PRI GEC

Sudan University of Sciences and Technology

College of Graduate studies

Enhancing the Quality of Software Testing using

a Metamorphic Testing Technique

Al JLEAY) A%y b aladialy ciliaea) JLSA) B3 g (e

a Thesis Submitted in Partial Fulfillment of the Requirements of M.Sc. Degree in Computer Science

Prepared By:
Sulieman Ibrahim Sulieman Bahar
Supervisor:

Dr. Mohammed Abdalla Osman Mukhtar

April 2021

/

Acknowledgment

I would like to express my thanks to Dr. Mohammed Abdalla for his valuable contributions and
great efforts to advise me to complete the thesis.

Thanks go to staff members of Sudan University of Science and Technology as general and
College of Computer Science and Information Technology as particular who exerted their time
and effort to teach me useful science.

Finally I would like to thank my family for their enthusiastic help and endless encouragement.

)

a__N

28020 iy) AALAE il 1,2 &0 813 Sl Gl e g))
adall 5550 Gy i) el G0 4B o5 155808 15558 g 135
(1) 2 ATl 5y (S 5l Ly 5 8

m

Abstract

The software testing process plays an important role to improve the quality of the
software product. The product or program which is free from errors greatly contributes to assure
the quality of the software. An oracle in software testing is a person (tester) who does the process
of testing. Therefor oracle problem arises due to the difficulty of determining the expected
outcomes of selected test cases. A tester (oracle) may not always be available, or may be
available but the process is too expensive and difficult to apply.

This research tried to reduce the effect of oracle problem during testing software. To

overcome this problem metamorphic testing (MT) has been used to generate follow-up test case
for multiple execution of program under test and verifying the result automatically.
The objectives of the research include analyzing the existing testing methods to reveal the gap of
unavailability of solution of oracle problem, proposing an approach (MT) to enhance the quality
of testing to solve the oracle problem and verify the proposed approach by applying it in selected
case studies.

The researcher tried to use experimental method which explains the mechanism of work
for (MT). Therefore JUNIT tool which supports MT was used to apply selected case studies.

The proposed method has been implemented using 3 case studies (trigonometric function,
geometric shapes classification, booking web service). The obtained results showed a good
enhancement in the testing process.

The importance of this research lies in overcoming oracle problem or alleviates it and
thus, the research contributes to knowledge the domain by guiding researchers to use the
metamorphic method because of its great advantages, as well as evaluating the effect of

metamorphic method through empirical studies.

v

oaldliund)
LAl e AN el sl o il aaloy | e yall gmiiall 53 s G 8 Lag 150 il yall s dglee Caals
O AT LAY Alany o 98y (gide) adid o il) LRI 8 JS))5l 0 sl 8358 Glava (B jaS IS
3 gl ¢l alia (JS))5l) Laidall ¢sSY a8 5) HLEaY) V) dad gl il aant Ay sea o4 JSI)) AlS
Al Gy g el Gl Y] dulee oK1 AL) &G

DAY ASy 5k aladi) af ¢ A sda o alaill il) jLaal L JS)) of A8 il Juls Caa) 13 J s
Al Aa i) e (aaill g HLAAY) A8 el pull doaiial) dguill Aaylia Hlid) Al pLIsY (gl

DAY Ay s) 5 ¢ JS)) o AlSe Jad i gl ae 5 sad e RISIAIAY JLAS) (5 5k it Sl Claal Jods
sl il 5o Ao 4l JMA (e il mgiall (e Gal 5 JS)) of A Jad Sl 53 g Cpaaa] (gl
_EJM‘

Al ac a5 3 JUNIT slal aladind &5 GIA (Jdsail) JLaay) dae 4l & pd s o yail) mgiall alasiind Gaalill Jgla
Bolaall Alad) b jo e agndail dagiall

G ebal (sl daad gl JISEY) Cayial ¢ 4k A00) s il)3 O aladinly Ladadss o3 da yidall 45y k)
ks ddee A s Buati lgle J geaal) &5 3l il

(3 A el o) 53 8 Caal) by MUl ¢ Lgiaa (e Caggasl) o JS)) o Al e bl 8 Cand) 138 paa] (eSS

IR e L il apis &M‘s,_}.sg\yw@u@ﬁmJuzsxj\e\my%u\aujgdmwd\éﬁn
Aggadatl el all

Table of Contents

ACKNOWIEGUMENT ...t b bt I
L RO I
N o1 = Tod SRS P PR i
OAlRIAAll et e h et et e et et et e ebeebeebeere et et et e atestesteeaeaneas v
I 1o (o) O] 41 (=]] PRSP PRR \Y
S o) T U= SRR Vil
LISE OF TADIES ...ttt ne e IX
Chapter ONe: INFOUUCTIONc..oviiiiiiieiie bbbt bbb
1.1 BACKGIOUNT ...ttt bbbttt e ettt ettt 1
1.2 Problem STALEMENT........cciiiieiiiiie bbbttt e bbb sbesbenrenneas 2
IR T @ o 1=Tot 1= PSSR 2
1.4 ReSearch MethOTOIOQYcc.voviiiieiieiie ettt st e te e reenreenee e 2
1.5 Significance 0f the RESEAICHcccociviiiiii e 3
1.6 THeSiS OrganiZatiONc.ccviiiiieiie e ettt e ettt e et e s e s ta et e ereesbeetesneesreesreenee e 3
Chapter Two: Literature Review and Related WOrKS...........cccooeiiiii i
P 1 oo [0 od 1 o] o F TSP TOPTTRURPR 4
2.2 LITEIatUIE REVIBW. .. .uiitiieieiesie ettt et bbbttt s et e bbb s beebenneens 4
2.2.1 SOFtWAre QUANILYoveeeieciic et e s ra et e e sreenre e 5
2.2.2 Five Views of Software QUAIILYccoiieiiiiiiiiie e 5
2.2.3 QUANILY FACTOIS ...ttt bbbttt b bbbt 5
2.2.4 ROIE OF TESTING ... vttt bbbttt et bbbttt 6
2.2.5 Verification and Validation (V&V) ..ot s 7
2.2.6 The ODJECHIVES OF TESTINGc..eiviiieiiieiiiieie ettt bbb 7
N S O L P URRTR 7
2.2.8 OFACIE CONCEPLS ...ttt bbbt bbbttt e et b bbb eneens 7
2.2.9 BASIC CONCEPLS ...ttt sttt st bbbt s et et bbbt bbb et et e bbb b ne s 7
2.2.10 TYPES OF TESE OFACIEScviiiiiiiieciiee et bbb 8
Nt R 1= O] - Vo [SR 9
2.2.12 Introduction to Metamorphic Testing TEChNIQUEooveiiiiiiiiiiiieee s 9
2.2.12.1 MetamOrPRIC STEPS ...c.viiiiiiiiiiieiiee bbbttt 10

Vi

2.2.12 .2 MathematiCal PrOPEITIEScuiiieeieiieiie ettt 10

2.2.12 .3 Applications of MetamorphiC TESTINGccoivririiieieiece e 11
2.2.13 Other METNOGSceivieiecie ettt re e b neeeneennas 12
2.2.13.1 MOEl BASEA-TESTINGc.veviieiieiiieiieiet ettt 12
2.2.13.2 Heuristics and Oracles in SOftware TeSHING........ccccueieieriiiiiieiieeeeee e 12
2.2.14 EXPErimental STUAIESoouiiiiiiieiei et 12
2.3 REIAIEA WOTKS. ...ttt et bbbttt ettt bbb nbeere s 13
Chapter Three: Research MethodolOgyc.coviieiieiiiiciice e
TR oo [0 od 1 o] o USROS 19
I O] 110 | 2 TSSOSO 19
3.2.1 First Case Study (Trignometric FUNCLION)cciiviiiiie e 19
3.2.2 Second Case Study (Geometric Shape SIassification)............ccccovveviveveiiein i 19
3.2.3 Third Case Study (BOOKING WED SEIVICE)........cceiiiiieiieiieie ettt 20
B BIUNIT TOOL .ottt b ettt e ettt b et eseebe st e e enenre e 20
3.4 Description for the Steps of Proposed Method............ccccoeiiiiiiic i 20
3.4.1 Step one: Identifying the Metamorphic Relationcccccveviiieiiiie i 21
3.4.2 Step two: GENErating TESE CASEScveieiiiirieriesie ettt 21
3.4.3 Step three: EXECULING TEST CASESccviiiiiieiieiie sttt 21
3.4.4 Step Tour: VErifing OULPULScviiiiiieieie ettt 21
3.5 Implementing the Proposed Method on 3 Case StUdIEScccevvieereeieiiereee e 21
3.5.1 Case Studyl (Trignometric FUNCIION)ocuoiiiiiiiiiiieeie e 21
3.0, L 0 SEPL bbbt r e 21
35,12 SEEPZ ittt bbbt et et e bt et re et et re et et et nearens 22
T T T o X SRS 22
B0 LA STEPA .. bbbt 23
3.5.2 Case Study?2 (Gemotric Shape ClasSifiCation)..........cceveieieiiieiiniiseeee e 23
30,20 SBPL ettt 23
B.5.2.2 SEBP2 ..ttt R et ettt ettt reete bt nearees 23
TSI IS] =10 1 RS S PRSPPSO 24
B.5.2.4 SEEPA .ottt b ettt et re et et et e re e 25
3.5.3 Case Study3(BooKing WEeD SErviCe)coeiiiiiiiiiiiie st 25

R TC J0] (=] o OO PO TP UPRRTPTPURRPPN 25

Bi5.3.2 SHBPZ ittt bt R ReeRe et et et benrenreenearen 25
TSI T I 0 X SRRSO 25
B.5.3.4 STEPA .. 26
Chapter FOUT: RESUITS DISCUSSIONc.iitiiiiiiiiieieie sttt bbbt
g I Lo oo [0 Tox 1 o o ISR 27
4.2 First Case Study (Trignometric FUNCLION)c.coviiiiieiice e 27
N I B [0 1 5] o] TSSOSO PR 27
4.3 Second Case Study (Geometric Shape Classification)c.ccceevviveiivereiieseese e 28
4,31 DISCUSSION ...ttt sttt bbbt s e e et e bbbt e bt e s e s e b eb e bt bt e bt e bt e ne et e b et e ebenbenbeenes 29
4.4 Third Case study (BoOKING WED SEIVICE)eccuviieiieiiee et 29
I D 1ot U] o] o SRS S PP PP 29
4.5 GENEIAL HISCUSSIONvitiiieiiesie ettt sttt et e bbb b e b e e e et e b e nbesbenbeereanes 30
Chapter Fife: Conclusion and ReCOmMMENdations...........c.coveiueiieiierieiieieese e
TR oo (014 o] o OSSPSR 31
ST O] o [0 [S]] o RSP RRR PP PRTRRN 31
5.3 RECOMMENAALIONS ... e vieieitie ittt et te st e sreeste e esreeste e s e sseesbeaneeaneesneeneenneenns 31
[E =T =] 0TSSR 33

vii

List of Figures:

Figure 1.1 The Steps of the RESEAICHooiiiiiie e 2
Figure 2.1 Static and Dynamic Test in V-MOelcoooi i 6
Figure 2.2 BasiC CONCEPLS OF TESTINGeivieiieieieieieiese e 8
Figure 2.3 TYPES OF OFACIEoeiiiiie e 8
Figure 2.4 The Basic Idea of Pseudo-Oracles in (V&V) ...ccvoiiiiiiiiiiieieee e 9
Figure 2.5 Relationships between Several Metamorphic Testing Conceptionsc.cccccveeee. 10
Figure 2.6 The Percentage of using MT in Different DOmMains...........cccoovvviiiicieienencsesee 11
Figure 3.1 JUNIT 5 AICITECTUIEoviiiiiiiiiiice e 20
Figure 3.2 TeSt Case GENEIATION...........oiiiiiieieieie ittt 22
Figure 3.3 Sin(x) Test Case IMpIemMentationccooieiiiieie e 22
Figure 3.4 Sin(x) Test Suite IMPIEMENtAtION.............ccciiiiiiieiece e 23
Figure 3.5 Triangle Test Case IMplementation............ccccooveiieieiic i 24
Figure 3.6 Triangle Test Suite IMplemMentationcccoooeiiiiecie e 24
Figure 3.7 Booking Web Service Test Case Implementation..............ccccccovveveereiieieesie e 26
Figure 3.8 Booking Web Service Test Suite Implementationcccccccvveveereiieviece e 26
Figure 4.1 Test Case Implemntation Chart for SIN(X)ccceeiieiiiiieiiecccecceee e 27
Figure 4.2 Test Suite Implementation Chart for SIN(X)cccoveriiiiiiieiiceceee e 27
Figure 4.3 Test Case Implementation Chart for Triangle............ccccooiviiiiicieece e 27
Figure 4.4 Test Suite Implementation Chart for Triangle...........cccooveiveiiiiiiece e 28
Figure 4.5 Test Case Implementation Chart when Fialure Occurredcccccovveiiiiiiicnnnnn 28
Figure 4.6 Test Case Implementation Chart for Booking Website..............ccoovviiiieneniicnnnee 29
Figure 4.7 Test Suite Implementation Chart for Booking Websitec.ccooviiiiiiiiiiiiiien 29

X

List of
Table 2.1 McCall’s Quality Factors and Criteria

Table 2.2 Classes of Metamorphic Properties ...
Table 2.3 The Summary of Related Works

Tables:

Chapter One
Introduction

1.1 Background

To improve the quality of the software product as general the software developers conducting
several testing process. The importance of testing lies in assuring quality of software for the
purpose of stakeholder’s satisfaction. According to some studies the cost of testing represents

40% of total cost of development software project (money-effort-time).

To ensure the quality of the software, modern methods have been introduced to enhance the

efficiency of software testing, reducing errors, increasing efficiency and reliability.

Software testing is a proven mechanism to assure the quality of software by revealing several
types of errors like design errors, specification errors, code errors and input errors etc. Various
testing methodologies have been introduced in the area of testing to assure the software quality

and to identify the different types of software errors.

Metamorphic testing technique used to enhancing the quality of software through alleviating

oracle problem.

In order to determine the expected results from the selected test cases, it is necessary to use the
proposed method to overcome the oracle problem. The oracle test is sometimes not available and
sometimes it is available, but the process is very expensive and difficult to implement.

Metamorphic testing it has own function known as metamorphic functional relations which in its
role generates follow-up test cases and verify the outputs automatically to address oracle
problem. Finally, this study comes to clarify an important aspect in software testing by using
modern methods instead of traditional methods in order to improve the quality of the software
product by reducing errors and increasing reliability. This study will provide reasonable results
as a solution to the problem under study.

1.2 Problem Statement

The oracle problem is the difficulty of determining or specifying the expected outcomes of
selected test cases. A test oracle may not always be available, or it may be available but it is too
expensive and difficult to apply. There is the need for proposing an approach to reduce the effect

of oracle problem during testing process.

1.30bjectives

The objectives of the thesis are analyzing the existing methods to reveal the gap of unavailability
for solution of oracle problem, proposing an approach to enhance the quality testing to solve the
oracle problem and verify the proposed approach by applying it in selected case studies.

1.4 Research Methodology

The experimental method is used in the field of natural sciences as general, so it is used in the
field of computer science to ensure the validity of the results of the processes under testing. In
this thesis the researcher tried to use experimental method, and fitgurel.1 explains the steps of

the research to achieve the objectives of the study.

Literature review
for existing method

v

Analysis

Proposing the
approach

Description steps of
proposing method

v

Verify the method
with 3 case studies

Fitgurel.1: The Steps of the Research

1.5 Significance of the research

The importance of this thesis lies in overcoming the oracle problem or alleviates it, thus the
research contributes in guiding researchers to use the metamorphic method because of its great

advantages. As well as evaluate the effect of metamorphic method through empirical studies.
1.6 Thesis Organization

The thesis organized as follow: chapter one contains research background, research problem,
motivation, research objectives, research methodology., significance of the research,
contribution of research , and thesis organization.

Literature has been reviewed in chapter two, where many topics explored in details such
as quality, testing, the Oracle problem and the metamorphic testing. As well as reviewing three
case studies in some details. The chapter concluded with a review of fifteen studies that have a
direct relationship to the topic of study.

Chapter three describes the methodology followed this research, which it has started by
introduction, steps of metamorphic to solve the problem under study, the tool used to implement
the selected case studies.

The result has been discussed in chapter four. It has started with introduction, then chart
analysis for each results and result discussion for each implementation.

Introduction, conclusions and recommendations of the research have been provided in

chapter five.

Chapter Tow
Literature review and related works

2.1 Introduction

The chapter explores two main topics; the first one is about literature review and second is
related works, in term of first topic many topics have been explored such as software quality,
quality factors, objectives of testing as general, oracle problem as well metamorphic testing

technique.

In term of second topic; related works an exploration about fifteen studies which related to the
oracle problem and test case generation and how to alleviate them by using proposed

methodology.

2.2 Literature review

Software testing is a mainstream approach to software quality assurance and verification.
Metamorphic testing is an approach to both test case generation and test result verification[1].

A metamorphic testing method has been proposed to test programs without the involvement of
an oracle. It employs properties of the target function, known as metamorphic relations, to
generate follow-up test cases and verify the outputs automatically. An “oracle” in software
testing is a procedure by which testers can decide whether the output of the program under
testing is correct. In some situations, however, the oracle is not available or too difficult to apply.
This is known as the “oracle problem”. In other situations, the oracle is often the human tester
who checks the testing result manually. The manual prediction and verification of program

output greatly decreases the efficiency and increases the cost of testing[2].

Let p be a program implementing a specification f. Let D represent the input domain. Usually,
it is impossible to do exhaustive testing to check whether p(t) = f(t) vt € D. As a result, a great
amount of research in the literature of software testing has been devoted to the development of
test case selection strategies, aiming at selecting those test cases that have a higher chance of
detecting a failure. Let T = {t1, t2, . . ., tn} < D be the set of test cases generated according to

some test case selection strategy, where n > 1. Running the program on these test cases, the tester

will check the outputs p(tl), p(t2), . . ., p(tn) against the expected results f(t1), f(t2), . . ., f(tn),
respectively. If it is found that p(ti) 6= f(ti) for some i, where 1 <1i <n, then we say a “failure” is
revealed and ti is a failure-causing input. Otherwise ti is a successful test case. The procedure
through which the tester can decide whether p(ti) = f(ti) is called an oracle . For instance, let f(x,
y) = xxy, the test case ti be {x = 3.2, y = 4.5}, and p(ti) = 14.4. The tester can verify this output
either by manually calculating the product of 3.2x4.5 or using the inverse function to check
whether 14.4/4.5 = 3.2, where the inverse can be done either manually or using a correct division
program if available[3].

2.2.1 Software quality

Quality is a complex concept—it means different things to different people, and it is highly
context dependent[4].

2.2.2 Five Views of Software Quality

There are five views of software quality, the first is transcendental View, and it is imagines
quality as something that can be recognized but is difficult to define. The transcendental view is
not specific to software quality alone but has been applied in other complex areas of everyday
life. The second is user View; it perceives quality as fitness for purpose. According to this view,
while evaluating the quality of a product, one must ask the key question: “Does the product
satisfy user needs and expectations. The third is Manufacturing View; quality is understood as
conformance to the specification. The quality level of a product is determined by the extent to
which the product meets its specifications. The fourth is Product View; In this case, quality is
viewed as tied to the inherent characteristics of the product. A product’s inherent characteristics,
that is, internal qualities, determine its external qualities. The fifth is VValue-Based View; Quality,

in this perspective, depends on the amount a customer is willing to pay for it[4].

2.2.3 Quality factors

There are many quality factors in software engineering but in this thesis some factors explained
in the bellow table 2.1 which explains factors such as correctness, reliability, efficiency and
integrity etc...

Table 2.1: McCall’s Quality Factors and Criteria

Quality Factors

Definitions

Correctness The extent to which a program satisfies its specifications and fulfills the user’s
mission objectives.

Reliability The extent to which a program can be expected to perform its intended
function with required precision.

Efficiency The amount of computing resources and code required by a program to
perform a function.

Integrity The extent to which access to software or data by unauthorized persons can be
controlled.

Usability The effort required to learn, operate, prepare input, and interpret output of a

program.

Maintainability

The effort required to locate and fix a defect in an operational program.

Testability The effort required to test a program to ensure that it performs its intended
functions.

Flexibility The effort required to modify an operational program.

Portability The effort required to transfer a program from one hardware and/or software
environment to another.

Reusability The extent to which parts of a software system can be reused in other

applications.

Interoperability

The effort required to couple one system with another

2.2.4 Role of Testing

Software quality assessments is divided into two categories, the first one is static analysis it

examines the code and reasons over all behaviors that might arise during run time[4]. The second

is dynamic analysis which means actual program execution to expose possible program failure.

Bellow figure 2.1 explains static and dynamic test in VV-Model.

Business

. Acceptance

Requirements Testing
: ‘7‘ System
Interface i
Specifications ‘ ‘ Integfa!non
S} Testing
System System
Xy Specifications ‘ . Testing é”
% P
@‘/ i Component T
5 Design @ ! <
C Specification . -. Integration @
% Testing
Component Component
Specification Testing

® @
¥

Source
Code

Object
Code

Figure 2.1 : static and dynamic test in V-Model[5]

2.2.5 Verification and Validation (V&V)

Verification means evaluation of software system that help in determining whether the product

of a given development phases satisfy the requirements established before the start of that phase.

Validation means evaluation of software system that help in determining whether the product

meets its intended use[4].

2.2.6 The Objectives of Testing

There are four objectives of testing the first is it does work; the programmer may want to test
whether or not the unit works in normal circumstances. The programmer gets much confidence if
the unit works to his or her satisfaction. The second objective is it does not work; here more tests
are conducted with the objective of finding faults in the unit (or the system). Here, the idea is to
try to make the unit (or the system) fail. The third objective is to reduce the risk of failures so a
higher level objective of performing tests is to bring down the risk of failing to an acceptable

level. The fourth objective is to reduce the cost of testing[4].

2.2.7 Test Case

Test case is a simple pair of <input, expected outcome> so an outcome of program execution
may include value produced by the program, State Change and a sequence of values which must

be interpreted together for the outcome to be valid[4].

According to IEEE standard test case is a set of inputs, execution conditions, and a pass/fail

criterion.

2.2.8 Oracle concepts

An oracle is a procedure that determines what the correct behavior of a system should be for all

input stimuli with which we wish to subject the system under test[6].

2.2.9 Basic concepts

Test case is a set of test inputs, execution conditions, and expected results developed for a

particular objective. While test oracle is a principle or mechanism that helps you decide whether

the program passed the test. Verdict is a result (pass / fail / error / inconclusive...)[7]. Figure 2.2

explains basic concepts of testing.

Specification,
requirements

Test

Test cases .
execution

Figure 2.2: basic concepts of testing

2.2.10 Types of test oracles

Verdicts

There are four types of test oracle the first is Specified, this type of test oracle includes

humans, textual specification and models (FSM, UML...). The second is implicit, this type of

test oracle includes exceptions, crashes, security problems and robustness testing and fuzzing.

The third is derived this type of test oracle includes previous program versions, different

implementations (N-version programming) and assumptions, validity checks, invertible

function[7].

The forth is handling the lack of oracles: in many cases no such artifact exists (i.e., there is no

automated oracle D) and as such, a human tester is required to verify whether software behavior

is correct given some stimuli[8]. Figure 2.3 explains the oracle types.

Specified Oracles

y = 0. 188510733

m R7-0ssan Derived Oracles ¥ =032
£ R®=0.50182
gt 1]
i 7111111 — |
3 ___--.-:—_'___:._:;JllIIIIIIIIIIIIIIIIll g o ___-._-._-_f_-:'___'__::'_':-::llllllll]IIiiI]
CEEEEEE PER PR R A PR LR CEEREEEEE EECER S PR
HaH = o 1E5E1 H =0 F99Fxi40T
8 Implicit Oracles y&znf&gﬂs . Handling the lack of oracles ¥ R = 0.8871
‘%m | it El :
s 12 .__J-z-'_"i‘:_-;_-:-;.l.lllIIIIIIIII g 0 I e ;_-Ill_l_l_l_l
E8FFETfEf e E EEEEEEEEEE FEETFFEEsEhEEdegEEEEEEE:

R A A R A

Figure 2.3: types of oracle

°
8

EFR ERRAAAAS A SR =AM o

2.2.11Test Oracle

Is a mechanism, different from the program itself that can be used to test the accuracy of a
program’s output for test cases? Conceptually, we can consider testing a process in which test
cases are given for testing and the program under test. The output of the two then compares to
determine whether the program behaves correctly for test cases[9]. The figure 2.4 explains the

basic idea of pseudo-oracles in (V&V).

Systarmn under WEW

\ Treat as

pseudo-oracle
for each other

Input fconfig.
transformation
leveraging
metamorphic

property {} J(gx))
N

System under WaY

Figure 2.4 : the basic idea of pseudo-oracles in (V&V) [10]

2.2.12 Introduction to metamorphic testing technique

Metamorphic testing has been suggested by Chen et al. as a way of testing applications that do
not have test oracles[11] ensuring that the software under test exhibits its expected “metamorphic

properties.

Metamorphic testing (MT) has been developed to alleviate the oracle problem. Instead of
focusing on the correctness of each individual output, MT checks the program against selected
metamorphic relations (MRs). MR is a necessary property of the target function, and is a relation
that involves multiple executions of the target function. MRs is identified based on knowledge of
the problem domain, such as known properties of the target function/system or knowledge about
the algorithms to be implemented. Each metamorphic test involves two or more executions of the
program under test[12]. For ease of presentation, unless stated otherwise, we assume that each
metamorphic test involves only two executions; the first execution, which is called the source
execution, with its input called the source test case; and the next execution, called the follow-up
execution with its input called the follow-up test case. If the outcomes of a source and its follow-

up executions are found to violate an MR, the software under test must contain a fault.

Figure 2.5 explains relationships between several metamorphic testing conceptions

Input space I Output space O

(Origina] test caseg o - ->(Test outputs)

@ollow- l;[; test caseg T e e A A S e N R s)(Test outputs)

Figure 2.5: relationships between several metamorphic testing conceptions
2.2.12.1 Metamorphic steps

The basic steps for implementing metamorphic testing are as follows:

1- Some necessary properties of the software under test are identified (normally extracted from
the specifications), and represented in the form of relations, referred to as metamorphic relations.

Each metamorphic relation involves multiple test case inputs and their corresponding outputs.

2- Some test cases, referred to as the source test cases, are generated using traditional test case

selection strategies.

3- New test cases, called the follow-up test cases, are constructed from the source test cases
according to the metamorphic relations.

4- Both source and follow-up test cases are applied to the software under test.

5- The test case outputs are checked against the relevant metamorphic relations to confirm
whether the relations are satisfied, or have been violated[13].

2.2.12 .2 Mathematical Properties

Many programs without test oracles rely on mathematical functions (i.e., those that take
numerical input and/or produce numerical output), since the point of such programs is to
implement an algorithm and perform calculations, the results of which cannot be known in

advance; if they could, the program would not be necessary[11].

10

The classification of metamorphic properties as explained in the table 2.2.

Table 2.2: Classes of metamorphic properties

Additive Increase (or decrease) numerical values by a constant
Multiplicative Multiply numerical values by a constant

Permutative Permute the order of elements in a set

Invertive Take the inverse of each element in a set

Inclusive Add a new element to a set

Exclusive Remove an element from a set

Compositional Create a set from some number of smaller sets

2.2.12 .3 Applications of metamorphic testing

Metamorphic testing is not limited to numerical programs only. In fact, metamorphic relations

can be identified in almost every area like:

- Web services - Computer graphics - Embedded system simulations - Modeling
- Numerical analysis - Machine learning - Decision support - Bioinformatics
- Components - Compilers

The figure 2.6 bellow explains the percentage of MT using in different domains.

Autonomous vehicles
= Components
Compilers 3% 2%
Variability and 4%'
decision support
5% §
Numerical programs
5% &

Others: Adobe, NASA,
cybersecurity...
2% %

Web services and
applications

14% §

Computer graphics
11% §

Figure 2.6: the percentage of using MT in different domains

11

2.2.13 other methods

Although metamorphic testing method has been adopted in different domains as a method of
effective testing, there are other methods such model-based testing and Heuristics testing.
Several researches confirmed the effectiveness of metamorphic testing than other testing

methodologies.

2.2.13. 1 Model based-testing

Model based testing is a software testing technique where run time behavior of software under
test is checked against predictions made by a model. A model is a description of a system's
behavior. Behavior can be described in terms of input sequences, actions, conditions, output and

flow of data from input to output.

2.2.13. 2 Heuristics and Oracles in Software Testing

When it comes to software testing, Oracles could also be the specifications and requirements of
the software we test. So if there is a difference between oracles and the actual result, it is a bug
because there is a deviation in the requirement or the expectations. Heuristics are the different

approaches we apply to learn and test the software and its associated systems.

2.2.14 Experimental studies

To ensure the effectiveness of the metamorphic testing technique, 3 case studies have been
applied to evaluate and verify the proposed method by compared to the traditional Oracle

method.

Although there are a wide range of applications of the metamorphic testing method, the thesis
limited to studying only three of the fields as a case study, the first is on trigonometric function
sin(x), second case study is on the field of geometric shapes(triangle classification) and the third
case study is on booking web services, which is specifically hotel reservation through the

internet.

12

2.3 Related works

Chen, Y. Wang, Y. Guo, and M. Jiang in [14] proposed an MT approach for event sequences,
which can be used to systematically test applications with rich business processes. They
conducted three case studies in different domains to illustrate their approach. The experimental
results demonstrate the feasibility and effectiveness of the approach. The results also confirm the

previous findings that good MRs is those that make the executions as different as possible.

K. Yong in [15] aimed to address the cost problem in metamorphic testing by analyzing the
various cost incurred in the metamorphic testing problems and their functional components.
Metamorphic testing technique has been proposed as an effective testing approach to detect

failures in software with oracle problem.

W. K. Chan et al [16] argued that extends metamorphic testing into a user-oriented approach
to software verification, validation and quality assessment, and conduct large scale empirical
studies with a major web search engines: Google, Bings, and Chinese Bing, and Baidu. The
objectives of the research were alleviating the oracle problem and challenges surrounding a lack
of specifications when verifying, validating, and evaluating large and complex software system.
The empirical results showed that, firstly the approach can effectively detect various kinds of
failures, secondly found that, the operational profiles have a significant impact on the quality of
search.

W. K. Chan, T. Y. Chen, H. Lu, and S. S. Yau in[17] argued that During the testing of context-
sensitive middleware-based software, the middleware identifies the current situation and invokes
the appropriate functions of the application. Since the middleware remains active and the
situation might continue to evolve, conclusion of some test cases may not be easily identified.
The research aimed to alleviate the above problems by making use a special kind of situation
called checkpoints.

The research proposed to generate test cases that start at a checkpoint and end at another.

Based on a metamorphic approach they check the results of the test case to detect any
contravention of such relations.

C. Aruna and R. S. R. Prasad in[18] introduced generic framework as metamorphic testing

automation framework to address the selection of compatible base test suite, availability and

13

applicability analysis of metamorphic relation(MRs), automation metamorphic testing (MT)
execution and follow up test cases generation problem.

This framework is an integrated environment with feasible metamorphic testing automation
solutions to reveal the hidden bugs’ information from software application.

Finally experimental results of metamorphic testing automation framework (MFAT) framework
proven that, instead of using the individual testing methodologies separately, they can use them
with MF as MFAT framework to identify the hidden bugs which may cause to big failure in
future.

G. Dong, et al [19] argued that Two of the key challenges in software testing are the
automated generation of test cases and the identification of failures by checking test output, these
problem addressed by metamorphic testing technique.

The research aimed to present the technique and the results of a novel survey outlining its main
trends and present some of successful applications to perform MT, they need to first identify
some metamorphic relation (MRs) which are necessary properties among the inputs and outputs
of multiple execution of the intended program functionality.
Finally there exist strong evidence of a rapidly growing interest in this topic from research
community and industry.
C. Murphy, G. Kaiser, and L. Hu in [20] argued that Making machine learning applications
dependable presents a particular challenge because conventional software testing process does
not always apply. It’s difficult to detect errors, faults, and defects.
The research used metamorphic approach to determine relationships that can be used to
transform an input such that its new output will be predictable.
The research explored six metamorphic properties that may exist in many machine learning
applications like additive, multiplicative, permutative, invertive, inclusive, and exclusive.
Finally the research found that metamorphic testing to be an efficient approach to test machine
learning applications.

T. Y. Chen, F. Kuo, R. Merkel, and W. K. Tam in [21] argued that network modeling is a
modeling technique for capacity planning studies of computer and communication system.
The main problem of the research was difficulty to know from computed outputs whether the

computation of the modeling software is correct.

14

The research proposed metamorphic testing technique to testing queuing network modeling
through a set of testing experiments in the java modeling tools.
The research results showed that different mutants were killed by different metamorphic relation,
even though the source test cases were the same in each case.

J. Dunagan, et al [22] argued that Embedded system is the system where software is
embedded inside hardware or electronic device to perform some function.
The problem of the research was to detect software failures of the wireless embedded system.
The research proposed metamorphic testing technique to address above problem.
The results showed that careful design of test environments and selection of system properties
will enable us to trace back the cause of failures and help in fault diagnosis and debugging,
moreover metamorphic testing technique enhancing quality of embedded software and quality of
the wireless metering system.
W. K. Chan, S. C. Cheung8 and Karl R. P. H. Leung in [23] argued that Testing applications in
service oriented architecture environments needs to deal with issues like the unknown
communication partners until the service discovery, the imprecise black-box information of
software components, and the potential existence of non-identical implementation of the same
service.
The research aimed to exploit the benefits of the software oriented architecture (SOA)
environments and metamorphic testing technique to alleviate issues.
The methodology of (MT) is support tester to apply the test cases for the unit test as the original
test case for the integration test.

L. Xu, et al [24] argued that The automated extraction of information from feature models is a
complex task that involves numerous analyses of operations, techniques and tools.
The research aimed to use metamorphic testing to automate the generation of test data for feature
model analysis tools to overcoming the oracle problem.
An automated test data generator is presented and evaluated to show the feasibility of this
approach.
The research presented a set of relations (so-called metamorphic relations) between feature
models and the set of neighboring FMs together with their corresponding set of products are

automatically generated and used for testing multiple analyses.

15

Complex FMs representing millions of products can be efficiently created by applying this
process iteratively.

The evaluation results using mutation testing and real faults reveal that most faults can be
automatically detected within a few second.

The results showed that the approach of metamorphic testing in the domain of automated
analysis of feature models is efficient and effective in detecting most faults in a few seconds
without the need for a human oracle.

A. Goffi in [25] argued that in software testing the role of test oracles is crucial; the quality of
test oracles directly affects the effectiveness of the testing activity available techniques for
generating test oracle are either effective but expensive or inexpensive but ineffective.

The research focused on the generation of cost-effective test oracles, multiple execution
sequences perform the same, or almost the same action, this phenomenon is called intrinsic
redundancy of software systems.

The research aimed to design and develop completely automated technique to generate test
oracles by exploiting the intrinsic redundancy freely available on the software.

The recent survey classified test oracles in three categories: specified oracle, implicit oracle, and
derived oracles.

Some challenges faced the research are: finding a suitable way to encode the equivalence
sequences, executing the equivalence sequences, and equivalence check.

J. Ding, et al [26] reported on a novel use of metamorphic relations in machine learning, the
author uses MR for the augmentation of the machine learning algorithms, and also reported on
how MRs can enable enhancement to an image classification problem of image containing
hidden visual markers (art codes).

Two different categories of images, and two MRs based on separation and conclusion was used
to improve the performance of the classifier.

Experimental results showed that the MR-augmented classifier achieves better performance than
the original classifier algorithms.

Finally it is very important to investigate this new approach direction including more case studies
examining application of MRs to other well-known machine learning problems, such as face and

object detection.

16

D. Peters and D. L. Parnas in [27], the researcher argued that an oracle is determined whether or
not the results of a test execution are correct.
The research discussed ongoing work to produce a tool that will generate a test oracle from
formal program documentation.
Tabular expressions are used to improve readability so that formal documentation can replace
conventional documentations.
The research aimed at developing an automated test oracle generator tool that given a relational
program specification.
The research concluded to that the generation of useful test oracle from relational program
documentation id both feasible and practical.

J. Ding, T. Wu, J. Q. Lu, and X. Hu,in [28] argued that the metamorphic testing is an
effective technique for system that do not have test oracle.
The research proposed self-checked metamorphic testing approach which integrates structural
testing into metamorphic testing to detect subtle defects in a system implementation.
This approach, metamorphic testing results are further verified by test coverage information,
which is automatically produced during the metamorphic testing, so the effectiveness of
approach has been investigated through testing an image processing program.
In addition to checking the MRs the test coverage of function statement and definition use are
automatically checked during the testing.
The results of the case study showed that checking the test coverage of metamorphic testing is an
effective mechanism to insure the quality of MT. The flowing table 2.3 explains summary of
related works. According to the summary 11 researches had have oracle problem solved by using
metamorphic method while 3 studies had have test case generation problem and used (MT) to

overcome this problem.

17

Table 2.3: Summary of related works

References Oracle problem Solution MT Year
J. Chenetal in[14] Yes Yes Yes 2019
K. Yong in [15] Yes Yes Yes 2015
W. K. Chan et al [16] Yes Alleviated Yes 2015
W. K. Chan et al in[17] Yes Alleviated Yes 2005
C. Arunaet al [18] Yes Yes Yes 2017
G. Dong, et al [19] Test case generation | Survey paper Yes 2018
C. Murphy et al in [20] Yes Yes Yes -

J. Dunagan et al [22] Yes Yes Yes 2009 - 2011
S.C.Cetal In[23] Yes Yes Yes -

L. Xu et al [24] Test case generation | Yes Yes -

A. Goffi et al in [25] Yes Yes Yes -

J. Ding et al [26] Yes Yes Yes 2018
D. Peters et al [27] Test case generation | Yes Yes -

J. Ding et al in [28] Yes Yes Yes 2017

18

Chapter Three
Research Methodology

3.1 Introduction

In this chapter the researcher tried to explain the work of metamorphic testing technique, to get
the intended results, and verify the performance of the method by explaining the steps of solution

for selected case studies.
3.2 Case studies

For each case study metamorphic file has been created (java file) to pass it to JUNIT tool for

testing either each test case pass or fail.
3.2.1 First case study (Trigonometric Function)

In order to find the value of the function sin (x), array created to store elements which generated
randomly. These elements passed to the function as inputs to get the outputs each time and the
validation of those outputs through the mechanism of the metamorphic testing method, and this
method does not deal with the single execution but with the multiple execution of the program

under test. These parameters which passed to the function are a set of test cases.
3.2.2 Second case study (Geometric Shapes Classification)

In the second case study, the idea of triangle classification program is it has consist of input as
three natural numbers x, y, and z as the length of the side of a triangle. Its function is to classify
triangle into equilateral (all sides the same length), or isosceles (two the same), or scalene (none
the same), or to determine that the input does not represent an actual triangle when the summary
of two parameters is not greater than the third. The following are the seed test cases.

Test case t1: Input: (x=4, y=4, z=4), Expected output: Equilateral.

* Test case t2: Input: (x=4, y=4, z=6), Expected output: Isosceles.

* Test case t3: Input: (x=4, y=6, z=8), Expected output: Scalene.

* Test case t4: Input: (x=2, y=5, z=8), Expected output: Not a triangle

19

3.2.3 Third case study (Booking Web Service)

In this case study the idea of the program is enabling users to find potential lodgings according to
their preferences. Firstly the program creates booking query object which includes destination
room and setting beginning and ending of date then setting adult’s number. Secondly the
program creates follow up test case through setting budget and currency. Finally the program
specifies metamorphic relations assertion. Metamorphic testing method in this case generate test
case, execute them verifies the output automatically.

3.3 JUNIT tool

Unit testing is an important part in Test Driven Development (TDD) as it helps finding
problems in the code as early as possible, especially when you make changes to the existing code
you can run unit tests again to make sure that the changes do not break the application
(regression). JUNIT is one of the most popular unit testing frameworks for Java development.
JUNIT is supported by almost any Java IDEs and build tools, thus it is the default choice of
programmers to test their code. Eclipse has very good support for JUNIT - the IDE is shipped
with JUNIT as its default testing library. Thus writing and running unit tests with JUNIT in
Eclipse is quick, easy and productive[29]. The figure 3.1 explains JUNIT 5 architecture.

Your tests

Build tools
TestEngine interface
e

Figure 3.1: JUNIT 5 architecture

w2
D

. —
=21
el

(NN}

Custom engine

Frameworks

3.4 Description for the steps of proposed method
This section explored the steps of proposed method in details and how the proposed method

enables the software developers (testers) to confirm the correctness of (MT).

3.4.1 Step one: identifying the metamorphic relation

In order to identifying metamorphic relation for software under test, there is the need for user
specification. So metamorphic relation includes test suit inputs and their corresponding outputs.

3.4.2 Step two: test cases generating

The test case is divided into two types, source test cases which are generated using traditional
test case selection strategies and follow-up test cases it is constructed from the source test cases

according to the metamorphic relations.
3.4.3 Step three: test cases execution

Both source and follow-up test cases are applied to the software under test to know if test pass or
fail.

3.4.4 Step four: outputs verifying

The test case outputs are checked against the relevant metamorphic relations to confirm whether
the relations are satisfied, or have been violated. Therefor if expected outputs equal to actual

value the test is pass otherwise the test fail.
3.5 Implementing the proposed method steps on 3 case studies

This section explored in details how to implement proposed method steps on 3 case studies to

know the effectiveness of (MT).

3.5.1 Case study one (Trigonometric Function)

In this case study steps of proposed method have been implemented and the results showed.
3.5.1.1 Step1l

When stepl has been implemented on case studyl the metamorphic relation identified according

to problem domain and user specification.

21

3.5.1.2 Step?2

When step2 has been implemented on case studyl the test cases generated according to test case

selection strategies. The figure 3.2 bellow explains test case generation.

& project /sre/compSin/Csingava - Eclipse SD| &8 New JUnit Test Case [}
File Edit Source Refactor MNavigate Search
M- @i w it - O~ G~ 8 @ @ JUNIt Test Case E
|# Package Ex.. == JulUnit — O [Csinjava| SSIECT the name of the new JUnit test case. You have the options to specify -
o - - the class under test and on the next page, to select methods to be tested.
<@ B e § 1 pack
~ 12 sin 2 impol (O New JUnit 3 test () New JUnit 4 test @) New JUnit Jupiter test
; _ 3
= JRE System Library [JavaSE-1 e publy o e folder | sin/src | e
~ B src
5 Package: compsin Browse.
. # compSin Z [
» [module-info.java 7e
=i JUnit 5 8 Name: | First_test_case] |
Superclass: | javatang.object | Browse...

Which method stubs would you like to create?
[setUpBeforeClass0) [] tearDownAfterClassO
[1setupn []tearDown(
CONSrUCTOr
Do you want to add comments? (Configure templates and default value here)
[] Generate comments

Class under test: | Browse..
= Probilem:
<terminated
4
@ < Back Next -

Figure 3.2: test case generation

3.5.1.3 Step3

When step3 of proposed method has been implemented on case studyl the results showed that no

errors or failures as showed in figure 3.3: sin(x) test case implementation.

12 Package Explorer v JUnit =0 - 1) AllTestsjava 1) BookingSearchTestTestjava) Csinjava ¢ 1) CsinTestjava
PSRl e w L~ 1 package compSin;

Finished after 0.265 seconds 2
import java.util.Random;
Runs: 1/1 @ Errors: O O Failures: O a
e} % public class Csin {

6 public class sinbul extends Metamorphic {
~ il CsinTest [Runner: JUnit 5] (0.000 s) Random randomGenerator = new Random();

&l testGet (0.000 5) 8 public double[] asin;
@ public void GenerateRandomValuekD/(
| 10 asin = new double[2600];

11 for (int i«0; i<2000;i++){

|| 12 asin(il=randomGenerator.nextDouble();

3

> public void mutationOp(double[] seed){

16 int num = seed.length;

17 double[] mutant = new double[num];

18 for (int i.0; i<num; iee){

19 mutant[i]= Math.PX - seed[i];

20 Assertion((Math.abs(Math.sin(seced[1])-
21 Math.sin(mutant[i])) <« ©.0000000001),
22 “"Metamorphic Rule: Sin(x) = Sin(pi - x).");
¥s

3

B Failure Trace @ e

private void Assertion(boolean b, String string) (
/7 TODO Auto-genecrated method stub

3

Figure 3.3: sin(x) test case implementation
The implementation of test suite in figure 4.3 sin(x)

22

o
I

1 Package Explover v MUnit 12 & [AlMestsjava &0 1 BookingSearchlestlestizva) Csinjava.) CainTstjava
figlessiriln package search;

Finished after 0.17 seconds ¢
J#inport org. junit.runner.RunHith;/]

Runs: 33 Okrors 0 OFailures 0 6 ¢

D GRuckith(Suite.class)
§ BSuiteClasses({ BookingSearchTestTest.class, BookingSearchTestTest2.class, BookingSearchTestTest3.cl

v i Aless (Rumer. it 5 0000 9 public class AllTests {
v g searchBookingSearchTestlest (0000s) 10

& testSearchMetamorphicTest (0000s) 11 }
v i) searchBookingSearchTestTest2 (0.000 ¢ 1

6 testSearchMetamorphicTest (0000
v i searchBookingSearchTestTest3 (0.000 5

& testSearchMetamorphicTest (0000

Figure 3.4: test suite sin(x) implementation
3.5.1.4 Step4

When step4 has been implemented on case studyl the results of testing checked according to

metamorphic rules.
3.5.2 Case study2 (Geometric Shapes Classification)

In this case study steps of proposed method have been implemented and the results showed for

each steps clarified.
3.5.2.1 Stepl

When stepl of proposed method has been implemented on case study2 the metamorphic relation

identified according to problem domain and user specification, and this steps extracted manually.
3.5.2.2 Step?2

When step2 of proposed method has been implemented on case study2, test cases have been
generated according to test case selection strategies, and there are two types of test cases the first
one is source test case and the second is follow up test case. Figure 3.2 explained test case

generation.

23

3.5.2.3 Step3

When step3 of proposed method has been implemented on case study2, the test case inputs
implemented and showed results, no errors or failures occurred and this is strong evident that the
proposed method more effective to detect or reveal different types of errors, therefor enhancing

the quality of software under test. Figure 3.5 explains triangle test case implementation.

2 Package Explorer d¥ JUnit = = # (@ TriangleTest1 java = =0
e B2 m i~ i 01 package triangle; &
Finishied after 0051 seconds 2 public class TriangleTestl extends Metamorphic {
15 @Seed
Runs: 3/3 O Erors O O Failures: O 4 public trisngle t1;
| 5% @eed

v tnl triangbe.TestCase1 [Runner; JUnit 4] (0.000 5)
&1 testiPy (0,000 5] & public triangle t3;
il 1estWOOY (0,000 & 9= gseed
& testMalceSeed (1000 5 18 public triangle t4;
11 @Makedeed
12 public void makeSecd(){

& public triangle t2;
@Seed

13 1 = new triangle(d,d,4);
14 t2 = new trisngle(d,4,6);
15 t3 = new triangle(d,6,8);
16 td = new trisngle(2,5,8);
17}
18=@Mutat ion
19 public void IPV(triangle seed){
20 System.ewt.println{™---- Mutation IVPon <"
21+ seed.x & "% & seed.y + 7,7 & seed.z 4™)5
27 triangle mutant = new triangle(2,2,2);
23 mutant, xsseed. x+l;
= Failure Trace B9 5T 24 mutant.y=seed.y;
25 mutant.z=seed.z;
6 mutant.Classify();
27 AF (seed.TriangleType ==
2

7 TriangleType.eguilaterial)}{Assertion({ (mutant,TriangleType == TriangleType
& 4Ff (seed TriangleType ==
-

TriangleType . scalene}{ Assertion(({ (mutant TriangleType !s TriangleType.equ ¥
-

Figure 3.5: triangle test case implementation

The implementation of test suits the result of testing as follow in figure 3.6

> B triangle AllTests Runer: JUnit 4] (0000 §

i Package Explorer o JUnit 22 “ 8 (1) AllTestsjava 2
B @0 ®Ev i 01 package triangle;
Finished after 0.04 seconds ! R
; 3*#import org.junit.runner.Runkith;]
Runs: 99 OFmors: 0 ©Failures: 0 6

7 @Runklith(Suite.class)
8 @SuiteClasses({ TestCasel.class, Test(ase2.class, Test(ased.class })
9 public class AllTests {

10
1 }
12

Figure 3.6: triangle test suite implementation

24

3.5.2.4 Step4

When step4 of proposed method has been implemented on case study2, the outputs of software
under test verified against metamorphic relation, so the verification step checks if expected

outputs equal to actual value. Then the test is pass otherwise the test is fail.
3.5.3. Case study3 (Booking Web Service)

In this case study steps of proposed method have been implemented and the results showed of

each steps explained through practical application.
3.5.3.1 Stepl

When stepl of proposed method has been implemented on case study3 the metamorphic relation
identified according to problem domain or from user specification, and this steps extracted

manually usually.
3.5.3.2 Step?2

When step2 of proposed method has been implemented on case study3, test cases have been
generated according to test case selection strategies, and there are two types of test cases the first
one is source test case and the second is follow up test case which is extracted from source test

case. Figure 3.2 explained test case generation.
3.5.3.3 Step3

When step3 of proposed method has been implemented on case study3, the test case inputs
implemented and appeared results, that no errors or failures appeared and this is strong evident
that the proposed method is more effective to reveal the different types of errors, therefor
enhancing the quality of software under test. Figure 3.7 explains booking web service test case

implementation.

25

1% Package Explorer du JUnit & = # [}) BookingSearchTestTest2 java &
PO EE-s B blckan search;

Finished after 0.13 seconds 2
3#import org.junit.Test;[]
Runs: 1/1 o Errors: 0 0 Failures: 0 6 i 0 i

P 7 public class BookingSearchTestTest2 extends BookingSearchTest {
8 BookingQueryObject query = new BookingQueryObject();

t BookingSearchTestTest2 [Runner: JUnit 5 (000 g BudgetFilter filter = new BudgetFilter();
10 BookingSearchResult fut = null;
11 BookingSearchResult st = null;
12= @Before
13 public void setUp() throws Exception {
14
15 }
16
17= @Test
18 public void testSearchMetamorphicTest() {
19 assertTrue("Not a subset”, filter);
20 }
21
225 public void assertTrue(Object object, Object adults) {
23
LRk 1

Figure 3.7: booking web service test case implementation

The implementation test suite on booking web service figure 3.8 explains it.

¥ Package Explorer g JUnit 12 =8I AllTestsjava
g 00 mE x| 1 package search;
Finished after 01115 seconds l

3#import org.junit.runner.Runiith;[]
fung 33 OEmors 0 Ofailures 0 6

I Gkt (Site. class)

v l'_l'JfJ”H'S[Rll'M Junit 5] (0005 5) 9 public ¢lass AllTests {
v 1] searchBookingSearchTestTest (0.000 5 10
& testSearchMetamorphicTest (00005) 11 }
v B searchBookingSearchlestest? (0000 5) 2
& testSearchMetamorphicTest (00005
v] searchBookingSearchTestTest3 (0,005 5
& testSearchMetamorphicTest (0005 5

§ BSuiteClasses({ BookingSearchTestTest.class, BookingSearchTestTestl.class, BookingSearchTestTestd.cl

Figure 3.8: booking web service test suit implementation

3.5.3.4 Step4

When step 4 of proposed method has been implemented on case study3, the outputs of software

under test verified and checked against metamorphic relation, so the verification step checks if

expected outputs equal to actual value then the test is pass otherwise the test is fail.

26

Chapter Four

Results Discussion

4.1 Introduction

In this chapter, the researcher tried to discuss how to improve the quality of the software
applications (programs under test), considering that one of the most important factors that
helping to improve the quality is testing and verifying that they are free from functional and
requirements errors.

Using the metamorphic test (MT) method to overcome the problem of test case oracle
contributed greatly to improving the efficiency of the testing process and the accuracy of the
results. Experimental results showed that the MT is very effective way to test program without
involving an oracle.

4.2 First Case Study (trigonometric function)

Empirical execution of program in JUNIT tool showed that total runs (1), failures (0) and errors
(0) for one test case while in test suits runs are(3) failures(0) and errors(0) Figures 1, 2, explain
all aspects related to implementation of program by using JUNIT.

Figure 4.1 and figure 4.2 explain implementation of sin(x).

sin(x) sin(x)
1
3
0.5 = _ failures ‘
_~ errors 2 |
0 =~ runs ‘ M Seriesl
1 ! ‘
O - e
Hruns Merrors M failures runs errors failures
Figure 4.1: test case execution chart Figure 4.2: test suit execution chart

4.2.1 Discussions

The implementation process was seen free of errors, thus ensuring the smoothness and
integrity of the code. On the other hand, the implementation result was devoid of failure,
meaning there are no problems in the testing process, and this increases reliability, and thus it

showed that the metamorphic method has a high efficiency to alleviate the problem of oracle.

27

The absence of errors and failures in the results of the testing process means the effectiveness of
metamorphic method in ensuring the correctness of the outputs and thus contributes (MT) to
improving the quality of the program.

4.3 Second Case Study (Geometric Shapes Classification)

Triangle has been taken as one of geometric shape classification. A set of test cases can be
created and executed based on a set of pre-existing test cases, for example in the triangle
classification program, there are three test cases: test casel, test case 2 and test case 3. When the
test case has been started as shown in Figure (4.5), the number of parameters passed are (9), the
errors are (0), and failure are (0) ,while only one test case executed in Figure (4.4). So that the
total run becomes (3) with (0) errors and (0) failures. In Figure (4.4), the chart explains that total

runs are (3), errors are (0) and failures are (3).

Triangle Triangle
3.00 10.0
Ve
2.50 , 80 1]
2.00 v e
150 B Series1 6.0 M Seriesl
100 V¥~ Series2 40 v - Series2
0s0 |~ 20 |7
0.00 . 0.0 — —
Runs Errors Failures Runs Errors Failures
Figure 4.3: test cases implementation chart Figure 4.4: test suite implementation chart

The implementation of test case for the first time, it looks like the red pane which means there

are some failures in test. Hence, it may need to rewrite them or fix the failures.

Triangle
3.0
2.0 7 m Seriesl
10 e Series2
e P
0.0 <
Runs Errors Failures

Figure 4.5: test case implementation chart

28

4.3.1 Discussion

From the charts, the fewer errors in the implementation, the more reliable and efficient the
metamorphic method in software testing, and the success of all test cases means there is a strong
logic code that can be relied upon.

The absence of errors and failures in the results of the testing process means the efficacy of the
metamorphic method in ensuring the correctness of the outputs and thus (MT) contributes to
improving the quality of the program.

Although there is a high implementation failure in Figure 4.9, it can be fixed by rewriting the test

case.

4.4 Third Case study (Booking Web Service)
A test suit can be created and executed based on a set of pre-existing test cases. For example in

the booking searching program, there are three test cases: test casel, test case 2 and test case 3.
When the test case has been started as shown in Figure (4.7), the number of parameters passed
are (3), the errors are (0), and failure are (0), while only one test case executed in figure (4.6),
error are(0) and failure are(0).

Figure 4.6 and figure 4.7 explain implementation of booking website.

Booking website chart Booking website
B Runs ™ Errors M Failures
3 ¢
2 t
x| ‘. Fillures 1 B Seriesl
Errors)
0 Runs o L / e -
1 runs errors failures
Figure 4.6: test case chart Figure 4.7: test suite chart

4.4.1 Discussion
In the charts, the fewer errors in the implementation, the more reliable and efficient the

metamorphic method in software testing, and the success of all test cases means there is a strong
logic code that can be relied upon. And then there are strong evident for using (MT) to solve the
test case oracle problem.

29

The absence of errors and failures in the results of the testing process means the efficacy of the
metamorphic method in ensuring the correctness of the outputs and thus (MT) contributes to

improving the quality of the program.

4.5 General Discussion

Through the empirical study and the results it became clear that the testing process became

smooth, as the successful implementation of each case study separately.

In the first case study, geometric shapes - one test case was executed and no error or failure was
shown in the implementation. This is considered to be that the metamorphic method can be rely
upon to overcome the oracle problem, as well as that the code is free of logical errors, but in
return it can appear failures in execution, and this is normal due to the tool used, as some
problems appear when creating a test case for the first time, and this requires rewriting the test

case before implementation.

In the second case study - classification of geometric shapes, there is also a similarity in the
results of the implementation, when executing one test case a very high failure occurred and it
was fixed by rewriting the test case and this is normal as mentioned above, while a number of

test cases were executed and no errors or failures appeared in execution.

In third case study- booking web service - one test case was executed, and the result of the
implementation did not show any error or failure mentioned, which is evidence of the strength of
the metamorphic testing in improving the quality of software testing. On the other hand when
implementing a number of test cases also did not appear any error or failure in the result of the

implementation.

Through the discussion and analysis above, we conclude that there is similarity in
implementation between the three case studies, and appearance of failure in implementation is a
natural thing due to the deficiency of the tool used in generating test cases, and despite some
limitations of the metamorphic method, it is the most appropriate in software testing because of
its characteristics which can link inputs and outputs to multiple relationships and validate results,

thus contributing to improving the quality of the program under test.

30

Chapter Fife

Conclusion and Recommendations

5.1 Introduction

In this chapter; conclusion and recommendations explored, the final results explained and
recommended some guides for postgraduate students to prepare their research, the researcher

recommended some ideas that help to deal with this topic in the future time.

5.2 Conclusion

In conclusion, it concluded that the objectives of the study have been released and this is
due to the successful implementation of the case studied and other reasons that mentioned in the
previous. The researcher analyzed the defects of oracle and other traditional methods and their
negative impact on the quality of the software and its inability to discover the hidden errors of
the code, as well as the inability to test some systems due to unavailability of an oracle or the
difficulty of implementing it.

As well as proposing the metamorphic method to improve the quality of the programs
under test and to ensure the correctness of the outputs automatically as a solution to the oracle
problem or mitigate it. In some cases where the metamorphic method was applied to the
proposed case studies and the results proved a high efficiency of the proposed method in
discovering errors and correcting them, which is considered a practical guide in achieving
objectives of the study.

Finally, the effectiveness and efficiency of the method used was verified through the
accuracy of implementation results for different test cases, and it can be relied upon in software
testing for its significant contribution to improving software quality to the satisfaction of
stakeholders.

5.3 Recommendations

In conclusion, it recommended developing the research to cover another side of the topic which
includes using metamorphic technique in machine learning, computer graph, deep learning and
modeling and simulation etc.

Addition to that developing this work and adding improvements up to be a large software project

in the future times.

31

From the above, it recommended the following:
% Using another tool more effective than JUNIT because the limitation of the tool in test
case generation and test case running
% Adding improvements as general
% Design interface for the project rather than dealing directly with code
%+ Searching for the best ways to generate test cases more efficiently
%+ Using another tool with JUNIT to integrate them in order to generate test case effectively

(mutation testing)

32

References:

[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]
[10]
[11]

[12]

[13]
[14]
[15]

[16]

[17]

[18]

[19]
[20]

[21]

Z. H. 1. Q. Zhou, “Metamorphic Testing : A Review of Challenges and Opportunities,”
vol. 000, no. 000, 2017, doi: 10.114.

Z. Q. Zhou, D. Huang, T. Tse, Z. Yang, H. Huang, and T. Chen, “Metamorphic testing
and its applications,” Proc. 8th Int. Symp. Futur. Softw. Technol. (ISFST 2004), 2004.
“Case Studies on the Selection of Useful Relations in Metamorphic Testing *.pdf.” .

E. Fuchs, Quality: Theory and Practice, vol. 65, no. 2. 1986.

“V-model — Software Testing Watch This Video,” [Online]. Available:
https://www.rogeriodasilva.com/v-model-software-testing/.

M. Harman, P. Mcminn, M. Shahbaz, and S. Yoo, “A Comprehensive Survey of Trends in
Oracles for Software Testing,” pp. 1-32.

Z. Micskei and 1. Majzik, “Model-based test generation Main topics of the course,” pp. 1—
12.

S. Segura, G. Fraser, A. B. Sanchez, and A. Ruiz-Cortes, “A Survey on Metamorphic
Testing,” IEEE Trans. Softw. Eng., vol. 42, no. 9, pp. 805-824, 2016, doi:
10.1109/TSE.2016.2532875.

“geeks for gegeeks website.” https://www.geeksforgeeks.org/test-oracles/.

“concepts of metamorphic,” [Online]. Available: https://www.researchgate.net/figure/The-
concept-of-metamorphic-testing_figl 280567781/download.

C. Murphy, “Metamorphic Testing Techniques to Detect Defects in Applications without
Test Oracles,” 2010.

T. Y. Chen, F. C. Kuo, D. Towey, and Z. Q. Zhou, “Metamorphic testing: Applications
and integration with other methods: Tutorial synopsis,” in Proceedings - International
Conference on Quality Software, 2012, pp. 285-288, doi: 10.1109/QSIC.2012.21.

H. Liu, F. Kuo, D. Towey, and T. Y. Chen, “How Effectively does Metamorphic Testing
Alleviate the Oracle Problem ?,” pp. 1-21, 2013.

J. Chen, Y. Wang, Y. Guo, and M. Jiang, A metamorphic testing approach for event
sequences, vol. 14, no. 2. 2019.

S. K. Yong, “Cost-effective Metamorphic Testing Techniques for Failure Detection in
Software with Oracle Problem,” 2015.

Z.Q. Zhou, S. Xiang, and T. Y. Chen, “Metamorphic Testing for Software Quality
Assessment : A Study of Search Engines,” no. January, 2015, doi:
10.1109/TSE.2015.2478001.

W. K. Chan, T. Y. Chen, H. Lu, and S. S. Yau, “A Metamorphic Approach to Integration
Testing of Context-Sensitive Middleware-Based Applications *,” 2005.

C. Aruna and R. S. R. Prasad, “MTAF : A Testing Framework for Metamorphic Testing
Automation MTAF : A Testing Framework for Metamorphic Testing Automation,” no.
September 2015, 2017.

S. Segura, “Metamorphic Testing 20 Years Later : A Hands-on Introduction,” pp. 3—6,
2018.

C. Murphy, G. Kaiser, and L. Hu, “Properties of Machine Learning Applications for Use
in Metamorphic Testing.”

T.Y. Chen, F. Kuo, R. Merkel, and W. K. Tam, “Testing an Open Source Suite for Open
Queuing Network Modelling Using Metamorphic Testing Technique Testing an Open
Source Suite for Open Queuing Network Modelling using Metamorphic Testing

33

[22]
[23]

[24]
[25]

[26]
[27]

[28]

[29]

Technique,” no. April 2014, 2009, doi: 10.1109/ICECCS.2009.28.

F. Kuo, T. Y. Chen, and W. K. Tam, “Testing Embedded Software by Metamorphic
Testing : a Wireless Metering System Case Study,” pp. 291-294, 2011.

S.C.C.and K. R. P. H. L. W. K. Chan 1}, “Towards a Metamorphic Testing
Methodology for Service-Oriented Software Applications *.pdf.” .

“Automated Metamorphic Testing on the Analyses of Feature Models v .pdf.” .

A. Goffi, “Automatic Generation of Cost-Effective Test Oracles Categories and Subject
Descriptors.”

L. Xu, D. Towey, A. P. French, S. Benford, and T. Y. Chen, “Enhancing Supervised
Classifications with Metamorphic Relations,” 2018.

D. Peters and D. L. Parnas, “Generating a Test Oracle from Program Documentation work
in progress.”

J. Ding, T. Wu, J. Q. Lu, and X. Hu, “Self-Checked Metamorphic Testing of an Image
Processing Program Self-Checked Metamorphic Testing of an Image Processing
Program,” no. August, 2017, doi: 10.1109/SSIRI1.2010.25.

“eclips,” [Online]. Available: https://www.codejava.net/testing/junit-tutorial-for-beginner-
with-eclipse.

34

