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Abstract 

The Mordell exponential sum estimates and sets of large 

trigonometric sums are presented. The exposition of Bourgain 2-source 

extractor and subspace of the Bourgain-Dellaen space are given. We 

study the generalized N-property and Morse-Sard theorem for the sharp 

case of Sobolev mappings and the trace theorem with Luzin N and 

Morse-Sard properties for the sharp case of Sobolev-Lorentz mappings. 

We also study Dubovitskiı̌-Sard and Dubovitskiı̌–Federer theorems in 

Sobolev spaces and the coarea formula. The operators in tight by 

support Banach spaces and an additive combinatorics approach relating 

rank to communication complexity with the structure of the spectrum 

of small sets and the uniform structure of the separable essential 

Lebesgue spaces are introduced. The Hereditarily indecomposable 

essential Lebesgue spaces and unconditionally saturated Banach space 

and that solves the scalar–plus–compact problem and property are 

discissed. 
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 الخلاصة

 
قمنا بتقديم تقديرات جمع أسية مورديل وفئات لمجاميع حساب المثلثات 

لبورجان و الفضاء الجزئي لفضاء  2 –الكبيرة. تم أعطاء عرض مستخرج مصدر 

سارد  –المعممة و مبرهنة مورس  N –ديلين. قمنا بدراسة خاصية  –بورجان 

 Nلأجل الحالة القاطعة لرواسم سوبوليف ومبرهنة الأثر مع خصائص لوزين 

لورنتز. أيضاً درسنا مبرهنات  –سارد للحالة القاطعة لرواسم سوبوليف  –ومورس 

يغة صفيدرر في فضاءات سوبوليف و –سارد و دوبوفيتسكي  –دوبوفيتسكي 

المساحة المصاحبة. تم ادخال المؤثرات في الضيق بواسطة فضاءات باناخ الدعامة 

ومقارنة التوافقية الجمعية المتعلقة الرتبة الى تعقدية الاتصالات مع تشييد الطيف 

لفئات صغيرة والتشيد المنتظم لفضاءات لبيق الأساسية المنفصلة. تمت مناقشة 

د بلة للتحلل وراثياً وفضاءات باناخ المشبعة دون قيفضاءات لبيق الاساسية غير القا

 القياسية والخاصية. –زائد  –أو شرط والتي تحل مسألة التراص 
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Introduction 

A construction of Bourgain [19] gave the first 2-source extractor to break 

the min-entropy rate 1/2 barrier. We write an exposition of his result, giving a 

high level way to view his extractor construction.  

We some recent extensions of the Lusin N-property and the Sard theorem 

for Sobolev maps, which have been obtained in a joint work with M. Csörnyei, 

E. D’Aniello, and B. Kirchheim. We establish Luzin 𝑁- and Morse–Sard 

properties for mappings 𝑣 ∶ ℝ𝑛 → ℝ𝑚 of the Sobolev–Lorentz class 𝑊𝑝,1
𝑘  with 

𝑘 =  𝑛 −  𝑚 +  1 and 𝑝 =
𝑛

𝑘
 (this is the sharp case that guaranties the continuity 

of mappings).  

It is shown that every infinite-dimensional closed subspace of the 

Bourgain-Delbaen space 𝑋𝑎,𝑏 has a subspace isomorphic to some ℓ𝑝. 

We show the existence of non-trivial solutions of the equation 𝑟1 + 𝑟2 =

𝑟3 + 𝑟4, where 𝑟1, 𝑟2, 𝑟3 and 𝑟4 belong to the set R of large Fourier coefficients of 

a certain subset 𝐴 of ℤ/𝑁ℤ. For a {0, 1}-valued matrix M let CC(M) denote the 

deterministic communication complexity of the boolean function associated with 

M. It is well-known since the work of Mehlhorn and Schmidt [STOC 1982] that 

CC(M) is bounded from above by rank(M) and from below by log rank(M) where 

rank(M) denotes the rank of M over the field of real numbers. Determining where 

in this range lies the true worst-case value of CC(M) is a fundamental open 

problem in communication complexity. The state of the art is 

log1.631 rank(M) ≤  CC(M)  ≤  0.415 rank(M), the lower bound is by 

Kushilevitz [unpublished, 1995] and the upper bound is due to Kotlov [Journal 

of Graph Theory, 1996]. Lovasz and Saks [FOCS 1988] conjecture ´ that CC(M) 

is closer to the lower bound, i.e., CC(M) ≤ logc(rank(M)) for some absolute 

constant c — this is the famous “log-rank conjecture” — but so far there has been 

no evidence to support it, even giving a slightly nontrivial (o(rank(M))) upper 

bound on the communication complexity. Our main result is that, assuming the 

Polynomial Freiman-Ruzsa (PFR) conjecture in additive combinatorics, there 

exists a universal constant c such that CC(M) ≤ c · rank(M)/ log rank(M). 

Although our bound is stated using the rank of M over the reals, our proof goes 

by studying the problem over the finite field of size 2, and there we bring to bear 

a number of new tools from additive combinatorics which we hope will facilitate 

further progress on this perplexing question.  For 𝐺 be a finite Abelian group and 

A a subset of G. The spectrum of 𝐴 is the set of its large Fourier coefficients. 

Known combinatorial results on the structure of spectrum, such as Chang’s 

theorem, become trivial in the regime |𝐴|  =  |𝐺|𝛼 whenever α ≤ c, where c ≥ 1/2 



VI 

is some absolute constant. On the other hand, there are statistical results, which 

apply only to a noticeable fraction of the elements, which give nontrivial bounds 

even to much smaller sets.  

We show Luzin N- and Morse–Sard properties for mappings 𝑣 ∶ ℝ𝑛 → ℝ𝑑 

of the Sobolev–Lorentz class 𝑊𝑝,1
𝑘 , 𝑝 =

𝑛

𝑘
 (this is the sharp case that guarantees 

the continuity of mappings). The Sard theorem from 1942 requires that a mapping 

𝑓 ∶ ℝ𝑛 → ℝ𝑚 is of class 𝐶𝑘 , 𝑘 >  𝑚𝑎𝑥(𝑛 −  𝑚, 0). In 1957 Duvovitskiǐ 

generalized Sard’s theorem to the case of 𝐶𝑘 mappings for all 𝑘. Namely he 

proved that, for almost all 𝑦 ∈ ℝ𝑚, 𝐻ℓ(𝐶𝑓 ∩  𝑓 − 1 (𝑦))  =  0 where ℓ =

𝑚𝑎𝑥(𝑛 −  𝑚 −  𝑘 +  1, 0),𝐻ℓ denotes the Hausdorff measure, and 𝐶𝑓 is the set 

of critical points of f. In 2001 De Pascale proved that the Sard theorem holds true 

for Sobolev mappings of the class 𝑊loc
𝑘,𝑝
 (ℝ𝑛, ℝ𝑚), 𝑘 >  𝑚𝑎𝑥(𝑛 −𝑚, 0) and 

𝑝 >  𝑛. The Morse–Sard theorem requires that a mapping 𝑣 ∶ ℝ𝑛 → ℝ𝑚 is of 

class 𝐶𝑘, 𝑘 >  𝑚𝑎𝑥(𝑛 −  𝑚, 0). In 1957 Dubovitskiǐ generalized this result by 

proving that almost all level sets for a Ck mapping have Hs-negligible 

intersection with its critical set, where 𝑠 =  𝑚𝑎𝑥(𝑛 −  𝑚 −  𝑘 +  1, 0). Here 

the critical set, or m-critical set is defined as 𝑍𝑣,𝑚 = {𝑥 ∈ ℝ
𝑛 ∶  𝑟𝑎𝑛𝑘 𝛻𝑣(𝑥)  <

 𝑚}. Another generalization was obtained independently by Dubovitskiǐ and 

Federer in 1966, namely for 𝐶𝑘 mappings 𝑣 ∶  ℝ𝑛 → ℝ𝑑 and integers m ≤ d they 

proved that the set of 𝑚-critical values 𝑣(𝑍𝑣,𝑚) is 𝐻𝑞∘  -negligible for 𝑞∘  =  𝑚 −

 1 +
𝑛−𝑚+1

𝑘
 . They also established the sharpness of these results within the 𝐶𝑘 

category.  

Answering the question of W. T. Gowers, we give an example of a bounded 

operator on a subspace of Gowers unconditional space, which is not a strictly 

singular perturbation of a restriction of a diagonal operator. We give an example 

of two non-isomorphic separable ℒ∞-spaces which are uniformly homeomorphic. 

This answers a question of Johnson, Lindenstrauss and Schechtman [89]. We 

construct a Bourgain–Delbaen ℒ∞-space 𝑋𝐾𝑢𝑠 with structure that is strongly 

heterogeneous.  
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Chapter 1 

Mordell Exponential Sum and an Exposition 

 

We include a proof of a generalization of Vazirani’s XOR lemma that seems 

interesting in its own right, and an argument (due to Boaz Barak) that shows that any two 

source extractor with sufficiently small error must be strong. 

Section (1.1): Exponential Sum Estimate Revisited 

Theorem (1.1.1)[1]: Let 𝑝 be prime. Given 𝑟 ∈ ℤ+ and 𝜀 > 0, there is 𝛿 = 𝛿(𝑟, 𝜀) > 0 

satisfying the following property: If  

𝑓(𝑥) =∑𝑎𝑖𝑥
𝑘𝑖

𝑟

𝑖=1

∈ ℤ[𝑥]    𝑎𝑛𝑑   (𝑎𝑖 , 𝑝) = 1 

where the exponents 1 ≤ 𝑘𝑖 < 𝑝 − 1 satisfy  

(𝑘𝑖 , 𝑝 − 1) < 𝑝
1−𝜀    𝑓𝑜𝑟 𝑎𝑙𝑙   1 ≤ 𝑖 < 𝑟,                         (1) 

(𝑘𝑖 − 𝑘𝑗 , 𝑝 − 1) < 𝑝
1−𝜀     𝑓𝑜𝑟 𝑎𝑙𝑙    1 < 𝑖 ≠ 𝑗 ≤ 𝑟,         (2) 

then there is an exponential sum estimate  

|∑𝑒𝑝(𝑓(𝑥))

𝑝−1

𝑥=1

| < 𝑝1−𝛿                                             (3) 

(denoting 𝑒𝑝(𝑦) = 𝑒
2𝑛𝑖𝑦

𝑝 ). 

Proof. Let 1 ≤ 𝑘𝑖 < 𝑝 − 1(1 ≤ 𝑖 ≤ 𝑟) satisfy (1) and (2). 

We prove that 

max
(𝑎1,…,𝑎𝑟,𝑝)=1

|∑ 𝑒𝑝(𝑎1𝑥
𝑘1 +⋯+ 𝑎𝑟𝑥

𝑘𝑟)

𝑝−1

𝑥=1

| < 𝑝1−δr                       (4) 

for some δ𝑟 > 0, by induction on r. 

The case 𝑟 = 1 appears in [5] and 𝑟 = 2 was treated. Thus assume 𝑟 > 3. 

Let 

𝐻 = {(𝑥𝑘1 , … , 𝑥𝑘𝑟)|𝑥 ∈ 𝔽𝑝
∗ } ⊲ (𝔽𝑝

∗ )
𝑟
                              (5) 

With 

𝐻 =
𝑝 − 1

𝑑
, 𝑑 = (𝑘1, … , 𝑘𝑟 , 𝑝 − 1). 

where δ𝑦 is Dirac at 𝑦 ∈ 𝔽𝑝
𝑟 . 

To establish (4), we may assume all 𝑎𝑖 ∈ 𝔽𝑝
∗ (1 ≤ 𝑖 ≤ 𝑟), since otherwise the problem 

reduces to 𝑟 − 1 terms. Assume 

1

𝑝
|∑𝑒𝑝(𝑎1𝑥

𝑘1 +⋯+ 𝑎𝑟𝑥
𝑘𝑟)

𝑝−1

1

| = |�̂�(𝑎)| > 𝑝−δ.                       (6) 

The same argument leading to (81) (now applied on 𝔽𝑝
𝑟 ) implies 

(𝜇(ℓ) ∗ 𝜇−
(ℓ))(0) > 𝑝−

𝑟
2
−2δℓ2 .                                            (7) 

On the other hand, letting 
𝑟

2
< 𝑟1 < 𝑟 (𝑟 ≥ 3), proceeding as in the binomial case, we 

estimate  
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(𝜇(ℓ) ∗ 𝜇−
(ℓ))(0)

= (𝑝 − 1)−2ℓ |{(𝑥1, . . . , 𝑥2ℓ) ∈ (𝔽𝑝
∗ )
2ℓ
|𝑥1
𝑘𝑖 − 𝑥1

𝑘𝑖 ++⋯− 𝑥2ℓ
𝑘𝑖 = 0 (1 ≤ 𝑖 ≤ 𝑟)}|

≤ (𝑝 − 1)−2ℓ |{(𝑥1, . . . , 𝑥2ℓ) ∈ (𝔽𝑝
∗ )
2ℓ
|𝑥1
𝑘𝑖 − 𝑥2

𝑘𝑖 +⋯− 𝑥2ℓ
𝑘𝑖 = 0 (1 ≤ 𝑖 ≤ 𝑟1)}|           (8). 

To bound (8), express the quantity by exponential sums that may be estimated nontrivially 

from the induction hypothesis, since 𝑟1 < 𝑟. Thus clearly 

= (𝑝 −  1)−2ℓ𝑝−𝑟1 ∑ |∑𝑒𝑝(𝜉1𝑥
𝑘1 +⋯+ 𝜉𝑟1𝑥

𝑘𝑟1)

𝑝−1

𝑥=1

|

2ℓ

𝜉1,…,𝜉𝑟1∈𝔽𝑝

 

< 𝑝𝑟1 + (𝑝 − 1)−2ℓ𝑝2ℓ(1−δr1) < 𝑝−𝑟1 + 2𝑝−2ℓδr1 .                     (9) 
Taking 

ℓ = [
𝑟1
δr1
],                                                   (10) 

(7), (9) imply 

𝑝−
𝑟
2
−2δℓ2 < 2𝑝−𝑟1; 

hence, from the choice of 𝑟1 

δ =
1

4ℓ2
>
δr2
2

4𝑟1
2. 

Taking 𝑟1 = [
𝑟

2
] + 1, we proved that 

δ𝑟 >

δ
[
r
2
]+1

2

4𝑟2
                                                      (11) 

implying Theorem (1.1.1) with  

δr > (
δ2
4𝑟
)
4𝑟

                                                          (12) 

where δ2 = δ2(𝜀). 
Remarks (1.1.2)[1]: (i) The result for 𝑟 = 1 (Gauss sums) was obtained in [5]. Thus 

|∑ 𝑒𝑝(𝑎𝑥
𝑘)

𝑝−1

𝑥=1

|    𝑖𝑓 𝑎 ∈ 𝔽𝑝
∗      𝑎𝑛𝑑   (𝑘, 𝑝 − 1) < 𝑝1−𝜀 .             (13) 

More precisely, it was shown in [5] that if 𝐺 ⊲ 𝔽𝑝
∗  and |𝐺| > 𝑝1−𝜀, then 

|∑𝑒𝑝(𝑎𝑥)

𝑥∈𝐺

| > |𝐺|1−𝛿        𝑓𝑜𝑟 𝑎 ∈ 𝔽𝑝
∗ .                                   (14) 

See also [2] for further extensions to exponential sums of the form  

∑𝑒𝑝(𝑎𝜃
𝑠)

𝑡1

𝑠=1

                                                              (15) 

And 

∑ 𝑒𝑝(𝑎𝜃
𝑠 + 𝑏𝜃𝑠𝑠

′
)

𝑡1

𝑠,𝑠′=1

                                               (16) 

where 𝑎, 𝜃 ∈ 𝔽∗ and 𝜃 is of multiplicative order 𝑡, 𝑡 ≥ 𝑡1 > 𝑝
𝛿 . 
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The methods involved here are closely related to those used in [5] and [2] (while the results 

in [12] and [8] depend on Stepanov's method). 

(ii) Theorem (1.1.1) improves upon the results from [7] and [8] when the exponents {𝑘𝑖} are 

large. Notice that the recent [7] already contains a substantial improvement over Mordell's 

original [13]. 

(iii) The role of condition (ii) above is made clear by the following example from [7] (see 

Example 1.1 in [7]). Let r be even and let  

𝑓(𝑥) =∑(𝑥
𝑝−1
2
+𝑖 − 𝑥𝑖)

𝑟
2

𝑖=1

.                                           (17) 

Then 

|∑ 𝑒𝑝(𝑓(𝑥)) −
𝑝 − 1

2

𝑝−1

𝑥=1

| ≤ 𝑟√𝑝.                                (18) 

(iv) As mentioned above, our argument follows the same pattern as in [5] and [2]. The key 

combinatorial ingredient in [5] is a 'sum-product' theorem for subsets A of the field 𝔽𝑝 (see 

also [6]). 

Proposition (1.1.3)[1]: Given 𝜀 > 0, there is 𝛿 > 0 such that if 𝐴 ⊂ 𝔽𝑝 and 

1 < |𝐴| < 𝑝1−𝜀 ,                                                 (19) 
then  

|𝐴 + 𝐴| + |𝐴. 𝐴| > 𝐶|𝐴|1+𝛿 .                          (20) 
We denote here 𝐴 + 𝐴 = {𝑥 + 𝑦|𝑥, 𝑦 ∈ 𝐴} and 𝐴. 𝐴 = {𝑥. 𝑦|𝑥, 𝑦 ∈ 𝐴} for the sum and 

product sets (and will use the same notation if, more generally, A is a subset of a 

commutative ring ℛ).  

Given 𝐺 ⊲ 𝔽𝑝
∗ , consider the probability measure v on 𝔽𝑝 defined by 

𝑣 =
1

|𝐺|
∑𝛿𝑥
𝑠∈𝐺

.                                                               (21) 

As shown in [5], one may then derive from Proposition (1.1.3) uniform bounds on the 

convolution powers  

𝑣(𝑘) = 𝑣 ∗ …∗ 𝑣⏟      
𝑘−fold

 

denoting  

(𝑖 ∗ 𝜇)(𝑥) = ∑ 𝑣(𝑥 − 𝑦)𝜇(𝑦)

𝑦∈𝔽𝑝

 

and those bounds translate in exponential sum estimates such as (14).  

It turns out that in order to establish Theorem (1.1.1) for general r, it suffices to treat the 

monomial (𝑟 = 1) and the binomial case (𝑟 = 2). Thus we are left with the problem for 

𝑟 = 2. Following the scheme used for 𝑟 = 1, we need to establish a sum-product theorem 

for subsets A of the product 𝔽𝑝 × 𝔽𝑝. Clearly if A is a subset of the form 

𝐴 = {𝑎} × 𝔽𝑝, 𝐴 = 𝔽𝑝 × {𝑎} 𝑜𝑟 𝐴 = {(𝑥, 𝑎𝑥)|𝑥 ∈ 𝔽𝑝}, 

one has |𝐴| = |𝐴 + 𝐴| = |𝐴. 𝐴| = 𝑝 . It turns out that these are essentially the only 

'exceptions' to be taken into account when reformulating Proposition (1.1.3) for 𝔽𝑝 × 𝔽𝑝. 

Proposition (1.1.4)[1]: Let 𝐴 ⊂ 𝔽𝑝 × 𝔽𝑝 satisfying for some 𝜀0 > 0  

|𝐴| > 𝑝𝜀0 .                                                             (22) 
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Assume that 

|𝐴 + 𝐴| + |𝐴. 𝐴| < 𝑝𝜀|𝐴|.                                   (23) 

Proof. Decomposing A as (𝐴 ∩ (𝔽𝑝
∗ × 𝔽𝑝

∗ )) ∪ (𝐴 ∩ ({0} × 𝔽𝑝)) ∪ (𝐴 ∩ (𝔽𝑝 × {0})), we 

may, in view of alternative (27), assume |𝐴 ∩ (𝔽𝑝
∗ × 𝔽𝑝

∗ )| >
1

2
|𝐴| and hence 𝐴 ⊂ 𝔽𝑝

∗ × 𝔽𝑝
∗ . 

Fix 𝜀′ > 0 small and 𝑘 ∈ ℤ+ (to be specified). Take 𝜀 in (49) small enough to obtain from 

Lemma (1.1.10) a subset 𝐴1 ⊂ 𝐴 satisfying 

|𝐴1| > 𝑝
−𝜀′|𝐴|,                                                             (24) 

|𝑘𝐴1
𝑘| < 𝑝−𝜀

′
|𝐴1|.                                                           (25) 

Next, apply Lemma (1.1.9) to the set 𝐴1 with 𝜀 = 𝜀′. 

If (42) fails, say |𝜋1(𝐴1)| ≤ 𝑝
𝜀′ , obviously for some 𝑎 ∈ 𝔽𝑝 

|𝐴 ∩ ({𝑎} × 𝔽𝑝)| > |𝐴1 ∩ ({𝑎} × 𝔽𝑝)| > 𝑝
−𝜀′|𝐴1| > 𝑝

−2𝜀′|𝐴| 
and hence (51) holds. 

Otherwise, either (43) or (44) holds. If (44) and assuming 𝑘 > 𝑘(𝜀′) (=the integer in (44)), 

we get  

𝑝2 = |𝑘𝐴𝑘| <
(25)

𝑝𝜀
′
|𝐴1| 

And hence  

|𝐴1| > 𝑝
2−𝜀1 

and (26) holds. 

Assume (43). Since then 

𝐴1 ⊂ {(𝑥, 𝑎𝑥)|𝑥 ∈ 𝔽𝑝}  for some 𝑎 ∈ 𝔽𝑝
∗ , 

|𝐴 ∩ {(𝑥, 𝑎𝑥)|𝑥 ∈ 𝔽𝑝}| ≥ |𝐴1| >
(2.34)

𝑝−𝜀
′
|𝐴| and (28) holds. 

Assuming (27) or (28), the upperbound in (29) is clear and the lower bound follows from 

Proposition (1.1.3). 

This proves Proposition (1.1.4). 

Then one of the following cases occurs: 

|𝐴| > 𝑝2−𝜀
′
.                                                  (26) 

There is 𝑎 ∈ 𝔽𝑝 such that either                                  (27) 

|𝐴 ∩ ({𝑎} × 𝔽𝑝)| > 𝑝
−𝜀′|𝐴| 

Or 

|𝐴 ∩ (𝔽𝑝 × {𝑎})| > 𝑝
−𝜀′|𝐴|. 

There is 𝑎 ∈ 𝔽𝑝
∗  such that                                           (28) 

|𝐴 ∩ {(𝑥, 𝑎𝑥)|𝑥 ∈ 𝔽𝑝}| > 𝑝
−𝜀′|𝐴| 

where 𝜀′ = 𝜀′(𝜀) → 0 for 𝜀 → 0 with 𝜀0 (22) fixed. 

In cases (27), (28) 

𝑝1−𝜀
′
< |𝐴| < 𝑝1+𝜀

′
                                               (29) 

(v) Theorem (1.1.1) has the following reformulation.  

For 𝜃 ∈ 𝔽𝑝
∗ , denote by 0(𝜃) the multiplicative order of 𝜃 in 𝔽𝑝

∗ . 

Corollary (1.1.5)[1]: Let 𝔽1, … , 𝔽𝑟 ∈ 𝔽𝑝
∗  satisfy for some 𝜀 > 0 

0(𝜃𝑖) > 𝑝
𝜀    for all 𝑖 = 1, . . . , 𝑟,                                      (30) 

0(𝜃𝑖𝜃𝑗
−1) > 𝑝𝜀    for all  1 ≤ 𝑖 ≠ 𝑗 ≤ 𝑟.                           (31) 

Then  
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max
𝑎𝑖∈𝔽𝑝

∗
|∑𝑒𝑝 (∑𝑎𝑖𝜃

𝑟

𝑟=1

)

𝑝−1

𝑠=1

| < 𝑝1−𝛿                                       (32) 

with 𝛿 = 𝛿(𝜀).  
Indeed, let 𝜓 be a generator of 𝔽𝑝

∗  and write 𝜃𝑖 = 𝜓
𝑘𝑖 , where thus 

0(𝜃𝑖) =
𝑝 − 1

(𝑝 − 1, 𝑘𝑖)
,                                                      (33) 

0(𝜃𝑖𝜃𝑗
−1) =

𝑝 − 1

(𝑝 − 1, 𝑘𝑖 − 𝑘𝑗)
.                                            (34) 

Clearly  

∑𝑒𝑝 (∑𝑎𝑖𝜓
𝑠𝑘𝑖

𝑟

𝑖=1

)

𝑝−1

𝑠=1

= ∑ 𝑒𝑝 (∑𝑎𝑖𝑥
𝑘𝑖

𝑟

𝑖=1

)

𝑠∈𝔽𝑝
∗

. 

Since (30), (31), (33), and (34) ensure conditions (1), (2) on the exponents 𝑘𝑖, (32) is 

equivalent to (3). 

The Corollary (1.1.5) remains valid for incomplete sums (the case 𝑟 = 1 appears in [2]). 

Theorem (1.1.6)[1]: Let 𝜀 > 0 and 𝜃𝑖 , . . . , 𝜃𝑟 ∈ 𝔽𝑝
∗  satisfy (30), (31). Then for 𝑡 > 𝑝𝜀  

max
𝑎𝑖∈𝔽𝑝

∗
|∑𝑒𝑝 (∑𝑎𝑖𝜃𝑖

𝑠

𝑟

𝑖=1

)

𝑡

𝑠=1

| < 𝑝−𝛿𝑡                                          (35) 

Where 𝛿 = 𝛿(𝜀). 
We will prove Proposition (1.1.4). We contain the proof of Theorem (1.1.1) for 

𝑓(𝑥) = 𝑎𝑥𝑘 + 𝑏𝑥ℓ a binomial. The general case (r arbitrary) is treated. We point out the 

modifications to obtain Theorem (1.1.6). 

We illustrate applications to uniform distribution issues for power generators in 

cryptography, in the spirit of [10] and [9]. Since the module is assumed to be a product of 

two distinct primes (a Blum integer), we first show how to extend Theorem (1.1.6) to 

composite moduli which factor in distinct large primes. 

We denote for 𝑘 ∈ ℤ+ 

𝑘𝐴 = 𝐴 + 𝐴 +⋯+ 𝐴       (𝑘 − 𝑓𝑜𝑙𝑑), 
𝐴𝑘 = 𝐴. 𝐴…𝐴                   (𝑘 − 𝑓𝑜𝑙𝑑)  

where sum and product sets are defined as  

𝐴 + 𝐵 = {𝑥 + 𝑦|𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵}, 
𝐴. 𝐵 = {𝑥. 𝑦|𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵}.  

Lemma (1.1.7)[1]: (i) Let 𝑆 ⊂ 𝔽𝑝, |𝑆| > 𝑝
3

4. Then 

𝔽𝑝 = 3𝑆. 𝑆.                                                                       (36) 

(ii) Let 𝑆 ∈ 𝔽𝑝, |𝑆| > 𝑝
𝜀. Then 

𝔽𝑝 = 𝑘. 𝑆
𝑘   𝑓𝑜𝑟    𝑘 > 𝑘(𝜀).                                       (37) 

Proof. (1) We may of course assume 𝑆 ∈ 𝔽𝑝
∗ . Introduce the function 

𝑓(𝑥) =
1

|𝑆|
∑ 𝜒𝑆(𝑥, 𝑦)

𝑦∈𝑆−1

                                                 (38) 

satisfying 𝑠𝑢𝑝𝑝 𝑓 ⊂ 𝑆. 𝑆. 

If 𝜉 ∈ 𝔽𝑝, we have 
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𝑓(𝜉) = ∑ 𝑒𝑝(𝑥𝜉)𝑓(𝑥)

𝑥∈𝔽𝑝

=
1

|𝑆|
∑χ̂𝑠(𝑦𝜉)

𝑦∈𝑆

 

and for 𝑓 ∈ 𝔽𝑝
∗  

|𝑓(𝜉)| ≤ |𝑆|−
1
2 (∑|�̂�𝑠(𝑦𝜉)|

2

𝑦∈𝑆

)

1
2

= |𝑆|−
1
2 (∑ |�̂�𝑠(𝜂)|

2

𝜂∈𝔽𝑝

)

1
2

= 𝑝
1
2      (39) 

Write (𝐹 ∗ 𝑓)(𝑥) = ∑ 𝑓(𝑥 − 𝑦)𝑓(𝑦)𝑦∈𝔽𝑝  and 

(𝑓 ∗ 𝑓 ∗ 𝑓)(𝑥) =
1

𝑝
∑ 𝑓(𝜉)3𝑒𝑝(𝑥𝜉)

𝜉∈𝔽𝑝
∗

. 

Hence for all 𝑥 ∈ 𝔽𝑝 

|(𝑓 ∗ 𝑓 ∗ 𝑓)(𝑥) −
1

𝑝
 |𝑆|3| ≤

(39) 1

√𝑝
∑|𝑓(𝜉)|

2
= √𝑝‖𝑓‖2

2 ≤
(2.3)

√𝑝|𝑆|.   (40) 

Since 
1

𝑝
|𝑆|3 > √𝑝|𝑆| from assumption on S, 

𝔽𝑝 = 𝑠𝑢𝑝𝑝(𝑓 ∗ 𝑓 ∗ 𝐹) ⊂ 3 𝑠𝑢𝑝𝑝 𝑓 ⊂ 3𝑆. 𝑆 

proving (36). 

(ii) From the sum-product theorem in 𝔽𝑝 (Proposition (1.1.3)), there is 𝑘1 = 𝑘1(𝜀) such that 

|𝑘1 ∙ 𝑆
𝑘1| > 𝑝

3

4. Here we just iterate (20) using the fact that (𝐴 + 𝐴) ∙ (𝐴 + 𝐴) ∈ 4𝐴2. Next 

apply part (i) to get 𝔽𝑝 = 𝑆(𝑘1𝑆
𝑘𝑖(𝑘1𝑆

𝑘1) ⊂ 3𝑘1
2𝑆2𝑘1.  

Lemma (1.1.8)[1]: If 𝑆 ⊂ 𝔽𝑝 × 𝔽𝑝 satisfies 

|𝑆| > 𝑝1+𝜀 , 
Then 

𝑘𝑆𝑘 = 𝔽𝑝 × 𝔽𝑝    for   𝑘 ∈ ℤ+, 𝑘 ≥ 𝑘(𝜀).                       (41) 

Proof. Denote by 𝜋𝑖: 𝔽𝑝 × 𝔽𝑝 → 𝔽𝑝 the coordinate projections. From the assump tion, there 

are 𝑎1, 𝑎2 ∈ 𝔽𝑝 so that 

𝑆𝑖; = {𝑥 ∈ 𝑆|𝜋𝑖(𝑥) = 𝑎𝑖} 
Satisfies 

|𝑆𝑖| = |𝜋3−𝑖(𝑆𝑖)| > 𝑝
𝜀      (𝑖 = 1,2). 

From Lemma (1.1.7), there is 𝑘1 = 𝑘1(𝜀) ∈ ℤ+ s.t. 

𝔽𝑝 = 𝑘1𝜋2(𝑆1)
𝑘1 = 𝜋2(𝑘1𝑆1

𝑘1) 

And 

𝔽𝑝 = 𝑘1𝜋1(𝑆2)
𝑘1 = 𝜋1(𝑘1𝑆2

𝑘1). 

Writing then  

2𝑘1𝑆
𝑘1 ⊃ 𝑘1𝑆1

𝑘1 + 𝑘1𝑆2
𝑘1 = ({𝑘1𝑎1

𝑘1} × 𝔽𝑝) + (𝔽𝑝 × {𝑘1𝑎2
𝑘1}) = 𝔽𝑝 × 𝔽𝑝, 

(41) follows. 

Lemma (1.1.9)[1]: Let 𝐴 ⊂ 𝔽𝑝
∗ × 𝔽𝑝

∗  satisfy for some 𝜀 > 0  

|𝜋𝑖(𝐴)| > 𝑝
𝜀    and    |𝜋2(𝐴)| > 𝑝

𝜀 .                                   (42) 
Then either 

𝐴 ⊂ {(𝑥, 𝑎𝑥)|𝑥 ∈ 𝔽𝑝}    for some  𝑎 ∈ 𝔽𝑝
∗                  (43) 

Or 

𝑘𝐴𝑘 = 𝔽𝑝 × 𝔽𝑝   for some   𝑘 = 𝑘(𝜀) ∈ ℤ.                         (44) 
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Proof. Applying Lemma (1.1.7) to 𝑆 = 𝜋𝑖(𝐴) ⊂ 𝔽𝑝, we have for some 𝑘0 ∈ ℤ+  

𝜋1(𝑘0𝐴
𝑘0) = 𝑘0𝑆

𝑘0 = 𝔽𝑝                                             (45) 

and similarly 

𝜋2(𝑘2𝐴
𝑘0) = 𝔽𝑝.                                                         (46) 

Clearly (45), (46) remain valid for 𝑘 > 𝑘0. In particular 

|𝑘𝐴𝑘| ≥ 𝑝   for   𝑘 > 𝑘0.                                            (47) 

Assume 𝑘 > 𝑘0 and |𝑘𝐴𝑘| > 𝑝. Then 𝜋1|𝑘𝐴𝑘 is not one-to-one and there are 𝑧, 𝑤 ∈ 𝑘𝐴𝑘 

such that 𝑧1 = 𝑤1 and 𝑧2 ≠ 𝑤2. Hence 

2𝑘𝐴2𝑘 − {𝑧 − 𝑤)(𝑘𝐴𝑘) = {(𝑥1, 𝑥2 − (𝑧2 −𝑤2)𝑦2)| 
𝑥 = (𝑥1, 𝑥2) ∈ 2𝑘𝐴

2𝑘 , 𝑦 = (𝑦1, 𝑦2) ∈ 𝑘𝐴
𝑘}  = 𝔽_𝑝 × 𝔽_𝑝  

since 𝜋(2𝑘𝐴2𝑘) = 𝔽𝑝 = 𝜋2(𝑘𝐴
𝑘). Thus 

𝔽𝑝 × 𝔽𝑝 = 2𝑘𝐴
2𝑘 − (𝑘𝐴𝑘 − 𝑘𝐴𝑘)(𝑘𝐴𝑘) 

And 

𝔽𝑝 × 𝔽𝑝 = 𝑘1𝐴
𝑘1 − 𝑘1𝐴

𝑘1    for   𝑘1 = 3𝑘
2.                 (48) 

Prom the Plannecke-Ruzsa sum set inequalities (see [14]) applied in the additive group 𝔽𝑝 ×

𝔽𝑝 and (48) 

𝑝2 = |𝑘1𝐴
𝑘1 − 𝑘1𝐴

𝑘1| ≤ (
|2𝑘1𝐴

𝑘1|

|𝑘1𝐴
𝑘1|
)

3

|𝑘1𝐴
𝑘1| 

And hence by (47) 

|2𝑘1𝐴
𝑘1| ≥ 𝑝

4
3.                                                             (49) 

We may then apply Lemma (1.1.8) to 𝑆 = 2𝑘1𝐴
𝑘1 ⊂ 𝔽𝑝 × 𝔽𝑝 and get 𝑘2 ∈ ℤ+ s.t. 𝑘2𝐴

𝑘2 =

𝔽𝑝 × 𝔽𝑝, hence (44). 

Fix 𝑧 ∈ 𝑘0𝐴
𝑘0 and let 𝑃 = 𝑘0𝐴

𝑘0 −  𝑧. Thus 0 ∈ 𝑃 ⊂ 𝑃 + 𝑃 and |𝑃| ≥ 𝑝 by (47). If 

|𝑃 + 𝑃| = |2𝑘0𝐴
𝑘0| > 𝑝, it follows from the preceding that we are in alternative (44). 

Assume thus |𝑃 + 𝑃| = 𝑝 = |𝑃|, so that 𝑃 = 𝑃 + 𝑃 and P is closed under addition. Since 

𝜋1(𝑃) = 𝔽𝑝 by (45), there is 𝑐 ∈ 𝔽𝑝 s.t. (1, 𝑐) ∈ 𝑃 and 

𝑃 = {(𝑡, 𝑐𝑡)|𝑡 ∈ 𝔽𝑝}, 

𝑘0𝐴
𝑘0 = {(𝑧1 + 𝑡, 𝑧2 + 𝑐𝑡)|𝑡 ∈ 𝔽𝑝} = {(𝑡, 𝑐𝑡 + 𝑑)|𝑡 ∈ 𝔽𝑝}      (50) 

with 𝑑 = 𝑧2 − 𝑐𝑧1 ∈ 𝔽𝑝. By (46), 𝑐 ≠ 0. Assume 𝑑 ≠ 0. Writing  

(𝑘0𝐴
𝑘0). (𝑘0𝐴

𝑘0) = {(𝑡1𝑡2, 𝑡1 + 𝑐𝑑(𝑡1 + 𝑡2) + 𝑑
2)|𝑡1, 𝑡2 ∈ 𝔽𝑝}, 

it follows that 

|𝑘0
2𝐴2𝑘0| ≥ |{(𝑡1𝑡2, 𝑡1 + 𝑡2)|𝑡1, 𝑡2 ∈ 𝔽𝑝}| >

𝑝2

2
                     (51) 

putting us again in alternative (44).  

Assume 𝑑 = 0 in (50), i.e., 𝑘0𝐴
𝑘0 = {(𝑡, 𝑐𝑡)|𝑡 ∈ 𝔽𝑝}. Fix an element 𝑤 = (𝑤1, 𝑤2) ∈

𝑘0𝐴
𝑘0−1 with 𝑤2 ≠ 0. Then, for all 𝑥 = (𝑥1, 𝑥2) ∈ 𝐴, 𝑤𝑥 ∈ 𝑘0𝐴

𝑘0 and 𝑤2𝑥2 = 𝑐𝑤1𝑥1, 

implying that 𝐴 ⊂ {(𝑡, 𝑎𝑡)|𝑡 ∈ 𝔽𝑝} with 𝑎 = 𝑐𝑤1𝑤2
−1. This is alternative (43). 

Lemma (1.1.10)[1]: Let 𝐴 ⊂ 𝔽𝑝
∗ × 𝔽𝑝

∗  satisfying  

|𝐴| > 𝑝𝜀0 ,                                                            (52) 
|𝐴 + 𝐴| + |𝐴. 𝐴| ≤ 𝑝𝜀|𝐴|                                              (53) 

(𝜀 ≪ 𝜀0). 
fix 𝑘 ∈ ℤ+. There is a subset 𝐴1 ⊂ 𝐴 such that 
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|𝐴1| > 𝑝
−𝛿|𝐴|,                                                          (54) 

|𝑘𝐴1
𝑘| < 𝑝𝛿|𝐴1|                                                           (55) 

where 𝛿 = 𝛿𝑘(𝜀) and 𝛿𝑘(𝜀)
𝜀→0
→  0 for given k. 

(Observe that |𝑘𝐴𝑘| is nondecreasing in k). 

Proof. Recall that 𝐴 ⊂ 𝔽𝑝
∗ × 𝔽𝑝

∗ . Write 

|𝐴|2 =∑|𝑥𝐴|

𝑥∈𝐴

≤ |𝐴. 𝐴|
1
2 [ ∑ |𝑥𝐴 ∩ 𝑥′𝐴|

𝑥,𝑥′∈𝐴

]

1
2

 

and by (53)  

∑ |𝑋𝐴 ∩ 𝑥′𝐴|

𝑥,𝑥′∈𝐴

> 𝑝−𝜀|𝐴|3.                                          (56) 

Lemma (1.1.10) may be proven by an adjustment of the argument in [6] for subsets of 𝔽𝑝 

(the main point in the present is to avoid problems due to zero-divisors). We give a different 

argument, in particular not relying on Gowers' proof of the Balog-Szemeredi theorem.  

Lemma (1.1.11)[1]: Let 𝐴1, 𝐴2, 𝐴3 be finite subsets of an additive group, satisfying 

|𝐴1 ∩ 𝐴3| >
1

𝐾
|𝐴1|,                                              (57) 

|𝐴2 ∩ 𝐴3| >
1

𝐾
|𝐴2|,                                              (58) 

|𝐴𝑖 + 𝐴𝑖| <
1

𝐾
|𝐴𝑖|      (𝑖 = 1,2,3).                    (59) 

Then 

|𝐴1 + 𝐴2| < 𝐾
9|𝐴3.                                                       (60) 

Proof. Write for 𝑖 = 1,2 

𝜒𝐴𝑖 ≤
1

|𝐴𝑖 ∩ 𝐴3|
∑ 𝜒𝑦+(𝐴𝑖∩𝐴3)

𝑦∈𝐴𝑖−(𝐴𝑖∩𝐴3)

                      (61) 

Hence  

𝜒𝐴𝑖+𝐴2 ≤
1

|𝐴1 ∩ 𝐴3||𝐴2 ∩ 𝐴3|
∑ 𝜒𝑦1+𝑦2+(𝐴1∩𝐴3)+(𝐴2∩𝐴3)

𝑦∈𝐴𝑖−(𝐴𝑖∩𝐴3)

𝑖=1,2

 

 

 

and therefore 

|𝐴1 + 𝐴2| ≤
|𝐴1 − 𝐴1||𝐴2 − 𝐴2||𝐴3 + 𝐴3|

|𝐴1 ∩ 𝐴3||𝐴2 ∩ 𝐴3|
≤
𝐾7|𝐴1||𝐴2||𝐴3|

𝐾−2|𝐴1||𝐴2|
= 𝐾9|𝐴3| 

from (57)-(59) and the sum-difference inequalities; (see [14]). 

From (56), we may specify x G A such that 

𝐴1 = {𝑥 ∈ 𝐴|. |𝑥𝐴 ∩ �̅�𝐴| >
1
2
𝑝−𝜀|𝐴|}                            (62) 

Satisfies 

|𝐴1| > 𝑝
−𝜀|𝐴|. 

If 𝑥1, 𝑥2 ∈ 𝐴1, apply Lemma (1.1.11) with 𝐴1 = 𝑥1𝐴, 𝐴2 = 𝑥2𝐴, 𝐴3 = �̅�𝐴 and 𝐾 = 2𝑝𝜀. 
From (60) 

|𝑥1𝐴 + 𝑥2𝐴| < 𝑝
10𝜀|𝐴|,                                                (63) 
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Next, let 𝑥1, 𝑥2, 𝑥3, 𝑥4 ∈ 𝐴1. Since 

|𝑥1𝑥3𝐴 ∩ 𝑥1�̅�𝐴| = |𝑥3𝐴 ∩ �̅�𝐴| >
1

2
𝑝−𝜀|𝐴|, 

|𝑥2𝑥4𝐴 ∩ 𝑥2�̅�𝐴| >
1

2
𝑝−𝜀|𝐴|, 

we may apply Lemma (1.1.11) with 𝐴1 = 𝑥1𝑥3𝐴, 𝐴2 = 𝑥2𝑥4𝐴, 𝐴3 = 𝑥1�̅�𝐴 ∪ 𝑥2�̅�𝐴 and 𝐾 =
𝑝10𝜀, from (63). Hence 

|𝑥1𝑥3𝐴 + 𝑥2𝑥4𝐴| < 𝑝
90𝜀|𝐴|.                                 (64) 

Straightforward iteration implies that 

|𝑦1𝐴 + 𝑦2𝐴| < 𝑝
𝐶𝜀|𝐴|                                        (65) 

whenever 𝑦1, 𝑦2 ∈ 𝐴2
𝑘 and with 𝐶 = 𝐶𝑘 in (65). 

The same statement holds clearly also if 𝑦𝑖 , 𝑦2 ∈ 𝐴1
−1𝐴1

𝑘.  

Write now  

𝜒𝐴1𝑘 ≤
1

|𝐴1|
∑ 𝜒𝑦𝐴1

𝑦∈𝐴1
−1𝐴1

𝑘

                                                    (66) 

𝜒𝐴1𝑘+𝐴1𝑘 ≤
1

|𝐴1|
2

∑ 𝜒𝑦1𝐴1+𝑦2𝐴1
𝑦1,𝑦2∈𝐴1

−1𝐴1
𝑘

 

and using (65)  

|𝐴1
𝑘 + 𝐴1

𝑘| ≤
|𝐴1
−1𝐴1

𝑘|
2

|𝐴1|
2
𝑝𝑐𝜀|𝐴| < 𝑝𝑐𝜀

|𝐴−1𝐴𝑘|
2

|𝐴|
.                   (67) 

From (53) and the Plannecke-Ruzsa inequalities applied multiplicatively in the group  

𝔽𝑝
∗ × 𝔽𝑝

∗ , we have |(𝐴 ∪ 𝐴−1)𝑘| < 𝑝𝑐𝜀|𝐴|. Thus (67) gives  

|𝐴1
𝑘 + 𝐴1

𝑘| < 𝑝𝑐𝜀|𝐴|                                                                     (68) 
and (65) follows from (68), applying again the sum set inequalities. 

We prove Theorem (1.1.1) for 𝑟 = 2. The case 𝑟 = 1 was treated in [5]. First we 

recall a few results from combinatorics and harmonic analysis.  

Lemma (1.1.12)[1]: (The Balog-Szemeredi-Gowers theorem; see [11]). Let A be a finite 

subset of an additive group, |𝐴| = 𝑁, and assume for some 0 < 𝛿 <
1

10
 that 

{(𝑥1, 𝑥2, 𝑥3, 𝑥4) ∈ 𝐴
4|𝑥1 + 𝑥2 = 𝑥3 + 𝑥4}|  > 𝛿𝑁

3.                      (69) 
Then there is a subset 𝐴1 ⊂ 𝐴 satisfying 

|𝐴1| > 𝛿
𝐶𝑁                                                           (70) 

And 

|𝐴1 + 𝐴1| < 𝛿
−𝐶|𝐴1|                                                      (71) 

where C is an absolute constant.  

See [11].  

Later on we will apply this result in the additive group 𝔽𝑝 × 𝔽𝑝 and also in the multiplicative 

group 𝔽𝑝
∗ × 𝔽𝑝

∗  (both cases may in fact be derived from the statement for subsets of ℤ,+).  

Next, we give an elementary fact about the Fourier transform of probability measures.  

Lemma (1.1.13)[1]: Let v be a probability measure on an Abelian group G and assume 

𝛾1, … , 𝛾𝑚 ∈  𝑇(= dual group) such that 

∑|�̂�(𝛾𝑖)|

𝑚

𝑖=1

> 𝛿𝑚. 

Then 
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∑|�̂�(𝛾𝑖 − 𝛾𝑗)|

𝑚

𝑖,𝑗=1

> 𝛿2𝑚2. 

Proof. Take 𝑎 ∈ ℂ, |𝑎𝑖| = 1, such that 𝑎𝑖�̂�(𝛾𝑖) = |�̂�(𝛾𝑖)|. Hence, identifying 𝛾𝑖 with the 

character function 𝐺 → {𝑧 ∈ ℂ ||𝑧| = 1}, 

𝛿𝑚 < ∫ |∑𝑎𝑖𝛾𝑖(𝑥)

𝑚

𝑖=1

| 𝑣(𝑑𝑥)
𝐺

, 

𝛿2𝑚2 < ∫ |∑𝑎𝑖𝛾𝑖(𝑥)

𝑖=1

|

2

𝑣(𝑑𝑥)
𝐺

≤ ∑ |∫(𝛾𝑖�̅�𝑗)(𝑥)𝑣(𝑑𝑥)|

𝑚

𝑖,𝑗=1

= ∑|�̂�(𝛾𝑖 − 𝛾𝑗)|

𝑚

𝑖,𝑗=1

. 

Returning to the exponential sum estimate, assume 1 < 𝑘1 < 𝑘2 < 𝑝 − 1 satisfying 

(𝑘𝑖 , 𝑝 − 1) < 𝑝
1−𝛾      (𝑖 = 1,2)                                   (72) 

And  

(𝑘1 − 𝑘2, 𝑝 − 1) < 𝑝
1−𝛾                                            (73) 

For some 𝛾 > 0. Let 𝑎1, 𝑎2 ∈ 𝔽𝑝
∗  and assume 

|∑ 𝑒𝑝(𝑎1𝑥
𝑘1 + 𝑎2𝑥

𝑘2)

𝑝−1

1

| > 𝑃1−𝜀 .                                    (74) 

Our purpose is to get a contradiction for 𝜀 < 𝜀(𝛾), 𝜀(𝛾) > 0 in (74). 

Consider the multiplicative subgroup 𝐻 < 𝔽𝑝
∗ × 𝔽𝑝

∗  defined by  

𝐻 = {(𝑥𝑘1 , 𝑥𝑘2)|𝑥 ∈ 𝔽𝑝
∗ }. 

Hence 

|𝐻| =
𝑝 − 1

𝑑
    with   𝑑 = (𝑘1, 𝑘2, 𝑝 − 1).                          (75) 

Define the probability measures 𝜇, 𝜇− on 𝔽𝑝 × 𝔽𝑝 by 

𝜇 =
1

|𝐻|
∑ 𝛿𝑦
𝑦∈𝐻

, 

𝜇− =
1

|𝐻|
∑ 𝛿−𝑦
𝑦∈𝐻

 

where 𝛿𝑦 stands for the Dirac measure at y. Rephrase (74) as 

|�̂�(𝑎)| > 𝑝−𝜀 .                                                      (76) 
Notice that by invariance, �̂�(𝜉) = �̂�(𝑦𝜉) for 𝑦 ∈ 𝐻. 

Let ℓ ∈ ℤ+. From (76)  

∑|�̂�(𝑦𝑎)|2ℓ

𝑦∈𝐻

> |𝐻|𝑝−2𝜀ℓ.                                       (77) 

Since |�̂�(𝜉)|2ℓ = (𝜇(ℓ) ∗ 𝜇−
(ℓ))(𝜉), iterated application of Lemma (1.1.13) with 𝑣 = 𝜇(ℓ) ∗

𝜇−
(ℓ) implies 

1

|𝐻|2𝑟
∑ |�̂�((𝑦1 − 𝑦2 +⋯− 𝑦2𝑟)𝑎)|

2ℓ

𝑦1,…,𝑦2𝑟∈𝐻

> 𝑝−4𝜀𝑟ℓ            (78) 

assuming ℓ ∈ ℤ+ to be a power of 2. 

Hence 



11 

𝑝−4𝜀𝑟ℓ < ∑ |�̂�(𝑦𝑎)|2ℓ(𝜇(𝑟) ∗ 𝜇−
(𝑟))(𝑦)

𝑦∈𝔽𝑝
2

                      (79) 

≤ (𝑚𝑢(𝑟) ∗ 𝜇−
(𝑟))(0) ∑ |�̂�(𝜉)|2ℓ

𝜉∈𝔽𝑝
2

 

= 𝑝2(𝜇−
(𝑟))(0). (𝜇(ℓ) ∗ 𝜇−

(ℓ))(0).                                (80) 
Taking 𝑟 = ℓ, it follows that 

(𝜇(𝑟) ∗ 𝜇−
(𝑟))(0) > 𝑝−1−2𝜀𝑟

2
.                              (81) 

On the other hand, there is the upperbound  

(𝜇(𝑟) ∗ 𝜇−
(𝑟))(0) =  |𝐻|−2𝑟|{(𝑦1, . . , 𝑦2𝑟) ∈ 𝐻

2𝑟|𝑦1 − 𝑦2 +⋯− 𝑦2𝑟 = 0}|   

= (𝑝 − 1)−2𝑟 |{(𝑥1, … , 𝑥2𝑟) ∈ (𝔽𝑝
∗ )
2𝑟
|
𝑥1
𝑘1 − 𝑥2

𝑘1 +⋯− 𝑥2𝑟
𝑘1 = 0

𝑥1
𝑘2 − 𝑥2

𝑘2 +⋯− 𝑥2𝑟
𝑘2 = 0

}|      

= (𝑝 − 1)−2𝑟 |{(𝑥1, … , 𝑥2𝑟) ∈ (𝔽𝑝
∗ )
2𝑟
|𝑥1
𝑘1 − 𝑥2

𝑘1 +⋯− 𝑥2𝑟
𝑘1 = 0

 
}|    (82) 

to which the Gauss sum estimate applies. Write 

(82) = (𝑝 − 1)−2𝑟𝑝−1 ∑ |∑𝑒𝑝(𝜉𝑥
𝑘1)

𝑝−1

𝑥=1

|

2𝑟

𝜉∈𝔽𝑝

≤ (
𝑝

𝑝 − 1
)
2𝑟

𝑝−1 + (𝑝 − 1)−2𝑟max
𝜉∈𝔽𝑝

∗
|∑𝑒𝑝(𝜉𝑥

𝑘1)

𝑝−1

𝑥=1

|

2𝑟

. 

In view of assumption (72), by (13), there is 𝛿0 = 𝛿(𝛾) > 0 such that 

max
𝜉∈𝔽𝑝

∗
|∑𝑒𝑝(𝜉𝑥

𝑘1)

𝑝−1

𝑥=1

|

 

≤ 𝑝1−𝛿0     (𝑖 = 1,2)                           (83) 

Taking 𝑟 > 𝑟0,  

𝑟0 = [
1

𝛿0
]                                                           (84) 

and it follows that (82) <
2

𝑝
  

Summarizing  

𝑝−1−2𝜀𝑟
2
< (𝜇(𝑟) ∗ 𝜇𝑟

(𝑟)
) (0) <

2

𝑝
    𝑓𝑜𝑟  𝑟 ≥ 𝑟0                        (85) 

Define the sets  

Ω𝛿 = {𝜉 ∈ 𝔽𝑝
2  | |�̂�(𝜉)| > 𝑝−𝛿}  

And 

Λ𝑟,𝛿 = {𝑦 ∈ 𝔽𝑝
∗ |(𝜇(𝑟) ∗ 𝜇−

(𝑟))(𝑦) > 𝑝−1−𝑠}. 

From (85) with 𝑟 = 𝑟0  

∑|�̂�(𝜉)|2𝑟0

𝜉

< 𝑝2
2

𝑝
= 2𝑝.                                                        (86) 

Hence  

|Ω𝛿| < 𝑝
1+2𝑟0𝛿 .                                                    (87) 

Obviously  



12 

|Λ𝑟,𝛿| < 𝑝
1+𝛿                                                          (88) 

Apply (79) with ℓ = 1, 𝑟 = 𝑟0. Thus 

𝑝−4𝜀𝑟0 < ∑ |�̂�(𝑦𝑎)|2(𝜇(𝑟0) ∗ 𝜇−
(𝑟0))(𝑦)

𝑦∈𝔽𝑝
2

 

Implying 
1

2
𝑝−4𝜀𝑟0 < ∑ (𝜇(𝑟0) ∗ 𝜇−

(𝑟0))(𝑦)

𝑎𝑦∈Ω3𝜀𝑟0

<
(85) 2

𝑝
|Ω3𝜀𝑟0|  

And  

|Ω𝛿| > 𝑝
1−5𝜀𝑟0    𝑓𝑜𝑟  𝛿 > 3𝜀𝑟0.                                      (89) 

Next, writing (79) with ℓ = 𝑟0 

𝑝−4𝜀𝑟𝑟0 < ∑ |�̂�(𝑦𝑎)|2𝑟0(𝜇(𝑟) ∗ 𝜇−
(𝑟))(𝑦)

𝑦∈𝔽𝑝
2

= ∑ +

𝑦∈Λ𝑟,𝛿

∑ .

𝑦∉Λ𝑟,𝛿

               (90) 

Since  

∑ <

𝑦∉Λ𝑟,𝛿

𝑝−1−𝛿 ∑|�̂�(𝜉)|2𝑟0

𝑦∈𝔽𝑝
2

<
(86)

2𝑝−𝛿 , 

It follows from (90) that for 𝛿 > 4𝜀𝑟𝑟0 

|Λ𝑟,𝛿| > 𝑝
−14𝜀𝑟𝑟0    𝑖𝑓  𝑟 ≥ 𝑟0, 𝛿 > 4𝜀𝑟𝑟0 

and hence  

|Λ𝑟,𝛿| > 𝑝
1−4𝜀𝑟𝑟0    𝑖𝑓  𝑟 > 𝑟0, 𝛿 > 4𝜀𝑟𝑟0.                                            (91) 

Notice also that, by (83), if 𝛿 < 𝛿0, 
Ω𝛿(𝔽𝑝

∗ × 𝔽𝑝
∗ ) = {(0,0)}; 

 hence Ω𝛿 = Ω𝛿
∗ ∪ {(0,0)}, denoting 

Ω𝛿
∗ = Ω𝛿 ∩ (𝔽𝑝

∗ × 𝔽𝑝
∗ ). 

Put 

𝛿1 = 5𝜀𝑟0                                                               (92) 
and let 𝜉 ∈ Ω𝛿1

∗ . Replacing in (79) a by 𝜉 and 𝜀 by 𝛿1, 

𝑝−4𝛿1𝑟ℓ < ∑ |�̂�(𝑦𝜉)|2ℓ(𝜇(𝑟) ∗ 𝜇−
(𝑟))(𝑦)

𝑦∈𝔽𝑝
2

                         (93) 

Taking ℓ = 1 in (93),  
1

2
𝑝−4𝛿1𝑟 < ∑ (𝜇(𝑟) ∗ 𝜇−

(𝑟))(𝑦)

𝑦𝜉∈Ω2𝛿1𝑟

                                  (94) 

Since |Ω2𝛿1𝑟| < 𝑝
1+4𝛿1𝑟0𝑟 by (87), in (94) we may further restrict the 𝑦 summation to 

Λ𝑟,5𝛿1𝑟0𝑟 and conclude that  

|Λ𝑟,5𝛿1𝑟0𝑟 ∩ (𝜉
−1Ω2𝛿1𝑟)| >

1

4
𝑝1−4𝛿1𝑟    𝑓𝑜𝑟 𝑟 ≥ 𝑟0.                (95) 

From (87), (89)  

𝑝1−𝛿1 < |Ω𝛿1| < 𝑝
1+2𝑟0𝛿1 .                                          (96) 

Inequality (95) is valid for all 𝜉 ∈ Ω𝛿1
∗ . Taking 𝑟 = 𝑟0, (95), (96) imply 

∑ |(𝜉1
−1Ω2𝛿1𝑟0

 ) ∩ Λ𝑟,5𝛿1𝑟02|

𝜉∈Ω𝛿1
∗

> 𝑝2−5𝛿1𝑟0 
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and the left side is bounded by 

|Λ𝑟,5𝛿1𝑟02|
1
2 ( ∑ |(𝜉1

−1Ω2𝛿1𝑟0
∗ )| ∩ |(𝜉2

−1Ω2𝛿1𝑟0
∗ )|

𝜉1,𝜉2∈Ω𝛿1
∗

)

1
2

 

Therefore 

𝑝3−15𝛿1𝑟0
2
< ∑ (𝜉1

−1Ω2𝛿1𝑟0
∗ ) ∩ (𝜉2

−1Ω2𝛿1𝑟0
∗ )

𝜉1,𝜉2∈Ω𝛿1
∗

 

< |{(𝜉2, 𝜉2, 𝜉3, 𝜉4) ∈ (Ω2δ1𝑟0
∗ )

4
|𝜉1𝜉3 = 𝜉2𝜉4}|.                    (97) 

With e sufficiently small, we may make δ1in (92) arbitrarily small. Applying Lemma 

(1.1.12) to the set 𝛺2δ1r0
∗   in the multiplicative group 𝔽𝑝

∗ × 𝔽𝑝
∗ , there is a subset δ ⊂ 𝛺2δ1r0

∗  

satisfying  

|Ω| > 𝑝1−𝐶𝑟0
2δ1                                                    (98) 

And 

|Ω. Ω| < 𝑝1+𝐶𝑟0
2δ1 .                                          (99) 

We reduce Ω further to also obtain a small additive doubling set. From Lemma (1.1.13)  

∑ |�̂�|2(𝜉1 − 𝜉2)

𝜉1,𝜉2∈Ω

> 𝑝−8δ1𝑟0|Ω|2                                  (100) 

Implying 

|{(𝜉1, 𝜉2) ∈ Ω
2 |𝜉1 − 𝜉2 ∈ 𝛺5δ1r0

 }| > 𝑝3−𝐶𝑟0
2δ1|Ω|2 

and since |𝛺5δ1r0
 | <  𝑝1+10𝑟0

2δ1, it also holds that  

|{(𝜉1, 𝜉2, 𝜉3, 𝜉4) ∈ Ω
4|𝜉1 − 𝜉2 = 𝜉3 − 𝜉4}| > 𝑝

3−𝐶𝑟0
2δ1 .             (101) 

Now applying Lemma (1.1.12) to Ω in the additive group 𝔽𝑝 × 𝔽𝑝 gives a subset 𝐴 ⊂ Ω 

such that  

𝑝1+4𝑟0
2δ1 > |𝐴| > |Ω|𝑝−𝐶𝑟0

2δ1 > 𝑝1−𝐶𝑟0
2δ1 ,                        (102) 

|𝐴 + 𝐴| < 𝑝𝐶𝑟0
2δ1|𝐴|                                                (103) 

(here we use C to denote various numerical constants).  

By (99), it also holds that 

|𝐴. 𝐴| < 𝑝𝐶𝑟0
2δ1|𝐴|.                                                      (104) 

Since A satisfies (103), (104), we may apply Proposition (1.1.4). Notice that by (92), 𝜀′ =

𝜀′(δ1) = 𝜀
′(𝜀)

𝜀→0
→  0. Either (27) or (28) holds. Assume (27), say for some 𝑏 ∈ 𝔽𝑝  

|Ω ∩ ({𝑏} × 𝔽𝑝)| ≥ |𝐴 ∩ ({𝑏} × 𝔽𝑝)| > 𝑝
−𝜀′|𝐴| >

(3.34)

𝑝1−2𝜀
′
.       (105) 

Applying (100) with Ω replaced by Ω ∩ ({𝑏} × 𝔽𝑝), we obtain  

|{(𝜉1, 𝜉2) ∈ 𝔽𝑝
2|(0, 𝜉1 − 𝜉2) ∈ 𝛺5δ1r0

 }| > 𝑝2−4𝜀
′−9δ1𝑟0 > 𝑝

3
2 

contradicting the fact that 𝛺5δ1r0
 = 𝛺5δ1r0

∗ ∪ {(0,0)}. 

Assume (28). Thus there is 𝑐 ∈ 𝔽𝑝
∗  s.t. if 

𝐴1 = 𝐴 ∩ {(𝑡, 𝑐𝑡)|𝑡 ∈ 𝔽𝑝},                                          (106) 
Then 

|𝐴1| > 𝑝
−𝜀′|𝐴| > 𝑝1−2𝜀

′
.                                          (107) 

Recalling that 𝐴1 ⊂ 𝛺2δ1r0
∗  write  
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∑|�̂�(𝑡, 𝑐𝑡)|2
𝑝−1

𝑡=0

≥ |𝐴1|𝑝
−4δ1𝑟0 >

(3.39)

𝑝1−3𝜀
′
                      (108) 

Where 

�̂�(𝑡, 𝑐𝑡) =
1

𝑝 − 1
∑𝑒𝑝 (𝑡(𝑧

𝑘1 + 𝑐𝑧𝑘2))

𝑝−1

𝑧=1

. 

Hence (108) implies 

{(𝑧, 𝑤) ∈ 𝔽𝑝
∗ × 𝔽𝑝

∗ |𝑧𝑘1 + 𝑐𝑧𝑘2 = 𝑤𝑘1 + 𝑐𝑤𝑘2}|  > 𝑝2−3𝜀
′
.            (109) 

Writing 𝑤 = 𝑣. 𝑧, there is 𝑣 ∈ 𝔽𝑝
∗  such that 

𝑣𝑘2 ≠ 1                                                                      (110) 
and the equation   

𝑧𝑘2−𝑘1 =
1 − 𝑣𝑘

𝑐(𝑣𝑘2 − 1)
                                                  (111) 

has at least 𝑝1−3𝜀
′
 solutions in 𝑧 ∈ 𝔽𝑝. 

To ensure (110), we used that 𝑥𝑘2 ≡ 1 has (𝑘2, 𝑝 − 1) <
(72)

𝑝1−𝛾 < 𝑝1−3𝜀
′
 solutions in 𝔽𝑝. 

By (73), (111) has at most (𝑘2 − 𝑘1, 𝑝 − 1) < 𝑝
1−𝛾 solutions, a contradiction for 𝜀′ (hence 

𝜀 in (74)) small enough.  

This completes the proof of Theorem (1.1.1) in the binomial case.  

(i) We comment on how δ in (iii) according to the preceding argument depends on 𝜀 in (i), 

(ii). For 𝑟 = 1 (the monomial case) it was shown in [5] that we may take 

δ1 > exp(−𝐶𝜀
−𝐶2).                                   (112) 

for some constants 𝐶1, 𝐶2 (see [5]).  

A more careful analysis of the proof of Proposition (1.1.4) and the binomial case gives a 

similar lower bound for S2. Therefore (11) implies  

δ𝑟 > exp(−𝐶3𝑟(𝜀
−𝐶2 + 𝑙𝑜𝑔 𝑟)).                                   (113) 

(ii) Next we indicate the proof of Theorem (1.1.6). As already mentioned, the case 𝑟 = 1 

appears in [2] (these and related exponential sums have their importance in issues related to 

cryptography, such as the DifRe-Hellman distributions; see [2]).  

We first treat the case 𝑟 = 2. The general case is then obtained using the same strategy as 

described.  

Also the proof of the 𝑟 = 2 case is almost identical.  

Let 𝛾 > 0 and assume 

0(𝜃1) > 𝑝
𝛾 , 0(𝜃2) > 𝑝

𝛾 , 0(𝜃1𝜃2
−1) > 𝑝𝛾 .                        (114) 

Take 

𝑡 = [𝑝𝛾].                                                        (115) 
Introduce 

𝐻 = {(𝜃1
𝑠, 𝜃2

𝑠)|𝑠 = 1, . . . , 𝑡} ⊂ 𝔽𝑝
∗ × 𝔽𝑝

∗ .                       (116) 

H is not a subgroup of 𝔽𝑝
∗ × 𝔽𝑝

∗  (but an 'approximative' subgroup in the sense of [2]).  

Clearly |𝐻| = 𝑡. Define 𝜇, 𝜇− and assume 𝑎 ∈ 𝔽𝑝
∗ × 𝔽𝑝

∗  such that  

|�̂�(𝑎)| > 𝑝−𝜀                                                            (117) 
with 𝜀 > 0 small enough. Justifying (77) requires an additional argument, since there is no 

true invariance under H-multiplication. Let 𝑡1 =
𝑡

10
𝑝−𝜀 and write for 1 ≤ 𝑠1 ≤ 𝑡1 
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|�̂�(𝜃1
𝑠1𝑎1, 𝜃2

𝑠1𝑎2) − �̂�(𝑎1, 𝑎2)| <
2𝑠1
𝑡
<
1

5
𝑝−𝜀; 

Hence 

|�̂�(𝜃1
𝑠1𝑎1, 𝜃2

𝑠1𝑎2)| >
1

2
𝑝−𝜀 .                                            (118) 

Therefore 

∑|�̂�(𝑦𝑎)|2ℓ

𝑦∈𝐻

≥ ∑|�̂�(𝜃1
𝑠1𝑎1, 𝜃2

𝑠1𝑎2)|
2ℓ

𝑡1

𝑠1=1

> 𝑡14
−ℓ𝑝−2𝜀ℓ < |𝐻|𝑝−3𝜀ℓ   (119) 

providing (77).  

Inequality (83) is substituted by the 𝑟 = 1 case of Theorem (1.1.6) (established in [2]); thus 

max
𝜉∈𝔽𝑝

∗
|∑𝑒𝑝(𝜉𝜃𝑖

𝑠)

𝑡

𝑠=1

| < 𝑡𝑝−δ0    (𝑟 = 1,2)                                   (120) 

Where δ0 = δ0(𝛾) > 0. 

We establish (85) again and continue verbatim the argument until invoking Proposition 

(1.1.4).  

Assuming alternative (28), we obtain instead of (109) that 

|{𝑠, 𝑠′ = 1, . . . , 𝑡|𝜃1
𝑠 + 𝑐𝜃2

𝑠 = 𝑐𝜃1
𝑠′ + 𝑐𝜃2

𝑠′}| > 𝑡2𝑝−3𝜀
′
                    (121) 

for some 𝑐 ∈ 𝔽𝑝
∗ . Writing 𝑠′ = 𝑠 + �̅�, the equation becomes 

(𝜃2𝜃1
−1)𝑠 = 𝑐−1

𝜃1
𝑠̅ − 1

1 − 𝜃2
𝑠̅ .                                             (122) 

Since 𝑠, �̅� < min(0(𝜃1), 0(𝜃2), 0(𝜃2𝜃1
−1)) equation (122) has at most t solutions, 

contradicting (121). 

The combinatorial methods introduced here (sum-product theorems) permit us to 

extend the results from [4] (in particular estimates on Gauss sums) and the results from for 

sparse polynomials to the case of certain composite moduli q. We assume the factorization 

of q involves only a bounded number of prime factors. Details will appear in [3].  

If q factors as a (simple) product of a bounded number of distinct prime factors, i.e., 𝑞 =
𝑝1… 𝑝𝑟, the residue ring ℤ𝑞 identifies with ℤ𝑝1 ×…× ℤ𝑝𝑟 and the argument simplifies 

significantly. It is basically an easy variant of the methods described earlier. In view of 

cryptographical applications, the special case where 𝑞 = 𝑝ℓ with 𝑝, ℓ distinct primes, 𝑝~ℓ, 

is of particular interest (such q are called Blum integers). Our first aim is to extend the proof 

of Theorem (1.1.6) to such moduli. The argument extends easily to products of several 

(boundedly many) distinct primes involving only notational complications.  

Proposition (1.1.14)[1]: Let 𝑞 = 𝑝. ℓ with 𝑝, ℓ as above and 𝜃1, . . . , 𝜃𝑟 ∈ ℤ𝑞
∗  where ℤ𝑞

∗  

denotes the multiplicative group of ℤ𝑞. Assume for some 𝑆 > 0 

𝑂𝑝(𝜃𝑖) > 𝑞
5, 𝑂ℓ(𝜃𝑖) > 𝑞

𝛿    (1 ≤ 𝑖 ≤ 𝑟),                   (123) 

𝑂𝑝(𝜃𝑖𝜃𝑗
−1) > 𝑞𝛿 , (𝑂ℓ(𝜃𝑖𝜃𝑗

−1)  > 𝑞𝛿     (1 ≤ 𝑖 ≠ 𝑗 ≤ 𝑟).        (124) 

Then for 𝐽 > 𝑞𝛿  

max
𝑎1,...,𝑎𝑟≠0(𝑚𝑜𝑑 𝑝

ℓ)
|∑𝑒𝑞(𝑎1𝜃1

𝑗
+⋯+ 𝑎𝑟𝜃𝑟

𝑗
)

𝐽

𝑗=1

| < 𝐽𝑞−𝛿
′
.                (125) 

where 𝛿′ = 𝛿′(𝑟, 𝛿) > 0.  
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We first specify the identification of ℤ𝑝ℓ and the product ℤ𝑝 × ℤℓ. Take 𝛼 ∈ ℤ𝑝 s.t. 𝛼ℓ =

1(𝑚𝑜𝑑𝑝) and 𝛽 ∈ ℤℓ s.t. 𝛽𝑝 = 1(𝑚𝑜𝑑ℓ). Denote by 𝜋𝑝: ℤ𝑝ℓ → ℤ𝑝,𝜋ℓ: ℤ𝑝ℓ → ℤℓ the 

quotient maps. If 𝑎 ∈ ℤ𝑝ℓ, clearly 

𝑎 = 𝜋𝑝(𝑎)ℓ𝛼 + 𝜋ℓ(𝑎)𝑝𝛽    (𝑚𝑜𝑑𝑝ℓ)                               (126) 

providing a factorization of the identity on ℤ𝑝ℓ as 𝜑(𝜋𝑝 × 𝜋ℓ) where 𝜑: ℤ𝑝 × ℤℓ → ℤ𝑝ℓ is 

the ring isomorphism given by 𝜑(𝐴, 𝐵) = 𝐴ℓ𝛼 + 𝐵𝑝𝛽. Writing 
𝑎

𝑝ℓ
=
𝛼𝐴

𝑝
=
𝛽𝐵

ℓ
(𝐴 =

𝜋𝑝(𝑎), 𝐵 = 𝜋ℓ(𝑎)), we get for the exponential sum 

∑(∑𝑎𝑠𝜃𝑠
𝑗

𝑟

𝑠=1

)

𝑗≤𝐽

=∑𝑒𝑝 (∑(𝛼𝐴𝑠)𝜃𝑠
𝑗

𝑠

)𝑒ℓ (∑(𝛽𝐵𝑠)𝜃𝑠
𝑗

𝑠

) 

𝑗

.             (127) 

We outline the proof of Proposition (1.1.14).  

In order to treat the binomial case, we also need the sum-product result in ℤ𝑝 × ℤℓ, 𝑝, ℓ 

distinct primes. It turns out that the situation is even simpler than for 𝑝 = ℓ. 

Lemma (1.1.15)[1]: Let 𝑆 ⊂ ℤ𝑝 × ℤℓ, where 𝑝, ℓ are distinct primes as above. Assume  

𝑝𝛿 < |𝑆| < (𝑝ℓ)1−𝛿                                                          (128) 
and (𝜀 > 0 assumed small enough depending on 𝛿) 

|𝑆 + 𝑆| + |𝑆. 𝑆| < |𝑆|1+𝜀                                      (129) 
(addition and multiplication refer to the ℤ𝑝 × ℤℓ (product) ring structure). 

Then one of the following two alternatives holds: 

|𝑆 ∩ (ℤ𝑝 × {𝑎})| > 𝑝
−𝜀′|𝑆| 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑎 ∈ ℤℓ,                        (130) 

|𝑆 ∩ ({𝑎} × ℤℓ)| > 𝑝
−𝜀′|𝑆| 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑎 ∈ ℤ𝑝                        (131) 

where 𝜀′ = 𝜀′(𝜀) → 0 with 𝜀 → 0. 

Moreover, in case (130) (resp. (131)), 𝑝1−𝜀
′
< |𝑆| < 𝑝1+𝜀

′
 (resp.ℓ1−𝜀

′
< |𝑆| < ℓ1+𝜀

′
). 

Notice that if 𝑝 ≠ ℓ, we do not have to consider alternative (28) in Proposition (1.1.4).  

Sketch of the proof. We follow essentially the same argument as when 𝑝 = ℓ. Assume 

(130), (131) do not hold. We may in particular assume 𝑆 ∈ ℤ𝑝
∗ × ℤℓ

∗.  

By (129), there is a subset 𝑆1 ⊂ 𝑆 s.t. |𝑆1| > 𝑝
−𝐶𝜀|𝑆| and 

|𝑘𝑆1
𝑘| < 𝑝𝐶𝜀|𝑆1|\< 𝑝

𝐶𝜀(𝑝ℓ)1−𝛿 < (𝑝ℓ)1−𝛿+𝐶𝜀 < (𝑝ℓ)1−
𝛿
2              (132) 

(here k is specified, depending on 𝜀′, and the constant C depends on k).  

Denote by 𝜋𝑝: ℤ𝑝 × ℤℓ → ℤ𝑝 and 𝜋ℓ: ℤ𝑝 × ℤℓ → ℤℓ the projections. If (130) fails, 

max
𝛼
|𝑆1 ∩ (ℤ𝑝 × {𝑎})| < 𝑝

−𝜀′|𝑆| < 𝑝−𝜀
′+𝐶𝜀|𝑆1| < 𝑝

−
𝜀′

2 |𝑆1| and hence |𝜋ℓ(𝑆1)| > 𝑝
𝜀′

2 . 

Similarly |𝜋𝑝(𝑆1)| > 𝑝
𝜀′

2 . 

By the sum-product theorem in prime fields and Lemma (1.1.7) we may thus (replacing 𝑆1 

by 𝑘0𝑆1
𝑘0 = 𝑆2 for some 𝑘0 ∈ ℤ+., depending on 𝜀′) assume 

𝜋𝑝(𝑆2) = ℤ𝑝   𝑎𝑛𝑑  𝜋ℓ(𝑆2) = ℤℓ.                                (133) 

Suppose |𝑆2| > 𝑝 > ℓ. There are distinct elements 𝑥0 ≠ 𝑥1 in 𝑆2 s.t. 𝜋ℓ(𝑥0) = 𝜋ℓ(𝑥1). Then 

by (133) 

𝑆2
2 + (𝑆2 − 𝑆2)𝑆2 ⊃ 𝑆2

2 + (𝑥0 − 𝑥1)𝑆2 = 𝑆2
2 + (𝜋𝑝(𝑥0 − 𝑥1)𝜋𝑝(𝑆2) × {0}) 

= 𝑆2
2 + (ℤ𝑝 × {0}) = ℤ𝑝 × ℤℓ                                      (134) 

and therefore  
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|2𝑆2
2 − 𝑆2

2| = 𝑝ℓ 
contradicting (132).  

Also, if (130), it follows from (129) and |𝑆| > 𝑝𝛿 that |𝑆 ∩ (ℤ𝑝 × {𝑎})| > 𝑝
1−𝜀′; hence 

𝑝1−𝜀
′
< |𝑆| < 𝑝1+𝜀

′
. 

This proves Lemma (1.1.15).  

With Lemma (1.1.15) at hand, we obtain the exponential sum estimate.  

Lemma (1.1.16)[1]: Let 𝑝, ℓ be as above, 𝑝 ≠ ℓ. Let 𝜃 ∈ ℤℓ
∗ , 𝜓 ∈ ℤℓ

∗ satisfying for some 

𝑆 > 0 

𝑂𝑝(𝜃) > 𝑝
𝛿 , 

𝑂ℓ(𝜓) > 𝑝
𝛿 , 

If 𝐽 > 𝑝𝛿 , 𝑎 ∈ ℤ𝑝
∗ , 𝑏 ∈ ℤℓ

∗, then  

|∑𝑒𝑝(𝑎𝜃
𝑗)𝑒ℓ(𝑏𝜓

𝑗)

𝐽

𝑗=0

| < 𝐽𝑝−𝛿
′
                                   (135) 

for some 𝛿′ = 𝛿′(𝛿) > 0. 

The proof is similar to the argument explained but no condition on 
𝜃

𝜓
 is involved, since (28) 

is not an issue here.  

More generally, following the argument, we get  

Lemma (1.1.17)[1]: Let 𝑝, ℓ be as above, 𝑝 ≠ ℓ. Let 𝜃1, … , 𝜃𝑟 ∈ ℤ𝑝
∗ ; 𝜓1, . . . , 𝜓𝑠 ∈ ℤℓ

∗ satisfy 

for some 𝛿 > 0  

𝑂𝑝(𝜃𝑖) > 𝑝
𝛿  (1 ≤ 𝑖 ≤ 𝑟), 𝑂𝑝(𝜃𝑖𝜃𝑗

−1) > 𝑝𝛿  (1 ≤ 𝑖 ≠ 𝑗 ≤ 𝑟)         (136) 

And 

𝑂ℓ(𝜓𝑖) > 𝑝
𝛿  (1 ≤ 𝑖 ≤ 𝑠), 𝑂𝑝(𝜓𝑖𝜓𝑗

−1) > 𝑝𝛿  (1 ≤ 𝑖 ≠ 𝑗 ≤ 𝑠)         (137) 

Let 𝑎1, . . . , 𝑎𝑟 ∈ ℤ𝑝
∗  and 𝑏1, . . . , 𝑏𝑠 ∈ ℤℓ

∗. Let 𝐽 > 𝑝𝛿. Then 

|∑𝑒𝑝(𝑎1𝜃1
𝑗
+⋯+ 𝑎𝑟𝜃𝑟

𝑗
)𝑒ℓ(𝑏1𝜓1

𝑗
+⋯+ 𝑏𝑠𝜓𝑠

𝑗
)

𝐽

𝑗=1

| < 𝐽𝑝−𝛿
′
          (138) 

With 𝛿′ = 𝛿𝑟+𝑠
′ (𝑆) > 0. 

As in the proof of Theorems (1.1.1) and (1.1.6) we proceed by induction on 𝑟 + 𝑠. Again 

the case 𝑟 + 𝑠 = 1 follows from [4]. Let 𝑟 + 𝑠 = 2. There are three cases. If 𝑟 = 2 or 𝑠 =
2, we are in the situation 𝑝 = ℓ  discussed. If 𝑟 = 𝑠 = 1, apply Lemma (1.1.16). The case 

𝑟 + 𝑠 ≥ 3 is treated inductively. 

From the identification of ℤ𝑝ℓ and ℤ𝑝 × ℤℓ, in particular (127), Proposition (1.1.14) follows 

from Lemma (1.1.17).  

We now discuss a few cryptographical applications related to [10], [9].  

Let 𝑞 = 𝑝ℓ with 𝑝 ≠ ℓ, 𝑝 ~ℓ prime, be a Blum integer. Fix 𝑒 ∈ ℤ𝑞
∗  and consider the 

sequence �̅� = {𝑢𝑛} defined by  

𝑢𝑛+1 = 𝑢𝑛
𝑒  with initial  𝑢0 = 𝜃 ∈ ℤ𝑞

∗ . 

If 𝑒 = 2, �̅� is the Blum-Blum-Shub generator.  

If (𝑒, (𝑝 − 1)(ℓ − 1)) = 1, �̅� is called an RSA generator.  

Let 𝜆(𝑞) be the smallest common multiple of 𝑝 − 1, ℓ − 1 (the Carmichael function). 

Denote 𝑇 = 𝑂𝑞(𝜃) and 𝜏 = 𝑂𝑇(𝑒). Thus 𝑇|𝜆(𝑞). Recall the result from [9] stating that 

almost surely in 𝑝, ℓ, 𝜃, 𝑒 we have  



18 

𝜏 ≫ 𝑞1−𝜀                                                                  (139) 
for any fixed 𝜀 > 0. 

From (139) and the results from [9], and [10] the uniform distribution of 
{𝑢0, . . . , 𝑢𝑟−1} (𝑚𝑜𝑑𝑞). Using Proposition (1.1.14), we establish also the joint distribution, 

i.e., the uniform distribution of (𝑢𝑛, 𝑢𝑛+1, . . . , 𝑢𝑛+𝐽−𝑖) in ℤ𝑞
𝐽
, for any fixed 𝐽 ≥ 1. 

This will be an immediate consequence of the corresponding exponential sum estimate.  

Proposition (1.1.18)[1]: Assume 𝑝, ℓ, 𝜃, 𝑒 satisfy (139). Then for some 𝛿 > 0  

|∑ 𝑒𝑞(𝑎0𝑢𝑛 + 𝑎1𝑢𝑛+1 +⋯+ 𝑎𝑛+𝐽−1)

𝜏−1

𝑛=0

| < 𝜏𝑞−𝛿                      (140)  

for all (𝑎0, . . . , 𝑎𝐽−𝑖) ∈ ℤ𝑞
𝐽
\{0}. 

Proof. Denote 𝐴 = {𝑢𝑛|𝑛 = 0,1, . . . , 𝜏 − 1} ⊂ 𝐺 = {𝜃
𝑗|0 ≤ 𝑗 < 𝑇} < ℤ𝑞

∗  and denote by 𝜒𝐴 

the indication function of A. Let 1 < 𝑉 < 𝜏 be an integer to specify and let 𝑣 = 0,1, . . . , 𝑉. 
Write 

∑𝑒𝑞(… )

𝜏−1

𝑛=0

=∑𝑒𝑞(𝑎0𝑢𝑛+𝑣 +⋯+ 𝑎𝐽−1𝑢𝑛+𝑣+𝐽−1)

𝜏−1

𝑛=0

+ 0(𝑉) 

=
1

𝑉
∑∑𝑒𝑞(𝑎0𝑢𝑛

𝑒𝑣 + 𝑎𝐽−1𝑢𝑛
𝑒𝑣+𝐽−1)

𝜏−1

𝑛=0

𝑉−1

𝑣=0

0(𝑉) 

=
1

𝑉
∑∑𝑒𝑞(𝑎0𝑥

𝑒𝑣 +⋯+ 𝑎𝑗−1𝑥
𝑒𝑣+𝐽−1)𝜒𝐴(𝑥)

𝑥∈𝐺

𝑉−1

𝑣=0

+ 0(𝑉).             (141) 

In order to remove the restriction 𝑥 ∈ 𝐴 in the first term of (141), proceed in the usual way. 

Thus estimate by  

1

𝑉
|𝐴|

1
2 ( ∑ |∑𝑒𝑞(… )

𝑉−1

𝑣=0

|

2

𝑥\𝑖𝑛𝐺

)

1
2

≤
1

𝑉
|𝐴|

1
2(𝑉|𝐺| + (7.4))

1
2 

Where 

= ∑ |∑𝑒𝑞(𝑎0𝑥
𝑒𝑣1 +⋯+ 𝑎𝐽−1𝑥

𝑒𝑣1+𝐽−1 − 𝑎0𝑥
𝑒𝑣1 −⋯− 𝑎𝐽−1𝑥

𝑒𝑣2+𝐽−1)

𝑥∈𝐺

|

𝑣1≠𝑣2<𝑉

.    (142) 

Rewrite the inner sum in (142) as 

∑𝑒𝑞 (𝑎0(𝜃0
𝑠 − 𝜓0

𝑠) + ⋯+ 𝑎𝐽−1(𝜃𝐽−1
𝑠 − 𝜓𝐽−1

𝑠 ))

𝑇−1

𝑠=0

                (143) 

Where 

𝜃𝑗  = 𝜃
𝑒𝑣1+𝐽   𝑎𝑛𝑑   𝜓𝑗  = 𝜃

𝑒(𝑣2+𝐽) .                                     (144) 

In order to apply Proposition (1.1.14) to (143), we need to ensure that for some 𝛾 > 0  

𝑂𝑝(𝜃𝑖), 𝑂𝑝(𝜓𝑖) > 𝑝
𝛾            (𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖),                        (145) 

𝑂𝑝(𝜃𝑖𝜃𝑗
−1), 𝑂𝑝(𝜓𝑖𝜓𝑗

−1) > 𝑝𝛾      (𝑖 ≠ 𝑗),                      (146) 

 

𝑂𝑝(𝜃𝑖𝜓𝑗
−1) > 𝑝𝛾       (𝑓𝑜𝑟 𝑎𝑙𝑙   𝑖, 𝑗)                                 (147) 

and similarly replacing p by ℓ. 

By (144), these conditions are equivalent to 
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(𝑒𝑣1+𝑗 , 𝑝 − 1) < 𝑝1−𝛾,                                               (148) 

(𝑒𝑣2+𝑗 , 𝑝 − 1) < 𝑝1−𝛾,                                               (149) 

(𝑒𝑣1+𝑖 − 𝑒𝑣1+𝑗 , 𝑝 − 1) < 𝑝1−𝛾          (𝑖 ≠ 𝑗),                           (150) 

(𝑒𝑣1+𝑖 − 𝑒𝑣1+𝑗 , 𝑝 − 1) < 𝑝1−𝛾,                                               (151) 
and similarly with p replaced by ℓ. 

Conditions (148), (149) are obviously satisfied since (𝑒, 𝑝 − 1) = 1 = (𝑒, ℓ − 1). Also 

(150), (151) are equivalent to 

(𝑒𝑗 − 1, 𝑝 − 1) < 𝑝1−𝛾       (0 < 𝑗 ≤ 𝐽)                      (152) 
And 

(𝑒𝑣1−𝑣2+𝑗1, 𝑝 − 1) < 𝑝1−𝛾       (|𝑗| ≤ 𝐽)                      (153) 

If (𝑒𝑤 − 1, 𝑝 − 1) = 𝜉 > 𝑝1−𝛾 , 𝑤 ≠ 0, clearly 

#{𝑒𝑢(𝑚𝑜𝑑𝑝 − 1)} < |𝑤|.
𝑝 − 1

𝜉
 

and recalling (139) 

𝑞1−𝜀 < 0𝑇(𝑒) < #{𝑒
𝑢𝑚𝑜𝑑(𝑝 − 1)(ℓ − 1)} < |

𝑤

𝜉
| 𝑞.                     (154) 

Therefore |𝜉| < 𝑞𝜀|𝑤| and |𝑤| > 𝑞
1−𝛾

2
−𝜀

. 

Take 𝛾 =
1

2
.  

Thus (152) holds, since 𝑗 = 𝑤 < 𝐽 < 𝑞
1

4
−𝜀

. Since 

|𝑣1 − 𝑣2 + 𝑗| ≤ 𝑉 + 𝐽, 

choosing 𝑉 = [𝑞
1

5] will also ensure (153) if |𝑣1 − 𝑣2| > 𝐽.  

Returning to (142), it follows from Proposition (1.1.14) 

(7.4) < 𝑉2|𝐺|1−𝛿
′
+ 𝐽. 𝑉|𝐺| 

where 𝛿′ = 𝛿′(𝛾) = 𝛿′ (
1

4
). Therefore  

(141) <
1

𝑉
𝜏
1
2(𝐽𝑉|𝐺| + 𝑉2|𝐺|1−𝛿

′
)
1
2 + 𝑂(𝑉) 

≲ 𝑉
1
2(𝜏𝑇)

1
2 + 𝜏

1
2𝑇
𝜏−𝛿′

2 + 𝑂(𝑉).                             (155) 

≲ 𝑞
9
10 + 𝑞1−

𝛿′

2 < 𝜏𝑞
𝜀−(

𝛿′

2
∧
1
10
)
. 

This proves (140). 

We establish an unconditional result for the Blum-Blum-Shub gen erator. First, we choose 

appropriate primes 𝑝, ℓ. Fix r and let 𝑝, ℓ be distinct primes of the form 

𝑝 = 1 + 𝑐3𝑟 ,                                                      (156) 
ℓ = 1 + 𝑑3𝑟 ,                                                     (157) 

with 𝑐, 𝑑 ∈ ℤ+ and 

𝑝 ~ ℓ < 320𝑟                                                               (158) 
(which exist by Linnik's theorem). 

Clearly 3𝑟|𝜆(𝑞), 𝑞 = 𝑝ℓ and we take 𝜃 = 𝑢0 ∈ ℤ𝑞
∗  s.t. 

𝑂𝑞(𝜃) = 𝑇 = 3
𝑟 > 𝑞

1
20.                                             (159) 

Hence  

𝜏 = 𝑂𝑇(2)~𝑇.                                                           (160) 
We verify conditions (148)-(151).  
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From (156)-(158)  

(2𝑣1+𝑗 , 𝑝 − 1) = (2𝑣1+𝑗 , 𝑐3𝑟)(2𝑣1+𝑗 , 𝑐) <
𝑝

3𝑟
< 𝑝

19
20. 

Condition (152) is obviously satisfied. We verify (153).  

Let (2𝑤 − 1, 𝑝 − 1) = 𝜉 > 𝑝1−𝛾 , 𝑤 ≠ 0. Again 

3𝑟 ≲ {2𝑢(𝑚𝑜𝑑3𝑟)} < #{2𝑢(𝑚𝑜𝑑 𝑝 − 1)} < |𝑤|
𝑝 − 1

𝜉
< 𝑝𝛾|𝑤|;       (161) 

Hence 

|𝑤| > 𝑝
1
20
−𝛾 . 

The same holds with p replaced by ℓ.  

It suffices thus to choose 𝛾 =
1

40
 and 𝑉 = [𝑞

1

50] in (155). We proved  

Proposition (1.1.19)[1]: Take 𝑝, ℓ distinct primes as in (156)-(158) and let 𝑢0 = 𝜃 satisfy 

(160). Thus the Blum-Blum-Shub generator {𝑢𝑛} satisfies (140) (for any fixed J) and hence 

�̅� is jointly uniformly distributed. 

Section (1.2): Bourgain 2-Source Extractor 

The min-entropy of a distribution is k if  

max
𝑥∈𝑆𝑢𝑝𝑝(𝑋)

𝑃𝑟[𝑋 = 𝑥] = 2−𝑘 

We say that a function 𝐸𝑥𝑡: {0, 1}𝑛 × {0, 1}𝑛 → {0, 1}𝑚 is a 2-source extractor for entropy 

k if given any 2 independent distributions (a.k.a. sources) (𝑋, 𝑌) with min-entropy k, 

𝐸𝑥𝑡(𝑋, 𝑌) is close to being uniformly random. We say that the extractor is strong if it 

satisfies the properties: 
Pr
𝑋𝑦←𝑅
  [|𝐸𝑥𝑡(𝑋,𝑦)− 𝑈𝑚| > 𝜖] < 𝜖 

Pr
𝑋𝑦←𝑅
 
[|𝐸𝑥𝑡(𝑥, 𝑌) − 𝑈𝑚| > 𝜖] < 𝜖  

with low 𝜖 for arbitrary independent min-entropy k distributions X,Y. 

     Another way to view 2-source extractors is as boolean matrices (obtained in the natural 

way from the truth table of the extractor) which look random in a strong sense: Every 2-

source extractor for entropy k gives an 𝑁 ×𝑁 boolean matrix in which every 𝐾 × 𝐾 minor 

has roughly the same number of 1’s and 0’s, with 𝑁 = 2𝑛, 𝐾 = 2𝑘. 

      The probabilistic method shows that most functions are 2-source extractors requiring 

entropy that is just logarithmic in the total length of each of the sources, though explicit 

constructions of such functions are far from achieving this bound.  

      The question of finding explicit deterministic polynomial time computable functions 

that match the random construction. This question was first considered by [21], [26], [27]. 

The classical Lindsey Lemma gives a 2-source extractor for sources on n bits with entropy 

slightly greater than 𝑛/2. No significant progress was made in improving the entropy 

requirements over this, until recently. In the last few years, sparked by new results in 

arithmetic combinatorics [20], there were several results [16], [17], [25], [19], [24], [18] on 

constructing extractors for a few independent sources.  

Today, the 2 source extractor that requires the lowest amount of entropy in every source is 

due to Bourgain [19], who showed how to get an extractor for 2 sources, when the sum of 

the min-entropies of both sources is large than 2𝑛(1/2 − 𝛼) for some universal constant α. 

Bourgain’s construction relies on bounds coming from arithmetic combinatorics. While 

Bourgain’s bound may not seem like a big improvement over the earlier result, it turns out 

to be crucial to the Ramsey graph construction of [18].  
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first we describe Bourgain’s argument. Then we give a proof of a generalization of 

Vazirani’s XOR lemma, that can be used to improve the output length of Bourgain’s 

extractor. At the end we include a simple argument due to Boaz Barak that shows that any 

two source extractor with small enough error must be strong.  

We will reserve the variable p to denote primes. 

𝔽𝑝 will denote the field of size p. 

ℂ will denote the complex numbers.  

𝑈𝑚 will denote the uniform distribution on m bits. 

G will denote a finite abelian group. 

We use the convention that 𝑁 = 2𝑛, 𝑀 = 2𝑚. 

For two elements of a vector space x,y, we will use 𝑥 · 𝑦 to denote the dot product ∑ 𝑥𝑖𝑦𝑖𝑖  . 

For a complex number x, we will use �̅� to represent its complex conjugate. 

We state several facts without proof though all of them can be worked out easily. 

Let 𝑓: 𝐺 → ℂ and 𝑔: 𝐺 → ℂ be two functions from a finite abelian group G to the 

complex numbers.  

We define the inner product 〈𝑓, 𝑔〉 = (
1

|𝐺|
)∑ 𝑓(𝑥)𝑔(𝑥)𝑥∈𝐺 .  

The ℓ𝑝 norm of f is defined to be ‖𝑓‖ℓ𝑝 = (∑ |𝑓(𝑥)|𝑝𝑥∈𝐺 )
1

𝑝 . 

The 𝐿𝑝 norm of f is defined to be ‖𝑓‖𝐿𝑝 = (
∑ |𝑓(𝑥)|𝑝𝑥∈𝐺

|𝐺|
)

1

𝑝
= |𝐺|

−
1

𝑝‖𝑓‖ℓ𝑝.  

The ℓ∞ norm is defined to be ‖𝑓‖ℓ∞ = max
𝑥
|𝑓(𝑥)|. 

We have the following basic relations between the norms:  

Fact (1.2.1)[15]: ‖𝑓‖ℓ∞ ≥ (
1

√|𝐺|
) ‖𝑓‖ℓ2. 

Fact (1.2.2)[15]: ‖𝑓‖ℓ2 ≥ (
1

√|𝐺|
) ‖𝑓‖ℓ1. 

Fact (1.2.3)[15]: (Triangle Inequality). |〈𝑓, 𝑔〉| ≤ ‖𝑓‖𝐿1‖𝑔‖ℓ∞. 

The Cauchy Schwartz inequality will play a central role in the proof. 

Proposition (1.2.4)[15]: (Cauchy Schwartz). For any two functions 𝑓, 𝑔 as above, |〈𝑓, 𝑔〉| ≤
‖𝑓‖𝐿2‖𝑔‖𝐿2. 

Let 𝔽 be any field. Let 𝜓:𝐺 → 𝔽∗ be a group homomorphism. Then we call 𝜓 a 

character. We call 𝜓 non-trivial if 𝜓 ≠ 1. Unless we explicitly state otherwise, all characters 

will map into the multiplicative group of ℂ.  

Definition (1.2.5)[15]: (Bilinear maps). We say a map 𝑒: 𝐺 × 𝐺 → ℂ is bilinear if it is a 

homomorphism in each variable (for every 𝜉, both 𝑒(·, 𝜉) and 𝑒(𝜉,·) are homomorphisms). 

We say that it is non-degenerate if for every 𝜉, 𝑒(𝜉,·) and 𝑒(·, 𝜉) are both non-trivial. We 

say that it is symmetric if 𝑒(𝑥, 𝑦) = 𝑒(𝑦, 𝑥) for every 𝑥, 𝑦 ∈ 𝐺. 

      Let ℤ𝑟 denote the ring ℤ/(𝑟). It is easy to check that if we let e be the map that maps 

(𝑥, 𝑦) ⟼ 𝑒𝑥𝑝(2𝜋𝑥𝑦𝚤/𝑟), then e is a symmetric non-degenerate bilinear map. Let 𝐺 =
𝐻1⊕𝐻2 be the direct sum of two finite abelian groups. Let 𝑒1: 𝐻1 × 𝐻1 → ℂ and 𝜖2: 𝐻2 ×
𝐻2 → ℂ be symmetric nondegenerate bilinear maps. Then it is easy to see that the map 

(𝑥1⊕𝑦1, 𝑥2⊕𝑦2) ⟼ 𝑒1(𝑥1, 𝑥2)𝑒2(𝑦1, 𝑦2) is a symmetric non-degenerate bilinear map. 

By the fundamental theorem of finitely generated abelian groups, every finitely generated 

abelian group is isomorphic to a direct sum of cyclic groups. Thus the previous discussion 

gives that:  
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Fact (1.2.6)[15]: For every abelian group G, there exists a symmetric non-degenerate 

bilinear 𝑒: 𝐺 × 𝐺 → ℂ.  

     It can be shown that the characters of a finite abelian group G themselves form a finite 

abelian group 𝐺∧ (called the dual group of G), where the group operation is pointwise 

multiplication. Now fix any symmetric, non-degenerate, bilinear map e. For every 𝑥 ∈ 𝐺, 

let 𝑒𝑥 denote the character 𝑒(𝑥,·). The map 𝑥 ⟼ 𝑒𝑥 can then be shown to be an isomorphism 

from G to 𝐺∧. 

Fact (1.2.7) (Orthogonality)[15]: For any two characters 𝑒𝑥, 𝑒𝑦, we have that 〈𝑒𝑥, 𝑒𝑦〉 =

{
1      𝑥 = 𝑦
0      𝑥 ≠ 𝑦

. 

We define the fourier transform of f (with respect to the above e) to be the function 𝑓: 𝐺 →

ℂ to be: 𝑓(𝜉) = 〈𝑓, 𝑒𝜉〉. Then it is easy to check that this is a linear, invertible operation on 

the space of all such functions. We get that:  

Fact (1.2.8) (Parseval)[15]: ‖𝑓‖𝐿2 = ‖𝑓‖ℓ2. 

Proposition (1.2.9)[15]: ‖𝑓‖ℓ1 ≤ |𝐺|
3

2‖𝑓‖
ℓ∞

. 

Proof. 

‖𝑓‖ℓ1                  

≤ √|𝐺|‖𝑓‖𝑙2 
= |𝐺|‖𝑓‖𝐿2      

                                                        = |𝐺|‖𝑓‖
ℓ2
               𝑏𝑦 𝑃𝑎𝑟𝑠𝑒𝑣𝑎𝑙(𝐹𝑎𝑐𝑡 (1.2.8)) 

≤ |𝐺|
3
2‖𝑓‖

ℓ∞
 

Fact (1.2.10)[15]: (Fourier Inversion). 𝑓(𝑥) = |𝐺|𝑓(−𝑥) = ∑ 𝑓(𝜉)𝑒𝜉  (𝑥)𝜉∈𝐺 . 

Fact (1.2.11)[15]: (Preservation of Inner Product). 〈𝑓, 𝑔〉 = |𝐺|〈𝑓, �̂�〉. 
      By the additive characters of a vector space over a finite field, we mean the characters 

of the additive group of the vector space. In our applications for 2-source extractors, the 

characters will always be additive characters of some such vector space. The following 

proposition is easy to check:  

Proposition (1.2.12)[15]: Let 𝔽𝑙 be a vector space over a finite field 𝔽. Let 𝜓 be any non-

trivial additive character of 𝔽. Then the map 𝑒(𝑥, 𝑦) = 𝜓(𝑥 · 𝑦) = 𝜓(∑ 𝑥𝑖𝑦𝑖𝑖 ) is symmetric, 

non-degenerate and bilinear.  

Note that we can view every distribution on the group G as a function that maps every 

group element to the probability that the element shows up. Thus we will often view 

distributions as real valued functions in the natural way: 𝑋(𝑥) = 𝑃𝑟[𝑋 = 𝑥]. 
Fact (1.2.13)[15]: Let X be any random variable over G. Then 𝐻∞(𝑋) ≥ 𝑘 simply means 

that ‖𝑋‖ℓ∞ ≤ 2
−𝑘 and implies that ‖𝑋‖ℓ2 ≤ 2

−
𝑘

2. 

Fact (1.2.14)[15]: Let X be any random variable over G, then 𝐸𝑋(𝑓(𝑋)) = |𝐺|〈𝑓, 𝑋〉.  
Fact (1.2.15)[15]: If X is a distribution, �̂�(0) = 1/|𝐺|. 
Let U denote the uniform distribution. Then note that |𝐺|𝑈 is simply the trivial character 𝑒0. 

Thus: 

Fact (1.2.16)[15]: �̂�(𝜉) = {

1

|𝐺|
     𝜉 = 0

0      𝜉 ≠  0
. 

Let 𝔽 be a finite field. 
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We will call a subset ℓ ⊂ 𝔽 × 𝔽 a line if there exist two elements 𝑎, 𝑏 ∈ 𝔽 s.t. the elements 

of ℓ are exactly the elements of the form (𝑥, 𝑎𝑥 + 𝑏) for all 𝑥 ∈ 𝔽. 

     Let 𝑃 ⊆ 𝔽 × 𝔽 be a set of points and L be a set of lines. We say that a point (𝑥, 𝑦) has an 

incidence with a line ℓ if (𝑥, 𝑦) ∈ ℓ. A natural question to ask is how many incidences can 

we generate with just K lines and K points. Bourgain, Katz and Tao [20] proved a bound on 

the number of incidences for special fields when the number of lines and points is high 

enough. Konyagin [23] improved the bound to eliminate the need for K to be large.  

Theorem (1.2.17)[15]: (Line Point Incidences). [20], [23] There exists universal constants 

𝛽, 𝛼 > 0 such that for any prime field 𝔽𝑝, if L,P are sets of K lines and K points respectively, 

with 𝐾 ≤ 𝑝2−𝛽0 , the number of incidences 𝐼(𝐿, 𝑃) is at most 𝑂 (𝐾
3

2
−𝛼). 

    An interesting thing to note is that the theorem above does not hold for pseudolines (sets 

with small pairwise intersections) over finite fields, though a similar theorem does hold over 

the reals.  

When the field is of size 2𝑝 for a prime p a weaker version of the line point incidences 

theorem holds.  

Theorem (1.2.18)[15]: (Line Point Incidences). [20], [23] There exists a universal constant 

𝛽 > 0 such that for any field 𝔽2𝑝 of size 2𝑝 for prime p, if 𝐿, 𝑃 are sets of K lines and K 

points respectively with 2(1−𝛽)𝑝 ≤ 𝐾 ≤ 2(1−𝛽)𝑝, the number of incidences 𝐼(𝐿, 𝑃) is at most 

𝑂 (𝐾
3

2
−𝛼). 

We describe Bourgain’s construction. We start by revisiting the argument for why the 

hadamard matrix gives a good 2 source extractor for higher min-entropy. 

We recall how to extract from two sources when the min-entropy is high. For a finite 

field 𝔽, let 𝐻𝑎𝑑: 𝔽𝑙 × 𝔽𝑙 → 𝔽 be the dot product function, 𝐻𝑎𝑑(𝑥, 𝑦) = 𝑥 · 𝑦. 

We have the following theorem.  

Theorem (1.2.19)[15]: [21], [27] For every constant 𝛿 > 0, there exists a polynomial time 

algorithm 𝐻𝑎𝑑: ({0, 1}𝑛)2 → {0, 1}𝑚 s.t. if 𝑋, 𝑌 are independent (𝑛, (
1

2
+ 𝛿)𝑛) sources, 

𝔼𝑌[‖𝐻𝑎𝑑(𝑋, 𝑌) − 𝑈𝑚‖ℓ1|] < 𝜖 with 𝑚 = Ω(𝑛) and 𝜖 = 2−Ω(𝑛). 
Proof. For a convenient l, we treat both inputs as elements of 𝔽𝑙(𝑠𝑜 |𝔽|𝑙 = 𝑁) and then use 

the dot product function as described above.  

We can view the random variable X as a function 𝑋: 𝔽𝑙 → [0, 1], which for each element of 

𝐹𝑙 assigns the probability of taking on that element. We will prove the theorem by using the 

XOR lemma. To use the lemma, we need to bound 𝑏𝑖𝑎𝑠𝜓(𝑋, 𝑌) = |𝐸[𝜓(𝐻𝑎𝑑(𝑋, 𝑌))]| for 

every non-trivial character 𝜓. 

Fix such a character 𝜓 and let 𝑒(𝑥, 𝑦) be the symmetric non-degenerate bilinear map 

𝑒(𝑥, 𝑦) = 𝜓(𝑥 · 𝑦) (Proposition (1.2.12)). Recall that 𝑒𝑥 denotes the character 𝑒(𝑥,·). Below 

we will use Fourier analysis according to e.  

Note that  

𝑏𝑖𝑎𝑠𝜓(𝑋, 𝑌) = |∑ 𝑌(𝑦) ∑ 𝑋(𝑥)𝜓(𝑥 · 𝑦)

𝑥∈𝔽𝑙𝑦∈𝔽𝑙

|                           (162) 

Now observe that ∑ 𝑋(𝑥)𝜓(𝑥 · 𝑦)𝑥∈𝔽𝑙 = |𝔽|𝑙〈𝑒𝑦 , 𝑋〉 = |𝔽|
𝑙�̂�(𝑦)̅̅ ̅̅ ̅̅ . Thus we get that  
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𝑏𝑖𝑎𝑠𝜓(𝑋, 𝑌) = |𝔽|^𝑙 |∑ 𝑌(𝑦)�̂�(𝑦)̅̅ ̅̅ ̅̅

𝑦∈𝔽𝑙

| = |𝔽|2𝑙|〈𝑌, �̂�〉| 

Using the Cauchy Schwartz inequality and the fact that ‖𝑓‖ℓ2
2 = |𝔽|𝑙‖𝑓‖𝐿2

2  for every 𝑓: 𝔽𝑙 →

ℂ, we obtain the bound:  

𝑏𝑖𝑎𝑠𝜓(𝑋, 𝑌)
2 ≤ |𝔽|4𝑙‖𝑌‖𝐿2

2 ‖�̂�‖
𝐿2
2
                         

= |𝔽|2𝑙‖𝑌‖ℓ2
2 ‖�̂�‖

ℓ2
2

 

= |𝔽|2𝑙‖𝑌‖ℓ2
2 ‖𝑋‖𝐿2

2           𝑏𝑦 𝑃𝑎𝑟𝑠𝑒𝑣𝑎𝑙(𝐹𝑎𝑐𝑡 (1.2.8)) 

= |𝔽|𝑙‖𝑌‖ℓ2
2 ‖𝑋‖ℓ2

2  

≤ 2𝑛2−𝑘12−𝑘2 
Where the last inequality is obtained by Fact (1.2.13), assuming 𝑋, 𝑌 have min-entropy 

𝑘1, 𝑘2. Thus, as long as 𝑘1 + 𝑘2 > 𝑛, the bias is less than 1.  

     Set 𝑙 so that 𝑁
1

𝑙 = 𝑀 = |𝔽|. By the XOR lemma Lemma (1.2.26) we get m bits which 

are 2
𝑛−𝑘1−𝑘2+𝑚

2  close to uniform. The fact that the extractor is strong follows from Theorem 

(1.2.30). 

     One question we might ask is: is this error bound just an artifact of the proof? Does the 

Hadamard extractor actually perform better than this bound suggests? If 𝑙 = 1, the answer 

is clearly no, since the output must have at least n bits of entropy to generate a uniformly 

random point of 𝔽. If l is large the answer is still no; there exist sources 𝑋, 𝑌 with entropy 

exactly 𝑛/2 for which the above extractor does badly. For example let X be the source which 

picks the first half of its field elements randomly and sets the rest to 0. Let Y be the source 

that picks the second half of its field elements randomly and sets the rest to 0. Then each 

source has entropy rate exactly 1/2, but the dot product function always outputs 0. 

A key observation of Bourgain’s is that the counterexample that we exhibited for the 

Hadamard extractor is just a pathalogical case. He shows that although the Hadamard 

function doesn’t extract from any sources with lower entropy, there are essentially very few 

counterexamples for which it fails. He then demonstrates how to encode any general source 

in a way that ensures that it is not a counterexample for the Hadamard function. Thus his 

extractor is obtained by first encoding each source in some way and then applying the 

Hadamard function.  

     For instance, consider our counterexamples from the last. The counterexamples were 

essentially subspaces of the original space. In particular, each source was closed under 

addition, i.e. the entropy of the source 𝑋 + 𝑋 obtained by taking two independent samples 

of X and summing them is exactly the same as the entropy of X. We will argue that when 

the source grows with addition (we will define exactly what we mean by this), the Hadamard 

extractor does not fail.  

Our proof of Bourgain’s theorem will be obtained in the following steps: 

 First we will argue that for sources which grow with addition, the Hadamard extractor 

succeeds. 

 Then we will show how to encode any source with sufficiently high entropy in a way 

that makes it grow with addition.  

To show that the Hadamard extractor succeeds, we were trying to bound the bias of the 

output distribution of the extractor 𝑏𝑖𝑎𝑠𝜓(𝑋, 𝑌) Equation 1: 
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𝑏𝑖𝑎𝑠𝜓(𝑋, 𝑌) = |∑ 𝑌(𝑦) ∑ 𝑋(𝑥)𝜓(𝑥 · 𝑦)

𝑥∈𝔽𝑙𝑦∈𝔽𝑙

|                (163) 

Now for any source X, let 𝑋 − 𝑋 be the source that samples a point by sampling two points 

independently according to X and subtracting them.  

Lemma (1.2.20)[15]: 𝑏𝑖𝑎𝑠𝜓(𝑋, 𝑌)
2 ≤ 𝑏𝑖𝑎𝑠𝜓(𝑋 − 𝑋, 𝑌)  

Proof.  

𝑏𝑖𝑎𝑠𝜓(𝑋, 𝑌) = |∑ 𝑌(𝑦) ∑ 𝑋(𝑥)𝜓(𝑥 · 𝑦)

𝑥∈𝔽𝑙𝑦∈𝔽𝑙

| 

                       ≤ ∑ 𝑌(𝑦) |∑ 𝑋(𝑥)𝜓(𝑥 · 𝑦)

𝑥∈𝔽𝑙

|

𝑦∈𝔽𝑙

 

Then by convexity, 

𝑏𝑖𝑎𝑠𝜓(𝑋, 𝑌)
2 = ∑ 𝑌(𝑦) |∑ 𝑋(𝑥)𝜓(𝑥 · 𝑦)

𝑥∈𝔽𝑙

|

2

𝑦∈𝔽𝑙

 

= |∑ 𝑌(𝑦) ∑ 𝑋(𝑥1)𝑋(𝑥2)𝜓(𝑥1 · 𝑦)𝜓(−𝑥2 · 𝑦)

𝑥1,𝑥2∈𝔽
𝑙𝑦∈𝔽𝑙

|

= |∑ 𝑌(𝑦) ∑ 𝑋(𝑥1)𝑋(𝑥2)𝜓((𝑥1 − 𝑥2) · 𝑦)

𝑥1,𝑥2∈𝔽
𝑙𝑦∈𝔽𝑙

| 

Now let 𝑋′ denote the source 𝑋 − 𝑋. Then by grouping terms, we see that the last expression 

is simply:  

𝑏𝑖𝑎𝑠𝜓(𝑋, 𝑌)
2 ≤ |∑ 𝑌(𝑦) ∑ 𝑋′(𝑥)𝜓(𝑥 · 𝑦)

𝑥∈𝔽𝑙𝑦∈𝔽𝑙

| = 𝑏𝑖𝑎𝑠(𝑋 − 𝑋, 𝑌) 

     Notice the magic of this “squaring the sum” trick. By squaring the sum for the 

expectation via Cauchy Schwartz, starting with our original bound for the error of the 

extractor, we obtained a bound that behaves as if our original source was 𝑋′ = 𝑋 − 𝑋 instead 

of 𝑋! If 𝑋′ has much higher entropy than X, we have made progress; we can follow the rest 

of the proof of Theorem (1.2.19) in the same way and obtain an error bound that is a bit 

worse (because we had to square the bias), but now assuming that our input source was 𝑋′ 
instead of X. 

For one thing, we see that we can easily compose this trick with itself. Applying the lemma 

again we obtain 𝑏𝑖𝑎𝑠𝜓(𝑋, 𝑌)
4 ≤ 𝑏𝑖𝑎𝑠𝜓(𝑋 − 𝑋, 𝑌)

2 ≤ 𝑏𝑖𝑎𝑠𝜓(𝑋 − 𝑋 − 𝑋 + 𝑋, 𝑌) =

𝑏𝑖𝑎𝑠𝜓(2𝑋 − 2𝑋, 𝑌). 

Applying the lemma with respect to Y (by symmetry), we obtain 𝑏𝑖𝑎𝑠𝜓(𝑋, 𝑌)
8 ≤

𝑏𝑖𝑎𝑠𝜓(2𝑋 − 2𝑋, 𝑌 − 𝑌). 

In general, we obtain the following lemma:  

Lemma (1.2.21)[15]: There exists a polynomial time computable function 𝐻𝑎𝑑: 𝔽𝑙 × 𝔽𝑙 →
{0, 1}𝑚 s.t. given two independent sources X,Y taking values in 𝔽𝑙 and constants 𝑐1, 𝑐2 with 
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the property that the sources 2𝑐1𝑋 − 2𝑐1𝑋 and 2𝑐2𝑌 − 2𝑐2𝑌 have min-entropy 𝑘1, 𝑘2, then 

|𝐸[𝜓(𝐻𝑎𝑑(𝑋, 𝑌))]| ≤ (|𝔽𝑙|2−(𝑘1+𝑘2))^(1/2𝑐1+𝑐2+2 for every non-trivial character 𝜓. 

Note that 𝑋 − 𝑋 has at least as high min-entropy as X, thus if it is convenient we may simply 

ignore the subtraction part of the hypothesis; it is sufficient to have that 2𝑐1𝑋, 2𝑐2𝑌 have 

high min-entropy to apply the above lemma. 

Given Lemma (1.2.21) We find a way to encode 𝑋, 𝑌 in such a way that the resulting 

sources grow with addition. Then we can apply the dot product function and use the lemma 

to prove that our extractor works. How can we encode a source in a way that guarantees that 

it grows with addition? Our main weapon to do this will be bounds on the number of line 

point incidences (Theorem (1.2.17) or Theorem (1.2.18)). We will force the adversary to 

pick a distribution on lines and a distribution on points with high entropy. Then we will 

argue that if our encoding produces a source which does not grow with addition, the 

adversary must have picked a set of points and a set of lines that violates the line point 

incidences theorem.  

We will use the following corollary of Theorem (1.2.17), which is slightly stronger than a 

theorem due to Zuckerman [28]. We will follow his proof closely.  

Corollary (1.2.22)[15]: Let 𝔽 and 𝐾 = 2(2+𝛼)𝑘 be such that a line point incidences theorem 

holds for 𝔽,K, with α the constant from Theorem (1.2.17). Suppose L,X are two independent 

sources, with min-entropy 2𝑘, 𝑘 with L picking an element of 𝔽2 and X picking an element 

of 𝔽 independently. Then the distribution (𝑋, 𝐿(𝑋)) where 𝐿(𝑋) represents the evaluation 

of the L’th line at X is 2−Ω(𝑘) -close to a source with min-entropy (1 + 𝛼/2)2𝑘. 

Proof. Every source with min-entropy k is a convex combination of sources with min-

entropy k and support of size exactly 2𝑘. So without loss of generality we assume that 

𝑠𝑢𝑝𝑝(𝐿) is of size 22𝑘 and that supp(X) has size 2𝑘. 

Suppose (𝑋, 𝐿(𝑋)) is 𝜖-far from any source with min-entropy (1 + 𝛼/2)2𝑘 in terms of 

statistical distance. Then there must exist some set H of size at most 2
(1+

𝛼

2
)2𝑘

 s.t. 

𝑃𝑟[(𝑋, 𝐿(𝑋)) ∈ 𝐻] ≥ 𝜖. 
Then we have  

(i) A set of points 𝐻: 22𝑘+𝑘𝛼 points 

(ii) A set of lines 𝑠𝑢𝑝𝑝(𝐿): 22𝑘 lines. 

Now we get an incidence whenever (𝑋, 𝐿(𝑋)) ∈ 𝐻. Thus the number of incidences is at least  

𝑃𝑟[(𝑋, 𝐿(𝑋)) ∈ 𝐻]|𝑠𝑢𝑝𝑝(𝐿)||𝑠𝑢𝑝𝑝(𝑋)| ≥ 𝜖23𝑘 

However, by the line point incidences theorem (Theorem (1.2.17)), the number of 

incidences is at most 2
(
3

2
−𝛼)(2𝑘+𝑘𝛼)

= 23𝑘+3𝑘𝛼/2−2𝑘𝛼−𝑘𝛼
2
< 2

3𝑘(1−
𝛼

2
)
= 2

−(
3𝑘𝛼

2
)
23𝑘. 

These two inequalities imply that 𝜖 < 2
−(
3𝑘𝛼

2
)
. 

Given this corollary, we now describe several ways to encode a source so that it grows with 

addition. It suffices to understand any one of these encodings to complete the proof for the 

extractor.  

Encoding 1: 𝑥 ⟼ (𝑥, 𝑔𝑥) We treat the input x from the source as an element of 𝔽∗ for a 

field in which a version of the line point incidences theorem holds. Then we encode it into 

an element of 𝔽2 as (𝑥, 𝑔𝑥) where g is a generator of the multiplicative group 𝔽∗. Now fix 

an adversarially chosen source X. Consider the source �̅� obtained by performing the above 

encoding.  



27 

�̅� is a distribution on points of the form (𝑥, 𝑔𝑥) where 𝑥 ≠ 0. By doing a change of variables, 

we think of every such point as (log𝑔 �̅� , �̅�). 

First consider the distribution of 2�̅�. An element of 𝑠𝑢𝑝𝑝(2�̅�) is of the form 

(log𝑔(�̅�1�̅�2) , �̅�1 + �̅�2) for some �̅�1, �̅�2 in the support of �̅�. Notice that for each 𝑎, 𝑏 with 

𝑎 = �̅�1�̅�2 and 𝑏 = �̅�1 + �̅�2, there are at most two possible values for (�̅�1, �̅�2), since for the 

solutions for �̅�1 must satisfy some quadratic equation in 𝑎, 𝑏. This means that the min-

entropy of 2�̅� is at least 2𝑘 − 1 since the probability of getting a particular (𝑎, 𝑏) is at most 

twice the probability of getting a single pair from �̅�, �̅�. By changing k, in the rest of this 

discussion we assume that the min-entropy of 2�̅� is 2𝑘.  

Now for each 𝑎, 𝑏 ∈ 𝔽 with 𝑎, 𝑏 ≠ 0 define the line 

ℓ𝑎,𝑏 = {(𝑎𝑥, 𝑏 + 𝑥) ∈ 𝔽
2|𝑥 ∈ 𝔽} = {(𝑥,

𝑥
𝑎
+ 𝑏) ∈ 𝔽2|𝑥 ∈ 𝔽} 

Every (𝑎, 𝑏) in our encoding then determines the line ℓ𝑎,𝑏. Let 𝐿 = 2�̅� be a random variable 

that picks a line according to 2�̅�.  

Every element of 𝑠𝑢𝑝𝑝(3�̅�) is of the form (log𝑔(�̅�1�̅�2�̅�3) , �̅�1 + �̅�2 + �̅�3) and determines 

the point (�̅�1�̅�2�̅�3, �̅�1 + �̅�2 + �̅�3) ∈ 𝔽
2. 

     Now think of the distribution of 3�̅� as obtained by first sampling a line according to 2�̅� 

and then evaluating that line at an independent sample from �̅� and outputting the resulting 

point. Then we see that we are in a position to apply Corollary (1.2.22) to get that the 

encoding does grow with addition.  

Encoding 2: 𝑥 ⟼ (𝑥, 𝑥2) Again we treat x as an element of the multiplicative group of a 

field 𝔽∗ with charactersitic not equal to 2 in which a version of the line point incidences 

theorem holds. Now fix an adversarially chosen source X. Let �̅� denote the source obtained 

by encoding X in the above way.  

     First consider the distribution of 2�̅�. An element of 𝑠𝑢𝑝𝑝(2�̅�) is of the form 

(�̅�1 + �̅�2, �̅�1
2 + �̅�2

2) for some �̅�1, �̅�2 in the support of �̅�. Notice that for each 𝑎, 𝑏 with 𝑎 =
�̅�1 + �̅�2 and 𝑏 = �̅�1

2 + �̅�2
2, there are at most two possible values for (�̅�1, �̅�2). This means that 

the min-entropy of 2�̅� is at least 2𝑘 − 1 since the probability of getting a particular (𝑎, 𝑏) 
is at most twice the probability of getting a single pair from �̅�, �̅�. By changing k, in the rest 

of this discussion we assume that the min-entropy of 2�̅� is 2k. 

Now for each 𝑎, 𝑏 ∈ 𝔽 with 𝑎, 𝑏 ≠ 0 define the line  

ℓ𝑎,𝑏 = {(2𝑎𝑥 + 𝑎
2 − 𝑏, 𝑎 + 𝑥) ∈ 𝔽2|𝑥 ∈ 𝔽} 

= {(𝑥, 𝑥/(2𝑎) + (𝑎2 + 𝑏)/(2𝑎)) ∈ 𝔽2 |𝑥 ∈ 𝔽} 
Every (𝑎, 𝑏) in our encoding then determines a unique line ℓ𝑎,𝑏. Let 𝐿 = 2�̅� be a random 

variable that picks a line according to 2�̅�.  

Every element of 𝑠𝑢𝑝𝑝(3�̅�) is then of the form (�̅�1 + �̅�2 + �̅�3, �̅�1
2 + �̅�2

2 + �̅�3
2) and 

determines the point 

((�̅�1 + �̅�2 + �̅�3)
2 − (�̅�1

2 + �̅�2
2 + �̅�3

2), �̅�1 + �̅�2 + �̅�3) 
= (2(�̅�1 + �̅�2)�̅�3 + (�̅�1 + �̅�2)

2 − (�̅�1
2 + �̅�2

2), (�̅�1 + �̅�2) + �̅�3) 
= (2𝑎�̅�3 + 𝑎

2 − 𝑏, 𝑎 + �̅�3) 
Now think of the distribution of 3�̅� as obtained by first sampling a line according to 2�̅� and 

then evaluating that line at an independent sample from �̅� and outputting the resulting point. 

Then we see that we can apply Corollary (1.2.22) to get that the encoding does grow with 

addition.  

By picking an appropriate constant 𝛾, we obtain the following lemma:  
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Lemma (1.2.23)[15]: There is a universal constant 𝛾 s.t. if X is any source that picks an 

element of 𝔽 with min-entropy (
1

2
− 𝛾) log|𝔽| , 3�̅� is |𝔽|−Ω(1)-close to a source with min-

entropy (
1

2
+ 𝛾) log|𝔽2|. 

Putting together the results from the two previous and applying Lemma (1.2.25), we 

obtain the theorem for Bourgain’s extractor. 

Theorem (1.2.24)[15]: [19] There exists a univeral constant 𝛾 > 0 and a polynomial time 

computable function 𝐵𝑜𝑢: ({0, 1}𝑛)2 → {0, 1}𝑚 s.t. if 𝑋, 𝑌 are two independent (𝑛, (1/2 −

𝛾)𝑛) sources, 𝔼𝑌[‖𝐵𝑜𝑢(𝑋, 𝑌) − 𝑈𝑚‖ℓ1] < 𝜖, with 𝜖 = 2−Ω(𝑛) , 𝑚 = Ω(𝑛). 
We will prove a generalization of Vazirani’s XOR lemma. 

We reserve G for a finite abelian group.  

The lemma we will prove is the following:  

Lemma (1.2.25) (XOR lemma for cyclic groups)[15]: For every cyclic group 𝐺 = ℤ𝑁 and 

every integer 𝑀 ≤ 𝑁, there is an efficiently comptable function 𝜎: ℤ𝑁 → ℤ𝑀 = 𝐻 with the 

following property: Let X be any random variable taking values in ℤ𝑁 s.t. for every non-

trivial character 𝜓: ℤ𝑁 → ℂ
∗, we have |𝔼[𝜓(𝑋)]| < 𝜖, then 𝜎(𝑋) is 𝑂(log𝑁 √𝑀) +

𝑂(𝑀/𝑁) close to the uniform distribution.  

It is easy to extend this result to work for any abelian group G, though it’s hard to state the 

result for general abelian groups in a clean way. We will discuss the proof of the above 

lemma and just make a few remarks about how to extend it to general abelian groups.  

      Before we move on to prove Lemma (1.2.25), let us first prove a special case of this 

lemma which is a generalization of Vazirani’s XOR lemma. For the proof of this case below, 

we essentially follow the proof as in Goldreich’s survey [22]. 

Lemma (1.2.26)[15]: X be a distribution on a finite abelian group G s.t. |𝔼[𝜓(𝑋)]| ≤ 𝜖 for 

every non-trivial character 𝜓. Then X is  √|𝐺| close to the uniform distribution: 

‖𝑋 − 𝑈‖ℓ1 ≤ 𝜖√|𝐺|. 
Proof. By the hypothesis, for every non-trivial character 𝜓 of G, |〈𝜓, 𝑋〉| =

(
1

|𝐺|
) |𝔼𝑋[𝜓(𝑋)]| ≤ 𝜖/|𝐺|. Then note that if 𝜓 ≠ 1, |〈𝜓, 𝑋 − 𝑈〉| = |〈𝜓, 𝑋〉 − 〈𝜓, 𝑈〉| =

|〈𝜓, 𝑋〉| ≤ 𝜖/|𝐺|. Also, since 𝑋,𝑈 are distributions, 〈1, 𝑋 − 𝑈〉 = 〈1, 𝑋〉 − 〈1, 𝑈〉 = 0. 

Thus we have shown that ‖𝑋 −  �̂�‖
ℓ∞
≤ 𝜖/|𝐺|. Proposition (1.2.9) then implies that 

‖𝑋 − 𝑈‖ℓ1 ≤ √|𝐺|. 
     In Lemma (1.2.26), given a bound of on the biases, the statistical distance blows up by a 

factor of √|𝐺|. This is too much if 𝜖 is not small enough. Lemma (1.2.25) gives us the 

flexibility to tradeoff this blowup factor with the number of bits that we can claim are 

statistically close to uniform. As M is made smaller, the blowup factor is reduced, but we 

get “less” randomness. Our proof for the general case will work (more or less) by reducing 

to the case of Lemma (1.2.26).  

     Note that if σ is an onto homomorphism, for every non-trivial character 𝜙 of H, 𝜙 ∘ 𝜎 is 

a non-trivial character of G. Thus the bounds on the biases of X give bounds on the biases 

of 𝜎(𝑋) and we can reduce to the case of Lemma (1.2.26). The problem is that we cannot 

hope to find such a homomorphism σ for every M. For instance, if 𝐺 = ℤ𝑝 for p a large 

prime, G contains no non-trivial subgroup and so σ cannot be a homomorphism for 𝑀 =
⌈𝑝/2⌉. Instead, we will show that we can find a σ which approximates a homomorphism in 

the sense: 
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(i) For every non-trivial character 𝜙 of H, 𝜑 ∘ 𝜎 is approximated by a few characters of 

G. Formally, this is captured by bounding ‖𝜙 ∘ �̂�‖
𝐿1

 (observe that if σ is a 

homomorphism, this quantity is 1/|𝐺|). 
(ii) We’ll ensure that 𝜎(𝑈) is the close to the uniform distribution on H. 

Then we will be able to use the bounds on the biases of X to give bounds on the biases of 

𝜎(𝑋) − 𝜎(𝑈), where U is the uniform distribution. This will allow us to apply Proposition 

(1.2.9) to conclude that X is a pseudorandom generator for σ, i.e. ‖𝜎(𝑋) − 𝜎(𝑈)‖ℓ1 is small, 

which implies that 𝜎(𝑋) is close to uniform, since 𝜎(𝑈) is close to uniform.  

The following lemma asserts that every -biased distribution is pseudorandom for any 

function σ that satisfies the first condition above.  

Lemma (1.2.27)[15]: Let 𝐺,𝐻 be finite abelian groups. Let X be a distribution on G with 

|𝔼𝑋[𝜓(𝑋)]| ≤ 𝜖 for every non-trivial character 𝜓 of G and let U be the uniform distribution 

on G. Let 𝜎: 𝐺 → 𝐻 be a function such that for every character 𝜙 of H, we have that  

‖𝜙 ∘ �̂�‖
𝐿1
≤ 𝜏/|𝐺| 

Then ‖𝜎(𝑋) − 𝜎(𝑈)‖ℓ1 < 𝜏𝜖√|𝐻|. 

Proof. First note that the assumption on X is equivalent to ‖𝑋 − �̂�‖
ℓ∞
≤ 𝜖/|𝐺|. Let 𝜙 be 

any non-trivial character of H. Then 

|〈𝜙, 𝜎(𝑋) − 𝜎(𝑈)〉| = |〈𝜙, 𝜎(𝑋)〉 − 〈𝜙, 𝜎(𝑈)〉| 

=
|𝔼𝜎(𝑋)[𝜙(𝜎(𝑋))]−𝔼𝜎(𝑈)[𝜙(𝜎(𝑈))]|

|𝐻|
                 by Fact (1.2.14) applied to σ(X) and σ(U) 

=
|𝔼𝑋[𝜙(𝜎(𝑋))] − 𝔼𝑈[𝜙(𝜎(𝑈))]|

|𝐻|
 

=
|𝐺|

|𝐻|
|〈𝜙 ∘ 𝜎, 𝑋〉 − 〈𝜙 ∘ 𝜎, 𝑈〉|                            by Fact (1.2.14) applied to X and U 

=
|𝐺|

|𝐻|
|〈𝜙 ∘ 𝜎, 𝑋 − 𝑈〉| 

=
|𝐺|2

|𝐻|
|〈𝜙 ∘ �̂�, 𝑋 −  �̂�〉|                    by preservation of inner product (Fact (1.2.11)) 

≤
|𝐺|2

|𝐻|
‖𝜙 ∘ �̂�‖

𝐿1
‖𝑋 − �̂�‖

ℓ∞
                          by the triangle inequality (Fact (1.2.3)) 

≤ 𝜏𝜖/|𝐻|                               since ‖𝜙 ∘ �̂�‖
𝐿1
≤ 𝜏/|𝐺| and ‖𝑋 − �̂�‖

ℓ∞
≤ 𝜖/|𝐺| 

     On the other hand, 〈1, 𝜎(𝑋) − 𝜎(𝑈)〉 = 0, since 𝜎(𝑋) and 𝜎(𝑈) are distributions. Thus, 

we have shown that ‖𝜎(𝑋) − 𝜎(𝑈)̂ ‖
ℓ∞
≤ 𝜏𝜖/|𝐻|, which by Proposition (1.2.9) implies that 

‖𝜎(𝑋) − 𝜎(𝑈)‖ℓ1 ≤ 𝜏𝜖√|𝐻|. 
Note that when σ is the identity function (or any surjective homomorphism onto a group H), 

𝜏 = 1. Thus Vazirani’s XOR lemma corresponds exactly to the case of σ being the identity 

function.  

Next we show that in the special when G is a cyclic group, we can find a σ which satisfies 

the hypothesis of Lemma (1.2.27) with small τ. 

Lemma (1.2.28)[15]: Let 𝑀,𝑁 be integers satisfying 𝑁 > 𝑀. Let 𝜎: ℤ𝑁 → ℤ𝑀 be the 

function 𝜎(𝑥) = 𝑥 mod M. Then for every character 𝜙 of ℤ𝑀, ‖𝜙 ∘ 𝜎‖̂
𝐿1 ≤ 𝑂(log𝑁)/𝑁  

Proof. Note that if M divides N, the statement is trivial, since σ is a homomorphism. Below 

we show that even in the general case, this expectation is small. Define the function 𝜌(𝑥) =
𝑒𝑥𝑝(2𝜋𝚤𝑥). Then note that 𝜌(𝑎 + 𝑏) = 𝜌(𝑎)𝜌(𝑏).  
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First let 𝜙 be any character of ℤ𝑀. Then 𝜙(𝑦) = 𝜌 (
𝑤𝑦

𝑀
) for some 𝑤 ∈ ℤ𝑀. Clearly, 

𝜙(𝜎(𝑥)) = 𝜌 (
𝑤𝑥

𝑀
). 

‖𝜙 ∘ �̂�‖
𝐿1
= (

1

𝑁2
) ∑ |∑ 𝜌(

𝑡𝑥

𝑁
)𝜌 (−

𝑤𝑥

𝑀
)

𝑥∈ℤ𝑁

|

𝑡∈ℤ𝑁

= (
1

𝑁2
) ∑ |∑ 𝜌(

𝑥(𝑡𝑀 − 𝑤𝑁)

𝑁𝑀
)

𝑥∈ℤ𝑁

|

𝑡∈ℤ𝑁

 

Recall that for any geometric sum ∑ 𝑏𝑟𝑖𝑁
𝑖=0 =

𝑏𝑟𝑁−𝑏

𝑟−1
, as long as 𝑟 ≠ 1. The inner sum in this 

expression is exactly such a geometric sum. Thus we get:  

‖𝜙 ∘ �̂�‖
𝐿1
≤ (

1

𝑁2
) ∑ |∑ 𝜌(

𝑥(𝑡𝑀 − 𝑤𝑁)

𝑁𝑀
)

𝑥∈ℤ𝑁

|

𝑡∈ℤ𝑁,𝑡≠
𝑤𝑁
𝑀

+ 1/𝑁 

= (
1

𝑁2
)∑ |

𝜌(
𝑁(𝑡𝑀−𝑤𝑁)

𝑁𝑀
)−1

𝜌(
𝑡𝑀−𝑤𝑁

𝑁𝑀
)−1

| + 1/𝑁
𝑡∈ℤ𝑁,𝑡≠

𝑤𝑁

𝑀

          by simplifying the geometric sum 

≤ (
1

𝑁2
) ∑ |

2

𝜌 (
𝑡𝑀 − 𝑤𝑁
𝑁𝑀 ) − 1

| +
1

𝑁
𝑡∈ℤ𝑁,𝑡≠

𝑤𝑁
𝑀

         𝑠𝑖𝑛𝑐𝑒 |𝜌 (
𝑁(𝑡𝑀 − 𝑤𝑁)

𝑁𝑀
) − 1 | ≤ 2 

≤ (
1

𝑁2
) ∑ |

2

𝜌 (
𝑡 − (𝑤𝑁/𝑀)

𝑁 ) − 1
|  + 1/𝑁

𝑡∈ℤ𝑁,𝑡≠
𝑤𝑁
𝑀

 

Now write 𝑤𝑁/𝑀 = 𝑐 + 𝑑, where c is an integer, and 𝑑 ∈ [0, 1]. Then, by doing a change 

of variable from t to 𝑡 − 𝑐, we get that the above sum is  

(
1

𝑁2
) ∑ |

2

𝜌 (
𝑡 − 𝑑
𝑁 ) − 1

| + 1/𝑁

𝑡∈ℤ𝑁,𝑡≠𝑑

 

We will bound two parts of this sum separately. Let r be a constant with 0 < 𝑟 < 1/4. Now 

note that |𝜌 (
𝑡−𝑑

𝑁
) − 1| ≥ Ω(1) when 𝑟𝑁 < 𝑡 < (1 − 𝑟)𝑁, since in this situation the 

quantity is the distance between two points on the unit circle which have an angle of at least 

2𝜋𝑟 between them.  

     When t is not in this region, |𝜌 (
𝑡−𝑑

𝑁
) − 1| ≥ |sin (

2𝜋(𝑡−𝑑)

𝑁
)|, since the sin function gives 

the vertical distance between the two points. This is at least (𝑡 − 𝑑)/100𝑁 for r small 

enough, since we have that | sin 𝑥 | > |𝑥| for −𝜋/2 < 𝑥 < 𝜋/2. Thus, choosing r 

appropriately, we can bound the sum: 

(
1

𝑁2
) ∑ |

2

𝜌 (
𝑡 − 𝑑
𝑁 ) − 1

| + 1/𝑁

𝑡∈ℤ𝑁,𝑡≠𝑑

 

= (
1

𝑁2
) ∑ |

2

𝜌 (
𝑡 − 𝑑
𝑁 ) − 1

|

𝑡≠𝑑,𝑡∈[𝑟𝑁,(1−𝑟)𝑁]

+ ∑ |
2

𝜌 (
𝑡 − 𝑑
𝑁 ) − 1

| + 1/𝑁

𝑡≠𝑑,𝑡∉[𝑟𝑁,(1−𝑟)𝑁]
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≤ (
1

𝑁2
)( ∑

800𝑁

𝑡 − 𝑑
𝑡≠𝑑,𝑡∈[0,𝑟𝑁]

+ ∑ 𝑂(1)

𝑡≠𝑑,𝑡∉[𝑟𝑁,(1−𝑟)𝑁]

)+ 1/𝑁

≤ (
1

𝑁2
) (𝑂(𝑁 log𝑁) + 𝑂(𝑁)) + 1/𝑁 

Here the last inequality used the fact that ∑ 1/𝑖𝑛
𝑖=1 = 𝑂(log 𝑛). Overall this gives us a bound 

of 𝜏 ≤ 𝑂 (
log𝑁

𝑁
).  

     On uniform input the distribution 𝜎(𝑈) is quite close to uniform. Specifically, if 𝑁 =
𝑞𝑀 + 𝑟, with 𝑞, 𝑟 the quotient and remainder of N on dividing by N, we have that 𝜎(𝑈) is 

2𝑟((𝑞 + 1)/𝑁 − 1/𝑀) = (2𝑟/𝑀)(𝑀(𝑞 + 1)/𝑁 − 1) = (2𝑟/𝑀)(𝑀 − 𝑟)/𝑁 = 2𝑀/𝑁 

close to the uniform distribution. Thus, overall we get that this σ turns any distribution which 

fools characters with bias at most  into one that is 𝜖 log𝑁√𝑀 + 𝑂 (
𝑀

𝑁
) close to uniform.  

Now we discuss the situation for general abelian groups. The basic observation is that 

approximate homomorphisms can be combined to give a new approximate homomorphism:  

Lemma (1.2.29)[15]: Let 𝐺 = 𝐺1⊕𝐺2 and 𝐻 = 𝐻1⊕𝐻2 be finite abelian groups. Let 

𝜎1: 𝐺1 → 𝐻1 and 𝜎2: 𝐺2 → 𝐻2 be two functions that satisfy the hypotheses of Lemma 

(1.2.27) with constants 𝜏1 and 𝜏2 respectively. Then the function 𝜎: 𝐺 → 𝐻 defined as 

𝜎(𝑥 ⊕  𝑦) = 𝜎1(𝑥) ⊕ 𝜎2(𝑦) satisfies the hypotheses of the lemma with parameters 𝜏1𝜏2. 
     Given this lemma, it is clear how to get for every abelian group. Simply write the abelian 

group as a direct sum of cyclic groups. Then depending on how much randomness is 

needeed, we can compose several homomorphisms with approximate homorphisms to get a 

function σ that does the job.  

We give an argument due to Boaz Barak showing that every 2 source extractor which 

has sufficiently small error is in fact strong.  

Theorem (1.2.30)[15]: Let 𝐼𝐸𝑥𝑡: ({0, 1}𝑛)2 → {0, 1}𝑚 be any two source extractor for min-

entropy k with error . Then 𝐼𝐸𝑥𝑡 is a strong two source extractor for min-entropy 𝑘′ (strong 

with respect to both sources) with error 2𝑚(𝜖 + 2𝑘−𝑘
′
). 

Proof. Without loss of generality, we assume that 𝑋, 𝑌 have supports of size 𝑘′. Then we 

need to bound:  

∑ 2−𝑘
′
‖𝐼𝐸𝑥𝑡(𝑋, 𝑦) − 𝑈𝑚‖ℓ1

𝑦∈𝑠𝑢𝑝𝑝(𝑌)

 

For any 𝑧 ∈ {0, 1}𝑚, define the set of bad y’s for z 

𝐵𝑧 = {𝑦: |𝑃𝑟[𝐼𝐸𝑥𝑡(𝑋, 𝑦) = 𝑧] − 2
−𝑚| ≥ 𝜖} 

Claim (1.2.31)[15]: For every z, |𝐵𝑧| < 2
𝑘  

Suppose not, then the flat distributions on 𝐵𝑧, 𝑋 are two independent sources for which the 

extractor IExt fails. Now let 𝐵 =∪𝑧 𝐵𝑧. We see that |𝐵| < 2𝑘2𝑚. Thus,  

∑ 2−𝑘
′
‖𝐼𝐸𝑥𝑡(𝑋, 𝑦) − 𝑈𝑚‖ℓ1

𝑦∈𝑠𝑢𝑝𝑝(𝑌)

= ∑ 2−𝑘
′
‖𝐼𝐸𝑥𝑡(𝑋, 𝑦)𝑞 − 𝑈𝑚‖ℓ1

𝑦∈𝑠𝑢𝑝𝑝(𝑌)∩𝐵

+ ∑ 2−𝑘
′
‖𝐸𝑥𝑡(𝑋, 𝑦) − 𝑈𝑚‖ℓ1

𝑦∈𝑠𝑢𝑝𝑝(𝑌)\𝐵

≤ 2−𝑘
′
2𝑘+𝑚 + 𝜖2𝑚 = 2𝑚(2𝑘−𝑘

′
+ 𝜖). 
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Chapter 2 

Generalized N-Property and Morse–Sard Theorem 

Investigate the questions related to the uniqueness of weak solutions for the continuity 

equation associated to a vector field with Sobolev regularity. We show that almost all level 

sets are finite disjoint unions of 𝐶1–smooth compact manifolds of dimension 𝑛 −  𝑚. 

Section (2.1): Sard Theorem for Sobolev Maps 

We describe some extensions of the Lusin N-property and the Sard theorem for 

Sobolev maps which have been recently obtained in collaboration with M. Csornyei, E. 

D’Aniello, and B. Kirchheim [32], [33]; 

     The N-property has been widely studied, mostly in connection with the area formula for 

Sobolev maps and other classes of weakly differentiable maps. However, the variant of this 

property that we are interested in arises as a key ingredient of our proof of the optimal form 

of Sard theorem for Sobolev maps. We consider this version of Sard theorem in the 

attempt—which eventually failed—to produce a counterexample to a certain uniqueness 

statement for the flow associated to a vector field with Sobolev regularity; this statement is 

in turn related to the uniqueness of weak solutions of the continuity equation (or the transport 

equation) associated to the same vector field.  

We plan to explain the connections between these problems (Nproperty, Sard Theorem, 

uniqueness for the flow and for the continuity equation associated to a divergence-free 

vector field), and then illustrate some of our results at least in simple cases, giving when 

possible an outline of the proof. In writing this We tried to improve readability at the 

expenses of precision by omitting most technical details. 

     Let me finally add that similar results on the N-property and the Sard theorem for Sobolev 

maps have been obtained by J. Bourgain, M.V. Korobkov, and J. Kristensen [37] at about 

the same time as us (but with different motivations in the background).  

We consider the continuity equation  

𝑢𝑡 + 𝑑𝑖𝑣(𝑏𝑢) = 0                                                      (1) 
where b is a vector field on ℝ𝑛 and the unknown u is a scalar function on [0, 𝑇) × ℝ𝑛 subject 

to the initial condition 𝑢(0,·) = 𝑢0, with 𝑢0 a given initial datum.  

     To understand what follows it is convenient to keep in mind the standard mechanical 

interpretation of (pde): consider a continuous distribution of point particles in ℝ𝑛 such that 

the trajectory 𝑥 = 𝑥(𝑡) of each particle satisfies the ordinary differential equation  

�̇� = 𝑏(𝑥),                                                         (2) 
and let 𝑢 = 𝑢(𝑡, 𝑥) be the corresponding density—that is, mass per unit volume at time t 

and position x. Then u satisfies (pde). 

This interpretation suggests that existence and uniqueness of solutions of the Cauchy 

problem for (pde) are strictly related to existence and uniqueness for the Cauchy problem 

for (ode).  

Assume for the time being that b is bounded and smooth. Under these assumptions 

we can construct the flow associated to (ode), namely the oneparameter family of 

diffeomorphisms of ℝ𝑛  

{𝛷𝑡}𝑡≥0 

defined by the fact that for every 𝑥 ∈ ℝ𝑛 the map 𝑡 ⟼ 𝛷𝑡(𝑥) solves the equation (ode) with 

initial value 𝛷0(𝑥) = 𝑥. 

If b is divergence-free then the flow is volume-preserving (that is, each diffeomorphism 𝛷𝑡 
is volume-preserving), and therefore a solution of (pde) with initial datum 𝑢0 is 

𝑢(𝑡, 𝑥):= 𝑢0(𝛷𝑡
−1(𝑥) .                                                     (3) 



33 

It follows immediately that if 𝑢0 is bounded then  

‖𝑢(𝑡,·)‖∞ ≤ ‖𝑢0‖∞     for all 𝑡.                                     (4) 
Assume now that the vector field b is bounded, divergence-free (in the sense of distribution) 

but no longer smooth. We construct a solution of (pde) with initial datum 𝑢0 as follows: let 

𝑏𝜀 be a regularization of b by convolution (so 𝑏𝜀 is bounded, divergence-free, and smooth), 

and let 𝑢𝜀 be the solution of (pde) with 𝑏𝜀 in place of b given by formula (3); then we can 

use the bound (4) to pass to the limit in 𝑢𝜀 as 𝜀 → 0, and obtain bounded function u that 

solves (pde) for all positive times (in the sense of distribution).  

To make this argument work it is not needed that 𝑑𝑖𝑣 𝑏 = 0, but it suffices that 𝑑𝑖𝑣 𝑏 ≥ −𝑚 

for some finite m; in this case (3) should be replaced by  

𝑢(𝑡, 𝑥):= 𝑢0(𝛷𝑡
−1(𝑥)) · det(𝛻𝛷𝑡

−1(𝑥)), 

and since the derivative of det(𝛻𝛷𝑡(𝑥)) with respect to the variable t agrees with 𝑑𝑖𝑣 𝑏(𝑥), 
which is larger than −𝑚, then the bound (4) becomes  

‖𝑢(𝑡,·)‖∞ ≤ 𝑒
𝑚𝑡‖𝑢0‖∞          𝑓𝑜𝑟 𝑎𝑙𝑙  𝑡. 

      Note that without assumptions on the divergence of b the existence of bounded solutions 

for all times may no longer hold, because it can happen that all particles end up in the same 

point and remain there; therefore after some time the particle density becomes a measure 

with an atom, and is no longer represented by a function (let alone a bounded function). For 

example, this is the case when  

𝑏(𝑥):= {
−

𝑥

√|𝑥|
    𝑖𝑓 𝑥 ≠ 0,

0               𝑖𝑓 𝑥 = 0.

 

Under the only assumption that b is bounded and has bounded (or even vanishing) 

divergence there is in general no uniqueness for the Cauchy problem for the continuity 

equation (pde). However, in [41], R.J. DiPerna and P.-L. Lions proved that uniqueness holds 

under the additional assumption that b is (locally) of Sobolev class 𝑊1,1, and later on L. 

Ambrosio [34] improved this result by showing that it suffices that b is (locally) of class 

BV. 

     Note that in both uniqueness is proved within the class of distributional solutions of (pde) 

that are functions for all times (actually some additional bound on the solution u is also 

needed, for example ‖𝑢(𝑡,·)‖∞ uniformly bounded in t for all finite time-intervals). In other 

words, the possibility that particles concentrate in a negligible set is excluded a priori, and 

not proved impossible.  

It should also be noted that both results give conditions which are sufficient for uniqueness, 

but not necessary. 

     In view of the mechanical interpretation described above, one would expect that 

uniqueness for (pde) is related to uniqueness for (ode), and the heuristic argument should be 

the following: let N be the set of non-uniqueness associated to b, that is, the set of all points 

𝑧 ∈ ℝ𝑛 such that the differential equation (ode) has at least two solutions 𝑥𝑧(𝑡) and �̃�𝑧(𝑡) 
with initial datum z. Consider now an initial distribution of particles contained in N: there 

are at least two possible evolutions of this distribution, one obtained by moving each particle 

initially located at the point z according to the trajectory 𝑥𝑧(𝑡), and the other one obtained 

by moving it according to �̃�𝑧(𝑡). We thus expect that the densities u and �̃� associated to 

these two evolutions give different solutions of (pde) with the same initial datum.  

      Now, this would certainly be the case if our notion of solution included measurevalued 

solutions, that is, if we allowed the particle density at time t to be represented by a measure 
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instead of a function. But since by solutions we mean functions, and sometimes even 

bounded functions, we quickly realize that to make the previous constructions work we need 

some additional assumptions.  

      First of all we need an initial distribution of particles with positive total mass whose 

density is a function and not a measure, and therefore we must assume that the non-

uniqueness set N has positive measure.  

     Secondly, we need that at every time 𝑡 > 0 the densities of the two distributions 

considered above are functions and not measures, which is obtained by assuming that the 

families of trajectories {𝑥𝑧} and {�̃�𝑧} do not “concentrate”, where non-concentration (for 

{𝑥𝑧}) means that for every set E with positive measure contained in N and every 𝑡 > 0, the 

set 𝐸𝑡: = {𝑥𝑧(𝑡): 𝑧 ∈ 𝐸} has positive measure. (This is the weakest notion of non-

concentration: to makes sure that the solutions u and �̃� constructed above are bounded 

functions, and not just functions, one has to impose some explicit lower bound for the 

measure of 𝐸𝑡, such as 𝑚𝑒𝑎𝑠(𝐸𝑡) ≥ 𝑚 𝑚𝑒𝑎𝑠(𝐸) for some positive constant m.) 

      The argument We have just presented has been made rigorous by Ambrosio in [34] using 

a suitable weak notion of flow  a regular Lagrangian flow associated to a vector field b on 

ℝ𝑛 is a family of maps 𝛷𝑡: ℝ
𝑛 → ℝ𝑛 parametrized by time t such that  

(i) 𝑡 ⟼ 𝛷𝑡(𝑥) solves (ode) for almost every 𝑥 ∈ ℝ𝑛, 

(ii) there exists a positive constant m such that 𝑚𝑒𝑎𝑠(𝛷𝑡(𝐸)) ≥ 𝑚 𝑚𝑒𝑎𝑠(𝐸) for every 

set E and every time t (non-concentration). 

Two Lagrangian flows are said to be equivalent if they agree for almost every x and every 

t, and, as shown in [34], the existence of two non-equivalent regular Lagrangian flows 

implies non-uniqueness of bounded solutions for (pde). In particular, the uniqueness result 

for (pde) in [41] and [34] imply the uniqueness of regular Lagrangian flows up to 

equivalence.  

For more details on the connection between (pde) and flows for (ode), and for a review of 

related uniqueness results I refer the reader to [38], [35]. 

The uniqueness of regular Lagrangian flows (up to equivalence) can be loosely 

interpreted as uniqueness for (ode) for almost every initial position. However, these two 

conditions are not equivalent: while the latter clearly implies the former (because of 

assumption (i) in the definition of regular Lagrangian flow), the converse is not true 

(essentially because for certain vector fields b there exist flows that satisfy condition (i) but 

not (ii)).  

In particular, it is not know whether the uniqueness results for (pde) in [41] and [34] imply 

uniqueness for (ode) for almost every initial position.  

We are thus led to the following question, which is still open: Is there a continuous vector 

field b on ℝ𝑛 with bounded divergence and of class 𝑊1,𝑝 for some 𝑝 ≥ 1 (that is, a vector 

field to which the uniqueness result in [41] applies) such that the non-uniqueness set N has 

positive measure?  

We restrict our attention to vector fields b on ℝ𝑛 that are bounded and divergence-

free. Under these assumptions there exists a Lipschitz function 𝑓:ℝ𝑛 → ℝ, called potential 

of b, such that  

𝑏 = (𝛻𝑓)⊥                                                           (5) 
where 𝑣⊥ stands for the rotation of the vector v by ninety degrees counterclockwise (f exists 

because the rotation of b by ninety degrees clockwise is curl-free).  
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In [30] it is proved that the vector fields b such that there is uniqueness for the corresponding 

continuity equation (pde) can be characterized in terms of the critical set of the potential f.  

In view of the mechanical interpretation of (pde) given at the beginning, we can rephrase 

the first step of this proof as follows: a particle that belongs to some level set 𝑓−1(𝑦) at time 

0, remains for all subsequent times in the same level set, and in the same connected 

component of the same level sets. This is not surprising because b is orthogonal to 𝛻𝑓 and 

therefore tangent to the level sets of f at almost every point. 

It follows that solving (pde) is equivalent to solve a partial differential equation similar to 

(pde) on every nontrivial connected component E of a generic level set 𝑓−1(𝑦) (here 

“nontrivial” means “containing more than one point”; “generic” means “for almost every 

y”).  

Moreover a nontrivial connected component E of a generic level set is a simple rectifiable 

curve (see [31]) and therefore uniqueness for (pde) reduces to uniqueness for a family of 

variants of the continuity equation in one space dimension. It turns out that uniqueness for 

these one-dimensional continuity equations is strictly related to the intersection of the 

connected component E and the set of critical points  

𝑆:= {𝑥: 𝛻𝑓(𝑥) = 0}. 
In particular, if a generic level set of 𝑓 does not contains critical points (that is, if f has the 

Sard property) then there is uniqueness for all these onedimensional equations, and therefore 

also for the original two-dimensional equation (pde). 

     Let 𝑓:ℝ𝑛 → ℝ be a Lipschitz function of class 𝑊2,𝑝 and with compact support, and let 

V be the set of all values 𝑦 ∈ ℝ such that there exists a nontrivial connected component 𝐸𝑦 

of the level set 𝑓−1(𝑦) which contains one and only one critical point of 𝑓, denoted by 𝑥𝑦. 

Finally let b be the vector field with potential f, that is, the one defined by (5), and let N be 

the non-uniqueness set associated to b.  

We claim that if the set V has positive measure then the set N has positive measure, and 

therefore the answer to the question is negative.  

Let me argue in favour of this claim. We first recall that for almost every 𝑦 ∈ ℝ the set 𝐸𝑦 

is a rectifiable, simple, closed curve, and We observe that  

(i) a particle that moves along 𝐸𝑦 reaches 𝑥𝑦 in finite time; 

(ii)  after the particle has reached the critical point 𝑥𝑦 it can stay there for any given 

amount of time and then start moving again.  

Statement (ii) is essentially a consequence of statement (i) (applied with reversed time) and 

of the fact that b vanishes in 𝑥𝑦. To prove statement (i), note that the time 𝑇𝑦 taken by the 

particle to go all the way through the curve 𝐸𝑦 is  

𝑇𝑦 = ∫
1

|𝑏|𝐸𝑦

= ∫
1

|𝛻𝑓|𝐸𝑦

≤ ∫
1

|𝛻𝑓|𝑓−1(𝑦)

, 

and therefore 

∫𝑇𝑦𝑑𝑦
𝑉

≤ ∫ [∫
1

|𝛻𝑓|𝑓−1(𝑦)

] 𝑑𝑦
+∞

−∞

≤ meas(supp(𝑓)) < +∞ 

(the second inequality follows by the coarea formula and the fact that 𝑓−1(𝑦) is contained 

in the support of f for all 𝑦 ≠ 0; the last inequality is due to the fact that the support of f is 

assumed to be compact, and therefore it has finite measure).  

Hence 𝑇𝑦 is finite for almost every 𝑦 ∈ 𝑉, which implies statement (i). Now notice that 

statements (i) and (ii) together imply that for every point z contained in 𝐸𝑦 with 𝑦 ∈ 𝑉 there 
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are infinitely many solutions of (ode) with initial datum z, and therefore 𝐸𝑦 is contained in 

the non-uniqueness set N of the vector field b. Finally, the coarea formula and the fact that 

V has positive measure imply that the union of all 𝐸𝑦 with 𝑦 ∈ 𝑉, and therefore also N, are 

sets of positive measure in the plane.  

The fact that the set V in the previous construction has positive measure implies that 

the function f does not have the Sard property. When we started working on these problems 

it was only known that Sard theorem holds for functions 𝑓:ℝ2 → ℝ of class 𝑊2,𝑝 with 𝑝 >
2 but nothing was known for 𝑝 ≤ 2. So we looked for a counterexample, with the hope that 

it would eventually lead to a negative answer to the question raised We found out in the end 

that there are no counterexamples, and that Sard theorem holds for all 𝑝 ≥ 1. 

Given a function 𝑓:ℝ𝑛 → ℝ𝑚 with 𝑚 ≤ 𝑛, the critical set of f is  

𝑆:= {𝑥: 𝑟𝑎𝑛𝑘(𝛻𝑓(𝑥)) < 𝑚} 
We say that 𝑓 has the Sard property if 𝑓(𝑆) is negligible, that is, if a generic level set of f 

contains no critical points.  

In the classical form (see [47]), Sard theorem states that if 𝑓 is of class 𝐶𝑛−𝑚+1 then it has 

the Sard property. Note that the regularity exponent 𝑛 −𝑚 + 1 is sharp: there exist maps of 

class 𝐶𝑛−𝑚 without the Sard property (see [48], [42]).  

A more precise version of Sard theorem was given in [42]: given a map 𝑓:ℝ𝑛 → ℝ𝑚 of 

class 𝐶𝑘 (without restrictions on n and m) and ℎ = 0, 1,…, then the set  

𝑆ℎ: = {𝑥: 𝑟𝑎𝑛𝑘(𝛻𝑓(𝑥)) ≤  ℎ}.                                         (6) 

is H
ℎ+

𝑛−ℎ

𝑘 -negligible, where H𝑑 denotes the d-dimensional Hausdorff measure. This result 

was later extended in [36] to maps of class 𝐶𝑘,𝛼. 

Concerning Sobolev maps, L. De Pascale proved in [39] that continuous maps of class 

𝑊𝑛−𝑚+1,𝑝 with 𝑝 > 𝑛 > 𝑚 have the Sard property. A simpler proof of this statement was 

later given in [43]. Note that the counterexamples mentioned before show that the 

differentiability exponent 𝑛 −𝑚 + 1 is sharp. On the other hand, there are no examples 

showing that the bound 𝑝 > 𝑛 on the summability exponent is optimal (and indeed it is not, 

as I am going to explain).  

     In the rest restrict for simplicity to the case 𝑛 = 2 and 𝑚 = 1, that is, to functions 𝑓 on 

ℝ2 to ℝ. (For 𝑛 = 𝑚 Sard theorem is just a consequence of the area formula, and therefore 

the “interesting” cases are those with 𝑛 > 𝑚; among these the case 𝑛 = 2 and 𝑚 = 1 is the 

simplest, and is also the one which is relevant to the construction explained. 

     In this case the critical set S agrees with the set 𝑆0 of all points where the gradient 𝛻𝑓 

vanishes, and the result by De Pascale states that a continuous function in 𝑊2,𝑝 with 𝑝 > 2 

has the Sard property. We give a detailed outline of the proof of this result, and then indicate 

how it can be extended to 𝑊2,1. 

Let 𝑓:ℝ2 → ℝ be a continuos function of class 𝑊2,𝑝 for some 𝑝 > 2; we assume for 

simplicity that the singular set 𝑆0 ha finite measure. 

The starting point is the following estimate: for every ball 𝐵 = 𝐵(𝑥, 𝑟) with center x and 

radius r there holds  

𝑜𝑠𝑐(𝑓, 𝐵) ≲ 𝑟|𝛻𝑓(𝑥)| + 𝑟2 (⨍|𝛻2𝑓|𝑝
𝐵

)

1
𝑝
,                       (7) 

where 𝑜𝑠𝑐(𝑓, 𝐵) stands for the oscillation of f over the set B (that is, the difference between 

the supremum and the infimum), the symbol ≲ means that the inequality holds up to some 

(universal) multiplicative factor, and the dashed integral stands for the average.  
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     Since estimate (7) is scaling and translation invariant, it suffices to prove it when 𝐵 =
𝐵(0, 1). Since 𝑊2,𝑝 embeds in 𝐿∞, we can bound the oscillation of f by its 𝑊2,𝑝-norm (on 

B). Now recall that an equivalent norm on 𝑊2,𝑝 is given by the sum of the 𝐿𝑝 -norm of 𝛻2𝑓 

and any continuous seminorm 𝜙 on 𝑊2,𝑝 which does not vanishes on nontrivial affine 

functions, for example 𝜙(𝑓):= |𝑓(0)| + |𝛻𝑓(0)| (the equivalence with the usual norm of 

𝑊2,𝑝 follows by a standard argument, see [49]). Thus  

𝑜𝑠𝑐(𝑓, 𝐵) ≲ |𝑓(0)| + |𝛻𝑓(0)| + ‖𝛻2𝑓‖𝐿𝑝(𝐵).                      (8) 

Since 𝑜𝑠𝑐(𝑓, 𝐵) is invariant under the addition of a constant to f, we can assume 𝑓(0) = 0 

and drop the first addendum on the right-hand side of this inequality, and so we finally 

obtain (7).  

Note that if x belongs to 𝑆0 then 𝛻𝑓(𝑥) = 0 and (7) becomes  

𝑜𝑠𝑐(𝑓, 𝐵) ≲ 𝑟
2−
2
𝑝 (∫|𝛻2𝑓|𝑝

𝐵

)

1
𝑝

.                                    (9) 

We now choose an open set A that contains 𝑆0, and cover 𝑆0 with a collections of balls 𝐵𝑖 =
𝐵(𝑥𝑖 , 𝑟𝑖) such that 𝑥𝑖 ∈ 𝑆0 and 𝐵𝑖 ⊂ 𝐴. Thus the sets 𝑓(𝐵𝑖) cover the set 𝑓(𝑆0), and we can 

use this cover to estimate the measure of 𝑓(𝑆0):  

𝑚𝑒𝑎𝑠(𝑓(𝑆0)) ≤∑𝑚𝑒𝑎𝑠(𝑓(𝐵𝑖))

𝑖

. 

Since the measure of the set 𝑓(𝐵𝑖) is less than its diameter, which is 𝑜𝑠𝑐(𝑓, 𝐵𝑖), using (9) 

we get  

𝑚𝑒𝑎𝑠(𝑓(𝑆0)) ≲∑𝑟
𝑖

2−
2
𝑝
 (∫ |𝛻2𝑓|𝑝

𝐵𝑖

)

1
𝑝

𝑖

≤ (∑𝑟𝑖
2

𝑖

)

1−
1
𝑝

(∑∫ |𝛻2𝑓|𝑝

𝐵𝑖𝑖

)

1
𝑝

  

≲ 𝑚𝑒𝑎𝑠(𝐴)
1−
1
𝑝 (∫|𝛻2𝑓|𝑝

𝐴

)

1
𝑝

,                                                  (10) 

where the second inequality follows by applying H�̈�lder inequality in the form ∑𝑎𝑖𝑏𝑖 ≤

(∑𝑎𝑖
𝑞
)
1

𝑞(∑𝑏𝑖
𝑝
)
1

𝑝, and the third one holds provided that the balls 𝐵𝑖 do not overlap too 

much—a property that can be obtained by the Besicovitch covering theorem. 

     To conclude the proof, note that we can choose the open set A so that meas(A) is 

arbitrarily close to 𝑚𝑒𝑎𝑠(𝑆0), which is finite, while ∫ |𝛻2𝑓|𝑝
𝐴

 is arbitrarily close to ∫ |𝛻2𝑓|
𝑝

𝑆0
 

, which is null because 𝛻𝑓 = 0 on 𝑆0 implies 𝛻2𝑓 = 0 a.e. on 𝑆0. 

All versions of Sard theorem We mentioned so far apply to classes of maps that are 

differentiable at every point, and for which, consequently, the definition of critical set carries 

no ambiguity. However for 1 ≤  𝑝 ≤  2 the space 𝑊2,𝑝(ℝ2) embeds in 𝐶0 but not in 𝐶1, 
and therefore a function 𝑓 in this space admits a continuous representative which in general 

is differentiable almost everywhere but not everywhere. Thus for such 𝑓 we should consider 

two sets:  

𝑆0: = {𝑥: 𝑓 is differentiable at 𝑥 and 𝛻𝑓(𝑥) = 0}, 
𝑁:= {𝑥: 𝑓 is not differentiable at 𝑥}.                                       (11) 

It turns out that Sard theorem holds in the strongest form (see [33], [37]): if f is a continuous 

function of class 𝑊2,1 then 𝑓(𝑆0 ∪ 𝑁) is negligible. 
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The only information readily available on the set N is that it cannot be too large, and 

H1(𝑁) = 0. Therefore we could obtain that 𝑓(𝑁) is negligible if we knew that for every set 

E in ℝ2 

H1(𝐸) = 0 ⇒ H1(𝑓(𝐸)) = 0.                                     (12) 
This is exactly a particular case of the generalized N-property.  

We show how to adapt the proof to obtain that 𝑓(𝑆0) is negligible, too. First of all, notice 

that this proof, as it is, does not work. The point is that we no longer have estimate (7), 

because for 𝑝 ≤ 2 the space 𝑊2,𝑝 does not embeds in 𝐶1, and therefore the value of 𝛻𝑓 at a 

given point x is not well-defined.  

The idea is to replace the term |𝛻𝑓(𝑥)| in (7) with  

∫|𝛻𝑓|𝑑µ𝐵
𝐵

 

where µ𝐵 is a probability measure supported on B that belongs to the dual of 𝑊1,1, in the 

sense that 𝑢 ⟼ ∫𝑢 𝑑µ𝐵 is a well-defined bounded functional on 𝑊1,1, and therefore 𝑢 ⟼

∫ |𝑢|𝑑µ𝐵 is a well-defined continuous seminorm on 𝑊1,1 (for more details on measures in 

the dual of 𝑊1,1 see [49]). Then we have the following variant of (7): 

𝑜𝑠𝑐(𝑓, 𝐵) ≲ 𝑟∫|𝛻𝑓|𝑑µ𝐵
𝐵

+ 𝑟2 − ⨍|𝛻2𝑓|
𝐵

,                             (13) 

Let now 𝑆′ be the set of all 𝑥 ∈ 𝑆0 with the following property: there exists a sequence of 

balls 𝐵 = 𝐵(𝑥, 𝑟𝑖) with 𝑟𝑖 → 0 such that on each of these balls we can find a measure µ𝐵 as 

above, supported on 𝑆0 ∩ 𝐵. 

With this choice of µ𝐵 the first integral at the right-hand side of (13) vanishes, and therefore 

we get once again estimate (9) (with 𝑝 = 1). We can now repeat the rest of the proof as it 

is, and obtain that 𝑓(𝑆′) is negligible. It remains to show that 𝑓(𝑆0\𝑆
′) is negligible. We 

obtain this using (12) and  

H1(𝑆0\𝑆
′) = 0.                                                  (14) 

To prove (14), we first need to understand when a point x belongs to 𝑆′, which in turn 

implies understanding when the set 𝑆0 ∩ 𝐵(𝑥, 𝑟) can support a probability measure µ𝐵 in 

the dual of 𝑊1,1 and how small the dual norm of this measure can be.  

     So, when does a set E in ℝ2 support a probability measure µ in the dual of 𝑊1,1? 

Intuitively, a necessary condition should be that the set E has positive 𝑊1,1 -capacity, or, 

equivalently, that H1(𝐸) > 0. It turns out that a sufficient condition is that H∞
1 (𝐸) > 0, 

where H𝜀
1
 are the Hausdorff pre-measures that appear in the definition of Hausdorff 

measures (see [49]). 

Using this sufficient condition we obtain that x belongs to 𝑆′ if 

lim sup
𝑟→0

H∞
1 (𝑆0 ∩ 𝐵(𝑥, 𝑟))

𝑟
≥ 1/2 ,                              (15) 

and therefore for all 𝑥 ∈ 𝑆0\𝑆
′ the limsup in (15) is necessarily strictly smaller than 1, which 

implies that  

lim sup
𝑟→0

H∞
1 (𝑆0\𝑆

′) ∩ 𝐵(𝑥, 𝑟)

𝑟
< 1.                            (16) 

The last step of the proof consists in showing that (16) implies (14).  
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In [33] we prove the following  Take 𝑛, 𝑘, and p so that the Sobolev space 𝑊𝑘,𝑝(ℝ𝑛) 
embeds in 𝐶0 (that is, 𝑘𝑝 > 𝑛 or 𝑝 = 1 and 𝑘 = 𝑛), let 𝑓:ℝ𝑛 → ℝ𝑚 be a continuous map 

of class 𝑊𝑘,𝑝, and define the sets 𝑆0 and N as in (11). Then 

H
𝑛
𝑘(𝑓(𝑆0 ∪ 𝑁)) = 0.                                                 (17) 

This result is optimal, in the sense that  

(i) the dimension 𝑛/𝑘 in (17) cannot be lowered; 

(ii) if 𝑛, 𝑘, and p do not satisfy the condition above, then there are maps 𝑓 on ℝ𝑛 of class 

𝑊𝑘,𝑝 ∩ 𝐶𝑘−1 for which the Hausdorff dimension of 𝑓(𝑆0) is strictly larger than 𝑛/𝑘, 

and in particular (17) fails. 

To obtain the optimal statement of Sard theorem we should then prove similar estimates for 

the sets 𝑆ℎ defined in (6). 

A map 𝑓:ℝ𝑛 → ℝ𝑚 with 𝑚 ≥ 𝑛 has the Lusin N-property if the following 

implication holds for every set E contained in ℝ𝑛: 

H𝑛(𝐸) = 0 ⇒ H𝑛(𝑓(𝐸)) = 0 . 
This property has been widely studied in the past years, mostly in relation to the area 

formula. Indeed, the following statement holds: let 𝑓 be a map which is differentiable (in 

the approximate sense) at almost every point and has the Nproperty; then the area formula 

holds, that is 

∫ [ ∑ 𝜑(𝑥)

𝑥∈𝑓−1(𝑦)∩𝐸

] 𝑑H𝑛(𝑦)
𝑦∈ℝ𝑚

= ∫ 𝜑(𝑥)𝐽𝑓(𝑥)𝑑H
𝑛(𝑥)

𝑥∈𝐸

         (18) 

where 𝜑 is any positive Borel function on ℝ𝑛, E is any Borel subset of ℝ𝑛, and 𝐽𝑓 is the 

Jacobian of 𝑓 (defined at every point where f is differentiable).  

The proof of this statement is elementary: since f is a.e. differentiable, it has the Lusin 

approximation property with Lipschitz maps, that is, there exist a sequence of Borel sets 𝐹𝑖 
and of Lipschitz maps 𝑓𝑖 such that the sets 𝐹𝑖 cover almost all of ℝ𝑛 and 𝑓 = 𝑓𝑖 on 𝐹𝑖 (see 

[42]). Using the area formula for Lipschitz maps (see [42]) we obtain that (18) holds when 

E is contained in the union of all 𝐹𝑖. It remains to show that (18) holds when E is contained 

in the complement of the union of all 𝐹𝑖. Since E is H𝑛-negligible, the integral at right-hand 

side of (18) vanishes, and to prove that also the integral at the left-hand side vanishes it 

suffices to show that 𝑓(𝐸) is H𝑛-negligible, which is precisely what the N-property says.  

     Concerning Sobolev maps, a continuous map 𝑓:ℝ𝑛 → ℝ𝑚 of class 𝑊1,𝑝 has the N-

property if 𝑝 > 𝑛 (see [45]) and this bound on the summability exponent is sharp (however, 

homeomorphisms of class 𝑊1,𝑛 also have the N-property; for this and other results on the 

N-property see [44]).  

We focus on a generalization of the N-property that naturally arises when dealing with the 

Sard theorem for Sobolev maps.  

Given a map f between metric spaces and positive numbers 𝛼, 𝛽, we say that f has the 
(𝛼, 𝛽)-N-property if the following implication holds for every set E contained in the domain 

of f:  

H𝛼(𝐸) = 0 ⇒ H𝛽(𝑓(𝐸)) = 0. 
It follows from elementary facts that a Lipschitz map has the (𝛼, 𝛼)-N-property for every 

𝛼 > 0 and, more generally, an H�̈�lder map with exponent 𝛾 has the (𝛼, 𝛼/𝛾) − 𝑁-property 

for every 𝛼 > 0. 
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Concerning Sobolev maps, in [32] we prove the following: Take 𝑛, 𝑘, and p so that the 

Sobolev space 𝑊𝑘,𝑝(ℝ𝑛) embeds in 𝐶0 (that is, 𝑘𝑝 > 𝑛 or 𝑝 = 1 and 𝑘 = 𝑛), and let 

𝑓:ℝ𝑛 → ℝ𝑚 be a continuous map of class 𝑊𝑘,𝑝. Then 

(i) 𝑓 has the (𝛼, 𝛽)-N-property with 𝛽:=
𝛼𝑝

𝑘𝑝+𝛼−𝑛
 for 𝛼 < 𝑛 − (𝑘 − 1)𝑝; 

(ii) 𝑓 has the (𝛼, 𝛼)-N-property for 𝛼 > 𝑛 − (𝑘 − 1)𝑝. 

Moreover this result is sharp, in the sense that  

(iii) the value of 𝛽 in (i) cannot be lowered; 

(iv) if we take 𝑛, 𝑘, and p so that the Sobolev space 𝑊𝑘,𝑝(ℝ𝑛) does not embed in 

𝐶0, then there are continuous maps 𝑓:ℝ𝑛 → ℝ𝑚 of class 𝑊𝑘,𝑝 that do not have the 

(𝛼, 𝛽)-N-property for any 𝛼 > 0 and 𝛽 ≤  𝑚; in other words, these maps take some 

sets of dimension arbitrarily close to 0 into sets of dimension m.  

We have two different methods for proving statements (i) and (ii) above. Even though 

the proof can be achieved by either methods for most 𝑘, 𝑝, 𝛼, 𝛽 in the range where the N-

property holds, yet neither approach covers all cases (or so it seems).  

Let me illustrate the first method in the case of the (1, 1)-N-property for maps 𝑓:ℝ2 → ℝ𝑚 

of class 𝑊2,1. The starting point is the following estimate (the proof is essentially the same 

as that of estimates (7) and (13)): for every ball 𝐵 = 𝐵(𝑥, 𝑟) there holds  

𝑜𝑠𝑐(𝑓, 𝐵) ≲ 𝑟 ⨍|𝛻𝑓|
𝐵

+ 𝑟2 ⨍|𝛻2𝑓|
𝐵

.                                         (19) 

We now fix a set E with H1(𝐸) = 0 and, given 𝜀 > 0, we choose a family of balls 𝐵𝑖 =
𝐵(𝑥𝑖 , 𝑟𝑖) which cover E and satisfy ∑𝑟𝑖 ≤ 𝜀. Then the sets 𝑓(𝐵𝑖) cover 𝑓(𝐸), and we use 

this cover to estimate the Hausdorff measure of 𝑓(𝐸): 

H1(𝑓(𝐸)) ≤∑𝑑𝑖𝑎𝑚(𝑓(𝐵𝑖))

𝑖

. 

Since the diameter of 𝑓(𝐵𝑖) agrees with the oscillation of 𝑓 on 𝐵𝑖, using (19) we obtain  

H1(𝑓(𝐸)) ≲∑
1

𝑟𝑖
∫ |𝛻𝑓|
𝐵𝑖𝑖

+∑∫ |𝛻2𝑓|
𝐵𝑖𝑖

.                                   (20) 

We want to show that both sums at the right-hand side of (20) tends to 0 as ε tend to 0 

(provided the covers {𝐵𝑖} are suitably chosen).  

     If the balls 𝐵𝑖 do not overlap too much (and this can be obtained by Besicovitch covering 

lemma) we can estimate the second sum by the integral of |𝛻2𝑓| over the union A of the 

balls 𝐵𝑖, and since the area of A tends to 0 as 𝜀 → 0, the same happens to the integral. 

The difficult part is to handle the first sum. First of all we write it as ∫ |𝛻𝑓|𝑑µ where µ is 

given by the Lebesgue measure multiplied by the density  

𝜌:=∑
1

𝑟𝑖
1𝐵𝑖

𝑖

, 

and then we show that µ belongs to the dual of 𝑊1,1(ℝ2) in the sense of [49] (the key step 

is to prove that µ(𝐵) ≲ 𝑟 for every ball 𝐵 = 𝐵(𝑥, 𝑟)). Then the proof is concluded by a 

careful estimate of the norm of this measure as element of the dual of 𝑊1,1(ℝ2).  
     Concerning the second method, let me just hint that it is related to estimates for the local 

H�̈�lder exponent of Sobolev maps. The simplest version of such estimates reads as follows: 

if α is a real number with 0 < 𝛼 ≤  𝑛 and 𝑓:ℝ𝑛 → ℝ𝑚 is a continuous map of class 𝑊1,𝑝 

with 𝑝 > 𝑛, then for H𝛼-almost every 𝑥 ∈ ℝ𝑛 and every ball 𝐵 = 𝐵(𝑥, 𝑟) there holds  
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𝑜𝑠𝑐(𝑓, 𝐵) ≲ 𝑟 (⨍|𝛻𝑓|𝑝
𝐵

)

1
𝑝
= 𝑂(𝑟𝛾)     𝑤𝑖𝑡ℎ   𝛾: =

𝑝 + 𝛼 − 𝑛

𝑝
.       (21) 

The inequality in (21) can be proved in the same way as estimate (7), and the equality is 

obtained by applying the following elementary statement with 𝑔:= |𝛻𝑓|𝑝:given a positive 

function g in 𝐿1(ℝ𝑛) and 0 < 𝛼 ≤ 𝑛, for H𝛼-almost every 𝑥 ∈ ℝ𝑛 and every ball 𝐵 =
𝐵(𝑥, 𝑟) there holds 

∫𝑔
𝐵

= 𝑂(𝑟𝛼) 

(the estimate applies in the regime 𝑟 → 0, and it is clearly not uniform in 𝑥). 

     Now, estimate (21) says more or less that we can find a sequence of sets such that the 

restriction of f to each of these sets is H�̈�lder continuous of exponent 𝛾, and the sets cover 

ℝ𝑛 except for a residual set which is H𝛼-negligible. If we neglect this residual set, we 

immediately obtain that f has the (𝛼,
𝛼

𝛾
)-N-property, and 𝛼/𝛾 is exactly the value of 𝛽 in 

statement (i) for 𝑘 = 1. 

Section (2.2): The Sharp Case of Sobolev Mappings 

The Morse–Sard theorem is a fundamental result with many applications. In its 

classical form it states that the image of the set of critical points of a 𝐶𝑛−𝑚+1 smooth 

mapping 𝑣 ∶ ℝ𝑛 → ℝ𝑚 has zero Lebesgue measure in ℝ𝑚. Assuming that  𝑛 ≥ 𝑚 the set of 

critical points for 𝑣 is 𝑍𝑣 = {𝑥 ∈ ℝ
𝑛 ∶  𝑟𝑎𝑛𝑘𝛻𝑣(𝑥) < 𝑚} and the conclusion is that 

 𝐿𝑚(𝑣(𝑍𝑣)) =  0.                                                     (43) 
 The theorem was proved by Morse [69] in the case 𝑚 = 1 and subsequently by Sard [47] 

in the general case. It is well–known since the work of Whitney [48] that the 𝐶𝑛−𝑚+1 

smoothness assumption on the mapping 𝑣 cannot be weakened to 𝐶𝑗 smoothness with 𝑗 less 

than 𝑛 −𝑚 +  1. While this is so Dubovitskiǐ [59] obtained results on the structure of level 

sets for 𝐶𝑗 mappings 𝑣 including the cases where 𝑗 is smaller than 𝑛 −𝑚 + 1 (also see [53]). 

 An important generalization of the Morse–Sard theorem is the following result that we 

display as it, together with the classical result, forms the starting point for our investigations 

here.  

Theorem (2.2.1)[50]: (Federer [61]). Let 𝑚 ∈ {1, . . . , 𝑛}, 𝑑, 𝑘 ∈ ℕ, and let 𝑣 ∶ ℝ𝑛 → ℝ𝑑 be 

a 𝐶𝑘–smooth mapping. Denote 𝑞∘ = 𝑚 − 1 +
𝑛−𝑚+1

𝑘
 . Then  

𝐻𝑞∘ (𝑣(𝑍𝑣,𝑚)) = 0,                                                  (44) 

 where 𝐻𝛽 denotes the 𝛽–dimensional Hausdorff measure and 𝑍𝑣,𝑚 denotes the set of 𝑚–

critical points of 𝑣: 𝑍𝑣,𝑚 = {𝑥 ∈ ℝ
𝑛 ∶  𝑟𝑎𝑛𝑘𝛻𝑣(𝑥) < 𝑚}. 

 The Morse–Sard–Federer results have subsequently been generalized to mappings in more 

refined scales of spaces, including H�̈�lder and Sobolev spaces. For H �̈�lder spaces we 

mention ¨ in particular [36], [53], [68], [70], [78] where essentially sharp results were 

obtained, including examples showing that the smoothness assumption on 𝑣 in Federer’s 

theorem cannot be weakened within the scale of 𝐶𝑗 spaces. However, it follows from [36] 

that the conclusion (44) remains valid for 𝐶𝑘−1,1 mappings 𝑣, and according to [68] it fails 

in general for 𝐶𝑘−1,𝛼 mappings whenever 𝛼 < 1. (For 𝑘 ∈ ℕ0 and 𝛼 ∈ (0, 1] we say that the 

mapping 𝑣 is of class 𝐶𝑘,𝛼 when 𝑣 is 𝐶𝑘 and the 𝑘–th order derivative of 𝑣 is locally 𝛼–

H�̈�lder continuous.) One interpretation of ¨ these results is that for the validity of (44) one 

must assume existence of 𝑘 derivatives of 𝑣 in a suitably strong sense. At a heuristic level 
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the general problem is then to prove analogs of the Morse–Sard–Federer results where we 

replace the assumption that the mapping is 𝑘 times continuously differentiable by a 

corresponding Sobolev assumption: 𝑣 has weak derivatives up to and including order 𝑘 and 

these weak derivatives must satisfy a suitable integrability condition. The aforementioned 

examples show that we cannot in general reduce the degree 𝑘 of differentiability. The 

question we wish to address here concerns the optimal local integrability condition that the 

𝑘–th order weak derivative must satisfy for the validity of (44). Previous works on the 

Morse–Sard property of Sobolev spaces include [53], [57], [39], [43], [63], [71], [76], [77], 

[37], [56]. The first Morse–Sard result in the Sobolev context that we are aware of is [39]. 

It states that (43) holds for mappings 𝑣 ∈ 𝑊 𝑝,𝑙𝑜𝑐
𝑘 (ℝ𝑛 , ℝ𝑚) when 𝑘 ≥ 𝑚𝑎𝑥(𝑛 −𝑚 + 1, 2) 

and 𝑝 > 𝑛. Note that by the Sobolev embedding theorem any mapping on ℝ𝑛 which is 

locally of Sobolev class 𝑊𝑝
𝑘 for some 𝑝 > 𝑛 is in particular 𝐶𝑘−1 , so the critical set 𝑍𝑣 can 

be defined as usual. When in the scalar case 𝑚 = 1 we consider functions in 𝑊𝑝,𝑙𝑜𝑐
𝑛 (ℝ𝑛) 

with 𝑝 ∈ [1, 𝑛] we are in general only assured everywhere continuity whereas the 

differentiability can fail at some points. Hence for such functions one must adapt the 

definition of critical set accordingly. We define the sets 𝐴𝑣 ∶=  {𝑥 ∈ ℝ
𝑛 ∶  𝑣 is not 

differentiable at 𝑥} and 𝑍𝑣 ∶= {𝑥 ∈ ℝ
𝑛 \ 𝐴𝑣 ∶  𝛻𝑣(𝑥) = 0}. In these terms the results of 

[37], [56] imply that (43) holds with 𝑚 = 1 for all 𝑣 ∈ 𝑊1,𝑙𝑜𝑐
𝑛 (ℝ𝑛) and that also 

𝐿1(𝑣(𝐴𝑣)) = 0. The latter is a consequence of a more general Luzin N property with respect 

to one–dimensional Hausdorff content that 𝑊1,𝑙𝑜𝑐
𝑛  functions are shown to enjoy. In fact the 

results of [37], [56] even yield (43) with 𝑚 = 1 and an appropriate definition of the critical 

set, and the Luzin N property within the more general framework of functions of bounded 

variation 𝐵𝑉𝑛,𝑙𝑜𝑐(ℝ
𝑛).  

We shall be concerned with the vectorial case 𝑚 > 1.It is very natural to assume, that the 

inclusion 𝑣 ∈ 𝑊 𝑝
𝑘(ℝ𝑛 , ℝ𝑑) should guarantee at least the continuity of 𝑣. For values 𝑘 ∈

{1, . . . , 𝑛 −  1} it is well–known that 𝑣 ∈ 𝑊 𝑝
𝑘(ℝ𝑛 , ℝ𝑑) is continuous for 𝑝 >

𝑛

𝑘
 and could 

be discontinuous for ≤
𝑛

𝑘
 . So the borderline case is = 𝑝∘ =

𝑛

𝑘
 . It is well–known (see for 

instance [62]) that really 𝑣 ∈ 𝑊 𝑝∘
𝑘 (ℝ𝑛 , ℝ𝑑) is continuous if the derivatives of 𝑘-th order 

belong to the Lorentz space 𝐿𝑝∘,1, we will denote the space of such mappings by 

𝑊𝑝∘,1
𝑘 (ℝ𝑛 , ℝ𝑑).  

We prove the precise analog of the above Federer’s theorem for mappings 𝑣 ∶ ℝ𝑛 →
ℝ𝑑  locally of class 𝑊𝑝∘,1

𝑘  , 𝑘 ∈ {2, . . . , 𝑛},𝑚 ∈ {2, . . . , 𝑛} (the case 𝑘 = 1, and, consequently, 

𝑞∘ = 𝑛, was considered in [62], It is easy to see (using well–known results such as [58]) that 

such a function is (Frechet–)differentiable ´ 𝐻𝑞∘ –almost everywhere, where 𝑞∘ = 𝑚 −  1 +
𝑛−𝑚+1

𝑘
 is the same as in above Federer’s theorem. The critical set 𝑍𝑣,𝑚 is defined as the set 

of points 𝑥, where 𝑣 is differentiable and rank𝛻𝑣(𝑥) < 𝑚. As our main result we prove that 

𝐻𝑞∘(𝑣(𝑍𝑣,𝑚)) = 0. In fact, the result in Theorem (2.2.18) is slightly more general and 

concerns mappings locally of Sobolev class 𝑊𝑝∘
𝑘 . 

 We also establish a related Luzin N property with respect to Hausdorff content in Theorem 

(2.2.14). When the mapping 𝑣 ∶ ℝ𝑛 → ℝ𝑑 is of class 𝑊𝑝∘,1
𝑘  we find for any 𝜀 > 0 a 𝛿 > 0 

such that for all subsets 𝐸 of ℝ𝑛 with 𝐻∞
𝑞∘(𝐸) < 𝛿 we have 𝐻∞

𝑞∘(𝑣(𝐸)) < 𝜀. Here 𝐻∞
𝑞∘ is the 

𝑞∘–dimensional Hausdorff content. In particular, it follows that 𝐻𝑞∘(𝑣(𝐸)) = 0whenever 

𝐻𝑞∘(𝐸)  = 0. So the image of the exceptional “bad” set, where the differential is not defined, 
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has zero 𝑞∘–dimensional Hausdorff measure. This ties nicely with our definition of the 

critical set and our version of the Federer result.  

Finally, using these results we prove that if 𝑣 ∈ 𝑊 𝑝∘,1
𝑘  (ℝ𝑛 , ℝ𝑚) with 𝑘 = 𝑛 −𝑚 + 1 then 

for 𝐿𝑚–almost all 𝑦 ∈ ℝ𝑚 the preimage 𝑣−1(𝑦) is a finite disjoint union of 𝐶1–smooth 

compact manifolds of dimension 𝑛 −𝑚 without boundary.  

The results are in particular valid for functions 𝑣 from the classical Sobolev spaces 

𝑊𝑝
𝑘(ℝ𝑛, ℝ𝑑) with 𝑝 > 𝑝∘ =

𝑛

𝑘
. 

 We emphasize again that the similar results were proved for 𝑘 = 1 (i.e., 𝑞∘ = 𝑛 for any ∈
{1, . . . , 𝑛} ) in [62] and for 𝑚 = 1, 𝑘 = 𝑛 in [37], [56]. We do not prove the analogs of 

Federer’s theorem for the cases 𝑘 > 𝑛 or 𝑚 = 1, 𝑘 < 𝑛. In fact, these cases remain open. 

While we have formulated all our results of euclidean spaces it is clear that the results are 

local and hence could, with the appropriate modifications, be formulated for Sobolev 

mappings between smooth Riemannian manifolds instead. 

 Our proofs rely on the results of [67] on advanced versions of Sobolev imbedding theorems  

of [51] on Choquet integrals of Hardy-Littlewood maximal functions with respect to 

Hausdorff content, and of [78] on the entropy estimate of near–critical values of 

differentiable functions. The key step in the proof of the Morse–Sard–Federer Theorem 

(2.2.18) is contained in Lemma (2.2.19), and it expands on a similar argument used in [56]. 

By an 𝑛–dimensional interval we mean a closed cube in ℝ𝑛 with sides parallel to the 

coordinate axes. If 𝐼 is an 𝑛–dimensional interval then we write ℓ(𝐼) for its sidelength.  

For a subset 𝑆 of ℝ𝑛 we write 𝐿𝑛(𝑆) for its outer Lebesgue measure. The 𝑚–dimensional 

Hausdorff measure is denoted by 𝐻𝑚 and the 𝑚–dimensional Hausdorff content by 𝐻∞
𝑚. 

Recall that for any subset 𝑆 of ℝ𝑛 we have by definition 

 𝐻𝑚(𝑆) = lim
𝛼↘0
𝐻𝛼
𝑚(𝑆)  = sup

𝛼>0
𝐻𝛼
𝑚(𝑆) , 

 where for each 0 < 𝛼 ≤ ∞,  

𝐻𝛼
𝑚(𝑆) = inf {∑(𝑑𝑖𝑎𝑚 𝑆𝑖)

𝑚

∞

𝑖=1

 ∶ 𝑑𝑖𝑎𝑚 𝑆𝑖 ≤ 𝛼, 𝑆 ⊂⋃𝑆𝑖

∞

 𝑖=1

  . 

 It is well known that 𝐻𝑛(𝑆) ∼ 𝐻∞
𝑛 (𝑆) ∼ 𝐿𝑛(𝑆) for sets 𝑆 ⊂ ℝ𝑛 . 

 To simplify the notation, we write ‖𝑓‖𝐿𝑝 instead of ‖𝑓‖𝐿𝑝(ℝ𝑛)  , etc. 

 The Sobolev space 𝑊𝑝
𝑘(ℝ𝑛 , ℝ𝑑) is as usual defined as consisting of those ℝ𝑑 -valued 

functions 𝑓 ∈ 𝐿𝑝(ℝ
𝑛) whose distributional partial derivatives of orders 𝑙 ≤ 𝑘 belong to 

𝐿𝑝(ℝ
𝑛) (for detailed definitions and differentiability properties of such functions see, e.g., 

[60], [79], [58]). Denote by 𝛻𝑘𝑓 the vector-valued function consisting of all 𝑘-th order 

partial derivatives of f arranged in some fixed order. However for the case of first order 

derivatives 𝑘 = 1 we shall often think of 𝛻𝑓(𝑥) as the Jacobi matrix of 𝑓 at 𝑥, i.e., the 𝑑 ×
𝑛 matrix whose 𝑟-th row is the vector of partial derivatives of the 𝑟-th coordinate function.  

We use the norm  

‖𝑓‖𝑊𝑝𝑘 = ‖𝑓‖𝐿𝑝 + ‖𝛻𝑓‖𝐿𝑝 + · · ·  + ‖𝛻
𝑘𝑓‖

𝐿𝑝
 , 

 and unless otherwise specified all norms on the spaces ℝ𝑠(𝑠 ∈ ℕ) will be the usual 

euclidean norms. We state the following result, and only remark that it is well–known and 

follows from the definition of Sobolev spaces. In its statement we denote by 𝐶𝑐
∞(ℝ𝑛) the 

space of 𝐶∞ smooth and compactly supported functions on ℝ𝑛 . 
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 Lemma (2.2.2)[50]: Let 𝑓 ∈ 𝑊𝑝
𝑘(ℝ𝑛). Then for any 𝜀 > 0 there exist functions 𝑓0 ∈

𝐶𝑐
∞(ℝ𝑛) and 𝑓1 ∈ 𝑊𝑝

𝑘(ℝ𝑛) such that 𝑓 = 𝑓0 + 𝑓1 and ‖𝑓1‖𝑊𝑝𝑘 < 𝜀. 

 Working with locally integrable functions, we always assume that the precise 

representatives are chosen. If 𝑤 ∈ 𝐿1,𝑙𝑜𝑐(Ω), then the precise representative 𝑤∗ is defined 

by  

 𝑤∗(𝑥) = {
lim
𝑟↘0

∫
𝐵(𝑥,𝑟)

 𝑤(𝑧) 𝑑𝑧, 𝑖𝑓 𝑡ℎ𝑒 𝑙𝑖𝑚𝑖𝑡 𝑒𝑥𝑖𝑠𝑡𝑠 𝑎𝑛𝑑 𝑖𝑠 𝑓𝑖𝑛𝑖𝑡𝑒,

0                                                        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

 (45) 

where the dashed integral as usual denotes the integral mean,  

∫
𝐵(𝑥,𝑟)

 𝑤(𝑧)𝑑𝑧 =
1

𝐿𝑛(𝐵(𝑥, 𝑟))
∫ 𝑤(𝑧) 𝑑𝑧
𝐵(𝑥,𝑟)

 , 

 and 𝐵(𝑥, 𝑟) = {𝑦 ∶ |𝑦 − 𝑥| < 𝑟} is the open ball of radius 𝑟 centered at 𝑥. Henceforth we 

omit special notation for the precise representative writing simply 𝑤∗ = 𝑤. 
We will say that 𝑥 is an 𝐿𝑝 Lebesgue point of 𝑤 (and simply a Lebesgue point when 𝑝 = 1), 

if  

∫
𝐵(𝑥,𝑟)

 |𝑤(𝑧) − 𝑤(𝑥)|𝑝𝑑𝑧 → 0 as 𝑟 ↘ 0. 

 If 𝑘 < 𝑛, then it is well-known that functions from Sobolev spaces 𝑊𝑝
𝑘(ℝ𝑛) are continuous 

for 𝑝 >
𝑛

𝑘
 and could be discontinuous for 𝑝 ≤ 𝑝∘ =

𝑛

𝑘
 (see, e.g., [67], [79]). The Sobolev–

Lorentz space 𝑊𝑝∘,1
𝑘 (ℝ𝑛) ⊂ 𝑊𝑝∘

𝑘(ℝ𝑛) is a refinement of the corresponding Sobolev space 

that for our purposes turns out to be convenient. Among other things functions that are 

locally in 𝑊𝑝∘,1
𝑘  on ℝ𝑛 are in particular continuous. 

 Given a measurable function 𝑓 ∶ ℝ𝑛 → ℝ, denote by 𝑓∗ ∶  (0,∞)  → ℝ its distribution 

function  

𝑓∗(𝑠) ∶=  𝐿
𝑛 {𝑥 ∈ ℝ𝑛 ∶  |𝑓(𝑥)| > 𝑠}, 

 and by 𝑓∗  the nonincreasing rearrangement of 𝑓, defined for 𝑡 > 0 by  

𝑓∗(𝑡) = 𝑖𝑛𝑓{𝑠 ≥ 0 ∶ 𝑓∗(𝑠) ≤ 𝑡}. 
 Since 𝑓 and 𝑓∗ are equimeasurable we have for every 1 ≤ 𝑝 < ∞,  

(∫ |𝑓(𝑥)|𝑝𝑑𝑥
(ℝ𝑛)

 )

1 𝑝⁄

= (∫ 𝑓∗(𝑡)𝑝𝑑𝑡
+∞

0

 )

1 𝑝⁄

 . 

 The Lorentz space 𝐿𝑝,𝑞(ℝ
𝑛) for 1 ≤ 𝑝 < ∞, 1 ≤ 𝑞 < ∞ can be defined as the set of all 

measurable functions 𝑓 ∶ ℝ𝑛 → ℝ for which the expresssion  

‖𝑓‖𝐿𝑝,𝑞 =

{
 

 (
𝑞

𝑝
∫ (𝑡1 𝑝⁄ 𝑓∗(𝑡))

𝑞+∞

0

 
𝑑𝑡

𝑡
)

1 𝑞⁄

sup
𝑡>0

𝑡1 𝑝⁄ 𝑓∗(𝑡)         𝑖𝑓 𝑞 = ∞ 

 𝑖𝑓 1 ≤ 𝑞 < ∞ 

is finite. See [65], [74] or [79] for information about Lorentz spaces. However, let us remark 

that in view of the definition of ‖·‖𝐿𝑝,𝑞  and the equimeasurability of 𝑓 and 𝑓∗ we have an 

identity ‖𝑓‖𝐿𝑝 = ‖𝑓‖𝐿𝑝,𝑝 so that in particular 𝐿𝑝,𝑝(ℝ
𝑛) = 𝐿𝑝(ℝ

𝑛). Further, for a fixed 

exponent 𝑝 and 𝑞1 < 𝑞2 we have an estimate ‖𝑓‖𝐿𝑝,𝑞2 ≤ ‖𝑓‖𝐿𝑝,𝑞1 , and, consequently, an 

embedding 𝐿𝑝,𝑞1(ℝ
𝑛) ⊂ 𝐿𝑝,𝑞2(ℝ

𝑛) (see [65]). Finally we recall that ‖·‖𝐿𝑝,𝑞   is a norm on 

𝐿𝑝,𝑞(ℝ
𝑛) for all 𝑞 ∈ [1, 𝑝] (see [65]). 
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 Here we shall mainly be concerned with the Lorentz space 𝐿𝑝,1, and in this case one may 

rewrite the norm as (see [65]) 

‖𝑓‖𝑝,1 = ∫ [𝐿𝑛({𝑥 ∈ ℝ𝑛 ∶ |𝑓(𝑥)| > 𝑡})]
1
𝑝

+∞

0

 𝑑𝑡.                        (46)  

We need the following subadditivity property of the Lorentz norm. 

Lemma (2.2.3) (see, e.g., [72] or [65])[50]: Suppose that 1 ≤ 𝑝 < ∞ and = ⋃ 𝐸𝑗𝑗∈ℕ  , 

where 𝐸𝑗  are measurable and mutually disjoint subsets of ℝ𝑛 . Then for all 𝑓 ∈ 𝐿𝑝,1 we have 

∑‖𝑓 · 1𝐸𝑗‖𝐿𝑝,1

𝑝

𝑗

≤ ‖𝑓 · 1𝐸‖𝐿𝑝,1
𝑝
 , 

 where 1𝐸 denotes the indicator function of 𝐸. 

 Denote by 𝑊𝑝,1
𝑘 (ℝ𝑛) the space of all functions 𝑣 ∈ 𝑊𝑝

𝑘(ℝ𝑛) such that in addition the 

Lorentz norm ‖𝛻𝑣𝑘‖
𝐿𝑝,1

 is finite. For given dimensions 𝑛,𝑚, ∈ ℕ, 1 ≤ 𝑚 ≤ 𝑛, and 𝑘 ∈

{1, . . . , 𝑛}, we denote the corresponding critical exponents by  

𝑝∘ =
𝑛

𝑘
 and 𝑞∘ = 𝑚 − 1 +

𝑛−𝑚+1

𝑘
= 𝑝∘ + (𝑚 − 1)(1 − 𝑘

−1) .         (47) 

 By direct calculation, from 𝑚 ≥ 1, 𝑘 ≥ 1 we find  

𝑝∘ ≤ 𝑞∘ ≤  𝑛.                                                      (48)  
Note that in the double inequality (48) we have equality in the first inequality iff 𝑚 = 1 or 

𝑘 = 1, while in the second inequality equality holds iff 𝑘 = 1. In particular, 

 𝑝∘ ≤ 𝑞∘ < 𝑛 for 𝑘,𝑚 ∈ {2, . . . , 𝑛}.                             (49) 
 For a mapping 𝑢 ∈ 𝐿1(𝐼, ℝ

𝑑  ), 𝐼 ⊂ ℝ𝑛 , define the polynomial 𝑃𝐼[𝑢] = 𝑃𝐼,𝑘−1[𝑢] of degree 

at most 𝑘 − 1 by the following rule: 

∫𝑦𝛼(𝑢(𝑦) − 𝑃𝐼[𝑢](𝑦)) 𝑑𝑦
𝐼

 = 0                               (50) 

 for any multi-index 𝛼 = (𝛼1, . . . , 𝛼𝑛) of length |𝛼| = 𝛼1 + · · · + 𝛼𝑛 ≤ 𝑘 − 1.  
The following well–known bound will be used on several occasions. 

 Lemma (2.2.4)[50]: Suppose 𝑣 ∈ 𝑊𝑝∘,1
𝑘 (ℝ𝑛 , ℝ𝑑). Then 𝑣 is a continuous mapping and for 

any ndimensional interval 𝐼 ⊂ ℝ𝑛 the estimate  

sup
𝑦∈𝐼
|𝑣(𝑦) − 𝑃𝐼[𝑣](𝑦)| ≤ 𝐶‖1𝐼 · 𝛻

𝑘𝑣‖
𝐿𝑝∘,1

                        (51) 

 holds, where 𝐶 is a constant depending on 𝑛, 𝑑 only. Moreover, the mapping 𝑣𝐼(𝑦) =
𝑣(𝑦) − 𝑃𝐼[𝑣](𝑦), 𝑦 ∈ 𝐼, can be extended from 𝐼 to the whole of ℝ𝑛 such that the extension 

(denoted again) 𝑣𝐼 ∈ 𝑊𝑝∘
𝑘(ℝ𝑛 , ℝ𝑑) and  

‖𝛻𝑘𝑣𝐼‖𝐿𝑝∘(ℝ
𝑛)
≤ 𝐶0‖𝛻

𝑘𝑣‖
𝐿𝑝∘(𝐼)

 ,                                 (52) 

 where 𝐶0 also depends on 𝑛, 𝑑 only. 

Proof. By well–known estimates (see for instance [58] or [65]) we have for any Lebesgue 

point 𝑦 ∈ 𝐼 of 𝑣, 

 |𝑣(𝑦) − 𝑃𝐼[𝑣](𝑦)| ≤ 𝐶∫
|𝛻𝑘𝑣(𝑥)|

|𝑦 − 𝑥|(𝑛−𝑘)
𝑑𝑥

𝐼

  ≤ 𝐶‖1𝐼 · 𝛻
𝑘𝑣‖

𝐿𝑝∘,1
· ‖

(1𝐼)

|𝑦 − · |𝑛−𝑘
‖
𝐿
 
𝑛
𝑛−𝑘

,∞

 

≤ 𝐶′‖1𝐼 · 𝛻
𝑘𝑣‖

𝐿𝑝∘ ,1
 . 

 From this estimate the continuity of 𝑣 follows in a routine manner, and thus (51) holds. 

Because of coordinate invariance of estimate (52), it is sufficient to prove the assertions 
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about extension for the case when 𝐼 is a unit cube: 𝐼 = [0, 1]𝑛 . By results of [67] for any 

𝑢 ∈ 𝑊𝑘,𝑝∘(𝐼) the estimate  

‖𝑢‖𝑊𝑝∘
𝑘 (𝐼) ≤ 𝑐(‖𝑃𝐼[𝑢]‖𝐿1(𝐼) + ‖𝛻

𝑘𝑢‖
𝐿𝑝∘(𝐼)

 ,                  (53) 

 holds, where 𝑐 = 𝑐(𝑛, 𝑘) is a constant. Taking 𝑢(𝑦) = 𝑣𝐼(𝑦) = 𝑣(𝑦) − 𝑃𝐼[𝑣](𝑦), the first 

term on the right hand side of (53) vanishes and so we have  

‖𝑢1‖𝑊𝑝∘
𝑘 (𝐼) ≤  𝑐‖𝛻

𝑘𝑢‖
𝐿𝑝∘(𝐼)

 .                                    (54) 

 By the Sobolev Extension Theorem, every function 𝑢 ∈ 𝑊𝑝∘
𝑘(𝐼) on the unit cube 𝐼 =

[0, 1]𝑛 can be extended to a function 𝑈 ∈ 𝑊𝑝∘
𝑘(ℝ𝑛) such that the estimate ‖𝛻𝑘𝑈‖

𝐿𝑝∘(ℝ
𝑛)
≤

𝑐‖𝑢‖𝑊𝑝∘
𝑘 (𝐼) holds, see [67]). Applying this result coordinatewise to 𝑢 = 𝑣𝐼 and taking into 

account (54), we obtain the required estimate (52). 

From Lemma (2.2.4) we deduce the following oscillation estimate.  

Corollary (2.2.5)[50]: Suppose 𝑣 ∈ 𝑊𝑝∘,1
𝑘 (ℝ𝑛 , ℝ𝑑). Then for any 𝑛-dimensional interval 

𝐼 ⊂ ℝ𝑛 the estimate 

 𝑑𝑖𝑎𝑚 𝑣(𝐼) ≤ 𝐶 (
‖𝛻𝑣‖𝐿1(𝐼)

ℓ(𝐼)𝑛−1
+ ‖1𝐼 · 𝛻

𝑘𝑣‖
𝐿𝑝∘,1

)    

≤ 𝐶(
‖𝛻𝑣‖𝐿𝑞(𝐼)

ℓ(𝐼)
𝑛
𝑞
−1

+ ‖1𝐼 ·  𝛻
𝑘𝑣‖

𝐿𝑝∘,1  
                                  (34) 

 holds for every 𝑞 ∈ [1, 𝑛], where 𝐶 depends on 𝑛, 𝑘 only. 

 Proof. Because of coordinate invariance of estimate (34)it is sufficient to prove the 

estimates for the case when 𝐼 is a unit cube: 𝐼 = [0, 1]𝑛 . But for a such fixed interval 𝐼 the 

estimate follows from (51) and from the fact that the coefficients of the polynomial 𝑃𝐼[𝑢] 
depend continuously on 𝑢 with respect to 𝐿1-norm. 

 We need a version of the Sobolev Embedding Theorem that gives inclusions in Lebesgue 

spaces with respect to suitably general positive measures. Very general and precise 

statements are known, but here we restrict attention to the following class of measures. For 

𝛽 ∈ (0, 𝑛) denote by 𝑀𝛽 the space of all nonnegative Radon measures µ on ℝ𝑛 such that 

 |||µ|||𝛽 = sup
𝐼⊂ℝ𝑛

ℓ(𝐼)−𝛽µ(𝐼) < ∞,  

where the supremum is taken over all 𝑛-dimensional intervals 𝐼 ⊂ ℝ𝑛 . 
 Theorem (2.2.6) (see [67])[50]: Let µ be a positive Radon measure on ℝ𝑛 and 𝑝(𝑘 − 1) <
𝑛, 1 ≤ 𝑝 < 𝑞 < ∞. Then for any function 𝑣 ∈ 𝑊𝑝

𝑘(ℝ𝑛) the estimate  

∫ |𝛻𝑣|𝑞 𝑑µ ≤  𝐶|||µ|||𝛽  ·  ‖𝛻
𝑘𝑣‖

𝐿𝑝

𝑞
 ,                                (35) 

 holds with 𝛽 = (
𝑛

𝑝
 − 𝑘 + 1)𝑞, where 𝐶 depends on 𝑛, 𝑝, 𝑞, 𝑘. 

 We use also the following important strong-type estimate for maximal functions. 

 Theorem (2.2.7) (see Theorem A, Proposition 1 and it's Corollary in [51])[50]: Let 𝛽 ∈
(0, 𝑛). Then for nonnegative functions 𝑓 ∈ 𝐶0(ℝ

𝑛) the estimates 

∫ 𝐻∞
𝛽
({𝑥 ∈ ℝ𝑛 ∶  𝑀𝑓(𝑥) ≥ 𝑡}) 𝑑𝑡

∞

0

 ≤ 𝐶1∫ 𝐻∞
𝛽
({𝑥 ∈ ℝ𝑛 ∶ 𝑓(𝑥) ≥ 𝑡}) 𝑑𝑡

∞

0

  

≤ 𝐶2 sup {∫ 𝑓 𝑑µ ∶  µ ∈ 𝑀
𝛽  , |||µ|||𝛽 ≤ 1} ,  

hold, where the constants 𝐶1, 𝐶2 depend on 𝛽, 𝑛 only and 
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𝑀𝑓(𝑥) = sup
𝑟>0

𝑟−𝑛  ∫ |𝑓(𝑦)| 𝑑𝑦
𝐵(𝑥,𝑟)

  

is the usual Hardy-Littlewood maximal function of 𝑓. 

 Applying the two foregoing theorems for 𝑝 = 𝑝∘ =
𝑛

𝑘
 , 𝑞 = 𝛽 = 𝑞∘ = 𝑚 − 1 +

𝑛−𝑚+1

𝑘
 , we 

obtain the first key ingredient of our proof. 

 Corollary (2.2.8)[50]: Let 𝑚, 𝑘 ∈ {2, . . . , 𝑛}. Then for any function 𝑣 ∈ 𝑊𝑝∘
𝑘(ℝ𝑛) the 

estimates 

‖𝛻𝑣‖𝐿𝑞∘(µ)
𝑞∘ ≤ 𝐶|||µ|||𝑞∘‖𝛻

𝑘𝑣‖
𝐿𝑝∘

𝑞∘
  ∀µ ∈ 𝑀𝑞∘ ,                         (36) 

 ∫ 𝐻∞
𝛽
({𝑥 ∈ ℝ𝑛 ∶  𝑀(|∇𝑣|𝑞∘)(𝑥) ≥ 𝑡}) 𝑑𝑡

∞

0

≤ 𝐶‖𝛻𝑘𝑣‖
𝐿𝑝∘

𝑞∘
. (37) 

 hold, where the exponents 𝑝∘, 𝑞∘ are defined by (47) and the constant 𝐶 depends on 𝑛, 𝑘,𝑚 

only. 

 For a subset 𝐴 of ℝ𝑚 and 𝜀 > 0 the 𝜀–entropy of 𝐴, denoted by Ent(𝜀, 𝐴), is the minimal 

number of balls of radius 𝜀 covering 𝐴. Further, for a linear map 𝐿:ℝ𝑛 → ℝ𝑑  denote by 

𝜆𝑗(𝐿), 𝑗 = 1, . . . , 𝑑, the lengths of the semiaxes of the ellipsoid 𝐿(𝐵(0, 1)) ordered by the 

rule 𝜆1 ≥ 𝜆2 ≥ · · · ≥ 𝜆𝑑 . Obviously the numbers 𝜆𝑗 are exactly the eigenvalues repeated 

according to multiplicity of the symmetric nonnegative linear map  √𝐿𝐿∗ ∶ ℝ𝑑 → ℝ𝑑  . Also 

for a differentiable mapping 𝑓 ∶ ℝ𝑛 → ℝ𝑑 put 𝜆𝑗(𝑓, 𝑥) = 𝜆𝑗(𝑑𝑥𝑓), where by 𝑑𝑥𝑓 we denote 

the differential of 𝑓 at 𝑥. The next result is the second basic ingredient of our proof . 

Theorem (2.2.9) ([78])[50]: For any polynomial 𝑃 ∶ ℝ𝑛 → ℝ𝑑  of degree at most 𝑘, for each 

ball 𝐵 ⊂ ℝ𝑛 of radius 𝑟 > 0, and any number 𝜀 > 0 the estimate 

 𝐸𝑛𝑡 (𝜀𝑟, {𝑃(𝑥): 𝑥 ∈ 𝐵, 𝜆1 ≤ 1 + 𝜀, . . . , 𝜆𝑚−1 ≤ 1 + 𝜀, 𝜆𝑚 ≤ 𝜀, . . . , 𝜆𝑑 ≤ 𝜀})   
≤ 𝐶𝑌(1 + 𝜀

1−𝑚)  , 
 holds, where the constant 𝐶𝑌 depends on 𝑛, 𝑑, 𝑘 only and for brevity we wrote 𝜆𝑗 = 𝜆𝑗(𝑃, 𝑥). 

 The application of Corollary (2.2.8) is facilitated through the following simple estimate (see 

for instance Lemma 2 in [58]). 

 Lemma (2.2.10)[50]: Let 𝑢 ∈ 𝑊1
1(ℝ𝑛). Then for any ball 𝐵(𝑧, 𝑟) ⊂ ℝ𝑛, 𝐵(𝑧, 𝑟) ∋ 𝑥, the 

estimate 

|𝑢(𝑥)  − ∫
(𝐵(𝑧,𝑟))

 𝑢(𝑦)𝑑𝑦| ≤ 𝐶𝑟(𝑀𝛻𝑢)(𝑥). 

holds, where 𝐶 depends on 𝑛 only and 𝑀𝛻𝑢 is the Hardy-Littlewood maximal function of 

|𝛻𝑢|. 
 By use of the triangle inequality we then deduce the following oscillation estimate (cf. [55]). 

 Corollary (2.2.11)[50]: Let 𝑢 ∈ 𝑊1
1(ℝ𝑛 , ℝ𝑑). Then for any ball 𝐵 ⊂ ℝ𝑛 of radius 𝑟 > 0 

and for any number 𝜀 > 0 the estimate 

 𝑑𝑖𝑎𝑚({𝑢(𝑥) ∶  𝑥 ∈ 𝐵, (𝑀𝛻𝑢)(𝑥) ≤ 𝜀}) ≤ 𝐶𝑀𝜀𝑟 
 holds, where 𝐶𝑀 is a constant depending on 𝑛, 𝑑 only.  

Finally, recall the following approximation properties of Sobolev functions. 

 Theorem (2.2.12)[50]: (see, [79] or [54]). Let 𝑝 ∈ (1,∞), 𝑘, 𝑙 ∈ {1, . . . , 𝑛}, 𝑙 ≤ 𝑘, (𝑘 −
𝑙)𝑝 < 𝑛. Then for any 𝑓 ∈ 𝑊𝑝

𝑘(ℝ𝑛) and for each 𝜀 > 0 there exist an open set 𝑈 ⊂ ℝ𝑛 and 

a function 𝑔 ∈ 𝐶𝑙(ℝ𝑛) such that 

(i) each point 𝑥 ∈ ℝ𝑛 \ 𝑈 is a Lebesgue point for 𝑓 and for 𝛻𝑗  𝑓, 𝑗 = 1, . . . , 𝑙; 
(ii) 𝑓 ≡ 𝑔, 𝛻𝑗𝑓 ≡ 𝛻𝑗𝑔 on ℝ𝑛 \ 𝑈 for 𝑗 = 1, . . . , 𝑙;  
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(iii) 𝐿𝑛(𝑈) < 𝜀 if 𝑙 = 𝑘;  
(iv) 𝐵𝑘−𝑙,𝑝(𝑈) < 𝜀 if 𝑙 < 𝑘, where 𝐵𝛼,𝑝(𝑈) denotes the Bessel capacity of the set 𝑈. 

 Since for 1 < 𝑝 < ∞ and 0 < 𝑛 − 𝛼𝑝 < 𝛽 ≤ 𝑛 the smallness of 𝐵𝛼,𝑝(𝑈) implies the 

smallness of 𝐻∞
𝛽
(𝑈) (see, e.g., [52]), we have 

 Corollary (2.2.13)[50]: Let 𝑘 ∈ {2, . . . , 𝑛} and 𝑣 ∈ 𝑊𝑝∘
𝑘(ℝ𝑛). Then there exists a Borel set 

𝐴𝑣 ⊂ ℝ
𝑛 such that 𝐻𝑞(𝐴𝑣) = 0 for every 𝑞 ∈ (𝑝∘, 𝑛] and all points of ℝ𝑛 \ 𝐴𝑣 are 

Lebesgue points for 𝛻𝑣. Further, for every 𝜀 > 0 and 𝑞 ∈ (𝑝∘, 𝑛] there exist an open set 

𝑈 ⊃ 𝐴𝑣 and a function 𝑔 ∈ 𝐶1(ℝ𝑛) such that 𝐻∞
𝑞
(𝑈) < 𝜀 and 𝑣 ≡ 𝑔, 𝛻𝑣 ≡ 𝛻𝑔 on ℝ𝑛 \𝑈. 

The main result is the following Luzin 𝑁–property with respect to Hausdorff content 

for 𝑊𝑝∘,1
𝑘 –mappings: 

Theorem (2.2.14)[50]: Let 𝑘 ∈ {2, . . . , 𝑛}, 𝑞 ∈ (𝑝∘, 𝑛], and 𝑣 ∈ 𝑊𝑝∘,1
𝑘 (ℝ𝑛 , ℝ𝑑). Then for 

each 𝜀 > 0 there exists 𝛿 > 0 such that for any set 𝐸 ⊂ ℝ𝑛 if 𝐻∞
𝑞
(𝐸) < 𝛿, then 

𝐻∞
𝑞
(𝑣(𝐸)) < 𝜀. In particular, 𝐻𝑞(𝑣(𝐸)) = 0 whenever 𝐻𝑞(𝐸) = 0. 

Proof. Fix 𝜀 > 0 and take 𝛿 = 𝛿(𝜀, 𝑣) from Lemma (2.2.17). Then by Corollary (2.2.5) for 

any regular family {𝐼𝛼} of 𝑛–dimensional dyadic intervals we have if ∑ ℓ(𝐼𝛼)
𝑞 < 𝛿𝛼  , 

then∑  𝛼 (𝑑𝑖𝑎𝑚 𝑣(𝐼𝛼))
𝑞
< 𝐶𝜀. Now we may conclude the proof of Theorem (2.2.14) by use 

of Lemmas (2.2.15) and (2.2.16). Indeed they allow us to find a 𝛿0 > 0 such that if for a 

subset 𝐸 of ℝ𝑛we have 𝐻∞
𝑞
(𝐸) < 𝛿0, then 𝐸 can be covered by a regular family {𝐼𝛼} of 𝑛– 

dimensional dyadic intervals with ∑ ℓ(𝐼𝛼)
𝑞 < 𝛿𝛼 .  

For the case 𝑑 = 1, 𝑘 = 𝑛, and 𝑞 = 𝑝∘ = 1 the assertion of Theorem (2.2.14) was obtained 

in [56], and the argument given there easily adapts to cover also the cases 𝑘 = 𝑛, 𝑞 = 1, 
and 𝑑 > 1. Our proof here for the remaining cases follows and expands on the ideas from 

[56]. We fix 𝑘 ∈ {2, . . . , 𝑛}, 𝑞 ∈ (𝑝∘, 𝑛], and a mapping 𝑣 in 𝑊𝑝∘,1
𝑘 (ℝ𝑛 , ℝ𝑑) To prove 

Theorem (2.2.14), we need some preliminary lemmas that we turn to next. By a dyadic 

interval we understand an interval of the form [
𝑘1

2𝑙
 ,
𝑘1+1

2𝑙
 ] × · · · × [

𝑘𝑛

2𝑙
 ,
𝑘𝑛+1

2𝑙
], where 𝑘𝑖  , 𝑙 

are integers. The following assertion is straightforward, and hence we omit its proof here. 

 Lemma (2.2.15)[50]: For any 𝑛-dimensional interval 𝐼 ⊂ ℝ𝑛 there exist dyadic intervals 

𝑄1, . . . , 𝑄2𝑛  such that 𝐼 ⊂ 𝑄1 ∪ · · · ∪ 𝑄2𝑛 and ℓ(𝑄1) = · · · = ℓ(𝑄2𝑛) ≤ 2ℓ(𝐼).  
Let {𝐼𝛼}𝛼∈𝐴 be a family of 𝑛-dimensional dyadic intervals. We say that the family {𝐼𝛼} is 

regular, if for any 𝑛-dimensional dyadic interval 𝑄 the estimate 

ℓ(𝑄)𝑞 ≥ ∑ ℓ(𝐼𝛼)
𝑞

𝛼:𝐼𝛼⊂𝑄

                                                 (38) 

 holds. Since dyadic intervals are either disjoint or contained in one another, (38) implies 

that any regular family {𝐼𝛼} must in particular consist of mutually disjoint1 intervals. 

 Lemma (2.2.16)[50]: (see Lemma (2.2.16) in [56]). Let {𝐼𝛼} be a family of 𝑛–dimensional 

dyadic intervals. Then there exists a regular family {𝐽𝛽} of 𝑛–dimensional dyadic intervals 

such that ⋃ 𝐼𝛼𝛼 ⊂ ⋃ 𝐽𝛽𝛽   and  

∑ℓ(𝐽𝛽)
𝑞

𝛽

≤∑ℓ(𝐼𝛼)
𝑞

𝛼

 . 

 Lemma (2.2.17)[50]: For each 𝜀 > 0 there exists 𝛿 = 𝛿(𝜀, 𝑣) > 0 such that for any regular 

family {𝐼𝛼} of 𝑛–dimensional dyadic intervals we have if 

 ∑ℓ(𝐼𝛼)
𝑞

𝛼

<  𝛿,                                                          (39) 
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 then  

∑‖1𝐼𝛼 ·  𝛻
𝑘𝑣‖

𝐿𝑝∘ ,1

𝑞

𝛼

< 𝜀                                       (40) 

 and  

∑ 
1

ℓ(𝐼𝛼)
𝑛−𝑞

𝛼

∫ |𝛻𝑣|𝑞 < 𝜀
𝐼𝛼

 .                                  (41) 

Proof. Fix 𝜀 ∈ (0, 1) and let {𝐼𝛼} be a regular family of 𝑛–dimensional dyadic intervals 

satisfying (39), where 𝛿 > 0 will be specified below.  

We start by checking (40). Of course, for sufficiently small 𝛿 we can achieve that 

‖1𝐼𝛼 ·  𝛻
𝑘𝑣‖

𝐿𝑝∘ ,1
 is strictly less than say 1 for every 𝛼. Then in view of the inequalities 𝑞 >

𝑝∘ and Lemma (2.2.3) we have 

 ∑‖1𝐼𝛼 ·  𝛻
𝑘𝑣‖

𝐿𝑝∘ ,1

𝑞

𝛼

  ≤ ∑‖1𝐼𝛼 ·  𝛻
𝑘𝑣‖

𝐿𝑝∘ ,1

𝑞∘

𝛼

≤ ‖1⋃ 𝐼𝛼𝛼
·  𝛻𝑘𝑣‖

𝐿𝑝∘ ,1

𝑞∘
 

Using (46), we can rewrite the last estimate as  

 ∑‖1𝐼𝛼 ·  𝛻
𝑘𝑣‖

𝐿𝑝∘ ,1

𝑞

𝛼

≤ (∫ [𝐿𝑛 ({𝑥 ∈⋃ 𝐼𝛼

𝛼

∶ |𝛻𝑘𝑣(𝑥)| > 𝑡})]

1
𝑝∘+∞

0

 𝑑𝑡)

𝑝∘

 .       (42) 

Since 

∫ [𝐿𝑛({𝑥 ∈ ℝ𝑛 ∶ |𝛻𝑘𝑣(𝑥)| > 𝑡})]
1
𝑝∘𝑑𝑡

+∞

0

 < ∞ 

 it follows that the integral on the right–hand side of (42) tends to zero as 𝐿𝑛(⋃ 𝐼𝛼𝛼 ) → 0. 
In particular, it will be less than 𝜀 if the condition (39) is fulfilled with a sufficiently small 

𝛿. Thus (40) is established for all 𝛿 ∈ (0, 𝛿1], where 𝛿1 = 𝛿1(𝜀, 𝑣) > 0.  

Next we check (41). By virtue of Lemma (2.2.2), applied coordinate–wise, we can find a 

decomposition 𝑣 = 𝑣0 + 𝑣1, where ‖𝛻𝑣0‖𝐿∞
≤ 𝐾 = 𝐾(𝜀, 𝑣) and 

‖𝛻𝑘𝑣1‖𝐿𝑝∘
< 𝜀.                                                   (43) 

 Assume that 𝛿 ∈ (0, 𝛿1] and  

∑ℓ(𝐼𝛼)
𝑞 < 𝛿 <

1

𝐾𝑞 + 1
 𝜀

𝛼

.                               (44) 

 Define the measure µ by  

µ = (∑
1

ℓ(𝐼𝛼)
𝑛−𝑞
 1𝐼𝛼

𝛼

)𝐿𝑛 ,                                (45)  

where 1𝐼𝛼  denotes the indicator function of the set 𝐼𝛼. 

The estimate  

sup
𝐼
{ℓ(𝐼)−𝑞µ(𝐼) ≤ 2𝑛+𝑞                                             (46)  

holds, where the supremum is taken over all 𝑛–dimensional intervals. Indeed, write for a 

dyadic interval 𝑄 

 µ(𝑄) = ∑ ℓ(𝐼𝛼)
𝑞

𝛼:𝐼𝛼⊂𝑄

 + ∑
ℓ(𝑄 ∩ 𝐼𝛼)

𝑛

ℓ(𝐼𝛼)
𝑛−𝑞

𝛼:𝐼𝛼⊈𝑄

 . 
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By regularity of {𝐼𝛼} the first sum is bounded above by ℓ(𝑄)𝑞 . If the second sum is nonzero 

then there must exist an index 𝛼 such that 𝐼𝛼 ⊈ 𝑄 and 𝐼𝛼 , 𝑄 overlap. But as the intervals 

{𝐼𝛼} are disjoint and dyadic we must then precisely have one such interval 𝐼𝛼 and 𝐼𝛼 ⊃ 𝑄. 

But then the first sum is empty and the second sum has only the one term ℓ(𝑄)𝑛/ℓ(𝐼𝛼)
𝑛−𝑞 

, hence is at mostℓ(𝑄)𝑞 . Thus the estimate µ(𝑄) ≤ ℓ(𝑄)𝑞 holds for dyadic 𝑄. The 

inequality (46) in the case of a general interval 𝐼 follows from the above dyadic case and 

Lemma (2.2.15). The proof of the claim is complete. 

 Now return to (41). By properties (43), (35) (applied to the mapping 𝑣1 and parameters 

𝑝 = 𝑝∘, 𝛽 = (
𝑛

𝑝∘
 − 𝑘 + 1)𝑞 = 𝑞 ), we have  

∑
1

ℓ(𝐼𝛼)
𝑛−𝑞

𝛼

∫ |𝛻𝑣|𝑞

𝐼𝛼

 ≤
𝐾𝑞

𝐾𝑞 + 1
 𝜀 +∑

1

ℓ(𝐼𝛼)
𝑛−𝑞

𝛼

∫ |𝛻𝑣1|
𝑞

𝐼𝛼

  

≤ 𝐶′𝜀 + ∫ |𝛻𝑣1|
𝑞  𝑑µ ≤ 𝐶′′𝜀

𝐼𝛼

 . 

 Since 𝜀 > 0 was arbitrary, the proof of Lemma (2.2.17) is complete. 

Let 𝑘,𝑚 ∈ {2, . . . , 𝑛} and 𝑣 ∈ 𝑊𝑝∘,𝑙𝑜𝑐
𝑘 (Ω,ℝ𝑑), where Ω is an open subset of ℝ𝑛 . Then, 

by Corollary (2.2.13), there exists a Borel set 𝐴𝑣 such that 𝐻𝑞∘(𝐴𝑣) = 0 and all points of 

the complement Ω \ 𝐴𝑣 are Lebesgue points for the gradient 𝛻𝑣(𝑥). We remark that with 

the assumed Sobolev regularity the mapping 𝑣 need not be differentiable at any point of Ω, 

and that 𝛻𝑣(𝑥) simply is the precise representative of the weak gradient of 𝑣. There are of 

course many other ways to give pointwise meaning to 𝛻𝑣(𝑥), but as these play no role in 

our considerations here we omit any further discussion. Denote 𝑍𝑣,𝑚 = {𝑥 ∈ Ω \ 𝐴𝑣 ∶
 rank𝛻𝑣(𝑥) < 𝑚}.  
Theorem (2.2.18)[50]: If 𝑘,𝑚 ∈ {2, . . . , 𝑛}, Ω is an open subset of ℝ𝑛 , and 𝑣 ∈

𝑊𝑝∘,𝑙𝑜𝑐
𝑘 (Ω,ℝ𝑑), then 𝐻𝑞∘(𝑣(𝑍𝑣,𝑚)) = 0. 

The exponents occuring in the theorem are the critical exponents that were defined in (47): 

𝑝∘  =
𝑛

𝑘
 𝑎𝑛𝑑 𝑞∘ = 𝑚 − 1 +

𝑛−𝑚+1

𝑘
. 

 We emphasize the fact that, in contrast with the Luzin 𝑁– property with respect to 

Hausdorff content of Theorem (2.2.14), the Morse–Sard–Federer Theorem (2.2.18) is valid 

within the wider context of 𝑊𝑝
𝑘–Sobolev spaces (finiteness of the Lorentz norm is not 

required). 

 Before embarking on the detailed proof let us make some preliminary observations that 

will enable us to make some convenient additional assumptions. Namely because the result 

is local we can without loss in generality assume that Ω = ℝ𝑛 and that 𝑣 ∈ 𝑊𝑝∘
𝑘(ℝ𝑛 , ℝ𝑑). 

Indeed note that it suffices to prove that 

 𝐻𝑞∘ (𝑣(𝑍𝑣,𝑚 ∩ Ω
′)) = 0                                     (47)  

for all smooth domains Ω′ whose closure Ω′̅ is compact and contained in Ω. Now such 

domains Ω′ are extension domains for 𝑊𝑝∘
𝑘 and so 𝑣|Ω′   can be extended to 𝑉 ∈

𝑊𝑝∘
𝑘(ℝ𝑛 , ℝ𝑑) and hence proving the statement for 𝑉 we deduce (47) and therefore prove 

the theorem.  

We fix 𝑘,𝑚 ∈ {2, . . . 𝑛} and a mapping 𝑣 ∈ 𝑊𝑝∘
𝑘(ℝ𝑛 , ℝ𝑑) In view of the definition of 

critical set adopted here we have that 
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 𝑍𝑣,𝑚 =⋃{𝑥 ∈ 𝑍𝑣,𝑚 ∶  |𝛻𝑣(𝑥)| ≤ 𝑗}

𝑗∈ℕ

 . 

 Consequently we only need to prove that 𝐻𝑞∘(𝑍𝑣
′  ) = 0, where 

 𝑍𝑣
′ = {𝑥 ∈ 𝑍𝑣,𝑚 ∶  |𝛻𝑣(𝑥)|  ≤ 1}. 

 The following lemma contains the main step in the proof of Theorem (2.2.18). 

 Lemma (2.2.19)[50]: For any 𝑛-dimensional dyadic interval 𝐼 ⊂ ℝ𝑛 the estimate  

𝐻∞
𝑞∘(𝑣(𝑍𝑣

′ ∩ 𝐼))  ≤ 𝐶(‖𝛻𝑘𝑣‖
𝐿𝑝∘(𝐼)

𝑞∘
+ ℓ(𝐼) 𝑚−1‖𝛻𝑘𝑣‖

𝐿𝑝∘(𝐼)

1−𝑚+𝑞∘
)       (48)  

holds, where the constant 𝐶 depends on 𝑛,𝑚, 𝑘, 𝑑 only. 

 Proof. By virtue of (52) it suffices to prove that  

𝐻∞
𝑞∘(𝑣(𝑍𝑣

′ ∩ 𝐼)) ≤ 𝐶(‖𝛻𝑘𝑣𝐼‖𝐿𝑝∘(ℝ𝑛)

𝑞∘
+ ℓ(𝐼) 𝑚−1‖𝛻𝑘𝑣𝐼‖𝐿𝑝∘(ℝ𝑛)

1−𝑚+𝑞∘
)       (49) 

 for the mapping 𝑣𝐼 defined in Lemma (2.2.4), where 𝐶 = 𝐶(𝑛,𝑚, 𝑘, 𝑑) is a constant. Fix 

an 𝑛-dimensional dyadic interval 𝐼 ⊂ ℝ𝑛 and recall that 𝑣𝐼(𝑥) = 𝑣(𝑥) − 𝑃𝐼(𝑥) for all 𝑥 ∈
𝐼. Denote  

𝜎 = ‖𝛻𝑘𝑣𝐼‖𝐿𝑝∘

𝑞∘
, 𝜎∗ = ℓ(𝐼)

𝑚−1 ‖𝛻𝑘𝑣𝐼‖𝐿𝑝∘

1−𝑚+𝑞∘
, 

and for each 𝑗 ∈ ℤ 

 𝐸𝑗 = {𝑥 ∈ ℝ
𝑛 ∶ (𝑀|𝛻𝑣𝐼|

𝑞∘)(𝑥) ∈ (2𝑗−1 , 2𝑗  ]} 𝑎𝑛𝑑 𝛿𝑗 = 𝐻∞
𝑞∘(𝐸𝑗). 

Then by Corollary (2.2.8), 

∑ 𝛿𝑗2
𝑗 ≤ 𝐶𝜎

∞

𝑗=−∞

  

 for a constant 𝐶 depending on 𝑛,𝑚, 𝑘, 𝑑 only. By construction, for each 𝑗 ∈ ℤ there exists 

a family of balls 𝐵𝑖𝑗 ⊂ ℝ
𝑛 of radii 𝑟𝑖𝑗 such that 

 𝐸𝑗 ⊂⋃𝐵𝑖𝑗

∞

𝑖=1

  𝑎𝑛𝑑 ∑𝑟𝑖𝑗
𝑞∘ ≤ 2𝑞∘𝛿𝑗

∞

𝑖=1

  . 

 Denote  

𝑍𝑗 = 𝑍𝑣
′ ∩ 𝐼 ∩ 𝐸𝑗  𝑎𝑛𝑑 𝑍𝑖𝑗 = 𝑍𝑗 ∩ 𝐵𝑖𝑗  . 

 By construction 𝑍𝑣
′ ∩  𝐼 = ⋃  𝑗 𝑍𝑗 and 𝑍𝑗 = ⋃ 𝑍𝑖𝑗𝑖   . Put  

𝜀∗ =
1

ℓ(𝐼)
 ‖𝛻𝑘𝑣𝐼‖𝐿𝑝∘

, 

 and let 𝑗∗ be the integer satisfying 𝜀∗
𝑞∘ ∈ (2𝑗∗−1 , 2𝑗∗]. Denote 𝑍∗ = ⋃ 𝑍𝑗 , 𝑍∗∗ =𝑗<𝑗∗

 ⋃ 𝑍𝑗𝑗≥𝑗∗ . Then by construction 

 𝑍𝑣
′ ∩ 𝐼 = 𝑍∗ ∪ 𝑍∗∗, 𝑍∗ ⊂ {𝑥 ∈ 𝑍𝑣

′ ∩ 𝐼 ∶ (𝑀|𝛻𝑣𝐼|
𝑞∘)(𝑥) < 𝜀∗

𝑞∘} 

Since 𝛻𝑃𝐼(𝑥) = 𝛻𝑣(𝑥) − 𝛻𝑣𝐼(𝑥), |𝛻𝑣𝐼(𝑥)| ≤ 2
𝑗 𝑞∘⁄  , |𝛻𝑣(𝑥)| ≤ 1, and 𝜆𝜈(𝑣, 𝑥) = 0 for 

𝑥 ∈ 𝑍𝑖𝑗 and 𝜈 ∈ {𝑚, . . . , 𝑑}, we have 

 𝑍𝑖𝑗 ⊂ {𝑥 ∈ 𝐵𝑖𝑗 ∶  𝜆1(𝑃𝐼 , 𝑥) ≤ 1 + 2
𝑗 𝑞∘⁄ , . . . , 𝜆𝑚−1(𝑃𝐼 , 𝑥) ≤ 1 + 2

𝑗 𝑞∘⁄ , 𝜆𝑚(𝑃𝐼 , 𝑥)

≤ 2𝑗 𝑞∘⁄ , . . . , 𝜆𝑑(𝑃𝐼 , 𝑥) ≤ 2
𝑗 𝑞∘⁄ } . 

 Applying Theorem (2.2.9) and Corollary (2.2.11) to mappings 𝑃𝐼 , 𝑣𝐼 , respectively, with 

𝐵 = 𝐵𝑖𝑗 and 𝜀 = 𝜀𝑗 = 2
𝑗 𝑞∘⁄  , we find a finite family of balls 𝑇𝑠 ⊂ ℝ

𝑑  , 𝑠 = 1, . . . , 𝑠𝑗  with 

𝑠𝑗 ≤ 𝐶𝑌(1 + 𝜀𝑗
1−𝑚), each of radius (1 + 𝐶𝑀)𝜀𝑗𝑟𝑖𝑗  , such that 
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 ⋃𝑇𝑠 ⊃ 𝑣(𝑍𝑖𝑗)

𝑠𝑗

𝑠=1

. 

 Therefore, for 𝑗 ≥ 𝑗∗ we have 

 𝐻∞
𝑞∘ (𝑣(𝑍𝑖𝑗)) ≤ 𝐶1𝑠𝑗𝜀𝑗

𝑞∘  𝑟𝑖𝑗
𝑞∘ = 𝐶2(1 + 𝜀𝑗

1−𝑚)2𝑗   𝑟𝑖𝑗
𝑞∘   

≤ 𝐶2(1 + 𝜀
1−𝑚)2𝑗  𝑟𝑖𝑗

𝑞∘ ,                                                   (50) 

 where all the constants 𝐶𝜈 above depend on 𝑛,𝑚, 𝑑 only. By the same reasons, but this 

time applying Theorem (2.2.9) and Corollary (2.2.11) with 𝜀 = 𝜀∗ and instead of the balls 

𝐵𝑖𝑗  𝑤e take a ball 𝐵 ⊃ 𝐼 with radius 𝑟 =  √𝑛ℓ(𝐼), we have 

 𝐻∞
𝑞∘(𝑣(𝑍∗)) ≤  𝐶3(1 + 𝜀∗

1−𝑚 )𝜀∗
𝑞∘ℓ(𝐼)𝑞∘ = 𝐶3(1 + 𝜀∗

1−𝑚)𝜎 = 𝐶3(𝜎 + 𝜎∗).        (51)  
From (50) we get immediately 

 𝐻∞
𝑞∘(𝑣(𝑍∗∗)) ≤ ∑∑𝐶2(1 + 𝜀∗

1−𝑚)2𝑗  𝑟𝑖𝑗
𝑞∘

𝑖𝑗≥𝑗∗

 ≤ ∑𝐶2(1 + 𝜀∗
1−𝑚 )2𝑗+𝑞∘𝛿𝑗

𝑗≥𝑗∗

 

≤ 𝐶4(1 + 𝜀∗
1−𝑚)𝜎 = 𝐶4(𝜎 + 𝜎∗). 

 The last two estimates combine to give 𝐻∞
𝑞∘(𝑣(𝑍𝑣

′ ∩ 𝐼)) = 𝐻∞
𝑞∘(𝑣(𝑍∗ ∪ 𝑍∗∗)) ≤ 𝐶(𝜎 + 𝜎∗), 

and hence finish the proof of the lemma.  

Corollary (2.2.20)[50]: For any 𝜀 > 0 there exists 𝛿 > 0 such that for any subset 𝐸 of ℝ𝑛 

we have 𝐻∞
𝑞∘(𝑣(𝑍𝑣

′ ∩ 𝐸)) ≤ 𝜀 provided 𝐿𝑛(𝐸) ≤ 𝛿. In particular,  𝐻∞
𝑞∘(𝑣(𝑍𝑣

′ ∩ 𝐸)) = 0 

whenever 𝐿𝑛(𝐸) = 0.  

Proof. Let 𝐿𝑛(𝐸) ≤ 𝛿, then we can find a family of disjoint 𝑛-dimensional dyadic intervals 

𝐼𝛼 such that 𝐸 ⊂ ⋃ 𝐼𝛼𝛼  and ∑ ℓ𝑛(𝐼𝛼)𝛼  < 𝐶𝛿. Of course, for sufficiently small 𝛿 the 

estimate ‖𝛻𝑘𝑣‖
𝐿𝑝∘(𝐼𝛼)

< 1 is fulfilled for every 𝛼. Then in view of 𝑞∘ > 𝑝∘ and Lemma 

(2.2.3) we have 

 ∑ ‖𝛻𝑘𝑣‖
𝐿𝑝∘(𝐼𝛼)

𝛼 ≤ ‖𝛻𝑘𝑣‖
𝐿𝑝∘(⋃  𝐼𝛼)

𝑝∘
                                (52)  

Analogously, by H�̈�lder inequality and by virtue of the equalities 1 − 𝑚 + 𝑞∘ =
𝑛−𝑚+1

𝑘
 and (1 − 𝑚 + 𝑞∘)

𝑛

𝑛−𝑚+1
=
𝑛

𝑘
= 𝑝∘, we have  

∑ℓ(𝐼𝛼)
𝑚−1 

𝛼

‖𝛻𝑘𝑣‖
𝐿𝑝∘(𝐼𝛼)

1−𝑚+𝑞∘
 ≤ (∑ℓ(𝐼𝛼)

𝑛

𝛼

 )

𝑚−1
𝑛

(∑ ‖𝛻𝑘𝑣‖
𝐿𝑝∘(𝐼𝑎)

𝑝∘

𝛼

)

𝑛−𝑚+1
𝑛

  

≤ 𝛿
𝑚−1
𝑛  ‖𝛻𝑘𝑣‖

𝐿𝑝∘(⋃  𝐼𝛼)

𝑛−𝑚+1
𝑘 . 

 The last two estimates together with Lemma (2.2.19) allow us to conclude the required 

smallness of  

∑𝐻∞
𝑞∘(𝑍𝑣

′ ∩ 𝐼𝑎))

𝛼

 ≥ 𝐻∞
𝑞∘(𝑍𝑣

′ ∩ 𝐸). 

 Invoking Federer’s Theorem for the smooth case 𝑔 ∈ 𝐶𝑘(ℝ𝑛), Theorem (2.2.12) (iii) 

(applied to the case 𝑘 = 𝑙 ) implies  

Corollary (2.2.21) (see, e.g., [39])[50]: There exists a set Zev of 𝑛-dimensional Lebesgue 

measure zero such that 𝐻𝑞∘(𝑣(𝑍𝑣
′\�̃�𝑣)) = 0. In particular, 𝐻𝑞∘(𝑣(𝑍𝑣

′ )) = 𝐻𝑞∘(𝑣(�̃�𝑣)). 

 From Corollaries (2.2.20) and (2.2.21) we conclude that 𝐻𝑞∘(𝑣(𝑍𝑣
′ )) = 0, and this ends 

the proof of Theorem (2.2.18).  

Theorem (2.2.18) implies the following analog us of the classical Morse–Sard Theorem: 
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Corollary (2.2.22)[50]: Let Ω be an open subset of ℝ𝑛 . If 𝑚 ∈ {1, . . . , 𝑛} and 𝑣 ∈

𝑊 𝑛

𝑛−𝑚+1
 ,𝑙𝑜𝑐

𝑛−𝑚+1 (Ω,ℝ𝑚), then 𝐿𝑚(𝑣(𝑍𝑣,𝑚)) = 0.  

This assertion follows directly from Theorem (2.2.18) for 𝑚 > 1 and from the results of 

[56] for 𝑚 = 1. 

We start with the following simple technical observation. 

 Lemma (2.2.23)[50]: If 𝑘 ∈ {2, . . . , 𝑛} and 𝑣 ∈ 𝑊𝑝∘,1
𝑘 (ℝ𝑛 , ℝ𝑑), then for 𝐻𝑝∘ –almost all 

𝑥 ∈ ℝ𝑛 ,  

lim
𝑟↘0
𝑟−1  ‖ 1𝐵(𝑥,𝑟) · 𝛻

𝑘𝑣‖
𝐿𝑝∘,1

= 0 

 holds.  

Proof. Fix 𝜀 > 0. Let {𝐵𝛼} be a family of disjoint balls 𝐵𝛼 = 𝐵(𝑥𝛼 , 𝑟𝛼) such that 

 ‖ 1𝐵𝛼 · 𝛻
𝑘𝑣‖

𝐿𝑝∘,1
≥ 𝜀𝑟𝛼 

 and sup
𝛼
𝑟𝛼 < 𝛿 for some 𝛿 > 0, where 𝛿 is choosen small enough to guarantee 

sup
𝛼
‖ 1𝐵𝛼 · 𝛻

𝑘𝑣‖
𝐿𝑝∘,1

< 1. Then by Lemma (2.2.3) we have  

∑𝑟𝛼
𝑝∘ ≤ 𝜀−1

𝛼

 ∑‖1𝐵𝛼 · 𝛻
𝑘𝑣‖

𝐿𝑝∘,1

𝑝∘

𝛼

   

≤ 𝜀−1 ‖1⋃ 𝐵𝛼 𝛼
· 𝛻𝑘𝑣‖

𝐿𝑝∘ ,1

𝑝∘
 .                                       (53)  

Since the last term tends to 0 as 𝐿𝑛(⋃ 𝐵𝛼𝛼  )  →  0, and 𝐿𝑛(⋃ 𝐵𝛼𝛼 ) ≤ 𝛿𝑛−𝑝∘ ∑ 𝑟𝛼
𝑝∘

𝛼   , we get 

easily that ∑ 𝑟𝛼
𝑝∘

𝛼  →  0 as 𝛿 →  0. Using this fact and some standard covering lemmas we 

arrive in a routine manner at the required assertion 

𝐻𝑝∘{𝑥 ∈ ℝ𝑛 ∶ lim
𝑟↘0
𝑠𝑢𝑝 𝑟−1   ‖ 1𝐵(𝑥,𝑟) · 𝛻

𝑘𝑣‖
𝐿𝑝∘,1

≥  𝜀}  = 0. 

 From the last lemma, Corollary (2.2.13) and estimate (34) we obtain the following result 

that is probably well–known to specialists:  

Theorem (2.2.24)[50]: Let 𝑘 ∈ {2, . . . , 𝑛} and 𝑣 ∈ 𝑊𝑝∘,1
𝑘 (ℝ𝑛 , ℝ𝑑). Then there exists a 

Borel set 𝐴𝑣 ⊂ ℝ
𝑛 such that 𝐻𝑞(𝐴𝑣) = 0 for every 𝑞 ∈ (𝑝∘, 𝑛] and for any 𝑥 ∈ ℝ𝑛 \ 𝐴𝑣 the 

function 𝑣 is differentiable (in the classical Frechet sense) at 𝑥, furthermore, the classical 

derivative coincides with 𝛻𝑣(𝑥), where  

lim
𝑟↘0

∫
𝐵(𝑥,𝑟)

 |𝛻𝑣(𝑧) − 𝛻𝑣(𝑥)| 𝑑𝑧 = 0. 

 The case 𝑘 = 1, 𝑞 = 𝑝∘ = 𝑛 is a classical result due to Stein [73] (see also [62]), and for 

𝑚 = 1, 𝑘 = 𝑛 the result is also proved in [58]. 

Applying Theorems (2.2.14) and (2.2.18) in combination with the Corollary (2.2.13), 

we obtain  

Corollary (2.2.25)[50]: Let 𝑘,𝑚 ∈ {2, . . . , 𝑛}, 𝑣 ∈ 𝑊𝑝∘,1
𝑘 (ℝ𝑛 , ℝ𝑑), and rank𝛻𝑣(𝑥) ≤ 𝑚 for 

all 𝑥 ∈ ℝ𝑛 \ 𝐴𝑣. Then for any 𝜀 > 0 there exist an open set 𝑉 ⊂ ℝ𝑑 and a mapping 𝑔 ∈

𝐶1(ℝ
𝑛 , ℝ𝑑) such that 𝐻∞

𝑞∘(𝑉) < 𝜀, 𝑣(𝐴𝑣) ⊂ 𝑉 and |𝑣−1(ℝ
𝑑\𝑉 ) = 𝑔|𝑣−1(ℝ

𝑑\
𝑉 ) , 𝛻𝑣|𝑣−1(ℝ

𝑑\𝑉 ) = 𝛻𝑔|𝑣−1(ℝ
𝑑\𝑉 ) , and rank𝛻𝑣|𝑣−1(ℝ

𝑑\𝑉 )  ≡  𝑚. 

 Here 𝐴𝑣 is the Borel set with 𝐻𝑞∘(𝐴𝑣) = 0 from Theorem (2.2.24). 

 Theorem (2.2.26)[50]: Let 𝑘,𝑚 ∈ {2, . . . , 𝑛} and 𝑣 ∈ 𝑊𝑝∘,1
𝑘 (ℝ𝑛 , ℝ𝑚). Then for 𝐿𝑚–almost 

all 𝑦 ∈ 𝑣(ℝ𝑛) the preimage 𝑣−1(𝑦) is a finite disjoint family of (𝑛 − 𝑚)–dimensional 𝐶1 
-smooth compact manifolds (without boundary) 𝑆𝑗  , 𝑗 = 1, . . . , 𝑁(𝑦). 
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 Proof. The inclusion 𝑣 ∈ 𝑊𝑝∘,1
𝑘 (ℝ𝑛 , ℝ𝑚) and Lemma (2.2.4) easily imply the following 

statement (see also Remark 1.4): 

(i) For any 𝜀 > 0 there exists 𝑅𝜀 ∈ (0,+∞) such that |𝑣(𝑥)| < 𝜀 for all 𝑥 ∈
ℝ𝑛 \ 𝐵(0, 𝑅𝜀). 

 Fix an arbitrary 𝜀 > 0. Take the corresponding set 𝑉 ⊂ ℝ𝑚 and mapping 𝑔 ∈
𝐶1(ℝ𝑛 , ℝ𝑚) from Corollary (2.2.25). Let 0 ≠ 𝑦 ∈ ℝ𝑚 \ 𝑉 . Denote 𝐹𝑣 = 𝑣

−1(𝑦), 𝐹𝑔 =

𝑔−1(𝑦). We assert the following properties of these sets.  

(ii) 𝐹𝑣 is a compact set;  

(iii) 𝐹𝑣 ⊂ 𝐹𝑔;  

(iv) 𝛻𝑣 = 𝛻𝑔 and rank𝛻𝑣 =rank𝛻𝑔 = 𝑚 on 𝐹𝑣;  
(v) The function 𝑣 is differentiable (in the classical sense) at each 𝑥 ∈ 𝐹𝑣, and the 

classical derivative coincides with  

𝛻𝑣(𝑥) = lim
𝑟↘0

∫
(𝐵(𝑥,𝑟))

  𝛻𝑣(𝑧) 𝑑𝑧. 

Indeed, (ii) follows by continuity and from (i) since 𝑦 ≠ 0, (iii)-(iv) follow from Corollary 

(2.2.25), and (v) follows from the condition 𝑣(𝐴𝑣) ⊂ 𝑉 of Corollary (2.2.25) (see also 

Theorem (2.2.24)). We require one more property of these sets: 

(vi) For any 𝑥0 ∈ 𝐹𝑣 there exists 𝑟 > 0 such that 𝐹𝑣 ∩ 𝐵(𝑥0, 𝑟) = 𝐹𝑔 ∩ 𝐵(𝑥0, 𝑟). 

 Indeed, take any point 𝑥0 ∈ 𝐹𝑣 and suppose the claim (𝑣𝑖) is false. Then there exists a 

sequence of points 𝐹𝑔 \ 𝐹𝑣 ∋ 𝑥𝑖 → 𝑥0. For 𝑟 > 0 we put 

 𝐻𝑚 = (𝑘𝑒𝑟 𝑑𝑥0𝑔)
⊥
∩ 𝐵(0, 𝑟), 𝑆𝑚 = (𝑘𝑒𝑟 𝑑𝑥0𝑔)

⊥
∩ 𝜕𝐵(0, 𝑟), 

 𝐻𝑚(𝑥) = 𝑥 + 𝐻𝑚, 𝑆𝑚(𝑥) = 𝑥 + 𝑆𝑚, 

where (𝑘𝑒𝑟 𝑑𝑥0  𝑔)
⊥

 is the orthogonal complement of the (𝑛 −𝑚)-dimensional linear 

subspace ker 𝑑𝑥0  𝑔. Evidently, for sufficiently small 𝑟 > 0 we have 𝐻𝑚(𝑥) ∩ 𝐹𝑔 = {𝑥} for 

any 𝑥 ∈ 𝐹𝑔 ∩ 𝐵(𝑥0, 𝑟). Then by construction  

𝐻𝑚(𝑥𝑖) ∩ 𝐹𝑣 =  ∅                                                 (54) 
 for sufficiently large 𝑖. Since 𝑣 is differentiable (in the classical sense) at 𝑥0 with 𝛻𝑣(𝑥0) =
𝛻𝑔(𝑥0), for sufficiently small 𝑟 > 0 we have 𝑣(𝑥) ≠ 𝑦 for all 𝑥 ∈ 𝑆𝑚(𝑥0), and 

deg(𝑣, 𝐻𝑚(𝑥0), 𝑦) = ±1, where we denote by deg(𝑣, 𝐻𝑚(𝑥0), 𝑦) the topological degree of 

𝑣|𝐻𝑚(𝑥0) at 𝑦. Then for sufficiently large 𝑖 we must have 𝑣−1(𝑦) ∩ 𝑆𝑚(𝑥𝑖) = ∅ and 

deg(𝑣, 𝐻𝑚(𝑥𝑖), 𝑦) = deg(𝑣, 𝐻𝑚(𝑥0), 𝑦) = ±1. But this contradicts (54) and finishes the 

proof of (vi). 

 Obviously, (ii)–(vi) imply that each connected component of the set 𝐹𝑣 = 𝑣
−1(𝑦) is a 

compact (𝑛 −𝑚)-dimensional 𝐶1- smooth manifold (without boundary).  
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Chapter 3 

Subspaces and HereditarIy Indecomposable 𝑳∞-Space 

 

We construct a hereditarily indecomposable Banach space with dual space 

isomorphic to ℓ1. Every bounded linear operator on this space is expressible as 𝜆𝐼 + 𝐾 with 

𝜆 a scalar and 𝐾 compact. 

Section (3.1): The Bourgain—Delbaen Space 

In 1980, Bourgain and Delbaen [85], [84] introduced some separable ℒ∞ spaces with 

surprising properties: all have the Radon—Nikodym property, and so certainly do not have 

subspaces isomorphic to 𝑐𝑜; some of them (the spaces of “Cflass 𝑋”) have the Schur 

property; the others (C1as.s 𝑌”) have dual spaces isomorphic to ℓ1 Despite their importance, 

these spaces wore not much studied subsequently, and it became habitual to remark that they 

were “not well-understood”. There has been some renewed interest recently, partly because 

these spaces are interesting test-cases for questions about uniform homeomorphisms [89], 

[86] and smooth surjections [82], [87]. Alspach [81] has investigated their Szlenk index. An 

attempt to understand a bit better the subspace structure of the spaces of Class 𝑌, that is to 

say, in Dourgain’s notation, the spaces 𝑋0,6 with 𝑏 <  1/2 <  𝑎 <  1 and 𝑎 +  𝑏 >
 1. Bourgain and Delbaen showed that every infinite-dimensional subspace of such a space 

has an infinite-dimensional reflexive subspace; however, they did not characterize which 

reflexive spaces occur as subspaces of 𝑋𝑎,𝑏; Bourgain [84] raised the question of whether 

𝑋0,6 has a subspace with no unconditional basic sequence. The main result of the present 

answers these questions by showing that each infinite-dimensional subspacc cf 𝑋0,,, has a 

subspacc isomorphic to P. The p in question is determined by 1/𝑝 +  1/𝑝’ =  1 where 

𝑎𝑝′  + 𝑏𝑝′  =  1. 
We follow modern practice by saying that vectors 𝑥1, 𝑥2, . .. are successive linear 

combinations (or blocks) of a sequence (𝒴𝑛) if there are integers 𝑚1 ≤ 𝑛1  < 𝑚2 ≤ 𝑛2   <

 𝑚3 ≤ . .. and scalars 𝑎1, 𝑎2. .. such that 𝑋𝑘 = ∑  
𝑛𝑘
𝑗−𝑘 𝑎𝑗𝒴𝑗 . 

Closely associated with the Bourgain—Delbaen spaces are some spaces with 

unconditional basis, which we shall denote by 𝑈𝑎,𝑏 . We shall study these spaces, eventually 

showing that they are just er-spaces with equivalent norms. The norm ||. | |𝑎.𝑏 is defined by 

a recursion similar to (but simpler than!) the one that leads to the Tsirelson space [88]. We 

fix real numbers 𝑎, 𝑏 with 𝑎, 𝑏 <  1, 𝑎 +  𝑏 >  1. 

For a vector 𝑥 ∈ ℝ𝑑 , or a finitely-supported vector 𝑥 ∈ ℝ(ℕ), we define (recursively) 

||𝑥||
𝑎.𝑏
= max {||𝑥||

∞
,𝑚𝑎𝑥
𝑙∈ℕ

(𝑎 ||𝑥⌈
 

[0, 𝑙]| |𝑎,𝑏 + 𝑏| |𝑥⌈
 

[𝑙 + 1,∞)||
𝑎,𝑏
)} 

That is to say that the norm ||𝑥𝑜, 𝑥, . . . , 𝑋𝑑||𝑎,𝑏 of a vector in ℝ𝑑+1 is whichever is greater of 

It is an elementary exercise to see that this is indeed an unambiguous definition. We then 

define  to be the completion of R(N) with respect to this norm. It should be noted that in the 

definition of the space We do not need to suppose that b < 1/2 (a condition essential for the 

Bourgain-Delbaen construction). However, it will be convenient in all that follows to 

assume that b a. The symmetry of the definition of the norm II IL,, means that the main 

result, Theorem (3.1.2), remains true when a <b, though with a replacing b in the final 

estimates. The recursive calculation of norms in the space Ua,b leads naturally to the 

construction of a finite dyadic tree of intervals of natural numbers, and it will be useful to 

have a standard notation for such trees. We write For the set of all finite strings of Os and 
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l’s, including the empty string ). In our intended application, a “O” in a string o’ will always 

be associated with a move to the left and a “1” with a move to the right. 

We shall accordingly denote the number of 0’s and the number of l’s in a string o by  and 

r(a-) respectively. For We write o’ < ‘r and say that u precedes r if o’ is an initial segment 

of r. Each element o- of E has two immediate successors, which we may denote by oO and 

o-l. By an admissible subtree of E we shall mean a non-empty, finite subset T of E having 

the property that, whenever, ail predecessors of u are also in r and, of the two immediate 

successors of o’, either both are in T, or else neither is. Those a’ with no successors in T 

form the set maxT of maximal element s of T. 

A dyadic tree of intervals is a family 1(a) of non-empty intervals in N, indexed by some 

admissible subtree T, with the property that whenever a’ E T is non-maxima], the interval 

((cr) is the disjoint union of its subintervals  and I(crl), with  lying to the left of We note that 

the intervals i(r) corresponding to form a partition of the original interval 0• 

If 𝑥 is a finitely supported vector in ℝ(ℕ)  and 𝐼(𝜎) (𝜎 ∈  𝑇)  is any dyadic 

tree of intervals, it is dear from the recursive definition of the norm that 

||𝑥||
𝑎,𝑏
≥ ∑  

𝑟∈𝑚𝑥𝑇

𝑎𝑙(𝑇)𝑏𝑟(𝑇)||𝑥𝐼(𝑇)||
𝑎,𝑏

 

Moroovef ,for a suitably chosen tree, we have 

||𝑥||
𝑎,𝑏
= ∑  

𝑟∈𝑚𝑥𝑇

𝑎𝑙(𝑇)𝑏𝑟(𝑇)||𝑥𝐼(𝑇)||
∞

 

Notice that in the case where ||𝑥||
𝑎,𝑏
||𝑥||

∞
 this latter equality holds for the trMaltrce 𝑇{𝑂}. 

We shall now proceed to establish the inequality ||𝑥||
𝑎,𝑏
≤ ||𝑥||

𝑝
≤ 𝐶||𝑥||

𝑎,𝑏
 for an 

arbitrary finitely-supported vector 𝑥 in ℝ(ℕ) thus showing that ||∙||
𝑎,𝑏

.  Is equivalent to the 

ℓ𝑃’-norm, where 1/𝑝 +  1/𝑝′ =  𝐿 =  𝑎𝑝
′
 +  𝑏𝑝

′
. 

A few naïve remarks will perhaps help to clarify the calculations that follow. The inequality 

||𝑥||
𝑎,𝑏
≤ ||𝑥||

𝑝
 Is easy to establish by induction the size of the support of a. Indeed, 

||𝑥||
𝑎,𝑏

is equal either or to ||𝑥||
∞

or to 𝑎||𝑥[0, 𝑘)||
𝑎,𝑏
+ 𝑏||𝑥𝐼(𝑇)||

𝑎,𝑏
 and this latter quantity 

is at most 

(𝑎𝑝
′
+ 𝑏𝑝

′
)
1/𝑝′

(||𝑥[0, 𝑘)||
𝑎,𝑏

𝑝
+ ||𝑥[𝑘,∞)||

𝑎,𝑏

𝑝
)
1/𝑝
≤ (||𝑥[0, 𝑘)||

𝑝

𝑝
+ ||𝑥[𝑘,∞)||

𝑝

𝑝
)
1/𝑝

= ||𝑥||
𝑝
 , 

by H�̈�lder’s inequality and our inductive hypothesis. There are, of course, some vectors for 

which ||𝑥||
𝑎,𝑏
= ||𝑥||

𝑝
;they may be characterized using the condtiion for equality to occur 

In H�̈�lder’s inequality Indeed, they are exactly those vectors where a norm calculation uf 

the kind described thorn leads to a dyadic tree of intervals with the property that the ratio 

||𝑥[0, 𝑘)||
𝑝

  
: ||𝑥[0, 𝑘)||

𝑝

 
is precisely 𝑎𝑝

′−1: 𝑏𝑝
′−1 for every non-maximal , and such 

that||𝑥[0, 𝑘)||
𝑎,𝑏

𝑝
= ||𝑥[0, 𝑘)||

𝑎,𝑏

𝑝
 for each maximal 𝑟. 

If we are thinking of || ∙ | |𝑎,𝑏  as an approximation to || ∙ | |𝑝 then, every time that we arc 

obliged to split an interval ocher than in the ratio 𝑎𝑝
′−1: 𝑏𝑝

′−1 with respect to the ℓ𝑃  −in, 

We introduce an underestimate. The proof we give proceeds by constructing a certain dyadic 

tree and keeping fairly careful accounts of the accumulated underestimation- It will be 
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convenient to write 𝑎 =  𝑎𝑃’ and 𝛽 =  𝑏𝑃
′
, so that 𝑎 +  𝛽 =  1. As already remarked, we 

lose no generality in supposing that 𝑎 ≥  𝑏. 

LEMMA (3.1.1)[80]: Let 𝒴 ∈ ℝ(ℕ) (be a non-zero vector, with support contained in the 

finite interval 𝐽. Assume that i satisfies 

||𝒴||
∞

𝑝 2𝛽

5
 ||𝒴||

𝑝

𝑝
 . 

We may choose a natural number 𝑘, not an end-point of the interval 𝐽, an a natural number 

𝐼 (equal either to 𝑘 or to 𝑘 —  1) in such a way that 

||𝒴||
𝑝
≤  𝑒𝑥𝑝 

1

5𝑝𝑝′
; [
|𝒴𝑘|

𝑝

||𝒴||
𝑝

𝑝] [𝑎||𝒴[0, 𝑙]||𝑝 + 𝑏|
|𝒴[𝑘,∞]||

𝑝
] 

That is to say, either 

||𝒴||
𝑝
≤  𝑒𝑥𝑝 [

1

5𝑝𝑝′
|𝒴𝑘|

𝑝

||𝒴||
𝑝

𝑝] [𝑎||𝒴[0, 𝑘 − 1]||𝑝 + 𝑏|
|𝒴[𝑘,∞]||

𝑝
] 

or 

||𝒴||
𝑝
≤  𝑒𝑥𝑝 [

1

5𝑝𝑝′
|𝒴𝑘|

𝑝

||𝒴||
𝑝

𝑝] [𝑎||𝒴[0, 𝑘]||𝑝 + 𝑏|
|𝒴[𝑘 + 1,∞]||

𝑝
] 

Notice that in either case 𝑘 is an end-point of the subinterial 

𝐽 ⋂   [𝑂, 𝑘}or 𝐽 ⋂   [𝑘,∞) which contains it. 

Proof. It will simplify notation to suppose 𝑘 that the interval 𝐽 is [1, 𝑛] 
We choose 𝑘 to be the unique natural number that satisfies 

∑  

𝑘—1

𝑗=1

 |𝒴|𝑝 < 𝑎||𝒴||
𝑝

𝑃
≤∑ 

𝑘

𝑗=1

|𝒴|𝑝 

Our assutuption implies that ||𝒴||
∞

𝑃
< 𝛽||𝒴||

𝑝

𝑃
and hence that |𝒴|𝑝 <  𝛽||𝒴||

𝑝

𝑃
≤

𝑎||𝒴||
𝑝

𝑃
and∑  𝑛−1

𝑗=1 |𝒴|
𝑝 =  ||𝒴||

𝑝

𝑃
− ||𝒴𝑛||𝑝

𝑝
− |𝒴𝑛|

𝑝 > (1 − 𝛽)||𝒴||
𝑝

𝑝
. Thus 𝑘 canno be 

either of te end points 1, 𝑛 of the supporting interval 𝐽. By choosing 𝑙 
to be either 𝑘 —  1 or 𝑘, we may arrange that 

|∑  

𝑙

𝑗=1

 |𝒴𝑗|
𝑝
− 𝑎 ||𝒴||

𝑝

𝑝
≤
1

2
 |𝒴|𝑝. 

So if we write 𝓌 = 𝒴[𝑖𝑜, 𝑖𝑗 and 𝓏 = 𝒴[(+𝑙,∞)1 we have 

||𝓌||
𝑝

𝑝
 =  (𝑎 +  𝜀) ||𝒴||

𝑝

𝑝
, ||𝓏||

𝑝

𝑝
= (𝛽 − 𝜀)||𝒴||

𝑝

𝑝
, 

where |𝜀| ≤
1

2
(|𝒴𝑘|/ ||𝒴||𝑝)

𝑝
. We can now calculate as follows: 

𝑎||𝓌||
𝑝

 
+ 𝑏||𝓏||

𝑝

 
= [𝑎(𝑎 + 𝜀)1/𝑝 + 𝑏(𝛽 − 𝜀)1/𝑝||𝒴||

𝑝

= [𝑎(1 + 𝜀/𝑎)1/𝑝 + 𝛽(1 − 𝜀/𝛽)1/𝑝]||𝒴||
𝑝
. 

Of course, for small values of , 

𝑎(1 + + 𝜀𝑎)1𝑝 + 𝛽(1 − 𝜀𝛽)1𝑝 ≈ exp [−
1

2𝑝𝑝′
(
1

𝑎
+
1

𝛽
 ) 𝜀2] 

and it is an elementary exercise to see that 
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𝑎(1 + + 𝜀𝑎)1𝑝 + 𝛽(1 − 𝜀𝛽)1𝑝 > exp [−
1

𝑝𝑝′
(
1

𝑎
+
1

𝛽
 ) 𝜀2] 

whenever  |𝜀| <  𝛽/5. In our case, since we axe assuming that ||𝒴||
∞

𝑝
 < (

2𝛽

5
) ||𝒴||

𝑝

𝑝
, the 

quantity 𝜀 as defined above is indeed smaller than𝛽/5. 
We are thus led to the inequality 

||𝒴||
𝑝
≤  𝑒𝑥𝑝 [

1

𝑝𝑝′
 (
1

𝑎
+
1

𝛽
) 𝜀2] [𝑎||𝓌||

𝑝
+ 𝑏||𝓏||

𝑝
]

≤ exp [
1
5𝑝𝑝′

|
𝒴𝑘
||𝒴||

𝑝

𝑝] [𝑎||𝓌||𝑝 + 𝑏|
|𝓏||

𝑝
], 

using once again the fact that 

|𝜀| ≤
1

2
|𝒴𝑘|

𝑝

||𝒴||
𝑝

𝑝

≤
𝛽

5
. 

Theorem (3.1.2)[80]: Let 𝑎, 𝑏 be real numbers satisfying 𝑎, 𝑏 <  1, 𝑎 +  𝑏 >  1 and 

Let 𝑝, 𝑝’ be determined by 1/𝑝 +  𝑙/𝑝’ =  𝐼 =  𝑎𝑝
′
 +  𝑏𝑝

′
. The norm || ∙ | |𝑎,𝑏 equivalent 

to the usual ℓ𝑝-norm. 

Proof. As in the preceding lemma, we may suppose that 𝑏 <  𝑎 and we retain the notation 

𝑎 =  𝑎𝑝
′
, 𝛽 =  𝑏𝑝

′
, We consider an arbitrary non-zero 𝑥 ∈ ℝ(ℕ) and give a recursive 

definition of an admissible tree 𝑇 a dyadic tree of intervals (𝐼(𝜎))𝜎 ∈ 𝑇 and elements 

𝑖(𝜎) of 𝐼(𝜎), which we shall use to estimate ||𝑥||
𝑎,𝑏
. We start by taking 𝐼(𝜏) to be any finite 

interval that contains the support of 𝑥. if a string 𝜏 is already in 𝑇 and 𝐼(𝜏) has already been 

defined we need to specify whether 𝜏 is going to be a maximal element of 𝑇 and, if not) 

what the two “daughter” intervals 𝐼(𝜏0) and 𝐼(𝜏1) are going to be. 

There will be two criteria involved in deciding if 𝜏 is maximal. First, 𝑟 will be declared to 

be maximal if the following condition holds: 

‖𝑥[𝐼(𝑟)‖∞ ≥ (2𝛽/5)
1/𝑝‖𝑥[𝐼(𝑟)‖𝑝. 

If this condition does not hold, then of course LEMMA (3.1.1) is applicable to the vector 

𝑦 = 𝑥[𝐼(𝑟). We let 𝑖(𝜏) be the unique 𝑖 ∈  𝐼(𝜏) such that for every 𝑟 in the tree. Indeed, 

otherwise the recursive construction would have been terminated (by criterion (𝐵)) at a 

predecessor of 𝑟.  
In the event that neither (A) nor (B) holds) we choose 𝑙 as in LEMMA (3.1.1) and define 

the daughter intervals by 𝐼(𝑟𝑂)  =  𝐼(𝑟)⋂ [0, 𝑙], 𝐼(𝑟1)  =  𝐼(𝑟) ⋂[𝑙 +  1,∞). We notice 

that 𝑖(𝑟) is an end-point of one or other of these intervals, and hence also of any interval 

𝐼(𝑣), with 𝑣 ≻  𝑟, which contains it. 

This completes the recursive construction of 𝑇, 𝐼(𝜎) and 𝑖(𝜎). The set Max 𝑇 of maximal 

elements may be partitioned as 𝐴⋃𝐵, where 𝐴 is the set of 𝑟 for which condition (A) holds. 

We notice that the natural numbers 𝑖(𝑟), defined for 𝑟 ∈  𝑇 \ 𝐴, are all distinct. Indeed, if 𝑣 

and r are incomparable elements of 𝑇, then 𝑖(𝑣) and 𝑖(𝑟) are elements of the disjoint 

intervals 𝐼(𝑣) and 𝐼(𝑟); on the other hand, if 𝑟 ≺  𝑣 and 𝑖(𝑟)  ∈  𝑖(𝑣) then 𝑖(𝑟) is an end-

point of 𝐼(𝑣) while 𝑖(𝑣) is not. 

It follows from That, whenever 𝜎 is a non-maximal element of 𝑇 
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||𝑥 𝐼(𝜎)||
𝑝
 ≤   𝑒𝑥𝑝 [

1

5𝑝𝑝′ 
|𝑥𝑖(𝜎)|

𝑝

||𝑥𝐼(𝜎)||
𝑝

𝑝] [𝑎||𝑥𝐼(𝜎0)||𝑝 + 𝑏|
|𝑥𝐼(𝜎1)||

𝑝
]. 

We deduce from this inequality, together with the remark we made following the 

introduction of criterion (B), that 

||𝑥||
𝑝
≤ ∑  

𝑟∈𝑚𝑥𝑇

𝑎𝐼(𝑟)𝑏𝑟(𝑟) exp [∑  

𝜎≺𝑟

 
1

5𝑝𝑝′
 
𝑥𝑖(𝜎)
𝑝

||𝑥𝐼(𝜎)||
𝑝

𝑝] ||𝑥𝐼(𝑟)||𝑝

≤ 𝑒1/(𝑝𝑝
′)  ∑  

𝑟∈𝑚𝑥𝑇

𝑎𝐼(𝑟)𝑏𝑟(𝑟)𝑐

≤ 𝑒1/(𝑝𝑝
′)  [ ∑  

𝑟∈𝑚𝑥𝑇

𝑎𝐼(𝑟)𝑏𝑟(𝑟) (
5

2𝛽
)
1𝑝

||𝑥𝐼(𝑟)||
∞
+∑ 

𝑟∈𝐵

𝑎𝐼(𝑟)𝑏𝑟(𝑟)𝑎𝐼(𝑟)𝑏𝑟(𝑟)]

= 𝑒1(𝑝/𝑝
′)[𝐻𝐴 + 𝐻𝐵],, 

in an obvious notation. It follows from the relationship between trees and norm calculations 

that 𝐻𝐴 ≤ (5/(2𝛽))
1/𝑝
||𝑥||

𝑎,𝑏
. On the other hand, we may use Hölder’s inequality and the 

fact that 𝑎𝑝’ +  𝑏𝑝‘  =  1 to show that 

𝐻𝐵 ≤ (∑ 

𝑟∈𝐵

||𝑥𝐼(𝑟)||
𝑝

𝑝
)

1/𝑝

= (∑ 

𝑗∈𝐽

|𝑥𝑗|
𝑝
)

1/𝑝

, 

where 

𝐽 =  ⋃ 

𝑟∈𝐵

 𝐼(𝑟) = {𝑗 ∈ 𝐼( ): ∑  
|𝑥𝑖(𝜎)
 |

𝑝

||𝑥𝐼(𝜎)||
𝑝

𝑝

𝜎𝑤𝑖𝑡ℎ𝑗∈𝐼(𝜎)

> 5} 

We that have 

5𝐻𝐵
𝑝
≤∑ |𝑋|

𝑗∈𝐽

𝑝

∑  (
|𝑥𝑖(𝜎)
 |

𝑝

||𝑥𝐼(𝜎)||
𝑝

 )

𝑝

𝜎𝑤𝑖𝑡ℎ𝑗∈𝐼(𝜎)

 

≤ ∑  |𝑋𝑗|
𝑝

𝑗∈𝐽( )

∑  (
|𝑥𝑖(𝜎)
 |

𝑝

||𝑥𝐼(𝜎)||
𝑝

 )

𝑝

𝜎𝑤𝑖𝑡ℎ𝑗∈𝐼(𝜎)

  

=∑  |𝑋𝑖(𝜎)|

𝜎∈𝑇

𝑝

||𝑥𝐼(𝜎)||
𝑝

−𝑝
∑ |𝑥𝑗|

𝑝
 

𝑗∈𝐼(𝜎)

= ∑  |𝑋𝑖(𝜎)|

𝜎∈𝑇

𝑝

 

and this is at most ||𝑥||
𝑝

𝑝
since as we noted before, the 𝑖(𝜎) are all distinct. 

We have finally obtained the following inequalities: 

𝑒−1/(𝑝𝑝
′) ||𝑥||

𝑝
≤ 𝐻𝐴  + 𝐻ℬ ≤ (5(2/𝛽))

1/𝑃
||𝑥||

𝑎.𝑏
+ 5−1/𝑝||𝑥||

𝑝
 

whence 

(𝑒−1/𝑝 − 5−1/𝑝)||𝑥||
𝑝
≤ (5(2/𝛽))

1/𝑃
||𝑥||

𝑎.𝑏
, 

which leads to a final estimate of the form 

||𝑥||
𝑝
≤ 𝐶𝑝𝑏−𝑝′/𝑝||𝑥||

𝑎,𝑏
, 

with 𝐶 a cow-tant independent of 𝑝 sud 𝑏 (and smaller than 50). 
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A study of various generalizations of the spaces 𝑈𝑎,𝑏 will appear [83]. 

We shall recall the contrction of the spaces 𝑋𝑎,𝑏 , using a notation consistent with the 

original, but differing somewhat from it. As well seeming (to the author at least!) somewhat 

clearer, this notation appears to be better suited to poenbie generalization. The ingredients 

needed in a construction of this kind are a sequence of sets Δ0, Δ1, … and linear mappings 

that we shall denote by u,,. The next paragraph sets out the properties that these sets and 

mappings have to satisfy. 

We suppose that the sets Δ0, Δ1, … are disjoint and finite, end that the union Γ = ⋃ Δn 𝑛∈𝑁  is 

infinite. For 𝑛 ≥  0, we write Γ𝑛 = ⋃ Δm 𝑚<𝑛  For each 𝑛 ≥  0, we need to have a linear 

operator 𝑢𝑛 ∶ ℓ
∞(Γ𝑛) → ℓ

∞(Δn+1) and we define 𝑖𝑛ℓ
∞(Γ𝑛) → ℓ

∞(Γ𝑛+1) by setting 

(𝑖𝑛𝑓)(𝑦) = {
𝑓(𝑦)      𝑖𝑓 𝑦 ∈ Γ𝑛,

(𝑢𝑛𝑓)(𝑦)     𝑖𝑓 𝑦 ∈ Δn+1.
  

We define  𝑖𝑚,𝑛: ℓ
∞(Γ𝑚) → ℓ

∞(Γ𝑛) to be the composition 𝑖𝑛−2𝜊, , , , , , 𝜊 𝑖𝑚  𝑖, , _1 𝑜 and note 

that, for 𝑚 < 𝑛 < 𝑝 and 𝑓 ∈ ℓ∞(Γ𝑚) we have  

(𝑖𝑚,𝑝𝑓)Γ𝑛+1 = 𝑖𝑚,𝑝𝑓. 

It follows that we may well-define a linear mapping 𝑗𝑚: ℓ
∞(Γ𝑚) → ℝ

Γ by setting 

(𝑗𝑚𝑓) = (𝑖𝑚,𝑛𝑓)(𝛿) (𝛿 ∈ Γn). 
We now make the further assumption that the mapping 𝑢𝑚  have been defined in such way 

that the norms of all the compositions 𝑖𝑚,𝑛 are bounded by some constant 𝜆 .This tells us 

that the mapping 𝑗𝑚take values in ℓ∞(Γ) a finite-dimensional subspace 𝑋𝑚 = 𝑖𝑚𝑗𝑚 of 

ℓ∞(Γ) with  

||𝑓|| ≤ ||𝑗𝑚𝑓|| ≤ 𝜆||𝑓|| 
Finally, we take 𝑋  to be the closure in ℓ∞(Γ) of the union of the increaseing sequence of 

subspace 𝑋𝑚 .Since the subspace 𝑋𝑚 are 𝜆-isomorohic to ℓ∞(Γ) ,the space 𝑋 is a separable 

ℒ𝜆
∞-space, whose properties are determined (in a way that is not always straightforward to 

decide ) by  the operators 𝑢𝑛,The tricky part of the construction lies in finding 𝑢𝑛,is which 

are such that the norm condition on the 𝑖𝑚,𝑛 , satisfied. 

However the 𝑢𝑛 are defined, the space 𝑋 obtained in this way has some useful structure. 

Each of the subspaces 𝑋𝑛 is the range of a projection 𝑆𝑛, defined by 𝑆𝑛𝑥 = 𝑗𝑛(𝑥|Γ𝑛). If we 

set 𝑃0  =  𝑆0 and 𝑃𝑛 = 𝑆𝑛 − 𝑆𝑛−1 (for 𝑛 ≥  1), then the subspaces 𝑀𝑛  =  im 𝑃𝑛 form a 

finite-dimensional decomposition of 𝑋. We refer to the support of a vector 𝑥 ∈  𝑋, we shall 

be thinking in terms of this f.d.d. Thus, if 𝑥 = ∑ 𝑧𝑚𝑚  with 𝑧𝑚  ∈  𝑀𝑚, then supp(𝑥) will 

mean the set of 𝑚 for which 𝑧𝑚 ≠ 0. Similarly, we shall say that the vectors 𝑥1, 𝑥2, . .. are 

successive if there exist natural numbers 𝑚1  ≤  𝑛1  <  𝑚2  ≤  𝑛2  < 𝑚3 ≤ ⋯ such that 

supp 𝑥𝑘 ⊆ [𝑚𝑘, 𝑛𝑘]. There is a relationship between this notion of support and the more 

obvious one where we are thinking of the vector 𝑥 as a function on 𝛤; namely, supp 𝑥 ∩
 [0, 𝑛]  =  ∅ 

 
⇔  𝑥|Γ𝑛  =  0. It is also worth noting that, since the spaces 𝑀𝑛  =  {𝑗𝑛(𝑥) ∶

  𝑥 ∈ ℓ∞(𝛤𝑛) and 𝑥|Γ𝑛−1 =  0} are 𝜆-isomorphic to ℓ∞(∆𝑛) and so have uniformly bounded 

basis constant, the space 𝑋 has a basis. Such basis vectors occur as the 𝑤𝛾 in below (though 

the fact that they form a basis is not crucial there). 

We now pass to the details of the Bourgain—Delbaen construction, Let 𝑎, 𝑏 be real constants 

with 0 <  𝑏 <  1/2 < 𝑎 < 1 and 𝑎 + 𝑏 >  1. We shall show how to construct the space 

𝑋𝑎,𝑏 by defining (recursively) the sets ∆𝑛 and the mappings 𝑢𝑛. We start by taking ∆0 to be 

a set with just one element, say ∆0= {0}. Now we define 
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𝐴𝑛+1 = {𝑛 + 1} × ⋃ {𝑘} × 𝛤𝑘 × 𝛤𝑛 × {±1}

0≤𝑘<𝑛

. 

So an element of ∆𝑛 is a 5-tuple of the form 

𝛿 = {𝑛, 𝜉, 𝜂, ±1}. 
This notation replaces the explicit enumeration that appears in [84] and [85]. 

It will be convenient to have names for the five coordinates of δ: 

𝑛 = rank(𝛿), 𝑘 =  cut(𝛿), ξ =  base(𝛿), 𝜂 =  top(𝛿), ±1 =  sign(𝛿). 
The mapping 𝑢𝑛 ∶  ℓ

∞(𝛤𝑛) → ℓ
∞(∆𝑛+1)  defined by 

(𝑢𝑛𝑓)(𝑛, 𝑘, 𝜉, 𝑛, ±1)  =  𝑎𝑓(𝜉) ± 𝑏(𝑓(𝜂) − (𝑖𝑘,𝑛(𝑓|Γ𝑘)) (𝜂). 

It is shown in [84], [85] that with the above definitions, the composite mappings 𝑖𝑚,𝑛 are 

indeed uniformly bounded with 

‖𝑖𝑚,𝑛‖ ≤ 𝜆 =  𝑎/(1 —  2𝑏). 
It is perhaps worth repeating the original argument in our modified notation. 

We assume inductively that, for some 𝑛, all the mappings 𝑖𝑚,𝑛 (𝑚 ≤  𝑛) have norm at most 

𝜆. We now consider some 𝑓 ∈ ℓ∞(𝛤𝑚) and some 𝛾 =  (𝑛 +  1, 𝑘, 𝜉, 𝜂, ±1)  ∈  ∆𝑛+1. By 

definition, 

|(𝑖𝑚,𝑛+1𝑓)(𝛾)| = (𝑢𝑛𝑖𝑚,𝑛𝑓)(𝛾) 

≤ 𝑎|(𝑖𝑚,𝑛𝑓)(𝜉)|  +  𝑏|(𝑖𝑚,𝑛𝑓)(𝜂) — (𝑖𝑘,𝑛((𝑖𝑚,𝑛𝑓)|Γ𝑘))(𝜂)|. 

If the cut 𝑘 is greater than 𝑚, then 𝑖𝑚,𝑛𝑓 = 𝑖𝑘,𝑛((𝑖𝑚,𝑘𝑓) = 𝑖𝑘,𝑛 ((𝑖𝑚,𝑛𝑓)|𝛤𝑘) so that the 

second term above vanishes, leaving |(𝑖𝑚,𝑛+1𝑓)(𝛾)|  ≤  𝑎‖𝑖𝑚,𝑛𝑓‖, which is at most 𝑎𝜆‖𝑓‖ 

by our inductive hypothesis. If, on the other hand, 𝑘 ≤  𝑚, it must be that ξ ∈  𝛤𝑘  ⊆ 𝛤𝑚, so 

that |(𝑖𝑚,𝑛𝑓)(𝜉)|  =  |𝑓(𝜉)|  ≤  ‖𝑓‖. Also, (𝑖𝑚,𝑛𝑓)|𝛤𝑘 =  𝑓|𝛤𝑘 an element of ℓ∞(𝛤𝑘) 

satisfying 𝑓|𝛤𝑘  ≤ ‖𝑓‖. Applying our inductive hypothesis to the two mappings 𝑖𝑚,𝑛 ànd 

𝑖𝑘,𝑛 we obtain 

|(𝑖𝑚,𝑛+1𝑓)(𝛾)| ≤ 𝑎|(𝑖𝑚,𝑛𝑓)(𝜉)| + 𝑏|(𝑖𝑚,𝑛𝑓)(𝜂) − (𝑖𝑘,𝑛𝑓|𝛤𝑘(𝜂)| 

≤ 𝑎‖𝑓‖ + 2𝑏𝜆‖𝑓‖ 

Since 𝑎 =  (1 —  2𝑏)𝜆, this is at most 𝜆‖𝑓‖, as required. 

The following proposition can also be found in [84]. 

PROPOSITION (3.1.3)[80]: Let 𝑘,𝑚, 𝑛 be natural numbers, with 𝑚 <  𝑛, let 𝑥 be an 

element of 𝑋𝑚, and let 𝛾 be an element of 𝛤 with rank(𝛾)  =  𝑛, cut (𝛾)  =  𝑘. 
|𝑥(𝛾)|  ≤  𝑎‖𝑥|𝛤𝑘‖ +  𝑏‖(𝐼 — 𝑆𝑘)𝑥‖ ≤  ‖𝑆𝑘𝑥‖ +  𝑏‖(𝐼 — 𝑆𝑘)𝑥‖. 

Proof. Since 𝑥 ∈ 𝑋𝑚, 𝑥 has the form 𝑗𝑚𝑓, for some 𝑓 ∈ ℓ∞(𝛤𝑚), and so 

𝑥(𝛾)  =  (𝑖𝑚,𝑛𝑓)(𝛾)  =  (𝑖𝑛−1 𝑜𝑖𝑚,𝑛−1𝑓)(𝛾) 

     =  𝑎(𝑖𝑚,𝑛−1𝑓)(𝜉) ± 𝑏[(𝑖𝑚,𝑛−1𝑓) − (𝑖𝑘,𝑛−1(𝑓|𝛤𝑘)](𝜂) 

         =  𝑎𝑥(𝜉) ±  𝑏(𝐼 − 𝑆𝑘)𝑥(𝜂), 

where 𝜉 =  base(𝛾) and 𝜂 =  top(𝛾) as usual. The inequality is now obvious. 

COROLLARY (3.1.4)[80]: For any 𝑚 and any 𝑥 ∈  𝑋𝑚, either ‖𝑥‖ = ‖𝑥|𝛤𝑘‖ or 

‖𝑥‖  = max
𝑘
[‖𝑥|𝛤𝑘‖ +  𝑏‖(𝐼 − 𝑆𝑘)𝑥‖]. 

It is apparent from the construction that for a general 𝑓 ∈ ℓ∞(𝛤𝑚) we may need to go to 𝛤𝑛, 
with 𝑛 significantly larger than 𝑚, in order to find a coordinate 𝛾 at which 𝑗𝑚𝑓 comes close 

to attaining its norms However, it is worth remarking that if 𝑓 ∈ ℓ∞(𝛤𝑚) and 𝑓 is zero, 

except on ∆𝑚 (the “last” of the sets that make up 𝛤𝑚), then ‖𝑖𝑚,𝑛𝑓‖ =  ‖𝑓‖ for all 𝑛. Thus 
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in this set-up the subspaces 𝑀𝑛 that make up the finite-dimensional decomposition of 𝑋 are 

actually isometric to ℓ∞(∆𝑛). 
It is implicitly shown in [84] that certain sequences in 𝑋𝑎,𝑏 admit lower 𝑈𝑎,𝑏-estirnates 

(and thus, as we can now see, lower ℓ𝑝-estimates). These are sequences of vectors which 

are successive (with respect to the f.d.d. (𝑀𝑛)) and which have supports sufficiently well 

spread out. To make this precise we choose a function 𝐹 ∶  ℕ → ℕ having the property that, 

for every 𝑛 and every non-zero 𝑥 ∈  𝑋𝑛, 

‖𝑥|𝛤𝐹(𝑛)‖ >
1

2
‖𝑥‖ 

This is possible by compactness of the unit ball of the finite dimensional space 𝑋𝑛. We shall 

say that a (finite or infinite) sequence (𝑦𝑘) in 𝑋 is 𝐹-admissible if there are integers 𝑚𝑘 , and 

𝑛𝑘 , satisfying 𝑚𝑘  ≤  𝑛𝑘, 𝐹(𝑛𝑘)  + 𝑘 <  𝑚𝑘+1, with 𝑦𝑘  ∈  𝑋𝑛𝑘 , 𝑦𝑘|𝛤𝐹(𝑚𝑘)
= 0. In terms 

ofthe f.d.d. (𝑀𝑛) introduced earlier, we are saying that 𝑦𝑘 ∈⊕𝑚𝑘<𝑛≤𝑛𝑘 𝑀𝑛 for all 𝑘, or 

equivalently that supp(𝑦𝑘)  ⊆  [𝑚𝑘  +  1, 𝑛𝑘]. Evidently, if (𝑦𝑘) is admissible then so is any 

sequence of successive linear combinations. The following lemma is related to Lemma 3.20 

of [84]. 

LEMMA (3.1.5)[80]: If (𝑦𝑘) is an 𝐹-admissible sequemee, then, for any 𝑙, 

‖∑𝑦𝑘

𝑙

𝑘=1

‖ >
1

6
‖(‖𝑦1‖,⋅ ⋅ ⋅, ‖𝑦𝑙‖)‖𝑎,𝑏 . 

In particular, ‖𝑦𝑗‖ ≤  6‖∑ 𝑦𝑘
𝑙
𝑘=1 ‖ for each 1 ≤  𝑗 ≤  𝑙. 

Proof. For each 𝑘 let us write 𝑝𝑘 and 𝑞𝑘 for the minimum and maximum, respectively, of 

the support of 𝑦𝑘 .  The hypothesis of 𝐹-admissibility implies that 𝑝𝑘+1  > 𝐹(𝑞𝑘)  +  𝑘. We 

shall show that, for each subinterval 𝐼 =  [𝑗, 𝑘] of [1, 𝑙], there exists 𝛾 ∈ 𝛤𝐹(𝑞𝑘)+𝑘−𝑗 such 

that 

|∑𝑦𝑖(𝛾)

𝑘

𝑖=𝑗

| >
1

6
‖(‖𝑦𝑗‖, ‖𝑦𝑗+1‖,⋅ ⋅ ⋅, ‖𝑦𝑘‖)‖𝑎,𝑏 . 

We may suppose, by induction on the length of 𝐼 and a possible re-indexing, that 𝐼 = [1, 𝑙] 
and that the result has already been proved for all proper subintervals of [1, 𝑙]. 
When we come to calculate ‖(‖𝑦1‖,⋅ ⋅ ⋅, ‖𝑦𝑙‖)‖𝑎,𝑏 , there are two possibilities, the first being 

where this norm equals ‖𝑦𝑗‖ for some 𝑗. By the defining property of the function 𝐹, there is 

some 𝛾 ∈ 𝛤𝐹(𝑞𝑗) with 

|𝑦𝑗(𝛾)| >
1

2
‖𝑦𝑗‖. 

For 𝑖 < 𝑗, 𝑦𝑖(𝛾) = 0 by 𝐹-admissibility, and so 

|∑𝑦𝑖(𝛾)

𝑙

𝑖=1

| = |∑𝑦𝑖(𝛾)

𝑗

𝑖=1

|. 

Now if this quantity is at least 
1

6
‖𝑦𝑗‖, we are home. Otherwise, is must be that 

‖∑𝑦𝑖

𝑗−1

𝑖=1

‖ ≥ |∑𝑦𝑖(𝛾)

𝑗−1

𝑖=1

| ≥ |𝑦𝑗(𝛾)| − |∑𝑦𝑖(𝛾)

𝑗

𝑖=1

| > (
1

2
−
1

6
)‖𝑦𝑗‖ =

1

3
‖𝑦𝑗‖. 
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Now we see that there exists 𝛿 ∈ 𝛤𝐹(𝑞𝑗−1) such that 

‖(‖𝑦1‖,⋅ ⋅ ⋅, ‖𝑦𝑙‖)‖𝑎,𝑏 = 𝑎‖(‖𝑦1‖,⋅ ⋅ ⋅, ‖𝑦𝑘‖)‖𝑎,𝑏 + 𝑏‖(‖𝑦𝑘+1‖,⋅ ⋅ ⋅, ‖𝑦𝑙‖)‖𝑎,𝑏 . 

By our inductive hypothesis, there exist 𝜉 ∈ 𝛤𝐹(𝑞𝑘)+𝑘−1 and 𝜂 ∈ 𝛤𝐹(𝑞𝑙)+𝑙−𝑘−1 such that 

|∑𝑦𝑖(𝜉)

𝑘

𝑖=1

| >
1

6
‖(‖𝑦1‖,⋅ ⋅ ⋅, ‖𝑦𝑘‖)‖𝑎,𝑏 , 

| ∑ 𝑦𝑖(𝜂)

𝑙

𝑖=𝑘+1

| >
1

6
‖(‖𝑦𝑘+1‖,⋅ ⋅ ⋅, ‖𝑦𝑙‖)‖𝑎,𝑏 . 

If we now consider the element 

𝛾 = (𝐹(𝑞𝑙) + 𝑙 − 𝑘, 𝐹(𝑞𝑘) + 𝑘 − 1, 𝜉, 𝜂, ±1) 
of 𝛤𝐹(𝑞𝑙)+𝑙−𝑘 (with an appropriate choice of sign), we see that  

|∑𝑦𝑖(𝛾)

𝑘

𝑖=1

| = 𝑎 |∑𝑦𝑖(𝜉)

𝑘

𝑖=1

| + 𝑏 | ∑ 𝑦𝑖(𝜂)

𝑙

𝑖=𝑘+1

| 

>
1

6
𝑎‖(‖𝑦1‖,⋅ ⋅ ⋅, ‖𝑦𝑘‖)‖𝑎,𝑏 +

1

6
𝑏‖(‖𝑦𝑘+1‖,⋅ ⋅ ⋅, ‖𝑦𝑙‖)‖𝑎,𝑏 

=
1

6
‖(‖𝑦1‖,⋅ ⋅ ⋅, ‖𝑦𝑙‖)‖𝑎,𝑏 . 

It is also shown in [84] that, for certain carefully chosen admissible sequences,  

there is an upper estimate as well. This is the way in which Bourgain and Delbaen show that 

𝑋𝑎,𝑏 is not isomorphic to 𝑋𝑎,𝑏′ if 𝑏 ≠ 𝑏
′ (and then deduce the existence of a continuum of 

non-isomorphic separable ℒ∞- spaces). Of course we can now see that these special 

sequences are ℓ𝑝-bases. 

We shall shortly show that from every admissible sequence we can form a normalized 

sequence of successive linear combinations which is an ℓ𝑝-basis. Before going on to that, 

however, let us note that not every normalized admissible sequence is itself an ℓ𝑝 basis. We 

note that the same calculation shows that 𝑋𝑎,𝑏 , with min 𝑠𝑢𝑝𝑝 𝑦1 > 𝑚, such that 

∑‖𝑦𝑗‖
𝑝

2𝑘−1

𝑗=1

= 1, ‖∑ 𝑦𝑗

2𝑘−1

𝑗=1

‖ ≥ 𝑘1/𝑝
′
. 

Proof. We shall prove the statement by induction on 𝑘 and shall show, moreover, that the 

construction may be carried out in such a way that the vector ∑ 𝑦𝑗
2𝑘−1
𝑗=1  attains a value of at 

least 𝑘1/𝑝
′
 at some element 𝜉 of 𝛤. The construction will use some special vectors 𝜔𝛾(𝛾 ∈

𝛤) which we shall now define. For each 𝛾 ∈ 𝛤 we set 𝑛 = 𝑟𝑎𝑛𝑘 (𝛾) and let 𝑒𝛾 be the usual 

unit vector in ℓ∞(𝛤𝑛) define by 𝑒𝛾(𝛿) = 1 if 𝛿 = 𝛾 and 0 otherwise. We then define 𝑤𝛾 =

𝑗𝑛(𝑒𝛾), noting that ‖𝑤𝛾‖ = 1. 

We now pass to the inductive proof. For 𝑘 = 1 there is of course no real problem, but in 

order to be sure about attainment of the norm, we might as well be specific, taking 𝑦1 to be 

𝑤𝛾 with rank (𝛾) sufficiently large. 

Now suppose that the result is true for 𝑘. Given 𝑚 there exist successive, 𝐹-admissible 

vectors 𝑦1
′ , . . . , 𝑦

2𝑘−1
′ , with min supp 𝑦1

′ > 𝑚, together with an element 𝜉′ of 𝛤 such that 
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∑‖𝑦𝑗
′‖
𝑝

2𝑘−1

𝑗=1

= 1,   ∑ 𝑦𝑗
′(𝜉′)

2𝑘−1

𝑗=1

≥ 𝑘1/𝑝
′
. 

We now use our inductive hypothesis again to obtain 𝑦1
′′, . . . , 𝑦

2𝑘−1
′′  and 𝜉′′ satisfying the 

same conditions, and with 

min supp 𝑦1
′′ > max{rank (𝜉′),   𝐹(max supp 𝑦

2𝑘−1
′ + 2𝑘 − 1)}. 

We choose 𝑛 > max{rank (𝜉′′),   𝐹(max supp 𝑦
2𝑘−1
′′ + 2𝑘+1 − 2)} and take 𝜉 ∈ ∆𝑛 to be 

𝜉 = (𝑛, rank (𝜉′), 𝜉′, 𝜉′′, 1). 
Finally, we define 𝑦1, . . . , 𝑦2𝑘+2−1 by 

𝑦𝑗 =

{
 
 

 
 𝑎

𝑝′−1𝑘1/𝑝

(𝑘 + 1)1/𝑝
                             (1 ≤ 𝑗 ≤ 2𝑘 − 1),        

𝑏𝑝
′−1𝑘1/𝑝

(𝑘 + 1)1/𝑝
𝑦
𝑗−2𝑘−1
′′               (2𝑘 ≤ 𝑗 ≤ 2𝑘+1 − 2),   

(𝑘 + 1)1/𝑝𝑤𝜉                           (𝑗 = 2
𝑘 − 1).                

 

By construction, the sequence 𝑦1, . . . , 𝑦2𝑘+1−1 is 𝐹-admissible, and 

∑ ‖𝑦𝑗‖
𝑝

2𝑘+1−1

𝑗=1

=
𝑘𝑎𝑝

′

𝑘 + 1
∑‖𝑦𝑗

′‖
𝑝

2𝑘−1

𝑗=1

+
𝑘𝑏𝑝

′

𝑘 + 1
∑‖𝑦𝑗

′′‖
𝑝

2𝑘−1

𝑗=1

+
‖𝑤𝜉‖

𝑘 + 1
 

=
𝑘𝑎𝑝

′
+ 𝑘𝑏𝑝

′
+ 1

𝑘 + 1
= 1. 

When we evaluate at 𝜉 we obtain 

∑ 𝑦𝑗(𝜉)

2𝑘−1

𝑗=1

= 𝑎
𝑎𝑝

′−1𝑘1/𝑝

(𝑘 + 1)1/𝑝
∑ 𝑦𝑗

′(𝜉′)

2𝑘−1

𝑗=1

 

+𝑏
𝑏𝑝

′−1𝑘1/𝑝

(𝑘 + 1)1/𝑝
∑ 𝑦𝑗

′′(𝜉′′)

2𝑘−1

𝑗=1

+
1

(𝑘 + 1)1/𝑝
 

≥
𝑎𝑝

′
𝑘1/𝑝

(𝑘 + 1)1/𝑝
𝑘1/𝑝

′
+

𝑏𝑝
′
𝑘1/𝑝

(𝑘 + 1)1/𝑝
𝑘1/𝑝

′
+

1

(𝑘 + 1)1/𝑝
 

≥
(𝑎𝑝

′
+ 𝑏𝑝

′
)𝑘

(𝑘 + 1)1/𝑝
+

1

(𝑘 + 1)1/𝑝
= (𝑘 + 1)1/𝑝

′
. 

COROLLARY (3.1.6)[80]: There exist normalized 𝐹-admissible sequences that are not 

equivalent to the usual ℓ𝑝-basis. 

Proof. It is clear that such sequences may be constructed by normalizing and sticking 

together finite sequences of the kind obtained. 

In view of what we have just seen it is clear that we shall have to work a bit harder in order 

to find ℓ𝑝-bases in 𝑋𝑎,𝑏 . We shall start with an arbitrary normalized 𝐹-admissible sequence 

(𝑦𝑛) and then form further linear combinations. As a piece of temporary terminology, we 

shall say that a vector 𝑥 has height ℎ, and write ℎ(𝑥)  =  ℎ, if 𝑥 is a linear combination 

𝑥 = ∑ 𝛼𝑙𝑦𝑙

𝑛

𝑙=𝑚
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with ℎ = max
𝑖
|𝛼𝑖|. When 𝐼 is a non-empty finite interval of integers, we shall write 1∗ for 

the subinterval obtained by removing the end-points of 𝐼: thus 𝐼∗ = 𝐼\{max 𝐼 ,min 𝐼}. 
PROPOSITION (3.1.7)[80]: There is a constant 𝑐 >  0, depending only on 𝑎 and 𝑏, with 

the following property: for any normalized 𝐹-admissible sequence (𝑦𝑛), any sequence (𝑥𝑟) 
of successive linear combinations, any finite interval 𝐼 and any 𝛾 ∈ 𝛤, we have 

𝑐 ‖∑𝑥𝑖
𝑖∈𝐼

‖ ≤ (‖𝑥min 𝐼‖
𝑝 + 2∑6𝑝‖𝑥𝑖‖

𝑝 +

𝑖∈𝐼∗

‖𝑥max 𝐼‖
𝑝)

1/𝑝

             (1) 

moreover, for 𝛾 with rank(𝛾)  > max supp 𝑥max 𝐼 , we have 

𝑐 |∑𝑥𝑖(𝛾)

𝑖∈𝐼

| ≤ (‖𝑥min 𝐼‖
𝑝 + 2∑6𝑝‖𝑥𝑖‖

𝑝 +

𝑖∈𝐼∗

‖𝑥max 𝐼‖
𝑝)

1/𝑝

 

+4∑ℎ(𝑥𝑖)

𝑖∈𝐼∗

+
3

2
ℎ(𝑥max 𝐼). 

In fact, the constant 𝑐 may be taken to be whichever is smaller of 𝑏 and 2−1/𝑝
′
𝑎. 

Proof. We proceed by induction on the length of the interval 𝐼, assuming that (1) and (2) 

hold for all sequences of successive linear combinations of the 𝑦𝑗 , and all intervals shorter 

than 𝐼. (Of course, the case of an interval containing only one natural number is trivial.) For 

convenience, we shall take 𝐼 to be the interval [1, 𝑙]; let us write 𝑥 for the sum ∑ 𝑥𝑖
𝑙
𝑖=1 . We 

consider an arbitrary 𝛾 ∈ 𝛤; our aim is to show that 

𝑐|𝑥(𝛾)| ≤ (‖𝑥1‖
𝑝 + 2∑6𝑝‖𝑥𝑖‖

𝑝

𝑙−1

𝑖=2

+ ‖𝑥max 𝐼‖
𝑝)

1/𝑝

 

+4∑ℎ(𝑥𝑖)

𝑙−1

𝑖=2

+ 3ℎ(𝑥𝑖),                    (2) 

with 

𝑐|𝑥(𝛾)| ≤ (‖𝑥1‖
𝑝 + 2∑6𝑝‖𝑥𝑖‖

𝑝

𝑙−1

𝑖=2

+ ‖𝑥max 𝐼‖
𝑝)

1/𝑝

 

+4∑ℎ(𝑥𝑖)

𝑙−1

𝑖=2

+
3

2
ℎ(𝑥𝑖),                    (3) 

in the special case where rank(𝛾)  >  max supp 𝑥𝑖 . 
We may assume that rank(𝛾)  ≥  min supp 𝑥𝑖 . Indeed, otherwise we have 𝑥(𝛾) =
∑ 𝑥𝑗(𝛾)
𝑖−1
𝑗=1  and our inductive hypothesis may be applied. This assumption about the rank of 

𝛾 will be useful since it will allow us to apply PROPOSITION (3.1.3) to vectors like ∑ 𝑥𝑗
𝑖−1
𝑗=1 . 

Let us now write 𝑘 =  cut(𝛾); we shall deal first with the two cases 𝑘 < min  supp 𝑥2 and 

𝑘 > max  supp 𝑥𝑙−1. In the first of these cases, we may estimate |𝑥(𝛾)| as follows: 

|𝑥(𝛾)| ≤ ‖𝑥1‖ + |∑𝑥𝑖(𝛾)

𝑖−1

𝑖=2

| + ‖𝑥𝑙‖ 
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≤ ‖𝑥1‖ + ‖𝑥𝑙‖ + 𝑎 ‖𝑆𝑘 (∑𝑥𝑖

𝑙−1

𝑖=2

)‖ + 𝑏 ‖(𝐼 − 𝑆𝑘) (∑𝑥𝑖

𝑙−1

𝑖=2

)‖  (by Prop. 1) 

= ‖𝑥1‖ + ‖𝑥𝑙‖ + 𝑏 ‖∑𝑥𝑖

𝑙−1

𝑖=2

‖. 

Now the interval [2, 𝑙 —  1] is one to which our inductive hypothesis is applicable, so that 

we obtain 

𝑐|𝑥(𝛾)| ≤ 𝑐‖𝑥1‖ + 𝑐‖𝑥𝑙‖ + 𝑏 (‖𝑥2‖
𝑝 + 2∑6𝑝‖𝑥𝑖‖

𝑝

𝑙−2

𝑖=3

+ ‖𝑥𝑖−1‖
𝑝)

1/𝑝

 

+4𝑏∑ℎ(𝑥𝑖)

𝑙−2

𝑖=3

+ 3𝑏ℎ(𝑥𝑖−1) 

≤ (2𝑐𝑝
′
+ 𝑏𝑝

′
)
1 𝑝′⁄

(‖𝑥1‖
𝑝 + ‖𝑥2‖

𝑝 + 2∑6𝑝‖𝑥𝑖‖
𝑝

𝑙−2

𝑖=3

+ ‖𝑥𝑖−1‖
𝑝 + ‖𝑥𝑖‖

𝑝)

1/𝑝

 

+4𝑏∑ℎ(𝑥𝑖)

𝑙−1

𝑖=3

, 

by Hölder’s inequality. Comparing terms and recalling that 𝑏 <  1/2, we see that this 

implies inequality (2), provided that 2𝑐𝑝
′
+ 𝑏𝑝

′
≤ 1, or equivalently 𝑐 ≤ 2−1 𝑝

′⁄ (1 −

𝑏𝑝
′
)
1 𝑝′⁄

= 2−1 𝑝
′⁄ 𝑎. 

The argument in the case 𝑘 >  max supp 𝑥𝑖−1 is similar: 

𝑐|𝑥(𝛾)| ≤ 𝑐‖𝑥𝑙‖ + 𝑐 |∑𝑥𝑖(𝛾)

𝑖−1

𝑖=2

| 

≤ 𝑐‖𝑥𝑙‖ + 𝑎𝑐 ‖𝑆𝑘 (∑𝑥𝑖

𝑙−1

𝑖=2

)‖ + 𝑏𝑐 ‖(𝐼 − 𝑆𝑘) (∑𝑥𝑖

𝑙−1

𝑖=2

)‖  (by Prop. 1) 

= 𝑐‖𝑥𝑙‖ + 𝑎𝑐 ‖∑𝑥𝑖

𝑙−1

𝑖=1

‖ 

≤ 𝑐‖𝑥𝑙‖ + 𝑎 (‖𝑥1‖
𝑝 + 2∑6𝑝‖𝑥𝑖‖

𝑝

𝑙−2

𝑖=2

+ ‖𝑥𝑖−1‖
𝑝)

1/𝑝

 

+4𝑎∑ℎ(𝑥𝑖)

𝑙−2

𝑖=2

+ 3𝑎ℎ(𝑥𝑖−1), 

≤ (𝑐𝑝
′
+ 𝑎𝑝

′
)
1 𝑝′⁄

(‖𝑥1‖
𝑝 + 2∑6𝑝‖𝑥𝑖‖

𝑝

𝑙−2

𝑖=3

+ ‖𝑥𝑖−1‖
𝑝 + ‖𝑥𝑖‖

𝑝)

1/𝑝

 

+4∑ℎ(𝑥𝑖)

𝑙−1

𝑖=2

, 
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which implies inequality (2) provided 𝑐𝑝
′
+ 𝑎𝑝

′
≤ 1 or equivalently 𝑐 ≤ 𝑏. 

From now on, we shall assume that min supp 𝑥2  ≤  𝑘 = cut(𝛾) ≤ max  supp 𝑥𝑖−1. We 

consider next the case where rank(𝛾)  >  max supp 𝑥𝑖 and need to establish inequality (2). 

An easy case is where the cut 𝑘 lies between the supports of consecutive 𝑥𝑖‘s, say max supp 

𝑥𝑖
∗ < 𝑘 <  min supp 𝑥𝑖∗+1 (where 2 ≤ 𝑖∗  ≤ 𝑙 − 2 by what we have just proved). By our 

inductive hypothesis, we have inequality (1) for each of the intervals [1, 𝑖∗] and [𝑖∗ +  1, 𝑙]. 
Moreover, PROPOSITION (3.1.3) is applicable, giving 

𝑐|𝑥(𝛾)| ≤ 𝑐𝑎‖𝑆𝑘𝑥‖ + 𝑐𝑏‖(𝐼 − 𝑆𝑘)𝑥‖ = 𝑎𝑐 ‖∑𝑥𝑖

 

𝑖≤𝑖∗

‖ + 𝑏𝑐 ‖∑𝑥𝑖

 

𝑖>𝑖∗

‖ 

≤ 𝑎 [(‖𝑥1‖
𝑝 + 2 ∑ 6𝑝‖𝑥𝑖‖

𝑝

 

𝑖<𝑖<𝑖∗

+ ‖𝑥𝑖∗‖
𝑝)

1 𝑝⁄

+ 4 ∑ ℎ(𝑥𝑖)

 

𝑖<𝑖<𝑖∗

+ 3ℎ(𝑥𝑖∗)] 

+𝑏 [(‖𝑥𝑖∗+1‖
𝑝 + 2 ∑ 6𝑝‖𝑥𝑖‖

𝑝

 

𝑖∗+1<𝑖<𝑙

+ ‖𝑥𝑖‖
𝑝)

1 𝑝⁄

+ 4 ∑ ℎ(𝑥𝑖)

 

𝑖∗+1<𝑖<𝑙

+ 3ℎ(𝑥𝑖)] 

≤ (‖𝑥1‖
𝑝 + 2 ∑ 6𝑝‖𝑥𝑖‖

𝑝

 

𝑖<𝑖<𝑖∗

+ ‖𝑥𝑖‖
𝑝)

1 𝑝⁄

+ 4 ∑ ℎ(𝑥𝑖)

 

𝑖<𝑖<𝑙

+
3

2
ℎ(𝑥𝑖), 

by Hölder’s inequality and the facts that 𝑎 <  1, 𝑏 <  1/2. 
A slightly more complicated case arises if min supp 𝑥𝑖  ≤  𝑘 ≤  max supp 𝑥𝑖 for some 𝑖 =
 𝑖∗, say. By what we proved earlier, it must be that 1 < 𝑖∗  <  𝑙. 
We now study the fine structure of the vector 𝑥𝑖∗ , recalling that 

𝑥𝑖∗ = ∑ 𝛼𝑗𝑦𝑗
𝑛𝑖∗−1<𝑗≤𝑛𝑖∗

. 

We may suppose that 𝑘 is somewhere between min supp 𝑦𝑗∗ and max supp 𝑦𝑗∗ , for some 𝑗∗. 

We then set 

𝑥𝑖∗
𝐿 = ∑ 𝛼𝑗𝑦𝑗

𝑛𝑖∗−1<𝑗<𝑗
∗

,        𝑥𝑖∗
𝑅 = ∑ 𝛼𝑗𝑦𝑗

𝑗∗<𝑗≤𝑛𝑖∗

, 

𝑋𝐿 = 𝑥1 + 𝑥2+. . . +𝑥𝑖∗−1 + 𝑥𝑖∗
𝐿 ,       𝑋𝑅 = 𝑥𝑖∗

𝑅 + 𝑥𝑖∗+1+ . . . +𝑥𝑖 . 
By minimality of 𝑙 and the fact that 1 < 𝑖∗  <  𝑙, inequality (1) is true for the vectors 𝑥𝑅 and 

𝑥𝐿. Hence we have 

𝑐‖𝑥𝐿‖ ≤ (‖𝑥1‖
𝑝 + 2 ∑ 6𝑝‖𝑥𝑖‖

𝑝

 

𝑖<𝑖<𝑖∗

+ ‖𝑥𝑖∗
𝐿 ‖
𝑝
)

1 𝑝⁄

+ 4 ∑ ℎ(𝑥𝑖)

 

𝑖<𝑖<𝑖∗

+ 3ℎ(𝑥𝑖∗
𝐿 ) 

≤ (‖𝑥1‖
𝑝 + 2 ∑ 6𝑝‖𝑥𝑖‖

𝑝

 

𝑖<𝑖<𝑖∗

+ ‖𝑥𝑖∗
𝐿 ‖
𝑝
)

1 𝑝⁄

+ 4 ∑ ℎ(𝑥𝑖)

 

𝑖<𝑖<𝑖∗

+ 3ℎ(𝑥𝑖∗
 ), 

since ℎ(𝑥𝑖∗
𝐿 )  ≤  ℎ(𝑥𝑖∗) by the definition of the function ℎ, and 

𝑐‖𝑥𝑅‖ ≤ (‖𝑥𝑖∗
𝑅‖
𝑝
+ 2 ∑ 6𝑝‖𝑥𝑖‖

𝑝

 

𝑖∗<𝑖<𝑙

+ ‖𝑥𝑖‖
𝑝)

1 𝑝⁄

+ 4 ∑ ℎ(𝑥𝑖)

 

𝑖∗<𝑖<𝑙

+ 3ℎ(𝑥𝑖∗). 

If we now write 𝑥∗ + 𝑥𝐿 + 𝑥𝑅 = 𝑥 − 𝑎𝑗∗𝑦𝑗∗ , and apply PROPOSITION (3.1.3), we obtain 

𝑐|𝑥(𝛾)| ≤ 𝑐|𝑥∗(𝛾)| + 𝑐|𝛼𝑗∗| ≤ 𝑎𝑐‖𝑆𝑘𝑥
∗‖ + 𝑏𝑐‖(𝐼 − 𝑆𝑘)𝑥

∗‖ + 𝑐ℎ(𝑥𝑖∗) 
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= 𝑎𝑐‖𝑥𝐿‖ + 𝑏𝑐‖𝑥𝑅‖ + 𝑐ℎ(𝑥𝑖∗) 

≤ 𝑎 [(‖𝑥1‖
𝑝 + 2 ∑ 6𝑝‖𝑥𝑖‖

𝑝

 

𝑖<𝑖<𝑖∗

+ ‖𝑥𝑖∗
𝐿 ‖
𝑝
)

1 𝑝⁄

+ 4 ∑ ℎ(𝑥𝑖)

 

𝑖<𝑖<𝑖∗

+ 3ℎ(𝑥𝑖∗
 )] 

+𝑏 [(‖𝑥𝑖∗
𝑅‖
𝑝
+ 2 ∑ 6𝑝‖𝑥𝑖‖

𝑝

 

𝑖∗<𝑖<𝑙

+ ‖𝑥𝑙 
 ‖𝑝)

1 𝑝⁄

+ 4 ∑ ℎ(𝑥𝑖)

 

𝑖∗<𝑖<𝑙

+ 3ℎ(𝑥𝑖
 )] + 𝑐ℎ(𝑥𝑖∗) 

≤ (‖𝑥1‖
𝑝 + 2 ∑ 6𝑝‖𝑥𝑖‖

𝑝

 

𝑖∗<𝑖<𝑙

+ ‖𝑥𝑖∗
𝐿 ‖
𝑝
+ ‖𝑥𝑖∗

𝑅‖
𝑝
+ 2 ∑ 6𝑝‖𝑥𝑖‖

𝑝

 

𝑖∗<𝑖<𝑙

+ ‖𝑥𝑙 
 ‖𝑝)

1 𝑝⁄

 

+4 ∑ ℎ(𝑥𝑖)

 

𝑖<𝑖<𝑖∗

+ (3 + 𝑐)ℎ(𝑥𝑖∗
 ) + 4 ∑ ℎ(𝑥𝑖)

 

𝑖∗<𝑖<𝑙

+ 3𝑏ℎ(𝑥𝑖
 ) 

using Hölder’s inequality and the values of 𝑎 and 𝑏 as before. LEMMA (3.1.5), applied to 

the admissible sequence (𝑥𝑖∗
𝐿 , 𝛼𝑗𝑦𝑗 , 𝑥𝑖∗

𝑅), implies that each of ‖𝑥𝑖∗
𝐿 ‖ and ‖𝑥𝑖∗

𝑅‖ is at most 

6‖𝑥𝑖∗
 ‖ so that we can finally write 

𝑐|𝑥(𝛾)| ≤ (‖𝑥1‖
𝑝 + 2 ∑ 6𝑝‖𝑥𝑖‖

𝑝

 

𝑖∗<𝑖<𝑙

+ ‖𝑥𝑙
 ‖𝑝)

1 𝑝⁄

+ 4 ∑ ℎ(𝑥𝑖)

 

1<𝑖<𝑙

+
3

2
ℎ(𝑥𝑙

 ), 

which is inequality (2) as required1 (Of course, we have also used the facts that 𝑏 <  1/2 

and 3 + 𝑐 < 4.) 
To finish the proof, we now need to look at |𝑥(𝛾)| where rank(𝛾) max sup 𝑥𝑙 and show that 

inequality (1′) holds. We do this by another induction, this time on the number 𝑛𝑙 − 𝑛𝑙−1 

of non-zero coefficients in the expression for the last vector 𝑥𝑙 as a linear combination of 

the 𝑦𝑗 . We set 

𝑥𝑖
∗ = ∑ 𝛼𝑗𝑦𝑗

𝑛𝑖−1<𝑗<𝑛𝑖

= 𝑥𝑙 − 𝛼𝑛𝑙𝑦𝑛𝑙 ,      𝑥
∗ = ∑ 𝑥𝑖 + 𝑥𝑖

∗

1≤𝑖≤𝑙

= 𝑥 − 𝛼𝑛𝑙𝑦𝑛𝑙 . 

Our additional inductive hypothesis is applicable to 𝑥∗, and if rank(𝛾) < min supp 𝑦𝑛𝑙 , we 

have 𝑥(𝛾) = 𝑥∗(𝛾), giving the result immediately. If, on the other hand, rank(𝛾) ≥
min supp 𝑦𝑛𝑙 > max supp 𝑥

∗, it is inequality (2) which holds for 𝑥∗. Thus we obtain 

𝑐|𝑥(𝛾)| ≤ 𝑐|𝑥∗(𝛾)| + 𝑐|𝛼𝑛𝑙𝑦𝑛𝑙(𝛾)| 

≤ (‖𝑥1‖
𝑝 + 2 ∑ 6𝑝‖𝑥𝑖‖

𝑝

 

𝑖∗<𝑖<𝑙

+ ‖𝑥𝑙
∗‖𝑝)

1 𝑝⁄

 

+4 ∑ ℎ(𝑥𝑖)

 

1<𝑖<𝑙

+
3

2
ℎ(𝑥𝑙

∗) + 𝑐|𝛼𝑛𝑙| 

≤ (‖𝑥1‖
𝑝 + 2 ∑ 6𝑝‖𝑥𝑖‖

𝑝

 

𝑖∗<𝑖<𝑙

+ ‖𝑥𝑙
 ‖𝑝)

1 𝑝⁄

+ ‖𝑥𝑙
∗ − 𝑥𝑙‖ 

+4 ∑ ℎ(𝑥𝑖)

 

1<𝑖<𝑙

+
3

2
ℎ(𝑥𝑙

∗) + 𝑐|𝛼𝑛𝑙|      (by Minkowski
′s inequality) 

≤ (‖𝑥1‖
𝑝 + 2 ∑ 6𝑝‖𝑥𝑖‖

𝑝

 

𝑖∗<𝑖<𝑙

+ ‖𝑥𝑙
 ‖𝑝)

1 𝑝⁄
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+4 ∑ ℎ(𝑥𝑖)

 

1<𝑖<𝑙

+
3

2
ℎ(𝑥𝑙

∗) + (𝑐 + 1)|𝛼𝑛𝑙| 

≤ (‖𝑥1‖
𝑝 + 2 ∑ 6𝑝‖𝑥𝑖‖

𝑝

 

𝑖∗<𝑖<𝑙

+ ‖𝑥𝑙
 ‖𝑝)

1 𝑝⁄

+ 4 ∑ ℎ(𝑥𝑖)

 

1<𝑖<𝑙

+ 3ℎ(𝑥𝑙
 ) 

since 𝑐 < 1/2 and ℎ(𝑥𝑙) = max{|𝛼𝑛𝑙|, ℎ(𝑥𝑖
∗)}. We have thus established inequality (2) as 

required. 

Theorem (3.1.8)[80]: Let 𝑎, 𝑏 be real constants satisfying 0 < 𝑏 < 1 2⁄ < 𝑎 < 1, 𝑎 + 𝑏 >

1 and let n𝑝, 𝑝′ be given by 1 𝑝⁄ + 1 𝑝′⁄ = 1 = 𝑎𝑝
′
+ 𝑏𝑝

′
. Every closed infinite-

dimensional subspace of 𝑋𝑎,𝑏 has a subspace isomorphic to ℓ𝑝. 
Proof. By a standard approximation argument, it is enough to consider the case of a 

subspace 𝑌 which is the closed linear span of a normalized 𝐹-admissible sequence (𝑦𝑗). 

Because of the lower estimates of LEMMA (3.1.5) and Theorem (3.1.2), we may construct 

successive linear combinations 𝑧𝑖 with ‖𝑧𝑖‖ = 1 and ℎ(𝑧𝑖) very small, say ∑ ℎ(𝑧𝑖)
∞
𝑖=1 < 1. 

Now, for arbitrary 𝑙 ∈ ℕ and arbitrary scalars 𝛽𝑖 , we may apply the above proposition to the 

vectors 𝑥𝑖 = 𝛽𝑖𝑧𝑖 , obtaining 

𝑐 ‖∑𝛽𝑖𝑧𝑖

𝑙

𝑖=1

‖ ≤ 12(∑|𝛽𝑖|
𝑝

𝑙

𝑖=1

)

1 𝑝⁄

+ 4∑|𝛽𝑖|ℎ(𝑧𝑖)

𝑙

𝑖=1

≤ 16(∑|𝛽𝑖|
𝑝

𝑙

𝑖=1

)

1 𝑝⁄

. 

On the other hand, from LEMMA (3.1.5) and Theorem (3.1.2) again, we get the lower 

estimate 

‖∑𝛽 𝑧𝑖

𝑙

𝑖=1

‖ ≥
1

6
‖(𝛽1, . . . , 𝛽𝑙)‖𝑎,𝑏 ≥ 𝑑 (∑|𝛽𝑖|

𝑝

𝑙

𝑖=1

)

1 𝑝⁄

, 

where 𝑑 is a strictly positive constant. 

Section (3.2): The Scalar–Plus–Compact Problem 

The question of whether there exists a Banach space 𝑋 on which every bounded linear 

operator is a compact perturbation of a scalar multiple of the identity has become known as 

the “Scalar–plus–Compact Problem”. It is mentioned by Lindenstrauss as Question 1 in his 

1976 list of open problems in Banach space theory [114]. Lindenstrauss remarks that, by the 

main theorem of [101] or [115], every operator on a space of this type has a proper non-

trivial invariant subspace. Related questions go further back: for instance, Thorp [123] asks 

whether the space of compact operators 𝒦(𝑋; 𝑌) can ever be a proper complemented 

subspace of ℒ(𝑋; 𝑌). On the Gowers–Maurey space 𝔛gm [111], every operator is a strictly 

singular perturbation of a scalar, and other hereditarily indecomposable (HI) spaces also 

have this property. Indeed it seemed for a time that 𝔛gm might already solve the scalar–

plus–compact problem. However, after Gowers[110] had shown that there is a strictly 

singular, non-compact operator from a subspace of 𝔛gm to 𝔛gm, Androulakis and 

Schlumprecht [95] showed that such an operator can be defined on the whole of 𝔛gm. 

Gasparis [108] has done the same for the Argyros–Deliyanni space 𝔛ad of [96]. 

We solve the scalar–plus–compact problem by combining techniques that are familiar from 

other HI constructions with an additional ingredient, the Bourgain– Delbaen method for 

constructing special ℓ∞-spaces [85]. The initial motivation for combining these two 

constructions was to exhibit a hereditarily indecomposable predual of ℓ1; such a space is, in 
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some sense, the extreme example of a known phenomenon—that the HI property does not 

pass from a space to its dual [107], [100], [97]. it turned out that the additional structure was 

just what we needed to show that strictly singular operators are compact. It is interesting, 

perhaps, to note that the Schur property of ℓ1 does not play a role in our proof and, indeed, 

we have no general result to say that an HI predual of ℓ1 necessarily has the scalar–plus–

compact property. We use in an essential way the specific structure of the BD construction, 

which embeds into our space some very explicit finite-dimensional ℓ∞-spaces. As well as 

the (now) classical machinery of HI constructions—a space of Schlumprecht type, Maurey–

Rosenthal coding and rapidly increasing sequences based on ℓ1-averages—we add the 

possibility of splitting an arbitrary vector into pieces of comparable norm, while staying in 

one of these ℓ∞
𝑛 ’s. This allows us to introduce two additional classes of rapidly increasing 

sequences, and these in turn lead to the stronger result about operators. 

If 𝐴 is any set, ℓ∞(𝐴) is the space of all bounded (real-valued) functions on 𝐴, 

equipped with the supremum norm ‖·‖∞ and ℓ1(𝐴) is the space of all absolutely summable 

functions on 𝐴, equipped with the norm ‖𝑥‖1  =  ∑ |𝑥(𝑎)|𝑎∈𝐴 . The support of a function 𝑥 

is the set of all a such that 𝑥(𝑎) ≠ 0; 𝑐00(𝐴) is the space of functions of finite support. We 

shall write ℓ𝑝 for the space ℓ𝑝(ℕ), where ℕ is the set {1, 2, 3, . . . } of positive integers, and 

ℓ𝑝
𝑛 for ℓ𝑝({1, 2, . . . , 𝑛}). Even when we are dealing with these sequence spaces we shall use 

function notation 𝑥(𝑚), rather than subscript notation, for the 𝑚th coordinate of the vector 

𝑥. 

When 𝑥 and 𝑦 are in 𝑐00(𝐴) (and more generally) we shall write 〈𝑦, 𝑥〉 for ∑ 𝑥(𝑎)𝑦(𝑎)𝑎∈𝐴 .

  

If we are thinking of 𝑦 as a functional acting on 𝑥∗ (rather than vice versa) we shall usually

  choose a notation involving a star, denoting 𝑦 by 𝑓∗, or something of this kind. In 

particular,  𝑒𝑎 and 𝑒𝑎
∗ are two notations for the same unit vector in 𝑐00(𝐴) (given by 

𝑒𝑎(𝑎′)  =  𝛿𝑎,𝑎′), to be employed depending on whether we are thinking of it as a unit vector 

or as the evaluation functional 𝑥 ↦ 〈𝑒𝑎
∗ , 𝑥〉 =  𝑥(𝑎). 

We say that (finitely or infinitely many) vectors 𝑧1, 𝑧2, . .. in 𝑐00 are successive, or that (𝑧𝑖) 
is a block-sequence, if max supp 𝑥𝑖  < min supp 𝑥𝑖+1 for all 𝑖. In a Banach space 𝑋 we say 

that vectors 𝑦𝑗 are successive linear combinations, or that (𝑦𝑗) is a block sequence of a basic 

sequence (𝑥𝑖) if there exist 0 =  𝑞1  <  𝑞2  < ⋯ such that, for all 𝑗 ≥  1, 𝑦𝑗 is in the 

linear span [𝑥𝑖 ∶ 𝑞𝑗−1 < 𝑖 ≤ 𝑞𝑗]. If we may arrange that 𝑦𝑗 ∈  [𝑥𝑖 ∶  𝑞𝑗−1  <  𝑖 <  𝑞𝑗] we 

say that (𝑦𝑗) is a skipped block sequence. More generally, if 𝑋 has a Schauder decomposition 

𝑋 = ⨁ 𝐹𝑛𝑛∈ℕ  we say that (𝑦𝑗) is a block sequence (resp.  a skipped block sequence) with 

respect to (𝐹𝑛) if there exist 0 =  𝑞0  <  𝑞1  < • • • such that 𝑦𝑗 is in ⨁ 𝐹𝑛𝑞𝑗−1<𝑛≤𝑞𝑗  (resp. 

⨁ 𝐹𝑛𝑞𝑗−1<𝑛<𝑞𝑗 . A block subspace is the closed subspace generated by a block sequence. 

A Banach space 𝑋 is indecomposable if there do not exist infinite-dimensional closed 

subspaces 𝑌 and 𝑍 of 𝑋 with 𝑋 =  𝑌 ⊕  𝑍, and is hereditarily indecomposable (HI) if every 

closed subspace is indecomposable. The following useful criterion, like so much else in this 

in this area, goes back to the original of Gowers and Maurey [111]. 

Proposition (3.2.1)[91]: Let 𝑋 be a an infinite dimensional Banach space. Then 𝑋 is 𝐻𝐼 if 
and only if, for every pair 𝑌, 𝑍 of infinite-dimensional subspaces, and every 𝜖 >  0, there 

exist 𝑦 ∈  𝑌 and 𝑧 ∈  ℤ with ‖𝑦 +  𝑧‖  >  1 and ‖𝑦 −  𝑧‖  <  𝜖. If 𝑋 has a finite-

dimensional decomposition (𝐹𝑛)𝑛∈ℕ it is enough that the above should hold for block 

subspaces. 
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We shall make use of the following well-known blocking lemma, the first part of which can 

be found as Lemma 1 of [116]. The proof of the second part is very similar, and, as Maurey 

remarks, both can be traced back to R.C. James [112]. 

Lemma (3.2.2)[91]: Let 𝑛 ≥  2 be an integer, let 𝜖 ∈  (0, 1) be a real number and let 𝑁 be 

an integer that can be written as 𝑁 =  𝑛𝑘  for some 𝑘 ≥  1. Let (𝑥𝑖)𝑖=1
𝑁  be a sequence of 

vectors in the unit sphere of a Banach space 𝑋. 

 (i) If ‖∑ ±𝑥𝑖
𝑁
𝑖=1 ‖ ≥  (𝑛 −  𝜖)𝑘  for all choices of signs ±1,  then there is a block sequence 

𝑦1, 𝑦2 , . . . , 𝑦𝑛 ∈  [𝑥𝑖 ∶  1 ≤  𝑖 ≤  𝑁 ] which is (1 −  𝜖)−1-equivalent to the unit-vector basis 

of ℓ1
𝑛. 

 (ii) If ‖∑ ±𝑥𝑖
𝑁
𝑖=1 ‖ ≤  (1 + 𝜖)𝑘 for all choices of signs ±1, then there is a block sequence 

𝑦1, 𝑦2 , . . . , 𝑦𝑛 ∈  [𝑥𝑖 ∶  1 ≤  𝑖 ≤  𝑁 ] which is (1 +  𝜖)-equivalent to the unit-vector basis 

of ℓ∞
𝑛 . 

A separable Banach space 𝑋 is an 𝐿∞,𝜆-space if there is an increasing sequence 

(𝐹𝑛)𝑛∈ℕ of finite dimensional subspaces of 𝑋 such that the union ⋃ 𝐹𝑛𝑛∈ℕ  is dense in 𝑋 and, 

for each 𝑛, 𝐹𝑛 is 𝜆-isomorphic to ℓ∞
dim𝐹𝑛 . It is known [113] that if a separable 𝐿∞ space 𝑋 

has no subspace isomorphic to ℓ1, then the dual space 𝑋∗ is necessarily isomorphic to ℓ1. 

This implies that the dual of a separable, hereditarily indecomposable 𝐿∞-space is 

isomorphic to ℓ1. 

The Bourgain–Delbaen spaces 𝑋𝑎,𝑏, which inspired the construction given, were the first 

examples of 𝐿∞ spaces not containing 𝑐0. 

All existing HI constructions have, somewhere at the heart of them, a space of 

Schlumprecht type; rather than working with the original space of [122], we find it 

convenient to look at a different mixed Tsirelson space. We recall some notation and 

terminology from [99]. Let (𝑙𝑗)𝑗 be a sequence of positive integers and let (𝜃𝑗)𝑗 be a 

sequence of real numbers with 0 <  𝜃𝑛  <  1. We define 𝑊 [(𝐴𝑙𝑗 , 𝜃𝑗)𝑗] to be the smallest 

subset 𝑊 of 𝑐00  with the following properties 

(i) ±𝑒𝑘
∗ ∈  𝑊 for all 𝑘 ∈  ℕ; 

(ii) whenever 𝑓1
∗, 𝑓2

∗, . . . , 𝑓𝑚
∗  ∈  𝑊 are successive vectors, 𝜃𝑗 ∑ 𝑓𝑖

∗
𝑖≤𝑚 ∈  𝑊 , provided 

𝑚 ≤  𝑙𝑗. 

We say that an element 𝑓∗ of 𝑊 is of Type 0 if 𝑓∗  =  ±𝑒𝑘
∗ for some 𝑘 and of Type I 

otherwise; an element of type I is said to have weight 𝜃𝑗 if 𝑓
∗ = 𝜃𝑗  ∑ 𝑓𝑖

∗
𝑖≤𝑚  for a suitable 

sequence (𝑓𝑖) of successive elements of 𝑊 . 

The mixed Tsirelson space 𝑇 [(𝐴𝑙𝑗 , 𝜃𝑗)𝑗] is defined to be the completion of 𝑐00 with respect 

to the norm 

‖𝑥‖ = sup{〈𝑓∗, 𝑥〉 ∶ 𝑓∗ ∈  𝑊 [(𝐴𝑙𝑗 , 𝜃𝑗)𝑗]} . 

We may also characterize the norm of this space implicitly as being the smallest function 

𝑥 ↦ ‖𝑥‖ satisfying 

‖𝑥‖ = max{‖𝑥‖∞ sup 𝜃𝑗∑‖𝑥𝜒𝐸𝑖‖

𝑙𝑗

𝑖=1

}, 

where the supremum is taken over all 𝑗 and all sequences of finite subsets 𝐸1 < 𝐸2  < ⋯  <
 𝐸𝑙𝑗 . Schlumprecht’s original space is the result of taking 𝑙𝑗  =  𝑗 and 𝜃𝑗  =  (log2(𝑗 +

 1))−1 
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We shall choose to work with two sequences of natural numbers (𝑚𝑗) and (𝑛𝑗). We require 

𝑚𝑗 to grow quite fast, and 𝑛𝑗 to grow even faster. The precise requirements are as follows. 

Assumption (3.2.3)[91]: We assume that (𝑚𝑗  , 𝑛𝑗)𝑗∈ℕ  satisfy the following: 

(i) 𝑚1  ≥  4; 
(ii) 𝑚𝑗+1  ≥  𝑚𝑗

2; 

(iii) 𝑛𝑗+1  ≥  𝑚𝑗+1
2 (4𝑛𝑗)

2𝑗+1

. 

A straightforward way to achieve this is to assume that (𝑚𝑗 , 𝑛𝑗) is some subsequence of the 

sequence (22𝑗 , 22𝑗
2+1)

𝑗∈ℕ
. From now on, whenever 𝑚𝑗 and 𝑛𝑗 appear, we shall assume we 

are dealing with sequences satisfying (3.2.3). 

The following lemma can be found as II.9 of [99]. The proof is not affected by the small 

change we have made in the definition of the sequences (𝑛𝑗)𝑗 and (𝑚𝑗)𝑗 . 

Lemma (3.2.4)[91]: If 𝑗 ∈ ℕ and 𝑓 ∈  𝑊 [(𝐴4𝑛𝑗 ,𝑚𝑗
−1)𝑗] is an element of weight 𝑚ℎ, then

  

|〈𝑓∗, 𝑛𝑗0
−1∑𝑒𝑙

𝑛𝑗0

𝑗=1

〉| ≤ {
2𝑚ℎ

−1𝑚𝑗0
−1        if 𝑖 <  𝑗0

𝑚ℎ
−1          if 𝑖 ≥  𝑗0.

 

In particular, the norm of 𝑛𝑗0
−1∑ 𝑒𝑙

𝑛𝑗0
𝑗=1

 in 𝑇[(𝐴4𝑛𝑗 ,𝑚𝑗
−1)𝑗  ] is exactly 𝑚𝑗0

−1 

If we restrict attention to 𝑓 ∈  𝑊[(𝐴4𝑛𝑗 , 𝑚𝑗
−1)𝑗≠𝑗0] then  

|〈𝑓∗, 𝑛𝑗0
−1∑𝑒𝑙

𝑛𝑗0

𝑗=1

〉| ≤ {
2𝑚ℎ

−1𝑚𝑗0
−2        if 𝑖 <  𝑗0

𝑚ℎ
−1          if 𝑖 ≥  𝑗0.

 

In particular, the norm of 𝑛𝑗0
−1∑ 𝑒𝑙

𝑛𝑗0
𝑗=1

 in 𝑇[(𝐴4𝑛𝑗 ,𝑚𝑗
−1)𝑗≠𝑗0] is at most 𝑚𝑗0

−2.  

We shall present a generalization of the Bourgain–Delbaen construction of separable 

𝐿∞-spaces. Our approach is slightly different from that of [102] and [85], but the 

mathematical essentials are the same. We choose to set things out in some detail partly 

because we believe our approach yield new insights into the original BD construction, and 

partly because the calculations presented here are a good introduction to the notations and 

methods we use later. It is perhaps worth emphasizing here that BD constructions are very 

different from the majority of constructions that occur in Banach space theory. Normally we 

start with the unit vectors in the space 𝑐00 and complete with respect to some (possibly 

exotic) norm. The only norms that occur in a BD construction are the usual norms of ℓ∞ 

and ℓ1. What we construct here are exotic vectors in ℓ∞ whose closed linear span is the 

space we want. 

The idea will be to introduce a particular kind of (conditional) basis for the space ℓ1 and to 

study the subspace 𝑋 of ℓ∞ spanned by the biorthogonal elements. Since ℓ1 is then in a 

natural way a subspace of (and in some cases the whole of ) 𝑋∗, we shall be thinking of 

elements of ℓ1 as functionals and, in accordance with the convention explained earlier, 

denote them 𝑏∗, 𝑐∗ and so on. In our initial discussion we shall consider the space ℓ1(ℕ) 
(which we shall later replace with ℓ1(Γ) with Γ a certain countable set better adapted to our 

needs). 

Definition (3.2.5)[91]: We shall say that a basic sequence (𝑑𝑛
∗ )𝑛∈ℕ  in ℓ1(𝑁) is a triangular 

basis if supp𝑑𝑛
∗  ⊆  {1, 2, . . . , 𝑛}, for all 𝑛. We thus have   
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𝑑𝑛
∗ = ∑ 𝑎𝑛,𝑚𝑒𝑚

∗

𝑛

𝑚=1

, 

where, by linear independence, we necessarily have 𝑎𝑛,𝑛 ≠ 0. Notice that the linear span 

[𝑑1
∗, 𝑑2

∗ , . . . , 𝑑𝑛
∗  ] is the same as [𝑒1

∗, 𝑒2
∗, . . . , 𝑒𝑛

∗], that is to say, the space ℓ1(𝑛), regarded as a 

subspace of ℓ1(ℕ) in the usual way. So, in particular, the basic sequence (𝑑𝑛
∗ ) is indeed a 

basis for the whole of ℓ1. The biorthogonal sequence in ℓ∞ will be denoted (𝑑𝑛); it is a 

weak∗ basis for ℓ∞ and a basis for its closed linear span, which will be our space 𝑋. 

Proposition (3.2.6)[91]: If (𝑑𝑛
∗ ) is a triangular basis for ℓ1(𝑁), with basis constant 𝑀, then 

the closed linear span 𝑋 =  [𝑑𝑛 ∶  𝑛 ∈  ℕ] is a 𝐿∞,𝑀 -space. If (𝑑𝑛
∗ ) is boundedly complete, 

or equivalently (𝑑𝑛) is shrinking, then 𝑋∗ is naturally isomorphic to ℓ1(ℕ) with ‖𝑔∗‖𝑋∗ ≤
‖𝑔∗‖1 ≤ 𝑀‖𝑔

∗‖𝑋∗. 
Proof. In accordance with our “star” notation, let us write 𝑃𝑛

∗ for the basis projection ℓ1  →
 ℓ1 associated with the basis (𝑑𝑛

∗ ). Thus 𝑃𝑛
∗(𝑑𝑚

∗ ) equals 𝑑𝑚
∗   if 𝑚 ≤  𝑛 and 0 otherwise; 

because 𝑒𝑚
∗  ∈  ℓ1(𝑛)  =  [𝑑1

∗, . . . , 𝑑𝑛
∗ ], we also have 𝑃𝑛

∗𝑒𝑚  =  𝑒𝑚 when 𝑚 ≤  𝑛. If we 

modify 𝑃𝑛
∗ by taking the codomain to be the image im 𝑃𝑛

∗  =  ℓ1(𝑛), rather than the whole 

of ℓ1, what we have is a quotient operator, which we shall denote 𝑞𝑛, of norm at most 𝑀 . 

The dual of this quotient operator is an isomorphic embedding in : ℓ∞(𝑛)  →  ℓ∞(ℕ), also 

of norm at most 𝑀 . If 𝑚 ≤  𝑛 and 𝑢 ∈  ℓ∞(𝑛) we have 

(𝑖𝑛 𝑢)(𝑚) =  〈𝑒𝑚
∗  , 𝑖𝑛𝑢〉 = 〈𝑞𝑛𝑒𝑚

∗ , 𝑢〉  =  〈𝑒𝑚
∗ , 𝑢〉 =  𝑢(𝑚). 

So in is an extension operator ℓ∞
𝑛 → ℓ∞(ℕ) and we have  

‖𝑢‖∞ ≤ ‖𝑖𝑛𝑢‖∞ ≤ 𝑀‖𝑢‖∞ 

for all 𝑢 ∈  ℓ∞
𝑛 . In particular, the image of 𝑖𝑛, which is exactly [𝑑1, . . . , 𝑑𝑛] is 𝑀 -isomorphic 

to ℓ∞
𝑛 , which implies that 𝑋 is a 𝐿∞,𝑀-space. 

In the case where (𝑑𝑛
∗ ) is a boundedly complete basis of ℓ1 then 𝑋∗ may be identified with 

ℓ1 by standard result about bases. Moreover, for 𝑔∗  ∈  ℓ1, we have 

‖𝑔∗‖𝑋∗ = sup{〈𝑔
∗, 𝑥〉 ∶  𝑥 ∈  𝑋 and ‖𝑥‖∞ ≤  1}  ≤ ‖𝑔

∗‖1. 
On the other hand, if 𝑔∗ has finite support, say supp𝑔∗ ⊆ {1, 2, . . . , 𝑛}, we can choose 𝑢 ∈
 ℓ∞
𝑛  with ‖𝑢‖  =  1 and 〈𝑔∗, 𝑢〉 = ‖𝑔∗‖1. The extension 𝑥 =  𝑖𝑛(𝑢) is now in 𝑋 and satisfies 

‖𝑥‖  ≤  𝑀, 〈𝑔∗, 𝑥〉 = ‖𝑔∗‖. 
We shall say that (𝑑𝑛

∗ ) is a unit-triangular basis of ℓ1(ℕ) if it is a triangular basis and the 

non-zero scalars 𝑎𝑛,𝑛 are all equal to 1. We can thus write 

𝑑𝑛
∗  =  𝑒𝑛

∗  −  𝑐𝑛
∗ , 

where 𝑐1
∗  =  0 and supp 𝑐𝑛

∗ ⊂ {1, 2, . . . , 𝑛 − 1} for 𝑛 ≥  2. The clever part of the 

Bourgain–Delbaen construction is to find a method of choosing the 𝑐𝑛
∗  in such a way that 

(𝑑𝑛
∗ ) is indeed a basic sequence. The idea is to proceed recursively assuming that, for some 

𝑛 ≥  1, we already have a unit-triangular basis (𝑑𝑚
∗ )𝑚≤𝑛 of ℓ1

𝑛. The value of 𝑃𝑟
∗𝑏∗ is thus 

already determined when 1 ≤  𝑟 ≤  𝑛 and 𝑏∗  ∈  ℓ1
𝑛. 

Definition (3.2.7)[91]: In the set-up described above, we shall say that an element 𝑐∗ of 

ℓ1(𝑛) is a BD-functional (with respect to the triangular basis (𝑑𝑚
∗ )𝑚=1
𝑛 ) if there there exist 

real numbers 𝛼 ∈  (0, 1] and 𝛽 ∈  [0,
1

2
) such that we can express 𝑐∗ in one of the following 

forms: 

(i) 𝛼𝑒𝑗
∗  with 1 ≤  𝑗 ≤  𝑛, 

(ii) 𝛽(𝐼 − 𝑃𝑘
∗)𝑏∗ with 0 ≤  𝑘 <  𝑛 and 𝑏∗  ∈ ball ℓ1(𝑘 +  1, . . . , 𝑛), 

(iii) 𝛼𝑒𝑗
∗  +  𝛽(𝐼 − 𝑃𝑘

∗)𝑏∗ with 1 ≤  𝑗 ≤  𝑘 <  𝑛 and 𝑏∗  ∈ ball ℓ1(𝑘 +  1, . . . , 𝑛). 
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The non-negative constant 𝛽 will be called the weight of the functional 𝑐∗ (“weight 0” in 

case (0)). Note that (0) and (i) are “almost” special cases of (ii), with 𝛽 (resp. 𝛼) equal to 0. 

In the construction presented, we do not use functionals of type (0) and the constant 𝛼 in 

case (ii) is always equal to 1. However, it may be worth stating the following theorem in full 

generality. 

Theorem (3.2.8) ([102], [85])[91]: Let 𝜃 be a real number with 0 <  𝜃 <
1

2
 and let 𝑑𝑛

∗  =

 𝑒𝑛
∗  −  𝑐𝑛

∗  in ℓ1 be such that, for each 𝑛, 𝑐𝑛+1
∗  ∈  ℓ1

𝑛 is a BD-functional of weight at most 𝜃 

with respect to (𝑑𝑚
∗ )𝑚=1
𝑛  . Then (𝑑𝑛

∗ )𝑛∈ℕ is a triangular basis of ℓ1, with basis constant at 

most 𝑀 =  1/(1 −  2𝜃).  
The subspace 𝑋 =  [𝑑𝑛 ∶  𝑛 ∈  ℕ] of ℓ∞ is thus a 𝐿∞,𝑀-space. 

Proof. Despite the disguise, this is essentially the same argument as in the original of 

Bourgain and Delbaen. What we need to show is that 𝑃𝑚
∗  is a bounded operator, with ‖𝑃𝑚

∗‖ ≤
 𝑀 for all 𝑚. Because we are working on the space ℓ1 it is enough to show that ‖𝑃𝑚

∗ 𝑒𝑛
∗‖ ≤

𝑀 for every 𝑚 and 𝑛. 

First, if 𝑛 ≤  𝑚, 𝑃𝑚
∗ 𝑒𝑛
∗  =  𝑒𝑛

∗ , so there is nothing to prove. Now let us assume that ‖𝑃𝑘𝑒𝑗
∗‖ ≤

𝑀 for all 𝑘 ≤  𝑚 and all 𝑗 ≤  𝑛; we then consider 𝑃𝑚
∗ 𝑒𝑛+1
∗ . We use the fact that 

𝑒𝑛+1
∗ = 𝑑𝑛+1

∗ + 𝑐𝑛+1
∗ , 

with 𝑐𝑛+1
∗ ∈ ℓ1

𝑛 a BD-functional. We shall consider a functional of type (2), which presents 

the most difficulty. We thus have 

𝑐𝑛+1
∗ = 𝛼𝑒𝑗

∗  +  𝛽(𝐼 − 𝑃𝑘
∗)𝑏∗, 

where 1 ≤  𝑗 ≤  𝑘 <  𝑛 and 𝛼, 𝛽, 𝑏∗ are as in Definition (3.2.7), and 𝛽 ≤  𝜃 by our 

hypothesis. Now, because 𝑛 +  1 >  𝑚 we have 𝑃𝑚
∗𝑑𝑛+1

∗  =  0 so 

𝑃𝑚
∗ 𝑒𝑛+1
∗ = 𝛼𝑃𝑚

∗ 𝑒𝑗
∗ + 𝛽(𝑃𝑚

∗ − 𝑃𝑚∧𝑘
∗ )𝑏∗. 

If 𝑘 ≥  𝑚 the second term vanishes so that 

‖𝑃𝑚
∗ 𝑒𝑛
∗‖ = 𝛼‖𝑃𝑚

∗ 𝑒𝑗
∗‖ ≤ ‖𝑃𝑚

∗ 𝑒𝑗
∗‖, 

which is at most 𝑀 by our inductive hypothesis. 

If, on the other hand, 𝑘 <  𝑚, we certainly have 𝑗 <  𝑚 so that 𝑃𝑚
∗ 𝑒𝑗
∗ = 𝑒𝑗

∗, leading to the 

estimate 

‖𝑃𝑚
∗ 𝑒𝑛+1
∗ ‖ ≤ 𝛼‖𝑒𝑗

∗‖ + 𝛽‖𝑃𝑚
∗𝑏∗‖ + 𝛽‖𝑃𝑘

∗𝑏∗‖. 

Now 𝑏∗ is a convex combination of functionals ±𝑒𝑙
∗ with 𝑙 ≤  𝑛, and our inductive 

hypothesis is applicable to all of these. We thus obtain 

‖𝑃𝑚
∗ 𝑒𝑛+1
∗ ‖ ≤ 𝛼 + 𝑀𝛽 ≤ 1 +  2𝑀 𝛽 =  𝑀, 

by the definition of 𝑀 =  1/(1 −  2𝜃) and the assumption that 0 ≤  𝛽 ≤  𝜃.  

The 𝐿∞ spaces of Bourgain and Delbaen, and those we construct are of the above type. 

However, the “cuts” 𝑘 that occur in the definition of BD-functionals are restricted to lie in 

a certain subset of ℕ, thus naturally dividing the coordinate set ℕ into successive intervals. 

As in [80], it will be convenient to replace the set ℕ with a different countable set Γ having 

a structure that reflects this decomposition. This will also enable us later to use a notation in 

which an element 𝛾 ∈ Γ automatically codes the BD-functional associated with it. 

Theorem (3.2.9)[91]: Let  (𝛥𝑞)𝑞∈ℕ   be  a  sequence  of  non-empty  finite  sets,  with  

#𝛥1 = 1;  write Γ𝑞 = ⋃ ∆𝑝1≤𝑝≤𝑞 , Γ = ⋃ ∆𝑝𝑝∈ℕ .  Assume that there exists 𝜃 <
1

2
 and a 

mapping 𝜏 defined on Γ\∆1, assigning to each 𝛾 ∈ ∆𝑞+1 a tuple of one of the forms:  

(0) (𝛼, 𝜉) with 0 <  𝛼 ≤  1 and  ∈ Γ𝑞 ; 
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(1) (𝑝, 𝛽, 𝑏∗) with 0 ≤  𝑝 <  𝑞, 0 <  𝛽 ≤  𝜃 and 𝑏∗  ∈ ball ℓ1(Γ𝑞\Γ𝑝); 

(2) (𝛼, 𝜉, 𝑝, 𝛽, 𝑏∗) with 0 <  𝛼 ≤  1, 1 ≤  𝑝 <  𝑞, 𝜉 ∈   𝑝, 0 <  𝛽 ≤  𝜃 and 𝑏∗  ∈ ball 

ℓ1(Γ𝑞\Γ𝑝). 

Then there exist 𝑑𝛾
∗ = 𝑒𝛾

∗ − 𝑐𝛾
∗  ∈  ℓ1(Γ) and projections 𝑃(0,𝑞]

∗   on ℓ1(Γ) uniquely 

determined by the following properties:  

(1)𝑃(0,𝑞]
∗ 𝑑𝛾

∗ = {
𝑑𝛾
∗        𝑖𝑓 𝛾 ∈ Γ𝑞
0      𝑖𝑓 𝛾 ∈ Γ\Γ𝑞

 

(2)𝑐𝛾
∗ =

{
 
 

 
 

0               𝑖𝑓 𝛾 ∈ ∆1
𝛼𝑒𝜉

∗           𝑖𝑓 𝜏 (𝛾)  =  (𝛼, 𝜉)

𝛽(𝐼 − 𝑃(0,𝑝]
∗ )𝑏∗       𝑖𝑓 𝜏 (𝛾)  =  (𝑝, 𝛽, 𝑏∗)

𝛼𝑒𝜉
∗ + 𝛽(𝐼 − 𝑃(0,𝑝]

∗ )𝑏∗       𝑖𝑓 𝜏(𝛾) =  (𝛼, 𝜉, 𝛽, 𝑏∗)  𝑤𝑖𝑡ℎ 𝜉 ∈ ∆𝑝.

 

The family (𝑑𝛾
∗)
(𝛾∈Γ)

 is a basis for ℓ1(Γ) with basis constant at most 𝑀 =  (1 −  2𝜃)−1. 

The norm of each projection 𝑃(0,𝑞]
∗  is at most 𝑀. The biorthogonal elements 𝑑𝛾 generate a 

𝐿∞,𝑀 –subspace 𝑋(Γ, 𝜏 ) of ℓ∞(Γ). For each 𝑞 and each 𝑢 ∈  ℓ∞(Γ𝑞), there is a unique 

𝑖𝑞(𝑢)  ∈  [𝑑𝛾 ∶  𝛾 ∈ Γ𝑞] whose restriction to 𝑞 is 𝑢; the extension operator 𝑖𝑞 ∶  ℓ∞(Γ𝑞)  →

 𝑋(Γ, 𝜏 ) has norm at most 𝑀 . The subspaces 𝑀𝑛  =  [𝑑𝛾 ∶  𝛾 ∈ Γ𝑞]  =  𝑖𝑞  [ℓ∞(𝛥𝑞)] form a 

finite-dimensional decomposition (FDD) for 𝑋; if this FDD is shrinking then 𝑋∗ is naturally 

isomorphic to ℓ1(Γ). 
Proof. We shall show that, with a suitable identification of Γ with ℕ, this theorem is just a 

special case of Theorem (3.2.8). Let 𝑘𝑝  =  #Γ𝑝 and let 𝑛 ↦ 𝛾(𝑛) ∶  ℕ →  Γ be a bijection 

with the property that ∆1= {𝛾(1)}, while, for each 𝑞 ≥  2,∆𝑞= {𝛾(𝑛) ∶  𝑘𝑞−1   <  𝑛 ≤

 𝑘𝑞}.  There is a natural isometry: 𝐽 ∶  ℓ1(ℕ)  →  ℓ1(Γ) satisfying 𝐽(𝑒𝑛
∗) =  𝑒𝛾(𝑛)

∗ . It is 

straightforward to check that if 𝑑𝑛
∗ = 𝐽−1(𝑑𝛾(𝑛)

∗ ) =  𝑒𝑛
∗ − 𝑐𝑛

∗ , then the hypotheses of 

Theorem (3.2.8) are satisfied. (The cuts 𝑘 that occur in the BD-functionals 𝑐𝑛
∗  are all of the 

form 𝑘 =  𝑘𝑝.) All the assertions in the present theorem are now immediate consequences. 

The projections 𝑃(0,𝑞]
∗  whose existence is claimed here are given by 𝑃(0,𝑞]

∗ =  𝐽𝑃𝑘𝑞
∗ 𝐽−1, where 

𝑃𝑛
∗ is the basis projection of Theorem (3.2.8). 

When ordered as (𝑑𝛾(𝑛))𝑛∈ℕ the vectors 𝑑𝛾 form a basis of their closed linear span, which 

is a 𝐿∞,𝑀 -space. The extension operator that (by abuse of notation) we here denote by 𝑖𝑞 is 

just 𝐽𝑖𝑘𝑞𝐽
−1. The assertions about the subspaces 𝑀𝑞 = [𝑑 𝛾(𝑛): 𝑘𝑞−1 < 𝑛 ≤ 𝑘𝑞] follow 

from the fact that (𝑑𝛾(𝑛)) is a basis.  

We now make a few observations about the space 𝑋 =  (Γ, 𝜏) and the functions 𝑑𝛾, taking 

the opportunity to introduce notation that will be used in the rest. We have seen that for each 

𝛾 ∈ ∆𝑛+1 the functional 𝑑𝛾
∗  has support contained in Γ𝑛 ∪ {𝛾}. Using biorthogonality, we 

see that 𝑑𝛾 is supported by {𝛾} ∪ Γ \Γ𝑛+1. It should be noted that we should not expect the 

support of 𝑑𝛾 to be finite; in fact, in all interesting cases, we have 𝑋 ∩ 𝑐0(Γ)  =  {0}. 

As noted above the subspaces 𝑀𝑛 = [𝑑𝛾 ∶  𝛾 ∈ ∆𝑛] form a finite-dimensional 

decomposition for 𝑋. For each interval 𝐼 ⊆  ℕ we define the projection 𝑃𝐼 ∶  𝑋 → ⊕𝑛∈𝐼 𝑀𝑛 

in the natural way; this is consistent with our use of 𝑃(0,𝑛]
∗  in Theorem (3.2.9). Most of our 

arguments will involve sequences of vectors that are block sequences with respect to this 

FDD. Since we are using the word “support” to refer to the set of 𝛾 where a given function 
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is non-zero, we need other terminology for the set of 𝑛 such that 𝑥 has a non-zero component 

in 𝑀𝑛. We define the range of 𝑥, denoted ran 𝑥, to be the smallest interval 𝐼 ⊆  𝑁 such that 

𝑥 ∈⊕𝑛∈𝐼 𝑀𝑛 . It is worth noting that if ran 𝑥 =  (𝑝, 𝑞] then we can write 𝑥 =  𝑖𝑞(𝑢) where 

𝑢 =  𝑥 ↾ Γ𝑞 ∈  ℓ∞(Γ𝑞) satisfies Γ𝑝 ∩ supp𝑢 = ∅. 

We now set about constructing specific BD spaces which will be modelled on mixed 

Tsirelson spaces, in rather the same way that the original spaces of Bourgain and Delbaen 

have been found to be modelled on ℓ𝑝. We shall adopt a notation in which elements 𝛾 of 

∆𝑛+1 automatically code the corresponding BD-functionals. This will allow us to write 𝑋(Γ) 
rather than 𝑋(Γ, 𝜏) for the resulting 𝐿∞-space. An element 𝛾 of ∆𝑛+1 will be a tuple of one 

of the forms: 

(i) 𝛾 =  (𝑛 +  1, 𝛽, 𝑏∗),   in which case 𝜏(𝛾)  =  (0, 𝛽, 𝑏∗); 
(ii) 𝛾 =  (𝑛 +  1, 𝜉, 𝛽, 𝑏∗) in which case 𝜏(𝛾)  =  (1, 𝜉, rank 𝜉, 𝛽, 𝑏∗). 
In each case, the first co-ordinate of 𝛾 tells us what the rank of 𝛾 is, that is to say to which 

set ∆𝑛+1 it belongs, while the remaining co-ordinates specify the corresponding BD-

functional. 

It will be observed that BD-functionals of Type 0 do not arise in this construction and that 

the 𝑝 in the definition of a Type 1 functional is always 0. In the definition of a Type 2 

functional that the scalar α that occurs is always 1 and 𝑝 equals rank 𝜉. We shall make the 

further restriction the weight 𝛽 must be of the form 𝑚𝑗
−1, where the sequences (𝑚𝑗) and (𝑛𝑗) 

satisfy Assumption (3.2.3). We shall say that the element 𝛾 has weight 𝑚𝑗
−1 (sometimes 

dropping the −1 and referring to “weight 𝑚𝑗 ”). In the case of a Type 2 element 𝛾 =  (𝑛 +

 1, 𝜉,𝑚𝑗
−1, 𝑏∗) we shall insist that 𝜉 be of the same weight 𝑚𝑗

−1 as 𝛾. 

To ensure that our sets ∆𝑛+1 are finite we shall admit into ∆𝑛+1 only elements of weight 𝑚𝑗 

with 𝑗 ≤  𝑛 +  1. A further restriction involves a recursively defined function which we 

call “age”. For a Type 1 element 𝛾 =  (𝑛 +  1, 𝛽, 𝑏∗) we define age 𝛾 =  1. For a Type 2 

element 𝛾 =  (𝑛 +  1, 𝜉,𝑚𝑗
−1, 𝑏∗), we define age 𝛾 =  1 +  age 𝜉, and further restrict the 

elements of ∆𝑛+1 by insisting that the age of an element of weight 𝑚𝑗 may not exceed 𝑛𝑗. 

Finally, we shall restrict the functionals 𝑏∗ that occur in an element of ∆𝑛+1 by requiring 

them to lie in some finite subset 𝐵𝑛 of ℓ1(Γ𝑛). It is convenient to fix an increasing sequence 

of natural numbers (𝑁𝑛) and take 𝐵𝑛,𝑝  to be the set of all linear combinations 𝑏∗ =

∑ 𝑎𝜂𝑒𝜂
∗

𝜂∈Γ𝑛\Γ𝑝 , where ∑ |𝑎𝜂|𝜂  ≤  1 and each is a rational number with denominator dividing 

𝑁𝑛!. We may suppose the 𝑁𝑛 are chosen in such a way that 𝐵𝑛,𝑝 is a 2−𝑛-net in the unit ball 

of ℓ1(Γ𝑛\Γ𝑝). The above restrictions may be summarized as follows. 

Assumption (3.2.10)[91]: 

∆𝑛+1⊆⋃{(𝑛 +  1,𝑚𝑗
−1, 𝑏∗): 𝑏∗ ∈ 𝐵𝑛,0}

𝑛

𝑗=1

 

∪ ⋃ ⋃{(𝑛 +  1, 𝜉,𝑚𝑗
−1, 𝑏∗): 𝜉 ∈ ∆𝑝, weight 𝜉 = 𝑚𝑗

−1, age 𝜉 < 𝑛𝑗 , 𝑏
∗ ∈ 𝐵𝑛,𝑝}

𝑝

𝑗=1

 

0<𝑝<𝑛

 

We shall also assume that ∆𝑛+1 contains a rich supply of elements of “even weight”, more 

exactly of weight 𝑚𝑗 with 𝑗 even. 

Assumption (3.2.11)[91]: 
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∆𝑛+1⊇ ⋃ {(𝑛 +  1,𝑚2𝑗
−1, 𝑏∗): 𝑏∗ ∈ 𝐵𝑛,0}

⌊(𝑛+1)/2⌋

𝑗=1

 

∪ ⋃ ⋃{(𝑛 +  1, 𝜉,𝑚2𝑗
−1, 𝑏∗): 𝜉 ∈ ∆𝑝, weight 𝜉 = 𝑚2𝑗

−1, age 𝜉 < 𝑛2𝑗 , 𝑏
∗ ∈ 𝐵𝑛,𝑝}

𝑝

𝑗=1

 

1≤𝑝<𝑛

 

For our main HI construction, there are additional restrictions on the elements with “odd 

weight” 𝑚2𝑗−1 . However, there is some interest already in the space we obtain without 

making such restrictions. We denote this space 𝔅mT; it is an isomorphic predual of ℓ1 that 

is unconditionally saturated but contains no copy of 𝑐0 or ℓ𝑝. An analogous space 𝔅T, 

modelled on the standard Tsirelson space, rather than a mixed Tsirelson space. 

Definition (3.2.12)[91]: We define 𝔅mT = 𝔅mT[(𝑚𝑗 , 𝑛𝑗)𝑗∈ℕ] to be the space 𝑋(Γ) where 

Γ = Γmax   is defined by the recursion ∆1 =  {1}, 

∆𝑛+1=⋃{(𝑛 +  1,𝑚𝑗
−1, 𝑏∗): 𝑏∗ ∈ 𝐵𝑛,0}

𝑛+1

𝑗=1

 

∪⋃ ⋃ {(𝑛 +  1, 𝜉,𝑚𝑗
−1, 𝑏∗): 𝜉 ∈ ∆𝑝, weight 𝜉 = 𝑚𝑗

−1, age 𝜉 < 𝑛𝑗 , 𝑏
∗ ∈ 𝐵𝑛,𝑝}

 

𝑗≤𝑝<𝑛

𝑛−1

𝑗=1

 

The extra constraints that we place on “odd-weight” elements in order to obtain hereditary 

indecomposability will involve a coding function that will produce the analogues of the 

“special functionals” that occur in [111] and other HI constructions. In our case, all we need 

is an injective function 𝜎 ∶ Γ →  ℕ satisfying 4𝜎(𝛾)  >  𝑟𝑎𝑛𝑘 𝛾 for all 𝛾. This may easily 

be included in our recursive construction of Γ. We then insist that a Type 1 element of odd 

weight must have the form 

(𝑛 +  1,𝑚2𝑗−1
−1 , 𝑒𝜂

∗) 

with weight 𝜂 =  𝑚4𝑖−2 > 𝑛2𝑗−1
2 , while a Type 2 element must be 

(𝑛 +  1, 𝜉,𝑚2𝑗−1
−1 , 𝑒𝜂

∗) 

with weight 𝜂 =  𝑚4𝜎(𝜉). 

Definition (3.2.13)[91]: We define 𝔛K [(𝑚𝑗  , 𝑛𝑗)𝑗∈ℕ] to be the space 𝑋(Γ) where Γ = Γ𝐾 is 

defined by the recursion ∆1= {1},   

∆𝑛+1= ⋃ {(𝑛 +  1,𝑚2𝑗
−1, 𝑏∗): 𝑏∗ ∈ 𝐵𝑛,0}

⌊(𝑛+1)/2⌋

𝑗=1

 

∪⋃⋃{(𝑛 +  1, 𝜉,𝑚2𝑗
−1, 𝑏∗): 𝜉 ∈ ∆𝑝, weight 𝜉 = 𝑚2𝑗

−1, age 𝜉 < 𝑛2𝑗 , 𝑏
∗ ∈ 𝐵𝑛,𝑝}

⌊𝑝/2⌋

𝑗=1

𝑛

𝑝=1

 

∪ ⋃ {(𝑛 +  1, 𝜉,𝑚2𝑗−1
−1 , 𝑒𝜂

∗): 𝜂 ∈ Γ𝑛 and weight 𝜂 = 𝑚4𝑖−2 > 𝑛2𝑗−1
2 }

⌊(𝑛+2)/2⌋

𝑗=1
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∪⋃ ⋃ {(𝑛 +  1, 𝜉,𝑚2𝑗−1
−1 , 𝑒𝜂

∗): 𝜉 ∈ ∆𝑝, weight 𝜉 = 𝑚2𝑗−1
−1 , age 𝜉 < 𝑛2𝑗−1, 𝜂

⌊(𝑝+1)/2⌋

𝑗=1

𝑛

𝑝=1

∈ Γ𝑛\Γ𝑝, weight 𝜂 = 𝑚4𝜎(𝜉)} 

With the definition readily at hand, this is a convenient moment to record an important “tree-

like” property of odd-weight elements of ΓK, even though we shall not be exploiting these 

special elements until later on. 

Lemma (3.2.14)[91]: Let 𝛾, 𝛾′ be two elements of ΓK both of weight 𝑚2𝑗−1  and of ages 

𝑎 ≥  𝑎′, respectively. Let (𝑝𝑖 , 𝑒𝑛𝑖
∗  , 𝜉𝑖)1≤𝑖≤𝑎

, resp.  (𝑝𝑖
′, 𝑒

𝑛𝑖
′
∗  , 𝜉𝑖

′)
1≤𝑖≤𝑎′

, be the analysis of 

𝛾, resp. 𝛾′. There exists 𝑙 with 1 ≤  𝑙 ≤  𝑎′ such that 𝜉′ =  𝜉𝑖   when 𝑖 <  𝑙, while 

weight 𝜂𝑗 ≠ 𝑤𝑒𝑖𝑔ℎ𝑡 𝜂𝑖
′ for all 𝑗 when 𝑙 <  𝑖 ≤  𝑎′.  

Proof. If weight 𝜂𝑖
′ ≠ 𝑤𝑒𝑖𝑔ℎ𝑡 𝜂𝑗  for all 𝑖  ≥  2 and all 𝑗 there is nothing to prove (we may 

take 𝑙 =  1). Otherwise, let 2 ≤  𝑙 ≤  𝑎 be maximal subject to the existence of 𝑗 such that 

𝑤𝑒𝑖𝑔ℎ𝑡 𝜂𝑗  =  𝑤𝑒𝑖𝑔ℎ𝑡 𝜂𝑙
′. Now this weight is exactly 𝑚4𝜎(𝜉𝑙−1

′ ), which means that 𝑗 cannot 

be 1 (because the weight of 𝜂1 has the form 𝑚4𝑘−2). Thus 𝜎(𝜉𝑙−1
′ ) =  𝜎(𝜉𝑗−1), which 

implies that 𝜉𝑙−1
′ = 𝜉𝑗−1. Since 𝑙 −  1 = age 𝜉𝑙−1

′  and 𝑗 −  1 = age 𝜉𝑗−1, we deduce that 

𝑗 =  𝑙. Moreover, since the elements 𝜉𝑖  with 𝑖 <  𝑙 −  1 are determined by 𝜉𝑙−1, we have 

𝜉𝑖 =  𝜉𝑖
′ for 𝑖 <  𝑙. 

Although the structure of the space 𝑋(Γ) is most easily understood in terms of the basis (𝑑𝛾) 

and the biorthogonal functionals 𝑑𝛾
∗  , it is with the evaluation functionals 𝑒𝛾

∗ that we have to 

deal in order to estimate norms. The recursive definition of the functionals 𝑑𝛾
∗  can be 

unpicked to yield the following proposition. 

Proposition (3.2.15)[91]: Assume that the set satisfies Assumption (3.2.10). Let 𝑛 be a 

positive integer and let 𝛾 be an element of ∆𝑛+1 of weight 𝑚𝑗 and age  ≤  𝑛𝑗 . Then there 

exist natural numbers 0 =  𝑝0  <  𝑝1  < ⋯  <  𝑝𝑎  =  𝑛 +  1, elements 𝜉1, . . . , 𝜉𝑎  =  𝛾 of 

weight 𝑚𝑗 with 𝜉𝑟 ∈ ∆𝑝𝑟 and functionals 𝑏𝑟
∗ ∈ ball ℓ1(Γ𝑝𝑟−1\Γ𝑝𝑟−1) such that  

𝑒𝛾
∗ =∑𝑑𝜉𝑟

∗

𝑎

𝑟=1

+𝑚𝑗
−1∑𝑃(𝑝𝑟−1,∞)

∗ 𝑏𝑟
∗

𝑎

𝑟=1

 

=∑𝑑𝜉𝑟
∗

𝑎

𝑟=1

+𝑚𝑗
−1∑𝑃(𝑝𝑟−1,𝑝𝑟)

∗ 𝑏𝑟
∗

𝑎

𝑟=1

 

Proof. Given the assumption (3.2.10), this is an easy induction on the age 𝑎 of 𝛾. If 𝑎 =  1 

then 𝛾 has the form (𝑛 +  1,𝑚𝑗
−1, 𝑏∗) and 

𝑒𝛾
∗   =  𝑑𝛾

∗  +  𝑐𝛾
∗, 

where 𝑐𝛾
∗  is the Type 1 BD-functional 

𝑐𝛾
∗   =  𝑚𝑗

−1𝑃(0,∞)
∗ 𝑏∗, 

with 𝑏∗  ∈  𝐵(𝑛, 0)  ⊂ ball ℓ1(Γ𝑛). Since 𝑏∗ is in the image of the projection 𝑃(0,𝑛]
∗  we have 

𝑃(0,𝑛]
∗ 𝑏∗  =  𝑏∗ and so 

𝑒𝛾
∗ = 𝑑𝜉1

∗ +𝑚𝑗
−1𝑃(𝑝0,∞)

∗ 𝑏1
∗ = 𝑑𝜉1

∗ +𝑚𝑗
−1𝑃(𝑝0,𝑝1)

∗ 𝑏1
∗, 

with 𝑝0  =  0, 𝑝1 = 𝑛 + 1, 𝑏1
∗ = 𝑏∗ and 𝜉1 = 𝛾. 

If 𝑎 >  1 then 𝛾 has the form (𝑛 + 1, 𝜉,𝑚𝑗
−1 , 𝑏∗) and 𝑐𝛾

∗  is the Type 2 BD-functional 

𝑐𝛾
∗ = 𝑒𝜉

∗ +𝑚𝑗
−1𝑃(𝑝,∞)

∗ 𝑏∗. 
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If we apply our inductive hypothesis to the element 𝜉 of weight 𝑚𝑗, rank 𝑝 and age 𝑎 −  1, 

we obtain the desired expression for 𝑒𝛾
∗ . 

We shall refer to the identity presented in the above proposition as the evaluation analysis 

of 𝛾 and shall use it repeatedly in norm estimations. The form of the second term in the 

evaluation analysis, involving a sum weighted by 𝑚𝑗
−1, indicates that there is going to be a 

connection with mixed Tsirelson spaces; the first term, involving functionals 𝑑𝜉
∗ , with no 

weight, can cause inconvenience in some of our calculations, but is an inevitable feature of 

the BD construction. 

The data (𝑝𝑟 , 𝑏𝑟
∗, 𝜉𝑟)1≤𝑟≤𝑎 will be called the analysis of 𝛾. We note that if 1 ≤  𝑠 ≤  𝑎 the 

analysis of 𝜉𝑠 is just (𝑝𝑟 , 𝑏𝑟
∗, 𝜉𝑟)1≤𝑟≤𝑠. 

We shall be dealing with a space 𝑋 =  𝑋(Γ) and shall be making the assumptions (3.2.10) 

and (3.2.11). Our results thus apply both to 𝔅mT and 𝔛K. 

We note that, since the weights 𝑚𝑗
−1 are all at most 

1

4
 , the constant 𝑀 in Theorem (3.2.9) 

may be taken to be 2. This leads to the following norm estimates for the extension operators 

𝑖𝑛 and for the projections 𝑃𝐼 associated with the FDD (𝑀𝑛): 

‖𝑖𝑛‖ = ‖𝑃(0,𝑛]‖ ≤ 2, ‖𝑃(𝑛,∞)‖ ≤ 3, ‖𝑃(𝑚,𝑛]‖ ≤ 4, ‖𝑑𝜉
∗‖ = ‖𝑃[rank 𝜉,∞)

∗ 𝑒𝜉
∗‖ ≤ 3. 

The assumption (3.2.11) enables to write down a kind of converse to Proposition (3.2.15) 

which will lead to our first norm estimate. 

Proposition (3.2.16)[91]: Let 𝑗, 𝑎 be positive integers with  ≤  𝑛2𝑗 , let 0 =  𝑝0  <  𝑝1  <

 𝑝2  < ⋯ <  𝑝𝑎 be natural numbers with 𝑝1  ≥  2𝑗 and let 𝑏𝑟
∗ be functionals in 𝐵(𝑝𝑟 −

1, 𝑝𝑟−1) for 1 ≤  𝑟 ≤  𝑎. Then there are elements 𝜉𝑟  ∈ Γ𝑝𝑟 such that the analysis of 𝛾 =

 𝜉𝑎 is (𝑝𝑟 , 𝑏𝑟
∗, 𝜉𝑟)1≤𝑟≤𝑎. 

Proposition (3.2.17)[91]: Let (𝑥𝑟)𝑟=1
𝑎  be a skipped block sequence (with respect to the FDD 

(𝑀𝑛)) in 𝑋. If 𝑗 is a positive integer such that 𝑎 ≤  𝑛2𝑗 and 2𝑗 < min ran 𝑥2, then there 

exists an element 𝛾 of weight 𝑚2𝑗 satisfying 

∑𝑥𝑟(𝛾)

𝑎

𝑟=1

≥
1

2
𝑚2𝑗
−1∑‖𝑥𝑟‖

𝑎

𝑟=1

. 

Hence   

‖∑𝑥𝑟

𝑎

𝑟=1

‖ ≥
1

2
𝑚2𝑗
−1∑‖𝑥𝑟‖

𝑎

𝑟=1

. 

Proof. Let 𝑝0  =  0, and choose 𝑝1, 𝑝2, . . . , 𝑝𝑎 such that ran 𝑥𝑟  ⊆  (𝑝𝑟−1, 𝑝𝑟). Thus 𝑥𝑟 =
𝑖𝑝𝑟−1(𝑢𝑟) where the element 𝑢𝑟  =  𝑥𝑟 ↾ Γ𝑝𝑟−1 has support disjoint from Γ𝑝𝑟−1 . Since 

‖𝑖𝑛‖  ≤  2 for all 𝑛 we have ‖𝑢𝑟‖ ≥
1

2
‖𝑥𝑟‖ and so there exist 𝜂𝑟 ∈ Γ𝑝𝑟−1\Γ𝑝𝑟−1 with  

|𝑢𝑟(𝜂𝑟)| ≥
1

2
‖𝑥𝑟‖. 

The functional 𝑏𝑟
∗  =  ±𝑒𝜂𝑟

∗  is certainly in 𝐵𝑝𝑟−1,𝑝𝑟−1 and with a suitable choice of sign we 

may arrange that         

〈𝑏𝑟
∗, 𝑥𝑟〉 = |𝑢𝑟(𝜂𝑟)| ≥

1

2
‖𝑥𝑟‖. 

By Proposition (3.2.16) there is an element 𝛾 of ∆𝑝𝑎 whose analysis is (𝑝𝑟 , 𝑏𝑟
∗, 𝜉𝑟)1≤𝑟≤𝑎. We 

shall use the evaluation analysis to calculate   
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∑𝑥𝑠(𝛾)

𝑎

𝑠=1

= 〈𝑒𝛾
∗,∑𝑥𝑠

𝑎

𝑠=1

〉 . 

For any 𝑟 and 𝑠, 𝑥𝑠  ∈  [𝑑𝜉 ∶  𝑝𝑠−1 < rank 𝜉 <  𝑝𝑠], while rank 𝜉𝑟 = 𝑝𝑟 , whence  

〈𝑑𝜉𝑟
∗  , 𝑥𝑠〉  =  0   for all 𝑟, 𝑠, 

while 

〈𝑃(𝑝𝑟−1,𝑝𝑟)
∗ 𝑏𝑟

∗, 𝑥𝑠〉  = 〈𝑏𝑟
∗, 𝑃(𝑝𝑟−1,𝑝𝑟)

∗  𝑥𝑠〉 =  0, 

for all 𝑟 ≠ 𝑠. In the case 𝑟 =  𝑠 we have 

〈𝑃(𝑝𝑟−1,𝑝𝑟)
∗ 𝑏𝑟

∗, 𝑥𝑟〉  = 〈𝑏𝑟
∗, 𝑃(𝑝𝑟−1,𝑝𝑟)

∗  𝑥𝑟〉 = 〈𝑏𝑟
∗, 𝑥𝑟〉. 

The evaluation analysis thus simplifies to yield 

∑𝑥𝑟(𝛾)

𝑎

𝑟=1

= 𝑚2𝑗
−1∑〈𝑏𝑟

∗, 𝑥∗𝑟〉

𝑎

𝑟=1

≥
1

2
𝑚2𝑗
−1∑‖𝑥𝑟‖

𝑎

𝑟=1

 

The lower estimate we have just obtained indicates that there is a close connection between 

our space 𝑋 and mixed Tsirelson spaces of the kind considered. We can show that a 

normalized skipped-block sequence in 𝑋 dominates the unit vector basis of 

𝑇[(𝐴𝑛2𝑗 ,𝑚2𝑗
−1)𝑗∈ℕ]. 

We continue to work with the space 𝑋 =  𝑋(Γ), where satisfies the assumptions 

(3.2.10) and (3.2.11). We saw that skipped block sequences admit useful Mixed Tsirelson 

lower estimates. We now pass to a class of block sequences that admit upper estimates of a 

similar kind. The following definition is a variant of something that is familiar from other 

HI constructions. 

Let 𝐼 be an interval in ℕ and let (𝑥𝑘)𝑘∈𝐼 be a block sequence (with respect to the FDD 

(𝑀𝑛)). We say that (𝑥𝑘) is a rapidly increasing sequence, or RIS, if there exists a constant 

𝐶 such that the following hold: 

(i) ‖𝑥𝑘‖ ≤  𝐶 for all 𝑘 ∈ ℕ, 

and there is an increasing sequence (𝑗𝑘) such that, for all 𝑘, 

(ii) 𝑗𝑘+1  > max ran 𝑥𝑘 

(iii) |𝑥𝑘(𝛾)| ≤ 𝐶𝑚𝑖
−1 whenever weight 𝛾 =  𝑚𝑖   and 𝑖 <  𝑗𝑘 

If we need to be specific about the constant, we shall refer to a sequence satisfying the above 

conditions as a 𝐶-RIS. 

Lemma (3.2.18)[91]: Let (𝑥𝑘) be a 𝐶-RIS and let (𝑗𝑘) be an increasing sequence of natural 

numbers as in the definition. If 𝛾 ∈ Γ and weight 𝛾 =  𝑚𝑖 then, for any natural number 𝑠 

|〈𝑒𝛾
∗ , 𝑃(𝑠,∞)𝑥𝑘〉| ≤ {

5𝐶𝑚𝑖
−1  𝑖𝑓 𝑖 <  𝑗𝑘

3𝐶𝑚𝑖
−1  𝑖𝑓 𝑖 ≥  𝑗𝑘+1

 

Proof. We first consider the case where 𝑖 ≥  𝑗𝑘+1, noting that this implies that 𝑖 > max ran 

𝑥𝑘 by RIS condition (ii). As in Proposition (3.2.15), we may write down the evaluation 

analysis of 𝛾 as 

𝑒𝛾
∗ =∑𝑑𝜉𝑟

∗

𝑟

+𝑚𝑖
−1∑𝑑𝑟

∗

𝑟

∘ 𝑃(𝑝𝑟−1,∞), 

where 0 =  𝑝0  <  𝑝1  <  𝑞1  <  𝑝2  < ⋯ , and 𝑏𝑟
∗ is a norm-1 element of ℓ1(Γ), supported 

by Γ𝑝𝑟−1\Γ𝑝𝑟−1 , while 𝜉𝑟 is of rank 𝑝𝑟 and weight 𝑚𝑖. Since ∆𝑞 contains no elements of 

weight mi unless 𝑞 ≥  𝑖, it must be that 𝑝1  ≥  𝑖. Thus 𝑝1  > max ran 𝑥𝑘 , from which it 

follows that 𝑃(𝑝𝑟,∞) ∘ 𝑃(𝑠,∞)𝑥𝑘 = 𝑃(𝑠∨𝑝𝑟,∞)𝑥𝑘 = 0 for all 𝑟 ≥  1. For the same reason, we 

also have 
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〈𝑑𝜉𝑟
∗  , 𝑃(𝑠,∞)𝑥𝑘〉 = 〈𝑒𝜉𝑟

∗ , 𝑃(𝑠∨𝑞𝑟,∞)𝑃[𝑝𝑟,∞)𝑥𝑘〉  =  0 

for all 𝑟. We are left with 

|〈𝑒𝛾
∗ , 𝑃(𝑠,∞)𝑥𝑘〉| =  𝑚𝑖

−1|〈𝑑𝜉𝑟
∗  , 𝑃(𝑠,∞)𝑥𝑘〉| ≤ 𝑚𝑖

−1‖𝑃(𝑠,∞)‖‖𝑥‖ ≤  3𝐶𝑚𝑖
−1 

In the case where 𝑖 <  𝑗𝑘, we again use the evaluation analysis, but need to be more careful 

about the value of 𝑠. Since we shall need this argument again, we state it as a separate lemma. 

Clearly the second part of the present lemma is an immediate consequence. 

Lemma (3.2.19)[91]: Let 𝑖 be a positive integer and suppose that 𝑥 ∈  𝑋 has the property 

that ‖𝑥‖  ≤  𝐶 and |𝑥(𝜉)|  ≤  𝛿 whenever weight 𝜉 =  𝑚𝑖. Then for any 𝑠 and any 𝛾 of 

weight 𝑚𝑖 we have 

|〈𝑒𝛾
∗ , 𝑃(𝑠,∞)𝑥〉| ≤ 2𝛿 + 3𝐶𝑚𝑖

−1. 

Proof. As before we consider the evaluation analysis 

𝑒𝛾
∗ =∑𝑑𝜉𝑟

∗

𝑎

𝑟=1

+𝑚𝑖
−1∑𝑏𝑟

∗

𝑎

𝑟=1

∘ 𝑃(𝑝𝑟−1,∞), 

If 𝑠 ≥  𝑝𝑎 then 𝑃(𝑠,∞)
∗ 𝑒𝛾

∗ = 0. If 0 <  𝑠 <  𝑝1, by applying 𝑃(𝑠,∞)
∗  to each of the terms in the 

evaluation analysis, we see that 

𝑃(𝑠,∞)
∗ 𝑒𝛾

∗ = 𝑒𝛾
∗ −𝑚𝑖

−1𝑃(0,𝑠]
∗ 𝑏1

∗, 

which leads to     

|〈𝑒𝛾
∗ , 𝑃(𝑠,∞)𝑥𝑘〉| ≤ 𝛿 +𝑚𝑖

−1‖𝑏1
∗‖‖𝑃(𝑝1,𝑠]‖‖𝑥𝑘‖ ≤ 𝛿 + 3𝐶𝑚𝑖

−1, 

by our assumptions.    

In the remaining case, there is some 𝑡 with 1 ≤  𝑡 <  𝑎 such that 𝑝𝑡 ≤ 𝑠 while 𝑝𝑡+1 > 𝑠.  
We may rewrite the evaluation analysis of 𝛾 as   

𝑒𝛾
∗ = 𝑒𝜉𝑡

∗ + ∑ 𝑑𝜉𝑟
∗

𝑎

𝑟=𝑡+1

+𝑚𝑖
−1 ∑ 𝑏𝑟

∗

𝑎

𝑟=𝑡+1

∘ 𝑃(𝑝𝑟−1,∞), 

which gives us 

𝑃(𝑠,∞)
∗ 𝑒𝛾

∗  =  𝑒𝛾
∗ − 𝑒𝜉𝑡

∗ − 𝑚𝑖
−1𝑃(𝑝𝑡,𝑠]

∗ 𝑏𝑡+1
∗ . 

When we recall that weight 𝜉𝑡 = weight 𝛾 this yields  

|〈𝑒𝛾
∗ , 𝑃(𝑠,∞)𝑥𝑘〉| ≤ 2𝛿 + 3𝐶𝑚𝑖

−1, 

as above.     

Proposition (3.2.20) (Basic Inequality)[91]: Let (𝑥𝑘)𝑘∈𝐼 be a 𝐶-RIS, let 𝜆𝑘 be real 

numbers, let 𝑠 be a natural number and let 𝛾 be an element of Γ. There exist 𝑘0  ∈  𝐼 and and 

a functional 𝑔∗  ∈  𝑊[(𝐴3𝑛𝑗 , 𝑚𝑗
−1)𝑗∈ℕ] such that:   

(i) either 𝑔∗  =  0 or weight (𝑔∗)  = weight (𝛾) and supp 𝑔∗  ⊆  {𝑘 ∈  𝐼 ∶  𝑘 >  𝑘0} ; 

(ii) |〈𝑒𝛾
∗ , 𝑃(𝑠,∞)∑ 𝜆𝑘𝑥𝑘𝑘∈𝐼 〉| ≤ 5𝐶|𝜆𝑘0|  +  5𝐶〈𝑔

∗, ∑ |𝜆𝑘|𝑒𝑘𝑘 〉.  

Moreover, if 𝑗0  is such that 

|〈𝑒𝜉
∗ ,∑𝜆𝑘𝑥𝑘
𝑘∈𝐽

〉| ≤ 2𝐶max
𝑘∈𝐽
|𝜆𝑘| , 

for  all  subintervals 𝐽  of  𝐼  and  all 𝜉  ∈ Γ of  weight  𝑚𝑗0 ,  then  we  may  choose  𝑔∗ 

to  be  in 𝑊[(𝐴3𝑛𝑗 , 𝑚𝑗
−1)𝑗≠𝑗0]. 

Proof. We proceed by induction of the rank of 𝛾, noting that if 𝛾 is of rank 1 we have 

𝑃(𝑠,∞)
∗ 𝑒𝛾

∗ = 0 whenever 𝑠 ≥  1, so that 
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〈𝑒𝛾
∗ , 𝑃(𝑠,∞)∑𝜆𝑘𝑥𝑘

𝑘∈𝐼

〉 = {
0      𝑖𝑓   𝑟 ≥ 1

𝜆1𝑥1(𝛾)   𝑖𝑓 𝑟 =  0.
 

Thus 𝑘0  =  1 and 𝑔∗  =  0 have the desired property. 

Now consider an element 𝛾 of rank greater than 1, of age 𝑎 and of weight mh. Taking (𝑗𝑘) 
to be a sequence as in the definition of a RIS, we shall suppose that there is some 𝑙 ∈  𝐼 such 

that 𝑗𝑙 ≤  ℎ <  𝑗𝑙+1. (The cases where ℎ <  𝑗𝑘 for all 𝑘 ∈  𝐼 and where ℎ ≥  𝑗𝑘+1 for all 

𝑘 ∈  𝐼 are simpler.) 

We split the summation over 𝑘 into three parts as follows: 

〈𝑒𝛾
∗ , 𝑃(𝑠,∞)∑𝜆𝑘𝑥𝑘

𝑘∈𝐼

〉

= ∑ 𝜆𝑘
𝐼∋𝑘<𝑙

〈𝑒𝛾
∗ , 𝑃(𝑠,∞)𝑥𝑘〉 + 〈𝑒𝛾

∗ , 𝑃(𝑠,∞)𝜆𝑙𝑥𝑙〉 + 〈𝑒𝛾
∗ , 𝑃(𝑠,∞) ∑ 𝜆𝑘

𝐼∋𝑘>𝑙

𝑥𝑘〉 

and estimate the three terms separately.      

When 𝑘 <  𝑙 we have ℎ ≥  𝑗𝑙 ≥ 𝑗𝑘+1 so that      

|〈𝑒𝛾
∗ , 𝑃(𝑠,∞)𝜆𝑘𝑥𝑘〉| ≤ 3𝐶 𝑚ℎ

−1|𝜆𝑘| ≤ 3𝐶 𝑚𝑗𝑘
−1|𝜆𝑘|, 

by Lemma (3.2.18). Thus 

| ∑ 𝜆𝑘
𝐼∋𝑘<𝑙

〈𝑒𝛾
∗ , 𝑃(𝑠,∞)𝑥𝑘〉| ≤ 3𝐶∑𝑚𝑗𝑘

−1|𝜆𝑘|

𝑘<𝑙

≤ 3𝐶∑𝑚𝑗
−1max

𝑘<𝑙
|𝜆𝑘|

∞

𝑗=1

≤ 𝐶max
𝑘<𝑙
|𝜆𝑘| . 

For the second term, we have the immediate estimate 

|〈𝑒𝛾
∗ , 𝑃(𝑠,∞)𝜆𝑙𝑥𝑙〉| ≤ ‖𝑃(𝑠,∞)‖|𝜆𝑙|‖𝑥𝑙‖ ≤ 3𝐶|𝜆𝑙|. 

Thus putting the first two terms together we have 

 |〈𝑒𝛾
∗ , 𝑃(𝑠,∞)∑𝜆𝑘𝑥𝑘

𝑘≤𝑙

〉| ≤  𝐶 max
𝑘<𝑙
|𝜆𝑘| + 3𝐶|𝜆𝑙| ≤  4𝐶|𝜆𝑘0|,                  (4) 

for a suitably chosen 𝑘0 ≤ 𝑙. 
We now have to estimate the last term 

|〈𝑒𝛾
∗ , ∑ 𝜆𝑘𝑥𝑘

′

𝑘∈𝐼′

〉|, 

where 𝐼′ =  {𝑘 ∈  𝐼 ∶  𝑘 >  𝑙} and 𝑥𝑘
′ = 𝑃(𝑠,∞)𝑥𝑘 . We shall use the evaluation analysis of 

𝛾 

𝑒𝛾
∗ =∑𝑑𝜉𝑟

∗

𝑎

𝑟=1

+𝑚ℎ
−1∑𝑏𝑟

∗ ∘ 𝑃(𝑝𝑟−1,∞)

𝑎

𝑟=1

. 

Let 𝐼0
′  = {𝑘 ∈  𝐼′: ran 𝑥𝑘

′  contains rank 𝜉𝑟 for some 𝑟} noting first that #𝐼0
′ ≤ 𝑎 and 

secondly that for 𝑘 ∈  𝐼′ \ 𝐼0
′  the interval ran 𝑥𝑘

′  meets (𝑝𝑟−1, 𝑝𝑟) for at most one value of 𝑟.  
If we set 𝐼𝑟

′ = {𝑘 ∈  𝐼′ : ran 𝑥𝑘 meets (𝑝𝑟−1, 𝑝𝑟] but no other (𝑝𝑟′−1, 𝑝𝑟′)} then each 𝐼𝑟
′

 is a subinterval of 𝐼′ and we have   

〈𝑒𝛾
∗, 𝑥𝑘

′ 〉 = 𝑚ℎ
−1〈𝑏𝑟

∗, 𝑃(𝑝𝑟−1,∞)𝑥𝑘
′ 〉 = 𝑚ℎ

−1〈𝑏𝑟
∗, 𝑃(𝑠∨𝑝𝑟−1,∞)𝑥𝑘〉 

if 𝑘 ∈  𝐼𝑟
′ , while      

〈𝑒𝛾
∗, 𝑥𝑘

′ 〉 =  0      if    𝑘 ∈  𝐼′\⋃𝐼𝑟
′

𝑟

 

Thus 〈𝑒𝛾
∗ , ∑ 𝜆𝑘𝑥𝑘

′

𝑘∈𝐼′

〉 = 〈𝑒𝛾
∗, ∑ 𝜆𝑘𝑥𝑘

′

𝑘∈𝐼0
′

〉 + 𝑚ℎ
−1∑〈𝑏𝑟

∗, ∑ 𝜆𝑘𝑥𝑘
′

𝑘∈𝐼𝑟
′

〉

𝑎

𝑟=1
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Applying Lemma (3.2.18), we see that 

|〈𝑒𝛾
∗ ,∑ 𝜆𝑘𝑥𝑘

′

𝑘∈𝐼′

〉| ≤ 5𝐶𝑚ℎ
−1∑|𝜆𝑘|

𝑘∈𝐼0

+𝑚ℎ
−1 |∑〈𝑏𝑟

∗, ∑ 𝜆𝑘𝑥𝑘
′

𝑘∈𝐼𝑟
′

〉

𝑎

𝑟=1

| .                 (5) 

Now, for each 𝑟, the functional 𝑏𝑟
∗ is a convex combination of functionals ±𝑒𝜂

∗  with 𝑝𝑟−1 < 

rank 𝜂 <  𝑝𝑟, so we may choose 𝜂𝑟 to be such an 𝜂 with  

| 〈𝑏𝑟
∗, ∑ 𝜆𝑘𝑥𝑘

′

𝑘∈𝐼𝑟
′

〉 | ≤ |〈𝑒𝜂𝑟
∗ , ∑ 𝜆𝑘𝑥𝑘

′

𝑘∈𝐼𝑟
′

〉|. 

For each 𝑟, we may apply our inductive hypothesis to the element 𝜂𝑟 ∈ Γ and the RIS 

(𝑥𝑘)𝑘∈𝐼𝑟′ , obtaining 𝑘𝑟  ∈  𝐼𝑟
′  and 𝑔𝑟

∗ ∈ 𝑊 [(𝐴3𝑛𝑗 , 𝑚𝑗
−1)𝑗∈ℕ] supported on {𝑘 ∈  𝐼𝑟

′ : 𝑘 >  𝑘𝑟} 

satisfying  

 |〈𝑒𝜂𝑟
∗ , 𝑃(𝑠∨𝑝𝑟,∞)∑𝜆𝑘𝑥𝑘

𝑘∈𝐼𝑟
′

〉| ≤  5𝐶|𝜆𝑘𝑟| + 5𝐶 〈𝑔𝑟
∗, ∑|𝜆𝑘|𝑒𝑘
𝑘∈𝐼𝑟

′

〉.             (6) 

We now define 𝑔∗ by setting        

𝑔∗ = 𝑚ℎ
−1(∑ 𝑒𝑘

∗

𝑘∈𝐼0
′

+∑(𝑒𝑘𝑟
∗ + 𝑔𝑟

∗)

𝑎

𝑟=1

). 

This is a sum, weighted by 𝑚ℎ, of at most 3𝑛ℎ functionals in 𝑊[(𝐴3𝑛𝑗 , 𝑚𝑗
−1)𝑗∈ℕ], supported 

by disjoint intervals, and is hence itself in 𝑊[(𝐴3𝑛𝑗 ,𝑚𝑗
−1)𝑗∈ℕ]. Putting together (3.2.18), 

(3.2.19) and (3.2.20), we finally obtain 

|〈𝑒𝛾
∗, 𝑃(𝑠,∞)∑𝜆𝑘𝑥𝑘

𝑘∈𝐼

〉| ≤ 4𝐶|𝜆𝑘0| + 5𝐶𝑚ℎ
−1∑|𝜆𝑘|

𝑘∈𝐼0
′

+𝑚ℎ
−1|∑〈𝑏𝑟

∗, ∑ 𝜆𝑘𝑥𝑘
′

𝑘∈𝐼𝑟
′

〉

𝑎

𝑟=1

| 

≤ 4𝐶|𝜆𝑘0| + 5𝐶𝑚ℎ
−1∑|𝜆𝑘|

𝑘∈𝐼0
′

+𝑚ℎ
−1|∑〈𝑒𝜂𝑟

∗ , 𝑃(𝑠,∞)∑𝜆𝑘𝑥𝑘
𝑘∈𝐼𝑟

′

〉

𝑎

𝑟=1

| 

≤ 4𝐶|𝜆𝑘0| + 5𝐶𝑚ℎ
−1 (∑|𝜆𝑘|

𝑘∈𝐼0
′

+∑(|𝜆𝑘𝑟| + 〈𝑔𝑟
∗, ∑|𝜆𝑘|𝑒𝑘
𝑘∈𝐼𝑟

′

〉)

𝑎

𝑟=1

) 

≤ 5𝐶|𝜆𝑘0| + 5𝐶 〈𝑔
∗, ∑|𝜆𝑘|𝑒𝑘
𝑘∈𝐼′

〉. 

If 𝑗0 satisfies the additional condition set out in the statement of the theorem, we proceed by 

the same induction. The base case certainly presents no problem and if weight 𝛾 =  𝑚ℎ with 

ℎ =  𝑗0 we have a simple way to estimate 

〈𝑒𝛾
∗, 𝑃(𝑠,∞)∑𝜆𝑘𝑥𝑘

𝑘∈𝐼

〉 

Indeed there is at most one value of 𝑘, 𝑙 say, for which 𝑠 is in ran 𝑥𝑘 and 𝑃(𝑠,∞)𝑥𝑘 = 0 for 

𝑘 <  𝑙. 
If we set 𝐽 =  {𝑘 ∈  𝐼 ∶  𝑘 >  𝑙} we then have 

|〈𝑒𝛾
∗, 𝑃(𝑠,∞)∑𝜆𝑘𝑥𝑘

𝑘∈𝐼

〉| ≤ |𝜆𝑙|‖𝑃(𝑠,∞)‖‖𝑥𝑙‖ + |𝑒𝛾
∗(∑𝜆𝑘𝑥𝑘
𝑘∈𝐽

)|, 
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By our usual estimate ‖𝑃(𝑠,∞)‖ ≤  3 and the assumed additional condition, this is at most 

5𝐶|𝜆𝑘0| for some 𝑙 ≤  𝑘0 ∈  𝐼. We can then take 𝑔∗  =  0.   

Corollary (3.2.21)[91]: Any RIS is dominated by the unit vector basis of 

𝑇[(𝐴3𝑛𝑗 , 𝑚𝑗
−1)𝑗∈ℕ].  More precisely, if (𝑥𝑘) is a 𝐶-RIS then, for any real 𝜆𝑘, we have 

       

‖∑𝜆𝑘𝑥𝑘
𝑘

‖ ≤ 10𝐶‖∑𝜆𝑘𝑒𝑘
𝑘

‖, 

where the norm on the right hand side is taken in 𝑇[(𝐴3𝑛𝑗 , 𝑚𝑗
−1)𝑗∈ℕ].   

As well as this domination result, we shall need the following more precise lemma. 

Proposition (3.2.22)[91]: Let (𝑥𝑘)𝑘=1
𝑛𝑗0   be a 𝐶-RIS. Then 

(i) For every 𝛾 ∈ Γ  with weight 𝛾 =  𝑚ℎ we have 

|𝑛𝑗0
−1∑𝑥𝑘(𝛾)

𝑗0

𝑘=1

| ≤ {
11𝐶𝑚𝑗0

−1𝑚ℎ
−1        𝑖𝑓  ℎ < 𝑗0

5𝐶𝑛𝑗0
−15𝐶𝑚ℎ

−1        𝑖𝑓  ℎ ≥ 𝑗0
 

In particular,  

|𝑛𝑗0
−1∑𝑥𝑘(𝛾)

𝑗0

𝑘=1

| ≤ 6𝐶𝑚𝑗0
−2, 

if ℎ >  𝑗0 and 

‖𝑛𝑗0
−1∑𝑥𝑘

𝑛𝑗0

𝑘=1

‖ ≤ 6𝐶𝑚𝑗0
−1, 

 (ii) If 𝜆𝑘(1 ≤  𝑘 ≤  𝑛𝑗0) are scalars with |𝜆𝑘|  ≤  1 and having the property that 

|∑𝜆𝑘𝑥𝑘(𝛾)

𝑘∈𝐽

| ≤ 2𝐶max
𝑘∈𝐽
|𝜆𝑘| , 

for every 𝛾 of weight 𝑚𝑗0 and every interval 𝐽 ⊆  {1, 2, . . . , 𝑛𝑗0}, then  

‖𝑛𝑗0
−1∑𝜆𝑘𝑥𝑘

𝑗0

𝑘=1

‖ ≤ 6𝐶𝑚𝑗0
−2. 

Proof. This is a direct application of the Basic Inequality, with all the coefficients 𝜆𝑘 equal 

to 𝑛𝑗0
−1.  Indeed, for (i) there exists 𝑔∗  ∈  𝑊[(𝐴3𝑛𝑗 , 𝑚𝑗

−1)𝑗∈ℕ] (either zero or of weight 𝑚ℎ) 

such that 

|𝑛𝑗0
−1∑𝑥𝑘(𝛾)

𝑛𝑗0

𝑘=1

| ≤ 5𝐶𝑛𝑗0
−1 + 5𝐶𝑔∗(𝑛𝑗0

−1∑𝑒𝑘

𝑛𝑗0

𝑘=1

), 

Using Lemma (3.2.4) to estimate the term involving 𝑔∗, we obtain 

|𝑛𝑗0
−1∑𝑥𝑘(𝛾)

𝑛𝑗0

𝑘=1

| ≤ {
5𝐶𝑛𝑗0

−1 + 10𝐶𝑚𝑗0
−1𝑚ℎ

−1        𝑖𝑓  ℎ < 𝑗0

5𝐶𝑛𝑗0
−1 + 5𝐶𝑚ℎ

−1          𝑖𝑓  ℎ ≥ 𝑗0
 

The formulae given in (i) follow easily when we note that 𝑛𝑗0 is (much) larger than 5𝑚𝑗0
2  

when 𝑗0  ≥  2.          
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If the scalars 𝜆𝑘 satisfy the additional condition, then the 𝑔∗ whose existence is guaranteed 

by the Basic Inequality may be taken to be in 𝑊[(𝐴3𝑛𝑗 ,𝑚𝑗
−1)𝑗≠𝑗0] so that the second part of 

Lemma (3.2.4) may be applied, yielding 

|𝑛𝑗0
−1∑𝑥𝑘(𝛾)

𝑛𝑗0

𝑘=1

| ≤ {
5𝐶𝑛𝑗0

−1 + 10𝐶𝑚𝑗0
−1𝑚ℎ

−1        𝑖𝑓  ℎ < 𝑗0

5𝐶𝑛𝑗0
−1 + 5𝐶𝑚ℎ

−1          𝑖𝑓  ℎ ≥ 𝑗0
 

This leads easily to the claimed estimate for ‖𝑛𝑛𝑗0
−1 ∑ 𝜆𝑘𝑥𝑘

𝑛𝑗0
𝑘=1

‖. 

It turns out that in our space there are three useful types of RIS. One of these is based on an 

idea that will be familiar from other constructions, that of introducing long ℓ1-averages. We 

defer our discussion of this construction until. We shall deal first with the other two types 

of RIS, which involve the 𝐿∞ structure of our space, and provide the extra tool that we 

eventually use to solve the scalar-plus-compact problem. 

We have already remarked that the support of an element of 𝑋 is not of great interest — 

indeed the support of any nonzero element of 𝑋 is an infinite set, and contains elements 𝛾 

of Γ of all possible weights. There is, however, a related notion which is of much use. Recall 

that an element 𝑥 whose range is contained in the interval (𝑝, 𝑞] can be expressed as 𝑖𝑞(𝑢) 

where 𝑢 ∈ ℓ∞(Γ𝑞) and supp (𝑢)  ⊆ Γ𝑞\Γ𝑝. It turns out that the support of 𝑢 contains a lot 

of information about 𝑥. We shall refer to supp (𝑢) as the local support. A formal (and 

unambiguous) definition may be formulated as follows. 

Definition (3.2.23)[91]: Let 𝑥 be an element of ⊕𝑛 𝑀𝑛 and let 𝑞 = max ran 𝑥; thus 𝑥 may 

be expressed as 𝑖𝑞(𝑢) with 𝑢 =  𝑥 ↾ Γ𝑞. The subset supp 𝑢 = {𝛾 ∈ Γ𝑞: 𝑥(𝛾) ≠ 0} is defined 

to be the local support of 𝑥. 

The following easy lemma uses an idea that has already occurred in Lemma (3.2.18). 

Lemma (3.2.24)[91]: Let 𝛾 ∈ Γ be of weight mh and assume that weight (𝜉) ≠ 𝑚ℎ for all 

𝜉 in the local support of 𝑥. Then |𝑥(𝛾)| ≤ 3𝑚ℎ
−1‖𝑥‖. 

Proof. Let 𝑞 = max ran x so that 𝑥 =  𝑖𝑞(𝑥 ↾ Γ𝑞) and, by hypothesis, weight 𝜉 ≠ 𝑚ℎ  

whenever 𝜉 ∈ Γ𝑞 and 𝑥(𝜉) ≠ 0. If rank 𝛾 ≤  𝑞 we thus have 𝑥(𝛾)  =  0 and there is nothing 

to prove. Otherwise we consider the evaluation analysis of 𝛾 

𝑒𝛾
∗ =∑𝑑𝜉𝑟

∗

𝑎

𝑟=1

+𝑚ℎ
−1∑𝑏𝑟

∗ ∘ 𝑃(𝑝𝑟−1,∞)

𝑎

𝑟=1

 

and let 𝑠 be chosen maximal subject to 𝑝𝑠 = rank 𝜉𝑠 ≤  𝑞.  (Since 𝛾 =  𝜉𝑎  such an 𝑠 
certainly exists.) For 𝑟 ≥  𝑠 we have 𝑟 > max ran 𝑥, whence 𝑑𝜉𝑟

∗ (𝑥) = 0 and 𝑃 (𝑝𝑟 ,∞)𝑥 =

 0. Thus  

𝑥(𝛾) = 〈𝑒𝛾
∗, 𝑥〉 = {

𝑚ℎ
−1〈𝑏𝑠

∗, 𝑃(𝑝𝑠−1,∞)𝑥〉 + 〈𝑒𝜉𝑠−1
∗ , 𝑥〉    if   𝑠 > 1

𝑚ℎ
−1〈𝑏1

∗, 𝑥〉 = 𝑚ℎ
−1〈𝑏1

∗, 𝑃(𝑝0,∞)𝑥〉    if   𝑠 = 1.
 

Since, in the first of the above cases, we have rank 𝜉𝑠−1 < 𝑞 and weight 𝜉𝑠−1 = 𝑚ℎ, which 

imply  𝑒𝜉𝑠−1
∗ (𝑥)  =  0, we deduce that in both cases   

|𝑥(𝛾)|  = 𝑚ℎ
−1|〈𝑏𝑠

∗, 𝑃(𝑝𝑠−1,∞)𝑥〉| ≤  3𝑚ℎ
−1‖𝑥‖. 

We can now introduce two classes of block sequence, characterized by the weights of the 

elements of the local support. 

Definition (3.2.25)[91]: We shall say that a block sequence (𝑥𝑘)𝑘∈ℕ in 𝑋 has bounded local 

weight if there exists some 𝑗1 such that weight 𝛾 ≤  𝑚𝑗1 for all 𝛾 in the local support of 𝑥𝑘 

, and all values of 𝑘. We shall say that (𝑥𝑘)𝑘∈ℕ has rapidly increasing local weight if, for 
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each 𝑘 and each 𝛾 in the local support of 𝑥𝑘+1, we have weight 𝛾 >  𝑚𝑖𝑘 where 𝑖𝑘 = max 

ran 𝑥𝑘 . 

Proposition (3.2.26)[91]: Let (𝑥𝑘)𝑘∈ℕ be a bounded block sequence. If either (𝑥𝑘) has 

bounded local weight, or (𝑥𝑘) has rapidly increasing local weight, the sequence (𝑥𝑘) is a 

RIS. 

Proof. We start with the case of rapidly increasing local weight and let 𝑚𝑗𝑘 be the minimum 

weight of an element 𝛾 in the local support of 𝑥𝑘. By hypothesis, 𝑗𝑘+1 > max supp 𝑥𝑘 so 

that RIS condition (2) is satisfied. Also, if ℎ <  𝑗𝑘 and 𝛾 is of weight 𝑚ℎ then |𝑥𝑘(𝛾)|  ≤
 3𝑚ℎ

−1‖𝑥𝑘‖ by Lemma (3.2.24). So (𝑥𝑘) is a 𝐶-RIS with 𝐶 =  3 sup
𝑘
‖𝑥𝑘‖. 

Now let us suppose that weight 𝛾 ≤  𝑚𝑗1  for all 𝛾 in the local support of 𝑥𝑘  and all 𝑘.  For 

𝑘 ≥  2 define 𝑗𝑘 = 1 + max supp 𝑥𝑘−1, thus ensuring that RIS condition (2) is satisfied.  If 

weight 𝛾 =  𝑚ℎ where ℎ < 𝑗𝑘 there are two possibilities: if 𝑖 >  𝑗1 then |𝑥𝑘(𝛾)|  ≤
 3𝑚𝑖

−1‖𝑥𝑘‖ by Lemma (3.2.24); if 𝑖 ≤  𝑗1 then |𝑥𝑘(𝛾)|  ≤  ‖𝑥𝑘‖ ≤ 𝑚𝑖
−1𝑚𝑗1‖𝑥𝑘‖. Thus 

(𝑥𝑘) is a 𝐶-RIS, where 𝐶 is the (possibly quite large) constant 𝑚𝑗1
−1 sup

𝑘
‖𝑥𝑘‖.  

Proposition  (3.2.27)[91]: Let 𝑌 be any Banach space and 𝑇 ∶  𝑋(Γ)  →  𝑌 be a bounded 

linear operator. If ‖𝑇(𝑥𝑘)‖ →  0 for every 𝑅𝐼𝑆 (𝑥𝑘)𝑘∈ℕ in 𝑋(Γ) then ‖𝑇(𝑥𝑘)‖ → 0 for every 

bounded block sequence sequence in 𝑋(Γ). 
Proof. It is enough to consider a bounded block sequence (𝑥𝑘) and show that there is a 

subsequence (𝑥𝑗
′) such that ‖𝑇(𝑥𝑗

′)‖ →  0. We may write 𝑥𝑘 = 𝑖𝑞𝑘(𝑢𝑘) with 𝑢𝑘 = 𝑥𝑘 ↾ Γ𝑞𝑘 

supported by Γ𝑞𝑘\Γ𝑞𝑘−1 . For each 𝑘 and each 𝑁 ∈  ℕ, we split 𝑢𝑘 as 𝑣𝑘
𝑁 +𝑤𝑘

𝑁 , where, for 

𝛾 ∈ Γ𝑞𝑘, 

𝑣𝑘
𝑁(𝛾) = {

𝑢𝑘(𝛾)if weight 𝛾 ≤ 𝑚𝑁
0            otherwise

 

𝑤𝑘
𝑁(𝛾) = {

𝑢𝑘(𝛾)if weight 𝛾 > 𝑚𝑁
0            otherwise

 

and set       

𝑦𝑘
𝑁 = 𝑖𝑞𝑘(𝑣𝑘

𝑁), 𝑧𝑘
𝑁 = 𝑖𝑞𝑘(𝑣𝑘

𝑁). 

We notice that ‖𝑦𝑘
𝑁‖ ≤

3

2
‖𝑣𝑘

𝑁‖ ≤
3

2
‖𝑥𝑘‖, with a similar estimate for ‖𝑧𝑘

𝑁‖, so that the 

sequences (𝑦𝑘
𝑁)𝑘 and (𝑧𝑘

𝑁)𝑘 are bounded. We note also that weight 𝛾 ≤  𝑁 for all 𝛾 in the 

local support of 𝑦𝑘
𝑁 and weight 𝛾 >  𝑁 for all 𝛾 in the local support of 𝑧𝑘

𝑁  

So for each 𝑁 , the sequence (𝑦𝑘
𝑁) has bounded local weight and is thus a RIS, by 

Proposition (3.2.26). By hypothesis, ‖𝑇(𝑦𝑘
𝑁)‖ →  0 for each 𝑁. Hence we can choose a 

sequence (𝑘𝑛) tending to ∞ such that ‖𝑇(𝑦𝑘𝑛
𝑛 )‖ →  0. If we put 𝑛1 = 1 and then, 

recursively, set 𝑛𝑗+1 = 𝑞𝑘𝑛𝑗
, it is easy to see that the sequence (𝑧

𝑘𝑛𝑗

𝑛𝑗 ) has rapidly increasing 

local weight. Thus this sequence is a RIS  and we hence have ‖𝑇(𝑧
𝑘𝑛𝑗

𝑛𝑗 )‖ →  0.  Since 

𝑥𝑘𝑛𝑗
= 𝑦

𝑘𝑛𝑗

𝑛𝑗 + 𝑧
𝑘𝑛𝑗

𝑛𝑗
, we have found a subsequence  (𝑥𝑗

′)  =  (𝑥𝑘𝑛𝑗
) of (𝑥𝑘) with 

‖𝑇(𝑥𝑗
′)‖ →  0. 

The above proposition will play an important role in proving compactness of operators, but 

in the mean time we shall use it to give our promised proof that the dual of 𝑋 is ℓ1. There is 

an alternative approach using ℓ1-averages. 

Proposition (3.2.28)[91]: The dual of 𝑋(Γ) is ℓ1(Γ). 
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Proof. As we have already noted in Theorem (3.2.9) it is enough to show that the FDD (𝑀𝑛) 
is shrinking, that is to say, that every bounded block sequence in 𝑋 is weakly null. So let 𝜙 

be an element of 𝑋∗. By the upper estimate of Proposition (3.2.22) we see that 𝜙(𝑥𝑘)  → 0 

for every RIS (𝑥𝑘)𝑘∈ℕ. Now Proposition  (3.2.27), applied with 𝑇 = 𝜙, shows that 𝜙(𝑥𝑘) →
0 for every bounded block sequence (𝑥𝑘). 

We shall still only be using the assumptions (3.2.10) and (3.2.11), so that our results 

will apply when 𝑋 is either of the spaces 𝔅mT and 𝔛K. The special properties of the second 

of these spaces will come into play only from Definition (3.2.38) onwards. 

Definition (3.2.29)[91]: An element 𝑥 of 𝑋 will be called a 𝐶-ℓ1
𝑛 average if there exists a 

block sequence (𝑥𝑖)𝑘=1
𝑛  in 𝑋 such that 𝑥 = 𝑛−1∑ 𝑥𝑘

𝑛
𝑘=1   and ‖𝑥𝑘‖ ≤  𝐶 for all 𝑘. We say 

that 𝑥 is a normalized 𝐶-ℓ1
𝑛 average if, in addition, ‖𝑥‖ =  1. 

A standard argument (c.f. II.22 of [99]) using the lower estimate of Lemma (3.2.17) and 

Lemma (3.2.2) leads to the following. 

Lemma (3.2.30)[91]: Let 𝑍 be any block subspace of 𝑋. For any 𝑛 and and 𝐶 >  1, 𝑍 

contains a normalized 𝐶-ℓ1
𝑛 average. 

Proof. Write 𝐶 =  (1 − 𝜖)−1 and choose an integer 𝑙 with 𝑛(1 − 𝜖 𝑛⁄ )𝑙  <  1; next choose 

𝑗 sufficiently large as to ensure that 𝑛2𝑗 > (2𝑚2𝑗)
𝑙
 ; finally let 𝑘 be minimal subject to 

𝑚2𝑗  < (1 − 𝜖 𝑛⁄ )
−𝑘  

Since 
1

2
(1 − 𝜖 𝑛⁄ )−𝑘 ≤ (1 − 𝜖 𝑛⁄ )−𝑘+1  ≤  𝑚2𝑗  we have 

𝑛2𝑗  >  (2𝑚2𝑗)𝑙 ≥  (1 − 𝜖 𝑛⁄ )
−𝑘𝑙  >  𝑛𝑘 . 

If (𝑥𝑖) is any normalized skipped-block sequence in 𝑍, we can apply Lemma (3.2.17) to see 

that 

‖∑𝑥𝑖

𝑛

𝑖=1

‖ ≥  𝑚2𝑗
−1𝑛𝑘 > (𝑛 −  𝜖)𝑘 . 

It now follows from Lemma (3.2.2) that there are normalized successive linear combinations 

𝑦1, . . . , 𝑦𝑛 of (𝑥𝑖) such that 

‖∑𝑎𝑖𝑦𝑖

𝑛

𝑖=1

‖ ≥  (1 −  𝜖)∑|𝑎𝑖|

𝑛

𝑖=1

, 

for all real 𝑎𝑖. In particular, there is a normalized 𝐶-ℓ1
𝑛  average.    

Lemma (3.2.31)[91]: Let 𝑥 be a 𝐶-ℓ1
𝑛𝑗

 average.  For all 𝛾 ∈ Γ  we have |〈𝑑𝛾
∗ , 𝑥〉| ≤ 3𝐶𝑛𝑗

−1.  

If 𝛾 is of weight 𝑚𝑖 with 𝑖 <  𝑗 and 𝑝 ∈ ℕ then |𝑥(𝛾)|  ≤  2𝐶𝑚𝑖
−1.  

Proof. Let = 𝑛𝑗
−1∑ 𝑥𝑘

𝑛𝑗
𝑘=1

 , as in the definition of a 𝐶-ℓ1
𝑛 average. For any 𝛾 there is some 

𝑘 such that 〈𝑑𝛾
∗ , 𝑥〉 = 𝑛𝑗

−1〈𝑑𝛾
∗ , 𝑥𝑘〉. Thus     

|〈𝑑𝛾
∗ , 𝑥〉| ≤ 𝑛𝑗

−1‖𝑑𝛾
∗‖‖𝑥𝑘‖ ≤ 3𝐶𝑛𝑗

−1. 

Let us now consider the case where weight 𝛾 =  𝑚𝑖, with 𝑖 <  𝑗. From the evaluation 

analysis 

𝑒𝛾
∗ =∑𝑑𝜉𝑟

∗

𝑎

𝑟=1

+𝑚𝑖
−1∑𝑏𝑟

∗

𝑎

𝑟=1

∘ 𝑃(𝑝𝑟−1,∞), 

it follows that       

 |𝑥(𝛾)| ≤∑|〈𝑑𝜉𝑟
∗ , 𝑥〉|

𝑎

𝑟=1

+𝑚𝑖
−1∑‖𝑃(𝑝𝑟−1,𝑝𝑟)𝑥‖

𝑎

𝑟=1

.                            (7) 
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By what we have already observed, we have    

∑|〈𝑑𝜉𝑟
∗ , 𝑥〉|

𝑎

𝑟=1

≤ 3𝐶𝑎𝑛𝑗
−1                                                   (8) 

To estimate the second term in (7) we follow the argument of page 33 of [99], letting 𝐼𝑟 
(resp. 𝐽𝑟) be the set of 𝑘 such that ran 𝑥𝑘 is contained in (resp. meets) the interval (𝑝𝑟−1, 𝑝𝑟). 
We have #𝐽𝑟 ≤ #𝐼𝑟 + 2 and Σ𝑟#𝐼𝑟  ≤  𝑛𝑗 . Moreover, for each 𝑟, we have 𝑃(𝑝𝑟−1 ,𝑝𝑟)𝑥𝑘 =

𝑥𝑘 if 𝑘 ∈  𝐼𝑟, while 𝑃(𝑝𝑟−1, 𝑝𝑟)𝑥𝑘 = 0 if 𝑘 ∉ 𝐽𝑟  and 

‖𝑃(𝑝𝑟−1 ,𝑝𝑟)𝑥𝑘‖ ≤ 4‖𝑥𝑘‖ ≤ 4𝐶      if   𝑘 ∈ 𝐽𝑟\𝐼𝑟 . 

It follows that  

‖𝑃(𝑝𝑟−1 ,𝑝𝑟)𝑥𝑘‖ ≤  𝑛𝑗
−1(𝐶#𝐼 𝑟 + 8𝐶)) ≤ 𝐶𝑛𝑗

−1(#𝐼𝑟 + 8). 

Summing over 𝑟 leads us to 

   ∑‖𝑃(𝑝𝑟−1 ,𝑝𝑟)𝑥𝑘‖ ≤

𝑟≤𝑎

𝐶𝑛𝑗
−1(𝑛𝑗 + 8𝑎).                        (9) 

Combining our inequalities, and using the fact that 𝑎 ≤  𝑛𝑖  we obtain 

|𝑥(𝛾)| ≤  3𝐶𝑎𝑛𝑗
−1 +𝑚𝑖

−1𝑛𝑗
−1(𝐶𝑛𝑗 + 8𝐶𝑎) ≤ 𝐶𝑚𝑖

−1 + 5𝐶𝑛𝑖𝑛𝑗
−1 < 2𝐶𝑚𝑖

−1. 

Lemma (3.2.32)[91]: Let 𝐼 be an interval in ℕ, et (𝑥𝑘)𝑘∈𝐼 be a block sequence in 𝑋 and let 

(𝑗𝑘)𝑘≥1 be an increasing sequence of natural numbers. Suppose that, for each 𝑘, 𝑥𝑘 is a 𝐶-

ℓ1
𝑛𝑗𝑘  -average and that 𝑗𝑘+1 > max ran 𝑥𝑘. Then (𝑥𝑘) is a 2𝐶-𝑅𝐼𝑆. 

Corollary (3.2.33)[91]: Let 𝑍 be a block subspace of 𝑋, and let 𝐶 >  2 be a real number. 

Then 𝑋 contains a normalized 𝐶-𝑅𝐼𝑆. 

Definition (3.2.34)[91]: Let 𝐶 >  0 and let 𝜀 ∈  {0, 1}. A pair (𝑥, 𝛾)  ∈  𝑋 × Γ is said to be 

a (𝐶, 𝑗, 𝜀)-exact pair if 

(i) |〈𝑑𝜉
∗ , 𝑥〉| ≤ 𝐶𝑚𝑗

−1 for all 𝜉 ∈ Γ; 

(ii) weight 𝛾 =  𝑚𝑗 , ‖𝑥‖ ≤ 𝐶, 𝑥(𝛾)  =  𝜀; 

(iii) for every element 𝛾′ of Γ with weight 𝛾′ = 𝑚𝑖 ≠ 𝑚𝑗 , we have 

|𝑥(𝛾′)|  ≤ {
𝐶𝑚𝑖

−1  if   𝑖 <  𝑗

(𝐶𝑚𝑗
−1  if 𝑖 >  𝑗.

 

It will be seen that these estimates, as well as those in the definition, have much in common 

with those of Lemma (3.2.18). We show how we can construct (𝐶, 2𝑗, 1)-exact pairs, starting 

from a RIS. 

Lemma (3.2.35)[91]: Let 𝑗 be a positive integer and let (𝑥𝑘)𝑘=1
𝑛2𝑗

 be a skipped-block 𝐶-𝑅𝐼𝑆, 

such that min ran 𝑥2 ≥ 2𝑗 and ‖𝑥𝑘‖ ≥ 1 for all 𝑘. Then there exists 𝜃 ∈  ℝ, with |𝜃|  ≤  2, 

and there exists 𝛾 ∈ Γ, such that (𝑥, 𝛾) is a (22𝐶, 2𝑗, 1)-exact pair, where 𝑥 is the weighted 

sum 

𝑥 = 𝜃𝑚2𝑗𝑛2𝑗
−1∑𝑥𝑘

𝑛2𝑗

𝑘=1

 . 

Proof. We may apply the construction of Lemma (3.2.17) to obtain an element 𝛾 of Γ of 

weight 𝑚2𝑗 such that 

𝑛2𝑗
−1∑𝑥𝑘(𝛾)

𝑛2𝑗

𝑘=1

≥
1

2
𝑚2𝑗
−1. 
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For a suitably chosen 𝜃 ∈ ℝ with 0 <  𝜃 ≤  2 we have 𝑥(𝛾)  =  1, where 𝑥 =

𝜃𝑚2𝑗𝑛2𝑗
−1 ∑ 𝑥𝑘

𝑛2𝑗
𝑘=1

 . 

We thus have condition (ii) in the definition of an exact pair. 

There is no problem establishing condition (i) since, for any 𝜉, there is some 𝑘 satisfying 

〈𝑑𝜉
∗ , 𝑥〉 = 𝜃𝑚2𝑗𝑛2𝑗

−1〈𝑑𝜉
∗ , 𝑥𝑘〉. By RIS condition (i), ‖𝑥𝑘‖ ≤  𝐶 and we know that ‖𝑑𝜉

∗‖ ≤  3. 

Hence |〈𝑑𝜉
∗ , 𝑥𝑘〉| ≤ 6𝐶𝑚2𝑗𝑛2𝑗

−1 < 𝐶𝑚2𝑗
−1. 

To establish condition (3), we shall use the fact that (𝑥𝑘) is a 𝐶-RIS and apply Proposition 

(3.2.22), with 𝑗0  =  2𝑗. If weight 𝛾′ =  𝑚𝑖 with 𝑖 ≠ 2𝑗, we thus have 

|𝑥(𝛾)| = |𝜃|𝑚2𝑗𝑛2𝑗
−1∑𝑥𝑘(𝛾

′)

𝑛2𝑗

𝑘=0

≤ {
22𝐶𝑚𝑖

−1   if 𝑖 <  2𝑗

10𝐶𝑚2𝑗𝑛2𝑗
−1 + 10𝐶𝑚2𝑗𝑚𝑖

−1 < 11𝐶𝑚2𝑗
1   𝑖𝑓 𝑖 >  2𝑗.

 

Using Lemma (3.2.33) we now immediately obtain the following. 

Lemma (3.2.36)[91]: If 𝑍 is a block subspace of 𝑋 then for every 𝑗 ∈  ℕ there exists a 

(45, 2𝑗, 1)-exact pair (𝑥, 𝜂) with 𝑥 ∈  𝑍. 

The proof of the following lemma, is very similar.  

Lemma (3.2.37)[91]: Let (𝑥𝑘)𝑘=1
𝑛2𝑗

 be a skipped-block 𝐶-𝑅𝐼𝑆, and let 𝑞0 < 𝑞1 < 𝑄2 < ⋯ <

𝑞𝑛2𝑗 be natural numbers such that ran 𝑥𝑘  ⊆ (𝑞𝑘−1, 𝑞𝑘) for all 𝑘. Let 𝑧 denote the weighted 

sum 𝑥 = 𝑚2𝑗𝑛2𝑗
−1 ∑ 𝑥𝑘

𝑛2𝑗
𝑘=1

.  For each 𝑘 let 𝑏𝑘
∗  be an element of 𝐵𝑞𝑘−1,𝑞𝑘−1  with 𝑏𝑘(𝑥𝑘) =

 0.  Then there exist 𝜁𝑖 ∈ ∆𝑞𝑖(1 ≤  𝑖 ≤ 𝑛2𝑗) such that the element 𝜂 =  𝜁𝑛2𝑗 has analysis 

(𝑞𝑖 , 𝑏𝑖
∗, 𝜁𝑖)1≤𝑖≤𝑛2𝑗  and (𝑧, 𝜂) (12𝐶, 𝑛2𝑗 , 0)-exact pair. 

We are finally ready to make use of the special conditions governing “odd-weight” elements 

of Γ. We need to consider a special type of rapidly increasing sequence whose members 

belong to exact pairs. 

Definition (3.2.38)[91]: Consider the space 𝔛K = 𝑋(Γ) where Γ = ΓK as defined in (3.2.13). 

We shall say that a sequence (𝑥𝑖)𝑖≤𝑛2𝑗0−1 is a (𝐶, 2𝑗0 − 1, 𝜀)-dependent sequence if there 

exist 0 =  𝑝0  <  𝑝1  <  𝑝2  < ⋯ <  𝑝𝑛2𝑗−1, together with 𝜂𝑖  ∈ Γ𝑝𝑖−1 \Γ𝑝𝑖−1 and 𝜉𝑖 ∈

∆𝑝𝑖  (1 ≤  𝑖 ≤  𝑛2𝑗0−1) such that 

(i) for each 𝑘, ran 𝑥𝑘 ⊆ (𝑝𝑘−1, 𝑝𝑘); 

(ii) the element 𝜉 =  𝜉2𝑗0−1 of  ∆𝑝2𝑗0−1  has weight 𝑚2𝑗0−1 and analysis (𝑝𝑖 , 𝑒𝜂𝑖
∗ , 𝜉𝑖)𝑖=1

2𝑛𝑗0−1 

(iii) (𝑥1, 𝜂1) is a (𝐶, 4𝑗1 − 2, 𝜀)-exact pair; 

(iv) for each 2 ≤  𝑖 ≤  𝑛2𝑗−1, (𝑥𝑖 , 𝜂𝑖) is a (𝐶, 4𝑗𝑖  , 𝜀)-exact pair, with ran 𝑥𝑖 ⊆ (𝑝𝑖−1, 𝑝𝑖). 

We notice that, because of the special odd-weight conditions in (3.2.13), we necessarily 

have 𝑚4𝑗1−2 = weight 𝜂1 > 𝑛2𝑗0−1
2 , and weight 𝜂𝑖+1 = 𝑚4𝑗𝑖+1, where 𝑗𝑖+1 = 𝜎(𝜉𝑖) for 1 ≤

 𝑖 <  𝑛2𝑗0−1. 

Lemma (3.2.39)[91]: 𝐴(𝐶, 2𝑗0 − 1, 𝜀)-dependent sequence in 𝔛K is a 𝐶-𝑅𝐼𝑆. 

Lemma (3.2.40)[91]: Let (𝑥𝑖)𝑖≤𝑛2𝑗0−1  be a (𝐶, 2𝑗0 −  1, 1)-dependent sequence in 𝔛K and 

let 𝐽 be a sub-interval of [1, 𝑛2𝑗0−1]. For any 𝛾′ ∈ Γ  of weight 𝑚2𝑗0−1  we have  

|∑(−1)𝑖𝑥𝑖(𝛾
′)

𝑖∈𝐼

|  ≤  4𝐶. 

Proof. Let 𝜉𝑖 , 𝜂𝑖 , 𝑝𝑖 , 𝑗𝑖   be as in the definition of a dependent sequence and let 𝛾 denote 

𝜉2𝑗0−1, an element of weight 𝑚4𝑗0−1. Let (𝑝𝑖
′, 𝑒

𝜂𝑖
′
∗ , 𝜉𝑖

′) 1≤𝑖≤𝑎′ be the analysis of 𝛾′ and let 
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the weight of 𝜉𝑖
′ be 𝑚4𝑗1′−2 when 𝑖 =  1,𝑚4𝑗𝑖

′ when 1 <  𝑖 ≤  𝑎′. We note that 𝑎′ ≤ 𝑛2𝑗0−1  

because 𝛾′ is of weight 𝑚2𝑗0−1.  We may thus apply the tree-like property of Lemma (3.2.14) 

deducing that there exists 1 ≤  𝑙 ≤  𝑎′ such that (𝑝𝑖
′, 𝜂𝑖

′, 𝜉𝑖
′) = (𝑝𝑖 , 𝜂𝑖 , 𝜉𝑖) for 𝑖 <  𝑙 while 

𝑗𝑘 ≠ 𝑗𝑖
′ for all 𝑙 <  𝑖 ≤  𝑎′ and all 1 ≤  𝑘 ≤  𝑛2𝑗0−1. Since 

𝑒𝛾
∗ ∘ 𝑃(0,𝑝𝑙−1] = 𝑒𝜉𝑙−1

∗ = 𝑒𝜉𝑙−1
∗ = 𝑒𝛾

∗ ∘ 𝑃(0,𝑝𝑙), 

we have            

𝑥𝑘(𝛾
′) = 𝑥𝑘(𝛾) =  𝑚2𝑗0−1

−1 𝑒𝜂𝑘
∗ ∘ 𝑃(𝑝𝑘−1,∞)𝑥𝑘 = 𝑚2𝑗0−1

−1 𝑥𝑘(𝜂𝑘) = 𝑚2𝑗0−1
−1 , 

for 1 ≤  𝑘 <  𝑙.         

We may now estimate as follows 

|∑(−1)𝑘𝑥𝑘(𝛾
′)

𝑘∈𝐼

| ≤ | ∑ 𝑚2𝑗0−1
−1 (−1)𝑘𝑥𝑘(𝛾

′)

𝑘∈𝐽,𝑘<𝑙

| + |𝑥𝑙(𝛾
′)| + | ∑ 𝑥𝑖(𝛾

′)

𝑘∈𝐽,𝑘>𝑙

| 

≤ 𝑚2𝑗0−1
−1 | ∑ (−1)𝑘

𝑘∈𝐼,𝑘<𝑙

| + ‖𝑥𝑙‖ + ∑ ∑ |𝑑𝜉𝑖
∗ 𝑚2𝑗0−1

−1 𝑒
𝜂𝑖
′
∗ ∘ 𝑃(𝑝𝑖−1

′ ,∞)𝑥𝑘|

𝑖≤𝑎′𝑘∈𝐽,𝑘<𝑙

 

≤ 1 + 𝐶 + 𝑛2𝑗0−1
2 max

𝑙<𝑘∈𝐽,𝑖≤𝑎′
|𝑑𝜉𝑖
∗ 𝑥𝑘 +𝑚2𝑗0−1

−1 𝑒
𝜂𝑖
′
∗ ∘ 𝑃(𝑝𝑖−1

′ ,∞)𝑥𝑘|. 

Now we know that, provided 𝑘 >  𝑙, weight 𝜂𝑘
′ ≠ weight 𝜂𝑖 for all 𝑖, so by the definition of 

an exact pair, we have 

|𝑑
𝜉𝑘
′
∗ (𝑥𝑖) + 𝑚2𝑗0−1

−1 𝑃(𝑝𝑘−1,∞]𝑥𝑖(𝜂𝑘
′ )|

≤ 𝐶(weight 𝜂𝑖)
−1 + 5𝐶𝑚2𝑗0−1

−1 max{(weight 𝜂𝑘
′ )−1, (weight 𝜂𝑖)

−1} 

≤ 2𝐶 max{(weight 𝜂1)
−1, (weight 𝜂1

′ )−1} 

=  2𝐶 max {𝑚4𝑗1−2
−1 , 𝑚4𝑗1′−2

−1 } ≤ 2𝐶𝑛2𝑗0−1
−2 , 

using the fact that 𝑚4𝑗1−2 and 𝑚4𝑗1′−2 are both at least 𝑛2𝑗0−1
2 . We now deduce the inequality 

|∑ (−1)𝑖𝑥𝑖(𝛾
′)𝑖∈𝐽 |  ≤  4𝐶 as required.     

Let (𝑥𝑖)𝑖≤𝑛2𝑗−1  be a (𝐶, 2𝑗0 − 1, 1)-dependent sequence in 𝔛K. Then  

Lemma (3.2.41)[91]: 

‖𝑛2𝑗0−1
−1 ∑ 𝑥𝑖

𝑛2𝑗0−1

𝑖=1

‖ ≥ 𝑚2𝑗0−1
−1    𝑏𝑢𝑡  ‖𝑛2𝑗0−1

−1 ∑ (−1)𝑖𝑥𝑖

𝑛2𝑗0−1

𝑖=1

‖ ≤  12𝐶 𝑚2𝑗0−1
−2 . 

Proof. Using the notation of Definition (3.2.38) is easy to show by induction on 𝑎, as in 

Lemma (3.2.17), that 

∑𝑥𝑖(𝜉𝑎)

𝑎

𝑖=1

= 𝑚2𝑗0−1
−1 𝑎, 

whence we immediately obtain        

‖𝑛2𝑗0−1
−1 ∑ 𝑥𝑖

𝑛2𝑗0−1

𝑖=1

‖ ≥∑𝑥𝑖(𝜉2𝑗0−1) ≥

𝑎

𝑖=1

𝑚2𝑗0−1
−1 . 

To estimate ‖𝑛2𝑗0−1
−1 ∑ (−1)𝑥𝑖

𝑛2𝑗0−1
𝑖=1

‖ we consider any 𝛾 ∈ Γ  and apply the second part of 

Lemma (3.2.22), with 𝜆𝑖 = (−1)
𝑛𝑛2𝑗0−1
−1  and with 2𝑗0 −  1 playing the role of 𝑗0. Lemma 

(3.2.40) shows that the extra hypothesis of the second part of Lemma (3.2.22) is indeed 

satisfied, provided we replace 𝐶 by 2𝐶. We deduce that ‖𝑛2𝑗0−1
−1 ∑ (−1)𝑖𝑥𝑖

𝑛2𝑗0−1
𝑖=1

‖ ≤

 12𝐶𝑚2𝑗0−1
−2 , as claimed.   
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A very similar proof yields the following estimate. 

Lemma (3.2.42)[91]: Let (𝑥𝑖)𝑖≤𝑛2𝑗−1  be a (𝐶, 2𝑗0 −  1, 0)-dependent sequence in 𝔛K. Then 

‖𝑛2𝑗0−1
−1 ∑ 𝑥𝑖

𝑛2𝑗0−1

𝑖=1

‖ ≤ 4𝐶𝑚2𝑗0−1
−2  

We finish the proof of one of our main theorems. 

Lemma (3.2.43)[91]: Let 𝑌 and 𝑍 be block subspaces of 𝔛K. Then, for each 𝜖 >  0, there 

exist 𝑦 ∈  𝑌 and 𝑧 ∈  𝑍 with ‖𝑦 −  𝑧‖ < 𝜖‖𝑦 +  𝑧‖. 

Proof. We start by choosing 𝑗0, 𝑗1 with 𝑚2𝑗0−1 > 540𝜖
−1 and 𝑚4𝑗1−2 > 𝑛2𝑗0−1

2 . 

Next we use Lemma (3.2.36) to choose a (45,𝑚4𝑗1−2, 1)-exact pair (𝑥1, 𝜂1) with 𝑥1 ∈  𝑌.  

Now, for some 𝑝1  > rank 𝜂1 ∨ max ran 𝑥1, we define 𝜉1 ∈ ∆𝑝1  to be (𝑝1, 𝑚2𝑗0−1, 𝑒𝜂1
∗  ). 

We now set 𝑗2 = 𝜎(𝜉1) and choose a (45,𝑚4𝑗2 , 1)-exact pair (𝑥2, 𝜂2) with 𝑥2 ∈ 𝑍  and min 

ran 𝑥2 > 𝑝1. We pick 𝑝2  > rank 𝜂2 ∨ max ran 𝑥2 and take 𝜉2 to be the element 

(𝑝2, 𝜉1, 𝑚2𝑗0−1𝑒𝜂2
∗ ) of ∆𝑝2. Notice that this tuple is indeed in ∆𝑞2+1 because we have ensured 

that weight 𝜂2 = 𝑚4𝜎(𝜉1). 

Continuing in this way, we obtain a (45, 2𝑗0  −  1)-dependent sequence (𝑥𝑖) such that 𝑥𝑖 ∈
𝑌 when 𝑖 is odd and 𝑥𝑖 ∈ 𝑍 when i is even. We define 𝑦 =  ∑ 𝑥𝑖𝑖 odd  and 𝑧 = ∑ 𝑥𝑖𝑖 even , 

and observe that, by Lemma (3.2.38), 

‖𝑦 + 𝑧‖ = ‖ ∑ 𝑥𝑖

𝑛2𝑗0−1

𝑖=1

‖ ≥ 𝑛2𝑗0−1𝑚2𝑗0−1
−1 , while 

‖𝑦 − 𝑧‖ = ‖ ∑ (−1)𝑖𝑥𝑖

𝑛2𝑗0−1

𝑖=1

‖ ≤ 12 × 45𝑛2𝑗0−1𝑚2𝑗0−1
−2 . 

Proposition (3.2.1) now yields the theorem. 

Theorem (3.2.44)[91]: The space 𝔛K  is hereditarily indecomposable. 

For technical reasons it will be convenient in the first few results to work with 

elements of 𝔛K all of whose coordinates are rational, that is to say with elements of 𝔛K  ∩
 ℚΓ . Since (as may be readily checked) each 𝑑𝜉 is in 𝔛K  ∩  ℚ

Γ, as are all rational linear 

combinations of these, we see that 𝔛K  ∩  ℚ
Γ is dense in 𝔛K. 

Lemma (3.2.45)[91]: Let 𝑚 <  𝑛 be natural numbers and let 𝑥 ∈ 𝔛K  ∩  ℚ
Γ, 𝑦 ∈  𝔛K be 

such that ran 𝑥, ran 𝑦 are both contained in the interval (𝑚, 𝑛]. Suppose that dist(𝑦,ℝ𝑥)  >
 𝛿. Then there exists 𝑏∗  ∈ ball ℓ1(Γ𝑛 \Γ𝑚), with rational coordinates, such that 𝑏∗(𝑥)  =  0 

and 𝑏∗(𝑦) >
1

2
𝛿. 

Proof. Let 𝑢, 𝑣 ∈ ℓ∞(Γ𝑛\Γ𝑚) be the restrictions of 𝑥, 𝑦 respectively. Then 𝑥 = 𝑖𝑛𝑢, 𝑦 =

 𝑖𝑛𝑣 and so, for any scalar 𝜆, ‖𝑦 − 𝜆𝑥‖ ≤ ‖𝑖𝑛‖‖𝑣 − 𝜆𝑢‖. Hence dist(𝑣, ℝ𝑢) >
1

2
𝛿 and so, 

by the Hahn– Banach Theorem in the finite dimensional space ℓ∞(Γ𝑛\Γ𝑚), there exists 𝑎∗  ∈ 

ball ℓ1(Γ𝑛\Γ𝑚) with 𝑎∗(𝑢)  =  0 and 𝑎∗(𝑣) >
1

2
𝛿. Since 𝑥 has rational coordinates our 

vector 𝑢 is in ℚΓ𝑛\Γ𝑚. It follows that we can approximate 𝑎∗ arbitrarily well with 𝑏∗  ∈
ℚΓ𝑛\Γ𝑚   retaining the condition 𝑏∗(𝑢)  =  0. 

Lemma (3.2.46)[91]: Let 𝑇 be a bounded linear operator on 𝔛K, let (𝑥𝑖) be a 𝐶-𝑅𝐼𝑆 in 𝔛K ∩
ℚ and assume that dist(𝑇𝑥𝑖 , ℝ𝑥𝑖)  >  𝛿 >  0 for all 𝑖. Then, for all 𝑗, 𝑝 ∈  ℕ, there exist 

𝑧 ∈  [𝑥𝑖 ∶  𝑖 ∈  ℕ], 𝑞 >  𝑝 and 𝜂 ∈ ∆𝑞 such that 
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(i) (𝑧, 𝜂) is a (12𝐶, 2𝑗, 0)-exact pair; 

(ii) (𝑇 𝑧)(𝜂) >
7

16
 𝛿; 

(iii) ‖(𝐼 − 𝑃(𝑝,𝑞))𝑇𝑧‖ < 𝑚2𝑗
−1𝛿; 

(iv) 〈𝑃(𝑝,𝑞]
∗ 𝑒𝜂

∗ , 𝑇𝑧〉 >
3

8
𝛿. 

Proof. Since the sequence (𝑇𝑥𝑖) is weakly null, we may, by taking a subsequence if 

necessary, assume that there exist 𝑝 <  𝑞0  <  𝑞1  <  𝑞2  < ⋯ such that, for all 𝑖 ≥  1, ran 

𝑥𝑖 ⊆ (𝑞𝑖−1, 𝑞𝑖) and ‖(𝐼 − 𝑃(𝑞𝑖−1,𝑞𝑖))𝑇𝑥𝑖‖ <
1

5
𝑚2𝑗
−2𝛿 ≤

1

80
𝑚2𝑗
−1 ≤

1

1280
𝛿. It certainly follows 

from this that dist(𝑃(𝑞𝑖−1,𝑞𝑖)𝑇𝑥𝑖 , ℝ𝑥𝑖) >
1279

1280
𝛿. We may apply Lemma (3.2.45) to obtain 

𝑏𝑖
∗ ∈ ball ℓ1(Γ𝑞𝑖−1\Γ𝑞𝑖−1), with rational coordinates, satisfying 

〈𝑏𝑖
∗, 𝑥𝑖〉 = 0, 〈𝑏𝑖

∗, 𝑃(𝑞𝑖−1,𝑞𝑖)𝑇𝑥𝑖〉 >
1279

2560
𝛿. 

Taking a further subsequence if necessary, we may assume that the coordinates of 𝑏𝑖
∗ have 

denominators dividing 𝑁𝑞𝑖−1!, so that 𝑏𝑖
∗ ∈ 𝐵𝑞𝑖−1,𝑞𝑖−1, and we may also assume that 𝑞1 ≥

 2𝑗. 
We are thus in  a position to apply Lemma (3.2.37), getting elements 𝜉𝑖 of weight 𝑚2𝑗 in 

∆𝑞𝑗 such that the element 𝜂 =  𝜉𝑛2𝑗 of ∆𝑞𝑛2𝑗
 has evaluation analysis 

𝑒𝜂
∗ =∑𝑑𝜉𝑖

∗

𝑛2𝑗

𝑖=1

+𝑚2𝑗
−1∑𝑃(𝑞𝑖−1,𝑞𝑖)

∗ 𝑏𝑖
∗

𝑛2𝑗

𝑖=1

. 

and such that (𝑥, 𝜂) is a (12𝐶, 2𝑗, 0)-exact pair, where 𝑧 denotes the weighted average 

   

𝑥 = 𝑚2𝑗𝑚2𝑗
−1∑𝑥𝑖

𝑛2𝑗

𝑖=1

. 

We next need to estimate (𝑇𝑧)(𝜂).  For each 𝑘, we have ‖(𝐼 − 𝑃(𝑞𝑘−1,𝑞𝑘))𝑇 𝑥𝑘‖ <
1

80
𝑚2𝑗
−1𝛿 

so that       

(𝑇𝑥𝑘)(𝜂)  ≥ 〈𝑒𝜂
∗ , 𝑃(𝑞𝑘−1,𝑞𝑘)𝑇𝑥𝑘〉 −

1

80
𝑚2𝑗
−1𝛿 

= 𝑚2𝑗
−1〈𝑏𝑘

∗ , 𝑃(𝑙𝑘−1,𝑙𝑘)𝑇𝑥𝑘〉 −
1

80
𝑚2𝑗
−1𝛿 >

1247

2560
𝑚2𝑗
−1𝛿. 

It follows that 

(𝑇𝑧)(𝜂) = 𝑛2𝑗
−1𝑚2𝑗∑(𝑇𝑥𝑘)(𝜂)

𝑛2𝑗

𝑘=1

>
7

16
𝛿. 

For inequality (3) in which we are taking 𝑞 = 𝑞𝑛2𝑗, we note that 𝑝 < 𝑞𝑘−1 < 𝑞𝑘 ≤ 𝑞 for all 

𝑘 so that 

‖(𝐼 − 𝑃(𝑝,𝑞])𝑇𝑥𝑘‖ = ‖(𝑃(0,𝑝] + 𝑃(𝑞,∞))𝑇𝑥𝑘‖ 

= ‖(𝑃(0,𝑝] + 𝑃(𝑞,∞))(𝐼 − 𝑃(𝑞𝑘−1,𝑞𝑘))𝑇𝑥𝑘‖ 

≤ 5‖(𝐼 − 𝑃(𝑞𝑘−1,𝑞𝑘))𝑇𝑥𝑘‖ < 𝑚2𝑗
−2𝛿, 

using our usual estimates for norms of FDD projections. The inequality for the weighted 

average 𝑧 follows at once. Inequality (iv) follows from (ii) and (iii) thus 
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〈𝑃(𝑝,𝑞]
∗ 𝑒𝜂

∗ , 𝑇𝑧〉 ≥ (𝑇𝑧)(𝜂) = ‖(𝐼 − 𝑃(𝑝,𝑞])𝑇𝑧‖ >
7

16
𝛿 − 𝑚2𝑗

−1𝛿 ≥
3

16
𝛿. 

Proposition (3.2.47)[91]: Let 𝑇 be a bounded linear operator on 𝔛K and let (𝑥𝑖)𝑖∈ℕ  be a 

𝑅𝐼𝑆 in 𝔛K. 

Then dist(𝑇𝑥𝑖 , ℝ𝑥𝑖) →  0 as 𝑖 →  ∞. 

Proof. It will be enough to prove the result for a 𝑅𝐼𝑆 in 𝔛K ∩ℚ
Γ . Suppose, if possible, that 

dist(𝑇𝑥𝑖 , ℝ𝑥𝑖)  >  𝛿 >  0 for all 𝑖. The idea is to obtain a dependent sequence in rather the 

same way as we did in Lemma (3.2.43), except that this time it will be a 0-dependent 

sequence, rather than a 1-dependent sequence. 

We start by choosing 𝑗0 such that 𝑚2𝑗0
−1  >  256𝐶‖𝑇‖𝛿−1  and 𝑗1 such that 𝑚4𝑗1−1 > 𝑚2𝑗0−1

2  

Taking 𝑝 =  𝑝0  =  0 and 𝑗 =  2𝑗1  − 1 in Lemma (3.2.46) we can find 𝑞1 and a 

(12𝐶, 4𝑗1  − 2, 0)-exact pair (𝑧1, 𝜂1) with rank 𝜂1 = 𝑞1, (𝑇𝑧1)(𝜂1) >
3

8
𝛿 and ‖(𝐼 −

𝑃(0,𝑞1])(𝑇𝑧1)‖ < 𝑚4𝑗1−2
−1 𝛿. Let 𝑝1 = 𝑞1 + 1 and let 𝜉1 be the special Type 1 element of ∆𝑝1 

given by 𝜉1 = (𝑝1, 𝑚2𝑗0−1, 𝑒𝜂1
∗ ).  

Now, recursively for 2 ≤ 𝑖 ≤ 𝑛2𝑗0−1, define 𝑗𝑖 = 𝜎(𝜉𝑖−1), and use the lemma again to 

choose 𝑞𝑖 and a (12𝐶, 4𝑗𝑖 , 0)-exact pair (𝑧𝑖 , 𝜂𝑖) with rank 𝜂𝑖 = 𝑞𝑖, ran 𝑧𝑖 ⊆

(𝑝𝑖−1, 𝑞𝑖], 〈𝑃(𝑝𝑖−1,𝑞𝑖]
∗ 𝑒𝜂𝑖

∗ , 𝑇𝑧1〉 >
3

8
𝛿 and ‖(𝐼 − 𝑃(𝑝𝑖,𝑞𝑖])(𝑇𝑧𝑖)‖ < 𝑚4𝑗𝑖

−1𝛿. We now define 𝑝𝑖 =

𝑞𝑖 + 1 and let 𝜉𝑖 to be the Type 2 element (𝑝𝑖 , 𝜉𝑖−1, 𝑚2𝑗0−1
−1 , 𝑒𝜂𝑖

∗ ) of ∆𝑝𝑖 .   

It is clear that we have constructed a (12𝐶, 2𝑗0  −  1, 0)-dependent sequence (𝑧𝑖)1≤𝑖≤𝑛2𝑗0−1. 

By the estimate of Lemma (3.2.42) we have 

‖𝑧‖ ≤ 48𝐶𝑚2𝑗0−1
−2  

for the average         

𝑧 = 𝑛2𝑗0−1
−1 ∑ 𝑧𝑖

𝑛2𝑗0−1

𝑖=1

. 

However, let us consider the element 𝛾 =  𝜉𝑛2𝑗0−1
−1  of ∆𝑝𝑛2𝑗0−1

, which has evaluation analysis

  

𝑒𝛾
∗ = ∑ 𝑑𝜉𝑖

∗

𝑛2𝑗0−1

𝑖=1

+𝑚2𝑗0−1
−1 ∑ 𝑃(𝑝𝑖−1,𝑝𝑖)𝑒𝜂𝑖

∗
∗

𝑛2𝑗0−1

𝑖=1

. 

Noting that 𝑝𝑘 = 𝑞𝑞 + 1 for 𝑘 ≥  1, and that 𝑚4𝑗𝑖 > 𝑚4𝑗1−2 > 𝑛2𝑗0−1
2 , we may estimate 

(𝑇𝑧)(𝛾) as follows 

 (𝑇𝑧)(𝛾) = 𝑛2𝑗0−1
−1 ∑ (𝑇𝑧𝑘)(𝛾)

𝑛2𝑗0−1

𝑘=1

 

≥ 𝑛2𝑗0−1
−1 ∑ (〈𝑃(𝑝𝑘−1,𝑝𝑘)

∗ 𝑒𝛾
∗, 𝑇𝑧𝑘〉 − ‖(𝐼 − 𝑃(𝑝𝑘−1,𝑞𝑘))(𝑇𝑥𝑘)‖)

𝑛2𝑗0−1

𝑘=1

 

≥ 𝑛2𝑗0−1
−1 ∑ (𝑚2𝑗0−1

−1 〈𝑃(𝑝𝑘−1,𝑝𝑘)
∗ 𝑒𝜂𝑘

∗ , 𝑇𝑥𝑘〉 − 𝑚4𝑗1−2
−1 𝛿)

𝑛2𝑗0−1

𝑘=1
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≥ 𝛿𝑛2𝑗0−1
−1 ∑ (

3

8
𝑚2𝑗0−1
−1 − 5𝑛2𝑗0−1

−2 )

𝑛2𝑗0−1

𝑘=1

>
1

4
𝑚2𝑗0−1
−1 𝛿. 

So 

‖𝑇𝑧‖ ≥
1

4
𝑚2𝑗0−1
−1 >

1

144
𝐶−1𝛿𝑚2𝑗0−1‖𝑧‖ 

which is a contradiction because 
1

144
𝐶−1𝛿𝑚2𝑗0−1 > ‖𝑇‖ by our original choice of 𝑗0. 

  

Theorem (3.2.48)[91]: Let 𝑇 be a bounded linear operator on 𝔛K. Then there exists a scalar 

𝜆 such that 𝑇 −  𝜆𝐼 is compact. 

Proof. We start by considering a normalized 𝑅𝐼𝑆 (𝑥𝑖) in 𝔛K. By Proposition (3.2.47) there 

exist scalars 𝜆𝑖 such that ‖𝑇𝑥𝑖 − 𝜆𝑖𝑥𝑖‖  →  0. We claim that 𝜆𝑖 necessarily tends to some 

limit 𝜆. Indeed, if not, by passing to a subsequence, we may suppose that |𝜆𝑖+1 − 𝜆𝑖|  >  𝛿 

for all 𝑖. Now the sequence (𝑦𝑖) where 𝑦𝑖 = 𝑥2𝑖−1 + 𝑥2𝑖 is again a 𝑅𝐼𝑆, so that there exist 

µ𝑖 with ‖𝑇𝑦𝑖 − µ𝑖𝑦𝑖‖ → 0 by Proposition (3.2.47) again. We thus have 

‖(𝜆2𝑖 − µ𝑖)𝑥2𝑖 + (𝜆2𝑖−1 − µ𝑖)𝑥2𝑖−1‖  
≤ ‖𝑇𝑥2𝑖 − 𝜆2𝑖𝑥2𝑖‖ + ‖𝑇𝑥2𝑖−1 − 𝜆2𝑖−1𝑥2𝑖−1‖ + ‖𝑇𝑦𝑖 − µ𝑖𝑦𝑖‖ → 0. 

Since the RIS (𝑥𝑖) is a block sequence, there exist 𝑙𝑖 such that 𝑃(0,𝑙𝑖]𝑦𝑖 = 𝑥2𝑖−1 and 

𝑃(𝑙𝑖,∞)𝑦𝑖 = 𝑥2𝑖. Using the assumption that the sequence (𝑥𝑖) is normalized we now have 

|𝜆2𝑖−1 − µ𝑖| = ‖(𝜆2𝑖−1 − µ𝑖)𝑥2𝑖−1‖ ≤ ‖𝑃(0,𝑙𝑖]‖‖(𝜆2𝑖 − µ𝑖)𝑥2𝑖 + (𝜆2𝑖−1 − µ𝑖)𝑥2𝑖−1‖, 

with a similar estimate for |𝜆2𝑖 − µ𝑖|. Each of these sequences thus tends to 0, so that 𝜆2𝑖 −
𝜆2𝑖−1 also tends to 0, contrary to our assumption. 

We now show that the scalar 𝜆 is the same for all rapidly increasing sequences.  Indeed, if 

(𝑥𝑖) and (𝑥𝑖
′) are RIS with ‖𝑇𝑥𝑖 − 𝜆𝑥𝑖‖ → 0 and ‖𝑇𝑥𝑖

′ − 𝜆′𝑥𝑖‖  →  0, we may find 𝑖1 <
𝑖2 < ⋯ such that the sequence (𝑦𝑘) defined by  

𝑦𝑘 = {
𝑥𝑖𝑘       if 𝑘 is odd

𝑥𝑖𝑘
′         if 𝑘 is even

 

is again a RIS. By the first part of the proof we must have 𝜆 =  𝜆′. 
We have now obtained 𝜆 such that ‖(𝑇 −  𝜆𝐼)𝑥𝑖‖ → 0 for every RIS. By Proposition  

(3.2.27), we deduce that ‖(𝑇 −  𝜆𝐼)𝑥𝑖‖ → 0 for every bounded block sequence in 𝔛K. This, 

of course, implies that 𝑇 −  𝜆𝐼 is compact. 

We devote to a proof that 𝔛K is saturated with reflexive HI subspaces having HI duals. 

The proof involves reworking much of the construction of a subspace of 𝔛K and its dual. By 

standard blocking arguments, it is enough to prove the following theorem. 

Theorem (3.2.49)[91]: Let 𝐿 =  {𝑙0, 𝑙1, 𝑙2, . . . } be a set of natural numbers satisfying 𝑙𝑛−1 +
1 < 𝑙𝑛, and for each 𝑛 ≥  1 let 𝐹𝑛 be a subspace of the finite-dimensional space 

𝑃(𝑙𝑛−1,𝑙𝑛)𝔛K =⊕𝑙𝑛−1<𝑘<𝑙𝑛 𝑀𝑘. Then the subspace 𝑊 =⊕𝑛∈ℕ 𝐹𝑛̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ of 𝔛K is reflexive and has 

HI dual. 

We note in passing the following corollary, which gives an indication of the “very 

conditional” nature of the basis of ℓ1 that we have constructed. For the purposes of the 

statement we briefly abandon the “Γ notation” and revert to the notation of Definition (3.2.5) 

and Theorem (3.2.8). 

Corollary (3.2.50)[91]: There exist a basis (𝑑𝑛
∗ )𝑛∈ℕ of ℓ1 and natural numbers 𝑘1 < 𝑘2 <

⋯ with the property that the quotient ℓ1/[𝑑𝑛
∗ ∶  𝑛 ∈  𝑀 ] is hereditarily indecomposable 

whenever the subset 𝑀 of ℕ contains infinitely many of the intervals (𝑘𝑝, 𝑘𝑝+1]. 
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The rest will be devoted to the proof of Theorem (3.2.49). We have already remarked at the 

end that the subspace W defined in the statement of the theorem is reflexive. The subspaces 

𝐹𝑛 form a finite-dimensional decomposition of 𝑊, the corresponding FDD projections being 

𝑄(𝑚,𝑛] = 𝑃(𝑙𝑚,𝑙𝑛] ↾ 𝑊 = 𝑃(𝑙𝑚,𝑙𝑛) ↾  𝑊 , when 0 ≤  𝑚 <  𝑛. The dual space 𝑊∗ has a dual 

FDD (𝐹𝑛
∗) and corresponding projections 𝑄(𝑚,𝑛]

∗ . We shall establish hereditary 

indecomposability of 𝑊∗ via the criterion Proposition (3.2.1). We write 𝑅 for the quotient 

mapping 𝔛K
∗ = ℓ1 → 𝑊

∗ and observe that if 𝑓𝑛
∗ ∈ 𝐹𝑛

∗ for 1 ≤  𝑛 ≤ ℕ then the norm of 𝑓∗ =
∑ 𝑓𝑛

∗𝑁
𝑛=1  in 𝑊∗ is given by 

‖∑𝑓∗‖
𝑌∗
= inf{‖𝑔∗‖ ∶  𝑔∗ ∈  𝔛K

∗    and 𝑅𝑔∗ = 𝑓∗}. 

Lemma (3.2.51)[91]: If 𝑓∗ ∈ im 𝑄(𝑀,𝑁]
∗ =⊕𝑀 <𝑛≤𝑁 𝐹𝑛

∗ ⊂ 𝑊∗ then there exists ℎ∗ ∈ 𝔛K
∗ =

ℓ1(Γ) with supp ℎ∗ ⊆ Γ𝑙𝑁−1\Γ𝑙𝑀 and ‖ℎ∗‖1 ≤ 4‖𝑓
∗‖ and 𝑅𝑃(𝑙𝑀,𝑙𝑁)

∗ ℎ∗ = 𝑅𝑃(𝑙𝑀,∞)
∗ ℎ∗ = 𝑓∗. 

Proof. We extend 𝑓∗ by the Hahn–Banach theorem to obtain 𝑔∗ ∈ 𝔛K
∗ = ℓ1(Γ) with 𝑅𝑔∗ =

𝑓∗ and ‖𝑔∗‖𝔛K∗ = ‖𝑓
∗‖𝑊∗. We set ℎ∗ = 𝑃(0,𝑙𝑁)𝑔

∗ ∈  ℓ1(Γ𝑙𝑁−1) and 𝑏∗ = ℎ∗𝜒Γ𝑙𝑁−1\Γ𝑙𝑁
 , 

noting that 

‖𝑏∗‖1 ≤ ‖ℎ
∗‖1 ≤ 2‖𝑔

∗‖1 ≤ 4‖𝑔
∗‖𝔛K∗ =  4‖𝑓

∗‖. 

To check that 𝑅𝑃(𝑙𝑀,𝑙𝑁)
∗ ℎ∗ = 𝑅𝑃(𝑙𝑀,∞)

∗ 𝑏∗ = 𝑓∗, we first note that    

𝑃(𝑙𝑀,∞)
∗ 𝑏∗ = 𝑃(𝑙𝑀,∞)

∗ ℎ∗, 

because 𝑃(𝑙𝑀,∞)
∗ 𝑘∗ = 0 whenever supp 𝑘 ⊆ Γ𝑙𝑀. Since both 𝑏∗ and ℎ∗ are supported by Γ𝑙𝑁 −1 

we have 

𝑃(𝑙𝑀,𝑙𝑁)
∗ 𝑏∗ = 𝑃(𝑙𝑀,∞)

∗ 𝑃(0,𝑙𝑁)
∗ 𝑏∗ = 𝑃(𝑙𝑀,∞)

∗ 𝑏∗ = 𝑃(𝑙𝑀,∞)
∗ ℎ∗ = 𝑃(𝑙𝑀,∞)

∗ 𝑃(0,𝑙𝑁)
∗ ℎ∗ = 𝑃(𝑙𝑀,𝑙𝑁)

∗ 𝑔∗. 

It follows that 

𝑅∗𝑃(𝑙𝑀,𝑙𝑁)
∗ 𝑏∗ = 𝑅∗𝑃(𝑙𝑀,𝑙𝑁)

∗ 𝑔∗ = 𝑔∗ ∘ 𝑃(𝑙𝑀,𝑙𝑁) ↾ 𝑊 = 𝑔∗ ∘ 𝑄(𝑀,𝑁] = 𝑓
∗. 

Lemma (3.2.52)[91]: Let 𝑗 ≥  1, 1 ≤  𝑎 ≤  𝑛2𝑗  and 𝑀 ≤ 𝑀0 < 𝑀1 < 𝑀2 < ⋯ < 𝑀𝑎 be 

natural numbers, with 2𝑗 ≤  𝑀1. For each 𝑖 ≤  𝑎, let 𝑓𝑖
∗ be in ball ⊕𝑀𝑖−1<𝑛≤𝑀𝑖 𝐹

∗ and 

write 𝑓∗ = ∑ 𝑓𝑖
∗𝑎

𝑖=1 .  

Then there exists 𝛾 ∈ Γ with 𝑝(0,𝑙𝑀]
∗ 𝑒𝛾

∗ = 0 and ‖4𝑚 2𝑗𝑅(𝑒𝛾
∗) − 𝑓∗‖ ≤ 2−𝑙𝑀+3;  in 

particular  ‖𝑓∗‖𝑌∗ ≤ 5𝑚2𝑗. 

Proof. By Lemma (3.2.51) there exist ℎ𝑖
∗ ∈ ℓ1 (Γ𝑙𝑀𝑖−1

\Γ𝑙𝑀𝑖−1
) with ‖ℎ𝑖

∗‖1 ≤  4 and 

𝑅(𝑃
(𝑙𝑀𝑖−1 ,𝑙𝑀𝑖)

∗ = 𝑓𝑖
∗. Since 𝐵𝑙𝑀𝑖−1,𝑙𝑀𝑖−1

 is an 𝜖-net in ball ℓ1 (Γ𝑙𝑀𝑖−1
\Γ𝑙𝑀𝑖−1

), with 𝜖 =

2−𝑙𝑀𝑖+1 ≤ 2−𝑙𝑀−2𝑖+1 we can choose 𝑏𝑖
∗  ∈ 𝐵𝑙𝑀𝑘 ,𝑙𝑀𝑘−1

 such ‖ℎ𝑖
∗ − 4𝑏𝑖

∗‖1 ≤ 2
−𝑙𝑀−2𝑖+3. 

     

Now write 𝑝𝑖 = 𝑙𝑀𝑖  for 1 ≤  𝑖 ≤  𝑎 and apply the construction of Proposition (3.2.16) to 

obtain 𝛾 ∈ ∆𝑝𝑎 with evaluation analysis 

𝑒𝛾
∗ =∑𝑑𝜉𝑖

∗

𝑎

𝑖=1

+𝑚2𝑗
1 ∑𝑃(𝑝𝑘−1,∞)

∗ 𝑏𝑘
∗

𝑎

𝑖=1

. 

Since rank 𝜉𝑖 = 𝑝𝑖 ∈ 𝐿 for all 𝑖, we have 𝑅𝑑𝜉𝑖
∗ =  0 and so  

‖𝑓∗ − 2𝑚2𝑗𝑅(𝑒𝛾
∗)‖ = ‖∑(𝑓𝑖

∗ − 2𝑅𝑃(𝑝𝑖−1,∞)
∗ 𝑏𝑖

∗)

𝑎

𝑖=1

‖ 
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≤∑‖𝑅𝑃(𝑝𝑖−1,∞]
∗ ℎ𝑖

∗ − 2𝑅𝑃(𝑝𝑖−1,∞)
∗ 𝑏𝑖

∗‖

𝑛2𝑗

𝑖=1

 

≤ 3∑‖ℎ𝑖
∗ − 2𝑏𝑖

∗‖

𝑎

𝑖=1

≤ 3∑2−𝑙𝑀−2𝑖+2
∞

𝑖=1

 =  2−𝑙𝑀+2. 

It follows that ‖𝑓∗‖ ≤ ‖4𝑚2𝑗𝑅(𝑒𝛾
∗)‖ + 8 ≤  5𝑚2𝑗 .  

Lemma (3.2.53)[91]: Let 𝑌 be any block subspace of 𝑊∗ and let 𝑛,𝑀 be positive integers. 

For every 𝐶 >  1 there exists a 4𝐶-ℓ1
𝑛-average 𝑤 ∈  𝑊 , with 𝑄(0,𝑀]𝑤 =  0, and a 

functional 𝑔∗  ∈ ball 𝑌 with 𝑄(0,𝑀]
∗ 𝑔∗  =  0 and 〈𝑔∗, 𝑤〉 ≥ 1.   

Proof. The proof is a dualized version of Lemma (3.2.30). We suppose, without loss of 

generality, that 𝐶 <  2 and choose 𝑙, 𝑗 such that 𝐶𝑙  >  𝑛 and 𝑛2𝑗 > (10𝑛2𝑗)
𝑙
; we take 𝑘 

minimal subject to 𝐶𝑘 > 5𝑚2𝑗 noting that 

𝑛2𝑗  > (10𝑚2𝑗)
𝑙
≥ (2𝐶𝑘−1)𝑙 ≥ 𝐶𝑘𝑙 > 𝑛𝑘. 

Now take (𝑓𝑖
∗)𝑖=1
𝑛𝑘  to be a normalized block sequence in 𝑌 ∩ ker𝑄(0,𝑀]

∗ ; we may apply 

Lemma (3.2.52) to obtain 

‖∑±𝑓𝑖
∗

𝑛𝑘

𝑖=1

‖ ≤ 5𝑚2𝑗 < 𝐶
𝑘. 

So by part (ii) of Lemma (3.2.2) (with 𝐶 =  1 +  𝜖) there are successive linear combinations 

𝑔1
∗, . . . , 𝑔𝑛

∗  such that ‖𝑔𝑖
∗‖ ≥ 𝐶−1 for all 𝑖, while 

‖∑±𝑔𝑖
∗

𝑛

𝑖=1

‖ ≤ 1, 

for all choices of sign.  Since (𝑔∗) is a block sequence in ker𝑄(0,𝑀]
∗  we can choose 𝑀 ≤

 𝑁0  < 𝑁1 < ⋯.  such that 𝑄(𝑁𝑖−1,𝑁𝑖]
∗ 𝑔𝑖

∗ = 𝑔𝑖
∗.  Now we choose, for each 𝑖 an element 𝑤𝑖 of 

𝑊 such that ‖𝑤𝑖‖ ≤  𝐶 and 〈𝑔𝑖
∗, 𝑤𝑖〉 =  1. If we set 𝑤𝑖

′ = 𝑄(𝑁𝑖−1,𝑁𝑖]
∗ 𝑤𝑖 then we have ‖𝑤𝑖

′‖ ≤

4𝐶 and 〈𝑔𝑖
∗, 𝑤𝑖

′〉 = 〈𝑔𝑖
∗, 𝑤𝑖〉 = 1, while 〈𝑔𝑖

∗, 𝑤ℎ
′ 〉 = 0 when ℎ ≠ 𝑖. The element 𝑤 =

 𝑛−1 ∑ 𝑤𝑖
′𝑛

𝑖=1  is thus a 4𝐶-ℓ1
𝑛 average, with 𝑄(0,𝑝]𝑤 =  0, and satisfies 〈𝑔∗, 𝑤〉 = 1, where 

𝑔∗ = ∑ 𝑔𝑖
∗

𝑖=1 ∈ ball 𝑌 .   

Lemma (3.2.54)[91]: Let 𝑌 be any block subspace of 𝑊∗ and let 𝑁, 𝑗 be positive integers. 

There exists a (600, 2𝑗, 1)-exact pair (𝑧, 𝛾) with 𝑧 ∈  𝑊 , 𝑄(0,𝑁]𝑧 =  0, 𝑃(0,𝑙𝑁]
∗ 𝑒𝛾

∗ = 0 and 

dist(𝑅𝑒𝛾
∗, 𝑌) < 2−𝑙𝑁 . 

Proof. By repeated applications of Lemma (3.2.53), we construct natural numbers 𝑁 ≤
𝑀0 < 𝑀1 < 𝑀2 < ⋯ and 𝑗1 < 𝑗2 < ⋯,  elements 𝑤𝑖 = 𝑄(𝑀𝑖−1,𝑀𝑖]𝑤𝑖  of 𝑊,  and functionals 

𝑔𝑖
∗ = 𝑄(𝑀𝑖−1,𝑀𝑖]

∗ 𝑔𝑖
∗ ∈ ball 𝑌  such that 

(i) 𝑤𝑖  is a 5-ℓ1
𝑛𝑗𝑖-average; 

(ii) 〈𝑔𝑖
∗, 𝑤𝑖〉 ≥  1; 

(iii) 𝑗𝑖+1 > 𝑀𝑖. 
It follows from Lemma (3.2.32) that (𝑤𝑖) is a 10-RIS. 

Writing 𝑔∗ = ∑ 𝑔𝑖
∗𝑛2𝑗

𝑖=1
 and applying Lemma (3.2.52) we find 𝛾 of weight 𝑚2𝑗 such that 

‖4𝑚2𝑗𝑅(𝑒𝛾
∗) − 𝑔∗‖ ≤ 2−𝑁 +3 We thus have  
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dist(𝑅𝑒𝛾
∗, 𝑌) ≤ ‖𝑅𝑒𝛾

∗ −
1

4
𝑚2𝑗
−1𝑔∗‖ ≤ 2−𝑙𝑁+1𝑚2𝑗

−1 < 2−𝑙𝑁 , 

and             

4𝑚2𝑗∑𝑤𝑖(𝛾)

𝑛2𝑗

𝑖=1

≥∑〈𝑔∗, 𝑤𝑖〉

𝑛2𝑗

𝑖=1

− 2−𝑙𝑁+3 ≥ 𝑛2𝑗 − 16. 

We now set 𝑧 =  𝜃𝑚2𝑗𝑛2𝑗
−1 ∑ 𝑤𝑖

𝑛2𝑗
𝑖=1

 where 𝜃 is chosen so that 𝑧(𝛾)  =  1; by the above 

inequality 0 < 𝜃 ≤ 4 +  128𝑛2𝑗
−1 < 5. 

 To estimate ‖𝑧‖ and |𝑧(𝛾′)| when weight 𝛾′ =  𝑚ℎ ≠ 𝑚2𝑗 we return to Lemma 

(3.2.22) deducing that          

‖𝑧‖ ≤  60𝜃    and   |𝑧(𝛾′)| ≤ {
110𝜃𝑚ℎ

−1        if ℎ <  2𝑗

60𝜃𝑚2𝑗
−1         if ℎ >  2𝑗.

 

So (𝑧, 𝛾) is certainly a (600, 2𝑗, 1)-exact pair.     

Lemma (3.2.55)[91]: Let 𝑌1 and 𝑌2 be block subspaces of 𝑊∗ and let 𝑗0 be a natural number.  

There exists a sequence (𝑥𝑖)𝑖≤𝑛2𝑗0−1 in 𝑊, together with natural numbers 0 =  𝑝0 < 𝑝1 <

𝑝2 < ⋯ < 𝑝𝑛2𝑗0−1, and elements 𝜂𝑖 ∈ Γ𝑝𝑖−1\Γ𝑝𝑖−1 , 𝜉𝑖 ∈ ∆𝑝𝑖(1 ≤  𝑖 ≤  𝑛2𝑗0−1), satisfying 

the conditions (i) to (iv) of Definition (3.2.38) with 𝐶 =  600, 𝜀 =  1, and such that, for all 

𝑖 ≥  1, the following additional properties hold 

(i) rank 𝜉𝑖 = 𝑝𝑖 ∈  𝐿; 

(ii) 𝑃(𝑝𝑖−1,𝑝𝑖]
∗ 𝑒𝜂𝑖

∗ = 0, 𝑃(𝑝𝑖−1,𝑝𝑖](𝑥𝑖)  =  𝑥𝑖; 

(iii) dist(𝑅𝑒𝜂𝑖
∗ , 𝑌𝑘) < 2

−𝑝𝑖−1 , where 𝑘 =  1 for odd 𝑖 and 𝑘 =  2 for even 𝑖. 

Proof. We start by choosing 𝑗1 such that 𝑚4𝑗1−2 > 𝑛2𝑗0−1
2  and then applying Lemma 

(3.2.54) to obtain a (600, 4𝑗1 − 2, 1)-exact pair (𝑥1, 𝜂1) with 𝑥1 ∈ 𝑊. Set 𝑝1 = 𝑙𝑁1, where 

𝑁1 is large enough to ensure that 𝑃(0,𝑝1)𝑥1 = 𝑄(0,𝑁1]𝑥1 = 𝑥1,  rank 𝜂1 <  𝑝1 and 2𝑝1 >

2𝑛2𝑗0−1.  Let 𝜉1 = (𝑝1, 𝑚2𝑗0−1
−1 , 𝜂1) ∈ ∆𝑝1.   

Continuing recursively, if for some 𝑖 < 𝑛2𝑗0−1, we have defined 𝜉𝑖 ∈ ∆𝑝𝑖, where 𝑝𝑖 = 𝑙𝑁𝑖, 

we set 𝑗𝑖+1 = 𝜎(𝜉𝑖) and apply Lemma (3.2.54) to get a (600, 4𝑗𝑖+1, 1)-exact pair 

(𝑥𝑖+1, 𝜂𝑖+1) with 𝑥𝑖+1 ∈  𝑊 , 𝑄(0,𝑁𝑖]𝑥𝑖+1 = 𝑃(0,𝑝𝑖]𝑥𝑖+1 = 0, 𝑃(0,𝑝𝑖]
∗ 𝑒𝜂𝑖+1

∗ = 0 and 

dist(𝑅∗𝑒𝜂𝑖+1
∗ , 𝑌𝑘)  <  2

−𝑝𝑖 , where 𝑘 depends on the parity of 𝑖 +  1. We now take 𝑁𝑖+1  

large enough, set 𝑝𝑖+1 = 𝑙𝑁𝑖+1 and define 𝜉𝑖+1 = (𝑝𝑖+1, 𝜉𝑖 , 𝑚2𝑗0−1
−1 , 𝜂𝑖+1)  ∈ ∆𝑝𝑖+1 . 

We are now ready to finish the proof of the theorem. We consider any two infinite-

dimensional subspaces 𝑌1 and 𝑌2 of 𝑊∗ and apply Lemma (3.2.55) obtaining a dependent 

sequence satisfying (i) to By property (7) we may choose, for each 𝑖, an element 𝑦𝑖
∗ of 𝑌𝑘 

with 

‖𝑦𝑖
∗ −  𝑅𝑒𝜂𝑖

∗ ‖ < 2−𝑝𝑖  . 

We set 

𝑦∗ = 𝑚2𝑗0−1
−1 ∑ 𝑦𝑖

∗

𝑖 odd

∈ 𝑌1,   𝑧
∗ = 𝑚2𝑗0−1

−1 ∑ 𝑦𝑖
∗

𝑖 even

∈ 𝑌2, 

If 𝛾 is the element 𝜉𝑛2𝑗0−1
  then the evaluation analysis of 𝛾 is  

𝑒𝛾
∗ = ∑ 𝑑𝜉𝑖

∗

𝑛2𝑗0−1

𝑖=1

+𝑚2𝑗0−1
−1 ∑ 𝑃(𝑝𝑖−1,𝑝𝑖)

∗ 𝑒𝜂𝑖
∗

𝑛2𝑗0−1

𝑖=1
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= ∑ 𝑑𝜉𝑖
∗

𝑛2𝑗0−1

𝑖=1

+𝑚2𝑗0−1
−1 ∑ 𝑒𝜂𝑖

∗

𝑛2𝑗0−1

𝑖=1

, 

because 𝑃(0,𝑝𝑖−1]
∗ 𝑒𝜂𝑖

∗ = 0. Since rank 𝜉𝑖 = 𝑝𝑖 ∈  𝐿 for all 𝑖 we have  

𝑅𝑒𝛾
∗ = 𝑚2𝑗0−1

−1 ∑ 𝑅𝑒𝜂𝑖
∗

𝑛2𝑗0−1

𝑖=1

, 

which leads to 

‖𝑦∗ + 𝑧∗‖ ≤ 1 + ‖𝑚2𝑗0−1
−1 ∑ 𝑅𝑒𝜂𝑖

∗

𝑛2𝑗0−1

𝑖=1

‖ = 1 + ‖𝑅𝑒𝛾
∗‖ ≤  2. 

We shall prove that ‖𝑦∗ − 𝑧∗‖ is very large by estimating 〈𝑦∗ − 𝑧∗, 𝑥〉, where 𝑥 is the 

average 

𝑥 = 𝑛2𝑗0−1
−1 ∑ (−1)𝑘𝑥𝑘

𝑛2𝑗0−1

𝑘=1

, 

about which we know from Lemma (3.2.41) that 

‖𝑥‖ ≤  7200𝑚2𝑗0−1
−1 . 

and the definition of a 1-exact pair, we have      

〈𝑒∗𝜂𝑖 , 𝑥𝑘〉 = {
1  if 𝑖 =  𝑘
0   if 𝑖 ≠ 𝑘,

 

so that  

〈𝑦∗ − 𝑧∗, 𝑥〉 = 𝑛2𝑗0−1
−1 𝑚2𝑗0−1

−1 ∑𝑖, 𝑘〈𝑦𝑖
∗ − 𝑥𝑘〉 

≥ 𝑛2𝑗0−1
−1 𝑚2𝑗0−1

−1 ∑(〈𝑒∗𝜂𝑖 , 𝑥𝑘〉 − 2
−𝑝𝑖)

𝑖,𝑘

 

≥ 𝑚2𝑗0−1
−1 (1 − 𝑛2𝑗0−12

−𝑝1) ≥
1

2
𝑚2𝑗0−1
−1 , 

the last step following from our choice of 𝑝1 with 2𝑝1 >  2𝑛2𝑗0−1. 

We can now deduce that 

‖𝑦∗ − 𝑧∗‖ ≥
𝑚2𝑗0−1

14400
. 

We have shown that the subspaces 𝑌1 and 𝑌2 of 𝑊∗ contain elements 𝑦∗, 𝑧∗ with ‖𝑦∗ + 𝑧∗‖ ≤
 2 and ‖𝑦∗ − 𝑧∗‖ arbitrarily large. By Proposition (3.2.1), we have established hereditary 

indecomposability of 𝑊∗. 

If we are looking at a bounded linear operator 𝑇 ∶ 𝑌 →  𝔛K defined only on a 

subspace 𝑌 of 𝔛K, rather than on the whole space, then, as in other HI constructions, the 

arguments of the preceding can be used to show that 𝑇 can be expressed as 𝜆𝐼𝑌  +  𝑆 with 𝑆 

strictly singular. However, as we shall now see, in this case the perturbation need not be 

compact. 
Proposition (3.2.56)[91]: There exists a subspace 𝑌 of 𝔛K and a strictly singular, non-

compact operator 𝑇 from 𝑌 into 𝔛K. In fact, for a suitably chosen 𝑌, we may choose 𝑇 

mapping 𝑌 into itself. 

Proof. By a theorem of Androulakis, Odell, Schlumprecht and Tomczak-Jaegermann [94], 

in order to find 𝑌 and a strictly singular, non-compact 𝑇 ∶  𝑌 →  𝔛K, it is enough to exhibit 

normalized sequences (𝑥𝑖) and (𝑦𝑖) in 𝔛K such that (𝑦𝑖) has a spreading model equivalent 
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to the usual ℓ1-basis, while (𝑥𝑖) has a spreading model that is not equivalent to that basis. 

For (𝑥𝑖) we may take any normalized RIS; indeed, by Proposition (3.2.20), the spreading 

model associated with any RIS is dominated by the unit vector basis of the Mixed Tsirelson 

space 𝔗[(𝐴3𝑛𝑗 , 𝑚𝑗
−1)𝑗∈ℕ], and so is not equivalent to the ℓ1-basis. For (𝑦𝑖) we may take a 

specific sequence , setting 

𝑦𝑛 = ∑ 𝑑𝜉
𝜉∈∆𝑛

. 

The result we need is a lemma about norms of linear combinations of these vectors. 

Lemma (3.2.57)[91]: Let 𝐹 be a finite set of natural numbers with min 𝐹 ≥  𝑗 and #𝐹 <
2𝑛2𝑗 . Then, for all real scalars 𝑎𝑛, 

‖∑𝑎𝑛𝑦𝑛
𝑛∈𝐹

‖ ≥
1

4
∑|𝑎𝑛|

𝑛∈𝐹

. 

Proof. Without loss of generality, we may suppose that ∑ 𝑎𝑛
+

𝑛∈𝐹 ≥
1

2
∑ |𝑎𝑛|𝑛∈𝐹  and we may 

choose 𝑝1, 𝑝2, . . . , 𝑝𝑟 in 𝐹, with 𝑝𝑖+1 > 𝑝𝑖 , 𝑟 ≤  𝑝2𝑗 , and   

∑𝑎𝑖

𝑟

𝑖=1

≥
1

4
∑|𝑎𝑛|

𝑛∈𝐹

. 

Since 𝑝1 ≥ min 𝐹 ≥  2𝑗, ∆𝑛1 does contain Type 1 elements of the form (𝑝1, 𝑚2𝑗
−1, ±𝑒𝜂1

∗ ), 

with 𝜂1 ∈ Γ𝑛1−1. We take 𝜉1 to be such an element, and continue recursively, for 1 ≤  𝑖 <

 𝑟, taking 𝜂𝑖+1 to be any element of ∆𝑝𝑖+1 and 𝜉𝑖+1 to be the Type 2 element 

(𝑝𝑖+1, 𝜉𝑖 , 𝑚2𝑗
−1, ±𝑒𝜂1

∗ ) of ∆𝑛𝑖+1 . If 𝛾 =  𝜉𝑟 then the evaluation analysis of is 

𝑒𝛾
∗ =∑𝑑𝜉𝑖

∗

𝑟

𝑖=1

+𝑚2𝑗
−1∑±𝑃(𝑛𝑖−1,𝑛𝑖)

∗ 𝑒𝜂𝑖
∗

𝑟

𝑖=1

. 

If we write 𝑦 = ∑ 𝑎𝑛𝑦𝑛𝑛∈𝐹 , we have 〈𝑑𝜉𝑖
∗ , 𝑦〉 =  𝑎𝑛𝑖   for each 𝑖, so that 

𝑒𝛾
∗(𝑦) =∑𝑎𝑝𝑖

𝑟

𝑖=1

+𝑚2𝑗
−1∑±𝑃(𝑛𝑖−1,𝑛𝑖)

∗ 𝑒𝜂𝑖
∗

𝑟

𝑖=1

(𝑦). 

We have not until now been explicit about how the signs ± were chosen, but it is now clear 

that this may be done in such a way that 𝑒𝛾
∗(𝑦) ≥ ∑ 𝑎𝑝𝑖

𝑟
𝑖=1 ≥

1

4
∑ |𝑎𝑛|𝑛∈𝐹 . 

It is now clear that the theorem of Androulakis et al may be applied. In order to get the 

refined version where 𝑇 takes 𝑌 into itself, it is enough to look a little more closely at the 

proof given in [94]. It turns out that we may take (𝑦𝑖) as above and 𝑌 to be the closed linear 

span [𝑦𝑖 ∶  𝑖 ∈ ℕ]. It may be shown that, for any RIS (𝑥𝑖), the mapping 𝑦𝑖 ↦ 𝑥𝑖 extends to 

a bounded linear operator from 𝑌 to 𝔛K. Since 𝑌, like all other infinite dimensional 

subspaces, contains a RIS, we may choose the 𝑥𝑖 to lie in 𝑌. 

The original spaces 𝑋𝑎,𝑏 of Bourgain and Delbaen provided, for the first time, a 

continuum of non-isomorphic 𝐿∞ spaces. It has also been noted [92] that if we take 𝑌 to be 

Hilbert space and 𝑋 to be 𝑋𝑎,𝑏 with (for instance) 0 <  𝑏 <
1

2
 <  𝑎 <  1, 𝑎4  +  𝑏4  =  1, 

then all operators from 𝑋 to 𝑌 and all operators from 𝑌 to 𝑋 are compact. The constructions 

allow us to exhibit a continuum of spaces 𝑋𝛼(𝛼 ∈ 𝔠) such that, for all 𝛼 ≠ 𝛽, ℒ(𝑋𝛼 , 𝑋𝛽)  =

 𝒦(𝑋𝛼 , 𝑋𝛽). 
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We start by taking an almost-disjoint family (𝐿𝛼)𝛼∈𝔠  of infinite subsets of ℕ. For each 𝛼 

we enumerate 𝐿𝛼 in increasing order as 𝑙𝑗
𝛼 and define   

𝑚𝑗
𝛼 = 𝑚𝑙𝑗

𝛼 , 𝑛𝑗
𝛼  =  𝑛𝑙𝑗

𝛼 , 

where (𝑚𝑗 , 𝑛𝑗)  =  (2
2𝑗 , 22𝑗

2+1) is the sequence mentioned. 

Now we may take 𝑋𝛼 to be either 𝔅mT [(𝐴𝑛𝑗
𝛼 , 1 𝑚𝑗

𝛼⁄ )𝑗∈ℕ] or 𝔛k [(𝐴𝑛𝑗
𝛼 , 1 𝑚𝑗

𝛼⁄ )𝑗∈ℕ]. 

Proposition (3.2.58)[91]: Assume that 𝛼 ≠ 𝛽 and let 𝑇 ∶  𝑋𝛼 → 𝑋𝛽 be a bounded linear 

operator. For any RIS (𝑥𝑖)𝑖∈ℕ in 𝑋𝛼, we have ‖𝑇(𝑥𝑖)‖ →  0 as 𝑖 →  ∞. 

Proof. Let (𝑥𝑖) be a 𝐶-RIS in 𝑋𝛼 and suppose, if possible, that ‖𝑇𝑥𝑖‖ >  𝛿 >  0 for all 𝑖. 
Since (𝑇𝑥𝑖) is weakly null we may, by taking a subsequence, assume that (𝑇𝑥𝑖) is a small 

perturbation of a skipped-block sequence in 𝑋𝛽.  Thus, if 𝑙 =  𝑙2𝑗
𝛽
∈ 𝐿𝛽, we may apply 

Proposition (3.2.17) to conclude 

‖𝑛𝑙
−1∑𝑇𝑥𝑟

𝑛𝑙

𝑖=1

‖𝑋𝛽 ≥
1

4
𝑚2𝑗
−1𝑛𝑙

−1∑‖𝑇𝑥𝑟‖

𝑛𝑙

𝑟=1

≥
1

4
𝛿𝑚2𝑗

−1. 

On the other hand, Corollary (3.2.21) tells us that 

‖𝑛𝑙
−1∑𝑥𝑟

𝑛𝑙

𝑖=1

‖𝑋𝛼 ≤ 10𝐶‖𝑛𝑙
−1∑𝑒𝑖

𝑛𝑙

𝑖=1

‖, 

where the norm on the right-hand side is calculated in 𝑇[(𝐴3𝑛𝑗 , 𝑚𝑗
−1)𝑗∈𝐿𝛼]. If 𝑙 is not in 𝐿𝛼 

then this norm is at most 𝑚𝑙
−2 by Lemma (3.2.4), so that 

‖𝑛𝑙
−1∑𝑥𝑟

𝑛𝑙

𝑖=1

‖𝑋𝛼 ≤ 10𝐶𝑚𝑙
−2. 

By the assumed almost-disjointness of 𝐿𝛽 and 𝐿𝛼 we can certainly choose 𝑗 such that 𝑙2𝑗
𝛽
∉

𝐿𝛼 and 𝑚𝑙 > 40‖𝑇‖𝛿
−1, yielding a contradiction. 

The spaces ℒ(𝑋) and 𝐾(𝑋) of bounded (respectively compact) linear operators on an 

infinite-dimensional Banach space 𝑋 are always decomposable. (Indeed, for finite 

dimensional subspaces 𝐸 ⊂  𝑋 and 𝐹 ⊂  𝑋∗, the subspaces 𝑋∗  ⊗  𝐸 and 𝐹 ⊗  𝑋 are 

complemented.) So we must not hope for too much exotic structure in these spaces of 

operators. We shall look briefly at subspaces of ℒ(𝔛K). Certainly, ℒ(𝔛K)  =  𝐾(𝔛K) ⊕  ℝ𝐼 
has HI subspaces, such as those isomorphic to 𝔛K, and subspaces isomorphic to 𝔛K

∗ = ℓ1. It 
has no subspace isomorphic to 𝑐0 by a result of Emmanuele. (The main result of [104] shows 

that 𝑐0 does not embed into 𝐾(𝑋𝑎,𝑏) and the same proof works for 𝔛K.) We shall now see 

that (𝔛K) does have other subspaces with unconditional basis. It is a general fact that if (𝑥𝑛) 

is a basic sequence in a Banach space 𝑋 then the injective tensor product ℓ1 ⊗̂𝜀 𝑋 contains 

a sequence equivalent to the “unconditionalization” of the basic sequence (𝑥𝑛). This follows 

immediately from the following exact formula for the norm of a finite sum of elementary 

tensors in ℓ1 ⊗̂𝜀 𝑋: 

‖∑𝑒𝑗
∗⊗𝑥𝑗

𝑗=1

‖𝜀  = sup‖∑±𝑥𝑗
𝑗=1

‖ , 

where the supremum is over all choices of signs.  

In the case of 𝔛K the space of compact operators 𝐾(𝔛K) is isomorphic to ℓ1 ⊗̂𝜀 𝑋 and so 

contains the unconditionalization of any basic sequence in 𝔛K. An interesting special case 
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is that of the basis (𝑑𝛾); we have chosen to prove the following proposition in a way that 

does not depend on the general theory of tensor products. 

Proposition (3.2.59)[91]: The family (𝑒𝛾
∗⊗𝑑𝛾)𝛾∈Γ is an unconditional basis of a reflexive 

subspace of 𝐾(𝔛K). 
Proof. Let us write 𝑈𝛾 = 𝑒𝛾

∗⊗𝑑𝛾  considered as the rank–1 operator 

𝑈𝛾 ∶  𝔛K → 𝔛K;  𝑥 ⟼ 𝑥(𝛾)𝑑𝛾. 

For a finite linear combination 𝑊 = ∑  𝑤(𝛾)𝑈 (𝛾)𝛾∈Γ𝑛  and any 𝑥 ∈ ball 𝔛K we have 

‖𝑊(𝑥)‖ = ‖∑  (𝑤𝛾)𝑥(𝛾)𝑑𝛾
𝛾∈Γ𝑛

‖ ≤ max
±
‖∑  𝑤(𝛾)𝑑𝛾
𝛾∈Γ𝑛

‖ . 

We shall write ‖|𝑊|‖ for the last expression on the line above.  We have thus shown that 

‖𝑊‖ ≤  ‖|𝑊|‖.   

On the other hand, if we choose 𝑢(𝛾)  =  ±1 for 𝛾 ∈ Γ𝑛 in such a way as to achieve the 

maximum in the definition of ‖|𝑊|‖ and then set 𝑦 =  𝑖𝑛(𝑢) we have 

‖|𝑊|‖ = ‖∑  𝑢(𝛾)𝑑𝛾
𝛾∈Γ𝑛

‖ =  ‖𝑊(𝑦)‖ ≤ ‖𝑊‖‖𝑖𝑛‖ ≤  2‖𝑊‖. 

Thus the operator norm ‖·‖ and the unconditionalized norm ‖|·|‖ are equivalent on 

[𝑈𝛾 ∶ 𝛾 ∈ Γ]. 

It will be convenient to work with the latter norm. 

Given a linear combination = ∑ 𝑣(𝛾)𝑈𝛾𝛾  , any vector ∑ ∓𝛾 𝑣(𝛾)𝑑𝛾 in 𝔛K, (whether or not 

the signs achieve the supremum in the definition of the unconditionalized norm), will be 

called a realization of 𝑊. 

If the subspace [𝑈𝛾 ∶ 𝛾 ∈ Γ] is not reflexive then by unconditionality there is a skipped 

block sequence equivalent to the unit vector basis of either 𝑐0 or ℓ1. We shall treat the case 

of ℓ1.  

We consider a normalized skipped block sequence with 𝑉𝑖 = ∑ 𝑣(𝛾)𝑈𝛾𝛾∈Γ𝑝𝑖−1\Γ𝑝𝑖−1
  and 

suppose, if possible, that (𝑉𝑖) is 𝐶-equivalent to the usual ℓ1-basis for the norm ‖|·|‖.  

suppose that ‖|𝑉𝑖|‖ ≤ 𝐶 for all 𝑖 and that     

‖|∑𝑎(𝑖)𝑉𝑖
𝑖

|‖ ≥∑|𝑎(𝑖)|

𝑖

 

for all scalars 𝑎𝑖. Let us note that if 𝑊 is a linear combination of the form  

𝑊 = 𝑛−1 ∑ 𝑉𝑖

𝑙+𝑛

𝑖=𝑙+1

, 

then any realization �̂� of 𝑊 is a 𝐶-ℓ1 -average as in Definition (3.2.29)). Indeed �̂� is 

expressible as 𝑛−1∑ �̂�𝑖
𝑙+𝑛
𝑖=𝑙+1  where the �̂�𝑖  are realizations of 𝑉𝑖, and so satisfy ‖�̂�𝑖‖ ≤

‖|𝑊𝑖|‖ ≤  𝐶 for all 𝑖.  

We now look at Lemma (3.2.32). It should be clear that, by choosing sequences (𝑗𝑘)𝑗∈ℕ and 

(𝑙𝑘)𝑗∈ℕ growing sufficiently fast, we may define 

𝑊𝑘 = 𝑛𝑗𝑘
−1 ∑ 𝑉𝑖

𝑙𝑗+𝑛𝑗𝑘

𝑖=𝑙𝑗+1

, 

in such a way that any realizations �̂�𝑘  form a 2𝐶-RIS in 𝔛K. In particular 
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‖|𝑛𝑗0
−1∑𝑊𝑘

𝑛𝑗0

𝑘=1

|‖ = ‖𝑛𝑗0
−1∑�̂�𝑘

𝑛𝑗0

𝑘=1

‖ 

for suitable realizations �̂�𝑘, yielding        

‖|𝑛𝑗0
−1∑𝑊𝑘

𝑛𝑗0

𝑘=1

|‖ ≤ 12𝐶 𝑚𝑗0
−1, 

by Proposition (3.2.22). On the other hand, 

‖|𝑛𝑗0
−1∑𝑊𝑘

𝑛𝑗0

𝑘=1

|‖ = ‖|𝑛𝑗0
−1∑𝑛𝑗𝑘

−1 ∑ 𝑉𝑖

𝑙𝑘+𝑛𝑛𝑘

𝑖=𝑙𝑘+1

𝑛𝑗0

𝑘=1

|‖ 

which is at least 1, by our assumption on (𝑉𝑖).      

So we have a contradiction for suitably large values of 𝑗0.   

The constructions give no clue as to whether there exists a reflexive Banach space on 

which all operators are scalar–plus–compact. The construction of such a space, if one exists, 

will need new ideas. We thus have no example of a reflexive space on which all operators 

have non-trivial proper invariant subspaces. It is piquant to observe that, at the other end of 

the spectrum, the construction of a reflexive space on which some operator has no non-

trivial proper invariant subspace has also proved to be very resistant to attack. See Enflo 

[105], [106] and Read [119], [120] for more about the Invariant Subspace Problem, noting 

the more recent [121] of Read, in which a strictly singular operator is constructed which has 

no non-trivial proper invariant subspace. 

We do not know whether an isomorphic predual of ℓ1 which has the “few-operators” 

property in the scalar–plus–strictly-singular sense necessarily also has this property in the 

scalar–plus–compact sense. An answer to this would follow from an affirmative solution to 

the following more general problem. 
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Chapter 4 

Sets and an Additive Combinatorics Approach 

 

We discuss generalizations and applications of the results obtained. We study of the 

“approximate duality conjecture” which was suggested by Ben-Sasson and Zewi and studied 

there in connection to the PFR conjecture. We improve the bounds on approximate duality 

assuming the PFR conjecture. Then we use the approximate duality conjecture (with 

improved bounds) to get our upper bound on the communication complexity of low-rank 

martices. We show a theorem (due to Bourgain) goes as follows. For a noticeable fraction 

of pairs 𝛾1, 𝛾2 in the spectrum, 𝛾1 + 𝛾2 belongs to the spectrum of the same set with a smaller 

threshold. Here we show that this result can be made combinatorial by restricting to a large 

subset. We show that for any set A there exists a large subset A , such that the sumset of the 

spectrum of A has bounded size. Our results apply to sets of size |𝐴|  =  |𝐺|𝛼 for any 

constant 𝛼 >  0, and even in some sub-constant regime 

Section (4.1): Large Trigonometric Sums 

For 𝑁 be a positive integer. We denote by ℤ𝑁  =  ℤ/𝑁ℤ the set of residues modulo 

𝑁. Let 𝑓 ∶  ℤ𝑁  →  ℂ be an arbitrary function. The Fourier transform of 𝑓 is given by the 

formula 

𝑓(𝑟)  = ∑ 𝑓(𝑛)𝑒(−𝑛𝑟)

𝑛∈ℤ𝑁

,                                       (1) 

where 𝑒(𝑥)  =  𝑒−2𝜋𝑖𝑥/𝑁 . The following Parseval equality holds for the Fourier 

coefficients of 𝑓: 

∑|𝑓(𝑟)|
2

𝑟∈ℤ𝑁

 =  𝑁 ∑ |𝑓(𝑛)|2

𝑛∈ℤ𝑁

.                                               (2) 

Let 𝛿 and 𝛼 be real numbers, 0 <  𝛼 ≼  𝛿 ≼  1, and let 𝐴 be a subset of ℤ𝑁 of cardinality 

𝛿𝑁. The symbol 𝐴 will also stand for the characteristic function of this set. Consider the 

set ℛ𝛼 of large trigonometric sums of 𝐴: 
ℛ𝛼  =  ℛ𝛼(𝐴)  =  {𝑟 ∈  ℤ𝑁 ∶  |�̂�(𝑟)|  ≽  𝛼𝑁}.                       (3) 

For many problems of the combinatorial theory of numbers it is important to know the 

structure of ℛ𝛼 , it is important to know its properties, as will be indicated below. We only 

mention the fact that this problem was posed by Gowers in [125]. 

The elementary properties of ℛ𝛼 are as follows. The definition implies that 

0 ∈  ℛ𝛼 and ℛ𝛼  =  −ℛ𝛼 , which means that −𝑟 ∈  ℛ𝛼 if 𝑟 ∈  ℛ𝛼 . Further, Parseval’s 

equality (2) implies that |ℛ𝛼|  ≼  𝛿/𝛼
2. Has ℛ𝛼 any other non-trivial properties? 

It turns out that the answer to this question is positive. 

We denote by log the logarithm to the base 2. 

In 2002, M.-C. Chang proved the following theorem [126]. 

Theorem (4.1.1)[124]: (M.-C. Chang). Let 𝛿 and 𝛼 be real numbers, 0 <  𝛼 ≼  𝛿 ≼  1, 
let 𝐴 be an arbitrary subset of ℤ𝑁 of cardinality 𝛿𝑁 and let ℛ𝛼 be the set defined by (3). 

Then there is a set 𝛬 =  {𝜆1, . . . , 𝜆|𝛬|}  ⊆  ℤ𝑁 , |𝛬|  ≼  2 (
𝛿

𝛼
)
2
log(1/𝛿), such that every 

element 𝑟 of ℛ𝛼 can be represented in the form 

𝑟 ≡∑𝜀𝑖𝜆𝑖

|𝛬|

𝑖=1

 (mod 𝑁),                                                        (4) 

where 𝜀𝑖  ∈  {−1, 0, 1}. 
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Developing the approach suggested in [127] (see also [128]), Chang applied her result to 

the proof of Freiman’s theorem [129] on sets with small sum. Recall that 𝑄 ⊆  ℤ is called 

a 𝑑-dimensional arithmetic progression if 

𝑄 =  {𝑛0  +  𝑛1𝜆1  + · · ·  + 𝑛𝑑𝜆𝑑 ∶  0 ≼  𝜆𝑖  <  𝑚𝑖}, 
where the 𝑚𝑖 are positive integers and the 𝑛𝑖 are integers. 

Theorem (4.1.2)[124]: (G. A. Freiman). Let 𝐶 >  0 be some number, let 𝐴 ⊆  ℤ be an 

arbitrary set and let |𝐴 +  𝐴|  ≼  𝐶|𝐴|. Then one can find numbers 𝑑 and 𝐾 depending 

only on 𝐶 and a 𝑑-dimensional arithmetic progression 𝑄 such that |𝑄| ≼ 𝐾|𝐴| and 𝐴 ⊆
 𝑄. 
Another application of Theorem (4.1.1) was given by 𝐵. Green in [130] (see [131], [132] 

and [133]). One of the main results of [130] can be stated as follows. 

Theorem (4.1.3)[124]: (B. Green). Let 𝐴 be an arbitrary subset of ℤ𝑁 of cardinality 𝛿𝑁. 
Then 𝐴 + 𝐴 + 𝐴 contains an arithmetic progression whose length is greater than or equal to 

2−24𝛿5 (log (
1

𝛿
))

−2

𝑁𝛿
2/(250 log(1/𝛿)).                                               (5) 

 (See [134]), Green showed that Chang’s theorem is, in a sense, exact. Let 𝐸 =
 {𝑒1, . . . , 𝑒|𝐸|}  ⊆  ℤ𝑁 be an arbitrary set. We denote by Span(𝐸) the set of all sums of the 

form ∑ 𝜀𝑖𝑒𝑖
|𝐸|
𝑖=1 , where 𝜀𝑖  ∈  {−1, 0, 1}. 

Theorem (4.1.4)[124]: (B. Green). Let 𝛿 and 𝛼 be real numbers, 𝛿 ≼  1/8, 0 <  𝛼 ≼
 𝛿/32. 
Assume that 

(
1

𝛿
)
2

log
1

𝛿
≼

log𝑁

log log𝑁
.                                                     (6) 

Then there is an 𝐴 ⊆  ℤ𝑁 , |𝐴|  =  [𝛿𝑁], such that the set ℛ𝛼 defined by (3) is not contained 

in Span(Λ) for any Λ with |Λ|  ≼  2−12 (
𝛿

𝛼
)
2
log(1/𝛿). 

The structure of ℛ𝛼 in the case when 𝛼 is close to 𝛿 was studied in [135]–[137] (see also 

[138]). 

We see that results on the structure of ℛ𝛼 are of importance in the combinatorial theory of 

numbers. We prove the following theorem. 

Theorem (4.1.5)[124]: Let 𝛿 and 𝛼 be real numbers, 0 <  𝛼 ≼  𝛿, let 𝐴 be an arbitrary 

subset of ℤ𝑁 of cardinality 𝛿𝑁, let 𝑘 ≽  2 be an even number and let ℛ𝛼 be the set defined 

by (3). Assume 𝐵 ⊆  ℛ𝛼 \ {0} is an arbitrary set. Then the quantity 

𝑇𝑘(𝐵) ∶=  |{(𝑟1, . . . , 𝑟𝑘 , 𝑟
′
1, . . . , 𝑟𝑘

′)  ∈  𝐵2𝑘 ∶  𝑟1 + · · ·  + 𝑟𝑘 = 𝑟1
′  + · · ·  + 𝑟𝑘

′  }|         (7) 
is greater than or equal to 

𝛿𝛼2𝑘

24𝑘𝛿2𝑘
|𝐵|2𝑘 .                                                                         (8) 

Proof: First we prove an analogue of Lemma (4.1.6). 

We claim that the assertion of Theorem (4.1.5) is non-trivial in the case when 𝛿 tends to 

zero as 𝑁 tends to infinity (if 𝛿 does not tend to zero as 𝑁 →  ∞, then the structure of ℛ𝛼 

can be arbitrary [139]–[141]). Consider the simplest case 𝑘 =  2. Let the order of the 

cardinality of ℛ𝛼 be equal to 𝛿/𝛼2. By Theorem (4.1.5), the order of the number of solutions 

of the equation 

𝑟1  +  𝑟2  =  𝑟3  +  𝑟4, 𝑟1, 𝑟2, 𝑟3, 𝑟4  ∈  ℛ𝛼 \ {0},                                  (9) 



105 

is greater than or equal to 𝛿/𝛼4. Among these solutions there are three series of trivial 

solutions. In the first series 𝑟1  =  𝑟3, 𝑟2  =  𝑟4, in the second 𝑟1  =  𝑟4, 𝑟2  =  𝑟3 and, finally, 

in the third 𝑟1  =  −𝑟2, 𝑟3  =  −𝑟4. Therefore, equation (9) has at most 3|ℛ𝛼|
2 trivial 

solutions. The cardinality of ℛ𝛼 does not exceed 𝛿/𝛼2. Therefore, 3|ℛ𝛼|
2 is less than 

3𝛿2/𝛼4. We see that this quantity is less than 𝛿/𝛼4 as 𝛿 tends to zero. Thus, Theorem (4.1.5) 

states that equation (9) has non-trivial solutions. 

Hence, ℛ𝛼 has some additive structure. 

The proof of Theorem (4.1.5), where we begin with a detailed consideration of the case 

when 𝑘 =  2 and then prove it in the general situation. 

We generalize Theorem (4.1.5) to systems of linear equations. In our proof we use 

properties of the Gowers norms (see [142]). 

We apply the main result to some problems in the combinatorial theory of numbers. 

We show that M.-C. Chang’s theorem can be derived from Theorem (4.1.5) and Rudin’s 

inequality [143]. 

Let 𝑁 be a positive integer and let �̂�(𝑟) be the Fourier transform of the characteristic 

function 𝐴. As mentioned above, the following equality holds for the Fourier coefficients of 

𝐴: 

∑|�̂�(𝑟)|
2

𝑟∈ℤ𝑁

=  𝑁|𝐴|.                                                              (10) 

Are there any non-trivial relations between the Fourier coefficients �̂�(𝑟) other than (10)? It 

is obvious that the answer to this question is positive. 

Consider a slightly more general situation. Let 𝑓 ∶  ℤ𝑁  →  ℂ be an arbitrary complex 

function. The following inversion formula holds for the Fourier coefficients of 𝑓(𝑥): 

𝑓(𝑥) =
1

𝑁
∑ 𝑓(𝑟)𝑒(𝑟𝑥)

𝑟∈ℤ𝑁

.                                                                      (11) 

The function 𝑓(𝑥) is the characteristic function of some subset of ℤ𝑁 if and only if 

|𝑓(𝑥)|2  =  𝑓(𝑥)                                                          (12) 
for all 𝑥 in ℤ𝑁 . Substituting (11) into (12), we obtain that 

1

𝑁2
∑ 𝑓(𝑟′)𝑓(𝑟′′)̅̅ ̅̅ ̅̅ ̅̅ 𝑒(𝑟′𝑥 − 𝑟′′𝑥)

𝑟′,𝑟′′

=
1

𝑁
∑𝑓(𝑢)𝑒(𝑢𝑥)

𝑢

.                                 (13) 

Hence, 

∑(
1

𝑁
∑𝑓(𝑟)𝑓(𝑟 − 𝑢)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑟

)𝑒(𝑢𝑥)

𝑢

=∑𝑓(𝑢)𝑒(𝑢𝑥)

𝑢

.                                 (14) 

Since (14) holds for all 𝑥 ∈  ℤ𝑁 , we have 

𝑓(𝑢) =
1

𝑁
∑𝑓(𝑟)𝑓(𝑟 − 𝑢)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑟

.                                (15) 

Hence, 𝑓 ∶  ℤ𝑁  →  ℂ is a characteristic function if and only if equality (15) holds for its 

Fourier coefficients. It is clear that (15) also holds for the characteristic function 𝐴(𝑥) of the 

set 𝐴. Moreover, (15) contains all the relations between the Fourier coefficients of 𝐴: for 

example, Parseval’s equality (2) can be obtained by putting 𝑢 =  0. 
We shall need the following generalization of (15). Let 𝑓, 𝑔: ℤ𝑁  →  ℂ be arbitrary complex 

functions. Then 
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1

𝑁
∑𝑓(𝑟)�̂�(𝑟 − 𝑢)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑟

=∑𝑓(𝑥)𝑔(𝑥)̅̅ ̅̅ ̅̅ 𝑒(−𝑥𝑢)

𝑥

,                     (16) 

and (15) obviously follows from (16). 

We explain the basic idea of the proof of Theorem (4.1.5). Let 𝐴 ⊆  ℤ𝑁 be an arbitrary set, 

|𝐴|  =  𝛿𝑁, and let ℛ𝛼 be the set of large trigonometric sums given by (3). Consider a model 

situation. Assume that |�̂�(𝑟)|  =  𝛼𝑁 for all 𝑟 ∈  ℛ𝛼 \ {0} and let �̂�(𝑟)  =  0 for all 𝑟 ∉
 ℛ𝛼 , 𝑟 ≠  0 (the justification of such a hypothesis will be discussed below). Let 𝛿 ≼  1/4 

and let 𝑢 be an arbitrary non-zero residue belonging to ℛ𝛼 . Then |�̂�(𝑢)|  =  𝛼𝑁. Using 

formula (15) and the triangle inequality, we obtain that 

𝛼𝑁 =  |�̂�(𝑢)| ≼
1

𝑁
∑|�̂�(𝑟)||�̂�(𝑟 −  𝑢)|

𝑟

 

≼
1

𝑁
𝛿𝑁|�̂�(−𝑢)| +

1

𝑁
|�̂�(𝑢)|𝛿𝑁 +

1

𝑁
∑ |�̂�(𝑟)||�̂�(𝑟 −  𝑢)|

𝑟≠0,𝑢

.         (17) 

Hence, 
1

𝑁
∑ |�̂�(𝑟)||�̂�(𝑟 −  𝑢)|

𝑟≠0,𝑢

 ≽
𝛼𝑁

2
. 

We have |�̂�(𝑟)|  =  𝛼𝑁𝑅𝛼(𝑟) for all 𝑟 ≠  0. Therefore, 

∑ 𝑅𝛼(𝑟)𝑅𝛼(𝑟 −  𝑢)

𝑟≠0,𝑢

 >
1

2𝛼
.                                              (18) 

It follows from (18) that for all 𝑢 ∈  𝑅𝛼 \ {0} the equation 𝑟1  −  𝑟2  =  𝑢, where 𝑟1, 𝑟2  ∈
 𝑅𝛼 \ {0}, has at least 1/(2𝛼) solutions. Therefore, 𝑅𝛼 has non-trivial additive relations. 

We now proceed to the rigorous proof of Theorem (4.1.5). We shall prove it first in the case 

when 𝑘 =  2 and then in the general case. Let 𝑘 =  2 and let 𝐵 be an arbitrary subset of 

𝑅𝛼 \ {0}. We denote by [𝑁] the segment {1, 2, . . . , 𝑁} of the positive integers. 

We need the following lemma. 

Lemma (4.1.6)[124]: Let 𝛿 and 𝛼′ be real numbers, 0 <  𝛼′  ≼ 𝛿, and let 𝐴 be an arbitrary 

subset of ℤ𝑁 of cardinality 𝛿𝑁. Assume also that 

𝑅𝛼′
′ = {𝑟 ∈  ℤ𝑁 ∶  𝛼

′𝑁 ≼  |�̂�(𝑟)|  <  2𝛼′𝑁}                                        (19) 

and let 𝐵′ be an arbitrary subset of 𝑅𝛼′
′  \ {0}. Then 

𝑇2(𝐵
′)  ≽

(𝛼′)4|𝐵′|4

16𝛿3
. 

Proof. Let 

𝑓𝐵′(𝑥)  =
1

𝑁
∑ �̂�(𝑟)𝑒(𝑟𝑥)

𝑟∈𝐵′

. 

Generally speaking, 𝑓𝐵′(𝑥) is a complex function. It is obvious that 𝑓𝐵′(𝑟) = �̂�(𝑟)𝐵
′(𝑟). 

Consider the sum 

𝜎 =∑|∑𝑓𝐵′(𝑟)�̂�(𝑟 −  𝑠)
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝑟

|

2

𝑠

.                                    (20) 

Using formula (16) and Parseval’s equality, we obtain that 

𝜎 =  𝑁2∑|∑𝑓𝐵′(𝑥)𝐴(𝑥)̅̅ ̅̅ ̅̅ 𝑒(−𝑥𝑠)

𝑥

|

2

𝑠

= 𝑁3∑|𝑓𝐵′(𝑥)|
2𝐴2(𝑥)

𝑥

.                     (21) 
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We estimate ∑ |𝑓𝐵′(𝑟)|
2
𝐴2(𝑥)𝑥  from below using Parseval’s equality and the definition of 

𝑅𝛼′
′ : 

(∑𝑓𝐵′(𝑥)𝐴(𝑥)

𝑥

)

2

= (
1

𝑁
∑𝑓𝐵′(𝑟)�̂�(𝑟)

̅̅ ̅̅ ̅̅

𝑟

)

2

= (
1

𝑁
∑|𝑓𝐵′(𝑟)|

2

𝑟

)

2

 

≽ (𝑁(𝛼′)2|𝐵′|)2  =  (𝛼′)4|𝐵′|2𝑁2.                                  (22) 
On the other hand, we have 

(∑𝑓𝐵′(𝑥)𝐴(𝑥)

𝑥

)

2

≼ (∑|𝑓𝐵′(𝑥)|
2𝐴2(𝑥)

𝑥

)(∑𝐴2(𝑥)

𝑥

) 

= 𝛿𝑁(∑|𝑓𝐵′(𝑥)|
2𝐴2(𝑥)

𝑥

).                                       (23) 

Using inequalities (22) and (23), we obtain that 

𝜎2  ≽
(𝛼′)

𝛿2
|𝐵′|4𝑁8.                                                              (24) 

To obtain an upper bound for 𝜎2, we note that 

𝜎 =∑∑𝑓𝐵′(𝑟)𝑓𝐵′(𝑟)
̅̅ ̅̅ ̅̅ ̅̅ �̂�(𝑟 −  𝑠)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ �̂�(𝑟′ − 𝑠)

𝑟,𝑟′𝑠

 

=∑(∑𝑓𝐵′(𝑟)𝑓𝐵′(𝑟 −  𝑢)
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑟

)(∑�̂�(𝑟)�̂�(𝑟 −  𝑢)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑟

)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑢

,             (25) 

whence 

𝜎2 ≼∑|∑𝑓𝐵′(𝑟)𝑓𝐵′(𝑟 −  𝑢)
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑟

|

2

𝑢

∑|∑�̂�(𝑟)�̂�(𝑟 −  𝑢)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑟

|

2

𝑢

= 𝜎1𝜎2.  (26) 

Using formula (15) and Parseval’s equality, we obtain that 

𝜎2  =  𝑁
2∑|�̂�(𝑢)|

2

𝑢

=  𝛿𝑁4.                                                 (27) 

Since 𝑓𝐵′(𝑟) =  �̂�(𝑟)𝐵
′(𝑟) and 𝐵′  ⊆  𝑅𝛼′

′  \ {0}, we have |𝑓𝐵′(𝑟)|  ≼  2𝛼
′𝐵′(𝑟)𝑁. 

Hence, 

𝜎1  ≼  16(𝛼
′)4𝑇2(𝐵

′)𝑁4.                                                        (28) 
Substituting (27) and (28) into (24), we obtain that 𝑇2(𝐵

′)  ≽  (𝛼′)4|𝐵′|4/(16𝛿3). 
The lemma is proved. 

Let 

𝐵𝑖  =  {𝑟 ∈  𝐵: 2
𝑖−1𝛼𝑁 ≼  |�̂�(𝑟)|  <  2𝑖𝛼𝑁}, 𝑖 ≽  1. 

It is clear that 𝐵 = ∐ 𝐵𝑖𝑖≽1 . Applying Lemma (4.1.6) to every 𝐵𝑖 , we obtain that 𝑇2(𝐵𝑖)  ≽

 (2𝑖−1𝛼)
4
|𝐵𝑖|

4/(16𝛿3), 𝑖 ≽  1. Hence, 

𝑇2(𝐵) ≽∑𝑇2(𝐵𝑖)

𝑖

 ≽
𝛼4

28𝛿3
∑24𝑖|𝐵𝑖|

4

𝑖

.                              (29) 

We have |𝐵|  = ∑ |𝐵𝑖|𝑖 . The Cauchy–Bunyakovsky inequality implies that 

|𝐵|4 = (∑2𝑖2−𝑖|𝐵𝑖|

𝑖

)

4

≼ (∑24𝑖|𝐵𝑖|
4

𝑖

)(∑2−4𝑖 3⁄

𝑖

)

3

≼∑24𝑖|𝐵𝑖|
4

𝑖

.       (30) 

Substituting (30) into (29), we obtain the inequality 
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𝑇2(𝐵) ≽
𝛼4

28𝛿3
|𝐵|4.                                           (31) 

Now consider the general case when 𝑘 >  2. 
Lemma (4.1.7)[124]: Let 𝛿 and 𝛼′ be real numbers, 0 <  𝛼′  ≼  𝛿, let 𝐴 be an arbitrary 

subset of ℤ𝑁 of cardinality 𝛿𝑁 and let 𝑘 ≽  2 be an even number. Assume also that 

𝑅𝛼′
′ = {𝑟 ∈  ℤ𝑁 ∶  𝛼

′𝑁 ≼  |�̂�(𝑟)|  <  2𝛼′𝑁}                                (32) 

and let 𝐵′ be an arbitrary subset of 𝑅𝛼′
′  \ {0}. Then 

𝑇𝑘(𝐵
′) ≽

𝛿(𝛼′)2𝑘|𝐵′|2𝑘

(2𝛿)2𝑘
. 

Proof. Let 𝑓𝐵′(𝑥) be the function defined by the formula 

𝑓𝐵′(𝑥) =
1

𝑁
∑ �̂�(𝑟)𝑒(𝑟𝑥)

𝑟∈𝐵′

. 

Consider the sum 

𝜎 = (∑𝑓𝐵′(𝑥)𝐴(𝑥)

𝑥

)

𝑘

.                                             (33) 

Estimating 𝜎 from below as in Lemma (4.1.6), we obtain that 

𝜎 ≽ ((𝛼′)2|𝐵′|𝑁)𝑘.                                                      (34) 
Since 𝑘 is an even number, it has the form 𝑘 = 2𝑘′, 𝑘′  ∈ ℕ. Using Hölder’s inequality, we 

obtain that 

𝜎 = (∑𝑓𝐵′(𝑥)𝐴(𝑥)

𝑥

)

2𝑘′

≼ (∑|𝑓𝐵′(𝑥)|
2𝑘′𝐴2(𝑥)

𝑥

)(∑𝐴(𝑥)

𝑥

)

𝑘−1

 

= (∑|𝑓𝐵′(𝑥)|
2𝑘′𝐴2(𝑥)

𝑥

) (𝛿𝑁)𝑘−1.                        (35) 

Hence, 

(𝜎′)2 = (∑|𝑓𝐵′(𝑥)|
2𝑘′𝐴2(𝑥)

𝑥

)

2

≽ 𝛿2
(𝛼′)4𝑘

𝛿2𝑘
|𝐵′|2𝑘𝑁2.                        (36) 

On the other hand, the inversion formula (11) implies that 
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𝜎′ =∑|𝑓𝐵′(𝑥)|
2𝑘′𝐴2(𝑥)

𝑥

=
1

𝑁2𝑘
′+2
∑ ∑ ∑𝑓𝐵′(𝑟1)

𝑦,𝑧𝑟1,…,𝑟𝑘′ ,𝑟1
′,…,𝑟

𝑘′
′

∙ ∙ ∙  𝑓𝐵′(𝑟𝑘′)𝑓𝐵′(𝑟1
′)̅̅ ̅̅ ̅̅ ̅̅ ̅  ∙ ∙ 

𝑥

∙  𝑓𝐵′(𝑟𝑘′
′ )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ �̂�(𝑦)�̂�(𝑧)̅̅ ̅̅ ̅̅ × 𝑒 (𝑥(𝑟1 + ∙ ∙ ∙ +𝑟𝑘′ − 𝑟1

′ − ∙ ∙ ∙ −𝑟𝑘′
′ )) 𝑒(𝑥(𝑦 − 𝑧))

=
1

𝑁2𝑘
′+2
∑ ∑ 𝑓𝐵′(𝑟1) ∙ ∙ ∙  𝑓𝐵′(𝑟𝑘′)

𝑟1,…,𝑟𝑘′ ,𝑟1
′,…,𝑟

𝑘′
′

𝑟1+ ∙ ∙ ∙+𝑟𝑘′−𝑟1
′− ∙ ∙ ∙−𝑟

𝑘′
′ −𝑢

𝑢,𝑦

× 𝑓𝐵′(𝑟1
′)̅̅ ̅̅ ̅̅ ̅̅ ̅  ∙ ∙ 

∙  𝑓𝐵′(𝑟𝑘′
′ )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ �̂�(𝑦)�̂�(𝑦 − 𝑢)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

=
1

𝑁2𝑘
′+2
∑(∑�̂�(𝑦)�̂�(𝑦 − 𝑢)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝑦

)

𝑢

×

(

  
 

∑ 𝑓𝐵′(𝑟1) ∙ ∙ ∙  𝑓𝐵′(𝑟𝑘′)𝑓𝐵′(𝑟1
′)̅̅ ̅̅ ̅̅ ̅̅ ̅  ∙ ∙ 

𝑟1,…,𝑟𝑘′ ,𝑟1
′,…,𝑟

𝑘′
′

𝑟1+ ∙ ∙ ∙+𝑟𝑘′−𝑟1
′− ∙ ∙ ∙−𝑟

𝑘′
′ −𝑢

∙  𝑓𝐵′(𝑟𝑘′
′ )̅̅ ̅̅ ̅̅ ̅̅ ̅̅

)

  
 
.        (37) 

Hence, 

(𝜎′)2 ≼
1

𝑁4𝑘
′+2
∑|∑�̂�(𝑦)�̂�(𝑦 − 𝑢)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝑦

|

2

𝑢

 

×∑
|

|
∑ ∑ 𝑓𝐵′(𝑟1) ∙ ∙ ∙  𝑓𝐵′(𝑟𝑘′)𝑓𝐵′(𝑟1

′)̅̅ ̅̅ ̅̅ ̅̅ ̅  ∙ ∙ ∙  𝑓𝐵′(𝑟𝑘′
′ )̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝑟1,…,𝑟𝑘′ ,𝑟1
′,…,𝑟

𝑘′
′

𝑟1+ ∙ ∙ ∙+𝑟𝑘′−𝑟1
′− ∙ ∙ ∙−𝑟

𝑘′
′ −𝑢

𝑦
|

|

2

𝑢

 

=
1

𝑁4𝑘
′+2
𝜎1𝜎2.                                                                                                           (38) 

Using formula (15) and Parseval’s equality, we obtain that 

𝜎1 = 𝑁
2∑|�̂�(𝑢)|

2

𝑢

= 𝛿𝑁4.                                         (39) 

Since 𝐵′  ⊆  𝑅𝛼′
′  \ {0}, we have |𝑓𝐵′(𝑟)|  ≼  2𝛼

′𝐵′(𝑟)𝑁. Hence, 
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𝜎2 ≼ ((2𝛼
′𝑁)2𝑘

′
)
2
∑
|

|
∑ ∑ 𝐵′(𝑟1) ∙ ∙ ∙ 𝐵

′(𝑟𝑘′)𝐵
′(𝑟1

′) ∙ ∙ ∙ 𝐵′(𝑟𝑘′
′ )

𝑟1,…,𝑟𝑘′ ,𝑟1
′,…,𝑟

𝑘′
′

𝑟1+ ∙ ∙ ∙+𝑟𝑘′−𝑟1
′− ∙ ∙ ∙−𝑟

𝑘′
′ −𝑢

𝑦
|

|

2

𝑢

 

= (2𝛼′𝑁)2𝑘𝑇𝑘(𝐵
′).                                                                              (40) 

Using equalities (38), (39) and inequalities (36), (40), we obtain that 

𝑇𝑘(𝐵
′)  ≽

𝛿(𝛼′)2𝑘|𝐵′|2𝑘

(2𝛿)2𝑘
.                                                                 (41) 

The lemma is proved. 

Let 

𝐵𝑖  =  {𝑟 ∈  𝐵: 2
𝑖−1𝛼𝑁 ≼  |�̂�(𝑟)|  <  2𝑖𝛼𝑁}, 𝑖 ≽  1. 

It is clear that 𝐵 = ∐ 𝐵𝑖𝑖≽1 . Applying Lemma (4.1.7) to every 𝐵𝑖 , we obtain that 𝑇𝑘(𝐵𝑖)  ≽

 𝛿(2𝑖−1𝛼)
2𝑘
|𝐵𝑖|

2𝑘/(2𝛿)𝛿2𝑘, 𝑖 ≽  1. Hence, 

𝑇𝑘(𝐵) ≽∑𝑇𝑘(𝐵)

𝑖

≽
𝛿𝛼2𝑘

24𝑘𝛿2𝑘
∑22𝑘𝑖|𝐵𝑖|

2𝑘

𝑖

.                                                      (42) 

We have |𝐵|  = ∑ |𝐵𝑖|𝑖 . Using Hölder’s inequality, we obtain that 

|𝐵|2𝑘 = (∑2𝑖2−𝑖|𝐵𝑖|

𝑖

)

2𝑘

≼ (∑22𝑘𝑖|𝐵𝑖|
2𝑘

𝑖

)(∑2−2𝑘𝑖 (2𝑘−1)⁄

𝑖

)

2𝑘−1

 

≼∑22𝑘𝑖|𝐵𝑖|
2𝑘

𝑖

                                                           (43) 

Substituting (43) into (42), we obtain the inequality 

𝑇𝑘(𝐵) ≽
𝛿𝛼2𝑘

24𝑘𝛿2𝑘
|𝐵|2𝑘.                                                            (44) 

The theorem is proved. 

Let 𝑘 be a positive integer and let 𝑑 ≽  0 be an integer. Let 𝐴 =  (𝑎𝑖𝑗) be the 

2𝑑+1𝑘 × (𝑑 + 1) matrix whose elements 𝑎𝑖𝑗 are defined by the formula 

𝑎𝑖𝑗  

=

{
 
 

 
 
1    if the (𝑖 − 1)st coefficient in the binary expansion of (𝑗 − 1)

is equal to 1 and 1 ≼  𝑗 ≼  2𝑑𝑘,                                               

−1  if the (𝑖 − 1)st coefficient in the binary expansion of (𝑗 − 1)

is equal to 1 and 2𝑑𝑘 <  𝑗 ≼  2𝑑+1𝑘,                                     
0     otherwise.                                                                                              

                  (45) 

Recall that the binary expansion of a positive integer 𝑛 is defined by the rule 𝑛 =
∑𝑛𝑙 ·  2𝑙−1, where 𝑙 ≽  1 and 𝑛𝑙  ∈ {0, 1}. 
For example, when 𝑘 =  2 and 𝑑 =  2 we have 

𝐴 = (
1 1 1
0 1 0
0 0 1

    
1 1 1
1 0 1
1 0 0

     
1 1 −1
0 1 0
1 0 0

      
−1 −1 −1
−1 0 −1
0 −1 −1

     
−1 −1 −1
0 −1 0
0 0 −1

     
−1
−1
−1
) . 

We prove the following theorem. 
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Let 𝑑 ≽  0 be an integer and let {0, 1}𝑑  =  {𝜔 =  (𝜔1, . . . , 𝜔𝑑) ∶  𝜔𝑗  ∈ {0, 1}, 𝑗 =

 1, 2, . . . , 𝑑} be the ordinary d-dimensional cube. If 𝜔 ∈  {0, 1}𝑑 , then |𝜔| is defined to be 

𝜔1 +· · · +𝜔𝑑 . If ℎ =  (ℎ1, . . . , ℎ𝑑)  ∈  ℤ𝑁
𝑑 , then 𝜔 · ℎ ∶=  𝜔1ℎ1 +· · · +𝜔𝑑ℎ𝑑 . 

Let 𝒞 be the operator of complex conjugation. If 𝑛 is a positive integer, then 𝒞𝑛 stands for 

the 𝑛th power of this operator. Let ‖𝜔‖  = ∑ 𝜔𝑖  ·  2
𝑖−1  +  1𝑑

𝑖=1 . For every 𝜔 ∈  {0, 1}𝑑 we 

define a map from ℤ𝑁
2𝑑 to ℤ𝑁 , which we denote by the same symbol 𝜔, by the rule: if 𝑟  ∈

ℤ𝑁
2𝑑 , then 𝜔(𝑟) is the ‖𝜔‖th component of the vector 𝑟. 

Definition (4.1.8)[124]: Let 𝑓 ∶  ℤ𝑁  →  ℂ be an arbitrary function. The uniform Gowers 

norm (or, briefly, the Gowers norm) of 𝑓 is defined to be 

‖𝑓‖𝑈𝑑 ≔ (
1

𝑁𝑑+1
∑ ∏ 𝒞 |𝜔|𝑓(𝑥 + 𝜔 ∙ ℎ)

𝜔∈{0,1}𝑑𝑥∈ℤ𝑁,ℎ∈ℤ𝑁
𝑑

)

1/2𝑑

.                        (46) 

We shall need the following lemma (see [142]). 

Lemma (4.1.9) (the motonicity inequality for Gowers norms)[124]: Let 𝑓 ∶  ℤ𝑁  →  ℂ be 

an arbitrary function and let 𝑑 be a positive integer. Then 

‖𝑓‖𝑈𝑑  ≼  ‖𝑓‖𝑈𝑑+1 .                                                      (47) 
Other properties of the Gowers norms can be found in [142]. 

We show the following lemma. 

Lemma (4.1.10)[124]: Let 𝛿 and 𝛼′ be real numbers, 0 <  𝛼′ ≼  𝛿, let 𝐴 be an arbitrary 

subset of ℤ𝑁 of cardinality 𝛿𝑁, let 𝑘 be a positive integer and let 𝑑 ≽  0 be an integer. 

Assume, moreover, that 

𝑅𝛼′
′ = {𝑟 ∈  ℤ𝑁 ∶  𝛼

′𝑁 ≼  |�̂�(𝑟)|  <  2𝛼′𝑁}                                 (48) 

and let 𝐵′ be an arbitrary subset of 𝑅𝛼′
′  \ {0}. Then the number of solutions of the system 

(46) with 𝑟𝑗  ∈  𝐵
′ is greater than or equal to 

(
𝛿(𝛼′)2𝑘

22𝑘𝛿2𝑘
|𝐵′|2𝑘)

2𝑑

.                                                    (49) 

Proof. Let 𝑓(𝑥) be the function defined by the formula 

𝑓(𝑥)  =
1

𝑁
∑ �̂�(𝑟)𝑒(𝑟𝑥)

𝑟∈𝐵′

. 

Using Hölder’s inequality, we obtain that 

|∑𝑓(𝑥)𝐴(𝑥)

𝑥

|

2𝑘

≼ (∑|𝑓(𝑥)|2𝑘

𝑥

)(∑𝐴(𝑥)

𝑥

)

2𝑘−1

 

 

= (∑|𝑓(𝑥)|2𝑘

𝑥

) (𝛿𝑁)2𝑘−1.                                      (50) 

On the other hand, using Parseval’s equality and the definition of 𝑅𝛼′
′ , we obtain that 

∑𝑓(𝑥)𝐴(𝑥)

𝑥

=
1

𝑁
∑𝑓(𝑟)�̂�(𝑥)̅̅ ̅̅ ̅̅

𝑟

=
1

𝑁
∑|𝑓(𝑟)|

2

𝑟

≽ (𝛼′)2|𝐵′|𝑁.                      (51) 

Consider the sum 
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𝜎 = ‖|𝑓|2𝑘‖
𝑈0
= ‖|𝑓|2𝑘‖

𝑈1
=
1

𝑁
∑|𝑓(𝑥)|2𝑘

𝑥

.                                    (52) 

It follows from (50) and (51) that 

𝜎 ≽
𝛿(𝛼′)4𝑘

𝛿2𝑘
|𝐵′|2𝑘.                                                         (53) 

Using Lemma (4.1.9), we obtain that 

𝜎2
𝑑
≼

1

𝑁𝑑+1
∑ ∑ ∏ |𝑓(𝑥 + 𝜔 ∙ ℎ)|2𝑘

𝜔∈{0,1}𝑑ℎ∈ℤ𝑁
𝑑𝑥∈ℤ𝑁

 

=
1

𝑁𝑑+1
∑ ∑ | ∏ 𝑓(𝑥 + 𝜔 ∙ ℎ)

𝜔∈{0,1}𝑑

|

2𝑘

ℎ∈ℤ𝑁
𝑑𝑥∈ℤ𝑁

.                                (54) 

Using the inversion formula (11), we obtain that 

∏ 𝑓(𝑥 + 𝜔 ∙ ℎ)

𝜔∈{0,1}𝑑

=
1

𝑁2
𝑑 ∑ ∏ 𝑓(𝜔(𝑟))𝑒(𝜔(𝑟))(𝑥 + 𝜔 ∙ ℎ)

𝜔∈{0,1}𝑑𝑟∈ℤ𝑁
2𝑑

.         (55) 

Hence, 

𝜎2
𝑑
=

1

𝑁2
𝑑+1𝑘+𝑑+1

∑ ∑ ∑  

𝑟(1),…,𝑟(𝑘),𝑟(𝑘+1),…,𝑟(2𝑘)∈ℤ𝑁
2𝑑ℎ∈ℤ𝑁

𝑑𝑥∈ℤ𝑁

×∏ ∏ 𝑓(𝜔(𝑖)(𝑟(𝑖)))𝑒(𝜔(𝑖)(𝑟(𝑖))(𝑥 + 𝜔(𝑖) ∙ ℎ))

𝜔(𝑖)∈{0,1}𝑑

𝑘

𝑖=1

× ∏ ∏ 𝑓(𝜔(𝑖)(𝑟(𝑖)))
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑒(−𝜔(𝑖)(𝑟(𝑖))(𝑥 + 𝜔(𝑖)

𝜔(𝑖)∈{0,1}𝑑

2𝑘

𝑖=𝑘+1

∙ ℎ)).                         (56) 
We denote by Σ the system of equations 

∑ ∑ 𝜔(𝑖)(𝑟(𝑖))

 

𝜔(𝑖)∈{0,1}𝑑

𝑘

𝑖=1

= ∑ ∑ 𝜔(𝑖)(𝑟(𝑖))

 

𝜔(𝑖)∈{0,1}𝑑

2𝑘

𝑖=𝑘+1

, 

∑ ∑ 𝜔(𝑖)(𝑟(𝑖))

 

𝜔(𝑖)∈{0,1}𝑑,𝜔1
(𝑖)
=1

𝑘

𝑖=1

= ∑ ∑ 𝜔(𝑖)(𝑟(𝑖))

 

𝜔(𝑖)∈{0,1}𝑑,𝜔1
(𝑖)
=1

2𝑘

𝑖=𝑘+1

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 

∑ ∑ 𝜔(𝑖)(𝑟(𝑖))

 

𝜔(𝑖)∈{0,1}𝑑,𝜔𝑑
(𝑖)
=1

𝑘

𝑖=1

= ∑ ∑ 𝜔(𝑖)(𝑟(𝑖))

 

𝜔(𝑖)∈{0,1}𝑑,𝜔𝑑
(𝑖)
=1

2𝑘

𝑖=𝑘+1

. 

Then 
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𝜎2
𝑑

=
1

𝑁2
𝑑+1𝑘+𝑑+1

∑ ∏ ∏ 𝑓(𝜔(𝑖)(𝑟(𝑖)))

𝜔(𝑖)∈{0,1}𝑑

𝑘

𝑖=1𝑟(1),…,𝑟(𝑘),𝑟(𝑘+1),…,𝑟(2𝑘)∈ℤ𝑁
2𝑑

× ∏ ∏ 𝑓(𝜔(𝑖
′)(𝑟(𝑖

′)))
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝜔(𝑖
′)∈{0,1}𝑑

2𝑘

𝑖′=𝑘+1

 

× ∑ ∑ 𝑒(𝜔(𝑖)(𝑟(𝑖))(𝑥 + 𝜔(𝑖) ∙ ℎ) − 𝜔(𝑖
′)(𝑟(𝑖

′))(𝑥 + 𝜔(𝑖
′) ∙ ℎ))

ℎ∈ℤ𝑁
𝑑𝑥∈ℤ𝑁

=
1

𝑁2
𝑑+1𝑘

∑ ∏ ∏ 𝑓(𝜔(𝑖)(𝑟(𝑖)))

𝜔(𝑖)∈{0,1}𝑑

𝑘

𝑖=1𝑟(1),…,𝑟(𝑘),𝑟(𝑘+1),…,𝑟(2𝑘)∈ℤ𝑁
2𝑑

× ∏ ∏ 𝑓(𝜔(𝑖)(𝑟(𝑖)))
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝜔(𝑖)∈{0,1}𝑑

2𝑘

𝑖=𝑘+1

.                                                                               (57) 

The sum in (57) is taken over the 𝑟(1), … , 𝑟(𝑘), 𝑟(𝑘+1), … , 𝑟(2𝑘) that satisfy Σ. It is easy to 

verify that this system coincides with (46). 

Since 𝑓𝐵′(𝑟)  = �̂�(𝑟)𝐵
′(𝑟) and 𝐵′  ⊆  𝑅𝛼′

′  \ {0}, we have |𝑓𝐵′(𝑟)|  ≼  2𝛼
′𝐵′(𝑟)𝑁. 

Hence, 

𝜎2
𝑑
 ≼  (22𝑘(𝛼′)2𝑘)2

𝑑
𝑁2

𝑑+1𝑘.                                           (58) 
Using inequalities (53), (54) and (58), we finally obtain that 

∑ 1

𝑟(1),…,𝑟(𝑘),𝑟(𝑘+1),…,𝑟(2𝑘)∈Σ

≽ (
𝛿(𝛼′)4𝑘

𝛿2𝑘
|𝐵′|2𝑘)

2𝑑
1

(22𝑘(𝛼′)2𝑘)2
𝑑 

= (
𝛿(𝛼′)2𝑘

22𝑘𝛿2𝑘
|𝐵′|2𝑘)

2𝑑

.                                              (59) 

The sum in (59) is taken over the 𝑟(𝑖), 𝑖 =  1, 2, . . . , 2𝑘, whose components belong to 𝐵′. In 

other words, the number of solutions of the system (46) with 𝑟𝑖  ∈  𝐵
′ is greater than or equal 

to 

(
𝛿(𝛼′)2𝑘

22𝑘𝛿2𝑘
|𝐵′|2𝑘)

2𝑑

. 

The lemma is proved. 

Theorem (4.1.11)[124]: Let 𝛿 and 𝛼 be real numbers, 0 <  𝛼 ≼  𝛿, let A be an arbitrary 

subset of ℤ𝑁 of cardinality 𝛿𝑁, let 𝑘 be a positive integer, let 𝑑 ≽  0 be an integer and let 

𝑅𝛼 be the set defined by (3). Let 𝐵 ⊆  𝑅𝛼  \ {0} be an arbitrary set. Consider the system of 

equations 

∑ 𝑎𝑖𝑗𝑟𝑗

2𝑑+1𝑘

𝑗=1

 =  0, 𝑖 =  1, 2, . . . , 𝑑 +  1,                                               (60) 

where the elements 𝑎𝑖𝑗 of the matrix 𝐴 are defined by formula (45) and 𝑟𝑗  ∈  𝐵 for all 𝑗. 

Then the number of solutions of the system (46) is greater than or equal to 
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(
𝛿𝛼2𝑘

24𝑘𝛿2𝑘
|𝐵|2𝑘)

2𝑑

.                                                      (61) 

To make it clear that Theorem (4.1.11) is a generalization of Theorem (4.1.5), it is sufficient 

to put the 𝑑 in Theorem (4.1.11) equal to zero. 

To prove Theorem (4.1.11), we need some properties of the Gowers norms (see [142]). 

Proof: Let 

𝐵𝑖  =  {𝑟 ∈  𝐵: 2
𝑖−1𝛼𝑁 ≼  |�̂�(𝑟)|  <  2𝑖𝛼𝑁}, 𝑖 ≽  1. 

It is clear that 𝐵 = ∐ 𝐵𝑖𝑖≽1 . 
Let 𝐸 be a set. We denote by 𝑆𝑘,𝑑(𝐸) the number of solutions of the system (46) with 𝑟𝑖  ∈
𝐸. Applying Lemma (4.1.10) to every 𝐵𝑖 , we obtain that 

𝑆𝑘,𝑑(𝐵𝑖) ≽ (
𝛿(2𝑖−1𝛼  )

2𝑘

22𝑘𝛿2𝑘
|𝐵𝑖|

2𝑘)

2𝑑

, 

where 𝑖 ≽  1. Hence, 

𝑆𝑘,𝑑(𝐵) ≽∑𝑆𝑘,𝑑(𝐵𝑖)

𝑖

≽ (
𝛿𝛼2𝑘

22𝑘𝛿2𝑘
)

2𝑑

∑(22𝑘𝑖|𝐵𝑖|
2𝑘)

2𝑑

𝑖

.                               (62) 

We have |𝐵|  = ∑ |𝐵𝑖|𝑖 . Using H�̈�lder’s inequality, we obtain that 

|𝐵|2
𝑑+1𝑘  = (∑2𝑖2−𝑖|𝐵𝑖|

𝑖

)

2𝑑+1𝑘

 

≼ (∑(22𝑘𝑖|𝐵𝑖|
2𝑘)

2𝑑

𝑖

)(∑2−(2
𝑑+1𝑘𝑖) (2𝑑+1𝑘−1)⁄

𝑖

)

2𝑑+1𝑘−1

 

≼∑(22𝑘𝑖|𝐵𝑖|
2𝑘)

2𝑑

𝑖

.                                                                (63) 

Substituting (63) into (62), we obtain the desired inequality 

𝑆𝑘,𝑑(𝐵) ≽ (
𝛿𝛼2𝑘

24𝑘𝛿2𝑘
|𝐵|2𝑘)

2𝑑

.                                                              (64) 

The theorem is proved. 

In the proof of Theorem (4.1.1), Chang used Rudin’s theorem [143] (see also [144]) 

on the dissociative subsets of ℤ𝑁 . A set 𝒟 =  {𝑑1, . . . , 𝑑|𝒟|}  ⊆  ℤ𝑁 is said to be dissociative 

if the congruence 

∑𝜀𝑖𝑑𝑖

|𝒟|

𝑖=1

= 0    (mod 𝑁),                                                       (65) 

where 𝜀𝑖  ∈  {−1, 0, 1}, implies that all the 𝜀𝑖 are equal to zero. 

Theorem (4.1.12) (W. Rudin)[124]: There is an absolute constant 𝐶 >  0 such that for any 

dissociative set 𝒟 ⊆  ℤ𝑁 and any complex numbers 𝑎𝑛  ∈  ℂ the inequality 

1

𝑁
∑ |∑𝑎𝑛𝑒(𝑛𝑥)

𝑛∈𝒟

|

𝑝

𝑥∈ℤ𝑁

≼ (𝐶√𝑝)
𝑝
(∑|𝑎𝑛|

2

𝑛∈𝒟

)

𝑝 2⁄

                                   (66) 

holds for all integers 𝑝 ≽  2. 
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The proofs of Theorem (4.1.12) and Chang’s theorem can also be found in [133], [145]. We 

shall use Rudin’s theorem and Theorem (4.1.5) to derive an analogue of Theorem (4.1.1), 

which only differs from Chang’s theorem in that it gives a somewhat weaker estimate for 

the cardinality of Λ. 
Proposition (4.1.13)[124]: Let 𝛿 and 𝛼 be real numbers, 0 <  𝛼 ≼  𝛿 ≼  1, let 𝐴 be an 

arbitrary subset of ℤ𝑁 of cardinality 𝛿𝑁 and let 𝑅𝛼 be the set defined by (3). Then there is a 

set 𝒟 = {𝑑1, . . . , 𝑑|𝒟|}  ⊆  ℤ𝑁 , |𝒟|  ≼  2
8𝐶2 (

𝛿

𝛼
)
2
 log(1/𝛿), such that every element 𝑟 of 𝑅𝛼 

can be represented in the form 

𝑟 ≡∑𝜀𝑖𝑑𝑖

|𝒟|

𝑖=1

= 0    (mod 𝑁),                                                    (67) 

where 𝜀𝑖  ∈  {−1, 0, 1} and 𝐶 is the absolute constant occurring in Rudin’s inequality 

(66). 

Proof. Let 𝑘 =  2⌈log(1/𝛿)⌉ and let 𝒟 ⊆  𝑅𝛼 be a maximal dissociative set. Since 𝒟 is 

dissociative, we have 0 ∉  𝒟. Using Theorem (4.1.5), we obtain the estimate 

𝑇𝑘(𝒟) ≽
𝛿𝛼2𝑘

24𝑘𝛿2𝑘
|𝒟|2𝑘 .                                                     (68) 

On the other hand, 

𝑇𝑘(𝒟) ≼ 𝐶
2𝑘2𝑘𝑘𝑘|𝒟|𝑘,                                                     (69) 

where 𝐶 is the absolute constant occurring in Theorem (4.1.12). Indeed, let the 𝑎𝑛 in (66) 

be equal to 𝒟(𝑛) and let 𝑝 =  2𝑘. Then the left-hand side of (66) is 𝑇𝑘(𝒟) while the right-

hand side is equal to 𝐶2𝑘2𝑘𝑘𝑘|𝒟|𝑘 . We have 𝑘 =  2⌈log(1/𝛿)⌉. Using (68) and (69), we 

obtain that |𝒟|  ≼  28𝐶2 (
𝛿

𝛼
)
2
 log(1/𝛿). Since 𝒟 is a maximal dissociative subset of 𝑅𝛼 , 

every element 𝑟 of 𝑅𝛼 can be represented in the form 𝑟 ≡ ∑ 𝜀𝑖𝑑𝑖
|𝒟|
𝑖=1 = 0    (mod 𝑁), where 

𝑑𝑖  ∈  𝒟 and 𝜀𝑖  ∈  {−1, 0, 1}. Note that it is only the constant factors in the estimate |𝒟|  ≼

 28𝐶2 (
𝛿

𝛼
)
2
 log(1/𝛿) that are different from those in the corresponding estimate in Chang’s 

theorem. The proposition is proved. 

We shall now strengthen Chang’s theorem. Our method of proof has much in common with 

the methods used in [146]–[148]. 

Corollary (4.1.14)[124]: Let 𝑁 be a positive integer, (𝑁, 6)  =  1, let 𝛿 and 𝛼 be real 

numbers, 0 <  𝛼 ≼  𝛿 log
1

2(1/𝛿), and let 𝑅𝛼 be the set defined by (3). Then there is a Λ∗ ⊆
 ℤ𝑁 , |Λ

∗| ≼  212(𝛿 𝛼⁄ )2log(1/𝛿), such that for any residue 𝑟 ∈  𝑅𝛼 there is a set 𝜆1
∗  , . . . , 𝜆𝑀

∗  

of at most 8 log(1/𝛿) elements of Λ∗ such that 𝑟 ≡ ∑ 𝜀𝑖𝜆𝑖
∗𝑀

𝑖=1     (mod 𝑁), where 𝜀𝑖  ∈
 {−1, 0, 1}. 
In the proof of Theorem (4.1.19) we shall use several auxiliary assertions and definitions. 

Definition (4.1.15)[124]: Let 𝑘 and 𝑠 be positive integers. Consider a family Λ(𝑘, 𝑠) of 

subsets of ℤ𝑁 that has the following property. If Λ =  {𝜆1, . . . , 𝜆|Λ|} belongs to Λ(𝑘, 𝑠), then 

the congruence 

∑𝜆𝑖𝑠𝑖

|Λ|

𝑖=1

≡ 0     (mod 𝑁), 𝜆𝑖 ∈ Λ, 𝑠𝑖 ∈ ℤ, |𝑠𝑖| ≼ 𝑠, ∑|𝑠𝑖|

|Λ|

𝑖=1

≼ 2𝑘,       (70) 

implies that all the 𝑠𝑖 are equal to zero. 

The definition of Λ(𝑘, 1) can be found in [149]. 



116 

Note that for every Λ ∈  Λ(𝑘, 𝑠) we have 0 ∉  Λ and Λ ∩ (−Λ)  =  ∅. It is implicit in what 

follows that the equality of two elements of ℤ𝑁 will always mean that they are equal modulo 

𝑁. For sets belonging to Λ(𝑘, 𝑠), the following upper bound holds for the quantities 𝑇𝑘 . 
Assertion (4.1.16)[124]: Let 𝑘 and 𝑠 be positive integers, let Λ be an arbitrary set belonging 

to the family Λ(𝑘, 𝑠) and assume that |Λ|  ≽  𝑘. Then 

𝑇𝑘(Λ) ≼ 2
3𝑘𝑘𝑘max {1, (

𝑘

|Λ|
)
𝑘

|Λ|𝑘 𝑠⁄ }.                                        (71) 

Proof: Let 𝑥 ∈  ℤ𝑁 be an arbitrary residue and let 𝑁𝑘(𝑥) be the number of (𝜆1, . . . , 𝜆𝑘) such 

that the 𝜆𝑖 belong to Λ and 𝜆1  + · · ·  + 𝜆𝑘  =  𝑥. Then 𝑇𝑘(Λ)  = ∑ 𝑁𝑘
2(𝑥)𝑥 ∈ ℤ𝑁 . Let 𝑠1, . . . , 𝑠𝑙 

be positive integers such that 𝑠1 +· · · +𝑠𝑙  =  𝑘. 
To fix ideas, we assume that 𝑠1, . . . , 𝑠𝑙 are arranged in descending order: 𝑠1  ≽ 𝑠2  ≽ · · · ≽
 𝑠𝑙  ≽  1. 
Let 𝐸(𝑠1, . . . , 𝑠𝑙)(𝑥)  =  {(𝜆1, . . . , 𝜆𝑘): among 𝜆1, . . . , 𝜆𝑘 there are precisely 𝑠1 numbers equal 

to �̃�1, precisely 𝑠2 numbers equal to �̃�2, . .. and precisely 𝑠𝑙 numbers equal to �̃�𝑙 , so that 

𝑠1�̃�1  + · · ·  + 𝑠𝑙�̃�𝑙  =  𝑥, and the �̃�𝑖 are all distinct}. For brevity we denote 𝐸(𝑠1, . . . , 𝑠𝑙)(𝑥) 
by 𝐸(𝑠)(𝑥). Recall that the numbers 𝑠1, . . . , 𝑠𝑙 in the definition of 𝐸(𝑠)(𝑥)  =

 𝐸(𝑠1, . . . , 𝑠𝑙)(𝑥) are such that ∑ 𝑠𝑖
𝑙
𝑖=1 = 𝑘. Then 

𝑁𝑘(𝑥) =∑|𝐸(𝑠)(𝑥)|

𝑠

, 

where the sum is taken over all vectors for which ∑ 𝑠𝑖
𝑙
𝑖=1 = 𝑘. Hence, 

𝜎 = 𝑇𝑘(Λ) = ∑ (∑|𝐸(𝑠)(𝑥)|

𝑠

)

2

𝑥 ∈ ℤ𝑁

.                                     (72) 

Let 𝑠  =  (𝑠1, . . . , 𝑠𝑙) and 𝐺 =  𝐺(𝑠)  =  {𝑖 ∶  𝑠𝑖  ≼  𝑠}, 𝐵 =  𝐵(𝑠)  =  {𝑖 ∶  𝑠𝑖  >  𝑠}. Then 

|𝐺(𝑠)|  + |𝐵(𝑠)|  =  𝑙(𝑠)  =  𝑙. We claim that 

𝑙 ≼  𝑘 −  𝑠|𝐵|.                                          (73) 
Indeed, 

𝑘 =∑𝑠𝑖
𝑖∈𝐺

+∑𝑠𝑖
′

𝑖∈𝐵

≽ |𝐺| + (𝑠 +  1)|𝐵| =  𝑙 +  𝑠|𝐵|,                    (74) 

and (73) follows. 

Example (4.1.17)[124]: Let log |Λ|  > log2 𝑘 and let Λ be an arbitrary set belonging to the 

family Λ(𝑘, 3). Using the inequality (71), we obtain that 𝑇𝑘(Λ) ≼  2
20𝑘𝑘𝑘|Λ|𝑘. 

It is obvious that the order of this estimate cannot be improved, which means that 𝑇𝑘(Λ) ≽

(
|Λ|
𝑘
) (𝑘!)2  ≫  𝑒−𝑘𝑘𝑘|Λ|𝑘 for every Λ and every positive integer 𝑘 such that log |Λ| ≽

log2 𝑘. 
Lemma (4.1.18)[124]: 

|𝐸(𝑠)(𝑥)| ≼
𝑘!

𝑠1!  · · ·  𝑠𝑙!
|Λ||𝐵(𝑠)|                                          (75) 

for all 𝑠 with ∑ 𝑠𝑖
𝑙
𝑖=1 = 𝑘 and all 𝑥  ∈  ℤ𝑁 . 

Proof. Let (𝜆1, . . . , 𝜆𝑘) be an arbitrary set belonging to 𝐸(𝑠)(𝑥). Then ∑ 𝑠𝑖�̃�𝑖
𝑙
𝑖=1 = 𝑥, where 

the �̃�𝑖  ∈  {𝜆1, . . . , 𝜆𝑘} are distinct. Consider another element (𝜆1
′ , . . . , 𝜆𝑘

′ ) of 𝐸(𝑠)(𝑥) with 

∑ 𝜆𝑖
′𝑘

𝑖=1 = ∑ 𝑠𝑖�̃�𝑖
′𝑙

𝑖=1 = 𝑥, where the �̃�𝑖
′ ∈ {𝜆1

′ , . . . , 𝜆𝑘
′ } are distinct. Assume that �̃�𝑖  =  �̃�𝑖

′  for 
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all 𝑖 ∈  𝐵(𝑠). We claim that �̃�𝑖  =  �̃�𝑖
′  for all 𝑖 ∈  𝐺(𝑠). We have ∑ 𝑠𝑖�̃�𝑖

 𝑙
𝑖=1 = 𝑥 = ∑ 𝑠𝑖�̃�𝑖

′𝑙
𝑖=1 . 

Hence, 

∑𝑠𝑖�̃�𝑖
𝑖∈𝐺

=∑𝑠𝑖�̃�𝑖
′

𝑖∈𝐺

. 

Moreover, Λ ∩ (−Λ)  =  ∅. Therefore, 

∑𝑠𝑖�̃�𝑖
𝑖∈𝐺

−∑𝑠𝑖�̃�𝑖
′

𝑖∈𝐺

=∑𝑠𝑖
′𝜆𝑖
0

𝑖∈𝐺

= 0, 

where 𝑠𝑖
′ ∈ ℤ, |𝑠𝑖

′| ≼ 𝑠, ∑ |𝑠𝑖
′| 

𝑖 ≼ 2𝑘 and the 𝜆𝑖
0 ∈ Λ are distinct. The definition of Λ(𝑘, 𝑠) 

implies that all the 𝑠𝑖
′ are equal to zero. Hence, �̃�𝑖  =  �̃�𝑖

′ for all 𝑖 ∈  𝐺(𝑠). 
Therefore, (𝜆1

′ , . . . , 𝜆𝑘
′ ) can be obtained from (𝜆1, . . . , 𝜆𝑘) by a permutation. By the definition 

of 𝐸(𝑠)(𝑥), among 𝜆1, . . . , 𝜆𝑘 there are precisely 𝑠1 equal to �̃�1, 𝑠2 equal to �̃�2, . .. and 𝑠𝑙 equal 

to �̃�𝑙 , and 𝑠1�̃�1 +· · · +𝑠𝑙�̃�𝑙  =  𝑥, where the �̃�𝑖 are all distinct. 

Therefore, the number of permutations of (𝜆1, . . . , 𝜆𝑘) is equal to 𝑘!/(𝑠1!  · · ·  𝑠𝑙!). 
Hence, for a fixed �̃�𝑖 , 𝑖 ∈  𝐵, the number of (𝜆1, . . . , 𝜆𝑘) belonging to 𝐸(𝑠)(𝑥) does not 

exceed 𝑘!/(𝑠1!  · · ·  𝑠𝑙!). Therefore, the cardinality of 𝐸(𝑠)(𝑥) does not exceed 

|Λ||𝐵(𝑠)||𝑘!/(𝑠1!  · · ·  𝑠𝑙!). The lemma is proved. 

We now return to the proof of the assertion and estimate the sum 𝜎. Let 𝑏 be a non-negative 

integer and let 

𝜎𝑏 = ∑ ( ∑ |𝐸(𝑠)(𝑥)|

𝑠: |𝐵(𝑠)|=𝑏

)

2

𝑥 ∈ ℤ𝑁

.                                                       (76) 

It follows from (73) that |𝐵(𝑠)|  ≼  [𝑘/𝑠] for all 𝑠. Combining this with the Cauchy– 

Bunyakovsky inequality, we obtain that 𝜎 ≼ ([(𝑘 − 1) 𝑠⁄ ] + 1)2∑ 𝜎𝑏
[𝑘 𝑠⁄ ]
𝑏=𝑜 . We now fix a 𝑏 

and estimate 𝜎𝑏 as follows. We have 

𝜎𝑏 ≼ ( ∑ ∑ |𝐸(𝑠)(𝑥)|

𝑠: |𝐵(𝑠)|=𝑏𝑥 ∈ ℤ𝑁

)(max
𝑥 ∈ ℤ𝑁

∑ |𝐸(𝑠)(𝑥)|

𝑠: |𝐵(𝑠)|=𝑏

).                     (77) 

Let 𝑃𝑘(𝑠)  =  𝑘!/(𝑠1!  · · ·  𝑠𝑙!). Then 

∑𝑃𝑘(𝑠)

𝑠

≼∑ ∑
𝑘!

𝑠1!  · · ·  𝑠𝑙!

𝑘

𝑠1,…,𝑠𝑙=0
𝑠1+⋯+𝑠𝑙=𝑘

𝑘

𝑖=1

=∑𝑙𝑘
𝑘

𝑖=1

≼ 2𝑘𝑘.                       (78) 

Using Lemma (4.1.18), we obtain that |𝐸(𝑠)(𝑥)|  ≼  𝑃𝑘(𝑠)|Λ|
|𝐵(𝑠)|. Combining this with 

inequality (78), we obtain that 

max
𝑥 ∈ ℤ𝑁

∑ |𝐸(𝑠)(𝑥)|

𝑠: |𝐵(𝑠)|=𝑏

≼ 2𝑘𝑘|Λ|𝑏 .                                                  (79) 

Consider the sum 

∑ ∑ |𝐸(𝑠)(𝑥)|

𝑠: |𝐵(𝑠)|=𝑏𝑥 ∈ ℤ𝑁

.                                                         (80) 

It follows from (73) that this sum is bounded above by the number of (𝜆1, . . . , 𝜆𝑘) ∈ Λ
𝑘 such 

that at most 𝑘 −  𝑠𝑏 of the numbers 𝜆1, . . . , 𝜆𝑘 are distinct. Therefore, 

∑ ∑ |𝐸(𝑠)(𝑥)|

𝑠: |𝐵(𝑠)|=𝑏𝑥 ∈ ℤ𝑁

≼ (
|Λ|
𝑘 − 𝑠𝑏

) (𝑘 − 𝑠𝑏)𝑘 
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≼
|Λ|𝑘−𝑠𝑏

(𝑘 − 𝑠𝑏)!
(𝑘 − 𝑠𝑏)𝑘 ≼ 𝑒𝑘𝑘𝑠𝑏|Λ|𝑘−𝑠𝑏 .  (81) 

Combining this with (79), we obtain that 

𝜎𝑏 ≼ 2𝑒
𝑘𝑘𝑘|Λ|𝑏 (

𝑘

|Λ|
)
𝑠𝑏

|Λ|𝑘.                               (82) 

Hence, 

𝜎 ≼ 2([(𝑘 − 1) 𝑠⁄ ] + 1)2𝑒𝑘𝑘𝑘|Λ|𝑘 ∑ (
𝑘𝑠

|Λ|𝑠−1
)

𝑏
[(𝑘−1) 𝑠⁄ ]

𝑏=𝑜

 

= 2([(𝑘 − 1) 𝑠⁄ ] + 1)2𝑒𝑘𝑘𝑘|Λ|𝑘𝜎∗.                                                       (83) 
We estimate 𝜎∗ as follows. If 𝑘𝑠 ≼ |Λ|𝑠−1, then it is obvious that 𝜎∗ ≼ [(𝑘 − 1)/𝑠] + 1. 

If 𝑘𝑠  >  |Λ|𝑠−1, then𝜎∗ ≼ ([(𝑘 − 1) 𝑠⁄ ] + 1)(𝑘 |Λ|⁄ )𝑘 |Λ|𝑘 𝑠⁄ |Λ|1−1 𝑠⁄ /𝑘. In any case we 

have 𝜎∗ ≼ ([(𝑘 − 1) 𝑠⁄ ] + 1)max{(𝑘 |Λ|⁄ )𝑘 |Λ|𝑘 𝑠⁄ |Λ|1−1 𝑠⁄ /𝑘}. Therefore, 

𝜎 = 𝑇𝑘(Λ) ≼ 2
3𝑘𝑘𝑘|Λ|𝑘max{(𝑘 |Λ|⁄ )𝑘|Λ|𝑘 𝑠⁄ }.                                     (84) 

The assertion is proved. 

Theorem (4.1.19)[124]: Let 𝑁 be a positive integer, (𝑁, 2)  =  1, let 𝛿 and 𝛼 be real 

numbers, 0 <  𝛼 ≼  𝛿 ≼  1/16, let 𝐴 be an arbitrary subset of ℤ𝑁 of cardinality 𝛿𝑁 and let 

𝑅𝛼 be the set defined by (3). Then there is a Λ∗ ⊆ ℤ𝑁 , 
|Λ∗| ≼ max(212(𝛿 𝛼⁄ )2 log(1 𝛿⁄ ), 26 log2(1 𝛿⁄ )),                        (85) 

such that for any residue 𝑟 ∈  𝑅𝛼 there is a set 𝜆1
∗  , . . . , 𝜆𝑀

∗  of at most 8 log(1/𝛿) elements 

of Λ∗ such that 

𝑟 ≡∑𝜀𝑖𝜆𝑖
∗

𝑀

𝑖=1

    (mod 𝑁),                                            (86) 

where 𝜀𝑖  ∈  {−1, 0, 1}. 
If, moreover, 𝑁 is a prime, then there is a set Λ̃  ⊆  ℤ𝑁 , 

|Λ̃| ≼ 212(𝛿 𝛼⁄ )2 log(1 𝛿⁄ ), 26 log2(1 𝛿⁄ ),                                (87) 

such that for every residue 𝑟 ∈  𝑅𝛼 there is a set �̃�1, . . . , �̃�𝑀 of at most 8 log(1/𝛿) elements 

of Λ̃ such that 

𝑟 ≡∑𝜀𝑖�̃�𝑖

𝑀

𝑖=1

    (mod 𝑁),                                            (88) 

where 𝜀𝑖  ∈  {−1, 0, 1}. 
Proof: Let 𝑘 =  2[log(1/𝛿)], let 𝑠 =  2 and let Λ =  {𝜆1, . . . , 𝜆|Λ|} be a maximal subset of 

𝑅𝛼 \ {0} belonging to Λ(𝑘, 𝑠). If 𝑅𝛼  =  {0}, then the proof is obvious. If 𝑅𝛼 \ {0} is non-

empty, then Λ is also non-empty. Let Λ∗  = (⋃ 𝑗−1Λ𝑠
𝑗=1 ) ∪ {0}. Then |Λ∗|  ≼  4|Λ| and 0 ∈

 Λ∗. We claim that for any 𝑥 ∈ 𝑅𝛼 \ {0} there is a 𝑗 ∈  [𝑠] such that 

𝑥𝑗 =∑𝜆𝑖𝑠𝑖

|Λ|

𝑖=1

,     𝑠𝑖 ∈ ℤ, |𝑠𝑖| ≼ 𝑠, ∑|𝑠𝑖|

|Λ|

𝑖=1

≼ 2𝑘.                            (89) 

Then since 𝑗−1𝜆𝑖  ∈  Λ
∗ for all 𝑖 ∈  [|Λ|], 𝑗 ∈  [𝑠], the desired assertion will follow from 

(89). 

Thus, let 𝑥 be an arbitrary element of 𝑅𝛼 \ Λ, 𝑥 ≠  0. Consider relations of the form 

∑ �̃�𝑖𝑠𝑖
|Λ|+1
𝑖=1 = 0, where �̃�𝑖  ∈  Λ∐{𝑥} and 𝑠𝑖  ∈  ℤ, |𝑠𝑖|  ≼  𝑠, ∑ |𝑠𝑖|

|Λ|+1
𝑖=1 ≼ 2𝑘. If all these 



119 

relations are trivial, that is, if for each of them we have 𝑠𝑖  =  0, 𝑖 ∈  [|Λ| + 1], then we 

obtain a contradiction to the maximality of Λ. Hence, there is a non-trivial relation of the 

form (89) such that 𝑗, 𝑠1, . . . , 𝑠|Λ| are not all equal to zero. We have 𝑗 ∈  [−𝑠, . . . , 𝑠]. If 𝑗 =

 0, then we obtain a contradiction to the fact that Λ belongs to Λ(𝑘, 𝑠). Therefore, we can 

assume that 𝑗 ∈  [𝑠]. Since 2𝑘 ≼  8 log(1/𝛿), we obtain that for any 𝑥 ∈  𝑅𝛼 there is a 

{𝜆1
∗ , . . . , 𝜆𝑀

∗ }  ⊂ Λ∗, 𝑀 ≼  8 log(1/𝛿), such that (71) holds. 

We claim that |Λ∗| ≼ max(212(𝛿 𝛼⁄ )2 log(1 𝛿⁄ ), 26 log2(1 𝛿⁄ )). 
If |Λ |  ≼  𝑘2, then |Λ | ≼  24 log2(1 𝛿⁄ ), whence |Λ∗| ≼  26  log2(1 𝛿⁄ ). If |Λ |  ≼  𝑘2, then 

Assertion (4.1.16) implies that 𝑇𝑘(Λ)  ≼  2
3𝑘𝑘𝑘|Λ|𝑘. On the other hand, using Theorem 

(4.1.5) we obtain that 𝑇𝑘(Λ)  ≽  𝛿𝛼
2𝑘|Λ|2𝑘/(24𝑘𝛿2𝑘). Therefore, |Λ | ≼  210 (

𝛿

𝛼
)
2
 log(1/

𝛿), whence |Λ∗| ≼ 212(𝛿 𝛼⁄ )2 log(1 𝛿⁄ ). 
In any case we have |Λ∗| ≼ max(212(𝛿 𝛼⁄ )2 log(1 𝛿⁄ ), 26 log2(1 𝛿⁄ )). 
We now prove the existence of Λ̃. Let 𝑠 =  [log log(1/𝛿)] and let Λ1 be a maximal subset 

of 𝑅𝛼 \ {0} belonging to Λ(𝑘, 𝑠), 𝑘 =  2⌈log(1/𝛿)⌉. Let Λ̃ = ⋃ 𝑗−1Λ1
𝑠
𝑗=1 . 

Then |Λ̃|  ≼  𝑠|Λ1|. Arguments similar to those used above enable us to show that for any 

residue 𝑟 ∈  𝑅𝛼 there is a set {�̃�1, . . . , �̃�𝑀}  ⊂ Λ̃,𝑀 ≼  8 log(1/𝛿), such that (73) holds. 

We prove (72) as follows. If |Λ1|  ≼  𝑘
𝑠/(𝑠−1), then |Λ1|  ≼  2

10 log(1/𝛿) and |Λ̃|  ≼
 𝑠|Λ1|  ≼ 2

12 log(1 𝛿⁄ ) log log(1 𝛿⁄ ). We see that in this case (72) is proved. 

Now let |Λ1|  >  𝑘
𝑠/(𝑠−1). Using Assertion (4.1.16), we obtain that 𝑇𝑘(Λ1)  ≼  2

3𝑘𝑘𝑘|Λ1|
𝑘 . 

On the other hand, Theorem (4.1.5) implies that 𝑇𝑘(Λ1)  ≽  𝛿𝛼
2𝑘|Λ1|

2𝑘/(24𝑘𝛿2𝑘). 
Therefore, |Λ1|  ≼  2

10(𝛿 𝛼⁄ )2 log(1/𝛿), whence |Λ̃|  ≼
212(𝛿 𝛼⁄ )2 log(1 𝛿⁄ ) log log(1 𝛿⁄ ). The 

theorem is proved. 

We shall now apply problems in the combinatorial theory of numbers. 

Let 𝐾 be an arbitrary subset of ℤ𝑁 and 𝜀 ∈  (0, 1) any real number. Then the corresponding 

Bohr set is defined as 

𝐵(𝐾, 𝜀) = {𝑥 ∈ ℤ𝑁 : ‖
𝑟𝑥

𝑁
‖ < 𝜀     ∀𝑟 ∈ 𝐾}, 

where ‖ · ‖ denotes the integer part of a real number. Information on the properties of Bohr 

sets can be found in [150], where, in particular, it is proved that 

𝐵(𝐾, 𝜀) ≽
1

2
𝜀|𝐾|𝑁.                                               (90) 

In her proof of the quantitative version of Freiman’s theorem (see [126] and [133]), Chang 

used the following proposition. 

Proposition (4.1.20)[124]: Let 𝑁 be a positive integer, 𝛿 ∈  (0, 1) a real number and 𝐴 an 

arbitrary subset of ℤ𝑁 with |𝐴|  =  𝛿𝑁. Then 2𝐴 − 2𝐴 contains a Bohr set 𝐵(𝐾, 𝜀) with 

|𝐾|  ≼  8𝛿−1 log(1/𝛿) and 𝜀 = 1/(28 log(1/𝛿)). 
We claim that Proposition (4.1.20) can be strengthened as follows. 

To prove Proposition (4.1.21) we need the following definition. 

Definition (4.1.22)[124]: Let 𝑓, 𝑔 ∶  ℤ𝑁  →  ℂ be arbitrary functions. The convolution of 𝑓 

and 𝑔 is defined to be the function 

(𝑓 ∗ 𝑔)(𝑥) = ∑ 𝑓(𝑦)𝑔(𝑦 − 𝑥)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝑦∈ℤ𝑁

.                                       (91) 

It is obvious that 
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(𝑓 ∗ �̂�)(𝑟) = 𝑓(𝑟)�̂�(𝑟)̅̅ ̅̅ ̅̅ .                                                         (92) 

Proposition (4.1.21)[124]: Let 𝑁 be a positive integer, (𝑁, 2)  =  1, let 0 <  𝛿 ≼  2−256 

be a real number and let 𝐴 be an arbitrary subset of ℤ𝑁 with |𝐴|  =  𝛿𝑁. Then 2𝐴 −  2𝐴 

contains a Bohr set 𝐵(𝐾, 𝜀) with |𝐾|  ≼  215𝛿−1 log(1/𝛿) and 𝜀 = 1/(28 log(1/𝛿)). 
Using formula (90), we obtain that the cardinality of 𝐵(𝐾, 𝜀) in Proposition (4.1.20) is 

greater than or equal to (1/2) ·  2−8𝛿
−1(log (1 𝛿⁄ ))2𝑁. The cardinality of the Bohr set in 

Proposition (4.1.21) is greater than or equal to (1/2) ·  2−2
20𝛿−1 log(1 𝛿⁄ ) log log   (1 𝛿⁄ )𝑁. 

Proof: Let 𝛼 =  𝛿3/2/(2√2). Applying Corollary (4.1.14) to 𝑅𝛼(𝐴), we obtain a set Λ∗  ⊆
 ℤ𝑁 , |Λ

∗|  ≼  215𝛿−1 log(1/𝛿), such that for any residue 𝑟 ∈  𝑅𝛼 there is a set 𝜆1
∗  , . . . , 𝜆𝑀

∗  of 

at most 8 log(1/𝛿) elements of Λ∗ such that (71) holds. 

Let 𝑅𝛼
∗  =  𝑅𝛼 \ {0}. Consider the Bohr set 𝐵1  =  𝐵(𝑅𝛼

∗ , 1/20). For all 𝑥 ∈  𝐵1 and all 𝑟 ∈
 𝑅𝛼
∗  we have 

|1 −  𝑒(𝑟𝑥)| = 2 |sin (
𝜋𝑟𝑥

𝑁
)| ≼

2𝜋

20
<
1

2
.                            (93) 

The expression (𝐴 ∗ 𝐴 ∗ 𝐴 ∗ 𝐴)(𝑥) is obviously equal to the number of quadruples 

(𝑎1, 𝑎2, 𝑎3, 𝑎4)  ∈  𝐴
4 such that 𝑎1  + 𝑎2  − 𝑎3  − 𝑎4  =  𝑥. Hence, (𝐴 ∗  𝐴 ∗  𝐴 ∗  𝐴)(𝑥)  >

 0 if and only if 𝑥 ∈  2𝐴 − 2𝐴. Using formulae (11) and (92), we obtain that 𝑥 belongs to 

2𝐴 −  2𝐴 if and only if ∑ |�̂�(𝑟)|
4

𝑟 𝑒(𝑟𝑥) > 0. Let 𝑥 ∈  𝐵1. Then, using Parseval’s equality 

(2)), we have 

∑|�̂�(𝑟)|
4

𝑟

𝑒(𝑟𝑥) =∑|�̂�(𝑟)|
4

𝑟

−∑|�̂�(𝑟)|
4

𝑟

(10𝑒(𝑟𝑥)) 

>
1

2
∑|�̂�(𝑟)|

4

𝑟

− 2 ∑ |�̂�(𝑟)|
4

𝑟∉𝑅,𝑟≠0

≽
1

2
𝛿4𝑁4 − 2 max

𝑟∉𝑅,𝑟≠0
|�̂�(𝑟)|

2
∑|�̂�(𝑟)|

4

𝑟

 

≽
1

2
𝛿4𝑁4 − 2 ∙

𝛿3𝑁2

8
𝛿𝑁2 =

𝛿4𝑁4

4
> 0.                                                            (94) 

It follows from (94) that the Bohr set 𝐵1 is contained in 2𝐴 − 2𝐴. Consider another Bohr 

set 𝐵2  =  𝐵(Λ
∗, 1/(28 log(1/𝛿)). We claim that 𝐵2  ⊆  𝐵1. Since for any residue 𝑟 ∈  𝑅𝛼

∗  

there is a set 𝜆1
∗ , . . . , 𝜆𝑀

∗  of at most 8 log(1/𝛿) elements of Λ∗ such that (71) holds, the 

inequality 

‖
𝑟𝑥

𝑁
‖ ≼∑‖

𝜆𝑖
∗𝑥

𝑁
‖

𝑀

𝑖=1

≼ 8 log (
1

𝛿
)

1

28 log(1/𝛿)
 <

1

20
                         (95) 

holds for all 𝑥 ∈  𝐵2. Hence, every 𝑥 ∈  𝐵2 belongs to 𝐵1, and we have obtained a Bohr set 

𝐵2  ⊆  2𝐴 −  2𝐴 with the desired properties. The proposition is proved. 

Section (4.2): Relating Rank to Communication Complexity 

We present a new connection between communication complexity and additive 

combinatorics, showing that a well-known conjecture from additive combinatorics known 

as the Polynomial Freiman-Ruzsa Conjecture (PFR, in short), implies better upper bounds 

than currently known on the deterministic communication complexity of a boolean function 

in terms of the rank of its associated matrix. The results show that the PFR Conjecture 

implies that every boolean function has communication complexity 𝑂(𝑟𝑎𝑛𝑘(𝑀)/
𝑙𝑜𝑔 𝑟𝑎𝑛𝑘(𝑀))  where 𝑟𝑎𝑛𝑘(𝑀) is the rank, over the reals, of the associated matrix. We 

view this result as interesting not only due to its being the first sublinear bound (and the first 

advance on this problem since 1997) but also because of its suggestion of a new connection 

between the two vibrant, yet seemingly unrelated, fields of communication complexity and 
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additive combinatorics. The analysis relies on the study of approximate duality, a concept 

closely related to the PFR Conjecture, which was introduced in [152]. 

The main technical contribution improves the bounds on approximate duality, assuming the 

PFR Conjecture, and it does so with simpler proof than in [152]. We view this contribution 

as being of independent interest because of the growing number of applications of the 

“approximate duality method” to theoretical computer science. These include so-far the 

construction of bipartite Ramsey graphs and two-source extractors [152], communication 

complexity (this work), and the subsequent lower bounds for matching vector locally 

decodable codes [153].  

In the two-party communication complexity model two parties — Alice and Bob — 

wish to compute a function 𝑓: 𝑋 × 𝑌 → {0, 1} on inputs x and y where x is known only to 

Alice and y is known only to Bob. In order to compute the function f they must exchange 

bits of information between each other according to some (deterministic) protocol. The 

(deterministic) communication complexity of a protocol is the maximum total number of 

bits sent between the two parties, where the maximum is taken over all pairs of inputs 𝑥, 𝑦. 

We henceforth omit the adjective “deterministic” from our discourse because our results 

deal only with the deterministic model. The communication complexity of the function f, 

denoted by 𝐶𝐶(𝑓), is the minimum communication complexity of a protocol for 𝑓. 

For many applications it is convenient to associate the function 𝑓: 𝑋 × 𝑌 → {0,1} with the 

matrix 𝑀 ∈ {0, 1}𝑋 × 𝑌 whose (𝑥, 𝑦) entry equals 𝑓(𝑥, 𝑦). For a {0, 1}-valued matrix M, let 

𝐶𝐶(𝑀) denote the communication complexity of the boolean function associated with M. 

Let 𝑟𝑎𝑛𝑘(𝑀) denote the rank of M over the reals. We will occasionally consider the rank 

of M over the two-element field 𝔽2 and will denote this by 𝑟𝑎𝑛𝑘𝔽2(𝑀). 

It is well-known since the work of Mehlhorn and Schmidt [154] that  

log 𝑟𝑎𝑛𝑘(𝑀) ≤ 𝐶𝐶(𝑀) ≤ 𝑟𝑎𝑛𝑘(𝑀)                                      (96) 
and it is a fundamental question to find out what is the true worst-case dependency of 𝐶𝐶(𝑀) 
on the rank. The famous log-rank conjecture due to Lovasz and Saks [155]  postulates that 

the true answer is closer to the lower bound of (96).  

Conjecture (4.2.1) (Log-rank)[151]: For every {0, 1}-valued 𝑚𝑎𝑡𝑟𝑖𝑥 𝑀 𝐶𝐶(𝑀) =

log𝑂(1) 𝑟𝑎𝑛𝑘(𝑀).  
Lovasz and Saks also point out that the above conjecture has several other interesting 

equivalent formulations. One of them, due to Nuffelen [156] and Fajtlowicz [157], is the 

following:  

Conjecture (4.2.2)[151]: For every graph 𝐺, 𝜒(�̅�) ≤ log𝑂(1) 𝑟𝑎𝑛𝑘(𝐺), where 𝜒(�̅�) is the 

chromatic number of the complement of G, and rank(G) is the rank of the adjacency matrix 

of G over the reals.  

      Though considerable effort has been made since 1982 in an attempt to narrow the gap 

between lower and upper bounds in (96), the state of the art is not far from where it was 30 

years ago and currently stands at  

𝛺(loglog3 6 𝑟𝑎𝑛𝑘(𝑀)) ≤ 𝐶𝐶(𝑀) ≤ log (
4

3
) 𝑟𝑎𝑛𝑘(𝑀)              (97) 

where log3 6 ≈ 1.63… and log (
4

3
) ≈ 0.41… The upper bound is due to Kotlov [158] and 

improves on the previous best bound of 𝐶𝐶(𝑀) ≤ 𝑟𝑎𝑛𝑘(𝑀)/2 by Kotlov and Lovasz [159]. 

The lower bound is due to Kushilevitz (unpublished, cf. [160]) and improves on a previous 

bound of 𝛺(loglog2 3 𝑟𝑎𝑛𝑘(𝑀)) = 𝛺(log1.58...  𝑟𝑎𝑛𝑘(𝑀)) due to Nisan and Wigderson 

[160].  
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Our main result is stated next. It assumes a wellknown conjecture from additive 

combinatorics — the Polynomial Freiman-Ruzsa (PFR) conjecture — discussed.  

     Quoting the (current) Wikipedia definition, additive combinatorics studies 

“combinatorial estimates associated with the arithmetic operations of addition and 

subtraction”. As such, it deals with a variety of problems that aim to ’quantify’ the amount 

of additive structure in subsets of additive groups. One such a problem is that which is 

addressed by the Polynomial Freiman-Ruzsa conjecture (we shall encounter a different 

problem in additive combinatorics when we get to “approximate duality” later on).  

For 𝐴 ⊆ 𝔽2
𝑛, let 𝐴 + 𝐴 denote the sum-set of A  

𝐴 + 𝐴:= {𝑎 + 𝑎′|𝑎, 𝑎′ ∈ 𝐴} 
where addition is over 𝔽2. It is easy to see that |𝐴 + 𝐴| = |𝐴| if and only if A is an affine 

subspace of 𝔽2
𝑛. The question addressed by the Freiman-Ruzsa Theorem is whether the ratio 

of |𝐴 + 𝐴| to |𝐴| also ’approximates’ the closeness of A to being a subspace, or in other 

words, whether the fact that 𝐴 + 𝐴 is small with respect to the size of A also implies that 

span (𝐴) is small with respect to the size of A. The Freiman-Ruzsa Theorem [161] says that 

this is indeed the case.  

Theorem (4.2.3)[151]: (Freiman-Ruzsa Theorem [161]). If 𝐴 ⊆ 𝔽2
𝑛 has |𝐴 + 𝐴| ≤ 𝐾|𝐴|, 

then |𝑠𝑝𝑎𝑛 (𝐴)| ≤ 𝐾22𝐾
4
|𝐴|. 

     The above theorem was improved in a series of works [162]–[164], culminating in the 

recent work [165] which proved an upper bound on the ratio 
|𝑠𝑝𝑎𝑛(𝐴)|

|𝐴|
 of the form 22𝑘/(2𝑘). 

This bound can be seen to be tight (up to a multiplicative factor of 2) by letting 𝐴 =
{𝑢1, 𝑢2, . . . , 𝑢𝑡}, where 𝑢1, 𝑢2, . . . , 𝑢𝑡 ∈ 𝔽2

𝑛 are linearly independent vectors. Then in this case 

we have |𝐴 + 𝐴| ≈
𝑡

2
|𝐴|, while |𝑠𝑝𝑎𝑛 (𝐴)| = 2𝑡. 

     This example also shows that the ratio 
|𝑠𝑝𝑎𝑛(𝐴)|

|𝐴|
 must depend exponentially on K. 

However, it does not rule out the existence of a large subset 𝐴′ ⊆ 𝐴 for which the ratio 
|𝑠𝑝𝑎𝑛(𝐴′)|

|𝐴′|
 is just polynomial in K, and this is exactly what is suggested by the PFR 

Conjecture:  

Conjecture (4.2.4) (Polynomial Freiman-Ruzsa (PFR))[151]: There exists an absolute 

constant r, such that if 𝐴 ⊂ 𝔽2
𝑛 has |𝐴 + 𝐴| ≤ 𝐾|𝐴|, then there exists a subset 𝐴′ ⊆ 𝐴 of size 

at least 𝐾−𝑟|𝐴| such that |𝑠𝑝𝑎𝑛 (𝐴′)| ≤ |𝐴|. 
Note that the above conjecture implies that |𝑠𝑝𝑎𝑛 (𝐴′)| ≤ |𝐴| ≤ 𝐾𝑟|𝐴′|. The PFR 

conjecture has many other interesting equivalent formulations, see the survey of Green [166] 

for some of them. It is conjectured to hold for subsets of general groups as well and not only 

for subsets of the group 𝔽2
𝑛 but we will be interested only in the latter case. Significant 

progress on this conjecture has been achieved recently by Sanders [167], using new 

techniques developed by Croot and Sisask [168]. Sanders proved an upper bound on the 

ratio 
|𝑠𝑝𝑎𝑛(𝐴′)|

|𝐴′|
 which is quasi-polynomial in K: 

Theorem (4.2.5) (Quasi-polynomial Freiman-Ruzsa Theorem (QFR) [167])[151]: Let 

𝐴 ⊂ 𝔽2
𝑛 be a set such that |𝐴 + 𝐴| ≤ 𝐾|𝐴|. Then there exists a subset 𝐴′ ⊆ 𝐴 of size at least 

𝐾−𝑂(log
3 𝐾)|𝐴| such that |𝑠𝑝𝑎𝑛 (𝐴′)| ≤ |𝐴|. 

   We mentioning several other recent applications of the PFR Conjecture to theoretical 

computer science. The first application, due to Samorodnitsky [169], is to the area of low-

degree testing, with further results by Lovett [170] and Green and Tao [171]. The second 
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application is to the construction of twosource extractors due to Ben-Sasson and Zewi [152]. 

The latter also introduced the notion of approximate duality which plays a central role in 

our proof method as well. The approximate duality method has recently found another 

application to proving lower bounds on locally decodable matching vector codes in the 

subsequent work by Bhowmick, Dvir and Lovett [153]. We describe the approximate duality 

conjecture and our new contributions to its study.  

We improv the bounds on approximate duality, assuming the PFR conjecture. The new 

bound lies at the heart of our proof of the Main Theorem (4.2.20). We believe that Lemma 

(4.2.8) and its proof are of independent interest since they improve and simplify the proof 

of [152], and have already found new interesting applications to the study of locally 

decodable codes [153].  

     For , 𝐵 ⊆ 𝔽2
𝑛, we define the duality measure of A, B in (98) as an estimate of how ‘close’ 

this pair is to being dual  

𝐷(𝐴, 𝐵):= |𝐸𝑎∈𝐴,𝑏∈𝐵[(−1)
〈𝑎,𝑏〉2]|,                           (98) 

where 〈𝑎, 𝑏〉2 denotes the binary inner-product of 𝑎, 𝑏 over 𝔽2, defined by 〈𝑎, 𝑏〉2 =
∑ 𝑎𝑖 · 𝑏𝑖
𝑛
𝑖=1  where all arithmetic operations are in 𝔽2. 

     It can be verified that if 𝐷(𝐴, 𝐵) = 1 then A is contained in an affine shift of 𝐵⊥ which 

is the space dual to the linear 𝔽2-span of B. The question is what can be said about the 

structure of A, B when 𝐷(𝐴, 𝐵) is sufficiently large, but strictly smaller than 1. The 

following theorem from [152] says that if the duality measure is a constant very close to 1 

(though strictly smaller than 1) then there exist relatively large subsets 𝐴′ ⊆ 𝐴,𝐵′ ⊆ 𝐵, such 

that 𝐷(𝐴′, 𝐵′) = 1. 

Theorem (4.2.6) (Approximate duality for nearly-dual sets, [152])[151]: For every 𝛿 >
0 there exists a constant 𝜖 > 0 that depends only on δ, such that if 𝐴, 𝐵 ⊆ 𝔽2

𝑛 satisfy 

𝐷(𝐴, 𝐵) ≥ 1 − 𝜖, then there exist subsets 𝐴′ ⊆ 𝐴, |𝐴′| ≥
1

4
|𝐴| and 𝐵′ ⊆ 𝐵, |𝐵′| ≥ 2−𝛿𝑛|𝐵|, 

such that 𝐷(𝐴′, 𝐵′) = 1. 

      It is conjectured that a similar result holds also when the duality measure is relatively 

small, and in particular when it tends to zero as n goes to infinity. Furthermore, the following 

theorem from [152] gives support to this conjecture, by showing that such bounds indeed 

follow from the PFR conjecture.  

Theorem (4.2.7) (Approximate duality assuming PFR, exponential loss [152])[151]: 

Assuming the PFR Conjecture (4.2.4), for every pair of constants 𝛼 > 𝛿 > 0 there exists a 

constant 𝜁 > 0, depending only on 𝛼 and 𝛿, such that the following holds. If 𝐴, 𝐵 ⊆ 𝔽2
𝑛 

satisfy |𝐴|, |𝐵| > 2𝛼𝑛 and 𝐷(𝐴, 𝐵) ≥ 2−𝜁𝑛, then there exist subsets 𝐴′ ⊆ 𝐴, |𝐴′| ≥ 2−𝛿𝑛|𝐴| 
and 𝐵′ ⊆ 𝐵, |𝐵′| ≥ 2−𝛿𝑛|𝐵| such that 𝐷(𝐴′, 𝐵′) = 1.  

Our main technical contribution is the following generalization of the above theorem.  

Lemma (4.2.8) (Main technical lemma)[151]: Assuming the PFR Conjecture (4.2.4) there 

exists a universal integer r such that the following holds. Suppose that 𝐴, 𝐵 ⊆ {0, 1}𝑛 satisfy 

𝐷(𝐴, 𝐵) ≥ 𝜖. Then for every 𝐾 ≥ 1 and 𝑡 = 𝑛/ log𝐾, there exist subsets 𝐴′, 𝐵′ of 𝐴, 𝐵 

respectively such that 𝐷(𝐴′, 𝐵′) = 1, and 

|𝐴′|

|𝐴|
≥

(

 
 
(
(
𝜖
2)
2𝑡

𝑛𝐾
)(4𝑛)−𝑡

)

 
 

𝑟

,
|𝐵′|

|𝐵|
≥

(

 
 
(
(
𝜖
2)
2𝑡

𝑛𝐾
)2−𝑡

)

 
 

𝑟

            (99) 
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     The proof of the above lemma appears. To see that it is indeed a generalization of 

Theorem (4.2.7) set 𝐾 = 2
𝛿𝑛

3𝑟 , 𝑡 =
3𝑟

𝛿
, 𝜁 =

𝛿

3𝑟·2𝑡
=

𝛿

3𝑟·2
3𝑟
𝛿

, 𝜖 = 2−𝜁𝑛, and note that in this case 

the above lemma assures the existence of |𝐴′| ≥ 2−𝛿𝑛|𝐴|, |𝐵′| ≥ 2−𝛿𝑛|𝐵| such that 

𝐷(𝐴′, 𝐵′) = 1. Note that Lemma (4.2.8) actually improves on the previous Theorem (4.2.7) 

even in this exponential range of parameters in that its parameters do not depend on the sizes 

of the sets A and B as was the case in Theorem (4.2.7).  

     However, the main significance of Lemma (4.2.8) is that it allows one to tradeoff the loss 

in the sizes of 𝐴′ and 𝐵′ with the value of 𝜖 for a wider range of parameters. More 

specifically it allows one to achieve a loss in the sizes of 𝐴′ and 𝐵′ which is only sub-

exponential in n by requiring 𝜖 be a bit larger. In particular, the following corollary of 

Lemma (4.2.8) will enable us to prove the new upper bound of 𝑂(𝑟𝑎𝑛𝑘(𝑀)/𝑙𝑜𝑔 𝑟𝑎𝑛𝑘(𝑀)) 
on the communication complexity of {0, 1}-valued matrices assuming the PFR conjecture. 

Corollary (4.2.9) (Approximate duality assuming PFR, sub-exponential loss)[151]: 

Suppose that 𝐴, 𝐵 ⊆ 𝔽2
𝑛 satisfy 𝐷(𝐴, 𝐵) ≥ 2−√𝑛. Then assuming the PFR Conjecture 

(4.2.4), there exist subsets 𝐴′, 𝐵′ of A, B respectively such that 𝐷(𝐴′, 𝐵′) = 1, and |𝐴′| ≥

2
−
𝑐𝑛

log𝑛 |𝐴|, |𝐵′| ≥ 2
−
𝑐𝑛

log𝑛|𝐵| for some absolute constant c.  

Proof: Follows from Lemma (4.2.8) by setting 𝐾 = 2
4𝑛

log𝑛, 𝑡 =
log 𝑛

4
, = 2−√𝑛. 

     Note that in Corollary (4.2.9) the ratios |𝐴′|/|𝐴|, |𝐵′|/|𝐵| are bounded from below by 

2
−
𝑐𝑛

log𝑛, whereas in Theorem (4.2.7) we only get a smaller bound of the form 2−𝛿𝑛 for some 

constant 𝛿 > 0. However, this improvement comes with a requirement that the duality 

measure D(A, B) is larger — in the above corollary we require that it is at least 2−√𝑛 while 

in Theorem (4.2.7) we only require it to be at least 2−𝜁𝑛 ≪ 2−√𝑛. We note that the bound 

𝐷(𝐴, 𝐵) ≥ 2−√𝑛 can be replaced by 𝐷(𝐴, 𝐵) ≥ exp(−𝑛1−𝜖) for any 𝜖 > 0 at the price of a 

larger constant 𝑐 = 𝑐(𝜖).  
     We stress that a benefit of the proof of Lemma (4.2.8) is that it simplifies the original 

proof of Theorem (4.2.7) in [152]. Indeed, we believe that the presentation of the proof that 

appears is clearer and less involved than that in [152]. Also, the fact that the parameters in 

Lemma (4.2.8) do not depend on the sizes of A and B allows us to deduce new equivalence 

between approximate duality and the PFR conjecture in the exponential range that was not 

previously known. We elaborate on this equivalence in the full version of [173]. 

First we show how our Main Theorem (4.2.20) is deduced from the improved bounds 

on approximate duality in Corollary (4.2.9). Then we give an overview of the proof of 

Lemma (4.2.8) itself.  

      a) From approximate duality to communication complexity upper bounds.: We follow 

the approach of Nisan and Wigderson from [160]. Let the size of a matrix M be the number 

of entries in it and if M is {0, 1}-valued let 𝛿(𝑀) denote its (normalized) discrepancy, 

defined as the absolute value of the difference between the fraction of zero-entries and one-

entries in M. Informally, discrepancy measures how “unbalanced” is M, with 𝛿(𝑀) = 1 

when M is monochromatic — all entries have the same value — and 𝛿(𝑀) = 0 when M is 

completely balanced.  

     Returning to the work of [160], they observed that to prove the log-rank conjecture it 

suffices to show that a {0, 1}-valued matrix M of rank r always contains a monochromatic 

sub-matrix of size |𝑀|/𝑞𝑝𝑜𝑙𝑦(𝑟) where 𝑞𝑝𝑜𝑙𝑦(𝑟) = 𝑟log
𝑂(1) 𝑟 means quasi-polynomial in 
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r. Additionally, they used spectral techniques (i.e., arguing about the eigenvectors and 

eigenvalues of M) to show that any {0, 1}-valued matrix M of rank r contains a relatively 

large submatrix 𝑀′ — of size at least |𝑀|/𝑟
3

2 — that is somewhat biased — its discrepancy 

is at least 1/𝑟
3

2. We show, using tools from additive combinatorics, that 𝑀′ in fact contains 

a pretty large monochromatic submatrix (though not large enough to deduce the log-rank 

conjecture).  

We start by working over the two-element field 𝔽2. This seems a bit counter-intuitive 

because the log-rank conjecture is false over 𝔽2. The canonical counterexample is the inner 

product function 𝐼𝑃(𝑥, 𝑦) = 〈𝑥, 𝑦〉2 — It is well-known (see e.g. [174]) that 𝑟𝑎𝑛𝑘𝔽2(𝑀𝐼𝑃) =

𝑛 while 𝐶𝐶(𝐼𝑃) = 𝑛. However, rather than studying M over 𝔽2 we focus on the biased 

submatrix 𝑀′ and things change dramatically. (As a sanity-check notice that 𝑀𝐼𝑃 does not 

contain large biased submatrices and this does not contradict the work of [160] because the 

rank of 𝑀𝐼𝑃 over the reals is 2𝑛 − 1.)  

     Thus, our starting point is a large submatrix 𝑀′ that has large discrepancy. It is well-

known that 𝑟𝑎𝑛𝑘𝔽2(𝑀
′) ≤ 𝑟𝑎𝑛𝑘(𝑀′) ≤ 𝑟 and that this implies 𝑀′ can be written as 𝑀 =

𝐴⊤ · 𝐵 where 𝐴, 𝐵 are matrices whose columns are vectors in 𝔽2
𝑟. Viewing each of 𝐴, 𝐵 as 

the set of its columns, we have in hand two sets that have a large duality measure as defined 

in (98), namely, 𝐷(𝐴, 𝐵) = 𝛿(𝑀′) ≥ 1/𝑟
3

2. This is the setting in which we apply Corollary 

(4.2.9) and deduce that A, B contain relatively large subsets 𝐴′, 𝐵′ with 𝐷(𝐴′, 𝐵′) = 1. One 

can now verify that the submatrix of 𝑀′ whose rows and columns are indexed by 𝐴′, 𝐵′  
respectively is indeed monochromatic, as needed. We point out that to get our bounds we 

need to be able to find monochromatic submatrices of 𝑀′ even when 𝑀′ is both small and 

skewed (i.e., has many more columns than rows or vice versa). Fortunately, Corollary 

(4.2.9) is robust enough to use in such settings.  

      b) Improved bounds on approximate duality assuming PFR.: We briefly sketch the proof 

of our Main Technical Lemma (4.2.8). We use the spectrum of a set as defined in [175]:  

Definition (4.2.10) (Spectrum)[151]: For a set 𝐵 ⊆ 𝔽2
𝑛 and 𝛼 ∈ [0, 1] let the 𝛼-spectrum 

of B be the set  

𝑆𝑝𝑒𝑐𝛼(𝐵):= {𝑥 ∈ 𝔽2
𝑛||𝐸𝑏∈𝐵[(−1)

〈𝑥,𝑏〉2]| ≥ 𝛼}.                          (100) 

     Notice that 𝐴 ⊆ 𝑆𝑝𝑒𝑐𝜖(𝐵) implies 𝐷(𝐴, 𝐵) ≥ 𝜖 (cf. (98)). In the other direction, 

Markov’s inequality can be used to deduce that 𝐷(𝐴, 𝐵) ≥ 𝜖 implies the existence of 𝐴′ ⊆

𝐴 of relatively large size — |𝐴′| ≥
𝜖

2
|𝐴| — such that 𝐴′ ⊆ 𝑆𝑝𝑒𝑐𝜖

2

(𝐵). To prove our lemma 

we start with 𝐴1 = 𝐴
′ and establish a sequence of sets  

𝐴2 ⊆ 𝐴1 + 𝐴1, 𝐴3 ⊆ 𝐴2 + 𝐴2, … 

such that 𝐴𝑖 ⊆ 𝑆𝑝𝑒𝑐𝜖𝑖(𝐵) for all i. This holds by construction for 𝐴1 with 𝜖1 = 𝜖/2, and we 

show that it is maintained throughout the sequence for increasingly smaller values of 𝜖𝑖(we 

shall use 𝜖𝑖 = 𝜖𝑖−1
2 ). 

     Moving our problem from the field of real numbers to the two-element field 𝔽2 now pays 

off. Each 𝐴𝑖 is of size at most 2𝑛 so there must be an index 𝑖 ≤ 𝑛/ log𝐾 for which |𝐴𝑖+1| ≤
𝐾|𝐴𝑖|, let t be the minimal such index. We use the PFR conjecture together with the Balog– 

Szemeredi–Gowers Theorem ́  II.1 from additive combinatorics to show that our assumption 

that |𝐴𝑡+1| ≤ 𝐾|𝐴𝑡| implies that a large subset 𝐴𝑡
′′ of 𝐴𝑡 has small span (over 𝔽2). 

     We now have in hand a set 𝐴𝑡
′′ which is a relatively large fraction of its span and 

additionally satisfies 𝐷(𝐴𝑡
′′, 𝐵) ≥ 𝜖𝑡 because by construction 𝐴𝑡

′′ ⊆ 𝑆𝑝𝑒𝑐𝜖𝑡(𝐵). We use an 
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approximate duality claim from [152] (Lemma (4.2.12)) which applies when one of the sets 

is a large fraction of its span (in our case the set which is a large fraction of its span is 𝐴𝑡
′′). 

This claim says that 𝐴𝑡
′′ and B each contain relatively large subsets 𝐴𝑡

′ , 𝐵𝑡
′  satisfying 

𝐷(𝐴𝑡
′ , 𝐵𝑡

′) = 1. Finally, recalling 𝐴𝑡
′  is a (carefully chosen) subset of 𝐴𝑡−1 + 𝐴𝑡−1, we argue 

that 𝐴𝑡−1
′  contains a relatively large subset 𝐴𝑡−1

′  that is “dual” to a large subset 𝐵𝑡−1
′  of 𝐵𝑡

′, 

where by “dual” we mean 𝐷(𝐴𝑡−1
′ , 𝐵𝑡−1

′ ) = 1 (in other words 𝐴𝑡−1
′  is contained in an affine 

shift of the space dual to 𝑠𝑝𝑎𝑛 (𝐵𝑡−1
′ )). We continue in this manner to find pairs of “dual” 

subsets for 𝑡 − 2, 𝑡 − 3, . . . , 1 at which point we have found a pair of “dual” subsets of 𝐴, 𝐵 

that have relatively large size, thereby completing the proof. 

      The new connection between additive combinatorics and communication complexity 

seems to us worthy of further study. In particular, the exciting recent advances in additive 

combinatorics [165], [167], [168] use a rich palette of tools that may yield further insights 

into problems in communication complexity. We end by briefly pointing out a few 

directions we find interesting.  

      c) Improved unconditional bounds on communication complexity: Given the recent 

QFR result of [167] (Theorem (4.2.5)) which comes very close to proving the PFR 

conjecture, it is interesting to see if it implies any unconditional improvement on 

communication complexity of low-rank matrices. Looking at our proof of Lemma (4.2.8), 

we apply the PFR conjecture to a subset 𝐴𝑡
′  of 𝐴𝑡 which satisfies |𝐴𝑡

′ + 𝐴𝑡
′ | ≤ 𝐾′|𝐴𝑡

′ | for 

𝐾′ ≈ 𝐾/𝜖2
𝑡
. For 𝜖 <

1

2
 this gives a non-trivial bound only if 𝑡 = 𝑂(log 𝑛). Since t could be 

as large as 𝑛/ log𝐾 we are forced to choose 𝐾 = 2
𝛺(

𝑛

log𝑛
)
 which implies in turn 𝐾′ =

2
𝛺(

𝑛

log𝑛
)
. Thus, Sander’s QFR Theorem (4.2.5) does not yield any non-trivial bounds in our 

case. However, for purposes of improving the unconditional upper bound of Kotlov (cf. 2) 

say, to 𝐶𝐶(𝑀) ≤ 𝑟𝑎𝑛𝑘(𝑀)/4, it suffices to improve the loss in the size of A in Theorem 

(4.2.5) from 𝐾−𝑂(log3 𝐾) to 𝐾−𝑐 log𝐾 for a sufficiently small constant c.  

     d) Improved conditional bounds: The bounds on approximate duality in can possibly be 

significantly improved. For all we know, the exponential loss of 2−𝑂(√𝑛) shown May be 

tight, and this would lead to an improved version of Corollary (4.2.9) in which the sizes of 

|𝐴′|, |𝐵′| are a 2−𝑂(√𝑛) fraction of A and B respectively, instead of the 2
−𝑂(

𝑛

log𝑛
)
 loss we 

currently have. Such a result would translate directly to an upper bound on communication 

complexity of the form 𝐶𝐶(𝑀) ≤ 𝑂 (√𝑟𝑎𝑛𝑘(𝑀)). In order to make further progress one 

might want to also consider working over finite fields that are larger than 2, or over the reals. 

As a first step in this direction, one may wish to investigate whether there are interesting 

approximate duality statements over such fields.  

     e) Does the log-rank conjecture imply the PFR conjecture?: Alternatively, does it have 

any other nontrivial consequences in additive combinatorics? We believe the answer to this 

question is positive and make a step in this direction by showing an equivalence between 

approximate duality and PFR statements in the exponential range, namely, when the losses 

in the sizes of sets in both approximate duality and PFR is exponential in n (See [173] for 

an exact statement and details of the proof.) 

We contain the proof of the Main Technical Lemma (4.2.8). The proof of Main 

Theorem (4.2.20) given Corollary (4.2.9).  

We prove our Main Technical Lemma (4.2.8). We start with some additive 

combinatorics.  
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     f) Additive combinatorics preliminaries: In what follows all arithmetic operations are 

taken over 𝔽2. For the proof of Lemma (4.2.8) we need two other theorems from additive 

combinatorics. The first is the well-known Balog–Szemeredi–Gowers Theorem of [176], 

[11]. 

Theorem (4.2.11)[151]: (Balog–Szemeredi–Gowers). There exist fixed polynomials 

𝑓(𝑥, 𝑦), 𝑔(𝑥, 𝑦) such that the following holds for every subset A of an abelian additive 

group. If A satisfies Pr
𝑎,𝑎′∈𝐴

[𝑎 + 𝑎′ ∈ 𝑆] ≥ 1/𝐾 for |𝑆| ≤ 𝐶|𝐴|, then one can find a subset 

𝐴′ ⊆ 𝐴 such that |𝐴′| ≥ |𝐴|/𝑓(𝐾, 𝐶), and |𝐴′ + 𝐴′| ≤ 𝑔(𝐾, 𝐶)|𝐴|. 
The second is a lemma from [152] which can be seen as an approximate duality statement 

which applies when one of the sets has small span:  

Lemma (4.2.12)[151]: (Approximate-duality for sets with small span, [152]). If 𝐷(𝐴, 𝐵) ≥

𝜖, then there exist subsets 𝐴′ ⊆ 𝐴,𝐵′ ⊆ 𝐵, |𝐴′| ≥
𝜖

4
|𝐴|, |𝐵′| ≥

𝜖2

4

|𝐴|

|𝑠𝑝𝑎𝑛(𝐴)|
|𝐵|, such that 

𝐷(𝐴′, 𝐵′) = 1. If 𝐴 ⊆ 𝑆𝑝𝑒𝑐𝜖(𝐵) then we have |𝐴′| ≥ |𝐴|/2 and |𝐵′| ≥ 𝜖2
|𝐴|

|𝑠𝑝𝑎𝑛(𝐴)|
|𝐵| in 

the statement above.  

Recall the definition of the spectrum given in (100):  

𝑆𝑝𝑒𝑐𝛼(𝐵):= {𝑥 ∈ 𝔽2
𝑛||𝐸𝑏∈𝐵[(−1)

〈𝑥,𝑏〉2]| ≥  𝛼}. 

Finally, for 𝑆 ⊂ 𝔽2
𝑛 and 𝑥 ∈ 𝔽2

𝑛 let 𝑟𝑒𝑝𝑆(𝑥) be the number of different representations of x 

as an element of the form 𝑠 + 𝑠′ where 𝑠, 𝑠′ ∈ 𝑆. 𝑟𝑒𝑝𝑆(𝑥) can also be written, up to a 

normalization factor, as 1𝑆 ∗ 1𝑆(𝑥) where 1𝑆 is the indicating function of the set S and ∗ 
denotes convolution.  

     g) Proof overview: We construct a decreasing sequence of constants  

𝜖1 =
𝜖

2
, 𝜖2 =

𝜖1
2

2
, 𝜖3 =

𝜖2
2

2
,… 

and a sequence of sets 𝐴1: = 𝐴 ∩ 𝑆𝑝𝑒𝑐𝜖1(𝐵), 𝐴2 ⊆ (𝐴1 + 𝐴1) ∩ 𝑆𝑝𝑒𝑐𝜖2(𝐵), 𝐴3 ⊆ (𝐴2 +

𝐴2) ∩ 𝑆𝑝𝑒𝑐𝜖3(𝐵),… 

Since each of the sets in the sequence is of size at most 2𝑛 there must be an index 𝑖 ≤
𝑛/ log𝐾 for which  

|𝐴𝑖+1| ≤ 𝐾|𝐴𝑖|                                                    (101) 
and let t be the minimal such index. The PFR Conjecture (4.2.4) together with the Balog–

Szemeredi–Gowers Theorem (4.2.11) will be used to deduce from (101) that a large subset 

𝐴𝑡
′′ of 𝐴𝑡 has small span. Applying Lemma (4.2.12) to the sets 𝐴𝑡

′′ and B implies the 

existence of large subsets 𝐴𝑡
′ ⊆ 𝐴𝑡 and 𝐵𝑡

′ ⊆ 𝐵 such that 𝐷(𝐴𝑡
′ , 𝐵𝑡

′) = 1. Finally we argue 

inductively for 𝑖 = 𝑡 −  1, 𝑡 −  2, . . . , 1 that there exist large subsets 𝐴𝑖
′ ⊆ 𝐴𝑖 and 𝐵𝑖

′ ⊆ 𝐵 

such that 𝐷(𝐴𝑖
′ , 𝐵𝑖

′) = 1. The desired conclusion will follow from the 𝑖 = 1 case. To be able 

to “pull back” and construct a pair of large sets 𝐴𝑖−1
′ , 𝐵𝑖−1

′  from the pair 𝐴𝑖
′ , 𝐵𝑖

′ we make sure 

every element in 𝐴𝑖 is the sum of roughly the same number of pairs in 𝐴𝑖−1 × 𝐴𝑖−1. 

     h) The sequence of sets: Let 𝜖1: =  𝜖/2, 𝐴1: = 𝐴 ∩ 𝑆𝑝𝑒𝑐𝜖1(𝐵). Assuming 𝐴𝑖−1, 𝜖𝑖−1 have 

been defined set 𝜖𝑖 = 𝜖𝑖−1
2 /2 and let 𝑗𝑖 ∈ {0, . . . , 𝑛 − 1} be an integer index which 

maximizes the size of  

{(𝑎, 𝑎′) ∈ 𝐴𝑖−1|𝑎 + 𝑎
′ ∈ 𝑆𝑝𝑒𝑐𝜖𝑖(𝐵)𝑎𝑛𝑑 2

𝑗𝑖 ≤ 𝑟𝑒𝑝𝐴𝑖−1(𝑎 + 𝑎
′) ≤ 2𝑗𝑖+1}    (102) 

and set  

𝐴𝑖: = {𝑎 + 𝑎
′|
𝑎, 𝑎′ ∈ 𝐴𝑖−1, 𝑎 + 𝑎

′ ∈ 𝑆𝑝𝑒𝑐𝜖𝑖(𝐵)  𝑎𝑛𝑑

2𝑗𝑖 ≤ 𝑟𝑒𝑝𝐴𝑖−1(𝑎 + 𝑎
′) ≤ 2𝑗𝑖+1              

}                      (103) 
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Claim (4.2.13)[151]: For 𝑖 = 1 we have |𝐴1| ≥ (
𝜖

2
) |𝐴|. For 𝑖 > 1 we have 

Pr
𝑎,𝑎′∈𝐴𝑖−1

[𝑎 + 𝑎′ ∈ 𝐴𝑖] ≥ 𝜖𝑖/𝑛                                        (104) 

and additionally  

|𝐴𝑖| ≥
𝜖𝑖

2𝑗𝑖+1𝑛
 |𝐴𝑖−1|

2.                                                (105) 

Proof: The case of 𝑖 = 1 follows directly from Markov’s inequality. For larger i we argue 

that  

Pr
𝑎,𝑎′∈𝐴𝑖−1

[𝑎 + 𝑎′ ∈ 𝑆𝑝𝑒𝑐𝜖𝑖(𝐵)] ≥ 𝜖𝑖 . 

To see this use Cauchy-Schwarz to get  

𝔼𝑎,𝑎′∈𝐴𝑖−1|𝔼𝑏∈𝐵(−1)
〈𝑎+𝑎′,𝑏〉| = 𝔼𝑏∈𝐵(𝔼𝑎∈𝐴𝑖−1[(−1)

〈𝑎,𝑏〉])
2
≥ (𝔼

𝑎∈𝐴𝑖−1,𝑏∈𝐵[(−1)
〈𝑎,𝑏〉]

2 = 𝜖𝑖−1
2  

and apply Markov’s inequality to deduce that an 𝜖𝑖-fraction of (𝑎, 𝑎′) ∈ 𝐴𝑖−1 × 𝐴𝑖−1 sum 

to an element of 𝑆𝑝𝑒𝑐𝜖𝑖(𝐵). Selecting 𝑗𝑖 to maximize (102) yields inequality (104). Since 

every element 𝑥 ∈ 𝐴𝑖 can be represented as 𝑥 = 𝑎 + 𝑎′ with 𝑎, 𝑎′ ∈ 𝐴𝑖−1 in at most 2𝑗𝑖+1 

different ways we deduce (105) from (104) and complete the proof. 

      i) The inductive claim: Let 𝑡 be the minimal index such that |𝐴𝑡+1| ≤ 𝐾|𝐴𝑡| and note 

that 𝑡 ≤ 𝑛/ log𝐾 because all sets 𝐴𝑖 are contained in 𝔽2
𝑛. We shall prove the following claim 

by backward induction.  

Claim (4.2.14) (Inductive claim)[151]: For 𝑖 = 𝑡, 𝑡 − 1, . . . , 1 there exist subsets  

𝐴𝑖
′ ⊆ 𝐴𝑖 , 𝐵𝑖

′ ⊆ 𝐵  
such that 𝐷(𝐴𝑖

′ , 𝐵𝑖
′) = 1 and 𝐴𝑖

′ , 𝐵𝑖
′ are not too small:  

|𝐴𝑖
′| ≥ 𝑝𝑜𝑙𝑦 (

𝜖𝑡+1
𝑛𝐾
) (4𝑛)−(𝑡−𝑖) (∏𝜖ℓ+1

𝑡

ℓ=𝑖

) |𝐴𝑖|, 

|𝐵𝑖
′| ≥ 𝑝𝑜𝑙𝑦 (

𝜖𝑡+1
𝑛𝐾
) 2−(𝑡−𝑖)|𝐵| 

     We split the proof of the claim to two parts. The base case (Proposition (4.2.15)) is proved 

using the tools from additive combinatorics listed in the beginning. The inductive step is 

proved in Proposition (4.2.16) using a graph construction. Before proving Claim (4.2.14) 

we show how it implies Lemma (4.2.8).  

     Proof of Main Technical Lemma (4.2.8): Set 𝑖 = 1 in Claim (4.2.14) above. Recall that 

𝜖𝑖+1 = 𝜖𝑖
2/2 for all i, so  

𝜖ℓ+1 = 𝜖
2ℓ/22

ℓ−1 ≥ (
𝜖

2
)
2ℓ

. 

Thus we have 𝜖𝑡+1 ≥ (
𝜖

2
)
2𝑡

 and ∏ 𝜖ℓ+1
𝑡
ℓ=1 ≥ (

𝜖

2
)
2𝑡+1

. This gives the bounds on 𝐴′, 𝐵′ stated 

in (99).  

Proposition (4.2.15) (Base case of Claim (4.2.14) (𝒊 = 𝒕))[151]: There exist subsets 𝐴𝑡
′ ⊆

𝐴𝑡 , 𝐵𝑡
′ ⊆ 𝐵𝑡 such that 𝐷(𝐴𝑡

′ , 𝐵𝑡
′) = 1 and 𝐴𝑡

′ , 𝐵𝑡
′ are not too small:  

|𝐴𝑡
′ | ≥ 𝑝𝑜𝑙𝑦 (

𝜖𝑡+1
𝑛𝐾
) |𝐴𝑡|, 

|𝐵𝑡
′| ≥ 𝑝𝑜𝑙𝑦 (

𝜖𝑡+1
𝑛𝐾
) |𝐵|. 

Proof: 
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By assumption |𝐴𝑡+1| ≤ 𝐾|𝐴𝑡| and Pr
𝑎,𝑎′∈𝐴𝑡

[𝑎 + 𝑎′ ∈ 𝐴𝑡+1] ≥  𝜖𝑡+1/𝑛 by (105). Hence we 

can apply the Balog–Szemeredi–Gowers Theorem (Theorem (4.2.11)) to the set 𝐴𝑡 to obtain 

a subset �̃�𝑡 ⊆ 𝐴𝑡 such that  

|�̃�𝑡| ≥ 𝑝𝑜𝑙𝑦 (
𝜖𝑡+1
𝑛𝐾
) |𝐴𝑡|, 

And 

|�̃�𝑡 + �̃�𝑡| ≤ 𝑝𝑜𝑙𝑦 (
𝑛𝐾

𝜖𝑡+1
) |𝐴𝑡| = 𝑝𝑜𝑙𝑦 (

𝑛𝐾

𝜖𝑡+1
) |�̃�𝑡|. 

Now we can apply the PFR Conjecture (4.2.4) to the set �̃�𝑡 which gives a subset 𝐴𝑡
′′ ⊆ �̃�𝑡 

such that  

|𝐴𝑡
′′| ≥ 𝑝𝑜𝑙𝑦 (

𝜖𝑡+1
𝑛𝐾
) |�̃�𝑡| = 𝑝𝑜𝑙𝑦 (

𝜖𝑡+1
𝑛𝐾
) |𝐴𝑡|, 

And 

|𝑠𝑝𝑎𝑛 (𝐴𝑡
′′)| ≤ |�̃�𝑡| = 𝑝𝑜𝑙𝑦 (

𝑛𝐾

𝜖𝑡+1
) |𝐴𝑡

′′|. 

Recall that 𝐴𝑡
′′ ⊆ 𝑆𝑝𝑒𝑐𝜖𝑡(𝐵), and in particular 𝐷(𝐴𝑡

′′ , 𝐵) ≥ 𝜖𝑡. Applying Lemma (4.2.12) to 

the sets 𝐴𝑡
′′ and B we conclude that there exist subsets 𝐴𝑡

′ ⊆ 𝐴𝑡
′′, 𝐵′ ⊆ 𝐵 such that 

𝐷(𝐴𝑡
′ , 𝐵′) = 1, and which satisfy |𝐴𝑡

′ | ≥
1

2
|𝐴𝑡
′′| and 

|𝐵𝑡
′| ≥ 𝜖𝑡

2
|𝐴𝑡
′′|

|𝑠𝑝𝑎𝑛 (𝐴𝑡
′′)|
|𝐵| = 𝑝𝑜𝑙𝑦 (

𝜖𝑡+1
𝑛𝐾
) |𝐵|. 

This completes the proof of the base case.  

Proposition (4.2.16) (Inductive step of Claim (4.2.14))[151]: For every 𝑖 = 𝑡 −  1, . . . , 1 

there exist subsets 𝐴𝑖
′ ⊆ 𝐴𝑖 , 𝐵𝑖

′ ⊆ 𝐵 such that 𝐷(𝐴𝑖
′ , 𝐵𝑖

′) = 1 and 𝐴𝑖
′ , 𝐵𝑖

′ are not too small:  

|𝐴𝑖
′| ≥ 𝑝𝑜𝑙𝑦 (

𝜖𝑡+1
𝑛𝐾
) (4𝑛)−(𝑡−𝑖) (∏𝜖ℓ+1

𝑡

ℓ=𝑖

) |𝐴𝑖|, 

|𝐵𝑖
′| ≥ 𝑝𝑜𝑙𝑦 (

𝜖𝑡+1
𝑛𝐾
) 2−(𝑡−𝑖)|𝐵|. 

Proof: Suppose that the claim is true for i and argue it holds for index 𝑖 − 1. Let 𝐺 =
(𝐴𝑖−1, 𝐸) be the graph whose vertices are the elements in 𝐴𝑖−1, and (𝑎, 𝑎′) is an edge if 𝑎 +
𝑎′ ∈ 𝐴𝑖

′. We bound the number of edges in this graph from below. Recall from (103) that 

every 𝑎 ∈ 𝐴𝑖
′ (where 𝐴𝑖

′ ⊆ 𝐴𝑖) satisfies 2𝑗𝑖 ≤ 𝑟𝑒𝑝𝐴𝑖−1(𝑎) ≤ 2
𝑗𝑖+1. Using this we get  

|𝐸| ≥ 2𝑗𝑖 · |𝐴𝑖
′| ≥ 2𝑗𝑖 (

𝜖𝑡+1
𝑛𝐾
)
𝑂(1) |𝐴𝑖|

(4𝑛)(𝑡−𝑖)
∏𝜖ℓ+1

𝑡

ℓ=𝑖

≥ 2𝑗𝑖 (
𝜖𝑡+1
𝑛𝐾
)
𝑂(1) |𝐴𝑖−1|

2

(4𝑛)(𝑡−𝑖)
𝜖𝑖

2𝑗𝑖+1𝑛
∏𝜖ℓ+1

𝑡

ℓ=𝑖

= 2 · (
𝜖𝑡+1
𝑛𝐾
)
𝑂(1) |𝐴𝑖−1|

2

(4𝑛)(𝑡−(𝑖−1))
∏ 𝜖ℓ+1

𝑡

ℓ=𝑖−1

 

The first inequality follows because 𝑟𝑒𝑝𝐴𝑖−1(𝑥) ≥ 2
𝑗𝑖 for all 𝑥 ∈ 𝐴𝑖

′, the second uses the 

induction hypothesis and the third follows by (105).  
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Let 𝑀:= 𝑝𝑜𝑙𝑦 (
𝜖𝑡+1

𝑛𝐾
) (4𝑛)−(𝑡−(𝑖−1))(∏ 𝜖ℓ+1

𝑡
ℓ=𝑖−1 ). Since our graph has at least 2𝑀|𝐴𝑖−1|

2 

edges and |𝐴𝑖−1| vertices, it has a connected component with at least 2𝑀|𝐴𝑖−1| vertices and 

denote by 𝐴𝑖−1
′′  the set of vertices in it.  

     Choose an arbitrary element a in 𝐴𝑖−1
′′ . Partition 𝐵𝑖

′ into two sets 𝐵𝑖,0
′  and 𝐵𝑖,1

′  such that 

all elements in 𝐵𝑖,0
′  have inner product 0 with a, and all elements in 𝐵𝑖,1

′  have inner product 

1 with a. Let 𝐵𝑖−1
′  be the larger of 𝐵𝑖,0

′ , 𝐵𝑖,1
′ , and note that |𝐵𝑖−1

′ | ≥ |𝐵𝑖
′|/2. Recall that our 

assumption was that 𝐷(𝐴𝑖
′ , 𝐵𝑖

′) = 1. Abusing notation, let 〈𝐴𝑖
′ , 𝐵𝑖

′〉2 denote the value of 

〈𝑎′, 𝑏′〉2 for some 𝑎′ ∈ 𝐴𝑖
′ , 𝐵𝑖

′ (the choice of 𝑎′, 𝑏′ does not matter because 𝐷(𝐴𝑖
′ , 𝐵𝑖

′) = 1). 
Next we consider two cases — the case where 〈𝐴𝑖

′ , 𝐵𝑖
′〉2 = 0, and the case where 〈𝐴𝑖

′ , 𝐵𝑖
′〉2 =

1. 

     In the first case we have that for every 𝑎, 𝑎′ ∈ 𝐴𝑖−1
′′  which are neighbors in the graph, 

𝑎 + 𝑎′ ∈ 𝐴𝑖
′, and therefore 〈𝑎 + 𝑎′, 𝑏〉2 = 0 for every 𝑏 ∈ 𝐵𝑖−1

′ . This implies in turn that 

〈𝑎, 𝑏〉2 = 〈𝑎
′, 𝑏〉2 for all elements 𝑎, 𝑎′ ∈ 𝐴𝑖−1

′′  which are neighbors in the graph, 𝑏 ∈ 𝐵𝑖−1
′ . 

Since 𝐴𝑖−1
′′  induces a connected component, and due to our choice of 𝐵𝑖−1

′′ , this implies that 

𝐷(𝐴𝑖−1
′′ , 𝐵𝑖−1

′ ) = 1 so we set 𝐴𝑖−1
′ = 𝐴𝑖−1

′′ .  

     In the second case we have that 〈𝑎 + 𝑎′, 𝑏〉2 = 1 for every 𝑎, 𝑎′ ∈ 𝐴𝑖−1
′′  which are 

neighbors in the graph, 𝑏 ∈ 𝐵𝑖−1
′ . In particular this implies that 〈𝑎, 𝑏〉2 = 〈𝑎

′, 𝑏〉2 + 1 for 

every elements 𝑎, 𝑎′ ∈ 𝐴𝑖−1
′′  which are neighbors in the graph, 𝑏 ∈ 𝐵𝑖−1

′ . This means that 

𝐴𝑖−1
′′  can be partitioned into two sets 𝐴𝑖−1,0

′ , 𝐴𝑖−1,1
′ , where the first one contains all elements 

in 𝐴𝑖−1
′′  that have inner product 0 with all elements in 𝐵𝑖−1

′′ , while the second set contains all 

elements in 𝐴𝑖−1
′′  that have inner product 1 with all elements in 𝐵𝑖−1

′ . We set 𝐴𝑖−1
′  to be the 

larger of these two sets and get 𝐷(𝐴𝑖−1
′ , 𝐵𝑖−1

′ ) = 1 and |𝐴𝑖−1
′ | ≥ 𝑀|𝐴𝑖−1|.  

Concluding, in both cases we obtained subsets 𝐴𝑖−1
′ , 𝐵𝑖−1

′  of 𝐴𝑖−1, 𝐵 respectively, such that 

𝐷(𝐴𝑖−1
′ , 𝐵𝑖−1

′ ) = 1 and 𝐴𝑖−1
′ , 𝐵𝑖−1

′  are not too small:  

|𝐴𝑖−1
′ |

|𝐴𝑖−1|
≥ (
𝜖𝑡+1
𝑛𝐾
)
𝑂(1)

(4𝑛)−(𝑡−(𝑖−1)) (∏ 𝜖ℓ+1

𝑡

ℓ=𝑖−1

), 

and  
|𝐵𝑖−1
′ |

|𝐵|
≥
1

2

|𝐵𝑖
′|

|𝐵|
≥
1

2
𝑝𝑜𝑙𝑦 (

𝜖𝑡+1
𝑛𝐾
)2−(𝑡−𝑖) = 𝑝𝑜𝑙𝑦 (

𝜖𝑡+1
𝑛𝐾
) 2−(𝑡−(𝑖−1)) 

This concludes the proof of the inductive claim.  

We prove our main theorem, Theorem (4.2.20) given Corollary (4.2.9). The proof of 

the main technical lemma is deferred.  

     We start by repeating the necessary definitions. For a {0, 1}-valued matrix M, let 𝐶𝐶(𝑀) 
denote the communication complexity of the boolean function associated with M. Let 

rank(M) and 𝑟𝑎𝑛𝑘𝔽2(𝑀) denote the rank of M over the reals and over 𝔽2, respectively. We 

denote by |𝑀| the total number of entries in M, and by |𝑀0| and |𝑀1| the number of zero 

and non-zero entries of M, respectively. We say that M is monochromatic if either |𝑀| =

|𝑀0| or |𝑀| = |𝑀1|. Finally, we define the discrepancy 𝛿(𝑀) of M to be the ratio 
||𝑀0|−|𝑀1||

|𝑀|
 

. Recall the statements of Theorem (4.2.20) and Corollary (4.2.9).  

Assuming the PFR conjecture (Conjecture (4.2.4)), for every {0, 1}-valued matrix M, 

𝐶𝐶(𝑀) = 𝑂 (
𝑟𝑎𝑛𝑘(𝑀)

log 𝑟𝑎𝑛𝑘(𝑀)
). 
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Suppose that 𝐴, 𝐵 ⊆ 𝔽2
𝑛 satisfy 𝐷(𝐴, 𝐵) ≥ 2−√𝑛. Then assuming the PFR conjecture, 

there exist subsets 𝐴′, 𝐵′ of A, B respectively such that 𝐷(𝐴′, 𝐵′) = 1, and |𝐴′| ≥

2
−
𝑐𝑛

log𝑛|𝐴|, |𝐵′| ≥ 2
−
𝑐𝑛

log𝑛|𝐵| for some absolute constant c.  

We first prove that the above corollary is equivalent to the following one:  

Lemma (4.2.17) (Main technical lemma, equivalent matrix form)[151]: Let M be a 
{0, 1}-valued matrix with no identical rows or columns, of rank at most r over 𝔽2, and of 

discrepancy at least 2−√𝑟. Then assuming the PFR conjecture (Conjecture (4.2.4)), there 

exists a monochromatic submatrix 𝑀′ of M of size at least 2
−
𝑐𝑟

log𝑟|𝑀| for some absolute 

constant c.  

Proof: We prove only the Corollary (4.2.9) ⇒ Lemma (4.2.17) implication. The proof of 

the converse implication is similar. Denote the number of rows and columns of M by 𝑘, ℓ  

respectively. It is well known that the rank of M over a field 𝔽 equals r if and only if M can 

be written as the sum of r rank one matrices over the field 𝔽. Since 𝑟𝑎𝑛𝑘𝔽2(𝑀) ≤ 𝑟 this 

implies in turn that there exist subsets 𝐴, 𝐵 ⊆ 𝔽2
𝑟 , 𝐴 = {𝑎1, 𝑎2, . . . , 𝑎𝑘}, 𝐵 = {𝑏1, 𝑏2, . . . , 𝑏} 

such that 𝑀𝑖,𝑗 = 〈𝑎𝑖 , 𝑏𝑗〉2 for all 1 ≤ 𝑖 ≤ 𝑘, 1 ≤ 𝑗 ≤ ℓ. Since M has no identical rows or 

columns we know that |𝐴| = 𝑘, |𝐵| = ℓ. Note that 𝐷(𝐴, 𝐵) = 𝛿(𝑀) ≥ 2−√𝑟. 
Corollary (4.2.9) now implies the existence of subsets 𝐴′ ⊆ 𝐴,𝐵′ ⊆ 𝐵, |𝐴′| ≥

2
−
𝑐𝑟

log𝑟|𝐴|, |𝐵′| ≥ 2
−
𝑐𝑟

log𝑟|𝐵|, such that 𝐷(𝐴′, 𝐵′) = 1. Let 𝑀′ be the submatrix of M whose 

rows and columns correspond to the indices in 𝐴′ and 𝐵′ respectively. The fact that 

𝐷(𝐴′, 𝐵′) = 1 implies that 𝑀𝑖,𝑗 = 〈𝑎𝑖 , 𝑏𝑗〉2  ≡ const for all 𝑎𝑖 ∈ 𝐴
′, 𝑏𝑗 ∈ 𝐵

′. Therefore 𝑀′ is 

a monochromatic submatrix of M of which satisfies  

|𝑀′| = |𝐴′||𝐵′| ≥ 2
−
2𝑐𝑟
log 𝑟|𝐴||𝐵| = 2

−
2𝑐𝑟
log 𝑟|𝑀|, 

as required.  

     In order to prove Theorem (4.2.20) we follow the highlevel approach of Nisan and 

Wigderson [160] which was explained. They showed that in order to prove the log-rank 

conjecture it suffices to prove that every {0, 1}-valued matrix of low rank has a large 

monochromatic submatrix. We start with the following lemma.  

Theorem (4.2.18)[151]: (Existence of submatrix with high discrepancy [160]). Every 

{0, 1}-valued matrix M has a submatrix 𝑀′ of size at least (𝑟𝑎𝑛𝑘(𝑀))
−
3

2|𝑀| and with 

𝛿(𝑀′) ≥ (𝑟𝑎𝑛𝑘(𝑀))
−
3

2. 

Lemma (4.2.19)[151]: (Existence of large monochromatic submatrix assuming PFR). 

Assuming the PFR conjecture, every {0, 1}-valued matrix M with no identical rows or 

columns has a monochromatic submatrix of size at least 2
−𝑂(

𝑟𝑎𝑛𝑘(𝑀)

log𝑟𝑎𝑛𝑘(𝑀)
)
|𝑀|. 

In order to prove the above lemma we use Lemma (4.2.17), together with the following 

theorem from [160], which says that every {0, 1}-valued matrix M contains a submatrix of 

high discrepancy:  

Proof: Let 𝑟 = 𝑟𝑎𝑛𝑘(𝑀). Theorem (4.2.18) implies the existence of a submatrix M of 𝑀′ 

with |𝑀′| ≥ (𝑟𝑎𝑛𝑘(𝑀))
−
3

2|𝑀|, and 𝛿(𝑀′) ≥ 𝑟−
3

2 ≫ 2−√𝑟. Note also that  

𝑟𝑎𝑛𝑘𝔽2(𝑀) ≤ 𝑟𝑎𝑛𝑘(𝑀
′) ≤ 𝑟𝑎𝑛𝑘(𝑀) = 𝑟. 
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Lemma (4.2.17) then implies the existence of a monochromatic submatrix 𝑀′′ of 𝑀′ of size 

at least 2
−
𝑐𝑟

log𝑟|𝑀′| for some absolute constant c. So we have that 𝑀′′ is a monochromatic 

submatrix of M which satisfies  

|𝑀′′| ≥ 2
−
𝑐𝑟
log 𝑟|𝑀′| ≥ 2

−
𝑐𝑟
log 𝑟𝑟−

3
2|𝑀| = 2

−𝑂(
𝑟

log 𝑟
)
|𝑀| 

Theorem (4.2.20) (Main)[151]: Assuming the PFR Conjecture (4.2.4), for every {0, 1}-
valued matrix M  

𝐶𝐶(𝑀) = 𝑂 (
𝑟𝑎𝑛𝑘(𝑀)

log 𝑟𝑎𝑛𝑘(𝑀)
). 

Proof:  

     Let M be a {0, 1}-valued matrix. We will construct a deterministic protocol for M with 

communication complexity 𝑂 (
𝑟𝑎𝑛𝑘(𝑀)

log 𝑟𝑎𝑛𝑘(𝑀)
). We may assume w.l.o.g that M has no repeated 

rows or columns, otherwise we can eliminate the repeated row or column and the protocol 

we construct for the “compressed” matrix (with no repeated rows/columns) will also be a 

protocol for M.  

     We follow the high level approach of the proof of Theorem 2 from [160]. We will show 

a protocol with 2
𝑂(

𝑟

log𝑟
)
 leaves. This will suffice since it is wellknown that a protocol with t 

leaves has communication complexity at most 𝑂(log 𝑡) (cf. [174]).  

      Now we describe the protocol. Let Q be the largest monochromatic submatrix of M. 

Then Q induces a natural partition of M into 4 submatrices Q, R, S, T with R sharing the 

rows of Q and S sharing the columns of Q.  

𝑀 = (
𝑄 𝑅
𝑆 𝑇

) 

     Let 𝑈1 be a subset of the rows of (𝑄|𝑅) whose restriction to the columns of R span the 

rows of R. Similarly, let 𝑈2 be a subset of the rows of (𝑆|𝑇) whose restriction to the columns 

of S span the rows of S. Note that if Q is the all zeros matrix then the rows of 𝑈1 are 

independent of the rows of 𝑈2. Otherwise, if Q is the all ones matrix then the rows of 𝑈1 are 

independent of all the rows of 𝑈2 except possibly for the vector in 𝑈2 whose restriction to 

the columns of S is the all ones vector (if such vector exists). Thus since Q is monochromatic 

we have that 𝑟𝑎𝑛𝑘(𝑅) + 𝑟𝑎𝑛𝑘(𝑆) = |𝑈1| + |𝑈2| ≤ 𝑟𝑎𝑛𝑘(𝑀) + 1. 

     If 𝑟𝑎𝑛𝑘(𝑅) ≤ 𝑟𝑎𝑛𝑘(𝑆) then the row player sends a bit saying if his input belongs to the 

rows of Q or not. The players continue recursively with a protocol for the submatrix (𝑄|𝑅) 
or the submatrix (𝑆|𝑇) according to the bit sent. If 𝑟𝑎𝑛𝑘(𝑅) ≥ 𝑟𝑎𝑛𝑘(𝑆) the roles of the row 

and column players are switched.  

     Suppose without loss of generality that 𝑟𝑎𝑛𝑘(𝑅) ≤ 𝑟𝑎𝑛𝑘(𝑆). Then after sending one bit 

we continue with either the matrix (𝑄|𝑅) which is of rank at most 𝑟𝑎𝑛𝑘(𝑀)/2 or with the 

matrix (𝑆|𝑇) which — thanks to Lemma (4.2.19) — is of size at most (1 −  𝛿)|𝑀| for 𝛿 ≥

2
−
𝑐𝑟

log𝑟. 

Let 𝐿(𝑚, 𝑟) denote the number of leaves in the protocol starting with a matrix of area at 

most m and rank at most r. Then we get the following recurrence relation:  

𝐿(𝑚, 𝑟) ≤ {𝐿 (𝑚,
𝑟

2
) + 𝐿(𝑚(1 −  𝛿), 𝑟)   𝑟 > 1

1                                                    𝑟 = 1
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It remains to show that in the above recursion (𝑚, 𝑟) = 2^𝑂 (
𝑟

log 𝑟
). Applying the recurrence 

iteratively 1/𝛿 times to the right-most summand we get  

𝐿(𝑚, 𝑟) ≤ 𝛿−1𝐿(𝑚, 𝑟/2) + 𝐿 (𝑚(1 −  𝛿)
1
𝛿 , 𝑟) ≤ 2

𝑐𝑟
log(𝑟)𝐿(𝑚, 𝑟/2) + 𝐿(𝑚/2, 𝑟).  

Set 𝐴(𝑚, 𝑟):= 2
−
2𝑐𝑟

log𝑟𝐿(𝑚, 𝑟). Then we have 𝐴(𝑚, 𝑟) ≤ 𝐴(𝑚, 𝑟/2) + 𝐴(𝑚/2, 𝑟) which 

together with 𝐴(1, 𝑟), 𝐴(𝑚, 1) ≤ 1 imply 𝐴(𝑚, 𝑟) ≤ (
log𝑚 + log 𝑟

log 𝑟
) since we may apply 

the recursion iteratively at most log r times to the left term and log𝑚 times to the right term 

before we reach 𝐴(1, 𝑟) or 𝐴(𝑚, 1). This in turn implies 𝐴(𝑚, 𝑟) ≤ (
log𝑚 + log 𝑟

log 𝑟
) ≤

𝑟𝑂(log 𝑟) due to the fact that 𝑟 ≤ 𝑚 ≤ 22𝑟, since we may assume there are no identical rows 

or columns in the matrix M.  

Concluding, we have (𝑚, 𝑟) ≤ 2
2𝑐𝑟

log𝑟
+𝑂(log2 𝑟)

, which implies in turn 𝐶𝐶(𝑀) = 𝑂(𝑟/ log 𝑟) 
as claimed.  

Section (4.3): The Structure of the Spectrum of Small Sets 

For 𝐺 be a finite Abelian group, and let 𝐴 be a subset of 𝐺. For a character 𝛾 ∈  𝐺, 
the corresponding Fourier coefficient of 1𝐴  

1    ̂ 𝐴(𝛾)  =   ∑  

𝑥∈𝐴

 𝛾(𝑥).  

The spectrum of 𝐴 is the set of characters with large Fourier coefficients, 

𝑆𝑝𝑒𝑐𝜀(𝐴)  =  {𝛾 ∈  �̂� ∶  |1    ̂ 𝐴(𝛾)|  ≥  𝜀|𝐴|}. 
Note that the spectrum of a set is a symmetric set, that is 𝑆𝑝𝑒𝑐𝜀(𝐴)  =  −𝑆𝑝𝑒𝑐𝜀(𝐴), where 

we view 𝐺 as an additive group (which is isomorphic to 𝐺). Understanding the structure of 

the spectrum of sets is an important topic in additive combinatorics, with several striking 

applications discussed below. As we illustrate, there is a gap in our knowledge between 

combinatorial structural results, which apply to all elements in the spectrum, and statistical 

structural results, which apply to most elements in the spectrum. The former results apply 

only to large sets, typically of the size |𝐴|  ≥  |𝐺|𝑐 for some absolute constant 𝑐 >  0, where 

the latter results apply also for smaller sets. The goal is to bridge this gap.  

Our interest in this problem originates from applications of it in computational complexity, 

where a better understanding of the structure of the spectrum of small sets can help to shed 

light on some of the main open problems in the area, such as constructions of two source 

extractors [19], [15], [152] or the log rank conjecture in communication complexity [151]. 

We refer to a survey by applications of additive combinatorics in theoretical computer 

science [179]. We focus on the core mathematical problem, and do not discuss applications 

further.  

We assume from now on that |𝐴|  =  |𝐺|𝛼 where 𝛼 >  0, 𝜀 >  0 are arbitrarily small 

constants, which is the regime where current techniques fail. In fact, our results extend to 

some range of sub-constant parameters, but only mildly. First, we review the current results 

on the structure of the spectrum, and their limitations.  

Size bound The most basic property of the spectrum is that it cannot be too large. Parseval’s 

identity bounds the size of the spectrum by  

|𝑆𝑝𝑒𝑐𝜀(𝐴)| ≤
|𝐺|

𝜀2|𝐴|
 =
|𝐺|1−𝛼

𝜀2
 .  
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However, this does not reveal any information about the structure of the spectrum, except 

from a bound on its size.  

Dimension bound 𝐴 combinatorial structural result on the spectrum was obtained by Chang 

[126]. She discovered that the spectrum is low dimensional. For a set 𝛤 ⊆  �̂�, denote its 

dimension as the minimal integer 𝑑, such that there exist 𝛾1, . . . , 𝛾𝑑  ∈  �̂� with the following 

property: any element 𝛾 ∈  𝛤 can be represented as 𝛾 = ∑𝜀𝑖𝛾𝑖  with 𝜀𝑖  ∈  {−1, 0, 1}. With 

this definition, Chang’s theorem asserts that  

𝑑𝑖𝑚(𝑆𝑝𝑒𝑐𝜀(𝐴))  ≤  𝑂(𝜀
−2 𝑙𝑜𝑔(|𝐺|/|𝐴|)).  

Chang [126] used this result to obtain improved bounds for Freiman’s theorem on sets with 

small doubling, and Green [130] used it to find arithmetic progressions in sumsets. 

Moreover, Green [145] showed that the bound in Chang’s theorem cannot in general be 

improved, at least when 𝐴 is not too small. Recently, Bloom [178] obtained sharper bounds 

for a large subset of the spectrum. He showed that there exists a subset 𝛤 ⊆  𝑆𝑝𝑒𝑐𝜀(𝐴) of 

size |𝛤|  ≥  𝜀 ·  |𝑆𝑝𝑒𝑐𝜀(𝐴)| such that  

𝑑𝑖𝑚(𝛤)  ≤  𝑂(𝜀−1 𝑙𝑜𝑔(|𝐺|/|𝐴|)).  
He applied these structural results to obtain improved bounds for Roth’s theorem and related 

problems. However, we note that in our regime of interest, where |𝐴|  =  |𝐺|𝛼 with 0 <
𝛼 <  1, both results become trivial if ε is a small enough constant. This is because both give 

a bound on the dimension of the form 𝑂(𝜀−𝑐(1 −  𝛼))  · log |𝐺| with 𝑐 ∈  {1, 2}. However, 

any set 𝛤 ⊆  �̂� trivially has dimension at most log |𝐺|. As our interest is in the regime of 

any arbitrarily small constant 𝛼, 𝜀 >  0, we need to turn to a different set of techniques.  

Statistical doubling Bourgain [1] showed that for many pairs of elements in the spectrum, 

their sum lands in a small set. Concretely,  

Pr
𝛾1,𝛾2∈𝑆𝑝𝑒𝑐𝜀(𝒜)

  [𝛾1  +  𝛾2  ∈  𝑆𝑝𝑒𝑐𝜀2/2(𝐴)]  ≥  𝜀
2/2,  

where we note that by Parseval’s identity, |𝑆𝑝𝑒𝑐𝜀2/2(𝐴)|  ≤  𝑂(|𝐺|1
−𝛼/𝜀4). He used these 

results to obtain improved bounds on exponential sums. Similar bounds can be obtained for 

linear combinations of more than two elements in the spectrum, for example as done by 

Shkredov [124]. If we assume that |𝑆𝑝𝑒𝑐𝜀2/2(𝐴)|  ≤  𝐾|𝑆𝑝𝑒𝑐𝜀(𝐴)| and apply the Balog–

Szemerédi–Gowers theorem [176], [11], this implies that there exists a large subset 𝛤 ⊆
 𝑆𝑝𝑒𝑐𝜀(𝐴) such that |𝛤 +  𝛤|  ≤  (𝐾/𝜀)𝑂(106)|𝛤|. However, it does not provide any bounds 

on the sumset of the entire spectrum, that is on |𝑆𝑝𝑒𝑐𝜀(𝐴)  +  𝑆𝑝𝑒𝑐𝜀(𝐴)|. In fact, we will 

later see an example showing that this sumset could be much large than the spectrum, 

whenever 𝜀 ≤  1/2.  
The motivating question for the current work is to understand whether the statistical 

doubling result described above, can be applied for the entire spectrum. That is, can we 

obtain combinatorial structural results on the sumset of the entire spectrum 𝑆𝑝𝑒𝑐𝜀(𝐴)  +
 𝑆𝑝𝑒𝑐𝜀(𝐴).  
As a first step, we ask for which 𝛼, 𝜀 >  0 is is true that, for any set 𝐴 of size |𝐴|  =  |𝐺|𝛼 , 
the sumset 𝑆𝑝𝑒𝑐𝜀(𝐴)  +  𝑆𝑝𝑒𝑐𝜀(𝐴) is much smaller than the entire group. There are two 

regimes where this is trivially true. First, when 𝛼 >  1/2, it is true since by Parseval’s 

identity, 𝑆𝑝𝑒𝑐𝜀(𝐴) is smaller than the square root of the group size, and hence 

 |𝑆𝑝𝑒𝑐𝜀(𝐴)  +  𝑆𝑝𝑒𝑐𝜀(𝐴)| ≤ |𝑆𝑝𝑒𝑐𝜀(𝐴)|
2  ≤

 |𝐺|2 − 2𝛼

𝜀4
 .  

Also, when 𝜀 >  1/2 then 𝑆𝑝𝑒𝑐𝜀(𝐴)  +  𝑆𝑝𝑒𝑐𝜀(𝐴)  ⊆  𝑆𝑝𝑒𝑐2𝜀−1(𝐴) (see, e.g., [175] for a 

proof) and hence again by Parseval’s identity, the size of the sumset is bounded by  



135 

|𝑆𝑝𝑒𝑐𝜀(𝐴) +  𝑆𝑝𝑒𝑐𝜀(𝐴)| ≤ |𝑆𝑝𝑒𝑐𝜀(𝐴)|
2  ≤

|𝐺|1−𝛼

(2𝜀 −  1)2
 .  

As the following example shows, the thresholds of 𝛼 =  1/2, 𝜀 =  1/2 are tight.  

Example (4.3.1)[177]: Let 𝐺 = ℤ2
2𝑛 and 𝐴 =  (ℤ2

𝑛  ×  {0𝑛})  ∪ ({0𝑛}  × ℤ2
𝑛 ). Then |𝐴|  =

 2|𝐺|1/2  −  1, 𝑆𝑝𝑒𝑐1/2(𝐴)  =  𝐴 and 𝐴 +  𝐴 =  𝐺.  

So, it seems that such structural results are hopeless when 𝛼, 𝜀 <  1/2. However, there is 

still hope: in the example, if we restrict to a large subset 𝐴 = ℤ2
𝑛  ×  {0𝑛}  ⊆  𝐴, then 

𝑆𝑝𝑒𝑐1/2(𝐴 )  =  {0
𝑛}  ×  ℤ2

𝑛 is a subgroup, and specifically the size of 𝑆𝑝𝑒𝑐1/2(𝐴 )  +

 𝑆𝑝𝑒𝑐1/2(𝐴 ) is bounded away from the entire group. Our first result is that this is true in 

general. In fact, the size of the sum set is close to the bound given by Parseval’s identity, 

which is approximately |𝐺|1−𝛼 .  
A more refined notion of structure is that of bounded doubling. Here, we say that a 

set 𝛤 has a doubling constant 𝐾 if |𝛤 +  𝛤|  ≤  𝐾|𝛤|. Note that if |𝑆𝑝𝑒𝑐𝜀(𝐴 )| has size close 

to the bound given by Parseval’s identity, which is roughly |𝐺|1−𝛼 , then Theorem (4.3.3) 

would show that 𝑆𝑝𝑒𝑐𝜀(𝐴 ) has a small doubling constant 𝐾 =  𝐶|𝐺|𝛿 . We conjecture that 

this is always the case. However, we could only show it if we are allowed to change the 

value of 𝜀 somewhat. We state both the theorem and the conjecture below.  

Conjecture (4.3.2)[177]: Fix 0 < 𝛿 < 𝛼 <  1/2 and 0 <  𝜀 <  1/2. Let 𝐴 ⊆  𝐺 of size 

|𝐴|  ≥  |𝐺| 𝛼. Then there exists a subset 𝐴′ ⊆  𝐴 of size |𝐴′ |  ≥  |𝐴|/𝐶 such that  

|𝑆𝑝𝑒𝑐𝜀(𝐴′ )  +  𝑆𝑝𝑒𝑐𝜀(𝐴′ )|  ≤  𝐶|𝐺|
𝛿  ·  |𝑆𝑝𝑒𝑐𝜀(𝐴′ )|,  

where 𝐶 =  𝐶(𝜀, 𝛿). 
We use big-O notation. For two quantities 𝑥,𝒴, the expression 𝑥 =  𝑂(𝒴) means 

𝑥 ≤  𝑐𝒴 for an unspecified absolute constant 𝑐 >  0. We also use 𝑐, 𝑐′ , 𝑐1, etc. to denote 

unspecified absolute constants, where the big-O notation may be confusing. The value of 

these may change between different instantiations of them. We make no effort to optimize 

constants. Also we use 𝐸 as average operator, i.e., 𝔼𝑎 ∈ 𝐴𝑓  =
1

|𝐴|
  ∑  𝑎∈𝐴  𝑓(𝑎).  

We prove Theorem (4.3.3) and Theorem (4.3.13).  

Theorem (4.3.3)[177]: Fix 0 < 𝛿 < 𝛼 <  1/2 and 0 <  𝜀 <  1/2. Let 𝐴 ⊆  𝐺 of size 

|𝐴|  ≥  |𝐺| 𝛼. Then there exists a subset 𝐴 ⊆  𝐴 of size |𝐴 |  ≥  |𝐴|/𝐶 such that 

|𝑆𝑝𝑒𝑐𝜀(𝐴′ )  +  𝑆𝑝𝑒𝑐𝜀(𝐴 )|  ≤  (1/𝜀)
𝑂(1/𝛿)  ·  

|𝐺|1+𝛿

|𝐴′|
 

where 𝐶 ≤  𝑒𝑥𝑝((1/𝜀)𝑂(1/𝛿).  
Proof: We begin by introducing some notation. For 𝐴 ⊆  𝐺 and 𝛤 ⊆  �̂�, define an |𝐴|  ×
 |𝛤| complex matrix 𝑀 =  𝑀(𝐴, 𝛤), with rows indexed by 𝐴 and columns by 𝛤, as follows. 

First, denote by 𝛾(𝐴) ∶=  𝔼𝑎∈𝐴[𝛾(𝑎)] the average value of the character 𝛾 on 𝐴. Define  

𝑀𝑎,𝛾 ∶=  𝛾(𝑎)
𝛾(𝐴)̅̅ ̅̅ ̅̅

|𝛾(𝐴)|
 . 

With this definition, we have that for any 𝛤 ⊆  𝑆𝑝𝑒𝑐𝜀(𝐴),   

|1𝐴
𝑇𝑀(𝐴, 𝛤)1𝛤 |  = ∑  

𝛾∈𝛤

 |∑  

𝑎∈𝐴

 𝛾(𝑎)|   ≥  𝜀|𝐴||𝛤|.                       (106)  

We next define a notion of regularity for 𝑀(𝐴, 𝛤).  
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Definition (4.3.4) (Regularity for 𝑴(𝑨, 𝜞))[177]: Let 𝐴 ⊆  𝐺, 𝛤 ⊆  𝐺. The matrix 𝑀 =
 𝑀(𝐴, 𝛤) is called 𝜆-regular if for every pair of functions 𝑓 ∶  𝐴 →  𝐶, 𝑔 ∶  𝛤 →  𝐶 such 

that〈𝑓, 1𝐴 〉 =  0 or 〈𝑔, 1𝛤 〉 =  0 or both, it holds that  

|𝑓𝑇𝑀𝑔|  <  𝜆 ||𝑓||
∞
 ||𝑔||

∞
|𝐴||𝛤|.  

It is conventional to use the 𝐿2-norm in definition of regularity, however in our case, the use 

of 𝐿∞-norm makes the argument more straightforward and gives better bounds. The 

argument informally goes as follows. We divide into two cases. First, we show if 𝑀 =
 𝑀(𝐴, 𝑆𝑝𝑒𝑐𝜀(𝐴)) is 𝜆-regular for a suitable choice of 𝜆, then 𝑆𝑝𝑒𝑐𝜀(𝐴) has bounded 

doubling. Otherwise, if 𝑀 is not 𝜆-regular, we find large subsets 𝐴′ ⊆  𝐴, 𝛤′ ⊆  
𝑆𝑝𝑒𝑐𝜀(𝐴) such that 𝑀(𝐴′ , 𝛤′ ) has higher average. This allows us to revert to study 

𝑀(𝐴′ , 𝑆𝑝𝑒𝑐𝜀  (𝐴′ )) where 𝜀′ =  𝜀 + 𝜆𝑂(106) and iterate.  

First, we analyze the case where 𝑀 is regular.  

Lemma (4.3.5)[177]: Fix some 0 <  𝜀, 𝜌 <  1 and 𝛤 ⊆  𝑆𝑝𝑒𝑐𝜌(𝐴). If 𝑀 =  𝑀(𝐴, 𝛤) is 

𝜀𝜌/150-regular, then for any 𝛾 ∈  𝑆𝑝𝑒𝑐𝜀  (𝐴), there is a subset 𝛤𝛾  ⊆  𝛤, |𝛤𝛾|  ≥  0.9|𝛤| such 

that  

𝛾 + 𝛤𝛾  ⊂  𝑆𝑝𝑒𝑐𝜀𝜌/2(𝐴).  

Proof. Suppose towards contradiction that there is some 𝛾 ◦ ∈  𝑆𝑝𝑒𝑐𝜀(𝐴) for which the 

claim does not hold. That is, there exists a subset 𝛤′ ⊆  𝛤 of size |𝛤′ |  >  0.1|𝛤| such that 

∀𝛾′ ∈  𝛤′ ,  
𝛾◦  +  𝛾′ ∉  𝑆𝑝𝑒𝑐𝜀𝜌/2(𝐴).  

Define a pair of functions 𝑓 ∶  𝐴 → ℂ and 𝑔 ∶  𝛤 → ℂ  by  

𝑓(𝑎) =  𝛾◦(𝑎),  

𝑔(𝛾) =
|𝛤|

|𝛤′|
 1𝛤′ (𝛾).  

We have  

𝑓𝑇𝑀𝑔 =∑ 

𝛾∈𝛤

  [∑  

𝑎∈𝐴

 𝛾◦(𝑎)𝛾(𝑎)
𝛾(𝐴)̅̅ ̅̅ ̅̅

|𝛾(𝐴)|
  
|𝛤|

|𝛤 |
  1𝛤′  (𝛾)]   

=
|𝛤|

|𝛤′|
  ∑  

𝛾∈𝛤

 
𝛾(𝐴)̅̅ ̅̅ ̅̅

|𝛾(𝐴)|
  ∑  

𝑎∈𝐴

 𝛾◦ (𝑎)𝛾(𝑎)1𝛤′ (𝛾) 

= 
|𝛤|

|𝛤′|
  ∑  

𝛾′∈𝛤′

 
𝛾′(𝐴)̅̅ ̅̅ ̅̅

|𝛾′(𝐴)|
  ∑  

𝑎∈𝐴

 (𝛾◦  +  𝛾′ ) (𝑎).  

By our assumption, ∀𝛾′ ∈  𝛤 , 𝛾◦  +  𝛾′ ∉  𝑆𝑝𝑒𝑐𝜀𝜌/2(𝐴). Therefore   

|𝑓𝑇𝑀𝑔|  ≤  (𝜀𝜌/2)  ·  |𝛤||𝐴|.  
Decompose 𝑓 as 𝑓 =  𝑓1  +  𝑓2 with 𝑓1  = 𝔼𝑎∈𝐴[𝑓(𝑎)]  ·  1𝐴 and 𝑔 as 𝑔 =  𝑔1  +  𝑔2 with 

𝑔1  = 𝔼𝛾∈𝛤[𝑔(𝛾)]  ·  1𝛤  =  1𝛤 . Then  

𝑓𝑇𝑀𝑔 =  𝑓1
𝑇  𝑀𝑔1  +  𝑓2

𝑇  𝑀𝑔1  +  𝑓1
𝑇  𝑀𝑔2  +  𝑓2

𝑇  𝑀𝑔2.       (107)  
We have that 〈𝑓2, 1𝐴 〉 =  0, 〈𝑔2, 1𝛤 〉 =  0 and   

|𝑓1
𝑇  𝑀𝑔1  |  = |𝔼𝑎∈𝐴𝑓(𝑎) · (1𝐴

𝑇𝑀1𝛤 )| ≥  |𝔼𝑎 ∈𝐴[𝛾 ◦ (𝑎)]|  ·  𝜌|𝛤||𝐴|  ≥  𝜀𝜌|𝛤||𝐴|.  
We show that the other terms in Equation (107) are too small to cancel out the contribution 

of 𝑓1
𝑇  𝑀𝑔1 . Consequently, we reach a contradiction.  

In each one of the terms 𝑓1
𝑇  𝑀𝑔2, 𝑓2

𝑇  𝑀𝑔1, 𝑓2
𝑇  𝑀𝑔2 at least one of the functions are 

orthogonal to the identity function. Therefore, we can bound the size of these terms using 
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the 
𝜀𝜌

150
 -regularity assumption. We have ||𝑓1||∞  ≤  1, |

|𝑓2||∞  ≤  2, |
|𝑔1||∞  ≤

 1, ||𝑔2||∞  ≤  10, and hence   

|𝑓2
𝑇  𝑀𝑔1  +  𝑓1

𝑇  𝑀𝑔2  +  𝑓2
𝑇  𝑀𝑔2  |  ≤  (20 +  10 +  20)  ·  (𝜀𝜌/150)|𝐴||𝛤|  

=  (𝜀𝜌/3)|𝐴||𝛤|.  

This implies that |𝑓𝑇𝑀𝑔|  ≥
2

3
 𝜀𝜌|𝐴||𝛤|, which is a contradiction.  

Next, we show how to use Lemma (4.3.5) to infer that if 𝑀 =  𝑀(𝐴, 𝑆𝑝𝑒𝑐𝜌(𝐴)) is 
𝜀𝜌

150
 -

regular then |𝑆𝑝𝑒𝑐𝜀(𝐴)  −  𝑆𝑝𝑒𝑐𝜀(𝐴)| is small as long as |𝑆𝑝𝑒𝑐𝜀𝜌/2(𝐴)|  ≈  |𝑆𝑝𝑒𝑐𝜌(𝐴)|.  

Lemma (4.3.6)[177]: If 𝑀 =  𝑀(𝐴, 𝑆𝑝𝑒𝑐𝜌(𝐴)) is 
𝜀𝜌

150
 -regular, then  

|𝑆𝑝𝑒𝑐𝜀(𝐴) −  𝑆𝑝𝑒𝑐𝜀(𝐴)| ≤  2   
|𝑆𝑝𝑒𝑐𝜀𝜌/2(𝐴)|

2

|𝑆𝑝𝑒𝑐𝜌(𝐴)|
.  

Proof. Fix arbitrary 𝛾1, 𝛾2  ∈  𝑆𝑝𝑒𝑐𝜀(𝐴). By Lemma (4.3.5) there exist sets 𝛤1, 𝛤2  ⊆
 𝑆𝑝𝑒𝑐𝜌(𝐴) of size |𝛤1|, |𝛤2|  ≥  0.9|𝑆𝑝𝑒𝑐𝜌(𝐴)| such that 𝛾1  +  𝛤1, 𝛾2  +  𝛤2  ⊆

 𝑆𝑝𝑒𝑐𝜀𝜌/2(𝐴). For any 𝛾 ∈  𝛤1  ∩  𝛤2 we can then write  

𝛾1   −  𝛾2  =  (𝛾1  +  𝛾)  −  (𝛾2  +  𝛾)  
where 𝛾1  +  𝛾, 𝛾2  +  𝛾 ∈  𝑆𝑝𝑒𝑐𝜀𝜌/2(𝐴). This gives |𝛤1  ∩  𝛤2|  ≥  0.8|𝑆𝑝𝑒𝑐𝜌(𝐴)| distinct 

ways to write 𝛾1  −  𝛾2 as the difference of a pair of elements in 𝑆𝑝𝑒𝑐𝜀𝜌/2(𝐴). Consequently  

|𝑆𝑝𝑒𝑐𝜀(𝐴) −  𝑆𝑝𝑒𝑐𝜀(𝐴)| ≤    
|𝑆𝑝𝑒𝑐𝜀𝜌/2(𝐴)|

2

|𝛤1  ∩  𝛤2|
 ≤   

|𝑆𝑝𝑒𝑐𝜀𝜌/2(𝐴)|
2

0.8|𝑆𝑝𝑒𝑐𝜌(𝐴)|
   

Next, we consider the case that the matrix 𝑀 is not 𝜆-regular for 𝜆 =  𝜀𝜌/150. In the 

following we denote 𝔼[𝑀] ∶= 𝔼𝑎,𝛾[𝑀𝑎,𝛾].  

Assuming that 𝑀 =  𝑀(𝐴, 𝛤) is not 𝜆-regular, there are functions 𝑓 ∶  𝐴 → ℂ and 𝑔 ∶

 𝛤 → ℂ with ||𝑓||
∞
 = ||𝑔||

∞
 =  1, at least one of which is orthogonal to the identity 

function, such that |𝑓𝑇𝑀𝑔|  ≥  𝜆|𝐴||𝛤|. As a first step towards proving Lemma (4.3.8), we 

approximate 𝑓, 𝑔 by step functions 𝑓  and �̃�, respectively.  

Claim (4.3.7)[177]: Fix 𝜂 >  0. Let 𝑓 ∶  𝐴 →  𝐶 be a function with ||𝑓||
∞
 =  1. Then there 

exists a function 𝑓: 𝐴 →  𝐶 such that  

||𝑓 − 𝑓||
∞
 ≤  𝜂  

with 𝑓 = ∑  𝑘
𝑖=1  𝛼𝑖1𝐴𝑖  , where 𝐴𝑖  ⊆  𝐴 are disjoint subsets and 𝛼𝑖  ∈ ℂ with |𝛼𝑖|  ≤  1. 

Moreover, 𝑘 ≤
100

𝜂2
 .  

Proof. We partition 𝐴 based on the phase and magnitude of 𝑓. For 𝑟 =  ⌈10/𝜂⌉ define  

𝐴𝑗,𝑘  =  {𝑎 ∈  𝐴 ∶  𝑗/𝑟 <  |𝑓(𝑎)|  ≤  (𝑗 +  1)/𝑟 𝑎𝑛𝑑 2𝜋𝑘/𝑟 <  𝑎𝑟𝑔 𝑓(𝑎)  

≤  2𝜋(𝑘 +  1)/𝑟} .  

We partition 𝐴 to subsets 𝐴𝑗,𝑘 for 𝑗, 𝑘 ∈  {0, . . . , 𝑟 −  1}. Define the step function 𝑓 as  

𝑓 = ∑  

𝑟−1

𝑗,𝑘=0

 𝑗/𝑟 ·  𝑒(2𝜋𝑖)𝑘/𝑟  ·  1𝐴𝑗,𝑘  .  

It is easy to verify that for all 𝑎 ∈  𝐴, |𝑓(𝑎)  − 𝑓(𝑎)|  ≤  𝜂 as claimed.  

We proceed with the proof of Lemma (4.3.8).  

Lemma (4.3.8)[177]: If 𝑀 =  𝑀(𝐴, 𝛤) is not 𝜆-regular, then there exist subsets 𝐴 ⊆
 𝐴, 𝛤 ⊆  𝛤 such that  
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|𝔼 [𝑀(𝐴′ , 𝛤′ )]| ≥ |𝔼 [𝑀(𝐴, 𝛤)]|  +  𝑐𝜆15, 
where |𝐴′ |  ≥  𝑐𝜆15|𝐴|, |𝛤′ |  ≥  𝑐𝜆15|𝛤|, and 𝑐 >  0 is an absolute constant.  

Proof: Let 𝜌 ∶= 𝔼[𝑀′] be the average of 𝑀, and define a matrix 𝑀 by 𝑀𝑎,𝛾
′  =  𝑀𝑎,𝛾  −  𝜌, 

so that 𝔼[𝑀′ ]  =  0. Note that |𝑀𝑎,𝛾
′ |  ≤  2 for all 𝑎 ∈  𝐴, 𝛾 ∈  𝛤. We may assume for 

simplicity that 𝜌 is real and nonnegative, by multiplying all entries of 𝑀 by an appropriate 

phase 𝑒𝑖𝜃, as this does not change any of the properties at hand.  

As we assume 𝑀 is not 𝜆-regular, there exist functions 𝑓 ∶  𝐴 → ℂ, 𝑔 ∶  𝛤 → ℂ with 

||𝑓||
∞
, ||𝑔||

∞
 =  1, one of which at least sums to zero, such that ||𝑓𝑇𝑀𝑔|  ≥  𝜆|𝐴||𝛤|. Note 

that 𝑓𝑇𝑀′ 𝑔 =  𝑓𝑇𝑀𝑔. Let 𝑓, �̃� be their step function approximations given by Claim 

(4.3.7) for 𝜂 =  𝜆/8, where 𝑓 = ∑  𝑘
𝑖=1  𝛼𝑖1𝐴𝑖  , �̃�  = ∑  𝑘

𝑖=1  𝛽𝑖1𝛤𝑖  and 𝑘 ≤
100

𝜂2
 . Moreover   

|𝑓𝑇𝑀 �̃�|    ≥  |𝑓𝑇𝑀′ 𝑔| − |(𝑓 − 𝑓) 𝑇𝑀′ 𝑔| − |𝑓𝑇𝑀′ (𝑔 − �̃�)|  ≥  𝜆/2 ·  |𝐴||𝛤|. 
 That is,         

|∑  

𝑘

𝑖,𝑗=1

 𝛼𝑖𝛽𝑗1𝐴𝑖
𝑇 𝑀′1𝛤𝑗|        ≥  𝜆/2 ·  |𝐴||𝛤|.  

In particular, there must exist 𝐴𝑖 , 𝛤𝑗 such that   

|1𝐴𝑖
𝑇 𝑀′1𝛤𝑗| ≥  (𝜆/2𝑘

2)  ·  |𝐴||𝛤|  ≥  𝑐1𝜆
5  ·  |𝐴||𝛤|,  

where 𝑐1  >  0 is an absolute constant.  

If we knew that 1𝐴𝑖
𝑇  𝑀′1𝛤𝑗  is real and nonnegative, say, then we would be done by choosing 

𝐴′ = 𝐴𝑖 , 𝛤
′ = 𝛤𝑗 as then 𝔼[𝑀(𝐴′ , 𝛤′ )]  ≥  𝜌 + 𝑐1𝜆

5. However, it may be that its real part 

is negative, canceling the average. To overcome this, we consider choosing 𝐴′ ∈
 {𝐴𝑖 , 𝐴𝑖

𝑐}, 𝛤′ ∈  {𝛤𝑗  , 𝛤𝑗
𝑐} (where 𝐴𝑖

𝑐  =  𝐴 \ 𝐴𝑖 , 𝛤𝑗
𝑐  =  𝛤 \ 𝛤𝑗  ) and show that one of the 

choices satisfies the required properties. Set  

𝛼1 ∶=  1𝐴𝑖
𝑇 𝑀′1𝛤𝑗  , 𝛼2 ∶=  1𝐴𝑐𝑖

𝑇  𝑀′1𝛤𝑗  , 𝛼3 ∶=  1𝐴𝑖
𝑇 𝑀′1𝛤𝑗

𝑐  , 𝛼4 ∶=  1𝐴𝑖
𝑐
𝑇  𝑀′1𝛤𝑗

𝑐    

and  

𝛽1 ∶=  |𝐴𝑖||𝛤𝑗  |, 𝛽2 ∶=  |𝐴𝑖
𝑐  ||𝛤𝑗  |, 𝛽3 ∶=  |𝐴𝑖||𝛤𝑗

𝑐  |, 𝛽4 ∶=  |𝐴𝑖
𝑐  ||𝛤𝑗

𝑐 |.  

Fix 𝛿 =  𝑐𝜆15 for an absolute constant 𝑐 >  0 to be chosen later. We will show that for 

some 𝑖 ∈  {1, 2, 3, 4}, we have |𝛽𝑖|  ≥  𝛿|𝐴||𝛤| and |𝛼𝑖  +  𝜌𝛽𝑖|  ≥  (𝜌 +  𝛿)𝛽𝑖 . This 

implies that if we take 𝐴 , 𝛤 to be the corresponding sets, then |𝐴′ |  ≥  𝛿|𝐴|, |𝛤′ |  ≥
 𝛿|𝛤| and |1𝐴𝑀1𝛤′  |  =  |𝛼𝑖  +  𝜌𝛽𝑖|  ≥  (𝜌 +  𝛿)|𝐴′ ||𝛤′ |.  
In order to show that, let us note that ∑𝛼𝑖  =  0, |𝛼1|  ≥  𝑐1𝜆

5|𝐴||𝛤|, 𝛽1  ≥  𝑐1𝜆
5|𝐴||𝛤|, and 

the 𝛽𝑖 are real nonnegative numbers with ∑𝛽𝑖  =  |𝐴||𝛤|. If for some 𝑖 we have 𝑅𝑒(𝛼𝑖)  ≥
 𝛿|𝐴||𝛤| then |𝛼𝑖  +  𝜌𝛽𝑖|  ≥  𝑅𝑒(𝛼𝑖  +  𝜌𝛽𝑖)  ≥  𝛿|𝐴||𝛤|  +  𝜌𝛽𝑖  ≥  (𝜌 +  𝛿)𝛽𝑖  and we are 

done. If 𝑅𝑒(𝛼𝑖)  ≤  −𝛿|𝐴||𝛤| then, since ∑  𝛼𝑖  =  0, there exists some 𝑗 ≠  𝑖 for which 

𝑅𝑒(𝛼𝑗  )  ≥  𝛿/3 ·  |𝐴||𝛤|, and we are done by the previous argument. So, we may assume 

that |𝑅𝑒(𝛼𝑖)|  ≤  𝛿|𝐴||𝛤| for all 𝑖. In particular |𝑅𝑒(𝛼1)|  ≤  (𝛿/𝑐1𝜆
5)𝛽1 . Hence  

|𝛼1  +  𝜌𝛽1|
2  =  |𝜌𝛽1  +  𝑅𝑒(𝛼1)|

2  +  𝐼𝑚(𝛼1)
2  ≥  𝜌2𝛽1

2  +  |𝛼1|
2  −  2𝜌𝛽1|𝑅𝑒(𝛼1)|  

≥  𝛽1
2 (𝜌2  +  𝑐1

2𝜆10  −  2𝛿/𝑐1𝜆
5)  ≥  𝛽1

2 (𝜌2  +  (𝑐1
2  −  2𝑐/𝑐1)𝜆

10  ),  
where we used our choice of 𝛿 =  𝑐𝜆15. If we choose 𝑐 >  0 small enough, we conclude 

that also in this case, |𝛼1  +  𝜌𝛽1|  ≥  (𝜌 +  𝛿)𝛽1. Note that the condition 𝛽𝑖  ≥  𝑐1𝜆
5|𝐴||𝛤| 

is automatically satisfied for all 𝑖, by making sure, let’s say, |𝐴𝑖|  ≤  |𝐴|/2 and |𝛤𝑗  |  ≤

 |𝛤|/2.  
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We now combine Lemma (4.3.6) and Lemma (4.3.8) in order to prove Theorem (4.3.3). The 

high level idea is the following. Initialize 𝜌 =  𝜀, 𝛤 =  𝑆𝑝𝑒𝑐𝜀(𝐴). If 𝑀(𝐴, 𝛤) is 𝜆-regular 

for 𝜆 =  𝜀𝜌/150, and |𝑆𝑝𝑒𝑐𝜀𝜌/2 (𝐴)|  ≈  |𝛤|, then the proof follows from Lemma (4.3.6) 

and Parseval’s identity. Otherwise, one of two cases must occur. The first case that could 

occur is that 𝑀(𝐴, 𝛤) is not 𝜆 −regular. Then by Lemma (4.3.8) we can replace 𝐴, 𝛤 with 

𝐴′ , 𝛤′ and increase 𝜌 by a noticeable amount. This cannot occur too many times, as 𝜌 ≤  1. 
The second case that could occur is that |𝑆𝑝𝑒𝑐𝜀𝜌

2
(𝐴)|  ≫  |𝛤|  ≈  𝑆𝑝𝑒𝑐𝜌(𝐴). In such a case, 

we set 𝜌 →  𝜀𝜌/2 and increase the spectrum of 𝐴 by a noticeable amount. As the spectrum 

is bounded by |𝐺|, this again cannot happen too many times. Combining these steps together 

requires a somewhat delicate balance act.  

Let 𝐾 =  𝐾(𝜀, 𝛿) be a parameter to be optimized later. We define a sequence of sets 𝐴𝑖  ⊆
 𝐴 and parameters 𝜌𝑖  ∈  [0, 1] for 𝑖 ≥  1, where initially 𝐴0  =  𝐴, 𝜌0  =  𝜀. Given 𝐴𝑖 , 𝜌𝑖 set 

𝜆𝑖  =  𝜀𝜌𝑖/150 and run the following procedure:  

(i) If 𝑀(𝐴𝑖 , 𝑆𝑝𝑒𝑐𝜌𝑖  (𝐴𝑖)) is 𝜆𝑖-regular and |𝑆𝑝𝑒𝑐𝜀𝜌𝑖
2

(𝐴𝑖)|  ≤  𝐾|𝑆𝑝𝑒𝑐𝜌𝑖  (𝐴𝑖)|, then set 𝐴∗  =

 𝐴𝑖  and finish.  

(ii) If 𝑀(𝐴𝑖 , 𝑆𝑝𝑒𝑐𝜌𝑖  (𝐴𝑖)) is not 𝜆𝑖-regular then apply Lemma (4.3.8) to 𝐴𝑖 and 𝑆𝑝𝑒𝑐𝜌𝑖  (𝐴𝑖). 

Let 𝐴′ ⊆  𝐴𝑖 , 𝛤′ ⊆  𝑆𝑝𝑒𝑐𝜌𝑖  (𝐴𝑖) be the resulting sets such that |𝐴′ |  ≥  𝑐𝜆𝑖
15 |𝐴𝑖|, |𝛤′ |  ≥

 𝑐𝜆𝑖
15 |𝛤𝑖| and |𝔼[𝑀(𝐴 , 𝛤 )]|  ≥  𝜌𝑖  +  𝑐𝜆𝑖

15 . Set 𝐴𝑖+1  =  𝐴′ and 𝜌𝑖+1  =  𝜌𝑖  +

 (
𝑐

2
) 𝜆𝑖

15 . Return to step (i).  

(iii) If |𝑆𝑝𝑒𝑐𝜀𝜌𝑖
2

(𝐴𝑖)|  >  𝐾|𝑆𝑝𝑒𝑐𝜌𝑖  (𝐴𝑖)| then set 𝐴𝑖+1  =  𝐴𝑖  and 𝜌𝑖+1  =  𝜀𝜌𝑖/2. Return to 

step (i).  

Next, we analyze this procedure. First, note that if the procedure ends with 𝐴∗  =  𝐴𝑖 then 

by Lemma (4.3.6) and Parseval’s identity we have that  

|𝑆𝑝𝑒𝑐𝜀(𝐴
∗) −  𝑆𝑝𝑒𝑐𝜀(𝐴

∗)| ≤  2𝐾 |𝑆𝑝𝑒𝑐𝜀𝜌𝑖
2
 (𝐴𝑖)| ≤

8𝐾|𝐺|

𝜀2𝜌𝑖
2
|𝐴𝑖|  .      (108)  

So, we need to show that 𝜌𝑖 , |𝐴𝑖| are never too small. Suppose that stages (ii) and (iii) occur 

𝑘1 and 𝑘2 times, respectively. Let 𝜂 ∶  {1, . . . , 𝑘2}  →  {1, . . . , 𝑘1  + 𝑘2} be the ordered indices 

of occurrences of stage (iii). We first bound 𝑘1.  

Claim (4.3.9)[177]: If 𝑖 <  𝜂(𝑗) then 𝜌𝑖  ≥  (
𝜀

2
)
𝑗
 .  

Proof. The value of 𝜌𝑖 increases in step (ii), and decreases in step (iii) by a factor of 𝜀/2. If 
𝑖 <  𝜂(𝑗) then we applied step (iii) at most 𝑗 − 1 times, hence 𝜌𝑖  ≥  (𝜀/2)

𝑗−1 𝜌0  ≥
 (𝜀/2)𝑗  .   
Claim (4.3.10)[177]: For ∀𝑗 ∈  {1, . . . , 𝑘2  −  1}, |𝜂(𝑗 +  1)  −  𝜂(𝑗)|  ≤  (1/𝜀)

𝑂(𝑗)   .  
Proof. Consider a step 𝑖 for 𝜂(𝑗) ≤  𝑖 ≤  𝜂(𝑗 +  1). We have that 𝜌𝑖+1  ≥  𝜌𝑖  +

 (
𝑐

2
) (

𝜌𝑖𝜀

150
)
15
  ≥  𝜌𝑖  +  𝑐

′𝜀15(𝑗+2), where 𝑐, 𝑐′ >  0 are absolute constants. As 𝜌𝑖 never 

exceeds 1 for all 𝑖, this process cannot repeat more than (
1

𝑐
) (

1

𝜀
)
15(𝑗+2)

 times. As we assume 

𝜀 <  ½, this is bounded by (1/𝜀)𝑐
′𝑗 for a large enough 𝑐′ >  0.  

Corollary (4.3.11)[177]: 𝑘1  ≤  (1/𝜀)
𝑂(𝑘2).   

Combinatorial Theory, Series A 148 (2017) 1–14 11  

Proof. By Claim (4.3.10), 𝑘1  ≤ ∑  
𝑘2
𝑗=1 (1/𝜀)

𝑂(𝑗)  ≤  (1/𝜀)𝑂(𝑘2) .  



140 

We next upper bound 𝑘2. To do so, we will show that in step (ii) we have that 

𝑆𝑝𝑒𝑐𝜌𝑖+1  (𝐴𝑖+1) is not much smaller than 𝑆𝑝𝑒𝑐𝜌𝑖  (𝐴𝑖).  

Claim (4.3.12)[177]: Assume that we run step (ii) in iteration 𝑖. Then  

|𝐴𝑖+1|  ≥  𝑐𝜆𝑖
15 |𝐴𝑖|  

and  

|𝑆𝑝𝑒𝑐𝜌𝑖+1  (𝐴𝑖+1)|  ≥  𝑐𝜆𝑖
30 |𝑆𝑝𝑒𝑐𝜌𝑖  (𝐴𝑖)|,  

where 𝑐 >  0 is an absolute constant.  

Proof. We apply in step (ii) Lemma (4.3.8) to 𝐴𝑖 , 𝑆𝑝𝑒𝑐𝜌𝑖  (𝐴𝑖). We get subsets 𝐴𝑖+1  ⊆

 𝐴𝑖 , 𝛤′ ⊆  𝑆𝑝𝑒𝑐𝜌𝑖  (𝐴𝑖) such that |𝐴𝑖+1|  ≥  𝑐𝜆𝑖
15 |𝐴𝑖|, |𝛤′ |  ≥  𝑐𝜆𝑖

15 |𝑆𝑝𝑒𝑐𝜌𝑖  (𝐴𝑖)| and 

𝜌𝑖+1  ≤  |𝔼[𝑀(𝐴𝑖+1, 𝛤′ )]|  − (𝑐/2)𝜆𝑖
15 . Let 𝑆 =  𝛤 ∩  𝑆𝑝𝑒𝑐𝜌𝑖+1  (𝐴𝑖+1). Then  

|𝔼[𝑀(𝐴𝑖+1, 𝛤
′)]| ≤

|𝑆|

|𝛤′|
 + (1 −

|𝑆|

|𝛤′|
 ) 𝜌𝑖+1.  

Hence |𝑆𝑝𝑒𝑐𝜌𝑖+1  (𝐴𝑖+1)|  ≥  |𝑆|  ≥  (𝑐/2)𝜆𝑖
15 |𝛤 | and the claim follows.  

Combining Claim (4.3.10) and Claim (4.3.12), we deduce that, for any 𝑗 ∈  {1, . . . , 𝑘2  −
 1}, the ratio in the size of the spectrums immediately after the 𝑗-th application of step (iii), 

and immediately before the 𝑗 +  1 application of step (iii), is lower bounded by  

𝑇𝑗 ∶=
|𝑆𝑝𝑒𝑐𝜌𝜂(𝑗)  (𝐴𝜂(𝑗))|

|𝑆𝑝𝑒𝑐𝜌𝜂(𝑗+1)−1  (𝐴𝜂(𝑗+1)−1)|
 ≤  ∏  

𝜂(𝑗  +1)−2

𝑖=𝜂(𝑗)

 
1

𝑐𝜆𝑖
30  ≤ (

1

𝑐
 (150 ·

2𝑗

𝜀𝑗+1
)

30

)

𝜂(𝑗+1)−𝜂(𝑗)

 

≤  (1/𝜀)𝑂(𝑗·(1/𝜀)
𝑂(𝑗))

 ≤  𝑒𝑥𝑝 ((1/𝜀)𝑂(𝑗)))   .  

We will choose 𝐾 large enough so that 𝑇𝑗  ≤  𝐾
1/2 for all  𝐾 < 𝑘2  , and hence 

|𝑆𝑝𝑒𝑐𝜌𝜂(𝑗+1)  (𝐴𝜂(𝑗+1))|  ≥  𝐾 ·  |𝑆𝑝𝑒𝑐𝜌𝜂(𝑗+1)−1  (𝐴𝜂(𝑗+1) − 1)|  ≥  𝐾
1
2  ·  |𝑆𝑝𝑒𝑐𝜌𝜂(𝑗)  (𝐴𝜂(𝑗))|. 

Fix 𝐾 =  |𝐺|𝛿 and 𝐶 =  𝑒𝑥𝑝((1/𝜀)𝑂(1/𝛿) ). We may assume that |𝐺|  ≥  𝐶, as otherwise 

our bounds are trivial. Then, we must have 𝑘2  ≤  2/𝛿 and hence 𝑘1  ≤  (1/𝜀)
𝑂(1/𝛿) . We 

conclude that  

|𝐴|

|𝐴∗|
 ≤  ∏  

𝑘1  +𝑘2

𝑖=1

 
1

𝑐𝜆𝑖
15  ≤  𝑒𝑥𝑝 ( (1/𝜀)

𝑂(1/𝛿)) 

and that plugging these estimates into Equation (108) implies that  

|𝑆𝑝𝑒𝑐𝜀(𝐴
∗)  −  𝑆𝑝𝑒𝑐𝜀(𝐴

∗)|  ≤  (1/𝜀)𝑂(1/𝛿)  ·  |𝐺| 1 + 𝛿/|𝐴∗|. 
Since the definition of the spectrum is symmetric, 𝑆𝑝𝑒𝑐𝜀(𝐴

∗)  =  −𝑆𝑝𝑒𝑐𝜀(𝐴
∗), this implies 

the same bounds on |𝑆𝑝𝑒𝑐𝜀(𝐴
∗)  +  𝑆𝑝𝑒𝑐𝜀(𝐴

∗)|.  
Theorem (4.3.13)[177]: Fix 0 < 𝛿 < 𝛼 <  1/2 and 0 <  𝜀 <  1/2. Let 𝐴 ⊆  𝐺 of size 

|𝐴|  ≥  |𝐺|𝛼. Then there exists a subset 𝐴′ ⊆  𝐴 of size |𝐴′ |  ≥  |𝐴|/𝐶 and 𝜀′ ≥  𝜀21/𝛿 such 

that  

|𝑆𝑝𝑒𝑐𝜀  (𝐴′ )| ≥ |𝑆𝑝𝑒𝑐𝜀(𝐴)|/𝐶  
and  

|𝑆𝑝𝑒𝑐𝜀′  (𝐴′ )  +  𝑆𝑝𝑒𝑐𝜀′  (𝐴′ )|  ≤  𝐶|𝐺|
𝛿  ·  |𝑆𝑝𝑒𝑐𝜀′  (𝐴′ )|,  

where 𝐶 ≤  𝑒𝑥𝑝 ((1/𝜀)𝑂(2
4/𝛿))  . 

Proof: The proof of Theorem (4.3.13) is very similar to the proof of Theorem (4.3.3), with 

a few small tweaks. First, we use Lemma (4.3.5) and Lemma (4.3.6) in the special case of 

𝜌 =  𝜀. We restate Lemma (4.3.6) in this special case.  
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Lemma (4.3.14)[177]: If 𝑀 =  𝑀(𝐴, 𝑆𝑝𝑒𝑐𝜀(𝐴)) is 
𝜀2

150
 -regular, then  

|𝑆𝑝𝑒𝑐𝜀(𝐴)  −  𝑆𝑝𝑒𝑐𝜀(𝐴)|  ≤  2  
|𝑆𝑝𝑒𝑐𝜀2/2(𝐴)|

2

|𝑆𝑝𝑒𝑐𝜀(𝐴)|
 .  

We combine Lemma (4.3.14) with Lemma (4.3.8) to prove Theorem (4.3.13). The 

difference is in the iterative refinement process. Here, instead of setting 𝜆𝑖  =  𝜀𝜌𝑖/150, we 

instead set 𝜆𝑖  =  𝜌𝑖
2 /150. To, initialize 𝛤 =  𝑆𝑝𝑒𝑐𝜀(𝐴). If 𝑀(𝐴, 𝛤) is 𝜆-regular for 𝜆 =

 𝜀2/150, and |𝑆𝑝𝑒𝑐𝜀2/2(𝐴)|  ≈  |𝛤|, then the proof follows from Lemma (4.3.14) and 

Parseval’s identity. Otherwise, one of the following two cases must occur. The first case 

that could occur is that 𝑀(𝐴, 𝛤) is not 𝜆-regular. In this case, by Lemma (4.3.8) we can 

replace 𝐴, 𝛤 with 𝐴′ , 𝛤′ and increase ε by a noticeable amount. This can not occur many 

times as 𝜀 ≤  1. The other case that can occur is that |𝑆𝑝𝑒𝑐𝜀2 /2(𝐴)|  ≫  |𝛤|  ≈  𝑆𝑝𝑒𝑐𝜀(𝐴). 

In this case, we set 𝜀 =  𝜀2/2 and increase the spectrum of A. Since the spectrum is bounded 

by |𝐺|, this also can not occur too many times. In the following we formalize this high level 

argument.  

Let 𝐾 =  𝐾(𝜀, 𝛿) be a parameter to be optimized later. Define a sequence of sets 𝐴𝑖  ⊆  𝐴 

and parameters 𝜌𝑖  ∈  [0, 1] for 𝑖 ≥  1, and initialize 𝐴0  =  𝐴 and 𝜌0  =  𝜀. Recall that 𝛿 is 

a parameter, chosen so that the final doubling constant is bounded by |𝐺| 𝛿. Given 𝐴𝑖 , 𝜌𝑖 set 

𝜆𝑖  =  𝜌𝑖
2 /150 and run the following procedure:  

(i) If 𝑀(𝐴𝑖 , 𝑆𝑝𝑒𝑐𝜌𝑖  (𝐴𝑖)) is 𝜆𝑖-regular and |𝑆𝑝𝑒𝑐𝜌𝑖
2 /2(𝐴𝑖)|  ≤  𝐾|𝑆𝑝𝑒𝑐𝜌𝑖   (𝐴𝑖)|, then set 

𝐴∗  =  𝐴𝑖  and finish.  

(ii) If 𝑀(𝐴𝑖 , 𝑆𝑝𝑒𝑐𝜌𝑖  (𝐴𝑖)) is not 𝜆𝑖-regular then apply Lemma (4.3.8) to 𝐴𝑖 , 𝑆𝑝𝑒𝑐𝜌𝑖  (𝐴𝑖). Let 

𝐴′ ⊆  𝐴𝑖 , 𝛤′ ⊆  𝑆𝑝𝑒𝑐𝜌𝑖  (𝐴𝑖) be the resulting sets such that |𝐴′ |  ≥  𝑐𝜆𝑖
15 |𝐴𝑖|, |𝛤 |  ≥

 𝑐𝜆𝑖
15 |𝛤𝑖| and |𝔼[𝑀(𝐴′ , 𝛤′ )]|  ≥  𝜌𝑖  +  𝑐𝜆𝑖

15 . Set 𝐴𝑖+1  =  𝐴′ and 𝜌𝑖+1  =  𝜌𝑖  +  (𝑐/

2)𝜆𝑖
15 .  

(iii) If |𝑆𝑝𝑒𝑐𝜌𝑖
2 /2(𝐴𝑖)|  >  𝐾|𝑆𝑝𝑒𝑐𝜌𝑖  (𝐴𝑖)| then set 𝐴𝑖+1  =  𝐴𝑖 and 𝜌𝑖+1  =  𝜌𝑖

2 /2. 

The analysis of this procedure is similar to the analysis of the procedure in the proof of 

Theorem (4.3.3). First note that if the procedure ends with 𝐴∗  =  𝐴𝑖 and 𝜀∗  =  𝜌𝑖 then by 

Lemma (4.3.14) we have that  

|𝑆𝑝𝑒𝑐𝜀∗  (𝐴
∗)  −  𝑆𝑝𝑒𝑐𝜀∗ (𝐴

∗)|  ≤  2𝐾|𝑆𝑝𝑒𝑐𝜀∗2/2(𝐴
∗)|  ≤  2𝐾2|𝑆𝑝𝑒𝑐𝜀∗(𝐴

∗)|. (4) 

 Therefore, we need to show that 𝜀∗ and |𝐴∗| are not too small. Suppose that stages (ii) and 

(iii) occur 𝑘1 and 𝑘2 times, respectively. Let 𝜂 ∶  {1,··· , 𝑘2}  →  {1,··· , 𝑘1  +  𝑘2} be the 

ordered indices of occurrences of stage (iii). We first bound 𝑘1.  

Claim (4.3.15)[177]: If 𝑖 <  𝜂(𝑗) then 𝜌𝑖  ≥  (𝜀/2)
2𝑗 .  

Proof. The value of 𝜌𝑖 increases in step (ii), and decreases in step (iii). If 𝑖 <  𝜂(𝑗) then we 

applied step (iii) at most 𝑗 −  1 times, hence 𝜌𝑖  ≥  (𝜀/2)
2𝑗 . 

Claim (4.3.16)[177]: For ∀𝑗 ∈  {1, . . . , 𝑘2  −  1}, |𝜂(𝑗 +  1)  −  𝜂(𝑗)|  ≤  (1/𝜀)
𝑂(2𝑗 ) .  

Proof. Consider a step 𝑖 for 𝜂(𝑗)  ≤  𝑖 ≤  𝜂(𝑗 +  1). We have that 𝜌𝑖 + 1 ≥  𝜌𝑖  +

 𝑐(𝜌𝑖
2 )

15
 ≥  𝜌𝑖  +  𝑐((𝜀/2)

30·2𝑗  ). As 𝜌𝑖  never exceeds 1 for all 𝑖, this process cannot repeat 

more than (1/𝑐)(2/𝜀)30·2
𝑗
 times.  

Corollary (4.3.17)[177]: 𝑘1  ≤  (1/𝜀)
𝑂(2𝑘2  ) .  

Proof. By Claim (4.3.16), 𝑘1  ≤ ∑  
𝑘2
𝑗=1 (1/𝜀)

𝑂(2𝑗 )  ≤  (1/𝜀)𝑂(2𝑘2 ) .  
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We next upper bound 𝑘2. To do so, we will show that in step (ii) we have that 

𝑆𝑝𝑒𝑐𝜌𝑖+1  (𝐴𝑖+1) is not much smaller than 𝑆𝑝𝑒𝑐𝜌𝑖  (𝐴𝑖). We restate Claim (4.3.12) which was 

proved before.  

Claim (4.3.18)[177]: Assume that we run step (ii) in iteration 𝑖. Then  

|𝐴𝑖+1|  ≥  𝑐𝜆𝑖
15  ·  |𝐴𝑖|  

and  

|𝑆𝑝𝑒𝑐𝜌𝑖+1  (𝐴𝑖+1)|  ≥  𝑐𝜆𝑖
30  ·  |𝑆𝑝𝑒𝑐𝜌𝑖  (𝐴𝑖)|.  

As in the proof of Theorem (4.3.3), if we combine Claim (4.3.16) and Claim (4.3.18), then 

for any 𝑗 ∈  {1, . . . , 𝑘2  −  1}, the ratio in the size of the spectrums immediately after the 𝑗-
th application of step (iii), and immediately before the 𝑗 +  1 application of step (iii), is 

lower bounded by  

𝑇𝑗 ∶=
|𝑆𝑝𝑒𝑐𝜌𝜂(𝑗) (𝐴𝜂(𝑗))|

|𝑆𝑝𝑒𝑐𝜌𝜂(𝑗+1)−1(𝐴𝜂(𝑗+1)−1)| 
 ≤  𝑒𝑥𝑝 (1𝜀) 𝑂(2

𝑗 )  .  

We will choose 𝐾 large enough so that 𝑇𝑗  ≤  𝐾
1

2 for all 𝑗 <  𝑘2, and hence 

|𝑆𝑝𝑒𝑐𝜌𝜂(𝑗+1)  (𝐴𝜂(𝑗+1))| ≥  𝐾 ·  |𝑆𝑝𝑒𝑐𝜌𝜂(𝑗+1)−1  (𝐴𝜂(𝑗+1)−1)| ≥ 𝐾
1/2 ·  |𝑆𝑝𝑒𝑐𝜌𝜂(𝑗)(𝐴𝜂(𝑗) )|.  

Fix 𝐾 =  |𝐺|𝛿/2 and 𝐶 =  𝑒𝑥𝑝((1𝜀)𝑂(24/𝛿) ). We may assume that |𝐺|  ≥  𝐶, as otherwise 

our bounds are trivial. Then we deduce that 𝑘2  ≤  4/𝛿, 𝑘1  ≤  (2/𝜀)
𝑂(24/𝛿) . We get that  

|𝐴|

|𝐴∗|
 ≤  ∏  

𝑘1  +𝑘2

𝑖=1

 
1

𝑐(𝜆𝑖)15
 =  𝑒𝑥𝑝 ((1/𝜀)𝑂(2

4/𝛿))   

and then by plugging these estimates into Equation (4) we conclude that  

|𝑆𝑝𝑒𝑐𝜀∗ (𝐴
∗)  −  𝑆𝑝𝑒𝑐𝜀∗ (𝐴

∗)|  ≤  𝑒𝑥𝑝 ( (1/𝜀)𝑂(2
4/𝛿)) |𝐺|𝛿  ·  |𝑆𝑝𝑒𝑐𝜀∗ (𝐴

∗)| .  

Since the definition of the spectrum is symmetric, 𝑆𝑝𝑒𝑐𝜀∗ (𝐴
∗)  =  −𝑆𝑝𝑒𝑐𝜀∗ (𝐴

∗), this 

implies the same bounds on |𝑆𝑝𝑒𝑐𝜀∗  (𝐴
∗)  +  𝑆𝑝𝑒𝑐𝜀∗  (𝐴

∗)|.  
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Chapter 5 

Trace Theoreaith, the Luzin N- and Morse–Sard Properties with Dubovitskiǐ-Sard 

Theorem and the Coarea Formula 

 

We show a new trace theorem for Riesz potentials of Lorentz functions in a limiting 

case. Using these results, we find also some very natural approximation and differentiability 

properties for functions in 𝑊𝑝,1
𝑘  with exceptional set of small Hausdorff content. We will 

show that Dubovitskii theorem can be generalized to the case of 𝑊loc
𝑘,𝑝
(ℝ𝑛, ℝ𝑚) mappings 

for all 𝑘 ∈ ℕ and 𝑝 >  𝑛. Here we prove that Dubovitskiǐ’s theorem can be generalized to 

the case of continuous mappings of the Sobolev–Lorentz class 𝑊𝑝,1
𝑘 (ℝ𝑛, ℝ𝑑), 𝑝 =

𝑛

𝑘
 (this is 

the minimal integrability assumption that guarantees the continuity of mappings). In this 

situation the mappings need not to be everywhere differentiable and in order to handle the 

set of nondifferentiability points, we establish for such mappings an analog of the Luzin N-

property with respect to lower dimensional Hausdorff content. Finally, we formulate and 

prove a bridge theorem that includes all the above results as particular cases. As a limiting 

case in this bridge theorem we also establish a new coarea type formula: if 𝐸 ⊂  {𝑥 ∈ ℝ𝑛 ∶

 𝑟𝑎𝑛𝑘 𝛻𝑣(𝑥)  ≤  𝑚}, then ∫  
𝐸
𝐽𝑚𝑣(𝑥) 𝑑𝑥 =  ∫  

ℝ𝑑
𝐻𝑛−𝑚(𝐸 ∩  𝑣−1(𝑦))𝑑𝐻𝑚(𝑦). The 

mapping v is ℝ𝑑-valued, with arbitrary 𝑑, and the formula is obtained without any 

restrictions on the image 𝑣(ℝ𝑛) (such as m-rectifiability or 𝜎-finiteness with respect to the 

m-Hausdorff measure). These last results are new also for smooth mappings, but are 

presented here in the general Sobolev context. 

Section (5.1): The Sharp Case of Sobolev–Lorentz Mappings 

We continue the study of the Luzin N- and Morse–Sard properties for the Sobolev 

mappings under minimal integrability assumptions initiated in [9]–[56], [50], see also [62]. 

It is very natural to restrict attention to continuous mappings, and so require from the 

considered function spaces that the inclusion 𝑣 ∈ 𝑊𝑝
𝑘(ℝ𝑛, ℝ𝑑) should guarantee at least the 

continuity of v. For values 𝑘 ∈ {1, . . . , 𝑛 − 1} it is well–known that 𝑣 ∈ 𝑊𝑝
𝑘(ℝ𝑛, ℝ𝑑) is 

continuous for 𝑝 >
𝑛

𝑘
 and could be discontinuous for 𝑝 ≤

𝑛

𝑘
. So the borderline case is 𝑝 =

𝑝∘ =
𝑛

𝑘
. It is well–known (see [62]) that 𝑣 ∈ 𝑊𝑝∘

𝑘(ℝ𝑛, ℝ𝑑) is continuous if the derivatives of 

k-th order belong to the Lorentz space 𝐿𝑝∘,1, we will denote the space of such mappings by 

𝑊𝑝∘ ,1
𝑘 (ℝ𝑛, ℝ𝑑). 

We prove the following Luzin N property with respect to Hausdorff content:  

Theorem (5.1.1)[180]: Let 𝑘 ∈ {1, . . . , 𝑛}, 𝑞 ∈ [𝑝∘, 𝑛], and 𝑣 ∈ 𝑊𝑝∘,1
𝑘  (ℝ𝑛, ℝ𝑑). Then for 

each 𝜀 > 0 there exists 𝛿 > 0 such that for any set 𝐸 ⊂ ℝ𝑛 if ℋ∞
𝑞 (𝐸) < 𝛿, then 

ℋ∞
𝑞
(𝑣(𝐸)) < 𝜀. In particular, ℋ𝑞(𝑣(𝐸)) = 0 whenever ℋ𝑞(𝐸) = 0.  

Here ℋ∞
𝑞 (𝐸) is as usual the q–dimensional Hausdorff content:  

ℋ∞
𝑞
(𝐸) = inf {∑(𝑑𝑖𝑎𝑚 𝐸𝑖)

𝑞

∞

𝑖=1

: 𝐸 ⊂⋃𝐸𝑖

∞

𝑖=1

} . 

Note that the case 𝑘 = 1 was considered in [62], and the case 𝑘 > 1, 𝑞 > 𝑝∘ in [50], so we 

omit them and consider here only the remaining limiting case 𝑞 = 𝑝∘, 𝑘 > 1.  

To study this limiting case, we need a new version of the Sobolev Embedding Theorem that 

gives inclusions in Lebesgue spaces with respect to suitably general positive measures. This 
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result might also be interesting in its own right, and it is the main contribution. For 𝛽 ∈
(0, 𝑛) denote by 𝑀𝛽 the space of all nonnegative Borel measures µ on ℝ𝑛 such that  

|‖µ‖|𝛽 = sup
𝐼⊂ℝ𝑛

ℓ(𝐼)−𝛽µ(𝐼) < ∞,                                     (1) 

where the supremum is taken over all n–dimensional cubic intervals 𝐼 ⊂ ℝ𝑛 and ℓ(𝐼) 
denotes side–length. Recall the following classical theorem proved by D.R. Adams [181] 

(see also, e.g., [67]).  

Theorem (5.1.2)[180]: Let µ be a positive Borel measure on ℝ𝑛 and 𝛼 > 0, 1 < 𝑝 < 𝑞 <
∞,𝛼𝑝 < 𝑛. Then for any 𝑓 ∈ 𝐿𝑝(ℝ

𝑛) the estimate  

∫|𝐼𝛼𝑓|
𝑞𝑑µ ≤ 𝐶|‖µ‖|𝛽 ·  ‖𝑓‖𝐿𝑝

𝑞
                         (2) 

holds with 𝛽 = (𝑛 − 𝛼𝑝)
𝑞

𝑝
 , where C depends on 𝑛, 𝑝, 𝑞, 𝛼 only.  

Here  

𝐼𝛼𝑓(𝑥) = ∫
𝑓(𝑦)

|𝑦 − 𝑥|𝑛−𝛼
𝑑𝑦

ℝ𝑛
 

is the Riesz potential of order α. The above estimate (2) fails for the limiting case 𝑞 = 𝑝. 

Namely, there exist functions 𝑓 ∈ 𝐿𝑝(ℝ
𝑛) such that 𝐼𝛼𝑓(𝑥) = +∞ on some set of positive 

(𝑛 − 𝛼𝑝)–Hausdorff measure1 , see, e.g., [187]. We prove the following result for this 

limiting case 𝑞 = 𝑝: 

Theorem (5.1.3)[180]: Let µ be a positive Borel measure on ℝ𝑛 and 𝛼 > 0, 1 < 𝑝 <
∞, 𝛼𝑝 < 𝑛. Then for any 𝑓 ∈ 𝐿𝑝,1(ℝ

𝑛) the estimate  

‖𝐼𝛼𝑓‖𝐿𝑝(µ) ≤ 𝐶|‖µ‖|𝛽

1
𝑝
· ‖𝑓‖𝐿𝑝,1 ,                           (3) 

holds with 𝛽 = 𝑛 − 𝛼𝑝, where C depends on 𝑛, 𝑝, 𝛼 only.  

In view of the definition of the Lorentz spaces, it is sufficient to prove the above assertion 

for the simpler case when f coincides with the indicator function of some compact set:  

Theorem (5.1.4)[180]: Let µ be a positive Borel measure on ℝ𝑛 and 𝛼 > 0, 1 < 𝑝 <
∞, 𝛼𝑝 < 𝑛. Then for any compact set 𝐸 ⊂ ℝ𝑛 the estimate  

‖𝐼𝛼(1𝐸)‖𝐿𝑝(µ)
𝑝

≤ 𝐶|‖µ‖|𝛽   𝑚𝑒𝑎𝑠(𝐸),                           (4) 

holds with 𝛽 = 𝑛 − 𝛼𝑝, where 1𝐸 is the indicator function of the set E and C depends on 

𝑛, 𝑝, 𝛼 only.  

We emphasize that our proof of Theorem (5.1.4), and hence of Theorem (5.1.3), is self– 

contained, is independent of the previous proofs of this type of results, and uses only very 

natural and elementary arguments.  

From the definition of the space 𝑊𝑝∘,1
𝑘 (ℝ𝑛, ℝ𝑑) of Sobolev–Lorentz mappings and the 

classical estimate |𝛻𝑣| ≤ 𝐶|𝐼𝑘−1𝛻𝑣
𝑘|, Theorem (5.1.3) implies 

Theorem (5.1.5)[180]: Let µ be a positive Borel measure on ℝ𝑛, 𝑘 ∈ {1, . . . , 𝑛}. Then for 

any function 𝑣 ∈ 𝑊𝑝∘,1
𝑘  ((ℝ𝑛)) the estimate  

∫|𝛻𝑣|𝑝∘𝑑µ ≤ 𝐶|‖µ‖|𝑝∘ · ‖𝛻
𝑘𝑣‖

𝐿𝑝∘ ,1

𝑝∘
                                           (5) 

holds, where C depends on 𝑛, 𝑘 only. 

From these results we deduce also some new differentiability and approximation properties 

of Sobolev–Lorentz mappings 𝑣 ∈ 𝑊𝑝∘,1
𝑘 (ℝ𝑛). Namely, for 𝑚 ≤ 𝑛 the m–order derivatives 

𝛻𝑚𝑣 are well–defined ℋ𝑚𝑝∘ -almost everywhere, a function v is m-times differentiable (in 



145 

the classical Frechet–Peano sense) ℋ𝑚𝑝∘ -almost everywhere, and, finally, it coincides with 

𝐶𝑚-smooth function on ℝ𝑛\𝑈, where the open exceptional set U has small 𝐻∞
𝑚𝑝∘-Hausdorff 

content. Note that for mappings of the classical Sobolev space 𝑊𝑝∘
𝑘(ℝ𝑛) the corresponding 

exceptional set U has small Bessel capacity B𝑘−𝑚,𝑝(𝑈) < 𝜀, and, respectively, the gradients 

𝛻𝑚𝑣 are well-defined in ℝ𝑛 except for some exceptional set of zero Bessel capacity B𝑘−𝑚,𝑝 

(see [79] or [54]).  

We discuss Morse–Sard type theorems for Sobolev–Lorentz mappings. Namely, for an open 

set Ω ⊂ ℝ𝑛 and a mapping 𝑣 ∈ 𝑊𝑝∘,1,𝑙𝑜𝑐
𝑘 (Ω,ℝ𝑛) denote 𝑍𝑣,𝑚 = {𝑥 ∈ Ω: 𝑣 is differentiable 

at x and 𝑟𝑎𝑛𝑘𝛻𝑣(𝑥) < 𝑚} (recall, that by previous results v is differentiable ℋ𝑝∘ a.e.). We 

state: 

Theorem (5.1.6)[180]: If 𝑘,𝑚 ∈ {1, . . . , 𝑛}, Ω is an open subset of ℝ𝑛, and 𝑣 ∈

𝑊𝑝∘,1,𝑙𝑜𝑐
𝑘 (Ω,ℝ𝑛), then ℋ𝑞∘ (𝑣(𝑍𝑣,𝑚)) = 0.  

Here  

𝑝∘ =
𝑛

𝑘
   and    𝑞∘ = 𝑚 − 1 +

𝑛 −𝑚 + 1

𝑘
= 𝑝∘ + (𝑚 − 1)(1 − 𝑘

−1) .     (6) 

The theorem was proved for 𝐶𝑘-smooth functions by Morse [69] in 1939 for the case 𝑘 =
𝑛,𝑚 = 𝑑 = 𝑞∘ = 1, and subsequently by Sard [47] in 1942 for 𝑘 = 𝑛 −𝑚 + 1,𝑚 = 𝑑 =
𝑞∘. For arbitrary values 𝑘, 𝑛,𝑚 ∈ ℕ and 𝐶𝑘-smooth functions the result was proved almost 

simultaneously by Dubovitskiı [183] in 1967 and Federer [61] in 1969. 

     The Morse–Sard Theorem for Sobolev spaces 𝑊𝑝
𝑘(ℝ𝑛, ℝ𝑚) with 𝑝 > 𝑛 (i.e., when 

𝑊𝑝
𝑘(ℝ𝑛) ↪ 𝐶𝑘−1(ℝ𝑛)) was obtained in [39] (see also [48] for a simple proof), and for 

Lipschitz and Holder continuous mappings 𝐶𝑘,𝜆 see, e.g., in [36] and [53] respectively. See 

[9], [56], [50], where the above Theorem (5.1.6) was proved in the Sobolev context 𝑊𝑝∘
𝑘(ℝ𝑛) 

for 𝑘,𝑚 ∈ {2, . . . , 𝑛}. Since the case 𝑘 = 1 (𝑖. 𝑒. , 𝑞∘ = 𝑛) can be considered folklore (see, 

e.g., [190]) we shall in only consider the cases 𝑚 = 1, 𝑘 > 1, 𝑞∘ = 𝑝∘ =
𝑛

𝑘
. 

     Let us end by noting an interesting phenomenon that occurs for functions of the Sobolev–

Lorentz space 𝑊𝑝∘,1
𝑘 (ℝ𝑛, ℝ𝑑). On the one hand, the order of integrability of the k–th 

derivative, Lebesgues index 𝑝∘ and Lorentz index 1, is the minimal one on the Lorentz scale 

that guarantees continuity of mappings. On the other hand, these mappings a posteriori have 

many additional analytical regularity properties: the Luzin N–property, differentiability and 

approximation properties, and the Morse–Sard property (see above).  

     For instance, if 𝑘 = 𝑛 −𝑚 + 1, then almost all level sets of mappings 𝑣 ∈
𝑊𝑝∘,1
𝑘  (ℝ𝑛, ℝ𝑑) are 𝐶1–smooth manifolds [50]. The result should be contrasted with the fact 

that mappings of class 𝑊𝑝∘,1
𝑘 (ℝ𝑛, ℝ𝑚) are continuous only and need not to be 𝐶1–smooth in 

general. This property recently found some applications in mathematical fluid mechanics 

(see [188]).  

By an n–dimensional cubic interval we mean a closed cube in ℝ𝑛 with sides parallel 

to the coordinate axes. If Q is an n–dimensional cubic interval then we write ℓ(𝑄) for its 

sidelength. 

     For a subset S of ℝ𝑛 we write ℒ𝑛(𝑆) for its outer Lebesgue measure. The m– dimensional 

Hausdorff measure is denoted by ℋ𝑚 and the m–dimensional Hausdorff content by ℋ∞
𝑚. 

Recall that for any subset S of ℝ𝑛 we have by definition  

ℋ𝑚(𝑆) = lim
𝛼↘0
ℋ𝛼
𝑚(𝑆) = sup

𝛼>0
ℋ𝛼
𝑚(𝑆), 
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where for each 0 < 𝛼 ≤ ∞, 

ℋ𝛼
𝑚(𝑆) = inf {∑(𝑑𝑖𝑎𝑚 𝑆𝑖)

𝑚

∞

𝑖=1

: 𝑑𝑖𝑎𝑚 𝑆𝑖 ≤ 𝛼, 𝑆 ⊂⋃𝑆𝑖

∞

𝑖=1

}. 

It is well known that ℋ𝑛(𝑆) = ℋ∞
𝑛(𝑆) ∼ ℒ𝑛(𝑆) for sets ⊂ ℝ𝑛.  

To simplify the notation, we write ‖𝑓‖𝐿𝑝 instead of ‖𝑓‖𝐿𝑝(ℝ𝑛), etc.  

      The Sobolev space 𝑊𝑝
𝑘(ℝ𝑛, ℝ𝑑) is as usual defined as consisting of those ℝ𝑑–valued 

functions 𝑓 ∈ 𝐿𝑝(ℝ
𝑛) whose distributional partial derivatives of orders 𝑙 ≤ 𝑘 belong to 

𝐿𝑝(ℝ
𝑛) (for detailed definitions and differentiability properties of such functions see, e.g., 

[60], [67], [79], [58]). Denote by 𝛻𝑘𝑓 the vector-valued function consisting of all k–th order 

partial derivatives of f arranged in some fixed order. However, for the case of first order 

derivatives 𝑘 = 1 we shall often think of 𝛻𝑓(𝑥) as the Jacobi matrix of f at x, thus the 𝑑 × 𝑛 

matrix whose r–th row is the vector of partial derivatives of the r–th coordinate function.  

We use the norm  

‖𝑓‖𝑊𝑝𝑘 = ‖𝑓‖𝐿𝑝 + ‖𝛻𝑓‖𝐿𝑝 +· · · +‖𝛻
𝑘𝑓‖

𝐿𝑝
, 

and unless otherwise specified all norms on the spaces ℝ𝑠(𝑠 ∈ ℕ) will be the usual euclidean 

norms.  

Working with locally integrable functions, we always assume that the precise 

representatives are chosen. If 𝑤 ∈ 𝐿1,𝑙𝑜𝑐(Ω), then the precise representative 𝑤∗ is defined 

for all 𝑥 ∈ Ω by  

𝑤∗(𝑥) = lim
𝑟↘0
⨍ 𝑤(𝑧)𝑑𝑧𝐵(𝑥,𝑟) ,if the limit exists and is finite, 0 otherwise,    (7)  

where the dashed integral as usual denotes the integral mean, 

⨍ 𝑤(𝑧)𝑑𝑧
𝐵(𝑥,𝑟)

=
1

ℒ𝑛(𝐵(𝑥, 𝑟))
∫ 𝑤(𝑧)𝑑𝑧
𝐵(𝑥,𝑟)

, 

and 𝐵(𝑥, 𝑟) = {𝑦: |𝑦 − 𝑥| < 𝑟} is the open ball of radius r centered at x. Henceforth we omit 

special notation for the precise representative writing simply 𝑤∗ = 𝑤.  

We will say that x is an 𝐿𝑝–Lebesgue point of w (and simply a Lebesgue point when 𝑝 =

1), if 
⨍ |𝑤(𝑧)−𝑤(𝑥)|𝑝𝑑𝑧

𝐵(𝑥,𝑟)
 →  0           𝑎𝑠       𝑟 ↘ 0. 

     If 𝑘 < 𝑛, then it is well-known that functions from Sobolev spaces 𝑊𝑝
𝑘(ℝ𝑛) are 

continuous for 𝑝 >
𝑛

𝑘
 and could be discontinuous for 𝑝 ≤ 𝑝∘ =

𝑛

𝑘
 (see, e.g., [67], [79]). The 

Sobolev–Lorentz space 𝑊𝑝∘,1
𝑘 (ℝ𝑛) ⊂ 𝑊𝑝∘

𝑘(ℝ𝑛) is a refinement of the corresponding Sobolev 

space that for our purposes turns out to be convenient. Among other things functions that 

are locally in 𝑊𝑝∘,1
𝑘  on ℝ𝑛 are in particular continuous.  

Given a measurable function 𝑓:ℝ𝑛 → ℝ, denote by 𝑓∗: (0,∞) → ℝ its distribution function  

𝑓∗(𝑠):= ℒ
𝑛{𝑥 ∈ ℝ𝑛: |𝑓(𝑥)| > 𝑠}, 

and by 𝑓∗ the nonincreasing rearrangement of f, defined for 𝑡 > 0 by  

𝑓∗(𝑡) = inf{𝑠 ≥ 0: 𝑓∗(𝑠) ≤ 𝑡}. 
Since |𝑓| and 𝑓∗ are equimeasurable, we have for every 1 ≤ 𝑝 < ∞, 

(∫ |𝑓(𝑥)|𝑝𝑑𝑥
ℝ𝑛

)

1
𝑝

= (∫ 𝑓∗(𝑡)𝑝𝑑𝑡
+∞

0

)

1
𝑝

. 
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The Lorentz space 𝐿𝑝,𝑞(ℝ
𝑛) for 1 ≤ 𝑝 < ∞,1 ≤ 𝑞 < ∞ can be defined as the set of all 

measurable functions 𝑓: ℝ𝑛 → ℝ for which the expresssion  

‖𝑓‖𝐿𝑝,𝑞 =

{
 
 

 
 
(
𝑞

𝑝
∫ (𝑡

1
𝑝𝑓∗(𝑡))

𝑞
𝑑𝑡

𝑡

+∞

0

)

1
𝑞

        𝑖𝑓   1 ≤ 𝑞 < ∞ 

sup
𝑡>0

𝑡
1
𝑝𝑓∗(𝑡)                                              𝑖𝑓 𝑞 = ∞

 

is finite. See [65], [74] or [79] for information about Lorentz spaces. However, let us remark 

that in view of the definition of ‖·‖𝐿𝑝,𝑞 and the equimeasurability of 𝑓 and 𝑓∗ we have 

‖𝑓‖𝐿𝑝 = ‖𝑓‖𝐿𝑝,𝑝 so that in particular 𝐿𝑝,𝑝(ℝ
𝑛) = 𝐿𝑝(ℝ

𝑛). Further, for a fixed exponent p 

and 𝑞1 < 𝑞2 we have the estimate ‖𝑓‖𝐿𝑝,𝑞2 ≤
‖𝑓‖𝐿𝑝,𝑞1 , and, consequently, the embedding 

𝐿𝑝,𝑞1(ℝ
𝑛) ⊂ 𝐿𝑝,𝑞2(ℝ

𝑛) (see [65]). Finally we recall that ‖·‖𝐿𝑝,𝑞 is a norm on 𝐿𝑝,𝑞(ℝ
𝑛) for 

all 𝑞 ∈ [1, 𝑝] and a quasi–norm in the remaining cases 𝑞 ∈ (𝑝,∞] (see [65]).  

Here we shall mainly be concerned with the Lorentz space 𝐿𝑝,1, and in this case one may 

rewrite the norm as (see for instance [65])  

‖𝑓‖𝑝,1 = ∫ [ℒ𝑛({𝑥 ∈ ℝ𝑛: |𝑓(𝑥)| > 𝑡})]
1
𝑝𝑑𝑡

+∞

0

.                  (8) 

We record the following subadditivity property of the Lorentz norm for later use. 

Lemma (5.1.7)[180]: (see, e.g., [72] or [65]). Suppose that 1 ≤ 𝑝 < ∞ and = ⋃ 𝐸𝑗𝑗∈ℕ  , 

where 𝐸𝑗 are measurable and mutually disjoint subsets of ℝ𝑛. Then for all 𝑓 ∈ 𝐿𝑝,1 we have  

∑‖𝑓 · 1𝐸𝑗‖𝐿𝑝,1

𝑝

𝑗

≤ ‖𝑓 · 1𝐸‖𝐿𝑝,1
𝑝
, 

where 1𝐸 denotes the indicator function of the set E.  

Denote by 𝑊𝑝,1
𝑘 (ℝ𝑛) the space of all functions 𝑣 ∈ 𝑊𝑝

𝑘(ℝ𝑛) such that in addition the 

Lorentz norm ‖𝛻𝑘𝑣‖
𝐿𝑝,1

 is finite.  

For a mapping 𝑢 ∈ 𝐿1(𝑄, ℝ
𝑑), 𝑄 ⊂ ℝ𝑛 , 𝑚 ∈ ℕ, define the polynomial 𝑃𝑄,𝑚[𝑢] of degree at 

most m by the following rule:  

∫ 𝑦𝛼 (𝑢(𝑦) − 𝑃𝑄,𝑚[𝑢](𝑦))𝑑𝑦
𝑄

= 0                         (9) 

for any multi-index 𝛼 = (𝛼1, . . . , 𝛼𝑛) of length |𝛼| = 𝛼1 +· · · +𝛼𝑛 ≤ 𝑚. Denote 𝑃𝑄[𝑢] =

𝑃𝑄,𝑘−1[𝑢]. 
The following well–known bound will be used on several occasions.  

Lemma (5.1.8)[180]: Suppose 𝑣 ∈ 𝑊𝑝∘,1
𝑘 (ℝ𝑛, ℝ𝑑) with 𝑘 ∈ {1, . . . , 𝑛}. Then v is a 

continuous mapping and for any n-dimensional cubic interval 𝑄 ⊂ ℝ𝑛 the estimate  

sup
𝑦∈𝑄
|𝑣(𝑦) − 𝑃𝑄[𝑣](𝑦)| ≤ 𝐶‖1𝑄 · 𝛻

𝑘𝑣‖
𝐿𝑝∘,1

                          (10) 

holds, where C is a constant depending on n, d only. Moreover, the mapping 𝑣𝑄(𝑦) =

𝑣(𝑦) − 𝑃𝑄[𝑣](𝑦), 𝑦 ∈ 𝑄, can be extended from Q to the whole of ℝ𝑛 such that the extension 

(denoted again) 𝑣𝑄 ∈ 𝑊𝑝∘,1
𝑘 (ℝ𝑛, ℝ𝑑) and  

‖𝛻𝑘𝑣𝑄‖𝐿𝑝∘,1(ℝ
𝑛)
≤ 𝐶0‖𝛻

𝑘𝑣‖
𝐿𝑝∘,1(𝑄)

,                          (11) 

where 𝐶0 also depends on n, d only.  
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Proof. For continuity and the estimate (10) see [50]. Because of coordinate invariance of 

estimate (11), it is sufficient to prove the assertions about extension for the case when Q is 

a unit cube: 𝑄 = [0, 1]𝑛. Put 𝑢(𝑦) = 𝑣𝑄(𝑦) = 𝑣(𝑦) − 𝑃𝑄[𝑣](𝑦) for 𝑦 ∈ 𝑄.  

By Peetre theorem (see Theorem 6.5 in [65]) it is easy to deduce that  

‖𝛻𝑚𝑢‖𝐿𝑝∘,1
(𝑄) ≤ 𝐶‖𝛻𝑘𝑢‖

𝐿𝑝∘,1(𝑄)
        ∀𝑚 = 0, 1, . . . , 𝑘 − 1.           (12) 

Using the standard Extension operator for Sobolev spaces (the well-known ”finite-order 

reflection” procedure, see, e.g., [67]), function u on the unit cube 𝑄 = [0, 1]𝑛 can be 

extended to a function 𝑈 ∈ 𝑊𝑝∘,1
𝑘 (ℝ𝑛) such that the estimate  

‖𝛻𝑘𝑈‖
𝐿𝑝∘,1(ℝ

𝑛)
≤ 𝐶′  ∑‖𝛻𝑚𝑢‖𝐿𝑝∘,1(𝑄)

𝑘

𝑚=0

 

holds. Taking into account the identity 𝛻𝑘𝑢 ≡ 𝛻𝑘𝑣 on Q and (12), we obtain the required 

estimate (11). 

Corollary (5.1.9)[180]: (see, e.g., [50]). Suppose 𝑣 ∈ 𝑊𝑝∘,1
𝑘 (ℝ𝑛, ℝ𝑑) with 𝑘 ∈ {1, . . . , 𝑛}. 

Then v is a continuous mapping and for any n-dimensional cubic interval 𝑄 ⊂ ℝ𝑛 the 

estimate  

𝑑𝑖𝑎𝑚 𝑣(𝑄) ≤ 𝐶 (
‖𝛻𝑣‖𝐿1(𝑄)

ℓ(𝑄)𝑛−1
 + ‖1𝑄 · 𝛻

𝑘𝑣‖
𝐿𝑝∘,1

) 

≤ 𝐶 (
‖𝛻𝑣‖𝐿𝑝∘(𝑄)

ℓ(𝑄)𝑘−1
 + ‖1𝑄 · 𝛻

𝑘𝑣‖
𝐿𝑝∘,1

)                         (13) 

holds.  

The above results can easily be adapted to give that 𝑣 ∈ 𝐶0(ℝ
𝑛), the space of continuous 

functions on ℝ𝑛 that vanish at infinity (see [65]).  

Analogously, from previous estimates one could deduce  

Corollary (5.1.10)[180]: Suppose 𝑣 ∈ 𝑊𝑝∘,1
𝑘 (ℝ𝑛, ℝ𝑑) with 𝑘 ∈ {1, . . . , 𝑛}. Then for all 𝑚 ∈

{1, . . . , 𝑘} and for any n-dimensional cubic interval 𝑄 ⊂ ℝ𝑛 the estimate  

sup
𝑦∈𝑄
|𝑣(𝑦) − 𝑃𝑄,𝑚−1[𝑣](𝑦)| ≤ 𝐶 (

‖𝛻𝑚𝑣‖𝐿𝑝∘(𝑄)

ℓ(𝑄)𝑘−𝑚
+ ‖1𝑄 · 𝛻

𝑘𝑣‖
𝐿𝑝∘,1

)      (14) 

holds. 

Theorem (5.1.11)[180]: (Boundedness of the maximal operator, see [65]). Let 𝑓 ∈
𝐿𝑝,𝑞(ℝ

𝑛), 1 < 𝑝 < ∞,1 ≤ 𝑞 < ∞. Then  

‖M𝑓‖𝐿𝑝,𝑞
≤ 𝐶‖𝑓‖𝐿𝑝,𝑞 . 

Here  

M𝑓(𝑥) = sup
𝑟>0

𝑟−𝑛∫ |𝑓(𝑦)|𝑑𝑦
𝐵(𝑥,𝑟)

 

is the usual Hardy–Littlewood maximal function of f. 

Corollary (5.1.12)[180]: (Regularization in Lorentz spaces [65]). Let 𝑓 ∈ 𝐿𝑝,𝑞(ℝ
𝑛), 1 <

𝑝 < ∞,1 ≤ 𝑞 < ∞. Suppose that 𝑓 ∈ 𝐿𝑝,𝑞(ℝ
𝑛) and 𝜓 ∈ 𝐶0

∞(ℝ𝑛) is a standard mollifier. 

Then 𝜓𝛿 ∗ 𝑓 → 𝑓 in 𝐿𝑝,𝑞(ℝ
𝑛) as 𝛿 →  0. 

Here and henceforth 𝐶0
∞(ℝ𝑛) denotes the space of 𝐶∞ smooth and compactly supported 

functions on ℝ𝑛. 

Corollary (5.1.13)[180]: (Regularization in Sobolev–Lorentz spaces). If 𝑓 ∈
𝑊𝑝,𝑞
𝑘 (ℝ𝑛), 1 < 𝑝 < ∞, 1 ≤ 𝑞 < ∞, then there exists a sequence of smooth functions 𝑓𝑖 ∈
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𝐶0
∞(ℝ𝑛) such that ‖𝛻𝑚(𝑓 − 𝑓𝑖)‖𝐿𝑝(ℝ𝑛) → 0 for 𝑚 = 0, 1, . . . , 𝑘, ‖𝛻𝑘(𝑓 − 𝑓𝑖)‖𝐿𝑝,𝑞(ℝ𝑛)

→ 0 

as 𝑖 → ∞.  

We need also the following important Adams strong-type estimates for maximal 

functions. 

Theorem (5.1.14)[180]: (see Theorem (5.1.2), Proposition 1 and its Corollary in [51]). Let 

𝛽 ∈ (0, 𝑛). Then for nonnegative functions 𝑓 ∈ 𝐶0(ℝ
𝑛) the estimates  

∫ ℋ∞
𝛽({𝑥 ∈ ℋ:M𝑓(𝑥) ≥ 𝑡}) 𝑑𝑡

∞

0

≤ 𝐶1∫ M∞
𝛽 ({𝑥 ∈M: 𝑓(𝑥) ≥ 𝑡})𝑑𝑡

∞

0

≤ 𝐶2 sup {∫𝑓 𝑑µ: µ ∈M
𝛽 , |‖µ‖|𝛽 ≤ 1}, 

hold, where the constants 𝐶1, 𝐶2 depend on 𝛽, 𝑛 only. 

We need also the following classical fact (cf. with [55]).  

Lemma (5.1.15)[180]: (see Lemma 2 in [58]). Let 𝑢 ∈ 𝑊1
𝑚(ℝ𝑛),𝑚 ≤ 𝑛. Then for any n–

dimensional cubic interval 𝑄 ⊂ ℝ𝑛, 𝑥 ∈ 𝑄, and for any 𝑗 = 0, 1, . . . , 𝑚 − 1 the estimate   

|𝛻𝑗𝑢(𝑥) − 𝛻𝑗𝑃𝑄,𝑚−1[𝑢](𝑥)| ≤ 𝐶ℓ(𝑄)
𝑚−𝑗(M𝛻𝑚𝑢)(𝑥)             (15) 

holds, where the constant C depends on n, m only.  

Theorem (5.1.4) plays the key role among other results. Its proof splits into a number 

of lemmas. Fix parameters 𝑚 > 0, 1 < 𝑝 < ∞,0 < 𝛼𝑝 < 𝑛, and a positive Borel measure 

µ on ℝ𝑛 satisfying  

µ(𝐵(𝑥, 𝑟)) ≤ 𝑟𝑛−𝛼𝑝                                       (16) 
for every ball 𝐵(𝑥, 𝑟) ⊂ ℝ𝑛. Fix also a compact set ⊂ ℝ𝑛. Denote by 𝐼𝐸  the corresponding 

Riesz potential 𝐼𝛼(1𝐸). 
It is very easy to check by standard calculation that  

0 ≤ 𝐼𝐸(𝑥) ≤ 𝐶0|𝐸|𝑛
𝛼 ,                                                   (17) 

where the constant 𝐶0 depends on 𝑛, 𝛼 

only. Denote also 𝑡𝑚 = 2
𝑚 (here 𝑚 ∈ ℤ), 

𝐸𝑚 = {𝑥 ∈ 𝐸: 𝐼𝐸(𝑥) ∈ [𝑡𝑚, 2𝑡𝑚]}, 

𝐸𝑚
′ = {𝑥 ∈ 𝐸: 𝐼𝐸(𝑥) ≤ 𝑡𝑚}, 𝐸𝑚

′′ = {𝑥 ∈ 𝐸: 𝐼𝐸(𝑥) > 𝑡𝑚}. 

We will write 𝑓 ≲ 𝑔, if 𝑓 ≤ 𝐶𝑔, where C depends on 𝑛, 𝛼, 𝑝 only (really, most of the 

corresponding constants below up to Lemma (5.1.21) depends on 𝑛, 𝛼 only).  

Lemma (5.1.16)[180]: There exists a positive constant 𝑚0 ∈ ℕ depending on 𝑛, 𝛼 only such 

that for any 𝑚 ∈ ℤ and 𝑥 ∈ ℝ𝑛 if 𝐼𝐸(𝑥) ≥ 𝑡𝑚, then 𝐼𝐸𝑚−𝑚0
′′ (𝑥) ≳ 𝑡𝑚. 

Proof. The claim follows from the well-known maximum principle: 𝐼𝐸𝑚′ (𝑥) ≤ 2
𝑛−𝛼𝑡𝑚 for 

every 𝑚 ∈ ℤ (see [186]).  

Lemma (5.1.17)[180]: For any 𝑥, 𝑦 ∈ ℝ𝑛 if 𝐼𝐸(𝑦) = 𝑡 and |𝑥 − 𝑦| ≤ (2𝑡)
1

𝛼 then 𝐼𝐸(𝑥) ≳ 𝑡.  
Proof. Let 𝐼𝐸(𝑦) = 𝑡 and | 

|𝑦 − 𝑥| ≤ (2𝑡)
1
𝛼.                                                             (18) 

Denote 𝑟 = |𝑦 − 𝑥|, 𝐵 = 𝐵(𝑦, 𝑟) = {𝑧 ∈ ℝ𝑛: |𝑧 − 𝑦| < 𝑟}. Then by construction  

𝑡 = 𝐼𝐸(𝑦) = 𝐼𝐸∩𝐵(𝑦) + 𝐼𝐸\𝐵(𝑦).                                 (19) 

Consider two possible situations.  

(I). 𝐼𝐸∩𝐵(𝑦) ≤
𝑡

2
, then 𝐼𝐸\𝐵(𝑦) ≥

𝑡

2
. For any 𝑧 ∈ 𝐸\𝐵 we have |𝑧 − 𝑦| ≥ 𝑟 = |𝑥 − 𝑦|, 

thus, |𝑥 − 𝑧| ≤ |𝑥 − 𝑦| + |𝑧 − 𝑦| ≤ 2|𝑧 − 𝑦|, consequently, 

𝐼𝐸(𝑥) ≥ 𝐼𝐸\𝐵(𝑥) ≥ 2
𝑛−𝛼𝐼𝐸\𝐵(𝑦) ≥ 2

𝑛−𝛼−1𝑡.                               (20) 
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(II). 𝐼𝐸∩𝐵(𝑦) ≥
𝑡

2
. Then (17) implies 

𝑡

2
≤ 𝐶0|𝐵 ∩ 𝐸|

𝛼

𝑛. Since 𝐵 ∩ 𝐸 ⊂ 𝐵(𝑥, 2𝑟), by 

elementary estimates we have  

𝐼𝐸(𝑥) ≥
|𝐵 ∩ 𝐸|

(2𝑟)𝑛−𝛼
≥
𝐶′𝑡

𝑛
𝛼

𝑟𝑛−𝛼
≥
(2.3) 𝐶′′𝑡

𝑛
𝛼

𝑡
𝑛
𝛼
−1
= 𝐶2𝑡. 

Denote 𝐹𝑚 = {𝑥 ∈ ℝ
𝑛: 𝐼𝐸(𝑥) ∈ [𝑡𝑚 , 2𝑡𝑚]}, µ𝑚 = µ(𝐹𝑚), µ𝑚(·) = µ ⌞𝐹𝑚. By construction,  

‖𝐼𝛼(1𝐸)‖𝐿𝑝(µ)
𝑝

∼ ∑ 𝑡𝑚
𝑝
µ𝑚

∞

𝑚=−∞

. 

So our main purpose below is to estimate tmµm. Of course, 𝑡𝑚µ𝑚 ≤ ∫ 𝐼𝐸(𝑥)𝑑µ𝑚(𝑥)ℝ𝑛
. By 

Fubini Theorem we have  

∫ 𝐼𝐸(𝑥)𝑑µ𝑚(𝑥)
ℝ𝑛

= ∫ 𝜌−𝑛+𝛼−1 [∫ |𝐸 ∩ 𝐵(𝑥, 𝜌)|𝑑µ𝑚(𝑥)
ℝ𝑛

] 𝑑𝜌
∞

0

 

= ∫ 𝜌−𝑛+𝛼−1 [∫µ𝑚 [𝐵(𝑦, 𝜌)]𝑑𝑦
𝐸

] 𝑑𝜌
∞

0

.                         (21) 

Lemma (5.1.18)[180]: The estimate  

𝑡𝑚µ𝑚 ≲ ∫ 𝜌−𝑛+𝛼−1 [∫ |𝐸𝑚−𝑚0
′′ ∩ 𝐵(𝑥, 𝜌)|𝑑µ𝑚(𝑥)

ℝ𝑛
] 𝑑𝜌

∞

0

             (22) 

holds, where 𝑚0 is a constant from Lemma (5.1.16). 

Proof. By Lemma (5.1.16), 𝐼𝐸𝑚−𝑚0
′′ ≥ 𝐶1𝑡𝑚 on 𝐹𝑚, therefore 𝑡𝑚µ𝑚 ≤

𝐶 ∫ 𝐼𝐸𝑚−𝑚0
′′ (𝑥)𝑑µ𝑚(𝑥)ℝ𝑛

, and the last inequality implies in conjunction with Fubini’s 

Theorem (22).  

Lemma (5.1.19)[180]: There exists a constant 𝑚1 ∈ ℕ such that  

𝑡𝑚µ𝑚 ≲ ∫ 𝜌−𝑛+𝛼−1 [∫ |𝐸𝑚−𝑚0
′′ ∩ 𝐵(𝑥, 𝜌)|𝑑µ𝑚(𝑥)

ℝ𝑛
] 𝑑𝜌

∞

𝑡𝑚−𝑚1

1
𝛼

.        (23) 

Proof. Let 𝑚1 ∈ ℕ, its exact value will be specified below. We have |𝐸 ∩ 𝐵(𝑥, 𝜌)| ≤ 𝜔𝑛𝜌
𝑛, 

where 𝜔𝑛 is a volume of a unit ball in ℝ𝑛. Thus  

∫ 𝜌−𝑛+𝛼−1 [∫ |𝐸 ∩ 𝐵(𝑥, 𝜌)|𝑑µ𝑚(𝑥)
ℝ𝑛

] 𝑑𝜌
𝑡𝑚−𝑚1

1
𝛼

0

≤ 𝜔𝑛µ𝑚∫ 𝜌𝛼−1𝑑𝜌
𝑡𝑚−𝑚1

1
𝛼

0

=
𝜔𝑛
𝛼
µ𝑚𝑡𝑚−𝑚1

=
𝜔𝑛
𝛼
2−𝑚1µ𝑚𝑡𝑚. 

So the target estimate (23) follows from (22) provided that 
1

𝛼
𝜔𝑛2

−𝑚1 is sufficiently small.  

Lemma (5.1.20)[180]: There exists a constant 𝑖0 ∈ ℕ such that for all 𝑖 ≥ 𝑚 −𝑚1 the 

equality  

∫ 𝜌−𝑛+𝛼−1 [∫ |𝐸𝑚−𝑚0
′′ ∩ 𝐵(𝑥, 𝜌)|𝑑µ𝑚(𝑥)

ℝ𝑛
] 𝑑𝜌

𝑡𝑖+1

1
𝛼

𝑡𝑖

1
𝛼

 

= ∑ ∫ 𝜌−𝑛+𝛼−1 [∫ |𝐸𝑗 ∩ 𝐵(𝑥, 𝜌)|𝑑µ𝑚(𝑥)
ℝ𝑛

] 𝑑𝜌
𝑡𝑖+1

1
𝛼

𝑡𝑖

1
𝛼

𝑖+𝑖0

𝑗=𝑚−𝑚0

                         (24) 

holds, where 𝑚0, 𝑚1 are the constants from Lemma (5.1.16), respectively.  

Proof. Let 𝑖 ≥ 𝑚 −𝑚1, 
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𝜌𝛼 ≤ 𝑡𝑖+1,                                                        (25) 
and 𝑦 ∈ 𝐸𝑗 ∩ 𝐵(𝑥, 𝜌), 𝑥 ∈ 𝐹𝑚 = 𝑠𝑢𝑝𝑝 µ𝑚. Then by definitions of these sets  

𝐼𝐸(𝑥) ≤ 2𝑡𝑚                                           (26) 
and 𝐼𝐸(𝑦) ≥ 𝑡𝑗 . Suppose 𝑗 ≥ 𝑖 + 1. Then (25) implies |𝑥 − 𝑦|𝛼 ≤ 𝑡𝑖+1 ≤ 𝑡𝑗, therefore, by 

Lemma (5.1.17) (applying for 𝑡 = 𝑡𝑗) we have 𝐼𝐸(𝑥) ≥ 𝐶2𝑡𝑗. Thus by (26) we obtain 𝑗 ≤

𝑚 +𝑚2 for some constant 𝑚2 depending on 𝛼, 𝑛 only.  

Finally we have 𝑗 ≤ max (𝑖 + 1,𝑚 +𝑚2) ≤ max(𝑖 + 1, 𝑖 + 𝑚1 +𝑚2) finishing the proof 

of the Lemma. 

Lemma (5.1.21)[180]: The estimate  

𝑡𝑚µ𝑚 ≲ ∑ |𝐸𝑗|𝑡𝑗−𝑖0
1−𝑝

∞

𝑗=𝑚−𝑚0

                                                 (27) 

holds for all 𝑚 ∈ ℤ, where 𝑚0, 𝑖0 are the constants from Lemmas 2.1, respectively.  

Proof. We have  

𝑡𝑚µ𝑚 ∑ ∫ 𝜌−𝑛+𝛼−1 [∫ |𝐸𝑚−𝑚0
′′

ℝ𝑛

𝑡𝑖+1

1
𝛼

𝑡𝑖

1
𝛼

∞

𝑖=𝑚−𝑚1

∩ 𝐵(𝑥, 𝜌)|𝑑µ𝑚(𝑥)] 𝑑𝜌 ≲
(2.9)

∑ ∑ ∫ 𝜌−𝑛+𝛼−1 [∫ |𝐸𝑗
ℝ𝑛

𝑡𝑖+1

1
𝛼

𝑡𝑖

1
𝛼

𝑖+𝑖0

𝑗=𝑚−𝑚0

∞

𝑖=𝑚−𝑚1

∩ 𝐵(𝑥, 𝜌)|𝑑µ𝑚(𝑥)] 𝑑𝜌 

=
𝐹𝑢𝑏𝑖𝑛𝑖

∑ ∑ ∫ 𝜌−𝑛+𝛼−1 [ ∫ µ𝑚[𝐵(𝑦,𝜌)]𝑑𝑦
𝐸𝑗

]𝑑𝜌
𝑡𝑖+1

1
𝛼

𝑡𝑖

1
𝛼

𝑖+𝑖0

𝑗=𝑚−𝑚0

∞

𝑖=𝑚−𝑚1

≲               

∑ ∑ ∫ 𝜌−𝑛+𝛼−1+(𝑛−𝛼𝑝)|𝐸𝑗|𝑑𝜌
𝑡𝑖+1

1
𝛼

𝑡𝑖

1
𝛼

𝑖+𝑖0

𝑗=𝑚−𝑚0

∞

𝑖=𝑚−𝑚1

≲  

≲ ∑ ∑ |𝐸𝑗|(𝑡𝑖)
1−𝑝

𝑖+𝑖0

𝑗=𝑚−𝑚0

∞

𝑖=𝑚−𝑚1

≤
changing order of summation 𝑖↔𝑗

 

≤ ∑ |𝐸𝑗| ∑ (𝑡𝑖)
1−𝑝

∞

𝑖=𝑗−𝑖0

∞

𝑗=𝑚−𝑚0

≲
geometric progression

∑ |𝐸𝑗|(𝑡𝑗−𝑖0)
1−𝑝

∞

𝑗=𝑚−𝑚0

.  (28) 

Lemma (5.1.22)[180]: The estimate  

∑ 𝑡𝑚
𝑝
µ𝑚

∞

𝑚=−∞

≲ |𝐸|                                       (29) 

holds. 

Proof. We have  

∑ 𝑡𝑚
𝑝
µ𝑚

∞

𝑚=−∞

≲
(2.12)

∑ ∑ |𝐸𝑗| (
𝑡𝑚
𝑡𝑗−𝑖0

)

𝑝−1∞

𝑗=𝑚−𝑚0

∞

𝑚=−∞

≲ 
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≤
changing order of summation 𝑚↔𝑗

∑ |𝐸𝑗| ∑ (
𝑡𝑚
𝑡𝑗−𝑖0

)

𝑝−1𝑗+𝑚0

𝑚=−∞

∞

𝑗=−∞

≲ 

≲
geometric progression

 ∑ |𝐸𝑗| (
𝑡𝑗+𝑚0
𝑡𝑗−𝑖0

)

𝑝−1∞

𝑗=−∞

=
definition of 𝑡𝑗

∑ |𝐸𝑗|2
(𝑚0+𝑖0)(𝑝−1)

∞

𝑗=−∞

≲ |𝐸|.                                                                                                                     (30) 
Using the established Theorem (5.1.3) and Adam’s estimate from Theorem (5.1.14) with 

𝛽 = 𝑛 − (𝑘 − 𝑙)𝑝, we obtain the following estimates, which are key ingredients in the proof 

of N–property.  

Corollary (5.1.23)[180]: Let 𝑝 ∈ (1,∞), 𝑘, 𝑙 ∈ {1, . . . , 𝑛}, 𝑙 ≤ 𝑘, (𝑘 − 𝑙)𝑝 < 𝑛. Then for 

any function 𝑓 ∈ 𝑊𝑝,1
𝑘 (ℝ𝑛) the estimates  

‖𝛻𝑙𝑓‖
𝐿𝑝(µ)

𝑝
≤ 𝐶|‖µ‖|𝛽‖𝛻

𝑘𝑓‖
𝐿𝑝,1

𝑝
        ∀µ ∈M𝛽 ,            (31) 

∫ ℋ∞
𝛽
({𝑥 ∈ ℝ𝑛:M(|𝛻𝑙𝑓|

𝑝
)(𝑥) ≥ 𝑡}) 𝑑𝑡

∞

0

≤ 𝐶‖𝛻𝑘𝑓‖
𝐿𝑝,1

𝑝
         (32) 

hold, where 𝛽 = 𝑛 − (𝑘 − 𝑙)𝑝 and the constant C depends on 𝑛, 𝑘, 𝑝 only.  

The main result is the following  

Theorem (5.1.24)[180]: Let 𝑝 ∈ (1,∞), 𝑘, 𝑙 ∈ {1, . . . , 𝑛}, 𝑙 ≤ 𝑘, (𝑘 − 𝑙)𝑝 < 𝑛. Then for any 

𝑓 ∈ 𝑊𝑝,1
𝑘 (ℝ𝑛) and for each 𝜀 > 0 there exist an open set 𝑈 ⊂ ℝ𝑛 and a function 𝑔 ∈ 𝐶𝑙(ℝ𝑛) 

such that  

(i) ℋ∞
𝑛−(𝑘−𝑙)𝑝

(𝑈) < 𝜀;  
(ii) each point 𝑥 ∈ ℝ𝑛\𝑈 is an 𝐿𝑝-Lebesgue point for 𝛻𝑗  𝑓, 𝑗 = 0, . . . , 𝑙; 

(iii) 𝑓 ≡ 𝑔, 𝛻𝑗𝑓 ≡ 𝛻𝑗𝑔 on ℝ𝑛\𝑈 for 𝑗 = 1, . . . , 𝑙.  

Note that in the analogous theorem for the case of Sobolev mappings 𝑓 ∈ 𝑊𝑝
𝑘(ℝ𝑛) the 

assertion (i) should be reformulated as follows:  

       (i’) B𝑘−𝑙,𝑝(𝑈) < 𝜀 if 𝑙 < 𝑘, where B𝛼,𝑝(𝑈) denotes the Bessel capacity of the set U 

(see [79] or [54]). 

Recall that for 1 < 𝑝 < ∞ and 0 < 𝑛 − 𝛼𝑝 < 𝑛 the smallness of ℋ∞
𝑛−𝛼𝑝(𝑈) implies the 

smallness of B𝛼,𝑝(𝑈), but that the opposite is false since B𝛼,𝑝(𝑈) = 0 whenever 

ℋ𝑛−𝛼𝑝(𝑈) < ∞. On the other hand, for 1 < 𝑝 < ∞ and 0 < 𝑛 − 𝛼𝑝 < 𝛽 ≤ 𝑛 the smallness 

of B𝛼,𝑝(𝑈) implies the smallness of ℋ∞
𝛽(𝑈) (see, e.g., [52]). So the usual assertion (i’) is 

essentially weaker than (i).  

Proof: Let the assumptions of the Theorem be fulfilled. By Theorem (5.1.11) and Corollary 

(5.1.13), we can choose the sequence of mappings 𝑓𝑖 ∈ 𝐶0
∞(ℝ𝑛) such that ‖𝛻𝑘𝑓 −

𝛻𝑘𝑓𝑖‖𝐿𝑝,1(ℝ𝑛)
< 4−𝑖. Denote 𝑓𝑖 = 𝑓 − 𝑓𝑖. Then by Corollary (5.1.23)  

ℋ∞
𝑛−(𝑘−𝑙)𝑝

( {𝑥 ∈ ℝ𝑛:M(|𝛻𝑙𝑓𝑖|
𝑝
)(𝑥) ≥ 2−𝑖}) < 𝐶 2−𝑖 . 

Then one could repeat almost word by word the proof of Theorem 3.1 in [56]. Since there 

are no essential differences.  

We start with the following simple technical observation.  

Lemma (5.1.25) (see, e.g., Lemma 4.1 in [50])[180]: If 𝑙, 𝑘 ∈ {1, . . . , 𝑛}, 𝑙 < 𝑘, and 𝑣 ∈

𝑊𝑝∘,1
𝑘 (ℝ𝑛, ℝ𝑑), then for any 𝜀 > 0 there exists an open set 𝑈 ⊂ ℝ𝑛 such that ℋ∞

𝑙𝑝∘(𝑈) < 𝜀 

and the uniform convergence  

𝑟−𝑙‖1𝐵(𝑥,𝑟) · 𝛻
𝑘𝑣‖

𝐿𝑝∘,1
→  0         𝑎𝑠   𝑟 ↘ 0 
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holds for 𝑥 ∈ ℝ𝑛\𝑈. 

Proof. The proof of the Lemma follows standard arguments, we reproduce it here for 

reader’s convenience. Fix 𝜎 > 0. Let {𝐵𝛼} be a family of disjoint balls 𝐵𝛼 = 𝐵(𝑥𝛼 , 𝑟𝛼) such 

that  

‖1𝐵𝛼 · 𝛻
𝑘𝑣‖

𝐿𝑝∘,1
≥ 𝜎𝑟𝛼

𝑙 

and sup
𝛼
𝑟𝛼 < 𝛿 for some 𝛿 > 0, where δ is chosen small enough to guarantee that 

sup
𝛼
‖1𝐵𝛼 · 𝛻

𝑘𝑣‖
𝐿𝑝∘,1

< 1. Then We have  

∑𝑟𝛼
𝑙𝑝∘

𝛼

≤ 𝜎−𝑝∘∑‖1𝐵𝛼 · 𝛻
𝑘𝑣‖

𝐿𝑝∘,1

𝑝∘

𝛼

≤ 𝜎−𝑝∘‖1∪𝛼𝐵𝛼 · 𝛻
𝑘𝑣‖

𝐿𝑝∘,1

𝑝∘
.      (33) 

Since the last term tends to 0 as ℒ𝑛(⋃ 𝐵𝛼𝛼 ) → 0, and ℒ𝑛(⋃ 𝐵𝛼𝛼 ) ≤ 𝑐 𝛿𝑛−𝑙𝑝∘ ∑ 𝑟𝛼
𝑙𝑝∘

𝛼  , we 

get easily that ∑ 𝑟𝛼
𝑙𝑝∘

𝛼 → 0 as 𝛿 ↘ 0. Using this fact and some standard covering lemmas we 

infer in a routine manner that for a set  

𝐴𝜎,𝛿: =  {𝑥 ∈ ℝ
𝑛: ∃𝑟 ∈ (0, 𝛿]        𝑟−𝑙‖1𝐵(𝑥,𝑟) · 𝛻

𝑘𝑣‖
𝐿𝑝∘,1

> 𝜎} 

the convergence  

ℋ∞
𝑙𝑝∘(𝐴𝜎,𝛿) → 0         𝑎𝑠     𝛿 ↘ 0 

holds for any fixed 𝜎 > 0. The rest part of the proof of the lemma is straight forward. 

From the last lemma (for 𝑙 = 1), Theorem (5.1.24) (ii) and estimate (13) we obtain the 

following result:  

Theorem (5.1.26)[180]: Let 𝑘 ∈ {1, . . . , 𝑛} and 𝑣 ∈ 𝑊𝑝∘,1
𝑘 (ℝ𝑛, ℝ𝑑). Then there exists a 

Borel set 𝐴𝑣 ⊂ ℝ
𝑛 such that ℋ𝑝∘(𝐴𝑣) = 0 and for any 𝑥 ∈ ℝ𝑛\𝐴𝑣 the function v is 

differentiable (in the classical Frechet sense) at x, furthermore, the classical derivative 

coincides with 𝛻𝑣(𝑥) (x is a Lebesgue point for 𝛻𝑣). 

The case 𝑘 = 1, 𝑝∘ = 𝑛 is a classical result due to Stein [73] (see also [62]), and for 𝑘 =
𝑛, 𝑝∘ = 1 the result is also proved in [58].  

We have the following extension of Theorem (5.1.26).  

Theorem (5.1.27)[180]: Let 𝑘, 𝑙 ∈ {1, . . . , 𝑛}, 𝑙 ≤ 𝑘, and 𝑣 ∈ 𝑊𝑝∘,1
𝑘 (ℝ𝑛, ℝ𝑑). Then there 

exists a Borel set 𝐴𝑣 ⊂ ℝ
𝑛 such that ℋ𝑙𝑝∘(𝐴𝑣) = 0 and for any 𝑥 ∈ ℝ𝑛\𝐴𝑣 the function v 

is l-times differentiable (in the classical Fr´echet–Peano sense) at x, i.e.,  

lim
𝑟↘0

sup
𝑦∈𝐵(𝑥,𝑟)\{𝑥}

|𝑣(𝑦) − 𝑇𝑣,𝑙,𝑥(𝑦)|

|𝑥 − 𝑦|𝑙
= 0, 

where 𝑇𝑣,𝑙,𝑥(𝑦) is the Taylor polynomial of order l for v centered at x (which is well defined 

𝐻𝑙𝑝∘-a.e. by Theorem (5.1.24)).  

Proof. We consider only the case 𝑙 < 𝑛; for 𝑙 = 𝑛 the arguments are similar and becomes 

even simpler. Below we follow methods of [9] and [56]. By Theorem (5.1.24), there exists 

a set 𝐴𝑙 such that ℋ𝑙𝑝∘(𝐴𝑙) = 0 and the derivatives 𝛻𝑗𝑣(𝑥) are well-defined for all 𝑥 ∈
ℝ𝑛\𝐴𝑙 and 𝑗 = 0, 1, . . . , 𝑙. Further, by Lemma (5.1.25) there exists a sequence of open sets 

𝑈𝑖 ⊂ ℝ
𝑛 such that 𝑈𝑖 ⊃ 𝑈𝑖+1,ℋ∞

𝑙𝑝∘(𝑈𝑖) < 2
−𝑖 and the uniform convergence  

𝑟−𝑙‖1𝐵(𝑥,𝑟) · 𝛻
𝑘𝑣‖

𝐿𝑝∘,1
→  0    𝑎𝑠     𝑟 ↘ 0 

holds for 𝑥 ∈ ℝ𝑛\𝑈𝑖. It means that there exists a function 𝜔𝑖: (0,+∞) → (0,+∞) such that 

𝜔𝑖(𝑟) → 0 as 𝑟 ↘ 0 and  

𝑟−𝑙‖1𝐵(𝑥,𝑟) · 𝛻
𝑘𝑣‖

𝐿𝑝∘,1
≤ 𝜔𝑖(𝑟)      ∀𝑥 ∈ ℝ

𝑛\𝑈𝑖 .                    (34) 
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Take a sequence of mappings 𝑣𝑖: ℝ
𝑛 → ℝ𝑑 from Corollary (5.1.13), i.e., 𝑣𝑖 ∈ 𝐶0

∞(ℝ𝑛) and 

‖𝛻𝑘(𝑣 − 𝑣𝑖)‖𝐿𝑝∘,1(ℝ
𝑛)
< 4−𝑖. Denote �̃�𝑖 = 𝑣 − 𝑣𝑖 and  

𝐵𝑖 = {𝑥 ∈ ℝ
𝑛:M(|𝛻𝑙�̃�𝑖|

𝑝∘
)(𝑥) ≥ 2−𝑖𝑝∘}, 𝐺𝑖 = 𝐴𝑙 ∪ 𝑈𝑖 ∪ (⋃𝐵𝑗

∞

𝑗=𝑖

) . 

Then by estimate (32) we have  

ℋ∞
𝑙𝑝∘(𝐵𝑖) ≤ 𝑐

2 −𝑖 ,                                                               (35) 
therefore,  

ℋ∞
𝑙𝑝∘(𝐺𝑖) ≤ 𝐶2

−𝑖 .                                                             (36) 
By construction,  

|𝛻𝑙�̃�𝑗(𝑥)|
𝑝∘
≤M(|𝛻𝑙�̃�𝑗|

𝑝∘
)(𝑥) ≤ 2−𝑗𝑝∘                          (37) 

for all 𝑥 ∈ ℝ𝑛\G𝑖   and all 𝑗 ≥ 𝑖. Moreover, since 𝑣𝑗 ∈ 𝐶0
∞(ℝ𝑛), there exists constants 𝑀𝑗 

such that |𝛻𝑘𝑣𝑗(𝑥)| ≤ 𝑀𝑗  ∀𝑥 ∈ ℝ
𝑛 , this fact and (34) implies  

𝑟−𝑙‖1𝐵(𝑥,𝑟) ·  𝛻
𝑘�̃�𝑗‖𝐿𝑝∘,1

≤ 𝜔𝑖(𝑟) + 𝑀𝑗𝑟
𝑛−𝑙     ∀𝑥 ∈ ℝ𝑛\𝐺𝑖 .               (38) 

We start by estimating the remainder term �̃�𝑗(𝑦) − 𝑇�̃�𝑗,𝑙,𝑥(𝑦). Fix 𝑦 ∈ ℝ𝑛, 𝑥 ∈ ℝ𝑛 \𝐺𝑖 ,𝑗 ≥

𝑖, and an n–dimensional cubic interval Q such that 𝑥, 𝑦 ∈ 𝑄, |𝑥 − 𝑦| ∼ ℓ(𝑄). By 

construction and Lemma (5.1.15), for any multi–index α with |𝛼| ≤ 𝑙 we have   

|𝜕𝛼�̃�𝑗(𝑥) − 𝜕
𝛼𝑃𝑄,𝑙−1[�̃�𝑗](𝑥)| ≤ 𝐶ℓ(𝑄)

𝑙−|𝛼|(M𝛻𝑙�̃�𝑗)(𝑥) 

≤
 

𝐶𝑟𝑙−|𝛼|2−𝑗,                                        (39) 
where 𝑟 = |𝑥 − 𝑦|. Consequently,  

|�̃�𝑗(𝑦) − 𝑇𝑙,�̃�𝑗,𝑥(𝑦)| ≤ |�̃�𝑗(𝑦) − 𝑃𝑄,𝑙−1[�̃�𝑗](𝑦)| + |𝑃𝑄,𝑙−1[�̃�𝑗](𝑦) − 𝑇𝑙,�̃�𝑗,𝑥(𝑦)| ≤
 

≤ [𝐶2−𝑗𝑟𝑙 +𝜔𝑖(𝑟)𝑟
𝑙 +𝑀𝑗𝑟

𝑛]

+ ∑
1

𝛼!
|(𝜕𝛼�̃�𝑗(𝑥) − 𝜕

𝛼𝑃𝑄,𝑙−1[�̃�𝑗](𝑥)) · (𝑦 − 𝑥)
𝛼|

|𝛼|≤𝑙

 

≤
 

(𝐶12
−𝑗+𝜔𝑖(𝑟)+𝑀𝑗𝑟𝑛−𝑙)𝑟𝑙.                                     (40) 

Finally from the last estimate and equality 𝑣 = �̃�𝑗 + 𝑣𝑗 we have 

|𝑣(𝑦) − 𝑇𝑙,𝑣,𝑥(𝑦)| ≤ |�̃�𝑗(𝑦) − 𝑇_(𝑙, �̃�𝑗 , 𝑥(𝑦)| + |𝑣𝑗(𝑦) − 𝑇𝑙,𝑣𝑗,𝑥(𝑦)|

≤ (𝐶12
−𝑗 +𝜔𝑖(𝑟) + 𝑀𝑗𝑟

𝑛−𝑙)𝑟𝑙 + 𝜔𝑣𝑗(𝑟)𝑟
𝑙

= (𝐶12
−𝑗 +𝜔𝑖(𝑟) + 𝑀𝑗𝑟

𝑛−𝑙 +𝜔𝑣𝑗(𝑟)) 𝑟
𝑙 , 

where 𝜔𝑖(𝑟) → 0 and 𝜔𝑣𝑗(𝑟) → 0 as 𝑟 → 0 (the latter holds since 𝑣𝑗 ∈ 𝐶0
∞(ℝ𝑛)). We 

emphasize that the last inequality is valid for all 𝑦 ∈ ℝ𝑛, 𝑗 ≥ 𝑖, and ∈ ℝ𝑛\𝐺𝑖. Therefore  

|𝑣(𝑦) − 𝑇𝑙,𝑣,𝑥(𝑦)|

|𝑥 − 𝑦|𝑙
→ 0      𝑎𝑠    𝑦 → 𝑥 

uniformly for all 𝑥 ∈ ℝ𝑛\𝐺𝑖. This means, that v is uniformly 𝑙-times differentiable (in the 

classical Frechet–Peano sense) at every ∈ ℝ𝑛\𝐺𝑖. Then the estimate (36) finishes the proof. 

We aim to prove the assertion of Theorem (5.1.1), namely the Luzin N– property for 

𝑊𝑝∘,1
𝑘 –mappings with respect to Hausdorff content ℋ∞

𝑝∘ (i.e., when 𝑞 = 𝑝∘ =
𝑛

𝑘
). Let us for 

emphasis restate the result:  
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Recall that for the case 𝑘 = 1 this assertion was proved in [62], and for 𝑘 = 𝑛 it was 

proved in [56], so we omit these cases. Our proof here for the remaining cases follows and 

expands on the ideas from [56].  

We fix 𝑘 ∈ {2, . . . , 𝑛 − 1}, and a mapping v in 𝑊𝑝∘,1
𝑘 (ℝ𝑛, ℝ𝑑). To prove Theorem (5.1.31), 

we need some preliminary lemmas that we turn to next. Applying Corollary (5.1.23) for the 

case 𝑝 = 𝑝∘ =
𝑛

𝑘
, 𝑙 = 1, we obtain  

‖𝛻𝑣‖𝐿𝑝∘(µ)
𝑝∘ ≤ 𝐶|‖µ‖|𝑝∘‖𝛻

𝑘𝑣‖
𝐿𝑝∘,1

𝑝∘
    ∀µ ∈M𝑝∘ ,               (41) 

where C depends on 𝑛, 𝑝∘, 𝑑 only.  

By a dyadic interval we understand a cubic interval of the form [
𝑘1

2𝑚
,
𝑘1+1

2𝑚
] ×· · ·× [

𝑘𝑛

2𝑚
,
𝑘𝑛+1

2𝑚
], 

where 𝑘𝑖 , m are integers. The following assertion is straightforward.  

Lemma (5.1.28)[180]: For any n–dimensional cubic interval 𝐽 ⊂ ℝ𝑛 there exist dyadic 

intervals 𝑄1, . . . , 𝑄2𝑛 such that 𝐽 ⊂ 𝑄1 ∪ · · · ∪ 𝑄2𝑛 and ℓ(𝑄1) =· · ·= ℓ(𝑄2𝑛) ≤ 2ℓ(𝐽). 
Let {𝑄𝛼}𝛼∈𝐴 be a family of n-dimensional dyadic intervals. We say that the family {𝑄𝛼} is 

regular, if for any n-dimensional dyadic interval Q the estimate  

ℓ(𝑄)𝑝∘ ≥ ∑ ℓ(𝑄𝛼)
𝑝∘

𝛼:𝑄𝛼⊂𝑄

                                 (42) 

holds. Since dyadic intervals are either nonoverlapping or contained in one another, (42) 

implies that any regular family {𝑄𝛼} must in particular consist of nonoverlapping intervals.  

Lemma (5.1.29) (see Lemma (5.1.18) in [56])[180]: Let {𝑄𝛼} be a family of n–dimensional 

dyadic intervals. Then there exists a regular family {𝐽𝛽} of n–dimensional dyadic intervals 

such that ⋃ 𝑄𝛼𝛼 ⊂ ⋃ 𝐽𝛽𝛽  and 

∑ℓ(𝐽𝛽)
𝑝∘

𝛽

≤∑ℓ(𝑄𝛼)
𝑝∘

𝛼

. 

Lemma (5.1.30)[180]: For each 𝜀 > 0 there exists 𝛿 = 𝛿(𝜀, 𝑣) > 0 such that for any regular 

family {𝑄𝛼} of n–dimensional dyadic intervals we have if  

∑ℓ(𝑄𝛼)
𝑝∘

𝛼

< 𝛿,                                                     (43) 

then  

∑‖1𝑄𝛼 · 𝛻
𝑘𝑣‖

𝐿𝑝∘,1

𝑝∘

𝛼

< 𝜀                                           (44) 

and  

∑
1

ℓ(𝑄𝛼)
𝑛−𝑝∘

∫ |𝛻𝑣|𝑝∘
𝑄𝛼𝛼

< 𝜀.                                         (45) 

Proof. Fix 𝜀 ∈ (0, 1) and let {𝑄𝛼} be a regular family of n–dimensional dyadic intervals 

satisfying (43), where 𝛿 > 0 will be specified below.  

Let us start by checking (44). We have  

∑‖1𝑄𝛼 · 𝛻
𝑘𝑣‖

𝐿𝑝∘,1

𝑝∘

𝛼

≤
 
‖1⋃ 𝑄𝛼𝛼

· 𝛻𝑘𝑣‖
𝐿𝑝∘,1

𝑝∘
. 

Using (8), we can rewrite the last estimate as  
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∑‖1𝑄𝛼 · 𝛻
𝑘𝑣‖

𝐿𝑝∘,1

𝑝∘

𝛼

≤ (∫ [ℒ𝑛 ({𝑥 ∈⋃𝑄𝛼
𝛼

: |𝛻𝑘𝑣(𝑥)| > 𝑡})]

1
𝑝∘

𝑑𝑡
+∞

0

)

𝑝∘

.         (46) 

Since  

∫ [ℒ𝑛({𝑥 ∈ ℝ𝑛: |𝛻𝑘𝑣(𝑥)| > 𝑡})]
1
𝑝∘𝑑𝑡

+∞

0

< ∞, 

it follows that the integral on the right–hand side of (46) tends to zero as ℒ𝑛(⋃ 𝑄𝛼𝛼 ) tends 

to zero. In particular, it will be less than ε if the condition (43) is fulfilled with a sufficiently 

small δ. Thus (44) is established for all 𝛿 ∈ (0, 𝛿1], where 𝛿1 = 𝛿1(𝜀, 𝑣) > 0. Next we check 

(45). By virtue of Corollary (5.1.13), applied coordinate–wise, we can find a decomposition 

𝑣 = 𝑣0 + 𝑣1, where ‖𝛻𝑣0‖𝐿∞ ≤ 𝐾 = 𝐾(𝜀, 𝑣) and 

‖𝛻𝑘𝑣1‖𝐿𝑝∘,1
< 𝜀.                                                     (47) 

Assume that 𝛿 ∈ (0, 𝛿1] and  

∑ℓ(𝑄𝛼)
𝑝∘

𝛼

< 𝛿 <
1

𝐾𝑝∘+1
𝜀.                                    (48) 

Define the measure µ by  

µ = (∑
1

ℓ(𝑄𝛼)
𝑛−𝑝∘

1𝑄𝛼
𝛼

)ℒ𝑛,                                       (49) 

where 1𝑄𝛼 denotes the indicator function of the set 𝑄𝛼. 

The estimate  

sup
𝐽
{ℓ(𝐽)−𝑝∘µ(𝐽)} ≤ 2𝑛+𝑝∘                                                  (50) 

holds, where the supremum is taken over all n–dimensional cubic intervals. Indeed, write 

for a dyadic interval Q 

µ(𝑄) = ∑ ℓ(𝑄𝛼)
𝑝∘

𝛼:𝑄𝛼⊂𝑄

+ ∑
ℓ(𝑄 ∩ 𝑄𝛼)

𝑛

ℓ(𝑄𝛼)
𝑛−𝑝∘

𝛼:𝑄𝛼⊈𝑄

. 

By regularity of {𝑄𝛼} the first sum is bounded above by ℓ(𝑄)𝑝∘. If the second sum is nonzero 

then there must exist an index α such that 𝑄𝛼 ⊈ 𝑄 and 𝑄𝛼 , 𝑄 overlap. But as the intervals 

{𝑄𝛼} are nonoverlapping and dyadic we must then precisely have one such interval 𝑄𝛼 and 

𝑄𝛼 ⊃ 𝑄. But then the first sum is empty and the second sum has only the one term 

ℓ(𝑄)𝑛/ℓ(𝑄𝛼)
𝑛−𝑝∘, hence is at most ℓ(𝑄)𝑝∘. Thus the estimate µ(𝑄) ≤ ℓ(𝑄)𝑝∘ holds for 

every dyadic Q. The inequality (50) in the case of a general cubic interval J follows from 

the above dyadic case and Lemma (5.1.28). The proof of the claim is complete.  

Now return to (45). By properties (41), (47) and (48) (applied to the mapping v1), we have  

∑
1

ℓ(𝑄𝛼)
𝑛−𝑝∘

∫ |𝛻𝑣|𝑝∘
𝑄𝛼𝛼

≤
2𝑝∘−1𝐾𝑝∘

𝐾𝑝∘ + 1
𝜀 +∑

2𝑝∘−1

ℓ(𝑄𝛼)
𝑛−𝑝∘

∫ |𝛻𝑣1|
𝑝∘

𝑄𝛼𝛼

≤ 𝐶′ (𝜀 + ∫|𝛻𝑣1|
𝑝∘𝑑µ) ≤ 𝐶′′𝜀. 

Since 𝜀 > 0 was arbitrary, the proof of Lemma (5.1.30) is complete.  

Theorem (5.1.31)[180]: Let 𝑘 ∈ {1, . . . , 𝑛}, and 𝑣 ∈ 𝑊𝑝∘,1
𝑘 (ℝ𝑛, ℝ𝑑). Then for each 𝜀 > 0 

there exists 𝛿 > 0 such that for any set 𝐸 ⊂ ℝ𝑛 If ℋ∞
𝑝∘(𝐸) < 𝛿, then ℋ∞

𝑝∘(𝑣(𝐸)) < 𝜀. In 

particular, ℋ𝑝∘(𝑣(𝐸)) = 0 whenever ℋ𝑝∘(𝐸) = 0. 
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Proof: Fix 𝜀 > 0 and take 𝛿 = 𝛿(𝜀, 𝑣) from Lemma (5.1.30). Then by Corollary (5.1.9) for 

any regular family {𝑄𝛼} of n–dimensional dyadic intervals we have if ∑ ℓ(𝑄𝛼)
𝑝∘

𝛼 < 𝛿, then 

∑ ( 𝑑𝑖𝑎𝑚 𝑣(𝑄𝛼))
𝑝∘

𝛼 < 𝐶𝜀. Now we may conclude the proof of Theorem (5.1.31) by use of 

Indeed they allow us to find a 𝛿0 > 0 such that if for a subset E of ℝ𝑛 we have ℋ∞
𝑝∘(𝐸) <

𝛿0, then E can be covered by a regular family {𝑄𝛼} of n– dimensional dyadic intervals with 
∑ ℓ(𝑄𝛼)

𝑝∘
𝛼 < 𝛿.  

Let k,m ∈ {1, . . . , n}  and v ∈ Wp∘,1,loc
k (Ω,ℝ𝑑), where Ω is an open subset of ℝ𝑛. 

Then, by Theorem (5.1.24) (ii), there exists a Borel set 𝐴𝑣 such that ℋ𝑝∘(𝐴𝑣) = 0 and all 

points of the complement Ω\𝐴𝑣 are 𝐿𝑝∘-Lebesgue points for the gradient 𝛻𝑣(𝑥). Moreover, 

v is differentiable (in the classical Frechet sense) at every point of Ω\𝐴𝑣. 

Denote 𝑍𝑣,𝑚 = {𝑥 ∈ Ω\𝐴𝑣: 𝑟𝑎𝑛𝑘𝛻𝑣(𝑥) < 𝑚}. The purpose is to prove the assertion of 

Theorem (5.1.6):  

ℋ𝑞∘ (𝑣(𝑍𝑣,𝑚)) = 0.                                           (51) 

The exponents occurring in the Theorem (5.1.2)re the critical exponents that were defined 

in (6):  

𝑝∘ =
𝑛

𝑘
      𝑎𝑛𝑑     𝑞∘ = 𝑚 − 1 +

𝑛 −𝑚 + 1

𝑘
. 

By an easy calculation, assumptions 𝑛 ≥ 𝑚 ≥ 1, 𝑘 ≥ 1 imply 

𝑝∘ ≤ 𝑞∘ ≤ 𝑛.                                                       (52) 
Note that in the double inequality (52) we have equality in the first inequality iff 𝑚 = 1 or 

𝑘 = 1, while in the second inequality equality holds iff 𝑘 = 1. In particular,  

𝑝 ∘< 𝑞 ∘< 𝑛 𝑓𝑜𝑟 𝑘,𝑚 ∈ {2, . . . , 𝑛}. 
By results obtained in [9]–[56], [50] (see Theorem (5.1.6) We need only consider the case  

𝑚 = 1, 𝑞∘ = 𝑝∘ =
𝑛

𝑘
. 

Before embarking on the detailed proof let us make some preliminary observations that will 

enable us to make some convenient additional assumptions. Namely because the result is 

local we can without loss in generality assume that Ω = ℝ𝑛. We fix 𝑘 ∈ {2, . . . 𝑛} and a 

mapping 𝑣 ∈ 𝑊𝑝∘,1
𝑘 (ℝ𝑛, ℝ𝑛). In view of the definition of critical set we have for 𝑚 = 1  

𝑍𝑣 = 𝑍𝑣,1 = {𝑥 ∈ ℝ
𝑛\𝐴𝑣: 𝛻𝑣(𝑥) = 0}. 

The following lemma provides the main step in the proof of Theorem (5.1.6). Lemma 

(5.1.16)2. For any n-dimensional dyadic interval 𝑄 ⊂ ℝ𝑛 the estimate  

ℋ∞
𝑝∘(𝑣(𝑍𝑣 ∩ 𝑄)) ≤ 𝐶‖𝛻

𝑘𝑣‖
𝐿𝑝∘,1(𝑄)

𝑝∘
                          (53) 

holds, where the constant C depends on 𝑛,𝑚, 𝑘, 𝑑 only.  

Proof. By virtue of (11) it suffices to prove that  

ℋ∞
𝑝∘(𝑣(𝑍𝑣 ∩ 𝑄)) ≤ 𝐶‖𝛻

𝑘𝑣𝑄‖𝐿𝑝∘,1(ℝ
𝑛)

𝑝∘
                       (54) 

for the mapping 𝑣𝑄 defined in Lemma (5.1.8), where 𝐶 = 𝐶(𝑛,𝑚, 𝑘, 𝑑) is a constant. To 

establish (54) it is possible to repeat almost verbatim the proof of Lemma 3.2 in [50]. One 

must observe the following minor changes: first 𝑞∘ = 𝑝∘, and next, instead of Corollary 1.8 

from [50] one must use Corollary (5.1.23) established above. Note that in the present 

situation the calculations simplify since for 𝑚 = 1 many of terms from [50] disappear. 
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Corollary (5.1.32)[180]: For any 𝜀 > 0 there exists 𝛿 > 0 such that for every subset E of 

ℝ𝑛 we have ℋ∞
𝑝∘(𝑣(𝑍𝑣 ∩ 𝐸)) ≤ 𝜀 provided ℒ𝑛(𝐸) ≤ 𝛿. In particular, ℋ𝑝∘(𝑣(𝑍𝑣 ∩ 𝐸)) =

0 whenever ℒ𝑛(𝐸) = 0. 

Proof. Let ℒ𝑛(𝐸) ≤ 𝛿, then we can find a family of nonoverlapping n-dimensional dyadic 

intervals 𝑄𝛼 such that 𝐸 ⊂∪𝛼 𝑄𝛼 and ∑ ℓ𝑛(𝑄𝛼)𝛼 < 𝐶𝛿. Of course, for sufficiently small δ 

the estimate ‖𝛻𝑘𝑣‖
𝐿𝑝∘,1(𝑄𝛼)

< 1 is fulfilled for every α. Then in view of Lemma 1.1 we have  

∑‖𝛻𝑘𝑣‖
𝐿𝑝∘,1(𝑄𝛼)

𝑝∘

𝛼

≤ ‖𝛻𝑘𝑣‖
𝐿𝑝∘,1(∪𝑄𝛼)

𝑝∘
                            (55) 

This estimate together with Lemma (5.1.16)2 allow us to conclude the required smallness 

of  

∑ℋ∞
𝑝∘(𝑍𝑣 ∩ 𝑄𝛼)

𝛼

≥ ℋ∞
𝑝∘(𝑍𝑣 ∩ 𝐸). 

Invoking Dubovitskiı–Federer’s Theorem (see commentary to the Theorem (5.1.6) for the 

smooth case 𝑔 ∈ 𝐶𝑘(ℝ𝑛, ℝ𝑑), Theorem (5.1.24) (iii) (applied to the case 𝑙 = 𝑘) implies  

Corollary (5.1.33) (see, e.g., [39])[180]: There exists a set �̃�𝑣 of n-dimensional Lebesgue 

measure zero such that ℋ𝑝∘ (𝑣(𝑍𝑣\�̃�𝑣)) = 0. In particular, ℋ𝑝∘(𝑣(𝑍𝑣)) = ℋ
𝑝∘ (𝑣(�̃�𝑣)).  

We conclude that ℋ𝑝∘(𝑣(𝑍𝑣)) = 0, and this ends the proof of Theorem (5.1.6). 

Section (5.2): Sobolev Spaces 

Originally proven in 1942, Arthur Sard’s [47] famous theorem asserts that the set of 

critical values of a sufficiently regular mapping is null. We will use the following notation 

to represent the critical set of a given smooth map 𝑓:ℝ𝑛 → ℝ𝑚: 

𝐶𝑓 = {𝑥 ∈ ℝ
𝑛|𝑟𝑎𝑛𝑘 𝐷𝑓(𝑥) < 𝑚}. 

We will assume that m and n are integers at least 1.  

Theorem (5.2.1)[192]: (Sard). Suppose 𝑓:ℝ𝑛 → ℝ𝑚 is of class 𝐶𝑘. If 𝑘 > max(𝑛 −𝑚, 0), 
then  

ℋ𝑚 (𝑓(𝐶𝑓)) = 0. 

Here and in what follows by ℋ𝑘 we denote the k-dimensional Hausdorff measure.  

Several results have shown that Sard’s result is optimal, see e.g. [194], [197], [198], [200], 

[203], [48]. In 1957 Dubovitskiı [194], extended Sard’s theorem to all orders of smoothness 

𝑘. See [53] for a modernized proof of ths result and some generalizations.  

Theorem (5.2.2)[192]: (Dubovitskiı). Fix 𝑛,𝑚, 𝑘 ∈ ℕ. Suppose 𝑓:ℝ𝑛 → ℝ𝑚 is of class 𝐶𝑘. 

Write ℓ = max(𝑛 −𝑚 − 𝑘 + 1, 0). Then 

ℋℓ (𝐶𝑓 ∩ 𝑓
−1(𝑦)) = 0    for  𝑎. 𝑒.   𝑦 ∈ ℝ𝑚. 

This result tells us that almost every level set of a smooth mapping intersects with its critical 

set on an ℓ-null set. Higher regularity of the function implies a reduction in the Hausdorff 

dimension of the overlap between 𝑓−1(𝑦) and 𝐶𝑓 for a.e. 𝑦 ∈ ℝ𝑚 . 

Notice that if 𝑘 > max(𝑛 −𝑚, 0), then 𝑛 −𝑚 − 𝑘 + 1 ≤ 0, and so ℋℓ = ℋ0 is simply the 

counting measure on ℝ𝑛. That is, if 𝑓:ℝ𝑛 → ℝ𝑚 is of class 𝐶𝑘 and additionally 𝑘 >
max(𝑛 −𝑚, 0), Dubovitskiı’s theorem implies that 𝑓−1(𝑦) ∩ 𝐶𝑓 is empty for almost every 

𝑦 ∈ ℝ𝑚. In other words, ℋ𝑚 (𝑓(𝐶𝑓)) = 0. Thus Sard’s theorem is a special case of 

Dubovitskiı’s theorem.  
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Recently, many mathematicians have worked to generalize Sard’s result to the class of 

Sobolev mappings [29], [53], [37], [56], [39], [43], [50], [191]. Specifically, in 2001 De 

Pascale [39] proved the following version of Sard’s theorem for Sobolev mappings.  

Theorem (5.2.3)[192]: Suppose 𝑘 > 𝑚𝑎𝑥(𝑛 −𝑚, 0). Suppose Ω ⊂ ℝ𝑛 is open. If 𝑓 ∈

𝑊𝑙𝑜𝑐
𝑘,𝑝(Ω,ℝ𝑚) for 𝑛 < 𝑝 < ∞, then ℋ𝑚 (𝑓(𝐶𝑓)) = 0.  

We will use the usual notation 𝑊𝑘,𝑝(ℝ𝑛, ℝ𝑚) to indicate the Sobolev class of 𝐿𝑝(ℝ𝑛, ℝ𝑚) 
mappings whose first k weak partial derivatives have finite 𝐿𝑝 norm. 

We show that also the Dubovitskiı theorem generalizes to the case of 𝑊𝑙𝑜𝑐
𝑘,𝑝

 mappings when 

𝑛 < 𝑝 < ∞. We must be very careful when dealing with Sobolev mappings because the set 

𝑓−1(𝑦) depends on what representative of f we take. If 𝑘 ≥ 2, then Morrey’s inequality 

implies that f has a representative of class 𝐶
𝑘−1,1−

𝑛

𝑝, so the critical set 𝐶𝑓 is well defined. If 

𝑘 = 1, then 𝐷𝑓 is only defined almost everywhere and hence the set 𝐶𝑓 is defined up to a set 

of measure zero. We will say that f is precisely represented if each component fi of f satisfies  

𝑓𝑖(𝑥) = lim
𝑟→0

1

|𝐵(𝑥, 𝑟)|
∫ 𝑓𝑖(𝑦)𝑑𝑦
𝐵(𝑥,𝑟)

 

for all 𝑥 ∈ Ω at which this limit exists. The Lebesgue differentiation theorem ensures that 

this is indeed a well defined representative of f. In what follows, we will always refer to the 

𝐶
𝑘−1,1−

𝑛

𝑝 representative of f when 𝑘 ≥ 2 and a precise representation of f when 𝑘 = 1. 

(Notice that the precise representative of f and the smooth representative of f are the same 

for 𝑘 ≥ 2.) 

The main result reads as follows.  

If 𝑚 > 𝑛, then since 𝑝 > 𝑛 we may apply Morrey’s inequality combined with 

H�̈�lder’s inequality to show that ℋ𝑛(𝑓(𝑄)) < ∞ for any cube 𝑄 ⋐ Ω, and so ℋ𝑚(𝑓(Ω)) =

0. Thus 𝑓−1(𝑦) is empty for almost every 𝑦 ∈ ℝ𝑚, and the theorem follows.  

We will now discuss the details behind the argument that ℋ𝑛(𝑓(𝑄)) < ∞ for any cube 𝑄 ⋐

Ω. Fix 𝛿 > 0, and cover Q with 2𝑛𝜈 congruent dyadic cubes {𝑄𝑗}𝑗=1
2𝑛𝜈

 with pairwise disjoint 

interiors. According to Morrey’s inequality (see Lemma (5.2.8)),  

𝑑𝑖𝑎𝑚 𝑓(𝑄𝑗) ≤ 𝐶(𝑑𝑖𝑎𝑚 𝑄𝑗)
1−
𝑛
𝑝 (∫ |𝐷𝑓(𝑧)|𝑝𝑑𝑧

𝑄𝑗

)

1
𝑝

 

for every 1 ≤ 𝑗 ≤ 2𝑛𝜈. Since 𝑑𝑖𝑎𝑚 𝑄𝑗 = 2
−𝜈 𝑑𝑖𝑎𝑚 𝑄, choosing ν large enough gives 

sup
𝑗
𝑑𝑖𝑎𝑚 𝑓(𝑄𝑗) < 𝛿, and so we can estimate the pre-Hausdorff measure  

ℋ𝛿
𝑛(𝑓(𝑄)) ≤ 𝐶∑(𝑑𝑖𝑎𝑚 𝑓(𝑄𝑗))

𝑛
2𝑛𝜈

𝑗=1

≤ 𝐶∑(𝑑𝑖𝑎𝑚 𝑄𝑗)
𝑛(1−

𝑛
𝑝
)
(∫ |𝐷𝑓(𝑧)|𝑝𝑑𝑧
𝑄𝑗

)

𝑛
𝑝2𝑛𝜈

𝑗=1

≤ 𝐶 (∑(𝑑𝑖𝑎𝑚 𝑄𝑗)
𝑛

2𝑛𝜈

𝑗=1

)

1−
𝑛
𝑝

(∑∫ |𝐷𝑓(𝑧)|𝑝𝑑𝑧
𝑄𝑗

2𝑛𝜈

𝑗=1

)

𝑛
𝑝

≤ 𝐶ℋ𝑛(𝑄)
1−
𝑛
𝑝 (∫|𝐷𝑓(𝑧)|𝑝𝑑𝑧

𝑄

)

𝑛
𝑝

. 



160 

We used H�̈�lder’s inequality with exponents 𝑝/𝑛 and 𝑝/(𝑝 − 𝑛) to obtain the third line. 

Since the right hand estimate does not depend on δ, sending 𝛿 → 0+ yields ℋ𝑛(𝑓(𝑄)) <
∞. This completes the proof of Theorem (5.2.13) when 𝑚 > 𝑛. Hence we may assume that 

𝑚 ≤ 𝑛. 

We will now discuss the case 𝑘 = 1 to avoid any confusion involving the definition of 𝐶𝑓. 

Since 𝑚 ≤ 𝑛, we may apply the following co-area formula due to Maly, Swanson, and 

Ziemer [203]:  

Theorem (5.2.4)[192]: Suppose that 1 ≤ 𝑚 ≤ 𝑛,Ω ⊂ ℝ𝑛 is open, 𝑝 > 𝑚, and 𝑓 ∈

𝑊𝑙𝑜𝑐
1,𝑝(Ω,ℝ𝑚) is precisely represented. Then the following holds for all measurable 𝐸 ⊂ Ω:  

∫|𝐽𝑚𝑓(𝑥)|𝑑𝑥
𝐸

= ∫ ℋ𝑛−𝑚(𝐸 ∩ 𝑓−1(𝑦))𝑑𝑦
ℝ𝑚

 

where |𝐽𝑚𝑓| is the square root of the sum of the squares of the determinants of the 𝑚×𝑚 

minors of Df. 

Notice that |𝐽𝑚𝑓| is equals zero almost everywhere on the set = 𝐶𝑓. Therefore the above 

equality with 𝐸 = 𝐶𝑓 reads  

0 = ∫ ℋ𝑛−𝑚 (𝐶𝑓 ∩ 𝑓
−1(𝑦)) 𝑑𝑦

ℝ𝑚
= ∫ ℋℓ (𝐶𝑓 ∩ 𝑓

−1(𝑦))𝑑𝑦
ℝ𝑚

. 

That is, ℋℓ (𝐶𝑓 ∩ 𝑓
−1(𝑦)) = 0 for a.e. 𝑦 ∈ ℝ𝑚, and the theorem follows.  

Therefore, we may assume for the remainder that 𝑚 ≤ 𝑛 and 𝑘 ≥ 2.  

     Most proofs of Sard-type results typically involve some form of a Morse Theorem [69] 

in which the critical set of a mapping is decomposed into pieces on which the function’s 

difference quotients converge quickly. See [206] for the proof of the classical Sard theorem 

based on this method. A version of the Morse Theorem was also used by De Pascale [39]. 

However, there is another approach to the Sard theorem based on the so called Kneser-

Glaeser Rough Composition theorem, and this method entirely avoids the use of the Morse 

theorem. We say that a mapping 𝑓:𝑊 ⊂ ℝ𝑟 → ℝ  of class 𝐶𝑘 is s-flat on 𝐴 ⊂ 𝑊 for 1 ≤
𝑠 ≤ 𝑘 if 𝐷𝛼𝑓 = 0 on A for every 1 ≤ |𝛼| ≤ 𝑠. 
Theorem (5.2.5) (Kneser-Glaeser Rough Composition)[192]: Fix positive integers 𝑠, 𝑘, 𝑟, 
n with 𝑠 < 𝑘. Suppose 𝑉 ⊂ ℝ𝑟 and 𝑊 ⊂ ℝ𝑛 are open. Let 𝑔: 𝑉 → 𝑊 be of class 𝐶𝑘−𝑠 and 

𝑓:𝑊 → ℝ be of class 𝐶𝑘. Suppose 𝐴∗ ⊂ 𝑉 and 𝐴 ⊂ 𝑊 are compact sets with  

(i) 𝑔(𝐴∗) ⊂ 𝐴 and 

(ii) 𝑓 is s-flat on A.  

Then there is a function 𝐹:ℝ𝑟 → ℝ  of class 𝐶𝑘 so that 𝐹 = 𝑓 ∘ 𝑔 on 𝐴∗ and F is s-flat on 

𝐴∗. This theorem ensures that the composition of two smooth maps will have the same 

regularity as the second function involved in the composition provided that enough of the 

derivatives of this second function are zero. After a brief examination of the rule for 

differentiation of composite functions, such a conclusion seems very natural. Indeed, we can 

formally compute 𝐷𝛼(𝑓 ∘ 𝑔)(𝑥) for all |𝛼| ≤ 𝑘 and 𝑥 ∈ 𝐴∗ since any “non-existing” 

derivative 𝐷𝛽𝑔(𝑥) with |𝛽| > 𝑘 − 𝑠 is multiplied by a vanishing 𝐷𝛾𝑓(𝑔(𝑥)) term with 

|𝛾| = |𝛼| − |𝛽| < 𝑠. Thus we can formally set 𝐷𝛾𝑓(𝑔(𝑥))𝐷𝛽𝑔(𝑥) = 0. However the proof 

of this theorem is not easy since it is based on the celebrated Whitney extension theorem. 

That should not be surprising after all. The existence of the extension F is proven by 

verification that the formal jet of derivatives of 𝑓 ∘ 𝑔 up to order k defined above satisfies 

the assumptions of the Whitney extension theorem.  



161 

     In 1951, Kneser presented a proof of this composition result in [201]. We proved a 

theorem which may be obtained as an immediate corollary to the theorem of Sard, though 

he did so without any reference to or influence from Sard’s result. The composition theorem 

is also discussed in a different context in a 1958 by Glaeser [196]. See [193], [202], [204].  

Thom [207], quickly realized that the method of Kneser can be used to prove the Sard 

theorem. See also [193], [202], [205]. Recently Figalli [43] used this method to provide a 

simpler proof of Theorem (5.2.3). Our proof of Theorem (5.2.13) we will also be based on 

the KneserGlaeser result.  

We will explain notation and prove some technical results related to the Morrey 

inequality that will be used in the proof of Theorem (5.2.13).  

Consider 𝑓:ℝ𝑛 → ℝ . By 𝐷𝛼𝑓 we will denote the partial derivative of f with respect to the 

multiindex 𝛼 = (𝛼1, . . . , 𝛼𝑛). In particular 𝐷𝛿𝑖𝑓 = 𝜕𝑓/𝜕𝑥𝑖 , i.e. 𝛿𝑖 = (0, . . . , 0, 1, 0, . . . , 0) is 

a multiindex with 1 on ith position. Also |𝛼| = 𝛼1+. . . +𝛼𝑛 and 𝛼! = 𝛼1!  · · · 𝛼𝑛!. 𝐷
𝑘𝑓 will 

denote the vector whose components are the derivatives 𝐷𝛼𝑓, |𝛼| = 𝑘. The classes of 

functions with continuous and α-H�̈�lder continuous derivatives of order up to k will be 

denoted by 𝐶𝑘 and 𝐶𝑘,𝛼 respectively. The integral average over a set S of positive measure 

will be denoted by  

𝑓𝑆 = ⨍𝑓(𝑥)𝑑𝑥
𝑆

=
1

|𝑆|
∫𝑓(𝑥)𝑑𝑥
𝑆

. 

The characteristic function of a set E will be denoted by 𝜒𝐸. The k-dimensional Hausdorff 

measure will be denoted by ℋ𝑘. In particular ℋ0 is the counting measure. The Lebesgue 

measure in ℝ𝑛 coincides with ℋ𝑛. In addition to the Hausdorff measure notation we will 

also write |𝑆| for the Lebesgue measure of S. We say that a set is k-null if its kdimensional 

Hausdorff measure equals zero. By ℋ𝛿
𝑘, 𝛿 > 0, we denote the pre-Hausdorff measure 

defined by taking infimum over coverings of the set by sets of diameters less than δ so 

ℋ𝑘(𝐸) = lim
𝛿→0+

ℋ𝛿
𝑘(𝐸). Cubes in ℝ𝑛 will always have sides parallel to coordinate 

directions. The symbol C will be used to represent a generic constant and the actual value 

of C may change in a single string of estimates. By writing 𝐶 = 𝐶(𝑛,𝑚) we indicate that 

the constant C depends on n and m only.  

We will use the following elementary result several times.  

Lemma (5.2.6)[192]: Let 𝐸 ⊂ ℝ𝑛 be a bounded measurable set and let-∞ < 𝑎 < 𝑛. Then 

there is a constant 𝐶 = 𝐶(𝑛, 𝑎) such that for every 𝑥 ∈ 𝐸 

∫
𝑑𝑦

|𝑥 − 𝑦|𝑎𝐸

≤ { 𝐶|𝐸|
1−
𝑎
𝑛     𝑖𝑓 0 ≤ 𝑎 < 𝑛.

(𝑑𝑖𝑎𝑚 𝐸)−𝑎|𝐸|  𝑖𝑓 𝑎 < 0.
 

Proof. The case 𝑎 < 0 is obvious since then |𝑥 − 𝑦|−𝑎 ≤ (𝑑𝑖𝑎𝑚 𝐸)−𝑎. Thus assume that 

0 ≤ 𝑎 < 𝑛. In this case the inequality is actually true for all 𝑥 ∈ ℝ𝑛 and not only for 𝑥 ∈ 𝐸. 

Let 𝐵 = 𝐵(0, 𝑟), |𝐵| = |𝐸|. We have  

∫
𝑑𝑦

|𝑥 − 𝑦|𝑎𝐸

≤ ∫
𝑑𝑦

|𝑦|𝑎𝐵

= 𝐶∫ 𝑡−𝑎𝑡𝑛−1𝑑𝑡
𝑟

0

= 𝐶𝑟𝑛−𝑎 = 𝐶|𝐸|1−
𝑎
𝑛. 

The following result [195] is a basic pointwise estimate for Sobolev functions.  

Lemma (5.2.7)[192]: Let 𝐷 ⊂ ℝ𝑛 be a cube or a ball and let 𝑆 ⊂ 𝐷 be a measurable set of 

positive measure. If 𝑓 ∈ 𝑊1,𝑝(𝐷), 𝑝 ≥ 1, then  

|𝑓(𝑥) − 𝑓𝑆| ≤ 𝐶(𝑛) 
|𝐷|

|𝑆|
∫

|𝐷𝑓(𝑧)|

|𝑥 − 𝑧|𝑛−1
𝑑𝑧

𝐷

 𝑎. 𝑒.                  (56) 
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When 𝑝 > 𝑛, the triangle inequality |𝑓(𝑦) − 𝑓(𝑥)| ≤ |𝑓(𝑦) − 𝑓𝐷| + |𝑓(𝑥) − 𝑓𝐷|, H�̈�lder 

inequality, and Lemma (5.2.6) applied to the right hand side of (56) yield a well known  

Lemma (5.2.8) (Morrey’s inequality)[192]: Suppose 𝑛 < 𝑝 < ∞ and 𝑓 ∈ 𝑊1,𝑝(𝐷), where 

𝐷 ⊂ ℝ𝑛 Is a cube or a ball. Then there is a constant 𝐶 = 𝐶(𝑛, 𝑝) such that  

|𝑓(𝑦) − 𝑓(𝑥)| ≤ 𝐶(𝑑𝑖𝑎𝑚 𝐷)
1−
𝑛
𝑝 (∫ |𝐷𝑓(𝑧)|𝑝𝑑𝑧

𝐷

)

1
𝑝

 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥, 𝑦 ∈ 𝐷. 

In particular,  

𝑑𝑖𝑎𝑚 𝑓(𝐷) ≤ 𝐶(𝑑𝑖𝑎𝑚 𝐷)
1−
𝑛
𝑝 (∫ |𝐷𝑓(𝑧)|𝑝𝑑𝑧

𝐷

)

1
𝑝

. 

Since 𝑝 > 𝑛, the function f is continuous (Sobolev embedding) and hence the lemma does 

indeed hold for all 𝑥, 𝑦 ∈ 𝐷. 

From this lemma we can easily deduce a corresponding result for higher order derivatives. 

The Taylor polynomial and the averaged Taylor polynomial of f will be denoted by  

𝑇 𝑘 𝑥 𝑓(𝑦) = 𝑋 |𝛼| ≤ 𝑘 𝐷 𝛼 𝑓(𝑥) (𝑦 − 𝑥) 𝛼 𝛼! , 𝑇𝑘 𝑆 𝑓(𝑦) = 𝑍 𝑆 𝑇 𝑘 𝑥 𝑓(𝑦) 𝑑𝑥. 
Lemma (5.2.9)[192]: Suppose 𝑛 < 𝑝 < ∞,𝑘 ≥ 1 and 𝑓 ∈ 𝑊𝑘,𝑝(𝐷), where 𝐷 ⊂ ℝ𝑛 is a 

cube or a ball. Then there is a constant 𝐶 = 𝐶(𝑛, 𝑘, 𝑝) such that  

|𝑓(𝑦) − 𝑇𝑥
𝑘−1𝑓(𝑦)| ≤ 𝐶(𝑑𝑖𝑎𝑚 𝐷)

𝑘−
𝑛
𝑝 (∫ |𝐷𝑘𝑓(𝑧)|

𝑝
𝑑𝑧

𝐷

)

1
𝑝

 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥, 𝑦 ∈ 𝐷. 

Proof. Given 𝑦 ∈ 𝐷 let 

𝜓(𝑥):= 𝑇𝑥
𝑘−1𝑓(𝑦) = ∑ 𝐷𝛼𝑓(𝑥)

(𝑦 − 𝑥)𝛼

𝛼!
|𝛼|≤𝑘−1

∈ 𝑊1,𝑝(𝐷). 

Observe that 𝜓(𝑦) = 𝑓(𝑦) and  
𝜕𝜓

𝜕𝑥𝑗
(𝑥) = ∑ 𝐷𝛼+𝛿𝑗𝑓(𝑥)

(𝑦 − 𝑥)𝛼

𝛼!
|𝛼|=𝑘−1

, 

where 𝛿𝑗 = (0, . . . , 1, . . . , 0). Indeed, after applying the Leibniz rule to 𝜕𝜓/𝜕𝑥𝑗 the lower 

order terms will cancel out. Since  

|𝐷𝜓(𝑧)| ≤ 𝐶(𝑛, 𝑘)|𝐷𝑘𝑓(𝑧)||𝑦 − 𝑧|𝑘−1, 
Lemma (5.2.8) applied to ψ yields the result.  

Applying the same argument to Lemma (5.2.7) leads to the following result, see [53].  

Lemma (5.2.10)[192]: Let 𝐷 ⊂ ℝ𝑛 be a cube or a ball and let 𝑆 ⊂ 𝐷 be a measurable set of 

positive measure. If 𝑓 ∈ 𝑊𝑘,𝑝(𝐷), 𝑝 ≥ 1, 𝑘 ≥ 1, then there is constant 𝐶 = 𝐶(𝑛, 𝑘) such 

that  

|𝑓(𝑥) − 𝑇𝑆
𝑘−1𝑓(𝑥)| ≤ 𝐶

|𝐷|

|𝑆|
∫
|𝐷𝑘𝑓(𝑧)|

|𝑥 − 𝑧|𝑛−𝑘
𝑑𝑧

𝐷

     𝑓𝑜𝑟 𝑎. 𝑒.   𝑥 ∈ 𝐷.        (57) 

We will improve the above estimates under the additional assumption that the derivative 𝐷𝑓 

vanishes on a given subset of D. For a similar result in a different setting see [199].  

Lemma (5.2.11)[192]: Let 𝐷 ⊂ ℝ𝑛 be a cube or a ball and let 𝑓 ∈ 𝑊𝑘,𝑝(𝐷), 𝑛 < 𝑝 <
∞, 𝑘 ≥ 1. Let  

𝐴 = {𝑥 ∈ 𝐷|𝐷𝑓(𝑥) = 0}. 
Then for any 𝜀 > 0 there is 𝛿 = 𝛿(𝑛, 𝑘, 𝑝, 𝜀) > 0 such that if  

|𝐷\𝐴|

|𝐷|
< 𝛿, 



163 

then  

𝑑𝑖𝑎𝑚 𝑓(𝐷) ≤ 𝜀(𝑑𝑖𝑎𝑚 𝐷)
𝑘−
𝑛
𝑝 (∫ |𝐷𝑘𝑓(𝑧)|

𝑝
𝑑𝑧

𝐷

)

1
𝑝

. 

Proof: Although only the first order derivatives of f are equal zero in A, it easily follows 

that 𝐷𝛼𝑓 = 0 a.e. in A for all 1 ≤ |𝛼| ≤ 𝑘. Indeed, if a Sobolev function is constant in a set, 

its derivative equals zero a.e. in the set, [195], and we apply induction. Hence  

𝑇𝐴
𝑘−1𝑓(𝑥) = 𝑓𝐴     for all   𝑥 ∈ ℝ𝑛. 

Let 𝜀 > 0. Choose 0 < 𝛿 < 1/2 with max {𝛿
𝑘

𝑛
−
1

𝑝, 𝛿
1−

1

𝑝} < 𝜀. Since 𝛿 < 1/2, |𝐷|/|𝐴| < 2. 

Thus Lemma (5.2.10) with 𝑆 = 𝐴 yields  

|𝑓(𝑥) − 𝑓𝐴| ≤ 𝐶(𝑛)∫
|𝐷𝑘𝑓(𝑧)|

|𝑥 − 𝑧|𝑛−𝑘
𝑑𝑧

𝐷\𝐴

≤ 𝐶(𝑛)‖𝐷𝑘𝑓‖
𝐿𝑝(𝐷)

(∫
𝑑𝑧

|𝑥 − 𝑧|
(𝑛−𝑘)

𝑝
𝑝−1𝐷\𝐴

)

𝑝−1
𝑝

. 

Now the result follows directly from Lemma (5.2.6). Indeed, if 𝑘 ≤ 𝑛, Lemma (5.2.6) and 

the estimate  

|𝐷\𝐴| < 𝛿|𝐷| ≤ 𝐶(𝑛)𝛿(𝑑𝑖𝑎𝑚 𝐷)𝑛 
yield  

(∫
𝑑𝑧

|𝑥 − 𝑧|
(𝑛−𝑘)

𝑝
𝑝−1𝐷\𝐴

)

𝑝−1
𝑝

≤ 𝐶(𝑛, 𝑘, 𝑝)|𝐷\𝐴|
1
𝑛
(𝑘−

𝑛
𝑝
)
≤ 𝐶(𝑛, 𝑘, 𝑝)𝛿

𝑘
𝑛
−
1
𝑝(𝑑𝑖𝑎𝑚 𝐷)

𝑘−
𝑛
𝑝 . 

If 𝑘 > 𝑛, then we have  

(∫
𝑑𝑧

|𝑥 − 𝑧|
(𝑛−𝑘) 

𝑝
𝑝−1𝐷\𝐴

)

𝑝−1
𝑝

≤ (𝑑𝑖𝑎𝑚 𝐷)𝑘−𝑛|𝐷\𝐴|
𝑝−1
𝑝 ≤ 𝐶(𝑛, 𝑝)𝛿

1−
1
𝑝(𝑑𝑖𝑎𝑚 𝐷)

𝑘−
𝑛
𝑝 . 

Hence  

𝑑𝑖𝑎𝑚 𝑓(𝐷) = sup
𝑥,𝑦∈𝐷

|𝑓(𝑥) − 𝑓(𝑦)| ≤ 2 sup
𝑥∈𝐷
|𝑓(𝑥) − 𝑓𝐴|

≤ 𝐶(𝑛, 𝑘, 𝑝)𝜀(𝑑𝑖𝑎𝑚 𝐷)
𝑘−
𝑛
𝑝‖𝐷𝑘𝑓‖

𝐿𝑝(𝐷)
. 

The proof is complete. 

We will also need the following classical Besicovitch covering lemma, see e.g. [49] 

Lemma (5.2.12) (Besicovitch)[192]: Let 𝐸 ⊂ ℝ𝑛 and let {𝐵𝑥}𝑥∈𝐸  be a family of closed 

balls 𝐵𝑥 = �̅�(𝑥, 𝑟𝑥) so that sup
𝑥∈𝐸
{𝑟𝑥} < ∞. Then there is a countable (possibly finite) 

subfamily {𝐵𝑥𝑖}𝑖=1
∞

 with the property that  

𝐸 ⊂⋃𝐵𝑥𝑖

∞

𝑖=1

 

and no point of ℝ𝑛 belongs to more than 𝐶(𝑛) balls. 

Theorem (5.2.13)[192]: Fix 𝑛,𝑚, 𝑘 ∈ ℕ. Suppose Ω ⊂ ℝ𝑛 is open and 𝑓 ∈ 𝑊𝑙𝑜𝑐
𝑘,𝑝(Ω,ℝ𝑚) 

for some 𝑛 < 𝑝 < ∞. If ℓ = max(𝑛 −𝑚 − 𝑘 + 1, 0), then  

ℋℓ (𝐶𝑓 ∩ 𝑓
−1(𝑦)) = 0   for 𝑎. 𝑒.   𝑦 ∈ ℝ𝑚. 
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Proof: As we pointed out in Introduction we may assume that 𝑚 ≤ 𝑛 and 𝑘 ≥ 2. It is also 

easy to see that we can assume that Ω = ℝ𝑛 and 𝑓 ∈ 𝑊𝑘,𝑝(ℝ𝑛, ℝ𝑚). Indeed, it suffices to 

prove the claim of Theorem (5.2.13) on compact subsets of Ω and so we may multiply f by 

a compactly supported smooth cut-off function to get a function in 𝑊𝑘,𝑝(ℝ𝑛, ℝ𝑚). 
We will prove the result using induction with respect to n.  

If 𝑛 = 1, then 𝑚 = 𝑛 = 1. This gives 𝑛 −𝑚 − 𝑘 + 1 = 1 − 𝑘 ≤ 0 for any 𝑘 ∈ ℕ, so ℓ =
0. Thus the theorem is a direct consequence of Theorem (5.2.4).  

We shall prove now the theorem for 𝑛 ≥ 2 assuming that it is true in dimensions less than 

or equal to 𝑛 − 1.  

Fix p and integers m and k satisfying 𝑛 < 𝑝 < ∞,𝑚 ≤ 𝑛, and 𝑘 ≥ 2. Write ℓ =
max(𝑛 −𝑚 − 𝑘 + 1, 0). Let 𝑓 ∈ 𝑊𝑘,𝑝(ℝ𝑛 ℝ𝑚 ).  
We can write  

𝐶𝑓 = 𝐾 ∪ 𝐴1 ∪ … ∪ 𝐴𝑘−1, 

where  

𝐾:= {𝑥 ∈ 𝐶𝑓|0 < 𝑟𝑎𝑛𝑘 𝐷𝑓(𝑥) < 𝑚} 

And 

𝐴𝑠: = {𝑥 ∈ ℝ
𝑛|𝐷𝛼𝑓(𝑥) = 0    for all   1 ≤ |𝛼| ≤ 𝑠} 

Note that 𝐴1 ⊃ 𝐴2 ⊃ ⋯ ⊃ 𝐴𝑘−1 is a decreasing sequence of sets.  

In the first step, we will show that 𝐴𝑘−1 ∩ 𝑓
−1(𝑦) is ℓ-null for a.e. 𝑦 ∈ ℝ𝑚. Then we will 

prove the same for (𝐴𝑠−1\𝐴𝑠) ∩ 𝑓
−1(𝑦) for 𝑠 = 2, 3, . . . , 𝑘 − 1. To do this we will use the 

Implicit Function and Kneser-Glaeser theorems to reduce our problem to a lower 

dimensional one and apply the induction hypothesis. Finally, we will consider the set K and 

use a change of variables to show that we can reduce the dimension in the domain and in 

the target so that the fact that ℋℓ(𝐾 ∩ 𝑓−1(𝑦)) = 0 will follow from the induction 

hypothesis.  

Claim (5.2.14)[192]: ℋℓ(𝐴𝑘−1 ∩ 𝑓
−1(𝑦)) = 0 for a.e. 𝑦 ∈ ℝ𝑚. 

Proof. Suppose 𝑥 ∈ 𝐴𝑘−1. Notice that 𝑇𝑥
𝑘−1𝑓(𝑦) = 𝑓(𝑥) for any 𝑦 ∈ ℝ𝑛 since 𝐷𝛼𝑓(𝑥) =

0 for every 1 ≤ |𝛼| ≤ 𝑘 − 1. By Lemma (5.2.9) applied to each coordinate of 𝑓 =
(𝑓1, . . . , 𝑓𝑚), 
we have for any cube 𝑄 ⊂ ℝ𝑛 containing x and any 𝑦 ∈ 𝑄, 

|𝑓(𝑦) − 𝑓(𝑥)| ≤ 𝐶(𝑑𝑖𝑎𝑚 𝑄)
𝑘−
𝑛
𝑝 (∫|𝐷𝑘𝑓(𝑧)|

𝑝
𝑑𝑧

𝑄

)

1
𝑝

.          (58) 

Hence 

𝑑𝑖𝑎𝑚 𝑓(𝑄) ≤ 𝐶(𝑑𝑖𝑎𝑚 𝑄)
𝑘−
𝑛
𝑝 (∫|𝐷𝑘𝑓(𝑧)|

𝑝
𝑑𝑧

𝑄

)

1
𝑝

.                 (59) 

Let 𝐹1: = {𝑥 ∈ 𝐴𝑘−1|𝑥 is a density point of 𝐴𝑘−1} and 𝐹2: = 𝐴𝑘−1\𝐹1. We will treat the sets 

𝐹1 ∩ 𝑓
−1(𝑦) and 𝐹2 ∩ 𝑓

−1(𝑦) separately.  

First we will prove that ℋℓ(𝐹2 ∩ 𝑓
−1(𝑦)) = 0 for almost every 𝑦 ∈ ℝ𝑚.  

Let 0 < 𝜀 < 1. Since ℋ𝑛(𝐹2) = 0, there is an open set 𝐹2 ⊂ 𝑈 ⊂ Ω such that ℋ𝑛(𝑈) <

𝜀
𝑝

𝑝−𝑚. For any 𝑗 ≥ 1 let {𝑄𝑖𝑗}𝑖=1
∞

 be a collection of closed cubes with pairwise disjoint 

interiors such that  
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𝑄𝑖𝑗 ∩ 𝐹2 ≠ ∅, 𝐹2 ⊂⋃𝑄𝑖𝑗

∞

𝑖=1

⊂ 𝑈, 𝑑𝑖𝑎𝑚 𝑄𝑖𝑗 <
1

𝑗
. 

Since 𝐹2 ∩ 𝑄𝑖𝑗 ≠ ∅, (59) yields  

ℋ𝑚 (𝑓(𝑄𝑖𝑗)) ≤ 𝐶 (𝑑𝑖𝑎𝑚 𝑓(𝑄𝑖𝑗))𝑚 ≤ 𝐶(𝑑𝑖𝑎𝑚 𝑄𝑖𝑗)
𝑚(𝑘−

𝑛
𝑝
)
(∫ |𝐷𝑘𝑓(𝑥)|

𝑝
𝑑𝑥

𝑄𝑖𝑗

)

𝑚
𝑝

. 

Case: 𝑛 −𝑚 − 𝑘 + 1 ≤ 0 so ℓ = 0. 

This condition easily implies that 𝑚𝑘 ≥ 𝑛 so we also have 
𝑚𝑝

𝑝−𝑚
(𝑘 −

𝑛

𝑝
) ≥ 𝑛, and by 

Holder’s inequality,  

ℋ𝑚(𝑓(𝐹2)) ≤∑ℋ𝑚 (𝑓(𝑄𝑖𝑗))

∞

𝑖=1

≤ 𝐶∑(𝑑𝑖𝑎𝑚 𝑄𝑖𝑗)
𝑚(𝑘−

𝑛
𝑝
)
(∫ |𝐷𝑘𝑓(𝑥)|

𝑝
𝑑𝑥

𝑄𝑖𝑗

)

𝑚
𝑝∞

𝑖=1

≤ 𝐶 (∑(𝑑𝑖𝑎𝑚 𝑄𝑖𝑗)
𝑝𝑚
𝑝−𝑚

(𝑘−
𝑛
𝑝
)

∞

𝑖=1

)

𝑝−𝑚
𝑝

(∫ |𝐷𝑘𝑓(𝑥)|
𝑝
𝑑𝑥

⋃ 𝑄𝑖𝑗
∞
𝑖=1

)

𝑚
𝑝

 

≤ 𝐶ℋ𝑛(𝑈)
𝑝−𝑚
𝑝 (∫ |𝐷𝑘𝑓(𝑥)|

𝑝
𝑑𝑥

𝑈

)

𝑚
𝑝

< 𝐶𝜀‖𝐷𝑘𝑓‖
𝑝
              (60). 

Since 𝜀 > 0 can be arbitrarily small, ℋ𝑚(𝑓(𝐹2)) = 0 and hence 𝐹2 ∩ 𝑓
−1(𝑦) = ∅, i.e. 

ℋℓ(𝐹2 ∩ 𝑓
−1(𝑦)) = 0 for a.e. 𝑦 ∈ ℝ𝑚. 

Case: ℓ = 𝑛 −𝑚 − 𝑘 + 1 > 0. 

The sets {𝑄𝑖𝑗 ∩ 𝑓
−1(𝑦)}

𝑖=1

∞
 form a covering of 𝐹2 ∩ 𝑓

−1(𝑦) by sets of diameters less than 

1/𝑗. Since  

𝑑𝑖𝑎𝑚 (𝑄𝑖𝑗 ∩ 𝑓
−1(𝑦)) ≤ (𝑑𝑖𝑎𝑚 𝑄𝑖𝑗)𝜒𝑓(𝑄𝑖𝑗)(𝑦) 

the definition of the Hausdorff measure yields 

ℋℓ(𝐹2 ∩ 𝑓
−1(𝑦)) ≤ 𝐶 lim inf

𝑗→∞
∑𝑑𝑖𝑎𝑚(𝑄𝑖𝑗 ∩ 𝑓

−1(𝑦))
ℓ

∞

𝑖=1

 

≤ 𝐶 lim inf
𝑗→∞

∑(𝑑𝑖𝑎𝑚 𝑄𝑖𝑗)
ℓ
𝜒𝑓(𝑄𝑖𝑗)(𝑦)

∞

𝑖=1

.          (61) 

We would like to integrate both sides with respect to 𝑦 ∈ ℝ𝑚. Note that the function on the 

right hand side is measurable since the sets 𝑓(𝑄𝑖𝑗) are compact. However measurability of 

the function 𝑦 ⟼ 𝐻ℓ(𝐹2 ∩ 𝑓
−1(𝑦)) is far from being obvious. To deal with this problem 

we will use the upper integral which for a non-negative function 𝑔: 𝑋 → [0,∞] defined µ-

a.e. on a measure space (𝑋, µ) is defined as follows:  

∫ 𝑔 𝑑µ
∗

𝑋

= inf {∫𝜙𝑑µ
𝑋

: 0 ≤ 𝑔 ≤ 𝜙 𝑎𝑛𝑑 𝜙 𝑖𝑠 µ − 𝑚𝑒𝑎𝑠𝑢𝑟𝑎𝑏𝑙𝑒} . 

An important property of the upper integral is that if ∫ 𝑔 𝑑µ
∗

𝑋
= 0, then 𝑔 = 0 µ-a.e. Indeed, 

there is a sequence 𝜙𝑖 ≥ 𝑔 ≥ 0 such that ∫ 𝜙𝑖  𝑑µ𝑋
→ 0. That means 𝜙𝑖 → 0 in 𝐿1(µ). Taking 

a subsequence we get 𝜑𝑖𝑗 → 0 µ-a.e. which proves that 𝑔 = 0 µ-a.e.  
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Applying the upper integral with respect to 𝑦 ∈ ℝ𝑚 to both sides of (61), using Fatou’s 

lemma, and noticing that  

𝑝

𝑝 −𝑚
(ℓ +𝑚(𝑘 −

𝑛

𝑝
)) ≥ 𝑛 

gives  

∫ ℋℓ(𝐹2 ∩ 𝑓
−1(𝑦))𝑑ℋ𝑚(𝑦)

∗

ℝ𝑚
≤ 𝐶 lim inf

𝑗→∞
∑(𝑑𝑖𝑎𝑚 𝑄𝑖𝑗) 𝐻 

ℓ
𝑚 (𝑓(𝑄𝑖𝑗))

∞

𝑖=1

 

≤ 𝐶 lim inf
𝑗→∞

∑(𝑑𝑖𝑎𝑚 𝑄𝑖𝑗)
ℓ+𝑚(𝑘−

𝑛
𝑝
)
(∫ |𝐷𝑘𝑓(𝑥)|

𝑝
𝑑𝑥

𝑄𝑖𝑗

)

𝑚
𝑝∞

𝑖=1

< 𝐶𝜀‖𝐷𝑘𝑓‖
𝑝

 

by the same argument as in (60). Again, since 𝜀 > 0 can be arbitrarily small, we conclude 

that ℋℓ(𝐹2 ∩ 𝑓
−1(𝑦)) = 0 for a.e. 𝑦 ∈ ℝ𝑚.  

It remains to prove that ℋℓ(𝐹1 ∩ 𝑓
−1(𝑦)) = 0 for almost every 𝑦 ∈ ℝ𝑚.  

The proof is similar to that in Step 1 and the arguments which are almost the same will be 

presented in a more sketchy form now. In Step 1 it was essential that the set 𝐹2 had measure 

zero. We will compensate the lack of this property now by the estimates from.  

It suffices to prove that for any cube �̃�,ℋℓ (�̃� ∩ 𝐹1 ∩ 𝑓
−1(𝑦)) = 0 for a.e. 𝑦 ∈ ℝ𝑚. 

Assume that �̃� is in the interior of a larger cube �̃� ⋐ 𝑄.  

For each 𝑥 ∈ �̃� ∩ 𝐹1 and 𝑗 ∈ ℕ there is 0 < 𝑟𝑗𝑥 < 1/𝑗 such that  

𝑑𝑖𝑎𝑚 𝑓 (𝐵(𝑥, 𝑟𝑗𝑥)) ≤ 𝑗
−1𝑟

𝑗𝑥

𝑘−
𝑛
𝑝
(∫ |𝐷𝑘𝑓(𝑧)|

𝑝
𝑑𝑧

𝐵(𝑥,𝑟𝑗𝑥)

)

1
𝑝

. 

We may further assume that 𝐵(𝑥, 𝑟𝑗𝑥) ⊂ 𝑄. 

Denote 𝐵𝑗𝑥 = �̅�(𝑥, 𝑟𝑗𝑥). According to the Besicovitch Lemma (5.2.12), there is a countable 

subcovering {𝐵𝑗𝑥𝑖}𝑖=1
∞

of �̃� ∩ 𝐹1 so that no point of ℝ𝑛 belongs to more than 𝐶(𝑛) balls 𝐵𝑗𝑥𝑖. 

Case: 𝑛 −𝑚 − 𝑘 + 1 ≤ 0 so ℓ = 0. 

We have 
𝑝𝑚

𝑝−𝑚
(𝑘 −

𝑛

𝑝
) ≥ 𝑛 as before, so  

ℋ𝑚 (𝑓(�̃� ∩ 𝐹1)) ≤ 𝐶∑ℋ𝑚 (𝑓(𝐵𝑗𝑥𝑖))

∞

𝑖=1

≤ 𝐶𝑗−𝑚∑𝑟
𝑗𝑥𝑖

𝑚(𝑘−
𝑛
𝑝
)
(∫ |𝐷𝑘𝑓(𝑧)|

𝑝
𝑑𝑧

𝐵𝑗𝑥𝑖

)

𝑚
𝑝∞

𝑖=1

≤ 𝐶𝑗−𝑚 (∑𝑟𝑗𝑥𝑖
𝑛

∞

𝑖=1

)

𝑝−𝑚
𝑝

(∑∫ |𝐷𝑘𝑓(𝑧)|
𝑝
𝑑𝑧

𝐵𝑗𝑥𝑖

∞

𝑖=1

)

𝑚
𝑝

. 

Since the balls are contained in Q and no point belongs to more than 𝐶(𝑛) balls we conclude 

that  

ℋ𝑚 (𝑓(�̃� ∩ 𝐹1)) ≤ 𝐶𝑗
−𝑚ℋ𝑛(𝑄)

𝑝−𝑚
𝑝 ‖𝐷𝑘𝑓‖

𝑝

𝑚
. 

Since j can be arbitrarily large, ℋ𝑚 (𝑓(�̃� ∩ 𝐹1)) = 0, i.e. ℋℓ (�̃� ∩ 𝐹1 ∩ 𝑓
−1(𝑦)) = 0 for 

a.e. 𝑦 ∈ ℝ𝑚.  

Case: ℓ = 𝑛 −𝑚 − 𝑘 + 1 > 0. 

The sets {𝐵𝑗𝑥𝑖 ∩ 𝑓
−1(𝑦)}

𝑖=1

∞
 form a covering of �̃� ∩ 𝐹1 ∩ 𝑓

−1(𝑦) and  
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𝑑𝑖𝑎𝑚 (𝐵𝑗𝑥𝑖 ∩ 𝑓
−1(𝑦)) ≤ 𝐶𝑟𝑗𝑥𝑖𝜒𝑓(𝐵𝑗𝑥𝑖)

(𝑦). 

The definition of the Hausdorff measure yields  

𝐻ℓ (�̃� ∩ 𝐹1 ∩ 𝑓
−1(𝑦)) ≤ 𝐶 lim inf

𝑗→∞
∑𝑟𝑗𝑥𝑖

ℓ 𝜒
𝑓(𝐵𝑗𝑥𝑖)

(𝑦)

∞

𝑖=1

. 

Thus as above  

∫ ℋℓ (�̃� ∩ 𝐹1 ∩ 𝑓
−1(𝑦))𝑑ℋ𝑚(𝑦)

∗

ℝ𝑚
≤ 𝐶 lim inf

𝑗→∞
∑𝑟𝑗𝑥𝑖

ℓ ℋ𝑚 (𝑓(𝐵𝑗𝑥𝑖))

∞

𝑖=1

 

≤ 𝐶 lim inf
𝑗→∞

 𝑗−𝑚∑𝑟
𝑗𝑥𝑖

ℓ+𝑚(𝑘−
𝑛
𝑝
)
(∫ |𝐷𝑘𝑓(𝑧)|

𝑝
𝑑𝑧

𝐵𝑗𝑥𝑖

)

𝑚
𝑝∞

𝑖=1

≤ 𝐶 lim inf
𝑗→∞

 𝑗−𝑚ℋ𝑛(𝑄)
𝑝−𝑚
𝑝 ‖𝐷𝑘𝑓‖

𝑝

𝑚
= 0 

since 
𝑝

𝑝−𝑚
(ℓ +𝑚(𝑘 −

𝑛

𝑝
)) ≥ 𝑛. Therefore ℋℓ (�̃� ∩ 𝐹1 ∩ 𝑓

−1(𝑦)) = 0 for a.e. 𝑦 ∈ ℝ𝑚. 

This completes the proof that ℋℓ(𝐹1 ∩ 𝑓
−1(𝑦)) = 0 for a.e. 𝑦 ∈ ℝ𝑚 and hence that of 

Claim (5.2.14)  

Claim (5.2.15)[192]: ℋℓ((𝐴𝑠−1\ 𝐴𝑠) ∩ 𝑓
−1(𝑦)) = 0 for a.e. 𝑦 ∈ ℝ𝑚, 𝑠 = 2, 3, . . . , 𝑘 − 1. 

In this step, we will use the Kneser-Glaeser composition theorem and the implicit function 

theorem to apply the induction hypothesis in ℝ𝑛−1. 
Fix 𝑠 ∈ {2, 3, . . . , 𝑘 − 1} and �̅� ∈ 𝐴𝑠−1\𝐴𝑠. It suffices to show that the ℓ-Hausdorff measure 

of 𝑊 ∩ (𝐴𝑠−1\𝐴𝑠) ∩ 𝑓
−1(𝑦) is zero for some neighborhood W of �̅� and a.e. 𝑦 ∈ ℝ𝑛. 

Indeed, 𝐴𝑠−1\𝐴𝑠 can be covered by countably many such neighborhoods.  

By the definitions of 𝐴𝑠 and 𝐴𝑠−1, 𝐷
𝛾𝑓(�̅�) = 0 for all 1 ≤ |𝛾| ≤ 𝑠 − 1, and 𝐷𝛽𝑓(�̅�) ≠ 0 

for some |𝛽| = 𝑠. That is, for some |𝛾| = 𝑠 − 1 and 𝑗 ∈ {1, . . . , 𝑚}, 𝐷(𝐷𝛾𝑓𝑗)(�̅�) ≠ 0 and 

𝐷𝛾𝑓𝑗 ∈ 𝑊
𝑘−(𝑠−1),𝑝 ⊂ 𝐶

𝑘−𝑠,1−
𝑛

𝑝. 

Hence, by the implicit function theorem, there is some neighborhood U of �̅� and an open set 

𝑉 ⊂ ℝ𝑛−1 so that 𝑈 ∩ {𝐷𝛾𝑓𝑗 = 0} = 𝑔(𝑉) for some 𝑔: 𝑉 → ℝ𝑛 of class 𝐶𝑘−𝑠. In particular, 

𝑈 ∩ 𝐴𝑠−1 ⊂ 𝑔(𝑉) since 𝐷𝛾𝑓𝑗 = 0 on 𝐴𝑠−1.  

Choose a neighborhood 𝑊 ⋐ 𝑈 of �̅� and say 𝐴∗: = 𝑔−1(𝑊 ∩ 𝐴𝑠−1) so that 𝐴∗ is compact. 

Since f is 𝑠 − 1 flat on the closed set 𝐴𝑠−1, 𝑓 is of class 𝐶𝑘−1, 𝑔 is of class 𝐶(𝑘−1)−(𝑠−1), and 

𝑔(𝐴∗) ⊂ 𝐴𝑠−1, we can apply Theorem (5.2.5) to each component of f to find a 𝐶𝑘−1 function 

𝐹:ℝ𝑛−1 → ℝ𝑚 so that, for every 𝑥 ∈ 𝐴∗, 𝐹(𝑥) = (𝑓 ∘ 𝑔)(𝑥) and 𝐷𝜆𝐹(𝑥) = 0 for all |𝜆| ≤
𝑠 − 1. That is, 𝐴∗ ⊂ 𝐶𝐹. Hence  

ℋℓ(𝐴∗ ∩ 𝐹−1(𝑦)) ≤ ℋℓ(𝐶𝐹 ∩ 𝐹
−1(𝑦)) = 0. 

for almost every 𝑦 ∈ ℝ𝑚. In this last equality, we invoked the induction hypothesis on 𝐹 ∈

𝐶𝑘−1(ℝ𝑛−1 , ℝ𝑚) ⊂ 𝑊𝑙𝑜𝑐
𝑘−1,𝑝(ℝ𝑛−1, ℝ𝑚) with ℓ = max((𝑛 − 1) − 𝑚 − (𝑘 − 1) + 1, 0). 

Since g is of class 𝐶1, it is locally Lipschitz, and so ℋℓ (𝑔(𝐴∗ ∩ 𝐹−1(𝑦))) = 0 for almost 

every 𝑦 ∈ ℝ𝑚. Since ∩ 𝐴𝑠−1 ⊂ 𝑔(𝐴
∗), we have  

𝑊 ∩𝐴𝑠−1 ∩ 𝑓
−1(𝑦) ⊂ 𝑔(𝐴∗ ∩ 𝐹−1(𝑦)) 

for all 𝑦 ∈ ℝ𝑚, and thus  
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ℋℓ(𝑊 ∩ (𝐴𝑠−1\𝐴𝑠) ∩ 𝑓
−1(𝑦)) ≤ ℋℓ(𝑊 ∩ 𝐴𝑠−1 ∩ 𝑓

−1(𝑦)) = 0 

for almost every 𝑦 ∈ ℝ𝑛. The proof of the claim is complete.  

Claim (5.2.16)[192]: ℋℓ(𝐾 ∩ 𝑓−1(𝑦)) = 0 for a.e. 𝑦 ∈ ℝ𝑚.  

Proof. Write 𝐾 = ⋃ 𝐾𝑟
𝑚−1
𝑟=1  where 𝐾𝑟: = {𝑥 ∈ ℝ

𝑛|𝑟𝑎𝑛𝑘 𝐷𝑓(𝑥) = 𝑟}. Fix 𝑥0 ∈ 𝐾𝑟 for some 

𝑟 ∈ {1, . . . , 𝑚 − 1}. For the same reason as in Claim (5.2.15) it suffices to show that 

ℋℓ((𝑉 ∩ 𝐾𝑟) ∩ 𝑓
−1(𝑦)) = 0 for some neighborhood V of 𝑥0 for a.e. 𝑦 ∈ ℝ𝑚.  

Without loss of generality, assume that the submatrix [
𝜕𝑓𝑖

𝜕𝑥𝑗(𝑥0)
]
𝑖,𝑗=1

𝑟

 formed by the first r rows 

and columns of 𝐷𝑓 has rank r. Let  

𝑌(𝑥) = (𝑓1(𝑥), 𝑓2(𝑥), . . . , 𝑓𝑟(𝑥), 𝑥𝑟+1, . . . , 𝑥𝑛)   for all   𝑥 ∈ ℝ
𝑛.            (62) 

Y is of class 𝐶𝑘−1 since each component of f is. Also, rank 𝐷𝑌 (𝑥0) = 𝑛, so by the inverse 

function theorem Y is a 𝐶𝑘−1 diffeomorphism of some neighborhood V of x0 onto an open 

set �̃� ⊂ ℝ𝑛 . From now on we will assume that Y is defined in V only.  

Claim (5.2.17)[192]: 𝑌−1 ∈ 𝑊𝑙𝑜𝑐
𝑘,𝑝
(�̃�,ℝ𝑛). 

Lemma (5.2.18)[192]: Let Ω ⊂ ℝ𝑛 be open. If 𝑔, ℎ ∈ 𝑊𝑙𝑜𝑐
ℓ,𝑝(Ω), where 𝑝 > 𝑛 and ℓ ≥ 1, 

then 𝑔ℎ ∈ 𝑊𝑙𝑜𝑐
ℓ,𝑝(Ω). 

Proof. Since 𝑔, ℎ ∈ 𝐶ℓ−1, it suffices to show that the classical partial derivatives 

𝐷𝛽(𝑔ℎ), |𝛽| = ℓ − 1 belong to 𝑊𝑙𝑜𝑐
1,𝑝(Ω) (when ℓ = 1, 𝛽 = 0 so 𝐷𝛽(𝑔ℎ) = 𝑔ℎ). The 

product rule for 𝐶ℓ−1 functions yields  

𝐷𝛽(𝑔ℎ) = ∑
𝛽!

𝛾! 𝛿!
𝐷𝛾𝑔𝐷𝛿ℎ

𝛾+𝛿=𝛽

.                            (63) 

Each of the functions 𝐷𝛾𝑔,𝐷𝛿ℎ is absolutely continuous on almost all lines parallel to 

coordinate axes, [60], so is their product. Thus 𝐷𝛽(𝑔ℎ) is absolutely continuous on almost 

all lines and hence it has partial derivatives (or order 1) almost everywhere. According to a 

characterization of 𝑊𝑙𝑜𝑐
1,𝑝

 by absolute continuity on lines, [60], it suffices to show that partial 

derivatives of 𝐷𝛽(𝑔ℎ) (of order 1) belong to 𝐿𝑙𝑜𝑐
𝑝

. This will imply that 𝐷𝛽(𝑔ℎ) ∈ 𝑊𝑙𝑜𝑐
1,𝑝

 for 

all 𝛽, |𝛽| = ℓ − 1 so 𝑔ℎ ∈ 𝑊𝑙𝑜𝑐
ℓ,𝑝

. 

If 𝐷𝛼 = 𝐷𝛿𝑖𝐷𝛽, then the product rule applied to the right hand side of (63) yields  

𝐷𝛼(𝑔ℎ) = ∑
𝛼!

𝛾! 𝛿!
𝐷𝛾𝑔𝐷𝛿ℎ

𝛾+𝛿=𝛼

. 

If |𝛾| < |𝛼| = ℓ and |𝛿| < |𝛼| = ℓ, then the function 𝐷𝛾𝑔𝐷𝛿ℎ is continuous and hence in 

𝐿𝑙𝑜𝑐
𝑝

. The remaining terms are ℎ𝐷𝛼𝑔 + 𝑔𝐷𝛼ℎ. Clearly this function also belongs to 𝐿𝑙𝑜𝑐
𝑝

 

because the functions g, h are continuous and 𝐷𝛼𝑔, 𝐷𝛼ℎ ∈ 𝐿𝑙𝑜𝑐
𝑝

. This completes the proof 

of the lemma.  

Now we can complete the proof of Claim (5.2.17). Since Y is a diffeomorphism of class 

𝐶𝑘−1, we have 

𝐷(𝑌−1)(𝑦) = [𝐷𝑌(𝑌−1(𝑦))]
−1
   for every    𝑦 ∈ �̃�.            (64) 

It suffices to prove that (𝑌−1) ∈ 𝑊𝑙𝑜𝑐
𝑘−1,𝑝

. It follows from (64) and a formula for the inverse 

matrix that  

𝐷(𝑌−1) = (
𝑃1(𝐷𝑓)

𝑃2(𝐷𝑓)
) ∘ 𝑌−1, 
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where 𝑃1 and 𝑃2 and polynomials whose variables are replaced by partial derivatives of f. 

The polynomial 𝑃2(𝐷𝑓) is just 𝑑𝑒𝑡 𝐷𝑌. 

Since 𝐷𝑓 ∈ 𝑊𝑙𝑜𝑐
𝑘−1,𝑝

 and 𝑝 > 𝑛, it follows from Lemma (5.2.18) that  

𝑃1(𝐷𝑓), 𝑃2(𝐷𝑓) ∈ 𝑊𝑙𝑜𝑐
𝑘−1,𝑝

. 
Note that 𝑃2(𝐷𝑓) = 𝑑𝑒𝑡 𝐷𝑌 is continuous and different than zero. Hence  

1

𝑃2(𝐷𝑓)
∈ 𝑊𝑙𝑜𝑐

𝑘−1,𝑝
 

as a composition of a 𝑊𝑙𝑜𝑐
𝑘−1,𝑝

 function which is locally bounded away from 0 and ∞ with a 

smooth function 𝑥 ⟼ 𝑥−1. Thus Lemma (5.2.18) applied one more time yields that 

𝑃1(𝐷𝑓)/𝑃2(𝐷𝑓) ∈ 𝑊𝑙𝑜𝑐
𝑘−1,𝑝

. Finally 

𝐷(𝑌−1) = (
𝑃1(𝐷𝑓)

𝑃2(𝐷𝑓)
) ∘ 𝑌−1 ∈ 𝑊𝑙𝑜𝑐

𝑘−1,𝑝
 

because composition with a diffeomorphism 𝑌−1 of class 𝐶𝑘−1 preserves 𝑊𝑙𝑜𝑐
𝑘−1,𝑝

. The proof 

of the claim is complete.  

It follows directly from (62) that 

𝑓(𝑌−1(𝑥)) = (𝑥1, . . . , 𝑥𝑟 , 𝑔(𝑥))                            (65) 

for all 𝑥 ∈ �̃� and some function 𝑔: �̃� → ℝ𝑚−𝑟. 

Claim (5.2.19)[192]: 𝑔 ∈ 𝑊𝑙𝑜𝑐
𝑘,𝑝
(�̃�, ℝ𝑚−𝑟).  

This statement is a direct consequence of the next  

Lemma (5.2.20)[192]: Let Ω ⊂ ℝ𝑛 be open, 𝑝 > 𝑛 and 𝑘 ≥ 1. If 𝛷 ∈ 𝑊𝑙𝑜𝑐
𝑘,𝑝(Ω,ℝ𝑛) is a 

diffeomorphism and 𝑢 ∈ 𝑊𝑙𝑜𝑐
𝑘,𝑝
(𝛷(Ω)), then 𝑢 ∘ 𝛷 ∈ 𝑊𝑙𝑜𝑐

𝑘,𝑝(Ω). 

Proof. When 𝑘 = 1 the result is obvious because diffeomorphisms preserve 𝑊𝑙𝑜𝑐
1,𝑝

. Assume 

thus that 𝑘 ≥ 2. Since 𝑝 > 𝑛,𝛷 ∈ 𝐶𝑘−1 so 𝛷 is a diffeomorphism of class 𝐶𝑘−1, but also 

𝑢 ∈ 𝐶𝑘−1 ⊂ 𝐶1 and hence the classical chain rule gives  

𝐷(𝑢 ∘ 𝛷) = ((𝐷𝑢) ∘ 𝛷) · 𝐷𝛷.                                 (66) 

Since 𝐷𝑢 ∈ 𝑊𝑙𝑜𝑐
𝑘−1,𝑝

 and Φ is a diffeomorphism of class 𝐶𝑘−1, we conclude that (𝐷𝑢) ∘ 𝛷 ∈

𝑊𝑙𝑜𝑐
𝑘−1,𝑝

. Now the fact that 𝐷𝛷 ∈ 𝑊𝑙𝑜𝑐
𝑘−1,𝑝

 combined with (66) and Lemma (5.2.18) yield that 

the right hand side of (66) belongs to 𝑊𝑙𝑜𝑐
𝑘−1,𝑝

 so 𝐷(𝑢 ◦ 𝛷) ∈ 𝑊𝑙𝑜𝑐
𝑘−1,𝑝

 and hence ◦𝛷 ∈

𝑊𝑙𝑜𝑐
𝑘,𝑝

. This compltes the proof of Lemma (5.2.20) and hence that of Claim (5.2.19).  

Now we can complete the proof of Claim (5.2.16). Recall that we need to prove that  

ℋℓ((𝑉 ∩ 𝐾𝑟) ∩ 𝑓
−1(𝑦)) = 0    𝑓𝑜𝑟 𝑎. 𝑒.   𝑦 ∈ ℝ𝑚              . (67) 

The diffeomorphism 𝑌−1 is a change of variables that simplifies the structure of the mapping 

f because 𝑓 ∘ 𝑌−1 fixes the first r coordinates (see (65)) and hence it maps (𝑛 − 𝑟)-
dimensional slices orthogonal to ℝ𝑟 to the corresponding (𝑚 − 𝑟)-dimensional slices 

orthogonal to ℝ𝑟. Because of this observation it is more convenient to work with 𝑓 ∘ 𝑌−1 

rather than with 𝑓. Translating (67) to the case of 𝑓 ∘ 𝑌−1 it suffices to show that  

ℋℓ ((�̃� ∩ 𝑌(𝐾𝑟)) ∩ (𝑓 ∘ 𝑌
−1)−1) (𝑦) = 0   𝑓𝑜𝑟 𝑎. 𝑒.   𝑦 ∈ ℝ𝑚. 

We used here a simple fact that the diffeomorphism Y preserves ℓ-null sets.  

Observe also that  

𝑟𝑎𝑛𝑘 𝐷(𝑓 ∘ 𝑌−1)(𝑥) = 𝑟     𝑓𝑜𝑟     𝑥 ∈ �̃� ∩ 𝑌(𝐾𝑟).             (68) 
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For any �̃� ∈ ℝ𝑟 and 𝐴 ⊂ ℝ𝑛, we will denote by 𝐴�̃� the (𝑛 − 𝑟)–dimensional slice of A with 

the first r coordinates equal to �̃�. That is, 𝐴�̃�: = {𝑧 ∈ ℝ
𝑛−𝑟|(�̃�, 𝑧) ∈ 𝐴}. Let 𝑔�̃�: �̃��̃� → ℝ

𝑚−𝑟 

be defined by 𝑔�̃�(𝑧) = 𝑔(�̃�, 𝑧). With this notation  

(𝑓 ∘ 𝑌−1)(�̃�, 𝑧) = (�̃�, 𝑔�̃�(𝑧)) 
and hence for 𝑦 = (�̃�, 𝑤) ∈ ℝ𝑚  

(�̃� ∩ 𝑌(𝐾𝑟)) ∩ (𝑓 ∘ 𝑌
−1)−1(𝑦) = 𝑔�̃�

−1(𝑤) ∩ (�̃� ∩ 𝑌(𝐾𝑟))
�̃�
. 

The set on the left hand side is contained in an affine (𝑛 − 𝑟)-dimensional subspace of ℝ𝑛 
orthogonal to ℝ𝑟 at �̃� while the set on the right hand side is contained in ℝ𝑛−𝑟 but the two 

sets are identified through a translation by the vector (�̃�, 0) ∈ ℝ𝑛 which identifies ℝ𝑛−𝑟 with 

the affine subspace orthogonal to ℝ𝑟 at �̃�. 

According to the Fubini theorem it suffices to show that for almost all �̃� ∈ ℝ𝑟 the following 

is true: for almost all 𝑤 ∈ ℝ𝑚−𝑟 

ℋℓ (𝑔�̃�
−1(𝑤) ∩ (�̃� ∩ 𝑌(𝐾𝑟)�̃�)) = 0.                     (69) 

As we will see this is a direct consequence of the induction hypothesis applied to the 

mapping 𝑔𝑉: �̃��̃� → ℝ
𝑛−𝑟 defined in a set of dimension 𝑛 − 𝑟 ≤ 𝑛 − 1. We only need to 

check that 𝑔�̃� satisfies the assumptions of the induction hypothesis.  

It is easy to see that for each 𝑥 = (�̃�, 𝑧) ∈ �̃�  

𝐷(𝑓 ∘ 𝑌−1)(𝑥) = (
𝑑𝑟×𝑟 0

∗ 𝐷(𝑔�̃�)(𝑧)
). 

This and (68) imply that for each �̃� ∈ ℝ𝑟  , 𝐷𝑔�̃� = 0 on the slice (�̃� ∩ 𝑌(𝐾𝑟))
�̃�
. Hence the 

set (�̃� ∩ 𝑌 (𝐾𝑟))
�̃�
 is contained in the critical set of 𝑔�̃� so  

ℋℓ (𝑔�̃�
−1(𝑤) ∩ (�̃� ∩ 𝑌(𝐾𝑟))

�̃�
) ≤ ℋℓ(𝑔�̃�

−1(𝑤) ∩ 𝐶𝑔�̃�).             (70) 

It follows from the Fubini theorem applied to Sobolev spaces that for almost all �̃� ∈

ℝ𝑛 , 𝑔�̃� ∈ 𝑊𝑙𝑜𝑐
𝑘,𝑝
(�̃��̃�, ℝ

𝑚−𝑟) and hence the induction hypothesis is satisfied for such 

mappings  

𝑊𝑙𝑜𝑐
𝑘,𝑝
∋  𝑔�̃�: �̃��̃� ⊂ ℝ

𝑛−𝑟 → ℝ𝑚−𝑟 . 
Since  

ℓ = max(𝑛 −𝑚 − 𝑘 + 1, 0) = max((𝑛 − 𝑟) − (𝑚 − 𝑟) − 𝑘 + 1, 0), 
for almost all 𝑤 ∈ ℝ𝑚−𝑛 the expression on the right hand side of (70) equals zero and (69) 

follows. This completes the proof of Claim (5.2.16) and hence that of the theorem. 

Section (5.3): Abridge Between Dubovitskiǐ –Federer Theorems 

The Morse–Sard theorem in its classical form states that the image of the set of critical 

points of a 𝐶𝑛−𝑚+1 smooth mapping 𝑣 ∶  ℝ𝑛  →  ℝ𝑚 has zero Lebesgue measure in ℝ𝑚. 

Assuming that 𝑛 ≥  𝑚, the set of critical points for 𝑣 is 𝑍𝑣  =  {𝑥 ∈  ℝ
𝑛 ∶ rank ∇𝑣(𝑥)  <

 𝑚} and the conclusion is that 

L𝑚(𝑣(𝑍𝑣))  =  0.                                                        (71) 
The theorem was proved by Morse [69] in the case 𝑚 =  1 and subsequently by Sard [47] 

in the general vector-valued case. The celebrated results of Whitney [48] show that the 

𝐶𝑛−𝑚+1 smoothness assumption on the mapping 𝑣 is sharp. However, the following result 

gives valuable information also for less smooth mappings. 

Theorem (5.3.1)[208]: (Dubovitskiǐ 1957 [59]). Let 𝑛,𝑚, 𝑘 ∈ ℕ, and let 𝑣 ∶ ℝ𝑛 → ℝ𝑚 be 

a 𝐶𝑘-smooth mapping. Put 𝑠 =  𝑛 −  𝑚 −  𝑘 +  1. Then 
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ℋ𝑠(𝑍𝑣  ∩  𝑣
−1(𝑦))  =  0      for     𝑎. 𝑎. 𝑦 ∈  ℝ𝑚,                             (72) 

where ℋ𝑠 denotes the s-dimensional Hausdorff measure and 𝑍𝑣 is the set of critical points 

of 𝑣. 

Here and in the following we interpret ℋ𝛽 as the counting measure when 𝛽 ≤  0. Thus for 

𝑘 ≥  𝑛 −  𝑚 +  1 we have 𝑠 ≤  0, and ℋ𝑠 in (72) becomes simply the counting measure, 

so the Dubovitskiǐ theorem contains the Morse–Sard Theorem (5.3.1)s particular case. 

A few years later and almost simultaneously, Dubovitskiǐ [183] in 1967 and Federer [61] in 

19692 published another important generalization of the Morse–Sard theorem. 

Theorem (5.3.2)[208]: (Dubovitskiǐ–Federer). For 𝑛, 𝑘, 𝑑 ∈ ℕ let 𝑚 ∈  {1, . . . , 𝑚𝑖𝑛(𝑛, 𝑑)} 

and 𝑣 ∶  ℝ𝑛  →  ℝ𝑑 be a 𝐶𝑘-smooth mapping. Put 𝑞∘ =  𝑚 +
𝑠

𝑘
 . Then 

ℋ𝑞∘ (𝑣(𝑍𝑣 ,𝑚)) =  0,                                                    (73) 

where, as above, 𝑠 =  𝑛 −  𝑚 −  𝑘 +  1 and 𝑍𝑣,𝑚 denotes the set of m-critical points of 𝑣 

defined as 𝑍𝑣,𝑚 = {𝑥 ∈  ℝ
𝑛 ∶ rank ∇𝑣(𝑥)  <  𝑚}. 

In view of the wide range of applicability of the above results it is a natural and compelling 

problem to decide to what extent they admit extensions to classes of Sobolev mappings. The 

first Morse–Sard result in the Sobolev context that we are aware of is due to L. De Pascale 

[39] (though see also [63]). It states that (71) holds for mappings 𝑣 of class 𝑊𝑝,𝑙𝑜𝑐
𝑘 (ℝ𝑛, ℝ𝑚) 

when 𝑘 ≥  𝑚𝑎𝑥(𝑛 −  𝑚 +  1, 2) and 𝑝 >  𝑛. Note that by the Sobolev embedding 

Theorem (5.3.1)ny mapping on ℝ𝑛 which is locally of Sobolev class 𝑊𝑝
𝑘 for some 𝑝 >  𝑛 

is in particular 𝐶𝑘−1, so the critical set 𝑍𝑣 can be defined as usual. 

In [192] P. Hajłasz and S. Zimmerman proved Theorem (5.3.1) under the assumption that 

𝑣 ∈  𝑊𝑝,𝑙𝑜𝑐
𝑘 (ℝ𝑛, ℝ𝑚), 𝑝 >  𝑛, which corresponds to that used by L. De Pascale [39]. 

In view of the existing counter-examples to Morse–Sard type results in the classical 𝐶𝑘 

context the issue is not the value of 𝑘, — that is, how many weak derivatives are needed. 

Instead the question is, what are the minimal integrability assumptions on the weak 

derivatives for Morse–Sard type results to be valid in the Sobolev case. Of course, it is 

natural here to restrict attention to continuous mappings, and so to require from the 

considered function spaces that the inclusion 𝑣 ∈  𝑊𝑝
𝑘(ℝ𝑛, ℝ𝑑) should guarantee at least 

the continuity of 𝑣 (assuming always that the mappings are precisely represented). For 

values 𝑘 ∈  {1, . . . , 𝑛 − 1} it is well-known that 𝑣 ∈  𝑊𝑝
𝑘(ℝ𝑛, ℝ𝑑) is continuous for 𝑝 >

𝑛

𝑘
 

and could be discontinuous for 𝑝 ≤
𝑛

𝑘
 . So the borderline case is  =  𝑝∘ =

𝑛

𝑘
 . It is well-known 

(see for instance [62], [50]) that 𝑣 ∈  𝑊𝑝∘
𝑘(ℝ𝑛, ℝ𝑑) is continuous if the derivatives of 𝑘-th 

order belong to the Lorentz space 𝐿𝑝∘,1, we will denote the space of such mappings by 

𝑊𝑝∘,1
𝑘 (ℝ𝑛, ℝ𝑑). 

In [180] it was shown that mappings 𝑣 ∈  𝑊𝑝∘,1
𝑘 (ℝ𝑛, ℝ𝑑) are differentiable (in the classical 

Fréchet–Peano sense) at each point outside some ℋ𝑝∘ -negligible set 𝐴𝑣.  Thus we define 

for integers 𝑚 ≤  𝑚𝑖𝑛{𝑛, 𝑑} the 𝑚-critical set as  

𝑍𝑣,𝑚 = {𝑥 ∈  ℝ
𝑛 \ 𝐴𝑣 ∶  𝑟𝑎𝑛𝑘 ∇𝑣(𝑥)  <  𝑚}.                                  (74) 

In previous joint of two of the authors with J. Bourgain [37], [56] and in [50], [180] this 

definition of critical set was used and a corresponding Dubovitskiǐ–Federer Theorem (5.3.2) 

was established for mappings of Sobolev class 𝑊𝑝∘
𝑘(ℝ𝑛, ℝ𝑑). If, in addition, the highest 

derivative ∇𝑘𝑣 belongs to the Lorentz space 𝐿𝑝∘,1 (in particular, if 𝑘 =  𝑛 since 𝐿1,1 = 𝐿1), 

also the Luzin 𝑁-property with respect to the 𝑝∘-dimensional Hausdorff content was proven. 



172 

It implies, in particular, that the image of the set 𝐴𝑣 of nondifferentiability points has zero 

measure, and consequently, C1-smoothness of almost all level sets follows. These facts 

found fruitful applications in fluid mechanics (see, e.g., [188]). 

We prove the Dubovitskiǐ Theorem (5.3.1) for mappings of the same Sobolev– Lorentz class 

𝑊𝑝∘,1
𝑘  and with values in ℝ𝑑 for arbitrary 𝑑 ≥  𝑚. 

Theorem (5.3.3)[208]: Let 𝑘,𝑚 ∈  {1, . . . , 𝑛}, 𝑑 ≥  𝑚 and 𝑣 ∈  𝑊𝑝∘,1
𝑘 (ℝ𝑛, ℝ𝑑). Then the 

equality 

ℋ𝑠(𝑍𝑣,𝑚 ∩ 𝑣
−1(𝑦))  =  0          𝑓𝑜𝑟   ℋ𝑚 − 𝑎. 𝑎. 𝑦 ∈  ℝ𝑑                         (75) 

holds, where as above 𝑠 =  𝑛 −  𝑚 −  𝑘 +  1 and 𝑍𝑣,𝑚 denotes the set of m-critical points 

of 𝑣: 𝑍𝑣,𝑚   =  {𝑥 ∈  ℝ
𝑛 \ 𝐴𝑣 ∶  𝑟𝑎𝑛𝑘 𝛻𝑣(𝑥)  <  𝑚}. 

The result is new even when the mapping 𝑣 ∶  ℝ𝑛  →  ℝ𝑑 is of class 𝐶𝑘 since we allow here 

𝑚 <  𝑑 (compare with Theorem (5.3.1)). However, the main thrust of the result is the 

extension to the Sobolev–Lorentz context that we believe is essentially sharp. We also wish 

to emphasize that the result is in harmony with our definition of critical set (recall that 

ℋ𝑝∘  (𝐴𝑣)  = 0) and the following new analog of the Luzin N-property: 

Theorem (5.3.4)[208]: Let 𝑘,𝑚 ∈  {1, . . . , 𝑛}, 𝑑 ≥  𝑚 and 𝑣 ∈  𝑊𝑝∘,1
𝑘 (ℝ𝑛, ℝ𝑑). Then for 

any set 𝐴 with ℋ𝑝∘  (𝐴)  =  0 we have 

ℋ𝑠(𝐴 ∩ 𝑣−1(𝑦))  =  0        𝑓𝑜𝑟   ℋ𝑚 − 𝑎. 𝑎. 𝑦 ∈  ℝ𝑑 ,                       (76) 
where again 𝑠 =  𝑛 −  𝑚 −  𝑘 +  1. 

We end with remarks about the possibility to localize our results. 

We extend the Dubovitskiǐ Theorem (5.3.1) to the Sobolev context (since the 

Federer–Dubovitskiǐ Theorem (5.3.2) had been extended before in [50], [180]). The very 

natural question arose. Theorem (5.3.1) asserts that ℋ𝑚-almost all preimages are small 

(with respect to ℋ𝑠-measure), and Theorem (5.3.2) claims that ℋ𝑞∘  -almost all preimages 

are empty. Could we connect these results? could we say something about ℋ𝑞-almost all 

preimages for other values of 𝑞, say, for 𝑞 ∈  [𝑚 −  1, 𝑞∘]? The affirmative answer is 

contained in the next theorem. 

Theorem (5.3.5)[208]: Let 𝑘,𝑚 ∈  {1, . . . , 𝑛}, 𝑑 ≥  𝑚 and 𝑣 ∈  𝑊𝑝∘,1
𝑘 (ℝ𝑛, ℝ𝑑). Then for 

any 𝑞 ∈  (𝑚 −  1,∞) the equality 

ℋ𝜇𝑞 (𝑍𝑣,𝑚  ∩  𝑣 − 1(𝑦)) =  0             𝑓𝑜𝑟   ℋ
𝑞 − 𝑎. 𝑎. 𝑦 ∈  ℝ𝑑               (77) 

holds, where 

𝜇𝑞 ∶=  𝑠 +  𝑘(𝑚 −  𝑞),       𝑠 =  𝑛 −  𝑚 −  𝑘 +  1,                      (78) 

and 𝑍𝑣,𝑚 again denotes the set of m-critical points of 𝑣: 𝑍𝑣,𝑚 = {𝑥 ∈  ℝ
𝑛 \ 𝐴𝑣 ∶

 𝑟𝑎𝑛𝑘 ∇𝑣(𝑥)  ≤  𝑚 −  1}. 
Let us note, that the behavior of the function 𝜇𝑞 is very natural: 

𝜇𝑞  =  0 for 𝑞 =  𝑞∘ =  𝑚 −  1 +
𝑛 − 𝑚 + 1

𝑘
 (Dubovitskiǐ–Federer Theorem (5.3.2)) 

𝜇𝑞  <  0 for 𝑞 > 𝑞∘ [ibid.] 

𝜇𝑞  =  𝑠 for 𝑞 =  𝑚 (Dubovitskiǐ Theorem (5.3.1)) 

𝜇𝑞  =  𝑛 −  𝑚 +  1   for  𝑞 =  𝑚 −  1.                                                            (79) 
The last value cannot be improved in view of the trivial example of a linear mapping 

𝐿: ℝ𝑛  →  ℝ𝑑 of rank 𝑚 −  1. 

Thus, Theorem (5.3.5) contains all the previous theorems as particular cases and it is new 

even for the smooth case. 
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We emphasize the fact that in stating Theorem (5.3.5) we skipped the borderline case 𝑞 =
 𝑚 − 1, 𝜇𝑞  =  𝑛 − 𝑚 + 1. For this case we cannot assert that ℋ𝑚−1-almost all preimages 

in the 𝑚-critical set 𝑍𝑣,𝑚 have zero ℋ𝑛−𝑚+1-measure as the above mentioned 

counterexample with a linear mapping 𝐿: ℝ𝑛  →  ℝ𝑑 of rank 𝑚 −  1 shows. But for this 

borderline case we obtain instead the following analog of the classical coarea formula: 

Theorem (5.3.6)[208]: Let 𝑛, 𝑑 ∈ ℕ,𝑚 ∈  {0, . . . , 𝑚𝑖𝑛(𝑛, 𝑑)}, and 𝑣 ∈  𝑊𝑛,1
1 (ℝ𝑛, ℝ𝑑). 

Then for any Lebesgue measurable subset 𝐸 of 𝑍𝑣,𝑚+1 = {𝑥 ∈  ℝ
𝑛 \ 𝐴𝑣 ∶  𝑟𝑎𝑛𝑘 𝛻𝑣(𝑥)  ≤

 𝑚} we have 

∫ 
𝐸

 𝐽𝑚𝑣(𝑥) 𝑑𝑥 = ∫  
ℝ𝑑
 ℋ𝑛−𝑚(𝐸 ∩  𝑣−1(𝑦))𝑑ℋ𝑚(𝑦),         (80) 

where 𝐽𝑚𝑣(𝑥) denotes the m-Jacobian of 𝑣 defined as the product of the m largest singular 

values of the matrix 𝛻𝑣(𝑥). 
The proof relies crucially on the results of [219] and [214] that give criteria for the validity 

of the coarea formula for Lipschitz mappings between metric spaces, see also [209] and 

[66], [203]. 

Thus, to study the level sets for the borderline case 𝑞 =  𝑚 −  1 in Theorem (5.3.5), one 

must take 𝑚′  =  𝑚 −  1 instead of m in Theorem (5.3.6). 

From the Coarea formula (80) it follows directly, that the set of 𝑦 ∈  ℝ𝑑 where the 

integrand in the right-hand side of (80) is positive, is ℋ𝑚–𝜎-finite. Indeed, from Theorem 

(5.3.6) and [214] we obtain immediately the following more precise statement: 

Corollary (5.3.7)[208]: Let 𝑚 ∈  {0, . . . , 𝑚𝑖𝑛(𝑑, 𝑛)} and 𝑣 ∈  𝑊𝑛,1
1 (ℝ𝑛, ℝ𝑑). Then the set 

{𝑦 ∈  ℝ𝑑 ∶  ℋ𝑛−𝑚 (𝑍𝑣,𝑚+1  ∩  𝑣
−1(𝑦))  >  0} 

is ℋ𝑚-rectifiable, i.e., it is a union of a set of ℋ𝑚-measure zero and a countable family of 

images 𝑔𝑖(𝑆𝑖) of Lipschitz mappings 𝑔𝑖 ∶  𝑆𝑖  ⊆  ℝ
𝑚  →  ℝ𝑑. Here again 𝑍𝑣,𝑚+1 = {𝑥 ∈

 ℝ𝑛 \ 𝐴𝑣 ∶  𝑟𝑎𝑛𝑘 ∇𝑣(𝑥)  ≤  𝑚}. 
Again In harmony with our definition of critical set (recall that ℋ𝑝∘(𝐴𝑣)  = 0) 

because of the following analog of the Luzin N-property:  

In particular, 

ℋ𝑝(𝑣(𝐸))  =  0   𝑤ℎ𝑒𝑛𝑒𝑣𝑒𝑟   ℋ𝑝(𝐸) = 0, 𝑝 ∈  [𝑝∘, 𝑛].              (81) 
By a simple calculation we have for 𝑞 ∈  [0, 𝑞∘] that 

𝜇𝑞 = 𝑛 −  𝑚 −  𝑘 + 1 +  𝑘(𝑚 −  𝑞) 

= (𝑝∘ − 𝑞)𝑘 + (𝑚 −  1)(𝑘 −  1)  ≥  𝑚𝑎𝑥(𝑝∘ −  𝑞, 0).     (82) 
Theorem (5.3.24) then yields 

Corollary (5.3.8)[208]: Let 𝑘,𝑚 ∈  {1, . . . , 𝑛} and 𝑣 ∈  𝑊𝑝∘,1
𝑘 (ℝ𝑛, ℝ𝑑). Then for every 𝑞 ∈

 [0, +∞) and for any set 𝐸 with ℋ𝑝∘(𝐸)  =  0 we have 

ℋ𝜇𝑞(𝐸 ∩  𝑣−1(𝑦))  =  0      𝑓𝑜𝑟  ℋ𝑞–𝑎. 𝑎. 𝑦 ∈  ℝ𝑑 .                 (83) 
Consequently, for every 𝑞 ∈  [0,+∞) 

ℋ𝜇𝑞(𝐴𝑣  ∩  𝑣
−1(𝑦))  =  0     𝑓𝑜𝑟  ℋ𝑞 − 𝑎. 𝑎. 𝑦 ∈  ℝ𝑑 ,         (84) 

where we recall that 𝐴𝑣 is the set of nondifferentiability points of v (cf. with (77)).  

Finally, applying the N-property (Theorem (5.3.24)) for 𝑝 =  𝑛, 𝑞 =  𝑚 ≤  𝑛, we obtain  

Corollary (5.3.9)[208]: Let 𝑛, 𝑑 ∈ ℕ,𝑚 ∈  [0, 𝑛], and 𝑣 ∈  𝑊𝑛,1
1 (ℝ𝑛, ℝ𝑑). Then for any 

set 𝐸 of zero n-Lebesgue measure L𝑛(𝐸)  =  0 the identity 

ℋ𝑛−𝑚(𝐸 ∩  𝑣−1(𝑦)) =  0    𝑓𝑜𝑟  ℋ𝑚 − 𝑎. 𝑎. 𝑦 ∈  ℝ𝑑      (85) 
holds. 
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Thus the sets of n-Lebesgue measure zero (in particular, the set of nondifferentiability points 

Av) are negligible in the Coarea formula (80). 

Finally, let us comment briefly on the proofs that merge ideas from the previous [56], [50], 

[180] and [192]. In particular, the joint [37], [56] by two with J. Bourgain contain many of 

the key ideas that allow us to consider nondifferentiable Sobolev mappings. For the 

implementation of these ideas one relies on estimates for the Hardy–Littlewood maximal 

function in terms of Choquet type integrals with respect to Hausdorff capacity. In order to 

take full advantage of the Lorentz context we exploit the recent estimates from [180] 

(recalled in Theorem (5.3.13) below, see also [51] for the case 𝑝 =  1). As in [56] (and 

subsequently in [50]) we also crucially use 𝑌. Yomdin’s (see [78]) entropy estimates of near 

critical values for polynomials (recalled in Theorem (5.3.14) below). 

In addition to the above mentioned there is a growing number on the topic, including [29], 

[210]–[53], [57], [22], [213], [68], [70], [71], [76], [191]. 

By an 𝑛-dimensional interval we mean a closed cube in ℝ𝑛 with sides parallel to the 

coordinate axes. If 𝑄  is an n-dimensional cubic interval then we write ℓ(𝑄) for its 

sidelength. 

For a subset 𝑆 of ℝ𝑛 we write L𝑛(𝑆) for its outer Lebesgue measure. The 𝑚-dimensional 

Hausdorff measure is denoted by ℋ𝑚 and the m-dimensional Hausdorff content by ℋ∞
𝑚. 

Recall that for any subset 𝑆 of ℝ𝑛 we have by definition 

ℋ𝑚(𝑆) = lim
𝛼↘0
  ℋ𝛼

𝑚(𝑆) = sup
𝛼>0

 ℋ𝛼
𝑚(𝑆), 

where for each 0 <  𝛼 ≤  ∞, 

ℋ𝛼
𝑚(𝑆)  =  𝑖𝑛𝑓 {∑  

∞

𝑖=1

(𝑑𝑖𝑎𝑚 𝑆𝑖)
𝑚 ∶  𝑑𝑖𝑎𝑚 𝑆𝑖  ≤  𝛼, 𝑆 ⊂  ⋃ 

∞

𝑖=1

𝑆𝑖} . 

It is well known that ℋ𝑛(𝑆)  = ℋ∞
𝑛(𝑆)  ∼  L𝑛(𝑆) for sets 𝑆 ⊂  ℝ𝑛. 

To simplify the notation, we write ‖𝑓‖𝐿𝑝 instead of ‖𝑓‖𝐿𝑝(ℝ𝑛), etc. 

The Sobolev space 𝑊𝑝
𝑘(ℝ𝑛, ℝ𝑑) is as usual defined as consisting of those ℝ𝑑-valued 

functions 𝑓 ∈  𝐿𝑝(ℝ
𝑛) whose distributional partial derivatives of orders 𝑙 ≤  𝑘 belong to 

𝐿𝑝(ℝ
𝑛) (for detailed definitions and differentiability properties of such functions see, e.g., 

[60], [218], [79], [58]). Denote by 𝛻𝑘𝑓 the vector-valued function consisting of all k-th order 

partial derivatives of 𝑓 arranged in some fixed order. However, for the case of first order 

derivatives 𝑘 =  1 we shall often think of 𝛻𝑓(𝑥) as the Jacobi matrix of 𝑓 at 𝑥, thus the 

𝑑 ×  𝑛 matrix whose r-th row is the vector of partial derivatives of the 𝑟-th coordinate 

function. 

We use the norm 

‖𝑓‖𝑊𝑝𝑘 = ‖𝑓‖𝐿𝑝 + ‖𝛻𝑓‖𝐿𝑝 + ···  + ‖𝛻
𝑘𝑓‖

𝐿𝑝
, 

and unless otherwise specified all norms on the spaces ℝ𝑠 (𝑠 ∈ ℕ) will be the usual 

euclidean norms. 

Working with locally integrable functions, we always assume that the precise 

representatives are chosen. If 𝑤 ∈  𝐿1,𝑙𝑜𝑐(𝛺), then the precise representative 𝑤∗ is defined 

for all 𝑥 ∈  𝛺 by 

𝑤∗(𝑥) = {
lim
𝑟↘0
 ∫  
𝐵(𝑥,𝑟)

𝑤(𝓏)𝑑𝓏, 𝑖𝑓 𝑡ℎ𝑒 𝑙𝑖𝑚𝑖𝑡 𝑒𝑥𝑖𝑠𝑡𝑠 𝑎𝑛𝑑 𝑖𝑠 𝑓𝑖𝑛𝑖𝑡𝑒,

0                                                    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

  (86) 

where the dashed integral as usual denotes the integral mean, 
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∫  
𝐵(𝑥,𝑟)

𝑤(𝓏)𝑑𝓏 =
1

L𝑛(𝐵(𝑥, 𝑟))
  ∫  
𝐵(𝑥,𝑟)

 𝑤(𝓏)𝑑𝓏, 

and 𝐵(𝑥, 𝑟)  =  {𝑦 ∶  |𝑦 −  𝑥|  <  𝑟} is the open ball of radius 𝑟 centered at 𝑥. Henceforth 

we omit special notation for the precise representative writing simply 𝑤∗  =  𝑤. 

We will say that 𝑥 is an 𝐿𝑝-Lebesgue point of 𝑤 (and simply a Lebesgue point when 𝑝 =

 1), if 

∫  
𝐵(𝑥,𝑟)

|𝑤(𝓏) −  𝑤(𝑥)|𝑝 𝑑𝓏 →  0            𝑎𝑠         𝑟 ↘ 0. 

If 𝑘 < 𝑛, then it is well-known that functions from Sobolev spaces 𝑊𝑝
𝑘(ℝ𝑛) are continuous 

for 𝑝 >
𝑛

𝑘
  and could be discontinuous for 𝑝 ≤  𝑝∘ =

𝑛

𝑘
 (see, e.g., [218], [79]). 

The Sobolev–Lorentz space 𝑊𝑝∘,1
𝑘 (ℝ𝑛)  ⊂  𝑊𝑝∘

𝑘(ℝ𝑛) is a refinement of the corresponding 

Sobolev space that for our purposes turns out to be convenient. Among other things 

functions that are locally in 𝑊𝑝∘,1
𝑘  on ℝ𝑛 are in particular continuous. 

Here we shall mainly be concerned with the Lorentz space 𝐿𝑝,1, and in this case one may 

rewrite the norm as (see [65]) 

‖𝑓‖𝑝,1 = ∫  
+∞

0

 [𝐿𝑛({𝑥 ∈  ℝ𝑛 ∶  |𝑓(𝑥)| >  𝑡})]
1
𝑝 𝑑𝑡.                 (87) 

We record the following subadditivity property of the Lorentz norm for later use.  

Lemma (5.3.10)[208]: (see, e.g., [72] or [65]). Suppose that 1 ≤  𝑝 <  ∞ and  = ⋃   
𝑗∈ℕ 𝐸𝑗 

, where 𝐸𝑗 are measurable and mutually disjoint subsets of ℝ𝑛. Then for all 𝑓 ∈  𝐿𝑝,1 we 

have 

∑ 

𝑗

 ‖𝑓 · 1𝐸𝑗‖𝐿𝑝,1

𝑝
 ≤  ‖𝑓 · 1𝐸‖𝐿𝑝,1

𝑝
 , 

where 1𝐸 denotes the indicator function of the set 𝐸. 

Denote by 𝑊𝑝,1
𝑘 (ℝ𝑛) the space of all functions 𝑣 ∈  𝑊𝑝

𝑘(ℝ𝑛) such that in addition the 

Lorentz norm ‖𝛻𝑘𝑣‖
𝐿𝑝,1

 is finite. 

For a mapping 𝑢 ∈  𝐿1(𝑄,ℝ
𝑑), 𝑄 ⊂  ℝ𝑛, 𝑚 ∈ ℕ, define the polynomial 𝑃𝑄,𝑚[𝑢] of degree 

at most 𝑚 by the following rule: 

∫ 
𝑄

 𝑦𝛼(𝑢(𝑦)  − 𝑃𝑄,𝑚[𝑢](𝑦)) 𝑑𝑦 =  0                                   (88) 

for any multi-index 𝛼 =  (𝛼1, . . . , 𝛼𝑛) of length |𝛼|  =  𝛼1  + ···  + 𝛼𝑛  ≤  𝑚. Denote 

𝑃𝑄[𝑢]  =  𝑃𝑄,𝑘−1[𝑢]. 
The following well-known bound will be used on several occasions. 

Lemma (5.3.11)[208]: (see, e.g., [180]). Suppose 𝑣 ∈  𝑊𝑝∘,1
𝑘 (ℝ𝑛, ℝ𝑑) with 𝑘 ∈  {1, . . . , 𝑛}. 

Then v is a continuous mapping and for any n-dimensional cubic interval 𝑄 ⊂  ℝ𝑛 the 

estimate 

sup
𝑦∈𝑄

  |𝑣(𝑦) − 𝑃𝑄[𝑣](𝑦)| ≤  𝐶 ‖1𝑄 · ∇
𝑘𝑣‖

𝐿𝑝∘,1
                     (89) 

holds, where 𝐶 is a constant depending on 𝑛, 𝑑 only. Moreover, the mapping 𝑣𝑄(𝑦)  =

 𝑣(𝑦) − 𝑃𝑄[𝑣](𝑦), 𝑦 ∈  𝑄, can be extended from 𝑄 to the whole of ℝ𝑛 such that the 

extension (denoted again) 𝑣𝑄  ∈  𝑊𝑝∘,1
𝑘 (ℝ𝑛, ℝ𝑑) and 

‖∇𝑘𝑣𝑄‖𝐿𝑝∘,1(ℝ
𝑛)
  ≤  𝐶0 ‖1𝑄 · ∇

𝑘𝑣‖
𝐿𝑝∘,1

 ,                        (90) 
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where 𝐶0 also depends on 𝑛, 𝑑 only. 

Corollary (5.3.12)[208]: (see, e.g., [50]). Suppose 𝑣 ∈  𝑊𝑝∘,1
𝑘 (ℝ𝑛, ℝ𝑑) with 𝑘 ∈

 {1, . . . , 𝑛}. Then 𝑣 is a continuous mapping and for any n-dimensional cubic interval 𝑄 ⊂
 ℝ𝑛 the estimates 

diam 𝑣(𝑄)  ≤  𝐶 (
‖∇𝑣‖𝐿𝑝∘(𝑄)

ℓ(𝑄)𝑘−1
+ ‖1𝑄 · ∇

𝑘𝑣‖
𝐿𝑝∘,1

) 

≤ 𝐶 (
‖∇𝑣‖𝐿𝑝(𝑄)

ℓ(𝑄)
𝑛
𝑝
 −1

+ ‖1𝑄 · ∇
𝑘𝑣‖

𝐿𝑝∘,1
)                          (91) 

hold for every 𝑝 ∈  [𝑝∘, 𝑛].  
The above results can easily be adapted to give that 𝑣 ∈  𝐶0(ℝ

𝑛), the space of continuous 

functions on ℝ𝑛 that vanish at infinity (see [65]). 

Let M𝛽 be the space of all nonnegative Borel measures 𝜇 on ℝ𝑛 such that 

|||𝜇|||
𝛽
= sup
𝐼⊂ℝ𝑛

  ℓ(𝐼)−𝛽𝜇(𝐼) <  ∞,                                    (92) 

where the supremum is taken over all n-dimensional cubic intervals 𝐼 ⊂  ℝ𝑛 and ℓ(𝐼) 
denotes side-length of 𝐼. We need the following important strong-type estimates for 

maximal functions (it was proved in [180] based on classic results of D.R. Adams [51] and 

some new analog of the trace theorem for Riesz potentials of Lorentz functions for the 

limiting case 𝑞 =  𝑝, see Theorems 0.2–0.4 and Corollary (5.3.7) in [180]). 

Theorem (5.3.13)[208]: ([180]). Let 𝑝 ∈  (1,∞), 𝑘, 𝑙 ∈  {1, . . . , 𝑛}, 𝑙 ≤  𝑘, (𝑘 −  𝑙)𝑝 <
 𝑛. Then for any function 𝑓 ∈  𝑊𝑝,1

𝑘 (ℝ𝑛) the estimates 

‖∇𝑙 𝑓‖
𝐿𝑝(𝜇)

𝑝
≤ 𝐶 |||𝜇|||

𝛽
‖∇𝑘𝑓‖

𝐿𝑝,1

𝑝
        ∀𝜇 ∈  M𝛽 ,           (93) 

∫  
∞

0

 ℋ∞
𝛽
({𝑥 ∈  ℝ𝑛 ∶ ℳ(|∇𝑙 𝑓|

𝑝
)(𝑥) ≥ 𝑡}) 𝑑𝑡 ≤  𝐶 ‖∇𝑘𝑓‖

𝐿𝑝,1

𝑝
    (94) 

hold, where 𝛽 =  𝑛 − (𝑘 −  𝑙)𝑝, the constant 𝐶 depends on 𝑛, 𝑘, 𝑝 only, and 

ℳ𝑓(𝑥) = sup
𝑟>0

  ∫  
𝐵(𝑥,𝑟)

 |𝑓(𝑦)| 𝑑𝑦 

is the usual Hardy–Littlewood maximal function of 𝑓. 

The result is true also for 𝑝 =  1, 𝑘 > 𝑙 and is in this case due to D.R. Adams [51].  

For a subset 𝐴 of ℝ𝑚 and 𝜀 >  0 the ε-entropy of 𝐴, denoted by Ent(𝜀, 𝐴), is the minimal 

number of closed balls of radius ε covering A. Further, for a linear map 𝐿: ℝ𝑛  →  ℝ𝑑 we 

denote by 𝜆𝑗  (𝐿), 𝑗 =  1, . . . , 𝑑, its singular values arranged in decreasing order: 𝜆1(𝐿)  ≥

 𝜆2(𝐿)  ≥ ··· ≥  𝜆𝑑(𝐿). Geometrically the singular values are the lengths of the semiaxes of 

the, possibly degenerate, ellipsoid 𝐿(𝜕𝐵(0, 1)). We recall that the singular values of 𝐿 

coincide with the eigenvalues repeated according to multiplicity of the symmetric 

nonnegative linear map √𝐿𝐿∗ ∶  ℝ𝑑  →  ℝ𝑑. Also for a mapping 𝑓 ∶  ℝ𝑛  →  ℝ𝑑 we denote 

by 𝜆𝑗  (𝐿), 𝑗 =  1, . . . , 𝑑, its singular values arranged in decreasing order: 𝜆1(𝐿)  ≥  𝜆2(𝐿)  ≥

 ··· ≥  𝜆𝑑(𝐿). Geometrically the singular values are the lengths of the semiaxes of the, 

possibly degenerate, ellipsoid 𝐿(𝜕𝐵(0, 1)). We recall that the singular values of L coincide 

with the eigenvalues repeated according to multiplicity of the symmetric nonnegative linear 

map √𝐿𝐿∗ ∶  ℝ𝑑  →  ℝ𝑑 . Also for a mapping 𝑓 ∶  ℝ𝑛  →  ℝ𝑑 that is approximately 
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differentiable at 𝑥 ∈  ℝ𝑛 put 𝜆𝑗  (𝑓, 𝑥)  =  𝜆𝑗  (𝑑𝑥𝑓), where by 𝑑𝑥𝑓 we denote the 

approximate differential of 𝑓 at 𝑥. The next result is the second basic ingredient of our proof. 

Theorem (5.3.14)[208]: ([78]). For any polynomial 𝑃 ∶  ℝ𝑛  →  ℝ𝑑 of degree at most 𝑘, for 

each ball 𝐵 ⊂  ℝ𝑛 of radius 𝑟 >  0, and any number 𝜀 >  0 we have that 

Ent(𝜀𝑟, {𝑃(𝑥): 𝑥 ∈  𝐵, 𝜆1 ≤ 1 + 𝜀, . . . , 𝜆𝑚−1 ≤ 1 + 𝜀, 𝜆𝑚 ≤ 𝜀, . . . , 𝜆𝑑 ≤ 𝜀}) 
 ≤  𝐶𝑌 (1 + 𝜀

1−𝑚) , 
where the constant 𝐶𝑌 depends on 𝑛, 𝑑, 𝑘,𝑚 only and for brevity we wrote 𝜆𝑗 = 𝜆𝑗  (𝑃, 𝑥). 

The application of Theorem (5.3.13) is facilitated through the following simple estimate (see 

for instance Lemma 2 in [58], cf. with [55]). 

Lemma (5.3.15)[208]: Let 𝑢 ∈  𝑊1
1(ℝ𝑛, ℝ𝑑). Then for any ball 𝐵 ⊂  ℝ𝑛 of radius 𝑟 >  0 

and for any number 𝜀 >  0 the estimate 

diam({𝑢(𝑥) ∶  𝑥 ∈  𝐵, (ℳ∇𝑢)(𝑥)  ≤  𝜀})  ≤  𝐶𝑀𝜀𝑟 
holds, where 𝐶𝑀 is a constant depending on 𝑛, 𝑑 only. 

We need also the following approximation result. 

Theorem (5.3.16)[208]: (see Theorem (5.3.5) in [180]). Let 𝑝 ∈  (1,∞), 𝑘, 𝑙 ∈
 {1, . . . , 𝑛}, 𝑙 ≤  𝑘, (𝑘 −  𝑙)𝑝 < 𝑛. Then for any 𝑓 ∈ 𝑊𝑝,1

𝑘 (ℝ𝑛) and for each 𝜀 > 0 there 

exist an open set 𝑈 ⊂  ℝ𝑛 and a function 𝑔 ∈  𝐶𝑙(ℝ𝑛) such that 

(i) ℋ∞
𝑛−(𝑘−𝑙)𝑝

 (𝑈)  <  𝜀; 
(ii) each point 𝑥 ∈  ℝ𝑛 \ 𝑈 is an 𝐿𝑝-Lebesgue point for ∇𝑗𝑓, 𝑗 =  0, . . . , 𝑙; 

(iii) 𝑓 ≡  𝑔, ∇𝑗𝑓 ≡  ∇𝑗𝑔 on ℝ𝑛 \ 𝑈 for 𝑗 =  1, . . . , 𝑙. 
Note that in the analogous theorem for the case of Sobolev mappings 𝑓 ∈  𝑊𝑝

𝑘(ℝ𝑛) the 

assertion (i) should be replaced by 

(i’) ℬ𝑘−𝑙,𝑝(𝑈)  <  𝜀 if 𝑙 < 𝑘, 

where ℬ𝛼,𝑝(𝑈) denotes the Bessel capacity of the set 𝑈 (see [79] or [54]). 

Recall that for 1 <  𝑝 <  ∞ and 0 < 𝑛 − 𝛼𝑝 < 𝑛 the smallness of ℋ∞
𝑛−𝛼𝑝

(𝑈) implies the 

smallness of ℬ𝛼,𝑝(𝑈), but that the opposite is false since ℬ𝛼,𝑝(𝑈)  =  0 whenever 

ℋ𝑛−𝛼𝑝(𝑈)  <  ∞. On the other hand, for 1 <  𝑝 <  ∞ and 0 <  𝑛 −  𝛼𝑝 <  𝛽 ≤  𝑛 the 

smallness of ℬ𝛼,𝑝(𝑈) implies the smallness of ℋ𝛽∞(𝑈) (see, e.g., [52]). So the usual 

assertion (i’) is essentially weaker than (i). 

We briefly recall some theorems from [50], [180] which we need. The following 

result is an analog of the Luzin 𝑁-property with respect to the Hausdorff content. 

Theorem (5.3.17)[208]: ([50], [180]). Let 𝑘 ∈  {1, . . . , 𝑛}, 𝑞 ∈  [𝑝∘, 𝑛], and 𝑣 ∈
 𝑊𝑝∘,1

𝑘 (ℝ𝑛, ℝ𝑑). Then for each 𝜀 >  0 there exists 𝛿 >  0 such that for any set 𝐸 ⊂  ℝ𝑛 if 

ℋ∞
𝑞
(𝐸)  <  𝛿, then ℋ∞

𝑞
(𝑣(𝐸))  <  𝜀. In particular, ℋ𝑞(𝑣(𝐸))  =  0 whenever ℋ𝑞(𝐸)  =

 0.  

The next asertion is the precise analog of the Dubovitskiǐ–Federer Theorem (5.3.2) which 

includes the Morse–Sard result. 

Theorem (5.3.18)[208]: ([50], [180]). If 𝑘,𝑚 ∈  {1, . . . , 𝑛}, 𝛺 is an open subset of ℝ𝑛, and 

𝑣 ∈  𝑊𝑝∘,1,𝑙𝑜𝑐
𝑘 (𝛺, ℝ𝑑), then ℋ𝑞∘(𝑣(𝑍𝑣,𝑚))  =  0. 

Recall that in our notation 

𝑝∘ =
𝑛

𝑘
 , 𝑠 =  𝑛 −  𝑚 −  𝑘 +  1, 𝑞∘ =  𝑚 +

𝑠

𝑘
= 𝑝∘ + (𝑚 −  1)(1 − 𝑘

−1) , (95) 

and 𝑍𝑣,𝑚 = {𝑥 ∈  𝛺 ∶  𝑟𝑎𝑛𝑘 𝛻𝑣(𝑥)  <  𝑚}. 
Finally, here we recall some differentiability properties of Sobolev–Lorentz functions. 
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Theorem (5.3.19)[208]: ([50], [180]). Let 𝑘 ∈  {1, . . . , 𝑛} and 𝑣 ∈  𝑊𝑝∘,1
𝑘 (ℝ𝑛, ℝ𝑑). Then 

there exists a Borel set 𝐴𝑣  ⊂  ℝ
𝑛 such that ℋ𝑝∘(𝐴𝑣)  =  0 and for any 𝑥 ∈  ℝ𝑛 \ 𝐴𝑣 the 

function v is differentiable (in the classical Fréchet sense) at x, furthermore, the classical 

derivative coincides with 𝛻𝑣(𝑥) (x is an 𝐿𝑝∘ -Lebesgue point for 𝛻𝑣).  

Really the last assertion of the Theorem — that ℋ𝑝∘ -almost all points 𝑥 ∈  ℝ𝑛 are the 𝐿𝑝∘ 

-Lebesgue points for the gradient 𝛻𝑣 — follows from Theorem (5.3.16) (ii). 

The case 𝑘 =  1, 𝑝∘  =  𝑛 of the Theorem (5.3.19) is a classical result due to Stein [73] (see 

also [62]), and for 𝑘 =  𝑛, 𝑝∘  =  1 the result is due to Dorronsoro [58].  

Theorem (5.3.19) admits the following generalization. 

Theorem (5.3.20)[208]: ([50], [180]). Let 𝑘, 𝑙 ∈  {1, . . . , 𝑛}, 𝑙 ≤  𝑘, and 𝑣 ∈
 𝑊𝑝∘,1

𝑘 (ℝ𝑛, ℝ𝑑). Then there exists a Borel set 𝐴𝑣,𝑙  ⊂  ℝ
𝑛 such that ℋ𝑙𝑝∘  (𝐴𝑣,𝑙)  =  0 and 

each point 𝑥 ∈  ℝ𝑛 \ 𝐴𝑣,𝑙 is an 𝐿𝑝∘ -Lebesgue point for ∇𝑗𝑓, 𝑗 =  0, . . . , 𝑙, moreover, the 

function 𝑣 is l-times differentiable (in the classical Fréchet–Peano sense) at 𝑥, i.e., 

lim
𝑟↘0
 sup
𝑦∈𝐵(𝑥,𝑟)\{𝑥}

   
|𝑣(𝑦) − 𝑇𝑣,𝑙,𝑥(𝑦)|

|𝑥 −  𝑦|𝑙
= 0, 

where 𝑇𝑣,𝑙,𝑥(𝑦) is the Taylor polynomial of order 𝑙 for 𝑣 centered at 𝑥. 

Note that the Taylor polynomial of order 𝑙 for 𝑣 centered at 𝑥 is well defined ℋ𝑙𝑝∘  — a.e. 

by Theorem (5.3.16). 

We are going to prove Theorem (5.3.24) and as a consequence Theorem (5.3.4). Now 

fix 𝑛 ∈ ℕ, 𝑘 ∈  {1, . . . , 𝑛}, 𝑝 ∈  [𝑝∘, 𝑛] and 𝑞 ∈  [0, 𝑝]. 
𝜇 =  𝑝 −  𝑞.                                                         (96) 

Fix also a mapping 𝑣 ∈  𝑊𝑝∘,1
𝑘 (ℝ𝑛, ℝ𝑑). For a set 𝐸 ⊂  ℝ𝑛 define the set function  

Φ(𝐸) = inf
𝐸⊂⋃   𝛼

𝐷𝛼    ∑  

𝛼

(𝑑𝑖𝑎𝑚 𝐷𝛼)
𝜇[𝑑𝑖𝑎𝑚 𝑣(𝐷𝛼)]

𝑞 ,                  (97) 

where the infimum is taken over all countable families of compact sets {𝐷𝛼}𝛼∈ℕ such that 

𝐸 ⊂  ⋃   𝛼 𝐷𝛼. By Theorem (5.3.33), 𝛷(·) is a countably subadditive set-function with the 

property 

Φ(𝐸) = 0 ⇒ [ℋ𝜇(𝐸 ∩  𝑣−1(𝑦)  =  0   for ℋ𝑞 − almost all 𝑦 ∈  ℝ𝑑] . (98) 
Thus the assertion of Theorem (5.3.24) amounts to 

Φ(𝐸)  =  0     whenever   ℋ𝑝(𝐸) = 0.                           (99) 
The proof of this follows the ideas of [50]. 

By a dyadic interval we understand a cubic interval of the form [
𝑘1

2𝑙
 ,
𝑘1+1

2𝑙
] ×···×

𝑘𝑛

2𝑙
 ,
𝑘𝑛+1

2𝑙
], 

where 𝑘𝑖 , 𝑙 are integers. The following assertion is straightforward. 

Lemma (5.3.21)[208]: For any n-dimensional cubic interval 𝐽 ⊂  ℝ𝑛 there exist dyadic 

intervals 𝑄1, . . . , 𝑄2𝑛 such that 𝐽 ⊂  𝑄1  ∪···∪ 𝑄2𝑛 and ℓ(𝑄1)  = ··· = ℓ(𝑄2𝑛)  ≤  2ℓ(𝐽). 
Let {𝑄𝛼}𝛼∈𝐴 be a family of n-dimensional dyadic intervals. We say that the family {𝑄𝛼} is 

regular, if for any n-dimensional dyadic interval 𝑄 the estimate 

ℓ(𝑄)𝑝  ≥  ∑  

𝛼:𝑄𝛼⊂𝑄

 ℓ(𝑄𝛼)
𝑝                                       (100) 

holds. Since dyadic intervals are either nonoverlapping or contained in one another, (100) 

implies that any regular family {𝑄𝛼} must in particular consist of nonoverlapping intervals. 
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Lemma (5.3.22)[208]: (see Lemma 2.3 in [56]). Let {𝑄𝛼} be a family of 𝑛-dimensional 

dyadic intervals. Then there exists a regular family {𝐽𝛽} of n-dimensional dyadic intervals 

such that ⋃   𝛼 𝑄𝛼  ⊂  ⋃   𝛽 𝐽𝛽 and 

∑ 

𝛽

ℓ(𝐽𝛽)
𝑝
≤∑ 

𝛼

ℓ(𝑄𝛼)
𝑝. 

Lemma (5.3.23)[208]: (see Lemma 2.11 in [180] and Lemma 2.4 in [50]). Let 𝑣 ∈
 𝑊𝑝∘,1

𝑘 (ℝ𝑛, ℝ𝑑). For each 𝜀 >  0 there exists 𝛿 =  𝛿(𝜀, 𝑣)  >  0 such that for any regular 

family {𝑄𝛼} of n-dimensional dyadic intervals we have if 

∑ 

𝛼

ℓ(𝑄𝛼)
𝑝  <  𝛿,                                               (101) 

Then 

∑ 

𝛼

[‖1𝑄𝛼 · ∇
𝑘𝑣‖

𝐿𝑝∘,1

𝑝
+

1

ℓ(𝑄𝛼)
𝑛−𝑝

 ∫  
𝑄𝛼

|∇𝑣|𝑝] <  𝜀.                 (102) 

Theorem (5.3.24)[208]: Let 𝑘 ∈  {1, . . . , 𝑛}, 𝑝∘ =  𝑛/𝑘 and 𝑣 ∈  𝑊𝑝∘,1
𝑘 (ℝ𝑛, ℝ𝑑). Then for 

every 𝑝 ∈  [𝑝∘, 𝑛], 𝑞 ∈  [0, 𝑝] and for any set 𝐸 ⊂  ℝ𝑛 with ℋ𝑝(𝐸)  =  0 we have  

ℋ𝑝−𝑞(𝐸 ∩ 𝑣−1(𝑦))  =  0    𝑓𝑜𝑟  ℋ𝑞 − 𝑎. 𝑎. 𝑦 ∈  ℝ𝑑 .                    (103) 
Proof: Let ℋ𝑝(𝐸)  =  0. Take 𝜀 >  0 and 𝛿 =  𝛿(𝜀, 𝑣)  <  1 from Lemma (5.3.23). Take 

also the regular family {𝑄𝛼} of n-dimensional dyadic intervals such that 𝐸 ⊂  ⋃   𝛼 𝑄𝛼 and  

∑ 

𝛼

ℓ(𝑄𝛼)
𝑝  <  𝛿                                                         (104) 

where the existence of such family follows directly from Then by Lemma (5.3.23) the 

estimate (102) holds. Denote 𝑟𝛼 = ℓ(𝑄𝛼). By estimate (91), 

[𝑑𝑖𝑎𝑚 𝑣(𝑄𝛼)]
𝑞 ≤ 𝐶(

‖∇𝑣‖𝐿𝑝(𝑄𝛼)
𝑞

𝑟𝛼
(
𝑛
𝑝
−1)𝑞

 +  ‖1𝑄𝛼 · ∇
𝑘𝑣‖

𝐿𝑝∘,1

𝑞
) .                 (105) 

Therefore, by definition of 𝛷(𝐸) (see (97)), we have 

Φ(𝐸)  ≤  𝐶∑  

𝛼

 𝑟𝛼
𝜇
(
‖∇𝑣‖𝐿𝑝(𝑄𝛼)

𝑞

𝑟𝛼
(
𝑛
𝑝
−1)𝑞

 +  ‖1𝑄𝛼 · ∇
𝑘𝑣‖

𝐿𝑝∘,1

𝑞
) 

≤  𝑐 (∑ 

𝛼

𝑟𝛼

𝜇𝑝
𝑝−𝑞
)

𝑝−𝑞
𝑝

· [∑  

𝛼

(
1

ℓ(𝑄𝛼)
𝑛−𝑝

∫  
𝑄𝛼

 |𝛻𝑣|𝑝 + ‖1𝑄𝛼 · ∇
𝑘𝑣‖

𝐿𝑝∘,1

𝑞
)]

𝑞
𝑝

 

≤  𝑐 (∑ 

𝛼

 𝑟𝛼
𝑝
)

𝑝−𝑞
𝑝

· 𝜀
𝑞
𝑝 

≤  𝑐𝛿
𝑝−𝑞
𝑝  ·  𝜀

𝑞
𝑝  .                                                     (106) 

Since 𝜀 >  0 and 𝛿 >  0 are arbitrary small, (106) turns to the equality 𝛷(𝐸)  =  0 and by 

(98) the required assertion is proved. 

Fix integers 𝑘,𝑚 ∈  {1, . . . , 𝑛}, 𝑑 ≥  𝑚 and a mapping 𝑣 ∈  𝑊𝑝∘,1
𝑘 (ℝ𝑛, ℝ𝑑). Then, by 

Theorem (5.3.19), there exists a Borel set 𝐴𝑣 such that ℋ𝑝∘(𝐴𝑣) = 0 and all points of the 

complement ℝ𝑛 \𝐴𝑣 are 𝐿𝑝∘ -Lebesgue points for the weak gradient ∇𝑣. We can arrange 
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that 𝑣 is differentiable (in the classical Fréchet sense) at every point 𝑥 ∈  ℝ𝑛 \𝐴𝑣  with 

derivative ∇𝑣(𝑥) (so the classical derivative coincides with the precise representative of the 

weak gradient at 𝑥). 

Denote 𝑍𝑣,𝑚 = {𝑥 ∈  𝛺 \ 𝐴𝑣 ∶  𝑟𝑎𝑛𝑘 ∇𝑣(𝑥)  <  𝑚}. Fix a number 

𝑞 ∈  [𝑚 −  1, 𝑞∘). 
𝜇 =  𝜇𝑞  =  𝑛 −  𝑚 −  𝑘 + 1 + (𝑚 −  𝑞)𝑘.                    (107) 

Since 𝑞 < 𝑞∘ = 𝑚 − 1 +
𝑛−𝑚+1

𝑘
, we have 𝜇 > 0. 

We prove the assertion of the bridge Dubovitskiǐ–Federer Theorem (5.3.5) which is 

equivalent (by virtue of Theorem (5.3.33)) to 

Φ(𝑍𝑣,𝑚) = 0       if         𝑞 > 𝑚 −  1,                                (108) 
where for each fixed 𝑞 ∈  [𝑚 −  1, 𝑞∘) we denoted 

Φ(𝐸) = inf
𝐸⊂⋃   𝛼 𝐷𝛼

   ∑  

𝛼

(𝑑𝑖𝑎𝑚 𝐷𝛼)
𝜇[𝑑𝑖𝑎𝑚 𝑣(𝐷𝛼)]

𝑞 .                    (109) 

As indicated the infimum is taken over all countable families of compact sets {𝐷𝛼}𝛼∈𝑁 such 

that 𝐸 ⊂  ⋃   𝛼 𝐷𝛼. Note that the case 𝑞 =  𝑞∘, 𝜇𝑞  =  0 was considered in [50], [180]. 

Before embarking on the detailed proof we make some preliminary observations that allow 

us to make a few simplifying assumptions. In view of our definition of critical set we have 

that 

𝑍𝑣,𝑚 =⋃ 

 

𝑗∈ℕ

{𝑥 ∈  𝑍𝑣,𝑚 ∶  |∇𝑣(𝑥)|  ≤  𝑗}. 

Consequently we only need to prove that Φ(𝑍𝑣
′ )  =  0 for 𝑞 ∈  (𝑚 −  1, 𝑞∘), where  

𝑍𝑣
′ = {𝑥 ∈  𝑍𝑣,𝑚 ∶  |∇𝑣(𝑥)|  ≤  1}. 

For convenience, below we use the notation ‖𝑓‖𝐿𝑝∘,1(𝐼) instead of ‖1𝐼 · 𝑓‖𝐿𝑝∘,1 . The 

following lemma contains the main step in the proof. 

Lemma (5.3.25)[208]: Let 𝑞 ∈  [𝑚 −  1, 𝑞∘). Then for any n-dimensional dyadic interval 

𝐼 ⊂ ℝ𝑛 the estimate 

𝛷(𝑍𝑣
′ ∩ 𝐼) ≤ 𝐶 (ℓ(𝐼)𝜇‖∇𝑘𝑣‖

𝐿𝑝∘,1(𝐼)

𝑞
+ ℓ(𝐼)𝜇+𝑚−1‖∇𝑘𝑣‖

𝐿𝑝∘,1(𝐼)

𝑞−𝑚+1
) (110)  

holds, where the constant 𝐶 depends on 𝑛,𝑚, 𝑘, 𝑑 only. 

Proof. By virtue of (90) it suffices to prove that 

Φ(𝑍𝑣
′ ∩ 𝐼)  ≤  𝐶(ℓ(𝐼)𝜇 ‖∇𝑘𝑣𝐼‖𝐿𝑝∘,1(ℝ

𝑛)

𝑞
+ ℓ(𝐼)𝜇+𝑚−1‖∇𝑘𝑣𝐼‖𝐿𝑝∘,1(ℝ

𝑛)

𝑞−𝑚+1
  (111) 

for the mapping 𝑣𝐼 defined in Lemma (5.3.11), where 𝐶 =  𝐶(𝑛,𝑚, 𝑘, 𝑑) is a constant.  

Fix an n-dimensional dyadic interval 𝐼 ⊂  ℝ𝑛 and recall that 𝑣𝐼(𝑥)  =  𝑣(𝑥)  − 𝑃𝐼(𝑥) for 

all 𝑥 ∈  𝐼. Denote 

𝜎 =  ‖∇𝑘𝑣𝐼‖𝐿𝑝∘,1
 ,              𝑟 = ℓ(𝐼), 

and for each 𝑗 ∈ ℤ 

𝐸𝑗 = {𝑥 ∈ 𝐼 ∶  (ℳ|∇𝑣𝐼|
𝑝∘)(𝑥)  ∈  (2𝑗−1, 2𝑗]}    𝑎𝑛𝑑   𝛿𝑗 = ℋ∞

𝑝∘(𝐸𝑗  ). 

Then by Theorem (5.3.13) (applied for the case 𝑝 =  𝑝∘  =
𝑛

𝑘
 , 𝑙 =  1, 𝛽 =  𝑝∘), 

∑  

∞

𝑗=−∞

𝛿𝑗2
𝑗  ≤  𝐶𝜎𝑝∘                                             (112) 

for a constant 𝐶 depending on 𝑛,𝑚, 𝑘, 𝑑 only. By the definition of the Hausdorff measure, 

for each 𝑗 ∈ ℤ there exists a family of balls 𝐵𝑖𝑗  ⊂  ℝ
𝑛 of radii 𝑟𝑖𝑗 such that 
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𝐸𝑗  ⊂⋃ 

∞

𝑖=1

𝐵𝑖𝑗      and   ∑  

∞

𝑖=1

𝑟𝑖𝑗
𝑝∘ ≤ 𝑐𝛿𝑗  .                                   (113) 

Denote 

𝑍𝑗 = 𝑍𝑣
′ ∩ 𝐸𝑗          and      𝑍𝑖𝑗 = 𝑍𝑗 ∩ 𝐵𝑖𝑗  . 

By construction 𝑍𝑣
′  ∩  𝐼 =  ⋃   𝑗 𝑍𝑗 and 𝑍𝑗 = ⋃   𝑖 𝑍𝑖𝑗  . Put 

𝜀∗ =
1

𝑟
 ‖∇𝑘𝑣𝐼‖𝐿𝑝∘,1

=
𝜎

𝑟
 , 

and let 𝑗∗ be the integer satisfying 𝜀∗
𝑝∘  ∈  (2𝑗∗−1, 2𝑗∗]. Denote 𝑍∗ = ⋃   

𝑗<𝑗∗
𝑍𝑗 , 𝑍∗∗ =

⋃   
𝑗≥𝑗∗

𝑍𝑗 . Than by construction 

𝑍𝑣
′ ∩ 𝐼 =  𝑍∗  ∪  𝑍∗∗,   𝑍∗  ⊂  {𝑥 ∈  𝑍𝑣

′  ∩  𝐼 ∶  (ℳ|∇𝑣𝐼|
𝑝∘)(𝑥)  <  𝜀∗

𝑝∘}. 
Since ∇𝑃𝐼 (𝑥) =  ∇𝑣(𝑥) − ∇𝑣𝐼(𝑥), |∇𝑣𝐼(𝑥)| ≤  2

𝑗/𝑝∘ , |∇𝑣(𝑥)|  ≤  1, and 𝜆𝑚(𝑣, 𝑥)  =  0 for 

𝑥 ∈  𝑍𝑖𝑗, we have 

𝑍𝑖𝑗 ⊂ {𝑥 ∈ 𝐵𝑖𝑗 ∶  𝜆1(𝑃𝐼 , 𝑥)  ≤  1 + 2
𝑗/𝑝∘  , . . . , 𝜆𝑚−1(𝑃𝐼 , 𝑥)  ≤ 1 + 2

𝑗/𝑝∘  , 𝜆𝑚(𝑃𝐼 , 𝑥)

≤ 2𝑗/𝑝∘}. 
Applying Theorem (5.3.14) and Lemma (5.3.15) to mappings 𝑃𝐼 , 𝑣𝐼 , respectively, with 

𝐵 =  𝐵𝑖𝑗 and 𝜀 =  𝜀𝑗 = 2
𝑗/𝑝∘ , we find a finite family of balls 𝑇𝑠  ⊂  ℝ

𝑑 , 𝑠 =  1, . . . , 𝑠𝑗 with 

𝑠𝑗  ≤  𝐶𝑌 (1 + 𝜀𝑗
1−𝑚), each of radius (1 + 𝐶𝑀)𝜀𝑗  𝑟𝑖𝑗   , such that 

⋃ 

𝑠𝑗

𝑠=1

𝑇𝑠  ⊃  𝑣(𝑍𝑖𝑗). 

Therefore, for every 𝑗 ≥  𝑗∗ we have 

Φ(𝑍𝑖𝑗) ≤  𝐶1𝑠𝑗𝜀𝑗
𝑞
𝑟𝑖𝑗
𝑞+𝜇

= 𝐶2(1 + 𝜀𝑗
1−𝑚)2

𝑗𝑞
𝑝∘𝑟𝑖𝑗

𝑞+𝜇
  

≤ 𝐶2(1 + 𝜀∗
1−𝑚)2

𝑗𝑞
𝑝∘  𝑟𝑖𝑗

𝑞+𝜇
,                         (114) 

where all the constants 𝐶𝛼 above depend on 𝑛,𝑚, 𝑘, 𝑑 only. By the same reasons, but this 

time applying Theorem (5.3.14) and Lemma (5.3.15) with 𝜀 =  𝜀∗ and instead of the balls 

𝐵𝑖𝑗 we take a ball 𝐵 ⊃  𝐼 with radius √𝑛𝑟, we have 

Φ(𝑍∗) ≤  𝐶3(1 + 𝜀∗
1−𝑚)𝜀∗

𝑞
𝑟𝑞+𝜇  ≝ 𝐶3(1 +  𝜎

1−𝑚𝑟𝑚−1)𝜎𝑞𝑟𝜇 

= 𝐶3(𝑟
𝜇𝜎𝑞 + 𝑟𝜇+𝑚−1𝜎𝑞−𝑚+1).       (115) 

From (114) we get immediately 

Φ(𝑍∗∗)  ≤  𝐶2(1 + 𝜀∗
1−𝑚)  ∑  

𝑗≥𝑗∗

 ∑  

𝑖

 2
𝑗𝑞
𝑝∘  𝑟𝑖𝑗

𝑞+𝜇
 .                 (116) 

Further estimates splits into the two possibilities. 

Case I. 𝑞 ≥  𝑝∘. Then 

Φ(𝑍∗∗)  ≤  𝐶2(1 + 𝜀∗
1−𝑚) (∑  

𝑗≥𝑗∗

 ∑  

𝑖

2𝑗𝑟𝑖𝑗
(𝑞+𝜇)

𝑝∘
𝑞
 )

𝑞
𝑝∘

 

≤ 𝐶2(1 + 𝜀∗
1−𝑚)𝑟𝜇  (∑  

𝑗≥𝑗∗

∑ 

𝑖

 2𝑗𝑟𝑖𝑗
𝑝∘)

𝑞
𝑝∘
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≤ 𝐶4(1 + 𝜀∗
1−𝑚)𝑟𝜇 (∑  

𝑗≥𝑗∗

2𝑗𝛿𝑗)

𝑞
𝑝∘

 

≤ 𝐶5(1 + 𝜀∗
1−𝑚)𝑟𝜇𝜎𝑞 = 𝐶5(𝑟

𝜇𝜎𝑞 + 𝑟𝜇+𝑚−1𝜎𝑞−𝑚+1)             (117) 
Case II. 𝑞 < 𝑝∘. Recalling (107) we get by an elementary calculation 

𝑞 + 𝜇 = 𝑞 + (𝑛 −𝑚 − 𝑘 + 1) + (𝑚 − 𝑞)𝑘 = (𝑝∘ − 𝑞 +𝑚 − 1)(𝑘 − 1) + 𝑝∘ ≥ 𝑝∘, 
therefore, 

Φ(𝑍∗∗) ≤ 𝐶2(1 + 𝜀∗
1−𝑚) (∑  

𝑗≥𝑗∗

 ∑  

𝑖

2𝑗𝑟𝑝∘𝑖𝑗)𝑟𝑞+𝜇−𝑝∘2
𝑗∗
𝑞−𝑝∘
𝑝∘  

≤ 𝐶6(1 + 𝜀∗
1−𝑚)𝜎𝑝∘𝑟𝑞+𝜇−𝑝∘  (

𝜎

𝑟
)
𝑞−𝑝∘

= 𝐶6(1 + 𝜀∗
1−𝑚)𝜎𝑞𝑟𝜇  

= 𝐶6(𝑟
𝜇𝜎𝑞 + 𝑟𝜇+𝑚−1𝜎𝑞−𝑚+1) .                                  (118) 

Now for both cases (I) and (II) we have by (117), (118) that Φ(𝑍∗∗)  ≤  𝐶(𝑟
𝜇𝜎𝑞 +

 𝑟𝜇+𝑚−1𝜎𝑞−𝑚+1) , and, by virtue of the earlier estimate (115), we conclude that 

Φ(𝑍𝑣
′ ∩ 𝐼)  =  Φ(𝑍∗  ∪  𝑍∗∗) ≤ Φ(𝑍∗) + Φ(𝑍∗∗) ≤ 𝐶(𝑟

𝜇𝜎𝑞 + 𝑟𝜇+𝑚−1𝜎𝑞−𝑚+1) . 
 The lemma is proved.  

Corollary (5.3.26)[208]: Let 𝑞 ∈  [𝑚 −  1, 𝑞∘). Then for any 𝜀 >  0 there exists 𝛿 >  0 

such that for any subset 𝐸 of ℝ𝑛 we have Φ(𝑍𝑣
′ ∩ 𝐸)  ≤  𝜀 provided L𝑛(𝐸)  ≤  𝛿. In 

particular, Φ(𝑍𝑣,𝑚 ∩  𝐸)  =  0 whenever L𝑛(𝐸)  =  0. 
Proof. We start by recording the following elementary identity (see (107)): 

(𝜇 +  𝑚 −  1)𝑝∘
𝑝∘  −  𝑞 +  𝑚 −  1

=  𝑛.                                           (119) 

Let L𝑛(𝐸)  ≤  𝛿, then we can find a family of nonoverlapping n-dimensional dyadic 

intervals 𝐼𝛼 such that 𝐸 ⊂  ⋃   𝛼 𝐼𝛼 and ∑  𝛼  ℓ
𝑛(𝐼𝛼)  <  𝐶𝛿. Of course, for sufficiently small 

𝛿 the estimates 

‖∇𝑘𝑣‖
𝐿𝑝∘,1(𝐼𝛼)

< 1,           ℓ(𝐼𝛼)  ≤  𝛿
1
𝑛                            (120) 

are fulfilled for every 𝛼. Denote 

𝑟𝛼 = ℓ(𝐼𝛼),      𝜎𝛼 = ‖∇
𝑘𝑣‖

𝐿𝑝∘,1(𝐼𝛼)
,        𝜎 = ‖∇𝑘𝑣‖

𝐿𝑝∘,1
 .         (121) 

In view of Lemma (5.3.25) we have 

Φ(𝐸)  ≤  𝐶∑ 

𝛼

 𝑟𝛼
𝜇+𝑚−1

 𝜎𝛼
𝑞−𝑚+1

+  𝐶∑ 

𝛼

𝑟𝛼
𝜇
𝜎𝛼
𝑞
.                (122) 

Now let us estimate the first sum. Since by our assumptions 

𝑞 < 𝑞∘ = 𝑚 − 1 +
𝑛 −𝑚 + 1

𝑘
≤ 𝑚 − 1 + 𝑝∘   ℎ𝑒𝑛𝑐𝑒 𝑝∘ > 𝑞 −  𝑚 +  1 

we have  

∑ 

𝛼

𝑟𝛼
𝜇+𝑚−1

 𝜎𝛼
𝑞−𝑚+1

 
𝐻ö𝑙𝑑𝑒𝑟 𝑖𝑛𝑒𝑞.

≤
 𝐶 (∑ 

𝛼

𝜎𝛼
𝑝∘)

𝑞−𝑚+1
𝑝∘

· (∑ 

𝛼

𝑟𝛼

(𝜇+𝑚−1)𝑝
𝑝∘−𝑞+𝑚−1)

𝑝∘−𝑞+𝑚−1
𝑝∘

 

(119), Lemma (5.3.10)
≤

 𝐶′𝜎𝑞−𝑚+1  · (L𝑛(𝐸))
𝑝∘−𝑞+𝑚−1

𝑝∘  .            (123) 

The estimates of the second sum are again handled by consideration of two separate cases. 

Case I. 𝑞 ≥  𝑝∘. Then 
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∑ 

𝛼

𝑟𝛼
𝜇
𝜎𝛼
𝑞
 
(120)
≤

 𝛿
𝜇
𝑛  ∑  

𝛼

 𝜎𝛼
𝑝∘   
Lemma (5.3.10)

≤
𝜎𝑝∘  ·  𝛿

𝜇
𝑛 .              (124) 

Case II. 𝑞 < 𝑝∘ . Recalling (107) we get by an elementary calculation 
𝜇𝑝∘
𝑝∘ − 𝑞

 =  𝑛 ·
𝑛 −  𝑞𝑘 + [𝑚𝑘 −  𝑚 −  𝑘 +  1]

𝑛 –  𝑞𝑘
 

=  𝑛 ·
𝑛 −  𝑞𝑘 + (𝑚 −  1)(𝑘 −  1)

𝑛 −  𝑞𝑘
 ≥  𝑛,              (125) 

Then 

∑ 

𝛼

𝑟𝛼
𝜇
𝜎𝛼
𝑞
 
Hölder ineq.

≤
 (∑ 

𝛼

𝜎𝛼
𝑝∘)

𝑞
𝑝∘

· (∑ 

𝛼

 𝑟𝛼

𝜇𝑝∘
𝑝∘−𝑞)

𝑝∘−𝑞
𝑝∘

 

Lemma (5.3.10), (125)
≤

 𝜎𝑞𝛿
𝜇
𝑛 .                              (126) 

Now for both cases (I) and (II) we have by (122)–(126) that Φ(𝐸)  ≤  ℎ(𝛿), where the 

function ℎ(𝛿) satisfies the condition ℎ(𝛿) ↘ 0 as 𝛿 ↘ 0. The lemma is proved. 

By Theorem (5.3.16) (iii) (applied to the case 𝑘 =  𝑙), our mapping 𝑣 coincides with a 

mapping 𝑔 ∈  𝐶𝑘(ℝ𝑛, ℝ𝑑) off an exceptional set of small n-dimensional Lebesgue 

measure. This fact, together with Corollary (5.3.26) and Dubovitskiǐ Theorem (5.3.1), 

finishes the proof of Theorem (5.3.3) for the case 𝑑 =  𝑚. But since Theorem (5.3.5) was 

not proved for 𝐶𝑘-smooth We have to do this step now. 

Lemma (5.3.27)[208]: Let 𝑞 ∈  (𝑚 −  1, 𝑞∘) and 𝑔 ∈  𝐶𝑘(ℝ𝑛, ℝ𝑑). Then 

Φ𝑔(𝑍𝑔,𝑚) = 0,                                               (127) 

where Φ𝑔 is calculated by the same formula (109) with 𝑔 instead of 𝑣 and 𝑍𝑔,𝑚 = {𝑥 ∈

 ℝ𝑛 ∶  rank ∇𝑔(𝑥)  <  𝑚}. 
Proof. We can assume without loss of generality that 𝑔 has compact support and that 

|∇𝑔(𝑥)|  ≤  1 for all 𝑥 ∈  ℝ𝑛. We then clearly have that 𝑔 ∈  𝑊𝑝∘,1
𝑘 (ℝ𝑛, ℝ𝑑), hence we can 

in particular apply the above results to 𝑔. The following assertion plays the key role: 

(∗) For any n-dimensional dyadic interval 𝐼 ⊂  ℝ𝑛 the estimate 

Φ(𝑍𝑔,𝑚 ∩ 𝐼) ≤ 𝐶 (ℓ(𝐼)
𝜇‖∇𝑘�̅�𝐼‖𝐿𝑝∘,1(𝐼)

𝑞
+ ℓ(𝐼)𝜇+𝑚−1‖∇𝑘�̅�𝐼‖𝐿𝑝∘,1(𝐼)

𝑞−𝑚+1
)  

holds, where the constant 𝐶 depends on 𝑛,𝑚, 𝑘, 𝑑 only, and we denoted 

∇𝑘�̅�𝐼 (𝑥) =  ∇
𝑘𝑔(𝑥) −

1

L𝑛(𝐼)
 ∫ 
𝐼

∇𝑘𝑔(𝑦) 𝑑𝑦. 

The proof of (∗) is almost the same as that of Lemma (5.3.25), with evident modifications 

(we need to take the approximation polynomial 𝑃𝐼(𝑥) of degree 𝑘 instead of 𝑘 −  1, etc.). 

By elementary facts of the Lebesgue integration theory, for an arbitrary family of 

nonoverlapping 𝑛-dimensional dyadic intervals 𝐼𝛼 one has 

∑ 

𝛼

‖∇𝑘�̅�𝐼𝛼‖𝐿𝑝∘,1(𝐼𝛼)
𝑝∘

→  0          as sup
𝛼
  ℓ(𝐼𝛼)  →  0.               (128) 

The proof of this estimate is really elementary since now ∇𝑘𝑔 is continuous and compactly 

supported function, and, consequently, is uniformly continuous and bounded. 

From (∗) and (128), repeating the arguments of Corollary (5.3.26), using the assumptions 

on g and taking 
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𝜎𝛼 = ‖∇
𝑘�̅�𝐼𝛼‖𝐿𝑝∘,1(𝐼𝛼)

,                 𝜎𝑝∘ = ∑ 

𝛼

𝜎𝛼
𝑝∘ 

in definitions (121), we obtain that Φ𝑔(𝑍𝑔,𝑚)  <  𝜀 for any 𝜀 >  0, hence the sought 

conclusion (127) follows. 

By Theorem (5.3.16) (iii) (applied to the case 𝑘 =  𝑙), the investigated mapping 𝑣 equals a 

mapping 𝑔 ∈  𝐶𝑘(ℝ𝑛, ℝ𝑑) off an exceptional set of small n-dimensional Lebesgue 

measure. This fact together with Lemma (5.3.27) readily implies 

Corollary (5.3.28)[208]: (cp. with [39]). Let 𝑞 ∈  (𝑚 −  1, 𝑞∘). Then there exists a set �̃�𝑣 

of n-dimensional Lebesgue measure zero such that Φ(𝑍𝑣
′  \ �̃�𝑣)  =  0. In particular, 

Φ(𝑍𝑣
′ )  =  Φ(�̃�𝑣). 

From We conclude that Φ(𝑍𝑣
′ )  =  0, and this concludes the proof of Theorem (5.3.5). 

Fix 𝑣 ∈  𝑊𝑛,1
1 (ℝ𝑛, ℝ𝑑)). Applying Lemma (5.3.25) for 𝑘 =  1, 𝑝∘  =  𝑛, 𝜇 =  𝑛 −

 𝑚 +  1 and 𝑞 =  𝑚 −  1, and afterwards making the shift of indices (𝑚 −  1)  →  𝑚, we 

obtain the following key estimate: 

Let 𝑚 ∈  {0, . . . , 𝑛 −  1}. Then for any n-dimensional dyadic interval 𝐼 ⊂  ℝ𝑛 the estimate 

Φ(𝑍𝑣
′ ∩ 𝐼) ≤  𝐶 (ℓ(𝐼)𝑛−𝑚‖∇𝑘𝑣‖

𝐿𝑝∘,1(𝐼)

𝑚
+ ℓ(𝐼)𝑛)           (129) 

holds, where 𝑍𝑣
′ = {𝑥 ∈  𝛺 \ 𝐴𝑣 ∶  𝑟𝑎𝑛𝑘 ∇𝑣(𝑥) ≤  𝑚, |∇𝑣(𝑥)| ≤  1}, the constant 𝐶 

depends on 𝑛,𝑚, 𝑑 only, and 

Φ(𝐸) = inf
𝐸⊂⋃   𝛼 𝐷𝛼

  ∑  

𝛼

 (diam 𝐷𝛼)
𝑛−𝑚[diam 𝑣(𝐷𝛼)]

𝑚.              (130) 

This implies (by the same arguments as in the proof of Corollary (5.3.26)) that for any 

measurable set 𝐸 ⊂  ℝ𝑛 with L𝑛(𝐸)  <  ∞ the inequality 

Ψ(𝑍𝑣
′  ∩  𝐸)  <  ∞                                         (131) 

holds, where Ψ(𝐸) is defined as 

Ψ(𝐸) = lim
𝛿→0

 inf
𝐸 ⊂ ⋃   𝛼 𝐷𝛼,

diam 𝐷𝛼≤𝛿

 ∑  

𝛼

(diam 𝐷𝛼)
𝑛−𝑚[diam 𝑣(𝐷𝛼)]

𝑚,      (132) 

 here the infimum is taken over all countable families of compact sets {𝐷𝛼}𝛼∈ℕ such that 

𝐸 ⊂  ⋃   𝛼 𝐷𝛼 and diam 𝐷𝛼  ≤  𝛿 for all 𝛼. 

By Theorem (5.3.34), the bound (131) implies the validity of the following assertion:  

the set {𝑦 ∈ ℝ𝑑 ∶  ℋ𝑛−𝑚(𝐸 ∩ 𝑍𝑣
′  ∩  𝑓−1(𝑦)) > 0}    is ℋ𝑚 𝜎 − finite. (133) 

Since 

𝑍𝑣,𝑚+1 = {𝑥 ∈ 𝛺\𝐴𝑣 ∶ rank ∇𝑣(𝑥) ≤ 𝑚} =⋃ 

 

𝑗

{𝑥 ∈  𝑍𝑣,𝑚+1 ∶  |∇𝑣(𝑥)| ≤ 𝑗} , 

we infer from (133) that in fact 

the set {𝑦 ∈  ℝ𝑑 ∶  ℋ𝑛−𝑚 (𝑍𝑣,𝑚+1 ∩ 𝑓
−1(𝑦)) > 0}   is ℋ𝑚 𝜎 − finite.     (134) 

Next we prove that the sets where rank ∇𝑣 ≤  𝑚 − 1 are negligible in the coarea formula. 

Lemma (5.3.29)[208]: The equality 

ℋ𝑛−𝑚 (𝑍𝑣,𝑚 ∩ 𝑣
−1(𝑦)) = 0  for ℋ𝑚 − almost all 𝑦 ∈  ℝ𝑑           (135) 

holds, where 𝑍𝑣,𝑚 = {𝑥 ∈  ℝ
𝑛 \ 𝐴𝑣 ∶  rank ∇𝑣(𝑥)  ≤  𝑚 −  1} is the set of m-critical 

points. 

Proof. We apply Theorem (5.3.5) with the parameters 𝑞 =  𝑚, 𝑘 =  1, 𝑝∘ =  𝑛. Then by 

(77) 
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ℋ𝜇𝑞 (𝑍𝑣,𝑚 ∩ 𝑣
−1(𝑦)) = 0  for ℋ𝑚 − almost all 𝑦 ∈  ℝ𝑑 ,       (136) 

where 𝜇𝑞  =  𝑛 − 𝑚 − 𝑘 + 1 + (𝑚 − 𝑞)𝑘 =  𝑛 − 𝑚. The last identity taken together with 

(136) concludes the proof. 

[219], [214] identified criteria for the validity of the Coarea formula for Lipschitz mappings.  

Theorem (5.3.30)[208]: (see, e.g., Theorem 1.4 in [214]). Let 𝑚 ∈  {0, 1, . . . , 𝑛}, and 𝑔 ∈
 𝐶1(ℝ𝑛, ℝ𝑑). Suppose that the set 𝐸 ⊂  ℝ𝑛 is measurable and rank ∇𝑔(𝑥)  ≡  𝑚 for all 𝑥 ∈
 𝐸. Assume also that the set 𝑔(𝐸) is ℋ𝑚-𝜎-finite. Then the coarea formula 

∫ 
𝐸

 𝐽𝑚𝑔(𝑥) 𝑑𝑥 = ∫  
ℝ𝑑
 ℋ𝑛−𝑚(𝐸 ∩  𝑔−1(𝑦))𝑑ℋ𝑚(𝑦)               (137) 

holds, where 𝐽𝑚𝑔(𝑥) denotes the m-Jacobian of 𝑔. 

(134) and (135) are in particular valid also for 𝐶𝑘-smooth mappings. So from Theorem 

(5.3.30) and properties (134)–(135) we obtain the following result which surprisingly is new 

even in this smooth case. 

Theorem (5.3.31)[208]: Let 𝑚 ∈  {0, . . . , 𝑛} and 𝑔 ∈  𝐶1(ℝ𝑛, ℝ𝑑). Then for any 

measurable set 𝐸 ⊂  𝑍𝑔,𝑚+1 = {𝑥 ∈  ℝ
𝑛 ∶  rank ∇𝑔(𝑥)  ≤  𝑚} the coarea formula 

∫ 
𝐸

𝐽𝑚𝑔(𝑥)𝑑𝑥 = ∫  
ℝ𝑑
ℋ𝑛−𝑚(𝐸 ∩ 𝑔−1(𝑦))𝑑ℋ𝑚(𝑦)                   (138)  

holds, where 𝐽𝑔,𝑚(𝑥) again denotes the m-Jacobian of 𝑔. 

By Theorem (5.3.16) (iii) (applied to the case 𝑘 =  𝑙 =  1), the investigated mapping 𝑣 ∈
 𝑊𝑛,1

1 (ℝ𝑛, ℝ𝑑) coincides with a smooth mapping 𝑔 ∈  𝐶1(ℝ𝑛, ℝ𝑑) off a set of small n-

dimensional Lebesgue measure. This fact together with Corollary (5.3.26) easily imply the 

required assertion of Theorem (5.3.6). 

Fix numbers 𝑛, 𝑑 ∈ ℕ, 𝜇 ∈  (0, 𝑛], 𝑞 ∈  (0, 𝑑], and a continuous function 𝑓 ∶  ℝ𝑛  →
 ℝ𝑑. For a set 𝐸 ⊂  ℝ𝑛 define the set function 

Φ(𝐸) = inf
𝐸⊂⋃   𝛼 𝐷𝛼

   ∑  

𝛼

(diam 𝐷𝛼)
𝜇[diam 𝑣(𝐷𝛼)]

𝑞 ,             (139) 

where the infimum is taken over all countable families of compact sets {𝐷𝛼}𝛼∈ℕ such that 

𝐸 ⊂  ⋃   𝛼 𝐷𝛼. 

We devoted to the proof of following assertion: 

We start by recalling the following technical fact from [211]: 

Lemma (5.3.32)[208]: For any set 𝐸 ⊂  ℝ𝑛, if 𝐸 =  ⋃  ∞
𝑖=1 𝐸𝑖 and 𝐸𝑖  ⊂  𝐸𝑖+1 for all 𝑖 ∈

ℕ, then 

ℋ∞
𝜇(𝐸) = lim

𝑖→∞
 ℋ∞

𝜇
(𝐸𝑖).                                    (140) 

Theorem (5.3.33)[208]: The above defined set function Φ(·) is countably subadditive and  

Φ(𝐸) = 0 ⇒ [ℋ𝜇(𝐸 ∩  𝑓−1(𝑦)) =  0  for ℋ𝑞 − almost all 𝑦 ∈  ℝ𝑑] .   (141) 
Proof: The first assertion is evident. Let us prove the second one, i.e., the implication (140). 

Without loss of generality we can assume that 𝑓 is compactly supported, and more 

specifically that 𝑓−1(𝑦) is a compact subset of the closed unit ball 𝐵(0, 1)̅̅ ̅̅ ̅̅ ̅̅ ̅ for every 𝑦 ∈
 ℝ𝑑  \ {0}. 
Let 𝐸 ⊂  ℝ𝑛 and assume that Φ(𝐸)  =  0. Without loss of generality we can assume that 

0 ∉ 𝑓(𝐸) and 

𝐸 =  ⋂ 

∞

𝑗=1

⋃ 

∞

𝑖=1

𝐷𝑖𝑗  , 
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where 𝐷𝑖𝑗 are compact sets in ℝ𝑛 and 

∑ 

∞

𝑖=1

(diam 𝐷𝑖𝑗)
𝜇
[diam 𝑓(𝐷𝑖𝑗)]

𝑞
  𝑗 → ∞⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗    0.                            (142) 

Of course, then 𝐸 is a Borel set. Suppose that the assertion (140) is false, then we can assume 

without loss of generality that there exists a set ℱ ⊂  𝑓(𝐸) such that  

ℋ𝑞(𝐹) >  0       𝑎𝑛𝑑     ℋ∞
𝜇
 (𝐸 ∩ 𝑓−1(𝑦))  ≥

5

2
   for all 𝑦 ∈ ℱ.          (143) 

Unfortunately, we can not assume right now that the set ℱ is Borel, so we need some careful 

preparations. 

Denote 𝐸𝑘𝑗 = ⋃  𝑘
𝑖=1 𝐷𝑖𝑗  , 𝐸𝑗 = ⋃  ∞

𝑖=1 𝐷𝑖𝑗 . In this notation = ⋂  ∞
𝑗=1 𝐸𝑗 . Evidently, all these 

sets are Borel. By Lemma (5.3.32), 

ℋ∞
𝜇
(𝐸𝑗 ∩ 𝑓

−1(𝑦)) = lim
𝑘→∞

 ℋ∞
𝜇
(𝐸𝑘𝑗 ∩ 𝑓

−1(𝑦))      for each 𝑦 ∈ 𝑓(𝐸𝑗).  (144) 

Denote further 𝐹𝑘𝑗 = 𝑓 (𝐸𝑘𝑗). Fix an arbitrary point 𝑦 with the property 

ℋ𝜇(𝐸𝑘𝑗 ∩ 𝑓
−1(𝑦))  ≤  1. 

Since 𝐸𝑘𝑗 is a compact set, the set 𝐸𝑘𝑗  ∩  𝑓
−1(𝑦) is compact as well. Then it follows by 

elementary means that the sets 𝐸𝑘𝑗 ∩ 𝑓
−1(𝓏) lie in the ε-neighborhood of the set 𝐸𝑘𝑗  ∩

 𝑓−1(𝑦), where 𝜀 ↘ 0 as 𝓏 →  𝑦, 𝓏 ∈  𝑓(𝐸𝑘𝑗). Therefore, there exists 𝛿 =  𝛿(𝑦)  >  0 such 

that 

ℋ∞
𝜇
(𝐸𝑘𝑗 ∩ 𝑓

−1(𝓏)) ≤  2          if |𝓏 −  𝑦| <  𝛿.                (145) 

Hence, there exists a relatively open set �̃�𝑘𝑗  ⊂  𝐹𝑘𝑗 (i.e., �̃�𝑘𝑗  is open in the induced topology 

of the set 𝐹𝑘𝑗  ) such that 

{𝑦 ∈ ℝ𝑑 ∶  ℋ∞
𝜇
(𝐸𝑘𝑗 ∩ 𝑓

−1(𝑦)) ≤  1} ⊂  �̃�𝑘𝑗 

⊂ {𝑦 ∈  ℝ𝑑 ∶  ℋ∞
𝜇
(𝐸𝑘𝑗 ∩ 𝑓

−1(𝑦)) ≤ 2}.           (146) 

Since by construction 𝐹𝑘𝑗 is a compact set and �̃�𝑘𝑗  is relatively open in 𝐹𝑘𝑗 , we conclude 

that the set �̃�𝑘𝑗  is Borel (this fact plays an important role here). Further, since 𝐸𝑘𝑗  ⊂  𝐸𝑗 , 

we have for each 𝑘 ∈ ℕ, 

{𝑦 ∈  ℝ𝑑 ∶  ℋ∞
𝜇
(𝐸𝑗 ∩ 𝑓

−1(𝑦)) ≤ 1} ⊂ {𝑦 ∈ ℝ𝑑 ∶  ℋ∞
𝜇
(𝐸𝑘𝑗 ∩ 𝑓

−1(𝑦)) ≤ 1}  ⊂ �̃�𝑘𝑗  

and therefore, 

{𝑦 ∈  ℝ𝑑 ∶  ℋ∞
𝜇
(𝐸𝑗  ∩  𝑓

−1(𝑦))  ≤  1}  ⊂  �̃�𝑗  ,                 (147) 

where we denote �̃�𝑗  =  ⋂  ∞
𝑘=1 �̃�𝑘𝑗  . On other hand, (144) and the second inclusion in (146) 

imply �̃�𝑗  ⊂  {𝑦 ∈  ℝ
𝑑 ∶  ℋ∞

𝜇
(𝐸𝑗  ∩  𝑓

−1(𝑦))  ≤  2}, so we have 

{𝑦 ∈ ℝ𝑑 ∶  ℋ∞
𝜇
(𝐸𝑗 ∩ 𝑓

−1(𝑦)) ≤ 1} ⊂ �̃�𝑗 

⊂ {𝑦 ∈ ℝ𝑑 ∶  ℋ∞
𝜇
(𝐸𝑗 ∩ 𝑓

−1(𝑦)) ≤ 2}.     (148) 

Denote now �̃�𝑗 = 𝑓(𝐸𝑗) \ �̃�𝑗 . Then we can rewrite (148) as 

{𝑦 ∈ ℝ𝑑 ∶  ℋ∞
𝜇
(𝐸𝑗 ∩ 𝑓

−1(𝑦)) > 2} ⊂ �̃�𝑗 

⊂ {𝑦 ∈ ℝ𝑑 ∶  ℋ∞
𝜇
(𝐸𝑗 ∩ 𝑓

−1(𝑦)) > 1}.              (149) 
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Since  ⊂  𝐸𝑗 , we have from (143) that 𝐹 ⊂ {𝑦 ∈  ℝ𝑑 ∶ \𝑠𝐻∞
𝜇
(𝐸𝑗 ∩ 𝑓

−1(𝑦))  >  2}  ⊂  �̃�𝑗 

for all 𝑗 ∈ ℕ, therefore 

ℱ ⊂  �̃�,                                                                 (150) 
where we denote �̃�  =  ⋂  ∞

𝑗=1 �̃�𝑗 . On the other hand, the second inclusion in (149) yields 

�̃�  ⊂  {𝑦 ∈  ℝ𝑑 ∶  ℋ∞
𝜇
(𝐸𝑗  ∩  𝑓

−1(𝑦))  >  1}                         (151) 

for each 𝑗 ∈ ℕ. Since �̃� is a Borel set and by (150), (143) the inequalities ℋ𝑞(�̃�)  ≥
 ℋ𝑞(ℱ)  >  0 hold, by [212] there exists a Borel set 𝐺 ⊂  �̃� and a positive constant 𝑏 ∈ ℝ 

such that 0 <  ℋ𝑞(𝐺)  <  ∞ and 

ℋ𝑞(𝐺 ∩  𝐵(𝑦, 𝑟))  ≤  𝑏 𝑟𝑞                                  (152) 
for any ball 𝐵(𝑦, 𝑟)  =  {𝓏 ∈  ℝ𝑑 ∶  |𝓏 − 𝑦|  <  𝑟} with the center 𝑦 ∈  𝐺. Of course, by 

(151) 

𝐺 ⊂  {𝑦 ∈  ℝ𝑑 ∶  ℋ∞
𝜇
(𝐸𝑗  ∩  𝑓

−1(𝑦))  >  1}                    (153) 

for all 𝑗 ∈ ℕ. For 𝑆 ⊂  ℝ𝑛 consider the set function 

Φ̃(𝑆) =  ∫  
∗

𝐺

 ℋ∞
𝜇
 (𝑆 ∩ 𝑓−1(𝑦)  𝑑ℋ𝑞(𝑦),                    (154) 

where ∫  
∗

 means the upper integral. Standard facts of Lebesgue integration theory, Φ̃(·) is 

a countably subadditive set-function (see, e.g., [60], [192]). 

From (142) and (152) it follows that 

∑ 

∞

𝑖=1

(diam 𝐷𝑖𝑗)
𝜇
[diam 𝑓(𝐷𝑖𝑗)]

𝑞
 ≥  𝑐∑ 

∞

𝑖=1

(diam 𝐷𝑖𝑗)
𝜇
 ℋ𝑞[𝐺 ∩ 𝑓(𝐷𝑖𝑗)] 

≥  𝐶∑ 

∞

𝑖=1

Φ̃(𝐷𝑖𝑗)  ≥  𝐶 Φ̃(𝐸𝑗). 

Consequently, Φ̃(𝐸𝑗)  →  0 as 𝑗 →  ∞. On the other hand, from (153) and (154) we conclude 

Φ̃(𝐸𝑗)  ≥  ∫  
∗

𝐺

 𝑑ℋ𝑞(𝑦) = ℋ𝑞(𝐺)  >  0, 

which is the desired contradiction. The proof of the Theorem (5.3.33) is finished. 

Now again fix numbers 𝑛, 𝑑 ∈ ℕ, 𝜇 ∈  (0, 𝑛], 𝑞 ∈  (0, 𝑑] and a continuous mapping 

𝑓 ∶  ℝ𝑛  →  ℝ𝑑. We define the set function by letting for a set 𝐸 ⊂  ℝ𝑛,  

Ψ(𝐸) = lim
𝛿→0

 inf
𝐸 ⊂ ⋃   𝛼 𝐷𝛼,

diam 𝐷𝛼≤𝛿

 ∑  

𝛼

 (diam 𝐷𝛼)
𝜇[diam 𝑓(𝐷𝛼)]

𝑞 ,      (155) 

where the infimum is taken over all countable families of compact sets {𝐷𝛼}𝛼∈ℕ such that 

𝐸 ⊂  ⋃   𝛼 𝐷𝛼 and diam 𝐷𝛼  ≤  𝛿 for all 𝛼. 

We devoted to the following assertion: 

Theorem (5.3.34)[208]: The above defined Ψ(·) is a countably subadditive set-function and 

for any 𝜆 >  0 the estimate 

ℋ𝑞{𝑦 ∈ ℝ𝑑 ∶  ℋ𝜇(𝐸 ∩  𝑓−1(𝑦)  ≥  𝜆}  ≤  5
Ψ(𝐸)

𝜆
                 (156) 

holds. 

Proof. The first assertion is evident and we focus on proving the estimate (156). Without 

loss of generality we can assume that 𝑓−1(𝑦) is a compact subset of the closed unit ball 

𝐵(0, 1)̅̅ ̅̅ ̅̅ ̅̅ ̅ for every 𝑦 ∈  ℝ𝑑  \ {0}. Let 𝐸 ⊂  ℝ𝑛 and 

Ψ(𝐸)  =  𝜎 <  ∞. 
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Without loss of generality assume also that 0 ∉ 𝑓(𝐸) and 

𝐸 =  ⋂ 

∞

𝑗=1

⋃ 

∞

𝑖=1

𝐷𝑖𝑗  , 

where 𝐷𝑖𝑗 are compact sets in ℝ𝑛 satisfying 

∑ 

∞

𝑖=1

(diam 𝐷𝑖𝑗)
𝜇
[diam 𝑓(𝐷𝑖𝑗)]

𝑞
 𝑗 → ∞⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ 𝜎,                      (157) 

And 

diam 𝐷𝑖𝑗  +  diam 𝑓(𝐷𝑖𝑗) ≤
1

𝑗
 .                            (158) 

Of course, 𝐸 is a Borel set. Fix 𝜆 >  0 and take a set ℱ ⊂  𝑓(𝐸) such that 

ℋ∞
𝜇
 (𝐸 ∩ 𝑓−1(𝑦))   ≥

5

2
 𝜆        for all  𝑦 ∈ ℱ.                   (159) 

Further we assume that 

ℋ𝑞(ℱ)  >  0                                               (160) 
since if ℋ𝑞(ℱ)  =  0, there is nothing to prove. Denote 𝐸𝑗  = ⋃  ∞

𝑖=1 𝐷𝑖𝑗 . Repeating almost 

verbatim the arguments from the proof of the previous Theorem (5.3.33), we can construct 

a Borel set �̃� ⊂ ℝ𝑑 such that 

ℱ ⊂ �̃� ⊂ {𝑦 ∈  ℝ𝑑 ∶  ℋ∞
𝜇
(𝐸𝑗 ∩ 𝑓

−1(𝑦))  >  𝜆}              (161) 

for each 𝑗 ∈ ℕ. Since �̃� is a Borel set and since, by (161) and (160), the inequalities 

ℋ𝑞(�̃�)  ≥  ℋ𝑞(ℱ)  >  0 hold, we deduce by [212] the existence of a Borel set 𝐺 ⊂  �̃� such 

that 0 <  ℋ𝑞(𝐺)  <  ∞. Put 

𝐺𝑙 = {𝑥 ∈  𝐺 ∶  ℋ
𝑞(𝐺 ∩  𝐵(𝑥, 𝑟)) ≤  2𝑟𝑞    ∀𝑟 ∈  (0, 1/𝑙)}  .         (162) 

Then by construction all the sets 𝐺𝑙 are Borel, 𝐺𝑙  ⊂  𝐺𝑙+1, moreover, by [60] we have 

ℋ𝑞 [𝐺 \ (⋃ 

∞

𝑙=1

𝐺𝑙)] = 0 

and consequently, 

ℋ𝑞(𝐺) = lim
𝑙→∞

 ℋ𝑞(𝐺𝑙).                                      (163) 

For 𝑆 ⊂  ℝ𝑛 consider the set function 

Ψ𝑙(𝑆)  =  ∫  
∗

𝐺𝑙

 ℋ∞
𝜇
(𝑆 ∩ 𝑓−1(𝑦))  𝑑ℋ𝑞(𝑦),                    (164) 

where ∫  
∗

 means the upper integral. routine arguments of Lebesgue integration theory it 

follows that Ψ(·) is a countably subadditive set-function (see, e.g., [60], [192]). 

From (157), (158) and (162) it follows for 𝑗 > 𝑙 that 

∑ 

∞

𝑖=1

(diam 𝐷𝑖𝑗)
𝜇
[diam 𝑓(𝐷𝑖𝑗)]

𝑞
≥
1

2
 ∑ 

∞

𝑖=1

(diam 𝐷𝑖𝑗)
𝜇
ℋ𝑞[𝐺𝑙 ∩ 𝑓(𝐷𝑖𝑗)] 

≥
1

2
∑ 

∞

𝑖=1

Ψ𝑙(𝐷𝑖𝑗) ≥
1

2
 Ψ𝑙(𝐸𝑗).                  (165) 

On the other hand, the second inclusion in (161) implies 

Ψ𝑙(𝐸𝑗) ≥ 𝜆∫  
∗

𝐺𝑙

𝑑ℋ𝑞(𝑦) = 𝜆ℋ𝑞(𝐺𝑙).                             (166) 
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From (165), (166), (157) we infer 

ℋ𝑞(𝐺𝑙) ≤
2𝜎

𝜆
 ,                                               (167) 

and therefore, by (163), 

ℋ𝑞(𝐺) ≤
2𝜎

𝜆
 .                                                   (168) 

Since this estimate is true for any Borel set 𝐺 ⊂  �̃� with ℋ𝑞(𝐺)  <  ∞, and since �̃� is Borel 

as well, we infer from [212] that 

ℋ𝑞(�̃�) ≤
2𝜎

𝜆
 .                                           (169) 

In particular, by the inclusion ℱ ⊂ �̃�, this implies 

ℋ𝑞(ℱ) ≤
2𝜎

𝜆
 ,                                         (170) 

or in other words, 

ℋ𝑞 (𝑦 ∈  ℝ𝑑 ∶  ℋ𝜇(𝐸 ∩ 𝑓−1(𝑦))  ≥
5

2
 𝜆)  ≤  2

Ψ(𝐸)

𝜆
 .        (171) 

The proof of Theorem (5.3.34) is complete. 

Corollary (5.3.35)[260]: Let 𝑘 ∈  {1, . . . , 𝑛}, 𝑝∘ =  𝑛/𝑘 and 𝑣𝑚0  ∈  𝑊𝑝∘,1
𝑘 (ℝ𝑛, ℝ𝑚+𝜖). 

Then for every 𝜖 ≥ 0 and for any set 𝐸 ⊂  ℝ𝑛 with ℋ1+2𝜖(𝐸)  =  0 we have  

∑ 

𝑚0

ℋ𝜖(𝐸 ∩ 𝑣𝑚0
−1(𝑦)) = 0    for  ℋ1+𝜖 − 𝑎. 𝑎. 𝑦 ∈ ℝ𝑚+𝜖 .                    (172) 

In particular, 

∑ 

𝑚0

ℋ𝑝∘+𝜖 (𝑣𝑚0(𝐸)) = 0   whenever   ℋ
𝑝∘+𝜖(𝐸) = 0, 𝜖 ≥ 0.            (173) 

By a simple calculation we have for 𝜖 ≥ −1  that 

𝜇1+𝜖 = 𝑛 −  𝑚 −  𝑘 + 1 +  𝑘(𝑚 −  1 − 𝜖) 
= (𝑝∘ − 1 − 𝜖)𝑘 + (𝑚 −  1)(𝑘 −  1)  ≥  𝑚𝑎𝑥(𝑝∘ −  1 − 𝜖, 0).        (174) 

Corollary (5.3.35) then yields 

Proof. (See [208]) Let ℋ𝑝0+𝜖(𝐸)  =  0. Take 𝜀 >  0 and 𝛿 =  𝛿(𝜀, 𝑣𝑚0)  <  1 from 

Lemma (5.3.23). Take also the regular family {𝑄𝛼} of 𝑛-dimensional dyadic intervals such 

that 𝐸 ⊂  ⋃   𝛼 𝑄𝛼 and  

∑ 

𝛼

ℓ(𝑄𝛼)
1+2𝜖  <  𝛿                                                         (175) 

where the existence of such family follows directly from Lemmas (5.3.21) and (5.3.22). 

Then by Lemma (5.3.23) the estimate (102) holds. Denote 𝑟𝛼 = ℓ(𝑄𝛼). By estimate (91), 

∑ 

𝑚0

[diam 𝑣𝑚0(𝑄𝛼)]
1+𝜖

≤ 𝐶∑ 

𝑚0

(
‖∇𝑣𝑚0‖𝐿1+2𝜖(𝑄𝛼)

1+𝜖

𝑟𝛼
(
𝑛

1+2𝜖
−1)1+𝜖

 +  ‖1𝑄𝛼 · ∇
𝑘𝑣𝑚0‖𝐿𝑝∘,1

1+𝜖
).    (176) 

Therefore, by definition of 𝛷(𝐸) (see (97)), we have 

Φ(𝐸)  ≤  𝐶∑∑ 

𝑚0

 

𝛼

 𝑟𝛼
𝜇
(
‖∇𝑣𝑚0‖𝐿1+2𝜖(𝑄𝛼)

1+𝜖

𝑟𝛼
(
𝑛

1+2𝜖
−1)1+𝜖

 +  ‖1𝑄𝛼 · ∇
𝑘𝑣𝑚0‖𝐿𝑝∘,1

1+𝜖
) 
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 ≤
Hölder ineq

𝑐 (∑ 

𝛼

𝑟𝛼

𝜇(1+2𝜖)
𝜖 )

𝜖
1+2𝜖

· [∑  

𝛼

∑ 

𝑚0

(
1

ℓ(𝑄𝛼)
𝜖
∫  
𝑄𝛼

 |𝛻𝑣𝑚0|
1+2𝜖

+ ‖1𝑄𝛼 · ∇
𝑘𝑣𝑚0‖𝐿𝑝∘,1

1+𝜖
)]

1+𝜖
1+2𝜖

 

 ≤
(5.1),(5.7)

 𝑐 (∑ 

𝛼

 𝑟𝛼
1+2𝜖)

1+2𝜖
1+2𝜖

· 𝜀
1+𝜖
1+2𝜖 

 ≤
(175)

 𝑐𝛿
𝜖

1+2𝜖  ·  𝜀
1+𝜖
1+2𝜖   .                                                     (177) 

Since 𝜀 >  0 and 𝛿 >  0 are arbitrary small, (177) turns to the equality 𝛷(𝐸)  =  0 and by 

(5.3) the required assertion is proved. 

Corollary (5.3.36)[260]: Let 1 + 𝜖 ∈  [𝑚 −  1, 1 + 2𝜖). Then for any n-dimensional 

dyadic interval 𝐼 ⊂ ℝ𝑛 the estimate 

∑ 

𝑚0

𝛷 (𝑍𝑣𝑚0
′ ∩ 𝐼) 

≤ 𝐶∑ 

𝑚0

(ℓ(𝐼)𝜇‖∇𝑘𝑣𝑚0‖𝐿𝑝∘,1(𝐼)
1+𝜖

+ ℓ(𝐼)𝜇+𝑚−1‖∇𝑘𝑣𝑚0‖𝐿𝑝∘,1(𝐼)
2+𝜖−𝑚

)                  (178)  

holds, where the constant 𝐶 depends on 𝑛,𝑚, 𝑘,𝑚 + 𝜖 only. 

Proof. By virtue of (90) it suffices to prove that 

∑ 

𝑚0

Φ(𝑍𝑣𝑚0
′ ∩ 𝐼) 

≤  𝐶∑ 

𝑚0

(ℓ(𝐼)𝜇 ‖∇𝑘(𝑣𝑚0)𝐼‖𝐿𝑝∘,1(ℝ
𝑛)

1+𝜖
+ ℓ(𝐼)𝜇+𝑚−1‖∇𝑘(𝑣𝑚0)𝐼‖𝐿𝑝∘,1(ℝ

𝑛)

2+𝜖−𝑚
    (179) 

for the mapping (𝑣𝑚0)𝐼 defined in Lemma (5.3.11), where 𝐶 =  𝐶(𝑛,𝑚, 𝑘,𝑚 + 𝜖) is a 

constant.  

Fix an n-dimensional dyadic interval 𝐼 ⊂  ℝ𝑛 and recall that (𝑣𝑚0)𝐼(𝑥)  =  𝑣𝑚0(𝑥)  −

 𝑃𝐼(𝑥) for all 𝑥 ∈  𝐼. Denote 

𝜎 =  ∑ 

𝑚0

‖∇𝑘(𝑣𝑚0)𝐼‖𝐿𝑝∘,1
 ,              1 + 𝜖 = ℓ(𝐼), 

and for each 𝑗 ∈ ℤ 

𝐸𝑗 = {𝑥 ∈ 𝐼 ∶  ∑  

𝑚0

(ℳ|∇(𝑣𝑚0)𝐼|
𝑝∘
)(𝑥)  ∈  (2𝑗−1, 2𝑗]}     𝑎𝑛𝑑   𝛿𝑗 = ℋ∞

𝑝∘(𝐸𝑗  ). 

Then by Theorem (5.3.13) (applied for the case 1 + 2𝜖 =  𝑝∘  =
𝑛

𝑘
 , 𝑙 =  1, 𝛽 =  𝑝∘), 

∑  

∞

𝑗=−∞

𝛿𝑗2
𝑗  ≤  𝐶𝜎𝑝∘                                             (180) 

for a constant 𝐶 depending on 𝑛,𝑚, 𝑘,𝑚 + 𝜖 only. By the definition of the Hausdorff 

measure, for each 𝑗 ∈ ℤ there exists a family of balls 𝐵𝑖𝑗  ⊂  ℝ
𝑛 of radii 𝑟𝑖𝑗 such that 



191 

𝐸𝑗  ⊂⋃ 

∞

𝑖=1

𝐵𝑖𝑗      and   ∑  

∞

𝑖=1

𝑟𝑖𝑗
𝑝∘ ≤ 𝑐𝛿𝑗  .                                   (181) 

Denote 

𝑍𝑗 = 𝑍𝑣𝑚0
′ ∩ 𝐸𝑗          and      𝑍𝑖𝑗 = 𝑍𝑗 ∩ 𝐵𝑖𝑗  . 

By construction 𝑍𝑣𝑚0
′  ∩  𝐼 =  ⋃   𝑗 𝑍𝑗 and 𝑍𝑗 = ⋃   𝑖 𝑍𝑖𝑗 . Put 

𝜀∗ =
1

1 + 𝜖
 ∑ 

𝑚0

‖∇𝑘(𝑣𝑚0)𝐼‖𝐿𝑝∘,1
=

𝜎

1 + 𝜖
 , 

and let 𝑗∗ be the integer satisfying 𝜀∗
𝑝∘  ∈  (2𝑗∗−1, 2𝑗∗]. Denote 𝑍∗ = ⋃   

𝑗<𝑗∗
𝑍𝑗 , 𝑍∗∗ =

⋃   
𝑗≥𝑗∗

𝑍𝑗 . Than by construction 

𝑍𝑣𝑚0
′ ∩ 𝐼 =  𝑍∗  ∪  𝑍∗∗,   𝑍∗  ⊂  {𝑥 ∈  𝑍𝑣𝑚0

′  ∩  𝐼 ∶ ∑  

𝑚0

 (ℳ|∇(𝑣𝑚0)𝐼|
𝑝∘
)(𝑥)  <  𝜀∗

𝑝∘}. 

Since  ∇𝑃𝐼 (𝑥) =  ∑  𝑚0 (∇𝑣𝑚0(𝑥) − ∇(𝑣𝑚0)𝐼
(𝑥)), |∑  𝑚0 ∇(𝑣𝑚0)𝐼

(𝑥)| ≤  2
𝑗

𝑝∘, 

|∑  𝑚0 ∇𝑣𝑚0(𝑥)| ≤ 1, and 𝜆𝑚(𝑣𝑚0, 𝑥)  =  0 for 𝑥 ∈  𝑍𝑖𝑗, we have 

𝑍𝑖𝑗 ⊂ {𝑥 ∈ 𝐵𝑖𝑗 ∶  𝜆1(𝑃𝐼 , 𝑥)  ≤  1 + 2
𝑗/𝑝∘  , . . . , 𝜆𝑚−1(𝑃𝐼 , 𝑥)  ≤ 1 + 2

𝑗/𝑝∘  , 𝜆𝑚(𝑃𝐼 , 𝑥)

≤ 2𝑗/𝑝∘}. 
Applying Theorem (5.3.14) and Lemma (5.3.15) to mappings 𝑃𝐼 , (𝑣𝑚0)𝐼 , respectively, with 

𝐵 =  𝐵𝑖𝑗 and 𝜀 =  𝜀𝑗 = 2
𝑗/𝑝∘ , we find a finite family of balls 𝑇𝑠  ⊂  ℝ

𝑚+𝜖 , 𝑠 =  1, . . . , 𝑠𝑗 

with 𝑠𝑗  ≤  𝐶𝑌 (1 + 𝜀𝑗
1−𝑚), each of radius (1 + 𝐶𝑀)𝜀𝑗  𝑟𝑖𝑗   , such that 

⋃ 

𝑠𝑗

𝑠=1

𝑇𝑠  ⊃  𝑣𝑚0(𝑍𝑖𝑗). 

Therefore, for every 𝑗 ≥  𝑗∗ we have 

Φ(𝑍𝑖𝑗) ≤  𝐶1𝑠𝑗𝜀𝑗
1+𝜖𝑟𝑖𝑗

1+𝜖+𝜇
= 𝐶2(1 + 𝜀𝑗

1−𝑚)2
𝑗(1+𝜖)
𝑝∘ 𝑟𝑖𝑗

1+𝜖+𝜇
  

≤ 𝐶2(1 + 𝜀∗
1−𝑚)2

𝑗(1+𝜖)
𝑝∘  𝑟𝑖𝑗

1+𝜖+𝜇
,                         (182) 

where all the constants 𝐶𝛼 above depend on 𝑛,𝑚, 𝑘,𝑚 + 𝜖 only. By the same reasons, but 

this time applying Theorem (5.3.14) and Lemma (5.3.15) with 𝜀 =  𝜀∗ and instead of the 

balls 𝐵𝑖𝑗 we take a ball 𝐵 ⊃  𝐼 with radius √𝑛(1 + 𝜖), we have 

Φ(𝑍∗) ≤  𝐶3(1 +  𝜀∗
1−𝑚)𝜀∗

1+𝜖(1 + 𝜖)1+𝜖+𝜇  ≝ 𝐶3(1 + 𝜎
1−𝑚(1 + 𝜖)𝑚−1)𝜎1+𝜖(1 + 𝜖)𝜇 

= 𝐶3((1 + 𝜖)
𝜇𝜎1+𝜖 + (1 + 𝜖)𝜇+𝑚−1𝜎2+𝜖−𝑚).          (183) 

From (182) we get immediately 

Φ(𝑍∗∗)  ≤  𝐶2(1 + 𝜀∗
1−𝑚)  ∑  

𝑗≥𝑗∗

 ∑  

𝑖

 2
𝑗(1+𝜖)
𝑝∘  𝑟𝑖𝑗

1+𝜖+𝜇
 .                 (184) 

Further estimates splits into the two possibilities. 

Case I. 1 + 𝜖 ≥  𝑝∘. Then 

Φ(𝑍∗∗)  ≤  𝐶2(1 + 𝜀∗
1−𝑚)(∑  

𝑗≥𝑗∗

 ∑  

𝑖

2𝑗𝑟𝑖𝑗
(1+𝜖+𝜇)

𝑝∘
1+𝜖
 )

1+𝜖
𝑝∘
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≤ 𝐶2(1 + 𝜀∗
1−𝑚)𝑟𝜇  (∑  

𝑗≥𝑗∗

∑ 

𝑖

 2𝑗𝑟𝑖𝑗
𝑝∘)

1+𝜖
𝑝∘

 

≤ 𝐶4(1 + 𝜀∗
1−𝑚)(1 + 𝜖)𝜇 (∑  

𝑗≥𝑗∗

2𝑗𝛿𝑗)

1+𝜖
𝑝∘

 

≤ 𝐶5(1 + 𝜀∗
1−𝑚)(1 + 𝜖)𝜇𝜎1+𝜖 = 𝐶5((1 + 𝜖)

𝜇𝜎1+𝜖 + (1 + 𝜖)𝜇+𝑚−1𝜎2+𝜖−𝑚) (185) 
Case II. 1 + 𝜖 < 𝑝∘. Recalling (107) we get by an elementary calculation 

1 + 𝜖 + 𝜇 = 1 + 𝜖 + (𝑛 −𝑚 − 𝑘 + 1) + (𝑚 − 1 − 𝜖)𝑘 = (𝑝∘ − 2 − 𝜖 +𝑚)(𝑘 − 1) + 𝑝∘
≥ 𝑝∘, 

therefore, 

Φ(𝑍∗∗) ≤ 𝐶2(1 + 𝜀∗
1−𝑚) (∑  

𝑗≥𝑗∗

 ∑  

𝑖

2𝑗(1 + 𝜖)𝑝∘𝑖𝑗)(1 + 𝜖)1+𝜖+𝜇−𝑝∘2
𝑗∗
1+𝜖−𝑝∘
𝑝∘  

≤ 𝐶6(1 + 𝜀∗
1−𝑚)𝜎𝑝∘(1 + 𝜖)1+𝜖+𝜇−𝑝∘  (

𝜎

1 + 𝜖
)
1+𝜖−𝑝∘

= 𝐶6(1 + 𝜀∗
1−𝑚)𝜎1+𝜖(1 + 𝜖)𝜇  

= 𝐶6((1 + 𝜖)
𝜇𝜎1+𝜖 + (1 + 𝜖)𝜇+𝑚−1𝜎1+𝜖−𝑚+1) .                                  (186) 

Now for both cases (I) and (II) we have by (185), (186) that Φ(𝑍∗∗)  ≤  𝐶((1 + 𝜖)
𝜇𝜎1+𝜖 +

 (1 + 𝜖)𝜇+𝑚−1𝜎2+𝜖−𝑚) , and, by virtue of the earlier estimate (183), we conclude that 

Φ(𝑍𝑣𝑚0
′ ∩ 𝐼)  =  Φ(𝑍∗  ∪  𝑍∗∗) ≤ Φ(𝑍∗) + Φ(𝑍∗∗)

≤ 𝐶((1 + 𝜖)𝜇𝜎1+𝜖 + (1 + 𝜖)𝜇+𝑚−1𝜎2+𝜖−𝑚) . 
 The lemma is proved.  

Corollary (5.3.37)[260]: [208] Let 1 + 𝜖 ∈  [𝑚 −  1, 1 + 2𝜖). Then for any 𝜀 >  0 there 

exists 𝛿 >  0 such that for any subset 𝐸 of ℝ𝑛 we have ∑  𝑚0 Φ(𝑍𝑣𝑚0
′ ∩ 𝐸)  ≤  𝜀 provided 

L𝑛(𝐸)  ≤  𝛿. In particular, Φ(∑  𝑚0 (𝑍𝑣𝑚0 ,𝑚 ∩  𝐸))  =  0 whenever ℒ𝑛(𝐸)  =  0. 

Proof. We start by recording the following elementary identity (see (107)): 
(𝜇 +  𝑚 −  1)𝑝∘
𝑝∘  −  2 − 𝜖 +  𝑚 

=  𝑛.                                           (187) 

Let L𝑛(𝐸)  ≤  𝛿, then we can find a family of nonoverlapping n-dimensional dyadic 

intervals 𝐼𝛼 such that 𝐸 ⊂  ⋃   𝛼 𝐼𝛼 and ∑  𝛼  ℓ
𝑛(𝐼𝛼)  <  𝐶𝛿. Of course, for sufficiently small 

𝛿 the estimates 

‖∑ 

𝑚0

∇𝑘𝑣𝑚0‖

𝐿𝑝∘,1(𝐼𝛼)

< 1,           ℓ(𝐼𝛼)  ≤  𝛿
1
𝑛                            (188) 

are fulfilled for every 𝛼. Denote 

𝑟𝛼 = ℓ(𝐼𝛼),      𝜎𝛼 =∑ 

𝑚0

‖∇𝑘𝑣𝑚0‖𝐿𝑝∘,1(𝐼𝛼)
,        𝜎 =∑ 

𝑚0

‖∇𝑘𝑣𝑚0‖𝐿𝑝∘,1
 .     (189) 

In view of Corollary (5.3.36) we have 

Φ(𝐸)  ≤  𝐶∑ 

𝛼

(𝑟𝛼
𝜇+𝑚−1

 𝜎𝛼
2+𝜖−𝑚 + 𝑟𝛼

𝜇
𝜎𝛼
1+𝜖).                (190) 

Now let us estimate the first sum. Since by our assumptions 
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𝜖 > 0 = 𝑚 − 1 +
𝑛 −𝑚 + 1

𝑘
≤ 𝑚 − 1 + 𝑝∘   ℎ𝑒𝑛𝑐𝑒 𝑝∘ > 2 + 𝜖 −  𝑚  

we have  

∑ 

𝛼

𝑟𝛼
𝜇+𝑚−1

 𝜎𝛼
2+𝜖−𝑚 

𝐻ö𝑙𝑑𝑒𝑟 𝑖𝑛𝑒𝑞.
≤

 𝐶 (∑ 

𝛼

𝜎𝛼
𝑝∘)

2+𝜖−𝑚
𝑝∘

· (∑ 

𝛼

𝑟𝛼

(𝜇+𝑚−1)𝑝
𝑝∘−2−𝜖+𝑚)

𝑝∘−2−𝜖+𝑚
𝑝∘

 

(187), Lemma (5.3.10)
≤

 𝐶′𝜎2+𝜖−𝑚  · (L𝑛(𝐸))
𝑝∘−2−𝜖+𝑚

𝑝∘  .            (191) 

The estimates of the second sum are again handled by consideration of two separate cases. 

Case I. 1 + 𝜖 ≥  𝑝∘. Then 

∑ 

𝛼

𝑟𝛼
𝜇
𝜎𝛼
1+𝜖  

(188)
≤

 𝛿
𝜇
𝑛  ∑  

𝛼

 𝜎𝛼
𝑝∘   
Lemma (5.3.10)

≤
𝜎𝑝∘  ·  𝛿

𝜇
𝑛 .              (192) 

Case II. 1 + 𝜖 < 𝑝∘ . Recalling (5.11) we get by an elementary calculation 
𝜇𝑝∘

𝑝∘ − 1 − 𝜖
 =  𝑛 ·

𝑛 − (1 + 𝜖)𝑘 + [𝑚𝑘 −  𝑚 −  𝑘 +  1]

𝑛 – (1 + 𝜖)𝑘
 

=  𝑛 ·
𝑛 − (1 + 𝜖)𝑘 + (𝑚 −  1)(𝑘 −  1)

𝑛 − (1 + 𝜖)𝑘
 ≥  𝑛,              (193) 

Then 

∑ 

𝛼

𝑟𝛼
𝜇
𝜎𝛼
1+𝜖  

Hölder ineq.
≤

 (∑ 

𝛼

𝜎𝛼
𝑝∘)

1+𝜖
𝑝∘

· (∑ 

𝛼

 𝑟𝛼

𝜇𝑝∘
𝑝∘−1−𝜖)

𝑝∘−1−𝜖
𝑝∘

 

Lemma (5.3.10), (193)
≤

 𝜎1+𝜖𝛿
𝜇
𝑛 .                              (194) 

Now for both cases (I) and (II) we have by (190)–(194) that Φ(𝐸)  ≤  ℎ(𝛿), where the 

function ℎ(𝛿) satisfies the condition ℎ(𝛿) ↘ 0 as 𝛿 ↘ 0. The lemma is proved. 

Corollary (5.3.38)[260]: [208] Let (1 + 𝜖)  ∈  (𝑚 −  1, 1 + 2𝜖) and 𝑔𝑚0  ∈

 𝐶𝑘(ℝ𝑛, ℝ𝑚+𝜖). Then 

∑ 

𝑚0

Φ𝑔𝑚0(𝑍𝑔𝑚0 ,𝑚) = 0,                                               (195) 

where Φ𝑔𝑚0  is calculated by the same formula (109) with 𝑔𝑚0 instead of 𝑣𝑚0 and 𝑍𝑔𝑚0 ,𝑚 =

 {𝑥 ∈  ℝ𝑛 ∶  rank ∇ (∑  𝑚0 𝑔𝑚0(𝑥)) <  𝑚}. 

Proof. We can assume without loss of generality that 𝑔𝑚0 has compact support and that 

| ∑  𝑚0 (∇𝑔𝑚0(𝑥)) |  ≤  1 for all 𝑥 ∈ ℝ𝑛. We then clearly have that 𝑔𝑚0 ∈

𝑊𝑝∘,1
𝑘 (ℝ𝑛, ℝ𝑚+𝜖), hence we can in particular apply the above results to 𝑔𝑚0. The following 

assertion plays the key role: 

(∗) For any n-dimensional dyadic interval 𝐼 ⊂  ℝ𝑛 the estimate 

∑ 

𝑚0

Φ(𝑍𝑔𝑚0 ,𝑚 ∩ 𝐼) ≤ 𝐶∑ 

𝑚0

(ℓ(𝐼)𝜇‖∇𝑘(𝑔𝑚0)
̅̅ ̅̅ ̅̅ ̅̅

𝐼‖𝐿𝑝∘,1(𝐼)
1+𝜖

+ ℓ(𝐼)𝜇+𝑚−1‖∇𝑘(𝑔𝑚0)
̅̅ ̅̅ ̅̅ ̅̅

𝐼‖𝐿𝑝∘,1(𝐼)
2+𝜖−𝑚

)  

holds, where the constant 𝐶 depends on 𝑛,𝑚, 𝑘,𝑚 + 𝜖 only, and we denoted 

∑ 

𝑚0

∇𝑘(𝑔𝑚0)
̅̅ ̅̅ ̅̅ ̅̅

𝐼 (𝑥) =  ∑ 

𝑚0

∇𝑘𝑔𝑚0(𝑥) −
1

L𝑛(𝐼)
 ∫ 
𝐼

∑ 

𝑚0

∇𝑘𝑔𝑚0(𝑦) 𝑑𝑦. 
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The proof of (∗) is almost the same as that of Corollary (5.3.36), with evident modifications 

(we need to take the approximation polynomial 𝑃𝐼(𝑥) of degree 𝑘 instead of 𝑘 −  1, etc.). 

By elementary facts of the Lebesgue integration theory, for an arbitrary family of 

nonoverlapping 𝑛-dimensional dyadic intervals 𝐼𝛼 one has 

∑∑ 

𝑚0

 

𝛼

‖∇𝑘(𝑔𝑚0)
̅̅ ̅̅ ̅̅ ̅̅

𝐼𝛼‖𝐿𝑝∘,1(𝐼𝛼)
𝑝∘

→  0          as sup
𝛼
  ℓ(𝐼𝛼)  →  0.               (196) 

The proof of this estimate is really elementary since now ∇𝑘(∑  𝑚0 𝑔𝑚0) is continuous and 

compactly supported function, and, consequently, is uniformly continuous and bounded. 

From (∗) and (196), repeating the arguments of Corollary (5.3.37), using the assumptions 

on 𝑔𝑚0 and taking 

𝜎𝛼 =∑ 

𝑚0

‖∇𝑘(𝑔𝑚0)
̅̅ ̅̅ ̅̅ ̅̅

𝐼𝛼‖𝐿𝑝∘,1(𝐼𝛼)
,                 𝜎𝑝∘ = ∑ 

𝛼

𝜎𝛼
𝑝∘ 

in definitions (189), we obtain that ∑  𝑚0 Φ𝑔𝑚0(𝑍𝑔𝑚0 ,𝑚)  <  𝜀 for any 𝜀 >  0, hence the 

sought conclusion (195) follows. 

Corollary (5.3.39)[260]: The equality 

∑ 

𝑚0

ℋ𝑛−𝑚 (𝑍𝑣𝑚0 ,𝑚 ∩ 𝑣𝑚0
−1(𝑦)) = 0  for ℋ𝑚 − almost all 𝑦 ∈  ℝ𝑚+𝜖           (197) 

holds, where 𝑍𝑣𝑚0 ,𝑚 = {𝑥 ∈  ℝ
𝑛 \ 𝐴𝑣𝑚0 ∶  rank 

∑  𝑚0 ∇𝑣𝑚0(𝑥)  ≤  𝑚 −  1} is the set of 

m-critical points. 

Proof. We apply Theorem (5.3.5) with the parameters 1 + 𝜖 = 𝑚, 𝑘 = 1, 𝑝∘ = 𝑛. Then by 

(77) 

∑ 

𝑚0

ℋ𝜇1+𝜖 (𝑍𝑣𝑚0 ,𝑚 ∩ 𝑣𝑚0
−1(𝑦)) = 0  for ℋ𝑚 − almost all 𝑦 ∈  ℝ𝑚+𝜖 ,       (198) 

where 𝜇1+𝜖  =  𝑛 − 𝑚 − 𝑘 + 1 + (𝑚 − 1 − 𝜖)𝑘 =  𝑛 − 𝑚. The last identity taken together 

with (198) concludes the proof. 

Corollary (5.3.40)[260]: The above defined set function Φ(·) is countably subadditive and  

Φ(𝐸) = 0 ⇒ [∑ 

𝑚0

ℋ𝜇 (𝐸 ∩ 𝑓𝑚0
−1(𝑦)) =  0  for ℋ1+𝜖 − almost all 𝑦 ∈  ℝ𝑚+𝜖] .  (199) 

We start by recalling the following technical fact from [211]: 

Proof. The first assertion is evident. Let us prove the second one, i.e., the implication (198). 

Without loss of generality we can assume that 𝑓𝑚0 is compactly supported, and more 

specifically that 𝑓𝑚0
−1(𝑦) is a compact subset of the closed unit ball 𝐵(0, 1)̅̅ ̅̅ ̅̅ ̅̅ ̅ for every 𝑦 ∈

 ℝ𝑚+𝜖  \ {0}. 
Let 𝐸 ⊂  ℝ𝑛 and assume that Φ(𝐸)  =  0. Without loss of generality we can assume that 

0 ∉ 𝑓𝑚0(𝐸) and 

𝐸 =  ⋂ 

∞

𝑗=1

⋃ 

∞

𝑖=1

𝐷𝑖𝑗  , 

where 𝐷𝑖𝑗 are compact sets in ℝ𝑛 and 

∑ 

∞

𝑖=1

∑ 

𝑚0

(diam 𝐷𝑖𝑗)
𝜇
[diam 𝑓𝑚0(𝐷𝑖𝑗)]

1+𝜖
  , 𝑗 → ∞.                            (200) 
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Of course, then 𝐸 is a Borel set. Suppose that the assertion (199) is false, then we can assume 

without loss of generality that there exists a set ℱ ⊂  𝑓𝑚0(𝐸) such that  

ℋ1+𝜖(𝐹) >  0       𝑎𝑛𝑑     ∑  

𝑚0

ℋ∞
𝜇
 (𝐸 ∩ 𝑓𝑚0

−1(𝑦))  ≥
5

2
   for all 𝑦 ∈ ℱ.   (201) 

Unfortunately, we can not assume right now that the set ℱ is Borel, so we need some careful 

preparations. 

      Denote 𝐸𝑘𝑗 = ⋃  𝑘
𝑖=1 𝐷𝑖𝑗  , 𝐸𝑗 = ⋃  ∞

𝑖=1 𝐷𝑖𝑗 . In this notation = ⋂  ∞
𝑗=1 𝐸𝑗 . Evidently, all 

these sets are Borel. 

∑ 

𝑚0

ℋ∞
𝜇
(𝐸𝑗 ∩ 𝑓𝑚0

−1(𝑦)) = lim
𝑘→∞

 ∑  

𝑚0

ℋ∞
𝜇
(𝐸𝑘𝑗 ∩ 𝑓𝑚0

−1(𝑦))      for each 𝑦 ∈ 𝑓𝑚0(𝐸𝑗). (202) 

Denote further 𝐹𝑘𝑗 = 𝑓𝑚0 (𝐸𝑘𝑗). Fix an arbitrary point 𝑦 with the property 

∑ 

𝑚0

ℋ𝜇(𝐸𝑘𝑗 ∩ 𝑓𝑚0
−1(𝑦))  ≤  1. 

Since 𝐸𝑘𝑗 is a compact set, the set 𝐸𝑘𝑗  ∩  𝑓𝑚0
−1(𝑦) is compact as well. Then it follows by 

elementary means that the sets 𝐸𝑘𝑗 ∩ 𝑓𝑚0
−1(𝓏) lie in the ε-neighborhood of the set 𝐸𝑘𝑗  ∩

 𝑓𝑚0
−1(𝑦), where 𝜀 ↘ 0 as 𝓏 →  𝑦, 𝓏 ∈  𝑓𝑚0(𝐸𝑘𝑗). Therefore, there exists 𝛿 =  𝛿(𝑦)  >  0 

such that 

∑ 

𝑚0

ℋ∞
𝜇
(𝐸𝑘𝑗 ∩ 𝑓𝑚0

−1(𝓏)) ≤  2          if |𝓏 −  𝑦| <  𝛿.                         (203) 

Hence, there exists a relatively open set �̃�𝑘𝑗  ⊂  𝐹𝑘𝑗 (i.e., �̃�𝑘𝑗  is open in the induced topology 

of the set 𝐹𝑘𝑗) such that 

{𝑦 ∈ ℝ𝑚+𝜖 ∶  ∑  

𝑚0

ℋ∞
𝜇
(𝐸𝑘𝑗 ∩ 𝑓𝑚0

−1(𝑦)) ≤  1} ⊂  �̃�𝑘𝑗  

⊂ {𝑦 ∈  ℝ𝑚+𝜖 ∶ ∑  

𝑚0

 ℋ∞
𝜇
(𝐸𝑘𝑗 ∩ 𝑓𝑚0

−1(𝑦)) ≤ 2}.                           (204) 

Since by construction 𝐹𝑘𝑗 is a compact set and �̃�𝑘𝑗  is relatively open in 𝐹𝑘𝑗 , we conclude 

that the set �̃�𝑘𝑗  is Borel (this fact plays an important role here). Further, since 𝐸𝑘𝑗  ⊂  𝐸𝑗 , 

we have for each 𝑘 ∈ ℕ, 

{𝑦 ∈  ℝ𝑚+𝜖 ∶  ∑  

𝑚0

ℋ∞
𝜇
(𝐸𝑗 ∩ 𝑓𝑚0

−1(𝑦)) ≤ 1} ⊂ {𝑦 ∈ ℝ𝑚+𝜖 ∶  ∑  

𝑚0

ℋ∞
𝜇
(𝐸𝑘𝑗 ∩ 𝑓𝑚0

−1(𝑦))

≤ 1}  ⊂ �̃�𝑘𝑗 

and therefore, 

{𝑦 ∈  ℝ𝑚+𝜖 ∶  ∑  

𝑚0

ℋ∞
𝜇
(𝐸𝑗  ∩  𝑓𝑚0

−1(𝑦))  ≤  1}  ⊂  �̃�𝑗  ,                         (205) 

where we denote �̃�𝑗  =  ⋂  ∞
𝑘=1 �̃�𝑘𝑗  . On other hand, (202) and the second inclusion in (204) 

imply �̃�𝑗  ⊂  {𝑦 ∈  ℝ
𝑚+𝜖 ∶  ∑  𝑚0 ℋ∞

𝜇
(𝐸𝑗  ∩  𝑓𝑚0

−1(𝑦))  ≤  2}, so we have 
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{𝑦 ∈ ℝ𝑚+𝜖 ∶ ∑  

𝑚0

 ℋ∞
𝜇
(𝐸𝑗 ∩ 𝑓𝑚0

−1(𝑦)) ≤ 1} ⊂ �̃�𝑗 

⊂ {𝑦 ∈ ℝ𝑚+𝜖 ∶  ∑  

𝑚0

ℋ∞
𝜇
(𝐸𝑗 ∩ 𝑓𝑚0

−1(𝑦)) ≤ 2}.                            (206) 

Denote now �̃�𝑗 = 𝑓𝑚0(𝐸𝑗) \ �̃�𝑗 . Then we can rewrite (206) as 

{𝑦 ∈ ℝ𝑚+𝜖 ∶  ∑  

𝑚0

ℋ∞
𝜇
(𝐸𝑗 ∩ 𝑓𝑚0

−1(𝑦)) > 2} ⊂ �̃�𝑗 

⊂ {𝑦 ∈ ℝ𝑚+𝜖 ∶  ∑  

𝑚0

ℋ∞
𝜇
(𝐸𝑗 ∩ 𝑓𝑚0

−1(𝑦)) > 1}.                             (207) 

Since ⊂ 𝐸𝑗 , we have from (201) that 𝐹 ⊂ {𝑦 ∈  ℝ𝑚+𝜖 ∶  ∑  𝑚0 ℋ∞
𝜇
(𝐸𝑗 ∩ 𝑓𝑚0

−1(𝑦))  >  2}  ⊂

 �̃�𝑗 for all 𝑗 ∈ ℕ, therefore 

ℱ ⊂  �̃�,                                                                 (208) 
where we denote �̃�  =  ⋂  ∞

𝑗=1 �̃�𝑗 . On the other hand, the second inclusion in (207) yields 

�̃�  ⊂  {𝑦 ∈ ℝ𝑚+𝜖 ∶  ∑  

𝑚0

ℋ∞
𝜇
(𝐸𝑗  ∩  𝑓𝑚0

−1(𝑦))  >  1}                            (209) 

for each 𝑗 ∈ ℕ. Since �̃� is a Borel set and by (208), (201) the inequalities ℋ1+𝜖(�̃�)  ≥
 ℋ1+𝜖(ℱ)  >  0 hold, by [212] there exists a Borel set 𝐺 ⊂  �̃� and a positive constant 𝑏 ∈
ℝ such that 0 <  ℋ1+𝜖(𝐺)  <  ∞ and 

ℋ1+𝜖(𝐺 ∩  𝐵(𝑦, 1 + 𝜖))  ≤  𝑏 (1 + 𝜖)1+𝜖                                   (210) 
for any ball 𝐵(𝑦, 1 + 𝜖)  =  {𝓏 ∈  ℝ𝑚+𝜖 ∶  |𝓏 − 𝑦|  <  1 + 𝜖} with the center 𝑦 ∈  𝐺. Of 

course, by (209) 

𝐺 ⊂  {𝑦 ∈  ℝ𝑚+𝜖 ∶ ∑  

𝑚0

 ℋ∞
𝜇
(𝐸𝑗  ∩  𝑓𝑚0

−1(𝑦))  >  1}                       (211) 

for all 𝑗 ∈ ℕ. For 𝑆 ⊂  ℝ𝑛 consider the set function 

Φ̃(𝑆) =  ∫  
∗

𝐺

 ∑  

𝑚0

ℋ∞
𝜇
 (𝑆 ∩ 𝑓𝑚0

−1(𝑦)  𝑑ℋ1+𝜖(𝑦),                      (212) 

where ∫  
∗

 means the upper integral. Standard facts of Lebesgue integration theory, Φ̃(·) is 

a countably subadditive set-function (see, e.g., [60, 192]). 

From (200) and (210) it follows that 

∑ ∑ 

𝑚0

∞

𝑖=1

(diam 𝐷𝑖𝑗)
𝜇
[diam 𝑓𝑚0(𝐷𝑖𝑗)]

1+𝜖
≥ 𝑐∑∑ 

𝑚0

 

∞

𝑖=1

(diam 𝐷𝑖𝑗)
𝜇
 ℋ1+𝜖[𝐺 ∩ 𝑓𝑚0(𝐷𝑖𝑗)]

≥ 𝐶∑ 

∞

𝑖=1

Φ̃(𝐷𝑖𝑗) ≥ 𝐶 Φ̃(𝐸𝑗)       . 

Consequently, Φ̃(𝐸𝑗)  →  0 as 𝑗 →  ∞. On the other hand, from (211) and (212) we conclude 

Φ̃(𝐸𝑗) ≥ ∫  
∗

𝐺

𝑑ℋ1+𝜖(𝑦) = ℋ1+𝜖(𝐺) >  0, 

which is the desired contradiction. The proof of the Corollary (5.3.40) is finished. 
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Corollary (5.3.41)[260]: The above defined Ψ(·) is a countably subadditive set-function 

and for any 𝜆 >  0 the estimate 

ℋ1+𝜖{𝑦 ∈ ℝ𝑚+𝜖 ∶ ∑  

𝑚0

 ℋ𝜇(𝐸 ∩  𝑓𝑚0
−1(𝑦)  ≥  𝜆}  ≤  5

Ψ(𝐸)

𝜆
                 (213) 

holds. 

Proof. The first assertion is evident and we focus on proving the estimate (213). Without 

loss of generality we can assume that 𝑓𝑚0
−1(𝑦) is a compact subset of the closed unit ball 

𝐵(0, 1)̅̅ ̅̅ ̅̅ ̅̅ ̅ for every 𝑦 ∈  ℝ𝑚+𝜖  \ {0}. Let 𝐸 ⊂  ℝ𝑛 and 

Ψ(𝐸) =  𝜎 <  ∞. 
Without loss of generality assume also that 0 ∉ 𝑓𝑚0(𝐸) and 

𝐸 =  ⋂ 

∞

𝑗=1

⋃ 

∞

𝑖=1

𝐷𝑖𝑗  , 

where 𝐷𝑖𝑗 are compact sets in ℝ𝑛 satisfying 

∑ ∑ 

𝑚0

∞

𝑖=1

(diam 𝐷𝑖𝑗)
𝜇
[diam 𝑓𝑚0(𝐷𝑖𝑗)]

1+𝜖
 𝑗 → ∞⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ 𝜎,                      (214) 

and 

diam 𝐷𝑖𝑗 + diam∑ 

𝑚0

𝑓𝑚0(𝐷𝑖𝑗) ≤
1

𝑗
 .                            (215) 

Of course, 𝐸 is a Borel set. Fix 𝜆 >  0 and take a set ℱ ⊂  𝑓𝑚0(𝐸) such that 

∑ 

𝑚0

ℋ∞
𝜇
(𝐸 ∩ 𝑓𝑚0

−1(𝑦)) ≥
5

2
𝜆        for all  𝑦 ∈ ℱ.                   (216) 

Further we assume that 

ℋ1+𝜖(ℱ) > 0,                                                       (217) 
since if ℋ1+𝜖(ℱ)  =  0, there is nothing to prove. Denote 𝐸𝑗  = ⋃  ∞

𝑖=1 𝐷𝑖𝑗 . Repeating 

almost verbatim the arguments from the proof of the previous Corollary (5.3.40), we can 

construct a Borel set �̃� ⊂ ℝ𝑚+𝜖 such that 

ℱ ⊂ �̃� ⊂ {𝑦 ∈  ℝ𝑚+𝜖 ∶  ∑  

𝑚0

ℋ∞
𝜇
(𝐸𝑗 ∩ 𝑓𝑚0

−1(𝑦))  >  𝜆}                      (218) 

for each 𝑗 ∈ ℕ. Since �̃� is a Borel set and since, by (218) and (217), the inequalities 

ℋ1+𝜖(�̃�) ≥ ℋ1+𝜖(ℱ) > 0 hold, we deduce by [212] the existence of a Borel set 𝐺 ⊂  �̃� 

such that 0 < ℋ1+𝜖(𝐺) < ∞. Put 

𝐺𝑙 = {𝑥 ∈  𝐺 ∶  ℋ
1+𝜖(𝐺 ∩  𝐵(𝑥, 1 + 𝜖)) ≤  2(1 + 𝜖)1+𝜖    ∀(1 + 𝜖)  ∈  (0, 1/𝑙)}  . (219) 

Then by construction all the sets 𝐺𝑙 are Borel, 𝐺𝑙  ⊂  𝐺𝑙+1, moreover, by [60] we have 

ℋ1+𝜖 [𝐺 \ (⋃ 

∞

𝑙=1

𝐺𝑙)] = 0 

and consequently, 

ℋ1+𝜖(𝐺) = lim
𝑙→∞

 ℋ1+𝜖(𝐺𝑙).                                      (220) 

For 𝑆 ⊂  ℝ𝑛 consider the set function 
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Ψ𝑙(𝑆)  =  ∫  
∗

𝐺𝑙

∑ 

𝑚0

 ℋ∞
𝜇
(𝑆 ∩ 𝑓𝑚0

−1(𝑦))   𝑑ℋ1+𝜖(𝑦),                    (221) 

where ∫  
∗

 means the upper integral. By routine arguments of Lebesgue integration theory it 

follows that Ψ(·) is a countably subadditive set-function (see, e.g., [60, 192]). 

From (214), (215) and (219) it follows for 𝑗 > 𝑙 that 

∑ 

∞

𝑖=1

∑ 

𝑚0

(diam 𝐷𝑖𝑗)
𝜇
[diam 𝑓𝑚0(𝐷𝑖𝑗)]

1+𝜖

≥
1

2
 ∑ 

∞

𝑖=1

∑ 

𝑚0

(diam 𝐷𝑖𝑗)
𝜇
ℋ1+𝜖[𝐺𝑙 ∩ 𝑓𝑚0(𝐷𝑖𝑗)] 

≥
1

2
∑ 

∞

𝑖=1

Ψ𝑙(𝐷𝑖𝑗) ≥
1

2
 Ψ𝑙(𝐸𝑗).                                     (222) 

On the other hand, the second inclusion in (218) implies 

Ψ𝑙(𝐸𝑗) ≥ 𝜆∫  
∗

𝐺𝑙

𝑑ℋ1+𝜖(𝑦) = 𝜆ℋ1+𝜖(𝐺𝑙).                             (223) 

From (222), (223), (214) we infer 

ℋ1+𝜖(𝐺𝑙) ≤
2𝜎

𝜆
 ,                                               (224) 

and therefore, by (220), 

ℋ1+𝜖(𝐺) ≤
2𝜎

𝜆
 .                                                   (225) 

Since this estimate is true for any Borel set 𝐺 ⊂  �̃� with ℋ1+𝜖(𝐺)  <  ∞, and since �̃� is 

Borel as well, we infer from [212] that 

ℋ1+𝜖(�̃�) ≤
2𝜎

𝜆
 .                                           (226) 

In particular, by the inclusion ℱ ⊂ �̃�, this implies 

ℋ1+𝜖(ℱ) ≤
2𝜎

𝜆
 ,                                         (227) 

or in other words, 

ℋ1+𝜖 (𝑦 ∈  ℝ𝑚+𝜖 ∶  ∑  

𝑚0

ℋ𝜇 (𝐸 ∩  𝑓𝑚0
−1(𝑦))  ≥

5

2
 𝜆)  ≤  2

Ψ(𝐸)

𝜆
 .        (228) 

The proof of Corollary (5.3.41) is complete.  
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Chapter 6 

Operators in Tight and Uniform Structure with Unconditionally Saturated Banach 

Space 

 

We make some observations on operators in arbitrary tight by support Banach space, 

showing in particular that in such a space no two isomorphic infinitely dimensional 

subspaces form a direct sum. We exhibit a separable ℒ∞-space whose uniform structure 

determines, at least, three different linear structures. We show that any bounded operator on 

𝑋𝐾𝑢𝑠 is a compact perturbation of a multiple of the identity, whereas the space 𝑋𝐾𝑢𝑠 is 

saturated with unconditional basic sequences. 

Section (6.1): Support Banach Spaces 

     In [111], Gowers and Maurey built the first hereditarily indecomposable (HI) Banach 

space 𝑋𝐺𝑀, that is, a space whose none infinitely dimensional subspace admits a non-trivial 

bounded projection. They also proved that any operator on a subspace of 𝑋𝐺𝑀 is a strictly 

singular perturbation of a multiple of the identity. Recall that an operator is strictly singular 

if none of its restriction to an infinitely dimensional subspace is an isomorphism onto its 

image. Gowers– Maurey construction opened the field of study of spaces with a small family 

of bounded operators. The celebrated space of Argyros and Haydon [91] provided an 

extreme example in the area; their space is an L∞ HI space, on which any bounded operator 

is a compact perturbation of a multiple of the identity.  

     A natural question arises how small family of bounded operators on Banach spaces with 

an unconditional basis could be. Obviously, all diagonal operators with uniformly bounded 

entries are continuous on such a space, therefore the most one can expect is a hereditary 

‘diagonal+strictly singular’ property: any bounded operator on a subspace of the space is a 

strictly singular perturbation of a restriction of a diagonal operator.  

      Among the properties to be considered are different types of tightness, studied in [224], 

[225], which describe the structure of the family of isomorphisms inside the space. The 

strongest type is tightness by support. Recall that a Banach space X with a basis is tight by 

support if no two disjointly supported infinitely dimensional subspaces of X are isomorphic 

[224]. Any tight by support basis is necessarily unconditional. The typical example of a tight 

by support Banach space is Gowers unconditional space 𝑋𝑈, the unconditional version of 

Gowers–Maurey space [225], [227]. It follows easily that the hereditary ‘diagonal+strictly 

singular’ property implies tightness by support. Gowers asked if the implication can be 

reversed [229], in particular if 𝑋𝑈 has the hereditary ‘diagonal+strictly singular’ property 

[229]. It is known that any bounded operator on the whole space 𝑋𝑈 is a strictly singular 

perturbation of a diagonal operator [230]. Adapting arguments from [222], one can prove 

an analogous result for any bounded operator 𝑇: 𝑌 → 𝑌, where Y is a block subspace of 𝑋𝑈. 

Gowers [228] also proved that any isomorphism between block subspaces of a tight by 

support Banach space is a strictly singular perturbation of a restriction of an invertible 

diagonal operator. We answer the questions by constructing a bounded projection on a direct 

sum of two block subspaces of 𝑋𝑈 which is not a strictly singular perturbation of a restriction 

of a diagonal operator. The construction uses the block sequence of [231] in Schlumprecht 

space generating an ℓ1-spreading model and canonical properties of Gowers unconditional 

space, thus can be easily adapted to other spaces of Gowers–Maurey type, and leaves the 

question on an example of a Banach space with the hereditary ‘diagonal + strictly singular’ 

property open. Next we reproduce the construction in an arbitrary block subspace of 𝑋𝑈, 

using the results of [226].  
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     We also prove positive results on bounded operators on arbitrary Banach space X with a 

tight by support basis. We show that any bounded operator on a subspace generated by a 

weakly null sequence (𝑥𝑛) in such a space has a restriction to a subspace generated by some 

subsequence (𝑥𝑘𝑛) of the form 𝑆 + 𝐷|[𝑥𝑘𝑛]
, with S strictly singular and D diagonal. If we 

allow restricting to a block subspace, then we can replace the diagonal operator D by a 

multiple of the identity, which implies that no two isomorphic infinitely dimensional 

subspaces of X form a direct sum.  

     In the case of Gowers unconditional space, one can strengthen Theorem (6.1.3), we prove 

that any bounded operator on a block subspace Y of 𝑋𝑈 into 𝑋𝑈 is of the form +𝐷|𝑌 , with 

S strictly singular and D diagonal, generalizing earlier results.  

Given any 𝐸, 𝐹 ⊂ ℕ, we write 𝐸 <  𝑚𝑖𝑛 𝐹. Let X be a Banach space with a basis (𝑒𝑖). Given 

any 𝐺 ⊂ ℕ by 𝑃𝐺, we denote the projection 𝑋 → [𝑒𝑖: 𝑖 ∈ 𝐺]. The support of a vector 𝑥 =
∑ 𝑥𝑖𝑒𝑖𝑖  is the set 𝑠𝑢𝑝𝑝 𝑥 = {𝑖 ∈ ℕ: 𝑥𝑖 ≠ 0}. The support of a subspace Y is the union of 

supports of all elements of Y . We write 𝑥 < 𝑠𝑢𝑝𝑝 𝑦. Any sequence (𝑥𝑛) ⊂ 𝑋 with 𝑥1 <
𝑥2 <··· is called a block sequence, a closed subspace spanned by an infinite block sequence 

(𝑥𝑛) is called a block subspace. Given any basic sequence (𝑥𝑛) by [𝑥𝑛], we denote the 

closed vector space spanned by (𝑥𝑛).  
We show some positive results on bounded operators on Banach spaces which are 

tight by support. We recall the following definition.  

Definition (6.1.1)[220]: ([224]). A basis of a Banach space is called tight by support, if no 

two infinitely dimensional subspaces with disjoint supports are isomorphic.  

X denotes a Banach space with a tight by support basis (𝑒𝑖). The main tool is provided by 

the following decomposition result, which uses the notion of a diagonal-free operator. We 

call an operator R defined on a block subspace [𝑥𝑛] ⊂ 𝑋 into X diagonal-free provided 

𝑠𝑢𝑝𝑝 𝑥𝑛 ∩ 𝑠𝑢𝑝𝑝 𝑅𝑥𝑛 = ∅ for any 𝑛 ∈ ℕ. 

Proposition (6.1.2)[220]: Let 𝑋 be a Banach space with a tight by support basis (𝑒𝑖). Let 

(𝑥𝑛) ⊂ 𝑋 be a block basis and 𝑇: [𝑥𝑛] → 𝑋 be a bounded operator. Then 𝑇 = 𝐷|[𝑥𝑛] + 𝑆 +

𝑅 for some bounded operators D, S, R with D diagonal, S strictly singular and R diagonal-

free.  

Moreover, if T satisfies 𝑠𝑢𝑝𝑝 𝑇𝑥𝑛 ∩ 𝑠𝑢𝑝𝑝 𝑥𝑚 = ∅ for any 𝑛 ≠ 𝑚, then the above formula 

holds with 𝑅 = 0. 

Proof. Let (𝑥𝑛) be a normalized block basis and 𝑇: [𝑥𝑛] → 𝑋 be a bounded operator with 

‖𝑇‖ = 𝐶 > 0. Since X is tight by support, the operator 𝑃 ∘ 𝑇, where P is the projection on 

[𝑒𝑖: 𝑖 ∉∪ 𝑠𝑢𝑝𝑝 (𝑥𝑛)] is strictly singular. Thus we can assume that ∪𝑛 𝑠𝑢𝑝𝑝 (𝑥𝑛) = ℕ. 

For any 𝑛, 𝑘 ∈ ℕ, put  

𝐴𝑛,𝑘 = {𝑖 ∈ 𝑠𝑢𝑝𝑝 𝑥𝑛: |𝑥𝑛(𝑖)| ⩽
1

2𝑘
|𝑇 𝑥𝑛(𝑖)|} 

and 𝐴𝑘 =∪𝑛∈ℕ 𝐴𝑛,𝑘 , 𝑘 ∈ ℕ. 

     For any 𝑘 ∈ ℕ, put 𝑇𝑘 = 𝑃𝑘 ∘ 𝑇, where 𝑃𝑘 is the projection from X onto [𝑒𝑖: 𝑖 ∈ 𝐴𝑘], and 

let 𝐷𝑘: 𝑋 → 𝑋 be the diagonal operator defined by 𝐷𝑘(𝑒𝑖) = 𝜆𝑖𝑒𝑖, where 

𝜆𝑖 = {

0                                𝑖𝑓  𝑖 ∈ 𝐴𝑘,                                                 

𝑇𝑥𝑛(𝑖)

𝑥𝑛(𝑖)
                   𝑖𝑓 𝑖 ∈ 𝑠𝑢𝑝𝑝 𝑥𝑛\𝐴𝑘 = 𝑠𝑢𝑝𝑝 𝑥𝑛\𝐴𝑛,𝑘  .

 

By the definition of the sets 𝐴𝑛,𝑘, we have ‖𝐷𝑘‖ ⩽ 2
𝑘.  
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Fix 𝑘 ∈ ℕ and assume that 𝑇𝑘 is not strictly singular. Thus 𝑇𝑘 is an isomorphism between 

some infinitely dimensional subspaces 𝑈 ⊂ [𝑥𝑛] and 𝑊 ⊂ 𝑃𝑘(𝑋). Consider a bounded 

operator 𝑅𝑘 = (𝐼𝑑 − 𝑃𝑘) ∘ (𝑇𝑘|𝑈 )
−1:𝑊 → [𝑒𝑖: 𝑖 ∉ 𝐴𝑘]. 

As X is tight by support and supp 𝑅𝑘(𝑊) ∩ 𝑠𝑢𝑝𝑝 𝑊 = ∅, there is some infinitely 

dimensional subspace 𝑉 ⊂ 𝑊 such that ‖𝑅𝑘|𝑉‖ ⩽ (2𝐶)
−1. As (𝑇𝑘|𝑈 )

−1 is an isomorphism, 

the subspace 𝑍 = (𝑇𝑘)
−1(𝑉) is also infinitely dimensional. Take 𝑥 ∈ (𝑇𝑘)

−1(𝑉) and 

compute  

‖𝑇𝑘𝑥‖ ⩽ ‖𝑇𝑥‖ ⩽ 𝐶‖𝑥‖ ⩽ 𝐶‖𝑃𝑘𝑥‖ + 𝐶‖𝑥 − 𝑃𝑘𝑥‖ = 𝐶‖𝑃𝑘𝑥‖ + 𝐶‖𝑅𝑘(𝑇𝑘𝑥)‖

⩽ 𝐶‖𝑃𝑘𝑥‖ +
1

2
‖𝑇𝑘𝑥‖. 

Hence ‖𝑇𝑘𝑥‖ ⩽ 2𝐶‖𝑃𝑘𝑥‖ for any 𝑥 ∈ 𝑍. As 𝑍 ⊂ 𝑈 also 𝑇𝑘|𝑍 is an isomorphism onto its 

image. On the other hand, for any 𝑥 ∈ [𝑥𝑛] and 𝑖 ∈ 𝑠𝑢𝑝𝑝 𝑃𝑘𝑥 ⊂ 𝐴𝑘 we have  

|𝑃𝑘𝑥(𝑖)| ⩽
1

2𝑘
|𝑇𝑥(𝑖)| =

1

2𝑘
|𝑇𝑘𝑥(𝑖)|. 

It follows that for any 𝑥 ∈ [𝑥𝑛] we have ‖𝑃𝑘𝑥‖ ⩽ (
1

2𝑘
) ‖𝑇𝑘𝑥‖, which for sufficiently big k 

gives contradiction for any non-zero 𝑥 ∈ 𝑍. Therefore, for sufficiently big k the operator Tk 

is strictly singular.  

Now we have  

(𝐷𝑘|[𝑥𝑛] + 𝑇𝑘 − 𝑇)(∑𝑎𝑛𝑥𝑛
𝑛

) =∑𝑎𝑛 ∑ 𝜆𝑖𝑥𝑛(𝑖)𝑒𝑖
𝑖∈𝑠𝑢𝑝𝑝 𝑥𝑛𝑛

+∑𝑎𝑛𝑃𝑘𝑇𝑥𝑛
𝑛

−∑𝑎𝑛𝑇𝑥𝑛
𝑛

=∑𝑎𝑛 ∑ 𝑇𝑥𝑛(𝑖)𝑒𝑖
𝑖∈𝑠𝑢𝑝𝑝 𝑥𝑛\𝐴𝑛,𝑘𝑛

+∑𝑎𝑛 ∑ 𝑇𝑥𝑛(𝑖)𝑒𝑖
𝑖∈𝐴𝑘𝑛

+∑𝑎𝑛∑𝑇𝑥𝑛(𝑖)𝑒𝑖
𝑖∈ℕ𝑛

=∑𝑎𝑛 ∑ 𝑇𝑥𝑛(𝑖)𝑒𝑖
𝑖∈ℕ\(𝐴𝑘∪𝑠𝑢𝑝𝑝 𝑥𝑛)𝑛

. 

Therefore, the operator 𝑅 = 𝑇 − 𝐷𝑘|[𝑥𝑛] − 𝑇𝑘 is diagonal-free. Now let T satisfy 

𝑠𝑢𝑝𝑝 𝑇𝑥𝑚 ∩ 𝑠𝑢𝑝𝑝 𝑥𝑛 = ∅ for 𝑛 ≠ 𝑚. Then, as we assumed that 𝑠𝑢𝑝𝑝[𝑥𝑛] = ℕ, we have 

that 𝑠𝑢𝑝𝑝 𝑇𝑥𝑛 ⊂ 𝑠𝑢𝑝𝑝 𝑥𝑛 for any 𝑛 ∈ ℕ. 

It follows that 𝑇 = 𝐷𝑘|[𝑥𝑛] + 𝑇𝑘, as  

(𝐷𝑘|[𝑥𝑛] + 𝑇𝑘) (∑𝑎𝑛𝑥𝑛
𝑛

) =∑𝑎𝑛 ∑ 𝜆𝑖𝑥𝑛(𝑖)𝑒𝑖
𝑖∈𝑠𝑢𝑝𝑝 𝑥𝑛𝑛

+∑𝑎𝑛𝑃𝑘𝑇𝑥𝑛
𝑛

=∑𝑎𝑛 ∑ 𝑇𝑥𝑛(𝑖)𝑒𝑖
𝑖∈𝑠𝑢𝑝𝑝 𝑥𝑛\𝐴𝑛,𝑘𝑛

+∑𝑎𝑛 ∑ 𝑇𝑥𝑛(𝑖)𝑒𝑖
𝑖∈𝐴𝑘𝑛

=∑𝑎𝑛𝑇𝑥𝑛
𝑛

. 

For the last equality, recall that 𝑠𝑢𝑝𝑝 𝑇𝑥𝑛 ⊂ 𝑠𝑢𝑝𝑝 𝑥𝑛 for any 𝑛 ∈ ℕ.  

Proposition (6.1.2) implies immediately the following result.  

Theorem (6.1.3)[220]: Let X be a Banach space with a tight by support basis. Let 𝑇: [𝑥𝑛] →
𝑋 be a bounded operator on a subspace spanned by a weakly null sequence (𝑥𝑛) ⊂ 𝑋. Then 

there exists a subsequence (𝑥𝑛)𝑛∈𝑀 such that 𝑇|[𝑥𝑛: 𝑛∈𝑀] = 𝐷|[𝑥𝑛: 𝑛∈𝑀] + 𝑆, where 𝐷:𝑋 →

𝑋 is a bounded diagonal operator and 𝑆: [𝑥𝑛: 𝑛 ∈ 𝑀] → 𝑋 is a bounded strictly singular 

operator.  

In particular, the assertion holds if (𝑥𝑛) is a block sequence.  

We can replace diagonal operator by a multiple of the identity, if we allow passing to a block 

sequence instead of subsequence.  
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As for any isomorphism T, any scalar α given by the above theorem is non-zero, we obtain 

the following corollary.  

Corollary (6.1.4)[220]: Let X be a Banach space with a tight by support basis.  

Then for any isomorphic infinitely dimensional subspaces 𝑌, 𝑍 ⊂ 𝑋, we have inf{𝑦 − 𝑧: 𝑦 ∈
𝑌, 𝑧 ∈ 𝑍, ‖𝑦‖ = ‖𝑧‖ = 1} = 0.  

Theorem (6.1.5)[220]: Let X be a Banach space with a tight by support basis. Let 𝑇: [𝑥𝑛] →
𝑋 be a bounded operator on a block subspace [𝑥𝑛] ⊂ 𝑋. Then there is an infinitely 

dimensional block subspace 𝑊 ⊂ [𝑥𝑛] such that 𝑇|𝑊 = 𝛼𝐼𝑑|𝑊 + 𝑆, for some scalar α and 

bounded strictly singular operator 𝑆: [𝑥𝑛] → 𝑋. 

Proof: We can assume that the basis of X is 1-unconditional and the sequence (𝑥𝑛) is 

normalized. Passing to a further subspace by Theorem (6.1.3), we can assume that 𝑇|[𝑥𝑛] =

𝐷|[𝑥𝑛] + 𝑆 with D bounded diagonal with entries (𝜆𝑛) and S compact. Let 𝛬 = sup
𝑛
|𝜆𝑛| and 

assume 𝛬 > 0.  

We shall prove the following claim.  

Claim (6.1.6)[220]: For any 𝜀 > 0 in any block subspace of [𝑥𝑛], there are a further block 

subspace [𝑦𝑚] and a scalar 𝛼𝜀 with |𝛼𝜀| ⩽ 𝛬 such that 

(𝐷 − 𝛼𝜀𝐼𝑑)|[𝑦𝑚] < 𝜀. 

Assuming Claim (6.1.6), consider a cluster point 𝛼0 of (𝛼𝜀)𝜀>0 and pick some sequence 

(𝛼𝑛) and descending sequence of block subspaces 𝑌𝑛 such that |𝛼𝑛 − 𝛼0| < 1/2
𝑛 and 

(𝐷 − 𝛼𝑛𝐼𝑑)|𝑌𝑛  < 1/2
𝑛. Thus ‖(𝐷 − 𝛼0𝐼𝑑)|𝑌𝑛‖ < 1/2

𝑛−1 and on the diagonal subspace 𝑌0 

of (𝑌𝑛) the operator (𝐷 − 𝛼0𝐼𝑑)|𝑌0 is compact, which ends the proof. 

Proof: Fix 𝜀 > 0 and consider a partition of {𝜆: |𝜆| ⩽ 𝛬} =∪𝑖=1
𝑑 𝐴𝑖 into pairwise disjoint 

subsets of diameter smaller than 𝜀/2. For every n, put 𝐼𝑛,𝑖 = {𝑘 ∈ 𝑠𝑢𝑝𝑝 𝑥𝑛: 𝜆𝑘 ∈ 𝐴𝑖} and 

𝑥𝑛,𝑖 = 𝑥𝑛|𝐼𝑛,𝑖 . By the unconditionality, we get ‖𝑥𝑛,𝑖‖ ⩽ 1. As X is tight by support, for 

every 𝑖 ≠ 𝑗 any restriction to a linear subspace spanned by a block sequence of (𝑥𝑛,𝑖)𝑛 of 

the operator  

𝑀𝑖,𝑗: 𝑙𝑖𝑛{𝑥𝑛,𝑖: 𝑛 ∈ ℕ} ∋∑𝑎𝑛𝑥𝑛,𝑖
𝑛

→∑𝑎𝑛𝑥𝑛,𝑗
𝑛

∈ 𝑙𝑖𝑛{𝑥𝑛,𝑗: 𝑛 ∈ ℕ} 

is either non-bounded or strictly singular. Using this observation in any block subspace of 
(𝑥𝑛), we can find a further block sequence (𝑦𝑚) satisfying for some 𝑖0 ⩽ 𝑑 the following:  

‖𝑦𝑚|∪𝑛𝐼𝑛,𝑖0‖ = 1,𝑚 ∈ ℕ    and   ‖𝑦𝑚|∪𝑛𝐼𝑛,𝑖0‖ →  0,𝑚 →  ∞ for 𝑖 ≠ 𝑖0. 

The above statement can be easily proved by induction on d. Passing to a subsequence of 

(𝑦𝑚), we can assume that ‖𝑃𝑁\∪𝑛𝐼𝑛,𝑖0 |[𝑦𝑚]‖ < 𝜀/(4𝛬). 

Pick any scalar 𝜆𝜀 ∈ 𝐴𝑖0 and compute for any vector ∑ 𝑏𝑛𝑥𝑛𝑛 ∈ [𝑦𝑚] of norm 1:    
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‖𝜆𝜀∑𝑏𝑛𝑥𝑛
𝑛

− 𝐷(∑𝑏𝑛𝑥𝑛
𝑛

)‖

⩽ ‖∑𝑏𝑛 ∑ (𝜆𝜀 − 𝜆𝑘)𝑥𝑛(𝑘)𝑒𝑘
𝑘∈𝐼𝑛,𝑖0𝑛

‖ +∑𝑏𝑛 ∑ (𝜆𝜀𝜆𝑘)𝑥𝑛(𝑘)𝑒𝑘
𝑘∉𝐼𝑛,𝑖0𝑛

⩽ max
𝑘∈ ∪𝑛𝐼𝑛,𝑖0

|𝜆𝑘 − 𝜆𝜀| ‖∑𝑏𝑛𝑥𝑛
𝑛

‖ +max
𝑘
|𝜆𝑘 − 𝜆𝜀| ‖∑∑𝑏𝑛𝑥𝑛,𝑖

𝑖≠𝑖0𝑛

‖

⩽
𝜀

2
‖∑𝑏𝑛𝑥𝑛
𝑛

‖ + 2𝛬 𝑃ℕ\∪𝑛𝐼𝑛,𝑖0|[𝑦𝑚]
⩽ 𝜀, 

which proves that (𝐷 − 𝜆𝜀𝐼𝑑)|[𝑦𝑚] ⩽ 𝜀.  

      Let 𝑋 be a Banach space with an unconditional basis (𝑒𝑖). We shall use the following 

general observation concerning the form of a projection on one of the component of a direct 

sum formed by two block subspaces with possibly coinciding supports. Assume that we 

have block subspaces 𝑌 = [𝑦𝑛] and 𝑍 = [𝑧𝑛] with  

(D1) min{𝑠𝑢𝑝𝑝 𝑦𝑛+1, 𝑠𝑢𝑝𝑝 𝑧𝑛+1} ⩾ max{𝑠𝑢𝑝𝑝 𝑦𝑛, 𝑠𝑢𝑝𝑝 𝑧𝑛} , 𝑛 ∈ ℕ; 

(D2) inf {‖𝑦 − 𝑧‖: ‖𝑦‖ = ‖𝑧‖ = 1, 𝑦 ∈ 𝑌, 𝑧 ∈ 𝑍} > 0. 
Consider projections 𝑃𝑌: 𝑌 + 𝑍 ∋ 𝑦 + 𝑧 ⟼ 𝑦 ∈ 𝑌, 𝑃𝑍: 𝑌 + 𝑍 ∋ 𝑦 + 𝑧 ↦ 𝑧 ∈ 𝑍. By (D2), 

these projections are bounded.  

Lemma (6.1.7)[220]: In the situation as above, the projection 𝑃𝑌 is of the form 𝑃𝑌 =
𝐷|𝑌+𝑍 + 𝑆, with S strictly singular and 𝐷: 𝑋 → 𝑋 diagonal if and only if there is a partition 

ℕ = 𝐹 ∪ 𝐺 such that 𝑃𝐺|𝑌 and 𝑃𝐹|𝑍 are strictly singular. Moreover, if either of the conditions 

hold, the diagonal operator D can be chosen to be a projection onto a subspace spanned by 

a subsequence of the basis.  

Proof. Assume that 𝑃𝑌 is of the form 𝑃𝑌 = 𝐷|𝑌+𝑍 + 𝑆, with S strictly singular and 𝐷:𝑋 →
𝑋 diagonal with entries (𝜆𝑖). Let  

𝐹 = {𝑖 ∈ ℕ: |𝜆𝑖| >
1

2
} , 𝐺 = {𝑖 ∈ ℕ: |𝜆𝑖| ⩽

1

2
} 

Then for any 𝑦 = ∑ 𝑎𝑛𝑦𝑛𝑛 ∈ 𝑌, we have 𝑦 = 𝑃𝑌𝑦 = 𝐷𝑦 + 𝑆𝑦, so  

∑𝑎𝑛 ∑ 𝑦𝑛(𝑖)𝑒𝑖
𝑖∈𝑠𝑢𝑝𝑝 𝑦𝑛𝑛

=∑𝑎𝑛 ∑ 𝜆𝑖𝑦𝑛(𝑖)𝑒𝑖
𝑖∈𝑠𝑢𝑝𝑝 𝑦𝑛𝑛

+ 𝑆(∑𝑎𝑛𝑦𝑛
𝑛

). 

Thus  

∑𝑎𝑛 ∑ (1− 𝜆𝑖)𝑦𝑛(𝑖)𝑒𝑖
𝑖∈𝑠𝑢𝑝𝑝 𝑦𝑛𝑛

= 𝑆 (∑𝑎𝑛𝑦𝑛
𝑛

). 

Applying the projection 𝑃𝐺, we get  

∑𝑎𝑛 ∑ (1− 𝜆𝑖)𝑦𝑛(𝑖)𝑒𝑖
𝑖∈𝑠𝑢𝑝𝑝 𝑦𝑛∩𝐺𝑛

= (𝑃𝐺 ∘ 𝑆) (∑𝑎𝑛𝑦𝑛
𝑛

) 

thus by unconditionality of (𝑒𝑖) 
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‖(𝑃𝐺 ∘ 𝑆) (∑𝑎𝑛𝑦𝑛
𝑛

)‖ = ‖∑𝑎𝑛 ∑ (1− 𝜆𝑖)𝑦𝑛(𝑖)𝑒𝑖
𝑖∈𝑠𝑢𝑝𝑝 𝑦𝑛∩𝐺𝑛

‖

⩾
1

2
‖∑𝑎𝑛 ∑ 𝑦𝑛(𝑖)𝑒𝑖

𝑖∈𝑠𝑢𝑝𝑝 𝑦𝑛∩𝐺𝑛

‖ =
1

2
‖∑𝑎𝑛𝑃𝐺𝑦𝑛
𝑛

‖ =
1

2
‖𝑃𝐺 (∑𝑎𝑛𝑦𝑛

𝑛

)‖. 

As S is strictly singular, also 𝑃𝐺|𝑌 is strictly singular. Analogously, we prove that 𝑃𝐹|𝑍 is 

strictly singular.  

The reverse implication is straightforward. Given suitable F, G, we write 𝑃𝑌 = 𝑃𝐹|𝑌 + 𝑍 +
𝑃𝐺 ∘ 𝑃𝑌 − 𝑃𝐹 ∘ 𝑃𝑍. By the assumption on projections 𝑃𝐹 , 𝑃𝐺 on corresponding subspaces, the 

operator 𝑃𝐺 ∘ 𝑃𝑌 − 𝑃𝐹 ∘ 𝑃𝑍 is strictly singular. This reasoning proves also the ‘moreover’ 

part of the lemma. 

We answer Gowers’ question [229] by giving an example of an operator T on a 

subspace W of Gowers unconditional space 𝑋𝑈, which is not of the form 𝐷|𝑊 + 𝑆 with D 

diagonal and S strictly singular. We present first the list of canonical properties of the class 

of spaces of Gowers–Maurey type that are needed for our construction and proceed to the 

proof of the main result. Next we generalize the construction to any block subspace of 𝑋𝑈 

proving that an operator which is not a strictly singular perturbation of a restriction of a 

diagonal operator can be built inside any infinitely dimensional subspace of 𝑋𝑈. However, 

performing the construction inside block subspaces requires more technical background 

concerning spaces of Gowers–Maurey type, thus we present it separately. We close with 

proving that even though the ‘diagonal + strictly singular’ property does not hold for any 

infinitely dimensional subspace of the space 𝑋𝑈, it is satisfied for block subspaces of 𝑋𝑈. 

     We recall now the definition of Schlumprecht space S, [122], and Gowers unconditional 

space 𝑋𝑈 (see [227]). The spaces are defined as the completion of 𝑐00 under a suitable norm, 

defined as a limit of an increasing sequence of norms. 

Let f denote the function 𝑥 ↦ log2(𝑥 + 1). The norm ‖·‖𝑆 of Schlumprecht space S satisfies 

on 𝑐00 the following equation:  

‖𝑥‖𝑆 = max {‖𝑥‖∞, 𝑠𝑢𝑝
𝑛

1

𝑓(𝑛)
𝑠𝑢𝑝 {∑‖𝐸𝑖𝑥‖𝑆

𝑛

𝑖=1

: 𝐸1 <···< 𝐸𝑛}}. 

It is straightforward that the basis (�̃�𝑛) of S is 1-unconditional and subsymmetric, that is, 

equivalent to any of its infinite subsequences.  

We shall sketch the definition of Gowers unconditional space 𝑋𝑈, referring to [227] for 

details, and present properties of the space we need in a list of facts given below.  

The norm of 𝑋𝑈 satisfies on 𝑐00 the following implicit equation:  

‖𝑥‖ = max {‖𝑥‖∞, 𝑠𝑢𝑝
𝑛

1

𝑓(𝑛)
𝑠𝑢𝑝
𝑛
{∑‖𝐸𝑖𝑥‖

𝑛

𝑖=1

: 𝐸1 <···< 𝐸𝑛}}, 

sup{|𝑥∗(𝑥)|: 𝑥∗ 𝑠𝑝𝑒𝑐𝑖𝑎𝑙 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝑜𝑓 𝑙𝑒𝑛𝑔𝑡ℎ 𝑘, 𝑘 ∈ 𝐾} 
for some fixed infinite and co-infinite 𝐾 ⊂ ℕ. Special functionals are described with the use 

of a so-called coding function σ defined on the family Q of finite sequences of vectors with 

rational coordinates with modulus at most 1, taking values in ℕ\𝐾 and satisfying certain 

growth condition. A special functional of length k is of the form (
1

√𝑓(𝑘)
)∑ 𝑥𝑗

∗𝑘
𝑗=1 , for some 
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block sequence (𝑥1
∗, . . . , 𝑥𝑘

∗) with each 𝑥𝑗
∗ of the form 𝑥𝑗

∗ = (
1

𝑓(𝑛𝑗)
)∑ 𝑥𝑗,𝑛

∗𝑛𝑗
𝑛=1 , where 

(𝑥𝑗,1
∗ , . . . , 𝑥𝑗,𝑛𝑗

∗ ) is a block sequence in Q of vectors with norm at most 1, and 𝑛𝑗+1 =

𝜎(|𝑥1
∗|, . . . , |𝑥𝑗

∗|) for any 𝑗 = 2, . . . , 𝑘. 

Recall that in the case of Gowers–Maurey space the coding function depends on 

(𝑥1
∗, . . . , 𝑥𝑗

∗), not on (|𝑥1
∗|, . . . , |𝑥𝑗

∗|), which makes the space HI. In the case of Gowers space 

the basis is 1-unconditional, but including special functionals in the norming set forces 

tightness by support.  

The basic tools are formed by sequences of ℓ1-averages. A vector 𝑥 ∈ 𝑋𝑈 is called an ℓ1
𝑛-

average with constant 𝑐 ⩾ 1, 𝑛 ∈ ℕ, if 𝑥 = (
1

𝑛
) (𝑥1 +··· +𝑥𝑛) for some block sequence 𝑥1 <

···< 𝑥𝑛 with ‖𝑥𝑖‖ ⩽ 1 and ‖𝑥‖ ⩾ 1/𝑐. A block sequence of ℓ1
𝑛𝑘-averages (𝑥𝑘)𝑘=1

𝑁 ⊂ 𝑋𝑈 is 

a rapidly increasing sequence (RIS) of ℓ1-averages, if, roughly speaking, (𝑛𝑘) increases fast 

enough, with the length 𝑛𝑘 of average 𝑥𝑘 depending not only on k, but also on the support 

of 𝑥𝑘−1, and the length N of the sequence is small with respect to the length 𝑛1 of the first 

average, with all relations described in terms of the function 𝑓. 

We list now the properties of the space 𝑋𝑈 needed in the sequel. This list indicates that the 

results can be easily adapted to the case of other spaces of Gowers–Maurey type.  

First we recall the standard.  

Fact (6.1.8)[220]: ([227]). For any 𝑛 ∈ ℕ and 𝑐 > 1, every block subspace of 𝑋𝑈 contains 

an ℓ1
𝑛-average with constant c.  

We shall need also the following simple observation.  

Fact (6.1.9)[220]: For any sequence (𝑧𝑛) of ℓ1-averages of increasing length and a common 

constant and any sets (𝐷𝑛) in ℕ with inf
𝑛
‖𝑃𝐷𝑛𝑧𝑛‖ > 0, the sequence (𝑃𝐷𝑛𝑧𝑛) is a sequence 

of ℓ1-averages of increasing length and a common constant.  

We state now the canonical property of the space 𝑋𝑈, whose variations in different spaces 

of Gowers–Maurey type or Argyros–Deliyanni type are responsible for the irregular 

properties of the spaces, such as having a small (in different meanings) family of bounded 

operators. 

Fact (6.1.10)[220]: (a) Fix a seminormalized block sequence (𝑢𝑛) ⊂ 𝑋𝑈 and a 

seminormalized block sequence (𝑣𝑛) ⊂ 𝑋𝑈 of ℓ1
𝑛-averages with a constant c, satisfying 

𝑠𝑢𝑝𝑝 𝑣𝑛 ∩  𝑠𝑢𝑝𝑝 𝑢𝑚 = ∅, for all 𝑛,𝑚 ∈ ℕ. Then there are sequences (𝑤𝑘) ⊂ [𝑢𝑛], (𝑧𝑘) ⊂
[𝑣𝑛] of the form 𝑤𝑘 = ∑ 𝑎𝑛𝑢𝑛𝑛∈𝐽𝑘 , 𝑧𝑘 = ∑ 𝑎𝑛𝑣𝑛𝑛∈𝐽𝑘 , such that ‖𝑤𝑘‖ = 1, 𝑘 ∈ ℕ and 𝑧𝑘 →

0, as 𝑘 → ∞. 

(b) Fix a subsequence (𝑒𝑖𝑛) of the basis of 𝑋𝑈. Then there is a normalized sequence (𝑤𝑘) ⊂

[𝑒𝑖𝑛], 𝑤𝑘 = ∑ 𝑎𝑛𝑒𝑖𝑛𝑛∈𝐽𝑘  , such that sup
(𝑗𝑛)

∑ 𝑎𝑛𝑒𝑗𝑛𝑛∈𝐽𝑘 → 0, as 𝑘 → ∞, where the supremum 

is taken over all sequences (𝑗𝑛) ⊂ ℕ with {𝑗𝑛: 𝑛 ∈ ℕ} ∩ {𝑖𝑛: 𝑛 ∈ ℕ} = ∅.  

      The proof of (a) follows directly the lines of the proof in [227] of the fact that the space 

𝑋𝑈 satisfies assumptions of [227]. First we pass to an infinite set 𝑁 ⊂ ℕ such that any finite 

subsequence (𝑣𝑘1 , . . . , 𝑣𝑘𝑁) of (𝑣𝑛)𝑛∈𝑁 with 𝑘1 > 𝑁 forms an RIS of ℓ1-averages. Now it 

suffices to take for any 𝑘 ∈ ℕ a special functional of length k of the form  

1

√𝑓(𝑘)
∑

1

𝑓(𝑛𝑗)
∑ 𝑢𝑛

∗

𝑛∈𝐶𝑗

𝑘

𝑗=1

, 
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where 𝑢𝑛
∗ (𝑢𝑛) = 1, #𝐶𝑗 = 𝑛𝑗  , min 𝐶𝑗 > 𝑛𝑗 and the corresponding vector  

𝑤𝑘 =
√𝑓(𝑘)

𝑘
∑
𝑓(𝑛𝑗)

𝑛𝑗
∑ 𝑢𝑛
𝑛∈𝐶𝑗

𝑘

𝑗=1

. 

Then for any (𝑣𝑛) as above, we have 

√𝑓(𝑘)

𝑘
∑
𝑓(𝑛𝑗)

𝑛𝑗
∑ 𝑣𝑛
𝑛∈𝐶𝑗

𝑘

𝑗=1

⩽ 𝜀(𝑘, 𝑐), 

for some 𝜀(𝑘, 𝑐) → 0 as 𝑘 → ∞. 

In the case of subsequences of the basis, the proof is even simpler.  

Recall that Facts (6.1.8) and (6.1.10) imply immediately the following theorem.  

Theorem (6.1.11) ([224], [229])[220]: The unit vector basis of Gowers unconditional space 

𝑋𝑈 is tight by support.  

The next fact allows us to transfer an example of a sequence needed in Theorem (6.1.14) 

from Schlumprecht space to Gowers unconditional space. Recall that a basic sequence (𝑥𝑛) 
generates some subsymmetric basic sequence (�̃�𝑛) as a spreading model, if for any 

(𝑎𝑖)𝑖=1
𝑘 , 𝑘 ∈ ℕ, we have  

lim
𝑛1→∞

lim
𝑛2→∞

··· lim
𝑛𝑘→∞

‖∑𝑎𝑖𝑥𝑛𝑖

𝑘

𝑖=1

‖ = ‖∑𝑎𝑖�̃�𝑖

𝑘

𝑖=1

‖. 

We say that a basic sequence generates an ℓ1-spreading model, if it generates as a spreading 

model some basic sequence equivalent to the unit vector basis of ℓ1.  

Fact (6.1.12)[220]: The basis of 𝑋𝑈 generates the basis of Schlumprecht space as a 

spreading model.  

The proof of this fact follows the lines of the proof of [221], where the result is proved in 

the case of Gowers–Maurey space.  

Now we are ready to prove the main result. 

By Lemma (6.1.7), we obtain the following answer to Gowers’ (and thus also Problem 5.12) 

[229].  

Corollary (6.1.13)[220]: There is a bounded operator on a subspace of Gowers 

unconditional space 𝑋𝑈 which is not a strictly singular perturbation of a restriction of a 

diagonal operator on 𝑋𝑈. 

Theorem (6.1.14)[220]: There are block subspaces 𝑌 = [𝑦𝑛], 𝑍 = [𝑧𝑛] in Gowers 

unconditional space 𝑋𝑈 satisfying (𝐷1), (𝐷2) and (𝐷3) for any partition 𝐹 ∪ 𝐺 = ℕ with 

𝑃𝐹|𝑍 strictly singular the operator 𝑃𝐺|𝑌 is not strictly singular.  

Proof: We shall use the seminormalized block sequence of [231] generating an ℓ1-spreading 

model in Schlumprecht space. Recall that two vectors u, v have the same distribution, if for 

some increasing bijection 𝜌: 𝑠𝑢𝑝𝑝 𝑢 → 𝑠𝑢𝑝𝑝 𝑣 we have 𝑣(𝜌(𝑖)) = 𝑢(𝑖) for each 𝑖 ∈

𝑠𝑢𝑝𝑝 𝑢. Let 𝑢𝑗 = (
𝑓(𝑗)

𝑗
)∑ �̃�𝑖

𝑗
𝑖=1 . Take (�̃�𝑛) ⊂ 𝑆 to be the block sequence [231], that is, �̃�𝑛 =

∑ �̃�𝑛,𝑗
𝑛
𝑗=1 , where (�̃�𝑛,𝑗)𝑗=1

𝑛
 have carefully designed pairwise disjoint supports and each �̃�𝑛,𝑗 

has the same distribution as 𝑢𝑝𝑗/2, for some fixed 𝑝𝑗 ↗ ∞. The sequence (�̃�𝑛) generates an 

ℓ1-spreading model, as ‖�̃�𝑛1,𝑗 +··· +�̃�𝑛𝑝,𝑗‖ ≈ 𝑝/2 for 𝑗 ≫ 𝑝 (cf. [231]).  
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Write �̃�𝑛 = ∑ (
𝑓(𝑗)

2𝑗
)∑ �̃�𝑖𝑖∈𝐼𝑗

𝑛
𝑗=1 , #𝐼𝑗 = 𝑗, for each n and consider sequence (𝑦𝑛) ⊂ 𝑋𝑈 

defined as  

𝑦𝑛 =∑𝑣𝑛,𝑗

𝑛

𝑗=1

=∑
𝑓(𝑗)

2𝑗

𝑛

𝑗=1

∑ 𝑒𝑖
𝑖∈𝐾𝑗

, 

where the sets 𝐾𝑗 with #𝐾𝑗 = 𝑗 are pushed forward along the basis (𝑒𝑖), so that by Fact 

(6.1.12) the vectors (𝑦𝑛) form a seminormalized block sequence with the property 

‖𝑣𝑛1,𝑗 +··· +𝑣𝑛𝑝,𝑗‖ ≈ 𝑝/2 for 𝑗 ≫ 𝑝, therefore also generating an ℓ1-spreading model.  

We define the sequence (𝑧𝑛) in the following way. Take a mapping 𝜏:∪𝑛 𝑠𝑢𝑝𝑝 𝑦𝑛 → ℕ such 

that  

(j1) 𝜏|𝑠𝑢𝑝𝑝 𝑦𝑛: 𝑠𝑢𝑝𝑝 𝑦𝑛 → {1, 2, . . . , #𝑠𝑢𝑝𝑝 𝑦𝑛} is a bijection for any 𝑛 ∈ ℕ; 

(j2) 𝜏(𝑟) ⩾ 𝜏(𝑠) if and only if 𝑦𝑛(𝑟) ⩽ 𝑦𝑛(𝑠) for any 𝑛 ∈ ℕ and 𝑟, 𝑠 ∈ 𝑠𝑢𝑝𝑝 𝑦𝑛.  

Note that (j1) and (j2) imply the following property:  

(j3) 𝜏(𝑠𝑢𝑝𝑝 𝑣𝑛,𝑗) = 𝜏(𝑠𝑢𝑝𝑝 𝑣𝑚,𝑗) for any 𝑗 ⩽ 𝑛 < 𝑚. 

 

Let  

𝑧𝑛(𝑖) =
1

4𝜏(𝑖)
𝑦𝑛(𝑖) for any 𝑖 ∈  𝑠𝑢𝑝𝑝 𝑦𝑛 and 𝑧𝑛(𝑖) = 0 otherwise. 

In this way, we obtain two seminormalized block sequences (𝑦𝑛) and (𝑧𝑛) with 𝑠𝑢𝑝𝑝 𝑦𝑛 =
𝑠𝑢𝑝𝑝 𝑧𝑛, thus in particular satisfying (D1).  

Roughly speaking, the proof of Theorem (6.1.14) relies on the following three properties of 

the above sequences: for any (𝑖_𝑛) ⊂ ℕ with 𝑖𝑛 ∈ 𝑠𝑢𝑝𝑝 𝑦𝑛, 𝑛 ∈ ℕ, the projection 

𝑃{𝑖𝑛: 𝑛∈ℕ}|𝑌 is strictly singular (Claim (6.1.15)), whereas 𝑃{𝑖𝑛: 𝑛∈ℕ}|𝑍 is not strictly singular 

provided inf
𝑛
𝑧𝑛(𝑖𝑛) > 0 (Claim (6.1.16)). Moreover, the projection on the set containing 

supports of almost all (𝑣𝑛,𝑗)𝑛 for any j restricted to Y is not strictly singular (Claim (6.1.17)).  

Proof of (D2)[220]: Assume towards contradiction that inf{‖𝑦 − 𝑧‖: ‖𝑦‖ = ‖𝑧‖ = 1, 𝑦 ∈
𝑌, 𝑧 ∈ 𝑍} = 0. Thus there are some normalized block sequences (𝑤𝑘) ⊂ [𝑦𝑛] and (𝑣𝑘) ⊂
[𝑧𝑛] with ‖𝑤𝑘 − 𝑣𝑘‖ ⩽ 1/16

𝑘, 𝑘 ∈ ℕ. Thus for any (𝑐𝑘) ⊂ [−1, 1], we have  ‖∑ 𝑐𝑘𝑤𝑘𝑘 −

∑ 𝑐𝑘𝑣𝑘𝑘 ‖ ⩽
1

8
. 

Take (𝑐𝑘) ⊂ [−1, 1], let 𝑤 = ∑ 𝑐𝑘𝑤𝑘𝑘 , 𝑣 = ∑ 𝑐𝑘𝑣𝑘𝑘  and 𝐼 = {𝑖 ∈ 𝑠𝑢𝑝𝑝 𝑤: |𝑤(𝑖)| ⩾
2|𝑣(𝑖)|} and compute, using 1-unconditionality of the basis of X  

1

8
⩾ ‖∑𝑐𝑘𝑤𝑘

𝑘

−∑𝑐𝑘𝑣𝑘
𝑘

‖ ⩾ ‖∑(𝑤(𝑖) − 𝑣(𝑖))𝑒𝑖
𝑖∈𝐼

‖ ⩾
1

2
‖∑𝑤(𝑖)𝑒𝑖
𝑖∈𝐼

‖. 

Analogously compute for 𝐽 = {𝑖 ∈ 𝑠𝑢𝑝𝑝 𝑤: |𝑣(𝑖)| ⩾ 2|𝑤(𝑖)|}.  
Thus for any 𝑤 = ∑ 𝑐𝑘𝑤𝑘𝑘  with norm 1 and 𝑣 = ∑ 𝑐𝑘𝑣𝑘𝑘 , we have 

‖ ∑ 𝑤(𝑖)𝑒𝑖

𝑖∈𝑠𝑢𝑝𝑝 𝑤:
1
2
|𝑣(𝑖)|<|𝑤(𝑖)|< 2|𝑣(𝑖)|

‖ ⩾
1

4
. 

Let  

𝑤𝑘 = ∑ 𝑎𝑛𝑦𝑛
𝑛∈𝐼𝑘

= ∑ 𝑎𝑛 ∑ 𝑦𝑛(𝑖)𝑒𝑖
𝑖∈𝑠𝑢𝑝𝑝 𝑦𝑛(𝑛∈𝐼𝑘)𝑏

, 
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𝑣𝑘 = ∑ 𝑑𝑛𝑧𝑛
𝑛∈𝐼𝑘

 = ∑ 𝑑𝑛 ∑ 4−𝜏(𝑖)𝑦𝑛(𝑖)𝑒𝑖
𝑖∈𝑠𝑢𝑝𝑝 𝑦𝑛𝑛∈𝐼𝑘

. 

For any 𝑖 ∈  𝑠𝑢𝑝𝑝 𝑤, we have  
1

2
|𝑣(𝑖)| < |𝑤(𝑖)| < 2|𝑣(𝑖)| if and only if 

1

2
|𝑑𝑛| < 4

𝜏(𝑖)|𝑎𝑛| < 2|𝑑𝑛| where 𝑖 ∈ 𝑠𝑢𝑝𝑝 𝑦𝑛. 

Given 𝑛 ∈ ℕ, there is at most one 𝑖 ∈ 𝑠𝑢𝑝𝑝 𝑦𝑛 satisfying 
1

2
|𝑑𝑛| < 4

𝜏(𝑖)|𝑎𝑛| < 2|𝑑𝑛|, denote 

it by in. Hence  

1

4
⩽ ‖ ∑ 𝑤(𝑖)𝑒𝑖

𝑖∈𝑠𝑢𝑝𝑝 𝑤:
1
2
|𝑣(𝑖)|<|𝑤(𝑖)|< 2|𝑣(𝑖)|

‖ = ‖∑𝑐𝑘∑𝑎𝑛𝑦𝑛(𝑖𝑛)𝑒𝑖𝑛
𝑣∈𝐼𝑘𝑘

‖, 

which implies that for any (𝑐𝑘) we have 

‖∑𝑐𝑘 ∑ 𝑎𝑛𝑦𝑛
𝑛∈𝐼𝑘𝑘

‖ ⩽ 4‖∑𝑐𝑘 ∑ 𝑎𝑛𝑦𝑛(𝑖𝑛)𝑒𝑖𝑛
𝑛∈𝐼𝑘𝑘

‖, 

that is, (∑ 𝑎𝑛𝑦𝑛𝑛∈𝐼𝑘 )
𝑘
 and (∑ 𝑎𝑛𝑦𝑛(𝑖𝑛)𝑒𝑖𝑛𝑛∈𝐼𝑘 )

𝑘
 are equivalent. 

On the other hand, we have the following claim, which yields a contradiction. Whereas the 

above reasoning holds for any (𝑦𝑛) and (𝑧𝑛) related by means of a suitable function τ, the 

next claim uses only the fact that the spreading models of the basis of 𝑋𝑈 and of the chosen 

sequence (𝑦𝑛) are quite different, and the basis of a variant of Schlumprecht space 

dominates the basis of 𝑋𝑈.  

Claim (6.1.15)[220]: The mapping (𝑦𝑛)𝑛 → (𝑦𝑛(𝑖𝑛)𝑒𝑖𝑛)𝑛
 extends to a strictly singular 

operator.  

Proof. We shall prove that the mapping carrying (𝑦𝑛)𝑛 to the standard basis (�̅�𝑛) of some 

variant of Schlumprecht space, defined by the function 𝑓(𝑥) = √log2(𝑥 + 1) instead of 

𝑓(𝑥) = log2(𝑥 + 1), is strictly singular. As the basis of such a variant of Schlumprecht 

space is subsymmetric and dominates the basis of Gowers space, it follows that the mapping 

(𝑦𝑛)𝑛 → (𝑦𝑛(𝑖𝑛)𝑒𝑖𝑛)𝑛
 is strictly singular. 

We apply results of [233] taking into account that the basis (�̅�𝑛) of a variant of Schlumprecht 

space is subsymmetric. By [233], the basis (�̅�𝑛) is strongly dominated by ℓ1 (according to 

[233]) and by [233] satisfies for some 𝛿𝑘 ↗ 0 and any scalars (𝛼𝑛) the following: 

‖∑𝛼𝑛�̅�𝑛
𝑛

‖ ⩽ max
𝑘
𝛿𝑘 max

𝑘⩽𝑛1<𝑛2···<𝑛𝑘
∑|𝛼𝑛𝑖|

𝑘

𝑖=1

. 

Now in order to show that the mapping 𝑀: (𝑦𝑛)𝑛 → (�̅�𝑛)𝑛 is strictly singular, we repeat part 

of the proof of [233]. Take any normalized block sequence (𝑢𝑚) of (𝑦𝑛), 𝑢𝑚 =
∑ 𝛼𝑖𝑦𝑖𝑖∈𝐽𝑚 , 𝑚 ∈ ℕ. Passing to a further block sequence, as 𝑋𝑈 does not contain 𝑐0, we can 

assume that max
𝑖∈𝐽𝑚

|𝛼𝑖| → 0 as 𝑚 → ∞. Given 𝑘0 ∈ ℕ, estimate the norm of 𝑣𝑚 = 𝑀(𝑢𝑚) 

using the fact that (𝑦𝑛) is unconditional and generates an ℓ1-spreading model: 

‖∑ 𝛼𝑖�̅�𝑖
𝑖∈𝐽𝑚

‖ ⩽ max{ 𝑚𝑎𝑥
𝑘=1,...,𝑘0−1

𝛿1 ∑ |𝛼𝑛𝑖|

𝑘⩽𝑛1<···<𝑛𝑘,𝑛𝑖∈𝐽𝑚

, 𝑚𝑎𝑥
𝑘⩾𝑘0

𝛿𝑘0 ∑ |𝛼𝑛𝑖|

𝑘⩽𝑛1<···<𝑛𝑘,𝑛𝑖∈𝐽𝑚

}

⩽ max {𝛿1𝑘0𝑚𝑎𝑥
𝑖∈𝐽𝑚

|𝛼𝑖| , 2𝛿𝑘0‖𝑢𝑚‖} ⩽ max {𝛿1𝑘0𝑚𝑎𝑥𝑖∈𝐽𝑚
|𝛼𝑖| , 2𝛿𝑘0}. 
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As 𝛿𝑘 → 0, choosing sufficiently big 𝑘0 and m we can force the norm of 𝑣𝑚 to be as small 

as needed, which proves that 𝑣𝑚 → 0 and finishes the proof of strict singularity of M and 

thus the proof of Claim (6.1.15).  

Proof of (D3)[220]: First we introduce some notation. Given 𝑛 ∈ ℕ and 𝑡 ∈ 𝜏(𝑠𝑢𝑝𝑝 𝑦𝑛), 
let 𝑖𝑛,𝑡 ∈ 𝑠𝑢𝑝𝑝 𝑦𝑛 be the unique index 𝑖 ∈ 𝑠𝑢𝑝𝑝 𝑦𝑛 with 𝜏(𝑖) = 𝑡. Note that (j3) by the 

definition of (𝑣𝑛,𝑗)𝑛,𝑗 implies the following.  

(j4) for any 𝑖 ∈ 𝑠𝑢𝑝𝑝 𝑦𝑛, 𝑘 ∈ 𝑠𝑢𝑝𝑝 𝑦𝑚 with 𝜏(𝑖) = 𝜏(𝑘), we have 𝑦𝑛(𝑖) = 𝑦𝑚(𝑘).  
Thus we can write 𝑦𝑛 = ∑ 𝛾𝑡𝑒𝑖𝑛,𝑡𝑡∈𝜏(𝑠𝑢𝑝𝑝 𝑦𝑛)  for some scalars (𝛾𝑡)𝑡∈ℕ ⊂ [0, 1]. Given any 

𝑡 ∈ ℕ, let also 𝑁𝑡 = {𝑛 ∈ ℕ: 𝑡 ∈ 𝜏(𝑠𝑢𝑝𝑝 𝑦𝑛)}. 
The property (D3) follows from the next two claims. The first one is based only on properties 

of the subsequences of the basis described in Fact 2.3(b).  

Claim (6.1.16)[220]: Take 𝐹 ⊂ ℕ with 𝑃𝐹|𝑍 strictly singular. Then for any 𝑡 ∈ ℕ the set 

{𝑖𝑛,𝑡: 𝑛 ∈ 𝑁𝑡} ∩ 𝐹 is finite.  

Proof. Assume that for some 𝑡0 ∈ ℕ, the set 𝐻 = {𝑖𝑛,𝑡0: 𝑛 ∈ 𝑁𝑡0} ∩ 𝐹 is infinite. We shall 

prove that the projection 𝑃𝐻|𝑍 is not strictly singular, which will end the proof of the claim.  

Let 𝑁 = {𝑛 ∈ 𝑁𝑡0: 𝑖𝑛,𝑡0 ∈ 𝐼}. Apply Fact 2.3(b) to the sequence (𝑒𝑖𝑛,𝑡0)𝑛∈𝑁
 obtaining a 

suitable normalized sequence (𝑤𝑘) with elements of the form 𝑤𝑘 = ∑ 𝑎𝑛𝑒𝑖𝑛,𝑡0𝑛∈𝐽𝑘 , 𝑘 ∈ ℕ.  

Now note that 

‖∑ 𝑎𝑛𝑧𝑛(𝑖𝑛,𝑡0)𝑒𝑖𝑛,𝑡0
𝑛∈𝐽𝑘

‖ = ‖∑ 𝑎𝑛
𝛾𝑡0
4𝑡0
𝑒𝑖𝑛,𝑡0

𝑛∈𝐽𝑘

‖ =
𝛾𝑡0
4𝑡0
‖𝑤𝑘‖ =

𝛾𝑡0
4𝑡0
, 

Whereas 

‖∑ 𝑎𝑛 (𝑧𝑛 − 𝑧𝑛(𝑖𝑛,𝑡0)𝑒𝑖𝑛,𝑡0)

𝑛∈𝐽𝑘

‖ = ∑ ∑ 𝑎𝑛𝑧𝑛(𝑖𝑛,𝑡)𝑒𝑖𝑛,𝑡
𝑛∈𝐽𝑘𝑡∈ℕ,𝑡≠𝑡0

⩽ ∑
𝛾𝑡
4𝑡
∑ 𝑎𝑛𝑒𝑖𝑛,𝑡
𝑛∈𝐽𝑘𝑡∈ℕ,𝑡≠𝑡0

⩽ sup
𝑡∈ℕ

∑ 𝑎𝑛𝑒𝑖𝑛,𝑡
𝑛∈𝐽𝑘

. 

Since the vectors ∑ 𝑎𝑛𝑒𝑖𝑛,𝑡𝑛∈𝐽𝑘   have disjoint support with 𝑤𝑘 for any 𝑘 ∈ ℕ, the last term 

converges to zero as 𝑘 → ∞. It follows that the projection 𝑃𝐻|𝑍 is not strictly singular.  

The next claim seems to be a rather natural requirement.  

Claim (6.1.17)[220]: Take 𝐺 ⊂ ℕ with each of the sets {𝑖𝑛,𝑡: 𝑛 ∈ 𝑁𝑡}\𝐺 𝑡 ∈ ℕ, finite. Then 

the projection 𝑃𝐺|𝑌 is not strictly singular.  

Proof. Note that by (j3) for each 𝑗 ∈ ℕ, we have 𝑠𝑢𝑝𝑝 𝑣𝑛,𝑗 ⊂ 𝐺 for all but finitely many 

integers n. Let 𝐺′ =∪𝑗∈ℕ∪𝑛∈ℕ 𝑠𝑢𝑝𝑝 𝑣𝑛,𝑗 ∩ 𝐺. We shall prove that the projection 𝑃𝐺′|𝑌 is 

not strictly singular, which will end the proof of the claim.  

Recall that for 𝑗 ≫ 𝑝, we have ‖𝑣𝑛1,𝑗 +··· +𝑣𝑛𝑝,𝑗‖ ≈  𝑝/2 (see [231]). Therefore, by the 

assumption on G for any 𝑠, 𝑟 ∈ ℕ and 𝜀 > 0 we can pick 𝐿 ⊂ ℕ with #𝐿 = 𝑠 and 𝑗 ∈ ℕ, so 

that (
1

#𝐿
)∑ 𝑣𝑛,2𝑗𝑛∈𝐿  and (

1

#𝐿
)∑ 𝑣𝑛,2𝑗+1𝑛∈𝐿  are seminormalized ℓ1

𝑠-averages with constant 2, 

with 𝑠𝑢𝑝𝑝 𝑣𝑛,2𝑗 ⊂ 𝐺 and 𝑠𝑢𝑝𝑝 𝑣𝑛,2𝑗 > 𝑟 for any 𝑛 ∈ 𝐿. By the definition of (𝑦𝑛) (precisely 

since ‖𝑣𝑛,𝑗‖ ⩾
1

2
), it follows that also (

1

#𝐿
)∑ (𝑦𝑛|𝐺′)𝑛∈𝐿  and (

1

#𝐿
)∑ (𝑦𝑛|𝑁\G′)𝑛∈𝐿  are 
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seminormalized ℓ1
𝑠-averages with constant 4. It follows that we can pick a successive 

sequence (𝐿𝑠) such that the sequences (𝑢𝑠) and (𝑣𝑠) defined by the formula  

𝑢𝑠 =
1

#𝐿𝑠
∑(𝑦𝑛|𝐺′)

𝑛∈𝐿𝑠

, 𝑣𝑠 =
1

#𝐿𝑠
∑(𝑦𝑛|𝑁\𝐺′)

𝑛∈𝐿𝑠

, 𝑠 ∈ ℕ 

are seminormalized ℓ1
𝑠-averages with constant 4, for any 𝑠 ∈ ℕ.  

Now apply The sequences (𝑢𝑠) and (𝑣𝑠), obtaining a normalized sequence  

(∑ 𝑎𝑠
1

#𝐿𝑠
∑(𝑦𝑛|𝐺′)

𝑛∈𝐿𝑠𝑠∈𝐽𝑘

)

𝑘∈ℕ

, 

such that 

∑𝑎𝑠
1

#𝐿𝑠
∑(𝑦𝑛|ℕ\𝐺′)

𝑛∈𝐿𝑠𝑠∈𝐽𝑘

→ 0, 𝑘 → ∞. 

This shows that the projection 𝑃𝐺′|𝑌 is not strictly singular and ends the proof of the claim. 

In order to prove (D3), take a partition 𝐹 ∪ 𝐺 = ℕ and assume that 𝑃𝐹|𝑍 is strictly singular. 

By Claim (6.1.16), for any 𝑡 ∈ ℕ the set {𝑖𝑛,𝑡: 𝑛 ∈ 𝑁𝑡} ∩ 𝐹 = {𝑖𝑛,𝑡: 𝑛 ∈ 𝑁𝑡}\𝐺 is finite, 

whereas by Claim (6.1.17) the projection 𝑃𝐺|𝑌 is not strictly singular. This ends the proof of 

(D3) and thus the proof of Theorem (6.1.14).  

A natural question arises if one can find an operator which is not a strictly singular 

perturbation of a restriction of a diagonal operator inside any infinitely dimensional 

subspace of 𝑋𝑈. We shall discuss the proof of the above construction in any block subspace, 

with infinite RISs of special type playing the role of the basis of 𝑋𝑈 in the previous 

reasoning. 

      The construction of an operator not of the form 𝐷|𝑊 + 𝑆 in the space 𝑋𝑈 was based on 

the existence of a sequence generating an ℓ1-spreading model. As we have written above, 

the existence of such a sequence in Schlumprecht space was shown in [231], and the proof 

was based on the finite representability of 𝑐0 in Schlumprecht space. The finite 

representability of 𝑐0 in every block subspace of Schlumprecht space was later proved in 

[232], and recently a new proof of this property concerning a variant of Gowers–Maurey 

space was given in [226]. Moreover, they show that the space 𝑐0
𝑛, 𝑛 ∈ ℕ can be reproduced 

on a block sequence of a special type which also generates the basis of Schlumprecht space 

as a spreading model [226]. These block sequences of special type, which can be found in 

any block subspace, were called a special RIS (SRIS) according to their structure [226]. The 

proof rewritten in the case of Gowers unconditional space yields the first part of the 

following fact (let us note here that the technical modification of the definition of the original 

Gowers–Maurey space required for the main result of [226] are not needed for proving that 

SRIS generates as a spreading model the basis of Schlumprecht space).  

Fact (6.1.18)[220]: Every block subspace of 𝑋𝑈 contains a seminormalized SRIS (𝑥𝑖) such 

that  

(i) (𝑥𝑖) generates the basis (�̃�𝑖) of Schlumprecht space as a spreading model; 

(ii) the mapping �̅�𝑖 → 𝑥𝑖 , 𝑖 ∈ ℕ, where (�̅�𝑖) is the canonical basis of a variant of 

Schlumprecht space defined with the use of the function √𝑓 instead of 𝑓, extends 

to a bounded operator on a Schlumprecht space.  
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The proof of the second part of the above fact follows the lines of the proof of [232]. In the 

sequel, we shall use also the following simple observation: for an SRIS (𝑥𝑖) any finite 

sequence (𝑥𝑘1 , . . . , 𝑥𝑘𝑁) with 𝑘1 > 𝑁 forms an RIS of ℓ1-averages.  

Taking any sequence (𝑥𝑖) as in Fact (6.1.18), we can again transfer the sequence (�̃�𝑛) of 

[231] generating an ℓ1-spreading model from Schlumprecht space to [𝑥𝑖] by substituting the 

basis (�̃�𝑖) with (𝑥𝑖) and repeat the construction of (𝑧𝑛). Recall that �̃�𝑛 = ∑ (𝑓(𝑗)/𝑛
𝑗=1

2𝑗)∑ �̃�𝑖𝑖∈𝐼𝑗 , #𝐼𝑗 = 𝑗, for each n, and take a sequence (𝑦𝑛) ⊂ [𝑥𝑖] defined as  

𝑦𝑛 =∑𝑣𝑛,𝑗

𝑛

𝑗=1

=∑
𝑓(𝑗)

2𝑗
∑ 𝑥𝑖
𝑖∈𝐾𝑗

𝑛

𝑗=1

, 𝑛 ∈ ℕ 

again with the sets 𝐾𝑗 with #𝐾𝑗 = 𝑗 pushed forward along the sequence (𝑥𝑖) to guarantee 

that the vectors (𝑦𝑛) form a seminormalized block sequence generating an ℓ1-spreading 

model.  

Repeat the definition of the function 𝜏:∪𝑛 𝑠𝑢𝑝𝑝[𝑥𝑖]𝑦𝑛 → ℕ, taking into account the supports 

of (𝑦𝑛) with respect to the basic sequence (𝑥𝑖) instead of (𝑒𝑖). Set  

𝑧𝑛 =∑
𝑓(𝑗)

2𝑗
∑

1

4𝜏(𝑖)
𝑥𝑖

𝑖∈𝐾𝑗

𝑛

𝑗=1

, 𝑛 ∈ ℕ 

and let 𝑌 = [𝑦𝑛], 𝑍 = [𝑧𝑛]. 
In order to repeat the proof of Theorem (6.1.14), we shall need the following observation, 

which is a more precise formulation.  

Fact (6.1.19)[220]: Fix a seminormalized block sequence (𝑢𝑛) ⊂ 𝑋𝑈. Then for any 𝑐 ⩾ 1 

and 𝜀 > 0, there is a normalized vector 𝑤 = ∑ 𝑎𝑛𝑢𝑛𝑛∈𝐽 , such that ‖∑ 𝑎𝑛𝑣𝑛𝑛∈𝐽 ‖ < 𝜀, for 

any RIS of ℓ1-averages (𝑣1, . . . , 𝑣#𝐽) with constant c and with 𝑠𝑢𝑝𝑝 𝑢𝑛 ∩ 𝑠𝑢𝑝𝑝 𝑣𝑚 =

∅, 𝑛,𝑚 ∈ ℕ. 

The proof of the property (D2) for Y,Z can be rewritten in our case since (𝑥𝑖) generates (�̃�𝑖) 
as a spreading model by Fact (6.1.18)(a), (𝑦𝑛) generates an ℓ1-spreading model by [231], 

and the basis of a suitable variant of Schlumprecht space dominates (𝑥𝑖) by Fact (6.1.18)(b). 

The proof of the property (D3) requires more attention since considered projections can split 

also the supports of (𝑥𝑖). However, a small modification allows us repeat the reasoning. We 

repeat the notation of 𝑖𝑛,𝑡 for any 𝑛, 𝑡 ∈ ℕ, and 𝑁𝑡 for any 𝑡 ∈ ℕ. Again for some scalars 

(𝛾𝑡)𝑡∈ℕ ⊂ [0, 1], we have  

𝑦𝑛 = ∑ 𝛾𝑡𝑥𝑖𝑛,𝑡
𝑡∈𝜏(𝑠𝑢𝑝𝑝[𝑥𝑖]

𝑦𝑛)

, 𝑧𝑛 = ∑
𝛾𝑡
4𝑡
𝑥𝑖𝑛,𝑡

𝑡∈𝜏(𝑠𝑢𝑝𝑝[𝑥𝑖]
𝑦𝑛)

, 𝑛 ∈ ℕ. 

Then we have the following version of Claim (6.1.16).  

Claim (6.1.20)[220]: Take 𝐹 ⊂ ℕ with 𝑃𝐹|𝑍 strictly singular. Then for every 𝜀 > 0 and 𝑡 ∈

ℕ, the set {𝑖𝑛,𝑡: 𝑛 ∈ 𝑁𝑡 , ‖𝑃𝐹𝑥𝑖𝑛,𝑡‖ ⩾ 𝜀} is finite.  

Proof. On the contrary, assume that ‖𝑃𝐹𝑥𝑖𝑛,𝑡0‖ ⩾ 𝜀 for some 𝜀, 𝑡 ∈ ℕ and infinitely many 

n’s. The collection of the indices 𝑖𝑛,𝑡0 denote by H. We shall prove that the mapping 𝑃𝐽|𝑍 is 

not strictly singular, where 𝐽 =∪𝑖∈𝐻 𝑠𝑢𝑝𝑝 𝑥𝑖𝑛,𝑡0 ∩ 𝐹, which will finish the proof.  

Assume first that ((𝐼 − 𝑃𝐹) 𝑥𝑖𝑛,𝑡0)𝑛
 is seminormalized. Then by Fact (6.1.9) ((𝐼 −

𝑃𝐹) 𝑥𝑖𝑛,𝑡0)𝑛
 is a sequence of ℓ1-averages of increasing length. Pick an infinite 𝑀 ⊂ ℕ so 
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that any N elements of the sequence ((𝐼 − 𝑃𝐹) 𝑥𝑖𝑛,𝑡0)𝑛∈𝑀
 starting after Nth element form an 

RIS of ℓ1- averages. Now by Fact (6.1.19) for any 𝑘 ∈ ℕ choose a vector 𝑤𝑘 =

∑ 𝑎𝑛𝑃𝐹𝑥𝑖𝑛,𝑡0𝑛∈𝐽𝑘  , such that  ∑ 𝑎𝑛𝑥𝑖𝑛,𝑡𝑛∈𝐽𝑘 < 1/2𝑘, for any 𝑡 ∈ ℕ, 𝑡 ≠ 𝑡0 and ‖∑ 𝑎𝑛(𝐼 −𝑛∈𝐽𝑘

𝑃𝐹)𝑥𝑖𝑛,𝑡0‖ ⩽ 1/2
𝑘. It follows that 

‖𝑃𝐽 ∑ 𝑎𝑛𝑧𝑛
𝑛∈𝐽𝑘

‖ = ‖∑ 𝑎𝑛  
𝛾𝑡0
4𝑡0
𝑥𝑖𝑛,𝑡0

𝑛∈𝐽𝑘

‖ =
𝛾𝑡0
4𝑡0
‖𝑤𝑘‖ =

𝛾𝑡0
4𝑡0
, 

Whereas 

‖(𝐼 − 𝑃𝐽) ∑ 𝑎𝑛𝑧𝑛
𝑛∈𝐽𝑘

‖ = ‖ ∑ ∑ 𝑎𝑛
𝛾𝑡
4𝑡
 𝑥𝑖𝑛,𝑡

𝑛∈𝐽𝑘𝑡∈ℕ,𝑡≠𝑡0

+ ∑(𝐼 − 𝑃𝐹)
𝛾𝑡0
4𝑡
𝑥𝑖𝑛,𝑡0

𝑛∈𝐽𝑘

‖

⩽ ∑
1

4𝑡
‖∑ 𝑎𝑛𝛾𝑡𝑥𝑖𝑛,𝑡
𝑛∈𝐽𝑘

‖

𝑡∈ℕ,𝑡≠𝑡0

+
1

4𝑡0
‖∑ 𝑎𝑛(𝐼 − 𝑃𝐹)𝛾𝑡0𝑥𝑖𝑛,𝑡0
𝑛∈𝐽𝑘

‖ ⩽
1

2𝑘
. 

If lim inf𝑛 ‖(𝐼 − 𝑃𝐹)𝑥𝑖𝑛,𝑡0‖ = 0, then passing to a subsequence we can assume that 

(𝐼 − 𝑃𝐹)𝑥𝑖𝑛,𝑡0 ⩽ 1/2
𝑛. It follows straightforward that in the above inequality we can again 

estimate ‖∑ 𝑎𝑛(𝐼 − 𝑃𝐹)𝑥𝑖𝑛,𝑡0𝑛∈𝐽𝑘 ‖. Therefore, in both cases the above estimates prove that 

the projection 𝑃𝐽|𝑍 is not strictly singular, which yields a contradiction.  

On the other hand, we have the following version of Claim (6.1.17).  

Claim (6.1.21)[220]: Take 𝐺 ⊂ ℕ with (𝐼 − 𝑃𝐺)𝑥𝑖𝑛,𝑡 𝑛→∞
→    0 for any 𝑡 ∈ ℕ. Then 𝑃𝐺|𝑌 is not 

strictly singular.  

Proof. For G, as in the claim by the definition of (𝑦𝑛) and τ, we have (𝐼 − 𝑃𝐺)𝑣𝑛,𝑗
𝑛→∞
→    0 

for every j. Now we repeat the reasoning from the proof of Claim (6.1.17) defining 𝐺′ in the 

same way and choosing successive 𝐿𝑠 ⊂ ℕ in such a way that the vectors  

𝑤𝑠 =
1

#𝐿𝑠
∑ 𝑣𝑛,2𝑗
𝑛∈𝐿𝑠

, 𝑥𝑠 =
1

#𝐿𝑠
∑ 𝑣𝑛,2𝑗+1
𝑛∈𝐿𝑠

, 𝑠 ∈ ℕ 

are seminormalized ℓ1
𝑠-averages with constant 4 and satisfying additionally the estimate 

‖(𝐼 − 𝑃𝐺)𝑣𝑛,2𝑗‖ < 1/2
𝑛. The last condition guarantees that (𝑤𝑠)𝑠 and (𝑃𝐺′𝑤𝑠)𝑠 are 

equivalent, which allows for repeating the rest of the proof of Claim (6.1.17).  

Now in order to obtain the property (D3) for Y and Z, take any partition 𝐹 ∪ 𝐺 = 𝑁 and 

assume that 𝑃𝐹|𝑍 is strictly singular. Then by Claim (6.1.20) for any 𝑡 ∈ ℕ, we have 

𝑃𝐹(𝑥𝑖𝑛,𝑡) 𝑛→∞ 
→   0, which by Claim (6.1.21) implies that 𝑃𝐺|𝑌 is not strictly singular. Thus we 

proved that subspaces 𝑌 = [𝑦𝑛] and 𝑍 = [𝑧𝑛] satisfy (D1)–(D3). As by Fact (6.1.18), such 

block subspaces can be found in any block subspace of 𝑋𝑈, by Lemma (6.1.7) and a standard 

perturbation argument we get the following theorem.  

Theorem (6.1.22)[220]: For any infinitely dimensional subspace X of Gowers 

unconditional space 𝑋𝑈, there is an operator defined on a subspace of X which is not a 

strictly singular perturbation of a restriction of a diagonal operator on 𝑋𝑈.  

We close with an observation that the ‘diagonal + strictly singular’ property holds for block 

subspaces of 𝑋𝑈. Namely, we prove the following version of [222] in the case of Gowers 

unconditional space, generalizing [230]. 
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Proposition (6.1.23)[220]: Let 𝑋𝑈 be Gowers unconditional space, Y be a block subspace 

of 𝑋𝑈. Then  

(i) any bounded diagonal-free operator 𝑇: 𝑌 → 𝑋𝑈 is strictly singular; 

(ii) any bounded operator 𝑇: 𝑌 → 𝑋𝑈 is a strictly singular perturbation of a restriction 

of a diagonal operator on 𝑋𝑈. 

Proof. By Proposition (6.1.2), as 𝑋𝑈 is tight by support, the second part follows from the 

first part. The proof of the first part is a variant of the proof of [222] in our setting, which 

uses technique of [223]. We include it for the sake of completeness.  

Take a bounded operator : 𝑌 → 𝑋𝑈 , where 𝑌 = [𝑦𝑘] is a block subspace of 𝑋𝑈. Assume that 

T is diagonal-free, that is, 𝑠𝑢𝑝𝑝 𝑇𝑦𝑘 ∩ 𝑠𝑢𝑝𝑝 𝑦𝑘 = ∅ for each 𝑘 ∈ ℕ. We shall prove that 

for any sequence of (𝑥𝑛) of normalized ℓ1
𝑛-averages 𝑇𝑥𝑛 converges to zero. It follows that 

T is strictly singular, which ends the proof of the proposition.  

Fix a block sequence (𝑥𝑛) ⊂ [𝑦𝑘] of normalized ℓ1
𝑛-averages. Passing to subsequence, after 

small perturbation, we can assume that (𝑇𝑥𝑛 + 𝑥𝑛)𝑛∈𝑁 is a block sequence. Write each 𝑥𝑛 

as 𝑥𝑛 = ∑ 𝑎𝑘𝑦𝑘𝑘∈𝐴𝑛 . For every 𝐵 ⊂ ℕ, denote by 𝑅𝐵 the projection on [𝑒𝑗: 𝑗 ∈

∪𝑖∈𝐵 𝑠𝑢𝑝𝑝 𝑦𝑖].  
Claim (6.1.24) (cf. [222])[220]: For any partitions 𝐴𝑛 = 𝐵𝑛 ∪ 𝐶𝑛, 𝑛 ∈ ℕ, we have 

lim
𝑛
𝑅𝐶𝑛𝑇𝑅𝐵𝑛𝑥𝑛 = 0.  

Proof. Take partitions 𝐴_𝑛 = 𝐵𝑛 ∪ 𝐶𝑛, 𝑛 ∈ ℕ, and assume inf
𝑛∈𝑁

𝑅𝐶𝑛𝑇𝑅𝐵𝑛𝑥𝑛 > 0 for some 

infinite 𝑁 ⊂ ℕ. Then, as T is bounded, inf
𝑛∈𝑁

𝑅𝐵𝑛𝑥𝑛 > 0. By Fact (6.1.9), the sequence 

(𝑅𝐵𝑛𝑥𝑛)𝑛∈𝑁
 is also a sequence of ℓ1-averages of increasing length with a common constant. 

Apply Fact (6.1.10)(a) to the seminormalized block sequence 𝑢𝑛 = 𝑅𝐶𝑛𝑇𝑅𝐵𝑛𝑥𝑛 and 𝑣𝑛 =

𝑅𝐵𝑛𝑥𝑛, 𝑛 ∈ 𝑁, in order to obtain sequences (𝑧𝑘) and (𝑤𝑘) with 𝑧𝑘 = ∑ 𝑏𝑛𝑅𝐵𝑛𝑥𝑛𝑛∈𝐽𝑘 , 𝑤𝑘 =

∑ 𝑏𝑛𝑅𝐶𝑛𝑇𝑅𝐵𝑛𝑥𝑛𝑛∈𝐽𝑘 , 𝑤𝑘 = 1, 𝑘 ∈ ℕ and 𝑧𝑘 → 0. This contradicts the boundedness of T and 

ends the proof of the claim. 

Let now  

P𝑛 = {
{(𝐵, 𝐶): 𝐵 ∪ 𝐶 = 𝐴𝑛, 𝐵 ∩ 𝐶 = ∅, #𝐵 = #𝐶 = #

𝐴𝑛
2
}  𝑖𝑓 𝐴𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛,

{(𝐵, 𝐶): 𝐵 ∪ 𝐶 = 𝐴𝑛, 𝐵 ∩ 𝐶 = ∅, |#𝐵 − #𝐶| = 1}     𝑖𝑓 𝐴𝑛 𝑖𝑠 𝑜𝑑𝑑,
 

and set 𝐿𝑛 to be the integer part of #𝐴𝑛/2. 

Claim (6.1.25) (cf. [222])[220]: 𝑅𝐴𝑛𝑇 𝑥𝑛 = (
𝜆𝑛

#P𝑛
)∑ 𝑅𝐵𝑇 𝑅𝐶𝑥𝑛(𝐵,𝐶)∈P𝑛

, where  

𝜆𝑛 =

{
 
 

 
 2𝐿𝑛(2𝐿𝑛 − 1)

𝐿𝑛
2

     𝑖𝑓 𝐴𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛,

2(2𝐿𝑛 + 1)

𝐿𝑛 + 1
        𝑖𝑓 𝐴𝑛 𝑖𝑠 𝑜𝑑𝑑.

 

Proof. Note first that  

𝑅𝐴𝑛𝑇𝑥𝑛 = 𝑅𝐴𝑛∑𝑎𝑘 ( ∑ 𝑒𝑗
∗ (𝑇𝑦𝑘)𝑒𝑗

𝑗∉𝑠𝑢𝑝𝑝 𝑦𝑘

)

𝑘

 since 𝑠𝑢𝑝𝑝 𝑦𝑘 ∩ 𝑠𝑢𝑝𝑝 𝑇𝑦𝑘 = ∅ 

= ∑ ∑ (∑ 𝑎𝑘𝑒𝑗
∗(𝑇𝑦𝑘)

𝑘:𝑘≠𝑖

)𝑒𝑗
𝑗∈𝑠𝑢𝑝𝑝 𝑦𝑖𝑖∈𝐴𝑛

, 
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whereas for any partition (𝐵, 𝐶) of 𝐴𝑛 we have  

𝑅𝐵𝑇𝑅𝐶𝑥𝑛 =∑ ∑ (∑𝑎𝑘𝑒𝑗
∗(𝑇𝑦𝑘)

𝑘∈𝐶

)𝑒𝑗
𝑗∈𝑠𝑢𝑝𝑝 𝑦𝑖𝑖∈𝐵

. 

Fix 𝑖 ∈ 𝐴𝑛 and 𝑗 ∈ 𝑠𝑢𝑝𝑝 𝑦𝑖. We shall prove that  

∑ 𝑎𝑘𝑒𝑗
∗ (𝑇 𝑦𝑘)

𝑘:𝑘≠𝑖

=
𝜆𝑛
#P𝑛

∑ 𝑒𝑗
∗(𝑅𝐵𝑇𝑅𝐶𝑥𝑛)

(𝐵,𝐶)∈P𝑛

. 

Indeed, by the definition of 𝑅𝐵, if 𝑒𝑗
∗(𝑅𝐵𝑇𝑅𝐶  𝑥𝑛) ≠ 0, then 𝑖 ∈ 𝐵. Thus for any 𝑘 ≠ 𝑖, there 

are as many terms 𝑎𝑘𝑒𝑗
∗(𝑇𝑦𝑘) in the sum ∑ 𝑒𝑗

∗(𝑅𝐵𝑇 𝑅𝐶𝑥𝑛)(𝐵,𝐶)∈P𝑛
 as is the cardinality of 

the set {(𝐵, 𝐶) ∈ P𝑛: 𝑖 ∈ 𝐵, 𝑘 ∈ 𝐶}. The latter is equal to #P𝑛/𝜆𝑛, which ends the proof of 

the claim.  

The following claim ends the proof of Proposition (6.1.23).  

Claim (6.1.26)[220]: lim
𝑛
𝑇 𝑥𝑛 = 0. 

Proof. Assume inf
𝑛∈𝑁
‖𝑇 𝑥𝑛‖ > 0 for some infinite 𝑁 ⊂ ℕ. Note that 𝐴𝑛𝑇𝑥𝑛 → 0. Indeed, by 

Claim (6.1.25), 𝐴𝑛𝑇𝑥𝑛 = (
𝜆𝑛

#P𝑛
)∑ 𝑅𝐵𝑇 𝑅𝐶  𝑥𝑛(𝐵,𝐶)∈P𝑛

 for some 0 < 𝜆𝑛 ⩽ 4. On the other 

hand, by Claim (6.1.24) we have  

lim
𝑛
(sup{‖𝑅𝐶𝑇𝑅𝐵𝑥𝑛‖: (𝐵, 𝐶)𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 𝑜𝑓 𝐴𝑛}) = 0. 

Hence, after small perturbation, we can assume that 𝑠𝑢𝑝𝑝 𝑇𝑥𝑛 ∩ 𝑠𝑢𝑝𝑝 𝑥𝑛 = ∅, 𝑛 ∈ 𝑁 with 

N being infinite. Apply Fact (6.1.10)(a) to 𝑢𝑛 = 𝑇 𝑥𝑛 and 𝑣𝑛 = 𝑥𝑛, 𝑛 ∈ 𝑁, in order to obtain 

sequences (𝑧𝑘) and (𝑤𝑘) with 𝑧𝑘 = ∑ 𝑏𝑛𝑥𝑛𝑛∈𝐽𝑘 , 𝑤𝑘 = ∑ 𝑏𝑛𝑇𝑥𝑛𝑛∈𝐽𝑘 , ‖𝑤𝑘‖ = 1, 𝑘 ∈ ℕ and 

𝑧𝑘 → 0, which contradicts boundedness of T.  

Section (6.2): Separable ℒ∞-Spaces 

Aharoni and Lindenstrauss gave in [235] an example of two non-isomorphic ℒ∞-

spaces which are uniformly homeomorphic. The spaces considered in such an example were 

non-separable. They asked whether a similar result holds in the separable setting or not. It 

was asked if 𝑐0 and 𝐶[0, 1] (or 𝑐0 and 𝐶(𝜔𝜔)) could be uniformly homeomorphic. This last 

equation was answered negatively by Johnson, Lindenstrauss and Schechtman [89] who 

proved the following fundamental result on the uniform structure of 𝐶(𝐾)-spaces:  

Theorem (6.2.1)[234]: If a 𝐶(𝐾)-space is uniformly homeomorphic to 𝑐0, then it is 

isomorphic to 𝑐0. 

However, the uniform structure of separable ℒ∞-spaces seems to be not completely clear. 

Actually, the following general question about the uniform structure of Banach spaces was 

raised in [89]: Is every separable ℒ𝑝-space, with 1 ≤  𝑝 ≤  ∞, determined by its uniform 

structure? A Banach space is determined by its uniform structure if it is isomorphic to every 

Banach space to which it is uniformly homeomorphic. We are interested only in the case 

𝑝 =  ∞. In this case, there is a partial result due to Kalton. He gave an example of two non-

isomorphic separable ℒ∞-spaces which are coarsely homeomorphic, see [245]. So, as far as 

we know, the problem to decide if every separable ℒ∞-space is determined by its uniform 

structure remains open. We give an example of two separable ℒ∞-spaces which are 

uniformly homeomorphic but not linearly isomorphic. This completes Kalton’s result. The 

approach is based on a deep construction of Kalton in the nonlinear setting. The main idea 

is to combine such a construction with one of the exotic Bourgain–Pisier spaces [103]. The 

way to do it is to use a well-known technique of homological algebra: The push-out space. 

This technique has the skill to mix nicely the two quoted constructions. On one hand, the 
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resulting push-out space inherits the nonlinear properties of Kalton’s construction. On the 

other hand, it receives the ℒ∞-structure and the Schur property of the Bourgain–Pisier 

spaces. This is enough to show that separable ℒ∞-spaces are not uniquely determined by its 

uniform structure. However, it follows from the procedure that one of the spaces in the 

example is a Schur space. We go a step further giving a second example: There exist two 

non-isomorphic separable ℒ∞-spaces containing 𝑐0 (and thus failing to be Schur spaces) 

which are uniformly homeomorphic. This construction is much more delicate. It involves 

the uncomplemented copy of ℓ1 inside ℓ1 given by Bourgain [237] and the twin brother of 

the push-out space: The pull-back space. The juxtaposition of these two examples gives an 

unexpected result: We find that there are separable ℒ∞-spaces whose uniform structure 

determines, at least, three different linear structures.  

We contain all the necessary background to follow. We gathered in three devoted to 

homological algebra, linear Banach space theory and nonlinear theory respectively. We 

contain our first example while deal with the second and much more elaborated example. 

The end contains the aforementioned result about an ℒ∞-space whose uniform structure 

determines, at least, three different linear structures. 

We recall some basic tools from homological algebra in the Banach space setting. The reader 

can find all the necessary details in [238]. Let 𝑉 ,𝑊, 𝑋, 𝑌 , 𝑍 be Banach spaces. A short exact 

sequence is a diagram like  

0 
            
→    𝑍  

   𝑗       
→    𝑌 

     𝑞    
→   𝑋 

             
→   0                            (1)  

where the morphisms are linear and such that the image of each arrow is the kernel of the 

next one. This condition implies that 𝑍 is a subspace of 𝑌 and thanks to the Open Mapping 

Theorem we find that 𝑋 is isomorphic to 𝑌/𝑗 (𝑍). We usually refer to 𝑌 as a twisted sum of 

𝑍 and 𝑋 (in that order). The twisted sum 𝑌 is trivial if 𝑗 (𝑍) is complemented in  ; otherwise 

is nontrivial. In the same line, we say the sequence (1) splits or is trivial if there is a bounded 

linear map 𝑅 ∶  𝑌
         
→  𝑍 such that 𝑅 ∘  𝑗 =  𝐼𝑑𝑍. 𝑅 receives the name of a retraction for 𝑗 . 

In this case, it is not hard to check that 𝑌 is isomorphic to 𝑍 ⊕  𝑋. Of course, trivial twisted 

sums correspond to trivial sequences. We say 𝒫 is a three space property if for every short 

exact sequence (1) where 𝑍, 𝑋 have property 𝒫 then 𝑌 has also property 𝒫. Let us introduce 

the Push-out and Pull-back constructions as in [241].  

A commutative diagram 

                                            (2) 
is called a push-out of 
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provided that for every commutative diagram 

 
there is a unique morphism 𝑤 ∶  𝑃𝑂 

          
→   𝑊 so that 𝛼 =  𝑤𝐽 , 𝛽 =  𝑤𝐼 . There is a short 

description for the space 𝑃𝑂 in (2) called canonical push-out and defined directly as  

𝑃𝑂 =  (𝑌 ⊕1  𝑉 )/�̅�  
Endowed with the natural quotient norm; and with 𝐼 and 𝐽 the compositions of the natural 

mappings of 𝑌 and 𝑉 into 𝑌 ⊕1  𝑉 with the quotient map from 𝑌 ⊕1  𝑉 onto 𝑃𝑂. Given 

the sequence (1) and an into-isomorphism 𝑖 ∶  𝑍 
          
→   𝑉 , we may complete (2) to produce a 

commutative push-out diagram 

 
The sequence in the second row of the diagram above is called the push-out sequence of the 

sequence (1) and 𝑖. 
A commutative diagram 

                                             (3) 
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is called a pull-back of 

 
provided that for every commutative diagram 

 
there is a unique morphism 𝑤 ∶  𝑊 

          
→   𝑃𝐵 so that 𝛼 =  𝑄𝑤, 𝛽 =  𝑃 𝑤. There is a short 

description for the space 𝑃𝐵 of (3) called the canonical pull-back and defined as 

𝑃𝐵 =   (𝑦, 𝑣) ∈  𝑌 ⊕∞  𝑉 ∶  𝑞(𝑦)  =  𝑝(𝑣) . 
Given the sequence (1) and a quotient map 𝑝 ∶  𝑉 

           
→    𝑋, we may complete the diagram (3) 

to produce a commutative pull-back diagram 

 
The sequence in the first row of the diagram above is called the pull-back sequence of the 

sequence (1) and 𝑝.  

        We need to introduce the notion of a quasi-linear map and some basic facts related. 

This notion is necessary only to follow our proof of the technical Lemma (6.2.13). This 

lemma is essential to construct our second example but not the first Quasi-linear maps  

      The theory developed by Kalton [242] and Kalton and Peck [246] establishes that there 

is a correspondence between exact sequences  

0
           
→     𝑍 

           
→   𝑌

           
→   𝑋

           
→   0, 

and quasi-linear maps ℱ from 𝑋 to 𝑍. By a quasi-linear map ℱ from 𝑋 to 𝑍, we mean a 

homogeneous map from 𝑋 with values in 𝑍 and satisfying   

‖ℱ ( 𝑥 + �́�)  −  ℱ (𝑥) −  ℱ  (𝑥′)‖𝑍 ≤  𝐾 (‖𝑥‖ + ‖𝑥
′‖),  

for some constant 𝐾 and all 𝑥, 𝑥′  ∈  𝑋. Given a quasi-linear map ℱ from 𝑋 to 𝑍 we can 

construct a short exact sequence 0 
          
→   𝑍 

           
→    𝑌 

           
→    𝑋 

           
→    0; the space 𝑌 may be 

identified with 𝑍 ⊕  𝑋 endowed with the quasi-norm   
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‖(𝑧, 𝑥)‖   =  ‖ 𝑧 −  ℱ (𝑥)‖𝑍  +  ‖𝑥‖𝑋. 
 It is usual to denote 𝑌 as 𝑍 ⊕ℱ  𝑋 to make explicit the role of ℱ. The converse also holds, 

actually it can be proved:  

Theorem (6.2.2)[234]: There is a correspondence between twisted sums 𝑍 ⊕ℱ  𝑋 and 

quasi-linear maps from 𝑋 to 𝑍.  

     Full details can be found in [242], [246] or [238]. According to the previous theorem it 

is useful to write 

0
             
→   𝑍

             
→   𝑌

             
→   𝑋

             
→   0 ≡  ℱ , 

to make explicit the role of the correspondence between the exact sequence and ℱ – the 

corresponding quasi-linear map provided by Theorem (6.2.2). This notation works nicely to 

identify quasi-linear maps in commutative diagrams. More specifically, in a pull-back 

diagram we may identify the quasi-linear maps as follows 

 
That is, if ℱ denotes the quasi-linear map representing the sequence (1), then the pull-back 

sequence with the operator 𝑡 can be identified with ℱ ∘ 𝑡. This fact follows from a close 

inspection of the proof of Theorem (6.2.2).  

It is also very useful to introduce the notion of equality, that is, when two quasi-linear maps 

are “the same”. We shall say that two quasi-linear maps ℱ, 𝐺 from 𝑋 to 𝑍 are equivalent, 

and write 

 ℱ ≡  𝐺,  
if there is a bounded linear map 𝑇 ∶  𝑍 ⊕ℱ  𝑋 

          
→   𝑍 ⊕𝐺  𝑋 making commutative the 

following diagram: 

 
If such a 𝑇 exists then it must be an isomorphism by the 3-lemma (see e.g. [238]). Note that 

if ℱ ≡  0 then ℱ induces the ordinary topological direct sum 𝑍 ⊕  𝑋; or equivalently, the 

short exact sequence 0 
           
→    𝑍 

           
→   𝑍 ⊕ℱ  𝑋 

        
→ 𝑋

         
→  0 splits. We recall the following 

important theorem [246]: 

Theorem (6.2.3)[234]: Let ℱ, 𝐺 be quasi-linear maps from 𝑋 to 𝑍. The following conditions 

are equivalent:  

(i) ℱ ≡  𝐺.  

(ii) There exists a constant 𝑀 and a linear (not necessarily bounded) map 𝐴 ∶  𝑋 
           
→   𝑍 such 

that   

                            ‖ℱ (𝑥)  −  𝐺(𝑥)  −  𝐴(𝑥)‖ ≤  𝑀‖𝑥‖, 𝑥 ∈  𝑋.  
     Given two quasi-linear maps ℱ, 𝐺 from 𝑋 to 𝑍 it is a routine to check that also ℱ −  𝐺 is 

a quasi-linear map from 𝑋 to 𝑍. Equipped with the theorem above it is trivial to check 

Corollary (6.2.4)[234]:  

ℱ ≡  𝐺 ⟺  ℱ −  𝐺 ≡  0. 
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      Our notation for Banach spaces is standard, see e.g. [249]. We need to recall a few 

classes of operators acting between Banach spaces: strictly singular, approximable, compact 

and weakly compact. Recall that an operator is said to be strictly singular if it is never an 

isomorphism when restricted to an infinite dimensional subspace. An operator 𝑡 ∶  𝑋 
          
→   𝑋 is said to be an approximable operator if there exists a sequence (𝑡𝑛)𝑛=1

∞  of finite 

rank operators such that ‖𝑡 − 𝑡𝑛‖ 
          
→   0 𝑎𝑠 𝑛 

         
→   ∞. Closely related to this is the concept 

of compact operator. We say that 𝑇 ∶  𝑋 
          
→   𝑋 is compact (respectively weakly compact) 

if 𝑇 (𝐵(𝑋)) is a relatively compact (respectively weakly compact) set. We will use the well-

known fact that every compact operator 𝑇 ∶  𝑐0  
          
→   𝑐0 is approximable; see [249].  

       We also need to recall a few isolated properties of some Banach spaces: the Schur 

property, to be an ℒ∞-space and to have Pełczynski’s property (V). We recall that a Banach 

space ´ 𝑋 has the Schur property (or 𝑋 is a Schur space) if weak and norm sequential 

convergences coincide in 𝑋. We say that 𝑍 is an ℒ∞ ,𝜆-space if and only if the following 

holds: For every finite dimensional subspace ℱ of 𝑍 one may find a further finite 

dimensional subspace 𝐺 of 𝑍 such that ℱ ⊆  𝐺 and 𝑑(𝐺, ℓ∞
𝑑𝑖𝑚𝐺  ) ≤  𝜆. Then we write that 

𝑍 is an ℒ∞-space if 𝑍 is an ℒ∞,𝜆-space for some 𝜆. To finish, a Banach space 𝑋 has 

Pełczy´nski’s property (V) if every operator on 𝑋 is either weakly compact or an 

isomorphism on a copy of 𝑐0. It is well known that 𝐶(𝐾)-spaces have Pełczynski’s property 

(V) ´ [251].  

          We finish by quoting a couple of deep results that we will need later. The first one is 

due to Bourgain and Pisier and will be employed in the first example; while the second 

result, due to Bourgain, will be used only in our second example. In [103], Bourgain and 

Pisier showed that for every separable Banach space 𝑋 and 𝜆 >  1, 𝑋 can be embedded into 

some ℒ∞,𝜆-space, namely ℒ∞,𝜆(𝑋), in such a way that the corresponding quotient space 

ℒ∞,𝜆(𝑋)/𝑋 has the Schur property. In other words,  

Theorem (6.2.5)[234]: (Bourgain–Pisier). Given a separable Banach space 𝑋, there is a 

short exact sequence 

 0 
           
→    𝑋

           
→     ℒ∞,𝜆(𝑋)

           
→    𝑆 

           
→   0    (𝐵𝑃), 

 where 𝑆 =  ℒ∞,𝜆(𝑋)/𝑋 has the Schur property.  

       As mentioned before, our second example requires a deep result of Bourgain [237]. 

Roughly speaking, this result provides uncomplemented copies of ℓ1 in ℓ1. We may state 

the result as follows:  

Theorem (6.2.6)[234]: (Bourgain). There exists a nontrivial exact sequence  

0 
           
→   ℓ1(ℓ1

𝑛)  
           
→    ℓ1(ℓ1

𝑛)  
           
→   ℓ1(𝐴𝑛) 

           
→    0     (𝐵). 

Since Bourgain’s proof is local and it is well known that 𝑐0(ℓ∞
𝑛 ) is isomorphic to 𝑐0, it is 

not hard to see that the sequence above has a nontrivial predual. This is Corollary (6.2.4). 

There exists a nontrivial exact sequence  

0 
           
→    𝑐0(  𝐴𝑛

∗  )  
     𝑖      
→    𝑐0   

     𝑝      
→     𝑐0  

           
→    0      (𝐵∗). 

In other words (𝐵∗) ∗ =  (𝐵). The sequence (𝐵∗) is the new ingredient for the second 

example. Observe that, by the definition of short exact sequence, we infer that 𝑐0(𝐴𝑛
∗ ) is a 

subspace of 𝑐0. It is well known that every subspace of 𝑐0 contains a further isomorphic 

copy of 𝑐0; see e.g. [236]. Thus 𝑐0(𝐴𝑛
∗ ) contains an isomorphic copy of 𝑐0. This last fact 

will be used later.  

       Let 𝑋, 𝑌 be Banach spaces and suppose 𝜙 ∶  𝑋 
          
→   𝑌 is any mapping. We define the 

modulus of continuity of 𝜙 by  
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                    𝜔𝜙(𝑡)  =  sup {‖𝜙(𝑥) −  𝜙(𝑦)‖: ‖𝑥 −  𝑦‖ ≤  𝑡}  , 𝑡 >  0.  

We say that 𝜙 is uniformly continuous if  

lim
𝑡
 
→0
𝜔𝜙(𝑡)  =  0. 

The following notion will be frequently used through. Given a quotient map 𝑄 ∶  𝑌 
         
→   𝑋, 

we say that 𝑄 admits or has a uniformly continuous section if there is a uniformly continuous 

map  

𝜙 ∶  𝑋 
            
→    𝑌 

such that 𝑄 ∘ 𝜙 =  𝐼𝑑𝑋. The following easy proposition shows that the existence of 

uniformly continuous sections provides uniformly homeomorphic spaces. 

Proposition (6.2.7)[234]: Assume we have a short exact sequence  

0 
           
→    𝑍  

           
→   𝑌 

      𝑄     
→     𝑋 

           
→    0, 

where the quotient 𝑄 admits a uniformly continuous section. Then 𝑍 ⊕  𝑋 and 𝑌 are 

uniformly homeomorphic.  

Proof. Let us denote by 𝜙 a uniformly continuous section for 𝑄. We define �̂� ∶  𝑍 ⊕
 𝑋 

           
→    𝑌 by the rule 

 �̂�(𝑧, 𝑥)   =  𝑧 +  𝜙(𝑥) 
 with inverse  

�̂�−1(𝑦)  = (𝑦 −  𝜙 ( 𝑄(𝑦)), 𝑄(𝑦)) .  

It is a routine calculation to check that �̂� gives a uniformly continuous homeomorphism.  

      The rest of definitions we need are taken from [243]. See [243] for further details. We 

define a gauge to be a function 𝜔 ∶  [0,∞) 
           
→    [0,∞) which is a continuous increasing 

subadditive function with 𝜔(0)  =  0 and 𝜔(𝑡) ≥ 𝑡 for 0 ≤  𝑡 ≤  1. We say 𝜔 is strongly 

normalized if 𝜔(𝑡)  =  𝑡 for all 𝑡 ≥  1 and nontrivial if lim
𝑡→0
𝜔(𝑡)/𝑡   =  ∞.  

       Let 𝑋 be a Banach space and let us denote by 𝑑 the natural metric 𝑑(𝑥, 𝑦)  =  ‖𝑥 − 𝑦‖. 
If 𝜔 is a gauge then we can form a new metric replacing 𝑑 by 𝜔 ∘  𝑑. We denote 𝐿𝑖𝑝𝜔(𝑋) ∶
=  𝐿𝑖𝑝(𝑋, 𝜔 ∘  𝑑) the space of real-valued Lipschitz functions over 𝑋 for which 𝑓 (0)  =  0 

under the Lipschitz norm  

‖𝑓 ‖𝐿𝑖𝑝𝜔  =  𝑠𝑢𝑝 {
𝑓 (𝑥) −  𝑓 (𝑦)

𝜔(‖𝑥 −  𝑦‖)
: 𝑥 ≠  𝑦} . 

In this case we write  

ℱ𝜔(𝑋) ∶=  ℱ𝜔(𝑋, 𝜔 ∘  𝑑) 
as the canonical predual of Lip(𝑋,𝜔 ∘  𝑑), that is, the closed linear span of the point 

evaluations 𝛿𝑥 (𝑓 )  =  𝑓 (𝑥) 𝑖𝑛 𝐿𝑖𝑝𝜔(𝑋)
∗. The space ℱ𝜔(𝑋) is known as the Arens–Eells 

space or free-Lipschitz space on the metric space (𝑋,𝜔 ∘  𝑑).       
      Let us recall a couple of key facts that are necessary through. The first one is that ℱ𝜔(𝑋) 
is a Schur space if 𝜔 is nontrivial [243]. As it was observed in [243], the barycentric map 

𝛽 ∶  ℱ𝜔(𝑋)  
       
→  𝑋 is a quotient map for a strongly normalized 𝜔. Consequently, the 

evaluation map 𝛿 ∶  𝑋 
         
→   ℱ𝜔(𝑋) is a uniformly continuous section for the quotient map 𝛽 

with modulus of continuity 𝜔. All these can be summarized in the following deep result of 

Kalton which is the key for our construction:  

Theorem (6.2.8) (Kalton)[234]: Fix 𝜔 a nontrivial strongly normalized gauge. Given a 

Banach space 𝑋, there exists a short exact sequence  

0 
          
→   𝐾𝑒𝑟𝛽 

          
→   ℱ𝜔(𝑋)

       𝛽      
→      𝑋 

          
→   0     (𝐾), 

 verifying the following conditions:  
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(i) 𝐹𝜔(𝑋) is a Schur space.  

(ii) 𝛽 admits a uniformly continuous section with modulus of continuity 𝜔.  

     If we apply Proposition (6.2.7) to the exact sequence of the theorem above, we find that 

𝐾𝑒𝑟𝛽 ⊕  𝑋 is uniformly homeomorphic to 𝐹𝜔(𝑋). If moreover, 𝑋 fails the Schur property 

then 𝐹𝜔(𝑋) and 𝐾𝑒𝑟𝛽 ⊕  𝑋 are not linearly isomorphic; otherwise 𝑋 would inherit the 

Schur property. This is Kalton’s strategy to provide examples of non-isomorphic but 

uniformly homeomorphic Banach spaces. We use the same idea in the first counterexample.  

     Our first example follows trivially from the next proposition that can be regarded as an 

ℒ∞-analogue of [243].  

Proposition (6.2.9)[234]: Let 𝑋 be a separable  ℒ∞-space. There is a separable  ℒ∞-space 

with the Schur property 𝑌 and a separable  ℒ∞-space 𝑍 which contains a complemented 

copy of 𝑋 so that 𝑌 and 𝑍 are uniformly homeomorphic. 

Proof. Fix 𝜔 a nontrivial strongly normalized gauge and pick a separable  ℒ∞-space 𝑋. 

Theorem (6.2.8) provides us with a short exact sequence  

0 
           
→    𝐾𝑒𝑟𝛽 

           
→    𝐹𝜔(𝑋)   

    𝛽      
→    𝑋 

            
→    0     (𝐾), 

where 𝐹𝜔(𝑋) is a Schur space and 𝛿 – the evaluation map – is a uniformly continuous section 

for 𝛽 with modulus of continuity 𝜔. Since Ker𝛽 is separable, we may isometrically embed 

such a kernel into a Bourgain–Pisier space, namely  ℒ∞(𝐾𝑒𝑟𝛽), and thus produce a short 

exact sequence  

0 
           
→    𝐾𝑒𝑟𝛽  

      𝑖     
→     ℒ∞(𝐾𝑒𝑟𝛽)  

            
→    𝑆 

           
→    0,  

where 𝑆 has the Schur property. We combine both sequences and obtain a push-out diagram: 

 (4) 
The push-out sequence 

0 
            
→     ℒ∞(𝐾𝑒𝑟𝛽)  

            
→    𝑃𝑂  

     𝐵      
→     𝑋 

           
→    0       (𝐾𝑋) 

is the key.  Actually, let us check that 𝑌 ∶=  𝑃𝑂 and 𝑍 ∶=   ℒ∞(𝐾𝑒𝑟𝛽)  ⊕  𝑋 satisfy the 

requirements of the proposition. Since “to be an  ℒ∞-space” is a three space property [238], 

a quick inspection to (𝐾𝑋) shows that 𝑃𝑂 is an  ℒ∞-space. The Schur property is also a three 

space property [238]. So, we infer from the second column in the push-out diagram  

0 
            
→    𝐹𝜔(𝑋)  

            
→    𝑃𝑂 

           
→    𝑆 

           
→   0,  

that 𝑃𝑂 is a Schur space; recall that 𝐹𝜔(𝑋) and 𝑆 have the Schur property by Theorem (6.2.8) 

and Theorem (6.2.5) respectively. All together yields that 𝑃𝑂 is a separable  ℒ∞-space with 

the Schur property. Next we observe that the quotient 𝐵 in the push-out sequence (𝐾𝑋) 
admits a uniformly continuous section: Since 𝛿 is a uniformly continuous section for 𝛽 with 
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modulus 𝜔, we find that 𝐼 ∘ 𝛿 is a uniformly continuous section for 𝐵 with modulus 𝜔. 

Indeed, since the push-out diagram is commutative it must be 𝐵 ∘  𝐼 =  𝛽; thus 𝛽 ∘  𝛿 =
 𝐼𝑑𝑋 implies 𝐵 ∘  𝐼 ∘  𝛿 =  𝐼𝑑𝑋. To finish, we just need to apply Proposition (6.2.7) to the 

section 𝐼 ∘ 𝛿 of the quotient 𝐵 ∶  𝑃𝑂 −→  𝑋; we find that  ℒ∞(𝐾𝑒𝑟𝛽)  ⊕  𝑋 is uniformly 

homeomorphic to 𝑃𝑂.  

      If we apply the previous proposition to any separable ℒ∞-space 𝑋 which fails the Schur 

property, we immediately obtain:  

Corollary (6.2.10)[234]: There are two non-isomorphic separable ℒ∞-spaces which are 

uniformly homeomorphic.  

Theorem (6.2.11)[234]: Every infinite dimensional Banach space 𝑋 can be isometrically 

embedded into an ℒ∞-space 𝑌 of the same density 𝑋 such that the quotient 𝑌/𝑋 has the 

Radon–Nikodým and the Schur properties.  

      Therefore the separability assumption of Proposition (6.2.9) can be removed. The same 

proof works in the non-separable setting using Theorem (6.2.11) instead of Theorem (6.2.5). 

In particular, as in Corollary (6.2.10), this gives (new) examples of non-separable ℒ∞-spaces 

which are non-isomorphic but uniformly homeomorphic. Since the aim is to give 

counterexamples in the separable setting we have decided to introduce Proposition (6.2.9) 

in the separable case.  

     According to Kalton’s approach, one of the two separable non-isomorphic ℒ∞-spaces 

which are uniformly homeomorphic must be always a Schur space. Let us go a step further 

and show that one may find separable non-isomorphic ℒ∞-spaces failing the Schur property 

which are uniformly homeomorphic. Let us prove the following:  

    To prove this proposition we need a couple of preliminary lemmas. The first one was 

already observed in [244]; we give an independent proof. 

Lemma (6.2.12)[234]: Assume we have a commutative pull-back diagram 

 
If 𝑞 admits a uniformly continuous section then so does 𝑄. 

Proof. Let us denote by 𝜙 a uniformly continuous section for 𝑞. By the very definition of 

the canonical pull-back space 𝑃𝐵 =  {(𝑦, 𝑥1) ∈  𝑌 ⊕∞  𝑋1: 𝑞(𝑦)  =  𝑡 (𝑥1)}, the map 𝜓 ∶
 𝑋1  

         
→   𝑃𝐵 given by  

𝜓(𝑥1) ∶= ( 𝜙 ( 𝑡 (𝑥1))  , 𝑥1)  
 is a uniformly continuous section for 𝑄. Recall that 𝑄 is just the map 𝑄(𝑦, 𝑥1)  =  𝑥1.  
    The second lemma traces back to [240].  

Lemma (6.2.13)[234]: Assume we have a commutative diagram 

 
If 𝑡 is an approximable operator then the sequence  

0 
          
→  𝑍 

      𝑗      
→    𝑌 

     𝑞      
→     𝑋 

           
→    0 

splits. 
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 Proof. Assume momentarily that 𝑡 is a finite rank operator and form the commutative 

diagram 

 
Let us check that 𝐹 ∘  𝑡 ≡  0. Since the rank of 𝑡 is finite dimensional, one may lift 𝑡 to 𝑇1 ∶
 𝑋 

         
→   𝑌 such that 𝑞𝑇1  =  𝑡. For the map 𝑇 − 𝑇1𝑄 ∶  𝑃𝐵 

         
→  𝑋, we have 𝑞(𝑇 −

 𝑇1𝑄)  =  0. Therefore there is a linear map 𝑅 ∶  𝑃𝐵 
         
→   𝑍 such that 𝑗𝑅 =  𝑇 − 𝑇1𝑞. Then  

𝑗𝑅𝐽 = (𝑇 − 𝑇1𝑞)  𝐽 =  𝑇 𝐽 =  𝑗 
 and hence 𝑅𝐽 =  𝐼𝑑𝑍, i.e., 𝑅 is a linear retraction for 𝐽 . In other words, we have proved 

that 𝐹 ∘ 𝑡 ≡  0 whenever 𝑡 is a finite rank operator. We perform now the general case. Let 

us call by 𝐹 a quasi-linear map representing our exact sequence. Recall that we may identify 

the pull-back of 𝐹 with the approximable operator 𝑡 as the new quasi-linear map 𝐹 ∘  𝑡. Since 

the diagram 

 
is indeed a pull-back diagram, the hypothesis of the lemma can be written as 𝐹 ∘  𝑡 ≡  𝐹 or 

equivalently by Corollary (6.2.4) 

 𝐹 ∘  (𝐼𝑑𝑋  −  𝑡) ≡  0.                                            (5) 
 So the claim of the lemma is that condition (5) implies 𝐹 ≡  0. Set 𝑡 = lim

𝑛→∞
𝑡𝑛  with 𝑡𝑛 

finite rank operators. Then  

0 ≡  𝐹 ∘ (𝐼𝑑𝑋  −  𝑡) ≡  𝐹 ∘   (𝐼𝑑𝑋  −  (𝑡 − 𝑡𝑛)) −  𝐹 ∘  𝑡𝑛. 
Since 𝑡𝑛 is a finite rank operator, 𝐹 ∘ 𝑡𝑛  ≡  0 as we already checked. Hence 0 ≡  𝐹 ∘

(𝐼𝑑𝑋  −  (𝑡 − 𝑡𝑛))  . 
 For 𝑛 large enough,‖ 𝑡 − 𝑡𝑛‖  <  1 and we find that 𝐼𝑑𝑋  −  (𝑡 − 𝑡𝑛) is invertible. This 

last fact gives 𝐹 ≡  0.  
      Lemma (6.2.12) in [240] contains a stronger statement for compact operators. The given 

proof for approximable operators originates in preliminary versions of [240]. Its proof is 

much simpler than [240] and enough for our purposes. We are ready now to give a proof for 

Proposition (6.2.14).  

Proposition (6.2.14)[234]: There are two separable uniformly homeomorphic ℒ∞-spaces 

containing an isomorphic copy of 𝑐0 which are non-isomorphic.  

Proof: We follow here an idea of [240]. Pick the push-out diagram (4) given in Proposition 

(6.2.9) for the particular choice 𝑋 =  𝑐0: 
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      (6) 
And recall that 𝐵 admits a uniformly continuous section. Now, let us consider  

0 
           
→   𝑐0( 𝐴𝑛

∗ )   
     𝑖      
→   𝑐0  

     𝑝      
→     𝑐0  

           
→    0    (𝐵∗), 

 which is the natural predual of the nontrivial exact sequence given by Bourgain in [237] 

(see Corollary 2 for further details on this sequence). Form the pull-back diagram of the 

sequences (𝐾𝑐0  ) and (𝐵∗): 

      (7) 
The pull-back sequence  

0 
           
→    ℒ∞(𝐾𝑒𝑟𝛽)  

            
→   𝑃𝐵 

     �̂�      
→     𝑐0

          
→    0 

 is now the key. We just need to check that ℒ∞(𝐾𝑒𝑟𝛽)  ⊕ 𝑐0 and 𝑃𝐵 satisfy the conclusions 

of the proposition. The only thing immediately obvious is that ℒ∞(𝐾𝑒𝑟𝛽)⊕ 𝑐0 is an ℒ∞-

space and contains an isomorphic copy of 𝑐0. We divide the rest of the proof in four steps. 

     (i) 𝑃𝐵 is an ℒ∞-space. A quick look at the pull-back sequence and a three space argument 

(as given in Proposition (6.2.9)) confirms this.  

    (ii) Let us prove that 𝑃𝐵 and ℒ∞(𝐾𝑒𝑟𝛽)  ⊕ 𝑐0 are uniformly homeomorphic. Let us 

recall again that the quotient 𝐵 in (𝐾𝑐0 ) admits a uniform section. Applying Lemma 

(6.2.12) to the pull-back diagram (7), one may find a uniformly continuous section for the 

quotient �̂� ∶  𝑃𝐵 
          
→   𝑐0. Thus, we are in position to apply Proposition (6.2.7) and conclude: 

𝑃𝐵 and ℒ∞(𝐾𝑒𝑟𝛽)  ⊕ 𝑐0 are uniformly homeomorphic.  

  (iii) Let us check now that 𝑃𝐵 contains an isomorphic copy of 𝑐0. By the definition of short 

exact sequence, it is trivial to check that 𝑐0(𝐴𝑛
∗ ) is a subspace of 𝑃𝐵 and also a subspace of 



225 

𝑐0. Thus, since every subspace of 𝑐0 contains an isomorphic copy of 𝑐0 (see e.g. [236]), we 

find that 𝑐0(𝐴𝑛
∗ ) contains an isomorphic copy of 𝑐0; hence also 𝑃𝐵 contains a copy of 𝑐0.  

    (iv) The last but delicate point is to show that 𝑃𝐵 is not linearly isomorphic to 

ℒ∞(𝐾𝑒𝑟𝛽)⊕ 𝑐0. We divide the argument into two claims: Claim (6.2.15) and Claim 

(6.2.16). For the convenience of the reader, let us rewrite the two columns in the pull-back 

diagram (7): 

 
Claim (6.2.15)[234]: Every operator 𝑇 ∶  𝑐0(𝐴𝑛

∗ )  
         
→   ℒ∞(𝐾𝑒𝑟𝛽)  ⊕ 𝑐0 can be extended to 

𝑐0 through 𝑖. 
Proof. First of all we need to observe that ℒ∞(𝐾𝑒𝑟𝛽) is a Schur space. Consider the first 

column in the push-out diagram (6) (which is the Bourgain–Pisier sequence of Theorem 

(6.2.5)):  

0 
           
→    𝐾𝑒𝑟𝛽 

           
→    ℒ∞(𝐾𝑒𝑟𝛽)  

          
→   𝑆 

           
→    0.  

Recall that by Theorem (6.2.8), 𝐹𝜔(𝑐0) is a Schur space and thus also 𝐾𝑒𝑟𝛽 is a Schur space. 

Since 𝑆 is also a Schur space by Theorem (6.2.5), a three space argument applied to the 

sequence above immediately gives that ℒ∞(𝐾𝑒𝑟𝛽) is a Schur space. By Pełczynski property 

(V) every operator 𝑇 ∶  𝑐0(𝐴𝑛
∗ )  

          
→   ℒ∞(𝐾𝑒𝑟𝛽) is either weakly compact or an 

isomorphism on a copy of 𝑐0 (see [251]). But Schur spaces do not contain 𝑐0; therefore such 

a 𝑇 must be weakly compact. Since ℒ∞(𝐾𝑒𝑟𝛽) is a Schur space then 𝑇 is indeed compact. 

Thus by Lindenstrauss’ extension theorem for compact operators [247], the operator 𝑇 ∶
 𝑐0(𝐴𝑛

∗ )  
         
→   ℒ∞(𝐾𝑒𝑟𝛽) can be extended to 𝑐0 through 𝑖. If the operator is of the form 𝑇 ∶

 𝑐0(𝐴𝑛
∗ )  

          
→   𝑐0 then Sobczyk’s theorem provides an extension to 𝑐0. All together proves 

trivially Claim (6.2.15).  

 Claim (6.2.16)[234]: The operator 𝐼 ∶  𝑐0(𝐴𝑛
∗ )  

          
→   𝑃𝐵 cannot be extended to 𝑐0 through 

𝑖.  
Proof. Assume on the contrary, 𝐼1 ∶  𝑐0  

         
→   𝑃𝐵 is an extension of 𝐼 through 𝑖. Since 𝐼1 ∘

 𝑖 =  𝐼 ,   𝐼1 induces a morphism 𝐼 ̂1 making commutative the following diagram 

 
Therefore we have a commutative pull-back diagram 

     (8) 
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The idea is to show that 𝐵 𝐼1 is an approximable operator; therefore one may apply Lemma 

(6.2.13) to the diagram above and show that (𝐵∗) splits which is absurd. Thus, let us check 

that 𝐵 𝐼1 is approximable. The first thing we observe is that 𝐵 is strictly singular because 

𝑃𝑂 is a Schur space. Hence 𝐵 𝐼1 is weakly compact by Pełczynski property (V). By 

Gantmacher’s theorem (𝐵 𝐼1)
∗
 is also weakly compact. But actually (𝐵 𝐼1)

∗
∶  ℓ1  

         
→   ℓ1 is 

compact because ℓ1 is a Schur space and we find 𝐵 𝐼1 also to be compact. Since every 

compact operator 𝑇 ∶  𝑐0  
         
→   𝑐0 is approximable (see [249]), we find that 𝐵 𝐼1 is 

approximable. Therefore we may apply Lemma (6.2.13) to our pull-back diagram (8) 

𝑤𝑖𝑡ℎ 𝑡 =  𝐵 ∘  𝐼1 which shows us that the sequence (𝐵∗) must split. This last statement is 

absurd and Claim (6.2.16) is proved.  

    Claim (6.2.15) and Claim (6.2.16) immediately show that 𝑃𝐵 and ℒ∞(𝐾𝑒𝑟𝛽)  ⊕ 𝑐0 are 

not linearly isomorphic: Assume they are isomorphic; then, by Claim (6.2.15), every 

operator 𝑇 ∶  𝑐0(𝐴𝑛
∗ )  

           
→    𝑃𝐵 can be extended to 𝑐0 through 𝑖. But using Claim (6.2.16) for 

𝑇 =  𝐼 we reach a contradiction and part (4) is proved.  

    The steps (1)–(4) yield that 𝑃𝐵 is an ℒ∞-space containing 𝑐0; 𝑃𝐵 and ℒ∞(𝐾𝑒𝑟𝛽)⊕
 𝑐0 are uniformly homeomorphic but non-isomorphic.  

    The proof above gives a bit more of information. To explain us, We recall that in [239] it 

was isolated a nontrivial subclass of ℒ∞-spaces. This class termed as Lindenstrauss–

Pełczy´nski spaces is defined as those spaces 𝑋 for which every 𝑋-valued operator from a 

subspace of 𝑐0 admits an extension to 𝑐0. This class contains 𝐶(𝐾)-spaces by Lindenstrauss–

Pełczynski’s extension theorem [248]. We observe that in particular it has been proved the 

following:  

Corollary (6.2.17)[234]: The class of Lindenstrauss–Pełczy´nski spaces is not preserved 

under uniform homeomorphisms. 

 Proof. Consider the spaces ℒ∞(𝐾𝑒𝑟𝛽)  ⊕ 𝑐0 and 𝑃𝐵 from Proposition (6.2.14). We are 

about to see that ℒ∞(𝐾𝑒𝑟𝛽)  ⊕ 𝑐0 (which is a Lindenstrauss–Pełczynski space) is 

uniformly homeomorphic to 𝑃𝐵 (which is not a Lindenstrauss–Pełczynski space): The step 

(ii) of the proof of  Proposition (6.2.14) shows that ℒ∞(𝐾𝑒𝑟𝛽)  ⊕ 𝑐0 and 𝑃𝐵 are uniformly 

homeomorphic. Observe that Claim (6.2.15) of the previous proof works replacing 𝑐0(𝐴𝑛
∗ ) 

for any subspace of 𝑐0 (see [251]); thus ℒ∞(𝐾𝑒𝑟𝛽)  ⊕ 𝑐0 is a Lindenstrauss–Pełczynski 

space. On the other hand, ´ Claim (6.2.16) asserts that 𝑃𝐵 is not a Lindenstrauss–Pełczynski 

space.  

We summarize the information of the two examples in the next proposition: Proposition 

(6.2.18)[234]: There exist separable ℒ∞-spaces 𝑍1, 𝑍2, 𝑍3 verifying the following 

conditions:  

(i) 𝑍1, 𝑍2 and 𝑍3 are uniformly homeomorphic.  

(ii) 𝑍𝑗 and 𝑍𝑘 are not isomorphic for 𝑗 ≠  𝑘 where 𝑗, 𝑘 =  1, 2, 3. 

 Proof. Consider the spaces 𝑍1 ∶=  ℒ∞(𝐾𝑒𝑟𝛽)⊕ 𝑐0 and 𝑍2 ∶=  𝑃𝑂 from the push-out 

diagram (6). As 𝑍3 pick the space 𝑃𝐵 from the pull-back diagram (7). Let us prove first part 

(i):  

(i.1) 𝑍1 and 𝑍2 are uniformly homeomorphic: It was proved in Proposition (6.2.9) that 

ℒ∞(𝐾𝑒𝑟𝛽)  ⊕ 𝑐0 and 𝑃𝑂 are uniformly homeomorphic.  

(i.2) 𝑍1 and 𝑍3 are uniformly homeomorphic: The step (2) in the proof of Proposition 

(6.2.14) shows that ℒ∞(𝐾𝑒𝑟𝛽)  ⊕ 𝑐0 and 𝑃𝐵 are uniformly homeomorphic.  

(i.3) 𝑍2 and 𝑍3 are uniformly homeomorphic: By transitivity, using (i.1) and (i.2), 𝑍2 and 

𝑍3 must be uniformly homeomorphic.  
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    We pass to the proof of part (ii):  

(ii.1) 𝑍1 and 𝑍2 are not isomorphic: It was proved in Proposition (6.2.9) that 𝑃𝑂 has the 

Schur property; hence ℒ∞(𝐾𝑒𝑟𝛽)  ⊕ 𝑐0 and 𝑃𝑂 are not isomorphic.  

(ii.2) 𝑍1 and 𝑍3 are not isomorphic: The step (4) in the proof of Proposition (6.2.14) shows 

that ℒ∞(𝐾𝑒𝑟𝛽)  ⊕ 𝑐0 and 𝑃𝐵 are not isomorphic. 

(ii.3) 𝑍2 and 𝑍3 are not isomorphic: As was already quoted 𝑃𝑂 is a Schur space. But the step 

(iii) of Proposition (6.2.14) shows that 𝑃𝐵 contains an isomorphic copy of 𝑐0 what makes 

impossible that 𝑃𝐵 and 𝑃𝑂 are linearly isomorphic.  

    The spaces 𝑍1, 𝑍2, 𝑍3 given in the proof of the previous proposition “live” in different 

subclasses of ℒ∞-spaces. The following picture might be useful to understand the classes 

involved.  

 
𝐶1 = { Lindenstrauss–Pełczy´nski spaces} ,  

𝐶2 = {ℒ∞-spaces with the Schur property},  

𝐶3 = {ℒ∞-spaces containing 𝑐0} 

Section (6.3): The Scalar-Plus-Compact Property 

In [85] a brilliant method of constructing L∞-spaces with peculiar structure. Their 

method relies on a careful choice of an increasing sequence of finite dimensional subspaces 

(𝐹𝑛)𝑛 of ℓ∞(𝛤), with countably infinite 𝛤 and each 𝐹𝑛 uniformly isomorphic to ℓ∞
𝑑𝑖𝑚𝐹𝑛 . A 

suitable choice of (𝐹𝑛)𝑛 guarantees that the space ∪𝑛 𝐹𝑛̅̅ ̅̅ ̅̅ ̅ is an L∞-space with no 

unconditional basis. The Bourgain–Delbaen example contains no isomorphic copy of 𝑐0, 

answering an old problem in the theory of L∞-spaces. 

Later R. Haydon [80] proved that this space is saturated with reflexive ℓ𝑝 spaces and 

introduced the notation used nowadays. The Bourgain–Delbaen method was used to 

construct Banach spaces that solved several other long-standing conjectures on the structure 

of Banach spaces and showed that one may not hope for an ordinary classification of L∞-
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spaces as it happens in the 𝐶(𝐾)-spaces case, see [253]–[91], [257]. See [102] and [85] for 

the properties of the classical Bourgain–Delbaen spaces. 

In [254] a general Bourgain–Delbaen-L∞ -space is defined and they show a remarkable fact 

that any separable L∞-space is isomorphic to such a space. We recall from [254] that a BD-

L∞-space is a space 𝒳 ⊂ ℓ∞(𝛤), with 𝛤 countable, associated to a sequence (𝛤𝑞 , 𝑖𝑞)𝑞∈ℕ, 

where (𝛤𝑞)𝑞 is an increasing sequence of finite sets with 𝛤 = ∪𝑞∈ℕ 𝛤𝑞 and (𝑖𝑞)𝑞 are 

uniformly bounded compatible extension operators 𝑖𝑞 ∶  ℓ∞(𝛤𝑞)  →  ℓ∞(𝛤), i.e. 𝑖𝑞(𝑥)|𝛤𝑞  =

 𝑥 and 𝑖𝑞(𝑥) = 𝑖𝑝(𝑖𝑞(𝑥)|𝛤𝑝)) for any 𝑞 < 𝑝 and 𝑥 ∈  ℓ∞(𝛤𝑞). The space 𝒳 = 𝒳(𝛤𝑞 , 𝑖𝑞)𝑞 

is defined as 𝒳 =  〈𝑑𝛾 ∶  𝛾 ∈  𝛤〉̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅, where 𝑑𝛾 is given by 𝑑𝛾  =  𝑖𝑞(𝑒𝛾), with 𝑞 chosen so 

that 𝛾 ∈  𝛤𝑞  \ 𝛤𝑞−1. An efficient method of defining particular examples of BD-L∞-spaces 

as quotients of canonical BD-L∞-spaces was given in [255]. They proved that given a BD-

L∞-space 𝒳 ⊂  ℓ∞(𝛤) any so-called self-determined set 𝛤′  ⊂  𝛤 produces a further L∞-

space 𝑌 =  〈𝑑𝛾 ∶  𝛾 ∈  𝛤 \ 𝛤
′〉 and a BD-L∞-space /𝑌 , with the quotient map defined by 

the restriction of 𝛤 to 𝛤′ . 
S.A. Argyros and R. Haydon in [91] used the Bourgain–Delbaen method in order to produce 

an L∞-space 𝒳𝐴𝐻 which is hereditary indecomposable (HI) i.e. contains no closed infinitely 

dimensional subspace which is a direct sum of further two closed infinitely dimensional 

subspaces (in particular the space 𝒳𝐴𝐻 admits no unconditional basic sequence), and with 

dual isomorphic to ℓ1. Moreover, using in an essential way the local unconditional structure 

imposed by the ℓ∞
𝑑𝑖𝑚𝐹𝑛 -spaces they proved that the space 𝒳𝐴𝐻 has the scalar-plus-compact 

property i.e. every bounded operator on the space is of the form 𝜆𝐼 +  𝐾, with 𝐾 compact 

and 𝜆 scalar. 

Although it readily follows that there does not exist a Banach space with an unconditional 

basis and the scalar-plus-compact property, the latter property does not exclude rich 

unconditional structure inside the space. This is witnessed in [253], where it was shown that, 

among other spaces, any separable and uniformly convex Banach space embeds into an L∞-

space with the scalar plus compact property. Therefore, a naturally arising question is 

whether there exists a Banach space with the scalar-plus-compact property that is saturated 

with unconditional basic sequences. 

Recall here that the first example of a space with an unconditional basis and a small family 

of operators is due to W.T. Gowers, who “unconditionalized” in [227] the famous Gowers–

Maurey space, [111], producing a space 𝑋𝐺  with unconditional basis that solved the 

hyperplane problem. Afterwards, W.T. Gowers and B. Maurey, [230], proved that any 

bounded operator on the space 𝑋𝐺 is of the form 𝐷 +  𝑆, with 𝐷 diagonal and 𝑆 strictly 

singular. Gowers asked if an analogous property holds for the operators defined on 

subspaces of 𝑋𝐺 and if such property characterises a class of so-called tight by support 

Banach spaces, as it is in the case of complex HI spaces according to [256]. This question 

was answered negatively by the first two named authors [220]. 

An example of a space with rich unconditional structure and a small family of bounded 

operators of a different type was presented in [98], where they built a Banach space saturated 

with unconditional sequences and satisfying the following property: any bounded operator 

on the space is a strictly singular perturbation of a multiple of identity (recall that an operator 

is strictly singular provided none of its restriction to an infinitely dimensional subspace is 
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an isomorphism onto its range). The construction used the saturated norms technique in a 

mixed Tsirelson space setting. 

We continue the study of Banach spaces with a small family of operators by showing the 

existence of a Banach space with a strongly heterogeneous structure. We construct a BD-

L∞-space 𝒳𝐾𝑢𝑠 with a basis satisfying the following properties: 

(i) Any bounded operator 𝑇 ∶  𝒳𝐾𝑢𝑠  →  𝒳𝐾𝑢𝑠 is of the form 𝑇 =  𝜆𝐼𝑑𝒳𝐾𝑢𝑠 + 𝐾, with 𝐾 

compact and 𝜆 scalar. 

(ii) The space 𝒳𝐾𝑢𝑠 is saturated with unconditional basic sequences. 

(iii) The dual space to 𝒳𝐾𝑢𝑠 is isomorphic to ℓ1. 

The structure of the space of bounded operators ℬ(𝒳𝐾𝑢𝑠) implies that the space 𝒳𝐾𝑢𝑠 is 

indecomposable, however, being unconditionally saturated, it admits no HI structure. The 

space 𝒳𝐾𝑢𝑠 is thus the first example of a Banach space with the scalar-plus-compact 

property failing to have any HI structure. We recall that M. Tarbard in [259] constructed an 

indecomposable BD-L∞-space 𝒳∞, that is not HI, but the Calkin algebra ℬ(𝒳∞)/𝐾(𝒳∞) 
is isomorphic to ℓ1. 

In order to build 𝒳𝐾𝑢𝑠 we adapt the idea of a construction of a Banach space 𝑋𝑖𝑢𝑠 of [98] to 

the scheme of the Argyros–Haydon construction of Bourgain–Delbaen spaces [91]. This 

framework allows to pass from strictly singular operators to compact ones, however, in order 

to profit from this key property of the Argyros–Haydon construction we need to strengthen 

some results of [98] in the following way: we prove that if a bounded operator on the space 

converges to zero on the basis, then it converges to zero on any element of a special class of 

basic sequences, called RIS, instead of a saturating family of RIS. In order to avoid a 

technical inductive construction of the space 𝒳𝐾𝑢𝑠 we follow the scheme of [255], defining 

𝒳𝐾𝑢𝑠 as a suitable quotient of some variation of the canonical BD-L∞-space 𝔅𝑚𝑇 defined 

in [91]. 

The balance between unconditional saturation and the restricted form of bounded operators 

on the whole space in the case of 𝑋𝑖𝑢𝑠 was guaranteed by the form of so-called special 

functionals – the major tool in the construction of saturated norms. Any special functional 

in the norming set of 𝑋𝑖𝑢𝑠 is a weighted average of a sequence of functionals, where the odd 

parts are weighted averages of the basis. The choice of the next functional of the weighted 

average is determined by the previously chosen odd parts and supports of the even parts. 

The freedom on the side of even parts allows changing signs of parts of even functionals of 

the weighted average, which in turn provides saturation by unconditional sequences. On the 

other hand, the control over the supports of the even parts guarantees the typical property of 

such construction, i.e. in our case given two RIS (𝑥𝑛) and (𝑦𝑛) with pairwise disjoint ranges 

and 𝜖 >  0 one is able to built on (𝑦𝑛) an average ∑  𝑛 𝑎𝑛𝑦𝑛 of norm 1, such that 

‖∑  𝑛 𝑎𝑛𝑥𝑛‖ < 𝜖. This last property is crucial for proving the form of a bounded operator 

on a space.  

The direct translation of the special functionals described above into the setting of BD-

spaces is impossible, as any change of signs of a part of a norming functional changes its 

support. In order to overcome this obstacle we use in the definition of functionals on the 

space 𝒳𝐾𝑢𝑠 projections on finite intervals instead of projections on right intervals of the 

form [𝑝,∞) and substitute the equality of supports of even parts of special functionals by 

tight relation between tree-analysis of even parts (definition of special nodes). The latter 

notion in the setting of the Argyros–Haydon construction comes from [258] and proves to 

be a very efficient tool in our case. 
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We describe the construction of the general space we shall use, including different 

kinds of analyses of norming functionals. We devoted to the properties the basis, including 

the notion of neighbour nodes, within the general framework. We give the definition of 

𝒳𝐾𝑢𝑠. We study the rapidly increasing sequences (RIS) and the dependent sequences 

respectively. We contain the results on bounded operators on the space, whereas the proof 

of unconditional saturation. 

We present a BD-L∞-space 𝑋�̅�, which is a minor modification of the space 𝔅𝑚𝑇 

defined in [91]. We shall define later the space 𝒳𝐾𝑢𝑠 as determined by some set 𝛤 ⊂  𝛤 

following the general scheme of [255]. 

Pick (𝑚𝑘)𝑘, (𝑛𝑘)𝑘, (𝑙𝑘)𝑘  ↗ +∞ such that 𝑚1 = 4, 𝑛1 = 4, 𝑙1 = 2 and 

𝑚𝑘𝑚𝑘−1 ≤ 𝑚1
𝑙𝑘  (

𝑛𝑘−1
𝑚𝑘−1

)
𝑙𝑘

≤
𝑛𝑘

𝑚𝑘−1𝑚𝑘
 , 𝑘 ∈ ℕ.                (9) 

For example take (22
𝑘
)
𝑘
, (22

𝑘2

)
𝑘
, (2𝑘)𝑘. 

Following [91] we shall define recursively finite sets of nodes Δ̅𝑞 and 𝛤𝑞  =  Δ̅1 ∪···∪

Δ̅𝑞 , 𝑞 ∈ ℕ. Along with each set Δ̅𝑞 we define functionals (𝑐�̅�
∗)
𝛾∈Δ̅𝑞

⊂ ℓ1(𝛤𝑞) and further 

(�̅�𝛾
∗)
𝛾∈Δ̅𝑞

 ⊂  ℓ1(𝛤𝑞) as �̅�𝛾
∗  =  𝑒𝛾

∗  −  𝑐�̅�
∗. Having defined all sets Δ̅𝑞 , 𝑞 ∈ ℕ, we let 𝛤 =

∪𝑞 𝛤𝑞. 

We proceed now to the inductive construction. We let Δ̅1  =  {1}, 𝑐1
∗ =  0 and thus �̅�1

∗ = 𝑒1
∗. 

Assume we have defined sets Δ̅1, . . . , Δ̅𝑞. By (𝑒𝛾
∗)
𝛾∈�̅�𝑞

 we denote the standard unit vector 

basis of ℓ1(𝛤𝑞). We enumerate the set Δ̅𝑞 using {#𝛤𝑞−1 + 1, . . . , #𝛤𝑞} as the index set and in 

the set 𝛤𝑞 we consider the corresponding enumeration. Thus we can regard the sets Δ̅𝑞 and 

𝛤𝑞 as intervals of ℕ. We use the notation (𝛾𝑛)𝑛 to refer to this enumeration. For any interval 

𝐼 ⊂  𝛤𝑞 let �̅�𝐼
∗ be the projection onto 〈�̅�𝛾𝑛

∗ ∶  𝑛 ∈  𝐼〉. For simplicity for any 𝑛 ∈ ℕ by �̅�𝑛
∗ we 

denote the projection �̅�(0,𝑛]
∗  . 

For each 𝑞 ∈ ℕ let Net1,𝑞 be a finite symmetric 1
4𝑛𝑞

2⁄  -net of [−1, 1] containing ±1. We 

set 

𝐵𝑝,𝑞 = {𝜆𝑒𝜂
∗ ∶  𝜆 ∈  Net1,𝑞 , 𝜂 ∈  𝛤𝑞  \ 𝛤𝑝}, 

where for 𝑝 =  0 we let 𝛤0  =  ∅. For simplicity we write 𝐵𝑞  =  𝐵0,𝑞 , 𝑞 ∈ ℕ. 

The set Δ̅𝑞+1 is defined to be the set of nodes 

Δ̅𝑞+1 =⋃ 

𝑞

𝑗=1

{(𝑞 + 1, 0,𝑚𝑗  , 𝐼, 𝜖, 𝑏
∗) ∶  𝐼 interval ⊂  𝛤𝑞 , 𝜖 ∈  {−1, 1}, 𝑏

∗  ∈  𝐵𝑞 and �̅�𝐼
∗ 𝑏∗

≠ 0} 

∪ ⋃  

 

1≤𝑝<𝑞

⋃ 

 

𝑗=1

{(𝑞 +  1, 𝜉,𝑚𝑗 , 𝐼, 𝜖, 𝑏∗): 𝜉 ∈ Δ̅𝑝, 𝑤(𝜉) = 𝑚𝑗
−1 , age(𝜉)  <  𝑛𝑗  ,  

𝜖 ∈  {−1, 1}, 𝑏∗  ∈  𝐵𝑝,𝑞 , 𝐼 interval ⊂  𝛤𝑞  \ 𝛤𝑝, �̅�𝐼
∗ 𝑏∗ ≠ 0}. 

For any 𝛾 ∈  Δ̅𝑞 we define 𝑐�̅�
∗ as follows. 
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𝑐�̅�
∗ =

{
 
 

 
 

1

𝑚𝑗
𝜖�̅�𝐼

∗ 𝑏∗      for 𝛾 = (𝑞 +  1, 0,𝑚𝑗  , 𝐼, 𝜖, 𝑏
∗)

𝑒𝜉
∗  +

1

𝑚𝑗
 𝜖�̅�𝐼

∗ 𝑏∗      for 𝛾 =  (𝑞 +  1, 𝜉,𝑚𝑗  , 𝐼, 𝜖, 𝑏
∗)

       (10) 

We let also �̅�𝛾
∗ = 𝑒𝛾

∗  −  𝑐�̅�
∗. 

For any 𝛾 =  (𝑞 +  1, 0,𝑚𝑗  , 𝐼, 𝜖, 𝑏
∗) we define age(𝛾)  =  1 and for 𝛾 =  (𝑞 +

 1, 𝜉,𝑚𝑗  , 𝐼, 𝜖, 𝑏
∗) we define age(𝛾)  =  𝑎𝑔𝑒(𝜉)  +  1. For any 𝛾 =  (𝑞 +  1, 0,𝑚𝑗  , 𝐼, 𝜖, 𝑏

∗) 

or 𝛾 =  (𝑞 +  1, 𝜉,𝑚𝑗  , 𝐼, 𝜖, 𝑏
∗) we define rank(𝛾)  =  𝑞 +  1 and weight (𝛾)  =  𝑚𝑗

−1 . 

Adapting the reasoning of [91] we obtain the following two lemmas. 

Lemma (6.3.1)[252]: 〈�̅�𝛾𝑖
∗ ∶  𝑖 ≤  𝑛〉  =  〈𝑒𝛾𝑖

∗ ∶  𝑖 ≤  𝑛〉 for every 𝑛 ∈ ℕ. 

Lemma (6.3.2)[252]: ‖�̅�𝑚
∗‖ ≤

𝑚1

𝑚1−2
 =  2 for every 𝑚 ∈ ℕ. 

The above lemma yields that (�̅�𝛾𝑛
∗  )

𝑛∈ℕ
 is a triangular basis of ℓ1(𝛤) (in the sense of [91], 

Def. (6.3.8)). Let (�̅�𝛾𝑛)𝑛∈ℕ
 be its biorthogonal sequence. Regarding each projection �̅�𝑛

∗ as 

an operator ℓ1(𝛤)  →  ℓ1
𝑛 we consider the dual operator 𝚤�̅� ∶  ℓ∞

𝑛  →  ℓ∞(𝛤), which is an 

isomorphic embedding satisfying ‖𝚤�̅�‖ ≤  2. We are ready to define the following. 

Definition (6.3.3)[252]: Let 𝒳�̅� = 〈�̅�𝛾𝑛 ∶  𝑛 ∈ ℕ〉  ⊂  ℓ∞(𝛤). 

Repeating the results of [91] in our setting we obtain the following. 

Theorem (6.3.4)[252]: The space 𝒳�̅� is a BD-L∞-space defined by the sequence (𝛤𝑞 , 𝚤�̅�)𝑞.  

For any interval 𝐼 ⊂ ℕ we denote by �̅�𝐼 the canonical projection �̅�𝐼 ∶ 𝒳�̅� →
 〈�̅�𝛾𝑖 ∶  𝑖 ∈  𝐼〉. In case 𝐼 =  {1, . . . , 𝑛}, 𝑛 ∈ ℕ, we write simply �̅�𝑛. 

Given any 𝑞 ∈ ℕ we let �̅�𝑞 = 𝚤�̅�𝑎𝑥Δ̅𝑞  [ℓ∞(Δ̅𝑞)]. We shall consider supports and ranges of 

vectors, thus also block sequences, with respect both to the basis (�̅�𝛾𝑛)𝑛∈ℕ
 of 𝒳�̅� and to the 

FDD (�̅�𝑞)𝑞∈ℕ of 𝒳�̅�. In the first case we shall use for any 𝑥 ∈  𝒳�̅� the notation supp 𝑥, rng 

𝑥, whereas in the second we write supp𝐹𝐷𝐷 𝑥 and rng𝐹𝐷𝐷 𝑥. 

Definition (6.3.5)[252]: We say that a block sequence (𝑥𝑛)𝑛  ⊂  𝒳�̅� is skipped provided 

max rng𝐹𝐷𝐷 𝑥𝑛  +  1 <  min rng𝐹𝐷𝐷 𝑥𝑛+1 for each 𝑛. 

We introduce different types of analysis of a node following [91] and [258], adjusting 

their scheme to our situation. 

The evaluation analysis of 𝑒𝛾
∗. 

First we notice that every 𝛾 ∈  𝛤 admits  a unique analysis as follows (Prop. (6.3.17) [91]). 

Let (𝛾)  =  𝑚𝑗
−1 . Then using backwards induction we determine a sequence of sets 

(𝐼𝑖 , 𝜖𝑖 , 𝑏𝜂𝑖
∗  , 𝜉𝑖)𝑖=1

𝑎
 so that 𝜉𝑎 = 𝛾, 𝜉1 = (𝑞1 + 1, 0,𝑚𝑗  , 𝐼1, 𝜖1 , 𝑏𝜂1

∗ ) and 𝜉𝑖 = (𝑞𝑖  +

 1, 𝜉𝑖−1, 𝑚𝑗  , 𝐼𝑖 , 𝜖𝑖 , 𝑏𝜂𝑖
∗ ) for every 1 <  𝑖 ≤  𝑎, where 𝑏𝜂𝑖

∗ = 𝜆𝑖𝑒𝜂𝑖
∗  for some 𝜆𝑖  ∈  Net1,𝑞𝑖 . 

Repeating the reasoning of [91], as 𝑒𝜉
∗ = �̅�𝜉

∗  + 𝑐𝜉
∗ for each 𝜉 ∈  𝛤, with the above notation 

we have 

𝑒𝛾
∗ = ∑ 

𝑎

𝑖=1

�̅�𝜉𝑖
∗ +𝑚𝑗

−1  ∑  

𝑎

𝑖=1

𝜖𝑖�̅�𝐼𝑖
∗𝑏𝜂𝑖
∗ =∑ 

𝑎

𝑖=1

�̅�𝜉𝑖
∗ +𝑚𝑗

−1  ∑  

𝑎

𝑖=1

𝜖𝑖𝜆𝑖�̅�𝐼𝑖
∗  𝑒𝜂𝑖

∗  

Definition (6.3.6)[252]: Let 𝛾 ∈  𝛤. Then the sequence (𝐼𝑖 , 𝜖𝑖 , 𝜆𝑖𝑒𝜂𝑖
∗  , 𝜉𝑖)𝑖=1

𝑎
 satisfying all 

the above properties will be called the evaluation analysis of 𝛾. 
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We define the bd-part and mt-part of 𝑒𝛾
∗ as 

𝑏𝑑(𝑒𝛾
∗)  =∑ 

𝑎

𝑖=1

�̅�𝜉𝑖
∗  ,   𝑚𝑡(𝑒𝛾

∗)  =  𝑚𝑗
−1∑ 

𝑎

𝑖=1

𝜖𝑖𝜆𝑖�̅�𝐼𝑖
∗  𝑒𝜂𝑖

∗  . 

The 𝐼 (interval)-analysis of a functional 𝑒𝛾
∗. 

Let 𝐼 ⊂ ℕ and 𝛾 ∈  𝛤 with �̅�𝐼
∗ 𝑒𝛾

∗ ≠ 0. Let 𝑤(𝛾)  =  𝑚𝑗
−1 , 𝑎 ≤  𝑛𝑗 and 

(𝐼𝑖 , 𝜖𝑖 , 𝜆𝑖𝑒𝜂𝑖
∗ , 𝜉𝑖)𝑖=1

𝑎
 the evaluation analysis of 𝛾. We define the I-analysis of 𝑒𝛾

∗ as follows: 

(a) If for at least one i we have �̅�𝐼𝑖∩𝐼
∗  𝑒𝜂𝑖

∗ ≠ 0, then the 𝐼-analysis of 𝑒𝛾
∗ is of the following 

form 

(𝐼𝑖  ∩  𝐼, 𝜖𝑖 , 𝜆𝑖𝑒𝜂𝑖
∗  , 𝜉𝑖)𝑖∈𝐴𝐼

 , 

where 𝐴𝐼 = {𝑖 ∶  �̅�𝐼𝑖∩𝐼
∗  𝑒𝜂𝑖

∗ ≠ 0}. In this case we say that 𝑒𝛾
∗ is I-decomposable. 

(b) If �̅�𝐼𝑖∩𝐼
∗ 𝑒𝜂𝑖

∗ =  0 for all 𝑖 =  1, . . . , 𝑎, then we assign no 𝐼-analysis to 𝑒𝛾
∗ and we say that 

𝑒𝛾
∗ is 𝐼-indecomposable. 

Now we introduce the tree-analysis of 𝑒𝛾
∗ analogous to the tree-analysis of a functional 

in a mixed Tsirelson space (see [99]). 

We denote by (𝒯 , ≼) a finite tree, whose elements are finite sequences of natural numbers 

ordered by the initial segment partial order. Given 𝑡 ∈ 𝒯 denote by 𝑆𝑡 the set of immediate 

successors of 𝑡. 
Let (𝐼𝑡)𝑡∈𝒯 be a tree of intervals of ℕ such that 𝑡 ≼  𝑠 iff 𝐼𝑡  ⊃  𝐼𝑠 and 𝑡, 𝑠 are incomparable 

iff 𝐼𝑡  ∩  𝐼𝑠  =  ∅. For such a family (𝐼𝑡)𝑡∈𝒯 and 𝑡, 𝑠 incomparable we write 𝑡 <  𝑠 iff 𝐼𝑡  <
 𝐼𝑠 (i.e. 𝑚𝑎𝑥 𝐼𝑡  <  𝑚𝑖𝑛 𝐼𝑠). 
The tree-analysis of a functional 𝑒𝛾

∗. 

Let 𝛾 ∈  𝛤. The tree-analysis of 𝑒𝛾
∗ is a family of the form (𝐼𝑡 , 𝜖𝑡 , 𝜂𝑡)𝑡∈𝒯 defined inductively 

in the following way: 

(i) 𝒯 is a finite tree with a unique root denoted by ∅. 

(ii) Set 𝜂∅  =  𝛾, 𝐼∅  =  (1,𝑚𝑎𝑥 𝛥𝑟𝑎𝑛𝑘 𝛾], 𝜖∅  =  1 and let (𝐼𝑖 , 𝜖𝑖 , 𝜆𝑖𝑒𝜂𝑖
∗  , 𝜉𝑖)𝑖=1

𝑎
 be the 

evaluation analysis of 𝑒𝜂∅
∗  . Set 𝑆∅  =  {(1), (2), . . . , (𝑎)} and for every 𝑠 =  (𝑖)  ∈

 𝑆∅, (𝐼𝑠, 𝜖𝑠, 𝜂𝑠)  =  (𝐼𝑖 , 𝜖𝑖 , 𝜂𝑖). 

(iii) Assume that for 𝑡 ∈ 𝒯 the tuple (𝐼𝑡 , 𝜖𝑡 , 𝜂𝑡) is defined. Let (𝐼𝑖 , 𝜖𝑖 , 𝜆𝑖𝑒𝜂𝑖
∗  , 𝜉𝑖)𝑖

 be the 

evaluation analysis of 𝑒𝜂𝑡
∗  . Consider two cases: 

(a) If 𝑒𝜂𝑡
∗  is 𝐼𝑡-decomposable, let (𝐼𝑖 , 𝜖𝑖 , 𝜆𝑖𝑒𝜂𝑖

∗  , 𝜉𝑖)𝑖∈𝐴𝐼𝑡
 be the 𝐼𝑡-analysis of 𝑒𝜂𝑡

∗  . Set 𝑆𝑡  =

 {(𝑡  ̂𝑖) ∶  𝑖 ∈  𝐴𝐼𝑡}. For every 𝑠 =  (𝑡  ̂𝑖)  ∈  𝑆𝑡, let (𝐼𝑠, 𝜖𝑠, 𝜂𝑠)  =  (𝐼𝑖 , 𝜖𝑖 , 𝜂𝑖). 

(b) If 𝑒𝜂𝑡
∗  is 𝐼𝑡-indecomposable, then 𝑡 is a terminal node of the tree-analysis.  

Definition (6.3.7)[252]: Given any 𝛾 ∈  𝛤, in notation Let 

𝑚𝑡 − 𝑠𝑢𝑝𝑝 𝑒𝛾
∗ = {𝜉𝑡 ∶  𝑡 ∈ 𝒯 , 𝑡 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙}  =  {𝜉𝑡 ∶  𝑡 ∈ 𝒯 , �̅�𝐼𝑡

∗  𝑒𝜂𝑡
∗ = �̅�𝜉𝑡

∗ } 

and bd − supp 𝑒𝛾
∗ =  𝑠𝑢𝑝𝑝 𝑒𝛾

∗ \ 𝑚𝑡 − 𝑠𝑢𝑝𝑝 𝑒𝛾
∗. 

We present here estimates on the averages of the basis (�̅�𝛾𝑛)𝑛∈ℕ
. 

The result is crucial for the estimates in. 

Definition (6.3.8)[252]: We shall call two nodes 𝜉1, 𝜉2 neighbours if there exists 𝛾 ∈  𝛤 

with 𝑏𝑑(𝑒𝛾
∗)  = ∑  𝑎

𝑗=1 �̅�ζ𝑗

∗  such that 𝜉𝑖  =  𝜁𝑗𝑖  for some 𝑗1  <  𝑗2. 
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Note that from the definition it follows that for any neighbours 𝜉1, 𝜉2 we have 𝑤(𝜉1)  =
 𝑤(𝜉2). 

Lemma (6.3.9)[252]: Let (�̅�𝛾𝑛)𝑛∈ℕ
 be a subsequence of the basis. Then there exists infinite 

𝑀 ⊂  𝑁 such that no two nodes 𝛾𝑛, 𝛾𝑚 , 𝑛,𝑚 ∈  𝑀, are neighbours. 

The proof is based on the fact that the age is uniquely determined for each node.  

Proof. If there are infinitely many nodes with different weights we are done. So assume that 

for all but finite nodes we have 𝑤(𝛾𝑛)  =  𝑚𝑘
−1 for some fixed 𝑘.  

Applying Ramsey theorem we obtain an infinite set such that either no two nodes from this 

set are neighbours or any two are neighbours. 

In the first case we are done. Otherwise passing to a further subsequence we may assume 

that rank(𝛾𝑛)  <  rank(𝛾𝑛+1) for every 𝑛. 

Since we have that 𝛾𝑗  , 𝛾𝑗+1 are neighbours it follows by a simple induction that  

age(𝛾𝑗+1)  ≥  age(𝛾𝑗) + 1 ≥  𝑗 +  1. 

Take 𝑗 =  𝑛𝑘  +  1 and pick 𝑒𝛾
∗ of the form 

𝑒𝛾
∗ =∑ 

𝑎

𝑟=1

�̅�𝜉𝑟
∗ + 𝑚𝑘

−1∑ 

𝑎

𝑟=1

𝜖𝑟𝜆𝑟𝑒𝜂𝑟
∗ �̅�𝐼𝑟  

with �̅�𝛾𝑛𝑘+1
∗ = �̅�𝜉𝑟

∗  for some 𝑟. Then age(𝜉𝑟)  ≤  𝑛𝑘 which yields a contradiction and ends 

the proof. 

In [91] it is proved that the sequence (∑  𝜉∈𝛥𝑛 �̅�𝜉)𝑛∈ℕ
 generates an ℓ1-spreading 

model in the space 𝒳𝐴𝐻. We show that the norm of the vector  =  𝑛𝑗
−1 ∑  𝑖∈𝐹 �̅�𝜉𝑖 , where 𝜉𝑖’s 

are pairwise non-neighbours, is determined by the mt-part of the nodes. 

We shall use basic properties of mixed Tsirelson spaces. Recall that the mixed Tsirelson 

space 𝑇[(𝒜𝑛𝑘  , 𝑚𝑘
−1)

𝑘∈ℕ
] is the completion of 𝑐00 with the norm defined by a norming set 

𝐷, which is the smallest set in 𝑐0 that contains the unit vectors {±𝑒𝑛} and satisfies for any 

𝑘 ∈ ℕ the following condition: for any block sequence 𝑓1  < ··· <  𝑓𝑑 , 𝑑 ≤  𝑛𝑘, of elements 

of 𝐷 the weighted average 𝑚𝑘
−1(𝑓1  + ···  + 𝑓𝑑) also belongs to 𝐷. For further details see 

[99]. 

Lemma (6.3.10)[252]: Let  =  𝑛𝑗
−1∑  𝑖∈𝐺 �̅�𝜉𝑖 , be such that no two 𝜉𝑖’s are neighbours and 

#𝐺 ≤  𝑛𝑗 . Then for any 𝛾 ∈  𝛤 with 𝑤(𝑒𝛾
∗)  =  𝑚𝑘

−1 we have the following 

|𝑒𝛾
∗(𝑥)|  ≤

{
 
 

 
 
1

𝑛𝑗
+
2

𝑚𝑘
        𝑖𝑓  𝑘 ≥  𝑗

7

𝑚𝑘𝑚𝑗
          𝑖𝑓  𝑘 <  𝑗.

 

In particular 

‖𝑛𝑗
−1  ∑  

𝑛𝑗

𝑖=1

�̅�𝜉𝑖‖ ≤  7𝑚𝑗
−1 . 

Proof. We shall construct functionals 𝜙𝛾 in the norming set of the mixed Tsirelson space 

𝑋𝑎𝑢𝑥 =  𝑇[(𝒜𝑛𝑘  , 𝑚𝑘
−1)

𝑘∈ℕ
] such that 

|𝑒𝛾
∗(𝑥)| ≤  𝜙𝛾(𝑦) +

2

𝑚𝑗𝑚𝑗−1
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where 𝑦 =  2 ∑  𝑘∈𝐺 𝑒𝑘/𝑛𝑗  ∈  𝑐00(ℕ). 

Take 𝛾 ∈  𝛤 and consider its evaluation analysis 𝑒𝛾
∗ = ∑  𝑎

𝑟=1 �̅�𝛽𝑟
∗ +𝑚𝑘

−1 ∑  𝑎
𝑟=1 𝜖𝑟𝜆𝑟𝑒𝜂𝑟

∗ �̅�𝐼𝑟  . 

Let 𝑔𝛾 =  𝑏𝑑(𝑒𝛾
∗) and 𝑓𝛾 = 𝑚𝑡(𝑒𝛾

∗). 
We shall consider two cases. 

Case 1. 𝑤(𝛾)  ≤  𝑚𝑗
−1 . 

Since the nodes (𝜉𝑖)𝑖 are pairwise non-neighbours and (𝛽𝑖)𝑖 are pairwise neighbours it 

follows that 

|𝑔𝛾(𝑥)|  ≤  𝑛𝑗
−1 .                                                (11) 

Also for every 𝑟 ≤  𝑎 using that |𝑒𝜁
∗ (�̅�𝛽)|  ≤  2 for all ζ, 𝛽, we get 

|𝑒𝜂𝑟
∗ �̅�𝐼𝑟(𝑥)| ≤  2

#{𝑖 ∶  rng(𝑑𝜉𝑖
∗ ) ⊂ 𝐼𝑟}

𝑛𝑗
 .                        (12) 

It follows from (11), (12), using that |𝜆𝑟|  ≤  1 for every 𝑟, that 

|𝑒𝛾
∗(𝑥)| ≤

1

𝑛𝑗
+ 2𝑚𝑘

−1  ∑  

𝑎

𝑟=1

#{𝑖 ∶  rng(𝑑𝜉𝑖
∗ ) ⊂ 𝐼𝑟}

𝑛𝑗
 ≤
1

𝑛𝑗
 +

2

𝑚𝑘
 .      (13) 

Taking 𝜙𝛾  =  𝑚𝑘
−1  ∑  𝑛∈𝐹 𝑒𝑛

∗  where 𝐹 = ∪𝑟≤𝑎 {𝑛 |𝛾𝑛  =  𝜉𝑖 , rng(𝑑𝜉𝑖
∗ )  ⊂  𝐼𝑟 for some 𝑖 ∈

 𝐺} it follows that #𝐹 ≤  𝑛𝑗  ≤  𝑛𝑘 and 𝜙𝛾 belongs to the norming set of the mixed Tsirelson 

space 𝑋𝑎𝑢𝑥. 

From (13) we get 

|𝑒𝛾
∗(𝑥)| ≤

1

𝑛𝑗
+ 2𝑚𝑘

−1  ∑  

𝑛∈𝐹

𝑒𝑛
∗(𝑒𝑛)

𝑛𝑗
 =
1

𝑛𝑗
 +  𝜙𝛾(𝑦).               (14) 

Case 2. 𝑤(𝛾)  =  𝑚𝑘
−1  >  𝑚𝑗

−1 . 

Let (𝐼𝑡 , 𝜀𝑡 , 𝜂𝑡)𝑡∈𝒯 be the tree-analysis of 𝑒𝛾
∗ and 𝒯′ be the subtree of 𝒯 consisting of all nodes 

𝑡 of height at most 𝑙𝑗. We will describe how to define certain functionals (𝜙𝑡)𝑡∈𝒯′  in the 

norming set of 𝑇[(𝒜𝑛𝑘 ,𝑚𝑘
−1)

𝑘∈ℕ
] that we will use to obtain the desired estimate. 

As in the previous case we get 

|𝑔𝛾(𝑥)|  ≤  𝑛𝑗
−1 .                                      (15) 

Using that 𝑒𝛾
∗ = 𝑔𝛾  +  𝑓𝛾 and |𝜆𝑟|  ≤  1 for every 𝑟, we get 

|𝑒𝛾
∗(𝑥)|  ≤  𝑛𝑗

−1 + |𝑓𝛾(𝑥)| ≤ 𝑛𝑗
−1 +𝑚𝑘

−1∑ 

𝑎

𝑟=1

|𝑒𝜂𝑟
∗ �̅�𝐼𝑟(𝑥)|.             (16) 

We shall split now the successors 𝑒𝜂𝑟
∗  of 𝑒𝛾

∗ into those with weight smaller or equal to 𝑚𝑗
−1 

and those with weight bigger that 𝑚𝑗
−1 . For a node 𝛾 we set 

𝑆𝛾,1 = {𝑟 ∈  𝑆𝛾 ∶  𝑤(𝜂𝑟)  ≤  𝑚𝑗
−1}   and   𝑆𝛾,2 = 𝑆𝛾 \ 𝑆𝛾,1. 

From (16) we get 

|𝑒𝛾
∗(𝑥)|  ≤  𝑛𝑗

−1 +𝑚𝑘
−1 ( ∑  

𝑟∈𝑆𝛾,1

|𝑒𝜂𝑟
∗ �̅�𝐼𝑟(𝑥)| + ∑  

𝑟∈𝑆𝛾,2

|𝑒𝜂𝑟
∗ �̅�𝐼𝑟(𝑥)|) 

Using (14) for the 𝑟 ∈  𝑆𝛾,1, (16) for the 𝑟 ∈  𝑆𝛾,2 and that #𝑆𝛾,1  +  #𝑆𝛾,2  ≤  𝑛𝑘 , 𝑘 < 𝑗, we 

get 
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|𝑒𝛾
∗(𝑥)| ≤ 𝑛𝑗

−1 +
𝑛𝑘
𝑚𝑘𝑛𝑗

+
1

𝑚𝑘
( ∑  

𝑟∈𝑆𝛾,1

𝜙𝑟(𝑦) + ∑  

𝑟∈𝑆𝛾,2

𝑤(𝑒𝜂𝑟)∑  

𝑠∈𝑆𝑟

|𝑒𝜂𝑠
∗ �̅�𝐼𝑠(𝑥)|) 

≤
1

𝑛𝑗
(1 + (

𝑛𝑗−1
𝑚𝑗−1

) +
1

𝑚𝑘
( ∑  

𝑟∈𝑆𝛾,1

𝜙𝑟(𝑦) + ∑  

𝑟∈𝑆𝛾,2

𝑤(𝑒𝜂𝑟)∑  

𝑠∈𝑆𝑟

|𝑒𝜂𝑠
∗ �̅�𝐼𝑠(𝑥)|).          (17) 

Note that the functional 𝑚𝑘
−1 (∑  𝑟∈𝑆𝛾,1 𝜙𝑟) belongs to the norming set of the mixed Tsirelson 

space 𝑋𝑎𝑢𝑥 and has room for #𝑆𝛾,2 more functionals. 

We shall replay the above splitting for every 𝑒𝜂𝑠
∗ �̅�𝐼𝑠  . To avoid complicated notation we shall 

set 𝑛𝑠  =  #𝑆𝑠 and 𝑚𝑠
−1 =  𝑤(𝑒𝜂𝑠

∗ ). From (17) using 𝑒𝜂𝑠
∗ �̅�𝐼𝑠  in the place of 𝑒𝛾

∗ we get 

|𝑒𝜂𝑠
∗ �̅�𝐼𝑠(𝑥)| ≤

1

𝑛𝑗
(1 +

𝑛𝑗−1
𝑚𝑗−1

) 

+𝑚𝑠
−1 (∑  

𝑡∈𝑆𝑠,1

𝜙𝑡(𝑦) + ∑  

𝑡∈𝑆𝑠,2

𝑚𝑡
−1 ∑  

𝑢∈𝑆𝑡

|𝑒𝜂𝑢
∗ �̅�𝐼𝑢(𝑥)|).             (18) 

It follows that 

∑  

𝑟∈𝑆𝛾,2

𝑤(𝑒𝜂𝑟)∑  

𝑠∈𝑆𝑟

|𝑒𝜂𝑠
∗ �̅�𝐼𝑠(𝑥)| ≤ ∑  

𝑟∈𝑆𝛾,2

𝑚𝑟
−1∑  

𝑠∈𝑆𝑟

1

𝑛𝑗
(1 +

𝑛𝑗−1
𝑚𝑗−1

)         (19) 

+∑  𝑟∈𝑆𝛾,2 𝑚𝑟
−1 ∑  𝑠∈𝑆𝑟 𝑚𝑠

−1 (∑  𝑡∈𝑆𝛾,1 𝜙𝑡(𝑦) + ∑  𝑡∈𝑆𝛾,2 𝑚𝑡
−1 ∑  𝑢∈𝑆𝑟 |𝑒𝜂𝑠𝑢

∗ �̅�𝐼𝑢(𝑥)|)  

≤ 𝑛𝑘
𝑛𝑟
𝑚𝑟

1

𝑛𝑗
(1 +

𝑛𝑗−1
𝑚𝑗−1

)          since #𝑆𝛾,2  ≤  𝑛𝑘  and #𝑆𝑟  ≤  𝑛𝑟 

+ ∑  

𝑟∈𝑆𝛾,2

𝑚𝑟
−1∑  

𝑠∈𝑆𝑟

𝑚𝑠
−1 ( ∑  

𝑡∈𝑆𝛾,1

𝜙𝑡(𝑦) + ∑  

𝑡∈𝑆𝛾,2

𝑚𝑡
−1 ∑  

𝑢∈𝑆𝑟

|𝑒𝜂𝑢
∗ �̅�𝐼𝑢(𝑥)|) 

By (17) and (19), using that 
𝑛𝑟

𝑚𝑟
 ,
𝑛𝑘

𝑚𝑘
 ≤

𝑛𝑗−1

𝑚𝑗−1
 we get 

|𝑒𝛾
∗(𝑥)| ≤

1

𝑛𝑗
(1 +

𝑛𝑗−1
𝑚𝑗−1

+ (
𝑛𝑗−1
𝑚𝑗−1

)

2

+ (
𝑛𝑗−1
𝑚𝑗−1

)

3

)                            (20) 

+
1

𝑚𝑘
( ∑  

𝑟∈𝑆𝛾,1

𝜙𝑟(𝑦)

+ ∑  

𝑟∈𝑆𝛾,2

𝑚𝑟
−1∑  

𝑠∈𝑆𝑟

𝑚𝑠
−1 (∑  

𝑡∈𝑆𝑠,1

𝜙𝑡(𝑦)

+ ∑  

𝑡∈𝑆𝑠,2

𝑚𝑡
−1 ∑  

𝑢∈𝑆𝑡

|𝑒𝜂𝑢
∗ �̅�𝐼𝑢(𝑥)|))                                                                   (21) 

Note that the functional 
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𝜙𝛾 =
1

𝑚𝑘
+ ( ∑  

𝑟∈𝑆𝛾,1

𝜙𝑟(𝑦) ∑  

𝑟∈𝑆𝛾,2

𝑚𝑟
−1∑  

𝑠∈𝑆𝑟

𝑚𝑠
−1 ∑  

𝑡∈𝑆𝑠,1

𝜙𝑡(𝑦)) 

belongs to the norming set of the mixed Tsirelson space 𝑋𝑎𝑢𝑥 and the functional 

𝑚𝑠
−1  ∑  𝑡∈𝑆𝑠,1 𝜙𝑡 has room for #𝑆𝑠,2 more functionals.  

We continue this splitting at most 𝑙𝑗 times, see (9) for the choice of 𝑙𝑗 , or till 𝑆𝑠,2  =  ∅ i.e. 

we do not have nodes with weight > 𝑚𝑗
−1 . 

If we stop before the 𝑙𝑗-th step we get that |𝑒𝛾
∗(𝑥)| is dominated by 𝜙𝛾(𝑦) plus the errors in 

(20), where the sum end to the 𝑙𝑗-th power of 𝑛𝑗−1/𝑚𝑗−1. Since 𝜙𝛾 belongs to the norming 

set of the mixed Tsirelson space 𝑋𝑎𝑢𝑥 it follows from [99], Lemma II.9, that 

𝜙𝛾(𝑦)  ≤  4𝑚𝑘
−1 𝑚𝑗

−1 . 

If we continue the splitting 𝑙𝑗 -times, then there exists some node with (𝛾𝑡)  >  𝑚𝑗
−1 . For 

every such node we have 

(∏ 

 

𝑠≺𝑡

𝑤(𝑒𝛾𝑠)) |𝑒𝛾𝑡
∗ (𝑥)| ≤ (

1

𝑚1
)
𝑙𝑘

|𝑒𝛾𝑡
∗ (𝑥)| ≤ 2𝑚𝑘

−1 𝑚𝑗
−1
#{𝑖 ∶  𝑟𝑛𝑔(𝑑𝜉𝑖

∗ ) ⊂  𝐼𝑡  ∩  𝐺}

𝑛𝑗
 

since 𝑚1
−𝑙𝑗  ≤  (𝑚𝑗𝑚𝑗−1)

−1
, see (9). 

Summing the estimation of all those nodes we get upper estimate equal to 2#𝐺 𝑚𝑘𝑚𝑗𝑛𝑗⁄   ≤

  2 𝑚𝑘𝑚𝑗⁄  . 

The remaining nodes provide us with a functional in the norming set of the mixed Tsirelson 

space 𝑋𝑎𝑢𝑥. By [99] its action on y is bounded by 4𝑚𝑘
−1 𝑚𝑗

−1 . 

It remains to handle the errors (20). In each case we have 

1

𝑛𝑗
 (1 +

𝑛𝑗−1
𝑚𝑗−1

+ (
𝑛𝑗−1
𝑚𝑗−1

)

2

+ ···  +(
𝑛𝑗−1
𝑚𝑗−1

)

𝑙𝑗

) ≤
1

𝑛𝑗
 
(𝑛𝑗−1/𝑚𝑗−1)

𝑙𝑗+1
− 1

(𝑛𝑗/𝑚𝑗−1)
 − 1

≤
2

𝑚𝑗𝑚𝑗−1
 . 

Summing all the above estimates we get an upper estimate 7𝑚𝑘
−1 𝑚𝑗

−1 . 

Corollary (6.3.11)[252]: Let 𝑥 =  𝑚𝑗𝑛𝑗
−1  ∑  

𝑛𝑗
𝑖=1

�̅�𝜉𝑖 such that no two 𝜉𝑖’s are neighbours. 

Let 𝑖 <  𝑗, (𝑒𝜂𝑝
∗ )

𝑝=1

𝑛𝑖
 be nodes such that 𝑤 (𝑒𝜂𝑝

∗ ) = 𝑚𝑙𝑝 ≠ 𝑚𝑗  and 𝑚𝑙𝑝 < 𝑚𝑙𝑝+1 for all 𝑝 ≤

 𝑛𝑖. Then 

∑ 

𝑛𝑖

𝑝=1

|𝑒𝜂𝑝
∗  �̅�𝐼𝑝(𝑥)| ≤

14

𝑚𝑝1
 .                                         (22) 

Proof. From Lemma (6.3.10) we get 

∑ 

𝑛𝑖

𝑝=1

|𝑒𝜂𝑝
∗ �̅�𝐼𝑝(𝑥)| ≤  ∑  

𝑝:𝑙𝑝<𝑗

|𝑒𝜂𝑝
∗ �̅�𝐼𝑝(𝑥)| + ∑  

𝑝:𝑙𝑝>𝑗

|𝑒𝜂𝑝
∗ �̅�𝐼𝑝(𝑥)| 

≤ ∑  

𝑝:𝑙𝑝<𝑗

7

𝑚𝑝
+ ∑  

𝑝:𝑙𝑝>𝑗

(
1

𝑛𝑗
+
2𝑚𝑗
𝑚𝑝
) 
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≤ ∑  

𝑝:𝑙𝑝<𝑗

7

𝑚𝑝
+
𝑛𝑖
𝑛𝑗
+ ∑  

𝑝:𝑙𝑝>𝑗

 
2

𝑚𝑝−1
≤
14

𝑚𝑝1
. 

We define the space 𝒳𝐾𝑢𝑠. We shall need the following notion from [255]. 

Definition (6.3.12)[252]: Let 𝒳 be a BD-L∞-subspace of ℓ∞(�̃�). A subset 𝛤 of �̃� is called 

selfdetermined provided 〈�̅�𝛾
∗ ∶  𝛾 ∈  𝛤〉 = 〈𝑒𝛾

∗ ∶  𝛾 ∈  𝛤〉, where (�̅�𝛾
∗)
𝛾∈𝛤

 denotes the 

biorthogonal sequence to the basis (�̅�𝛾)𝛾∈𝛤 and for 𝛾 ∈  𝛤, 𝑒𝛾
∗ denotes the element 𝑒𝛾 of 

ℓ1(�̃�) restricted to 𝒳. 

Now we proceed to the choice of a self-determined subset 𝛤 of 𝛤 which will determine the 

space 𝒳𝐾𝑢𝑠. This set will consist of regular and special nodes. 

We introduce first the notion which will describe the “freedom” in choosing special nodes. 

For any 𝛾 ∈  𝛤 we write rank(bd(𝑒𝛾
∗))  =  {rank 𝜉𝑖 , 𝑖 ∈  𝐴}, where bd(𝑒𝛾

∗) =  ∑  𝑖∈𝐴 𝑑𝜉𝑖
∗  . 

Definition (6.3.13)[252]: We say that the functionals 𝑒𝛾
∗, 𝑒�̃�

∗, 𝛾, �̃� ∈  𝛤, have compatible 

treeanalyses if 

(CT1) 𝑒𝛾
∗, 𝑒�̃�

∗ have tree-analyses (𝐼𝑡 , 𝜀𝑡 , 𝜂𝑡)𝑡∈𝒯  , (𝐼𝑡 , 𝜀�̃� , �̃�𝑡)𝑡∈𝒯 respectively, 

(CT2) 𝑤(𝜂𝑡)  =  𝑤(�̃�𝑡) for any  ∈ 𝒯 , 

(CT3) mt-supp 𝑒𝜂𝑡
∗ =  mt − supp 𝑒�̃�𝑡

∗  for any  ∈ 𝒯 , 

(CT4) rank(𝜂𝑡)  =  rank(�̃�𝑡) for any  ∈ 𝒯 , 

(CT5) rank(bd(𝑒𝜂𝑡
∗ ))  =  rank(bd(𝑒�̃�𝑡

∗ )) for any  ∈ 𝒯 . 

For every 𝛾 =  (𝑞 +  1, 𝜉,𝑚𝑘, 𝜖, 𝐼, 𝑒𝜂
∗)  ∈  𝛤 and 𝑥 ∈  𝒳�̅� we set 

𝜆𝛾,𝑥 = {
𝜖𝑒𝜂
∗(𝑥)     if  𝑒𝜂

∗(𝑥) ≠ 0

𝜖𝑛𝑘
−2       otherwise.

                                        (23) 

Notice that in the above formula we do not use the projection 𝑃𝐼 , which in particular yields 

that |𝜆𝛾,𝑥|  ≤  1 for x with ‖𝑥‖ ≤  1. On the other hand, for any 𝑥 with 𝑟𝑛𝑔(𝑥)  ⊂  𝐼 we 

have 𝑒𝜂
∗(𝑥)  =  𝑒𝜂

∗𝑃𝐼 (𝑥) and we shall use the above notion in such context. 

Definition (6.3.14) (The tree of the special sequences)[252]: We denote by 𝒬 the set of all 

finite sequences of pairs {(𝜁1, �̅�1), . . . , (𝜁𝑘, �̅�𝑘)} satisfying the following: 

(i) 𝜁𝑖  ∈  𝛤 with rank(𝜁𝑖)  =  𝑞𝑖  ≥  𝑚𝑖𝑛 𝑟𝑛𝑔𝐹𝐷𝐷  �̅�𝑖    for 𝑖 =  1, . . . , 𝑘, 

(ii) (�̅�1, . . . , �̅�𝑘) are vectors with rational coefficients with respect to the basis (�̅�𝛾)𝛾∈�̅�, 

successive with respect to the 𝐹𝐷𝐷 (�̅�𝑞)𝑞. 

We choose a one-to-one function 𝜎 ∶ 𝒬 → ℕ, called the coding function, so that  

𝜎({(𝜁1, �̅�1), . . . , (𝜁𝑘, �̅�𝑘)}) > 𝑤(𝜁𝑘)
−1 𝑚𝑎𝑥 𝑠𝑢𝑝𝑝𝐹𝐷𝐷  �̅�𝑘 ∀{(𝜁1, �̅�1), . . . , (𝜁𝑘, �̅�𝑘)}

∈ 𝒬.                                                                                                                            (24) 
Definition (6.3.15)[252]: A finite sequence (𝜁𝑖 , �̅�𝑖)𝑖=1

𝑑 ∈ 𝒬 is called a 𝑗-special sequence, 

𝑗 ∈ ℕ, if 𝑑 ≤  𝑛2𝑗−1 and the following conditions are satisfied. 

(i) 𝜁1 = (𝑞1  +  1, 0,𝑚2𝑗−1, 𝐼1, 𝜖1, 𝑒𝜂1
∗ ) and 𝜁𝑖 = (𝑞𝑖 + 1, 𝜁𝑖−1, 𝑚2𝑗−1, 𝐼𝑖 , 𝜖𝑖 , 𝜆𝑖𝑒𝜂𝑖

∗ ) for every 

𝑖 ≤  𝑑, 

(ii) 𝑤(𝜂1)  =  𝑚4𝑙−2
−1 < 𝑛2𝑗−1

−2  and 𝑤(𝜂𝑖)  =  𝑚4𝜎((𝜁1,�̅�1),...,(𝜁𝑖−1,�̅�𝑖−1))
−1  for 𝑖 =  2, . . . , 𝑑, 

(iii) if 𝑖 is odd then 𝜆𝑖  =  1 and ‖�̅�𝑖‖ ≤  1, 

(iv) if 𝑖 is even then 𝜖𝑖  =  1, 𝜂𝑖 is chosen to satisfy 
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mt(𝑒𝜂𝑖
∗ ) = 𝑚

4𝜎((𝜁𝑝,�̅�𝑝)𝑝=1
𝑖−1

)

−1 ∑  

𝑛
4𝜎((𝜁𝑝,�̅�𝑝)𝑝=1

𝑖−1
)

𝑟=1

�̅�𝛽𝑟
∗  , 

where (�̅�𝛽𝑟)𝑟
 are pairwise non-neighbours. Moreover, we let 

�̅�𝑖 =
𝑚4𝜎((𝜁𝑘,�̅�𝑘)𝑘=1

𝑖−1 )

𝑛4𝜎((𝜁𝑘,�̅�𝑘)𝑘=1
𝑖−1 )

 ∑  

𝑛
4𝜎((𝜁𝑘,�̅�𝑘)𝑘=1

𝑖−1
)

𝑟=1

 �̅�𝛽𝑟  

and 𝜆𝑖  ∈  Net1,𝑞𝑖 is chosen to satisfy |𝜆𝑖  −  𝜆𝜁𝑖−1,�̅�𝑖−1| <
1
4𝑛𝑞𝑖−1

2⁄ . 

We denote by 𝒰 the tree of all special sequences, endowed with the natural ordering “⊑” of 

initial segments. 

Fix 𝛤 = ∪𝑞 𝛤𝑞 , 𝛤𝑞  ⊂  𝛤𝑞. A j-special sequence (𝜁1, �̅�1), with 𝜁1  =  (𝑞 +

 1, 0,𝑚2𝑗−1, 𝐼1, 𝜖, 𝑒𝜂
∗) is called (𝛤, 𝑗)-special if 𝜂 ∈  𝛤𝑞. A j-special sequence (𝜁𝑖 , �̅�𝑖)𝑖=1

𝑑 , 𝑑 ≤

 𝑛2𝑗−1, with 𝜁𝑖 = (𝑞𝑖  +  1, 𝜁𝑖−1, 𝑚2𝑗−1, 𝐼𝑖 , 𝜖𝑖 , 𝜆𝑖𝑒𝜂𝑖
∗ ) is called (𝛤, 𝑗)-special if 𝜂𝑑  ∈

 𝛤𝑞  \ 𝛤𝑞𝑑−1, 𝜁𝑑−1 ∈ 𝛤𝑞𝑑−1+1 and (𝜁𝑖 , �̅�𝑖)𝑖=1
𝑑−1 is a (𝛤𝑞𝑑−1 , 𝑗)-special sequence. 

Now we are ready to define inductively on 𝑞 ∈ ℕ the families of nodes (𝛥𝑞)𝑞 and (𝛤𝑞)𝑞 

satisfying 𝛥𝑞  ⊂  �̅�𝑞 and 𝛤𝑞 =∪𝑝=1
𝑞

𝛥𝑝 for any 𝑞 ∈ ℕ. 

Set 𝛤1  =  𝛥1  =  �̅�1. Fix 𝑞 ∈ ℕ and assume we have defined all objects up to q-th level. 

The set of regular nodes is defined as 

𝛥𝑞+1
𝑟𝑒𝑔

= ⋃  

⌊(𝑞+𝑞)/2⌋

𝑗=1

{(𝑞 +  1, 0,𝑚2𝑗  , 𝐼, 𝜖, 𝑒𝜂
∗) ∈ �̅�𝑞+1 ∶  𝜂 ∈  𝛤𝑞} 

∪ ⋃  

 

1≤𝑝<𝑞

⋃  

⌊(𝑞+1)/2⌋

𝑗=1

{(𝑞 + 1, 𝜉,𝑚2𝑗  , 𝐼, 𝜖, 𝑒𝜂
∗) ∈ �̅�𝑞+1 ∶  𝜉 ∈ 𝛥𝑝, 𝜂 ∈  𝛤𝑞  \ 𝛤𝑝} 

Now we define the special nodes, i.e. the nodes compatible to the special sequences defined 

above (counterparts of special functionals in [98]). We start with the notion of compatibility, 

which is defined recursively on age(𝛾). 
Definition (6.3.16)[252]: We say that a node 𝛾 =  (𝑞 +  1, 0,𝑚2𝑗−1, 𝐼, 𝜖, 𝑒𝜂

∗)  ∈  �̅�𝑞+1 is 

compatible with a (𝛤𝑞 , 𝑗)-special sequence (𝜁1, �̅�1), where 𝜁1 = (𝑞 +

 1, 0,𝑚2𝑗−1, 𝐼, 𝜖1, 𝑒𝜂1
∗ ), if 𝜂 ∈  𝛤𝑞 and 𝜂, 𝜂1 have compatible tree-analyses. 

We say that a node 𝛾 =  (𝑞 +  1, 𝜉,𝑚2𝑗−1, 𝐼, 𝜖, 𝜆𝑒𝜂
∗)  ∈  �̅�𝑞+1 is compatible with a (𝛤𝑞 , 𝑗)-

special sequence (𝜁𝑖 , �̅�𝑖)𝑖=1
𝑎𝑔𝑒(𝛾)

 , where 𝜁𝑎𝑔𝑒(𝛾) = (𝑞 +

 1, 𝜁𝑎𝑔𝑒(𝛾)−1, 𝑚2𝑗−1, 𝐼, 𝜖𝑎𝑔𝑒(𝛾), 𝜆𝑎𝑔𝑒(𝛾)𝑒𝜂𝑎𝑔𝑒(𝛾)
∗ ), provided 

(i) 𝜂, 𝜉 ∈  𝛤𝑞 , 

(ii) 𝜉 is compatible with the (𝛤𝑟𝑎𝑛𝑘(𝜉), 𝑗)-special sequence (𝜁𝑖 , �̅�𝑖)𝑖=1
𝑎𝑔𝑒(𝜉)

 (recall that 

𝑎𝑔𝑒(𝛾)  =  𝑎𝑔𝑒(𝜉)  +  1), 
(iii) if 𝑎𝑔𝑒(𝛾) is odd then 𝜆 =  1(=  𝜆𝑎𝑔𝑒(𝛾)) and 𝜂, 𝜂𝑎𝑔𝑒(𝛾) have compatible tree-analyses, 

(iv) if 𝑎𝑔𝑒(𝛾) is even then 𝜖 =  1, 𝜂 =  𝜂𝑎𝑔𝑒(𝛾) and 𝜆 ∈  Net1,𝑞 is chosen to satisfy |𝜆 −

 𝜆𝜉,�̅�𝑎𝑔𝑒(𝜉)|  <  
1
4𝑛𝑟𝑎𝑛𝑘(𝜉)

2⁄  . 

The set of special nodes is defined as 
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𝛥𝑞+1
𝑠𝑝

= ⋃  

⌊(𝑞+1)2⌋

𝑗=1

{𝛾 = (𝑞 + 1, 0,𝑚2𝑗−1, 𝐼, 𝜖, 𝑒𝜂
∗) ∈ �̅�𝑞+1

∶  𝛾 is compatible with some (𝛤𝑞, 𝑗) − special sequence (𝜁1, �̅�1)} 

∪⋃ 

𝑞

𝑝=1

⋃  

⌊(𝑞+1)/2⌋

𝑗=1

{𝛾 = (𝑞 + 1, 𝜉,𝑚2𝑗−1, 𝐼, 𝜖, 𝜆𝑒𝜂
∗) ∈ �̅�𝑞+1

∶  𝛾 is compatible with some (𝛤𝑞 , 𝑗)

− special sequence (𝜁𝑖 , �̅�𝑖)𝑖=1
𝑎𝑔𝑒(𝛾)

}.                                                                   (25) 

Finally we set 

𝛥𝑞+1 = 𝛥𝑞+1
𝑟𝑒𝑔

∪ 𝛥𝑞+1
𝑠𝑝
  and   𝛤𝑞+1 = 𝛤𝑞  ∪  𝛥𝑞+1. 

Obviously 𝛥𝑞  ⊂  �̅�𝑞 for any 𝑞 ∈ ℕ. We set 𝛤 = ∪𝑞 𝛤𝑞. Following [255] we denote by 𝑅 

the restriction on 𝒳�̅� of the restriction operator ℓ∞(�̅�) → ℓ∞(𝛤) and for any 𝑞 ∈ ℕ we let 

𝑖𝑞 ∶  ℓ∞(𝛤𝑞)  →  ℓ∞(𝛤) be defined by 𝑖𝑞(𝑥)  =  𝑅(𝚤�̅�(𝑥)) for any 𝑥. Given any 𝑞 ∈ ℕ we 

let 𝑀𝑞  =  𝑖max  𝛤𝑞  [ℓ∞(𝛤𝑞)]. 

Proposition (6.3.17)[252]: The set 𝛤 is a self-determined subset of 𝛤, hence it defines a 

BD-L∞-space 𝒳(𝛤𝑞,𝑖𝑞)𝑞
 . 

Moreover, the restriction 𝑅 ∶  𝒳�̅�  →  𝒳(𝛤𝑞,𝑖𝑞)𝑞
 is a well-defined operator of norm at most 1 

inducing the isomorphism between 𝒳(𝛤𝑞,𝑖𝑞)𝑞
 and 𝒳�̅�/𝑌 , where 𝑌 =  〈𝑑𝛾 ∶  𝛾 ∈  𝛤 \ 𝛤〉

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . 

Proof. According to Proposition 1.5 [255] it is enough to show that for every 𝛾 ∈  𝛥𝑞+1 the 

following holds 

𝑐�̅�
∗ ∈ {𝑒𝛾

∗ ∘ 𝑃𝐸 ∶  𝛾 ∈  𝛤𝑞 , 𝐸 ⊂ ℕ ∪ {0}} 

This follows readily from the definition of 𝑐�̅�
∗, see (10), using that �̅�𝛾

∗ = 𝑒𝛾
∗ ∘ 𝑃{𝑟𝑎𝑛𝑘(𝛾)}. 

The second part of Proposition follows by Proposition 1.9 [255]. 

Definition (6.3.18)[252]: We let 𝒳𝐾𝑢𝑠  =  𝒳(𝛤𝑞,𝑖𝑞)𝑞
 . 

We shall use the casual notation, 𝑐𝛾
∗ , 𝑑𝛾

∗ , 𝑑𝛾 etc for the objects in the space 𝑋𝐾𝑢𝑠. We shall 

use also notation 𝑃𝐼 for the projections onto 〈𝑑𝛾 ∶  𝛾 ∈  𝐼〉, notice here that we can consider 

𝐼 to be an interval in 𝛤 instead of 𝛤. Henceforth, by (𝛾𝑛)𝑛 we shall denote the enumeration 

of 𝛤 instead of the one of 𝛤. 

Where the last term in the square brackets appears if 𝑎 ∈  2ℕ +  1, and with each 𝑒𝜂2𝑖
∗  

having the mt-part of the following form 

mt(𝑒𝜂2𝑖
∗ ) = 𝑤(𝜂2𝑖)∑ 

𝑘

𝑃𝛥
𝑟𝑎𝑛𝑘(𝛽𝑘,𝑖)

∗  𝑒𝛽𝑘,𝑖
∗ = 𝑤(𝜂2𝑖)∑ 

𝑘

𝑑𝛽𝑘,𝑖
∗ . 

Now we make some comments concerning the possible modification of the mt-part of a 

functional. 

From now on we shall work in the space 𝒳𝐾𝑢𝑠. We introduce the basic canonical tool, 

i.e. Rapidly Increasing Sequences and state their properties, in particular the fundamental 

property of Bourgain–Delbaen spaces in the Argyros–Haydon setting that allows to pass 

from strictly singular operators to compact ones. As the proofs of all the results stated here 

follows directly the reasoning of [91], we do not present them here. 

Recall that skipped block sequences are defined with respect to the FDD (𝑀𝑞)𝑞∈ℕ. 
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Definition (6.3.19)[252]: Let 𝐼 be an interval in ℕ and (𝑥𝑘)𝑘∈𝐼  ⊂  𝒳𝐾𝑢𝑠 be a skipped block 

sequence. We shall say that (𝑥𝑘)𝑘∈𝐼 is a Rapidly Increasing Sequence with constant 𝐶 >  0 

(𝐶-RIS) if there exists an increasing sequence (𝑗𝑘)𝑛∈𝐼  ⊂ ℕ such that 

(i) ‖𝑥𝑘‖  ≤  𝐶 for all 𝑘 ∈  𝐼, 
(ii) rng𝐹𝐷𝐷 𝑥𝑘  <  𝑗𝑘+1, 

(iii) |𝑥𝑘(𝛾)|  ≤  𝐶𝑚𝑖
−1 for all 𝛾 with 𝑤(𝛾)  =  𝑚𝑖

−1 and 𝑖 <  𝑗𝑘. 

Lemma (6.3.20) (Proposition (6.3.24) [91])[252]: Let (𝑥𝑘)𝑘=1
𝑛𝑗0  be a 𝐶-RIS and 𝑠 ∈ ℕ. 

a) If 𝛾 ∈  𝛤 and 𝑤(𝛾)  =  𝑚𝑖
−1 then 

|𝑒𝛾
∗𝑃(𝑠,+∞) (

1

𝑛𝑗0
 ∑  

𝑛𝑗0

𝑘=1

𝑥𝑘)| ≤ {
16𝐶𝑚𝑖

−1𝑚𝑗0
−1            if   𝑖 < 𝑗0

5𝐶𝑛𝑗0
−1 + 6𝐶𝑚𝑖

−1            if   𝑖 ≥ 𝑗0.
              (26) 

In particular for 𝑖 > 𝑗0 we have 

|𝑒𝛾
∗ (

1

𝑛𝑗0
 ∑  

𝑛𝑗0

𝑘=1

𝑥𝑘)| ≤  10𝐶𝑚𝑗0
−2                                    (27) 

and also 

‖
1

𝑛𝑗0
 ∑  

𝑛𝑗0

𝑘=1

𝑥𝑘‖  ≤  10𝐶𝑚𝑗0
−1 .                               (28) 

b) If 𝜆𝑘, 1 ≤  𝑘 ≤  𝑛𝑗0 are scalars with |𝜆𝑘|  ≤  1, satisfying the property 

|𝑒𝛾
∗ (∑ 

𝑘∈𝐽

𝜆𝑘𝑥𝑘)| ≤  𝐶 max
𝑘∈𝐽

 |𝜆𝑘| 

for every 𝛾 ∈  𝛤 with 𝑤(𝛾)  =  𝑚𝑗0
−1 and every interval 𝐽 ⊂  {1, . . . , 𝑛𝑗0} then we have 

‖
1

𝑛𝑗0
 ∑  

𝑛𝑗0

𝑘=1

𝜆𝑘𝑥𝑘‖  ≤
10𝐶

𝑚𝑗0
2   . 

The following result is proved in a manner similar to how Lemma (6.3.10) is proved.  

Corollary (6.3.21)[252]: Let 𝑖 <  𝑗 ∈ ℕ, (𝑥𝑘)𝑘=1
𝑛𝑗

 be a C-RIS, 𝑥 =
𝑚𝑗

𝑛𝑗
 ∑  
𝑛𝑗
𝑘=1

𝑥𝑘 and 

(𝑒𝜂𝑝
∗ )

𝑝=1

𝑛𝑖
 be nodes such that 𝑤(𝑒𝜂𝑝

∗ )  =  𝑚𝑙𝑝
−1 and 𝑚𝑙𝑝 ≠ 𝑚𝑗  , 𝑚𝑙𝑝 < 𝑚𝑙𝑝+1 for all 𝑝 ≤  𝑛𝑖. 

Then for every choice of intervals 𝐼𝑝, 𝑝 ≤  𝑛𝑖, we have 

∑ 

𝑛𝑖

𝑝=1

|𝑒𝜂𝑝
∗ (𝑃𝐼𝑝𝑥)|  ≤  64𝐶/𝑚𝑝1  .                             (29) 

Lemma (6.3.22) (Corollary (6.3.41) [91])[252]: For every block subspace 𝑌 ⊂
 𝒳𝐾𝑢𝑠, 𝐶 >  2 and every interval 𝐽 ⊂ ℕ there exists a normalised C-RIS (𝑥𝑘)𝑘∈𝐽 in  . 

Moreover, for any 𝜀 >  0 and 𝐶 >  2 the sequence (𝑥𝑘)𝑘∈𝐽 can be chosen to satisfy 

|𝑑𝛾
∗(𝑥𝑘)|  <  𝜀 for any 𝑘 ∈  𝐽 and 𝛾 ∈  𝛤. 

Notice that if 𝑥 ∈ ⊕𝑛=1
𝑞

𝑀𝑛 with 𝑞 minimal then there exists a unique 𝑢 ∈  ℓ∞(𝛤𝑞) such 

that 𝑖𝑞(𝑢)  =  𝑥. The local support of 𝑥 is defined to be the set {𝛾 ∈  𝛤𝑞  |𝑢(𝛾) ≠ 0}. Next 

results are again quoted from [91]. 
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Lemma (6.3.23) (Lemma (6.3.26) [91])[252]: Let 𝛾 ∈  𝛤 be of weight 𝑚ℎ
−1 and assume 

that 𝑤(𝜉) ≠ 𝑚ℎ
−1 for all 𝜉 in the local support of 𝑥. Then |𝑥(𝛾)|  ≤  4𝑚ℎ

−1 ‖𝑥‖. 

We recall the two classes of block sequences, characterised by the weights of the elements 

of the local support. 

Definition (6.3.24) (Definition (6.3.27) [91])[252]: We say that a block sequence (𝑥𝑘)𝑘∈ℕ 

in 𝒳𝐾𝑢𝑠 has bounded local weight if there exists some 𝑗1 such that 𝑤(𝛾)  ≥  𝑚𝑗1
−1 for all 𝛾 

in the local support of 𝑥𝑘, and all values of 𝑘. 

We say that a block sequence (𝑥𝑘)𝑘∈ℕ in 𝒳𝐾𝑢𝑠 has rapidly increasing local weight if, for 

each 𝑘 and each 𝛾 in the local support of 𝑥𝑘+1, we have 𝑤(𝛾)  <  𝑚𝑖𝑘
−1 where 𝑖𝑘  =

 max rng𝐹𝐷𝐷 𝑥𝑘. 

Proposition (6.3.25) ([91])[252]: Let (𝑥𝑘)𝑘∈ℕ  ⊂  𝒳𝐾𝑢𝑠 be a bounded block sequence. If 

either (𝑥𝑘) has bounded local weight, or (𝑥𝑘) has rapidly increasing local weight, then the 

sequence (𝑥𝑘) is a RIS. 

Corollary (6.3.26) ([91])[252]: Let 𝑌 be any Banach space and 𝑇 ∶  𝒳𝐾𝑢𝑠  →  𝑌 be a 

bounded linear operator. If ‖𝑇𝑥𝑘‖ →  0 for every RIS (𝑥𝑘)𝑘 in 𝒳𝐾𝑢𝑠 then ‖𝑇𝑥𝑘‖  →  0 for 

every bounded block sequence (𝑥𝑘) in 𝒳𝐾𝑢𝑠. 

Corollary (6.3.27) ([91])[252]: The basis (𝑑𝛾𝑛
∗ )

𝑛
 is shrinking. It follows that the dual space 

to 𝒳𝐾𝑢𝑠 is isomorphic to ℓ1(𝛤). 
          We introduce the classical tools in the study of spaces defined with the use of saturated 

norms. 

Lemma (6.3.28)[252]: a) Let 𝑗 ∈ ℕ and 𝑘 ≤  𝑛2𝑗  . Let also (𝑥𝑘)𝑘  ⊂  𝒳𝐾𝑢𝑠 be a normalised 

skipped block sequence such that rng𝐹𝐷𝐷(𝑥𝑘)  =  (𝑝𝑘−1, 𝑝𝑘] for some strictly increasing 

(𝑝𝑘) with 𝑝1  ≥  2𝑗 −  1. Then there exists a node 𝛾 ∈  𝛤 such that 

𝑒𝛾
∗ = ∑  

𝑛2𝑗

𝑘=1

𝑑𝜉𝑘
∗ + 𝑚2𝑗

−1  ∑  

𝑛2𝑗

𝑘=1

𝜀𝑘𝑒𝜂𝑘
∗  𝑃𝐼𝑘 

with the following properties 

(i) rank(𝜉𝑘)  =  𝑝𝑘  +  1 for each 𝑘, 

(ii) 𝜀𝑘𝑒𝜂𝑘
∗  𝑃𝐼𝑘(𝑥𝑘)  ≥  

1
2⁄  and 𝜂𝑘  ∈  𝛤𝑝𝑘  \ 𝛤𝑝𝑘−1 for each 𝑘, 

(iii) 𝑒𝛾
∗(∑  

𝑛2𝑗
𝑘=1

𝑥𝑘) ≥
𝑛2𝑗

2𝑚2𝑗
 . 

b) Let (𝑑𝜉𝑖)𝑖=1
𝑛2𝑗

 be a finite subsequence of the basis such that rank(𝜉𝑖)  +  1 <  rank(𝜉𝑖+1) 

for every 𝑖 and rank(𝜉1)  ≥  2𝑗 −  1. 

Then the node 

𝑒𝜉
∗ =∑ 

𝑛2𝑗

𝑖=1

𝑑𝜁𝑖
∗ + 𝑚2𝑗

−1  ∑  

𝑛2𝑗

𝑖=1

𝑑𝜉𝑖
∗                                  (30) 

with rank(𝜁𝑖)  =  rank(𝜉𝑖)  +  1 is a regular node and 𝑒𝜉
∗(∑  

𝑛2𝑗
𝑖=1

𝑑𝜉) =
𝑛2𝑗

𝑚2𝑗
 . 

Proof. a) (see [91], Proposition 4.8) Let 𝑥𝑘  =  𝑖𝑘(𝑢𝑘) where 𝑢𝑘  ∈  𝛤𝑝𝑘  \ 𝛤𝑝𝑘−1 is the 

restriction of 𝑥𝑘 on 𝛤𝑝𝑘  . Since 

2‖𝑢𝑘‖ ≥ ‖𝑖𝑝𝑘(𝑢𝑘)‖ = ‖𝑥𝑘‖ = 1 

we can choose 𝜂𝑘  ∈  𝛤𝑝𝑘  \ 𝛤𝑝𝑘−1 such that |𝑒𝜂𝑘
∗ (𝑢𝑘)|  ≥  

1
2⁄ . Setting 𝐼𝑘 = rng𝐹𝐷𝐷(𝑥𝑘) =

 ∪𝑖=𝑝𝑘−1+1
𝑝𝑘 𝛥𝑖, choose 𝜀𝑘  ∈  {−1, 1} such that 
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|𝑒𝜂𝑘
∗ 𝑃𝐼𝑘(𝑥𝑘)|  =  𝜀𝑘𝑒𝜂𝑘

∗ 𝑃𝐼𝑘(𝑥𝑘) = 𝜀𝑘𝑒𝜂𝑘
∗ (𝑢𝑘)  ≥  

1
2⁄ .          (31) 

The nodes 𝛾𝑘 = (𝑝𝑘  +  1, 𝛾𝑘−1, 𝑚2𝑗  , 𝐼𝑘 , 𝜀𝑘 , 𝑒𝜂𝑘
∗ ), 𝛾0 = 0, 𝑘 = 1, . . . , 𝑛2𝑗 give the node 𝛾 =

 𝛾𝑛2𝑗 with the properties (i)–(iii). 

b) Take the nodes 𝜁𝑖  =  (rank(𝜉𝑖)  +  1, 𝜁𝑖−1, 𝑚2𝑗  , 𝐼𝑖 , 1, 𝑒𝜉𝑖
∗ ), 𝜁0  =  0, where 𝐼𝑖  =

 𝛥rank(𝜉𝑖). 

Definition (6.3.29)[252]: Fix 𝑗 ∈ ℕ, 𝐶 ≥  1 with 𝑛2𝑗−1 ≥  200𝐶 and let (𝛾𝑘 , �̅�𝑘)𝑘=1
𝑑  be a 

(𝛤, 𝑗)-special sequence. 

A sequence (𝛾𝑘 , 𝑥𝑘)𝑘=1
𝑑 , 𝑑 ≤  𝑛2𝑗−1, with 𝑥𝑘  ∈  𝒳𝐾𝑢𝑠 and 𝛾𝑘  =  (𝑞𝑘  +

 1, 𝛾𝑘−1, 𝑚2𝑗−1, 𝐼𝑘 , 1, 𝑒𝜂𝑘
∗ ) for each 𝑘, where 𝛾0  =  0, 𝑞1  ≥  4𝑗1  −  2, 2

−𝑞1  ≤  1/4𝑛2𝑗−1
2 , is 

called a j-dependent sequence with a constant 𝐶 of length 𝑑 with respect to (𝛾𝑘 , �̅�𝑘)𝑘=1
𝑑  if 

the following conditions are satisfied. 

(i) if 𝑘 is even then 𝑥𝑘  =  𝑅�̅�𝑘, rng(𝑥𝑘)  =  𝐼𝑘, 

(ii) if 𝑘 is odd then 𝑥𝑘  =
𝑐𝑘𝑚𝑙𝑘

𝑛𝑙𝑘
 ∑  
𝑛𝑙𝑘
𝑙=1

𝑥𝑘,𝑙, where (𝑥𝑘,𝑙)𝑙 is a normalised skipped block 

sequence which is a C-RIS of length 𝑛𝑙𝑘  , 𝑚𝑙𝑘 = 𝑤(𝜂𝑘),𝑚𝑙1 ≥ 𝑛2𝑗−1
2 , ‖𝑥𝑘‖ =

1
2⁄ , rng(𝑥𝑘)  ⊂  𝐼𝑘  and 𝑒𝜂𝑘

∗ (𝑥𝑘) ≥  
1
40𝐶⁄ , 

(iii) |𝑒𝛾
∗(�̅�𝑘)  − 𝑒𝛾

∗(𝑥𝑘)|  <  
1
4𝑛𝑞𝑘

2⁄  for every 𝛾 ∈  𝛤 and every 𝑘, 

(iv) (𝛾𝑘, 𝑥𝑘)𝑘=1
𝑑−1 is j-dependent of length 𝑑 −  1 with respect to the (𝛤, 𝑗)-special sequence 

(𝛾𝑘 , �̅�𝑘)𝑘=1
𝑑−1. 

We say that a sequence (𝛾𝑘, 𝑥𝑘)𝑘=1
𝑑  is a j-dependent sequence of length 𝑑, if it is j-dependent 

with respect to some (𝛤, 𝑗)-special sequence. 

Remark (6.3.30)[252]: Take (𝑥𝑘,𝑙)𝑙 as in (ii) of Definition (6.3.29) with max 

rng𝐹𝐷𝐷(𝑥𝑘)  ≥  2𝑙𝑘  −  1 for each 𝑘 ∈ ℕ. Then Lemmas (6.3.20)a) and (6.3.28)a) yield that 

there is a node 𝜂𝑘  ∈  𝛤 such that 

1

2
≤ 𝑒𝜂𝑘

∗ (
𝑚𝑙𝑘
𝑛𝑙𝑘
 ∑  

𝑛𝑙𝑘

𝑙=1

𝑥𝑘,𝑙)  ≤  ‖
𝑚𝑙𝑘
𝑛𝑙𝑘
∑ 

𝑛𝑙𝑘

𝑙=1

𝑥𝑘,𝑙‖ ≤  10𝐶.            (32) 

Therefore 𝑐𝑘 in Definition (6.3.29) satisfies 1 20𝐶 ≤ 𝑐𝑘 ≤ 1
⁄ . 

Moreover, the last condition in the property (ii) of Definition (6.3.29), i.e. 𝑒𝜂𝑘
∗ (𝑥𝑘)  ≥

 1 40𝐶⁄ , follows from (32) using the lower bound of 𝑐𝑘. 

Lemma (6.3.31)[252]: Let (𝓏𝑘)𝑘 be a normalised block sequence in 𝒳𝐾𝑢𝑠 and (𝑑𝜉𝑛)𝑛∈𝑀
 be 

a subsequence of the basis. Then for every 𝑗 ∈ ℕ there exists a j-dependent sequence of 

length 𝑛2𝑗−1, (𝛾𝑖 , 𝑥𝑖)𝑖≤𝑛2𝑗−1 , such that 𝑥2𝑖−1 ∈  〈𝓏𝑘 ∶  𝑘 ∈ ℕ〉 and 𝑥2𝑖  ∈  〈𝑑𝜉𝑛 ∶  𝑛 ∈  𝑀〉. 

Proof. Passing to a further subsequence we may assume that 

𝑑𝜉𝑛 are pairwise non − neighbours and rank(𝜉𝑛) + 1 <  rank(𝜉𝑛+1).  (33) 

Let 𝑗1 be such that 𝑚4𝑗1−2 > 𝑛2𝑗−1
2  and choose 𝑞1 big enough to guarantee that 4𝑗1  −  2 <

 𝑞1 and 2−𝑞1 ≤ 1
4𝑛2𝑗−1

2⁄  . 

Let (𝑥1,𝑘)𝑘=1
𝑛4𝑗1−2 be a normalised skipped block sequence of 〈𝓏𝑙 ∶  𝑙 ≥  𝑞〉 which is a C-RIS. 

Setting 
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𝑥1 =
𝑐1𝑚4𝑗1−2

𝑛4𝑗1−2
 ∑  

𝑛4𝑗1−2

𝑘=1

𝑥1,𝑘              with  ‖𝑥1‖ =  
1
2⁄  

from Remark (6.3.30) we get 1 20𝐶 ≤  𝑐1  ≤  2
⁄  and that there exists a node 𝜂1  ∈  𝛤 with 

𝑤(𝜂1)  =  𝑚4𝑗1−2
−1  such that 

𝑒𝜂1
∗ 𝑃𝐼1(𝑥1) ≥

1

40𝐶
 , 

where 𝐼1 = ⋃  {𝛥𝑝 ∶  𝑝 ∈  rng𝐹𝐷𝐷(𝑥1)}. 

Using that 𝑅 is a quotient operator of norm 1 take a block �̅�1  ∈  𝒳�̅� such that 𝑥1 = 𝑅(�̅�1) 
and ‖�̅�1‖ ≤ 1. Then choose a vector �̅�1 with rational coefficients in the unit ball of 

〈�̅�𝛾 ∶  𝛾 ∈  𝛤𝑞1〉 such that ‖�̅�1 − �̅�1‖𝒳�̅�  ≤  
1
4𝑛𝑞1

2⁄  . 

Note that 𝑅(�̅�1) = 𝑅(�̅�1 − �̅�1) + 𝑅(�̅�1) = 𝑅(�̅�1 − �̅�1) + 𝑥1 and hence for every 𝛾 ∈  𝛤, 

|𝑒𝛾
∗(�̅�1) − 𝑒𝛾

∗(𝑥1)| = |𝑒𝛾
∗𝑅(�̅�1) − 𝑒𝛾

∗𝑅(𝑥1)| 

≤ ‖𝑒𝛾
∗ ∘ 𝑅‖‖�̅�1 − �̅�1‖𝒳�̅�  ≤

1
4𝑛𝑞1

2⁄  .                              (34) 

We take 𝛾1 to be the node 

𝛾1  =  (𝑞1  +  1, 0,𝑚2𝑗−1
−1 , 𝐼1, 1, 𝑒𝜂1

∗ ). 

From the above we get that (𝛾1, 𝑥1) is a 𝑗-dependent couple of length 1 with respect to the 

(𝛤, 𝑗)-special sequence (𝛾1, �̅�1). 
Set 𝑗2 =  𝜎(𝛾1, �̅�1) and choose 𝑥2, 𝑒𝜂2

∗  such that 

𝑥2 = 𝑚4𝑗2  𝑛4𝑗2
−1 ∑   

𝑘∈𝐹2

𝑑𝜉2,𝑘 ∈ 𝒳𝐾𝑢𝑠     and  mt(𝑒𝜂2
∗ ) = 𝑚4𝑗2

−1  ∑  

𝑘∈𝐹2

𝑑𝜉2,𝑘
∗  

where |𝐹2|  =  𝑛4𝑗2 and 𝑞1  +  2 <  min rng𝐹𝐷𝐷(𝑥2). Such a node exists by Lemma 

(6.3.28)(b) since rank(𝜉𝑛)  +  1 <  rank(𝜉𝑛+1). We also take the node 

𝛾2 = (𝑞2  +  1, 𝛾1, 𝑚2𝑗−1, 𝐼2, 1, 𝜆2𝑒𝜂2
∗ ) ∈ 𝛤 

where 𝐼2  =  [𝑝2, 𝑞2] is the range of 𝑥2 with respect to the basis and 𝜆2  ∈  Net1,𝑞1 is chosen 

such that 

|𝜆2 − 𝑒𝜂1
∗ (�̅�1)|  ≤  

1
4𝑛𝑞1

2⁄  . 

From the above equation and (34) we get 

|𝜆2 − 𝑒𝜂1
∗ (𝑥1)| ≤

1

2𝑛𝑞1
2
⇒ 𝜆2 ≥ 𝑒𝜂1

∗ (𝑥1) −
1

2𝑛𝑞1
2
≥
𝑐1
2
−

1

2𝑛𝑞1
2
≥

1

45𝐶
 . 

Pick �̅�2 to be the corresponding average of (�̅�𝜉2,𝑘)𝑘∈𝐹2
 . It follows that 𝑥2 = 𝑅�̅�2 (recall that 

𝑑𝛾 = 𝑅�̅�𝛾 for each 𝛾 ∈  𝛤) and �̅�1 < �̅�2. Then we get that (𝛾𝑖 , 𝑥𝑖)𝑖=1
2  is j-dependent of 

length 2 with respect to the (𝛤, 𝑗)-special sequence (𝛾𝑖 , �̅�𝑖)𝑖=1
2 .  

Set 𝑗3  =  𝜎(𝛾𝑖 , �̅�𝑖)𝑖=1
2 . We continue to choose 𝑥3, 𝑒𝛾3

∗  , 𝑥4, 𝑒𝛾4
∗  in the same way we have 

chosen 𝑥1, 𝑒𝛾1
∗ , 𝑥2, 𝑒𝛾2

∗  taking care that 𝑥1, 𝑥2, 𝑥3, 𝑥4 is a skipped block sequence (with respect 

to the FDD) and repeat the procedure obtaining the desired dependent sequence. 

Notice that for a dependent sequence (𝛾𝑖 , 𝑥𝑖)𝑖≤𝑛2𝑗−1 with a constant 𝐶 we have 

‖
𝑚2𝑗−1

𝑛2𝑗−1
 ∑  
𝑛2𝑗−1
𝑖=1

𝑥𝑖‖ ≥
1
45𝐶⁄ . Indeed, consider the functional 𝑒𝜁𝑛2𝑗−1

∗  determined by the 

nodes (𝛾𝑖)𝑖=1
𝑛2𝑗−1

 , i.e. of the form 
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𝑒𝜁𝑛2𝑗−1
∗ = ∑  

𝑛2𝑗−1

𝑖=1

𝑑𝛾𝑖
∗ +𝑚2𝑗−1

−1 ∑  

𝑛2𝑗−1/2

𝑖=1

(𝑒𝜂2𝑖−1
∗ 𝑃𝐼2𝑖−1 + 𝜆2𝑖𝑒𝜂2𝑖

∗ 𝑃𝐼2𝑖), 

and notice that 

𝑒𝜁𝑛2𝑗−1
∗ (

𝑚2𝑗−1
𝑛2𝑗−1

∑  

𝑛2𝑗−1

𝑖=1

𝑥𝑖) ≥
1

𝑛2𝑗−1
( ∑  

𝑛2𝑗−1/2

𝑖=1

𝑒𝜂2𝑖−1
∗ 𝑃𝐼2𝑖−1(𝑥2𝑖−1) + 𝜆2𝑖𝑒𝜂2𝑖

∗ (𝑥2𝑖)) 

≥
1

𝑛2𝑗−1
∑  

𝑛2𝑗−1/2

𝑖=1

(
𝑐2𝑖−1
2
+
𝑐2𝑖−1
2
−

1

2𝑛𝑞2𝑖−1
2

) ≥
1

45𝐶
 , 

using that 𝑐2𝑖−1  ≥  
1
20𝐶⁄ . 

Lemma (6.3.32)[252]: Let (𝛾𝑖 , 𝑥𝑖)𝑖≤𝑛2𝑗−1 be a 𝑗-dependent sequence. Then 

‖
1

𝑛2𝑗−1
 ∑  

𝑛2𝑗−1

𝑖=1

(−1)𝑖+1𝑥𝑖‖ ≤
250

𝑚2𝑗−1
2  . 

Proof. Let 𝐽 be an interval of {1, . . . , 𝑛2𝑗−1} and 𝓏 =  ∑  𝑖∈𝐽 (−1)
𝑖+1𝑥𝑖. We shall verify the 

assumption (b) in Lemma (6.3.20) for 𝑗0  =  2𝑗 −  1. 

Let (𝛾𝑘, �̅�𝑘)𝑘=1
𝑛2𝑗−1

 be the special sequence associated with the dependent sequence 

(𝛾𝑘 , 𝑥𝑘)𝑘=1
𝑛2𝑗−1 , 𝛾𝑘 = (𝑞𝑘 + 1, 𝛾𝑘−1, 𝑚2𝑗−1, 𝐼𝑘 , 𝜖𝑘 , 𝜆𝑘𝑒𝜂𝑘

∗ ) for each 𝑘, where 𝛾0 = 0.  

Consider a node 𝛽 with evaluation analysis 

𝑒𝛽
∗ = ∑  

𝑛2𝑗−1

𝑖=1

𝑑𝜉𝑖
∗ +𝑚2𝑗−1

−1  ∑  

𝑛2𝑗−1/2

𝑖=1

(𝜖2̃𝑖−1𝑒�̃�2𝑖−1
∗ 𝑃𝐼2𝑖−1 + �̃�2𝑖𝑒�̃�2𝑖

∗ 𝑃𝐼2𝑖) 

which is produced from a (𝛤, 𝑗)-special sequence (𝜁𝑘, �̅�𝑘)𝑘≤𝑛2𝑗−1 . Let 

𝑘0 = min{𝑘 ≤  𝑛2𝑗−1 ∶  (𝛾𝑘, �̅�𝑘) ≠ (𝜁𝑘 , �̅�𝑘)} 

if such a 𝑘 exists. We estimate separately |𝑒𝛽𝑘0−1
∗ (𝓏)| and | (𝑒𝛽

∗ − 𝑒𝛽𝑘0−1
∗ ) (𝓏)|.  

We start with |𝑒𝛽𝑘0−1
∗ (𝓏)|. Notice that 𝑒𝛽𝑘0−1

∗ , if 𝑘0  >  1, has the following evaluation 

analysis 

𝑒𝛽𝑘0−1
∗ = ∑  

𝑘0−1

𝑖=1

𝑑𝜉𝑖
∗ +𝑚2𝑗−1

−1 ∑  

⌊(𝑘0−1)/2⌋

𝑖=1

(𝜖2̃𝑖−1𝑒�̃�2𝑖−1
∗ 𝑃𝐼2𝑖−1 + �̃�2𝑖𝑒𝜂2𝑖

∗ 𝑃𝐼2𝑖) 

+ [𝜖�̃�0−1𝑒�̃�𝑘0−1
∗ 𝑃𝐼𝑘0−1], 

where 𝑒
�̃�2𝑖−1

∗  and 𝑒𝜂2𝑖−1
∗  have compatible tree-analyses and the last term in square brackets 

appears if 𝑘0  −  1 is odd. By the definition of nodes we have rank(𝜉𝑖)  =  rank(𝛾𝑖)  ∈
 (max rng𝐹𝐷𝐷(𝑥𝑖),min rng𝐹𝐷𝐷(𝑥𝑖+1)) for every 𝑖 <  𝑘0. Therefore 

(∑  

𝑘0−1

𝑖=1

𝑑𝜉𝑖
∗ )∑ 

𝑖

(−1)𝑖+1𝑥𝑖 =  0.                          (35) 

We partition the indices 𝑃 =  {1, 2, . . . , ⌊(𝑘0  −  1)/2⌋} into the sets 𝐴 =  {𝑖 ∈  𝑃 ∶
 𝑒
�̃�2𝑖−1

∗  𝑃𝐼2𝑖−1(�̅�2𝑖−1) ≠ 0} and its complement 𝐵. 
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For every 𝑖 ∈  𝐴 from the choice of �̃�2𝑖, the fact that rng(𝑥2𝑖−1)  ⊂  𝐼2𝑖−1 and (3) of 

Definition (6.3.29) we have 

|�̃�2𝑖  − 𝜖2̃𝑖−1𝑒�̃�2𝑖−1
∗ (�̅�2𝑖−1)| ≤

1

4𝑛2𝑗−1
2    and                                    (36) 

|𝑒
�̃�2𝑖−1

∗ (�̅�2𝑖−1) − 𝑒�̃�2𝑖−1
∗ 𝑃𝐼2𝑖−1(𝑥2𝑖−1)|  = |𝑒�̃�2𝑖−1

∗ (�̅�2𝑖−1) − 𝑒�̃�2𝑖−1
∗ (𝑥2𝑖−1)| ≤

1

4𝑛2𝑗−1
2  . 

It follows that 

|𝜖2̃𝑖−1𝑒�̃�2𝑖−1
∗ 𝑃𝐼2𝑖−1(𝑥2𝑖−1) + �̃�2𝑖𝑒𝜂2𝑖

∗ 𝑃𝐼2𝑖(−𝑥2𝑖)| 

= |𝜖2̃𝑖−1𝑒�̃�2𝑖−1
∗ 𝑃𝐼2𝑖−1(𝑥2𝑖−1) − �̃�2𝑖| ≤

1

2𝑛2𝑗−1
2      by (6.7).      (37) 

Similarly for every 𝑖 ∈  𝐵, 

|𝜖2̃𝑖−1𝑒�̃�2𝑖−1
∗ 𝑃𝐼2𝑖−1(𝑥2𝑖−1) + �̃�2𝑖𝑒𝜂2𝑖

∗ 𝑃𝐼2𝑖(−𝑥2𝑖)| 

= |𝜖2̃𝑖−1𝑒�̃�2𝑖−1
∗ 𝑃𝐼2𝑖−1(𝑥2𝑖−1) − �̃�2𝑖| ≤

1

2𝑛2𝑗−1
2  .                       (38) 

For an interval 𝐽 =  [𝑙,𝑚] using that ‖𝑥2𝑖−1‖  =  
1
2⁄ , ‖𝑥2𝑖‖ ≤  7 (by Lemma (6.3.10)) and 

inequalities (35), (38) we obtain 

|𝑒𝛽𝑘0−1
∗ (∑ 

𝑖∈𝐽

 (−1)𝑖+1𝑥𝑖) | ≤ 10. 

Now we proceed to estimate |(𝑒𝛽
∗  −  𝑒𝛽𝑘0−1

∗ )(𝓏)|. 

Observe that as 𝑥2𝑙−1 is a weighted average of a normalised 𝐶-RIS of length 𝑛𝑗2𝑙−1 we have 

| ∑  

𝑛2𝑗−1

𝑖=𝑘0

𝑑𝜉𝑖
∗ (𝑥2𝑙−1)| ≤ 3𝑛2𝑗−1𝑐2𝑖−1𝐶

𝑚𝑗2𝑙−1
𝑛𝑗2𝑙−1

≤  2𝑚𝑗2𝑙−1
−2 < 𝑛2𝑗−1

−3        (39) 

The same inequality holds also for the averages of the basis i.e. 

| ∑  

𝑛2𝑗−1

𝑖=𝑘0

𝑑𝜉𝑖
∗ (𝑥2𝑙)| ≤  𝑛2𝑗−1

𝑚𝑗2𝑙
𝑛𝑗2𝑙

≤ 𝑚𝑗2𝑙
−3 < 𝑛2𝑗−1

−3      ∀𝑙.         (40) 

We shall distinguish the cases when 𝑘0 is odd or even. Assume first that 𝑘0  =  2𝑖0  −  1 for 

some 𝑖0. 

Then for every 𝑖 <  𝑖0 and every 𝑘 > 𝑘0, 

(𝜖2̃𝑖−1𝑒�̃�2𝑖−1
∗ 𝑃𝐼2𝑖−1 + �̃�2𝑖𝑒�̃�2𝑖

∗ 𝑃𝐼2𝑖)(𝑥𝑘) = 0. 

From the injectivity of 𝜎 it follows that 𝑤(𝑒
�̃�2𝑖−1

∗ ),𝑤(𝑒
�̃�2𝑖

∗ ) ∉ {𝑤 (𝑒𝜂
𝑖′
∗ )| 𝑖′  > 𝑖0} for every 

𝑖 >  𝑖0. Hence by Corollary (6.3.21), using that |�̃�2𝑖|  ≤  1 and 𝑐𝑘  ≤  2, we get for every 

odd 𝑘 > 𝑘0 the following 

| ∑  

𝑛2𝑗−1/2

𝑖≥𝑖0

(𝜖2̃𝑖−1𝑒�̃�2𝑖−1
∗ 𝑃𝐼2𝑖−1 + �̃�2𝑖𝑒�̃�2𝑖

∗ 𝑃𝐼2𝑖) (𝑥𝑘)| 

≤ 64𝑐𝑘𝐶 𝑤(𝛿1) ≤ 128𝐶𝑛2𝑗−1
−2 .                           (41) 

Also from Corollary (6.3.11) we obtain for every even 𝑘 > 𝑘0 the following 
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| ∑  

𝑛2𝑗−1/2

𝑖≥𝑖0

(𝜖2̃𝑖−1𝑒�̃�2𝑖−1
∗ 𝑃𝐼2𝑖−1 + �̃�2𝑖𝑒�̃�2𝑖

∗ 𝑃𝐼2𝑖)(𝑥𝑘)|  ≤  14𝑛2𝑗−1
−2 .       (42) 

For 𝑥𝑘0 we also obtain the following 

| ∑  

𝑛2𝑗−1/2

𝑖≥𝑖0

(𝜖2̃𝑖−1𝑒�̃�2𝑖−1
∗ 𝑃𝐼2𝑖−1 + �̃�2𝑖𝑒�̃�2𝑖

∗ 𝑃𝐼2𝑖) (𝑥𝑘0)|                              (43) 

≤ |𝑒
�̃�𝑘0

∗ 𝑃𝐼𝑘0(𝑥𝑘0)| 

+|(�̃�𝑘0+1𝑒�̃�𝑘0+1
∗ 𝑃𝐼𝑘0+1 + ∑  

𝑛2𝑗−1/2

𝑖≥𝑖0

(𝜖2̃𝑖−1𝑒�̃�2𝑖−1
∗ 𝑃𝐼2𝑖−1 + �̃�2𝑖𝑒�̃�2𝑖

∗ 𝑃𝐼2𝑖)) (𝑥𝑘0)| 

≤  4 +  128𝐶𝑛2𝑗−1
−2 , 

using that ‖𝑥𝑘0‖  ≤  1 and ‖𝑒𝛾
∗ ∘ 𝑃𝐼‖ ≤ ‖𝑃𝐼‖ ≤  4 while for the second term we get the upper 

bound as in (41). 

The case where 𝑘0 is even is similar, except that |𝑒
�̃�𝑘0

∗ 𝑃𝐼𝑘0(𝑥𝑘0)|  ≤  7. 

Splitting 𝐽 to 𝐽1  =  𝐽 ∩  [1, 𝑖0], 𝐽2  =  𝐽 ∩ (𝑖0, 𝑛2𝑗−1) and considering the cases when min 

𝐽1 is odd or even we get | (𝑒𝛽
∗  −  𝑒𝛽𝑘0−1

∗ ) (∑  𝑖∈𝐽 (−1)
𝑖+1𝑥𝑖)|  ≤  15, using that 𝑛2𝑗+1  >

 200𝐶. 

The lemmas above imply the following. 

Proposition (6.3.33)[252]: Let 𝑀 ⊂ ℕ be infinite and (𝑦𝑘)𝑘  ⊂  𝒳𝐾𝑢𝑠 be a normalised 

block sequence. Then 

inf{‖𝑥 − 𝑦‖ ∶  𝑥 ∈ 〈𝑑𝛾𝑛 ∶  𝑛 ∈  𝑀〉, 𝑦 ∈ 〈𝑦𝑘 ∶  𝑘 ∈ ℕ〉, ‖𝑥‖ = ‖𝑦‖ = 1} = 0. 

       We show that the space 𝒳𝐾𝑢𝑠 has the scalar-plus-compact property.  

Proposition (6.3.34)[252]: Let 𝑇 ∶  𝒳𝐾𝑢𝑠  →  𝒳𝐾𝑢𝑠 be a bounded operator and (𝑑𝛾𝑛)𝑛∈𝑀
 be 

a subsequence of the basis. Then 

lim
𝑀∋𝑛→+∞

 dist(𝑇𝑑𝛾𝑛  , ℝ𝑑𝛾𝑛) = 0. 

Proof. Assume that dist(𝑇𝑑𝛾𝑛  , ℝ𝑑𝛾𝑛)  >  4𝛿 for infinitely many 𝑛 ∈  𝑀 and some 𝛿 >  0. 

By Corollary (6.3.27) and Lemma (6.3.9) passing to a further subsequence and admitting a 

small perturbation we may assume that 

(P1) (𝑇𝑑𝛾𝑛)𝑛∈𝑀
 is a skipped block sequence and setting 𝑅𝑛 to be the minimal interval 

containing rng(𝑇𝑑𝛾𝑛) and {𝑛} we have 

max rank(𝑅𝑛) + 2 <  min rank(𝑅𝑛+1), 

(P2) no two elements of (𝑑𝛾𝑛)𝑛∈𝑀
 are neighbours. 

By the assumption that dist(𝑇𝑑𝛾𝑛 , ℝ𝑑𝛾𝑛)  >  4𝛿 it follows that either  

‖𝑃𝑛−1𝑇𝑑𝛾𝑛‖ ≥ 2𝛿   or ‖(𝐼 − 𝑃𝑛)𝑇𝑑𝛾𝑛‖ ≥ 2𝛿 

(recall that 𝑃𝑚 denotes the canonical projection onto 〈𝑑𝛾𝑖 ∶  𝑖 ≤  𝑚〉,𝑚 ∈ ℕ).  

Passing to a further subsequence we may assume that one of the two alternatives holds for 

any 𝑛 ∈ ℕ. Let 

𝑞𝑛 = {
max rank(𝑃𝑛−1𝑇𝑑𝛾𝑛)        in the first case

max rank ((𝐼 − 𝑃𝑛)𝑇𝑑𝛾𝑛)        in the second case.
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In the first case we take 𝐼𝑛  =  [min rng(𝑇𝑑𝛾𝑛), 𝑛 −  1]. Also 𝑃𝑛−1𝑇𝑑𝛾𝑛 = 𝑖𝑞𝑛(𝑢𝑛) where 

𝑢𝑛 = 𝑟𝑞𝑛(𝑃𝑛−1𝑇𝑑𝛾𝑛) and hence we may choose 𝜖𝑛  ∈  {−1, 1} and 𝜂𝑛  ∈  𝛤𝑞𝑛 \

 𝛤𝑚𝑎𝑥 𝑟𝑎𝑛𝑘(𝑅𝑛−1)+1 such that 

𝜖𝑛𝑒𝜂𝑛
∗  𝑃𝐼𝑛(𝑇𝑑𝛾𝑛) = 𝜖𝑛𝑒𝜂𝑛

∗ (𝑃𝑛−1𝑇𝑑𝛾𝑛) = 𝜖𝑛𝑒𝜂𝑛
∗ (𝑢𝑛)  ≥  𝛿             (44) 

using that 2𝛿 ≤  ‖𝑖𝑞𝑛(𝑢𝑛)‖ ≤  2‖𝑢𝑛‖. 

In the second case we take 𝐼𝑛  =  [𝑛 +  1,max rng(𝑇𝑑_𝛾𝑛)]. Also since (𝐼 − 𝑃𝑛)𝑇𝑑𝛾𝑛 =

𝑖𝑞𝑛(𝑢𝑛) where 𝑢𝑛  =  𝑟𝑞𝑛((𝐼 − 𝑃𝑛)𝑇𝑑𝛾𝑛) we get 𝜖𝑛  ∈  {−1, 1}, 𝜂𝑛  ∈  𝛤𝑞𝑛 \ 𝛤max rng 𝑅𝑛−1+1 

such that 

𝜖𝑛𝑒𝜂𝑛
∗ 𝑃_𝐼𝑛(𝑇𝑑𝛾𝑛) = 𝜖𝑛𝑒𝜂𝑛

∗ ((𝐼 − 𝑃𝑛)𝑇𝑑𝛾𝑛) = 𝜖𝑛𝑒𝜂𝑛
∗ (𝑢𝑛)  ≥  𝛿.       (45) 

Given any 𝑗 ∈ ℕ we shall build a vector 𝑦 with ‖𝑇𝑦‖ ≥  𝛿/28𝑚2𝑗−1 and ‖𝑦‖ ≤

420/𝑚2𝑗−1
2  which for sufficiently big 𝑗 yields a contradiction. 

Assume the first case holds. The second case will follow analogously. Notice that by (P1) 

for any 𝑖 ∈ ℕ and 𝐴 ⊂  𝑀 with #𝐴 =  𝑛2𝑖  and max rank(𝑅min  𝐴)  ≥  2𝑖 −  1 there is a 

functional 𝑒𝜓
∗  associated to a regular node of the form 

𝑒𝜓
∗ = ∑  

𝑛∈𝐴

𝑑𝜉𝑛
∗ +

1

𝑚2𝑖
  ∑  

𝑛∈𝐴

 𝜖𝑛𝑒𝜂𝑛
∗ 𝑃𝐼𝑛 

with rank(𝜉𝑛) = max rank(𝑅𝑛)  +  1 for each 𝑛 ∈  𝐴. Let  =  𝑚2𝑖𝑛2𝑖
−1  ∑  𝑛∈𝐴 𝑑𝛾𝑛 . 

It follows that 

‖𝑇𝑥‖ ≥ 𝑒𝜓
∗ (𝑇𝑥) = (∑  

𝑛∈𝐴

𝑑𝜉𝑛
∗ +

1

𝑚2𝑖
 ∑  

𝑛∈𝐴

𝜖𝑛𝑒𝜂𝑛
∗ 𝑃𝐼𝑛)(

𝑚2𝑖
𝑛2𝑖
 ∑  

𝑛∈𝐴

𝑇𝑑𝛾𝑛) 

= 𝑚2𝑖𝑛2𝑖
−1∑ 

𝑛∈𝐴

𝑑𝜉𝑛
∗ (𝑇𝑑𝛾𝑛) +

1

𝑛2𝑖
 ∑  

𝑛∈𝐴

𝜖𝑛𝑒𝜂𝑛
∗ 𝑃𝐼𝑛(𝑇𝑑𝛾𝑛) 

=
1

𝑛2𝑖
 ∑  

𝑛∈𝐴

𝜖𝑛𝑒𝜂𝑛
∗ 𝑃𝑘𝑛−1(𝑇𝑑𝛾𝑛)  ≥  𝛿. 

Fix 𝑗 ∈ ℕ and choose inductively, as in Lemma (6.3.31), a j-dependent sequence 

(𝜁𝑖 , 𝑥𝑖), 𝜁𝑖 = (𝑞𝑖  +  1, 𝜁𝑖−1, 𝑚2𝑗−1, 𝐽𝑖 , 1, 𝜓𝑖), 𝑖 =  1, . . . , 𝑛2𝑗−1, with 𝜁0  =  0, with respect to 

a (𝛤, 𝑗)-special sequence (𝜁𝑖 , �̅�𝑖), so that it satisfies for any 𝑖 the following 

𝑒𝜓2𝑖−1
∗ = ∑  

𝑛∈𝐴𝑖

𝑑𝜉𝑛
∗ +

1

𝑚𝑗2𝑖−1
 ∑  

𝑛∈𝐴𝑖

 𝜖𝑛𝑒𝜂𝑛
∗ 𝑃𝐼𝑛  , 

𝑥2𝑖−1 =
𝑐2𝑖−1𝑚𝑗2𝑖−1
𝑛𝑗2𝑖−1

 ∑  

𝑛∈𝐴𝑖

𝑑𝛾𝑛  , ‖𝑥2𝑖−1‖ =
1
2⁄  

with rank(𝜉𝑛)  =  max rank(𝑅𝑛)  +  1 for each 𝑛 ∈ ∪𝑖 𝐴𝑖. Lemma (6.3.10) yields that 
1
14⁄ ≤  𝑐2𝑖−1 ≤  1. Recall that by definition each vector �̅�2𝑖−1 satisfies 

|𝑒𝛾
∗(�̅�2𝑖−1) − 𝑒𝛾

∗(𝑥2𝑖−1)|  ≤  4𝑛𝑞2𝑖−1
−2    ∀𝛾 ∈  𝛤. 

For any 𝑖 let 𝐽2𝑖−1 =  rng(𝑒𝜓2𝑖−1
∗ ). We demand also that supp 𝑒𝜓2𝑖

∗  ∩  supp 𝑥2𝑘−1 =  ∅ for 

any 𝑖, 𝑘, thus the even parts of the chosen special functional play no role in the estimates on 

the weighted averages of (𝑥2𝑖−1). We assume also 𝑚𝑗1/𝑚𝑗1+1 ≤  1/𝑛2𝑗−1
2 . 

By the previous remark we have for each 𝑖 the following 

𝑒𝜓2𝑖−1
∗ (𝑇𝑥2𝑖−1)  ≥  𝛿/14.                                         (46) 

Let 
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𝑦 =
1

𝑛2𝑗−1
 ∑  

𝑛2𝑗−1/2

𝑖=1

𝑥2𝑖−1 =
1

𝑛2𝑗−1
 ∑  

𝑛2𝑗−1/2

𝑖=1

𝑐2𝑖−1
𝑚𝑗2𝑖−1
𝑛𝑗2𝑖−1

 ∑  

𝑛∈𝐴𝑖

𝑑𝛾𝑛 

and consider the functional associated to the special node 𝜁𝑛2𝑗−1 , i.e. of the form  

𝑒𝜁𝑛2𝑗−1
∗ = ∑  

𝑛2𝑗−1

𝑖=1

𝑑𝜁𝑖
∗ +

1

𝑚2𝑗−1
 ∑  

𝑛2𝑗−12

𝑖=1

(𝑒𝜓2𝑖−1
∗ 𝑃𝐽2𝑖−1 + 𝜆2𝑖𝑒𝜓2𝑖

∗ 𝑃𝐽2𝑖). 

Then 

‖𝑇𝑦‖ ≥ 𝑒𝜁𝑛2𝑗−1
∗ (𝑇𝑦) 

= (∑  

𝑛2𝑗−1

𝑖=1

𝑑𝜁𝑖
∗ +

1

𝑚2𝑗−1
∑  

𝑛2𝑗−1/2

𝑖=1

(𝑒𝜓2𝑖−1
∗ 𝑃𝐽2𝑖−1 + 𝜆2𝑖𝑒𝜓2𝑖

∗ 𝑃𝐽2𝑖)) 

(
1

𝑛2𝑗−1
∑  

𝑛(2𝑗−1)/2

𝑖=1

𝑇𝑥2𝑖−1) 

= . .. 
Notice that 𝐽2𝑖 ∩ 𝛤rank(𝜙2𝑖−1)  =  ∅, whereas by the choice of 𝑅𝑛 and the node 𝜙2𝑖−1 we 

have rng(𝑇𝑥2𝑖−1)  ⊂  𝛤rank(𝜙2𝑖−1). Therefore 

··· = ( ∑  

𝑛2𝑗−1

𝑖=1

𝑑𝜁𝑖
∗ (

1

𝑛2𝑗−1
∑  

𝑛2𝑗−1/2

𝑖=1

𝑇𝑥2𝑖−1) +
1

𝑛2𝑗−1𝑚2𝑗−1
 ∑  

𝑛2𝑗−1/2

𝑖=1

𝑒𝜓2𝑖−1
∗ 𝑃𝐽2𝑖−1(𝑇𝑥2𝑖−1) 

where in the last line the first sum disappears by the choice of (𝑞2𝑖−1), as 

rank(bd(𝑒𝜁𝑛2𝑗−1
∗ ))  ∩  rank(𝑇𝑥2𝑖−1) = ∅ for any 𝑖. Therefore we have 

‖𝑇𝑦‖ ≥
𝛿

28𝑚2𝑗−1
 .                                               (47) 

On the other hand we estimate ‖𝑦‖. We shall prove that ‖𝑦‖ ≤  420/𝑚2𝑗−1
2  yielding for 

sufficiently big 𝑗 a contradiction. By (P2) and Lemma (6.3.10) we get that (𝑥𝑖) is 7-RIS. By 

Lemma (6.3.20) it is enough to estimate |𝑒𝛽
∗(𝓏)|, where 𝑒𝛽

∗ is associated to a (𝛤, 𝑗)-special 

sequence (𝛿𝑖 , �̅�𝑖)𝑖=1
𝑎 , and 𝓏 =  ∑  𝑖∈𝐽 𝑥2𝑖−1 for some interval 𝐽 ⊂  {1, . . . , 𝑛2𝑗−1}. 

Let 𝑒𝛽
∗ have the following form 

𝑒𝛽
∗ =∑ 

𝑎

𝑖=1

𝑑�̃�𝑖
∗ +

1

𝑚2𝑗−1
∑ 

⌊𝑎2⌋

𝑖=1

(𝜖2̃𝑖−1𝑒�̃�2𝑖−1
∗ 𝑃𝐽2𝑖−1 + �̃�2𝑖𝑒�̃�2𝑖

∗ 𝑃𝐽2𝑖) + [𝜖�̃�𝑒𝜓𝑎
∗ 𝑃𝐽𝑎] 

with 𝑎 ≤  𝑛2𝑗−1, where the last term appears if a is odd. Let 𝑖0  =  max{𝑖 ≤  𝑎 ∶  (𝜁𝑖 , �̅�𝑖) =

(𝛿𝑖 , �̅�𝑖)} if such 𝑖 exists. We estimate |𝑒𝛽
∗(𝓏)| assuming 𝑖0 is well-defined. We estimate 

separately | ∑  𝑎
𝑖=1 𝑑�̃�𝑖

∗ (𝓏)|, |mt(𝑒�̃�𝑖0
∗ )(𝓏)| and |(mt(𝑒𝛽

∗)  −  mt(𝑒�̃�𝑖0
∗ ))(𝓏)|. 

First notice that taking into account coordinates of 𝓏 with respect to the basis (𝑑𝛾) and that 

𝑐2𝑖−1 ≤ 1, we have 

|∑  

𝑎

𝑖=1

𝑑�̃�𝑖
∗ (𝓏)| ≤  𝑛2𝑗−1

𝑚𝑗1
𝑛𝑗1
.                                               (48) 
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Now consider the tree-analysis of 𝑒�̃�𝑖0
∗  , recall that it is compatible with the tree-analysis of 

𝑒𝜁𝑖0
∗  . Then by the definition of a special node we have 

mt (𝑒𝜁𝑖0
∗ ) =

{
 
 

 
 1

𝑚2𝑗−1
  ∑  

𝑖0/2

𝑖=1

(𝜖2̃𝑖 −1𝑒�̃�2𝑖−1
∗ 𝑃𝐽2𝑖−1 + �̃�2𝑖𝑒𝜓2𝑖

∗ 𝑃𝐽2𝑖)                                 if  𝑖0 even

1

𝑚2𝑗−1
 ∑  

⌊𝑖0/2⌋

𝑖=1

(𝜖2̃𝑖 −1𝑒�̃�2𝑖−1
∗ 𝑃𝐽2𝑖−1 + �̃�2𝑖𝑒𝜓2𝑖

∗ 𝑃𝐽2𝑖) + 𝜖�̃�0  𝑒�̃�𝑖0
∗  𝑃𝐽𝑖0      if   𝑖0   odd

 

where for each 2𝑖 −  1 ≤  𝑖0 we have 

𝑒�̃�2𝑖−1
∗ = ∑  

𝑛∈𝐴𝑖

𝑑
�̃�𝑛

∗ +
1

𝑚𝑗2𝑖−1
∑  

𝑛∈𝐴𝑖

𝜖�̃�𝑒�̃�𝑛
∗  𝑃𝐼𝑛  . 

Notice that as 𝑀 ∩ 𝐼𝑛  =  ∅ for any 𝑛 and by the choice of 𝑒𝜓2𝑖
∗  and ranks of 𝜉𝑛, thus also 

ranks of 𝜉𝑛, we get, assuming that 𝑖0 is even, 

|mt(𝑒𝜁𝑖0
∗ )(𝓏)| = |

1

𝑚2𝑗−1
∑ 

𝑖02

𝑖=1

(𝜖2̃𝑖−1𝑒�̃�2𝑖−1
∗ 𝑃𝐽2𝑖−1 + �̃�2𝑖𝑒𝜓2𝑖

∗ 𝑃𝐽2𝑖)(𝓏)|     (49) 

= |(
1

𝑚2𝑗−1
∑ 

𝑖02

𝑖=1

𝜖2̃𝑖−1 ∑  

𝑛∈𝐴𝑖

𝑑
�̃�𝑛

∗ )( ∑  

2𝑖−1∈𝐽

𝑐2𝑖−1
𝑚𝑗2𝑖−1
𝑛𝑗2𝑖−1

 ∑  

𝑛∈𝐴𝑖

𝑑𝛾𝑛)|  =  0. 

The same holds if 𝑖0 is odd. 

Now consider mt(𝑒𝛽
∗)  −  mt(𝑒𝜁𝑖0

∗ ) assuming that 𝑖0  <  𝑎. Notice that 

(1) 𝑤(𝜓𝑠) ≠ 𝑤(�̃�𝑖) for each 𝑠, 𝑖 >  𝑖0 provided at least one of the indices 𝑠, 𝑖 is bigger than 

𝑖0  +  1, 

(2) (mt(𝑒𝛽
∗) −  mt (𝑒𝜁𝑖0

∗ )) (𝑥2𝑘−1) = 0 for any 2𝑘 −  1 ≤  𝑖0. 

Using Corollary (6.3.11) for the terms ∑  𝑎
𝑖=𝑖0+1

|𝑒�̃�𝑖
∗ 𝑃𝐽𝑖(𝑥2𝑘−1)| and that 

|𝑒�̃�𝑖0 +1
∗ 𝑃𝐽𝑖0+1(𝑥𝑖0+1)|  ≤  4, it follows that 

|(mt(𝑒𝛽
∗) − mt(𝑒𝜁𝑖0

∗ ))(𝓏)| ≤
1

𝑚2𝑗−1
 ∑  

𝑎

𝑖=𝑖0+1

∑  

𝑛2𝑗−1

2𝑘−1=𝑖0+1

|𝑒�̃�𝑖
∗ 𝑃𝐽𝑖(𝑥2𝑘−1)|  (50) 

≤
4

𝑚2𝑗−1
+

1

𝑚2𝑗−1
𝑛2𝑗−1

14

𝑚𝑗𝑖0+1
≤

5

𝑚2𝑗−1
 . 

Therefore by (48), (49), (50) and the choice of 𝑗1 we have |𝑒𝛽
∗(𝓏)|  ≤  6/𝑚2𝑗−1, thus we can 

apply Lemma (6.3.20) obtaining that ‖𝑦‖ ≤  60 · 7/𝑚2𝑗−1
2  . For sufficiently big 𝑗 we obtain 

contradiction with (47) and boundedness of 𝑇. 

Proposition (6.3.35)[252]: Let 𝑇 ∶  𝒳𝐾𝑢𝑠  →  𝒳𝐾𝑢𝑠 be a bounded operator. If 𝑇𝑑𝛾𝑛  →  0, 

then 𝑇𝑦𝑛  →  0 for every RIS (𝑦𝑛)𝑛. 

Proof. Take 𝑇 ∶  𝒳𝐾𝑢𝑠  →  𝒳𝐾𝑢𝑠 with 𝑇𝑑𝛾𝑛  →  0 and suppose there are a normalised C-RIS 

(𝑦𝑛)𝑛 and 𝛿 >  0 such that ‖𝑇𝑦𝑛‖ > 𝛿 for all 𝑛 ∈ ℕ. Passing to a subsequence we may 

assume as in the proof of Proposition (6.3.34) that 

max rank 𝑅𝑛  +  2 <  min rank 𝑅𝑛+1 where 𝑅𝑛 = rng(𝑇𝑦𝑛) ∪ rng(𝑦𝑛). 
Pick (𝜇𝑛)  ⊂  {±1} and nodes (𝜓𝑛) with 𝜇𝑛𝑒𝜓𝑛

∗ (𝑇𝑦𝑛)  >  𝛿. 
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Case 1. There exist a constant 𝑐 >  0, an infinite set 𝑀 ⊂ ℕ and nodes (𝜑𝑛)𝑛∈𝑀 such that 

|𝑒𝜑𝑛
∗ (𝑦𝑛)|  >  𝑐 and 𝑒𝜑𝑛

∗  , 𝑒𝜓𝑛
∗  have compatible tree-analyses. 

Pick signs (𝜈𝑛)𝑛∈𝑀 with 𝜈𝑛𝑒𝜑𝑛
∗ (𝑦𝑛)  =  |𝑒𝜑𝑛

∗ (𝑦𝑛)|  >  𝑐 for each 𝑛. We may pass to a 

subsequence (𝛾𝑘𝑛)𝑛
 of (𝛾𝑛)𝑛 so that ‖𝑇𝑑𝛾𝑘𝑛‖ ≤ 2

−𝑛 for all 𝑛. For a fixed 𝑗 ∈ ℕ, 𝑛2𝑗+1 >

 200𝐶, we pick, as in Lemma (6.3.31), a j-dependent sequence (𝜁𝑖 , 𝑥𝑖)𝑖 where 𝜁𝑖  =  (𝑞𝑖 +
 1, 𝜁𝑖−1, 𝑚2𝑗−1, 𝐽𝑖 , 1, 𝜂𝑖), 𝑖 =  1, . . . , 𝑛2𝑗−1, with 𝜁0  =  0, satisfies 

mt(𝑒𝜂2𝑖−1
∗ )  =

1

𝑚𝑗2𝑖−1
 ∑  

𝑛∈𝐴2𝑖−1

 𝜈𝑛𝑒𝜑𝑛
∗  𝑃𝐼𝑛  , 

𝑥2𝑖−1 =
𝑐2𝑖−1𝑚𝑗2𝑖−1
𝑛𝑗2𝑖−1

 ∑  

𝑛∈𝐴2𝑖−1

𝑦𝑛,    ‖𝑥2𝑖−1‖ =
1
2⁄ , 

where 𝐼𝑛 = [min 𝑅𝑛, max 𝑅𝑛], so that the functional associated to the special node 𝜁𝑛2𝑗+1 

with mt-part of the form 

mt (𝑒𝜁𝑛2𝑗−1
∗ ) =

1

𝑚2𝑗+1
 ∑  

𝑛2𝑗−1/2

𝑖=1

(𝑒𝜂2𝑖−1
∗ 𝑃𝐽2𝑖−1 + 𝜆2𝑖𝑒𝜂2𝑖

∗ 𝑃𝐽2𝑖) , 

satisfies 𝐽2𝑖−1 ⊃ rng(𝑇𝑥2𝑖−1), 𝐽2𝑖  ∩  rng(𝑇𝑥2𝑘−1)  =  ∅ and rank(bd(𝑒𝜁𝑛2𝑗+1
∗ ))  ∩

 rank(𝑇𝑥2𝑖−1)  =  ∅ for any 𝑖, 𝑘. 

From Remark (6.3.30) we get 
1
20𝐶⁄ ≤  𝑐2𝑖−1 ≤  2. 

Using gaps between sets 𝑅𝑛 we pick nodes (𝜉2𝑖−1)2𝑖−1≤𝑛2𝑗+1 , with 

mt(𝑒𝜉2𝑖−1
∗ ) =

1

𝑚𝑗2𝑖−1
  ∑  

𝑛∈𝐴2𝑖−1

 𝜇𝑛𝑒𝜓𝑛
∗ 𝑃𝐼𝑛  . 

It follows that 𝑒𝜉2𝑖−1
∗ (𝑇𝑥2𝑖−1)  >  

𝛿
20𝐶⁄  for each 𝑖. 

Notice also that for 𝑥2𝑖 =
𝑚𝑗2𝑖

𝑛𝑗2𝑖
∑  𝑛∈𝐴2𝑖 𝑑𝛾𝑛 , 𝐴2𝑖  ⊂  {𝑘𝑛 ∶  𝑛 ∈ ℕ}, by the condition on 

(𝑇𝑑𝛾𝑘𝑛) we have ‖𝑇𝑥2𝑖‖ <
𝑚𝑗2𝑖

𝑛𝑗2𝑖
 <  2−𝑖 for each 𝑖. 

Let 𝑥 =
𝑚2𝑗−1

𝑛2𝑗−1
 ∑  
𝑛2𝑗−1/2

𝑖=1
𝑥2𝑖−1 and 𝑑 =

𝑚2𝑗−1

𝑛2𝑗−1
∑  
𝑛(2𝑗−1)/2

𝑖=1
𝑥2𝑖. We have 

‖𝑇𝑑‖ ≤
𝑚2𝑗−1
𝑛2𝑗−1

                                                  (51) 

and by Lemma (6.3.32) 

‖𝑥 − 𝑑‖ ≤
250

𝑚2𝑗−1
2  .                                                   (52) 

On the other hand by the choice of (𝜑𝑛) and (𝜓𝑛) there is a well-defined special node 𝛽, 

associated to the same j-special sequence as 𝜁𝑛2𝑗+1 with 

mt(𝑒𝛽
∗) =

1

𝑚2𝑗−1
 ∑  

𝑛2𝑗−1/2

𝑖=1

𝑒𝜉2𝑖−1
∗ 𝑃𝐽2𝑖−1 + �̃�2𝑖𝑒𝜂2𝑖

∗ 𝑃𝐽2𝑖   , 

so that rank(bd(𝑒𝛽
∗))  ∩  rank(𝑇𝑥2𝑖−1) = ∅ for any 𝑖. Thus 

‖𝑇𝑥‖ ≥ 𝑒𝛽
∗(𝑇𝑥) ≥

𝛿

40𝐶
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which contradicts (51) and (52) for sufficiently big 𝑗 as 𝑇 is bounded. 

Case 2. Case 1 does not hold. Applying this assumption for 𝑐 =  𝑛2𝑗−1
−1 𝑚𝑘

−1 , 𝑘 ∈ ℕ, we 

pick inductively an increasing sequence (𝑝𝑘)  ⊂ ℕ such that for any node 𝜑 and 𝑛 >  𝑝𝑘  so 

that 𝑒𝜑
∗ , 𝑒𝜓𝑛

∗  have compatible tree-analyses we have |𝑒𝜑
∗ (𝑦𝑛)|  ≤  𝑛 2𝑗−1

−1  𝑚𝑘
−1 . Let 𝑀 =

 (𝑝𝑘)𝑘. 

Now we repeat the proof of Proposition (6.3.34), using (𝑦𝑛) instead of (𝑑𝛾𝑛). For a fixed 

𝑗 ∈ ℕ we pick a j-dependent sequence (𝜁𝑖 , 𝑥𝑖), 𝜁𝑖 = (𝑞𝑖  +  1, 𝜁𝑖−1, 𝑚2𝑗−1, 𝐽𝑖 , 1, 𝜂𝑖), 𝑖 =

 1, . . . , 𝑛2𝑗−1, with 𝜁0  =  0, such that for each 𝑖 we have 

mt(𝑒𝜂2𝑖−1
∗ ) =

1

𝑚𝑗2𝑖−1
 ∑  

𝑛∈𝐴𝑖

𝜇𝑛𝑒𝜓𝑛
∗ 𝑃𝐼𝑛  , 𝑥2𝑖−1 =

𝑐2𝑖−1𝑚𝑗2𝑖−1
𝑛𝑗2𝑖−1

 ∑  

𝑛∈𝐴𝑖

𝑦𝑛, ‖𝑥2𝑖−1‖ =
1
2⁄ , 

with 𝐴𝑖  ⊂  𝑀, #𝐴𝑖  =  𝑛𝑗2𝑖−1𝐽2𝑖−1 =  rng(𝑒𝜂2𝑖−1
∗ ), 𝐽2𝑖  ∩  supp 𝑥2𝑘−1 =  ∅ for any 𝑖, 𝑘, 𝐼𝑛  =

 [min 𝑅𝑛, max 𝑅𝑛] and rank(𝜉𝑛)  =  max rng 𝑅𝑛  +  1 for any 𝑛. As in the previous case, 
1
20𝐶⁄  ≤  𝑐2𝑖−1 ≤  2. Pick 𝑗1 with 𝑚𝑗1/𝑚𝑗1+1 ≤  1/𝑛2𝑗−1

2  and let 

𝑦 =
1

𝑛2𝑗−1
∑  

𝑛2𝑗−1/2

𝑖=1

𝑥2𝑖−1 

As in the proof of Proposition (6.3.34) it follows that 

‖𝑇𝑦‖ ≥ 𝑒𝜁𝑛2𝑗−1
∗ (𝑦) ≥

1

𝑚2𝑗−1𝑛2𝑗−1
 ∑  

𝑛2𝑗−12

𝑖=1

𝛿

2
 𝑐2𝑖−1 ≥

𝛿

80𝐶𝑚2𝑗−1
.   (53) 

We shall estimate now ‖𝑦‖. As before we consider a special node 𝛽 which is compatible 

with a (𝛤, 𝑗)-special sequence (𝛿𝑖 , �̅�𝑖)𝑖=1
𝑎 , 𝑎 ≤  𝑛2𝑗−1, and estimate |𝑒𝛽

∗(𝓏)| where 𝓏 =

 ∑  𝑖∈𝐽 𝑥2𝑖−1 for some interval 𝐽 ⊂  {1, . . . , 𝑛2𝑗−1}. Writing 

𝑒𝛽
∗ =∑ 

𝑎

𝑖=1

𝑑�̃�𝑖
∗ +

1

𝑚2𝑗−1
∑ 

⌊𝑎2⌋

𝑖=1

(𝜖2̃𝑖−1𝑒�̃�2𝑖−1
∗ 𝑃𝐽2𝑖−1 + �̃�2𝑖𝑒�̃�2𝑖𝑃�̃�2𝑖

∗ ) 

with 𝑎 ≤  𝑛2𝑗−1  we pick as before 𝑖0 =  𝑚𝑖𝑛{𝑖 ≤  𝑎 ∶  (𝜁𝑖 , 𝑥𝑖) ≠ (𝛿𝑖 , 𝓏𝑖)} (if such 𝑖 exists) 

and estimate separately | ∑  𝑎
𝑖=1 𝑑�̃�𝑖

∗ (𝑤)|, |𝑚𝑡(𝑒�̃�𝑖0
∗ )(𝑤)| and |(𝑚𝑡(𝑒𝛽

∗)  −  𝑚𝑡(𝑒�̃�𝑖0
∗ ))(𝑤)|. 

Repeating the reasoning of the proof of Proposition (6.3.34), as (𝑦𝑛) have norm bounded by 

1 and all ‖𝑑�̃�𝑖
∗ ‖  ≤  3, we obtain 

|∑𝑑�̃�𝑖
∗  (𝓏)|  ≤  3 ·  2𝑛2𝑗 −1

𝑚𝑗1
𝑛𝑗1

𝑎

𝑖=1

  ≤
1

𝑚2𝑗−1
 .                           (54) 

Using Corollary (6.3.21) and the fact that |𝑒𝛾
∗  𝑃𝐼 (𝑥𝑖0+1)|  ≤  4 we obtain that 

 |(𝑚𝑡(𝑒𝛽
∗  ) −  𝑚𝑡 (𝑒�̃�𝑖0 

∗ )) (𝓏)| ≤
4

𝑚2𝑗−1
+  2

1

𝑚2𝑗−1
  𝑛2𝑗−1

64𝐶

𝑚𝑗𝑖0+1
 ≤

5

𝑚2𝑗−1
     (55)   

using that 𝑚𝑗1
−1  <  𝑛2𝑗−1

2  and 𝑛2𝑗+1  >  200𝐶. 

 Now consider 𝑒�̃�𝑖0
∗  , recall this functional and 𝑒�̃�𝑖0

∗  have compatible tree-analyses. Therefore 
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𝑚𝑡 (𝑒�̃�𝑖0
∗ ) =

{
 
 
 

 
 
 

1

𝑚2𝑗−1
∑(𝜖2̃𝑖−1𝑒�̃�2𝑖−1

∗

𝑖0
2

 𝑖=1

𝑃𝐽2𝑖−1
+ �̃�2𝑖𝑒

∗_𝜂2𝑖𝑃𝐽2𝑖
 )                                𝑖𝑓 𝑖0  𝑒𝑣𝑒𝑛

1

𝑚2𝑗−1
∑(𝜖2̃𝑖−1𝑒�̃�2𝑖−1

∗  𝑃𝐽2𝑖 −1
 +  �̃�2𝑖𝑒𝜂2𝑖

∗  𝑃𝐽2𝑖
 ) + 𝜖�̃�0  𝑒�̃�𝑖0

∗  𝑃𝐽𝑖𝑜

𝑖0
2

𝑖=1

       𝑖𝑓 𝑖0 𝑜𝑑𝑑

  

where for each for each 2𝑖 −  1 ≤  𝑖0 we have  

𝑒�̃�2𝑖−1
∗ = ∑ 𝑑

�̃�𝑛

∗ +
1

𝑚𝑗2𝑖−1
 

𝑛∈𝐴𝑖

  ∑ 𝜖�̃�𝑒𝜑𝑛
∗  𝑃𝐼𝑛

𝑛∈𝐴𝑖

    .  

By choice of the objects above we have 

| 𝑚𝑡 (𝑒�̃�𝑖0
∗ ) (𝓏)|

≤
1

𝑚2𝑗−1
 |
|

(

 
 
∑ ∑ 𝑑

�̃�𝑛

∗

𝑛∈𝐴𝑖

𝑛2𝑗−1

2

𝑖=1

 

)

 
 
( ∑

𝑐2𝑖−1𝑚𝑗2𝑖−1
𝑛𝑗2𝑖−12𝑖−1∈𝐽

 ∑ 𝑦𝑛
𝑛∈𝐴𝑖

)|
|

+
1

𝑚2𝑗−1
∑

𝑐2𝑖 −1𝑚𝑗2𝑖−1
𝑛𝑗2𝑖−12𝑖−1∈𝐽

 ∑|𝑒𝜑𝑛
∗  (𝑦𝑛)|

𝑛∈𝐴𝑖

 . 

 As for each 𝑛 the nodes 𝜓𝑛, 𝜑𝑛 have compatible tree-analyses the last sum can be estimated 

by 2𝑚2𝑗−1
−1 . The first sum equals 0 by the condition on ranks of 𝜉𝑛, thus also 𝜉𝑛 Therefore 

we have  

| 𝑚𝑡 (𝑒�̃�𝑖0
∗  ) (𝓏)| ≤

2

𝑚2𝑗−1
 .                                          (56)  

As before by (54), (55), (56) we have |𝑒𝛽
∗(𝑧)|  ≤  8/𝑚2𝑗−1, thus we can apply Lemma 

(6.3.20) obtaining that ‖𝑦‖  ≤  80𝐶/𝑚2𝑗−1
2 . For sufficiently big j we obtain contradiction 

with (53) and boundedness of 𝑇. 

Theorem (6.3.36)[252]: Let 𝑇 ∶   𝒳𝐾𝑢𝑠  →  𝒳𝐾𝑢𝑠 be a bounded operator. Then there exist a 

compact operator K : 𝒳𝐾𝑢𝑠 → 𝒳𝐾𝑢𝑠 and a scalar λ such that  𝑇 =  𝜆𝐼𝑑 + 𝐾. 

 Proof. By Proposition (6.3.34) any (𝑑𝛾𝑛 )𝑛∈𝑁  has a further subsequence (𝑑𝛾𝑛)𝑛∈𝑀
   such 

that 𝑇𝑑𝛾𝑛  − 𝜆𝑑𝛾𝑛  →  0 𝑎𝑠 𝑀 ∋ 𝑛 →  ∞ , for some λ. By Proposition (6.3.33) there is a 

universal λ so that 𝑇𝑑𝛾𝑛  −  𝜆𝑑𝛾𝑛  →  0 𝑎𝑠 𝑛 →  ∞. Applying Proposition (6.3.35) to the 

operator 𝑇 −  𝜆𝐼𝑑 we get that 𝑇𝑦𝑛  −  𝜆𝑦𝑛  →  0 for any RIS (𝑦𝑛) and thus, by Proposition 

(6.3.26), for any bounded block sequence (𝑦𝑛). It follows that the operator 𝑇 −  𝜆𝐼𝑑 is 

compact.  

The above theorem implies immediately the following.  

Corollary (6.3.37)[252]: The space 𝒳𝐾𝑢𝑠 is indecomposable, i.e. it is not a direct sum of 

two its infinitely dimensional closed subspaces. 

           We devoted to the proof of saturation of the space 𝒳𝐾𝑢𝑠 by unconditional basic 

sequences. We follow the idea of the proof of the corresponding fact from [98] with 

additional work in order to control the bd-parts of norming functionals. Below we present a 

construction of unconditional sequences in 𝒳𝐾𝑢𝑠.  
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Fix a block subspace 𝑌 ⊂  𝒳𝐾𝑢𝑠 and pick sequences 𝑗𝑘  <  𝑗𝑘,1  <  𝑗𝑘,2  < ··· <  𝑗𝑘,𝑛𝑗𝑘
 , 𝑘 ∈

 𝑁, with (𝑗𝑘 ) increasing, and a block sequence (𝑥𝑘)𝑘  ⊂  𝑌 , 𝑤𝑖𝑡ℎ 𝑥𝑘  =
𝑚𝑗𝑘

𝑛𝑗𝑘
∑  𝑥𝑘,𝑖
𝑛𝑗𝑘
𝑖=1

   

where for some fixed 𝐶 >  2 and for each 𝑘 ∈  𝑁 the sequence (𝑥𝑘,𝑖)𝑖  ⊂  𝑌 is a 𝐶 − 𝑅𝐼𝑆 

with parameters (𝑗𝑘,𝑖)𝑖 chosen according to Lemma (6.3.22) to satisfy |𝑑𝛾
∗(𝑥𝑘,𝑖)| <

1/𝑛𝑗𝑘
2  𝑓𝑜𝑟 𝑎𝑛𝑦 𝑖 ≤  𝑛𝑗𝑘  𝑎𝑛𝑑 𝛾 ∈  𝛤. Therefore 

 |𝑑𝛾
∗(𝑥𝑘)|  <  𝐶/𝑛𝑗𝑘

2    𝑓𝑜𝑟 𝑎𝑛𝑦 𝑘 ∈  𝑁, 𝛾 ∈  𝛤.                                 (57)  

We fix the sequence (𝑥𝑘) and the node γ with the tree-analysis (𝐼𝑡 , 𝜖𝑡 , 𝜂𝑡)𝑡∈𝑇 for the sequel. 

 Recall that 𝑆𝑡 denotes the set of immediate successors of t in the tree  . We order the sets 𝑆𝑡  
with the order on (𝐼𝑠)𝑠∈𝑆𝑡 and we write 𝑠_ for the immediate predecessor of 𝑠.  

Definition (6.3.38)[252]: A couple of nodes (𝜂𝑠_ , 𝜂𝑠) is called a dependent couple with 

respect to γ if 𝑠_, 𝑠 ∈  𝑆𝑡 , 𝑤(𝜂𝑡)  =  𝑚 2𝑗+1
−1  for some 𝑗 ∈  𝑁 and 𝑠 is at the even position in 

the mt-part of 𝑒𝜂𝑡
∗  .  

Let ℰ𝛾  =  {𝑠 ∈  𝑇 ∶  (𝜂𝑠−  , 𝜂𝑠) is a dependent couple with respect to 𝛾}.  

Definition (6.3.39)[252]: For 𝑘 ∈ ℕ a couple of nodes (𝜂𝑠−  , 𝜂𝑠 ) is called a dependent 

couple with respect to 𝛾 and 𝑥𝑘  𝑖𝑓 (𝜂𝑠−  , 𝜂𝑠) is a dependent couple with respect to 𝛾 and 

moreover 

min 𝑠𝑢𝑝𝑝(𝑥𝑘+1) > max 𝑠𝑢𝑝𝑝(𝑒𝑠
∗𝑃𝐼𝑠  ) ≥ min 𝑠𝑢𝑝𝑝(𝑥𝑘),  

max 𝑠𝑢𝑝𝑝(𝑥𝑘−1)  ≥  𝑚𝑖𝑛 𝑠𝑢𝑝𝑝(𝑒𝑠−
∗  𝑃𝐼𝑠−  ). 

Let ℱ𝛾  =  {𝑠 ∈ 𝒯 | (𝜂𝑠−  , 𝜂𝑠) is a dependent couple with respect to 𝛾 and 𝑥𝑘 for some 𝑘} 

and let 𝑄𝛾  =  ∑ 𝑃𝐼𝑠𝑠∈ℱ𝛾  . Then we define 𝑦𝑘  =  𝑄𝛾𝑥𝑘 and 𝑥𝑘
′  =  𝑥𝑘  −  𝑦𝑘 . As our basis 

(𝑑𝛾)𝛾∈𝛤 is not unconditional, the projections (𝑄𝛾)𝛾 are not uniformly bounded. However, 

we have the following lemma that is proved along the lines of [98].  

Lemma (6.3.40)[252]: 

(i) For every 𝑘 ∈ ℕ and 𝑡 ∈ 𝒯 we have |𝑒𝜂𝑡
∗ 𝑃𝐼𝑡  (𝑦𝑘)|  ≤  10𝐶/𝑚𝑗𝑘 .  

(ii) For every 𝑘 ∈ ℕ and 𝑡 ∈ 𝒯 with 𝑤(𝜂𝑡)  <  𝑚𝑗𝑘
−1 we have |𝑒𝜂𝑡

∗ 𝑃𝐼𝑡  (𝑥𝑘
′ )|  ≤  11𝐶/𝑚𝑗𝑘 

. 

Proof. Concerning (𝑖), notice first that for any 𝑠 ∈  ℱ𝛾 we have |𝑒𝜂𝑠
∗  𝑃𝐼𝑠  (𝑥𝑘)|  ≤  10𝐶/𝑚𝑗𝑘 

. 

Indeed, for 𝑤(𝜂𝑠)  =  𝑚2𝑗 for some 𝑗, we consider the following two cases. If 𝑚2𝑗
−1  <  𝑚𝑗𝑘

−1 

then the estimate follows by (26). If 𝑚2𝑗
−1  ≥  𝑚𝑗𝑘

−1 , then by the form of 𝑒𝜂𝑠
∗  and (57) we have 

|𝑒𝜂𝑠
∗  𝑃𝐼𝑠  (𝑥𝑘)| ≤  2𝑛2𝑗max𝛾∈𝛤

|𝑑𝛾
∗(𝑥𝑘) |  ≤  2𝐶/𝑛𝑗𝑘 

Now, as each of the sets{𝑠 ∈  ℱ𝛾 | |𝑠|  =  𝑖, 𝑟𝑛𝑔(𝑥𝑘)  ∩  𝐼𝑠  ≠  ∅}, 𝑖 ∈ ℕ, has at most two 

elements, we have 

|𝑒𝜂𝑡
∗ 𝑃𝐼𝑡  (𝑦𝑘)| ≤  ∑(𝛱𝑡⪯𝑢≺𝑠 𝑤(𝜂𝑢))|𝑒𝜂𝑠

∗  𝑃𝐼𝑠  (𝑥𝑘)|

𝑠∈ℱ𝛾

   

=  ∑ ∑ (𝛱𝑡⪯𝑢≺𝑠 𝑤(𝜂𝑢))|𝑒𝜂𝑠
∗  𝑃𝐼𝑠  (𝑥𝑘)|

𝑠∈ℱ𝛾,|𝑠|=𝑖𝑖

 ≤
20𝐶

𝑚𝑗𝑘
∑

1

𝑚1
𝑖
 =
10𝐶

𝑚𝑗𝑘 𝑖

 . 

Condition (ii) follows from Lemma (6.3.20) and (i).  
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Lemma (6.3.41). For every choice of signs (𝛿𝑘) there exists a node �̃�  ∈  𝛤 such that 𝑄𝛾  =

 𝑄�̃� and 𝜖 ∈  {±1} so that 

|𝑒𝛾
∗(𝑥𝑘

′ ) − 𝜖𝑒�̃�
∗(𝛿𝑘𝑥𝑘

′ )| ≤
6𝐶

𝑚𝑗𝑘
 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑘 ∈ ℕ. 

Proof. Define  

𝐷 = {𝑡 ∈ 𝒯 | 𝑟𝑛𝑔(𝑥𝑘)  ∩  𝑟𝑛𝑔(𝑒𝑡
∗𝑃𝐼𝑡  )  ≠  ∅ for at most one 𝑘 and if 𝑡 ∈

 𝑆𝑢 𝑡ℎ𝑒𝑛 𝑟𝑛𝑔(𝑥𝑖)  ∩  𝑟𝑛𝑔(𝑒𝑢
∗𝑃𝐼𝑢  )  ≠  ∅  for at least two 𝑖}.  

Since for every branch 𝑏 of 𝒯 the set 𝑏 ∩  𝐷 has exactly one element we can define a subtree 

𝒯′ of 𝒯 such that 𝐷 is the set of terminal nodes for ′ . Notice that (𝒯 \𝒯′ )  ∩ ℱ𝛾  =  ∅.  

If 𝛾 ∈  𝐷, then we pick the unique 𝑘0 with 𝑟𝑛𝑔(𝑒𝛾
∗)  ∩  𝑟𝑛𝑔(𝑥𝑘0  )  ≠  ∅ (𝑎𝑠 𝐼∅  =

 [1,𝑚𝑎𝑥 𝛥𝑟𝑎𝑛𝑘(𝛾)]) and let �̃�  =  𝛾 and 𝜀 =  𝛿𝑘0 . Then we have the estimate in the lemma 

for any 𝑘 ∈  𝑁.  

Assume that 𝛾 ∉  𝐷. Using backward induction on 𝒯′ we shall define a node �̃� with a tree-

analysis (𝐼𝑡 , 𝜖�̃� , �̃�𝑡)𝑡∈𝑇 and associated scalars (�̃�𝑡)𝑡∈𝑇 , by modifying the nodes 

(𝐼𝑡 , 𝜖�̃� , 𝜂𝑡)𝑡∈𝒯′   and scalars (𝜆𝑡)𝑡∈𝒯′ starting from elements of 𝐷 such that 

 (T1) 𝑒𝜂𝑡
∗  , 𝑒�̃�𝑡

∗  have compatible tree-analyses for any  ∈  𝒯′ , 

 (T2) 𝐹�̃�𝑡  =  𝐹_𝜂𝑡 for any  ∈  𝒯′ ,  

(T3) 𝜖�̃�𝑒�̃�𝑡
∗ 𝑃𝐼𝑡  (𝛿𝑘𝑥𝑘

′  ) =  𝜖𝑡𝑒𝜂𝑡
∗ 𝑃𝐼𝑡  (𝑥𝑘

′ ) for any 𝑡 ∈  𝐷 \ ℰ𝛾 and k, �̃�𝑡𝑒�̃�𝑡
∗ 𝑃𝐼𝑡  (𝛿𝑘𝑥𝑘

′ )  =

 𝜆𝑡𝑒𝜂𝑡
∗ 𝑃𝐼𝑡  (𝑥𝑘

′ ) for any 𝑡 ∈  𝐷 ∩ ℰ𝛾 and k, 

(T4) 𝜖�̃�  =  𝜖𝑡 for any 𝑡 ∈  𝒯′ \ 𝐷. 

We need to modify only 𝜖𝑡 , 𝑡 ∈  𝐷, changing signs of some of them. These modifications 

determine changes in the rest of the tree, i.e. 𝜂𝑢, 𝑢 ∈ 𝒯
′ \𝐷 according to the rules of 

producing nodes and 

Let �̃�  =  �̃�∅. Notice that by conditions (T1)–(T2) we have 𝑄�̃� = 𝑄𝛾. Now we proceed to 

show the estimate part of the lemma. Fix 𝑘 ∈  𝑁. For any nonterminal 𝑢 ∈ 𝒯 let 

𝑆𝑢,𝑘 ∶=  {𝑠 ∈  𝑆𝑢 | 𝑟𝑛𝑔(𝑥𝑘)  ∩  𝑟𝑛𝑔(𝑒𝑠
∗𝑃𝐼𝑠  )  =  ∅}. 

Let 𝐺 be the set of minimal nodes u of 𝒯′  with 𝑢 ∈  𝐷 or (𝜂𝑢)  <  𝑚 𝑗𝑘
−1 . By 𝒯′′ denote the 

subtree of 𝒯′ with the terminal nodes in 𝐺. We shall prove by induction starting from 𝐺 that 

for any 𝑢 ∈ 𝒯′′  we have 

 |𝜖𝑢𝑒𝜂𝑢
∗  𝑃𝐼𝑢  (𝑥𝑘

′ ) − 𝜖�̃�𝑒�̃�𝑢
∗  𝑃𝐼𝑢  (𝛿𝑘𝑥𝑘

′ )| ≤
22𝐶

𝑚𝑗𝑘
 .                             (58) 

This will end the proof as it follows by (T4) that |𝜖∅𝑒𝜂∅
∗  (𝑥𝑘

′ )  − 𝜖∅̃𝑒�̃�∅
∗  (𝛿𝑘𝑥𝑘

′ )|  =

 |𝑒�̅�
∗(𝑥𝑘

′ )  − 𝑒�̃�
∗(𝛿𝑘𝑥𝑘

′ )|. Thus taking 𝜖 =  1 we obtain the estimate of the lemma.  

Step 1. 𝑢 ∈  𝐺. 𝐼𝑓 𝑤(𝜂𝑢)  <  𝑚 𝑗𝑘
−1 then the estimate (58) holds true by Lemma (6.3.40) (ii). 

If 𝑢 ∈  𝐷 then the estimate (58) holds true by (T3). Step 2. 𝑢 ∈ 𝒯′′  \ 𝐺. In particular 

(𝜂𝑢)  ≥  𝑚 𝑗𝑘
−1 . Obviously 𝑆𝑢  ⊂ 𝒯′′. 

Case 2a. 𝑤(𝜂𝑢) =  𝑚 2𝑗
−1 . We estimate, using (T3) for 𝑠 ∈  𝑆𝑢,𝑘  ∩  𝐷 

|𝑒�̃�𝑢
∗  𝑃𝐼𝑢  (𝛿𝑘𝑥𝑘

′ )  − 𝑒𝜂𝑢
∗  𝑃𝐼𝑢  (𝑥𝑘

′ )| 

= | (∑ 𝑑
�̃�𝑠

∗  +
1

𝑚2𝑗
𝑠∈𝑆𝑢

 ∑ 𝜖�̃�𝑒�̃�𝑠
∗  𝑃𝐼𝑠   +

1

𝑚2𝑗
𝑠∈𝑆𝑢,𝑘∩𝐷

 ∑ 𝜖�̃�𝑒�̃�𝑠
∗  𝑃𝐼𝑠

𝑠∈𝑆𝑢,𝑘\𝐷

     ) (𝛿𝑘𝑥𝑘
′ )  
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− (∑ 𝑑𝜉𝑠
∗  +

1

𝑚2𝑗
 

𝑠∈𝑆𝑢

  ∑ 𝜖�̃�𝑒𝜂𝑠
∗  𝑃𝐼𝑠  +

1

𝑚2𝑗
𝑠∈𝑆𝑢,𝑘∩𝐷

  ∑ 𝜖�̃�𝑒𝜂𝑠
∗  𝑃𝐼𝑠

𝑠∈𝑆𝑢,𝑘\𝐷

    )  (𝑥𝑘
′ )|  

≤ | ∑ 𝑑
�̃�𝑠

∗  (𝛿𝑘𝑥𝑘
′ )

𝑠∈𝑆𝑢

  |  

+  |  ∑  𝑑𝜉𝑠
∗  (𝑥𝑘

′ )|  +
1

𝑚2𝑗
𝑠∈𝑆𝑢

 ∑ |𝜖�̃�𝑒�̃�𝑠
∗  𝑃𝐼𝑠  (𝛿𝑘𝑥𝑘

′ ) − 𝜖𝑠𝑒𝜂𝑠
∗  𝑃𝐼𝑠  (𝑥𝑘

′ )|

𝑠∈𝑆𝑢,𝑘\𝐷

 

≤ . .. 
The first two sums are estimated using (57) and #𝑆𝑢  ≤  𝑛2𝑗  ≤  𝑛𝑗𝑘 , for the third element 

use the inductive hypothesis and the fact that #(𝑆𝑢,𝑘  \ 𝐷)  ≤  2, obtaining the following 

. . . ≤  2𝑛2𝑗
𝐶

𝑛𝑗𝑘
2  +

2

𝑚2𝑗
 ·
22𝐶

𝑚𝑗𝑘
 ≤
22𝐶

𝑚𝑗𝑘
 . 

Case 2b. 𝑤(𝜂𝑢)  =  𝑚2𝑗+1
−1 . Recall that by (T3) we have 𝜖𝑠− 𝑒𝜂𝑠−

∗  𝑃𝐼𝑠−  
(𝑥𝑘
′ ) =

 𝜖�̃�−  𝑒�̃�𝑠−
∗  𝐼𝑠−  (𝛿𝑘𝑥𝑘

′ ) for any 𝑠 ∈  𝑆𝑢  ∩  ℰ𝛾  with 𝑠−  ∈  𝐷 and 𝜆𝑠𝑒𝜂𝑠
∗  𝑃𝐼𝑠  (𝑥𝑘

′ )  =

 �̃�𝑠𝑒�̃�𝑠
∗  𝐼𝑠(𝛿𝑘𝑥′_𝑘 ) for any 𝑠 ∈  𝑆𝑢  ∩  ℰ𝛾  ∩  𝐷. Moreover ℰ𝛾 \ 𝐷 ⊂  ℱ𝛾 thus 

𝑒𝜂𝑠
∗   𝑃𝐼𝑠  (𝑥𝑘

′ )  =  0 =  𝑒�̃�𝑠
∗  𝑃_𝐼𝑠 (𝛿𝑘𝑥𝑘

′ ) for any 𝑠 ∈  (𝑆𝑢  ∩  ℰ𝛾) \ 𝐷. Therefore we have  

|𝑒�̃�𝑢
∗  𝑃𝐼𝑢  (𝛿𝑘𝑥𝑘

′ ) − 𝑒𝜂𝑢
∗  𝑃𝐼𝑢  (𝑥𝑘

′ )| 

= | (∑  𝑑
�̃�𝑠

∗   +
1

𝑚2𝑗+1
𝑠∈𝑆𝑢

 ∑ 𝜖�̃�−  𝑒�̃�𝑠−
∗  𝑃𝐼𝑠  +

1

𝑚2𝑗+1
𝑠−∈𝑆𝑢,𝑘,𝑠∈ℰ𝛾

   ∑ �̃�𝑠𝑒�̃�𝑠
∗  𝑃𝐼𝑠

𝑠∈𝑆𝑢,𝑘∩ℰ𝛾

    ) (𝛿𝑘𝑥𝑘
′ )  

− (∑  𝑑𝜉𝑠
∗  +

1

𝑚2𝑗+1
𝑠∈𝑆𝑢

   ∑ 𝜖�̃�−  𝑒𝜂𝑠−
∗  𝑃𝐼𝑠  +

1

𝑚2𝑗+1
𝑠−∈𝑆𝑢,𝑘,𝑠∈ℰ𝛾

  ∑ 𝜆𝑠𝑒𝜂𝑠
∗  𝑃𝐼𝑠

𝑠∈𝑆𝑢,𝑘∩ℰ𝛾

  )   (𝑥𝑘
′ )|  

= | (∑ 𝑑
�̃�𝑠

∗  +
1

𝑚2𝑗+1
𝑠∈𝑆𝑢

   ∑ 𝜖�̃�−  𝑒�̃�𝑠−
∗  𝑃𝐼𝑠

𝑠−∈𝑆𝑢,𝑘\𝐷,𝑠∈ℰ𝛾

   ) (𝛿𝑘𝑥𝑘
′ )  

− (∑ 𝑑𝜉𝑠
∗  +

1

𝑚2𝑗+1
𝑠∈𝑆𝑢

   ∑ 𝜖𝑠−  𝑒𝜂𝑠−
∗  𝑃𝐼𝑠

𝑠−∈𝑆𝑢,𝑘\𝐷,𝑠∈ℰ𝛾

  )  (𝑥𝑘
′ )|  

≤ | ∑  𝑑
�̃�𝑠

∗  (𝛿𝑘𝑥𝑘
′ )

𝑠∈𝑆𝑢

 | + | ∑ 𝑑𝜉𝑠
∗  (𝑥𝑘

′ )

𝑠∈𝑆𝑢

| + 

+
1

𝑚2𝑗+1
  ∑ |𝜖�̃�−  𝑒�̃�𝑠−

∗  𝑃𝐼𝑠−  
(𝛿𝑘𝑥𝑘

′ ) − 𝜖𝑠− 𝑒𝜂𝑠−
∗  𝑃𝐼𝑠−  

(𝑥𝑘
′ )|

𝑠−∈𝑆𝑢,𝑘\𝐷,𝑠∈ℰ𝛾

   

≤ . .. 
Proceeding as in Case 2𝑎 we obtain  

. . . ≤  2𝑛2𝑗+1
𝐶

𝑛 𝑗𝑘
2  +

2

𝑚2𝑗+1
 ·
22𝐶

𝑚𝑗𝑘
 ≤
22𝐶

𝑚𝑗𝑘
. 

Theorem (6.3.42)[252]: The space 𝒳𝐾𝑢𝑠 is unconditionally saturated.  

Proof. In every block subspace of 𝒳𝐾𝑢𝑠 pick a sequence (𝑥𝑘)𝑘 as above with 𝑚𝑗1  >  400𝐶. 

We claim that such a sequence is unconditional. To this end consider a finite sequence of 



256 

scalars (𝑎𝑘) with ‖∑ 𝑎𝑘𝑥𝑘𝑘  ‖   =  1 and (𝛿𝑘)  ⊂  {±1}. We want to estimate the norm of the 

vector  ∑ 𝛿𝑘𝑎𝑘𝑥𝑘𝑘 . Take 𝛾 ∈  𝛤 with 𝑒𝛾
∗(∑ 𝑎𝑘𝑥𝑘𝑘   )  ≥  3/4. Define 𝑄𝛾, (𝓎𝑘) and (𝑥𝑘

′ ) and 

consider �̃� and 𝜖 provided by Lemma (6.3.41). Notice that as 𝑄�̃�  =  𝑄𝛾, the projection 𝑄�̃� 

defines also (𝓎𝑘) and (𝑥;𝑘 ). Estimate, applying Lemma (6.3.41) and Lemma (6.3.40) (1) 

both for γ and �̃�, as follows  

|𝑒𝛾
∗ (∑𝑎𝑘𝑥𝑘

𝑘

   ) −  𝜖𝑒�̃�
∗ ( ∑𝛿𝑘𝑎𝑘𝑥𝑘

𝑘

  )| 

≤ |𝑒𝛾
∗ (∑𝑎𝑘𝑥𝑘

′

𝑘

   ) −  𝜖𝑒�̃�
∗ ( ∑𝛿𝑘𝑎𝑘𝑥𝑘

′

𝑘

  )| + |𝑒𝛾
∗ ( ∑𝑎𝑘𝑦𝑘

𝑘

  )| + |𝑒�̃�
∗ ( ∑𝛿𝑘𝑎𝑘𝑦𝑘

𝑘

  )| 

≤ ∑|𝑎𝑘||𝑒𝛾
∗(𝑥𝑘

′ ) −  𝜖𝑒𝛾
∗(𝛿𝑘𝑥𝑘

′ )|

𝑘

   +∑|𝑎𝑘||𝑒𝛾
∗(𝑦𝑘)|

𝑘 

  +∑|𝑎𝑘||𝑒�̃�
∗(𝛿𝑘𝑦𝑘)|

𝑘

    

≤  4 ·  24𝐶∑𝑚 𝑗𝑘
−1  ≤  200𝐶𝑚 𝑗1

−1  ≤  12/

 𝑘

 

where in the last line we use the fact that each |𝑎𝑘| is dominated by twice the basic constant 

of the basis (𝑑𝛾). Therefore ‖∑ 𝛿𝑘𝑎𝑘𝑥𝑘𝑘  ‖   ≥  |𝑒�̃�
∗( ∑ 𝛿𝑘𝑎𝑘𝑥𝑘𝑘  )|  ≥  1/4, which ends the 

proof. 

Corollary (6.3.43)[260]: [252] Let (�̅�
𝛾𝑛
𝑗
𝑗
)
𝑛∈ℕ

 be a subsequence of the basis. Then there 

exists infinite 𝑀 ⊂  𝑁 such that no two nodes 𝛾𝑛
𝑗
, 𝛾𝑚
𝑗
, 𝑛,𝑚 ∈  𝑀, are neighbours. 

The proof is based on the fact that the age is uniquely determined for each node.  

Proof. If there are infinitely many nodes with different weights we are done. So assume that 

for all but finite nodes we have 𝑤(𝛾𝑛
𝑗
)  =  𝑚𝑘

−1 for some fixed 𝑘.  

Applying Ramsey theorem we obtain an infinite set such that either no two nodes from this 

set are neighbours or any two are neighbours. 

In the first case we are done. Otherwise passing to a further subsequence we may assume 

that rank(𝛾𝑛
𝑗
)  <  rank(𝛾𝑛+1

𝑗
) for every 𝑛. 

Since we have that 𝛾𝑗
𝑗
 , 𝛾𝑗+1

𝑗
 are neighbours it follows by a simple induction that  

age(𝛾𝑗+1
𝑗
)  ≥  age(𝛾𝑗

𝑗
) + 1 ≥  𝑗 +  1. 

Take 𝑗 =  𝑛𝑘  +  1 and pick 𝑒
𝛾𝑗
∗  of the form 

𝑒
𝛾𝑗
∗ =∑∑ 

𝑗

𝑎

𝑟=1

�̅�𝜉𝑟
𝑗∗
+ 𝑚𝑘

−1∑∑ 

𝑗

𝑎

𝑟=1

𝜖𝑟𝜆𝑟
𝑗
𝑒𝜂𝑟
∗ �̅�𝐼𝑟

𝑗
 

with ∑  𝑗 �̅�
𝛾𝑛𝑘+1
𝑗
𝑗∗

= ∑  𝑗 �̅�𝜉𝑟
𝑗∗

 for some 𝑟. Then age(𝜉𝑟)  ≤  𝑛𝑘 which yields a contradiction 

and ends the proof. 

Corollary (6.3.44)[260]: [252] Let 𝑥𝑗 = 𝑛𝑗
−1∑ ∑  𝑗𝑖∈𝐺 �̅�𝜉𝑖

𝑗
 , be such that no two 𝜉𝑖’s are 

neighbours and #𝐺 ≤  𝑛𝑗 . Then for any 𝛾𝑗 ∈  𝛤 with 𝑤(𝑒
𝛾𝑗
∗ )  =  𝑚𝑘

−1 we have the 

following 
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|𝑒
𝛾𝑗
∗ (𝑥𝑗)|  ≤

{
 

 
1

𝑛𝑘−𝜖
+
2

𝑚𝑘
        𝑖𝑓  𝜖 < 0

7

𝑚𝑘𝑚𝑘+𝜖
          𝑖𝑓  𝜖 > 0.

 

In particular 

‖𝑛𝑗
−1  ∑∑ 

𝑗

𝑛𝑗

𝑖=1

�̅�𝜉𝑖
𝑗
‖ ≤ 7∑ 

𝑗

𝑚𝑗
−1 . 

Proof. We shall construct functionals 𝜙
𝛾𝑗
𝑗

 in the norming set of the mixed Tsirelson space 

𝑋𝑎𝑢𝑥 = 𝑇
𝑗[(𝒜𝑛𝑘  ,𝑚𝑘

−1)
𝑘∈ℕ
] such that 

∑ 

𝑗

|𝑒
𝛾𝑗
∗ (𝑥𝑗)| ≤∑ 

𝑗

(𝜙
𝛾𝑗
𝑗
(𝑦𝑗) +

2

𝑚𝑗𝑚𝑗−1
) 

where 𝑦𝑗  =  2 ∑  𝑘∈𝐺 𝑒𝑘/𝑛𝑗  ∈  𝑐00(ℕ). 

Take 𝛾𝑗  ∈  𝛤 and consider its evaluation analysis 𝑒
𝛾𝑗
∗ = ∑ ∑  𝑗

𝑎
𝑟=1 �̅�𝛽𝑟

𝑗∗
+

𝑚𝑘
−1 ∑ ∑  𝑗

𝑎
𝑟=1 𝜖𝑟𝜆𝑟

𝑗
𝑒𝜂𝑟
∗ �̅�𝐼𝑟

𝑗
 . Let 𝑔

𝛾𝑗
𝑗
= bd(𝑒

𝛾𝑗
∗ ) and 𝑓

𝛾𝑗
𝑗
= 𝑚𝑡(𝑒

𝛾𝑗
∗ ). 

We shall consider two cases. 

Case 1. 𝑤(𝛾𝑗)  ≤  𝑚𝑗
−1 . 

Since the nodes (𝜉𝑖)𝑖 are pairwise non-neighbours and (𝛽𝑖)𝑖 are pairwise neighbours it 

follows that 

|∑  

𝑗

𝑔
𝛾𝑗
𝑗
(𝑥𝑗)|  ≤∑ 

𝑗

𝑛𝑗
−1 .                                                (59) 

Also for every 𝑟 ≤  𝑎 using that | ∑  𝑗 𝑒𝜁
∗ (�̅�𝛽

𝑗
)|  ≤  2 for all ζ, 𝛽, we get 

∑ 

𝑗

|𝑒𝜂𝑟
∗ �̅�𝐼𝑟

𝑗
(𝑥𝑗)| ≤  ∑  

𝑗

2
# {𝑖 ∶  rng (𝑑𝜉𝑖

𝑗∗
) ⊂ 𝐼𝑟}

𝑛𝑗
 .                        (60) 

It follows from (59), (60), using that |𝜆𝑟
𝑗
|  ≤  1 for every 𝑟, that 

|𝑒
𝛾𝑗
∗ (𝑥𝑗)| ≤

1

𝑛𝑗
+ 2𝑚𝑘

−1  ∑∑ 

𝑗

𝑎

𝑟=1

# {𝑖 ∶  rng (𝑑𝜉𝑖
𝑗∗
) ⊂ 𝐼𝑟}

𝑛𝑗
 ≤

1

∑  𝑗 𝑛𝑗
 +

2

𝑚𝑘
 .      (61) 

Taking 𝜙
𝛾𝑗
𝑗
 =  𝑚𝑘

−1  ∑  𝑛∈𝐹 𝑒𝑛
∗  where 𝐹 = ∪𝑟≤𝑎 {𝑛 |𝛾𝑛

𝑗
 =  𝜉𝑖 , rng(𝑑𝜉𝑖

𝑗∗
)  ⊂  𝐼𝑟 for some 𝑖 ∈

 𝐺} it follows that #𝐹 ≤  𝑛𝑗  ≤  𝑛𝑘 and 𝜙
𝛾𝑗
𝑗

 belongs to the norming set of the mixed 

Tsirelson space 𝑋𝑎𝑢𝑥. 

From (61) we get 

|∑  

𝑗

𝑒
𝛾𝑗
∗ (𝑥𝑗)| ≤∑ 

𝑗

(
1

𝑛𝑗
+ 2𝑚𝑘

−1  ∑  

𝑛∈𝐹

𝑒𝑛
∗(𝑒𝑛)

𝑛𝑗
) =∑ 

𝑗

(
1

𝑛𝑗
+ 𝜙

𝛾𝑗
𝑗
(𝑦𝑗)).               (62) 

Case 2. 𝑤(𝛾𝑗)  =  𝑚𝑘
−1  >  𝑚𝑗

−1 . 
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Let (𝐼𝑡 , 𝜀𝑡 , 𝜂𝑡)𝑡∈𝒯 be the tree-analysis of 𝑒
𝛾𝑗
∗  and 𝒯′ be the subtree of 𝒯 consisting of all 

nodes 𝑡 of height at most 𝑙𝑗. We will describe how to define certain functionals (𝜙𝑡
𝑗
)
𝑡∈𝒯′

 in 

the norming set of 𝑇𝑗[(𝒜𝑛𝑘 ,𝑚𝑘
−1)

𝑘∈ℕ
] that we will use to obtain the desired estimate. 

As in the previous case we get 

|∑  

𝑗

𝑔
𝛾𝑗
𝑗
(𝑥𝑗)|  ≤ ∑ 

𝑗

𝑛𝑗
−1 .                                                      (63) 

Using that 𝑒
𝛾𝑗
∗ = 𝑔

𝛾𝑗
𝑗
 +  𝑓

𝛾𝑗
𝑗

 and |𝜆𝑟
𝑗
|  ≤  1 for every 𝑟, we get 

|∑  

𝑗

𝑒
𝛾𝑗
∗ (𝑥𝑗)|  ≤∑ 

𝑗

(𝑛𝑗
−1 + |𝑓

𝛾𝑗
𝑗
(𝑥𝑗)| ≤ 𝑛𝑗

−1 +𝑚𝑘
−1∑ 

𝑎

𝑟=1

|𝑒𝜂𝑟
∗ �̅�𝐼𝑟

𝑗
(𝑥𝑗)|).             (64) 

We shall split now the successors 𝑒𝜂𝑟
∗  of 𝑒

𝛾𝑗
∗  into those with weight smaller or equal to 𝑚𝑗

−1 

and those with weight bigger that 𝑚𝑗
−1 . For a node 𝛾𝑗 we set 

𝑆𝛾𝑗,1 = {𝑟 ∈  𝑆𝛾𝑗 ∶  𝑤(𝜂𝑟)  ≤  𝑚𝑗
−1}   and   𝑆𝛾𝑗,2 = 𝑆𝛾𝑗  \ 𝑆𝛾𝑗,1. 

From (64) we get 

|∑  

𝑗

𝑒
𝛾𝑗
∗ (𝑥𝑗)|  ≤  ∑  

𝑗
(

 𝑛𝑗
−1 +𝑚𝑘

−1 ( ∑  

𝑟∈𝑆
𝛾𝑗,1

|𝑒𝜂𝑟
∗ �̅�𝐼𝑟

𝑗
(𝑥𝑗)| + ∑  

𝑟∈𝑆
𝛾𝑗,2

|𝑒𝜂𝑟
∗ �̅�𝐼𝑟

𝑗
(𝑥𝑗)|)

)

  

Using (62) for the 𝑟 ∈  𝑆𝛾𝑗,1, (64) for the 𝑟 ∈  𝑆𝛾𝑗,2 and that #𝑆𝛾𝑗,1  +  #𝑆𝛾𝑗,2  ≤  𝑛𝑘, 𝑘 < 𝑗, 

we get 

|∑  

𝑗

𝑒
𝛾𝑗
∗ (𝑥𝑗)|

≤ 𝑛𝑗
−1 +

𝑛𝑘
𝑚𝑘𝑛𝑗

+
1

𝑚𝑘
∑ 

𝑗

( ∑  

𝑟∈𝑆
𝛾𝑗,1

𝜙𝑟
𝑗
(𝑦𝑗) + ∑  

𝑟∈𝑆
𝛾𝑗,2

𝑤(𝑒𝜂𝑟)∑  

𝑠∈𝑆𝑟

|𝑒𝜂𝑠
∗ �̅�𝐼𝑠

𝑗
(𝑥𝑗)|) 

≤∑ 

𝑗
(

 
1

𝑛𝑗
(1 + (

𝑛𝑗−1
𝑚𝑗−1

))

+
1

𝑚𝑘
∑ 

𝑗

( ∑  

𝑟∈𝑆
𝛾𝑗,1

𝜙𝑟
𝑗
(𝑦𝑗) + ∑  

𝑟∈𝑆
𝛾𝑗,2

𝑤(𝑒𝜂𝑟)∑  

𝑠∈𝑆𝑟

|𝑒𝜂𝑠
∗ �̅�𝐼𝑠

𝑗
(𝑥𝑗)|)

)

 .      (65) 

Note that the functional 𝑚𝑘
−1 (∑ ∑  𝑗𝑟∈𝑆

𝛾𝑗,1
𝜙𝑟
𝑗
) belongs to the norming set of the mixed 

Tsirelson space 𝑋𝑎𝑢𝑥 and has room for #𝑆𝛾𝑗,2 more functionals. 

We shall replay the above splitting for every 𝑒𝜂𝑠
∗ �̅�𝐼𝑠

𝑗
 . To avoid complicated notation we shall 

set 𝑛𝑠  =  #𝑆𝑠 and 𝑚𝑠
−1 =  𝑤(𝑒𝜂𝑠

∗ ). From (65) using 𝑒𝜂𝑠
∗ �̅�𝐼𝑠

𝑗
 in the place of 𝑒

𝛾𝑗
∗  we get 
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|∑  

𝑗

𝑒𝜂𝑠
∗ �̅�𝐼𝑠

𝑗
(𝑥𝑗)|

≤∑ 

𝑗

(
1

𝑛𝑗
(1 +

𝑛𝑗−1
𝑚𝑗−1

)

+𝑚𝑠
−1 (∑  

𝑡∈𝑆𝑠,1

𝜙𝑡
𝑗
(𝑦𝑗) + ∑  

𝑡∈𝑆𝑠,2

𝑚𝑡
−1 ∑  

𝑢∈𝑆𝑡

|𝑒𝜂𝑢
∗ �̅�𝐼𝑢

𝑗
(𝑥𝑗)|)) . (66) 

It follows that 

∑  

𝑟∈𝑆
𝛾𝑗,2

𝑤(𝑒𝜂𝑟)∑∑ 

𝑗𝑠∈𝑆𝑟

|𝑒𝜂𝑠
∗ �̅�𝐼𝑠

𝑗
(𝑥𝑗)| ≤ ∑  

𝑟∈𝑆
𝛾𝑗,2

𝑚𝑟
−1∑  

𝑠∈𝑆𝑟

1

𝑛𝑗
(1 +

𝑛𝑗−1
𝑚𝑗−1

)         (67) 

+ ∑  

𝑟∈𝑆
𝛾𝑗,2

𝑚𝑟
−1∑∑ 

𝑗𝑠∈𝑆𝑟

𝑚𝑠
−1 ( ∑  

𝑡∈𝑆
𝛾𝑗,1

𝜙𝑡
𝑗
(𝑦𝑗) + ∑  

𝑡∈𝑆
𝛾𝑗,2

𝑚𝑡
−1 ∑  

𝑢∈𝑆𝑟

|𝑒𝜂𝑠𝑢
∗ �̅�𝐼𝑢

𝑗
(𝑥𝑗)|) 

≤ 𝑛𝑘
𝑛𝑟
𝑚𝑟
∑ 

𝑗

1

𝑛𝑗
(1 +

𝑛𝑗−1
𝑚𝑗−1

)          since #𝑆𝛾𝑗,2  ≤  𝑛𝑘  and #𝑆𝑟  ≤  𝑛𝑟 

+∑ 

𝑗

∑  

𝑟∈𝑆
𝛾𝑗,2

𝑚𝑟
−1∑  

𝑠∈𝑆𝑟

𝑚𝑠
−1 ( ∑  

𝑡∈𝑆
𝛾𝑗,1

𝜙𝑡
𝑗
(𝑦𝑗) + ∑  

𝑡∈𝑆
𝛾𝑗,2

𝑚𝑡
−1 ∑  

𝑢∈𝑆𝑟

|𝑒𝜂𝑢
∗ �̅�𝐼𝑢

𝑗
(𝑥𝑗)|) 

By (65) and (67), using that 
𝑛𝑟

𝑚𝑟
 ,
𝑛𝑘

𝑚𝑘
 ≤

𝑛𝑗−1

𝑚𝑗−1
 we get 

|∑  

𝑗

𝑒
𝛾𝑗
∗ (𝑥𝑗)| ≤∑ 

𝑗

1

𝑛𝑗
(1 +

𝑛𝑗−1
𝑚𝑗−1

+ (
𝑛𝑗−1
𝑚𝑗−1

)

2

+ (
𝑛𝑗−1
𝑚𝑗−1

)

3

)                            (68) 

+
1

𝑚𝑘
∑ 

𝑗
(

 ∑  

𝑟∈𝑆
𝛾𝑗,1

𝜙𝑟
𝑗
(𝑦𝑗)

+ ∑  

𝑟∈𝑆
𝛾𝑗,2

𝑚𝑟
−1∑  

𝑠∈𝑆𝑟

𝑚𝑠
−1 (∑  

𝑡∈𝑆𝑠,1

𝜙𝑡
𝑗
(𝑦𝑗)

+ ∑  

𝑡∈𝑆𝑠,2

𝑚𝑡
−1 ∑  

𝑢∈𝑆𝑡

|𝑒𝜂𝑢
∗ �̅�𝐼𝑢

𝑗
(𝑥𝑗)|)

)

 (69) 

Note that the functional 

∑ 

𝑗

𝜙
𝛾𝑗
𝑗
=
1

𝑚𝑘
+∑ 

𝑗

( ∑  

𝑟∈𝑆
𝛾𝑗,1

𝜙𝑟
𝑗
(𝑦𝑗) ∑  

𝑟∈𝑆
𝛾𝑗,2

𝑚𝑟
−1∑  

𝑠∈𝑆𝑟

𝑚𝑠
−1 ∑  

𝑡∈𝑆𝑠,1

𝜙
𝑡(𝑦𝑗)

𝑗
) 
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belongs to the norming set of the mixed Tsirelson space 𝑋𝑎𝑢𝑥 and the functional 

𝑚𝑠
−1  ∑  𝑡∈𝑆𝑠,1 𝜙𝑡

𝑗
 has room for #𝑆𝑠,2 more functionals.  

We continue this splitting at most 𝑙𝑗 times, see (9) for the choice of 𝑙𝑗 , or till 𝑆𝑠,2  =  ∅ i.e. 

we do not have nodes with weight > 𝑚𝑗
−1 . 

If we stop before the 𝑙𝑗-th step we get that |𝑒
𝛾𝑗
∗ (𝑥𝑗)| is dominated by 𝜙

𝛾𝑗
𝑗
(𝑦𝑗) plus the errors 

in (68), where the sum end to the 𝑙𝑗-th power of 𝑛𝑗−1/𝑚𝑗−1. Since 𝜙
𝛾𝑗
𝑗

 belongs to the 

norming set of the mixed Tsirelson space 𝑋𝑎𝑢𝑥 it follows from [99], Lemma II.9, that 

𝜙
𝛾𝑗
𝑗
(𝑦𝑗)  ≤  4𝑚𝑘

−1 𝑚𝑗
−1 . 

If we continue the splitting 𝑙𝑗 -times, then there exists some node with (𝛾𝑡
𝑗
)  >  𝑚𝑗

−1 . For 

every such node we have 

∑ 

𝑗

(∏ 

 

𝑠≺𝑡

𝑤 (𝑒
𝛾𝑠
𝑗)) |𝑒

𝛾𝑡
𝑗
∗ (𝑥𝑗)| ≤ (

1

𝑚1
)
𝑙𝑘

∑ 

𝑗

|𝑒
𝛾𝑡
𝑗
∗ (𝑥𝑗)|

≤ 2∑ 

𝑗

𝑚𝑘
−1 𝑚𝑗

−1
# {𝑖 ∶  𝑟𝑛𝑔 (𝑑𝜉𝑖

𝑗∗
) ⊂  𝐼𝑡  ∩  𝐺}

𝑛𝑗
 

since 𝑚1
−𝑙𝑗  ≤  (𝑚𝑗𝑚𝑗−1)

−1
. 

Summing the estimation of all those nodes we get upper estimate equal to 2#𝐺 𝑚𝑘𝑚𝑗𝑛𝑗⁄   ≤

  2 𝑚𝑘𝑚𝑗⁄  . 

The remaining nodes provide us with a functional in the norming set of the mixed Tsirelson 

space 𝑋𝑎𝑢𝑥. By [99] its action on y is bounded by 4𝑚𝑘
−1 𝑚𝑗

−1 . 

It remains to handle the errors (68). In each case we have 

1

𝑛𝑗
 (1 +

𝑛𝑗−1
𝑚𝑗−1

+ (
𝑛𝑗−1
𝑚𝑗−1

)

2

+ ···  +(
𝑛𝑗−1
𝑚𝑗−1

)

𝑙𝑗

) ≤
1

𝑛𝑗
 
(𝑛𝑗−1/𝑚𝑗−1)

𝑙𝑗+1
− 1

(𝑛𝑗/𝑚𝑗−1)
 − 1

≤
2

𝑚𝑗𝑚𝑗−1
 . 

Summing all the above estimates we get an upper estimate 7𝑚𝑘
−1 𝑚𝑗

−1 . 

Corollary (6.3.45)[260]: [252] Let 𝑥𝑗  =  𝑚𝑖+𝜖𝑛𝑖+𝜖
−1  ∑  

𝑛𝑖+𝜖
𝑖=1 �̅�𝜉𝑖

𝑗
 such that no two 𝜉𝑖’s are 

neighbours. Let 𝜖 > 0, (𝑒𝜂
𝑞2+𝜖

∗ )
𝑞2+𝜖=1

𝑛𝑖
 be nodes such that 𝑤 (𝑒𝜂

𝑞2+𝜖

∗ ) = 𝑚𝑙
𝑞2+𝜖

≠

𝑚𝑖+𝜖  and 𝑚𝑙
𝑞2+𝜖

< 𝑚𝑙
𝑞2+𝜖+1

 for all 𝑞2 + 𝜖 ≤  𝑛𝑖. Then 

∑ ∑ 

𝑗

𝑛𝑖

𝑞2+𝜖=1

|𝑒𝜂
𝑞2+𝜖

∗  �̅�𝐼
𝑞2+𝜖

𝑗
(𝑥𝑗)| ≤

14

𝑚𝑞12+𝜖
 .                                         (70) 

Proof. From Corollary (6.3.44) we get 
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∑ ∑ 

𝑗

𝑛𝑖

𝑞2+𝜖=1

|𝑒𝜂
𝑞2+𝜖

∗ �̅�𝐼
𝑞2+𝜖

𝑗
(𝑥𝑗)|

≤  ∑ ∑ 

𝑗𝑞2+𝜖:𝑙𝑞2+𝜖<𝑖+𝜖

|𝑒𝜂
𝑞2+𝜖

∗ �̅�𝐼
𝑞2+𝜖

𝑗
(𝑥𝑗)|

+ ∑ ∑ 

𝑗𝑞2+𝜖:𝑙𝑞2+𝜖>𝑖+𝜖

|𝑒𝜂
𝑞2+𝜖

∗ �̅�𝐼
𝑞2+𝜖

𝑗
(𝑥𝑗)| 

≤ ∑  

𝑞2+𝜖:𝑙𝑞2+𝜖<𝑖+𝜖

7

𝑚𝑞2+𝜖
+ ∑  

𝑞2+𝜖:𝑙𝑞2+𝜖>𝑖+𝜖

(
1

𝑛𝑖+𝜖
+
2𝑚𝑖+𝜖
𝑚𝑞2+𝜖

) 

≤ ∑  

𝑞2+𝜖:𝑙𝑞2+𝜖<𝑖+𝜖

7

𝑚𝑞2+𝜖
+
𝑛𝑖
𝑛𝑖+𝜖

+ ∑  

𝑞2+𝜖:𝑙𝑞2+𝜖>𝑖+𝜖

 
2

𝑚𝑞2+𝜖−1
≤

14

𝑚𝑞12+𝜖
. 

Corollary (6.3.46)[260]: [252] The set 𝛤 is a self-determined subset of 𝛤, hence it defines 

a BD-L∞-space 𝒳
(𝛤
𝑞2
,𝑖
𝑞2
)
𝑞2

 . 

Moreover, the restriction 𝑅 ∶  𝒳�̅�  →  𝒳(𝛤
𝑞2
,𝑖
𝑞2
)
𝑞2

 is a well-defined operator of norm at most 

1 inducing the isomorphism between 𝒳
(𝛤
𝑞2
,𝑖
𝑞2
)
𝑞2

 and 𝒳�̅�/𝑌 , where 𝑌 =

 〈𝑑
𝛾j
j
∶  𝛾j  ∈  𝛤 \ 𝛤〉

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
. 

Proof. According to Proposition 1.5 [225] it is enough to show that for every 𝛾𝑗  ∈  𝛥𝑞2+1 

the following holds 

𝑐
�̅�𝑗
∗ ∈ {𝑒

𝛾𝑗
∗ ∘ 𝑃𝐸

𝑗
∶  𝛾𝑗  ∈  𝛤𝑞2 , 𝐸 ⊂ ℕ ∪ {0}} 

This follows readily from the definition of 𝑐
�̅�𝑗
∗ , see (10), using that ∑  𝑗 �̅�𝛾𝑗

𝑗∗
= ∑  𝑗 𝑒𝛾𝑗

∗ ∘

𝑃
{𝑟𝑎𝑛𝑘(𝛾𝑗)}

𝑗
. 

The second part of Proposition follows by Proposition 1.9 [225]. 

Corollary (6.3.47)[260]: [252]. a) Let 𝑗 ∈ ℕ and 𝑘 ≤  𝑛2𝑗  . Let also (𝑥𝑘
𝑗
)
𝑘
 ⊂  𝒳𝐾𝑢𝑠 be a 

normalised skipped block double sequence such that rng𝐹𝐷𝐷(𝑥𝑘
𝑗
)  =  (𝑞𝑘−1

2 + 𝜖, 𝑞𝑘
2 + 𝜖] for 

some strictly increasing (𝑞𝑘
2 + 𝜖) with 𝑞1

2 + 𝜖 ≥  2𝑗 −  1. Then there exists a node 𝛾𝑗  ∈  𝛤 

such that 

∑ 

𝑗

𝑒
𝛾𝑗
∗ = ∑∑ 

𝑗

𝑛2𝑗

𝑘=1

(𝑑𝜉𝑘
𝑗∗
+ 𝑚2𝑗

−1  ∑  

𝑛2𝑗

𝑘=1

𝜀𝑘𝑒𝜂𝑘
∗  𝑃𝐼𝑘

𝑗
) 

with the following properties 

(i) rank(𝜉𝑘) =  𝑞𝑘
2 + 𝜖 +  1 for each 𝑘, 

(ii) 𝜀𝑘𝑒𝜂𝑘
∗  ∑  𝑗 𝑃𝐼𝑘

𝑗
(𝑥𝑘
𝑗
)  ≥  1 2⁄  and 𝜂𝑘  ∈  𝛤𝑞𝑘

2+𝜖  \ 𝛤𝑞𝑘−1
2 +𝜖 for each 𝑘, 

(iii) ∑  𝑗 𝑒𝛾𝑗
∗ (∑  

𝑛2𝑗
𝑘=1

𝑥𝑘
𝑗
) ≥ ∑  𝑗

𝑛2𝑗

2𝑚2𝑗
 . 

b) Let (𝑑𝜉𝑖
𝑗
)
𝑖=1

𝑛2𝑗
 be a finite subsequence of the basis such that rank(𝜉𝑖)  +  1 <  rank(𝜉𝑖+1) 

for every 𝑖 and rank(𝜉1)  ≥  2𝑗 −  1. 

Then the node 
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𝑒𝜉
∗ =∑∑ 

𝑗

𝑛2𝑗

𝑖=1

(𝑑𝜁𝑖
𝑗∗
+ 𝑚2𝑗

−1𝑑𝜉𝑖
𝑗∗
)                                 (71) 

with rank(𝜁𝑖)  =  rank(𝜉𝑖)  +  1 is a regular node and 𝑒𝜉
∗ (∑ ∑  𝑗

𝑛2𝑗
𝑖=1

𝑑𝜉
𝑗
) = ∑  𝑗

𝑛2𝑗

𝑚2𝑗
 . 

Proof. a) (see [91]) Let 𝑥𝑘
𝑗
 =  𝑖𝑘(𝑢𝑘

𝑗
) where 𝑢𝑘

𝑗
 ∈  𝛤𝑞𝑘

2+𝜖  \ 𝛤𝑞𝑘−1
2 +𝜖 is the restriction of 𝑥𝑘

𝑗
 

on 𝛤𝑞𝑘
2+𝜖 . Since 

2‖∑ 

𝑗

𝑢𝑘
𝑗
‖ ≥∑ 

𝑗

‖𝑖𝑞𝑘
2+𝜖(𝑢𝑘

𝑗
)‖ =∑ 

𝑗

‖𝑥𝑘
𝑗
‖ = 1 

we can choose 𝜂𝑘  ∈  𝛤𝑞𝑘
2+𝜖  \ 𝛤𝑞𝑘−1

2 +𝜖 such that |𝑒𝜂𝑘
∗ (𝑢𝑘

𝑗
)|  ≥  1 2⁄ . Setting 𝐼𝑘 =

rng𝐹𝐷𝐷(𝑥𝑘
𝑗
) = ∪

𝑖=𝑞𝑘−1
2 +𝜖+1

𝑞𝑘
2+𝜖

𝛥𝑖, choose 𝜀𝑘  ∈  {−1, 1} such that 

|∑  

𝑗

𝑒𝜂𝑘
∗ 𝑃𝐼𝑘

𝑗
(𝑥𝑘
𝑗
)| =  ∑ 

𝑗

𝜀𝑘𝑒𝜂𝑘
∗ 𝑃𝐼𝑘

𝑗
(𝑥𝑘
𝑗
) =∑ 

𝑗

𝜀𝑘𝑒𝜂𝑘
∗ (𝑢𝑘

𝑗
)  ≥  1 2⁄ .          (72) 

The nodes 𝛾𝑘
𝑗
= (𝑞𝑘

2 + 𝜖 +  1, 𝛾𝑘−1
𝑗
, 𝑚2𝑗  , 𝐼𝑘 , 𝜀𝑘 , 𝑒𝜂𝑘

∗ ), 𝛾0
𝑗
= 0, 𝑘 = 1, . . . , 𝑛2𝑗 give the node 

𝛾𝑗  =  𝛾𝑛2𝑗
𝑗

 with the properties (i)–(iii). 

b) Take the nodes 𝜁𝑖  =  (rank(𝜉𝑖)  +  1, 𝜁𝑖−1, 𝑚2𝑗  , 𝐼𝑖 , 1, 𝑒𝜉𝑖
∗ ), 𝜁0  =  0, where 𝐼𝑖  =

 𝛥rank(𝜉𝑖). 

Corollary (6.3.48)[260]: [252]. Let (𝓏𝑘
𝑗
)
𝑘
 be a normalised block double sequence in 𝒳𝐾𝑢𝑠 

and (𝑑𝜉𝑛
𝑗
)
𝑛∈𝑀

 be a subsequence of the basis. Then for every 𝑗 ∈ ℕ there exists a j-dependent 

sequence of length 𝑛2𝑗−1, (𝛾𝑖
𝑗
, 𝑥𝑖
𝑗
)
𝑖≤𝑛2𝑗−1

 , such that 𝑥2𝑖−1
𝑗

∈  〈𝓏𝑘
𝑗
∶  𝑘 ∈ ℕ〉 and 𝑥2𝑖

𝑗
 ∈

 〈𝑑𝜉𝑛
𝑗
∶  𝑛 ∈  𝑀〉. 

Proof. Passing to a further subsequence we may assume that 

𝑑𝜉𝑛
𝑗
 are pairwise non − neighbours and rank(𝜉𝑛) + 1 <  rank(𝜉𝑛+1).  (73) 

Let 𝑗1 be such that 𝑚4𝑗1−2 > 𝑛2𝑗−1
2  and choose 𝑞1

2 big enough to guarantee that 4𝑗1  −  2 <

 𝑞1
2 and 2−𝑞1

2
≤ 1

4𝑛2𝑗−1
2⁄  . 

Let (𝑥1,𝑘
𝑗
)
𝑘=1

𝑛4𝑗1−2
 be a normalised skipped block sequence of 〈𝓏𝑙

𝑗
∶  𝑙 ≥  𝑞2〉 which is a C-

RIS. Setting 

𝑥1
𝑗
=
𝑐1𝑚4𝑗1−2

𝑛4𝑗1−2
 ∑ ∑ 

𝑗

𝑛4𝑗1−2

𝑘=1

𝑥1,𝑘
𝑗
             with  ∑  

𝑗

‖𝑥1
𝑗
‖ =  1 2⁄  

from Remark (6.3.30) we get 1 20𝐶 ≤  𝑐1  ≤  2
⁄  and that there exists a node 𝜂1  ∈  𝛤 with 

𝑤(𝜂1)  =  𝑚4𝑗1−2
−1  such that 

∑ 

𝑗

𝑒𝜂1
∗ 𝑃𝐼1

𝑗
(𝑥1
𝑗
) ≥

1

40𝐶
 , 

where 𝐼1 = ⋃  {𝛥𝑞2+𝜖 ∶  𝑞
2 + 𝜖 ∈  rng𝐹𝐷𝐷(𝑥1

𝑗
)}. 
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Using that 𝑅 is a quotient operator of norm 1 take a block �̅�1
𝑗
 ∈  𝒳�̅� such that 𝑥1

𝑗
= 𝑅(�̅�1

𝑗
) 

and ‖�̅�1
𝑗
‖ ≤ 1. Then choose a vector �̅�1

𝑗
 with rational coefficients in the unit ball of 

〈�̅�
𝛾𝑗
𝑗
∶  𝛾𝑗  ∈  𝛤𝑞12〉 such that ∑  𝑗 ‖�̅�1

𝑗
− �̅�1

𝑗
‖
𝒳�̅�
 ≤  1

4𝑛𝑞12
2⁄  . 

Note that ∑  𝑗 𝑅(�̅�1
𝑗
) = ∑  𝑗 𝑅(�̅�1

𝑗
− �̅�1

𝑗
) + ∑  𝑗 𝑅(�̅�1

𝑗
) = ∑  𝑗 𝑅(�̅�1

𝑗
− �̅�1

𝑗
) + ∑  𝑗 𝑥1

𝑗
 and 

hence for every 𝛾𝑗  ∈  𝛤, 

∑ 

𝑗

|𝑒
𝛾𝑗
∗ (�̅�1

𝑗
) − 𝑒

𝛾𝑗
∗ (𝑥1

𝑗
)| =∑ 

𝑗

|𝑒
𝛾𝑗
∗ 𝑅(�̅�1

𝑗
) − 𝑒

𝛾𝑗
∗ 𝑅(𝑥1

𝑗
)| ≤∑ 

𝑗

‖𝑒
𝛾𝑗
∗ ∘ 𝑅‖‖�̅�1

𝑗
− �̅�1

𝑗
‖
𝒳�̅�
 

≤ 1
4𝑛𝑞12

2⁄  .                                                                                                                (74) 

We take 𝛾1
𝑗
 to be the node 

𝛾1
𝑗
 =  (𝑞1

2  +  1, 0,𝑚2𝑗−1
−1 , 𝐼1, 1, 𝑒𝜂1

∗ ). 

From the above we get that (𝛾1
𝑗
, 𝑥1
𝑗
) is a 𝑗-dependent couple of length 1 with respect to the 

(𝛤, 𝑗)-special sequence (𝛾1
𝑗
, �̅�1
𝑗
). 

Set 𝑗2 =  𝜎(𝛾1
𝑗
, �̅�1
𝑗
) and choose 𝑥2

𝑗
, 𝑒𝜂2
∗  such that 

𝑥2
𝑗
= 𝑚4𝑗2  𝑛4𝑗2

−1 ∑∑ 

𝑗𝑘∈𝐹2

𝑑𝜉2,𝑘
𝑗

∈ 𝒳𝐾𝑢𝑠     and  mt(𝑒𝜂2
∗ ) = 𝑚4𝑗2

−1  ∑∑ 

𝑗𝑘∈𝐹2

𝑑𝜉2,𝑘
𝑗∗

 

where |𝐹2|  =  𝑛4𝑗2 and 𝑞1
2  +  2 <  min rng𝐹𝐷𝐷(𝑥2

𝑗
). Such a node exists by Corollary 

(6.3.47)(b) since rank(𝜉𝑛)  +  1 <  rank(𝜉𝑛+1). We also take the node 

𝛾2
𝑗
= (𝑞2

2  +  1, 𝛾1
𝑗
, 𝑚2𝑗−1, 𝐼2, 1, 𝜆2

𝑗
𝑒𝜂2
∗ ) ∈ 𝛤 

where 𝐼2  =  [𝑞2
2 + 𝜖, 𝑞2

2] is the range of 𝑥2
𝑗
 with respect to the basis and 𝜆2

𝑗
 ∈  Net1,𝑞12 is 

chosen such that 

|∑  

𝑗

(𝜆2
𝑗
− 𝑒𝜂1

∗ (�̅�1
𝑗
))|  ≤  1

4𝑛𝑞12
2⁄  . 

From the above equation and (74) we get 

|∑  

𝑗

(𝜆2
𝑗
− 𝑒𝜂1

∗ (𝑥1
𝑗
))| ≤

1

2𝑛𝑞12
2 ⇒ 𝜆2

𝑗
≥∑ 

𝑗

𝑒𝜂1
∗ (𝑥1

𝑗
) −

1

2𝑛𝑞12
2 ≥

𝑐1
2
−

1

2𝑛𝑞12
2 ≥

1

45𝐶
 . 

Pick �̅�2
𝑗
 to be the corresponding average of (�̅�𝜉2,𝑘

𝑗
)
𝑘∈𝐹2

 . It follows that 𝑥2
𝑗
= 𝑅�̅�2

𝑗
 (recall that 

𝑑
𝛾𝑗
𝑗
= 𝑅�̅�

𝛾𝑗
𝑗

 for each 𝛾𝑗  ∈  𝛤) and �̅�1
𝑗
< �̅�2

𝑗
. Then we get that (𝛾𝑖

𝑗
, 𝑥𝑖
𝑗
)
𝑖=1

2
 is j-dependent of 

length 2 with respect to the (𝛤, 𝑗)-special sequence (𝛾𝑖
𝑗
, �̅�𝑖
𝑗
)
𝑖=1

2
.  

Set 𝑗3  =  𝜎(𝛾𝑖
𝑗
, �̅�𝑖
𝑗
)
𝑖=1

2
. We continue to choose 𝑥3

𝑗
, 𝑒
𝛾3
𝑗
∗  , 𝑥4

𝑗
, 𝑒
𝛾4
𝑗
∗  in the same way we have 

chosen 𝑥1
𝑗
, 𝑒
𝛾1
𝑗
∗ , 𝑥2

𝑗
, 𝑒
𝛾2
𝑗
∗  taking care that 𝑥1

𝑗
, 𝑥2
𝑗
, 𝑥3
𝑗
, 𝑥4
𝑗
 is a skipped block sequence (with 

respect to the FDD) and repeat the procedure obtaining the desired dependent sequence. 
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Notice that for a dependent sequence (𝛾𝑖
𝑗
, 𝑥𝑖
𝑗
)
𝑖≤𝑛2𝑗−1

 with a constant 𝐶 we have 

‖
𝑚2𝑗−1

𝑛2𝑗−1
 ∑  
𝑛2𝑗−1
𝑖=1

𝑥𝑖
𝑗
‖ ≥ 1 45𝐶⁄ . Indeed, consider the functional 𝑒𝜁𝑛2𝑗−1

∗  determined by the 

nodes (𝛾𝑖
𝑗
)
𝑖=1

𝑛2𝑗−1
 , i.e. of the form 

∑ 

𝑗

𝑒𝜁𝑛2𝑗−1
∗ = ∑ ∑ 

𝑗

𝑛2𝑗−1

𝑖=1

(

 
 
𝑑
𝛾𝑖
𝑗
𝑗∗
+𝑚2𝑗−1

−1 ∑  

𝑛2𝑗−1
2

𝑖=1

(𝑒𝜂2𝑖−1
∗ 𝑃𝐼2𝑖−1

𝑗
+ 𝜆2𝑖

𝑗
𝑒𝜂2𝑖
∗ 𝑃𝐼2𝑖

𝑗
)

)

 
 
, 

and notice that 

∑ 

𝑗

𝑒𝜁𝑛2𝑗−1
∗ (

𝑚2𝑗−1
𝑛2𝑗−1

∑ ∑ 

𝑗

𝑛2𝑗−1

𝑖=1

𝑥𝑖
𝑗
)

≥∑ 

𝑗

1

𝑛2𝑗−1
( ∑  

𝑛2𝑗−1/2

𝑖=1

𝑒𝜂2𝑖−1
∗ 𝑃𝐼2𝑖−1

𝑗
(𝑥2𝑖−1
𝑗

) + 𝜆2𝑖
𝑗
𝑒𝜂2𝑖
∗ (𝑥2𝑖

𝑗
)) 

≥∑ 

𝑗

1

𝑛2𝑗−1
∑  

𝑛2𝑗−1/2

𝑖=1

(
𝑐2𝑖−1
2
+
𝑐2𝑖−1
2
−

1

2𝑛
𝑞2𝑖−1
2
2 ) ≥

1

45𝐶
 , 

using that 𝑐2𝑖−1  ≥  
1
20𝐶⁄ . 

Corollary (6.3.49)[260]: [252]. Let (𝛾𝑖
𝑗
, 𝑥𝑖
𝑗
)
𝑖≤𝑛2𝑗−1

 be a 𝑗-dependent sequence. Then 

‖∑ 

𝑗

1

𝑛2𝑗−1
 ∑  

𝑛2𝑗−1

𝑖=1

(−1)𝑖+1𝑥𝑖
𝑗
‖ ≤∑ 

𝑗

250

𝑚2𝑗−1
2  . 

Proof. Let 𝐽 be an interval of {1, . . . , 𝑛2𝑗−1} and 𝓏𝑗  =  ∑ ∑  𝑗𝑖∈𝐽 (−1)𝑖+1𝑥𝑖
𝑗
. We shall verify 

the assumption (b) in Lemma (6.3.20) for 𝑗0  =  2𝑗 −  1. 

Let (𝛾𝑘
𝑗
, �̅�𝑘
𝑗
)
𝑘=1

𝑛2𝑗−1
 be the special sequence associated with the dependent sequence 

(𝛾𝑘
𝑗
, 𝑥𝑘
𝑗
)
𝑘=1

𝑛2𝑗−1
, 𝛾𝑘
𝑗
= (𝑞𝑘

2 + 1, 𝛾𝑘−1
𝑗
, 𝑚2𝑗−1, 𝐼𝑘 , 𝜖𝑘 , 𝜆𝑘

𝑗
𝑒𝜂𝑘
∗ ) for each 𝑘, where 𝛾0

𝑗
= 0.  

Consider a node 𝛽 with evaluation analysis 

𝑒𝛽
∗ = ∑ ∑ 

𝑗

𝑛2𝑗−1

𝑖=1

𝑑𝜉𝑖
𝑗∗
+𝑚2𝑗−1

−1  ∑ ∑ 

𝑗

𝑛2𝑗−1/2

𝑖=1

(𝜖2̃𝑖−1𝑒�̃�2𝑖−1
∗ 𝑃

𝐼2𝑖−1

𝑗
+ �̃�2𝑖

𝑗
𝑒
�̃�2𝑖

∗ 𝑃
𝐼2𝑖

𝑗
) 

which is produced from a (𝛤, 𝑗)-special sequence (𝜁𝑘, �̅�𝑘
𝑗
)
𝑘≤𝑛2𝑗−1

 . Let 

𝑘0 = min{𝑘 ≤  𝑛2𝑗−1 ∶  (𝛾𝑘
𝑗
, �̅�𝑘
𝑗
) ≠ (𝜁𝑘, �̅�𝑘

𝑗
)} 

if such a 𝑘 exists. We estimate separately |𝑒𝛽𝑘0−1
∗ (𝓏𝑗)| and | (𝑒𝛽

∗ − 𝑒𝛽𝑘0−1
∗ ) (𝓏𝑗)|.  

We start with |𝑒𝛽𝑘0−1
∗ (𝓏𝑗)|. Notice that 𝑒𝛽𝑘0−1

∗ , if 𝑘0  >  1, has the following evaluation 

analysis 
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𝑒𝛽𝑘0−1
∗ = ∑ ∑ 

𝑗

𝑘0−1

𝑖=1

𝑑𝜉𝑖
𝑗∗
+𝑚2𝑗−1

−1 ∑ ∑ 

𝑗

⌊
(𝑘0−1)
2

⌋

𝑖=1

(𝜖2̃𝑖−1𝑒�̃�2𝑖−1
∗ 𝑃𝐼2𝑖−1

𝑗
+ �̃�2𝑖

𝑗
𝑒𝜂2𝑖
∗ 𝑃𝐼2𝑖

𝑗
) 

+∑ 

𝑗

 [𝜖�̃�0−1𝑒�̃�𝑘0−1
∗ 𝑃𝐼𝑘0−1

𝑗
], 

where 𝑒
�̃�2𝑖−1

∗  and 𝑒𝜂2𝑖−1
∗  have compatible tree-analyses and the last term in square brackets 

appears if 𝑘0  −  1 is odd. By the definition of nodes we have rank(𝜉𝑖)  =  rank(𝛾𝑖
𝑗
)  ∈

 (max rng𝐹𝐷𝐷(𝑥𝑖
𝑗
),min rng𝐹𝐷𝐷(𝑥𝑖+1

𝑗
)) for every 𝑖 <  𝑘0. Therefore 

(∑ ∑ 

𝑗

𝑘0−1

𝑖=1

𝑑𝜉𝑖
𝑗∗
)∑ 

𝑖

(−1)𝑖+1𝑥𝑖
𝑗
=  0.                                                    (75) 

We partition the indices 𝑃𝑗  =  {1, 2, . . . , ⌊(𝑘0  −  1)/2⌋} into the sets 𝐴 =  {𝑖 ∈  𝑃𝑗 ∶

 𝑒
�̃�2𝑖−1

∗  ∑  𝑗 𝑃𝐼2𝑖−1
𝑗
(�̅�2𝑖−1
𝑗
) ≠ 0} and its complement 𝐵. 

For every 𝑖 ∈  𝐴 from the choice of �̃�2𝑖
𝑗

, the fact that rng(𝑥2𝑖−1
𝑗

)  ⊂  𝐼2𝑖−1 and (3) of 

Definition (6.3.29) we have 

|∑  

𝑗

(�̃�2𝑖
𝑗
 − 𝜖2̃𝑖−1𝑒�̃�2𝑖−1

∗ (�̅�2𝑖−1
𝑗

))| ≤∑ 

𝑗

1

4𝑛2𝑗−1
2    and                                    (76) 

|∑  

𝑗

(𝑒�̃�2𝑖−1
∗ (�̅�2𝑖−1

𝑗
) − 𝑒�̃�2𝑖−1

∗ 𝑃𝐼2𝑖−1
𝑗
(𝑥2𝑖−1
𝑗

))| =∑ 

𝑗

|𝑒
�̃�2𝑖−1

∗ (�̅�2𝑖−1
𝑗

) − 𝑒
�̃�2𝑖−1

∗ (𝑥2𝑖−1
𝑗

)|

≤∑ 

𝑗

1

4𝑛2𝑗−1
2  . 

It follows that 

|∑  

𝑗

(𝜖2̃𝑖−1𝑒�̃�2𝑖−1
∗ 𝑃𝐼2𝑖−1

𝑗
(𝑥2𝑖−1
𝑗
) + �̃�2𝑖

𝑗
𝑒𝜂2𝑖
∗ 𝑃𝐼2𝑖

𝑗
(−𝑥2𝑖

𝑗
))| 

= |∑ 

𝑗

(𝜖2̃𝑖−1𝑒�̃�2𝑖−1
∗ 𝑃𝐼2𝑖−1

𝑗
(𝑥2𝑖−1
𝑗

) − �̃�2𝑖
𝑗
)| ≤∑ 

𝑗

1

2𝑛2𝑗−1
2      by (6.7).      (77) 

Similarly for every 𝑖 ∈  𝐵, 

|∑  

𝑗

(𝜖2̃𝑖−1𝑒�̃�2𝑖−1
∗ 𝑃𝐼2𝑖−1

𝑗
(𝑥2𝑖−1
𝑗
) + �̃�2𝑖

𝑗
𝑒𝜂2𝑖
∗ 𝑃𝐼2𝑖

𝑗
(−𝑥2𝑖

𝑗
))| 

= |∑ 

𝑗

(𝜖2̃𝑖−1𝑒�̃�2𝑖−1
∗ 𝑃𝐼2𝑖−1

𝑗
(𝑥2𝑖−1
𝑗

) − �̃�2𝑖
𝑗
)| ≤∑ 

𝑗

1

2𝑛2𝑗−1
2  .                       (78) 

For an interval 𝐽 =  [𝑙,𝑚] using that ‖𝑥2𝑖−1
𝑗
‖  =  1 2⁄ , ‖𝑥2𝑖

𝑗
‖ ≤  7 (by Corollary (6.3.44)) 

and inequalities (75), (78) we obtain 
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|𝑒𝛽𝑘0−1
∗ (∑∑ 

𝑗𝑖∈𝐽

 (−1)𝑖+1𝑥𝑖
𝑗
) | ≤ 10. 

Now we proceed to estimate |(𝑒𝛽
∗  −  𝑒𝛽𝑘0−1

∗ )(𝓏𝑗)|. 

Observe that as 𝑥2𝑙−1
𝑗

 is a weighted average of a normalised 𝐶-RIS of length 𝑛𝑗2𝑙−1 we have 

| ∑ ∑ 

𝑗

𝑛2𝑗−1

𝑖=𝑘0

𝑑𝜉𝑖
𝑗∗
(𝑥2𝑙−1
𝑗

)| ≤ 3∑ 

𝑗

𝑛2𝑗−1𝑐2𝑖−1𝐶
𝑚𝑗2𝑙−1
𝑛𝑗2𝑙−1

≤  2𝑚𝑗2𝑙−1
−2 <∑ 

𝑗

𝑛2𝑗−1
−3        (79) 

The same inequality holds also for the averages of the basis i.e. 

| ∑ ∑ 

𝑗

𝑛2𝑗−1

𝑖=𝑘0

𝑑𝜉𝑖
𝑗∗
(𝑥2𝑙
𝑗
)| ≤∑ 

𝑗

𝑛2𝑗−1
𝑚𝑗2𝑙
𝑛𝑗2𝑙

≤ 𝑚𝑗2𝑙
−3 <∑ 

𝑗

𝑛2𝑗−1
−3      ∀𝑙.         (80) 

We shall distinguish the cases when 𝑘0 is odd or even. Assume first that 𝑘0  =  2𝑖0  −  1 for 

some 𝑖0. 

Then for every 𝑖 <  𝑖0 and every 𝑘 > 𝑘0, 

∑ 

𝑗

(𝜖2̃𝑖−1𝑒�̃�2𝑖−1
∗ 𝑃

𝐼2𝑖−1

𝑗
+ �̃�2𝑖

𝑗
𝑒
�̃�2𝑖

∗ 𝑃
𝐼2𝑖

𝑗
)(𝑥𝑘

𝑗
) = 0. 

From the injectivity of 𝜎 it follows that 𝑤(𝑒
�̃�2𝑖−1

∗ ),𝑤(𝑒
�̃�2𝑖

∗ ) ∉ {𝑤 (𝑒𝜂
𝑖′
∗ )| 𝑖′  > 𝑖0} for every 

𝑖 >  𝑖0. Hence by Corollary (6.3.21), using that |�̃�2𝑖
𝑗
|  ≤  1 and 𝑐𝑘  ≤  2, we get for every 

odd 𝑘 > 𝑘0 the following 

| ∑ ∑ 

𝑗

𝑛2𝑗−1/2

𝑖≥𝑖0

(𝜖2̃𝑖−1𝑒�̃�2𝑖−1
∗ 𝑃

𝐼2𝑖−1

𝑗
+ �̃�2𝑖

𝑗
𝑒
�̃�2𝑖

∗ 𝑃
𝐼2𝑖

𝑗
) (𝑥𝑘

𝑗
)| 

≤ 64𝑐𝑘𝐶 𝑤(𝛿1) ≤ 128𝐶∑ 

𝑗

𝑛2𝑗−1
−2 .                           (81) 

Also from Corollary (6.3.45) we obtain for every even 𝑘 > 𝑘0 the following 

| ∑ ∑ 

𝑗

𝑛2𝑗−1
2

𝑖≥𝑖0

(𝜖2̃𝑖−1𝑒�̃�2𝑖−1
∗ 𝑃

𝐼2𝑖−1

𝑗
+ �̃�2𝑖

𝑗
𝑒
�̃�2𝑖

∗ 𝑃
𝐼2𝑖

𝑗
)(𝑥𝑘

𝑗
)|  ≤ 14∑ 

𝑗

𝑛2𝑗−1
−2 .       (82) 

For 𝑥𝑘0
𝑗

 we also obtain the following 

| ∑ ∑ 

𝑗

𝑛2𝑗−1/2

𝑖≥𝑖0

(𝜖2̃𝑖−1𝑒�̃�2𝑖−1
∗ 𝑃

𝐼2𝑖−1

𝑗
+ �̃�2𝑖

𝑗
𝑒
�̃�2𝑖

∗ 𝑃
𝐼2𝑖

𝑗
) (𝑥𝑘0

𝑗
)|                              (83) 

≤∑ 

𝑗

 |𝑒
�̃�𝑘0

∗ 𝑃
𝐼𝑘0

𝑗
(𝑥𝑘0
𝑗
)| 

+∑ 

𝑗
|
|

(

 
 
�̃�𝑘0+1
𝑗

𝑒
�̃�𝑘0+1

∗ 𝑃
𝐼𝑘0+1

𝑗
+ ∑  

𝑛2𝑗−1
2

𝑖≥𝑖0

(𝜖2̃𝑖−1𝑒�̃�2𝑖−1
∗ 𝑃

𝐼2𝑖−1

𝑗
+ �̃�2𝑖

𝑗
𝑒
�̃�2𝑖

∗ 𝑃
𝐼2𝑖

𝑗
)

)

 
 
 (𝑥𝑘0

𝑗
)|
| 
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≤  4 +  128𝐶∑ 

𝑗

𝑛2𝑗−1
−2 , 

using that ‖𝑥𝑘0
𝑗
‖  ≤  1 and ‖∑  𝑗 𝑒𝛾𝑗

∗ ∘ 𝑃𝐼
𝑗
‖ ≤ ∑  𝑗 ‖𝑃𝐼

𝑗
‖ ≤  4 while for the second term we 

get the upper bound as in (81). 

The case where 𝑘0 is even is similar, except that | ∑  𝑗 𝑒�̃�𝑘0
∗ 𝑃

𝐼𝑘0

𝑗
(𝑥𝑘0
𝑗
)|  ≤  7. 

Splitting 𝐽 to 𝐽1  =  𝐽 ∩  [1, 𝑖0], 𝐽2  =  𝐽 ∩ (𝑖0, 𝑛2𝑗−1) and considering the cases when min 

𝐽1 is odd or even we get | (𝑒𝛽
∗  −  𝑒𝛽𝑘0−1

∗ ) (∑ ∑  𝑗𝑖∈𝐽 (−1)𝑖+1𝑥𝑖
𝑗
)|  ≤  15, using that 𝑛2𝑗+1  >

 200𝐶. 

Corollary (6.3.50)[260]: [252]. Let 𝑇𝑗 ∶  𝒳𝐾𝑢𝑠  →  𝒳𝐾𝑢𝑠 be a bounded operator and 

(𝑑
𝛾𝑛
𝑗
𝑗
)
𝑗,𝑛∈𝑀

 be a subsequence of the basis. Then 

lim
𝑀∋𝑛→+∞

 dist(𝑇𝑗𝑑
𝛾𝑛
𝑗
𝑗
 , ℝ𝑑

𝛾𝑛
𝑗
𝑗
) = 0. 

Proof. Assume that dist(𝑇𝑗𝑑
𝛾𝑛
𝑗
𝑗
 , ℝ𝑑

𝛾𝑛
𝑗
𝑗
)  >  4𝛿 for infinitely many 𝑛 ∈  𝑀 and some 𝛿 >

 0. 

By Corollary (6.3.27) and Corollary (6.3.43) passing to a further subsequence and admitting 

a small perturbation we may assume that 

(P1) (𝑇𝑗𝑑
𝛾𝑛
𝑗
𝑗
)
𝑛∈𝑀

 is a skipped block sequence and setting 𝑅𝑛 to be the minimal interval 

containing rng(𝑇𝑗𝑑
𝛾𝑛
𝑗
𝑗
) and {𝑛} we have 

max rank(𝑅𝑛) + 2 <  min rank(𝑅𝑛+1), 

(P2) no two elements of (𝑑
𝛾𝑛
𝑗
𝑗
)
𝑛∈𝑀

 are neighbours. 

By the assumption that dist(𝑇𝑗𝑑
𝛾𝑛
𝑗
𝑗
, ℝ𝑑

𝛾𝑛
𝑗
𝑗
)  >  4𝛿 it follows that either  

∑ 

𝑗

‖𝑃𝑛−1
𝑗
𝑇𝑗𝑑

𝛾𝑛
𝑗
𝑗
‖ ≥ 2𝛿   or ∑  

𝑗

‖(𝐼 − 𝑃𝑛
𝑗
)𝑇𝑗𝑑

𝛾𝑛
𝑗
𝑗
‖ ≥ 2𝛿 

(recall that 𝑃𝑚
𝑗
 denotes the canonical projection onto 〈𝑑

𝛾𝑖
𝑗
𝑗
∶  𝑖 ≤  𝑚〉 ,𝑚 ∈ ℕ).  

Passing to a further subsequence we may assume that one of the two alternatives holds for 

any 𝑛 ∈ ℕ. Let 

𝑞𝑛
2 = 

{
 

 max rank (𝑃𝑛−1
𝑗
𝑇𝑗𝑑

𝛾𝑛
𝑗
𝑗
)         in the first case

max rank((𝐼 − 𝑃𝑛
𝑗
)𝑇𝑗𝑑

𝛾𝑛
𝑗
𝑗
)        in the second case.

  

In the first case we take 𝐼𝑛  =  [min rng(𝑇
𝑗𝑑
𝛾𝑛
𝑗
𝑗
), 𝑛 −  1]. Also ∑  𝑗 𝑃𝑛−1

𝑗
𝑇𝑗𝑑

𝛾𝑛
𝑗
𝑗
=

∑  𝑗 𝑖𝑞𝑛2(𝑢𝑛
𝑗
) where 𝑢𝑛

𝑗
= 𝑟𝑞𝑛2(𝑃𝑛−1

𝑗
𝑇𝑗𝑑

𝛾𝑛
𝑗
𝑗
) and hence we may choose 𝜖𝑛  ∈  {−1, 1} and 

𝜂𝑛  ∈  𝛤𝑞𝑛2  \ 𝛤𝑚𝑎𝑥 𝑟𝑎𝑛𝑘(𝑅𝑛−1)+1 such that 

∑ 

𝑗

𝜖𝑛𝑒𝜂𝑛
∗  𝑃𝐼𝑛

𝑗
(𝑇𝑗𝑑

𝛾𝑛
𝑗
𝑗
) =∑ 

𝑗

𝜖𝑛𝑒𝜂𝑛
∗ (𝑃𝑛−1

𝑗
𝑇𝑗𝑑

𝛾𝑛
𝑗
𝑗
) =∑ 

𝑗

𝜖𝑛𝑒𝜂𝑛
∗ (𝑢𝑛

𝑗
)  ≥  𝛿             (84) 

using that 2𝛿 ≤ ∑  𝑗 ‖𝑖𝑞𝑛2(𝑢𝑛
𝑗
)‖ ≤  2∑  𝑗 ‖𝑢𝑛

𝑗
‖. 
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In the second case we take 𝐼𝑛  =  [𝑛 +  1,max rng (𝑇
𝑗𝑑
𝛾𝑛
𝑗
𝑗
)]. Also since ∑  𝑗 (𝐼 −

 𝑃𝑛
𝑗
)𝑇𝑗𝑑

𝛾𝑛
𝑗
𝑗
= ∑  𝑗 𝑖𝑞𝑛2(𝑢𝑛

𝑗
) where ∑  𝑗 𝑢𝑛

𝑗
 =  𝑟𝑞𝑛2 ∑  𝑗 ((𝐼 − 𝑃𝑛

𝑗
)𝑇𝑗𝑑

𝛾𝑛
𝑗
𝑗
) we get 𝜖𝑛  ∈

 {−1, 1}, 𝜂𝑛  ∈  𝛤𝑞𝑛2  \ 𝛤max rng 𝑅𝑛−1+1 such that 

∑ 

𝑗

𝜖𝑛𝑒𝜂𝑛
∗ 𝑃𝐼𝑛

𝑗
(𝑇𝑗𝑑

𝛾𝑛
𝑗
𝑗
) =∑ 

𝑗

𝜖𝑛𝑒𝜂𝑛
∗ ((𝐼 − 𝑃𝑛

𝑗
)𝑇𝑗𝑑

𝛾𝑛
𝑗
𝑗
) =∑ 

𝑗

𝜖𝑛𝑒𝜂𝑛
∗ (𝑢𝑛

𝑗
)  ≥  𝛿.       (85) 

Given any 𝑗 ∈ ℕ we shall build a vector 𝑦𝑗 with ‖∑  𝑗 𝑇
𝑗𝑦𝑗‖ ≥  𝛿/28𝑚2𝑗−1 and ‖𝑦𝑗‖ ≤

420/𝑚2𝑗−1
2  which for sufficiently big 𝑗 yields a contradiction. 

Assume the first case holds. The second case will follow analogously. Notice that by (P1) 

for any 𝑖 ∈ ℕ and 𝐴 ⊂  𝑀 with #𝐴 =  𝑛2𝑖  and max rank(𝑅min  𝐴)  ≥  2𝑖 −  1 there is a 

functional 𝑒𝜓
∗  associated to a regular node of the form 

𝑒𝜓
∗ = ∑∑ 

𝑗𝑛∈𝐴

𝑑𝜉𝑛
𝑗∗
+
1

𝑚2𝑖
  ∑∑ 

𝑗𝑛∈𝐴

𝜖𝑛𝑒𝜂𝑛
∗ 𝑃𝐼𝑛

𝑗
 

with rank(𝜉𝑛) = max rank(𝑅𝑛)  +  1 for each 𝑛 ∈  𝐴. Let 𝑥𝑗 = 𝑚2𝑖𝑛2𝑖
−1  ∑ ∑  𝑗𝑛∈𝐴 𝑑

𝛾𝑛
𝑗
𝑗

 . 

It follows that 

‖∑ 

𝑗

𝑇𝑗𝑥𝑗‖ ≥∑ 

𝑗

𝑒𝜓
∗ (𝑇𝑗𝑥𝑗) =∑ 

𝑗

(∑  

𝑛∈𝐴

𝑑𝜉𝑛
𝑗∗
+
1

𝑚2𝑖
 ∑  

𝑛∈𝐴

𝜖𝑛𝑒𝜂𝑛
∗ 𝑃𝐼𝑛

𝑗
)(
𝑚2𝑖
𝑛2𝑖
 ∑  

𝑛∈𝐴

𝑇𝑗𝑑
𝛾𝑛
𝑗
𝑗
) 

= 𝑚2𝑖𝑛2𝑖
−1∑∑ 

𝑗𝑛∈𝐴

𝑑𝜉𝑛
𝑗∗
(𝑇𝑗𝑑

𝛾𝑛
𝑗
𝑗
) +

1

𝑛2𝑖
 ∑∑ 

𝑗𝑛∈𝐴

𝜖𝑛𝑒𝜂𝑛
∗ 𝑃𝐼𝑛

𝑗
(𝑇𝑗𝑑

𝛾𝑛
𝑗
𝑗
) 

=
1

𝑛2𝑖
 ∑∑ 

𝑗𝑛∈𝐴

𝜖𝑛𝑒𝜂𝑛
∗ 𝑃𝑘𝑛−1

𝑗
(𝑇𝑗𝑑

𝛾𝑛
𝑗
𝑗
)  ≥  𝛿. 

Fix 𝑗 ∈ ℕ and choose inductively, as in Corollary (6.3.48), a j-dependent sequence 

(𝜁𝑖 , 𝑥𝑖
𝑗
), 𝜁𝑖 = (𝑞𝑖

2  +  1, 𝜁𝑖−1, 𝑚2𝑗−1, 𝐽𝑖 , 1, 𝜓𝑖), 𝑖 =  1, . . . , 𝑛2𝑗−1, with 𝜁0  =  0, with respect 

to a (𝛤, 𝑗)-special sequence (𝜁𝑖 , �̅�𝑖
𝑗
), so that it satisfies for any 𝑖 the following 

𝑒𝜓2𝑖−1
∗ = ∑∑ 

𝑗𝑛∈𝐴𝑖

𝑑𝜉𝑛
𝑗∗
+

1

𝑚𝑗2𝑖−1
 ∑ ∑ 

𝑗𝑛∈𝐴𝑖

 𝜖𝑛𝑒𝜂𝑛
∗ 𝑃𝐼𝑛

𝑗
 , 

𝑥2𝑖−1
𝑗

=
𝑐2𝑖−1𝑚𝑗2𝑖−1
𝑛𝑗2𝑖−1

 ∑ ∑ 

𝑗𝑛∈𝐴𝑖

𝑑
𝛾𝑛
𝑗
𝑗
 , ‖𝑥2𝑖−1

𝑗
‖ = 1 2⁄  

with rank(𝜉𝑛)  =  max rank(𝑅𝑛)  +  1 for each 𝑛 ∈ ∪𝑖 𝐴𝑖. Corollary (6.3.44) yields that 
1
14⁄ ≤  𝑐2𝑖−1 ≤  1. Recall that by definition each vector �̅�2𝑖−1

𝑗
 satisfies 

|∑  

𝑗

(𝑒
𝛾𝑗
∗ (�̅�2𝑖−1

𝑗
) − 𝑒

𝛾𝑗
∗ (𝑥2𝑖−1

𝑗
))|  ≤  4𝑛

𝑞2𝑖−1
2
−2    ∀𝛾𝑗  ∈  𝛤. 

For any 𝑖 let 𝐽2𝑖−1 =  rng(𝑒𝜓2𝑖−1
∗ ). We demand also that supp 𝑒𝜓2𝑖

∗  ∩  supp 𝑥2𝑘−1
𝑗

=  ∅ for 

any 𝑖, 𝑘, thus the even parts of the chosen special functional play no role in the estimates on 

the weighted averages of (𝑥2𝑖−1
𝑗
). We assume also 𝑚𝑗1/𝑚𝑗1+1 ≤  1/𝑛2𝑗−1

2 . 

By the previous remark we have for each 𝑖 the following 
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𝑒𝜓2𝑖−1
∗ ∑ 

𝑗

(𝑇𝑗𝑥2𝑖−1
𝑗
)  ≥  𝛿/14.                                         (86) 

Let 

𝑦𝑗 =∑ 

𝑗

1

𝑛2𝑗−1
 ∑ ∑ 

𝑗

𝑛2𝑗−1/2

𝑖=1

𝑥2𝑖−1
𝑗

=∑ 

𝑗

1

𝑛2𝑗−1
 ∑  

𝑛2𝑗−1/2

𝑖=1

𝑐2𝑖−1
𝑚𝑗2𝑖−1
𝑛𝑗2𝑖−1

 ∑  

𝑛∈𝐴𝑖

𝑑
𝛾𝑛
𝑗
𝑗

 

and consider the functional associated to the special node 𝜁𝑛2𝑗−1 , i.e. of the form  

∑ 

𝑗

𝑒𝜁𝑛2𝑗−1
∗ = ∑ ∑ 

𝑗

𝑛2𝑗−1

𝑖=1

𝑑𝜁𝑖
𝑗∗
+

1

𝑚2𝑗−1
 ∑ ∑ 

𝑗

𝑛2𝑗−12

𝑖=1

(𝑒𝜓2𝑖−1
∗ 𝑃𝐽2𝑖−1

𝑗
+ 𝜆2𝑖

𝑗
𝑒𝜓2𝑖
∗ 𝑃𝐽2𝑖

𝑗
). 

Then 

‖∑ 

𝑗

𝑇𝑗𝑦𝑗‖ ≥∑ 

𝑗

𝑒𝜁𝑛2𝑗−1
∗ (𝑇𝑗𝑦𝑗) 

=∑ 

𝑗

(∑  

𝑛2𝑗−1

𝑖=1

𝑑𝜁𝑖
𝑗∗

+
1

𝑚2𝑗−1
∑  

𝑛2𝑗−1/2

𝑖=1

(𝑒𝜓2𝑖−1
∗ 𝑃𝐽2𝑖−1

𝑗
+ 𝜆2𝑖

𝑗
𝑒𝜓2𝑖
∗ 𝑃𝐽2𝑖

𝑗
))(

1

𝑛2𝑗−1
∑  

𝑛(2𝑗−1)/2

𝑖=1

𝑇𝑗𝑥2𝑖−1
𝑗

) 

= . .. 

Notice that 𝐽2𝑖 ∩ 𝛤rank(𝜙2𝑖−1
𝑗

)
 =  ∅, whereas by the choice of 𝑅𝑛 and the node 𝜙2𝑖−1

𝑗
 we 

have rng(𝑇𝑗𝑥2𝑖−1
𝑗

)  ⊂  𝛤
rank(𝜙2𝑖−1

𝑗
)
. Therefore 

··· =∑ 

𝑗

(

 
 
(∑  

𝑛2𝑗−1

𝑖=1

𝑑𝜁𝑖
𝑗∗
)

(

 
1

𝑛2𝑗−1
∑  

𝑛2𝑗−1
2

𝑖=1

𝑇𝑗𝑥2𝑖−1
𝑗

)

 

+
1

𝑛2𝑗−1𝑚2𝑗−1
 ∑  

𝑛2𝑗−1
2

𝑖=1

𝑒𝜓2𝑖−1
∗ 𝑃𝐽2𝑖−1

𝑗
(𝑇𝑗𝑥2𝑖−1

𝑗
)

)

 
 

 

where in the last line the first sum disappears by the choice of (𝑞2𝑖−1
2 ), as 

rank(bd(𝑒𝜁𝑛2𝑗−1
∗ ))  ∩  rank(𝑇𝑗𝑥2𝑖−1

𝑗
) = ∅ for any 𝑖. Therefore we have 

‖∑ 

𝑗

𝑇𝑗𝑦𝑗‖ ≥∑ 

𝑗

𝛿

28𝑚2𝑗−1
 .                                               (87) 

On the other hand we estimate ‖𝑦𝑗‖. We shall prove that ‖∑  𝑗 𝑦
𝑗‖ ≤ ∑  𝑗 420/𝑚2𝑗−1

2  

yielding for sufficiently big 𝑗 a contradiction. By (P2) and Corollary (6.3.44) we get that 
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(𝑥𝑖
𝑗
) is 7-RIS. By Lemma (6.3.20) it is enough to estimate |𝑒𝛽

∗(𝓏𝑗)|, where 𝑒𝛽
∗ is associated 

to a (𝛤, 𝑗)-special sequence (𝛿𝑖 , �̅�𝑖
𝑗
)
𝑖=1

𝑎
, and 𝓏𝑗  =  ∑ ∑  𝑗𝑖∈𝐽 𝑥2𝑖−1

𝑗
 for some interval 𝐽 ⊂

 {1, . . . , 𝑛2𝑗−1}. 

Let 𝑒𝛽
∗ have the following form 

𝑒𝛽
∗ =∑∑ 

𝑗

𝑎

𝑖=1

𝑑
�̃�𝑖

𝑗∗
+∑ 

𝑗

1

𝑚2𝑗−1
∑ 

⌊𝑎2⌋

𝑖=1

(𝜖2̃𝑖−1𝑒�̃�2𝑖−1
∗ 𝑃

𝐽2𝑖−1

𝑗
+ �̃�2𝑖

𝑗
𝑒�̃�2𝑖
∗ 𝑃

𝐽2𝑖

𝑗
) +∑ 

𝑗

[𝜖�̃�𝑒𝜓𝑎
∗ 𝑃

𝐽𝑎

𝑗
] 

with 𝑎 ≤  𝑛2𝑗−1, where the last term appears if a is odd. Let 𝑖0  =  max{𝑖 ≤  𝑎 ∶  (𝜁𝑖 , �̅�𝑖
𝑗
) =

(𝛿𝑖 , �̅�𝑖
𝑗
)} if such 𝑖 exists. We estimate |𝑒𝛽

∗(𝓏𝑗)| assuming 𝑖0 is well-defined. We estimate 

separately | ∑ ∑  𝑗
𝑎
𝑖=1 𝑑

�̃�𝑖

𝑗∗
(𝓏𝑗)|, |mt(𝑒�̃�𝑖0

∗ )(𝓏𝑗)| and |(mt(𝑒𝛽
∗)  −  mt(𝑒�̃�𝑖0

∗ ))(𝓏𝑗)|. 

First notice that taking into account coordinates of 𝓏𝑗 with respect to the basis (𝑑
𝛾𝑗
𝑗
) and 

that 𝑐2𝑖−1 ≤ 1, we have 

|∑∑ 

𝑗

𝑎

𝑖=1

𝑑
�̃�𝑖

𝑗∗
(𝓏𝑗)| ≤∑ 

𝑗

𝑛2𝑗−1
𝑚𝑗1
𝑛𝑗1
.                                               (88) 

Now consider the tree-analysis of 𝑒�̃�𝑖0
∗  , recall that it is compatible with the tree-analysis of 

𝑒𝜁𝑖0
∗  . Then by the definition of a special node we have 

mt (𝑒𝜁𝑖0
∗ )

=

{
  
 

  
 
∑ 

𝑗

1

𝑚2𝑗−1
  ∑  

𝑖0/2

𝑖=1

(𝜖2̃𝑖 −1𝑒�̃�2𝑖−1
∗ 𝑃𝐽2𝑖−1

𝑗
+ �̃�2𝑖

𝑗
𝑒𝜓2𝑖
∗ 𝑃𝐽2𝑖

𝑗
)                                 if  𝑖0 even

∑ 

𝑗

1

𝑚2𝑗−1
 ∑  

⌊
𝑖0
2
⌋

𝑖=1

(𝜖2̃𝑖 −1𝑒�̃�2𝑖−1
∗ 𝑃𝐽2𝑖−1

𝑗
+ �̃�2𝑖

𝑗
𝑒𝜓2𝑖
∗ 𝑃𝐽2𝑖

𝑗
) + 𝜖�̃�0  𝑒�̃�𝑖0

∗  𝑃𝐽𝑖0
𝑗
     if   𝑖0   odd

 

where for each 2𝑖 −  1 ≤  𝑖0 we have 

𝑒�̃�2𝑖−1
∗ = ∑∑ 

𝑗𝑛∈𝐴𝑖

(𝑑
�̃�𝑛

𝑗∗
+

1

𝑚𝑗2𝑖−1
∑  

𝑛∈𝐴𝑖

𝜖�̃�𝑒�̃�𝑛
∗  𝑃𝐼𝑛

𝑗
). 

Notice that as 𝑀 ∩ 𝐼𝑛  =  ∅ for any 𝑛 and by the choice of 𝑒𝜓2𝑖
∗  and ranks of 𝜉𝑛, thus also 

ranks of 𝜉𝑛, we get, assuming that 𝑖0 is even, 

∑ 

𝑗

|mt(𝑒𝜁𝑖0
∗ )(𝓏𝑗)| =∑ 

𝑗

|
1

𝑚2𝑗−1
∑∑ 

𝑗

𝑖02

𝑖=1

(𝜖2̃𝑖−1𝑒�̃�2𝑖−1
∗ 𝑃𝐽2𝑖−1

𝑗
+ �̃�2𝑖

𝑗
𝑒𝜓2𝑖
∗ 𝑃𝐽2𝑖

𝑗
) (𝓏𝑗)|     (89) 

= ∑ 

𝑗

|(
1

𝑚2𝑗−1
∑ 

𝑖02

𝑖=1

𝜖2̃𝑖−1 ∑  

𝑛∈𝐴𝑖

𝑑
�̃�𝑛

𝑗∗
)( ∑  

2𝑖−1∈𝐽

𝑐2𝑖−1
𝑚𝑗2𝑖−1
𝑛𝑗2𝑖−1

 ∑  

𝑛∈𝐴𝑖

𝑑
𝛾𝑛
𝑗
𝑗
)| =  0. 

The same holds if 𝑖0 is odd. 

Now consider mt(𝑒𝛽
∗)  −  mt(𝑒𝜁𝑖0

∗ ) assuming that 𝑖0  <  𝑎. Notice that 
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(i) 𝑤(𝜓𝑠) ≠ 𝑤(�̃�𝑖) for each 𝑠, 𝑖 >  𝑖0 provided at least one of the indices 𝑠, 𝑖 is bigger than 

𝑖0  +  1, 

(ii) (mt(𝑒𝛽
∗) −  mt (𝑒𝜁𝑖0

∗ )) (𝑥2𝑘−1
𝑗

) = 0 for any 2𝑘 −  1 ≤  𝑖0. 

Using Corollary (6.3.45) for the terms ∑ ∑  𝑗
𝑎
𝑖=𝑖0+1

|𝑒�̃�𝑖
∗ 𝑃

𝐽𝑖

𝑗
(𝑥2𝑘−1
𝑗

)| and that 

|𝑒�̃�𝑖0 +1
∗ ∑  𝑗 𝑃𝐽𝑖0+1

𝑗
(𝑥𝑖0+1
𝑗
)|  ≤  4, it follows that 

∑ 

𝑗

|(mt(𝑒𝛽
∗) − mt (𝑒𝜁𝑖0

∗ )) (𝓏𝑗)| ≤∑ 

𝑗

1

𝑚2𝑗−1
 ∑  

𝑎

𝑖=𝑖0+1

∑  

𝑛2𝑗−1

2𝑘−1=𝑖0+1

|𝑒�̃�𝑖
∗ 𝑃

𝐽𝑖

𝑗
(𝑥2𝑘−1
𝑗

)|  (90) 

≤∑ 

𝑗

(
4

𝑚2𝑗−1
+

1

𝑚2𝑗−1
𝑛2𝑗−1

14

𝑚𝑗𝑖0+1
) ≤∑ 

𝑗

5

𝑚2𝑗−1
. 

Therefore by (88), (89), (90) and the choice of 𝑗1 we have |𝑒𝛽
∗(𝓏𝑗)|  ≤  6/𝑚2𝑗−1, thus we 

can apply Lemma (6.3.20) obtaining that ‖𝑦𝑗‖ ≤  60 · 7/𝑚2𝑗−1
2  . For sufficiently big 𝑗 we 

obtain contradiction with (87) and boundedness of 𝑇𝑗. 
Corollary (6.3.51)[260]: [252]. Let 𝑇𝑗 ∶  𝒳𝐾𝑢𝑠  →  𝒳𝐾𝑢𝑠 be a bounded operator. If 

∑  𝑗 𝑇
𝑗𝑑
𝛾𝑛
𝑗
𝑗
 →  0, then 𝑇𝑗𝑦𝑛

𝑗
 →  0 for every RIS (𝑦𝑛

𝑗
)
𝑛

. 

Proof. Take 𝑇𝑗 ∶  𝒳𝐾𝑢𝑠  →  𝒳𝐾𝑢𝑠 with ∑  𝑗 𝑇
𝑗𝑑
𝛾𝑛
𝑗
𝑗
 →  0 and suppose there are a normalised 

C-RIS (𝑦𝑛
𝑗
)
𝑛

 and 𝛿 >  0 such that ‖∑  𝑗 𝑇
𝑗𝑦𝑛
𝑗
‖ > 𝛿 for all 𝑛 ∈ ℕ. Passing to a subsequence 

we may assume as in the proof of Corollary (6.3.50) that 

max rank 𝑅𝑛  +  2 <  min rank 𝑅𝑛+1 where 𝑅𝑛 = rng(𝑇
𝑗𝑦𝑛
𝑗
) ∪ rng(𝑦𝑛

𝑗
). 

Pick (𝜇𝑛)  ⊂  {±1} and nodes (𝜓𝑛) with 𝜇𝑛𝑒𝜓𝑛
∗ (𝑇𝑗𝑦𝑛

𝑗
)  >  𝛿. 

Case 1. There exist a constant 𝑐 >  0, an infinite set 𝑀 ⊂ ℕ and nodes (𝜑𝑛)𝑛∈𝑀 such that 

∑  𝑗 |𝑒𝜑𝑛
∗ (𝑦𝑛

𝑗
)|  >  𝑐 and 𝑒𝜑𝑛

∗  , 𝑒𝜓𝑛
∗  have compatible tree-analyses. 

Pick signs (𝜈𝑛)𝑛∈𝑀 with ∑  𝑗 𝜈𝑛𝑒𝜑𝑛
∗ (𝑦𝑛

𝑗
)  =  ∑  𝑗 |𝑒𝜑𝑛

∗ (𝑦𝑛
𝑗
)|  >  𝑐 for each 𝑛. We may pass to 

a subsequence (𝛾𝑘𝑛
𝑗
)
𝑛

 of (𝛾𝑛
𝑗
)
𝑛

 so that ‖∑  𝑗 𝑇
𝑗𝑑
𝛾𝑘𝑛
𝑗
𝑗
‖ ≤ 2−𝑛 for all 𝑛. For a fixed 𝑗 ∈

ℕ, 𝑛2𝑗+1 >  200𝐶, we pick, as in Corollary (6.3.48), a j-dependent sequence (𝜁𝑖 , 𝑥𝑖
𝑗
)
𝑖
 where 

𝜁𝑖  =  (𝑞𝑖
2 +  1, 𝜁𝑖−1, 𝑚2𝑗−1, 𝐽𝑖 , 1, 𝜂𝑖), 𝑖 =  1, . . . , 𝑛2𝑗−1, with 𝜁0  =  0, satisfies 

mt(𝑒𝜂2𝑖−1
∗ )  =

1

𝑚𝑗2𝑖−1
 ∑ ∑ 

𝑗𝑛∈𝐴2𝑖−1

 𝜈𝑛𝑒𝜑𝑛
∗  𝑃𝐼𝑛

𝑗
 , 

𝑥2𝑖−1
𝑗

=
𝑐2𝑖−1𝑚𝑗2𝑖−1
𝑛𝑗2𝑖−1

 ∑ ∑ 

𝑗𝑛∈𝐴2𝑖−1

𝑦𝑛
𝑗
,    ‖𝑥2𝑖−1

𝑗
‖ = 1 2⁄ , 

where 𝐼𝑛 = [min 𝑅𝑛, max 𝑅𝑛], so that the functional associated to the special node 𝜁𝑛2𝑗+1 

with mt-part of the form 

∑ 

𝑗

mt (𝑒𝜁𝑛2𝑗−1
∗ ) =∑ 

𝑗

1

𝑚2𝑗+1
 ∑  

𝑛2𝑗−1/2

𝑖=1

(𝑒𝜂2𝑖−1
∗ 𝑃𝐽2𝑖−1

𝑗
+ 𝜆2𝑖

𝑗
𝑒𝜂2𝑖
∗ 𝑃𝐽2𝑖

𝑗
) , 
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satisfies 𝐽2𝑖−1 ⊃ rng(𝑇
𝑗𝑥2𝑖−1
𝑗
), 𝐽2𝑖  ∩  rng(𝑇

𝑗𝑥2𝑘−1
𝑗

)  =  ∅ and rank(bd(𝑒𝜁𝑛2𝑗+1
∗ ))  ∩

 rank(𝑇𝑗𝑥2𝑖−1
𝑗

)  =  ∅ for any 𝑖, 𝑘. 

From Remark (6.3.30) we get 
1
20𝐶⁄ ≤  𝑐2𝑖−1 ≤  2. 

Using gaps between sets 𝑅𝑛 we pick nodes (𝜉2𝑖−1)2𝑖−1≤𝑛2𝑗+1 , with 

mt(𝑒𝜉2𝑖−1
∗ ) =

1

𝑚𝑗2𝑖−1
  ∑ ∑ 

𝑗𝑛∈𝐴2𝑖−1

 𝜇𝑛𝑒𝜓𝑛
∗ 𝑃𝐼𝑛

𝑗
 . 

It follows that ∑  𝑗 𝑒𝜉2𝑖−1
∗ (𝑇𝑗𝑥2𝑖−1

𝑗
)  >  𝛿 20𝐶⁄  for each 𝑖. 

Notice also that for 𝑥2𝑖
𝑗
=
𝑚𝑗2𝑖

𝑛𝑗2𝑖
∑ ∑  𝑗𝑛∈𝐴2𝑖 𝑑

𝛾𝑛
𝑗
𝑗
 , 𝐴2𝑖  ⊂  {𝑘𝑛 ∶  𝑛 ∈ ℕ}, by the condition on 

(𝑇𝑗𝑑
𝛾𝑘𝑛
𝑗
𝑗
) we have ‖∑  𝑗 𝑇

𝑗𝑥2𝑖
𝑗
‖ <

𝑚𝑗2𝑖

𝑛𝑗2𝑖
 <  2−𝑖 for each 𝑖. 

Let ∑  𝑗 𝑥
𝑗  = ∑  𝑗

𝑚2𝑗−1

𝑛2𝑗−1
 ∑  
𝑛2𝑗−1/2

𝑖=1
𝑥2𝑖−1
𝑗

 and ∑  𝑗 𝑑
𝑗 = ∑  𝑗

𝑚2𝑗−1

𝑛2𝑗−1
∑  
𝑛(2𝑗−1)/2

𝑖=1
𝑥2𝑖
𝑗

. We have 

‖∑ 

𝑗

𝑇𝑗𝑑𝑗‖ ≤∑ 

𝑗

𝑚2𝑗−1
𝑛2𝑗−1

                                                  (91) 

and by Corollary (6.3.49) 

‖∑ 

𝑗

(𝑥𝑗 − 𝑑𝑗)‖ ≤∑ 

𝑗

250

𝑚2𝑗−1
2  .                                                   (92) 

On the other hand by the choice of (𝜑𝑛) and (𝜓𝑛) there is a well-defined special node 𝛽, 

associated to the same j-special sequence as 𝜁𝑛2𝑗+1 with 

mt(𝑒𝛽
∗) =∑ 

𝑗
(

 
1

𝑚2𝑗−1
 ∑  

𝑛2𝑗−1
2

𝑖=1

𝑒𝜉2𝑖−1
∗ 𝑃𝐽2𝑖−1

𝑗
+ �̃�2𝑖

𝑗
𝑒𝜂2𝑖
∗ 𝑃𝐽2𝑖

𝑗
 

)

 , 

so that rank(bd(𝑒𝛽
∗))  ∩  rank(𝑇𝑗𝑥2𝑖−1

𝑗
) = ∅ for any 𝑖. Thus 

‖∑ 

𝑗

𝑇𝑗𝑥𝑗‖ ≥∑ 

𝑗

𝑒𝛽
∗(𝑇𝑗𝑥𝑗) ≥

𝛿

40𝐶
 

which contradicts (91) and (92) for sufficiently big 𝑗 as 𝑇𝑗 is bounded. 

Case 2. Case 1 does not hold. Applying this assumption for 𝑐 =  𝑛2𝑗−1
−1 𝑚𝑘

−1 , 𝑘 ∈ ℕ, we 

pick inductively an increasing sequence (𝑞𝑘
2 + 𝜖)  ⊂ ℕ such that for any node 𝜑 and 𝑛 >

 𝑞𝑘
2 + 𝜖 so that 𝑒𝜑

∗ , 𝑒𝜓𝑛
∗  have compatible tree-analyses we have | ∑  𝑗 𝑒𝜑

∗ (𝑦𝑛
𝑗
)|  ≤

∑  𝑗 𝑛 2𝑗−1
−1  𝑚𝑘

−1 . Let 𝑀 =  (𝑞𝑘
2 + 𝜖)𝑘. 

Now we repeat the proof of Corollary (6.3.50), using (𝑦𝑛
𝑗
) instead of (𝑑

𝛾𝑛
𝑗
𝑗
). For a fixed 𝑗 ∈

ℕ we pick a j-dependent sequence (𝜁𝑖 , 𝑥𝑖
𝑗
), 𝜁𝑖 = (𝑞𝑖

2  +  1, 𝜁𝑖−1, 𝑚2𝑗−1, 𝐽𝑖 , 1, 𝜂𝑖), 𝑖 =

 1, . . . , 𝑛2𝑗−1, with 𝜁0  =  0, such that for each 𝑖 we have 
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mt(𝑒𝜂2𝑖−1
∗ ) =

1

𝑚𝑗2𝑖−1
 ∑ ∑ 

𝑗𝑛∈𝐴𝑖

𝜇𝑛𝑒𝜓𝑛
∗ 𝑃𝐼𝑛

𝑗
 , 𝑥2𝑖−1

𝑗
=
𝑐2𝑖−1𝑚𝑗2𝑖−1
𝑛𝑗2𝑖−1

 ∑ ∑ 

𝑗𝑛∈𝐴𝑖

𝑦𝑛
𝑗
,

‖∑ 

𝑗

𝑥2𝑖−1
𝑗

‖ = 1 2⁄ , 

with 𝐴𝑖  ⊂  𝑀, #𝐴𝑖  =  𝑛𝑗2𝑖−1𝐽2𝑖−1 =  rng(𝑒𝜂2𝑖−1
∗ ), 𝐽2𝑖  ∩  supp 𝑥2𝑘−1

𝑗
=  ∅ for any 𝑖, 𝑘, 𝐼𝑛  =

 [min 𝑅𝑛, max 𝑅𝑛] and rank(𝜉𝑛)  =  max rng 𝑅𝑛  +  1 for any 𝑛. As in the previous case, 
1
20𝐶⁄  ≤  𝑐2𝑖−1 ≤  2. Pick 𝑗1 with 𝑚𝑗1/𝑚𝑗1+1 ≤  1/𝑛2𝑗−1

2  and let 

𝑦𝑗 =∑ 

𝑗

1

𝑛2𝑗−1
∑  

𝑛2𝑗−1/2

𝑖=1

𝑥2𝑖−1
𝑗

 

As in the proof of Corollary (6.3.50) it follows that 

‖∑ 

𝑗

𝑇𝑗𝑦𝑗‖ ≥∑ 

𝑗

𝑒𝜁𝑛2𝑗−1
∗ (𝑦𝑗) ≥∑ 

𝑗

1

𝑚2𝑗−1𝑛2𝑗−1
 ∑  

𝑛2𝑗−12

𝑖=1

𝛿

2
 𝑐2𝑖−1 ≥

𝛿

80𝐶𝑚2𝑗−1
.   (93) 

We shall estimate now ‖𝑦𝑗‖. As before we consider a special node 𝛽 which is compatible 

with a (𝛤, 𝑗)-special sequence (𝛿𝑖 , �̅�𝑖
𝑗
)
𝑖=1

𝑎
, 𝑎 ≤  𝑛2𝑗−1, and estimate |𝑒𝛽

∗(𝓏𝑗)| where 𝓏𝑗  =

 ∑  𝑖∈𝐽 𝑥2𝑖−1
𝑗

 for some interval 𝐽 ⊂  {1, . . . , 𝑛2𝑗−1}. Writing 

𝑒𝛽
∗ =∑∑ 

𝑗

𝑎

𝑖=1

(𝑑
�̃�𝑖

𝑗∗
+

1

𝑚2𝑗−1
∑ 

⌊𝑎2⌋

𝑖=1

(𝜖2̃𝑖−1𝑒�̃�2𝑖−1
∗ 𝑃

𝐽2𝑖−1

𝑗
+ �̃�2𝑖

𝑗
𝑒
�̃�2𝑖𝑃�̃�2𝑖

𝑗
∗ )) 

with 𝑎 ≤  𝑛2𝑗−1  we pick as before 𝑖0 =  𝑚𝑖𝑛{𝑖 ≤  𝑎 ∶  (𝜁𝑖 , 𝑥𝑖
𝑗
) ≠ (𝛿𝑖 , 𝓏𝑖

𝑗
)} (if such 𝑖 exists) 

and estimate separately | ∑  𝑎
𝑖=1 𝑑�̃�𝑖

𝑗∗
(𝑤)|, |𝑚𝑡(𝑒�̃�𝑖0

∗ )(𝑤)| and |(𝑚𝑡(𝑒𝛽
∗)  −  𝑚𝑡(𝑒�̃�𝑖0

∗ ))(𝑤)|. 

Repeating the reasoning of the proof of Corollary (6.3.50), as (𝑦𝑛
𝑗
) have norm bounded by 

1 and all ‖𝑑
�̃�𝑖

𝑗∗
‖   ≤  3, we obtain 

|∑  

𝑎

𝑖=1

∑ 

𝑗

𝑑
�̃�𝑖

𝑗∗
 (𝓏𝑗)| ≤∑ 

𝑗

3 ·  2𝑛2𝑗 −1
𝑚𝑗1
𝑛𝑗1
  ≤ ∑ 

𝑗

1

𝑚2𝑗−1
 .                           (94) 

Using Corollary (6.3.21) and the fact that | ∑  𝑗 𝑒𝛾𝑗
∗   𝑃𝐼

𝑗
 (𝑥𝑖0+1

𝑗
)|  ≤  4 we obtain that 

|∑  

𝑗

(𝑚𝑡(𝑒𝛽
∗  ) −  𝑚𝑡 (𝑒�̃�𝑖0 

∗ )) (𝓏𝑗)| ≤∑ 

𝑗

(
4

𝑚2𝑗−1
+  2

1

𝑚2𝑗−1
  𝑛2𝑗−1

64𝐶

𝑚𝑗𝑖0+1
)

≤∑ 

𝑗

5

𝑚2𝑗−1
                                                                                                          (95) 

using that 𝑚𝑗1
−1  <  𝑛2𝑗−1

2  and 𝑛2𝑗+1  >  200𝐶. 

 Now consider 𝑒�̃�𝑖0
∗  , recall this functional and 𝑒�̃�𝑖0

∗  have compatible tree-analyses. Therefore 
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𝑚𝑡 (𝑒�̃�𝑖0
∗ )

=

{
 
 
 

 
 
 

∑ 

𝑗

1

𝑚2𝑗−1
∑(𝜖2̃𝑖−1𝑒�̃�2𝑖−1

∗

𝑖0
2

 𝑖=1

𝑃𝐽2𝑖−1
𝑗

+ �̃�2𝑖
𝑗
𝑒𝜂2𝑖
∗ 𝑃𝐽2𝑖

𝑗
 )                                𝑖𝑓 𝑖0  𝑒𝑣𝑒𝑛

∑ 

𝑗

1

𝑚2𝑗−1
∑(𝜖2̃𝑖−1𝑒�̃�2𝑖−1

∗  𝑃𝐽2𝑖 −1
𝑗

 +  �̃�2𝑖
𝑗
𝑒𝜂2𝑖
∗  𝑃𝐽2𝑖

𝑗
 ) + 𝜖�̃�0  𝑒�̃�𝑖0

∗ ∑ 

𝑗

𝑃𝐽𝑖0
𝑗

𝑖0
2

𝑖=1

       𝑖𝑓 𝑖0 odd

  

where for each for each 2𝑖 −  1 ≤  𝑖0 we have  

𝑒�̃�2𝑖−1
∗ = ∑∑ 

𝑗

𝑑
�̃�𝑛

𝑗∗
+

1

𝑚𝑗2𝑖−1
 

𝑛∈𝐴𝑖

  ∑ ∑ 

𝑗

𝜖�̃�𝑒𝜑𝑛
∗  𝑃𝐼𝑛

𝑗

𝑛∈𝐴𝑖

    .  

By choice of the objects above we have 

|∑  

𝑗

 𝑚𝑡 (𝑒�̃�𝑖0
∗ ) (𝓏𝑗)|

≤∑ 

𝑗

1

𝑚2𝑗−1
|
|

(

 
 
∑ ∑ 𝑑

�̃�𝑛

𝑗∗

𝑛∈𝐴𝑖

𝑛2𝑗−1

2

𝑖=1

 

)

 
 
( ∑

𝑐2𝑖−1𝑚𝑗2𝑖−1
𝑛𝑗2𝑖−12𝑖−1∈𝐽

 ∑ 𝑦𝑛
𝑗

𝑛∈𝐴𝑖

)|
|

+∑ 

𝑗

1

𝑚2𝑗−1
∑

𝑐2𝑖 −1𝑚𝑗2𝑖−1
𝑛𝑗2𝑖−12𝑖−1∈𝐽

 ∑|𝑒𝜑𝑛
∗  (𝑦𝑛

𝑗
)|

𝑛∈𝐴𝑖

 . 

 As for each 𝑛 the nodes 𝜓𝑛, 𝜑𝑛 have compatible tree-analyses the last sum can be estimated 

by 2𝑚2𝑗−1
−1 . The first sum equals 0 by the condition on ranks of 𝜉𝑛, thus also 𝜉𝑛 Therefore 

we have  

|∑  

𝑗

 𝑚𝑡 (𝑒�̃�𝑖0
∗  ) (𝓏𝑗)| ≤∑ 

𝑗

2

𝑚2𝑗−1
 .                                          (96)  

As before by (94), (95), (96) we have | ∑  𝑗 𝑒𝛽
∗(𝑧𝑗)|  ≤ ∑  𝑗  8/𝑚2𝑗−1, thus we can apply 

Lemma (6.3.20) obtaining that ‖∑  𝑗 𝑦
𝑗‖  ≤ ∑  𝑗 80𝐶/𝑚2𝑗−1

2 . For sufficiently big j we 

obtain contradiction with (93) and boundedness of 𝑇𝑗. 
Corollary (6.3.52)[260]: [252]. Let 𝑇𝑗 ∶   𝒳𝐾𝑢𝑠  →  𝒳𝐾𝑢𝑠 be a bounded operator. Then there 

exist a compact operator K : 𝒳𝐾𝑢𝑠 → 𝒳𝐾𝑢𝑠 and a scalar λ such that  𝑇𝑗 = 𝜆𝑗𝐼𝑑 + 𝐾𝑗. 

 Proof. By Corollary (6.3.50) any (𝑑
𝛾𝑗𝑛

𝑗
 )
𝑛∈𝑁
  has a further subsequence (𝑑

𝛾𝑛
𝑗
𝑗
)
𝑛∈𝑀

   such 

that 𝑇𝑗𝑑
𝛾𝑗𝑛

𝑗
 − 𝜆𝑗𝑑

𝛾𝑗𝑛

𝑗
 →  0 𝑎𝑠 𝑀 ∋ 𝑛 →  ∞ , for some 𝜆𝑗. By Proposition 6.6 there is a 

universal λ so that 𝑇𝑗𝑑
𝛾𝑗𝑛

𝑗
 −  𝜆𝑗𝑑

𝛾𝑗𝑛

𝑗
 →  0 𝑎𝑠 𝑛 →  ∞. Applying Corollary (6.3.51) to the 

operator 𝑇𝑗  −  𝜆𝑗𝐼𝑑 we get that 𝑇𝑗𝑦𝑛
𝑗
 −  𝜆𝑗𝑦𝑛

𝑗
 →  0 for any RIS (𝑦𝑛

𝑗
) and thus, by 

Proposition (6.3.26), for any bounded block sequence (𝑦𝑛
𝑗
). It follows that the operator 𝑇𝑗  −

 𝜆𝑗𝐼𝑑 is compact.  

Corollary (6.3.53)[260]: [252]. 



275 

(iii) For every 𝑘 ∈ ℕ and 𝑡 ∈ 𝒯 we have | ∑  𝑗 𝑒𝜂𝑡
∗ 𝑃𝐼𝑡

𝑗
 (𝑦𝑘

𝑗
)|  ≤  10𝐶/𝑚𝑗𝑘 .  

(iv) For every 𝑘 ∈ ℕ and 𝑡 ∈ 𝒯 with 𝑤(𝜂𝑡)  <  𝑚𝑗𝑘
−1 we have | ∑  𝑗 𝑒𝜂𝑡

∗ 𝑃𝐼𝑡
𝑗
 ((𝑥𝑘

𝑗
)
 

′
)|  ≤

 11𝐶/𝑚𝑗𝑘 . 

Proof. Concerning (𝑖), notice first that for any 𝑠 ∈  ℱ𝛾𝑗 we have | ∑  𝑗 𝑒𝜂𝑠
∗  𝑃𝐼𝑠

𝑗
 (𝑥𝑘

𝑗
)|  ≤

 10𝐶/𝑚𝑗𝑘 . 

Indeed, for 𝑤(𝜂𝑠)  =  𝑚2𝑗 for some 𝑗, we consider the following two cases. If 𝑚2𝑗
−1  <  𝑚𝑗𝑘

−1 

then the estimate follows by (26). If 𝑚2𝑗
−1  ≥  𝑚𝑗𝑘

−1 , then by the form of 𝑒𝜂𝑠
∗  and (57) we have 

|∑  

𝑗

𝑒𝜂𝑠
∗  𝑃𝐼𝑠

𝑗
 (𝑥𝑘

𝑗
)| ≤  2𝑛2𝑗max

𝛾𝑗∈𝛤
∑ 

𝑗

|𝑑
𝛾𝑗
𝑗∗
(𝑥𝑘
𝑗
) |  ≤  2𝐶/𝑛𝑗𝑘 

Now, as each of the sets{𝑠 ∈  ℱ𝛾𝑗  | |𝑠|  =  𝑖, 𝑟𝑛𝑔(𝑥𝑘
𝑗
)  ∩  𝐼𝑠  ≠  ∅}, 𝑖 ∈ ℕ, has at most two 

elements, we have 

|∑  

𝑗

𝑒𝜂𝑡
∗ 𝑃𝐼𝑡

𝑗
 (𝑦𝑘

𝑗
)| ≤  ∑ ∑ 

𝑗

(𝛱𝑡⪯𝑢≺𝑠 𝑤(𝜂𝑢))|𝑒𝜂𝑠
∗  𝑃𝐼𝑠

𝑗
 (𝑥𝑘

𝑗
)|

𝑠∈ℱ
𝛾𝑗

   

=  ∑ ∑ ∑ 

𝑗

(𝛱𝑡⪯𝑢≺𝑠 𝑤(𝜂𝑢))|𝑒𝜂𝑠
∗  𝑃𝐼𝑠

𝑗
 (𝑥𝑘

𝑗
)|

𝑠∈ℱ
𝛾𝑗
,|𝑠|=𝑖𝑖

 ≤
20𝐶

𝑚𝑗𝑘
∑

1

𝑚1
𝑖
 =
10𝐶

𝑚𝑗𝑘 𝑖

 . 

Condition (ii) follows from Lemma (6.3.20) and (i).  

Corollary (6.3.54)[260]: [252]. For every choice of signs (𝛿𝑘) there exists a node �̃�𝑗 ∈  𝛤 

such that 𝑄𝛾𝑗  =  𝑄�̃�𝑗 and 𝜖 ∈  {±1} so that 

|∑  

𝑗

(𝑒
𝛾𝑗
∗ ((𝑥𝑘

𝑗
)
 

′
) − 𝜖𝑒

�̃�𝑗
∗ (𝛿𝑘(𝑥𝑘

𝑗
)
 

′
))| ≤

6𝐶

𝑚𝑗𝑘
 for any 𝑘 ∈ ℕ. 

Proof. Define  

𝐷𝑗  = {𝑡 ∈ 𝒯 | 𝑟𝑛𝑔(𝑥𝑘
𝑗
)  ∩  𝑟𝑛𝑔(𝑒𝑡

∗𝑃𝐼𝑡
𝑗
 )  ≠  ∅ for at most one 𝑘 and if 𝑡 ∈

 𝑆𝑢 𝑡ℎ𝑒𝑛 𝑟𝑛𝑔(𝑥𝑖
𝑗
)  ∩  𝑟𝑛𝑔(𝑒𝑢

∗𝑃𝐼𝑢
𝑗
 )  ≠  ∅  for at least two 𝑖}.  

Since for every branch 𝑏 of 𝒯 the set 𝑏 ∩ 𝐷𝑗 has exactly one element we can define a 

subtree 𝒯′ of 𝒯 such that 𝐷𝑗 is the set of terminal nodes for ′ . Notice that (𝒯 \𝒯′ )  ∩  ℱ𝛾𝑗  =

 ∅.  

If 𝛾𝑗  ∈  𝐷𝑗, then we pick the unique 𝑘0 with 𝑟𝑛𝑔(𝑒
𝛾𝑗
∗ )  ∩  𝑟𝑛𝑔(𝑥𝑘0

𝑗
 )  ≠  ∅ (𝑎𝑠 𝐼∅  =

 [1,𝑚𝑎𝑥 𝛥𝑟𝑎𝑛𝑘(𝛾𝑗)]) and let �̃�𝑗 = 𝛾𝑗 and 𝜀 =  𝛿𝑘0 . Then we have the estimate in the lemma 

for any 𝑘 ∈  𝑁.  

Assume that 𝛾𝑗  ∉  𝐷𝑗. Using backward induction on 𝒯′ we shall define a node �̃�𝑗 with a 

tree-analysis (𝐼𝑡 , 𝜖�̃� , �̃�𝑡)𝑡∈𝑇𝑗 and associated scalars (�̃�𝑡
𝑗
)
𝑡∈𝑇𝑗

 , by modifying the nodes 

(𝐼𝑡 , 𝜖�̃� , 𝜂𝑡)𝑡∈𝒯′   and scalars (𝜆𝑡
𝑗
)
𝑡∈𝒯′

 starting from elements of 𝐷𝑗 such that 

 (T1) 𝑒𝜂𝑡
∗  , 𝑒�̃�𝑡

∗  have compatible tree-analyses for any ∈  𝒯′ , 

 (T2) 𝐹�̃�𝑡  =  𝐹𝜂𝑡 for any ∈ 𝒯′ ,  
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(T3) 𝜖�̃�𝑒�̃�𝑡
∗ ∑  𝑗 𝑃𝐼𝑡

𝑗
 (𝛿𝑘(𝑥𝑘

𝑗
)
 

′
 ) =  𝜖𝑡𝑒𝜂𝑡

∗ ∑  𝑗 𝑃𝐼𝑡
𝑗
 ((𝑥𝑘

𝑗
)
 

′
) for any 𝑡 ∈  𝐷𝑗  \ ℰ𝛾𝑗 and k, 

∑  𝑗 �̃�𝑡
𝑗
𝑒�̃�𝑡
∗ 𝑃𝐼𝑡

𝑗
 (𝛿𝑘(𝑥𝑘

𝑗
)
 

′
)  =  ∑  𝑗 𝜆𝑡

𝑗
𝑒𝜂𝑡
∗ 𝑃𝐼𝑡

𝑗
 ((𝑥𝑘

𝑗
)
 

′
) for any 𝑡 ∈  𝐷𝑗  ∩  ℰ𝛾𝑗  and k, 

(T4) 𝜖�̃�  =  𝜖𝑡 for any 𝑡 ∈  𝒯′ \ 𝐷𝑗. 
Roughly speaking we need to modify only 𝜖𝑡 , 𝑡 ∈  𝐷

𝑗, changing signs of some of them. 

These modifications determine changes in the rest of the tree, i.e. 𝜂𝑢, 𝑢 ∈ 𝒯
′ \𝐷𝑗 according 

to the rules of producing nodes.  

Step 1. Take 𝑡 ∈  𝐷𝑗.  

Case 1a. 𝑡 ∉ ℰ𝛾𝑗  ∪  ⋃ 𝑆𝑢𝑢∈ℰ
𝛾𝑗

  . We set �̃�𝑡  =  𝜂𝑡 and 𝜖�̃�  =  𝛿𝑘𝜖𝑡, if 𝑟𝑛𝑔(𝑒𝑡
∗𝑃𝐼𝑡
𝑗
 ) intersects 

𝑟𝑛𝑔(𝑥𝑘
𝑗
) for some (unique) k, otherwise 𝜖�̃�  =  𝛿𝑚𝜖𝑡 where 𝑚 =  𝑚𝑖𝑛{𝑖 ∶  𝑟𝑛𝑔 𝑒𝜂𝑡

∗  𝑃𝐼𝑡
𝑗
 ≤

 𝑟𝑛𝑔(𝑥𝑖
𝑗
)}.  

The condition (T3) follows straitforward.  

Case 1b. 𝑡 ∈  ℇ𝛾𝑗  ∪  ⋃ 𝑆𝑢𝑢∈ℇ
𝛾𝑗

  . In this case we set �̃�𝑡  =  𝜂𝑡  and 𝜖�̃�  =  𝜖𝑡(=  1). 

Moreover, for 𝑡 ∈  ℰ𝛾𝑗  we set �̃�𝑡
𝑗
 =  𝛿𝑘𝜆𝑡

𝑗
. Such choice is possible since 𝑁𝑒𝑡1,𝑞2 is 

symmetric. It follows that  

|∑  

𝑗

�̃�𝑡
𝑗
 −  𝜖�̃� − 𝑒𝜂𝑡−

∗ (𝑦2𝑖−1
𝑗𝑡
)|  =  ∑  

𝑗

|𝛿𝑘𝜆𝑡
𝑗
 −  𝛿𝑘𝜖𝑡 − 𝑒𝜂𝑡

∗ − (𝑦2𝑖−1
𝑗𝑡
)|  

=  ∑  

𝑗

|𝜆𝑡
𝑗
 −  𝜖𝑡 − 𝑒𝜂𝑡

∗ − (𝑦2𝑖−1
𝑗𝑡
)| 

where (𝑦𝑖
𝑗𝑡
 )
𝑖
 are the vectors of the suitable special sequences. In order to verify condition 

(T3) we consider two subcases.  

(1) If 𝑡 ∈  ℱ𝛾𝑗  or 𝑡 ∈  𝑆𝑢 for some 𝑢 ∈  ℇ𝛾𝑗  (then 𝑢 ∈  ℱ𝛾𝑗), it follows that 

𝑟𝑛𝑔(𝑒𝜂𝑡
∗ 𝑃𝐼𝑡

𝑗
 )  ∩  𝑟𝑛𝑔 (𝑥𝑘

𝑗
)
 

′
 =  ∅ for any 𝑘 by the definition of (𝑥𝑘

𝑗
)
 

′
, thus we 

obtain (T3). 

(2) If 𝑡 ∈  ℇ𝛾𝑗  \ℱ𝛾𝑗  and 𝑟𝑛𝑔(𝑒𝜂𝑡
∗ 𝑃𝐼𝑡

𝑗
 ) ∩ 𝑟𝑛𝑔 (𝑥𝑘

𝑗
)
 

′
 =  ∅ for some 𝑘, it follows that 

𝑒𝑡−
∗  ∈  𝐷𝑗 as well and moreover 𝑟𝑛𝑔(𝑒𝜂𝑡−

∗  𝑃𝐼𝑡−
𝑗
 ) either intersects only 𝑟𝑛𝑔 𝑥𝑘

𝑗
 or 

intersects no 𝑟𝑛𝑔 𝑥𝑖
𝑗
. In both cases 𝜖�̃�−  =  𝛿𝑘𝜖𝑡− and so �̃�𝑡

𝑗
 =  𝛿𝑘𝜆𝑡

𝑗
 and (T3) 

holds.  

Notice that in either case conditions (T1)–(T2) and (T4) are straitforwardly satisfied.  

Step 2. Now we define inductively nodes in 𝑡 ∈ 𝒯′ \𝐷𝑗. Take 𝑡 ∈ 𝒯′ \𝐷𝑗 and assume we 

have defined (𝜖�̃�, �̃�𝑠, 𝐼𝑠)𝑠∈𝑆𝑡 satisfying (T1)–(T4). In all cases we let 𝜖�̃�  =  𝜖𝑡, thus (T4) is 

satisfied. Notice that 𝑡 ∉ ⋃ 𝑆𝑢𝑢∈ℰ
𝛾𝑗

  . 

Case 2a. 𝑡 ∈  ℇ𝛾𝑗. In this case we set �̃�𝑡  =  𝜂𝑡. Obviously we have (T1)–(T2). 

Case 2b. 𝑡 ∉  ℰ𝛾𝑗 , 𝑤(𝜂𝑡)  =  𝑚 2𝑗
−1 . Then using Remark 4.10 (1) we define �̃�𝑡 so that 

𝑚𝑡(𝑒�̃�𝑡
∗  ) =∑ 

𝑗

1

𝑚2𝑗
∑𝜖�̃�𝑒�̃�𝑠

∗  𝑃𝐼𝑠
𝑗

𝑠∈𝑆𝑡

  . 

By definition we have (T1)–(T2).  
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Case 2c. 𝑤(𝜂𝑡)  =  𝑚 2𝑗+1
−1 , with 𝜂𝑡 compatible with a (Γ, j)-special sequence (�̅�𝑡

𝑗
, �̅�𝑡). Then 

using Remark 4.10 (2) we define a special node �̃�𝑡 which is compatible with the same (Γ, 

j)-special sequence (�̅�𝑡
𝑗
, �̅�𝑡) so that 

𝑚𝑡(𝑒�̃�𝑡
∗  ) =∑ 

𝑗

1

𝑚2𝑗+1
∑ (𝜖�̃�− 𝑒�̃�𝑠−

∗  𝑃𝐼𝑠−
𝑗
 +  �̃�𝑠

𝑗
𝑒�̃�𝑠
∗  𝑃𝐼𝑠

𝑗
 )

 𝑠∈𝑆𝑡∩ℇ𝛾𝑗

  . 

By definition we have (T1)–(T2).  

Let �̃�𝑗  =  �̃�∅. Notice that by conditions (T1)–(T2) we have 𝑄�̃�𝑗 = 𝑄𝛾𝑗 . Now we proceed to 

show the estimate part of the lemma. Fix 𝑘 ∈  𝑁. For any nonterminal 𝑢 ∈ 𝒯 let 

𝑆𝑢,𝑘 ∶=  {𝑠 ∈  𝑆𝑢 | 𝑟𝑛𝑔(𝑥𝑘
𝑗
)  ∩  𝑟𝑛𝑔(𝑒𝑠

∗𝑃𝐼𝑠
𝑗
 )  =  ∅}. 

Let 𝐺 be the set of minimal nodes u of 𝒯′  with 𝑢 ∈  𝐷𝑗 or (𝜂𝑢)  <  𝑚 𝑗𝑘
−1 . By 𝒯′′ denote the 

subtree of 𝒯′ with the terminal nodes in 𝐺. We shall prove by induction starting from 𝐺 that 

for any 𝑢 ∈ 𝒯′′  we have 

|∑ 

𝑗

(𝜖𝑢𝑒𝜂𝑢
∗  𝑃𝐼𝑢

𝑗
 ((𝑥𝑘

𝑗
)
 

′
) − 𝜖�̃�𝑒�̃�𝑢

∗  𝑃𝐼𝑢
𝑗
 (𝛿𝑘(𝑥𝑘

𝑗
)
 

′
))| ≤

22𝐶

𝑚𝑗𝑘
 .                             (97) 

This will end the proof as it follows by (T4) that |∑  𝑗 (𝜖∅𝑒𝜂∅
∗  ((𝑥𝑘

𝑗
)
 

′
) −

 𝜖∅̃𝑒�̃�∅
∗  (𝛿𝑘(𝑥𝑘

𝑗
)
 

′
))|  = ∑  𝑗 |𝑒�̅�𝑗

∗ ((𝑥𝑘
𝑗
)
 

′
)  − 𝑒

�̃�𝑗
∗ (𝛿𝑘(𝑥𝑘

𝑗
)
 

′
)|. Thus taking 𝜖 =  1 we obtain 

the estimate of the lemma.  

Step 1. 𝑢 ∈  𝐺. 𝐼𝑓 𝑤(𝜂𝑢)  <  𝑚 𝑗𝑘
−1 then the estimate (97) holds true by Corollary (6.3.53) 

(ii). If 𝑢 ∈  𝐷𝑗 then the estimate (97) holds true by (T3). 

Step 2. 𝑢 ∈ 𝒯′′  \ 𝐺. In particular (𝜂𝑢)  ≥  𝑚 𝑗𝑘
−1 . Obviously 𝑆𝑢  ⊂ 𝒯′′. 

Case 2a. 𝑤(𝜂𝑢) =  𝑚 2𝑗
−1 . We estimate, using (T3) for 𝑠 ∈  𝑆𝑢,𝑘  ∩  𝐷

𝑗 

|∑  

𝑗

(𝑒�̃�𝑢
∗  𝑃𝐼𝑢

𝑗
 (𝛿𝑘(𝑥𝑘

𝑗
)
 

′
) − 𝑒𝜂𝑢

∗  𝑃𝐼𝑢
𝑗
 ((𝑥𝑘

𝑗
)
 

′
))| 

= ∑ 

𝑗

| (∑ 𝑑
�̃�𝑠

𝑗∗
 +

1

𝑚2𝑗
𝑠∈𝑆𝑢

 ∑ 𝜖�̃�𝑒�̃�𝑠
∗  𝑃𝐼𝑠 

𝑗
  +

1

𝑚2𝑗
𝑠∈𝑆𝑢,𝑘∩𝐷

𝑗

 ∑ 𝜖�̃�𝑒�̃�𝑠
∗  𝑃𝐼𝑠

𝑗

𝑠∈𝑆𝑢,𝑘\𝐷
𝑗

     ) (𝛿𝑘(𝑥𝑘
𝑗
)
 

′
)  

−∑ 

𝑗

 (∑ 𝑑𝜉𝑠
𝑗∗
 +

1

𝑚2𝑗
 

𝑠∈𝑆𝑢

  ∑ 𝜖�̃�𝑒𝜂𝑠
∗  𝑃𝐼𝑠

𝑗
 +

1

𝑚2𝑗
𝑠∈𝑆𝑢,𝑘∩𝐷

𝑗

  ∑ 𝜖�̃�𝑒𝜂𝑠
∗  𝑃𝐼𝑠

𝑗

𝑠∈𝑆𝑢,𝑘\𝐷
𝑗

    )  ((𝑥𝑘
𝑗
)
 

′
)|  

≤ | ∑∑ 

𝑗

𝑑
�̃�𝑠

𝑗∗
 (𝛿𝑘(𝑥𝑘

𝑗
)
 

′
)

𝑠∈𝑆𝑢

  |  +  |  ∑  ∑ 

𝑗

𝑑𝜉𝑠
𝑗∗
 ((𝑥𝑘

𝑗
)
 

′
)| 

𝑠∈𝑆𝑢

+∑ 

𝑗

1

𝑚2𝑗
∑ |𝜖�̃�𝑒�̃�𝑠

∗  𝑃𝐼𝑠
𝑗
 (𝛿𝑘(𝑥𝑘

𝑗
)
 

′
) − 𝜖𝑠𝑒𝜂𝑠

∗  𝑃𝐼𝑠
𝑗
 ((𝑥𝑘

𝑗
)
 

′
)|

𝑠∈𝑆𝑢,𝑘\𝐷
𝑗

 

≤ . .. 
The first two sums are estimated using (8.1) and #𝑆𝑢  ≤  𝑛2𝑗  ≤  𝑛𝑗𝑘 , for the third element 

use the inductive hypothesis and the fact that #(𝑆𝑢,𝑘  \ 𝐷
𝑗)  ≤  2, obtaining the following 
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. . . ≤ ∑ 

𝑗

(2𝑛2𝑗
𝐶

𝑛𝑗𝑘
2  +

2

𝑚2𝑗
 ·
22𝐶

𝑚𝑗𝑘
 ) ≤∑ 

𝑗

22𝐶

𝑚𝑗𝑘
 . 

Case 2b. 𝑤(𝜂𝑢)  =  𝑚2𝑗+1
−1 . Recall that by (T3) we have 𝜖𝑠− 𝑒𝜂𝑠−

∗ ∑  𝑗  𝑃𝐼𝑠−
𝑗
 ((𝑥𝑘

𝑗
)
 

′
) =

∑  𝑗 𝜖�̃�−  𝑒�̃�𝑠−
∗  𝐼𝑠−  (𝛿𝑘(𝑥𝑘

𝑗
)
 

′
) for any 𝑠 ∈  𝑆𝑢  ∩  ℰ𝛾𝑗 with 𝑠−  ∈  𝐷

𝑗 and 

∑  𝑗 𝜆𝑠
𝑗
𝑒𝜂𝑠
∗  𝑃𝐼𝑠

𝑗
 ((𝑥𝑘

𝑗
)
 

′
)  = ∑  𝑗  �̃�𝑠

𝑗
𝑒�̃�𝑠
∗  𝐼𝑠(𝛿𝑘(𝑥𝑘

𝑗
)
 

′
) for any 𝑠 ∈  𝑆𝑢  ∩  ℰ𝛾𝑗  ∩  𝐷

𝑗. Moreover 

ℰ𝛾𝑗  \ 𝐷
𝑗  ⊂  ℱ𝛾𝑗 thus ∑  𝑗 𝑒𝜂𝑠

∗   𝑃𝐼𝑠
𝑗
 ((𝑥𝑘

𝑗
)
 

′
)  =  0 = ∑  𝑗 𝑒�̃�𝑠

∗  𝑃𝐼𝑠
𝑗
(𝛿𝑘(𝑥𝑘

𝑗
)
 

′
) for any 𝑠 ∈  (𝑆𝑢  ∩

 ℰ𝛾𝑗) \ 𝐷
𝑗. Therefore we have  

|∑  

𝑗

(𝑒�̃�𝑢
∗  𝑃𝐼𝑢

𝑗
 (𝛿𝑘(𝑥𝑘

𝑗
)
 

′
) − 𝑒𝜂𝑢

∗  𝑃𝐼𝑢
𝑗
 ((𝑥𝑘

𝑗
)
 

′
))| 

= ∑ 

𝑗

| (∑  𝑑
�̃�𝑠

𝑗∗
  +

1

𝑚2𝑗+1
𝑠∈𝑆𝑢

 ∑ 𝜖�̃�−  𝑒�̃�𝑠−
∗  𝑃𝐼𝑠

𝑗
 

𝑠−∈𝑆𝑢,𝑘,𝑠∈ℰ𝛾𝑗

+
1

𝑚2𝑗+1
   ∑ �̃�𝑠

𝑗
𝑒�̃�𝑠
∗  𝑃𝐼𝑠

𝑗

𝑠∈𝑆𝑢,𝑘∩ℰ𝛾𝑗

    ) (𝛿𝑘(𝑥𝑘
𝑗
)
 

′
)

− (∑  𝑑𝜉𝑠
𝑗∗
 +

1

𝑚2𝑗+1
𝑠∈𝑆𝑢

   ∑ 𝜖�̃�−  𝑒𝜂𝑠−
∗  𝑃𝐼𝑠

𝑗
 

𝑠−∈𝑆𝑢,𝑘,𝑠∈ℰ𝛾𝑗

+
1

𝑚2𝑗+1
  ∑ 𝜆𝑠

𝑗
𝑒𝜂𝑠
∗  𝑃𝐼𝑠

𝑗

𝑠∈𝑆𝑢,𝑘∩ℰ𝛾𝑗

  )   ((𝑥𝑘
𝑗
)
 

′
)|  

=∑ 

𝑗

| (∑ 𝑑
�̃�𝑠

𝑗∗
 +

1

𝑚2𝑗+1
𝑠∈𝑆𝑢

   ∑ 𝜖�̃�−  𝑒�̃�𝑠−
∗  𝑃𝐼𝑠

𝑗

𝑠−∈𝑆𝑢,𝑘\𝐷
𝑗,𝑠∈ℰ

𝛾𝑗

   ) (𝛿𝑘(𝑥𝑘
𝑗
)
 

′
)

− (∑ 𝑑𝜉𝑠
𝑗∗
 +

1

𝑚2𝑗+1
𝑠∈𝑆𝑢

   ∑ 𝜖𝑠−  𝑒𝜂𝑠−
∗  𝑃𝐼𝑠

𝑗

𝑠−∈𝑆𝑢,𝑘\𝐷
𝑗,𝑠∈ℰ

𝛾𝑗

  )  ((𝑥𝑘
𝑗
)
 

′
)| 

≤∑ 

𝑗

 | ∑  𝑑
�̃�𝑠

𝑗∗
 (𝛿𝑘(𝑥𝑘

𝑗
)
 

′
)

𝑠∈𝑆𝑢

 | + ∑  

𝑗

| ∑ 𝑑𝜉𝑠
𝑗∗
 ((𝑥𝑘

𝑗
)
 

′
)

𝑠∈𝑆𝑢

| + 

+∑ 

𝑗

1

𝑚2𝑗+1
∑ |𝜖�̃�−  𝑒�̃�𝑠−

∗  𝑃𝐼𝑠−
𝑗
 (𝛿𝑘(𝑥𝑘

𝑗
)
 

′
) − 𝜖𝑠− 𝑒𝜂𝑠−

∗  𝑃𝐼𝑠−
𝑗
 ((𝑥𝑘

𝑗
)
 

′
)|

𝑠−∈𝑆𝑢,𝑘\𝐷
𝑗,𝑠∈ℰ

𝛾𝑗

   

≤ . .. 
Proceeding as in Case 2𝑎 we obtain  

. . . ≤ ∑ 

𝑗

(2𝑛2𝑗+1
𝐶

𝑛 𝑗𝑘
2  +

2

𝑚2𝑗+1
 ·
22𝐶

𝑚𝑗𝑘
) ≤∑ 

𝑗

22𝐶

𝑚𝑗𝑘
. 

Corollary (6.3.55)[260]: [252]. The space 𝒳𝐾𝑢𝑠 is unconditionally saturated.  
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Proof. In every block subspace of 𝒳𝐾𝑢𝑠 pick a sequence (𝑥𝑘
𝑗
)
𝑘
 as above with 𝑚𝑗1  >  400𝐶. 

We claim that such a sequence is unconditional. To this end consider a finite sequence of 

scalars (𝑎𝑘) with ‖∑ ∑  𝑗 𝑎𝑘𝑥𝑘
𝑗

𝑘  ‖ = 1 and (𝛿𝑘)  ⊂  {±1}. We want to estimate the norm of 

the vector  ∑ ∑  𝑗 𝛿𝑘𝑎𝑘𝑥𝑘
𝑗

𝑘 . Take 𝛾𝑗  ∈  𝛤 with ∑  𝑗 𝑒𝛾𝑗
∗ (∑ 𝑎𝑘𝑥𝑘

𝑗
𝑘   )  ≥  3/4. Define 𝑄𝛾𝑗, 

(𝑦𝑘
𝑗
) and ((𝑥𝑘

𝑗
)
 

′
) and consider �̃�𝑗 and 𝜖 provided by Corollary (6.3.54). Notice that as 

𝑄�̃�𝑗  =  𝑄𝛾𝑗, the projection 𝑄�̃�𝑗 defines also (𝑦𝑘
𝑗
) and (𝑥𝑘

𝑗
). Estimate, applying Corollary 

(6.3.54) and Corollary (6.3.53) (i) both for 𝛾𝑗 and �̃�𝑗, as follows  

|∑  

𝑗

(𝑒
𝛾𝑗
∗ (∑𝑎𝑘𝑥𝑘

𝑗

𝑘

   ) −  𝜖𝑒
�̃�𝑗
∗ ( ∑𝛿𝑘𝑎𝑘𝑥𝑘

𝑗

𝑘

  ))| 

≤ ∑ 

𝑗

|𝑒
𝛾𝑗
∗ (∑𝑎𝑘(𝑥𝑘

𝑗
)
 

′

𝑘

   ) −  𝜖𝑒
�̃�𝑗
∗ ( ∑𝛿𝑘𝑎𝑘(𝑥𝑘

𝑗
)
 

′

𝑘

  )| + ∑ 

𝑗

|𝑒
𝛾𝑗
∗ ( ∑𝑎𝑘𝑦𝑘

𝑗

𝑘

  )|

+∑ 

𝑗

 |𝑒
�̃�𝑗
∗ ( ∑𝛿𝑘𝑎𝑘𝑦𝑘

𝑗

𝑘

  )| 

≤ ∑∑ 

𝑗

|𝑎𝑘| |𝑒𝛾𝑗
∗ ((𝑥𝑘

𝑗
)
 

′
) −  𝜖𝑒

𝛾𝑗
∗ (𝛿𝑘(𝑥𝑘

𝑗
)
 

′
)|

𝑘

  +∑∑ 

𝑗

|𝑎𝑘| |𝑒𝛾𝑗
∗ (𝑦𝑘

𝑗
)|

𝑘 

  

+∑∑ 

𝑗

|𝑎𝑘| |𝑒�̃�𝑗
∗ (𝛿𝑘𝑦𝑘

𝑗
)|

𝑘

    

≤  4 ·  24𝐶∑𝑚 𝑗𝑘
−1  ≤  200𝐶𝑚 𝑗1

−1  ≤  12/

 𝑘

 

where in the last line we use the fact that each |𝑎𝑘| is dominated by twice the basic constant 

of the basis (𝑑𝑗𝛾𝑗). Therefore ‖∑ ∑  𝑗 𝛿𝑘𝑎𝑘𝑥𝑘
𝑗

𝑘  ‖   ≥  |𝑒
�̃�𝑗
∗ ( ∑ ∑  𝑗 𝛿𝑘𝑎𝑘𝑥𝑘

𝑗
𝑘  )|  ≥  1/4, 

which ends the proof.  
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List of Symbols 
Symbol  Page 

𝑚𝑎𝑥: Maximum 1 

𝑠𝑢𝑝𝑝: Support 5 

𝑚𝑜𝑑: modulo 16 

𝑚𝑖𝑛: minimum 20 

𝑒𝑥𝑡: extractor 20 

ℓ𝑝: Banach space of sequences 21 

𝐿𝑝: Lebesgue space 21 

ℓ∞: Essential Banach space of sequences 21 

ℓ2: Hilbert space of sequences 21 

𝐿1: Lebesgue integral in the real line 21 

𝐿2: Hilbert space 21 

⊕: Orthogonal sum 21 

𝑃𝑟: probability 22 

𝐻𝑎𝑑: Hadamard 23 

𝑑𝑒𝑙: determinant 33 

𝑤1,1: Sobolev space 33 

𝐵𝑉: Bounded Variation 33 

𝑚𝑒𝑎𝑠: Measure 33 

𝑤1,𝑝: Sobolev space 33 

𝑂𝑆𝐶: Oscillation 37 

𝐿∞: essential Lebesgue space 37 

𝑎. 𝑒: almost every where 38 

𝑠𝑢𝑝: Supremum 33 

𝑤𝑘,𝑝: Sobolev space 33 

𝑙𝑜𝑐: Local 42 

𝐿𝑝𝑜,1: Lorentz space 42 

𝑑𝑖𝑎𝑚: diameter 43 

𝑤𝑝𝑜,1
𝑘 : Lorentz space 43 

𝑖𝑛𝑓: Infimum 43 

𝐿𝑝,𝑞: Lorentz space 43 

𝑓. 𝑑. 𝑑: Finite-dimensional decomposition 60 

𝐵𝑜: Bourgain-Delbaen 70 

𝑑𝑖𝑚: Dimension 71 

𝑅𝐼𝑆: Rapidly increasing sequence 80 

dist: Distance 93 

⊗: Tensor product 100 

𝑃𝐹𝐸: Polynomial Freiman-Ruzsa conjecture 120 

𝐶𝐶: Communication Complexity 121 

𝑄𝐹𝑅: Quasi-polynomial Freiman-Ruzsa 122 

𝑞𝑝𝑒𝑙𝑦: Quasi-polynomial 123 

𝑆𝑝𝑒𝑐: Spectrum 125 

𝑅𝑒: Real 138 

𝐼𝑚: Imaginary 138 

𝑎. 𝑎: Almost all 170 

𝐸𝑛𝑡: Enterior 176 
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𝐵𝑎1𝑝: Bessel capacity 176 

𝐼𝑡𝐼: Hereditarily indecomposable 133 

𝐺𝑚: Gowers Maurey 133 

𝑆𝑅𝐼𝑆: Special rapidly increasing sequence 210 

ℓ1: Space on the real line 215 

𝑘𝑒𝑟: Kernel 218 

𝐿𝑖𝑝: Lipschitz 220 

𝑝𝑜: Schur space 222 

𝑟𝑛𝑔: Range 231 

𝑋𝑎𝑢𝑥: Mixed Tsirelson space 233 
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