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Abstract

We show the new properties and weighted fully measure and fully measurable of
small, grand and iterated grand Lebesgue spaces with their applications and the maximal
theorem .Direct and inverse theorems of approximation theory in variable Lebesgue
and Smirnov spaces are discussed . The trigonometric and polynomial approximation of
functions and problems in generalized Lebesgue spaces with variable exponent and
Smirnov spaces with nonstandard growth are studied . The maximal function and atomic
decomposition of Hardy spaces with variable exponents and its application to bounded
linear operators are considered .\We characterize the modular inequalitis for the Calderon
and maximal operators in variable Lebesgue spaces.
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Introduction

We show some new properties of the small Lebesgue spaces introduced by Fiorenza in
[2]. Combining these properties with the Poincaré-Sobolev inequalities for the relative
rearrangement. The norm of the grand Lebesgue spaces is defined through the supremum
of Lebesgue norms, balanced by an infinitesimal factor. We consider the spaces defined by
a norm with an analogous expression, where Lebesgue norms are replaced by grand
Lebesgue norms. Without the use of interpolation theory, we prove an iteration-type
theorem, and we establish that the new norm is a gain equivalent to the norm of grand
Lebesgue spaces. Let 1 < p < «.Given ¢ R" a measurable set of finite Lebesgue
measure, the norm of the grand Lebesgue spaces LP) (Q) isgivenby

1

1 1 p-¢
Flig = sup e <_|n| | |f|p-fdx) .
QO
1

0<e<p-1

we consider the norm VAVEORT obtained replacing sr-¢ by a generic nonnegative
measurable function § (¢).

The approximation properties of Naérlund (N,,) and Riesz (R,,) means of trigonometric
Fourier series are investigated in generalized Lebesgue spaces LP™). We investigate the

approximation properties of the trigonometric system in ng) . We deals with basic
approximation problems such as direct, inverse and simultaneous theorems of
trigonometric approximation of functions of weighted Lebesgue spaces with a variable
exponent on weights satisfying a variable Muckenhoupt A, type condition.

If P,Q : [0,00) — are increasing functions and T is the Calderén operator defined on
positive or decreasing functions, then optimal modular inequalities [ P(Tf) < C [ Q(f)
are proved. We give continuity conditions on the exponent function p(x) which are
sufficient for the Hardy-Littlewood maximal operator to be bounded on the variable
Lebesgue space LP™) (Q), where Q is any open subset of R™ .

Using variable exponents, we build a new class of rearrangement-invariant Banach
function spaces, independent of the variable Lebesgue spaces, whose function norm is
p(f) = esssupxe(o,1) Ppx)(6(x)f(-)), where p,, denotes the norm of the Lebesgue
space of exponent p(x) (assumed measurable and possibly infinite) and & is measurable,
too. Anatriello and Fiorenza introduced the fully measurable grand Lebesgue spaces on
the interval (0,1) < R, which contain some known Banach spaces of functions, among
which there are the classical and the grand Lebesgue spaces, and the E X P, spaces
(a > 0). We introduce the weighted fully measurable grand Lebesgue spaces and we
prove the boundedness of the Hardy—Littlewood maximal function. We build a new class
of Banach function spaces, whose function norm is



— : -1
p(p[.],g[.](f) _Zﬁg‘}ffk L, E;CSE%OI’Ill)fpp(x)(a(x) fk()) )
where p,) denotes the norm of the Lebesgue space of exponent p(x) (assumed
measurable and possibly infinite), constant with respect to the variable of f, and 0 is
measurable, too. Such class contains some known Banach spaces of functions, among
which are the classical and the small Lebesgue spaces, and the Orlicz space L(log L)%, a >
0.

We consider the Lebesgue space with variable exponent p(x). It consists of

measurable functions f(x) for which the integral fozn |f () |P®dx exists. We establish an

analogue of Jackson’s second theorem in the case when the 2 m-periodic variable exponent
p(x) = 1 satisfiesthe condition

p(x)
LZTL’

Ip(x)—p(y)l-lnlx_yI <d  xy € [02n]

We investigate the inverse approximation problems in the Lebesgue and Smirnov spaces
with weights satisfying the so-called Muckenhoupt’s A, condition in terms of the a-th
mean modulus of smoothness, @« > 0. In the variable exponent Lebesgue space, the r-th
modulus of smoothness (r =1,2,...) is defined and in this term, the direct and inverse
theorems of approximation theory are proved.

We generalize the classical L logL inequalities of Wiener and Stein for the Hardy-
Littlewood maximal operator to variable LP spaces where the exponent function p(:
) approaches 1 in value. As applications of atomic decomposition results of Hardy spaces
with variable exponents, we shall prove the boundedness of commutators and the fractional
integral operators as well as the Hardy operators. A now classical result in the theory of
variable Lebesgue spaces due to Lerner (2005) is that a modular inequality for the Hardy—
Littlewood maximal function in LP®) (R™) holds if and only if the exponent is constant. We
generalize this result and give a new and simpler proof. We then find necessary and
sufficient conditions for the validity of the weaker modular inequality

[ Mror® dx < o [ If@I® dx+c,
QO QO

where c;, ¢, are non-negative constants and 2 is any subset of R".

Vi
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Chapter 1
Iterated and New Properties

We derive some new and precises estimates either for small LebesgueSobolev spaces or
for quasilinear equations with data in the small Lebesgue spaces. We show that the
expression involved satisfy the axioms of Banach Function Spaces, and we find explicit
values of the constants of the equivalence. Analogous results are proved for small
Lebesgue spaces. We find necessary and sufficient conditions on 6 in order to get a
functional equivalent to a Banach function norm, and we determine the ‘‘interesting’’ class
B, of functions &, with the property that every generalized function norm is equivalent to a

function norm built with 6§ € B,. We then define the LP»3(()) spaces, prove some
embedding results and conclude with the proof of the generalized Hardy inequality.

Section (1.1): Small Lebesgue Spaces and Their Applications

In [2], we shall give some new properties of the small Lebesgue spaces introduced by
Fiorenza (3]), denoted by L®(Q) for a bounded setQ,1 < p < +oo. This set is smaller
than the Lebesgue space LP(Q)and contains all LP*¢(Q) for all € > 0.

If we denote by

1 S
g (8) = 5 jlgl*(t)dt, s € (0,meas(Q)) = Q,,
0

g. being the monotone rearrangement of |g|, then g,, € L®(Q,) ifg € L®(Q) and

”g”L(P(Q) < |g**|L(P(Q*) < p,“g”L(p(Q)' (1)
These spaces satisfy the Levi monotone convergence property. A first consequence of such
a property is that if (E,)mso IS @ monotone sequence of measurable sets with
meas (E,,) m — oo 0,then forany f € L®(Q), one has |fXEm|L(p(Q) — 0.

Here xg  is the characteristic function of E,,,. We shall give a direct application of some of
the properties of the small Lebesgue spaces, by proceeding on a direct proof of some
precise pointwise estimate.
Namely, W™ Q) c L*®(Q) n C(Q) (if Q is a bounded connected Lipschitz set) and
1/N’

Tl KA CORAM (LT ETm I @)
(We denote by ||, the Banach Function norm in L®). The inclusion in C(Q) is a
consequence of the work of [3] (see also [4,5]) since

wrNQ) c {v e WH(Q) : |Vv| € IV1(Q)}.

The inclusion in L* is given in [6]. The main part is the estimate (2). Furthermore, if
u € W, (Q) solution of




N
(P) Au = —div@(xu,Vu)) = f € L? (Q) 1 <p<N
then u is bounded if p < 2.Furthermore if p < % and |Q|] = 1, then we havethe

following precise estimate:
1

1 i
1l ) < canp | [ 577 0(I7T ds

Geul'n <t (3

. L N 1
With @ (s) = Supgcecq-1(€5)7¢ ,q = Ny = 7 g = If1.
a?P (Nw%
If p = 2 then one has:
N 2
« < — 4
ul. ) < cans (7=5) 191y @

The above estimate (4) shows, in particular, that if we consider the operator

N
(-0 : LE(Q) — L®(Q) then we have the following estimate of the norm
2

—AN)"19| o 1
(A1 = sup—l( |)| 9| < |—
N =
970 g Z (N — 2)(1)11\\,'

For p > 2, we shall introduce the following vector space
N 1 N
W = {g e LP@: gt € LY m*)}
N
If f € V, then u is bounded.We shall show that V, is different from L% () by producing

N

an element g of L (Q2) whose decreasing monotone rearrangement is g.(s) =
p

sV |Ins 7P, with s € (0,1/2),9.(s) = g.() for>< s <1,and g isnotin V.
Moreover ,we shall prove that if Q is a ball of measure 1 centered at the origin and
u € W,"' (Q) the unique radial solution of :

—Ayu = —div(|VulP~'Vu) = g.(wy|xV),
then there exists a constant ¢ > 0 (depending only on Q,N,p) such that u(x) =
¢ In |In|x|[| near the origin. This last result implies that the above L™ result is optimal in

N
the frame of small Lebesgue spaces in the sense that there are functions f € L% Q),f ¢
V, for which the solution u of (P) is not bounded.

We recall that if f € L°(Q),s > % , then the boundedness of solutions is known (see for

instance [5]) and is not true if s = %.The L™ -estimate is also known in the frame of

N 1

Lorentz spaces that is if f is in Lr»-1(Q) the solution u € W,"P(Q)of Au = f is

2



bounded (see for instance [6]). However, the techniques we employ here are slightly
differents from those references and the estimates we have , seem to be sharp in the class
of small Sobolev spaces.

ﬂ 1 ﬂ 1

14 14

N
When p < 2,we have the strict inclusion that L% (Q) c Lr»-1(Q).For p > 2,Lr '7-1(Q)

N
does not contain L% Q).
N 1

We remark here that for p > 2 it is easy to show that Vj, < Lr»>-1(Q). In fact, applying

the Holder inequality for small and grand Lebesgue spaces, we have
1

dtjp-1 28
oy j hao 2 = [t s

Q.
1

<| tN_1|(N/P ))Igr |(N/p
and the right hand side is finite because g € V,.
The proofs of relations (2) and (3) rely on the techniques developed in [7], based on the
Poincaré-Sobolev pointwise relation for the relative rearrangement. These techniques are
different from those introduced by Talenti [8] since we don’t make appeal to the derivative
of the distribution function m,,(t) = meas{x : u(x) > t}, for instance. We shall denote
by Q an open set of RN (bounded or unbounded).

Ifx = (xq,...,x5),Y = V1, .- yn) then (x,y) = x -y =YY, x;y; isthe euclidian

product and |x| = (x, x)z, the associated norm, B(x, t) is the ball of R¥centered at a point
x ofradiust > 0.For1 < p < +oo,LP(Q) is the usual Lebesgue space endowed with the
usual norm, denoted by | - |,,. L °(Q) denotes the set of all measurable functions on €. The

usual Sobolev space W(}g is endowed with the following norm|ul|,,, = |ul, + [Vul,.

For a measurable set E of R", we shall denote by|E|its Lebesgue measureand ifu : Q —
R is a measurable function then,
fu>t}={x € Q: ulx) > tlandlu>t|=|{u>t},{u = t}={x € Q: ux)
= t}.
A plateau of value t is the set {u = t}satisfying |lu = t| > 0.1f u € LP(Q), we set
P(u) = Usep {u = t}the plateau u;(D is at most countable if Q is bounded or 1 < p <
+oofor unbounded domain Q). For g > 0 measurable on (), we shall associate quantity

introduced in [7]:
1

N L ey \PT
;5 = i p—¢&
o= g [5  o([o7)

Q

g=z0 -

. o L .
withp’ = — ,J,, istheaverageon Q,1 <p < +oo.



Definition (1.1.1)]1]: Letu be in LP(Q),1 < p < 4oo(u = 0 if Q is unbounded). The
distribution function associated to u is the real function: m, : t = |{u >t} =|u>t|.
The following is proved in ([8], p. 135)

Theorem (1.1.2)]1]: The space defined by

L (@ ={g € L@:ligllp < +oo}
is a Banach space under the norm given by: g € L®'(Q) — lgll ¢, - This space is called

small Lebesgue space.
Furthermore, Ve > 0:

L<P’+S(Q)i L<P’(Q)i L?' (Q).

The above spaces are associated to the so-called Grand Lebesgue spaces introduced in [9]

(see [10]). For © a bounded open set:
1

£ p—¢
LP(Q) =<v € Ll}(Q):[v]= sup <ﬁ j |v|p‘5dx> < +oo
Q

0<e<p-1

The norm in this space is [11] denoted also by V™ @y

Definition (1.1.3)]1]: We define on [0, |Q|] the function u, by setting:
u,(s) = Inf{t eR |u>t| <s}s€eQ,
and u,(0) =esssupgu,u,(|Q]) = essﬂinfu.

The function u, is called the decreasing rearrangement of u.
Letv € LP(Q),u €L'(Q),1 < p<+0,1< r < 400,
If Q is unbounded we assume that u > 0 and the restriction of v to {u = 0} is
nonnegative. Furthermore, if v (resp. u) satisfies the conditions:

lv>t| < +0 (resp.|lu > t| < +00)Vt > 0,
then p (resp.r) can be infinite. For  bounded, p orr can be infinite. Consider the
function w : Q, - R, defined by

s—lu>u, (s)|

w(s) = j v(x) dx +j (v|{u=u*(s)})*(a)da
{u>u.(s)} 0

wherev|g,—y (s) 1S the restriction of v to{u = w.(s)}. The following result summarizes all
those obtained in [12].
(a) If Q is bounded then one has:

—(“”Z)*‘“*m ‘Z—V: in LP(Q.)-weak if 1 < p < +o0 and in L®(Q.)weak-star if p =

+oo .
(b) If Q is unbounded then one has:

iyw € WP ([0, 40),

loc

dw
ll) E € LP(O, -|-OO),



jii, ) LA 37, %in 1P (0, +00)-weak if 1 < p < +oo (weak-star for p = +oo)

and in L1(0, M)-weak,V M finite.

dw
In any case, |E| < |V|pa)-

LP(Q.)
Definition (1.1.4)]1]: The function ‘;—‘: is called the relative rearrangement of v with
dw

respect to u and is denoted by v,,, = —

In the case of a bounded domain, a similar notion can be found in [13] (see also [14]).
Poincar”e-Sobolev inequality for the relative rearrangement

Definition (1.1.5)[1]: LetQ be abounded open set. We will say that a subset V' of
WL1(Q) satisfies the Poincar’e-Sobolev inequality for a relative rearrangement if there
exists a function K(.,Q,V ) from Q, into R,, such that forall u € V:

(@) u, € W, ()
(b) —u.(s) < K(s,QV)|Vul,,(s) foralmost s € (,.
For simplicity, we shall call PSR the above property. We shall use the following result
proved in [15]:
Lemma (1.1.6)[1]:Let Qbe a ball of radius R > 0.ThenV = W11(Q) satisfies the PSR
property. Furthermore,

w 1-+ 1 1

Wn-1 (TN) NMax (Sﬁ_l '(wNRN - S)N_l) '

Here, om denotes the volume of the unit ball of R™.
The Levi’s theorem of monotone convergence for small Lebesgue spaces

Before stating and proving Levi’s theorem, we give a few lemmas. The first one tells that
in the expression of the norm of L®'(Q)we can take also & e]O,pT_1 ] instead of ¢ €

10,p — 1]

K(s,Q,V) =

Lemma (1.1.7)[1]: The following norms are equivalent:
1

inf inf _p_is -9 ¢4 -y
gl = inf Zoéilp_f ngkl x

1

gl = inf 1> int &7 ([ 19007 ax) "
, = in Inf & P~ X ,
gl 9=3 0k 4 p—1 ng

0<8<T

Proof: Of course |||l < [llglll -

On the other hand, fix k € N such that
1

__1 ) (r-o)'
inf ¢ p-¢ flgkl(p‘g) dx =
Q

0<e<p-1



We have
1

IA
(o)
=
Q
<
| =
<)
VR
b_
Q
=
5
NJ
QU
=
N~
T
S

Therefore
1

__1 ) (r-o)'
=c, inf & P& | |gp|?®P ¥ dx
- Q

2
From the above computation we get easily ¢, = (p — 1) (p—;l) P** The conclusion is

2

1 /p—1\p+1
(B5)" Mgl < Ngllr < Mgl

p—1 2
and the lemma is proved.
Throughout the following we will use |[|[.[|[,s instead of ||.||,.Next lemma is an

elementary inequality.

Lemma (1.1.8)[1]:
a=b =0, p =1= aP —bP > (a — b)P.

6



Lemma (1.1.9)[1]: If 0 < b < a,7 >0,a = (1+ 1)b,0 < ay < a <1, thenthere
exists c = c(t, ay) such that

(a —b)* < c(a® —b%).
Proof: By elementary computations we have

(a —b)“ (t—1“ T¢ VO < < g<1
S _ = g = Ay S .
OS(E‘Ba)b a® —b* it -1  (1+D*-1 °
a=(1+71
On the other hand
,l-a Tao

S = )
v (14D =1 (1+D)% —1

therefore the lemma is proved with

7%

(1+17)% —1°

c = c(t,ay) =

We have prove the following
Theorem (1.1.10)[1]: Let (f;,,) be a monotone nondecreasing sequence (i.e. f;, < fin+1)
such that M = supy, || finllp», < +o0. Then the function f = sup f;, is such that

m

().f € L®
(i)).fm 7 f a.e.
(ii)). f, —> fin L@

Proof: Without loss of the generality we may assume that the sequence (|| | fin| ||(p, )mEN IS

convergent, where [[[. |||, is the expression equivalent to [|. ||, given in Lemma (1.1.7):

if it is not the case, we can extract a subsequence of (f,;;) and we prove first the theorem
for such subsequence. The assertion in general then easily follows from the order-
preserving property of |. ||, .

Now letr,s € N,r > s,and let ¢ > 0. Let ( r(k)) be a decomposition of f,.:
keN

fr= ) 1% (5)
k

1
Z onf & P—¢ (j
% 0<ss% Q
Let gy E]O,%] be such that

_ 1
Oy pP—ok J
Q

1
< inf X p-¢ (j
O<£SPT Q

such that

1
7

)| @8 (r-9)
£OI7 T dx <Iliflllpr +o. (6)

1
(p-op)’ (p—or)’
k
79 dx)

) (p—e)' -9 o
P17 ax tor vk EN. ()

7



On the other hand, since r > s and (f,,,) iIs an increasing sequence, we have f; < f,, and
by Fiorenza [12], we know that there exists ( S(k)) such that

fi = D R ()
k
9 < f®yk eN 9)

From (5), (8), (9) we get

== L (£ - £%)

and therefore
1

(p—¢)’ (p-¢)'
k k
£ — £ dx)

1
1y = flllgr < inf_ &= (fﬂ

1

1 (p-op)’ (p—op)’
Szak . O fr(k)_fs(k)l dx)
Q

k

By Lemma (1.1.8)

(|
k

1
(p—or)’ (p—oy)’
k
£ ax)

(p—or)’

k

fr( )| dx — f
Q

Now fix 0 < 7 < 1, and let

A, ={k EN:f
Q

B, =N—A4.,.

We have
_ 1
E O b—og <.[
Q

(p—or)’ (p—op)’
f,,(k)| “dx < (1+r)J fs(">| ‘ dx}
Q

1
(p—op)’ (p—or)’
k
79| dx)

(p—ox)’

k

O ax- |
Q

kEA;
1
1 1 —on) =03
< Z =) . 0, P—ox <J fs(k)|(p Ok) dx) p—0k
KEA, Q2
_r 1
p-1y __1 (p-o1)’ (p—op)’
< (-55) zak P=0k (f fr(k)|p Tk dx> ok
Q

keN

and by (7)



1
(p-¢)' )(p—S)’
dx

..STT a+z 1nf e (Jfr
o<e<P== Q

keEN

and by (6) ) )
p—2 p—2
< P |l1f ]l + 20] < TPFT [M + 20]

On the other hand, by lemma (1.1.9)
(p-or)’
dx — f fs
Q

s E ] (1

o
5 (]

keN

1
(p—ox)’ (p—or)’
dx

1
(p—or)’ (p—op)’
dx

1
(p—or)’ (p—oy)’
dx

1
(p-or)’ (p—oy)’
k
£ dx)

(v

1
(p—or)’ (p—op)’
dx

and as above, by (6) and (7)

1 1 (=00’ \@-ow)
< C(T'm> lflllpr + 20 _Za" P fg Js o

keN
-1
< et E) sl = N1l +20]
Until now we proved that Vo > 0,V0 <7< 1
p—1
1 = filllgr < TFI[M +20] +¢(z,
Letting o — 0 we get, forany r,s,€ N,r > s,
p-1 -1
= filllgr < 770 M ¢ (22 (1Al = Al ] (10)
Now let ¢ > 0, and fix T = 7, such that

p-1 £
T, P11 M <§ (11)

1

-1
) Al = Al + 2]




On the other hand, since the sequence (”ml”(P')reN IS convergent, there exists m, € N
such that

p—1 €
e (tergg) Al = NAllg] <5 vr > s> m. (12)
By (10), (11), (12) we have that
Ve >03Im, € N: [||f, — filllpy <& Vr>s>m,,
therefore, by Lemma (1.1.7), (f;,,) is a Cauchy sequence in L®" and converges to some
function f € L@

From the imbedding of L®"in LY it follows that the limit f coincides a.e. with sup,, fin ,
which is also the a.e. limit of (f;,,).

Corollary (1.1.11)[1]: Let f € L(P'(Q) and let (E,,,) be a sequence of measurable sets in
Q such that
i)QO2 E,2E,2E;2+2E, 2
i)|E,|— 0
Then
||fXEm||L(p,(Q) — 0.
Proof: Without loss of generality we may assume that f > 0. Let us set f,,, = f —
fxe, Vm € N. By i) the sequence (f,) is increasing. Moreover, since f,, < f €

L®'(Q) vm, we have

Finally, by ii), we have that f = sup,, fi.

By the theorem proved, f,, —» f in L? (Q), therefore
||fXEm||L(p’(Q) =|lf _fm”L(p'(Q)__) 0

Proposition (1.1.12)[1]: Let g be in L®'(Q) and for ¢ € Q., set

1 (e
9. = = [ lgl. @
9 Jo
Then
”g”L(p’(.Q) S |g**|L(p,(Q*) S p”g”L(p’(Q)
Proof: Let g, = 0 be an admissiblede composition of |g|i.e|g| = X¥ gx-Setting
o

1
9@ == | g0 d,
0 Jo
then from Hardy’s inequality, we have:

|gk**|L(p—£)’(Q*) S plgle(p—S),(Q) . (13)

Moreover, we have from the Hardy-Littlewood property:

10



9.(0) < Z Gier(@) (14)
From relations (13) and (14), we have, by usmg Lemma 2.1 of [14]:

+00 1

< nf & PF NS
|g**lL(”’(ﬂ ) T 2 0<ér<1p—1 € fﬂ Giews (D)

k=1
1

e ( f ()@~ dt>(p_8),
=p z inf & P~ ) )
0<e<p-1 Q,

from which we get the upper bound.
For the lower bound we have

, 9] = Gus (15)
Since the norm in L is a rearrangement invariant norm, we then have:

”g”L(p,(.Q) = ||g|*|L(p,(Q*) S |'g**|L(p’(.Q*)
The following result has been proved in [15]:
Lemma (1.1.13)[1]: For g € L?' (Q),v € L(Q), we have

”g*v”L(p'(Q*) < ”g”L(p'(Q)'
Theorem (1.1.14)[1]: Let Q be a bounded Lipschitz connected set and
wiv) ={v e wr(Q): |Vv| € LV (Q)}.
Then
Wt Q) c L*(Q) n C(Q).

Moreover, we have the following rate of convergence:
1

NT
osc N

Br ) < 5o U V17 g -
whenever B(x,t) ¢ Q,t > 0. Here, w,, is the volume of the unit ball of R™.
Proof: The fact that W2 (Q) < L®(Q) has been proved directly in [15]. Let (x,t) be
such that B(x,t) c Q,t > 0.Let u € W*?™(Q) and u the restriction of u to B(x,t).
From the Lemma (1.1.6) (Poincar e-Sobolev pointwise relations), we have (see [16])

<

1
osc _wy M opev oL
B(x,t)u = v JO sN (|Viul,.z).(s)ds (16)

By the H older inequality (see [17]), we then have:
1

N
oSsc w
B ¢ u = N ’ ”Vﬂl*ﬁlLN)(o(u tNy (17)
(x, t) WN-1 LN 0,0yt™) N

Since the norm of L) is a rearrangement invariant norm, we then deduce from the result
of [18]:

-1

1
tN |sN
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||Vﬂ|*ﬁ|LN)(0’thN) < ”Va”LN)(B(x,t)) . (18)

and coming back to the definition of the norm
1
_ QN
Vel @ < ——— 17ultsn | (19)
(wytN)N
Moreover, we have:
1

€ wntN R N'—¢
7(N'—¢€)
) = sup ~ S N ds
NDowytN)  o<e<n’—1 \WNTT Jg

1 1 LN
st = (N)Naw Nt N, (20)

sN?

!
LN 0,0yt

Combining relations (17), (19) and (20), we have
1

5 = N ) WPl
u = u .
B(x,t) Wy_1 ) XBx0)| 0 (q)

Notice that from corollary (1.1.11) of theorem (1.1.10), we deduce that
osc
B(x t)u - 0ast >0

therefore u is continuous.

The second application concerns the regularity of quasilinear equations. For simplicity, in,
we shall assume that || = 1. We shall need the following assumption:

Assumption (1.1.15)[1]: Let a: O x Rx RY - R¥ be a nonlinear Caratheodory
map satisfying the following conditions:

i)Fora.e.x,V(u,§) e Rx RV:

a(xud) &=z alflP

forsomea > 0,1 < p < N.
i)

V(g ) € WHP(Q)?, a(x, ¢, Vo) Vi € L1(Q)
Letu € W,P(Q) be asolution of (P) :

ja (x,u,Vu) - Vo dx = Jfgo dx Vo € W,"P(Q).
Q Q
We recall that if p > 2 we shall consider
(& L (&
b = {g €L¥ (Q): gl el m*)}.

N
First, we shall show that V;, is different from L(E Q).
Proposition (1.1.16)[1]: Let Q be a set of measure 1.We define the function

_b
u(s) = sN |Lns|'7P,

12



fors € ( ) ) u(s) = u( )fo;—_ s < 1.Then, forp > 2,

N
1l.u EL( ? (0,1) and pr-1 eZL( "(0,1);
2. There exists a function g € L( (Q) such that g € Vj,
Proof: Since there are two constants ¢c; > 0,c, > 0 such that, for m large:

1
c1 Lns < —Lnu(s) < cyLlns, foralls € (0 z—m)

N
it follows easily that p belongs to the Zygmund spaces L» (Ln L) »~ for all B €]l,p—
N N

1[and p is not in L? (LnL)? '. Combining the results of Greco ([18])and

Fiorenza ([19]), we know that
N gN_4 (ﬂ
Lp (LnL) " » cL\P forallpB >1,
and

L<§ c L(§ (Ln L) §—1
N

N
We conclude that p € L( r (0,1) and up p-1 cannot be in L( "(0,1).
From the Lyapunov theorem (see [18]), there exists a function g : Q — R such that
N

g« = W (since p is decreasing). Since L(5 (Q) is a rearrangement invariant space, therefore,
N
g € L(5 (Q).

N
We have g~ P ¢ L( "(0,1).If not ,since u = g, < g.., then uv r-1 will belong to L( "(0,1)
which is not true. Thus g & V.

N
Theorem (1.1.17)[1]: If f € L(5 (Q), then u is bounded if p < 2.
Moreover if p < 15—1’1 and |Q| = 1 then

1 op 1 L
Ul < Con O s N g(s)p1 d5> |g*v|p(N1 < oo,
0

L'P ()
1
(and |g*v| (ﬁ < |f| (ﬂ ) Here, (p(S) = Supo<.s<q—1(‘f'-‘~5")q_s ,
P(Q) L'P (Q)
with g = Np Canp = ,;“,, ,wy 1S the measure of the unit ball, g = |f|, v =
- p =
ap <Nw%)
|ul.

Ifp = 2 then |ulw < Conz (NNZ) 9l

If p > 2, f € V, then u is bounded.
Proof: Let g = |f|, v = |u]. It has been proved in [19] that for almost all s:

13



R v
s N' U G+ (0) da] . (21)
0

1st case: p < 20

N+1
From Hdolder inequality, we have:
S
[ 9@t < [xo )l 22)
0 p
1
Setting @(s) = |xj0.9]| (ﬂ),) = SUPg<ecq—1(€5)T¢ ,q = NL_p, we derive from relations
L p
(21) and (22) that, forall o € (0,1)
L _p _1 =
V.(0) < Canp <j s N @(s)p-1 dS) |g*v|p_1\,1 < 400, (23)
0 L(E(n*)
From the lemma (1.1.13), we know that:
|G| @ < |f] @ < . (24)
L\P (Q.) L\P (Q)

It remains to show that the quantity

L _pr 1
j S N ()P lds<+owif 1 <p<
0

N+1°
Indeed, from the result of Fiorenza ([20]), we have
~ 1 1 N
() |, o S9 ILns[ 9, q = N=p

Thus, there exist constants c; > 0,a > 1

@(s) < cls% |Lns|_%, for0 <s < %. (25)
From (25), \{ve the deduce: )
jas_lz\)l_,’ (p(s)P%l ds < ¢, Ja ds = c,l,with y = M
0 o S|Lns| N(p-1)
With the change 01_‘+ Z}ariables, o = —Ins, we have:
I = dﬁ:M<+OOforp< 2N . (26)
o oy y—1 N+1

From (23), (24) and (26), we get:

1
/

1 =
Ul < Canp f SN@(P1ds | IfIFy < +oo.
5 L(i(m
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2nd case: %S p < 2 From the work of Greco ([21]),we know that

1)
N N 1
3

associate spaces, one has the inclusion that L(5 (Q) c Lr’r-t (Q).Applying the
boundedness result of [23], we get the fact that u is bounded.
We can get a precise estimate when p = 2 or f € V,,p > 2. First, we derive from
relation (21) and Hardy-L.ittlewood inequality:

1

' Ny
(p—il) @ c L(P))(Q) if p < 2. By using the result of Fiorenza ([22]) on

o
v.(5) < canp [ €7V 1(g0)-

0
Moreover, from the result of [22],[23] (see also [24]) we deduce (g.y)sx < Gux Thus

relation (27) with Haolder inequality yields for p > 2:

@)

b _p
and using the definition of the norm of the Grand Sobolev space, we have:

o'
P dt (27)

V,(S) < Canp [tP N

" (28)
G

p

2 N 29)
tp N’ n o= p
) N-p
If p = 2, knowing from proposition (1.1.12) that
N
< .

we obtain from (28) to (30) the result. If p > 2, f € V], we derive from (28) and (29)
that

N

[ulew < Canp N—p

To show that the last statement of Theorem (1.1.17) cannot be improved in the frame of
small Lebesgue spaces, we shall prove its optimality. We shall use the same notations and
functions as for proposition (1.1.16).
Proposition (1.1.18)[1]: Let Q be a ball centered at the origin of measure 1 and let u be
the unique radial solution u in W,"* (Q) of
—Apu = w(wy|x|™).

Then there exists a constant ¢ > 0 and a neighborhood Q' of the origin such that for all

x € Q' u(x) = cln|In|x||.
In particular, if we consider g(x) = (wyl|x|¥),p? < (p—1)N,p>2 then g €

N
L(E(Q) NLP' (Q),u € W,"” (Q)andu & L°(Q).
Proof: Following the work of [25], one can show directly that the solution u can be
written as:
15



1

t p—-1

u(x) = , ! — f lt(%‘l)*’ f w(o)dodt
NPT <w§> wnlx |V 0

From the expression of u and the fact that it is decreasing:
1

2 1
0 _p -1
u(x) > ¢ j [tN Pt t™N |lnt|1‘P]p dt .

wy|xV
1

2
> ¢ f t~Int|"tdt > clIn|In|x]|| near x = 0.
wpy|x|N

N
The function g(x) = p(wy|x|V) satisfies g, = p. Thus g € L(E(Q). If p? < (p-—
1)N, then g € LP (Q). By aclassical result u € W,""(Q).

Section (1.2): Grand and Small Lebesgue Spaces

The norm of the grand Lebesgue spaces
1

Ifllpy=sup €P=€lIfll,—e(1 < p < o0)

0<e<p-1

was introduced by Iwaniec and Sbordone in [27], in the framework of the study of the
integrability properties of the Jacobian determinant. Since then, such norm attracted the
interest of several researchers , either in Harmonic Analysis (see e.g. [28] ) in Interpolation
Extrapolation Theory (see e.g. [29]), either in P.D. Es (see e.g. [30]). Much attention has
been devoted to the problem to identify the associate space of the grand Lebesgue spaces.
The first characterization of the norm, which originated the small Lebesgue spaces, was
given in [31]; another characterization appeared in [32] (see also [33]).

Both grand and small Lebesgue spaces are Banach Function Spaces in the sense of Benentt
and Sharpley [ 34]; however, while in [35] there is an explicit proof that the expression of
the norm of the small Lebesgue spaces satisfy all axioms of Banach Function Spaces (see
[36] for the Fatou property), the (much simpler) proof that the corresponding axioms for
the grand Lebesgue spaces seems missing in literature, even if actually this fact is
commonly well known. We begin by establishing that the grand Lebesgue spaces are
Banach Function Spaces. The proof will be given for a (already well known) generalized

expression of the norm(|-||,, namely, for
0

Ifllpye = sup €P=|lfllp—e (1 < p < )

0<e<p-1
where 6 is a positive parameter. Of course, when 6 = 1 the expression||f |, ¢ gives back

the original norm|| £, .
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We study norm obtained replacing, in the expression of ||. ]|,y g above, the Lebesgue norm
lf1l,—¢ by a grand Lebesgue norm. The resulting formula is (the single parameter 6 will
be replaced by the couple of parameters «, )

a

”f”p)),a,ﬁ = Ssup er=e ”f”p—e),ﬁl <p< xa> 0, B > 0. (31)
0<e<p-1

This expression can play a key role in iteration-type results about grand Lebesgue spaces,
typical of interpolation theory: be sides the pioneering [29] very recently a development in
this direction seems announced in [30]. We first prove that (31)is a Banach Function
Norm and then, in Corollary (1.2.5), we prove that the norm in (31) gives back a norm in
a grand Lebesgue space. The proofs are direct, do not require any background of the
literature quoted above, and constants of the equivalences are given explicitly. Analogous
results are stated and proved for the small Lebesgue spaces, whose norm has a less simple
expression to deal with. Very recently the small Lebesgue spaces have been characterized
as the optimal rearrangement-invariant Banach Function Spaces for the freedimensional
Sobolev estimate, see [31].

For Q c RN,N > 1,be a set of Lebesgue measure [Q] = 1,andlet1 < p < 0,8 > 0.
Let M, be the set of all the measurable, real-valued functions on Qand let LP>? be the set of
the functions f in M, such that ||f|[ )¢ < oo.

The main result is that LP)? is a special case of Banach Function Space, namely, its norm
satisfies the following properties, where f, g, f,, are in My, A = 0, and E is any measurable
subset of (.

(- lfllpye =0

(@D).[Ifllpye =0ifff =0ae.inQ

@D IAf lpye = Allfllpye

@) lf +9llpe <Ufllpe +1gllpe

().if lgl < |fla.e.inQ, then[lgllyye < lIfllpye
(D). if0< f, T fae. inQ,then|fyllpye TIIfllpe
Wid). l[xellpye < +oo

(vii). j Ifldx < C, 6, E)lfllpye
E

Proposition (1.2.1)[26]: Let 1 < p < 0,0 > 0.The space LP»® is a Banach
Function Space.
Proof: We have to prove the properties (1)- (8).
The first three properties follow directly from the corresponding properties true for
Lebesgue spaces.
Jtis
If +9llp-e <Ifllp-e +llgllp-e Ve €]0,p —1[.
Hence

17



0

If +9llyye = sup eP=€lIf +gllp—e
0<e<p-1
0 0

< sup €P€|f|lp—e + sup €P~€||gll,—c
0<e<p-1 0<e<p-1

= Ifllpye + llgllpye-

Sinceg < fa.e.in(Q, then
0 (2

eP=€llglly-e < €P=€lIf ll,-e Ve €]0,p — 1]

therefore, passing to the supremum over € €]0,p — 1],

1gllpye < I llp)e -
Ifo< f, T fae.inqQ,

6 6
Ifullpye Tsupllfallpye = sup  sup eP=€ |Ifyll,-e = sup supeP=¢||fyll,—c
n n 0<e<p-1 0<e<p-1 n
6
= sup €PE||f |l—e = lfllpye -
0<e<p-1
1
Since er-<isincreasing in € €]0,p — 1],
9 e 1 1
Ixellpye = sup €P=€lixpll,—e = sup eP=€|E[P=¢ = (p—1)° |EJP .
0<e<p-1 0<e<p-1

Fix0 <e<p-1.

By Hoélder’s inequality we have
1

1__
PR p—€
j If] dx = j flxe dx < IfIl_c ( j 27O dx) ,
E Q (9]

where (p — €)denotes, as usual, the conjugate exponent of p — €. Therefore
1 6 6 1 6

1- - 1-—— -
flfl dx < |E|" P=€e P=€ eP=€||f]l,_e < [E| P=€€ P=€|[fllp)e
E

from which
L1
[1A1ax< i
x <S ———————
E (p —1)° p)6
and hence
| 1f1dx < c@,0,)fllo
E
1
B ®P
where C(p,6,E) = FECE

The name “grand Lebesgue space” comes from the continuous embedding LP < LP)9:
1

by Hélder’s inequality, and by the monotonicity in eof the function er-¢,

18



6
Ifllpye = sup €€ |Ifllp—e < (@ = DS, -

0<e<p-1
This shows that the following continuous embeddings hold:

P cIPP c [P0 <e<p-1
but these embeddings can be refined in the framework of Orlicz spaces (see [35]; see [36]
and [37] for a sharp result):

LP LP
— _ C Lp):e C ——mM8
(log L)® (log L)b+e
As to the embeddings between two grand Lebesgue spaces LP»? we note that, in terms of
inclusions, these spaces increase with 6: in fact, if 0 < ¢ <6,

€ > 0.

_0 6-¢ ¢

Ifllpye = sup €P€|[fll,_e= sup eP~€eP€|fl,_c
0<e<p-1 0<e<p-1
and, being
0-¢
sup €P=€ = (p—1)?,
0<e<p-1
we have

1fllpye <@ —=D?Ufllp,e -
The space LP? is rearrangement-invariant but not separable, neither reflexive. The set of
the bounded functions is not dense, and the closure of L® in the norm of LP»f can be
characterized (see [38]) by the functions f such that
6
limsup €P=€ ||f|l,—e = 0.
e-0

—6/p
The fundamental function is equivalent to ¢,y ¢(t) = t1/p [log (%)] . Note that the

supremum in the definition of the norm, carried over the interval ]0,p — 1[, can be
equivalently considered over the interval ]0, €, [, for any positive €, smaller than p — 1 (see
[39]). The associate space of LP>?, defined by

(LP),B)’ = {f EM,: supjfg dx < 00},
Q

where the sup is computed over all g € M, such that||g||,)s < 1, can be characterized as
the Banach Function Space whose norm is given by

- 6
e =, 3. {Z ol €7 Ilfkn@_ey}
=1

and such norm is in turn equivalent to the quasinorm
1
T

1 0 t
flpre = jo (1—logt)p-1 ( fo f*(s)P'ds>p

For a systematic study of these spaces see [29].

dt
t
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we study the space defined through the norm||f|l,))q s In (31). We begin with the
following

Proposition (1.2.2)[26]: If 1 < p < oo,a,f > 0, then ||. [[ )« s is @ Banach Function
Norm. Proof The proof of properties (1.2.1) — (1.2.6) is analogous to the ones of the
corresponding properties in Proposition (1.2.1).

a
Ixellpnaps = sup €P7€ |l xellp-e)p
0<e<p-1
a

< sup eP=€ (p—e—1DPFIE|
0<e<p-1
Fix 0 < € < p — 1. By Holder’s inequality we have

L 1
P < (p— D)FIE| P

_1

1
1217
J e = =g Il Ve €l0p 11

Further
1

j|f|d AN £l 10 1]
x < € b€ Ve E ,p —
£ (p — € — 1)[3 v).a.p

and therefore
Pp+L+2a

2 p+1
[iriax <107 (225) " Wilyas.
where the constant in the right hand side comes setting, for instance, ¢ = pT_l.
Next results show the comparison between the iterated grand Lebesgue spaces and the
grand Lebesgue spaces. The final conclusion that such spaces fall again within the scale of
the grand Lebesgue spaces, will be stated after, as immediate corollary.
Theorem (1.2.3)[26]:If 1 < p < oo,a,B > 0, then

Ifl[py),ep < maxi(p—1) A Ny, et e
. . 1 _ 1 __l _ o
Proof: Since 0 < e o <1 . Ve €]0,p —1[,n €]0,p — € — 1],

a  _B
Ifllpy)ap = sup sup  €P7€ PN flpeyy
0<e<p-—-10<n<p—e-1
a ﬁ( 1 1 ) 15
= sup sup eP=€ e P || f|l ey

0<e<p-—-10<n<p—e-—1

_1 atf
< max{(p—l)ﬁ(1 p) ,1} sup  ¢P~C |Ifllp-¢

0<{<p-1

1
= mar{(o = U 1}l s
Theorem (1.2.4)[26]:If 1 < p < o,a,f > 0,then
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1

1__
Fllyass <2 maxfo = ) 1} 1710

Proof ;
If lpy,a+p
atf atf
= sup 0P ||fllp-¢ = sup (2e)P72¢||f|lp-z¢

0<o<p-1 0<E<pT_1

_a L a [04 a B
<20*F  sup P2 €2 f|,pe = 2978  sup eP-€ep2e P€ehZe||f||,

O<e<pT_1 0<6<pT_1

a+p a(l—l) f —ﬁ
<2 maxi(p—1) p/ 1t sup eP~€ eP=2€||f][,_5¢
0<e<pT_1

a+p a(1-3) = pe=i
<29 max{p -0 1} sup € sup T flpcsy .

0<e<p-1 o<n<p—e-1

Hence
1

1—
Fllpass < 2 max o= 1CP b1l

By Theorem (1.2.3) and Theorem (1.2.4) we get immediately the following
Corollary (1.2.5)[26]:If 1 < p < oo,a,f > 0, then||-|[,)p is equivalent

tol[-lpy,a+p -

We study the “dual” functional of (31), namely, the functional obtained inserting the norm
of the small spaces inside the norm of the small spaces. From the formal point of view, the
resulting functional has a quite voluminous expression, and, after proving its equivalence
to a norm of a small Lebesgue space, the fact that it is exactly a Banach Function Norm
loses of interest. Therefore, here we limit ourselves to prove the analogous result of
Corollary (1.2.5) for the functional [where, as usual, 1 < p < oo, >0,8>0 and

p'=p/(p-1)]

a
— . . p’_e !
1 llcp. f= lznj?ilfj Z 0<61£zf’—1 € ”f] ”((10'—6)'.3
Theorem (1.2.6)[26]: If 1 < p < wo,a, 8 > 0,then |fllpa+p < Ifll(p.ap-
Proof : Step 1 First observe that, fixed € €]0,p" — 1[and o €]0,p" — € — 1], we have
a

[04
(e40) P-€-0 <¢ p'-¢
and therefore
__atf __a B a B
(E+O-) prmemo = (E+O-) p'~—e=0 (E +0') pl-€-0 < ¢ DPI—€ g DI—€-0 |
Hence, if h € M,, setting T = € + o, we have
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_atB __a B
T PT|h|progy < € P60 P9 R]|

—e—o)"
therefore
_a+p _a B
o<rlgpfr_1r Pt M-y = € P o Pel|hll gy gy
from which
_a+p __a __B
i pr—T ' r < pr—e€ i pl—€—o ’ ’
b7 MRl S €T it T oy (32
Step 2
Letg € My,g =X h, and0 <e<p'—1,
By (32)
_a+p __a __B
i pI—T ’ < pr—e€ i pl—€—o ' r
D ounf T Iyl S € P Y inf o el o
then

__a __B
19larg <, dnf € 7= > inf o T gl e gy
k

=Y hi 0<o<p’—e—-1

a
= € || gll p-ey
and passing to the infimum over € €]0,p" — 1[, we get
a

I9llpasp < _J0f € PElgllr-eyp - (33)
Step 3
Let f € My, f =X f;.
By (33)
a
: < i “pr—€ ||
Z”ff lpars = z 0<dlbr_1 € 1ill ey
] J
and, being
1 acsn < D il s
]
we have

__a
£l pccs sz pinf, e e 15ill ey 5

j
Passing to the infimum over all the decompositions f = ;; f; on the right hand side, we
get the assertion

Ifllpa+rp < Ifllipap-
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Theorem (1.2.7)[26]:I1f 1 < p < oo,a, > 0, then
+B
Ifll(pap <2%F max{(p -1 (23] } Il p.asp -

Proof : Fix f and fix a decomposition f = . f;. We have, for any j,

__B
Wil ey p S gepdif 1 P NI
Let0 < e <p’ — 1. Setting

€
e = E(Z_p’—l)

we note that o, is an increasing function of € in]0,p’ — 1[and
€ €]0,p' — 1[© 0. €]0,p"' — 1]. (34)

('-e-n)""

Letn = o, — €. We have

__ B
1l oy < (0= 77 |I5]

] (p,_o'e)’
from which

__a
€ Vil ey

a+ﬁ a+f

p — 1) T o o fll gy

a a a+f

_ — plo’e € Fo'e _a_i
=TT (1 o) T (- g e T il

and therefore

a B
< e P-€¢ p'ae(

o<di 1€ = il —er.s
atp a a __B at+p
€ \P% o Tpi—e € =% _ ~ oo,
< (2= mg) P e P (1 o) T e g,

p,_a'e),

a+

a+p ' o(1-5) € _pfa"' =
< 2%%F max {(p - ,1} (1 = 1) oe 7% Ifill r_s

and, fixing 8 €]0,p" — 1], we obtain

_a

0<ei2pf’ 16 Pl ”f]”((p -e)'B —

. € T pr-o. - atp
- pi=ac ||f,
0<e<1}1;llf—1—9 (1 p — 1) Oc ¢ ”f} ”(P’—Ue)'

< 2%t max {(p’ — 1)a(1_%), 1} ( i

< 2t max{(p _y*l-%) 1}- (35)

_atf
. 4
p’—1> 0<6<112f—1—905 pimoe “ff”(p’—ae)"
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On the other hand, fixy € [p'—1—0,p" — 1],

at __ B
. T D=0, p’ —Opr-1-0
p’ O-E . !
0<6<1]£11f;1—906 ”f}”(p,_o'e), - p -1-6 ”f}”(pl —0y 1_9)
__ atB a+p a+p a+ph
p' —Opl_1-6 _ P’ —0pr-1-6 p,_o'y p,_o'y
S Oy_qg ”fJ”(p o)) = %p'-1-6 g, 0y ”fj”(pf_ay)"
Being
a+pf
o} < ¢~ 1y
and
a+p _(a+B)(pr-1) (a+B)(p'—-1)
O-—m _ (pl _ 1)2 _ 92 p/_1+92 _ p/ _ 1 pl_1+62
p'-1-6 p'—1 (p' —1)? — 02 '
we get
_atB
i p'—0¢ .
0<6<lzI)llt;1—00-€ ”f} ”(P’—Ue)'
) (a+B)(p’9—21) atp
p’ — p -1+ . =0
< (p' =P nf ’ 36
< -0 () it 0l G6)
Then, by (35) and (36),
0t T gy <2 maxfr -0
o<esp’—1 illireyp =277 max ’

(p' — )a+2[)’ p' —1 atp . _a+p
6f e ((P' -1)% — 92) = p'—l—érsl)€<p’—1ae pioe ”fj”(p’—ae)’ -(37)
Now we need to estimate the left hand side of (35) and (37) by
a
inf_ & 7 ||f|

0<e<p’-1
To this goal, we note that by (34)
a

-—— _ath
0<Ei££,_1e P ”fj”(lﬂ'—e)' - 0<ei£1pf’—1 Te PO ”fj”(p’—ae)'
. . _ath _atf
= min {0<E<129f;1_9 O¢ plI—0¢ ||f}||(p —oo)"’ pr—1— é2£<p, 106 p!—0¢ ||f}||(p,—ae)’}

and we distinguish three cases. If
. - _a+f
0<€lgpf’—1 e e ”fJ” Oe PIm0 ”fj”(pf_ae)r

by (35) we have

= inf
(@'-e) o<e<p’'-1-6

a
inf, e 7= 15l

0<e<p’-1

((»'-e).B
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O<e<p’-1

a<1——1> __a
<2 marl -0V 1l e g, (38)
If
. S _ _a+p
0<€lgpf’—16 P ”fj”(P'—e)' - 0<e<lz£l’f_1—9 O P70 ”fJ”
we observe that

(p,_o'e),

1 p'—1
p'—1 (p - 1) - 02
and we consider thecases 1 < p' <2andp’ > 2.
Let1 < p' < 2.By (37), we have

<owl<f<<p -1

- e ,a(1-2
0<61<I}9f;—1 € e ||f}||((p,—e),,ﬁ = 20l+B max {(p - 1) ( p )1 1} :

(p' — 1)a+2[? p' —1 atp _oc+
. 3 _E
e e = L Al [T

and therefore
a
inf_ e 7< |5

0<e<p’-1

o(1-1) _a+h
< gats max{(p _1) 1} inf e il

O<e<p’-1

. p' =1 wrb Aoy
pfin | max| g 1t =

and therefore, by (37) also, we have

__a
0<el<I})f’—1 e r ”fj”((p -e)'B —

((@'-e)'.B (39)

Letp’ > 2. We have

o(1-1)
< garh o {(p, I ,1} . (40)
_a+B
(0’ — 1)a+ﬁ o<6i<npf'_1 e r ”f}”((p’—e)’.
By (38), (39), (40), we have
a
inf € p'-¢€ ”fJ”

o<e<p’-1

@-erp =2 max{(p - ) 1}'

-max{(p’ — 1)%+5B, 1}- inf € P ‘E ||f]||

0<e<p’-1 ((»'-

and, summing over j,

. _%6 a+ﬁ ] O—,(l_LI)
Z inf e P ”ff”((p o'p <2 maxi(p' — 1) p/,1¢-

— 0<e<p’-1
]
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_ath
max{(’ = DT, 1}'20«%5_1 e P il ey
7

Passing to the infimum over all the decompositions f =} f; , we get the assertion, taking

into account that
1

max {(p’ — 1)0!(1—?), 1} . max{(p' — 1)+h, 1} = max {(p’ _ 1)a(2—%)+ﬁl 1} _

By Theorem (1.2.6) and Theorem (1.2.7) we get immediately the following
Corollary  (1.2.8)[26]:If 1 <p < w,a,f > 0, then||l(pep s equivalent

o ||l p,a+p-

Section (1.3): Grand Lebesgue Spaces with Measurable Functions
For Q c R",n>2be a measurable set of Lebesgue measure |Q| < +4oco. In
1992 Iwaniec and Shordone [48] studied the integrability properties of the Jacobi an
determinant, and introduced the grand Lebesgue space L™ () as a space such that

IDf| € L™ (Q) = |Jf] € Ly ()
for all Sobolev mappings f: Q@ = R f = (fi,..., f)-
Since then the grand Lebesgue spaces play an important role in PDEs theory (see e.qg.
[48]) and in Function Spaces Theory (see e.g. [49]). It turns out that such spaces are
Banach Function Spaces in the sense of [50]: namely (here and in the following we will

use the letter p instead of n,assuming 1 < p < )
1

1 1 p-¢
IP(@Q) ={f €M, :Ifll,y= p(If]) = sup ep=e (— f |f|p_gdx) < +oop,
0<e<p-1 |-Q| Q
where M, is the set of all real valued measurable functions on Q, and, denoting by M} the
subset of M, of then on negative function s,p: M} — [0,+] is such that for all
f,9 fn(n = 1,2,3,...) in MJ, for all constants 2 > 0, and for all measurable subsets
E c Q,¢the following properties hold:
M) p(f) =0 f =0a.ein
(i) p(Af) = Ap(f)
(@) p(f +9) < p(f) +p(9)
(iv)0<g <faeinQ = p(g) < p(f)
WO0<fy TfaeinQ = plf) T p(f)
(WE c Q= p(xp) < +

(Wi E c Q = ffdx < Cegp(f)
E
for some constant Cz, 0 < Cy < oo, depending on E and p, but independent of f.
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Grand Lebesgue spaces belong to a special category of Banach Function Spaces: they are
rearrangement-invariant, namely,setting
W) ={xe€ Q:|f(x)| > A} VA =0 (41)

itis p(f) = p(g) whenever ps = p,.
A generalization of the grand Lebesgue spaces are the spaces LP?,0 > 0,defined by (see
e.g.[49])

1
1 p—e
Ifll pe(Q) = sup (89 = J |f|p—sdx> :
0<e<p-1 |§“ o)

When 6 = 0 the spaces LP)°(Q) reduce to Lebesgue spaces LP(Q) and when 6 = 1the
spaces LP»1 () reduce to grand Lebesgue spaces LP ().

A useful property of the norm, used in [51] is the fact that the supremum over (0,p — 1) in
the norm of LP)(Q) can be computed also in any smaller interval (0,&,): the result is an
equivalent expression of the norm (i.e. each expression can be majorized by the other,
multiplied by a constant not depending on f ). Obviously, the constants involved in the
equivalence will depend on p and &,. This phenomenon has been clarified also in a more
general context in [52]. Were call also the continuous embeddings, easy consequence from
the definition,

LP(Q) cLPP(Q) cLP¢(Q),0 < e <p—-160 > 0.

Leté: (0,p—1) - [0,+oo[ be a measurable function, and for all f € M/} set
1

1 p—¢

Pp),s(f) = esssup §(e)P~¢ <ffp_gdx> , (42)
0<e<p-1 o)

where [ stands for I%Ifﬂ For 1 <r < oo, we will also write||f]], to denote the

Ifll, = ( fﬂ frdx>r-

By convention, we establish that the right handside of (42) is oo if for some 0 < € <
p — 1the function f ¢ LP~¢(Q): this position gives always a meaning to the eess sup, also

normalized norm of f in L" (Q):

when the indeterminate form 0 - oo appears. The case 6(¢) = €%,8 > 0, gives back the
norm of the LP)f (Q1) spaces.

We find a necessary and sufficient condition on § such that p,,, 5 is equivalent to a Banach
function norm, i.e. equivalent to a functional satisfying all the properties (1)- (7) listed in
the previous.

It is clear that the first way to prove that p, s is equivalent to a Banach function norm is to
try to reproduce the analogous proof, valid for grand LP spaces. This latter proof is an easy
consequence of the classical properties of the norm of Lebesgue spaces, and it seems, for
this reason, almost absent in literature. The problem when considering the functional p,, s
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Is that 6 is defined almost everywhere, and the expression §(¢) does not have the meaning
of value attained in . Moreover, the estimate of p, slooks much less evident when, for
instance, ¢ attains the value zero in finite times in a neighborhood of zero. Besides solving
completely the problems above, we will show in particular that for any measurable
bounded 8, p sis equivalent to a Banach function norm, and that the same resulting space

can be obtained by using a new functions, defined everywhere, whose expression is
explicitly shown. After this step, also in the case of bounded measurable functions, the
proof of being equivalent to a Banach function norm can be considered equally trivial as in
the case of grand Lebesgue spaces.

Going back, an immediate necessary condition is suggested by property (6),when E =
Q: sincepp)_s()m) must be finite, it must be § € L*(0,p — 1). The Theorem we will prove

Is that this condition is actually also sufficient.

Theorem (1.3.1)[47]: Let 1 < p < o and let §: (0,p—1) — [0,+o[ be a
measurable function, not identically zero. The mapping p, s is equivalent to a Banach
function norm if and only if § € L*(0,p — 1).

The proof of Theorem (1.3.1) requires some intermediate results of independent interest.
As a byproduct, we will determine the ‘interesting’ class B,of functions § € L*(0,p —
1),with the property that every p,, s, obtained from a generic bounded measurable §, is
equivalent to a function norm built with § € B,,.

Lemma (1.3.2)[47]: If §,,6,: (0,p—1) — [0,+co[ are measurable functions such

that
1 1

esssup &;(e)P~¢ = esssupd,(e)P~¢ , o €]0,p—1], (43)

oe<o o<e<o

then pp),51 = pp)ﬁz'
Proof: Since we may exchange the roles of p,) s, and p, s, it is sufficient to prove that
forall f € M}

Pp).5,(F) < ppys, (f)- (44)
If £ is identically zero, (44) is trivially true, therefore we may work with functions f
having positive Lebesgue norm. If for some ¢ it is f & LP~¢(Q), then both sides of (44)
are oo, therefore we may consider the functions f such that

0 <|lflly-¢ < ®@for all0 < ¢ < p-—1 (45)
If ppys,(f) OF ppys,(f) is zero, then the other one is also zero: in fact, if for instance
Ppys,(f) = 0, from (45) we get that 6, =0 a.e.in (0,p—1). By (43) used with
o = p — 1,we deduce that §, = 0 also, and our claim is proved.
Consider the case 0 < pp,y5,(f) < oand fixn > 0. By the definition of p,, 5 (f) there
exists a set of positive measureT,, < (0,p — 1) such that

1

5:(&) P fllp-e > ppys,(f)—n, € €T,
from which
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. P 5, (f) —
||f||p—s '

5, (¢ ) £ET,. (46)

Now set
ey = es%?infx €E[0,p—1]
e, =esssupx €]0,p — 1]
Ty
and fix g,e;, < 0 < ey.From (46) and the monotonicity of the (normalized) norm || £,
with respect or (due to the Holder’s inequality)

ess sup 8, (Q)P~% pp) 6,0) ~ ) €]0,0]
0<({<0c If Ilp_s
and by (43) -
.0 54 n
?§£m5“0_ T € ool
o p—¢€
We deduce the existence of aset T, c (0,0) of positive measure such that
o Prs: (f)—n ,
5, ()P~ pmﬂ , (€T, €00
p—¢&
from which
! 5, (f) — ,
o) , c €T,
77 T L
1
ess sup 8,(€)P7¢ ||fllp-e > ppys,(f) — 1.
0<e<o

Since n can be arbitrarily small, we get the assertion.
Finally, if p, s (f) =oo,we may follow the same argument as before, replacing
Pp),s,(f) —nbyany M > 0.The lemma is therefore proved.
The next proposition shows that monotone functions play an important role in our study.
The term increasing for a function § means that if ; < g,,then §(&;) < §(&y).
Proposition (1.3.3)[47]: If & € L*(0,p—1),0< § < 1then there existsé €
L*(0,p — 1) such that:
(H0<é <1

1

(ii)6 (€) r-¢ increasing in € and left continuous

(iid) Ppys = Ppys -

Proof: Forany given § € L”(0,p — 1),0 < § < 1,the function
1

p—¢
5(e) = [ess sup6(()ﬁ] ,€ € (O,Lp—1)

o<{<e
has trivially the property (i). Property (ii) follows by a well known characterization of
increasing, left continuous functions, see e.g. [48,Theorem 8.19]. We have to prove only

that ppys = Ppy5-
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On one hand, the definition of §gives immediately that
1 1
5(e)P—¢ =esssupS(Q)P% ,e € (0,p—1) (47)
0<i<e

and, on the other hand, by (ii),
1 1

5(e)P=¢ =esssupd()P=%,e € (0,p —1). (48)

0<i<e

Combining (47) and (48),we get
1 1

ess sup §({)P~¢ = esssupS5(Q)P=¢ ,e € (0,p —1).

o<i<e o<i<e
By Lemma (1.3.2),we get (iii).
The following definition plays a crucial role in the study of the generalization of the grand
Lebesgue spaces with respect to measurable functions.
Definition (1.3.4)[47]: Let 1 < p < .A function §, left continuous on (0,p — 1), is
said to be in the class B, if
() é@0+) =0
o <6 <1
1
(jjj) 8(&) p-¢ isincreasingin «.
It is easy to check that functions in B, are increasing. Moreover, the left continuity of its
functions permit us to write more simply sup instead of esssup in the expressions related
U)pp)S'
We have now the prerequisites for the
Let § € L”(0,p — 1) be nonnegative. We may think to divide § by its (positive) L*(Q)
norm, therefore without loss of generality we may assume that 0 < § < 1. Moreover, by
Proposition (1.3.3), without loss of generality we may assume that (ii) holds true,
therefore, in particular, § increasing and left continuous. Therefore it makes sense to
compute 6(0+).
If §(04+) > 0,for any measurable function f on £, possibly not in LP (Q),it is
SODIfll, = 600+) sup liflly-e < ppys(f) < ISl

0<e<p-1
If §(0+) = 0,since § is increasing, there are two possibilities :there exists, or not,
0 < € < p—1such that §(¢) = 0. In the first case let ¢, =max{e:0 < ¢ < p—
1,6(¢) =0}LItis0 < ¢, < p— land

1 1
Ppys(f) = sup 8(e)P~Elfllp-e = sup 8PS lp-e-
0<e<p-1 go<e<Lp-1
After a change of variable in the sup,
1
P s(f) =  sup  &(e+ )P0 ||fllp-gy—e-

_ 0<e<p—gg-—1
Setting 6(¢) = d(e+¢y) andr = p — gy,we get
Ppy.s(f) = ppys(f).
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Since, by the maximality of &, it is §(¢) > 0 when e > 0, the first case we are studying
will be concluded after the examinationofthesecondcase. The assumptions we have now on
6 imply that 6 € B,. At this point, all the axioms of the Banach function norms are
straight forward to prove.

As a byproduct of the proof of Theorem (1.3.1),we have the following

Theorem (1.3.5)[47]: Let 1 < p < occand let § € L*(0,p—1),6 =0,6 # 0.The
mapping ppy s is equivalent to p,, 5, where & is the increasing, left continuous function

defined by

1P
5(0) )p—z
161l e

Again by the proof of Theorem (1.3.1), it is clear that the interesting functions § to
consider in the Banach function norm are those ones in the class B,. This motivates the
following

Definition (1.3.6)[47]: Let Q < R",n > 1,be a measurable set of Lebesgue measure
|2] < +oo,let1 < p < ocoand let § € B,. The grand LP space over Q with respect to §
is the Banach Function Space defined by

1
LPA(Q) = {f €M, : Ifllpys = Ppys(fD) = sup 6(e)P7¢ [Ifllp-e < +°°}-
0<e<p-1

It is immediate from the definition that the spaces LP)(€) are rearrangement-invariant,
include LP (Q) and are included in each LP7¢(Q),0 < ¢ < p—1.

We conclude by showing a sufficient condition, and a necessary condition , for the
embedding between grand LP spaces built from two functions 6,, 5, € B,. We will need
the following simple lemma, which extends the useful property of the grand Lebesgue
spaces mentioned.

Lemma (1.3.7)[47]: Let 1 < p < cand 0 < o < p—1If § € B, there exists a

constant c = c(p, §, o) such that
1 1

5(e) = esssup( ,€ € (O,p—1).

0<i<e

1

= p—¢ 1 p—¢
sup 6(g)pP~¢ <.[pr“’" dx) < ppys(f) <c 0sup d(e)p-¢ <Jﬂf'p“E dx) :

0<e<o <e<o
Proof: The left wing in equality is trivial, therefore we need to prove only the right wing
one. Fixe = ocand 0 < u < o.By Holder’s inequality,ll-|l,- is increasing in r, therefore
we have

1 1 1
sup  8(e)P~° [Ifllp-e < fllp-p = (0 P7* S()P7H|f]lp-y
o<e<p-1
from which
1 1 1
sup  8(e)PE |Ifllp-c < 8 PF  sup 8P E |Ifllp-c, 1 €]0,0]
ose<p-1 ose<p-1
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Passing to the infimum over p on the right hand side, and recalling that 0 < § < 1,we
1

get the desired inequality with ¢ = §(a) 7-°.
Proposition (1.3.8)[47]: LetQ < R™ n = 1,be a measurable set of Lebesgue measure
1] < +oo,let1l < p < oo, and let §;,6, € B,. Then

51(e) %1 (e)

. p)ra p)’a i i

i SIS, < T @ elmn@ sl I Se <
Proof: If

lim sup O1(8)
€20 o<o<e 52 (‘9)

=M < oo,

then for small ¢, > Oitis
6:(6) < (M+1)d,(¢),e € (0,&)

and this immediately implies that LP)%2(Q) < LP»9:1(Q). On the other hand, if this
inclusion holds, assume, on the contrary, that

lim inf 01(€) = ©

£-0 0<o<e 0, (&)
For any fixed M > 1, there exists a small &, > 0such that

6,(6) > Méb,(¢),e € (0,&).

Raising both sides to the power ﬁ ,multiplying by [|fl,—. and taking the supremum over

(0, &), by Lemma (1.3.7) we get

1

Ifllpy.6, = cMP |Ifllps,
Which is in contradiction with the assumed embedding.
Corollary (1.3.9)[47]: Let Q c R",n > 1,be a measurable set of Lebesgue measure
] < +oo, let 1 < p < oo,and let 6;,6, € B, be equivalent n a neighborhood of the
origin. Then LP»91(Q) = LP)%2(Q).
The classical Hardy inequality states that
Theorem (1.3.10)[47]: Let p > 1and f be a measurable, non negative function in

(0,1).Then
1/ rx p 1/p 1 1/p
( fo < jo fdt) dx) < ppj< JO fpdx> | (49)

we extend the Hardy inequality in the context of LP>»9(0,1) spaces. We will follow closely

the proofs given in [51].

Theorem (1.3.11)[47]: Let1 < p < o and § € B,. There exists a constant c(p,§) >
< cOlfllps (50)

1such that
X
J fdt
0 p),6

for all non negative measurable functions f in (0,1).
Proof: Let0 < o < p — 1.We have
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1

X
[
0 p).8

= max oilelga (5(6)J (f fdt) x>p_E ,asigg_l (5(6)[ (] fdt) x> i

1 1

o (s [ ()

< max 03:56(6(6)[ (J fdt) x>p%e,

1 1 1 1/ rx p-ag p—o
X sup 5(€)PTE 6(0)_PT0 5(0)1’T‘7<J (f fdt> dx) ,
o \Jo

o<e<p-1

1
p

1

< max 0216150 (5(6)] (j fdt) x)p_e,

1
X sup 6(e)P=€68(0) P 9 sup (6(6)J (f fdt) x>
o<e<p-1 0<e<o

1
p_

1

Therefore,
X 1 p—€
ffdt < max 6(e)P—€ §(o) P g sup <6(e)f <J fdt) x>
0 p),8 ose<p-1 0<e<o

Since max y<c<p—1 5(6); 5(o) po >1,
Now take 0 < € < o, so that p —e > 1. Applying the Hardy inequality (49) with the

exponent p replaced by p — €, and multiplying both sides by §(e)»-<, we get
1 1

(5(6) f < j fdt) x>p_e < p—pe% <6(e) jo 1fp—6 dx)ﬁ .

If we pass to the sup over 0 < € < ¢ on both sides, the previous in equality implies
1 1

p—¢€ D — 1 e p—€
o ([ o) <252 o)

and therefore
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1 1 p-o 1 pée
< max d&(e)P~€¢ §(g) P-9 ——  sup (5(6)] fr—e dx>
0

o<e<p-1 p—0 — 1 o<e<o

p),6

jo xfdt

1 1 p-o 1 p—€
< max d&(e)P~¢ §(g) P90 —— sup (5(6)] fp‘edx> :
0

o<e<p-1 p—o —1 0<e<p-—-1
Setting
1 -1 p-o
c(p,6) := inf max 6(e)r—¢ §(o) P60 —— >1,

0<o<p-1o=<e<p-1 pPp—0 — 1

we get the inequality (50).
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Chapter2
Trigonometric and Polynomial Approximation of Functions

We show that the deviations ||f — Ny, (f) |l px) and ||/ — R (f) |l ) are estimated by n™

for f € Lip(a,p(x))(0 < a < 1).We consider the fractional order moduli of
smoothness and obtain direct, converse approximation theorems together with a
constructive characterization of a Lipschitz-type class. Several applications of these results
help us transfer the approximation results for weighted variable Smirnov spaces of
functions defined on sufficiently smooth finite domains of complex plane C.

Section (2.1): Generalized Lebesgue Spaces LP (x)

For p: R - [1,0) be a measurable 2m —periodic function, that isp(x +2m) =
p(x). Denote by LP™) = [P (0,27 ]) the set of all measurable 2m —periodic functions f
such that m,(Af) < oo forsomeAd = A (f) > Owhere

2T

my(Fi= [ 1P dx.

0
LP™) pecomesa Banach space with respect to the norm

f 1) =inf{/1 > 0:m, (%) < 1}.

If p(x) = p is constant (1 < p < ), then the space LP® is isometrically isomorphic to
the Lebesgue space LP.
If the function p satisfies

1 < p_:=essinf p(x) , p+ i=esssupp(x) < o (D)
x€[0,2m ] x€[0,27 |
then the function
, p(x)
p'(x):i=—<—+
p(x) -1

is well defined and satisfies (1) itself.
The space LP™ consists of all measurable 2 —periodicfunctions f such that

flﬂ@ﬂ@Mx<w
0

for all measurable g with m,/(g) < 1 and

|mm@=w%j|ﬂwmmemﬂmsﬁ
0

is also a norm on LP™. 1t is known that the inequalities

Ifllpey < Iy < mllifllpe
satisfied for all functions f € LP™), where

1 1
i=1l+———,
p- D+
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and hence the norms [|f ||, yand [If [, are equivalent. See [67], [68],[69] and [70] for

properties above and for more general informationabout LP*)spaces.
Denote by M the Hardy-Littlewoodmaximal operator,defined for f € L! by

M) = supl f f ©ldt ,x € [0,2],
1

where the supremumis taken over all intervals I with x € I. The boundedness problem of
the operator M on the space LP®* was studied by many ([71]). In [72] it was provedthat if
the function p satisfies (1) and the condition

1
— < - —yl< = 2
lp(x) —p()I| < e p—— 0 <[x—yl| < > (2)
then the maximal operator M is boundedon LP™), that is,
IM()lpy < cllfllpe 3)

for all £ € LP™, where c is a constant dependsonly on p. The set of all measurable 2w —
periodic functions p: R — [1, o) satisfies the con-ditions (1) and (2) will be denoted by
M.Letp € Mand f € LP™), The modulus of continuity of the function fis defined by

Dpo(f,6) = li}ipallTh(f)”p(x) ,6 > 0, (4)

where

1 h
@ = [ 1f+0 = Feolde (5)
0
The existence of 2, (f, 8 ) follows from (3), and also the inequality
-Qp(x)(frg) = C”f”p(x)

satisfied for all 6 > 0.
The modulus £2,,,, (f,-) is nonnegative, continuous function such that

gi_r)r}) ﬂp(x)(f»6) =0, 'Qp(x) (fl + f2»') =< 'Qp(x)(fli') + 'Q'p(x)(fzf)-
In the Lebesgue spaces LP (1 < p < ), the classical modulus of continuity w, (f,") is
defined by
wp(f,6) = li}ip(sllT/L ll,, 6>0, (6)

where
Tp (F)(x) = f(x+h)— f (x).

It is known that in the Lebesgue spaces Lp the moduli of continuity (4) and (6) are
equivalent(see [74]).
We define in the spaces LP™) the modulus of continuity by using the shift (5), because the
space LP™ is not translation invariant, in general (see, for example [73, Example2.9]).
Letp e Mand 0 < a < 1. We define the Lipschitz class Lip( a,p(x)) as

Lip(a,p(x)) ={f € LP® : 0,,,(f,6)=0(8%),6§ > 0}.
Let f € L! has the Fourier series
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flx) ~ % + z (ay cos kx + by sinkx) . (7)

k=1
Denote by S,,(f)(x),n = 0,1,... the nth partial sums of the series (7) at the point x, that is,
n

S{N@ = ) AN,
k=0

where

a
Ay(H(x) = Z—O,Ak(f)(x) = ay cos kx + by, sin kx, k=12,....

Let {p,}s be a sequence of positive real numbers. We consider two means of the series
(7) defined by

1 n
NN == D DS ()
n m=0

and

Ru()() = Z PmSm(F) ()

where P, :=Y" _oPm ,P-1 = P_;:= 0 The means N,(f)and R, (f) are called the
N"orlund and Riesz means of the series (7),respectively. In thecase p,, = 1,n = 0, both of
N, (f) and R,,(f) are equal to the Cesaro mean

n

(N == Y SulNE) |
If we take p,, = A2 72(B > 0), where "
AB =1 Af::ﬁ(ﬁJrl)"'ﬁJrk k>1
, ST k2

the mean N,,(f) be the generalized Cesaro mean aﬁ (f)(x), that is

Na()@) = Z A S

71 m=0
The approximate on properties of the Cesaro means o, in Lipschitz classes

Lip(a,p), 1< p < 0,0 <a<1 were investigated by Quade in [79]. The
generalizations of Quade’s results were studied by Mohapatra and Russell [76], Chandra
([78]) and Leindler [79]. In [80], Chandra obtained estimates for |[f — N,(f)Il,, where
1< p <. Chandra also gave estimates for the difference |f —R,(f)ll,, where
f €lip(a,p),1< p<o,0< a <1][82].[84], Chandra gave some conditions on the
sequence {p,}, and obtained very satisfactory results about approximation by the means
N,(f) and R,(f) in Lip(a,p),1<p <o,0 < a <1. Later, Leindler in [85]
weakened the conditions given by Chandra on the sequence {p,}; and generalized his
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results. In [81], the analogues of Chandra’s results was obtained for weighted Lebesgue
spaces.
we give LP™) analogues of the results obtained by Leindler in [85] and Chandra in [84].
We shall use the notations

Agn = gn = Gn+1,  Amg(mm):=g(n,m) — g(n,m + 1).
A sequenceof positive real numbers {p,}; is called almost monotone decreasing
(increasing) if there exists a constant ¢, depending only on the sequence {p,,}5 such that for
all n = m the inequality

Pn < CPm (CPn = D)

holds. Such sequences will be denoted by {p,}5’ € AMDS ({p,}o € AMIS).Our main
results are the following.

Theorem (2.1.1)[66]: Let peM,0<a<1,f €lip(a,p(x)) and{p,}; be a
sequence of positive numbers. If
{pn}s € AMDS,
or
{p.}e € AMIS and (n+ )p,, = 0(P,),
then
\f - Nn(f)”p(x) =0(n~%).
Theorem (2.1.2)[66]: Letp € M, f € Lip(1,p(x)) and {p,}5 be a sequence of positive
numbers. If

n-1
> klap| = 0P,
k=1

n-—1 p
— n
k=0

If = NaDllpy =005

or

then the estimate

holds for n =1,2,....
Theorem (2.1.3)[66]: Let peM,0< a <1,f € Lip(a,p(x))and{p,};be a
sequence of positive numbers. If

n-1 p p
2 =0 )
Z | (m +1 0 n+1 (8)
m=0
then for n = 1,2,... the estimate
If = Ru(Dllpey =00m™%)
holds. In the classical Lebesgue spaces LP, the analogues of Theorem (2.1.1) and Theorem

(2.1.2) were proved by Leindler in [75], and Theorem (2.1.3) in LPspaces was obtained
by Chandra [74].
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we will denote the constants (in general, different in different relations) depend only on
guantities that are not important for the questions of interest.
Let p € M. Denote by E, (f),q(n = 0,1,...) the best approximation of f € LP™ in 1,
(the set of trigonometric polynomials of degree at most n), that is
En(f)p(x) = inf{”f - tn”p(x) "ty € Hn}-

It follows that, for example from Theorem 1.1 in [76], there exists a trigonometric
polynomial t;, € I1,, such that

En(f)p(x) =|lf - t:l”p(x)
forn=0,1,....
By WP® = wr® ([0,2r ]) we denote the set of absolutely continuous functions £ such
that f' € LP™),
Lemma (2.1.4)[66]: Letp € M and f € WP®)  Then the estimate

1
ExDpeo = 0 (5 1F llpco)) ©)
holds forn =1,2,....
Proof: It follows from Theorem 6.1 of [78] that
“f - Sn(f)”p(x) - 0,n > oo.
It is easy to see that
~ A(f) @) = kA(H),  k =12,...,
where f’ is the conjugate function of f’. By considering the uniform boundedness of
{5,,}% and the boundedness of the conjugation operator in the space LP™ (see [71]), we

get

0 co 1 _

If =$aPloeo = Y. 4 | = Z = A (F)
_ k=n+1 p(x) k=n+1 p(x)

1 1

= Z (;—k—ﬂ)(k(f) )+ —= (Sa(F7) - f)‘

(I)co=n+1 p(x)
1
< 3 () IO Pl + 1)l
< C{IFZHr1 (E - K+ 1)} If' ”p(x) n+1 —|If ”p(x)
< ;“f,”p(x)'

and hence (9) follows.
Lemma (2.1.5)[66]: If p € M, the Jackson type inequality
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1
En(f)p(x) =0 ('Qp(x) (f; E)) , n=1,2,..

holds for f € LP™,
Proof: Let f € LP™, Consider the transform

Us(f)(x): = ( f flx+ t)dt) dh, &> 0.
5/2
It is clear that Ugs(f) € WP™) for each & > 0 and

W@ =2 | ¢ e m = reyan

5/2
for almost all x. Since

: 41 (¢
|(U6(f)) (X)| < g(g j |f (x+h)— f(x) dh>,
0
it follows from definition of {2, (f, § ) that

| N s%”é [ I 4+ = fldh

p(x)
-Qp(x) (fr 6 )

On the other hand,since

Us (PG — FG) = 2 ( f (f(x+t)—f(x))dt> |
6/2

we get
1 h
WUs(F) = fllpey = 5] hf |f (- +t) — fldt dh
§/2 0 p(x)
2 (5 111 (h
< sup = ‘ flf(-+t)—f|dt dh
5/2<h<56 6/2 h 0 p(x)

1 h
B rean - e

dh)
p(x)

1 h
= swp |1 Cr0 -l < B0
6/2<hsé 0 p(x)

Hence, by subadditivityof the best approximation and (9) we obtain

2 o)
< 3 sup
§/2 \6/2shs 6
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En(Ppeoy < Ealf = Uiyn(), ) + Ea(Usn(D),

<|\|f = UymnD +% |(U/n ()’ ||p(x)

1 c 1
< -Qp(x) (f, E) + E 4n.(2p(x) (f; E) )
which finishes the proof.

Lemma (2.1.6)[66]: Letp € M and 0 < a < 1. Then for every f € Lip( a,p(x))
the estimate

p(x)

| f _Sn(f)”p(x) =0(n"9), n=12,...
holds.
Proof: Lett;, (n=0,1,...) be the trigonometric polynomial of best approximation to
f €Lip(a,p(x)). By Lemma(2.1.5)

”f - tr*lllp(x) = O(Qp(x) (f) 1/")):

If = tallpey = 0(n™%).
By the uniform boundedness of the partial sums S,,(f) in the space LP® (see [71]), we get
If —SaDllpey < If — tallpey + Itn = Sn(Dlpeo
= lf = tallpey + 1Sn(tn = Hllpeo
= 0(lIf - tallpw)
= 0(n~%).

Lemma (2.1.7)[66]: Let p € M. If f € Lip(1,p(x)), then f is absolutely continuous
and f' € LP™ thatis f € WP™),

Proof: Let f € Lip(1,p(x)) and § > 0. Since p—< p(x) almost everywhere, by
Theorem 2.8 of [73] the space LP™is continuously embedded in LP-. Hence we have

ITh(Ollp- < cllTh(Dllpe
for every h with |[h| < & . This inequality and equivalence of w,_(f,-) and 2,,_(f,-)yield

a)p_(f, 5) <c .Qp(x)(f,S )

and hence

Hence, f € Lip(1,p(x)) implies w,_ (f,6 ) = 0( 4 ), and this implies that f is absolutely
continuous and f’ € LP-([76, pp. 51-54]). Since the relation
+t) —
FErO-1® | ooy Lo

t
holds almost everywhere, for almost all x we get

2 j‘s If (x+0) = f(0)l

5 )5 t
/2
By Fatou Lemma, for every measurablefunction g with m,,»(g) < 1,

dt = |f'(x)]|,6 = 0+.
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[ Tl llgel dx = [

0 5—>0+5

5 _

< liminf ( f r+6) f(x)ldt> 19(0)|dx
S -0+ 5/2 t

<liminf4f —J If (x+t)— f(x)|dt)|g(x)|dx
6 -0+ 6 0 6 5/2 g

4 2T

=liminf= | Ts(f)(x)|g(x)] dx

0
.4 .4
< lim inf- ||T5(f)||z(x) < liminf< 2, (f,0)
= lgrr_l)(l)rlfg 0(6)=0(1),
and this means that f' € LP®™,

Lemma (2.1.8)[66]: Letp € M and f € Lip(1,p(x)). Thenforn = 1,2,...

1Sn(f) = 0n(Pllpy =0m™H)
holds.
Proof: By Lemma (2.1.7),f € WP®_If f has the Fourier series

)~ ) AP,
k=0

then the Fourier series of the conjugate function f” be

Froo~ ) ka(HG) .
On the other hand, =

n

S2 (D@ = G(NE) = ) —

k=1

74 ()

= 7 (7))

2T o) —
( Ef If (x+1) ﬂx)ldt) 9 (0)ldx
52 t

the estimate

Hence, by considering the uniform boundedness of the partial sums and the conjugation

operator in the space LP™ (see [81]), we obtain

IS, (f) — O-n(f)”p(x) - O(n_l)
forn=1,2,...
The following Lemma was proved in [85].

Lemma (2.1.9)[66]: Let {p,}5° be a sequence of positive numbers.

AMDS, or {p,}y € AMIS and (n + 1)p,, = O(PR,), then
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n
Z m_apn—m = O(n_a n)
m=1

for0 < a < 1.

Since

1 n
fo =5 Z Pnm £,

we have

f) = Nu(F)(x) = an —m U (%) = S () ().

By Lemma (2.1.6) and Lemma (2.1.9) we obtaln

IF =Mooy < 5 Zopn_m 1f = SOl

n

n
B 1 —a Pn
=5 Pn-m O(m )+P— Ilf _SO(f)”p(x)
nm=0

1 1
ool
p O "R+ 0\

= 0(n~%).
It is clear that

1 n
Na(D@®) =5 D P (F) ().

m=0

By Abel transform,

1 n
Sn(F)(x) = N () () = & Z (B = Po—m) A () (%)

- Pi Z . (P" _ n’l’"‘) (}i kAk<f)(x)> - n—il ZkAk(f)(xL

and hence "
I8 = Na Pl < 5 i) ZkAk(f)

p(x)

Since
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1 n
S2(N@) = 0a(N@) = —= > k() (),
k=1

by Lemma (2.1.8) we get
n
> kA
k=1 p(x)

= 152(f) = on(Pllpy =00,

n+1

Hence,

15, = NPl =0 (- )Z| n (=) + 07, (10)

Suppose the condition
-1

kldpy| = 0(P)

=1

S

=

holds. This implies that (see [87
P
> Jon () <0 (%),
n
m=1

and hence by (10) we have
152 (f) = Nu(D)llpy = 0(™).

This relation and Lemma (2.1.6) yield
”f - Nn(f)”p(x) = O(n_l)-

-1

Now let

S

149 =0 (22). (11)

n
] ] ] k=0
A simple calculation yields

Am(%) =m< Z P — M+ 1)p,_ m);

k=n-m

m
= z klpn—k+1 - pn—kl :
k=1
n P P n 1 m
2 [ (=) = 2 s (Z Elpn-eos ‘pn-k')
m=1 k=1

and by induction one can easily get
n

Z P — M+ 1)pp_m

Thus,
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Z k|pn—r4+1 — Pkl (Z m(m+1)>
Z k|pn—r+1 — Pkl (Z m(m+1)>
Z klpn—r+1 = Pn-il = Zlﬂpkl

Combiningthis, the assumptlon (11) and (10) we get
152(f) = Nn(Ollpy = 0™,
and considering Lemma (2.1.6) again we obtain the desired result.
Let0 < a < 1.By definition of R,,(f)(x),
n

1
FG) = Ra(NG) =5 D pdf () = Sm(H(E)
n m=0

From Lemma (2.1.6), we get

1 n
If = Rl <5 ) Pullf = Sm(Pllpce (12)
" m=0
1 n
= 0(3) 2, b 51 = So(ll

n
1 -
=0 <P_n) z Dmm~— ¢ .
m=1
By Abel transform,
n

n—1
z pam- % = Z PB,im*—(m+1)"%}+n" %P,
m=1

m=1
n—-1 P
< —e__T_ 4pn%p,
_Zm m+1 "
m=1
and
n—1 n—1 m n—1
et ST () (S e ) ¢ B e
m+1 m+1 n+1
m=1 m=1 k=1 m=1
= 0(n %P

by condition (8). This yields

and from this and (12) we get
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If — Rn(Nllpey =0~ ).
Let’s consider the case ¢ = 1.
By Abel transform,

1 n-—1
Ru(NG) =5 D (Pu(Sn(NE) = Smar (D) + PuSu (N0}
" m=o0

n—1
1
=5 Y Pu(~An(D@) +S,(H@),
m=0

n

and hence
n-1
1
Rn(f)(x) - Sn(f)(x) = _P_ PrAme () (X) .
Using Abel transform again yields "
n—-1 -1
> Prdp(NE) = 2 e () )
m=0
n-1 m
; ( 1) (2 K+ 1)Ak+1<f>(x>>
m=0
+ DA (H () -
Thus, by considering Lemma (2.1. 8) and (8) we obtain
n—-1
> P () Z a (=) Z(k + 1A ()
m=0 p(x)  m=0 p(x)
p(x)

= Til |A (mp—-lnf1)| (M + 2)ISs+1(f) = Om1 (f)”p(x)
" FRISa(F) = 0n(F)lloge

- o) 3 oty 0 %)

This gives
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S s
m=0

1 P, 1
=706 =06)
P, n n
Combiningthis estimate with Lemma (2.1.6) yields
Nf — Rn(f)”p(x) = O(n_l)-
Section (2.2): Generalized Lebesgue Spaces with Variable Exponent
Generalized Lebesgue spaces LP™) with variable exponent and corresponding Sobolev-
type spaces have waste applications in elasticity theory, fluid mechanics, differential
operators [90], nonlinear Dirichlet boundary-value problems [92], nonstandard growth and
variational calculus [91].
These spaces appeared first in [92]as an example of modular spaces [93] and
Sharapudinov [96] has been obtained topological properties of LP®). Furthermore if
p* 1= ess sup,er p(x) < oo, then LP™ is a particular case of Musielak—Orlicz spaces
[96]. Later various mathematicians investigated the main properties of these
spaces [97]. In LP®there is a rich theory of boundedness of integral transforms of various
type [98].
For p(x):= p,1 < p < o, LP® s coincide with Lebesgue space LP and basic
problems of trigonometric approximation in LP are investigated by several mathematicians
(among others [99], ...). Approximation by algebraic polynomials and rational functions in
Lebesgue spaces, Orlicz spaces, symmetric spaces and their weighted versions on
sufficiently smooth complex domains and curves was investigated in
[100-103,115,118,116]. For a complete treatise of polynomial approximation
see [105, 108].
In harmonic and Fourier analysis some of operators (for example partial sum operator of
Fourier series, conjugate operator, differentiation operator, shift operator f — — f (-
+ h),h € R) have been extensively used to prove direct and converse type approximation
inequalities. Unfortunately the spaceLP™ is not p(-) —continuous and not translation
invariant [94]. Under various assumptions (including translation invariance) on modular
space Musielak [97] obtained some approximation theorems in modular spaces with
respect to the usual moduli of smoothness. Since LP® is not translation invariant using
Butzer—Wehrens type moduli of smoothness (see [99]) Israfilov et all. [107] obtained
direct and converse trigonometric approximation theorems in LP™), we investigate the
approximation properties of the trigonometric system in L’th') . We consider the fractional

order moduli of smoothness and obtain direct, converse approximation theorems together
with a constructive characterization of a Lipschitz-type class.

1
IRn () = SuPllpey =5
p(x)
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Let T := [—m,m]and P be the class of 2m-periodic, Lebesgue measurable functions
= p(x): T = (1,00) such that p* < oo. We define class Lp()- Lzz’g)(T) of 2m-
periodic measurable functions f defined on T satisfying

f FOOP® dx < oo,

The class Lp( )is a Banach space [94] with norms

p(x)
1f Clpe = Nf Ol ‘=i“f{“ >0 J f—ix)
T

|dx| < 1}

and

O ~—sup{ j FOOg)dx: g € 2O j GCOP'® dx < 1}19
T

having the property !

Wfllpe =Wfllpm (13)
where p’(x) := p(x)/(p(x) — 1) is the conjugate exponent of p(x).
The variable exponent p(x) which is defined on T is said to be satisfy Dini— Lipschitz
property DL, of order y on T if

1
sup {[p(x) — ()| oy — 25| < 6) (lng) y<e 0<6<1.

X1,X2€T

Letf € LZST') ,p € PsatisfyDL;,0 < h < 1and let
1 x+h/2
onf(x) = —j f(tdt, x €T,
h x—-h/2

be Steklov’s mean operator. In this case the operator g3is bounded [97] in Lp() Using
these facts and setting x,t € T,0 < a < 1 we define

Uh fO) = (I —0,)* f(x) =

h/2 h/2
ZX( (% j | fed u e w) duy . duy, (14)
h/2 —-h/2
where f € Lpz(n), (Z) = 2@ k(.a “*Dfor k > 1, (1):= a,(%‘):: land I is the

identity operator.
Since the Binomial coefficients (Z)Satisfy [104,p. 14]

(7)< % k €1¥,

C@:=> ()< =

k=0

we get

and therefore
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log fllpe < cllfllpr < o0 (15)
provided f EL”Z('),p € Psatisfy DL, and 0 < h < 1.

VA
For0 < a < 1andr = 1,2,3,... we define the fractional modulus of smoothness of

indexr + aforf € L”Z(,'T),p € P,satisfy DL, and 0 < h < 1as

r

[ [0 -on)oms

=1

Braa 0= b,

p,T
and

0 lf,8)py = Sup 110 fllpre
We have by (15) that o
-Qr+a (f' 6)p(-) < C”f”p,n
where f € Lpz('),p € P satisfy DL;,0 < h < 1and the constant ¢ > 0 dependent

A
onlyon a, r and p.

Remark (2.2.1)[89]: The modulus of smoothness Q,(f,8),., @ € R¥, has the
following properties for p € P satisfying DL,:
(1) Qa(f,8)p¢y is non-negative and nondecreasing function of § = 0, (ii) Qu(f1 + f2,
oy = Qa(fi)pey +Qa(f2)pey » (100 limsg Qo (f, 6)py = 0.
Let

En(f)p() = Tlg’lgl“f - T”p,TL’ ,Tl = 0;1121"';
be the approximation error of function f € Lpz(,'T) where T,, is the class of trigonometric
polynomials of degree not greater than n. For a given f € L', assuming

jf(x)dx = 0, (16)
T
we define o-th fractional (¢ € R*) integral of f as [93, v. 2, p. 134]

(e f) = ) (i) el
_ kEZ*
where ¢ := [ f(x)e”**dxfork € Z*:= {+1,£2,43,...} and

(ik)™% := |k|™% e(=1/2) mia signk
as principal value.
Let « € R™ be given. We define fractional derivative of a function f € L, satisfying
(16), as

dlel+1
f@(x) = FRTIEE Lt ray-a (X, f)
provided the right-hand side exists, where [x] denotes the integer part of a real number x.
LetWS.,,p € P,a > 0, be the class of functions f € L5 such that @ € LY .w&
becomes a Banach space with the norm
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fllws,, = Ifllpa + 1F@]
Main results are following.
Theorem (2.2.2)[89]: Let f € Wp(),a € R*, and p € Psatisfy DL, with y > 1,
then for every natural n there exists a constant ¢ > 0 independent of n such that

En(Fp) € ——— En(f@)
nIPO =4 e P()
holds.
Corollary (2.2.3)[89]: Under the conditions of Theorem (2.2.2)

E(Dper < e 1P
VPO =+ 1)a pm
with a constant ¢ > 0 independentofn = 0,1,2,3,....

Theorem (2.2.4)[89]: If « € R*,p € P satisfy DL, with y > 1 and f € L5, then

2T
there exists a constant ¢ > 0 dependent only on a and p such that forn = 0,1,2,3,.

21
EPpor < e (fig)
holds.
The following converse theorem of trigonometric approximation holds.
Theorem (2.2.5)[89]: If a € R*,p € P satisfy DL, with y > 1 and f € L5\, then

2
forn = 0,1,2,3,...

2% (7 Z 1),,(.) (n + D@ 1)06 Z(V FDTE o

hold where the constant ¢ > 0 dependent only on a and p.
Corollary (2.2.6)[89]: Leta € R¥,p € P satisfy DL, withy > land f € Lp() f
En(f)pey = 0(n79), o > 0, n=12,.

then
0(69), a > o,
O (f, 8)pey =10(8%Ilog(1/d)), @ = o,
0(6%), a < o,
hold.

Definition (2.2.7)[89]: For0 < ¢ < a we set

Lip o (a,p()) :={f € 159+ Qu(f,8)p) = 0(59),8 > 0.
Corollary (2.2.8)[89]: Let 0 < 0 < a,p € P satisfy DL, with y > 1 and f €
LZ;(T') be fulfilled. Then the following conditions are equivalent:

(a) f € Lipo (a,p()),
(B) En(fpy = 0(n™9),n = 1,2,....
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Theorem(2.2.9)[89]: Let p € P satisfy DL, with y = 1 andf EL';(T'). If g €
(0,00) and

(00

Y V(P <

, v=1
then f € W, and o
En(f(ﬁ))p(.) <c ((TL + I)BEn(f)p(.) + Z vﬁ_lEv(f)p(-))
v=n+1

hold where the constant ¢ > 0 dependent only on £ and p.
Corollary (2.2.10)[89]: Letp € P satisfy DL, withy = 1,f € L';(T') ,f € (0,)and

z VETE, (fpe) < @

v=1
for some o« > 0. In this case for n = 0,1,2,... there exists a constant ¢ > 0 dependent

only on a, 8 and p such that

A
(o)
Qﬁ (f 'n + 1)p(.)
n 0
<c(n+ 15 z (v + D*FE,(pey + ¢ z vArE, (F)p(y
v=0 v =n+1
hold.

The following simultaneous approximation theorem holds.

Theorem (2.2.11)[89]: Let g € [0,00),p € P satisfy DL, with y > land f €
L’;ST'). Then there exist a T € T,, and a constant ¢ > 0 depending only on a and p such
that

”f(ﬁ) — T(B)”p,n < CEn(f(b’))

holds.

Definition (2.2.12)[89]: (Hardy space of variable exponent H?®) on the unit disc Dwith
the boundary T := 0D) [90]. Let p(z): T = (1, =), be measurable function. We say that a
complex valued analytic function @ in D belongs to the Hardy space HPC) if

2 ®
sup j |<D(rei19)|p dy < +o
0<r<iJo

where p(9) := p(e™),9 € [0,2] (and therefore p(¥) is 2m-periodic function). Let
p := inf,ep p(2) and p := sup,er p(2). If p > 0, then it is obvious that H? ¢ HPO) <

c HE.Therefore if f € HPO and p > 0, then there exist nontangential boundary-values

p()
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f(e®)a.e. on T and f(e?®) € I (T). Under the conditions1 < p and p < oo, HPO)

/()

becomes a Banach space with the norm
A

fllgoer = f (%), T =inf{/1 > 0: j
’ T

Theorem (2.2.13)[89]: If p € P satisfy DL, withy > 1, f belongs to Hardy space
HPO on D and r € R*, then there exists a constant ¢ > 0 independent of n such that
OEDYNGY

. 1
< io —
‘ < cQ, ((e ),n - 1) n = 012,...,
k=0 2140 14Q)

where a, (f),k = 0,1,2,3,..., are the Taylor coefficients of f at the origin.
We begin with the following lemma.
Lemma (2.2.14)[89]: [100]. For r € R* we suppose that
(i)a, +a+...+a,+...,
(ia; + 2"a, +...+n"a,+ ..
be two series in a Banach space (B, ||-||). Let
n

0 =3 (1)

p(6)

do < 1}.

n

k=1
and
n r
Ry = Z <1 B (n n 1) )kra"
k=1

forn = 1,2,....Then

”Rﬁf)* | <c n=12,...,

for some ¢ > 0 if and only if there existsa R € B such that

et~ <2

nr ’

where ¢ and C are constants depending only on one another.

Lemma (2.2.15)[89]: [98]. If p € P satisfy DL, withy > 1and f € 15" then there
are constants ¢, C > 0 such that

171, . < clifllyn (17)

and

1SnC Ollpz < Clifllpz (18)
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hold forn = 1,2,....
Remark (2.2.16)[89]: Under the conditions of Lemma (2.2.15) (i) It can be easily seen
from (17) and (18) that there exists constant ¢ > 0 such that

”f - Sn(':f)”p,n < CEn(f)p(~) = En(f)p(~)-
(it) From generalized Holder inequality [104] (Theorem 2.1) we have
Q)

b < LN
For agiven f € L! let
a .
f(x) ~ 70+ z(ak coskx + by sinkx) = Z cee™  (19)
k=1

k =—o0

and

0

fx) ~ Z(ak sinkx + by cos kx)
k=1
be the Fourier and the conjugate Fourier series of f, respectively. Putting A, (x) :=:=

ce’™ in (19) we define

Sulf) = Sae ) 1= ) (A0 + Ak()) =
k=0

n

—0 Z a, coskx + b, sinkx),n = 0,1,2,...,

2
k=1
n k a
ROU D) =) (1 - (—5) ) (40 + A4 ()
k=0
and
1 1
(r) (r) (r)
@ = R —
m 1_(m+1)r 2m (2m+1)r_1 form
2m + 1 m+ 1
= 1,2,3,.... (20)

Under the conditions of Lemma (2.2.15) using (18) and Abel’s transformation we get

||R§1“>(f,x)||pn < Wfllpe, n = 1,23,... x €T, f € 2O, (21)
and therefore from (20) and (21)

||@,<,f>(f,x)||pn < clfllpe,m = 1,23,.., x€T, feIY.
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From the property [105] ((16))

. o5 (f)(x) =
1
ST 2, K KIS Nx e fel
it is known [105] ((18)) that
0 (Tyy) = Ty, (22)

forT, €T,,m = 1,2,3,....

Lemma (2.2.17)[89]: Let T, € T,,,p € P satisfy DL, with y = 1 and r € R*. Then
there exists a constant ¢ > 0 independent of n such that

e

< en'[[Tullpn
p,T

holds.
Proof: Without loss of generality one can assume that ||T, |, = 1. Since

Ty = > (400 + A ()
k=0

we get
T, §
2= (A — A )/7]
and =
T(T) n
=i (A - A, @)/

k=1
In this case we have by (21) and (17) that
C |~ Cc Cc
< F ”T””p,n < F ”Tn”p,n = F

T
(ry[ ‘n
i (;)
p,T

and hence applying Lemma (2.2.14) (with R = 0) to the series

Z[(Ak(x)_ A @)/M]+0+0+...40+...,
k=

1

z k[(Ag(x) = A (0))/n"]+ 0 + 04+ ...+ 0+...,
we find =

54



IA
A

zn: (1 - (n i 1)T> K [(4(0) = Ay (0)/n7]

k=1

b

-) )kr[(Akm - A ()/n]

-6
Zn: (1 - (n -IIC- 1) >kr[(‘4k(x) — A (x))/n"]

k=1

b

< C,.

p,T
Since R,(,L” (cf) = cRﬁl”(f) for every real ¢ we obtain from (22) and the last inequality
that

7] e (1)

= ok (G, -

o (T(T)>
n nr
General case follows immediately from this.
Lemma (2.2.18)[89]: If p € P satisfy DL, withy = 1,f € Wp()
andr = 1,2,3,...,then
'Qr(fr 5)19( < C6ZQr_1 (f", 6)29() ,5 = 0,

with some constant ¢ > 0.
Proof: Putting

b

=n" < C*nr = C*nT”Tn”p,n'

b

r

909 =] | ) F)

i=2
we have

(I —0on)gx) = | “(1 —op,) f(%)
and =
hy/2

1
[lo-0r0 =5 (e@-g6+0)ae =

—hy/2
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1 (h/2 p2t fu/2
= —h—j f j g"'(x + s)dsdudt.
1Jo 0 J-u/2
Therefore from (13)

<

1_[(1 ) f @)
7T

c h1/2 2t
—sup {f J J f g"'(x + s)dsdudt
2h1 —u/2

e Lb 'O and Jlgo(x)lp ™ dx < 1} <

hq/2 2t
<o)y vl

hy/2 r2t
<o || ullgllp dude = chEllgl

|g0 () ]dx: gg

dudt <

u/2
j g'(x + s)ds
_ -

u/2

Since

=<

g =] 10U —on)f"x)

[[a-anre
i=2 ot

= c6®  sup 1_[ =)' = 6201 (", 8y -

0<hj<
j=12,.,r—-1 D,
Lemma (2.2.18) is proved.

Corollary (2.2.19)[89]: If r = 1,23,...,p € P satisfy DL, with y = 1 and f €
w2
()’

we obtain that

Q- (f,8)py < sup chillg"ll,r = c6* sup
0<h;<é

0<hi<é
i=12,.r i=1,2,.r7r

p
then

Q (f,8)p0y < c62r||f(2”||p'n,6 > 0,

with some constant ¢ > 0.
Lemma (2.2.20)[89]: Let « € R*,p € P satisfy DL, withy > 1,n = 0,1,2,... and

T, € T,. Then

56



n (@)
Q \T,,——— —_—
a( n n + 1)p() (Tl + 1)“ || ||
hold where the constant ¢ > 0 dependent only on a and p.

Proof: Firstly we prove thatif 0 < a < B,a,8 €> 0.
Lemma (2.2.21)[89]: Let a € R* then

Qﬁ(fi)p() < C.Qa (f')p() . (23)
It is easily seenthatif &« < B,a,f € Z*, then
Qs (f)pey = (@ B,0)Q (F)pey - (24)
Now, we assume thatO < a< B < 1. In this case putting @(x) := o f(x) we have
_ h/2 h/2
“ D(x) —Z (— 1)1 . J J P(x + w+t...u)du,y ... du; =
h’ h/2 h/2

i _a h/2 h/z k h/2 n/2
(- 1)1 . j | z( 1y f ...... f(x
=0 hJ h/2 h/2 h/2 -h/2

+ Uyt Uy U )duy L dudug g, ..duj+k] =

(0]

Zi e (P79 (9) x

j=0 k

h/2
[h]+k f f(x Ut W) duy ...duj+k] =
h/2 —-h/2
oo h/2 h/2
=Z(—1)v(€)% j j O+ w+..w)dy,...dy, =0p f(x)  ae
Then e oh
lof Feo|| = |lof oo < c|lof F
and o P pm

Qg (f)pey = Qo (fr)pey - (25)
We note that ifry, 7, € Z",a,,8, € (0,1)taking a := 1, + ay,B := r, + B, for the
remaining casesr; = r,a; < fiorry < o = Lo < npap < By it can
easily be obtained from (24) and (25) that the required inequality (23) holds. Using (23),
Corollary (2.2.19) and Lemma (2.2.17) we get
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< Oy (Tn,%)p()

(n + 1)lel-(a=[a) ”T(a)”

< C(Tn,n Z )2[“] ||T752[a1>||

IT(“’II

Q, (Tn, nLH)

S .
(n + 1)2lal
the required result.

Definition (2.2.22)[89]: For p € P,f € L’Z’fr') ,6 > 0 andr = 1,2,3,...the Peetre
Kfunctional is defined as

K(8,F155 Wiy ) = 0 (If = gllpe + Slg@lpa) . (26)

Theorem (2.2.23)[89]: If p € P satlsfy DL withy = 1 and f e [’Y | then the

21T
Kfunctional K (5” f; LZ;(T), Wp()) in (26) and the modulus Q.. (f,8),), 7 = 1,2,3,..are
equivalent.

Proof: Ifh € W2 (- » then we have by Corollary (2.2.19) and (26) that
O (F,8)py < cllf —hllpx + c62r||h(2r)||p’n < ¢k (6” £129 W ()).

2w’

p()

(n + 1)@ |

We estimate the reverse of the last inequality. The operator Lo defined by

6/2 2t u/2
(Lsf)(x) := 36~ 3f j j f(x + s)dsdudt, x € T,
0 —-u/2
is bounded in L2%) because
§/2 2t

ILsflln < j j wllof Nl dudt < cllfllpn -
0 0
We prove

d? C
Ix? ILsfIlf = 5(1 —0s)f

with a real constant c¢. Since

(Lsf)(x) = 3673 72 jt Yzf(x + s)dsdudt =
6/02 z_tu/x2+u/2 x—u/2
= 36~ f flf f(s)ds— Of f (s)ds|dudt

using Lebesgue Differentiation Theorem
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p 6/2 2t p x+u/2 g x—u/2

a(L5f)(X): 36‘3f fla f f(s)ds—a f f(s)ds]dudt =
0 0

8/2 2t

= 36‘3J J[f (x + u/2)—f (x—u/2)] dudt =
0

8/2 [x+t
= 66‘3J lf f(u)du+f f(u)du]dt a.e.

Using Lebesgue Differentiation Theorem once more
5/2 l x+t x—t

d2
W(Lgf)(x) = 66‘3j J f () du+— f f(u)du‘ dt =

x
6/2

- 65-3j F@+0-f@ +f—0—f@)] dt =

0

6/2 6/2
- |

ff(x+t)dt+jf(x—t)dt—Sf(x) =
i 5/2

=533 jf(x+t)dt+— jf(x+ t)dt—f(x)‘

-6/2

_6 6/2 ___ 5/2
=57|3 Jf(x+t)dt+—f(x) ——ﬁf(x)—g ff(x+t)dt

| —6/2 -5/2

—6
= F(1 —0s)f(x) a.e.

The last equality implies by induction on r that
2r

T Le f _ﬁ (I-05)f, r=123..ae
Indeed, forr = 2

4 2 2 2 2
S 13f = (513 f) = %(%La (Lsf = :u>> =
d? [ d? d?> /—6
=W<WL5”> = g (Gz 0 -on) =
—6 ([ d? —6 [ d?
= F <W(I —05)u> = F (W(I —O'(g)L(gf) a. e.
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Since j_xzzO'é‘ (L5f) = 0Oy (:_;Lsf) we get
2 d2 d2 d2 d2
(1 —0s)Lsf === Lsf — 23200 (Lsf) == 2z lef — s <d_ L5f>
d2
= (I — 08) (Ei;anaji) a.e.

and therefore

d* d2 —6 d2
il =57\ gz —0s)lef | = 57U —0s) |5 Lsf | =

—6 —6 c 5
= 70 —09) |57 U —op)f| = 55 U —0)* face
LV f = (I —05) ™V fae. Then

Now let be

x2(r= 1) 52(r-1)

er LZ f _ dz dz(r 1) L(T 1)(L _ u) dz(r—l) L(T 1)
dx2r 9 dx? | dx2@r-1) 76 4 dx2(r-1)
d? C
= dx2 [52(r—1) (

c d?
I —a5) 1 [@ Ls|=

I —05) Dy = I —05) Lg| =

W [52(r—1) (

I —o5)" fa.e.

= 52(r-1) ( 52r (

2r 2r
Letting A5 :=1 — (I —Lj)" we prove that || d s c|dd = rf” and
5f € W, . Forr—lwehaveA}gf I—(I —Lj ) L f and ”—A f”
= ”ﬁL}Sf”M' Since EL(J = (I —0s)f we get Azf € WS, .For r ==
2,3,...using
Ar =1 —( — L} ) = Z( 1)~ ]+1 T(T—f)
we obtain

r—1

=.()

p T j=0
L7 f|| as the following
b,T

d2r

er .
— LD g

dx2r 1)

sf

b

2r

We estimate ”d—

deT

2T 2T

dder Ly (1777f =)
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2
- ] - bz @ oo, -
p. '
_ ||52r (I —a5)" [Lr(r J)f]” 52T (I —a5)" [ 1= J)f]” <

Z( v (7)ot [ ]
p,T

Since a5(Lsf) = Ls (osf) we have o} [Lg(r ’)f] = 1.7 (a}f)and hence
r
¢ i(T) i [;ra=D
S 5or Z(—l) (i)aé [La f]
p'T[ l=0 pTT

2, 0 (50
i=0

IA

T(T i)
deT !

p,T
r T
_ _C |lyre-h (T (T (A _
- i [ o ) sy o Q) -
p,T
2T
II(I —05) fllpn = (I —Ua)rf = Lsf
oor b, o7 2
-5 52" dx?" -
From the last inequality
2T 2r
2
derAgf‘ = c x2r f' and‘4 f € P{)
p, p,T
Therefore we find
d2r 2T c C
deTAEf S Ol sf =ﬁ||(1 —05) fllpr < ﬁﬂr(f»(s)p(-)-
DT DT
Since
r—1
I -L5=( —LS)ZL{S
j=0
we get

I = L) Mpn < clld —Ls)llpn <

§/2 2t
< 3C6_3j f ull( = )9y dudt < ¢ sup [(I —0,)9yr -
o Jo

o<usé
Taking into account
If = Asfllpz = 1T = L) fllpx
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by a recursive procedure we obtain

If = 45fllpn < € sup N =oe)a -],
< Cc sup sup ||(1 —Utl)(l _Jtz)(l — Lo 2f”
i=12,.r

0<t <6 0<t,<b
1_[ (1 -a, )f(x)
Theorem (2.2.23) is proved.

We set A, (x, f): = a; coskx + + by, sin kx. Since the set of trigonometric polynomials is
dense [92] in L0 for given f € L2%) we have En(f)pcy = 0asn — oco. From the first
inequality in Remark (2.2.16),we have f(x) = XyZo Ax(x, f) in [, , norm. For
k = 1,2,3,...we can find

c sup
0<t;<6

= C.Qr(f, 6)p() .

A = k(x+ o —S0) + besink (x 4+ — =) =
k(x;f) = ay CoS (X ﬁ ﬁ) k SIn (x ﬁ ﬁ)_
= A (x + — an f)cosa—n+A (x +a_ f)sma—n
k 2k’ 2 Uk 2k’ 2
and
an
@) = L« -
A(x f@) = kA (x + - f).
Therefore
ZAk<x,f) =
= Ao(x, ) + cos o Z +51n—z,4k )—
k=
= Ao(x, f) + cos— Zk “Ak(x f(“)) +sm—Zk “Ak(x F@)
and hence
S = i —A (@) an 1 A Fa)
fx) = S,(x, f) = 0037 @ k(xf )+sm7 k_“ k(x,f )
. k=n+1 k=n+1
Since

(0]

kA, (x, f@) =

k=n+1
_ Z k@ [(S( F @) = F@OO) = (Sier (5 f@) = F@ ()] =
k=n+1
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= D, =G+ D (S @) = FO0)
k=n+1
-~ + D51 @) = FO)

and

(00]

DA f@) = ) e = (e + 17 (Se(2 @) - FO) -
k=n+1 k=n+1

(1 + D (S,(, @) = FO )

we obtain o
IFO =SaCDllpr < ) 07 = e + D™ [|Se(-f@) = f@O| -+
) ot D ,(f@) - OO+
N Z (k™ = (k + 1)) [Se(- F@) - FOO
) e + + 1)7[5,(, @) = FOO| | <
Sc|l )=k + DOE(@) o+ DE(F@) |+
S
e z (= (k + D™ E(f@)  + (+ DE(F@) .
=

Consequently from equivalence in Remark (2.2.16) (i) we have

- ”f(x) - Sn(x»f)”p,rr =<
< c[ z k™ =Gk +1DD+0m+ 1) {Ek(f(“))p(,) +En(f(“))p(_)} <

k=n+1

< CEn(f(a))p(‘) [ Z (k~* — (k + 1)‘“) + (n + 1)‘“] < (n : 1)(1 En(f(“))p(‘).

k=n+1

Theorem (2.2.2) is proved.
Weputr —1 < a < r,r € Z*.Forg € sz(’f) we have by Corollary (2.2.3), (26) and

Theorem (2.2.23) that

En(f)p(-) SEn (f _g)p(-) +En(g)p(-) < C[”f _g”p,n + (Tl + 1)—2r||g(2r)||p’n]
<

. 1
< cK ((n + 1)_2T,fi ngr) erz(r-)) < cQdy (f’n + 1) o
(-
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as required for r € Z*. Therefore by the last inequality

En(Hpey < Qe (f,1/(n + D)py < Qe (f,2n/(n + 1)py,n = 0,1,2,3,...,
and by (24) we get

En(f)p(-) < Cﬂr(f,ZTC/(n + 1))p() < C.Qa(f, 27'[/(7’1, + 1))1?()
and the assertion follows.

Let T, € T,, be the best approximating polynomial of f € € Lng'r) and let m € Z*. Then
by Remark (2.2.1) (ii)
.Qa(f,T[/Tl + 1)29() < 'Qa(f —sz,T[/(Tl + 1)) () +.Q.a(T2m,T[/(Tl + 1))19() <

< CEzm(f)p(.) + .Qa(sz,T[/(Tl + 1))p() .
Since

m-—1
TR = TP + ) T -1V W)}
v=0
we get by Lemma (2.2.20) that
m-—1
¢ (@) 2 (@ _ m(@
0 (Tym, /(0 + Dy < e {”T1 ||p’n + 0 ||T2v+1 T
v=

Lemma (2.2.17) gives

PJT} .

< 2| Tpvws = Tv|| < 2V Epv (Fpgy

r -1
a

nd

|7 ”m = [|r -7 ”pﬁ < cEo(f)pey-

Hence
m-—1
c
Q,(Tym,m/(n + 1))p(-) < m{Eo(f)p(.) + z 2(V+1)0£E2v(f)p(.)} .
v=0
Using
ZV
2(V+1)aE2v(f)p(,) < c* Z ua_lEu(f)p(')' vV = 1,2,3,...,
u=2v-141
we obtain

Qo (Tom,t/(n + 1))py <

m 2v

< e 1B + Bt e ) ) T E( [ S

v=1p=2v-14+1

64



Zm
C
-1
< ] BoDeor + QT E e
pu=1
2Mm—1

m Z W+ D E,(Npe) -

If wechoose2™ < n + 1 <2™*1 then

c n
Q,(Tym,m/(n + 1))p(.) < (Tl-l-—l)a vzzo(v + 1)0{—1 Ev(f)p(.),

Ezm(f)p(.) < Ezm—l(f)p(.) < ﬁ ;(V + 1)0‘—1 Ev(f)p() .

Last two inequalities complete the proof.
For the polynomial T,, of the best approximation to f we have by Lemma (2.2.17) that

[ =P < cw2 B Ty ~ Tl S 26825 By (P

Hence
- B) B)
;||T2i+1 - Tzi ||sz(-) - ; ||T21+1 Tz" ||p7'r + 2”']" i1 <

<c z mﬂ‘lEm(f)p(.) < 00,
m=2

Therefore

||T2i+1 — T, || B - 0asi — oo,
This means that {T,; } is a Cauchy sequence in Lp() Since T,; - f in LP®) 2w and wk 0 1S
a Banach space we obtain f € Wp[z.) . On the other hand since

IF® = s.(F )| <

< [[Samee(FD) = Sa(FON,, + D IS (FD) =S (FOI,,,

k=m+2
we have for 2™ < n < 2m+2

1Sme2 (FB) = Sal(F BN, . < 2T DPE,(Fpey < et + DFEL(yp,
On the other hand we find
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Z IS (fB) = S (F PN, , < € Z 20+ DBE e (f)pey <
k

k=m+2 k=m+2
00 2

<c > Y WTRMy =

k=m+2 p=2k-141

oo oo

= cC Z VB_IEV(f)p(.) <c Z Vﬁ_lEv(f)p(-) .
y=2m+141q v=n+l

Theorem (2.2.9) is proved.
We set W, (f) := W, (x, f) := — Y2"_S (x,f),n == 0,1,2,.... Since

n+1 <V

Wo( @) = W )

we have

||f(“)(-) B Té“’(»f>||pﬂ <|fr@o- Wn(-,f(“))Hp,,, +

Hm2Cwa) - n2en|+ [WE6H -TE W) =
b, p,T
. = 11 + 12 + 13.

We denote by T, (x, f) the best approximating polynomial of degree at most n to f in
L’z’,(r') . In this case, from the boundedness of the operator S, in ng we obtain the
boundedness of operator W, in L’;,(T')and there holds

I < ”f(a)(.) — T;(.'f(a))”p,n + | T,’{(-,f(“)) — Wn("f(a))”p,n <

< CE(f@) |+ Wl Ti(F@) = FO), < cE(F@) .
From Lemma (2.2.17) we get

L < en®||To( Wa(H) = TuC, D,

and
I < ¢ WoCf) = Tal, Wal D llpe < e En(Wa(),,, -
Now we have
17 WalH) = TaC P, <
< T Wa () = Wn(-,f)llm + WL () = FOllpr +IIFC) =Tl Hllpr <
< cEn(Wa(£),y + En(Ppey + CEn(Ppey-
Since En(Wn(f))p(‘) < cEn(f)p() We get
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”f(a)(') _ Trga)(.,f)”p’n < CEn(f(a))p(.) + Cn“En(Wn(f))p(,) +

+ en®Ey(fpey + c(Zn)“En(Wn(f))p(') < cEn(f(“))p(.) + cn®En(Hp() -
Since by Theorem (2.2.2)

- (@)
we obtain

Jro6 -1l < ),

Theorem (2.2.11) is proved.

Let f € HPO(D). First of all if p(x), defined on T, satisfy Dini-Lipschitz property DL,
fory > 1onT,thenp(e™),x € T, defined on T, satisfy Dini-Lipschitz property DL, for
y = 1lonT.Since H?O ¢ HY(D)for1 < p, let ¥ . Bre®® be the Fourier series of
the function f(e'), and S,(f,0) :=:= Yp__, Bre'*® be its nth partial sum. From
f(e?) € H(D), we have [11,p. 38]

(0, for k < 0;
Bi _{ak(f), fork = 0.

Therefore

n

TOEDWNGY,

k=0

=f =Sn(f)llp - (27)

2140
If ¢;, is the best approximating trigonometric polynomial for f(e'@) in 12O then
from (18), (27) and Theorem (2.2.4) we get

If @) = Zk=o @Dz poir < If (e) = (D], . +1Sa(f — 12, Ollpr <

. , 1
< cF i < cQ ( i6 ) ) _
= ¢ n(f(e ))p(.) = O f(e ) n+1 ()
Theorem (2.2.13) is proved.
Section (2.3): Weighted Lebesgue and Smirnov Spaces with Nonstandard Growth

For functions of weighted Lebesgue spaces Lﬁ)(') with nonstandard growth, it was proved
in [135] that

En(f)p(.),a) =< C-Qr (f

1

,— n+1,r=1273,.., 28
n+ 1)29(_)’&) ( )
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and its weak inverse

1
Q, <f’_)p<)w < z W+ DY E,(fyy, nr=123,.., (29)

n

holds provided the Welght a)and the exponent p(.) are such that the Hardy-Littlewood
maximal operator M is bounded on the space Lfo( ) where

En(Dpoo = fIIf = Ty, n=012,...f €L,

T,, is the class of trigonometric polynomials of degree not greater than n,
T
(£, 8)p0rw = SUP. | |(1 — op,)f
Sl PO

fel’Y  s§<0, r=123..,

Is the modulus of smoothness of degree r ([136]), 1 is the identity operator and
x+h

oy f(x) = . f@®)dt forhe Rand x € T := [—m, m].

In equalities (28), (29) and their several consequences were given in [135]. In the recent
[135]and [136] we considered the weighted fractional moduli of smoothness,
.e.Q,.(f,.)p With r € (0,0), to obtain inequalities of types (28) and (29) in weighted
Orlicz  spaces.  Fractional smoothness is not a new concept for
nonweightedLebesguespaces;Butzer[143],Taberski[145],Tikhonov—-Simonov[144] and
Akgtn-Israfilov [140] applied the fractional moduli of smoothness successfully to solve
approximation problems in Lebesgue and Smirnov spaces. As a consequence of these facts,
defining the weighted fractional moduli of smoothness ([138]), we consider basic
approximation problems such as direct, inverse and simultaneous theorems of
trigonometric approximation of functions of weighted Lebesgue spaces with variable
exponent for weights satisfying a variable Muckenhoupt condition A,.. Several
applications of these results help us to transfer approximation results for weighted Smirnov
spaces of functions defined on a finite domain with sufficiently smooth boundary.
Generalized Lebesgue spaces LP® with variable exponent (with nonstandard growth)
appeared first in[136] as an example of modular spaces ([137,135]), and the
corresponding Sobolev type spaces have extensive applications in fluid mechanics,
differential operators ([142,138]), elasticity theory, nonlinear Dirichlet boundary value
problems ([134]), nonstandard growth and variational calculus ([140]). If p*(T) :=
ess sup,er p(x) < oo, then LPO is a particular case of Musielak— Orliczspaces[135]. For
a constant p(x) :==p,1 < p < oo, the corresponding generalized Lebesgue spaces LP®)
with nonstandard growth become classical Lebesgue spaces LP  having deep
approximation results. The main properties of LP®) are investigated in [142]. The
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boundedness of classical integral transforms on LP®) and weighted LP®) is obtained . Let
P(T) be the class of Lebesgue measurable functions p = p(x): T — (1, o) such that
1 < p*(T) = essEiTnfp(x) < p* < oo
X

We define a class ﬁgQ of 2w -periodic measurable functions f : T — C satisfy-ing
m+c

J If ()PP dx < oo

—m+c

For any real number c andp € P(T).
The class L’Z’fr') Is a Banach space ([34]) with any of the following equivalent norms :

p(x)
Wfllzpey = inf U [ dx < 1}

a
T

And
Ifll5p = sup { j FCOg(0)ldx : j 9P D dx < 1} (30)

gELp()
Where p'(x) :== p(x)/(p(x) — 1) is the conjugate exponent of p(x).
Let w: T — [0,] be a 2w periodic weight, i. e., a Lebesgue measurable and a. e. positive
function. Denote by Lp(') the class of Lebesgue measurable functions f : T — C

satisfying wf - Lp() Weighted Lebesgue spaces with nonstandard growth L’;,(') are
Banach spaces with the norm Iflly0)w = ll@fllzpe)-

For given p € P(T)the class of Weights w satisfying the condition ([141])
1

(%) — (x)
o], = 0@ l,105 |75

IBIP

< oo

Ll(B) B.(p'0/p0)

is denoted by A,y (T). Here pp = (IBI fB@dx) and B is the class of all balls in T .
The variable exponent p(x) is said to satisfy the local log- Holder continuity condition if

c
Ip(xy) —p(xy)] < logle + 1/1x: —x%,]) forall x;,x, € T. (31)

We denote by Pilog (T) the class of p € P(T) satisfying (31).
Let f € 1" and

x+h/2

1
Apf(x) = » J f®)dt x, € T.
x—h/2
be Steklov’s mean operator. For Pilog (T)and f € L’ZU('), it was proved in [141] that

The Hardy-Littlewood maximal function M is bounded in Lﬁ)(') if and only if
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Therefore if p € Pil"g(T) and w € A,()(T), then 4, is bounded in 1Y | Using these
facts and setting x,h € T,0 < r we define via binomial expansion , for f € ’(’U('),

opf(x) = (I = Ap)"f (%)

h/2  h/2
ry 1
=Z(—1)k (k)ﬁ J f flx+ug + - +u)duy - duy.
k=0 -h/2 -h/2

Since the binomial coefficients (I:)_satisfy ([141,p.14])

(r) < k € Z%;

k) = jr+1’
we get
T
Z (k) <
k=0
and therefore
loxllpyw < cllfllpoe < o (33)

Provided p € P/°(T),w € Ayy(T)and f € LAV
For 0 < r we can now define ([48]) the fractional moduli of smoothness of the
index r for € Pilog(T),a) € A,(Mand f € 1PV as

0, 8)pr0 = SWPasnyess [T (1= An)ol7f|| |, 6200

where Qo(f, 8)prw = Ifllp0w [1i=1(I — Ap,)ol f :=0f f for 0 < r < Land .[r]
denotes the integer part of the nonnegative real number r.
We have by (33) that

Q. (f,8)p00 = cllfllpo)w
where p € Pilog (T),w e A, )(T),f € 1P and the constant ¢ > 0 depends only on r
and p.
Rempark (2.3.1)[133]: The modulus of smoothness Q,(f,8),)w 7 € R, has the
following properties for p € Pilog(T),w € Ap(Mandf € A
(1) Q. (f, 6)p(),w Is @ nonnegative and nondecreasing function of § = 0,
(ii)Qr(fl + fZ: -)p(.),w < Qr(flr-)p(.),w + Qr(er-)p(.),wr
(iii) SIL%L Qr(f: 5)p(.),w = 0.

If p € Pilog(T) and w € A,y(T), then wP® € L1(T). This implies that the set of
trigonometric polynomials is dense in Lﬁ)(')([142]). Therefore approximation problems

make sense in L’Y. On the other hand, if p € Pilog (T) and w € Ay,()(T)then PV ¢
IA(T).
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For given f € L}(T), let

o0

a, _ .
f(x) ~—+ ) (aycoskx + by sinkx) = ci (f)etkx (34)

k=—x

and

0

flx) ~ E(ak sin kx + by, cos kx)
k=1
be respectively the Fourier and the conjugate Fourier series of f . We set
LY(T) := {f € L}(T)cy(f) = Ofor the series in (34)}.
Let @ € R* be given. We define the fractional derivative of a function f € LY (T) as

o0

F@O@) = ) a0

k=—wx

provided the right-hand side, where (ik)® = |k|* e(1/2miasignk axists as principalvalue.
We say that a function f € L’Z)(') has the fractional derivative of degreea € R* if there
exists a functiong € LZ)(') such that its Fourier coefficients

satisfy ¢, (g) = ¢, (f)(ik)%. In that case, we write f(® = g.

For p € P(T)and &> O, let Wy, , be the class of functions f ELIZ)(') such that

f@ € [PY Then % becomes a Banach space with the norm

Ifllwe,, = Ifllpoe + I1£]|
The main results are as follows.
Theorem (2.3.2)[133]: If p € P/°°(T),
w-Po € A<&)r(T) for some p, € (1,p.(T))
Po
a € R and f € Wy, ,, then for every n = 0,1,2,3, - there exists a constant
¢ > 0 independent of n such that

En(f)p(.),a) < W-;l)aEn(f(a))

rOw’

r()w
holds.
Corollary (2.3.3)[133]: Under the conditions of Theorem (2.3.2),

E < ¢ @)
n(f)p(-),w ~(n+ 1D ”f ”
with a constant ¢ > 0 independent of n.
Theorem (2.3.4)[133]: If p € P/°°(T),

wPo e A(p_(.))r(T) for some p, € (1,p*(T))

Po

and f € L’Z,(') , then there exists a constant ¢ > 0 dependent only on r and p such
that

p(),w
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En(fpow <O (f —)p()w

+1
holds forr € R* andn = 0,1,2,3, -
The following inverse theorem of trigonometric approximation holds.
Theorem (2.3.5)[133]: Under the conditions of Theorem (2.3.4), the inequality

Q, <f'n—11>p(,),w o WZ(H DB Dy

holds forr € Rt andn = 0,1,2,3,---, where the constant ¢ > 0 depends only

on r and p.

Corollary (2.3.6)[133]: Under the conditions of Theorem (2.3.4), if the condition
En(f)p(.),a) =0(n™9), n=12--,

Is satisfied for some o > 0, then

0(69), r> o,
Q. (f,8)p)w = 1067 log(1/8)]), r=o,
o(s"), r <o,

holds for r € R*.
Definition (2.3.7)[133]: For0 < o < r we set

Lipo(r,p(), ) :={f € L5 : (., 8)p(y = 0(6%),8 > 0}.
Corollary (2.3.8)[133]: Under the conditions of Theorem (2.3.4),if0 < ¢ < r and
En(f)p(.),w =0(n™9), fOT' n=12--,

then f € Lipa(r,p(.), w).

Corollary (2.3.9)[133]: Under the conditions of Theorem (2.3.4), if 0 < o < r, then
the following conditions are equivalent:

(a) f € Lipa(r,p(.), w).

D) En(fpw =0(n7%), n=12,-

Theorem (2.3.10)[133]: Under the conditions of Theorem (2.3.4), if

z va_lEv(f)p(.),w < ®©

v=1
for some a € (0,), then f € W, , And 3
En(f(a))p(_)’w <c ((Tl + 1)aEn(f)p(.),w + z va_lEv(f)p(.),a))
v=n+1

hold, where the constant ¢ > 0 depends only on « and p.
The latter theorem gives rise to
Corollary (2.3.11)[133]: Under the conditions of Theorem (2.3.4), if r € (0,) and
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o0

z va_lEv(f)p(.),w < ®©

v=1
for some a > 0, then there exists a constant ¢ > 0 depending only on a,r and p
such that

n o0
Q, (f(“), - ) < ;Z(U + D E,(Mpow + € z v E, () p O
n+1/p00 @+ r L S L

holds.
The following simultaneous approximation theorem is valid.

Theorem (2.3.12)[133]: If p € P,°8 (T),
w™Po e A(p_o>r(T) for some p, € (1,p*(T)),
bo
a € [0,),and f € Wy, ,, thenthereexist T € T,,n = 1,2,3,---,and aconstantc > 0
depending only on a and p such that

I|f@ — T(a)”p(.),w < cEn(F@)
holds.

Theorem (2.3.13)[133]: If p € P,°8 (T),
wPo € A(p(_))r(T) for some p, € (1,p,),
Do

f belongs to the Hardy space HP with a variable exponent on the unit circumference D
and r € R*, then there exists a constant ¢ > 0 independent of n such that

where 1, (f), k = 0,1,2,3, ..., are the Taylor coefficients of f at the origin.

1

<cQ (f, ) , n=012, ..
" n+1 p(),w
p()w

HOEDENGY
k=0

We begin with
Lemma (2.3.14)[133]: ([137]). For @ € R* we suppose that
(l) a1 + az + "’+ an + e

and
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(ii) a; + 2%a, + -+ n%a, + -

are two series in the Banach space .(B, ||. |]). Let

n

-3 (-

k=0
and
n
. k \*
Ry = 2(1 B <n+ 1) )kaa"
k=0
forn=1,2,.... Then
(a)x _
||Rn <cgc, n=1.2..

for some ¢ > 0 if and only if there exists R € B such that
C
(a)
|R - R|| < —

where ¢ and C are constants depending only on each other.
Putting A, (x) := ck(f)e‘kx in (34), we define

S.(f) == S, (x, ) —Z(Ak(x)+A k(x))——+Z(akcoskx+bksmkx) n

=0,1,2,:
n k a
Rfla)(f, x) 1= z <1 - (n—-l—l) )(Ak(X) + A, (%))
k=0
and
1 1
{a) (a) (a)
O, = R — R =1,2,3,. 35
m 1_(m+1)"‘ 2m (2m+1)“_1 m' form (35)
2m+1 m+1

Lemma (2.3.15)[133]: Under the conditions of Theorem (2.3.4), there are constants
c,C > 0 such that

£, < cllfllpw (36)

p().w

1SnC PDllpw = Clifllpow forn=12,- (37)
74

And



hold.
Proof: Let S,(f) := S.(f,x) := supksolSk(f,x)|.f;x/j. Then using Theorem 4.16 of
[143] we obtain

152G D lpow < 1SDllpow = Clfllp0),w0-
For (36) we use extrapolation Theorem 3.2 of [33]. Forany p > 1 we have ([18])

171, , < cllfllpe

and[143,Theorem3.2, (3.3)] is satisfied for p = p, = q, and q(x) = p(x).Therefore (36)
holds,

”f”p(,),w < cllfllp0e -

Remark(2.3.16)[133]:Under the conditions of Theorem (2.3.4), it can be easily seen
from(36) and (37) that there exists a constant ¢ > 0 such that

If = SnC Dlpow < CEn(Hpow = En(f)

JOX2y
Under the conditions of Theorem (2.3.4), using (37 )and the Abel transform , we get
”Rﬁl“)(f, x)”p()w < clifllpoew forn=123,-,x € T,f € L2’ (38)

and therefore (35) and (38) imply
[09¢ 0] < el form=123,x € T.f € 129,

From the property

2m
a 1 a a
o5 (NG = som T e ] k_z+1[(k+1) ~ k1S, (x,f) forx € T, f
e L1 -
it follows that
0 (T,) = Ty, (39)

where T,,, € T, form = 1,2,3, -
Lemma (2.3.17)[133]: Under the conditions of Theorem (2.3.4), if T,, € 7;, and
a € R*, then there exists a constant ¢ > 0 independent of n such that

[5] < entliTallpgr

holds.
Proof: Without loss of generality one can assume that T llp0)0 = 1. Since

n

= ) (4@ + A (x)) - Z[(Ak(x) A () /n]

k=0
and

n

T(“)
n = ) k(A () — A @) /0]
k=0

(in)®
we have by (38) and (36) that
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T c ¢ ‘
(@) [ In T =
R0 ()| =gl <qelmiion =2
rQ)w
and by Lemma (2.3.14)
T(“)
Rl c
m \ (in)« -

p()w

(@)
0@ [ In
ERNGOE

A general case follows immediately from this.
Lemma (2.3.18)[133]: If p € Pilog (T),w € Ap)(T) and f € W, then there
exists aconstant ¢ > 0 such that forr = 1,2,3,---and 6§ = 0

-Qr(ff 6)p(.),w < Cazﬂr—l(f”r6)p(.),w

Hence by (39)

=n“ < Cna”Tn”p(.),w .

p()w

holds.
Proof: Putting

90 = | |- A,

we have
(1= 4n)9@ = [ [0 -4n)r@

And =

r 1 hy/2

[[o-are=o (g - g+ 0)ac

i=1 1J-h,/2

1 hi/2 p2t ru/2
= _2_h1 . -[0 J_u/zg (x + s)ds dudt.

Therefore from (30)
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[ [o-a)r@
i=1

pO.w
c hi/2 2t
< — sup { g"'(x+s)dsdudt
2hy g p'o —u/2
: j |90 ()P Pdx < 1}
hi/2 2t u/2
2h f J g'"'(x +s)ds dudt
! u/2 p()w

c (M/2 2t
<o [ [ ullglpgedude = CHELG o

Since

g"@ =] |- 4w,

we obtain

-Qr(f: 6)p(.),w <C sup h%”g””p(.),w
0<hi<é

i=1,2,..r

T
= C52 Sup 1_[(1 _Ahi)f”(x)

0<h;<é L

i=2,3,.r =2 r(O).w
r—1

=c8% sup 1_[(1 — Ap)f" (x)
0<h;<é L
j=1,2,.r—1 " =2 p(),w

= CSZQr—l(f”' 6)1)(.),60

and Lemma (2.3.18) is proved.
Corollary (2.3.19)[133]: If p € P°9(T), w € Ay (T),r =1,23,..,
w2 (. -then there exists a constant ¢ > 0 depending only on r and p such that

p
Qr(f;6)p(.),w < C62T||f(zr)”p(.),w

holds for 6 < 0.
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Lemma (2.3.20)[133]: If pe€ P“’g(T) w€A,(T),n=012,..T, €T, and
r € R* then there exists a constant ¢ > 0 depending only on r and p such that
(T)

1 c
o (rl) =t
"\"""n+1 ()@ (n+ 1) p(),w

holds.
Proof: First we prove that if 0 < a < B, a, 8 € R™, then

BQs(f ) )p0w < B, )p0 0 (40)
Itis easily seenthatif « < 8, a,B € Z*, then

-Q[)’(f :-)p(.),a) = C(a: ,8: p)Qa(f '-)p(.),w- (41)
Now, we assume that 0 < a < f < 1. In that case, putting

P(x) = oy f(x)
we have
ol o (x)

—a h/2 h/2
Z( 1)1 j hff j CD(x+u1 +---+uj) du, ...du;

h/2 h/2
h/2 h/2
0/ (* . f f
Z h’ nj2 J-nsz

h/2 h/2
|:Z( 1)k th J f(X+u1+"'+u]+u]+1+"-

h/2 h/2

+ Uy )dUy - dUd U AU ]

+k (P — @) (@
=22 =0 (7))
j=

2

h/2
[th h/2 jh/zf(x +u; + -+ uj+k)du1 e dUj ]

h/2 h/2
= Z(—l)” i ﬁf fx+u, +-+u,)duy ...du,
v=0

—h/2 -h/2

—th(x) a.e.

Then by (33)

o7 Ol
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and

-Q,B(fw)p(.),a) = C-Qa(f:-)p(.),w . (42)
We note that if r,r, € Z*,a,,B; € (0,1), taking a =1 + a;,B =1, + p; for the
remaining cases r, = r,,ay < f0rry < ry,a; =P 0rry < nry,a; < By, it can be easily
obtained from (41) and (42) that the required inequality (40) holds.

Using (40), Corollary (2.3.19) and Lemma (2.3.17), we get

1 1
o () ey (1)
"\'"n+1 p(Q)w S\ e n+1 p(Q)w

A e
=¢ (n + 1) ”T“ |p(.),w

C
e
n

p(),w
C

- - )
(n+ 1"

n

r()w

which is the required result.
Definition (2.3.21)[133]:For p € P(T),f €’ ,6> 0 and r=123,.. the
PeetreK-functional is defined as
40 — i
K (6; fr La) ) pr()'w) — gE]}ll;lrf {”f - .g”p(.),w + 8||g(r)||p()'w} ' (43)

r()w

Theorem (2.3.22)[133]: If p € P°(T),w € Ay, (T),r = 1,2,3,...and f € 5", then

K (52r,f; 17O, sz(r_),w) in (43)and the modulus Q,-(f, 8) ()., are equivalent.

Proof: If h € W, ,, then we have by Corollary (2.3.19) and (43) that

0 (f, 800w < cllf = ke + 87 ||R37
(o )

p(),w

Putting

§/2 2t ,ru/2

(Lsf) (x) = 36‘3J j f g'(x+s)dsdudt forxe T,

0 0o J-u/2

we have
T c

T Lef = 5(1 — As)f

and hence
2r c
T Lsf = 52 (I— As)" forr=1,2,3,....

On the other hand, we find
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2t
ILsf 1w < 3673 f f WA e dudt < cllfllpe e
0 0

Now, let Fg := I — (I —Ls)".ThenF{ f € W p()w and
dzr dZT
= F <clliz s, =5 10 = 4 o

p(w

< %Qr(f; 5)p(.),w-
Since

r—1
I— g=(1—L5)ZLJ ,
j=0

we get

N = LS gllpo)w < clld = L) gllp)w

2t
< 3c6‘3J J ull( = 4,)9llp),0 dudt
o Jo
=c sup “(I _Au)g“p(.),w

o<u<éd

Taking into account

If = Fs fllo0w = 1T = L) fllp0),0

by a recursive procedure we obtain

If - Fé‘rf”p(.),w < CSUpo<t1s5”(1 _Atl)(l - S)T‘1f||

r()w
— A1 = AT = L5)r!
<csup sup (7= Ac )T = A ) =L
Tr
<c swp [ 0-2)rO =0 r.800
0<ti<é L
=127 =1 p()w

and the proof is completed.
First of all we note that by (32) and Theorem 3.2 of [143], the condition

"w Po €€ A (T) for some p, € (1,p*(T)) !

&
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implies that w € A,)(T). We set Ax(x, f) := ay coskx + by sinkx. Since the set of

trigonometric polynomials is dense in Lﬁ)(') , for given f € LZ)(') we have
En(f)pw — 0asn — oo,
By the first inequality in Remark (2.3.16) We have

fx) = Z A6, )

in [ [[,), Norm. For k = 1,2,3, ... we know that

an  an an  an
Ak(xif): akCOSk( +7—7)+bk51nk( +7—7)
amn N . am
—Ak(x+2k f)c057+Ak(x+2k )51n7
and
an
A(x f@) = KAy (x + . ).
Therefore

zAk(x f)=A4,(xf) +cos—2Ak +51n—zAk )

= Ay(x, f) + cos—z k™A (x, f@) + S‘“_z k= Ay (x, f@)

and hence
fx)—=S,(x,f) = cos— z k—aAk(x f@) +sm Z ﬁAk(x f@).
k=n+1 k=n+1
Sirgoce _
D k(@) = k(S f9) = FOO) = (Sea (@) = FOO)]
k=n+1 k=n+1
Dk = G+ D™ (S, f@) = FO)
k=n+1
—(+ 1) (S (-, F@) - F@())
and
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k=4, (x, f@)

D = e+ D7) (5, F@) - FO0)

k=n+1

—(+ 17 (S, (. f@) = F@())

we obtain

1FC) = SnC Dllpw S Tieens1 (k™ = (e + D™D (-, f@) = F@( )||p()w

+ D7ISa (@) = FOON 0 + Zimnsa k™ = e+ DSk, F@) -
FOON, .+ 04 D5 F )~ FOO . < € [Emenll -

(k + 1)‘“)Ek(f(“))p(l)’w + (n+1)"¢ n(f(“))p(.)'w]Consequently, from the equivalence

in Remark (2.3.16) we have
1) =S Dpow

D = e+ D) + (n 1)—01

k=n+1

x {Ek(f(“))p(.),w n En(f(“))p(_),w}
< cEn(f9) 0 z k™= (k+1)™ )+ (n+ 1)—“]

k=n+1

<c

- (@)
= (n+ 1)« En(f )p(.).w
and Theorem (2.3.2) is proved.

First we give the proof for r € Z*. In case g € W/? 0.0 We have by Corollary
(2.3.19), (43) and Theorem (2.3.22) that

En(f)p0w < En(f — 9p0w T En(@)p0)w
<c|lif = glpe + @+ D [g@|| |

1
<ck ((+ 177, £ 150, WE,,) <cq, (f, )
r(w

n+1/,0),
as required for any r € Z*. Therefore by the last mequallty and (40) we get
1
E <cQ ( —) <c(, ( —) , =0,1,2,3,--,
n(f)p(.),w Cillr]+1 f n+1 PO c f +1 PO n

and the assertion follows for general » > 0.

Let T,, € T, be the best approximating polynomial of the function f € L’ZU(') and let
m € Z*. Then by Remark (2.3.1)(ii)
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1 1
BYRSER YRR
n+1)p(_),w " f 2 n+1 p(Q)w r\2 n+1 p(Q)w

1
< cEm(fpw + Qr (sz,n + 1) Ow
p()w

20, (f,

By Lemma (2.3.20) we have

1 T
ot =<l 2l
2 Tl+1p()w n+1 || 2 p(),w
Since
m—1
“()—T“(HZ i -190}
we get B

1 c
Q, (Tm ) ™
i bow - UT{ |

Lemma (2.3.17) gives

p(.),w}'

Z |78, - 1
p()w

(7’) _ (7‘) < vr _ v
| oV+1 PO <c2 ||T2v+1 T2 ”p(.),w
=< CZvr+1E2” (f)p(.),w
and
(r) @) ()
T = (|T, " —T, < cE .
|| 1 o || 1 0 PO O(f)p(.),a)
Hence

1 + T
Qr(TZm'"Jfl)p()w_(n+1)r{E0(f)p()w 22( K "(f)pow}

It is easy to see that

217
20D B (F), )0 < z W E (Ppowr V=123, ..

u=2v-141

where
i {2”1, 0<r<i,
C =

227 r=>1.

Therefore

83



m 2Y

oo + ZEsPp0ro +€ ) D T E(Ppoe

v=1pu=2v"141

C
S—
(n+ 1)

2
Eo(f)p(.),w + Z .ur_lEu(f)p(.),w
u=1

2M—1
< T Z @+ D Ey(p

If we choose 2™ < n+ 1 < 2mtl then

c
R —
(n+ D"

n

1 C
Q. (Tm, —Z 1r1E ,
( 2 n+ 1)p()a) (Tl + 1),« (17 + ) v(f)p(.),w

v=0
Ezm(f)p(.),w < Ezm‘l(f)p(.),w
n

Cc —
< mvz(;(v + D" E,(Np)w-

the last two inequalities complete the praof.
For the polynomial T, of the best trigonometric approximation for f € L’Zo(')we have

||T2i+1 — Tzi”p(.)’w < 2E,i(f)p0).0
and from Lemma (2.3.17) it follows that

< C2<i+1)aE2i(f)p(_)'w.

” 7@ (a)
r()w

2l+1

Hence

Zurzm ~Tollye = z |, - 7@ o anzm ~Toll s
i=1 lo=ol =1

=c Z m*~! En(Hpow < .

m=2

Therefore

||T2i+1 — T2i||W&.)’w - 0asi — oo,
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This means that {T,:}is a Cauchy sequence in I . Since T,i — £ in I’" and
Banach space, we obtain f € W, ,.On the other hand, since

7 = Sa(F)

a
p(.)’wls a

p00 < ISzms2(F9) = Su(F@)]|

£ S (F@) = 5 (F@)]

p().w

p().w’
k=m+2
we have for 2™ < n < 2mt1
||52m+2 (f(a)) — Sn(f(a))”p(.),w < C2(m+2)aEn(f)p(.),w
< Cz(m+2)aEn(f)p(.),w-
Thus, we find
||Szk+2(f(a)) - Szk(f(a))”p()'w
k=m+2 -
<c Y 2L ()0
k=m+2
o Zk

<c > ETEow

k=m+2 y=2k-141
oo

=c z va_lEv(f)p(.),w

v=2M+141
o

=c z va_lEv(f)p(.),w
v=n+1

and Theorem (2.3.10) is proved.

In the case of a = 0 the result follows from Remark (2.3.16) and the property S,,(f) €
T,

If = SN lprw = CEn(MNp0)w-

For a > 0 we set

[ &
W, (f) =W, (x, f) = n—-l—lz Sy(x,f) forn=0,1.2,..
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Since

Wn("f(a)) = Wn(a)("f):
we have

lroo-s2enll < 1FO0 = wal.r

p()w

ARG B Svga)("f)”p(.),w

o AR RAG)]
p().w
= 11 + 12 + 13.
In this case, from the boundedness of the operator S,, in LZ)(') we obtain the boundedness of
the operator W, in L';(') and there holds

I = “f(a)(-) - Sn(-»f(a))“p(.),w T ”Sn("f(a)) - Wn("f(a))np(-)w

< CEn(f )y + W, Sa(, f9) = f(a))”p(.),w

< CEn (f(a))p(.),w-

From Lemma (2.3.17) we get

I < en®(|Su (-, Wa () = S (L D]

and

p()w

13 < C(Zn)a”Wn(-rf) - Sn(-i Wn(f))“p('),w =< C(Zn)aEn(Wn(f))p(.),w-

Now we have

”Sn('i Wn(f)) - Sn(-:f)”p(_)’w < ”Sn(rWn(f)) - Wn(rf)”

HIWLC ) = FOllp0 .0
HIFC) = SnC Nl ,w
< CEn(Wn(f))p(.),a) + CEn(f)p(.),w
+CEn(f)p(.),a)-

r(),w

Since
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En(Wn(f))p(.),a) + CEn(f)p(.),a);

we get
F@) -SSP 0 < CEn(f D) 000 + N En (W (F)p0roo
r().w

+CnaEn(f)p(.),w
+C(2n)aEn(Wn(f))p(.),w
< CEn(f(a))p(.),w + CnaEn(f)p(.),w-
Since by Theorem (2.3.2)

c
En(fpw < mEn(f(a))p(.),w'
we obtain

[roo=-s2en| < EGF oo

and the proof is completed.
Let % o cp(g)e*® be the Fourier series of the bound-ary function g of f €
HPO(D), and S,(g,0) == ¥1__, c(g)e? be its n th partial sum. Since g € H*(D), we
have ([13,p.38])
c(g) ={ 0 k<0,
m(f)  fork = 0.
Therefore

If (2) = Zkome (H2"|| =g =5 Ipoe ¢4

r(),w

If t;, is the best approximating trigonometric polynomial for g in L’Z)('), thenfrom (37), (44)
and Theorem (2.3.4) we get

If @ = ZRoome(DZ*||,) , , S 19 = tallpoyo + 15209 =t Dllpeo

< cEn(g)p(_),w + En(f)p(.),w

< c(}
= (f'n + 1>p(.),w

and the proof of Theorem (2.3.13) is completed.
Some of the above results can be extended to the complex case.
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Let G, and G,be, respectively, the bounded and the unbounded components of a closed
rectifiable curve I' of the complex plane C. Without loss of generality we may assume that
0 € Gy.Let w=¢@(z)and w = ¢,(z) be the conformal mappingsof G,and G, onto the
complement D, of D, normalized by the conditions
(o) =00,  limg@(z)/z > 0
Z—> 00
and
@1(0) = oo, lim zp,(z) > 0,
Z—> 00
respectively. We denote by and 1, the inverse mappings of pand ¢, respectively.
Denote by P(T) the class of Lebesgue measurable functions p = p(z):T — (1, ) with
1 < p, () :=essinf,erp(z) < p*(I') :=ess sup,erp(z) < oo.
Let p € P(TI") be a bounded measurable function and let w: I' — [0, oo] be a weight with
{t e T: w(t) =0} = 0.
For these p and w we denote by L’Z)(')(F) the class of functions f:T" = C for which

f If (2)w(2)|P@ |dz| < oo.
r

The space Lﬁ)(')(l“) is a Banach space with the norm

p(2)
il = o[ L2y )

If p andw are as above, the set of bounded rational functions defined on I" is dense in
PO (cf. [141]). If 1 <p, (D) < p(z) < p*(T) < oofor z €T and w = 1, then the
space LP“(T") coincides with

{f: [ rg@a
r

where p'(z) = p(z)/(p(z) — 1) is the conjugate exponent of p(z).
We define for p € P(I') and a weightw

0 (Go) = {f € E(Go): f € L7 (D)},
ESY (Go) = {f € B (Go): f € LG (D))

< oo forall g € L’;:(')(F)},

and
E0(6o) = {f € EL9(Go): f () = 0},

where EP(X),1 <p < o, is a Smirnov space of analytic functions defined on a simply

connected domain X < C. If p(z) = p is constant, then Ef)(')(X) coincides with a usual
weighted Smirnov space on X.

Basic approximation problems in the spaces EP(G,) were proposed by several
mathematicians. Walsh and Russel [146] gave the results in EP(G,),1 < p < oo, for
polynomial approximation orders in the case of an analytic boundary. Al’per [146] proved
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direct and inverse approximation theorems by algebraic poly nomials in the spaces
E?P(Gy),1 < p < oo, for a Dini smooth boundary. Kokilashvili [148] improved Al’per’s
direct and inverse results for algebraic polynomial approximation and, assuming that the
Cauchy singular integral operator is bounded (corners permitted), he obtained the
improved direct and inverse approximation theorems in the Smirnov spaces EP(G,),1 <
p < 00([140]). Andersson [147] proved that Kokilashvili’s results also hold in E1(G,).
When the boundary is a Carlesoncurve ,the approximation of functions of E?(G,),1 <
p < oo, by the partial sum of Faber series was investigated by Israfilov in [149] and
[149]. These results are generalized to the Muckenhoupt weighted case in [150] and
[151]. The approximation properties of Faber series inso-called weighted and non
weighted Smirnov—Orlicz spaces are investigated in [154] and [153]. Most of the above
results use the partial sum of Faber series as approximation tool.

we prove the main theorems of approximation, respectively, by algebraic polynomials and

rational functions in the weighted variable Smirnov spaces Ef,(')(GO) and Ef,(‘)(GO).

A smooth Jordan curve T will be called Dini-smooth ([157]) if the function 6(s), the
angle between the tangent line and the positive real axis expressed as a function of arc
length s, has the modulus of continuity Q(8, s) satisfying the Dini condition

j:ﬂ(i, 5)

ds < oo, o > 0.

If T is Dini-smooth, then ([147])

0 <c<[Yw|<C < oo, lw| > 1, (45)
with some constants ¢ and C. Similar inequalities hold also for 1; and ¢7 in the case of
lw| =1 and z € T, respectively.

Let Piog () :={p € P(I'):p satisfies (31)with the replacementsx, — z,,x, —
z,and T — T}

For given p € P(I) the class of weights wsatisfying the condition

1 1
”wp(Z)”Ap(-)(F) = suPpen) g 1977l 1 ) ||m €500’ O/p() < @

-1
is denoted by A, (T'). Here pp := (ﬁ fB ﬁ |dz|) and
B(') :={B(z,r)NnT : B(z,r) isaball in C of radius r with z € T}.

For given f € LPY(I) we define
fo(e?) =1 (w(e”)) fi(e?) :=f (")) foro e T

wo(ee) = w (1/)(99)) ,a)l(ee) = w (1/)1(99)) forg € T.

And
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Theorem (2.3.23)[133]: Let I be a Dini-smooth curve, p € Pilog M,
w™Po e A<p_(_))f(T) for some p, € (1,p*(1“)),
Po

r > 0and f € LZ(‘)(F). Then there is a constant ¢ > 0 such that for any natural number

n
If = R Dllepow < {00 (i) 48 (ry)
— . S , ) )
s IO Nt VUrpow TVt Unpow
where R,,(., f)is the nth partial sum of the Faber—Laurent series of f .

Corollary (2.3.24)[133]: Let I be a Dini-smooth curve, p € Pilog(l“) ,
w™Po g A<p_(_))f(T) for some p, € (1,p*(1“)),
Po
r>0and f € EZ(')(GO). Then there is a constant ¢ > 0 such that for any natural
number n

1

” - P .y ” . S c 'Q' ( ) ) )
f n( f) Tp(),w r f n+1 Lo
where P, (., f) is the nth partial sum of the Faber series of f .
Corollary (2.3.25)[133]: Let I' be a Dini-smooth curve, p € Pilog (D),

= A<&)r(T) for some p, € (1,p*(F)),

Po

r > 0and f € EZ(')(GOO).Then there is a constant ¢ > 0 such that for any natural
number n

If = RaCo Dlepoon < ¢ B (£

where R, (., f) is as in Theorem (2.3.23).
Theorem (2.3.26)[133]: Under the conditions of Corollary (2.3.24), the inequality

’ Tl + 1)F)p(),w ’

[]
1 c -
'Qr (f! _> < T EO (f)F,p(.),w + Z kr_l Ek(f)f‘,p(.),w
WrpOw N e

holds with a constant ¢ > 0.

Corollary (2.3.27)[133]: Under the conditions of Corollary (2.3.24), if
En(frpow = 0(n™%), a> 0, n=123,..,
then
0(6%), r>a,

1
Q- (f, rpw =40 (6“ logED, r=aq,

0(6"), r<a,
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Definition(2.3.28)[133]:Let p € P°9(I),

w Po g A(p_(.))" (I") for some p, € (1,p*(1“))
Do
andr € R*.Iff € E5Y(G,), thenfor 0 < o < r we set
w

Lipo(r,T,p(), ) =={f € E5V(Go) : 0 (f, )rp(yw = O(59),6 > 0}
and
Lpo(r,T,p(),0) == {f € EEV(Go) : 0, (f, O)rpiye = 05D
Corollary(2.3.29)[133]: Letp € P,°(I),
w Po g A(p_(.))" (I") for some p, € (1,p*(F))
Po
andr € R*. If f € EZY(Gp),0 < 0 < r and Ep(frpoe = O~ ®for n= 1,2,
then f € Lipa(r,T,p(.), w).
By Corollary (2.3.24) and Corollary (2.3.27) we have the constructive characterization of
the classes Lipa(a,T,p(.), w).
Corollary (2.3.20)[133]: Letp € P/°(D),
w Po g A(p_(.))" (I") for some p, € (1,p*(F)),
Po
0O <a<randf € Ef)(')(GO). Then the following conditions are equivalent:
(a) f € Lipa(r,T,p(),w).
(b) En(f)l",p(.),w = O(n_a);n = 1,2,

The inverse theorem for unbounded domains is formulated as follows.
Theorem (2.3.31)[133]: Under the conditions of Corollary (2.3.25), there is a constant
¢ > 0 such that for every natural number n

n
~ 1 c |- -
Q, (f, —) < —1Ec(rpw + Z kK™ Ee(OrpOw
WrpQw N =

holds.
In a similar way as for Ef)(')(GO) we obtain the following corollaries.
Corollary(2.3.32)[133]: Under the conditions of Corollary (2.3.25), if
E,(NAurew=0n"%, a>0, n= 123,
then
0(89%), r>a,

~ 1
Q,(f, S)F,p(.),a) =40 <6a 10g§|>; r=aq,

0(6"), r<a,
Using Corollary (2.3.32) and Definition (2.3.21) we get
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Corollary(2.3.33)[133]: Under the conditions of Corollary (2.3.25), if
En(Drpow =0Mm™), g>0, n= 123,
then f € Lipa(r,T,p(.), w).
By Corollary (2.3.32) and (2.3.33) we have
Corollary (2.3.34)[133]: Let 0 < o < r and the conditions of Corollary (2.3.25) be
fulfilled. Then the following conditions are equivalent.
(@) € Lipa(r,T,p(.), w),
(D) En(Frpw =0Mm™), n= 123,
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Chapter 3
Modular Inequalities and Variable LP Spaces

We show that if P = @, the condition on P is both necessary and sufficient for the
modular inequality. In addition, we establish general interpolation theorems for modular
spaces. Further, our conditions are necessary on R. Our result extends the recent work of

Pick and Ruzicka [184], Diening [183] and Nekvinda [185]. We also show that under
much weaker assumptions on p(x), the maximal operator satisfies a weak-type modular
inequality.

Section (3.1): The Calderon Operator

For (M,u) and (N, v) be two o —finite measure spaces, and let L,(x) and L, (v) be the
sets of measurable functions defined on M andNrespectively. An operator T : L,(v) —
Lo(w) is called quasilinear if |T(Af)(x)| = |AlITf(x)|and if there exists a constant
K > 0 independent of fand g such that |T(f + g)(x)| < K(ITf(x)| + |[Fgx)]). If
K = 1,T is said to be sublinear.
A function Q : [0,00) — [0, ) is called a modular function if Q is an increasing (non-
decreasing) function and Q(04+) = 0. If, in addition, Q satisfies the A,-condition

Q(2t) < CQ(1)
forany t > 0, then Q is called a A,-modular function and we write Q € A,.
Let Qbe a modular function and set

Lo(w) = Lo = {f € Lo llfllg = jMQ(If(X)I)d#(X) < 00}-

Then, we want to study mapping properties for which T : L,(u) — > Lp(v) is bounded,
for certain operators T.

Modular inequalities have been studied previously by several authors (cf.[184]) in
connection with weight characterizations. However, unlike the case treated here, the
functions P and Q are typically Young's or N-functions, and the optimality of P and Q is
not in general considered.

Recall that if T is an operator of weak type (a,a) and (b,b),0 < a < b < oo; that is,
v({x EN,|ITf(x)| > y}) < (Clfllau/y)* Where a = a anda = b, then

f PUTF()]) dv(x) < C f QUTFGO1) du(x) )

Is satisfied for P(x) = Q(x) — |x|P and a < p < b. Moreover, such operators satisfy
the rearrangement inequality

1t 1 (®
Ty =C <t1/a fo f,:‘(s)sl/“—lds+t17 jo f;(s)sl/b-lds> (2)
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where f; (s) inf{s > 0; A7 (s) <t} is the rearrangement decreasing function of f and
/1}‘ () =ul{x; |f(x)| > y})is the distribution function of f. Similarly it is understood

for (Tf);. The term in parenthesis on the right of (2) is called the Calder6n operator.
In order to prove (1) for general modular functions, observe that for @ modular, an
elementary argument shows that

| eareonanco = [ e (fr@)de= | # wrdew),
M 0 0
such that a general (P, Q) modular inequality will follows if
f Plc((Saf)® + (Spf)(®)|dt < ¢, f Q (i (®)dt
0 0
holds, where

1 t
i f f(s)s/a1(s
0

Saf(t) =

and

~ 1 (t
$,£ (0 = =75 | £(s)s 72
0

Note that S; = S is the Hardy averaging operator and S, = S is the conjugate Hardy
operator. we provide optimal conditions characterizing modular pairs P and Q, for
which (P, Q) (and in case Q = P, (P)) modular inequalities

| PGs@)acsc | agenar
0 0

and

fo P(Sf@)dr=c jo "ot at

are satisfied for 0 < a,b < co. The case where b = coand T is bounded on L™ is also
considered. These results yield sharper estimates and interpolation theorems for several
classical operators.

We characterize (P, Q) modular inequalities for S,,0 < a < 1 (Theorem (3.1.2)) and
give a corresponding characterization in the case when a = 1 and fis decreasing for a
reverse Hardy modular inequality (Theorem (3.1.1)). In order to prove corresponding
(P, Q) modular inequalities for S,,a > 1 and $,,0 < b < oo,some general modular
results are required. These are proved and yield general modular interpolation theorems
(Corollary (3.1.8)). Finally contains the (P, Q) and (P) modular inequalities for S,,a > 1
and S,,0 < b < . A characterization of P,Q modular functions for which a (P, Q)
modular inequality for the Hubert transform holds and a short proof of an interpolation
theorem of Miyamoto ([185]) for modular functions are also given.

The notation usedis standard: If f/g is bounded above and below by positive constants, we
write f =~ g and say that fand g are equivalent functions. Constants denoted by C,
sometimes with subscripts, are assumed to be positive and independent of the functions
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involved, and may differ at different places. If 0 < g is decreasing, we write g**(x) =
(1/x) foxg, where the measure under which the rearrangement occurs is deleted when

there is no ambiguity. yp is the characteristic function of the set E and its Lebesgue
measure is denoted by |E]|.

Finally, inequalities, such as (1), are interpreted in the sense that if the right side is finite,
so is the left side and the inequality holds. Unless indicated to the contrary, we assume that
P and Q are modular functions or are equivalent to modular functions.

We begin by proving (P, Q) modular inequalities for the Hardy averaging operator.
Theorem (3.1.1)[182]: (i) There exist two constants C; > 0 and C, > 0 such that

jo (f f) dt < leooQ(sz(t)) dt (3)

Is satisfied for every decreasing nonnegative function f if and only if there exist constants
C; > 0and C, > 0such that, foreveryt > 0,

P(t) + tJ PO) t). (4)
0

(ii) The inequality (3) is reversed for every decreasing nonnegative function f if and only
if the inequality (4) is reversed.

(iii) There exist constants C; > 0 and C, > 0 such that

suptP(f f) dt < Clj Q(C,f (b)) dt

t>0

Is satisfied for every decreasing nonnegative function f if and only if there exist constants
C; > 0and C, > 0 such that, for everyr > 0,
P _ . QG

sup = (3
usr u r

We thank J. Soria for pointing out that the argument in proving (i) applies also to the proof
of (ii).

Proof, (i) To show the necessary condition, let us take f(s) = txp,,)(s) Then, we have
that

R 5
j P (; min(r, x)) dx < C;rQ(C,t);
0
that is,
" Cotry ‘P(y)
P(t)dx + P ~ dx =rP(t) +rt y—dy < C;rQ(C,t).
0 r
from which the result follows with C; = C; and C, = CZ.

Conversely, if (4) holds, then we may assume that for small ¢t > 0, fOtP(y)/yZ dy < oo,
and from this it follows that P(y)/y? —» 0asy — 0.
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Now, writing £**(t) = (1/¢) [, f(s) ds, we have
f P(f*(t)) dt = J Ap(2) dP(2).
0

0
where the distribution function of f**satisfies (see [183])

L s i
75 A (s) < Ape(s) < ;Af (s/2), (5)
and hence

foolf**(z) dP(z) < fooz<f f(x)dx) dP(2)
0 o Z {x:f(x)>z/2}

o 2/() 4p (7)
-2[ s e

(P (PRF)  (¥OP@)
—2]0 f(X)(W‘i‘ ) sz)dx

< 2¢; f Q(2C,f (x)) dx.
0

That is, (3) holds with C; = 2C; and C, = 2C,.

(ii) The proof follows as in (i), but now the first inequality of (5) is applied.

(iii) The weak type characterization follows analogously.

Theorem (3.1.2)[182]:Let 0 < a < 1.Then, there exist constants C; > 0 and
C, > 0such that

o 1 t 9 [ee)
fo P<t1 " jo f(s)s ds> dt < C; jo Q(Cof (1) dt (6)

satisfied for every decreasing nonnegative function f if and only if there exist constants
C; > 0and C, > 0 such that, forevery t > 0,

[P
P(t)+t Wdy < C3Q(C,t). (7)
0
Proof: Let g(s) = af(s%). Then obvious change of variables shows that (6) is equivalent
to
® (1t ® [(C,
j P —f g(s)ds |t?ldt < Cl_[ Q(—=g() |t*1dt (8)
0 tJo 0 a

For the necessary condition, it is enough to apply the hypothesis to the functions f(s) =
tX o, (s) Then (7) follows with C; = ¢, and C, = C,/a.

For the converse, first observe that we can assume fot P(y)/y*ttdy < oo for small ¢, since
otherwise the result is trivial. Also, in this case, lim,_,, P(y)/y% = 0.

To show that (7) implies (8), note that, interchanging the order of integration and applying
(5), we obtain
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oo 1 X ~ B 1 0 a
jo P <;L g)x ldx = ajo [14+(2)] dP(2)
2¢ ® (1 “
< zjo (Elg(z/2)> dP(2)

20 “dp
aJo \Jg)>z/2} 4

_Za ® j')‘g(z/z) . adP(Z)
=— . gdx ) —3

a Jo
2a o Ag(z/2) x \a1 dP(Z)
(L) o) 22

But, since g is decreasing and 0 < a < 1, it follows that (foxg)a_1 < (xg(x))* ! and
hence
. @ [ (Ag(z/2) dP(z
] P(g™(x))x% tdx < 2“] <J xa‘lga(x)dx> zg )
0 0 0

o 2g(x)dp(z)
— 2a a-1 ,a
=2 JO x%1lg (x)(jo o )dx

a [* a1 a P(2g(x)) 299 dp(z)
=2 JO x* g (x)<—g(x)a +af0 za+1>dx

< (G, fooxa‘l Q(2C,g(x))dx,
0

where the last inequality follows from (7) with t = 2g(x). Hence, (8) holds with
C, = 2C,a.

Clearly the arguments in proving Theorem (3.1.3) do not apply to obtain (P, Q) modular
inequalities for S, with a > 1. In order to obtain such estimates for S,and $,,0 < b <
oo, we need some general results for quasilinear operators and the notion of admissible
functions. As a consequence, we obtain a number of weak type estimates and general
interpolation theorems.

Our first result shows that, under a simple condition on T, a (P) modular inequality implies
P €A,

Let L < Ly(u) be a set such that R*L < L.For us, L will be either Ly(u) or the set of
measurable decreasing functions on R™.

Proposition (3.1.3)[182]: Suppose that T satisfies a (P) modular inequality for every
function in L. If there exist a measurable set E such that y; < L and u(E) < ocoand a
constantd > 1 such that

v({x; [Txe(x)| > d}) # 0,
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then P € 4,.
Proof: Take A > 0and f(x) = Ayg(x). Then, since

PO (y) < C j PUFGOD du).

we get

Py)v({x; |AITxg ()] > y}) < CP(Du(E).
Choose now y = dA. Then we get
Cu(E)

P(dA) <
D = G TGl > 4D
from which the 4,condition for P follows.
Now, for our next purpose, we need to give the following definition:

P(A).

Definition (3.1.4)[182]: We say that a function A : [0,00) — [0, 00) with A(0) = 0 is
admissible for T and L if, for every function f € L,

2,1 < j AUFCOD) ().
M

Remark (3.1.5)[182]: (i) In terms of the decreasing rearrangement the above inequality
IS

<L

T [ j AUFGOD dulx)

Since we are assuming R*L c L, for every admissible function A for T and L and every
y > 0, itholds that forany f € L
|f ()]

Arr(y) < j
M
(ii) If B is a modular function such that B(x) > 1 forevery x > 1and, forevery f € L,
| Barf@b v < | AQF@D duo),
N M

then
y
supy BI(TF)5 ()] < sup j BI(TF), ()] dt
0

y>0 y>0

= jB(le(x)l) dv(x) sz(lf(x)l)du(x)-

In particular, it y = [, AQf@Ddu@), then BT ([, AUf@D du@)| <
1. Then, by the hypothesis of B, this implies (Tf); (fMA(lf(x)l) du(x)) < 1, and hence

A is admissible for T and L.
(ii0) If T is of weak type (p,p) with p > 0,then A(t) = ||IT||pp)t? is an admissible
function for T and Ly (w).
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Observe that, for 0 < a@ < o, ||S,fll < allfll and that if f is decreasing, then for
0 <b < oo, Supp(gbf) Csupp f. For operators which satisfy conditions of this type we
have the following result:

Lemma (3.1.6)[182]: Let L be a set as above and T a quasilinear operator defined on L.

() Let L = {g = fxuar>yy f € L,y > 0} and A an admissible function for T and

L.Suppose that T : L*(u) — L (v) is bounded with (operator) norm less than or equal
to M. Then, forevery f € Landeveryy > 0,

2K
mors [ 4 (%) du), (10)

_ Ife@>y/e@mry 7
where K is the constant arising from the quasilinearity of T.

(i) LetL = {9 = fxqri=yy: f € L,y > 0} and A an admissible function for T and L.
If there exists a constant C > 0 such that v(suppTf) < Cu(supp f), then, for every
e > 0,

everyy > Oandevery f € L,

10 < ; ((1 + e)f|f<x)|)

{If )=y}
Proof: (i) Fix y >0 and writ f =/f +f,, where fi(x)= f(x)
if |[f(x)| > y/(2MK) and zero otherwise. Then,
y y
v({ ITF) >y} <v{x [TAHE)I >ﬁ}) + v ({x; [Tf(x)| >ﬁ}) :
But, since ITfzllwy < Mllfallo, < y/2K, the second term is zero, and hence, since
fi € L, we obtain by (9) that

2K|f, 2K
Arr(y) < j A <w> du(x) = j A (%) du(x)
M

{IF C)I>y/(2MK)}
To show (ii), fix y > 0 and write f = f; + f,, where fi(x) = f(x)if|/|f(x)| >y
and zero otherwise. Then, forevery ¢ > 0,
y

() <v ({x ITf(x)| = %}) + v ({x ITfH(x)| = m})
< v{x ITAK)| >0D+ v({x; KA+ &) [TH(x)| >y}

1+ K|f,
< Cuts 1f@) > W+ | A(( ”)y I m')du(x)

O+ A((l + O)KIf ()

o Irelsyy Y _
The lemma implies now the following (P, Q) interpolation theorem:

du(x) + CA: (y) (11)

> du(x).
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Theorem (3.1.7)[182]: (i) Let L be as in Lemma (3.1.6) (i) . Let T be a quasilinear
operator such that T : L*(u) — L*(y) is bounded with norm M. If there exist a constant

C and an admissible function A4 for T and L such that, for every t > 0,
2MKt

2Kt
| a(57)aro) = cow, (12)
0
then T satisfies a (P, Q)modular inequality for every function in L.
(ii) Let L be as in Lemma (3.1.6) (ii). Suppose that for every f € L, v(supp Tf) <
Cu(supp f)for some constant C independent of f. If there exist a constant € and an

admissible functin A for T and L such that, for everyt > 0, lim,,P(t/2z)A(z) = 0
and, for some ¢

(0]

1+ et
P(t) + J A - dP(z) < CQ(¢), (13)
t
then T satisfies a (P, Q) modular inequality for every function in L.

Proof, (i) By (10)and (12),

j PTF N dv(x) = j 2, ()dP()
0

j A (@) du(x)] dP(y)

0 LUfx)I>y/(2MK)}

2K
[| [ a2 dP(y)‘ au <¢ [ eUr@hauc),
M | M

[2MK|f (%)
0

IA

which proves (i).

The proof of (ii) follows in the same way, using now (11) and (13).

Note that if S(x) = X(1,e)(%), then Lg(v) = {f; 47 (1) < oo}. Similarly, if one defines
L°(w) by L°(w) = {f; u(suppf) < oo}, then Theorem (3.1.7) has the following
formulation:

Corollary (3.1.8)[182]: Suppose that T : L,(u) — Lg(v) is bounded.

(i) If L is as in Lemma (3.1.6) (i), T : L*(u) - L*(y) is bounded with norm M and A is
an admissible function for T and L, then T : Lo(u) — Lp(v) is bounded for (P,Q)
satisfying (12).

(i) If L is as in Lemma (3.1.6) (ii), T : L°(u) — L°(v) is bounded and A is an
admissible function for T and L, then T : Lo(n) — Lp(v) bounded for (P, Q) satisfying
(13).
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We now derive (P) and (P, Q) modular inequalities for S, witha > 1 and $,,0 < b <
oo, as well as for S. In addition, we give a short proof and an extension of an interpolation
theorem of Miyamoto [187].
Proposition (3.1.9)[182]: Assume that a > 1and x4 € L.Then,if S, satisfies a
(P) modular inequality for L ,P € A,.
Proof: Let E = (0,1) in Proposition (3.1.3). Then, it suffices to show that, for some
d > 1,|{x; |Saxn(x)| > d}| # 0. But, since a > 1, we can choosea > d > 1,
and hence, since
a ifx<1
SaXon(x) = {a/xl/“ i;x >1"’

we get

a a
[ 1Saxn @GN > &} = (5) = 0.
The main result for S, is the following:
Theorem (3.1.10)[182]: Let a > 1 and assume that, for every r > 0, xo,) € L.
Then the following hold.
(i) If Sa satisfies a(P, Q) modular inequality for L, there exists a constant C such that, for
everyt > 0,

t
P(y)
t* Jart dy < CQ(1). (14)
0
(i) If there exists an € > 0 such that
2t
P(y)
P(2t) + t%*¢ j Jarert dy < CQ(t). (15)

0
then S, satisfies a (P, Q) modular inequality for L.
(iii) S, satisfies a (P) modular inequality for L if and only if P € A, and there exists a
constant C such that, forevery t > 0,

t
. (PO

dy < CP(t). (16)

0
Proof: (i) It is enough to check the hypothesis on the functions f = ty ).
(ii) Clearly,S, : L — L* is bounded with norm a and S, : L** — L** is bounded.
Therefore, by inteolation, S, : L**¢ — L**¢ is bounded for every ¢ > 0, and hence, for
some constant C, A(t) = Ct**¢ is an admissible function for S, and every subset of
Lo(R™).
Now, by Theorem (3.1.7) with M = a and A(t) = Ct®*¢, the linear operator S, satisfies
the (P, Q) modular inequality provided that
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2at dP
(20)a+¢ f yaﬁyj < CO(b). 17)

0
But since (15)is satisfied, it follows that limy.o4 P(y)/y*"® = 0, and hence an
integration by parts shows that (17) is equivalent to (15).
(iii) If S, satisfies a (P) modular inequality, then by Proposition (3.1.9),P € A4,and (16)
now follows from (14) with Q = P. Conversely, if P € A,, then there exists ¢ > a such
that P(y)/y? is decreasing (see [185]), and hence, by (16)
CP(t) = t¢ y(y) dy < C,P(t).
0
Form = 0,1,2,..., define
t
P log(t m
4 = taf (v) (log(t/y)) dy

0

Then, by (16),

t t

fp(y) J(log(t/s))m‘1 ds
2y

(m—1)! s

m!satl ya+l dy |ds < CAp-1.

y
log(e/s)™ (. [P()
SET=Y

Therefore, A,, C"‘A0 = Cm+1P(t) Choose 1 < C < Mande < 1/M.Then

Z emA < z mo< cp(t) z ( ) = C,P(0).

m=0 m=0

Z z a f PS,? (elog(t'/)’))m dy = t f()t:% (é)g dy,

and hence

Also

t
P
ta+8j ) dy < C,P(t).
0

ya+s+1
But, since P € A,, this implies (15) with Q = P,and so S, satisfies the (P) modular
inequality.
We now consider the operator S, with b > 0.
Proposition (3.1.11)[182]: Assume thatb > 0 and y 1) € L. Then, if S, satisfies
a (P) modular inequality for L,P € A, — Moreover, in this case, the A, constant for P is
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less than or equal to C((2 + b)/b)? , where C is the constant arising from the (P) modular
inequality.

Proof: It is enough to see that the set E = (0,1) and d = 2 satisfies the condition of
Proposition (3.1.3).But Spx(01)(*) = b(x™? — D)y (). It then follows that
{x; |Spx 0,1y ()| > 2}| = (b/(b + 2))? # 0, and hence

b+ 2\° vy
P(y) < C(T) P(E), y > 0.
We shall also need the following lemma.

Lemma (3.1.12)[182]: Let M > 0. Iff is a decreasing function on [M,©)and 0 < p <
q < oo, then, forevery x > 2M,

oo 1/q oo 1/p
(j (tl/pfa:))q%) SC(j fp(t)dt> .
X M

where the constant depends only on p and q.

Proof: The result follows from a straight forward modification of the case M = 0 given in
[189].

Theorem (3.1.13)[182]: Let 0 < b < oo and assume that S, is defined on decreasing
functions.

(i) If Sysatisfies a (P, Q) modular inequality, then there exists a constant € such that, for
everyt > 0,

“P(y)
t
(i) If there exists an € > 0 such that

then S, satisfies a (P, Q) modular inequality.

(iii) S, satisfies a (P) modular inequality if and only if there exists a constant C such that,
foreveryt > 0,(18) holds forQ = P.

Proof: (i) It is enough to check the hypothesis on the functions f = ty

(ii) Let us consider first the case b > 1. Choose € > 0 such thatb — & > 1. Then, it
follows from the weighted (conjugate) Hardy inequalities ([185]) that S, : LP=¢ — LP~¢ s
bounded and therefore, for some constant C, the function A(t) = Ct?~¢ is an admissible
function for S, and every subset of Ly(R™). Consequently, the function A(t) = C;t’~¢is

an admissible function for Syand L and, since |suppS,f| < |supp f|,we can apply

Theorem (3.1.7)(ii). Hence, if for some &,
epe [ dP(2)
P(t) + C;(1 + &")b~¢th Sf i < CQ(b),
t

then we see that S, satisfies a (P, Q) modular inequality. Since we may assume that the
integral on the left side of (19)is bounded, it follows that P(y)/y?™¢ — 0 as y —
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oo, Integration by parts argument then shows that (19) implies the above inequality. Let
now 0 < b < 1. Then, we do not know if the A(t) = C;t?~¢is an admissible function
for S, and L, but the inequality (11) still holds. To see this, we have to apply Lemma
(3.1.12) as follows. Let fbe a decreasing function and set g = fxyj<,; With y > 0.

Choose € > 0 such that « = b—¢ > 0. Applying Lemma (3.1.12) with p = a and
q = 1,itthen follows that, if x = 24¢(y),

Spg(x) = x_l/bj g(s)st/b=tds = x‘l/bj g(s)st/b-1gt/ag=1/a g¢
0 0

< x-V/a j g(s)s¥* 1 ds < Cx~||g]| .
0

Therefore, for every z > 0,
[(x > 0; |Spg()| > 23| < 224,(0) +|{x = 24:(); [Spg(0)| > 2z}
< 24 +|{x 2 2:(); x4 Iglle > 2}

C a
< 22,() +< ”f ”“) |

and hence, for every ¢ > 0,
< ey < y
I ) < | [ > 0150 - )| 2 g || +| {900l 2 35

<[{x:[$(F =@ > 0} +[{x; 1 + &) [S,9(0)] > ¥ }|
<C({x;1f)I >y +|{x< Zﬂf(}i); 1+ 8)|Sp9()| >y}
+ |[{x > 22,(); 1+ &)[Sp9(x)| > ¥ }|)

< Ch(y) + f ((1 ¥ e)lf(x)l> i

. . _ {If()1sy} y
which is the inequality (11). The proof now proceeds as for the case b > 1.

(i) If S, satisfies a (P) modular inequality, then by (i), (18) holds with Q =
P. Conversely, if (18) holds with Q = P, then it follows that P(y)/y? tends to zero when
y tends to infinity, and an integration by parts shows that (18) is equivalent to

“dP(y) B [F
jt " < Ct JO dP(y).
This implies that dP satisfies a B, condition (see [186]), and hence it is known (see for
example Lemma 3 of [188]) that there exists an ¢ > 0 such that dP € B,_.. Again an
integration by parts shows that

* P

tb‘sj ) dy < CP(t),
t

b—e+1
y
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and the result follows from (ii).
If b = oo, we have the following result for the conjugate Hardy operator.
Theorem (3.1.14)[182]: Assume that, for every r > 0, xo,y € L. Then

0,
f P( @ds>dtgc J P(F(D)dt, feEL (20)
0 t S 0

ifandonly if P € A,.
(ii) If either Por Q € A,,then S satisfies a (P, Q) modular inequalities if and only if
P < CQ.
Proof: (i) If the inequality (20) holds, we have that P € A, by Proposition (3.1.3), since
obviously

{x: |Sx ()| > 2} =e 2 =0.
Conversely, if P € A,, then (see [189]) there exists p > 0 such that P(t)/tP is equivalent
to a decreasing function and hence

j“’P(Y) P(t)

yp+1 dy =C tp+1’

An integration by parts shows that tP*! ftw(l/yp“) dP(y) < CP(t) and, since we
already know that A(t) = t?** is admissible for 5, we get (i) from Theorem (3.1.7) (ii).

(ii) Suppose P or Q satisfies 4,. Then, by (i) a (P) or (Q) modular inequality is satisfied.
Since P < CQ, we get the (P, Q) modular inequality in either case.

Conversely, if we apply the (P, @) modular inequality to the functions f(x) = tx( 1)(x)
we get

1 1
J P (t log;) dx < CQ(t),
0
and with z = t log(1/x), we obtain

%P(t) < %.[:op(z)e‘z/tdz < -[o P (t log%) dx < CQ(t).

Theorem (3.1.1)(i) and Theorem (3.1.14) now Yyields a characterization of a (P, Q)
modular inequality for the Hubert transform.

Corollary (3.1.15)[182]: Suppose either P or Q satisfies the 4,condition. Then, the
(P, Q@) modular inequality for the Hubert transform

1

JP(IHf(x)I)dx <C fQ(If(x)I)dx (21)
Is satisfied for f € Ly(dx) ifand only if P < CQ and
“P(s)

Proof: Clearly (21) is equivalent to
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j P((Hf)*(x)) dx scf Q(f*(x))dx.
0 0
But, since (see [190])

H)' () < €, lj £ dt+f ! it) dt
it follows that (21) is satisfied if and only if ’

J [ f £r(t) dt deCj:oQ(f*(x))dx,

J U f( t|dx < CJOOOQ(f*(x))dx

Is satisfied. Then, by Theorem (3.1. 1)(1) and Theorem (3.1.13) (ii), this holds if and only
if P < CQ and (22) holds.

Finally, we give a short proof of an interpolation theorem proved by Miyamoto in [189] in
the case where P is continuous, P € 4, and P(x) = 0 if and only if x = 0. As we shall
see, these conditions can be removed.

< C(Hf*)*(x),

and

Theorem (3.1.16)[182]: Let T be a quasilinear operator such that T is of weak type
(a,a) and (b,b),where 0 < a < b < oo, Then, T satisfies a (P, Q) modular inequality
for every measurable function f with

Q) = max(t“ftsgzd tbj sb(fz s)
0 ‘

Proof: It follows from the definition of Q that
P(t)

P(t
limﬁ lim —==0.
t—-0 t< tooo
Now, fix y > 0 and write f = f; + f,, where f;(x) = f(x) if |[f(x)| > y and zero
otherwise. Then, by assumption

Aty (V) < A7, (v/2K) + A7f, (v /2K)

If Gx )|) <If( )|>” ]
<C LA n p |
U{|f(x)|>y}< y ) # J{|f(x)|<y} y ) ¥

and therefore

j PTFCO]) dv(x) = j 22, dP(y)
N 0

°° If(x)|>“ <If(x)|>b }
<C ) d 1 d dp
fo U{|f(x)|>y}( y u(x)+J{|f(x)|<y} y HE)|4PO)

=c[ [ ireore | e (y) [ ireor f;l 2
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Since P(t) < bQ(t), using an integration by parts, we obtain that

P lFeol p
L= [reor |G [ e dy] du) < ¢ [ QUFGD duto)
| (Ol y M
The estimate for h follows similarly.
Section (3.2): The Maximal Function
Given an open set & c R™, and a measurable function p: O — [1, o), let LP®™)(Q) denote
the Banach function space of measurable functions f on € such that for some 1 > 0,

j FCO/AP® dx < oo,
9]

p(x)
1fllpae = inf{/l >0 =j (lf(;)l) dx < 1}.
)

These spaces are a special case of the Musielak—Orlicz spaces (cf. Musielak [198]). When
p(x) = p, is constant, LP*) () becomes the standard Lebesgue space LPo ().

Functions in these spaces and the associated Sobolev spaces W*P®)(Q) have been
considered by a number of authors: see, for example, [199]and [200]. They appear in the
study of variational integrals and partial differential equations with non-standard growth
conditions. Some of the properties of the Lebesgue spaces readily generalize to the spaces
LP™)(Q): see, for example, Kovacik and Rakosnik [195]. On the other hand, elementary
properties, such as the continuity of translation, often fail to hold (see [195] or [200]), and
for applications it is an important and open problem to determine which results from
harmonic analysis remain true in the variable exponent setting. We consider the Hardy—
Littlewood maximal operator,

1
Mf(x) = sup— If ()| dy, (23)
BBxlBl BNQ

where the supremum is taken over all balls B which contain x and for which |[B n Q| >
0. It is well known (cf. Duoandikoetxea [195]) that the maximal operator satisfies the
following weak and strong-type inequalities:

C
e Mf > i< [P dy, 1sp <o
QO

[Mrow ay < c[1roP dy, 1<p < e
9] Q

We prove analogous inequalities for functions in LP™)(Q). Strong-type inequalities have
been studied. Pick and Ruzicka [197] constructed examples which showed that the
following uniform continuity condition on p(x) is necessary (in some sense) for the
maximal operator to be bounded on LP®) (Q):

lp(x) —p()| <

with norm

1
) ) € Q) - <_ . 24
“Toglx = 7] X,y lx =yl <3 (24)
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This condition appears to be natural in the study of variable LP spaces;
see [201], [202] and the references contained therein.

Diening [203] has shown that this condition is sufficient on bounded domains. To state his
result, let p, = inf{p(y) : y € Q},p* =sup{p(y): y € Q}.

Theorem (3.2.1)[197]: (Diening). Let Q < R™ be an open, bounded domain, and let
p: Q — [1,00)satisfy (24) and be such that 1 <p, < p* < co.Then the maximal
operator is bounded on LPCI(Q) : [|Mf 0 < COE), DS llpao0-

Theorem (3.2.2)[197]: (Nekvinda). Let p: R™ — [1, 00) satisfy (24) and be such that
1 < p, < p* < oo. Suppose further that there is a constant p,, > 1 suchthat p(x) =
P + P (x), where there exists R > 0such that ¢(x) = 0if |[x] > R,and § > 0 such
that

j d()LYPX dx < oo, (25)
{XER™:¢p(x)>0}

Then the maximal operator is bounded on LP™) (R™).
Theorem (3.2.3)[197]: Given an open set Q@ < R™, let p: Q — [1,0) be such thatl <
p. <p* < oo.Suppose that p(x) satisfies (24) and

lp(x) —p(W)| < log(e 12D

Then the Hardy—Littlewood maximal operator is bounded on LP®™) ((1).
Condition (26) is the natural analogue of (24) at infinity. It implies that there is some
number p, such that p(x) — ps as |x| = oo, and this limit holds uniformly in all
directions. It is also necessary (in some sense) on R, as the next example shows.
Theorem (3.2.4)[197]: FiX pw,1 <P < oo, and let ¢:[0,00) - [0,p, — 1) be
such that ¢(0) = 0, ¢ is decreasing on [1,),¢(x) —» 0asx — oo, and

;Lnolo p(x)log(x) = oo. (27)
Define the function p: R — [1,0) by

_ ) P> X =

PO =l g, x> 0
then the maximal operator is not bounded on LP®™)(R).
The assumption in Theorem (3.2.3) that p* < oo again holds automatically: it follows
from (26). However, the assumption that p, > 1 is necessary, as the following example
shows.
Theorem (3.2.5)[197]: Let Q < R™ be open, and let p: @ — [1, ) be upper semi-con
tinuous. If p, = 1 then the maximal operator is not bounded on LP®¥ (Q).
In passing, we note that an immediate application of Theorem (3.2.3) has been given by
Diening [204]: he has shown that if Q) is Lipschitz, and the maximal operator is bounded
on LP™)(Q), then C*(Q) is dense in WPX) ().
Unlike the case of the strong-type inequalities, we appear to be the first to prove an
analogue of the weak (p, p) inequality for the maximal operator. Our weak-type result is
somewhat surprising, since it requires no continuity assumptions on p(x), and it is satisfied
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by unbounded functions. To state it, we need a definition. Given a non-negative, locally
integrable function u on R™, we say that u € RH,, if there exists a constant C such that
for every ball B,

u(x) < % u(y)dya.e. x € B.

B

Denote the smallest constant C such that this inequality holds by RH,(u). The RHoo
condition is satisfied by a variety of functions u: for instance, if there exist positive
constants A and B such that A < u(x) < B for all x. More generally,u € RH,, if
u(x) = |x|a,a > 0, orif there exists r > 0 such that u — r is in the Muckenhoupt class
A, . For further information about RH,,, see Cruz-Uribe and Neugebauer [201].
Theorem (3.2.6)[197]: Given an open set Q, suppose the function p: Q — [1, co0)can be
extended to R™ in such away that 1/p € RH,. Thenforall f € LP™(Q)andt > 0,

p()
{x € Q: Mf(x) > t}| < Cj <@> dy. (28)
Q
The proof of Theorem (3.2.3) requires a series of lemmas. Throughout, let a(x) =

(e+|x)™™
The first lemma is due to Diening [203, Lemma 3.1]. For completeness we include its
short proof.
Lemma (3.2.7)[197]: Given an open set Q and a function p: @ — [1, o) whichsatisfies
(24), then for any ball B such that|B n Q| > 0,

|B|P-(BND-PT(BNY) <
Proof: Since p,(B N Q) — p*(B N Q) < 0, we may assume that if r is theradius of B,
then r <% . But in that case, (24) implies that

C
* — R
Therefore,

|B|'p*(BnQ)—p*(BnQ) < CT.—n(p*(BnQ)—p*(BnQ)) < CT—nC/log(l/Zr) < C.

Though our proof of the following lemma is not directly dependent on Nekvinda [209].
Lemma (3.2.8)[197]: Given a set G and two non-negative functions r(x) and s(x),
suppose that for each x € G,

0 <s(x)—rkx)< logle 12 °

Then for every function £,

f FEOI® dx < C f FOOI® dx + f 2™ dx.
G G G
Proof: LetG* = {x € G: |f(x)| = a(x)}. Then

f FOOIT® dx = f FOOI® dx + f FEOIr® dx,
G G% G

\G¢*
and we estimate each integral separately. First, since a(x) < 1,
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On the other hand, if x € G%, then

FEOI® = |fF)IPFPIf )@@ < |f ()P (x) =/ o9+ D < C|f (x)1°.
The desired inequality now follows immediately.
The next two lemmas generalize the key step in Diening’s proof of Theorem (3.2.1) (See
[203, Lemma 3.2]).
Lemma (3.2.9)[197]: Given Q and p as in the statement of Theorem (3.2.3), suppose
that |fl,0 < Land [f(x)| = 1or f(x) = 0,x € Q. Thenforallx € Q,

MfCP® < cM(IfOIPOP) P + Ca)P, (29)

where a(x) = (e + |x|)™™
Proof: Without loss of generality, we may assume that f is non-negative. Fix x € (), and
fix a ball B of radius » > 0 containing x such that |[B n Q| > 0. Let B = B N Q. 1t
will suffice to show that (29) holds with the left-hand side replaced by

1 p(x)
(IBI f(y)dy> ,

and with a constant independent of B. We will consider three cases.

The maximal function on variable LP spaces

Case 1:r < |x|/4. Define p(x) = p(x)/p.. Then p(x) = 1,and (26) holdswith p
replaced by p. In particular, by our assumptiononr, if y € By,

0 <p(y) —p.(By) < ogle T D) | (30)

Therefore, by Holder’s inequality and by Lemma (3.2.8) with r(x) replaced by the
constant p, (Bg) and s(x) by p(y), we have that

1 P 1 (B
d p«(Ba) ¢
<|B| f) y) (IBI Bﬂf(y) y)
)P(x)/P*(BQ)

p(x)/P+(Ba)

.
)

< < ¢ f( PO) dy +— 1 (y)P-(Ba) ¢
y y aly)™ y
1B IS

sincer < |x|/4 and p(x)/p*(BQ) <p, < oo,

C p(x)/P+(Bo)
IBI f(y)p(y) dy + Ca(x)P-(Ba)

p(x)/P+(Ba)
) + 2P Ca(x)P™,

. 1
< 2P C<|B| f(y)p(y) dy

If |B] = 1, then by H"older’s mequality and since |f|p0 < 1,

1 1 1/p« 1/p«
Bl f(y)p(” dy < <|B| ; f )P dy> < ( ; f )P dy>

IA

1.
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Hence, since p(x)/p.(Bg) = p, and a(x) < 1, we have that
p*

1 p(x) 1 )
by P
(IBI f) dy) < (IBI f) dy> + Ca(x)

< CM(f( )p())(x)p + Ca(x)P~.
If, on the other hand, |B| < 1, then, again since |f|,xa0 < 1,

1/p«
F)PD dy < |Bg| /P < fy)re) d)’)

Bq
Therefore,

1 p(x) ) )
<|B| f) dy) < (;|B|—p(x)/p*(Bn)< F(Y)PO) dy

Bqg

p(x)/D«(Ba)
> + Ca(x)P-

P-
< C|B|~P@)/P-(Ba)+p. (|;| f(y)PM dy) + Ca(x)P-.
Bq

Since |B| < 1, and since
2 (p./p+(Bq)) (p.(Ba) — p*(Bq)),
by Lemma (3.2.7),

1 Ds
s ¢ <| 5] FOre dy) + Ca)P < CM(F()PO) ()P + Ca(x)P-.
Bg

This is precisely what we wanted to prove.
Case 2: |x] < 1andr = |x|/4.The proof is essentially the same as in the previous case:
since |[x| < 1,a(x) = 1 so inequality (30) and the subsequent argument still hold.

Case 3:|x| = 1andr > Slncef(x)> Lp, = land|flppn0 < 1,

1 p(x) p(x)
( f) d)'> < IBI'p(x)< f)r® dY>
1Bl Jg, By
< Cr‘mf’(")|f|p((x))Q < Clx|™™+ < Ca(x)P:
< CM(F()PO) ()P + Ca(x)P-.
This completes the proof.
Definition (3.2.10)[197]: Given a function f on Q, we define the Hardy operator H by

HFG) = (B | L lrolay
B (0)N

Lemma (3.2.11)[197]: Given Q and p as in the statement of Theorem (3.2.3), suppose
that |f|pne < Land [f(x)| < 1,x € Q. Thenforallx € Q,

MFGOP® < CM(FOPOPYEOP + Cale)P + CHFOP®, (31)
where a(x) = (e + |x])™™
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Proof: We may assume without loss of generality that f is non-negative. We argue almost
exactly as we did in the proof of Lemma (3.2.9). In that proof we only used the fact that
f(x) = 1 in Case 3,so0 it will suffice to fix x € Q,|x| = 1, and a ball B containing x
with radius r > |x|/4, and prove that

p(x)

The maximal function on variable LP spaces
Since p* < oo, we have that

) O Pe9)
- 1% -
<|B| ) dy) <2 (lBl jB /O dy)

1 p(x)
w2 (= [ o)
1Bl Jpo/B0)
sincer > |x|/4,

p(x) 1 p(x)
< C| B (0)|? d cl—= d
< <| O [ o) y) i <|B| Jy o707 y)

p(x)
= CHf (x)P™ + C(L j f) d)’) :
1Bl Jpq/B,40)

To estimate the last term, note that if y € B,/B|,(0) then (30) holds anda (y) < a(x),
so the argument in Case 1 of the proof of Lemma (3.2.9) goes through. This shows that

p(x)
(ij f) dY> < CM(|f(OPO/P) ()P + Ca(x)P,
|B] Bq/B|x|(0)

and this completes the proof.
Lemma (3.2.12)[197]: If i(x) is a radial, increasing function, i, > 1, and if |f(x)| <
1, then

[Hroy® @y < cuic [ 1o ay

Q Q

Proof: Without loss of generality we may assume that f is non-negative. Also, for clarity
of notation, we extend f to all of R™ by setting it equal to zero on R™\(.

We first assume only that i, = 1.Recall that |B|,(0)| = [B;(0)||x|". Let Sdenote the
unit sphere in R™ Then by switching to polar coordinates and making a change of
variables, we get that

i(x)
Hf (x)'®) = <I31(0)|'1|x|'"f f») dY>

1x(0)
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|x| i(x)
=<|Bl<0)|—1|x|-" L f f@royrn drde)
0

1 i(x)
- <|Bl<o>|-1 L jo £ (lxlro)rn? drde)

i(x)
=(|Bl(0)|-1 f(|x|y)dy>
B1(0)
< |B,(0)] ! f £ dy,
B1(0)

by Hoélder’s inequality.
Now let » > 1; the exact value of r will be chosen below. By Minkowski’s integral
inequality, and again by switching to polar coordinates, \

I OO, o < C( I ( PRCEE dy) dx)

1/r
<c j ( f<|x|y)”<x>dx) dy
B1(0) \YR"

1/r

1 1/r
= ij ( f(|x|59)”(x)dx> s"1dsdo
sJo \Jrn

1 1/r
=C j j s—n/r< f(|x|9)”(x/s)dx> s" 1 dsde,
S Y0 R™

by a change of variables in the inner integral. Since i is a radial increasing function,
i(x/s) = i(x);since f(|x|0) < 1,

1 1/r
< ffs‘"”( f(|x|9)”(x)dx> s"1dsd6
s Jo R™

1/r
< cj( f(|x|9)”(x)dx> de.
S R™

Since S has constant, finite measure, by Holder’s inequality,

1/r
< C(f f(|x|9)”(x)dxd9> :
s JRn

Since i is a radial function, if we rewrite the inner integral in polar coordinates, we get that

= c( f f f Oof(ue)f“u)u"-l dudgbd@)l/r
SYvS Y0

0o 1/r 1/r
= C<j j f(ug)riwyn-1 dudH) = C< f)HTO) dy) .
s Jo R™
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To complete the proof, we repeat the above argument with i(x) replaced by i(x) =
i(x)/i, and withr =i,,sincei, > 1.

The maximal function on variable LP spaces
Without loss of generality we may assume that f is non-negative. We first show there
exists a constant € such that if |f],0 < 1, then [Mf],), Q@ < C.FiX f,|flpx,a <
1.Let f = f; + f,, where

() = fOXxpeo=213(X)-
Thenfori = 1,2,|filpx)0 < 1.Sincep™ < oo,

[ Mrore ay < 2 [ MuGPO + 2 [ MEGIO dy.
Q Q Q

We will show that each integral on the right-hand side is bounded by a constant. Since
If2(x)] < 1, by Lemma (3.2.11), f, satisfies inequality (31). Therefore, if we integrate
over Q we get that

f MEGPY dy < C j (Mf,(DPO/P) ()Pdy + C f ay)P dy
Q (9] Q

+C [ HEGPO dy,
Q
Since p, > 1, M is bounded on LP+(Q) and a(x) € LP+(Q), so

< C[ LY@ dy + ¢+ ¢ [ HEGPD dy < ¢ + ¢ [ HEGPO ay.
Q Q Q

Given a function p, define its increasing, radial minorant i,, to be the function
p(x) = Inf PO -
Clearly, i, is a radial, increasing function. Further, (26) implies that for all x € Q,

< —i < :
0 =P~ 500 = 1o
Therefore, since f,(x) < 1land (i,). = p., by Lemmas (3.2.12) and (3.2.8),

j HEGYPY) dy < C j HEG)?® dy < C j H)PO dy
Q QO QO

< CJfZ(y)p(J’) dy + Cfa(y)p* dy < C.
Q Q

Hence, IMlep(x)’Q < C.
Avery similar argument using Lemma (3.2.9) shows that |[Mfi|,)a < C.Therefore, we
have shown that if |f|,0 < 1,then [Mf|,u)a < C.Since € > 1, it follows that

f (CTIMF(x))PH® dx < 1,
Q

which in turn implies that

”Mf”p(x),ﬂ < C.
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To complete the proof we fix a function g € LP™(Q), and let f(x) = g(x)/
gl 0 Then [|fllp0 < LSO |flpma < 1.Hence,

”Mg”p(x),ﬂ = ”g”p(x),Q”Mf”p(x),Q < C”g”p(x),ﬂ'
Our proof is closely modeled on the construction given by Pick and Ruzicka in [210]. By
inequality (27), we have that

: Poo _
;I_)IE) (1—m) log(x) = —oo,
which in turn implies that
llm xl—poo/p(zx) = O

X—00

Therefore, we can form a sequence {c, }p=1,Cn+1 < 2¢, < —1, such that
lc, |1~ Po/P2lenl) < 27

Letd, = 2c¢, < c,, and define the function f onR by

£ —Z el 200D Y4, ey ().

We claim that |f],yr < 1 and |Mf|p(x)R = oo; it follows immediately from this that
Ifllpr < 1 and ||Mf]l,r = 0,50 the maximal operator is not bounded on
LPX)(R). First, we have that

Iflper = Zj | |PX/PUARD gy = 2[ |c,, | ~Peo/PUdn D) gy
dy
- z|cn|1—poo/p(|dn|) < z ) n = 1
n=1 n=1

On the other hand, if x € (|cn| |d,,]), then

|dnl 1 Cn
Mp@ 2 g [ foray 25— [ roday
nl Ja,
lc, |1~ 1/p(|dn|)
— TN = |c,y|"1/PUdnD),
n

Therefore, since p(x) is an increasing function and |cn| > 1,

1 [ldn
IMfpo).r ZZZf |cp | PCI/PUnD) > 42[ Ic, | P (1dnD/p(ldnl)y
n=1" lcnl lcn
B
. . ) 4n=1. . . .
Fix k = 1. Since p, = 1,Q is open and p is uppersemi-continuous, there exists x, €

and g, > Osuchthat By = B, (xx) © Qandsuch thatif x € By,p(x) < 1 + 1/k. We
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define the function f,(x) = |x; — x|_”k/(k+1))(3k(x). Then f, € LP®)(Q). On the other
hand, for x € By, letr = |x — x;|; then

MAG) 2 eS| )dy =tk + DA

Hence, |[Mfillpaya = ¢tk + Dllfillpaq; since we may take k arbitrarily large, the
maximal operator is not bounded on LP®) ().

We Dbegin with a lemma which, intuitively, plays the role that Holder’s inequality does in
the standard proof that the maximal operator is weak (p, p).

Lemma (3.2.13)[197]: Given an open set (, a function p: R™ — [1, o) such that 1/pis
locally integrable, £ in LP®)(Q) and t > 0, suppose that B is a ball such that

1
— dy > t.
IB] Bmlf(y)l y

Then

[ dx _ 1 (If(y)l)”(” iy,

p(x) " p.(B)Jgng\ 't

Proof: Fix a sequence of simple functions {s,(x)} on B, such thats,(x) = p.(B) and
such that the sequence increases monotonically to p(x) on B. For each n we have that

kn

$n () = D ity (0

j=1
where the A, ;’s are disjoint sets whose union is B. Let t,(x) be the conjugate function
associated to s,(x); thent,(x) decreases to q(x), the conjugate function of p(x). By
Holder’s and Young’s inequalities,

kn
[ [OTP fﬂ /o,

1/‘Zn,j

& O
Z(f < t ) dy) | Ay ;M O
An,jnﬂ

j=1
kn

1 i Anj
<3 (- f (If(y)l> 4y 4 1ni]
- an’] An,an t (1

IA

n,j

1 IFOIN dy
=L\ 5. An,,m< t ) v +L .tn(y>>

n,j
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1 FOHN"Y dy
= p.(B) Bnﬂ( t > dy+f3tn(y)'

Since this is true for all n, by the monotone convergence theorem,

p(¥)
If(ty)l by <L <|f(y)|> iy + f dy

— p.(B) Jgna t 54(y) .
Therefore,
dy dy If &)l dy
Ji7or= 1= a0 <L Lo
1 (|f<y)|>”<” ]
B p*(B) BNQ t Y

Foreach N > 0, define the operator My, by

1
My f(x) = sup——= IB] Qlf(y)ldy,
BN

where the supremum is taken over all balls containing x such that |B| < N . The sequence
{My f(x)} is increasing and converges to Mf(x) for each x € Q. Thus, by the monotone
convergence theorem, foreacht > 0,

[(x € Q: Mf(x) > t}| = lim [{x € Q: Myf(x) > t}|.

Therefore, it will suffice to prove (28) with M replaced by M, , and with a constant
independent of N .

Fixt > 0andlet Ey = {x € Q: Myf(x) > t}. Then for each x € Ey ,there exists a
ball B, containing x, |B,| < N, such that

Ifldy > t.
|Bx| J,na

By a weak variant of the Vitali covering lemma (cf. Stein [211,p.9]), there exists a
collection of disjoint balls, {B,}, contained in {B, : x € Ey}, and a constant C depending
only on the dimension n, such that

Eal < C ) 1Bl
k
Therefore, by Lemma (3.2.13),

IE,| < cZ|Bk|<Z|Bk|(fB p‘g)) j%

1 d 1 p()
< z( y ) <If(y)|> iy
= \|Bkl Jp, pP(¥)) P-(Bi) Jpyna \  t
since p.(By) —1 = (1/p)*(By), by the definition of RH,,

r(y) p(y)
< RHoo(l/p)ZJ Q<If(ty)|> iy < CL(IfEﬁI) dy.
& Brn
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Chapter 4
Fully Measurable and Maximal Theorem

We show the class contains some known Banach spaces of functions, among which the
classical and the grand Lebesgue spaces, and the EXP, spaces (a« > 0). We analyze the
function norm and we prove a boundedness result for the Hardy-Littlewood maximal
operator, via a Hardy type inequality. We show that

1

1 p(x) P(x)
1fllp503m = €55 Sup f (6f O Pwode)
x€(0,1) 0

where w is aweight, 0 < §(-) <1< p()) < o,we show that if p* = ||plle <
+oo,the inequality

IMfllpr0w < clliflprrs0)mw

holds with some constant ¢ independent of f if and only if the weight w belongs to the
Muckenhoupt class A,+. We show the following Holder-type inequality

1
jo fgat < pprp,si1(f) P’ 11.511(9);

where pp,) s11(f) is the norm of fully measurable grand Lebesgue spaces introduced by
Anatriello and Fiorenza in [295]. For suitable choices of p(x) and §(x) it reduces to the
classical Holder’s inequality for the spaces EXP; /, and L(log L)%, a > 0.

Section (4.1): Fully Measurable Grand Lebesgue Spaces

Let = (0,1),p = p(-) a variable exponent defined a. . in I ([230, Sect. 2.1]), which for
simplicity we assume finite, and f a nonnegative Lebesgue measurable function defined a.
e. in I. It is clear that the norm of the variable exponent Lebesgue spaces cannot be neither

the expression
1 1

p(x) p(x)
(f f(x)P™) dx) nor (f f()P™ dt) (D

the main reason being the fact that both depend on x € I and therefore (except trivial
cases) are not nonnegative real numbers. If p = p(-) is constant, both expressions
coincide with the usual norm of the Lebesgue space
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1
P

1Fll = Ifllog = ( j Fo)P dt)
I

The first expression in (1) must be modified in order to define the correct norm in the
variable Lebesgue spaces |[f]|,, see [224]). The second expression can be synthetically
written with the symbol || f1l,,(x), Which has been used in [225] to denote ||f|l,, (a little
bit improperly, but a reason has been explained); such expression gives an operator which
has been considered, in an independent context from the variable Lebesgue spaces.
Namely, the function p(-) used isp(x) = p — x, when the norm of the so called grand
Lebesgue spaces (originated in [225]) are considered (here the variable x appears changed

in €):
1

1 p—¢€
Ifllpy = esssup v ( | rer dt) (1<p<o)

0<e<p-1

In [227] the norm || f |,y has been generalized, and the space of the functions f such that
1

1 p~¢
1fllp)s = esssup eP™* ( f CGNG) dt) < o, (2)
I

0<e<p-1

where § is a measurable function in I, has been considered. It has been shown that the
interesting case is that one where § is left continuous, increasing (i.e.0 < e€; <€, <p —
1= 6(e;) <6(ey)) and such that 6(0+) = 0,0 < 6 < 1. Note that in (2), differently
from [227], we put the function § inside the integral: in view of the theory developed

through several, [225] where the power # appears quite frequently, we think that it is

worth to make this choice to simplify the volume of the formulas. We consider the further

generalization of (2) where p~¢ is changed into a general measurable function, thus

dealing with the operator ||f [, ). We note that the variable ¢ varies in (0,p — 1) while x

varies in (0,1); for simplicity we can deal with functions defined in I = (0,1) because the

important values of this variable are those ones close to 0, and the supremum of the

interval is not influent on the norm of the space ([228]). The plan the following: we will

build a new class of rearrangement-invariant Banach function spaces, which contains also

some Orlicz Exp-type spaces. Then, , we will prove some reduction theorems and, finally,

we will get the boundedness result for the Hardy-Littlewood maximal operator, via a

Hardy type inequality.

A recent investigation involving the link between the variable Lebesgue spaces and the

grand Lebesgue spaces is in [231].

For the sequel it is important to note that it makes sense to consider the function

x €1 [Ifllpeo

which is measurable, because it is a composition of the borelian function [|f|[ .y (it is well

known that ||f]|(, is continuous where it is finite, see e.g. [235, Ch.3 ex.4b)], see also
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[229, Theorem 3.5.7 p.94]) and of the measurable function p(:)(we recall that the
composition of two measurable functions is not necessarily a measurable function, but the
composition of a borelian function with a measurable function it is, see e.g.
[229,Sect. 1.5 p.41],[233,Ch.8 p.231]). We observe also that for any measurable
function 6 in I it makes sense to consider the function (by convention we set the esssup
equal to 0 if computed over the null set)

x€l - esssup 6(y)
o o YEI:p(¥)zp(x) ) ) o _
which is measurable, because it is a composition of the borelian function (it is borelian

since it is monotone, see e.g. [228,p. 298])
t € (0,0) = esssup 6(y)
Yel:p(y)zt
and of the measurable function p(-).
Let M be the set of all Lebesgue measurable functions in I with values in [—oo, +co], M™*
the subset of the nonnegative functions, M, the subset of the real valued functions, and
Mg the subset of the real valued, nonnegative functions. Let p(-) € M,p(:) = la.e.

ands € L*°(),6 > 0a.e.,0< ||6]lo < 1.Forf € M* we set
Ppr18¢) () = esseslup Po) (6(x)f())
X

where
( 1

p(x) pe) . .
oo (BCOF()) = ! (f (6f ®) dt) Tr=pld<e:
esieslup(rS f®)  if plx) = oo

The assumption § > 0 a. e. is needed in the proof (see Proposition (4.1.1)) that p,,5() IS
a Banach function norm, namely, when we show that p,;;s.)(f) =0 implies f =
0(if6 =0inasetE,| E [> 0, then it would be p,r.15¢)(xg) = 0).

It is also needed that 6 must be bounded, again in the proof of Proposition (4.1.1) (see
Property 7). The assumption ||6]|, < 1is made in view of the following reason. Suppose
for the moment that the simbol p, () has been defined assuming only § bounded. It is
easy, in this case, for a given § such that ||§]|, > 1, to construct a function § which gives
an equivalent function norm and whose esssup is bounded by 1: in fact, setting

< . 6(x)

| W) =151,
SInce

_6(x0) _

660 = T3 181l < 1811 5()

and

560 = 2% )

81, = 0%



we have

Po11,60 ) < Ppr1.600 () < 8lleopprys¢) ()
Now we spend few words about the symbol p,. sy (f), namely, on the square brackets inp
[-]. It would be natural to write p(+), because the modular depends on the variable exponent
p (+), but the same symbol is already well known at least in a couple of contexts in the
theory of variable Lebesgue spaces with a different meaning: it could be confused with the
weighted modular associated with p(-) or with the modular of the variable Lorentz space
(see [230]). Moreover, note that in the definition of p,115)(f)there is the letter f on the
left hand side and there is f(-) on the right hand side: we add (-) inside the Banach
function norm of a Lebesgue space. This choice is made because in such situation there are
either x, either the variable of f to deal with, and it should be clear that the norm must not
computed with respect to the x variable.
We exhibit now a few interesting particular cases. The simbol p,,1 < g < oo, implicit in
(3), stands for the usual Banach function norm of the Lebesgue space L9 ().
We begin by observing that if p(-) = p(p(-))on a set of positive measure, it is
Pp11,5() ) = Ppoy F()) (the symbol A ~ B, whereA and B depend on f €
Mg ,means, here and in the following, that there exist positive constants c;,c,,
independent of £, such that ¢;4 < B < c,A) and therefore p,.; 5 reduces to the Banach
function norm of a Lebesgue space. In fact, it is

P16 () = esS Sup Pp(x) (€3Ji0))

< 55 5up (80)Pp,, () (F))) = Ppu(p) (F)eSS SUP 8 < 5y (FO)

On the other hand, if p(:) = p(p(-)) in E,| E |> 0 (the symbol |E| will denote the
Lebesgue measure of E), we can consider a set E' c E such that |E'| > 0 and

Ol
6(x) = ”“+(E) vVx € E'a.e.
Then
Ppoo(p(-))(f(')) <85 essei_up 6(x) ppw(p(_))(f(')) Vx € E' a.e.
X !
hence

2
Poalp) fO) < 57— Potoey ()

The (standard) grand Lebesgue spaces LP)(I) can be immediately obtained from (3)
setting 6 (x) = x and p(x) = p — x, where 1 < p < co. The generalized grand Lebesgue
spaces considered in [227] are evidently included in the family of the function

1
norm (3): the function §(e)»-< in [227] corresponds to the function & in our notation.
Setting in (3) p(x) =1/x and 6(x) = x% a > 0,we get a norm of the Orlicz space
EXP,, (see e.g. [228,229]), which is the space of the functions such that exp((Af)V/*) €
L(I) for some A > 0: this can be easily seen setting p(x) = 1/x in Lemma 2.1 in [230]
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(see also [231]). Note also that setting in (3) p(x) = x and choosing certain continuous
functions 6 one gets the so-called bilateral grand Lebesgue spaces studied in [232]. We are
going to show that the functional p,.; 5., is @ Banach function norm, i.e. (see e.g. [233])
(- pp1.66)(f) =0
(ll)pp[]'é‘()(f) =0 |fff =0inla.e.
(D). pp[160) (Af) = APp[160) (fHHva>0
(). P15 +9) = o150 () + Ppl150)(9)
(17). if0<g<sf in a.e., then pp[.],g(.)(g) < ,Op[.],(g(.)(f)
(wi).if 0<f, Tfinla.e.,then pp[.]’g(.)(fn) T pp[.],g(.)(f)
(vii) Pp[1,6() (xg) < +ooVE C |
(Ulll) fE fdx < C(p, 6, E),Dp[]’(g() (f)V Ecl
Proposition(4.1.1)[222]: . p,[4,5¢) is @ Banach function norm.
Proof: (i). It is obvious.
(iQ). Itis
f=0ae>p,»(6(x)f())=0,Vx€lae= pys5-H(f)=0
and, being§ > 0 a.e.,
P16 () =0 2 pp(8CIF()) =0, Vx€lae = 8(xX)Ppym(f()) =0,
Vx €la.e.
= pp(f()) =0, Vxe€lae=f =0inla.e.
(iii). It follows immediately from the homogeneity of the modular p,,,, Vx € I a.e.
(iv). It is consequence of the corresponding property for the norm of the Lebesgue spaces:
P (B + 9)()) < Py (BCIF ) + Ppay (5@ ())Vx € T ace.
(v). As above, it is consequence of the order-preserving property of the modular
Ppx) VX El a.e.

(wi).If0<f, Tfinla.e.,
Pp11.6¢) ) T sup ppr16¢)(fn) = supess sup Ppco (80 ()
n n X

= SUp por (Poeo (BCI£())) = pes (Sgppm)@ (x)fn(->)>

= €SS SUp Pp(x) B f () = ppr1s¢ ()
(vii). LetE c I
Poi15¢) (i) = €58 Sup 800 Py (s () < ess sup 8(x) < oo
(viii). Let E5 c I, |Es| > 0 be such that

5(x) > 1161] 0
2 )

Vx € Esa.e.
We have
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S5(x) 1< Vx € Es a.e.

161lo
and therefore, by Holder’s inequality, for x € Esa. e.

1
f fdx = j Fxedx < ey (FO)oy o (2())
E 0

= 8(X) Py F (D) ™ ppr 0 (XE())
< ess sup §(x)pp() (f () - ess sup §() Py (X))

2
< ppr16¢) () -esssup 6(0) T < = ppp150) ()
x€Es 1611

We are now in position to make the following
Definition (4.1.2)[222]: Let p(-) e M,p(-) = 1a.e.and § € L*(I),6§ >0a.e.,0<
18]l < 1. The Banach function space

LPpsO (1) = {f € Mo+ Ifllp,y 50 = Por1sy (IF1) < 03
is called fully measurable grand Lebesgue space.
We remark that the fully measurable grand Lebesgue spaces are rearrangement-invariant
Banach function spaces. We observe also that these spaces cannot be considered in the
framework of the so-called mixed norm spaces. In fact, the mixed norm spaces are defined
starting from two Banach function spaces X and Y, and considering the set X[Y]of all
functions f(x,t)such that x — ||f(x,")||y belongs to X; the norm of f is then written
I lxpry = FC)llyllx (see details in [230], which gives a definition introduced

in [236], going back to [233]). In our case || fl,.,s¢) is Of the type [[[|f (x,) Iy |lx where X

is a weighted L™ space but Y depends on x (in fact, Y = LP®) . We recall that [232]
introduced the composed grand Lebesgue spaces, which are of the type ||fllxy; =
I f ) lyllx where X is a rearrangement-invariant Banach function space, while in our
case it is not. In conclusion, our spaces escape from both categories of spaces. The norm of
grand Lebesgue spaces has been of interest in the framework of extrapolation theory (see
[226]). Variants of the norm of grand Lebesgue spaces are of recent interest, too. Grand
Bochner—Lebesgue spaces have been considered in [227]. We mention the [231], where
Herz-Morrey spaces are considered; the norm of these spaces, even if different from that
one we consider, has connections either with the grand Lebesgue spaces, either with the
variable exponent Lebesgue spaces. Grand Lebesgue spaces over sets of infinite measure
have been recently considered in [236]. Finally, we recall another variant recently
appeared in [231], where a composition of norms of grand Lebesgue spaces has been
investigated.

Generalizations of the norm of the grand Lebesgue spaces with § different from §(x) = x
are of interest in Applications: for instance, in PDFs we mention [233], in Harmonic
Analysis we mention [226]. We believe that the new context of the measurable data will
be fruitful also for the study of the small Lebesgue spaces, defined as the associate spaces
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of the grand Lebesgue spaces. Very recently they appeared of crucial importance in the
question of the dimension-free Sobolev embedding theorem ([229]).

We begin by a remark on the norm of the grand Lebesgue spaces, given by
1

1 p~¢
Ifllyy = esssup eP™* ( j f&r” dt) (1<p <o) (4)
0<e<p-1 1
It is known that the “influent” values of € in such norm are the “small” ones: in fact in
[236] it has been used the fact that the supremum over € € ( 0,0) plays the same role as
the supremumover all the interval (0,p — 1). The same phenomenon has been used in
[230], where the interval( 0, (p — 1)/2) has been considered in the associate spaces of the
grand Lebesgue spaces. This remark has been formalized and generalized in the recent
[233], where the more general framework of the grand grand Morrey spaces has been
considered. Note that the small values of e correspond to the large values of the exponent
p~€, which appears in the norm (4).
The next two results show that this phenomenon holds also for the fully measurable grand
Lebesgue spaces; namely, the norm is essentially given by the supremum over the x’s
where the exponent p(-) is large. In Theorem (4.1.3) we show that if the supremum is
considered over any level set of the exponent p(-), then one gets an equivalent norm. In
Theorem (4.1.4) we will show that two functions § coinciding on all of the level sets
sufficiently high of the exponent p(-) generate the same Banach function norm. This result
can be combined with Theorem (4.1.7), where for any given § it is constructed a special
5 satisfying the assumption of Theorem (4.1.4). This will lead to a kind of regularity
result: in the case p(-)upper semicontinuous, without loss of generality one may assume &
lower semicontinuous, and the “esssup” defining the norm of the fully measurable grand
Lebesgue spaces can be written as “ sup”.
The results are the typical ones to be obtained after a generic definition like Definition
(4.1.2): different preliminary data may determine the same set of functions. This situation
appears, for instance, for Orlicz spaces (see e.g. [230, Theorem 3.4 p. 18, see also p. 22]);
in the case of weighted Orlicz spaces, where different nontrivial weights may give the same
space [234]; for variable Lebesgue spaces, see [238]; for the generalized grand Lebesgue
spaces, see [227]. We call these results reduction theorems because the class of the
original data can be reduced, without loss of Banach function spaces.
Theorem (4.1.3)[222]: Let p(l)eM,p(:) = 1a.e.,p(:() %1 and § € L”(1),§ >
Oa.e.,0< [|6]|lo < 1.Forf € M* we have
Ppl160) () = esssup P (8()f()) VT €L poo(P(D)I
xep~1([T.p0(p())])
Proof: If t = 1 orift €]1, poo (p(-))[is such that | p~1([1,z[) |= 0 then
Ppl16¢)(f) = esssup P (6()f())
xep~([.pe0(P())])
and therefore there is nothing to prove. Otherwise it is T €]1, pe, (p())[and | p~1([1,7[) |
> 0. Setting
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Ef =p ([npa(pO)]).  TH = esssup oy (6()F ()

and
E; =I\Ef =p~'([Lz[), T; =essi}gppp<x>(5(x)f )
XEE]

we have, by Hélder’s inequality,

pp(x)(f(')) < pr(f()) Vx € E; a.e.
And

pr(f()) = pp(x)(f(')) Vx € Ef ace.

Then for x € ET a.e.

eSIUP Ppco) (6)f() < essoup p:(6()f(O) = (esssup 8(x) ) p:(f ()

X€EE}

< (esssup 5 (x) )Pp(x) 0iQ))

x€EEY

If E5 < ETissuchthat| E5 | > 0 and

Oll; 0 5t
500) > |81l o7y

5 Vx € E5 a.e.

itis, forx € E5 a.e.,

T; < <eSSSUP 6(x) ) 6(x) 716 (X)ppy (f ()

XEE]
and therefore

2
T; < esssup 6(x) - —”5” esssup 5(X)Ppx) (f( )) (esssup 6 (x) —”5” ) Tt
x€EL L®(ET)  x€ET xEE; L*(ET)

Therefore, being
Ppi1.6()(F) = max{Ty , T;}
we have

Ppi15¢) () < max {1 esssup 6(x) (5)

T
X€E} ||5||L°°(Ef)}T1
Finally, we observe that trivially T{' < py,1,5¢)(f)-
Theorem (4.1.4)[222]: Let p(1) € M,1 < p(*) < po(p(-))a.e., 7y € [1, poo (p(-))[ and
51,6, €EL®(D),6,,6, >0a.e.,0 < |61l < 1,0 < ||6;]l0 < 1. 1If

esssup 6:(x) = esssup 6,(x) VT €[Tgpo(®@())(6)
xep~([T,p00(p()]) xep~1([T.pe0(p()])
then forevery f e M §
Po11,6,) () = Ppl18,00 () (7)

Proof: It is sufficient to prove the inequality < in (7), excluding the case f = 0. Let
0 <o <n<pprs,c() Thereexists T, < I,] T, [> 0, such that

125



pp(x)((Sl(x)f(-)) >n Vx€eT,a.e. (8)

We may assume, without loss of generality, that p,)(6;(x)f()) < oVx €T, a.e,
otherwise the assertion is trivially true (because in this case it would be p,)(f(-)) =
and both sides of (7) would be infinite); we may therefore write ||f|[,¢ in place of
Ppeo)(f (). Forany 7,1 <7 < p,(p(-)), let F; , be the set
Ey = P71, T]) nT,
We observe that

pH (LD =1

T €[T0,p00(P())[
Put

Tuy = Inf{7" € [ 70, e (P[] Fry 1> 0VT € [ 7, oo (P(D)[}

We claim that
Ty € D™ ([T P (P(DD) (9)
Infact, if 7, ,, > 1 (if7,, = 1then (9) itis trivially true), we have
|y I=lp7 ' ([LTDNT, 1=0 VT €[1,1,,]
and therefore
T, cp ' (11,06 (p()) VT €[L7,p[
from which (9) follows. By (8)

7 7
O01(x) > > Vx€E _a.e, VT E€|T, 1, Poo (P (¢ 10
and therefore by (9)
esssup 61(x) = esssupd;(x) = esssup 6, (x) >
X€P~(]Tw,P00 (D)) X€ETy XEFy ”f”r

€]T ) P (P())[

Passing, on the right hand side, on the supremum over 7,7, , <7 < po,(p(*))

esssup 61(x) =
x€p([TemPoo(@())]) ”f“T*.n
and therefore, by our assumption (6), being o < n,
esssup G, (x) > Tl (11)

x€p~([TumPeo(P())D) f T

We deduce that there exists T, < p~*([r *n;poo(p('))[)rl T, 1> 0, such that
6,(x) >——— Vx€T]a.e.
29> "

and therefore by (11)
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pp[.],gz(.)(f) = esssup P (x)”f”p(x) = esssup P, (x)”fllr*n >0

X€Ty, X€Ty
Since this is true for all o < p,pys,()(f), we may conclude that pp,ps,0(f) =
Pp11,6,()(F)-
Corollary (4.1.5)[222]: Let p(:) e M,p(-) = 1a.e.,p(") £ 1,175 €[1,p(p(-))[ and
51,8, €EL*(I),6,,6, >0a.e.,0< ||6;llo <1,0< |I63]lee < 1. 1If

esssup 61 (x) = esssup 82(x) VT €[ 70, po (p())[ (12)
x€p~1([1,000(P())[) x€p~1([1,Pe0(P())[)
Then
Pol1,8:() ) = Ppl1s,¢) () (13)

Proof: If p(+) < po(p(*)) a.e., by Theorem (4.1.4) we know that equality holds in (13).
Otherwise, we recall that we showed that both sides of (13) are equivalent to the function
norm ppo, (p(-))-

Example (4.1.6)[222]: We remark that in general equality in (13) does not hold when
p(:) = pe(p(*)) on a set of positive measure. It is sufficient to consider p, €
11,00, (%) = Pox(0,1/2)(¥) + X(1/21)(X), 8o €]O,1[ a; €]0,1[,5p < a;,6;(x) =

8o X(01/2)(X) + AiX(1/220)(X), 0 = L2. 1t is pprys,cy(F) = max {8 pp, (f (), aip1 (f (-
))}, and therefore if f = 1 itis p,[)s,0)(f) = a;, i = 1,2.In next result we will show the
coincidence of the essential supremum of two measurable functions. The fact that

x €Il - esssup 6(y)
y:p(¥)zp(x)
IS a measurable function has been shown.
Theorem (4.1.7)[222]: If p()€EM,p()=1a.e,p()#1 and §€L¥(),6>

Oa.e.,0< ||6]|lo <1,then
VT €[, pe(P())I

esssup 6(x) = esssup [ esssup 6(y)
x€p~H([T.Peo (P(N]) x€p~H ([T, (P(ND) Ly:p(¥)2p (%)

Proof: Since forevery 7 € [ 1, p(p())[itis{y € I : p(y) = p(x)} < p 1([7, poo (P(:
N fora.e.x € p~1([1, po (P(-))]), We have
esssup 0(y) < esssup 6(2)
y:p(¥)zp(x) zep~ ([1,pe0 (P())])
and therefore, since the right hand side does not depend on x,

< esssup 5(x) VT €1, pu(p())I
x€p~1([T,000(P())])

esssup [ esssup 6(y)
x€p~H([T.peo (P(N]) Ly:p(¥)2P(X)
We need to prove

esssup 0(x) < esssup [ esssup 6(y)| VT €[L p(p())]
xe€p~([7.p00 (P(-D]) x€p ([T, (@(N]) Ly:p(¥)zp(X)
If, on the contrary, there exists T € [1, p (p(+))[ such that

esssup d(x) > esssup [ esssup 6(y)]
x€p~ ([T, (P(N]) x€p~H([T,pe0(P(N]) Ly p(¥)2P (%)
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then

Epr = {x €p ([T, pu(P()] : 8(x)>  esssup [ esssup 8(y) }
x€p M ([T.pe(P(N]) Ly:p(¥)2p (%)
has a positive measure. There are two cases:

(i) essmfp(x) = esssup p(x)

X€Ep ¢

(i) essmfp(x) < esssup p(x)

X€EEp ¢
In the case (i) p(-)is constant a.e. in E, -, and

esssup
x€p~1([T,p00(P()])

esssup 6(y)
y:p(¥)2p(x)

> esssup[ esssup 5()’)]
X€Epz |y:p(¥)2p(%)

> esssup [esssup 6(y)| = esssupd(x) > esssup [ esssup 46(y)

x€Epr | YEEps XEEp 1 x€p~H([T.peo (P(N]) Ly:p(¥)2P(X)
which is absurd. In the case (ii), let

a € ]essmfp(x) esssup p(x)[

X€Ep T X€Ep ¢
and set
Fpr =D~ ([ise%lpnrfp(x) C(D NE, .
Gpr =p" <]a, engsup p(x) > NE,;
p,T
and observe that both such sets have positive measure.
We have

> esssup [esssup 5(y)

xer’T yEFp,T

> esssup[ esssup (y)

esssup [ esssup 6(y)
X€Gpr Ly'p(¥)zp(x)

x€p~1([T,pe0(@()]) Ly:p(¥)2D (%)

= esssup §(x) > esssup [ esssup 6(y)
X€Gpr x€p~H([T.p(@(N]) Ly:p(»)2p(x)
which is absurd.

Theorem (4.1.7), combined with Theorem (4.1.4), tells that a function § can be substituted

by
x€1- §(x)= esssup 5(y)
y:p(¥)zp(x)

without changing the space. In the case considered in [237] where the exponent is
decreasing, this means that one can consider the generalized grand Lebesgue spaces only
for the &’s increasing (see Proposition (4.1.3) therein). In our case we can assert that the
meaningful §’s are those ones which have “in some sense” the opposite monotonicity with

respect to p(-): if p(-) is defined pointwise,
p(x1) = p(xz) = 8(x1) = 6(xz) (14)

128



The notion of monotonicity of a function equal or opposite with respect to another is
known in literature: see e.g. the equally ordered functions in [235] or [241]. As
consequence of (14), we can show that if p(:) is an w.s.c. exponent, then it is not
restrictive to make the extra assumption é L. s. c.

Proposition (4.1.8)[222]: If p(-) € M,p(-) = 1 a.e.,p(*) has no flat zone, p u.s.c., and
5 €L, >0a.e.,0< |||l <1,then there exists &€ L*(),6>0a.e.,0<
|6]| < 1,8 Ls.c.,suchthat forevery f € Mg

Pp11.60) () = P15y () (15)
Proof: Let x, € I,and let x,, € I, x,, = x,. By our assumption
p(xo) 2 limnsup p(xn)

If p(-) = peo(p(+))a.e., the assert is trivial (we can take for instance § = 1). Otherwise,
setting

5(x) = esssup 6(y) Vx€I
y:p(¥)zp(x)
the equivalence (15) follows from Corollary (4.1.5) and Theorem (4.1.7). We need only

to show that §is L.s.c.,i.e. .
d(xy) < liminfé(x,) (16)
n
Let us set

A={neN : plx,) <plx)}

B={n€eN : p(x,) >p(xo)} ) )
sothat N=AUB.Ifn €A, itis p(x,) < p(xy)and therefore, by (14),6(x;,) = 6(xp). If
B is finite,the assertion is trivially true. Otherwise, let B = {ky,}and set t,, = x;_. Itis

p(ty) >p(xy) VneEN

p(xo) = limsup p(t,)

n
and therefore
p(xo) < liminfp(t,) < limsupp(t,) = p(xg)

n n

from which
limp(tn) = p(xo)

Since p(+) has no flat zone,

o p0r 2 pe} = 0 1 p0) = pxo))
and therefore i
lim 5(t,) = 6(xp)

from which (16) follows.

After Proposition (4.1.8) we know that when the exponent is u. s. c., then it is possible to
write equivalently the expression of the norm in the fully measurable Lebesgue spaces by
using “sup” instead of “esssup” (because the measurable function § can be changed into a
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L. s. c. function, defined pointwise). Since the exponent p(x) = p — x has no flat zone, this
result generalizes the analogous reduction shown in [237]
Theorem (4.1.9)[222]: Let p()eM,p(-)>1a.e.,6 €L®(),6§>0a.e.,0<
| §llc < 1and forevery f € M§ let

X

F(x)=f fds €]0,0]Vx €l
0

There exists a constant c(p(+), §) > 1 such that the following inequality holds
Ppi160)F) < c((), O)ppris¢)(f) YV €My (17)

Proof: Fix t €]1, poo (P(:)[ 1 p~2([1,7[) I> 0. Applying the classical Hardy’s inequality
with the exponent p = p(x) and multiplying both sides by & (x), we get
1 1

1 p(x)
j 5(x) j fds|  dr| = P9 f 6O Ppx) dt vx
) p(x) —1

0 0

1 t p(x) m

€p ([t po(P()Da.e.

Passing to the esssup over x in both sides, the previous inequality becomes
1
1 ¢ p(x) p(x)

6(x) J fds dt
0

esssup

x€p~1([T,pe0 (P ()] OJ

1
p(x)

1

p(x)

< esssup —_— esssup ) fHp(x)dt
xep~ (Tpe(PDD PX) ~ 1 xep i(mpe@) \ J

and therefore, by Theorem (4.1.3) (see (5))

2
Ppr1scy(F) < max{l, esssup 6(x) - } .
PO x€N\D~1([7,000(P())]) 61| (P~ ([T, P (P(D)]))

esssup  8(xX)pp) (F())
P~ (TP (@(N])

2
< max41, esssu O(x .
{ L+ L T PR e (M T0)) >>}

1
1 p(x)
p(x)
esssup _— esssup Gx)fHp(x)dt
2ep=1 (1,00 @)D PX) = L xep=1([t,00 ()] )

Setting
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| 2
¢(p(),0) := Ifmax {1'xe1\p-??[sr,sgloop(p(-))] ) °) 5o P PO ))}

X
esssup & > 1

xep ([T peo(p(N) P(X) — 1
we get the desidered inequality (17).
As consequence of Theorem (4.1.9) we can get the boundedness result for the Hardy-
Littlewood maximal operator, deﬁned by

Mf(t) = sup— Jlflds vtel, felLyD
13]3t|]|

where the supremum extends over aII nondegenerate intervals, contained in [ and
containing t. We omit the (very short) proof, which is the same of Corollary 2.3 in [236]:
the argument, inspired by [234,Thm 3.10,p.125], uses the property of the space to be
rearrangement-invariant.

Corollary (4.1.10)[222]: Let p(1) e M,p(:) >1a.e.and § € L(I),§ > 0a.e.,0 <
161l < 1. There exists aconstant c(p(-),§) > 1 such that the following inequality holds

IMfllpr1s¢) < c@C) O llprrse) vf e L'(I)

Section (4.2): Weighted Fully Measurable Grand Lebesgue Spaces
The grand Lebesgue spaces LP)(1 < p < oo) were introduced by lwaniec and Shordone
n [261], in the framework of the study of Jacobian determinant. These spaces are Banach

function spaces and, when considered over (0,1), are defined as
1

1P (0,1) ={f: (0,1) > R measurable : ||f|l,y = sup < f If (D)< dt)p_g < oo}. (18)

0<e<p-1

Since then, these spaces attract interest because of their essential role and applications in
various fields, such as in PDE’s theory (see e.g. [262]), in function spaces theory (see e.g.
[263]) and in interpolation-extrapolation theory (see e.g. [264]). They have been widely
investigated and several variations have been studied (see e.g. [265]).

In [266] (see also [267]) the authors introduced the weighted grand Lebesgue spaces

1) (0,1) equipped with the norm 1

1 p—¢

Ifllpyw = sup (8] If (O~ dt) , (1 <p<o), (19
0<e<p-1 0

where w is a weight on (0,1) and they studied the boundedness of the Hardy— Littlewood

maximal operator, defined by
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1
Mf(x)= sup mf|f| dt , x € (0,1), (20)
]

x€Jc(0,1)
where the supremum extends over all nondegenerate intervals J, contained in (0,1) and
containing x, and [/| denotes the Lebesgue measure of J. In the framework of the standard
Lebesgue spaces, it is well known that, when 1 < p < oo,

IMfllpw < cllfllpw (21)
if and only if w satisfies the A, condition of Muckenoupt (w € 4,)
1 1 -1\
su <—fwdt><—j w p-1 dt) =: Ap(w) < oo, (22)
7 \UI Ji /1 ]

where the supremum in (22) extends over all intervals | < (0,1), and [[-[[,, in (21)
denotes the norm in the weighted Lebesgue spaces LY, , given by
1

Ta- =< f |f|pwdt>p
0

In [262] the authors characterized the weights for which the inequality

”Mf”p),w = C”f”p),w (23)
holds, where c is a constant independent of f, namely, they proved that Condition (22) is
necessary and sufficient for the validity of inequality (23), too.
Since then, boundedness properties of operators of various type have been investigated in
these spaces and their generalizations. We recall some of these results. In [262] an
analogous result to that one in [262] has been proved for the onedimensional singular
Hilbert operator. In [264] boundedness of weighted singular integral operators in grand
Lebesgue spaces we restudied . In [269] families of weighted grand Lebesgue spaces
which generalize weighted grand Lebesgue spaces were introduced and boundedness
results of the Hardy-Littlewood maximal operator and the Calderon—Zygmund singular
operators were established.

[267] introduced the weighted grand space L;‘i) (0,1), which is equivalent to the weighted
space EXP and boundedness results for the Hardy—Littlewood maximal operator and the
Hilbert transform were given.

In [269] weighted strong and weak-type norm inequalities for the Hardy-Littlewood
maximal operator on the variable Lebesgue space LP() were proved. In the same direction
of the results in [262], inspired by the new spaces introduced in [270], We consider the
weighted fully measurable grand Lebesgue spaces and we establish the maximal Theorem
of Hardy-Littlewood, when p* = ||p]l, < +o0. In the unweighted case, werecover the
boundedness result proven in [ 271].

Let M be the set of all Lebesgue measurable functions in I = (0,1) < R with values in
[—o0, +00], M* the subset of the nonnegative functions, M, the subset of the real valued
functions, and Mg the subset of the real valued, nonnegative functions.

Let p(:) € My,p(-) =21a.e.and § € L”(),§ >0a.e.,0 <||6]lo <1.In [266] the

following generalization of the grand Lebesgue spaces was considered
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1

LP)’S(]) _ f € M() . ||f||p),5 = sup (5(€)f |f (t)lp—g dt) p—E&

0<e<p-1

< 0. (24)

In [272], using variable exponents, the authors built a new class of Banach function
spaces, in a framework different than the variable Lebesgue spaces See [278]), called the
fully measurable grand Lebesgue spaces

LPUOOM ={f € My : fllpp160) = Pprrse) (IFD < o}, (25)
where
pp[-],d(-)(f) = esiesluppp(x) (6(X)f ())(f € M(SI- ) (26)
and
1
p(x) , \P&¥)
P (BGOf () = ( f (8Cf () dt) if 1< p(x) < oo. (27)
1

Remark (4.2.1)[260]: In [274] ppx)(6(x) f (+)) is defined also for p(x) = oo, and it is
proved that if p(x) = ooin a set of positive measure, then p,r15)(f) = [|f o

For suitable choices of p(x) and §(x) these spaces reduce to the classical and grand
Lebesgue spaces, to the generalized grand spaces LP»®(I) defined in (24)and to the
Orliczspace EXP a(a > 0)( see [274]). In [273] the fully measurable small Lebesgue
spaces have been introduced as a generalization of the small Lebesgue spaces given in
[275]. Let w be a weight on I, i.e. an a.e. positive, integrable function on I. We set

pp[-],S(-),w(f) = esieslup Pp(x),w (6(x)f ()) (f € M(-)I- )r (28)

where
1

x p(x)
pp<x>,w(5(x)f(-))=<f (6COf @) )w<t)dt>p 1< p(x) <o, (29)

Arguing as in [275] we note that it makes sense to consider the function

x €1 - ”f”p(x),w
which is measurable. Then the functional in (29) can be written equivalently as

Ppeow(8(x) £ () = 8)Ppaw(f () = SCOIIfllpews
where [[f |, cx)wdenotes the norm in the weighted Lebesgue space L’V’V(x) (for the sake of
clarity, this is the classical weighted Lebesgue space, with weight w and constant exponent

p(x): here x plays the role of a parameter).
We note that if p(1) = p €[ 1, 00], then (28) is equivalent to the norm in the classical

weighted Lebesgue space LP, (), since
Pp1.8w () = 18l f llpw-
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Next, we remark that the fully measurable grand Lebesgue spaces are not included in the
class of the weighted Banach function spaces considered in [280].
We now prove that in the following it will suffice to consider only p(-) € Mg ,p(-) > 1:
for the esssup in (28) only the points x where p(x) > 1 really matter.
Proposition (4.2.2)[260]: Let w be a weight on I,p(-) e M§ ,p(-) = 1a.e.and
5§ € L), 6 >0a.e.,0 < ||6llo < 1. For feMi,if te[p,pf] and
lp™*([r,p™D| > Ojthen
pp[-],S(-),w(f) €ss Sup Pp(x),w (5()6) f ( )) (30)
xez?‘l( .p*])
where p~ = ess inf,; p(x) and p™ = ess sup,¢; p(x) a.
Proof : Setting
Ef =p~([tp™]), E3=p '([p".7D
if |E,| = 0 then (30) is trivially true. Otherwise, putting
1

p(x)
T = esssupd(x) <J f(t)p(x)w(t)> )
XEE] I

1

p(x)
T; = esssup 6(x) (J f(t)p(")w(t)> ,
XEE;'- I
we have
pp[.],g(.),w(f) = maX{Tf, TZT}

Forx € EJ a.e.we obtain
1 1 —p~

<ff(t)'p(x)w(t)) <jf(t)fw(t)> (1+.[W(t)dt>7 . (31

In fact by Holder’s inequality with exponents ? and g we get
1 1
=p(x) \P(X)
( J f(t)”(")w(t)> ( [ rereowe we™ ) dt
1 T—p(x)
T T
< <f f(t)’w(t)) (j W(t)dt)
I I

1 —p

< ( j f(t)TW(t)>? <1 + f w(t)dt)F.

Hence for x € EJ a.e.

-p

< j w(t)dt)F,

1

5(x) ( f f(t)p(")W(t)> " <6l ( j f(t)fw(t))

that implies

al=
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1 =p_
T pP—T
T3 <||6||m<f f(t)fw(t)) ( +| w(t)dt) . (32)
1
Similarly, for x € E] a.e., we get
1 1 pt-1

(f f(t)’w(t)>? < (f f(t)P(x)w(t)>m (1 +]w(t)dt>F (33)

using Holder’s inequality with exponents — p( ) and p(x) If p(x)>r.

If E; c Efissuchthat |[E5| > 0and

|81l oo (g7
§(x) >%,Vx € El ae.,

for x € E§ a.e.we have
1 1 pT-t

( j f(t)’w(t)>? < §(x)76(x) ( j f(::)zo(ﬂw(t)>W (1 + f W(t)alt>F
1 ) I 1

< ess sup §(x)
”6”L°°(ED X€E]
1 pt-1

X <f f(t)p(x)w(t)>m <1 +fw(t)dt>F.

Hence by (32) we have
p*-p”

2 p-
T < ||6||oo—(1+fw(t)dt> Tf
||5||L°°(Ef) I

Ppr1sw(f) = max{Ty, T,}

and

pt-p~

2 p
<maxs 1, [0l 75— 1+Jw(t)dt Tf
||5||L°°(Ef) I

p+

2 P~
= ||6||oo—<1 +Jw(t)dt> Tf.
||5||L°°(Ef) I

Finally, we observe that

TY < ppr1s0w(f)
and this completes the proof.

Proposition (4.2.3)[260]: The functional p,.j s wdefined in (28) is a Banach function
norm, i.e. forall f, g, f;, € Mg (n € N), the following properties hold:
(@) Ppr1.5()w(f) =0
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(ii).pp[.]’é‘(.)’w(f) =0 |fff =0in/a.e.

(@0)- pp1.60wAf ) = Appr1sow(f) VA >0

(V). Pp1600w(f +9) < Ppp1600w(f )+ Ppr150)w(9)
(v).if0< g < finla.e,then pp[.],a(.),w(g) < pp[.],(g(.),w(f)
(w).if0<f, T finla.e.,then pp[.],g(.)’w(fn) T pp[-],6(-),w( )
(Wid). pp1,5()wXE) <+ VE C |

(Ulll)ijdx < C(p, 6, E)pp[.]’g(.),w(f) VE c I.
E

Proof: (i) and (iii) are obvious, (iv) and (vi) are consequence of the corresponding
property of the norm in the weighted Lebesgue spaces Lﬁ,(x) , SO we prove only (ii) and
(vii)- (viii)
2.f =0a.e.= ppyw(@@) f () =0,Vx € la.e.= pyry50w(f) =0.
On the other hand, since § > 0a.e.andw > 0 a.e.,
Pp160w(f) =0 =2 pponw(@x) f()) =0,vx € Ia.e.
= 0(X)Ppow(f () =0,Vx € la.e.

= Ppaoyw(f () =0,Vx € la.e.|
= fw =0,Vx € [a.e.=> f =0,Vx € [a.e.
(w).f0< f, T finla.e.,then

Poi1syw(fn) = €ss sup 6(x) /o lpeeyw T supess sup 8(x) || fn llpce)w
n

X xX€l

= es5 sup (5up BCOIfi ey
x€l n

= ess sup 5(x) (Supllfn ”p(x),w)
n

X€EI

= esssup §() |l fn lpcoyw = Ppr15c)w(f)-

x€l

(vii). Let E c I, then, being w integrable on [, it is
1

p(x)
Po[1,60)wXE) = esseslup 6 (x) (j W(t)dt)
x E

1

1 p(x)
< ess sup §(x) f w(t)dt < Hoo,
0

x€l
(viii). LetE < IandletEg c I,|Es| > 0 be such that
)| P
6(x)>” ;I , Vx € Esa.e.
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p(x)
p()-1"’
Es a.e,and taking into account that we can consider p(-) > 1 a.e. by Proposition
(4.2.2), we have

By Holder’s inequality with conjugate exponents p(x) and p'(x) = for x €

1 1
fw(t)dt=ff)(Ewdt =wam)(Ewp'(x) dt
E I ) I )
1

< ( j f(t)p(x)w(t)dt>m ( f )(E(t)p’(x)w(t)dt>p,—(x)
) I

<J f(t)P(x)W(t)dt> p@) 50 (f XE(t)p,(x)W(t)dt>p (x)
I

1

p(x)
< esssupd(x) (j f(t)p(x)w(t)dt>
I
1

X€Eg

p'(x)

X ess sup 6(x) ! <J W(t)dt)
X€Eg E

1

2 p'(x)
< Pp11sw(f) ol ess sup Lw(t)dt :

x€l
As a consequence of Proposition (4.2.3), the space

LPLOWI) = {f € Mo+ Ifllpr1.800mw = Porrsomw(f]) < oo} (34)
iIs a Banach function space (see e.g.[274]), which we will call the weighted fully
measurable grand Lebesgue space.

we characterize the weights for which the Hardy—LittIewood maximal operator
Mf(x) = sup — f|f|dt x €1
xejcl Ul
is bounded on the weighted fully measurable grand Lebesgue space LPLLOOW([) The
proof of the maximal theorem uses the following well known lemma.
Lemma (4.2.4)[260]: [266, Lemma 5,p214] If 1 < p < w andw € A, on [ with
constant A,,(w), then there exist constant ¢ > 0 and L > 0 suchthatw € A,_, on I with
constant A,_.(w) < L,forall0 <e<o.
Theorem (4.2.5)[260]:Let w be a weight on I,p(-) € M, be such that p(:) >
la.e.,p* < +wand§ € L*(),6 >0a.e.,0 < |||l < 1.Then the inequality
IMfllpr.500m < cllf lpprscyw (35)
holds if and only if w belongs to the Muckenhoupt class A,+, where ¢ is a constant
independent of f.
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Proof: First of all we observe that, without loss of generality, we may assume p(-) <
p*tin I a.e.Infact,ifthereexistsasetofpositivemeasure E; c I such that p() = p™, then by

Proposition (4.2.2)
IMfllprecmw = IMFllp+ w

and our theorem reduces to the maximal theorem in classical weighted Lebesgue spaces
LIV’V+ .We begin to prove the necessary condition, therefore let us assume that the

Inequality (35) holds. We have to prove thatw € A+, that is

1 1 1\t
e —_— -1 = + (0.0
51]1p<|]| jjwdt) <|]|J]W p dt) P Apr(w) <

Fix /] c I. By the definition of maximal operator we have

j | flde < M(fx)(0,x € J.
]

By the Assumption (35) we have
”M( fX])”p[.],g;(.),w = C”f)(]”p[.],(g(.),w'

(1714 Il

j | Fldtx,
J p[1,6()w

= ”M( f)(])”p[.],é‘(.)'w = C”fX]”p[.]'g(.),W
1

Therefore

X€EI

p(x)
= c ess sup <J (S|f (&)HPH W(t)dt)
]

p(x) pt-p(x) ﬁ
= c ess sup (] SOOI ODPP w(t) P* w(t) p* dt)
]

X€El

+ +
Applying Holder’s inequality with exponents % and . +fp(x) we have
(_[] | fl dt) ”X]”p[.]’(g(.)w
1 p*-p(x)

x€l

N p¥ p*p(x)
< c ess sup (j G)If @®)P w(t)dt) (f W(t)dt)
] J

1 pF-p(x)

= c ess sup 6(x) <f |f (t)lerW(t)dt>p_+ (j W(t)dt> Pre)
] ]

X€EI
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1 1 1

. p¥ p(x) p*
=c (j If (©)|P w(t)dt) ess sup 6(x) (f W(t)dt>
] ]

x€l
1 1

+ pi“‘ pt p(x)
=c <f |If (O)|P W(t)dt) (f W(t)dt) ess supd(x) <j W(t)dt)
J J L x€l ]

oV i
=c <f] If (®)IP W(t)dt) ij(t)dt) ||Xf||p[.],a(->,w'

1 1

( f i dt) <c ( j f (t)|P*w(t)dt>p_+ ( j W(t)dt>_p_+.
J ] J

1
At this point we show, by contradiction, that we may consider the case w »*-1 € L(J).
1 1

In fact, if w »*-1 ¢ L1()),then w™ »* ¢ L@ ()). Therefore there exists g € LP"(J)
such that

Hence

f gOw) pi+ dt = o
]

1

Define f = gw »*,we have

Mf(x) = o ,Vx € ], (37)
hence

IMfllpr60w =
and, by the Assumption (35), we get

Wf llppy,60mw = - (38)
On the other hand, since f?'w = g?* and g" € L!, we have f € ¥, . By the
maximal theorem in the classical Lebesgue spaces it is Mf eLﬁ:, which is in
contradiction with (37). Moreover, Holder’s inequality implies pp,w(6(x) f (1)) <
o,Vx € ], hence ||fll,(15¢)w < o0, against (38).

1 1

Hence w »*-1 € L1(J). Choosing f = w »*-1, we have
1

(j W(t)dt>_p_+
J

1 1 1 1

) (freom] G (0] 7=

Raising to the power p*

1
oF

__1 __1 p
fw pT-1(t) dt SCU w PT-1(¢) dt>
] ]

and therefore it is
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1 pT-1
(f w(t)dt) (f w PT-1 () dt> <c
J J
andsow € Ap+.

Now we prove the sufficient condition, therefore let us assume w € A,+. By Lemma
(4.2.4) there exists 1 <1, <p™, such that w € 4,,Vn €]zy,p*[and thereforethere
exists 7y, <7 <p™,suchthatw € A4,,vn € [7,p"[. Then
w € Ay Vx € p7M([1,p*]D a.e.

and, by the maximal theorem in the Lebesgue spaces,

”Mf”p(x),w = C”f”p(x),w' X € p_l([T'p+]) a.e. (39)
with uniform constant.
By Proposition (4.2.2) we have

IMfllprs0mw < cllfllpp,60)m- (40)

Remark (4.2.6)[260]: We observe that the sufficient condition of the maximal theorem
in the weighted fully measurable grand Lebesgue spaces holds also in the case p™ = +o.
Namely, recalling that A, =U;<p<eo Ay, We have

weEA, =3p >1:weEeld, = weE A4,Vq = p.
By the maximal theorem in the Lebesgue spaces,

IMfllpcow < cllfllpowx € P~ (0.27D a-e. (41)
By Proposition (4.2.2) (where T = p) we have
IMfllprscymw < cllfllppysc)we (42)

We get back the boundedness result for the Hardy-Littlewood maximal operator
established by Gao, Cui, Liang in [277].

Section (4.3): Fully Measurable Small Lebesgue Spaces

In [291] Iwaniec and Sbordone introduced the grand Lebesgue spaces LP () (1 <p <
©),2 c R" of finite measure, in connection with the study of the integrability properties
of the Jacobian determinant. In the case 2 = I = (0,1) such spaces are defined as the
Banach function spaces (see e.g. [292] for the definition) of the measurable functions f on

I such that
1

1 p—€

Iflly = sup (e [ ire- dt) < .
0<e<p-1 0

Since then the grand Lebesgue spaces play an important role in PDE’s theory (see e.g.

[295]), in Function Spaces theory (see e.g. [293]) and in interpolation—extrapolation

theory (see e.g. [294]). They have been widely investigated and several variations have

been studied, among which, in [297], the spaces
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1
LPS(]) = {f: I > Rmeasurable : [[f|l,ys = sup <5(6)f lf(®)|P~¢ dt) < 00} (43)
0<e<p-1 0

where 6 is a measurable function in I, have been considered. It has been shown that the
interesting case is when § is left continuous, increasing (ie. 0 <e¢; <e, <p —1 =
5(€;) < 6(ey)) suchthat 6(07) = 0 and with values in ]0, 1].
Let M be the set of all Lebesgue measurable functions in I with values in [—oo, + 0], M*
the subset of the nonnegative functions, M, the subset of the finite a.e. functions, and Mg
the subset of the finite a.e., nonnegative functions.
Recently in [294] the following further generalization of ||f||,y s was introduced, where in
(43) p — e is changed into a general measurable function.
Definition (4.3.1)[290]: ([294]). Let p(-) e M ,p(:) = 1la.e. and § € L*(I),6 >
Oa.e.,0 <||6]lo < 1. The Banach function spaces

LPIDAOM) = {f € My : Ifllpppscy = Porpsey(IfD) < o}, (44)
where

Pornsc) () = ess sup Py (8C)f()) (f € M) (45)

and
1

(
x p(x) .
J( fl (8GO @) )dt> 1S p< o o
esieslup(S(x)f(t)) if p(x) =0

are called fully measurable grand Lebesgue spaces.

We point out that, in the previous definition, we choice the symbol ppq) sy (f) with

square brackets in p[-] and not the more natural p(-) to avoid confusion since the symbol

p() is already used in the theory of variable spaces with a different meaning. (See for

example the monographs [296]for an exhaustive treatment of the variable exponent

Lebesgue spaces.)

The (standard) grand Lebesgue spaces LP)(I) can be immediately obtained from (46)

settingp(x) = p —x,1 <p < ccand §(x) = ~x.

The generalized grand Lebesgue spaces (43) are evidently included in the spaces (44): the
1

Pp(x) (5(X)f()) =

function §(e)r—< in (43) corresponds to the function §(e) in (46).

Setting in (46)p(x) =§ and 6(x) = x% a >0, a norm of the Orlicz space EXP: is
obtained while, if in (46) p(x) = x, suitable continuous functions & give the so-called
bilateral grand Lebesgue spaces (see [296]). For the weighted fully measurable grand

Lebesgue spaces see [293].
In [293] Fiorenza introduced an explicit equivalent expression of the norm of the associate

space of the grand Lebesgue space LP), denoted by L(p',p’ =ﬁ.They are Banach
function spaces, defined through the abstract function norm
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1
11l o =sup{ f fgdx: g € Mg ,ligllyy < 1},
0

and they are called small Lebesgue spaces (see also [295]). It has been proved that

. 1
Il 1 1| |(p o (p—¢€)’
fllo,y = inf 2 inf ep—6<f fiel P~ ) : (47)
(» Z};iiofk - 0<e<p-1 0
where f, € My, k € N. Some properties of small Lebesgue spaces which follow from their
definition, along with some applications, are in [294]. Their role in Calculus of Variations
(see [295]), the GI'spaces (see [296]). Very recently they appeared of crucial importance
in the question of the dimension-free Sobolev embedding theorem [297].

In [298] Fiorenza and Karadzhov found the following equivalent expression for the norm

by using deeply extrapolation—interpolation techniques:
1

1 L/t ,\P dt
Ifllgr ~ | (1 =10g0) ™ ( | Frer ds) "

0 0
where f*denotes the decreasing rearrangement of f (see [294]); later a direct proof of such
equivalence was given in [296].
Inspired by the norm in (45) of fully measurable grand Lebesgue spaces, We consider a
generalization of the norm of small Lebesgue spaces (47) where p — € is changed into a
general measurable function. We give the following
Definition (4.3.2)[290]: Let p(-) € M ,p(-) =1a.e.and § € L”(),§ >0a.e.,0 <
I6]lc < 1. The spaces

LEHAOM) = {f € My : pepryscy(If]) < oo}, (48)

where

Pwr1s0 () = Zfirgfk;es;g,nf P (8O i) (ffi €Mg) (49

k=1
and py(y) is defined through (46), are called fully measurable small Lebesgue spaces.
we prove that p,1,s(is @ Banach function norm and therefore the spaces defined in (48)
are Banach function spaces under the norm given by f € LU0 5 poyry509(f) =
| f 1l pr18¢)- We need to show (as in [293]) that the infimum over I in the norm pe,r1.5¢)
can be computed also in smaller intervals included in 1.
Finally, , we prove a Holder-type inequality of fully measurable small Lebesgue spaces
which reduces to the classical Holder’s inequality in the setting of Orlicz spaces EXP; /,
and L(log L)* (a > 0), for suitable choices of p(x) and §(x).
Our first remark is that if p(-) = p € [1, o], the grand space (44) reduces to the classical
Lebesgue space LP (I):

Ppr1.60) ) = Ppsy(F) = 181l f 1l -
Similarly, if p(-) = p € [1, ], the small space (48) reduces to the classical Lebesgue
space LP(I):
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P10 ) = Pwso(f) = zfi=n°°ff ess inf ) ppey fi (D) = SIS f 1l )
k=1 k=1

the last equality due on one hand to the triangle inequality, on the other hand choosing the

trivial decomposition f = f +0+...+0 +.... Another remark is of reduction type: in

the following it will suffice to consider only p(-) € Mg ,p(-) = 1.Indeed, for any

f € Mg and for any decomposition f =Y, fx with f;, € Mg, we show that if I =

I; UL issuchthat p(x) < ooinl; a.e.and p(x) = ooin [, a.e., with |I;| > 0,|I;| > 0,

then

ess Inf Py (5() ™ £ie()) = ess Inf pyey (S fe()). (50)
Namely, first we observe that for any k € N
esxse}nfpp(x) (S(X)_lfk('))

= min{ess inf ppce) (8GO £, 53 Inf Py (S £ ()]

1

p(x)
= min< ess inf §(x) ! (j (fk(t))p(x) dt) ,ess inf §(x)tess sup (fi (1))
X€El; I XEl tel

= ess Inf p () (§() 7 i ()
that yields (50).
Now we prove that L1380 (]) is a Banach space. We recall the following
Lemma (4.3.3)[290]: ([293, Lemma 2.1]). If f,g e M§ and g < f = ¥, fi With

fx = 0,Vk € N, then the functions
k—1
hk= fk—max g—zf}-,o X{Zlefj>0} Vk € N
j=1
are such that
0<h,< fryVk €N
and

g = i(fk —hy) .
k=1

Theorem (4.3.4)[290]: Let p(:) € M,p(-) =1a.e.and § € L”(),§ >0a.e.,0 <
16l < 1. The space LPI140)(1)is a Banach space.

Proof: We exclude the known case of p(-)constant, and we may assume, without loss of
generality, that p(-) is finite a. e. We will prove the properties of the normed spaces and we
will get the completeness through the Riesz—Fischer property: therefore it suffices to prove
(see [294,p.32,n.11]) that, for all £, g, f™,(n € N),in M§ , for all constants 1 > 0,
and for all measurable subsets E c I, the following properties hold

@-per60(f) =0
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(ii). pepp160o(f) = Oiff f = 0inTa.e.
(iii).p(p[.]’g(.) Af) = Ap(p[.],g(.) (fH)vA > 0
(iv). if0 < g < finla.e, then p(p[.],(g(.)(g) < Pwp[160) (f)

(00]

(v)-P(p[-],S(o(Z f m) < zp(p[-].a(-)(f ™)

n=1

(Ul)p(p[]’5()()(5) < +oVE c |
(Ull)f fdx < C(p,&E)p(p[]’g()(f) VE c I.
E

(i). It is obvious.

(ii). If f = 0in[ a.e.itsuffices to choose f, = 0 forallk € Ntoget pi,5()(f) = 0.
Conversely, if pprys¢)(f) =0, for any decomposition f = ¥, fi with fi =0, by
Fatou’s lemma, we have

ess inf(?_l(x)Jf(t)dt = ess inf671(x) J z fr(®)dt
X€El I x€l I ]

< z esieilnf5_1(x) jlfk(t)dt

k=1

® 1/p(x)
< Zess inf6~1(x) ( j ()P dt)
x€l I

k=1
from which

eS;EiInf(S'_l(X)JIf(t)dt < p(p[.]’g(.)(f), (51)

hence f =0in! a.e.
(iii). If Af = Y.;7-1 hy is adecomposition with h;, > 0 then

Pors0@D) =, B, 2 esintorn (60970

(0]

— 3 . _1 . —

= s mn Zk_l ess Inf pp 0 (6(0) e ()/4) = Apr1.6¢)(f)-
(iv). For any decomposition f = Y7, fi, with f;, = 0, let hy, k € N, be given by Lemma
(4.3.3) such that

g = 2r=1(fi — he), fx — hx = 0,Vk € N.We have

Poso() = _inf ) essinfp (6607 ()

f=Yiz1 fk e
= inf zess inf S(O)"(F — b)) (-
PP fi s el P (8™ (fie = hue) ()
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(0]

> inf Z ess inf 5(x) 19k ()) = peprascy ().
532 0 L4 el P (6() 7191 ()) = Ppr16¢)(9)
(v). Let us assume that the functions f™ e Mg are such that Y-, ppry609( f ™) <

o,Vn € N, otherwise the assertion is trivial. Let e > 0 and let fk(") € My be such that

M = Efk(") vn € N
k=1

and

Z essinfp (6(x)‘1 (n)(-)) <p (f(n) + £ vn € N. (52)

ey e 4C9) k ([160) n '

k=1

We have
— m | _ (n)
Pwl180) (Z f (")> = Pwl150) ( z z P ) = Pl160) ( Z fi )
n=1 n=1k=1 nk=1

o

< z ess inf py( ()L O) = z z ess inf pyce) (5C) £V ()),

nk=1 n=1k=1

Therefore, by (52), we have

PwI156¢) (Z f (")> = z Pwi1se(f™) +e ve>o.
n=1 n=1

Since € is arbitrary . Let us consider the trivial decomposition yz = yz + 0 +...0 +.... We
have

1
< inf 51 p(x)
P8¢ XE) < esxsellnfd (x)|E| :
(vii). By (51),

1
| fax = [ fredr =18lloessinte0o0 [ fxsdr < Mollwpopis ()
E 0 1

Later we will need the following theorem, where, in the spirit of [292, Theorem 1], it is
shown that the essinf can be equivalently computed in the set where p(-) is small.

Theorem (4.3.5)[290]: Let p() eM{,p() = 1la.e. andéd € L®(I),§ >
Oa.e.,0 < [I6llo < 1.For f € Mg the norm pg,(s¢)(f) defined in (49) is equivalent
to

e}

D(pl15(- :=  inf z ess inf S(xX) () vt
Pwrsc () f=Z,;'°=1fkk=1x€p‘1([1,ﬂ)pp(x)( )i ()

€] esieilnfp(x) ,00][ (53)
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Proof: The following inequality

[00]

Porso () < _inf Z ess it oo (660 ic())

f:Zk=1 [k = pr_l(

holds trivially for all T €] ess infxe,p(x),oo[. Now we have to prove that there exists
c; such that

[00]

Pprse)(f) = ¢ inf Z essinf)pp(x)(6(x)‘1fk(-)).

f=Yneqfk = xep~1([1,7]

Ift > po(p(+)) then of course

[00]

Por1s(f) =  inf Z ess 1nf pp(x)(d(x) ()

f:Z]io=1 [k = xep~1([1,
and therefore there is nothing to prove.
Otherwise, it is t E]eSSEiInfp(x),poo(p(-))[ and therefore |p~1(]7, po(P(:)])| >
X

0. Setting
EL=p7 ([0 (pO)]). T = essinfopen (6007 ()
and
Ef = INEf = p'(ILTD, T3 = ess infopn (G i),
itis|Ef| > 0,|E3| > 0 and we have, by Holder’s inequality,

Pp) k(D)) < p(fik (1)) Vx € EZa.e.
and

p‘r(fk(')) = Pp(x) (fk())vx € Ef a.e.
Thenforx € Eja.e.

ess Inf oy (5™ ()) 2 ess infpe (8 ™))

= (essjnf8G)™) pe(fe()) = (ess nf 5GI™) ppiay (i)
If E; c EF issuchthat |[E5| > 0and

61| 1o i
5(x) > LT(EZ Vx € E§ a.e.

itis, forx € E5 a.e.,
T = (essnfaCO™) SGISCI ™ ppen (i ()
XEET

><essmf6(x) )H o) 5(x)” Pp(x)(fk( )

XEET
and therefore
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|| ) ||L°°(ET)
7,k . -1 2

I >  —_—
1 = eigEllpfé‘(x) 5

- ess inf Ppeo(6(x)7 £ ()

181l 0 g1 .k

= essEipf6(x)‘1 : A

XEE} 2
Therefore, being
. — . k k
essInf Py (5007 £ () = min{T{* , T74)
we have

_ _ , , o 8llwoery ok
es;ellnfpp(x)(S(x) lfk(.)) 2m1n{1,e§gglglf6(x) 1 .Z—ZTZ‘L', . (54)

Now, summing over k and passing to the infimum over decomposition f = Y., fi, We

get the assertion with
c; = min{1, eigEifnfS(x)‘1 M”;J}

In order to prove that the Banach space L®L190) (1) is a Banach function space it remains
to show the validity of the Fatou property

0< f(n) T fa. e.inl = p(p[.]'g(.)(f(n)) T p(p[.],g(.)(f),
which is a immediate consequence of Levi’s Theorem .
We first recall the following two lemmas.
Lemma (4.3.6)[290]:If0 < b < a,p =21 = a? —b? = (a — b)P.
Lemma (4.3.7)[290]: ([298, Lemma 4]). If 0 < b <a,a>0,a =2 (1 +a)b,0 <
Yo < y < 1, then there exists c = c(a,y, ) such that

(a — b)Y < c(a¥ —b"),
where
aYo

c = c@n) = grgn =1

Theorem (4.3.8)[290]: (The Levi’s theorem of monotone convergence for fully
measurable small Lebesgue spaces). Let p(1) € Mg ,p(-) = la.e.and § € L*(I),5 >
0a.e.,0 < |6l < 1.Let 0 € M7 be a monotone increasing sequence (i.e. f™ <
£+ such that

M = sup pp150)(fT) < +oo.
n
Then the function f = sup f™ is such that
n

i) f € L@

i) f™M 2 finla.e.

i f™ — finL®80O (),

Proof: Fix T €] ess inf,¢; p(x) , oo[. Without loss of generality we may assume that the
sequence Ppr1.s¢9(f ™) is convergent, where fipp,sc) (f) is the expression equivalent
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to pprysc)(f™) defined in (53):in fact, if it is not the case, we can extract a suitable

subsequence of f™ and we prove first the theorem for such subsequence. This is sufficient
to get the full assertion.

Let I' = p~*([1,7]) < I, so that|I’| > 0,and let ¢ >0,r € N,r > 1.Let f™ =
Y £ be such that

> essinfppe (807AO) < pnso(f?) +o (55)
k=1
For each k € N there exists Ty, , ¢ I',| Ty, s| > 0, such that

—1¢() : —1 ()
Pp(x) (S(X) lfkr ()) < z esxse}pfpp(x) (5(96) 1fkr ()) + — Zk —Vx € Tka a.e.,Vk
k=1
€N,
therefore

ess 1nf(6(x) 1fk(r)()) < ess 1nfpp(x) (6(x) 1fk(r)()) —— Vk € N.(56)

On the other hand, let s € N,s < r.Since f(™ is an increasing sequence we have f©) <
£ and, by Lemma (4.3.3), there exists fk(s) such that

FO = z 9 9 <Dy en.

k=1
Then ) — f(&) = Z;‘?’:l( - k(s)) and therefore

(ee)

Pwteo(fT =) < Z ess Inf pp( (S (F = F9) ).
=1 k.o
By Lemma (4.3.6)

Poco (8GO (FO = FO) ()

< o6 ([ (@) - [ (10©) @] vx e
I I

Hence

© 1

N _ p(x) p(x) p(x)
Pw[1,8¢) (f(?‘) — f(S)) < z ?C%STlnfpp(x) (f (fk(r) (t)) dt —j (fk(S) (t)) dt) .
k.o I I

k=1
Now fix 0 < a < 1, and let

:{k €N: f (f,gﬂ(t)) PO e < (1+a)f f(s)(t) POt vx e Tk,aa.e}.

and
= N\4,.
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We have
1

z ?csesri,f}f‘g(x)_l ( JI (f ;E”(t))p(x) dt — JI (f,@(t))”(") dt)m

k €EAg
1

< Z ess inf ap(% S(x)~! (f (flgs)(t))p(x) dt)m
I

XE€ETko
k€A,

1 _1_
() p(x) p(x)
< Z essinfa 7 5(x)1 (f (f,gs)(t)) dt>
I

XETk,o
keA,

1 00 1

ess sup p(x) p(x) p(x)
< ! ] -1 (T) dt
< a 1 E isésTkr;fS(x) (-[1 ( h (t))

k=1
1 1

ess sup p(x) - p(x) p(x)
<o o+ Z ess inf8(x) ! < j (F®) dt>
e xX€l I

1 1
ess sup p(x) ess sup p(x)
!

<a I (ﬁ(p[.]'g(.)(f(r)) + 20') < a ! (M + 20),
where in the last two lines we used (56) and (55) respectively.

On the other hand, by Lemma (4.3.7), there exists a constant
1
ess sup p(x)
1 a I

1
ess sup p(x)

A+a) T

@ ess sup p(x)

such that
1

D, essinf §(x)™" ( j[ (rO®)" ae - j[ (f,gs)(t))p(x)>m

1 p(x) p(x)
< cl|a z ess inf §(x)™! <J ( ,Er)(t)) dt)
essl§upp(x) o € Thg I

a

1

_< f ( ,ES)(t))p(x) dt)ﬁ
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- 1

1 p(x) p(x)
< : -1 (r)
=\ Yess sup p(x) kzl isesler’}ff 5(x) <f1 (fk (t)) dt)
I =

1

_( J ( ,ES)(t))p(x) dt)@

(00]

1
' -1,
= | “ess supp ) Zei%}r“fpm (6 A0) +o
I’ =
- i 1208,
D essinf pyen (5607770)
k=1
1
= ¢ P15 (f ) + 20 = Bpps (fP)

b ess sup p(x)
Il
where in the last two lines we used again (56) and (55). Then
Porse(fT %)
1

ess sup p(x) 1
<a I (M +20)+ |«
ess sup p(x)
I/

Lettingo — 0, we get, foranyr,s € N,r > s,
Peor1se (T = )
1

ess sup p(x) 1
< a I +c| a,
ess sup p(x)
II

Let € > 0 and fix a, such that

Poor1so () +20 = pppso(f).

P15 () = Pors0 (f)-(57)

1

ess sup p(x) €
a M<s. (58)

On the other hand, since the sequence f,rqs¢(f ™) is convergent, there exists n. € N
such that

1
@ ess sup p(x)
I/
By (57), (58) and (59) we have that
Ve>03dn.eN: ﬁ(p[.],(g(.)(f(’”) - f(s)) < eVr>s>n,,

therefore, by Theorem (4.3.5), f™ is a Cauchy sequence in L®P18C) (1) and, by Theorem
(4.3.4), converges to some function f € L®@L1SO (),
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Since by property (vii). of Theorem(4.3.4)it is LPLLSO (1) < LY(D), it follows that in I
a.e. the limit f coincides with sup,, f™ , which is also the a.e. limit of f™,

As consequence of Theorem (4.3.4) and Theorem (4.3.8) we can state the following
Corollary (4.3.9)[290]: Let p() eMf ,p(-) =1a.e. and & € L*(I),6 >
0a.e.,0 <||6]l < 1.The space LPIL3O) (1is a Banach function space.

we prove a Holder-type inequality of fully measurable small Lebesgue spaces. The next
result is a direct generalization of the Holder inequality between grand and small Lebesgue
spaces proved in [293]. Here we include the details because, as a consequence, it turns out
that this argument is also an alternative approach to the duality between L(logL)“(I) and
EXPy o (D).

Theorem (4.3.10)[290]: Let p(1) EM,p =1a.e. and § € L*(),§ >0a.e.,0 <
I6ll < 1.1ff,g € M§ ,then fg is integrable and

f fgdt < pprpsey (NP 11,609, (60)
1

where p’(x) = p(x)/(p(x) —1) denotes the conjugate exponent of p(x)(we set
1/0 = o).
Proof: Let g = ).y~ gx be any decomposition with g, = 0. For each k € N we have

f,f grdt < o) (F())Pp 0 (91 ()
= 5(X)Pp(x)(f('))5(x)_1pp'(x)(gk(-))dx
= (esies;up P (8GOS (-))) Py o (6007 1g, ()

= DpDs) Py 0 (8 gk (D)
and therefore

| £ede = oy () essinfoy (6 ai0))

jlfgdt=jlf;gkdt stlfgkdt

< Z Por,6¢) () eS;EiInfppr(x)(6(x)‘1gk(.))
=1

In conclusion

so that

[ee)

fl fgdt = pprpsey(f) g=2i§=flgkkz ess inf ppy ) (6() 7 gk ()

as desired.

Next theorem provides a norm equivalent to the norm in the Orlicz—Zygmund space
L(log L)*(I)(a > 0). We recall that L(logL)*(I) is the Orlicz space generated by the

function @(t) = tlog“(e + t).The dual space and the associate space of L(logL)*(I)
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coincides with the Orlicz space EXP;,,(I), generated by the function @(t) =
exp(t1/*) — 1, consisting of all measurable functions f on I such that exp((A1f)Y/%) €
L*(I)for some A > 0. The associate space of EXP; ,,(I) is L(log L)*(I), while the dual
space of EXP;,,(I) includes L(logL)*(I). A decomposition formula of the dual of
EXP; 4 (1) has been given in [296].

Theorem (4. 3. 11)[290]: Let] =(0,1),a >0and f € M. The following equivalence

inf Zlnft “||fk|| 1 = fllgog (61)

9=2re1fk tel
k=1 S £

holds.
Proof: First we note that obviously it is
inf met @ inf Z( ) ’ 62
f:Z];.o=1fk tel ”fk” ( ) o f Zk fr L ”fk”(zk) ( )
1\ _ L kN —
where (?) = and(2%)' = zk .

We recall the formulas in [11, Theorem 2,p.72] (see also [16,p.273]) for the norm in

L' (logL)*:if1 < r < oo,k € N, then the functional
1/r

— ka r
Flle = ,_jaf | (Z 2Ky (Zk)) (63)

defines a norm in L" (log L)% equivalent to the Luxemburg norm. Then, by (62) and (63),
it follows

36> 0 fzzinglfkkzlir;ft-“||fk||ﬁ_t o S alf ooy (64)
On the other hand, let f = Y-, fr be any decomposition with f;, > 0. For each k € N
we have, by (52) in [296],
3¢ > 0: | fillLaogyzay < ct™ ”fk“% ’

hence

I fillLgogyeqy < infct™|[fill 1

and therefore

[ee)

Wf1lLaog ey < § | fillLaogyey < ¢ é %Iellf ™ fiell 2
-t
k=1

k=1

From the previous inequality, passing to the infimum over all decomposition of f, we have

(e e)

I lgogoe < ¢,_nf D inf tlfell 1

f=21}°°=1fkk 1tEI 1-t
and the assert is proved .
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Chapter 5
Direct and Inverse Theorems with Approximation of Functions Problems

We show results obtained in present radically differ from other authors’ results on this
subject because we don’t require from variable exponent p(x) the fulfillment of additional

conditionp(x) = p > 1, which is closely related with boundedness of Hardy -
()

- - - - p
Littlewood maximal function M(f) in L. :

. In the definition of the modulus of continuity

of a function f(x) € 2%, we replace the ordinary shift f*(x) = f(x + k) by an

2T !
averaged shift determined by Steklov’s function s, (f)(x) = % ) Oh f(x+ t)dt . We

obtain a converse theorem of trigonometric approximation in the weighted Lebesgue
spaces and obtain some converse theorems of algebraic polynomial approximation in the
weighted Smirnov spaces. Moreover, the constructive characterization problems for the
some subclasses are discussed.

Section (5.1): Approximation Theory in Variable Lebesgue and Sobolev Spaces

In 1976, the year when we began studying the topology of space LP*)(E), there was no
theory of variable exponent Lebesgue spaces. There was only example of measurable
functions set noted by Orlicz in [325]. Common modular spaces theory was being
developed by the Japanese mathematicians (H. Nakano [326],[327]), and functional
modular spaces theory - by the Polish mathematicians (J. Musielak and W. Orlicz
[328], [330]). Also note the work of Russian mathematician I. V. Tsenov [329].

But in these theories there was no consideration of a special theory of LP®)(E) spaces.
Such spaces were noted only as exotic examples of modular spaces. Spaces of functions
integrable with an exponent ceased to play the role of exotic examples of modular spaces
and set off on their path of development once the topology of these spaces was shown to be
normable, with one of the equivalent norms given by Kolmogorov’s well-known

theorem on the normability of linear topological spaces having a bounded balanced convex
neighbourhood of zero [337]. A.N.Kolmogorov [337] introduced a norm on such spaces
by means of the Minkowski functional. In the same direction, the author showed in

1976 (but published [338] only in 1979) that the Lebesgue space LZ(") (E) with variable
exponent p(x) = 1 (this space consists of measurable functions f(x) on E such that
|f (%) [P™) is integrable on E) is a normed space with the norm of f € LZ(") (E) given by

p(x)
||f||p()(E) = inf{a > Olf % u(dx) < 1}. (1)

For unknown reasons, many authors call such norms Luxemburg norms instead of Kol-
Mmogorov norms,

In [328], conditions on variable exponent p(x) for the LP™)(E) space to be a linear

topological space, were found. It was shown thatL?™ (E") will be a linear topological space
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iIf and only if p(x) is essentially bounded function, i.e.0 < p(x) < p for almost every
x € E.

The case when p(x) is not essentially bounded was considered in [328]. Such case is
arising in the problem of finding conjugate space [ LP®)(E)]* (space of continuous linear
functionals) when essinf p(x) = 1. Moreover, there can be cases when p(x) = oo on set
with nonzero measure. In all such cases, the corresponding spaces [ LP™ (E)]* were found
in [328].

Results and methods developed in [328] have been used in the sequel by many authors
(quoting or not quoting [328]) and they represent now a kind of folklore in the theory of
spaces LPX)(E).

The next stage in the development of the theory of the spaces Lf,(x) (E) was the imposition

of stronger conditions on the variable exponent p(x) and obtaining LZ(") (E) analogues of
classical results that were well known in the case of constant p(x). The first step in this
direction was made by the author [329] who showed that if u is the ordinary Lebesgue
measure on the line, then Haars system forms a basis for LP®*)([0,1]) if and only if the
variable exponent p(x) = 1 satisfies the Dini-Lipschitz condition on [0,1]:

1
lp(x) —p(y)|log X7l = Clx-»yl= =

Under the same hypotheses, the author [334] proved that some families of convolution
operators are uniformly bounded in LZ(") ([0,27]). This covers in particular a large class of
classical operators, including the operators of Fejr, de la Valle-Poussin, Abel, Steklov and
many others.

Substantial contributions to the theory of the spaces Lf,(x) (E) were made by V. V. Zhikov

[326]-[328] and L. Diening in [336] — [337]. The best result obtained in [335] — [336]
is as follows. Suppose that Q is a bounded domain in R", « is the ordinary Lebesgue
measure on R", and p(x) is defined on Q and satisfies the conditions 1 < p_(Q) <

p(x) < p7(Q) < »[p(x) — p)|log——=< C(lx — y| <= xy € Q). Then

lx—yl
the operator M (f) of the Hardy-Littlewood maximal function acts boundedly on L’;(x) (Q).
As a corollary, it was shown in [329] that under the same restrictions on P(x) and some
additional condition on P(x) outside some ball, the well-known Calderon—Zygmund

operators act boundedly in Lﬁ(x) (R™). In particular, for n = 1 it follows that the Hilbert
transform is bounded in L’;(x) (R) provided that 1 < p; < p(x) < p, < oo, |p(x) —

1
p(y)llog——

outside some interval. Thus, the connection between the Dini—Lipschitz condition for the
variable exponent p(x) and the uniform boundedness in LZ(") (E) of families of classical

operators, described by the author in [338],[339], turned out to be characteristic in the
construction of a deep theory of integral operators in the spaces Lp(x) u (R). Numerous
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recent results obtained by specialists in the theory of differential equations show that a
similar situation arises when constructing a deep theory of differential equations in Sobolev
spaces with variable exponent. Many references can be found in the recent

monograph [337]. Among them, a special place belongs , where the spaces Lz(x) (E) were
used for the first time to study problems arising in the multidimensional calculus of

.. . . . . p(x) . .
variations. The properties of singular integrals in the spaces L, (E)were studied in

under the same logarithmic DiniLipschitz condition on the variable exponent p(x).
Here we consider the problem of the approximation of functions by trigonometric

TR : p(x) _ -
polyno_mlals in the _metrlc of L, ([0,2m]). Suppose that p = p(x) is a measurable 2m-
periodic function,p_ = inf{p(x) : x € R},p” = sup{p(x): x € R},1 <p_ <
p- < oo, Lp( ) is the space of measurable 2m-periodic functions f(x) with
fo |f (x)|P¥) dx < oo, Putting

p(x)
dx <1

()
= , @)

Ifllpy = infla > 0+ [ |
0

we turn Lg,(;‘) into a Banach space. We write P, for the set of all 2m-periodic variable
exponents p = p(x) = 1 satisfying the condition
21
() =pWlInyr==r < d (o y € [0.27]). 3)

The subclass of all p = p(x) € P,, satisfying the additional condition p_ > 1, is
denoted by P,,. The author proved [326] that if p(x) € P,,, then the trigonometric

system {e***},; forms a basis for the space Lp( ) In other words, putting

=— ff(t)e‘lkt dt, k €17,

Sa(f) = Salf,3) = z fe, )

k=—n

we have the estimate
1Sn(Dlpey < c@Ifllpey (= 01,...). ()
It follows that the Fourier series of a function f € L2 converges to it in the norm (2),
that is,
If =Sn(Pllpey = 0 (n = o).
Moreover, if p(x) € P,,,then the order of approximation of f € Lp(x) by the partial
sums (4) in the norm (2) asn — oo coincides with the order of best apprOX|mation

En(f)p(~) = lTI':lf”f _Tn”p(«) ) (6)
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where the infimum is taken over all trigonometric polynomials
n

T,(x) = Z cetx, (7)
k=—n
We may now ask how the rate of decay of E,(f),) asn — oo depends on the properties

of f € Lgftx) . In other words, we want to define the modulus of continuity of a function
f €129 and estimate En(f)p(y in terms of it. As mentioned in [335], the quantity
o(f,8)pey = sup [If —f(+Mllye
0<hs<é

cannot play the role of the modulus of continuity of f € LZS‘) in the case of a variable
exponent p = p(x) because, generally speaking, the equation lims_o w(f,6)py = 0
does not hold for all such f. If p(x) is not equal to a constant almost everywhere on
[0,27], then the shift f,(x) = f(x + h) of a function f(x) in 5% need not belong to
1% Quite the contrary, the integral fozn If (x + h)|P™ dx usually diverges for h #
0. This was the main obstacle in the way of transferring the main theorems of the theory of

approximation by trigonometric polynomials to the case of spaces L’;frx) . We give one of

the possible ways to overcome this obstacle by using certain types of Steklov functions.

We put
h

1 7 h
fn(x) :E jf(x + t)dt, sp,(f)(x) = fn (x + 5)
_h

h
1
=Ejf(x+t)dt (8)
0
and consider the quantity

h
0.0 = s [f ~AG+ | = s lf = Do ©

It follows from the author’s results in [326]that if p(x) € P,,, then the function
Q(f, 8)p( is continuous on [0, ) and lim s5_,o Q(f,5),y = 0. It also follows from the
definition (9) that Q(f,8),(,)is a non-decreasing function of 5. We call Q(f, &), the
modulus of continuity of a function f € L5 .

It was proved in author’s works [328] - [330] that if the variable exponent p(x) € P,,
and f € L2, then the following Jackson-type inequality holds:

BNy < c@2(f,)

. (10)
p()
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Moreover, if Q(f,8),) < ¢6% (0 < a < 1), then the converse assertion holds. Namely,
if E,(fpy < ¢/n*(n = 1,2,...),then Q(f, 6)py = 0(6%). We note that in [336] we
considered the quantity
W 0pey = 0. F, 05y = sup lIf = fulx+Dllpey » (A1)
|rP/fsh55
where y > 0. We call it the y-modulus of continuity of a function f(x) € 5% It
follows from (9) and (11) that

AF, Oy = sup ||f = fu (*+§)Hm < Of, 80 (12)

On the other hand, the following result was proved in [326]:
Theorem (5.1.1)[324]: If p(x) € Py, f(x) €12, then the function g(8) =

21
QY (f,8)p( is non-decreasing on [0, co] and continuous at the point § = 0. In particular,
Theorem (5.1.1) and the estimate (12) yield the equation

mentioned above.
The proof of Theorem (5.1.1) is based on the uniform boundedness in L’;frx) 0 < h<
1, |7| £ mhY of the family of shifts of the Steklov functions
h
X+T+5

1
$1e) = SuelN@ = for®) =il + 0 =3[ f© de

X +T—%
2
Namely, it was proved in [326] that if p(x) € P,,, then
||Sh,T(f)||p(_) < c(@@r + DP Ifllpy0 < h < L7l < =k,  (14)

where d is the constant in the inequality (3).

We mention that the direct and inverse theorems of approximation theory in the spaces

1P% were obtained in [331][334] under the assumption that p(x) € P,,. The principal
difference between our results and those in [331][334] is that we are able to get rid of the
restriction p_ > 1 and prove the direct and inverse theorems of approximation theory

in L2 under the natural assumption p_ = 1, where p_ = inf{p(x) : x € R} (by the
definition above). The results in [331][334] were obtained for p_ > 1, and we stress that
this is not accidental. The methods used in those s to study the direct and inverse
problems of approximation theory L‘;ftx) (and even in the more general weighted spaces
LZS,‘; with variable exponent)are based, either directly or indirectly, on the boundedness in
LZ,(T") of the operator M(f) given by the Hardy-Littlewood maximal function (or of its

analogues and generalizations in L’Z;’fl))), and it is well known that this holds only for

p_ > 1.For example, in [331] the proof of a direct Jackson-type theorem for L’;frx) under
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the assumption that p(x) € P,, is based on the facts that the operator of conjugation (of
functions) is bounded in L’Zfrx) and the trigonometric system forms a basis there. These

facts were established by the author [326] using the boundedness in L’;’S‘) of the Hilbert

transform under the assumption that p(x) € P, , and this boundedness was deduced in
[335] from that of the maximal function, which was proved in [334]. To obtain direct and

inverse theorems of approximation theory in le’ftx), where the variable exponent p(x) €
P, satisfies the Dini-Lipschitz condition (3) and may be equal to 1 at some points (that

Is, p~ = 1), it is required to develop essentially new approaches which do not use the
properties of the maximal function M(f). In author’s works [328] - [330] we make an
attempt to solve the part of this problem that concerns Jackson’s first theorem. One of the

instruments in the proof of Jackson’s first theorem in 129 s Jackson’s well-known

operator (trigonometric polynomial of degree 2n — 2)
s

2w

1
Dup) = D@ =1 [ Fa-0p©®d (0 =12,

where
4

in 12X
sin
2n(2n? + 1) sin%

Jn(x) =

We proved in [329],[330] that D,(f)(x) approximates every f(x) € L5% with
accuracy 0(Q(f, %)p(.)). In other words, if £(x) € LIS with p(x) € P,y, then

1
If — Dn(Nllpey = C(P)Q(f;g)p(-);
which again gives the inequality (10).
The proof of the inequality (analogue of Jackson’s second theorem)

1 1
E Doy < €50 (F7) (15)
.

encounters additional difficulties, and in [328]-[330] we have not been able to overcome
them in the general case when p(x) € P,,. Therefore in [328] — [330] we only give it for
p(x) € P,,. But in present work we consider the general case when p(x) € P,,. We
succeeded in proving that the inequality (15) holds for every function f(x) €

er’(,) , Where p(x) € P,,, g(,) Is the Sobolev space of 2m-periodical functions f(x) such

that £~V (x) is absolutely continuous in [0,27] and f(r)(x) € L5, In the author’s

works [335] - [336] it is shown that one of instruments in the proof of inequality (15) is
the Valle - Poussin’s well-known means

1 m
VR = VRGN = —= ) Spulf 1),
=0
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where Fourier sums S, (f, x) are defined in (4). Namely, in [335]-[336] the following
inequality
c(p)

If = VaDllpey = —= En(f " )p(y (16)
is proved, where p = p(x) € Por,7 = 0,f(x) € Wy, ,m € {n— 1,n}. The estimate
(15) (analogue of Jackson’s second theorem) follows from (10) and (16) as a corollary.
The complete proof of inequality (16) .
We will consider in LP®) Sobolev type classes Wy (M), which consist of 2m-
periodical r — 1 times continuously differentiable functions f(x), whose derivative
£~ (x) is absolutely continuous in [0,27] and £ (x) € 2%, |f(r)||p(_) < M. Letus

assume

— 0o _ jp®
o) = U Woiy (M), Wyey = Lor” -
M>0

We can consider the Fourier series for f € 5% :
f ~%+Zakcoskx + by, sinkx (17)
and partial sum of Fourier seIFizels .
S.(f) = Su(f, %) =%+ Eak coskx + by sinkx, (18)
k=1

Where

17 10
a, = ai(f) == Jf(t)cosktdt , b, = bi(f) = jf(t)smktdt.

-7
Ifr > 1,p(x) = 1and f € Wy, then [337,p.75]
A

f@ =2 4= [FO0BE-xa (19)
where -
2 (ku+ 5
B.(u) = z cos(uk—TZ) (20)

k=1
is the Bernoulli function. Since S”(f,x) = S,(f™, x), then we conclude from (19) and
(20) an equality for f € W,
Vi

1
FO=5uf0) =5 [ FOOR (-, 1)

-1

159



oo r
R, n(u) = Z COSM. (22)

k‘l"
We will define Vallee-Poussin means V.7 (f) = V.(f, x) by equality
VE(F) = Y (F, ) = —— ZSnH(f ). 23)
Matching equalities (21) and (22) with (23) We notlce
F) = Vil () =~ f FO) —— Z Ryt =) dt. (24)

-1

We will assume

K@) = @+ D7 Ry () (25)

and transcribe (24)

1
FOO =V () = s j FOOK it =) dt. (26)

Since, by (25), &} u+1(x) is orthogonal to all tri_gonometric polynomials of degree not
greater than n, then we obtain from (26)

f&) =V (f, %)

T

1
B 17T(m + 1) __I(

i
where T,,(x) is an arbitrary trigonometric polynomial of degree n. Now we can state the
next result.
Theorem (5.1.2)[324]: Let p = p(x) € Ppp,v = 0,f(x) € Wy,. Then the
following estimates hold:

If =Vaze Dllpey =
If =W (f)”p() < (29)

Proof : is based on a number of auxiliary assertlons concerning functions K7 ,, .1 (w).
Lemma (5.1.3)[324]: We have the following equalities

FOE) = To(t) ) Kpmaa (£ — ) dit, 27)

(p)

(28)
(p)
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Kgs,n (u)

= sinl-lz_lusink-lz_1 ucos(2n + k + 1 +2)%
= (—1)5n?s71 Z — Alg.(n + 1
et £ 2 smzj
+ k + 1)
- sin%u sink%lucos(Bn +k+1)
+ (=1)5"In2s-1 Z — Agq,(2n
o 2 sin >
+ k), (30)
Kgs—l,n(u)
n2 @ ginl 1 ' k-lz_lucos(Zn+k+l+2)%
= (—1)n?s~2 Z - Alg,(n + 1
== 2 sin >
+ k+ 0
- sin%u sink%lucos(Bn +k+1)
+ (—1)5‘1n25‘22 — Agq,(2n
e 2 sin >
+ k), (3D)

where  gg(t) = t7%,q5(t) = t72TLAp(t) = ot + 1) — (1), A%p(t) = o(t +
2) = 2p(t + 1) + @(t).
Proof: From (22) and (25) we have

W = (m + 1y 1z:z:cos[(n+k+l+1)u+ >
Krm+1 — (n+k+1+1) ’

So, with the help of Abel transform, We can write
Krmer(U) = (m

m [0 0]
L0 [
e m+1+k+ D"

]v}},z OF (32)

T+ 2+ k4D

where
k

. r
v (u) = ZCOS [(n +1+14+ ju +7]. (33)
j=0
We will consider the case when m = n—1 and the two cases of r, even and odd.
Ifr = 2s, then cos(pu + %) = (—1)°® cos pu. Therefore, (33) takes the form
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k
Vi) = (—1)SZcos(n + 1+ 1+ ju=

j=0
= (-1
sin2n + 1+ 1+ k) + Dy —sin@@ + D+ Dy
' (34)

. U
251n7

From (32) and (34) we have

KGom () = (=1)*7 1271
o n-—-1

X EAgs(n + 1+ k
k=0 [=0
sin2(n + 1+ 1 + k) + D5 -sin@n + D+ D5
. (35)

+ 1) I
2sin 5

We apply Abel transform to the inner sum again. From (35) we get
© n-l n n
Wk,l (w) — Wo,z(u)

K3 () = (—1)5‘1n25‘1zzAg5(n 1+ k+0D) —
l —
2

k=0 =0

- wr . (uw)—WwWkt _.(u

+(_1)S—1n25—12A'gS(2n + k) kn 1( ) uO,n 1( )
=0 2sin >

(36)

)

Where
l

u
Wi (w) = ZSin(Z(n + 1+ u+ k)+ 1)E

=0
sinf(n + I + k + 2)%—sin2(n + k + 1)%

B sin u
2

(sin(n + 1+ k+ 2)

-~
sin
u u
—sin(n + k + 1)5)(sin(n + 1+ k+2)+sinn+k+ 1)5)
[l + 1\u
n+k+1 +~—7?——)—

4 [+ 1
2

sin

u 'COS(

sinj
[+ 1\u [ +1
-sin(n + k +1 +T>—cos TR (37)

2
From (37) we get
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Wier (W) =Wy (W) =

4 L+ l+1<_ +k+1+l 1. u T
_sing sin—— cos— sin(n 5 )2 cos(n
2
+1+l+1u _ +l+1u +l+1u>_
> )2 sin(n > )Zcos(n > )2 =
. 1+1
T2 (n@t k+ D AL DY —sin@n + L+ DY
sin% (sm( n+k+1) )E sin(2n )E)

1 I+1  k+1 u
= 2 Sin u sin ucos(2n + k + 1 + 2)=. (38)
sinj 2 2 2

So, the equality (30) follows from (36) and (38). Equality (31) is proved similarly.
Lemma (5.1.3) is proved.

Lemma (5.1.4)[324]: Suppose 0 < k < L. Then

T k+ 1 L+ 1
| sin—s—usin——u| I + 1 T
Akl=j 7 du < 2(k + 1)(2 + In ) + 5
' sin k+1 n
0 2 3— g
Proof: We have
T
2
sin(k + 1usin(l + 1
g =2 [ Lo Dusin + D],
’ sin?u
0
T
2
| sin(k + Dusin(l + 1) |
= 2.[ > du
u
0
Vs
2
+j | sin(k + Dusin(l + Du|e(u)du, (39)
0
where
1 1 _u2 —sin?u
) " sin2u u?  u? sin?2u

Suppose 0 < u < % Then
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u u u u
_ (u + sinw)(u —sinu) _(ZU— e )Gt
(P(U,) - u2 Sil’lzzu \ - , u2 sin?2 u
u u 1 u
_(2 30 +§—...)(§ E] +...)
— _ :
sinu
ooy
u u 1 u 2
gty G mgt) o3 1
B uz | ut 5 u\2 T2
(1= =35+ 5r—) (1 ﬁ) 31— 57)
_ 1
— —
3= g
and, therefore,
% 1
sin(k + Dusin(l + Du|p(u) du < .
2 [ |sin(k + 1) (I + Dulp) d — (40)
0 3—§
On the other hand,
T T
z 7("“)'. Cl+1 |
sin(k + 1)usin(l + 1u sinusing—=x u
f' (k + Dusin )'du=(k+1)j ESRAIN
u u
0 0
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i
2(k+1)

sin+——
k“ |d +(k+1)J

(k+1)j|

K+
|sin u|
=(k+1)j du + (k + 1)

u
0
1+1
1 k+1
sinu du
=(k+ 1 du + —+1
u u
| > ]
<(k+1)(2+l l+1) (41)
n )
k+ 1

The statement of the lemma follows from equality (39) and inequalities (40) and
(41).
Lemma (5.1.5)[324]: Ifr > 1, then

[

j|}c?,n| du < c(r).

Proof: Consider the case of even r = 2s. Then, from Lemma (5.1.3) we have
i

f ki n| du
-

n-2 o m, . k+1 Cl+1
1 |smTu 51nTu|
251ZZA2gS(n+k+l)—j u du
1=0 k=0 2 sin? »
~0 k= “n 2
o0 n k+1
|sm2u sin—5— > u |
n2s-1 zAgS(Zn + k)— f — du. (42)
e Sin 7
Because of the Lemma (5 1.4),
. . k+1 [+1
1 [ |sin—— > U sin—— > u|d
Ef sin? = "
- 2
( [+1 s
2(k+1)(2+1nk+1)+ — k<,
3——
_ 8
_<2(k+1)(2+1k+1)+ T <k .
n —, :
\ [+1 3_%

Next, since the A%g.(t) = gd (©) (t <t < t + 2),then
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2s(2s + 1
Azgs(n+1+k+l)=g;’(f):¥

F25+2
- 2s(2s + 1) 14
T (n+ 1+ k4Dt (44)
wheren + 1 + k+ 1 <t<n+ 1+ k + 1 + 2and, similarly,
2s
Ags(2n + k) < 2n + K5 (45)
From (43) and (44) we have (I < n—2)
| [+1
sm u sin >— U
ZAzgs(n+1+k+l)— J — du <
sin >
4s(2s + D2 + il |+ —=
oo [+1 7T2
3- %
<y :
- (n+ 1+ k + [)25+2
45(2s + D20 + D+ k=1 + ”nz
<)
= (n+ 1+ k + [)2st2
< c(s)n~%, (46)
[+1 T
2s(2s + D[k + DH(2 + In rr1 T nZ)]

3_2_
Z (n+ 1+ k + )2s+2 S — < com™ (47

k=0
therefore
n-1 oo | 1 Cl+1
sin usin——u
n2s1x ZAzgs(n+1+k+l) J . du
1=0 k=0 sinz 2
n-—2
< c(s)n*1 Zn_zs < c¢(s). (48)
1=0

Next, from (43) and (45) we have

|sm u sm 1u
n2s- 1ZA95(27’1 + k)= f du < n?1
51n2
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T

4s (k+1)(2+lnk+1)+—7'[2

& 3+5
kZO 2n + k)?s + 1
o 4s n(lnk+1+ 2) + nnz
+n25—1 z 3+?
ey 2n + k)?s + 1
=n
_ 4s(2n + T[T[Z)25+1
_ 2 Z 3ty
2n + k
kel k—n+1
. 2, 4snln - . (1+T)
S— S —
+n (2n T k)25t < ci(s) + c(s)n Z In an k)25+1 =
k=n+1 k=n+1
- In(1 +—) c(s) =2, In(1 +—)
c(s) + ¢ (s)nstz n = c¢(s) + n
1 2 = (3n— 1+ ])25+1 n = (3 _% + L)ZS+1
Ooln 1 + x)dx
<c(s)[1+ ( ) < c(s). (49)

(2 + x)2s+1
Comparing (48) and (49) with (42), we complete the proof of Lemma (5.1.5) for
evenr = 1.Lemma ((5.1.5)) is proved similarly in case of odd r = 25 — 1.
Lemma (5.1.6)[324]: For n_% <u < 2m-— n_% we have inequality

|K;‘,n(u)| < c(r).
Proof: If n_% < u< Zn—n_%,then 1 sinzg < n:zn and, therefore, from Lemma
(5.1.3) and inequalities (44) and (45) we have

n—-2 oo (0]
1 1
fon (0] < e D ) 2,
|K25,n (u)| — c(s)n ( (n + 1 + k + l)25+2 + (Zn + k)25+1 )
=0 k=0 k=0
< c(s)

and, similarly, |«%._; (w)| < c(s). Lemma (5.1.6) is proved.
Lemma (5. 1.7)[324]: We have the estimate
max|kl, (wW)| < c(r)n (n = 1,2,...).
u

Proof: Consider the case r = 1. So, from (22) we have (0 < u < 2m)
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(00]

sin ku T—Uu & sin ku
Rin(w) = Z kK 2 —Z
k=1

k=n+1

[t is well known [337,p. 105], that

Tl

z sin ku

Assertion of Lemma (5.1. 7) follows from (25).] Now we need one result established
in author’s [330]. Define for every A > 1a measurable 2m-periodical essentionally
confined function (kernel) k; = k;(x). Then we can define linear operator

T

(50)

a(f) = k() = Jf(t)Ka(t—X) dt, (51)

functional in space Lp( ) We will say that the kernel family {x; (x)}; <1<« Satisfies the
conditions A), B) (), respectively, if the following estimates hold:
A

A) JIK,—l(t)I dt < ¢4,

-
B) suplia(x)| < 247,
x

O) ()< ;477 < x| < m,
where v,y,cj > 0 are independent of A. The theorem below was proved in [330].
Theorem (5.1.8) [324]: Let k; = Kk;(x) (1 £ 1 < ) satisfy the conditions A)— C).
If p(x) € P,;, then the operator family convolution {x;(f)};s;, defined by the
equality (51), is uniformly bounded in 5% .

Now we can formulate the following auxiliary assertion:
Lemma (5.1.9)[324]: Let p(x) € P, f € LB,
T

Kn(f) = Kn(H)(x) = Jf(t)K?,n(t—x) e, —(n=12,...). (52)

Then we have the estimate

IKn(Dlpey = cr@Ifllpey-

The assertion of this Lemma follows directly from Theorem (5.1.8), because in view
of Lemmas (5.1.5)—(5.1.7) the kernel family x/,(x) (n = 1,2,...) satisfies the

conditions A)— C). Let’s return to the Proof of Theorem (5.1.3). From the equality
(27) and Lemma (5.1.9) we have
cr(p)
r

If =Via Py < == IO =Tl (53)

where T, = T,(x) is an arbitrary trigonometric polynomial of degree n.The
estimate (28) follows from (53). As for estimate (29), its proof is quite similar. The
Theorem (5.1.2) is proved.
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Now let’s mention the theorem proved in [339]:

Theorem (5.1.10) [324]: Let p = p(x) € Py, f(x) € I . Then the following
estimate holds:

1
En(f)p(-) < C(p)-Q(f:g)p(-)-
Combined, Theorem (5.1.10) and Theorem (5.1.2) make it possible to formulate
Consequence (5.1.11)[324]: Let p = p(x) € Pyp,m = 0,f(x) € W, . Then the

following estimates hold:

If -V, (f)np(.) < Cfl’f) (f(” ) (54)
p
Consequence (5.1.12)[324]:Let p = p(x) € P2n» = 0,f(x) €W, . Then the
following estimate holds (m = 1,2,...):
En(rey <20 (f0, 2 ) (56)

Proof: If m = 2n, then estimate (56) follows from (54). If m = 2n — 1, then (56)
follows from (55). Consequence (5.1.12) is proved .

Section (5.2): Weighted Lebesgue and Smirnov Spaces
For LP(T) be the Lebesgue space of 2m-periodic real valued functions defined on T :=
[—m, ] such that

1/p
< If(x)l’”dx> , 1 < p < oo
T
esssup |f (X)], p = o,

X€ET

Ifllp:=

1s finite.
A function w: T - [0,0] will be called a weight if @ is measurable and almost
everywhere (a.e.) positive.
For a weight w we denote by L? (T, w) the class of measurable functions f : T — R such
that wf € LP (T). We set ||f ]|, o = llof]l,.
Ifpl+qg1=11<p< ow €LP(T),and1/w € LI (T) then

L®(T) c L? (T,w) c L' (T).
A 2m-periodic weight function w belongs to the Muckenhoupt class A,,, if

1/q

1/p
(I;l fa)p (%) dx) <|;| fa) 1 (x) dx) < C

with a finite constant C mdependent of J, where J is any subinterval of T and [/| denotes
the length of J. Let
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[00]

S[f1i= ) cpei® (57)
k =—o0

be the Fourier series of a function f € L' (T) with [ f (x)dx = 0;s0¢, = 0in (57).
Fora > 0, the a-th integral of f is defined by

LG f) = ) el e,
keZ*
where

(k)™ := |k|"® eCV/Dmiasionk gng 7+ := {+1,42,43,...}.
It is known [363,V.2,p.134] that
fa (x) = Ia(x, f)

existsa.e.onT and f, € L' (T).Fora € (0,1) we set

(@) _d
FO @) = —— Lo (51
if the right-hand side exists. Then we define

FE @) = () (x0))
wherer € Z* := {1,2,3,...}.
Throughout this work by C (a), ¢y, ¢y, ..., ¢i(@,...),¢i(B,...),... we denote the constants

(which can be different in different places) such that they are absolute or depend only on
the parameters given in the corresponding brackets.
Letx,t ER,a € R := (0,0),1 < p < oo. We set

Af f (%) = z(—l)“ [CElf (x + (@—0)t) . f € IP(T,w),  (58)

r+1

™ _
= —h-atf),

k=0
where [CE] := L&D g6k S 1, (€% = a for k = 1and [C] := 1 for
k k k

k!
k = 0.
Since
c1 (@)
[cell < ,;m fork €7,
we have

¢ (a) —Zwk | < o,

and Af f (x) is defined a.e. If @ € Z*, then the fractional difference Af f (x) coincides
with usual forward difference, namely,
a

FF@ =) CDICEHS (x + (@ k)

k=0
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- Z(—1)a—k [CHf (x + kb),a €T*.
k=0
We define

1 0
of f () =5 [ 188F e f € PN < p < o
5
Using the boundedness of the Hardy-Littlewood Maximal function in LP(T,w),1 < p <
o,w € Ay, We get

los f llpw = C(@ci@fllpw < . (59)
Now, if @ € R*, we define the a-th mean modulus of smoothness of a function f €
LP(T,w),where1l < p < wandw € A, as

Qa(fi h)p,w = |§Yl|l<%”0-gf (x)”pw

Theorem (5.2.1)[362]: Let f € W) (T,w),a > 0,w € A, 1 < p < oo. If, for
someT, €T,

”f _Tn”p,w < C(p)En (f)p,w: n = 012,...,
then

e —Trf“)”pw < c(@pE (f9), . n=012,....

Proof: We put S,f (x) :=S,(x,f) := YV __,ce*™ for the v-th partial sum of the

Fourier series (57) of f e W (T, w) and
Wa(f) i= Wo(x f) 1= =320, S,(x,f),n = 0,1,2,....

Hence W, (x, f(a)) = W% (x, f).

Consequently

”f(a)(‘) _ T,f“)(-,f) ||p’w < ”f(a)(.) — Wn(',f(“))”p,w

Hn? e =n® ool + [w en =17 cmo],, -

We denote by T, (x,f) the best approximating trigonometric polynomial of degree at
mostn to f in LP (T, w). In this case, using the boundedness of W, in LP (T, w), we obtain

IF @ =Wt f)]
< FOO =T O, + T @) = Wal fO|
< C@E(F@) |+ W Ti(F@) = )],
< o (@PE(F@), .
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From [365] we get

|72 W) =12 0| < e @I ITaC Wa() = T € Pl

and

[wi .0 =T Cwal| | < ea (@)@ MW €)= TaC, Wa Dl
< & (@p)2n)® En(Wa (), -

Therefore
1T G f) = TG WaU D o S TG f) = Wo G Wa )00
HIWn () = F Ollpw +1IF ) = T Dl
< c(D)E (W, (f))p,w + sME(pow + cCOE(pw -

since En(Wy (1) < c(P)En(Fp, We get

lreo-m2en] |

< a(@pEa(f@), |+ n%{es(@mE(Wa (D) + cr(@PEn(Ppo |
+ea(a,p) ) En(W (),
< a(@PE(f @)+ co(@pInEn(fpa -
By [371,Th.1.1] we have

En(fpw < e

(n +1)a”

(f ), - (60)

so we finally obtain

[roo-m2cn| | = canE(e),,
The next result was proved in [365] forw = 1.
Theorem (5.2.2)[362]: Let 0 < a < 1,r = 0,1,2,3,...,w € 4,1 < p < o0,and
T, €T,,n = 1.Then

T
Qrva T )y < clp, R [T 0 < <- (61)
p,w
Proof: Let
a+r
F (x):= AYTT, (x ) z (2i sinvt/2)**" ¢ etv*
VEZLy
and
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r .
f )= AT (x -3 t) = Z (2isinvt/2)" (V)@ ¢ eiv*

VEZy,

If we put

2 a
@(z):= (ZLSIH ) (iz) @, g (2):= (Z sintZ/Z) 0zl < n,g (0) :=
we find that

FO) = ) pMee™ F () = ) oM)g @)™,
VEZy, VEZy,
The function g is positive, even and satifies g'(z) < 0,g"(z) < 0for z € [0,n],0 <
t < m/n.Hence

g (Z) — Z dkeikrrz/n
k =—oo
uniformly on [—-n,n], with d, > 0,(—1)***d, > 0,d_, = d, (k = 1,2,...) (see, [8]).
We get that

0

Fo = ) dif +%)

k =—o0
and therefore
- km «
A%H-r Tn() = z dkAg Trga) ( + 7+Et) .
k =—o0

Consequently, we obtain

kn
r(a) - _
deA (+n+2t>dt

- p’w

j IAZ*T T, (Yt e =

Z'dk\f

t t
AT T () =f f T (4 b+ .. +t,)de. . dt,,
0 0

k
(@)
(45 eg)e

k
ArT(“) +5 >| dt

Since

we find

(0]

-Qr+a (Tn» h)p,w < |dk| sup
e I

= z |dk|'

k =—00
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1 1) t t kT[ a
sup —j f f T ") (-+ -t +t1+...+tr)dt1...dtr dt
151sh 1[0 Jo 1Jo 0 n 2 o
< B ldid,
k =—o0
1 ) 1 ) 1) km a
sup —f —rf j T <-+ — -t +t1+...+tr)dt1...dtr dt
151 ][0 Jo 107 Jg 0 n 2 o
< B Idil sup
= 15]<h
15 (51 (5| un kr
Hyl j {Ef T+ (-+ — 5t +t1+...+tr) dt}dtl...dtr
0 0 0 P,
- 1 (9 kr «
< o Y il sup [l [ (4 54 e )| ae
151<n |16 Jo n 2
k =—oo p,w
co knt a
1 [*tat2d
<oEphsup > 1 |lg= | 0[5 ) du
Slsh 4= 58 Jikn
b,w
By [368] we have
z ldi| < 29 (0) = 2t% 0<t < m/n,
k =—o
SO

for0 <t <6 < h < m/n.Hence
Qr (T Wpw < €11 (1, pIRS y

On the other hand, we get, by a similar argument, that the same inequality holds also if
0 < —h < m/n. Thus the proof of the theorem is completed.

The next result is a generalization of Theorem 2 of [364] to the fractional case.

Theorem (5.2.3)[362]: Let a > 0,w € A,,1 < p < . Then the following

inequality holds for f € LP(T, w)

T§a+r)
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0 (F,m/(n + Do < (+ ’;))a Z(v + 1D Ey(pe.n = 01L,2,....
v=0

Proof: Let T, € T,, be the best approxwﬁating polynomial of f € LP(T,w) and let
m € Z*. Then by assertion (ii) of by (59) we have

Qp (Fir/(n + D)po = Qo(f —Tomn/(n + 1)pe + Qo(Tom,m/(n + 1)),

< ¢12 (@, p)Eym (f)p,w + Qo (Tym, mw/(n + 1))p,w .
Using Theorem (5.2.1), we get

Qu(Tym, 1/ + D)y < 015 (@ p) (——

) (s ||pw n+1>2m

n+1
Since
m-1
TR @ = 1@ + ) {1 0 -1 @),
. v=0
we obtain

a(TZm T[/(Tl + 1))pw

e (1) flrl,, + z|| e -rg |

From Bernstein’s inequality (see [365]) for fractlonal derivatives in LP (T, w), where
w € A,and1 < p < oo, we have

||T2(3‘+)1 -

. < Cia (“»P)ZWHTZVH ‘Tzvup'w < ¢15 (@, )2V Epv (Npw

o1, = 1m0 -7, < PO

Hence
-Qa(TZmrT[/(n + 1))p,w

< e (@p (= 1)“{Eo<f)p,w + ) 2iag,, (f)p,w} .
v=0

It is easily seen that

21/
200 (P < c1s(@ ) WTE(Dpr V= 123,
w=2v-141
Therefore
-Qa (sz,T[/(Tl + 1))p,w
o
- C17 (C( p) (n+1)
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21/

EoWpo + 2F(Pps + 616(@ D > WTIE (P

v=1p=2v"141

a

2m
< ¢i9(a,p) (n :T_ 1) Eo(f)pw t Z W E (Ppw
=1

2 -1
T a
< @ (=) D+ DR,
v=0
If we choose 2™ < n + 1 < 2™*! then
21 (a4, p) a—1
0 (T, /(0 + D) <57 1)a2< + DT B
and
(a,p)
Exn (Do < Exnes (Do < 5y 152 1)&2( + D By (Dpor
This finishes the proof.

The next result was proved for « = 1 in [364].

Theorem  (5.2.4)[362]:If f € WS " (T,w),0 < a < 1,r =0123,...,0 €
Ap, 1 < p < oo,then
'Qr+a (flh)p,a) < C(a;r:p)ha-l-r”f(a-l-r)”pw, O< h<m

Proof: Let T,, € T,, be the trigonometric polynomial of best approximationof f in LP (T, w)
metric. By Theorem (5.2.1), and (59) we get

Qorr (f h)p,a) < Quir (T h)p w T Qopr(f — Ty, h)p,a)
< C(p’r)haﬂ* Trgaﬂ”) . + Cyy (p, CZ,T)En (f)p,w,O < h < n/n.

Then, using inequality (10) of [364] (60), and Theorem 2 of [365], we have

(p, T « < s (p,a,7) o 2T
e i < wr e U OrT),,
c23 (@, 1) a+r

< 2092 (75 el

By Theorem (5.2.1) we find

|| Trga+r)

(a+1)
b e,

< c,ar)Ey (@) @D < culpan| e
Choosing hwitht/(n + 1) < h < n/n,n = 1,2,3,..., we obtain
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Qoir L M)pe < c(p,a,r)ha+r||f(a+r)||p’w

and we are done.
Theorem (5.2.5)[362]: Let f € LP (T,w),1 < p < o,w € Ap.Ifp € (0,00)and

D V() < o,

v=1

then
En(fP),, < c®.B) ((n + DPE(Dp + ). vﬁ—lEv(f)p,w> .

v=n+1l

Proof: Since
||f(ﬁ) — S, f® ||p'w

[00]

< [[Spmeaf® = 5. f O+ Z 1,01 £® = Sy f

k=m+2
we have for 2™ < n < 2mtl

IS mezf B) — Snf(ﬁ)”pw
(m+2)B C26(p' :8)
< CZS(puB)Z En(f)p,w < (Tl + 1)ﬁ En(f)p,w-

On the other hand, we find
D Sy f P =Sy f O < en@B) Y 2EIBEL(),,

k=m+2

k =m+2 o o
= @B ) VR Dy < @B ) VT, (Do
v =2mtliq vV =n+1
which finishes the proof.

Corollary (5.2.6)[362]: Let f € W) (T,w),(1 < p < »),w € A, B € (0,)and

D VIR, (e < o0

v=1
forsomea > 0.1fn = 0,1,2,..., then

{ (f(a)' n 7:— l)p,w

< D W D, (D . VB (D

v=n+1
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Let I' be a rectifiable Jordan curve and let G := intl',G™ := extl,D:= {w €C:
lw| < 1}, T := dD,D~ := extT. Without loss of generality we may assume 0 € G. We
denote by LP(I'),1 < p < oo, the set of all measurable complex valued functions f on I’
such that |f|P? is Lebesgue integrable with respect to arclength. By E,(G) and
E,(G™),0 < p < o, we denote the Smirnov classes of analytic functions in ¢ and
G, respectively. Let w = ¢@(z) and w = ¢,(z) be the conformal mappings of G~ and G
onto D~ normalized by the conditions
¢(®) = oo, lim ¢(2)/z > 0and ¢,(0) = o,  limz¢,(z) > 0,

respectively. Let f € L(I). Then

U S i (9
f(Z)—Zm. FC_ch, Z € G,

is analytic on G.
Let w be a weight function on I and let LP(I', w) be the weighted Lebesgue space on
I',i.e., the space of measurable functions on I" for which

1/p
Wfllperwy i= <L|f (2)|? a)p(z)|dz|> < oo,

The weighted Smirnov spaces E, (G, w) and E, (G™, w) are defined as
E, (G,w):= {f € E,(G): f €LP(Iw)},
E,(GT,w):={f € E;(G7):f € LP (I',w)}.
We also define the following subspace of E, (G, w)
E,(G",w):={f € E,(G™,w): f (x) = 0}.
let 1l < p<owz€ele>0adl(ze):={terl: |t—2z < s},% +$ = 1.A

weight function w belongs to the Muckenhoupt class A, (I") if the condition
1 1

1 p (1 q
sup sup (—j wP (T)|d‘[|> <—f a)‘q(r)ldﬂ) < o0,
zel' e>0 \€ Jr(ze) € Jr(ze)
holds.

With every weight function w on I', we associate the other weights on T by setting
Wy = woY,w; := woY,. Foranarbitrary f € LP(I',w) we set

fow) == f (¥ W), (W) := f 1 (w)),w ET.

If ' is a Dini-smooth curve, then the condition f € LP(I',w) implies that f, €
LP(T,w,) and f; € LP(T, w,). Using the nontangential boundary values of f;5 andf;* on
T we define for a function f € LP (I',w) and a € R*

‘Q‘k(f' 6)1‘,p,w = Qk(f0+ ) 5)p,wo ) 5 > 0;

0% (f, Orpw == U(fi" ) 6)pw, .6 > 0. (62)
We set

En(f, G)p,w = Pigpf “f - P”Lp(l“,a)) rEn(ng_)p,a) = Riean ”g - R”Lp(l",w) ’
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where f € E,(G,w),g € E,(G™,w), B, is the set of algebraic polynomials of degree not
greater than n, and R,, is the set of rational functions of the form Y};_, k :

Some converse approximation theorems in the weighted Lebesgue spaces LP(T,w),1 <
p < o,w € A, were proved in [371]and [372]. In the weighted Smirnov spaces
E,(G,w),w € A, (I'),1 < p < oo, the converse approximation theorems were proved
in [373] for Butzer-Wehrens modulus of smoothness.

In the following we investigate the approximation problems in the weighted Smirnov
spaces in terms of the a-th mean modulus of smoothness. The following converse
theorems can be proved by the method given in [372] and [373].

Theorem (5.2.7)[362]: Let G be a finite, simply connected domain with a Dini-smooth
boundary I'. If & > 0 and f € E,(G, w) w € Ap(I),1 < p < oo, then

0u(f 1/ < S0 Z(k + DB (f, G = 12,

If « = 2r,r = 1,2,...,this result was proved in [373] for a different but equivalent
modulus of smoothness. The converse theorem for an unbounded domain G~ is also true.
Theorem (5.2.8)[362]: Let I' be a Dini-smooth curve. If @ > 0,f € E“,,(G‘,a)), and
w € A,(I'),1 < p < oo, then

B, 1/ < P )Zac + D B (f, 6 ) pn = 123,

Section (5.3): Lebesgue Spaces with Variable Exponent
Let T := [0,2m] and let p(-): T — [0, o) be a Lebesgue measurable 27 periodic function
such that

< p_:= = ess 1nfp(x) < esssupp(x) :=p, < oo,
X€T
In addition to this requirement |f

21
lp(x) —p()l lnlx—yl < d,Vx,y € [0,27]

with a positive constant d, then we say that p(-) € P (T). We also define Py(T) := {p(-
) €EP(T):p_ > 1}.

The variable exponent Lebesgue space LP() (T) is defined as the set of all the Lebesgue
measurable 2 periodic functions f such that

21
Py ()= [ If (PP dx < oo
0
Equipped with the norm
“f”p(.) = il’lf{ﬂ > 0:pp(y (f/A) < 1}
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it becomes a Banach space.

These spaces were introduced by Orlicz in [379]. Interest in the variable exponent
Lebesgue spaces has been increased since 1990s, because of their usage in the different
applications problems in mechanic, especially in fluid dynamic for the modelling of
electrorheological fluids and also in the study of image processing and some physical
problems (see [374]). Nowadays, there are sufficient investigations relating to the
fundamental problems of these spaces, in the view of the potential theory, maximal and
singular integral operator theory and others. Some of the corresponding results can be
found in the monographs mentioned above. However the approximation problems in these
spaces were not investigated widely. Meanwhile, some of the fundamental problems of
approximation theory in the variable exponent Lebesgue spaces of periodic and non
periodic functions which are defined on the intervals of real line, were studied and solved
by Sharapudinov see [375]).

One of the main problems observed in the investigations on the approximation theory is
the correct definition of the modulus of smoothness that will provide us with a better tool
to deal with the rate of the best approximation, inverse theorems and also some other
similar problems. The detailed information regarding to the different moduli of the
smoothness considered monograph [374] and also [375] and [376]. The classical modulus
of the smoothness, which constructed by using the shift operator f (- + h), has proved to
be very useful tool for solving the above mentioned problems in the classical Lebesgue
spaces. However it is a fact that LPO) (T) is noninvariant with respect to the usual shift
operator f (- + h), in general [382]. On the other hand, the Steklov mean value operator

1 h
o (f) ’:EJ f(x + tdt,h >0

is bounded in LP®) (T), which follows from the boundedness of the maximal function in
LPO(T),p(-) € P, (T),showed in [373]. By using this result, the first order modulus of
smoothness

1 h
2y (f,6) = sup E-fo f O =fC+olde .

was constructed in [375] and in the term of this modulus were obtained the direct theorem
of approximation theory inLP®) (T),p(-) € P, (T),and also some results on the
approximation by the Norlund means of Fourier series in LPO) (T). Similar results under
the condition of p(-) € P, (T) using some other modulus of smoothness were proved . In
the more general case, i.e. in the case of p(-) € P(T) > P, (T) introducing the modulus

Horo-re o
ho p()

which is more sensitive than 2, (f, ), the direct and inverse theorems were proved by
Sharapudinov in [382]. In term of 2(f, §),y, p(-) € P(T), one general inverse theorem,
which generalizes the inverse theorem obtained in [375],was proved in[376]. The

90 = s,
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basicity problems of some well known trigonometric systems and the uniform
boundedness problems of some families of convolution operators in the weighted variable
exponent Lebesgue spaces were studied in [377] and [378], respectively.
We define the r-th (r = 1,2,...) modulus of smoothness 2, (f, 8) ¢, in LPO(T),p () €
P(T), and investigate the approximation problems in theterm of this modulus.
Definition (5.3.1)[372]: Let f € LPO(T) with p(-) € P(T) and let

T

AT f (x):=z(—1)r+s () fe+sn, r=12..
s=0
We define the r-th modulus of smoothness as
,60 > 0.

1 h
00 (8 = sup [l [ atrae
0 p()

0<hsé

It is easily to show that in the case of p(-) = const this modulus is equivalent to the
classical modulus of smoothness defined as sup<sll4tf (X)ll,. For f € LPO (T we
define the best approximation number

En(Fpey: = f{llf = Tallpc) : Tn € My}
in the class I1,, of the trigonometric polynomials of degree not exceeding n. Throughout
by c(-),c1(),c2(),...,c(-), c1(+), c2(+,), ..., we denote the constants depending on the
parameters which are given in the corresponding brackets.
The main direct and inverse results obtained are as following.
Theorem (5.3.2)[372]: Let p(-) € P(T),r € N. Then there exists a positive constant
c(p,r) such that for every f € LP®) (T) and n € N the inequality

En(f)p(-) < C(P; 7')[21* (f' 1/n)P(')

holds.

Theorem (5.3.2) in the case of r = 1 was proved in [378].

Theorem (5.3.3)[372]: Let p(-) € P(T),r € N. Then there exists a positive constant
c(p, ) such that for every f € LPO(T) andn € N the inequality

0, (f, 1/, = 7 )Eac " By

holds.
Theorem (5.3.3) in the case of r = 1 was proved in [376]. Denoting by

wy (')(T): ={f : %Y is absolutely continuous and f® € LPO(T)},
k =1,2,...,the variable exponent Sobolev space and using Consequence 2.1 in [379] and
also the boundedness of £2(f, §),., we have the inequality

(p)
n(f)p() = — ”f(k)”p() (63)
which implies by using the standard way, the estlmatlon

Ea Do < S g, (£09)
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Combining this estimation with Theorem (5.3.2) we have
Corollary (5.3.4)[372]: Let p(-) € P(T),k € N. Then there exists a positive constant

c(p,r) such that for every f € W,f(' (T) andn € N the inequality
(p.

holds.
Inthe caseof r =1
Corollary (5.3.4) was obtained in [373]. Theorem (5.3.3) also implies

Corollary (5.3.5)[372]: If E,,(f)p) = O(n™%),a > 0, then under the conditions of
Theorem (5.3.3)

0(6%) T >«
2.(f,8)py =1 0(6%log(1/8)) ,r=a
0(6") r<a.

Hence, if we define a generalized Lipschitz class Llpa (T) fora>0and r:= [a] +
1 ([«] is the integer part of ) as
Lip?(T): = {f € LPOT):0,(f,8)py = 0(8%),6 > 0},
then we have
Corollary (5.3.6)[372]: If E,,(f)p) = O0(n™*),a > 0,then under the conditions of

Theorem (5.3.3), f € LipL$ (T).

On the other hand, from Theorem (5.3.2) we also get

Corollary (5.3.7)[372]:If f € Llpp() (T) with p(-) € P(T) and for some a > 0, then
Ev(f)pey = 0(n™%).

Now Corollaries (5.3.6) and (5.3.7) imply

Theorem (5.3.8)[372]: Let f € LPO(T),p() € P(T), and leta > 0. The following
statements are equivalent:

Df € Liphy (),

i) En(f)pey = 0(n*),n €N,

Note that when p(-)is a constant the classical analogues of Theorems (5.3.2) —
(5.3.8),proved in the term of the classical r-th modulus of smoothness constructed via
usual shift f (- + h) can be found in the monographs we sometimes use the techniques
developed in [378] and [379]. First of all, we obtain some important properties of the
modulus (2, (f, §)p.y- Subadditivity property of 2, (f,8),is immediately follows from

Definition (5.3.1); that is for £, g € LPO) (T) we have

Q- (f + 9.8y <0 (f,0)py + 124 (9,)p(y - (64)
Let 4,y > 0, and let |7| < m/AY. We consider the Steklov operator S, . f, defined as
x+T+1/27
Suef = (SucH)@i=2 [ e
+7-1/21
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The following lemma was proved in [384].

Lemma (5.3.9)[372]: Let p(-) € P(T) and let 0 <y < 1. Then the family of the
Steklov operators S, .(f) is uniformly bounded in LPO(T) for1 < A< oo, |7| < 7/
AY, i.e., there exists a positive constant c(p) such that

1171, < c@fllpey 1 < A< o0, 7] < /2.
The following lemma shows that the modulus 2,.(f, §) ) is well defined.
Lemma (5.3.10)[372]: Let p(-) € P(T) andr € N.Then there exists a positive
constant c(p, r), such that

2:(f,8)pey = c@Mfllpey

for every f € LPO) (T) and § > 0.

Proof: Since for any positive integer s with0 < sh < 1
x+sh/2+sh/2

1 h 1 x+sh 1
Ejo f(x + st)dt _EL f @du =— xm;_smf () du
= (5100 1) ),
denoting A := 1/(sh),t :=Shs;1/2 and applying Lemma (5.3.9) we have that

1 h
HE [revsode|  =[sear]| = ol
0 () sh’?2 p()
Hence
1 rh 1 (h e -
Hﬁj A fae|| = Ej Z(—l)r+s(s)f(-+st)dt
0 p() 0 s=0

p()

r h
< cl(r)z %f £ (- +st)dt
< .l

p()

which implies that

0 (f, 8)py < c@Mfllpe -
Lemma (5.3.11)[372]: If f € LPO(T),p(-) € P(T), then lims o 2, (f,8)pey =
Ofor every positive integer r.
Proof: At first we suppose that f € LPO) (T) is a continuous function. Then for any £ > 0
there is a numberéd(e) > Osuch that |f(x + mt)—f(x +(m + 1) t)| <
e/{[2m]Y? — (2" H}for0 <t< h < §andm =0,1,2,...,7. Hence
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p(x)

T (x) T T _1\r+s r
f_n %Lhzﬂf(x)dt/e ’ dx = f_n %j;tho( ) (SS)f(x * oD dt| dx
r _1\T+s r p()
) f % fohzszd 1) (:)f(x v \
WS- (T om0l )
T X mrt) — X m
=f —f n - dt dx
(4 0
. 1 r—1 B p(x)
SLT %anm=o( ) If e+ rrgzt) fetmenal N\

1 r—1 p(x)
" ( m ) dt dx

N j:, Efo 2n]/P- (251 ¢

p(®)
[27] l/v ) ) dx

m at  \’-
< — _— dx = 1.
= (hf [mw—) ¥

1 h
= T
which implies that (2,.(f, 8) () < &

If £ € LPO)(T) is not continuous on T, then by density of the set of continuous functions
[378,pp. 145 — 146] in LPO) (T), for any & > 0 there exist a 2m periodic continuous
function g with [[f — gll,y < € and a number §(¢) > 0 such that 2,.(g,8),() < € for
every § < 6(¢). Hence by (64) and Lemma (5.3.10)
'Qr(f' 6)1)(-) < 'Qr(f_gr 5)p(-)) +~Qr(gr 5)p(-)
< cnllf —gllpey + ¢
< [c(p,7) + 1]¢,

which implies the required relation lims_,o 2,-(f, 6)py = 0.

Lemma (5.3.12)[372]: Let p(:) € P(T). Then there exists a positive constant
c(p,r), such that forany » € N,§ > 0 and for any function f € er(') (T) the inequality

2 (f, 8)pey < 0. I,
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holds .
Proof: Since

t ot t
AT f (x) =f f f O (x + t+...+ t,)dt,...dt,,
0 Y0 0

applying r times the generalized Minkowski inequality we have

1 (" 1 (n
H—f Ar(Hdt|| < a) —f 14Efllpey dt

()

< ¢, (p)h” hr+1 f(r) (+t;+...+ t)dt,...dt, dt
p()
1 h
= cl(p)hr—f — _1J ...Jf(r) (4 t;+ ...+ t)dt;...dt,_, | dt, dt
h 0 h 0 h” 0 0 p()
1 h 1 h t t
Scl(p)hr—j —J r—1J ...Jf(r) (4 t;+ ...+ t)dt;...dt,._, | dt, dt
h 0 h 0 h 0 0 p()
1 h t
< Cz(p)hr—f r—1f j fO (+t+...+t,_)dty...dt,_, dt
hJo I r()
<...< c3(p,r)h — { j lF ™ +t1)|dt1} dt
p()
1
= C‘*(p'r)hr”f(r)”p(-)ﬁ jo dt = c,(DR[|f
and taking here the supremum we obtain the inequality
2 (f,8)pey < c@NSFP -
For f € LPO(T) and § > 0 we define the Steklov mean value function as
) 1) 1 r-1 r h h
f’é‘ (X) = — j —rZ(—l)r-l-S-'_l J ...... J f X
w@=5 ) ()] ] £
r—sSs
+ [t,+ ...+ tr]) dt,... dtr} dh, (65)

which plays a crucial role in this work.

Lemma (5.3.13)[372]: If f € LPO (T),p(-) € P(T), then f, s € WP (T) for 6 > 0
and r € N.

Proof: Differentiating r — 1 times the terms under the sum in (65) and setting t :=
— t, we see that

Uoh fohf(x -

(r-1)
S
[t + ...+ t]) dty... dtr}
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- {fh(ris)r_l (r;ll)(_l)r+mf (x +rr;str+mrzsh)} dt
0 0
=j0 (rr S)r—l A@hf(x +rr:tr) dt,
=%h

Neae, o
_fo (T_S) 45, f (x + Bt

and then via (65)

r—s
h r

f(r () =2 L/Z " {Z( 1yrs+ (S) JOT (ris) A;_}hf (x + t)dt} dh

S

L/Z {21 o () (ris)r A?;—%hf (t)dt} dh. (66)

Since the Steklov mean value function frfg_l) is an indefinite Lebesgue integral, its
absolute continuity on [0,2rr] can be showed by standard way. It remains to prove the
imbedding fé? € LPO) (T). Differentiating the relation (66)we obtain

= ;2% (Z(‘l)m” (=) fosat (x)) dh

s=0

and denoting ¢ := ~— h we have

2r+1 r-1 r |1 1)
(r) r
0| <5 Y (G [ 2, com)
s=0 /2 T
rARE ri N R fga
= - ATf (x)dt
or pemrt (S) (r—s) rr S S r;sw/z) t
2r+1r—1 r T \' 1 %6 1 T
< z _ j A F () dt + e Af ode| b,
5T Szo(g)(r_s) rTS(So t rrs60 t
which by Lemma (5.3.10) implies the inequality
FENl S 260870 (£,8)p0 < 6@l (67)

Since f € LPO(T) the relation (67) means that fr(’? € LPO) (T).

Let f € LPO(T),p(-) € P(T). For § >0 and r =1,2,..., after some necessary
simplifications we have
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2
fos ) = f ()] =5 j a j j Do s, f (Odts..dt, | dh
61Js/2 h"
and then by the generalized Minkowski inequality

||f7‘,5 - f”p(.)

= Ce(P;T)S 52 {F . t1+ +t, f (0)dty

h+ty+..+t,
A% fdt

ty+..tt, T

dtz...dtr} dh
p()

2
= ¢4(p, T)S {hr_l dtz...dtr} dh. (68)
6/2 0 ©

1 h+t2+...+tr t2+...+tr
= H—([ A} fdt —J A% fdt)
o) h to+.tt, T 0 T

‘ 1 f(h Ftot Hty)/T

Since
1 (httzt+.+tr

H— A% fdt

h ty+..+t, T

p()

AL fdt
(h +ty+...+t,.)/r of

1 (to+ ..+ty)/T
AT fdt
(t2+...+tr)/rJ ef b0

1 (h +tp+ tty)/T
(h +t,+ .. +tr)/7‘ _[

1 (tat .tty)/T
+  su f Aifdt
(t,+ ...+t13)/r56 (ta+...+t.) /7 f p()

= 0,(f, S)p(-) + 2.(f, 5)19(-) = 20.(f, 6)10(-) ) (69)
combining (68) and (69) we have

2 1) 1 h h
”ﬁﬁ—fﬂmoschuxngiLﬂ{M%yL.“L QAﬁSLwyk}_dq}dh

) 1)
< ¢;(p, M2(f, Np()5 _L/Zdh = ¢;(0, )02 (f, 8) () (70)

Now using the relations (63), (70) and (67), respectively we conclude that
En(f)p(-) < En(f - fr,l/n)p(.) + En(fr,l/n) p()

()

< sup
(h +ta+ .tty) /1<

AT fdt

p()

C(p) (r)
= ”fr,l/n _f”p(,) + nr rl/n || ()
(p,)
< cs(0, )2 (F, 1/M)p0y + 20, (f, 1/m) 0

< c(p,r).(f, 1/n)p(.).
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Let T,, be a best approximation trigonometric polynomial for f € LPO(T), which exists
in the case of p() € P(T) and is unique when p_ > 1(see, [381, p. 130, Theorems 3.2.1
and 3.2.2] and also: [383,p.59]). Let also m € N be the number, such that 2™ < n <
2™*1 Since

.Qr(f, 1/Tl)p() < .Qr(f — T2m+1, 1/Tl)p(.) + .QT(TZm+1, 1/Tl)p(.) ’ (71)

using the inequality [383,p.209]

21}
2007 Ey (F)pey < 277 z K E(Fyey (72)
k=2vV-141
we have
.Qr(f—sz+1,1/n)p(.) < C(p, T)”f—sz+1||p(.) = C(p,T’)EzmH(f)p(.)
2(m+1)r (p, ) 2 _
< C(p, 7") Ezm (f)p(-) < 227 Z k" 1Ek(f)p(-) . (73)
k=2m-14+1

On the other hand, applying Lemma (5.3.12) and the Bernstein inequality
ITallpcy < c@InlTallpey
for trigonometric polynomials, proved in [385], and (72) we get

9 (T2m+1 1/n)p(.) < (p’ ||T(r)

2m+1
T + Z Tz(ﬂl T(r)

v=0 p()

m

S (1 - 1)

v=0

p()
C(p, T)

+

<22 (e,

=T

p()

m
c10(p,7) ) (v+1)
< (||T1T . Z 20407 | (T = T

v=0

< 11(pr )(Eo(f)p() +zz(v+1)r V(f)p())

nr

11§lp' ) (EO (f)p() + ZTEl (f)p() t+ Z 2(V+1)r V(f)p()>

cu@n Eo(f)pey +2"Eo(Hp(r +z z K™ Ex(Fpoy

nr
v=1k=2V"141
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Zm
¢12(p,7) _
<2 Bo(Ppey + Z K Ed(H)pes |- 74)
k=1
Combining (71), (73) and (74), we conclude that
Q. (f, 1/n)p(

Zm 2m
c13(p,7) _ -
<2 KB Py + Eo(Ppy + Z KT E Py
k=2m-141
< 614(29,

Z KB Py + EolPios

C(P' (Z(k + 1)1 Ek(f)p()>

Corollary (5.3.14)[492]: Let p(-) € P(T) and r € N. Then there exists a positive constant

c(p,r), such that
> 0800 < <) ) 1],
for everyf/ € LPO (T) and § > 0.

Proof Since for any positive integerr + ewith0 < (r+e)(1+¢) < 1
1+¢ x%+(r+&)(1+¢)

1 .
1+ej fo &5+ + eyt T rtol+e ), zf] (w)du

X2+(r+e)(1+&)/2+(r+&)(1+¢)/2

1 .
“rrodto Z Zf] (w)du

x2

= Z <5 1 (r+&)(1+¢) fj> (x%),
’ 2

(r+&)(1+¢)

denoting A=1/((r+e)(1+¢),7:= (r+¢)(1+¢)/2and applying ,we have that

‘ jHEZfJ (+r+onde| = z

p()
<@ IIFI, -
Hence

S 1 (r+&)(1+¢) fj
(r+e)(1+¢)’ 2

r()

189



1

fo A (f)a

D e

p()
1+¢

1+gf z (=D (r_l_g)f’( +(r + &)t)dt

r+&=0
r
< Cl(r) z

r+&=0

p()

1+¢

- +gf Y+ + e
< @) ) 1Pl

r()

which implies that

D 08 < @) ) (I,
Corollary (5.3.15)[492]: If f/ € LPO(T),p(-) € P(T), then lims_o 2, (f7,8)pcy =
0 for every positive integer r.
Proof At first we suppose that f/ € LP() (T) is a continuous function. Then for any € > 0
there is a number & (¢) > Osuch that Y |f/ (x + mt) =X f/ (x2 + (m + 1 ¢t)| <
e/{[2m)V/P — (2" D}for0 <t< 1+& < §andm =0,1,2,...,7. Hence

- e p(x?)
j 1 +sj1 ZN (f7) (x®)dt/e dx*®
. p(x?)
o e YT (—1)2THe (r ! e) YFI(x? + (r+e)t) p(x?) 2
= fn 1+¢ jo € * v

:jn 1 jmzm o(— 1)r+m( )[Zf] (% + mt) =Y f7 (x* +(m + D)

dt
1+¢ <
r—1 ' ; p(x?)
w1 et (U ) B0 6+ m) =5 2+ (m + D)
:f f = dt dx?
\1+¢el, e

r—1

1 p(x?)
- Jn 1 j1+s 82m=0( m )
-1 0

dt dx?
1+¢ [27]V/P- (27 1) ¢ X
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=f_7;<1

2T—1

1 1+¢
+¢ _];) [27]

1/p_ (Zr—l)

p(x?)
dt) dx?

= jn (115 jm [znc]llt/p_ )p- dx* = 1.
JHEZATUJ)

which implies thatZ.(Z(ff,S)p(.) < e

If £/ € LPO (T) is not continuous on T, then by density of the set of continuous functions
[378,pp.145 — 146] in LPO (T), for any & > 0 there exist a 2m periodic continuous
function g/ with Y||f7 — gf||p() < g and anumber §(¢) > 0 such that 2,.(g”,8) () <

¢ forevery 6§ < 6(¢). Hence by (2) and Lemma 2
D 080 £ D 0T = gl 8)p0) + ) 0G0
<c@n )l =gl +

< [e(p,r) + 1]g,
which implies the required relation lims_,o X 2(f7, ),y = 0.
Corollary (5.3.16)[492]: Let p(-) € P(T). Then there exists a positive constant

c(p, ), such that for any r € N, § > 0 and for any sequence of function f/ € Wf” (T

the inequality
. r (1)
22080 < e ) 77

Therefore,

< ¢
p()

holds .
Proof Since

ZA§ (F) () = jotjot...jotZ(ff)(” (2 + ty+ ...+ t)dt,...dt,,

applying r times the generalized Minkowski inequality we have

e | Deew]| s aw o [ o
<a@@

+ )" ﬁ jom Jot ...jOtZ(ff)(r) (+ t1+...+ t)dty...dt,
= (P

+ . 1 .[1+€
£) 1+¢),

dt
r()
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dt,




1+¢& 1 1+ 1 t t NG
+£)T1+€j(-) 1+€L WJO LZ(f]) (+t1++tr)dt1dtr_1
< CZ(p)l(l . 1 t t o
+g)r1+€fo ‘Wfo fo z(ff) (+ty+ ...+ t,_dty...dt,_4 p(')dt

1 1+¢& 1+¢&
<...< c3(p,r)(1+e)TT {1+ef Z(ff (+t) dtl} dt
p()
, NG! 1ot NTPIING
< c(p,r)(1 +¢) Z ||(f1) p(.)1+£j;) dt = c,(p, 7)1+ )" ||(f7) o0y’

and taking here the supremum we obtain the inequality

D0 (Lo < cons ) || ()" L

For f/ € LPO(T) and § > 0 we define the Steklov mean value function as

Zﬁ{& (x?):
5 r-1 1+¢ 1+¢ .
B L/Z{u DN SR A I YA€

+ ; [t,+ ...+ tr]) dtl...dtr} d(1+¢), (75

which plays a crucial role in this work.

Corollary (5.3.17)[492]:  If f/ € LPO (T),p(") € P(T), then f/; € WO (T) for
d>0andr €N.

Proof Differentiating » — 1 times the terms under the sum in (75) and setting t := _78 t,

we see that
1+¢ 1+¢ (r-1)
U f fo x? +—t1+ +t,]) dty.. dt}
- {foh(_ig)r 12( " )(—1)”me1 x +Ttr+m7(1+e))} dt

m=0

1+€ ) _e
— r—=1 AT— j 2 _
—fo (—e)" " A% “E11e) Zf (x + " tr) dt,

_78(1+£) T'
— _ J
JO (_(9 (m)z £ (2 + vt
and then via (75)
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Y ALY e
2 6 S(1+£)
5 5/2 (1+ g)r { 2 (= 1)T+5+1 (r -T— s)_]. —(1+g) ij (x

r+&=0

+ t)dt} d(l1+¢)

2 6 1 r-1 x2+%§(1+s) - T
= _1\2r+¢&+1
B g 5/2 (1 + S)r { 2 Jz ( 1) o (r + 8)( & (T+s) : :fj (t)dt d(l
r+&=0

X
+¢). (76)
Since the Steklov mean value functions (f7 )ir; Y s an indefinite Lebesgue integral, its
absolute continuity on [0,27t] can be showed by standard way. It remains to prove the
imbedding Z(ff) Ve 1pO) (T). Differentiating the relation (76)we obtain

Z(f] (T 1)

=_L/2(1+£)

Z (=%t (r :— e) ( - )TZACTS(HS) (f7) (&®) |d(1 + &)

r+&=0

and denoting ¢ := _—8 (1 + £) we have

S |66 @)

2r+1 r-1 r
= ST z (r + e 6/2 (1+ ) (f]) (x*)d(1 + ¢€)
r+&=0
2r+1 rz_l r AT J z
S = 4(f7) Pt
1) Rop (r + e) (—g) — £5/2)

2r+1 r-1

<5 2 (1)) ||= F S () e
f—(S/Z)zA (f]) (xz)dt ’

which by Lemma (5.3. 2)|mpI|es the inequality
(r) _r ; .
1> e < 2095 > oa(fe),,, < CS(p,r)Z”ff”p('). (77)
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Since f/ € LPO) (T) the relation (5) means that (ff)(r) € LPO) (T).

Corollary (5.3.18)[492]:Let p(-) € P(T),r € N. Then there exists a positive constant
c(p,r) such that for every sequence f/ € LPO) (T)andn € N the inequality

E, (2 fj) o < c(p, 1), (z f1,1/m)p
p .
holds.
Theorem (5.3.1) in the case of r = 1 was proved in [375].

Proof : Let f/ € LPO (T),p(-) € P(T). For § >0 and r € N, after some necessary
simplifications we have

1D s 6B - fo ()

14+¢ 1+¢
L/ {(1+g) f Zﬁt1+ +t, (f7) (x®)dty... tr} d(1
2 0

+ ¢)

and then by the generalized Minkowski inequality

1D #s- foll

= c6(p,7”)5 5/2 {(1 + &) 1_/1+S JHE ‘1 + ¢ ,[HSzAtl"' +t, (f7) (P)dty
+ ¢)

2 (9% 1 1+e 1+e&
= c6(p,r)§ 52 W_IO j;)

dt,...dt
p()

dtz. . dtr} (
r()

1 j1+s+t2+...+tr
t

D AE(f7)de

1+e )t 4e,
+ ¢).
Since
1 f1+s+t2+...+trz ( )
A% (f7)dt
1+e )it 4t, T

p()

1 1+e+ty+.+ty tot.tty
- a5 (i dt—] ZAT £ dt)
H1 Te (-[t2+...+tr z F( ) ( )

p()

1 (14 +ty+ .+t /T
<
= H(l +e +tyt...+t)/r f

> a(fi)de

()
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1 (to+ .+ty)/T '
Ar(f7)dt
(t2+...+tr)/rf0 Z 4% ()
1 (14 +ty+ ..+t /T _
f ZAZ(fJ)dt

(1+e +t,+...+t)/r

1 (to+ Htp) /7 '
Ap(f7)dt
(t2+...+tr)/rf0 z 4% ()

- 2 Q(f1,8) 50y + Zn(ff,a)p(.) = Zzﬂ(fjr6)p(-) ,(78)

combining (6) and (7) we have
12.7=2.7]
' r()
2 o) 1 1+¢ 1+¢ _
< C7(p,7')g S/Z{WL jo QE(f],a)p()dtzdtr}d(l
+ ¢)
. 2 (9 .
< q(p,r)Z!)(ff,S)p(.)g L/zd(l +¢&) =c;(p,r)0 z(ff,d)p(.). (79)

Now using the relations (1), (8) and (5), respectively we conclude that

zEn(fj)p(-) < En (ij _zﬁﬁ/n O +2E rl/n
: , (») r
<D =200+ 2 [l
ch(p,r)z[)(fj, 1/n)p(.) 9(:' ZQ(}” 1/n) 0
< c(p,r)zﬂ(f ,1/n)p(‘).

< sup
(14 +ty+ .. 4+ty) /<6

p()

+ sup
(t+ .tty)/T<8

Corollary (5.3.19)[492]: Let p(:) € P(T),r € N. Then there exists a positive constant
c(p, ) such that for every sequence f/ € LPO(T) andn € N the inequality

0 (Z f1,1/n)py < C(Z—;r) Z(k + 1)1 Ek(z v
k=0
holds.

In the case of r = 1 was proved in [376]. Denoting by
W,f(')(T): = {Z fI: (ff)(k_l) is absolutely continuous and fj(k) € Lp(‘)(T)},

k =1,2,...,the variable exponent Sobolev space and using Consequence 2.1 in [373] and
also the boundedness of 2(f/, 8)p( We have the inequality
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5. o <52 Y1007,

which implies by using the standard way, the estimation

: c(p) NG
EQ w0 < Ea (7))
Proof : Let T,, be a best approximation trigonometric polynomial for f/ € LPO)(T), which
exists in the case of p(-) € P(T) and is unique when p_ > 1(see, [381, p. 130, Theorems
3.2.1 and 3.2.2] and also: [381,p.59]). Let also m € N be the number, such that 2™ <
n < 2™*1 Since

Z!Z(ff, 1/n) < Enffp(,) + 02(Tyme1,1/0) ey, (80)

using the inequality [378, p.209]

21/
2<v+1>rZE2v (Fpey < 277 Z zkr‘lEk(ff)p(.) (81)
k=2v-141

we have

Y () -Tym1/m) < c(p,r)leff—szullpC) = <) ) Emes (F1),

(m+1)r C(p, ) i .
< C(p,r) ZEZ’“ (F)yey = =2 2 Ekr_lEk (fpy -(82)
k=2m"14+1

On the other hand, applying Lemma (5.3.4) and the Bernstein inequality
ITallpy < c@nlTallpey

for trigonometric polynomials, proved in [382], and (10) we get

C(P» ||T(r)

2m+1

0 (T2m+1 1/n)p(.) <

T + Z Tz(ﬂl—T(”

p()
C(p, T)

p()

m

> (T 1)

v=0

_|_

< c(p,1) ||T(r)
p()

nT

p()
< c10(Ds T)( |T(r)

- . Z 20407 | (Tys = T, (_)>

11( ’ ) i +1)r ]
S%Z(Eo(f])p(«) +ZZZ(V . Ez”(f’)p(~))
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_ Cur(llz' r) Z (Eo(ff)p(,) +27E () 0y + Z 2(v+DT Ezv(fj)p(-)>
v=1

m 2Y
- c11(p,7) (Eo(fj)p(') n ZTEO(fj)p(~) + z

nr
v=1k=2V"14+1

2m
< “12(p.7) (Eo(fj)p(~) + Z K™ Ee(F)p ) (83)
k=1

nT'

K E(F)pey )

Combining (9), (11) and (12), we conclude that
29 (f7,1/n)p(y

2 27
< 6137(5’ ) ( D KR + B + ) KBS j)p“>
k=2m-141 k=1
Zm
< C147(5' 2 (2 K E (f)pey + Eo(fj)p(-)>
k=1
c P,T) N\ r— j
<— Z(;(/{ + Dt Ek(f])p(')> :
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Chapter 6
The Maximal Operator in Variable Lebesgue Spaces and Atomic Decompositions
We show a modular inequality with no assumptions on the exponent function, and a strong

norm inequality if we assume the exponent function is log- Holder continuous. As an
application of our approach we give another proof of a related endpoint result due to
Hdsto. There are many ways to prove such boundedness. For example, the boundedness of
commutators can be proved by the sharp maximal inequalities. But here, we propose a
different method based upon our atomic decomposition. As a corollary we get sufficient
conditions for the modular inequality .

Section (6.1): Llog L Results
The Hardy-Littlewood maximal operator is defined for all f € Li,.(R™) by
1
MPG) = swp [ 1)l dy.
|B| Jg

B>3x
where the supremum is taken over all balls B containing x. (Equivalently, the supremum

may be taken over all balls centered at x, or over all cubes Q containing x.)

It is well known that for 1 <p < oo, M : LP(R™) —» LP(R"), but that given any f €
LY(R™),f # 0,Mf ¢ LY(R™). In fact, Mf need not even be locally integrable. For
instance, if we let

flx) = W X(o,1/e)(x)»
thenon (0,1/e),
1
IR

so Mf is not integrable on any interval containing the origin. Wiener [395] (see also
[396]) proved that Mf is locally integrable if f is in Llog L. More precisely, he showed
that given any ball B,

fo(x) dx <2|B[+C | |f(x)|log(e +|f(x))dx. (1)
B R

The LP boundedness results, p > 1, have been generalized to the variable LP spaces. Given
an open set Q and a measurable function p(-): Q — [1, ), we define the space LP)(Q) to
be the space of functions such that for some 1 > 0,

I @I\
nH = | (T dx < oo
Q

LPC)(Q) becomes a Banach space when equipped with the Musielak-Orlicz norm

Ifllporqy = inffA > 0:pa(F) < 1}.
If the set of A's such that p,(f) < 1 is empty, then we let [|f || »c)q) = +0. If @ =R",

we often write simply LPCO) instead of LPC)(R™). Given a set Q let
p_(Q) = essinfp(x), p+(Q) =esssupp(x).
XEQ) x€N
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For brevity we write p_ = p_(R") and p; = p,(R").
Theorem (6.1.1)[394]: Let p(:):R™—> [1,00) be such that 1 <p_ <p, <
oo, Suppose further that p(-) satisfies the log-H older continuity conditions

lp(x) —p(Y)| < x,y €R", lx—yl < 1/2, (2)

—log|x —y|’
and

C
_ < - n > .
lp(x) —pW)| < g + <D’ x,y € R", lyl = |x| (3)

Then the Hardy-Littlewood maximal operator is bounded on LPO(R™).

Theorem (6.1.1) was first proved by Diening [396] with the stronger hypothesis that p(-
) is constant outside of a large ball. The full result was proved independently by Cruz-
Uribe, Fiorenza and Neugebauer [397] and Nekvinda [398]. (Nekvinda did so with the
second condition replaced by a somewhat more general condition. The relationship
between the two conditions is discussed in [399].) More recently, Diening [400] found a
complex necessary and sufficient condition onp(-) for the maximal operator to be
bounded.

The assumption that p_ > 1 is necessary for Theorem (6.1.1) to be true: in [401] it was
shown that if p_ = 1 and p(-) is lower semicontinuous, then M cannot be bounded on
LPC), Therefore, in this case we are interested in the local integrability of M.

Our first result is a generalization of Wiener’s inequality (1) with no assumptions on p(-).
Theorem (6.1.2)[394]: Given p(:):R™ — [1,0), then for any e > 0, there exists a
constant C, depending on eand p(+), such that for any ball B,

f Mf(x) dx <2|Bl+C | [f()IP@logle + [f ()™ dx, (4)
B R

where g(x) = max(e™! (e + 1 — p(x)),0).

Remark (6.1.3)[394]: When p(-) = 1,(4) reduces to (1).By a straightforward
estimate, we could prove (4) with q(-) = 1 (and with 2 |B| replaced by 3|B]) directly
from(1): write f = f; + f5, where f; = f x(r<1y; estimate the integral of Mf; by |B| and
apply Wiener’s result to the integral of Mf,.

However, the central feature of Theorem (6.1.2) is that gq(-) decreases in size as p(-)
increases, and disappears on the set where p(x) = 1+ €. Inequality (1) implies an
inequality in the scale of Orlicz spaces:

IMflliy < CllfllLiogLrmy (5)
where Llog L (R™) is the Orlicz space L?(R™),®(t) =tlog(e + t). As a corollary to
Theorem (6.1.2) we can prove the corresponding inequality in the scale of variable Orlicz
spaces (also known as Musielak-Orlicz spaces). Let @ : R™ x R* — [0,0) be such that
for each x € R", the function @(x,-) is nondecreasing, continuous and convex. Assume
that @(x,0) = 0,®(x,t) > 0ift > 0,and ®(x,t) - cocast — oo.

We also assume that for each t > 0, the function @(:,t) is a measurable function. Define
the space L®¢) (R™) to be the set of all functions £ such that for some 1 > 0,

199



f O(x, |f(x)|/A)dx < oo,
Rn

equipped with the norm

”f”LcD(,)(Rn) = inf{ﬂ > O:J O(x, |f(x)|A—1)dx < 1}.
Rn

If @(x,t) = tP™®), then L®® reduces to the space LP(). For complete information on these
spaces, see Musielak [405].
A special family of the variable Orlicz spaces is the generalization of the Zygmund spaces
LP(log L)4. If we let @(x,t) = tP™ log(e + t)9™), then & satisfies the above hypotheses
and we can define the space L") . Hereafter we will denote this space by LP)(log L)20),
Corollary (6.1.4)[394]: Given p(:):R™ = [1, ), there exists a constant C depending
on p(+), and | B| such that
”Mf”Ll(B) = C“f”Lp(-)(]ogL)q(-)(Rn)-

We can considerably improve the local integrability of Mf if we assume that p(-) satisfies
the log- Holder’s continuity conditions (2) and (3).
Theorem (6.1.5)[394]: Let p(-):R™ — [1,0) be a function that satisfies (2) and
(3).Given, 0 < € < 1, then there exist continuous functions r(-) and g(-) such that:
(1) r(+) i1s log-H older continuous, r(x) = p(x) whenever p(-) takes on values outside the
range (1,1 + €),and1 <r (x) <p (x) if p(-) takes values in (1,1 + ¢€).
(2)0< q(x) <1,q(x) =1ifp(x) =1,and qg(x) =0ifp(x) =1 + €.
(3) Given a ball B, there is a constant C depending on |B|, and p(+) such that

”Mf”LT(')(B) < C”f”LPC)(]ogL)q(-)(Rn)- (6)
Remark (6.1.6)[394]: In Theorem (6.1.2),q(-) is essentially a linear function of p(-),
but in Theorem (6.1.5) it is a considerably more complicated function that is roughly a
linear function of 1/p(:).It would be interesting to determine the optimal exponent
function q(-) in each result. (The authors want to thank P. Hdstofor suggesting this
problem.)
The converse of Wiener’s inequality. Stein [395] proved that the converse of (1) is also
true. More precisely, he showed that given a ball B, if supp(f) € B and Mf € L*(B),
then

Jlf(x)llog(€+ [f () dx < oo. (7)

A similar result holds in variable LP spaces.

Theorem (6.1.7)[394]: Given a function p(-):R" - [1,0), let q(x) = Xpep)=1}-
Then for any ball B, if supp(f) © B and [[Mf|l ez < o0, then [Ifll oo o4 1ya0r sy <
0,

Theorem (6.1.7) seems to be an unsatisfactory converse to Theorems (6.1.2) and
(6.1.5) since q(+), the exponent on the logarithm, is not continuous. One might conjecture
that a sharper result holds, particularly if p(-) and g(-) satisfy some continuity condition.
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But surprisingly, given very reasonable continuity assumptions on these functions, a
sharper inequality cannot hold, as the next example shows.

Example (6.1.8)[394]: Given exponent functions p(:): R™ — [1,00) and q(-):R" =
[0,1], such that p, < oo,q(x) = 1 if p(x) = 1 and q(x) < 1 if p(x) > 1, suppose
that p(-) satisfies the log- Haolder continuity condition (2) and q(-) satisfies the log —
log —Hdlder condition

C —e
lq(x) —q()| < loglog(lx =y D)’ lx —y| <e™®. (8)

Then there exists a function f supported on a ball B contained in the set where p(x) >
land 0 < g (x) < 1 such that ||Mf||Lp(.)(B) < oo but ||f||Lp(.)(logL)q(.)(B) = oo,

The local integrability of Mf when p_ = 1 has also been considered by Hdsto [392]. He
considered the case when the set {x : p(x) = 1} hasmeasure 0, and the set where p(x) is
close to 1 is small. More precisely, he showed that if Q is a bounded set, and if for
some € > 0 and all s > 0 sufficiently small,

[{x € Q:p(x) < A()} < Cs,where A.(s) = 1+ (1 + E)—loilgoé(/ls/;) ,

then [[Mf1l;2 SIIfIILp(.)(Q).The heart of his proof is to show that given
thesehypotheses, ||, 109 L) < ||f||Lp(.)(Q);the desired conclusion then follows

immediately from inequality (5). By combining his ideas with those in the proof of
Theorem (6.1.2) we can give a new proof of his result, one which does not pass through
the classical inequality.
Theorem (6.1.9)[394]: Given p(-): R™ = [1, o), suppose there exist constants €,0 <
e< 1,K>0,and§,0 <d <e~®suchthatfor0 <s < 4,

{x € R": p(x) < A.(s)}| < Ks.
Then given any ball B, there exists a constant C (depending on |B|,p(+), €, and K) such
that

||Mf”L1(B) =< C“f”LP(')(RTl)-

Theorem (6.1.9) is modestly stronger than the original result of Hdstosince we can take the
domain of f to be unbounded. (If we replace f by f,, Q bounded, we immediately get the
same result for any bounded domain.) Further, he assumes that p, < oo, whereas we allow
unbounded exponents.
Proposition (6.1.10)[394]: Let p(:): R™ — [1,o0) be a bounded measurable function
and let § < e™®,¢,C, and K be positive constants. If p_ = 1, then it is not possible for
p(+) to satisfy the log-Haolder continuity condition (2) and satisfy

{x € R": p(x) < A(s)}| £ Ks, 0 <s <6é. (9)
A result of the type conjectured above may still be true, but we have no insight on how to
prove it without log- Halder continuity.
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We prove Theorem (6.1.2) and Corollary (6.1.4). we prove Theorem (6.1.5). we prove
Theorem (6.1.7) and construct Example (6.1.8). Finally, we prove Theorem (6.1.9) and
Proposition (6.1.10). In order to emphasize that we are dealing with variable exponents,
we will always write p(-) instead of p to denote an exponent function. Unless otherwise
specified, C and c will denote positive constants which will depend only on the dimension
n, any underlying sets (such as a ball B), and the exponent function p(-).

The proof of Theorem (6.1.2) requires two lemmas. The first is a generalization due to
Aguilar Carfiestro and Ortega Salvador [396] of a modular inequality in [397]. For
completeness we include the short proof.

Lemma (6.1.11)[394]: Given p(:): R™ — [1, 00), then for all t > 0,

. £\
lr €R™: MfCO) > 1)l < Clulf (0l > e/2) (S 57)  dx

Proof: Fix t > 0,and write f = f; + f5, where f;(x) = f (X)X (xf 00 >t/23(X)- Then for
all x, Mf,(x) <t/2,s0
Mf(x) < Mfi(x) + Mf(x) < Mfi(x) +t/2.
Therefore, by the weak (1,1) inequality for the maximal operator (see [401]), and since
r(x) =1,
{x eR™: Mf(x) >t} <|{x e R": Mfi(x) > t/2}|

p(x)
< Cj |f ()l dx < Cj <|f(x)|> s
o>tz t/2 otz \ t/2

To state the second lemma, recall that a function A is log-convex if log A is convex.
Lemma (6.1.12)[394]: For any a > 1, the function
a*—1
Ax) =4 «x
log(a) x =0
is log-convex. In particular, givene,0 <e < 1,forall x,0 < x < ¢,
A(x) < e *a*log(a)*~¥/€.
Proof: We first use the power series expansion of e* to show that

a*—1 x .
> xaz.
log(a) — xa 10)

0<x<1

Since2™ > n+1,foralln >0,

a2 = z x"**log(a)" < X log(a)" z x" log(a)" _a¥ - 1.
2" n! - P (n+1)! log(a) ~ log(a)
We now show that C(x) = log(A(x)) is convex by showing that C"(x) > 0:
oo 1 a*log(a)? - 1 1 2 B
CW =5ty 2 Gem) =0

(The middle inequality follows from (10).)
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Finally, to establish the desired inequality, we first let € = 1. Then by logconvexity we
have that for all x <1,

AX)=A1-x+0-(1-x)) < A(D*A(0)' ™™ < a*log(a)*~>.
Now fixe < 1and 0 < x < e.Then

x/e __

1
Alx/e) = ———

x/€
Since this inequality is true for any a > 1, replace aby @ = al/¢ > 1; then we get that

37
< a*log(a®)* /¢,

< a*/€ log(a)*~¥/€.

a

x/€
which in turn implies
a*—1

< e7*/€g*log(a)'*¢ < e~ a*log(a)t ¥

X

Given the exponent function p(-), fix a function f such that the right-hand side of (4) is
finite. Without loss of generality we may assume that f IS non-negative.

Fix € > 0 and define the function p by

p(x) +1 1 < "
) =" 2 f1<plx) < 1+e€
p(x) if p(x) =1+e.
Forall x,p(x)/2 < p(x) < p(x). Fix aball B; then
JMf(x)dx S2|B|+J Mf(x)dx
B {xeB:Mf (x)>2}

=2 |B|+f {x € B: Mf(x) > t}| dt;
2
by Lemma (6.1.11),

co p(x)
X
comre[ [ ()"
2 Jperaost/ay \ E/2

by the change of variables s = t/2 this becomes
o) p(x)
X
<2|B| + Cj f <M> dxds;
2 {x:f (x)>s} S

fo )
f sTPX) dsf ()P dx.
1

by Fubini’s theorem,

=2|B|+C f

{x:f (x)>1}

We evaluate the inner integral depending on the size of p(x). If p(x) = 1, then
f(x)

f@
f sTPX) ds = f s~ tds = log( f(x)).
1 1
If p(x) = 1+ ¢, then
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f
j sTPM ds = S =1 ) (1 f)TPD) < 1/e.
If 1 <p(x) < 1+ ¢, then we actually have that 1 <p(x) < 1+ €/2. Thus, since x is
such that f(x) > 1,

f(x) 1-p(x)
J sTPX) ds = f—(x) ’ (f(x)l_ﬁ(x) — 1)
1

PG — 1
FEOPGTL 1Y
= ( p(x)—1 ) ’
by Lemma (6.1.12) with a = f(x), with x replaced by p(x) — 1, and with € replaced by
€/ 2, we have that

< 2e Hlog(f (x))]:~ @D -D/(€/2) f (5)P)-1,
Returning now to our original estimate, if we define the sets

Ey ={x: f(x) > 1}n{x:p(x) =1},
E, ={x: f(x) > 1}n{x:p(x) =1+ ¢},
Ex={x: f(x) > 1}n{x:1<px) < 1+¢€},

then

o )
2|B| + Cf j sTP) dsf(x)P™) dx
{x:f (x)>1}
—21Bl+C j £GP log(F(x)) dx

Eq

+Ce™r | f(x)P™ dx

E;
+Ce™t | F(x)POL [log(f(x))]1~PI-1/(€/2) gy
E3
< 2|B| + Cf f(x)P™ [log(e + f(x))]q(x) dx

{x:f(x)>1}
< 2|B| + Cf f(x)p(x)[log(e +f(x))]q(x) d
Rn

This completes the proof.
Fix a function f and a ball B; then we can apply Theorem (6.1.2) to the family of
functions /4,4 > 0, to get

2I1B] + O IMf 2y

= inf{l > 0:.[M(f//1)(x) dx < 2|B| + C}
< inf{l > 0:.[ IF(x)/21P@log(e + |f(x)/AD]9™) dx < 1}
Rn

= “f”LP(')(log L)4O (R
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In our proof we need a few basic facts about variable LP and Orlicz spaces. For proofs, see
Kovacik and Rakosn’ik [400] and Musielak [403, Section 8, p. 43].
Lemma (6.1.13)[394]: Given the exponent function p(-): Q = [1,0), if [Ifll,p0q) <

1, then
j FOIP® dx < 11fllpom
9]

Conversely, if
f If ()PP dx < oo,
Q

then “f”LP(')(Q) < 0o,
Lemma (6.1.14)[394]: Given variable Orlicz spaces L®1®) and L%20), if &, (x,t) <
®,(x,t),x =2 0,t >0, then forall £, [[fll 10 gny < Ifll 220 @Rny-
Similarly, given any ball B, if for some t, > 0,®,(x,t) < ®,(x,t),x = 0,t > t,, then
there exists a constant C depending on |B| such that||f||L¢1(,)(B) < C||f||L¢2<,)(B).
The proof also depends on the following lemma due to Capone, Cruz-Uribe and
Fiorenza [402], who used it to give a new proof of the boundedness of the maximal
operator on variable LP spaces.
Lemma (6.1.15)[394]: Given p(:):R"™ - [1,00) such that 1 < p_ < p, < o, and
such that (2)and (3) hold, then there exists a bounded functionS such that if
”f”Lp(')(Rn) < 1, then

Mf(x)P® < CM(F()PO)(x) + S(x).
Lemma (6.1.16)[394]: Let f and g be two functions that satisfy the log- Holder
conditions (2) and (3). Then max(f, g) and min(f, g) also satisfy these conditions. Proof
of Theorem (6.1.5). Fix €,0 < € < 1. We first define r(x). Let

R(x) =p(x) + (p(x) - D) -1 +6) =(@x) - Dk - e+1).

Since p(+) is log —H"older continuous, p, < oo, S0

Ip()? —p()?| < 2p4lp(x) —p(W)I;
hence, p(x)? satisfies (2) and (3), and so R(-)does as well. Now let
r(x) = minp(x),R(x). Then by Lemma (6.1.16),r(:) satisfies (2) and (3). If p(x) =1
orif p(x) = 1+¢,then r(x) =p(x). If x issuchthat 1 <p(x) < 1+¢ then 1 <

r(x) <p (x).
To define q(-) we first modify r(-). Let F = {x : p(x) <1+ €/3}and let
r* = supr(x) .
X€EF

(If Fisempty, let r* = 1 4+ ¢/3.) Define #(x) = minr(x),r",and let
3 3 (146 p(x) 0
q(x) = max - + 3 "7 )Y

By Lemma (6.1.16),7(:) is log —H older continuous, so q(:) is continuous. Since
F(x) <r(x) < p(x),we have 0 < q(x) < 1. Furthermore, if x € F,r(x) <
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p(x) <1+¢€/350 r* < 1+¢€/3. Thus for all x € R*,#(x) <r* < 1+¢€/3.
Therefore, if x is suchthat p(x) = 1 +, then

p(x) 1+e€ €

= >1+—.

7(x) 1+¢€/3 3
Hence, if p(x) > 1+¢€,q(x) = 0. Similarly, if p(x) =1, #(x)=r(x) = 1, so
q(x) = 1.
Now fix B and f € LPO(log L)) (R™); by homogeneity we may assume without loss of
generality that ||f||Lp(.)(logL)q(.) = 1. Then by Lemma (6.1.14),||f||Lp<.)(Rn) < 1and by

Lemma (6.1.13),

IF()|PX) dx < 1.
]RTI.
To complete the proof, again by Lemma (6.1.13) it will suffice to show that

f Mf(x) @ dx < C, (11)

B
where C depends only on |B|, €, and p(-).
We define the following sets:
B;={x € B: Mf(x) <1,p(x) > 1+¢€/3},
B, ={x € B: Mf(x) > 1,p(x) > 1+¢€/3},
B;={x € B: p(x) <1+¢€/3}.
Now divide the integral in (11) into three pieces:

j MFO)™ dx = | Mf(x)™™ dx + | Mf(x)™® dx + | Mf(x)"® dx.
B By B Bs
We estimate each integral in turn. The first is straightforward:

Mf(x)"® dx < |B,| <|B| < oo.
By
To estimate the second, first note that since r(x) < p(x),

Mf(xX) @ dx < | Mf(x)P™ dx.
B, B;
Ifx €B,,p(x)/(1 + €/3) = 1 and p(-)/(1 +¢€/3) is log- Holder continuous, so by
Lemma (6.1.15),

<cC j M(|f()PO/a+erDVFE gy 4 ¢ f S(x)1+e/3 dx.
B, B;

Since the maximal operator is bounded on L'*¢/3 and S is bounded,

<C| If@IPPdx +C
]Rn
< C.
Finally, to estimate the third integral, since7(-) satisfies the hypotheses of Lemma (6.1.15)
we have that
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Mf(x) @ dx = | Mf(x)"™ dx

B3 B3

(:f M(If()ITO) dx +f S(x) dx

3

< cf M(IfOIFQ)dx +C.
B

Now apply Theorem (6.1.2) with exponent p(-)/#(+) and with ereplaced by €/3 to get
< CIBI+C [ 1FGOP@log(e +]FCOr™)"™ d

+C < C|B| +cj If ) P™) log(e + |f(x)])I™ dx

Rn
+C < C.
This completes the proof.
Fix a ballB andf with supp(f) < B.Without loss of generality we may
assume ||Mf||Lp(.)(B) = 1, so by Lemma (6.1.14), [[Mf |15y < 1.Hence, by (7), Stein’s

converse of Wiener’s inequality,

j £ GOl log(e + [f (@D dx < C,
B

where C depends on |B|. Therefore,

j FCOPD Tog(e + |f ()] )9 dx

B

- j £ GOl log(e + 1f (o)) dx + ] FOOIP® dx
{x:p(x)=1}

{x:p(x)>1}
< |f ()| log(e + |f(x)]) dx + Mf(x)P™ dx < C,
{x:p(x)=1} {x:p(x)>1}

so by Lemma (6.1.13), ||f||Lp(.)(log)q(.)(B) is finite.
The construction of Example (6.1.8) requires one lemma whose proof will be given after
the construction itself.
Lemma (6.1.17)[394]: Leta(-),b (-): [0,e7®) — (0,0) be such that a(0) < 1,a(:
) satisfies(2) and b(-) satisfies (8). If we define

f(x) = x7®1og(1/x) "™ x(ge-ey,
then there exists a constant C such that forall x € (0,e7¢),Mf(x) < Cf(x).
Proof : Fix x € (0,e7¢); since supp(f) is contained in this interval, there exists an
interval I < (0,e~¢) containing x such that

MPGO < j f@) .

Therefore,
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Mf(x) 2 a(x b(x —a(t b(t
176 Sm x*¥) Jog(1/x)PC )Jlt ®Jog(1/t)P® qt.
We now apply the continuity assumptions on a(-) and b(-). First, from (8) we have that
log(1/x)?® = log(1/x)?® log(1/x)?*)~b(0)
< log(1/x)*©@ exp(|b(x) — b(0)|loglog(1/x)) < C log(1/x)"©,
Similarly, we have for each t € I that
log(1/t)™"® < ¢ log(1/t)?©®,

Exactly the same argument using (2) shows that x¢®) < €x%© and t=2®) < Ct=2©),
Hence,

Mf (x)

f(x)
Since the function t=%(® Jog(1/t)~?® is decreasing, we can increase its average by
taking the average over the interval (0, x). Thus, since a(0) < 1,

Mf (x) a(0)-1 b(0)
0 <Cx log(1/x) Jo

1
< Cx%™%) log(l/x)b(o)m ft‘a(o) log(1/t)P© qt.
I

X X
£~ Jog(1/t)? dt < Cx*(®-1 j t=a0) gt
0

<C.
This completes the proof.
The proof is initially very similar to the proof of Theorem (6.1.2). Fix a function f €
LPO (R™). Without loss of generality we may assume that f is non-negative. We may also
assume that ||f||Lp(.)(Rn) = 1,s0 by Lemma (6.1.13),

F(x)P® dx < 1.

]Rn
Fix a ball B; then again by Lemma (6.1.13) it will suffice to prove
JMf(x) dx < C, (12)
B
where C depends only on |B|, €, 6, K, and p(+). Fix y > 1/€ and define the function
p(x) =4 1+y
p(x) p(x) = 4,

where the value A will be chosen below and will depend only on §. Note that p(x)/(y +
1) < p(x) < p(x) for all x.
We now argue exactly as we did in the proof of Theorem (6.1.2) to get

1 - f()1P)
jMf(x)dx S2|B|+Cf -

B fs>y  P)—1
To estimate this integral, we decompose the set E = {x € R": f(x) > 1}. Choose
k>1sothate™ < 6.Forj = k,leta; = (1+ €)log(j)/j. Define the sets

Ay={x €E: p(x) > 1+ ai},
Ai={x € E:l+4+ajy <pXx)<1+a},j = k.

F()PX dx. (13)
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Then E = Ay U A; and by hypothesis, if j > k,|A;| < Ce™.
We further subdivide the sets A;,j = k: define

y+1
y + 1\r%j+1
B]= XEA]f(X)Z 0{j+1 ,
y+1
y + 1\r%j+1
C]= XEA]f(X)< aj+1 .

Then the right-hand side of (13) is bounded by

_ 1-p(x) _ 1-p(x)
Cj Ao F0)P® dx +CZf A GO

f(x)ﬁ(X) dx

PG —1 2. )y TP -1
1— f(x)l—z?(X) )
+C;Lj 1 [P dx
= L4+

We will estimate each term separately. To estimate I;, we now fix A = 1 + ay,. Then for
all x € Ay, p(x) = p(x) = A, 0

1-— 1-p(x)
I = CJAO p](:g))—l f)P® dx < c(A-1)1 Aof(x)p(x) dx < C.

(Here the constant C depends on p(+),e and §.) To estimate I,, first note that the integrand
in each term is bounded by

f(x)y(A-P() f)Y(-P)

pxX)+y(P(x)-1) — p(x)
We will now show that the fraction on the right-hand side is bounded by 1. On 4;,
djt1 _ i
14+~ < .
+y+1<p(x)_ y +1
Therefore, on B;,
_5 y+1 &)
f ()P < (“j+1 )y' V)41 VI (aj+1 )_1 _q
p(x)—1 ~\y +1 y +1 ’

so we have that

CZ j FOP® dx < €| feoP® dx < €

]>k B]

Finally, we estimate 5. By the definition of C;,
y+1 ( aj )

)P + 1\Pajas Myt
13_Cz f() x<CZ<y ) ™
P -1 = "L\ ay,

+
Y+1 o -1
]+1
(24) 6
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We estimate the j-th term:

since aj/aj <2,

y+1 3 y +1 _
< Cexp +—|log —Jjl;
ajiv1 Y Aj+1

by the definition of a; 4,

= exp ((log (%) + log (10;(]'-'_: 1))) (y](/l-:le) logj(]_-i__: 1) + ;) B j) :

Sincey > i,y + 1 < y(1 + €). Hence, for all j sufficiently large, there exists § > 0 such

that the exponent is dominated by - ;. Therefore, we have that for some large constant C,

I; < Cz e P < oo,

jzk

Combining the previous three estimates, we see that (12) holds; this completes our proof.
Assume to the contrary that there exists p(-) that simultaneously satisfies (2) and (9). We
will derive a contradiction. There are two cases.

Case 1. If there exists a ball B such that p_(B) = 1, then, since (2) implies that p(:) is
continuous, there exists x, € R™ such that p(x,) = 1.

In this case, we begin by observing that 4. : (0,e7°) = (1,1 + (1 +¢€)/e) is strictly
increasing and so invertible. Therefore, we can rewrite (9) as

{x €R™: p(x) < t}| < KA (1)

for all t > 1 sufficiently close to 1.

Similarly, if we apply the log-H"older condition (2) in a neighborhood of x,, we get that
for all x sufficiently close to x,

lp(x) — 1| <
Hence, for all s sufficiently small,

—log(|x — x0l) -

{x E]R%”:lx—x0|<s}c{x e R": p(x)S1+W},

210



and, in particular,

w,S" <<x ER™: p(x) <1+ (14)

C
1 )
log ()
where w,, is the volume of the unit ball in R™. Now define ¢ : (0,1) — (1, 0) by
Ys) =1+ —log(l/s)'
Then y is also strictly increasing and invertible. Thus we can rewrite (14) as
n
w,(P7I®) < {x ER™: p(x) < ¢}

for all t > 1 sufficiently close to 1.
Therefore, we will get the desired contradiction if we can show that for all such ¢,

K22'(1) < wn(¥71 ()",
or equivalently that
t < Ac(wp, K~1(71()").

To show this, note that if we take t sufficiently close to 1, then we have that

_ C 2(nC +1
log (log(wn K™ +£—1) > (nl+€ )

(t—Dlog(w; 1K) < 1.

Thus, for all such ¢,

Ae(n K1 0)") = 14+ (1 4 ) 28008 KV (O 1))

log(wy* Kip=1(6)™)

2(nC + 1)
> 1+ (1+e¢) 1+e —
log(wy ' K) + 77
=1+ ®C +1 2t~ 1)
B (n )(t—l)log(a)glK) +nC
> 1+2(t—1)

> t.
This is the desired contradiction, which completes the proof of Case 1.

Case I1. Suppose thatp_ = 1 but p(x) > 1 for all x € R™. Then there exists a sequence
{x,} such that |x,| = oand p(x,,) - 1 as n — oco. Furthermore, by passing to a
subsequence we may assume that for all n and m, |x,, — x,,| = 2. Now fix any s > 0. Then
there exists N > 0 such that if n > N,p(x,) < A.(s). But then by condition (2), there
exists 0,0 < ¢ < 1, such that if |x — x,,| < afor some n > N, then p(x) < A.(s). The
balls B, (x,) are disjoint, so their union has infinite measure. Therefore, the set {x € R" :
p(x) < A.(s)} has infinite measure. This contradicts the assumption that (9) holds, and

our proof is complete.
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Section (6.2): Hardy Spaces with Variable Exponents and its Application to Bounded
Linear Operators

We apply the atomic decomposition results of Hardy spaces with variable exponents,
which was partly obtained in our earlier [412], to the boundedness of linear operators and
to compare it with the atomic decomposition results of classical Hardy spaces.

Before we describe Hardy spaces with variable exponents, let us recall classical Hardy
spaces. Let 0 < p < oo. The Hardy space HP (R™) is given by the set of all distributions
f €S'(R™) for which the quasi-norm [|f|lgr = llsupssoletf|llp is finite, where
{e4},>, denotes the heat semigroup.

we replace LP (R™) with LPC)(R™). The space LP()(R™)is called variable Lebesgue spaces
and initiated by Nakano [412]. As a counterpart for Hardy spaces, we are led to
considering Hardy spaces with variable exponents where we work mainly on. Now let us
describe Hardy spaces with variable exponents and their decomposition results. Let
p(:):R" = (0,0) and f : R® - C be measurable functions. Then define the variable
Lebesgue quasi-norm ||f|,»c of f;

p(x)
If 1l o) = inf{ﬂ > 0: J (lf(;)l) dx < 1}, (15)
Rn

where inf@ = oo. The space LPC)(R™) is the set of all measurable functions f on R™for
which the quasi-norm ||| »cis finite.
Here and below, we shall postulate the following conditions on p(:):

1

.. - - C
— — < - —_ < =
(log —Holder continuity) |p(x) —p(y)| < gL/ =y for|x —y| < > (16)

(decay condition) |p(x) — p(y)| < m for |y| = |x|. (17)

The Hardy space HP®)(R™) with variable exponent p(-) is given by the set of all
distributions f € S'(IR™) for which the quasi-norm
suple*f]|

Wfllpe) =
t>0 240

is finite. If we assume 1 < p_ =inf,cgnp(x) < p; = sup,egn P(x) < oo, (16) and
(17), then, from Proposition (6.2.6) below, the Hardy-Littlewood maximal operator M is
known to be bounded on LPO)(R™) and from the reflexivity of LP()(R™), we can prove
LPO(R™) = HPO (R™)with norm equivalence.

First, denote by Li’:omp(R") the set of all L?(R™)-functions with compact support. For
L =0,1,2,, P, (R™) denotes the set of all polynomialswith degree less than or equal to L
and P_;(R™) = { 0}. The space P, (R™)"is the set of all integrable functions f satisfying
Jen (X + [xDH[AC0) | dx < ooand [, x*A(x)dx = 0 for all multiindices a such that
|a| < L. By conven-tion, P_;(R™)* is the set of all measurable functions. For L =
—1,0,1,+ we define L%y (R™) =Ll (RM) NP (R If C depends on some
parameters such that s, then we write A < CB.

We define

(18)
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p = min(p_, 1), dpy = max{[n/p_ —n],—1}
forp € (0, ).
Theorem (6.2.1)[411]: Let p(:) satisfy0 <p_ < p, < o as well as (16) and
(17).LetL e NU{0}ands € (0, ).
(i).Let g >p, when p, = 1 and g = 1 when p, < 1.Suppose that we are given
countable collections of cubes {Qj};ozl, of non-negative numbers {/1]-};:1 and of

d . 00
LYy (R™)-functions {aj}jzlsuch that

supp(a;) © @ [lay]l 4 < 10,1 (19)
that
1
0 E
> (Bxe)) < o, (20)
j=1
LrQ®

Then the series f = Y72, 4;a; converges in HP?)(R™) and satisfies

D=

“f”HP(') <C ]XQ]

”MS

240
(iD). Let f € HPO(R™). Then there exists a decomposition

j=1

inS"(R™) by means of countable collections of cubes {Qj};il,of nonnegative
numbers {Aj}]o_:l and of Ly, (R")-functions{aj};:lsuch that

|aj| = XQj’
and that
- 1/s

S
D (txey) < ClIf 00

-
J LPO

Here and below, we use the following convention about cubes: By a “cube” we mean a
closed cube whose edges are parallel to the coordinate axes. Its side length is denoted by
£(Q) and its center by cQ. For ¢ > 0,cQ denotes a cube concentric to Q with sidelength

c?(Q).
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In [412, Theorems 4.5 and 4.6], the possibility when d, ., = —1 was excluded but
actually it is possible by Theorem (6.2.1). Next, we present a decomposition result for
compactly supported functions.

Theorem (6.2.2)[411]: Let k > 1,5 > 0,max(1,p;) < q <oand L = d,. Suppose

f € LZOme R™) is supported on a cube Q. Then there exists a decomposition f =

v i=1 1Aja; by means of finite collections of cubes {Qf}?]:f of non-negative numbers
{/1]-} and of L% (R™)-functions {aj}?’:lsuch that

”aj”Lq = |Qj|1/qi Supp(a]) C Q] C KjQ (] =1 ’2’...’N)
and that

Sl

(0]

> (e || = Celftlpor

j=1
1249

For comparison, we dare repeat to state Theorems (6.2.1)and (6.2.2) for LP (R™) spaces as
Theorems (6.2.3) and (6.2.4).

Theorem (6.2.3)[411]: Let p € (1,),L€ N U{0,—1} and s € (0,). Suppose
Pp<qg =x™.

(). Suppose that we are given countable collections of cubes {Q;};%, , of nonnegative

numbers {/1]-};1 and of L2,,,,., (R™)-functions {a;}?2.;such that
supp (@) < Q;, o] o < 1,17
and that
||Z;.;1/1]')(Qj ”Lp < .
Then the series f = Y52, A;a; converges in LP (R™) and satisfies

If llr < € z o || <

(ii).Let s>0 and L = d,.Let f € LP(R") Then there exist a decomposition f =
X 5=14;a; in LP(R™) by means of countable collections of cubes {Q;}7%; , of non-negative

numbers {/1]-};11 and of L°2;,me (R™) —functions {a;}}Z; such that

and that
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1/s

(00]
> ()| || = clrie

j=1
LP

Theorem (6.2.4)[411]: Let p,q,s € (0,) and L = d,, satisfy 1 <p <q < oo. Let
f € Lcomp(]R{”).Then there exists a decomposition f = Z’}Ll Aja; by means of finite
collections of cubes {Qj}ﬂyzl, of non-negative numbers {/1]-}7:1 and of ch:ﬁmp(]R”)-
functions {a;}}_; such that

|aj| < Xqj
and that

N 1/s

2 wa) | || = Glf i

=1
LP

Remark that Theorems (6.2.3) and (6.2.4) are already included in [414] and that
Theorems (6.2.3)(i) and (6.2.4) withs = p are included in [413, Theorems 2.1 and 2.2].
Let us look back on the history of spaces with variable exponents. It seems that the theory
dates back of Orlicz [316]. Later, Nakano and Luxemberg independently considered
spaces of variable exponents [417]in 1950’s. Especially, the definition of the variable
exponent Lebesgue spaces can be found in [418]. It had been left intact until Kovacik and
J. R’akosn’ik investigated Sobolev spaces based on Lebesgue spaces with variable
exponents. About the fractional integral operators, much was studied from earlier. From
the point of harmonic analysis, Diening paved the theory of the boundedness of the Hardy—
Littlewood maximal operator in [416]. Based upon the pioneering [417], many
investigated the boundedness of the Hardy-Littlewood maximal operator in [418]. With
the boundedness of the Hardy-Littlewood maximal operator, the boundedness of other
related operators (see [419] for example) and the theory of function spaces (see [420] for
example) are developed rapidly. See also surveys [421]. In [422] variable exponent
Campanato spaces are defined in the setting of quasimetric measure spaces. As for Hardy
spaces with variable exponents, see [423] as well as [424]. Among others, in addition to
the recent development about the spaces with variable exponents, the localization principle
proved by Hasto is important [425], which seems to have a connection with the proof of
the Hardy-Littlewood maximal operator. For their precise statements of the key facts,
which we use, see to Proposition (6.2.5) here.

We learn that spaces with variable exponents are difficult to analyze. The main reason was
the difficulty of the proof of the boundedness of the Hardy—L.ittlewood maximal operator ;
Diening works paved the way. See [426] .
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Apart from the development of spaces with variable exponents, the classical Hardy space
HP(R™) has three different aspects as was described by Stein [427]. When 0 <p <
1, H? (R™) contains distributions which are not Lj,.(R™) functions. When p = 1, HP (R™)
is strictly embedded into L'(R™). When 1 < p < o, by virtue of reflexivity of L? (R™)
and the boundedness of the Hardy—Littlewood maximal operator, H? (R™) and LP(R")
coincide as a subset of S'(R™). To have a unified understanding of this strange but
Important phenomenon, we can use Lebesgue spaces with variable exponents. Notice that
we did not require that p, < 1 nor that p_ > 1 in Theorems (6.2.1) and (6.2.2). So, once
we propose a framework of Hardy spaces with variable exponents, we can treat them in a
unified manner.

Frst, we recall some elementary facts for variable Lebesgue spaces. Then we prove
Theorems (6.2.1) and (6.2.2). we shall review some fundamental facts for variable
exponent Lebesgue spaces. is intended as a quick review of key inequalities in variable
Lebesgue spaces collects a maximal inequality. We recall and supplement some basic facts
about Hardy spaces with variable exponents is the heart of the present . Theorem
(6.2.1)(i), Theorem (6.2.1)(ii) and Theorem (6.2.2) are proved and

we consider applications of Theorems (6.2.1) and (6.2.2). deals with fractional integral
operators. 1s devoted to the review of the definition and the boundedness of the singular
integral operators. intends as the definition and the boundedness of commutators. The
Fefferman—Phong inequality is considered , where we are convinced that we essentially
improve the result of [419]. By the Fefferman—Phong inequality, or the trace inequality, we
mean

lg - 1afllx < cllglly - 1Ifllz (2D

for some Banach spaces X,Y and Z. When X and Z are Morrey spaces, namely, if their
norms are given by

1 1 1/q1
1f 1l = 1 llyp: = sup Q[P % (j |f(J’)|q1dy>
1 X n Q

and

1/q;
Rz = ||h||MP2 = sup |Q|7f’2 a2 <f Ih(J’)qudy> ,

then (21) is referred to as the Olsen mequallty In [415], for m = 1 Olsen considered
(21) to investigate the Schr odinger equation with Y being Morrey spaces. Later, many
authors considered and sharpened (21) with m = 1. see [422] for related results. We take
up the Hardy operator . Finally we disprove that the Fourier transform is not bounded from
LPO(R™M) to LP'O(R™) even when the exponent p(-) satisfies 1 < p_ < p, < oo as well
as (16) and (17).

We consider (15) under the conditions (16) and (17).

Note that p,, = lim,_ p(x) exists in view of (17).From p, < oo and (16) it follows
that
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lp(x) —pMI=C logte +1/Ix=3D) forallx,y € R™ (22)

Observe that (17) is equivalent to the following estimate;

— Deo| < C Il x € R, 23
lp(x) — Do loge 1) forall x (23)
Note that (23) is equivalent to |log(e + |x|)P®~P=)| < C,that s,
(e + |x[)P™
~1 llx € R™, 24
e + e L Jorall &

Among other related in equalities, we recall the following localization principle due to
Hdsto [421]:
Proposition (6.2.5)[411]: Under the conditions (22) and (23), the equivalence

1/Poo
Wl e ~ ( z (||Xm+[0,1]nf||Lp(~))p°o) (f € LP(')(IR"))

MmezZ"

holds.
we still need the following Fefferman—Stein type inequality for the Hardy-Littlewood
maximal operator M, which is given by

1
MFG@) = sup o fQ FO)ldy . 25)

Here Q(x) denotes the set of all cubes containing x. We invoke the following estimate:
Proposition (6.2.6)[411]: Let p(+) satisfy
1 <p_. <p; <
as well as (16) and (17). Forevery q € (1, ],
1/q 1/q

> M < Goora ||| D 1517
j=1 j=1

PO L0
Proposition (6.2.6) seems to have been a hint of defining the sequence norm in Theorems
(6.2.1) and (6.2.2). An important fact illustrated in [428,p.1746] was that we can not
replace g with variable exponents.
The following results for variable Hardy spaces are known and in the present  we take
them for granted: first, we recall some of equivalent expression about Hardy spaces with
variable exponents. We topologize S(R™) by the collection of semi-norms {py}nven given

by
pu(@)= ) sup (1+ [xDV|9%p ()]

2T XERM
for each N € N. Define
Fy ={p €S (R"):py(p) < 1}. (26)
Let f € S'(R™). Denote by Mf the grand maximal operator given by
Mf(x) = sup{lt P~ ) = f(O)I:t > 0,9 € Fy},
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where we choose and fix a large integer N. Below we write B(r) = {x € R": |x| <
r}. The Fourier transform and its inverse are defined respectively by

Ff(§) = fx)exp(—ix - &) dx,

(2n)§ R
F7'f(x) = 7 | f(@exp(ix-$)ds.
(2m)z Jrn

Theorem (6.2.7)[411]: ([421, Chapters 3 and 5]). Let p(-) satisfy 0 <p_ < p; <
oas well as (16) and (17). Let f € S'(R™) and let ¢ € S'(R™) satisfy the non-
degenerate condition fRnw(x)dx # 0. Let p € S'(R™) be chosen so that yp1) < P <
Xp(2)- Define 4;f(x) = F1 [(@(277-) — ¥(277*1 ))Ff](x).Then the following are
equivalent :

(D). f € HPO(RM).

@) IMfl pc» is finite.

(iid). lIsupesolt (™" -) * flll o) is finite.

1
(iv).f = XF-_w4;f holdsin S'(R™) and| (X% o 14;f1%)? o < oo.
If one of these conditions is satisfied, then
1
Pt ) f : ’
<) %
I lawo ~ IMFlle ~ |[sup ===l ~|I[ D 1412
>0 t : .
LP®) j=—oo

LpQ)
holds.
Proof: The conditions (17). are equivalent as we can see [421, Chapter 3]. Assume

f € HPO(R™). Then by [420, Chapter 5.3], we have

Wl ~ [[[ D 1412 <o
LrQ®
Let us show that f = ¥%__, 4;f holds in S'(R™).Set fy = 7:_NAjf for each N €
N.Then {fy}ven is a Cauchy sequence in HPO(R™). Denote by gits limit in
HPO(R™). Since it is established in [421, Remark 3.5] that HPO)(R™) & S'(R™), it
follows that g = ¥%-_, 4;f holds in S'(R™). Since f — g has frequency support in
{0}, f — g agree with a polynomial P in S’(R™). Since P = f — g belongs to HPO)(R™),
we must have P = 0. Thus, it follows that

f=g=§:4‘jf

j:—OO

holds in S'(R™).
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then {X__y 4; f}:zlis a Cauchy sequence in H?®)(R™) because we know that
1

gllwer ~ ([ D 14712

j:—OO
LrQ®)

forall g € HPO(R™). (See [421, Section 5.3].) Hence {X}__y ]f} is convergent to an

element h € HPO(R™). The convergence takes place in the topology of S'(R™) as well.
Thus, it follows that

N—-oo

= lim Z 4;f = h € HPOR™).

To state some fundamental embeddlngs we define

Se(R™) = S(R™) N ( P (R”)l> .

Theorem (6.2.8)[411]: Let p(+) satisfy 0 < p_ < py < oo aswellas (16) and (17).

(D). Se (R™) & HPO(R™) & S’(R™) in the sense of continuous embedding.
(iD). Li;;;d"(’)(ﬂ%") is dense in HPO)(R™).
Proof: The inclusion HPO(R™) & S'(R™) is proved in [422, Remark 3.1]. We also know

p++1,d 0] . . . . . .
that Ly, ~ (R™) is dense in HPO(R™). (See [422,Section 4]) The inclusion
S (R™) & HPO(R™M) holds since S, (R™®) & HP-(R™) n HP+(R") & HPO(RM),
We modify the proof of our earlier [421]. Actually, the following key lemma is improved:
Lemma (6.2.9)[411]: Let

q>p, =1 or q =1>p,. (27)

Suppose that we are given countable collections of cubes {Q;}}~, , of nonnegative numbers

{4;}j2, and of L%¢ (R™)-functions {a;}}2, such that
supp(a;) < Q. [lay |, < o;' o (28)

comp

Then

D=
8
D=

(0]
E p E
=1 j

Lp() Lp(')
Remark that the condition (27) was g > 1 in our earlier [421, Theorem 4.6].
Proof: As before, we can assume that the sums are essentially finite. Choose a positive

function g € 1(pO)/) (R™) so that
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Sl
S

p
Z 1402 = J z|/1jaj(x)|—g(x)dx
j=1 R =1

1749
Then by the Holder mequallty, we obtain

f ZM a](x)| g(x)dx —z |2 |pj |a](x)| g(x)dx
Z 4P (lele) il g

j=1
If we invoke (28), then we have

j Z|,1 a; ()|~ g(x)dx<Z|A| (3] 1/" ) llgl L) g
< ]Z jRnlﬂjl% Com [g(2) | oy /()

An arithmetic shows

a\' _[(P@\) _ 2. P
(g) <{<£)}_ TpTp T TP

Thus, we can use Holder inequality and obtain the desired result.
Now we prove Theorem (6.2.1).
Assume for the time being that 4; = 0 with finite number of exception. Fix ¢ € S(R™)

satisfying the non-degenerate condition [ ¢(x) dx # 0.As weshowed in [422, (5.2)], we
have
n+dy_+1

Myaj(x) < Cxzq;Ma;(x) + Myo,(x) n (x €R").
This pointwise estimate yields

(e )

My Z Aja;

j=1 PO

n+dp_+1

<C ZAj)(3QjMaj+ZAj(M)(Qj) "
j=1 j=1

LrQ®)
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n+dy_+1

j=1

LPO) j=1 LPO)

Therefore, by Proposition (6.2.6) and Lemma (6.2.9), we obtain

[00]

Z A;a;

J=1 PO
1
*© . p 00 n+d,_+1
= n
PO )A40)
1
p

IA
S
[1s
N
>
N
L
N——
IS

LrQ®

In summary, we obtained

(0]

My Zﬂjaj z JXQ, - (29)

j=1 PO J=1

IS~

Lp®
Therefore, the result is proved if A has only a finite number of non-zero entries.
Suppose that we are given countable collections of cubes {Q;}/Z,, of non-negative

numbers {4;}72; and of L (R™)-functions{a;};, satisfying (19) and (20). Then from

(29), we learn that

comp

1
N, N P
p
M| > %q <c|{ D (o) (30)
Jj=Ny1 720) Jj=N1

LrQ®)
for1 < N; <N, < oo, Therefore, {Z§=1’11'af}]—1 is a Cauchy sequence in H?®)(R™) and

converges to an element f € HPO(R™). Since HPO(R™) is known to be embedded
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continuously into S’(R™), it follows that the sequence {Z§:1 /’ljaj}jo_l converges to f in
S'(IR™). Note that

}i_f?o z (AJ'XQJ)B

j=1

~
D=
D=

JXQ,

”MS

Lr® Lr®
by the monotone convergence theorem. Consequently, from (30) and the Fatou lemma, we
deduce

J

Ifllgrr < € Jim (1M, | D 4ja |8 (o,

J=1 PO J=1

D=

Lr®
and Theorem (6.2.1). was proved.

We invoke the following decomposition result from [427]:
Lemma (6.2.10)[411]: Let d € {—1,0,1,2,---}and j € Z. Suppose that f € L1(R")
with ¢ = 1. Then there exist collections of cubes {Q}‘k}kEKj and functions {n; x}kex; ©

Ceomp (R™), and a decomposition f = g; + b;,b = ZkEKj b;  , such that

(i) The {Q},k}ke,{jhave the bounded intersection property, and

U Qix ={Mf >2/}=0;
kEKj
(i) Each function n; . is supported in Q; , and

z Njk = X{mf>2i} 0=7n, =1
kEKj
(iif) The distribution g; satisfies the inequality:

. 1’p'k’f'l+d-|'1
Mgj(x) < C (Mf(x)X{Mf>zf}(x) + 2/ z - n+d+1)
e (G + [x = xix])

forx € R™.
(iv) Each distribution b;, is given by bj, =n;,(f — ¢jx) With a polynomial ¢;, €
P, (R™) satisfying fRn b (x)q(x) dx = Oforall ¢ € P;(R™), and

jp. n+d+1
i | (xE€RM
n+d+1 X]Rn/erk(x) :

Mb; . (x) < C (Mf(x) Xo;, () +

|x - x]-,k|
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In the above, x;and ¢;, denote the center and the side-length of Q;,, respectively, and
the implicit constants are dependent only on n.

the routine argument described in [427] and the density result obtained in [421], we can
assume that f € L2%0(R™) with ¢ > max(1,p,). Foreachj € Z, consider the level set

0; ={x € R": Mf(x) > 2/}. (31)
Then it follows immediately from the definition that

If we invoke Lemma (6.2.10), then f can be decomposed,
f =9+ bbb = zbj,k vbik = nj(f —¢r)
k

where each b; ; is supported in a cube Q; , as is described in Lemma (6.2.10). We have
shown in [421,p.3691]

=2, (ari-9). (33)

j=—o0
with the sum converging in the sense of distributions. Here, going through the same
argument as the one in [427,p108-109], we have an expression;

f = ZAj,k Jj+v1— 9 = zAj,k (J €Z) (34)
Jk k

in the sense of distributions, where each Aj ., supported in Q;,, satisfies the pointwise
estimate |Aj,k(x)| < C,2’ for some universal constant C, and the moment condition
fRn Aj(x) q(x)dx = 0 for every g € P;(R™). With these observations in mind, let us

set
A; :
_ Ajk _
a',k =, K',k = 602].
- - ] 602] ]
Then we automatically obtain that each a; ; satisfies

4] <xoi  @x L PLR™)

f = Ekj,kaj,k

j.k
in the topology of L(R™) =~ H(R"), since f € L7(R™). It remains to prove the estimate
of coefficients; once this can be achieved, we have only to rearrange {4; x};x and {x; x}; k-

From the definition we need to estimate

Z |/1jXQ1'
j=1
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( < p(sx)

|
. | K kX gj, (%)
_1nf{k/1>0. jRn Z dx Sl}.

x \A ”XQ}'ik 1720 J

Since {Q; , }x forms a Whitney covering of 0; (see Lemma (6.2.10) (i)), we have
LrPQ)

1/s
z | XQJ
p(x)

( A
ol (3 (299)) " aecal.
inf l/l >0 JRn jZoo< 2 dx < 1J

Recall that Q; © Q. for each j € Z (see (32) above). Consequently wehave

N

(0]

2 (Vrg0\ [& Pxg,® 2020,/ Qir @)
Z( 2 >~ Z 2 - 2 2

j=—o Jj=—o00 Jj=—o0o0
Thus, we obtain
1/s © e p(x)
Xo./Qivq (x
Z| x| SCinf/1>0:J Z % A’“ dx <1},
R™\ A=
720) 7=
We deduce from (31), the definition of O; that
. ] p(x) o )
20x0;/Qj+1 (%) 27\P®
Z 2 dx = Z 7)) =
R" s j=—o0 Qj/Qj+1

[

< Cinf{l > 0: f (M];(x))p(x) dx < 1}
an

= Clifllgpo, (35)

Therefore, we obtain

Z| XQ]

it f e 1770 RM).

comp

1/s

JA40]
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Under a special setting that f € LZ;,me (R™), we shall reexamine the proof of Theorem

(6.2.1) we need to consider the truncation with respect to j. This consists of two steps.
As the first step, we consider a truncation with respect to j. We disregard j > j, for some
Jo- According to the proof of Theorem 4.5 in [421], we know the structure of M f(x). More

precisely,
1 {(Q) —Tl—dp—l

Recall that O; is given by (31) and that we have (32). Therefore, there exists j, € Z such
that

0; € kQ (36)
forall j = j,. Then

supp(gj,) = supp| f - ZZAj,k c 0;, © KkQ

jzjo k
and
95, < Co2oxg @) < Co(fnf MFO)) 2o @) (37)
] .
Here C, is a constant that needs to be specified. Let 4; = 27/0C,. Then
||A1qu||Lp(.) < ClIMfllpe < Clifllgreo- (38)

The next step is, roughly speaking, to truncate of j and k such that j < j,. Fix x € R"
and write j; = j;(x) = [1 + log,Mf(x)]. Recall that 4;  is supported in Q;, < 0;. If
J = Jj1, then x € 0;. Thus, in view of the expression (34) and the bounded overlapping
property of Qj  , we have

J1(x)
ZZ|Aj,k(x)| - z Z|Aj,k(x)| <c z 2/ < C2h®™ < CMf(x).
jzjo kEL Jj=Jjo K€L J<ji(x)

This means that

supp Z Z|Aj’k(x)| C 0;, and that z ZlAj'k(x)| € L9(R™). (39)

i3Jo kez i>Jo kez
fg
ol o 1
||;|| - Ajk < [kQ]9 . (40)
O Ndwetiomnmxzr || 4
Set
Xeoll nc
- |l oo A
I lgwe

U.k)E([jo,0)NZ)XL/F
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Then, from (35), (37), (38), (39) and (40), we conclude
9j, £l 5per
f:)ll_]+ Z Jka]k —HP -h

(J.k)EF XxQ ”LP(')
is the desired finite decomposition.
Now we investigate the boundedness of fractional integral operator I, of order a, which is

given by
I,f(x) = J]Rn$ dy (x € R™).
Theorem (6.2.11)[411]: Let p(-) satisfy

n
0 <p.<py<— (41)
as well as (16) and (17). Define an index q(+) by
1 1
2 xemrm (42)

q(x)  p(x) n
Then Ia, which is defined initially on Lg.,,(R™) N HPO(R™), can be extended to a

bounded linear operator from H?)(R™) to H1O)(R™).

The following lemma, dealing with quantitative information, is necessary for the proof:
Lemma (6.2.12)[411]: Let a € (0,n). Let p(-) satisfy (41) as well as (16) and
(17). Define q(-) by (42). Then, for sequences {Q;};=, of cubes and {4;}7%; of non-
negative numbers, we have

j=1 '

%0 J=1 PO
Proof: By Proposition (6.2.6), we may assume that each Q;is a dyadic cube, namely,

Qj = Qv]-,m =27 H}::l[mj,kimj,k + 1) for

(vj,m) = (vj,mj1, mjq,,mjy,) € T
Indeed, if we let R; = 27V [Tp1|m;x, m;x + 1) be a (non-unique) dyadic cube such that
10™|Q;| = |R; | and that the triple

n
3R; =27V H[mj,k - 1,m;, +2)
k=1

engulfs Q;, then we have

zlje(Qj)aXQj Z’l ’B(R ) )mm(lq )
j=1

L4C) L4
Assuming that the assertion is true for dyadlc cubes, we obtain

226



D @) =c ZA,-XR,-
=1 '

La® J=1 j540)

>3 0oz
j=1

>

Jj=1 LPO)

and our claim that Q; is dyadic is justified. Since dyadic cubes form a grid, that is, @ N R
equal Q or R as long as two dyadic cubes @ and R intersect, we can assume that Q; # Q;
for1<j<j < oo.With these two reductions in mind, let us prove the lemma. Write

F<x>_z 20,0, G(x)_zwazj)“x@ OF

Assuming that [|F||,»¢) = 1 let us prove that ||G||Lq() < C.We distinguish two cases:
Case (1): |Q;| < 1 for each .
Case (2):1Q;| = 2 for each j.

LrQ®)

First assume Case (1). Fix x € [R" Then we have

|Q1|p_ ~ |Q1|p+ ~ ||XQ]||

by virtue of (22). From this, we have
2 n
G(x)< C z min ({’(Qj)aF(x),ﬁ(Qj)“_m) _

Thus, since we are assuming (41)_and (42), we obtain
p(x)
G(x) < CF(x)1® (x € R™)
by virtue of our reduction that each {Q;};%, is a dyadic cube and Q; # Qqfor 1 < j <
j' < oo. Thus,

—

LP()

\.

j G(x)I™® dx < CJ F(x)P®dx = C.
R R
Next, assume Case (2). Then we have

0= ~ e

—_

LP()

\.

which shows [|G]| ¢y < C.
Going through the same argument as Case (1), we obtain
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P
G(x) < CF(x)%~ (x € R™).
Hence, since in each Q,,,, (m € Z™)F and G are constant functions and we are assuming

(17), if we denote v, = (%%%) then we obtain

1

oo
NGl ac) ~ ( z G(m + Vo)q°°>

m ezZ"
1

dwo
< C( z F(m +v0)p°°>
m eZ"

Poo
~|IF |l pyd= =1

by virtue of the localization principle, Proposition (6.2.5). Thus, in Case (2), the proof is
complete as well. Combining Cases (1) and (2), we obtain

6o <c( || D 4@ %@ +|| ) A@) | |=c
Jit(Q=1 L40) Ji£(Q)>1 140
and the proof is therefore complete.
We may assume f € L‘fo'fnp (R™) with L > 1 in view of the density of mep (R™)in

HPO(R™). Then we have

N

as we described in Theorem (6.2.2). By virtue of the moment condition

N A"E(Qj)L-I-n
[ f ()l <C Ltn-a
]Zl(f(Q]) + |x - C(Q])D

L+n a
<c Z" 200 Myg,(x) n

Since we can take L large enough we can assume

L+n—a
1
Thus, by Proposition (6.2.6), it follows that

L+Tl —-a

Mafllao < € ZA Q) Mg () T

L4
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N
< ¢||D 4@,
j=1

If we invoke Lemma (6.2.12), then we have

L4

N
Mefllgo < €| Axg,|| < €Ul
j=1

L4
This is the desired inequality.

By a “singular integral operator”, we mean an L?(R™)-bounded linear operator T equipped
with the kernel K satisfying the following properties:
(i) K is a C-valued measurable function on R™ x R™\diag, where diag is a diagonal set
given by diag = { (x,x) e R"* X R" : x € R"}.
(ii) On R™ x R™\diag, the size estimate
Koy < Clx—y|™
holds.
(iii) If (x,y),(x,z) € R"® X R™\ diag satisfy 2|y — z| < | x — z|, then the Holmander
estimate
ly — 2|

|K(x,y) = K(x,2)| + |[K(y,x) = K(z,x)| < C X =y
holds.
(iv) If f € LZymp(R™), then

TF) = | KGuyfo)dy
for almost all x € R™\supp(f). A well-known fact in harmonic analysis is that T can be
extended to a bounded linear operator on L7(R™) for all 1 < g < oo. Thus, with this fact,
we tacitly assume that T is defined on Uj<g<oo LT7(R™).In [421, Proposition 5.3], we
proved the following result:

Theorem (6.2.13)[411]: Assume that 1 < p_ < p, < oo. Given a singular integral
operator T above, T, restricted to HPO)(R™) n L?(R™), extends to a bounded linear
operator from HPO) (R™)to LPO) (R™).

we investigate the boundedness of commutators generated by singular integral operators
and BMO(R™) —functions. Recall first that a locally integrable function b is said to belong
to BMO(R™), if b satisfies;

1
1Bligso = sup— j Ib(x) = bQ| dx < .
cee Q| Q
Here we wrote
1
bQ E—jb x) dx.
1),
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By the John—Nirenberg inequality, forall 1 < q < ocoand forallb € BMO(R"),

1/q
sup( f |b(x) — bQI"dx> < Cyllbllsmo. (43)
Q€Q |Q|

In view of (43), forany f € Lcomp(IR") with d > 0, we can define [T, b]f € Li,.(R™)
by
[T,b]f(x) = T[b - f](x) = b(x)Tf (x). (44)
Note thatb - f € chomp(]R") for all g € (1,0) and hence the definition (44) above
makes sense., we prove;
Theorem (6.2.14)[411]: Let p(+) satisfy
1<p-sps <o
as well as (16) and (17). Then, if d = max(1,dy,),
IT,b1fl o < Clifllgped
for f € Lcomp R™). In particular, [T,b] extends to a bounded linear operator from

HPO(R™) to LPO(R™). To prove Theorem (6.2.14), we need the following estimate:
Lemma (6.2.15)[411]: Let Q be a cube and A be an L* (R™)-function such that

|A] < xo, jA(x) dx =0
Q

for almost all x € R™. Then for any g € (1,),k € N,b € BMO(R™) and singular
integral operators T, we have;

X2k j2k-1 ([T, b]A = T[(bg — b)A])||Lq < Ck27k(m+D|2kQ|V/a, (45)
Proof: For the purpose of proving (45), we can assume that b, = 0. Notice that, since A
has a moment,

[T,b]A(x) + T[b - A](x) = b(x) f (K(x,y) = K(x,c9))A(y) dy.
Note also that; ’

b(x) j(K(x y) — K(x CQ))A(y) dy| <
Thus, if we useR€43), then we have

(Q)n+1

< [b(x)] X — y[ril (x € 2Q).

q

f b(x) J(K(x,y)—K(x,cQ))A(y)dy dx
2kQ\2k~1Q R
< Cz-kqm“)f |b(x)|9 dx
2kQ

< quz—kq(n+1)+kn,€(Q)n’
proving the lemma.
Letf € Lcomp (R™). Then we have
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N
j=1
as we described in Theorem (6.2.2). Consequently,

[T,blf = ZA[Tb be,| 4
N 00
EA,XQ (b~ bo,) Ta + 22,1];(2 covai-ig (b= Do, ) Tg;
j=

j=1k=1
T Zaj (b-
=1

By using Theorem (6.2.1) and the boundedness of T (see Theorem (6.2.13)),we obtain

N N
dub-bo)a || =c|)u(b-bo)a| <l
j=1 j=1

LP® PO

Let us prove

=D+
D=

(e0)

N N
P
E E(kz-k<n+1>/1j;(2ij) E Axa,) . (46)

j=1k=1 j=1

Lr® LpC)
Once this is proved, according to Theorem (6.2.1), we have [T, b]f € LPO(R™) and
1
N P
14
1T, B)f o < € |3 (Ao, < Cliflpor
j=1

JA4Q)
It remains to estimate (46), By using the maximal operator M, we can further proceed and
we have

==

(0]

N
Z Z (kz—k(n+1)/1jX2ij)2

j=1k=1
LrQ®
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1
P\

N 1+e
ZZ (A kz—k(n+1 e)+kn/p (MX ) >

j=1k=1
Lr®

Assuming p_ > ——, we can choose & > 0 so that (n + 1 —&)p_ > n. Withthis choice,

the above series is summable and
N o 1+e
2 (s (ixa) )

N
Z Z (kz—k(n+1)AjX2ij)B

j=1k=1 o J=1k=1 o
Lt 1pC
Since € > 0, if we use Proposition (6.2.6) and the John—Nirenberg inequality, then we
obtain (45). If we modify the proof, we have a similar assertion when p_ = 1; the range
space will be replaced by the weak space w — LPC)(R™). We omit the detail.
Applying the improved atomic decomposition, we can prove the following theorem:

Theorem (6.2.16)[411]: Let 0 <a<nand 1< q < . Let p() satisfy 1<p_ <

p, < oo,q >p, as well as (16) and (17).Then for g EM(?/“ (R™ and f €
HPO(R™), we have

1
p\p

=D+

lg - Lafllpe = Cligllymallfllzpo-

Proof: By density, we can assume that f € Lcomp (R™). Then we have

j=1

as we described in Theorem (6.2.2). Here we take d e N sothatd > a + pl With this
decomposition,

o) N
19 1f I < €Y 27| Y |gCOIEQ) A zq, ()
k=1 j=1

Here L = d — a. Observe that
N
Z 1918@) arg,|| =27 | 191£@4 Q) xtarq,
Lp0) j=1 120
< Cligly e || ) aee,
Jj=1 LPO)
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N
kn
< €25 llgll e || Ae,
j=1 PO
in view of Theorem (6.2.1) and Proposition (6.2.6).Since d>a+p1,the above

estimate is summable over k.
We place ourselves in R, and consider the Hardy operator.

1 t
HF(E) = - j f(s)ds  (t €R,).
0

Although H is defined for functions defined on (0, ), we shall use the zero extension to
define Hf (t) for functions on R. That is, for f € L, (R), we define

1 t
HE®) = Xom(© X7 | F(5)ds,
0

Here and below we assume that p(-) satisfies

1< p_<p, < >
as well as (16) and (17).
If a € Lf(#np (0,) is supported on a cube @ contained in (0,c), then a simple
calculation shows |Ha(t)| < llall =, (). Since Loymp(0,00) is dense in HPO(R), and
any function f € L(f(;}np (0, ) admits a finite decomposition f = Z?’zl Aja; in the way
described in Theorem (6.2.2), we can recapture [425, (1.1)] witha = 0.

Theorem (6.2.17)[411]: Assume that p : R — [1, o] satisfies

1<p_<p, <>
as well as (16) and (17). Then the Hardy operator H is bounded from HPO(R) to
LPO(R).
Here we disprove that a natural extension of the Hausdorff—Young inequality is available
for variable Lebesgue spaces.
Proposition (6.2.18)[411]: Let

p(x) = min g  max{|x| — 0.1,1}} (x € RM).
Then there does not exist a constant C > 0 such that
IFfll, ey < ClIfllpe (47)
forall f € LPO(R™).
Proof: Assume that inequality (47) holds. Let a € Cgopm,(B((2n)~1)) satisfy Fa(0) =
land k = {K,,}mezn be an £2(Z™)-sequence such that x,,, = 0 if |m| = 3. Then

E.(x) = Z Kma(x —m) (x € R")
mezn

belongs to L?(R™) and

1Fcllper < Cllallyz - il o7z zny- (48)
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On the other hand,

FE) = | D tom| < IFEel e (49)
] mezn
If we combine (47), (48) and (49), then
D | < Clllarz gy (50)
mezn

Since (50) is valid for all £2(Z™)--sequences k = {K,,;}mezn Such that «,, = 0 if [m| >
3, (50) is a contradiction.

Section (6.3): Modular Inequalities for Maximal Operator

The variable Lebesgue spaces are a generalization of the classical Lebesgue spaces, where
the constant exponent p is replaced by a variable exponent function p(-). They have been
studied extensively for the past twenty years, particularly for their applications to

PDEs, the calculus of variations [463], but also for their use in a variety of physical and
engineering contexts: the modeling of electrorheological fluids [464], the analysis of
quasi-Newtonian fluids [465], fluid flow in porous media [466], magnetostatics [467] and
Image reconstruction [468].

For Q < R"™ be a Lebesgue measurable set, 0 < || < oo. Given a measurable exponent
function p(:): Q — [1, =), hereafter denoted by p(:) € P(Q), for any measurable set

E cRY|E NnQ] > 0,we set

p-(E) =essinfp(x),  p+(E) = esssupp(x).

XEENQ

For brevity, we set p_ = p_(Q) and p, = p,(Q). The space LP1)(Q) is defined as the set
of all measurable functions f such that for some 1 > 0, p,)a(f/2) < oo, Wherep, g is
the modular functional defined by

Preralf) = ]Q GO dx

In situations where there is no ambiguity we will simply write p,,.,(f) or p(f). The space
LPC) () is a Banach function space when equipped with the Luxemburg norm

£ llp00qy = Inf{A > 0: pyeya(f/2) < 13- (51)
When p(-) = p, a constant, then LPO(Q) = LP(Q) and (51) reduces to the classical
norm on LP (£). For the properties of these spaces, see [469].
Given a function f € L%OC(Rn), the (uncentered) Hardy—Littlewood maximal function M f

Is defined for x € R" by

Q>3x
where the supremum is taken over all cubes Q < R™ containing x and whose sides are
parallel to the coordinate axes. (See [470].) If f € L%OC(Q), then we define Mf by
extending f to be identically 0 on R™\Q. The following result, proved by Neugebauer and

1
MFGO) = sup fQ FO) dy,
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[471], gives a nearly optimal sufficient condition on the exponent p(-) for the maximal
operator to satisfy a norm inequality on LPO)((Q).

Theorem (6.3.1)[411]: Given an openset @ < R", letp(:) € P(Q) be such that

1 <p_< py < ooandp(:) € LH(Q),i.e.,p(+) is log- Holder continuous both locally
and at infinity:

1
p() — (I < ——,  x-yl <5,xy€Q
P PO et =D Ix=yl <3.xy
— Dol < — € Q.
lp(x) — Pool < og(e + 1) x
Then M is bounded on LP) (Q):
”Mf”Lp(')(Q) < C”f”LP(')(Q)- (52)

In the constant exponent case, Theorem (6.3.1) reduces to the classical result that the
maximal operator is bounded on L?(Q),1 < p < oo. In this case, the norm inequality is
equivalent to the modular inequality

j MFGOP dx < C j FOOP da.
(9] QO

Similar modular inequalities hold in the scale of Orlicz spaces :see , [472]. It is therefore
natural to consider the analogous question of modular inequalities for the maximal operator
on the variable Lebesgue spaces:

[Mrer® ax < ¢ [ irGor® ax (53)
QO QO

Since inequality (53) implies the norm inequality (52), it is clear that stronger hypotheses
may be needed on the exponent function p(-) for the modular inequality to hold. The
following example from [473] shows that log- Holder continuity is not sufficient and the
modular inequality need not hold even for a smooth exponent function.

Example (6.3.2)[411]: Let p(-) € P(R) be a measurable exponent function which is
equal to 2 on the interval [0,1] and equal to 3 on [2,3] (we make no other assumptions on
p(-))- Define the sequence of functions{fy }xen = {ky[0,11}ken- Then forany x € [2,3],

1 (3 Ck
M) > 3 [ 1hody = 3,

so that
3k 3 k3
PpyR(Mfy) >L (g) dx = 57 -
On the other hand p, .y r(fx) = k2, so (53) cannot hold. In fact, when Q = R"™ and

p+ < oo, Lerner [474] showed that inequality (53) never holds unless p(+) is constant.
Theorem (6.3.3)[411]: Let p(:) € P(R"),p, < oo. Then the modular inequality

MEGPOdx < Gy | IFGP® dx,
R" R"
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where C,(.y»1s a constant depending on n, p(-) but independent of f,
holds if and only if there is a constant p > 1 such that p(-) = p almost everywhere.
Theorem (6.3.4)[411]: Given p(:) € P(R™)suchthat 1 < p— < p+ < ocoand p(-) €
LH(R™), suppose f € LPO(R™) and ||f|l,¢y < 1. Then

dx

Mf(x)P™® dx < Cy,. j If () |PX) dx + Cy,. j )
R™ PO R™ p()m R (e + |x|)np_

where the constant C, . , depends on n, p(-) but is independent of f.
We give necessary and sufficient conditions for modular inequalities of the form

fMﬂ@M”dx<cafvun%WM+cp 54)
Q [9)

to hold for all measurable functions f, where p(-),q(-) € P(f2),and ¢; > 0,c, > 0 are
constants depending on n, p(+), q(-) and |Q|, but are independent of f. We are interested in
the weakest possible conditions on the exponent functions p(-) and g(-) for (54) to hold.
In particular, we want to prove modular inequalities without assuming any smoothness
conditions on the exponents. we will only consider the case p(:) # 1. The endpoint case
when p(-) = 1 is substantially different. If Q is bounded and g— > 1, then (54) always
holds: this is an immediate consequence of [475, Theorem 1.2]. If Q@ = R", then (54)
never holds, since Mf is never in L1(R™) unless f = 0 a.e. More generally, given any set
Q with infinite measure, then arguing as in Example (6.3.6), we would have L0 (Q) c

L1 (Q), which is impossible: see [476, Theorem 2.45]. When g— = 1 the problem of
characterizing q(-) is open. Some delicate results in [477]show that this problem depends
on how quickly q(-) approaches 1.

Our two main results completely characterize the exponents p(-) and q(-) so that the
modular inequality holds. Our characterization depends strongly on whether Q has finite or
infinite measure; When Q has finite measure our result is remarkably simple.

Theorem (6.3.5)[411]: GivenasetQ € R™",0 < |Q| < oo, letp(:),q(:) € P(Q),p(-
) # 1. Then the modular inequality (54) holds if and only if p, (Q) < q-(Q).

As our second result below shows, the assumption that |} < oo is critical in Theorem
(6.3.5). But to motivate this result, we first give the following example.

Example (6.3.6)[411]: If Q@ € R", |Q] = oo, andif p(:) € P(Q),q(-) € P(Q),then
the assumption that p,. (Q) < q_(Q) is not sufficient for (54) to be true. We first consider
the case p, (Q) = q_(Q).Fixanopenset Q,|Q] = oo,and constants 1 < p < q <

0. Define p(-) = p and

_( p ifx€eqQ
101, " s cave,
where Q < Qisacube. Then p,(Q) = q_(Q). Suppose (54) holds; then we would have

[1rcorax < [mpcor ax
Q Q

<aleferdite [ Il
Q O\Q
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But then, if we let f := gxq\o, We would get the embedding L7(Q\Q) c LP(Q\Q),
which does not hold when p < g since Q has infinite measure [476].
The case p, () < g_(Q) is obtained from the same argument by taking Q = @.
The problem in Example (6.3.6) arises because the exponents p(+) and q(+) behave
differently at infinity. To avoid this, we make the following definition.
Definition (6.3.7)[411]: Givenaset Q, || = oo, let F, denote the collection of subsets
of Q that have infinite measure. Given p(-),q(-) € P(Q),we say that p(-) and q(+) touch at
infinity, and denote this by p(-) < q(-), if forevery E € F,

P+(E) = p+(Q) = q-(Q) = q-(E).
The exponents in Example (6.3.6) do not touch at infinity. We consider three additional
examples.
Example (6.3.8)[411]: Let Q@ = R.
(i) The exponents p(x) = 2 — (1 + x2)71,q(x) = 2 + (1 + x2)~* touch at infinity.
(ii) On the other hand, if we let §(x) = a+ (1 +x?)"%,a > 2, thenp(-) andg(-) do not
touch at infinity.
(iii) Finally, if p(x) = 2and q(x) = 2+ yg, where E is any bounded measurable set,
then p(-) and g(+) touch at infinity.

We can now state our second main result, characterizing the modular inequality on sets Q
with infinite measure.

Theorem (6.3.9)[411]: Givenaset Q@ € R"™, |Q| = oo, letp(:),q(-) € P(Q),p(:) #
1.Define D := {x € Q: p(x) < q(x)} # . Then the following are equivalent:

(i) The modular inequality (54) holds;

(i) p() © q()and L9O(Q) o LPO(Q);

(iii) p(+) = q(-) and there exists A > 1 such that

Priyp(1/2) = j AT dx < oo, (55)
D

where r(+) is the defect exponent defined by r(i) = p(;) - q(lx) ;

(iv) p(+) = q(-) and there exists a measurable function w,0 < w(:) < 1, such that

P00 (@) = [ @GPPdx < oo (56)
and ’
”w(.)—lm—p(-)I“Lm(D) . ”w(.)—lq(-)—mI”Lw(D) < o0, (57)

Corollary (6.3.10)[411]: Given aset Q and p(-),q(-) € P(Q), suppose that either
Q] < ccand p,(Q) < q_(Q),0r |Q] = oo,p(-) & q(-),and (55) holds. If T is any
operator that is bounded on LP(Q) forall 1 < p < oo, then

j TFCOP® dx < o f FOO19®) dx + o,
") ")

with positive constants c,, ¢, that depend on p(-),q(:) and T but not on f.
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The assumption on the operator T is very general and is satisfied by most of the classical
operators of harmonic analysis: for example, it holds for Calder’on—-Zygmund singular
integral operators and square functions. In fact, a close examination of the proof shows that
we can assume less: given fixed p(-) and q(-), we only require that the operator is bounded
on LP+(£). As a consequence, we can prove a modular inequality for the Fourier transform

f& =] flx)e ™% dx

Rn
on variable Lebesgue spaces, using the Plancherel theorem that ||f||2 = |IfIl,. The
importance of this result follows from the fact that natural generalization of the Hausdorff—
Young inequality fails in the variable exponent setting. (See [475, Section 5.6.10]
Corollary (6.3.11)[411]: Given p(-),q(:) € P(R"),p, = 2, suppose p(-) = q(+), and
(55) holds. Then

FOIPEDdE < e | If()]9W dx + ¢y,
R R
with positive constants c,, ¢, that depend on p(-) and g(-) but not on f.
Corollary (6.3.12)[411]: Given Q < R"™, suppose || < . If1 < p € g < o,

then the following inequality holds
[Mrerar <o [Iremrax+e, (58)
Q Q

forevery f € L1(Q) and for some positive constants c;, ¢, depending on n, p, q, |Q], but
independent of f.

If |QQ] = oo, then inequality (58) holdsifandonly if 1 < p = q. Moreover, if T is an
operator that is bounded on LP(Q),1 < p < oo, then these conditions are sufficient for T
to satisfy the modular inequality

[irfepar <o [Iredc+e,
QO QO

To prove Theorems (6.3.5) and (6.3.9), we will first prove the following proposition
which establishes a necessary condition which for sets ( of finite measure is also
sufficient.
Proposition (6.3.13)[411]: Given p(-),q(-) € P(L), if the modular inequality (54)
holds, then

P+ () < q_(Q). (59)
As a corollary to Proposition (6.3.13), together with the classical theorem on the
boundedness of the maximal operator on LP(Q),1 < p < oo(cf.[415]), we immediately
get the following generalization of Theorem (6.3.3) to arbitrary domains and unbounded
exponent functions.
Corollary (6.3.14)[411]:. Given an open set Q and p(-) € P(Q), the modular inequality

j MFGOP® dx < ¢ j FOOP@dx + ¢y,
") O
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with positive constants c;, ¢, depending on n,p(+), q(+) and |Q| but independent of £, holds
if and only if p(+) equals a constant p > 1 almost everywhere.
Lemma (6.3.15)[411]: GivenasetQ € R", letp(:) € P(Q),q(:) € P(Q). Then the
following conditions are equivalent:
(1) p+(Q) < q-(Q) forevery Q € Qq;
(i) p+(Q) < q-(Q).
Proof: The fact that (ii) implies (i) is easy: forany Q € Qg we have

p+(Q) = p+(@NQ) < p:() <q-() <g-(@N Q) =q-(Q).
In order to prove that (i) implies (ii), let {Q,, },,en be a countable cover of ) by elements
of Q. We then have that if p,(Q) < g_(Q) forevery Q € Qq, then

P+(Qm) < g-(Qn) Vm,n €N. (60)
To see this, note that for every m,n € N, there exists a cube Q,,,, € Qq such that

Qm U Qn - Qm,n- By hyPOtheSiS P+ (Qm,n) < Q—(Qm,n )r SO

P+(Qm) < P+(@mn) < 4-(@mn) < q-(Qn).
Now, if we first take the supremum over m € N and then take the infimum over n € N,

by (60) we get supeny P+(Qm) < infyey q-(Qy). Therefore,
p+(Q) = p, (U Qm) = sup p4(Qm)

meN
meN

< infq_(Qn) = - (U Qn) = 4_().

neN
The following argument is inspired by Example (6.3.2) and is similar to the proof of

Theorem 1.3 in [476, Thm. 5.1].
Proof : If (59) does not hold, then by Lemma (6.3.15) there exists a cube Q € Q, such
that p,(Q) > q_(Q). Let a, 8 be such that

q-(Q) < a < f < p4(Q).
Let Ez € Q N Q,|Eg| > 0,besuchthatp(x) > p fora.e.x € Eg.Similarly, let

E,c QNQ,|Ey| > 0,besuchthat q(x) < afora.e.x € E,.Define f = Axg , where
A > 1.Thenforall z € 0,
AlE,|

1
M > — dy =
&> jQ|f<y)| y =5
Moreover, if 1 > |Q|/|E,|, then (A|E,|/|QDP™® > (A|E,|/|Q|)? for every x €

Eﬁ.Hence,
MF(x)P®dx >j( a) dx > |E 2 .
Lf” g\ Q] %1\ T

On the other hand,

j £ dx = f 2909 dx < |E, A%
") E,

a
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Therefore, if (54) holds, then we must have that

AE, Y .
|Eﬁ| 10| < ¢ |Eq|A* + ¢

for all A sufficiently large, which is a contradiction since @ < S.

By Proposition (6.3.13) we have that if the modular inequality (54) holds, then p, (Q) <
q-(Q). Therefore, it remains to show that this condition is sufficient.

FixasetQand p(:),q(:) € P(Q) such that p, () < q_(Q), and fix a function f. Given a
setE < (,we define

I(E) = j MFOCP@dx,  F(E) = f FCOP+ dx,
E E

and

Di(Mf)={x € Q: Mf(x) > 1}, Di(f) ={x € Q:|f(x)| > 1}.
We now estimate as follows:

jﬂ MfG)dx = I(Dy(MF)) + 1 \D; (M),

We immediately have that I(Q\D,(Mf)) < |£]. On the other hand, since p(:) # 1,p, >
1, so the maximal operator is bounded on LP+ (). Hence,

DM < [ MFEP dx < G [ IF@IP*dx = G nF ().
Dy(Mf) Q
To estimate F () we argue similarly: since p, (Q) < q_(Q),

F(Q) = F(D:(f)) + F(Q\D:1(f)) <f If ()9 dx + Q.
D1(f)
If we combine all of these inequalities, we get

| MF@I A <Gy [ 1PN dx+ (ep,n+ DO
Q [9)

This completes the proof of sufficiency.
We will prove the following chain of implications:

(i) = (i) = (iii) = (iv) = ().
[()) = (ii)] We first prove that if the modular inequality (54) holds, then L0 (Q) <
LPO)(Q). SinceLPOis a Banach function space, the embedding L10(Q) < LPO(Q) is
equivalent (cf. [473, Thm. 1.8]) to the set-theoretical inclusion L0 (Q) < LPO(Q). Since
Mf(X) > |f(X)| a.e.in Q, if (54) holds, then pp(),ﬂ(f) < Clpq(.)’g(f) + c5. FIXf €
L0 (Q); then for some 2 > 0, p,ya(f/A) < oo. Therefore,

Po),a(f/A) < c1pgya(f/A) + ¢ < oo,

and so f € LPO)(Q)). We now prove that if (54) holds, then p(-) = q (). Given any
measurable set E € F, and any measurable function f : E € Q — R, (54) implies that

f FEOP® dx < ¢, f FOOI® dx +cy, (61)
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with ¢, ¢, > 0 the same constants. Fix E € F, and define f(x) = A1 xgsnex) 0 <
A < 1and B = B(0,6).Since0 < 1 < 1,forx € E,AP+E) < AP gnd 19
A9-(E) Therefore, by (61),

|E n36|,1p+(E) < f AP dx
ENBg

< C1J A9 dx + ¢, < ¢;|E N Bg|A9-E) 4 ¢,
ENBg

Since |E N Bg| > was§ — oo, we get that AP+E) () < ¢;A9-E) + ¢,|E n Bs|~2 for &
sufficiently large. If we take the limitas § — oo, we get that if (54) holds, then

W+E) ¢ 29-B) yvo < A < 1.
Since p,(E) < q_(E) we must have that p,.(E) = q_(E)and ¢; > 1.
Finally, since by Proposition (6.3.13),p,(Q) < q-(Q),andsince p,(E) < p+(Q) <
q-(Q) < q-(E), wegetthatp(:) < q(.).
[(ii) = (iii)] As noted above, this implication follows from the fact that the embedding
L10(Q) & LPO(Q) is equivalent to assuming p(x) < q(x) and (55) holds. (See
[472, Thm. 2.45].)
[(iii) = (iv)] We explicitly construct the function w. Since p(-) < q(-), we claim that
there exists k > 1 such that |E,(,| < oo, where E;.y, ={x € Q: q(x) > «}.Forif
not, then forall k > 1, |Eq(y | = oo. In particular, if we set k. = p, (Q) + Lthen E (., €
Foand q_(Eqcyx) > 0+(Q) > pi(Eq(), @ contradiction.
Fix such a x and define

w(X):={ e X € D\Eq(ype
1 ) X ElD N qu(.),,c,
where r(-) is the defect exponent defined by e Since A > 1, we have

that 0 < w(-) < 1and
p+_p(') q()
w(.)—|P+—P(')| = 290)-p() < 240 < Aon D\Eq(-),lc'

CI(')—p+ CI()
w()7190O=P+l = 2a0-pO) <10 < ¥ on D\E(yx-
Moreover, w(-) P+ POl = ¢ (-)7190O-P+l = 1 < A* on the set D N E ., and therefore
(57) holds. Finally, to prove (56) we estimate as follows:
Ppyp(W) = A7 dx + |Eqyl < f A7"® dx + |E

a(xl < oo
D\Eq(.),,c D

[(iv) = (i)] The proof of this implication is similar to the proof of sufficiency in the proof
of Theorem (6.3.5). However, since || = co we need to introduce w and use p, .y p (@) in
place of |(|. As before, given a measurable function f and a measurable set E < Q, define

I(E) = j MFOOP® dx,  F(E) = ] FGOP+ dx.
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Recallthat D ={x € Q: p(x) < q(x)}and write

JMf(x)W) dx = I(D) +I1(Q\D).
Q
Sincep, < q_,wehavep(:) = p, =q- = q(-)on Q\D. Therefore, since p(-) #

1,p, > 1, so the maximal operator is bounded on LP+(Q). Hence,

1(Q\D) = Mf )P+ dx < ¢y, n F(Q).
Q\D
To estimate I(D), define D,,(Mf) ={x € D: Mf(x) > w(x)} where w is the function
from our hypothesis ( iv). Then

1(D) :j Mf(x)PX) dx +f Mf(x)PX) dx
D\Dy(Mf) Dy, (Mf)

) \P@
< pp(-),D(w) n wa(Mf) (I\Z)f(i)) )P w(x)p(x) dx.
Since Mf(-)/w(-) > 1onD,(Mf),
M
< Pp()p (W) +J ( )

Do) \ @)
< Py (@) + [P PON| o j (Mf (x))P+ dx.
D

Again since M is bounded on LP+((),

< Ppr0 (@) + Cup, - lo PO ().
If we combine the above inequalities we get

1) < [eng, (1+ 07PN, V] F@) + pyep (@), (62)

so to complete the proof we need to estimate F(Q) = F(D) + F(Q\D). As before we
have p(-) = py = q- = q(-)on Q\D, so

F@D) = [ If@P = [ 11 dx

Q\D Q\D
To estimate F(D),letD,(f) = {x € D: |f(x)] > w(x)}.Since0 < w < 1and

p+ = p(:),we have p, p(w) < ppeyp(w). Therefore,
F(D) = j F OO P dx + f F GO 1P+ dx

D\Dy(f) Dy (f)
|f ()
w(x)

P+
) w(x)PX dx

b+
< Ppyp(w) +f > - w(x)P+dx.

D, (f)
Since |f(D]/w() > 1onD,(f)

< Pp)p(w) + j
Dy (f)

|f ()l
w(x)
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< Ppoyp(@) + [l fD If (2017 dx.

If we combine the previous two estimates, we get
F(Q) < j If ()7 dx + ppyp(w) + ”“’_lq(')_p””Lw(D)] If ()9 dx
Q\D D

< (L1090 ) [ 71 a5+ 0001

Together with inequality (62) this gives us the modular inequality (54). This completes
the proof.
Corollary (6.3.16)[492]: Given a set Q € R", letp(-) € P(Q),q(:) € P(Q).Then the
following conditions are equivalent:
(i) P+ (Qr) < q- (Qr) for every Qr € (Qr)ﬂi
(i) p+(Q) < q-(D).
Proof. The fact that (ii) implies (i) is easy: for any Q € Q, we have

P+(Qr) = p+(Qr N Q) < p+(Q) < q-(Q) < q-(Qr N Q) = q-(Q).
In order to prove that (i) implies (ii), let {(Q,).}neny D€ a countable cover of Q by
elements of (Q,-)q . We then have that if p,(Q,) < q-(Q,) forevery Q,. € (Q,)q, then

P+ ((@)m) < 4-((@)mn) Ymn EN.
To see this, note that for every m,n € N, there exists a cube (Q;)mn € (@r)q such that
(@r)m U (Q@r)n S (Qr)mq - By hypothesis p, ((Qr)mn) < 4-((Qr)mn ), SO
P+((@r)m) < P+((Qr)mn) < 4-((@r)mn) < q-((Qr)n)-

Now, if we first take the supremum over m € N and then take the infimum over n € N,
by (50) we get suppmen P+((Qr)m) < infhen q-((Qr)n). Therefore,

p+() = p, (U (Qr)m> = sup P+((Qr)m)

meN

< inf q-((@r)n) = q- (U(Qr)n> = q-(1).
neN
The following argument is inspired and is similar to the proof of Theorem 1.3 in [468,

Thm. 5.1].

Corollary (6.3.17)[492]: Given p(-),q(-) € P(Q), if the modular inequality holds, then
P+ (Q) < q-(Q).

As a corollary , together with the classical theorem on the boundedness of the maximal

operator on L*¥(Q),0 < & < oo(cf.[465]),we immediately get the following

generalization to arbitrary domains and unbounded exponent functions.

Proof : If (52) does not hold, then there exists a cube Q, € (Q,)q such that p,(Q,) >

q-(Q,). Let a, a + € be such that

q-(Qr) < a < a+e < pya(Qp).
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Let Egi.C Q. NQ,|E ] > 0, be such that p(x?) > a+e for a.e.x €
E,... Similarly, let E, c Q,nQ,|E,| > 0, be such that q(x?) < «a for a.e.x € E,.
Define f™ = Axg_,where 4 > 1.Thenforall x + 2¢ € Q,,

M ar20)> oo [ Y ireedeers = o8
~ el Jy, Qx|

Moreover, if 2 > |Q.|/|E,|, then (A|E.|/]0,DP*") > (A|E,|/|Q,])? for every x €
E,... Hence,

2
) AEL N\ AEL\**®
Mzrxp(x)dx>f ( a) dx > |E —= .
J M Qo ) . \10/] Earel (g,
On the other hand,
, q(x?) )
j Yol dx = j 296D dx < |, |9,
9] Eq

Therefore, holds, then we must have that

|Eg+el 0. < (1 +e)|Eg|A" + 1+ 2¢
T

for all A sufficiently large, which is a contradiction since & > 0.

Corollary (6.3.18)[492]: Givenaset Q C R™",0 < |Q] < oo, let p(:),q(-) € P(Q),p(:
) # 1. Then the modular inequality holds if and only if p, (Q) < q_(Q).

We show, the assumption that || < oo is critical ., we first give the following example.
Proof : By Proposition (6.318) we have that if the modular inequality holds, then
p+(Q) < q_(Q). Therefore, it remains to show that this condition is sufficient.

Fix a set Q and p(-),q(:) € P(Q2) such that p,(Q) < gq_(Q),and fix a sequence of
functions f".GivenasetE < (, we define

1(E) = jE > MFTeD dx,  F(E) = fE Y Ifr e dx,

Du(MY Fh=tea: MY @) > 1,

DM ={x € Q: ) T > 1}

and

We now estimate as follows:
MFr(x)dx = Y I(D(MfT)) +I1(Q\D;(M Y 7).
| DomprGodx =Y 1047 + 1@ \DM Y 7))

We immediately have that 1(Q\D;(M(}; f"))) < |Q|.On the other hand, since p(:) #
1,p, > 1, so the maximal operator is bounded on LP+(£). Hence,

244



o (Y rme< |

D MG dx < Gy | D IFTCOP d

Dy(MfT)
= cp+,nF(Q).
To estimate F () we argue similarly: since p, (Q) < q_(Q),
F(Q) = F(D:() f)+FQ\D:i() f1))< FT(0)19%9) dx + |Q].
. QIS YIrere

If we combine all of these inequalities, we get
2
)

M@ dx <cpn | S IFF@I dxt (cpn+ DI
QO Q

This completes the proof of sufficiency.

Corollary (6.3.19)[492]: Given a set Q € R"*, |Q| = oo, let p(-),q(:) € P(Q),p() #
1.Define D := {x € Q: p(x?) < q(x?)} # @. Then the following are equivalent:

(i) The modular inequality holds;

(i) p() & q() and L9O(Q) o LPO(Q);

(iii) p(:) = q(-) and there exists A > 1 such that

pr)p(1/4) = j AT dx < oo,
D

where r(-) is the defect exponent defined by r(;) = p(;z) — q(;ch) ;

(iv) p(:) = q(-) and there exists a measurable function w,0 < w(:) < 1, such that
Pp()p (@) = j w(x)P*dx < oo
D

and

. ”w(.)—lq(-)—mlu < oo,

||w(.)—|p+—p(-)l||Loo(D) 1)

Proof : We will prove the following chain of implications:

(i) = (i) = (iii) = (iv) = (i).
[()) = (ii)] We first prove that if the modular inequality (55) holds, then L10(Q) <
LPO(Q). SinceLPOis a Banach function space, the embedding L10(Q) < LPO(Q) is
equivalent (cf. [463, Thm. 1.8]) to the set-theoretical inclusion L¢®)(Q) < LPO)(Q). Since
M (x)) > XIfT(x) | a.e.in Q, if holds, then p,) o (X f") < (1 + &)pgraX 1) +
1+ 2e. Fix f7 € L19(Q); then for some 2 > 0, pgy0(Z(f7/2)) < oo. Therefore,

pora () T/ < (L +E)pgra) [T /D) +1+26 < oo

and so f7 € LPO)(Q). We now prove that holds, then p(-) & q(-). Given any measurable
set E € F, and any measurable sequence of functions f": E € Q — R, (55) implies
that

2

[Yirel e care [ i a1z
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with ¢ > 0 the same constant. Fix E € F, and define f"(x) = A1 Xpsnp@x) 0 < 4 <
land Bs = B(0,8).Since 0 < A < 1, for x € E,AP+E < P& and 2969 <
A19-(B) Therefore, ,

|E N Bg|aP+®) < f APy
ENBg

<(1+¢) 29 dx + 1+ 26 < (1 + €)|E N Bs|29-B) + 1 + 2e.
ENBg

Since |E NBg| > oas & —oo,We get that AP+E(E) < (1+&)A9-® + (1 +
2¢)|E n Bg|™! for § sufficiently large. If we take the limit as § — oo, we get that holds,
then

P+E < (1+)29-B) vo < 1 < 1.
Since p,(E) < q_(E) we must have that p.(E) = q_(E)and ¢ > 0.
Finally, since by Proposition (6.3.13),p,(Q) < g-(Q), and since p,(E) < p+(Q) <
q-(Q) < q_(E), wegetthatp(-) < q(-).
[(ii) = (iii)] As noted above, this implication follows from the fact that the embedding
L10(Q) o LPO(Q) is equivalent to assuming p(x?) < q(x?) holds. (See [468, Thm.
2.45].)
[(iii)) = (iv)] We explicitly construct the function w. Since p(-) < q(-), we claim that
there exists € > 0 such that |Egy 14| < oo, where Egy, ={x € Q: q(x?) > 1+
e}. For if not, then for all € > 0, |E; () 14¢| = 0. In particular, if we set 1 + & =p,(Q) +
Lthen Egy € Foand q_(Eg(y14e) > D+ () = 04 (Eq(y,14¢), @ CONtradiction.
Fix such a 1 + € and define

2 2
w(x):= {A TR x € D\Egyave
1 x € DN Eq(-),1+s:
where r(-) is the defect exponent defined by r(ch) = p(iz) — q&z). Since 1 > 1, we have
that 0 < w(+)
< 1and
p+—p() q()
w()7P+POl = 240-p0) < 190 ¢ A€ on D\E;(y1+e
q()-p+ a()
w(.)—IQ(J—mI = 190)-p() < MO g A e on D\Eg(y1+e-
Moreover, w(:) P+ POl = @(-)7la0O=P+l =1 < 2™ on the set D NEg.yq4. and

therefore holds. Finally, to prove we estimate as follows:

- 2 _ 2
pp(.),D(a)) = j A7) dx + |Eq(.)’1+g| < fﬂ. T dx + |Eq(.)’1+g| < 00,
D\Eq(-),1+£ D

[(iv) = (i)] The proof of this implication is similar to the proof of sufficiency . However,
since |Q| = co we need to introduce w and use p, . p(w) in place of [Q]. As before, given

a measurable sequence of function f” and a measurable set E < (), define
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1@ = | Y Mprred  FE = [ I er dr
RecallthatD ={x € Q: p(x?) < q(x?)} and write
f ZMfZ(x)WZ) dx = I(D) + 1(Q\D).
Q

Since p, < q_, we have p(-) = p, =q_- = q(-)on Q\D. Therefore, since p(:) #
1,p, > 1, so the maximal operator is bounded on LP+(Q). Hence,

1(Q\D) = J ZMfZ(x)m dx < cp,n F(Q).

Q\D
To estimate I(D), define D,(MY. f")={x € D: M f")(x) > w(x)} where w is
the function from our hypothesis ( iv). Then

1(D) =f ZMfr(x)p("z) dx +j ZMfT(x)p(xz) dx
D\Dy,(MfT) Dy,(MfT)

MFT(x) p(x?) 2
< Lo @ + o s Cogg”)  @@P*Ddx.

w(x)

Since M(X f7 ())/w(-) > 10nD,(S(Mf)), .
< Ppeyp(w) + f Z <Mf (x)> P

Do (M) (x)
< Ppoo(@) + POl [ F GO
Again since M is bounded on LP+((),

< Ppn(@) + ey, - lo™PePON| , CF ().
If we combine the above inequalities we get

1) < [enp, (1+ 07PN V] F@) + ppep (@),
so to complete the proof we need to estimate F(Q)) = F(D) + F(Q\D). As before we
have p(:) = p+ = q- = q(-)onQ\D, s0

Faw = [ Sireor =[S i@ a

To estimate F(D), let D,(f") = {x € D: |f"(x)] > w(x)}. Since 0 < w < land
p+ = p(-), we have p,. p(w) < Ppe,p(w). Therefore,

F(D) = j . mz Frl dx+ j mz el dx
Dy, (f7)

r D+
)
Since |[f"()|/w() > 10onD,(f7)

r q(x*)
< Pporo(@) + j (fr)z<'€)((j))') - w(x)Prdx
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< Ppeyp(w) + f




— D) — 2
< Py (@) + [|0190 p+|||Lw(D)fDZ|fr(x)|q(x ) dax.

If we combine the previous two estimates, we get

(x?)
F@ <] DI det o0

o0 | D1 10 dx
D
< (14 o 1O o) [ 317D dx + 0 @)
Q

Together with inequality this gives us the modular inequality . This completes the proof.
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