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Abstract

The classification of reducing subspaces of a class of multiplication
operators, analytic multipliers for a class of Toeplitz operators, tensor products
of weighted shifts and a class of non-analytic Toeplitz operators on the Bergman
space by the Hardy space of the Bidisk and polydisk are considered. We show
the products products of Hankel and Toeplitz operators with Sarason’s Toeplitz
product problem on the Bergman and a class of Fock spaces. We study the finite
rank commentators, perturbation and semicommutators of Toeplitz operators
with harmonic symbols and Bergman space. We give a theorem of Brown-
Halmos type for Bergman space of Toeplitz operators and modulo finite rank

operators.
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Introduction

In Douglas et al. (2011) [4] some incisive results are obtained on the structure of the
reducing subspaces for the multiplication operator M, by a finite Blaschke product ¢ on the
Bergman space on the unit disk. In particular, the linear dimension of the commutant, 4, =
{M,, M.}, is shown to equal the number of connected components of the Riemann surface,
@1 o . Using techniques from Douglas et al. (2011) [4] and a uniformization result that
expresses ¢ as a holomorphic covering map in a neighborhood of the boundary of the disk.
We completely characterize the reducing subspaces of TN, ON A%(D?) where a > —1

and N, M are positive integers with N # M, and show that the minimal reducing subspaces
of TN m ON the unweighted Bergman space and on the weighted Bergman space are

different.

We consider the question for which square integrable analytic functions f and g on
the unit disk the densely defined products T¢T, are bounded on the Bergman space. We
show results analogous to those obtained by [17] for such Toeplitz products on the Hardy
space. Let m(t)dt be a positive measure on R*. We investigate the relations among the
growth of y,,, the growth of its moment sequence {y,,}, the growth of its Bergman kernel
function K(x) = Y y,; %, and the growth of the kernel function associated to the measure

K(t)"m(t)dt. We consider Hankel operators Hz with antiholomorphic symbol f on the

generalized Fock space A2(l,,), Where p,, is the measure with weight e~12™, m > 0 with
respect to the Lebesgue measure in C". We show that Hz Is bounded if and only if f is a

polynomial of degree at most %

We consider the question of when the semi-commutator T¢, — T¢T, on the Bergman
space with bounded harmonic symbols is compact. Several conditions equivalent to
compactness of T;, — T¢T, are given. We study the analogues of the Brown-Halmos
theorem for Toeplitz operators on the Bergman space. We show that for f and g harmonic,
T;T, = Ty, only in the tribyl case, provided that h is of class C* with the invariant laplacian

bounded. Here the tribyl cases are f or g holomorphic. From this we conclude that the
zeroproduct problem for harmonic symbols has only the tribyl solution. We completely
characterize finite rank semicommutator or commutator of two Toeplitz operators with
bounded harmonic symbols on the Bergman space.

A unilateral weighted shift A is said to be simple if its weight sequence {«,,} satisfies
V3(a?) # 0 for all n > 2. We show that if A and B are two simple unilateral weighted
shifts, then A @ I + I @ B is reducible if and only if A and B are unitarily equivalent.
We completely characterize all the reducing subspaces for a class of non-analytic Toeplitz
operators with symbol ¢(z, w) = az* + pw', where @, € Cand aff = 0.

Hankel operators with anti-holomorphic symbols are studied for a large class of
weighted Fock spaces on C". The weights defining these Hilbert spaces are radial and
subject to a mild smoothness condition. In addition, it is assumed that the weights decay at
least as fast as the classical Gaussian weight. The main result says that a Hankel operator on
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such a Fock space is bounded if and only if the symbol belongs to a certain BMOA space,
defined by the Berezin transform. The latter space coincides with a corresponding Bloch
space which is defined by means of the Bergman metric. Sarason’s Toeplitz product
problem asks when the operator T, T; is bounded on various Hilbert spaces of analytic
functions, where u and v are analytic. The problem is highly nontribyl for Toeplitz operators
on the Hardy space and the Bergman space (even in the case of the unit disk).

Given a complex Borel measure p with compact support in the complex plane C the
sesquilinear form defined on analytic polynomials f and g by B,(f,g) = [ f gdu,
determines an operator T, from the space of such polynomials P to the space of linear

functionals on P. We study the product problem of Toeplitz operators on the Bergman space
of the unit disk. We characterize when the product of two Toeplitz operators T, T is a finite

rank perturbation of another Toeplitz operator T}, with f, g bounded harmonic and A in C?
class with invariant Laplacian in L.
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Chapter 1
Classification of Reducing Subspaces

We obtain a complete description of nontribyl minimal reducing subspaces of the
multiplication operator by a Blaschke product with four zeros on the Bergman space of the
unit disk by the Hardy space of the bidisk. We show that A, is commutative, and moreover,
that the minimal reducing subspaces are pairwise orthogonal. Finally, an analytic/arithmetic
description of the minimal reducing subspaces is also provided, along with the taxonomy of
the possible structures of the reducing subspaces in case ¢ has eight zeros. These results
have implications in both operator theory and the geometry of finite Blaschke products.
Section (1.1): A Class of Multiplication Operators on the Bergman Space by the Hardy
Space of the Bidisk

For D be the open unit disk in C. Let dA denote Lebesgue area measure on the unit disk
D, normalized so that the measure of ID equals 1. The Bergman space L? is the Hilbert space
consisting of the analytic functions on ID that are also in the space L? (D, dA) of square
integrable functions on D. For a bounded analytic function ¢ on the unit disk, the
multiplication operator My with symbol ¢ is defined on the Bergman space L2 given by

for h € L% . On the basis {e, };_,, Where en is equal to vn + 1z", the multiplication
operator M,, by z is a weighted shift operator, said to be the Bergman shift:

n+1
Me, = T et

A reducing subspace M for an operator T on a Hilbert space H is a subspace
M of Hsuchthat TM ¢ Mand T*M < M. A reducing subspace M of T is called minimal
if M does not have any nontribyl subspaces which are reducing subspaces. We classify
reducing subspaces of My for the Blaschke product ¢ with four zeros by identifying its
minimal reducing subspaces. We lift the Bergman shift up as a compression of a commuting
pair of isometries on a nice subspace of the Hardy space of the bidisk. This idea was used
in studying the Hilbert modules by R. Douglas and V. Paulsen [6], operator theory in the
Hardy space over the bidisk by R. Dougals and R. Yang [7], [19], [20] and [21]; the higher-
order Hankel forms by S. Ferguson and R. Rochberg [8] and [9] and the lattice of the
invariant subspaces of the Bergman shift by S. Richter [13].

On the Hardy space of the unit disk, for an inner function ¢, the multiplication operator
by ¢ is a pure isometry. So its reducing subspaces are in one-to-one correspondence with
the closed subspaces of H2 © ¢H? [5], [11]. Therefore, it has infinitely many reducing
subspaces provided that ¢ is any inner function other than a Mobius function. Many have
studied the problem of determining reducing subspaces of a multiplication operator on the
Hardy space of the unit circle [2], [3] and [12]. The multiplication operators on the Bergman
space possess a very rich structure theory. Even the lattice of the invariant subspaces of the
Bergman shift M, is huge [4]. But the lattice of reducing subspaces of the multiplication
operator by a finite Blaschke on the Bergman space seems to be simple. On the Bergman
space, Zhu [22] showed that for a Blaschke product ¢ with two zeros, the multiplication
operator M has exact two nontribyl reducing subspaces M, and M. The restriction of the
multiplication operator on M, is unitarily equivalent to the Bergman shift. Using the Hardy
space of bidisk in [10], we show that the multiplication operator with a finite Blaschke

1



product ¢» has a unique reducing subspace M, (¢), on which the restriction of M is
unitarily equivalent to the Bergman shift and if a multiplication operator has a such reducing
subspace, then its symbol must be a finite Blaschke product. The space M, (¢) is called the
distinguished reducing subspace of My and is equal to

\/ {¢0¢n n = 0,1,---,m,---}
If ¢ vanishes at 0 in [16], i.e,

n

Z — Qg

() = cz H T
for some points {a;} in the unit disk and a unimodular constant c. The space has played an
important role in classifying reducing subspaces of M. In [10], we have shown that for a
Blaschke product ¢ of the third order, except for a scalar multiple of the third power of a
Mobius transform, My, has exactly two nontribyl minimal reducing subspaces M, (¢) and
My (@)*. The study on reducing subspaces of the multiplication operators M, on the
Bergman space in [10] by using the Hardy space of the bidisk. We will obtain a complete
description of nontribyl minimal reducing subspaces of M, for the fourth order Blaschke
product ¢.

We introduce some notation to lift the Bergman shift as the compression of some
iIsometry on a subspace of the Hardy space of the bidisk and state some theorems in [10].
We state the main result and present its proof. Since the proof is long, two difficult cases in
the proof are considered.

For T denote the unit circle. The torus T? is the Cartesian product T x T. Let do be
the rotation invariant Lebesgue measure on T2 . The Hardy space H? (T?) is the subspace
of L2 (T?,do), where functions in H? (T?) can be identified with the boundary value of
the function holomorphic in the bidisc D? with the square summable Fourier coefficients.
The Toeplitz operator on H? (T?) with symbol f in L®(T?, do) is defined by

Tf(h) = P(fh),
for h € H? (T?) where P is the orthogonal projection from L? (T?,do) onto H? (T?). For

each integern > 0, let
n

pn(z, W) = Z ztwnt,

i=0

Let H be the subspace of H? (T?) spanned by functions {p,,};>,. Thus
H?(T?) = H @ cl{(z — w)H?*(T?)}.
Let
B =PyTylyr = PuTwlx
where P; is the orthogonal projection from L? (T?,do) ontoH.SoB is unitarily
equivalent to the Bergman shift M, on the Bergman space L% by the following unitary
operator U : L3 (D) » H,
Ugh = Pn(2, W)_

n+1
This implies that the Bergman shift is lifted up as the compression of an isometry on a nice
subspace of H? (T?). Indeed, for each finite Blaschke product ¢ (z), the multiplication
operator M,, on the Bergman space is unitarily equivalent to ¢(B) on .




Let Lo be kerTy(z) N kerTy(w) N3 . In [10], for each e € Ly, we construct

functions {d%} and d? such that foreach | > 1
-1

PS@,pwDe + D Pi(#(2), pW))dE™ €3
k=0

and
pi(p(2), p(w))e + p"(p(2), p(w))d2 € H.
On one hand, we have a precise formula of d_ :
d? (z,w) = we(0,w)ey(z,w) — wpo(w)e(z,w), (1)

where ¢, is the function Mfl(w) On the other hand, d¥ is orthogonal to kerTy(2) N
kerT,(w) N 3, and for a reducing subspace Mande € M,

PS@), B(w)e + Z Pe($(2), dW))di* € M.

Moreover, the relation between d! and d° Is given by Theorem 1 in [10] as follows:
Theorem (1.1.1)[1]: If M is a reducing subspace of ¢ (B) orthogonal to the distinguished
reducing subspace M, for eache € M N L, then there isan elementé € M n L, and
a number A such that
dl = dY + & + Ae,. (2)

Since for Blaschke products with smaller order, it is not difficult to calculate é and A
precisely, we are able to classify minimal reducing subspaces of a multiplication operator
by a Blaschke product of the fourth order. Main ideas in the proof of Theorems (1.1.7) and
(1.1.8) are that by complicated computations we use (2) to derive conditions on zeros of the
Blaschke product of the fourth order.

We often in [10] stated as follows.

Theorem (1.1.2)[1]: There is a unique reducing subspace M, for ¢»(B) such that ¢(B) |,

Is unitarily equivalent to the Bergman shift. In fact,

My =\/ (6. $)eo)

=0

pi(d (2).9W))eg
and { Vi+1|legll

We call M, to be the distinguished reducing subspace for ¢(B). M, is unitarily
equivalent to a reducing subspace of My contained in the Bergman space, denoted by
M, (¢). The space plays an important role in classifying the minimal reducing subspaces
of My in Theorem (1.1.6).

In [10] we showed that for a nontribyl minimal reducing subspace Q for ¢p(B), either Q
equals M, or Q is a subspace of M- . The condition in the following theorem is natural.
Theorem (1.1.3)[1]: Suppose that Q, M and N are three distinct nontribyl minimal reducing
subspaces for ¢(B) and

} form an orthonormal basis of M.
0

QcM©E&N.
If they are contained in Mg , then there is a unitary operator U : M — N such that
U commutes with ¢(B) and ¢(B)* .
Let ¢ be a Blaschke product with four zeros. We will obtain a complete description of
minimal reducing subspaces of the multiplication operator M. First observe that the

multiplication operator M ,+ is a weighted shift with multiplicity 4:
3



n+1
Mysen = |5 Ensa

where e, equalsvn + 1z". By Theorem B [15], M,+ has exact four nontribyl minimal
reducing subspaces:

M; = \/ {z": n = jmod 4}
forj = 1,2,3,4. Before stating the main result. It is not difficult to see that the set of finite
Blaschke products forms a semigroup under composition of two functions. For a finite
Blaschke product ¢ we say that ¢ is decomposable if there are two Blaschke products
Y, and Y, with orders greater than 1 such that
¢(z) = Py °P2(2).

For each A in D, let ¢, denote the Mobius transform:

br(2) = 2=
zZ) = —.
_ A 1 - Az
Define the operator U; on the Bergman space as follows:
Uprf = f°daka i
for f in L2 where k, is the normalized reproducing kernel E:ljzl)z) Clearly, U, is a

selfadjoint unitary operator on the Bergman space. Using the unitary operator U, we have
Mo(¢) = UyMo(¢ ° ¢a)
where A is a zero of the finite Blaschke product ¢. This easily follows from that ¢ ° ¢,
vanishes at 0 and
U;M(ﬁUA - M(;l)od))l, .
We say that two Blaschke products ¢, and ¢, are equivalent if there is a complex number
A in D such that
$1 = $2° Po.

For two equivalent Blaschke products ¢, and ¢,, My and My, are mutually analytic
function calculus of each other and hence share reducing subspaces. The following main
result gives a complete description of minimal reducing subspaces.

To prove the above theorem we need the following two lemmas which tell us when a
Blaschke product with order 4 is decomposable.
Lemma (1.1.4)[1]: If a Blaschke product ¢ with order four is decomposable, then the
numerator of the rational function ¢(z) — ¢(w) has at least three irreducible factors.
Proof. Suppose that ¢ is the Blaschke product with order four. Let f(z, w) be the numerator
of the rational function ¢(z) — ¢(w). If ¢ is decomposable, then ¢p = Y, ° Y, for two
Blaschke products 1, and ¥, with order two. Let g(z, w) be the numerator of the rational
functiony,(z) — Y, (w). Clearly, z — w is afactor of g(z, w). Thus we can write

9(z,w) = (z — wlp(z,w)
for some polynomial p(z, w) of z and w to get
.9(1/)2 (Z)J/Jz(W)) = (1/12 (z) — 1/12(W))P(1/12(Z)r1/’2 (W))
On the other hand, we also have
Z — W zZ,W
Y2(2) — Po(w) = ( )Pa )

q> (Z' W)




for two polynomials p,(z,w) and q,(z,w) which p,(z,w) and g,(z,w) do not have
common factor. In fact, g,(z,w) and the numerator of the rational function

p(2(2), 1, (w)) do not have common factor also. So we obtain

902 20) = D (4,0, ).

Since f(z,w) is the numerator of the rational function g(y,(z),y,(w)), this gives
that £ (z, w) has at least three factors. This completes the proof.

Fora,f € DD, define
fapW,2) = w2 (w — a)(w — B)(1 — @z)(1 — Bz)
— 722z — a)(z — B — aw)(1 — Bw).
It is easy to see that f,, 5 (w, 2) is the numerator of z%¢, (2) g (2) — w?¢, (W) (w). The
following lemma gives a criteria when the Blaschke product z%¢,(z)¢g(2) is
decomposable.
Lemma (1.1.5)[1]: For a and § in D, one of the following holds.
(i) If both a and B equal zero, then
fapw,z) = (w — 2)(w + 2)(w — iz)(w + iz).
(i) If a does not equal either g or —f, then
fagW,2) = (W — 2)p(w, 2)
for some irreducible polynomial p(w, z).
(iii) If o equals either S or —f but it does not equal zero, then
fapW,2) = (W — 2)p(w,2)q(w, z)
for two irreducible distinct polynomials p(w, z) and q(w, z).
Proof. Clearly, (i) holds. To prove (ii), by the example on page 6 of [14] we may assume
that none of a and P equals 0. First observe that (w — z) is a factor of the polynomial
fa,p (W, z). Taking a long division gives

fapW,z) = W — 2)gqapW,z)

where
Gapw,z) = (1 — az)(1 — Bz)w? + (z — (@ + B))(A — az)(1 — pz)w?
+(z-a)z -1 - (a+B)z)w + z(z — a)(z — B).
Next we will show that g, (w, z) is irreducible. To do this, we assume that g, g (w, z) is
reducible to derive a contradiction.
Assuming that g, g(w, z) is reducible, we can factor g, z(w, z) as the product of two

polynomials p(w, z) and q(w, z) of z and w with degree of w greater than or equal one.
Write

p(w,z) = a;(z)w + ao(z)
qw,z) = by(2)w? + by (z)w + by(2)
where a; (z) and b; (z) are polynomials of z. Since g, g(w, z) equals the product of p(w, z)
and g(w, z), taking the product and comparing coefficients of wk_ give
a1 (D)by(2) = (1 - @2)(1 — Bz), ~ 3)
a,(2)b1(z) + ag(2)by(z) = (Z — (a + ,3))(1 - aZ)(l - .B_Z)r (4)
a1(2)by(2) + ag(2)by(2) = (z — )z — B(1 — (@ + B)z), (5)

ao(2)by(2) = z(z — a)(z — P). (6)
Equation (3) gives that either



a,(z) = (1 — az)or
a,(z) = (1 — &Z)(l — EZ) or
a,(z) = 1.

In the first case that a;(z) = (1 — @z), (3) gives b,(z) = (1 — Bz). Thus by

Equation (4), we have
a,(2)(1 = Bz) = (1 — @2)[(z — (¢ + B)(1 — Bz) — by(2)],

to get that (1 — az) is a factor of a,(z), and hence is also a factor of a factor z(z — a) (z —
B) by (6). This implies that a must equal 0. It is a contradiction.

In the second case that a,(z) = (1 — @z)(1 — Bz), we have that b,(z) = 1 to get

that either the degree of b,(z) or the degree of b,(z) must be one while the degrees of
b,(z) and b,(z) are at most one. So the degree of a,(z) is at most two. Also a,(z) does not
equal zero. Equation (4) gives

(1 - az)(l — Ez)bl(z) + ay(z) = (z — (a + B)A — az)(l — ,Ez)
Thus ao(z) = ¢;(1 — @z)(1 — Bz) for some constant c;. But Equation (6) gives
c,(1 — 52)(1 — Ez)bo(z) = z(z — a)(z — PB).
Eitherc, = Oor (1 — @z)(1 — Bz)isafactorof z(z — a)(z — B). This is impossible.
In the third case that a;(z) = 1,then b,(z) = (1 — @z)(1 — Bz). Since the root w

of fo3(w,z) is a nonconstant function of z, the degree of a,(z) must be one. Thus the
degrees of b, (z) and b, (z) are at most two. By Equation (4) we have
(1 - &Z)(l — Ez)ao(z) + bi(2) = (z — (a + ,B))(l — ﬁz)(l — ,EZ),
to get
bi(z) = (1 — az)(1 - Ez)[(z — (a + B) — ay(2)]

Since the degree of b, (2) is at most two, we have
ag(z) = (Z — (a + ﬁ))_ Co»

bi(z) = c,(1 — &Z)(l — ,[_32)
Equations (6) and (5) give

[(z — (@ + B)) — co|bo(2) = 2(z — @)(z — B)

bi(D)|(z = (@ + B)) = co] + bo(2)
=(z — a)(z — ﬁ)(l — (E + ﬁ)z)
Multiplying the both sides of the last equality by [(z — (a + B)) — ¢o] gives
bl(z)[(z - (a + [3)) — co] 2 + z(z — a)(z — B)
= [(z — (a + ,8)) — CO](Z — a)(z — ,8)(1 — (ﬁ + E)Z)

and

This leads to B
co(1 — az)(l — ,BZ)[(Z — (a + ,8)) — co] 2+ z(z — a)(z — B)

= [(z — (a + ﬁ))— co](z — a)(z — ﬁ)(l — (E + E)z)
If ¢, # 0, then the above equality gives that (z —a)(z —B)is a factor of

[(z = (@ +B)) — co]”. This is impossible.
If ¢, = 0, then we have

z(z —a)(z — B) = [(Z — (a + ﬂ))](z — a)(z — ,8)(1 — (E + E)Z)

6



toget@ + B = 0andhencea = —p. Itis also a contradiction. This completes the proof
that g, g (w, z) is irreducible.

To prove (iii), we note that if a equals B, an easy computation gives

fapW,2) = W = D[(A - @)W + (z — )]
X[ww — a)(1 — az) + z(z — a)(1 — aw)].
If a = —f, we also have
fapw,z) = (W — 2)(w + z)[(l — @’ z? )W2 + (z? — a? )].
This completes the proof.
Theorem (1.1.6)[1]: Let ¢ be a Blaschke product with four zeros. One of the following
holds.

(i) If ¢ is equivalent to z* | i.e., ¢ is a scalar multiple of the fourth power ¢2 of the
Mobius transform ¢, for some complex number ¢ in the unit disk, M, has exact four
nontribyl minimal reducing subspaces

{Uc My, UM, UMz, UMy}

(ii) If ¢ is is decomposable but not equivalent to z*, i.e, ¢ = ; ° 1, for two
Blaschke products y; and 1, with orders 2 but not both of 1, and vy, are a scalar multiple
of z2 , then M has exact three nontribyl minimal reducing subspaces

{Mo (@), Mo () Mo (), Mo (1h2)*}.

(iii) If ¢ is not decomposable, then My has exact two nontribyl minimal reducing

subspaces

{Mo (), Mo ()}
Proof. Assume that ¢ is a Blaschke product with the fourth order. By the Bochner Theorem

[18], ¢ has a critical point c in the unit disk. Let A = ¢(c) be the critical value of ¢. Then
there are two points a and £ in the unit disk such that
P2 ° P ° b(2) = Nz’ Padp

where 1 is a unimodule constant. Let ¢ be z*¢, ¢g. Since ¢p°¢. and 1 are mutually analytic
function calculus of each other, both M.4_and M,, share reducing subspaces.

(i) If ¢ is equivalent to z* , then ¥ must equal a scalar multiple of z* . By Theorem B
in [15], My, has exact four nontribyl minimal reducing subspaces

{MllMZIMB'M4}

where

M; = \/ {z": n = jmod 4}
forj = 1,2,3,4. The four spaces above are also reducing subspaces for My-4 . Noting
Ue Mgeg Uc = Mg,
we have that My, has exact four nontribyl minimal reducing subspaces
{UMy, UM, UM, U M}

(ii) If ¢ is decomposable but not equivalent to z* , i.e, ¢ = P, °y, for two Blaschke
products 1, and 1, with degrees two and not both 1, and v, are scalar multiples of z2 , by
Lemmas (1.1.4) and (1.1.5), then a equals either 8 or —f but does not equal 0. By Theorem
(1.1.2), the restriction of M, on M, (1, ) is unitarily equivalent to the Bergman shift. Thus
My () is also areducing subspace of My and the restriction of My, = M,y oy, ON Mo (3)
is unitarily equivalent to M, on the Bergman space. By Theorem (1.1.2) again, there is a
unique reducing subspace M, (11) on which the restriction My, is unitarily equivalent to
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the Bergman shift. Thus there is a subspace of M, (x,) on which the restriction of M is
unitarily equivalent to the Bergman shift. Theorem (1.1.2) implies that M, (¢) is contained
in M, (). Therefore My (,) M, (@) is also a minimal reducing subspace of M, and
L%z = Mo(¢p) @ [Mo(W)Mo(¢)] & [Mo(‘,bz)]l-
By Theorems (1.1.7) in [17], {My(), [ M) My(P)], [Mo(p,)]*}are nontribyl
minimal reducing subspaces of M. We will show that they are exact nontribyl minimal
reducing subspaces of M. If this is not true, then there is another minimal reducing
subspace Q of M. By Theorem 38 [10], we have
Q c My ) Mo(P)] @ [Mo@h)] .

By Theorem (1.1.3), there is a unitary operator

U: [My(p)Mo(P)] = [Mo(W)]*
which commutes with both M, and My . But
dimkerMg N [Mo(2)Mo(¢)] = 1
and
dimkerMg N [My( )]+ = 2.
This is a contradiction. Thus {M,(¢), [My () My ()], [M,(,)]*} are exact nontribyl
minimal reducing subspaces of M.

(iii) If ¢ is not decomposable, by Lemma (1.1.5), then ¢ equals z>¢,, or z2¢,pg for
two nonzero points a f in D and a does not equal f or —f. By Theorems (1.1.7) and
(1.1.8), My, has exact two nontribyl minimal reducing subspaces {M(¢), My (¢)*}.

We will study reducing subspaces of M s, for a nonzero point @ € . Recall that
M, is the distinguished reducing subspace of ¢(B) as in Theorem (1.1.2).
Theorem (1.1.7)[1]: Let z3¢, for a nonzero pointa € . Then ¢(B) has exact two
nontribyl reducing subspaces {M,, Mg" }.
Proof. Let M, be the distinguished reducing subspace of ¢ (B) as in Theorem (1.1.2). By
Theorem (1.1.3), we only need to show that M- is a minimal reducing subspace for ¢ (B).
Assume that Mg is not a minimal reducing subspace for ¢(B). Then by Theorem

(1.1.7) in [17] we may assume
2
j'[ - @ Mi
i=0

such that each M; is a nontribyl reducing subspace for ¢ (B), Mz = M, is the distinguished
reducing subspace for ¢ (B) and

M¢ = M, ® M,.
Recall that

b0 = Zz¢a'
LO = Span{liplipzrka(Z)ka(W)}r
and
Ly = (Lo N My) @ (Lo N My) & (Lo N My).

We further assume that

dim(M; n Ly) =1
and

dim(M, n Ly) = 2.
Take0 # e; € My N Ly, e;,es € M, N L, such that {e,, e;} are a basis for M, N L,
then



Ly = span{ey, ey, e;, €3}

By (1), we have

d‘e)]. = we; (0,w)e, — p(w)e;
and direct computations show that

(de, i) = (we; (0,w)eg — dp(W)ey, py)
= (Wej (O,w)eg,pk)  (by T * d(W)p, = 0)

(we; (0,w)eo(w, w), i (0, w))
= (Wej O,w)p" (W), wy)
= (wg (0,w)(wobe (W) + 3o (W), wi)
= (W Ow)(woy W) + 3¢a(w)),1) = 0

for0 < k < 2,and

a3

(dgj,ka(z)ka(w)) = ae; (0,@)eq(a, @) = ae; (0,a) T Tal?
This implies that those functions dgj are orthogonal to {1, p;, p,}. Simple calculations give
(o, pk) = 0

for0 < k <1,

3
(e0,p2) = (eo(0,w),p,(w,w)) =E ¢y (0)= —3a # 0

and
3

(0o, ka(DDeaW)) = eol(@,@) = ¢ (@) = 775 # 0

By Theorem (1.1.1), there are numbers y, A; such that
ds, = do, + pe; + e
d;, = do, + & + Aeg
d;, = do, + & + Aze
where é,,é; € M, N L.

Now we consider two cases. In each case we will derive a contradiction.

Case 1. u # 0. In this case, we get that e, is orthogonal to {1,p,}. So
{1, p4, ey, e,} form an orthogonal basis for L.

First we show that é, = 0. If &, # 0, then we get that {1,p,, ey, é,} are also an
orthogonal basis for L,. Thus é, = ce; for some nonzero number c. However, &, is
orthogonal to e, since é, € M, and e; € M;. This is a contradiction. Thus

dg, = dg, + Azey.
Since both d;, and dg, are orthogonal to p, and
(eg,p2) = —3a + 0,

we have that 1, = 0 to getthat dg, = dj, is orthogonal to L,. On the other hand,
3

a
(de,  kaq(2)ke(W)) = an(O'a)l——Ialz'
Thus
e;(0,a) = 0.
Similarly we get that
e;(0,a) = 0.

Moreover, since e, and e are orthogonal to {e,, e, }, write

€, = €11 + C12D1,
9



€3 = (31 + Cy2P1-
Thus we have

e;(0,a) = ¢; + cpa = 0,
e3(0,a) = ¢y + cpa = 0,
to get that e, and e5 are linearly dependent. This leads to a contradiction in this case.
Case 2. ¢ = 0. In this case we have
ds, = do, + Ae.
Similarly to the proof in Case 1 we get that 4, = 0,
ds, = dg L Lg (7)
and e;(0,a) = 0. Theorem (1.1.4) in [17] gives that at least one &; , say &, does not equal
0. Assume that &, # 0, write
&, = dg, — do, — Azeq.
Note that we have shown above that both d2, and e, are orthogonal to both 1 and p;. Thus
& L {1,p}
and
Ly = span{1,py, e, é;}.
Since e, is orthogonal to {e,, €,} we have
e = (4 + CoP1q.-
Noting that e; (0, @) = ¢; + c;a@ = 0 we get
e; = c(—a + py).
Without loss of generality we assume that
e, = —a + p;. (8)
Letting e be in M, N L, such that e is a nonzero function orthogonal to &,, we have that e
is orthogonal to {e,, é,}. Thus e must be in the subspace span{1,p;}. So there are two
constants b; and b, such that
e = by + byp;.

Noting
0 = (e, e;) = —bja + 2b,
we have
b, _
e =— (2 + apy).
Hence we may assume that
e = 2 + ap;. 9)

By Theorem (1.1.1) we have

dl = d2 + é + e,
for some number A and é € M, N L, . Thus
0 = (de, ,de) = (dg, de + & + Aeg) = (de, ,de) = (de, ,de) By (7).
However, a simple computation gives

(de, ,dg) = (de, ,we(0,w)e, — p(w)e)

= (d2, ,we(0,w)e,) (by T,(W)dg, = 0)

= (Wel(oi W)eO - (p(w)el,we(O, W)eO)

= (Wel(O,W)eo,We(O,W)eo> _<¢(W)e1;W3(O;W)eo>-
We need to calculate two terms in the right hand of the above equality. By (8) and (9), the
first term becomes
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(we (0,w)ey, we(0,w)ey) = (W(—a + w)ey,w(2 + aw)e,)
= ((—a + w)ey, (2 + aw)ey)
= (—aey, 2ey) + (wey, 2e5) + (—aey, awéy) + (wey, awé,)
= —afey, ey) + 2(wey, ey) — a’ (ey, weg).
The first term in right hand of the last equality is
(eo, €9) = (eo(w,w),ex(0,w)) = (W + o, Po)

= (W(2W¢a + W2¢(;£ ):W2¢a> + <¢O'¢O) =2+ (W(Ib&;d)a) + 1 =4
The last equality follows from

Il

1 —a 1 1
be =~z 1w 2 * (3~ )k
Similarly, we have
(weg, eg) = (wep(w,w),eq(0,w)) = (wWwey + ¢o), o) = .
This gives
(we,(0,w)ey, we(0,w)ey) = (e;(0,w)ey, e(0,w)ey) = ((—a + w)ey, (2 + aw)e,)
= —2a(ey, ep) — a?(ey,wey) + 2{wegy, ey) + alwey, weg)
= —8a — «ala|®* + 2a + 4a = —2a — «ala|?
A simple calculation gives that the second term becomes
(p(w)e, we(0,w)eg) = (po(W)ey, (2 + aw)ey)
(po(W)ey, 2eq) + (Ppo(W)ey, awéy)
2(¢0(W)€1(W, W), 80(0, W)) + a<¢0(W)€1(W, W)'WeO(O' W))
2(e;(w,w), 1) + ale;(w,w),w)
2(—a + 2w,1) + a{—a + 2w,w) = —2a + 2a = 0.

Thus we conclude
(de, ,de) = (we; (0,w)eg, we(0,w)eg) — (p(w)e;, we(0,w)ey) = —2a — alal?
= —a2 + |al*) # 0
to get a contradiction in this case. This completes the proof.
We will classify minimal reducing subspaces of M,z ¢ 5 for two nonzero points a

and g in D and witha # B.
Theorem (1.1.8)[1]: Let ¢ be the Blaschke product znga(pﬁ for two nonzero points a and
B in D. If « does not equal either g or —f, then ¢(B) has exact two nontribyl reducing
subspaces {M,, Mg- }.
Proof. By Theorem 27 in [10], if V" is a nontribyl minimal reducing subspace of ¢(B)
which is not equal to M, then V" is a subspace of Mg , so we only need to show that M-
is a minimal reducing subspace for ¢(B) unlessa = —p.

Assume that M- is not a minimal reducing subspace for ¢(B). By Theorem (1.1.7) in

[17], we may assume
2
j'[ - @ Mi
i=0
such that each M; is a reducing subspace for ¢(B), M, = M, is the distinguished reducing
subspace for ¢ (B) and
Ml @ M2 == MOJ_ .
Recall that
bo = zPaPp,
Ly = Span{l,pl, ea,e/;},
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withe, = ko(2)ka(W),ep = kg(2)kg(w) and
Ly = (Lo N My) D (Lo N My) @ (Lo N My).
So we further assume that the dimension of M; N L, is one and the dimension of M, N L,
Is two. Take a nonzero element e; in M; N Ly, then by Theorem (1.1.1), there are numbers
s, A4 such that
ds, = do, + e + Ase,. (10)
We only need to consider two possibilities, p, is zero or nonzero.
If u, is zero, then (10) becomes
ds, = do, + Ae. (11)
In this case, simple calculations give
(d(e)l lpl) = (Wel(OJ W)eO(ZJ W) - W¢O(W)61(Z' W),pl(Z, W))
= (we (0, w)eg(w,w) — wpo(w)e; (w,w), py(z,w))
= (we (0,w)eg(w,w) — weo(w)e;(w, w), p1(0,w))
= (we; (0,w)eg(w, w) — weo(w)e; (w, w), w)
= (e1(0,w)eg(w,w) — po(W)e;(w,w), 1)
= €,(0,0)e0(0,0) — ¢¢(0)e,(0,0) = 0,
and
<30; pl) = <€0(Z, W)r pl(zi W)) = (80(Z, W), pl(Wl W)) = (80(0, W)r ZW) = <¢0(W)' 2W>
= 2(wepa (W) (W), w) = 26 (0)h (0) = 2ap # O.
Noting that dgl Is orthogonal to L,, by (11) we have that ;, = 0, and hence
do, = dg, L L.

So

<d21,ea> =0 = (dgl reﬁ’)-
On the other hand,

(de, ,eq) = aei(0,@)eg(a, @) — ago(a)e(a, @) = ae (0,a)ey(a, @)
and
(d21 eg) = Be1(0,B)eo(B,B) — Bbo(Blei(B,B)
= Be1(0,B)eo (B, B).

Consequently

e1(0,a) = ¢,(0,8) = 0. (12)

Observe that e,, e; and 1 are linearly independent. If thisis notso, then1 = ae, + be; for
some numbers a, b. Bute; (0,a) = 0andey(0,a) = 0. This forcesthat 1 = 0 and leads
to a contradiction. By Theorem (1.1.1), we can take an elemente € M, N L, such that
d} = d2 + e, + pe,
with e, # 0 and e, € M, N Ly. Thus we have that e, is orthogonal to 1 and so e, is
in{1,ey, e}t and {1, ey, e, ,} form a basis for L,. Moreover forany f € M, N L,
df = dp + g + e
for some numberAand g € M, N L,. If g does not equal 0 then g is orthogonal to 1. Thus
g isin {1, ey, e;}* and hence
g = ce;
for some number c. Therefore taking a nonzero elemente; € M, N L, which is orthogonal
to e,, we have
d, = do, + e, + Azep,
dé = d23 + uze; + Asze,
and {e,, e, €5, €3} is an orthogonal basis for L.
12



If u, = 0, then by the same reason as before we get
A, =0,
do, = dg, L Lg
e;(0,a) = e,(0,8) = 0.
So using
p1 € Lo = span{l,ey, e, e,}
we have
a = p1(0,@) = p:(0,8) = B,
which contradicts our assumption that « # . Hence u, # 0.
Observe that 1isin L, = span{e,, e;, e,, e3} and orthogonal to both e, and e,. Thus
1 = cieq + c3e;
for some numbers c; and c5. So
1 = c;e,(0,a) + c3e5(0,)
= ¢161(0,B) + c3e3(0,5).

1= C333(0;a) = C3€3(0,ﬁ),

e3(0,a) = e3(0,8) = 1/cs.
If u; = 0, then by the same reason as before we get e5(0,@) = e3(0,8) = 0.Hence

us # 0. Now by the linearality of d(l_) and d?,) we have
dl = d33ez—}lze3 + (IJ'SAZ - MZAS)eO

Hz€z2—U2€3
By the same reason as before we get

Hadz — H2d3 = 0

By (12), we have

to obtain that c; # 0 and

and

0 — 1
dH3ez_H233 - dH3ez_H233 L Lo

and therefore
uze,(0,a) — ppe3(0,a) = pzey(0,8) — ppe3(0,5) = 0.

So we get
e;(0,a) = py/pzcz = e;(0,p8).
Hence
p1 € Ly, = span{l, ey, e, e}
This implies that
a = pi(0,a) = p(0,8) = B
which again contradicts our assumption that « # p.
Another case is that p, is not equal to 0. In this case, (10) can be rewritten as
e, = 1 d: — 1 gy — el e
! TR TP T 0'
and we have that e, is orthogonal to 1 since d;, ,dg_ and e, are orthogonal to 1. Thus 1 is
inM, N L.
By Theorem (1.1.1), there is an elemente € M, N L, and a number A, such that
di = dY + e + Aye,. (13)
Ife = 0thenA, = 0,and henced? 1 L,and
1 =100,a) = 1(0,B8).
Soe # 0.
Since di isin L, di is orthogonal to 1. Noting that d? and e, are orthogonal to 1, we
have thate L 1. Hence we get an orthogonal basis {e,, e;, 1, e} of L.
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Claim.
e(0,a) — e(0,5) = 0.
Proof of the claim. Using Theorem (1.1.1) again, we have that
dl = dY + g + 2Ze,
for some g € Lo n M,. If g # 0, we have that g 1 1since dl,d? , and e, are
orthogonal to 1. Thus we have that g = pe for some number p to obtain
dl = d2 + pe + Ae,.
Furthermore by the linearality of d, and d¢, we have that
de—y, = do_,, + (A = pige.
By the same reason (namely d;_,, L1 Lo, dg_,, L 1and(ey, 1) # 0)we have that

€—l1

/1 - HAO = 0,
dg—m = dé_“l L Lo

and
(e — u)0,a) = (e — py)(0,8) = 0.

e(0,a) —e(0,f) =p—pn=0,
to complete the proof of the claim.

Let us find the value of 4, in (13) which will be used to make the coefficients symmetric
with respect to « and B. To do this, we first state a technical lemma which will be used in
several other places in the sequel.

Lemma (1.1.9)[1]: If g is in H? (T), then
(wgdo, do) = 9(0) + g(a@) + g(B).
Proof. Since ¢, equals z¢, ¢, simple calculations give
(wgdy, o) = (Wg(whadp) ,whadp) = (g(Whatp) , batp)
= (9(datp + Woods + Whatp ) dadp)
= (9, 1) + (Wgda,da) + (Wgdp, Pp)
= g(0) + (Wgdy , o) + (Wgdg , dp)

Hence we have

Writing ¢, as

I+

_l,g-% 1 1-laP
ba =~z T —aw = = T a(W),

we have
1 - |al?

(WgPg , o) = T a (wgpg )(a) = g(a).

The first equality follows from (wg¢/, , 1) equals 0 and the second equality follows from

1
¢q (@) = T=lal
By the symmetry of a and 8, similar computations lead to

(wgdp, dp) = g(B)
and the proof is finished.
We state the values of 1, and (e, e,) as a lemma.
Lemma (1.1.10)[1]:
a+ p
2o = —— (14)
(€0, €9) = 4 (15)
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Proof. Since d{ is orthogonal to Ly, e, is in L, and e is orthogonal to e,, (13) gives
0 = {di,ep) = (di + e + Ageg,e0) = (d7,eg) + Ageo, eo).
We need to compute (d? , e,) and (ey, e,) respectively.
(d? ep) = (—p(w) + weg, ep) = (weg, e9) = (wep(w,w),e,(0,w))
= (W(ng(’) + ¢0),Po) = Wiy, Po) + (Wo, do) = (W2, do)
= a + p.
The last equality follows from Lemma (1.1.9) withg = w.
(eg,€0) = (eo(w,w),eq(0,w)) = (Wg + do, do) = (Wohg, o) + (o, Po)
= (W¢6,¢0) + 1= 4,
where the last equality follows from Lemma (1.1.9) with g = 1. Hence
a+f + 44 =0
and

a+ f
).0:_ 4 .

Let PL, denote the projection of H? (T?) onto L,. The element PL, (ka(w)—

kg (w)) has the property that forany g € L,,

(9.PLo (kaW) = kgW))) = (g, ka(w) — ks(w))
=g(0,a) — g(0,p).
Thus PL, (ka(w) — kg (w)) is orthogonal to g for g € L, with
g(0,a) = g(0,p).

So PL, (ka(w) — kg (w)) is orthogonal to e, 1, e. On the other hand,

(p1, PLo (Ka(W) = kgW))) = @ — f =+ 0.
This gives that the element PL,, (ka(w) — kg (w)) Is a nonzero element. Therefore there
exists a nonzero number b such that

PL, (ka(w) - kﬁ(w)) = be,.

Without loss of generality we assume that

e, = PL, (ka(w) - kﬁ(w)).

Observe that
P1(¢(Z):¢(W))€1 + dél € My,
p1(P(2), p(W)) + di € M,,
M, L M,,
to get

<P1(¢(Z):¢(W))e1 + délrm(ﬁb(z)'ﬁb(w)) + di) = 0.
Thus we have
0 = (p1(p(2), pW))e; + di, ,p1(p(2),0(W)) + di)
= (@) + ¢(W))ey, d(2) + (W) + (d} ,di)
= (d} ,d}). (16)

The second equality follows from
dg, ,di € kerTy(z) N kerTy(z) .
The last equality follows from
15



eq L1
and
e;, 1 € kerTy(z) N kerTy(z).
Substituting (13) into Equation (16), we have
0 = (déi ld(l) + e + AOeO> = (dél ,d? ) = (dél '_¢(W) + W€0> = (dél 1W60>
= (dg, + wer + Aieg,weo) = (dg, ,weg) + piler, weg) + Ai{eg, wey).
The second equation comes from that d;_ is orthogonal to L, and both e and e, are in L.
The third equation follows from the definition of d? and the forth equation follows from
that dg, is in kerT,(2) N kerTy(w) . We need to calculate (d2, ,wey), (e1, wey), and
(eq, we,) separately.
To get(dg, ,wey), by the definition of dg_, we have
(dgl;Wfr’o) = (—p(w)e; + we (0, w)ey, weg)
= (—p(W)ey, wey) + (wey(0,w)ey, wey)
Thus we need to compute (—¢p(w)e;, wey) and (we, (0, w)ey, we,) one by one. The
equality
(—p(w)e;, weg) = 0
follows from the following computations.

(—p(W)e, weg) = (—woo(wW)e, weg) = —(po(w)ey, ep)
—(po(W)es(w,w),e,(0,w)) = —(po(W)es(w, w), po(W))
—(e;(w,w),1) = —(e;,1) = 0.

To get (we, (0, w)ey, we,), we continue as follows.
(wey (0,w)eg, weg) = (e1(0,w)ey, ep)
= (el (0' W)eO (W' W), €o (01 W))
= (el (0, W) €o (Wr W)! ¢0 (W))
= (e1(0,w)(po W) + wepy (W)), po(W))
= (e1(0,w)po(W), po(W)) + (e1(0,wIwepg (W), po(W))
= (e1(0,w), 1) + (e1(0,w)wepy (W), po(W))
= €1(0,0) + (e, (0, w)wepo (W), po(w))
= (e, 1) + (e1(0,w)wepg (W), Po(W))
= (e1(0,w)wepg (W), (W)

e1(0,a) + e1(0,5).
The last equality follows from Lemma (1.1.9) and
61(0,0) = (el, 1) = 0.

Hence
(d21:W€0> = e1(0,a) + €,(0,B)
Recall that
di = d¥ + e + Aye,
is orthogonal to L, and e; is orthogonal to both e, and e,. Thus
0 = (e,,d? + e + Agey) = (e, —Pp(W) + wey) = (e, wey).
From the computation of (d? , e,) in the proof of Lemma (1.1.10) we have showed that
(weg,e9) = a + B.
Therefore we have that
e, (0,@) + €,(0,8) + A (a + B) = 0. (17)
On the other hand,
0 = (dgl,eo) = <d31 + per + Aiege0) = <d21:eo> + 44
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and
(dglleo) = (—p(w)e; + we (0,w)eg, e9) = (wey(0,w)eg, ep)
= (we (0, w)eg(w,w), e9(0,w)) = (wey(0,w)(do(W) + wopg ), po(W))
= (w? e;(0,w)pg, po(W)) = ae;(0,a) + Be;(0,B).
The last equality follows from Lemma (1.1.9) with g = we;(0,w). Thus
ae;(0,a) + Be;(0,6) + 44, = 0.

So
a B
A = 2 e;1(0,a) 2 e; (0, B). (18)
Substituting (18) into (17), we have 3
ll —M e1(0,) + |1 — M]el(&ﬁ) = 0.
Recall that
+
do = - i3
to get
(1 + Apa)e;(0,@) + (1 + 29B)e(0,8) = 0. (19)

We are going to draw another equation about e, (0, @) and e, (0, 8) from the property that
dg, is orthogonal to L,. To do this, recall that

er = PLy (kaw) = kg(W)) € My 0 L,
dg, = do, + wes + Aep L Ly,
Ly = Span{l,pl,ea,eﬁ},
eq = ko(@ko(W), e = kg(2)kg(w).
Thus dg, is orthogonal to py, e, and eg.
Since dg, is orthogonal to p; we have
(dg, ,p1) + mier,p1) + Ai{eg,p1) = 0.
Noting
(d21,p1> = (—p(w)e; + we(0,w)eg, p1) = (weq (0,w)eg, pr)
= (we1 (0,w)eg(w,w),w) = (e1(0,w)eo(w,w), 1)
(e1,01) = (PLg (Ka(W) - K/}(W))»Zh) = (K,(w) — Kﬁ(W)»P1> =
and
(€0, p1) = (eo(0,w),p1(w,w)) = (Po(w),2w) = (W¢a¢ﬁ»2W) = 2<¢a¢/3»1)
= 2¢4(0)(0) = 2ap,

=0,
a - B,

we have

(@ — Buy + 2aB2, = 0,
to obtain

a-p

T (20)

A= -

Since d;, L e,, we have

(dglrea> + wiler, eq) + Ai{eg,eq) = 0,
to get
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a—p
(deliea> + e eq) — Wy W (€0, €q) = 0. (21)

We need to calculate (dg_, e,), (e1, e,) and (ey, e,). Simple calculations show that
(d(e)llea) = (—pW)e; + we(0,w)eg, eq) = (we(0,w)eg, e,) = ae (0, a)ey(a, a),

(e1,eq) = ei(a,a) = (PLy (ka(W) - kﬁ(W)):ea> = (ko(w) — kB(W)rea>

B 1 1
1 - a2 1 - g
___wde-p (22)
(1 = lal?)(1 - ap)
and
(en,eq) = eola,a) = agg (@) + ¢o(a)
5 1 a—f (23)
= a = .
1—lal*1 - ap
Thus (22) and (23) give
e(wa)  @-B
eola,) ala — B)°
Substituting the above equality in Equation (21) leads to
ae;(0,@)eq(a, @) + pei(a,a) — yy ﬁ eo(a,a) = 0
Dividing the both sides of the above equality by e, (a, @) gives
e;(a, ) a-p
ael(O,oc)+ ulm - ulm = 0.
Hence we have
- B a-B
ae,;(0,a) + — = 0,
1( ) IJ'l ( ﬂ) P-l Zaﬁ
to obtain
2w (@ — E)
ae;(0,a) + + 1 = 0. 24
Similarly, since dg, is orthogonal to eg, We have
(de, eg) + wiler, eg) + Ai{eg ep) = 0,
to obtain
0 a-p
(de,  ep) + alenep) — W ——7= o’ (e, eg) = 0. (25)

We need to calculate (de1 ,eg), {eq, eg) and (e, eg). Simple calculations as above show that
(d2, ,eg) = (—pW)e; + wey(0,w)eg, e5) = (wey(0,weg, eg)
= Be1(0,8)eo (B, B),
(er,eg) = er(B,B) = (PLo (ka(W) = kg(W)), ) = (ka(W) — kg(w),ep)
1 1

"1 _—ap 1-IBI
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p(@ — B)

"1 - aB) - I8P (20
(eo,eﬂ) = eo(B,B) = Bdo (B) + ¢do(B)
— 2 'B —a 1 27
B 1 — afﬁ 1 - |pI? (27)
Combining (26) with (27) gives 3
(BB _  @-P
eo (B, B) pla — B)
Substituting the above equality in (25) gives 3
Be1(0,B)eo(B,B) + we(B,B) — 1wy (Xza;ﬁ eo(B,B) = 0.
Dividing both sides of the above equality by e, (S, 5) gives
ACH)) a-p
pe;(0,B) + Mm — W 20 - 0
Hence we have B B
a—f a-—-p
Bei1(0,B) — iy fa=p M 2ap " 0,
to get
2”1(a - E) .
,fel(O,,B)— (a + 2) WBla =B 0. (28)
Eliminating % from (24) and (28) gives
ala + A9)e1(0,a) + B(B + Ap)e;(0,B) = 0. (29)

Now combining (19) and (29), we have the following linear system of equations about
e;(0, @) and

e1(0,8)(1 + Aoa)e;(0,a) + (1 + 20B)es(0,8) = 0

ala + Ag)e;(0,@) + B(B + Ap)e (0,8) = 0. (30)

e1(0,a@) = €,(0,8) =0,
then p, isin L, = span{e,, e, 1, e}. But noting

eo(0,a@) = €4(0,B)
e(0,a) = e(0,5)

p1(0,a@) = p1(0,B), _
which contradicts the assumption that « # . So at least one of e;(0,a) and e,(0,8) is

nonzero. Then the determinant of the coefficient matrix of System (30) has to be zero. This
implies

If

and

we have

14+ da 14 2B

ala + A) BB+ A)|
Making elementary row reductions on the above the determinant, we get

(a — ,3)10 1+ zoﬁ
(@ — B)(a+ B + 1) BB + 2)
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Since
a+ [ = —4A,
and
a—f #0,
we have
Ao 1+ Ay

=34 BB + 2o)
Expanding this determinant we have

0 = (B2 + BAg) + 34(1 + A0B) = 2,(B% + BAs + 3B) + 34,
= 10(B? + 4BAg) + 31y = Ao(—apB) + 31,
Taking absolute value on both sides of the above equation, we have
0 = |Lo(—aB) + 34| = 123 — |aBD = 2|2l,

I
=

to get
Ao = 0.
This implies
a+ p =0,
to complete the proof.
Section (1.2): Analytic Multipliers of the Bergman Space

The present is a continuation of [27] and a series of recent related works, such as [28],
[29], [10]. We classify the reducing subspaces of analytic Toeplitz operators with a rational,
inner symbol acting on the Bergman space of the unit disk. While a similar study in the case
of the Hardy space was completed a long time ago (see [26], [33], [34]), investigation of the
Bergman space setting was started only a few years ago. The structure and relative position
of these reducing subspaces in the Bergman space reveal a rich geometric (Riemann surface)
picture directly dependent on the rational symbol of the Toeplitz operator.

The Bergman space L2 (D) is the space of holomorphic functions on D which are
square-integrable with respect to the Lebesgue measure dm on D. For a bounded
holomorphic function ¢ on the unit disk, the multiplication operator, Mg : L2(D) -
L% (D), is defined by

My (h) = ¢h, h € [4(D).
The Toeplitz operator T, on L% (D) with symbol ¢ € L* (D) acts as

Tqb (h) =P (¢h)r h € L%l;
where P is the orthogonal projection from L?(ID) to L% (D). Note that Ty = Mg whenever
¢ is holomorphic.

An invariant subspace M for M is a closed subspace of L% (D) satisfying M < M.

If, in addition, My M < M, we call M a reducing subspace of M. We say M is a minimal
reducing subspace if there is no nontribyl reducing subspace for My contained in M. The
study of invariant subspaces and reducing subspaces for various classes of linear operators
has inspired much deep research and prompted many interesting problems. Even for the
multiplication operator M, the lattice of invariant subspaces of L2 (D) is huge and its order
structure remains a mystery. Progress in understanding the lattice of reducing subspaces of
Mg was only recently made, and only in the case of inner function symbols [27]-[10], [32],

[1], [22].
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For {M,}) = {x €L (L3(D)): MgX = XM,)} be the commutant algebra of M,.
The problem of classifying the reducing subspaces of Mg is equivalent to finding the

projections in {M¢}' . This classification problem in the case of the Hardy space was the
motivation of the highly original works by Thomson and Cowen (see [26],[33],[34]). They
used the Riemann surface of ¢ ="' o ¢ as a basis for the description of the commutant of M,,
acting on the Hardy space. We study that inner function symbols played a dominant role in
their studies. In complete analogy, in the Bergman space L%(D) framework, one can
essentially use the same proof to show that for a “nice” analytic function f, there exists a
finite Blaschke product ¢ such that {M;} = {M,} . Therefore, the structure of the
reducing subspaces of the multiplier M, on the Bergman space of the disk is the same as
that for M.

Zhu showed in [22] that for each Blaschke product of order 2, there exist exactly 2
different minimal reducing subspaces of M. This result also appeared in [32]. Zhu also
conjectured in [22] that M4 has exactly n distinct minimal reducing subspaces for a Blaschke
product ¢ of order n. The results in [10] disproved Zhu’s conjecture, they raised a
modification in which My, was conjectured to have at most n distinct minimal reducing

subspaces for a Blaschke product ¢ of order n. Some partial results on this conjecture were
obtained in [28],[10],[1]. They proved the finiteness result in case n < 6, each using a
different method. A notable result for the general case [10] is that there always exists a
nontribyl minimal reducing subspace M, named the “distinguish subspace”, on which the
action of My, is unitarily equivalent to the action of M, on the Bergman space L% (D). Guo

and Huang also revealed in [29] an interesting connection between the structure of the lattice
of reducing subspaces of My and an isomorphism problem in abstract von Neumann

algebras.

! The general case was recently studied by Sun and Zheng [27] using a systematic
analysis of the local inverses of the ramified finite fibration ¢ =1 o ¢ over the disk. They
proved that the linear dimension of the commutant A, = {M¢,M;;,}' is finite. To give a
glimpse into the reasoning culminating with the finite dimensionality of the von Neumann
algebra A4 we recall that M, is an operator belonging to the Cowen-Douglas class, that is,
the iso-dimensional family of kernels ker(My — %),z € D, is an anti-holomorphic
hermitian vector bundle E4 on the disk. An operator X commuting with Ty leaves these

kernels invariant: X(ker(M[;—z‘)) c ker(My —z), whence it defines an anti-

holomorphic bundle map X : E, — Eg. Moreover, if X commutes in addition with M,
then X is also holomorphic, that is X is an endomorphism of the space of E4. Thus, the fiber
X(z,) at a prescribed point z, € D determines the full operator X, and consequently the
algebra A is finite dimensional. Then the geometry of the branched covering map ¢ takes
over, implying, by arguments of the theory of subnormal operators, that dim¢ Ag equals
the number of connected components of the Riemann surface ¢~ o ¢. In particular, the
number of pairwise orthogonal reducing subspaces of M, is finite. Furthermore, they raised
the following question in [27], whose validity they have established in degree n < 8.

For a Blaschke product ¢ of finite order, the double commutant algebra A is abelian.

Several notable corollaries would follow once the conjecture is verified. For instance,
the commutativity of the algebra A, implies that, for every finite Blaschke product ¢, the

21



minimal reducing subspaces of M, are mutually orthogonal; in addition, their number is
equal to the number g of connected components of the Riemann surface of ¢=1 o ¢.
The main result offers an affirmative answer to the above problem.
Theorem (1.2.1)[23]: Let ¢ be a finite Blaschke product of order n. Then the von Neumann
algebra A, = {Mg4, M} is commutative of dimension g, and hence A4 = C @@ C ,
q
where g is the number of connected components of the Riemann surface of ¢~1 o ¢.

The key observation for the proof is that there is an invertible holomorphic function u
such that ¢ = u™ on £, where 2 is a domain in D including an annulus of all points
sufficiently close to the boundary T. This representation provides a canonical ordered set of
local inverses which implies that the local inverses for ¢~1 o ¢ commute under
composition on (2.

It also allows us to provide an indirect description of the reducing subspaces.
Following [27], there is a partition {Gl, ., Gy } of the local inverses for ¢! o ¢. We now
define a dual partition as follows. For two integers 0 < j;,j, < n — 1,write j; ~ j, if

z i = z (%2 forany 1<i<gq. (31)
PKEG; PKEG;
Observing that ~ is an equivalence relation, we partition the set {0,1,...,n — 1} into
equivalence classes {G, ..., G, }. Some information on the Riemann surface of ¢~ o ¢ is
given by the following corollary.
Corollary (1.2.2)[23]: The number of components in the dual partition is also equal to g,
the number of connected components of the Riemann surface for ¢~ o ¢

We obtain the following characterization for the minimal reducing subspace of
automorphic type. Here O(ID) denotes the space of holomorphic functions on .

Theorem (1.2.3)[23]: Let ¢ be a finite Blaschke product and {Gj, ..., G, } be the dual
partition for ¢. Then the multiplication operator My has exactly g nontribyl minimal
reducing subspaces {My,..., M, },and forany 1 < j < ¢

M; ={f €oD):flo €L},
where £ is a subspace of L?(12) with the orthogonal basis {u'u": i + 1 (modn) € G;}.

Note the M,_; coincides with the distinguished reducing subspace for My shown to
exist in [10]. The latter theorem provides a possible way to calculate the reducing subspace
if one knows the partition of the family of local inverses. The above corollary hints that the
possible partitions are very restricted.

We list some algebraic conditions for the partitions, which offer an arithmetic path
towards the classification of finite Blaschke products. The idea is displayed by the
classification for the Blaschke products of order 8. In a similar way one can also explain the
classifications of the Blaschke products of order 3 or 4 in [10], [1], which have been
established by identifying the Bergman space of the disk with the restriction of the Hardy
space of the bidisk to the diagonal. We point out that these results and examples provide
some very detailed information about the branch covering space defined by a finite Blaschke
product.

The notation below is borrowed from [27]. Accordingly, ¢ is a finite Blaschke
product having n zeros taking multiplicity into account. The finite set E' =
¢ H(p({B €D:¢’ (B) = 0})) denotes the branch points of ¢, E =D\E’ is its
complement in D and let I" be a choice of curves passing through all points of E and a fixed
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point on the unit circle 5, such that D\I" is a simply connected region contained in E. Indeed,
to be precise, one can construct I" as follows: order E’ as {;, B, ..., B} such that k < j iff
Refy < Ref; or Ref, = Refjand Imp, <Imp;, and set p, = Rep; —

iy/1 — (Ref;)?. Letting I}, ,0 < k < s — 1, be the line segment between B, and By1,

we define

0<ks<s-—1
By an observation made in [27], the family of analytic local inverses {py,..., Pn-1}

for =1 o ¢ is well defined on D\I". That is, each p; is a holomorphic function on D\I
which satisfies ¢ (p; (z)) = ¢(z) for z € D\I" . We define the equivalence relation on the
setof local inversesothat p; ~ p; if there existsanarc y in E such that p; and p; are analytic
continuations of each other along y. The resulting equivalence classes are denoted
{Gy,...,G,}. Foreach G, 1 < k < g, define the map & :

Ef)H)B) = Z fp@)p (2), f holomorphicon D\I',z € D\TI.
PEGK
The central result in [27] asserts that the operators {81, . .,Sq} can naturally be extended to
bounded operators on the Bergman space L2 (ID) which are linearly independent, and the
double commutant algebra A is linearly generated by these operators; that is,

Ap ={My, M3} = spanfey,..., &}
We prove that the von Neumann algebra 4,4 is commutative.
To accomplish this, we extend the given family of analytic local inverses on D\I" to a
larger region and prove that they commute under composition near the boundary of ID. The

key observation for the proof of the following lemma is that ’(/ (z —a) (3 —ay)isa
single-valued holomorphic function on C\L, where L is a curve drawn through the zero set
{a,,a,,...,a,}. One can construct an L and verify the above assertion as follows. Notice
that ¥/ z + 1 is holomorphic outside any smooth simple curve connecting —1 and oo. By
changing variables, we observe that, for each 2 < i < n, the function

nZ—aiznal—ai-l_l
Z — aq Z — aq

is holomorphic outside the line segment connecting a, and a;. Therefore,

T\l/(Z —a) (3 —a,)= (3 — a) n’j:czlzl ""Z : ‘:lrll

is holomorphic outside the arc which consists of the line segments connecting a, and a; for
2 < i < n.See [31] for a complete argument.
Hereafter, let us set A, = {z € C:r < |z] < 1}forany 0 <r < 1,and let { =

2im
e n be a primitive n-th root of unity.
Lemma (1.2.4)[23]: For a finite Blaschke product ¢ of order n, there exists a holomorphic
function u on a neighborhood of D\L such that ¢ = u™, where L is an arc inside D
containing the zero set of ¢. Moreover, there exists 0 < r < 1 such that 4, is contained in

the image of uand u : u=1(Ar) — Aris invertible.
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Proof. Suppose a4, ..., a, are the zeros of ¢ in D (taking multiplicity into account). Choose
an analytic branch forw = ¥z.By [31],w = V(3 — @) -+ (z — a,) isasinglevalued
holomorphic function on C\L, where L is a curve drawn through the zero set. If we set

V@ —a) (3 — ay)

V@ — @z) (3 — T@z)
then u(z) is holomorphic on a neighborhood of D\L and u™ = ¢.

Additionally, one sees that |u|®™ = |¢|on D\L and hence u(T) < T. We claim that
u(T) = T.Indeed, if u(T) # T, thenu : T — T is homotopic to a constant map on T. That
is, there exists u(0,t) € C(T x [0,1],T) such that u(8,0) = u(6) andu(6,1) = 1.
This impliesthat ¢ = u™ : T — T is also homotopic to the constant map by the path t —
u™(-, t). If we extend each u(-,t) to be a continuous function @ (-, t) on I, then by [25]
each Toeplitz operator Tyn(.,) is Fredholm. Furthermore, using [25] one sees that t —
Ind(Tﬁn(.,t)) IS a continuous map from [0, 1] to Z. This implies that it is a constant map,
which leads to a contradiction since —n = Ind(My) = Ind(Tyn(.0y) = Ind(Tyn(.py) =
Ind(M;) = 0. Therefore, we have that u(T) = T.

By the open mapping theorem, the image of u is an open subset of C including T.
Therefore, there exists 0 < r < 1 such that 4, € u(D\L). Now we only need to prove
that the map u: u™'(4,) —» A, is injective. In fact, for any w € A,, since

¢ (u‘l(("w)) = wltfor0 <k <n — 1,we have that

|} wractwp egrqw.
0<k=n-1
Remarking that the set ¢ ~1({w™}) includes at most n points and each set u=*({C*w}) is
nonempty, one sees that each u~*({¢*w?}) is a singleton. This means that u is one to one on
u~1(A,). Therefore,u : u=1(4,) — A, is invertible, completing the proof.
The above lemma allows us to extend local inverses as follows. We denote 2 =
u~1(4,), where A, is the annulus appearing in Lemma (1.2.4). On the connected domain

0, define pp(z) = u™? (C"u(z)) for each 0 < k <n — 1. Note that g, is holomorphic

and ¢(pr(3)) = ¢(3) forz € 0. This means that {5}, is also the family of local
inverses on 2 for ¢t o ¢. It follows that p, = pi, forsome i, on 2 N [D\I']. Matching
the maps p;, and py , respectively, we obtain the family of local inverses on a larger domain
N U [D\I']. Furthermore, we can prove the following lemma.
Lemma (1.2.5)[23]: For a finite Blaschke product ¢, there exists a family of local inverses
for ¢~ o ¢ on the domain D\I'", where I'" = U;<,<s—1 [; is a proper subset of I'
appearing in (32), which just consists of the set of line segments passing through all critical
points E’ of ¢.
Proof. It suffices to show that the family of local inverses {py, p1, ..., pn—1} Can analytically
be continued across the interior pointset I, = {tf, + (1 — t)B;:0 <t < 1}

To start, we prove that analytic continuation is possible when the points in I}, are close
enough to the boundary T. By the continuity of u and the construction of I" , we can choose
a number r close to 1 such that u(4,r) ¢ A,and A, N I'" = @.Foreach0 <k <n —

1, let p,(z) = u™?! (("u(z)) when z € A, (S u™'(4,)). Fix a point 3, € A,/ N
[D\I'], and let U be a small open disk containing z,. Notice that both {p, p4, ..., pn—1} and

u(z) =
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{Po, P1,---, Pn_1Jare local inverses of ¢! o ¢ on U. So, after renumbering the local
inverses if necessary, we can suppose that p; = p; on U. Since the domain A, N [D\I'] =
A,\I} is connected and includes U, one sees that p; = p; on this domain. Therefore, the
family of analytic functions {p; U g;} defined as
N p;(x) ifx € D\I",
o v AlG = {720 i A

are local inverses on A,» U [D\I'']. We still denote them by {p;}; whenever no confusion
arises.

Now let S be a maximal subset of I;, on which these local inverses can’t be analytically
continued across. That is, {p;}; are holomorphic on the domain D\(I"'' U S), and can’t be
analytically continued across each point in S. We prove by contradiction that the set S is
empty. Indeed, assume S is nonempty and let

=inf{t: tB, + (1 — t)B; € S}.

Then S is contained in the line segment from z, = sf, + (1 — s)B; to B;. Since S N
A, = @, one sees that 0 < s and 3z, is inside D. This means that one can analytically
extend the local inverses across tf, + (1 — t)B;:t <s,
and the process stops at z,. But, since z, is a regular point of ¢, there exists an open disk
V = {z:13 — 20| < 1o} withasmall r,, withasmall r,,suchthatV NI’ = gand¢1 o
¢ has n analytic branches on V . Notice that

VnD\T'US)] =V\S 2 V\L,
where L is a line segment from the center z, to the boundary of the disk V . It follows that
V n[D\(I'" v S)] is a connected domain. An argument similar to that in the preceding
paragraph shows that the local inverses are holomorphic on V U [D\(I"' U S)]. By the
maximality of S, we have that V. n S = @, which leads to a contradiction since z, € S.
Therefore, S is empty and the local inverses are holomorphic on D\I"’, completing the proof.

From the proof of the above lemma one derives an intrinsic order for the local inverses.
Specifically, we label the local inverses {p, (z)}r=5 such that p,(z) = u~*({*u(z)) on
N for0 <k <n — 1. By aroutine argument, we have that each p;, is invertible on £2, and
for any pair py, pr and z € 2, we have

Pr ° Pk’ (B) = Prik'modn(3)-
Moreover, with little extra effort, one sees that each p, can also be analytically continued
across the boundary T. We prove the main result.
Theorem (1.2.6)[23]: Let ¢ be a finite Blaschke product of order n. Then the von Neumann

algebra Ay = {My, M} is commutative of dimension g, and hence 4, = ¢ @@ C,

where g is the number of connected components of the Riemann surface of ¢~1 o q(li.
Proof. It suffices to show that &; £; = &;&; for each 1 < i,j < q. Indeed, for any 0 <
k,k' <n — 1, we have that

Pr © Pr'(2) = pr © Pi(Z) = Prir'moan(@), 2z € L2
Therefore, forany f € L%(D) and z € 2, we have

E&NE =Y > FB(p@) (p@)0' @

PEG; pEG]

= > > 1(p(32)) ' (52)5' @) = (& &f )@

peG] PEG;

This implies that &; €;(f) = &; E;(f) forany f € L% (D), completing the proof.
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By the final argument in the proof of [27], the statement that A, is commutative is
equivalent to the statement that the minimal reducing subspaces for My are pairwise
orthogonal. This also means that the number of distinct minimal reducing subspaces of M
is equal to the dimension of A,. Hence, one derives the following corollary giving the

structure of the reducing subspaces.

Corollary (1.2.7)[23]: Let ¢ be a finite Blaschke product. Then the multiplication operator
Mg on the Bergman space L% (D) has exactly g nontribyl minimal reducing subspaces
{J\/L‘l, o My } and L2(D) = @®]_, M}, where q is the number of connected components
of the Riemann surface ¢ =1 o ¢.

In order to facilitate the comprehension of the rather involved computations included,
we analyze first a simple, transparent example. If ¢ = z™, then the family of local inverses
is {pr(z) = {¥z:0 <k <n — 1}, and we infer without difficulty that

M; = span{z' : i>0,i = j(modn),1<j<n,
are the minimal reducing subspaces of M,». However, such a simple argument is not
available in the general case, so we prefer to explain the above description of the M in a
less direct way, as follows. Recall that for ¢ = z™, we have that
Ef)@) = f(o@pi(z) = {*f((*2), 1<k<n

One verifies then that M is the joint eigenspace for the &,’s corresponding to the
eigenvalues ¢¥U+D_ Therefore, every M; is a reducing subspace since the {€,} are normal
operators and Ay = span{&,...,&,}.

There is a second, more geometric description of M; which emerges from this simple
example. Let F; be the flat bundle on D, = D\{0} with respect to the jump {J (see [24] for
the precise definition). We cut D, along the line (0,1) in D,, put the rank-one tribyl
holomorphic bundle over it, and identify the vector v on the lower copy of (0, 1) with the
vector ¢/ v on the above copy of (0, 1). Then F; is just the quotient space obtained from this
process. One can easily see that the F; 's are all the flat line bundles whose pullback bundle
to D, induced by the map z" : D, — D, is the tribyl bundle. This means that each
holomorphic on F; yields a holomorphic function on D, by the induced composition. Let

L2(F) = {holomorphics :Dy - F: fm) 5|2 dm < 00},

0

and let M, be the corresponding bundle shift on L2 (F; ). Note that |s| is well defined on D,
Then the operator U; : L%(F;) —» M; [ LZ(D)] defined by (U;f )(z) = nz"'f (™) is
a unitary map, which intertwines (L2 (F;), M, ) and (M , M ;= ). In this way flat line bundles
provide a natural model for the action of M~ on the minimal reducing subspaces of M, .
It is conceivable that some analogous geometric description exists for the action of My on
the minimal reducing subspaces in general, but, if so, we do not know how to describe it.
Thus we follow a different path below.

Returning to the general case of a finite Blaschke product ¢, we will prove the following
theorem. Recall that the dual partition for ¢ is the partition of the set {0,1,...,n — 1}
corresponding to the equivalence relation defined in (31). We will prove later that the
number of components in the dual partition is also equal to g, the number of connected
components of the Riemann surface for ¢ =1 o ¢.

26



The remainder is devoted to the proof of this theorem. We begin with a characterization
of the M;’s in term of eigenvalues and eigenspaces of the £,’s. Adapting, step by step, the
proof of [27], we infer that

Ay = {M¢,M§,} = span{El,...,Eq} = span{PM1 ,...,PMq },
where Py, is the projection onto M for 1 < k < q. This means that there are unique

constants {ckj 1<),k < q} such that
Ek = Z ijP]V[j . (33)

1<j<
On the other hand, by a dimension argument,ltﬁe constant matrix [ckj] turns out to be
invertible. Since the rows of [ckj] are linearly independent, it follows that Ckj1 = Ck;2 for
each k ifandonly if j; = j,.
For each tuple {ij }k, let J\7[] = {f € L2(D):E.f = ckjf,l <k< q} be the

corresponding common eigenspace for {81, &g } As shown in Theorem (1.2.6), each &,
Is a normal operator. By spectral theory, 3\7[]-1 1 M]-Z if j; # j,. Since M; < ]\7fj for each
j , We obtain M; L M, for j # k. Noticing that L2 (D) = @; M;, , one sees that M; = M; .
That is,
M; ={f € ZD):&f = o f, 1<k<gq} (34)

We also need the following lemmas concerning the domain 2 = u~1(4,). Let L2 () be
the Bergman space which consists of the holomorphic functions in L*(£2), and let L ,(2)
be the subspace of L% () which is the closure of the polynomial ring in L2 (£2). Note that
since z71 € L5(2), we have L7 () # L7 (12). Recall that O(ID) denotes the space of
holomorphic functions on D.
Lemma (1.2.8)[23]: The restriction operator i, : LZ(D) — L% ,(£2) defined by i, (f) =
fl, isinvertible. Furthermore, L3(D) = {f € O(D):f |, € L4(2)}.
Proof. As shown in the proof of Lemma (1.2.5), there existsr > 0 such that 4, € Q2. It’s
well known that there exists a positive constant C,. such that for any polynomial f

I liz@) < Crllflli2(a )
This implies for any polynomial f that
IAllzy = Colifllzga ) < Coliflliz) < Colifllza)-
Because the polynomial ring is dense in both of the two Hilbert spaces L7 (D) and L% ,,(12),

one finds that i, is invertible.
In addition, we have that

LZ(D) ={f €OM):f|,€ L5,D}c{f eod:f]|,€Li)}.
It remains to show that, if f € O(D) and f | , € L5(f2), then f € LZ (D). Indeed, since
A €0, one sees that flAr' € L%(A4,). Let f =YY%, aiz”® be the Taylor series
expansion of f on ID. Since the vectors {z*}k are pairwise orthogonal in L% (A4,), we have
that the polynomial p,, = Y%_, a3z tends to f in the norm of L4 (4,.) and hence f €
L% ,(A,1). Therefore, by the argument in the preceding paragraph, there exists g € L7 (D)
suchthat f |A,» = gA, .Thismeansthat f = g € L%(ID), as desired.
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Now we introduce operators on L (£2) and L2 p(Q) corresponding to {&;}. We also let
M, denote the multiplication operator on L% () or L% ,(2) with the bounded analytic

symbol ¢. Recall that each p € {p]}jl;o1 is invertible on 2. Hence, the operator Uz :

L7 (02) — L%(2) defined by U2 (f) = (f o p)p’ is a unitary operator with the inverse
UsL, . Similarly, for each 1 < k < g, define a linear operator ¢ : L2(2) — L3(2)as

E£N =) UEI) =) (Fopp, f€LW®
PEGk PEGK
Moreover, for each f € L2 2.p(£2), there exists some g € L% (D) such thatgll2 = f.A

direct computation shows that £, (g)| , = = & (f). Hence, one sees that E2 (f) € L2 2.p(2).
This means that £2 is also a bounded operator on L3 ap@)andip & = = & i, . Combining
this identity with formula (33) we obtain

N = ) ayiaPuia (N, f € L@ (5

1<j<
Furthermore, by [27], for each 1 < kjsq q there is an integer k= with 1 < k= < g such that
G- = Gy ={p ™" p € Gi}.
Similar to that used in the proof of [27], we infer that £~ = 8,?*. Therefore, L7 ,(2) is a
common reducing subspace of {£;?} and each £ is a normal operator on Lz , ().
Forevery1 <j <g, let
M= ig(M) = ([l f €M},
We claim that ij Py, ig" = PMjg. Since the range of iy Py, ip" is equal to M2, it

suffices to show that i, Pae;in 1'is a projection. Indeed, a direct computation shows that
ig P, io! is an idempotent. Furthermore, combining formula (35) and the fact that [ck;]
is invertible, every iy Py, iplis a linear combination of {€2}. It follows that every
ig Pac; ig" is @ normal operator. Therefore, iy Py, ig" is a projection and ip Pag; ig™ =
Pycld; .

We summarize the consequences of the above argument as follows.
Proposition (1.2.9)[23]: Using the notation above, L7 ,(2) = @?:1 J\/L”j‘2 ,and

@ ={f € I2,(D):EXf = c;f, 1<k <gq}. (36)
In addition, one has
U =) Pl () f € L@ (37)
1<j<q

Proof. Eq. (37) follows from formula (35) and the fact that i, Pa, ipl = P, .Combining
J

this with the same argument at the beginning, one sees (36).
Moreover, since

— 3 =1 __

z PMQ _z io Pac; in*

j=1
we have that L ,(2) = 69, M” completing the proof.

if i #jand

Il
:\n
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Since p, is invertible and pI = 1 on £, the operator U} : L7 (2) — Lz (£2) is unitary
and (U2 )" = 1. By the spectral theory for unitary operators, the {¢ "}:01 are possible
eigenvalues of U2 , and U2 = ¥7=" ¢' P,.0, where P, .o is the projection from L2(f2)
onto the eigenvector subspace l l

NP ={f € ZD:U2 (f) = {'f}.

It follows that U’ = (U I = izo ¢YPya,and
n—1
()= ) Y PP f € LW, (38)
PjEGK i=0

Furthermore, we have the following lemma. Recall that u: 2 = u™1(4,) - 4, is
invertible as shown in Lemma (1.2.4).
Lemma (1.2.10)[23]: V;? = span{u*u': k €Z, k + 1 = i modn}.
Proof. Sinceu o p; = {u on 2, itis easy to check that
Uy, Wku') = ¢*v*u’,  fork + 1 = imodn.
That is, V;? is contained in the eigenspace of U, associated to the eigenvalue ¢ E, 1t remains
to show that @; N? = L2(). In fact, we will prove that {u*u’ : k € Z} is a complete
orthogonal system for L2 (2).
Define the pull-back operator C,, : L%(4,) — L2(2) by
Cuf = (f e wu'.

Since u: 2 — A, is invertible, C, is unitary. Noticing that {z* : k € Z}is a complete
orthogonal basis for L%(4,), one sees that {u*u' = C,(z%):k € Z} is a complete
orthogonal basis for L% (2), as desired.

Recall that for the partition {Gl,..., Gq} of local inverses for =1 o ¢, we say j; ~ J,
in the dual partition for two integers 0 < j;,j, <n — 1,if

z gk = z {2 forany1l<i<gq.

PKEG; PKEG;
The above relation partitions the set {0, 1,...,n — 1} into equivalence classes {G{, e Gzlv}-

For each G/ in the dual partition, let £ = Dicc! N;%; that i,

L =span{u'u’: i €Z i+ 1(modn) € G/}.

Then ®)_, £ = L%(0). From formula (38)
WP =D P f €@ (39)

1<j<p
where ¢;; = ¥,.¢q, (U foranyl € G; . By the equivalent condition for the dual partition,
crj, = Ckj, foreach kifandonlyif j; = j,. Comparing formulas (36) and (39) yields the
following result.
Proposition (1.2.11)[23]: For each Mj” , there exists 1 < k < p such that J\/[jQ =L? n

L% »(2).
Propof. Foreach0 = f € Mj” € @, Li = L5(12), there exists at least one d such that
1 < d; < p and the projection of f on Lgf is nonzero. We claim that d; is unique. Indeed,
suppose for k; # k,, PL& (f) and P% (f) are nonzero. By formula (36), one sees for each
1 <i < nthat,
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[PLk1 + P, ]5{2(f) = ;P (f) + ciPr, ().
Moreover, by formula (39),
[PLkl + P, ]5{2(f) = Cig, Pro, F ) + Cir, Pry, ().
Hence c;; = cj,, = ciy, foreachi. This leads to a contradiction since k; = k,. Therefore,
there exists only one integer df such that P (L (f)=0.
We now prove that d; is independent of f . OtherW|se there exist k; # k, and f;, f, €
M;; such that both Pﬁfl (f1) and Pﬁfz (f,) are nonzero. By the uniqueness proved in the

preceding paragraph, we have that PL£ (fy) = Pﬁg (f1) = 0. However, this means that
1 2
both P,cﬁ (fy + f2) and P,c,? (f1 + f2) are nonzero, which contradicts the uniqueness of
1 2

dy,+f, - Therefore, there exists only one integer k such that P .o M? = {0}. Moreover, we

have that c;; = c;), for each i. Combining this fact with formulas (36) and (39), one sees
that

M2 =L2n L2, ={f € L2,(D):EXf = ¢jf, 1<i<q},
completing the proof.

We will prove the converse of the above proposition. We begin with some lemmas.
Lemma (1.2.12)[23]: Let f be a function holomorphic on a neighborhood of A,. Then for
any k € Z,f 1 z¥in L2(4,) ifand only if Joex (z)z* dm(z) = 0.

Proof. Let a, be the coefficient for z* in the Laurent series expansion of f on 4,.. Observe
that {z*};> ., is a complete orthogonal basis for both of L%(4,) and L?(T). A direct
computation shows that (f, ")z, = axlls”(| 5 , ; ad (f,2%)izery = arl|z*]| 2
which leads to the desired result.

We also need the following transformation formula.
Lemma (1.2.13)[23]: Let s : T — T be an invertible differentiable map. Then there exists
aconstants = 1 or —1, such that forany f € C(T)

) 5'(6)
| £ @dme) =< | r6O)5G

If, in addition, s is holomorphic on a neighborhood of T, then
’(Z)
| f@dm@ =e. | Fs) 55 dme)

Proof. It is sufficient to verify only the first equation. Indeed the latter equation follows
from the former equation and that

! l; dZ . 10 o1 . l
s'(0) = s (Z)@ = ie' s' (z) = izs' (5),z €T.
Without loss of generality, we can suppose that s(1) = 1. Then there exists §: (0,2m) —
(0, 2m) such that s(8) = e*®). An elementary calculus argument shows that

f f(9)dm(9)=f f(s(6))15'(8)1dm(6).
T T

Since s is invertible on T, one has that §: (0,2m) — (0,2m) is a monotonic function.
Therefore, we can choose a constant e, = 1 or —1 such that |§'| = €,5’ . Moreover,

differentiating the equation s(8) = e¥®) one sees that s'(8) = le15(9)s ) =
is(6)3'(0). This implies that 5" (6)| = 655 (9)

, completing the proof.
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Lemma (1.2.14)[23]: For any integer k > 0, there exists some integer i > 0 such that
(2", uku’) 2y # 0. Therefore, P_(L: , iy N;? = {0} forall0 <k <n — 1.
Proof. We prove the statement by contradiction. Suppose that for some k > 0,
(Zi,uku’)Lz(m = 0, Vi > 0.

Since the operator C,, : L?(A4,) — L?*(2), which appears in Lemma (1.2.10), is unitary, the
above equation is equivalent to

(WD, 2524,y =0, Viz0.
Using Lemma (1.2.12), it follows that foreachintegeri > 0

(WD, 25 2m =J w i) z*¥dm(z) = 0.
T

By Lemma (1.2.13), Lemma (1.2.4) and the fact that |u(z)| = 1 for z € T, we have for
each integer i > 0:

0= j ziu™) o u(z)ﬁzzig) dm(z) = J Uk dm(z) = (37, uk ) o g
T T

This means that u**' € H,(T) and hence ¢¥** = y**+V e [, (T). Because ¢p*** is
holomorphic on I, we deduce that ¢p*** is a constant. This leads to a contradiction since ¢
is a nontribyl Blaschke product, completing the proof.

Summarizing the above results, we obtain the converse of Proposition (1.2.11).
Proposition (1.2.15)[23]: For each k, there exists a unique j such that M* =L n

Lz ,(2); that is,
12, =P [£8 n 12,@)].

k
Proof. From Proposition (1.2.11), foreach 1 < j < g, there exists only one 1 < k; < p such

that M =L{jj n L2 ,(02). Hence,
,@ =P |28 n 2,0

]
We claim that the set {k;,..., k,} is just {1,...,p}. Indeed, if there exists k such that 1 <
k<p but k is not in the set {ki,...,k,}, then L L& , Lf . This means that

Pngm)Lf = {0}, which leads to a contradiction, since £ = @ jeal N;# and by Lemma

(1.2.14) we have that Pz o) N;? # {0} for each j . Therefore, the set {kq,..., kq} includes

all integers between 1 and p. It follows that p = g and
q

12, =P [£8 n 12,@)],

k=1
as desired.
In the proof of Proposition (1.2.15), one identifies the following intrinsic property of the

partition for a finite Blaschke product.
Corollary (1.2.16)[23]: The number of components in the dual partition is also equal to g,
the number of connected components of the Riemann surface for ¢=1 o ¢.

Combining Lemma (1.2.8) with Propositions (1.2.11) and (1.2.15), we derive the main
result.
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Theorem (1.2.17)[23]: Let ¢ be a finite Blaschke product, and {Gj,..., G; } be the dual
partition for ¢ . Then the multiplication operator My has exactly g nontribyl minimal
reducing subspaces {My,..., M, },and forany 1 < j < gq
M; ={f eoD):f|Q € L7},
where 2 = u~1(4,) is defined in Lemma (1.2.4), and Lf is a subspace of L?(2) with
orthogonal basis {u‘u’ : i + 1 (modn) € G;}.
Proof. Combining Propositions (1.2.11) and (1.2.15), after renumbering if necessary, we
have for each 1 < j < q that,
M = L 0 L, (@)
Since i, is invertible, we have that
M; ={f € LZ(D): fl ,e M’} ={f € LA(D):f |, € L]}
Combining this formula with Lemma (1.2.8), we conclude that
M; ={f €oD):f, €L}
completing the proof of the theorem.
[10], [1] obtained a classification of the structure of the finite Blaschke product ¢ in
case ¢ has order 3 or 4. We sketch an arithmetic way towards the classification of finite

Blaschke products, displaying the details in the degree 8 case.

Following [27] we define an equivalence relation among finite Blaschke products so

that ¢, ~ ¢, if there exist Mobius transformations ¢, (z) = f_;dzz and ¢, (z) = f_—_;zwith

a,b € D such that ¢, = @, ° @, o @,. A finite Blaschke ¢ is called reducible if there
exist two nontribyl finite Blaschke products ¢4, ¢, such that ¢ ~ ¢, ° ¢,, and ¢ is
irreducible if ¢ is not reducible.

For a finite Blaschke product ¢ of order n, let Gy,..., G, be the partition defined by the

family of local inverses {py, ..., p,} for =1 o ¢. When no confusion arises, we write i €
Gy ifp; € Gy, and G, = {iy,ip,..., 0 }if G = {pil ,Pi, ,...,pij}. In view of the above
notations, {G,..., G,} is a partition of the additive group Z,, = {0,1,...,n — 1}. One can
immediately verify that, if ¢; ~ ¢,, then ¢,, ¢, yield identical partitions.

Corollary (1.2.16) hints that there should exist some internal algebraic and combinatorial
structures for the partitions arising from finite Blaschke products. Although we don’t
understand these properties completely, we list a few necessary conditions:

(ap) {0} is a singleton in the partition, since p,(z) = z is holomorphic on D.
(ay) For any pair Gi and Gj , there exist some Gy, ..., Gx, such that
G; + Gj = Gy, U-U G (counting multiplicities on both sides),
where “ + " is defined using the addition of Z,,. (This is a consequence of the fact that the
product &;&; is a linear combination of some & ’s.) (ay) By [27], for each G; =
{iy,..., i}, there exists j such that
G =G ' ={n—i,....n — i}

(a3) By Corollary (1.2.16), the number of elements in the dual partition is also q.

We also need the following generalization of [27]. Note that the additive structure for
elements in G, ’s coincides with compositions near the boundary T.
Lemma (1.2.18)[23]: For a finite Blaschke product ¢ of order n, ¢ is reducible if and only
if Gy, U--U Gy, forms anontribyl proper subgroup of Z,, for some subset Gy, ..., Gy of
the partition arising from ¢.
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Proof. Assume that ¢ is reducible. Without loss of generality, suppose that ¢ = ¢, ° @,
for two nontribyl finite Blaschke products ¢, ¢,. Since the family of local inverses ¢, o
@, Isacyclic group under compositions near the boundary T, and it is contained in the local
inverses of ¢~ o ¢, the set of the local inverses for ;1 o ¢, forms a nontribyl proper
subgroup of 1 o ¢.

On the other hand, suppose that G = G, U--U G, is a nontribyl proper subgroup

of Z, for some Gy ,...,Gy, . For each G, = {pil,...,pij}, by [27] there exists a

polynomial f;(w, z) of degree j such that {Pi1 (), pi; (z)} are solutions of fi(w,z) =
pi(3)

0. Thisimpliesthat [T .. p(z) = e is a quotient of two polynomials p;(z), q;(z) of
degree at most j . So, if we define
p
02(3) =1_[ p(z)=1_[ 1_[ p@=| | ==,
L L 1 g;(2)
PEG =1 PEGki =1

then ¢, (%) is a rational function of degree at most G; here G denotes the number of elements
in G. It follows that ¢, (z) is holomorphic outside a finite point set S of D. Since each local
inverse is bounded by 1 on D\I"* and D\I"’ is dense in D, we have that ¢, is also bounded
on D\S and hence it can analytically be continued across S. This means that ¢, is a bounded
holomorphic function on D. By a similar argument involving local inverses, one sees that
@, is also continuous on T and |, (z)| = 1 whenever z € T. That implies ¢, is a finite
Blaschke product of order G.

Furthermore, by the group structure of G, ¢,(p;(z)) = ¢,(3z) foreach p; € G if zis
close enough to the boundary T. Since D\I"" is a connected domain including £2, the equation
still holds whenever z € D\I"' . In other words, the family of local inverses of ;1 o @,
is just, G, a subset in that of ¢~ o ¢. Consequently, ¢(z,) = d(z,) if 9,(z1) = ¢,(z,)
and z,, z, are regular points of ¢. Hence, if we define

p1(w) = ¢(z) forw = @,(2),
then ¢, is well defined outside some finite set of points in D. By a similar argument for ¢,
one sees that ¢, is also a finite Blaschke product, which satisfies ¢ = ¢, o ¢,, completing
the proof of the lemma.

By the above proof, one sees that if ¢ is reducible, then some of the local inverses can
be analytically continued across some critical points of ¢. But it is not clear that this is a
sufficient condition for ¢ to be reducible.

Based on the above lemma, we explain the classification for a general Blaschke product
of order four.

Let ¢ be a Blaschke product of order 4. One of the following scenarios holds.

(i) The partition of ¢ is {{03}, {1}, {2}, {3}}; equivalently, ¢ ~ z*.

(ii) The partition of ¢ is {03}, {2}, {1, 3}}; equivalently, ¢ ~ ¢Z (%), where ¢, = —is
a Mobius transformation with a # 0.

(iii) The partition of ¢ is {{0}, {1, 2, 3}}; equivalently, ¢ is not reducible.

All possibilities above occur for some ¢, by computations due to Sun, Zheng and Zhong

in [1].

[ \]Ne now classify, using purely arithmetical considerations, the possible structure for a
finite Blaschke product of order eight.
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Theorem (1.2.19)[23]: Let ¢ be a Blaschke product of order 8. One of the following
scenarios holds.

(i) The partition of ¢ is {03}, {1}, {2}, {3}, {4}, {5}, {6}, {7}}; equivalently, ¢ ~ z°.

(iiy The partition of ¢ is {{0},{2},{4},{6},{1,5},{3,7}}; equivalently,p ~ ¢2 (),
where ¢, = 1“__; is @ MObius transformation with a # 0.

(iii) The partition of ¢ is {{0},{4},{1,2,3,5,6,7}}; equivalently, ¢ ~ (z2), where ¢ is
an irreducible Blaschke product of order 4.

(iv) The partition of ¢ is one of {{0}, {4}, {2, 6},{1, 3,5, 7}}, {0}, {4}, {2, 6},{1,3},{5, 7}},
{{0},{4},{2,6},{1,5},{3,73} or {{0},{4},{2,6},{1,7},{3,5}}; equivalently, ¢ ~
W(p2 (z%)), where 1 is a Blaschke product of order 2 and ¢, =-—— is a Mabius

1-a,

transformation with a # 0.

(V) The partition of ¢ is {{0},{2,4, 6},{1,3,5,7}}; equivalently, ¢ ~ ¥ o ¢, where i is
a Blaschke product of order 2 and ¢ is an irreducible Blaschke product of order 4.

(vi) The partition of ¢ is {{0},{1,2,3,4,5,6,7}}; equivalently, ¢ is not reducible.

A similar approach would work for Blaschke products of arbitrary order. However, it
seems difficult to decide whether a partition satisfying conditions («,), (@), (a,) and (a3)
arises from a finite Blaschke product. For example, we cannot exhibit examples for each
partition in case (4) in Theorem (1.2.19), although it is likely that they exist.

Proof . By condition («,), {0} is a singleton in the partition for ¢p. Without loss of generality,
suppose that G, = {0}. We list all possibilities by the minimal numbers =
min{G,, ..., G, }, where G, is the number of elements in Gy, . Clearly s # 4,5, 6.

() Case s = 1. Suppose without loss of generality that G, is also a singleton.

Subcase (A): Suppose G, consists of one of the primitive elements {1,3,5,7} in Zs.
Since Zg is generated by any element in {1, 3, 5, 7}, by conditions (a;) and (a,), each Gy is
a singleton. That is, the partition is just {{0},{1}, {2},{3},{4}, {5}, {6}, {7}}. By [27], one
sees that this is equivalentto ¢ ~ z8.

Subcase (B): Suppose (A) does not hold and G, consists of 2 or 6. By condition (a;),
the partition contains the singletons {2}, {4}, {6}. We list all possible partitions as follows:

(B1) {{0}, {2}, {4}, {6},{1,5,3,7}};

(B2) {{03,{2},{43,{6},{1,3}, {5, 73};

(B3) {{03,{2},{43},{6},{1,5}, (3, 73};

(B4) {0}, {2}, {4}, {6}, {1,7}, {3, 5}}.
Case (B2) is excluded by condition (a,), since {2} + {1,3} = {3, 5} is not a union of some
Gy in (B2).One can get rid of (B4) in a similar way. The remaining cases, (B1) and (B3),
satisfy (a,), (@) and (a,). But, by a direct computation they have the same dual partition
{{0},{2},{4},{6},{1,5},{3,7}}.  Using  condition  (a3), we have that
{{03}, {2}, {4}, {6}, {1, 5},{3, 73} is the unique choice. In this case, by Lemma (1.2.18), there
exist a finite Blaschke product ¢, of order 4 and a finite Blaschke product ¢, of order 2
such that ¢ = ¢, o ¢,. Moreover, by the proof of Lemma (1.2.18), local inverses for ¢,
are po, P2, Pa, P 1N the family of local inverses of ¢. By [27], one sees that this condition is
equivalentto ¢ ~ z*. This means that ¢ ~ ¥ (z*) for some Blaschke product i of order
2. Observe that two local inverses for y are holomorphic on D, since one of them, py(z) =
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3, is holomorphic. By [27], ¥ = ¢, o 32 o ¢, for some Mobius transforms ¢, ¢,,. This
implies that ¢ ~ ¢2 (z*), and a # 0, since it would degenerate to subcase (4) ifa = 0.

We now consider the most complicated case in which G, = {4} is the unique singleton
other than G,.We divide it into several distinct subcases looking again at the minimal
number ¢ = min{Gs,...,G,}. Clearly 2 < t < 5and t # 4. So, t is 2,3, or 5.

Subcase (C): G; = {0},G, = {4}andt = 5.

The only possibility is the partition {{0},{4},{1,2,3,5,6,7}}. By Lemma (1.2.18) and
the observation thaty ~ z? for each Blaschke product i of order 2, one sees that there
exists a Blaschke product ¢ of order 4 such that ¢ ~ @(z?%). We prove that ¢ is not
reducible by contradiction. Otherwise, ¢ ~ ¢, ° @,, where ¢,, ¢, are Blaschke products
of order 2. This implies that ¢ ~ ¢, o B for a Blaschke product B of order 4, which leads
to a contraction since by Lemma (1.2.18) B~1 o B forms a subgroup of order 4in¢ — 1 o
¢, as desired.

Subcase (D): G, = {0},G, = {4} and t = 3. Then the partition consists of
G,,G,, G5, G, with G; = G, = 3. Considering condition (a,) and observing that 4 is the
unique element other than 0 for which its inverse is itself, one sees that G, = G;.The
following partitions are all possible choices at this point:

(D1) {{0},{4},{1,2,3},{7,6,5}};

(D2) {{03},{4},{1,2,5},{7,6,3}};

(D3) {{0}, {4},{1,6,3},{7,2,5}};

(D4) {{0},{4},{1,6,5},{7,2,3}}.
Case (D) is impossible by condition (a;), since

{1,2,3}+{7,6,5} ={0,7,6,1,0,7,2,1,0}
is not a union of some subsets in (D,). One can prove similarly that (D,), (Ds) and (D,)
don’t satisfy condition (ay).
Subcase (E): G; = {0},G, = {4}andt = 2.
One possibility is that the partition consists of G, G,, G3, G, with G; = 2 and G, = 4.

By condition (a,), we have G;* = G, for each G, . So, the only possibilities are:

(E1) {{03,{4},{1,7},{2,3,5,6}};

(E2) {{03},{4},{2,6},{1,3,5,7}};

(E3) {{0},{4},{3,5},{1,2,6,7}}.
One excludes case (E1) by

{4}+{1,7} =1{5,3},
and case (E3) by
{4} + {3,5} ={7,1}.

Another possibility is that G, = 2 for any Gy, in the partition other than G,, G,. There exist
CEiCiC2? /A3 = 15 choices:

(E4) {{03}, {4}, {1, 2}, (3,5}, {6, 7}}; (E5) {{0}, {4}, {1, 2}, (3,6}, {5, 7}};

(E6) {{03.{4}.{1, 2}.{3, 7}.{5, 63}; (E7) {{0},{4},{1,3},{2,5},{6, 7}};

(E8) {{0}, {4}, {1, 3}, {2, 6}, {5, 7}}; (E9) {{0}, {4}, {1, 3}, {2, 7}, {5, 6}};

(E10) {{0}, {4},{1,5},{2,3},{6, 7}};

(E11) {{03, {43}, {1,5},{2, 6},{3, 7}};

(E12) {{0} {4} {1, 5}{2, 7}.{5, 6} };

(E13) {{03}, {43, {1, 6},{2,3},{5,7}};
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(E14) {{0},{4},{1,6},{2,5}, {3, 7}};

(E15) {{0},{4},{1,6},{2,73,{3,5}};

(E16) {{03, {43, {1,7},{2,3},{5, 6}};

(E17) {{0},{4},{1,7},{2,5},{3,6}};

(E18) {{03},{4},{1,7},{2,6},{3,5}}.
One excludes most of them by the following observation: if {a, b} is included in one of the
above partitions, then one of the equations a + b = 0,a + b = 4anda =4+ b
holds. Indeed, by condition (a,),

{a,b} + {a,b} ={2a,a + b,a + b,2b}
is a union of some G, ’s. If {a + b} is a singleton, thena + b = 0 ora + b = 4.
Otherwise, a + b is including in some G, satisfying G, > 1. Noticing that each element of
Gy is included in {a, b} + {a, b}, one sees that G, # 3. It’s easy to verify that Gk = 3 since
we assume that the singleton {a + b} is not in the partition. So, G, = 2 and
Gy, ={2a,a + b} ={a + b,2b}.

That is, 2a = 2b. This means that a = 4 + b. Furthermore, noticing that both 2a and
a + b = 2a + 4 are even in that case, one sees that G;, = {2, 6}.

By this observation, all the partitions other than (E8), (E11) and (E'18) are excluded.
By a direct computation, one sees that (E8), (E11) and (E18) satisfy the other conditions,
too.

Moreover, the above argument shows that (E2), (E8),(E11) and (E18) are all the
possible partitions that include the sets {0}, {4}, {2, 6}. By Lemma (1.2.18) and [1], there
exist a Blaschke product v of order 2 and a Blaschke product ¢ of order 4, such that ¢ =
Y o @ and ¢ isincluded in case 2 in [1]. This implies that ¢ has the desired decomposition.

We now turn to the cases s > 1. Firstly, by condition (a5), 4 is not included in any G,
for which Gy, is even. Otherwise, if 4 € G, ,then G;* = G, since 4 is the unique element
other than 0 for which its inverse is itself. Therefore,

Gk = {4‘,k1,...,ki,8 - kl,...,8 - kl}
for some k4, ..., k;. This contradicts the fact that G, is even. So, 4 &€ G, if G, is even.

Secondly, the argument used in analyzing subcase (E) is still valid. Hence, if {a, b} is
in the partition, thena +b = 0ora = 4+ b. In the latter case, {2, 6} is in the partition.
Moreover, since {a, b} + {a, b} is a union of some G, ’s satisfying G, < 2, and 4 is not
included in any such G, , we have that 4 + 2a,2b,2(a + b). Therefore, neither 2 nor 6 can
be included in any G, when the partition satisfies s > 1 and G, = 2. It also implies that
a +b = 0if{a, b} isin the partition.

(I1) Case s = 2.

One possibility is that the partition consists of G4, G,, G5 satisfying G, = 2 and G; =
5. By the above observation, the partition must be one of the following: (l11)
{{0},{1,7},{2,3,4,5,6}};
(112) {{03},{3,5}{1,2,4,6,7}}.

Obviously, none of them satisfies condition (a; ).

Another scenario is that the partition consists of G4, G,, Gs, G, satisfying G, = G5 =
2 and G, = 3. By the above argument, G, = {2, 4, 6}. So, all the possibilities are listed
below:

(113) {{03,{1,3},{5,7}, {2, 4, 6}};
(114) {{03,{1,5},{3,7},{2,4, 6}};
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(115) {{03,{1,7},{3,5} {2, 4, 6}}.
None of them satisfies condition (a;).
(111) Case s = 3.

In this case, the partition consists of G,, G,, G5 satisfying G, = 3 and G; = 4.By the
above argument and condition (a,), one sees that G;* = G,,G;1 = Gy and 4 € G,. So,
the partition is one of the following:

(1111) {{0},{1,4,73,{2,3,5, 6}};

(1112) {{0},{2,4,6},{1,3,5,73}};

(1113) {{0},{3,4,5},{1,2,6,7}}.

Both (1111) and (1112) are excluded by condition (a;), since {1,4,7}+ {1,4,7} and
{3,4,5} + {3,4,5} are not unions of some subsets in the partitions, respectively. For the
finial possibility {{0}, {2,4,6},{1,3,5, 7}}, using an argument similar to the above, one sees
that it is equivalent to the condition that ¢ ~ ¥ o ¢, where ¥ is a Blaschke product of
order 2 and ¢ is a Blaschke product of order 4, and ¢ is included in case 3 in [1].

(IV) Cases = 7.

The only choice is {{0},{1,2,3,4,5,6,7}}. By Lemma (1.2.18), ¢ is not reducible in
this case.

We conclude with the following corollary which follows after one summarizes all the
possibilities listed above.

Corollary (1.2.20)[23]: Let ¢ be a finite Blaschke product of order 8. Then M has exactly
2 nontribyl minimal reducing subspaces if and only if ¢ is not reducible.

It is natural to ask if this result extends to the general case. One can obtain a similar
result for order 6 by the above arithmetic way. But, the calculation for order 5 or 7 suggests
that some counterexample may exist. A possible guess may be that the result holds whenever
the order of ¢ is not prime.

Section (1.3): Toeplitz Operators on the Polydisk

For D denote the open unit disk in the complex plane. For —1 < a < 4o,
L*(D,dA,) is the space of functions on D which are square integrable with respect to the
measure dA,(z) = (a + 1) (1 — |z|?)% dA(z), where dA denotes the normalized Lebesgue
area measure on D.L?(D,dA,) is a Hilbert space with the inner product (f,g), =
I, f(2)g(z)dA,. The weighted Bergman space A% is the closed subspace of L*(D, dA,)

consisting of analytic functions on D. If a = 0, A3 is the Bergman space. We write A2 = A2

2 n /M
It is known that {|| n” o is an orthogonal basis of A% (D). Lety, = ||z"]| = S ——
forn=0,1,2,. Therefore,

111} Z Vilal? < oo

with f(z) = Yy+% a,z™ € A%(D) Denote the unit polydisk by D™. The weighted Bergman
space A%(D™) is then the space of all holomorphic functions on L?(D™,dv,), where
dv,(z) = dAy(z,) ...dA,(z,) . For multi-index g = (B4, ..., Bn), 8 = 0 means that §; >
Oforany i > 0. Denote by z;'z; zP? .zf" and
7B
ep = ——,
Ve, Y8,
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then {es} is an orthogonal basis in AZ(D™) Let P be the Bergman orthogonal projection
from L?(D™) onto A%(D?).

For a bounded measurable function f € L*(D"), the Toeplitz operator with symbol f
is defined by Trh = P(fh) for every h € AZ(D™).

Recall that in a Hilbert space #, a (closed) subspaceM'is called a reducing subspace of
the operator Tif T(M) € M and T*(M) € M. A nontribyl reducing subspace M is said to
be minimal if the only reducing subspaces contained in M are M and {0}. On the Bergman
space A2 (D?), the reducing subspaces of the Toeplitz operators with finite Blaschke product
simples are well studied (see [28], [10], [22] for example). On A% (D?), Y. Lu and X. Zhou
[37] characterized the reducing subspaces of Toeplitz operators T,nnT,N

We consider the reducing subspaces of the Toeplitz operators T, mon A%2(D?) and
TZiNZ}VI on A%(D™), whereN, M > 1 are integers and
1 <i <j < n. Usually, the Toeplitz operators on the unweighted Bergman space and the
weighted Bergman space have similar properties (see [38], [39], [40], [41] for example).
However, we obtain that the minimal reducing subspaces of T, ywith N # M on
AZ(D?)(a # 0) are less then that on A2(D?)(see Theorem (1.3.4) and Theorem (1.3.6)).
Let M, N Dbe integers with M, N > 1 and M # N. We consider the minimal reducing

subspace of T,v,m on A*(D?). Here y, = ||zk|| = /k—il . Let p,(k) =
0

po(k) = LM g Let 3y, = Span{zl, zIt, 22T, 222™3 and P, be the orthogonal

projection from A% (D?) onto H,,,,.

Lemma (1.3.1)[35]: Let n,m, h be nonnegative integers. Then the following statements
hold:

(@) if p;(m) is an integer, then p;(m + hM) = p,(m) + hN is an integer for every h >

(k+1)N
M

-1

01
(b) if p,(n)is an integer, then p,(n + hN) = p,(n) + hM is an integer for every h > 0;
(c) if p1(m) and p,(n) are positive integers, then v, on)Vp,m) = YmVni
(d) p1(p2(n)) = n and p,(p;(m)) = m

Proof. Notice that if p;(m) and p,(n) are positive integers, then Voromy = \/%ym and

Vorw = [V
So (c) holds. By the direct calculation, (a), (b) and (d) are obvious.
Theorem (1.3.2)[35]: Let n,m be integers suchthat 0 < n<N—-1or0<m<M —1,
and both of p; (m) and p,(n) are integers. Then for a,b € C, M'= Span{az}*"N zIn+hM 4
bz 1M 020N b = 0,1,2 ..} is @ minimal reducing subspace of T,w,u on the
polydisk.
Proof. By Lemma (1.3.1)(a) and (b), it is easy to check that T ,n ,m (M) S M.

On the other hand,

VieVi
* k1) * N1 _ )
TZ{vzéw(Zl ZZ) = Z (Tzivzéwzl Zz,eﬂ)eﬂ = yl%—Nylz—M
B=0 0, if others

zZkNZIMif k>N, I>M
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Foreach h > 1,

* n+hN _ m+hM
Tzivzg’l (Zl Z2 )

2 2
Yn+aNYm+nm Zn+(h_1)NZm+(h—1)M
2

) 2
Yn+(h-ONYm+(h-1DM
T* u (Zfl(m+hM)Zp2(n+hN))

z1' Zy 2
_ - +hM—-M +hN-N
= p(azHhN-Nzm+hM-M | be1(m )Z/Zoz(n )) eEM

Where
VsV +RM V5 e Y py(thN)

H = =
y121+(h—1)N V72n+(h—1)M le(m+hM)—NV52(n+hN)—M
Since 0<n<N-1(or0 <m<M-1), we get p,(n)<M(orp,(m)<N,

respectively).  Therefore, T;{Vzgd(aziv z + bz?f 1(’”)252(")) =0€eM, T;{Vzéw( M) €

MM. So, which finishes the proof.
Lemma (1.3.3)[35]: Suppose M =+ 0 is a reducing subspace of TN m in A2(D?). Let

f = X(nso0 k12525 € M.For each nonnegative integers n,m with a,, # 0, the
following statements hold:
(1) if py(m), po(n) are integers and a,_(m)p,m) # 0 then

n,m
anmzl ZZ + apl(m)pz(n)Zfl(m)Zfz(n) € M

(1) if at least one of p; (m), p,(n) is not an integer, or a, (myp,m) = 0,

Proof. For every integer h = 0, denote by T, = TZ{LNZQM. Notice that
Vi + Vi +m
Vi Vi

Let Py, be the orthogonal projection from A% (D) ontoM, then for nonnegative
integers m,n, k, L,
 (PuTiTuzia} 2t ah) = (T Pyl 2], 2t zh) = (Pyzf'zy' T Tzt )
h SVhN+thM+1 _ YaN+ny M+m. Equivalentl
thu YiVi Vv quivalently,
k+D(+1)  (k+hN+1D(+hM+1) -0 (41
m+1m+1) m+hN+1D(m+hM+1) ~ )

TpTy(z1'z3") =

zitz e M, vynm =0 (40)

We claim that (k, 1) = (n,m) or (k, 1) = (p;(m), p,(n)). In fact, let h = 400, then

k+DU+1D)=Mm+1D(mMm+1). (42)
It follows that (k + AN + 1)(I+ hM + 1) = (n+ hN + 1)(m + hM + 1). Since g(») =
(k4+XN+1DU+XM+1) — (n+x M+ 1) is an analytic polynormal on C,g(x) =0
for any x€ C. The coefficient of X must be zero.

We get
Mn—-—k)=N(l—m) (43)
This together with (42) implies the claim.
Therefore, Py, (21'z3") € H,,,. Hence,
Pom Py (2123") = Py(21'z3")

Since Py f for every f € M, we arrive to
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(PMP f ZP1(m) Pz(n)> — (P f ZP1(m) 2(71)>

nm nm

Moreover, (Py P, f,zXzL) = (anf PyPn(f) € M). So we get the result.

Theorem (1.3.4)[35]: Suppose M +{0} is a reducing subspace of Tzivzgain the

Bergman space 42(D?). Then there exist a, b € C and nonnegative integers m,n with 0 <

n<N-—1or0<m< M —1,suchthat M contains a reducing subspace as follows

Mymap = Span {aZ{lN+nZ£1M+m + bzfl(m+hN)Z§2(n+hM): B =012 }

where p;(m + hN)= (mrhN+DM _ 1 and p,(n+ hM) = — 1. In particular, if
p;(m)(orp,(n)) is not a positive integer, then b = 0. Moreover, M is minimal if and only
if M=Mp, map-
Proof. (1) If M +# 0, there exist nonzero function f € M and k, [, such that P, f # 0.
Lemma (1.3.3) implies that

gkl = Py, f = azFz} + bzpl(l) pzck) EM

Observe that there is a positive integer h, such that azi'zy" + bz;

h ho+1
(T*z{ z)" )" (gx) # 0, (ngvzy) (g) =0
where =k —hyN , m=1—hyM
Clearly, 0 <n<N—10or0 <m < M — 1. So Theorem (1.3.2) shows that

az{'zy* + bzfl(m) p2(n) ¢ My map EM

(1) Suppose M is minimal. As in (I) there is a nonzero function azi'z)* +

bzfl(m)zgzm) € M, then . Then the following statements hold:

(n+hM+1)N

p1(m) Pz (n)

(a) if z]'zJ* € M then M = span{z]*"NzJ**"™ h > 0};
(b) if p, (m), p, (n)are integers, and z?*™ pz{") € M, then
M = span {Zpl(m)+hN p2(n)+hM h > 0}
1 = )

(c) if none of zzI*and z”*™ 222 is in M, then M = M, o, With

ab # 0.
So we finish the proof.

Let —1 < a < 4o with a # 0. We consider the reducing subspace of T, v on the
weighted Bergman Space A% (D).
nIT(2+a)
F(2+a+n)
Lemma (1.3.5)[35]: Let M,N, n,m, k,l be nonnegative integers with 1 > m,n> k and
M,N > 1.If

Here y, = [I2"]| = We begin with a useful lemma.

Vin+kVim+r = VinenYamam h 2 0 (44)
then N =M, =nandm = k.
Proof. First, note that the equality (44) holds if and only if for any x€ C the following
equality holds:

n—k l-m
n(xN+j+k)1_[(>\M+2+a+l—j)
j=1 j=1
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n—k l-m

n(xN+2+a+n—j)1_[(>\M+j+m) (45)
j=1 j=1
By computing the coefficient of \nk+l=m=1jn the equality (45), we obtain

M2(1+k)+Nz(2+a+l—])—Mz(2+a+n ])+NZ(]+m)

ItfoIIows thatM(n k) = N(l—m).

Second, we prove that if « is not an integer, then the following statements hold:
m+D)N=(+1)M and({+1+a)N=mn+1+a)M. (46)

(a)Let>\1=%.Then>\1N+k+1=Oand NN+24+a+n—j #0forany1 <j <

n — k, becausex; M + 2 + a + n — j isnot an integer. Therefore, the equality (45) implies

that [T;1'(ny M + j + m) = 0. That is, there exists 1 < h; <1 —m such that x; M +
k+1

m+h; =0.50, h; = —M m > 1 follows that (m + 1)N < (k + 1)M.
(b) Let x,= —m—“ Then x, M +m+ 1 = 0. Similarly, we can get an integer h, such that
1<h,<l—-m and o N + k + h, = 0, which implies that h, —m—“N k = 1. Thus

(m+1)N = (k+ 1)M.

Comparing (a) with (b), we arriveat (m + 1)N = (k + 1) M.

(c) Let uy = — nrlte .Thenuy,M+1l+14+a=0,yyN+k+j+0foranyl1<j<n-—
k. Therefore, 1'[]= (WuM+2+a+1—j)=0.Thatis, there exists 1 < h; <[ —m such

that u,M +2+a+1—hy=0. S0, hy=—"“M+(2+a+D) 21, ie, (+1+
aA)N=n+1+a)M.
(d) Letu2=—l+1+a

such that y,N+a+2+n—-h, =0.So, 1< h, = —
+1+a)N<(n+1+a)M.
Comparing (c) with (d), we arriveat (+ 1+ a)N=(n+ 1+ a)M.
Third, we prove that if «a is an positive integer, then (46) holds. In fact, if 1 + a > 2 is an
integer, then (45) can be simplified into

k

Then yyM + 1+ 1+ a=0.Asin(c), thereexists 1 < h, <n—k
+1+a

N+(2+a+n)<n-kand

mq
n(xN+j+k)1_[(>\M+2+a+l—j)
=1 j=1

kl mq
:n(xN+2+a+n—j)1_[(>\M+j+m),v>\e(C

where2 <k, <n—-k2<m<l-m2+a+n—k;,>k;+kand2+a+1—-—m; >
m, + m. By the same technique as in second part of the proof, we can get the equalities in
(46).

Finally, combining the equalities (46) with M(n — k) = N(l —m), it is easy to get aN =
aM.Sincea # 0,wehave N = M,l =n, k = m.

Theorem (1.3.6)[35]: Let « +# 0 M,N > 1 with M # N. Suppose M =+ {0}is a reducing
subspace of szzyi” the weighted Bergman space A%(D?) then there exist nonnegative

integersn,mwith0 <n<N—-10r0<m < M — 1 such that
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Mym = span{ziNtnziM+m. p — 01,2,..} €M
In particular, M is minimal if and only if there exist n,m as in assumption such that M
= an-
Proof. Suppose M # {0} is a reducing subspace. As in the proof of Lemma (1.3.3), there
exist integers n, m such that Py, (z{'z}") # 0 and

Vi%N+kVi%M+l _ yi%N+n yi%M+m
VieVi ViV
whenever (P (z'z)"), z{z;) # 0. Considering that {y;}7; is strictly decreasing

,Vh =0

2 2
YanskViMtl _, 1 a5 h — 400 [36], we obtain that y2y2 = 1272 and
YaN+nYhM+m

. yf%N+k?/f%M+l = Yin+nVim+m b = 0.
This means that one of the following statements holds:

M)l =mn=k;

@i)y>mandn > k;

(i)l <mandn<k.
Since N # M, Lemma (1.3.5) implies that (ii) does not hold. By the same technique, (iii)
does not hold. So, (i) holds, that is, there exists c,,, € C such that Py, (z'z)") = cmz1'z5"
For f = X uny=0 Akt 225 € M, we claim that if ay,, # 0, then c,,, # 0. In fact,

Qunf = QumPrc () = Qum( ) Pre(aa 2£28))
(k1)>0
= ChmAnmZ1 22" = CnmQnm/f

where Q,,,, is the orthogonal projection from A% (D?#)onto Span{z]'z"}.
Therefore, ¢,,,, =1 # 0.
Hence z'z)' € M. Choose an integer hy such that 0 <n—hy,N < N—1, m — hM >
Oor0<m—-hyM<M-—1,n—hyN =0. As in the proof of Theorem (1.3.4), Span
zf+(h_h°)sz+(h‘h0)M h=0,1,2, ...} cMisaminimal reducing subspace of T,y ,u.
The proof is complete.
Theorem (1.3.7)[35]: Let N,M > 1 and N # M. Every nonzero reducing subspace M of
T N M in A2(D?) for every a > —1 is a direct (orthogonal) sum of some minimal reducing
subspaces.
Proof. We prove the theorem in two cases.
Case one: a # 0. Let us denote
M, = Span{ziN+n zhiM+m. p — 0,1,2..}
where0 <n<N-10or0<m<M—1. By Lemma (1.3.5), we have M,,,,, € M if and
only if there exist some f € Mwith (f,z{'z)") # 0. Let E; ={(n,m)}>0; n< N —
lor0=m<M—1(f,z'z)") # 0 for some f € M} 2 M}. Then M’ = @, nep, Mam-
Case two: a = 0. For n,m = 0, there exist a,b € C such that M contains the minimal
reducing  subspace of  T,n,mdefined by M, ,,,p = span {azf" "z 4
bz N gD R 2 0,1, 2, L,
In fact,

(i) If z'z* € M, then My 10 = Mpm

(i) 1f 22272220 € M then Moy 015 My, (my oy

(iii) If neither z'z™ nor z°2™ 222™) are in M, and there exists f € M
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such that P, f # 0, then Theorem (1.3.4) implies that M, ,,, . , & M is a minimal reducing
subspace of T,Nm where P,,,.f = az{'z)' + bzfl(m)z§2(“) . It follows that P,,g =x

(aziz)' + bzfl(m)zgzm)) forevery g € M with B, # 0.

(iv) If Py f = 0 for any f € M, then M, 1,0 EM if and only if a =0, b = 0,
1., My moo = {0} .
Let M' = M © My, map- Then M’ is a reducing subspace. Continuing this process, sin
A*(D?) = @y ms0 21125, itis not different to prove that M is the direct (orthogonal) sum of
some minimal reducing subspaces asM, 1, ¢ p-
In [22], Kehe Zhu shows that a reducing subspace of T ,v on A?(D) is the direct (orthogonal)
sum of at most N minimal reducing subspaces. However, the reducing subspace of T N mON
A%(D?) may be the direct (orthogonal) sum of infinity numbers of minimal reducing
subspaces. For example, M =Span{zi*?"f(z,); f € A2(D),h=0, 1, 2, .. .} is a reducing
subspace of T,z,3 and M =@ %, M, where M, = Span{z{**"z;*3"; h = 0,1,2....}

We consider the reducing subspace of ngvzéw(N,M >1,N #M,i #j) in the

weighted Bergman space A% (D?) with N # M.
Theorem (1.3.8)[35]: Suppose M #{0} is a reducing subspace of T v ,m(N,M = 1,N #
] 7]
M,i # j in weighted Bergman space.
Then the following statements hold:
(a) if @ = 0, then there exist functions g, g, € A%(D™?) and integers [, m with 0 <[ <
N—1o0or0<m< M — 1, such that M contains the reducing subspace
M’ = Span{(g1 (22N ZMH™ 4 g, ()21 222 > 0,
(b) if @ = 0, then there exist a function g € A%2(D™ %) and integers [, mwith0 <[ < N —
1or0 <m < M — 1 such that M contains the reducing subspace
M)img = span{z"N*'zM* g (2'):h = 0,1,2, ...}
where z' = (21, ..., Zi—1 Zi11) s Zj—1, Zj1s - Zn)-
Moreover, M is the only minimal reducing subspace of T~ _mon A*(D?) and M, is the
i 4j
only minimal reducing subspace of TZLNZ}\/IOH AZ with a # 0.
Proof. Without loss of generality, let i =1 and j = 2. Denote by PM the orthogonal
projection from A%(D?) onto M. Let z* = zflzé‘z ...z,'f” with Py (z%) = 0. Let T), =
T v g THEN (T Ty Pag 25, z4) = (Pac T Tyz¥, z4) for any z! = z;z;? ... z,* Observe that

2 2
_ Yan+,Ym+1,

K L K L
(Ppz", TpTyz") = > (Ppcz™,z")
Yuvi,
and
VﬁN ZYi%M K
K Ly — + + k L
(TR Thz", Pyz™) = 21 2 =(z", Pycz")
Yk, Vi,
Therefore
2 2 2 2
YaN+k1YhM+k; YaN+;YhM+1,
Vie, Ve, Yiu Vi,

Whenever (P,,zX, zL) = 0.
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If « = 0, then as in Lemma (1.3.3) we have (I3, 1,) = (kq, k,) or (I, 1,) =(p1(k3), po (k1)
where p1(ky), po(ky) are integers. ThusPy,z?** 2202505k and  p,,.z¥are in
21 ZZZAZ(D" 2) + zpl(kZ) pZ(kl)AZ(D” 2), where z' = (z3, i, Zp), and K’ = (ks, ..., ky,).
LetPy , be the orthogonal projection from A2(D™) onto

span {Zf ZZZAZ(Dn 2) + ZP1(k2) Pz(kl)AZ(Dn 2) h=012.. }
Then Py, Pacz® = PMPklk2 . For each f € M with f # 0, there are integers [,m > 0

such that P,,,, f # 0. By the similar technique, we can proof that (P, P, f, zX) = (P f, %)
forany K > 0, i.e. PMPmlf P,..f.So, there exist f; (z")and g,(z") € A%2(D™ ?) such that

Pouf = 91(z)z 2L + g,(2)2"*Pz22™ e M, which implies that (a) holds.
If « # 0, then we arrive at PyzX € z1 zZ3A§(D" ?). Denote by Py, theorthogonal
projection from A% (D™) onto
Spam{zflzng2 (D™ ?%);h=0,1,2,...}
Then Py i, (f) = Pk, Prc(f) = PacPr,i,(f) € Mfor each f € M Hence (b) holds. The
rest of the proof is obvious.
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Chapter 2
Bergman and Generalized Weighted Fock Spaces

We obtain similar results for Hankel products HHg,, where f and g are square
integrable on the unit disk, and for the mixed Haplitz products H¢ T, and T, H;, where f and

g are square integrable on the unit disk and g is analytic. For a large class of measures, we
find that these quantities satisfy asymptotic relations similar to the simple exact relations
which hold in the model case m(t) = e~t. We show that H Is compact if and only if fis a

polynomial of degree strictly smaller that % We also establish that Hz Is in the Schatten

class S, ifand only if p > 2n and f is a polynomial of degree strictly smaller than m (p;;").

Section (2.1): Products of Hankel and Toeplitz Operators

For dA denote Lebesgue area measure on the unit disk I, normalized so that the
measure of D equals 1. The Bergman space L? is the Hilbert space consisting of the analytic
functions on D that are also in L*(ID, dA). For f € L*(ID, dA), the Toeplitz operator Ty and
the Hankel operator Hy with symbol f are defined densely on the Bergman space L by
T¢(h) = P(fh) and Hf (h = (1 — P)( fh) for all polynomials h, where P is the orthogonal
projection from L?(D, dA) onto L% .

The techniques required to solve problems in the Bergman space setting may be very
different from those that work in the Hardy space setting.

Often one sees similarities in the theorems, but not the proofs (although in both cases the
proofs usually feature an interplay between function theory and operator theory).

On the Hardy space H?, bounded Toeplitz operators arise only from bounded
symbols. In [53] Sarason posed the problem for which f and g in H? the densely defined
operator T;Tj is bounded on H?. Sarason [53] conjectured that a necessary condition
obtained by S. Treil is also sufficient for boundedness of such Toeplitz products. Cruz-Uribe
[48] characterized the outer functions f and g for which the Toeplitz product T;Tj is
bounded and invertible on H?, providing support for Sarason's conjecture. [59] obtained a
partial answer to Sarason's problem by showing that a condition slightly stronger than the
one in Sarason's conjecture is sufficient for boundedness of these Toeplitz products on the
Hardy space.

On the Bergman space, there are unbounded symbols that induce bounded Toeplitz
operators. A Toeplitz operator with analytic symbol is, however, bounded if and only if its
symbol is bounded on the unit disk.

Sarason [53] also asked for which analytic functions f and g in L3 the densely defined
product T T is bounded on L7 . We will obtain a partial answer to this question and prove
results analogous to those obtained by [59] for such Toeplitz products on the Hardy space.

On the Bergman space, Luecking [51] has obtained complete characterizations of
compactness and boundedness of Hankel operators with symbol in L?(ID, dA). Little is
known concerning the products HrHg or HgHy for f,g € L?>(D,dA). Even on the Hardy
space, problems concerning the products of Toeplitz operators or Hankel operators are much
harder than those dealing with a single operator; see [44], [46], [52], [53], [57] and [59].
Many interesting questions concerning products of Toeplitz operators or Hankel operators
either on the Hardy space or the Bergman space still remain open. Using the beautiful theory
of Hoffman [50] describing the maximal ideal space of H* (D), [58] proved that if f and g
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are bounded harmonic functions on the unit disk D, then T¢T, — T, is compact if and only
if (1 — |z]?) min{|0f/0Z|,|0g/0Z|} -0, as |z| — 17, which is analogous to the results on
the Hardy space ([44], [57]). For symbols f and g in L2(ID, dA), the problems on the product
are subtle. In addition to boundedness results for the Toeplitz products discussed in the
previous paragraph, we obtain similar results for Hankel products HgHg, where f and g are
in L>(ID, dA), and for the mixed Haplitz products H,T, and T, gHr, Where f € L*(D,dA)
and g € 12 .

The Bergman space L2 has reproducing kernels K,,, given by
1
KW(Z) = (1—\A_/Z)2 H

for z, w € D: for every h € L% we have (h,K,,) = h(w), for all w € D. In particular, we
have the following formula for the projection P:
Puw) = [, o dA(),

(1-wz)?
for u#L?(D,dA) and w € D.
We will first discuss how the various Haplitz products are to be defined.
First we consider Toeplitz products. If g is a bounded analytic function on D, then

9(@)h(z)
p(1—wz)?
forallhe L2 andweD.Ifg € LZandh € L2, we deflne T,h by the latter integral:

(T (W) = (gl( A (.))2
forw € D . If f is furthermore in L2 , then the meaning of T;T3h is clear: it is the analytic
function fT;h. We will be concerned with the question for which f and g in L7 the operator
T; Ty is bounded on L .

Next we consider Hankel products. If f is bounded and h € L2 , then

(k) = Fonnon) — P = [ LOTORD )
D —wz)
for all w € D. The latter formula is to be used to define H; densely on L7, if f € L?(ID, dA).
If g is bounded and u € (L%)+, then
H* u(w) = (H* u, Ky) = (u, HgKW> = (u, gKy),

forall w € D. Since K,, is bounded, the latter formula makes sense for all g € L? (D, dA),
and we use it to define the operator H, densely on (L3)*.
Note that the star need no longer be the adjoint (but would of course coincide with the adjoint
in case the operator Hy is itself bounded).

By Lemma 1 in [51] the set of smooth functions with compact support in I is dense in
(L2) 1, so certainly C.(D) n (L%)*, the set of compactlysupported functions in (L%)* is
dense in (L2)*. If f, g € L*(D, dA) and u € C,(D) n (LZ)*, then H,u is bounded, and the
meaning of HyHgu is clear: it is the function Hy(Hgu). This defines the Hankel product
H¢H, on a dense subset of (L3)*, namely C.(D) n (L3)*.

The mixed Haplitz operators are defined as follows. For f € L2, g € L*(D,dA)andu €
C.(D) n (L3)*, TrH,u is the analytic function f(Hju).
If h € H®, then T, € L7 , and we define H;T; h to be the function H;(Tj h).
Forw € D, the fractional linear transformation ¢,, defined by

(T; )W) = (Ty h,K,,) = (h, gK,,) = dA(2),

dA(2)
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w—Zz

QDW(Z) = 1 — vz
Is an automorphism of the unit disk; in fact, the mappings are involutions:

ot = @, The real Jacobian for the change of variable & = ¢,, (2) is equal to |¢@,,(2)|* =
(1 —|w|®)?/|1 — wz|*, thus we have the change-of-variable formula

fh aio [ R@A =W
D ((pW(Z)) (Z) - D |1 _ V_VZ|4 (Z),
where h is a positive measurable or integrable function on ID. The functions
_1-|w|?
kew(2) = (1-wz)?2

are the normalized reproducing kernels for L2 . The change-of-variable formula can be
written as

[ hou@da@ = [ hpundae). &
D D
where h is a positive measurable or integrable function on D.

Forw € D the operator U,, on L?(ID, dA) is defined by
Upf = (f °@wky.

It is easy to see that U, is a unitary operator which commutes with the Bergman
projection. In particular, T;U,, = U,,Tfoq,, -

The Berezin transform of a function f € L2(ID, dA) is the function f defined on D by

Fw) = [ f@lky(@)]? dA().
In particular, it follows from change-of-variable formula (1) that
| F 12(w) = |If o @, |3, for every f € L*(D,dA)and w € D.

It is well-known ([43], [60]) that ||f]|? is equivalent to ||(1 — |z|?)f’||, for f in the
Bergman space L% with £(0) = 0. The following lemma for the inner product in the
Bergman space in terms of derivatives of functions will be needed.

Lemma (2.1.1)[42]: If F and G are in L2 , then

fF(z)G(z) dA(z) = 3.[ (1—1z1%)? F(2) G(2) dA(2)
D ) D
+5 [ A= 1 P ) T@aae)
2 Jp

1 _
+§ J (1—1z|?)3 F'(2) G'(2) dA(2).
D
Proof. Using power series it is sufficient to show the identity for F(z) = G(z) = z". This
is a standard calculation using [ (1 — |z]*)™ |2°™ dA(z) = n! m!/(n +m + 1)L,
We will give estimates on the Toeplitz and Hankel operators that will be used in our

sufficiency results for boundedness of certain products of these operators.
Lemma (2.1.2)[42]: Let f € L?(D, dA). Then

(T W] < 1= IRl F 12w Y2
and
(HW W) < s llllz If © 9w PCS 0 @)l

forallh € 12 ,u € L*(D,dA),and w € D.
Proof. If w € D and h € L2, then
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1
(Trh)(w) = (Trh, Ky) = (h, fKy) = 1_—|W|2(h»fkw)-

By the Cauchy-Schwarz inequality, |(h, fk,,)| < I|hll2]l fkwll2 , thus

1 12 1/2
I(TrRW)] = 7= WPz IRl [Ifkwllz = B Rl | £ [(w)72,

1
- 1—|w
proving the estimate for T f h.
Using Hek,, = (f — P(f ° 9y) © ¢y,) k,, (see [56]) we have
Hf uw) = 1z (w Hy k) = 7= (1w, (F = POS 0 0u) © @)k
By change-of-variable formula (1) we have|| ( f — P(f c @,,) c @, )k, ||, =
| f oo, —P(feop,)ll,,soapplying the inequality of Cauchy Schwarz we get

[(w, (f = PCf o ow) e @kl < llullz IIf o ow — P(f o pu)lls
In the following we write P, for the integral operator on L?(ID,dA) with kernel 1 /
|1 — wz|?. It is well-known that P, is LP-bounded for 1 < p <
(see [43] or [60]).
Lemma (2.1.3)[42]: Lete > 0andlet6 = 2+ ¢)/(1 + ¢).
(i) Foreveryfel2andhel?:
|(T7h) W] < =iy 1T 1242 w) Y @) Po[IRI% (W),

forallw € D.
(i) For every g e L>(D,dA) and u € (L3)*:
|(Hgw)' (W)| < | 19 ° @w — P(g ° @u)ll24e Pollul®](w)*/?,
forallw € D.

Proof. Let ¢ > 0. Note that § = (2 + €)/(1 + ¢) is the conjugate index of 2 + ¢.
(i) For f € L2 and h € L% we have

(Trh)(w) =

1- IWI2

f(@)h(z)
(1 Fw)? dA(z2),
forw € D. Thus

(T5h) (w) = 2 [ LOMD 45,

(1-zw)3
for w € D. Applying Holder's inequality we have
|(T7R)' (W)
|1 (2)| |h(2)] |f (2)||n(2)]|1 - zw|
< =
<2 FEEE dA(z) = 2 . 1= Zw]? dA(z)
1/6
<o ([ SO e e -zee
=\ pi—zwl* o 1—zwl z
1/6
_2UPHEw)Ved [ h@l® (- lw)e
B 1—|w|? pll—2Zw|? |1 — Zw|e/1+e (2) ’

and the inequality follows, since (1 — |w|?) | |1 — Zw| < 2 and 28/%%¢ < 2.
(i) For u € (L3)* we have

(Z)g (2)

(Hyu)(w) = (Hju, K,,) = (u, H;K,,) = f - )ZdA(z)
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Thus
N (2)zg(2)
(ng) (w) =2 1(le Z‘_g ;

Letting G,,denote P(g © ¢,,) ° ¢,, , the functlon z > zG,,(z)/(1 —wz)3isin
L% ,and since u € (L%)* we have
u(z)zG,(2)
p (1—2zw)3

dA(2).

dA(z) = 0.
Thus

, ~G,
(Hyu) (w) =2 fDu(Z)Z((lg (_Z)Z—W)g ©)

Using the same argument as above, applying Hdélder's inequality and change-of-variable
formula (1) we have

_ 2+¢ 1/2+ 1)
(Ho) w)] < 2( |9(2) — Gw(2)| dA(z)) j - lu(2)| dA(2)

D 11— Zw|* 11— zw|*+-8

dA(z).

1/6

1/6

)
lu(2)| dA(D)

4
< — o — P o _—
ST Wi 19 ° ow — P(g ° puw)llz+e —zwp

)

as desired.
We discuss several basic identities and inequalities needed to prove necessary
conditions for boundedness and compactness of Haplitz products.
For f and g in L?(ID, dA) let f ® g be the rank one operator defined by
(f®g)h=<(hg)f,
for h € L*(ID,dA). It is easily verified that the norm of f & gis ||fll, llgll,
If T and S are bounded linear operators, then T(f & g)S* = (Tf ) & (Sg).

Proposition (2.1.4)[42]: On L% we have

kw ® ky =1—2T, Ty, + T2, T2,
forall w € D.
Proof. Let e,(z) = (n+ 1)'/2 z™. Then {e,,} is a basis of the Bergman space. On this

basis, T, is a weighted shift operator, the so-called Bergman shift. More precisely,
n+ 1\/? n /2
T,e, = (n n 2) e, +1 and TZe,=T, e, = (n n 1) €n—1,
for n>0, and T, e, = 0. Thus
T,T; e, = #en and T2T? e, =
for n > 0, and hence
2 -1
(- 2T, T + T2 THe, = {1 - =+ e, =0,
for all n > 0. It follows that
[=2T,T, +T2TZ = e, R e, .
For w € D we apply the unitary operator U,, to obtain
kyw & ky,, = (Uyep) Q (Uyeg) = Uw(eo X eO)U\;kV
= U, —2T,T; + T} TAU,,
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=1-2T,,Tpw + TqEWT(—f,W ,
as desired.
Proposition (2.1.5)[42]: If f, g € L% , then
—_2 —_—
|7 w2112 W)Y2 < 2 x| T Ty Tow (T T5) T w]
forall w € D.
Proof. Using the fact that both f and g are analytic, we have T¢T,,, = T, T and Ty, T5 =
Ty T w » SO by Proposition (2.1.4),
Tr (kw @ ky)Ty = TpTy; — 2T, T Ty Tow + TowTeT; Tow
=TiTg = TowTiTg Tow — Tow(T5Tg = TowTTg Tow) Tow
The triangle inequality, the fact that also here T¢(k,, ® k) T = (T¢ k,) ® (T4k,,), and
the estimate||T,,,, || < 1 imply that
1Ty kew) @ (Tyk)| < 2 ||T; Ty = Tow (T Ty) Tpwl-
Using change-of-variable formula (1) we have
—_2 -
[(Tr k) @ (Tyk)|| = lIfkwllz llgkwllz = | F|" )2 1512 w)*/2,
and the stated result follows.

To deal with products involving Hankel operators, we introduce dual Toeplitz
operators. The orthogonal complement (L2)+ of L3 in L?(ID, dA) is much larger than zLZ .
Under the decomposition L?(D,dA) = L2 @ (L2)*, for f € L* (D) the multiplication
operator Mg is represented as

T, H:
Hy  S¢

The operator S; is an operator on (L%)* we call S the dual Toeplitz operator with symbol
f. Although these operators differ in many ways froms Toeplitz operators, they do have
some of the same basic algebraic properties. We have: S¢ = Sz and Sar4pq = @Sy +
BSy,for f,g € L*(D), and a, € C The identity My, = MM, implies the following
basic algebraic relations between these operators:

)

Try = T;T, + HiH, | 2)
Srg = S5 Sg + HpHg, (3)
Hpg = HpTg + SHy . (4)

Suppose ¢ € H* andy € L*(ID). If we take f = ¢ and g = in (4) we get H,,, =
S, Ty, since H, = 0; on the other hand, taking f = i and g = ¢ in(4) gives Hy,, = Hy,H,,.
Thus, ifo € H” and ¢y € L”(D), then
Hl/JT<p = S<lep, (5)

and, by taking adjoints,
For f € L*(ID, dA) we extend the dual Toeplitz operator S, by defining
S;u = (I = P)(fu), foru € C.(D) N (LE)* .

We will show that identities (5) and (6) also hold if ¢ € H* andy € L?(ID,dA). For
a polynomial h we have P(@Hyh) = P(pyph — P (Ph)) = P(pyh) — P (h), thus

SeHyh = o(Yh — P(Yh)) — P(pHyh) = piph — P(ph) = HyT,h,

so that (5) also holds if .o € H® and ¢ € L?(ID, dA).
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For ¢ € H®, ¢ € [*(D,dA), u€ C.(D)n (L3)*, andw € D we have (TzHyu)(w) =
(TeHyu, K,,) = (HyugK,,). Using the definition of Hyu as well as Fubini's Theorem, it is
easily verified that
(Hyu, pK,,) = [, w(@P(2)9(2)K,, (2)dA(2).
On the other hand,
HSpuw) = (Spu,¥K,) = (u,SyK,) = (u, (I = P)(9K,))
= ((I - P)u: @ 1l)KW) =(u, % ¢Kw)-
Thus we have T Hy,u = Hy, Szu, so that also (6) holds if o € H* and ¢ € L*(D,dA).
Proposition (2.1.6)[42]: If f, g € L?>(ID,dA)., then
I fopw—=P(fepullzllgepw —P(geull:
< 2|| HrHg = Spuw(HpHg)Sgu |
forall w € D.
Proof. Using Proposition (2.1.4) and identities (5) and (6), we have
He(ky ® ky,)Hy
= HeHy — 2Hf Ty, Tpy Hy + He TS, T; T2, Hy
= H;H; — 25, HfT wSgw + SwH:H; SW
= HyH; — S(pWHfH Sow — Sow(HeH — SpwHeHS5w) Spw »
and, because H¢(k,, & k,)H; = (Hfk,) ® (Hyk,,), and
”(kaw) ® (Hgkw)” = ||kaW||2 ”HngHZ

= lf ey, —PCfo@)llzllgeew —P(gep)ll,
the stated result follows.

The following proposition shows that the estimates for the Toeplitz products and the
Hankel products have their analogues for the mixed products.
Proposition (2.1.7)[42]: If f € L% and g € L?>(ID, dA), then

171 )2 g o @y — P(g ° @u)llz < 2 |THH; = Ty (TeHZ)S |,
and

71 )2 llg o @ — P(g © 9wz < 2 |[HgTs = Sy (HTP) T
forallw € .
Proof. To prove the first inequality we use the identity
Tr(ky @ ky)Hy = TrHyy — 2T, TeHy Spw + TgwTrH S5 w
The second inequality follows from an analogous |dent|ty K
We end this with an algebraic result for dual Toeplitz operators.
If fis analytic or g is analytic, then HsH; = 0, and by (3), S¢S, = Sr4- The following
proposition shows that the converse holds.
Proposition (2.1.8)[42]: Let f and g be L*(ID, dA). If S¢S, = S, , then either f org is in
H®.
Proof. If S:S, = S¢4, then by (3), HgHj; = 0, and by Proposition (2.1.6),
“fo Pw _P(fo (Pw)”z go Py — ”P(? ° ‘Pw)”z =0,
for all w € D, so the stated result follows.
We give conditions for boundedness of the various Haplitz products.
Theorem (2.1.9)[42]: Let f and g be in L7, . If T;Tj is bounded, then

—_2 —_—
sup| f | (w) |g]* (w) < oo
webD
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Proof. Suppose T, Ty is bounded.
It follows from Proposition (2.1.5) that
[FI w2 1 g2 w) 2 < [|4 7,7
forall w € D.
Although we are not able to prove the converse of Theorem (2.1.9), we have the
following result.
Theorem (2.1.10)[42]: Let f and g be in L2 . If there is a positive constant esuch that

sup| f [2¥e (w)|g]2+e(w) < oo,
weD

then the product T,Tj is bounded.
Proof. Let u and v be in L7 . To show that the product T;Tj is bounded we will estimate
(TfTgu,v) using Lemma (2.1.1) and Lemmas (2.1.2), (2.1.3). It follows from the inner
product formula (Lemma (2.1.1)) that

(TrTzu, v) = (Tzu, Tro) =1+ 11+ 111,

)

where
I=3[ 1-w*)?TauW)(TFv)(w) dAw),
1=~ [ (1= [wI?)? (Tgu) (W) (T0) W) dA(w),
11 =~ [, (1 = wI?)? (Tyu) (w)(Trv) W)dAw).

It follows from Lemma (2.1.2) that
1] <3 [ [T 12w)[gl*(w)]

—2 ~ 1/2
<3sup [ [T w)glPw)| " lulllivil,
. weD
Using Lemma (2.1.3) we have

1] <2 [0 F TP W)l gTZ¥e (w)]
x Po[ul® Jw) /9 Py[[v|8] (w) /2 dA(w)
< 2 sup[ |f [PFe(w)| g[2*e(w)]¥/@+o)

weD
< fp Pollul®]w)Y/? Py[lv|°] (W) P dA(w).
Sincep =2 /6 > 1and P, is LP"bounded, there exists a constant C such that
Jp Pollul®]w)?/® dAw) < € [ Po[lul®](w)?/® xdA(w) = Cllull3 .
By the Cauchy Schwarz inequality,
Jo Pollul?]w) /8 Po[|w]|?](w) /O dAw) < C lullzllvll;

1/2

llull2 llvllz, dA(w)

1/(2+¢€)

and thus
[11] < 2C sug[ If 1ZFew) g7 e w)]Y D lull,llvll, -
we
Term I is estimated similar to Il. From the estimates of the three terms I, 11, and 111, we
obtain

[T Tgw v| < M suplIf 7 )] g7+ )]V Jlully|Ivll
wWE

for some constant M > 0. So the product T;Tj is bounded, as desired.

Using Proposition (2.1.6) we obtain a necessary condition on Boundedness of the
product HgHy.
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Theorem (2.1.11)[42]: Let f and g be in L*(ID, dA). If H¢H,, is bounded, then
Supllf Pw = P(fepuwlllz lg o pw —P(gepu)lla < oo

We have not been able to prove the converse of the above theorem. We do however have
the following result.

Theorem (2.1.12)[42]: Let f and g be in L?(ID, dA). If there is a positive constant £ such
that

supllf ey, —P(fo@u)llz+e llg e @y —P(go@y)llare < o,

webD

then the product HyHy is bounded.
Proof. Let u,v € C.(D) n (L% )*. Using the definitions of Hyuand Hfv, and Fubini's
Theorem, we have
o gy 9@u(z) [ f@AvD)
(Hgu, Hf v) = f{ d—wo)? dA(z); = A=Wy dA(A) t dA(w)
= fo(/l)ng()L) v(2) dA(A) = (fH, u,v) = (HeH; u, v).
Thus, by Lemma (2.1.1) we have
(HeHgu,v) = (Hgu, Hev) =1 + 11 + 111,

where
I=3[1-wl*)?H;uwW)(Hf v)(w) dAw),
1= [ (1= w|?)? (Hyw)' (w)(Hf v) (W) dA(w),
1=~ [0 = wI?)® (Hyw)' (w)(H v)' (W) dA(w).
It follows from Lemma (2.1.2) that
1113 Supllf ow —P(feopullz lg o ow —P(g o @u)llz [[ullzllv]l; -

Usmg Lemma (2.1.3) and the Lp-boundedness of operator P, we have

|H| < chupwel])) ”f (pwp(fb W)”2+£
X |lg o @w = P(g o ou)llz+ellvllzllullz -
Term |11 is estimated similar to 11, and combining the estimates we get

|(HeHgu, v)| < M supllf o @y, = P(f o @y)ll2+e

webD

X 1g ° 0w = P(g ° pu)llzsellvllzllullz

for some constant M > 0. So the product HyH is bounded, as desired. K

Analogous to the necessary conditions for boundedness of Toeplitz and Hankel products,

Proposition (2.1.7) gives necessary conditions for boundedness of the mixed Haplitz

products.

Theorem (2.1.13)[42]: Let f € L and g € L?>(ID,dA). If T;H, or H, T is bounded, then
sup|fI2w)™2 llg o @ — P(g o pu)ll2 < .

weD
We have not been able to prove the converse of the above theorem, but we have the

following result, which is proved similarly to Theorems (2.1.10) and (2.1.12).
Theorem (2.1.14)[42]: Let f € L% and g € 1?(ID,dA) If for a constant £ > 0

sup | f P (w)YC* g o @, — P(g ° @) llz4e < 0,

webD

then Tng and H,Trare bounded.

We discuss conditions for compactness of the various Haplitz products. The following
lemma gives necessary conditions for compactness of operators on L , operators on (L2)+,
or operators between these spaces.
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Lemma (2.1.15)[42]: If A:13 — I3 ,B:1%2 — (L)%, C:(L3)* > L2 and D:(L3)* -
(L%)* are compact operators, then

14 = TowATgw || = 0,

1B = SpwBTpw|| = 0,

1€ = Tow CSpul| = 0,

1D = SpwDSaw|| = 0,
as |lw| - 1°.
Proof. If H; and H, are Hilbert spaces and S: H; — H, is a compact operator, then, since
operators of finite rank are dense in the set of compact operators, given € > 0 there exist
fi,....fr€H,and g, ,..., gn € H, sothat

IS -2 i ® gill <e.
Thus the above statements follow once we prove them for operators of rank one.
If fe€L*(D,dA)as|w|— 1", then for every ze D we have w— g, (2)=
(1—-1|w|®z/1—wz - 0,s0 by the Lebesgue Dominated Convergence Theorem,
lwf -, fll, = 0as|w| - 17. It follows that ||f — ¢, fll, = 0,ifw e Dtendsto ¢ €
oD.
If f € L2, we apply P to obtain
18f = Towfll, = 1§f = P(owfOllz > 0,
asw in D tends to & € dD. If f, g € L2 , then writing
| f®9—Tew(f ® 9Toull
= 6N ® €9 — Tpu) ® Tpw)|
< ”(ff - T(pwf) ® (S;g)” + ”(T(pwf) ® (Eg - Tgowg)”
< [16f = Towf Il Ngllz 17112 [1Eg = Tpwall,
we see that
”f X 9 — T(pw(f X g)T¢W|| -0
as w in Dtends to ¢ € dD. This proves the statement for operator A.
Suppose f € (L2)*, then (I — P)(&éf) = &f, so that
1€ = Spwfll, = I = PYCES = @uPllz = 0,
aswinD tendsto & € dD. If f, g € (L%)* then writing
”f 0% g — S(pw(f & g)S¢W||
= ”(ff) X (Eg) - (S(pr) X (S<pwg)||
< |Gf = Sowf) ® G| + |Spwf) ® g = Spwd)|
< [16f = Spwfll,llgllz + Uflll|Eg = Spwyll,
we get
If ® 9= Spw(f ® 9)Spwl|| = 0
as w in D tends to € dD. This proves the statement for operator D.
If fel? andg € (L2)*, and w € Dtends to & € aD, then ||&f —Tq,wf||2 — 0 and

169 = Spwdll, = 0imply that ||f ® g — Typw (f ® 9)Spw| = 0
as |w| — 17. This proves the statement for operator B.
The statement for operator C is proved similarly.
Theorem (2.1.16)[42]: Let f and g be in H*. Then T¢Ty is compact if and only if f =0
org = 0.
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Proof. If T;T; is compact, then by Lemma (2.1.15), || T¢T5 — Tpw T T5Tpw|| = 0

as |w| —» 17. Using Lemma (2.1.5) it follows that |f| (w)l/2 |g| w)Y2 = 0as |w| =
17. Since |fW)I2 < | f2(w)and |g(w)|? < |g[2(w) we obtain |f(w)g(w)| = 0 as
lw| = 17, and by the Maximum Modulus Principle,fg = 0,thus f = 0or g = 0.
Theorem (2.1.17)[42]: Let f and g be in L € (D, dA). Then H¢H, is compact if and only if

|v3}5n1— If eow —P(fepu)llzllgeow —P(geu)ll, =0.

Proof. First we show the “'if part.” If HeHjis compact, then by Lemma (2.1.15),
|HsH;; — SpwHrH;Spy|| = 0as |w| - 17. Using Lemma (2.1.6) it follows that
If e pw —P(fepulllz—llgeow —P(gepulll >0
as|w|—-1".
Now we turn to the "only if " part. For u,v € C.(ID) n (L%)*we have
(HeHgu,v) = (Hgu, Hfv) = 1 + 11 + 111,
where I, Il, and 111 are as in the proof of Theorem (2.1.12). For0 < s < 1 we write [ = I +
IL, 11 = 11, + 11, and W=III; + 111}, where

I =3 [ (1= [WI2?2 (W) (Hv) (W) dAW),
1y == [ 1ea (1 = WD (Hyw) (W) (Hv) W) dA(w),
s = % [, s (1 = WID? (Haw) (w) (HF v) W) dAw).

It is easy to see that there exist compact operators K! , KI' and K" on(L%)* such that
(Klu,v) = I} , (K u,v) = II} and (K"'u, v) = 111} . Theoperator K, = K + KT + K" js
compact, and ((HHy — Ko)u, v) = I + 11 + 111 . We will estimate each of the terms s,
IIs and Ills .1t follows from Lemma (2.1.2) that

| <3 sup |If epy =P(feopu)llz = Illull:llv.

s<|w|<1
Using Lemma (2.1.3) and the LP-boundedness of operator P, we have

;| <2C sup |[If o@y, =P(fopullz+e

s<|wl<1

X 1lg o pw = P(g ° @ullz+e llull2llvll2 .
Term 111, is estimated similar to I , and we obtain

((HeHy — K )u,v) < C sup  |If o oy — P(f o Wllase

s<|w|<1

X |[g o @w —P(g° @)z e llull2llvll;
for some constant C > 0. Since P is L>*2¢-bounded, there exists a constant C, such that

IF © 00— P(F o @)l < CIFIS ™ o, = P(F o 9,03/
A similar inequality holds for |lg o ¢y, — P(g ° @y)llo4c - Thus there exists a constant

C' such that

(HeH; — K, v)] < C'supgepm<al(f o 0w = P(f o @)l
1

X |1g o @y — P(g ° @) IIZFE Nl llvll,
from which we conclude that

HeHy — Ky < €' supsqall(f © 0 = P(f 0 )13/

X |lg © @w — P(g o @) 15/**%.

Soif ICf e pw —P(f e @wllz lg e @w — P(g o @yl = Oas |w| > 17, then it follows
from the above inequality that K; — HgHy in operator norm, and since each of the Kj is
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compact, we conclude that operator HH is compact. K Analogous to Theorems (2.1.16)
and (2.1.17) we have the following result for the mixed Haplitz products.
Theorem (2.1.18)[42]: Let f € H* and g € L”(ID, dA). Then T¢Hy is compact if and only
if H,Tr is compact if and only if

dim TP 2lg o g = P(g o ull = 0.

We discuss compactness of the various Haplitz products with symbols in the maximal
ideal space. We first recall the definition and Hoffman's beautiful description of the maximal
ideal space.

The maximal ideal space of H® is the set M of multiplicative linear maps from H®
onto the field of complex numbers. The Gelfand transform allows us to think of H* as a
subalgebra of C(M), the algebra of continuous complex-valued functions on M. By the
Stone-Weierstrass theorem, the set of finite sums of functions of the form f; , with f, g €
H*, is dense in C(M), where C(M) is endowed with the usual supremum norm. Thus we
can identify C(M) with the closed subspace of L* (D, dA) generated by functions of the form
fg » with f,g € H*. With this viewpoint, C(M) is the C*-subalgebra of L% (ID,dA)
generated by H*. Form € M, let ¢,,,: D — M denote the Hoffman map. This map is defined
by setting

¢m(w) = lim ¢, (w)

for weD; here we are taking a limit in M. The existence of this limit, as well as many other
deep properties of ¢,,,, was proved by Hoffman [50]. An exposition of Hoffman's results
can also be found in [49]. We shall use, without further comment, Hoffman's result that ¢,,,
Is a continuous mapping of D into M. Note that ¢,,,(0) = m.
Theorem (2.1.19)[42]: Let f and g be in C(M). Then the product HyHy is compact if and
only if f o ¢, or g o ¢, isin H* foreverymin M/D .
Proof. By Theorem (2.1.17) it suffices to show that f o ¢,,, or g ° ¢,,, isin H®, for all m in
M /DD, is equivalent to

wim_{[f e @, = P(f e @u)llllg © ¢ = P(g ° pu)llz = 0.
If misin M/ID, and (w;) is a netin D converging to m, then it is easily seen that f o ¢, ; —
f ° @y, pointwise on D. We claim that in fact f o ¢,,; = f ° ¢, in L?(ID,dA). Some care
needs to be taken to prove this claim, since the bounded convergence theorem does not hold
for nets, as opposed to sequences. A standard density argument shows that f o ¢,,; = f o
@, uniformly on compact subsets of D (see [54],). Using that

I o @us = £ o om|” = jDIf o 0uj(@) — f o (@) da

2
+fID)/r5 |f°<pwj_f°(pm| dA
2
< sup|fo@u—foom| +4@-rIIfIZ,

Z|sTr
forall0 <r <1, we colul:lude that indeed f o @,,; = f © @, in L*(D, dA). It follows that
(I =P)(f o ow;) = (I = P)(f © ¢y). Consequently,
Iim [If o @, = P(f o @uj)||, = IIf ° @m = P(f o @)l
SO f o ¢, isin H* if and only if
lim [|f o @y, = P(f o py)ll2 =0
Hence the condition that f o ¢,,, or g ° @,,, isin H® is equivalent to
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lim [If o @, = PCf o pu)llz lg o pw = P(gopu)llz =0.
This completes the proof.
The above theorem should be compared with the following result.

Theorem (2.1.20)[42]: Let f,g € C(M). The following statements are equivalent:

(1) HfH, is compact;

(i) U =P)(f o pm) L= —P)(g ° @), forallm € M\D;

(ii)) Hf,p Hgop,, = 0,forallm € M\D.
Proof. (i) (ii): If win D converges to m € M\ then

Littym(Hf gk, Koy) = lm (1 = PY(g © 9,), (I = P)(f © )
= (I =P)(g °@m), (I = P)(f ° op)).
By Theorem (2.1.1) in [46], H H, is compact if and only if (HfHyk,,, k,,) — 0 as |w| -
17,50 HgH is compact if and only if
(U =P)(G°pm),(I=P)(fepp))=0

for all m € M\D.

(i) & (iii)):  If win Dconverges to m € M\ID, then by Lemma 2.8 in [45], we have
UwHpHgUy, = Hfop Hgog,,
where the limit is taken in the strong operator topology. For fixed z € D, using that U, k, =
k., ) for unimodular ¢ it follows that
(Hf*o(pmH ky k) = V}}i_r)rrlrL(UwH;Hgkazrkz)

goPm
= lim (HiHgko, () Ko, )

w-m

={(U =P)(G ° Pm,), I =P)(f o pm,)),
where m = @,,(z) € M\D. Thus (ii) is equivalent to (Hz.,, Hg.,, Kk, k,) =0, forall z €
D, which, by a result of Berezin (see, for example, [55],), is equivalent to He,, Hg.p,, = 0.

On the Bergman space, it is not clear that HeHy is compact if and only if H7H, is
compact because we don't know when the product Hy H, is zero even if f and g are in C(M).
However, when f and g are bounded harmonic functions on D, combining a theorem in [58]
with Theorem (2.1.19) yields the following result.

Theorem (2.1.21)[42]: Let fand g be bounded harmonic functions on the unit disk.
Then HgHy is compact if and only if HzH, is compact.

For mixed Haplitz products we have the following characterization of compactness.
Theorem (2.1.22)[42]: Let f € H® and g € C(M). Then T¢Hy is compact if and only if
fo@n=00rgeo@,isin H* for every min M\D.

Proof. If m isin M\DD, then
lg o @w —P(gepw)lla = llg°@m—P(gepn)ll
asw — m. Likewise,
| FIPW)Y2 = If o oullz = NIf © omllz
asw - m.So
| FI2W)Y2 g o @ — P(g o @)z = Il f o @mll2llg o @m — P(g o n)ll;
as w—m. The condition [f [2(W)Y2||ge ¢, —P(go@m)ll, = 0as|w|—=1" is
therefore equivalent to the condition |[f o @,,1l21l9 © @ — (g ° @), =0, forallm €
M\D, which is equivalent to f o ¢,, =0 or g o ¢,, = P(g ° ¢,,,), for allm € M\D, that
IS,g° @, =00r geo @, is analytic, for all m € M\D. K Similarly, Theorem (2.1.18)
implies:
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Theorem (2.1.23)[42]: Let f € H* and g € C(M). Then TrHg is compact if and only if
H,Tr is compact if and only if f o ¢,,, = 00r g o ¢, isin H* for every min M\D.

Based on Theorems (2.1.9) and (2.1.10) we make the following conjecture, analogous
to Sarason's conjecture [53] on the Hardy space.
Conjecture (2.1.24)[42]: Let f and g be in L% . Then:

(i) T; T is bounded if and only if sup| f [2(w)|gl2(w) < oo
webD
(if) Ty Ty is compact if and only if. 1}ml_| FIzw)|gltw) =0 .

Theorems (2.1.11), (2.1.12), (2.1.17) and (2.1.21) provide support for the following
conjecture.
Conjecture (2.1.25)[42]: Let f and g be in L?(ID, dA). Then:

(1) HgHy is bounded if and only if HzH, is bounded if and only if

supll f e @y, — P(f e @)z llg o oy, — P(g o @y,) I, < co.

weD
(ii) HeHy is compact if and only if HHgis compact if and only if
wm |1 f o @ = P(fe@ulllzllg ° @w = P(ge@wlll2 = 0.
If HeHj is compact, then by Theorem (2.1.17),
If e pw = P(fepu)llzllg e pw —P(gepy)llz =0
as |w| — 17, thus (HfHgyk,,, k,,) = 0 as [w| —» 17, and by Theorem (2.1.1) in
[46], H: H, is compact. K Based on Theorems (2.1.13), (2.1.14) and (2.1.18) we furthermore
make the following conjecture.
Conjecture (2.1.26)[42]: Let f be in L,(ID,dA) and g € L% . Then
(1) TrHy is bounded if and only if H, T is bounded if and only if
sup f [2w)"2llg e gy — P(g o pu)ll2 | < .

weD
(ii) TrHy is compact if and only if H, T is compact if and only if

. ~12
lim_ |f|"W)Y2llg o @y —P(ge°pu)ll, =0.

lw|-1~

Section (2.2): Bergman Kernel Asymptotics
Given a positive measure m(t)dt on R* and its moment sequence y,, = f0°° t"m(t)dt,
n= 0,1,2,..., we form the associated Bergrnan kernel function, K,,(x) = Y y,; 1x™. We

also formlthe new measure (K, (t))_lm(t)dt and its kernel function, K x_-1,,, .If we start
with m(t) = e~ and do the computations, we find three striking facts: for all t € R* and
all a € C,
m()Kn () =1, (4)
K y-1m(t) = 2K (D), (B)
and

_ dxdy
[ [ Karm@ im0z =2 = 260y (©

We were doing operator theory on the Fock space, the Hilbert space of entire functions
square integrable with respect to the Gaussian density. We wanted to know if similar
relations or useful substitutes held in Bergman spaces of entire functions square integrable
with respect to other radial measures, =~ 1m(|z|?) dxdy. However, although operator
theoretic issues influence our discussion of the consequences of our main results, neither
our results here nor our methods involve operator theory. See [72].
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We collect background information about conjugate functions of convex functions
(in the sense of Fenchel, Legendre, and Young) which arises both as we pass from the
density m to its moments y,,, and as we pass from the coefficients of K,, to its values.
Informal statements and proof outlines for our two main technical results: Theorem (2.2.2)-
which shows how the growth of the density function controls the asymptotic growth of the
moment sequence-and Theorem (2.2.3)-which shows how the growth of the coefficient
sequence controls the growth of Km(reie ) for large r. The next have the statements and
proofs of Theorems (2.2.2) and (2.2.3). The basic approach for Theorem (2.2.2) is Laplace's
method for asymptotic estimation of integrals which depend on a parameter. To prove
Theorem (2.2.3), we join Laplace's method with Poisson summation.

We combine Theorem (2.2.2) and Theorem (2.2.3) to give Theorem (2.2.4), our
estimates for the Bergman kernel functions. A consequence of that Theorem (2.2.2)

Corollary (2.2.17), which includes the result that, as r — oo,
2

— (r %) logm(r)
m(r)K(r)~ " :
In particular, if m(r)~arbe_"4, with a, b, c,d > 0, we have

m(r)K ()~ cd?r?1,
which is a version of (A). If we take the estimates for K in terms of m and then use Theorem
(2.2.2) and Theorem (2.2.3) again to estimate K, )-1,,,, We find that the two expressions in

(B) are asymptotically equal. In fact, as is suggested by the example of the exponential
density, we see in Theorem (2.2.18) that
K ky-am~(1 + @) (Kp)' e (7)
for ¢ > 0. We also show that the Berezin transform for these Bergrnan spaces is given
asymptotically by integration against a Gaussian density. This and (7) are then used to give
an asymptotic version of (C) in Corollary (2.2.20).
A summary of these and related results along with some discussion of the operator theory
Isin [72].
Suppose A(s) is a convex function defined on an interval I c R. (When convenient,
we set A(s) = +oo for s & 1.) We recall the definition of the conjugate function of A.

A*(x) = sup{xs — A(s)}. (8)

SER
This transformation occurs in various contexts, at times associated with the names Fenchel,

Legendre, or Young.

Lemma (2.2.1)[61]: Suppose A is smooth and 4,A4’,A"” > 0. Set s(x) = A'""1(x) and
x(s) = A'(s). Then 4%, A", A*"" > 0 and we have, for all s, x,

(i) s(x(s)) =s,x(s(x)) =x,

(i) sx < A(s) + A*(x),

(i) A"(z) = xA71(x) — A(A71(x)) = xs(x) — A(s(x)),

(iv) s(x)=A4"(x) = 47" (),

(V) A7(s) = A(s), B

Vi) 4" (x) =4"(sx) ", 3

(vil) 4@ (A" ()2 = —A® (s00)) A" (s()) 2,

(viii) A*® (1) 4" ()72 = —A® (s(0))A"(s(0) " + 34®) (s(x))° A" (s(0)) .
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We are only interested in asymptotic behavior for large s and large x. Hence, if necessary
to insure that the hypotheses are satisfied, we can first restrict A to an interval (M, o) and
then set A = +o on (—oo, M]. In that case, the conclusions of the lemma hold for all
sufficiently large x, s.

Proof. The proof of related results under minimal smoothness assumptions requires care,
but here there is no problem. The first statement follows from the definitions, as does the
second, which is often called Young's conjugate function inequality. Our assumptions insure
that the supremum in (8) is attained at the unique critical point of xs — A(s). This gives the
formula for A*. The first equality in (iv) follows from differentiating (iii). The relation (v)
comes from (iii) and (iv). Formula (vi) follows from differentiating (v). Equality (vii)

follows from differentiating (vi) and noting that s’(x) = 4*" (x) = A”(s(x))_l. Formula
(viii) follows from differentiating (vii), using s’ (x) = A" (x) = A”(s(x))_l, and then using

(vii).
The model pair for what we do later is
A(s) =e’ —s,
A )=+ 1Dlogx+1) —(x+ 1),
which corresponds to m(t) = exp(—t). More generally, for m(t) = exp(—tﬁ ) we have

N 1A(s) = eisl— s, 1 9)
X X X
A*(x)z( B )log( B )_( [ )

The theorems and proofs have substantial technical details. However, the basic ideas are
quite straightforward. We present the ideas.
Given a positive function a(s) defined on R*, set
A(s) = —loga(e*) —s. (10)
We suppose that for all large s
A(s5),A"(5),A"(5),A®(s),A®(s) >0. (11)
Set s, = s(x) = A’"1(x). Suppose b is a positive function which varies slowly compared
to a and set B(s) = logb(e*). Let y,, be the moments of the measure a(t)b(t)dt;y, =

J, t"a(®)b(t)dt.
Theorem (2.2.2)[61]: (informal). As n — oo, we have
y, ~en (A5 V2T e

VA" (sn)
In the simplest case, when a(t) = e~t and b(t) = 1, this is Stirling's formula. Now suppose
c(x) is a positive function on R*. Set

I'(x) =logc(x). (12)
Suppose that for all large x
['(x), I'"(x),T"(x) > 0. (13)
However, in contrast to the previous theorem, we now require that as x — oo
['(x) - oo, I'"(x),T®x), I'®(x) - 0. (14)

Let I'* be the conjugate function of " and set x;, = x(s) = I'""1(s). Suppose that d is a
positive function which varies slowly compared to c. Let f be the holomorphic function

f(2) =) dmem) 2"

Theorem (2.2.3)[61]: (informal). f is entire. For small 8 we have as s — o
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V21 6

f(es+i9)~el"*(s) d(xs)eixseem.
VI (x5)

Our main kernel estimate, Theorem (2.2.4), follows quickly from these two results. First
we apply Theorem (2.2.2) with the choices a(t) = m(t?),b(t) =1 and then Theorem
(2.2.3) with the choices c(x) = A*(x),d(x) = c(x)/y, . Because we are able to put some
of the behavior of the moments into the correction term d, we obtain kernel estimates whose
main term involves A™. We then use the fact that A™ = A. To get estimates for Ky—a;,, we
repeat the cycle, using as our new starting choice for a the square of the function used the
first time. This forces a nonconstant choice for b. However, b turns out to be slowly varying,
so again the main term of the estimate involves A*™* = A.

To prove Theorem (2.2.2), we use Laplace's method for asymptotic evaluation of
integrals as it adapts to our situation. We want to estimate

[00]

Y =f t"a(t)b(t)dt=J enlogt+loga(t)p () dyt
0 0

:f ens+loga(e*)+sb(e*)d5.:f ens—A(s)eB(s)dS_ (15)
—00 0

The hypotheses insure that, for fixed large n, the function ns —A(s) has a maximum
value at the point s,, = A'"1(n). The value is A*(n) = ns,, — A(s,,). We now expand ns —
A(s) in a Taylor series about its critical point s,,;:

n, —A(s) = A*(n) — %A”(sn)(s — s,) +R.

Here R is the remainder tem. If we could drop R and replace B(s), which is built from a
slowly varying function, by B(s,,) then we could evaluate the integral and would have y,,
equal to the desired estimate. The technical details of the proof involve estimating the errors
that result from dropping R and replacing B(s) by B(s,,).
Introduce the new integration variable u = s — s,,. Using A’ (s,,) = n, we have
ns —A(s) = A*"(n) — [A(u + s,) — A(s,,) — A'(sp,)ul.
We need to estimate

Y = oA j oA+ )=AG) -4 (5 g Blnt gy (16)

To do this we select a positive function § = §(n) and split the integral as

f ...du=j ...du+j ...du+J wdu=L+C+R
-0 u<-6 lu|<é u>o6

To estimate C, we want to know that, uniformly in {u: |u| < 8}, we have for some
appropriate small K
A(s, +u) = A(s,) + A'(spu + A" (sp)u?/2 + 0(K),
B(s, + u) = B(s,,) + 0(K).
Those estimates follow from the hypotheses on a and b and Taylor's theorem. Using them,
we have

. . _A (spu?
e = e4 (”)J e” 2 ePGe[1+ 0(K)]du.
lul<é
Introducing the new variable v = u,/A” (s,), we find that
eA*(n)eB(Sn) 2

* _v_
e = e 2[1+ 0(K)]dv.

VA" (sp) f|v|<6\/A"(6n)
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If we know §2(n )A" (s,,) = oo, we can conclude that

A =AW ieB(S")[l + 0(K)].

VA" (s)
The tails, L and R, can be estimated by tails of Gaussian integrals and are seen to
s2mAa' (sp)

be O (e 10 ) Combining the estimates for L, C, and R gives Theorem (2.2.2).

In the second theorem, we can pass from the sum to the corresponding integral and use
a similar argument to get the estimates on the positive real axis. However, that approach
doesn't capture the cancellation which occurs off the axis. Hence we split the sum into three
terms and estimate the main term, the central one, using Poisson summation.

In Theorem (2.2.3), we show that if we are given the moments {y,,} of a density, then the
asymptotic growth of the kernel function is given by

fleS)~V2melo8)’ ) 5 oo,

Rewriting this in terms of the Taylor coefficients a,, (= y,; 1) off, we have

o~ QOB SNy o,

21
In the other direction, one can ask whether, given an entire function which satisfies

appropriate conditions, we can conclude this sort of asymptotic growth for the coefficients.
That such estimates do, in fact, hold for a large class of entire functions is a result of Hayman
[71].
Suppose f(z) = Y. a,z™ is an entire function with positive coefficients. Set
F(s) =logf(e®).
We say that f is admissible if F''(e®) — o0 ass — oo and there is a positive function §(r),
defined for all sufficiently large r, such that 0 < §(r) < m,

f(?‘eie)“’f(r)eiF’(logr)ee_%F”(logr)ez asr — oo
uniformly for |8] < 6(r), and

f@r)

ret?) = 0(1) —,
f( ) ( )W/F”(logr)
uniformly for §(r) < |6] < m.
Corollary Il of [71] is
Theorem (2.2.5)[61]: If f(z) is admissible, then as n — o
1

1 —F*(n)

e

An+1™~
m\/F”(F’_l(n))

In fact, this follows quite easily from the admissibility of f. Most of the work in [71] is
in establishing that a substantial number of functions are admissible, in showing that the
class of admissible functions has interesting closure properties, and in deriving further
consequences of admissibility. Our Theorem (2.2.3) insures that the kernel functions we
construct are admissible.

In Hayman's theorem as well as Theorems (2.2.2) and (2.2.3), we see that the transforms
have asymptotics described to leading order using the conjugate function. That is in keeping
with the heuristic "principle of duality of phases", for describing the asymptotic behavior of
Fourier (and related) transforms ([80], p. 358). The principle has a long tradition. Hayman's
results are related to earlier results of Wiener and Martin [82], [83] and still earlier results
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of Hardy and Fejer, both of whom attribute the basic insight to Riemann. (For this see the
discussion in [70].) See Evgrafov [69] and Bemdtsson [63].

Related questions have been considered for measures and kernel functions defined on the
unit disk. The work goes back to Trent [81], Kriete and MacCluer [76] and Kriete [74]. Here
are two of the results of [74].

Suppose that we are working on the Bergman space of the disk with radial weight

Qr) "t w()dx,dy. Thus K(x) =Yy, 1x™ with y, = f01r2“+1w(r)dr. Set A(s) =

log2 — logw (e‘g) + s. Under appropriate conditions on w, a result analogous to Theorem
(2.2.2) is obtained.

Theorem (2.2.6)[61]: As r — o, y,~m /A*”(—n)eA*(‘”).

This Theorem (2.2.2)s used in the proof of the following quantitative alternative to (A),
which plays a major technical role in [74]:

Theorem (2.2.7)[61]: Asr~1~,m(r)K(r) 7 oo,

While preparing this, we learned that Kriete has taken his work further and obtained
rather comprehensive results on the unit disk [75]. Although the detailed formalism of [74]
and [75] differ, there is certainly a similarity between those methods.

Related questions have been studied for nonradial weights using a variety of function
theoretic techniques. For instance, it is shown in [77] that under some regularity conditions
on the function w(z) = 0, and with the assumption that —logw is subharmonic, the
Bergman kernel K (z, ¢) for the space L?>(ID, w(z)dx dy) N Hol satisfies
Proposition (2.2.8)[61]: There are positive constants C; and C, so that

c K(z, z)w(z) c
1< Alogw(2) <tz
Similar techniques produce an analogous result for Bergman spaces on the plane. These
should be compared with Theorem (2.2.16), which deals with smooth radial weights (on the
plane). That result states that, as z — oo,
K(z, z)w(z)
—Alogw(z)

Christ, Berndtsson, Ortega-Cerd/L and Seip, Delin, and others have obtained refined
estimates on Bergman kernel functions, including estimates off the diagonal, using d
techniques. Those results have a different focus from ours and we merely give [65], [64],
[79], and [66].

It is a theorem of Miles and Williamson [78], which proved a conjecture of Renyi and
Vincze, that m(t) = et is essentially the only function which satisfies (A). It would be
interesting to know if there were analogous unigueness results related to (C).

We shall prove that for fixed a, as t — oo,

K (k,y-em~(1 + @)Kyt (1) (17)
In his interesting study of Berezin quantization, Englis [67], [68] shows that in certain cases,
for fixed t, (17) holds as @ — oo. His methods and viewpoint are quite different. We discuss
briefly the possibility of obtaining asymptotics as &« — oo by our methods.

Suppose m(t)dt is a positive measure on [0,o0). For x =0, set y, =y(x) =
fooo t*m(t)dt. We assume that m does not have compact support and that y (x) is finite for
all x. We write m(t) = a(t)b(t) with a as the main term and b as a slowly varying

=1+ 0(1).
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correction. Although m = ab is the object of interest, most of our computations, and hence
also the hypotheses, are in terms of auxiliary functions, A and B, defined by
A(s) = —loga(e®) — s, (18)
B(s) =logb(e®). (19)
Set s, = s(x) = A"1(x). Fixg,1/4 < £ < 1/2. We suppose that for all sufficiently large
X

AD(x)>0, i=0,..4, (20)
A" (x) = 0 (A”%_S(x)) 21)
AW (x) = 0(A" 7% (x)). (22)

The core hypothesis for the proof of Theorem (2.2.2) is that we can find an auxiliary
positive function & such that §2(x)A" (s,) = o and &§3(x)A"'(sx) —» 0 as x - co. We
surrendered a slight amount of generality by assuming (21), but that lets us make a simple
choice for 6. Selectawith 0 < o < ¢/2 — 1/8 and set

1

6(x) = A" (sy) 2a. (23)

The model case for the hypotheses is A(s) = efS — s. In that case, (21) and (22) hold
with any e < 1/2. The same is true for A(s) = e™) with any function h of regular and
modest growth. Hence, for the examples we have in mind, we could restrict attention to A
which satisfy (21) and (22) for all e up to 1/2. In fact, suppose A were to fail (21) for a fixed
e because there is some ¢ < 1/2 — ¢ so that A”" = CA"”*®. In such a case, we could
compare A" with the exact solution of f' = Cf1*% and conclude that A"’ (s) cannot be finite
for all s > 0. Such A are not of interest here. However, we carry the extra generality of
allowing (21) and (22) to fail for some € < 1/2 because it may be useful in some other
context. We should note that in the following discussion it may be convenient to think of

the model case ¢ = G) ,a=0"%.

The estimate on the derivatives of A imply interval estimates.
Lemma (2.2.9)[61]: If we have (21), (22), and (23), then we also have

ﬂll?s A'(sy+8) = (1+0(1)A" (s, (24)
sup A"’ (s, +t) =0 (A”(sx)%_£>, (25)
It]<&
ﬂlp AW (s, +1) = 0(4" (5)*7%), (26)
t|<é

Proof. Set g(t) = A”(s, + t). By (21), g’ = 0(gz %) and hence g 2"¥g’ = 0(1). Pick
and fix some t,, |t,| < &. Integrating, we find

1 1
972 ) =977 ©@)| = 0(&).
Hence, recalling the definitions of g and &, we have

T )]0 (900)75) = 1+ 0(o0))
g2**(0)

as required for (24). For (25), note that by (21) we have
3
A" (s, +t)=0 <A”T£(sx + t)) ,

=1+
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3 3
and by (24) we can replace A"z"%(s, + t) by A"27%(s,). We obtain (26) by the same
reasoning.
We say that a positive function b is slowly varying in the first sense with respect to a, €
and a and write b € SVI(a, ¢, a) if, for B given by (19),

1
B' = 0(62AIH) =0 (Ali_s+2a>, (27)

B" =0 <(A”%‘8+2“)2>. (28)

Note that 0 < 1/2 — ¢ + 2a < 1/4. We know from the previous lemma that A" and A"
satisfy interval estimates. Hence so do B and B"'.
We use the following. Write X = X(x) = 0(€) if there is a positive ¢ such that

X = 0(exp(—A"(5,)°)).

Theorem (2.2.10)[61]: Suppose a and b are positive functions on R*, A and B are defined
by (18) and (19), and § is given by (23). Suppose A satisfies (20), (21), (22), and hence also
(24), (25), and (26). Suppose b € SVI(a, &, ). Let

y(x) = jo t*a(t)b(t)dt.

As x — oo, we have

. V2m
— A 7
y(x) =e T

Furthermore, as x - o

eBED (14 0(A"(5,)°%*726) + 0(5)). (29)

(logy)'(x) » o (30)
A" (x) — (logy)'(x) =0 (A” _%”“_g(x)). (31)
A" (x) = (logy)"" (x) = O(A" ~1¥6a~2¢(x)). (32)
Notes: (i)
1 1 3
6a—2£<—Z, —§+2a—s<—z, —14+6a—2¢ < -5/4.

(ii) The formulation of (29) is redundant, as 0(€) is smaller than A’ ¢*~2¢_ We include it
separately because, while the error term 0(A4'%*~2¢) can obviously be refined by
straightforward (but lengthy) analysis, the exponential error term appears to be intrinsic to
the method.
(iii) (30), (31), and (32) are technical estimates we shall use when we use the output from
this theorem as input for Theorem (2.2.3).
Proof. Fix x large. We write § for §(x). Set

a; =A9(s,), i=01,..,

B;=BW(s,), i=0,1,..,
We saw at (10) in the proof outline that

V() = A" @ eho j o TG~ —arul g B+ )~o gy,

We need to estimate

I = f U o~ [A(+0—ao—ayul pBsx+1w~Bo gy
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Forj = 0,1, 2. The analysis of the tails, L and R, is the same for j = 0, 1, and 2; we present
the discussion only for j = 0. We have

Io=j ...du+f ...du+f .du=L+C+R.
u<-=6 lul<é u>é8

We first estimate L. Integration by parts gives
0
A(s, +u) —ay — ayu = f (r—w)A" (s, + r)dr.
u

In the integral defining L, u < —& < 0; thus the integrand in the previous integral is positive.
Using this and the monotonicity of A", we continue with

0
A(sy +u) —ay— au > J (r—wA' (s, +r)dr
-5

0
1
>A"(s, — S)J (r—uw)dr = —E(Zu + 6)6A" (s, — 5)
-5
Thus

o 1)
L < f o7 ur8)8A" (s:5)+B(s:4)=Po gy — ,56°4" (5:-8) J USA" (5,=8)+B(sy+1)~Bo gy

Now
u

eBlxt)=Fo — expj B'(s, + t)dt.
0
Using (27) and recalling that A" is monotone, we find

eBext=Fo = exp(0(Dulaf),
Where 6 = %— € + 2a is between 0 and 1/4. Hence

152

-5
L < 274 (Sx_‘s)f exp(u6A”(sx -5+ 0(1)|u|a29)du.

Taking into account (23), and recalling that u is negative in the region of integration, we
have

uSA" (s, — &) + 0(Dulad = us(a2(1 +0(1)) +0(1)6af)
= u8(az(1+0(1)) + 0(1)a*** %) = uda, (1 + o(1)).
Thus we can continue with

-5
L < 3%52“”(5’6_6) j exp (u5a2(1 — 0(1))) du

1
b Asay(ieem) y-stay(1i-om) < (LT O() (o )pre
(1-0(1)’™ Sa,
= 0(5).

1

Hence also a2L = O(E€), which is what we require.
We now look at R. We need to estimate

f o ~[A(sx+)~@o—asul o B(sx+)—Bo gy
1)

By Taylor's theorem,
1
A(sy +u) —ap —aqu — [B(sy +u) = Bol = —pru + E(A”(Sx +8) = B" (s, + §))u?

66



for some ¢ € (0,u). Taking into account (27), (28), and the motonicity of A", we continue
with
A(sy +u) — ag — au — [B(sy + u) — B0l

s ( )u + (A" (s + ) +0(4" (s, + D))

1
> 0< )u + (§+ 0(1)) a,u’.

1
%) co 2 2
f e—[A(5x+u)_ao—0—’1u]eB(Sx‘*‘u)_ﬁOdu SJ e [0( 2)u+< +0(1)>062u d
- o)

BE —[o(l)v+<%+o(1))v2
< 6(2 2 J 1€
sa?

Nl\)lb—\ NNIH

Hence

u

dv = 0(€).

1

Hence a2R = 0(€), which is what we needed.
We now estimate C. For j = 0, 1, 2, we need to estimate

¢ = j ) @—TAGs+)~ag—ayul+B(sy+1)~Bo gy
lu|<é

We now need to take the Taylor series analysis given in the proof outline one step further.
By Taylor's theorem, we have
—[A(s, +u) —ay — aju] + B(s, +u) — By
1 1

1 1.
=—Ea2u —ga3u —ﬁm}u + piu+= Bzu

Here we use decoration to indicate terms which must be evaluated away from s,: @, =
A®W (w) for some w, |s, —w| < &,8, = B"(w') for some w’, |s, — w'| < 5 We separate
the main quadratic term, the odd powers, and the error term. We set D = —ga3u + p1u
and = icb,u“ + lﬁzuz Set A = a3%¢ and note that 3a — ¢ < —1/8. Noting (21), (22),
(27), and (28) and Lemma (2.2.9), we have D = 0(A4),E = 0(4?), and D? = 0(4?).

Taking into account that A — 0, we have
ar u

. _ ayu?
C = j uwe 2z ePefdu= J We 2 (1+D+0(D»))(1+ 0(E))du
lu|<é [u|<é

. _au?
=f we 2 (1+D+0((4%)du
lu|<é
au?

o _apu? .
= j u’e_zT(l + D)du + 0(4?%) ue "2 du
lu|<é

lul<é

.[ (Z ]+1
= u .
lu|<é

a uz
Forj=0,2, fl <s U e 2 duis the integral of an odd function over a symmetric interval
and hence we can drop D from the expressions for ¢, and c,. We next pass to integrals over
the entire line. This introduces an error of 0 (€E), which we absorb into the larger error terms.

We have
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a2

o u? _1 _
Co = f ez dut+0(M)a,” =a,

N[ =

(V2 + 0(®));

L%)

oo u? _3 _3
C, = j e 2 du+0(A)a,? = a,? (\/27t + O(AZ)).

a u2
For j = 1 the integral involving u/e ™z vanishes; and we have, using (21), (23), and (27),
1 3 5

oo a,u? _1 _3 2
C, = j e 2 du+0(A)a,’=0 (az Zﬁl> +0 <a§a3> +0(A?)as?

— a,z—lo(az—s+2a + az—e +A2) — az‘l(az_E““).

Hence
1
eA*(x)eﬁOIO = eA*(x)eBOaz 2 (V 21 + O(AZ)); (33)
eA*(x)e‘Boll — eA*(x)eB°a2_10(CZ2_E+2a), (34)
3
A Wehol, = o4 Weboq,? (VI +0(AD)), (35)

This gives us (29).
We now proceed to verify (30), (31), and (32). For appropriate K, we have

y(x) = eA*(")eﬁOJ K(s, +w)du.
If we differentiate (21) and then follow the sam_eoopattern of analysis we find
Y(H(x) = eA ®ebo joo (s, + W/ K(s, + u)du
forj =1, 2. If we set -
]jzsfooqu(sx+u)du, j=0,1,..,

then we can write

y = eeboy,
y' = eA*eBO(ijo +J1),
y'=e4 eBO(S,%]O + 25,J1 +J2) (36)

From Lemma (2.2.1), we know that 4*' (x) = s, and 4* (x) = A" (x)~1. quantities we want
to estimate are

(logy)’ = sy +]—1, A* — (logy)' = s
Jo Jo

A" (logy) = A" _L2 + (]—1)2

Jo Vo
From (33) and (34), we know that
A e D ehoq;10(a2%€) 1 ( —%+2a—e>
a .

——== - = a,20(a?*€) =0
eA’®ebog, ? (\/ 2 + 0((126“‘26))

2
This gives (31). Also, noting that s,, = oo, we have (30). required estimate for (j—l) in (31).
We complete (31) by noting
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3

ed Webog, ? (\/ 21 + 0(0(?“‘26))
1

ed"@ebog,, ? (\/ 21 + O(aga‘ze))

— a,2—1 _ 0(2_1(1 + O(a,6a—26)) — O(a—1+6a—26),

A )~ = o -

as required.

We start with positive functions ¢ and d defined on R*. We want to estimate f(z) =
¥ c(n)~td(n)z™. Here c will be our main term with d a slowly varying correction. We will
do our computational work with the auxiliary functions

I'(x) =logc(x), (37)

A(x) =logd(x). (38)
Let I'* be the conjugate function to " and set x,, = x(s) = I'""1(s) =T'*’ (s). We suppose
that 1/4 < e < 1/2issuch thatas x — o

[(x), " (x), T"(x),-T®(x) >0, (39)
[(x),T'(x) = oo, (40)
" (x), T®x), I®(x) - oo, (41)
' (x) =0 <F”%+E(x)>, (42)
I (x) = 0(z"2%%€(x)). (43)

Note that if this holds for e, then it also holds for any €’ such that 1/4 < €’ < €.

In analogy to the previous theorem, the core hypothesis for the proof is now that we can
find an auxiliary function A such that A2I'"’ — oo and AT'""" - 0.
Assumption (42) allows us to use

1
As)=T"(x) 2 " (44)
for some 5,0 < B < /3 — 1/12, which we now regard as selected and fixed. As before, a
convenient choice to keep in mind is € = (%) ,8 =07,
Lemma (2.2.11)[61]: If we have (42), (43), and (14), then we also have (45)

sup II'" (x5 +6)] = (14 0(1)IT" (x,)], (45)
3

sup [ (xs +6)| = 0 (" (x)2"°), (46)

|6|<A

sup [T (xs + 0)| = 0(T™ (x,)?+2€), (47)

|6|<A

Proof. The proof is the natural modification of the proof of Lemma (2.2.9).
Suppose that d is a positive C? function. We say that d is slowly varying in the second
sense with respect to ¢, €, and 8, and write d € SVII(c,€,B), if,ass - o
['"(s) —A'(s) > oo, (48)

A'=0 (r”%ﬁ‘ﬁ ) (49)
A= 0 ( (r”%ﬁ-ﬁ’)Z). (50)

3 1
Z < E +e—-f <1
In analogy with A and B, these estimates on I" imply interval estimates for A.

Note that the assumptions imply
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For these hypotheses the model case is

r(x) x+11 x+1 x+1 I () 1l x+1 (%)

xX) = 0 - 4 X)=—lo ) X VPN
y oy Y y 5y y(x+1)

and e can be chosen as close as desired to 1/2.

Set

¢ =TPx), i=012,..
d; =AD(x), i=012,..
o=x;— [x]

Define the scaled parameters
3

— 2
C3 = ¢3¢, 7,
1 _3
— 2 2
E —_ d1C2 _ECBCZ )

1
® =0(6,0) =6c,?,
1
O(n) = 0(6,n) = (6 + 2mn)c, °.
Note that the previous assumptions insure that C5, E = o(1).
We write Y = Y (x;) = O(F) if for some ¢ > 0,Y = 0(exp(—T"(x5)™°)).
Set

1
T=26—6,3—§. (51)

The assumptions on € and S insure that 0 < 7 < 1/2.
Theorem (2.2.12)[61]: Suppose T satisfies (39), (40), (41), (42), (43), and hence also (45),
(46), and (47) and that d € SVII(c,€,B). Set f(z) = X5 d(n)c(n)~1z™. Then f is entire
and, as s — oo, has the asymptotic growth
f(es+i9) — el"*(s) m

I (xs)

N om] (52)

1

1
d(x)e'0%s [e‘zez(l + iOF +i03C3) + 0 <c22+T>

1

i B
In particular, forc; = < 0] <.

£ (e5*1)| = f(e)0 (cg”). (53)

As with the previous theorem, the formulation in (46) is redundant. The O (F) error term,
which is smaller, is intrinsic to the method; the other could be mechanically refined. Hence
we present both.

We use the results of this theorem as input for Theorem (2.2.2). To do that, we require
certain estimates on the derivatives of f on the axis. We present those estimates as a lemma
now because it is convenient to include their proof along with the proof of Theorem (2.2.3).
Lemma (2.2.13)[61]: In the situation of Theorem (2.2.18), we have the following additional
estimates:

d

z— f(e®) = xsLy + Ly, (54)
d 2

(z E) F(e) = x2Ly + 2x,L; + Ly, (55)
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where for j = 0,1,2

. 2| [c 2
L = e (08 /_[ 2740 <c22”> + 0(?)] (56)
cy |IN2m

with
_ 1 . _C3 + 2d1C3
e - R

Proof. The hypothesis (48) insures that lim(d(n)c(n)~1)» = 0. Thus f is entire.
We need to estimate

Zi if(z) = N n‘d(n)c(n)~1z", i =0,1,2.
( dz) 2

0
We split the sum into a central part and tails. The tails will be estimated by the corresponding
integrals, using analysis similar to that in the previous proof. In order to capture the
cancellation when 8 # 0, we treat the central part differently.
The analysis of the tail terms is not essentially changed by the factors n‘; hence we present
the estimates only for i = 0. We have

f(x) — 2 d(n)c(n)—lxn — Z enlogx—l“(n)+ A(n)_
Writing z = e, we have f(eS*%) = Y exp(ns — T'(n) + A(n) + inf). Fix s large. For
this s,xs — ['(x) has its maximum at x,. Set u = n — x,. Thus e™® = e¥s%e0  For
typographic convenience, we set

Q=—Txs—u)—cy—ciu) +A(xs +u) —d
Bringing a factor of eI e ixs? gutside the sum, recalling that ¢; = I'"(x,) = s, and doing
a bit of rearranging, we find

0]

f(es+i6) — eF*(s)+A(xs)+i9xs Z eQ+iu9

_xS

We need to show

C - . 1 1
/ﬁz eQtiud — e‘§®2(1 + iOF +i03C3) + 0 (c22+r> + 0(F). (58)

e
We use 4 = A(s) as given by (44) to split the range of summation into three parts, again L,
C, and R. We start the analysis with L. We drop the unimodular factor and dominate the
sum by the corresponding integral. That is,

\/%L = 0(1)\/%[2%1% (59)

We now estimate the integrand. We have
0
F(xs+ u) —cy—cu= f (r—w)l'"(xs + r)dr.
u
By the monotonicity of I'"" we see that if u < —A then
0
F(xs+u) —cyp—ciu = f (r—wr'"(xg + r)dr
0_)L 1
> F"(xs)f (r —w)dr = —EF”(xS)A(Zu + A).
-2
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Thus, we continue (53) with

/ L — 0(1) / j czul+A(x5+u) dodu
xS

)
= 0(1)e 2 J eW“[ < ¥ \/5) ]dw

— 00

We need to estimate the integral. Using (43) to estimate [A (xs + \%) — do] in the integral,
2
we find that, for some positive K,

—ez A2c, [~AVE:
C
/ﬁj dww = 0(1)e72f eWAVez g —KwW

A%c

o) o 7o (A2 KAVEY)
B MWe, — K
—'12262+KA\/E
=01
D= N

=0(1)0 <exp <—

2 >) = O(T);
as required. We now look at R. If u > A, then
u
xs+u)—cy—cqu= j (u—7r)I'(xg + r)dr
0

2
> j (u—7r)I'"(xg +r)dr
0
2
>T"(xg + /1)[ (u—r)dr
0

1
= EAF”(xS +D)2u— A1)

Seté, =T"(xs + 4). Then
A

Thus

/Cz 1r2e foo _Aé -
—~R=001).Jc,ez" 2| e Autdlxstw)=dogy
o (1) (e, )

Lemma (2.2.11) insures ¢,~c,. The hypothesis (43) and the monotonicity of I'"' insure
1

Alxs+u)—dy = 0(1)c§u. Thus we need to estimate

I =0(1)/c; exp ((1 n %)) LOO (—A(l + o(1))cou + 0(1)02§u> du
B

+ 0(1)03] %) du.
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1

We know Ac; — o. Hence, for large s,

= 2
[ (1+ 0(1))A%c; + 0(DAc 22 % —3 cz]/1 —Ac,u.
Thus
2 [ee]
I = 0(1)\/c—2 exp ((1 + %)) L exp(— 2ACZu) du
= 0(1),/c, exp <(1 al 0(21))C2/1 ) (c, )71 exp (— 2/1362>
=0(1)—— ! —exp l—E+ 0(1) | c,2%2 | = o(F),
Ny 2 3
as required.

We now need to estimate the center term,

z =eF*(s)+A(xs)+i6x5 2 eQ+iu6_

c [[ull<2
By Taylor's theorem, we have, for |u| < 4,
1 , 1 3 1 1.
Q0= —Eczu —gc3u +dju — 24C4 + 2dzu

Hereé, =T®(w)andd, = A" (w"), withw,w'A(xs — A, x; + A). Using (42), (43), (49),

and (50), we find
1
|Eut] + |du?| = 0( +T>

(lesw’l + |dyub? = 0(

)

e . g +we>
+zo<eg+f)exp< 2 s uo)
=Z+Z. (60)

We estimate ), by passing to absolute values, estimating the truncated Gaussian sum by
the corresponding Gaussian integral over the entire line, and then evaluating the integral.

Thisgives ), = 0 <c§”) 0 <c2_5> = 0(c3}), which is what we needed. (Recall from (58)

We have

)

that we pick up an additional factor of O ((:g) outside of the sum X, <1 -)
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Writtu =k —owithk € Zand o = x, — [x5]. Now )}; isasum with the range |k| <
A. However, the natural estimates show that we change things only by O (F) if we replace
that with the sum over all integers. We do that and thus now need to estimate

(0]

_ _ )2
Z <1 +d,(k — o) —M) exp (—M+ i(k — 0)9>.

By the Poisson summation formula ([62]), this equals )., h(n), where

0o _ 3
h(n) =j (1 +d,(x — o) —M)

c,(x, — 0)? .
X exp (—% +i(x — 0)9) e2minX dx

— eZlTL"flO’f <1 +d;y— 36y >exp (— 22)’ + (2nn + 9)1’y> dy.

Starting with the formula for ffooo e~tY*+2xy gy ([62],) and differentiating with respectto s, t,
and then both, we find

o) 2
j e—ty2+2xydy — ﬁe%’ (61)
—oo t
[o'] S\/E s2
ety 425V Yy =~ _ T, 62
f_wy G (62)
% 1 /s\21Vm s
2 ,—ty?+2sy N 2 ]_ + 63
J_ye dy 2t+(t) =et, (63)

(64)

For n = 0, direct computation gives

: 3
h(0) =e‘2972<1+i9(ﬁ_1<c_3>)+i9 ;:3)@

c; 2\c? c;

or, in terms of the scaled parameters,

1 V21
h(0) = e"(—EG)Z(l + iOF + i03C;) —.

N

1 2

h(n) e (= 02(1 + IB(E +iO(1)*Cy) %e’”’w.
In general,)’,,..olh(n)| is dominated by a geometric series which is dominated by h(0)0 (F).
However, this fails to be uniform in ; in fact, ©(—m, 1) = 0(m, 0). However, this is only

an issue if n = +1 and e'? is near the negative real axis. In that case, however, both terms
are O(e‘cz_1 = O(F). Hence all the h(n), for n > 0, can be absorbed into the various error

1

terms. Finally, notice that when cg_ﬁ < 18], h(0) = O(F). Hence the main term is the

1

contribution associated to )., in (54), which we saw was O <c§+r> . Thus (52) and (53) are

In general,

done.
We now proceed to the proof of the lemma. For j = 1, 2 we want to estimate
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(z%)j f(e%) = e ®d(xy) i(xs +u)/e®.

Straightforward manipulation shows that (54) and (55) hold with

Li = e"®d(xg)d(x,) Z ule®
vy
forj = 0,1, 2. We estimate L; and L, using the same type of analysis as in the proof of the
theorem (which, in fact, treated L,). That is, the tails contribute an error that is O(F), and
the central part of the sum is analyzed using Poisson summation. The situation here is
slightly easier because we only want estimates on the positive real axis. Hence the terms in
the Poisson summation corresponding to n # 0 contribute a total error which is O(F). This
gives, up to an error term of O(e;) + O(F),L; = J; This gives us (56) with

00 3 2
3y G2y
]j:f_oo<1+d1y— c >exp (— > )dy

for j = 0, 1,2. Evaluating those integrals using (61)-(64) then produces the statements in the
lemma.

We shall use the output of Theorem (2.2.2) as input for Theorem (2.2.12) and then use
the output from Theorem (2.2.12) as input for Theorem (2.2.2). Here we collect the
bookkeeping lemmas which show that the functions which arise in this process satisfy the
required hypotheses.

First, suppose that we have a and b which satisfy the hypotheses of Theorem (2.2.2), that
A and B are given by (18) and (19), and that {I'(n)} are the associated moments. We want
to use {y(n)~1} as power series coefficients in a way which keeps the focus on a as the
primary term. We define ¢, d by c¢(x) = exp(A*(x)), d(x) = c(x)y(x)~* and define I' and
A by (37) and (38).

Lemma (2.2.14)[61]: Suppose a, €, and «a satisfy the hypotheses of Theorem (2.2.2) and

1
b € SVI (a, €, %) Then, with the same €, with 8 = a, and with A = I'"""2F the data ¢, B, T,

and A satisfy the hypotheses of Theorem (2.2.2)1. That is, with the same &, I satisfies (39),
(40), (41), (42), and (43),and d € SVII(c, ¢, B).
Proof. The statements about F follow from the hypotheses on A, the fact that I' = A*, and
Lemma (2.2.1).
Toseethatd € SVII(c, ¢, B), note that

A=logc —logy =T —logy = A" — logy.
Hence, by (30), (31), and (32), A satisfies (49) and (50).

Suppose, now, that we had a, that b = 1, that we had a choice of «, and that we then
invoked Theorem (2.2.2) with the choice a* = a/3. Of course, for b a constant function,
b € SVI(a, &, a™). Noting the previous lemma, we can then apply Theorem (2.2.12) to the
functions c and d just described. That will produce an entire function f. Suppose we have a
fixed ¢ > —1. We want to apply Theorem (2.2.2) to the functions a, and b,, selected so
that a,b, = af~°. We set a, =ae %4, b, =e?f~7 and A,(s) = —loga,(e?) —
s,Bs(s) =logb,(e*).

Lemma (2.2.15)[61]: Using a new smaller a, we can apply Theorem (2.2.2) to the functions
a, and b,. That is, for a smaller a, A, satisfies (20), (21), (22), (25), and (26). Furthermore,
b, € SVI(ag,, &, a).
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Proof. Our choice ¢(x) = exp(A*(x)) in Theorem (2.2.12) gives I' = A* and hence I'* =
A™ = A. Thus

Ay(s) = —loga,(e’) —s = —loga(e®) —s + dA(s) = (1 + 0)A(s),
and the conclusions for A, are immediate. We have B, (s) =Inb,(e®) = a(I'*(s) —
log f(e®)). Hence we need estimates for (I'" —log f)" and (F* —log f)"". Set D = zd /dz.
Direct computation yields

S/ (,S _Df(es)
(log f(e®))'(e®) = f(es)’ ,
syrrasy  Df(e%)  (Df(e?)
(log f(e))"(e®) = f(es) (f(es) ) |

Recall that T*'(s) = x, = A’(s) and, by Lemma (2.2.1), T*"" =T"~1 = ¢;1. Thus, using
(54) and (55), we have
Df(e®)

(' —=logf) =T"(s) — (e

xsLo + L1\°
=x5_< L, )
L1

\/Cz/T”h +0( 1/2+r)
w/c2/27t]0 + 0( 1/2+T)

The last equality follows by using (56) and absorbing O (F) into the other, larger, error term.
Using the values of J, and /,, we continue with

(" —log f)’
_C3 + 2d1C2 + 0 1+T
2¢2

1+0 <C§+T>
(—03 + 2d;c, < ;+T>)( ( %+T>)
+ 0| c, 1+0|c,
(0(c3c2 2) + 0(dyc;1)0 ( c2 T)) (1 +0 <c§”>>
0

—l+€—ﬁ 1+1_' 1+‘l.'
c,? +0|c 1+0|c?
Using this estimate for L, /LO, we analyze the second derivative by

NN

——+€ B) O (A”%—S‘I'B)

. _ y_ o DYf(e®)  (Df(e)
(D +(f@ﬂ>
perp  (*ELo 2%y + Ly | (XsLo+ L\t | Ly (L)’
=T""1(x,) ( » > + (—LO ) = I + (L0>
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— O(A// 1—2£+2ﬁ)_
This gives the required estimates for B’ and B"'.

We suppose that m is given and fixed and that A(s) = —logm(e®) — s satisfies the
hypotheses of Theorem (2.2.2) for some selected &, «. We use the notation of Theorem
(2.2.2) and its proof and of Theorem (2.2.12) and its proof with the choice ' = A*. In
particular, we denote the derivatives of A by ¢'s and of T by ¢’s.

Many of our estimates will be in terms of the function A”". We would like to be able to
relate those estimates both to the starting function m and to the function ¢ defined by
m(|z]?) = exp(—2<p(z)), which is often used as a parameterization in this context. By

straightforward calculation, we have
2

d
A"(logx?) = = (x =) (logm)(x?) = x* (@) ()

Let H,, be the weighted Bergman space,
H, =12 (C,m(rz) ) N Hol.

For each w € C, there is a Bergman kernel function k,, = k,,,, which is characterized as
that element of H,,, which satisfies f(w) = (f, k,,) for all f in H,,,. Because the monomials
are an orthogonal basis of H,,k, (z) = Yo ollz"||"*(wz)". Thus, setting y =
J, x"m(x)dx and k,,(2) = Kn(2) = Xpzo ¥ 12", We have k,,(z) = K(wz).We are
interested in estimating kw and related objects. Our approach is to start with m, use Theorem
(2.2.2) to estimate the y's in terms of m, and then use those estimates in Theorem (2.2.12)
to estimate K. There is no loss of generality in assuming that w is real and positive, and we
make that assumption for the rest.
In describing various small quantities, we use the shorthand

S(x) = A" (logx)~ L.
Here is our main estimate for the Bergman kernel.

1

Theorem (2.2.16)[61]: As r — oo, for |8] < S(wr)z°%,

] L, A''(logwr)6?
kw(rele) — eA(logwr)Au(log wr)ele“‘ (logwr) (e_f

+0 (sw)%”) (65)

tdrdf

and thus
A" (logwr) A”(logzwr)@2
— e

ky(re®)m(wr)~ —
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On the diagonal,
1
k,,(w) = eA@108W) A" (2 ]og w) (1 +0 (S(W2)§+T)>. (67)
Far from the axis, |e| > S(wr)Y for (any)fixed y > 0,

1
ky(re®®) =k, (r)0 (S(WZ)TT). (68)
Note. Recall from Theorem (2.2.12) thatt = 2e — 6 —1/2and 0 < 7 < 1/2.
Proof. We apply Theorem (2.2.2) with the choice A(s) = —logm(e®) —s,B = 0. Lety
be the moment function we obtain. Lemma (2.2.14) insures that we can then use Theorem
(2.2.12) with the choices ¢ = exp(4*),d = exp(A*)y 1 (and thus c~1d = y~1). Theorem
(2.2.12) shows that on the positive axis

V2r
VI (xs)
We have I' = A* and hence I'* = A™ = A, the last by Lemma (2.2.1). We also know, from
that lemma, that T” = 4*" = A"~ and hence c, = A" Finally, d = VA" exp(B)/V2m.
In this case, B = 0 and hence f(e®) ~ e4A”. From the definitions, we have e41°8%) =

tml(t). Recalling that K = f gives (59). The other estimates follow by restricting to

appropriate 4.
From this theorem, we get an asymptotic version of (A)
Corollary (2.2.17)[61]:

f(e$)~el™® d(x)(1 +0 (S(Wr)%”).

1 2
m(r?)k, ()~ 228,
In particular, if m(r)~ arbe‘crds(r), where a,b,c,d > 0 and s € SVI (arbe‘"d,e, a)
for €, a allowed in Theorem (2.2.2), then
m@r®)k,(r) ~ cd?r?4-2,
Theorem (2.2.16) is not enough to give a version of (B). It shows that log K,, =
(—log m)(l + 0(1)); but to get to a version of(B), we need to know that a similar estimate

2
holds after we apply (%) to each side. For that reason, we need to invoke (15) and Theorem
(2.2.2) again.
1
Theorem (2.2.18)[61]: Fix o > 0 and set Ky, = k-0, AST = o0, for |8] < S(1)z~°¢,

1+o

Ko w(re®)~(1 + 0)Kp(re®®) .
1
form > |6] > S(r)z %%

1
Ka,w(reie)"’ a,w(r)O(S(r)?H-
Proof. We have A(s) = —logm(e®) —s. We want to apply Theorem (2.2.2) with the
choices a, = me~?4 and b, = e?K,,,(x)~°?. The associated function A4, is
Ay(s) = —loga, (e®) —s =—logm(e’) —s —oA(s) = (1 + a)A(s).
We saw in the proof of Theorem (2.2.16) that K,,,(e$)~e4 A"’ b = e4A". The same argument
applied to a, and b, gives
Ka,w(x)"’eAaAgba
= e(1*D4(1 + 6)A" b,
=e(1+0)A(1+0)A" (e Kp,(x))’
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~e(1+DA(1 4+ g)A""(A'")°

= (1+ o)(ed4")1*e

~(1 + O-)Km,w(x)“_a-
For small 8, the proof of Theorem (2.2.12) goes through with ®(n)? increased by a factor
of 1 + O. For large 6, the argument in that proof gives the required estimates.
Rather than integrate these estimates to get an asymptotic version of (C), we do a slightly
more general computation in the following.

The Berezin transform B,,, is a valuable tool for studying Toeplitz operators on H,,,. For
a smooth function F, B,,,(F) is defined by
wz)|?

_ (o 2, dxdy
BuF() = (P T T -/, ()Ku 7y MU= (69
If we look at the Fock spaces, m,(|z|?) = exp(—(1 + ¢)|z|?), then we have
Fw)+ 2

 dxd 1 1
B F (W) _ij(Z)e ol =2 = 401+ )AF(WHO(m)'

We would like analogues of these formulas for our more general weights. The general theory
of reproducing kernels insures that the Berezin measure
|K (w2z)|? dxdy

du = KW m(|z|*)

Is always a probability measure. We now want to study dﬂ using our asymptotic estimates
on the kernel function. First, however, we introduce a further restriction on a, which we
formulate in terms of the auxiliary function A of (22). We require A" (s) to be dominated
by exp(s?) in a controlled way. Suppose, therefore, that there exists constants C > 0, a, >

1
0 such that for « > a, and t > A" («,)z we have
A'(a+t)
A" (a)
For context, note that in the model case A(t) = eft — t the left-hand side equals S. For
smooth functions F defined on C, set ||F|| = X,,<3 sup|V"F|. In addition to rectangular
coordinates on € we will use coordinates (s,0) where w = e” and z = e"*5+% and also

use the scaled coordinates (S, ®) where S = \/A"” (2w)s and 6 = /A" (2w)6. We continue
to work of the previous. In particular, we still have the hypotheses and conclusions of
Theorem (2.2.16) and Theorem (2.2.18).
Theorem (2.2.19)[61]: In addition to the hypotheses of the previous, suppose that (70)
holds. Given F with ||F|| < oo, we have

Bur) = | f F@e o) EL L oylFIsye.

Proof. We start from (69). We first estimate the integral over the unit disk. On D we can
bound F by ||F|| and |[K(wz)| by K(w). Thus we have

|K (Wz)l2 . dxdy <c. K(w)?
| | P@ gy 0z =2 < CallPl s
To show that this can be absorbed mto the error term, we need to control K (w)?/K (w?) for
large w. Recall that w = logw. By Theorem (2.2.16), it is enough to show that

eZA(w)A//(w)Z .
AT (2e) 0(A"(2w)™).
Hence it suffices to show that

< — Ct2, (70)
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jw) =2A(w) —AQw) + 2log A" (w)
Is bounded above. We compute
2A" (w)

J' (@) = 24 (@) = 24 (20) + e s

and use the intermediate value theorem on the first pair of terms and the hypothesis (20) on
the third. It follows that for some @ € (w, 2w)

1
j'(w) £ 2wA" (@) + 24" (w)?2.
Recalling that A" is monotone increasing and unbounded, we see that j’ is negative for all
large w, which gives what we need.

We now pass to coordinates (s, 8), where w = e® and z = e®*5*% and so dx dy =
e2(@*s) dsdg. By definition, m(|z|?) = m(e?@*+9)) = ¢~2(@*5)g=A4(20+25)  Hence
1 'm(|z|?)dxdy = nle4F0+25) 45 dg.

1
SetR = {(s, 6):16] <0 (S(wr)i_“‘)}. In R we use the asymptotic estimates for K given
in Theorem (2.2.16). This lets us estimate the integrand by

_A"Qw+s)6? +
eAROt) A" 2w + s)e 2 1+0 (S(WT)Z r)

2

F(z) o —AQw+25)
1
eA®) A" (2w) (1 +0 (5(wr)§+r)>
1 2
<1+0(S(Wr)§+r>> )
Note that T = — <1 +0 (S(wr)?’r)). We shall see that our approximations
1+O<S(wr)5+r)

to the Berezin measure converge to a probability measure; in the course of that analysis, it
will be clear that the norms of the approximations are uniformly bounded. Hence the error

made by dropping the factors (1 +0 (S(wr)%”)) in the integral can be safely absorbed

into the error term. Thus, in R, the integrand can be estimated by
A"Qw + 5)?
A" Qw)
We have estimated the integral over the unit disk, i.e., s < —w. We now consider the region
where —w < s < —§. Set
h(s) =2A(26 +5s) — AQw) — AQw + 2s)

and put § = §(2w). We dominate F(z) by ||F|| and first do the integral in 8. Near the axis,
1

we use the Gaussian estimate of (71). Integrating that gives (\/E + 0(1)) A"Qw + s) .

Using the estimate in (68) away from the axis, we get a further contribution of

1 1
o(A”(Zw +s)'5). Thus, integrating in 6 contributes a factor of 0(1)A”" Q2w + s) 2.
Hence we must estimate

F(2)e?AQ0+s)-AQ2w)-AQw+25) eA(@w+s)0%  (77)

-6 " 2
f e A"QCw + s) :
- A"QRw)A"RQw + s)2
Now A" is increasing; hence the fraction in the integrand is at most 1. We need to estimate
f__(f e")ds. We have h'(s) = 24’ 2w + s) — 24" (2w + 25s). Since A’ is increasing and s

is negative, h' is positive and thus h is increasing. Thus the integral is dominated by we(=9),
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To estimate h(—6), we compute h''(s) = 24" (2w + s) — 44" (2w + 2s) and take note of

(18). We find that, on (—6,0),h"(s) = —24"(2w)(1 + 0(1)). Noting that h(0) =

h'(0) = 0 and integrating twice gives h(—8) = —A" (2w)8§%(1 + o(1)). Recalling that
1

A28 = A"'* for some k > 0, we conclude that the integral is dominated by any negative

power of A", a better estimate than needed.

Now we consider the integral over the region where s > §. Note that h(0) = h'(0) =
0and h""(0) = —2A" (2w). Hence, by Taylor's theorem,

1
h(s) = —A"(Qw)s? + gh”’(s*)s3,
with s* between 0 and s. Again we dominate F(z) by ||F|| and first do the integral in 6,
making the same estimates as in the previous case. We are reduced to estimating
joo e—A”(Za))sz+%h’”(s*)s3 A”(Z(l) + S)Z
1
8

A"Cw)A" 2w + s)2
We make the change of variables s = S/,/A"” (2w) and introduce the shorthand ¢. We then
need to estimate

ds.

1 3/2

- A" (Zw + SA”‘E(2w)>

j e—Sz+<ps3 - ds

SyA" 2w) A”(Zw)i
In the region of integration, s is positive and hence s* is positive. We compute h''(t) =
2A"" 2w +t) —8A"" (2w + 2t). Recalling that A”" is positive and increasing, we
conclude that ¢ is negative. Hence we make the integral larger by dropping ¢S3. We thus
need to estimate

) 3/2
- A" (Za) + SA”‘?(2w)>
das

e=S’
L\/m A”(Zw)%

The estimate (70) insures that the fraction in the integral is dominated by
exp(C'S?A" ~1(2w)). This insures that the integral is 0 (e” — A" ? for some 6 > 0, which
Is more than we need.

Now we look at the range |s| < & First we consider the part of that region outside of R.
Using (68), we see that, for fixed s, the integration in 8 (outside of R) yields an integrand of
the form

" Lorrr 3
0(1)”F|I e—A (2w)52+gh (S )53 A”(Zw + S)Z/A”(Z(l))i-l-r
1
In |s| < & the hypotheses on A insure that the quotient in this expression is O (A”(Za))E_T)
and that h'"(s*)s® is 0(1). Thus we must estimate the integral of

O(D)||F|le~4"@0)(1+0 M)s*47(2))2™°.  Doing  the s  integration  gives
O(D) ||F|| A” 2w)~*, which is an acceptable error term.

What remains is the main contribution, the integral over the region where s and 6 are
both small. In that region, we first note that the hypotheses on A and standard Taylor
estimates insure that

e—A”(Zw)sz"'we—A"(2w+s)92 = 4" QV)™07) (1 1 0(S(W2)*)).
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Hence, making the change of variable (S, ©) = (\/A”(Za))s, \/A”(Za))e), we obtain, up to
a term which can be safely absorbed into the error term,
f f F (e~ A"Qw + 5)*>dSde
10]<A” (2w)5® J|s|<64" 2w)2 A"(2w)*  m
Using the Taylor expansion of A” (2w + s) about s = 0, (23), and (25), we see that
A" Q2w + 5)2 /A" 2w)? = 1+ 0(A"(2w))" ". It remains only to note that the passage

from f|®|<A”(2w)6“’ fIS|<5A”(2 ; to [ [, introduces an error which, in the notation of

Theorem (2.2.12), is O(F).
This estimate gives our asymptotic version of (C):
Corollary (2.2.20)[61]: Asw — oo,

dxd
[ [ @mz) =2 2k 72
C

Proof. We use the notation of Theorem (2.2.18), that is, K, = K, and K; = Ky-1,,. We
want to estimate

[ = f 1K (w2)| (Il)dxdy

¢ Ko(lwz[?)
The same arguments as those in the proof of Theorem (2.2. 18) insure that
1K (w2z)| dxdy
I~ m(|z|?)
r Ko(wl?)
Where

1s
SQw +1r)z2 %

R = ,0): < 6,10 <
(5.0): Is] < 8,10 —

We rewrite this as

|K;(W2)| |Ky(wz)|? |Ko(wz)|? dxdy
= i reum S~ | [ o iy maa)

where E, = |K;(wz)|/|K,(Wz)|? on R. Theorem (2.2.18) insures that E,,~2 on R. There
Is no problem extending E,, to the entire plane with ||E, || bounded independently of w. We
now apply the previous theorem with F = E,, and find that

1_ij (2)e= G’ +92)@+0(1)

Recalling that F, ~2, we obtain I~2, which is the desired conclusion.

Our results are estimates in a fixed Bergman space which are asymptotic as |z| — oo.
However, instead of a fixed density m, we could look at the family of densities m, = K,,;2~°
and investigate the asymptotic behavior of the kernel function and Berezin transform for
fixed zand as o — 0. Such questions are of interest in quantization, with (1 + o)~ playing
the role of Planck's constant. See [67] and [68] for instances of such estimates as well as
further discussion. Here we discuss briefly the type of results that could perhaps be obtained
by the methods, and why we have not yet obtained them. First, consider Theorem (2.2.18).

We have K, (re’®)~(1 + 0) K (re?®)" . There may be a more refined result such as
1 _ 1
G+ D (something) + 0 (;)
However, the proof which we give fails to produce such a result. That proof gives
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K, = (1+ 0)KL + (something) +




1 o
K;(1+ 0)Kyt (1 +0 (A"b’)>

for some positive . This is fine for fixed o and large r, but not for fixed r and large o. The
fact that the right-hand side involves a factor (1 + small)? seems to be intrinsic to the
structure of our proof.

It also seems plausible that more is true in Theorem (2.2.19). We can estimate the
Gaussian integral by writing F near z = 2w as a Taylor polynomial of degree 2 in the
variables s and 6. The integral of the Taylor remainder gives a contribution smaller than the

error term. The polynomial-times-Gaussian can be integrated explicitly, and we obtain
2

he —-&
T 2y AF (W) + OIIFIA” 2w) .

However, this presentation is misleading. We do not know that the third term on the right is
smaller than the middle one. The difficulty is not in the estimation of the Gaussian integral,
which produces an error that is 0 (A" ~2). The problem is the error terms on the estimates
which led to the Gaussian integral. If it were known that the error terms resulting from that

analysis were 0(A4"'~2), then we would in fact have
2

B, F(w) = F(w) + M”W—(Zw)AF(W) + 0(D|IFIIA” 2w)* ¢

We can carry the speculation a step further. If, instead of fixed m, we now look at the family
of densities m, = K,,,>~7 and write B, for the corresponding Berezin transforms, we would
have

B, F(w) = F(w) +

w? ~
BO-F(W)~F(W) + MAF(W) + O(Aw Z)HF”

Now recall from the proof of Theorem (2.2.18) that A, = (1 + 0)A,. We could next regard
m, F, and w as fixed and let o grow. That would give, as ¢ - o
2 1
AF 0] -——).
1+ 0445 (2w) (w) + (az
Estimates such as this, even with an error term ae), would be sufficient to give a

correspondence principle for Berezin quantization schemes; see the Introduction of [67].

It may be that the methods here can be developed to obtain such estimates for large o.
However, it appears that doing this by direct estimation would be quite awkward. Hence we
defer further analysis in the hope of finding a more effective way to organize the ideas.
Section (2.3): Hankel Operators

We consider the Fock type space A% (u,,) consisting of those holomorphic functions
which are square integrable with respect to the measure dpu,,(z) = e 1?™dV (z), where
dV (z) is the Lebesgue measure on C™ and m > 0 is a positive parameter.

When m = 2 the space A%(u,) is the Fock space, called also the Segal-Bargmann
space. Let I be the identity operator and P, is the orthogonal projection from L?(u,) onto
A?%(uy). Let T(C™) be the subspace of L2 (u,) consisting of those functions f that satisfy f (-
+a) € L*(u,) forall a € C™.We recall that if f € T(C™), then the Hankel operator H with
symbol f is defined by

B,F(w)~F(w) +

He (@) = (I - P)(fo),
for all ¢ in the dense subspace of A%(u,) spanned by {K,(-,a),a € C"} where K,(z,a) :=
e'»® 7z a € C", is the Bergman kernel. In this case, the study of compactness of Hankel
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operators with bounded symbols was considered in the works of Berger and Coburn [134]
and Stroethoff [142]. In the more general case f € T (C"), the simultaneous membership of
H; and Hp to the Schatten classes was characterized by Xia and Zheng [143] and by Bauer

[130] in the Hilbert-Schmidt setting. A necessary and sufficient condition for simultaneous
boundedness of H; and Hr was given recently by Bauer [131]. The tools used in these works

use heavily the translation action of the group C" and related properties to the Bergman
kernel.

We also mention that in the one dimensional case n = 1 the study of Hankel operators
in the setting m > 0 was considered by Schneider [Sc] when the symbolis a monomial. His
method is direct and relies on an approximation process.

We consider the general case m > 0. We begin by clarifying the appropriate
definition of densely defined Hankel operators. Indeed, if f € L?(u,,) is a function of
polynomial growth, then the Hankel operator H, with symbol f is defined by H;(¢) =

(I - P,))(fp), where P,, is the orthogonal projection from L?(u,,) onto A?(u,,) given by

Pu0)(@) 1= | Kin(2w)g Wi, (), or g € 12
where K, is the Bergman kernel given. We shall show that the righthand side of the latter
equality is well-defined for functions g of the form g = f¢ for all f € L?>(u,,) and ¢ in
the space P of holomorphic polynomials.This allows us to extend the definition of P,, on
such functions and, using this, we see that H is defined on holomorphic polynomials. In
particular, it is densely defined.

We first point out that the techniques used the case m = 2 to study Hankel operators
do not apply to the case m # 2. Our goal herein is to develop new methods which are
adequate to the setting m > 0 in the case of anti-analytic symbols f.

The first main result is the following

We observe that when m is odd, then all bounded Hankel operators with anti-analytic
symbols are also compact. This is not the case for m even.

In the particular case m = 2, Theorem (2.3.22) was established in a recent work by
[131] using a technique which does not work at all when m + 2.

We recall that an operator T is in the Schatten class S, (A% (), L* () if (T * T )gis
in the trace class of A%(u,,). Our second result characterizes such a class of operators.

We discovered recently that a weaker version of our results was established by
Knirsch and Schneider [89] in the one dimensional particular case.
We finally mention in passing that Hankel operators with antiholomorphic symbols are
intimately related to the d-canonical solution operator (see [85], [86] and [87]).

We recall some facts about Hankel operators with respect to certain rotation invariant
measures, see [181]. Let 1 be a rotation invariant open set in C™ and let u be a rotation
invariant measure on (2. We suppose that 4 has moments of every order; that is,

my = f |z|?*du(z) < +oo, for all k € N,,.
0

We consider the Hilbert space L?(f2, 1) of square integrable complex-valued functions on
0 with respect to the measure u and A%(f2,u) its subspace consisting of holomorphic
elements. We assume that for each set compact K c 2 there exists C = C(K) > 0 such that

suplf (D = CIfll 2o

ZEK
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for all f € A%2(Q2, ). Thus A%(02,u)is a closed space of L2(2,u). The corresponding
orthogonal projection P, will be called the Bergman projection. We also assume that the
subspace consisting of all holomorphic polynomials is dense in A%(12, u).Therefore, if f €
A% (0, 1) has polynomial growth, then the Hankel operator Hf given by

H (@) = (I -F)(fo)
is well defined for all holomorphic polynomials ¢ In particular, Hz is densely defined.

Let Ni denote the set of all n-tuples with components in the set N, of all nonnegative
integers. If « = (ay,- - -, a,) € N§, welet |a| := a; + - -+ + a, denote the length of a. If
B = (B, -, Bn)NG satisfiesa; > ; forallj = 1,- - -,n, thenwe writea > f. Otherwise,
seta & f.

The space of polynomials P is endowed with the Fischer inner product [182]
(,)r, defined on the monomials by
alifa=p

a —
(2%,2F)p = {0 if a = B.
Finally, if A and B are two quantities, we use the symbol A ~ B whenever A < C;B and
B < C,A, where C; and C, are positive constants independent of the varying parameters.
We shall express the operators H,. and H_xHj on holomorphic homogeneous
polynomials.
Lemma (2.3.1)[84]: Suppose that 8,k € Nj and d € N,. Then
o mg  T'(n+d—|k[)o"
(o) =8O ~ = Tmgay ot/ ©
for all holomorphic polynomials f of degree d. In particular, if f = &%, then
—_— My I'n +a|l—k]) a! k-
§r8 = Ekifa >k
(Hf)(&) = Mig-iry T+ lal) (@ — k)!
EkEX otherwise.
Proof. It suffices to prove the lemma for f(§) = &% where o« € Nj. Let g be a

homogeneous polynomial in P. If g is a monomial of the form g(&) = &8, where B € N% ,
then using the properties of B,, we see that

(PM(Z_kf).g)LZ(n,M) ={f. 2", com
and hence (P, (z*f), g),2(o) = Oaslongasa # k + B.Nowleta = k + B.By Lemma
(2.3.1) in [181], we have the following identities

j z%z%du(z) = (n ~ Dimyqa! and (z%,z%) . = a! (72)
; K2 =" ¥ lal = 1) LA
fromwhich we obtain
~ (n —1!'m
BP9 raw = G Tar—1y1 79

Since the multiplication operator and the corresponding differentiation operator are adjoint
to each other with respect to the Fischer inner product, this implies that

i Mg (n—1+1BD! ¥
BP9 == G T T+ T e e

for all holomorphic homogeneous polynomials g of degree |B|. Therefore, if f is a
holomorphic homogeneous polynomial of degree d, we have
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— — 1 glkl

P#(Z_kf) _ Mg n—1+d—-|k]!o 7.
Mmg_gy M—1+d)! 0z
This completes the proof of the lemma.
Lemma (2.3.2)[84]: The domain Dom(H_) of H, contains all polynomials in w and w.
Proof. It suffices to show that, if « and £ are fixed in N, then the linear functional
g e (Hzx(9),2%2P) 200 )

is bounded on A% (2, 1). To do so, choose an integer d > |a| + |B| + 2|k| and consider the
subspace N, of A2(£2, ) consisting of polynomials with degree smaller than or equal to
d.We denote by 7, the orthogonal projection from A%(2, u) onto N,. If g € P, then (I —

m4)g 1s a sum of holomorphic homogeneous polynomials in P with degree at least d + 1.
In view of Lemma (2.3.1), we can write

Hyco (I —mg)g =Z5f +h
where f is a sum of holomorphic homogeneous polynomials of degree at least d + 1 and
h is a sum of holomorphic homogeneous polynomials of degree at least d + 1 — |k|.
Therefore,
(Hz—k ° (I - ﬂd)g,ZaZ_[)))LZ(_Q'#) = <Z_kf,ZaZ_ﬁ>L2(_Q'H) + (h,ZaZ_ﬁ>L2(_Q,M)
= (fzﬁ,Z““Lk)Lz(Q#) + (zﬁh,z“)Lzm'“).

Since d+ 14+ || =1+ |a|+2|8| + 2|k| > || + |k, it follows that
(fzF,2%**) 20, = 0. Also, due to the fact that the degree of zF f is greater than |a| we
see that (z° f,2%) 2(q,) = 0. Thus (Hyk o (I —14)g,2%2P )2y, = Oforall g € P and
consequently

(Hsk9,2%2P) 2000 = (Hzk o (I = 114)9,2%ZF ) 1200 -
The lemma now follows from the fact thatH .« o  is of finite rank and hence bounded.
We observe by Lemmas (2.3.1) and (2.3.2) that P is contained in the domain of the operator
H; H for all holomorphic polynomials u and v.
Lemma (2.3.3)[84]: Suppose that u, v and f are holomorphic polynomials. Then
HzHyf = B,(vuf) — vB,(uf).
Proof. A little computing shows that for all g € A?(12, u)
<Hﬁfr Hﬁg>L2(.Q,y) = (ﬂf - Pu(ﬂf)» 17g - Pu(ﬁg»Lz(.Q,u)
= (Vif, 9z — (B (@), Ug) 1201
(B — 1)@, BT 2o
= (vuf, gz — (B(@f), 091200,
where the latter equality holds since P, (7g) € A*(£2, u) and (P, — I)(iif) is orthogonal to
A%(Q, 1). This completes the proof.
Lemma (2.3.4)[84]: Assume that k and [ are elements of Nf. If f is a holomorphic
homogeneous polynomial of degree d, then
P,(z2%f) = Mgy I'(d + n—|k[+|I]) 5“2
Ma —|k|+]1| F(d+n+ |l|) 0z

Proof. It is sufficient to establish the lemma for monomials f(z) = z%. If B is an arbitrary
element of N, then, due to the properties of the Fischer product and (72), we have
(PM(ZlZ_kf)»Zﬁ)LZ(Q,M) = (Zl+a;Zk+B>L2(n,u)

(= DImygpy (9|k|

T (n+al + I = D! azk
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Migie T+ lal + 11 =1k o 8
C Mygap-e T+ lal + 1) <aZk @120
This completes the proof.
In what follows we shall compute ¢ for a holomorphic homogeneous polynomial f.
Lemma (2.3.5)[84]: Suppose that k and [ are in N§. If f is a holomorphic homogeneous
polynomial of degree d, then
Mgy T +d+ |1 —|k[) o

H Hf = :
7! Zkf Mg+ 1)-|k| F(TL +d+ |l|) o0zk (Z f)
_ my I'(d+n —IkI) Zlalkl ‘
Mg k| F(d + TL) 0zk

In particular, H2H ;i f is a holomorphic homogeneous polynomial of degree d + |I| — |k].
Proof. Follows from Lemmas (2.3.1) and (2.3.4).

An immediate consequence of Lemma (2.3.5) gives the following

Proposition (2.3.6)[84]: For each a in N{, the monomial z% is an eigenvector for the
operator HH ,x and the corresponding eigenvalue 4, is given by

_m|a|+|k| F(n+|oc|) (6(+k)' mq| F(|a|+n— |k|) a!

/'l —_ —
¢ myy I'(n+al+1k)) a Mgy T(al+n)  (a —k)!
if« > k and
1= m|a|+|k| F(n+ |d|) (a + k)'
¢ my F'n+la|l+1k)) a ’
otherwise.

We consider the Fock space A2(u,,), for m > 0. In this case, the moments of the
measure dp,, (z) := e~?" dv(z) are given by
mg = j |z|25e 712" dv(z) = iF(M) (73)
R m m '
If k is a multi-index we set T = H_xH . Then T is defined on the dense subspace P of
A?%(u,,). For each multi-index «, the eigenvalue A, of T corresponding to the eigenvector
&% is given by Proposition (2.3.6). In what follows we shall study the asymptotic of these
eigenvalues. We distinguish the two cases m = 2 and m # 2.

Lemma (2.3.7)[84]: Suppose m = 2. Then for each j = 1,---,n, the operator Hy;, IS

bounded but not compact on A% (u,,). If |k| = 2, H .« is unbounded on A% (u,).
Proof. In this case, u, is the Gaussian measure on C". Its moments reduce to m, =
I'(s + n). Moreover, if « € NE,

(a + k)! al ,
1 _{ al _(oc—k)!lfOCZk'
) (a + k) ,
kT lf(l;‘ik.

We first observe that if |k| = 1, then the eigenvalues of T are all equal to 1. Therefore, T is
bounded but not compact on 42 (u,,,). This proves the first part ofthe lemma.

Suppose now that |k| = 2. Choose j, in [1,n] so that k;, = maxk;. If d is a
]

nonnegative integer, set a(k,d) = (kq," - -, k-1, kj, + d, kj 11,7 - -, ky). Then
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2k;)!
Aa(ka)y = 1_[ ((kj]))' [(d+kj,+1)---(d+2kj]—-(d+ 1) - (d+k,)
J#Jo '

Therefore, dlir-P Aa(r,a) = +o0, showing that T is unbounded on A?(u,,). Thisimplies that

H ,« is also unbounded.
Henceforth, we assume that m # 2, m > 0. From Proposition (2.3.6) and (73) we see that if
a € N, then the eigenvalue 1, can be written in the form

4 (a+k)!_B a! fa >k
Aa:Jm— lal (g — i * =

al

(a + k)! (74)

k AlalT lfa r k

where, for a nonnegative integer d,
( F<2d+ 2n _|_2|k|>
. m m rd +n)
Aa 1= F(2d+ Zn) rd+n+|kl)’

4 m (75)

2d + 2n
r(%==—=") r@+n-kD
F(Zd + 2n 2|K|) rd +n)
\ m m
The asymptotic behaviour of the eigenvalues {1,} when |a| = d ~ 4+ is given by the
following
Lemma (2.3.8)[84]: The sequences (A,) and (B,;) given by (75) have the asymptotic
behavior

Bd =

2|k|

_(2\™ el (2-1) [, _ 1kl*(m —2) 1
Ad—<m> (d +m)* )[1 —Zm(d+n)+0(—(d+n)2>]
2|k|

2\ m 2_ |k|?(m — 2) 1
= (= i(7-1) |1 4 LM 7 2 (_)

Bo= ()" @ [” am@+n) O \@rne
as d - +oo,
Proof. Follows from the property of the Gamma function [159]

I'(x+y) y-—2)y +z-1) 1

— T — ¥V Z N

I+ 2) b <1 + ox + O(XZ) asx v +oo, (76)
where y and z are real numbers.

Lemma (2.3.9)[84]: The eigenvalues 4, have the form
|k
2

Ay = (%) ﬁ(d+n)2|11:z_|_1 (fn (“1 1o et 1) +£(a)),

d +n d+n
where e(a) = 0 (%)and

k12 O, t
fulty - t)i= —(m—2)——t +ijt—j
j=1

whena > kand d = |a| » +co.
Proof. We recall by (74) that if « > k, then
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(a+k)! a!

Ao = At By T
where (4,) and (B,) are given by (75). On the other hand, by (76) we see that
aj +k;i)! ; -
aj' kj kj—1
= (1+a)’ —ki(k,+1)(1+a)’ +r(1+a)

CEO
where q; and r; are one variable polynomlals of degree at most k; — 2. This implies that
n

! . _
[ a+e) Z b = (1 + )7 [ [ + ¥ + (@)
j=1 1£j
I n
@ i.k)! = (1 +a;) “i z ki(kj +1)(1+ a])kf ~(1 +a)k +r(a)
1—1 l;tj

where g and r are polynomials of degree at most |k| — 2. These equalities, combined with
Lemma (2.3.8), give the lemma.
Lemma (2.3.10)[84]: The eigenvalues A, have the estimate

||
Ao = (O(d + n)zﬁ_kjo),
as long as ajp < kjpand d = |a| » +oo.
Proof. Let j, = 1,...,n and suppose that k;, = 1. We recall by (74) that if
ajO < ij’ then
A|a|(a + k)'
Ag =
al

where (4,) is as before. Set a' = (a;, -+, @j,~1,0,Q),41, -, &) and k' = (ky, - -
v Kjo-10,Kj 41,7+, ky). Arguing as in the proof of Lemma (2.3.9) we have

a + k)! a +k !

@+ Bl o) @+

n n
= (k)| || a+ aj)kf + ) klg-D)+a) | [a +as
J=1j#jo J=1j#jo s#j,l
+q(a),
where g is a polynomial of degree at most |k’| — 2. These estimates, combined with Lemma
(2.3.8), give the lemma.

Theorem (2.3.11)[84]: The operator H .k * H .« is bounded if and only if 2 % —1<0and

)

compact if and only if 2 ——-1<0.
Proof. Let X, be the S|mplex consisting of those t = (t;, - -,t,) € R™ such t; = 0 and
t; +---+t, =1.By Lemmas (2.3.9) and (2.3.10) we see that

k| a, +1 a, +1
A~ (d+mn)?mt (1 n_)|
|§l|1:%| a (d+n)m lal=d d+n’ d+n

2Ky
~ (d+n)"m " sup |f,(8)]
tex,
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as d = |a| - +oo. Now the lemma follows since the operator H ;x * H ;« is boundedif and
only if the sequence sup [4,]| is bounded and H .k * H,x is compact ifand only if the
|a|=d

sequence sup |A,|tendsto 0 asd = |a| = +oo. _
|a|=d

Theorem (2.3.12)[84]: Let k € N and m be a positive real number.

(i) The Hankel operator H .« is bounded on the Fock space A%(u,,) if and only if m >
2|k|.

(ii) The Hankel operator H ;« is compact on the Fock space A(u,,) if and only if m >
2\k|.
Proof. We use that the operator H xis bounded if and only if T = H,« * H_x is bounded

and H,« is compact if and only if T = H,« * H ,« is compact.

':l—l — 1 < 0and let p > 0. We shall investigate the membership of the

operator T to a Schatten class S, . Recall that T is in S, if and only if the seriesy AL is
convergent.

Let d be an integer. We shall estimate the sum s; = ¥4=q AP, when d - +o0. The
calculations above lead to study the cases a = k and its opposite case separately. Let B, :
={a € Nj,|a| =d}. We partition B; = B'd U B/j, whereB; ={a € B : a« = k} and
B = B4\ By. Thus s, can be written in the form s; = s; + s, where s; = ZaEBé AP and

sy = yis
d aeBy “ta
We need to compare the cardinalities #B,, # B, and #B] of these sets.

dn—l

Lemma (2.3.13)[84]: We have the estimates #B,; ~ #B/ = mand #B ~d" *asd —
+ 00,
Proof. Let P, ; the space of n variables holomorphic polynomials of degree d. We

. n—1+d (d+n-1)! 1 _
have #B; = dim P, 4 = ( - ) = oo Therefore, #B; ~ = _1)!d" las d - +oo.

On the other hand, for j = 1, - -, n, let B ; = {a € By, a; < kj}. Since By =Us<jen By ;)
we see that #B; < Y7, #By ; .

Next, assume that 2

If k; = 1, then
ki—1
By =Vl {a=(ar a1l a5 ), lal = d}
ki—1
=uZ e = (b @) ) a=d-1)
1#]
Therefore, B, ; = Y9  dim P and when d — +oo, #B', . ~ k;
1 Bqaj = Lz AMEp_q,q-1, » #Dg j i 2"

This shows that, when B; ~ d"~% as d — +o. The lemma now follows from theobservation
#B, = #B}, + #B),.

Lemma (2.3.14)[84]: Suppose thatn = 2 and g is a continuous function on R™ — 1.
Consider the open set 2 := {(ty," - -, t,—q € R}™1, Y721 t; < 1 }. For a multi-indexy =
(V1 ** ) ¥n-1 INNG ™1, set

c _=<V1+1 Vn—1+1>
y.a * d ) ) d
1 +1
_ Vi Vi
Jg := yEN’(}l:| |—,—C.Q
j=1d d
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Then lim —— ¥y, 9(cr.a) = [, 9(0)dt.

Proof. For d € Ny, let 2; =U,¢j, 7;11 [% YJTH] It is clear that 2, < 2.Next, we show
that dl_i,rfoo Xag = Xq- If sisareal number, let [s] denote

the largest integer smaller than or equal to s. If t = (t;,- -, t,1) ERandl < j<n -1,

then[ ]< t; < 14 ’]+ . Therefore,
dt; dt;

z [ il z e Z [ il

: d

Jj=1
Since}]”“1 t; <1, thereisan mteger al0 such that forall d > d,, we have
)y [dt’ 2l < 1. Thus, t € [[dt’ dt’“ ]and hence t € Qdfor all d > d,. Thus
dl_1>r+n )(Qd = )(Q Therefore,

d(n D Z g(Cy,d) jg(t)dt = g1 g(Cy,d) f [y] y1+1]g(t)dt

Y€Ja VEHd
+j gt)dt —jg(t)dt
24 0

Since g is a bounded continuous function on the compact set £2, we have, by Lebesgue’s
theorem, dligl fﬂdg(t)dt = [, g(t)dt. On the other hand, by continuityof g on the

compact set (2, we see that

Z dn— 1«9( V'd) j [yj’y]+1 gt)dt| = 2 jl'[

l9(cy d) — g(®)dt]

n— [VJ VJ+1]
Y€Jd y€lqg i=1|d " d
also tendsto 0 as d —» +oo. ThIS shows that
i s Y st = [ o

Y€Ja
The above result enables us to estimate s; when d = |a| — +co.

Lemma (2.3.15)[84]: If p = 1, then
Sqg =~ d"” 1d”(zu— 1).
Proof. Recall that s; = ZaEB; AP By Lemma (2.3.9), we know that the sequence

{14} € By has the following expansion when d — 4o
Ikl

= ()7 @ (1 () )

d+n
where e(a) = 0 (%)and

|k|? =tk
fa(ty, o ty)i=—(m — 2)—tk+zkj2t_
i—1 ]

Using the properties of the function x — xP, we see that there exists a constant M > 0,

such that
(a1+1 an+1)p
fn d+n’ 'd+n
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d

(a1+1 a, +1
"\d+n’ ’'d+n

) + e(a)




Therefore,
k|

2\%m M (a1 g +1
l‘”(%) (d+mn)"m (f"<d+n' 'd+n)'

asd = |a| » +oo. Applying Lemmas (2.3.13) we see that
IkI

2 ||
s (z) "

(a1+1 an+1>|p
d+n’ ’'d+n

aQEBg
Ld

2\*Pm k|
~ (_) dn1qP@m Y f If(®)[Pdt
m 0
so that the lemma follows from Lemma (2.3.14).

We recall that an operator T is in the Schatten class S, (A% (), L* (ttm))

if (T * T)gis in the trace class of A2%(u,,). Our second result characterizes such aclass of
operators.
Theorem (2.3.16)[84]: Let k € Ni and m be a positive real number. Then the Hankel
operator H« is in the Schatten class S, (A% (), L* (1n))if and only if p > 2nand m(p —
2n) > 2plk|.
Proof. We use that the operator H « is inS,, (A% (), L* (t4,,))if and only if
T = Hk * Hk is Sp(A% (). Therefore, the theorem follows from Lemma (2.3.15).

2

We first study the behavior of the Bergman kernel K,,,(z, w) corresponding toA? (u,y,).
Let E 2 2nbe the generalized Mittag-Leffler’s function. This is the entirefunction defined by

+00 24
Eiz_n(ﬂ): z ,A €C.
T 0F(Zd Zn)

We shall express the Bergman kernel in terms of this function. Namely,
Lemma (2.3. 17)[84] The Bergman kernel K,,,(z, w) of A2(u,,) is given by

K, (z,w) = )IE? w({(z,w)),
where Ez 2n|S the derlvatlves of Ez 2n with order n — 1.
Proof. The monomials z%, & € N, form an orthogonal basis of A2 (u,,).Since
a (n—1)! al 2|a| + 2n
1202,y = ( )
m m  (la|+n—-1)! m
it follows that the Bergman kernel is
ZCZ WO[
K., (z,w) = z
" Lt 12 T T2,
m o (d+n-— 1)'
"D 5d ((z, w)?
&dir (— +22)
m
= m 2 2n (z,w)&) .

This completes the proof of the lemma.
The Bergman projection P, is given by
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Pn(f)(2) := j Km(z, w)f W)dpm (w), for f € L?(uy,). (77)
CTL

This definition can be extended to functions of the form fg where f € L?(u,,)

and g € P. Indeed,

Lemma (2.3.18)[84]: If g € P and z € C", then gK,,,(z,) is in L?(uy,).

Proof. It follows from Theorem 2, p. 6 in [90] that the generalized Mittag -Leffler’s function

is E2 znis an entire function of finite order = andtype 1. ThereforeEz 2n 1S also an entire

m'm mm

function of finite order = Py and type 1 and hence for anyp > 0, there is a positive constant C
that

ESmM)| < Cel Ea ,A € C.

m m
This shows that for all z, w € C",

m+o
K (2 W)] < Cl®I 7 < Ce(lzllwl) 2,

showing that for all g € P and z fixed in C™, the function w » g(W)K,,,(z,w) isin L?(u,,)

aslongas0 <o <m.

It follows from Lemma (2.3.18) that if f € L?(u,,), then the Hankel operator Hg with

symbolf is well-defined on P by
Hi(9)(2) := | (f(@) = f(W))Knm(zW)gW)dpm(w),g € P.
(Cn
We point out that the measurable function z » Hz(g)(z) is not necessarly an element of
L? ().
Denote by M the subspace of those functions f € A2%(u,,) such that Hr (g) € L?(u,,) for
all g € P, and the densely defined operator Hy is bounded on A%(u,,). We equip M with
seminorm
A1 == [[HE[| + 1£COI-
The subspace of M consisting of functions f such that Hz is a compact operator will be

denoted by M. Then is not hard to see that M, is a closed subspace of M.
If p = 1, we denote by M,, the subspace of those functions f € M such that the Hankel

operator Hr is the Schatten class S,, (A% (tm), L* (i))- We equip M, with seminorm
71 == (lHEll, + 17O
Lemma (2.3.19)[84]: The spaces M and M,, are Banach spaces.
Proof. We prove the lemma for M, the proof for M,, is similar. Let (f;)nen, be a Cauchy

sequence in M. Without loss of generality we may assume that f,,(0) = 0 for all n. The
sequence (an)neN is a Cauchy sequence of bounded operators on A?(u,,). Therefore,
0

there is an operator T in A% (u,,) such that (an)neN converges to T in the norm operator.
0

Let f := T (1) be the conjugate of the image 7' (1) of the constant function 1 under T. Since
Hg (1) = f,, it follows that
1o = Flizguy = I =T Dllzq, 5 = 1HZWO-TO ., < Hz-T]
showing that
lim I = fllzgu = 0. (78)
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Thus f € A%(u,,). We shall show that the Hankel operator H with symbol f is bounded. It
is well defined on P. We shall prove that Hr is equal to T on P. Let g be a holomorphic
polynomial. We first observe by (77), (78) and Lemma (2.3.18) that for all z € C™ we have
(PG = F)9) @] < 1fa = Fll2um 19Km @l 2y
showing that lirf P((f — f,)9)(z) = 0. Since again by (78) we have that
Nn—->+oo

lim (f — f,)g (z) = 0, it follows that

n—--+oo
lir+n HE - Hf(g)(Z) =0.
n—--+4oo

This proves that T, = Hz(g) and hence T = Hg . Therefore M is a Banach space. The proof
of that M,, is a Banach space is similar.
For 8 = (6,,---,0,) € R", let Ry be the unitary linear transformation in C™ defined by
Ry(2) = (€12, - -,e'%nz), forall z = (z., - -, z,) € C"
Lemma (2.3.20)[84]: Let 8 € R™. Then the operator Ryf:= f o Ry IS a unitary isometry
from L?(u,,) onto itself and from A%(u,,) onto itself. Moreover the following assertions
hold.

(i) If f € M then Rgf € Mand [[Rgf Iy = IIfl-

(i) If f € M, thenRyf € M.

(iii) If f € My, then Ry f € M), and

IRef e, = lflm,

Proof. It is clear that the operator Ry is a unitary isometry from L?(u,,,) onto itself and from
A?%(u,,) onto itself. Let f be in M and & € R™. Then Ry f is clearly in A, (u,,). Moveover,
if g is an element of P, then by a change of variable we see that

() (2) = f Ky (Roz, W) g (R_g W) [RaF @)~ F W) |dptra (W)
(Cn
j K (Roz, W) (R—g9) W)[F(Rg2) — Fw)|dtr (W)
Cn
= "H-(R_09)(Re2)
= (ReH:R_0)(9)(2).
Since the adjoint of R_g is RZy = Ry, it follows that
|Hzz7ll = [|Hf|

If o Rolly = llfllIpm-

This proves part (i) of the lemma. The proof of parts (ii) and (iii) of the lemma are similar.
Lemma (2.3.21)[84]: Let f € A?(u,y,).

k
(i) If f € M, then for any multi-index k that satisfi% (0) # 0,es the monomial z* is in
M.

(i) If f € M, then for any multi-index k that satisfies Zg (0) # 0, the monomial z* is in
M.

(i) If p>1 and f € M, then for any multi-index k that satisfies g(O) #+ 0,the
monomial z* is in M,,.
Proof. To prove (i), suppose that f € M. By the Cauchy formula we have

)

showing that
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0
ﬁ (O)Z (2 )nj j f(R Z) /elk191 -eik, 6,

do,
Where d@ = d6f; --- db,for0 = (64, --,6,). By Lemmas (2.3.19) and (2.3.20) we see
that (O)Z € M. Therefore, z¥ € M as long as (O) #+ 0, The proof of the remaining

statements of the lemma is similar.
Theorem (2.3.22)[84]: Let f be an entire function in A2(u,,), where m is a positive real
number.

(1) Then the Hankel operator H¢ is bounded on the Fock space A?%(u,y,) if and only if £ is

a polynomial of degree at most % :
(ii) The Hankel operator Hy is compact on the Fock space A?%(u,,) if and only if f is a
polynomial of degree smaller than % :

Theorem (2.3.23)[84]: Let f be an entire function in A%(u,,), where m is a positive real

number. Then the Hankel operator Hy is in the Schatten class S, (A*(tm), L? (i) if and
w

only if p > 2n and f is a polynomial of degree smaller than
Proof of Theorems (2.3.22) and (2.3.23). We first prove Theorem (2.3. 22) Let f €

A?%(u,,,). Suppose that Hg is bounded and let k be a multi-index that satisfies —(0) * 0,

By Lemma (2.3.21) we see that the monomial z* is in M. Now Theorem (2.3. 12) implies
that m > 2|k|. Hence f is a polynomial of degree at most %

If Hy is compact then a similar argument shows that f is a polynomial of degree strictly
smaller than % . The converse follows from Theorem (2.3.12).

The proof of Theorem (2.3.23) is similar to that of Theorem (2.3.22).
Corollary (2.3.24)[185]: Suppose that 5,k € Nj and d € N,. Then

_ (14+€)y I'n+d-—|k|)ak
Z (Hzefy) (&) = s‘rz ) Ay e Tt d) ag;cZ fr($)

for aII holomorphic polynomlals £ of degree d. In particular, if . = &¥*€, then

2, Weh)®

e (4 Opeq T +lk+el =D (Kk+OIC,,
Zfr A H O Ttk +ed @ D& ifez0

Z EkERTe otherwise.

Proof. It sufflces to prove the corollary for f,.(&,) = &k+€, where k + € € NI Let g, be a

homogeneous polynomial in P. If g, is a monomial of the form g,.(&,.) = ff, where €
Ng , then using the properties of B, we see that

DRG0 2@n = ) 7 0

r r
and hence ¥, (P,(Z*f.), gr) 120y = Oaslongask +e#k + B.Nowletk +e =k +
f. By Lemma 2.1 in [181], we have the following identities
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(m = D!+ €)jg+e|(k +€)!

(n + |k +e|l— 1)! and (z"*€, z47€)p = (k + €)!,(79)

j Zk+EZ_k+6d,u(Z) —
0
from which we obtain

-+ +e
Z (P (Z_kﬁ“) gr)Lz(Qu) = (?Tl n )lk('l' €|6)|§)||Z (fr:z 9r)F-

Since the multlpllcatlon operator and the corresponding dlfferentlatlon operator are adjoint
to each other with respect to the Fischer inner product, this implies that

_ (I+€)p+ (n—1+|B!
z (P (Zkf;") gr)Lz(!)u) = (1+(:|'§||ﬁ:k| (n—1+|B|+ |k|)'z (a kfr:gr)Lz(.Qu)

for all holomorphic homogeneous polynomials g, of degree |ﬁ| Therefore, if £, is a
holomorphic homogeneous polynomial of degree d, we have

_ (1+e)g (m—1+d—|k])!alk
z P.(Z"f,) = - > e
(1+6€g-xy M—-1+d) o0z
T
This completes the proof of the corollary.
Corollary (2.3.25)[185]: The domain Dom(H_,) of H_; contains all polynomials in w and
w.
Proof. It suffices to show that, if k 4+ € and g are fixed in N§, then the linear functional
= <Hz‘k (9r), Zk+ez_ﬁ>L2(.Q,u)
is bounded on A2 (£2, u). To do so, choose an integer d > |k + €| + || + 2|k| and consider
the subspace N, of A%(£2, 1) consisting of polynomials with degree smaller than or equal to
d.We denote by 7, the orthogonal projection from A%(2, u) onto N,. If g, € P, then (I —

m4) gy 1S a sum of holomorphic homogeneous polynomials in P with degree at least d + 1.
In view of Corollary (2.3.24), we can write

z Hzio (I —1g)gy =z (Z_kfr +hy)

r r
where £, is a sum of holomorphic homogeneous polynomials of degree at least d + 1 and
h, is a sum of holomorphic homogeneous polynomials of degree at least d + 1 — |k]|.
Therefore,

z <Hz—k o (I —T[d)gr,Zk"'eZ_ﬁ)Lz(Q’u)
T
== z <Z_kfr, Zk+EZ_ﬁ>L2(Q’H) + Z (hT' Zk+EZ_ﬂ>L2(_Q’M)

T T
= Z (frzﬁ,sz’Hk)Lzm#) + Z (Zﬁhr,zk*'E)Lzm’M).

T T
Since d+1+|B|=1+|k+e€|+2|8|+2|k]|>|k+€|+|k|l, it follows that
h. (f;,Zﬂ,ZZk"'E)Lz(Q’“) = 0. Also, due to the fact that the degree of zff, is greater than
|k + €| we see that ), (Zﬁfr,szrE)Lzm#) = 0.Thus(Hx o (I — ﬂd)gr,Zk-I-EZ_B)Lz(_Q“u) =
0 for all g, € P and consequently

z (Hok Gy 27 2P) 20 1) = z (Hpko (I = 10)gr, 22 ) 120 1y -

T T
The corollary now follows from the fact that H .« o m is of finite rank and hence bounded.
Corollary (2.3.26)[185]: Suppose that u, v and £, are holomorphic polynomials. Then

96



Z H:H,f. =Z P#(vﬂfr)—z VP, (Af,).

r T T
Proof. A little computing shows that for all g, € 42(£2, u)
z (Hyfr, vgr)LZ(ﬂ w — 2 (ufy — (ﬂﬂ) vgr — (ﬁgr»LZ(ﬂ,u)

Z Withe 9r) 2 — Z (Puf), 99) 200
+ Z (P, = 1)@f), P59 )z

- 2 (Vifr, gr)izcou — Z (B(@fr), Dgr)izca

T r
where the latter equality holds since B, (vg,) € A*(%2, u) and (P, — I)(iif,) is orthogonal to
A%(0, u). This completes the proof.
Corollary (2.3.27)[185]: Assume that k and [ are elements of N. If f,. is a holomorphic
homogeneous polynomial of degree d, then

> _ (14 €)a+y rd + n—|k|+ |l|)a|k|
z P[J(lekfr) - (1 +6)d—|k|+|l| F(d +n+ |l|) asz ﬂ

T
Proof. It is sufficient to establish the corollary for monomials f,.(z) = z**€. If B is an
arbitrary element of Nj, then, due to the properties of the Fischer product and (79), we have

> RGP = <zl+k+6,zk+ﬂ>Lzm,m

(=D + O peter+y 0
C (n+lk+el+ =10
(1 + ke '+ [k + el + |1 — k] alkl .
= Z e G S AS LI
(1 + Operels-try T+ 1k +el+11)
This completes the proof.
Corollary (2.3.28)[185]: Suppose € = 1. Then for each j = 1, - -, n, the operator H;, IS
bounded but not compact on A%(uy4¢)- If |k| = 2, H« is unbounded on A% (uy¢).
Proof. In this case, u, is the Gaussian measure on C™. Its moments reduce to (1 + €), =
I'(s + n). Moreover, if k + € € Nj,
2k +¢€)! (k+e)!

( k( l+k+6) ZB)

— ife >0,
roo_ (k+¢€)! (e)!
kte =\ (2k + €)! |
m le;E 0.

We first observe that if |k| = 1, then the eigenvalues of T are all equal to 1. Therefore, T is
bounded but not compact on A% (u,..). This proves the first part of the corollary.
Suppose now that |k| = 2. Choose j, in [1,n] so that k;, = maxk;. If d is a
]
nonnegative integer, set (k + €)(k,d) = (kq, - -, kj,—1, kj, + d , kj 41, -+, ky). Then

2k;)!
€k+e)(k,d) = 1_[ ((k]))' [((d+kj,+1)---(d+2kj]—(d + 1) --- (d+kj,)
J#Jo .
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Therefore, dlir+n Afk%)(k’d) = +oo, showing that T is unbounded on A% (). This implies

that H« is also unbounded.
Henceforth, we assume that € # 1,e > 0. From Proposition (2.3.6) and (73) we see
that if k + € € N, then the eigenvalue 1}, . can be written in the form

(2k + ¢€)! (k+e)
) A|k+e|m— B|k+6|w ife 20
k+e — { (Zk + 6)! - (80)
k A|k+e|m ife 0
where, for a nonnegative integer d,
( r 2d + 2n + 2|k|
A e ( 1+e 1+€) rd +mn)
“ F(M_Zn) r(d+n+ k]’
) 1+e€ (81)
F(2d+ Zn)
B e T+e rd+n-—|kl)
d r(2d+-2n__2Uﬂ) r{d +n)
\ 1+e€ 1+e€

The asymptotic behaviour of the eigenvalues {A}..} when |k + €| = d = +oo is given by
the following (see [84]).
Corollary (2.3.29)[185]: The sequences (4,) and (B,) given by (81) have the asymptotic

behavior
2|k|

[ 2 \TFe kl(ire) |4 — |k|?(e — 1) _
ta=(5) @t )[1 2(1+6)(d+n)+0<(d+n)2)]
2|k|

B 2 \1+e Ik % |k|2(6 —1) 1
Bu=(g) @+ )[1+2(1+6)(d+n)+0<(d+")2)]

asd - +oo.
Proof. Follows from the property of the Gamma function [159]

r'(x+y) y-2)y +z-1) 1
— vz 1 — 2
I'(x + 2) X ( + o +0<x2> as x — 4o, (82)
where y and z are real numbers.

Corollary (2.3.30)[185]: The eigenvalues A}, . have the form
Akl

2 \’1+ K| ki+e+1 k. +e+1
3 = () Y, (g (L et

d +n d+n

+e)>,

where e(k +€) =0 G)and

k|2 -
Fnltar -+t KD e Y i

whene > 0andd = |k + €| » +oo.
Proof. We recall by (80) that if € > 0, then

Il
I
N\
m
I
[N
~
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2k + €)! (k+¢€)!

kee = Aerer” Gy o~ Bl
where (4,) and (B,) are given by (81). On the other hand, by (82) we see that
(Zk] + 6)' k; k1
—=(1+kj+6) +kj(kj—1)(1+kj+e) +qj(1 +kj+6)
ki +¢€)! . B
% = (L+k+€)7 ~ kil + )1+ k; +€)7 411+ ks + )

where q; and r; are one variable polynomials of degree at most k; — 2. This implies that

wzn(1+kj+e)j

(k +6)! it
+Zk(k—1)(1+k +e)’ 1_[(1+kl+e)kl+q(k+e)
l#]j
(k(:)f) 1_[(1+k +€) - Zk(k +1)(1+k+€) H(1+kl+e)kl+r(k

l#j
+ €)

where g and r are polynomials of degree at most |k| — 2. These equalities, combined with
Corollary (2.3.29), give the corollary.

Corollary (2.3.31)[185]: The eigenvalues A} . have the estimate

| K|
kte = <0(d + Tl)zl_"'e_kjo) )

aslongase > 0andd = [k;, — €] » +oo.
Proof. Let j, = 1,...,n and suppose that k;, = 1. We recall by (80) that if € > 0, then

r _ A|k+€|(2k + E)'

kre ™ (k+e)!
where (A,) is as before Set (k+e) =(k;+e -, kj_1+60,kj1te - kyte)
and k' = (kq," -, kj,~10,kj 41,7 -+, k). Arguing as in the proof of Corollary (2.3.30) we
have

@k+e)! _ ((k+e) +1)!
ol = ko) (k + €)'l
= (2k;,)! 1_[ (1+k +¢€)”
J=1%Jo
- z ki(ky —1)(1+k+€)7 1_[(1 + ks + )| +q((k+¢€)),
J=17%jo s#Jl

where g is a polynomial of degree at most |k'| — 2. These estimates, combined with
Corollary (2.3.29), give the corollary.

Corollary (2.3.32)[185]: The operator Hx * H« is bounded if and only if 2% -1<0

and compact if and only if 2 Q —-1<0.

Proof. Let X, be the simplex conS|st|ng of those ¢t = (t1,---,t,) € R" such t; =0 and

t; +---+t, = 1. By Corollaries (2.3.30) and (2.3.31) we see that
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—_ el
sup | Aksel = (d +n)1+e” sup

|k+e|=d - |k+e|=d -
A
~ (@+m) T sup D (f)a(0)

T
as d = |k + €| — +oo. Now the corollary follows since the operator H .k * H .« is bounded

if and only if the sequence sup |A},| is bounded and H,x * H,« is compact if and only
|k+e|=d

if the sequence sup |Ay,|tendstoOasd = |k + €] - +oo.
|k+e|=d

Corollary (2.3.33)[185]: Let k € N and 1 + € be a positive real number.

(i) The Hankel operator H .« is bounded on the Fock space A?(u4¢) if and only if 1 + € >
2|k|.

(ii) The Hankel operator H .« is compact on the Fock space A*(uy4¢) ifand only if 1 + € >
2\k|.

Proof. We use that the operator H xis bounded if and only if T = H,« * H_x is bounded

and H .« is compact if and only if T = H_x * H ,« is compact.

Next, assume that 2% — 1 < 0 and let € = 0. We shall investigate the membership

of the operator T to a Schatten class S;,.. Recall that T is in S;.. if and only if the

) 1 )
seriesy., A" is convergent.

k+e
Let d be an integer. We shall estimate the SUm sq = ¥jxscj=a Apre ), When d — +oo.

The calculations above lead to study the cases e = 0 and its opposite case separately. Let
B;:={k+¢€ €N}, |k + €| =d}. We partition B; = B'd U Bj, whereB; ={k +¢€ €
B : e = 0}and B = B;\ Bj. Thus s, can be written in the form s; = s;; + s, where s; =

(1+€) "o_ (1+€)
Zk+EEBC'1 ZT /1;;+E ¢ and Sqa = Zk+EEBc,i, Zr /17];4.6 <.
Corollary (2.3.34)[185]: We have the estimates #B; ~ #B,; =~

asd — +oo.
Proof. Let P, ; the space of n variables holomorphic polynomials of degree d. We

. n—-1+d (d+n-1)! 1 _
have #B; = dim P, 4 = ( -~ ) = ol Therefore, #B; ~ = _1)!d" las d - +oo.

Onthe otherhand, forj = 1,---,n,let By ; = {k + € € B4, € > 0}.Since By =U;<j<, By ;,
we see that #B; < ¥7_, #B; ; .
If k; = 1, then

kj—l

Bcli’] = U{k_l_e:(kl-l_e"”'kj—l+E'l!kj+1+er"'!kn+6);|k+6| =d}

=0
k]'—l
= U {k +e€

=0

ki +e+1 kn+e+1)|
d+n '~ ' d+n

G

dn—l

Gopnd #Bg ~ d"2

- (k1+e,---,kj_1+e,l,kj+1+e,~--,kn+e)2ki+6=d—l |
i#j
dn—Z

ok ! T
Therefore, B = Zl=0 dim P,_1 4, ,and whend — +oo, #Bgj ~ k; e
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This shows that, when B} ~ d™ 2 as d —» +o. The corollary now follows from the
observation #B,; = #Bj, + #B/.

Corollary (2.3.35)[185]: Suppose thatn > 2 and g, is a continuous function on R™ — 1.
Consider the open set 2 := {(t, -, t,—; € R¥, Y721 t; < 1}. For a multi-index y =
(V1 * > ¥n—1 iIN NG, set

Nt 1 Yn-1+1
Cyd b d e lT
. +1
Vi Vj
L n-1 H _] J
J]d : )4 € N0 1_[ d ’ d c
j=1
Then hm an- 1 ZyeHdZ‘r ,gr(cyd) fQZT‘ g?"(t)dt

Proof. For d € Ny, let 4 = U, ¢, }?;11 [% VJTH] It is clear that 2,; < 2.Next, we show
that dlir+n Xa, = Xq- If s is areal number, let [s] denote the largest integer smaller than or

[dt]]

equal to s. If t=(t;, ", t,-y) €N andl < j<n-1, thenl%4] ’]< t; <=4

Therefore,
- n
z z n—1
= .

_|_
: d
=1 = =1
Since}j}"‘l1 t; <1, thereisan mteger d, such that for all d > d, we have

)y [dt’] < 1.Thus t € [[dtf [dt’ﬂ ]and hence t € 2dfor all d > d,. Thus
th Xﬂd = Xﬂ Therefore,

(n ) Z Z gr(cwd) jz gr(t)dt
YEJa T
z z qan-1 gr(cy: d) fn 1[],] ¥t +1 gr(®)dt

YEJa T

+Ldz g, (t)dt —jﬂz gr(t)dt

Since g, is a bounded continuous function on the compact set 2, we have, by Lebesgue’s
theorem, dlirfl fﬂd Y gr(®)dt = [ ¥, gr(t)dt. On the other hand, by continuity of g,

on the compact set 2, we see that

zz qn- 1gr(cwd) f

Tl
YEJa T ]=

Z Jn 1VJ VJ“]Z [gT(CV'd) g, (t)dt]

Y€Ja ‘= 1
also tendsto 0 as d —» +oo. ThIS shows that

dostoo g1 Z Z gr(cy,d) = Jz g-(t)dt.

lim
YE€la T
Corollary (2.3.36)[185]: If € = 0, then

+d'
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|k |
~ dn—1d1+e 2——11.
Sa ( 1+e€

Proof. Recall that s; = ZRHEBCIIZT A0*e), By Corollary (2.3.30), we know that the

k+e

sequence {1}, }x+e € By has the following expansion when d — +o
|k

21te k| ki+e+1 k., +e+1
2——1 1 n
zlk+€_<1+e> (d + n)7se 2<(fr)"< d+n ' ' d+n )

r

ek + e)),
1
where e(k +€) =0 (E)and

(Fnta -+ t)i= —(e= D7

Using the properties of the function x — x1*€, we see that there exists a constant M > 0,
such that

ki +e+1 k, +e+1 1+e
> [ (e ) e+
' k1+e+1 k,+e+1\ "l M
2‘(1?)11 d+n ""'d+n) =
Therefore,
k|

“1te K] _ ki +e+1 k,+e+1
2. e~ () @ p) (Ur)"(ldT )

as d |k + €| = +oo. Applying Corollary (2 3.34) we see that

2 2K M_ 1 1\ e
Sa ¥ (1 +e) a+olre Z Z Urn (k1d+-f: 2 "’knd++E: )
k+e€By T
(2
- (1 + e)

qn- 1d(1+e) 1+E IZ I(£)., (D)1 +edt

so that the corollary follows from Corollary (2.3.35).
Corollary (2.3.37)[185]: Let k € Nijand 1 + € be a positive real number. Then the Hankel
operator H« is in the Schatten class Sy,4e(A*(U14e), L*(u14¢))if and only if € > 0 and
e(1+¢€)>22n+e)|k|.
Proof. We use that the operator Hx is in Synie(A%(Uy4e), L*(U14e))if and only if T =
H i * H i is Szn+e(A? (14¢))- Therefore, the corollary follows from Corollary (2.3.36)

2

Corollary (2.3.38)[185]: The Bergman kernel K1+e(Z w) of A%(u, ) is given by

1+e
Kive(z,w) = m 2 1211 (z,w)),

where E™S” 2 zn is the derivatives of E 2 2n with order n — 1.

2k

1+€'1+e 1+€1+e
Proof. The monomials z**€, k + € € N, form an orthogonal basis of A%(u,,.).Since
n—1)! k +¢)! 2|k + €|+ 2n
I+, _(n—-1) (k +€) ( | | ) (83)
P 14€ (lk+el+n-1)! 1+e€

102



it follows that the Bergman kernel is

X ( ) Zk+e Wk+e
1+e\Z, W) =
k+eeN! ”Zk+6”L2(ﬂ1+e) ”Wk+6”L2(M1+e)
+00
1+e€ (d+n-1)! 1+e€
= (z,w)? = E™ ' an (W) .
(n —1)! | 2d 2n (n— 1) it
d:"d'F(1+e+1+e) rete

This completes the proof of the corollary.
Corollary (2.3.39)[185]: If g, € P and z € C", then g, K ,(z,") is in L?(ti14¢)-
Proof. It follows from Theorem 2, p. 6 in [90] that the generalized Mittag-Leffler’s function

is E 2 2nis an entire function of finite order == and type 1. ThereforeEiz_n is also an

1+€'1+e 1+€'1+e

entire function of finite order = T ® and type 1 and hence for any o > 0, there is a positive
E"S " an (A7)

constant C that
1+€+0
Z scz T rec
- T+el+e

This shows that for all z, w € C",

1tete 1+€e+
|Kise(zw)| < Cel@Wl 2 < Ce(lz|lw])™ 2,
showing that for all g, € P and z fixed in C", the function w = g,(W)K;,.(z,w) is
inL?(uy4c)aslongas0<p <1+e.
Corollary (2.3.40)[185]: The spaces M and M, . are Banach spaces.
Proof. We prove the corollary for M, the proof for M, is similar. Let ((f;)z)nen, b€ @

Cauchy sequence in M. Without loss of generality we may assume that (£,.),,(0) = 0 for
alln. The sequence (HZr(fr)n)neN iIs a Cauchy sequence of bounded operators on
0

A?%(uy4¢). Therefore, there is an operator T in A% (u, ) such that (HZrWn)neN converges
0

to T in the norm operator. Let f,. := T (1) be the conjugate of the image T (i) of the constant

function 1 under T. Since Hy, 75

(D) = (f;)n , it follows that

Z ”(fr)n - fr”Lz(uHe) = z ”(ﬁ")n -T (1)||L2(u1+6) - ”Hzrmn(l)_T(1)||L2(#1+e)
r

r

< |Hy,75.- 7l
showing that

Lim > 1 = ol = O (84)

r
Thus f; € A%(uy4¢). We shall show that the Hankel operator Hy. = with symbol ¥, f. is
bounded. It is well defined on P. We shall prove that Hy. = is equal to T on P. Let g, be a

holomorphic polynomial. We first observe by (83), (84) and Corollary (2.3.39) that for all
z € C" we have

Z (PG = FIwar)@)| < Z 1 = £l N9 K e 2 2

showmg that hrfl Y. P((f, — (fr)n)gr)(z) 0. Since again by (84) we have that
lim ¥, (fr = (F)n)gr (2) = 0, it follows that
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lim Hy 7, — Hy, 7(9,)(2) = 0.

This proves that T, = Hy_ 7 (g,) and hence T = Hy_£ . Therefore M is a Banach space.
The proof of that M, . is a Banach space is similar.

Corollary (2.3.41)[185]: Let 8 € R™. Then the operator Rgf,:= f, o Ry IS a unitary
isometry from L?(u,,.) onto itself and from A2 (u,, ) onto itself. Moreover the following
assertions hold.

() If fr € MthenRof, € Mand X [[Rgfrlly = 2r lfrllm-
(i) If f,. € M, then Ry f, € M.
(i) If £, € My, then Ry f,, € M, . and

D MRofillyee = D Wil

T T
Proof. It is clear that the operator Ry is a unitary isometry from L?(u,,.) onto itself and
from A%(uq,c) onto itself. Let . be in M and 8 € R™. Then Ryf, is clearly in A,(uy4¢).
Moveover, if g, is an element of P, then by a change of variable we see that

Hzrm(.gr)(z) :f z K1+6(RGZ;W)gr(R—GW)[Refr(z)_]?r(w)]dlﬁh?(w)
cn -
[ KueeRoz )R 092 [ (Ro2) = Fr )] ditn e ) = Hg, 7.(R -9, (Ro2)
cn -

= (RoHy, 7R 9) ) (9)(2).
Since the adjoint of R_g IS R% g =TR9, it follows that
|Hs, 7571l = |Hs, 7l

D e Rolly =D sl

T r
This proves part (i) of the corollary. The proof of parts (ii) and (iii) of the corollary are
similar.
Corollary (2.3.42)[185]: Let f, € A%(tq4¢)-

showing that

k
i) If f. € M, then for any multi-index k that satisfies ) oty z¥ is
() r y r azk
in M.
k
(ii) If f, € M, then for any multi-index k that satisfies %, 2=
ISin M.

k
(iii) If e = 0 and £, € M, ., then for any multi-index k that satisfies )., ZZ]Z

monomial z* is in M, ..
Proof. To prove (i), suppose that f,. € M. By the Cauchy formula we have

kfr (0) k _ =G )nf f Z fT(RQZ)/elklgl eiknbn g

r
where df := d91 -+ d@, for 8 = (8, n) By Corollaries (2 3.40) and (2.3.41) we

see that Zr o fr ~(0)z* € M. Therefore, z* € M as long as Zr o fr = (0) # 0, The proof of
the remainlng statements of the corollary is similar.
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Chapter 3
Toeplitz Operators on Bergman Space and Finite Rank Commutators

We show a conjecture of Axler that for bounded analytic functions f and g on the
unit disk, T¢ T, — T, Ty is compact iff either f or g is constant on each Gleason part P(m)

except D. We provide examples that show that the Brown—Halmos theorem fails for general
symbols, even for symbols continuous up to the boundary. We show that if the product of
two Toeplitz operators with bounded harmonic symbols has finite rank, then one of the
Toeplitz operators must be zero.
Section (3.1): Hankel Operators

We consider the question of when the semi-commutator Ty, — T¢T, on the Bergman

space with bounded harmonic symbols is compact. Several conditions equivalent to
compactness of Ty, — T T are given. As a consequence we show a conjecture of Axler that
for bounded analytic functions f and g on the unit disk, T7 T, — T, T is compact iff either
f or g is constant on each Gleason part P(m) except D. 1989 Academic Press, Inc.

We consider the question of when the product H;H, of two Hankel operators on the
Bergman space with bounded harmonic symbols is compact. The product H¢H, is equal to
the semi-commutator Ty, — T¢T,. Several conditions equivalent to compactness of HrH,
are given. Consequently we prove Axler’s conjecture [92].

As is well known, for f and g in L*(dD), Axler, Chang, and Sarason [93] and Volberg
[57] have shown that HrH, on the Hardy space is compact iff H*[f]n H*[g] € H* +
C(aD). By means of the theorem of Axler and Shields [95], we also obtain that H:H is
compact iff

H®[fln H®[g] c {u € C(M):ulpm) € H*|pam) for thin part P(m)in M}
for bounded harmonic functions f and g.

ForD denote the open unit disk in the complex plane C, and dA the usual normalized
area measure on D. The Bergman space LZ is the Hilbert space of analytic functions g: D —
C with inner product given by

(f.g) = jD F(D§@DdA).

As usual, L* (D) denotes the set of bounded measurable functions on D, and H* (D) is the
set of bounded analytic functions on D. Let P denote the orthogonal projection of L2(D, dA)
onto Lz (D). For f € L®(D), the Hankel operator H;:LZ + (L%l(D))l and the Toeplitz
operator Ty:L% — L7 are defined by Hf(h) = (I — P)(fh) and Tr(h) = P(fh),
respectively.

Let M be the maximal ideal space of H* (D). The Gleason part P(m) corresponding
to m is the equivalence class of a point m in M,

P(m) = (my € M:p(mm,) < 1},

where p(m, m,) is the pseduo-hyperbolic distance from m, to m defined by

p(m,my) = sup{lf(my)|; f € H*(D),||fll < 1and f(m) = 0}.
If m and m, are in the usual disk, the pseduo-hyperbolic distance is given by

( ) _ | m1 —m
PR, T ) = 1—-myml’
If ais a point of D, let L, (z) be the linear fractional map
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Z+«a
La(z) = 1+az

Call a sequence (z,,) in D thin if lim my., |z, — z|/|1 — Z,,z,| = 1 and a part P(m) thin
n—>0oo

if m is in the closure of some thin sequence.

Now we state some of Hoffman’s results [50].
HI. Let m be any point of M'\D. There exists a sequence {f,,} in D such that {£,,} has no
accumulation points in D, m is in the closure of {§,,}, the coresponding maps Lz converge
pointwise to L,,, a map from D into M, and for any bounded analytic function h,h o Lg_

converges to h o L,,, uniformly on compacta, so that
(hoLm)(0) = Blnignm(l — 1Bl (Br).
H2. If the Gleason part P(m) contains at least two points, P(m) is an analytic disk, and L,,
IS a one-to-one analytic map from D onto the Gleason part P(m).
The map L,, plays an important role. The Gleason part does the same job on the
Bergman space as the support set on the Hardy space.
For f analytic on D, the Bloch norm ||| s of f is defined by
Ifllg =sup((1 — 1AI2)If'(D]: 2 € D.
The Bloch space g is the set of analytic functions f on D such that ||| < oo,
D(z,r) will denote the pseduo-hyperbolic disc {w € D:p(w,z) < r}forze D and 0 <
r < 1, and k, is the normalized Bergman reproducing kernel
1—|z|?
(1 — zw)?
Theorem (3.1.1)[58]: Suppose f and g are bounded harmonic functions on D. Then the
following conditions are equivalent:
(@) HfH, is compact;
(b) T7T, —TF, is compact;
(c) Foreach thin part P(m) except D, either f|pcyn) € H®(D)|pn) OF
9lpem) € H2(D)|pmy;
(d) ForminM\D, eitherfol,, € H®o0rgeol,, € H”;
() H*D)[f1nH*(D)[g] € {u € C(M):ulpmm) € H* (D) for each thin part P(m)
except D};
(h  lim min{Q1 - 1z12)1(0f /02)(2)], (1 — |z|*)|(8g/0Z) ()|} = 0.
The following theorem, which was conjectured by Axler [92], is valid.
Theorem (3.1.2)[58]: Suppose f and g are bounded analytic functions on D. Then the
following conditions are equivalent:
(a") Hf Hg is compact;
(b")T;T; — Ty is compact;
(c") For each thin part P(m) except D, either f|py,) Or glpan) IS constant;
(d") For each Gleason part P(m) except D, either f|p) OF glpm) IS constant;
(e H*(D)[f] n H=(D)[g] € {u € C(M):1tlp(m) € H(D)|pmy for
each thin part except D};
(") lim min{(1 — 1ZI)If' @], (1 =121’ @} =0.

We shall prove (d) = (f) and (f) = (a) and (a) = (d) = (¢) & (e) and (¢) =
(a). Itis easy to show that
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T¢T, — Tr, = —HFH,.
Hence the equivalence of (a) and (b) is true. The equivalence (f") & (c¢') that may have
been known before will be proved. We show that if f and g are bounded harmonic functions
and HrH,; = 0, then either f or g is in H* (D). This means that T, T, = T, if f either f
or g is analytic.

In fact, it is natural that the thin part plays the special role since there is a function 4 in
H* such that ¢ o L,,(z) = z for the thin part m, which is not true for all Gleason parts.

At the same time that the results were obtained, S. Axler and P. Gorkin [94] proved the
same result as in Theorem (3.1.20), using methods different from ours.

We describle the function properties of a bounded analytic function f if f is constant
on some Gleason part P(m). We assume m & D from now on.
Lemma (3.1.3)[58]: If f is H* and constant on P(m), then for fixed 0 < r < 1

lim max (1 — wl®f'(w) = 0.

z-mweD(z

Proof: Suppose that there is a net (Za) in D such that z, > m. Then folL, — folLpy
uniformly on compacta from HI. Since f oL, is constant, f o Ly, (z) = lim(f °

L,,) (2) =
Since for w in D(z,,7) thereisa z in D(0,) such that w — L,_(z), we get
' _ 2y — o ! 1,12
Jmax f'w)(A = w]?) = max |(f < L)' @] (1 - |z*) - 0.
Thus we have proved the lemma.
Lemma (3.1.4)[58]: Let f and g be in H* (D). If either f or g is constant on each thin part

thenforall0 < r < 1
lim mln{ max (1 — IsIDIf' ()], m?x)(l —[tI)]g'®I} = 0.
Z,r

|z]—=1
Proof. Suppose either f or g IS constant on each thin part, but there are points (z,) in D
with |z, | = 1 such that for some ¢ > Oandfixed0 < r < 1
min{ max (1—Is|)If'(s)], max (1—1t|?)lg"(O)]} =& vn. (*)
SED(zp,T) teD(z,,T)

Clearly z,, may be chosen so that {z,,} is a thin sequence.

Let m be in the closure of {z,} in M. There is a subnet {z, } of {z,} converging to m
in M; then m is a thin part. Without loss of generality we may assume that f is constant on
P(m). It follows from Lemma (3.1.3) that

lim max (1—|s|?)f'(s)=0.

Zn,,—m SED(an,r)
The above equation contradicts (*), so the proof is complete.
Theorem (3.1.5)[58]: Suppose f and g are in H* (D). Then the following are equivalent :
(c") either f or g is constant on each thin part P(m);

(/) lim min{(1 - 1ZI)If' (@], (1—1z1*)lg' (@)} = 0.
Proof: In fact Lemma (3.1.4) implies that
lim min{(1 — 12I")If' @), (1= [z)lg' @1} =0,

provided that either f or g is constant on each thin part P(m) except D. Suppose that a thin
part m € M'\D and neither f nor g is constant on P(m). From HI we may assume that f o
L', (0) # 0and g o L, (0) # 0. Thus there is a net {z,,} in D coverging to m such that

Aim 1 (1= |zn|)f"(z0) = f o L (0)
llm 1 (1= |2,%)g" (zn) = g © Lin(0)
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Clearly z,, may be chosen so that {z,,} is a thin part.
So

Jim min{(1 — 1zI)If' (@], (1 - 1zI)lg' (@)}

= min{|f o L, (0)|, |g° L (0)[} > 0.
The above contradiction completes the proof
Lemma (3.1.6)[58]: Let 0 < r < 1and let f and g be functions in the Bloch space. If

. . _ 2 ) _ 2 ] —
lim mln{serggz{g)(l Is[If (S)l’te%‘?}fr)(l 1t19)g’ ()]} =0

|z|->1

then
lim IfwW) — fF@Dllgw) — g(@)|k,|*dA(w) = 0.

|z|-1 D(z,r)
Proof. For w € D(z,r) we have

1
fw)— f(2) = f f'ltw + (1 — t)z](w — z)dt.
0
Thus

1
Ifw) = f(@)] < |w —Zlf If'ltw + (1 = t)z]|dt < max|f'(s)llw —z[. (1)
0 .

Because
lw —z| < diam D(z,7) < CDi(nf)(l— 1S12) 1f'(s)] (2)
zZ,r
it follows from (1) that
lfw) = f(2)] < Cg(%(l = IS 1f' ()

In fact the above inequality is also true if f is replaced by g. Thus

f ) = f@llg(w) — g @)llkz dAW)
D(z,r

<ct| [ max (1= IsPIF O gax, 0~ (611 Ok, da
b ,

(Z,T') SEE(Z,T')
< (C2mi — 1<l F! — 112\ A’
< €% min{_max (1= IsI)If ()], max (1 [c)lg' (D)1}
— 2 / _ 2 /

Xmax{sggggr)(l s ()], max (1-[t1%)lg ®13

Since f and g are in the Bloch space, there is a constant B > 0 such that
_ 2 ! _ 2 ! <

max{sgg?z{g)(l IsIDIfF ()], max (1 —tl%)lg (O} < B.

Therefore

f ) = f@llg(w) — g@)llks dAW)

< BC?min{ max (1 —[s|>)If'(s)], max (1-I[t[*)|g" )}
SED(z,1) teD(z,r)
By the hypothesis we obtain
lim If (W) = fF@Dllgw) — g(@)lk;|?dA(w) =0,

121>1 Jp (21
completing the proof.
Lemma (3.1.7)[58]: If f and g are in the Bloch space and forall 0 < r < 1

i 1-Is|)If’ 1—1t1»)|g’
min{ max_ (1= Is)If ()], max (1= [e)]g O} =0,
as |z| = 1, then
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lim, [ 1£00) = Fllg@w) - gl PdAw) = 0.

|z| -1

Proof. Now we estimate the following integral for fixed 0 < r < 1:

[ - r@llgm - g@lik2as
D\D(z,r)

1/2
< ( f F W) = F@)IPlg(w) — g(z)|2|k2|2dA>
D\D(z,r)

1/2
X (f |k, |2dA> .
D\D(z,r)

It follows from [92] that there is a constant C > 0 such that

1/4
( j f(w) —f(Z)|4|kz|2dA) < Cliflly < ( fﬁ f(w) —f(Z)|4|kz|2dA>

1/4

1/4
X <L|9(W) —Q(Z)|4|k2|2> (1 =732 (3)

and

1/4
O Ig(W)—g(Z)I4IkzI2dA> = C|lgllg-
D

For any £ > 0 we may choose

82

2 2°
@+nr)c*(lIfllg + 1) (llglls + 1)
If1 — r < 6 the inequality (3) implies

j\ ( )If(W) — f@Dllgw) — g@Ilkz|*dA < C2lIfllgllgllp (1 — )2
D\D(z,r

5 =

&

Thus
[ 1rw) = r@llgw) - 9@ 1k, 2

< f F W) — F@Ilgw) — g(2)| 1k [2dA
D\D(z,r)

+ j W) = f@llg) — g @l lad
<e+ f W) = F@llg) ~ g @l a4
If1—r < 4. Lemma (3.1.6) séys

lim Ifw) = f@Dllgw) — g(DIlk2|*dA (W) =0

121=1 Jp (2,1)
for fixed 0 < r < 1. The above inequality gives

tim, [ 1£00) = Fllgw) - g@llk;Pdd ) <
SO
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lim f W) = FDIlgw) — g(@)Ilka|2dAW) = 0

|z]-1
since ¢ is arbitrary. The proof is finished.

We state the following lemma which is proved in [92] and will be used in the proof of
Lemma (3.1.9).

Lemma (3.1.8)[58]: Let

K = sup {f 11— za| %51 — |a])73/°dA(a): z € D}
D

Then K < oo,
The following lemma will be used twice in the proof of Theorem (3.1.10).
Lemma (3.1.9)[58]: There is a constant C > 0 such that

lf(w) = fDllgw) — g(2)|
D |1 —zw|23y1 — |w|?

[ j (W) = FDIlg(w) — g(z)||k2|2dA(w>]

dA(w)

C 1/12

<
Vv1-—|z[|?
Forall z € D.
Proof: Fix z € D, and make the change of variables by 1 = ¢,(w) to get

lfw) = f(@D)|lgw) — g(2)| dAW)
D |1 — zw|?\/1 — |w|?
D) = f@)I°lg o p.(A) — gD|°

1 |f° ¢2 ]
- dA(A
\/1—|z|2UD 11— ZA/1 = A2 2
1/6
[ j If o o (D) = F@DI%1g © p(A) — g(z)|5dA(A)]
D

1
1—|z|?

<

5/6
X U |11 —ZA|7%/5(1 — |/1|2)‘3/5dA(A)] .
D

It follows from Lemma (3.1.8) that
lf(w) — f(2)llg(w) — g(2)|

b |1—zw|2/1-w|?
1/6
[f |f°¢2u)_f(z)|6|g°¢2(/1)—g(z)|5dA(,1)] K5/6
D

dA(w)

1
1—|z|?
1
1—|z|?

f If o d2() — fF(DI g ° ¢ (1) — g(Z)IﬂdA(A)]
(by Cauchy-Schwarz inequality)

1 1/6
[f |f°¢2(/1)_f(z)|5|go¢)2(l)_g(z)|5dA(/1)] K5/6

1—|z|?
1/66

<

<

1/12
U |fo¢z(7t)—f(z)||go¢2(,1)_g(z)ldAu)] K5/6

1/12
X

<

X

f If o by () — f(Z)IZZdA(A)]
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1/66

X f g ¢ (D) - g(Z)IZZdA(/l)]
D
(by Cauchy-Schwarz inequality)

1— |22 U f o 2D = F(2)]lg o Pp2(2) — g(Z)ldA(/l)]

1/12

x K8 F I gl
(this inequality comes from [92])

U I o (D) — F@Ilg o b> (D) — g(z)|dA(A>]

1/12

1—|z|?
The proof is complete.
Theorem (3.1.10)[58]: If f and g are in the Bloch space and

lim j W) = F@IlgW) — g(DIlks2dAW) = 0,

|z]—>1 D
then H-Hg is compact.
Proof: For any h € L3 (D) and z € D we have

1
(H;th)(Z) = 1——|Z|2<H;th' kz>
1
— |2<(g g<z>)h (f f(Z)) )

_ (f(w) F@)GW) ~G@),
D (1 —zw)?

It is obvious that for fixed 0 < r < 1 the operator S,. defined by

Srh(z) = (f(W) — f((lz)_) g—.,()vz) _ g‘(z)) h(W)xpor)(2)dA(w)

is a compact operator from L2 (D) to L?(D). In fact, S, is a Hilbert-Schmidt operator because

L f((12)—) g—v()vz) ) Xp(or)(2)

isin L2(D x D).
Forany h € L2(D) and z € D we have

fxu\m(wnf(w) F@llgo) -~ g @I
|1 — zw|?
Koneo @) = FDlgw) — g(2) ]
< dA
| T " /
o] [ 2@V = FOlo) 5 ONTZIE ) ai) o

Combining (4) and Lemma (3.1.9) gives
% 2
|(H7Hg = S, )Al|
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= [ W71, = sIm@ [ dac

) f [ f oo DIF W) — F@Ilgw) — g
11— zw|%/1 - |w]?

F W) — F@Ilgw) — g@)] — T = W]’

|1 — zw|?

dA(wO]

|h(w)|2dA(w)| dA(2)

D
(by Cauchy-Schwarz inequality)

1/2
2
< jD . m” W) — F@)llgw) — g(2)] 1k dA(w)]
f W) = F@DIgw) — gD IWT = w2
|11 — Zzw|?/1 — |z]|?

|h(w)|2dA(w)| dA(2)

(by Lemma (3. 1 9))
= C sup U lfw) = f@)llg(w) _g(z)||k2|2dA(W)]

zeD\rD |Jp
xj j IfW) = F@Ilgw) — g@)IY1 - [w|?
11— zw|2 /1 —|z|2

|h(w)|2dA(W)dA(2)

(by Lemma (3.1.9) again)
< C sup U lf(w) — f)llg(w) —g(u)llkulsz(W)]

u€eD\rD
« [ Inon S Uik

J1-1w?

1/2

1/12
U If W) = fF@DIlgw) — gDk, |? dA(Z)] dA(w)

1/12
<C sup U If(W)—f(u)IIg(W)—g(u)llkulsz(W)]

uebD\rD |Jp

ueb |Jp

It is easy to verify that

(' sup U Ifw) = fFllgw) — gk, | dA(W)]

u€ebD |Jp
Is bounded since f and g are in Bloch space. Thus

||HFHg — S ||<uC sup U IfFw) = Fllgw) — gk, |2dA(w>]

Since

1/12
X C sup U If W) = fF@Illgw) — gk, |? dA(W)]

1/24

tim, [ 1700 = F@llg) - gkl dAG) = o,

we have
11n1” S}||:: 0;

r-1

SO H}Hg IS compact since S,. is compact for any 0 < r < 1, completing the proof.

Although Theorem (3.1.11) is a corollary of Theorem (3.1.12), we give a proof of
Theorem (3.1.11) by combining with the lemmas and Theorem (3.1.10).
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Theorem (3.1.11)[58]: If f and g are in H* (D) and either f or g is constant on each
Gleason part P(m) of M, then H}Hg IS compact.

Proof. From Theorem (3.1.10) it suffices to prove
lim j F) = FDIgw) — g(@llkcy|2 dAGw) = 0. (5)

Combining Lemmas (3 1 4) and (3.1.6) with Lemma (3.1.7) implies that the above equation
(5) holds. So HzHg is compact.
Theorem (3.1.12)[58]: If f and g are bounded harmonic functions on D and for each thin
Part P(m) of M either flP(m) € Hoolp(m) or glP(m) € Hoolp(m), then

(@) Hf Hy is compact;

() lim min{(1 - 1z12)|(0f /02)(2)}, {(1 — |2|)|(8g/32)(2)} =0
Proof. Since f and g are bounded harmonic functions on D, there are functions f, f5, g1,
and g, in the Bloch space suchthat f = f; + f,andg = g, + g,. Thus

H/j Hg = H;z ng

and (0f/0z)(z) = f;(2),(0g/02)(z) = §3(2).
Combining Lemmas (3.1.4)-(3.1.7) with Theorem (3.1.10) shows that it is sufficient to
prove that for fixed 0 < r < 1
lim min{ max (1= Is)If()], max (1= 1eDlg @I} =0, (6)

|z]-1 SED(z,r
Suppose that (6) does not hold. There are points {z,} € D and € > 0 such that

min{ max (1-IsP)IfO], max (1-12lg O] > &
and {z,} has no accumulation points in D. Since there is a thin sub-sequence of {z,}, we
may assume that {z,} is thin. Let m be in the closure {z,} in M. Without loss of generality
we may assume f|pmy € H*|pan) and {z, } converges to m. Let {w, } be points
in D satisfying
1.w, € D(z,,1)

2.(1 = Wy PIf' (W)l = max (1 —Is|)Ifz(s)I. (7)
SED(zp,T)
Since M is compact, there is a subnet of {w,,} converging to some m,. For convenience we
may assume that {w,,} converges to m,. Since p(z,, w,) < r, then m, isin P(m).
Since f|pm) € H”|pm),we have

flpamy) € H | pamy)
Thus

d
= oL, (0) = 0.
On the other hand

S F ol (@ = Jim 2L f oLy, (0) = lim 22 (fyo Ly, + fyo Ly, )0
= lim (1~ I, 27wy

Wn—>my

This contradicts (7). The proof is finished.
We first consider compactness of Hf’ng for f and g in H* (D) and make use of the

maps L,,, to turn the compactness of H}Hg into the condition

H];OLmH§°Lm f 0
The following Lemma (3.1.13) is the partial result of [49].
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Lemma (3.1.13)[58]: Let m(z) = L,,(z) be in P(m) for some z in D. Then there is a
constant ¢, |c| = 1 such that

Lm(z) (cw) = Ly, o ¢, (w).
Proof. It follows from H? that L,, and L, ,) are one-to-one analytic maps from D onto the

Gleason part P(m). Thus Lm(z) o ¢,: D — D is an onto, one-to-one, analytic function,
and Lm(z) og,(0) = 0.1tis WeII known that there is a constant ¢ such that |c| =
and

;nl(z) oLmo¢,(w)=cw.
SO Lm(z) (cw) = Ly o ¢, (w).
Although Proposition (3.1.14) is a corollary of Proposition (3.1.16), we give its proof since
the proof is also interesting.
Proposition (3.1.14)[58]: If H}—‘Hg7 Is compact for f and g in H* (D), then

H}—‘oLmHgoLm =0

For all m in M'\D.
Proof: For any m € M'\D there is a net {z,,} © D converging to m (Corona Theorem), so

folLy (W)—folL, (0)— folLy(Ww)—fo°L,(0) pointwise,

gol, wW)—golL; (0) > gelLy,(w)—geL,(0) pointwise.
In addition f o L,,(z) and g L,,(z) are bounded on D. So for any bounded analytic
function h

lim [ AGF o Lo, = £ o Lo, )@ o La, = g o Lz, (0)) dA

2p—om D

= f h(feL, —f°L,(0))(ge°L, —geL,(0))dA.
D
On the other hand,

j h(fol, —f oL, (0oL, —goL, (0))dA
D

_ f (f = F o Ly, (00)(F = G o Ly, Ok, 'R0 L, dA

=(Hzhol, k, ,Hik, ) =(holL, k, ,H;Hik, ). (8)
Since HzHj is compact
||H§kazn|| -0 as z, - m
Therefore
(hol, k, HiHek, )< |hoLy,k, ke |l

< ||h||m||H Hf || —»0asz,»>m. (9)

zp g

Combining (8) and (9) we get that
lim [ h(felL, —feL, (0))(GeL, —geL,(0)dA=0.
Zp-m Jp

This implies that
| BGF ot = £ o Ln (@)@ o L = G L@ dA =0 (10)
for all bounded analytichunctions h. Replacing m by m(z) in (10) we obtain
jD h(f © Limz) = f ° Linz) (0 (g © Lingz) = F © Lin(z(0)) dA = 0.
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The above equality combined with Lemma (3.1.13) implies
[ BGF o Lo = £ o L@@ o Lo 6, = G o Ln(0)) dA = 0.
Changing theDvariabIes by 1 = ¢,(w) gives
[ heuF o L= £ 0 L ()G L = G L Ok 4 = 0.
We may subsli)tute h o ¢, for h to change the above equality into
| 1 oL = £ L)@ > L = 3 L OD ka2 dA =

Thus
(h, HgoLmeoLmk2> = 0.
We know that H* (D) is dense in L% (D). So
HffoLmHgoLme = 0,
which implies that
HinLmHg°Lm = 0

Before we generalize the above proposition for bounded harmonic functions f and g, we
need the following lemma which is proved in [91].
Lemma (3.1.15)[58]: Let ¢ be a Mobius transformation from D onto D and define an
operator Uy on L?(D) by
Upg(2) = glp(@]lg'(2)]

Then

(@) Uy isunitary,
Proposition (3.1.16)[58]: If f and g are bounded harmonic functions and Hy H,, is compact,
then

H;°LmHg°Lm =

0

for all m in M'\D.

Proof. Since f and g are harmonic functions, there are Bloch functions f, f, g1, and g,
suchthat f = f; + f, and g = g, + g,. For any m in M'\D there is a net {z,,} converging
to m. Then

|f oL, (2]~ aiz_[f o L,,(z)] pointwise

SIS

5 (11)
= gL, (2)] - 5519 ° Ln(2)] pointwise.
e bounded harmonic on D, there are Bloch functions f3, f4, 91,

=

Since fel,andgolL,, a
and g, such that

folm=fotfrand - (foL) = i

_ 0 B
goly,=g3+9, and a—z_(g°Lm) = g4
So

fiw) = o = [T 2 [f o L (ew)]de

_ ) ! (12)
3:w) = G4(0) = [} L [g o Ln(tw)]dt.

Now
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(it Hyap o o) = | (i) = FO)(G4W) — GuO) hAAG).  (13)
For fixed h in H*(D) and any € > 0 thereisar, in (0,1) such that if L > r > r, then
| 1500 = £Ollg.0) - g, O] IhldAw) < &
D\rD

| 8 o0 0, Ol 02,0 = 26, O)IR2A) < <
D\rD

for all z,, in D. Combining (11) with (12) implies

f [fa(w) = £2(0)][ga(w) — g4 (0)] EdA(W)‘

5 1rlg 0 _ _
jDIWI joJOa—Z_gOLm(tw)ngLm(sw)dtdsh(W)dA(W)‘

- 11 9 _
<e+ m f |w|2j f —_gOLG(tw)—fOLG(sw)dtdsh(W)dA(W)‘
Zn>m | Jyp 0 Jo 0Z 0z

(by Fatou’s lemma and (11))
j [fz ° LG(W) — f2 (Zn)][g_z ° LG(W) - g_z(Zn)]dA(W)‘
D
<2e+ lim |(HiHgl, ,ho ¢, k, )|

Zp—m

<2e+ Iim

Zp—om

< 2¢.
Since ¢ is arbitrary
(Hfop, Hgor, Ko, hko) = 0.
Substituting m(z) for m we have
(H;,,Lm(Z)HgoLm(Z)ko,hko) = 0.
Using Lemmas (3.1.13) and (3.1.15) we obtain
(H;oLmHgoLme’ ho@,k,) = 0.
This implies
Hf.. Hgor, = 0.
Lemma (3.1.17)[58]: Suppose that f and g are bounded harmonic functions. If HrH,; = 0
thenforall Ze Dand & € D
H;°¢2Hg°¢z =0 and H;nge = 0,
where f:(w) = f(Ew).
Proof: Let ¢ be a Mobius function mapping D onto D. From Lemma (3.1.15) it is easy to
verify that
UpHHgUg = HpopHgog-

So this implies the lemma if ¢ (w) is replaced by ¢, (w) or Ew, respectively.

We comment on some facts that will be used in the proof of Theorem (3.1.19).
Supposethatf = f; + f,andg = g; + g,, where f; and g, are in Bloch space and Hardy
space H. If Hf H; = 0, then

j s o 6, W) — @] © by (W) — G2 (D]dAW) = 0,
This is equivalent to
j W) W)l 2dAW) = £(2) g (). (14)
116



Replacing f, and g, by f, o ¢, and g, o ¢, or f,: and g,; respectively, by Lemma
(3.1.17) we have
[ fo0 81008, 0 s WVcPdA®) = £, 2 92213 © B2,
D

and
[ pEwgmEwikram) = f,E0562.

D
where z € D and ¢ € dD.
We state the following lemma which is the special case of [91].
Lemma (3.1.18)[58]: Let f be a continuous function on the closed unit disk D.
Then the following are equivalent:
(@) f isharmonicon D,
(b) foreachzin D

(@) = j |21 (€)dACE).

D
Theorem (3.1.19)[58]: Suppose f and g are bounded harmonic functions on D. If H¢H, =
0, then either f or g is in H* (D).
Proof. Let f = f; + f, and g = g, + g, Where f; and g; are in the Bloch space and H?2.
Then HyH,; = 0 implies
The remark after Lemma (3.1.17) gives

[ 12262000« 1)Ko PAAG) = 1, 0 22135 © 822
D

and

j £,(Ew) G, Ew) Ky PAAW) = f,(62)3, (62).
D
Set

G(z) = f2(§2)g,($z)d6/2m

&eaD
and suppose f, o (W) = Y an(MHw™ and g, o (W) = Yo by (MW", Then
Yo la,(D)|? < oo and ¥&_,|b, (1)]? < . Thus

6(2) =) an(0by 0]z

Since Y.%°_, a,,(0)b,,(0)|z]|*" converges unformly on D, the function G is continuous. By
(14) we get

f G (wW)lk,(w)[2dAW) = G(2).

It follows from Lemma (3.1.3) that G (z) is harmonic. Let A denote the Laplace operator. It
Is easy to verify that

AG(z) = 4zn a,,(0)B,,(0)|z]2D).

So AG(z) = 0 implies that an(O)b (0) = 0,n > 1. Similarily we can prove that
a,(z)b,(z) =0,n > 1. Now we consider only a,(z)b;(z) = 0. Without loss of
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generality we may assume that there are points {w,} in D(0,r) forsome 0 < r < 1 and
{w,, } has at least one accumulation in D(0, r) such that a, (w,,) = 0 forall n. Infacta,(z) =
[f20¢,1'(0) = (1 —z|?)f5(2). Thus f, (wy,) = 0. Therefore f,(w) = 0 for all w in D.
This means that f is constant. The proof is complete.
Considering Toeplitz operators on the Bergman space we interpret the theorem to mean that
Tfi‘Tg = T, for bounded harmonic functions f and g if f either f or g is in H* (D). On
the Hardy space the above result is true for all f and g in L*(dD). But on the Bergman
space we do not know when Tf*Tg = T, is true for f and g in L (D).

Now we turn to the proof of the following theorem.
Theorem (3.1.20)[58]: Suppose f and g are bounded harmonic functions on D. If H}Hg IS
compact, then either f o L,,, 0r g o L,,, isin H* (D) for min M'\D.
Proof. Proposition (3.1.16) says that

H;°LmHg°Lm =0

for all m in M'\D if H}Hg Is compact. It follows from Theorem (3.1.19) that either f o L,,
orgolLyisin H°(D).
Theorem (3.1.20) gives that either f or g is in H*(D)|pm) 0n each thin part P(m) since
bol,(z) = z for some b in H*(D). So far we have proved that (a) © (b)) © (c¢) ©
(d) © (f). We will prove (d) & (e). The theorem of Axler and Shields makes the proof
of the following theorem possible.
Theorem (3.1.21)[58]: Let f and g be bounded harmonic fuctions on D. The following are
equivalent:

(c) For each thin part P(m) except D, either flpun) € H*(D)lpam) OF glpam) €
H? (D)l p(my;

(e) H*D)[fIn H*(D)[g] c {u € C(M): u|pm) € H* (D) for each thin part P(m)}.
Proof. That (c) implies (e) is obvious. Now we prove that (e) implies (c). Letm in M\D
and P(m) be an analytic disk. That H*(D)[f]n H*(D)[g] € {u € C(M): ulp@m) €
H> (D) for thin part P(m)} means that

H*(D)[f1 0 H*(D)[g]lpamy  H* (D)l p(my, (15)

In fact H*(D)[f 1N H*(D)[gle Ly = H® o Lyy(D)(f © L) N H® Ly (D)[g © L] and
H® o L,,(D) = H* since P(m) is thin. Thus

H*D)[fINnH®(D)[gl e Ly = HZ(D)If e Lyl N H®(D)[g o L],  (16)
The theorem of Axler and Shields says that if u and v are bounded harmonic but not analytic
on D, then H*(D) + C(D) € H*(D)[u] n H*(D)[v]. Equations (15) and (16) imply

H®(D)[f o Lyl N H*(D)[g © L] € H*(D).

Thus either f o L,, or g o L, isin H* (D). We have finished the proof.

(i) From the proof of Theorem (3.1.11) we see that the theorem is also valid if D is
replaced by the unit ball B,, in C™. It is natural to ask if Theorem (3.1.20) is true on B,,. But
no one knows what the Gleason parts of the maximal ideal space of H*(B,,) look like. In
fact whether the Corona Theorem is valid on M (H* (B,,)) is unknown.

(if) Looking at our proof carefully we observe that the main results are also valid on the
weighted Bergman space using the following Proposition (3.1.22) instead of Lemma (3.1.8)
in the above process.

Proposition (3.1.22)[58]: Let a,f > — 1. Then if [%— (a/2-B/9)]< 1/p < 1 and
1/q + 1/p = 1,thereisan M > 0 such thatforall zin D
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(1 — |w|?)P@/2-B/a)

p 11— Zw[2(1 — [w[2)P/2
Indeed we can obtain the result on the weigted Bergman space analogous to that on the
Bergman space in [58] by means of Proposition (3.1.22). Before we state the following
theorem, we define the weighted Bergman space and VMO, (D). The weighted Bergman
space A,,(a>—1) is defined by {f:f is analytic on the unit disk D and
[If @)1 —|z]|*)*dA(z) < oo}, and VMO, (D) is the following set

(f € '(D): f 72— f o ¢, W|dAW) - 0 as |z] - 1,

Where f(z) = [ f(w)|k,(u)|dA(u). Roughly speaking VMO,(D) is the space of
intergrable functions on D with vanishing mean oscillation near the boundary of D.
Theorem (3.1.23)[58]: Leta > — 1 and f be in L*(D). Then Hy and H; are compact on
weighted Bergman space A,, if f f isin VMO, (D).

(it)  From many recent results on Hankel operators and Toeplitz operators on the Bergman
space it seems more natural to deal with the Toeplitz operators and Hankel operators with
bounded harmonic symbols than with the symbols in L= (D).

Section (3.2): A Theorem of Brown-Halmos Type
For D denote the open unit disc in the complex plane. By L? we mean the Lebesgue

space with respect to the normalized Lebesgue measure dA = % dx dy on D. For fand g in

dA(w) < M.

L? ,{(f,g ) will denote the usual L?inner product and ||f||2 will denote the norm in

L? . By B?, the Bergman space, we mean the subspace of L? consisting of the holomorphic
functions on D. For a bounded function u on D we have the Toeplitz operator T, : B2 Q B?
given by T,, f = P(uf) where P: L?> Q B? is the orthogonal projection. The function u is
called the symbol of T,,. An operator that will arise in our study of Toeplitz operators is the
Berezin transform, defined for any integrable function f on D by the formula

1z —¢
Bf(z)jD f =% dA(z).

If we make a change of variables we see that

Bf(z) =(1 — |zI*)*F

FO_ 40
p |1 — z({|

It is well known that Bu = u for any harmonic function u. However, B is not a
projection onto the harmonic functions, that is, Bu is not always harmonic. In fact, if v =
Bu isharmonicthen B(u — v) = 0 since B reproduces harmonic functions. It is easily seen
that the Berezin transform is injective and hence u = v. In other words Bu is harmonic if
and only if u is harmonic. We also have the kernel functions k,, for eachw € D defined by
k,(z) =1/(1 — zw )?. The relation of these kernel functions with the projection P is the
following: if f € L? then (Pf)(z) = Of(, kzP.) In particular, if f € B?then f(z) =
(f,k,). We shall denote the laplacian by 4 = 02 /(0z 0z ) and the invariant laplacian
by 4 = (1 —|z|?)?4.

There is an extensive literature on Toeplitz operators on the Hardy space H? . (See [98]
for the definitions of the Hardy space and their Toeplitz operators.) In the Hardy space (and
in the Bergman space as well, see property 2, below) it is routine that if u or v is holomorphic
then T, T, = Ty, . I, [98] it was shown by A. Brown and P. Halmos that, in the Hardy space
case, the converse is true. That is, if T,,T,, = T,, then one of the two symbols u or v must be
holomorphic and in this case w = uv. From this they easily deduce that if T;,T,, = 0 then
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one of the symbols u or v must be identically zero. There are many other interesting
corollaries to their result. Returning to the Bergman space case, it has been an open problem
for some time to determine if there is a theorem of Brown—Halmos type for Toeplitz
operators. We show that in general there is not. We show that there are functions u, v and w
which are continuous on the closed unit disc with T,T, = T,, but neither & nor v is
holomorphic. This example will be given in Some Examples. We do have a theorem of
Brown-Halmos type if we put some restrictions on the symbols. We show, in Corollary
(3.2.12), that if f and g are bounded harmonic functions and T¢T, = 0 then one of the two
symbols f or g is identically zero. This ‘‘zero product’’ problem for arbitrary bounded
symbols f and g is still open.
Next we describe the results.
Theorem (3.2.1)[96]: Suppose f and g are bounded harmonic functions and that h
is a bounded €2 function with the property that 4 h is also bounded in D. Assume that
T¢T, = Ty , then one of the following holds:

f is conjugate holomorphic g is holomorphic and in either case h = fg.

We will make two comments on Theorem (3.2.1). There is a general feeling that if a
theorem from the Hardy space theory of Toeplitz operators is not true for all Bergman space
Toeplitz operators then it should be true for those operators whose symbols come from the
algebra ‘U . Here ‘U is the uniform closure of the algebra generated by the bounded harmonic
functions. This is not the case for Theorem (3.2.1) because in our counterexample, alluded
to above, the symbols are continuous on the closed disc and hence belong to «. The other
comment has to do with the fact that the function h in Theorem (3.2.1) is required to satisfy
a much weaker condition than is required of f and g. This leads us to ask if Theorem (3.2.1)
remains true if we just require that the functions f, g and h all have their invariant laplacians
bounded in D. The answer is no. We will give an example of functions f,g and h all of
which are of class C? up to the boundary of D and such that T¢ T, = T}, but neither fnorg
is holomorphic.

From Theorem (3.2.1) we get the following results on products of Toeplitz operators,
some of which are parallel to results in [98].

The next rephrasing of Corollary (3.2.12) is a cancellation law for Toeplitz operators.
Corollary (3.2.2)[96]: If f, g and h are bounded harmonic symbols such that T, T, = T¢T,
and f is not identically 0 then g = h.
The next corollary says that if a Toeplitz operator with bounded harmonic symbol has an
inverse of the same type then this can only happen in the most tribyl way
Corollary (3.2.3)[96]: If f and g are bounded and harmonic and T¢T,, = I then either f and

g are both holomorphic or they are both conjugate holomorphic and in either case f = é.

The next corollary says there are no idempotent Toeplitz operators with bounded
harmonic symbol other than the obvious ones.

Corollary (3.2.4)[96]: If f is bounded and harmonic and sz =Tsthen f — Oor f — 1.
Our last corollary was proved by Zheng in [58] Theorem 5, by a different method.
Corollary (3.2.5)[96]: If f and g are bounded harmonic symbols and T¢T, = T, then

either g is holomorphic or f is conjugate holomorphic.
We would like to point out that our method, when applied to the Hardy space case,
gives a simple ‘‘function theoretic’’ proof of the Brown—Halmos theorem. This proof will

120



be given in the paragraph following the proof of Proposition (3.2.6) This proof clarifies, for
us, the differences between the Hardy space and Bergman space cases.

In Proposition (3.2.6) we give a pair of function theoretic identities involving f, g and
h that are equivalent to T, T, = T , in the case that f and g are bounded harmonic functions
and h is only assumed to be nearly bounded in D (see below for the definition of nearly
bounded). The proof of Theorem (3.2.1) is based on an analysis of these identities.

We list here some well known and easy properties of Toeplitz operators:

(i) If T,, = 0 then u = 0 almost everywhere.

(ii) If f is holomorphic then T,,Tf = T,¢ , and T£T, = T4, for any u.
(iT; =Ty .

(iv) If £ is holomorphic and not identically zero then T is one to one.
(v)Ifg € Bandw € D then P(gk,,) = g(w)k,,,.

A good reference for (ii) through (v) above is Axler’s survey [97]. Property (i) does
not seem to be stated specifically but it is very easy: T,, = 0 implies that u is orthogonal to
all polynomials (in z and z) and hence u = 0 almost everywhere since such polynomials
are dense in L? . Before turning to the proofs of our results we need to say a few words
about Toeplitz operators with unbounded symbols. Even though we are interested primarily
in operators with bounded symbol, operators with unbounded symbol arise naturally. In
contrast to the Hardy space case, unbounded symbols can give rise to bounded operators
on the Bergman space. For example if F € L! (D) and has compact support K in D then we

candefine T f(z) = [, (F(O) f(D/(1 -z Z)Z ) dA(Q). Then
T f@I < ¢ [ IFldAGuwK D <G [ IF1dalifl],.
K

K
Here the last inequality follows from the fact that for f € B? the L? norm dominates the

sup norm over any compact set. This says that the sup norm of T f is dominated by a
constant times the L* norm of f and hence ||Ts f1|, < C [If||, for some constant C. More

generally, if F € L' (D)andthereisanr < 1suchthatfisboundedon zr < |z| < 1}
then T is bounded on B? because F can be written as an L function with compact support
plus a bounded function. Such a function will be called ‘‘nearly bounded’’. A function of
this kind will arise in the construction of our counterexamples. The basic properties listed
above for bounded symbols continue to be true for nearly bounded symbols but the only
one we will use is the following: if u is nearly bounded and g is bounded and holomorphic
then T, T, = T,z , but this is obvious.

We prove the identities on which our other results are based. If f is a bounded complex
valued harmonic function defined in D then there are holomorphic functions f; and f, such
that f = f; + f, . This decomposition is unique if we require £, (0) = 0. Of course, f; and
f>» are not necessarily bounded but they are certainly Bloch functions.

Proposition (3.2.6)[96]: Suppose that f = f, + f,,g = g, + 8, are bounded harmonic
functions with f;, g; holomorphic and h is nearly bounded in D. Then the following are
equivalent.

()T T, =Ty .

(ii) For all z € D we have

Li@g @ +f, @7, @D+ (@), @ =B(h - f, 9.)@.
(iii) For all (z,w) € D x D we have
fi @g1 (@) + f, Wg, W) + fi (2)g, (W)
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— - w)? [ fD (h(C_) 2f2 (§)gs (C)) dA(Q).
(1 -3z) (1 —qw)?
Proof. Now T¢T, = T}, if and only if T,T k,, = Tyk,, for all w € D. Using Property 5
above we see that

Tgkw = P(g1kw + g2kw) = gikw + g2 W)k,,.
It now follows from another application of Property 5 that

Tngkw =P ((f1 + fz )(91kw + 9 (W)kw))

= f1 gikw + g> W) fiky, + g2 (W)fz W)k, + P(fz grkw)-
So we see that T T, = Ty, is equivalent to

fi(@g @)+ f WG, W) + fL (DG, W) + ——=

1
=1 Pk

for all z, w in D. But this is just Eq. (iii) with w replaced by w . This shows that (i) and (iii)
are equivalent. If we let w = Z in (iii) we get (ii). It remains to show that (ii) implies (iii).
Both sides of Eq. (iii) are holomorphic in (z, w) in the bidisc D x D. Assuming (ii) they are
equal on

{(z,w): w = Z} and hence they are equal on the bidisc. This finishes the proof of the
proposition. Before continuing with the proof of Theorem (3.2.1) we will discuss what
happens when we apply our method to the Hardy space case. If f, g and h are L*. functions
on the circle, then we can write f = f; + f, where f; and f, are in H> n BMO and
similarly for g and h. If we letS, (e ) = 1/(1 — ze'? ) be the Szego kernel and Ps the
Szego projection of L? onto H? then application of the method of Proposition (3.2.6) leads
to:

w( ) P(fZ 91 W)(Z)

fi (@2)g1 (2) + fz (2)g2 (2) + f1 (D) g2 (2) + ——= Ps(fz 915 )(Z) = h(2).

Sy ( )
But now we see that (Si (z)) Ps(uS, )(z) is Poisson integral of u for any u which is

integrable on the circle. So we see that every term in the above display with the exception
of f; g, is obviously harmonic. It follows that f; g, is harmonic from which it follows
that f; or g, is constant. This is the same as saying that f is conjugate holomorphic or that
g is holomorphic. In the Bergman space case the Berezin transform appears rather than the
Poisson integral and since the Berezin transform does not always yield harmonic functions,
we have some more work to do.
Now assume that the hypotheses of Theorem (3.2.1) hold. From Proposition (3.2.6)(ii) we
know that
figr+ G+ figG.=B(h — f291).

Since B reproduces harmonic functions we see that

_ _ f192=B),
whereu=h — f,91 — f191 — 292 -
Notice that Zu = 4h — 4f, g, is bounded.
This is so because 4h is bounded by assumption and

afa 91 (@) =1 — |2I*)* f; (2)g1 (2)
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IS bounded since f, and g, are Bloch functions. We want to conclude that f; or g, is
constant. This will follow from the following

Proposition (3.2.7)[96]: Suppose that f and g are holomorphic in D and fg = Bu
whereu € L' (D) n C? (D)and Zu € L®.(D) then either f is constant or g is constant.
In the proof of Proposition (3.2.7) we will want to use the fact that the invariant laplacian
commutes with the Berezin transform. This last fact has been known for some time, (see the
discussion in [99]); however, the proofs we have been able to find are given only for
functions of compact support or are based on the fact that B is in some sense a function
of D4. Since this fact is crucial to our argument we have decided, with no claim to
originality, to include a simple direct proof of what we need.

Lemma (3.2.8)[96]: Suppose thatu is twice continuously differentiable in D and u
and Zu are in L' (D) then ZBu = B(4u).

Proof. We fix 0 < r < 1andz € D and consider

Jy, (% = wP)? utw)
|1 — w z|*
where D, is the disc of radius r centered at the origin. By Green’s theoremthis is equal to

2 _ w2
f w4, (r® —wl|%)
D

|1 — wz|*
T

A(w),

dA(wW)

(the boundary terms are 0 because (2 — |w|? )? and its normal derivative both vanish on
the boundary).
Now |(r2— |w|?)?4u| < |(1 — |w|?)? 4u|in D, so we may take the limit
asr — 1 under the integral sign in the first integral.
Now for each fixedz € D, 4,,((r? — |w|?)*2 /|1 — wz|*) converges pointwise
and boundedly to 4,,((1 — |w|?)? /|1 — wz|*)asr — 1.So we obtain that
(1 — [w|?)? p du(w) p
L U)o dAGW) = fD T dAW)
In the first integral we now use the remarkable but easily verified identity
(1- |w|?*)? (1-|z|*)?
Yol1-wzlr T TF |1-wz|t
If we multiply the resulting equation by (1 — |z|? )? we see that the lemma is proved.
Now we turn to the proof of Proposition (3.2.7). We are assuming that fg = Bu. We
take the invariant laplacian of both sides of this identity and we arrive at (after dividing

by (1 - 1z|*)?),

LN Au($)
@G (@)= | ———7 dA(%).
p |1 — &7
Next we ‘‘complexify’’ this identity.
Lemma (3.2.9)[96]: For all z, w € D we have
Au($)

'(2)§ (W) = dA(E).
F@g@) = | TR G 1O

Proof. The functions on either side of the displayed equation are holomorphic in the bidisc

{(z,w):|z| < 1,|w| < 1} and they are equal on the subset {(z, 2)} and hence are equal on
the whole bidisc.
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Proceeding with the proof of Proposition (3.2.7) we take the identity of the Lemma
(3.2.9) and we differentiate k times with respect to w and then let w = 0. We arrive at

k
| 99 e =,
p (1 -¢z)

for some constants C,, k = 1,2, ..., where o (¢) = Au(é).

Consider now the Toeplitz operator T, with the possibly non-harmonic bounded symbol
a(&). The above display tells us that T,,(¢* ) is a multiple of ' for all non-negative integers
k. There are two possibilities, Ta(£% ) = 0 for all k, or not. If the first holds then T, p = 0
for all polynomials and hence Ta = 0 on the Bergman space and hence o = 0. In the other
case T, (é%) = 0forsome k. That is, some C,, # 0. This means that /' € B2 sinceitisa
multiple of T, (&%) for some k. So if s were not zero then Ts would be a rank one operator.
So we need to know that there are no rank one Toeplitz operators with bounded symbol.
Lemma (3.2.10)[96]: If ¢ is a bounded (not necessarily harmonic) function in D and dim
T,B* [1theno = 0.

Proof. The proof depends on the following idea due to R. Rochberg valid for any bounded
function o: If w = u + iv and & denotes the Fourier transform of s then
G = [ e wemsda=T,e w,en)
D 2 2 )
where e, (z) = e™*. Now the hypothesis of this lemma implies that

Ta f = (f» Q) F
forsome @, F € B so we see that
d(w,u) =(e_w,@B)(F,ew) = GW)H (w),

where G, H are entire functions. So we have || = |GH | = |GH|. But & is continuous and
goes to 0 at co. and GH is entire. It follows that GH and hence & is identically 0 from which
it follows thate = 0.

So we see that in any case ¢ = 0. This means that 4u = 0and hence that f'g’ =
0 which implies that f is constant or g is constant. This finishes the proof of Proposition
(3.2.7) and hence the proof of Theorem (3.2.1).

It is natural to ask if the hypothesis on Au in Proposition (3.2.7) is necessary. Pursuing
this question will lead us to the examples mentioned. The simplest question one could ask
is: does there exist a function u € L! (D) such that zz = Bu(z)? The answer is yes,
withu(&) = 1 —log 1/|&]? . To see this we need to show that if v(¢) = log 1/|€]? then
Bv(z) =1 — |z|?. If we use the second of the two formulas given for Bv we want to show
that

l 2
1 - |22)? j L9 Gy = 122 - 1.

b1 —&z|

Since |1 - E_z|_4 Yor (m+ 1)k +1)(Ez)n (§2)* and since v is radial we see that

2
| 2R 4=y @1y | tgrmiogier aalar
D |1 - fz| m D

Now the integral in the right hand side of the above expression is easily calculated to
be — 1/(n + 1)2. So the sum on the right hand side of the above display is — 1/1 — |z]|?.
Multiplying by (1 — |z|?)? we see that Bv(z) = 1 — |z|?, as claimed.

But now if we recall the equivalence of (i) and (ii) of Proposition (3.2.6) we see that we
have
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TZTZ_ = Tu(z)
where u(z) =1 —log 1/|z|?. Of course u is not bounded but it is nearly bounded so
Proposition (3.2.6) applies. Now if we compose both sides of the above display on the right
by T, we get
T,T 12 = Touco)-
This equation is of the form T, T, = T, where f, g and h are continuous on the closed disc

but neither £ nor g is holomorphic. If we compose on the right again by T - we get
T,T;,3 =T, u(z).

In this equation of the form T, T, = T, , all three symbols have bounded invariant laplacian
since they are all of class C2 in the closed disc but neither f nor g is holomorphic.

Next we discuss the proofs of the corollaries.

Corollary (3.2.11)[96]: If f, g and h are bounded harmonic functions and T;T, = T}, then
one of the following holds:

(i) f and g are holomorphic

(if) f and g are conjugate holomorphic

(iii) f is constant

(iv) g is constant.
Proof. Theorem (3.2.1) tells us that f is conjugate holomorphic or g is holomorphic.

Suppose g is holomorphic then fg = h. In particular, fg is harmonic. 4fg = Z_]; g. It
follows that f is holomorphic as well or that g is constant. If f is conjugate holomorphic the
argument is similar.

Corollary (3.2.12)[96]: If f and g are bounded harmonic functions and T; T, = 0 then either

f—0org— 0.
Proof. By Theorem (3.2.1) fg = 0 in D and since f and g are harmonic one of them is
identically 0.

Corollary (3.2.2) follows from Corollary (3.2.12) since the hypothesis of Corollary (3.2.2)
implies that T T,_, = 0. Corollary (3.2.3) follows by observing that I = T;, where h is the
constant function 1 and then applying Corollary (3.2.12). The proof of Corollary (3.2.4) is
similar. To prove Corollary (3.2.5) we need only check that Zfg € L®. but this follows
since f and g are bounded and harmonic.

Section (3.3): Semicommutators of Toeplitz Operators with Harmonic Symbols

For dA denote Lebesgue area measure on the unit disk D, normalized so that the
measure of D equals 1. The Bergman space LZ is the Hilbert space consisting of the analytic
functions on D that are also in L?(D, dA). For z € D, the Bergman reproducing kernel is
the function K, € L2 such that

h(z) = (h,K,)
forevery h € L%. The normalized Bergman reproducing kernel k, is the function
K,/||K,||,. Here the norm || ||, and the inner product ( , )are taken in the space
L?(D,dA).

For f € L*(D,dA), the Toeplitz operator T with symbol f is the operator on L
defined by Trh = P(fh); here P is the orthogonal projection from L?(D, dA) onto L7. We
denote the semicommutator and commutator of two Toeplitz operators Ty and T, by

(T Tgl = Trg — TrTy
and
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[Ty, Tyl = TeTy — TyTy

respectively. Note that if g € H* (D) (the set of bounded analytic functions on D), then T
is just the operator of multiplication by g on L7 and hence (T;,T,] = 0 for any f €
L*(D,dA).

For a bounded operator S on L2, the Berezin transform of S is the function B(S) on D
defined by

B(S)(2) = (Sky k).
The Berezin transform B(u)(z) of a function u € L* (D, dA) is defined to be the Berezin
transform of the Toeplitz operator T,,. In other words,
Z— W
Bw)(z) = B(T)(2) = Lu(l—z"w) dAW).

The last equality follows from the change of variable in the definition of the Berezin
transform. The above integral formula extends the Berezin tranform to L* (D, dA) and clearly
gives

B(u)(z) = u(z) (17)
for any harmonic functionu € L*(D, dA).
2
Let A denote the Laplace operator 4 ajaz' A function h on D is harmonic if Ah(z) = 0
~ 2
on D. We use A to denote the invariant Laplace operator (1 — |z]?)? 463—62_ . The invariant

Laplace operator commutes with the Berezin transform [96], [103], which is useful in
studying Toeplitz operators on the Bergman space [96].

An operator A on a Hilbert space H is said to have finite rank if the closure of Ran (A4)
of the range A(H) of the operator has finite dimension. For a bounded operator A on H,
define rank(A) = dim Ran(A). If A has finite rank, then rank(A4) < oo.

We study the problem for which bounded harmonic functions f, g on the unit disk,
the semicommutator (7 , T, | or commutator [T} , T,] has finite rank on the Bergman space.
The analogous problem on the Hardy space has been completely solved in [93], [102]. We
will reduce the problem to the problem of when a Toeplitz operator has finite rank. Although
the problem on finite rank Toeplitz operators remains open, Ahern and Cuckovic [96] have
shown that for u € L*(D), if T,, has rank one then u = 0. One naturally conjectures that
foru € L*(D), if T, has finite rank, then u = 0. We will show that this conjecture is true
provided that u is a finite sum of products of an analytic function and a co-analytic function
in L2(D, dA). Using the result we shall completely characterize finite rank semicommutator
or commutator of two Toeplitz operators with bounded harmonic symbols. The zero
semicommutator or commutator of two Toeplitz operators with bounded harmonic symbols
has been completely characterized in [101] and [105]. In fact, we shall show that if the
semicommutator or commutator of two Toeplitz operators with bounded harmonic symbols
has finite rank, then it must be zero. This is not the case on the Hardy space [93], [102].
Moreover on the Bergman space there exist nonzero compact semicommutators or
commutators of two Toeplitz operators with bounded harmonic symbols [54], [105]. We
will show that for two bounded harmonic functions f, g, if the product T T; has finite rank,
then either f or g equals 0, which extends the result on the zero products of Toeplitz
operators in [96].

We study Toeplitz operators with finite rank. For a family {A,,} of operators on the
Hilbert space H and an operator A on H, we say that A,, converges to A in weak operator
topology, if foreach x,y € H,
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lim(A,x,y) = (Ax, y).
n—o
The following result is implicitly contained in [104]. We include a proof for completeness.
Lemma (3.3.1)[100]: Suppose that A,, and A are bounded operators on the Hilbert space H.
If A,, converges to A in the weak operator topology, then
rank(A) < liminfrank(A4,).
n—-oo

Proof. Let [ denote liminfrank(A,). We need only consider the case [ < oo. We claim

n—oo

that rank(A) < L. If this is false, we may assume that rank(A) = | + 1. Thus there are
(I + 1) elements {x]}i: in H such that {Ax]}iill are linearly independent and so
det[(Axi,ij)](Hl)x(Hl) + 0

where det[(Ax;, Ax;)] denotes the determinant of the (I + 1) x (I + 1) matrix

(I+1)x(1+1)

I+ DX(4D)’ Since A4,, converges to A in the weak operator topology, for each i, j,

lim (A, x;, Ax;) = (Ax;, Ax;).
n—oo
This gives
lim det[(A,x;, Ax;)] = det[(Ax;, Ax;)]
n—oo

Thus for some large N,

(I+1D)x(1+1) (I+D)x(+1)"

det[(Ain’Axf)](l+1)x(z+1) * 0, (18)
but
rank(Ay) < L (19)
So (19) gives that there are constants c; with ¥!1|c;| # 0 such that
l+1
z Cl‘Ain =0
i=1
Hence

c[(Anx;, Ax;)] 0
where ¢ = (c¢q,+**, c;41). This implies
[(Anxi, Ax;)]
It contradicts (18) to complete the proof.
Theorem (3.3.2)[100]: Suppose that £ isin L* (D) and equal to X.5_; f;(2) g, (2) for finitely
many functions fj(z) and g;(z) analytic on the unit disk D. If T has finite rank, then f =

0.
Proof. First we will show that T\f2 has finite rank. To do so, for each 0 < r < 1, define

f-(z) = f(rz).Letg, = f..Since
l
f&) =) [(g,®
j=1

for finitely many functions f;(z) and g;(z) in L7, we have
l

A+D)xU+1)

A+D)xU+1)

l

ngr - Tf(Zﬁzlf](rz)g](rz)) = Z Tff](TZ)gj(TZ) = z Tf](TZ)Tngj(TZ) :
j=1 j=1
The last equality follows from the basic properties of Toeplitz operators [43]

TypTy = Tﬁf
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and
Te Ty = Trp,
for f € L*(D,dA) and h € H®(D). If T; has finite rank and rank(T;) = N, then for
each0 < r < 1,
rank(Tr, ) < NL
Thus
limsup rank(Tsy ) < NI

r-1

Next we shall show that Tr, converges to Tz in the weak operator topology. To do this,
we observe that for each z € D,

f@g:@| = If@fE2 < IfIIZ,
Tim f(2)g-(2) = (DI,

By the dominant convergence theorem we have that for h,, h, € L2,

lim [ F@0r @@ = [ @R @REAR),
D D

and

to obtain
)qu_wfgrhl' hy) = rllr{lffgrhp h;)

= lim f ()9, (@Dhi (@D @) dA(2)
D

- f If(2)2hy (D) hy () dA(2)
D

=A(Tf12h1, h2).
This means that Tr, converges to T2 in weak operator topology. By Lemma (3.3.1), we
have that the Toeplitz operator T,z with nonnegative function symbol has finite rank and
its rank is at most NI.

To finish the proof we need to prove that if the Toeplitz operator with nonnegative
function symbol has finite rank, it must be zero. This was well known. For completeness,
we include a proof here. Since T2 has finite rank, the kernel of T ;2 contains a nonzero
function h € L2. Thus

0 =(T|szh, h)

= (IfI?h, h)
B J f(@)12h(2)|?dA(2)
D

and so

If@I*|h(2)]|* = 0
for a.e. z € D. Noting that h(z) is in the Bergman space, we conclude that f = 0 in
L™ (D, dA) to complete the proof.

For f € L*(D,dA), the Hankel operator Hy with symbol f is the operator on L
defined by Hyh = (I — P)(fh); here P is the orthogonal projection from L*(D, dA) onto
L%. The relation between Toeplitz operators and Hankel operators is established by the
following well-known identity:

(T, Ty = H;Hy.
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We shall reduce the problem of when a finite sum of products of two Hankel operators
has finite rank to the problem of when a Toeplitz operator has finite rank.

For each bounded harmonic function f on the unit disk, f can be written uniquely as a
sum of an analytic function and a co-analytic function on the unit disk D up to a constant.
Let /. denote the analytic part and f_ the co-analytic part with f_(0) = 0. In fact, both £,
and f_ are in both the Hardy space H? and the Bloch space [43], [49].

For bounded harmonic functions f; and g; on the unit diskfori = 1,---, k, define

o(fur fic 911 91) —AZ(ﬁ) (90+].

For two bounded harmonic functions f and g on the umt disk, let o,.(f, g) denote a(g; f)
and o.(f, g) denote o(f,—g; g, f). Easy calculations give
k

ofio fio 99 = (L= 1212 Y () ()} (20)

where (f;)_ = 0;f;. Hence
osc.(f,9) = A(f+9-)
= (1 - 121*)?(0,1)(0:9)
= (1 -1z @ - 1219 (2),
o.(f.9) = Alf-9+ — f+9-]
= (1 - 121*)?[(0:1)(9,9) — (8,1)(8z9)]
= (1 -z (@A - 212 g4 (2) — A — 1z f{ (DA - |z1*) g~ (2).
Lemma (3.3.3)[100]: Suppose that f; and g; are bounded harmonic functions on the unit
diskfori = 1,---,k. Thena(fy,**, fi; 91> 9x) iSin L= (D, dA).
Proof. Since f; and g; are bounded harmonic functions on the unit disk, (£)+, (f)—, (g:)+
and (g,)_ are in the Bloch space
B = {h: hanalyticon D,sup(1 — |z|?)|h'(2)| < oo}
Z€D
(see [43]). (20) gives that a(f, **, fx; 91, *» i) 1S in L=(D, dA).
Proposition (3.3.4)[100]: Suppose that f; and g; are bounded harmonic functions on D for

i = 1,-, k. If the finite sum Z] =1 Hy, Hfj of products of Hankel operators has finite rank,

then To (s, ... f1; g1g,) NS Finite rank.
Proof. For these bounded harmonic functions f;, g; on the unit disk, write

fi = (fd+ + (f)-

gi = @)+ + (9)-,
where (f;)+, (9:)+, (f,)_, and (g,)_ are in the Hardy space H?. By Lemma (3.3.3),
o(fi, " fio 9 gi)(2) is in L¥(D,dA). Thus Tss, ... f1; gorgi) 1S DOUNded on the
Bergman space L?.

We shall get the Berezin transform of ~ ¥7_ 1Hg Hp;. First we calculate the Berezin

transform of B((Tf, T,])(z) of the semicommutator (Tr, T,]. By the basic properties of
Toeplitz operators on the Bergman space [43], [14], we have
Trk, = (fi + £2(2)k,,
for z € D. Since f is harmonic in the unit disk, we also have
B(f)(2) = f(2).
For two bounded harmonic functions f, g on D, easy calculations give
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B((T;, Ty)(z) = B(Try — Tng)EZ)
= (fngJ kz) - ((g+ + g—(z))kz'sz)
=(fg - f(9+ +9-@)]k k.)
=(|f(9- — 9-@)]k k)
= Uf+g9- + f-9- = f9-(D]k,, k;)
= <f+g—kzl kz) + (f—g—kz' kz) - g—(Z)<ka: kz)
= B(f+9-)(2) + f-(2)g-(2) — 9-(2) B(f)(2)
=B(f19-)(2) + f-(2)g-(2) — g-(2)f (2)
= B(f+9-)(2) + f-(2)g-(2) — g-(D)(f+(2) + f-(2))
= B(f19-)(2) - f+(2)g-(2)

(T;, Ty = H:Hy,

forall z € D. Noting

we have
B(HzHy)(z) = B(f+9-)(2) — f+(2)g-(2).
Thus

k k k
BOY Hyty )@ = BO 9D+ @ = D (9D (f)-@).

Applying the invariant Laplace operator A to both sides of the above equation gives
k

ABCY HyiHy )(2)
j=1

k k
= [EB(Z(Q,-L(J‘,-)_)](Z) - [EZ(gjh(Z)(fj)_(Z)]-

Since the invariant Laplace operator commutes Wlth the Berezin transform [96] we have

B(o(fu - fic 91910) (@) = (1 = 12)? Z(gjmm ()] +AB(ZH He (@)

In other words, the above equality becomes
<T0'(f1,“',fk; g1,~-~,gk)kzi kz) = B(O-(fl' o ’fk; gl' Tty gk))(z)
k k

= (1= 2P?1) (9@ D@+ BBCY Hy Hy )(2),

For two functions x and y in L3, define the o_perator x @ y of rank one tc_) be
x @ »)f = (fiy)x
for f € L%. Then it is easy to verify
B(x @ y)(2) = ((x & y)k,, k)

=1 — [z|)*((x & ¥k, k,)

= (1 - |Z|2)2<kz;y><x; kz)

=1 — z2I)*x(2)y(2),
forz € D. If the semlcommutatorZJ 1 HgHp; has finite rank N, then there exist functions

x;  andy;inLZ forj = 1,..,N such that
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z Hf, ij X v;-

k N
BO HyHy) (2) = (L= 12220 5(2),@)
j=1 j=1

Thus

Observe
N 3N
(- 12 @3 = Q) 52)3,@)
4 £

where £; and §; are in the Bergman space L7, . So
<T0'(f1 S 91 gk)kz’k )

= (112’ Z(g,) D@+ (A~ |22 (Z (5@

Dividing by (1 — |z|?)?, we obtam

(Toufis g gk)Kz,K>—Z(g,)+<z)os) (z)+<z (D3], 1)

As in [96] we complexify the above |dent|ty Write the Ieft hand side as an integral as in
[96] to get

1
<T0(f1r--,fk:gl,---.gk)Kz’ K,) = ja(fb“'»fki 91;"':gk)(ﬂ)|1_—5,1|4
D

Since the right hand side of (21) and the above integral are real analytic functions of z and
Z we obtain

dA(A).

(Tottyr s on gk>Kw,K>—Z(g,)+<z)<m (w)+(2 (7],

Differentiating both sides of the above equatlon [ times with respect to w and then letting
= 0give
k 3N
ot fsona0? = ) (@@ + ) byfi(2) 22)
j=1 j=1
for some constants a,;, b;;.

Although some of (g])+ and £; may not be in L%, we observe that foreach 0 < r < 1, all
of (gj)+|m forj = 1,..,k and Xilyp forj = 1,..,3N arein L5 (rD, dA).
Ta(f1.~~.fk; gi-g) tas finite rank on the Bergman space L2,

If this claim is false, we may assume that there are 3N + k + 1 linearly independent
functions {¢, }3X**1 in the range of T, ..r. gig0)- THus for each 0 < r <

’{d)”lm by e are also linearly independent in the space L% (rD,dA). Since analytic
polynomials are dense in L%, for each p, there are analytic polynomials p,; such that
To(f, - fr: gurgi)Put CONVErges to ¢, Thus Ty £, ... £.: g, - g0 P CONVErges uniformly to ¢,

on each compact subset of the unit disk D. Noting that D is contained in a compact subset
of the unit disk, we have
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>0

. 2
D
On the other hand, (22) gives that Ty, ... £, gl,...,gk)pul|m IS contained in the subspace

spanned by (gj)' lrp and X/ |,p of L%2(rD, dA). But the subspace has dimension at most
3N + k. This contradicts that {¢u| 3N Fk+1 are also linearly independent and hence gives

that Ty (f, ... f1; gog,) NAS finite rank to complete the proof.
Theorem (3.3.5)[100]: Suppose that f and g are bounded harmonic functions on the unit
disk. The semicommutator (T, T, ] has finite rank if and only if either f or g is analytic on
the unit disk.
Proof. If either £ or g is analytic on the unit disk, then T¢T, = T¢4 and so the semi
commutator (T¢, T, ] equals 0.
If the semicommutator (T, T;] has finite rank, noting
(Tr, Tyl = H7Hg
by Proposition (3.3.4), the Toeplitz operator T_o.(f, g) has finite rank. Since
0sc(f,9)(2) = (1 — 1z1?)*fi(2)g_(2)
= fi(2)9-(2) — 2zf{(2)9_(2)Z + 2*f{(2)g_(2)Z?,
Theorem (3.3.2) gives that for z € D,
o (f,9)(2) = (1 — [zI*)*fi(2)g(2) =

fi@)g.(@) = 0 ]

on D. Thus either f, or g_ is constant on D. So we conclude that either f or g is analytic on
D to complete the proof.
Theorem (3.3.6)[100]: Suppose that f and g are bounded harmonic functions on the unit
disk. The commutator [T, T, ] has finite rank if and only if f and g are both analytic on D,
or f and g are both analytic on D, or there are constants c;, c,, not both 0 such that ¢, f +
c, g Is constant on D.
Proof. If f and g are both analytic on D, both Ty and T, are multiplication operators on the
Bergman space and then they are commuting. Hence the commutator [T, T, ] equals 0.

If £ and g are both analytic on D, both Ty and T, are adjoints of multiplication operators
on the Bergman space and then they are commuting. Hence the commutator [T, T, ] equals
0.

This implies

If there are constants c,, c¢,, not both 0 such that ¢, f + c,g is constant on D, noting
that the Toeplitz operator with constant symbol commutes with any bounded operator on
the Bergman space, we have that T, commutes with T, to obtain that the commutator
[T, T,] equals 0.

Conversely, if the commutator [T}, T, | has finite rank, noting
[Tf g] — TgTy
( — TgTy) — (Trg — TyTy)
= (Tg'Tf] — (T, Ty
= HyH; — H7Hy,
we have that HzHy — H;Hg has also finite rank. Lemma (3.3.3) gives that o.(f,g) is
bounded on D, and easy calculations give

o.(f,9)(2) =1 - IZIZ);DZ‘_’(Z)QL(Z) — f+(2)g92(2)]



= f2(2)g9+(2) — fi(2)9-(2) — 22f (2) g} (2)z
+22f{(2)9-(2)Z + 2°f1(2) 94 (2)z* — z*f{(2)g_(2)Z*.
Thus Theorem (3.3.2) and Proposition (3.3.4) give that o.(f, g)(z) = 0 on the unit disk.
Letu = g, +ig_andv = if, + f_. Clearly, u and v are harmonic on D.
An easy calculation gives
A(wv) = Algsf- — frg- +ig+fs +ig-f1Alg+f- — frg-]
=1 = 12I)%[fL(2) g} (2) — fi(2)g~(2)]
= o.(f,9)(2).

Thus uv is also harmonic on D. By Lemma 4.2 [45], we have that at least one of the
following conditions holds

(1) wand v are both analytic on D;

(i) u and ¥ are both analytic on D;

(iii) there exist complex numbers a, 8, not both 0, such that au + Bv and @i — S are
both analytic on D.
Condition (i) gives that £ and g are both analytic on D. Condition (ii) gives that f and g are
analytic on D. Condition (iii) gives that a(g, +ig_) + B(if, + f-) and a(g, +1g_) —
B(f; + f_) are both analytic on D. Thus aig_ + Bf. and @g; — Bif, are constants on
D,andso ag_ — Bif-and ag, — Bif, are constants on D. Hence we conclude

ag — iBf = (ag- —iff-) + (ag+ — Bifs)
Is constant on D. This completes the proof.
Theorem (3.3.7)[100]: Suppose that f and g are bounded harmonic functions on the unit
disk. T¢ T, has finite rank if and only if either f or g equals 0.
Proof. It is clear that if either f or g equals 0, then T, T, = 0.
Conversely, if T;T; has finite rank, we shall show that either f or g equals 0. An easy
calculation gives
B(T;Ty)(z) = B(fg)(2) — B(f+9-)(2) + f+(2)g-(2). (23)
Applying the invariant Laplace operator A to both sides of the above equation gives
[AB(T;T,)|(z) =AB(fg — fr9-)(2) +A[fi(2)g-(2)].
Since the invariant Laplace operator commutes with the Berezin transform (Lemma (3.3.1),
[96]), we have
B(A(fg — f+9-))(2) = [AB(T;Ty)l(2) — Alfi(2)g-(2)].
As in the proof of Proposition (3.3.4), the Toeplitz operator Tz,  , 4y has finite rank.
Theorem (3.3.2) gives that A(fg — f.g_) = 0. This implies that fg — f,g_ is harmonic
and f!(z)gi(z) = 0 on D. Thus either f_ or g, is constant and hence either f or g is
analytic on D.
On the other hand, since fg — f.g_ is harmonic (23) gives
B(TyTy)(2) = f(2)g(2).
By the main result of [46],
lim B(T;T,)(z) = 0.

|z]=1
Because the radial limits of both f and g exist on the unit circle, we have that f(z)g(z) =
0 on the unit circle and then either f or g equals 0 on the unit circle. Hence f or g equals
0 on the unit disk. This completes the proof.
Theorem (3.3.8)[100]: Suppose that f; and g; are bounded harmonic functions on D for
i = 1,..., k. The following are equivalent
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(1) Z] H Hf has finite rank.
(i) Z] 1 H Hf] = 0.
(i)o(fi, . fio 91, Gk) = 0

Proof. It is clear that (ii) implies (i).
First we prove that (i) implies (iii). Proposition (3.3.4) immediately gives that
To(fyfr; 9190 Nas finite rank. Theorem (3.3.2) gives that

o(fi, - fis 91, 9x) = 0.
To prove that (iii) implies (ii), we need the following equality obtained in the proof of

Proposition (3. 3 4)

B(ZH Hy)(2) = B(E(g,h(f]) (@) - Z(g,h(Z)(f]) @.

(i) implies that the function 2 1(g])Jr(z)(f]) (2)is harmonlc and hence

B(Z(g,h(f,) () = Z(g,) DF-@.

Therefore
k
B(Z H; H; ) (@) = 0.

By the injection of the Berezin transform [55], we conclude that the operator Y% j=1Hg; Hfj
must equal 0 to complete the proof.
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Chapter 4
Reducing Subspaces

We characterize the nontribyl reducing subspaces of the Toeplitz operator TN m ON

the Bergman space A2?(ID?), where N and M are positive integers. We study the reducing
subspaces of A¥ ® I + I ® B! and give some examples. As an application, we study the
reducing subspaces of multiplication operators M« on function spaces. We show that
the von Neumann algebra V*(¢) = {T,, T4} is abelian.
Section (4.1): A Class of Toeplitz Operators on the Bergman Space of the Bidisk

For D be the open unit disk in the complex plane C. For —1 < a < oo, let L?(ID,dA,)
be the Hilbert space of square integrable functions on D with the inner product

(f,9)e = j f (D)9 dAL(2), f, g € AL(D),
D

where
dAy(z) = (@ + (1 — |z|*)*dA(2),
and dA is the normalized area measure on D.
The weighted Bergman space A% ( D) is the subspace of L?(ID, dA,,) consisting of all
the analytic functions in . We denote

nIT(2 + a)
Yu = 12" lo =\/

(n+a+ 2)
forn=0,1,2,.... Therefore,

400
I = ) ¥ lanl? <o
n=0

where f(z) = Y1%, a, z" € A%2( D). Especially when a = 0, we write A2( D) = 43( D).

In this case, y,, = /ﬁ .

Denote by D? = D x D the bidisk. The Bergman space A?( D?) is the space of all
holomorphic functions in L?(D?, du) where du(z) = dA(z,)dA(z,). For multi-index g =

(B1, B2), denote z# = Z; 1252 and
B
z

ep = .
T Y08,

Then {eg}ps0 (B = 0 means that 8; > 0 andB, = 0) is an orthogonal basis inA*( D?).
For a bounded measurable functionf € L*( D?), the Toeplitz operator with symbol f is
defined by Trh = P(fh) for every h € A*(D?), where P is the Bergman orthogonal
projection from L?( D2, du) onto A%( D?).

Recall that for a bounded linear operator T on a Hilbert space H, a closed subspace M is
called a reducing subspace of the operator T, if T(M) € M and T* (M) < M. A reducing
subspace M is said to be minimal if there is no nonzero reducing subspace NV such that V'
Is properly contained in M.

On the Bergman space over D, it is proved that Tz has just two non-tribyl reducing
subspaces [32], [22], where B is the product of two Blaschke factors.
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In [110], M. Stessin and K. Zhu gave a complete description of the reducing subspaces of
weighted unilateral shift operators of finite multiplicity. In particular, T,» has n distinct
minimal reducing subspaces. If B is a finite Blaschke product (order n > 2), the number of
nontribyl minimal reducing subspaces of Tz equals the number of connected components of
the Riemann surface of B~1 o B over D (see [23], [27], [28], [10], [109], [1]). Further, if B
is an infinite Blaschke product or a covering map, the relative research can be founded in
[29], [30], [108].

On the Bergman space of bidisk, Y. Lu and X. Zhou [37] characterized the reducing
subspaces of T ,v,v, T, v and Ty, respectively. The reducing sub-spaces of T, mo0n the

weighted Bergman space A2 ( D?) have been completely described in [35]. For p = az® +
Swt, the minimal reducing subspaces of T, on A%2(D?) and the commutant algebra
V*(p) = {T,, T, } was described in [107], [111]. We mainly consider the reducing
subspaces for the Toeplitz operator () the Bergman space A%( D?), where N and M

are positive integers.
We will give a complete characterization of the reducing subspaces of T Ny-m.

Through-out, denote T = ToNgm where N and M are positive integers. Denote by

[£] the reducing subspace of T generated by f € A%( D?).
Let N be the set of all the nonnegative integers.

By direct calculation, we know that
2

Yi k+hN ,l-hM IS
Th(zk ) = {yE—m 2 2o =AM

0, if | < hM

Vi - ,
Zk-hN Zl+hM if k= hN

0, if | < hN

for k,l,h € N. Set
Eo={(k,) eENXN:0<k<N,0<1l< M}
E, ={(k,1) eNXN:k = 2N},
E, ={(k,)) eNXN:1>2M,0 < k < 2N},
E; ={(k,) ENXN:N <k <2N,M < < 2M},
E,={k, )ENXN:0<k<N,M<I<2M},
Es={(k,)eENXN:0ZI<M,N<k<2N}
Clearly,
A*(D?) = °g Spanfz;z; = (v,q) € Ei}.
i=0
Notice that M, = span{z}z]: (p,q) € E,} is a reducing subspace of T. To find other
reducing subspaces, we first study the orthogonal decomposition of z¥z with respect to M.
Lemma (4.1.1)[106]: Suppose M c Mg is a reducing subspace of T. Let P, be the
orthogonal projection from A%( D?) ontoM.
(i) If (k,1) € E; U E, U E5, then Py, z¥zL = AzKzL with some 1 € C.
(ii) If (k, 1) € E,, then
Pyrz¥zh € span{z} zI" : (n,m) € E,}.
(iii) If (k,1) € Eg, then
PyczXkzl € span{z}! zJ* : (n,m) € Es}.
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Proof. Letk,l € N. Since M L My, (P (2£2}) zVz]) = 0 for (p, q) € E,.
In the following, we consider the inner product (Py;(z{z}) z¥z]) = 0 for (p, q) € U;_, E; .
For every nonnegative integer h satisfying [ > hM,

Vivie
T Th(z{c Zé) = %Z{‘Zé. (D
VichmYk

By computation,

2.2
YiVi+n .
— * IZ(PM(Z{‘ZD 20 z]) = (P T" Th(zfzé) zrz])
Yi-nmVk
=Rl T ()
YiVik+hn
T(sk ) = 1y eyt (AT ) A2 WM
0, q < hM

Recall that [s] = max{n € Z:n < s} for real number s. By above equality,
we get that if (P (zfz5) zV'z]) # 0, then

YiVienn _ quyz%+hN

VinmVi - sz-hmypz

(2)

for0<h < [ﬂq > [i]M
Equivalently,
(k+1(@q+1) (k+1+hN)(g+1—-hM)
p+1DA+1) (@+1+hAN)A +1-M)
foro<hs<|-|.qz |-|m.

(i) If (k, 1) € E; UE, U E5, we will show that the equality (2) holds if and only if p = k and

(3)

q=1.
Caseone: |l > 2M.
Let gD =k+DH@+DH(p+1+AN)({+1=-M),g,(V)=(p+ D+

Dk+1+AN)(@+1—-AM)andg(A) = g, (1) — g»(A).

Since l = 2M, we have g(0) = g(1) = g(2) = 0. Considering g(4) is a quadratic

polynomial, we have g(4) = 0 on C. Therefore, g, and g, have the same zeros,i.e.,
(k+1)(g+1DNM = (p+ 1 +1NM

k+1

(k+1)(g+ 1)pT+1 =(p+DU+1)N

+1 q+1
k+D@+DH)Mm =(p+DI+1D) M .

It follows thatp = kand g = L.
Case two: k = 2N.

Replacing T * T by T T* in Case one, we can get the desire result. The details are listed
as follows.

Since
VIEV12+hM

2 2
Yik-nnYi

k
ThTh*(Zfzé)= Z{‘ZIZ,VOShS[N],

we know that
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m—+hM(PM(zl 2),2Y 2]y = (PMT" T (2§ z}), 27 z])

VieennVi
VieYinm 2 s
2 2 >
= (PM(zk 22), T T (2P 20)y = {2, <PM( zf 27), 2y z3)ifp = hN
0 if p < hN.

Therefore, (PM(zf z2), 2} zJ) # 0 will give that

2.,2 2.2
YiVitnm _ YoYq+hm

(4)

Vi-nnYi - Vg—hzv]/qz
for0<h< [%] andp > [%] N. Equivalently,
(k+1)(q+1)= (k+1—hN)(q+ 1+ hM) )
P+ +1) (P+1-hAN)(U + 1 + hM)
for 0<h< [%] and p = [%]N So when k > 2N, the above equality follows for h =

0,1, 2. In this case we will get p = k and g = [ by the same arguments asthe case |l > 2M
has done.

Case three: (k,)) € E; ={(n,m) EN?2 : N<n<2N,M <m < 2M}.

In this case, [%] > 1and [i] > 1. Then equalities (3) and (5) hold for

h =0,1. Recall that g(1) = g.(1) — g,(1), where ggs(A) =k +D@+Dp +1+
AN+ 1-AM)andg,(D) =@ + 1D + 1)(k + 1+ AN)(q +1—AM).We  get
g(0) =g(1) = g(—1) = 0. Therefore, we obtainthatp = kand q = L.

(if) Suppose that (k,1) € E,. We need only prove that

3
Py (zk z)) L m{ zZz s (n,m) € (U Ei> U ES}.
If (n,m) € E; UE, U E5, the conclusion (i) implies thath;,[z{‘zgn = Az{'z}*for some 1 €
C. Thus
<PMZ1 zf,21' z Yy = (zf zf, Pyzt z3") _/T(zlez,z?zgn):o.
That is, PyrzXzl 1 span{zplz2 (p,q) EE,VE, U E;}.
If (n,m) € Es = {(k, l)eNxN 0§l<MN<k<2N}

Vl MVL VoV p e Tk 5L gm zmy = VimYi
(Yiesn YiViesn
where the last equality comes from span{z1 zy: (p, q) € Es} € KerT . Thus
Pyczi¥z} L span{zlz]: (p,q) € Es}.
(iii) Replacing T *T by T T* in (ii), we get the desired result.
Remark (4.1.2)[106]: Let M c M isa nonzero reducing subspace of . In (i) of Lemma
(4.1.1), we indeed get that 1 = 0 or 1, that is z¥ z} € Mor zf z} € M*for each (k,1) €
E,UE, UE;.
If z¥ z4 € M, then
[[zf z5] = span{zf™"N z}*":k —hN > 0,l + hM = 0,h € Z} (6)
is a minimal reducing subspace of T , containing inM. Moreover, if zf z},zF z] € M,
and (k, 1), (p,q) € E; UE, U Ej3, then it’s clear that either [Z{(Zé] 1 [21 Zz] or[Z{‘ Zé] =
|21 z7]. So for any non-zero function (2) = ¥ »yer,ur,uE, A » 24 25,
[f] is the direct sum of some minimal reducing subspace as (6).
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We define two equivalences on E, and E5 respectively by:

; (k+1)(q+1) _ (k+1+N)(q+1-M)
() for (p, @), (k, 1) € Ex, (p, @) ~ 1(k, 1) & LX) — (D),

(ii) for (p, q), (k, ) € Es,(p,q) ~ 2 (k,]) & (k+1)(q+1) _ (k+1-N)(q+1+M)

@P+DI+1)  (p+1-N)(I+1+M)’

It is easy to check that
q) eE, o (@+Nq —M)E€Es;
(i) for(p, @), (k, 1) € E4, (P, @) ~ 1(k,)) & (p+ N, q — M) ~ 2(k + N,l — M);
(i) for (p, q), (k, 1) € Es, (p,q) ~ 2(k,)) ® (p —=N,q + M) ~ 1 (k =N, + M).
For (n,m) € E, and (k,l) € E, let

an AZ(DZ) - span{zl Zz (p: ) ~1 (Tl m) (p: Q) € E4}

Qi : A2(D?) - span{zf z3: (p,q) ~ 2(k, 1), (b, 9)) € Es)
be two orthogonal projections. For f € A*(D?) and P, ,,f # 0, we have

[ nmf] = span{anf Tanf} (7)),

Since T* Pymf = 0,T2Py,nf = 0 and T* TP, o f = ]’:’"Y—“*”P wf. Similarly, if f € M and

MV
Qx.f # 0, then
[Qi,if] = span{Qx,f, T" Qi f}- (8)
Lemma (4.1.3)[106]: Let M ¢ M, be a reducing subspace of T and (n, m) € E,.
Then the following statements hold.
(@) If f € M, then [P, f] € M and [Qpsnm-mf] € M.
() Iffi.fo € BynMand fi L fo, then [fi] L [f2].
©) PomT"f =T Qninm-mf and Thynf = Quinm-uT f,Vf € M.
(d) If £ € M, then [Py f] = [Qnenm-mTf] and [Qusnmonf] = [PomT f]
(&) oM @ Qpinm-uM < M is areducing subspace of T .
Proof. (a) For every f € M, we know that Py P, ;nf = Pymf, Since PycPym = PumPar
which obtained by the foIIowing simple facts:
(i) if (k, 1) € E,, then Py zf z} € span{z} z]: (p, q) €EE,};
(i) if (k, 1) & E,, then Pyzf z} L span{z’z]: (p,q) € E,};
So P, .f € M, which implies that [P, ,,f] © M.
Similarly, we have PyQninm-mf = Qninm-mf, Which shows that Q, iy m-mf €

M.Thus [Qusnm-mf] € M.
(b) It is clear that Tf,, Tf, € span{zXzl: (k1) € E5} and
(TR, T =TT fufo) = ;";—”V’”<f1,fz> =0,

m—M

Equality (7) shows that

[f1] = span{fy, T f1}, [f2] = span{ £, T f,}.
So [fi] L [ f2]-

(c) For every (n,m) € E,, let
Mym = span{z¥ z5: (k,1) ~ 1(n,m), (k,1) € E,};
Musnmenm = spanizf zh: (k, ) ~ 2(n+ N,m — M), (k,1) € Es}.
ThenM, ,,, and M, 4y m—p are finite dimension, and the following statements
hold:
(i)TMnm = n+Nm MandT*Mn+Nm M _Mnm;
(ii) T(Mnlm) C Miynm-mand T* ( AN m— M) < Mim.
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Therefore, TP, inf = Qninm-mTf and Py, T *f = T* Qninm-nmf fOrany
feMm.
(d) By equality (7), conclusion (c) and

rorp,,f = W p )
nym M

we have
[Qn+N,m—MTf] = Span{Qn+N,m—MTfr T*Qn+N,m—MTf}
= span{T P, n,f } @ span{T*TP, ,,f}

= Span{TPn,mf} D Span{Pn,mf} = [Pn,mf]-
Similarly, [Qn+nm-mf] = [BomT " f] comes from equality (8), conclusion (c)And

. _ V721+NV7$1
TT Qn+N,m—Mf — 2.2 Qn+N,m—Mf- (10)
Vnym—M
(e) By equalities (9), (10) and conclusion (c), we have
Qn+N,m—MM = TT*(Qn+N,m—MM) = TPn,mT*M- (11)
Pn,mM =TT (Pn,mM) = T*Qn+N,m—MTM-
Therefore, we only need to show
that B, ,, M @ Qp4nm-»M is an invariant subspace of Tand 7. In fact
T(Pn,mM S5) Qn+N,m—MM) = TPn,mM = Qn+N,m—MM'
where the last equality comes from TP, . f = Quinm-mTf € Quinm-uM
and Qninm-mf € TPy T"M < TP, ,, M for all f € M. Therefore,
T(Pn,mM @ Qn+N,m—MM) c Pn,mM @ Qn+N,m—MM-
Similarly, we can prove that
T*(Pn,mM D Qn+N,m—MM) = T*Qn+N,m—MM = Pn,mM-
So we finish the proof.
Theorem (4.1.4)[106]: Let M € M be a non-zero reducing subspace of T on the bidisk.
Then M = M; @ M,, where
(i) M is a direct sum of minimal reducing subspace [z} z; | with z}'z] € Mfor some
(p;q@) € E1U E;UEs;
(ii) (if) M is a direct sum of minimal reducing subspace [f] with f € B, ,, M for some
(n;m) € E,.
Proof. Firstly, we prove that
M = My ®®(n;m)EE (Pn,mM 8% Qn+N,m—MM- (12)
whereM; =@ p,q)en [zVz]1with A ={(p; q) € E;U E;UE5:zYz] € M}, and E is the
partition of E, by the equivalence ~ 1. SetH,,.., = By uM @ Qpninym-uM.
On the one hand, M; @@ ¢.myer Hnm € M, since M; ¢ M is a reducing subspace of
T, and conclusion (e) in Lemma (4.1.3) implies that @ ;,.m)eg Hpm © M. On the other
hand, for g = g, + g, € M with

a@D= D adrd.e@= ) add.  (3)
(p;q)EE1VE;UE3 (p;q)EE4LUES
Remark (4.1.2) shows that g, € M; € M, which impliesthat g, = g — g, € M.

Therefore, g, = X m)ee(Pum9z + @ninm-m92) =€EDmmyee Hnym- It follows that M is
in the direct sum of M and {#£,, ,} with (n; m) € E. So we have equality (12) holds.
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Secondly, for each (n,m) € E,, we prove that #, ,, is the direct sum of minimal
reducing subspaces as [f] = span{f,Tf} with f € B, ,,M. There are some steps in the
proof.

Step 1. Take 0 # f; € B, M. Then [f;] = span{f;,Tf1} € Hy .
Step 2. If B, ,, M # Cf;,take 0 # f, € P, , M © Cf;. Then

[f2] = span{fy, T f2} € Hm © [i]:
Step 3. If B, ,, M # span{f;, f,}, take 0 # f; € B, , M © span{fy, f>}. Then

[f3] = span{fs, T f3} € H, m © [f1] © [f2].
If P, M # span{fy, f,, f3},, continue this process. This process will stop in finite steps,
since the dimension of #,, ,,is finite. Thus, we finish the proof.
By conclusions (a) and (d) in Lemma (4.1.3) and equalities in (11), we get
[Pn,mg» Qn+N,m—Mg] = [Pn,mg'Pn,mgT*g]
= Span{Pn,mg» Pn,mgT*g} D Span{Qn+N,m—Mg Qn+nm-mTg}-

Notice that span{P, 4, P, mgT " g} has an orthonormal basis {ey, ..., ey},
since the dimension of span{P, 4, BymgT g} is finite. Conclusion (b) in Lemma (4.1.3)
shows that [e;] L [e;] for i # j. Then we get

[Pn,mgipn,mT*.g] :®§§=1 [ej] :@;;1 Span{ef’Tef}'
Similarly, we can prove that

[92] =EB(n;m)EE [Qn+N,m—Mgr Qninm-mTgl,
And

[Qn+nm—mg) Qninm-mTg]l = 5‘:1 [hj] =€B§':1 span{hj,T*hj},

where {h4,..., h;} is an orthonormal basis of
Span{Qn+N,m—Mgr Qn+N,m—MTg}-
In the last part, we give some examples of the reducing sub- spaces of TN zm for the

casethat N = M and N # M, respectively.
Example (4.1.5)[106]: Fix a, b, c,d,e € C with e # 0. Let

f(z1,2,) = az{z3* + bz] z3° + cz2zY" + dztz)° + ezi! z3?,
and [f] be the reducing subspace of T',10 ;10generated by f. Then

[f] = span{fy, f,} @ span{z}+10" z12710h . = —1,0,1},

Where
f1(z1,2,) = az?z3* + bz]z3° + czPz3” + dz}z3°,
a 4c d
f2(21,2,) = 3 z1%z5 + 32117225 + 32115227 + 5211423.

Proof. Notice that (11, 12) € E; and(9, 14) € E,. A direct computation shows

that (9,14) ~ 1(7,15) ~ 1(5,17) ~ 1(4,19). Remark (4.1.2) implies that f; =

P,1of and z{'z3* are inM. There is span{P,.of,Ps1oT*f} = [f1] = span{fi, f>}.
Therefore we get the desired result.

Example (4.1.6)[106]: Let f(zy,2,) = z{z3* + z]z] + z3z35 and [f] be the reducing
subspace of T,s ;10generated by f. Then

3 8
Proof. Notice that (7,7) € Es5, (4,14),(3,15) € E, and (4,14) ~ 1(3,15). Let f; =

P4,14f = ZfZ%4 + Z132215 and f, = Q7,7f = Z17227- Then [P4,14f; P4,14T*f] = [f1l =

1
[f] = span {Zfzzl4 + 23735, = 72223 + = Zfzg’} @ span{ {z]z], z}z3"}.
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Span {Zfzz +leZ :l Z1ZZ +§ szZS}, [P2,17f» Py1,T" f] = [Q7,7fr Q7,7Tf] =[f2] =
span{z]zJ,z{z3"}. Then we finish the proof
Example (4.1.7)[106]: Let f(z,,2,) = z3z8 + z/z3, and [f] be the reducing subspace of
T,a Z_é;generated by f. Then

[f] = span{ziz3, z] 23}
Proof. Notice that (3,8) € E4, (7,3) € Es. It is easy to check that T,s 527232725 =

% z{zy and T" ;1,5 {75 = % z3z8.50 [2328] = [z] 23] = Span{zfzz,zlzz} It

meansthat [f] = span{z1 z8,2]z3}.
Example (4.1.8)[106]: Let f(z,2,) = z2z}7 + z{zi* + z7z5 + z3z3° + 2823 and [f] be
the reducing subspace of T ;5 730 generated by f. Then

[f]=[2£2"] © [z{2"] © [21 z;°]

64
= (2237 @ od2* + 2228°) @ |adadt — o 22|
27
= (1) @ [324 + 28251 @ |22 - o 2825,

Proof. Notice that (2,17),(4,14),(3,15) € E4,(9,4),(8,5) € Es and (4,14) ~
1(3,15),(9,4) ~ 2 (8,5).
(i)  Since P 1,T*f =T* (2725 + 2823) = % zizl* 42 Zf’z15 we have
span{Py14f, Py14T" [} = span{21 z;*,2323°}
Therefore, [f] = [z{2;"] © [2122 ]69 [272;°] = span|zfz37,2{2]] © [z{7;*] ®
span{z;zi*,z7zy} @ span{z}z; ,z1 225}
(i) Itis easy to check that (zz3* — — 2 23215 2871 + 23235y = 0

\ 64
And span{P, ,,f,P,1,T* f} = span {2122 + z321°, 2z} 734 T 2132%5}.
64
So [f] = [z{z3* + z3z2°1 @ [2122 —= z3z} ]GB z27z37].
(ili)  Notice that
S9{Qsof Q94T } = span {2923 + 2925, 2 #82 +2at23)

27
= span {ZfZ§ + 2823, 27z) — € Zfzzs},
Where z7z5; — ngzg L Qq4f. Then
27
[f] = (201 @ (2874 + 2825) @ |92 — o 2823,

For the case that a = 2 , we have

[g +2 zfzzs] = span {Zfzz + 2323 2073 +§ Zfzg} = [z{z3* + z]z5]since T* (g +
2 .8
g 21 Zz) P4 149-
Section (4.2). Tensor Products of Weighted Shifts

Suppose that H and K are two separable Hilbert spaces. If A € B(H) and B € B(K),
thenM = A ® I + I @ B is abounded operator on the Hilbert space H @ K. If both
H and K are of finite dimensions, then M is related to the famous Sylvester equation [113].
The Sylvester equation is a matrix equation of the form

AX + XB = C,
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where A, B and C are given n X n matrices. This equation has a unique solution X for any
CifandonlyifA ® I + I ® BT is invertible.

In the case of finite dimensions, the Jordan decompositionof M = A QK I + 1 &
B has been completely described [118], [119], [122]. It is proved that if A and B are both
Jordan blocks, then M is not a single Jordan block unless H or K is of dimension one.

We consider the reducing subspaces of M. Recall that a closed subspace X € H isa
reducing subspace of A if AX € Xand A= X < X. Denote V*(A) = {A"} . Itiseasyto
see that V*(A4) is equal to the commutant of the von Neumann algebra generated by A. Then
X reduces A if and only if the projection Py from H onto X isin V*(A4). A is called irreducible
if the only reducing subspaces are 0 and H. Obviously, A is irreducible if and only if
V*(A4) = C.

It is easy to verify that V*(M) 2 V*(A) ® V*(B). Thus, it is natural to ask when
the equality holds. If we choose A and B to be both irreducible, then V*(4) ® V*(B) = C.
In this case, if M is irreducible, then the equality holds.

We prove that M is not irreducible if A is unitarily equivalent to B, see Proposition
(4.2.13). However, we also show that there exists a class F such that if A and B are both in
F ,then M is irreducible if and only if A and B are not unitarily equivalent.

We study reducing subspaces of multiplication operators on function spaces. This
topic began with [10],[110],[12],[111], [32], [17], [1], [22], and several brilliant results are
obtained in [4], [5], [7]-[109]. This has already attracted a lot of attention and it is an
opportunity to study the case where the underlying function space is defined on a higher-
dimensional domain [108], [37], [35], [112]. One can see [108], [112]. Furthermore in [108],
[112], the research objects can be recognized by M¥ & I + al ® M|, where M, and M,,
are multiplication operators on the Bergman space L*2(ID). In that case, A and B are
unilateral weighted shifts of finite multiplicity. It is well known that unilateral weighted
shifts are always irreducible, hence it is natural to considerthat M = A Q I + I Q B
where A and B are unilateral weighted shifts. See [114], [117], [121] for more on unilateral
weighted shifts.

For Z.. denote the set of all non-negative integers. Let {e,,}_(n € Z (resp. {fin}mez, )

be orthonormal basis for H (resp. K), and Ae,, = a,en+q1 (r1€sp. Bfy, = Bmfm+1) fOrn €
Z, (resp.m € Z.). Here {an}nez, (resp. {Bm}_(m € Z, ) is the weight sequence of A

(resp. B). Note that ||A|| =sup |a,| < o and |[|B|]| =sup |B;,| < oo. Then
n m

{en ® fmlnmez, isanorthonormal basis for H ® K and we have
Me, Q@ fm = nent1 & fn + Bmen & finrr, nm € Z;. (14)

A unilateral weighted shift A is said to be simple if 73[|a|?](n) = 0 whenever n?,
where V is the backward difference operator defined by V[fl(n) = f(n) — f(n — 1).1t
IS easy to check that the multiplication operators M, are simple on both Dirichlet space and
Bergman space.

Let X be a reducing subspace of A. Then X is minimal if there is no nonzero reducing
subspace Y properly contained in X.
Theorem (4.2.1)[112]: If A € B(H) and B € B(K) are two simple unilateral weighted
shifts, then A ® I + I @ B is reducible if and only if A and B are unitarily equivalent. In
this case, H @ K is the direct sum of two minimal reducing subspaces.

Based on this theorem, we will classify V*(A @ I + I @ B). We find that there
are only two types: Cand C @ C.
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At last, we point out that although the reducing subspaces of A, are completed solved
in [111], it remains unclear in our setting A, & I + I @ B; . We will also study the
reducing subspacesof 4, @ I + 1 Q B, .

Let H' be a Hilbert space with an orthonormal basis {en'm}nmez+ . We use the

assumption of (14), and define an operator M acting on the Hilbert space H as follows:
M’ €pm = Oplpnyim + ﬁmen,m+1'n'm € Z,,
then M’ is bounded. Taking H; = Span{e, o}.(n € Z, and H, = Span{egm} _  ,and
+

defining A" on H; by A’e, o = ayen410, and B on H, by B'eg, = Bmeom+1, then there
exists a unitary equivalence between H' and H; ® H,. Furthermore, M’ is unitarily
equivalentto A’ ® I + I @ B’ in this case. Keeping this unitary equivalence in mind, we
will suppress the tensor product symbol and write enfm for e,, @ f,,,. If A € B(H) (resp.
B € B(K)) is unitarily equivalentto A’ € B(H) (resp. B’ € B(K)) by a unitary U € B(H)
(resp. V € B(K)),then A Q I +1 ® B is unitarily equivalentto A’ ® I + 1 ® B’ by the
unitary U @ V. For unilateral weighted shifts A and A" with weight sequences {a;, },¢z, and
{an}nez, . respectively, we have that A and A" are unitarily equivalent if and only if |a,| =
|a,| foralln € Z,.

Thus in (14), we can assume that a,, and ,,, are all strictly positive. Then A is simple
if and only if V3[a,](n) # 0 whenevern > 2.

A unilateral weighted shift can be represented by a multiplication operator acting on
an analytic function space. We will use this systematically because of its convenience for
computation. Let w = {wg, wq,...,w,, ...} be a sequence of positive numbers. Let H,(w)
be the Hilbert space consisting of analytic functions

f&2) = ) a

k=0

such that

(0e]
I = 111 = ) wrlal? < o,
k=0

Then ||z, lI2 = w,, and {le

that the multiplication operator M, is unitarily equivalent to a unilateral weighted shift A
with the weight sequence

} is an orthonormal basis for H,(w). It is well known
nez

Wn+1
wn

a, =
nEZ.,.

To ensure that M, is bounded, we always assume supn —==

H, (&) the Hilbert space consisting of analytic functions g(w) such that ||g|ls < oo. Then
the multiplication operator M,, is unitarily equivalent to a unilateral weighted shift B with
weight sequence

n+1

< oo, Similarly, we denote by

Om+1

ﬁm = 6~m

MeEZy
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Also, supm —= Omir o g,

Then we * realize the tensor product H? (w) ® H?(6) as the Hilbert space consisting
of analytic functions

(00]

flzw) = z akleWl
k,l=0
such that

112 = Ifl2s = ). axdilanl < o,
k,l1=0
Under these notation, M = A @ I + I @ B is unitarily equivalent to M,,, on
H? (w) @ H?(6). It is not necessary to distinguish M, from M, ® I. We use M, to
represent multiplication operators both on H?(w) and H?(w) ® H?(8). It is similar for
M,,. In this case, M,,,, = M, + M,,. From now on, H?(w) @ H?*(8)is denoted by
H?(w,6).
For further simplicity of notation, we can assume V[f](0) = f(0).

By the above simplification, we can reduce the study of reducing subspaces of A &
I + I ® B to that of M,,,,. Firstly, we start with several definitions and lemmas, many
of which originate from [108], [112]. We define = M, M, ] =
MMy = My M- Set(n) = 7|22 | () and y(m) = ¥ [ | Gm). Then a
routine computation gives that

T zZ"w™ = (gb(n) + w(m))znwm, nm € Z,.
Define an equivalence relation ~ on Z2 by
(nm) ~ (n,m) & ¢(n) + Y(m) = ¢(n) + P(m).
Since T is diagonal with respect to the bases {z"w™}, ez, there is a spectral
decomposition H2(w,8) = @ Q4 such that z"w™ and z™ w™' belong to the same Q if
and only if (n,m) ~ (n’,m’). It is easy to see that for each monomial znwm, the
projection Q4 maps it either to O or to itself. Let A be a collection of bounded operators on
a Hilbert space H. When F < H, we define
AF = span{Ah: A € A h € F},

And
= {T € B(H:TF < AF}.

-] 4"

FCcH
Thus forall B € A and F < H, we have BF < AF.

In fact, there is a related concept. If B is any linear subspace (not necessarily closed)
of B (H), then the attached space [114] for B is defined as
RefB = {T € B(H): T h € span{Bh}forallh € H}.
Actually we have A = Ref (spanA), where spancA is the linear subspace spanned by A.
The fact that Ref B is always strongly closed implies that A contains the SOT closure of
spanA, where SOT means the strong operator topology.
In our concrete case, for eachn € Z,, define

Then define A by
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m m
s" ={1_[ MMy ek € Ly Z (e — i) = n}
k=1 k=1

m m
* [ *jk . . . .
ST = {| | Mlzk+wMz]+w' o Jik € Ly z (ix — Jx) = —n} .
k=1 k=1

Note that S™(S™F) = S™*"F, for any F € H?(w,8) and n,m € Z,. For simplicity,
write ™ = §*"and §™ = § " ifn < 0. Then
SM™M(S"F) € SM™*"F nm €7Z,

and

where F € H?*(w, §).
It is easy to see that spans® contains the linear span of all T™'s whenever n € Z,.
By the spectral decomposition H? (w,§) = @ Q4 with respect to T, since Q4 is a Borel
functional calculus of T € spanS?, and $° contains the SOT closure of spanS?, we get that
Qy € §° Thus, forany F € H?(w,8) and n € Z, we obtain the following inequality:
Q S™F ¢ S°(S"F) € S"F. (15)
Foreachr € Z., we define
E, =span{z"w™:n + m = r}.
It is easy to show that dim E,, = » + 1and H*(w,8) = @2, E,.Furthermore, S"E, <
E,,, for every n € Z,. Actually, one of the main purposes is to determine whether
S"E, = E,., whenever r and n are given.
The following two lemmas generalize the corresponding results of [112].
Lemma (4.2.2)[112]: Suppose that r € Z, . If the statement
r+ 1,0~ (r,1) ~-~ (0,r + 1) (16)
does not hold, then S'E, = E,,;.
Proof. The proof comes from [108].
Suppose (16) is false for r € Z.. It is clear that \aS'E, € E, .. For the inverse
inclusion, it suffices to show that
dim S'E.>r + 2 =dim E,,,.
To see this, we first show that TM, .., (E,.) € M,,,, (E,). Otherwise, forallj = 0,1,...,r,
T ((z + w)z"w/) € My (Ey).
Recall that
T z"w™ = (qb(n) + <p(m))z”wm, nm € Z,,
and we will find that
r—j+1,j)~@—-jj+ 1,0jr
Thus,
(r+ 1,0 ~ (r,1) ~-~ (0,r + 1),
which leads to a contradiction. Therefore, TM,,,,(E,) € M,.,, (E,). Hence,
dim (S'E,) =dim (M, (E)) + 1 =71+ 2,
as desired. The proof is finished.
Lemma (4.2.3)[112]: $*'E,,, = E, foreachr € Z,.Consequently, if m > n > 0, then
S*™E, = E_p.
Proof. The proof comes from [112].
It suffices to prove that S*1E,,,; = E,. Since it is clear that S*1 E,,; € E,, it
remains to show that $*'E,., 2 E,.
By direct computation we get
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w
Mz = (:—:1 zr,
which yields that z, € S*'E,, ;. By induction, we assume that for some integer j < r,
z7"'wt € S*E, ,0< i< .
By simple calculations, we obtain that

o) iyt +EZT_]'W]';
wT‘—j—l 6]
which yields z"/~tw/*! € S$*1E,.,. Therefore, S*'E, ., = E,.
Finally, if K is a reducing subspace of M,,,, and dim (K/SK) = 1, then K is
minimal. For details, we refer the reader to [112].
Recall that a weighted shift A is simple if V3[a?](n) = 0 whenever n > 2. For M, it
IS equivalent to saying that
pn+ 1) — en) # e(n) — e(n — 1) foralln > 1,

where p(n) =V [w* ](n). The statement for M, is similar. Henceforth, all weighted

* r—ji,J+l —
Mzywz" Wit =

w.

shifts are assumed to be simple.

The following lemma weakens the assumptions of the corresponding result of [112].
Lemma (4.2.4)[112]: Letn,m € Z,andn = 1.If(n,m) ~ (n — 1,m+ 1),then(n +
1,m) ~ (nnm+ and(n,m+ 1) ~ (n — 1,m + 2).

Proof. Assume conversely that (n + 1,m) ~ (n,m + 1), i.e,,

p(n + D+ p(m) = o(n) + Yp(m + 1).
Combining thiswith (n,m) ~ (n — 1,m + 1), 1i.e,,

() + Pp(m) = e(n — 1) + Y(m + 1),
yields

p(n + 1) — e(n) = p(n) — (n — 1).
Since M, is simple and n > 1, this leads to a contradiction. Hence (n + 1,m) = (n,m +
1). Similarly, (n,m + 1) = (n — 1,m + 2).

Now we can prove the following result.
Proposition (4.2.5)[112]: S1E, = E, ., for each integer r > 1.
Proof. The idea of this proof comes from [112]. If the statement was false for some r > 1,
then by Lemma (4.2.2),
(r+ 1,0 ~ (r,1) ~-~ (0,r + 1).

By Lemma (4.2.4), since (r + 1,0) ~ (r,1), we have (r + 2,0) = (r + 1,1)and
(r + 1,1) = (r,2). Using the spectral decomposition for , there is a spectral projection
Q € SOsuchthat Qz"*2 = Qz"w? = 0,0z"*'w = z"*1w.

Notethat M2, ,z" = z"2% + 2z""lw + z"w? € §2E,, thuswe obtain z"tlw =
~QMZ%,,z" € S?E, by (15).

Since (r,1) ~ (r — 1,2), applying Lemma (4.2.4) again we have (r + 1,1) *
(r,2)and (r,2) = (r — 1,3).

Note that M2, ,z" 'w = z"tlw + 2z"w? + z" w3, Using the same argument
above, we can show that z"w? z"~lw3 € S2E,. Furthermore, z"*2 = M2,,z" —
22" lw — z"w? € S§2E,. This induction will lead to S2E, = E,,. Therefore, S;E, 2
S*1§%E, = S$*E,.., = E,.,, where the last identity follows from Lemma (4.2.3). This
leads to a contradiction.

Based on the above lemma, we see that
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S1H?(w, ) S'E,
Due to this inequality, we obtain the following corollary:
Corollary (4.2.6)[112]: Any nontribyl reducing subspace of H?(w, §) is all minimal. Hence
H?(w, &) is either minimal or a direct sum of two minimal reducing subspaces.
Proof. If H?(w, &) is not minimal, let H = 0 be a nontribyl reducing subspace of H?(w, §).
Since § increases degree by one, S'H & Hand S'Ht & H+. Writing H?(w,8) = H @
H*, then we see that

dim (@8 N\ _ (H ) cdim () <
M ASTHZ (w,0)) ~ O \st) T \sTHE) = 7

. H . H*
dim (51—[_]> = 1 anddim STifL = 1.

This means that both H and H* are minimal.

In fact, we claim that if H%(w, §) is not minimal, then there are only two minimal
reducing subspaces. However, the proof of this assertion requires more. We have to
postpone.

We will find a method to judge whether

pn + 1) — p(n) # e(n) — ¢(n — Dforalln > 1, (17)
whenever ¢ isgivenand n € Z,. These results will be useful.

Suppose that n varies in Z,.. Let R, denotes the set of all non-negative real numbers.
In many examples, there is always a sufficiently smooth function f defined on R, such that
p(n) = V[f](n) whenevern = 1 and ¢(0) = f(0). In this case, (17) is equivalent to

V3[f](n) # Oforalln >3 (18)

dim (M) — dim (M) <2

It yields

and
fQ) = 2f(0) # f(2) — 2f(1) + f(0). (19)
Such a function is called to be simple.
Lemma (4.2.7)[112]: Let f € C3(R*). If f(x) = 0on R, then V2[f](x) is strictly
monotone for all x > 2, thus (18) is true.
Proof. If x > 2, by the differential mean value theorem,
V2D ) = P2 1) =[f () = f'x = D] = [f'(&x = 1) = f' (x = 2)]
= f"(&) — (&) = (&) — &),
whereé; € (x — 1,x),& € (x — 2,x — 1),& € (x — 2,x).

It yields that (V2[f]) (x) = 0for all x > 2. The proof is complete by Darboux
theorem.

Thus, to verify that a function f € C3(R, ) is simple, we will show f(x) = 0 on
R, first, which implies (18). Then we turn to check (19).

Next, some simple functions will be given. For further discussion, we introduce a
new concept. Let f € C3(R). Iff > 0,f" < 0,f" > 0,f"" <0, then f is called to
be strongly simple. For this we have the following key lemma.

Lemma (4.2.8)[112]: A strongly simple function is simple.
Proof. Let f € C3(R,) be strongly simple. Since """ < 0, (18) is true by Lemma (4.2.7).
Next we check (19),

fQ) = 2£(0) # f(2) = 2f(1) + f(0).

gix) = fix + 1) = 2f(x),x € R,.
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Taking differentiation, we get
g @ =fx+1)=2f(x) x¢€R,.
Since f"' > 0, f' isstrictly increasing. It followsthat0 > f' (x + 1) > f' (x)forx €
R,, thus
f'x+1) > 2f (x),x € R,.
We obtain the inequality g > 0, i.e., g is strictly increasing, hence we have
o _ g(0) < g() < g(1) + f(0),
which is (19). This completes the proof. The following lemma tells us that the set of all
strongly simple functions forms a semigroup.
Lemma (4.2.9)[112]: The product of finitely many strongly simple functions is strongly
simple.
Proof. It suffices to prove that if f;, £, € C3(R,) are both strongly simple, then f = f,f,
Is strongly simple. Of course, f > 0. By Leibniz formula,
k

£00 = 2 (’;) ) (0D 21,23,

j=0
() ==

Since each f; is strongly simple, we can see that each term in ', f"” and f'"" is strictly
negative, strictly positive and strictly negative, respectively. Thus f is strongly simple.
There are many strongly simple functions.

where

S+x

Lemma (4.2.10)[112]: f(x) = (m )y, where 0 < s < 0, is strongly simple.

Proof. The proof is straightforward.
Suppose that H is a Hilbert space,and M € B(H). When F € H, we denote by [F]M
the reducing subspace of M generated by F.
In what follows, set H = H?*(w,8) and M = M,,,,, then [F],, will be written as
[F].
Proposition (4.2.11)[112]: H?(w, §) is not minimal if and only if S1E, # E;. In this case,
H*(®,8) = [1]1® [z- w].
Proof. If S'E, = E,, then H?(w, &) is obviously minimal. Conversely, assume S'E, #
E,, then S1E, is a dimension one subspace. Since z + w € 8, E,, it must be that S*E, =
C{z + w}, ie, forall § € §1, there exists a complex number A such that $* = A(z +
w). Solving the equation on g, i.e.,
(z +w,z+ pw)=0,
we get
Sowq

F=—50 (20)
Notice [113] = B 5=, S,E,, henceityieldsthat[113] L (z + Bw). Furthermore, we have
[113] = H?*(w, §). According to Corollary (4.2.6), we see that [113] and [113].L are both
minimal. Thus [113] L = [z + Sw]. Next we show that § = —1.

Since SE, # E,, it follows that (1,0) ~ (0,1). By Lemma (4.2.4), we obtain
(2,0) » (1,1)and (1,1) = (0,2). So we can select a spectral projection Q from S° such
that 0z = Qw? = 0and Qzw = zw.

Using (15), we have
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S71(QS?E,) € S Y(S%E,) € S'E,.
Thus we will find that there exists a complex number A such that
M T QMZ,1 = Az + w). (21)
On the other hand,
M T QM7 1 My T Q2% + 2zw + w?)
2M% ., Tzw
= 2uM> ., zZw
=2 (wl o ) 22
=\ vt ) (22)
where u = (1) + Y (1). Comparing the corresponding coefficients of (21) and (22)
gives

w; 0
wy, 6’
thus 5 = —1 by (20).
The following gives a necessary condition for S1E, = E;. The sufficiency part will
be shown later.
Proposition (4.2.12)[112]: If S'E, # E,, then
Wiy1  Oj4q
wi B 5i ’
i.e., M, and M,, are unitarily equivalent.
Proof. We have already shown that it is true for i = 0. By induction, assume it is true for
alli < n—1,wewill proveitistruefori = n — 1.
It follows from Proposition (4.2.11) that [113] L [z — w]. We get
0 =(z+w(z-wiE+wrl

B <<Zn: (%) Zn_iwi),(z - w) (f ("7 h z"-l—iwi>)

i €7,

i=0 i=0
n n—1 n—1
_ @ ()W>( m W)@ - 1)Zn_1_iwi>>
n-1
w5 Q! 0 D
But =t
n-1
; ((?) z"twl, [(n : 1) — (Tll - 11)]Zn—iwi>
n-—1
= ) (Tll) [(Tl : 1) _ (Tll :11)]<Zn—iwi’zn—iwi>
6(n)
= (I T D=2 ]) @b — 08,0 = 0,
where =
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n—1

5 ,for n odd,
o(n) = n-—2
5 ,for n even
Hence,
0 ="+ wh'z" — wh) = w,8) — Wy
This together with the assumption gives that — = §&,,/8,,_; , and the proof is finished.

Wn-1
For sufficiency, there is a general statement.

Proposition (4.2.13)[112]: Suppose that H and K both are of dimensions at least two. Let
A € B(H)and B € B(K). If A and B are unitarily equivalent,then A @ I + I ® B is
reducible.

Proof. If A and B are unitarily equivalent, suppose U € B(H, K) is unitary suchthat UA =
BU,AU* = U*B. Then U can be used to define a self-adjoint unitary Von H @ K by
V(f &® g) = U'g ® Uf. Note that V = [ is impossible by dimensions of H and K.

Since V is self-adjoint, % constitute a complete projection system. We have a

decomposition as follows:
HOK=U+V)HQK & U-V)H R K).
Furthermore, it is easy to verifythat (A @ I + I Q B)VY =V (A QI + 1 Q B).
Indeed,
AQI+IQBV(®eP=A1+1Q B)U'g & Uf)

= AU'g Q Uf + U'g ® BUf
= U'Bg Q Uf + U'g ® UAf
=VARI+1Q B & 9.

HenceIiTV (H @ V) are nontribyl reducing subspacesof A @ I + I @ B. This leadsto

the reducibilityof A ® I + I @ B.

Combining Propositions (4.2.11)—(4.2.13), we get the main result.
Theorem (4.2.14)[112]: If A and B are two simple unilateral weighted shifts on separable
Hilbert spaces H and K, respectively, then
)M = AQI1 +1 ® Bisreducible ifand only if A and B are unitarily equivalent. In this
case, H @ K is the direct sum of two minimal reducing subspaces of M.
(i) If Ae, = apens1, Bfm = BmSms1, and a, = Bpforall n € Z,, thenH Q K =
leofolM @D [eifo — eofilm » Where the summands are the minimal reducing subspaces of
M.

In fact, adopting the same argument as shown before, we can carry out the proof of
the following.
Corollary (4.2.15)[112]: If A and B are two unilateral weighted shifts such that S E, =
E,., forall r > 1, together with the property: (1,0) ~ (0,1) implies (2,0) ~ (1,1) and
(1,1) + (0,2), then the conclusions in Theorem (4.2.14) are still true.

According to Corollary (4.2.6), H?(w, &) is either minimal or a direct sum of two
minimal reducing subspaces. If H?(w, §) is minimal, then V*(M,,,) = C. When M, and
M,, are unitarily equivalent, we will prove that M,,, has exactly 2 minimal reducing
subspaces.

Proposition (4.2.16)[112]: If M, and M,, are unitarily equivalent, then V*(M,,,,) =C &
C.
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Proof. Due to Proposition (4.2.11), it follows that H?(w,8) = [1] @ [z — w], and
SE, = C{z + w}. Since both [113] and [z — w] are minimal it is easy to verify that

@ STE,, [z — w] @ §{z — w}. (23)

Recalling that H?(w, §) = 69 E,, we have
S™E, ® S™{z — w} = E,,,7T € Z,
In especial, S'E, @ S°{z — w} = E;. Itleadsto $°{z — w} = C{z — w}.

Let P be the projection from H?(w, §) onto [113],and Q = I — P. Clearly, Q is the
projection from H?(w, §) onto [z — w], and both P and Q are in V* (M,.,,). We claim that
P and Q are not equivalent in V*(M,,.,,). If otherwise, then there is a partial isometry U €
V,(M,,.,) with the initial space [113] and final space [z — w]. Using (23), we get

U(STE,) = U(ST[1] © sT™[1])
= STU[1] ST *ttU[1]
=8"[z —w] © §z — w]
=S5"{z — w},
for r € Z,. Thus we obtain dim (8" E,) =dim (§"{z — w}). Consequently, we infer
that
dim (§{z — w}) =dim (S'E,) = 1.
Thus $1{z — w} = C{z? — w?}. In summary, we have two equalities:
UE, = C{z — wland U(C{z + w}) = C{z? — w?}.
It tells us that there exist two nonzero numbers ¢, and c; such that
U = co(z —w)andU(z + w) = c1(z, — wy).
SinceU € V*(M,,, ), wehave UT = TU.Notice M, and M,, are unitarily equivalent, i.e.,
= 1. By straightforward computation, we get

UT1 = (¢(0) + ¢(0))U1 = (¢(0) + ¢(0))co(z — w),

and
TU1l = ¢q,T(z — w) = ((p(l) + go(O))co(z — w).
Thus
@(0) = ¢(1). (24)
Also,
UT (z + w) = (¢(1) + 90Uz + w) = (1) + ¢(0))c;(z* — w?),
and
TU(z + w) = ¢T (22 — w?) = (0(2) + ¢(0))ci(z2 — w?).

Thus

(2) = @(1).
But, this together with (24), implies that
= @2) — o) = (1) = ¢(0).

This contradicts the fact that M, is simple. Hence, P and Q are not equivalent in V*(M,,.,,).

We are now in a position to prove that there are only two nontribyl projections in
V*(M,,,). LetR € V*(M,,, ) be another nontribyl projection and R will be minimal by
Corollary (4.2.6). Since I = P +Q,wehave R = PR + QR. If PR = 0, then QR =
R.Ityieldsthat R © Q. Thus R = Q by minimality. Similarly, if QR = 0thenR = P.
The remaining case is that both PR and QR are not zero. Then R is equivalent to P and Q
simultaneously in V*(M,,.,,) by the theory of von Neumann algebra. This contradicts the
fact that P and Q are not equivalent in V*(M,..,,).
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The above reasoning shows that V*(M,,.,,) only contains 2 nontribyl projections P
and Q, and hence V*(M,,,,) = C & C.
Theorem (4.2.17)[112]: Let A and B be two simple unilateral weighted shifts on separable
Hilbert spaces H and K, respectively. Then we have
i) VARI+1® B) =C,if Aand B are not unitarily equivalent;
@M VARKRI+1Q® B) =C PC,if Aand B are unitarily equivalent.
Theorems (4.2.14) and (4.2.17) have many applications. They can be used to investigate
the reducing subspaces of N = A* @ I + al ® B' where @ € C\ {0}. They also can
be used to compute reducing subspaces of multiplication operators M k.t On some
familiar function spaces such as weighted Dirichlet spaces over the bidisk.
In convention, an operator is called a standard model if it is unitarily equivalent to
some AQI +1 @ B where A and B are unilateral weighted shifts. Of course, A Q I +
al @ B is a standard model in this case. We will show that in fact, N is a direct sum of
finite standard models. This idea comes from [108]. Suppose that
N 2 {(a,b) €EZ%2: 0a<k —1,0<b<l - 1}
Then |2| = k;. Foreach (a,b) € 2, we define
H, = span{eqini:n € Zy}, K, = Span{fyym : m € Z,},
And
Hop = Spanfeqiniformi : nm € Z1} = Hy @ K.

- @ o k=D w

Then we have

O<ask-1 0s<b=<l-1
And
HO K= Hu= P 0K
(a,b)e (a,b)EN
If k is a positive integer, we denote
k
ar[z] = Unlnir " Apyg-10 n e 7z,

and if k < n then
a,[l_k] =y 105  Ap_f = aLk_]k, n € Z,.
Proposition (4.2.18)[112]: N is a direct sum of kl standard models.

Proof. For a and A%, we have

k — LK kx — oK
A eqink = aa+nkea+(n+1)kiA Ca+(n+1)k = XgyinkCa+nks n € Z,.

and
Ak*e, = 0.
Thus H, reduces A*. Similarly, K, reduces .
Denote by A, = A*|H,,B, = Bl|1<b and Ny, = Nly,, . then Nop = Aq ®

I + al ® By.Furthermore, N = @ p)cq Nap-
In fact, A, is a unilateral weighted shift A" : H, has the weight sequence

{041 = a[:lnk}nez with respect to the orthonormal basis {e, = eginklnez, - By IS @
+
unilateral weighted shift B’ : K, has the weight sequence {ﬁ,’n = %Lml} ) with respect
me +

to the orthonormal basis {f;;, = fp+mitmez, - Thus N, is a standard model and N is a
direct sum of kl standard models.
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There are two natural questions: When H, , is minimal and when they are not unitary
equivalent? We will solve the first question in many cases and leave the second one to
further consideration. Now let us translate them into function models. Then N will be
translated into M« . . For each (a,b) € Q, we define

H*(w)q = span{z®*"™ : n € Z,},H*(5), = Span{w’*™ : m € Z,},
and
H*(w,8)qp = Span{z®*™w?*™ : nm € Z,} = H*(w)qg ® H*(8)p.
According to the proof of Proposition (4.2.18), a routine computation gives rise to the
following statements:
(i) H*(w, 8) 4 p is a reducing subspace;
(i) Mzk|H2((1))a is a unilateral weighted shift A’ : H?(w)a has the weight sequence

1 wa+(n+1)k} . . 1 z@Hnk }
a, = /— with respect to the orthonormal basis {e = — .
{ n Wa4nk nez, p n \ Wa+nk nez,
aMWz|H2(5)b is a unilateral weighted shift B’ : H?(8), has the weight sequence

' Sp+(m+1)l . . { ' Whiml }
=« /— with respect to the orthonormal basis = —1 .
{'Bm Sp+mi } P fm VOb+mi mez,

MmeZ;
Henceforth, we denote by [F] the reducing subspace of M« ,,,: generated by F.

By Theorems (4.2.14) and (4.2.17), we obtain the following proposition:
Proposition (4.2.19)[112]: If M|, ,(w), and M1, ,(8),, are simple, then H*(w, §),y is
not minimal for Mk, if and only if M| ,(w)e = aM,.|,,(8), . In this case,
H?(w,8)qp = [2*°WP] D [z*WP(2* — |al,: )], where the summands are the only
nontribyl reducing subspaces of M «_ ¢ .

Proof. The first statement is given by Theorem (4.2.14). Next, we need to show that the
decomposition of H?(w, §),;, has the disired form. If we see A" and B" in (ii) above, then

a+ky,b b+l
H?*(w,8)ap = leofo] ® leifs — eofi] =[2z°w"] &

z4 R w z%w
= [z*w®] @ [z°W" (zF — |alw!)],

wa+k5b wa5b+l

where

V Walpi

W2 (e)a = “MwllHZ(a)b . Then the proof is completed by Theorem (4.2.17).

In what follows, we will check some classical function spaces.
For each standard model Mk, ,,,1|_(H?*(w, 8) 4, , denote

is given by M|

w
fa(n) :M’ n E Z-l"
a+nk
and
6b +(m+1)1
_ biml . .
Then Mzlez(w)a (resp. MWllHZ(S)b ) is simple if and only if £, (resp. g,,) is simple.

Let H = Dz ® D, be the tensor product of two weighted Dirichlet spaces, where
B,y € R.Then H = H}, 5, Where w, = (n + 1)f,6,, = (m + 1)Y.Forp, = z* +
aw' and (a,b) € 2, we have
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a+ (n+ Dk + 1\
fa(n)=< a+ nk + 1 >'
b+ (m + DI+ 1\
gb(m)=< b+ ml + 1 >
Denote (s,t) = (aT“ ,btl) then we obtain
s+n+ 1\f t+m+ 1\/
fa(n)=< s+n ) andgb(m)=< t + m )

Proposition (4.2.20)[112]: If H = Dg @ D, and B,y € (0,+), then

(i) MZk|DBa and Mwlluy , are simple for all admissible k, ., a, b;

(i) MZk|DBa and aMWz|Dyb are unitarily equivalent ifand only if || = 1,8 = y,s =
t;

(i) in (i), Hyp = [z9WP] @ [z°WP(z* — w')], where the summands are the only
nontribyl reducing subspaces of M k¢ ;

(iv) in other cases, H, ;,’s are minimal reducing subspaces of Mk, ¢ -
Proof. By Lemma (4.2.10), if 8,y € (0,+40), then Mzle and MW1|D are all simple
Ba Yb

for all admissible k, [, a, b. This proves (i).
Next, M|~ and aM,,| b are unitarily equivalent if and only if
Ba 14

Wa+(n+Dk | 5b+(n+1)l
Wa+nk Op+ni
holds foralln € Z +,1.e.,

S+n+1 t+n+1
o (Y e,
S+ n t+n

First letting n tend to infinity, we get | a = 1. Then taking dlfferentlatlon we get

s+n+1\F"1 1 _ (t+n+1)
_'B( s+n ) (s+n)2 ( t+n ) (1:+ n)2 "’ n e Z""

e,
B t+n+ 1\, s+n s 4+ ny?
=) ) ) e
y t+mn s+n+1 t+n
Letting n tend to infinity again, we get § = y. Now we have
s+n+1 _t+n+ 1
s+n  t+n
This will lead to s = t. This completes (ii).
(iii) and (iv) are given by Proposition (4.2.19).
If 3 =y =1,then H= Dg ® D, is the Dirichlet space over the bidisk. For § < 0or
y <0, it need to check the simple condition. If 8 =y = —1, then H = Dz ® D, is the
Bergman space L2 (ID?) over the bidisk. Some similar and tedious manipulations still yield
that £, and g,, are simple functions, hence we obtain many results again in [108], [112]. This
provides a good explanation for their different behavior on a. If § = y = 0, then H =
H*(D?) is the Hardy space over the bidisk. Each H, ; is minimal if and only if |a|* = 1.
If |a|*> = 1, then each H, , has the same structure as in Proposition (4.2.20)(iii). Dan [108]
also considered this problem in a different way. In particular, the reducing subspaces of
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multiplication operators M, ,,, on the Hardy space, Dirichlet space and Bergman space
over the bidisk all have the same structure. In other words, their V*(M,,,,)’s are
iIsomorphic. For more examples, we can introduce a new class of function spaces. We call
them ultra-weighted Bergman spaces. LetAaﬁ H?(w),wherea > —1,8 € R, w, =

n'r'2+a) B . . 2 _ 2 i
(F(2+a+n)) . It is obvious that Ag; = D_gand Ag, are the usual weighted Bergman

spaces.
LetH = AE,Y X Az&,1 be the tensor product of two ultra-weighted Bergman spaces,

14
where f,6 > —1,y,A €R. Then H = H(Zw’a), where w, = (—n!r(“ﬁ))

r2+p+n)
mir2+68) \* e ,
(F(2+6+m)) .Forp, = z* + aw"and (a,b) €Q, we have

B (a+ (n+ DEOITQ + B + a + nk)\
fa(m) = ((a + ) TR+ L +a+ (n+ 1)k)>

m =

and

b+ @m+ DDITQ + 8 + b + mD)\*
gp(m) = ((b +mDIT2 +6 +Db + (m + 1)z)>
Denote (s,t) = (a+1k,b+11),then
fa(m)

(s+n+1—%)(s+n+1—%)---(s+n+1—%)

1+ 1 1+ 2\ 1+ k
(s+n+1+ % E)(s+n+1+ T _F) (s+n+1+ T k)
and g;, has the similar form.

Now we can state the following proposition:
Proposition (4.2.21)[112]: If H = A}, ® A%, where 8,6 > —landy,A < 0, then

(i) M| . | and M|, are simple for all admissible k, [, a, b;
(4%.y), (4852,)

(i) if|a| = 1 andy(1 + B) = A(1 + §), thenthere may be many (a, b)’s which make
Mzk|(A2ﬁ‘y)a and aMWl'(Afm)b unitarily equivalent;

(iii) in (i), Hyp = [z2°WP] @ [zawb(zk‘wl)], where the summands are the only
nontribyl reducing subspaces of M k¢ ;
(iv) in other cases, H, j,’s are minimal reducing subspaces of M«

+0(W '

Proof. By Lemmas (4.2.10) and (4.2.9), we find that Mzk|(A ) and sz|(A2 ), are all
By), s1)p
simple for all admissible k, [, a, b. This proves (i).
For unitarily equivalent, consider
1 2 k Y
(S+n+1—E)(S+n+1—E)---(s+n+1—E)
1+ 1 1+ 2 1+8 k
<5+n+1+ e _E>( n+1+——" T —E>( n+1+—7—" % _E>
1 2 [ ‘
ar (t+n+1-7)(t+n+1-7)(t+n+1-7
1+6 1 1+6 2 1+6 1
(t+n+1+ =) (c+n+ 1+ =F) o (t+ n 414277 —7)
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foralln € Z,. First letting n tend to infinity, we get |a| = 1. Set

s+n+1—7
h;(n) = ,Bk T i=1,..,k,n € Z,,
s+n+1+ %
and
t+n+1—]7 |
i (n) = 56 J' j=1,.,Ln€eZ,

then the above equation becomes

A
() -~ @) = (L) -~ L)', n € Z,. (25)
Note that, lim h;(n) = 1, i = 1,...,k, and
n—oo
h; 1+
lim n? () _ A , i=1,.,k

n—oo hi (Tl) k
The similar result holds also for [;,j = 1,...,L.
Taking differentiation to (25), we get

y(hy(n) -+ h(n))” <

1(n) hk(ft))
-+
hl(n) Rie(ny
1(n ) Li(n)
)+ k) ({4 4 1),
Multiplying both sides by n?, then letting n go to infinity again, we get y(1 + B) =
A(1 + &). This completes (ii).
(iii) and (iv) are given by Proposition (4.2.19).
In conclusion, we see that if || # 1, then H, , must be a minimal reducing subspace
of Mk, ¢ IN Many cases.
Section (4.3): A Class of Non-Analytic Toeplitz Operators on the Bidisk
For D denote the unit disk in the complex plane C and dA(z) denote the normalized
area measure over . Let A%(ID?) denote the Bergman space consisting of all holomorphic
functions over D?, which are square integrable with respect to the normalized volume
measure dA(z)dA(w). Then A?(ID?) is a Hilbert space with inner product (f,g) =
sz fgdA(z)dA(w). Given an essentially bounded function ¢, the Toeplitz operator Ty is

defined by Tpf = P(¢f) for f € A2(D?). Put V*(¢) = {Ty, T(;;}', the commutant
algebra of the C*—algebra generated by T,, in B(A*(ID%)). As is given in [115], V*(¢) is a
von Neumann algebra and is the norm closed linear span of its projections.

For a bounded linear operator S on a Hilbert space #, a closed subspace M is called a
reducing subspace for S if SM € M and SM+ < ML, In addition, M is called minimal if
there is no nonzero reducing subspace WV satisfying ' & M. It is well known that M is a
reducing subspace for S if and only if SP;; = P,,S, where P, is the orthogonal projection
from # onto M. In this way, the range of projections in V*(¢) and the reducing subspaces
for T, are in one-to-one correspondence. Therefore, in some sense, studying the structure
of von Neumann algebra V*(¢) is equivalent to investigating the structure of the reducing
subspaces for T,

For By denote a Blaschke product of finite order N on . In 2009, Zhu [128] proved
that a multiplication operator My, on L% (ID) has two distinct nontrival minimal reducing
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subspaces, and conjectured Mg, has exactly N distinct nontrival minimal reducing
subspaces. In particular, if By (z) = z", M~ isaweighted unilateral shift operator of finite
multiplicity on a weighted sequence space. Stessin and Zhu [111] showed that every
reducing subspace for M~ contains a minimal reducing subspace as

X, = span{z"*kN : k = 0,1,2,---}with0 < n < N — 1.What is worth mentioning,
Hardy spaces, Bergman spaces and Dirichlet Spaces are three particular cases of the
weighted sequence spaces.

Further, Douglas and Kim [125], Li, Lan and Liu [127] generalized the results to some
weighted unilateral shift operators on L%(4,) and EZ(a > 0) (the square integrable
analytic functions on the annulus A, with respect to the normalized measure dA(z), and the
square integrable entire functions on the whole complex plane C with respect to the Gaussian
measure, respectively). In 2004, Hu, Sun, Xu and Yu [126] proved that there is always a
nontribyl reducing subspace for Mg_. In 2009, Guo, Sun, Zheng and Zhong [10] disproved
Zhu’s conjecture and proposed the modified conjecture that Mg has at most N distinct
nontrival minimal reducing subspaces. On the basis of ([27], [28], [10], [1], [17], etal.) by
Guo, Huang, Sun, Zheng and Zhong, et al., Douglas, Putinar and Wang [23] obtained that
the number of nontrival minimal reducing subspaces for Mg  equals the number of
connected components of the Riemann surface By o By on the unit disk. As verified in
[27], [28], this result is equivalent to the assertion that V*(By) is abelian. For infinite
Blaschke products, Guo and Huang [8] proved that for “most” thin Blaschke products B, My
has no nontribyl reducing subspace.

For high-dimensional domains, research on reducing-subspace problems began with
some special monomial symbols. Lu and Zhou [37] completely characterized the structure
of the reducing subspaces for M« « on the weighted Bergman spaces over D2. Shiand Lu
[35] found all the minimal reducing subspaces for M k,i(k # ) on A3(D™)(a > —1)
and showed that the un-weighted case has more minimal reducing subspaces than the
weighted case. Guo and Huang [30] gave the direct decompose of the reducing subspaces
for M,a with a € Z¢ on a multi-dimensional separable Hilbert space by a different
approach. For the case that p is a polynomial, the reducing subspaces for Togerpwt (@B €

C) and the structure of V*(az® + Bw') are investigated in [108], [112]. More generally,
Guo and Wang [113] studied the reducing subspaces for A* ® I +1 @ B' where 4 €
B(H),B € B(K) are two simple unilateral weighted shifts.

Motivated by the research of multiplication operators, we wonder what the results about
the Toeplitz operator with non-analytic symbols look like. Compared with the analytic
conditions, the tools for the Toeplitz operators with general non-analytic symbols seem far
fewer at present. Albaseer, Shi and Lu [107] characterized the reducing subspaces for T k.
on A%2(D?). Let (3, w) = az® + pw' where a and B are nonzero complex numbers. We
find all the minimal reducing subspaces for the Toeplitz operator T,, on A*(D?), and
consider the algebraic structure of V*(¢). Unlike the analytic condition, we obtain that
V*(¢) is always abelian for every aff # 0. The following theorem is the main result.
Theorem (4.3.1)[124]: Let ¢(3,w) = az® + fw', where a, are nonzero complex
numbers and k, [ are positive integers. Then

Lyp = span{zatnkywbimiinm € Z,}(0 < a <k -1,0<b <1 -1)
are exactly all the minimal reducing subspaces for T,,. Furthermore, V*(¢) is * —isomorphic
to
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@{(il C)
and then V*(¢) is abelian.

Sincea # 0,theoperators Tk, g5t and Tzk+§wl have the same reducing subspaces.

_and T« T*

w wk+lclzt = |c|(zl+%v|7k

equivalent to each other. Therefore, we only need to prove the result under the assumption
Tz¥ + aw'with0 < a < 1.
We determine all the minimal reducing subspaces for T, in Theorem (4.3.1). We
prove that V*(¢) is abelian.
For Z denote all integers, Z, denote all nonnegative integers and Q denote the set of
rational numbers. For positive integers k, [, define
N ={(ab)€eZil0<a<k-10<b<l-1}L

For each (a,b) € 02, put s = aTH t = #. Then s,t € (0,1] n Q. For ¢ € (0,1],

divide £ into two parts:
21 = {(a,b) € 0]

For each ¢ € C— {0}, T iy ipts T pkyq ) are unitarily

t
— a? + 0},

s+ 1 t +1
and
0,, = {(a,b)e 0| — 2t __ g
az = UG s+1 Y r+1

Let p,(z,w) = z¥ + aw!(0 < a < 1).Obviously, the subspace

Ly, = span{z@tnkwb+mlinm € Z,}
is a reducing subspace for T, , and A*(D?) =@ g p)en Lap- Denote by T, =T, T, —
Ty, Ty, then

Ta, = (Tz*kTZk - TZkTZ*k) - C(Z(T‘:;ITWI - TWlT‘:;l)

and
Taza+nkwb+ml = (¢(S, n) - ocng(t, m))za+"kwb+ml, (26)
where
1 >0
) p )
pup) = @Dt +1) 27)
u+1’ p=10
Set
Ay(a,b,n,m) = ¢(s,n) — a?¢p(t,m). (28)
For (a,b), (a’,b") € 0, define an equivalence on Z2 by
(a,b,n,m) ~ (a’,b',n',m") & A,(a,b,n,m) = A,(a’,b’,n",m"). (29)

If (a,b) = (a’,b"), this notation can be simplified as

(n,m) ~5, (n',m') & A,(a,b,n,m) = A,(a,b,n’,m’).
Define

A = {(0',m): (a,b,n,m) ~ (a',b',n',m'),(n',m") € 73}

and

Apm = {(',m): (n,m) ~qp (0',m"),(n",m") € Z3}.
Concerning ZZ, define the partial order > by setting

(n,my) = (ny,,my) if n =2 n, and m; = m,.
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PutT' = {(n,m) € Z%| (n,m) = (1,1)} and I'® = Z2\I. For each f € A%2(D?),[f],
denotes the reducing subspace for T, generated by f, i.e., the smallest reducing subspace
for T, , containing f.
We provide some useful lemmas.

Lemma (4.3.2)[124]: If0 < a < 1,(a,b) € Q,n,n',m,m’ € Z,, then

(D(m,m) ~qp (n,m)if andonlyif m = m/;

(i) (n,m) ~5p (',m)if andonlyif n = n’;

(ii)if (a,b) € 211 U 0g,(a € (0,1)),then (0,0) +4, (n,n) forn = 1.
Proof. (i) Obviously, we only need to prove the necessity. By (27), (28) and (29), we know
that ¢(t,m) = ¢(t,m").
Ifmm' > 1, then t+m)(t+m+1) = (t+m')(t+m’'+ 1). It follows that m =

m.

If one of m, m’ is 0, without loss of generality, assume m > 1andm’ = 0. Then
1 t

t+mE+m+1) t+1
Thatis, F(t) = t(t + m)(t + m + 1) — (t + 1) = 0, where F is a polynomial with
integral coefficients, with leading coefficient equal to 1 and with degree at least 3. By the
theory of algebra, all rational roots of F are integers. Sincet € (0,1] N Q, we have t =
1and m = 0. This leads to a contradiction.
(ii) By the symmetry of n and m in the proof of (i), we have (ii) holds.
(iif) The assumption (a,b) € 2;, U Q,,(a € (0,1)) shows that s # t. Notice that
(0,0) ~qp (n,n) forsomen > 1ifand only if

s 1 _att a?
s+1 (+nmis+n+1) t+1 (t+n)(t+n+1)
If (a,b) € (44, consider the function G (x) = Z : n = 1.

x+1  (x+n)(x+n+1)’

Obviously, G(x) is strictly increasing on (0,4+c). Then G(s) # G(t), i.e.,
(0,0) *4, (n,10).

If (a,b) € 24,(0 < & < 1),wehave—= a?— < —Thent > s. It follows that

1 1 a?
(s+n)(s+n+1) (t+n)(t+n+1) (t+n)(t+n+1)’ Hence, (0, O) *ap (LN).
Lemma (4.3.3)[124]: If (a,b) € Q11 U Qu,(0 < a < 1),(a’,b") € N and (n,m) €
AgoNT,then(n £ 1,m £ 1) € Ao N T,
Proof. Suppose (n + 1,m + 1) € Ay, For 0 < a <

1, we get two equations as

follows:
S a’t 1 a? 20
s+1 t+1 (s"+nGE" +n+1 (t’+m)(t’+m+1)'( )
and
s a’t 1 a?
.(3D)

s+1 t+1 G +n+DE +n+2) E+m+DE +m+2)
If (a,b) € Q,, (0 < a < 1), Eq. (30) and Eq. (31) imply that
, E+miE +m+1) E +m+DE +m+ 2)
s +nGE +n+1) (s n+ DG 0+ 2)]
Therefore, t" + m = s’ + nand a = 1, which is a contradiction.
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If (a,b) € Qy,,thent’ + m = s’ + n. Eq. (30) implies that (a,b) € Q,,, which is
also a contradiction.So (n + 1,m + 1) € Ay, N T.

Replace (n,m) by (n — 1,m — 1). Assume (n — 1,m — 1) € Ay, N I'. As the proof
above, we have (n,m) = (n — 1 + 1,m — 1 + 1) & A}, which is a contradiction.
The proof is finished.

Lemma (4.3.4)[124]: If (a,b) € Q,,andn,m € Z,, then the following statements hold:
(i) (n,m) € Agp if and only if n = m.

(i)(n" + 1,n') € Apyipif andonlyifn = n'.

Proof. (i) It is easy to see that (n,n) € Ay, for n € Z,, since A;(a, b,0,0) =
A1(a,b,n,n) = 0.0nthe other hand, assume (n,m) € Ag,. Ifn = 0, Lemma (4.3.2)(i)

shows that m = 0. If n > 1, Eq. (27) and Eq. (28) imply that ¢(s,m) = !

(s+n)(s+n+1)’
Since F(s) = s(s+n)(s+n+1)—(s+1) = 0hasno rational roots in (0, 1], we have

1 1
m = land ¢(s,m) = CIGEmTD = GGl Hencem = n.

(if) We only need to prove the necessity. If n = Oandn’ = 1,then(n +1,n) ~,, (n' +
1,n") indicates

1 S —2
s+ +2) s+1 (G+n)G+n+ D +n +2)
By the theory of algebra, we obtain s = 1, and thenn’ = 0, which is a contradiction with
n > 1
If n > 1, by the argument above, we have n' > 1. Therefore, (n + 1,n) ~,, (n' +
1,n") gives

2 2
(s+n)(s+n+1)(s+n+2)=(s+n’)(s+n’+1)(s+n’+2)'

It follows thatn = n’,
The following lemmas hold forevery 0 < a < 1.
Lemma (4.3.5)[124]: If (a, b), (a’,b") € Qand (ny, my) € A}, then the following
conclusions hold:
(@) if (n,m),(ng,my) = (1,0) andn # ny, then (ny + 1,my) & Apy1ms
(i) if (n,m), (ng,my) = (0,1) and m # my, then (ng,my + 1) & Ay pi1;
(iiD)if (a,b) = (a’,b'),n = 0 and ny = 1,then (ny + 1,my) € Ay .
Proof. (i) If (ng,my) € Ay and (ng + 1,mg) € Ayyq4m then

1 1
_ 2 ! — _ 2
GG +m D PO TG a PO

and

1 2 (tl )_ 1 2 (t )
(S'IT”OEU(S'+"0+2) M) = T DG vt © O™
It follows that

1 1

(s" +n)(s" +1nyg + D" +1np +2) (+n)i+n+ D +n+2)
Thuss" + njp = s + n.Since—-1 < —s' < ny, —n =5 —s < s < 1,wehave
ny = n. This is a contradiction. So (i) holds.

(i) Since the proof of this case is similar to the proof of (i), we omit the details.
(iii) Assume (ny + 1,m,) € A4 ,,. A computation shows that
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S 1 2

s+1 (+1DG+2) (s+n)6 +ny+ D+ ny +2)
As in the proof of Lemma (4.3.4) (ii), there is no solution on (0, 1] forany n, > 1.
Therefore, the assumption is not true. We finish the proof.
Lemma (4.3.6)[124]: If (a,b) € 0, then [z*WP], = Lg,.
Proof. Obviously, we only need to show z&*kwb+ml e [zawb], forn,m > 0.
Notice that

T};fxzawb — Za+nkwb € [ZaWb]a, T;:lzawb — amZaWb+ml € [ZaWb]a,.

Denote by ;. = ||z*||° = —. Then we have

Ya+nk —
T;az“”kwb — aza+nkwb+l + Za+(n 1)ka € [ZaWb]a.
Ya+(n-1Dk

It follows that z¢**wP+l € [z¢wP], foralln > 1.Forevery g > 1,since
a7tk b+@+Dl — T5a2a+nkwb+ql _ Ya+nk Za+(n—1)ka+ql’
Ya+(n-1k

it is easy to get the desired result by induction.
We will prove that L, ,((a, b)) € ) are the minimal reducing subspaces for T, and
any two distinct parameter-pairs (a, b) generate nonequivalent reducing subspaces L, j,.
Theorem (4.3.7)[124]: If (a,b) € Q, then L, is a minimal reducing subspace for T, for
any0 < a < 1.
Proof. Obviously, L, ;, is a reducing subspace for T,, forany 0 < a < 1. We only need
to prove that L, 5, is minimal.
Suppose there is a reducing subspace M, included in L, ;. Denote by P; the orthogonal
projection from A*(D?) onto M. Recall that T,, = T, T, —T,_ T, . By (26) and
Taplza+nkwb+ml — PlTaZa+nka+ml — Aa(a, b,n, m)za+nkwb+ml'
we get Py z#tkwbtml e gpan{zatPkwb*al . (p,q) € A} Further, Lemma (4.3.2) (i)
and (ii) deduce that

fi = Piz%WP = agoz®w? + z A Z

(n,m) EAO,O NI'b

a+nk.,,b+ml

w

Then
— +ky,,b
TpoJ1 = @goz® " w

+ Z Ay [Za+(n+1)kwb+ml+ AYVb+ml Za+nk,,b+(m-11| (32)

(nmho 0T Vb+(m-1)1

Notice that

Tp f1 = PiT, z°wP = Py z%*kwP € span{z®*Pkwb*al: (p,q) € Ao} (33)
Claim (4.3.8)[124]: f; = agoz®*wP.
The proof of the above Claim (4.3.8) will be divided into three cases: (a,b) € Q;, U
Q20 <a <1),(a,b) € Qy,and (a,b) € Qp,(0 < a < 1).
Case (1): (a,b) € Q11 UQy,(0 < a < 1). Without confusion, the range of a is (0, 1].
Lemma (4.3.3) showsthat (n +1,m £ 1) € Ay NT,since (n,m) € AgoNT.
Thus the coefficient of z&*(+Dky,b+mlin Eq. (32) is a,,,,,. Associated with Lemma (4.3.5)
(iii) and Eq. (32), we deduce that a,,,, = 0 for (n,m) € T.Hence, f; = ayyz*w>.
Case (2): (a,b) € Qq,.Leta, = a,, for convenience. Lemma (4.3.4) deduces that
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fl — E anza+nka+nl.

N€EZy
By simple computations, Eq. (32) becomes

T f1 — (aO + a, y)lj+l> a+k b +Z(an + Aty yb+(n+1)l) a+(n+1)ka+nl_ (34)

Vb+nl
Lemma (4.3.5)(iii), along with Eq. (33) and (34), shows that
a, + anHM: 0, vn = 1.

Vb+nl

It follows that a,, = (—1)"1 yy”—” a,. Thus
b+
b+ nl+1
|an|2||za+nkwb+nl|| ( ) |a1|2.

(a+nk+1)(b+l+1)2
Since f; € A%(D?), we have that |a,|?||z** " w b+”1|| —»0asn — oo. Thus a; = 0,

which indicates that a,, = 0forn > 1.Hence, f; = agoz%wP.
Case (3): (a,b) € Q4 (0 < a < 1).Firstly, we prove that A, , is a finite set.
Otherwise, by Lemma (4.3.2) (i) and (ii), there exists (nk,mk) > (k, k) satlsfylng

(N, my) € Ago N T for every k = 1. That is, —— a?— = —

s+1 t+1 (s+nk)(s+nk+1)
2 . . Letting k > +o shows that — — @2 —— = 0, which is a
(t+my)(t+my+1) s+1 t+1

contradiction. Therefore,
N

f1 = aoozawb +ijza+pjkwb+qjl’
j=1
where N is a positive integerand (p;, q;) € Ago NT.Reset{(p;,q;)}(1 < i < N)asl <

pl < pz << pNThUS,
N

Tpaf1 = Qo Zatky,b 4 z bj (Za+(pj+1)kwb+qjl . Vb+q;l Za+pjkwb+(q,-—1)l>_
= Yb+(q;-1)
By Lemma (4.3.5)(iii) again, we have (py + 1,qy) € Aq,. Then Eq. (33) shows that by =
0. Repeat this process until we get b; = 0,j = 1,---,N. Therefore, f; = agoz*w?. So
we get the desired result.

According to the above Claim (4.3.8), we know that either z¢w? € M, or z*w? 1L M;.

Consequently, using Lemma (4.3.6), we obtain that either M; = L,, or M; = {0}.So
L, 1, is minimal.

As in [30], we say that two reducing subspaces M, and M, of T, are called unitarily
equivalent if there exists a unitary operator U from M onto N and U commutes with T,,. One
can show that M, is unitarily equivalent to M, if and only if P, and P, are equivalent in
V* (), that is, there is a partial isometry V in V*(¢) such that

V'V = Py, VV* = Py,.

Now, we are ready to prove that L, , and L, ,+ are not unitarily equivalent if (a, b) #

(a’,b").For0 < a < 1, our proof is divided into two parts:
(i) (a,b) € Q4 (a',b") € Q;
(ii) (a,b), (a’,b") € Qg;.

For @ = 1, our proof is also divided into two parts:
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(iii) (a,b) € Qy4,(a’,b") € Q;

(iv) (a,b),(a’,b") € Q5.
Since the proof of (i) and (iii) are similar, we write the proof of them together.
Theorem (4.3.9)[124]: If (a,b) € Q4,(0 < a < 1)(or (a,b) € Qy4),(a’,b") € Q
and
(a,b) # (a',b"), then L, , and L, are not unitarily equivalent reducing subspaces for
Ty, (o1 Ty.).
Proof. Without confusion, the range of « is (0, 1]. Assume conversely that L, , and L/
are unitarily equivalent, then there is a partial isometry U € V*(p,) such that U|,, isa
unitary operator from L, , onto L.
Recall that T, = T, T, — T, T, .For (n,m) € Z3, suppose

! !
UZa+nka+ml — Clqua +pka +ql,
(p.g)€Z?
where a,; € C.Moreover, we have
a+nk,,, b+ml _ a'+pk., b +ql
UT,z w = Z apgAe(a, b,n,m)z® "PEw? T4,
(p.q)ELS

and
TaUZa+nka+ml — Z apqxla(a’,b’,p, q)Za’+pka’+ql_
(. @)EZ;
Thus, UT, = T,bU indicates that
[ za+nk,,b+ml Span{za’+pkwb’+ql: (p,q) € A%,m}- (35)
By Lemma (4.3.2)(i) and (ii), we know that there is at most one n, > 1 satisfying (n,, 0) €
0,0- and there is at most one my, > 1 satisfying (0,m,y) € Ap,. SO

a’+n0ka’

!/ !/
UzWP = agoz® w? + ay oz

! ! ! !
_|_a0 ’moza Wb +mgl + E anmza +nka +ml_

(n,m)eAg o NT
By simple computations, we have
* Ya+k
UT,, T, zWP = aUz0%kwb*l 4+ 22 yz0wh, (36)
Ya
and
/ 1 Ya' ! 1
Ty Ty, UzWP = agy (ocza thyyb'+l g Ta ksl b )
YVa'
+a 0 <aza,+(n0+1)kwb,+l + ]/a,+(n0+1)k Za'+n0kwb’>
n ’
0 Ya'+nyk

1 ' Ya'+k Vb’ +m,l 1ot
+a0,m0 !aza +ka +(mo+1)1 + < + az 0 74 Wb +mgl
YVa' Vb'+(my-1)1
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a'+(n+1)k,,, b +(m+1)l
+ Z Anm laz (n+Dky, b +(m+1)
(n,m)EAG oNT

Ya'+(n+1)k Vb’ +mi ! !
_|_< ( ) + az Za +nka +ml
Ya'+nk Yb'+(m-1)1

+a Vb'+mi Ya'+nk 7@ +(=Dk,,b'+(m-1) | (37)
Vb +(m-1)1Va'+(n-1)k
Compare the coefficients of z&*™w?*m for (n,m) € Ap, N T, respectively. If
(n,m) € T\ {(1,1),(ny, + 1,1),(1,m, + 1)}, along with (35), we obtain that
(Va’+(n+1)k + o? Vb'+mi )anm :ya+k

Ya'+nk Vb +(m-1)1 Ya
since Ago NAT; = @ (by Lemma (4.3.2)(iii)), m£1,m £ 1) € Ay, NT (by Lemma

VU Y U
2.2), and (ng,0),(0,m,) & I'. However, 2@k 4 p2_Thlaml > “a+(uibk o, Yatk g
Yal+nk Vb +(m-1)1 Ya'+nk Ya

anm )

a,m = 0.It means that
! ! ! ! ! ! ! !
UZaWb — COZa Wb + Clza +ka +1 + sza +n0kwb 4+ C3Za +(n0+1)kwb +1
+C4Za'Wb’+mol + CSZa’+ka’+(m0+1)l_
Some simple computations show that
a+k,,,b _ a,,b
uz***w® =T, Uz"w
— (c + ac Yb’+l> 2@ Fkyb' o ga v 2y, b4l
0 1 Yo 1
Yo' +k ’ ’ ’ ’
+<C2 + acs y*l' 0 +(n0+1)kwb + C3Za +(n0+2)kwb +1 +h1(Z,W),
b

and
a+2k.,,b _—_ a+k,,,b
Uz w? = Tpa Uz w

Yo' +1 ' ' ' '
— (CO + 2 Cl Za +2ka + Clza +3ka +1
4%
Yo' +k ' ' ' '
+ (Cz + 2acs 7@ +(no+2)ky,, b 4+ C3Za +(ng+3)ky,,b"+1 + Tpahlr
Vb
where
! ! ! ! ! ! ! !/
h1 1 {Za +ka ,Za +2ka +l,Za +(n0+1)kwb ,Za +(n0+2)kwb +l}
and

Tpahl 1 {Za’+2ka’+l’Za’+3ka’+l,Za'+(n0+2)ka',Za’+(n0+3)kwb’+l}_

By Lemma (4.3.5)(i), we obtain that (2, 1) € A%, and (3, 1) € A, are incompatible.
So c; = 0. Moreover, the incompatibility of (ny + 2,1) € Ajyand (ny + 3,1) € A,
shows that c; = 0; the incompatibility of (n, + 1,0) € A7, and (ny + 2,0) € A,
implies c, = 0.
Symmetrically, we consider Uz%w?*! and Uz%wP?*2L, In a similar way, Lemma (4.3.5) (ii)
impliesthatc, = ¢ = 0.S0

Uzowb = COZa’Wb" Uz0tkyb — COZa’+ka" Uzowbtl = COZa’Wb’+l_
Since U], is a unitary operator, we get ¢, # 0. Then (0,0) € Ago,(1,0) € Aj, and
(0,1) € Ap,. By some calculations, it is easy to check that
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1 s 1 s’
C+DE+2) s+1 ("+DE"+2) s +1°
1 t 1 t'

Ct+DE+2) t+1 @ +DE +2) t +1
It follows that (a, b) = (a’, b"), which is a contradiction. Hence, we complete the proof.
Theorem (4.3.10)[124]: If (a,b),(a’,b") € Qy1(0 < a < 1) and (a,b) # (a’,b"),
then L, and L,/ ,» are not unitarily equivalent.
Proof. Firstly, by the analogous proof in Theorem (4.3.7), we get that A , is a finite set.
Secondly, assume conversely L, , and L, ;- are unitarily equivalent, then there is a partial
isometry U € V*(p,) such that U|,_, Is a unitary operator from L, onto L, ;. As the

analysis above, set
N

Uz%wb = aoza’wb’ + unoza’+n0kwb’ + umoZa,Wb,+m°l+Zai2a’+nikwb,+mil,
i=1
where N is a positive integer, (n;, m;) € Ao N I,n; # ng,m; # mgand a;, Uy, U, €
C.Rearrange {(n;, m))}(1 < i < N)asl <n; < n, <---< ny.
By U € V*(p,), we have
Uz0tkyb = aNZa'+(nN+1)ka'+le + g1(z,w),
and
Uza+2ky,b — aNZa’+(nN+2)ka’+le + aay Vb +mpyl Za’+(nN+1)ka’+(mN—1)l
Vb'+(my-1)1
+T,,91(2,w),
! ! ! !
where g1 1 {Za +(nN+1)ka +le}’ Tpagl 1 {Za +(nN+2)ka +le}_
By Lemma (4.3.5)(i), (ny +1,my) € Alyand (ny +2,my) € A;, are incompatible.
Since

Uz wb C span{za'+Pkwb'+dl: (p,q) € A} o}
and

Uz kwP C span{z®+Pkwb'+dl: (p,q) € A} .},
we have ay = 0. Repeat this process until we geta; = Ofori = 1,---,N.

Therefore, we deduce that

UzWP = ayz%w + Up Z 7@ ¥1oky, b’ + Upy, 2° 'w

By similar way as above, it is easy to get u,,, = 0.

On the other hand, we have

Uzwh* = qa.z® wb'+! + aqu, z%w
0 mg

b’ b'+mgl

b'+(my+1)1
)

and

b+21 _ b’ +(m0+2)l

Uz%w aayz® wh'+2l 4 AUy 2® 'w
By Lemma (4.3.5)(ii), the incompatibility of (0,m, + 1) € Apq and (0,my + 2) € Ap,
shows that u,,, = 0.
Since U], is unitary, we have a, # 0. It follows that (0,0) € Apyand (0,1) € Ap;. A
simple calculation implies that t = t" and s = s, i.e., (a,b) = (a’,b"). Thus the
assumption is false and we finish the proof.
Theorem (4.3.11)[124]: If (a,b),(a’,b") € Q,, and (a,b) # (a',b"), then L,, and
L, ,r are not unitarily equivalent.
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Proof. Assume conversely that L, , and L, ,+ are unitarily equivalent, then there is a partial
isometry U € V*(p,) such that U], is a unitary operator from L, onto L, . By the
analogous argument in Theorem (4.3.9) and by Lemma (4.3.4), we have
Uzwb = 2 anza'+nkwb’+nl_
nezZ,
Moreover,

Yo'+1\ o ’
Uz wl = T,UzwP = (ao + a; z% tey?
1474

+ z (an + a,,q V' +(n+1)l> a +(n+1)ka’+nl_
Vb'+ni
n>1

By (a,b),(a’,b") € Q;,,wehaves = t,s" = t"and (0,0) € Ay,.Obviously, (a,b) #
(a’,b") implies that s # s’, forcing (1,0) & A% ,. Thus, ay + a4 y;"“ = 0.
bl

Lemma (4.3.4)(ii) shows that (q +1,q) € A}, for at most one q > 1. Therefore, we
deduce that

Uz%kwt = ¢z

a’+(q+1)ka’+ql’
where ¢ € C. Moreover,
Uz@+2kyl — 0 +@+2ky,b'+al 4 Vb'+q1 7@ +(q+ Dk, b +(q- DL
Vb’ +(q-1)1
By Lemma (4.3.5)(i), (g + 1,q) € Ajyand (q + 2,q) € A, are incompatible.
So ¢ = 0, which contradicts with U # 0. Hence, we arrive at the desired conclusion.

We consider the structure of the von Neumann algebra V*(p,) for 0 < a < 1.
Rewrite the minimal reducing subspaces L, ,((a,b) € Q) by My, M,, - -, M,., where r =
kl. As mentioned, M, is unitarily equivalent to M, if and only if Py, and P,,, are equivalent
in V*(p,), thus we get any two of the minimal projections Py,,i = 1,---,r, are not
equivalent.

As in [112], there are no other minimal projections in V*(p,) except {Py,| i = 1,-
,7}. We briefly recall the main ideas of the proof. Let Q be a minimal projection, which is
distinct from all Py, (1 < i < r). Since the direct sum of Py, (1 < i < r) is the whole
space A%(ID?), there are at least two minimal projections Py, and Py; such that Py, @ # 0
and Py;Q # 0. Then Q is equivalent to Py; and Py, which is a contradiction.

The following proposition comes from [30]:
Proposition (4.3.12)[124]: Let € denote the set of all minimal projections in a von Neumann

algebra A and suppose
\e -

Eee

Then there is a family of {A;} of subsets of & such that

2.0

i EEA;
(i) each {A;} consists of pairwisely orthogonal, mutually equivalent projections in A;
(i) if E', E"" lie in different {A;}, then E' is not equivalent to E"';

Consequently, the von Neumann algebra A is *- isomorphic to

®i Mni(«:)r
where n; denotes the cardinality of {A;}, allowed to be infinity.
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Associated with V/i_, Py, = I, we have the following result.
Theorem (4.3.13)[124]: If 0 < a < 1, then V*(p,) Is *- isomorphic to
B, C.
Moreover, V*(p,) is abelian.
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Chapter 5
Hankel Operators and Products of Toeplitz Operators

We show the characterization of boundedness relies on certain precise estimates for
the Bergman kernel and the Bergman metric. Characterizations of compact Hankel operators
and Schatten class Hankel operators are also given. In the latter case, results on Carleson

measures and Toeplitz operators along with Hérmander’s L2 estimates for the 3 operator are
key ingredients in the proof. We show that the product T;T, of Toeplitz operators on the

Fock EZ of C™ is bounded if and only if f(z) = 9% and g(z) = ce 7@  wherecisa
nonzero constant and g is a linear polynomial. We provide a complete solution to the
problem for a class of Fock spaces on the complex plane. In particular, this generalizes an
earlier result of Cho, Park, and Zhu.
Section (5.1): Fock Spaces and Related Bergman Kernel Estimates
The basics of Hankel operators with anti-holomorphic symbols for a large class of
weighted Fock spaces are presented. Thus certain natural analogues of BMOA, the Bloch
space, the little Bloch space, and the Besov spaces are identified and shown to play similar
roles as their classical counterparts do. We will see that these spaces contain all holomorphic
polynomials and are infinite-dimensional whenever the weight decays so fast that there exist
functions of infinite order belonging to the Fock space.
The setting is the following. Consider C3-function ¥ : [0, +oo[— [0, +oo[ such that
Y'(x) >0, P'(x) = 0, and ¥""'(x) = 0. (D
We will refer to such a function as a logarithmic growth function. Note that (1)
effectively says that should grow at least as a linear function. Set
duy(2):= e *(|z|)aV (2),
where dV denotes Lebesgue measure on C*, and let A2(W¥) be the Fock space defined
as the closure of the set of holomorphic polynomials in L?(uy). We observe that A% (W)
coincides with the classical Fock space when is a suitably normalized linear function.
It is immediate that

+oo
Sa ==f x%e ¥®dx < +oo
0

for all nonnegative integers d. As shown in [137], the series
+o .

¢
EQi=) &= gec
d=OSd
has an infinite radius of convergence and A%(W) is a reproducing kernel Hilbert space with
reproducing kernel
1
Ky(z,w) = m! ™Y ((zw)), (5 w) €C™

This implies that the orthogonal projection Py from L? () onto A*2 (W) can be expressed
as

(Pog)@ = | Ko(aw)g@)duyw),z € €,
(Cn

for every function g in L?(u). The domain of this integral operator can be extended to

include functions g that satisfy Ky (z,)g € L*(w) for every z in C™. This extension allows

us to define (big) Hankel operators. To do so, denote by 7 (W) the class of all f in
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L?(w) such that f¢pKy(3,) € L!'(uy) for all holomorphic polynomials ¢ and z in C*n and
the function

@)@ = | KelawlpMIf @)= f W] duyw), 2 €€
is in L? (uy). This is a densely defined operator from A%(¥) into L?(uy) Which will be
called the Hankel operator Hy with symbol f . It can be written in the form

Hp (@)= U — Pp)(f 9)
for all holomorphic polynomials ¢. It is clear that the class T (W) contains all holomorphic
polynomials.

The main theorem involves the analogues in our setting of the space BMOA and the
Bloch space. The analogue of BMOA is most conveniently defined by the Berezin
transform, which for a linear operator T on A% (W) is the function T defined on C™ by

= _ (T K‘P('r Z)r K‘P('r Z))
T (z):= :
Ky(z,2)
IfT = Mg is the operator of multiplication by the function f, then we just set Mf = f.
We set

If llgmo := sup (MOf )(2),
(zeCm)
Where

(MOf )(5) = J|T|2<z)— f @I,
and define BMO(W) as the set of functions f on C™ for which |T|2(z) is finite for every z
and ||f|| BMO < oo. It is plain that BMO(W) is a subset of T (¥). The space BMOA(W¥)
is the subspace of BMO(W)consisting of analytic elements; this space is in turn a subset of
T (¥) n A%(¥).
We next introduce the Bergman metric associated withW. To this end, set (z) =
logKy (3, z)and

S 92A4(2)
2 C— v .=
B*(2,6); ,Z oz 95 I
], =
for arbitrary vectors z = (34,...,3,)and ¢ = (&,...,&,) InC™. The corresponding
distance is given by

1

o(z,w) = ir]}f j ,B(y(t),y’(t))dt, (2)
0

where the infimum is taken over all piecewise C1-smooth curves y : [0,1] — C" such that

v(0) =z and y(1) = w. We define the Bloch space B(W¥) to be the space of all entire
functions f such that

_ kTH@D.D|_ .
FEE =% Lei‘iﬁo} e |°F @
In what follows, the function
d(x) = x¥'(x)

will play a central role. By (1), we have that both ®'(x) > 0 and @' (x) > 0, and it may

be checked that ®'(|z|?) coincides with the Laplacian of (|z|?) whenn = 1 and in general

Is bounded below and above by positive constants times this Laplacian for arbitrary n > 1.
We state the main result.
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Theorem (5.1.1)[129]: LetWhe a logarithmic growth function, and suppose that there exists
areal numbern < 1/2 such that

O (t) = 0<t—% [cp'(t)]1+n) whent - oo. @)

If f is an entire function on C", then the following statements are equivalent:
(i) The function f belongs to T (¥) and the Hankel operator Hz on A%(¥) is bounded:;

(ii) The function f belongs to BMOA(W); (iii) The function f belongs to B(W¥).

Note that the additional assumption (4) is just a mild smoothness condition, which
holds whenever is a nontribyl polynomial or a reasonably well-behaved function of super-
polynomial growth. As part of the proof of Theorem (5.1.1), we will perform a precise
computation of the asymptotic behavior of £(z, ) when |z| — co. We state this result as a
separate theorem.

We observe that for the classical Fock space (¥ a linear function) we have ¥''(x) =
0, and so the “directional” term in (3, §) is not present. Note also that B(¥) contains all
polynomials and is infinite-dimensional whenever the growth of ¥’ (x) is super-polynomial.
In the language of entire functions, this means that A%(¥) contains functions of infinite
order. When n = 1,5%(v,§) can be replaced by ®'(|z]|?)|€ |?> . The same is also true
when is a polynomial, because then ¥’ and @’ have the same asymptotic behavior. In the
latter case, our two theorems give the following precise result: If Wis a polynomial of degree
d, then B(W¥) consists of all holomorphic polynomials of degree at most d; cf. Theorem
(5.1.1) in [137].

The implication (i) = (ii) in Theorem (5.1.1) is standard; it follows from general
arguments for reproducing kernels. Likewise, the implication (ii) = (iii) can be established
by a well-known argument concerning the Bergman metric. The proof of Theorem (5.1.1)
therefore deals mainly with the implication (iii) = (i). The crucial technical ingredients in
the proof of this result are certain estimates for the Bergman kernel Ky(z,w). Such
estimates have previously been obtained by F. Holland and R. Rochberg in [62]. The results
of [62] are not directly applicable because we need more precise off-diagonal estimates for
the kernel than those given. Our method of proof is similar to that of [62], but our approach
highlights more explicitly the interplay between the smoothness of and theWoff-diagonal
decay of the Bergman kernel. This is where the additional smoothness condition (4) comes
into play; many of our estimates can be performed with sufficient precision without the
assumption that (4) holds, but some condition of this kind seems to be needed for our off-
diagonal estimates.

The fact that the Bergman metric is the notion used to define the Bloch space B(¥ )
suggests that Theorem (5.1.1) should be extendable beyond the case of radial weights. To
obtain such an extension, one would need a replacement of our Fourier-analytic approach,
which relies crucially on the representation of the Bergman kernel as a power series.

The machinery developed to prove Theorem (5.1.1) leads with little extra effort to a
characterization of compact Hankel operators in terms of the obvious counterparts to
VMOA and the little Bloch space; for details. In our study of Schatten class Hankel
operators, however, some additional techniques will be used. We will need more precise
local information about the Bergman metric, namely that balls of fixed radius in the
Bergman metric are effectively certain ellipsoids in the Euclidean metric of C™. These
results appear to be of independent interest; in particular, they lead to a characterization of
Carleson measures and in turn to a characterization of the spectral properties of Toeplitz
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operators. Building on these results and using L? estimates for the @ operator, we obtain a
characterization of Schatten class Hankel operators.

To place the present investigation, we close this introduction with a few words on the
literature. Boundedness and compactness of Hankel operators with arbitrary symbols have
previously been considered only for the classical Fock space (W a linear function); see,
[130], [131], [134], [135], [142], [143]. The methods, relying on the transitive self-action of
the group C™, cannot be extended beyond this special case. Hankel operators with anti-
holomorphic symbols defined on more general weighted Fock spaces were studied recently
in [137] and [84], where it was shown that anti-holomorphic polynomials do not
automatically induce bounded Hankel operators. For Bergman kernel estimates in similar
settings, see [140] and [141]. We finally mention [73] and [132]; the first focuses on small
Hankel operators and the Heisenberg group action, while the second deals with Hankel
operators for the Bergman projection on smoothly bounded pseudoconvex domains in C".

The notation U(z) < V () (or equivalently V (z) = U(z)) means that there is a
constant C such that U(z) < CV (z) holds for all z in the set in question, which may be a
space of functions or a set of numbers. If both U(z) SV (z) and V () S U(z), then we
write U(z) =V (3).

The following standard argument shows that (i) implies (ii) in Theorem (5.1.1). To
begin with, we note that if f isin A2b(y), then f = f. Moreover, by the definition of the
reproducing kernel, a computation shows that

2
- _ LGRS L0l
Fr@-1f @ = | 170 - @ S due) =L (9)

Hence, if Hy is bounded, then ||f|lgyo < +oo. The implication (ii) = (iii) is a
consequence of the following lemma, the proof of which is exactly as the proof of Corollary
1in [133].

Lemma (5.1.2)[129]: Suppose that f is in BMOA(W). Then for every piecewise C-smooth
curve :[0,1] — C™ we have

S (f o )| = 2VZB©,Y ©)MOF (¥ (®).
If we choose y(t) =z + t&, then we obtain
(7)), 9)
B(z,$)
forall zinC™and & in C™ {0}.
This a some what elaborate preparation for the proof of Theorem (5.1.9) and also the
proof of the implication (iii) = (i) in Theorem (5.1.1).
Set

< 2V2(MOf ) () (6)

1
Oy(r):= [rd'(r)] 2.
The key estimates for the Bergman kernel are the following.
Lemma (5.1.3)[129]: Let n be as in Theorem (5.1.1). Then, for any fixed a > 1, we have
sup ot + 1) = (1 + 0(1))¢’(t)

1
It|stz[@p’ (t)]~¢
whent — oo,

Proof. The proof is similar to the proof of Lemma 6 in [62]. By (4), [¢'(x)]"1 —n X
¢'(x) = 0(x"2) when x — oo, which implies that
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1
[[¢'(t + DT - [¢" (O] = |T]0(t 27)
when t — oo. The result follows from this relation.
In order to estimate |Ky (z, w)|, we need precise information about the moments s;. To
this end, note that the integrand of

f xt e Y™ gy

0
attains its maximum at x = ¢~1(t). Set

he(x) = —tlogx +¥ (x) — (—tlogp™(t) + (¢~*(t)
and

I(t) = J e ~he®) dy;
0
we may then write
sy = @ L0gd™ (D)% (¢ (@) 1(d).

We have the following precise estimate for I(t).
Lemma (5.1.4)[129]: For the function I(t), we have

[y

3 7' |2
1) = (V2 + o(1)) 76— 10)
whent — oo,
Proof. Set (x) = Vx[ ¢’ (x)]‘“, wheren < a < 1/2. Since
w =29 Ly O 2O L ap0) - e]

we have, by Lemma (5 1.3),

hy (x) = b/ (@' @) + o(1))
when |x — ¢ 1(t)| < t(¢p~1(t)). On the other hand, by the convexity of ht , we then have

lhe ()] 2% (he (@71(®)) + o()T(d~*(®)Ix — ¢~ ()]
for |x — ¢71(t)| = t(¢p~1(t)). Setting for simplicity

Lt

e = w471 0) = LD
we then get

I(t) = j e 2 (O gy L pp), 7)

IxIst(~1(D))
Where
1 -1
E(®)] < 2 j e 2 (croM(#7O)x g

x27(Pp~1(t))
Thus the result follows, since the integral in (7) can be estimated by the corresponding
Gaussian integral from —oo to co.
We will estimate a number of integrals in a similar fashion, using Lemma (5.1.3) to

split the domain of integration. The integrands will be of the type e ~9:™)S, (x) and satisfy
the following:

() gt attains its minimum at a point x, = x,(t) = oo with g’ (x) = (1 + o(l))c
for |x — x| < Tand%= o(c)whent — oo,
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(1)  For|x — xy| < t,5:(x) can be estimated by a constant C times |[x — x,|™ for
some positive integer m.
(111) When |x — x,| = Tand |x — x,| grows, the function e ~9:™)St(x) decays so fast

that
j e9t ) |5, (x)|dx = (1 + 0(1)) e~ 9t S, (x)|dx.
0 |[x—xq|<T
Taking into account the formula
(e o] 1 C _mT+1 (0]
m . —5 cx? _ (- m,—x?
fo xMe 2 dx = (2) JO xMe™ dx, (8)
we then arrive at the estimate
o m+1
f e ™ 5. (x)dx = 0(CC_T> (9)
0

whent — oo,
We will at one point encounter a slightly different variant of this scheme, obtained by
replacing (1) by the following:
(II') For |x — xo| < t,wehaveS(x) = (1 + o(1))(x — x,)whent — oo,
In this case, because of the symmetry around the point x,, we get the slightly better estimate

j e MM g(x)dx = o(c™) (10)
0

whent — oo,

In the following we will omit most of the details of such calculus arguments. We will
briefly state that conditions (1), (II), (III) (or, respectively, (I), (II'), (III)) are satisfied
and conclude that this leads to the estimate (9) (or, respectively, (10)).

In the proof of the next lemma, we will use this scheme three times.

Lemma (5.1.5)[129]: We have

I't) = 0([CID‘l(t)CD’(GD‘l(t))]_zI(t)) ;

") = o [e7 @ (e )] 1®)
3

I"t)=0 ([d)‘l(t)cb’(cb‘l(t))]_z I(t)>

whent — oo,
Proof. We begin by noting that I' can be computed in the following painless way:

I’(t)zj log d)‘ylc(t) e M) gx; (11)
0

this holds because h;(®~1(t)) = 0. For the same reason, we get

o [T @)@
I(t)—JO —T@+l0g<

ﬂ e M@y  (12)

d~1(t)
and
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_ [_(“’(‘” )OI NN CIR IO

’”(t)zjo 0 | T e e

3
+ (Lo i e Mgy, (13)
0

We use that [®~1]" (£) = 1/®' (@~1(t)), and then in (13) we also use the fact that

[ 1 ]I ~ cDI’(CI)_l(t)) 1 . (14)
o' (1) (1)) P~ () [o/(0-1()]’d 1)  [@'(@-1(D))d-1(t)]"

we apply condition (4) to the first term on the right-hand side. When we estimate the

integrals in (11), (12), and (13), we use that

X |lx - ®71(0)|
log — | <e —
o-1(t) -®71(¢)
forx > e 1®~1(t) and that, say,
lo <lo
Yool T P o

when 1 < x < e 1®71(¢t). In each case, the integrand satisfies conditions (1), (II), (I11)
with g, = h;, so that we may use (9). The desired results for I’,1”,1""" nowfollow from

9).

We will need similar estimates for the function

L.(t) =exp <t logr — tlog®~1(t) + L}’(613‘1(1:)>>,

where r is a positive are a meter.
Lemma (5.1.6)[129]: We have

d~1 (1)
Ly (t) = —log " L.(t);
L (t) = <log w )2 — L Lr(t);
r ' (d-1(1))P1(t) '
(1)

¢—1(t)>3 3 log—r

L' () = <— log + q)r(q)—l(t))cb_l(t)

_3
2

+ <[0c1>’(c1>‘1(t))cb‘1(t)] ) L,.(t)

whent — oo,
Proof. The first and the second of these formulas are obtained by direct computation.We
arrive at the estimate for the third derivative by again using (14) and then applying condition
(4).
Lemma (5.1.7)[129]: Suppose that (4) holds. Let z and w be arbitrary points in C" such that
(z,w) = 0, and write (z,w) = re’® , wherer > 0and —m 6,(r). Moreover, there exists
a positive constant ¢ such that if 8 < c8,(r), then
Ky (z,w)| 2 ¢' [P ] e ().
Proof. We begin by recalling that
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Ky(z,w) = k({(z,w)),
Where

0

1 dd -1 (d-n+2) _ ..
k(O = (n — 1)! Z sd ¢

d=n-1
We set (z,w) = re'® and assume thatr > 0and |8] < m. We may then write

(z W) L)

5, = 1@ exp(idf)
and hence
(z,W)" Ky (z,w) = m™ Lexp(i(n — 1)0)k(re’)
1 X L(d)
=T 2 Ad- 1)+ (d=n +2) o exp(idd),

d=n-1
Let 2(t) be a function in C3(R) so that

at) = 1 tt — 1) (t — n + 2)L.(t)

T (n - 1! 1(t)
Fort > n — 1and 2(t) = 0 fort < n — 2. Then the Poisson summation formula
gives

(0.0]

r"Lexp(i(n — 1)0) k(re®) = z (),
j=—00

where
ﬁ(j)J Q(t)ei(z’”*@)t: dt.

Integrating by parts, we obtain

0

r* i (re® )| < |Q(0)| + 127111 3
j=1 (27'[)3 (] —7)
Since
12(0)| < min(J|Q[ 1,16]7% [1Q""]|1),
the proof of the first part of the lemma is complete if we can prove that
11 < (2(M)" @' ()e¥® (15)
and
Y(r)
" -1 e
ol s (o) ————. (16)
12 /O (1)
We first estimate [|Q];. We write L,.(t) = xp(—g,(t)) and claim that conditions
(D), (II), (I1IT) above hold. To see this, we observe that, by the first formula of Lemma
(5.1.6), L, attains its maximum at t = @ (r). Moreover, g, is a convex function and

gr (t) =

' (d-1(6))d-1(¢)
Lemma (5.1.3) implies that
gr ®© = (1 + o(1)g/ (M)
When [t — ®(r)| < Vr[®'(r)]*~2%. The remaining details are carried out as in the proof
of Lemma (5.1.4). Using (9) with m =0 and Lemma (5.1.4), we therefore get
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1oll; = leE)(@E) —1) - (¢<r)—n+2)|% (Vzr + o(D)) [0 (2
= (1 + o)(@(M)" @' (r)e?®,
which shows that (15) holds.

To arrive at (16), we need a pointwise estimate for Q. To simplify the writing, we set
-1

a = |log t)‘ and b = CD’(CD_l(t))CD‘l(t)_%.

r

Then using the Leibniz rule along with Lemmas (5.1.5) and (5.1.6), we get
Q" ()] s (a® + a?b + ab? + b3)Q(t).
By a straightforward calculus argument, we verify that each of the terms in this expression
satisfies (1), (I1), and 111) above, again with
Xy = ®() T = Vr[®' ()] 2@,
We now use (9) to achieve he desired estimate for each of the terms in this a™b3"™Q(t).
The previous proof also ives the second estimate when 8 = 0, because then Q(0) =
I, To prove it in eneral, we need to check that k(r) = |k(r)e!® )|when |8] <
1

c[r®'(r)] z. To this nd, note that
0(0) = ™ j Q(t)e(E=) gy,

— 00

which implies that

(00)

12(0)| = llQll, —j Q®)10]lt - ®(r)|dt .
The integral on the right is computed using (5.1.4)) withm = 1, and so we get

- 1

8| = llo (1 - clelr ' @)lz).

Thus the second estimate in Lemma (5.1.7) holds for ¢ sufficiently small.
We close by roving some estimates for another function that will be important later. Set

1
Qe () = (WE?) +¥ =) —¥(xr). (17)
Lemma (5.1.8)[129]: Let a be a positive number such that n < a < 1/2, let x; and x, be
the two points such that x; < x < x, and
-a
lx — x| =|x — x| = [CD(x)] )
and setc = ¥’ (0). When r — oo, we have

Y= (1+ o)) (xD), x <7 < Xy (18)
Qx () 254 (x —7r)? + e + 0(1)> [ (x*)]' 2%, r < xy; (19)
Q, (1 224 (x — 1) + (% + 0(1)) [®'(x2)]17%%, r > x,. (20)

Proof. We begin by noting that
Q; (r) = r¥' (r?) — x¥' (xr)
and
Y () =W @)+ 2r29(r?) — x29(xr).
We observe that for x; < r < x, Lemma (5.1.3) applies:

L) = WED)+ ) — 29 (xr) = (1 + o(1)¥'(x?),
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and so have established (18). For r < x,, we use the following estimate:

1 X 1 X t
Qx (r) = —f P (s?)(s - x)ds —f f Y (uw)dudt
2J; 2)e-tor e Jx-jor e

>q = G + o(1>) [ ()2,

where Lemma (5.1.3) is applied once more. Hence (20) also holds.
Theorem (5.1.9)[129]: Let be a logarithmic growth function, and suppose that there exists
a real numbern < 1/2 such that (4) holds. Then we have, uniformly in &, that
B*(z,8) = (1 + o(D) 1> (z1*) + |2,¢ 1* (Iz]*) when |z] — .
Proof. Computation of the Bergman Metric We begin by recalling that
Ky(z,2) = k(r?),

Where

(00]

k(r) = z cgr?

n=0
and
d+n-—1

cd:=(d + 1) - = Disps’

A computation shows that

20, 5 e (g2 021 ) k”((IZIZ))_<k’(Iz|2)>2
e = K Gy * 18 [k((lzlz)) k=D ) |

Thus Theorem (5.1.9) is a consequence of the following lemma.

The proof of this lemma relies on the following estimates.
Lemma (5.1.10)[129]: Suppose that (4) holds and let the coefficients cd be as defined
above. Then we have

e}

D cald -0 @)r = o([rdD’(r)]%k(r)), 1)
d=1

z ca (d — ®)r? = (1 + o(1))rd' (Mk(r)

d=1

when r — oo,
Proof. The proof is essentially the same as the proof for the diagonal estimates in Lemma
(5.1.7). The only difference is that we replace the function Q(t) by (t — @ (r))2(t)

and (t — cD(r))ZQ(t), respectively. In the first case, we have a function that satisfies
condition (I1'). This means that we may use (10) to arrive at (21). To establish (4.2), we may
apply (8) withm =2

and take into account that we have the explicit factor (¢ — CD(r))Z in front of Q(t).
Lemma (5.1.11)[129]: Suppose that (4) holds. Then we have

kl

D (1 + o),
k') , W'(r)
(k(:)> = (1 + o))" () + o(1) rr
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when r — oo.
Proof. We write

(e @)

k' (r )_— (k(r) + 0(1)) += ch (d — &)
using Lemma (5.1.10), we obtain -
1
k' D' (r)]2
k((:)) = (1 + 0(1))‘P’(r)+ 0 [ ir)]
The desired estimate for k" /k follows because, in view of emma (5.1.3), we have
d(r) = f P'(t)dt = (1 + 0(1))7‘%[613’(7”)]1‘“

r—r1/2[®'(r)]~%
forsomea < 1/2.
To arrive at the second estimate, we first observe that

k'"(r)= ( )_ (k (r) + 0(1)) +— z cdd(d — CI)(r))rd‘l

()

[00]

CD (r)

cd (d — o()r?

+?Z cq (d — CD(T)) rd
d=2

Combining our expressions for k" and k"', we find that

K (k) — (K1) = k(r) Z ca (d — ®(1))rd

——[Z C4 (d — CD(r))r
k(r)k (r)

+ ¥’ (r)O(k(r) + k’(r)).
Using again Lemma (5.1.10) and the estimate already obtained for k' /k, we get
k'(r)\
k(r)y) =
from which the second estimate in Lemma (5.1.11) follows.

We finally turn to the roof hat (iii) implies (i) in Theorem (5.1.1). A different proof,
using L? estimates for the @ perator, will be given, subject to anadditional mild smoothness
condition on. The proof gives a ore nformative norm estimate, which will be crucial in our
study of Schatten class ankel operators. The proof to be given below has the advantage that

it does not require f to be holomorphic.
Using the reproducing formula, we find that

Hig@ = | (FG = Fw) )iy Gamdg ) dpp(w).
(Cn
Therefore, by the definition of B(¥), we have

179



|Hzg(@)| < lIfIIB(W) |  o(z,w)Ky(z,w)g(w)dpy(w).
(Cn
Thus it suffices to prove that the operator A defined as

Ag(z) = | eo(z,w)Ky(z,w)gw)dpy(w)
Cn
is bounded on L? ().

We shall use a standard technique known as Schur’s test [106]. Set

1 2 2
H(z,w) = o(2,w) Ky (z, w)]e ™2 (¥ (W),
By the Cauchy—Schwarz inequality, we obtain
(4g)(2)[2e~7(17D) < J H(z,dVv () | H(z,w)lgw)|?e= 2 gy (w).
cn Cn
this means that the operator A is bounded on L?(uy) if

sup f H(z )V () < . (22)
(Cn

3z

We therefore to establish (22).

Without loss of generality, we may assume that z = (x,0,...,0) with x > 0. We
begin by estimating (z, w). To this end, write w = (wy, ) with € a vector in C"*~1 and
w; = re® whenn > 1.Sete; = (1,0,...,0) and consider the three curves

y1(t) = xette,0 <t <6,
Y20 = (x + t(r — x))e?e,0 <t < 1,
ys(®) = (re®,t£),0 <t < 1,
which together constitute a piecewise smooth curve from z to w. (When n = 1,y5 does
not appear and can be neglected.) Note that

Ky1 (), viN = lri®lly 1) = 2,
V2O, V3N = ly2Ollys@®1 = (x + t(r — x))|x — 7],
vz (), vs(O) = tl¢]> .

By these observations and Theorem (5.1.9), we get the following estimate:
1

o(z,w) S x|0|[®'(x?)] 2 + [®'(max(x?,7%))]? |x— d
+ & [P (r* + |7 )] + EP[W* + |f|2)]

When estimating the last term on the right-hand side of his nequality, we will use that

W' W] = ), (23)
which is a consequence of our assumptions (1) and (4). Indeed, assuming ¥’ > 0, we have

P'(y) = d'(y) ince ¥ is a nondecreasing function. Thus (23) is equivalent to the
following:

1 1
Dd(t) = tz[D'(b)]=.
We arrive at this estimate because

d(t) = o (0) +f @' (1)dt = P (0) (1 + 0(1))t2 @’ (t)]%

where in the second step we used Lemma (5.1.3) witha = 1/2.For{ = |[{ |e‘?, we set

(1D, 18] = 6o(IS D,
h() = { 3 S
1S 172[@"CIS1D]721017%,18] > 8,(1S .

Using this notation and Lemma (5.1.7), we hen obtain
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, 1
H(z,w) S (x,w)h(xre® )[W' (xr)]" te™2 ((x») + (r* + [£12)) — (x1).
By Fubini’s Theorem, we may compute the integral in (22) by first integrating with respect
to he vector ¢ over C" — 1 and then taking an area integral with respect to the omplex
variable w; over C. Since y W' - (r? + y?) attains its maximum at y = 0 nd has a
second derivative larger than 29’ (r2), we have that ¥(r? + y?) —W¥(r?) =¥’ (r?)y?.
Using spherical coordinates along with this fact, we find that
"D v,y (§) 5 e¥TUY W) T
cn-1

Similarly, again using spherical coordinates, we get

0]

f o, [§ e+ qy, () = ¢ J 0 (r,y)y?n2e¥- 9 gy,
cn—1 0
where C is the surface area of the unit sphere in C"~! nd @ is any suitable function of two

variables. From the estimate for o(z, w)) we see that we are interested in the following two
1
choices: (1) O(r,y) = y[P'(r? + y?)]zand (2) O(r,y) = y*¥(r? + y?).Incase (1),
we use the Cauchy—Schwarz inequality, so that we get
1
[ Il 4 1R en e - 02 + 1 )V (©)
- 1
j yin-3=(VCHD-vaD) ) r |
0
Estimating W(r? + y?) — W(r?) as above, we therefore get
1
f €W (2 + 1€ D]2e YD ay, () 5 670D [wer)] T
Cn—l

In case (2), we integrate by parts and get

< e Y0

(00)

j €129 (r2 + [ [De YR ID qy,_ () s j yi le(=¥(@? +y?) dy.
cn-t 0
We proceed as above and obtain

J € 129" (2 + [& e YO H+ED gy _ (&) s e~V [@r(r2)] L,
Cn—l

With o denoting Lebesgue measure on C, we therefore get

)" 0\ ,—0y (r i
f(an(z, w)dV (w) s f(CG(x r,0) [ (D) h(xre®® )e=% Mdg(ret® ),

Where

1 1
G(x,7,0) = x]0]|[®' (x?)]Zz + [® (max(x?12))]2lx — r|+ 1
and Q, is as efined by (17). We now resort to polar coordinates; simple calculations show
that

1

f h(xre' )do s [CD (xr)] and f_il@lh(xreie )do s x—lr

S0 that

(z,w)dV (w) < f (Sx (rH+ T, (r))e‘Qx M rdr,
0

(CTL
Where
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1 1
(oD (e [P0
Sx () = T_l_ [ xr ] [‘P’(rz)]
and
, 1 ’ n-1
T, (1) = p(max(x?,r?)lx — 7l [q’ e’ [%

By Lemma (5.1.8) and a straightforward argument, we find that both S, e ™% and T, e~
satisfy conditions (1), (1), (11I) (with x = t,Q, = g;,xo = x,and T = [D'(x)]~%).
Hence (9) applies withm = 0and m = 1 for the respective integrands, so that we get

sup J S, (MNe &Mrdr < oo
x>0 0

And
sup J T, (MNe % Mrdr < o .
0

x>0

We may therefore conclude that (22) holds.

We study the relation between the spectral properties of Hankel operators and the
asymptotic behavior of their symbols. We begin with the case of compact Hankel operators.

An entire function is said to be of vanishing mean oscillation with respect toWif
(MOf)(3) = o(1) as|z| = +oo. Entire functions of vanishing mean oscillation form a
closed subspace of BMOA(W) which we will denote by VMOA(W). In accordance with our
preceding discussion, we define the little Bloch space B, (V) as the collection of functions
f in B(W¥) for which

(vr (2).9)|
Sup ———— = o(1)when |z| » +oo.
cecniey B

Our proof of Theorem (5.1.14) requires the following two lemmas.
Lemma (5.1.12)[129]: The normalized Bergman kernels 22422

JVK(3,%)

converge weakly to 0 in

A*(W)when |z | - +oo.
Proof. Since the holomorphic polynomials are dense in A2 (W), it suffices to show that for
any non-negative integer m, we have

|z]™

VK (z,2)
as |z| — +oo. But this holds tribylly because K (z, z) is an infinite power series in |z|?
with positive coefficients.

Lemma (5.1.13)[129]: Let :C"™ — C be a function for which there exist positive
numbers R and ¢ such that

- 0

If (&)= f W)l < €(z,w)
whenever |z| = R. Then there exists a function f, : C* — Csuchthat f (3) = f,(3) for
|z] = R and

Ifo(z) = foW)| < € (z,w)
for all points z and w in C".
Proof. We argue as in the proof of Lemma 5.1 in [130]. We assume without loss of
generality that f is real-valued and set

fo(z) = inf {f (W) + o (z,w)} .
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Then a straightforward argument using the triangle inequality for the Bergman metric
shows that f,, has the desired properties.
Theorem (5.1.14)[129]: Let W be a logarithmic growth function, and suppose that there
exists a real number n < 1/2 such that (4) holds. If f is an entire function on C", then the
following statements are equivalent:

(1)  The function f belongs to T (W) and the Hankel operator Hz on A% (W) is compact;
(i)  The function f belongs to VMOA(Y);

(iti)  The function f belongs to B, (¥).

Proof. We first prove the implication (i) = (ii). Assuming that H IS compact, we obtain,
using Lemma (5.1.12), that

2
TS O ool B
 K(z.2)
when |z| — +oo. This gives the desired conclusion.
We next note that the implication (ii) = (iii) is immediate from (6). Finally, to prove that
(iii) implies (i), in view of Theorem (5.1.1), we only need to prove that the bounded Hankel
operator Hz Is compact whenever (iii) is satisfied. To see that this holds, we choose an

arbitrary positive €. Assuming (iii), we may find a positive R, such that

— £

(Vf)@).6)] <5 B(z8)
whenever |z| = Ry and € isin C* \ {0}. Then for some R > R, we have

If (3) = f (W)| < €0 (z,w)
aslongas |z| = R.Indeed, this follows because 8(z,¢&)/|€ | = o when |z| — oo so that,
whenever |z| is sufficiently large, (z,w) is “essentially” determined by the contribution to
the integral in (2) from the points that lie outside the ball of radius R, centered at 0. Now
let f, be the function obtained from Lemma (5.1.13). We write

B B H]_c ES H?‘]TO + H]TO

and observe that f — f0 is a compactly supported continuous function on C™. Hence
Hg_zq is compact. On the other hand, if g is a holomorphic polynomial, then

Hfy 9(2) < j 7o) — Fo(@)| 1K 2y ) g (w) | dii W)

Cn
< € B(z, &) Ky (z,w)g(w)|duy(w)
Cn
so that, by the proof of Theorem (5.1.1), we see that ||Hf; || = &. The implication (iii) = (i)
follows because € can be chosen arbitrarily small.
In what follows, we will need the analogue of Lemma (5.1.3) for the function when
n > 1. We will therefore assumWe that

1
P(t) = 0@tz [Y' ()M whent - (24)
forsomen < 1/2 whenevern > 1. This is again a mild smoothness condition on ¥ .
Lemma (5.1.15)[129]: Assume that (24) holds for somen < 1/2.Then, for any fixed a >
n, we have

0

sup Y+ 1) =(1+ oY (@)
1
ltlse2[P' (D]~
whent — oo,
We are interested in describing geometrically the Bergman ball
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B(z,a) = {w: o(z,w) < a}.
Let P, denote the orthogonal projection in C™ onto the complex line {{z: { € C}, where
z i1s an arbitrary point in C™ \ {0}. It will be convenient to let P, denote the identity map.
We use the notation

D(za) = {w:lz - Pwl < al®'(2)] 7%, Iw — Pw] < a[¥(2)] 2}

Then we have the following result.

Lemma (5.1.16)[129]: Suppose that there exists a real number 1 < 1/2 such that (4) holds
and that (24) holds if n > 1. Then, for every positive number a, there exist two positive
numbers m and M such that

D(z,m) c B(z,a) € D(z,M)
for every z in C™.

Proof. It suffices to prove that

1 1

o(zw) = |z — Bw|[[®'(Iz])]2 + |w — Pw|[¥'(I5]2)]2 (25)

for w in D(z, M) for any fixed positive number M. (The latter term vanishes and can be
disregarded whenn = 1.) To begin with, we note that heorem B gives that

eCzw) = inf [ (I @I (ORI + @,y N Ay ©P)]:) de, (26)

where the infimum is taken over all piecewise smooth curvesy : [0,1] — C" such that
y(0) =zand y(1) = w.If we choose y to be the line segment from z to P,w followed

1
by the line segment from P,w to w and use that ¥"'(x) = o([¥’'(x)]z) on the latter part of
v, we get from (26) that
1 1

o(z,w) s |z — Pwl|[®'(I31)]2 + |R,w —wl[¥'(I31)]2 + [B,w —wl?o(¥’ (I2]%)).
this gives the desired bound from above because, by assumption, |P,w — w| <

1
M[¥'|z|? )] 2.
To prove the bound from below, we argue in the following way. Let £(y) denote the
Euclidean length of y . Set

1

oy (z,w) = j v’ (t)l[‘P’(Iy(t)lz)]% + 1 {y(@®,y’ (t)>l[‘l’”(ly(t)|2)]% dt
0
and ¢*(z,w) = inf,, 0, (3, w).We observe hat (26)) implies that

1
o(z,w) 2 inf [¥'(ly(©))]Z() (27)
whenever, say, g, (z,w) < 2¢ * (z,w). Since we know by the first part of the proof
that o(z, w) < 1, this implies that
1
() s inf [¥'(ly(®OID] 2
By Lemma (5.1.15), we therefore have

1
() s [¥'(z19)]7,
which, in view of (27), in turn gives

1
(@) s [P'z12)]72 (2, w). (28)
Now et y be any curve such that g, (z,w) < 2 ¢"(z,w). We then get from (26) that

e(z,w) = |z — wl[w'(|71%)]2 +f I(V(t),)/’(t)>l[‘P”(|)/(t)2)]I%dt- (29)

0
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Sety,(t) = P,(y(t))and y1(t) = y(t) — yo(t). Note thaty;(0) = Oandthat?(y;) <

£(y). By orthogonality and the triangle inequality, we get
1

j O,y NP (y(©OD)]2dt > f Yo OO (o (D1)]2de
0

0

- f 2 (O, 74 O\ (y (O D)]2dt
0

Lett, be the smallest t such that |z — y,(t)| = |z — P,w|.Using that ¥'(x) =
o([¥'(x)]?) and (28), we then get

[ 1@y @ ayor ke
0
> (14 o) [ IelOIY DNt — [GTo(w (1)

z |z — Pzwllzl[‘l’”(lzlz)]E — o(De(z,w)
when |z| — oo. Plugging this estimate into (29), we obtain the desired bound from below.
It follows from the previous lemma that the Euclidean volume of B(z, 1) can be estimated

as
-1

|B(z,7)| = [<I>’(IZIZ)]_%[‘P’(IZIZ)]nT (30)

when r is a fixed positive number. We will now use this fact to establish two covering
lemmas.

Lemma (5.1.17)[129]: Suppose that there exists a real number n < % such that (4) holds
and that (24) holds if n > 1. Let R be a positive number and m a positive integer. Then
there exists a positive integer N such that every Bergman ball B(a, r)with r < R can be
covered by N Bergman balls B (ak,%).

Proof. Fix a ball B(a,r). Choose a, := a and let a, be a point in C"* such that o(a,a,) =
r/m. Now iterate so that in the k — th step a, is chosen as a point in the complement of
U;‘;l1 B(aj,r/m) minimizing the distance from a, and let] be the smallest k such
thato (a,ay) = r.Then the balls B(ay,7/m),...,B(a;_1,r/m) constitute a covering of
B(a,r). By the triangle inequality, we see that the sets B(a;,r/(2m)) are mutually
disjoint, and they are all contained in B(a,r + r/(2m)) when j < J .Hence

Jj-1

z(aj r/(2m)) |B(a, 7 + r/(2m))].

On the other hand, by (30),_it follows that there is a positive number C depending on R and
m but not on a such that

1 T T
¢ |B(er +50) < [B(g.5,)]
for every j . We observe that it suffices to take N to be the smallest positive integer larger
than or equal to C.
Inspired by the construction in the previous lemma, we introduce the following notion.
We say that a sequence of distinct points (a;) in C" is a -lattice if there exists a positive

number r such that the balls B (ay, r) constitute a covering of C" and the balls B (ak, ) are
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mutually disjoint. Replacing a by, say, 0, and %by r in the previous proof, we have a

straightforward way of constructing a -lattice. Note that since the balls B (ak,g) are

mutually disjoint, we must have (ay, a; ) = rwhen k # j . The number r, which may fail
to be unique, is called a covering radius for the -lattice (a;). The supremum of all the
covering radii is again a covering radius; it will be called the maximal covering radius for
(ax).

Lemma (5.1.18)[129]: Suppose that there exists a real number n < % such that (4) holds
and that (24) holds if n > 1, and let R be a positive number. Then there exists a positive
integer N such that if (a;) is a -lattice with maximal covering radius r < g, then every

point z in C™ belongs to at most N of the sets B(ay, 2r).
Proof. Let N be the integer obtained from Lemma (5.1.17) for the given R when m = 4
and assume that z € n?’jll B(ayj,2r). Then ay; isin B(z,2r) foreveryj = 1,...,N +
1. If the sets B(z, ,7r/2),...,B(zy ,1/2) constitute a covering of B(z, 2r), the existence
of which is guaranteed by Lemma (5.1.17), then at least one of the sets B(z,,r/2) must
contain two of the points a,;,j = 1,...,N + 1. On the other hand, by the triangle
inequality, we have reached a contradiction because the minimal distance between any two
points in the sequence (a,;) cannot be smaller than r.

For a nonnegative Borel measure v on C*, we set

dve(z) = e 02 gy ().

Such a measure v is called a Carleson measure for A% (W) if there is a positive constant C
such that

j If (2)Pdve(z) < C f If (2)[2dpy (2)
cn cn

for every function f in A2(W). Thus v is a Carleson measure for A%(¥) if and only if the

embedding E,, of A%(WP)into the space L?(vy) is bounded.

Lemma (5.1.19)[129]: Suppose that there exists a real number n < 1/2 such that (4)

holds and that (24) holds if n > 1. Then there exists a positive number r, such that
|KLP(ZJW)|2 = K(Z,Z)K(W,W)

holds for z and w whenever (z,w) < r,.

Proof. The lemma follows from Lemma (5.1.7) along with Lemma (5.1.16).

Lemma (5.1.20)[129]: Suppose that there exists a real number n < 1/2 such that (4)

holds and that (24) holds if n > 1, and let r, be the constant from Lemma (5.1.19). Then

there is a constant C such that
C

2,-¥(z1») - - 2
@I < s | e

for every entire function f on C" and every z in C".

Proof. By Lemma (5.1.19), the holomorphic function w — K(z,w) does not vanish at
any point in B(z,r). Thus the function w - |f (W)|?|Ky (3, w)|™2 is subharmonic in
B(z,r). Choosing m as in Lemma (5.1.16), we therefore get

2 -2 1 2 -2
If (@)K (z,2) Sm e |f W)I*|K(z,w)| ~2dV (w)

Sm B(Z’T)If WK (3, w)|72dV (w) .
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Applying Lemma (5.1.19) to the integrand to the left and then Lemma (5.1.7) to each side,
we arrive at the desired estimate.
Note that, by (30), the lemma is valid for all positive r, with the additional proviso that C
depends on r.
Theorem (5.1.21)[129]: Let ¥ be a logarithmic growth function, and suppose that there
exists a real number n < 1/2 such that (4) holds and that (24) holds ifn > 1. Ifvisa
nonnegative Borel measure on C™, then the following statements are equivalent:
(i) v is a Carleson measure for A% (¥);
(if) There is a constant C > 0 such that
|KLP(W1 Z)lz
Ln K(z.2) dvg(w) < C
for every z in C™;
(iii) For every positive number r, there is a positive number C such that
v(B(z,1)) < C|B(3,7)|
for every z in C*;
(iv) There exist a¥ -lattice (a;) and a positive number C such that
v(B(ak,r)) < C|B(ay,1)|
for every point k, where r is the maximal covering radius for (a;). We prepare for the
proof of Theorem (5.1.21) by establishing the following two lemmas.
Proof. We begin by noting that the implication (i) = (ii) is tribyl because it is just the
statement that the Carleson measure condition holds for the functions K (-, z). To prove that
(ii) implies (iii), we assume that (ii) holds and consider a ball B(z,r) where r is a fixed
positive number. Then, by Lemma (5.1.19) and (30), we have

|B(z,7)| Ky(z,2)
when (z,w) < r,, and therefore we obtain
v(B(z,1)) - f |Ky (z,W)|?
B(z,)| ~ Jon K(3,3)
The implication (iii) = (iv) is tribyl (modulo the existence of W-lattices), and we are
therefore done if we can prove that (iv) implies (i). To this end, assume that (iv) holds, and
let (a;,) be aW-lattice with maximal covering radius r. By Lemma (5.1.20), we see that

1
sup |f ()|Ze~¥0e) s 1 j If W) 2 dpeg (2)
Z€EB(ay ,r) f |B(akf ZT')l B(ay ,2r) f v

for every k. We therefore get
[ r@raw@=s) [ if @Pduwmd s | 1F w)Pdueo),
cn % B(ay ,2r) cn

where the latter inequality holds by Lemma (5.1.18).
For v a nonnegative Borel measure on C*, we define the Toeplitz operator T, on A%(¥) in
the following way:

e~ YW1 gy(w) < C.

(Tf)@):= | f WKg(zw)e M dv(w).
(Cn
A computation shows that EJE, = T, . Thus Theorem (5.1.21) characterizes bounded
Toeplitz operators. Compact Toeplitz operators can likewise be characterized by socalled

vanishing Carleson measures; an obvious and straightforward modification of Theorem
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(5.1.21) gives a description of such measures. Toeplitz operators belonging to the Schatten
classes S, are characterized by the following theorem.

Lemma (5.1.22)[129]: Suppose that (e; ) is an orthonormal basis for A%(¥) and that (a; )
is a W -lattice. Then the operator J on A% (W) defined by

Jey (2 = —2)

) / Ke(aj,q;)
IS bounded.

Proof. For two arbitrary functions f = Y, ;¢j ej and g in A*(¥), the reproducing formula
and the Cauchy—Schwarz inequality give

2
j 2
Uf.oF =] ) ¢ 9ly) | - Ylej 1 _lglal”
J J k

lep (aj , aj ) K‘P(ak: ak) .

If we set
o¥(la 1)

V= Z— éa; ,
k Klp(a]‘ ’aj ) ’
then we may write this estimate as

U9 < I ey | € lg@I2dve (),
(Cn

By Theorem (5.1.21), we see that v is a Carleson measure, which implies that J is a bounded
operator on A%(WP).

Lemma (5.1.23)[129]: Suppose that T is a positive operator on A%(¥). Then the trace of T
can be computed as

Tr(T) = J T (2)Ky (z,2)du(2).
e

Proof. We write Ky(3,w) = Y5, ex(8)ex(w) , where (e,) is an orthonormal basis for
A%(¥). The lemma is then proved by means of the following computation:

Tr(T) ) (Tfe fidA2(9) = C' T Ky (,2), Ky ( )42 (W) dtig (2)
Theorem (5.1.24)k[1029]: Let ¥ be a logarithmic growth function, and suppose that there
exists a real number n < 1/2 such that (4) holds and that (24) holdsifn > 1.If visa
nonnegative Borel measure on C* and p = 1, then the following statements are equivalent:
(i) The Toeplitz operator T,, on A%(¥) belongs to the Schatten class S, ;
(i) There exists a ¥ -lattice (ay) such that
© p
Z <V(B(Clk; 7‘))) < 4o,
£ \'1B(a, 7]
where r is the maximal covering radius for (ay).
Proof. We begin by assuming that T,, is in S,. Pick a-lattice (a; ) and let r be its maximal
covering radius. By (30) and Lemma (5.1.19), we have

V(B(ak,r)) P - p
Zk: <m> - Z (-L(ak ) folw W)dVLP(W)>
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_ |Ky (ay, w)|? Y
- Z (fB(ak,r) Ky (ay, ax) dV(W)> |

By Lemma (5.1.18) and our assumption on v, this gives
3 (v(B(ak,r)) )” <y ( f LACADI (W)>”
L\ Bl ) T4 U Ke(aeay )

If we construct / as in Lemma (5.1.22), then the right-hand side equals Y., [{J *
T,Jex, ex)|? . Since ] is a bounded operator, /*T,,J also belongs to S, and so the latter sum
converges. We conclude that (i) implies (ii). We will use an interpolation argument to prove
that (ii) implies (i). We already know from Theorem (5.1.21) that T;, is in the Schatten class
S« Whenever v(B(ag,r)) < C|B(ak,r)| for some positive constant C. Suppose now that

Z v(B(ak, r))
|B(ay, )
and let (e; ) be an orthonormal basis for A%(¥). By the reproducing formula, we have

(Tyeje) = | o @)l dven)

< +0o,

which implies that

Z |(T e ,e; )| = f(c Ky (w, w)dvyg(w) < z jB K(w,w)dvyg(w).

(ak ,7")

Again usmg Lemma (5.1.7), we then get
v(B(ay, 1))
el = Y gt < v
z Ty e )1 2,75 ta,

which means that T, belongs to S1 By interpolation, we conclude that (ii) implies (i).

We remark that the theorems proved generalize results for the classical Fock space
whenn = 1 obtained recently in [139]. It may be noted that Theorem (5.1.21) above could
be elaborated to include two additional conditions for membership in S, in accordance
with Theorem 4.4 in [139]. The proof would be essentially the same as the proof of the
latter theorem. Note that [139] also treats Schatten class membership of Toeplitz operators
forp < 1.

We suggest two possible definitions of Besov spaces, in accordance with our

respective definitions of BMOA(Y) and B(W¥). We let BY (W) denote the set of entire
functions f such that

j [MOf ()]pK (2, 2) ity () < o0;
@n
for a function h : C* — C"b, we set

[(h(2), ¢)|

|h(z)|; = su ,
@l fe«:nI\){o} B(z,¢)
and we let BY (W) be the set of entire functions f for which

| 17f @)K (@ 2)dug(@) < o
(:n

These definitions are in line with those of K. Zhu for Hankel operators on the Bergman
space of the unit ball in C™ [144].
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It is immediate from (6) that B} (¥) < BY (W¥). The basic question is whether these
spaces coincide and in fact characterize Schatten class Hankel operators with anti-
holomorphic symbols. The following theorem gives an affirmative answer to this question.
Theorem (5.1.25)[129]: Let W be a logarithmic growth function, and suppose that there
exists a real number n < 1/2 such that (4) holds and that (24) holds if n > 1. If fis an
entire function on C™ and p = 2, then the following statements are equivalent:

(i) The function f belongs to 77 (¥) and the Hankel operator Hz on A%(P) isin

the Schatten class Sy,;

(ii) The function f belongs to BY, (¥);

(iii) The function f belongs to B} (¥).

Proof. We have already observed that the implication (ii) = (iii) is an immediate
consequence of (6). The implication (i) = (ii) relies on the following general Hilbert space

14
argument. If (i) holds, then the operator [Hj; H7]2 Is in the trace class S;. Applying Lemma
(5.1.23) and using the spectral Theorem (5.1.1)long with Holder’s inequality, we obtain

14 b
Tr <[H%H7]2> = f(cn ([H%Hf]z K(,3), Ky (:,2)) duy(z)

27
[ Rl
=z
cn Kl{J(Z) Z)
Recalling the computation made in (5), we arrive at (ii).
Our proof of the implication (iii) = (i) will use a version of L. Hérmander’s L?
estimates for the @ operator. To this end, write Ay (z) = (|z]%) and observe that

LIS
e = Y TR T = I (2 + 1 6P el

Ky (3, 2)dpy(2).

jk=1
for arbitrary vectors z = (z4,...,3,) and & = (&,...,&,) in C*. By Theorem (5.1.9),
we therefore have a(z,¢) = B(3,£). Now let L (uy) be the space of vector-valued

functions h = (hy4,..., hy,), identified with the corresponding (0, 1)-forms h,;dz1 + -
+ h,dZz, such that

1012 g = [ 1h@IE die(2) < oo
(CTL

It follows from Theorem 2.2 in [136] (a special case of a theorem proved by J.—P. De

mailly in [138]) that the operator S giving the canonical solution to the d-problem is
bounded from L% (1) into L? ().

Since f is holomorphic, we have
i (Hzg) =
when g is in A*(¥), whence Hzg = S(Vfg). Thus it follows that
li79].. = | 17 @Bl Pdusa), (31)
L*(pw) cn
If we set dv(z) = |Vf (3|5 dV (3), this may be written as

H?Hf MTVf|ﬁM|Vf|B = TV,
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where as before M, denotes the operator of multiplication by h from A%(¥) into
L? (). By Theorem (5.1.24), it remains to verify that (iii) implies that for some W-lattice

(ay) we have
% P
v(B(ak,r)) 2
;( |B(ak,r)|> < e (52)

where r is the maximal covering rad ius for (ay). To this end, we first observe that Holder’s
inequality gives that

14
2
(v(B(z,r))> o1
|B(z,7)| |B(z,7)| Jp(sr
Hence, using (30) and Lemma (5.1.7), we obtain

| vf (B(Z,r))|z dv (w).

P
v(B(z,1)) \?
<m> < fB(Z’T) |V f (z)lZK(z,z)dV (w).

Now choosing anyW-lattice (a;) and using Lemma (5.1.18), we arrive at (32). Several
remarks are in order. First, note that (31) gives another proof of the implication (iii) = (i)
in Theorem (5.1.1), subject to the additional smoothness condition (24). Second, as shown
in [137], there are nontribyl Hankel operators in S, only when p > 2n. This fact is easy
to see from Theorem (5.1.25) when n = 1, because then

I7F @lg = If DI 121D]72,
whence f is in BY (¥) if and only if
D

j If' @IP[P'(151D]"72dV (3) < oo (33)
C

Whenn > 1, the computation of [Vf (2)|z is less straightforward, but we always have

Vf @I (22 < [7F @18 IV < £ @I (121)] 2.

The estimate from above shows that the condition
p
j IVf (2)|P &' (171D [P (121D)]" ' 72dV (3) < o (34)
Cn

is sufficient for f to belong to B} (W), and the estimate from below shows thatthis is also
necessary when @' /W' is a bounded function. We conclude from (33) and (34) that if the
growth of W is super-polynomial, then Bg(‘{’) Is infinite-dimensional and contains all
polynomials if and only if p > 2n. This is immediate when n = 1, and it follows also
when n > 1 because
foo ) dt < (1)/(8[W'(0)]° < o
o W@ 7

forevery § > 0. If, on the other hand, is a polynomial, then &’ /®" is a bounded function,
and one may use (34) and Theorem (5.1.25) to deduce Theorem (5.1.9) in [84]. It is not
hard to check that if f is a monomial and n > 1, then

1
Vf @g = Vf @I[P'z]D)] 2
for z belonging to a set of infinite volume measure. By Lemma (5.1.2) in [84] and Theorem
(5.1.25) above, one may therefore conclude as in [84] that BY (W) is nontribyl only if p >
2n.
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Section (5.2): The Fock Space
For C™ be the complex n-space. For points z = (34, -, 3p) and w = (wy,- - -, Wy)
in C™ we write

wi, |z| =+Vz -2

M:

Let dv be ordinary volume measur (C" For any positive parameter a we consider the
Gaussian measure

dha(2) = (2) e av(a).

The Fock space F? is the closed subspace of entire functions in L? (C",dA,). The
orthoglonal projection P : L? (C",dA%) — EZ is given by

P& = | K@wimdigm)
where K(z,w) = e%W is the reproducing kernel of F? .

We say that f satisfies Condition (G) if the functionz ~ f(z)e**" belongs to
L' (C™,dA,) for every w € C™. Equivalently, f satisfies Condition (G) if every translate
of fz » f(z + w), belongs to L (C"*,dA,). If f € EZ , then there exists a constant
C > 0 such that

a
If(2)| < cez’ 7 e .
This clearly implies that f satisfies Condition (G).
If £ satisfies Condition (G), we can define a linear operator T/ on FZ by Ty, = P(fg),

where
N

9D = ) ak(zwo)
k=1
is any finite linear combination of kernel functions. It is easy to see that the set of all finite

linear combinations of kernel functions is dense in EZ . Here P(fg) is to be interpreted as
the following integral:

Trg(z) = | fwgw)e®™ " dia(w),z €C".
Cn
Therefore, for g in a dense subset of F7,Ty, is a well-defined entire function (not

necessarily in F; though). We study the Toeplitz product T, T,, where f and g are functions
in F2. Such a product is well defined on the set of finite Imear combinations of kernel
functions. The main concern is the following: what conditions on f and g will ensure that
the Toeplitz product T, T, extends to a bounded (or compact) operator on F ?

This problem was first raised by Sarason in [53] in the context of Hardy and Bergman
spaces. It was partially solved for Toeplitz operators on the Hardy space of the unit circle in
[59], on the Bergman space of the unit disk in [42], on the Bergman space of the polydisk
in [149], and on the Bergman space of the unit ball in [148], [150]. In all these cases, the
necessary and/or sufficient condition for T, T, to be bounded is

Sup |f7*¢ (2)|g]?* (2) < o,

Z€EQN
where ¢ is any positive number and f denotes the Berezin transform of f.
Note that in the Hardy space case, the Berezin transform is nothing but the classical
Poisson transform.
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We obtain a much more explicit characterization for T, T to be bounded on the Fock

space.
Main Theorem (5.2.1)[145]: Let f and g be functions in F?, not identically zero. Then
T;T; is bounded on F7ifandonlyif f = e%and g = ce™®, where c is a nonzero complex
constant and g is a complex linear polynomial.

Furthermore, our proof reveals that when T T is bounded, it must be a constant times
a unitary operator. Consequently, T¢ Ty is never compact unless it is the zero operator.
As another by-product of our analysis, we will construct a class of unbounded, densely
defined, operators on the Fock space whose Berezin transform is bounded. It has been
known that such operators exist, but our examples are very simple products of Toeplitz
operators.
Proof: For any point a € C™ we consider the operator U, : F? — F?Zdefined by

Uaf(z) = f(Z - a)ka(z)'

K(z,a)

k - -
a(%) O]
is the normalized reproducing kernel of F2at a. It follows from a change of variables that
each Ua is a unitary operator on F2.
We begin with the very special case of Toeplitz operators induced by kernel functions.

Lemma (5.2.2)[145]: Leta € C",f(2) = % %,and g(z) = €% % . We have
T,T, = e29y,.
In particular, T;T; is bounded on F;.
Proof. To avoid tribylity we assume that a is nonzero. The Toeplitz operator T is just
multiplication by f, as a densely defined unbounded linear operator. So we focus on the
operator Tj.
Given any function h € FZ, we have
T;h(z) = j gWAW)K (7, w)dA, (W) = h(w)e®Z=DW g3 (w) = h(z — a).
cn cn
Therefore, the Toeplitz operator T} is an operator of translation, and
T T;h(z) = %% %h(z — a) = e2*Uh(z).
This proves the desired result.

An immediate consequence of Lemma (5.2.2) isthat if f = C,e? andg = C,e 9,
where C; and C, are complex constants and g is a complex linear polynomial, then there
exists a complex constant ¢ and a unitary operator U such that T, T = cU.

To deal with more general symbol functions, we need the following characterization of
nonvanishing functions in F2 .

Lemma (5.2.3)[145]: If f is a nonvanishing function in E?Z, then there exists a complex
polynomial g, with deg(q) <2, such that f = e?

Proof. In the case when the dimension n = 1, the Weierstrass factorization of functions in
the Fock space F? takes the form f(z) = P(z)e?® , where P is the canonical Weierstrass
product associated to the zero sequence of f, and q(z2) = az? + bz + c is a quadratic
polynomial with |a| < % In particular, if f is zero-free, then f = e? for some quadratic

polynomial. See [151].

Where

_ o« 2
=eaza2|a|
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When n > 1, we no longer have such a nice factorization. But the absence of zeros
makes a special version of the factorization above still valid. More specifically, if f is any
function in F2= EZ? (C") and f is nonvanishing, then the function z; - f (3, - -
,Zn) is in F2(C), so by the factorization theorem stated in the previous paragraph,

(e ) 2n) = eazf +hzi+c
where a,b, and c are holomorphic functions of z,, --,z,. Repeat this for every
independent variable, we conclude that f = e for some polynomial of degree 2n or less.

Recall that every function f € F? satisfies the pointwise estimate

F(2)] < Ccez®’ 5 ecn.
If g is a polynomial of degree N and N > 2, then for any fixed { = (,,---,C) on the

unit sphere of C™ with each {k # 0, and for z = r(, where r > 0, we have q(3) ~ 7" as

r — oo, which shows that the estimate |f(z)| < Cez'?!"

that the degree of q is less than or equal to 2.

We can now prove the main result, which we restate as follows.

Theorem (5.2.4)[145]: Suppose f and g are functions in F2 . Then the Toeplitz product
T¢ T, is bounded on FZ if and only if one of the following two conditions holds:

(a) At least one of f and g is identically zero.

(b) There exists a linear polynomial g and a nonzero constant c such that f = e?and g =
ce 4,
Proof. If condition (a) holds, then the Toeplitz product T¢ Ty is 0. If condition (b) holds, the
boundedness of T;T; follows from Lemma (5.2.2).

Next assume that T = T;T}; is bounded on F7 . Then the Berezin transform T is a

bounded function on C" , where
T(z) = (T;Tzk, k) z € CM.

It follows from the integral representation of T; and the reproducing property of the kernel
function e®* " that T;k, = g () k,. Therefore,

T(z)= g@)(fk; k), z€C".
Write the inner product above as an integral and apply the reproducing property of the kernel
function e**"" one more time. We obtain T(z) = f(z)g(3). It follows that |f (2)g(z)| <
IT|| forall z € C™. But fg is entire, so by Liouville theorem, there is a constant ¢ such
that fg = c.

If c = 0, then at least one of f and g must be identically zero, so condition (a) holds.

If ¢ # 0, then both f and g are nonvanishing. By Lemma (5.2.3), there exists a complex
polynomial g, with deg(q) < 2,suchthatf = e?dandg = ce 9 .

It remains for us to show that deg(q) < 1. Letus assume deg(q) = 2, in the hope of
reaching a contradition, and write ¢ = q, + q;,whereq; is linear and g, is a
homogeneous polynomial of degree 2. By the boundedness of T = T,T; on F; , the
function

Is impossible to hold. This shows

T(z,w) = (TngkZ, k), z € C",w €C",
is bounded on C™ x C™. We proceed to show that this is impossible unless g, = 0.
Again, by the integral representation for Toeplitz operators and the reproducing
property of the kernel function e**'%, it is easy to obtain that

a, o -« 2
T(z,w) = f(w)g(z)e 27 Tawz—z Wl
It follows that
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(24
T w)l = [fWw)g(z)le 2 ™"
for all (z, w) € C™* x C™. Using the explict form of f and g, we can write

(¢4
IT(zw)l = |cexp(q:(w) — q,(2) + ¢.(w) — q:(2))|e 72 * 7.
Since g4 is linear, it is easy to see that there is a point a € C™ such that
(W) —q.(3) = (W —2)-a
for all z and w.

For the second-degree homogeneous polynomial g, we can find a complex matrix A =
Anxn, SYymmetric in the real sense, such that g,(3) = (Az, 3), where (,) is the real inner
product. Fix two points u and v in C™ such that Re(Au, v) # 0. This is possible as long as
A+ 0.Nowletz = ruandw = ru + v, where r is any real number. We have

(W) — q2(2) = q2(z3 + v) — q,(3) = (A(z + v),z3 + V) — (43, 2)
= (Az,v) + (Av, 3) + (Av, v) = 2r(Au, v) + (Av, v).
It follows that there exists a positive constant M = M (u, v) such that
|IT(z,w)| = M|exp(2r{Au,v))| = M exp(2rRe{Au, v)).
Since Re(Au, v) # 0, this shows that T (z, w) cannot be a bounded function on C* x C".
This contradition shows that A = 0 and the polynomial g must be linear.
As a consequence of the analysis above, we obtain an interesting class of unbounded
operators on F? whose Berezin transforms are bounded.
Corollary (5.2.5)[145]: Suppose f(z3) = e? andg = e % , where g is any second-
degree homogeneous polynomial whose coefficients are small enough so that f and g
belong to F;. Then the Toeplitz product T; T} is unbounded on F7, but its Berezin transform
Is bounded.
Proof. By Theorem (5.2.4), the operator T; T is unbounded. On the other hand, by the proof
of Theorem (5.2.4), the Berezin transform of T = T;Tj is given by
T(z) = f(z)9(z), 2z € C*,
It follows that [T (z)| = |f(z)g(z)| = 1 forall z € C".
Another consequence of the earlier analysis is the following.
Corollary (5.2.6)[145]: If f and g are functions in EZ, then the following conditions are
equivalent:
(a) T¢ T4 is compact.
(b) T;T; = 0.
(©)f =0org = 0.
Proof. Combining Lemma (5.2.2) and Theorem (5.2.4), we see that whenever T¢Ty is
compact on F? , we must have f = 0 or g = 0. This clearly gives the desired result.
Forany 0 < p < oletFE? denote the Fock space consisting of entire functions f

such that the function f(z)e —3lal’ belongs to LP (C",dv). When 0 < p < oo, the norm
in £ is defined by

1l = [(%)n J.

Forp = oo, the normin E,;° is defined by
&2
Ifllena = sup 1f(@)le 2"
Z€EC™
It is easy to check that the normalized reproducing kernel

1

p P

f@)e 2 | dv(z)
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ka(z) = ™07z
is a unit vector in each FY , where 0 < p < oo. Also, it can be shown that the set of

functions of the form
N N

f@) = ) ak@a) = ) e
k=1 k=1
is dense in each ¥ ,where 0 < p < 0. See [151].
Therefore, if 0 < p < oo and f satisfies Condition (G), we can consider the action of the

Toeplitz operator Ty on FP . Also, if f € EP | then it satisfies the pointwise estimate

lf ()] < Ce%'z|2 , Which implies that f satisfies Condition (G).
When1 < p < o and 1/p + 1/q = 1, the dual space of FF can be identified
with F,! under the integral pairing

(f,9)a = f(Z)M dAq(2).
Cn

When 0 < p < 1, the dual space of F? can be identified with F° under the same integral
pairing above. See [73], [151].
Thus for functions f and g in F? , if the Toeplitz product T = T;T; is bounded on F7, we
can still consider the function
T(z,w) = (TrTgk, ky)q

on C" x C™. Exactly the same arguments will yield the following result.
Theorem (5.2.7)[145]: Suppose 0 < p < oo. Iffand g are functions in FF, not identically
zero, then the Toeplitz product T;Tj is bounded on FPifandonly if f = e and g = ce™9,
where c is a nonzero complex contant and q is a complex linear polynomial.

We extend the results here to more general Fock-type spaces. In particular,
generalization to the Fock-Sobolev spaces studied in [146], [147] should be possible.

We take a second look at the original Hardy space setting. More specifically, if f and
g are functions in the Hardy space H? (of the unit disk, for example), the the boundedness
of the Toeplitz product T¢T; on H* implies that the product function fg is in H®. Is it
possible to derive more detailed information about f and g, say in terms of inner and outer

functions? A more explicit condition on f and g (as opposed to the condition |f|?*€|g|?*¢ €
L*) would certainly be more desirable.
We hope that will generate some further interest in this subject.

Section (5.3): Sarason’s Toeplitz Product Problem

For D be the open unit disk in the complex plane C and let T = 0D denote the unit
circle. The Hardy space H? consists of functions f € L?(T) such that its Fourier
coefficients satisfy £, = 0 for all n < 0. Given a function ¢ € L?(T), the Toeplitz
operator T, : H> — H? is densely defined by T,,f = P(¢f), where P : L?(T) — H?is
the Riesz-Szego projection.

The original problem that Sarason proposed in [53] was this: characterize the pairs of
outer functions u and v in H? such that the operator T, T, is bounded on HZ. Inner factors
can easily be disposed of, so it was only necessary to consider outer functions in the Hardy
space case. It was further observed in [53] that a necessary condition for the boundedness
of T, T, on H? is that
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sup P, (Iul*)PB, (Jv]?) < o,
we
where B, (f) means the Poisson transform of f at w € . In fact, the arguments in [53]

show that
Sug P,([ul®*)P,(Ilv|*) < 4|IT,T,II* . (35)
wWE

For A% denote the Bergman space consisting of analytic functions in L?(ID, dA), where
dA is ordinary area measure on the unit disk. If P : L?2(DD,dA) — A? is the Bergman
projection, then Toeplitz operators T, on A? are defined by Tof = P(@f). Sarason also
posed a similar problem in [53] for the Bergman space: characterize functions u and v in A?
such that the Toeplitz product T, T, is bounded on AZ2. It was shown in [42] that

sup [ul?w)[v|*(w) < 16||T,T5|I? (36)

weD
for all functions u and v in the Bergman space A2, where f (w) is the socalled Berezin

transform of f at w. This provides a necessary condition for the boundedness of T,,T,, on A2
in terms of the Berezin transform.

The Berezin transform is well defined in many other different contexts. In particular, the
classical Poisson transform is the Berezin transform of the Hardy space H?. So the estimates
in (35) and (36) are in exactly the same spirit. Sarason stated in [53] that “it is tempting to
conjecture that” T, T, is bounded on H2 or A2 if and only if |u[2(w)|v]?(w) is a bounded
function on D. It has by now become standard to call this “Sarason’s conjecture for Toeplitz
products”.

It turns out that Sarason’s conjecture is false for both the Hardy space and the Bergman
space of the unit disk, and the conjecture fails in a big way. See [153], [160] for counter-
examples. In these cases, Sarason’s problem is naturally connected to certain two-weight
norm inequalities in harmonic analysis, and counter-examples for Sarason’s conjecture were
constructed by means of the dyadic model approach in harmonic analysis.

Another setting where Toeplitz operators have been widely studied is the Fock space.
More specifically, we let F2 be the space of all entire functions f on C that are square-
integrable with respect to the Gaussian measure

dA(z) = % e~ 172" dA(2).

The function

K(z,w) = e?”,z,w €C,
is the reproducing kernel of 2 and the orthogonal projection P from L?(C, d2) onto F?2 is
the integral operator defined by

P f(z) =j K(z,w)f(w)di(w), z € C.

C
If ¢ is in L2(C,dA) such that the function z — @(z)K(z,w) belongs to L*(C, d1) for any

w € C, we can define the Toeplitz operator T, with symbol ¢ by T,,f = P(¢f), or

Tof(z) = f@ K(z W) fw)daw), z €G,

When
N

Fw) = ) akw,cy)

k=1
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Is a finite linear combination of kernel functions. Since the set of all finite linear
combinations of kernel functions is dense in F?, the operator T,, is densely defined and T, f
Is an entire function. See [152] for basic information about the Fock space and Toeplitz
operators on it.

In [146], Cho, Park and Zhu solved Sarason’s problem for the Fock space. More
specifically, they obtained the following simple characterization for T, T,, to be bounded on
F2:if u and v are functions in F2, not identically zero, then T, T; is bounded on F? if and
onlyifu = e?and v = ce™9, where c is a nonzero constant and g is a complex linear
polynomial. As a consequence of this, it can be shown that Sarason’s conjecture is actually
true for Toeplitz products on F2.

We consider the weighted Fock space F2, consisting of all entire functions in
L?(C,dA,,), where dA,, are the generalized Gaussian measure defined by

ddn(z) = e ¥ dA(z), m = 1
Toeplitz operators on F2 are defined exactly the same as the cases above, using the
orthogonal projection P : L?(C,dA,,) — F2.

We will solve Sarason’s problem and prove Sarason’s conjecture for the weighted Fock
spaces F2. The main result can be stated as follows.

Main Theorem (5.3.1)[152]: Let u and v be in F2, not identically zero. The following
conditions are equivalent:

(i) The product T = T,T; is bounded on F2.

(if) There exist a polynomial g of degree at most m and a nonzero complex constant ¢

such that u(z) = e9% and v(z) = ce 9@,

(iii) The product |u[?(z)|v[?(z) is a bounded function on C.

Furthermore, in the affirmative case, we have the following estimate of the norm:

ITI < CleCzllglli,z ’
where ||g||42 is the norm in the Hardy space of the unit disc, and C; and C, are positive
constants independent of g.

Let us mention that [158] contains partial results related to Sarason’s conjecture on the
Fock space. The arguments in [146] depend on the explicit form of the reproducing kernel
and the Weyl operators induced by translations of the complex plane. Both of these are no
longer available for the spaces F2: there is no simple formula for the reproducing kernel of
F2 and the translations on the complex plane do not induce nice operators on 2. Therefore,
we need to develop new techniques to tackle the problem.

We recall some properties of the Hilbert space F2. It was shown in [84] that the
reproducing kernel of F2 is given by the formula

+co —\k
m W
Kn(aw)=— ) (k—-l-)l (37)
= 1 (5
k

- 3
Ey,ﬁ(Z)=kZO okt B’ .8 >0,

In terms of the Mittag-Leffler function

we can also write
m
Ky (z,w) = — E11 (3w). (38)

mm
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Recall that the asymptotics of the Mittag-Leffler function E1 1(z) as |z| — 4+ are

given by
m—-1,z™m n
mz™le?” (1 + o(1),  largzl <5,
Ei1 1 (Z) = 1 T (39)
m'm O(E)’ 5 < larg z| < &
form > % and by
- 1
El 1 (Z) =m z Zm—l eZnij(m—l)ezmeZme + 0(_)’ < argz < T
mm = b4

for0 < m < % where N is the integer satisfying N < ﬁ < N + 1 and the powers

z™~1 and z™ are the principal branches. See, for example, Bateman and Erdelyi [155], vol.
I11, 18.1, formulas (55)—(56).
The asymptotic estimates of the Mittag-Leffler function E 1 1+ provide the following

estimates for the reproducing kernel K,,, (3, w), which is a consequence of the results in [84]
and Lemma (5.3.4) in [130].
Lemma (5.3.2)[152]: For arbitrary points x,r € (0,+o) and 8 € (—m,m) we have

(xr)m—le(xr)m cos(m@) |9| < T
; —2m
(7]
|Km(x,rel )l S 1 T
od).  Espi<n
xr 2m

as xr — +oo. Moreover, there is a constant ¢ > 0 such that for all [8] < c6, (xr) we
have

1K (x, 7€) 2 (xr)m=1 grim

asxr — +oo,where 8,(r) = r z/m.

On several occasions later on we will need to know the maximum order of a function in
F2. For example, if we have a non-vanishing function f in £2 and if we know that the order
of f is finite, then we can write f = e? with g being a polynomial. The following estimate
allows us to do this.

Lemma (5.3.3)[152]: If f € F2, there is a constant C > 0 such that

1 m
f@I < Clagmtez®™,  zec
Consequently, the order of every function in F2 is at most 2m.
Proof. By the reproducing property and Cauchy-Schwartz inequality, we have

If ()] = Lf(W)Km(Z,W)dAm(w) < Ifll K. (2, 2) %

forall f € £2 and all z € C. The desired estimate then follows from Lemma (5.3.2). See
[156].

Another consequence of the above lemma is that, for any function u € F2, the Toeplitz
operators T,, and Ty are both densely defined on F2.

We prove the equivalence of conditions (35) and (36) in the Main Theorem (5.3.1)
stated, which provides a simple and complete solution to Sarason’s problem for Toeplitz
products on the Fock space F2. We break the proof into several lemmas.

Lemma (5.3.4)[152]: Suppose that u and v are functions in F2, each not identically zero,
and that the operator T = T,T; is bounded on F2Z. Then there exists a polynomial g of
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degree at most m and a nonzero complex constant ¢ such that u(z) = e9® and v(z) =
ce 93
Proof. IfT = T,T, is bounded on F2, then the Berezin transform T is bounded, where
T(3) = (T, Tyk,, k), z € C.
By the reproducing property of the kernel functions, it is easy to see that
T(z) = u(z)v(2).
Since each k, is a unit vector, it follows from the Cauchy-Schwarz inequality that
lu(@)v(z)| = |T@)| < Tl

for all z € C. This together with Liouville’s theorem shows that there exist a constant ¢
such that uv = c. Since neither u nor v is identically zero, we have ¢ # 0. Consequently,
both u and v are non-vanishing.

Recall from Lemma (5.3.3) that the order of functions in F2 is at most 2m, so there is a

polynomial of degree d,
d

g(z) = z a,z", d < [2m],
k=0
suchthatu = e9andv = ce™9. It remains to show that d < m.

Since T is bounded on .7:"21, the function
.’ ,K .’
F( ’ ) (7 (Km( W)) m( Z))

VEm (3, 2)3/Kn(w, w)
must be bounded on €2. On general reproducing Hilbert spaces, we always have
(TuTsKw, Kz) = (TsKw, TuK;) = (v (W)Ky, u(z)K,) = u(z)v W)K(z,w).
It follows that

Km(z,w)
VEn (@, 2K (W, w)

F(z,w) = ced@—-gWw)

From Lemma (5.3.2) we deduce that

|F(z, W)| > eRe(g(z)—g(w))e—% (|z|™—|w|™)2 (40)
for all |arg(zw)| < c8,(|zwl) as |zw]| grows to infinity. Choose x > 0 sufficiently large
and set

. T .arg(aq)
z3(x) = xe'zde™ d
and
T _arg(ad)+ﬁ
w(x) = xe'zde™ d
Since

B0 (2w =—,
we can apply (40) to z(x) and w(x) to get
eRe(9(s()-9(w () < sup  |F(z,w)| < (41)

(z,w)eC?
as x grows to infinity. On the other hand, a few computations show that
d

Re (g(z(x)) — g(w(x))) = Z xJ Re (ajeij% —iéarg[ad) (1 _ e—izmcﬁ))

j=0
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Ci
_i—]m
1— e "2mdx

. c
= lag| xsin (z—=) + ga-r(®),

Where

d_l . .

. Jmo.j C:
- iRe [ q.oba-izaead (1 _ p_ ;9
9a-1(x) Z) X e(ae ( e l2mdxm)
T a-1 _
Z |a |x151n +ar a; —Lar (ag) | sin I

. 7 g4 g I a 2mdx™

ai

+

J
2, la; |/ cos [ﬁ + arg a; —7 99 (ad)] [1 — cos
j

< xd—l—m.
Therefore, there exist some x, > 0and § > 0 such that

Re (9(z()) — g(w(x))) = M

forall x > x,.Since a; # 0, it follows from (41) that d S m.
On several occasions later on we will need to estimate the integral

o0
_1 2m d
1(a) =J e 2" TN g,
0

wherem > 0,0 < d < m,N > —1,anda = 0.
First, suppose a > 1. By various changes of variables, we have

0

I(a) = e 2 rdr + e 2 r dr
0 1

! N ® _Liamygmo N
< e? rVdr + e 2 dr
0 ,
e? a® (® 1.,
= +e2f e 2T mAN gy

2

2mdx™

a

e? e2 (< 5 N+1_, p
= + eM—=(t— tm t.
N+1 m) e"( ( aytm
If =2 — 1 < 0, then
@) <5 V2% ve  v2m) @
Y=ENT 1 m © N + 1 m '
N+1
Otherwise, we have— — 1 > 0. Using the fact thatu — u = ' is increasing, we
see that
a N+1 a N+1
z 2 N+l 3a\ m " [z _t* 3ay m '
f e 2 (t+a)ym dtS(—) f e2dtS\/2n( ) .
_2 2 _a 2
2 2

For the same reason we also have
too 2 N+1_, too 2 N+1_,
ja e T (t + a)m dtSJa e~ 7 (3t) m “ldt
e a
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N+1 T N+1 t?
__1 —_
<3m

0

§< %‘Tm i

N+1
-1 (N + 1
= S(6V) " ()
( v2) ™ >
Inthecasewhen1 — a < —a 2 (orequivalentlya > 2),
-5 N+1 a %—1 -7 2
j e Z(t+a)ym 'dt <(5) f e”Z dt
1-a 2 1-a
ey -2 L LA
m == — m
S(E) fl_ae4dts(2) 78 < 2(5)

It follows that there exists a constant C = C(m, N) > 0 such that
+1

o0 N+1 oo t2 N+1 N
j GO P —J e Z(t+a)m dt<C@+aq)m *
1 1-a

N+1

for — — 1> 0. It is then easy to find another positive constant ¢ = C(m,N),
mdependent of a, such that
N+1_ a_
I(a) < C(A+a)ym ez
foralla > 1 andE — 1 > 0. Therefore,
i 1 2m N+1 2
j e 27T N g < 0 (1 + a)maX(O‘T_l) eT (42)
0

for alla = 1. Since I(a) is increasing in a, the estimate above holds for 0 < a < 1 as
well.
Lemma (5.3.5)[152]: Foranym > 0,6 > O,R = 1,N > —1,andp = 0, we can find

aconstant C > 0 (depending on R, §,p, N,m but not on a, d, x) such that

+ 00 2m 2
X m d d N+p+1 1+6° 5
— = (1+ + 1+6 max|( 0, -1
K N+1 'pr P RS ax4(1+68r Ndr < C(1 + a) ( m )e 2z ¢

x2

and

(e0) 2m 2

x™ j+ e (™ Praxd(lr) T g o c(1 + a)eaT
5

forallx > 0,a > 0,and0 < d < m.

Proof. LetI = I(m,N,p, R, x,a, d) denote the first integral that we are trying to estimate.

If x > 1, we have
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o0 2m
x . d _(er) ™ d
| = xNt1-p o7 +ax jR e 5— +ad(xr) N d

r
2
2m m [® 2m 4
< x pe——+ax j;e e~ 2 +adr T‘NdT
&
1 2, a? R TP 2 d
2 (M a v 1 om
Sez(x a)+2x e r<M+adr TNdT‘
RP
a2
ez (*® rm
Sﬁ A e 2 +tadr rN+Pdr

X
The desired result then follows from (42).
If0 <x < 1,wehave

2m

X iaxd * —w+aé‘(xr)d * —Tz—m+a5rd
| = xN+t1-P ™2 fR e 2 rNdr < e%x™P L € 2 rNdr
x2 x

—+1 00 r2m d

=5 JR e 2 TAOTT L N+D g
X

The desired estimate follows from (42) again.

To prove the second part of the lemma, denote by /] = J(m,d, R, x,a) the second

integral that we are trying to estimate. Then it is clear from a change of variables that for
0 <x < 1wehave

+00
Jomd,Rx,a) = x2" J o3 Gmorm)2 a(xdyd) T
) ) ) ) R

a +0o0
e m 1 om_ m,,.2my M
5 e 2(x 2(xr)M+r )TZ +1 dr

a + o0 2m
Se—J e_rTJ’rmr%“ dr = Ce®
R 0
a2
< C'(1+ a)ez,
where the constants C and C only depend on R and m.

Next assume that x > 1.Incase R < x? wewrite ] = J; + J,, where

m
r2 dr,
R
x2
And

1 x2m . 4 .
1= ]1(m;d.R,X, a) = x™ f e‘T(l—T )2+ax?(1-r%)

me

*© X .m drq_..d m
J» = J,(m,d,R,x,a) = xmf ez A Hax® =Y L F gy
1

Otherwise we just use /] < J,. So it suffices to estimate the two integrals above.

To handle J;(m,d, R, x,a), we fix € > 0 and consider two cases. In the case x™ <
a(l + &), we have

1 2m

X m d(r od m
]1(m,d,R,X,Cl) S xmfR e_T(l_r )2+ax (1 r ) T2 dT'

x2
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a? a?

@ lamaorm-ap D i
Sa(1+s)32fR e 2 VT 2 dr < a(l + ez,

xZ
When x™ > a(l1 + ¢),wesety = x™andt = (y — a)/2. Then we have
&
> 000
TS R A

asy — +oo. By successive changes of variables we see that
1 x2m . . m
]1(m, d,R,x, a) < xm JR e—T(l—r )2+ax (1-r )r7 dr

21,.2

1-—5 1 1
_XJ y: (1 — r)m‘ie‘yT“W dr

R i_l
Jy m 2 e—r2—2+ar dr
m
1 1
Y- a-> a r\mz _r’
_e? y (1 ————)m 2 e T dr.
m J_, y oy
This shows that for1 < m < 2 we have
2 m
eaZ y_a_RT _r? 2w a?
J; <— e 2dr <——e2 .,
m J_, m
Thus we suppose that m > 2. Then
T a r =7 r? a T - r?
j (1 ————)m 2 e 2 dr < ————) 2] e 2 dr
-7 y y y y
1 1 1

:<%>m—if ez dr < ‘/_<4(1£+ )) B

Moreover, in case —a < —t, we have

-t a r % ‘% r? a T %—% T qr|
j (1 ————) e T dv s(1 ——+—) f e~ 7 dr
—-a y y y y —-a
1 1 72
3¢ m 2e 2
< z(—) il
2(1 + ¢) T
3 l_% 1 £2
m E m__
< 4|— 8(1+¢&)?
. = (2) (1 n e) ¢
Similarly, incasey — a — % > 7, wehave
e TS SR i R g
j [1————] eZdTS[—Z] f e 2 dr
T y y y T
opi-2 € w12 £
< S — 2 (si >__
= [2(1 n s)] rme (smcm = 2(1 n s))
m 1 + _L
< 4Rz = eTsarer
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The last three estimates yield
a2
J1 < CA + a)ez
for some C > 0 that is independent of x and a.
To establish the estimate for J,, we perform a change of variables to obtain

1
e XM myy m 1t 2 r 2

]ZSme e 2 (1T)2T2d7" =EJ e 2 (x—m+1) dr.
1 0

Ifm > 2, we have

3l

1 + 00 _ﬁ
]2 < — e 2 dT,
m
0

andif1 < m < 2,we have
1t 2 11
]Zs—f e 2(r 4+ 1)m 24dr.
m Jy

Therefore, J, < C forsome C > 0 thatis independent of x and a. This completes the proof
of the lemma.

In the proof of the Main Theorem (5.3.1), we will have to estimate the following two
integrals:

m n2(04 .
I(X,T') — ’[|9|<L e_(XT) +2ardsln2<2 )le(x,Te‘6)|d0,
and "
](x’ T) — jlel ) e—(xr)m+a(xd+rd) |Km(x,r€i9)| de,

—2m
where x,r,a € (0,+)and0 < d < m.
Lemma (5.3.6)[152]: For any m > 0 there exist positive constants C = C(m) and R =

R(m) such that
1

I(x,7) < C(xr)™? f o—(@rm-ard)e? g
0
And

Ce—(xr)m+a(xd+rd)

J(x,r) < po=

foralla > 0,0 < d < m,andx > 0withxr > R.

Proof. It follows from Lemma (5.3.2) that there exist positive constants C = C(m) and
R = R(m) such that foralla > 0and xr > R we have

m m . od
I(x,7) < C(xr)™ 1 f G+ ()™ cos(m6)+2ar sin? (%)
T

101=21m
o me 4 0d

_ 2m  _2(xr)™sin? (—>+2ar sin? (—)
= 2C(xr)m™1 j e 2 2

0

do

do

m n”l m g mo ) 0
< 2C(xr) ‘1J2 2™ sin® (T)+2a1‘dsm2 (_"; )dG
m : £ mo

Zm _ m_ pd) cin?
< 2C(xr) —1f e 2((xr)™—ar4)sin <_2 >d9

0
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V2

V1 -t?

ve m dt
m 0

V2
< (xrym 1 f * emaGnmear)e gy

1
< (xr)m_lf e~ (G™M-ar®)e? gy
m

The estimate
Ce—(xr)m+a(xd+rd)
Jx, 1) < po ) xr > R,
also follows from Lemma (5.3.2).

Lemma (5.3.7)[152]: For any m > 1 there exist constants R = R(m) > 1 and C =
C(m) > 0 such that

e —l(xm—rm)2+a(xd—rd) 14 a2
jR e 2 I(x,r)rdr < C(1 + a)m " e?

X
and

2

et (x™—rm)2 max(o 2z —1)ea
j;? e 2 Ja,rdr < C(1 + a) m

X
forallx > 0,a > 0,and0 < d < m.
Proof. For convenience we write

1. m m d d
A (1) = e 2@ T Y +a(xt-r ) [(x, )T,
and

1 m m
A; (x,1) = e 2T )Zj(x, )T,

Let R and C be the constants from Lemma (5.3.6). In the integrands we have r > R/x, or
x, > R, soaccording to Lemma (5.3.6),

1

I(x,7) < C(xr)m‘lj e~ (Mt rarde? g

0

If, in addition, x < 1, then

I(x,7) < crm-lear®
and

m)Z eaxd— m)Z

ard _l m_
[(x,7)r < CrMete 2" 7

1. m
Ay (x,1) = e 2T
It follows that

R
X X

(e e] o0 1 m m
_[R A (x,r)dr < Ceaj rme~z G gy

o0
1 om,.m.m_1_2m
< Ce“ rMe 2% T T3 dr

foralla > 0and0 < x < 1.
Similarly, if x < 1 (and xr > R), we deduce from Lemma (5.3.6) and (42) that
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” cr= 1 xM=r™?2 _(x")"+ax%+ardr
. A; (x,r) dr SE L. €2 e dr
x x 4 oo
e 1 om d
< p a7 rar® g

:Uﬁ
xm%*

2
<C0+a max(O,% — 1) ed
Suppose now that x > 1 and rx > R.By Lemma (5.3.6) again,
1
A (x,r) < Cr(xr) m-1 e—%(xm—rm)2+a(xd—rd)J e_tz((xr)m—ard) dt.
0

Fix a sufficiently small e € (0,1). If (xr)m = ar%(1 + ¢€), then
1 1 J(xr)m —ard
j e—tz((xr)m—ard) dt = f
0 \/(xr)m — ar?Jo
1 *® 2
< j e ds
J@r)m — ardJo

VT ()T

2

1 _( ar¢ )

(xr)™
(1l + &)

B 4¢
so there exists a constant C = C(m) such that

m 1 m my2 d d

A (x,7r) < Cr(xr)?‘l e 3 =T a9

If (xr)™ < ar?(1 + €), we have

m—1 d(m—1)+m 1, 2m..2m a [
A,(x,r)am r m e—i(x +r )+axj

_ 2
e S ds

(xr)°Z,

e 1-t?)((xr)™-ar?) dt
0

-1 -1
m dm-1)+m _1 x2M4r2M)ta(x+erd)

<amypr m e2(

It follows that
+oo m—l too _l( m_.rm)Z_l_ ( d—Td) m
jR Ay (x,7) dr S x2 jR e 2V ax rZ dr

X

X
m=1 (*® 1 m  om d .d
+aT.fR o~z (XM Y+a(x%+er )dT'.

X
The change of variables r + xr along with the second part of Lemma (5.3.5) shows that

m +0o 1 5 @
xf_l.[R e_i(xm_rm)2+a(xd_rd)r2 dr < C(l + (,l)QT-

X
Similarly, the change of variables r — xr together with the first part Lemma (5.3.5) shows
that

T dm-1)+m 1, m..2m d.od dim-1)+m 1+&? ,
.[R ez X )+a(x%+er )dT < Cc(1 + a) — P

X
We may assume that e < 1. Then we can find a positive constant C such that
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r m e_%(x2m+rzm)+a(xd+srd)dr < Ccl + a)% ~1ead®

a

=]

m-1 j+°° d(m-1)+m

b

It follows that
+ 00 1
L A (x,r)dr < C(A + a)m ™ e®’

X
for some other positive constant C that is independent of a and x. This proves the first
estimate of the lemma.
To establish the second estimate of the lemma, we use Lemma (5.3.6) to get

2m 2m
xA; (x,xr) = x? re=—z (=T’ J(x,xr) < Ce~ 7~ WrrP™raxda+rd)
It follows from this and Lemma (5.3.5) that

+00 +00 2

_L Ay (e,r)dr = x jR Ay (x,xr)dr < C(1 + a)max(o'ﬁ‘l)eaz :

x x2

This completes the proof of the lemma.
Lemma (5.3.8)[152]: If u(z) = e9® and v(z) = e 9%, where g is a polynomial of
degree at most m, then the operator T = T,T; is bounded on F2.
Proof. To prove the boundedness of T = T, T;, we shall use a standard technique known
as Schur’s test [162]. Since

Tf(z) = f K (5, w)ed@=90) f(w)e=M™" dA(w),
we have "

T f2)le 2™ < f H, (5 w) | fw)le 2™ " daw),
where -

Hy(w) = |Kp(z,w)]e ™2 (7 HWEM+Re(aG)=g )
Thus T will be bounded on F;, if the integral operator S, defined by
Sqf(z) = j (Hg(z, w) + Hy(w, z)) f(w) dA(w)
is bounded on L?(C, dA). Let "
H,(z) = j H,(z,w) dA(w), z € C.
Since "
H_g(z) =f CHg(W, z) dA(w),

\calcolus

for all z € C, by Schur’s test, the operator S, is bounded on L*(C,dA) if we can find a
positive constant C such that
Hg(z) + H—g(z) < C, z € C.
By the Cauchy-Schwarz inequality, we have

Hg1+gz (Z) = \/H2g1 (Z)HZQZ (Z)

for all z € C and holomorphic polynomials g, and g,. Moreover, if
Ug(z) = ef3, z €C,0 € [—m, ],
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Then

Hyou, = Hg o0 Ug
forallz € C,08 € [—m, ], and holomorphic polynomials g. Therefore, we only need prove
the theorem for g(z) = az% withsomea > 0andd < m and establish that

sup Hy(x) < C,eC2%" (43)
where C;, are positive constants indegé%dent of a and d (but dependent on m). We will see

that C, can be chosen as any constant greater than 1.

It is also easy to see that we only need to prove (43) for x > 1. This will allow us to use
the inequality x¢ < x™ for the rest of this proof.

For R > 0 sufficiently large (we will specify the requirement on R later) we write

Hy(x) = j Hy(x,w) dA(w) +f Hy(x,w) dA(w).

[xw|<R |xw|=R
We will show that both integrals are, up to a multiplicative constant, bounded above
by e(1+e)a®

By properties of the Mittag-Leffler function, we have
m
Kn(rw)l S—E1 1 (R):= Cp,  |xw| < R

i T m’'m
It follows that the integral

I = j H, (x, w) dAw)
x|W|<R

Satisfies
1 m m
I = f Ky (7, w) e 72 (1w raRe (xEw) g 5

x|w|<R

< CRf e—%(x2m+|w|2m)+aRe(xd—Wd) dA(w)
x|w|<R

IA

_Llyem ygyd —|W|2m+a|W|d
Cre ™2 e 2 dA(w)
X
1 _om m +oo r
< 2mCre 2% F j e 2 " rdr
0

a2 + oo r2m d
< 4
< ZnCRezf ez " rdr
0

2
<Cc@l + a)max(o’ﬁ_l) e
where the last inequality follows from (42).
We now focus on the integral

I, = f H, Cx, w) dAw).
xX|w|=R
Observe that for all x, r, and 8 we have
Re(x? — rte'd?) = x% — r%cos(df) = x% — r% + r% (1 — cos(dh))
do
= x4 — r% + 2r%sin? (7)
It follows from polar coordinates that

+ 00 T )
I, =JR j Hg(x,relg)rdé? dr
= -7
X
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— j;‘*oo jn e_% (x2m+r2m)+a(xd—7”d Cos(de))le(x' rei9)|r do dr
-

X

2

© 4t . m do ;
=L o3 ™2 4a(xd ) (er) rdrf e2ar? gin2 ( ) |Kp(x, 7€%9)| a6
—TT
X

+oo 1 m m
< JR e~z (=T (ea(xd_rd) I(x,7) + ](x,r)) rdr,

X

Where

~(xr)™+2ar? sin? (dz_e)”(m(x, re'?)| do,

I(x,7) = J e
10157

ICHES

10125~

By Lemma (5.3.7), there exists another constant C > 0 such that
2
I, < ¢ + a)"*Om1)ga

and

e~ ()™ +a(x?+r?) |Km (x’ re iG) | de.

Therefore,
max(oi—l) 2
supj Hy,(z,w) dA(w) < C(1 + a) m- "/ e?
C

z€C
for yet another constant C that is independent of a and d. Similarly, we also have

2 2
supf H_,(z,w)dA(w) < C(1 + a)max(o’ﬁ_l)ea
z€C J¢

This yields (43) and proves the lemma.

We show that Sarason’s conjecture is true for Toeplitz products on the Fock type
space FZ. We will prove that condition (37) in the Main Theorem (5.3.1) stated in the
introduction is equivalent to conditions (35) and (36). Again we will break the proof down
into several lemmas.

Lemma (5.3.9)[152]: Suppose u and v are functions in 2, not identically zero, such that
the operator T = T,T is bounded on F2. Then the function [ u[2(z)| v[?(z) is bounded
on the complex plane.

Proof. Since T,T; is bounded on F2, the operator (T,T;) * = T,T; and the products
(T,Ty) * T, Ty and (T,Ty) * T, Ty are also bounded on FE2Z. Consequently, their Berezin
transforms are all bounded functions on C.
Forany z € C we let k, denote the normalized reproducing kernel of F2 at z. Then

<(TuT17) i TuTﬁkzrkz> = (TuTﬁkz'Eﬁkz) = (uv(z)kz,uv(z)kz) = |U(Z)|2 |U|2(Z)
is bounded on C. Similarly |u(z)|? | v|2(3) is bounded on C. By the proof of Lemma (5.3.4),

the product uv is a non-zero complex constant, say, u(z)v(z) = C. It follows that the
function

— — — 1
| vI2(@)| ul?(z) = [u(=)|* | vI*(2)|v(z)|* | ulz(z)W
is bounded as well.
To complete the proof of Sarason’s conjecture, we will need to find a lower bound for

the function
B(z) = |v[*(®)u(z)?,
whereu = e9,v = e 9,and g is a polynomial of degree d. We write
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9(2) = agz® + ga-1(3),
where
a; = ae'%d, a> 0,

and
d-1

9ga-1(3) = z alZl-

=0
In the remainder, we will have to handle several integrals of the form

1(x) =j S, (re=9=) dr,
J

where S, and g, are C3-functions on the interval /, and the real number x tends to +oo. We
will make use of the following variant of the Laplace method (see [130]).
Lemma (5.3.10)[152]: Suppose that

(@) g, attains its minimum at a point r,,, which tends to 4o as x tends to +oo, with c,, =
gx (1) > 0;

(b) there exists 7, such that for |[r — 1| < 7,, g¥ () = cx(1 + 0(1)) as x ten ds to
+00;

(C) for |T - rxl < Ty, Sx(r) ~ Sx(rx);

(d) we have

j Sy(Me 9 dr = (1 + o(1)) S, (r)e 9™ qdr
J

|7 —Tx | <Ty
Then we have the following estimate

I(x) = (\/Zn + 0(1)) [c, 7Y% S, (r,)e 9, x - 4oo. (44)
The computations in [130] ensure that, under the assumptions on g, and S,., we have

1
j S, (e 9= dy (cxrx)‘lj e 3%t gt (45)
|7 =T |>Tx |

t|>ty
In particular, if one of the two conditions ¢, 72 —» +oo and ¢, 7, — + is satisfied, then
hypothesis (d) in Lemma (5.3.10) holds.
The study of B(z) will require some additional technical lemmas.

Lemma (5.3.11)[152]: For z = xe'?, with x > 0 and e!(®a+d®) = 1, we have

+00 m
B(z) = J (rx) zr2m-le=hx( gy
0

asx — oo, where

h(r)=(0G™ — x™)? — 2a(x% — )+ Cr*+ 1+ x¥ 1+ 1), (46)
for some positive constant C.
Proof. It is easy to see that

B(z) = f |Kin (W, 2)|? e2Re0@=9W) [k, (7,2)]71 eI dA(w),
C
which, in terms of polar coordinates, can be rewritten as
+oo —TT
, _ i m
f j |Km(re‘9,z)|2 eZRe(g(z) g(re'®)) [K,,(x,x)] ! e """r dr de.
0 T

By Lemma (5.3.2), B(z) is greater than or equal to
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+ 00 i
f f |Kon(re®, 5)|e20e(0@=00¢) [ (x, )11 e=2m rar do.
0 |6—|<cOy(rx)
This together with Lemma (5.3.2) shows that

+00

B(2) f r2m=1o=0"-x™* 1 rdr,
0

where

I(r,z) = J o2Re(9@-9(re’®)) 5o
CRIENG)
Note that

1(r,3) = j p2Relaci®d (el _rdcid®)]sarelga_s(2)-ga-1(re®)] gg
|6—¢|<cOy(rx)

_ f eZRe[aei(“d+d¢) (xd—rdeid(9‘¢))]+2Re[gd_l(z)—gd_l(rew)] do
|0—¢|<cOo(rx)

The condition on ¢ yields

I(r,z) =j g2aRrela(x?-rde'@®)]+2Re[g4_1 (2)~ga-1(re*P)] 4o
|8]=cOy(rx)
Since
d—1
9a-1@) = ga-i(re'®HP) = ) a(xt e — ! olCOH),
=0
we have

Re[gq-1(2) = ga-1(re’®* )| 2 —C(ro™t + x¥7 + 1)
for some constant C. It follows that

I(r,3) > e—C(rd‘1+xd‘1+1).[ eZaRe[(xd—rde"de)]dQ.
|6]=cBy(rx)
For the integral we have
J(r z) = j eZaRe[(xd—rdeidg)]dQ :J eZa(xd—rd cos(d@)) do
[6]=cBy(rx) |8]=cBy(rx)
— eZa(xd—rd+(— cos(d9)+1)rd)d8
|6]=cBy(rx)
2
2a xd—rd+2<sin a6 >rd>
=f e < <2) do
|8|=cBp(rx)
_(d6\? 4
> eZa(xd_rd)j e4|ad|sm(7) r do
|6]=cBy(rx)
> eZa(xd—rd) do
|8]=cBq(rx)

d_..d _m
= e2a(x?-r9) (rx) 2
which completes the proof of the lemma.

Lemma (5.3.12)[152]: Assume d = 2m. For z = xe'!®?,where x > 0 and ei(®a+d®) = 1,
we have

)

m

2a
B(z)e Wz
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Proof. For x large enough, the function h, defined in (46) is convex on some interval
[M,,, +o0) and attains its minimum at some point ;.. In order to bound B(z) from below, we
shall use the modified Laplace method from Lemma (5.3.10). Since
h.(r) =2mr™t (™ — x™) + 2adr®! + C(d — D)r% 2, (47)
we have
h.(r) =2m(1 + 2a)r?™ 1 — 2mx™r™ 1 + C(d — 1)r¢2,

and

R (r) =2mQ2m—-1)(1 + 2a)r*™ 2 —2m(m — Dx™r™ 2 +C(d — 1)(d — 2)r¢=3.
Writing h;.(r,,) = 0 and letting x tend to +oo, we obtain

m(1l + 2a)(r,)*™ 1 ~ mx™mrm1,

or
1
e ~ (1 + 2a) mux. (48)
Thus there exists p,,, which tends to 0 as x tends to 4o, such that
1
= (1 + 2a) mx(1 + py). (49)

When x tends to +oo, we have
he() ~ (" — x™)% + 2a(¢™ — x*™)
~ ("t = x™) [ = ™)+ 2a(t + x™)]
~ XA+ 20)7 (1 + p)™ = [ + 20)7T (A + p)™ -

2a
2a (1 + 2a)71(1 m 4 )] ~—x2Mm—
or
Ch(ry) ~ x?m 28 (50)
XN (1 + 2a)°
In order to estimate c, := h;/ (r,), we compute that
2
Rl(r) ~ 2m? (1 + 2a)”"m x?m-2,
Thus we get
C, = x2Mm-Z, (51)

For r in a neighborhood of r,, we setr = (1 + o,)r,, Where o, = 0,(r) - 0asx —
+o0; a little computation shows that
hy (r) ~ hy (1)
asx — +oo. Takingt, = rp’”and |r — ry| < 7,,, we have hy(r) = (1 + o(1))cy, S0

1
hx(r) h (rx) Cx(r - rx)z (1 + 0(1))
Thus
j e Zcx(r Ty)? (1+0(1))d7' Zf e 2cxt 2(1+0(1)) dt
[r =1y |<Ty

|t|<‘rx

\/E J|Y|<Tx\/a

because ¢, 72 =~ 2™~ tends to +o as x tends to +oo. Finally, the estimates
m
B(z) = f (r,) "2 r¥m-le~h«(m gy

|7 —Tx|<Ty

= f (Tx)_% r2m=1p=hy (1) o =[hx(r)=hx(r] gy
[r—7y|<Ty

213



= e_hx(rx)j (rx)_% r2m—1e—%cx(r—rx)2(1+o(1)) dr
|7 =Ty |<Tx

~ e_hx(rx)rxE m-1 x_%f e Zcx(r Tx)2(1+0(1)) dr

along with (48), (50), and (51) give the lemma.

Lemma (5.3.13)[152]: Assume d < 2m. Forz = xe'® withx > 0and ei(@a+d$) = 1
we have

2d2
> x2d—2m_de—1—m

B(z) =
for some positive constant C.
Proof. Let 7, = o(x) be a positive real number that will be specified later. As in the proof
of Lemma (5.3.11) we have

, X — —+oo

+00
B(z) = J r2m=1="-x"?1 (0 N dr
0

= j r2m=De _ (rm — x™)2 [(r, z)r dr,
|r—x|<Tyx

where
I(r,z) = f o2Re(9@-a(re)) 4g
|60 —|=cHy(rx)

There exists ¢’ > 0 such that for |[r — x| < 7, we have
I(r,z) > f e2Re(9@-a(re")) yg

|0—¢p|=c’0o(x?)

:j eZaRe(x -r4e!9)+2Re[gg—1(2)-ga- 1(re‘9)]d8

16]=c’0o(x?)

a-1

:f 2aRe(x —-r eldG) _ ZZ |al||x _rzeue| de.
|0]=c’By(x2)

Now for |[r — x| < t,,wewriter = (1 + J)x whereatends to0asx — +oo. Thus
foro<li<d-1and|8] < c'8,(x?), we obtain
xt — e = x2[1 - 2(1 + 0)! cos(16) + (1 + )]
= x?[1 — 2(1 + lo + 0(0?)) cos(10) + 1 + 2lo
+ 0(02)]
= x?2 (1 = cos(10))(1 + lo) + 0(c?)]
< x?% [sin2 <l29> + 0o ] < x%6% + o2).

Next choosing |o] < x™™, we get
|xl _ Tl eil@l < le x—2m < xZ(d—l)—Zm
or
|xl _ Tl ei19| < xd—l—m_
Thus there exists a positive constant C such that for |r — x| < 7, and |8] < ¢'0,(x?),
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d-1
Zz la;||xt — rtel®| < Cxd-tm,
1=0

It follows that

d_..d,id6 1
I(T;Z) Zf eZaRe(x re )_de 1 mqe
161’6y (x2)
> x_meZaRe(xd—rdeide)_de—l—m
Then
B(z) F2m=1,—(rM—x™?  —my2a(xd-rd)-cxd1Tm o
|[7—x|<Ty
= x_me—de—l—m-]. r2m—1 e—hx(‘r)dr,
|[r—x|<T
where

h(r) = (@™ — x™)? — 2a(x?* — r9).
It is easy to see that h, attains its minimum at r,, with r,, ~ x as x — +oo. Again we
write
ne = x(1 + py), (52)
where p,. tends to 0 as x — +oo. Using the fact that h; (r;,) = 0, we have
2mx*™ (1 + p) ™A+ p)™ — 1]~ —2adx¥H (1 + p)*T,

and
2mx?>™ "t mp, ~ —2adx? 1
Therefore,
ad
Px ~ 3 xa-am, (53)
Since

! (r) =2mC2m — Dr?™ 2 — 2m(m — Dx™r™ 2 +2ad(d — 1)r?2
andd < 2m, we get

hi () ~ 2mx®™2[(2m — DA + p)*™ 2 — (m — DA + p)™ 7]

~ 2m2 me—Z ]
also,
he(r) ~ x*™ [(1 + p )™ — 1] + 2ax? [(1 + p)? — 1]
+ Cx* ! + %1 + 1) ~ m? p2x®™ + 2ax%dp,

It follows that

Cy ~ 2m?% x*Mm2%, (54)
and
a’d?
—h, (1) ~ — x2d-2m, (55)
Reasoning as in the proof of Lemma (5.3.12), we arrive at
B(g) 232 x-Me—Cx ™ gohalr) y2m—1 _L

Cx
The desired estimate then follows from (55), and (54). \/_
Lemma (5.3.14)[152]: Suppose u and v are functions in F2, not identically zero, such that
[ ul?2(2)| v|?(%) is bounded on the complex plane. Then there exists a nonzero constant €
and a polynomial g of degree at most m such that u(z) = eg(z) and v(z) = Ce 9%,
Proof. It is easy to check that for u € F2 we have
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u(z) = f@ 2@k, 2 dan () = 4(2).

Also, it follows from the Cauchy-Schwarz inequality that |u(z)|? < [u?(z). So if
[ul2(z)[ v[?(2) is bounded on C, then B(z) and |u(z)v(z)|* are also bounded.
Consequently, uv is a constant, there is a non-zero constant C and a polynomial g such that
u = edand v = Ce 9. The condition u € F2 implies that the degree d of g is at most
2m; see Lemma (5.3.3).

We shall consider the case where u(z) = e9® and v(z) = 9% . We will show
that that the boundedness of B(z) implies d < m. If 2m is an integer, Lemma (5.3.12)
shows that we must have d < 2m.
Thus, in any case (2m being an integer or not), a necessary condition is d < 2m. The
desired result now follows from Lemma (5.3.13).

We specialize to the case m = 1 and make several additional remarks. For
convenience we will alter notation somewhat here.
Thus forany a > 0 we let F2 denote the Fock space of entire functions f on the complex
plane C such that

| F@P dig@) < o
C
where

A (z) = % e=12 4A(z).

Toeplitz operators on F2 are defined exactly the same as before using the orthogonal
projection P, : L*(C,dA,) — F2.

Suppose u and v are functions in F2, not identically zero. It was proved in [146] that
T, T is bounded on the Fock space F;2 if and only if there is a point a € C such that

u(z) = be%s, v(z) = ce™%93, (56)
where b and ¢ are nonzero constants. This certainly solves Sarason’s problem for Toeplitz
products on the space F,2. But [146] somehow did not address Sarason’s conjecture, which
now of course follows from our main result.

We want to make two points here. First, the proof of Sarason’s conjecture for F?2 is
relatively simple after Sarason’s problem is solved. Second, Sarason’s conjecture holds for
the Fock space F,2 for completely different reasons than was originally thought, namely, the
motivation for Sarason’s conjecture provided in [53] for the cases of Hardy and Bergman
spaces is no longer valid for the Fock space. It is therefore somewhat amusing that Sarason’s
conjecture turns out to be true for the Fock space but fails for the Hardy and Bergman spaces.

Suppose u and v are given by (56). We have

W) = IIf k12 = j f (W)e™? — (a2))z]? |2 dAg(w)
C

— |b|2 e—alzlzf |eaw(d+z')|2 d/'la(w)
C

— |b|2 e—alz|2+az|a+z|2
— |b|2 ea(|a|2+c‘zz+az') _
Similarly,
’ﬂ'z'(z) — |C|2 ea(lalz—dz—az')_
It follows that
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[ul2(@)[v[*(z) = |bc|? 2oV
Is a constant and hence a bounded function on C.
On the other hand, it follows from Hdélder’s inequality that we always have

u@)I? < [ul?(z), u €FLz €C
Therefore, if [ u|?] v[? is a bounded function on C, then there exists a positive constant M
such that

u@v(@)? < [ulP@)[vl(z) < M
for all z € C. Thus, as a bounded entire function, uv must be constant, say u(z)v(z) = C
for all z € C. Since u and v are not identically zero, we must have C # 0. Since functions
in F2 must have order less than or equal to 2, we can write u(z) = eP® , where

p(z) = az? + bz + ¢
is a polynomial of degree less than or equal to 2. But u(z)v(z) is constant, so v(z) =
e9®) \where
q(z) = —az?® — bz + d
Is another polynomial of degree less than or equal to 2.
We will showthata = 0. To do this, we will estimate the Berezin transform |u[? when

u is a quadratic exponential function as given above. More specifically, for C; = |e€|?, we
have

— 2
lul2(z) = ¢, f |ea(z+w)2+b(z+w)| dA,(w)
C

= C, |eaz2+bz |2J |eawz+(b+2az)w|2 dA,(w).

Write b 4+ 2az = al. Then it follows from the inequality | F[2 > |F|? for F € F2 again
that

———

WP =G fesst o [ et | o ep )] dAgw)
C

> (,|e®s+ba |2 pal?l? |ea<2|2_
If we do the same estimate for the function v, the result is
mz’(z) > G, |e—az2—bz|2 el1? |e—a52|2 ,
where ¢ is the same as before and ¢, = |e?|”. It follows that
/@/@W(Z) > CICZeZalflz — 61C262|b+2az|2/a_
This shows that | u|?| v|? is unbounded unless a = 0. Therefore, the boundedness of

| u|?| v|? implies that

bz+c —-bz+d
, .

u(z) = e v(z) = e
By [146], the product T,T, is bounded on EZ2. In fact, T,,T, is a constant times a unitary
operator.
Combining the arguments above and the main result of [146] we have actually proved
that the following conditions are equivalent for u and v in F2:
(a) T, Ty is bounded on F2.
(b) T, T; is a constant multiple of a unitary operator.
(b) | u]?| v|? is bounded on C.

~~

(©) | u|?| v|? is constant on C.
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Recall that in the case of Hardy and Bergman spaces, there is actually an absolute
constant C (4 for the Hardy space and 16 for the Bergman space) such that
| ul?(2)| vI*(3) < CIT,T5lI?
for all u, v, and z. We now show that such an estimate is not possible for the Fock space.
To see this, consider the functions
u(z) = e%?,  p(z) =e 997,
By calculations done in [146], we have
T, T, = e®al’/2y
where W, is the Weyl! unitary operator defined by W, f(z) = f(z — a)k,(z). On the other
hand, by calculations done earlier, we have
[ul(2)[ v (z) = eI,
It is then clear that there is NO constant C such that
eZalalz < CeaIaIZ/Z
for all a € C. Therefore, there is NO constant C such that
sup |ul?(z)| vI*(z) < CIT,Tsl?

z€C
for all u and v. In other words, the easy direction for Sarason’s conjecture in the cases of

Hardy and Bergman spaces becomes difficult for Fock spaces.
Corollary (5.3.15)[185]: If £, € .’Ff_e, there is a constant C > 0 such that
2

1 1 e
@)l < Clan @ ez 5 ec.
Consequently, the order of every function in Tf_e Is at most (1 — 2¢).

Proof. By the reproducing property and Caucth-Schwartz inequality, we have
fGol = | Y Aok Guwddls ()| < D 151K o)
c S S

for all f; € ?f_e and all z,, € C. The desired estimate then follows from Lemma (5.3.2).
2

See [156] for more details.
Corollary (5.3.16)[185]: Suppose that u? and v?2 are functions in ?f_e, each not identically
2

zero, and that the operator T = T,2T;2 is bounded on ?f_e. Then there exists a polynomial
2

g of degree at most (%— €) and a nonzero complex constant ¢ such that u?(z,) =

e9@n) and v2(z,) = ce 9@,
Proof. IfT = T,2T, is bounded on ?f_e, then the Berezin transform T is bounded, where
2

T(zy) = (T,2T52 kzn' kzn>' 2, €C.
By the reproducing property of the kernel functions, it is easy to see that
T(zn) = uz(zn)vz(zn)-
Since each k_is a unit vector, it follows from the Cauchy-Schwarz inequality that
[u?(3,)v*(32)| = |T(za)| < IITI|
for all z,, € C. This together with Liouville’s theorem shows that there exist a constant c
such that u?v? = c. Since neither u? nor v? is identically zero, we have ¢ # 0.
Consequently, both u? and v? are non-vanishing.
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Recall from Corollary (5.3.15) that the order of functions in F2, . is at most 2(d + €),
so there is a polynomial of degree d,

d
9@ =) (+esk d<[2d+e),
k=0

such that u? = e9 and v?> = ce™9. It remains to show that € > 0.
Since T is bounded on FZ, ., the function

(T (Kd+e (" Wn)): Kd+e(': Zn))

\/Kd+e(zn: Zn)\/Kd+e(Wn' Wn)
must be bounded on C2. On general reproducing Hilbert spaces, we always have
(TuZszZKwn; Kzn> = (TEZKwn' TuZKzn) = <772(Wn)Kwn: u? (Zn)Kzn>
= u? (Zn)ﬁz (Wn)K(Zn: Wn)-

F(Zn'Wn) =

It follows that
Kd+e(zn: Wn)

\/Kd+e(zn» Zn)\/Kd+e(Wn; Wp)

F(z,,w,) = ced@)-9wn)

From Lemma (5.3.2) we deduce that

1 ¢ 2

IF (3, Wy )| 2 €Ro(0GEm=900m) =3 (lanl T e=hwnl€7) (57)

for all |arg(z,w,)| < cOy(|z,Wn|) as |z,wy| grows to infinity. Choose x, > 0
sufficiently large and set

. T arg((1+€)q)
Zn(xn) = xnelme_l d )
and
. .arg((1+e)d)+2(ch)xg_|_e
w,(x,) = x,e'2de™ d
Since

eo(lzn(xn)wn(xn)l) =
we can apply (57) to z,,(x,) and w,, (x,,) to get
eRe(g(Zn(xn))_g(Wn(xn))) < sup |F(Zn; Wn)l < oo (58)

(%n,Wn)EC?
as x, grows to infinity. On the other hand, a few computations show that

Re (9(zu(0n) = g(wa()))

a i , cj
:z xr]L Re ((1+E)jeij%—iéarg[(l+6)d) <1 — e 12(d+e)dx,‘f+6>
j=0
i
1 — e 2@+e)dx™ ) = |(1 4 €)4] xZ sin

(d + e)x2te’

c
+ Gga- )

c
n

where
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d-1

. Jm ] Cj

_ J iZ——iZ arg((1+€)4) .

_1(x,) = x;,Re| (1+¢€);e2d 'd 1 —-—e—i

gam (i) ; " <( ) < 2(d+e)dxff+e>>
, T

|(1 + 6)j|x,]1 sin (;—d + arg (1+¢);

d-1
j=0
cj
n
2(d + e)dxd*e

—é arg ((1 + e)d)> si

d-1 . )
- T
+ z |[(1+€); |x,]1 cos [;_d + arg (1+¢); —é arg ((1 + e)d)] !1
j=0

— cos cl S x5t
2(d + €)dxg*e

Therefore, there exist some (x,,), > 0and § > 0 such that
S1(1+ €)4]x2
Re (9(sn(n)) = 9(Wa()) 2 =2
n
forall x,, = (x;,)0.Since (1 + €),4 # 0, it follows from (58) that € > 0.
On several occasions later on we will need to estimate the integral

(0]

1 €
0

where € = 0.
First, suppose € > 0. By various changes of variables, we have
1 0
I(1+¢) = j e 2 At et g j e L Gl
0 1

1+e ' e-1 ” —lrz(d+€)+(1+e)rd+€ ré-1
<e ¢ dr + e 2 dr
0 1

1+€ 2 00 2
e (1+e€) 1/ dve_
= + e 2 j e 7 (ri*e-a+e) re=1 dr
1

€
Lie (1+€)? -
e e 2 1 —-d
= + j e 219" 1ave dt.
€ d+e J;

If = — 1 < 0, then
d+e

elt€  \2m (1+e)? (\/E \/271) (1+€)?
e 2 <|— + e 2 .
€

I(1+€) < +
( ) d+e€ € d+e€
-2d
Otherwise, we have i — 1 > 0. Using the fact that u? ~— wud+e is increasing, we
see that
5 e d 3(1+)% 5 31 + )%
2 - € € 2 € €
f e 2 (t+ 1+ e)d+tedt < (—) e 2dt < V2m (—) .
_l+e 2 _1+e 2
2 2

For the same reason we also have

220



+ 0o t2 —d 400 t2 —d —d + 0o —d tZ
f e 2 (t+ 1+e)dtedt < f e 2 (3t)d+edt < 3mf td+ee 2 dt
1+€ 1+e 0

V2 —4 r+o g V2 —d -1
—_ ) d+e j. dtep—U _ d+EI" <—>
2(3\/—) 0 ud+ee W dt 2(3 V2) TCED)
In the case when € > 0 (or equivalently € > 0),

2+e€ 2+E
Tzt —d 2 + e die
.[ e 2(t+2+6)d+6dt< f e Zdt
(1+€) (1+e€)
—_d 2+€
24+ e\d+e [T 2 (2+6)t 2+ € d+e _(2+€)?
<)/ = () T
2 ~(1+€) TE
—d
2+ e\d+e
<2(19"™
It follows that there exists a constant C = C(d + €, —1) > 0 such that
R SO R ® _t? —d —d
j e 2 td+edt =j e 2 (t+ 2+e)d+edt < C(1 + 2+ e)d+e
1 —(1+¢€)

for d < 0. It is then easy to find another positive constant € = C(d + €, — 1),

independent of (1 + €), such that
—-d (1+€)?
I(1+€) < C(2+e€)d+ee 2

forall e > 0 and d < 0. Therefore,
*® 1 € d 1 2
j e 2T WOrArOrt L1 g < (2 + e)max( The) e% (59)
0

forall e > 0. Since I(1 + €) isincreasing in (1 + €), the estimate above holds for 0 < e <
1 as well.

Corollary (5.3.17)[185]: Forany 6§ > 0,e > 0, we can find a constant C > 0 (depending
onl+e¢,6,14+€€e—1,1+€butnotonl +¢,d,x,) such that

2(1+¢€)

Tt x €\ 1+46%
_ n 2(1+€) d d 2
x;l jl+€ e (1+r Y+(1+e)xi(1+679) reldr < C(Z +E)max(0 1+E)e >—(1+€)
£
and
+oo x2(1+6) 1+ 1+¢€)?2
x1+e e~ 1 (1—r1+6)2+(1+e)x%(1—rd)r76 dr < C(2+ E)e—( 26)
" Jite B
x5

forallx, > 0, € > 0.
Proof. Let ] = I(1+€,¢e—1,1+¢,14+¢€,x,,1+¢€,d) denote the first integral that we

are trying to estimate. If x,, = 1, we have

2(1+€) o0 2(1+€)
XnT
[ = x-1 e—”T +(1+€)xg e—( 1t )2 +(1+€)8 (xn)? r€1 dr
n 1+€
X7

x2(1+e) - fove) d
—-(14¢€) 1. € - -
< xn( )e s— +(1+e)xy Jl-l- e 5— +(1+€)6r ré=ldr
€

Xn

221



T
_1 (x te_(146)) +M f1+6

e—%T2(1+6)+(1+6)5Td re=1 dr

(1+e)tte
(1+€)?

L &7 " e—rz(;+6)+(1+e)6rdr26dr

(1 + €)1+e€ 1+6 '

The desired result then follows from (59)
If0 <x, < 1,we have

x2(1+e) 0
1 - —+(1+e)xd
[ = xgte 2z *T0+om e
1+¢

Xn

(an)2(1+e) d
I +(1+©)8(mn)? Le-1 gy

o T2(1+e) d
—(1+€ - +(1+€)8 _
14e, )Le 7 (18T o1y
€

IA
®

n
Xn
2
(1+¢€) +1

5 I 2(1+€)
< e— e—r 5 +(1+€)6r¢ r2€dr.
T (1 +e)tte Jite

Xn

The desired estimate follows from (59) again.

To prove the second part of the corollary, denote by | = J(1+¢€,d,1+¢€,x,1+¢€)
the second integral that we are trying to estimate. Then it is clear from a change of variables
that for 0 < x,, < 1 we have

-1 2 1+€
— 1+€_,.1+€ d_..d
(1+Ed1+exn,1+e)—x2 . (x ) +a+e(xn-r) = 4.
€
Xn
1
- el+€ x% +0oo . E( 2(1+e€) Z(x T)1+€+T2(1+6))’r3;6 dr
14 ™ 1+€
Xn
1+€ + 00 2(1+€) 2
e T 1+e 3+€ (1+¢€)
< j z T r 2 dr= Ce'* < C'(24€)e 2z
1+¢€),

where the constants € and C only depend on 1 + €.
Next assume that x,, = 1.Incase 1+ € < x2wewrite] = J; + J,, where
Ji = J1(A+e6d,1+€x,1+¢€)

1 2(1+€) 1+e
_*n _14+€)2 drq_,.d
1+e fl 5 A-r"T9*+(1+e)xf(1-1r% rz dT‘,

= X, e

Xn
And
Jo = .(1+€6d1+6€x,,1+¢€)

2(1+€)

oo
Xn
= xrll-l_e J e 2
1

Otherwise we just use J; < J,. So it suffices to estimate the two integrals above.
To handle J;(1+¢€,d,1+¢€,x,,1+€), we fix € > 0 and consider two cases. In the
case x1t¢ < (1 + €)?, we have

1+€

_ € drq_..d i
A-r*92+(1+e)xq(1-1%) 7 dr.
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2(1+€)

1 xn € d d 1+e
Ji(1+e6d,1+¢€6x,14+6€) < 1+€f1 e A-r*92++exn(1-r%) = 40

+e€
X7
(1+ )2 1 € € 2 1+
< (1 +e)?e - fHEe 3 (e a-r*9-a+e)) rTEdT
x5
(1+€)?
< (1 + &)?
When x1t€ > (1 + ¢)?, wesety, = xI*¢and7 = (y, — (1 + €))/2. Then we have
£

>
TP R

asy, — +oo. By successive changes of variables we see that

2(1+¢€)

1 Xn € € e 1+€
]1(1 + €, d 1+ €, X, 1+ 6) < x1+6 Jl+6 e_ 2 (1—7'1"' )2+(1+6)x}l+ (1—r1+ )rT dr
xZ
(1+€)1*e
1- 2 11 Zr?
Yn J Yn (1 _ T‘)m_i e—yzr +(1+e)ynr dT‘
1+e€
_(1+6)1+6 1—€
_ 1 Jyn Yn (1 )2(1+6) —72+(1+E)T dr
1+¢€), Vn
1+€)2 1+e 1 1
e( 26) J’n_(1+6)_(1+;2 1 + € r 1+e 2 _ﬁ
— J (1 — ——) e 2 dr.
1 + € —(1+6) Yn Yn
This shows that for 0 < € < 1 we have
2 1+e€
e_(1+26) Yn_(1+€)_—(1+32 r? N2 (1+e)?
i =< j e z2dr < e 2 .
1+€e J 146 1+e€
Thus we suppose that e > 0. Then
€ €
T 1+e r\ 2@+e _r? 1+e 71\ 202+e) (¢ _r?
f (1— ——) eZdrS(l— ——) f e 2dr
-T Yn Yn Yn Yn -7
€ €
T >_2(2+6)f ( ) 2(2+€)
= [— 2 dT < \V2M | ————— .
(Zyn —r 4(1 + ¢)
Moreover, in case —(1 +€) < —t, we have
€
-T 1+€e 1\ 2(2+te) _r?
] (1 — ——) e 2 dv?
—(1+¢€) In Yn
€
1+e 1\ 2@+ (7 ° _zrl
< (1 — +—> j e 2 dr
Yn Yn —(1+¢)
€ _ﬁ € 5+¢ 2
S5oxe) 595 e) —_— £
< 2( 3¢& ) 2(2+€) e 2 < 4<§> 2(2+e€) ( £ ) 2(2+€) e B+e)Z
2(1 + ¢) T 2 1+ ¢

2+€
Similarly, incasey, — (1+¢€) — (1+e)

> 7, we have

n
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(1+6)2+6 €

Yn—(1+€)— n 1+¢€ 1 2(2+e) r?
f g [1 — - — e 2 dr
T Yn yn
€ 2+€
(1 + €)2*€] 2@+e yn_(1+6)_(1+;31 o
< T f e 2 dr
n T c
< 20+ 97 [t e e (sincer > 5 )
= € P E— T € e Sincet =2 —————
2(1 + ¢) 2 2(1 + ¢)
&
< 4(1+ 6)_% e 8(1+e)?
The last three estimates yield
(1+€)?

J1 £ CR2+e)e 2
for some C > 0 that is independent of x,, and (1 + ¢).
To establish the estimate for J,, we perform a change of variables to obtain

€

E 2+€ 1 +oo r2 r “2(2+e)
- S ar = J e 7 < + 1> dr.
0

+oo 2(2+€)
_%n
L2 = er1+€] e 2
1

If e >0, we have

and if 0 < e < 1, we have
+0o 2 1-€

1 r €
J, < —— e 2 (r + 1)20+e gr.
1+¢€ ),

Therefore, J, < C for some C > 0 that is independent of x,, and (1 + €). This completes
the proof of the corollary.

In the proof of the main theorem, we will have to estimate the following two integrals:

- € dginz(84
(1) zf o (xpr)te+2(1+e)r smz(z)

s
9l=7079

|Ky1e(xn,7e')| d,

and

](xn’ T') — e—(xnr)1+6+(1+e)(x,dl+rd) |K1+€(xn, rei@)l dQ,

s
19127014

where x,, 7,1+ € € (0,+o) and e = 0.
Corollary (5.3.18)[185]: For any € > —1 there exist positive constants C = C(1 + €) and

€ = —1 such that
1
Gt 1) < Canr)e f (G- d)e? g,
0
and
Ce~ ) e+ (+e) (xf+19)

JQ 1) <

foralle > 0,and x,, > Owithx,r > 1+e€.
Proof. It follows from Lemma (5.3.2) that there exist positive constants C = C(1 + €) and
€ = —1suchthat foralle > 0and x,r > 1+ € we have
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€ € d . od
e—(xnr)1+ +(xpr) 1€ cos((1+€)0)+2(1+€)r% sin? (7>

[(xy,7) < C(x,7)°
< _
e

= ZC(xnr)Ef :

2(1+e€) e—z(xnr)“e sin? (@>+2(1+6)r‘1 sin? (97d>
0

do

do

T
2(1+ _ 14+€ 2 ((1+€)6 d..2 ((1+€)0
< ZC(XnT)ej (1+e) o 2(xpr)* T € sin ( > >+2(1+e)r sin (72 >d9

0

T
2(1+ _ 1+e_ d) a2 ((1+€)6
< ZC(xnr)ej (1+e€) e 2((xnr) (1+€e)r?)sin (72 >d9
0
Q 1+ dy.2 dt
— 14+C (xn1)€ j G L L
€ 0
V2
< T/EC (x,7)¢ j 2 o2 te-arer ) gy
€ 0
1
= i\/EC ()€ j e~ (G e-(+erh)e? gy
€ 0
The estimate
Ce—CGnn) ' Fe+@+e)(xff+1?)
J(xp, 1) < . x,r > 1+¢€,

XnT
also follows from Lemma (5.3.2).

Corollary (5.3.19)[185]: Forany € = 0 there exist constantse > 0andC = C(1+¢€) >
0 such that

+oo 1/ 1+e_,.1+e)? d_..d € 2
jl+6 e_f(xn -r1*e) +(1+e)(xd-1rD) I(x,,r)rdr < CQ2+ E)—me(1+e)

Xn

and

- 7 (e’ __€ \o(1te)?
jl+e e_i(xn €_rlte) ](xn,r)r dr < C(Z_I_E)max(o, 1+€)e

Xn
forallx, > 0, € > 0.
Proof. For convenience we write x,,

_1 €_, 1+€)2 d_..d
A (1) = e 2(x11l+ rite) +(1+e)(xf-r )I(xn, r)r,
and

1 € e\2
Ay (xp, 1) = €2 (xz*e-r17€) J (o, )T

Let (1 + €) and C be the constants from Corollary (5.3.18). In the integrands we have r >

1+ €/x,,0orx,r > 1+ €,so0according to Corollary (5.3.18),
1

I(Xn, 7") < C(xnr)e.[ e_(xnr)1+6t2+(1+6)rdt2 it
0
If, in addition, x,, < 1, then
I(x,,1) < Cree@+ort
and
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1+e_,1+€)2 (1+e)xd-(1+erd _Llate_p1+e)2
A (x,,T) = e ~3 (o ) e I(x,,7)r < Critceltee 7 (< )
It follows that
® *® 1+e_,1+€)2
f Ay (x,,7)dr < Ce“ef ritée” 2 (x4 ) dr
1+€ 1+€
Xn Xn
*® 1 2(1+e),  1+e,.1+e_1_2(1+€)
< Cel*e J ritee 2  HEWITETT gy
0

(0]
1+€ 1+e pitez 2O ~Trep(1+6)?
< Ce ritée dr< C(1 + 1+ ¢€) 1+ee :
0

foralle > 0and0 < x, < 1.
Similarly, if x,, < 1 (and x,,r > 1+ €), we deduce from Corollary (5.3.18) and (59)
that

jﬁ Ay (xp,7)dr <

T 14+e€

Xn Xn

[0.]
1+e_,1+€)?
fl+ e Z(X €_rlte) e—(x,rl)1+e+(1+e)x,‘{+(1+e)rdr dr
€

Cel™ [® 1 ,u+e d
< — jl+ e 5T +(1+€)r rdr
€ €

Xn
1—¢€
< C'(2+ €) max (0, T e) e1+e)?®
Suppose now that x,, = 1andrx, > 1+ €. By Corollary (5.3.18) again,

1
Ay (xp,m) < Cr(xpr)fe gl 1+E)2+(1+6)(x%_rd)J o~ t2(Cen) P e-(1+er?) g4

0
Fix a sufficiently small ¢ € (0,1). If (x,r)'™¢ > (1 + e)r?(1 + ¢), then

1 Vepr)1te — (1+€)rd
0 V@)t — (1 +e)rd Jo
1+€
1 0 =z
< f e’ ds = ﬁ (xaT)
JOr)ite — (1 +e)rd Jo

-
x,r)1te

(1l + &) _lte
< [ Gan)
so there exists a constant C = C(1 + €) such that

e—1 2
1+€_ 1+6) +(1+€)(Xgl—7'd)

A (x,,7) < Cr(x,r) 2 e 3 (h
If (x,, 7)€ < r9(1 + €)?, we have
AI (xn: T') (1 )
€ d(e)+1+e€ E( 2(1xn+6)+r2(1+6))+(1+e)xnf e(1—t2)((xn7")1+6—(1+6)7"d) dt

+ E)1+e r 1+e e
0

€ d(e)+1+e ,201+6) d
< (14 o)Trer i g z(@ PP EO) e atrer?)

It follows that
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400
fl . A; (x,,7)dr

1+e
Xn
e—1 + oo
-— 1 1te__1+e)? d_..dy 1lte
anz L€ 5> (et e-rt ) +(1+e) (aq -7 )T‘_Z dr
€
Xn
+00
€ 1, 2(1+e€
+ (1 + €)1+e o2 G TN (o) (xirerd)
1+€
Xn

The change of variables r — x,,r along with the second part of Corollary (5.3.17) shows
that

e—-1 +00

1+€ 2
x, 2 o3 (A E-rH ) o (xr iz 5 (2 +e)e(1+26_) :

n 14€

Xn
Similarly, the change of variables r — x,,r together with the first part Corollary (5.3.17)
shows that
f+°° d(e)+1+e 1 (x2(1+6)+r2(1+'5) d(e)+1+e€ 1+$2,
1

e r- 1+e e 2\n )+(1+6)(xg+€7‘d) dr < C(Z-I—E) ite e 2 \1+6)2.

Xn
We may assume that ¢ < 1. Then we can find a positive constant C such that
€ T d(e)+1+e 1( 2(1+€)

[

2(1+ dy..d
(1+e)1+e v e zlxn AT )+ (re)(wi+er Ddr

Xn

< C(2+ €)Tre e(1+9?
It follows that

1+€

+00 €
j A (¢, ) dr < C (2 + €) THe g1+
Xn
for some other positive constant C that is independent of (1 + €) and x,,. This proves the
first estimate of the corollary.
To establish the second estimate of the corollary, we use Corollary (5.3.18) to get

2(1+€)

xnd; (Xp, x,7) = x5 7E" 2 J(x, x,1)
2(1+¢€)

x
< Ce” s (14720491 (1+€)xd (1 +1r%) .

It follows from this and Corollary (5.3.17) that

+oo +00 e 2
jl+e Ay Cep, 1) dr = xy _Il+e Ay (Xp, xpr)dr < C(2+ e)max(0'1+e)e(1+€) _

(1—T1+6)2

Xn x2
This completes the proof of the corollary.
Corollary (5.3.20)[185]: If u?(z,) = e9@n) and v?(z,) = e 9@, where g is a
polynomial of degree at most 1 + ¢, then the operator T = T,2T52 is bounded on F7, ..
Proof. To prove the boundedness of T = T 2Tz, we shall use a standard technique known
as Schur’s test [162]. Since

T zfs(zn) - f Z K1+E(Zniwn)eg(zn)_g(wn) f:s(Wn)e_lan(He) dA(Wn):
s €
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we have

_1 . 2a+e _1 2(1+€)
T D fi () || €72 < j > HyGnwlfswle 2" aawm,),
N c N

where
1

Hg (B, Wr) = |Ki4e(Zn, wp)le 2
Thus T will be bounded on FZ, . if the integral operator Sy defined by

(|Zn|2(1+e)+|Wn|2(1+6))+Re(g (zn)_g(wn))

Sy D fean) | = [ D (Hyonmwa) + Hym,20)) fion) dAGw,)

is bounded on L?(C, dA). Let
Hy(an) = | HyGonw) dAGw), 2, €€
C
Since

Hog(n) = | € Hy2) dA ),
C
for all z, € C, by Schur’s test, the operator S, is bounded on L?(C, dA) if we can find a

positive constant C such that
Hg(zn) + H_g(zn) < C, Zn € C.
By the Cauchy-Schwarz inequality, we have

Hg1+g2 (Zn) < \/HZQl (Zn)HZQZ (Zn)

for all z,, € Cand holomorphic polynomials g, and g,. Moreover, if
U9 (Zn) = elezn' Zn € (C' 6 € [_7T, 7T],

then
Hyou, = Hg 0 Ug
for all z,, € C,0 € [—m, ], and holomorphic polynomials g. Therefore, we only need
prove the theorem for g(z,,) = (1 + €)z2 with some € > 0 and establish that
sup Hy(x,) < C,eC2(1+e)* (60)
Xn20
where C;, are positive constants independent of (1 + €) and d (but dependenton d + €). We
will see that C, can be chosen as any constant greater than 1.
It is also easy to see that we only need to prove (60) for x,, = 1. This will allow us to
use the inequality x¢ < x&*€ for the rest of this proof.
For e > 0 sufficiently large (we will specify the requirement on (1 + €) later) we write

Hg(xn) = j Hg(xn' wy) dA(wy,) +j Hg(xnr wy) dA(wy,).

|xpWnls1+€ [xpwnlz1+€
We will show that both integrals are, up to a multiplicative constant, bounded above
by e(1+£)(1+e)2 .

By properties of the Mittag-Leffler function, we have

d+e
|Kd+e(xn» Wn)l S — EL 1 (1 + E) = Ciye |onn| < l+e
. n d+e’d+e
It follows that the integral
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W= Hy Gt wy) dA(W,)
Xnlwpls1l+e
Satisfies

I = f 1K g e (3, W) o2 (30O Hwn 2Ot trerre (att-wil) 4y,
Xnlwpls1l+e

= C1+EJ e 2(
Xnlwplsl+e

< C —lxz(d%) +(1+6)ng e~
= Lite
Xnlwp|sl+e

1 _2(d+e) d+e +0oo r2(d+e) d
—= +(1+ - +(1+
< 2nC;,.e 2'n (1+e)xn e” 2z T 4 gy

2(d+6)+|w |2(d+e))

+(1+€)Re(xfi-wf) dA(wy)

|Wn|2 (d+e€)

+(1+6)|Wn| dA(Wn)

(1+6)2 _ 2(d+e€) d
< 2nCy e 2 J e” 2z T gy
0

—-d—€
< CR2+ E)max(o, d+e ) p(1+€)? )

where the last inequality follows from (59).
We now focus on the integral

I =j Hg(xnrwn) dA(wy,).
Xplwn|21+e€

Observe that for all x,,, r, and 8 we have

Re(xd — rte'?) = x2 — r%cos(dd) = x% — r%(2 — cos(dh))
do
= x% + r%sin? (7>

It follows from polar coordinates that

Jl j H,(xp, re’®)r do dr

1 j . E 2(d+6)+r2(d+6))+(1+e)(xn—r COS(dQ))|Kd+e(xn'rele)|r do dr

L dve_jd+e d_.dy_ d+e n do
_ f1+6 e 2(xn+ + ) +(1+e)(xf-1H—(x,r)4t rdrj ez(1+e)rd sin2 (2 ) |Kd+e(xn'rele)|
— -

Xn
+ oo

1 € €)?
< -[1+6 e 2 (xf+e-rdte) (e(1+€)(9€%—7’d) 1(x,,,7) + J(x,, r))r dr,

Xn

Where
_ d+e deinz (40 _
I(xn,r) — f n e (xnr)*Te+2(1+€)r%sin (2 )le+e(xn,rele)| d@,
91<za+e)
and
](xn’r) — n —(xnr)d+6+(1+e)(x%+rd)|Kd+6(xn,rei9)| de.
T GETs)

By Corollary (5.3.19), there exists another constant C > 0 such that

d—
L < c@+om(are Jeurer,
Therefore,
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max(O —d- 6) 1+ 2
sup f H,(zn, wy) dA(wy,) < C(2+€) ~die )e(1+e)
C

znE€C
for yet another constant C that is independent of (1 + €) and d. Similarly, we also have
—d—e€
supj H_;(zn,wy) dA(wy,) < C(2+ e)max(o' d+e ) (1+€)?
C

2n€C

This yields (60) and proves the corollary.
Corollary (5.3.21)[185]: Suppose u? and v? are functions in FZ. ., not identically zero,
such that the operator T = T,2Tz is bounded on Fj, . Then the function
[u?]2(3,)[v?]?(z,,) is bounded on the complex plane.
Proof. Since T,2Tz= is bounded on F7,., the operator (T,2Ty2)* = T,2Ty and the
products (T2Ty2) * T2Tp2 and (T,2Tyz) * T,2Tyz are also bounded on FZ,..
Consequently, their Berezin transforms are aII bounded functions on C.

For any z, € C we let k, denote the normalized reproducing kernel of 73, . at z,,.
Then

((T2T52) " T,2Ty2k, , kzn) = (T 2Ty kzn»TuZTEZkzn)
= (uzvz(zn)kzn'uzvz(zn)kzn> = |172(Zn)|2 |/;2T2(Zn)

is bounded on C. Similarly [u2(z,,)|? [v2]?(z,,) is bounded on C. By the proof of Corollary

(5.3.16), the product u?v? is a non-zero complex constant, say, u?(z,)v?(z,) = C. It
follows that the function

[v212(z,)[W?12(2,) = |u?(z0)1? V212 (2)|1v%(30) 12 | uZ]2(2,)
Is bounded as well.

To complete the proof of Sarason’s conjecture, we will need to find a lower bound for
the function

Icr

B(zn) = V22 (z)u? (3017,

where u? = e9,v% = e 9,and g is a polynomial of degree d. We write
i 9(zn) = 1+ 6azh + ga-1(zn),
where
(1+6)y = (1+6€)el*9e, >0,
and
d-1
9a-1(zn) = Z (1+ €)1,

=0
In the remainder, we will have to handle several integrals of the form

100) = | Se, e om0 dr,
]

where S, and g, are C*-functions on the interval J, and the real number x;, tends to +oo.
We will make use of the following variant of the Laplace method (see [130]).
Corollary (5.3.22)[185]: For z,, = x,e®, with x,, > 0 and e!((1+©a*d®) — 1 we have

e _d+e
B(zn) 2.[ (rx,)” 2 r2@+e)-1e=he, (M gy
0

as x, — —oo, where
he (r) = (r®*e — xf*€)?2 — 21+ e)(xf — rH+ Cr 1+ x{1 4+ 1), (61)
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for some positive constant C.
Proof. It is easy to see that

B(zy) = j |KseWn, 2) |2 @2R@E-90m) [K L (7, 2,171 e 1" dA(wy),
C
which, in terms of polar coordinates, can be rewritten as
too o . o (if .
f j |Kd+6(relg'zn)|2 eZRe(g(zn) olre )) [Kare Oy x)] 7 e ™" r dr de.
0 T
By Lemma (5.3.2), B(z,,) is greater than or equal to
+oo . o (niB
j f |Kd+e(7"€“9,Zn)|ZeZRe(g(zn) g(re )) [Kgse(xn, xn)]—1 e~ 12(d+6) »dr do.
0 |6 —¢|<cOo(rxn)
This together with Lemma (5.3.2) shows that

+00 .
B(Zn)f r2(d+6—1)e—(rd+ —x1+€) I(r, z,)rdr,
0

where
1(r,z,) = j eZRe(g(zn)—g(reig)) do.
|60—|<cOo(rxy)
Note that
I(T, Zn) = j eZRe[(1+e)ei(1+e)d ("geid""rdeida)]+2Re[gd-1(zn)—gd_1(reie)]de

|60—|<co(rxn)

f e2Re[(1+6)ei((1+e)d+d4’)(xﬁ—rdeid(9‘¢))]+2Re[gd_l(zn)—gd_l(reie)]dg.
10— |<cBo(rxn)
The condition on ¢ yields
I(r, Zn) — j e2(1+6)Re[(1+6)(xﬁ—rdeidg)]+2Re[gd_1 (Zn)—ga—1(reli®+®)] do.
16]=cB0(rxn)

Since
d-1
gd—l(zn) - gd—1(7'€i(9+¢)) = z (1 + E)l(xrll eild) _ T'l eil(0+¢)),
=0
we have

Re[ga—1(8n) = gas(re'@®)] = —CO*" + Xt + 1)
for some constant C. It follows that
1(r,z,) = e—c(rd—1+x%—1+1)f o2(1+O)Re[(x3-r%ei0)] 19
|

O=cly(rxy)
For the integral we have
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](T‘,Zn) = f eZ(1+e)Re[(xg_rdeid9)]d9

16]=cBo(rxn)
— eZ(1+e)(x%—rd cos(d@)) do
|6]=co(rxn)

_ ez(1+e)(xrdl—rd+(— cos(d9)+1)rd)d9

2
2(1+ )< d_ d+2( in(%8 ) d)
e E)l X T sm( 2 ) T d9

1810 (rxy)

'/|-9|5C90(7'xn)

_(dB)?
> ez(1+e)(xrdl—rd) f e4|(1+e)d|sm<7> rdde
|

O|=cly(rxy)
d
> e2(1+e)(xii-r) do = e2(+e)(xi-r?) (rxn)_¥

|8]<cBy(rxy)
which completes the proof of the corollary.
Corollary (5.3.23)[185]: Assume e=0. For z,=x,e'®where x, > 0 and
e((1+6)a+dd) = 1 \we have

)

2(1+€) d+2e
Bae PWaRmert L e

Proof. For x,, large enough, the function h, defined in (61) is convex on some interval
[Mxn, +oo) and attains its minimum at some point ;.. In order to bound B(z,,) from below,

we shall use the modified Laplace method from Lemma (5.3.10). Since
d+2e-2 ( d_ a4,
hy, (r) = (d +2e)r 2 27 — x2 |+2(1+e)dr®t + Cc(d — 1Dr?2,(62)

n

we have

A, d+2e-2
he () = (d+26)(1 + 2(1+e)r?*?el —(d+2e)x; r 2+ C(d — Dri2,

and
hy (r) = (d+2€)(d+2e —1)(1 4+ 2(1 + e))r¢**2 - (d

d+2e—2\ %ie d
+ 2¢€) (7> x,21+€r5+6_2 +C(d—-1)(d—-2)r*3.
Writing hy, (7, ) = 0 and letting x;,, tend to +co, we obtain
d d+2e-1 d %+6 d+22—6_2
(E + e) 1+ 2(1+e)(r,) ~ (E + e) X2, ,
or
__1
d

e, ~ (1 +2(1+6€) 27 x,. (63)

Thus there exists p, , which tends to 0 as x,, tends to +oo, such that
1
"
e, = (1 + 2(1+¢€) 27%,(1 + py,) (64)

When x,, tends to 4o, we have

232



hy, (12,) ~ ( 7+e x§+6>2 + 2(1+ e)(rdt2e — xft2e)
( 2 ) K 2 )+z<1+e)< 2l x)]
~ xgtze [(1 + 21+ (1 + pxn)2+e
- 1] [(1 +2(1+e) (1 + pxn)Te —1+2(1

+6) ((1 +2(1+e) (1 + pxn)%“ + 1)]
2(1+¢)

xd+26
"1+ 21+e€)’
or
2(1+¢€)
—h ~ d+2e . 65
S 1+ 2(1+¢) (65)
In order to estimate ¢, := hy (ry, ), we compute that
d .\ 4-d—2e
W) ~ 2(5+€) (4 201+ drze xi2e?,
Thus we get
an ~ xg+2€ 2 (66)

For r in a neighborhood of r,, we setr = (1 +axn)rxn, where g, = oy (r) — 0as
X, — 4oo;a little computation shows that
h;c,n (T) ~ h;c,n (rxn)
as x, — +oo. Taking 7, = rxln/z and |r — 1 | < T, We have hy (r) = (1 +
o(1))cy,, SO

h, (r) — hxn(rxn) =% cxn(r — rxn)z (1 + 0(1)).

Thus
j e—%cxn(r—rxn)2(1+o(1))dr :j e 2 L2 (1+0(D)) dt
|7 =T | <Txp,

|t|<TXn

1 .[ 2
~ = e 2 dy, ~ —,
an |Yn|<Txp/Cxn an

because ¢, 77 ~ 1r1*2€~1 tends to +oo as x,, tends to +oo. Finally, the estimates
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—(d
B(z,) 2] (Txn) (d+2¢) ra+2e-1,=hy, (") ;-

=Ty |[<Txy,

- f (rx,)~(@+2€) pdt2e=1g =l (Tay) o =[Py (D =hay ()] g
|7 —Txy |[<Txpy

1 2
— e—hxn(rxn) (Txn)_(d+26) T.d+26—1e—§an(T—Txn) (1+0(1)) dr
|r Tap |<Txp,
(d+6) e 1 *(1+0(1
~ e hn(en)y2 % J o2 (r=T,) (1+0(D)
|7 =Tx, | <Top,
3rd
~ e hxn(rxn)r ( +E) ‘;(d+26) 1
Cx

n

along with (63), (65), and (66) give the corollary
Corollary (5.3.24)[185]: Assume e >0. For z, = x,e'®, with x, > 0 and
el((1+€)atdd) — 1 e have

242 S—e-1
(1+o(1))(1;6—)c§ xf=2€—cx2

B(z,) = e 27€ ) X, = +oo
for some positive constant C
Proof. Let 7, = o(x,) be a positive real number that will be specified later. As in the
proof of Corollary (5.3.22) we have

d
E+E E+€

+ 0o d —|r27C— 2
B(Zn) 2] r2(5+€—1)e (T X

0

) I(r,z,)r dr

2
d d a4,

2| 5+e—-1 5+€ 2

= j r (2 )e — <r2 - x; I(r,z,)rdr,

where

1(r,z,) = J e2Re(9(an-g(re’®)) 4o
10 —-@|<cOdo(rxn)
There exists ¢’ > 0 such that for [r — x,| < 7, we have

I(r,zy) = f e2Re(9en=9(re) gg
|6=¢l<c’6(x7)

=f e2(1+6)Re(x$f—7’deid9)+2R€[gd—1(zn)—gd—1(7'ei9)]d@
10]<c’6¢(x2)

- f ¢2(+ORe(xf-reid?) _ zz (1 + €)yl|xk — rleit®] g,
16]<c’6¢(x2)

Now for [r — x,| < 7, ,wewriter = (1 + 0)x,, where o tends to 0 as x,, — +oo.
Thusfor0<l<d-—1and|8] < c'8y(x2), we obtain
|xh —r e‘lg| = x2[1 — 2(1 + o) cos(18) + (1 + 0)?]
= x21 — 2(1 + lo + 0(0?)) cos(10) + 1+ 2lo + 0(c?)]
x22 (1 = cos(18))(A + lo) + 0(c?)]

16
< x2 [Sin2 (2 ) + 0o ] < x2H0?% + o2].
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d
—(=+
Next choosing |o| < xn(2 6),we get

i —(d+2€e d-2(1+e¢
|le1 —rle”e|Sx,?len( )Sx (1+e€)

n
or

d
. 5—(1+€)
|xh — rtel?| s x2

Thus there exists a positive constant € such that for [r — x,| < 7, and |0] < c'0y(x2),
d-1
d
. >—(1+
ZZ |(1+ e)l|xh — rtel®| < Cx? e
=0

It follows that

d
d_..d,id6 =—(1+€)
1(r,z,) 2_/. eZ(1+6)Re(xn rde )_erzl 4o
|0|SC,90(X121)
d d_
> x;(§+6)82(1+6)Re(xrdl_7”deid9)—Cx721 (1+¢€) .
Then
2
—+€ 2+€> d 4
—| r2 —xn —|=+€ d d E—(1+6)
B(zn) rdtzele ( xn(2 )ez(1+€)(xn—r )—Cx2 dr
[T—xn|STx,
d
—\5+€ E—(1+E) _ _
= xn(z )e—an j rdt+2e-1, h"n(r)dr,
|r—xn|<T
where

d d,.\?
hy, () = (rT’E — xrzlﬁ) —2(1+e)(x2 — 1),

It is easy to see that h, attains its minimumat r,, withr,, ~ x, asx, — +oco. Again
we write

T, = xn(l + pxn)r (67)
where p, tends to 0 as x, — +oo. Using the fact that k) (r, ) =0, we have (d +

d d
26x34 267 (1 4+ p )7 [(1+ py, )t — 1~ —2(1+dxd™ (1 + )
and

d
(d + 2€)xd+2e-1 (E + e) Px, ~ —2(1+€)dxp .

Therefore,
(1+e)d

x;, %€, (68)
(E+e)

d dic d
hy (r) = (d + 2€)(d + 26 — 1)r?*2€72 — (d + 2¢) (E +e — 1) xrzl+5r7+e—2 +201

+€)d(d — 1)r¢-2
and € > 0, we get

Px, ~

Since
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h;‘,n (rxn) ~ (d

+ 2¢€)xdH2e2 [(d-I-ZE — D)1+ p )

d dyee d 2
- <E+ € — 1) (1 + pxn)2+6 2] ~ 2 (E‘l‘ E) X,Cli-l_ze_z.
Also,

d 2
b 1) ~ 7% (1 4 9 )7 1|+ 204 0t [(14 0" - 1]

J 2
+ C(xft + 7t + 1) ~ (E+€) pZ xd*2€ + 2(1+ €)xf dpy,

It follows that
2

d
Cy, ~ 2 (E + e) xd+2e-2 (69)
and
(1+¢€)%d*>
—ha, (x,) ~ 7z Xy 2. (70)
(3+¢)
Reasoning as in the proof of Corollary (5.3.23), we arrive at

d d
-5+ >—(1+€) 1
B(Zn) == Xn (2 e)e_cx% e_hxn(”'xn) xg+26—1 .
an

The desired estimate then follows from (70), and (69).
Corollary (5.3.25)[185]: Suppose u? and v? are functions in 7—"22%, not identically zero,
2

such that | u?|2(z,,)|v?|%(z,,) is bounded on the complex plane. Then there exists a nonzero
constant C and a polynomial g of degree at most (% + e) such that u%(z,) = eg(z,) and

v2(z,) = Ce 9Gn)
Proof. It is easy to check that for u?> € FZ we have

Wz = | .

2 ~
u? ()| kg, Cen)|” da, () = 72 (zn)-
C 2

Also, it follows from the Cauchy-Schwarz inequality that |u?(z,)|* < |u?|?2(z,). So if
|u2|2(z,,)|v?|2(z,) is bounded on C, then B(z,,) and |u?(z,)v?(z,)|* are also bounded.
Consequently, u?v? is a constant, there is a non-zero constant C and a polynomial g such

that u? = e9 and v?> = Ce™9. The condition u? € 7—"92% implies that the degree d of g is
2

at most (d + 2¢); see Corollary (5.3.15).

Without loss of generality we shall consider the case where u?(z,) = e9%n) and
v2(z,) = e~9Gn)  We will show that that the boundedness of B(z,) implies € > 0. If
(d + €) is an integer, Corollary (5.3.23) shows that we must have € > 0.

Thus, in any case ((d + 2¢) being an integer or not), a necessary condition is € > 0. The
desired result now follows from Corollary (5.3.24).
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Chapter 6
Finite Rank Perturbations and Theorem of Brown-Halmos Type

We study finite rank perturbations of the Brown-Halmos type results involving
products of Toeplitz operators acting on the Bergman space. We show that operator is called
the Toeplitz operator with symbol p. We show that T, has finite rank if and only if p is a
finite linear combination of point masses. Application to Toeplitz operators on the Bergman
space is immediate. We show that there is no nontribyl rank one perturbation. However, in
the case rank m > 2, we construct an example that shows there are bounded harmonic
functions f, g and h such that T T, — T, has rank exactly m.

Section (6.1): Perturbations of Toeplitz Operators

Ahern and Cuckovic [101] proved an analogue of the well-known Brown- Halmos
theorem for the Bergman space Toeplitz operators with harmonic symbols. To state the
result, we introduce the notation. Let ID denote the open unit disk in the complex plane and
let dA denote the normalized Lebesgue area measure on . As usual, L?(ID) is the space of
measurable complex valued functions f on D such that f]le(z)lsz(z) < oo, The

Bergman space L2 (D) is the closed subspace of L?(ID) consisting of the analytic functions
onD. Let P: L?(D) — L%(ID) denote the orthogonal projection. For a bounded function
u on D we have the Toeplitz operator T,: L2 (D) — L%(D) given by T,f = P(uf). We
denote the Laplacian 4 = ajgz and the invariant Laplacian by 4 = (1 — |z|*)?4. We can
now state the above mentioned theorem.

Theorem (6.1.1)[163]: Suppose f and g are bounded harmonic functions and h is a bounded
C2 function such that Ah is bounded on D. If TiTy = Ty, then either fis conjugate analytic
or g is analytic. In either case, h = fg.

Later on, Ahern [164] removed the assumptions on h and showed the theorem is true
for h € L*(D). From Theorem (6.1.1), Ahern and “Cu“ckovi’c obtained a sequence of
results on products of Toeplitz operators that are parallel to the corollaries of the Brown-
Halmos theorem for the Hardy space obtained in [98]. We list some of them.

Corollary (6.1.2)[163]: If f, g and h are bounded harmonic functionsand T T, = Ty, then
one of the following holds:

(i) f and g are analytic.

(i1) f and g are conjugate analytic.

(iii) f is constant.

(iv) g is constant.
The next one resolved an open problem about zero products.
Corollary (6.1.3)[163]: If f and g are bounded harmonic functions and T, T, = 0, then
either f = Oorg = 0.
Corollary (6.1.4)[163]: If f and g are bounded and harmonic and T¢T, = I, then either f
and g are both analytic or they are both conjugate analytic. In either case fg = 1.
Corollary (6.1.5)[163]: If f is bounded and harmonic and sz = Tr,thenf =0or f = 1.
Corollary (6.1.6)[163]: If f and g are bounded harmonic and T, T, = Tyg, then either g
Is analytic or f is conjugate analytic.

This last corollary was proved earlier by Zheng [58] using a different method. We
point out that in [165] we constructed examples of Toeplitz operators with radial symbols
that show that some of these corollaries do not hold in general. One of the main steps in the
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proof of Theorem (6.1.1) is the study of the range of the Berezin transform. For any
integrable function f on D, the Berezin transform is defined by

BF() = (1 — |2 fm% dA ).

1

Let K,(w) = owiy? denote the Bergman kernel for z € D. Then k,(w) denotes the
normalized Bergman kernel:
k) = —— 120 €D

The Berezin transform can then be expressed as Bf (z) = (fk,, k,), where (-,) denotes
the L2(ID) inner product. We can also define the Berezin transform of any bounded operator
SasB(S)(z) = Sk, k,, forz € D. Another important step in the proof of Theorem (6.1.1)
is the proof of the fact that a rank 1 Toeplitz operator on L2 (ID) must be 0. For any operator
A, rank (4) = dim Ran(A4). Compact Toeplitz operators on L% (D) have been characterized
by Axler and Zheng using the Berezin transform (see [46]). Surprisingly characterizing
finite rank Toeplitz operators on L2 (D) is still an open problem. The common conjecture
among the experts is that a finite rank Toeplitz operator on L% (D) must be 0. In Guo, Sun
and Zheng [100] have proved this conjecture in a special case.

Theorem (6.1.7)[163]: Suppose that f isin L*(D) and f = Z§-=1fj (2) (g,(2)) for finitely
many functions f; and g; analytic on D. If T has finite rank, then f = 0.

Using this theorem, they obtained an extension of Corollary(6.1.2) on the zero
products of Toeplitz operators. More specifically, they proved that for two bounded
harmonic functions f and g, if the product T; T, has finite rank, then either f = O org =
0. We think of this product as TsT; = 0+ F,F finite rank, so product is a finite rank
perturbation of 0. Similarly, they also obtained a result characterizing finite rank
semicommutators Tr, — T,T, of Toeplitz operators with harmonic symbols. This is a finite
rank perturbation extension of Corollary (6.1.5), where we considered the case Ty, —
T¢T, = 0. Inspired by these results of Guo, Sun and Zheng, we want to obtain results on
finite rank perturbations of the products in the other corollaries listed above. They will
follow from the following result. Before we state it, we recall two known results. First, an
operator F of finite rank N can be written asy.}_; x; ® y; , for some functions x;,y; in
L2(D) forj = 1,...,N. Here x @ y is the rank one operator defined by (x ® y)h =
h, yx, where x, y, h are in L% (D). Second, if f is a bounded harmonic function on D, f can
be written as f; + f,, where f; and f, are analytic functions that belong to the Bloch space
B = {f: fanalyticonD and sup(1 — |z|?)|f'(2)| < o}

z€D

Theorem (6.1.8)[163]: Supposef = f; + 5,9 = g, + gzandh = h; + h, are
bounded harmonic functions on D such that hy, h, € H® (D). Suppose that T¢T, = Tjn +
F, where F =Z’]"=1x}- Q y; is of finite rank N, x;,y; € L2 (D)forj =
1,...,Nand N,n € N. Then:

()g,(2)f5(2) — h"™(2) is harmonic,

(i)f(2)g(2) = (@) + (1 = 12|)* )., x(2)y,(2) , for z €D.

Conversely, supposef = f; + f5,.g = g, + g,and h = h, + h,are bounded
harmonic functions on D such that (i) holds onD. If there exist nonzero vectors
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X1, XN, Y1, -, Yy INL5 (D), such  that (i) holds forz € D,thenT;T, = Tyn +
F,where F = Z?’zl x; @ y; isafinite rank operator.
In particular, condition (ii) implies that fg = h"™ a.e.on dD. If in addition,T,» + F is an
isometry, then
Iall o) = Al @) = [Ifgllie@py = 1.
Proof. Suppose that T;T, = T,» + F.Then we have
B(T;T,) = B(h™) + B(F). (1)

As in [101],

B(T;T,)(2) = fi(2)9:1(2) + f1(2)9:(2) + f(2) 92(2) + B(f,91)(2), for z €
D . Itis also easy to show that

N

N
BI(@ = ) By ® y)(@) = (1 = 1212 ) x ()7,@).
j=1 '

Jj=1
Thus (1) can be written as

(2912 + f1(2)9:(2) + f2(2) 9.(2) + B(f291) —All3(h”) = (1 — |z]?)?

> x5 @7,@ @)
j=1
for z € D. It is well known that the Berezin transform fixes L!-harmonic functions, i.e.,
B(u) = wifuisharmonic. Thus (2) can be written as

N

B(fugi + fude + fagr — K@ = (1 = 1212 ) 5@5,@) - LG -
j=1
Apply the invariant Laplacian 4 to both sides and use the fact that A commutes with B (see

[101]), to obtain

B (j(fz% - h")) (2) = A[(1 - 121)* T, %@y, @] — 4[fi(@)9.)] (3)
forz € D. Leto = A(f,g, — h,). After cancelling (1 — |z|?)? on both sides of (3) we

have
N

O-(E) _ 2N\2 RN /] 7 s N

T dA@) = 4| (- 122 ) x5 (@) - [, (@)
D |1 - le j=1

Notice that (1 — |z2)? XN, x; (D)y,(2) = X1 x5 @Dy, (2) — 2321, 2% (D)zy,(2) +

Y122 x; (2)z%y,(2) for z € D, which can be written as 3Y Y, %;(2)7, (z) with %, 7; €

L% (D). With this in mind, we can complexify (4) as was done in Lemma 2 of [101] to obtain

O'(f) 3N ~ =1 = / I (5

— A© =) H5@Y, @) - @DgG@ ()
(1 - fz) (1 — éw)? j=1

forall z,w € D . If we differentiate (5) k times with respect to w and then let w = 0, we

get

£ (9) N
> 77 JA(E) = % (2) — Cuf! 6
ReprAll ;Zlak]x] @ - afi@ ()

for some constants ay; ,cx, k = 1,2,.... Then (6) tells us that for any k € N, we have
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£ka(§) N
To(E) = f e - Y ay % () - i@
Using the argument of Proposmon 4 in [100] we have that T, has finite rank.
Notice that A(f,9,) = (1 — |z|*)?f",(2)g,'(2) is bounded since f, and g, belong to
the Bloch space. Ifn = 1,then 4h = 0.Forn > 1,
n

= (b + h)" = ) ()R- By
k=0
so that

n

Bhmy = (1) @ = 12PPKRRE - by - (= RS Ry
k=1
which is also bounded, since h, and h, are bounded by the assumption and they also belong
to the Bloch space.

Thus o(z) is in L (D) and it is of the form Z?Zﬁ F; (3)G, (z) for some analytic
functions F; and G;,j = 1,...,n. By Theorem B,o = 0, and hence 9. — h" is a
harmonic function. Thus (i) holds. Now (2) gives

1(2)9:1(2) + /1(2)32(2) + f2(2) g2(2)
+Hh@0@ - @) = 1-122? ) % @), &)

j=1
for all z € D. In other words (fg)(z) — h"(z) = (1 — 131D, x @)y, (&)
which gives (ii). The expression on the right-hand side is equal to B(Zj-gl x ® y;)(@)
which goes to 0 as |z| — 1, since Z?’zl x; & y; is a finite rank operator and therefore
compact. Hence fg = h™ a.e. on dD. Also notice that (3) implies that f;(2)g,(z) =
(1 — 12192 2Y, % (3)y,(3) + u(z) for some harmonic function w. If the operator
F = 0, then this would imply £ (z2)g,(z) = 0 on D. This means that f, is constant or g,
Is constant. In other words, f is conjugate analytic or g is analytic which is consistent with
Theorem (6.1.1) from [101].

Conversely, suppose that g,(z)f,(z) — h™(z) is harmonic on D, and f(z)g(z) =
h'(z) + (1 — |z12)2 XY, x; (3)y,(2). As calculated earlier,

B(TfT, — Tyn)(3)
= f1(8)9:(3) + fi(5)g.(3) + fz(Z)gI\?(Z) + B(fz g1 — hn)(z)

= (9@ - (@) = (1 = 577 ) %@, &)

j=1

N

j=1
Since the Berezin transform is one-to-one, it follows that T;T; = Ty» +X}_; X ®
and the converse is proved.
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Assume, in addition, that T,» + F is an isometry. Then (Tp,n + F) * (Tyn + F) = 1

or
Tin Tyn + F*Tpn + TynF + F*F = 1. (7)

We will recall some classical results about the algebra of bounded analytic functions
on D, denoted by H*. Let M denote the maximal ideal space of H*. Hoffman ([50], Lemma
4.4) has proved that the algebra C (M) is identical to the sup norm closure of the algebra
generated by the bounded harmonic functions. Thus h™ € C(M). On the ideal M we can
introduce an equivalence relation: m; ~ m, if and only if p(m,,m,) < 1, where

p(m;, m,) = sup {|f(m2)|f € H®fIl < 1,f(my) = 0}-
Here £ is the Gelfand transform of f defined by f(m) = m(f),m € M. The equivalence
classes are called Gleason parts. Let M, denote the set of one-point parts in M, and
J ={p € C(M):¢9 = 0onM,}.
Let r(C(M)) be the closed subalgebra of the algebra of all bounded linear operators on
L% (D) generated by {T, : ¢ € C(M)} and let C be the commutator ideal of 7(C(M)).
McDonald and Sundberg [167] have proved that C(M)/] isisomorphic to 7(C(M))/C with
the isomorphism
o +]>5T, +C.
It is also well known that € contains all compact operators. Let II: T(C(M)) - t(C(M))/C
be the quotient map. Apply II to the equation (7) and notice that F is finite rank and hence
F is compact. Therefore F* is also compact so (7) becomes
(Tsn )II(Tyn) = M)
Applying the isomorphism above, we obtain
(W + D™+ D=1+

or A - h® — 1 € J. Thismeans k™ - h™ — 1 = 0 on M,. But the maximal ideal space
of L*(0DD) is a subset of M;. Hence

p(h™) -p(h™) =1

lp(h)| = 1forallo € M(L*(0D)).
Since h is a bounded harmonic function on D, we can identify it with its boundary value
function, which we denote by h again. By Hoffman [166], p. 170 the Gelfand transform
maps L (0D) isometrically and isomorphically onto C(M(L*)). Thus we have

IAll oy = Al om) = ”E”C(M(L‘”)) = sup{lo(W)]:9 € M(L*(OD))} = 1.
Then clearly ||R"

or

— 1 — n
||L°°(6]D)) = landsince fg = h™a.e.on dD, we have

Ihlle) = A" lie@m) = [Ifgllie@n) = 1. B
Corollary (6.1.9)[163]: Suppose f = f; + f,,9 = g. + g, and h = h; + h, are
bounded harmonic functions on D and x;,...,xy,Vy,...,Vy are in L2(D). Then T T, =
T, +ij:1 x; & y;ifand only if the following two conditions hold: (i) either f is analytic
or g is conjugate analytic,
(i) f9) (@) = h(@) + (1 — 121)? T}, % ()y, (), for z € D.
Proof. Apply Theorem (6.1.8) with n = 1. Then T;T, = T, + F implies that g1 /> is

harmonic on D, so that A(g1f2)(3) = 91(2)f>(z) = 0. Hence g; = constant or f; is

constant on D which means that either f is analytic or g is conjugate analytic. The other

statements follow immediately from Theorem (6.1.8). If F = 0, then (3)

implies £ (z)g3(z) = 0 and hence either f is conjugate analytic or g is analytic. If f is
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analytic and f is conjugate analytic, then clearly f is constant. The same situation for g
leads to the conclusion that g is constant. Otherwise, both f and g are analytic on D or both
f and g are conjugate analytic and Corollary (6.1.2) follows.

Conversely, if f is analytic, then £, is constant so that g,f, — h is harmonic on .
Apply Theorem (6.1.8) now withn = 1 and the converse follows. Similarly, the statement
follows if g is conjugate analytic.

A finite rank perturbation version of Corollary (6.1.3) is contained in the following

corollary.
Corollary (6.1.10)[163]: Suppose f and g are bounded and harmonic on . Then T, T, =
I+ 29’21 X @y and xy,..., Xy, Y1,..., Yy arein L% (D) if and only if the following two
conditions hold:

(i) either f is analytic or g is conjugate analytic,

(i) f@g) =1+ 1 - 219X, x (3)y,(2), forz €D.
Corollary (6.1.11)[163]: If f is bounded and harmonic and sz = Tr + F,thenf = 0Oor
f = 1onD.
Proof. By Corollary (6.1.9), f is analytic or f is conjugate analytic and f2 = f a.e. on 9.
This meansthat f(f — 1) = 0a.e.on dD. If f is analytic, then either f = 0 on dD (and
hence f = OonD) or f = 1 on dD (and hence f = 1on D). The same conclusion
follows if f is conjugate analytic.

If we slightly modify the argument in the proof of Theorem (6.1.7), we get the
following proposition.

Proposition (6.1.12)[163]: Suppose E < D is a starlike with respect to 0 compact set. Let

£
) = 2: () f@)9,@),
j=1

with f;, g; analyticon D forj = 1,..., ¢ If T, has finite rank N, then f = 0.
Proof. Clearly f is bounded. As in the proof of Theorem (6.1.7), for 0 <r < 1, define
fr(z) = f(rz)andlet g,.(3) = f,.Then

£
Tror = Trsra sie, o0g;0e) = Z Thea el (8)
=1

But notice f(2)xz (rz) = xp (Dxe rz) Yoy f; (8)g,(2).
If z € E,thenrz € E toosince E is starlike. Thus yz(z)xg (rz) = 1.
If 2 € E,yz; (z) = 0. Hence in both cases yr (2)xg (rz) = xg (). Thus

f(@)xe (rz) = f(z). Now (8) gives that T;, = f=1 TmTf(z)ng(rz) and
consequently rank Tr, < N¢ ,forall r. Thuslimsup rankT;, < N¢.We continue as

r—1

in Theorem (6.1.7) and conclude that T2 has finite rank and therefore f = 0 see [100].
Finally we would like to prove another zero product result involving two Toeplitz

operators.

Proposition (6.1.13)[163]: Suppose D, = rD for some r € (0,1),h is an analytic

function on D and g = g; + g, is a bounded harmonic function. If f = xp h and

T¢T, = 0,theneither f = Oorg = 0.

Proof. Suppose f € L*(D),g = g, + g, is a bounded and harmonic function, and

T¢T, = 0.Then
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B(Tng)(Z) = <Tngkz'kz> = (1 - |Z|2)2<Tfp(gl + %)Kz'Kz>
= (1 - |Z|2)2{(fgle'Kz> + ( fP(92K,), K}

= B(fg1)(3) + g2(2)(Bf)(3) =0. (9)
Suppose now that f = xp_h, where h is analytic. Then (9) means
h h
j M dA(¢) + g2(2) L_L} dA(¢) = 0. (10)
Dy |1 — ¢ D, |1 — Z¢|

Letw = g ; then (10) becomes

h(wr)g,(wr) - h(wr) B
r? fm) T —zwrl® dA(w) + r%g,(z) JD T —zwr? dA(w) =0
or
h(WT)91(W ) h(wr) B
(1=r2laPy? | AEEE AW + 5@ ) | e da) =0
so that

Bl(hg1):1(rz) + g.(3)B(h;)(rz) = 0.
Since the Berezin transform fixes analytic functions, we have
h(r?z)g,(r*z) + g,(3)h(r?z) =0, forz €D
which implies
h(r’z)[g.(r*z) + g,(3) | = 0.

Then eitherh=0o0r g,(r?3) = —g,(z) forz € D.

Ifh = 0,then f =

In the second case, an analytic function g,r? is equal to the conjugate analytic
function, so they both are constant functions; i.e., g; = constant and g, = constant.

If g = constant, then T;T, = 0implies g =constant= 0or f = 0. Thuswe have
proved the proposition.
Section (6.2): Finite Rank Toeplitz Operators

In classical function theory of the unit disk, Toeplitz operators were defined on the
Hardy space H? by Tef = P(¢f), where ¢ is a bounded measurable function on the unit
circle T = 9D and P is the Szeg”o projection from L? (of the unit circle) to H%. McDonald
and Sundberg [167] defined Toeplitz operators on the Bergman space A% analogously: ¢ is
a function on the interior of the disk and P is the Bergman projection from L?(dA) (dA
being area measure) to A2,
In the Bergman space one can have ¢f € L? forall f € A? even if ¢ is unbounded.

Moreover, the formula for the Bergman projection as an integral can be applied even when
the product ¢ f is only in L. Given that, one quickly realizes that the formula for the Toeplitz

operator
pw)f(w)
PON@) = | G maz YAMW)

allows one to extend the notion of Toeplitz operators to symbols that are measures (or even
compactly supported distributions): simply replace ¢ dA with du in the formula (or apply
the distribution to the appropriate product). [171] determined necessary and sufficient
conditions on a positive measure p for T, to belong to the Schatten classes S,,. For complex
measures the conditions were only sufficient. The same is true for the characterization of
finite rank operators T,: necessary and sufficient conditions for positive measures were
obtained, only sufficient for complex measures.
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The characterization obtained here (that u must be a finite sum of point masses) proves
the conjecture that for ¢ € L®, Ty has finite rank only if it is 0. After was submitted, |
learned of partial results on this conjecture in a preprint by A. Pushnitski, G. Rozenblum
and N. Shirokov. They imposed some extra conditions on ¢. In addition, Namita Das
communicated some incomplete work on the same conjecture.

Initially, let u be any complex regular Borel measure on the unit disk D in the complex
plane C. Integration with respect to area measure is denoted with dA.
The set of all analytic functions on D will be denoted ' (D) or simply H..

The Bergman space A2 of the unit disk is the space of all functions analytic in D which
belongto L? = L?(dA), thatis, A2 = L? n H.The inner product in L? is denoted {f, g) =

%f f(2)g(z) dA(z) and the corresponding norm is denoted ||f]| = (f,f)*/?. The
Bergman kernel is the function K(z,w) = K,,(3) = (1 —wz) 2. It satisfies Pf(w) =
(f,K,) forall f € L? where P is the orthogonal projection from L? to A2. In particular, if
f € A?% then f(w) = (f,K,).

The Toeplitz operator on A? with symbol p is denoted T, and is formally defined by

T, ()W) = j L2 @ (1)
If u has the form ¢ dA for some bounded measurable function ¢, then T, is denoted T4 and
satisfies Tyf = P(¢f),f € A*. For arbitrary measures on D, T, may be only densely
defined because the integral (11) can only be guaranteed to converge for bounded f. Even
if it converges, the result need not be in A%. We will view T, as an operator defined on the
dense subset of polynomials with range in the set of all analytic functions on ID. The question
of when T, extends to A* or has values in A% will not be considered here. However, we note
that if || is a Carleson measure for A%, then it is always true that T, is bounded from A? to
AZ. In particular this is true for measures p whose support is a compact subset of D as well
as for measures of the form ¢ dA with ¢ bounded.
The following is the main theorem, whose proof will occupy the majority.

Theorem (6.2.1)[168]: The rank of T, is finite if and only if p is a finite linear combination
of point masses.

The Bergman space setting is completely unnecessary and we will actually prove a
Theorem (6.2.1)bout operators on the space of analytic polynomials. Moreover, a large part
of our proof does not require p to be a measure. We have, formally, (T,,f, g) = [ fgu.
For this to be true in the strict sense of the definition of (-,-), we would need to justify the
implied exchange of integrals. What is clear, however, is that if p is a measure on D, then
T, f will always produce an analytic function in ID. If p is a measure on any disk, then we
can use the same formula for T, f and obtain a function analytic in some neighborhood of 0.
The coefficients of any formal power series determine a linear functional on the space of
polynomials in 3 in a standard way. If we interpret T, f in this way it is easy to prove that
T.f@ =) fgdun

Thus T, can always be seen as taking polynomials to linear functionals on the conjugate
analytic polynomials and p can be seen as a linear functional on the space of polynomials
in z and . Moreover, these two objects determine each other.

We now generalize these observations.
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Let P denote the algebra of complex polynomials over C in the variable z and let P
denote the polynomials in 3. Both are subalgebras of C[z, 5], the polynomials in both
variables. Let u be a linear functional on C[z, ] and let B,(f,g) = u(fg).

Let T, f denote the linear functional on P defined by T, (§) = B,(f,9) = n(fg).

One can determine the nature of p by defining a topology on C[z, 3] and requiring that
1 be continuous in that topology. For example, if C[z, Z] is given the topology of uniform
convergence on compact sets, then a continuous p can be identified with a complex measure
with compact support. Compactly supported distributions come from the topology of
uniform convergence on compact sets of all derivatives. Continuity in the L*(ID, dA) norm
implies a bounded measurable function. We will need the exact nature of p only in the last
stages of our proof.

If the operator T, has rank less than N, then if we select N polynomials f; , there will

exist a nontribyl linear relation
N

> gl =o0. (12)
j=1
If we apply these functionals T, f; to polynomials g;,1 < i < N, we obtain aset of column

vectors in CV that satisfies a linear relation with the same constants as (12). Thus, the matrix
whose i, j entry is u(f;g;) has a determinant equal to 0.
The determinant is linear in each column and p is a linear functional, so we can write

/ 91(8)  wfd) - H(ng_1)\

f(z) - |9:@ whg) UG |\ 2

b J
gn (@) w(fgy) o RUNGN)

Let us introduce the variable z; in place of z above and use p, for p acting in the variable

z,. Now we repeat this process in each column (using the variable z; in column j and the

notation p; for p acting in z; ) to obtain

Il
e

THY TP T 1_[ fi(z1)det (gi(zj)) (13)
k=1

We now specialize to the case where each g; has the form g;(z) = z* with k; <k, < -
< ky. Let ] = (k;) denote any such increasing N-tuple of nonnegative integers. Write Z

for the N-tuple (24, 35, ..., 2y) and write V;(Z) for the determinant det (z}“') . Taking finite

sums of equations (13), we get for any polynomial F(Z) in N variables:
W (F(Z2)V,(Z)) = 0 (14)
where p is our abbrebytion for successive applications of p in each variable.
We now determine what one gets when we take linear combinations of V; with varying
J in this equation. We claim one gets
WV (F(Z)G(Z)) =0 (15)
for all polynomials F and all antisymmetric polynomials G. We now digress for a short
discussion of symmetric and antisymmetric polynomials.
A polynomial F(Z) is called symmetric if it is invariant under permutations of the
variables z; , that is, F(n(Z)) = F(Z), where n(Z) is the N-tuple consisting of the
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permutation of the coordinates of Z. We call G(Z) antisymmetric (or alternating) if it
changes sign with each transposition of coordinates. Thatis, G(n(Z)) = €,G(Z), where €,
Is +1 for an even permutation = and —1 for an odd 7.

Denote by SF(Z) and AF (Z) the symmetric and antisymmetric projections of a function

F. That is,

1

1
SF(Z) = N Z F(rn(Z)) and AF(2) = N z e.F(m(2)), (16)

Vi A
where each sum is over all permutations. For any polynomial F, SF is symmetric and AF is
antisymmetric. If F is symmetric and G is antisymmetric, then SF = F,AF = 0,5G = 0
and AG = G.
We observe that the vector space of all antisymmetric polynomials is the range of A and

is therefore the span of the images of all monomials. If G(Z2) = Z/ = Zflzfz ...z,’f,"’ is a
monomial, then AG (Z) is easily seen to be O if any of the exponents are equal. Moreover, if
the monomial G’ is obtained from the monomial G by a permutation of the exponents, then
AG'(Z) = +AG(Z). Thus, the set of antisymmetric polynomials is spanned by A(Z’) as J
varies over increasing N-tuples of nonnegative integers. It follows easily from the formula
for the determinant as a signed sum of products that A(Z/) = V; (Z)/N!. Thus, summing
equations (14) produces equation (15), as claimed.

If /] =(0,1,2,...,N — 1), then V;(Z) =V (Z) is the Vandermonde determinant.
Clearly the product of a symmetric polynomial and V (Z) is antisymmetric. Ultimately, we
will only need the fact that these products are in the range of A.

However, the argument of the following paragraph shows that every antisymmetric
polynomial is in fact the product of a symmetric polynomial and V (2).

The Vandermonde determinant V (Z) is the minimal-degree polynomial G(Z)
vanishing on all the varieties V; ; = {Z : z; = 3;} for all pairs of indices (i,j) with i # j.
Therefore the ideal generated by V (Z) is a radical ideal, and, by the Hilbert Nullstellensatz
(see for example [170]), any other polynomial vanishingon U; ;y V;; is divisible by V (2).
It is clear that any antisymmetric polynomial G (Z) vanisheson U; ;) V; ; and hence G(2)
is divisible by V (2).

This fact that every antisymmetric polynomial is divisible by V (Z) is known. It is stated
in the Encyclopedic Dictionary of Mathematics [169], but it has been hard to find a
published proof.

Let us recall that the following equation:

W (F(Z)V; (2)) = 0 (17)
implies that for all polynomials F,
uv (F(Z)m) = (0 for all antisymmetric G, and so
wV(F(Z)H(Z)V (Z)) = 0 for all symmetric H.

Specializing to F of the form F;V with F; symmetric gives us

uV(FL(Z)F,(Z)IV(Z)|?) = 0 for all symmetric polynomials F; and F,. (18)
Now is the time to use the fact that p is a measure, and to require that it have compact
support. Let us restate our main theorem in the form of the ideas we have been using. In this
form it is actually more general.
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Theorem (6.2.1)[168]: (Restated). Let p be a measure on C with compact support. Let T,
be the operator from 2 to linear functionals on P by T.f(@ =) fgdu.ThenT, has
finite rank if and only if the support of p is finite.

In the present case, u is just a product measure on CV. We formally state our conclusions
thus far in the language of measures and integration:

Proposition (6.2.2)[168]: If T, has rank less than N, then for all symmetric polynomials F;
and F,

f R@OBDW @2 dw (2) = o. (19)
cN

It is clear that finite sums of products of the form F; (Z)F,(Z) (with F; and F, symmetric)
form an algebra A of functions on C which contains the constants and is closed under
conjugation. It doesn’t separate points because each element is constant on sets of points
that are permutations of one another. Define an equivalence relation ~ on CV by the fact
that Z, ~ Z, ifand only if Z, = m(Z,) for some permutation . Let Z = (z4,..., 3y) and
W = (wy,...,wy). If Z+ W, then the polynomials p(t) =[] (t—3;) and q(t) =
[T (t —w;) have different zeros (or the same zeros with different multiplicities). This
implies that the coefficient of some power of t in p(t) differs from the corresponding
coefficient in q(t). Thus there is an elementary symmetric function that differs at Z and W'
Consequently, A separates equivalence classes.

Let us give the quotient space CV/~ the standard quotient space topology. If K is any
compact set in CV that is invariant with respect to ~, then K/~ is compact and Hausdorff.
Also, any symmetric continuous function on CV induces a continuous function on C/~ (and
conversely). Thus we can apply the Stone-Weierstrass theorem (on K/~) to conclude that
A Is dense in the space of continuous symmetric functions, in the topology of uniform
convergence on any compact set. Therefore, for any continuous symmetric function f(2)

j FOIV @2 du (2) = o. 20)
CN

If f is an arbitrary continuous funtion, the above integral will be the same as the
corresponding integral with Sf replacing f. This is because the function |V (Z)|? and the
product measure pV are both invariant under permutations of the coordinates. We conclude
that this integral vanishes for any continuous f and so the measure |V (Z)|? du (Z) must
be zero. Thus, pV is supported on the set where V vanishes.

This means p must have fewer than N points in its support: for if z; are N distinct points
in the support of y, then the point Z = (z4,..., zy) is in the support of u¥ but vV (2) # 0, a
contradiction.

In fact, when the number of points in the support is finite, it is precisely the rank of T;:
if the support of p is {z,,2,,..., 3}, then the range of T, contains the M independent
evaluation functionals.

Note that the rank zero case has been known for at least a century: [ fgdu = 0 for
all polynomials f and g clearly implies u = 0 by the Stone-Weierstrass theorem.

Let X be any subspace of A? with finite codimension. Let S be the closure of {3, f;g; :
fi € X,g; € A*} in the topology of uniform convergence on compact sets. Suppose S is
not all of C(ID); then there exists a measure p with compact support in D such that
J fgdu=o0forall f € Sandall g € A% That is, the range Y, of T, is contained in X+, a
finite dimensional set. This implies that p is a finite sum of point masses and so ¥, is spanned
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by the set of K, for a in the support of u. If we repeat this for all possible measures that
annihilate S we get a set E of all such points a. Then E is finite because the corresponding
Ka are all independent and in X*. Therefore, S has finite codimension and contains all
functions that vanish on E.

Also, f € X implies (f,K,) = 0 for all a € E so all the functions in S vanish on E.
Thus S is the ideal of all functions vanishing on E. This gives us the following corollary.
Corollary (6.2.3)[168]: If X is a subspace of A2 with finite codimension, then the closure
of the span of XAZ in the topology of uniform convergence on compact sets is an ideal in
C (D) with a finite zero set. If X has no common zeros, it is all of C(D).

Note that it is not clear a priori that the closed span of XAZ is even closed under
multiplication.

One can define operators to which our results apply that seem to have little to do with
Toeplitz operators and nothing to do with Bergman spaces. For example, let u be a measure
on D and define an operator from (say) the disk algebra to entire functions by Su(Hw) =

[ exp(Bw)f () du(z). Then, since exp(Zw) is a reproducing kernel for some appropriate
normalization of the Fock space, one obtains (S, (f),g) = [ fg du for all polynomials f
and g. If S, has finite rank, then u must have finite support.

Section (6.3): Bergman Space Modulo Finite Rank Operators

Many algebraic properties of Toeplitz operators on analytic function spaces have been
studied. We are concerned with the problem of when the product of two Toeplitz operators
T¢T, is a finite perturbation of another Toeplitz operator T,,. We take the Bergman space as
the domain and study the question for f, g bounded harmonic and A in C? class with the
invariant Laplacian in L.

Let dA denote the Lebesgue area measure on the unit disk D in the complex plane,
normalized so that the measure of the disk D is 1. The Bergman space L? a is the Hilbert
space consisting of analytic functions on D that are square integrable with respect to the
measure dA. For ¢ € L*(D,dA), the Toeplitz operator T,, with symbol ¢ is defined densely
on L2 by

Tof = P(ef),
where P is the orthogonal projection from L?(D, dA) to L2.

For general operator S on a Hilbert space, the rank(S) is defined as the dimension of
closure of the range of S.S is called finite rank operator with rank r if it is bounded and
rank(S) = r < oo. On the Bergman space, the rank r operator has the expression

r

5=Z x; @ v,

i=1
where {x;}I_, {y;}/-, are two sets of linearly independent functions in L2 and we use the
standard notation for rank-one operators in the Hilbert space: x & y: h — (h, y)x. A tool
that arises in the study of the Bergman space is the Berezin transform. Given an (possibly

unbounded) operator S on L2, with its domain containing all the normalized reproducing

_ 2\2
a I_ZI ) . the Berezin transform of S is the function
(1-zw)2

B[S1(z) = (Skz k), z €D,
where (, ) is the inner product in L2. It was proved that the Berezin transform is injective
[55], which means B[S](z) = B[T](z) willimply S = T for two operators S, T on L. For
an integrable function f on D, the Berezin transform of f is the function
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Bf1(z) = (fkz kz)
Foru € L(D), it was shown in [173], [176] that B(u) = wu if and only if u is harmonic.
We shall denote the Laplacian by 4 = 665 and the invariant Laplacian by A =
(1 —|z]|®)2%A.

Since the Bergman projection maps L* (D) to the Bloch space [43] and the Szego
projection maps L*(dD) into BMOA [177], we note that for a bounded harmonic function
¢ on D, ¢ can be written uniquely as a sum of an analytic function ¢, and a conjugate
analytic function ¢_ with

¢-(0) = 0:¢ = ¢, + ¢_,
where ¢, and ¢_ are in the Bloch space and BMOA. We say that ¢, and ¢_ are the analytic
part of ¢ and the conjugate analytic part of ¢ respectively.
The earliest characterization of product problem is on the Hardy space of the unit circle

dD by Brown and Halmos [98], said that for f,g € L*,TfT, = T, if and only if either f
or g is analytic and fg = ha.e.dD. One would expect if similar result holds on the
Bergman space. The situation is more complicated on the Bergman space. For bounded
harmonic functions f and g on D, the third author [58] proved that T;T, = T, on the

Bergman space if either f or g is analytic. Then Ahern and Cuckovié [96] obtained the
characterization analogues to the Brown—Halmos theorem for the Bergman space Toeplitz
operators with harmonic symbols.
Theorem (6.3.1)[172]: Suppose f and g are bounded harmonic functions on the unit disk
and h is a bounded C? that A h € L®(D). If T¢T, = Ty, then either f is conjugate analytic
or g is analytic. In either case, h = fg.

Later in [165], Ahern removed the assumption on h and showed that the above theorem
Is true for the function h bounded on the unit disk. For more general symbols, surprisingly,
Ahern [165] had the following example,

T, T2, = Tpuz-1. (21)

It means even if T, T, = Tj,, h does not have to be equal to fg. More interesting examples
are shown in [166].

Inspired by (21), we construct the following examples showing that the product of two
Toeplitz operators can be a nonzero finite rank perturbation of another Toeplitz operator.
Example (6.3.2)[172]:

T,2T,s — T3E—% =1Q z
T2 T3, — Tez-ay = 1 ® 1.
To get the first equation, applying Berezin transform to right hand side for eachw € D,
(1 ® 2)ky, ky) = (1 — w|>)*w
Also by simple calculation
(T, = 2T,T2 + T,2 T )ky, ky) = (1 — [w|*)?w.
This is B[1 ® z](w) = B|T, — 2T,T,2 + T,z T,z |(w). Since the Berezin transform is
Injective, it follows
1R z=T; — ZTZTEZ + T,z TE3'
Combining with Identity (21), we obtain the first example
Tzszs —_ T3_ 2 = 1 ® Z.

z—=
Z

To get the second equation, by using above we have
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1
T, T.a — Tﬁ_g]TZ 1 ®An =18 T)=18;
Z

Combining (21) with the above identity implies
T222 TE3Z - T(6|Z|2—4) = 1 ® 1

Note that in above examples, the two symbols are either not harmonic or unbounded.
Naturally, one may ask the following question.

Question (6.3.3)[172]: Can T;T, — T, be a nonzero finite rank operator on L, if f, g are
bounded harmonic functionsand h € L*(D)?

On the Hardy space, the symbol mapping [175] said fg must be equal to h. Axler,
Chang and Sarason gave an affirmative answer to Question (6.3.3) in [93] as the following
theorem.

Theorem (6.3.4)[172]: (The variant theorem of Axler—Chang-Sarason). Suppose f,g €

BMOA. Then the semicommutator T;, — 77, (= ﬁ? ﬁg) is a finite rank operator if and

only if either A or A, is a finite rank operator. Here T and H; denote the Toeplitz operator

and Hankel operator on the Hardy space respectively.
In [179], Richman obtained a formula on the ranks.
Theorem (6.3.5)[172]: Suppose that f,g € BMOA

rank ﬁj; H, = min {rank ﬁf, rank ﬁg}.

On the Bergman space, Guo, Sun and the third author [100] showed that for bounded
harmonic functions f,g and h = fg,TT, — Ty is a finite rank operator on L7 if and only
if TT, — T, = 0. Hence by Ahern and Cuckovié theorem [96], either f or g is analytic.
As Luecking [169] showed that there is no non-tribyl finite rank Toeplitz operator with
bounded symbol on the Bergman space, one may expect that the answer to Question (6.3.3)
should be analogous to Ahern and Cuckovi¢’s Theorem (Theorem (6.3.1)). Indeed,
Cuckovi¢ [164] has studied this question and obtained:

Theorem (6.3.6)[172]: Suppose f, g and h are bounded harmonic functions and h, and h_
are in H* (D). Then T;Ty —Tyn = Y5y x; @y, where x;,y; € L%, if and only if the
following conditions hold:

(@) f~g+ — h™isharmonic,

(b) f(2)g(z) = h™(2) + (1 — 1zI)* ¥i=1 x; (2)y; (2),forz € D.

Question (6.3.3) for other function spaces has been studied as well. In [174], Choe,
Koo and Lee got a result similar to the above theorem for pluriharmonic functions f, g and
n-harmonic function h on the polydisk.

Our first result is to give a negative answer to the question for the perturbation of rank
one operators.

The above theorem may be viewed as the version of the Ahern—Cuckovi¢ theorem
(Theorem (6.3.1))-the Brown—Halmos type theorem for the Bergman Toeplitz operators
modulo rank one operators. The main ideas of the proof are to use the Berezin transform on
the Bergman space and the Hardy space, to exchange Toeplitz operators identities on the
Bergman space to Toeplitz operators identities on the Hardy space, and to use the Bochner
theorem on critical points of rational functions [180].

We get an affirmative answer to Question (6.3.3) for a perturbation of operators with
higher rank.
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Theorem (6.3.7)[172]: For each m > 2, there exist rational functions f, g, h, and h_ in
H% (D) suchthat T;T3 — Ty, + h_ has finite rank and its rank equals m.

In general, we characterize when T¢T, — T, has finite rank if f and g are bounded

harmonic functions and A is a bounded C? function such that Ah € L*(D). For our purpose,
let us introduce some notations. For each polynomial P(z) of z with degree N,

P(z) = Py + Pjz + - PyzV.
Denote

~ 1
P(Z) = ZNP(§> =P0ZN + PlzN_l + .- +PN'

Form = N, we define
P.(z) = P(z)z™ N,

The above theorem is analogous to the Axler, Chang and Sarason theorem (Theorem
(6.3.4)) for finite rank perturbation on the Hardy space [93], where the third condition should
be changed into that either £, or g_ is a rational function but the last two conditions are not
required and the second condition is replaced by

h="fg
on dD.

We will extend the Cu¢kovié theorem (Theorem (6.3.6)) to obtain a necessary and
sufficient condition for T,T, — T, to have finite rank for more general h by using
Luecking’s theorem on the finite rank Toeplitz operators [169]. Next by the injective
property of the Berezin transform on bounded operators on the Bergman space or the Hardy
space, we will show that £, g_, h, and h_ are rational functions. By the Bochner’s theorem
[180] for rational functions and deriving some functions identities on f, g and h, we will
prove Theorem (6.3.13). Then computing the action of the product of two Toeplitz operators
on the orthogonal basis {(k + 1)z,}r-o, We get some identities on these symbols of
Toeplitz operators to prove Theorem (6.3.16). Using these identities in Theorem (6.3.16),
we will prove Theorem (6.3.7) by constructing examples.

Using the Luecking theorem on the finite rank Toeplitz operators [169], we get the
following theorem which extends the Cuckovié theorem (Theorem (6.3.6)).

Theorem (6.3.8)[172]: Suppose that f and g are bounded harmonic functions,
h €Ngsy L9(D) N C3Ah € LY(D).
Then T, T, — Ty, has finite rank on L7 if and only if the following conditions hold:
(@) f-g, — his harmonic.
(b) There exist nonzero vectors x4, ..., X, ¥1,..., ¥, in L%, such that
r

fDg@) = k@D + (A - 1212 ) x5 (2y; @) (22)
j=1

forz € D.

We should point out that the idea in the proof is the combination of the proof of Theorem
1 in [164], Luecking Theorem on finite rank Toeplitz operators [169] and the proof of
Proportion 4 in [100].

For operators S; and S, that are densely defined on L% or H?(D), we say that S; = S,
if S;p = S,p for each analytic polynomial p.
Proof. Suppose

T;T,

g_Th:F'
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where F = ¥'_; x; ® y; is a finite rank operator on L% for two sets of linearly
independent functions x;,y; € L2,j = 1,2,...,r.Taking the Berezin transform both
sides of the above equation gives

B[T;T,|(z) = B[h](z) + B[F](2) (23)
for each z in D. By hypothesis, f and g are bounded harmonic functions on the unit disk,
we can write

f=fH+f g=g9++9-

where f+, f—, g+, and g— are in the Bergman space L% and in the Bloch space contained in
Np>1 LP(D). Using

Ty — k, = g-(2)k,, Tf_,_ = f+(2)k,,
we show
B T,)(2) = BIf-9.]@ + fr(D9:(@) + [-(D9-(@) + fu@Dg-(2),  (29)
Fl2) = Z ke 3,02} = (1 = |z|2>zz 5@y @ (@5
That is = =
BULgs + f9- + frgs = D@ = (1 = 1212 x5y () = f,(Dg-@).
j=1

Further expanding the right side,

(1 = 1z1)%x Dy; (2) = x5 Dy (2) — 2zx; (2)zy; (2) + z°x; (2)2°y; (2).
Then we obtain

BULg. + fg- + fgs — D@D =3 X,@% @~ £(Dg-(2) (26)

. € L%.Notice that f_ and g, areinthealgebraN,~; LP(D),wehavef_ g, €
n1<q<oo »Lq (D)
Alf.(2)g+ (2] = [(A = 12D L@D]A — |21*)gi(2)] € Li(D)
where f'(z) = % and g (z) = % Therefore
Alf-(2)9+(2) + f(2)g-(2) + f1(2)g.+(2) — k(D] = A[f-(2)g.+(2) — h(2)]
isin L1(D). By Lemma 1 in [96], the invariant Laplace operator commutes with the Berezin
transform:

where X; , Y

A{BIf.g, — M2} = BlA(fg, — W],
applying the invariant Laplacian 4 to Equation (26), we get

X; @Y; (2)| — Alf+(2)9-(2)]

BIA( f-g, — W](2) = 4

=1 - |zI*)? X; ()Y} (2) — f{i(2)g9.(2)

for z € D. Canceling the factor (1 — |z|?)? in both sides of above equation we obtain
3r

(A(f-g+ — DK, K,) = Xj @Y/ (@) - fil@Dg (z)  (27)
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Now one can “complexify” above equation to get

3r
A(f.g: = WKL K) = ) X @Y W) = fil)g-w)  (28)
j=1

since the above equation holds on the bidisc as both sides of the above equation are
holomorphic in the bidisc {(z,w):|z] < 1,|w| < 1} and are equal on {(z,w): |z| <
1,w = Zz}. Next we take the kth derivative to both sides of Equation (28) with respect to
w and then evaluate the valuesat w = 0, it follows

Alf-g. = HESKE) = ) buk] @) + afi@)
j=1

for some constants b; x, ay.
Although some of the X; and f; may not be in L%, we observe that foreach 0 < s < 1,
all of X; and £ are bounded and analytic on sD. Hence

3r
(Tatp_g-m §}67) = D b (2) + afi(s2).
=1

We claim that Tz, 4. _p) has finite rank on the Bergman space L. If the claim is false, we
may assume that there are 3r + 2 linearly independent functions {u;}37?2 in the range of
T3(s g,-n] - Then for each 0 < s < 1, {u;|sD};Z1? are also linearly independent in the
space L% (sD). Since analytic polynomials are dense in L3 (sD), for each | there are analytic
polynomials p,; such that Ty 4, _p) Pij CONVerges to w; as (j = ). Thus Tzi¢ . —p) Pij
converges uniformly to u; on every compact subset of the unit disk D. Note that sD is
contained in a compact subset of the unit disk, we have

. 2
lim |{TZ[f_g+—h] Py — ul| dA(z) = 0.
sD

Jj—=oo
By the above formula, Tgzjs,4,_ppijlsD is contained in the subspace
’ , 3r
span{X; (sz), f (SZ)}]-=1’ SO

u;(sz) € span{X; (sz), ﬂ(sz)}z1

forl = 1,2,...,3r + 2. But this contradicts that {u;(sz)};7+? are linearly independent,
and hence the claim follows.

By Luecking’s Theorem in [169], which says that there is no nonzero finite rank
Toeplitz operators on the Bergman space with symbol in L*(D), we have

Alf-(2)9+(2) — h(z)] = 0
on D. This implies that f_g, — h is a harmonic function and hence
Blf-g+ — hl(2) = f-(2)9.+(2) — h(2).
So Equation (23) gives
f~(2)g+(2) — h(2) )

= A= 12 ) 5@y @ - £@9-() — fo(g:(2)

@),

Therefore we obtain
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r

FR9@) = h@) + (1 = 22 xj @y @,

J=1

Conversely, suppose that f_g, — h is harmonic on D, and
T

fD9@) = h@ + (A = 22 ) x5 @y, @,

j=1
It follows from (24) and (25) that

T

B[T;T, - Tl = f(D9@) - k() = B| Y % ® |,

j=1
Since the Berezin transform is injective [55], we conclude that
T

j=1
The proof is complete.

The Hardy space H? is the subspace of analytic functions on D whose Taylor coeffi-
cients are square summable. It can be also identified (by radial limits) with the subspace of
L?(aD) of functions whose negative Fourier coefficients vanish. For p > 1, the classical
Hardy space HP is the subspace of LP?(dD) consisting of those functions whose negative
Fourier coefficients vanish. Let P denote the Szego projection: the orthogonal projection
from L?(9D) onto H2. Since P is a bounded projection from LI(aD) onto HY for ¢ > 1,
for each bounded harmonic function ¢ on D, we have that both ¢, and ¢_ are in N5, HY.
We let T"f denote the Toeplitz operator on the Hardy space H? and FI} the Hankel operator
on H? which are defined by

Teh = P(fh),
Heh = (I — P)(fh)
for h € H?. There is an extensive literature on Toeplitz operators on the Hardy space H?
[175]. We will give a characterization when f and g are holomorphic functions in BMOA.
The main idea is to exchange an identity of the Toeplitz operators on the Bergman space to
an identity of Toeplitz operators on Hardy space by the Berezin transforms.
For an operator (possibly unbounded) S on H?, define the Berezin transform

(Sky, k)
B[S](z) = %
if the domain of the operator S contains all the normalized reproducing kernels "
1 — |z|?

of H2. The Berezin transform is also injective on the Hardy space.
A simple calculation gives that for two nonnegative integers k and [,
Tzk zt =0
if k > land

, L=k +1
s =51 7
if k < L. This immediately leads to the following lemma.

-k
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Lemma (6.3.9)[172]: f u(z) = ug + w;z + - +u,y,_1z™ + - isin L%, then for each
m > 0,

Tﬁzm+k

_m o+ ke + Dupgz™* + (m o+ D)uz™ T e+ (ko Dy + o+ Uk
B m+ k + 1 ’
for k = —m. We will prove the following theorem.
Theorem (6.3.10)[172]: Suppose that f and g are two nonconstant functions in BMOA and

h is in L9(D)C?(D) with Ah € LY(D). If there are two families {xj};l and {yj};l of

linearly independent functions in L% such that
T

Tng—Th=Z X & yj

j=1
where r > 1, then h is harmonic function, and
h =h, + h_,
where h, and h_ are analytic functions, f, g, k., and h_ and all x;, y; are rational functions
(i=12..nrr>0). Moreover there are analytic polynomials
q(2),p(2),F(2),G(2),b(2), B(2),¢1(2),, ¢r(2),d1(2),, d,(2) such that
F(z) G(z) L b(z) - B(z) 29
f(2) 0@’ 9(z) p((z)). +(2) g(?). -(2) (2) (29)
Cj Z o Z
5 @) =705 (=20 (30)
Where
degc; < max{deg F,deg q} — 2,
and

deg dj < max{deg G,degp} — 2,
forj = 1,2,...,r.Infact,
rank (T}TE — Ty) = min{max{deg B, deg p}, max{deg F,deg q}}. (31)

If
min{max{deg B, deg p}, max{deg F,deg q}} < 2,
then
T;T, — T, = 0.
Proof. Suppose
r
TTy — T = z X ® v (32)

j=1
where x; , y; are in L such that x;, x5, ..., x,- are linearly independent and y,, y,..., ¥, are
linearly independent.

By Theorem (6.3.8), since f and g are analytic, we have that f-(g); —h = —h is

harmonic. Thus k is harmonic. So we can write h = h, + h_, where h,, h_ are functions
in H2.

First we show that x;, y; are in H%, fori = 1,2,...,r. By Theorem (6.3.8), we have
that

r

FR9@ - hG) = (= 27 x@w@  (3)

=1
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By the “complexify” argument used in the proof of Theorem (6.3.8), we obtain
T

FRI = (@ = @) = (1 = 2w) Y x@y@)  (34)
For afixed tin (0, 1), we have =

FRIEm — ho() = ho W) = (1 = zw)? Y u@y(@m),  (35)
to get =

r

1 _
D X@(EW) = sy [F@g@) ~ hy(2)~ h(ew)]

For each j, pairing both sides of the above equation with y; (tw) and then integrating about
w, we have

Z U yj (tw)y; (tw)dA(w) | x;(2)

=j % [f(z)g(tW) — hy(2) — h_(tW)] dA(w) = g; (2),
D

where

0@ = [ Gl (@@ — ) h (6] dAw
D

is in H? since f and h,. are in H2. The coefficient matrix of the above system is given by
U Yj (tW)Yi(tW)dA(W)] ,
D ij

and is invertible since {y,, v,,-, y,-} are linearly independent in L%. Cramer’s rule gives
r

x(2) = ) byg; @)

for each z in D and some constants b;; . This gives that each x; is in H* since gj is in H?.
Similarly we can show that each y; is also in H?.

Next we will show that both f and g are rational functions. Rewriting Equation (33),
for every z € D, we have

T T

fR9@ — h(x) = (1 - |z|2){2 (@ ~ ) in(Z)Zyi(Z)} (36)

=1 i=1
Simple computations give

([T:T, — Thlks ks) = F(2)9(2) — h(2),

(li x; @ v _zr: cx; @ ¢y
i=1 i=1

r

= (- |z|2>{Z AGOEDY in(Z)ZM}-

i=1 =1

ez k)
r

Then Equation (36) implies that
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(77, — Tulk. R lz X ® ¥ - Z i ® cyi] kol (37)

Since the Berezin transform is one-to-one from the algebra of bounded operators on the
Hardy space to L* (D), we have

r r
T, — T, = Z X ® v —Z cx; & <y (38)
i=1 =1
Thus T;T, — T, is an operator at most 2r rank and the well-defined symbol map on the
Toeplitz algebra on the Hardy space [175] gives
f(2)g(z) — h(z) =0

on the unit circle 6D. Thus we have

T T
TiTy — Tpg = z X ® i —Z ox; ® ¢y,
i=1 i=1
to get
T T
—ﬁ%ﬁy = Z x; Q yi —z ¢x; & ¢y;
i=1 i=1

Is a finite rank operator as
_ o )
By Theorem (6.3.4), either Hz or Hg has finite rank. Let
n = rank (Tng — ng).
By Theorem (6.3.5), either rank H} or rank I’-TE equals n. By the Kronecker theorem (p. 21,

[178]), we have that either f or g is a rational function with degree n. We may assume that
the degree of f equals n and

q@’

where F(z) and q(z) are polynomials with degrees at most n and do not have any common
factors.

Next we will show that h, and x;,i = 1,2,...,r areall rational functions with the same
denominator q(z). Moreover we can write

_b@
h+(2) q(z)

and
@
xj (z) = ok

where b(z)is an analytic polynomial with degree at mostn and c¢; (z) is an analytic
polynomial with degree lessthann — 2,forj = 1,2,...,r
Since fg = hon dD,qfg = qh, +qh_ and bothg and F = qf are analytic
polynomials with degree at most n, we have
b = qh, = Pl(qf)g] — Plgh_] = P[Fg] — Plqh_]
is an analytic polynomial with degree at most max{deg F,deg q} = deg f. Therefore h,
Is a rational function:
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b(z)

+( ) - q(Z)
Using Identity (32) and (z) = % , We have
TeTg — TyTh. — Tp = Ty|TfT5 — Th| = TyfTg — TyTh. — Tyn+
T T
> @®y=) a®y (39)
i=1 i=1

where ¢; = qx;.

Let Py be the projection from L2 onto the subspace spanned by {1, z,--,zy } which
consists of polynomials of z with degree at most N. Since {y;}/_, are linearly independent
in L2, we see that for some sufficient large N, {Py (v;)}\_, are also linearly independent.
Applying the operator identity (39) to each Py (y;) gives the following system of functions

T

F(Z)TgpN ;) — q(z)Ty_ Py ) — b(Z)PN()’j) = Z (PN(yj)'yi>Ci

i=1

z (PN (y]) PN(yl»cl

for j = 1,--,7. By Lemma (6.3.9), we have that TPy (y] ) andT,_ Py (y;) are
polynomlals of z. This gives that the left hand side of each equation in the above system is
a polynomial of z. Since the r x r matrix ((Py (v;), PN()’J)) is invertible, solving the

above system for c; we have that c; is a polynomial of z.

Next we will show that g, h_ and y;,i = 1,2,...,r are all rational functions with the
same denominator.
Taking partial derivative both sides of Equation (32) about z gives

f (3(@) — h(2) i
= (- |z|2){z (1~ 12Px@y@ - 2Z@y@];  (40)

Thus for each ¢ € dD, we have
f(©)g(¢) = hi(c), (41)
to get that g(¢) is a rational function on the unit circle as f'(¢) and h’ (¢) are rational
functions on the unit circle. This gives that g(z) is a rational function on the unit disk. Let
G(z)
9(z) =

p(z)
for two polynomials G (z) and p(z) with degree at most degree m of g. Using

TT— Th—z Vi & x;,

and repeating the above argument, we can get that h_ and all y; are rational functions:
@ =,y =42
@’ T @
for some polynomials B(z), d;(z),":-, d,(z) with degree at most m.
Last we will obtain the remaining result of the theorem.
Theorem (6.3.5) implies
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n = rank ﬁ% ﬁg = min {rank f—I}, rank ﬁg} = min{n, m}.
By the Kronecker theorem [178], we have
rank ﬁf = max{deg F,deg q}.
Thus we obtain (31). To complete the proof we need only to show
degci(z) < n — 2, degd;(z) < m — 2.

To do this, using (29), (30) and (34) we have

r

F(z)G(w) — b(2)p(W) — q(z)B(w) = (1 — zw)? z ci(2)d;(w).
i=1

Since the left hand side of the above equation is a polynomial of z with degree at most n
and is also a polynomial of w with degree at most m and the degree of (1 — zw)? about z
or w is 2, we conclude that the degree of each c;(z) isat most n — 2 and the degree of each

d;(w) isat most m — 2. If either n or m s less than 2, we have that
T

Z ci(2)d;w) = 0.
=1
This gives that l

r

Z xi ® yi =0,

i=1
and hence
- Tng - Th - 0
This completes the proof.
We will prove Theorems (6.3.13), (6.3.7), and (6.3.16). We need some notation. For
each o in the unit disk, define a unitary operator U, on L?(D):
Ugp = ¢(¢a(z))ka(z)

for € L?(D), where ¢, (2) is the Mobius transform — . As pointed outin [46], Us U, =
I and

UanUa = Tf°¢a'
Using the above properties one can easily get the following useful and simple lemma which
we will use in the proof of Theorem (6.3.13). We omit its proof.
Lemma (6.3.11)[172]: Forany a € D, if

r

TfTE — Th = z X; ® Yi
i=1
then
T

Tf°¢a TEO‘Pa o Th°¢a - Z (Uaxi) ® (Ua:yi)-

i=1
In the proof of Theorem (6.3.13) we will use the following corollary of Bochner’s

theorem on critical points of a rational function [180].

Theorem (6.3.12)[172]: If the circular regions |z| < r; and |z| = (> r;) contain

respectively the zeros and poles of a rational function R(z) of degree n, those regions

contain all the critical points of R(z), and the former region contains precisely n —

1 critical points.

Now we are ready to present the proof of Theorem (6.3.13).
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Theorem (6.3.13)[172]: Suppose f and g are bounded harmonic functions and h is a
bounded C? function such that A h € L'(D). If T;T, — T, has the rank at most one, then
either f is conjugate analytic or g is analytic. In either case, h = fg.
Proof. First we reduce Theorem (6.3.13) to the special case that f and g are in BMOA and h
isin L1(D)C?(D) forany g > 1 with
Ah € LY(D).
Todoso,write f = f, + f_andg = g, + g_.We have
Ty = Th = Tr, Tg. — Thifgi-r g ~frgs -

LetG = h — fLg, — fg- — f+9+ Then Ty T, — T has rank at most one also. By
Theorem (6.3.10), G is harmonic on the unit disk. So we may consider the finite rank
operator TsT, — Ty, with rank at most one where f = f,,g = g_,and h = G. We will
show that either f or g is constantand TsT3 — T, = 0. Thisgivesthath = fg.

Since T;T; — Ty has rank at the most one, there are two functions x; and y, in L* a
such that

TiTg — Th = x1 @ 1. (42)

By Theorem (6.3.10), hisharmonicon D andx;, € H?andy, € H?.Wewriteh = h, +
h_ where h, is analytic part of h and h_ is conjugate analytic part of h.

By Theorem (6.3.10), we may assume that 77 — T}, is a finite rank operator with
rank n = 2 and there are analytic polynomials
q(2),p(2),F(2),G(2),b(z),B(2),c,(z),d,(z) such that

_ @ _ @ _ @ - _B(2)
=@ % M NPT
and
c1(2) d,(2)

x,(z) = m ) y1(2) = @)

As for a in D except for one point, the degree of the denominator of R ° ¢, is greater than
or equal to the degree of the numerator of R ° ¢, for a rational function R, by Lemma
(6.3.11), we may assume degq = 2 < m = degp,degF < 2 and degG <
m.Thendeg F < 2,degG < m,degb < 2,degB < m,
degc, = 0,
and
degd, < m — 2.
By Theorem (6.3.8) we have

f(2)g(2) = h(z) + (1 — |z*)*x1(2)y1(2) (43)

holds for z € D. Complexify (43) to get
f@gw) = hy(2)+ h-(w) + (1 — z2w)*x,(2)y1 (W)

holds for z and w in D. Since these functions in the above equation are rational functions we
have

f@gw) = hy(z)+ h-W) + (1 — 2w)*x (2)y1(w)  (44)
for z and w in the complex plane C except for finitely many points.
Taking partial derivative both sides of (44) with respect to z gives

f(@gWw) = hi(2) — 2w(l - zZw)x@)yWw) + (1 - zw)’x (2)y(w).
Lettingw = % in the above equation, we have
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1

F@9(3) = m@,
to get

G

f@D=e = Mo
Noting that zeros of p(z) are outside of the unit disk, we see that zeros of p(z) are in the
unit disk. In addition, poles of f lie outside of the unit disk. Observe that f equals zero at the
zero set of p(z) in the unit disk which has two points a; and a, with multiplicity. Thus f
has two critical points a; and a, with multiplicity in the unit disk. So f — f(a,) has two
critical points a; and a, with multiplicity in the unit disk. On the other hand, f — f(a;)
has only one repeated zero a; in the unit disk. Thus the unit circle separates the all zeros of
f — f(ay) fromall poles of f — f(a,). Theorem (6.3.12) says that f — f(a;) has only
one critical point in the unit disk. This contracts that f — f (@) has two critical points al
and a2 with multiplicity in the unit disk. This implies that f is a constant.
For each polynomial P(z) of z with degree N,
P(z) = Py + Pjz +- PyzV,

recall

P(z) = zV P(%)
= PyzV + PzN"t 4+ + Py
Form > N, recall
P.(2) = P(z)z™ V.
To get Theorem (6.3.16) we need only the following theorem.
Theorem (6.3.14)[172]: Suppose that F, G, q, p, b and B are polynomials of z and the degree
of p equals m, degrees of G and B are at most m. T Tz — T,T; — T, T has finite rank if
and only if
F(2)G(2) — b(@)pm(z) — q(2)Bn(2) =0, (45)
F(2)Gy(2) = b(2)pm(2) — q(2)By(2) = 0. (46)
Proof. Lete, = (k + 1)z,. Then {e; }=, is an orthogonal basis of the Bergman space LZ.
Using Lemma (6.3.9) first we calculate [Tz Tg — TpT5 — TyT5 |emsx_1. Writing
G(z) = ug + Wz + - +upy, 2", B(z) = vy + v1Z + - + vy, 2B,
p(z) = py + P1Zz + - +p,,2™, max{mg, mg} < m.
By Lemma (6.3.9), we have that for k > 1,
[T Te = TqTs = TyTp lemei
= F(D)|[(m + K)upz™" ™ +- + (k + m — mg)upy, z™ meth1|
—q(@D[(m + k)vez™ 1 + - + (k + m — mB)v,,, 2™ Btk
—b(2)[(m + k)P z™* " + . +kp_zF)
= F(2)(Gn(2)2") — q(@)(Bn(2)z*) — b(2) B (2)2")
= [F(@)Gn(2) — q(2)Bn(2) = b(2)Pm(2)]kz*"
+[F(2)Gp(2) = q(2)Bn(2) — b(2)Pm (2)]2". (47)
If (45) and (46) hold, then the above equalities give that T Tz — T,T; —
T,Tgvanishes on {e;};2,,,. This gives that Tr Tz — T,T; — T,T5 has finite rank.
Conversely suppose that T Tz — T,T — T, T3 has finite rank. We may assume that
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Tp Tg — TyTy— T,Ts = ¢ ® d,. (48)

i=1
Thus taking the Berezin transform both sides of the above equality gives
r

F(2)G(z) — b(2)p(2) — q(2)B(2) = (1 — |z*)? ¢i(2)d;(2)
i=1
for z in D. Complexify the above equation to obtain

Ngk

F(2)Gw) — b(2)pw) — q(@BW) = (1 — [z12)2 ) c¢(2)d;(w). (49)

By Theorem (6.3.10), we notice that the both sides of the above equation are polynomials
of both z and w. Lettingw = % in (49) and then multiplying both sides of (49) give
F(2)Gm(2) = b(2)pm(2) — q(2)Bn(2) =0, (50)
which is (45). Thus (47) becomes
[Tr Te — TqTs = ToTp lemsn—1 = [F(@Gn(2) — q(2)Bp(2) — b(2)pn(2)]2"*
fork = 0.Since Tr Tz — T,Ts — T,T has finite rank, we have that the dimension of the
range of Tp Tz — T,Ts — T, T is of finite dimension. On the hand, its range contains

{[F(2)Gr(2) — q(2)Bp(2) — b(@)pp(2)]z*},_. Thus

F(z)Gn(z) — q(2)Bin(2) — b(2)pn(2) =0,
which is (46). This completes the proof.
Solving for F and b in (45) and (46) gives the following theorem if F and g do not have
any nontribyl common factors.
Theorem (6.3.15)[172]: Suppose that F, G, g, p, b and B are polynomials of z and degree of
p equals m, degrees of G and B are at most m. If F and g do not have any nontribyl common

factors and either g org IS not a constant, then (45) and (46) are equivalent to the existence
of a nonzero polynomial P of z such that

é’:mﬁr,n - g;nﬁm = qP, (51)
BBy — Biubm = FP, (52)
'mGm — BmGy, = DP. (53)

Proof. Suppose that (51), (52) and (53) hold for a nonzero polynomial P. Then we have

P[FG, — bpn, - q~Bm] ) o o o i
= Gm(Bmﬁ;n - Brlnﬁm) - ﬁm(BmGrln - B7,11Gm) _Bm(Gmﬁr,n - Gr,nﬁm)
=0,

and

P[FG;, — bpy, - qB;n] ) o o o )
= Gn(Bubm — Bnbm) — Pm(BnGn — BnGm) = Brn(Gnbm — Gmbm)
= 0.

This gives (45) and (46). Conversely, suppose that (45) and (46) hold.

Then we have the following system

£ ) o[]

Multiplying both sides of the above system by
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ﬁr,n _ﬁm_
-G, Gy |
gives ]
~ ~; ~ F Pm _ﬁm] ém Bmpv;n - Brlnﬁm
G -G = ~ ~ | = -~ ~ <.
(G = Grn) || = 4 [—G,’n G _B,’n] 1 [—BmG,’n + By G

Since F and g do not have any common factors, the first equation in the above system gives
that there is a polynomial P such that
Qmﬁ;n - q],nﬁm = qP,
Bmbm — BmPm = FP.
The second equation the above system gives
B,.G), — B.G, = bP.

If P equals O, we have
CmPm — GmPm = BmPm — Bmbm = BmGm — BnGy, = 0,
to get

_ _ _ G;n6m=ﬁ;rlﬁm=§;n§m

Solving the above differential equations gives
Gm = APy = AB,,
for some constant A and hence
G = Ap = AB.

Since either % org IS not a constant, we have that P is a nonzero polynomial. This completes
the proof.
Theorem (6.3.16)[172]: Suppose f and g are bounded harmonic functions, h is a bounded
C2 function such that A h € L*(D). T¢T, — Ty has finite rank greater than one if and only
if

(i) £~ and g, are in H*°(D);

(i)H = h_(f_g+ + f-g— + fiLg+)isharmonic on D,

(iii) f, is a rational function g with degree n > 2,g_ is a rational function gwith

degreem > 2, H, isarational function gwith degree n and H_ is a rational function %with
degree m;

(iv)
(V)

F(2)Gm(2) — b(2)Pn(2) — a(2)Bp(2) = O;

F(2)Gn(2) — b(2)Pn(2) — q(2)Bj(2) = 0.
Proof. Since f and g are bounded and harmonic on D, first we write

f=7Ffh+fa
and
L g =9+t g-
for f,, f-, 9.+ and g_ in BMOA.
Suppose that T T, — T, has finite rank on L. By Theorem (6.3.8), we have that H =
h_(f_g, + f-g- + f.g.,) is harmonic on D, which is Condition (ii) Also we have
T, T, — Ty = T;T, — Ty
has finite rank. Theorem (6.3.10) gives that there are analytic polynomials
q(2),p(2),F(2),G(2),b(z), B(z) such that
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F(2)

f+(2) = @ g-(2)

This gives Condition (i). Let
min{m = max{deg B,deg p},n = max{deg F,deg q}} > 2.
Theorem (6.3.10) gives Condition (iii). By Theorem (6.3.14), we have
F(2)Gn(2) — b(2)Dm(2) — q(2)Bn(2) = 0;
F(2)Gp(2) — b(2)pm(z) — q(2)Bn(2) =0,
which are Conditions (iv) and (v).
Conversely, suppose
(i) - and g, are in H®(D);
(i)H = h — (f.gy + f.g- + f+g+) isharmonic on D;
(iif) f, is a rational function gwith degree n > 2, g_ is a rational function % with

6@ b 5 B
= D=0y - =5

degreem > 2,H, isarational function Swith degree n and H_ is a rational function

Swith degree m;

(iv)

(V)
F(2)Gm(2) = b(2)pm(2) — q(2)Bn(2) =0,
By Theorem (6.3.14), using Conditions (iv) and (v) we have that T T — T,T; — T, T3
has finite rank:

F(2)Gm(2) — b(2)Pm(2) — q(2)Bn(2) = 0;

r

T Tg — TyTy— T,Tg = Z ¢ Q d;.

i=1

Thus
Ty, Tgz — Ty = TrTg — Ty 5= To|Te Tg — TyTp— T,T5 |T1
9 p q'p q p
m -1 m-1
Ci dl
=Ty a®afn=) Lo
117=1 p = 1 P

has finite rank. So
TeTy — Tn = Tp, T,_ — Ty
has finite rank. This completes the proof of Theorem (6.3.16).

Using Theorem (6.3.16) and Theorem (6.3.15) we have the following corollary.
Corollary (6.3.17)[172]: Suppose f and g are bounded harmonic functions, h is a bounded
C? function such that Ah € L*(D).If T;T; — T, has finite rank and either f or g is a
polynomial of z or h is analytic or co-analytic and both f and g are analytic, then either f
or g is constant and

fg = h
Proof. Let H = h — (f_g_ + f-g+ + f+g-).By Theorem (6.3.16), H is harmonic in
the unit disk and there are analytic polynomials q(z),p(z), F(z),G(2), b(z), B(z) such that

H=H, + H_,
Fw @ b0 5
f+(2) = 12) "’ g+(2) = p(2) H,(z) = oK H_(z) = p(z)

By Theorem (6.3.13), we may assume that
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min{m = max{deg B,deg p},n = max{deg F,deg q}} > 2.
We may assume that m > n and G(0) = 0 and B(0) = 0. As the degree of f = g IS
equal to n, Theorem (6.3.10) gives that F and g do not have any common factors. Also both

the degree of G, and the degree of B,, are less than m as G(0) = 0and B(0) = 0. Since
TfTg — Ty, = Ty, Tg; — Ty has finite rank, Theorem (6.3.15) gives

Gmﬁrln - g;nﬁm = qP, (54)
BBy — Biubm = FP, (55)
B.G. — B G, = bP. (56)

Suppose that either f or g is a polynomial. In the first case that f is a polynomial, we
have that - = 0 and g = 1. Noting that the degree of p,,, equals m, we have that the
degree of G,,p;, — G,,p,, €quals deg G,, + m — 1.(54) gives

degP = degG,, + m — 1.
On the other hand, using (56) we have
degb + degP < degB,, + degG,, — 1 <m — 1+ deg@G,, — 1.
Thus b must equal 0 identically and so B,,, equals AG,, for some constant A. Using (55) we
have that
degF + degP = deg G, + m — 1,
to obtain that F is a constant. Thus f, is constant and so is f. In the case that g is a
polynomial, we have that g_ = Oandp = 1. Thus
Pm = 2" Dp = mz™h
(54) and (55) give
G,mz™ 1 — G} z™ = qP,
B,mz™ ' — B/ z™m = FP,
So we have

fr = qP

D m—1 R/ ,m
_ Bymz — B,z

F FP
q

l

mmzm‘l~ — Gpz™
!
mm — Bz

ool

G,m — Gz
to get that the degree n of f, must equal m. Repeating the argument in the first case we have
that g must be a constant.
If h is co-analytic and both f and g are analytic,then f. = g_ = 0.SinceH = h —
(f_g- +f-g+ + fLg— = hisco-analytic, we have that b equals 0 identically. (56) gives
B,G. — B.G, = 0.

Thus
G Bn,
Gn B
Integrating both sides of above equation gives that
G, = A7 'B,,
for some constant A. Thus we have
B = AG,

to get
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B B(z) B AG(2)

H-O) =00 = 5@

= Ag..
This gives that

o Tf, T@ = Then. = T, T:9_+ — Th_ _: Tr-aTgy )
has finite rank and hence is compact. By the main theorem in [46], we have that the Berezin
transform of T, _; Tg vanishes on the unit circle. On the other hand, the Berezin transform
of Ty, _2Tg; equals (f, — A)g, and hence (f; — A)g, vanishes on the unit circle and so
does (f, — A)g.. We conclude that either f, or g, is a constant. Thus either f or g is
constant.

If h is co-analytic and both f and g are analytic, then f_ = g_ = 0.SinceH = h —
(fLg- + f_g9+ + frg-) = hisanalytic, we have that B equals O identically. In this case
we consider that T3T7 — T,z has finite rank. Similarly we have that either f or g is a
constant. This completes the proof.

We have the following theorem that implies Theorem (6.3.7).
Theorem (6.3.18)[172]: For each m = 3, if three nonzero real numbers «, 8 and y satisfy
that |B] > 1,a # v,

||/ = | g,

and
m—1 1> m
18] la]’
then Tr Tz — T, p has finite rank and its rank equals m — 1 where

b.B
e
4 p q p
G(z) = az + z™,
p(z) = B + 27,
B(z) = yz + z™,
F(2) 5 ( m +m m — 1)
z) = z —ZzZ — ,
y Y B
B ( m +m m — 1)
q(z) = Palz - z 5 ,
b(z) = (m — 1)(a — v).
Proof. Let polynomials F, g, b, G, B and p be given in the theorem. Simple calculation gives
Gpn(2) = az™ ! + 1,
Pm(z) = Bz™ + 1,
B, (2) = yz™ 1! + 1,
Gl (z2) =(m — Daz™?,
Pm(z) = mpz™,
Bi(z) = (m — 1yz™2

Thus we have
F(2)Gm(2) — b(2)Pm(2) — q(2)Bp(2)

=,8y<zm +$z—mT_1>(azm_1+1)
—(m — D(a — y)(pz™ ;‘ 1)

m m —
—Ba(zm +EZ —T)(yzm‘l +1)=0,

F(2)Gn(2) — b(@)pm(2) — q(2)Bn(2)
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—ﬁa(zm +§z B 1>(m — Dyz™2 = 0.

Theorem (6.3.14) gives that Tr Tg — Ty, 5 has finite rank. Let e, = (k + 1)z*. Then
9 p q p
{ex}reo is an orthogonal basis of the Bergman space L%. Simple calculation gives that for
1<k<m-1,
|Tr T — T,Ts — TpT5 |ex = F(2)akz*™' — q(2)ykz** — b(2)B(k + 1)z*

m m— 1 3
=,3V<Z +721— 5 )0{1{2"1
—,Ba(zm +% z —mﬂ_ )ykzk‘1 — (m - D(a — y)Bk + 1zF
= kz* 1Bay (T z - z) — (m — D(a — y)Bk + 1)zF
y a

= (k +1 - m)B(a — y)z~
From (47) in the proof of Theorem (6.3.14) we also have that for [ > 1,
[Te Te = TqTs = ToTs lemui-1 = [F@Gn(2) — q(2)Bu(2) — b(2)pn(2)]7"
+[F(2)Gm(2) — q(2)Bp(2) - b(Z)zb'm(Z)]IZ"1 = 0.
Thus the range of Tp Tg — T,Ts — T,pT; is spanned by {1,z, ,z™2). S0 Tr Ty —
T,Tg — T, T3 has finite rank and its rank is m — 1. Now we can erte
m-—1
TeTg — T,Tg — TpT5 = z ¢ ® d;
i=1
for some polynomials c; and d;.
Sincem — 1 > 2, for any two nonzero real numbers a and £ such that || > 1 and

m-—1 1> m
18] lar|’
we have
Z m-—1 m m—1 m
|CI( )|Z _|Z|m |Z|_ -1 —-——>0
laB| 18] lal| 1 ||

for z in the closure of the unit disk. Thus g does not have any zero in the closure of the unit
disk. The condition on «, 8, and y in the theorem leads that F(z) and q(z) do not have any
common factors and G (z) and p(z) do not have any common factors. Since

m-—1
Z Ci ® dl] Tl
p

i=1

—Tb [TF Te — T,Ts — TpT5 ]T1 T1

mz<><>

we conclude that Tr Tg — Ty — T has finite rank and its rank is also equal to m — 1 to
9 p q
complete the proof.

Letting m = 3,a = 10,8 =§ and y = 1 in the above theorem suggests the
following concrete example.

=N U:z
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Example (63.19)[172]: Let F(2)=3(z°+3z-3%).q(2) = 15(2 +> 2 %),

b(z) = 18,G(2) = 10z+z3,B(z) = z + z3,and p(2) =§ + z3. The above theorem
and some calculations used in the proof of the above theorem give

1
TrTs — T ~=—27[—®—+——®—.
75 o3 q “p 2q " p
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