

I

Enhancing the Quality of Software Testing using

a Metamorphic Testing Technique

 الاختبار التحولي طريقة تحسين جودة اختبار البرمجيات باستخدام

a Thesis Submitted in Partial Fulfillment of the Requirements of M.Sc. Degree in Computer Science

Prepared By:

Sulieman Ibrahim Sulieman Bahar

Supervisor:

Dr. Mohammed Abdalla Osman Mukhtar

April 2021

 بسم الله الرحمن الرحيم

Sudan University of Sciences and Technology

College of Graduate studies

II

Acknowledgment

 I would like to express my thanks to Dr. Mohammed Abdalla for his valuable contributions and

great efforts to advise me to complete the thesis.

Thanks go to staff members of Sudan University of Science and Technology as general and

College of Computer Science and Information Technology as particular who exerted their time

and effort to teach me useful science.

Finally I would like to thank my family for their enthusiastic help and endless encouragement.

III

 الآيــــــة

 بسم الله الرحمن الرحيم

ُ لَكُممْ))ياَ أيَُّهَا الَّذِينَ آمَنوُا إذَِا قِيلَ لَكُمْ تفََسَّحُوا فيِ الْمَجَالِسِ فاَفْسَحُوا يَفْسَحِ اللََّّ

ُ الَّممذِينَ آمَنمُموا مِممنْكُمْ وَالَّممذِينَ أوُتمُموا الِْ ْ مممَ وَإذَِا قِيمملَ انْزُممُ وا فاَنْزُممُ وا يَْ فَمملِ اللََّّ

((سممممممو المجادلمممممم الايمممممم)11(. (ِيمممممم ٌَ ُ (ِمَمممممما تَ ْ مَ مُمممممونَ دََ جَمممممماهُ وَاللََّّ

IV

Abstract

The software testing process plays an important role to improve the quality of the

software product. The product or program which is free from errors greatly contributes to assure

the quality of the software. An oracle in software testing is a person (tester) who does the process

of testing. Therefor oracle problem arises due to the difficulty of determining the expected

outcomes of selected test cases. A tester (oracle) may not always be available, or may be

available but the process is too expensive and difficult to apply.

This research tried to reduce the effect of oracle problem during testing software. To

overcome this problem metamorphic testing (MT) has been used to generate follow-up test case

for multiple execution of program under test and verifying the result automatically.

The objectives of the research include analyzing the existing testing methods to reveal the gap of

unavailability of solution of oracle problem, proposing an approach (MT) to enhance the quality

of testing to solve the oracle problem and verify the proposed approach by applying it in selected

case studies.

 The researcher tried to use experimental method which explains the mechanism of work

for (MT). Therefore JUNIT tool which supports MT was used to apply selected case studies.

The proposed method has been implemented using 3 case studies (trigonometric function,

geometric shapes classification, booking web service). The obtained results showed a good

enhancement in the testing process.

The importance of this research lies in overcoming oracle problem or alleviates it and

thus, the research contributes to knowledge the domain by guiding researchers to use the

metamorphic method because of its great advantages, as well as evaluating the effect of

metamorphic method through empirical studies.

V

 مستخلصال

اا يات تينايٍ ةإد انبريجياا تهعب عًهية اختبار ًً . ينااْى انًُات ٔ انبرَااي انياانت ياٍ ا خ اا انبريجاتًُات اندٔرًا يٓ

 ٔراكم يت اختبار انبريجيا ْٕ شيص)ييتبِر(يمإو بعًهياة اتختباار. نافنن يا ٌ اٌ . انبريجيا بشكم كبير يت ضًاٌ ةٕد

ا ، ٔ لد يتاحا ٔراكم (انًيتبر)ا يشكهة ٔراكم ْت صعٕبة تيديد انُتائ انًتٕلعة نيات اتختبار انًيتار . لد ت يكٌٕ ًً دائ

 .يكهف نهغاية ٔيصعب ت بيمّ عًهية اتختبار يكٌٕ يتاحًا ٔنكٍ

ختباار تا طريماة . نهتغهاب عهاه ْافِ انًشاكهة ، تاى اماتيداوانبريجياا حأل ْفا انبيث تمهيم تأثير يشكهة ٔراكام ثُاا اختباار

 .نهبرَاي ليد اتختبار ٔانتيمك يٍ انُتيجة تهمائيًالإَشا حانة اختبار يتابعة نهتُفيف انًتعدد تانتيٕن

)اتختباار طريماةيام يشاكهة ٔراكام ، ٔالتارا نتإير انتشًم ْداف انبيث تيهيم طرق اختبار انيانية نهكشف عٍ يجٕ عدو

يانااة انمااا درا عهااهُٓ انًمتاار يااٍ خاايل ت بيمااّ ًاانتيناايٍ ةاإد اتختبااار نياام يشااكهة ٔراكاام ٔانتيمااك يااٍ ان انتياإنت(

 .ًيتار ان

تهان انتات تادعى JUNIT نفنن تى امتيداو دا)اتختبار انتيٕنت(امتيداو انًُٓ انتجريبت انفي يشر آنية عًم حأل انباحث

 .دراما انيانة انًيتار ّ عههنت بيم انًُٓجية

خدياة انٕياب(. رٓار تصاُيف اتشاكال انُٓدماية، ان ريمة انًمترحة تى تُفيافْا باماتيداو ثاير دراماا حاناة)داناة ي،ه،ياة ،

 .انُتائ انتت تى انيصٕل عهيٓا تينًُا ةيداً يت عًهية اتختبار

 يات ًعرياةان اثارا تكًٍ ًْية ْفا انبيث يت انتغهب عهاه يشاكهة ٔراكام ٔ انتيفياف ياٍ حادتٓا ، ٔبانتاانت ينااْى انبياث يات

يااٍ خاايل ْاااتمياايى تأثير يضاايً عاٍ نًااا نٓاا يااٍ يكايااا كبياار ، انتياإنت ختباااراتانًجاال يااٍ خاايل رشاااد انبااح،يٍ تمااتيداو

 .انت بيميةاندراما

VI

Table of Contents

Acknowlegdment ... I

 II ... الآية

Abstract .. III

 IV ... انًنتيهص

Table of Contents ... V

List of Figures ... VIII

List of Tables ... IX

Chapter One: Introduction ..

1.1 Background ... 1

1.2 Problem Statement .. 2

1.3 Objectives ... 2

1.4 Research Methodology ... 2

1.5 Significance of the Research .. 3

1.6 Thesis Organization ... 3

Chapter Two: Literature Review and Related Works ...

2.1 Introduction ... 4

2.2 Literature Review.. 4

2.2.1 Software Quality .. 5

2.2.2 Five Views of Software Quality ... 5

2.2.3 Quality Factors ... 5

2.2.4 Role of Testing ... 6

2.2.5 Verification and Validation (V&V) ... 7

2.2.6 The Objectives of Testing .. 7

2.2.7 Test Case .. 7

2.2.8 Oracle Concepts ... 7

2.2.9 Basic Concepts ... 7

2.2.10 Types of Test Oracles .. 8

2.2.11 Test Oracle ... 9

2.2.12 Introduction to Metamorphic Testing Technique .. 9

2.2.12.1 Metamorphic Steps ... 10

VII

2.2.12 .2 Mathematical Properties .. 10

2.2.12 .3 Applications of Metamorphic Testing ... 11

2.2.13 Other Methods ... 12

2.2.13.1 Model Based-testing ... 12

2.2.13.2 Heuristics and Oracles in Software Testing .. 12

2.2.14 Experimental Studies ... 12

2.3 Related Works ... 13

Chapter Three: Research Methodology ..

3.1 Introduction .. 19

3.2 Case Studies .. 19

3.2.1 First Case Study (Trignometric Function) .. 19

3.2.2 Second Case Study (Geometric Shape Slassification) ... 19

3.2.3 Third Case Study (Booking Web Service) ... 20

3.3JUNIT Tool .. 20

3.4 Description for the Steps of Proposed Method ... 20

3.4.1 Step one: Identifying the Metamorphic Relation .. 21

3.4.2 Step two: Generating Test Cases ... 21

3.4.3 Step three: Executing Test Cases ... 21

3.4.4 Step four: Verifing Outputs ... 21

3.5 Implementing the Proposed Method on 3 Case Studies ... 21

3.5.1 Case Study1 (Trignometric Function) ... 21

3.5.1.1 Step1 ... 21

3.5.1.2 Step2 ... 22

3.5.1.3 Step3 ... 22

3.5.1.4 Step4 ... 23

3.5.2 Case Study2 (Gemotric Shape Classification) ... 23

3.5.2.1 Step1 ... 23

3.5.2.2 Step2 ... 23

3.5.2.3 Step3 ... 24

3.5.2.4 Step4 ... 25

3.5.3 Case Study3(Booking Web Service) ... 25

VIII

3.5.3.1 Step1 ... 25

3.5.3.2 Step2 ... 25

3.5.3.3 Step3 ... 25

3.5.3.4 Step4 ... 26

 Chapter Four: Results Discussion ..

4.1 Introduction ... 27

4.2 First Case Study (Trignometric function) ... 27

4.2.1. Discussion ... 27

4.3 Second Case Study (Geometric Shape Classification) ... 28

4.3.1 Discussion .. 29

4.4 Third Case study (Booking Web Service) .. 29

4.4.1 Discussion .. 29

4.5 General discussion .. 30

Chapter Fife: Conclusion and Recommendations...

5.1 Introdction ... 31

5.2 Conclusion .. 31

5.3 Recommendations ... 31

References ... 33

IX

List of Figures:

Figure 1.1 The Steps of the Research ... 2

Figure 2.1 Static and Dynamic Test in V-Model .. 6

Figure 2.2 Basic Concepts of Testing ... 8

Figure 2.3 Types of Oracle ... 8

Figure 2.4 The Basic Idea of Pseudo-Oracles in (V&V) ... 9

Figure 2.5 Relationships between Several Metamorphic Testing Conceptions 10

Figure 2.6 The Percentage of using MT in Different Domains .. 11

Figure 3.1 JUNIT 5 Architecture ... 20

Figure 3.2 Test Case Generation ... 22

Figure 3.3 Sin(x) Test Case Implementation .. 22

Figure 3.4 Sin(x) Test Suite Implementation .. 23

Figure 3.5 Triangle Test Case Implementation... 24

Figure 3.6 Triangle Test Suite Implementation .. 24

Figure 3.7 Booking Web Service Test Case Implementation ... 26

Figure 3.8 Booking Web Service Test Suite Implementation .. 26

Figure 4.1 Test Case Implemntation Chart for Sin(x) .. 27

Figure 4.2 Test Suite Implementation Chart for Sin(x) .. 27

Figure 4.3 Test Case Implementation Chart for Triangle ... 27

Figure 4.4 Test Suite Implementation Chart for Triangle... 28

Figure 4.5 Test Case Implementation Chart when Fialure Occurred ... 28

Figure 4.6 Test Case Implementation Chart for Booking Website ... 29

Figure 4.7 Test Suite Implementation Chart for Booking Website ... 29

X

List of Tables:

Table 2.1 McCall’s Quality Factors and Criteria .. 6

Table 2.2 Classes of Metamorphic Properties ... 11

Table 2.3 The Summary of Related Works .. 18

1

Chapter One

Introduction

1.1 Background

 To improve the quality of the software product as general the software developers conducting

several testing process. The importance of testing lies in assuring quality of software for the

purpose of stakeholder’s satisfaction. According to some studies the cost of testing represents

40% of total cost of development software project (money-effort-time).

To ensure the quality of the software, modern methods have been introduced to enhance the

efficiency of software testing, reducing errors, increasing efficiency and reliability.

Software testing is a proven mechanism to assure the quality of software by revealing several

types of errors like design errors, specification errors, code errors and input errors etc. Various

testing methodologies have been introduced in the area of testing to assure the software quality

and to identify the different types of software errors.

Metamorphic testing technique used to enhancing the quality of software through alleviating

oracle problem.

In order to determine the expected results from the selected test cases, it is necessary to use the

proposed method to overcome the oracle problem. The oracle test is sometimes not available and

sometimes it is available, but the process is very expensive and difficult to implement.

Metamorphic testing it has own function known as metamorphic functional relations which in its

role generates follow-up test cases and verify the outputs automatically to address oracle

problem. Finally, this study comes to clarify an important aspect in software testing by using

modern methods instead of traditional methods in order to improve the quality of the software

product by reducing errors and increasing reliability. This study will provide reasonable results

as a solution to the problem under study.

2

1.2 Problem Statement

 The oracle problem is the difficulty of determining or specifying the expected outcomes of

selected test cases. A test oracle may not always be available, or it may be available but it is too

expensive and difficult to apply. There is the need for proposing an approach to reduce the effect

of oracle problem during testing process.

1.3 Objectives

The objectives of the thesis are analyzing the existing methods to reveal the gap of unavailability

for solution of oracle problem, proposing an approach to enhance the quality testing to solve the

oracle problem and verify the proposed approach by applying it in selected case studies.

1.4 Research Methodology

The experimental method is used in the field of natural sciences as general, so it is used in the

field of computer science to ensure the validity of the results of the processes under testing. In

this thesis the researcher tried to use experimental method, and fitgure1.1 explains the steps of

the research to achieve the objectives of the study.

Literature review

for existing method

Analysis

Proposing the

approach

Description steps of

proposing method

Verify the method

with 3 case studies

Fitgure1.1: The Steps of the Research

3

 1.5 Significance of the research

The importance of this thesis lies in overcoming the oracle problem or alleviates it, thus the

research contributes in guiding researchers to use the metamorphic method because of its great

advantages. As well as evaluate the effect of metamorphic method through empirical studies.

 1.6 Thesis Organization

 The thesis organized as follow: chapter one contains research background, research problem,

motivation, research objectives, research methodology., significance of the research,

contribution of research , and thesis organization.

Literature has been reviewed in chapter two, where many topics explored in details such

as quality, testing, the Oracle problem and the metamorphic testing. As well as reviewing three

case studies in some details. The chapter concluded with a review of fifteen studies that have a

direct relationship to the topic of study.

Chapter three describes the methodology followed this research, which it has started by

introduction, steps of metamorphic to solve the problem under study, the tool used to implement

the selected case studies.

The result has been discussed in chapter four. It has started with introduction, then chart

analysis for each results and result discussion for each implementation.

Introduction, conclusions and recommendations of the research have been provided in

chapter five.

4

Chapter Tow

Literature review and related works

2.1 Introduction

The chapter explores two main topics; the first one is about literature review and second is

related works, in term of first topic many topics have been explored such as software quality,

quality factors, objectives of testing as general, oracle problem as well metamorphic testing

technique.

In term of second topic; related works an exploration about fifteen studies which related to the

oracle problem and test case generation and how to alleviate them by using proposed

methodology.

 2.2 Literature review

 Software testing is a mainstream approach to software quality assurance and verification.

Metamorphic testing is an approach to both test case generation and test result verification[1].

 A metamorphic testing method has been proposed to test programs without the involvement of

an oracle. It employs properties of the target function, known as metamorphic relations, to

generate follow-up test cases and verify the outputs automatically. An ―oracle‖ in software

testing is a procedure by which testers can decide whether the output of the program under

testing is correct. In some situations, however, the oracle is not available or too difficult to apply.

This is known as the ―oracle problem‖. In other situations, the oracle is often the human tester

who checks the testing result manually. The manual prediction and verification of program

output greatly decreases the efficiency and increases the cost of testing[2].

 Let p be a program implementing a specification f. Let D represent the input domain. Usually,

it is impossible to do exhaustive testing to check whether p(t) = f(t) ∀t ∈ D. As a result, a great

amount of research in the literature of software testing has been devoted to the development of

test case selection strategies, aiming at selecting those test cases that have a higher chance of

detecting a failure. Let T = {t1, t2, . . . , tn} ⊂ D be the set of test cases generated according to

some test case selection strategy, where n ≥ 1. Running the program on these test cases, the tester

5

will check the outputs p(t1), p(t2), . . . , p(tn) against the expected results f(t1), f(t2), . . . , f(tn),

respectively. If it is found that p(ti) 6= f(ti) for some i, where 1 ≤ i ≤ n, then we say a ―failure‖ is

revealed and ti is a failure-causing input. Otherwise ti is a successful test case. The procedure

through which the tester can decide whether p(ti) = f(ti) is called an oracle . For instance, let f(x,

y) = x×y, the test case ti be {x = 3.2, y = 4.5}, and p(ti) = 14.4. The tester can verify this output

either by manually calculating the product of 3.2×4.5 or using the inverse function to check

whether 14.4/4.5 = 3.2, where the inverse can be done either manually or using a correct division

program if available[3].

2.2.1 Software quality

Quality is a complex concept—it means different things to different people, and it is highly

context dependent[4].

2.2.2 Five Views of Software Quality

 There are five views of software quality, the first is transcendental View, and it is imagines

quality as something that can be recognized but is difficult to define. The transcendental view is

not specific to software quality alone but has been applied in other complex areas of everyday

life. The second is user View; it perceives quality as fitness for purpose. According to this view,

while evaluating the quality of a product, one must ask the key question: ―Does the product

satisfy user needs and expectations. The third is Manufacturing View; quality is understood as

conformance to the specification. The quality level of a product is determined by the extent to

which the product meets its specifications. The fourth is Product View; In this case, quality is

viewed as tied to the inherent characteristics of the product. A product’s inherent characteristics,

that is, internal qualities, determine its external qualities. The fifth is Value-Based View; Quality,

in this perspective, depends on the amount a customer is willing to pay for it[4].

2.2.3 Quality factors

There are many quality factors in software engineering but in this thesis some factors explained

in the bellow table 2.1 which explains factors such as correctness, reliability, efficiency and

integrity etc…

6

Table 2.1: McCall’s Quality Factors and Criteria

Quality Factors Definitions

Correctness The extent to which a program satisfies its specifications and fulfills the user’s

mission objectives.

Reliability The extent to which a program can be expected to perform its intended

function with required precision.

Efficiency The amount of computing resources and code required by a program to

perform a function.

Integrity The extent to which access to software or data by unauthorized persons can be

controlled.

Usability The effort required to learn, operate, prepare input, and interpret output of a

program.

Maintainability The effort required to locate and fix a defect in an operational program.

Testability The effort required to test a program to ensure that it performs its intended

functions.

Flexibility The effort required to modify an operational program.

Portability The effort required to transfer a program from one hardware and/or software

environment to another.

Reusability The extent to which parts of a software system can be reused in other

applications.

Interoperability The effort required to couple one system with another

2.2.4 Role of Testing

Software quality assessments is divided into two categories, the first one is static analysis it

examines the code and reasons over all behaviors that might arise during run time[4]. The second

is dynamic analysis which means actual program execution to expose possible program failure.

Bellow figure 2.1 explains static and dynamic test in V-Model.

Figure 2.1 : static and dynamic test in V-Model[5]

7

2.2.5 Verification and Validation (V&V)

 Verification means evaluation of software system that help in determining whether the product

of a given development phases satisfy the requirements established before the start of that phase.

Validation means evaluation of software system that help in determining whether the product

meets its intended use[4].

2.2.6 The Objectives of Testing

 There are four objectives of testing the first is it does work; the programmer may want to test

whether or not the unit works in normal circumstances. The programmer gets much confidence if

the unit works to his or her satisfaction. The second objective is it does not work; here more tests

are conducted with the objective of finding faults in the unit (or the system). Here, the idea is to

try to make the unit (or the system) fail. The third objective is to reduce the risk of failures so a

higher level objective of performing tests is to bring down the risk of failing to an acceptable

level. The fourth objective is to reduce the cost of testing[4].

2.2.7 Test Case

Test case is a simple pair of <input, expected outcome> so an outcome of program execution

may include value produced by the program, State Change and a sequence of values which must

be interpreted together for the outcome to be valid[4].

According to IEEE standard test case is a set of inputs, execution conditions, and a pass/fail

criterion.

2.2.8 Oracle concepts

An oracle is a procedure that determines what the correct behavior of a system should be for all

input stimuli with which we wish to subject the system under test[6].

2.2.9 Basic concepts

Test case is a set of test inputs, execution conditions, and expected results developed for a

particular objective. While test oracle is a principle or mechanism that helps you decide whether

8

the program passed the test. Verdict is a result (pass / fail / error / inconclusive…)[7]. Figure 2.2

explains basic concepts of testing.

Figure 2.2: basic concepts of testing

2.2.10 Types of test oracles

 There are four types of test oracle the first is Specified, this type of test oracle includes

humans, textual specification and models (FSM, UML…). The second is implicit, this type of

test oracle includes exceptions, crashes, security problems and robustness testing and fuzzing.

The third is derived this type of test oracle includes previous program versions, different

implementations (N-version programming) and assumptions, validity checks, invertible

function[7].

The forth is handling the lack of oracles: in many cases no such artifact exists (i.e., there is no

automated oracle D) and as such, a human tester is required to verify whether software behavior

is correct given some stimuli[8]. Figure 2.3 explains the oracle types.

Figure 2.3: types of oracle

9

2.2.11Test Oracle

 Is a mechanism, different from the program itself that can be used to test the accuracy of a

program’s output for test cases? Conceptually, we can consider testing a process in which test

cases are given for testing and the program under test. The output of the two then compares to

determine whether the program behaves correctly for test cases[9]. The figure 2.4 explains the

basic idea of pseudo-oracles in (V&V).

Figure 2.4 : the basic idea of pseudo-oracles in (V&V) [10]

2.2.12 Introduction to metamorphic testing technique

Metamorphic testing has been suggested by Chen et al. as a way of testing applications that do

not have test oracles[11] ensuring that the software under test exhibits its expected ―metamorphic

properties.

 Metamorphic testing (MT) has been developed to alleviate the oracle problem. Instead of

focusing on the correctness of each individual output, MT checks the program against selected

metamorphic relations (MRs). MR is a necessary property of the target function, and is a relation

that involves multiple executions of the target function. MRs is identified based on knowledge of

the problem domain, such as known properties of the target function/system or knowledge about

the algorithms to be implemented. Each metamorphic test involves two or more executions of the

program under test[12]. For ease of presentation, unless stated otherwise, we assume that each

metamorphic test involves only two executions; the first execution, which is called the source

execution, with its input called the source test case; and the next execution, called the follow-up

execution with its input called the follow-up test case. If the outcomes of a source and its follow-

up executions are found to violate an MR, the software under test must contain a fault.

Figure 2.5 explains relationships between several metamorphic testing conceptions

10

Figure 2.5: relationships between several metamorphic testing conceptions

2.2.12.1 Metamorphic steps

The basic steps for implementing metamorphic testing are as follows:

1- Some necessary properties of the software under test are identified (normally extracted from

the specifications), and represented in the form of relations, referred to as metamorphic relations.

Each metamorphic relation involves multiple test case inputs and their corresponding outputs.

2- Some test cases, referred to as the source test cases, are generated using traditional test case

selection strategies.

3- New test cases, called the follow-up test cases, are constructed from the source test cases

according to the metamorphic relations.

4- Both source and follow-up test cases are applied to the software under test.

5- The test case outputs are checked against the relevant metamorphic relations to confirm

whether the relations are satisfied, or have been violated[13].

2.2.12 .2 Mathematical Properties

Many programs without test oracles rely on mathematical functions (i.e., those that take

numerical input and/or produce numerical output), since the point of such programs is to

implement an algorithm and perform calculations, the results of which cannot be known in

advance; if they could, the program would not be necessary[11].

11

The classification of metamorphic properties as explained in the table 2.2.

Table 2.2: Classes of metamorphic properties

Additive Increase (or decrease) numerical values by a constant

Multiplicative Multiply numerical values by a constant

Permutative Permute the order of elements in a set

Invertive Take the inverse of each element in a set

Inclusive Add a new element to a set

Exclusive Remove an element from a set

Compositional Create a set from some number of smaller sets

2.2.12 .3 Applications of metamorphic testing

Metamorphic testing is not limited to numerical programs only. In fact, metamorphic relations

can be identified in almost every area like:

- Web services - Computer graphics - Embedded system simulations - Modeling

- Numerical analysis - Machine learning - Decision support - Bioinformatics

- Components - Compilers

The figure 2.6 bellow explains the percentage of MT using in different domains.

Figure 2.6: the percentage of using MT in different domains

12

2.2.13 other methods

Although metamorphic testing method has been adopted in different domains as a method of

effective testing, there are other methods such model-based testing and Heuristics testing.

Several researches confirmed the effectiveness of metamorphic testing than other testing

methodologies.

2.2.13. 1 Model based-testing

Model based testing is a software testing technique where run time behavior of software under

test is checked against predictions made by a model. A model is a description of a system's

behavior. Behavior can be described in terms of input sequences, actions, conditions, output and

flow of data from input to output.

2.2.13. 2 Heuristics and Oracles in Software Testing

When it comes to software testing, Oracles could also be the specifications and requirements of

the software we test. So if there is a difference between oracles and the actual result, it is a bug

because there is a deviation in the requirement or the expectations. Heuristics are the different

approaches we apply to learn and test the software and its associated systems.

2.2.14 Experimental studies

To ensure the effectiveness of the metamorphic testing technique, 3 case studies have been

applied to evaluate and verify the proposed method by compared to the traditional Oracle

method.

Although there are a wide range of applications of the metamorphic testing method, the thesis

limited to studying only three of the fields as a case study, the first is on trigonometric function

sin(x), second case study is on the field of geometric shapes(triangle classification) and the third

case study is on booking web services, which is specifically hotel reservation through the

internet.

13

2.3 Related works

 Chen, Y. Wang, Y. Guo, and M. Jiang in [14] proposed an MT approach for event sequences,

which can be used to systematically test applications with rich business processes. They

conducted three case studies in different domains to illustrate their approach. The experimental

results demonstrate the feasibility and effectiveness of the approach. The results also confirm the

previous findings that good MRs is those that make the executions as different as possible.

 K. Yong in [15] aimed to address the cost problem in metamorphic testing by analyzing the

various cost incurred in the metamorphic testing problems and their functional components.

Metamorphic testing technique has been proposed as an effective testing approach to detect

failures in software with oracle problem.

 W. K. Chan et al [16] argued that extends metamorphic testing into a user-oriented approach

to software verification, validation and quality assessment, and conduct large scale empirical

studies with a major web search engines: Google, Bings, and Chinese Bing, and Baidu. The

objectives of the research were alleviating the oracle problem and challenges surrounding a lack

of specifications when verifying, validating, and evaluating large and complex software system.

The empirical results showed that, firstly the approach can effectively detect various kinds of

failures, secondly found that, the operational profiles have a significant impact on the quality of

search.

W. K. Chan, T. Y. Chen, H. Lu, and S. S. Yau in[17] argued that During the testing of context-

sensitive middleware-based software, the middleware identifies the current situation and invokes

the appropriate functions of the application. Since the middleware remains active and the

situation might continue to evolve, conclusion of some test cases may not be easily identified.

The research aimed to alleviate the above problems by making use a special kind of situation

called checkpoints.

The research proposed to generate test cases that start at a checkpoint and end at another.

Based on a metamorphic approach they check the results of the test case to detect any

contravention of such relations.

 C. Aruna and R. S. R. Prasad in[18] introduced generic framework as metamorphic testing

automation framework to address the selection of compatible base test suite, availability and

14

applicability analysis of metamorphic relation(MRs), automation metamorphic testing (MT)

execution and follow up test cases generation problem.

This framework is an integrated environment with feasible metamorphic testing automation

solutions to reveal the hidden bugs’ information from software application.

Finally experimental results of metamorphic testing automation framework (MFAT) framework

proven that, instead of using the individual testing methodologies separately, they can use them

with MF as MFAT framework to identify the hidden bugs which may cause to big failure in

future.

 G. Dong, et al [19] argued that Two of the key challenges in software testing are the

automated generation of test cases and the identification of failures by checking test output, these

problem addressed by metamorphic testing technique.

The research aimed to present the technique and the results of a novel survey outlining its main

trends and present some of successful applications to perform MT, they need to first identify

some metamorphic relation (MRs) which are necessary properties among the inputs and outputs

of multiple execution of the intended program functionality.

Finally there exist strong evidence of a rapidly growing interest in this topic from research

community and industry.

C. Murphy, G. Kaiser, and L. Hu in [20] argued that Making machine learning applications

dependable presents a particular challenge because conventional software testing process does

not always apply. It’s difficult to detect errors, faults, and defects.

The research used metamorphic approach to determine relationships that can be used to

transform an input such that its new output will be predictable.

The research explored six metamorphic properties that may exist in many machine learning

applications like additive, multiplicative, permutative, invertive, inclusive, and exclusive.

Finally the research found that metamorphic testing to be an efficient approach to test machine

learning applications.

 T. Y. Chen, F. Kuo, R. Merkel, and W. K. Tam in [21] argued that network modeling is a

modeling technique for capacity planning studies of computer and communication system.

The main problem of the research was difficulty to know from computed outputs whether the

computation of the modeling software is correct.

15

The research proposed metamorphic testing technique to testing queuing network modeling

through a set of testing experiments in the java modeling tools.

The research results showed that different mutants were killed by different metamorphic relation,

even though the source test cases were the same in each case.

 J. Dunagan, et al [22] argued that Embedded system is the system where software is

embedded inside hardware or electronic device to perform some function.

The problem of the research was to detect software failures of the wireless embedded system.

The research proposed metamorphic testing technique to address above problem.

The results showed that careful design of test environments and selection of system properties

will enable us to trace back the cause of failures and help in fault diagnosis and debugging,

moreover metamorphic testing technique enhancing quality of embedded software and quality of

the wireless metering system.

W. K. Chan , S. C. Cheung§ and Karl R. P. H. Leung in [23] argued that Testing applications in

service oriented architecture environments needs to deal with issues like the unknown

communication partners until the service discovery, the imprecise black-box information of

software components, and the potential existence of non-identical implementation of the same

service.

The research aimed to exploit the benefits of the software oriented architecture (SOA)

environments and metamorphic testing technique to alleviate issues.

The methodology of (MT) is support tester to apply the test cases for the unit test as the original

test case for the integration test.

 L. Xu, et al [24] argued that The automated extraction of information from feature models is a

complex task that involves numerous analyses of operations, techniques and tools.

The research aimed to use metamorphic testing to automate the generation of test data for feature

model analysis tools to overcoming the oracle problem.

An automated test data generator is presented and evaluated to show the feasibility of this

approach.

The research presented a set of relations (so-called metamorphic relations) between feature

models and the set of neighboring FMs together with their corresponding set of products are

automatically generated and used for testing multiple analyses.

16

Complex FMs representing millions of products can be efficiently created by applying this

process iteratively.

The evaluation results using mutation testing and real faults reveal that most faults can be

automatically detected within a few second.

The results showed that the approach of metamorphic testing in the domain of automated

analysis of feature models is efficient and effective in detecting most faults in a few seconds

without the need for a human oracle.

A. Goffi in [25] argued that in software testing the role of test oracles is crucial; the quality of

test oracles directly affects the effectiveness of the testing activity available techniques for

generating test oracle are either effective but expensive or inexpensive but ineffective.

The research focused on the generation of cost-effective test oracles, multiple execution

sequences perform the same, or almost the same action, this phenomenon is called intrinsic

redundancy of software systems.

The research aimed to design and develop completely automated technique to generate test

oracles by exploiting the intrinsic redundancy freely available on the software.

The recent survey classified test oracles in three categories: specified oracle, implicit oracle, and

derived oracles.

Some challenges faced the research are: finding a suitable way to encode the equivalence

sequences, executing the equivalence sequences, and equivalence check.

 J. Ding, et al [26] reported on a novel use of metamorphic relations in machine learning, the

author uses MR for the augmentation of the machine learning algorithms, and also reported on

how MRs can enable enhancement to an image classification problem of image containing

hidden visual markers (art codes).

Two different categories of images, and two MRs based on separation and conclusion was used

to improve the performance of the classifier.

Experimental results showed that the MR-augmented classifier achieves better performance than

the original classifier algorithms.

Finally it is very important to investigate this new approach direction including more case studies

examining application of MRs to other well-known machine learning problems, such as face and

object detection.

17

 D. Peters and D. L. Parnas in [27], the researcher argued that an oracle is determined whether or

not the results of a test execution are correct.

The research discussed ongoing work to produce a tool that will generate a test oracle from

formal program documentation.

Tabular expressions are used to improve readability so that formal documentation can replace

conventional documentations.

The research aimed at developing an automated test oracle generator tool that given a relational

program specification.

The research concluded to that the generation of useful test oracle from relational program

documentation id both feasible and practical.

 J. Ding, T. Wu, J. Q. Lu, and X. Hu,in [28] argued that the metamorphic testing is an

effective technique for system that do not have test oracle.

The research proposed self-checked metamorphic testing approach which integrates structural

testing into metamorphic testing to detect subtle defects in a system implementation.

This approach, metamorphic testing results are further verified by test coverage information,

which is automatically produced during the metamorphic testing, so the effectiveness of

approach has been investigated through testing an image processing program.

In addition to checking the MRs the test coverage of function statement and definition use are

automatically checked during the testing.

The results of the case study showed that checking the test coverage of metamorphic testing is an

effective mechanism to insure the quality of MT. The flowing table 2.3 explains summary of

related works. According to the summary 11 researches had have oracle problem solved by using

metamorphic method while 3 studies had have test case generation problem and used (MT) to

overcome this problem.

18

Table 2.3: Summary of related works

References Oracle problem Solution MT Year

J. Chen et al in [14] Yes Yes Yes 2019

K. Yong in [15] Yes Yes Yes 2015

W. K. Chan et al [16] Yes Alleviated Yes 2015

W. K. Chan et al in[17] Yes Alleviated Yes 2005

C. Aruna et al [18] Yes Yes Yes 2017

G. Dong, et al [19] Test case generation Survey paper Yes 2018

C. Murphy et al in [20] Yes Yes Yes -

J. Dunagan et al [22] Yes Yes Yes 2009 - 2011

S. C. C et al In [23] Yes Yes Yes -

L. Xu et al [24] Test case generation Yes Yes -

A. Goffi et al in [25] Yes Yes Yes -

J. Ding et al [26] Yes Yes Yes 2018

D. Peters et al [27] Test case generation Yes Yes -

J. Ding et al in [28] Yes Yes Yes 2017

19

Chapter Three

Research Methodology

3.1 Introduction

In this chapter the researcher tried to explain the work of metamorphic testing technique, to get

the intended results, and verify the performance of the method by explaining the steps of solution

for selected case studies.

3.2 Case studies

For each case study metamorphic file has been created (java file) to pass it to JUNIT tool for

testing either each test case pass or fail.

3.2.1 First case study (Trigonometric Function)

In order to find the value of the function sin (x), array created to store elements which generated

randomly. These elements passed to the function as inputs to get the outputs each time and the

validation of those outputs through the mechanism of the metamorphic testing method, and this

method does not deal with the single execution but with the multiple execution of the program

under test. These parameters which passed to the function are a set of test cases.

3.2.2 Second case study (Geometric Shapes Classification)

In the second case study, the idea of triangle classification program is it has consist of input as

three natural numbers x, y, and z as the length of the side of a triangle. Its function is to classify

triangle into equilateral (all sides the same length), or isosceles (two the same), or scalene (none

the same), or to determine that the input does not represent an actual triangle when the summary

of two parameters is not greater than the third. The following are the seed test cases.

•Test case t1: Input: (x=4, y=4, z=4), Expected output: Equilateral.

• Test case t2: Input: (x=4, y=4, z=6), Expected output: Isosceles.

• Test case t3: Input: (x=4, y=6, z=8), Expected output: Scalene.

• Test case t4: Input: (x=2, y=5, z=8), Expected output: Not a triangle

20

3.2.3 Third case study (Booking Web Service)

In this case study the idea of the program is enabling users to find potential lodgings according to

their preferences. Firstly the program creates booking query object which includes destination

room and setting beginning and ending of date then setting adult’s number. Secondly the

program creates follow up test case through setting budget and currency. Finally the program

specifies metamorphic relations assertion. Metamorphic testing method in this case generate test

case, execute them verifies the output automatically.

3.3 JUNIT tool

 Unit testing is an important part in Test Driven Development (TDD) as it helps finding

problems in the code as early as possible, especially when you make changes to the existing code

you can run unit tests again to make sure that the changes do not break the application

(regression). JUNIT is one of the most popular unit testing frameworks for Java development.

JUNIT is supported by almost any Java IDEs and build tools, thus it is the default choice of

programmers to test their code. Eclipse has very good support for JUNIT - the IDE is shipped

with JUNIT as its default testing library. Thus writing and running unit tests with JUNIT in

Eclipse is quick, easy and productive[29]. The figure 3.1 explains JUNIT 5 architecture.

Figure 3.1: JUNIT 5 architecture

3.4 Description for the steps of proposed method

This section explored the steps of proposed method in details and how the proposed method

enables the software developers (testers) to confirm the correctness of (MT).

21

3.4.1 Step one: identifying the metamorphic relation

In order to identifying metamorphic relation for software under test, there is the need for user

specification. So metamorphic relation includes test suit inputs and their corresponding outputs.

3.4.2 Step two: test cases generating

The test case is divided into two types, source test cases which are generated using traditional

test case selection strategies and follow-up test cases it is constructed from the source test cases

according to the metamorphic relations.

3.4.3 Step three: test cases execution

Both source and follow-up test cases are applied to the software under test to know if test pass or

fail.

3.4.4 Step four: outputs verifying

The test case outputs are checked against the relevant metamorphic relations to confirm whether

the relations are satisfied, or have been violated. Therefor if expected outputs equal to actual

value the test is pass otherwise the test fail.

3.5 Implementing the proposed method steps on 3 case studies

This section explored in details how to implement proposed method steps on 3 case studies to

know the effectiveness of (MT).

3.5.1 Case study one (Trigonometric Function)

In this case study steps of proposed method have been implemented and the results showed.

3.5.1.1 Step1

When step1 has been implemented on case study1 the metamorphic relation identified according

to problem domain and user specification.

22

3.5.1.2 Step2

When step2 has been implemented on case study1 the test cases generated according to test case

selection strategies. The figure 3.2 bellow explains test case generation.

Figure 3.2: test case generation

3.5.1.3 Step3

When step3 of proposed method has been implemented on case study1 the results showed that no

errors or failures as showed in figure 3.3: sin(x) test case implementation.

Figure 3.3: sin(x) test case implementation

The implementation of test suite in figure 4.3 sin(x)

23

Figure 3.4: test suite sin(x) implementation

3.5.1.4 Step4

When step4 has been implemented on case study1 the results of testing checked according to

metamorphic rules.

3.5.2 Case study2 (Geometric Shapes Classification)

In this case study steps of proposed method have been implemented and the results showed for

each steps clarified.

3.5.2.1 Step1

When step1 of proposed method has been implemented on case study2 the metamorphic relation

identified according to problem domain and user specification, and this steps extracted manually.

3.5.2.2 Step2

When step2 of proposed method has been implemented on case study2, test cases have been

generated according to test case selection strategies, and there are two types of test cases the first

one is source test case and the second is follow up test case. Figure 3.2 explained test case

generation.

24

3.5.2.3 Step3

When step3 of proposed method has been implemented on case study2, the test case inputs

implemented and showed results, no errors or failures occurred and this is strong evident that the

proposed method more effective to detect or reveal different types of errors, therefor enhancing

the quality of software under test. Figure 3.5 explains triangle test case implementation.

Figure 3.5: triangle test case implementation

The implementation of test suits the result of testing as follow in figure 3.6

Figure 3.6: triangle test suite implementation

25

3.5.2.4 Step4

When step4 of proposed method has been implemented on case study2, the outputs of software

under test verified against metamorphic relation, so the verification step checks if expected

outputs equal to actual value. Then the test is pass otherwise the test is fail.

3.5.3. Case study3 (Booking Web Service)

In this case study steps of proposed method have been implemented and the results showed of

each steps explained through practical application.

3.5.3.1 Step1

When step1 of proposed method has been implemented on case study3 the metamorphic relation

identified according to problem domain or from user specification, and this steps extracted

manually usually.

3.5.3.2 Step2

When step2 of proposed method has been implemented on case study3, test cases have been

generated according to test case selection strategies, and there are two types of test cases the first

one is source test case and the second is follow up test case which is extracted from source test

case. Figure 3.2 explained test case generation.

3.5.3.3 Step3

When step3 of proposed method has been implemented on case study3, the test case inputs

implemented and appeared results, that no errors or failures appeared and this is strong evident

that the proposed method is more effective to reveal the different types of errors, therefor

enhancing the quality of software under test. Figure 3.7 explains booking web service test case

implementation.

26

Figure 3.7: booking web service test case implementation

The implementation test suite on booking web service figure 3.8 explains it.

Figure 3.8: booking web service test suit implementation

3.5.3.4 Step4

When step 4 of proposed method has been implemented on case study3, the outputs of software

under test verified and checked against metamorphic relation, so the verification step checks if

expected outputs equal to actual value then the test is pass otherwise the test is fail.

27

Chapter Four

Results Discussion

4.1 Introduction

In this chapter, the researcher tried to discuss how to improve the quality of the software

applications (programs under test), considering that one of the most important factors that

helping to improve the quality is testing and verifying that they are free from functional and

requirements errors.

Using the metamorphic test (MT) method to overcome the problem of test case oracle

contributed greatly to improving the efficiency of the testing process and the accuracy of the

results. Experimental results showed that the MT is very effective way to test program without

involving an oracle.

4.2 First Case Study (trigonometric function)

 Empirical execution of program in JUNIT tool showed that total runs (1), failures (0) and errors

(0) for one test case while in test suits runs are(3) failures(0) and errors(0) Figures 1, 2, explain

all aspects related to implementation of program by using JUNIT.

Figure 4.1 and figure 4.2 explain implementation of sin(x).

Figure 4.1: test case execution chart Figure 4.2: test suit execution chart

4.2.1 Discussions

 The implementation process was seen free of errors, thus ensuring the smoothness and

integrity of the code. On the other hand, the implementation result was devoid of failure,

meaning there are no problems in the testing process, and this increases reliability, and thus it

showed that the metamorphic method has a high efficiency to alleviate the problem of oracle.

28

The absence of errors and failures in the results of the testing process means the effectiveness of

metamorphic method in ensuring the correctness of the outputs and thus contributes (MT) to

improving the quality of the program.

4.3 Second Case Study (Geometric Shapes Classification)

Triangle has been taken as one of geometric shape classification. A set of test cases can be

created and executed based on a set of pre-existing test cases, for example in the triangle

classification program, there are three test cases: test case1, test case 2 and test case 3. When the

test case has been started as shown in Figure (4.5), the number of parameters passed are (9), the

errors are (0), and failure are (0) ,while only one test case executed in Figure (4.4). So that the

total run becomes (3) with (0) errors and (0) failures. In Figure (4.4), the chart explains that total

runs are (3), errors are (0) and failures are (3).

 Figure 4.3: test cases implementation chart Figure 4.4: test suite implementation chart

The implementation of test case for the first time, it looks like the red pane which means there

are some failures in test. Hence, it may need to rewrite them or fix the failures.

Figure 4.5: test case implementation chart

29

4.3.1 Discussion

From the charts, the fewer errors in the implementation, the more reliable and efficient the

metamorphic method in software testing, and the success of all test cases means there is a strong

logic code that can be relied upon.

The absence of errors and failures in the results of the testing process means the efficacy of the

metamorphic method in ensuring the correctness of the outputs and thus (MT) contributes to

improving the quality of the program.

Although there is a high implementation failure in Figure 4.9, it can be fixed by rewriting the test

case.

4.4 Third Case study (Booking Web Service)

A test suit can be created and executed based on a set of pre-existing test cases. For example in

the booking searching program, there are three test cases: test case1, test case 2 and test case 3.

When the test case has been started as shown in Figure (4.7), the number of parameters passed

are (3), the errors are (0), and failure are (0), while only one test case executed in figure (4.6),

error are(0) and failure are(0).

 Figure 4.6 and figure 4.7 explain implementation of booking website.

Figure 4.6: test case chart Figure 4.7: test suite chart

4.4.1 Discussion

In the charts, the fewer errors in the implementation, the more reliable and efficient the

metamorphic method in software testing, and the success of all test cases means there is a strong

logic code that can be relied upon. And then there are strong evident for using (MT) to solve the

test case oracle problem.

30

The absence of errors and failures in the results of the testing process means the efficacy of the

metamorphic method in ensuring the correctness of the outputs and thus (MT) contributes to

improving the quality of the program.

4.5 General Discussion

Through the empirical study and the results it became clear that the testing process became

smooth, as the successful implementation of each case study separately.

In the first case study, geometric shapes - one test case was executed and no error or failure was

shown in the implementation. This is considered to be that the metamorphic method can be rely

upon to overcome the oracle problem, as well as that the code is free of logical errors, but in

return it can appear failures in execution, and this is normal due to the tool used, as some

problems appear when creating a test case for the first time, and this requires rewriting the test

case before implementation.

In the second case study - classification of geometric shapes, there is also a similarity in the

results of the implementation, when executing one test case a very high failure occurred and it

was fixed by rewriting the test case and this is normal as mentioned above, while a number of

test cases were executed and no errors or failures appeared in execution.

In third case study- booking web service - one test case was executed, and the result of the

implementation did not show any error or failure mentioned, which is evidence of the strength of

the metamorphic testing in improving the quality of software testing. On the other hand when

implementing a number of test cases also did not appear any error or failure in the result of the

implementation.

Through the discussion and analysis above, we conclude that there is similarity in

implementation between the three case studies, and appearance of failure in implementation is a

natural thing due to the deficiency of the tool used in generating test cases, and despite some

limitations of the metamorphic method, it is the most appropriate in software testing because of

its characteristics which can link inputs and outputs to multiple relationships and validate results,

thus contributing to improving the quality of the program under test.

31

Chapter Fife

Conclusion and Recommendations

5.1 Introduction

In this chapter; conclusion and recommendations explored, the final results explained and

recommended some guides for postgraduate students to prepare their research, the researcher

recommended some ideas that help to deal with this topic in the future time.

5.2 Conclusion

In conclusion, it concluded that the objectives of the study have been released and this is

due to the successful implementation of the case studied and other reasons that mentioned in the

previous. The researcher analyzed the defects of oracle and other traditional methods and their

negative impact on the quality of the software and its inability to discover the hidden errors of

the code, as well as the inability to test some systems due to unavailability of an oracle or the

difficulty of implementing it.

As well as proposing the metamorphic method to improve the quality of the programs

under test and to ensure the correctness of the outputs automatically as a solution to the oracle

problem or mitigate it. In some cases where the metamorphic method was applied to the

proposed case studies and the results proved a high efficiency of the proposed method in

discovering errors and correcting them, which is considered a practical guide in achieving

objectives of the study.

Finally, the effectiveness and efficiency of the method used was verified through the

accuracy of implementation results for different test cases, and it can be relied upon in software

testing for its significant contribution to improving software quality to the satisfaction of

stakeholders.

5.3 Recommendations

In conclusion, it recommended developing the research to cover another side of the topic which

includes using metamorphic technique in machine learning, computer graph, deep learning and

modeling and simulation etc.

Addition to that developing this work and adding improvements up to be a large software project

in the future times.

32

From the above, it recommended the following:

 Using another tool more effective than JUNIT because the limitation of the tool in test

case generation and test case running

 Adding improvements as general

 Design interface for the project rather than dealing directly with code

 Searching for the best ways to generate test cases more efficiently

 Using another tool with JUNIT to integrate them in order to generate test case effectively

(mutation testing)

33

References:

[1] Z. H. I. Q. Zhou, ―Metamorphic Testing : A Review of Challenges and Opportunities,‖

vol. 000, no. 000, 2017, doi: 10.114.

[2] Z. Q. Zhou, D. Huang, T. Tse, Z. Yang, H. Huang, and T. Chen, ―Metamorphic testing

and its applications,‖ Proc. 8th Int. Symp. Futur. Softw. Technol. (ISFST 2004), 2004.

[3] ―Case Studies on the Selection of Useful Relations in Metamorphic Testing ⋆.pdf.‖ .

[4] E. Fuchs, Quality: Theory and Practice, vol. 65, no. 2. 1986.

[5] ―V-model – Software Testing Watch This Video,‖ [Online]. Available:

https://www.rogeriodasilva.com/v-model-software-testing/.

[6] M. Harman, P. Mcminn, M. Shahbaz, and S. Yoo, ―A Comprehensive Survey of Trends in

Oracles for Software Testing,‖ pp. 1–32.

[7] Z. Micskei and I. Majzik, ―Model-based test generation Main topics of the course,‖ pp. 1–

12.

[8] S. Segura, G. Fraser, A. B. Sanchez, and A. Ruiz-Cortes, ―A Survey on Metamorphic

Testing,‖ IEEE Trans. Softw. Eng., vol. 42, no. 9, pp. 805–824, 2016, doi:

10.1109/TSE.2016.2532875.

[9] ―geeks for gegeeks website.‖ https://www.geeksforgeeks.org/test-oracles/.

[10] ―concepts of metamorphic,‖ [Online]. Available: https://www.researchgate.net/figure/The-

concept-of-metamorphic-testing_fig1_280567781/download.

[11] C. Murphy, ―Metamorphic Testing Techniques to Detect Defects in Applications without

Test Oracles,‖ 2010.

[12] T. Y. Chen, F. C. Kuo, D. Towey, and Z. Q. Zhou, ―Metamorphic testing: Applications

and integration with other methods: Tutorial synopsis,‖ in Proceedings - International

Conference on Quality Software, 2012, pp. 285–288, doi: 10.1109/QSIC.2012.21.

[13] H. Liu, F. Kuo, D. Towey, and T. Y. Chen, ―How Effectively does Metamorphic Testing

Alleviate the Oracle Problem ?,‖ pp. 1–21, 2013.

[14] J. Chen, Y. Wang, Y. Guo, and M. Jiang, A metamorphic testing approach for event

sequences, vol. 14, no. 2. 2019.

[15] S. K. Yong, ―Cost-effective Metamorphic Testing Techniques for Failure Detection in

Software with Oracle Problem,‖ 2015.

[16] Z. Q. Zhou, S. Xiang, and T. Y. Chen, ―Metamorphic Testing for Software Quality

Assessment : A Study of Search Engines,‖ no. January, 2015, doi:

10.1109/TSE.2015.2478001.

[17] W. K. Chan, T. Y. Chen, H. Lu, and S. S. Yau, ―A Metamorphic Approach to Integration

Testing of Context-Sensitive Middleware-Based Applications ∗,‖ 2005.

[18] C. Aruna and R. S. R. Prasad, ―MTAF : A Testing Framework for Metamorphic Testing

Automation MTAF : A Testing Framework for Metamorphic Testing Automation,‖ no.

September 2015, 2017.

[19] S. Segura, ―Metamorphic Testing 20 Years Later : A Hands-on Introduction,‖ pp. 3–6,

2018.

[20] C. Murphy, G. Kaiser, and L. Hu, ―Properties of Machine Learning Applications for Use

in Metamorphic Testing.‖

[21] T. Y. Chen, F. Kuo, R. Merkel, and W. K. Tam, ―Testing an Open Source Suite for Open

Queuing Network Modelling Using Metamorphic Testing Technique Testing an Open

Source Suite for Open Queuing Network Modelling using Metamorphic Testing

34

Technique,‖ no. April 2014, 2009, doi: 10.1109/ICECCS.2009.28.

[22] F. Kuo, T. Y. Chen, and W. K. Tam, ―Testing Embedded Software by Metamorphic

Testing : a Wireless Metering System Case Study,‖ pp. 291–294, 2011.

[23] S. C. C. and K. R. P. H. L. W. K. Chan †‡, ―Towards a Metamorphic Testing

Methodology for Service-Oriented Software Applications ∗.pdf.‖ .

[24] ―Automated Metamorphic Testing on the Analyses of Feature Models✩.pdf.‖ .

[25] A. Goffi, ―Automatic Generation of Cost-Effective Test Oracles Categories and Subject

Descriptors.‖

[26] L. Xu, D. Towey, A. P. French, S. Benford, and T. Y. Chen, ―Enhancing Supervised

Classifications with Metamorphic Relations,‖ 2018.

[27] D. Peters and D. L. Parnas, ―Generating a Test Oracle from Program Documentation work

in progress.‖

[28] J. Ding, T. Wu, J. Q. Lu, and X. Hu, ―Self-Checked Metamorphic Testing of an Image

Processing Program Self-Checked Metamorphic Testing of an Image Processing

Program,‖ no. August, 2017, doi: 10.1109/SSIRI.2010.25.

[29] ―eclips,‖ [Online]. Available: https://www.codejava.net/testing/junit-tutorial-for-beginner-

with-eclipse.

