k if e<0

* (x| < —€

|ey1(x )| < 7 .
— if €>0.
mpmp.e

In particular

nj
-1 7J -1
n; E E dfi S7E m;
=1 j

Proof. We shall construct functionals qb){ ; in the norming set of the mixed Tsirelson space
Xoux = TV [(An, ,m,;l)kEN] such that

el =Y (840045

where y/ = 2 Yyee ex/n € coo(N).

Take y/ € I' and consider its evaluation analysis e, =212, c?é: +
m' Xia1 X €-dren, B . Let gl =bd(ey;) and f); = mt(ey)).

We shall consider two cases.

Case L. w(y/)) < mj*

Since the nodes (&;); are pairwise non-neighbours and (f5;); are pairwise neighbours it

follows that

DI AP (59)
Also for every r < a using that |JZ] e; (d (_j)| < éfor all & B, we get
A< Y 2 L meldg) b, (60
It follows from (59), (60) using that |/1’| 1 for everyr that

J(x’)| +2m-1 ZZ .: mg ) Cl} Sz,-lnj +r§k. (61)

Taking c,b)’/j = mj?! ZnEF en WhereF =U,<4 {n |yn = Ei,rng(dg) c I.forsomei €

G} it follows that #F < n; < n, and qb;'j belongs to the norming set of the mixed

Tsirelson space X,
From (61) we get

> e SZ (nlj+2m,;1 > e”(e”)) Z ( qb;',-(yf)). (62)

J ner
Case2.w(y/) = mi' > mj!
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Let (I;, &, 1n:) e be the tree-analysis of e;,- and 7' be the subtree of T consisting of all
nodes t of height at most [;. We will describe how to define certain functionals (cptj)tef, in
the norming set of Tf[(c/lnk, m;l)keN] that we will use to obtain the desired estimate.

As in the previous case we get
1> el <) nt (63)
J j

Using that e;,- = g;',- + fy’, and |A£| < 1 for every r, we get

|Z e ;(x7)| SZ (nj_1+|fyjj(xj)| <nt +mg! - ISIi(xJ)|) (64)
J J

r=1
We shall split now the successors e, of e;j into those with weight smaller or equal to mj‘1

and those with weight bigger that m]-_l . For a node y/ we set
.S'y]"1 = {r € Syj: wmn,) < m]-_l} and Syj’z = Syj\Syjll.

From (64) we get
VBN D e B () \

DD /n,-‘1+m;1 > P
J j rESy]Z

TeS
via
Using (62) forther € S ;,, (64) forther € S ;, andthat#S ;, + #S,;, < n, k <},
we get

1> e
j

Snj_l-l_mT:;’lj
1 S —i
= > BN+ ) wley) ) e Bl
K j resyj 1 rESy] 2 SESy

by [ el Y wle) Y e

Jj TES rESyJ 2 SESy

xf (x7)| \ (65)
Y1 /
Note that the functional m; (Zres i Y ¢>T) belongs to the norming set of the mixed
Tsirelson space X, and has room for #S,;, more functionals.
We shall replay the above splitting for every e;sﬁé . To avoid complicated notation we shall
setng, = #Sgand mg*' = w(e; ). From (65) using e;;sP,f in the place of e ; we get
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SZ ;<1+:l]11>
+mt [ Y G0N+ Y mit Y

t€Ss1 t€Ss2 UES;

It follows that
1 ni_q
RS HNELIDED WD {5 I
- ] -1
SESy ] rESy]’2 SES,

2 2 0D i) b

SES, ] tes tESy] ) UES,

Bl ()] ] |- (66)

B ()]

n 1 n;_
<n,— z —(1 +rri- 1) since #S;, < nand #5, < n,
j—1

) Qo mt ) i ) elONF ) mit )

j rESy] ) SES, tESy] 1 tESy] ) UES,

By (65) and (67), using that = , —% < =% we get

my " my m] 1

2 3
Z “i(x7) z ](1+n;__11+<:;__11> +(:l]]__11>> (68)

J J

P ()]

+ > i)

my &
j rESyj‘l

O mt Yy mt Y ¢/()

TES_VJ 2 SEST tESs’]_

DS

tESS’Z uESt

(xf)| (69)

Note that the functional

Dotlmaty [ D MO D m Yy mt Y e
]

Jj resyj 1 reSyj 2 SES, t€Ssq
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belongs to the norming set of the mixed Tsirelson space X,,, and the functional
mg ! DiteSss gb,{ has room for #S , more functionals.

We continue this splitting at most [; times, see (9) for the choice of [; , or till S, = @ i.e.
we do not have nodes with weight > m;*

If we stop before the [;-th step we get that |e;,- (x7)| is dominated by qbij (y7) plus the errors

in (68), where the sum end to the [;-th power of n;_;/m;_;. Since qb)’/'j belongs to the

norming set of the mixed Tsirelson space X,,,,. it follows from [99], Lemma 11.9, that
qb]]/j(yf) < 4mitmit, |

If we continue the splitting [; -times, then there exists some node with ] > m]-‘1 . For

every such node we have

. 1\ .
2\ [ wle) flesten|= (m_l) MICH
J s<t 7
<Zz m‘lm.—l#{.:rng(d )c ]tng}
< K m -

J

since ml_lj < (mjmj_l)_l

Summing the estimation of all those nodes we get upper estimate equal to Z#G/mkmjnj <
Z/mkmj .

The remaining nodes provide us with a functional in the norming set of the mixed Tsirelson

space Xg,,,.- By [99] its action on y is bounded by 4m;* mj_l :
It remains to handle the errors (68). In each case we have

2 lj L+l
) PP <nj_1> + oo +<nj_1>1 < L Ca/m) L g
n; mj_q mj_q mj_, n; (n]/m]—l)
2
< )
mjmj_l

Summing all the above estimates we get an upper estimate 7mj,* mj‘1 :

Corollary (6.3.45)[260]: [252] Let x/ = m;,.n;~ Z””E d’ such that no two ¢;’s are
n;

neighbours. Let € >0, (e;q2+e) be nodes such that w( €2, )=mlq2+e *

q*+e=1
M, and ML, <M, ,, forall q*> + € < m;. Then

AN < 14
zzlnf?+f q+e(x)|_m

2
g +e=1 j qite

Proof. From Corollary (6.3.44) we get
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> 3l

nq ve Iz +€(x1)|

q?+e=1 j
< x |
q +E q +6( )
q*+elgr, <ite j
_j 3
S
qP+elga, Site ]
7 1 27’ni+e
= Z Marre | Z e | m
2 s 2
q*+el 2, <ite e qP+eilz, Site t+e q-+e
7 n; 2 14
= to— < .
mq2+6 nl+€ mq2+6—1 mq%+6

q2+6:lq2+6<i+6 q2+e:lqz+6>i+e
Corollary (6.3.46)[260]: [252] The set I is a self-determined subset of I, hence it defines
a BD-L,-space X’ .
(rqz#qz)

Moreover, the restrictionR : X7 — X(r i 2) is a well-defined operator of norm at most
a<"q%) g2

1 inducing the isomorphism between X(r and XF/Y , where Y =

2,L 2)
a°°q%) g2

(di,: y/ € T\T).
Proof. According to Proposition 1.5 [225] it is enough to show that for every y/ € Agzyq
the following holds
e E{e;jOPEj: y/ € I2,E N U {0}}

This follows readily from the definition of E;,-, see (10), using that };; J]’/, =Y e;,- 0
Pl

{rank(y’)}
The second part of Proposition follows by Proposition 1.9 [225].
Corollary (6.3.47)[260]: [252]. a) Let j e Nand k < n,; . Letalso (x,{)k C Xyys bE a

normalised skipped block double sequence such that rngzpp (x,{) = (qé_1 +€,qf + €] for

some strictly increasing (g2 + €) with g2 + € > 2j — 1. Then there existsanodey’ € I'
such that

nzj an

O J* -1 * J

Z i = ZZ dg, + My 2 e Py
J k=1 j k=1

with the following properties
(i) rank(&;) = q2 + € + 1 foreach k,

(ii) exep, X P, j(x,{) > 1/2 andm, € Iz, \I2 . foreachk,
()% (Bl %) 2 Lj 5

2m2]

b) Let( s‘l)l ) be a finite subsequence of the basis such that rank(¢;) + 1 < rank(§;,;)

for every i and rank(&;) = 2j — 1.
Then the node
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nzj

_ J* -1 3J*

_ZZ (af + mpaf) 71)
i=1

with rank(¢) = rank(§;) + 1is aregular node and e; (5,2 %, df) = %; 2L,
2j

Proof. a) (see [91]) Let x,ﬁ = ik(u,’(') where u,{; € Iz, \ Iz e IS the restriction of x,f,:

onlg, . Since
Yol e @h] =) Il =1
Jj J J

we can choose 7 € Ij2, \I2 . such that les, (U] = 1/2. Setting I =

rnggpp(x]) = Uf";: e D choose &, € {—1,1} such that

Y i) =) aen =) aead) 2y 02
] J J
The nodes y,{ =(qt +€ + 1, y,f oMo I € e,*,k),y(f =0,k = 1,...,ny; give the node
Yy = yn with the properties (i)—(iii).
b) Take the nodes ¢; = (rank(§;) + 1,{;_1,my;,1;,1,e;),{o = 0, where [; =
Arank(sy: |
Corollary (6.3.48)[260]: [252]. Let (z,ﬁ)k be a normalised block double sequence in X,

and (dé ) be a subsequence of the basis. Then for every j € N there exists a j-dependent
n/neMm
sequence of length ny;_y, (v/,x7).

(dén : n € M).
Proof. Passing to a further subsequence we may assume that

dén are pairwise non — neighbours and rank(¢,,) + 1 < rank(§,,41)- (73)
Letj; be suchthatm,; _, > nﬁj_l and choose g# big enough to guarantee that 4j; — 2 <

q? and 2~ C11<1/4 .

2]1

, such that xJ,_, € (3} : k €N) and xJ; €

isnpj_q

Let (x k) * be a normalised skipped block sequence of (z/ : [ > ¢) which is a C-
RIS. Settmg

N4ji-2
x] = A2 2 doade with Y )= 1,
n4]1—2 > >

from Remark (6.3.30) we get /ZOC <¢ <2 and that there exists a node n; € I" with

PR ACA T

J .
where; = U {4,2,.: q*+€ € mgepp(x])}.

w(n,) = mg; _, such that
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Using that R is a quotient operator of norm 1 take a block 371' € X7 such that x1. R(yl')
and ||5/|| < 1. Then choose a vector x{ with rational coefficients in the unit ball of

(d);: v/ € Tz)suchthat 3, ||&] — 3 ||x_ < 1/4n22.
ai

Note that ¥, R(x)) =%, R(x/ -3 +X; RG!)=3; R —-5)+3,; x/ and
hence foreveryy/ € T,

D ey —epedl = Y lepRED = enRGDI < ) lens o R|| 1] = 5l
Jj J J

/
< , . (74)
4nq%

We take ylj to be the node
v = (af + 1,00m3 1,11, 1,e; ).
From the above we get that (ylj x{ ) is a j-dependent couple of length 1 with respect to the
(', j)-special sequence (ylj ) 92{ ).
Setj, = a(ylj,f{) and choose xé ep, such that

Xé = Myj, anlz Z z d x € Xkus and mt(en ) = m4]2 2 z fzk

kEFz ] . kEFZ ]
where |F,| = n,;, and q? + 2 < minrnggpp(x3). Such a node exists by Corollary
(6.3.47)(b) since rank(fn) + 1 < rank($p4q). We also take the node

Vz —(QZ + 1V1'm2] 1,12,1/1]€n2)EF _
where I, = [q2 + €,q3] is the range of xJ with respect to the basis and A}, € Net; 4z is
chosen such that

D, (Bi=ei@)| = Yy
j q1
From the above equation and (74) we get

: - 1 ; ; 1 c 1 1
J * J ] * ] 1
Z (’12 _enl(x1)) 376212:’ A2 z enl(xl) Tz, = 2 2, Zm'

j 1 j q1 q1

Pick fg to be the corresponding average of (c?éz k) . It follows that xg = ng (recall that
¥/ keF,
, . i . . : £ 2
d); =Rd); foreachy’ € I')and ¥j < x,. Then we get that (y/,x/),_, is j-dependent of
, .2
length 2 with respect to the (", j)-special sequence (y/, &/ )i=1
. .2 . .
Set j; = o(y/,x]),_,. We continue to choose xé,e;j ,xi,e;,- in the same way we have
- 3 4

chosen x{,e;,-,xé,e;,- taking care that x;,xJ,xJ,x, is a skipped block sequence (with
1 2

respect to the FDD) and repeat the procedure obtaining the desired dependent sequence.
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Notice that for a dependent sequence (Vu ’) with a constant C we have

l<n2] 1

Maj-1 N2j-1
i=1

J 1 : x :
m— X; H > /45 Indeed, consider the functional €y, determined by the
nodes (yij)?:]l_l , i.e. of the form

nz; 1
Nzj-1

D ZZ Kd’* ma- 12 (ChuciBl, + MhiehncPl) )

J

and notice that

Naj-1
Mmyj_q
X j
Z 85”21'—1 Ny i z 2 x
j I
Naj—1/2

Z Naj-1 Z e7721 1 121 1(x21 1) +/12187721(xé.i)

i=1

CZl 1 CZl 1 1 > 1
2 2n2 ~ 45C’

qzi—1

Naj—1/2

D)

=1

using that ¢,;_; > /ZOC'
Corollary (6.3.49)[260]: [252]. Let (yij,xij )i<n ~be a j-dependent sequence. Then
SNzj-1

T 250
Z z (—1)i*1x) sz kel

Proof. Let ] be an interval of {1,...,n,;_,} and 3/ = YiejXj (—1)"+1xl.j. We shall verify
the assumption (b) in Lemma (6.3.20) for j, = 2j — 1.

Let (y’,f,ﬁ 1_1 be the special sequence associated with the dependent sequence

. nz 1 . . . * .
(y,j,xk)k ’1 Vi = (g + 1Lyl majo1, L, €, Aes,) for each k, where y) = 0.

Consider a node £ with evaluation analysis

Nyj—1 Nyj—1/2
— J* pJ 7] j
o z Z dfi +tm 2] 1 z z €2i- 185 i—1 121 1 +/121 521P121)
which is produced from a (I, j)-special sequence ((k,zk) . Let

k=njj_4
ko =min{k < nyj_, : (Verk) * (k2 k)}
if such a k exists. We estimate separately |e[§ko_1(zf)| and | (e;; — egko_l) ().
We start with |eﬁ*k0_1(zj)|' Notice that e[jiko_l, if k, > 1, has the following evaluation
analysis
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ko—1 IMJ

* — J* p’ 3 ox pl
€hrpr = Z Z d; +m2] 1 Z Z (€34- 13621 P T e, Bl
J

i=1
]
+z Ek0—135k0_1 Iko—l]'

J
where ez and e, have compatible tree-analyses and the last term in square brackets

appears if k, — 1 is odd. By the definition of nodes we have rank(¢;) = rank(yl.j ) €

(max rnggpp (xij), min rnggpp (xl.jﬂ)) forevery i < k. Therefore
ko—1

Z z al 2 (-D)i*1x) = 0. (75)
i1 i

We partition the indices P/ = {1,2,...,1(k, — 1)/2]} into the sets A = {i € P/ :
521 ) 2 B 121 1(le 1) # 0} and its complementB

For every i € A from the choice of )Lzl, the fact that rng(xgi_l) c I,;_, and (3) of
Definition (6.3.29) we have

Mo—yqer (% < - d 76
2i — €2i-1€5,, | (1) )| = P (76)
: I 2j—-1

J

* —J * J J _ J
Z (eézi_l(xm'ﬂ) - 3321-_113121-_1(9621'—1)> = Z |eszl 1(x21 D 3521 (i1
J J

<D
< .
- 4n2j_1

z (621 1e5ZL 1 121 1(x21 1) +/121 N2i 121( X )

J
_ ot i () )| < Ly
J j 2j-1
Similarly forevery i € B,

z (621 1e5ZL 1 121 1(x21 1) +/121 N2i 121( X )

J
. . . 1
_ Z (&si-re5, Pl (x)iy) — 7L) sz . (78)
7 i 2j-1
For an interval J = [1,m] using that ||xJ,_| = 1/5,|lx] || < 7 (by Corollary (6.3.44))
and inequalities (75), (78) we obtain

It follows that

265



ehes | ). ). (“D*i] | <10

€] j
Now we proceed to estimate |(e; — eEko_l)(Zj )IE
Observe that as xgl_l is a weighted average of a normalised C-RIS of length n; _ we have

Nzj-1
* ] —
Z Z d] (xzz Il = 32 Npj_1Cpi—1C—22 < 2m% | <Z nyi, (79
i=ky j O 7
The same mequallty holds also for the averages of the basis i.e.
Nzj-1
d]* My, < m3 -3 I
(le) nzj_l—n_ < m; ;) < nyi—, VL (80)
i= kO ' ] J21 ]
We shall distinguish the cases when k, is odd or even. Assume first that k, = 2i, — 1 for
some i,.

Then forevery i < i,andevery k > k,,
z (&zi-165, P/ + Ayie5, Pl ) () = 0.

2i-1 I2i-1
J

From the injectivity of o it follows that W(e'S*Zi_l)'W(e'gn) ¢ {w (e*i ) > i,} for every
c

|
i > iy. Hence by Corollary (6.3.21), using that |/T£i| < landc, < 2, we get for every

odd k > k, the following

Nyj—1/2

J 3J
z z €2i- 16521 1P121 1 +/121€521 121) (xk)

l>lo

< 64¢,C w(6;) < 128CZ ny? .. (81)

J
Also from Corollary (6.3.45) we obtain for every even k > k, the following

n2] 1

| z D Cuoes, P+ e PLOGDI <14) miZ, (82)
J J

l>lo
For x;, e also obtain the following

Nyj—1/2

j 7J
z z 621 16821 1PIZL 1 +AZL 621 121) (xko) (83)
l>l0
x pJ J
32 egkopiko(xko)

j
nz; 1

M et Pl e e P/ M e: p ) (x])
+z ko+1 5ko+1 1k0+1 + 2i-1585; 4 121 1 + A 521 I ko
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< 4+ 12862 ny? .,
j

using that ”x,iO” < 1and ”2]- es) oP,j” <, ||[F’|| < 4 while for the second term we
get the upper bound as in (81).

The case where k, is even is similar, except that | };; egkOP;,;o (x,{o)l < 7.

Splitting Jto /; = J n [1,i5],J, = J N (ip,n2j-1) and considering the cases when min
J; is odd or even we get|(e§ — egko_l) (X  X; (-1)*x/)| < 15, using thatnyjy, >
200C. .

Corollary (6.3.50)[260]: [252]. Let T/ : Xgus — Xgus b€ a bounded operator and

(djj) be a subsequence of the basis. Then
Yn JneM

lim  dist(T’ d;' ; ,]R{d]{ ) =0,

M3n—+o0
Proof. Assume that dist(deij ,Rdi]-) > 46 for infinitely many n € M and some § >

0.
By Corollary (6.3.27) and Corollary (6.3.43) passing to a further subsequence and admitting
a small perturbation we may assume that

(P1) (dejj) Is a skipped block sequence and setting R,, to be the minimal interval

n neM
containing rng (T’ d; T];) and {n} we have

max rank(R,,) + 2 < min rank(R,;1),

(P2) no two elements of (djj) are neighbours.
"/ nem

By the assumption that dist(de)’;j,]Rdij) > 4§ it follows that either

Z > 2§ or z ”(1 - P,{)dei{
j 7

J
(recall that P} denotes the canonical projection onto (d’j :i < m),m €N).
]/.

> 26

P,{_led;' ;

Passing to a further subsequence we may assume that one of the two alternatives holds for
anyn € N. Let

max rank (P,{_lTj d’ j) in the first case
2 _ n
n = .
max rank <(1 - P)T/ d#) in the second case.

In the first case we take I, = [minrng(Tjd}]%-),n — 1]. Also ¥; PT{_led){£=

¥ ig2(ul) where u) = ’”q%(Pr{—lTjdi ;) and hence we may choose e, € {—1,1} and
M € Fq% \ Lnax rank(Rp_1)+1 such that
Z nes, PLTIA ) =z nes, Py TId ) =Z ene; (ul) = 6 (84)
j YT , T
using that 26 < %; |ligzu)|| < 2%; ||uil|.
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In the second case we take I, = [n + 1,max rng(de]{j>]. Also since ¥; (I —
P,{)de;]q- =Y igz(u),) where ¥; up =r.2Y; (I - P,{)de)’/%) we get €, €
{=1L1}n, € Fq%\rmaxrnan_1+1 such that
z N AGLD =2 enes, (1 = PTIA)) :Z enes (W) = 6. (85)
j T T
Given any j € N we shall build a vector y/ with ||; T/y/|| = §/28m,;_; and ||y/|| <
420/mj3,_, which for sufficiently big j yields a contradiction.

Assume the first case holds. The second case will follow analogously. Notice that by (P1)
foranyi e Nand A ¢ M with #4 = n,; and max rank(R,i, 4) = 2i — 1 thereis a
functional e,, associated to a regular node of the form

=YY o Y'Y i
Gy o Y

neA j neA j
with rank(¢,) = maxrank(R,) + 1foreachn € A.Letx/ = myny! Ynea Y d

It follows that

.. .. 1 \ (m,; o
T/ x/ zz “ (T x/ =z Zd’* —z - 212 T/d’
Z g : e(I°x) - ( o omy Enmn’ Ny ¥n

] .
Y

] ] nea neA
- mZin;}ZZ af (rid’, )+— Zz enes, PL(TI )
neA ] neA j
ZZ enen Pl (Td)) = 5.
nZl
neaA j

Fix j € N and choose inductively, as in Corollary (6.3.48), a j-dependent sequence
(Cz,xi’),ii = (qlz + 1, ci—1»m2j—_1;]i» Ly, i = 1,...,nyj_4, With {, = 0, with respect
to a (I, j)-special sequence (;, x; ;), so that it satisfies for any i the following

J* Jj
= Y0 A S S el
2 m]21 1 I

ne4a; j NeA;

c m
j 2i—1 ]21 1 j
X2i-1 = d v

7"’]21 1
nea; j
with rank(¢,) = maxrank(R,) + 1 for each n € U; A;. Corollary (6.3.44) yields that

1/14 < ¢;—1 < 1. Recall that by definition each vector fgi_l satisfies
* —J * Jj -2 j
z (eyj(xzi_l) — eyj(xzi_1)> < 4nq§i_1 vyl € T.
J
Forany i let J,;_, = rng(ey,, ). We demand also that supp e;, . N supp xék—l = @ for
any i, k, thus the even parts of the chosen special functional play no role in the estimates on

the weighted averages of (xgi_l). We assume also m; /m; ;1 < 1/n§j_1.
By the previous remark we have for each i the following

|x21 1” = /2
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efi)zi_lz (Tix),_) = 6/14. (86)
i
Let

Nyj—1/2 Nyj—1/2

. 1 ; 1 m;,.
y] = 2 ) Z Z xéi—l = Z . z Czl 1 21—1 z d]
> Nyj—1 i i Nzj—1

i=1 i=1 Mzi-1 nea;
and consider the functional associated to the special node Cnyioy I.e. of the form

Nzj—1 Nyj—12

pJ J
Z €n2] 1 Z z d mzj 1 z Z (ell’m 1" J2i-1 + /12"61:[)21 ]21)

l:
Then

2 TIyJ 22 e;  (T'y))
Nn2j-1

J J
Nzj-1
_ J*
=22 %
j i=1
Nyj_1/2 . N(2j-1)/2
1' J jard
+m2] . z (ewzl ey +AZlelp21 ]21) lej_1 21 T xzi—l
1=
Notice that /,; N r nk(qb ) = @, whereas by the choice of R,, and the node gbgi_l we
2i—1

have rng(fozl 1) C ) Therefore

ank(d)zl 1

Naj—1
N2j-1 2
( J* / 1 A \
SN Y e

7 \ i=1 \21_1 i=1 /

Naj-1

2
1

L — z elZZi—113]£i—1(zjgi—1)

Nyi_1Myi_
2j-1M2j-1 &

where in the last line the first sum disappears by the choice of (q3;_;), as
rank(bd(ez )N rank(T/xJ,_,) = @ for any i. Therefore we have

o o
o) [y 57
Z Y — 28my;_q (87)
J J

On the other hand we estimate ||y/||. We shall prove that ||X; y/|| <X; 420/m3;_,
yielding for sufficiently big j a contradiction. By (P2) and Corollary (6.3.44) we get that
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(xij) is 7-RIS. By Lemma (6.3.20) it is enough to estimate |eg (z7)|, where e Is associated
to a (I, j)-special sequence (61-,5{)?:1, and z/ = YiejXj xgi_l for some interval | c

{1, ceny nzj_l}.
Let eg have the following form
laz]

J* j 5] ek J
s _zz dz +Z my;_ 12 €2i- 161/)21 1 ]21 1+/121 Yai ]21 2 [eae¢ P

witha < nzj_l,where the last term appears ifais odd. Let i, = max{i S a: ((;,x i’) =
(5i,z‘f)} if such i exists. We estimate |e[§(zf)| assuming i, is well-defined. We estimate
separately | T, ¥ d? 2, @)1, Imt(e; )(z7)] and |(mt(eg) — mt(e;, ))(z))I.
First notice that taking into account coordlnates of z/ with respect to the basis (d]’/' ;) and
that c,;_; < 1, we have

zz “(z7) Z nzj_l%. (88)

I J1

Now consider the tree- anaIyS|s of eqi0 , recall that it is compatible with the tree-analysis of

egio . Then by the definition of a special node we have

mt (egio)

~ J 3] o+ pl e
Z (EZl 161/’21 11:}21— t AZielI’ziF}Zi) if io even

1 . » .
E E ~ * j J ,x pJ x> % pl i
p— (€2i—1e$2i_1f}zi-1 + Ayey, B) €, e, Pl if i, odd
L ] 2]_1 i=1 0

where for each 2i — 1 < i, we have

]* = % pl
z z d én m] Z €ner, B,
2i—1

nea; j NeA;
Notice thatas M n I, = @ for any n and by the choice of e, . and ranks of &, thus also

ranks of &, we get, assuming that i, is even,
i02

t(e;, )(z))| = ! (&2i-1e, Pl + By, Pl ) (2| (89
mt(eg )@ = ) = Euinely, Pl + ey, Pl) ()| (89)
j j S
1 ~ J* ]21 1 j
= z " Z €2i-1 z dgn Z C2i—1 Z a’;|l= 0.
J 2-193 nea; 2i—1€J Yai-1 nea;

The same holds if i, is odd.
Now consider mt(eg) — mt(egio) assuming that i, < a. Notice that
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(i) wips) # w(y;) foreach s,i > i, provided at least one of the indices s, i is bigger than
io + 1,

(i) (mt(eg) — mt (e}‘io)) (xgk_l) =0forany2k — 1 <
Using Corollary (6.3.45) for the terms Y&, +1Z] leg P](ka D] and that
Nzj-1

P P x] DI < 4 it follows that
Z Z leg P](ka DI (90)

z |(mt(eﬁ) mt(e( ) Z1)| Z —_—
i=ig +1 2k—1=i +1
<Z< ‘., { > °
= Ny
Mapj—1 Myj_1 7 tm my;— n

- Jzo+1

Therefore by (88), (89]), (90) and the choice of j; we have |eﬁ(zf)| < 6/myj_q, thus we
can apply Lemma (6.3.20) obtaining that ||y/|| < 60 - 7/m3;_, . For sufficiently big j we
obtain contradiction with (87) and boundedness of T/,

Corollary (6.3.51)[260]: [252]. Let T/ : Xg,s — Xixus b€ a bounded operator. If

Y de’ - 0, then T/y) — 0 for every RIS (y,{)

‘l’l

|e ]1 +1

Proof. Take T/ : Xyus = Xius With Y. j T d]’/ J — 0 and suppose there are a normalised

C-RIS (y;), and & > Osuchthat||3; T/y;|| > &foralln € N.Passing to asubsequence
we may assume as in the proof of Corollary (6.3.50) that

max rank R,, + 2 < minrank R,,,; where R,, = rng(ij,{) U rng(y,{).
Pick (u,) < {£1}and nodes (y,,) with une{;,n(Tfy,{) > 4.
Case 1. There exist a constant ¢ > 0, an infinite set M < N and nodes (¢,,),epn Such that
X |e;‘,n(y,{)| > candeg, ey have compatible tree-analyses.
Pick signs (v, )pem With X vne;‘,n(y,{) = 2 |e;‘,n(y,{)| > ¢ for each n. We may pass to

a subsequence (y,{ ) of (y,{)n so that < 27" for all n. For a fixed j €
"n

»
x; Td,

kn

N,n,;,.1 > 200C, we pick, as in Corollary (6.3.48), a j-dependent sequence (Ci,x{)i where
( (ql + 1 Zl 1,m2] 1,]“1 T]l) [ nzj 1,W|th {0 = O SatleieS

1
. _ J
mt(ey,, ,) = — z z Vney, B,
c m Je= NneEAzi—1 ]
j 2i—-1 ]21 1 -1
X2i-1 = . z Z yn' |le 1” /2'
J2i-1 n€dgi_q J

where I, = [min Ry, max R, ], so that the functional associated to the special node ¢y, ..,

with mt-part of the form
Nyj—1/2

1
Z mt (ecnzj—l) = z m2j+1 z (en2i 1P]]21 1 + AZl UZlP] )
J J

i=1
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satisfies  J,i_q D rng(T/x),_),Jo: 0 mg(T/x),_) = ¢ and rank(bd(e;, ) N
) ]

rank(zjéi_l) = @ foranyi,k.

From Remark (6.3.30) we get

1/20C < Cri—1 < 2.
Using gaps between sets R,, we pick nodes (gle-_l)zl-_lsnzj+1 , With

1 .
mt(efzi—1) = m; z z 'u”ell’npfi'

271 nedy 4

It follows that ¥; ef  (T/x;;_,) > 5/206 for each i.
mfZiZneAziZj d;j ,A,; © {k,: n €N}, by the condition on
21 n

nj

Notice also that for xgi =

<de’j >we have ||X; T/xj;|| <=2 < 27 for each i.
14 nj,.
kn 21
. - . /2 . i - s 2 )
Lety, x/ =y, D22 ym2/2 o) andy, @i =y, TULT@02 o) e have

an—l =1 an—l =1

. moyi_
> maifl< Yy (91)
7 2j—-1

J

and by Corollary (6.3.49)

. . 250
Z (x/ — d’) sZ e (92)

On the other hand by the choice of (¢,,) and (¥,,) there is a well-defined special node £,
associated to the same j-special sequence as g with

Naj—1
2
N _ / 1 cpl e Pj\
mt(eﬁ) - \m , €eria J2i-1 + 2162 J2i /’
- 2j—-1 4
j i=1
so that rank(bd(e;)) N rank(T/xj;_,) = @ for any i. Thus

z TIxI|| = Z es(T/x)) = O

; - 40C
which contradicts (91) and (92) for sufficiently big j as T/ is bounded.
Case 2. Case 1 does not hold. Applying this assumption for ¢ = nz‘jl_lm,;1 ,k €N, we
pick inductively an increasing sequence (g2 + €) < N such that for any node ¢ and n >
qi + € so that e, e, have compatible tree-analyses we have [|X; e, (y,{)l <
Y napio mgt.LetM = (g2 + €)y.

Now we repeat the proof of Corollary (6.3.50), using (y;}) instead of (dij). For afixedj €

N we pick a j-dependent sequence ((i,xij),(i = (qf + L, ¢i—1,myjq, i 1Lmy),
1,...,mpj_1, With {; = 0, such that for each i we have
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mt(eﬂm 1) -

C2i- 1m] i j
Z Z .unelljnPI] ’ xél 1 == Z Z y”JL’

n;
neA; j J2i-1 nead; j

z xéi—1 = 1/2'

J
with A; € M, #A; = n;,,_ J,;—1 = rng(ey,, ), J2i N supp x2k .= @foranyi,k,I,
[min R,, max R, ] and rank(¢,,) = max rngR + 1 for any n. As in the previous case,
1/20C < Czi-1 < 2.Pickj; withm; /m; 4 < 1/n2] , and let

Naj—1/2
=Y
Yo = ) X2i-1
— Thj-1 o

As in the proof of Corollary (6.3.50) it follows that

m]21 1

nzj_lz

ZTJJ >Z : (j)>2 . Z 0 > 9 (93)

= e = —_— — i1 2.

]_ y ]_ Sngjea Y 4 Myjayyy A 2 271 = 80Cmy,_,
We shall estimate now ||/||. As before we consider a special node 8 which is compatible
with a ({",j)-special sequence (6i,z‘ij)?:1, a < nyj_q, and estimate |eg (z7)| where z/ =

Yie; Xj;_, forsomeinterval ] < {1,...,n,;_4}. Writing
laz]

* * ] “'j *
d] € ex . P: + A.e.
= : :z : G omy; 12 R e

=1

witha < n,;_; we pickasbefore i, = min{i < a: ({lxl’) * (6i,zij)} (if such i exists)
and estimate separately | »>% ; dél (w)], |mt(eZ*i0)(W)| and |(mt(ez) — mt(egio))(w)|.
Repeating the reasoning of the proof of Corollary (6.3.50), as (y,{) have norm bounded by
1 and all ”d!l*” < 3, we obtain

Z z a2 (2/) Z 3 2my — (94)

Using Corollary (6.3.21) and the fact that | X:; eyj P,’ (xl.0+1)| < 4 we obtain that

Z (mt(eﬁ*) mt( )) (z7) z <m:._1+ Zmzlj_l Ny, n?ji)

< (95)

using that m;* < n3._ andny, > 200C.

Now conS|der es recall this functional and ez

z, have compatible tree-analyses. Therefore
Lo 0

Gi
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mt (e;, )
f

2
1 . » .
E E 5k J J _x pJ L
— (€Ezi-165,, . szi_l + Azienzif}zi ) if iy even
. 2]'_1 I
j =1

l

j 7J j 2 ok
z - 12 621_1en2 . szl + Azlenzl P l_ + €&, e5,. Z P] if iy odd
T J

i=1
Z Z €neop. P]

where for each foreach 2i — 1 < i, we have
NeEA;

= E E d
7721 1 m
$n J2i—-1

ne4a; j
By choice of the objects above we have

D, me(e,) ()

J

n2j-1
2
<D || 2 2 || 2 T Y
j M2j-1 \i=1 neA; n/ 2i-1€] MWzi-a neA;
1 Coi —1M;. .
PY e 3 e S )
= My, 2i

j 2i—1€J WYaia nea;
As for each n the nodes y,,, @,, have compatible tree-analyses the last sum can be estimated
by Zmz‘}_l. The first sum equals 0 by the condition on ranks of &,,, thus also &, Therefore

we have
S ome(e, )| . 9)
j ¢ 7 e

As before by (94), (95), (96) we have | Y; eg(zf)| <), 8/myj_4, thus we can apply
Lemma (6.3.20) obtaining that ||Y; y/|| < X; 80C/m3;_,. For sufficiently big j we
obtain contradiction with (93) and boundedness of T/.

Corollary (6.3.52)[260]: [252]. Let T/ : Xy,s — Xxus b€ abounded operator. Then there
exist a compact operator K : Xgys = Xiys and a scalar A such that T/ = AVId + K/,

Proof. By Corollary (6.3.50) any (d; in ) has a further subsequence (d)’/ ) such
nenN n’neM

that deijn — Afd)f/'jn — 0asM 3n — oo, for some AJ. By Proposition 6.6 there is a

universal A so that de)’/'jn — Afdijn - 0asn — oo. Applying Corollary (6.3.51) to the

operator T/ — AJId we get that T/y) — AJy) — 0 for any RIS (y]) and thus, by

Proposition (6.3.26), for any bounded block sequence (y,{). It follows that the operator T/ —
A1d is compact.
Corollary (6.3.53)[260]: [252].
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(i) Foreveryk eNandt €T wehave|Y; e;,P/ ()| < 10C/m, .

(iv) Forevery k eNandt €T with w(n,) < mj! we have | X; ey P! ((xz) )l <
11C/m;, .

Proof. Concerning (i), notice first that for any s € F,; we have |X; ep P! (x))| <

10C/m;, .

Indeed, for w(ns) = m,; for some j, We consider the following two cases. Ifmz]1 < mj‘k1

then the estimate follows by (26). If m; ] > ]‘kl , then by the form of e;_and (57) we have

x pl (] J* o d
Q. e bl ()| s 2ymax ) lalid) < 26/m,
J J
Now, as each of the sets{s € F ;| |s| = i,rng(xi) N Iy # @},i €N, has at most two
elements, we have

Z en. P! (v Z

Jj se}"] j

=ZZ

i se}"yj,ls|=i j
Condition (ii) follows from Lemma (6.3.20) and (i).
Corollary (6.3.54)[260]: [252]. For every choice of signs (&) there exists a node / € T
suchthat Q,; = Qyjande € {1} so that

Z <e;,- ((x,ﬁ),) eey; (Sk(xk) )) < :l_C forany k € N.

J Tk

5o Pl (D)

20C 1 10C

Pl (k)] <

i = o
my, &=my My

Proof. Define

D/ ={t €T |rng(x]) nrng(efp)) # @ for at most one k and if t €
Sy then rng(xij) N rng(e{‘;P,i) + @ for at least two i}.

Since for every branch b of 7" the set b N D’ has exactly one element we can define a
subtree T’ of 7" such that D/ is the set of terminal nodes for ’ . Notice that (77\7’) N F,i =
Q. .

If ¥/ € DJ, then we pick the unique k, with rng(ey;) N rng(x, ) # B (asly =
[1,max 4, ,nDandlety/ = y/ande = &, . Then we have the estimate in the lemma

forany k € N.
Assume that y/ ¢ DJ. Using backward induction on 7 we shall define a node #/ with a

tree-analysis (I, €, 7¢) i and associated scalars (Z{)tETj , by modifying the nodes
(1, e”t,nt)tefr and scalars (A{)tET, starting from elements of D/ such that

(T1) ey, , e5, have compatible tree-analyses for any € T,
(T2) K, = F, forany € 77,
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(T3) &e;,%; B (6c(x)) ) = Y P/ ((x])) for any t € Di\E, and k,
Y A{e,’;tP,i (é‘k(x,i)’) =Y A’em (xk))for anyt € D/ n € ;andk,

(T4) &€, = ¢, foranyt € 7'\ D/.

Roughly speaking we need to modify only €,,t € D/, changing signs of some of them.
These modifications determine changes in the rest of the tree, i.e. n,,,u € 7' \D/ according
to the rules of producing nodes.

Step 1. Take t € D/.

Casela.t €€, U Uuegyj Sy -Wesetij, = n,and é = Ox€,, If rng(e;“P,f)intersects
rng(x,{) for some (unique) k, otherwise €, = 6,6, where m = min{i : rng ey, P,{ <
rng(x))}.

The condition (T3) follows straitforward.
Case 1b. t € €, U Uyee iSu - In this case we set 7, = n.and & = €.(= 1).
Y

Moreover, for t € £ ; we set /T{ = 6k7L{. Such choice is possible since Net, ;2 is
symmetric. It follows that

|Z - e 0l = 2 182 = See = e, — I
z |A] €t — eTIt_ (yZL 1)|

where (yij ‘ )i are the vectors of the suitable special sequences. In order to verify condition
(T3) we consider two subcases.

DIf t € Fjort €5, for some u € € (then u € F ), it follows that
rng(e;;tP,{) N rng (x,i)’ = @ for any k by the definition of (x,{)’, thus we
obtain (T3).

(2)Ift € €,;\F,; and rng(e;;tP,{ )Nrng (x,i) = @ for some k, it follows 'Fhat
e; € D/ as well and moreover rng(ey, P,i_ ) either intersects only rng x; or
intersects no rng xl’ . In both cases €, = &,€, and so /’T{ = 6k)l{ and (T3)
holds.

Notice that in either case conditions (T1)—(T2) and (T4) are straitforwardly satisfied.
Step 2. Now we define inductively nodes in t € 77 \D/. Take t € 7' \D/’ and assume we
have defined (€&, 75, Is)ses, Satisfying (T1)—(T4). In all cases we let & = ¢, thus (T4) is
satisfied. Notice that t & U, c¢c i Su

Y
Case2a.t € €. Inthis case we setfj, = 7. Obviously we have (T1)~(T2).
Case2b.t ¢ Eiwe) = mzj Then usmg Remark 4.10 (1) we define 7; so that

mt(e ) z ZESe P]

By definition we have (T1)—(T2).
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Case2c.w(ny) = m‘Z}H, with n, compatible with a (I, j)-special sequence (ftj ,7¢). Then
using Remark 4.10 (2) we define a special node 7j, which is compatible with the same (T,
j)-special sequence (x;,7,) so that

1
mt(eﬁt ) = Z Myie
7 J*

By definition we have (T1)—(T2).

Let7#/ = #js. Notice that by conditions (T1)—(T2) we have Qyi = Q,;. Now we proceed to
show the estimate part of the lemma. Fix k € N. For any nonterminal u € 7 let

Sui = {s € Sulrng(x]) n rng(e;P]) = B}

Let G be the set of minimal nodes u of 7' withu € D/ or (,) < m7; .By 7" denote the
subtree of 7' with the terminal nodes in G. We shall prove by induction starting from G that
foranyu € 7" we have

Z (gs— e%s_ PIZ_ + Zée%s Pli ) )

Sestngyj

o . | 22¢
> (euena P (D)) - e, B (8(x)')) <o (97)
- ]
]
This will end the proof as it follows by (T4) that |3 (e@e;;(b () -

ésey, (8u(xh) ))| =%, les;((x])) — 3;(8x(x) )l Thus taking € = 1 we obtain
the estimate of the lemma.
Step L. u € G.If w(n,) < mj i then the estimate (97) holds true by Corollary (6.3.53)

(ii). If u € D/ then the estimate (97) holds true by (T3).
Step2.u € 7" \ G. Inparticular () = m7; . Obviously S,, < 7"

Case 2a. w(n,) = m7} . We estimate, using (T3) fors € S, n D/

> (e, (5Ce)) - il (60)))

J

A 1 L
z | d’ +E z Eser P] +m_2- z Eser P] (6 (x))
j j

J sESu SESy kNDJ SESy k\DJ
1 1 N

Z +m— Z esnPJ +— z ESﬁPi ((x,]())|
2j

J SESy SESy, knDJ SESyk\DJ

< | zz al (8e(e)) 1+ 1) > dl ()
SES, J SES, J
+Z z €ses. P] 6k(xk) ) — €sep. Pli ((x,]c) )|

SESu \DJ
<..

The first two sums are estimated using (8.1) and #S,, < n,; < ny , for the third element
use the inductive hypothesis and the fact that #(S,,, \ D/) < 2, obtaining the following
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C 22C C
..Sz 2n2] + z —
> ]k myj mjk > My
Case 2b. w(n,) = mz},. Recall that by (T3) we have e e, ¥; P/ ((xk))

Y & es I (rSk(x,{)’) for any ses,NnéE; with s_ €D/ and
%, Mes Pj ((x,{)’) =Y, Aﬁe,*,sl (Sk(x,i),) for any s € S, n €, N DJ. Moreover

i \D’/ c Fyithus X; e P,i ((x,{)) =0 =2 e Pé(&(x,{,j))foranys € (S, N
€,i) \ D’. Therefore we have

S (eh, 0 (5:2)) - e Bl (D))

J

E E d]* + 1 E €, ex Pj
S_
ES m2]+1 775_ IS

j SESy, s_eSu,k,seey i

+ ! z /lée;;sP] (6k(x,£)’)

m .
2j+1 SESu'kﬂgy]
R 1 .
(St T ean
b m2j+1 T
SESy S_ESu,k,seeyj
+ ! Me: P] (xj)’
, Ns k
Mmyjt+1
SESu,kﬂgy]
= dl* + ! & e: P! (6 (xj)’)
fS m2-+1 S— "MNs_ Is k k
J SESy J S_Esu'k\Dj,SE(gyj
; 1 N
J* * j ]
z dfs T myiq z €s_ ens_ P ((xk) )
SESy J S_ESu,k\Dj,SEEVj
. . ! . A
J* ] J* ]
SZ z de, (5k(xk)) T Z z de, ((xk)) +
Jj SESy, j SESy,
1 - N
= * J J
+z o z €s_ en,_ Iy (5k(xk) ) — €&_en,_ B ((xk) )|
J 2j+1 S_ESu’k\Dj,SEE)/j
<..

Proceeding as in Case 2a we obtain
< z <2 C 4 2 22(]) < 22C
S N, . = "
> 2t nzjk Myjv1 Mg i mjy

Corollary (6.3.55)[260]: [252]. The space Xk, is unconditionally saturated.
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Proof. In every block subspace of X, pick a sequence (x,ﬁ)k as above withm;; > 400C.
We claim that such a sequence is unconditional. To this end consider a finite sequence of
scalars (a,) with ||Z,X; axxg || = 1and (6,) < {&1}. We want to estimate the norm of

the vector Y, Spaxx;. Take y/ € I' with }; e e, (X axx) ) = 3/4. Define Qy/,

(y,f) and ((x,{)’) and consider 7/ and e provided by Corollary (6.3.54). Notice that as
Qyi = Qi the projection Qyi defines also (y,{) and (x,{). Estimate, applying Corollary
(6.3.54) and Corollary (6.3.53) (i) both for y/ and 7/, as follows

zexgwayw4zwm)

. (2 ajk(x]{)’ )i Ee;j(zfskak(xi), ) + Z

k ()
(3]

ZZMM (@)= e (ol )| + 2 1l O

+ZZ el [e2 ()|

< 4-24C ) m3} < 2000m! < 12/

)

J

k
where in the last line we use the fact that each |a; | is dominated by twice the basic constant
of the basis (d’y’/). Therefore ||Z,%; Sparxi || = les;(ZiX; Skarxi)l = 1/4,
which ends the proof.
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