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Abstract 

The classification of reducing subspaces of a class of multiplication 

operators, analytic multipliers for a class of Toeplitz operators, tensor products 

of weighted shifts and a class of non-analytic Toeplitz operators on the Bergman 

space by the Hardy space of the Bidisk and polydisk are considered. We show 

the products products of Hankel and Toeplitz operators with Sarason’s Toeplitz 

product problem on the Bergman and a class of Fock spaces. We study the finite 

rank commentators, perturbation and semicommutators of Toeplitz operators 

with harmonic symbols and Bergman space. We give a theorem of Brown-

Halmos type for Bergman space of Toeplitz operators and modulo finite rank 

operators. 
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 الخلاصة
 

قمنا باعتبار التصنيف للفضاءات الجزئية المختزلة الى عائلة المؤثرات الضريبة والمضاريب 
 يرغتنسور للإزاحات المرجحة وعائلة مؤثرات تبوليتز  جواتن وة لأجل عائلة مؤثرات تبوليتز يلالتحلي

م توضيح توالقرص المتعدد.  الثنائيالتحليلية على فضاء ببرجمان بواسطة فضاء هاردي إلى القرص 
مع مسالة ناتج تبوليتز ساراسون على فضاءات ببرجمان وعائلة فضاءات  ج مؤثرات هانكل وتبوليتزاتو ن

الرموز التوافقية  معفوك. قمنا بدراسة مبدلات الرتبة المنتهية والارتجاج وشبه المبدلات لمؤثرات تبوليتز 
هالموس لأجل فضاء بيرجمان لمؤثرات تبوليتز –براون  وفضاء بيرجمان. قمنا بإعطاء المبرهنة نوع

  وبمقياس مؤثرات الرتبة المنتهية.
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Introduction 

In Douglas et al. (2011) [4] some incisive results are obtained on the structure of the 

reducing subspaces for the multiplication operator 𝑀𝜑 by a finite Blaschke product 𝜑 on the 

Bergman space on the unit disk. In particular, the linear dimension of the commutant, 𝐴𝜑  =

 {𝑀𝜑 ,𝑀𝜑
∗ }, is shown to equal the number of connected components of the Riemann surface, 

𝜑−1 ∘ 𝜑. Using techniques from Douglas et al. (2011) [4] and a uniformization result that 

expresses 𝜑 as a holomorphic covering map in a neighborhood of the boundary of the disk. 

We completely characterize the reducing subspaces of 𝑇𝑧1𝑁 𝑧2𝑀 on 𝐴𝛼
2 (𝐷2) where 𝛼 > −1 

and 𝑁,𝑀 are positive integers with 𝑁 ≠ 𝑀, and show that the minimal reducing subspaces 

of 𝑇𝑧1𝑁𝑧2𝑀 on the unweighted Bergman space and on the weighted Bergman space are 

different. 

We consider the question for which square integrable analytic functions 𝑓 and 𝑔 on 

the unit disk the densely defined products 𝑇𝑓𝑇𝑔 are bounded on the Bergman space. We 

show results analogous to those obtained by [17] for such Toeplitz products on the Hardy 

space. Let 𝑚(𝑡)𝑑𝑡 be a positive measure on ℝ+. We investigate the relations among the 

growth of 𝛾𝑛, the growth of its moment sequence {𝛾𝑛}, the growth of its Bergman kernel 

function 𝐾(𝑥) = ∑𝛾𝑛
−1, and the growth of the kernel function associated to the measure 

𝐾(𝑡)−1𝑚(𝑡)𝑑𝑡. We consider Hankel operators 𝐻𝑓 with antiholomorphic symbol 𝑓 on the 

generalized Fock space 𝐴2(µ𝑚), where µ𝑚 is the measure with weight 𝑒−|𝑧|
𝑚

, 𝑚 > 0 with 

respect to the Lebesgue measure in ℂ𝑛. We show that 𝐻𝑓 is bounded if and only if 𝑓 is a 

polynomial of degree at most 
𝑚

2
.  

We consider the question of when the semi-commutator 𝑇𝑓𝑔 − 𝑇𝑓𝑇𝑔 on the Bergman 

space with bounded harmonic symbols is compact. Several conditions equivalent to 

compactness of 𝑇𝑓𝑔 − 𝑇𝑓𝑇𝑔 are given. We study the analogues of the Brown–Halmos 

theorem for Toeplitz operators on the Bergman space. We show that for 𝑓 and 𝑔 harmonic, 

𝑇𝑓𝑇𝑔 = 𝑇ℎ only in the tribyl case, provided that h is of class 𝐶2 with the invariant laplacian 

bounded. Here the tribyl cases are 𝑓 or 𝑔 holomorphic. From this we conclude that the 

zeroproduct problem for harmonic symbols has only the tribyl solution. We completely 

characterize finite rank semicommutator or commutator of two Toeplitz operators with 

bounded harmonic symbols on the Bergman space.  

A unilateral weighted shift 𝐴 is said to be simple if its weight sequence {𝛼𝑛} satisfies 

𝛻3(𝛼𝑛
2) ≠ 0 for all 𝑛 ≥ 2. We show that if 𝐴 and 𝐵 are two simple unilateral weighted 

shifts, then 𝐴 ⊗  𝐼 +  𝐼 ⊗  𝐵 is reducible if and only if 𝐴 and 𝐵 are unitarily equivalent. 

We completely characterize all the reducing subspaces for a class of non-analytic Toeplitz 

operators with symbol 𝜙(𝑧,𝑤) = 𝛼𝑧𝑘 + 𝛽�̅�𝑙, where 𝛼, 𝛽 ∈ ℂ and 𝛼𝛽 = 0.  

Hankel operators with anti-holomorphic symbols are studied for a large class of 

weighted Fock spaces on ℂ𝑛. The weights defining these Hilbert spaces are radial and 

subject to a mild smoothness condition. In addition, it is assumed that the weights decay at 

least as fast as the classical Gaussian weight. The main result says that a Hankel operator on 



VI 

such a Fock space is bounded if and only if the symbol belongs to a certain BMOA space, 

defined by the Berezin transform. The latter space coincides with a corresponding Bloch 

space which is defined by means of the Bergman metric. Sarason’s Toeplitz product 

problem asks when the operator 𝑇𝑢𝑇�̅� is bounded on various Hilbert spaces of analytic 

functions, where u and v are analytic. The problem is highly nontribyl for Toeplitz operators 

on the Hardy space and the Bergman space (even in the case of the unit disk).  

Given a complex Borel measure µ with compact support in the complex plane C the 

sesquilinear form defined on analytic polynomials 𝑓 and 𝑔 by 𝐵µ(𝑓, 𝑔) = ∫𝑓 𝑔𝑑µ, 

determines an operator 𝑇µ from the space of such polynomials P to the space of linear 

functionals on 𝑃. We study the product problem of Toeplitz operators on the Bergman space 

of the unit disk. We characterize when the product of two Toeplitz operators 𝑇𝑓𝑇𝑔 is a finite 

rank perturbation of another Toeplitz operator 𝑇ℎ, with 𝑓, 𝑔 bounded harmonic and ℎ in 𝐶2 

class with invariant Laplacian in 𝐿1.   
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Chapter 1 

Classification of Reducing Subspaces 

 

 We obtain a complete description of nontribyl minimal reducing subspaces of the 

multiplication operator by a Blaschke product with four zeros on the Bergman space of the 

unit disk by the Hardy space of the bidisk. We show that 𝐴𝜑 is commutative, and moreover, 

that the minimal reducing subspaces are pairwise orthogonal. Finally, an analytic/arithmetic 

description of the minimal reducing subspaces is also provided, along with the taxonomy of 

the possible structures of the reducing subspaces in case 𝜑 has eight zeros. These results 

have implications in both operator theory and the geometry of finite Blaschke products. 

Section (1.1): A Class of Multiplication Operators on the Bergman Space by the Hardy 

Space of the Bidisk 

        For 𝔻 be the open unit disk in ℂ. Let d𝐴 denote Lebesgue area measure on the unit disk 

𝔻, normalized so that the measure of 𝔻 equals 1. The Bergman space 𝐿𝑎
2  is the Hilbert space 

consisting of the analytic functions on 𝔻 that are also in the space 𝐿2 (𝔻, d𝐴) of square 

integrable functions on 𝔻. For a bounded analytic function 𝜙 on the unit disk, the 

multiplication operator 𝑀𝜙 with symbol 𝜙 is defined on the Bergman space 𝐿𝑎
2  given by 

 𝑀𝜙ℎ =  𝜙ℎ  

for ℎ ∈  𝐿𝑎
2  . On the basis {𝑒𝑛}𝑛=0

∞ , where en is equal to √𝑛 +  1𝑧𝑛 , the multiplication 

operator 𝑀𝑧 by 𝑧 is a weighted shift operator, said to be the Bergman shift:  

𝑀𝑧𝑒𝑛  =  √
𝑛 +  1

𝑛 +  2
 𝑒𝑛+1.  

       A reducing subspace 𝑀 for an operator 𝑇 on a Hilbert space 𝐻 is a subspace 

𝑀 of 𝐻 such that 𝑇𝑀 ⊂  𝑀 and 𝑇∗𝑀 ⊂  𝑀. A reducing subspace 𝑀 of 𝑇 is called minimal 

if 𝑀 does not have any nontribyl subspaces which are reducing subspaces. We classify 

reducing subspaces of 𝑀𝜙 for the Blaschke product 𝜙 with four zeros by identifying its 

minimal reducing subspaces. We lift the Bergman shift up as a compression of a commuting 

pair of isometries on a nice subspace of the Hardy space of the bidisk. This idea was used 

in studying the Hilbert modules by R. Douglas and V. Paulsen [6], operator theory in the 

Hardy space over the bidisk by R. Dougals and R. Yang [7], [19], [20] and [21]; the higher-

order Hankel forms by S. Ferguson and R. Rochberg [8] and [9] and the lattice of the 

invariant subspaces of the Bergman shift by S. Richter [13].  

       On the Hardy space of the unit disk, for an inner function 𝜙, the multiplication operator 

by 𝜙 is a pure isometry. So its reducing subspaces are in one-to-one correspondence with 

the closed subspaces of 𝐻2  ⊝ 𝜙𝐻2 [5], [11]. Therefore, it has infinitely many reducing 

subspaces provided that 𝜙 is any inner function other than a Mobius function. Many have 

studied the problem of determining reducing subspaces of a multiplication operator on the 

Hardy space of the unit circle [2], [3] and [12]. The multiplication operators on the Bergman 

space possess a very rich structure theory. Even the lattice of the invariant subspaces of the 

Bergman shift 𝑀𝑧 is huge [4]. But the lattice of reducing subspaces of the multiplication 

operator by a finite Blaschke on the Bergman space seems to be simple. On the Bergman 

space, Zhu [22] showed that for a Blaschke product 𝜙 with two zeros, the multiplication 

operator 𝑀𝜙 has exact two nontribyl reducing subspaces ℳ0 and ℳ0
⊥. The restriction of the 

multiplication operator on ℳ0 is unitarily equivalent to the Bergman shift. Using the Hardy 

space of bidisk in [10], we show that the multiplication operator with a finite Blaschke 
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product 𝜙 has a unique reducing subspace ℳ0 (𝜙), on which the restriction of 𝑀𝜙 is 

unitarily equivalent to the Bergman shift and if a multiplication operator has a such reducing 

subspace, then its symbol must be a finite Blaschke product. The space ℳ0 (𝜙) is called the 

distinguished reducing subspace of 𝑀𝜙 and is equal to  

⋁  {𝜙0𝜙𝑛 ∶  𝑛 =  0, 1,· · · , 𝑚,· · · }  

if 𝜙 vanishes at 0 in [16], i.e,  

𝜙(𝑧) =  𝑐𝑧 ∏ 

𝑛

𝑘=1

𝑧 − 𝛼𝑘
1 − 𝛼𝑘𝑧

 , 

for some points {𝛼𝑘} in the unit disk and a unimodular constant c. The space has played an 

important role in classifying reducing subspaces of 𝑀𝜙. In [10], we have shown that for a 

Blaschke product 𝜙 of the third order, except for a scalar multiple of the third power of a 

Mobius transform, 𝑀𝜙 has exactly two nontribyl minimal reducing subspaces ℳ0 (𝜙) and 

ℳ0(Φ)
⊥. The study on reducing subspaces of the multiplication operators 𝑀𝜙 on the 

Bergman space in [10] by using the Hardy space of the bidisk. We will obtain a complete 

description of nontribyl minimal reducing subspaces of 𝑀𝜙 for the fourth order Blaschke 

product 𝜙.  

We introduce some notation to lift the Bergman shift as the compression of some 

isometry on a subspace of the Hardy space of the bidisk and state some theorems in [10]. 

We state the main result and present its proof. Since the proof is long, two difficult cases in 

the proof are considered.  

        For 𝕋  denote the unit circle. The torus 𝕋2 is the Cartesian product 𝕋 ×  𝕋. Let dσ be 

the rotation invariant Lebesgue measure on 𝕋2 . The Hardy space 𝐻2 (𝕋2) is the subspace 

of 𝐿2 (𝕋2 , 𝑑𝜎), where functions in 𝐻2 (𝕋2) can be identified with the boundary value of 

the function holomorphic in the bidisc 𝔻2 with the square summable Fourier coefficients. 

The Toeplitz operator on 𝐻2 (𝕋2) with symbol f in 𝐿∞(𝕋2 , 𝑑𝜎) is defined by  

𝑇𝑓(ℎ)  =  𝑃(𝑓ℎ), 
for ℎ ∈  𝐻2 (𝕋2) where 𝑃 is the orthogonal projection from 𝐿2 (𝕋2 , 𝑑𝜎) onto 𝐻2 (𝕋2). For 

each integer 𝑛 ≥  0, let 

 𝑝𝑛(𝑧, 𝑤) =  ∑ 

𝑛

𝑖=0

 𝑧𝑖𝑤𝑛−𝑖  . 

Let 𝐻 be the subspace of 𝐻2 (𝕋2) spanned by functions {𝑝𝑛}𝑛=0
∞ . Thus  

𝐻2 (𝕋2)  =  𝐻 ⊕  𝑐𝑙{(𝑧 −  𝑤)𝐻2(𝕋2)}. 
Let  

ℬ = 𝑃𝐻𝑇𝑧|ℋ  =  𝑃𝐻𝑇𝑤|ℋ   
where 𝑃ℋ is the orthogonal projection from 𝐿2 (𝕋2 , 𝑑𝜎) onto ℋ. So ℬ is unitarily 

equivalent to the Bergman shift 𝑀𝑧 on the Bergman space 𝐿𝑎
2  by the following unitary 

operator 𝑈 ∶  𝐿𝑎
2  (𝔻) → ℋ,  

𝑈𝑧𝑛  =
𝑝𝑛(𝑧, 𝑤)

𝑛 +  1
 .  

This implies that the Bergman shift is lifted up as the compression of an isometry on a nice 

subspace of 𝐻2 (𝕋2). Indeed, for each finite Blaschke product 𝜙(𝑧), the multiplication 

operator 𝑀𝜑 on the Bergman space is unitarily equivalent to 𝜙(ℬ) on ℋ.  
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       Let 𝐿0 be ker𝑇𝜙
∗(𝑧)  ∩  ker𝑇𝜙

∗(𝑤) ∩ℋ. In [10], for each 𝑒 ∈ 𝐿0, we construct 

functions {𝑑𝑒
𝑘} and 𝑑𝑒

0 such that for each 𝑙 ≥  1,  

𝑝𝑙(𝜙(𝑧), 𝜙(𝑤))𝑒 + ∑  

 𝑙−1

𝑘=0

 𝑝𝑘(𝜙(𝑧), 𝜙(𝑤))𝑑𝑒
𝑙−𝑘  ∈ ℋ  

and  

𝑝𝑙(𝜙(𝑧), 𝜙(𝑤))𝑒 + 𝑝
𝑙−1(𝜙(𝑧), 𝜙(𝑤))𝑑𝑒

0  ∈ ℋ.  

On one hand, we have a precise formula of 𝑑𝑒
0 :  

𝑑𝑒
0 (𝑧, 𝑤) =  𝑤𝑒(0,𝑤)𝑒0(𝑧, 𝑤) −  𝑤𝜙0(𝑤)𝑒(𝑧, 𝑤),                          (1) 

where 𝑒0 is the function 
𝜙(𝑧)−𝜙(𝑤)

𝑧−𝑤
 . On the other hand, 𝑑𝑒

𝑘 is orthogonal to ker𝑇𝜙
∗(𝑧) ∩

 ker𝑇𝜙
∗(𝑤) ∩ℋ, and for a reducing subspace ℳ and 𝑒 ∈ ℳ,  

𝑝𝑙(𝜙(𝑧), 𝜙(𝑤))𝑒 +  ∑  

𝑙−1

𝑘=0

 𝑝𝑘(𝜙(𝑧), 𝜙(𝑤))𝑑𝑒
𝑙−𝑘  ∈ ℳ. 

Moreover, the relation between 𝑑𝑒
1 and 𝑑𝑒

0 is given by Theorem 1 in [10] as follows:  

Theorem (1.1.1)[1]: If ℳ is a reducing subspace of 𝜙(ℬ) orthogonal to the distinguished 

reducing subspace ℳ0, for each 𝑒 ∈ ℳ ∩ 𝐿0, then there is an element �̃�  ∈ ℳ ∩ 𝐿0 and 

a number λ such that  

𝑑𝑒
1  =  𝑑𝑒

0  +  �̃�  +  𝜆𝑒0.                                                      (2)  
        Since for Blaschke products with smaller order, it is not difficult to calculate �̃� and λ 

precisely, we are able to classify minimal reducing subspaces of a multiplication operator 

by a Blaschke product of the fourth order. Main ideas in the proof of Theorems (1.1.7) and 

(1.1.8) are that by complicated computations we use (2) to derive conditions on zeros of the 

Blaschke product of the fourth order.  

We often in [10] stated as follows.  

Theorem (1.1.2)[1]: There is a unique reducing subspace ℳ0 for 𝜙(ℬ) such that 𝜙(ℬ)|ℳ0
 

is unitarily equivalent to the Bergman shift. In fact,  

ℳ0  =⋁ 

𝑙≥0

 {𝑝𝑙(𝜙(𝑧), 𝜙(𝑤))𝑒0},  

and {
𝑝𝑙(𝜙 (𝑧),𝜙(𝑤))𝑒0

√𝑙+1‖𝑒0‖
}
0

∞

 form an orthonormal basis of ℳ0.  

       We call ℳ0 to be the distinguished reducing subspace for 𝜙(ℬ).ℳ0 is unitarily 

equivalent to a reducing subspace of 𝑀𝜙 contained in the Bergman space, denoted by 

ℳ0(𝜙). The space plays an important role in classifying the minimal reducing subspaces 

of 𝑀𝜙 in Theorem (1.1.6).  

      In [10] we showed that for a nontribyl minimal reducing subspace Ω for 𝜙(ℬ), either Ω 

equals ℳ0 or Ω is a subspace of ℳ0
⊥ . The condition in the following theorem is natural. 

Theorem (1.1.3)[1]: Suppose that Ω, M and N are three distinct nontribyl minimal reducing 

subspaces for 𝜙(ℬ) and  

Ω ⊂  𝑀 ⊕  𝑁 .  
If they are contained in ℳ0

⊥ , then there is a unitary operator 𝑈 ∶  𝑀 →  𝑁 such that 

𝑈 commutes with 𝜙(ℬ) and 𝜙(ℬ)∗ .  
      Let 𝜙 be a Blaschke product with four zeros. We will obtain a complete description of 

minimal reducing subspaces of the multiplication operator 𝑀𝜙. First observe that the 

multiplication operator 𝑀𝑧4 is a weighted shift with multiplicity 4:  
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𝑀𝑧4  𝑒𝑛  =  √
𝑛 +  1

𝑛 +  5
 𝑒𝑛+4  

where 𝑒𝑛 equals √𝑛 +  1𝑧𝑛 . By Theorem B [15], 𝑀𝑧4 has exact four nontribyl minimal 

reducing subspaces:  

𝑀𝑗  =  ⋁  {𝑧𝑛 ∶  𝑛 ≡  𝑗 mod 4}  

for 𝑗 =  1, 2, 3, 4. Before stating the main result. It is not difficult to see that the set of finite 

Blaschke products forms a semigroup under composition of two functions. For a finite 

Blaschke product 𝜙 we say that 𝜙 is decomposable if there are two Blaschke products 

𝜓1 and 𝜓2 with orders greater than 1 such that  

𝜙(𝑧) =  𝜓1 ° 𝜓2(𝑧).  
For each λ in 𝔻, let 𝜙𝜆 denote the Mobius transform:  

 𝜙𝜆(𝑧)  =
𝜆 −  𝑧

1 − 𝜆𝑧
 .  

Define the operator 𝑈𝜆 on the Bergman space as follows:  

𝑈𝜆𝑓 =  𝑓 ° 𝜙𝜆𝑘𝜆  

for 𝑓 in 𝐿𝑎
2  where 𝑘𝜆 is the normalized reproducing kernel 

(1−|𝜆|2)

(1−𝜆𝑧)2
 . Clearly, 𝑈𝜆 is a 

selfadjoint unitary operator on the Bergman space. Using the unitary operator 𝑈𝜆 we have 

 ℳ0(𝜙)  =  𝑈𝜆ℳ0(𝜙 ° 𝜙𝜆) 
where λ is a zero of the finite Blaschke product 𝜙. This easily follows from that 𝜙 ° 𝜙𝜆 

vanishes at 0 and  

𝑈𝜆
∗𝑀𝜙𝑈𝜆  =  𝑀𝜙°𝜙𝜆 . 

We say that two Blaschke products 𝜙1 and 𝜙2 are equivalent if there is a complex number 

λ in 𝔻 such that  

𝜙1  =  𝜙𝜆 ° 𝜙2.  
For two equivalent Blaschke products 𝜙1 and 𝜙2, 𝑀𝜙1 and 𝑀𝜙2 are mutually analytic 

function calculus of each other and hence share reducing subspaces. The following main 

result gives a complete description of minimal reducing subspaces.  

        To prove the above theorem we need the following two lemmas which tell us when a 

Blaschke product with order 4 is decomposable.  

Lemma (1.1.4)[1]: If a Blaschke product 𝜙 with order four is decomposable, then the 

numerator of the rational function 𝜙(𝑧)  −  𝜙(𝑤) has at least three irreducible factors.  

Proof. Suppose that 𝜙 is the Blaschke product with order four. Let 𝑓(𝑧, 𝑤) be the numerator 

of the rational function 𝜙(𝑧)  −  𝜙(𝑤). If 𝜙 is decomposable, then 𝜙 =  𝜓1 ° 𝜓2 for two 

Blaschke products 𝜓1 and 𝜓2 with order two. Let 𝑔(𝑧, 𝑤) be the numerator of the rational 

function 𝜓1(𝑧)  − 𝜓1(𝑤). Clearly, 𝑧 −  𝑤 is a factor of 𝑔(𝑧,𝑤). Thus we can write 

 𝑔(𝑧, 𝑤)  =  (𝑧 −  𝑤)𝑝(𝑧, 𝑤) 
for some polynomial 𝑝(𝑧,𝑤) of 𝑧 and 𝑤 to get  

𝑔(𝜓2(𝑧), 𝜓2(𝑤))  =  (𝜓2(𝑧) − 𝜓2(𝑤))𝑝(𝜓2(𝑧), 𝜓2(𝑤)). 
On the other hand, we also have  

𝜓2(𝑧) − 𝜓2(𝑤) =
(𝑧 −  𝑤)𝑝2(𝑧, 𝑤)

𝑞2(𝑧, 𝑤)
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for two polynomials 𝑝2(𝑧, 𝑤) and 𝑞2(𝑧, 𝑤) which 𝑝2(𝑧, 𝑤) and 𝑞2(𝑧, 𝑤) do not have 

common factor. In fact, 𝑞2(𝑧, 𝑤) and the numerator of the rational function 

𝑝(𝜓2(𝑧), 𝜓2(𝑤)) do not have common factor also. So we obtain  

𝑔(𝜓2(𝑧), 𝜓2(𝑤)) =
(𝑧 −  𝑤)𝑝2(𝑧, 𝑤)

𝑞2(𝑧, 𝑤)
 𝑝(𝜓2(𝑧), 𝜓2(𝑤)). 

Since 𝑓(𝑧, 𝑤) is the numerator of the rational function 𝑔(𝜓2(𝑧), 𝜓2(𝑤)), this gives 

that 𝑓(𝑧, 𝑤) has at least three factors. This completes the proof.  

       For 𝛼, 𝛽 ∈ 𝔻, define  

𝑓𝛼,𝛽(𝑤, 𝑧)  =  𝑤
2 (𝑤 −  𝛼)(𝑤 −  𝛽)(1 − 𝛼𝑧)(1 − 𝛽𝑧) 

− 𝑧2 (𝑧 −  𝛼)(𝑧 −  𝛽)(1 − 𝛼𝑤)(1 − 𝛽𝑤). 

It is easy to see that 𝑓𝛼,𝛽(𝑤, 𝑧) is the numerator of 𝑧2𝜙𝛼(𝑧)𝜙𝛽(𝑧)  −  𝑤
2𝜙𝛼(𝑤)𝜙𝛽(𝑤). The 

following lemma gives a criteria when the Blaschke product 𝑧2𝜙𝛼(𝑧)𝜙𝛽(𝑧) is 

decomposable.  

Lemma (1.1.5)[1]: For α and 𝛽 in 𝔻, one of the following holds.  

       (i) If both 𝛼 and 𝛽 equal zero, then  

𝑓𝛼,𝛽(𝑤, 𝑧)  =  (𝑤 −  𝑧)(𝑤 +  𝑧)(𝑤 −  𝑖𝑧)(𝑤 +  𝑖𝑧).  

       (ii) If 𝛼 does not equal either 𝛽 or −𝛽, then  

𝑓𝛼,𝛽(𝑤, 𝑧)  =  (𝑤 −  𝑧)𝑝(𝑤, 𝑧)  

for some irreducible polynomial 𝑝(𝑤, 𝑧).  
        (iii) If α equals either 𝛽 or −𝛽 but it does not equal zero, then  

𝑓𝛼,𝛽(𝑤, 𝑧)  =  (𝑤 −  𝑧)𝑝(𝑤, 𝑧)𝑞(𝑤, 𝑧)  

for two irreducible distinct polynomials 𝑝(𝑤, 𝑧) and 𝑞(𝑤, 𝑧).  
Proof. Clearly, (i) holds. To prove (ii), by the example on page 6 of [14] we may assume 

that none of α and β equals 0. First observe that (𝑤 −  𝑧) is a factor of the polynomial 

𝑓𝛼,𝛽(𝑤, 𝑧). Taking a long division gives  

𝑓𝛼,𝛽(𝑤, 𝑧)  =  (𝑤 −  𝑧)𝑔𝛼,𝛽(𝑤, 𝑧)  

where  

𝑔𝛼,𝛽(𝑤, 𝑧)  =  (1 − 𝛼𝑧)(1 − 𝛽𝑧)𝑤
3  +  (𝑧 − (𝛼 +  𝛽))(1 − 𝛼𝑧)(1 − 𝛽𝑧)𝑤2  

+ (𝑧 −  𝛼)(𝑧 −  𝛽)(1 − (𝛼  + 𝛽)𝑧)𝑤 +  𝑧(𝑧 −  𝛼)(𝑧 −  𝛽).  

Next we will show that 𝑔𝛼,𝛽(𝑤, 𝑧) is irreducible. To do this, we assume that 𝑔𝛼,𝛽(𝑤, 𝑧) is 

reducible to derive a contradiction.  

         Assuming that 𝑔𝛼,𝛽(𝑤, 𝑧) is reducible, we can factor 𝑔𝛼,𝛽(𝑤, 𝑧) as the product of two 

polynomials 𝑝(𝑤, 𝑧) and 𝑞(𝑤, 𝑧) of 𝑧 and 𝑤 with degree of 𝑤 greater than or equal one. 

Write  

𝑝(𝑤, 𝑧) =  𝑎1(𝑧)𝑤 + 𝑎0(𝑧) 
𝑞(𝑤, 𝑧)  =  𝑏2(𝑧)𝑤

2  +  𝑏1(𝑧)𝑤 + 𝑏0(𝑧)  
where 𝑎𝑗  (𝑧) and 𝑏𝑗  (𝑧) are polynomials of z. Since 𝑔𝛼,𝛽(𝑤, 𝑧) equals the product of p(w, z) 

and q(w, z), taking the product and comparing coefficients of 𝑤𝑘 give  

𝑎1(𝑧)𝑏2(𝑧)  =  (1 −  𝛼𝑧)(1 − 𝛽𝑧),                                   (3) 

𝑎1(𝑧)𝑏1(𝑧)  + 𝑎0(𝑧)𝑏2(𝑧)  =  (𝑧 − (𝛼 +  𝛽))(1 − 𝛼𝑧)(1 − 𝛽𝑧),            (4) 

𝑎1(𝑧)𝑏0(𝑧) + 𝑎0(𝑧)𝑏1(𝑧) =  (𝑧 −  𝛼)(𝑧 −  𝛽)(1 − (𝛼  + 𝛽)𝑧), (5) 

𝑎0(𝑧)𝑏0(𝑧) =  𝑧(𝑧 −  𝛼)(𝑧 −  𝛽).                        (6)  
Equation (3) gives that either  
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𝑎1(𝑧) =  (1 −  𝛼𝑧) or  

𝑎1(𝑧) =  (1 − 𝛼𝑧)(1 − 𝛽𝑧) or 

𝑎1(𝑧)  =  1.  

        In the first case that 𝑎1(𝑧)  =  (1 − 𝛼𝑧), (3) gives 𝑏2(𝑧)  =  (1 − 𝛽𝑧). Thus by 

Equation (4), we have  

𝑎0(𝑧)(1 − 𝛽𝑧)  =  (1 − 𝛼𝑧)[(𝑧 − (𝛼 +  𝛽))(1 − 𝛽𝑧)  − 𝑏1(𝑧)],  

to get that (1 − 𝛼𝑧) is a factor of 𝑎0(𝑧), and hence is also a factor of a factor 𝑧(𝑧 − 𝛼)(𝑧 −
𝛽) by (6). This implies that α must equal 0. It is a contradiction.  

      In the second case that 𝑎1(𝑧)  =  (1 − 𝛼𝑧)(1 − 𝛽𝑧), we have that 𝑏2(𝑧)  =  1 to get 

that either the degree of 𝑏1(𝑧) or the degree of 𝑏0(𝑧) must be one while the degrees of 

𝑏1(𝑧) and 𝑏0(𝑧) are at most one. So the degree of 𝑎0(𝑧) is at most two. Also 𝑎0(𝑧) does not 

equal zero. Equation (4) gives  

(1 − 𝛼𝑧)(1 −  𝛽𝑧)𝑏1(𝑧)  + 𝑎0(𝑧)  =  (𝑧 − (𝛼 +  𝛽))(1 − 𝛼𝑧)(1 − 𝛽𝑧).  

Thus 𝑎0(𝑧)  =  𝑐1(1 − 𝛼𝑧)(1 − 𝛽𝑧) for some constant 𝑐1. But Equation (6) gives  

𝑐1(1 − 𝛼𝑧)(1 − 𝛽𝑧)𝑏0(𝑧)  =  𝑧(𝑧 −  𝛼)(𝑧 −  𝛽).  

Either 𝑐1  =  0 or (1 − 𝛼𝑧)(1 − 𝛽𝑧) is a factor of 𝑧(𝑧 −  𝛼)(𝑧 −  𝛽). This is impossible.  

       In the third case that 𝑎1(𝑧)  =  1, then 𝑏2(𝑧)  =  (1 − 𝛼𝑧)(1 − 𝛽𝑧). Since the root w 

of 𝑓𝛼,𝛽(𝑤, 𝑧) is a nonconstant function of 𝑧, the degree of 𝑎0(𝑧) must be one. Thus the 

degrees of 𝑏1(𝑧) and 𝑏0(𝑧) are at most two. By Equation (4) we have  

(1 − 𝛼𝑧)(1 −  𝛽𝑧)𝑎0(𝑧)  + 𝑏1(𝑧)  =  (𝑧 − (𝛼 +  𝛽))(1 − 𝛼𝑧)(1 − 𝛽𝑧),  
to get  

𝑏1(𝑧)  =  (1 − 𝛼𝑧)(1 − 𝛽𝑧)[(𝑧 − (𝛼 +  𝛽)) − 𝑎0(𝑧)].  
Since the degree of 𝑏1(𝑧) is at most two, we have  

𝑎0(𝑧) =  (𝑧 − (𝛼 +  𝛽)) − 𝑐0;  

𝑏1(𝑧)  =  𝑐0(1 − 𝛼𝑧)(1 − 𝛽𝑧).  
Equations (6) and (5) give  

[(𝑧 − (𝛼 +  𝛽)) − 𝑐0]𝑏0(𝑧)  =  𝑧(𝑧 −  𝛼)(𝑧 −  𝛽)  
and  

𝑏1(𝑧)[(𝑧 −  (𝛼 +  𝛽)) − 𝑐0] + 𝑏0(𝑧) 

= (𝑧 −  𝛼)(𝑧 −  𝛽)(1 − (𝛼  + 𝛽)𝑧).  

Multiplying the both sides of the last equality by [(𝑧 −  (𝛼 +  𝛽)) − 𝑐0] gives  

𝑏1(𝑧)[(𝑧 − (𝛼 +  𝛽)) − 𝑐0] 2 +  𝑧(𝑧 −  𝛼)(𝑧 −  𝛽) 

= [(𝑧 − (𝛼 +  𝛽)) − 𝑐0](𝑧 −  𝛼)(𝑧 −  𝛽)(1 − (𝛼  + 𝛽)𝑧).  
This leads to  

𝑐0(1 − 𝛼𝑧)(1 − 𝛽𝑧)[(𝑧 − (𝛼 +  𝛽)) − 𝑐0] 2 +  𝑧(𝑧 −  𝛼)(𝑧 −  𝛽) 

= [(𝑧 − (𝛼 +  𝛽)) − 𝑐0](𝑧 −  𝛼)(𝑧 −  𝛽)(1 − (𝛼  + 𝛽)𝑧).  
        If 𝑐0  ≠  0, then the above equality gives that (𝑧 − 𝛼)(𝑧 − 𝛽) is a factor of 

[(𝑧 − (𝛼 + 𝛽)) − 𝑐0]
2
. This is impossible. 

       If 𝑐0  =  0, then we have  

𝑧(𝑧 −  𝛼)(𝑧 −  𝛽)  =  [(𝑧 − (𝛼 +  𝛽))](𝑧 −  𝛼)(𝑧 −  𝛽)(1 − (𝛼  + 𝛽)𝑧).  
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to get 𝛼  + 𝛽  =  0 and hence 𝛼 =  −𝛽. It is also a contradiction. This completes the proof 

that 𝑔𝛼,𝛽(𝑤, 𝑧) is irreducible.  

      To prove (iii), we note that if α equals β, an easy computation gives  

𝑓𝛼,𝛽(𝑤, 𝑧)  =  (𝑤 −  𝑧)[((1 −  𝛼𝑧)𝑤 + (𝑧 −  𝛼)]   

× [𝑤(𝑤 −  𝛼)(1 − 𝛼𝑧) +  𝑧(𝑧 −  𝛼)(1 −  𝛼𝑤)] .    
If 𝛼 =  −𝛽, we also have  

𝑓𝛼,𝛽(𝑤, 𝑧)  =  (𝑤 −  𝑧)(𝑤 +  𝑧)[(1 − 𝛼
2
 𝑧2 )𝑤2  +  (𝑧2  −  𝛼2 )].  

This completes the proof.  

Theorem (1.1.6)[1]: Let 𝜙 be a Blaschke product with four zeros. One of the following 

holds.  

       (i) If 𝜙 is equivalent to 𝑧4 , i.e., 𝜙 is a scalar multiple of the fourth power 𝜙𝑐
4 of the 

Mobius transform 𝜙𝑐 for some complex number 𝑐 in the unit disk, 𝑀𝜙 has exact four 

nontribyl minimal reducing subspaces  

{𝑈𝑐ℳ1, 𝑈𝑐ℳ2, 𝑈𝑐ℳ3, 𝑈𝑐ℳ4}.  
        (ii) If 𝜙 is is decomposable but not equivalent to 𝑧4 , i.e, 𝜙 =  𝜓1 ° 𝜓2 for two 

Blaschke products 𝜓1 and 𝜓2 with orders 2 but not both of 𝜓1 and 𝜓2 are a scalar multiple 

of 𝑧2 , then 𝑀𝜙 has exact three nontribyl minimal reducing subspaces  

{ℳ0(𝜙),ℳ0(𝜓2)ℳ0(𝜙),ℳ0(𝜓2)
⊥}.  

        (iii) If 𝜙 is not decomposable, then 𝑀𝜙 has exact two nontribyl minimal reducing 

subspaces  

{ℳ0(𝜙),ℳ0(𝜙)
⊥}. 

Proof. Assume that 𝜙 is a Blaschke product with the fourth order. By the Bochner Theorem 

[18], 𝜙 has a critical point c in the unit disk. Le𝑡 𝜆 =  𝜙(𝑐) be the critical value of 𝜙. Then 

there are two points 𝛼 and 𝛽 in the unit disk such that  

𝜙𝜆 ° 𝜙 ° 𝜙𝑐(𝑧)  =  𝜂𝑧
2𝜙𝛼𝜙𝛽   

where η is a unimodule constant. Let 𝜓 be 𝑧2𝜙𝛼𝜙𝛽. Since 𝜙°𝜙𝑐  and 𝜓 are mutually analytic 

function calculus of each other, both 𝑀𝜙°𝜙𝑐  and 𝑀𝜓 share reducing subspaces. 

        (i) If 𝜙 is equivalent to 𝑧4 , then 𝜓 must equal a scalar multiple of 𝑧4 . By Theorem B 

in [15], 𝑀𝜓 has exact four nontribyl minimal reducing subspaces  

{ℳ1,ℳ2,ℳ3,ℳ4}  
where  

ℳ𝑗  =  ⋁  {𝑧𝑛 ∶  𝑛 ≡  𝑗 mod 4}  

for 𝑗 =  1, 2, 3, 4. The four spaces above are also reducing subspaces for 𝑀𝜙°𝜙𝑐  . Noting  

𝑈𝑐
∗ 𝑀𝜙°𝜙𝑐𝑈𝑐  =  𝑀𝜙,  

we have that 𝑀𝜙 has exact four nontribyl minimal reducing subspaces  

{𝑈𝑐ℳ1, 𝑈𝑐ℳ2, 𝑈𝑐ℳ3, 𝑈𝑐ℳ4}.  
        (ii) If 𝜙 is decomposable but not equivalent to 𝑧4 , i.e, 𝜙 =  𝜓1 ° 𝜓2 for two Blaschke 

products 𝜓1 and 𝜓2 with degrees two and not both 𝜓1 and 𝜓2 are scalar multiples of 𝑧2 , by 

Lemmas (1.1.4) and (1.1.5), then α equals either 𝛽 or −𝛽 but does not equal 0. By Theorem 

(1.1.2), the restriction of 𝑀𝜓2  on ℳ0(𝜓2) is unitarily equivalent to the Bergman shift. Thus 

ℳ0(𝜓2) is also a reducing subspace of 𝑀𝜙 and the restriction of 𝑀𝜙  =  𝑀𝜓1 °𝜓2 on ℳ0(𝜓2) 

is unitarily equivalent to 𝑀𝜓1 on the Bergman space. By Theorem (1.1.2) again, there is a 

unique reducing subspace ℳ0(𝜓1) on which the restriction 𝑀𝜓1  is unitarily equivalent to 
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the Bergman shift. Thus there is a subspace of ℳ0(𝜓2) on which the restriction of 𝑀𝜙 is 

unitarily equivalent to the Bergman shift. Theorem (1.1.2) implies that ℳ0(𝜙) is contained 

in ℳ0(𝜓2). Therefore ℳ0(𝜓2)ℳ0(𝜙) is also a minimal reducing subspace of 𝑀𝜙 and  

𝐿𝑎
2  =  ℳ0(𝜙)  ⊕ [ℳ0(𝜓2)ℳ0(𝜙)]  ⊕ [ℳ0(𝜓2)]

⊥.  
By Theorems (1.1.7) in [17], {ℳ0(𝜙), [ℳ0(𝜓2)ℳ0(𝜙)], [ℳ0(𝜓2)]

⊥} are nontribyl 

minimal reducing subspaces of 𝑀𝜙. We will show that they are exact nontribyl minimal 

reducing subspaces of 𝑀𝜙. If this is not true, then there is another minimal reducing 

subspace Ω of 𝑀𝜙. By Theorem 38 [10], we have  

Ω ⊂  [ℳ0(𝜓2)ℳ0(𝜙)]  ⊕ [ℳ0(𝜓2)]
⊥.  

By Theorem (1.1.3), there is a unitary operator  

𝑈 ∶  [ℳ0(𝜓2)ℳ0(𝜙)]  →  [ℳ0(𝜓2)]
⊥ 

 which commutes with both 𝑀𝜙 and 𝑀𝜙
∗  . But  

dimker𝑀𝜙
∗  ∩  [ℳ0(𝜓2)ℳ0(𝜙)]  =  1  

and  

dimker𝑀𝜙
∗  ∩  [ℳ0(𝜓2)]

⊥  =  2.  

This is a contradiction. Thus {ℳ0(𝜙), [ℳ0(𝜓2)ℳ0(𝜙)], [ℳ0(𝜓2)]
⊥} are exact nontribyl 

minimal reducing subspaces of 𝑀𝜙. 

        (iii) If 𝜙 is not decomposable, by Lemma (1.1.5), then 𝜙 equals 𝑧3𝜙𝛼 or 𝑧2𝜙𝛼𝜙𝛽 for 

two nonzero points 𝛼 𝛽 in 𝔻 and α does not equal 𝛽 or −𝛽. By Theorems (1.1.7) and 

(1.1.8), 𝑀𝜙 has exact two nontribyl minimal reducing subspaces {ℳ0(𝜙),ℳ0(𝜙)
⊥}.  

We will study reducing subspaces of 𝑀𝑧3𝜙𝛼
 for a nonzero point 𝛼 ∈ 𝔻. Recall that 

ℳ0 is the distinguished reducing subspace of 𝜙(ℬ) as in Theorem (1.1.2).  

Theorem (1.1.7)[1]: Let 𝑧3𝜙𝛼 for a nonzero point 𝛼 ∈ 𝔻. Then 𝜙(ℬ) has exact two 

nontribyl reducing subspaces {ℳ0,ℳ0
⊥ }.  

Proof. Let ℳ0 be the distinguished reducing subspace of 𝜙(ℬ) as in Theorem (1.1.2). By 

Theorem (1.1.3), we only need to show that ℳ0
⊥ is a minimal reducing subspace for 𝜙(ℬ). 

        Assume that ℳ0
⊥  is not a minimal reducing subspace for 𝜙(ℬ). Then by Theorem 

(1.1.7) in [17] we may assume  

ℋ =  ⨁ 

2

𝑖=0

 𝑀𝑖   

such that each 𝑀𝑖 is a nontribyl reducing subspace for 𝜙(ℬ), ℳ0
⊥ = 𝑀0 is the distinguished 

reducing subspace for 𝜙(ℬ) and  

ℳ0
⊥   =  𝑀1  ⊕ 𝑀2. 

Recall that  

𝜙0  =  𝑧
2𝜙𝛼 ,  

𝐿0  =  span{1, 𝑝1, 𝑝2, 𝑘𝛼(𝑧)𝑘𝛼(𝑤)},  
and  

𝐿0  =  (𝐿0  ∩  𝑀0)  ⊕ (𝐿0  ∩  𝑀1)  ⊕ (𝐿0  ∩  𝑀2).  
We further assume that  

dim(𝑀1  ∩  𝐿0)  =  1  
and  

dim(𝑀2  ∩  𝐿0)  =  2. 
Take 0 ≠  𝑒1  ∈  𝑀1  ∩  𝐿0, 𝑒2, 𝑒3  ∈  𝑀2  ∩  𝐿0 such that {𝑒2, 𝑒3} are a basis for 𝑀2 ∩ 𝐿0, 

then 
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 𝐿0  =  𝑠𝑝𝑎𝑛{𝑒0, 𝑒1, 𝑒2, 𝑒3} 
 By (1), we have  

𝑑𝑒𝑗
0  =  𝑤𝑒𝑗  (0, 𝑤)𝑒0  −  𝜙(𝑤)𝑒𝑗   

and direct computations show that  

〈𝑑𝑒𝑗
0  , 𝑝𝑘〉  =  〈𝑤𝑒𝑗  (0,𝑤)𝑒0  −  𝜙(𝑤)𝑒𝑗 , 𝑝𝑘〉 

= 〈𝑤𝑒𝑗  (0,𝑤)𝑒0, 𝑝𝑘〉       (by 𝑇 ∗  𝜙(𝑤)𝑝𝑘  =  0)  

= 〈𝑤𝑒𝑗  (0, 𝑤)𝑒0(𝑤, 𝑤), 𝑝𝑘(0,𝑤)〉    

= 〈𝑤𝑒𝑗  (0,𝑤)𝜙
′ (𝑤),𝑤𝑘〉       

= 〈𝑤𝑒𝑗
3  (0, 𝑤)(𝑤𝜙𝛼

′  (𝑤) +  3𝜙𝛼(𝑤)),𝑤𝑘〉  

          =  〈𝑤𝑒𝑗
3−𝑘  (0,𝑤)(𝑤𝜙𝛼

′  (𝑤) +  3𝜙𝛼(𝑤)), 1〉 =  0  

for 0 ≤  𝑘 ≤  2, and  

〈𝑑𝑒𝑗
0  , 𝑘𝛼(𝑧)𝑘𝛼(𝑤)〉  =  𝛼𝑒𝑗  (0, 𝛼)𝑒0(𝛼, 𝛼) =  𝛼𝑒𝑗  (0, 𝛼)

𝛼3

1 − |𝛼|2
 .   

This implies that those functions 𝑑𝑒𝑗
0  are orthogonal to {1, 𝑝1, 𝑝2}. Simple calculations give  

〈𝑒0, 𝑝𝑘〉  =  0  
for 0 ≤  𝑘 ≤  1,  

〈𝑒0, 𝑝2〉  =  〈𝑒0(0,𝑤), 𝑝2(𝑤,𝑤)〉  =
3

2
 𝜙0
′′ (0) =  −3𝛼 ≠  0  

and  

〈𝑒0, 𝑘𝛼(𝑧)𝑘𝛼(𝑤)〉    = 𝑒0(𝛼, 𝛼) =  𝜙
′ (𝛼) =

𝛼3

1 − |𝛼|2
≠  0  

        By Theorem (1.1.1), there are numbers µ, 𝜆𝑗  such that  

𝑑𝑒1
1  =  𝑑𝑒1

0  +  µ𝑒1  +  𝜆1𝑒0  

𝑑𝑒2
1  =  𝑑𝑒2

0  +  �̃�2  +  𝜆2𝑒0  

𝑑𝑒3
1  =  𝑑𝑒3

0  +  �̃�3  +  𝜆3𝑒0  

where �̃�2, �̃�3  ∈  𝑀2  ∩  𝐿0.  
       Now we consider two cases. In each case we will derive a contradiction.  

       Case 1. 𝜇 ≠  0. In this case, we get that 𝑒1 is orthogonal to {1, 𝑝1}. So 

{1, 𝑝1, 𝑒0, 𝑒1} form an orthogonal basis for 𝐿0.  
       First we show that �̃�2  =  0. If �̃�2  ≠  0, then we get that {1, 𝑝1, 𝑒0, �̃�2} are also an 

orthogonal basis for 𝐿0. Thus �̃�2  =  𝑐𝑒1 for some nonzero number 𝑐. However, �̃�2 is 

orthogonal to 𝑒1 since �̃�2  ∈  𝑀2 and 𝑒1  ∈  𝑀1. This is a contradiction. Thus  

𝑑𝑒2
1  =  𝑑𝑒2

0  +  𝜆2𝑒0. 

Since both 𝑑𝑒2
1  and 𝑑𝑒2

0  are orthogonal to 𝑝2 and  

〈𝑒0, 𝑝2〉  =  −3𝛼 ≠  0,  
we have that 𝜆2  =  0 to get that 𝑑𝑒2

0  =  𝑑𝑒2
1  is orthogonal to 𝐿0. On the other hand,  

〈𝑑𝑒2
0  , 𝑘𝛼(𝑧)𝑘𝛼(𝑤)〉  =  𝛼𝑒2(0, 𝛼)

𝛼3

1 − |𝛼|2
 .  

Thus  

𝑒2(0, 𝛼)  =  0.  
Similarly we get that  

𝑒3(0, 𝛼)  =  0. 
Moreover, since 𝑒2 and 𝑒3 are orthogonal to {𝑒0, 𝑒1}, write  

𝑒2  =  𝑐11  +  𝑐12𝑝1,  
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𝑒3  =  𝑐21  +  𝑐22𝑝1.  
Thus we have  

𝑒2(0, 𝛼) =  𝑐11  +  𝑐12𝛼 =  0,  
𝑒3(0, 𝛼) =  𝑐21  +  𝑐22𝛼 =  0,  

to get that 𝑒2 and 𝑒3 are linearly dependent. This leads to a contradiction in this case.  

        Case 2. µ =  0. In this case we have  

𝑑𝑒1
1  =  𝑑𝑒1

0  +  𝜆1𝑒0. 

Similarly to the proof in Case 1 we get that 𝜆1  =  0,  
𝑑𝑒1
1  =  𝑑𝑒1

0  ⊥  𝐿0                                                               (7) 

and 𝑒1(0, 𝛼)  =  0. Theorem (1.1.4) in [17] gives that at least one �̃�𝑗 , say �̃�2 does not equal 

0. Assume that �̃�2  ≠  0, write  

�̃�2  =  𝑑𝑒2
1  −  𝑑𝑒2

0  −  𝜆2𝑒0.  

Note that we have shown above that both 𝑑𝑒2
0  and 𝑒0 are orthogonal to both 1 and 𝑝1. Thus  

�̃�2  ⊥  {1, 𝑝1}  
and  

𝐿0  =  𝑠𝑝𝑎𝑛{1, 𝑝1, 𝑒0, �̃�2}.  
Since 𝑒1 is orthogonal to {𝑒0, �̃�2} we have  

𝑒1  =  𝑐1  +  𝑐2𝑝1. 
Noting that 𝑒1(0, 𝛼)  =  𝑐1  +  𝑐2𝛼 =  0 we get  

𝑒1  = 𝑐2(−𝛼 + 𝑝1). 
        Without loss of generality we assume that  

𝑒1  =  −𝛼 + 𝑝1.                                                      (8) 
Letting 𝑒 be in 𝑀2  ∩  𝐿0 such that e is a nonzero function orthogonal to �̃�2, we have that 𝑒 

is orthogonal to {𝑒0, �̃�2}. Thus e must be in the subspace span{1, 𝑝1}. So there are two 

constants 𝑏1 and 𝑏2 such that  

𝑒 =  𝑏1  +  𝑏2𝑝1.  
Noting  

0 =  〈𝑒, 𝑒1〉 =  −𝑏1𝛼  +  2𝑏2  
we have  

𝑒 =
𝑏1
2
 (2 + 𝛼𝑝1).  

Hence we may assume that  

𝑒 =  2 +  𝛼𝑝1.                                                                  (9) 
 By Theorem (1.1.1) we have  

𝑑𝑒
1  =  𝑑𝑒

0  +  �̃�  +  𝜆𝑒0  
for some number λ and �̃� ∈  𝑀2  ∩  𝐿0 . Thus  

0 =  〈𝑑𝑒1
1  , 𝑑𝑒

1〉 =  〈𝑑𝑒1
1 , 𝑑𝑒

0  +  �̃�  +  𝜆𝑒0〉  =  〈𝑑𝑒1
1  , 𝑑𝑒

0〉 =  〈𝑑𝑒1
0  , 𝑑𝑒

0〉                   (𝐵𝑦 (7)). 

However, a simple computation gives  

〈𝑑𝑒1
0  , 𝑑𝑒

0〉  =  〈𝑑𝑒1
0  , 𝑤𝑒(0,𝑤)𝑒0  −  𝜙(𝑤)𝑒〉  

= 〈𝑑𝑒1
0  , 𝑤𝑒(0,𝑤)𝑒0〉 (by 𝑇𝜙

∗(𝑤)𝑑𝑒1
0  =  0) 

= 〈𝑤𝑒1(0,𝑤)𝑒0  −  𝜙(𝑤)𝑒1, 𝑤𝑒(0,𝑤)𝑒0〉 
= 〈𝑤𝑒1(0,𝑤)𝑒0, 𝑤𝑒(0,𝑤)𝑒0〉  − 〈𝜙(𝑤)𝑒1, 𝑤𝑒(0,𝑤)𝑒0〉.  

We need to calculate two terms in the right hand of the above equality. By (8) and (9), the 

first term becomes  
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〈𝑤𝑒1(0,𝑤)𝑒0, 𝑤𝑒(0,𝑤)𝑒0〉 =  〈𝑤(−𝛼 +  𝑤)𝑒0, 𝑤(2 + 𝛼𝑤)𝑒0〉
=  〈(−𝛼 +  𝑤)𝑒0, (2 + 𝛼𝑤)𝑒0〉  
=  〈−𝛼𝑒0, 2𝑒0〉  + 〈𝑤𝑒0, 2𝑒0〉  +  〈−𝛼𝑒0, 𝛼𝑤�̃�0〉  + 〈𝑤𝑒0, 𝛼𝑤�̃�0〉  
=  −𝛼〈𝑒0, 𝑒0〉  +  2〈𝑤𝑒0, 𝑒0〉  − 𝛼

2 〈𝑒0, 𝑤𝑒0〉. 
       The first term in right hand of the last equality is  

〈𝑒0, 𝑒0〉  =  〈𝑒0(𝑤,𝑤), 𝑒0(0,𝑤)〉  =  〈𝑤𝜙0
′  +  𝜙0, 𝜙0〉

=  〈𝑤(2𝑤𝜙𝛼  +  𝑤
2𝜙𝛼

′  ), 𝑤2𝜙𝛼〉  +  〈𝜙0, 𝜙0〉 =  2 + 〈𝑤𝜙𝛼
′  , 𝜙𝛼〉  +  1 =  4.  

The last equality follows from  

𝜙𝛼  =  −
1

𝛼
 +

1
𝛼
−  𝛼

1 − 𝛼𝑤
= −

1

𝛼
 + (

1

𝛼
 −  𝛼)𝐾𝛼(𝑤).  

Similarly, we have  

〈𝑤𝑒0, 𝑒0〉  = 〈𝑤𝑒0(𝑤, 𝑤), 𝑒0(0,𝑤)〉 =  〈𝑤(𝑤𝜙0
′  +  𝜙0), 𝜙0〉  =  𝛼.  

This gives  

〈𝑤𝑒1(0,𝑤)𝑒0, 𝑤𝑒(0,𝑤)𝑒0〉  =  〈𝑒1(0,𝑤)𝑒0, 𝑒(0, 𝑤)𝑒0〉  =  〈(−𝛼 +  𝑤)𝑒0, (2 + 𝛼𝑤)𝑒0〉
=  −2𝛼〈𝑒0, 𝑒0〉  −  𝛼

2 〈𝑒0, 𝑤𝑒0〉  + 2〈𝑤𝑒0, 𝑒0〉  +  𝛼〈𝑤𝑒0, 𝑤𝑒0〉  
=  −8𝛼 −  𝛼|𝛼|2  +  2𝛼 +  4𝛼 =  −2𝛼 −  𝛼|𝛼|2  

A simple calculation gives that the second term becomes  

〈𝜙(𝑤)𝑒1, 𝑤𝑒(0,𝑤)𝑒0〉  =  〈𝜙0(𝑤)𝑒1, (2 + 𝛼𝑤)𝑒0〉  
=  〈𝜙0(𝑤)𝑒1, 2𝑒0〉  + 〈𝜙0(𝑤)𝑒1, 𝛼𝑤�̃�0〉  
=  2〈𝜙0(𝑤)𝑒1(𝑤,𝑤), 𝑒0(0, 𝑤)〉  +  𝛼〈𝜙0(𝑤)𝑒1(𝑤, 𝑤),𝑤𝑒0(0,𝑤)〉  
=  2〈𝑒1(𝑤,𝑤), 1〉  +  𝛼〈𝑒1(𝑤,𝑤),𝑤〉  
=  2〈−𝛼 +  2𝑤, 1〉  +  𝛼〈−𝛼 +  2𝑤,𝑤〉  =  −2𝛼 +  2𝛼 =  0.  

Thus we conclude  

〈𝑑𝑒1
0  , 𝑑𝑒

0〉   =  〈𝑤𝑒1(0,𝑤)𝑒0, 𝑤𝑒(0,𝑤)𝑒0〉  − 〈𝜙(𝑤)𝑒1, 𝑤𝑒(0,𝑤)𝑒0〉  =  −2𝛼 −  𝛼|𝛼|
2

= −𝛼(2 + |𝛼|2 )  ≠  0  
to get a contradiction in this case. This completes the proof.  

We will classify minimal reducing subspaces of 𝑀𝑧2𝜙𝛼𝜙𝛽
 for two nonzero points α 

and 𝛽 in 𝔻 and with 𝛼 ≠  𝛽.  

Theorem (1.1.8)[1]: Let 𝜙 be the Blaschke product 𝑧2𝜙𝛼𝜙𝛽 for two nonzero points 𝛼 and 

𝛽 in 𝔻. If 𝛼 does not equal either 𝛽 or −𝛽, then 𝜙(ℬ) has exact two nontribyl reducing 

subspaces {ℳ0,ℳ0
⊥ }.  

Proof. By Theorem 27 in [10], if 𝒩 is a nontribyl minimal reducing subspace of 𝜙(ℬ) 
which is not equal to ℳ0 then 𝒩 is a subspace of ℳ0

⊥ , so we only need to show that ℳ0
⊥ 

is a minimal reducing subspace for 𝜙(ℬ) unless 𝛼 =  −𝛽.  
      Assume that ℳ0

⊥ is not a minimal reducing subspace for 𝜙(ℬ). By Theorem (1.1.7) in 

[17], we may assume  

ℋ =  ⨁ 

2

𝑖=0

 𝑀𝑖   

such that each 𝑀𝑖 is a reducing subspace for 𝜙(ℬ),𝑀0  =  ℳ0 is the distinguished reducing 

subspace for 𝜙(ℬ) and  

𝑀1  ⊕ 𝑀2  =  ℳ0
⊥ .  

Recall that  

𝜙0  =  𝑧𝜙𝛼𝜙𝛽 ,  

𝐿0  =  𝑠𝑝𝑎𝑛{1, 𝑝1, 𝑒𝛼 , 𝑒𝛽},  
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with 𝑒𝛼  =  𝑘𝛼(𝑧)𝑘𝛼(𝑤), 𝑒𝛽  =  𝑘𝛽(𝑧)𝑘𝛽(𝑤) and  

𝐿0  =  (𝐿0  ∩  𝑀0) ⊕ (𝐿0  ∩  𝑀1) ⊕ (𝐿0  ∩  𝑀2).  
So we further assume that the dimension of 𝑀1  ∩  𝐿0 is one and the dimension of 𝑀2  ∩  𝐿0 

is two. Take a nonzero element 𝑒1 in 𝑀1  ∩  𝐿0, then by Theorem (1.1.1), there are numbers 

µ1, 𝜆1 such that  

𝑑𝑒1
1  =  𝑑𝑒1

0  +  µ1𝑒1  +  𝜆1𝑒0.                                                      (10)  

We only need to consider two possibilities, µ1 is zero or nonzero.  

If µ1 is zero, then (10) becomes  

𝑑𝑒1
1  =  𝑑𝑒1

0  +  𝜆1𝑒0.                                              (11) 

In this case, simple calculations give  

〈𝑑𝑒1
0  , 𝑝1〉  =  〈𝑤𝑒1(0,𝑤)𝑒0(𝑧, 𝑤)  −  𝑤𝜙0(𝑤)𝑒1(𝑧, 𝑤), 𝑝1(𝑧, 𝑤)〉  

=  〈𝑤𝑒1(0,𝑤)𝑒0(𝑤,𝑤) −  𝑤𝜙0(𝑤)𝑒1(𝑤, 𝑤), 𝑝1(𝑧, 𝑤)〉  
=  〈𝑤𝑒1(0,𝑤)𝑒0(𝑤,𝑤) −  𝑤𝜙0(𝑤)𝑒1(𝑤, 𝑤), 𝑝1(0,𝑤)〉  
=  〈𝑤𝑒1(0,𝑤)𝑒0(𝑤,𝑤) −  𝑤𝜙0(𝑤)𝑒1(𝑤, 𝑤),𝑤〉  
=  〈𝑒1(0,𝑤)𝑒0(𝑤, 𝑤)  − 𝜙0(𝑤)𝑒1(𝑤, 𝑤), 1〉     
=  𝑒1(0, 0)𝑒0(0, 0)  −  𝜙0(0)𝑒1(0, 0)  =  0,  

and  

〈𝑒0, 𝑝1〉 = 〈𝑒0(𝑧, 𝑤), 𝑝1(𝑧, 𝑤)〉 = 〈𝑒0(𝑧, 𝑤), 𝑝1(𝑤,𝑤)〉 = 〈𝑒0(0,𝑤), 2𝑤〉 = 〈𝜙0(𝑤), 2𝑤〉
= 2〈𝑤𝜙𝛼(𝑤)𝜙𝛽(𝑤),𝑤〉 = 2𝜙𝛼(0)𝜙𝛽(0) =  2𝛼𝛽 ≠  0. 

Noting that 𝑑𝑒1
1  is orthogonal to 𝐿0, by (11) we have that 𝜆1  =  0, and hence  

𝑑𝑒1
0  =  𝑑𝑒1

1  ⊥  𝐿0.  

So  

〈𝑑𝑒1
0  , 𝑒𝛼〉  =  0 =  〈𝑑𝑒1

0  , 𝑒𝛽〉.  

On the other hand,  

〈𝑑𝑒1
0  , 𝑒𝛼〉  =  𝛼𝑒1(0, 𝛼)𝑒0(𝛼, 𝛼) −  𝛼𝜙0(𝛼)𝑒1(𝛼, 𝛼) =  𝛼𝑒1(0, 𝛼)𝑒0(𝛼, 𝛼)  

and  

〈𝑑𝑒1
0  , 𝑒𝛽〉  =  𝛽𝑒1(0, 𝛽)𝑒0(𝛽, 𝛽) −  𝛽𝜙0(𝛽)𝑒1(𝛽, 𝛽) 

=  𝛽𝑒1(0, 𝛽)𝑒0(𝛽, 𝛽).  
Consequently  

𝑒1(0, 𝛼) =  𝑒1(0, 𝛽) =  0.                                                      (12) 
Observe that 𝑒0, 𝑒1 and 1 are linearly independent. If this is not so, then 1 =  𝑎𝑒0  +  𝑏𝑒1 for 

some numbers 𝑎, 𝑏. But 𝑒1(0, 𝛼)  =  0 and 𝑒0(0, 𝛼)  =  0. This forces that 1 =  0 and leads 

to a contradiction. By Theorem (1.1.1), we can take an element 𝑒 ∈  𝑀2  ∩  𝐿0 such that 

 𝑑𝑒
1  =  𝑑𝑒

0  +  𝑒2  +  µ𝑒0  
with 𝑒2  ≠  0 and 𝑒2  ∈  𝑀2  ∩  𝐿0. Thus we have that 𝑒2 is orthogonal to 1 and so 𝑒2 is 

in {1, 𝑒0, 𝑒1}
⊥ and {1, 𝑒0, 𝑒1, 𝑒2} form a basis for 𝐿0. Moreover for any 𝑓 ∈  𝑀2  ∩  𝐿0,  

𝑑𝑓
1  =  𝑑𝑓

0  +  𝑔 +  𝜆𝑒0  

for some number λ and 𝑔 ∈  𝑀2  ∩  𝐿0. If 𝑔 does not equal 0 then 𝑔 is orthogonal to 1. Thus 

𝑔 is in {1, 𝑒0, 𝑒1}
⊥ and hence 

 𝑔 =  𝑐𝑒2  
for some number 𝑐. Therefore taking a nonzero element 𝑒3  ∈  𝑀2  ∩  𝐿0 which is orthogonal 

to 𝑒2, we have  

𝑑𝑒2
1  =  𝑑𝑒2

0  +  µ2𝑒2  +  𝜆2𝑒0 , 

𝑑𝑒3
1  =  𝑑𝑒3

0  +  µ3𝑒2  +  𝜆3𝑒0,  

and {𝑒0, 𝑒1, 𝑒2, 𝑒3} is an orthogonal basis for 𝐿0.  
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        If µ2  =  0, then by the same reason as before we get  

𝜆2  =  0, 
 𝑑𝑒2
0  =  𝑑𝑒2

1  ⊥  𝐿0  

𝑒2(0, 𝛼) =  𝑒2(0, 𝛽)  =  0.  
So using  

𝑝1  ∈  𝐿0  =  span{1, 𝑒0, 𝑒1, 𝑒2}  
we have  

𝛼 =  𝑝1(0, 𝛼)  =  𝑝1(0, 𝛽)  =  𝛽,  
which contradicts our assumption that 𝛼 ≠  𝛽. Hence µ2  ≠  0.  
        Observe that 1 is in 𝐿0  =  𝑠𝑝𝑎𝑛{𝑒0, 𝑒1, 𝑒2, 𝑒3} and orthogonal to both 𝑒0 and 𝑒2. Thus 

1 =  𝑐1𝑒1  +  𝑐3𝑒3  
for some numbers 𝑐1 and 𝑐3. So  

1 =  𝑐1𝑒1(0, 𝛼) + 𝑐3𝑒3(0, 𝛼) 
= 𝑐1𝑒1(0, 𝛽)  + 𝑐3𝑒3(0, 𝛽).  

By (12), we have  

1 =  𝑐3𝑒3(0, 𝛼)  =  𝑐3𝑒3(0, 𝛽),  
to obtain that 𝑐3  ≠  0 and  

𝑒3(0, 𝛼)  =  𝑒3(0, 𝛽)  =  1/𝑐3.  
      If µ3  =  0, then by the same reason as before we get 𝑒3(0, 𝛼)  =  𝑒3(0, 𝛽)  =  0. Hence 

µ3  ≠  0. Now by the linearality of 𝑑(·)
1  and 𝑑(·)

0  we have  

𝑑µ3𝑒2−µ2𝑒3
1  =  𝑑µ3𝑒2−µ2𝑒3

0  +  (µ3𝜆2  −  µ2𝜆3)𝑒0.  

By the same reason as before we get  

µ3𝜆2  −  µ2𝜆3  =  0 
and  

𝑑µ3𝑒2−µ2𝑒3
0  =  𝑑µ3𝑒2−µ2𝑒3

1  ⊥  𝐿0  

and therefore  

µ3𝑒2(0, 𝛼) − µ2𝑒3(0, 𝛼) =  µ3𝑒2(0, 𝛽) − µ2𝑒3(0, 𝛽) =  0.  
        So we get  

𝑒2(0, 𝛼) =  µ2/µ3𝑐3  =  𝑒2(0, 𝛽). 
Hence  

𝑝1  ∈  𝐿0  =  𝑠𝑝𝑎𝑛{1, 𝑒0, 𝑒1, 𝑒2}.  
This implies that  

𝛼 =  𝑝1(0, 𝛼)  =  𝑝1(0, 𝛽)  =  𝛽  
which again contradicts our assumption that 𝛼 ≠  𝛽.  
        Another case is that µ1 is not equal to 0. In this case, (10) can be rewritten as  

𝑒1  =
1

µ1
 𝑑𝑒1
1  −

1

µ1
 𝑑𝑒1
0  −

𝜆1
µ1
 𝑒0,  

and we have that 𝑒1 is orthogonal to 1 since 𝑑𝑒1
1  , 𝑑𝑒1

0  and 𝑒0 are orthogonal to 1. Thus 1 is 

in 𝑀2  ∩  𝐿0.  
       By Theorem (1.1.1), there is an element 𝑒 ∈  𝑀2  ∩  𝐿0 and a number 𝜆0 such that  

𝑑1
1  =  𝑑1

0  +  𝑒 + 𝜆0𝑒0.                                                          (13) 
       If 𝑒 =  0 then 𝜆0  =  0, and hence 𝑑1

0  ⊥  𝐿0 and  

1 =  1(0, 𝛼)  =  1(0, 𝛽).  
So 𝑒 ≠  0.  

       Since 𝑑1
1 is in 𝐿0

⊥ , 𝑑1
1 is orthogonal to 1. Noting that 𝑑1

0 and 𝑒0 are orthogonal to 1, we 

have that 𝑒 ⊥  1. Hence we get an orthogonal basis {𝑒0, 𝑒1, 1, 𝑒} of 𝐿0.  
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Claim.  

𝑒(0, 𝛼)  −  𝑒(0, 𝛽)  =  0.  
Proof of the claim. Using Theorem (1.1.1) again, we have that  

𝑑𝑒
1  =  𝑑𝑒

0  +  𝑔 +  𝜆𝑒0  
for some 𝑔 ∈  𝐿0  ∩  𝑀2. If 𝑔 ≠  0, we have that 𝑔 ⊥  1 since 𝑑𝑒

1 , 𝑑𝑒
0 , and 𝑒0 are 

orthogonal to 1. Thus we have that 𝑔 =  µ𝑒 for some number µ to obtain  

𝑑𝑒
1  =  𝑑𝑒

0  +  µ𝑒 +  𝜆𝑒0.  
        Furthermore by the linearality of 𝑑(·)

1  and 𝑑(·)
0  we have that  

𝑑𝑒−µ1
1  =  𝑑𝑒−µ1

0  +  (𝜆 −  µ𝜆0)𝑒0.  

By the same reason (namely 𝑑𝑒−µ1
1  ⊥  𝐿0, 𝑑𝑒−µ1

0  ⊥  1 and 〈𝑒0, 1〉  ≠  0) we have that  

𝜆 −  µ𝜆0  =  0,  
𝑑𝑒−µ1
0  =  𝑑𝑒−µ1

1  ⊥  𝐿0  

and  

(𝑒 − µ1)(0, 𝛼) =  (𝑒 −  µ1)(0, 𝛽)  =  0.  
Hence we have  

𝑒(0, 𝛼)  −  𝑒(0, 𝛽)  =  µ −  µ =  0, 
to complete the proof of the claim.  

       Let us find the value of 𝜆0 in (13) which will be used to make the coefficients symmetric 

with respect to 𝛼 and 𝛽. To do this, we first state a technical lemma which will be used in 

several other places in the sequel.  

Lemma (1.1.9)[1]: If 𝑔 is in 𝐻2 (𝕋), then  

〈𝑤𝑔𝜙0
′  , 𝜙0〉  =  𝑔(0) +  𝑔(𝛼)  +  𝑔(𝛽).  

Proof. Since 𝜙0 equals 𝑧𝜙𝛼𝜙𝛽 , simple calculations give  

〈𝑤𝑔𝜙0
′  , 𝜙0〉  =  〈𝑤𝑔(𝑤𝜙𝛼𝜙𝛽)

′
 , 𝑤𝜙𝛼𝜙𝛽〉 =  〈𝑔(𝑤𝜙𝛼𝜙𝛽)

′
 , 𝜙𝛼𝜙𝛽〉  

=  〈𝑔(𝜙𝛼𝜙𝛽  +  𝑤𝜙𝛼
′𝜙𝛽  +  𝑤𝜙𝛼𝜙𝛽

′  ), 𝜙𝛼𝜙𝛽〉  

=  〈𝑔, 1〉  +  〈𝑤𝑔𝜙𝛼 , 𝜙𝛼〉  + 〈𝑤𝑔𝜙𝛽
′  , 𝜙𝛽〉

=  𝑔(0) + 〈𝑤𝑔𝜙𝛼
′  , 𝜙𝛼〉  + 〈𝑤𝑔𝜙𝛽

′  , 𝜙𝛽〉  

Writing 𝜙𝛼 as 

𝜙𝛼  =  −
1

𝛼
 +

1
𝛼
 −  𝛼

1 − 𝛼𝑤
 =  −

1

𝛼
 +
1 − |𝛼|2

𝛼
 𝑘𝛼(𝑤),  

we have  

〈𝑤𝑔𝜙𝛼
′  , 𝜙𝛼〉  =

1 − |𝛼|2

𝛼
 (𝑤𝑔𝜙𝛼

′  )(𝛼) =  𝑔(𝛼).  

The first equality follows from 〈𝑤𝑔𝜙𝛼
′  , 1〉 equals 0 and the second equality follows from  

𝜙𝛼
′  (𝛼) =

1

1 − |𝛼|2
 . 

By the symmetry of 𝛼 and 𝛽, similar computations lead to  

〈𝑤𝑔𝜙𝛽
′  , 𝜙𝛽〉  =  𝑔(𝛽)  

and the proof is finished.  

     We state the values of 𝜆0 and 〈𝑒0, 𝑒0〉 as a lemma.  

Lemma (1.1.10)[1]:  

𝜆0  =  −
𝛼 +  𝛽

4
                                                                    (14) 

〈𝑒0, 𝑒0〉  =  4                                                                      (15) 
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Proof. Since 𝑑1
1 is orthogonal to 𝐿0, 𝑒0 is in 𝐿0, and 𝑒 is orthogonal to 𝑒0, (13) gives  

0 =  〈𝑑1
1 , 𝑒0〉 =  〈𝑑1

0  +  𝑒 + 𝜆0𝑒0, 𝑒0〉 =  〈𝑑1
0 , 𝑒0〉  + 𝜆0〈𝑒0, 𝑒0〉.  

        We need to compute 〈𝑑1
0 , 𝑒0〉 and 〈𝑒0, 𝑒0〉 respectively.  

〈𝑑1
0 , 𝑒0〉  =  〈−𝜙(𝑤) +  𝑤𝑒0, 𝑒0〉 =  〈𝑤𝑒0, 𝑒0〉  =  〈𝑤𝑒0(𝑤,𝑤), 𝑒0(0,𝑤)〉  

=  〈𝑤(𝑤𝜙0
′  +  𝜙0), 𝜙0〉  =  〈𝑤

2𝜙0
′  , 𝜙0〉  + 〈𝑤𝜙0, 𝜙0〉  =  〈𝑤

2𝜙0
′  , 𝜙0〉

=  𝛼 +  𝛽.  
The last equality follows from Lemma (1.1.9) with 𝑔 =  𝑤.  

〈𝑒0, 𝑒0〉  =  〈𝑒0(𝑤,𝑤), 𝑒0(0,𝑤)〉 =  〈𝑤𝜙0
′  +  𝜙0, 𝜙0〉  =  〈𝑤𝜙0

′  , 𝜙0〉  +  〈𝜙0, 𝜙0〉  
=  〈𝑤𝜙0

′  , 𝜙0〉  +  1 =  4, 
 where the last equality follows from Lemma (1.1.9) with 𝑔 =  1. Hence  

𝛼 +  𝛽 +  4𝜆0  =  0  
and  

𝜆0  =  −
𝛼 +  𝛽

4
 .  

      Let 𝑃𝐿0 denote the projection of 𝐻2 (𝕋2) onto 𝐿0. The element 𝑃𝐿0  (𝑘𝛼(𝑤) −

 𝑘𝛽(𝑤)) has the property that for any 𝑔 ∈  𝐿0,  

〈𝑔, 𝑃𝐿0  (𝑘𝛼(𝑤) − 𝑘𝛽(𝑤))〉  =  〈𝑔, 𝑘𝛼(𝑤) − 𝑘𝛽(𝑤)〉  

= 𝑔(0, 𝛼) −  𝑔(0, 𝛽).  

Thus 𝑃𝐿0  (𝑘𝛼(𝑤) − 𝑘𝛽(𝑤)) is orthogonal to 𝑔 for 𝑔 ∈  𝐿0 with  

𝑔(0, 𝛼)  =  𝑔(0, 𝛽). 

So 𝑃𝐿0  (𝑘𝛼(𝑤) − 𝑘𝛽(𝑤)) is orthogonal to 𝑒0, 1, 𝑒. On the other hand,  

〈𝑝1, 𝑃𝐿0  (𝑘𝛼(𝑤) − 𝑘𝛽(𝑤))〉  =  𝛼 −  𝛽 ≠  0.  

This gives that the element 𝑃𝐿0  (𝑘𝛼(𝑤) − 𝑘𝛽(𝑤)) is a nonzero element. Therefore there 

exists a nonzero number 𝑏 such that  

𝑃𝐿0  (𝑘𝛼(𝑤) − 𝑘𝛽(𝑤))  =  𝑏𝑒1. 

Without loss of generality we assume that  

𝑒1  =  𝑃𝐿0  (𝑘𝛼(𝑤) − 𝑘𝛽(𝑤)).  

       Observe that 

 𝑝1(𝜙(𝑧), 𝜙(𝑤))𝑒1  +  𝑑𝑒1
1  ∈  𝑀1, 

 𝑝1(𝜙(𝑧), 𝜙(𝑤))  + 𝑑1
1   ∈  𝑀2, 

 𝑀1  ⊥  𝑀2,  
to get  

〈𝑝1(𝜙(𝑧), 𝜙(𝑤))𝑒1  +  𝑑𝑒1
1  , 𝑝1(𝜙(𝑧), 𝜙(𝑤))  + 𝑑1

1〉  =  0.  

Thus we have  

0 =  〈𝑝1(𝜙(𝑧), 𝜙(𝑤))𝑒1  +  𝑑𝑒1
1  , 𝑝1(𝜙(𝑧), 𝜙(𝑤))  +  𝑑1

1〉  

= 〈(𝜙(𝑧) +  𝜙(𝑤))𝑒1, 𝜙(𝑧) +  𝜙(𝑤)〉  + 〈𝑑𝑒1
1  , 𝑑1

1〉 

 =  〈𝑑𝑒1
1  , 𝑑1

1〉 .                                                                                                (16) 

 
The second equality follows from  

𝑑𝑒1
1  , 𝑑1

1  ∈  ker𝑇𝜙
∗(𝑧) ∩  ker𝑇𝜙

∗(𝑧) .  

The last equality follows from  
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𝑒1  ⊥  1  
and  

𝑒1, 1 ∈  ker𝑇𝜙
∗(𝑧)  ∩  ker𝑇𝜙

∗(𝑧) .  

Substituting (13) into Equation (16), we have  

0 =  〈𝑑𝑒1
1  , 𝑑1

0  +  𝑒 + 𝜆0𝑒0〉 =  〈𝑑𝑒1
1  , 𝑑1

0 〉 =  〈𝑑𝑒1
1  , −𝜙(𝑤) +  𝑤𝑒0〉  =  〈𝑑𝑒1

1  , 𝑤𝑒0〉  

=  〈𝑑𝑒1
0  +  µ1𝑒1  +  𝜆1𝑒0, 𝑤𝑒0〉 =  〈𝑑𝑒1

0  , 𝑤𝑒0〉  + µ1〈𝑒1, 𝑤𝑒0〉  + 𝜆1〈𝑒0, 𝑤𝑒0〉. 

The second equation comes from that 𝑑𝑒1
1  is orthogonal to 𝐿0 and both 𝑒 and 𝑒0 are in 𝐿0. 

The third equation follows from the definition of 𝑑1
0 and the forth equation follows from 

that 𝑑𝑒1
1  is in ker𝑇𝜙

∗(𝑧)  ∩  ker𝑇𝜙
∗(𝑤) . We need to calculate 〈𝑑𝑒1

0  , 𝑤𝑒0〉, 〈𝑒1, 𝑤𝑒0〉, and 

〈𝑒0, 𝑤𝑒0〉 separately.  

        To get 〈𝑑𝑒1
0  , 𝑤𝑒0〉, by the definition of 𝑑𝑒1

0  , we have  

〈𝑑𝑒1
0  , 𝑤𝑒0〉  =  〈−𝜙(𝑤)𝑒1  +  𝑤𝑒1(0,𝑤)𝑒0, 𝑤𝑒0〉 

= 〈−𝜙(𝑤)𝑒1, 𝑤𝑒0〉  + 〈𝑤𝑒1(0,𝑤)𝑒0, 𝑤𝑒0〉  
Thus we need to compute 〈−𝜙(𝑤)𝑒1, 𝑤𝑒0〉 and 〈𝑤𝑒1(0,𝑤)𝑒0, 𝑤𝑒0〉 one by one. The 

equality  

〈−𝜙(𝑤)𝑒1, 𝑤𝑒0〉  =  0 

follows from the following computations.  

〈−𝜙(𝑤)𝑒1, 𝑤𝑒0〉  =  〈−𝑤𝜙0(𝑤)𝑒1, 𝑤𝑒0〉  =  −〈𝜙0(𝑤)𝑒1, 𝑒0〉  
=  −〈𝜙0(𝑤)𝑒1(𝑤,𝑤), 𝑒0(0,𝑤)〉  =  −〈𝜙0(𝑤)𝑒1(𝑤, 𝑤), 𝜙0(𝑤)〉  
=  −〈𝑒1(𝑤,𝑤), 1〉  =  −〈𝑒1, 1〉 =  0.  

To get 〈𝑤𝑒1(0,𝑤)𝑒0, 𝑤𝑒0〉, we continue as follows.  

〈𝑤𝑒1(0,𝑤)𝑒0, 𝑤𝑒0〉  =  〈𝑒1(0,𝑤)𝑒0, 𝑒0〉  
= 〈𝑒1(0,𝑤)𝑒0(𝑤,𝑤), 𝑒0(0,𝑤)〉  
= 〈𝑒1(0,𝑤)𝑒0(𝑤, 𝑤), 𝜙0(𝑤)〉  

= 〈𝑒1(0,𝑤)(𝜙0(𝑤) +  𝑤𝜙0
′  (𝑤)), 𝜙0(𝑤)〉  

= 〈𝑒1(0,𝑤)𝜙0(𝑤), 𝜙0(𝑤)〉  + 〈𝑒1(0,𝑤)𝑤𝜙0
′  (𝑤), 𝜙0(𝑤)〉  

= 〈𝑒1(0,𝑤), 1〉  + 〈𝑒1(0,𝑤)𝑤𝜙0
′  (𝑤), 𝜙0(𝑤)〉  

= 𝑒1(0, 0) + 〈𝑒1(0,𝑤)𝑤𝜙0
′  (𝑤), 𝜙0(𝑤)〉  

= 〈𝑒1, 1〉  + 〈𝑒1(0,𝑤)𝑤𝜙0
′  (𝑤), 𝜙0(𝑤)〉  

= 〈𝑒1(0,𝑤)𝑤𝜙0
′  (𝑤), 𝜙0(𝑤)〉  

= 𝑒1(0, 𝛼)  + 𝑒1(0, 𝛽). 
The last equality follows from Lemma (1.1.9) and  

𝑒1(0, 0)  =  〈𝑒1, 1〉  =  0.  
Hence  

〈𝑑𝑒1
0  , 𝑤𝑒0〉  =  𝑒1(0, 𝛼)  + 𝑒1(0, 𝛽)  

Recall that  

𝑑1
1  =  𝑑1

0  +  𝑒 + 𝜆0𝑒0  
is orthogonal to 𝐿0 and 𝑒1 is orthogonal to both 𝑒, and 𝑒0. Thus  

0 =  〈𝑒1, 𝑑1
0  +  𝑒 + 𝜆0𝑒0〉 =  〈𝑒1, −𝜙(𝑤) +  𝑤𝑒0〉  =  〈𝑒1, 𝑤𝑒0〉.  

From the computation of 〈𝑑1
0 , 𝑒0〉 in the proof of Lemma (1.1.10) we have showed that  

〈𝑤𝑒0, 𝑒0〉  =  𝛼 +  𝛽.  
Therefore we have that  

𝑒1(0, 𝛼) + 𝑒1(0, 𝛽) + 𝜆1(𝛼  + 𝛽)  =  0.                            (17) 
        On the other hand,  

0 =  〈𝑑𝑒1
1  , 𝑒0〉 =  〈𝑑𝑒1

0  +  µ1𝑒1  +  𝜆1𝑒0, 𝑒0〉  =  〈𝑑𝑒1
0  , 𝑒0〉  +  4𝜆1  
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and  

〈𝑑𝑒1
0  , 𝑒0〉  =  〈−𝜙(𝑤)𝑒1  +  𝑤𝑒1(0,𝑤)𝑒0, 𝑒0〉 =  〈𝑤𝑒1(0,𝑤)𝑒0, 𝑒0〉  

=  〈𝑤𝑒1(0,𝑤)𝑒0(𝑤,𝑤), 𝑒0(0,𝑤)〉  =  〈𝑤𝑒1(0,𝑤)(𝜙0(𝑤) +  𝑤𝜙0
′  ), 𝜙0(𝑤)〉  

=  〈𝑤2 𝑒1(0,𝑤)𝜙0
′  , 𝜙0(𝑤)〉 =  𝛼𝑒1(0, 𝛼)  +  𝛽𝑒1(0, 𝛽).  

The last equality follows from Lemma (1.1.9) with 𝑔 =  𝑤𝑒1(0,𝑤). Thus  

𝛼𝑒1(0, 𝛼)  +  𝛽𝑒1(0, 𝛽)  +  4𝜆1  =  0.  
So  

𝜆1  =  −
𝛼

4
 𝑒1(0, 𝛼) −

𝛽

4
 𝑒1(0, 𝛽).                                                 (18) 

Substituting (18) into (17), we have  

[1 −
𝛼(𝛼  + 𝛽)

4
 ] 𝑒1(0, 𝛼)  + [1 − 

𝛽(𝛼  + 𝛽)

4
 ] 𝑒1(0, 𝛽)  =  0.  

       Recall that  

𝜆0  =  −
𝛼 +  𝛽

4
 , 

to get  

(1 + 𝜆0𝛼)𝑒1(0, 𝛼) + (1 + 𝜆0𝛽)𝑒1(0, 𝛽) =  0.                           (19) 
We are going to draw another equation about 𝑒1(0, 𝛼) and 𝑒1(0, 𝛽) from the property that 

𝑑𝑒1
1  is orthogonal to 𝐿0. To do this, recall that  

𝑒1  =  𝑃𝐿0  (𝑘𝛼(𝑤) − 𝑘𝛽(𝑤))  ∈  𝑀1  ∩  𝐿0,  

𝑑𝑒1
1  =  𝑑𝑒1

0  +  µ1𝑒1  +  𝜆1𝑒0  ⊥  𝐿0, 

𝐿0  =  𝑠𝑝𝑎𝑛{1, 𝑝1, 𝑒𝛼 , 𝑒𝛽},  

𝑒𝛼  =  𝑘𝛼(𝑧)𝑘𝛼(𝑤), 𝑒𝛽  =  𝑘𝛽(𝑧)𝑘𝛽(𝑤).  

Thus 𝑑𝑒1
1  is orthogonal to 𝑝1, 𝑒𝛼 and 𝑒𝛽.  

      Since 𝑑𝑒1
1  is orthogonal to 𝑝1 we have  

〈𝑑𝑒1
0  , 𝑝1〉  + µ1〈𝑒1, 𝑝1〉  + 𝜆1〈𝑒0, 𝑝1〉  =  0.  

Noting  

〈𝑑𝑒1
0  , 𝑝1〉 =  〈−𝜙(𝑤)𝑒1  +  𝑤𝑒1(0,𝑤)𝑒0, 𝑝1〉  =  〈𝑤𝑒1(0,𝑤)𝑒0, 𝑝1〉  

=  〈𝑤𝑒1(0,𝑤)𝑒0(𝑤, 𝑤), 𝑤〉  =  〈𝑒1(0,𝑤)𝑒0(𝑤,𝑤), 1〉  =  0,  

〈𝑒1, 𝑝1〉  =  〈𝑃𝐿0  (𝐾𝛼(𝑤) − 𝐾𝛽(𝑤)) , 𝑝1〉 =  〈𝐾𝛼(𝑤) − 𝐾𝛽(𝑤), 𝑝1〉  =  𝛼  − 𝛽,   

and  

〈𝑒0, 𝑝1〉  =  〈𝑒0(0,𝑤), 𝑝1(𝑤, 𝑤)〉 =  〈𝜙0(𝑤), 2𝑤〉  =  〈𝑤𝜙𝛼𝜙𝛽 , 2𝑤〉  =  2〈𝜙𝛼𝜙𝛽 , 1〉  

=  2𝜙𝛼(0)𝜙𝛽(0) =  2𝛼𝛽,  

we have  

(�̃�  − 𝛽)µ1  +  2𝛼𝛽𝜆1  =  0,  
to obtain  

𝜆1  =  −µ1  
𝛼  − 𝛽

2𝛼𝛽
 .                                                (20) 

Since 𝑑𝑒1
1  ⊥  𝑒𝛼, we have 

 〈𝑑𝑒1
0  , 𝑒𝛼〉  + µ1〈𝑒1, 𝑒𝛼〉  + 𝜆1〈𝑒0, 𝑒𝛼〉  =  0,  

to get  
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〈𝑑𝑒1
0 , 𝑒𝛼〉  + µ1〈𝑒1, 𝑒𝛼〉  − µ1  

𝛼  − 𝛽

2𝛼𝛽
 〈𝑒0, 𝑒𝛼〉  =  0.                    (21)  

We need to calculate 〈𝑑𝑒1
0  , 𝑒𝛼〉, 〈𝑒1, 𝑒𝛼〉 and 〈𝑒0, 𝑒𝛼〉. Simple calculations show that  

〈𝑑𝑒1
0  , 𝑒𝛼〉  =  〈−𝜙(𝑤)𝑒1  +  𝑤𝑒1(0,𝑤)𝑒0, 𝑒𝛼〉 =  〈𝑤𝑒1(0,𝑤)𝑒0, 𝑒𝛼〉  =  𝛼𝑒1(0, 𝛼)𝑒0(𝛼, 𝛼), 

〈𝑒1, 𝑒𝛼〉  =  𝑒1(𝛼, 𝛼) =  〈𝑃𝐿0  (𝑘𝛼(𝑤) − 𝑘𝛽(𝑤)) , 𝑒𝛼〉  =  〈𝑘𝛼(𝑤) − 𝑘𝛽(𝑤), 𝑒𝛼〉  

=
1

1 − |𝛼|2
 −

1

1 −  𝛼𝛽
 

=
𝛼(𝛼  − 𝛽)

(1 − |𝛼|2 )(1 −  𝛼𝛽)
 ,                                                   (22)  

and  

〈𝑒0, 𝑒𝛼〉  =  𝑒0(𝛼, 𝛼) =  𝛼𝜙0
′  (𝛼) + 𝜙0(𝛼) 

= 𝛼2  
1

1 − |𝛼|2
 
𝛼 −  𝛽

1 −  𝛼𝛽
  .                                                   (23)  

Thus (22) and (23) give  

𝑒1(𝛼, 𝛼)

𝑒0(𝛼, 𝛼)
 =

𝛼  − 𝛽

𝛼(𝛼 −  𝛽)
 .  

Substituting the above equality in Equation (21) leads to  

𝛼𝑒1(0, 𝛼)𝑒0(𝛼, 𝛼) + µ1𝑒1(𝛼, 𝛼) − µ1  
𝛼  −  𝛽

2𝛼𝛽
 𝑒0(𝛼, 𝛼)  =  0.  

Dividing the both sides of the above equality by 𝑒0(𝛼, 𝛼) gives  

𝛼𝑒1(0, 𝛼) + µ1
𝑒1(𝛼, 𝛼)

𝑒0(𝛼, 𝛼)
 − µ1

𝛼  − 𝛽

2𝛼𝛽
 =  0.  

Hence we have  

𝛼𝑒1(0, 𝛼) + µ1  
𝛼  − 𝛽

𝛼(𝛼 −  𝛽)
 − µ1  

𝛼  − 𝛽

2𝛼𝛽
 =  0,  

to obtain  

𝛼𝑒1(0, 𝛼) + (𝛽 + 𝜆0)
2µ1(𝛼  − 𝛽)

𝛼𝛽(𝛼 −  𝛽)
 =  0.                                (24) 

Similarly, since 𝑑𝑒1
1  is orthogonal to 𝑒𝛽, we have  

〈𝑑𝑒1
0  , 𝑒𝛽〉  + µ1〈𝑒1, 𝑒𝛽〉  + 𝜆1〈𝑒0, 𝑒𝛽〉  =  0,  

to obtain  

〈𝑑𝑒1
0  , 𝑒𝛽〉  + µ1〈𝑒1, 𝑒𝛽〉  − µ1  

𝛼  − 𝛽

2𝛼𝛽
 〈𝑒0, 𝑒𝛽〉  =  0.                        (25)  

We need to calculate 〈𝑑𝑒1
0  , 𝑒𝛽〉, 〈𝑒1, 𝑒𝛽〉 and 〈𝑒0, 𝑒𝛽〉. Simple calculations as above show that  

〈𝑑𝑒1
0  , 𝑒𝛽〉  =  〈−𝜙(𝑤)𝑒1  +  𝑤𝑒1(0,𝑤)𝑒0, 𝑒𝛽〉  =  〈𝑤𝑒1(0,𝑤)𝑒0, 𝑒𝛽〉  

=  𝛽𝑒1(0, 𝛽)𝑒0(𝛽, 𝛽),  

〈𝑒1, 𝑒𝛽〉  =  𝑒1(𝛽, 𝛽) =  〈𝑃𝐿0  (𝑘𝛼(𝑤) − 𝑘𝛽(𝑤)) , 𝑒𝛽〉  =  〈𝑘𝛼(𝑤) − 𝑘𝛽(𝑤), 𝑒𝛽〉  

=
1

1 −  𝛼𝛽
 − 

1

1 − |𝛽|2
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=
𝛽(𝛼  − 𝛽)

(1 −  𝛼𝛽)(1 − |𝛽|2)
                                                       (26) 

〈𝑒0, 𝑒𝛽〉  =  𝑒0(𝛽, 𝛽) =  𝛽𝜙0
′  (𝛽) + 𝜙0(𝛽) 

= 𝛽2  
𝛽 −  𝛼

1 −  𝛼𝛽
 

1

1 − |𝛽|2
                                               (27) 

Combining (26) with (27) gives  

𝑒1(𝛽, 𝛽)

𝑒0(𝛽, 𝛽)
 =  −

𝛼  − 𝛽

𝛽(𝛼 −  𝛽)
 . 

Substituting the above equality in (25) gives  

𝛽𝑒1(0, 𝛽)𝑒0(𝛽, 𝛽) + µ1𝑒1(𝛽, 𝛽) − µ1  
𝛼  − 𝛽

2𝛼𝛽
 𝑒0(𝛽, 𝛽)  =  0.  

Dividing both sides of the above equality by 𝑒0(𝛽, 𝛽) gives  

𝛽𝑒1(0, 𝛽) + µ1
𝑒1(𝛽, 𝛽)

𝑒0(𝛽, 𝛽)
 −  µ1  

𝛼  − 𝛽

2𝛼𝛽
 =  0  

Hence we have 

 𝛽𝑒1(0, 𝛽) − µ1  
𝛼  − 𝛽

𝛽(𝛼 −  𝛽)
 − µ1  

𝛼  − 𝛽

2𝛼𝛽
 =  0,  

to get  

𝛽𝑒1(0, 𝛽) − (𝛼 + 𝜆0)
2µ1(𝛼  − 𝛽)

𝛼𝛽(𝛼 −  𝛽)
 =  0.                                            (28) 

Eliminating 
2µ1(𝛼−𝛽)

𝛼𝛽(𝛼−𝛽)
 from (24) and (28) gives  

𝛼(𝛼 + 𝜆0)𝑒1(0, 𝛼) +  𝛽(𝛽 + 𝜆0)𝑒1(0, 𝛽) =  0.                               (29) 
Now combining (19) and (29), we have the following linear system of equations about 

𝑒1(0, 𝛼) and  

𝑒1(0, 𝛽)(1 + 𝜆0𝛼)𝑒1(0, 𝛼) + (1 +  𝜆0𝛽)𝑒1(0, 𝛽) =  0  

𝛼(𝛼 + 𝜆0)𝑒1(0, 𝛼) +  𝛽(𝛽 + 𝜆0)𝑒1(0, 𝛽) =  0.                                     (30) 
If  

𝑒1(0, 𝛼)  =  𝑒1(0, 𝛽)  =  0,  
then 𝑝1 is in 𝐿0  =  span{𝑒0, 𝑒1, 1, 𝑒}. But noting  

𝑒0(0, 𝛼)  =  𝑒0(0, 𝛽)  
and  

𝑒(0, 𝛼)  =  𝑒(0, 𝛽)  
we have  

𝑝1(0, 𝛼)  =  𝑝1(0, 𝛽),  
which contradicts the assumption that 𝛼 ≠  𝛽. So at least one of 𝑒1(0, 𝛼) and 𝑒1(0, 𝛽) is 

nonzero. Then the determinant of the coefficient matrix of System (30) has to be zero. This 

implies     

 |
1 + 𝜆0𝛼 1 + 𝜆0𝛽

𝛼(𝛼 + 𝜆0)  𝛽(𝛽 + 𝜆0)
|        =  0 

 Making elementary row reductions on the above the determinant, we get      

|
(𝛼 −  𝛽)𝜆0 1 + 𝜆0𝛽

(𝛼 −  𝛽)(𝛼 +  𝛽 + 𝜆0) 𝛽(𝛽 + 𝜆0)
|        =  0.  
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Since  

𝛼 +  𝛽 =  −4𝜆0  
and  

𝛼 −  𝛽 ≠  0,  
we have 

|
 𝜆0 1 + 𝜆0𝛽

−3𝜆0 𝛽(𝛽 + 𝜆0)
|        =  0.  

Expanding this determinant we have  

0 =  𝜆0(𝛽
2  +  𝛽𝜆0)  +  3𝜆0(1 + 𝜆0𝛽)  =  𝜆0(𝛽

2  +  𝛽𝜆0  +  3𝛽𝜆0) +  3𝜆0  

= 𝜆0(𝛽
2  +  4𝛽𝜆0) +  3𝜆0  =  𝜆0(−𝛼𝛽)  +  3𝜆0  

Taking absolute value on both sides of the above equation, we have  

0 =  |𝜆0(−𝛼𝛽) +  3𝜆0|  ≥  |𝜆0|(3 − |𝛼𝛽|)  ≥  2|𝜆0|,  
to get  

𝜆0  =  0.  
This implies  

𝛼 +  𝛽 =  0, 
to complete the proof.  

Section (1.2): Analytic Multipliers of the Bergman Space 
The present is a continuation of [27] and a series of recent related works, such as [28], 

[29], [10]. We classify the reducing subspaces of analytic Toeplitz operators with a rational, 

inner symbol acting on the Bergman space of the unit disk. While a similar study in the case 

of the Hardy space was completed a long time ago (see [26], [33], [34]), investigation of the 

Bergman space setting was started only a few years ago. The structure and relative position 

of these reducing subspaces in the Bergman space reveal a rich geometric (Riemann surface) 

picture directly dependent on the rational symbol of the Toeplitz operator. 

The Bergman space 𝐿𝑎
2 (𝔻) is the space of holomorphic functions on 𝔻 which are 

square-integrable with respect to the Lebesgue measure 𝑑𝑚 on 𝔻. For a bounded 

holomorphic function 𝜙 on the unit disk, the multiplication operator, 𝑀𝜙 ∶  𝐿𝑎
2 (𝔻)  →

 𝐿𝑎
2 (𝔻), is defined by 

𝑀𝜙(ℎ)  =  𝜙ℎ, ℎ ∈  𝐿𝑎
2 (𝔻). 

The Toeplitz operator 𝑇𝜙 on 𝐿𝑎
2 (𝔻) with symbol 𝜙 ∈  𝐿∞(𝔻) acts as 

𝑇𝜙(ℎ)  =  𝑃 (𝜙ℎ), ℎ ∈  𝐿𝑎
2 , 

where 𝑃 is the orthogonal projection from 𝐿2(𝔻) to 𝐿𝑎
2 (𝔻). Note that 𝑇𝜙  =  𝑀𝜙 whenever 

𝜙 is holomorphic. 

       An invariant subspace ℳ for 𝑀𝜙 is a closed subspace of 𝐿𝑎
2 (𝔻) satisfying 𝜙ℳ ⊆ ℳ. 

If, in addition, 𝑀𝜙
∗ℳ ⊆ ℳ, we call ℳ a reducing subspace of 𝑀𝜙. We say ℳ is a minimal 

reducing subspace if there is no nontribyl reducing subspace for 𝑀𝜙 contained in ℳ. The 

study of invariant subspaces and reducing subspaces for various classes of linear operators 

has inspired much deep research and prompted many interesting problems. Even for the 

multiplication operator 𝑀𝓏 , the lattice of invariant subspaces of 𝐿𝑎
2 (𝔻) is huge and its order 

structure remains a mystery. Progress in understanding the lattice of reducing subspaces of 

𝑀𝜙 was only recently made, and only in the case of inner function symbols [27]–[10], [32], 

[1], [22]. 
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For {𝑀𝜙}
′
 =  {𝑋 ∈ ℒ  (𝐿𝑎

2 (𝔻)): 𝑀𝜙𝑋 =  𝑋𝑀𝜙} be the commutant algebra of 𝑀𝜙. 

The problem of classifying the reducing subspaces of 𝑀𝜙 is equivalent to finding the 

projections in {𝑀𝜙}
′
 . This classification problem in the case of the Hardy space was the 

motivation of the highly original works by Thomson and Cowen (see [26],[33],[34]). They 

used the Riemann surface of 𝜙−1  ∘  𝜙 as a basis for the description of the commutant of 𝑀𝜙 

acting on the Hardy space. We study that inner function symbols played a dominant role in 

their studies. In complete analogy, in the Bergman space 𝐿𝑎
2 (𝔻) framework, one can 

essentially use the same proof to show that for a “nice” analytic function 𝑓 , there exists a 

finite Blaschke product 𝜙 such that {𝑀𝑓}
′
 =  {𝑀𝜙}

′
 . Therefore, the structure of the 

reducing subspaces of the multiplier 𝑀𝑓 on the Bergman space of the disk is the same as 

that for 𝑀𝜙. 

Zhu showed in [22] that for each Blaschke product of order 2, there exist exactly 2 

different minimal reducing subspaces of 𝑀𝜙. This result also appeared in [32]. Zhu also 

conjectured in [22] that 𝑀𝜙 has exactly n distinct minimal reducing subspaces for a Blaschke 

product 𝜙 of order n. The results in [10] disproved Zhu’s conjecture, they raised a 

modification in which 𝑀𝜙 was conjectured to have at most 𝑛 distinct minimal reducing 

subspaces for a Blaschke product 𝜙 of order 𝑛. Some partial results on this conjecture were 

obtained in [28],[10],[1]. They proved the finiteness result in case 𝑛 ≤ 6, each using a 

different method. A notable result for the general case [10] is that there always exists a 

nontribyl minimal reducing subspace ℳ, named the “distinguish subspace”, on which the 

action of 𝑀𝜙 is unitarily equivalent to the action of 𝑀𝓏 on the Bergman space 𝐿𝑎
2 (𝔻). Guo 

and Huang also revealed in [29] an interesting connection between the structure of the lattice 

of reducing subspaces of 𝑀𝜙 and an isomorphism problem in abstract von Neumann 

algebras. 

The general case was recently studied by Sun and Zheng [27] using a systematic 

analysis of the local inverses of the ramified finite fibration 𝜙−1  ∘  𝜙 over the disk. They 

proved that the linear dimension of the commutant 𝐴𝜙  =  {𝑀𝜙, 𝑀𝜙
∗ }
′
 is finite. To give a 

glimpse into the reasoning culminating with the finite dimensionality of the von Neumann 

algebra 𝐴𝜙 we recall that 𝑀𝜙 is an operator belonging to the Cowen–Douglas class, that is, 

the iso-dimensional family of kernels ker(𝑀𝜙
∗ − �̅�), �̅�  ∈ 𝔻, is an anti-holomorphic 

hermitian vector bundle 𝐸𝜙 on the disk. An operator 𝑋 commuting with 𝑇𝜙
∗  leaves these 

kernels invariant: 𝑋 (ker(𝑀𝜙
∗ − �̅�))  ⊂  ker(𝑀𝜙

∗ − �̅�), whence it defines an anti-

holomorphic bundle map 𝑋 ∶  𝐸𝜙  →  𝐸𝜙. Moreover, if 𝑋 commutes in addition with 𝑀𝜙, 

then 𝑋 is also holomorphic,  that is 𝑋 is an endomorphism of the space of 𝐸𝜙. Thus, the fiber 

𝑋(𝓏0) at a prescribed point 𝓏0  ∈ 𝔻 determines the full operator 𝑋, and consequently the 

algebra 𝐴𝜙 is finite dimensional. Then the geometry of the branched covering map 𝜙 takes 

over, implying, by arguments of the theory of subnormal operators, that dimℂ  𝐴𝜙 equals 

the number of connected components of the Riemann surface 𝜙−1  ∘  𝜙. In particular, the 

number of pairwise orthogonal reducing subspaces of 𝑀𝜙 is finite. Furthermore, they raised 

the following question in [27], whose validity they have established in degree 𝑛 ≤ 8. 
For a Blaschke product 𝜙 of finite order, the double commutant algebra 𝐴𝜙 is abelian. 

Several notable corollaries would follow once the conjecture is verified. For instance, 

the commutativity of the algebra 𝐴𝜙 implies that, for every finite Blaschke product 𝜙, the 
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minimal reducing subspaces of 𝑀𝜙 are mutually orthogonal; in addition, their number is 

equal to the number 𝑞 of connected components of the Riemann surface of 𝜙−1 ∘  𝜙. 
The main result offers an affirmative answer to the above problem. 

Theorem (1.2.1)[23]: Let 𝜙 be a finite Blaschke product of order 𝑛. Then the von Neumann 

algebra 𝐴𝜙  =  {𝑀𝜙, 𝑀𝜙
∗ }
′
 is commutative of dimension 𝑞, and hence 𝐴𝜙 ≅ ℂ⊕···⊕ ℂ ⏟      

𝑞

   , 

where 𝑞 is the number of connected components of the Riemann surface of 𝜙−1  ∘  𝜙. 
         The key observation for the proof is that there is an invertible holomorphic function u 

such that 𝜙 =  𝑢𝑛 on 𝛺, where 𝛺 is a domain in 𝔻 including an annulus of all points 

sufficiently close to the boundary 𝕋. This representation provides a canonical ordered set of 

local inverses which implies that the local inverses for 𝜙−1  ∘  𝜙 commute under 

composition on 𝛺. 
It also allows us to provide an indirect description of the reducing subspaces. 

Following [27], there is a partition {𝐺1, . . . , 𝐺𝑞  } of the local inverses for 𝜙−1  ∘  𝜙. We now 

define a dual partition as follows. For two integers 0 ≤ 𝑗1, 𝑗2 ≤  𝑛 −  1, write 𝑗1  ∼  𝑗2 if 

∑  

𝜌𝑘∈𝐺𝑖

 𝜁𝑘𝑗1   = ∑  

𝜌𝑘∈𝐺𝑖

 𝜁𝑘𝑗2   for any  1 ≤ 𝑖 ≤ 𝑞.                (31) 

Observing that ∼ is an equivalence relation, we partition the set {0, 1, . . . , 𝑛 − 1} into 

equivalence classes {𝐺1
′ , . . . , 𝐺𝑝

′ }. Some information on the Riemann surface of 𝜙−1  ∘  𝜙 is 

given by the following corollary. 

Corollary (1.2.2)[23]: The number of components in the dual partition is also equal to 𝑞, 
the number of connected components of the Riemann surface for 𝜙−1  ∘  𝜙 

We obtain the following characterization for the minimal reducing subspace of 

automorphic type. Here 𝒪(𝔻) denotes the space of holomorphic functions on 𝔻. 

Theorem (1.2.3)[23]: Let 𝜙 be a finite Blaschke product and {𝐺1
′ , . . . , 𝐺𝑞

′  } be the dual 

partition for 𝜙. Then the multiplication operator 𝑀𝜙 has exactly 𝑞 nontribyl minimal 

reducing subspaces {ℳ1, . . . ,ℳ𝑞 }, and for any 1 ≤ 𝑗 ≤ 𝑞 

ℳ𝑗  = {𝑓 ∈ 𝒪(𝔻): 𝑓|𝛺  ∈ ℒ𝑗
𝛺}, 

where ℒ𝑗
𝛺 is a subspace of 𝐿2(𝛺) with the orthogonal basis {𝑢𝑖𝑢′: 𝑖 +  1 (mod 𝑛)  ∈  𝐺𝑗

′}. 

Note the ℳ𝑛−1 coincides with the distinguished reducing subspace for 𝑀𝜙 shown to 

exist in [10]. The latter theorem provides a possible way to calculate the reducing subspace 

if one knows the partition of the family of local inverses. The above corollary hints that the 

possible partitions are very restricted. 

We list some algebraic conditions for the partitions, which offer an arithmetic path 

towards the classification of finite Blaschke products. The idea is displayed by the 

classification for the Blaschke products of order 8. In a similar way one can also explain the 

classifications of the Blaschke products of order 3 or 4 in [10], [1], which have been 

established by identifying the Bergman space of the disk with the restriction of the Hardy 

space of the bidisk to the diagonal. We point out that these results and examples provide 

some very detailed information about the branch covering space defined by a finite Blaschke 

product. 

       The notation below is borrowed from [27]. Accordingly, 𝜙 is a finite Blaschke 

product having n zeros taking multiplicity into account. The finite set 𝐸′  =

𝜙−1(𝜙({𝛽 ∈ 𝔻:𝜙′ (𝛽)  =  0})) denotes the branch points of 𝜙, 𝐸 = 𝔻\𝐸′ is its 

complement in 𝔻 and let 𝛤 be a choice of curves passing through all points of 𝐸′ and a fixed 
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point on the unit circle 𝛽0 such that 𝔻\𝛤 is a simply connected region contained in 𝐸. Indeed, 

to be precise, one can construct 𝛤 as follows: order 𝐸′ as {𝛽1, 𝛽2, . . . , 𝛽𝑠} such that 𝑘 ≤ 𝑗 iff 
𝑅𝑒𝛽𝑘  <  𝑅𝑒𝛽𝑗 or 𝑅𝑒𝛽𝑘  =  𝑅𝑒𝛽𝑗  and 𝐼𝑚𝛽𝑘 ≤ 𝐼𝑚𝛽𝑗  , and set 𝛽0  =  𝑅𝑒𝛽1  −

 𝑖√1 − (𝑅𝑒𝛽1)
2. Letting 𝛤𝑘 , 0 ≤ 𝑘 ≤ 𝑠 −  1, be the line segment between 𝛽𝑘 and 𝛽𝑘+1, 

we define 

𝛤 = ⋃  

 

0≤𝑘≤𝑠−1

 𝛤𝑘.                                                (32) 

        By an observation made in [27], the family of analytic local inverses {𝜌0, . . . , 𝜌𝑛−1} 
for 𝜙−1  ∘  𝜙 is well defined on 𝔻\𝛤 . That is, each 𝜌𝑗 is a holomorphic function on 𝔻\𝛤 

which satisfies 𝜙(𝜌𝑗  (𝓏))  = 𝜙(𝓏) for 𝓏 ∈ 𝔻\𝛤 . We define the equivalence relation on the 

set of local inverseso that 𝜌𝑖  ∼  𝜌𝑗 if there exists an arc 𝛾 in 𝐸 such that 𝜌𝑖 and 𝜌𝑗 are analytic 

continuations of each other along 𝛾 . The resulting equivalence classes are denoted 

{𝐺1, . . . , 𝐺𝑞}. For each 𝐺𝑘, 1 ≤ 𝑘 ≤ 𝑞, define the map ℰ𝑘 ∶ 

(ℰ𝑘𝑓 )(𝓏)  = ∑  

𝜌∈𝐺𝑘

𝑓 𝜌(𝓏) 𝜌′ (𝓏), 𝑓 holomorphic on 𝔻\𝛤, 𝓏 ∈ 𝔻\𝛤. 

The central result in [27] asserts that the operators {ℰ1, . . . , ℰ𝑞} can naturally be extended to 

bounded operators on the Bergman space 𝐿𝑎
2 (𝔻) which are linearly independent, and the 

double commutant algebra 𝐴𝜙 is linearly generated by these operators; that is, 

𝐴𝜙  = {𝑀𝜙, 𝑀𝜙
∗ }
′
=  span{ℰ1, . . . , ℰ𝑞}. 

We prove that the von Neumann algebra 𝐴𝜙 is commutative. 

     To accomplish this, we extend the given family of analytic local inverses on 𝔻\𝛤 to a 

larger region and prove that they commute under composition near the boundary of 𝔻. The 

key observation for the proof of the following lemma is that √ (𝓏 − 𝑎1) ··· (𝓏 −  𝑎𝑛)
𝑛

 is a 

single-valued holomorphic function on ℂ\𝐿, where 𝐿 is a curve drawn through the zero set 

{𝑎1, 𝑎2, . . . , 𝑎𝑛}. One can construct an 𝐿 and verify the above assertion as follows. Notice 

that √ 𝓏 +  1
𝑛

 is holomorphic outside any smooth simple curve connecting −1 and ∞. By 

changing variables, we observe that, for each 2 ≤ 𝑖 ≤ 𝑛, the function 

√
𝓏 − 𝑎𝑖
𝓏 − 𝑎1

𝑛

 = √
𝑎1  −  𝑎𝑖
𝓏 − 𝑎1

+  1
𝑛

    

is holomorphic outside the line segment connecting 𝑎1 and 𝑎𝑖 . Therefore, 

√ (𝓏 − 𝑎1) ··· (𝓏 − 𝑎𝑛)
𝑛

= (𝓏 − 𝑎1)  √
𝓏 − 𝑎2
𝓏 − 𝑎1

𝑛

   ···  √
𝓏 − 𝑎𝑛
𝓏 − 𝑎1

𝑛

    

is holomorphic outside the arc which consists of the line segments connecting 𝑎1 and 𝑎𝑖 for 

2 ≤ 𝑖 ≤ 𝑛. See [31] for a complete argument. 

       Hereafter, let us set 𝐴𝑟  =  {𝓏 ∈ ℂ: 𝑟 <  |𝓏|  <  1} for any 0 < 𝑟 <  1, and let 𝜁 =

 𝑒
2𝑖𝜋

𝑛  be a primitive 𝑛-th root of unity. 

Lemma (1.2.4)[23]: For a finite Blaschke product 𝜙 of order 𝑛, there exists a holomorphic 

function 𝑢 on a neighborhood of 𝔻\𝐿 such that 𝜙 =  𝑢𝑛, where 𝐿 is an arc inside 𝔻 

containing the zero set of 𝜙. Moreover, there exists 0 < 𝑟 <  1 such that 𝐴𝑟̅̅ ̅ is contained in 

the image of 𝑢 and 𝑢 ∶  𝑢−1(𝐴𝑟̅̅̅̅ )  →  𝐴𝑟̅̅̅̅  is invertible. 
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Proof. Suppose 𝑎1, . . . , 𝑎𝑛 are the zeros of 𝜙 in 𝔻 (taking multiplicity into account). Choose 

an analytic branch for 𝑤 = √𝓏
𝑛 . By [31], 𝑤 =  √(𝓏 − 𝑎1) ··· (𝓏 −  𝑎𝑛)

𝑛
 is a singlevalued 

holomorphic function on ℂ\𝐿, where 𝐿 is a curve drawn through the zero set. If we set 

𝑢(𝓏)  =  
√(𝓏 − 𝑎1) ··· (𝓏 − 𝑎𝑛)
𝑛

√(𝓏 − 𝑎1̅̅ ̅𝓏) ··· (𝓏 − 𝑎𝑛̅̅ ̅𝓏)
𝑛

,  

then 𝑢(𝓏) is holomorphic on a neighborhood of 𝔻\𝐿 and 𝑢𝑛  = 𝜙. 
      Additionally, one sees that |𝑢|𝑛  =  |𝜙| on 𝔻\𝐿 and hence 𝑢(𝕋)  ⊆ 𝕋. We claim that 

𝑢(𝕋)  = 𝕋. Indeed, if 𝑢(𝕋) ≠ 𝕋, then 𝑢 ∶ 𝕋 → 𝕋 is homotopic to a constant map on 𝕋. That 

is, there exists 𝑢(𝜃 , 𝑡)  ∈  𝐶(𝕋 × [0, 1], 𝕋) such that 𝑢(𝜃 , 0)  =  𝑢(𝜃) and 𝑢(𝜃 , 1)  =  1. 
This implies that 𝜙 =  𝑢𝑛 ∶ 𝕋 → 𝕋 is also homotopic to the constant map by the path 𝑡 →
 𝑢𝑛(·, 𝑡). If we extend each 𝑢(·, 𝑡) to be a continuous function 𝑢 ̃(·, 𝑡) on �̅�, then by [25] 

each Toeplitz operator 𝑇𝑢𝑛(·,𝑡) is Fredholm. Furthermore, using [25] one sees that 𝑡 →

 Ind(𝑇𝑢𝑛(·,𝑡)) is a continuous map from [0, 1] to ℤ. This implies that it is a constant map, 

which leads to a contradiction since −𝑛 =  Ind(𝑀𝜙) =  Ind(𝑇𝑢𝑛(·,0))  =  Ind(𝑇𝑢𝑛(·,1))  =

 Ind(𝑀1)  =  0. Therefore, we have that 𝑢(𝕋)  = 𝕋. 
         By the open mapping theorem, the image of 𝑢 is an open subset of ℂ including 𝕋. 
Therefore, there exists 0 < 𝑟 <  1 such that 𝐴𝑟̅̅ ̅  ⊆  𝑢(�̅�\𝐿). Now we only need to prove 

that the map 𝑢 ∶  𝑢−1(𝐴𝑟̅̅ ̅)  →  𝐴𝑟̅̅ ̅ is injective. In fact, for any 𝑤 ∈  𝐴𝑟̅̅ ̅, since 

𝜙 (𝑢−1(𝜁𝑘𝑤))  =  𝑤𝑛 for 0 ≤ 𝑘 ≤ 𝑛 −  1, we have that 

 ⋃  

 

0≤𝑘≤𝑛−1

𝑢−1({𝜁𝑘𝑤}) ⊆ 𝜙−1({𝑤𝑛}). 

Remarking that the set 𝜙−1({𝑤𝑛}) includes at most n points and each set 𝑢−1({𝜁𝑘𝑤}) is 

nonempty, one sees that each 𝑢−1({𝜁𝑘𝑤}) is a singleton. This means that 𝑢 is one to one on 

𝑢−1(𝐴𝑟̅̅ ̅). Therefore, 𝑢 ∶  𝑢−1(𝐴𝑟̅̅ ̅)  →  𝐴𝑟̅̅ ̅ is invertible, completing the proof. 

       The above lemma allows us to extend local inverses as follows. We denote 𝛺 =
 𝑢−1(𝐴𝑟), where 𝐴𝑟 is the annulus appearing in Lemma (1.2.4). On the connected domain 

𝛺, define �̃�𝑘(𝓏)  =  𝑢
−1 (𝜁𝑘𝑢(𝓏)) for each 0 ≤ 𝑘 ≤ 𝑛 −  1. Note that �̃�𝑘 is holomorphic 

and 𝜙(�̃�𝑘(𝓏))  = 𝜙(𝓏) for 𝓏 ∈  𝛺. This means that {�̃�𝑘}𝑘 is also the family of local 

inverses on 𝛺 for 𝜙−1 ∘  𝜙. It follows that 𝜌𝑘  =  �̃�𝑖𝑘 for some 𝑖𝑘 on 𝛺 ∩ [𝔻\𝛤]. Matching 

the maps �̃�𝑖𝑘  and 𝜌𝑘  , respectively, we obtain the family of local inverses on a larger domain 

𝛺 ∪ [𝔻\𝛤]. Furthermore, we can prove the following lemma. 

Lemma (1.2.5)[23]: For a finite Blaschke product 𝜙, there exists a family of local inverses 

for 𝜙−1  ∘  𝜙 on the domain 𝔻\𝛤 , where 𝛤′  = ⋃   
1≤𝑘≤𝑠−1  𝛤𝑖 is a proper subset of 𝛤 

appearing in (32), which just consists of the set of line segments passing through all critical 

points 𝐸′ of 𝜙. 
Proof. It suffices to show that the family of local inverses {𝜌0, 𝜌1, . . . , 𝜌𝑛−1} can analytically 

be continued across the interior point set �̇�0  =  {𝑡𝛽0  +  (1 −  𝑡)𝛽1: 0 < 𝑡 <  1}. 
       To start, we prove that analytic continuation is possible when the points in �̇�0 are close 

enough to the boundary 𝕋. By the continuity of 𝑢 and the construction of 𝛤 , we can choose 

a number 𝑟 close to 1 such that 𝑢(𝐴𝑟′)  ⊂  𝐴𝑟  and 𝐴𝑟′  ∩  𝛤
′  =  ∅. For each 0 ≤ 𝑘 ≤ 𝑛 −

 1, let �̃�𝑘(𝓏)  =  𝑢
−1 (𝜁𝑘𝑢(𝓏)) when 𝓏 ∈  𝐴𝑟′  (⊆  𝑢

−1(𝐴𝑟)). Fix a point 𝓏0  ∈  𝐴𝑟′  ∩

 [𝔻\𝛤], and let 𝑈 be a small open disk containing 𝓏0. Notice that both {𝜌0, 𝜌1, . . . , 𝜌𝑛−1} and 
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{�̃�0, �̃�1, . . . , �̃�𝑛−1}are local inverses of 𝜙−1  ∘  𝜙 on 𝑈. So, after renumbering the local 

inverses if necessary, we can suppose that 𝜌𝑖  =  �̃�𝑖 on 𝑈. Since the domain 𝐴𝑟′  ∩  [𝔻\𝛤]  =
 𝐴𝑟′\𝛤0 is connected and includes 𝑈, one sees that 𝜌𝑖  =  �̃�𝑖 on this domain. Therefore, the 

family of analytic functions {𝜌𝑖  ∪  �̃�𝑖} defined as 

[𝜌𝑖  ∪  �̃�𝑖](𝑥)  = {
𝜌𝑖(𝑥)     if 𝑥 ∈ 𝔻\𝛤 ,

�̃�𝑖(𝑥)  if 𝑥 ∈  𝐴𝑟′
  

are local inverses on 𝐴𝑟′  ∪  [𝔻\𝛤
′]. We still denote them by {𝜌𝑖}𝑖 whenever no confusion 

arises. 

       Now let 𝑆 be a maximal subset of �̇�0 on which these local inverses can’t be analytically 

continued across. That is, {𝜌𝑖}𝑖 are holomorphic on the domain 𝔻\(𝛤′ ∪ 𝑆), and can’t be 

analytically continued across each point in 𝑆. We prove by contradiction that the set 𝑆 is 

empty. Indeed, assume 𝑆 is nonempty and let 

𝑠 = inf{𝑡:  𝑡𝛽0  +  (1 −  𝑡)𝛽1  ∈  𝑆} . 
Then 𝑆 is contained in the line segment from 𝓏0  =  𝑠𝛽0  +  (1 −  𝑠)𝛽1 to 𝛽1. Since 𝑆 ∩
 𝐴𝑟′  =  ∅, one sees that 0 <  𝑠 and 𝓏0 is inside 𝔻. This means that one can analytically 

extend the local inverses across 𝑡𝛽0  +  (1 −  𝑡)𝛽1: 𝑡 < 𝑠, 
and the process stops at 𝓏0. But, since 𝓏0 is a regular point of 𝜙, there exists an open disk 

𝑉 =  {𝓏: |𝓏 − 𝓏0| <  𝑟0} with a small 𝑟0, with a small 𝑟0, such that 𝑉 ∩ 𝛤′  =  ∅ and 𝜙−1  ∘
 𝜙 has n analytic branches on 𝑉 . Notice that 

𝑉 ∩ [𝔻\ (𝛤′ ∪ 𝑆)]   =  𝑉 \𝑆 ⊇  𝑉 \𝐿, 
where 𝐿 is a line segment from the center 𝓏0 to the boundary of the disk 𝑉 . It follows that 

𝑉 ∩ [𝔻\(𝛤′ ∪ 𝑆)] is a connected domain. An argument similar to that in the preceding 

paragraph shows that the local inverses are holomorphic on 𝑉 ∪ [𝔻\(𝛤′ ∪  𝑆)]. By the 

maximality of 𝑆, we have that 𝑉 ∩  𝑆 =  ∅, which leads to a contradiction since 𝓏0  ∈  𝑆̅. 
Therefore, 𝑆 is empty and the local inverses are holomorphic on 𝔻\𝛤′, completing the proof. 

      From the proof of the above lemma one derives an intrinsic order for the local inverses. 

Specifically, we label the local inverses {𝜌𝑘(𝓏)}𝑘=0
𝑛−1 such that 𝜌𝑘(𝓏)  =  𝑢

−1(𝜁𝑘𝑢(𝓏))  on 

𝛺 for 0 ≤ 𝑘 ≤ 𝑛 −  1. By a routine argument, we have that each 𝜌𝑘 is invertible on 𝛺, and 

for any pair 𝜌𝑘 , 𝜌𝑘 and 𝓏 ∈  𝛺, we have 

𝜌𝑘  ∘  𝜌𝑘′(𝓏)  =  𝜌𝑘+𝑘′mod 𝑛(𝓏). 
Moreover, with little extra effort, one sees that each 𝜌𝑘 can also be analytically continued 

across the boundary 𝑇. We prove the main result. 

Theorem (1.2.6)[23]: Let 𝜙 be a finite Blaschke product of order 𝑛. Then the von Neumann 

algebra 𝐴𝜙  =  {𝑀𝜙, 𝑀𝜙
∗ }
′
 is commutative of dimension 𝑞, and hence 𝐴𝜙 ≅ 𝐶 ⊕···⊕  𝐶⏟        

𝑞

, 

where 𝑞 is the number of connected components of the Riemann surface of 𝜙−1  ∘  𝜙. 

Proof. It suffices to show that ℰ𝑗  ℰ𝑖  = ℰ𝑖ℰ𝑗 for each 1 ≤ 𝑖, 𝑗 ≤ 𝑞. Indeed, for any 0 ≤

𝑘, 𝑘′ ≤ 𝑛 −  1, we have that 

𝜌𝑘  ∘  𝜌𝑘′(𝓏)  =  𝜌𝑘  ∘  𝜌𝑘′(𝓏)  =  𝜌𝑘+𝑘′mod 𝑛(𝓏), 𝓏 ∈  𝛺. 
Therefore, for any 𝑓 ∈  𝐿𝑎

2 (𝔻) and 𝓏 ∈  𝛺, we have 

(ℰ𝑖ℰ𝑗𝑓)(𝓏)  = ∑  

𝜌∈𝐺𝑖

∑  

�̃�∈𝐺𝑗

𝑓(�̃�(𝜌(𝓏))�̃�′(𝜌(𝓏))𝜌′ (𝓏)

= ∑  

�̃�∈𝐺𝑗

∑  

𝜌∈𝐺𝑖

𝑓 (𝜌(�̃�(𝓏))) 𝜌′(�̃�(𝓏))�̃�′(𝓏)  =  (ℰ𝑗  ℰ𝑖𝑓 )(𝓏). 

This implies that ℰ𝑗  ℰ𝑖(𝑓)  =  ℰ𝑗  ℰ𝑖(𝑓) for any 𝑓 ∈  𝐿𝑎
2 (𝔻), completing the proof. 
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      By the final argument in the proof of [27], the statement that 𝐴𝜙 is commutative is 

equivalent to the statement that the minimal reducing subspaces for 𝑀𝜙 are pairwise 

orthogonal. This also means that the number of distinct minimal reducing subspaces of 𝑀𝜙 

is equal to the dimension of 𝐴𝜙. Hence, one derives the following corollary giving the 

structure of the reducing subspaces. 

Corollary (1.2.7)[23]: Let 𝜙 be a finite Blaschke product. Then the multiplication operator 

𝑀𝜙 on the Bergman space 𝐿𝑎
2 (𝔻) has exactly 𝑞 nontribyl minimal reducing subspaces 

{ℳ1, . . . ,ℳ𝑞 }, and 𝐿𝑎
2 (𝔻)  = ⨁ ℳ𝑘

𝑞
𝑘=1  , where 𝑞 is the number of connected components 

of the Riemann surface 𝜙−1  ∘  𝜙. 
       In order to facilitate the comprehension of the rather involved computations included, 

we analyze first a simple, transparent example. If 𝜙 = 𝓏𝑛 , then the family of local inverses 

is {𝜌𝑘(𝓏)  =  𝜁
𝑘𝓏: 0 ≤ 𝑘 ≤ 𝑛 −  1}, and we infer without difficulty that 

ℳ𝑗  =  span̅̅ ̅̅ ̅̅ {𝓏𝑖  ∶  𝑖 ≥ 0, 𝑖 ≡  𝑗 (mod 𝑛) , 1 ≤ 𝑗 ≤ 𝑛, 

are the minimal reducing subspaces of 𝑀𝓏𝑛  . However, such a simple argument is not 

available in the general case, so we prefer to explain the above description of the ℳ𝑗 in a 

less direct way, as follows. Recall that for 𝜙 = 𝓏𝑛, we have that 

(ℰ𝑘𝑓 )(𝓏)  =  𝑓(𝜌𝑘(𝓏)𝜌𝑘
′ (𝓏)  =  𝜁𝑘𝑓(𝜁𝑘𝓏), 1 ≤ 𝑘 ≤ 𝑛. 

One verifies then that ℳ𝑗 is the joint eigenspace for the ℰ𝑘 ’𝑠 corresponding to the 

eigenvalues 𝜁𝑘(𝑗+1). Therefore, every ℳ𝑗 is a reducing subspace since the {ℰ𝑘} are normal 

operators and 𝐴𝜙  =  span{ℰ1, . . . , ℰ𝑛}. 

       There is a second, more geometric description of ℳ𝑗 which emerges from this simple 

example. Let 𝐹𝑗 be the flat bundle on 𝔻0  = 𝔻\{0} with respect to the jump 𝜁𝑗 (see [24] for 

the precise definition). We cut 𝔻0 along the line (0, 1) in 𝔻0, put the rank-one tribyl 

holomorphic bundle over it, and identify the vector 𝑣 on the lower copy of (0, 1) with the 

vector 𝜁𝑗  𝑣 on the above copy of (0, 1). Then 𝐹𝑗 is just the quotient space obtained from this 

process. One can easily see that the 𝐹𝑗  ’𝑠 are all the flat line bundles whose pullback bundle 

to 𝔻0 induced by the map 𝓏𝑛 ∶ 𝔻0  → 𝔻0 is the tribyl bundle. This means that each 

holomorphic on 𝐹𝑗 yields a holomorphic function on 𝔻0 by the induced composition. Let 

𝐿𝑎
2 (𝐹𝑗  )  = {holomorphic 𝑠 ∶ 𝔻0  →  𝐹𝑗 ∶ ∫  

 

𝔻0

 |𝑠|2 𝑑𝑚 <  ∞} ,  

and let 𝑀𝓏 be the corresponding bundle shift on 𝐿𝑎
2 (𝐹𝑗  ). Note that |𝑠| is well defined on 𝔻0. 

Then the operator 𝑈𝑗 ∶  𝐿𝑎
2 (𝐹𝑗)  → ℳ𝑗 [⊆  𝐿𝑎

2 (𝔻)] defined by (𝑈𝑗𝑓 )(𝓏)  =  𝑛𝓏
𝑛−1𝑓 (𝓏𝑛) is 

a unitary map, which intertwines (𝐿𝑎
2 (𝐹𝑗),𝑀𝓏) and (ℳ𝑗  ,ℳ𝓏𝑛). In this way flat line bundles 

provide a natural model for the action of 𝑀𝓏𝑛 on the minimal reducing subspaces of 𝑀𝓏𝑛 . 
It is conceivable that some analogous geometric description exists for the action of 𝑀𝜙 on 

the minimal reducing subspaces in general, but, if so, we do not know how to describe it. 

Thus we follow a different path below. 

     Returning to the general case of a finite Blaschke product 𝜙, we will prove the following 

theorem. Recall that the dual partition for 𝜙 is the partition of the set {0, 1, . . . , 𝑛 −  1} 
corresponding to the equivalence relation defined in (31). We will prove later that the 

number of components in the dual partition is also equal to 𝑞, the number of connected 

components of the Riemann surface for 𝜙−1  ∘  𝜙. 
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      The remainder is devoted to the proof of this theorem. We begin with a characterization 

of the ℳ𝑗 ’𝑠 in term of eigenvalues and eigenspaces of the ℰ𝑘 ’𝑠. Adapting, step by step, the 

proof of [27], we infer that 

𝐴𝜙  = { 𝑀𝜙, 𝑀𝜙
∗ }
′
 =  span{ℰ1, . . . , ℰ𝑞}  =  span {𝑃ℳ1

 , . . . , 𝑃ℳ𝑞
 }, 

where 𝑃ℳ𝑘
 is the projection onto ℳ𝑘 for 1 ≤ 𝑘 ≤ 𝑞. This means that there are unique 

constants {𝑐𝑘𝑗  , 1 ≤ 𝑗, 𝑘 ≤ 𝑞} such that 

ℰ𝑘  = ∑  

1≤𝑗≤𝑞

𝑐𝑘𝑗𝑃ℳ𝑗
 .                                               (33) 

On the other hand, by a dimension argument, the constant matrix [𝑐𝑘𝑗]  turns out to be 

invertible. Since the rows of [𝑐𝑘𝑗] are linearly independent, it follows that 𝑐𝑘𝑗1  =  𝑐𝑘𝑗2  for 

each 𝑘 if and only if 𝑗1  =  𝑗2. 

       For each tuple {𝑐𝑘𝑗  }𝑘
 , let ℳ̃𝑗  =  {𝑓 ∈  𝐿𝑎

2 (𝔻): ℰ𝑘𝑓 =  𝑐𝑘𝑗𝑓, 1 ≤ 𝑘 ≤ 𝑞} be the 

corresponding common eigenspace for {ℰ1, . . . , ℰ𝑞  }. As shown in Theorem (1.2.6), each ℰ𝑘 

is a normal operator. By spectral theory, ℳ̃𝑗1 ⊥ �̃�𝑗2  if 𝑗1 ≠ 𝑗2. Since ℳ𝑗  ⊆ ℳ ̃ 𝑗   for each 

𝑗 , we obtain ℳ̃𝑗 ⊥ ℳ𝑘 for 𝑗 ≠ 𝑘. Noticing that 𝐿𝑎
2 (𝔻)  = ⨁ ℳ𝑘𝑘  , one sees that ℳ𝑗  = ℳ̃𝑗  . 

That is, 

ℳ𝑗  = {𝑓 ∈  𝐿𝑎
2 (𝔻): ℰ𝑘𝑓 =  𝑐𝑘𝑗𝑓, 1 ≤ 𝑘 ≤ 𝑞}.                 (34) 

    We also need the following lemmas concerning the domain 𝛺 =  𝑢−1(𝐴𝑟). Let 𝐿𝑎
2 (𝛺) be 

the Bergman space which consists of the holomorphic functions in 𝐿2(𝛺), and let 𝐿𝑎,𝑝
2 (𝛺) 

be the subspace of 𝐿𝑎
2 (𝛺) which is the closure of the polynomial ring in 𝐿𝑎

2 (𝛺). Note that 

since 𝓏−1  ∈  𝐿𝑎
2 (𝛺), we have 𝐿𝑎,𝑝

2 (𝛺) ≠ 𝐿𝑎
2 (𝛺). Recall that 𝒪(𝔻) denotes the space of 

holomorphic functions on 𝔻. 
Lemma (1.2.8)[23]: The restriction operator 𝑖𝛺 ∶  𝐿𝑎

2 (𝔻)  →  𝐿𝑎,𝑝
2 (𝛺) defined by 𝑖𝛺(𝑓) =

𝑓| 𝛺  is invertible. Furthermore, 𝐿𝑎
2 (𝔻)  =  {𝑓 ∈ 𝒪(𝔻): 𝑓 | 𝛺  ∈  𝐿𝑎

2 (𝛺)}. 
Proof. As shown in the proof of Lemma (1.2.5), there exists 𝑟 >  0 such that 𝐴𝑟 ⊆ 𝛺. It’s 

well known that there exists a positive constant 𝐶𝑟′ such that for any polynomial 𝑓 

‖𝑓‖𝐿𝑎2 (𝔻) ≤ 𝐶𝑟′‖𝑓‖𝐿2(𝐴𝑟′)
. 

This implies for any polynomial 𝑓 that 

‖𝑓‖𝐿2(𝔻) ≤ 𝐶𝑟′‖𝑓‖𝐿2(𝐴
𝑟′
) ≤ 𝐶𝑟′‖𝑓‖𝐿2(𝛺) ≤ 𝐶𝑟′‖𝑓‖𝐿2(𝔻). 

Because the polynomial ring is dense in both of the two Hilbert spaces 𝐿𝑎
2 (𝔻) and 𝐿𝑎,𝑝

2 (𝛺), 

one finds that 𝑖𝛺 is invertible. 

    In addition, we have that 

𝐿𝑎
2 (𝔻)  = {𝑓 ∈ 𝒪 (𝔻): 𝑓 | 𝛺 ∈  𝐿𝑎,𝑝

2 (𝛺)} ⊆ {𝑓 ∈ 𝒪(𝔻): 𝑓 | 𝛺 ∈ 𝐿𝑎
2 (𝛺)}. 

It remains to show that, if 𝑓 ∈ 𝒪(𝔻) and 𝑓 | 𝛺 ∈  𝐿𝑎
2 (𝛺), then 𝑓 ∈  𝐿𝑎

2 (𝔻). Indeed, since 

𝐴𝑟′  ⊆ 𝛺, one sees that 𝑓| 𝐴
𝑟′
 ∈  𝐿𝑎

2 (𝐴𝑟′). Let 𝑓 = ∑  ∞
𝑘=0 𝑎𝑘𝓏

𝑘 be the Taylor series 

expansion of f on 𝔻. Since the vectors {𝓏𝑘}𝑘 are pairwise orthogonal in 𝐿𝑎
2 (𝐴𝑟′), we have 

that the polynomial 𝑝𝑛  = ∑  𝑛
𝑘=0  𝑎𝑘𝓏

𝑘 tends to 𝑓 in the norm of 𝐿𝑎
2 (𝐴𝑟′) and hence 𝑓 ∈

 𝐿𝑎,𝑝
2 (𝐴𝑟′). Therefore, by the argument in the preceding paragraph, there exists 𝑔 ∈  𝐿𝑎

2 (𝔻) 

such that 𝑓 |𝐴𝑟′  =  𝑔𝐴𝑟′   . This means that 𝑓 =  𝑔 ∈  𝐿𝑎
2 (𝔻), as desired. 
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         Now we introduce operators on 𝐿𝑎
2 (𝛺) and 𝐿𝑎,𝑝

2 (𝛺) corresponding to {ℰ𝑖}. We also let 

𝑀𝜙 denote the multiplication operator on 𝐿 𝑎
2 (𝛺) or 𝐿 𝑎,𝑝

2 (𝛺) with the bounded analytic 

symbol 𝜙. Recall that each 𝜌 ∈  {𝜌𝑗}𝑗=0
𝑛−1

 is invertible on 𝛺. Hence, the operator 𝑈𝜌
𝛺 ∶

 𝐿𝑎
2 (𝛺)  →  𝐿𝑎

2 (𝛺) defined by 𝑈𝜌
𝛺 (𝑓)  =  (𝑓 ∘  𝜌)𝜌′ is a unitary operator with the inverse 

𝑈𝜌−1
𝛺  . Similarly, for each 1 ≤ 𝑘 ≤ 𝑞, define a linear operator ℰ𝑘

𝛺 ∶  𝐿𝑎
2 (𝛺)  →  𝐿𝑎

2 (𝛺) as 

ℰ𝑘
𝛺 (𝑓)  = ∑  

𝜌∈𝐺𝑘

𝑈𝜌
𝛺 (𝑓 )  = ∑  

𝜌∈𝐺𝑘

 (𝑓 ∘  𝜌)𝜌′, 𝑓 ∈  𝐿𝑎
2 (𝛺). 

Moreover, for each 𝑓 ∈  𝐿𝑎,𝑝
2 (𝛺), there exists some 𝑔 ∈  𝐿𝑎

2 (𝔻) such that 𝑔| 𝛺   =  𝑓 . A 

direct computation shows that ℰ𝑘(𝑔)| 𝛺 = ℰ𝑘
𝛺 (𝑓). Hence, one sees that ℰ𝑘

𝛺 (𝑓)  ∈  𝐿𝑎,𝑝
2 (𝛺). 

This means that ℰ𝑘
𝛺 is also a bounded operator on 𝐿𝑎,𝑝

2 (𝛺) and 𝑖𝛺 ℰ𝑘  = ℰ𝑘
𝛺 𝑖𝛺 . Combining 

this identity with formula (33) we obtain 

ℰ𝑘
𝛺(𝑓)  = ∑  

1≤𝑗≤𝑞

 𝑐𝑘𝑗  𝑖𝛺 𝑃ℳ𝑗
 𝑖𝛺
−1 (𝑓), 𝑓 ∈  𝐿𝑎,𝑝

2 (𝛺).            (35) 

Furthermore, by [27], for each 1 ≤ 𝑘 ≤ 𝑞 there is an integer 𝑘− with 1 ≤ 𝑘− ≤ 𝑞 such that 

𝐺𝑘−  =  𝐺𝑘
−  = {𝜌−1: 𝜌 ∈  𝐺𝑘}. 

Similar to that used in the proof of [27], we infer that ℰ𝑘−
𝛺  = ℰ𝑘

𝛺∗ . Therefore, 𝐿𝑎,𝑝
2 (𝛺) is a 

common reducing subspace of {ℰ𝑘
𝛺} and each ℰ𝑘

𝛺 is a normal operator on 𝐿𝑎,𝑝
2 (𝛺). 

    For every 1 ≤ 𝑗 ≤ 𝑞, let 

ℳ𝑗
𝛺  =  𝑖𝛺  (ℳ𝑗)  =  {𝑓 | 𝛺 ∶  𝑓 ∈ ℳ𝑗} . 

We claim that 𝑖𝛺  𝑃ℳ𝑗
 𝑖𝛺
−1  =  𝑃ℳ𝑗

𝛺  . Since the range of 𝑖𝛺  𝑃ℳ𝑗
 𝑖𝛺
−1 is equal to ℳ𝑗

𝛺 , it 

suffices to show that 𝑖𝛺  𝑃ℳ𝑗
𝑖𝛺
−1 is a projection. Indeed, a direct computation shows that 

𝑖𝛺 𝑃ℳ𝑗
 𝑖𝛺
−1 is an idempotent. Furthermore, combining formula (35) and the fact that [𝑐𝑘𝑗]  

is invertible, every  𝑖𝛺 𝑃ℳ𝑗
 𝑖𝛺
−1 is a linear combination of {ℰ𝑘

𝛺 }. It follows that every 

𝑖𝛺 𝑃ℳ𝑗
 𝑖𝛺
−1 is a normal operator. Therefore, 𝑖𝛺  𝑃ℳ𝑗

 𝑖𝛺
−1 is a projection and 𝑖𝛺  𝑃ℳ𝑗

 𝑖𝛺
−1  =

 𝑃ℳ𝛺𝑗  . 

         We summarize the consequences of the above argument as follows. 

Proposition (1.2.9)[23]: Using the notation above, 𝐿𝑎,𝑝
2 (𝛺)  = ⨁  

𝑞
𝑗=1 ℳ𝑗

𝛺 , and 

ℳ𝑗
𝛺  = {𝑓 ∈  𝐿𝑎,𝑝

2 (𝔻): ℰ𝑘
𝛺 𝑓 =  𝑐𝑘𝑗𝑓,   1 ≤ 𝑘 ≤ 𝑞}.               (36) 

In addition, one has 

ℰ𝑘
𝛺 (𝑓)  = ∑  

1≤𝑗≤𝑞

𝑐𝑘𝑗𝑃ℳ𝑗

𝛺  (𝑓), 𝑓 ∈  𝐿𝑎,𝑝
2 (𝛺).                 (37) 

Proof. Eq. (37) follows from formula (35) and the fact that 𝑖𝛺 𝑃ℳ𝑗
 𝑖𝛺
−1  =  𝑃ℳ𝑗

𝛺  . Combining 

this with the same argument at the beginning, one sees (36). 

     Moreover, since 

𝑃ℳ𝑖
𝛺  𝑃ℳ𝑗

𝛺  =  𝑖𝛺  𝑃ℳ𝑖
𝑃ℳ𝑗

 𝑖𝛺
−1  =  0 

if 𝑖 ≠ 𝑗 and 

∑ 

𝑞

𝑗=1

 𝑃ℳ𝑗
𝛺  = ∑ 

𝑞

𝑗=1

𝑖𝛺 𝑃ℳ𝑗
 𝑖𝛺
−1  =  𝐼, 

we have that 𝐿𝑎,𝑝
2 (𝛺)  = ⨁  𝑗  ℳ𝑗

𝛺 , completing the proof. 
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      Since 𝜌1 is invertible and 𝜌1
𝑛  =  1 on 𝛺, the operator 𝑈𝜌1

𝛺 ∶  𝐿𝑎
2 (𝛺)  →  𝐿𝑎

2 (𝛺) is unitary 

and (𝑈𝜌1
𝛺  )

𝑛
 =  1. By the spectral theory for unitary operators, the {𝜁𝑖}

𝑖=0

𝑛−1
 are possible 

eigenvalues of 𝑈𝜌1
𝛺   , and 𝑈𝜌1

𝛺  = ∑  𝑛−1
𝑖=0 𝜁𝑖 𝑃𝒩𝑖

𝛺 , where 𝑃𝒩𝑖
𝛺  is the projection from 𝐿𝑎

2 (𝛺) 

onto the eigenvector subspace 

𝒩𝑖
𝛺  = {𝑓 ∈  𝐿𝑎

2 (𝛺): 𝑈𝜌1
𝛺  (𝑓)  =  𝜁𝑖  𝑓} . 

It follows that 𝑈𝜌𝑗
𝛺 = (𝑈𝜌1

𝛺 )
𝑗
 = ∑  𝑛−1

𝑖=0 𝜁𝑖𝑗𝑃𝒩𝑖
𝛺  , and 

ℰ𝑘
𝛺 (𝑓 ) = ∑  

𝜌𝑗∈𝐺𝑘

∑ 

𝑛−1

𝑖=0

𝜁𝑖𝑗𝑃𝒩𝑖
𝛺  (𝑓), 𝑓 ∈  𝐿𝑎

2 (𝛺).                    (38) 

Furthermore, we have the following lemma. Recall that 𝑢 ∶  𝛺 =  𝑢−1(𝐴𝑟) → 𝐴𝑟 is 

invertible as shown in Lemma (1.2.4). 

Lemma (1.2.10)[23]: 𝒩𝑖
𝛺  =  span̅̅ ̅̅ ̅̅ {𝑢𝑘𝑢′ ∶  𝑘 ∈ ℤ, 𝑘 +  1 ≡  𝑖 mod 𝑛}. 

Proof. Since 𝑢 ∘  𝜌1  =  𝜁𝑢  on 𝛺, it is easy to check that 

𝑈𝜌1(𝑢
𝑘𝑢′)   =  𝜁𝑖  𝑢𝑘𝑢′ , for 𝑘 +  1 ≡  𝑖 mod 𝑛. 

That is, 𝒩𝑖
𝛺 is contained in the eigenspace of 𝑈𝜌1 associated to the eigenvalue 𝜁𝑖  . It remains 

to show that  ⨁  𝑖 𝒩𝑖
𝛺  =  𝐿𝑎

2 (𝛺). In fact, we will prove that {𝑢𝑘𝑢′ ∶  𝑘 ∈ ℤ} is a complete 

orthogonal system for 𝐿𝑎
2 (𝛺). 

Define the pull-back operator 𝐶𝑢 ∶  𝐿𝑎
2 (𝐴𝑟)  →  𝐿𝑎

2 (𝛺) by 

𝐶𝑢𝑓 =  (𝑓 ∘  𝑢)𝑢
′ . 

Since 𝑢 ∶  𝛺 →  𝐴𝑟 is invertible, 𝐶𝑢 is unitary. Noticing that {𝓏𝑘 ∶  𝑘 ∈ ℤ} is a complete 

orthogonal basis for 𝐿𝑎
2 (𝐴𝑟), one sees that {𝑢𝑘𝑢′  =  𝐶𝑢(𝓏

𝑘): 𝑘 ∈ ℤ} is a complete 

orthogonal basis for 𝐿𝑎
2 (𝛺), as desired. 

     Recall that for the partition {𝐺1, . . . , 𝐺𝑞} of local inverses for 𝜙−1  ∘  𝜙, we say 𝑗1  ∼  𝑗2 

in the dual partition for two integers 0 ≤ 𝑗1, 𝑗2 ≤ 𝑛 −  1, if 

∑  

𝜌𝑘∈𝐺𝑖

 𝜁𝑘𝑗1  = ∑  

𝜌𝑘∈𝐺𝑖

𝜁𝑘𝑗2     for any 1 ≤ 𝑖 ≤ 𝑞. 

The above relation partitions the set {0, 1, . . . , 𝑛 −  1} into equivalence classes {𝐺1
′ , . . . , 𝐺𝑝

′ }. 

For each 𝐺𝑗
′ in the dual partition, let ℒ𝑗

𝛺  = ⨁  𝑖∈𝐺𝑗
′  𝒩𝑖

𝛺 ; that is, 

ℒ𝑗
𝛺  =  span̅̅ ̅̅ ̅̅ {𝑢𝑖  𝑢′ ∶  𝑖 ∈ ℤ,   𝑖 +  1 (mod 𝑛)  ∈  𝐺𝑗

′} . 

Then ⨁  
𝑝
𝑗=1 ℒ𝑗

𝛺  =  𝐿𝑎
2 (𝛺). From formula (38) 

ℰ𝑘
𝛺 (𝑓)  = ∑  

1≤𝑗≤𝑝

𝑐𝑘𝑗
′ 𝑃ℒ𝑗

𝛺  (𝑓), 𝑓 ∈  𝐿𝑎
2 (𝛺),                   (39) 

where 𝑐𝑘𝑗
′  = ∑  𝜌𝑖∈𝐺𝑘  𝜁

𝑖𝑙 for any 𝑙 ∈ 𝐺𝑗
′ . By the equivalent condition for the dual partition, 

𝑐𝑘𝑗1
′  =  𝑐𝑘𝑗2

′  for each 𝑘 if and only if 𝑗1  =  𝑗2. Comparing formulas (36) and (39) yields the 

following result. 

Proposition (1.2.11)[23]: For each ℳ𝑗
𝛺 , there exists 1 ≤ 𝑘 ≤ 𝑝 such that ℳ𝑗

𝛺  = ℒ𝑘
𝛺  ∩

 𝐿𝑎,𝑝
2 (𝛺). 

Proof. For each 0 ≠ 𝑓 ∈ ℳ𝑗
𝛺  ⊆ ⨁  𝑘  ℒ𝑘

𝛺  =  𝐿𝑎
2 (𝛺), there exists at least one 𝑑𝑓 such that 

1 ≤ 𝑑𝑓 ≤ 𝑝 and the projection of 𝑓 on ℒ𝑑𝑓
𝛺  is nonzero. We claim that 𝑑𝑓 is unique. Indeed, 

suppose for 𝑘1 ≠ 𝑘2, 𝑃ℒ𝑘1
𝛺  (𝑓) and 𝑃ℒ𝑘2

𝛺 (𝑓) are nonzero. By formula (36), one sees for each 

1 ≤ 𝑖 ≤ 𝑛 that, 
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[𝑃ℒ𝑘1  +  𝑃ℒ𝑘2  ] ℰ𝑖
𝛺(𝑓)  =  𝑐𝑖𝑗𝑃ℒ𝑘1  

(𝑓 )  + 𝑐𝑖𝑗𝑃ℒ𝑘2  
(𝑓). 

Moreover, by formula (39), 

[𝑃ℒ𝑘1  +  𝑃ℒ𝑘2  ] ℰ𝑖
𝛺(𝑓)  =  𝑐𝑖𝑘1

′ 𝑃ℒ𝑘1
(𝑓 ) + 𝑐𝑖𝑘2

′  𝑃ℒ𝑘2  
(𝑓). 

Hence 𝑐𝑖𝑗
′ = 𝑐𝑖𝑘1

′  =  𝑐𝑖𝑘2
′  for each 𝑖. This leads to a contradiction since 𝑘1  =  𝑘2. Therefore, 

there exists only one integer df such that 𝑃_(ℒ𝑑𝑓
𝛺  (𝑓 ) ≠ 0. 

     We now prove that 𝑑𝑓 is independent of 𝑓 . Otherwise, there exist 𝑘1 ≠ 𝑘2 and 𝑓1, 𝑓2  ∈

ℳ𝑗 such that both 𝑃ℒ𝑘1
𝛺 (𝑓1) and 𝑃ℒ𝑘2

𝛺 (𝑓2) are nonzero. By the uniqueness proved in the 

preceding paragraph, we have that 𝑃ℒ𝑘1
𝛺 (𝑓2)  =  𝑃ℒ𝑘2

𝛺 (𝑓1)  =  0. However, this means that 

both 𝑃ℒ𝑘1
𝛺 (𝑓1 + 𝑓2) and 𝑃ℒ𝑘2

𝛺 (𝑓1 + 𝑓2) are nonzero, which contradicts the uniqueness of 

𝑑𝑓1+𝑓2  . Therefore, there exists only one integer 𝑘 such that 𝑃ℒ𝑘
𝛺  ℳ𝑗

𝛺  =  {0}. Moreover, we 

have that 𝑐𝑖𝑗  =  𝑐𝑖𝑘
′  for each 𝑖. Combining this fact with formulas (36) and (39), one sees 

that 

ℳ𝑗
𝛺  = ℒ𝑘

𝛺  ∩  𝐿𝑎,𝑝
2 (𝛺)  = {𝑓 ∈  𝐿𝑎,𝑝

2 (𝔻): ℰ𝑖
𝛺 𝑓 =  𝑐𝑖𝑗𝑓, 1 ≤ 𝑖 ≤ 𝑞} , 

completing the proof. 

We will prove the converse of the above proposition. We begin with some lemmas. 

Lemma (1.2.12)[23]: Let 𝑓 be a function holomorphic on a neighborhood of 𝐴𝑟̅̅ ̅. Then for 

any 𝑘 ∈ ℤ, 𝑓 ⊥ 𝓏𝑘̅̅̅̅  in 𝐿𝑎
2 (𝐴𝑟) if and only if  ∫  

 

𝓏∈𝕋
 𝑓 (𝓏)𝓏𝑘̅̅̅̅  𝑑𝑚(𝓏) = 0. 

Proof. Let 𝑎𝑘  be the coefficient for 𝓏𝑘 in the Laurent series expansion of  𝑓 on 𝐴𝑟 . Observe 

that {𝓏𝑘}𝑘=−∞
+∞  is a complete orthogonal basis for both of 𝐿𝑎

2 (𝐴𝑟) and 𝐿2(𝕋). A direct 

computation shows that 〈𝑓, 𝓏𝑘〉𝐿𝑎2 (𝐴𝑟)  =  𝑎𝑘‖𝓏
𝑘‖
𝐿𝑎
2  (𝐴𝑟)

 and 〈𝑓, 𝓏𝑘〉𝐿2(𝕋) = 𝑎𝑘‖𝓏
𝑘‖
𝐿2(𝕋)

, 

which leads to the desired result. 

     We also need the following transformation formula. 

Lemma (1.2.13)[23]: Let 𝑠 ∶ 𝕋 → 𝕋 be an invertible differentiable map. Then there exists 

aconstant 𝑠 =  1 or −1, such that for any 𝑓 ∈  𝐶(𝕋) 

∫  
 

𝕋

 𝑓 (𝜃)𝑑𝑚(𝜃)  = 𝜖𝑠∫  
 

𝕋

𝑓(𝑠(𝜃))
𝑠′(𝜃)

𝑖𝑠(𝜃)
 𝑑𝑚(𝜃). 

If, in addition, 𝑠 is holomorphic on a neighborhood of 𝕋, then 

∫  
 

𝕋

 𝑓 (𝓏) 𝑑𝑚(𝓏) = 𝜖𝑠∫  
 

𝕋

𝑓(𝑠(𝓏))
𝓏𝑠′(𝓏)

𝑠(𝑧)
 𝑑𝑚(𝓏). 

Proof. It is sufficient to verify only the first equation. Indeed, the latter equation follows 

from the former equation and that 

𝑠′(𝜃)  =  𝑠′(𝓏)
𝑑𝓏

𝑑𝜃
 =  𝑖𝑒𝑖𝜃 𝑠′ (𝓏) =  𝑖𝓏𝑠′ (𝓏), 𝓏 ∈ 𝕋. 

Without loss of generality, we can suppose that 𝑠(1)  =  1. Then there exists �̃�: (0, 2𝜋)  →

 (0, 2𝜋) such that 𝑠(𝜃) = 𝑒𝑖�̃�(𝜃). An elementary calculus argument shows that 

 ∫  
 

𝕋

 𝑓 (𝜃 )𝑑𝑚(𝜃) =  ∫  
 

𝕋

 𝑓(𝑠(𝜃))|�̃�′(𝜃)|𝑑𝑚(𝜃). 

Since 𝑠 is invertible on 𝕋, one has that �̃� ∶  (0, 2𝜋)  →  (0, 2𝜋) is a monotonic function. 

Therefore, we can choose a constant 𝜖𝑠  =  1 or −1 such that |�̃�′|  = 𝜖𝑠�̃�
′ . Moreover, 

differentiating the equation 𝑠(𝜃)  =  𝑒𝑖�̃�(𝜃 ), one sees that 𝑠′(𝜃)  =  𝑖𝑒𝑖�̃�(𝜃 )�̃�′(𝜃 ) =

 𝑖𝑠(𝜃 )�̃�′(𝜃). This implies that |�̃�′ (𝜃 )| =
𝜖𝑠𝑠

′(𝜃 )

𝑖𝑠(𝜃 )
 , completing the proof. 
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Lemma (1.2.14)[23]: For any integer 𝑘 ≥ 0, there exists some integer 𝑖 ≥ 0 such that 

〈𝓏𝑖  , 𝑢𝑘𝑢′〉𝐿2(𝛺) ≠ 0. Therefore, 𝑃_(𝐿𝑎,𝑝(𝛺)
2 𝒩𝑘

𝛺  =  {0} for all 0 ≤ 𝑘 ≤ 𝑛 −  1. 

Proof. We prove the statement by contradiction. Suppose that for some 𝑘 ≥ 0, 
〈𝓏𝑖  , 𝑢𝑘𝑢′〉𝐿2(𝛺)  =  0, ∀𝑖 ≥ 0. 

Since the operator 𝐶𝑢 ∶  𝐿
2(𝐴𝑟)  →  𝐿

2(𝛺), which appears in Lemma (1.2.10), is unitary, the 

above equation is equivalent to 

〈(𝑢−1)𝑖(𝑢−1)′ , 𝓏𝑘〉𝐿2(𝐴𝑟)  =  0, ∀𝑖 ≥ 0. 

 Using Lemma (1.2.12), it follows that foreachinteger𝑖 ≥ 0 

〈(𝑢−1)𝑖(𝑢−1)′ , 𝓏𝑘〉𝐿2(𝕋)  = ∫  
 

𝕋

 (𝑢−1)𝑖(𝑢−1)′ 𝓏𝑘̅̅̅̅  𝑑𝑚(𝓏)  =  0. 

By Lemma (1.2.13), Lemma (1.2.4) and the fact that |𝑢(𝓏)|  =  1 for 𝓏 ∈ 𝕋, we have for 

each integer 𝑖 ≥ 0: 

0 = ∫  
 

𝕋

𝓏𝑖(𝑢−1)′ ∘  𝑢(𝓏)𝑢𝑘̅̅ ̅
𝓏𝑢′(𝓏)

𝑢(𝓏)
𝑑𝑚(𝓏) = ∫  

 

𝕋

𝓏𝑖+1𝑢𝑘+1̅̅ ̅̅ ̅̅  𝑑𝑚(𝓏) = 〈𝓏𝑖+1, 𝑢𝑘+1〉𝐿2(𝕋) . 

This means that 𝑢𝑘+1  ∈  𝐻2(𝕋̅̅ ̅̅ ̅̅ ̅) and hence 𝜙𝑘+1 = 𝑢𝑛(𝑘+1)  ∈  𝐻2(𝕋)̅̅ ̅̅ ̅̅ ̅̅ . Because 𝜙𝑘+1 is 

holomorphic on 𝔻, we deduce that 𝜙𝑘+1  is a constant. This leads to a contradiction since 𝜙 

is a nontribyl Blaschke product, completing the proof. 

     Summarizing the above results, we obtain the converse of Proposition (1.2.11). 

Proposition (1.2.15)[23]: For each 𝑘, there exists a unique 𝑗 such that ℳ𝑗
𝛺  = ℒ𝑘

𝛺  ∩

 𝐿𝑎,𝑝
2 (𝛺); that is, 

𝐿𝑎,𝑝
2 (𝛺)  =⨁ 

 

𝑘

[ℒ𝑘 
𝛺  ∩  𝐿𝑎,𝑝

2 (𝛺)]. 

Proof. From Proposition (1.2.11), for each 1 ≤ 𝑗 ≤ 𝑞, there exists only one 1 ≤ 𝑘𝑗 ≤ 𝑝 such 

that ℳ𝑗
𝛺  = ℒ𝑘𝑗

𝛺  ∩  𝐿𝑎,𝑝
2 (𝛺). Hence, 

𝐿𝑎,𝑝
2 (𝛺)  =⨁ 

 

𝑗

[ℒ𝑘𝑗
𝛺  ∩  𝐿𝑎,𝑝

2 (𝛺)]. 

We claim that the set {𝑘1, . . . , 𝑘𝑞} is just {1, . . . , 𝑝}. Indeed, if there exists 𝑘 such that 1 ≤

𝑘 ≤ 𝑝 but k is not in the set {𝑘1, . . . , 𝑘𝑞}, then ℒ𝑘
𝛺 ⊥ ⨁  𝑘𝑗  ℒ𝑘𝑗

𝛺  . This means that 

𝑃𝐿𝑎,𝑝2 (𝛺)ℒ𝑗
𝛺  =  {0}, which leads to a contradiction, since ℒ𝑘

𝛺 = ⨁  𝑗∈𝐺𝑘
′ 𝒩𝑗

𝛺 and by Lemma 

(1.2.14) we have that 𝑃𝐿𝑎,𝑝2 (𝛺)𝒩𝑗
𝛺 ≠ {0} for each 𝑗 . Therefore, the set {𝑘1, . . . , 𝑘𝑞} includes 

all integers between 1 and 𝑝. It follows that 𝑝 =  𝑞 and 

𝐿𝑎,𝑝
2 (𝛺)  =⨁ 

𝑞

𝑘=1

[ℒ𝑘
𝛺  ∩  𝐿𝑎,𝑝

2 (𝛺)], 

as desired. 

      In the proof of Proposition (1.2.15), one identifies the following intrinsic property of the 

partition for a finite Blaschke product. 

Corollary (1.2.16)[23]: The number of components in the dual partition is also equal to 𝑞, 
the number of connected components of the Riemann surface for 𝜙−1 ∘  𝜙. 
    Combining Lemma (1.2.8) with Propositions (1.2.11) and (1.2.15), we derive the main 

result. 
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Theorem (1.2.17)[23]: Let 𝜙 be a finite Blaschke product, and {𝐺1
′ , . . . , 𝐺𝑞

′  } be the dual 

partition for 𝜙 . Then the multiplication operator 𝑀𝜙 has exactly 𝑞 nontribyl minimal 

reducing subspaces {ℳ1, . . . ,ℳ𝑞}, and for any 1 ≤ 𝑗 ≤ 𝑞 

ℳ𝑗  = {𝑓 ∈ 𝒪(𝔻): 𝑓 |𝛺 ∈  𝐿𝑗
𝛺}, 

where 𝛺 =  𝑢−1(𝐴𝑟) is defined in Lemma (1.2.4), and ℒ𝑗
𝛺 is a subspace of 𝐿2(𝛺) with 

orthogonal basis {𝑢𝑖𝑢′ ∶  𝑖 +  1 (mod 𝑛)  ∈  𝐺𝑗
′}. 

Proof. Combining Propositions (1.2.11) and (1.2.15), after renumbering if necessary, we 

have for each 1 ≤ 𝑗 ≤ 𝑞 that, 

ℳ𝑗
𝛺  = ℒ𝑗

𝛺  ∩  𝐿(𝑎,𝑝)
2  (𝛺). 

Since 𝑖𝛺 is invertible, we have that 

ℳ𝑗  = {𝑓 ∈  𝐿𝑎
2 (𝔻): 𝑓| 𝛺 ∈ ℳ𝑗

𝛺} = {𝑓 ∈  𝐿𝑎
2 (𝔻): 𝑓 | 𝛺 ∈ ℒ𝑗

𝛺} . 

Combining this formula with Lemma (1.2.8), we conclude that 

ℳ𝑗  = {𝑓 ∈ 𝒪(𝔻): 𝑓𝛺  ∈ ℒ𝑗
𝛺}, 

completing the proof of the theorem. 

 [10], [1] obtained a classification of the structure of the finite Blaschke product 𝜙 in 

case 𝜙 has order 3 or 4. We sketch an arithmetic way towards the classification of finite 

Blaschke products, displaying the details in the degree 8 case. 

       Following [27] we define an equivalence relation among finite Blaschke products so 

that 𝜙1  ∼ 𝜙2, if there exist Möbius transformations 𝜑𝑎(𝓏)  =
𝑎−𝓏

1−�̅�𝓏
 and 𝜑𝑏(𝓏)  =

𝑏−𝓏

1−�̅�𝓏
 with 

𝑎, 𝑏 ∈ 𝔻 such that 𝜙1  = 𝜑𝑎  ∘  𝜑2  ∘  𝜑𝑏 . A finite Blaschke 𝜙 is called reducible if there 

exist two nontribyl finite Blaschke products 𝜑1, 𝜑2 such that 𝜙 ∼ 𝜑1  ∘  𝜑2, and 𝜙 is 

irreducible if 𝜙 is not reducible. 

      For a finite Blaschke product 𝜙 of order 𝑛, let 𝐺1, . . . , 𝐺𝑞 be the partition defined by the 

family of local inverses {𝜌0, . . . , 𝜌𝑛} for 𝜙−1  ∘  𝜙. When no confusion arises, we write 𝑖 ∈

 𝐺𝑘 if 𝜌𝑖  ∈  𝐺𝑘 , and 𝐺𝑘  =  {𝑖1, 𝑖2, . . . , 𝑖𝑗  } if 𝐺𝑘 = {𝜌𝑖1  , 𝜌𝑖2  , . . . , 𝜌𝑖𝑗}. In view of the above 

notations, {𝐺1, . . . , 𝐺𝑞} is a partition of the additive group ℤ𝑛  =  {0, 1, . . . , 𝑛 −  1}. One can 

immediately verify that, if 𝜙1  ∼ 𝜙2, then 𝜙1, 𝜙2 yield identical partitions. 

      Corollary (1.2.16) hints that there should exist some internal algebraic and combinatorial 

structures for the partitions arising from finite Blaschke products. Although we don’t 

understand these properties completely, we list a few necessary conditions: 

(𝛼0) {0} is a singleton in the partition, since 𝜌0(𝓏)   = 𝓏 is holomorphic on 𝔻. 
(𝛼1) For any pair Gi and Gj , there exist some 𝐺𝑘1  , . . . , 𝐺𝑘𝑚 such that 

𝐺𝑖  +  𝐺𝑗  =  𝐺𝑘1 ∪···∪ 𝐺𝑘𝑚 (counting multiplicities on both sides), 

where “ + ” is defined using the addition of ℤ𝑛. (This is a consequence of the fact that the 

product ℰ𝑖ℰ𝑗 is a linear combination of some ℰ𝑘  ’𝑠. ) (𝛼2) By [27], for each 𝐺𝑖  =

 {𝑖1, . . . , 𝑖𝑘}, there exists 𝑗 such that 

 𝐺𝑗  =  𝐺𝑖
−1  =  {𝑛 − 𝑖1, . . . , 𝑛 − 𝑖𝑘}. 

    (𝛼3) By Corollary (1.2.16), the number of elements in the dual partition is also 𝑞. 
     We also need the following generalization of [27]. Note that the additive structure for 

elements in 𝐺𝑘 ’𝑠 coincides with compositions near the boundary 𝕋.  
Lemma (1.2.18)[23]: For a finite Blaschke product 𝜙 of order 𝑛, 𝜙 is reducible if and only 

if 𝐺𝑘1  ∪···∪ 𝐺𝑘𝑚 forms a nontribyl proper subgroup of ℤ𝑛, for some subset 𝐺𝑘1  , . . . , 𝐺𝑘𝑚 of 

the partition arising from 𝜙. 
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Proof. Assume that 𝜙 is reducible. Without loss of generality, suppose that 𝜙 = 𝜑1  ∘  𝜑2 

for two nontribyl finite Blaschke products 𝜑1, 𝜑2. Since the family of local inverses 𝜑2
−1  ∘

 𝜑2 is a cyclic group under compositions near the boundary 𝕋, and it is contained in the local 

inverses of 𝜙−1  ∘  𝜙, the set of the local inverses for 𝜑2
−1  ∘  𝜑2 forms a nontribyl proper 

subgroup of 𝜙−1  ∘  𝜙. 
        On the other hand, suppose that 𝐺 =  𝐺𝑘1  ∪···∪ 𝐺𝑘𝑚 is a nontribyl proper subgroup 

of ℤ𝑛 for some 𝐺𝑘1  , . . . , 𝐺𝑘𝑚 . For each 𝐺𝑘𝑖  =  {𝜌𝑖1 , . . . , 𝜌𝑖𝑗}, by [27] there exists a 

polynomial 𝑓𝑖(𝑤, 𝓏) of degree 𝑗 such that {𝜌𝑖1  (𝓏), . . . , 𝜌𝑖𝑗  (𝓏)} are solutions of fi(𝑤, 𝓏)  =

 0. This implies that ∏  𝜌∈𝐺𝑘𝑖
 𝜌(𝓏)  =

𝑝𝑖(𝓏)

𝑞𝑖(𝓏)
 is a quotient of two polynomials 𝑝𝑖(𝓏), 𝑞𝑖(𝓏) of 

degree at most j . So, if we define 

 𝜑2(𝓏)  =∏ 

 

𝜌∈𝐺

𝜌(𝓏) =∏ 

𝑚

𝑖=1

∏  

 

𝜌∈𝐺𝑘𝑖

𝜌(𝓏) =∏ 

𝑚

𝑖=1

𝑝𝑖(𝓏)

𝑞𝑖(𝓏)
  , 

then 𝜑2(𝓏) is a rational function of degree at most 𝐺; here 𝐺 denotes the number of elements 

in 𝐺. It follows that 𝜑2(𝓏) is holomorphic outside a finite point set S of 𝔻. Since each local 

inverse is bounded by 1 on 𝔻\𝛤′ and 𝔻\𝛤′ is dense in 𝔻, we have that 𝜑2 is also bounded 

on 𝔻\𝑆 and hence it can analytically be continued across 𝑆. This means that 𝜑2 is a bounded 

holomorphic function on 𝔻. By a similar argument involving local inverses, one sees that 

𝜑2 is also continuous on 𝕋 and |𝜑2(𝓏)|  =  1 whenever 𝓏 ∈ 𝕋. That implies 𝜑2 is a finite 

Blaschke product of order 𝐺. 

       Furthermore, by the group structure of 𝐺,𝜑2(𝜌𝑖(𝓏))  = 𝜑2(𝓏) for each 𝜌𝑖  ∈  𝐺 if 𝓏 is 

close enough to the boundary 𝕋. Since 𝔻\𝛤′ is a connected domain including 𝛺, the equation 

still holds whenever 𝓏 ∈ 𝔻\𝛤′ . In other words, the family of local inverses of 𝜑2
−1  ∘  𝜑2 

is just, 𝐺, a subset in that of 𝜙−1  ∘  𝜙. Consequently, 𝜙(𝓏1)  = 𝜙(𝓏2) if 𝜑2(𝓏1)  = 𝜑2(𝓏2) 
and 𝓏1, 𝓏2 are regular points of 𝜑. Hence, if we define 

 𝜑1(𝑤)  = 𝜙(𝓏)   for 𝑤 = 𝜑2(𝓏), 
then 𝜑1 is well defined outside some finite set of points in 𝔻. By a similar argument for 𝜑2, 
one sees that 𝜑1 is also a finite Blaschke product, which satisfies 𝜙 = 𝜑1  ∘  𝜑2, completing 

the proof of the lemma. 

      By the above proof, one sees that if 𝜙 is reducible, then some of the local inverses can 

be analytically continued across some critical points of 𝜙. But it is not clear that this is a 

sufficient condition for 𝜙 to be reducible. 

       Based on the above lemma, we explain the classification for a general Blaschke product 

of order four. 

         Let 𝜙 be a Blaschke product of order 4. One of the following scenarios holds. 

   (i) The partition of 𝜙 is {{0}, {1}, {2}, {3}}; equivalently, 𝜙 ∼ 𝓏4. 

   (ii) The partition of 𝜙 is {{0}, {2}, {1, 3}}; equivalently, 𝜙 ∼ 𝜙𝑎
2 (𝓏2), where 𝜙𝑎  =

𝑎−𝓏

1−�̅�𝓏
 is 

a Möbius transformation with 𝑎 ≠ 0. 

   (iii) The partition of 𝜙 is {{0}, {1, 2, 3}}; equivalently, 𝜙 is not reducible. 

       All possibilities above occur for some 𝜙, by computations due to Sun, Zheng and Zhong 

in [1]. 

       We now classify, using purely arithmetical considerations, the possible structure for a 

finite Blaschke product of order eight. 
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Theorem (1.2.19)[23]: Let 𝜙 be a Blaschke product of order 8. One of the following 

scenarios holds. 

   (i) The partition of 𝜙 is {{0}, {1}, {2}, {3}, {4}, {5}, {6}, {7}}; equivalently, 𝜙 ∼ 𝓏8. 

   (ii) The partition of 𝜙 is {{0}, {2}, {4}, {6}, {1, 5}, {3, 7}}; equivalently, 𝜙 ∼ 𝜙𝑎
2 (𝓏4), 

where 𝜙𝑎  =
𝑎−𝓏

1−�̅�𝓏
 is a Möbius transformation with 𝑎 ≠ 0.  

   (iii) The partition of 𝜙 is {{0}, {4}, {1, 2, 3, 5, 6, 7}}; equivalently, 𝜙 ∼ (𝓏2), where 𝜑 is 

an irreducible Blaschke product of order 4. 

  (iv) The partition of 𝜙 is one of {{0}, {4}, {2, 6}, {1, 3, 5, 7}}, {{0}, {4}, {2, 6}, {1, 3}, {5, 7}}, 

{{0}, {4}, {2, 6}, {1, 5}, {3, 7}} or {{0}, {4}, {2, 6}, {1, 7}, {3, 5}}; equivalently, 𝜙 ∼

𝜓(𝜑𝑎
2 (𝓏2)), where 𝜓 is a Blaschke product of order 2 and 𝜙𝑎  =

𝑎−𝓏

1−𝑎𝓏
 is a Möbius 

transformation with 𝑎 ≠ 0. 

   (v) The partition of 𝜙 is {{0}, {2, 4, 6}, {1, 3, 5, 7}}; equivalently, 𝜙 ∼  𝜓 ∘  𝜑, where 𝜓 is 

a Blaschke product of order 2 and 𝜑 is an irreducible Blaschke product of order 4. 

   (vi) The partition of 𝜙 is {{0}, {1, 2, 3, 4, 5, 6, 7}}; equivalently, 𝜙 is not reducible. 

       A similar approach would work for Blaschke products of arbitrary order. However, it 

seems difficult to decide whether a partition satisfying conditions (𝛼0), (𝛼1), (𝛼2) and (𝛼3) 
arises from a finite Blaschke product. For example, we cannot exhibit examples for each 

partition in case (4) in Theorem (1.2.19), although it is likely that they exist. 

Proof . By condition (𝛼0), {0} is a singleton in the partition for 𝜙. Without loss of generality, 

suppose that 𝐺1 = {0}. We list all possibilities by the minimal number 𝑠 =

 min{𝐺2, . . . , 𝐺𝑞}, where 𝐺𝑘 is the number of elements in 𝐺𝑘 . Clearly 𝑠 ≠ 4, 5, 6. 

    (I) Case 𝑠 =  1. Suppose without loss of generality that 𝐺2 is also a singleton. 

     Subcase (A): Suppose 𝐺2 consists of one of the primitive elements {1, 3, 5, 7} in ℤ8. 
Since ℤ8 is generated by any element in {1, 3, 5, 7}, by conditions (𝛼1) and (𝛼2), each 𝐺𝑘 is 

a singleton. That is, the partition is just {{0}, {1}, {2}, {3}, {4}, {5}, {6}, {7}}. By [27], one 

sees that this is equivalent to 𝜙 ∼ 𝓏8. 
      Subcase (B): Suppose (𝐴) does not hold and 𝐺2 consists of 2 or 6. By condition (𝛼1), 
the partition contains the singletons {2}, {4}, {6}. We list all possible partitions as follows: 

   (B1) {{0}, {2}, {4}, {6}, {1, 5, 3, 7}}; 

   (B2) {{0}, {2}, {4}, {6}, {1, 3}, {5, 7}}; 

   (B3) {{0}, {2}, {4}, {6}, {1, 5}, {3, 7}}; 

   (B4) {{0}, {2}, {4}, {6}, {1, 7}, {3, 5}}. 
Case (𝐵2) is excluded by condition (𝛼1), since {2} + {1, 3} = {3, 5} is not a union of some 

𝐺𝑘 in (𝐵2). One can get rid of (𝐵4)  in a similar way. The remaining cases, (𝐵1) and (𝐵3), 
satisfy (𝛼0), (𝛼1) and (𝛼2). But, by a direct computation they have the same dual partition 

{{0}, {2}, {4}, {6}, {1, 5}, {3, 7}}. Using condition (𝛼3), we have that 

{{0}, {2}, {4}, {6}, {1, 5}, {3, 7}} is the unique choice. In this case, by Lemma (1.2.18), there 

exist a finite Blaschke product 𝜑1 of order 4 and a finite Blaschke product 𝜑2 of order 2 

such that 𝜙 = 𝜑2  ∘  𝜑1. Moreover, by the proof of Lemma (1.2.18), local inverses for 𝜑1 

are 𝜌0, 𝜌2, 𝜌4, 𝜌6 in the family of local inverses of 𝜙. By [27], one sees that this condition is 

equivalent to 𝜑 ∼ 𝓏4. This means that 𝜙 ∼  𝜓(𝓏4) for some Blaschke product 𝜓 of order 

2. Observe that two local inverses for 𝜓 are holomorphic on 𝔻, since one of them, 𝜌0(𝓏)  =
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𝓏, is holomorphic. By [27], 𝜓 = 𝜙𝑏  ∘  𝓏
2  ∘  𝜙𝑎 for some Möbius transforms 𝜙𝑎, 𝜙𝑏 . This 

implies that 𝜙 ∼ 𝜙𝑎
2 (𝓏4), and 𝑎 ≠ 0, since it would degenerate to subcase (𝐴) if 𝑎 =  0. 

        We now consider the most complicated case in which 𝐺2  =  {4} is the unique singleton 

other than 𝐺1. We divide it into several distinct subcases looking again at the minimal 

number 𝑡 =  min{𝐺3, . . . , 𝐺𝑞}. Clearly 2 ≤ 𝑡 ≤ 5 and 𝑡 ≠ 4. So, 𝑡 is 2, 3, or 5. 

     Subcase (C): 𝐺1  =  {0}, 𝐺2  =  {4} and 𝑡 =  5. 

     The only possibility is the partition {{0}, {4}, {1, 2, 3, 5, 6, 7}}. By Lemma (1.2.18) and 

the observation that 𝜓 ∼ 𝓏2 for each Blaschke product 𝜓 of order 2, one sees that there 

exists a Blaschke product 𝜙 of order 4 such that 𝜙 ∼ 𝜑(𝓏2). We prove that 𝜙 is not 

reducible by contradiction. Otherwise, 𝜙 ∼ 𝜑1  ∘  𝜑2, where 𝜑1, 𝜑1 are Blaschke products 

of order 2. This implies that 𝜙 ∼ 𝜑1  ∘  𝐵 for a Blaschke product 𝐵 of order 4, which leads 

to a contraction since by Lemma (1.2.18) 𝐵−1  ∘  𝐵 forms a subgroup of order 4 in 𝜙 − 1 ∘
 𝜙, as desired. 

    Subcase (D): 𝐺1  =  {0}, 𝐺2  =  {4} and 𝑡 =  3. Then the partition consists of 

𝐺1, 𝐺2, 𝐺3, 𝐺4 with 𝐺3 = 𝐺4 = 3. Considering condition (𝛼2) and observing that 4 is the 

unique element other than 0 for which its inverse is itself, one sees that 𝐺4
−1  =  𝐺3. The 

following partitions are all possible choices at this point: 

   (D1) {{0}, {4}, {1, 2, 3}, {7, 6, 5}}; 

   (D2) {{0}, {4}, {1, 2, 5}, {7, 6, 3}}; 

   (D3) {{0}, {4}, {1, 6, 3}, {7, 2, 5}}; 

   (D4) {{0}, {4}, {1, 6, 5}, {7, 2, 3}}. 
Case (𝐷1) is impossible by condition (𝛼1), since 

{1, 2, 3} + {7, 6, 5} = {0, 7, 6, 1, 0, 7, 2, 1, 0} 
is not a union of some subsets in (𝐷1). One can prove similarly that (𝐷2), (𝐷3) and (𝐷4) 
don’t satisfy condition (𝛼1). 
     Subcase (E): 𝐺1 = {0}, 𝐺2  =  {4} and 𝑡 =  2. 
     One possibility is that the partition consists of 𝐺1, 𝐺2, 𝐺3, 𝐺4 with 𝐺3  =  2 and 𝐺4  =  4. 
By condition (𝛼2), we have 𝐺𝑘

−1  =  𝐺𝑘 for each 𝐺𝑘 . So, the only possibilities are:       

   (E1) {{0}, {4}, {1, 7}, {2, 3, 5, 6}}; 

   (E2) {{0}, {4}, {2, 6}, {1, 3, 5, 7}}; 

   (E3) {{0}, {4}, {3, 5}, {1, 2, 6, 7}}. 
One excludes case (E1) by 

 {4} + {1, 7} = {5, 3}, 
and case (E3) by 

{4} + {3, 5} = {7, 1}. 
Another possibility is that 𝐺𝑘  =  2 for any 𝐺𝑘 in the partition other than 𝐺1, 𝐺2. There exist 

𝐶6
2𝐶4

2𝐶2
2 /𝐴3

3  =  15 choices: 

   (E4) {{0}, {4}, {1, 2}, {3, 5}, {6, 7}}; (E5) {{0}, {4}, {1, 2}, {3, 6}, {5, 7}}; 

   (E6) {{0},{4},{1, 2},{3, 7},{5, 6}}; (E7) {{0}, {4}, {1, 3}, {2, 5}, {6, 7}};         

   (E8) {{0}, {4}, {1, 3}, {2, 6}, {5, 7}}; (E9) {{0}, {4}, {1, 3}, {2, 7}, {5, 6}}; 

   (E10) {{0}, {4}, {1, 5}, {2, 3}, {6, 7}}; 

   (E11) {{0}, {4}, {1, 5}, {2, 6}, {3, 7}}; 
   (E12) {{0},{4},{1, 5},{2, 7},{5, 6}}; 

   (E13) {{0}, {4}, {1, 6}, {2, 3}, {5, 7}};  
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   (E14) {{0}, {4}, {1, 6}, {2, 5}, {3, 7}}; 

   (E15) {{0}, {4}, {1, 6}, {2, 7}, {3, 5}}; 

   (E16) {{0}, {4}, {1, 7}, {2, 3}, {5, 6}}; 

   (E17) {{0}, {4}, {1, 7}, {2, 5}, {3, 6}}; 

   (E18) {{0}, {4}, {1, 7}, {2, 6}, {3, 5}}. 
One excludes most of them by the following observation: if {𝑎, 𝑏} is included in one of the 

above partitions, then one of the equations 𝑎 +  𝑏 =  0, 𝑎 +  𝑏 =  4 and 𝑎 =  4 +  𝑏 

holds. Indeed, by condition (𝛼1), 
{𝑎, 𝑏} + {𝑎, 𝑏} = {2𝑎, 𝑎 +  𝑏, 𝑎 +  𝑏, 2𝑏} 

is a union of some 𝐺𝑘 ’𝑠. If {𝑎 +  𝑏} is a singleton, then 𝑎 +  𝑏 =  0 or 𝑎 +  𝑏 =  4. 
Otherwise, 𝑎 +  𝑏 is including in some 𝐺𝑘 satisfying 𝐺𝑘 > 1. Noticing that each element of 

𝐺𝑘 is included in {𝑎, 𝑏} + {𝑎, 𝑏}, one sees that 𝐺𝑘 ≠ 3. It’s easy to verify that Gk = 3 since 

we assume that the singleton {𝑎 +  𝑏} is not in the partition. So, 𝐺𝑘  =  2 and 

𝐺𝑘 = {2𝑎, 𝑎 +  𝑏} = {𝑎 +  𝑏, 2𝑏}. 
That is, 2𝑎 =  2𝑏. This means that 𝑎 =  4 +  𝑏. Furthermore, noticing that both 2𝑎 and 

𝑎 +  𝑏 =  2𝑎 +  4 are even in that case, one sees that 𝐺𝑘  =  {2, 6}. 
       By this observation, all the partitions other than (𝐸8), (𝐸11) and (𝐸18) are excluded. 

By a direct computation, one sees that (𝐸8), (𝐸11) and (𝐸18) satisfy the other conditions, 

too. 

       Moreover, the above argument shows that (𝐸2), (𝐸8), (𝐸11) and (𝐸18) are all the 

possible partitions that include the sets {0}, {4}, {2, 6}. By Lemma (1.2.18) and [1], there 

exist a Blaschke product 𝜓 of order 2 and a Blaschke product 𝜑 of order 4, such that 𝜙 =
 𝜓 ∘  𝜑 and 𝜑 is included in case 2 in [1]. This implies that 𝜙 has the desired decomposition. 

     We now turn to the cases 𝑠 >  1. Firstly, by condition (𝛼2), 4 is not included in any 𝐺𝑘 

for which 𝐺𝑘 is even. Otherwise, if 4 ∈  𝐺𝑘 , then 𝐺𝑘
−1  =  𝐺𝑘 since 4 is the unique element 

other than 0 for which its inverse is itself. Therefore, 

𝐺𝑘  =  {4, 𝑘1, . . . , 𝑘𝑖 , 8 − 𝑘1, . . . , 8 − 𝑘𝑖} 
for some 𝑘1, . . . , 𝑘𝑖 . This contradicts the fact that 𝐺𝑘 is even. So, 4 ∉ 𝐺𝑘 if 𝐺𝑘 is even. 

      Secondly, the argument used in analyzing subcase (𝐸) is still valid. Hence, if {𝑎, 𝑏} is 

in the partition, then 𝑎 + 𝑏 =  0 or 𝑎 =  4 + 𝑏. In the latter case, {2, 6} is in the partition. 

Moreover, since {𝑎, 𝑏} + {𝑎, 𝑏} is a union of some 𝐺𝑘 ’𝑠 satisfying 𝐺𝑘 ≤ 2, and 4 is not 

included in any such 𝐺𝑘 , we have that 4 ≠ 2𝑎, 2𝑏, 2(𝑎 +  𝑏). Therefore, neither 2 nor 6 can 

be included in any 𝐺𝑘 when the partition satisfies 𝑠 >  1 and 𝐺𝑘  =  2. It also implies that 

𝑎 + 𝑏 =  0 if {𝑎, 𝑏} is in the partition. 

      (II) Case 𝑠 =  2. 
          One possibility is that the partition consists of 𝐺1, 𝐺2, 𝐺3 satisfying 𝐺2 = 2 and 𝐺3  =
 5. By the above observation, the partition must be one of the following: (II1) 

{{0}, {1, 7}, {2, 3, 4, 5, 6}}; 

(II2) {{0}, {3, 5}, {1, 2, 4, 6, 7}}. 
       Obviously, none of them satisfies condition (𝛼1). 
       Another scenario is that the partition consists of 𝐺1, 𝐺2, 𝐺3, 𝐺4 satisfying 𝐺2  =  𝐺3  =
 2 and 𝐺4  =  3. By the above argument, 𝐺4  =  {2, 4, 6}. So, all the possibilities are listed 

below: 

   (II3) {{0}, {1, 3}, {5, 7}, {2, 4, 6}}; 

   (II4) {{0}, {1, 5}, {3, 7}, {2, 4, 6}}; 
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   (II5) {{0}, {1, 7}, {3, 5}, {2, 4, 6}}. 
None of them satisfies condition (𝛼1). 
(III) Case 𝑠 =  3. 
        In this case, the partition consists of 𝐺1, 𝐺2, 𝐺3 satisfying 𝐺2  =  3 and 𝐺3  =  4. By the 

above argument and condition (𝛼2), one sees that 𝐺2
−1  =  𝐺2, 𝐺3

−1  =  𝐺3 and 4 ∈  𝐺2. So, 

the partition is one of the following: 

(𝐼𝐼𝐼1) {{0}, {1, 4, 7}, {2, 3, 5, 6}}; 

(𝐼𝐼𝐼2) {{0}, {2, 4, 6}, {1, 3, 5, 7}}; 

(𝐼𝐼𝐼3) {{0}, {3, 4, 5}, {1, 2, 6, 7}}. 
Both (III1) and (III2) are excluded by condition (𝛼1), since {1, 4, 7} + {1, 4, 7} and 

{3, 4, 5}  + {3, 4, 5} are not unions of some subsets in the partitions, respectively. For the 

finial possibility {{0}, {2, 4, 6}, {1, 3, 5, 7}}, using an argument similar to the above, one sees 

that it is equivalent to the condition that 𝜙 ∼  𝜓 ∘  𝜙, where 𝜓 is a Blaschke product of 

order 2 and 𝜑 is a Blaschke product of order 4, and 𝜙 is included in case 3 in [1]. 

(IV) Case 𝑠 =  7. 
         The only choice is {{0}, {1, 2, 3, 4, 5, 6, 7}}. By Lemma (1.2.18), 𝜙 is not reducible in 

this case. 

        We conclude with the following corollary which follows after one summarizes all the 

possibilities listed above. 

Corollary (1.2.20)[23]: Let 𝜙 be a finite Blaschke product of order 8. Then 𝑀𝜙 has exactly 

2 nontribyl minimal reducing subspaces if and only if 𝜙 is not reducible. 

      It is natural to ask if this result extends to the general case. One can obtain a similar 

result for order 6 by the above arithmetic way. But, the calculation for order 5 or 7 suggests 

that some counterexample may exist. A possible guess may be that the result holds whenever 

the order of 𝜙 is not prime. 

Section (1.3): Toeplitz Operators on the Polydisk 

For 𝐷 denote the open unit disk in the complex plane. For −1 < 𝛼 < +∞, 

𝐿2(𝐷 , 𝑑𝐴𝛼) is the space of functions on 𝐷 which are square integrable with respect to the 

measure 𝑑𝐴𝛼(𝑧) = (𝛼 + 1) (1 − |𝑧|
2)𝛼 𝑑𝐴(𝑧), where 𝑑𝐴 denotes the normalized Lebesgue 

area measure on 𝐷. 𝐿2(𝐷, 𝑑𝐴𝛼) is a Hilbert space with the inner product 〈𝑓, 𝑔〉𝛼 =

∫ 𝑓(𝑧)𝑔(𝑧)̅̅ ̅̅ 𝑑𝐴𝛼
 

𝐷
. The weighted Bergman space 𝐴𝛼

2  is the closed subspace of 𝐿2(𝐷, 𝑑𝐴𝛼) 

consisting of analytic functions on 𝐷. If 𝛼 = 0, 𝐴0
2 is the Bergman space. We write 𝐴2 = 𝐴0

2 

It is known that {
𝑧𝑛

||𝑧𝑛||
𝛼

}𝑛=0
+∞  is an orthogonal basis of 𝐴𝛼

2 (𝐷). Let 𝛾𝑛 = ||𝑧
𝑛||

𝛼
= √

𝑛!Γ(2+𝛼)

Γ(2+𝛼+𝑛)
 

for n = 0, 1, 2, . . .. Therefore, 

||𝑓||
𝛼

2
= ∑𝛾𝑛

2|𝑎𝑛|
2 < ∞

+∞

𝑛=0

 

with 𝑓(𝑧) = ∑ 𝑎𝑛𝑧
𝑛 ∈ 𝐴𝛼

2 (𝐷)+∞
𝑛=0  Denote the unit polydisk by 𝐷𝑛. The weighted Bergman 

space 𝐴𝛼
2 (𝐷𝑛) is then the space of all holomorphic functions on 𝐿2(𝐷𝑛, 𝑑𝑣𝛼), where 

𝑑𝑣𝛼(𝑧) = 𝑑𝐴𝛼(𝑧1)…𝑑𝐴𝛼(𝑧𝑛) . For multi-index 𝛽 = (𝛽1, … , 𝛽𝑛), 𝛽 ⪰ 0 means that 𝛽𝑖 ≥

0for any 𝑖 ≥ 0 . Denote by 𝑧1
𝛽1𝑧1

𝛽2 …𝑧1
𝛽𝑛 and 

𝑒𝛽 =
𝑧𝛽

𝛾𝛽1 …𝛾𝛽𝑛
 , 
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then {𝑒𝛽}𝛽 is an orthogonal basis in 𝐴𝛼
2 (𝐷𝑛) Let 𝑃 be the Bergman orthogonal projection 

from 𝐿2(𝐷𝑛) onto 𝐴𝛼
2 (𝐷2). 

       For a bounded measurable function 𝑓 ∈ 𝐿∞(𝐷𝑛), the Toeplitz operator with symbol  𝑓  
is defined by 𝑇𝑓ℎ = 𝑃(𝑓ℎ) for every  ℎ ∈ 𝐴𝛼

2 (𝐷𝑛). 

       Recall that in a Hilbert space ℋ,𝑎 (closed) subspaceℳis called a reducing subspace of 

the operator T if 𝑇(ℳ) ⊆ 𝑀 and  𝑇∗(ℳ) ⊆ 𝑀. A nontribyl reducing subspace M is said to 

be minimal if the only reducing subspaces contained in M are M and {0}. On the Bergman 

space 𝐴𝛼
2 (𝐷2), the reducing subspaces of the Toeplitz operators with finite Blaschke product 

simples are well studied (see [28], [10], [22] for example). On 𝐴𝛼
2 (𝐷2), Y. Lu and X. Zhou 

[37] characterized the reducing subspaces of Toeplitz operators 𝑇𝑧1𝑁𝑧1𝑁,𝑇𝑧1𝑁 

We consider the reducing subspaces of the Toeplitz operators 𝑇𝑧1𝑁𝑧2𝑀𝑜𝑛 𝐴𝛼
2 (𝐷2) and 

𝑇𝑧𝑖
𝑁𝑧𝑗

𝑀 on 𝐴𝛼
2 (𝐷𝑛), where𝑁,𝑀 ≥ 1 are integers and 

1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛. Usually, the Toeplitz operators on the unweighted Bergman space and the 

weighted Bergman space have similar properties (see [38], [39], [40], [41] for example). 

However, we obtain that the minimal reducing subspaces of 𝑇𝑧1𝑁𝑧2𝑁with 𝑁 ≠ 𝑀 on 

𝐴𝛼
2 (𝐷2)(𝛼 ≠ 0) are less then that on 𝐴2(𝐷2)(see Theorem (1.3.4) and Theorem (1.3.6)). 

       Let 𝑀,𝑁 be integers with 𝑀,𝑁 ≥ 1 and 𝑀 ≠ 𝑁. We consider the minimal reducing 

subspace of 𝑇𝑧1𝑁𝑧2𝑀 on 𝐴2(𝐷2). Here 𝛾𝑘 = ||𝑧
𝑘||

0
= √

1

𝑘+1
 . Let 𝜌1(𝑘) =

(𝑘+1)𝑁

𝑀
− 1 

𝜌2(𝑘) =
(𝑘+1)𝑀

𝑁
− 1. Let ℋ𝑛𝑚 = Span{𝑧1

𝑛, 𝑧2
𝑚, 𝑧1

𝜌1(𝑚), 𝑧2
𝜌2(𝑛)} and 𝑃𝑛𝑚 be the orthogonal 

projection from 𝐴𝛼
2 (𝐷2) onto ℋ𝑛𝑚. 

Lemma (1.3.1)[35]: Let 𝑛,𝑚, ℎ be nonnegative integers. Then the following statements 

hold: 

   (a) if 𝜌1(𝑚) is an integer, then 𝜌1(𝑚 + ℎ𝑀) = 𝜌1(𝑚) + ℎ𝑁 is an integer for every ℎ ≥
0; 

   (b) if 𝜌2(𝑛)is an integer, then 𝜌2(𝑛 + ℎ𝑁) = 𝜌2(𝑛) + ℎ𝑀 is an integer for every ℎ ≥ 0; 

   (c) if 𝜌1(𝑚) and 𝜌2(𝑛) are positive integers, then 𝛾𝜌1(𝑚)𝛾𝜌2(𝑛) = 𝛾𝑚𝛾𝑛; 

   (d) 𝜌1(𝜌2(𝑛)) = 𝑛  and 𝜌2(𝜌1(𝑚)) = 𝑚 

Proof. Notice that if 𝜌1(𝑚) and 𝜌2(𝑛) are positive integers, then 𝛾𝜌1(𝑚)
 =√

𝑀

𝑁
𝛾𝑚 and 

𝛾𝜌2(𝑛) = √
𝑁

𝑀
𝛾𝑛. 

So (𝑐) holds. By the direct calculation, (a), (b) and (𝑑) are obvious.  

Theorem (1.3.2)[35]: Let 𝑛,𝑚 be integers such that 0 ≤ 𝑛 ≤ 𝑁 − 1 𝑜𝑟 0 ≤ 𝑚 ≤ 𝑀 − 1, 

and both of 𝜌1(𝑚) and 𝜌2(𝑛) are integers. Then for 𝑎, 𝑏 ∈ ℂ, ℳ= Span{𝑎𝑧1
𝑛+ℎ𝑁𝑧2

𝑚+ℎ𝑀 +

𝑏𝑧1
𝜌1(𝑚+ℎ𝑀)𝑧2

𝜌2(𝑛+ℎ𝑁); ℎ = 0,1,2… } is a minimal reducing subspace of  𝑇𝑧1𝑁𝑧2𝑀 on the 

polydisk. 

Proof. By Lemma (1.3.1)(a) and (b), it is easy to check that 𝑇𝑧1𝑁𝑧2𝑀(ℳ) ⊆ ℳ. 

       On the other hand, 

 

𝑇
𝑧1
𝑁𝑧2

𝑀
∗ (𝑧1

𝑘𝑧2
𝑙) = ∑ 〈𝑇

𝑧1
𝑁𝑧2

𝑀
∗ 𝑧1

𝑁𝑧2
𝑙 , 𝑒𝛽〉 𝑒𝛽

 

𝛽⪰0

= {

𝛾𝑘
2𝛾𝑙
2

𝛾𝑘−𝑁
2 𝛾𝑙−𝑀

2 𝑧1
𝑘−𝑁𝑧2

𝑙−𝑀 , 𝑖𝑓   𝑘 ≥ 𝑁, 𝑙 ≥ 𝑀

0 ,            𝑖𝑓      𝑜𝑡ℎ𝑒𝑟𝑠
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For each ℎ ≥ 1, 

 

𝑇
𝑧1
𝑁𝑧2

𝑀
∗ (𝑧1

𝑛+ℎ𝑁𝑧2
𝑚+ℎ𝑀) 

=
𝛾𝑛+ℎ𝑁
2 𝛾𝑚+ℎ𝑀

2

𝛾𝑛+(ℎ−1)𝑁
2 𝛾𝑚+(ℎ−1)𝑀

2 𝑧𝑛+(ℎ−1)𝑁𝑧2
𝑚+(ℎ−1)𝑀

 

𝑇
𝑧1
𝑁𝑧2

𝑀
∗ (𝑧1

𝜌1(𝑚+ℎ𝑀)𝑧2
𝜌2(𝑛+ℎ𝑁)) 

= 𝜇(𝑎𝑧1
𝑛+ℎ𝑁−𝑁𝑧2

𝑚+ℎ𝑀−𝑀 + 𝑏𝑧1
𝜌1(𝑚+ℎ𝑀−𝑀)𝑧2

𝜌2(𝑛+ℎ𝑁−𝑁)) ∈ ℳ 

Where  

𝜇 =
𝛾𝑛+ℎ𝑁
2 𝛾𝑚

2 + ℎ𝑀

𝛾𝑛+(ℎ−1)𝑁 
2 𝛾𝑚+(ℎ−1)𝑀

2 =
𝛾𝜌1(𝑚+ℎ𝑀)
2 𝛾𝜌2(𝑛+ℎ𝑁)

2

𝛾𝜌1(𝑚+ℎ𝑀)−𝑁
2 𝛾𝜌2(𝑛+ℎ𝑁)−𝑀

2  

Since 0 ≤ 𝑛 ≤ 𝑁 − 1(𝑜𝑟 0 ≤ 𝑚 ≤ 𝑀 − 1), we get 𝜌2(𝑛) < 𝑀(𝑜𝑟𝜌1(𝑚) < 𝑁, 

respectively). Therefore, 𝑇
𝑧1
𝑁𝑧2

𝑀
∗ (𝑎𝑧1

𝑁𝑧2
𝑀 + 𝑏𝑧1

𝜌1(𝑚)𝑧2
𝜌2(𝑛)) = 0 ∈ ℳ,𝑇

𝑧1
𝑁𝑧2

𝑀
∗ (   ℳ ) ∈

ℳℳ. So, which finishes the proof. 

Lemma (1.3.3)[35]: Suppose ℳ ≠ 0 is a reducing subspace of  𝑇𝑧1𝑁𝑧2𝑀 in 𝐴2(𝐷2). Let 

𝑓 = ∑ 𝑎𝑘,𝑙𝑧1
𝑘𝑧2
𝑙 ∈ 

(𝑘,𝑙)⪰0 ℳ. For each nonnegative integers 𝑛,𝑚 with 𝑎𝑛𝑚 ≠ 0, the 

following statements hold: 

(I) 𝑖𝑓𝜌1(𝑚), 𝜌2(𝑛) are integers and 𝑎𝜌1(𝑚)𝜌2(𝑛) ≠ 0 then 

𝑎𝑛𝑚𝑧1
𝑛𝑧2

𝑚 + 𝑎
𝜌1(𝑚)𝜌2(𝑛)𝑧1

𝜌1(𝑚)𝑧2
𝜌2(𝑛) ∈ ℳ 

    (II) if at least one of  𝜌1(𝑚), 𝜌2(𝑛) is not an integer, 𝑜𝑟 𝑎𝜌1(𝑚)𝜌2(𝑛) = 0, 

Proof. For every integer ℎ ≥ 0, denote by 𝑇ℎ = 𝑇𝑧1ℎ𝑁𝑧2ℎ𝑀. Notice that 

𝑇ℎ
∗𝑇ℎ(𝑧1

𝑛𝑧2
𝑚) =

𝛾ℎ𝑁
2 + 𝑛𝛾ℎ𝑀

2 +𝑚

𝛾𝑛
2𝛾𝑚
2

𝑧1
𝑛𝑧2

𝑚 ∈ ℳ , ∀𝑛,𝑚 ≥ 0              (40) 

Let 𝑃𝑀 be the orthogonal projection from 𝐴𝛼
2 (𝐷) onto𝑀, then for nonnegative 

integers 𝑚, 𝑛, 𝑘, 𝑙, 
〈𝑃𝑀𝑇ℎ

∗𝑇ℎ𝑧1
𝑛𝑧2

𝑚, 𝑧1
𝑘𝑧2
𝑙 〉 = 〈𝑇ℎ

∗𝑇ℎ𝑃𝑀𝑧1
𝑛𝑧2

𝑚, 𝑧1
𝑘𝑧2
𝑙 〉 = 〈𝑃𝑀𝑧1

𝑛𝑧2
𝑚, 𝑇ℎ

∗𝑇ℎ𝑧1
𝑘𝑧2
𝑙 〉 

thus
𝛾ℎ𝑁+𝑘
2 𝛾ℎ𝑀+1

2

𝛾𝑘
2𝛾𝑙
2 =

𝛾ℎ
2𝑁+𝑛𝛾2𝑀+𝑚

𝛾𝑛
2𝛾𝑚
2 . Equivalently, 

(𝑘 + 1)(𝑙 + 1)

(𝑛 + 1)(𝑚 + 1)
=
(𝑘 + ℎ𝑁 + 1)(𝑙 + ℎ𝑀 + 1)

(𝑛 + ℎ𝑁 + 1)(𝑚 + ℎ𝑀 + 1)
, ℎ ≥ 0              (41) 

 

We claim that (𝑘, 𝑙) = (𝑛,𝑚) or (𝑘, 𝑙) = (𝜌1(𝑚), 𝜌2(𝑛)). In fact, let ℎ ≥ +∞, then 

(𝑘 + 1)(𝑙 + 1) = (𝑛 + 1)(𝑚 + 1).              (42) 
It follows that (𝑘 + ℎ𝑁 + 1)(𝑙 + ℎ𝑀 + 1) = (𝑛 + ℎ𝑁 + 1)(𝑚 + ℎ𝑀 + 1). Since 𝑔(⋋) =
(𝑘 +⋋ 𝑁 + 1)(𝑙 +⋋𝑀 + 1) − (𝑛 +⋋𝑀 + 1) is an analytic polynormal on ℂ, 𝑔(⋋) = 0 

for any ⋋∈ ℂ. The coefficient of ⋋ must be zero. 

       We get 

𝑀(𝑛 − 𝑘) = 𝑁(𝑙 − 𝑚 )              (43) 
This together with (42) implies the claim. 

Therefore, 𝑃𝑀(𝑧1
𝑛𝑧2

𝑚) ∈ ℋ𝑛𝑚. Hence, 

𝑃𝑛𝑚𝑃𝑀(𝑧1
𝑛𝑧2

𝑚) = 𝑃𝑀(𝑧1
𝑛𝑧2

𝑚) 
Since 𝑃𝑀𝑓 for every 𝑓 ∈ 𝑀, we arrive to 
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〈𝑃𝑀𝑃𝑛𝑚𝑓, 𝑧1
𝜌1(𝑚)𝑧2

𝜌2(𝑛)〉 = 〈𝑃𝑛𝑚𝑓, 𝑧1
𝜌1(𝑚) 𝑧2

𝜌2(𝑛)〉 

Moreover, 〈𝑃𝑀𝑃𝑛𝑚𝑓, 𝑧1
𝑘𝑧2
𝑙 〉 = 〈𝑃𝑛𝑚𝑓 = 𝑃𝑀𝑃𝑛𝑚(𝑓) ∈ 𝑀〉. So we get the result.  

Theorem (1.3.4)[35]: Suppose 𝑀 ≠{0} is a reducing subspace of 𝑇𝑧1𝑁𝑧2𝑀in the 

Bergman space 𝐴2(𝐷2). Then there exist 𝑎, 𝑏 ∈ ℂ and nonnegative integers 𝑚,𝑛 with 0 ≤
𝑛 ≤ 𝑁 − 1 𝑜𝑟 0 ≤ 𝑚 ≤ 𝑀 − 1, such that 𝑀 contains a reducing subspace as follows 

𝑀𝑛,𝑚,𝑎,𝑏 =  Span {𝑎𝑧1
ℎ𝑁+𝑛𝑧2

ℎ𝑀+𝑚 + 𝑏𝑧1
𝜌1(𝑚+ℎ𝑁)𝑧2

𝜌2(𝑛+ℎ𝑀): ℎ = 0,1,2,… }, 

where 𝜌1(𝑚 + ℎ𝑁)=
(𝑚+ℎ𝑁+1)𝑀

𝑁
− 1 and 𝜌2(𝑛 + ℎ𝑀) =

(𝑛+ℎ𝑀+1)𝑁

𝑀
− 1. In particular, if 

𝜌1(𝑚)(𝑜𝑟𝜌2(𝑛)) is not a positive integer, then b = 0. Moreover, 𝑀 is minimal if and only 

if ℳ=ℳ𝑛,𝑚,𝑎,𝑏 . 
Proof. (I) If ℳ ≠ 0, there exist nonzero function 𝑓 ∈ ℳ and 𝑘, 𝑙, such that 𝑃𝑘𝑙𝑓 ≠ 0. 

Lemma (1.3.3) implies that 

𝑔𝑘𝑙 = 𝑃𝑘𝑙𝑓 = 𝑎𝑧1
𝑘𝑧2
𝑙 + 𝑏𝑧1

𝜌1(𝑙)𝑧2
𝜌2(𝑘) ∈ ℳ 

Observe that there is a positive integer ℎ0 such that 𝑎𝑧1
𝑛𝑧2

𝑚 + 𝑏𝑧1
𝜌1(𝑚)𝑧2

𝜌2(𝑛) =

(𝑇∗𝑧1
𝑁𝑧2

𝑀)ℎ0(𝑔𝑘𝑙) ≠ 0, (𝑇𝑧1𝑁𝑧2𝑀
∗ )

ℎ0+1
(𝑔𝑘𝑙) = 0 

 where = 𝑘 − ℎ0𝑁 , 𝑚 = 1 − ℎ0𝑀. 
       Clearly, 0 ≤ 𝑛 ≤ 𝑁 − 1𝑜𝑟 0 ≤ 𝑚 ≤ 𝑀 − 1. So Theorem (1.3.2) shows that 

𝑎𝑧1
𝑛𝑧2

𝑚 + 𝑏𝑧1
𝜌1(𝑚)𝑧2

𝜌2(𝑛) ∈ 𝑀𝑛,𝑚,𝑎,𝑏 ⊆ 𝑀 

    (II) Suppose ℳ is minimal. As in (I), there is a nonzero function 𝑎𝑧1
𝑛𝑧2

𝑚 +

𝑏𝑧1
𝜌1(𝑚)𝑧2

𝜌2(𝑛) ∈ 𝑀, then . Then the following statements hold: 
 

(a) if 𝑧1
𝑛𝑧2

𝑚 ∈ ℳ 𝑡ℎ𝑒𝑛 ℳ = 𝑠𝑝𝑎𝑛{𝑧1
𝑛+ℎ𝑁𝑧2

𝑚+ℎ𝑀, ℎ ≥ 0}; 

(b) if 𝜌1(𝑚), 𝜌2(𝑛)are integers, and 𝑧1
𝜌1(𝑚)𝑧2

𝜌2(𝑛) ∈ ℳ, then 

ℳ = 𝑠𝑝𝑎𝑛 {𝑧1
𝜌1(𝑚)+ℎ𝑁𝑧2

𝜌2(𝑛)+ℎ𝑀, ℎ ≥ 0} ; 

    (c) if none of 𝑧1
𝑛𝑧2

𝑚and 𝑧1
𝜌1(𝑚)𝑧2

𝜌2(𝑛) is in ℳ, then ℳ =ℳ𝑛,𝑚,𝑎,𝑏 with 

𝑎𝑏 ≠ 0. 

So we finish the proof.  

       Let −1 < 𝛼 < +∞ with 𝛼 ≠ 0. We consider the reducing subspace of 𝑇𝑧1𝑁𝑧2𝑁 on the 

weighted Bergman Space 𝐴𝛼
2 (𝐷). 

 Here 𝛾𝑛 = ||𝑧
𝑛||

𝛼
= √

𝑛!Γ(2+𝛼)

Γ(2+𝛼+𝑛)
 We begin with a useful lemma. 

Lemma (1.3.5)[35]: Let 𝑀,𝑁, 𝑛,𝑚, 𝑘, 𝑙 be nonnegative integers with 1 > 𝑚, 𝑛> 𝑘 and 

𝑀,𝑁 ≥ 1. If 

𝛾ℎ𝑁+𝑘
2 𝛾ℎ𝑀+𝑙

2 = 𝛾ℎ𝑁+𝑛
2 𝛾ℎ𝑀+𝑚

2 , ℎ ≥ 0              (44) 
then 𝑁 = 𝑀, 𝑙 = 𝑛 and 𝑚 = 𝑘. 

Proof. First, note that the equality (44) holds if and only if for any ⋋∈ ℂ the following 

equality holds: 

∏(⋋𝑁 + 𝑗 + 𝑘)∏(⋋𝑀 + 2 + 𝛼 + 𝑙 − 𝑗)

𝑙−𝑚

𝑗=1

𝑛−𝑘

𝑗=1
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∏(⋋𝑁 + 2 + 𝛼 + 𝑛 − 𝑗)∏(⋋𝑀 + 𝑗 +𝑚)

𝑙−𝑚

𝑗=1

𝑛−𝑘

𝑗=1

                             (45) 

By computing the coefficient of ⋋𝑛−𝑘+𝑙−𝑚−1 in the equality (45), we obtain 

𝑀∑(𝑗 + 𝑘) + 𝑁 ∑(2 + 𝛼 + 𝑙 − 𝑗) = 𝑀∑(2 + 𝛼 + 𝑛 − 𝑗) + 𝑁∑(𝑗 +𝑚)

𝑙=𝑚

𝑗=1

𝑛−𝑘

𝑗=1

𝑙−𝑚 

𝑗=1

𝑛−𝑘

𝑗=1

 

It follows that 𝑀(𝑛 − 𝑘) = 𝑁(𝑙 − 𝑚). 
Second, we prove that if 𝛼 is not an integer, then the following statements hold: 

(𝑚 + 1)𝑁 = (𝑘 + 1)𝑀  and (𝑙 + 1 + 𝛼)𝑁 = (𝑛 + 1 + 𝛼)𝑀.       (46) 

(a) Let ⋋1=
𝑘+1

𝑁
. Then ⋋1 𝑁 + 𝑘 + 1 = 0 and ⋋1 𝑁 + 2 + 𝛼 + 𝑛 − 𝑗 ≠ 0 for any 1 ≤ 𝑗 ≤

𝑛 − 𝑘, because⋋1 𝑀 + 2 + 𝛼 + 𝑛 − 𝑗  is not an integer. Therefore, the equality (45) implies 

that ∏ (⋋1 𝑀 + 𝑗 +𝑚) = 0
𝑙−𝑚
𝑗=1 . That is, there exists 1 ≤ ℎ1 ≤ 𝑙 − 𝑚  such that ⋋1 𝑀 +

𝑚 + ℎ1 = 0. So, ℎ1 =
𝑘+1

𝑁
𝑀 −𝑚 ≥ 1 follows that (𝑚 + 1)𝑁 ≤ (𝑘 + 1)𝑀. 

(b) Let ⋋2= −
𝑚+1

𝑀
 Then ⋋2 𝑀 +𝑚 + 1 = 0. Similarly, we can get an integer ℎ2 such that 

1 ≤ ℎ2 ≤ 𝑙 −𝑚 and ⋋2 𝑁 + 𝑘 + ℎ2 = 0, which implies that ℎ2 =
𝑚+1

𝑀
𝑁 − 𝑘 ≥ 1. Thus 

(𝑚 + 1)𝑁 ≥ (𝑘 + 1)𝑀. 

Comparing (a) with (b), we arrive at (𝑚 + 1)𝑁 ≥ (𝑘 + 1)𝑀. 

(c) Let 𝜇1 = −
𝑛+1+𝛼

𝑀
. Then 𝜇2𝑀 + 𝑙 + 1 + 𝛼 = 0, 𝜇1𝑁 + 𝑘 + 𝑗 ≠ 0 for any 1 ≤ 𝑗 ≤ 𝑛 −

𝑘. Therefore, ∏ (𝜇1𝑀 + 2 + 𝛼 + 𝑙 − 𝑗) = 0
𝑙=𝑚
𝑗=1 . That is, there exists 1 ≤ ℎ3 ≤ 𝑙 −𝑚 such 

that 𝜇2𝑀 + 2 + 𝛼 + 𝑙 − ℎ3 = 0. So, ℎ3 = −
𝑙+1+𝛼

𝑁
𝑀 + (2 + 𝛼 + 𝑙) ≥ 1, i.e., (𝑙 + 1 +

𝛼)𝑁 ≥ (𝑛 + 1 + 𝛼)𝑀. 

(d) Let 𝜇2 = −
𝑙+1+𝛼

𝑀
. Then 𝜇2𝑀 + 𝑙 + 1 + 𝛼 = 0. As in (c), there exists 1 ≤ ℎ4 ≤ 𝑛 − 𝑘 

such that 𝜇2𝑁 + 𝛼 + 2 + 𝑛 − ℎ4 = 0. So, 1≤ ℎ4 = −
𝑙+1+𝛼

𝑀
𝑁 + (2 + 𝛼 + 𝑛) ≤ 𝑛 − 𝑘 and 

(𝑙 + 1 + 𝛼)𝑁 ≤ (𝑛 + 1 + 𝛼)𝑀. 

Comparing (c) with (d), we arrive at (𝑙 + 1 + 𝛼)𝑁 = (𝑛 + 1 + 𝛼)𝑀. 

Third, we prove that if 𝛼 is an positive integer, then (46) holds. In fact, if 1 + 𝛼 ≥ 2 is an 

integer, then (45) can be simplified into 

∏(⋋𝑁 + 𝑗 + 𝑘)∏(⋋𝑀 + 2 + 𝛼 + 𝑙 − 𝑗)

𝑚1

𝑗=1

𝑘1

𝑗=1

 

=∏(

𝑘1

𝑗=1

⋋𝑁 + 2 + 𝛼 + 𝑛 − 𝑗)∏(⋋𝑀 + 𝑗 + 𝑚), ∀ ⋋∈ ℂ

𝑚1

𝑗=1

 

where 2 ≤ 𝑘1 ≤ 𝑛 − 𝑘, 2 ≤ 𝑚1 ≤ 𝑙 −𝑚 ,2 + 𝛼 + 𝑛 − 𝑘1 > 𝑘1 + 𝑘 and 2 + 𝛼 + 𝑙 −𝑚1 >
𝑚1 +𝑚. By the same technique as in second part of the proof, we can get the equalities in 

(46). 

Finally, combining the equalities (46) with 𝑀(𝑛 − 𝑘) = 𝑁(𝑙 − 𝑚), it is easy to get 𝛼𝑁 =
𝛼𝑀. Since 𝛼 ≠ 0, we have 𝑁 = 𝑀, 𝑙 = 𝑛, 𝑘 = 𝑚. 

Theorem (1.3.6)[35]: Let 𝛼 ≠ 0 𝑀,𝑁 ≥ 1 with 𝑀 ≠ 𝑁. Suppose ℳ ≠ {0}is a reducing 

subspace of 𝑇
𝑧1
𝑁𝑧2

𝑀
 in the weighted 𝐵𝑒𝑟𝑔𝑚𝑎𝑛 𝑠𝑝𝑎𝑐𝑒 𝐴𝛼

2 (𝐷2) then there exist nonnegative 

integers 𝑛,𝑚 with 0 ≤ 𝑛 ≤ 𝑁 − 1 𝑜𝑟 0 ≤ 𝑚 ≤ 𝑀 − 1 such that 
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ℳ𝑛𝑚 = 𝑠𝑝𝑎𝑛{𝑧1
ℎ𝑁+𝑛𝑧2

ℎ𝑀+𝑚: ℎ = 0,1,2,… } ⊆ ℳ 

In particular, ℳ is minimal if and only if there exist 𝑛,𝑚 as in assumption such that ℳ 

= ℳ𝑚𝑛. 
Proof. Suppose ℳ ≠ {0} is a reducing subspace. As in the proof of Lemma (1.3.3), there 

exist integers 𝑛,𝑚 such that 𝑃ℳ(𝑧1
𝑛𝑧2

𝑚) ≠ 0 and 

𝛾ℎ𝑁+𝑘
2 𝛾ℎ𝑀+𝑙

2

𝛾𝑘
2𝛾𝑙
2 =

𝛾ℎ𝑁+𝑛 
2 𝛾ℎ𝑀+𝑚

2

𝛾𝑛
2𝛾𝑚
2

, ∀ℎ ≥ 0 

whenever 〈𝑃ℳ(𝑧1
𝑛𝑧2

𝑚), 𝑧1
𝑘𝑧2
𝑙 〉 ≠ 0. Considering that {𝛾𝑗}𝑗=0

+∞  is strictly decreasing 

𝛾ℎ𝑁+𝑘
2 𝛾ℎ𝑀+𝑙

2

𝛾ℎ𝑁+𝑛
2 𝛾ℎ𝑀+𝑚

2 → 1 as ℎ → +∞  [36], we obtain that 𝛾𝑘
2𝛾𝑙
2 = 𝛾𝑛

2𝛾𝑚
2  and 

𝛾ℎ𝑁+𝑘
2 𝛾ℎ𝑀+𝑙

2 = 𝛾ℎ𝑁+𝑛
2 𝛾ℎ𝑀+𝑚

2 , ℎ ≥ 0. 
This means that one of the following statements holds: 

   (i) 𝑙 = 𝑚, 𝑛 = 𝑘; 

   (ii) > 𝑚 𝑎𝑛𝑑 𝑛 > 𝑘 ; 

   (iii)𝑙 < 𝑚 and 𝑛 < 𝑘. 

Since 𝑁 ≠ 𝑀, Lemma (1.3.5) implies that (ii) does not hold. By the same technique, (iii) 

does not hold. So, (i) holds, that is, there exists 𝑐𝑛𝑚 ∈ ℂ such that 𝑃ℳ(𝑧1
𝑛𝑧2

𝑚) = 𝑐𝑛𝑚𝑧1
𝑛𝑧2

𝑚 

For 𝑓 = ∑ 𝑎𝑘𝑙
 
(𝑘,𝑙)⪰0 𝑧1

𝑘𝑧2
𝑙 ∈ ℳ, we claim that if 𝑎𝑛𝑚 ≠ 0, then 𝑐𝑛𝑚 ≠ 0. In fact, 

𝑄𝑛𝑚𝑓 = 𝑄𝑛𝑚𝑃ℳ(𝑓) = 𝑄𝑛𝑚( ∑ 𝑃ℳ(𝑎𝑘𝑙

 

(𝑘,𝑙)⪰0

𝑧1
𝑘𝑧2
𝑙 )) 

= 𝑐𝑛𝑚𝑎𝑛𝑚𝑧1
𝑛𝑧2

𝑚 = 𝑐𝑛𝑚𝑄𝑛𝑚𝑓 

where 𝑄𝑛𝑚 is the orthogonal projection from 𝐴𝛼
2 (𝐷2)onto Span{𝑧1

𝑛𝑧2
𝑚}. 

Therefore, 𝑐𝑛𝑚 = 1 ≠ 0. 

Hence 𝑧1
𝑛𝑧2

𝑚 ∈ ℳ. Choose an integer ℎ0 such that 0 ≤ 𝑛 − ℎ0𝑁 ≤ 𝑁 − 1, 𝑚 − ℎ0𝑀 ≥
0 𝑜𝑟 0 ≤ 𝑚 − ℎ0𝑀 ≤ 𝑀 − 1, 𝑛 − ℎ0𝑁 ≥ 0. As in the proof of Theorem (1.3.4), Span 

{𝑧1
𝑛+(ℎ−ℎ0)𝑁𝑧𝑚+(ℎ−ℎ0)𝑀 ℎ = 0, 1, 2, . . .} ⊆ℳis a minimal reducing subspace of 𝑇𝑧1𝑁𝑧2𝑀. 

The proof is complete.  

Theorem (1.3.7)[35]: Let 𝑁,𝑀 ≥ 1 and 𝑁 ≠ 𝑀. Every nonzero reducing subspace ℳ of 

𝑇𝑧1𝑁𝑧2𝑀 in 𝐴𝛼
2 (𝐷2) for every 𝛼 > −1 is a direct (orthogonal) sum of some minimal reducing 

subspaces. 

Proof. We prove the theorem in two cases. 

Case one: 𝛼 ≠ 0. Let us denote 

ℳ𝑛𝑚 = Span{𝑧1
ℎ𝑁+𝑛 𝑧2

ℎ𝑀+𝑚: ℎ = 0,1,2. . } 
where 0 ≤ 𝑛 ≤ 𝑁 − 1 𝑜𝑟 0 ≤ 𝑚 ≤ 𝑀 − 1. By Lemma (1.3.5), we have ℳ𝑛𝑚 ⊆ ℳ if and 

only if there exist some 𝑓 ∈ ℳwith 〈𝑓, 𝑧1
𝑛𝑧2

𝑚〉 ≠ 0. Let 𝐸1 = {(𝑛,𝑚)} ⪰ 0; 𝑛 ≤ 𝑁 −
1 𝑜𝑟 0 ≤ 𝑚 ≤ 𝑀 − 1 ,〈𝑓, 𝑧1

𝑛𝑧2
𝑚〉 ≠ 0 for some 𝑓 ∈ ℳ} 2 M}. Then ℳ = ⨁ ℳ𝑛𝑚𝑛,𝑚∈𝐸1 . 

Case two: 𝛼 = 0. For 𝑛,𝑚 ≥ 0, there exist 𝑎, 𝑏 ∈ ℂ such that ℳ contains the minimal 

reducing subspace of 𝑇𝑧1𝑛𝑧2𝑚defined by ℳ𝑛,𝑚,𝑎,𝑏 = 𝑠𝑝𝑎𝑛 {𝑎𝑧1
ℎ𝑁+𝑛𝑧2

ℎ𝑀+𝑚 +

𝑏𝑧1
𝜌1(𝑚+ℎ𝑁)𝑧2

𝜌2(𝑛+ℎ𝑀):h = 0, 1, 2, . . .}. 

In fact, 

   (i) If 𝑧1
𝑛𝑧2

𝑚 ∈ ℳ, 𝑡ℎ𝑒𝑛 ℳ𝑛,𝑚,1,0 = ℳ𝑛𝑚 

   (ii) If 𝑧1
𝜌1(𝑚)𝑧2

𝜌2(𝑛) ∈ ℳ then ℳ𝑛,𝑚,0,1=ℳ𝜌1(𝑚)𝜌2(𝑛). 

   (iii) If neither 𝑧1
𝑛𝑧𝑛

𝑚 nor 𝑧1
𝜌1(𝑚)𝑧2

𝜌2(𝑛 )  are in ℳ, and there exists 𝑓 ∈ ℳ 
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such that 𝑃𝑛𝑚𝑓 ≠ 0, then Theorem (1.3.4) implies that ℳ𝑛,𝑚,𝑎,𝑏 ⊆ℳ is a minimal reducing 

subspace of 𝑇𝑧1𝑁𝑧2𝑀 where 𝑃𝑛𝑚𝑓 = 𝑎𝑧1
𝑛𝑧2

𝑚 + 𝑏𝑧1
𝜌1(𝑚)𝑧2

𝜌2(𝑛) . It follows that 𝑃𝑛𝑚𝑔 =⋋

(𝑎𝑧1
𝑛𝑧2

𝑚 + 𝑏𝑧1
𝜌1(𝑚)𝑧2

𝜌2(𝑛)) forevery 𝑔 ∈ ℳ with 𝑃𝑛𝑚𝑔 ≠ 0 . 

   (iv) If 𝑃𝑛𝑚𝑓 = 0 for any 𝑓 ∈ ℳ, then ℳ𝑛,𝑚,𝑎,𝑏 ⊆ℳ if and only if a = 0, b = 0, 

i.e.,ℳ𝑛,𝑚0,0 = {0} . 
Let ℳ′ = ℳ⊝ℳ𝑛,𝑚,𝑎,𝑏. Then ℳ′ is a reducing subspace. Continuing this process, sin 

𝐴2(𝐷2) = ⨁ 𝑧1
𝑛𝑧2

𝑚
𝑛,𝑚⪰0 , it is not different to prove that ℳ is the direct (orthogonal) sum of 

some minimal reducing subspaces asℳ𝑛,𝑚,𝑎,𝑏. 

In [22], Kehe Zhu shows that a reducing subspace of 𝑇𝑧𝑁 on 𝐴2(D) is the direct (orthogonal) 

sum of at most 𝑁 minimal reducing subspaces. However, the reducing subspace of 𝑇𝑧1𝑁𝑧2𝑀on 

𝐴2(𝐷2) may be the direct (orthogonal) sum of infinity numbers of minimal reducing 

subspaces. For example, ℳ =Span{𝑧1
1+2ℎ𝑓(𝑧2); 𝑓 ∈ 𝐴𝛼

2 (𝐷), h = 0, 1, 2, . . .} is a reducing 

subspace of 𝑇𝑧12𝑧23 and ℳ =⊕𝑛=0
+∞ ℳ𝑛,  where ℳ𝑛 = Span{𝑧1

1+2ℎ𝑧2
𝑛+3ℎ; ℎ = 0,1,2… } 

We consider the reducing subspace of 𝑇𝑧𝑖
𝑁𝑧𝑗

𝑀(𝑁,𝑀 ≥ 1,𝑁 ≠ 𝑀,𝑖 ≠ 𝑗) in the 

weighted Bergman space 𝐴𝛼
2 (𝐷2) with 𝑁 ≠ 𝑀. 

Theorem (1.3.8)[35]: Suppose ℳ ≠{0} is a reducing subspace of 𝑇𝑧𝑗
𝑁𝑧𝑗

𝑀(𝑁,𝑀 ≥ 1,𝑁 ≠

𝑀,𝑖 ≠ 𝑗 in weighted Bergman space. 

       Then the following statements hold: 

   (a) if 𝛼 = 0, then there exist functions 𝑔1, 𝑔2 ∈ 𝐴𝛼
2 (𝐷𝑛−2) and integers 𝑙, 𝑚 with 0 ≤ 𝑙 ≤

𝑁 − 1 or 0 ≤ 𝑚 ≤ 𝑀 − 1, such that M contains the reducing subspace 

ℳ′ = Span{(𝑔1(𝑧
′)𝑧1

ℎ𝑁+𝑙𝑧2
ℎ𝑀+𝑚 + 𝑔2(𝑧

′)𝑧1
𝜌1(𝑙+ℎ𝑁)𝑧2

𝜌2(𝑚+ℎ𝑀)) ; ℎ ≥ 0}; 

   (b) if 𝛼 ≠ 0, then there exist a function 𝑔 ∈ 𝐴𝛼
2 (𝐷𝑛−2) and integers 𝑙,𝑚 with 0 ≤ 𝑙 ≤ 𝑁 −

1 or 0 ≤ 𝑚 ≤ 𝑀 − 1 such that ℳ contains the reducing subspace 

ℳ)𝑙𝑚𝑔 = 𝑠𝑝𝑎𝑛{𝑧𝑖
ℎ𝑁+𝑙𝑧𝑗

ℎ𝑀+𝑚𝑔(𝑧′): ℎ = 0,1,2,… } 

where 𝑧′ = (𝑧1, … , 𝑧𝑖−1,𝑧𝑖+1, … , 𝑧𝑗−1, 𝑧𝑗+1, … , 𝑧𝑛). 

Moreover, ℳ′ is the only minimal reducing subspace of 𝑇𝑧𝑖
𝑁𝑧𝑗

𝑀on 𝐴2(𝐷2) and ℳ𝑙𝑚𝑔 is the 

only minimal reducing subspace of 𝑇𝑧𝑖
𝑁𝑧𝑗

𝑀on 𝐴𝛼
2  with 𝛼 ≠ 0. 

Proof. Without loss of generality, let 𝑖 = 1 and 𝑗 = 2. Denote by PM the orthogonal 

projection from 𝐴𝛼
2 (𝐷2) onto ℳ. Let 𝑧𝑘 = 𝑧1

𝑘1𝑧2
𝑘2 …𝑧𝑛

𝑘𝑛 with 𝑃ℳ(𝑧
𝑘) ≠ 0. Let 𝑇ℎ = 

𝑇𝑧1ℎ𝑁𝑧2ℎ𝑀. Then 〈𝑇ℎ
∗𝑇ℎ𝑃ℳ  𝑧𝑘, 𝑧𝐿〉 = 〈𝑃ℳ𝑇ℎ

∗𝑇ℎ𝑧
𝐾 , 𝑧𝐿〉 for any 𝑧𝐿 = 𝑧1

𝑙1𝑧2
𝑙2 …𝑧𝑛

𝑙𝑛 Observe that 

〈𝑃ℳ𝑧
𝐾 , 𝑇ℎ

∗𝑇ℎ𝑧
𝐿〉 =

𝛾ℎ𝑁+𝑙1
2 𝛾ℎ𝑀+𝑙2

2

𝛾𝑙1
2 𝛾𝑙2

2
〈𝑃ℳ𝑧

𝐾 , 𝑧𝐿〉 

and 

〈𝑇ℎ
∗𝑇ℎ𝑧

𝐾 , 𝑃ℳ𝑧
𝐿〉 =

𝛾ℎ𝑁+𝑙1
2 𝛾ℎ𝑀+𝐾2

2

𝛾𝐾1
2 𝛾𝑘2

2
〈𝑧𝑘, 𝑃ℳ𝑧

𝐿〉 

Therefore 
𝛾ℎ𝑁+𝑘1
2 𝛾ℎ𝑀+𝑘2

2

𝛾𝑘1
2 𝛾𝑘2

2 =
𝛾ℎ𝑁+𝑙𝑙
2 𝛾ℎ𝑀+𝑙2

2

𝛾𝑙1
2 𝛾𝑙2

2 ,∀ℎ ≥ 0 

Whenever 〈𝑃ℳ𝑧
𝐾 , 𝑧𝐿〉 ≠ 0. 
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If 𝛼 = 0, then as in Lemma (1.3.3) we have (𝑙1, 𝑙2) = (𝑘1, 𝑘2) or (𝑙1, 𝑙2) =(𝜌1(𝑘2), 𝜌2(𝑘1) 

where 𝜌1(𝑘2), 𝜌2(𝑘1) are integers. Thus𝑃ℳ𝑧1
𝜌1(𝑘2)𝑧2

𝜌2(𝑘1)𝑧′𝑘
′
 and 𝑃ℳ𝑧

𝑘are in 

𝑧1
𝑘1𝑧2

𝑘2𝐴2(𝐷𝑛−2) + 𝑧1
𝜌1(𝑘2)𝑧2

𝜌2(𝑘1)𝐴2(𝐷𝑛−2), where 𝑧′ = (𝑧3, … , 𝑧𝑛), and 𝐾′ = (𝑘3, … , 𝑘𝑛). 

Let𝑃𝑘1𝑘2 be the orthogonal projection from 𝐴2(𝐷𝑛) onto  

 

span {𝑧1
𝑘1𝑧2

𝑘2𝐴2(𝐷𝑛−2) + 𝑧1
𝜌1(𝑘2)𝑧2

𝜌2(𝑘1)𝐴2(𝐷𝑛−2 ); ℎ = 0,1,2… }. 

Then 𝑃𝑘1𝑘2𝑃ℳ𝑧
𝐾 = 𝑃ℳ𝑃𝑘1𝑘2𝑧

𝑘. For each 𝑓 ∈ ℳ with 𝑓 ≠ 0, there are integers 𝑙, 𝑚 ≥ 0 

such that 𝑃𝑙𝑚𝑓 ≠ 0. By the similar technique, we can proof that 〈𝑃ℳ𝑃𝑚𝑙𝑓, 𝑧
𝐾〉 = 〈𝑃𝑚𝑙𝑓, 𝑧

𝐾〉 
for any 𝐾 ⪰ 0, i.e.,𝑃ℳ𝑃𝑚𝑙𝑓 = 𝑃𝑚𝑙𝑓. So, there exist 𝑓1(𝑧

′)𝑎𝑛𝑑 𝑔2(𝑧
′) ∈ 𝐴2(𝐷𝑛−2) such that 

𝑃𝑚𝑙𝑓 = 𝑔1(𝑧
′)𝑧1

𝑚𝑧2
𝑙 + 𝑔2(𝑧

′)𝑧1
𝜌1(𝑙)𝑧2

𝜌2(𝑚) ∈ ℳ, which implies that (a) holds. 

If 𝛼 ≠ 0, then we arrive at 𝑃ℳ𝑧
𝐾 ∈ 𝑧1

𝑘1𝑧2
𝑘3𝐴𝛼

2 (𝐷𝑛−2). Denote by 𝑃𝑘1𝑘2
′  theorthogonal 

projection from 𝐴𝛼
2 (𝐷𝑛) onto 

Span{𝑧1
𝑘1𝑧2

𝑘2𝐴2(𝐷𝑛−2); ℎ = 0,1,2, … } 
Then 𝑃𝑘1𝑘2

′ (𝑓) = 𝑃𝑘1𝑘2
′ 𝑃ℳ(𝑓) = 𝑃ℳ𝑃𝑘1𝑘2

′ (𝑓) ∈ ℳ𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑓 ∈ ℳ  Hence (b) holds. The 

rest of the proof is obvious.  
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Chapter 2 

Bergman and Generalized Weighted Fock Spaces 

  

 We obtain similar results for Hankel products 𝐻𝑓𝐻𝑔
∗, where 𝑓 and 𝑔 are square 

integrable on the unit disk, and for the mixed Haplitz products 𝐻𝑓𝑇𝑔 and 𝑇𝑔𝐻𝑓
∗, where 𝑓 and 

𝑔 are square integrable on the unit disk and 𝑔 is analytic. For a large class of measures, we 

find that these quantities satisfy asymptotic relations similar to the simple exact relations 

which hold in the model case 𝑚(𝑡) = 𝑒−𝑡. We show that 𝐻𝑓 is compact if and only if f is a 

polynomial of degree strictly smaller that 
𝑚

2
. We also establish that 𝐻𝑓 is in the Schatten 

class 𝑆𝑝 if and only if 𝑝 > 2𝑛 and 𝑓 is a polynomial of degree strictly smaller than 𝑚
(𝑝−2𝑛)

2𝑝
. 

Section (2.1): Products of Hankel and Toeplitz Operators  

For 𝑑𝐴 denote Lebesgue area measure on the unit disk 𝔻, normalized so that the 

measure of 𝔻 equals 1. The Bergman space 𝐿𝑎
2  is the Hilbert space consisting of the analytic 

functions on 𝔻  that are also in 𝐿2(𝔻, 𝑑𝐴). For 𝑓 ∈ 𝐿2(𝔻, 𝑑𝐴), the Toeplitz operator 𝑇𝑓 and 

the Hankel operator 𝐻𝑓 with symbol  𝑓 are defined densely on the Bergman space 𝐿𝑎
2   by 

𝑇𝑓(ℎ) = 𝑃(𝑓ℎ) and 𝐻𝑓(ℎ = (1 − 𝑃)( 𝑓ℎ) for all polynomials ℎ, where 𝑃 is the orthogonal 

projection from 𝐿2(𝔻, 𝑑𝐴) onto 𝐿𝑎
2  . 

The techniques required to solve problems in the Bergman space setting may be very 

different from those that work in the Hardy space setting. 

Often one sees similarities in the theorems, but not the proofs (although in both cases the 

proofs usually feature an interplay between function theory and operator theory). 

On the Hardy space 𝐻2, bounded Toeplitz operators arise only from bounded 

symbols. In [53] Sarason posed the problem for which 𝑓 and 𝑔 in 𝐻2  the densely defined 

operator 𝑇𝑓𝑇�̅� is bounded on 𝐻2. Sarason [53] conjectured that a necessary condition 

obtained by S. Treil is also sufficient for boundedness of such Toeplitz products. Cruz-Uribe 

[48] characterized the outer functions 𝑓 and g for which the Toeplitz product 𝑇𝑓𝑇�̅� is 

bounded and invertible on 𝐻2, providing support for Sarason's conjecture. [59] obtained a 

partial answer to Sarason's problem by showing that a condition slightly stronger than the 

one in Sarason's conjecture is sufficient for boundedness of these Toeplitz products on the 

Hardy space. 

       On the Bergman space, there are unbounded symbols that induce bounded Toeplitz 

operators. A Toeplitz operator with analytic symbol is, however, bounded if and only if its 

symbol is bounded on the unit disk. 

Sarason [53] also asked for which analytic functions 𝑓 and 𝑔 in 𝐿𝑎
2  the densely defined 

product 𝑇𝑓𝑇�̅� is bounded on 𝐿𝑎
2  . We will obtain a partial answer to this question and prove 

results analogous to those obtained by [59] for such Toeplitz products on the Hardy space. 

       On the Bergman space, Luecking [51] has obtained complete characterizations of 

compactness and boundedness of Hankel operators with symbol in 𝐿2(𝔻, 𝑑𝐴). Little is 

known concerning the products 𝐻𝑓
∗𝐻𝑔 or 𝐻𝑓𝐻𝑔

∗ for 𝑓, 𝑔 ∈ 𝐿2(𝔻, 𝑑𝐴). Even on the Hardy 

space, problems concerning the products of Toeplitz operators or Hankel operators are much 

harder than those dealing with a single operator; see [44], [46], [52], [53], [57] and [59]. 

Many interesting questions concerning products of Toeplitz operators or Hankel operators 

either on the Hardy space or the Bergman space still remain open. Using the beautiful theory 

of Hoffman [50] describing the maximal ideal space of 𝐻∞(𝔻), [58] proved that if 𝑓 and g 
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are bounded harmonic functions on the unit disk 𝔻, then 𝑇𝑓̅𝑇𝑔 − 𝑇𝑓̅𝑔 is compact if and only 

if (1 − |𝑧|2) min{|𝜕𝑓/𝜕𝑧̅|, |𝜕𝑔/𝜕𝑧̅|} →0, as |𝑧| → 1−, which is analogous to the results on 

the Hardy space ([44], [57]). For symbols f and g in 𝐿2(𝔻, 𝑑𝐴), the problems on the product 

are subtle. In addition to boundedness results for the Toeplitz products discussed in the 

previous paragraph, we obtain similar results for Hankel products 𝐻𝑓𝐻𝑔
∗, where 𝑓 and g are 

in 𝐿2(𝔻, 𝑑𝐴), and for the mixed Haplitz products 𝐻𝑓𝑇𝑔 and 𝑇𝑔𝐻𝑓
∗, where 𝑓 ∈  𝐿2(𝔻, 𝑑𝐴) 

and g ∈ La
2  . 

       The Bergman space 𝐿𝑎
2  has reproducing kernels 𝐾𝑤 given by 

                                          𝐾𝑤(𝑧) =
1

(1−�̅�𝑧)2
    , 

for 𝑧, 𝑤 ∈ 𝔻: for every ℎ ∈ 𝐿𝑎
2  we have (ℎ, 𝐾𝑤) = ℎ(𝑤), for all 𝑤 ∈ 𝔻. In particular, we 

have the following formula for the projection 𝑃: 

                                       𝑃𝑢(𝑤) = ∫
𝑢(𝑧)

(1−�̅�𝑧)2𝔻
 𝑑𝐴(𝑧), 

for 𝑢#𝐿2(𝔻, 𝑑𝐴) and 𝑤 ∈ 𝔻. 

       We will first discuss how the various Haplitz products are to be defined. 

       First we consider Toeplitz products. If 𝑔 is a bounded analytic function on 𝔻, then 

(𝑇�̅� ℎ)(𝑤) = 〈𝑇�̅� ℎ, 𝐾𝑤〉 = 〈ℎ, 𝑔𝐾𝑤〉 = ∫
𝑔(𝑧)̅̅ ̅̅ ̅̅ ℎ(𝑧)

(1 − 𝑤𝑧̅)2
   

𝔻

𝑑𝐴(𝑧), 

for all ℎ ∈ 𝐿𝑎
2   and 𝑤 ∈ 𝔻. If 𝑔 ∈ 𝐿𝑎

2  and ℎ ∈ 𝐿𝑎
2  , we define 𝑇𝑔h by the latter integral: 

(𝑇�̅�ℎ)(𝑤) = ∫
𝑔(𝑧)̅̅ ̅̅ ̅̅ ℎ(𝑧)

(1 − 𝑤𝑧̅)2
   

𝔻

𝑑𝐴(𝑧) 

for 𝑤 ∈ 𝔻 . If 𝑓 is furthermore in 𝐿𝑎
2  , then the meaning of 𝑇𝑓𝑇�̅�h is clear: it is the analytic 

function 𝑓𝑇�̅�ℎ. We will be concerned with the question for which 𝑓 and 𝑔 in 𝐿𝑎
2  the operator 

𝑇𝑓𝑇�̅� is bounded on 𝐿𝑎
2  . 

       Next we consider Hankel products. If 𝑓 is bounded and ℎ ∈ 𝐿𝑎
2  , then 

(𝐻𝑓ℎ)(𝑤) = 𝑓(𝑤)ℎ(𝑤) − 𝑃(𝑓ℎ)(𝑤) = ∫
( 𝑓(𝑤) − 𝑓(𝑧))ℎ(𝑧)

(1 − 𝑤𝑧̅)2𝔻

  𝑑𝐴(𝑧), 

for all 𝑤 ∈ 𝔻. The latter formula is to be used to define 𝐻𝑓 densely on 𝐿𝑎
2  if 𝑓 ∈ 𝐿2(𝔻, 𝑑𝐴). 

If 𝑔 is bounded and 𝑢 ∈ (𝐿𝑎
2 )⊥, then 

                       𝐻𝑔
∗ 𝑢(𝑤) = 〈𝐻𝑔

∗ 𝑢, 𝐾𝑤〉 = 〈𝑢,𝐻𝑔𝐾𝑤〉 = 〈𝑢, 𝑔𝐾𝑤〉, 

for all 𝑤 ∈ 𝔻. Since 𝐾𝑤 is bounded, the latter formula makes sense for all 𝑔 ∈ 𝐿2(𝔻, 𝑑𝐴), 
and we use it to define the operator 𝐻𝑔

∗ densely on (𝐿𝑎
2 )⊥. 

Note that the star need no longer be the adjoint (but would of course coincide with the adjoint 

in case the operator 𝐻𝑔 is itself bounded). 

     By Lemma 1 in [51] the set of smooth functions with compact support in 𝔻 is dense in 

(𝐿𝑎
2 ) ⊥, so certainly 𝐶𝑐(𝔻) ∩ (𝐿𝑎

2 )⊥ , the set of compactlysupported functions in (𝐿𝑎
2 )⊥ is 

dense in (𝐿𝑎
2 )⊥. If 𝑓, g ∈ 𝐿2(𝔻, 𝑑𝐴) and 𝑢 ∈ 𝐶𝑐(𝔻) ∩ (𝐿𝑎

2 )⊥, then 𝐻𝑔
∗u is bounded, and the 

meaning of 𝐻𝑓𝐻𝑔
∗𝑢 is clear: it is the function 𝐻𝑓(𝐻𝑔

∗𝑢). This defines the Hankel product 

𝐻𝑓𝐻𝑔
∗ on a dense subset of (𝐿𝑎

2 )⊥, namely 𝐶𝑐(𝔻) ∩ (𝐿𝑎
2 )⊥. 

  The mixed Haplitz operators are defined as follows. For 𝑓 ∈ 𝐿𝑎
2  ,    𝑔 ∈ 𝐿2(𝔻, 𝑑𝐴) and 𝑢 ∈

𝐶𝑐(𝔻) ∩ (𝐿𝑎
2 )⊥ , 𝑇𝑓𝐻𝑔

∗u is the analytic function 𝑓(𝐻𝑔
∗𝑢). 

If ℎ ∈ 𝐻∞, then 𝑇𝑔 ∈ 𝐿𝑎
2  , and we define 𝐻𝑓𝑇�̅� ℎ to be the function 𝐻𝑓(𝑇�̅� ℎ). 

For 𝑤 ∈ 𝔻, the fractional linear transformation 𝜑𝑤 defined by 
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𝜑𝑤(𝑧) =
𝑤 − 𝑧

1 − �̅�𝑧
 

is an automorphism of the unit disk; in fact, the mappings are involutions: 

𝜑𝑤
−1  = 𝜑𝑤 The real Jacobian for the change of variable 𝜉 = 𝜑𝑤(𝑧) is equal to |𝜑𝑤

′ (𝑧)|2 =
(1 − |𝑤|2)2/|1 − �̅�𝑧|4, thus we have the change-of-variable formula 

∫ℎ(𝜑𝑤(𝑧))𝑑𝐴(𝑧)
𝔻

= ∫
ℎ(𝑧)(1 − |𝑤|2)2

|1 − �̅�𝑧|4𝔻

 𝑑𝐴(𝑧), 

where ℎ is a positive measurable or integrable function on 𝔻. The functions 

                                    𝑘𝑤(𝑧) =
1−|𝑤|2

(1−�̅�𝑧)2
  

are the normalized reproducing kernels for 𝐿𝑎
2  . The change-of-variable formula can be 

written as 

∫ℎ(𝜑𝑤(𝑧))𝑑𝐴(𝑧)
𝔻

= ∫ℎ(𝜑𝑤(𝑧))𝑑𝐴(𝑧)
𝔻

,                  (1) 

where ℎ is a positive measurable or integrable function on 𝔻. 

   For 𝑤 ∈ 𝔻 the operator 𝑈𝑤 on 𝐿2(𝔻, 𝑑𝐴) is defined by 

                                           𝑈𝑤𝑓 = (𝑓 ∘ 𝜑𝑤)𝑘𝑤 . 
       It is easy to see that 𝑈𝑤 is a unitary operator which commutes with the Bergman 

projection. In particular, 𝑇𝑓𝑈𝑤 = 𝑈𝑤𝑇𝑓∘𝜑𝑤  . 

       The Berezin transform of a function 𝑓 ∈ 𝐿2(𝔻, 𝑑𝐴) is the function 𝑓 defined on 𝔻 by 

                              𝑓(𝑤) = ∫ 𝑓(𝑧)|𝑘𝑤(𝑧)|
2 𝑑𝐴(𝑧)

𝔻
. 

In particular, it follows from change-of-variable formula (1) that 

| 𝑓 |̃ 2(𝑤) = ‖𝑓 ∘ 𝜑𝑤‖2
2 , for every 𝑓 ∈ 𝐿2(𝔻, 𝑑𝐴)and 𝑤 ∈ 𝔻. 

       It is well-known ([43], [60]) that  ‖𝑓‖2 is equivalent to ‖(1 − |𝑧|2)𝑓′‖2 for 𝑓 in the 

Bergman space 𝐿𝑎
2  with 𝑓(0) = 0. The following lemma for the inner product in the 

Bergman space in terms of derivatives of functions will be needed. 

Lemma (2.1.1)[42]: If 𝐹 and 𝐺 are in 𝐿𝑎
2  , then 

∫𝐹(𝑧)𝐺(𝑧)̅̅ ̅̅ ̅̅  𝑑𝐴(𝑧)
𝔻

= 3∫ (1 − |𝑧|2)2 𝐹(𝑧) 𝐺(𝑧)̅̅ ̅̅ ̅̅ ̅ 𝑑𝐴(𝑧)
𝔻

 

+
1

2
 ∫ (1 − |𝑧|2)2 𝐹′(𝑧) 𝐺′(𝑧)̅̅ ̅̅ ̅̅ ̅𝑑𝐴(𝑧)
𝔻

 

+
1

3
 ∫ (1 − |𝑧|2)3 𝐹′(𝑧) 𝐺′(𝑧)̅̅ ̅̅ ̅̅ ̅ 𝑑𝐴(𝑧)
𝔻

. 

Proof. Using power series it is sufficient to show the identity for 𝐹(𝑧) = 𝐺(𝑧) = 𝑧𝑛. This 

is a standard calculation using ∫ (1 − |𝑧|2)𝑛 |𝑧2𝑚 𝑑𝐴(𝑧) = 𝑛!  𝑚!/(𝑛 +𝑚 + 1)!.
𝔻

  

We will give estimates on the Toeplitz and Hankel operators that will be used in our 

sufficiency results for boundedness of certain products of these operators. 

Lemma (2.1.2)[42]: Let 𝑓 ∈ 𝐿2(𝔻, 𝑑𝐴). Then 

                               |(𝑇𝑓̅ℎ)(𝑤)| ≤
1

1−|𝑤|2
 ‖ℎ‖2| 𝑓 |̃

2(𝑤)1 2⁄   , 

and 

                             |(𝐻𝑓
∗𝑢)(𝑤)| ≤

1

1−|𝑤|2
 ‖𝑢‖2  ‖𝑓 ∘ 𝜑𝑤𝑃( 𝑓 ∘ 𝜑𝑤)‖2 , 

for all ℎ ∈ 𝐿𝑎
2  , 𝑢 ∈ 𝐿2(𝔻, 𝑑𝐴), 𝑎𝑛𝑑 𝑤 ∈ 𝔻. 

Proof. If 𝑤 ∈ 𝔻 and ℎ ∈ 𝐿𝑎
2  , then 
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(𝑇𝑓̅ℎ)(𝑤) = 〈𝑇𝑓̅ℎ, 𝐾𝑤〉 = 〈ℎ, 𝑓𝐾𝑤〉 =
1

1 − |𝑤|2
〈ℎ, 𝑓𝑘𝑤〉. 

By the Cauchy-Schwarz inequality, |〈ℎ, 𝑓𝑘𝑤〉| ≤ ‖ℎ‖2‖ 𝑓𝑘𝑤‖2 , thus 

|(𝑇𝑓̅ℎ)(𝑤)| ≤
1

1 − |𝑤|2
 ‖ℎ‖2  ‖𝑓𝑘𝑤‖2 =

1

1 − |𝑤|2
 ‖ℎ‖2 | 𝑓 |̃

2(𝑤)1 2⁄ , 

proving the estimate for 𝑇𝑓ℎ̅. 

Using 𝐻𝑓𝑘𝑤 = (𝑓 − 𝑃( 𝑓 ∘ 𝜑𝑤) ∘ 𝜑𝑤) 𝑘𝑤 (see [56]) we have 

      𝐻𝑓
∗ 𝑢(𝑤) =

1

1−|𝑤|2
 〈𝑢, 𝐻𝑓 𝑘𝑤〉 =

1

1−|𝑤|2
〈 𝑢, ( 𝑓 − 𝑃( 𝑓 ∘ 𝜑𝑤) ∘ 𝜑𝑤)𝑘𝑤〉. 

By change-of-variable formula (1) we have‖ ( 𝑓 − 𝑃( 𝑓 ∘ 𝜑𝑤) ∘ 𝜑𝑤)𝑘𝑤 ‖2 = 
‖ 𝑓 ∘ 𝜑𝑤 − 𝑃( 𝑓 ∘ 𝜑𝑤)‖2 , so applying the inequality of Cauchy_Schwarz we get 

|〈𝑢, (𝑓 − 𝑃( 𝑓 ∘ 𝜑𝑤) ∘ 𝜑𝑤)𝑘𝑤〉| ≤ ‖𝑢‖2 ‖𝑓 ∘ 𝜑𝑤 − 𝑃( 𝑓 ∘ 𝜑𝑤)‖2    . 
In the following we write 𝑃0 for the integral operator on 𝐿2(𝔻, 𝑑𝐴) with kernel 1 ∕
|1 − �̅�𝑧|2 . It is well-known that 𝑃0 is 𝐿𝑝-bounded for 1 < 𝑝 < ∞ 

(see [43] or [60]). 

Lemma (2.1.3)[42]: Let 𝜀 > 0 and let 𝛿 = (2 + 𝜀)/(1 + 𝜀). 
    (i)      For every 𝑓 ∈ 𝐿𝑎

2  and ℎ ∈ 𝐿𝑎
2  : 

            |(𝑇𝑓̅ℎ)
′
(𝑤)| ≤

4

1−|𝑤|2
 | 𝑓 |̃ 2 +𝜀(𝑤)1 (2+𝜀)⁄  𝑃0[|ℎ|

𝛿](𝑤)1 𝛿⁄ , 

for all 𝑤 ∈ 𝔻. 

         (ii) For every 𝑔 ∈ 𝐿2(𝔻, 𝑑𝐴) and 𝑢 ∈ (𝐿𝑎
2 )⊥: 

    |(𝐻𝑔
∗𝑢)′ (𝑤)| ≤ |

4

1−|𝑤|2
‖𝑔 ∘ 𝜑𝑤 − 𝑃(𝑔 ∘ 𝜑𝑤)‖2+𝜀  𝑃0[|𝑢|

𝛿](𝑤)1 𝛿⁄ , 

for all 𝑤 ∈ 𝔻. 
Proof. Let 𝜀 > 0. Note that 𝛿 = (2 + 𝜀)/(1 + 𝜀) is the conjugate index of 2 + 𝜀. 
           (i) For 𝑓 ∈ 𝐿𝑎

2  and ℎ ∈ 𝐿𝑎
2  we have 

(𝑇𝑓̅ℎ)(𝑤) = ∫
𝑓(𝑧)ℎ(𝑧)

(1 − 𝑧̅𝑤)2𝔻

  𝑑𝐴(𝑧), 

for 𝑤 ∈ 𝔻. Thus 

                             (𝑇𝑓̅ℎ)
′
(𝑤) = 2∫

𝑧𝑓(𝑧)̅̅ ̅̅ ̅̅ ̅̅ ℎ(𝑧)

(1−�̅�𝑤)3𝔻
 𝑑𝐴(𝑧), 

for  𝑤 ∈ 𝔻. Applying Hölder's inequality we have 

|(𝑇𝑓
∗ℎ)′(𝑤)| 

≤ 2∫
|𝑓(𝑧)| |ℎ(𝑧)|

|1 − 𝑧̅𝑤|3𝔻

  𝑑𝐴(𝑧) = 2 ∫
|𝑓(𝑧)||ℎ(𝑧)||1 − 𝑧̅𝑤|

|1 − 𝑧̅𝑤|4𝔻

 𝑑𝐴(𝑧) 

≤ 2 (∫
|𝑓(𝑧)|2+𝜀

|1 − 𝑧̅ 𝑤|4𝔻

 𝑑𝐴(𝑧))

1 (2+𝜀)⁄

(∫
|ℎ(𝑧)|𝛿  |1 − 𝑧̅ 𝑤|𝛿

|1 − 𝑧̅ 𝑤|4𝔻

  𝑑𝐴(𝑧))

1 𝛿⁄

   

=
2 |𝑓|2+𝜀(𝑤)1 (2+𝜀)⁄

1 − |𝑤|2
  (∫

|ℎ(𝑧)|𝛿

|1 − 𝑧̅𝑤|2𝔻

(1 − |𝑤|2)𝜀 1+𝜀⁄

|1 − 𝑧̅𝑤|𝜀 1+𝜀⁄
 𝑑𝐴(𝑧))

1 𝛿⁄

, 

and the inequality follows, since (1 − |𝑤|2) | |1 − 𝑧̅𝑤| < 2 𝑎𝑛𝑑 2𝜀 2+𝜀⁄ < 2. 

   (ii) For 𝑢 ∈ (𝐿𝑎
2 )⊥ we have 

(𝐻𝑔
∗𝑢)(𝑤) = 〈𝐻𝑔

∗𝑢, 𝐾𝑤〉 = 〈𝑢,𝐻𝑔𝐾𝑤〉 = ∫
𝑢(𝑧)𝑔(𝑧)̅̅ ̅̅ ̅̅

(1 − 𝑧̅ 𝑤)2
𝑑𝐴(𝑧)

𝔻

 

. 
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Thus 

(𝐻𝑔
∗𝑢)

′
(𝑤) = 2 ∫

𝑢(𝑧)𝑧𝑔(𝑧)̅̅ ̅̅ ̅̅ ̅̅

(1 − 𝑧̅𝑤)3
 𝑑𝐴(𝑧)

𝔻

. 

Letting 𝐺𝑤denote 𝑃(𝑔 ∘ 𝜑𝑤) ∘ 𝜑𝑤  , the function 𝑧 ↦ 𝑧𝐺𝑤(𝑧)/(1 − �̅�𝑧)
3 is in 

𝐿𝑎
2  , and since 𝑢 ∈ (𝐿𝑎

2 )⊥ we have 

∫
𝑢(𝑧)𝑧𝐺𝑤(𝑧)̅̅ ̅̅ ̅̅ ̅̅ ̅

(1 − 𝑧̅𝑤)3𝔻

  𝑑𝐴(𝑧) = 0. 

Thus 

(𝐻𝑔
∗𝑢)

′
(𝑤) = 2∫

𝑢(𝑧)𝑧(𝑔(𝑧) − 𝐺𝑤(𝑧))
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

(1 − 𝑧̅𝑤)3𝔻

 𝑑𝐴(𝑧). 

Using the same argument as above, applying Hölder's inequality and change-of-variable 

formula (1) we have 

|(𝐻𝑔
∗𝑢)

′
(𝑤)| ≤ 2(∫

|𝑔(𝑧) − 𝐺𝑤(𝑧)|2+𝜀

|1 − 𝑧̅𝑤|4𝔻

 𝑑𝐴(𝑧))

1 2+𝜀⁄

(∫
|𝑢(𝑧)|𝛿

|1 − 𝑧̅𝑤|4−𝛿𝔻

 𝑑𝐴(𝑧))

1 𝛿⁄

 

≤
4

1 − |𝑤|2
 ‖𝑔 ∘ 𝜑𝑤 − 𝑃(𝑔 ∘ 𝜑𝑤)‖2+𝜀 (∫

|𝑢(𝑧)|𝛿

|1 − 𝑧̅𝑤|2𝔻

  𝑑𝐴(𝑧))

1 𝛿⁄

 

, 
as desired. 

We discuss several basic identities and inequalities needed to prove necessary 

conditions for boundedness and compactness of Haplitz products. 

For 𝑓 and g in 𝐿2(𝔻, 𝑑𝐴) let 𝑓 ⊗ 𝑔 be the rank one operator defined by 

                                                    ( 𝑓 ⊗ 𝑔) ℎ = 〈ℎ, 𝑔〉 𝑓, 

for ℎ ∈ 𝐿2(𝔻, 𝑑𝐴). It is easily verified that the norm of  𝑓 ⊗ 𝑔 is  ‖𝑓‖2 ‖𝑔‖2 . 
If  𝑇 and S are bounded linear operators, then 𝑇(𝑓 ⊗ 𝑔)𝑆∗ = (𝑇𝑓 ) ⊗ (𝑆𝑔). 
 

Proposition (2.1.4)[42]: On 𝐿𝑎
2  we have 

                               𝑘𝑤⊗𝑘𝑤 = 𝐼 − 2𝑇𝜑𝑤𝑇�̅� 𝑤 + 𝑇𝜑𝑤
2 𝑇�̅� 𝑤

2  , 

for all 𝑤 ∈ 𝔻. 

Proof. Let 𝑒𝑛(𝑧) = (𝑛 + 1)
1 2⁄  𝑧𝑛. Then {𝑒𝑛} is a basis of the Bergman space. On this 

basis, 𝑇𝑧 is a weighted shift operator, the so-called Bergman shift. More precisely, 

𝑇𝑧𝑒𝑛 = (
𝑛 + 1

𝑛 + 2
)
1 2⁄

𝑒𝑛 + 1     𝑎𝑛𝑑          𝑇𝑧̅ 𝑒𝑛 = 𝑇𝑧
∗ 𝑒𝑛 = (

𝑛

𝑛 + 1
)
1 2⁄

𝑒𝑛−1, 

for n>0, and 𝑇𝑧
∗ 𝑒0 = 0. Thus 

                  𝑇𝑧𝑇�̅� 𝑒𝑛 =
𝑛

𝑛+1
𝑒𝑛    𝑎𝑛𝑑      𝑇𝑧

2𝑇�̅�
2 𝑒𝑛 =

𝑛−1

𝑛+1
 𝑒𝑛 , 

for 𝑛 > 0, and hence 

                       (𝐼 − 2𝑇𝑧𝑇�̅� + 𝑇𝑧
2 𝑇�̅�

2)𝑒𝑛 = {1 −
2𝑛

𝑛+1
+
𝑛−1

𝑛+1
} 𝑒𝑛 = 0, 

for all 𝑛 > 0. It follows that 

                        𝐼 − 2𝑇𝑧𝑇�̅� + 𝑇𝑧
2𝑇�̅�

2 = 𝑒0⊗𝑒0 . 

       For 𝑤 ∈ 𝔻 we apply the unitary operator 𝑈𝑤 to obtain 

𝑘𝑤⊗𝑘𝑤 = (𝑈𝑤𝑒0)⊗ (𝑈𝑤𝑒0) = 𝑈𝑤(𝑒0⊗𝑒0)𝑈𝑤
∗  

= 𝑈𝑤(𝐼 − 2𝑇𝑧𝑇�̅� + 𝑇𝑧
2 𝑇�̅�

2)𝑈𝑤
∗  
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= 𝐼 − 2𝑇𝜑𝑤𝑇�̅� 𝑤 + 𝑇𝜑𝑤
2 𝑇�̅� 𝑤

2   , 

as desired. 

Proposition (2.1.5)[42]: If 𝑓, 𝑔 ∈ 𝐿𝑎
2   , then 

   | 𝑓 ̃|
2
 (𝑤)1 2⁄  | 𝑔|̃2 (𝑤)1 2⁄ ≤ 2 𝑥‖𝑇𝑓𝑇�̅�𝑇𝜑𝑤(𝑇𝑓𝑇�̅�)𝑇�̅� 𝑤‖, 

for all 𝑤 ∈ 𝔻. 

Proof. Using the fact that both 𝑓 and g are analytic, we have 𝑇𝑓𝑇𝜑𝑤 = 𝑇𝜑𝑤𝑇𝑓 and 𝑇�̅� 𝑤𝑇�̅� =

𝑇�̅� 𝑇�̅� 𝑤  , so by Proposition (2.1.4), 

𝑇𝑓 (𝑘𝑤⊗𝑘𝑤)𝑇�̅� = 𝑇𝑓𝑇�̅� − 2𝑇𝜑𝑤𝑇𝑓𝑇�̅� 𝑇�̅� 𝑤 + 𝑇𝜑𝑤
2 𝑇𝑓𝑇�̅� 𝑇�̅� 𝑤

2  

                     = 𝑇𝑓𝑇�̅� − 𝑇𝜑𝑤𝑇𝑓𝑇�̅� 𝑇�̅� 𝑤 − 𝑇𝜑𝑤(𝑇𝑓𝑇�̅� − 𝑇𝜑𝑤𝑇𝑓𝑇�̅� 𝑇�̅� 𝑤) 𝑇�̅� 𝑤 . 

The triangle inequality, the fact that also here 𝑇𝑓(𝑘𝑤⊗𝑘𝑤) 𝑇�̅� = (𝑇𝑓 𝑘𝑤) ⊗ (𝑇𝑔𝑘𝑤), and 

the estimate‖𝑇𝜑𝑤‖ ≤ 1 imply that 

                           ‖(𝑇𝑓 𝑘𝑤)⊗ (𝑇𝑔𝑘𝑤)‖ ≤ 2 ‖𝑇𝑓𝑇�̅� − 𝑇𝜑𝑤(𝑇𝑓𝑇�̅�) 𝑇�̅� 𝑤‖. 

Using change-of-variable formula (1) we have 

‖(𝑇𝑓 𝑘𝑤)⊗ (𝑇𝑔𝑘𝑤)‖ = ‖𝑓𝑘𝑤‖2 ‖𝑔𝑘𝑤‖2 = | 𝑓 ̃|
2
 (𝑤)1 2⁄  | �̃�|2 (𝑤)1 2⁄ , 

and the stated result follows. 

       To deal with products involving Hankel operators, we introduce dual Toeplitz 

operators. The orthogonal complement (𝐿𝑎
2 )⊥ of 𝐿𝑎

2  in 𝐿2(𝔻, 𝑑𝐴) is much larger than 𝑧𝐿𝑎
2̅̅ ̅̅ ̅ . 

Under the decomposition 𝐿2(𝔻, 𝑑𝐴) = 𝐿𝑎
2 ⊗ (𝐿𝑎

2 )⊥, for 𝑓 ∈ 𝐿∞(𝔻) the multiplication 

operator 𝑀𝑓 is represented as 

                                            𝑀𝑓 = [
𝑇𝑓 𝐻𝑓̅

∗

𝐻𝑓 𝑆𝑓
]. 

The operator 𝑆𝑓 is an operator on (𝐿𝑎
2 )⊥ we call 𝑆𝑓 𝑡he dual Toeplitz operator with symbol  

𝑓. Although these operators differ in many ways froms Toeplitz operators, they do have 

some of the same basic algebraic properties. We have: 𝑆𝑓
∗ = 𝑆𝑓̅ 𝑎𝑛𝑑 𝑆𝛼𝑓+𝛽𝑔 = 𝛼𝑆𝑓 +

𝛽𝑆𝑔 , 𝑓𝑜𝑟 𝑓, 𝑔 ∈  𝐿
∞(𝔻), and 𝛼, 𝛽 ∈  ℂ The identity 𝑀𝑓𝑔 = 𝑀𝑓𝑀𝑔 implies the following 

basic algebraic relations between these operators: 

                                              𝑇𝑓𝑔 = 𝑇𝑓𝑇𝑔 +𝐻𝑓̅
∗𝐻𝑔  ,                                          (2)  

                                             𝑆𝑓𝑔 = 𝑆𝑓 𝑆𝑔 +𝐻𝑓𝐻�̅�
∗ ,                                            (3) 

                                            𝐻𝑓𝑔 = 𝐻𝑓𝑇𝑔 + 𝑆𝑓𝐻𝑔 .                                              (4) 

Suppose 𝜑 ∈ 𝐻∞ and 𝜓 ∈ 𝐿∞(𝔻). If we take 𝑓 = 𝜑 and 𝑔 = 𝜓 in (4) we get 𝐻𝜑𝜓 =

𝑆𝜑𝑇𝜓, since 𝐻𝜑 = 0; on the other hand, taking 𝑓 = 𝜓 and 𝑔 = 𝜑 in(4) gives 𝐻𝜓𝜑 = 𝐻𝜓𝐻𝜑 . 

Thus, if 𝜑 ∈ 𝐻∞ and 𝜓 ∈ 𝐿∞(𝔻), then 

                                                      𝐻𝜓𝑇𝜑 = 𝑆𝜑𝐻𝜓,                                               (5) 

and, by taking adjoints, 

                                                 𝑇�̅� 𝐻𝜓
∗  = 𝐻𝜓

∗   𝐻�̅� .                                               (6) 

For 𝑓 ∈  𝐿2(𝔻, 𝑑𝐴) we extend the dual Toeplitz operator  𝑆𝑓 by defining 

𝑆𝑓𝑢 = (𝐼 − 𝑃)( 𝑓𝑢), for 𝑢 ∈ 𝐶𝑐(𝔻) ∩ (𝐿𝑎
2 )⊥. 

       We will show that identities (5) and (6) also hold if 𝜑 ∈ 𝐻∞ and 𝜓 ∈ 𝐿2(𝔻, 𝑑𝐴). For 

a polynomial ℎ we have 𝑃(𝜑𝐻𝜓ℎ) = 𝑃(𝜑𝜓ℎ − 𝜑𝑃(𝜓ℎ)) = 𝑃(𝜑𝜓ℎ) − 𝜑𝑃(𝜓ℎ), thus 

𝑆𝜑𝐻𝜓ℎ = 𝜑(𝜓ℎ − 𝑃(𝜓ℎ)) − 𝑃(𝜑𝐻𝜓ℎ) = 𝜑𝜓ℎ − 𝑃(𝜑𝜓ℎ) = 𝐻𝜓𝑇𝜑ℎ, 

so that (5) also holds if .𝜑 ∈ 𝐻∞ and 𝜓 ∈ 𝐿2(𝔻, 𝑑𝐴). 
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For 𝜑 ∈ 𝐻∞, 𝜓 ∈ 𝐿2(𝔻, 𝑑𝐴),  𝑢 ∈ 𝐶𝑐(𝔻) ∩ (𝐿𝑎
2 )⊥, and 𝑤 ∈  𝔻 we have (𝑇�̅�𝐻𝜓

∗ 𝑢)(𝑤) =

〈𝑇�̅�𝐻𝜓
∗ 𝑢, 𝐾𝑤〉 = 〈𝐻𝜓

∗ 𝑢𝜑𝐾𝑤〉. Using the definition of 𝐻𝜓
∗ 𝑢 as well as Fubini's Theorem, it is 

easily verified that                       

                        〈𝐻𝜓
∗ 𝑢, 𝜑𝐾𝑤〉 = ∫ 𝑢(𝑧)𝜓(𝑧)𝜑(𝑧)𝐾𝑤(𝑧)𝑑𝐴(𝑧)𝔻

. 

On the other hand, 

                           𝐻𝜓
∗ 𝑆�̅�𝑢(𝑤) = 〈𝑆�̅�𝑢,𝜓𝐾𝑤〉 = 〈𝑢, 𝑆𝜑𝜓𝐾𝑤〉 = 〈𝑢, (𝐼 − 𝑃)(𝜑𝜓𝐾𝑤)〉 

                                                 = 〈(𝐼 − 𝑃)𝑢, 𝜑 𝜓𝐾𝑤〉 = 〈𝑢, 𝜑 𝜓𝐾𝑤〉. 
Thus we have 𝑇�̅�𝐻𝜓

∗ 𝑢 = 𝐻𝜓
∗  𝑆�̅�𝑢, so that also (6) holds if 𝜑 ∈ 𝐻∞ and 𝜓 ∈ 𝐿2(𝔻, 𝑑𝐴).                                       

Proposition (2.1.6)[42]: If 𝑓, g ∈ 𝐿2(𝔻, 𝑑𝐴)., then 

                                 ‖ 𝑓 ∘ 𝜑𝑤 − 𝑃(𝑓 ∘ 𝜑𝑤)‖2 ‖𝑔 ∘ 𝜑𝑤 − 𝑃(𝑔 ∘ 𝜑𝑤)‖2 

                                   ≤ 2‖ 𝐻𝑓𝐻𝑔
∗ − 𝑆𝜑𝑤(𝐻𝑓𝐻𝑔

∗)𝑆�̅�𝑤‖  

for all 𝑤 ∈ 𝔻. 

Proof. Using Proposition (2.1.4) and identities (5) and (6), we have 

𝐻𝑓(𝑘𝑤⊗𝑘𝑤)𝐻𝑔
∗ 

= 𝐻𝑓𝐻𝑔
∗ − 2𝐻𝑓𝑇𝜑𝑤𝑇�̅�𝑤𝐻𝑔

∗ +𝐻𝑓𝑇𝜑𝑤
2 𝑇𝑓𝑇�̅� 𝑤

2 𝐻𝑔
∗ 

= 𝐻𝑓𝐻𝑔
∗ − 2𝑆𝜑𝑤𝐻𝑓𝑇�̅�𝑤𝑆�̅�𝑤 + 𝑆𝜑𝑤

2 𝐻𝑓𝐻𝑔
∗𝑆�̅�𝑤 

= 𝐻𝑓𝐻𝑔
∗ − 𝑆𝜑𝑤𝐻𝑓𝐻𝑔

∗𝑆�̅�𝑤 − 𝑆𝜑𝑤(𝐻𝑓𝐻𝑔
∗ − 𝑆𝜑𝑤𝐻𝑓𝐻𝑔

∗𝑆�̅�𝑤) 𝑆�̅�𝑤 , 

and, because 𝐻𝑓(𝑘𝑤⊗𝑘𝑤)𝐻𝑔
∗  = (𝐻𝑓𝑘𝑤) ⊗ (𝐻𝑔𝑘𝑤), and 

‖(𝐻𝑓𝑘𝑤) ⊗ (𝐻𝑔𝑘𝑤)‖ = ‖𝐻𝑓𝑘𝑤‖2
 ‖𝐻𝑔𝑘𝑤‖2

 

= ‖𝑓 ∘ 𝜑𝑤 − 𝑃( 𝑓 ∘ 𝜑𝑤)‖2 ‖𝑔 ∘ 𝜑𝑤 − 𝑃(𝑔 ∘ 𝜑𝑤)‖2 , 
the stated result follows.  

       The following proposition shows that the estimates for the Toeplitz products and the 

Hankel products have their analogues for the mixed products. 

Proposition (2.1.7)[42]: If 𝑓 ∈ 𝐿𝑎
2  and 𝑔 ∈ 𝐿2(𝔻, 𝑑𝐴), then 

                 | 𝑓 ̃|
2
(𝑤)1 2⁄  ‖𝑔 ∘ 𝜑𝑤 − 𝑃(𝑔 ∘ 𝜑𝑤  )‖2 ≤ 2 ‖𝑇𝑓𝐻𝑔

∗ − 𝑇𝜑𝑤(𝑇𝑓𝐻𝑔
∗)𝑆�̅� 𝑤‖, 

and 

                | 𝑓 ̃|
2
(𝑤)1 2⁄  ‖𝑔 ∘ 𝜑𝑤 − 𝑃(𝑔 ∘ 𝜑𝑤 )‖2 ≤ 2 ‖𝐻𝑔𝑇𝑓̅ − 𝑆𝜑𝑤(𝐻𝑔𝑇𝑓̅) 𝑇�̅� 𝑤‖, 

for all 𝑤 ∈ 𝔻. 

Proof.     To prove the first inequality we use the identity 

             𝑇𝑓(𝑘𝑤⊗𝑘𝑤)𝐻𝑔
∗ = 𝑇𝑓𝐻𝑔

∗ − 2𝑇𝜑𝑤𝑇𝑓𝐻𝑔
∗ 𝑆�̅� 𝑤 + 𝑇𝜑𝑤

2 𝑇𝑓𝐻𝑔
∗𝑆�̅� 𝑤 

The second inequality follows from an analogous identity. K 

We end this with an algebraic result for dual Toeplitz operators. 

If 𝑓 is analytic or �̅� is analytic, then 𝐻𝑓𝐻�̅�
∗ = 0, and by (3), 𝑆𝑓𝑆𝑔 = 𝑆𝑓𝑔. The following 

proposition shows that the converse holds. 

Proposition (2.1.8)[42]: Let 𝑓 and g be 𝐿∞(𝔻, 𝑑𝐴). If 𝑆𝑓𝑆𝑔 = 𝑆𝑓𝑔 , then either 𝑓 or �̅� is in 

𝐻∞. 
Proof. If 𝑆𝑓𝑆𝑔 = 𝑆𝑓𝑔, then by (3), 𝐻𝑓𝐻�̅�

∗ = 0, and by Proposition (2.1.6), 

                                ‖𝑓 ∘ 𝜑𝑤 − 𝑃(𝑓 ∘ 𝜑𝑤)‖2 �̅� ∘ 𝜑𝑤 − ‖𝑃( �̅� ∘ 𝜑𝑤)‖2 = 0, 
for all 𝑤 ∈ 𝔻, so the stated result follows. 

We give conditions for boundedness of the various Haplitz products. 

Theorem (2.1.9)[42]: Let 𝑓 and g be in 𝐿𝑎
2  . If  𝑇𝑓𝑇�̅� is bounded, then 

                                         sup
𝑤∈𝔻

| 𝑓 ̃|
2
(𝑤) |𝑔|̃2 (𝑤) < ∞. 
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Proof. Suppose 𝑇𝑓𝑇�̅� is bounded. 

 It follows from Proposition (2.1.5) that 

                   | 𝑓 ̃|
2
(𝑤)1 2⁄  | 𝑔|̃2(𝑤)1 2⁄ ≤ ‖4 𝑇𝑓𝑇�̅�‖, 

for all 𝑤 ∈ 𝔻. 

       Although we are not able to prove the converse of Theorem (2.1.9), we have the 

following result. 

Theorem (2.1.10)[42]: Let 𝑓 and g be in 𝐿𝑎
2  . If there is a positive constant 𝜀such that 

                             sup
𝑤∈𝔻

| 𝑓 |2+�̃�  (𝑤)|𝑔|2+�̃�(𝑤) < ∞, 

then the product 𝑇𝑓𝑇�̅� is bounded. 

Proof. Let 𝑢 and 𝑣 be in 𝐿𝑎
2  . To show that the product 𝑇𝑓𝑇�̅� is bounded we will estimate 

(𝑇𝑓𝑇�̅�𝑢, 𝑣) using Lemma (2.1.1) and Lemmas (2.1.2), (2.1.3). It follows from the inner 

product formula (Lemma (2.1.1)) that 

                           〈𝑇𝑓𝑇�̅�𝑢, 𝑣〉 = (𝑇�̅�𝑢, 𝑇𝑓̅𝑣) = 𝐼 + 𝐼𝐼 + 𝐼𝐼𝐼, 

where 

                          𝐼 = 3∫ (1 − |𝑤|2)2
𝔻

(𝑇�̅�𝑢)(𝑤)(𝑇𝑓̅ 𝑣)(𝑤)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 𝑑𝐴(𝑤), 

                        𝐼𝐼 =
1

2
∫ (1 − |𝑤|2)2
𝔻

(𝑇�̅�𝑢)′(𝑤)(𝑇𝑓̅𝑣)′(𝑤)
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 𝑑𝐴(𝑤), 

                       𝐼𝐼𝐼 =
1

3
∫ (1 − |𝑤|2)3
𝔻

(𝑇�̅�𝑢)′ (𝑤)(𝑇𝑓̅𝑣)′(𝑤)
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅𝑑𝐴(𝑤). 

It follows from Lemma (2.1.2) that 

                     |𝐼| ≤ 3∫ [ | 𝑓 ̃|2(𝑤)|𝑔|̃2(𝑤)]
1 2⁄

𝔻
‖𝑢‖2 ‖𝑣‖2 𝑑𝐴(𝑤) 

                             ≤ 3 sup
𝑤∈𝔻

[ | 𝑓 ̌|
2
(𝑤)|�̃�|2(𝑤)]

1 2⁄

 ‖𝑢‖2‖𝑣‖2 . 

Using Lemma (2.1.3) we have 

                      |𝐼𝐼| ≤
4

2
∫ [ | 𝑓 |2+�̃�  (𝑤)| 𝑔|2+𝜀̃ (𝑤)]
𝔻

1 (2⁄ +𝜀)
       

                              × 𝑃0[|𝑢|
𝛿  ](𝑤)(1 𝛿⁄ ) 𝑃0[|𝑣|

𝛿](𝑤)1 𝛿⁄ 𝑑𝐴(𝑤) 

                           ≤ 2 sup
𝑤∈𝔻

[ |𝑓 |2+�̃�(𝑤)| 𝑔|2+𝜀̃ (𝑤)]1 (2⁄ +𝜀)  

                           ≤ ∫ 𝑃0[|𝑢|
𝛿](𝑤)1 𝛿⁄

𝔻
 𝑃0[|𝑣|

𝛿](𝑤)1 𝛿⁄ 𝑑𝐴(𝑤). 

Since 𝑝 = 2 ∕ 𝛿 > 1 and 𝑃0 is 𝐿𝑝−bounded, there exists a constant 𝐶 such that 

            ∫ 𝑃0[|𝑢|
𝛿](𝑤)2 𝛿⁄

𝔻
 𝑑𝐴(𝑤) ≤ 𝐶 ∫ 𝑃0[|𝑢|

𝛿](𝑤)2 𝛿⁄
𝔻

𝑥𝑑𝐴(𝑤) = 𝐶‖𝑢‖2
2 . 

By the Cauchy Schwarz inequality, 

            ∫ 𝑃0[|𝑢|
𝛿](𝑤)1 𝛿⁄

𝔻
 𝑃0[|𝑣|

𝛿](𝑤)(1 𝛿⁄ )𝑑𝐴(𝑤) ≤ 𝐶 ‖𝑢‖2‖𝑣‖2 , 

 

   and thus 

|𝐼𝐼| ≤ 2𝐶 sup
𝑤∈𝔻

[ |𝑓 |2+�̃�(𝑤)|𝑔|2+𝜀̃ (𝑤)]1 (2⁄ +𝜀)  ‖𝑢‖2‖𝑣‖2 . 

Term III is estimated similar to II. From the estimates of the three terms I, II, and III, we 

obtain 

|𝑇𝑓𝑇�̅�𝑢, 𝑣| ≤ 𝑀 sup
𝑤∈𝔻

[ |𝑓 |2+�̃�(𝑤)| 𝑔|2+𝜀̃ (𝑤)]1 (2⁄ +𝜀)  ‖𝑢‖2‖𝑣‖2 , 

 
for some constant 𝑀 > 0. So the product 𝑇𝑓𝑇�̅� is bounded, as desired. 

       Using Proposition (2.1.6) we obtain a necessary condition on Boundedness of the 

product 𝐻𝑓𝐻𝑔
∗. 
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Theorem (2.1.11)[42]: Let 𝑓 and g be in 𝐿2(𝔻, 𝑑𝐴). If 𝐻𝑓𝐻𝑔
∗ is bounded, then 

                 sup
𝑤∈𝔻

‖𝑓 ∘ 𝜑𝑤 − 𝑃( 𝑓 ∘ 𝜑𝑤)‖2  ‖𝑔 ∘ 𝜑𝑤 − 𝑃(𝑔 ∘ 𝜑𝑤)‖2 < ∞. 

We have not been able to prove the converse of the above theorem. We do however have 

the following result. 

Theorem (2.1.12)[42]: Let 𝑓 and g be in 𝐿2(𝔻, 𝑑𝐴). If there is a positive constant 𝜀 such 

that 

              sup
𝑤∈𝔻

‖𝑓 ∘ 𝜑𝑤 − 𝑃( 𝑓 ∘ 𝜑𝑤)‖2 +𝜀  ‖𝑔 ∘ 𝜑𝑤 − 𝑃(𝑔 ∘ 𝜑𝑤)‖2+𝜀 < ∞, 

then the product 𝐻𝑓𝐻𝑔
∗ is bounded. 

Proof. Let 𝑢, 𝑣 ∈ 𝐶𝑐(𝔻) ∩ (𝐿𝑎
2  )⊥. Using the definitions of 𝐻𝑔

∗𝑢 and 𝐻𝑓
∗𝑣, and Fubini's 

Theorem, we have 

〈𝐻𝑔
∗𝑢,𝐻𝑓

∗ 𝑣〉 = ∫ {∫
𝑔(𝑧)̅̅ ̅̅ ̅̅ 𝑢(𝑧)

(1 − 𝑤𝑧̅)2𝔻

 𝑑𝐴(𝑧)}
𝔻

 = {∫
𝑓(𝜆)𝑣(𝜆)̅̅ ̅̅ ̅̅

(1 − 𝜆�̅�)2𝔻

 𝑑𝐴(𝜆)} 𝑑𝐴(𝑤) 

                     = ∫ 𝑓(𝜆)𝐻𝑔
∗𝑢(𝜆) 𝑣(𝜆)̅̅ ̅̅ ̅̅ ̅ 𝑑𝐴(𝜆)

𝔻
= 〈𝑓𝐻𝑔

∗ 𝑢, 𝑣〉 = 〈𝐻𝑓𝐻𝑔
∗ 𝑢, 𝑣〉. 

Thus, by Lemma (2.1.1) we have 

                             (𝐻𝑓𝐻𝑔
∗𝑢, 𝑣) = (𝐻𝑔

∗𝑢, 𝐻𝑓
∗𝑣) = 𝐼 + 𝐼𝐼 + 𝐼𝐼𝐼, 

where 

                               𝐼 = 3∫ (1 − |𝑤|2)2
𝔻

(𝐻𝑔
∗𝑢)(𝑤)(𝐻𝑓

∗ 𝑣)(𝑤)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 𝑑𝐴(𝑤), 

                             𝐼𝐼 =
1

2
∫ (1 − |𝑤|2)2
𝔻

 (𝐻𝑔
∗𝑢)′(𝑤)(𝐻𝑓

∗ 𝑣)′(𝑤)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  𝑑𝐴(𝑤), 

                            𝐼𝐼𝐼 =
1

3
∫ (1 − |𝑤|2)3
𝔻

 (𝐻𝑔
∗𝑢)′(𝑤)(𝐻𝑓

∗ 𝑣)′(𝑤)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  𝑑𝐴(𝑤). 

It follows from Lemma (2.1.2) that 

|𝐼|3 sup
𝑤∈𝔻

‖𝑓 ∘ 𝜑𝑤 − 𝑃( 𝑓 ∘ 𝜑𝑤)‖2  ‖𝑔 ∘ 𝜑𝑤 − 𝑃(𝑔 ∘ 𝜑𝑤)‖2 ‖𝑢‖2‖𝑣‖2 . 

Using Lemma (2.1.3) and the Lp-boundedness of operator 𝑃0  we have 

|𝐼𝐼| ≤ 2𝐶𝑠𝑢𝑝𝑤∈𝔻 ‖𝑓 ∘ 𝜑𝑤𝑃( 𝑓 𝑏. 𝑤)‖2+𝜀 
                                         × ‖𝑔 ∘ 𝜑𝑤 − 𝑃(𝑔 ∘ 𝜑𝑤)‖2+𝜀‖𝑣‖2‖𝑢‖2  . 
Term III is estimated similar to II, and combining the estimates we get 

              |(𝐻𝑓𝐻𝑔
∗𝑢, 𝑣)| ≤ 𝑀 sup

𝑤∈𝔻
‖𝑓 ∘ 𝜑𝑤 − 𝑃( 𝑓 ∘ 𝜑𝑤)‖2+𝜀   

                                             × ‖𝑔 ∘ 𝜑𝑤 − 𝑃(𝑔 ∘ 𝜑𝑤)‖2+𝜀‖𝑣‖2‖𝑢‖2 , 
for some constant 𝑀 > 0. So the product 𝐻𝑓𝐻𝑔

∗ is bounded, as desired. K 

Analogous to the necessary conditions for boundedness of Toeplitz and Hankel products, 

Proposition (2.1.7) gives necessary conditions for boundedness of the mixed Haplitz 

products. 

Theorem (2.1.13)[42]: Let 𝑓 ∈ 𝐿𝑎
2  and 𝑔 ∈ 𝐿2(𝔻, 𝑑𝐴). If 𝑇𝑓𝐻𝑔

∗ 𝑜𝑟 𝐻𝑔𝑇𝑓̅ is bounded, then 

sup
𝑤∈𝔻

|𝑓|2̃(𝑤)1 2⁄  ‖𝑔 ∘ 𝜑𝑤 − 𝑃(𝑔 ∘ 𝜑𝑤)‖2 < ∞. 

  We have not been able to prove the converse of the above theorem, but we have the 

following result, which is proved similarly to Theorems (2.1.10) and (2.1.12). 

Theorem (2.1.14)[42]: Let 𝑓 ∈ 𝐿𝑎
2  and 𝑔 ∈ 𝑙2(𝔻, 𝑑𝐴) If for a constant 𝜀 > 0 

         sup
𝑤∈𝔻

| 𝑓 |2+𝜀(𝑤)1 (2+𝜀⁄ )‖𝑔 ∘ 𝜑𝑤 − 𝑃(𝑔 ∘ 𝜑𝑤)‖2+𝜀 < ∞, 

then 𝑇𝑓𝐻𝑔
∗ and 𝐻𝑔𝑇𝑓̅ are bounded. 

We discuss conditions for compactness of the various Haplitz products. The following 

lemma gives necessary conditions for compactness of operators on 𝐿𝑎
2  , operators on (𝐿2

𝑎)⊥, 

or operators between these spaces. 
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Lemma (2.1.15)[42]: If 𝐴: 𝐿𝑎
2 ⟶ 𝐿𝑎

2  , 𝐵: 𝐿𝑎
2  ⟶ (𝐿𝑎

2 )⊥, 𝐶: (𝐿𝑎
2 )⊥ → 𝐿𝑎

2  and 𝐷: (𝐿𝑎
2 )⊥ →

(𝐿𝑎
2 )⊥ are compact operators, then 

                                               ‖𝐴 − 𝑇𝜑𝑤𝐴𝑇�̅�𝑤‖ → 0, 

                                               ‖𝐵 − 𝑆𝜑𝑤𝐵𝑇�̅�𝑤‖ → 0, 

                                               ‖𝐶 − 𝑇𝜑𝑤𝐶𝑆�̅�𝑤‖ → 0, 

                                               ‖𝐷 − 𝑆𝜑𝑤𝐷𝑆�̅�𝑤‖ → 0, 

as |𝑤| → 1−. 
Proof. If  𝐻1 and 𝐻2 are Hilbert spaces and 𝑆:𝐻1 → 𝐻2 is a compact operator, then, since 

operators of finite rank are dense in the set of compact operators, given 𝜀 > 0 there exist 

𝑓1 , . . . , 𝑓𝑛 ∈ 𝐻1 and 𝑔1 , . . . , 𝑔𝑛 ∈ 𝐻2 sothat 

                                                    ‖𝑆 − ∑ 𝑓𝑖⊗𝑔𝑖
𝑛
𝑖=1 ‖ < 𝜀. 

Thus the above statements follow once we prove them for operators of rank one. 

       If 𝑓 ∈ 𝐿2(𝔻, 𝑑𝐴) as |𝑤| → 1−, then for every  𝑧 ∈ 𝔻 we have 𝑤 − 𝜑𝑤(𝑧) =
(1 − |𝑤|2)𝑧 1 − �̅�𝑧⁄ → 0, so by the Lebesgue Dominated Convergence Theorem, 
‖𝑤𝑓 − 𝜑𝑤  𝑓‖2  → 0 as |𝑤| → 1−. It follows that ‖𝜉𝑓 − 𝜑𝑤𝑓‖2 → 0, if 𝑤 ∈ 𝔻 tends to 𝜉 ∈
𝜕𝔻. 
       If 𝑓 ∈ 𝐿𝑎

2  , we apply 𝑃 to obtain 

                                    ‖𝜉𝑓 − 𝑇𝜑𝑤𝑓‖2
= ‖𝜉𝑓 − 𝑃(𝜑𝑤𝑓 )‖2 → 0, 

as 𝑤 in 𝔻 tends to 𝜉 ∈ 𝜕𝔻. If f, 𝑔 ∈ 𝐿𝑎
2  , then writing  

‖ 𝑓 ⊗ 𝑔 − 𝑇𝜑𝑤(𝑓 ⊗ 𝑔)𝑇�̅�𝑤‖                

= ‖(𝜉𝑓)⊗ (𝜉𝑔) − (𝑇𝜑𝑤𝑓)⊗ (𝑇𝜑𝑤𝑔)‖ 

≤ ‖(𝜉𝑓 − 𝑇𝜑𝑤𝑓 ) ⊗ (𝜉𝑔)‖ + ‖(𝑇𝜑𝑤𝑓)⊗ (𝜉𝑔 − 𝑇𝜑𝑤𝑔)‖ 

≤ ‖𝜉𝑓 − 𝑇𝜑𝑤𝑓‖2
‖𝑔‖2 ‖𝑓‖2 ‖𝜉𝑔 − 𝑇𝜑𝑤𝑔‖2

 , 

we see that 

 ‖𝑓 ⊗ 𝑔 − 𝑇𝜑𝑤( 𝑓 ⊗ 𝑔)𝑇�̅�𝑤‖ → 0 

as w in 𝔻tends to 𝜉 ∈ 𝜕𝔻. This proves the statement for operator 𝐴. 
       Suppose 𝑓 ∈ (𝐿𝑎

2 )⊥, then (𝐼 − 𝑃)(𝜉𝑓) = 𝜉𝑓,  so that 

                                      ‖𝜉𝑓 − 𝑆𝜑𝑤𝑓‖2
= ‖(𝐼 − 𝑃)(𝜉𝑓 − 𝜑𝑤𝑓)‖2 → 0, 

as w in 𝔻 tends to 𝜉 ∈ 𝜕𝔻. If 𝑓, 𝑔 ∈ (𝐿𝑎
2 )⊥ then writing 

  ‖𝑓 ⊗ 𝑔 − 𝑆𝜑𝑤( 𝑓 ⊗ 𝑔)𝑆�̅�𝑤‖ 

                                             = ‖(𝜉𝑓)⊗ (𝜉𝑔) − (𝑆𝜑𝑤𝑓) ⊗ (𝑆𝜑𝑤𝑔)‖ 

                                            ≤ ‖(𝜉𝑓 − 𝑆𝜑𝑤𝑓) ⊗ (𝜉𝑔)‖ + ‖(𝑆𝜑𝑤𝑓)⊗ (𝜉𝑔 − 𝑆𝜑𝑤𝑔)‖ 

≤ ‖𝜉𝑓 − 𝑆𝜑𝑤𝑓‖2
‖𝑔‖2 + ‖𝑓‖2‖𝜉𝑔 − 𝑆𝜑𝑤𝑔‖2

 , 

we get 

                                      ‖𝑓 ⊗ 𝑔 − 𝑆𝜑𝑤(𝑓 ⊗ 𝑔)𝑆�̅�𝑤‖ → 0 

as w in 𝔻 tends to ∈ 𝜕𝔻. This proves the statement for operator 𝐷. 

If 𝑓 ∈ 𝐿𝑎
2  and 𝑔 ∈ (𝐿𝑎

2 )⊥, and 𝑤 ∈ 𝔻 tends to 𝜉 ∈ 𝜕𝔻, then ‖𝜉𝑓 − 𝑇𝜑𝑤𝑓‖2
→ 0 and 

‖𝜉𝑔 − 𝑆𝜑𝑤𝑔‖2
→ 0 imply that  ‖𝑓 ⊗ 𝑔 − 𝑇𝜑𝑤(𝑓 ⊗ 𝑔)𝑆�̅�𝑤‖ → 0 

as |𝑤| → 1−. This proves the statement for operator B. 

       The statement for operator C is proved similarly. 

Theorem (2.1.16)[42]: Let 𝑓 and 𝑔 be in 𝐻∞. Then 𝑇𝑓𝑇�̅� is compact if and only if 𝑓 ≡ 0 

or 𝑔 ≡ 0. 
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Proof. If 𝑇𝑓𝑇�̅� is compact, then by Lemma (2.1.15), ‖𝑇𝑓𝑇�̅� − 𝑇𝜑𝑤𝑇𝑓𝑇�̅�𝑇�̅�𝑤‖ → 0 

as |𝑤| → 1−. Using Lemma (2.1.5) it follows that | 𝑓 |2̃(𝑤)1 2⁄  |𝑔|2̃(𝑤)1 2⁄ → 0as |𝑤| →

1−. Since |𝑓(𝑤)|2 ≤ | 𝑓 |2̃(𝑤) and |𝑔(𝑤)|2 ≤ |𝑔|2̃(𝑤) we obtain |𝑓(𝑤)𝑔(𝑤)| → 0 as 

|𝑤| → 1−, and by the Maximum Modulus Principle,𝑓𝑔 ≡ 0, 𝑡ℎ𝑢𝑠 𝑓 ≡ 0 𝑜𝑟 𝑔 ≡ 0.  
Theorem (2.1.17)[42]: Let 𝑓 and 𝑔 be in 𝐿 ∈ (𝔻, 𝑑𝐴). Then 𝐻𝑓𝐻𝑔

∗ is compact if and only if 

                    lim
|𝑤|→1−

 ‖𝑓 ∘ 𝜑𝑤 − 𝑃( 𝑓 ∘ 𝜑𝑤)‖2 ‖𝑔 ∘ 𝜑𝑤 − 𝑃(𝑔 ∘ 𝜑𝑤)‖2 = 0. 

Proof. First we show the ``if part.'' If 𝐻𝑓𝐻𝑔
∗ is compact, then by Lemma (2.1.15), 

‖𝐻𝑓𝐻𝑔
∗ − 𝑆𝜑𝑤𝐻𝑓𝐻𝑔

∗𝑆�̅�𝑤‖ → 0 as |𝑤| → 1−. Using Lemma (2.1.6) it follows that 

                              ‖𝑓 ∘ 𝜑𝑤 − 𝑃( 𝑓 ∘ 𝜑𝑤)‖2 − ‖𝑔 ∘ 𝜑𝑤 − 𝑃(𝑔 ∘ 𝜑𝑤)‖2 → 0 

as |𝑤| → 1−. 

       Now we turn to the "only if '' part. For 𝑢, 𝑣 ∈ 𝐶𝑐(𝔻) ∩ (𝐿𝑎
2 )⊥we have 

                           〈𝐻𝑓𝐻𝑔
∗𝑢, 𝑣〉 = 〈𝐻𝑔

∗𝑢,𝐻𝑓
∗𝑣〉 = 𝐼 + 𝐼𝐼 + 𝐼𝐼𝐼, 

where I, II, and III are as in the proof of Theorem (2.1.12). For 0 < 𝑠 < 1 we write 𝐼 = 𝐼𝑠 +
𝐼𝑠
′ , 𝐼𝐼 = 𝐼𝐼𝑠 + 𝐼𝐼𝑠

′ , and III=𝐼𝐼𝐼𝑠 + 𝐼𝐼𝐼𝑠
′ , where 

                  𝐼𝑠 = 3∫ (1 − |𝑤|2)2
𝑠<|𝑤|<1

(𝑤)(𝐻𝑓
∗𝑣)(𝑤) 𝑑𝐴(𝑤), 

                𝐼𝐼𝑠 =
1

2
∫ (1 − |𝑤|2)2
𝑠<|𝑤|<1

(𝐻𝑔
∗𝑢)′(𝑤)(𝐻𝑓

∗𝑣)′(𝑤)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 𝑑𝐴(𝑤), 

               𝐼𝐼𝐼𝑠 =
1

3
∫ (1 − |𝑤|2)3
𝑠<|𝑤|<1

(𝐻𝑔
∗𝑢)′(𝑤)(𝐻𝑓

∗𝑣)′(𝑤)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅𝑑𝐴(𝑤). 

It is easy to see that there exist compact operators 𝐾𝑠
𝐼 , 𝐾𝑠

𝐼𝐼 and 𝐾𝑠
𝐼𝐼𝐼 on(𝐿𝑎

2 )⊥ such that 

〈𝐾𝑠
𝐼𝑢, 𝑣〉 = 𝐼𝑠

′ , 〈𝐾𝑠
𝐼𝐼 𝑢, 𝑣〉 = 𝐼𝐼𝑠

′ and 〈𝐾𝑠
𝐼𝐼𝐼𝑢, 𝑣〉 = 𝐼𝐼𝐼𝑠

′ . Theoperator 𝐾𝑠 = 𝐾𝑠
𝐼 + 𝐾𝑠

𝐼𝐼 + 𝐾𝑠
𝐼𝐼𝐼 is 

compact, and 〈(𝐻𝑓𝐻𝑔
∗ − 𝐾𝑠)𝑢, 𝑣〉 = 𝐼𝑠 + 𝐼𝐼𝑠 + 𝐼𝐼𝐼𝑠 . We will estimate each of the terms Is, 

IIs and IIIs .It follows from Lemma (2.1.2) that 
|𝐼𝑠| ≤ 3 sup

𝑠<|𝑤|<1
‖𝑓 ∘ 𝜑𝑤 − 𝑃( 𝑓 ∘ 𝜑𝑤)‖2  − ‖𝑢‖2‖𝑣‖2 . 

       Using Lemma (2.1.3) and the 𝐿𝑝−boundedness of operator 𝑃0 we have 

                     |𝐼𝐼𝑠| ≤ 2𝐶 sup
𝑠<|𝑤|<1

‖𝑓 ∘ 𝜑𝑤 − 𝑃( 𝑓 ∘ 𝜑𝑤)‖2 +𝜀   

                                  |× ‖𝑔 ∘ 𝜑𝑤 − 𝑃(𝑔 ∘ 𝜑𝑤)‖2 +𝜀  ‖𝑢‖2‖𝑣‖2 . 
Term 𝐼𝐼𝐼𝑠 is estimated similar to 𝐼𝑠 , and we obtain 

          |〈(𝐻𝑓𝐻𝑔
∗ − 𝐾𝑠)𝑢, 𝑣〉| ≤ 𝐶 𝑠𝑢𝑝

𝑠<|𝑤|<1
 ‖𝑓 ∘ 𝜑𝑤 − 𝑃(𝑓 ∘ 𝑤)‖2+𝜀 

× ‖𝑔 ∘ 𝜑𝑤 − 𝑃(𝑔 ∘ 𝜑𝑤)‖2 +𝜀  ‖𝑢‖2‖𝑣‖2 

for some constant 𝐶 > 0. Since 𝑃 is 𝐿2+2𝜀-bounded, there exists a constant 𝐶𝜀 such that 

‖𝑓 ∘ 𝜑𝑤 − 𝑃(𝑓 ∘ 𝜑𝑤)‖2+𝜀 ≤ 𝐶‖𝑓‖∞
1+𝜀 2+𝜀⁄

  𝑓 ∘ 𝜑𝑤 − 𝑃(𝑓 ∘ 𝜑𝑤)2
1 2+𝜀⁄

 . 
A similar inequality holds for ‖𝑔 ∘ 𝜑𝑤 − 𝑃(𝑔 ∘ 𝜑𝑤)‖2+𝜀  . Thus there exists a constant 

𝐶′ such that 

       |〈(𝐻𝑓𝐻𝑔
∗ − 𝐾𝑠)𝑢, 𝑣〉| ≤ 𝐶

′𝑠𝑢𝑝𝑠<|𝑤|<1‖( 𝑓 ∘ 𝜑𝑤 − 𝑃(𝑓 ∘ 𝜑𝑤)‖2 

× ‖𝑔 ∘ 𝜑𝑤 − 𝑃(𝑔 ∘ 𝜑𝑤)‖2

1
1+𝜖‖𝑢‖2‖𝑣‖2 

from which we conclude that 

𝐻𝑓𝐻𝑔
∗ − 𝐾𝑠 ≤ 𝐶

′ 𝑠𝑢𝑝𝑠<|𝑤|<1‖( 𝑓 ∘ 𝜑𝑤 − 𝑃(𝑓 ∘ 𝜑𝑤)‖2
1 2+𝜀⁄

 

                                                        × ‖𝑔 ∘ 𝜑𝑤 − 𝑃(𝑔 ∘ 𝜑𝑤)‖2
1 2+𝜀⁄

 . 
So if  ‖( 𝑓 ∘ 𝜑𝑤 − 𝑃(𝑓 ∘ 𝜑𝑤)‖2 ‖𝑔 ∘ 𝜑𝑤 − 𝑃(𝑔 ∘ 𝜑𝑤)‖2 → 0 as |𝑤| → 1−, then it follows 

from the above inequality that 𝐾𝑠 → 𝐻𝑓𝐻𝑔
∗ in operator norm, and since each of the 𝐾𝑠 is 
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compact, we conclude that operator 𝐻𝑓𝐻𝑔
∗ is compact. K Analogous to Theorems (2.1.16) 

and (2.1.17) we have the following result for the mixed Haplitz products. 

Theorem (2.1.18)[42]: Let 𝑓 ∈ 𝐻∞ and 𝑔 ∈ 𝐿∞(𝔻, 𝑑𝐴). Then 𝑇𝑓𝐻𝑔
∗ is compact if and only 

if 𝐻𝑔𝑇𝑓̅ is compact if and only if 

lim
|𝑤|→1−

|𝑓|̃2(𝑤)1/2‖𝑔 ∘ 𝜑𝑤 − 𝑃(𝑔 ∘ 𝜑𝑤‖2 = 0. 

We discuss compactness of the various Haplitz products with symbols in the maximal 

ideal space. We first recall the definition and Hoffman's beautiful description of the maximal 

ideal space. 

       The maximal ideal space of  𝐻∞ is the set 𝑀 of multiplicative linear maps from  𝐻∞ 

onto the field of complex numbers. The Gelfand transform allows us to think of  𝐻∞ as a 

subalgebra of 𝐶(𝑀), the algebra of continuous complex-valued functions on M. By the 

Stone-Weierstrass theorem, the set of finite sums of functions of the form 𝑓�̅� , with 𝑓, 𝑔 ∈

𝐻∞, is dense in C(M), where C(M) is endowed with the usual supremum norm. Thus we 

can identify C(M) with the closed subspace of 𝐿∞(𝔻, 𝑑𝐴) generated by functions of the form 

𝑓�̅� , with 𝑓, 𝑔 ∈ 𝐻∞. With this viewpoint, C(M) is the C*-subalgebra of 𝐿∞(𝔻, 𝑑𝐴) 

generated by 𝐻∞. For 𝑚 ∈ 𝑀, let 𝜑𝑚: 𝔻 → 𝑀 denote the Hoffman map. This map is defined 

by setting 

                                       𝜑𝑚(𝑤) = lim
𝑧→𝑚

𝜑𝑧(𝑤) 

for 𝑤𝜖𝔻; here we are taking a limit in M. The existence of this limit, as well as many other 

deep properties of 𝜑𝑚 , was proved by Hoffman [50]. An exposition of Hoffman's results 

can also be found in [49]. We shall use, without further comment, Hoffman's result that 𝜑𝑚 

is a continuous mapping of  𝔻 into M. Note that 𝜑𝑚(0) = 𝑚. 
Theorem (2.1.19)[42]: Let 𝑓 and g be in C(M). Then the product 𝐻𝑓𝐻𝑔

∗ is compact if and 

only if 𝑓 ∘ 𝜑𝑚 or 𝑔 ∘ 𝜑𝑚 is in 𝐻∞ for every m in 𝑀/𝔻 . 
Proof. By Theorem (2.1.17) it suffices to show that f ∘ 𝜑𝑚 or 𝑔 ∘ 𝜑𝑚 is in 𝐻∞, for all m in 

𝑀/𝔻, is equivalent to 

lim
|𝑤|→1−

 ‖𝑓 ∘ 𝜑𝑤 − 𝑃(𝑓 ∘ 𝜑𝑤)‖2‖𝑔 ∘ 𝜑𝑤 − 𝑃(𝑔 ∘ 𝜑𝑤)‖2 = 0. 

If m is in 𝑀/𝔻, and (𝑤𝑗) is a net in 𝔻 converging to m, then it is easily seen that 𝑓 ∘ 𝜑𝑤𝑗 →

 𝑓 ∘ 𝜑𝑚 pointwise on 𝔻. We claim that in fact 𝑓 ∘ 𝜑𝑤𝑗 → 𝑓 ∘ 𝜑𝑚 in 𝐿2(𝔻, 𝑑𝐴). Some care 

needs to be taken to prove this claim, since the bounded convergence theorem does not hold 

for nets, as opposed to sequences. A standard density argument shows that 𝑓 ∘ 𝜑𝑤𝑗 → 𝑓 ∘

𝜑𝑚 uniformly on compact subsets of 𝔻 (see [54],). Using that 

 ‖𝑓 ∘ 𝜑𝑤𝑗 − 𝑓 ∘ 𝜑𝑚‖2
2
= ∫ |𝑓 ∘ 𝜑𝑤𝑗(𝑧) − 𝑓 ∘ 𝜑𝑚(𝑧)|

2

𝔻

 𝑑𝐴 

                                    +∫  |𝑓 ∘ 𝜑𝑤𝑗 − 𝑓 ∘ 𝜑𝑚|
2
 𝑑𝐴

𝔻 𝑟�̅�⁄
 

≤ sup
|𝑧|≤𝑟

| 𝑓 ∘ 𝜑𝑤𝑗 − 𝑓 ∘ 𝜑𝑚|
2
+ 4(1 − 𝑟2)‖𝑓‖∞

2 , 

for all 0 < 𝑟 < 1, we conclude that indeed 𝑓 ∘ 𝜑𝑤𝑗 →  𝑓 ∘ 𝜑𝑚 𝑖𝑛 𝐿
2(𝔻, 𝑑𝐴). It follows that 

(𝐼 − 𝑃)(𝑓 ∘ 𝜑𝑤𝑗) → (𝐼 − 𝑃)( 𝑓 ∘ 𝜑𝑚). Consequently, 

                     lim
𝑤→𝑚

‖𝑓 ∘ 𝜑𝑤 − 𝑃( 𝑓 ∘ 𝜑𝑤𝑗)‖2  =
‖𝑓 ∘ 𝜑𝑚 − 𝑃(𝑓 ∘ 𝜑𝑚)‖2 . 

So 𝑓 ∘ 𝜑𝑚 is in 𝐻∞ if and only if 

                                   lim
𝑤→𝑚

‖𝑓 ∘ 𝜑𝑤 − 𝑃( 𝑓 ∘ 𝜑𝑤)‖2 = 0. 

Hence the condition that 𝑓 ∘ 𝜑𝑚 or 𝑔 ∘ 𝜑𝑚 is in 𝐻∞ is equivalent to 
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              lim
𝑤→𝑚

‖𝑓 ∘ 𝜑𝑤 − 𝑃( 𝑓 ∘ 𝜑𝑤)‖2  ‖𝑔 ∘ 𝜑𝑤 − 𝑃( 𝑔 ∘ 𝜑𝑤)‖2 = 0. 

This completes the proof. 

       The above theorem should be compared with the following result. 

Theorem (2.1.20)[42]: Let 𝑓, 𝑔 ∈ 𝐶(𝑀). The following statements are equivalent: 

   (i) 𝐻𝑓
∗𝐻𝑔 is compact; 

   (ii) (𝐼 − 𝑃)( 𝑓 ∘ 𝜑𝑚) ⊥ = (𝐼 − 𝑃)(𝑔 ∘ 𝜑𝑚), for all 𝑚 ∈ 𝑀\𝔻; 

   (iii) 𝐻𝑓∘𝜑𝑚
∗ 𝐻𝑔∘𝜑𝑚 = 0, for all 𝑚 ∈ 𝑀\𝔻. 

Proof. (i) (ii): If w in 𝔻 converges to 𝑚 ∈ 𝑀\𝔻 then 

𝐿𝑖𝑚𝑤→𝑚〈𝐻𝑓
∗𝐻𝑔𝑘𝑤, 𝑘𝑤〉 = lim

𝑤→𝑚
〈(𝐼 − 𝑃)(𝑔 ∘ 𝜑𝑤), (𝐼 − 𝑃)( 𝑓 ∘ 𝜑𝑤)〉 

= ((𝐼 − 𝑃)(𝑔 ∘ 𝜑𝑚), (𝐼 − 𝑃)(𝑓 ∘ 𝜑𝑚)). 
By Theorem (2.1.1) in [46],  𝐻𝑓

∗ 𝐻𝑔 is compact if and only if (𝐻𝑓
∗𝐻𝑔𝑘𝑤, 𝑘𝑤) → 0 as |𝑤| →

1−, so 𝐻𝑓
∗𝐻𝑔 is compact if and only if 

                                     〈(𝐼 − 𝑃)(𝑔 ∘ 𝜑𝑚), (𝐼 − 𝑃)( 𝑓 ∘ 𝜑𝑚)〉 = 0 

for all 𝑚 ∈ 𝑀\𝔻. 

(ii) ⇔ (iii):    If 𝑤 in 𝔻converges to 𝑚 ∈ 𝑀\𝔻, then by Lemma 2.8 in [45], we have 

                                    𝑈𝑤𝐻𝑓
∗𝐻𝑔𝑈𝑤 → 𝐻𝑓∘𝜑𝑚

∗ 𝐻𝑔∘𝜑𝑚, 

where the limit is taken in the strong operator topology. For fixed 𝑧 ∈ 𝔻, using that 𝑈𝑤𝑘𝑧 =
𝜉𝑘𝜑𝑤(𝑧) for unimodular 𝜉 it follows that 

               〈𝐻𝑓∘𝜑𝑚
∗ 𝐻𝑔∘𝜑𝑚𝑘𝑧 , 𝑘𝑧〉 = lim

𝑤→𝑚
〈𝑈𝑤𝐻𝑓

∗𝐻𝑔𝑈𝑤𝑘𝑧 , 𝑘𝑧〉 

                                                       = lim
𝑤→𝑚

〈𝐻𝑓
∗𝐻𝑔𝑘𝜑𝑤(𝑧) , 𝑘𝜑𝑤(𝑧)〉 

                                                       = 〈(𝐼 − 𝑃)(𝑔 ∘ 𝜑𝑚𝑧), (𝐼 − 𝑃)( 𝑓 ∘ 𝜑𝑚𝑧)〉, 

where 𝑚 = 𝜑𝑚(𝑧) ∈ 𝑀\𝔻. Thus (ii) is equivalent to 〈𝐻𝑓∘𝜑𝑚
∗ 𝐻𝑔∘𝜑𝑚𝑘𝑧 , 𝑘𝑧〉 = 0, for all 𝑧 ∈

𝔻, which, by a result of Berezin (see, for example, [55],), is equivalent to 𝐻𝑓∘𝜑𝑚
∗ 𝐻𝑔∘𝜑𝑚 = 0. 

       On the Bergman space, it is not clear that 𝐻𝑓𝐻𝑔
∗ is compact if and only if 𝐻𝑓

∗𝐻𝑔 is 

compact because we don't know when the product 𝐻𝑓
∗𝐻𝑔 is zero even if 𝑓 and g are in 𝐶(𝑀). 

However, when 𝑓 and g are bounded harmonic functions on 𝔻, combining a theorem in [58] 

with Theorem (2.1.19) yields the following result. 

Theorem (2.1.21)[42]: Let 𝑓 and 𝑔 be bounded harmonic functions on the unit disk. 

Then 𝐻𝑓𝐻𝑔
∗ is compact if and only if 𝐻𝑓

∗𝐻𝑔 is compact. 

       For mixed Haplitz products we have the following characterization of compactness. 

Theorem (2.1.22)[42]: Let 𝑓 ∈ 𝐻∞ and 𝑔 ∈ 𝐶(𝑀). Then 𝑇𝑓𝐻𝑔
∗ is compact if and only if 

𝑓 ∘ 𝜑𝑚 = 0 or 𝑔 ∘ 𝜑𝑚 is in 𝐻∞ for every m in 𝑀\𝔻. 

Proof. If 𝑚 is in 𝑀\𝔻, then 

‖𝑔 ∘ 𝜑𝑤 − 𝑃(𝑔 ∘ 𝜑𝑤  )‖2 → ‖𝑔 ∘ 𝜑𝑚 − 𝑃(𝑔 ∘ 𝜑𝑚 )‖2 
as 𝑤 → 𝑚. Likewise, 

| 𝑓 |2̃ (𝑤)1 2⁄ = ‖𝑓 ∘ 𝜑𝑤‖2 → ‖𝑓 ∘ 𝜑𝑚‖2 , 

as 𝑤 → 𝑚. So 

| 𝑓 |2̃ (𝑤)1 2⁄  ‖𝑔 ∘ 𝜑𝑤 − 𝑃(𝑔 ∘ 𝜑𝑤  )‖2 → ‖ 𝑓 ∘ 𝜑𝑚‖2‖𝑔 ∘ 𝜑𝑚 − 𝑃(𝑔 ∘ 𝜑𝑚)‖2 

as 𝑤 → 𝑚. The condition | 𝑓 |2̃(𝑤)1 2⁄ ‖𝑔 ∘ 𝜑𝑚 − 𝑃(𝑔 ∘ 𝜑𝑚)‖2 → 0 𝑎𝑠 |𝑤| → 1− is 

therefore equivalent to the condition  ‖𝑓 ∘ 𝜑𝑚‖2‖𝑔 ∘ 𝜑𝑚 − 𝑝(𝑔 ∘ 𝜑𝑚)‖2  = 0, for all 𝑚 ∈
𝑀\𝔻, which is equivalent to 𝑓 ∘ 𝜑𝑚 = 0 or 𝑔 ∘ 𝜑𝑚 = 𝑃(𝑔 ∘ 𝜑𝑚), for all 𝑚 ∈ 𝑀\𝔻, that 

is, 𝑔 ∘ 𝜑𝑚 = 0 or 𝑔 ∘ 𝜑𝑚 is analytic, for all 𝑚 ∈ 𝑀\𝔻. K Similarly, Theorem (2.1.18) 

implies: 
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Theorem (2.1.23)[42]: Let 𝑓 ∈ 𝐻∞ and 𝑔 ∈ 𝐶(𝑀). Then 𝑇𝑓𝐻�̅� is compact if and only if 

𝐻𝑔𝑇𝑓̅ is compact if and only if 𝑓 ∘ 𝜑𝑚 = 0 or 𝑔 ∘ 𝜑𝑚 is in 𝐻∞ for every m in 𝑀\𝔻. 

       Based on Theorems (2.1.9) and (2.1.10) we make the following conjecture, analogous 

to Sarason's conjecture [53] on the Hardy space. 

Conjecture (2.1.24)[42]: Let 𝑓 and g be in 𝐿𝑎
2  . Then: 

   (i) 𝑇𝑓𝑇�̅� is bounded if and only if sup
𝑤∈𝔻

| 𝑓 |2̃ (𝑤)|𝑔|2̃(𝑤) < ∞ . 

   (ii) 𝑇𝑓𝑇�̅� is compact if and only if lim
|𝑤|→1−

| 𝑓 |2̃ (𝑤)|𝑔|2̃(𝑤) = 0 . 

Theorems (2.1.11), (2.1.12), (2.1.17) and (2.1.21) provide support for the following 

conjecture. 

Conjecture (2.1.25)[42]: Let 𝑓 and g be in 𝐿2(𝔻, 𝑑𝐴). Then: 

   (i) 𝐻𝑓𝐻𝑔
∗ is bounded if and only if 𝐻𝑓

∗𝐻𝑔 is bounded if and only if 

sup
𝑤∈𝔻

‖ 𝑓 ∘ 𝜑𝑤 − 𝑃(𝑓 ∘ 𝜑𝑤)‖2 ‖𝑔 ∘ 𝜑𝑤 − 𝑃(𝑔 ∘ 𝜑𝑤)‖2 < ∞. 

   (ii) 𝐻𝑓𝐻𝑔
∗ is compact if and only if 𝐻𝑓𝐻𝑔

∗is compact if and only if 

lim
|𝑤|→1−

‖ 𝑓 ∘ 𝜑𝑤 − 𝑃(𝑓 ∘ 𝜑𝑤)‖2 ‖𝑔 ∘ 𝜑𝑤 − 𝑃(𝑔 ∘ 𝜑𝑤)‖2 = 0. 

       If 𝐻𝑓𝐻𝑔
∗ is compact, then by Theorem (2.1.17), 

‖𝑓 ∘ 𝜑𝑤 − 𝑃(𝑓 ∘ 𝜑𝑤)‖2 ‖𝑔 ∘ 𝜑𝑤 − 𝑃(𝑔 ∘ 𝜑𝑤)‖2  → 0 
as |𝑤| → 1−, thus (𝐻𝑓

∗𝐻𝑔𝑘𝑤, 𝑘𝑤) → 0 as |𝑤| → 1−, and by Theorem (2.1.1) in 

[46], 𝐻𝑓
∗𝐻𝑔 is compact. K Based on Theorems (2.1.13), (2.1.14) and (2.1.18) we furthermore 

make the following conjecture. 

Conjecture (2.1.26)[42]: Let 𝑓 be in 𝐿2(𝔻, 𝑑𝐴) and 𝑔 ∈ 𝐿𝑎
2   . Then 

   (i) 𝑇𝑓𝐻𝑔
∗ is bounded if and only if  𝐻𝑔𝑇𝑓̅ is bounded if and only if 

                         sup
𝑤∈𝔻

 𝑓 |2̃ (𝑤)1 2⁄ ‖𝑔 ∘ 𝜑𝑤 − 𝑃(𝑔 ∘ 𝜑𝑤)‖2 | < ∞. 

   (ii) 𝑇𝑓𝐻𝑔
∗ is compact if and only if  𝐻𝑔𝑇𝑓̅ is compact if and only if 

                         lim
|𝑤|→1−

 |𝑓|
2
(𝑤)1 2⁄ ‖𝑔 ∘ 𝜑𝑤 − 𝑃(𝑔 ∘ 𝜑𝑤)‖2 = 0. 

Section (2.2): Bergman Kernel Asymptotics  

     Given a positive measure 𝑚(𝑡)𝑑𝑡 on 𝑹+ and its moment sequence 𝛾𝑛 = ∫ 𝑡𝑛𝑚(𝑡)𝑑𝑡
∞

0
, 

𝑛 =  0, 1, 2, . .., we form the associated Bergrnan kernel function, 𝐾𝑚(𝑥) = ∑𝛾𝑛
−1𝑥𝑛. We 

also formlthe new measure (𝐾𝑚(𝑡))
−1
𝑚(𝑡)𝑑𝑡 and its kernel function, 𝐾(𝐾𝑚)−1𝑚 .If we start 

with 𝑚(𝑡) = 𝑒−1 and do the computations, we find three striking facts: for all 𝑡 ∈ 𝑹+ and 

all 𝑎 ∈ ℂ, 

𝑚(𝑡)𝐾𝑚(𝑡) = 1,                                                    (𝐴) 
𝐾(𝐾𝑚)−1𝑚(𝑡) = 2𝐾𝑚

2 (𝑡),                                     (𝐵) 

and  

∫∫|𝐾(𝐾𝑚)−1𝑚(�̅�𝑧)|𝑚(|𝑧|
2)
𝑑𝑥𝑑𝑦

𝜋
= 2𝐾𝑚(|𝑎|

2).         (𝐶) 

     We were doing operator theory on the Fock space, the Hilbert space of entire functions 

square integrable with respect to the Gaussian density. We wanted to know if similar 

relations or useful substitutes held in Bergman spaces of entire functions square integrable 

with respect to other radial measures, 𝜋−1𝑚(|𝑧|2) 𝑑𝑥𝑑𝑦. However, although operator 

theoretic issues influence our discussion of the consequences of our main results, neither 

our results here nor our methods involve operator theory. See [72].  
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We collect background information about conjugate functions of convex functions 

(in the sense of Fenchel, Legendre, and Young) which arises both as we pass from the 

density m to its moments 𝛾𝑛, and as we pass from the coefficients of 𝐾𝑚 to its values. 

Informal statements and proof outlines for our two main technical results: Theorem (2.2.2)-

which shows how the growth of the density function controls the asymptotic growth of the 

moment sequence-and Theorem (2.2.3)-which shows how the growth of the coefficient 

sequence controls the growth of 𝐾𝑚(𝑟𝑒
𝑖𝜃) for large r. The next have the statements and 

proofs of Theorems (2.2.2) and (2.2.3). The basic approach for Theorem (2.2.2) is Laplace's 

method for asymptotic estimation of integrals which depend on a parameter. To prove 

Theorem (2.2.3), we join Laplace's method with Poisson summation.  

We combine Theorem (2.2.2) and Theorem (2.2.3) to give Theorem (2.2.4), our 

estimates for the Bergman kernel functions. A consequence of that Theorem (2.2.2) 

Corollary (2.2.17), which includes the result that, as 𝑟 → ∞, 

𝑚(𝑟)𝐾(𝑟)~
−(𝑟

𝑑
𝑑𝑟
)
2

log𝑚(𝑟)

𝑟
. 

In particular, if 𝑚(𝑟)~𝑎𝑟𝑏𝑒−𝑐𝑟
4
, with 𝑎, 𝑏, 𝑐, 𝑑 > 0, we have 

𝑚(𝑟)𝐾(𝑟)~ 𝑐𝑑2𝑟𝑑−1, 
which is a version of (A). If we take the estimates for K in terms of m and then use Theorem 

(2.2.2) and Theorem (2.2.3) again to estimate 𝐾(𝐾𝑚)−1𝑚, we find that the two expressions in 

(B) are asymptotically equal. In fact, as is suggested by the example of the exponential 

density, we see in Theorem (2.2.18) that  

𝐾(𝐾𝑚)−𝛼𝑚~(1 + 𝛼)(𝐾𝑚)
1+𝛼                                    (7) 

for 𝛼 > 0. We also show that the Berezin transform for these Bergrnan spaces is given 

asymptotically by integration against a Gaussian density. This and (7) are then used to give 

an asymptotic version of (C) in Corollary (2.2.20).  

     A summary of these and related results along with some discussion of the operator theory 

is in [72]. 

           Suppose 𝐴(𝑠) is a convex function defined on an interval 𝐼 ⊂ 𝑹. (When convenient, 

we set 𝐴(𝑠) = +∞ for 𝑠 ∉ 𝐼.) We recall the definition of the conjugate function of A. 

𝐴∗(𝑥) = sup
𝑠∈𝑹
{𝑥𝑠 − 𝐴(𝑠)}.                                       (8) 

This transformation occurs in various contexts, at times associated with the names Fenchel, 

Legendre, or Young.  

Lemma (2.2.1)[61]: Suppose A is smooth and 𝐴, 𝐴′, 𝐴′′ > 0. Set 𝑠(𝑥) = 𝐴′−1(𝑥) and 

𝑥(𝑠) = 𝐴′(𝑠). Then 𝐴∗, 𝐴∗′, 𝐴∗′′ > 0 and we have, for all 𝑠, 𝑥, 

(i) 𝑠(𝑥(𝑠)) = 𝑠, 𝑥(𝑠(𝑥)) = 𝑥, 
(ii) 𝑠𝑥 < 𝐴(𝑠) + 𝐴∗(𝑥), 

(iii) 𝐴∗(𝑧) = 𝑥𝐴′−1(𝑥) − 𝐴(𝐴′−1(𝑥)) = 𝑥𝑠(𝑥) − 𝐴(𝑠(𝑥)), 

(iv) 𝑠(𝑥) = 𝐴∗
′
(𝑥) = 𝐴′−1(𝑥), 

(v) 𝐴∗∗(𝑠) = 𝐴(𝑠), 

(vi) 𝐴∗
′′
(𝑥) = 𝐴′′(𝑠(𝑥))

−1
, 

(vii) 𝐴∗(3)(𝑥)𝐴∗
′′
(𝑥)−

3

2 = −𝐴(3)(𝑠(𝑥))𝐴′′(𝑠(𝑥))
−
3

2, 

(viii) 𝐴∗(4)(𝑥)𝐴∗
′′
(𝑥)−2 = −𝐴(4)(𝑠(𝑥))𝐴′′(𝑠(𝑥))

−2
+  3𝐴(3)(𝑠(𝑥))

2
𝐴′′(𝑠(𝑥))

−3
. 
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     We are only interested in asymptotic behavior for large s and large x. Hence, if necessary 

to insure that the hypotheses are satisfied, we can first restrict A to an interval (𝑀,∞) and 

then set 𝐴 = +∞ on (−∞,𝑀]. In that case, the conclusions of the lemma hold for all 

sufficiently large x, s.  

Proof. The proof of related results under minimal smoothness assumptions requires care, 

but here there is no problem. The first statement follows from the definitions, as does the 

second, which is often called Young's conjugate function inequality. Our assumptions insure 

that the supremum in (8) is attained at the unique critical point of 𝑥𝑠 − 𝐴(𝑠). This gives the 

formula for 𝐴∗. The first equality in (iv) follows from differentiating (iii). The relation (v) 

comes from (iii) and (iv). Formula (vi) follows from differentiating (v). Equality (vii) 

follows from differentiating (vi) and noting that 𝑠′(𝑥) = 𝐴∗
′′
(𝑥) = 𝐴′′(𝑠(𝑥))

−1
. Formula 

(viii) follows from differentiating (vii), using 𝑠′(𝑥) = 𝐴′′(𝑥) = 𝐴′′(𝑠(𝑥))
−1

, and then using 

(vii).  

     The model pair for what we do later is  

𝐴(𝑠) = 𝑒𝑠 − 𝑠, 
𝐴∗(𝑥) = (𝑥 + 1) log(𝑥 + 1) − (𝑥 + 1), 

which corresponds to 𝑚(𝑡) = 𝑒𝑥𝑝(−𝑡). More generally, for 𝑚(𝑡) = 𝑒𝑥𝑝(−𝑡𝛽), we have  

𝐴(𝑠) = 𝑒𝛽𝑠 −  𝑠,                                                       (9) 

𝐴∗(𝑥) = (
𝑥 + 1

𝛽
) log (

𝑥 + 1

𝛽
) − (

𝑥 + 1

𝛽
). 

     The theorems and proofs have substantial technical details. However, the basic ideas are 

quite straightforward. We present the ideas.  

     Given a positive function 𝑎(𝑠) defined on 𝑹+, set 

𝐴(𝑠) = − log𝑎(𝑒∗) − 𝑠.                                        (10) 
We suppose that for all large s  

𝐴(𝑠), 𝐴′′(𝑠), 𝐴′′(𝑠), 𝐴(3)(𝑠), 𝐴(4)(𝑠) > 0.         (11) 
Set 𝑠𝑧 = 𝑠(𝑥) = 𝐴

′−1(𝑥). Suppose b is a positive function which varies slowly compared 

to a and set 𝐵(𝑠) = log 𝑏(𝑒∗). Let 𝛾𝑛 be the moments of the measure 𝑎(𝑡)𝑏(𝑡)𝑑𝑡; 𝛾𝑛 =

∫ 𝑡𝑛𝑎(𝑡)𝑏(𝑡)𝑑𝑡
∞

0
. 

Theorem (2.2.2)[61]: (informal). As 𝑛 → ∞, we have 

𝛾𝑛~𝑒^(𝐴
∗(𝑛) √2𝜋

√𝐴′′(𝑠𝑛)
𝑒𝐵(𝑠𝑛). 

In the simplest case, when 𝑎(𝑡) = 𝑒−𝑡 and 𝑏(𝑡) = 1, this is Stirling's formula. Now suppose 

𝑐(𝑥) is a positive function on 𝑹+. Set  

Γ(𝑥) = log 𝑐(𝑥).                                                            (12) 
Suppose that for all large x  

Γ(𝑥), Γ′(𝑥), Γ′′(𝑥) > 0.                                                (13) 
However, in contrast to the previous theorem, we now require that as 𝑥 → ∞ 

Γ′(𝑥) → ∞, Γ′′(𝑥), Γ(3)(𝑥), Γ(4)(𝑥) → 0.              (14) 
     Let Γ∗ be the conjugate function of Γ and set 𝑥𝑠 = 𝑥(𝑠) = Γ

′−1(𝑠). Suppose that d is a 

positive function which varies slowly compared to c. Let f be the holomorphic function 

𝑓(𝑧) =∑𝑑(𝑛)𝑐(𝑛)−1𝑧𝑛
∞

0

 

Theorem (2.2.3)[61]: (informal). 𝑓 is entire. For small 𝜃 we have as 𝑠 → ∞  
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𝑓(𝑒𝑠+𝑖𝜃)~𝑒Γ
∗(𝑠)  

√2𝜋

√Γ′′(𝑥𝑠)
𝑑(𝑥𝑠)𝑒

𝑖𝑥𝑠𝜃𝑒
𝜃2

2Γ′′(𝑥𝑠). 

     Our main kernel estimate, Theorem (2.2.4), follows quickly from these two results. First 

we apply Theorem (2.2.2) with the choices 𝑎(𝑡) = 𝑚(𝑡2), 𝑏(𝑡) = 𝐼 and then Theorem 

(2.2.3) with the choices 𝑐(𝑥) = 𝐴∗(𝑥), 𝑑(𝑥) = 𝑐(𝑥)/𝛾𝑥 . Because we are able to put some 

of the behavior of the moments into the correction term d, we obtain kernel estimates whose 

main term involves 𝐴∗∗. We then use the fact that 𝐴∗∗ = 𝐴. To get estimates for 𝐾𝐾𝑚−𝛼𝑚, we 

repeat the cycle, using as our new starting choice for a the square of the function used the 

first time. This forces a nonconstant choice for b. However, b turns out to be slowly varying, 

so again the main term of the estimate involves 𝐴∗∗ = 𝐴.  

     To prove Theorem (2.2.2), we use Laplace's method for asymptotic evaluation of 

integrals as it adapts to our situation. We want to estimate  

𝛾𝑛 = ∫ 𝑡𝑛𝑎(𝑡)𝑏(𝑡)𝑑𝑡
∞

0

= ∫ 𝑒𝑛 log 𝑡+log𝛼(𝑡)𝑏(𝑡)𝑑𝑡
∞

0

 

= ∫ 𝑒𝑛𝑠+log𝛼(𝑒
∗)+𝑠𝑏(𝑒∗)𝑑𝑠

∞

−∞

= ∫ 𝑒𝑛𝑠−𝐴(𝑠)𝑒𝐵(𝑠)𝑑𝑠
∞

0

.                    (15) 

     The hypotheses insure that, for fixed large n, the function ns −𝐴(𝑠) has a maximum 

value at the point 𝑠𝑛 = 𝐴
′−1(𝑛). The value is 𝐴∗(𝑛) = 𝑛𝑠𝑛 −  𝐴(𝑠𝑛). We now expand 𝑛𝑠 −

𝐴(𝑠) in a Taylor series about its critical point 𝑠𝑛: 

𝑛𝑠 − 𝐴(𝑠) = 𝐴
∗(𝑛) −

1

2
𝐴′′(𝑠𝑛)(𝑠 − 𝑠𝑛) + R. 

Here R is the remainder tem. If we could drop R and replace 𝐵(𝑠), which is built from a 

slowly varying function, by 𝐵(𝑠𝑛) then we could evaluate the integral and would have 𝛾𝑛 

equal to the desired estimate. The technical details of the proof involve estimating the errors 

that result from dropping R and replacing 𝐵(𝑠) by 𝐵(𝑠𝑛). 
     Introduce the new integration variable 𝑢 = 𝑠 − 𝑠𝑛. Using 𝐴′(𝑠𝑛) = 𝑛, we have  

𝑛𝑠 − 𝐴(𝑠) = 𝐴∗(𝑛) − [𝐴(𝑢 + 𝑠𝑛) − 𝐴(𝑠𝑛) − 𝐴
′(𝑠𝑛)𝑢]. 

We need to estimate  

𝛾𝑛 = 𝑒
𝐴∗(𝑛)∫ 𝑒−[𝐴(𝑠𝑛+𝑢)−𝐴(𝑠𝑛)−𝐴

′(𝑠𝑛)𝑢]𝑒𝐵(𝑠𝑛+𝑢)𝑑𝑢
∞

−∞

.        (16) 

To do this we select a positive function 𝛿 = 𝛿(𝑛) and split the integral as 

∫ …𝑑𝑢
∞

−∞

= ∫ …𝑑𝑢
𝑢<−𝛿

+∫ …𝑑𝑢
|𝑢|<𝛿

+∫ …𝑑𝑢
𝑢>𝛿

= 𝐿 + 𝐶 + 𝑅 

      To estimate C, we want to know that, uniformly in {𝑢: |𝑢| ≤ 𝛿}, we have for some 

appropriate small K 

𝐴(𝑠𝑛 + 𝑢) = 𝐴(𝑠𝑛) + 𝐴
′(𝑠𝑛)𝑢 + 𝐴

′′(𝑠𝑛)𝑢
2/2 + 𝑂(K), 

𝐵(𝑠𝑛 + 𝑢) = 𝐵(𝑠𝑛) + 𝑂(K).                                                  
Those estimates follow from the hypotheses on a and b and Taylor's theorem. Using them, 

we have  

𝑒𝐴
∗(𝑛)𝐶 = 𝑒𝐴

∗(𝑛)∫ 𝑒−
𝐴′′(𝑠𝑛)𝑢

2

2 𝑒𝐵(𝑠𝑛)[1 + 𝑂(K)]𝑑𝑢
|𝑢|<𝛿

. 

Introducing the new variable 𝑣 = 𝑢√𝐴′′(𝑠𝑛), we find that  

𝑒𝐴
∗(𝑛)𝐶 =

𝑒𝐴
∗(𝑛)𝑒𝐵(𝑠𝑛)

√𝐴′′(𝑠𝑛)
∫ 𝑒−

𝑣2

2 [1 + 𝑂(K)]𝑑𝑣
|𝑣|<𝛿√𝐴′′(𝛿𝑛)

. 



62 

If we know 𝛿2(𝑛 )𝐴′′(𝑠𝑛) → ∞, we can conclude that  

𝑒𝐴
∗(𝑛)𝐶 = 𝑒𝐴

∗(𝑛) √2𝜋

√𝐴′′(𝑠𝑛)
𝑒𝐵(𝑠𝑛)[1 + 𝑂(K)]. 

     The tails, L and R, can be estimated by tails of Gaussian integrals and are seen to 

be 𝑂 (𝑒
𝛿2(𝑛)𝐴′′(𝑠𝑛)

10 ). Combining the estimates for L, C, and R gives Theorem (2.2.2).  

     In the second theorem, we can pass from the sum to the corresponding integral and use 

a similar argument to get the estimates on the positive real axis. However, that approach 

doesn't capture the cancellation which occurs off the axis. Hence we split the sum into three 

terms and estimate the main term, the central one, using Poisson summation.  

     In Theorem (2.2.3), we show that if we are given the moments {𝛾𝑛} of a density, then the 

asymptotic growth of the kernel function is given by  

𝑓(𝑒𝑠)~ √2𝜋𝑒(log𝛾)
∗(𝑠), 𝑠 → ∞. 

Rewriting this in terms of the Taylor coefficients 𝑎𝑛(= 𝛾𝑛
−1) off, we have 

𝑎𝑛~
1

√2𝜋
𝑒(log 𝑓(𝑒

∗))∗(𝑛), 𝑛 → ∞. 

In the other direction, one can ask whether, given an entire function which satisfies 

appropriate conditions, we can conclude this sort of asymptotic growth for the coefficients. 

That such estimates do, in fact, hold for a large class of entire functions is a result of Hayman 

[71].  

    Suppose 𝑓(𝑧) = ∑ 𝑎𝑛𝑧
𝑛∞

0  is an entire function with positive coefficients. Set  

𝐹(𝑠) = log 𝑓(𝑒𝑠). 
We say that f is admissible if 𝐹′′(𝑒𝑠) → ∞ as 𝑠 → ∞ and there is a positive function 𝛿(𝑟), 
defined for all sufficiently large r, such that 0 < 𝛿(𝑟) < 𝜋, 

𝑓(𝑟𝑒𝑖𝜃)~𝑓(𝑟)𝑒𝑖𝐹
′(log 𝑟)𝜃𝑒−

1
2
𝐹′′(log 𝑟)𝜃2      𝑎𝑠 𝑟 → ∞ 

uniformly for |𝜃| ≤ 𝛿(𝑟), and 

𝑓(𝑟𝑒𝑖𝜃) = 𝑜(1)
𝑓(𝑟)

√𝐹′′(log 𝑟)
, 

uniformly for 𝛿(𝑟) ≤ |𝜃| ≤ 𝜋. 

Corollary II of [71] is 

Theorem (2.2.5)[61]: If 𝑓(𝑧) is admissible, then as 𝑛 → ∞ 

𝑎𝑛+1~
1

√2𝜋

1

√𝐹′′(𝐹′−1(𝑛))

𝑒−𝐹
∗(𝑛). 

     In fact, this follows quite easily from the admissibility of f. Most of the work in [71] is 

in establishing that a substantial number of functions are admissible, in showing that the 

class of admissible functions has interesting closure properties, and in deriving further 

consequences of admissibility. Our Theorem (2.2.3) insures that the kernel functions we 

construct are admissible.  

     In Hayman's theorem as well as Theorems (2.2.2) and (2.2.3), we see that the transforms 

have asymptotics described to leading order using the conjugate function. That is in keeping 

with the heuristic "principle of duality of phases", for describing the asymptotic behavior of 

Fourier (and related) transforms ([80], p. 358). The principle has a long tradition. Hayman's 

results are related to earlier results of Wiener and Martin [82], [83] and still earlier results 
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of Hardy and Fejér, both of whom attribute the basic insight to Riemann. (For this see the 

discussion in [70].) See Evgrafov [69] and Bemdtsson [63]. 

     Related questions have been considered for measures and kernel functions defined on the 

unit disk. The work goes back to Trent [81], Kriete and MacCluer [76] and Kriete [74]. Here 

are two of the results of [74].  

     Suppose that we are working on the Bergman space of the disk with radial weight 

(2𝜋)−1 𝑤(𝑟)𝑑𝑥, 𝑑𝑦. Thus 𝐾(𝑥) = ∑𝛾𝑛
−1𝑥𝑛 with 𝛾𝑛 = ∫ 𝑟2𝑛+1𝑤(𝑟)𝑑𝑟

1

0
. Set A(𝑠) =

log 2 −  log 𝑤 (𝑒−
𝑠

2) + 𝑠. Under appropriate conditions on w, a result analogous to Theorem 

(2.2.2) is obtained.  

Theorem (2.2.6)[61]: As 𝑟 → ∞, 𝛾𝑛~√𝜋√A∗′′(−𝑛)𝑒A∗(−𝑛). 

     This Theorem (2.2.2)s used in the proof of the following quantitative alternative to (A), 

which plays a major technical role in [74]: 

Theorem (2.2.7)[61]: As 𝑟~1−, 𝑚(𝑟)𝐾(𝑟) ↗ ∞. 
     While preparing this, we learned that Kriete has taken his work further and obtained 

rather comprehensive results on the unit disk [75]. Although the detailed formalism of [74] 

and [75] differ, there is certainly a similarity between those methods. 

     Related questions have been studied for nonradial weights using a variety of function 

theoretic techniques. For instance, it is shown in [77] that under some regularity conditions 

on the function 𝑤(𝑧) ≥ 𝑂, and with the assumption that − log𝑤 is subharmonic, the 

Bergman kernel 𝐾(𝑧, 𝜁) for the space 𝐿2(𝔻,𝑤(𝑧)𝑑𝑥 𝑑𝑦) ∩ 𝐻𝑜𝑙 satisfies  

Proposition (2.2.8)[61]: There are positive constants 𝐶1 and 𝐶2 so that  

𝐶1 <
𝐾(𝑧, 𝑧)𝑤(𝑧)

∆ log𝑤(𝑧)
< 𝐶2. 

      Similar techniques produce an analogous result for Bergman spaces on the plane. These 

should be compared with Theorem (2.2.16), which deals with smooth radial weights (on the 

plane). That result states that, as 𝑧 → ∞, 
𝐾(𝑧, 𝑧)𝑤(𝑧)

−∆ log𝑤(𝑧)
= 1 + 𝑜(1). 

     Christ, Berndtsson, Ortega-Cerd/L and Seip, Delin, and others have obtained refined 

estimates on Bergman kernel functions, including estimates off the diagonal, using �̅� 

techniques. Those results have a different focus from ours and we merely give [65], [64], 

[79], and [66].  

     It is a theorem of Miles and Williamson [78], which proved a conjecture of Renyi and 

Vincze, that 𝑚(𝑡) = 𝑒−𝑡 is essentially the only function which satisfies (A). It would be 

interesting to know if there were analogous uniqueness results related to (C). 

      We shall prove that for fixed 𝛼, as 𝑡 → ∞, 
𝐾(𝐾𝑚)−𝛼𝑚~(1 + 𝛼)𝐾𝑚

1+𝛼(t)                                   (17) 

In his interesting study of Berezin quantization, Englis [67], [68] shows that in certain cases, 

for fixed t, (17) holds as 𝛼 → ∞. His methods and viewpoint are quite different. We discuss 

briefly the possibility of obtaining asymptotics as 𝛼 → ∞ by our methods.  

     Suppose 𝑚(𝑡)𝑑𝑡 is a positive measure on [0,∞). For 𝑥 ≥ 0, set 𝛾𝑥 = 𝛾(𝑥) =

∫ 𝑡𝑥𝑚(𝑡)𝑑𝑡
∞

0
. We assume that m does not have compact support and that 𝛾(𝑥) is finite for 

all x. We write 𝑚(𝑡) = 𝑎(𝑡)𝑏(𝑡) with a as the main term and b as a slowly varying 
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correction. Although 𝑚 = 𝑎𝑏 is the object of interest, most of our computations, and hence 

also the hypotheses, are in terms of auxiliary functions, A and B, defined by 

𝐴(𝑠) = − log 𝑎(𝑒𝑠) −  𝑠,                                                 (18) 
𝐵(𝑠) = log 𝑏(𝑒𝑠).                                                             (19) 

Set 𝑠𝑥 = 𝑠(𝑥) = 𝐴
′−1(𝑥). Fix 𝜀, 1/4 < 𝜀 < 1/2. We suppose that for all sufficiently large 

x  

𝐴(𝑖)(𝑥) > 0, 𝑖 = 0,… ,4,                                (20) 

𝐴′′′(𝑥) = 𝑂 (𝐴′′
3
2
−𝜀(𝑥)),                                     (21) 

𝐴(4)(𝑥) = 𝑂(𝐴′′ 2−2𝜀(𝑥)).                                     (22) 
     The core hypothesis for the proof of Theorem (2.2.2) is that we can find an auxiliary 

positive function 𝛿 such that 𝛿2(𝑥)𝐴′′(𝑠𝑥) → ∞ and 𝛿3(𝑥)𝐴′′′(𝑠𝑥) → 0 as 𝑥 → ∞. We 

surrendered a slight amount of generality by assuming (21), but that lets us make a simple 

choice for 𝛿. Select a with 0 < 𝛼 < 𝜀/2 − 1/8 and set  

𝛿(𝑥) = 𝐴′′(𝑠𝑥)
−
1
2𝛼 .                                              (23) 

     The model case for the hypotheses is 𝐴(𝑠) = 𝑒𝛽𝑠 − 𝑠. In that case, (21) and (22) hold 

with any 𝜀 < 1/2. The same is true for 𝐴(𝑠) = 𝑒ℎ(𝑠) with any function h of regular and 

modest growth. Hence, for the examples we have in mind, we could restrict attention to A 

which satisfy (21) and (22) for all e up to 1/2. In fact, suppose A were to fail (21) for a fixed 

e because there is some 𝜑 < 1/2 − 𝜀 so that 𝐴′′′ ≥  𝐶𝐴′′ 1+𝜑. In such a case, we could 

compare 𝐴′′ with the exact solution of 𝑓′ = 𝐶𝑓1+𝜑 and conclude that 𝐴′′(𝑠) cannot be finite 

for all 𝑠 > 0. Such A are not of interest here. However, we carry the extra generality of 

allowing (21) and (22) to fail for some 𝜀 < 1/2 because it may be useful in some other 

context. We should note that in the following discussion it may be convenient to think of 

the model case 𝜀 = (
1

2
)
−
, 𝛼 = 0+. 

The estimate on the derivatives of A imply interval estimates. 

Lemma (2.2.9)[61]: If we have (21), (22), and (23), then we also have  

sup
|𝑡|<𝛿

𝐴′′(𝑠𝑥 + 𝑡) = (1 + 𝑜(1))𝐴
′′(𝑠𝑥),                   (24) 

sup
|𝑡|<𝛿

𝐴′′′(𝑠𝑥 + 𝑡) = 𝑂 (𝐴
′′(𝑠𝑥)

3
2
−𝜀),                       (25) 

sup
|𝑡|<𝛿

𝐴(4)(𝑠𝑥 + 𝑡) = 𝑂(𝐴
′′(𝑠𝑥)

2−2𝜀),                       (26) 

Proof. Set 𝑔(𝑡) = 𝐴′′(𝑠𝑥 +  𝑡). By (21), 𝑔′ = 𝑂(𝑔
3

2
−𝜀) and hence 𝑔−

3

2
+𝜀𝑔′ = 𝑂(1). Pick 

and fix some 𝑡0, |𝑡0| < 𝛿. Integrating, we find 

|𝑔−
1
2
+𝜀  (𝑡0) − 𝑔

−
1
2
−𝜀(0)| = 𝑂(𝛿). 

Hence, recalling the definitions of g and 𝛿, we have 

𝑔−
1
2
+𝜀(𝑡0)

𝑔
1
2
+𝜀(0)

= 1 + |𝑔
1
2
−𝜀(0)|𝑂 (𝑔(0)−

1
2
+𝛼) = 1 + 𝑂(𝑔(0)𝛼−𝜀), 

as required for (24). For (25), note that by (21) we have  

𝐴′′′(𝑠𝑥 + 𝑡) = 𝑂 (𝐴
′′
3
2
−𝜀(𝑠𝑥 + 𝑡)) ,, 
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and by (24) we can replace 𝐴′′
3

2
−𝜀(𝑠𝑥 +  𝑡) by 𝐴′′

3

2
−𝜀(𝑠𝑥). We obtain (26) by the same 

reasoning.  

     We say that a positive function b is slowly varying in the first sense with respect to 𝑎, 𝜀 
and a and write 𝑏 ∈ 𝑆𝑉𝐼(𝑎, 𝜀, 𝛼) if, for B given by (19), 

𝐵′ = 𝑂(𝛿2𝐴′′′) = 𝑂 (𝐴′
1
2
−𝜀+2𝛼),                              (27) 

𝐵′′ =  𝑂 ((𝐴′′
1
2
−𝜀+2𝛼)

2

).                                             (28) 

Note that 0 < 1/2 − 𝜀 + 2𝛼 < 1/4. We know from the previous lemma that 𝐴′′ and 𝐴′′′ 
satisfy interval estimates. Hence so do 𝐵′ and 𝐵′′. 
     We use the following. Write 𝑋 = 𝑋(𝑥) = 𝑂(ℇ) if there is a positive c such that  

𝑋 = 𝑂(𝑒𝑥𝑝(−𝐴′′(𝑠𝑥)
𝐶)).  

Theorem (2.2.10)[61]: Suppose a and b are positive functions on 𝑹+, A and B are defined 

by (18) and (19), and 𝛿 is given by (23). Suppose A satisfies (20), (21), (22), and hence also 

(24), (25), and (26). Suppose 𝑏 ∈ 𝑆𝑉𝐼(𝑎, 𝜀, 𝛼). Let 

𝛾(𝑥) = ∫ 𝑡𝑥𝑎(𝑡)𝑏(𝑡)𝑑𝑡
∞

0

. 

As 𝑥 → ∞, we have  

𝛾(𝑥) = 𝑒𝐴
∗(𝑥) √2𝜋

√𝐴′′(𝑠𝑥)
𝑒𝐵(𝑠𝑥)(1 + 𝑂(𝐴′′(𝑠𝑥)

6𝛼−2𝜀) +  𝑂(ℇ)).       (29) 

Furthermore, as 𝑥 → ∞  

(log 𝛾)′(𝑥) → ∞                                                    (30) 

𝐴∗′(𝑥) − (log 𝛾)′(𝑥) = 𝑂 (𝐴′′ −
1
2
+2𝛼−𝜀(𝑥)),              (31) 

𝐴∗
′′
(𝑥) − (log 𝛾)′′(𝑥) = 𝑂(𝐴′′ −1+6𝛼−2𝜀(𝑥)).             (32) 

Notes: (i) 

6𝛼 − 2𝜀 < −
1

4
, −

1

2
+ 2𝛼 − 𝜀 < −

3

4
, −1 + 6𝛼 − 2𝜀 < −5/4. 

(ii) The formulation of (29) is redundant, as 𝑂(ℇ) is smaller than 𝐴′′ 6𝛼−2𝜀. We include it 

separately because, while the error term 𝑂(𝐴′′ 6𝛼−2𝜀) can obviously be refined by 

straightforward (but lengthy) analysis, the exponential error term appears to be intrinsic to 

the method.  

(iii) (30), (31), and (32) are technical estimates we shall use when we use the output from 

this theorem as input for Theorem (2.2.3).  

Proof. Fix 𝑥 large. We write 𝛿 for 𝛿(𝑥). Set  

𝛼𝑖 = 𝐴
(𝑖)(𝑠𝑥), 𝑖 = 0,1,…, 

𝐵𝑖 = 𝐵
(𝑖)(𝑠𝑥), 𝑖 = 0,1,…, 

We saw at (1O) in the proof outline that  

𝛾(𝑥) = 𝑒𝐴
∗(𝑥)𝑒𝛽0∫ 𝑒−[𝐴(𝑠𝑥+𝑢)−𝛼0−𝛼1𝑢]𝑒𝐵(𝑠𝑥+𝑢)−𝛽0𝑑𝑢

∞

−∞

. 

We need to estimate 

𝐼𝑗 = ∫ 𝑢𝑗𝑒−[𝐴(𝑠𝑥+𝑢)−𝛼0−𝛼1𝑢]𝑒𝐵(𝑠𝑥+𝑢)−𝛽0𝑑𝑢
∞

−∞
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For 𝑗 = 0, 1, 2. The analysis of the tails, L and R, is the same for 𝑗 = 0, 1, and 2; we present 

the discussion only for 𝑗 = 0. We have  

𝐼0 = ∫ …𝑑𝑢
𝑢<−𝛿

+∫ …𝑑𝑢
|𝑢|<𝛿

+∫ …𝑑𝑢
𝑢>𝛿

= 𝐿 + 𝐶 + 𝑅. 

We first estimate L. Integration by parts gives  

𝐴(𝑠𝑥 + 𝑢) − 𝛼0 − 𝛼1𝑢 = ∫ (𝑟 − 𝑢)𝐴′′(𝑠𝑥 + 𝑟)𝑑𝑟
0

𝑢

. 

In the integral defining 𝐿, 𝑢 < −𝛿 < 0; thus the integrand in the previous integral is positive. 

Using this and the monotonicity of 𝐴′′, we continue with  

𝐴(𝑠𝑥 + 𝑢) − 𝛼0 − 𝛼1𝑢 ≥ ∫ (𝑟 − 𝑢)𝐴′′(𝑠𝑥 + 𝑟)𝑑𝑟
0

−𝛿

 

≥ 𝐴′′(𝑠𝑥 − 𝛿)∫ (𝑟 − 𝑢) 𝑑𝑟
0

−𝛿

= −
1

2
(2𝑢 + 𝛿)𝛿𝐴′′(𝑠𝑥 − 𝛿) 

Thus 

𝐿 ≤ ∫ 𝑒
1
2
(2𝑢+𝛿)𝛿𝐴′′(𝑠𝑥𝛿)+𝐵(𝑠𝑥+𝑢)−𝛽0𝑑𝑢

∞

−∞

= 𝑒
1
2
𝛿2𝐴′′(𝑠𝑥−𝛿)∫ 𝑒𝑢𝛿𝐴

′′(𝑠𝑥−𝛿)+𝐵(𝑠𝑥+𝑢)−𝛽0𝑑𝑢
𝛿

−∞

 

Now 

𝑒𝐵(𝑠𝑥+𝑢)−𝛽0 = exp∫ 𝐵′(𝑠𝑥 + 𝑡)𝑑𝑡
𝑢

0

. 

Using (27) and recalling that 𝐴′′ is monotone, we find 

𝑒𝐵(𝑠𝑥+𝑢)−𝛽0 = exp(𝑂(1)|𝑢|𝛼2
𝜃), 

Where 𝜃 =
1

2
− 𝜀 + 2𝛼 is between 0 and 1/4. Hence  

𝐿 <  𝑒
1
2
𝛿2𝐴′′(𝑠𝑥−𝛿)∫ exp(𝑢𝛿𝐴′′(𝑠𝑥 − 𝛿) + 𝑂(1)|𝑢|𝛼2

𝜃) 𝑑𝑢
−𝛿

−∞

. 

Taking into account (23), and recalling that u is negative in the region of integration, we 

have  

𝑢𝛿𝐴′′(𝑠𝑥 − 𝛿) + 𝑂(1)|𝑢|𝛼2
𝜃 = 𝑢𝛿(𝛼2(1 + 𝑜(1)) + 𝑂(1)𝛿−1𝑎2

𝜃)

= 𝑢𝛿(𝛼2(1 + 𝑜(1)) + 𝑂(1)𝛼
1+𝛼−𝜀) = 𝑢𝛿𝛼2(1 + 𝑜(1)). 

Thus we can continue with  

𝐿 < 𝑒
1
2
𝛿2𝐴′′(𝑠𝑥−𝛿)∫ exp(𝑢𝛿𝛼2(1 − 𝑜(1))) 𝑑𝑢

−𝛿

−∞

=
1

(1 − 𝑜(1))
𝛿𝛼2

𝑒
1
2
𝛿2𝛼2(1+𝑜(1))𝑒−𝛿

2𝛼2(1−𝑜(𝐼)) ≤
(1 + 𝑜(1))

𝛿𝛼2
𝑒
−(
1
2
−𝑜(1))𝛿2𝛼2

= 𝑂(ℇ). 

Hence also 𝑎2

1

2𝐿 = 𝑂(ℇ), which is what we require.  

We now look at R. We need to estimate  

∫ 𝑒−[𝐴(𝑠𝑥+𝑢)−𝛼0−𝛼1𝑢]𝑒𝐵(𝑠𝑥+𝑢)−𝛽0𝑑𝑢
∞

𝛿

. 

By Taylor's theorem,  

𝐴(𝑠𝑥 + 𝑢) − 𝛼0 − 𝛼1𝑢 − [𝐵(𝑠𝑥 + 𝑢) − 𝛽0] = −𝛽1𝑢 +
1

2
(𝐴′′(𝑠𝑥 + 𝜉) − 𝐵

′′(𝑠𝑥 + 𝜉))𝑢
2 
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for some 𝜉 ∈ (0, 𝑢). Taking into account (27), (28), and the motonicity of 𝐴′′, we continue 

with  

𝐴(𝑠𝑥 + 𝑢) − 𝛼0 − 𝛼1𝑢 − [𝐵(𝑠𝑥 + 𝑢) − 𝛽0]

= 𝑜 (𝛼2

1
2)𝑢 + (𝐴′′(𝑠𝑥 + 𝜉) + 𝑜(𝐴

′′(𝑠𝑥 + 𝜉)))

≥ 𝑜 (𝛼2

1
2)𝑢 + (

1

2
+ 𝑜(1))𝛼2𝑢

2. 

Hence 

∫ 𝑒−[𝐴(𝑠𝑥+𝑢)−𝛼0−𝛼1𝑢]𝑒𝐵(𝑠𝑥+𝑢)−𝛽0𝑑𝑢
∞

−∞

≤ ∫ 𝑒
−[𝑜(𝛼2

1
2)𝑢+(

1
2
+𝑜(1))𝛼2𝑢

2]
𝑑𝑢

∞

𝛿

≤ 𝛼2
−
1
2∫ 𝑒

−[𝑜(1)𝑣+(
1
2
+𝑜(1))𝑣2]

𝑑𝑣
∞

𝛿𝛼2

1
2

= 𝑂(ℇ). 

Hence 𝛼2

1

2𝑅 = 𝑂(ℇ), which is what we needed.  

We now estimate C. For 𝑗 = 0, 1, 2, we need to estimate  

𝐶𝑗 = ∫ 𝑢𝑗𝑒−[𝐴(𝑠𝑥+𝑢)−𝛼0−𝛼1𝑢]+𝐵(𝑠𝑥+𝑢)−𝛽0𝑑𝑢
|𝑢|<𝛿

. 

We now need to take the Taylor series analysis given in the proof outline one step further. 

By Taylor's theorem, we have  

−[𝐴(𝑠𝑥 + 𝑢) − 𝛼0 − 𝛼1𝑢] +  𝐵(𝑠𝑥 + 𝑢) − 𝛽0

= −
1

2
𝛼2𝑢

2 −
1

6
𝛼3𝑢

3 −
1

24
�̃�4𝑢

4 + 𝛽1𝑢 +
1

2
�̃�2𝑢

2. 

Here we use decoration to indicate terms which must be evaluated away from 𝑠𝑥: �̃�4 =

𝐴(4)(𝑤) for some 𝑤, |𝑠𝑥 −𝑤| < 𝛿, �̃�2 = 𝐵
′′(𝑤′) for some 𝑤′, |𝑠𝑥 − 𝑤

′| < 𝛿. We separate 

the main quadratic term, the odd powers, and the error term. We set 𝐷 = −
1

6
𝛼3𝑢

3 + 𝛽1𝑢 

and =
1

24
�̃�4𝑢

4 +
1

2
�̃�2𝑢

2, Set 𝐴 = 𝛼2
3𝛼−𝜀 and note that 3𝛼 − 𝜀 < −1/8. Noting (21), (22), 

(27), and (28) and Lemma (2.2.9), we have 𝐷 = 𝑂(𝐴), 𝐸 = 𝑂(𝐴2) , and 𝐷2 = 𝑂(𝐴2). 
Taking into account that 𝐴 → 0, we have  

𝐶𝑗 = ∫ 𝑢𝑗𝑒−
𝛼2𝑢

2

2 𝑒𝐷𝑒𝐸𝑑𝑢
|𝑢|<𝛿

= ∫ 𝑢𝑗𝑒−
𝛼2𝑢

2

2 (1 + 𝐷 + 𝑂(𝐷2))(1 + 𝑂(𝐸))𝑑𝑢
|𝑢|<𝛿

= ∫ 𝑢𝑗𝑒−
𝛼2𝑢

2

2 (1 + 𝐷 + 𝑂((𝐴2))𝑑𝑢
|𝑢|<𝛿

= ∫ 𝑢𝑗𝑒−
𝛼2𝑢

2

2 (1 + 𝐷)𝑑𝑢
|𝑢|<𝛿

+ 𝑂(𝐴2)∫ 𝑢𝑗𝑒−
𝛼2𝑢

2

2 𝑑𝑢
|𝑢|<𝛿

= ∫ 𝑢𝑗𝑒−
𝛼2𝑢

2

2 (1 + 𝐷)𝑑𝑢
|𝑢|<𝛿

+ 𝑂(𝐴2)𝛼2
−
𝑗+1
2 . 

For 𝑗 = 0, 2, ∫ 𝑢𝑗𝑒−
𝛼2𝑢

2

2 𝑑𝑢
|𝑢|<𝛿

 is the integral of an odd function over a symmetric interval 

and hence we can drop D from the expressions for 𝑐0 and 𝑐2. We next pass to integrals over 

the entire line. This introduces an error of 𝑂(ℇ), which we absorb into the larger error terms. 

We have 
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𝐶0 = ∫ 𝑒−
𝛼2𝑢

2

2 𝑑𝑢
∞

−∞

+ 𝑂(Λ2)𝛼2
−
1
2 = 𝛼2

−
1
2 (√2𝜋 + 𝑂(Λ2)) ; 

𝐶2 = ∫ 𝑒−
𝛼2𝑢

2

2 𝑑𝑢
∞

−∞

+ 𝑂(Λ2)𝛼2
−
3
2 = 𝛼2

−
3
2 (√2𝜋 + 𝑂(Λ2)). 

For 𝑗 = 1 the integral involving 𝑢𝑗𝑒−
𝛼2𝑢

2

2  vanishes; and we have, using (21), (23), and (27), 

𝐶1 = ∫ 𝑒−
𝛼2𝑢

2

2 𝑑𝑢
∞

−∞

+ 𝑂(Λ2)𝛼2
−
1
2 = 𝑂(𝛼2

−
3
2𝛽1) + 𝑂 (𝛼2

5
2𝛼3) + 𝑂(Λ

2)𝛼2
−1 

= 𝛼2
−1𝑂(𝑎2

−𝜀+2𝛼 + 𝛼2
−𝜖 + Λ2) = 𝛼2

−1(𝛼2
−𝜖+2𝛼). 

Hence 

𝑒𝐴
∗(𝑥)𝑒𝛽0𝐼0 = 𝑒

𝐴∗(𝑥)𝑒𝛽0𝛼2
−
1
2 (√2𝜋 + 𝑂(Λ2)),              (33) 

𝑒𝐴
∗(𝑥)𝑒𝛽0𝐼1 = 𝑒

𝐴∗(𝑥)𝑒𝛽0𝛼2
−1𝑂(𝛼2

−𝜖+2𝛼),                        (34) 

𝑒𝐴
∗(𝑥)𝑒𝛽0𝐼2 = 𝑒

𝐴∗(𝑥)𝑒𝛽0𝛼2
−
3
2 (√2𝜋 + 𝑂(Λ2)),              (35) 

This gives us (29).  

     We now proceed to verify (30), (31), and (32). For appropriate 𝐾, we have  

𝛾(𝑥) = 𝑒𝐴
∗(𝑥)𝑒𝛽0∫ 𝐾(𝑠𝑥 + 𝑢)𝑑𝑢

∞

−∞

. 

If we differentiate (21) and then follow the same pattern of analysis we find  

𝛾(𝑗)(𝑥) = 𝑒𝐴
∗(𝑥)𝑒𝛽0∫ (𝑠𝑥 + 𝑢)

𝑗𝐾(𝑠𝑥 + 𝑢)𝑑𝑢
∞

−∞

 

for 𝑗 = 1, 2. If we set 

𝐽𝑗 = 𝑠∫ 𝑢𝑗𝐾(𝑠𝑥 + 𝑢)𝑑𝑢
∞

−∞

, 𝑗 = 0,1, . . ., 

then we can write  

𝛾 = 𝑒𝐴
∗
𝑒𝛽0𝐽0                             

𝛾′ = 𝑒𝐴
∗
𝑒𝛽0(𝑠𝑥𝐽0 + 𝐽1),              

𝛾′′ = 𝑒𝐴
∗
𝑒𝛽0(𝑠𝑥

2𝐽0 + 2𝑠𝑥𝐽1 + 𝐽2)                                            (36) 

From Lemma (2.2.1), we know that 𝐴∗
′
(𝑥) = 𝑠𝑥 and 𝐴∗

′′
(𝑥) = 𝐴′′(𝑥)−1. quantities we want 

to estimate are  

(log 𝛾)′ = 𝑠𝑥 +
𝐽1
𝐽0
, 𝐴∗

′
− (log 𝛾)′ =

𝐽1
𝐽0

 

𝐴∗
′′
(log 𝛾) = 𝐴′′−1 −

𝐽2
𝐽0
+ (

𝐽1
𝐽0
)
2

.                 

From (33) and (34), we know that  

−
𝐽1
𝐽0
=

𝑒𝐴
∗(𝑥)𝑒𝛽0𝛼2

−1𝑂(𝛼2
2𝛼−𝜖)

𝑒𝐴
∗(𝑥)𝑒𝛽0𝛼2

−
1
2 (√2𝜋 + 𝑂(𝛼2

6𝛼−2𝜖))

= 𝛼2
−
1
2𝑂(𝛼2

2𝛼−𝜖) = 𝑂 (𝛼2
−
1
2
+2𝛼−𝜖

). 

This gives (31). Also, noting that 𝑠𝑥 → ∞, we have (30). required estimate for (
𝐽1

𝐽0
)
2
in (31). 

We complete (31) by noting 
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𝐴′′−1(𝑠𝑥) −
𝐽2
𝐽0
= 𝛼2

−1 −
𝑒𝐴

∗(𝑥)𝑒𝛽0𝛼2
−
3
2 (√2𝜋 + 𝑂(𝛼2

6𝛼−2𝜖))

𝑒𝐴
∗(𝑥)𝑒𝛽0𝛼2

−
1
2 (√2𝜋 + 𝑂(𝛼2

6𝛼−2𝜖))

= 𝛼2
−1 − 𝛼2

−1(1 + 𝑂(𝛼6𝛼−2𝜖)) = 𝑂(𝛼−1+6𝛼−2𝜖), 
as required.  

     We start with positive functions c and d defined on 𝑹+. We want to estimate 𝑓(𝑧) =
∑𝑐(𝑛)−1𝑑(𝑛)𝑧𝑛. Here c will be our main term with d a slowly varying correction. We will 

do our computational work with the auxiliary functions  

Γ(𝑥) = log 𝑐(𝑥),                                            (37) 
∆(𝑥) = log 𝑑(𝑥).                                           (38) 

Let Γ∗ be the conjugate function to Γ and set 𝑥𝑥 = 𝑥(𝑠) = Γ
′−1(𝑠) = Γ∗ ′ (𝑠). We suppose 

that 1/4 < 𝜖 < 1/2 is such that as 𝑥 → ∞ 

Γ(𝑥), Γ′(𝑥), Γ′′(𝑥), −Γ(3)(𝑥) > 0,                          (39) 
Γ(𝑥), Γ′(𝑥) → ∞,                                                        (40) 

Γ′′(x), Γ(3)(𝑥), Γ(4)(𝑥) → ∞,                                   (41) 

Γ′′′(𝑥) = 𝑂 (Γ′′
3
2
+ϵ(𝑥)),                                         (42) 

Γ(4)(𝑥) = 𝑂(𝑧′′ 2+2𝜖(𝑥)).                                        (43) 

 Note that if this holds for e, then it also holds for any 𝜖′ such that 1/4 < 𝜖′ < 𝜖.  

     In analogy to the previous theorem, the core hypothesis for the proof is now that we can 

find an auxiliary function 𝜆 such that 𝜆2Γ′′ → ∞ and 𝜆Γ′′′ → 0.  

Assumption (42) allows us to use  

𝜆(𝑠) = Γ′′(𝑥𝑠)
−
1
2
−𝛽                                                   (44) 

for some 𝛽, 0 < 𝛽 < 𝜖/3 − 1/12, which we now regard as selected and fixed. As before, a 

convenient choice to keep in mind is 𝜖 = (
1

2
)
−
, 𝛽 = 0+. 

Lemma (2.2.11)[61]: lf we have (42), (43), and (14), then we also have (45)  

sup
|𝜃|<𝜆

|𝛤′′(𝑥𝑠  + 𝜃)| = (1 + 𝑜(1))|Γ
′′(𝑥𝑠)|,              (45) 

sup
|𝜃|<𝜆

|𝛤′′′(𝑥𝑠  + 𝜃)| = 𝑂 (Γ
′′′(𝑥𝑠)

3
2
+𝜖),                     (46) 

sup
|𝜃|<𝜆

|𝛤(4)(𝑥𝑠  + 𝜃)| = 𝑂(Γ
(4)(𝑥𝑠)

2+2𝜖),                   (47) 

Proof. The proof is the natural modification of the proof of Lemma (2.2.9).  

     Suppose that 𝑑 is a positive 𝐶2 function. We say that d is slowly varying in the second 

sense with respect to 𝑐, 𝜖, and 𝛽, and write 𝑑 ∈ 𝑆𝑉𝐼𝐼(𝑐, 𝜖, 𝛽), if, as 𝑠 → ∞  

Γ′(𝑠) − ∆′(𝑠) → ∞,                                                  (48) 

∆′= 𝑂 (Γ′′
1
2
+𝜖−𝛽),                                                    (49) 

∆′′=  𝑂 ( (Γ′′
1
2
+𝜖−𝛽)

2

).                                          (50) 

Note that the assumptions imply 
3

4
<
1

2
+ 𝜖 − 𝛽 < 1. 

In analogy with A and B, these estimates on Γ imply interval estimates for ∆. 
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For these hypotheses the model case is 

Γ(𝑥) =
𝑥 + 1

𝛾
log
𝑥 + 1

𝛾
−
𝑥 + 1

𝛾
, Γ′(𝑥) =

1

𝛾
log
𝑥 + 1

𝛾
, Γ′′(𝑥) =

1

𝛾(𝑥 + 1)
, 

and ϵ can be chosen as close as desired to 1/2.  

Set  

𝑐𝑖 = Γ
(𝑖)(𝑥𝑠), 𝑖 = 0,1,2, … 

𝑑𝑖 = ∆
(𝑖)(𝑥𝑠), 𝑖 = 0,1,2,… 

𝜎 = 𝑥𝑠 − [𝑥𝑠].                            
Define the scaled parameters 

𝐶3 = 𝑐3𝑐2
−
3
2,                                

𝐸 = 𝑑1𝑐2
−
1
2 −

1

2
𝑐3𝐶2

−
3
2,          

Θ = Θ(𝜃, 0) = 𝜃𝑐2
−
1
2,             

Θ(𝑛) = Θ(𝜃, 𝑛) = (𝜃 + 2𝜋𝑛)𝑐2
−
1
2. 

Note that the previous assumptions insure that 𝐶3, 𝐸 = 𝑜(1). 

     We write 𝑌 = 𝑌(𝑥𝑠) = 𝑂(ℱ) if for some 𝑐 > 0, 𝑌 = 𝑂(𝑒𝑥𝑝(−Γ′′(𝑥𝑠)
−𝑐)). 

Set 

𝜏 = 2𝜖 − 6𝛽 −
1

2
.                                                                  (51) 

The assumptions on 𝜀 and 𝛽 insure that 0 < 𝜏 < 1/2. 

Theorem (2.2.12)[61]: Suppose Γ satisfies (39), (40), (41), (42), (43), and hence also (45), 

(46), and (47) and that 𝑑 ∈ 𝑆𝑉𝐼𝐼(𝑐, 𝜖, 𝛽). Set 𝑓(𝑧) = ∑ 𝑑(𝑛)𝑐(𝑛)−1𝑧𝑛∞
0 . Then f is entire 

and, as 𝑠 → ∞, has the asymptotic growth 

𝑓(𝑒𝑠+𝑖𝜃) = 𝑒Γ
∗(𝑠) √2𝜋

√Γ′′(𝑥𝑠)
𝑑(𝑥𝑠)𝑒

𝑖𝜃𝑥𝑠 [𝑒−
1
2
𝜃2(1 + 𝑖Θ𝐸 + 𝑖Θ3𝐶3) + 𝑂 (𝑐2

1
2
+𝜏
)

+ 𝑂(ℱ)]                                                                                                                    (52) 

ln particular, for 𝑐2

1

2
−𝛽
< |𝜃| < 𝜋. 

|𝑓(𝑒𝑠+𝑖𝜃)| = 𝑓(𝑒𝑠)𝑂 (𝑐2

1
2
+𝜏
).                                (53) 

     As with the previous theorem, the formulation in (46) is redundant. The 𝑂(ℱ) error term, 

which is smaller, is intrinsic to the method; the other could be mechanically refined. Hence 

we present both.  

We use the results of this theorem as input for Theorem (2.2.2). To do that, we require 

certain estimates on the derivatives of 𝑓 on the axis. We present those estimates as a lemma 

now because it is convenient to include their proof along with the proof of Theorem (2.2.3).  

Lemma (2.2.13)[61]: In the situation of Theorem (2.2.18), we have the following additional 

estimates:  

𝑧
𝑑

𝑑𝑧
 𝑓(𝑒𝑠) = 𝑥𝑠𝐿0 + 𝐿1,                                       (54) 

(𝑧
𝑑

𝑑𝑧
)
2

𝑓(𝑒𝑠) = 𝑥𝑠
2𝐿0 + 2𝑥𝑠𝐿1 + 𝐿2,                 (55) 
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where for 𝑗 = 0,1,2  

𝐿𝑗 = 𝑒
Γ∗(𝑥)∆(𝑥𝑠)√

2𝜋

𝑐2
[√
𝑐2
2𝜋
𝐽𝑗 + 𝑂(𝑐2

1
2
+𝜏
) + 𝑂(ℱ)]     (56) 

with  

𝐽0 = √2𝜋
1

√𝑐2
, 𝐽1 = √2𝜋

−𝑐3 + 2𝑑1𝑐3

2(√𝑐2)
5

, 𝐽2 = √2𝜋
1

(√𝑐2)
3
.  (57) 

Proof. The hypothesis (48) insures that lim(𝑑(𝑛)𝑐(𝑛)−1)
1

𝑛 = 0. Thus 𝑓 is entire.  

We need to estimate 

(𝑧
𝑑

𝑑𝑧
)
𝑖

𝑓(𝑧) =∑𝑛𝑖𝑑(𝑛)𝑐(𝑛)−1𝑧𝑛
∞

0

, 𝑖 = 0,1,2. 

We split the sum into a central part and tails. The tails will be estimated by the corresponding 

integrals, using analysis similar to that in the previous proof. In order to capture the 

cancellation when 𝜃 ≠ 0, we treat the central part differently.  

    The analysis of the tail terms is not essentially changed by the factors 𝑛𝑖; hence we present 

the estimates only for 𝑖 = 0. We have 

𝑓(𝑥) =∑𝑑(𝑛)𝑐(𝑛)−1𝑥𝑛 =∑𝑒𝑛 log𝑥−Γ(n)+ ∆(𝑛). 

Writing 𝑧 = 𝑒𝑠, we have 𝑓(𝑒𝑠+𝑖𝜃) = ∑𝑒𝑥𝑝(𝑛𝑠 − Γ(𝑛)  + ∆(𝑛) +  𝑖𝑛𝜃). Fix s large. For 

this 𝑠, 𝑥𝑠 − Γ(𝑥) has its maximum at 𝑥𝑠. Set 𝑢 = 𝑛 − 𝑥𝑠. Thus 𝑒𝑖𝑛𝜃 = 𝑒𝑖𝑥𝑠𝜃𝑒𝑖𝑢𝜃. For 

typographic convenience, we set 

Ω = −(Γ(𝑥𝑠 − 𝑢) − 𝑐0 − 𝑐1𝑢) + ∆(𝑥𝑠 + 𝑢) − 𝑑0. 

Bringing a factor of 𝑒Γ
∗(𝑛)𝑒𝑖𝑥𝑠𝜃 outside the sum, recalling that 𝑐1 = Γ

′(𝑥𝑠) = 𝑠, and doing 

a bit of rearranging, we find  

𝑓(𝑒𝑠+𝑖𝜃) = 𝑒Γ
∗(𝑠)+∆(𝑥𝑠)+𝑖𝜃𝑥𝑠∑𝑒Ω+𝑖𝑢𝜃

∞

−𝑥𝑠

 

We need to show  

√
𝑐2
2𝜋
∑𝑒Ω+𝑖𝑢𝜃
∞

−𝑥𝑠

= 𝑒−
1
2
Θ2(1 + 𝑖Θ𝐸 + 𝑖Θ3𝐶3) + 𝑂 (𝑐2

1
2
+𝜏
) + 𝑂(ℱ).     (58) 

We use 𝜆 = 𝜆(𝑠) as given by (44) to split the range of summation into three parts, again L, 

C, and R. We start the analysis with L. We drop the unimodular factor and dominate the 

sum by the corresponding integral. That is,  

√
𝑐2
2𝜋
𝐿 = 𝑂(1)√

𝑐2
2𝜋
∫ 𝑒Ω𝑑𝑢
−𝜆

𝑥𝑠

.                                            (59) 

We now estimate the integrand. We have 

Γ(𝑥𝑠 +  𝑢) − 𝑐0 − 𝑐1𝑢 = ∫ (𝑟 − 𝑢)Γ′′(𝑥𝑠 +  𝑟)𝑑𝑟
0

𝑢

. 

By the monotonicity of Γ′′ we see that if 𝑢 < −𝜆 then 

Γ(𝑥𝑠 + 𝑢) − 𝑐0 − 𝑐1𝑢 ≥ ∫ (𝑟 − 𝑢)Γ′′(𝑥𝑠 + 𝑟)𝑑𝑟
0

−𝜆

 

≥ Γ′′(𝑥𝑠)∫ (𝑟 − 𝑢)𝑑𝑟
0

−𝜆

= −
1

2
Γ′′(𝑥𝑠)𝜆(2𝑢 + 𝜆). 
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Thus, we continue (53) with 

√
𝑐2
2𝜋
𝐿 = 𝑂(1)√

𝑐2
2𝜋
𝑒
𝜆2𝑐2
2 ∫ 𝑒𝑐2𝑢𝜆+∆(𝑥𝑠+𝑢)−𝑑0𝑑𝑢

−𝜆

−𝑥𝑠

= 𝑂(1)𝑒
𝜆2𝑐2
2 ∫ 𝑒

𝑤𝜆+[∆(𝑥𝑠+
𝑤

√𝑐2
)−𝑑0]

𝑑𝑤
−𝜆

−∞

 

We need to estimate the integral. Using (43) to estimate [∆ (𝑥𝑠 +
𝑤

√𝑐2
) − 𝑑0] in the integral, 

we find that, for some positive 𝐾, 

√
𝑐2
2𝜋
∫ …𝑑𝑤
−𝜆√𝑐2

−∞

𝑤 = 0(1)𝑒
𝜆2𝑐2
2 ∫ 𝑒𝑤𝜆√𝑐2𝑒−𝐾𝑤

−𝜆 √𝑐2
3

−∞

 

= 𝑂(1)
𝑒
𝜆2𝑐2
2 𝑒(−𝜆

2𝑐2+𝐾𝜆√𝑐2)

𝜆√𝑐2 − 𝐾
 

= 𝑂(1)
𝑒−

𝜆2𝑐2
2
+𝐾𝜆√𝑐2

𝜆√𝑐2 − 𝐾
   

= 𝑂(1) 𝑂 (𝑒𝑥𝑝 (−
𝜆2𝑐2
2
+  𝜆√𝑐2𝐾)) = 𝑂(ℱ), 

as required. We now look at 𝑅. If 𝑢 ≥ 𝜆, then 

Γ(xs + 𝑢) − 𝑐0 − 𝑐1𝑢 = ∫ (𝑢 − 𝑟)Γ′′(𝑥𝑠 + 𝑟)𝑑𝑟
𝑢

0

 

≥ ∫ (𝑢 − 𝑟)Γ′′(𝑥𝑠 + 𝑟)𝑑𝑟
𝜆

0

 

≥ Γ′′(𝑥𝑠 + 𝜆)∫ (𝑢 − 𝑟)𝑑𝑟
𝜆

0

 

=
1

2
𝜆Γ′′(𝑥𝑠 + 𝜆)(2𝑢 − 𝜆) 

Set �̃�2 = Γ
′′(𝑥𝑠 + 𝜆). Then 

𝑅 = 𝑂(1)∫ 𝑒−
1
2
𝜆𝑐2̃(2𝑢−𝜆)+∆(𝑥𝑠+𝑢)−𝑑0𝑑𝑢

∞

𝜆

. 

Thus  

√
𝑐2
2𝜋
𝑅 = 𝑂(1) √𝑐2 𝑒

1
2
𝜆2𝑐2̃∫ 𝑒−𝜆𝑐2̃𝑢+∆(𝑥𝑠+𝑢)−𝑑0𝑑𝑢

∞

𝜆

. 

Lemma (2.2.11) insures �̃�2~𝑐2. The hypothesis (43) and the monotonicity of Γ′′ insure 

∆(𝑥𝑠 + 𝑢) − 𝑑0 = 𝑂(1)𝑐2

1

2𝑢. Thus we need to estimate 

𝐼 = 𝑂(1)√𝑐2 exp((1 +
𝑜(1)𝑐2𝜆

2

2
))∫ (−𝜆(1 +  𝑜(1))𝑐2𝑢 + 𝑂(1)𝑐2

1
2𝑢)𝑑𝑢

∞

𝜆

 

= 𝑂(1)√𝑐2 exp((1 +
𝑜(1)𝑐2𝜆

2

2
))∫ ([−(1 +  𝑜(1))𝜆2𝑐2

∞

𝜆

+ 𝑂(1)𝑐2

1
2]
𝑢

𝜆
)𝑑𝑢. 
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We know 𝜆𝑐2

1

2 → ∞. Hence, for large s, 

[−(1 + 𝑜(1))𝜆2𝑐2 + 𝑂(1)𝜆𝑐2

1
2]
𝑢

𝜆
≤ [−

2

3
𝜆2𝑐2]

𝑢

𝜆
=
2

3
𝜆𝑐2𝑢. 

Thus 

𝐼 = 𝑂(1)√𝑐2 exp((1 +
𝑜(1)𝑐2𝜆

2

2
))∫ exp(−

2𝜆𝑐2𝑢

3
)𝑑𝑢

∞

𝜆

= 𝑂(1)√𝑐2 exp(
(1 +  𝑜(1))𝑐2𝜆

2

2
) (𝑐2𝜆)

−1  𝑒𝑥𝑝 (−
2𝜆2𝑐2
3

)

= 𝑂(1)
1

√𝑐2𝜆
−1
𝑒𝑥𝑝 ((

1

2
−
2

3
+  𝑜(1)) 𝑐2𝜆

2) = 𝑜(ℱ), 

as required. 

    We now need to estimate the center term, 

∑ 

𝐶

= 𝑒Γ
∗(𝑠)+∆(𝑥𝑠)+𝑖𝜃𝑥𝑠 ∑ 𝑒Ω+𝑖𝑢𝜃

|[𝑢]|<𝜆

. 

By Taylor's theorem, we have, for |𝑢| < 𝜆, 

Ω = −
1

2
𝑐2𝑢

2 −
1

6
𝑐3𝑢

3 + 𝑑1𝑢 −
1

24
�̃�4 +

1

2
�̃�2𝑢

2. 

Here �̃�4  = Γ
(4)(𝑤) and �̃�2  = ∆

′′(𝑤′), with 𝑤,𝑤′∆(𝑥𝑠 − 𝜆, 𝑥𝑠 + 𝜆). Using (42), (43), (49), 

and (50), we find 

|�̃�4𝑢
4| + |�̂�2𝑢

2|  = 𝑂 (𝑐2

1
2
+𝜏
), 

(|𝑐3𝑢
3| + |𝑑1𝑢|)

2  = 𝑂 (𝑐2

1
2
+𝜏
). 

We have 

∑ 𝑒Ω+𝑖𝑢𝜃

|[𝑢]|<𝜆

=∑(1 + 𝑑1𝑢 −
𝑐3𝑢

3

6
+ 𝑂 (𝑐2

1
2
+𝜏
))exp(−

𝑐2𝑢
2

2
+ 𝑖𝑢𝜃) 

=∑(1 + 𝑑1𝑢 −
𝑐3𝑢

3

6
) 𝑒𝑥𝑝 (−

𝑐2𝑢
2

2
+ 𝑖𝑢𝜃) 

+∑𝑂(𝑒2

1
2
+𝜏
) exp(−

𝑐2𝑢
2

2
+ 𝑖𝑢𝜃) 

=∑ 

1

+∑ 

2

.                                                                                       (60) 

    We estimate ∑  2  by passing to absolute values, estimating the truncated Gaussian sum by 

the corresponding Gaussian integral over the entire line, and then evaluating the integral. 

This gives ∑  2 =  𝑂 (𝑐2

1

2
+𝜏
)𝑂 (𝑐2

−
1

2)  = 𝑂(𝑐2
𝜏), which is what we needed. (Recall from (58) 

that we pick up an additional factor of 𝑂(𝑐2

1

2) outside of the sum ∑  [|𝑢|]<𝜆 .) 
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    Write 𝑢 = 𝑘 − 𝜎 with 𝑘 ∈ 𝑍 and 𝜎 =  𝑥𝑠 − [𝑥𝑠]. Now ∑  1  is a sum with the range |𝑘| <
𝜆. However, the natural estimates show that we change things only by 𝑂(ℱ) if we replace 

that with the sum over all integers. We do that and thus now need to estimate 

∑(1+ 𝑑1(𝑘 − 𝜎) −
𝑐3(𝑘 − 𝜎)

3

6
) exp(−

𝑐2(𝑘 − 𝜎)
2

2
+ 𝑖(𝑘 − 𝜎)𝜃)

∞

−∞

. 

By the Poisson summation formula ([62]), this equals ∑ ℎ(𝑛)∞
−∞ , where 

ℎ(𝑛) = ∫ (1 + 𝑑1(𝑥 − 𝜎) −
𝑐3(𝑥 − 𝜎)

3

6
)

∞

−∞

× 𝑒𝑥𝑝(−
𝑐2(𝑥2 − 𝜎)

2

2
+ 𝑖(𝑥 − 𝜎)𝜃) 𝑒2𝜋𝑖𝑛𝑥𝑑𝑥  

= 𝑒2𝑖𝜋𝑛𝜎∫ (1 + 𝑑1𝑦 −
𝑐3𝑦

3

6
) 𝑒𝑥𝑝 (−

𝑐2𝑦
2

2
+ (2𝜋𝑛 + 𝜃)𝑖𝑦)𝑑𝑦

∞

−∞

. 

Starting with the formula for ∫ 𝑒−𝑡𝑦
2+2𝑥𝑦𝑑𝑦

∞

−∞
 ([62],) and differentiating with respect to 𝑠, 𝑡, 

and then both, we find 

∫ 𝑒−𝑡𝑦
2+2𝑥𝑦𝑑𝑦

∞

−∞

=
√𝜋

√𝑡
𝑒
𝑠2

𝑡 ,                                       (61) 

∫ 𝑦𝑒𝑡𝑦
2+2𝑠𝑦𝑑𝑦

∞

−∞

=
𝑠

𝑡

√𝜋

√𝑡
𝑒
𝑠2

𝑡 ,                                     (62) 

∫ 𝑦2𝑒−𝑡𝑦
2+2𝑠𝑦𝑑𝑦

∞

−∞

= [
1

2𝑡
+ (
𝑠

𝑡
)
2

]
√𝜋

√𝑡
𝑒
𝑠2

𝑡 ,             (63) 

∫ 𝑦3𝑒−𝑡𝑦
2+2𝑠𝑦𝑑𝑦

∞

−∞

= [
3𝑠

2𝑡2
+ (
𝑠

𝑡
)
3

]
√𝜋

√𝑡
𝑒
𝑠2

𝑡 .           (64) 

For 𝑛 = 0, direct computation gives  

ℎ(0) = 𝑒
−
𝜃2

2𝑐2 (1 + 𝑖𝜃 (
𝑑1
𝑐2
−
1

2
(
𝑐3

𝑐2
2)) + 𝑖

𝜃3𝑐3

𝑐2
3 )

√2𝜋

√𝑐2
 

or, in terms of the scaled parameters, 

ℎ(0) = 𝑒^(−
1

2
Θ2(1 + 𝑖Θ𝐸 + 𝑖Θ3𝐶3)

√2𝜋

√𝑐3
. 

In general, 

ℎ(𝑛) 𝑒^(−
1

2
Θ2(1 + 𝑖Θ(𝑛)𝐸 + 𝑖Θ(𝑛)3𝐶3)

√2𝜋

√𝑐2
𝑒𝜋𝑖𝑛𝜎 . 

In general,∑ |ℎ(𝑛)|𝑛≠0  is dominated by a geometric series which is dominated by ℎ(0)𝑂(ℱ). 
However, this fails to be uniform in 𝜃; in fact, Θ(−𝜋, 1) = 𝑂(𝜋, 0). However, this is only 

an issue if 𝑛 = ±1 and 𝑒𝑖𝜃 is near the negative real axis. In that case, however, both terms 

are 𝑂(𝑒−𝑐2
−1
= 𝑂(ℱ). Hence all the ℎ(𝑛), for 𝑛 > 0, can be absorbed into the various error 

terms. Finally, notice that when 𝑐2

1

2
−𝛽
< |𝜃|, ℎ(0) = 𝑂(ℱ). Hence the main term is the 

contribution associated to ∑  2  in (54), which we saw was 𝑂 (𝑐2

1

2
+𝜏
) . Thus (52) and (53) are 

done. 

    We now proceed to the proof of the lemma. For 𝑗 = 1, 2 we want to estimate  
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(𝑧
𝑑

𝑑𝑧
)
𝑗

𝑓(𝑒𝑠) = 𝑒Γ
∗(𝑠)𝑑(𝑥𝑠)∑(𝑥𝑠 + 𝑢)

𝑗𝑒Ω
∞

−𝑥𝑠

. 

Straightforward manipulation shows that (54) and (55) hold with  

𝐿𝑗 = 𝑒
Γ∗(𝑠)𝑑(𝑥𝑠)𝑑(𝑥𝑠)∑𝑢𝑗𝑒Ω

∞

−𝑥𝑠

 

for 𝑗 = 0, 1, 2. We estimate 𝐿1 and 𝐿2 using the same type of analysis as in the proof of the 

theorem (which, in fact, treated 𝐿0). That is, the tails contribute an error that is 𝑂(ℱ), and 

the central part of the sum is analyzed using Poisson summation. The situation here is 

slightly easier because we only want estimates on the positive real axis. Hence the terms in 

the Poisson summation corresponding to 𝑛 ≠ 0 contribute a total error which is 𝑂(ℱ). This 

gives, up to an error term of 𝑂(𝑒2
𝜏) +  𝑂(ℱ), 𝐿𝑗 = 𝐽𝑗 This gives us (56) with 

𝐽𝑗 = ∫ (1 + 𝑑1𝑦 −
𝑐3𝑦

3

6
) 𝑒𝑥𝑝 (−

𝑐2𝑦
2

2
)𝑑𝑦

∞

−∞

 

for 𝑗 = 0, 1,2. Evaluating those integrals using (61)-(64) then produces the statements in the 

lemma. 

     We shall use the output of Theorem (2.2.2) as input for Theorem (2.2.12) and then use 

the output from Theorem (2.2.12) as input for Theorem (2.2.2). Here we collect the 

bookkeeping lemmas which show that the functions which arise in this process satisfy the 

required hypotheses.  

    First, suppose that we have a and b which satisfy the hypotheses of Theorem (2.2.2), that 

A and B are given by (18) and (19), and that {Γ(𝑛)} are the associated moments. We want 

to use {γ(𝑛)−1} as power series coefficients in a way which keeps the focus on a as the 

primary term. We define 𝑐, 𝑑 by 𝑐(𝑥) = 𝑒𝑥𝑝(𝐴∗(𝑥)), 𝑑(𝑥) = 𝑐(𝑥)𝛾(𝑥)−1 and define Γ and 

∆ by (37) and (38).  

Lemma (2.2.14)[61]: Suppose 𝑎, 𝜖, and 𝛼 satisfy the hypotheses of Theorem (2.2.2) and 

𝑏 ∈ 𝑆𝑉𝐼 (𝑎, 𝜖,
𝛼

3
). Then, with the same 𝜖, with 𝛽 = 𝛼, and with 𝜆 = Γ′′−

1

2
−𝛽

, the data 𝜀, 𝛽, Γ, 

and ∆ satisfy the hypotheses of Theorem (2.2.2)1. That is, with the same 𝜀, Γ satisfies (39), 

(40), (41), (42), and (43), and 𝑑 ∈ 𝑆𝑉𝐼𝐼(𝑐, 𝜀, 𝛽). 
Proof. The statements about F follow from the hypotheses on A, the fact that Γ = 𝐴∗, and 

Lemma (2.2.1). 

To see that 𝑑 ∈ 𝑆𝑉𝐼𝐼(𝑐, 𝜀, 𝛽), note that 

∆= log 𝑐 − log 𝛾 = Γ − log 𝛾 = 𝐴∗ − log 𝛾. 
Hence, by (30), (31), and (32), A satisfies (49) and (50). 

     Suppose, now, that we had a, that 𝑏 = 1, that we had a choice of 𝛼, and that we then 

invoked Theorem (2.2.2) with the choice 𝛼∗ = 𝛼/3. Of course, for b a constant function, 

𝑏 ∈ 𝑆𝑉𝐼(𝛼, 𝜀, 𝛼∗). Noting the previous lemma, we can then apply Theorem (2.2.12) to the 

functions c and d just described. That will produce an entire function f. Suppose we have a 

fixed 𝜎 > −1. We want to apply Theorem (2.2.2) to the functions 𝛼𝜎 and 𝑏𝜎, selected so 

that 𝑎𝜎𝑏𝜎 = 𝑎𝑓
−𝜎. We set 𝑎𝜎 = 𝑎𝑒

−𝜎𝐴, 𝑏𝜎 = 𝑒
𝜎𝐴𝑓−𝜎 and 𝐴𝜎(𝑠) = − log 𝑎𝜎(𝑒

𝑧) −
𝑠 , 𝐵𝜎(𝑠) = log 𝑏𝜎(𝑒

∗). 
Lemma (2.2.15)[61]: Using a new smaller 𝛼, we can apply Theorem (2.2.2) to the functions 

𝑎𝜎 and 𝑏𝜎. That is, for a smaller 𝛼, 𝐴𝜎 satisfies (20), (21), (22), (25), and (26). Furthermore, 

𝑏𝜎 ∈ 𝑆𝑉𝐼(𝑎𝜎 , 𝜀, 𝛼). 
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Proof. Our choice 𝑐(𝑥) = 𝑒𝑥𝑝(𝐴∗(𝑥)) in Theorem (2.2.12) gives Γ = 𝐴∗ and hence Γ∗ =
𝐴∗∗ = 𝐴. Thus 

𝐴𝜎(𝑠) = − log 𝑎𝜎(𝑒
𝑠) − 𝑠 = − log 𝑎(𝑒𝑠) − 𝑠 + 𝜎𝐴(𝑠) = (1 + 𝜎)𝐴(𝑠), 

and the conclusions for 𝐴𝜎 are immediate. We have 𝐵𝜎(𝑠) = ln 𝑏𝜎(𝑒
𝑠) = 𝜎(Γ∗(𝑠) −

log 𝑓(𝑒𝑠)). Hence we need estimates for (Γ∗ − log 𝑓)′ and (𝐹∗ − log 𝑓)′′. Set D = 𝑧𝑑/𝑑𝑧. 

Direct computation yields 

(log 𝑓(𝑒𝑠))′(𝑒𝑠) =
D𝑓(𝑒𝑠)

𝑓(𝑒𝑠)
,                              

(log 𝑓(𝑒𝑠))′′(𝑒𝑠) =
D2𝑓(𝑒𝑠)

𝑓(𝑒𝑠)
− (

D𝑓(𝑒𝑠)

𝑓(𝑒𝑠)
)

2

. 

Recall that Γ∗
′
(𝑠) = 𝑥𝑠 = 𝐴

′(𝑠) and, by Lemma (2.2.1), Γ∗′′  = Γ′′−1 = 𝑐2
−1. Thus, using 

(54) and (55), we have 

(Γ∗ − log𝑓)′ = Γ∗
′
(𝑠) −

D𝑓(𝑒𝑠)

𝑓(𝑒𝑠)
                              

= 𝑥𝑠 − (
𝑥𝑠𝐿0 + 𝐿1

𝐿0
)
2

 

= −
𝐿1
𝐿0
.                           

          =
√𝑐2 2𝜋⁄ 𝐽1 + 𝑂(𝑐2

1 2⁄ +𝜏
)

√𝑐2 2𝜋⁄ 𝐽0 + 𝑂(𝑐2
1 2⁄ +𝜏

)
. 

The last equality follows by using (56) and absorbing 𝑂(ℱ) into the other, larger, error term. 

Using the values of 𝐽0 and 𝐽1, we continue with 

(Γ∗ − log𝑓)′

=

−𝑐3 + 2𝑑1𝑐2
2𝑐2

2 +  𝑂 (𝑐2

1
2
+𝜏
)

1 + 𝑂 (𝑐2

1
2
+𝜏
)

− (
−𝑐3 + 2𝑑1𝑐2

𝑐2
2 + 𝑂(𝑐2

1
2
+𝜏
))(1 + 𝑂 (𝑐2

1
2
+𝜏
))

= (𝑂(𝑐3𝑐2
−2) + 𝑂(𝑑1𝑐2

−1)𝑂 (𝑐2

1
2
+𝜏
))(1 + 𝑂 (𝑐2

1
2
+𝜏
))

= (𝑂 (𝑐2
−
1
2
+𝜀
) + 𝑂 (𝑐2

−
1
2
+𝜀−𝛽

) + 𝑂 (𝑐2

1
2
+𝜏
))(1 + 𝑂 (𝑐2

1
2
+𝜏
))

= 𝑂((𝑐−
1
2
+𝜀−𝛽) = 𝑂 (𝐴′′

1
2
−𝜀+𝛽). 

Using this estimate for 𝐿1/𝐿0, we analyze the second derivative by 

(Γ∗ − log 𝑓)′′ = Γ∗
′′
(𝑠) −

D2𝑓(𝑒𝑠)

𝑓(𝑒𝑠)
+ (

D𝑓(𝑒𝑠)

𝑓(𝑒𝑠)
)

2

= Γ′′−1(𝑥𝑠) − (
𝑥𝑠
2𝐿0 + 2𝑥𝑠𝐿1 + 𝐿2

𝐿0
) + (

𝑥𝑠𝐿0 + 𝐿1
𝐿0

)
2

= 𝑐2
−1 −

𝐿2
𝐿0
+ (

𝐿1
𝐿0
)
2
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= 𝑐2
−1 −

√
𝑐2
2𝜋
𝐽2 + 𝑂(𝑐2

1
2
+𝜏
)

√
𝑐2
2𝜋
𝐽0 + 𝑂(𝑐2

1
2
+𝜏
)

+ (𝑂 (𝐴′′
1
2
−𝜀+𝛽)

2

= 𝑐2
−1 −

𝑐2
−1 + 𝑂(𝑐2

1
2
+𝜏
)

1 + 𝑂 (𝑐2

1
2
+𝜏
)

+ (𝑂 (𝐴′′
1
2
−𝜀+𝛽))

2

   

= 𝑐2
−1 − 𝑐2

−1 + 𝑐2
−1𝑂 (𝑐2

1
2
+𝜏
) + (𝑂 (𝐴′′

1
2
−𝜀+𝛽))

2

= 𝑂(𝑐2
−
1
2
+𝜏
) + (𝑂 (𝐴′′

1
2
−𝜀+𝛽))

2

= 𝑂(𝐴′′ 1−2𝜀+2𝛽). 
This gives the required estimates for 𝐵′ and 𝐵′′. 

We suppose that m is given and fixed and that 𝐴(𝑠) = − log𝑚(𝑒𝑠) − 𝑠 satisfies the 

hypotheses of Theorem (2.2.2) for some selected 𝜀, 𝛼. We use the notation of Theorem 

(2.2.2) and its proof and of Theorem (2.2.12) and its proof with the choice Γ = 𝐴∗. In 

particular, we denote the derivatives of A by 𝜎'𝑠 and of Γ by c’s. 

     Many of our estimates will be in terms of the function 𝐴′′. We would like to be able to 

relate those estimates both to the starting function m and to the function 𝜑 defined by 

𝑚(|𝑧|2) = 𝑒𝑥𝑝(−2𝜑(𝑧)), which is often used as a parameterization in this context. By 

straightforward calculation, we have  

𝐴′′(log 𝑥2) = −(𝑥
𝑑

𝑑𝑥
)
2

(log𝑚)(𝑥2) = 𝑥2(∆𝜑)(𝑥). 

Let 𝐻𝑚 be the weighted Bergman space,  

𝐻𝑚 = 𝐿
2 (ℂ,𝑚(𝑟2)

𝜏𝑑𝑟𝑑𝜃

𝜋
) ∩ 𝐻𝑜𝑙.  

For each 𝑤 ∈ ℂ, there is a Bergman kernel function 𝑘𝑤 = 𝑘𝑚,𝑤 which is characterized as 

that element of 𝐻𝑚 which satisfies 𝑓(𝑤) = 〈𝑓, 𝑘𝑤〉 for all f in 𝐻𝑚. Because the monomials 

are an orthogonal basis of 𝐻𝑚 , 𝑘𝑤(𝑧) = ∑ ‖𝑧𝑛‖−2(�̅�𝑧)𝑛∞
𝑛=0 . Thus, setting 𝛾 =

∫ 𝑥𝑛𝑚(𝑥)𝑑𝑥
∞

0
 and 𝑘𝑤(𝑧) = 𝐾𝑚(𝑧) = ∑ 𝛾𝑛

−1𝑧𝑛∞
𝑛=0 , we have 𝑘𝑤(𝑧) = 𝐾(�̅�𝑧).We are 

interested in estimating kw and related objects. Our approach is to start with m, use Theorem 

(2.2.2) to estimate the 𝛾′s in terms of m, and then use those estimates in Theorem (2.2.12) 

to estimate 𝐾. There is no loss of generality in assuming that w is real and positive, and we 

make that assumption for the rest.  

In describing various small quantities, we use the shorthand  

𝑆(𝑥) = 𝐴′′(log 𝑥)−1. 
Here is our main estimate for the Bergman kernel. 

Theorem (2.2.16)[61]: As 𝑟 → ∞, for |𝜃| ≤ 𝑆(𝑤𝑟)
1

2
−6𝛼

, 

𝑘𝑤(𝑟𝑒
𝑖𝜃) = 𝑒𝐴(log𝑤𝑟)𝐴′′(log𝑤𝑟)𝑒𝑖𝜃𝐴

′(log𝑤𝑟)(𝑒−
𝐴′′(log𝑤𝑟)𝜃2

2

+ 𝑂 (𝑆(𝑤𝑟)
1
2
+𝜏)                                                                                                     (65) 

and thus  

𝑘𝑤(𝑟𝑒
𝑖𝜃)𝑚(𝑤𝑟)~

𝐴′′(log𝑤𝑟)

𝑤𝑟
 𝑒
𝐴′′(log𝑤𝑟)𝜃2

2      (66) 
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On the diagonal,  

𝑘𝑤(𝑤) = 𝑒
𝐴(2 log𝑤)𝐴′′(2 log𝑤) (1 + 𝑂 (𝑆(𝑤2)

1
2
+𝜏)).      (67) 

Far from the axis, |𝑒| > 𝑆(𝑤𝑟)𝛾 for (any)fixed 𝛾 > 𝑂, 

𝑘𝑤(𝑟𝑒
𝑖𝜃) = 𝑘𝑤(𝑟)𝑂 (𝑆(𝑤

2)
1
2
+𝜏).                        (68) 

Note. Recall from Theorem (2.2.12) that 𝜏 = 2𝜀 − 6𝛽 − 1/2 and 0 < 𝜏 < 1/2. 

Proof. We apply Theorem (2.2.2) with the choice 𝐴(𝑠) = − log𝑚(𝑒𝑠) − 𝑠 , 𝐵 = 0. Let 𝛾 

be the moment function we obtain. Lemma (2.2.14) insures that we can then use Theorem 

(2.2.12) with the choices 𝑐 = 𝑒𝑥𝑝(𝐴∗), 𝑑 = 𝑒𝑥𝑝(𝐴∗)𝛾−1 (and thus 𝑐−1𝑑 = 𝛾−1). Theorem 

(2.2.12) shows that on the positive axis 

𝑓(𝑒𝑠)~𝑒𝛤
∗(𝑠)  

√2𝜋

√Γ′′(𝑥𝑠)
𝑑(𝑥𝑠)(1 + 𝑂 (𝑆(𝑤𝑟)

1
2
+𝜏). 

We have Γ = 𝐴∗ and hence Γ∗ = 𝐴∗∗ = 𝐴, the last by Lemma (2.2.1). We also know, from 

that lemma, that Γ′′ = 𝐴∗
′′
= 𝐴′′−1 and hence 𝑐2 = 𝐴

′′−1. Finally, 𝑑 = √𝐴′′𝑒𝑥𝑝(𝐵)/√2𝜋. 

In this case, 𝐵 = 0 and hence 𝑓(𝑒𝑠) ~ 𝑒𝐴𝐴′′. From the definitions, we have 𝑒𝐴(log 𝑡) =
1

𝑡𝑚(𝑡)
. Recalling that 𝐾 = 𝑓 gives (59). The other estimates follow by restricting to 

appropriate 𝜃.  

From this theorem, we get an asymptotic version of (A) 

Corollary (2.2.17)[61]: 

𝑚(𝑟2)𝑘𝑟(𝑟)~
𝐴′′(log 𝑟2)

𝑟2
. 

In particular, if 𝑚(𝑟)~ 𝑎𝑟𝑏𝑒−𝑐𝑟
𝑑
𝑠(𝑟), where 𝑎, 𝑏, 𝑐, 𝑑 > 0 and  𝑠 ∈ 𝑆𝑉𝐼 (𝑎𝑟𝑏𝑒−𝑐𝑟

𝑑
, 𝜀, 𝛼) 

for 𝜀, 𝛼 allowed in Theorem (2.2.2), then 

𝑚(𝑟2)𝑘𝑟(𝑟) ~ 𝑐𝑑
2𝑟2𝑑−2. 

Theorem (2.2.16) is not enough to give a version of (B). It shows that log 𝐾𝑚 =
(− log𝑚)(1 + 𝑜(1)); but to get to a version of(B), we need to know that a similar estimate 

holds after we apply (
𝑥𝑑

𝑑𝑥
)
2
 to each side. For that reason, we need to invoke (15) and Theorem 

(2.2.2) again.  

Theorem (2.2.18)[61]: Fix 𝜎 > 0 and set 𝐾𝜎𝑤 = 𝑘𝑚𝐾𝑚−𝜎,𝑤. As 𝑟 → ∞, for |𝜃| ≤  𝑆(𝑟)
1

2
−6𝛼

,  

𝐾𝜎,𝑤(𝑟𝑒
𝑖𝜃)~(1 + 𝜎)𝐾𝑚,𝑤(𝑟𝑒

𝑖𝜃)
1+𝜎
. 

for 𝜋 ≥ |𝜃| > 𝑆(𝑟)
1

2
−6𝛼

 

𝐾𝜎,𝑤(𝑟𝑒
𝑖𝜃)~𝐾𝜎,𝑤(𝑟)𝑂(𝑆(𝑟)

1
2
+𝜏. 

Proof. We have 𝐴(𝑠) = − log𝑚(𝑒𝑠) − 𝑠. We want to apply Theorem (2.2.2) with the 

choices 𝑎𝜎 = 𝑚𝑒
−𝜎𝐴 and 𝑏𝜎 = 𝑒

𝜎𝐴𝐾𝑚(𝑥)
−𝜎. The associated function 𝐴𝜎 is  

𝐴𝜎(𝑠) = − log 𝑎𝜎 (𝑒
𝑠) − 𝑠 = − log𝑚 (𝑒𝑠) − 𝑠 − 𝜎𝐴(𝑠) = (1 + 𝑎)𝐴(𝑠). 

We saw in the proof of Theorem (2.2.16) that 𝐾𝑚(𝑒
𝑠)~𝑒𝐴𝐴′′𝑏 = 𝑒𝐴𝐴′′. The same argument 

applied to 𝑎𝜎 and 𝑏𝜎 gives 

𝐾𝜎,𝑤(𝑥)~𝑒
𝐴𝜎𝐴𝜎

′′𝑏𝜎                                             

= 𝑒(1+𝜎)𝐴(1 + 𝜎)𝐴′′𝑏𝜎        

                            = 𝑒(1 + 𝜎)𝐴 (1 + 𝜎)𝐴′′(𝑒𝐴𝐾𝑚,𝑤(𝑥)
−1)

𝜎
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~𝑒(1+𝜎)𝐴(1 + 𝜎)𝐴′′(𝐴′′)𝜎 

= (1 + 𝜎)(𝑒𝐴𝐴′′)1+𝜎          
~(1 + 𝜎)𝐾𝑚,𝑤(𝑥)

1+𝜎 .       
For small 𝜃, the proof of Theorem (2.2.12) goes through with Θ(𝑛)2 increased by a factor 

of 1 + Θ. For large 𝜃, the argument in that proof gives the required estimates. 

Rather than integrate these estimates to get an asymptotic version of (C), we do a slightly 

more general computation in the following. 

     The Berezin transform 𝐵𝑚 is a valuable tool for studying Toeplitz operators on 𝐻𝑚. For 

a smooth function 𝐹, 𝐵𝑚(𝐹) is defined by  

𝐵𝑚𝐹(𝑤) = 〈𝐹
𝑘𝑤
‖𝑘𝑤‖

,
𝑘𝑤
‖𝑘𝑤‖

〉 = ∫∫ 𝐹(𝑧)
|𝐾(�̅�𝑧)|2

𝐾(|𝑤|2)
𝑚(|𝑧|2)

𝑑𝑥𝑑𝑦

𝜋𝐶

  (69) 

If we look at the Fock spaces, 𝑚𝜎(|𝑧|
2) = 𝑒𝑥𝑝(−(1 + 𝜎)|𝑧|2), then we have  

𝐵𝑚𝜎
𝐹(𝑤) = ∫∫ 𝐹(𝑧)𝑒−(1+𝜎)|𝑧−𝑤|

2 𝑑𝑥𝑑𝑦

𝜋𝐶

= 𝐹(𝑤) +
1

4

1

(1 + 𝜎)
∆𝐹(𝑤) + 𝑂 (

1

(1 + 𝜎)2
). 

We would like analogues of these formulas for our more general weights. The general theory 

of reproducing kernels insures that the Berezin measure 

𝑑𝜇 =
|𝐾(�̅�𝑧)|2

𝐾(|𝑤|2)
𝑚(|𝑧|2)

𝑑𝑥𝑑𝑦

𝜋
 

is always a probability measure. We now want to study 𝑑𝜇 using our asymptotic estimates 

on the kernel function. First, however, we introduce a further restriction on 𝑎, which we 

formulate in terms of the auxiliary function A of (22). We require 𝐴′′(𝑠) to be dominated 

by 𝑒𝑥𝑝(𝑠2) in a controlled way. Suppose, therefore, that there exists constants 𝐶 > 0, 𝑎0 >

0 such that for 𝛼 > 𝛼0 and 𝑡 > 𝐴′′(𝛼0)
1

2 we have  

log
𝐴′′(𝛼 + 𝑡)

𝐴′′(𝛼)
< − 𝐶𝑡2.                                           (70) 

For context, note that in the model case 𝐴(𝑡) = 𝑒𝛽𝑡 − 𝑡 the left-hand side equals 𝛽. For 

smooth functions F defined on ℂ, set ‖𝐹‖ = ∑ sup|𝛻𝑛𝐹|𝑛≤3 . In addition to rectangular 

coordinates on ℂ we will use coordinates (𝑠, 𝜃) where 𝑤 = 𝑒𝑤 and 𝑧 = 𝑒𝑤+𝑠+𝑖𝜃 and also 

use the scaled coordinates (𝑆, Θ) where 𝑆 = √𝐴′′(2𝑤)𝑠 and Θ = √𝐴′′(2𝑤)𝜃. We continue 

to work of the previous. In particular, we still have the hypotheses and conclusions of 

Theorem (2.2.16) and Theorem (2.2.18).  

Theorem (2.2.19)[61]: In addition to the hypotheses of the previous, suppose that (70) 

holds. Given F with ‖𝐹‖  < ∞, we have 

𝐵𝑚𝐹(𝑤)  = ∫∫ 𝐹(𝑧)𝑒
−(𝑆2+Θ2)

𝑑𝑆𝑑Θ

π𝐶

+ 𝑂(1)‖𝐹‖𝑆(𝑤2)𝜖−𝛼 . 

Proof. We start from (69). We first estimate the integral over the unit disk. On 𝔻 we can 

bound F by ‖𝐹‖ and |𝐾(𝑤𝑧)| by 𝐾(𝑤). Thus we have 

|∫∫ 𝐹(𝑧)
|𝐾(𝑤𝑧)|2

𝐾(|𝑤|2)
𝑚(|𝑧|2)

𝑑𝑥𝑑𝑦

𝜋𝔻

| ≤ 𝐶𝑚‖𝐹‖
𝐾(𝑤)2

𝐾(𝑤2)
. 

To show that this can be absorbed into the error term, we need to control 𝐾(𝑤)2/𝐾(𝑤2) for 

large w. Recall that 𝜔 = log𝑤. By Theorem (2.2.16), it is enough to show that  

𝑒2𝐴(𝜔)𝐴′′(𝜔)2

𝑒𝐴(2𝜔)𝐴′′(2𝜔)
= 𝑂(𝐴′′(2𝜔)−1). 

Hence it suffices to show that 
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𝑗(𝜔) = 2𝐴(𝜔) − 𝐴(2𝜔) + 2 log𝐴′′(𝜔) 
is bounded above. We compute  

𝑗′(𝜔) = 2𝐴′(𝜔) − 2𝐴′(2𝜔) +
2𝐴′′(𝜔)

𝐴′′(𝜔)
 

and use the intermediate value theorem on the first pair of terms and the hypothesis (20) on 

the third. It follows that for some �̃� ∈ (𝜔, 2𝜔) 

𝑗′(𝜔) ≤ −2𝜔𝐴′′(�̅�) + 2𝐴′′(𝜔)
1
2. 

Recalling that 𝐴′′ is monotone increasing and unbounded, we see that 𝑗′ is negative for all 

large 𝜔, which gives what we need. 

We now pass to coordinates (𝑠, 𝜃), where 𝜔 = 𝑒𝜔 and 𝑧 = 𝑒𝜔+𝑠+𝑖𝜃 and so 𝑑𝑥 𝑑𝑦 =

𝑒2(𝜔+𝑠) 𝑑𝑠𝑑𝜃. By definition, 𝑚(|𝑧|2) = 𝑚(𝑒2(𝜔+𝑠)) = 𝑒−2(𝜔+𝑠)𝑒−𝐴(2𝜔+2𝑠). Hence 

𝜋−1𝑚(|𝑧|2)𝑑𝑥𝑑𝑦 = 𝜋−1𝑒−𝐴(𝑧𝜔+2𝑠) 𝑑𝑠 𝑑𝜃.  

Set 𝑅 = {(𝑠, 𝜃): |𝜃| < 𝑂 (𝑆(𝑤𝑟)
1

2
−6𝛼)}. In R we use the asymptotic estimates for 𝐾 given 

in Theorem (2.2.16). This lets us estimate the integrand by 

𝐹(𝑧)

|𝑒𝐴(2𝜔+𝑠)𝐴′′(2𝜔 + 𝑠)𝑒−
𝐴′′(2𝜔+𝑠)𝜃2

2 (1 + 𝑂 (𝑆(𝑤𝑟)
1
2
+𝑟))|

2

𝑒𝐴(2𝜔)𝐴′′(2𝜔)(1 + 𝑂 (𝑆(𝑤𝑟)
1
2
+𝑟))

𝑒−𝐴(2𝜔+2𝑠).  

Note that

(1+𝑂(𝑆(𝑤𝑟)
1
2
+𝑟
))

2

1+𝑂(𝑆(𝑤𝑟)
1
2
+𝑟
)
= − (1 + 𝑂 (𝑆(𝑤𝑟)

1

2
+𝑟)). We shall see that our approximations 

to the Berezin measure converge to a probability measure; in the course of that analysis, it 

will be clear that the norms of the approximations are uniformly bounded. Hence the error 

made by dropping the factors (1 + 𝑂 (𝑆(𝑤𝑟)
1

2
+𝑟)) in the integral can be safely absorbed 

into the error term. Thus, in R, the integrand can be estimated by 

𝐹(𝑧)𝑒2𝐴(2𝜔+𝑠)−𝐴(2𝜔)−𝐴(2𝜔+2𝑠)
𝐴′′(2𝜔 + 𝑠)2

𝐴′′(2𝜔)
𝑒𝐴

′′(2𝜔+𝑠)𝜃2 .       (71) 

We have estimated the integral over the unit disk, i.e., 𝑠 < −𝜔. We now consider the region 

where −𝜔 < 𝑠 < −𝛿. Set 

ℎ(𝑠) = 2𝐴(2𝛿 + 𝑠) −  𝐴(2𝜔) − 𝐴(2𝜔 + 2𝑠) 
and put 𝛿 = 𝛿(2𝜔). We dominate 𝐹(𝑧) by ‖𝐹‖ and first do the integral in 𝜃. Near the axis, 

we use the Gaussian estimate of (71). Integrating that gives (√𝜋 + 𝑜(1))𝐴′′(2𝜔 + 𝑠)
−
1

2. 

Using the estimate in (68) away from the axis, we get a further contribution of 

𝑜 (𝐴′′(2𝜔 + 𝑠)−
1

2). Thus, integrating in 𝜃 contributes a factor of 𝑂(1)𝐴′′(2𝜔 + 𝑠)−
1

2. 

Hence we must estimate  

∫ 𝑒ℎ(𝑠)
𝐴′′(2𝜔 + 𝑠)2

𝐴′′(2𝜔)𝐴′′(2𝜔 + 𝑠)
1
2

𝑑𝑠
−𝛿

−𝜔

. 

Now 𝐴′′ is increasing; hence the fraction in the integrand is at most 1. We need to estimate 

∫ 𝑒ℎ(𝑠)𝑑𝑠
−𝛿

−𝜔
. We have ℎ′(𝑠) = 2𝐴′(2𝜔 + 𝑠) − 2𝐴′(2𝜔 + 2𝑠). Since 𝐴′ is increasing and s 

is negative, ℎ′ is positive and thus h is increasing. Thus the integral is dominated by 𝑤𝑒ℎ(−𝛿). 
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To estimate ℎ(−𝛿), we compute ℎ′′(𝑠) = 2𝐴′′(2𝜔 + 𝑠) − 4𝐴′′(2𝜔 + 2𝑠) and take note of 

(18). We find that, on (−𝛿, 0), ℎ′′(𝑠) = −2𝐴′′(2𝜔)(1 + 𝑜(1)). Noting that ℎ(0) =

ℎ′(0) = 0 and integrating twice gives ℎ(−𝛿) = −𝐴′′(2𝜔)𝛿2(1 + 𝑜(1)). Recalling that 

𝐴′′
1

2𝛿 = 𝐴′′𝑘 for some 𝑘 > 0, we conclude that the integral is dominated by any negative 

power of 𝐴′′, a better estimate than needed.  

Now we consider the integral over the region where 𝑠 > 𝛿. Note that ℎ(0) = ℎ′(0) =
0 and ℎ′′(0) = −2𝐴′′(2𝜔). Hence, by Taylor's theorem, 

ℎ(𝑠) = −𝐴′′(2𝜔)𝑠2 +
1

6
ℎ′′′(𝑠∗)𝑠3, 

with 𝑠∗ between 0 and s. Again we dominate 𝐹(𝑧) by ‖𝐹‖ and first do the integral in 𝜃, 

making the same estimates as in the previous case. We are reduced to estimating 

∫ 𝑒−𝐴
′′(2𝜔)𝑠2+

1
6
ℎ′′′(𝑠∗)𝑠3 𝐴′′(2𝜔 + 𝑠)2

𝐴′′(2𝜔)𝐴′′(2𝜔 + 𝑠)
1
2

𝑑𝑆
∞

𝛿

. 

We make the change of variables 𝑠 = 𝑆/√𝐴′′(2𝜔) and introduce the shorthand 𝜑. We then 

need to estimate 

∫ 𝑒−𝑆
2+𝜑𝑠3

𝐴′′ (2𝜔 + 𝑆𝐴′′−
1
2(2𝜔))

3/2

𝐴′′(2𝜔)
3
2

𝑑𝑆
∞

𝛿√𝐴′′(2𝜔)

. 

In the region of integration, s is positive and hence 𝑠∗ is positive. We compute ℎ′′(𝑡) =
2𝐴′′′(2𝜔 + 𝑡)  − 8𝐴′′′(2𝜔 + 2𝑡). Recalling that 𝐴′′′ is positive and increasing, we 

conclude that 𝜑 is negative. Hence we make the integral larger by dropping 𝜑𝑆3. We thus 

need to estimate 

∫ 𝑒−𝑆
2

𝐴′′ (2𝜔 + 𝑆𝐴′′−
1
2(2𝜔))

3/2

𝐴′′(2𝜔)
3
2

𝑑𝑆
∞

𝛿√𝐴′′(2𝜔)

 

The estimate (70) insures that the fraction in the integral is dominated by 

𝑒𝑥𝑝(𝐶′𝑆2𝐴′′ −1(2𝜔)). This insures that the integral is 𝑂(𝑒^ − 𝐴′′ 𝜃 for some 𝜃 > 0, which 

is more than we need.  

   Now we look at the range |𝑠| < 𝛿 First we consider the part of that region outside of R. 

Using (68), we see that, for fixed s, the integration in 𝜃 (outside of R) yields an integrand of 

the form  

𝑂(1)‖𝐹‖ 𝑒−𝐴
′′(2𝜔)𝑠2+

1
6
ℎ′′′(𝑠∗)𝑠3  𝐴′′(2𝜔 + 𝑠)2/𝐴′′(2𝜔)

3
2
+𝑟

 

In |𝑠| < 𝛿 the hypotheses on A insure that the quotient in this expression is 𝑂 (𝐴′′(2𝜔)
1

2
−𝜏) 

and that ℎ′′′(𝑠∗)𝑠3 is 𝑂(1). Thus we must estimate the integral of 

𝑂(1)‖𝐹‖𝑒−𝐴
′′(2𝜔)(1+𝜎 (1))𝑠2𝐴′′(2𝜔)

1

2
−𝜏

. Doing the s integration gives 

𝑂(1) ‖𝐹‖ 𝐴′′(2𝜔)−𝜏, which is an acceptable error term. 

     What remains is the main contribution, the integral over the region where s and 𝜃 are 

both small. In that region, we first note that the hypotheses on A and standard Taylor 

estimates insure that 

𝑒−𝐴
′′(2𝜔)𝑠2+

ℎ′′′(𝑠∗)𝑠3

6 𝑒−𝐴
′′(2𝜔+𝑠)𝜃2 = 𝑒𝐴

′′(2𝜔)(𝑠2+𝜃2)(1 + 𝑂(𝑆(𝑤2)𝜀)). 
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Hence, making the change of variable (𝑆, Θ) = (√𝐴′′(2𝜔)𝑠, √𝐴′′(2𝜔)𝜃), we obtain, up to 

a term which can be safely absorbed into the error term, 

∫ ∫ 𝐹(𝑧)𝑒−(𝑆
2+Θ2)

𝐴′′(2𝜔 + 𝑠)2

𝐴′′(2𝜔)2
𝑑𝑆𝑑Θ

π
.

|𝑆|<𝛿𝐴′′(2𝜔)
1
2|Θ|<A′′(2𝜔)6𝜔

 

Using the Taylor expansion of 𝐴′′(2𝜔 +  𝑠) about 𝑠 = 0, (23), and (25), we see that 

𝐴′′(2𝜔 + 𝑠)2/𝐴′′(2𝜔)2 = 1 + 𝑂(𝐴′′(2𝜔))
𝛼−𝜀

. It remains only to note that the passage 

from ∫ ∫  
|𝑆|<𝛿𝐴′′(2𝜔)

1
2|Θ|<A′′(2𝜔)6𝜔

 to ∫∫  
𝐶

introduces an error which, in the notation of 

Theorem (2.2.12), is 𝑂(ℱ).  
This estimate gives our asymptotic version of (C):  

Corollary (2.2.20)[61]: As 𝑤 → ∞,  

∫∫|𝐾𝐾𝑚−1𝑚(�̅�𝑧)|𝑚(|𝑧|
2)
𝑑𝑥𝑑𝑦

𝜋

 

𝐶

~2𝐾𝑚(|𝑤|
2).                 (72) 

Proof. We use the notation of Theorem (2.2.18), that is, 𝐾0 = 𝐾𝑚 and 𝐾1 = 𝐾𝐾𝑚−1𝑚. We 

want to estimate  

𝐼 = ∫∫
|𝐾1(�̅�𝑧)|

𝐾0(|𝑤𝑧|
2)
𝑚(|𝑧|2)

𝑑𝑥𝑑𝑦

𝜋𝐶

. 

The same arguments as those in the proof of Theorem (2.2.18) insure that 

𝐼~∫∫
|𝐾1(�̅�𝑧)|

𝐾0(|𝑤|
2)
𝑚(|𝑧|2)

𝑑𝑥𝑑𝑦

𝜋𝑅

 

Where  

𝑅 = {(𝑠, 𝜃): |𝑠| < 𝛿, |𝜃| <
𝑆(2𝑤 + 𝑟)

1
2
−6𝛼

10
}. 

We rewrite this as 

𝐼~∫∫
|𝐾1(�̅�𝑧)|

|𝐾0(�̅�𝑧)|
2

|𝐾0(�̅�𝑧)|
2

𝐾0(|𝑤|
2)
𝑚(|𝑧|2)

𝑑𝑥𝑑𝑦

𝜋𝑅

~∫∫ 𝐹𝑤(𝑧)
|𝐾0(�̅�𝑧)|

2

𝐾0(|𝑤|
2)
𝑚(|𝑧|2)

𝑑𝑥𝑑𝑦

𝜋𝑅

 

where 𝐹𝑤  = |𝐾1(�̅�𝑧)|/|𝐾0(�̅�𝑧)|
2 on R. Theorem (2.2.18) insures that 𝐹𝑤~2 on 𝑅. There 

is no problem extending 𝐹𝑤 to the entire plane with ‖𝐹𝑤‖ bounded independently of w. We 

now apply the previous theorem with 𝐹 = 𝐹𝑤 and find that 

𝐼 = ∫∫ 𝐹𝑤(𝑧)𝑒
−(𝑠2+Θ2)

𝑑𝑆𝑑Θ

π
+ 𝑜(1)

𝐶

. 

Recalling that 𝐹𝑤~2, we obtain 𝐼~2, which is the desired conclusion. 

     Our results are estimates in a fixed Bergman space which are asymptotic as |𝑧| → ∞. 

However, instead of a fixed density m, we could look at the family of densities 𝑚𝜎 = 𝐾𝑚
−1−𝜎 

and investigate the asymptotic behavior of the kernel function and Berezin transform for 

fixed z and as 𝜎 → ∞. Such questions are of interest in quantization, with (1 + 𝜎)−1 playing 

the role of Planck's constant. See [67] and [68] for instances of such estimates as well as 

further discussion. Here we discuss briefly the type of results that could perhaps be obtained 

by the methods, and why we have not yet obtained them. First, consider Theorem (2.2.18). 

We have 𝐾𝜎(𝑟𝑒
𝑖𝜃)~(1 + 𝜎)𝐾𝑚(𝑟𝑒

𝑖𝜃)
1+𝜎

. There may be a more refined result such as  

𝐾𝜎 = (1 + 𝜎)𝐾𝑚
1+𝜎 + (something) +

1

(𝜎 + 1)
 (something) + 𝑂 (

1

𝜎2
). 

However, the proof which we give fails to produce such a result. That proof gives  



83 

𝐾𝜎(1 + 𝜎)𝐾𝑚
1+𝜎 (1 + 𝑂 (

1

𝐴′′ 𝛽
))

𝜎

 

for some positive 𝛽. This is fine for fixed 𝜎 and large r, but not for fixed r and large 𝜎. The 

fact that the right-hand side involves a factor (1 + 𝑠𝑚𝑎𝑙𝑙)𝜎 seems to be intrinsic to the 

structure of our proof.  

    It also seems plausible that more is true in Theorem (2.2.19). We can estimate the 

Gaussian integral by writing F near 𝑧 = 2𝜔 as a Taylor polynomial of degree 2 in the 

variables s and 𝜃. The integral of the Taylor remainder gives a contribution smaller than the 

error term. The polynomial-times-Gaussian can be integrated explicitly, and we obtain 

𝐵𝑚𝐹(𝑤) = 𝐹(𝑤) +
𝑤2

4𝐴′′(2𝜔)
∆𝐹(𝑤) + 𝑂(1)‖𝐹‖𝐴′′(2𝜔)𝛼−𝜀 . 

However, this presentation is misleading. We do not know that the third term on the right is 

smaller than the middle one. The difficulty is not in the estimation of the Gaussian integral, 

which produces an error that is 𝑂(𝐴′′ −2). The problem is the error terms on the estimates 

which led to the Gaussian integral. If it were known that the error terms resulting from that 

analysis were 𝑂(𝐴′′−2), then we would in fact have  

𝐵𝑚𝐹(𝑤) = 𝐹(𝑤) +
𝑤2

4𝐴′′(2𝜔)
∆𝐹(𝑤) + 𝑂(1)‖𝐹‖𝐴′′(2𝜔)𝛼−𝜀 . 

We can carry the speculation a step further. If, instead of fixed m, we now look at the family 

of densities 𝑚𝜎 = 𝐾𝑚
−1−𝜎 and write 𝐵𝜎 for the corresponding Berezin transforms, we would 

have 

𝐵𝜎𝐹(𝑤)~𝐹(𝑤) +
𝑤2

4𝐴𝜎
′′(2𝜔)

∆𝐹(𝑤) + 𝑂(𝐴𝜔
′′−2)‖𝐹‖. 

Now recall from the proof of Theorem (2.2.18) that 𝐴𝜎 = (1 + 𝜎)𝐴0. We could next regard 

𝑚,𝐹, and 𝑤 as fixed and let 𝜎 grow. That would give, as 𝜎 → ∞ 

𝐵𝜎𝐹(𝑤)~𝐹(𝑤) +
1

1 + 𝜎

𝑤2

4𝐴0
′′(2𝜔)

∆𝐹(𝑤) + 𝑂 (
1

𝜎2
). 

Estimates such as this, even with an error term 𝜎 (
1

𝜎
), would be sufficient to give a 

correspondence principle for Berezin quantization schemes; see the Introduction of [67]. 

     It may be that the methods here can be developed to obtain such estimates for large 𝜎. 

However, it appears that doing this by direct estimation would be quite awkward. Hence we 

defer further analysis in the hope of finding a more effective way to organize the ideas. 

Section (2.3): Hankel Operators  

We consider the Fock type space 𝐴2(𝜇𝑚) consisting of those holomorphic functions 

which are square integrable with respect to the measure 𝑑𝜇𝑚(𝑧) = 𝑒
−|𝑧|𝑚𝑑𝑉 (𝑧), where 

𝑑𝑉(𝑧) is the Lebesgue measure on ℂ𝑛 and 𝑚 > 0 is a positive parameter. 
When 𝑚 = 2 the space 𝐴2(𝜇2) is the Fock space, called also the Segal-Bargmann 

space. Let 𝐼 be the identity operator and 𝑃2 is the orthogonal projection from 𝐿2(𝜇2) onto 

𝐴2(𝜇2). Let 𝑇(ℂ𝑛) be the subspace of 𝐿2(𝜇2) consisting of those functions 𝑓 that satisfy 𝑓(·
+𝑎) ∈ 𝐿2(𝜇2) for all 𝑎 ∈ ℂ𝑛.We recall that if 𝑓 ∈  𝑇(ℂ𝑛), then the Hankel operator 𝐻𝑓 with 

symbol 𝑓 is defined by 

𝐻𝑓(𝜑) = (𝐼 – 𝑃2)(𝑓𝜑), 

for all 𝜑 in the dense subspace of 𝐴2(𝜇2) spanned by {𝐾2(·, 𝑎), 𝑎 ∈ ℂ
𝑛} where 𝐾2(𝑧, 𝑎) ∶=

 𝑒〈𝑧,𝑎〉, 𝑧, 𝑎 ∈ ℂ𝑛, is the Bergman kernel. In this case, the study of compactness of Hankel 
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operators with bounded symbols was considered in the works of Berger and Coburn [134] 

and Stroethoff [142]. In the more general case 𝑓 ∈ 𝑇(ℂ𝑛), the simultaneous membership of 

𝐻𝑓 and 𝐻𝑓̅ to the Schatten classes was characterized by Xia and Zheng [143] and by Bauer 

[130] in the Hilbert-Schmidt setting. A necessary and sufficient condition for simultaneous 

boundedness of 𝐻𝑓 and 𝐻𝑓̅ was given recently by Bauer [131]. The tools used in these works 

use heavily the translation action of the group ℂ𝑛 and related properties to the Bergman 

kernel. 

We also mention that in the one dimensional case 𝑛 = 1 the study of Hankel operators 

in the setting 𝑚 > 0 was considered by Schneider [𝑆𝑐] when the symbolis a monomial. His 

method is direct and relies on an approximation process. 

We consider the general case 𝑚 > 0. We begin by clarifying the appropriate 

definition of densely defined Hankel operators. Indeed, if 𝑓 ∈ 𝐿2(𝜇𝑚) is a function of 

polynomial growth, then the Hankel operator 𝐻𝑓 with symbol 𝑓 is defined by 𝐻𝑓(𝜑) =

(𝐼 – 𝑃𝑚)(𝑓𝜑), where 𝑃𝑚 is the orthogonal projection from 𝐿2(𝜇𝑚) 𝑜𝑛𝑡𝑜 𝐴
2(𝜇𝑚) given by 

𝑃𝑚(𝑔)(𝑧) ∶= ∫ 𝐾𝑚(𝑧, 𝑤)𝑔(𝑤)𝑑𝜇𝑚
ℂ𝑛

(𝑤), 𝑓𝑜𝑟 𝑔 ∈ 𝐿2(𝜇𝑚) 

where 𝐾𝑚 is the Bergman kernel given. We shall show that the righthand side of the latter 

equality is well-defined for functions 𝑔 of the form 𝑔 =  𝑓𝜑 for all 𝑓 ∈ 𝐿2(𝜇𝑚) and  𝜑 in 

the space 𝑃 of holomorphic polynomials.This allows us to extend the definition of 𝑃𝑚 on 

such functions and, using this, we see that 𝐻𝑓 is defined on holomorphic polynomials. In 

particular, it is densely defined. 

We first point out that the techniques used the case 𝑚 = 2 to study Hankel operators 

do not apply to the case 𝑚 ≠  2. Our goal herein is to develop new methods which are 

adequate to the setting 𝑚 > 0 in the case of anti-analytic symbols 𝑓. 
The first main result is the following 

We observe that when 𝑚 is odd, then all bounded Hankel operators with anti-analytic 

symbols are also compact. This is not the case for 𝑚 even. 

In the particular case 𝑚 = 2, Theorem (2.3.22) was established in a recent work by 

[131] using a technique which does not work at all when 𝑚 ≠ 2. 

We recall that an operator 𝑇 is in the Schatten class 𝑆𝑝(𝐴
2(𝜇𝑚), 𝐿

2(𝜇𝑚)) if (𝑇 ∗ 𝑇 )
𝑝

2is 

in the trace class of 𝐴2(𝜇𝑚). Our second result characterizes such a class of operators. 

We discovered recently that a weaker version of our results was established by 

Knirsch and Schneider [89] in the one dimensional particular case.  

We finally mention in passing that Hankel operators with antiholomorphic symbols are 

intimately related to the �̅�-canonical solution operator (see [85], [86] and [87]). 

We recall some facts about Hankel operators with respect to certain rotation invariant 

measures, see [181]. Let 𝛺 be a rotation invariant open set in ℂ𝑛 and let 𝜇 be a rotation 

invariant measure on 𝛺. We suppose that 𝜇 has moments of every order; that is, 

𝑚𝑘 = ∫|𝑧|
2𝑘𝑑𝜇(𝑧)

𝛺

< +∞, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑘 ∈ ℕ0. 

We consider the Hilbert space 𝐿2(𝛺, 𝜇) of square integrable complex-valued functions on 

𝛺 with respect to the measure 𝜇 and 𝐴2(𝛺, 𝜇) its subspace consisting of holomorphic 

elements. We assume that for each set compact 𝐾 ⊂ 𝛺 there exists 𝐶 = 𝐶(𝐾) > 0 such that 

sup
𝑧∈𝐾
|𝑓(𝑧)| ≤ 𝐶 ‖𝑓‖𝐿2(𝛺,𝜇) 
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for all 𝑓 ∈ 𝐴2(𝛺, 𝜇). Thus 𝐴2(𝛺, 𝜇) is a closed space of 𝐿2(𝛺, 𝜇). The corresponding 

orthogonal projection 𝑃𝜇 will be called the Bergman projection. We also assume that the 

subspace consisting of all holomorphic polynomials is dense in 𝐴2(𝛺, 𝜇).Therefore, if 𝑓 ∈
𝐴2(𝛺, 𝜇) has polynomial growth, then the Hankel operator 𝐻𝑓̅ given by 

𝐻𝑓̅(𝜑) = (𝐼 – 𝑃𝜇)(𝑓�̅�) 

is well defined for all holomorphic polynomials 𝜑 In particular, 𝐻𝑓̅ is densely defined. 

Let ℕ0
𝑛 denote the set of all n-tuples with components in the set ℕ0 of all nonnegative 

integers. If 𝛼 = (𝛼1,· · · , 𝛼𝑛) ∈ ℕ0
𝑛, welet |𝛼| ∶=  𝛼1 + · · ·  + 𝛼𝑛 denote the length of 𝛼. If 

𝛽 = (𝛽1,· · · , 𝛽𝑛)ℕ0
𝑛 satisfies 𝛼𝑗 ≥ 𝛽𝑗  for all 𝑗 = 1,· · · , 𝑛, then we write 𝛼 ≥  𝛽. Otherwise, 

set 𝛼 ≱  𝛽. 
       The space of polynomials 𝑃 is endowed with the Fischer inner product [182] 

〈 , 〉𝐹 , defined on the monomials by 

〈𝑧𝛼 , 𝑧𝛽〉𝐹 = {
𝛼!  𝑖𝑓 𝛼 = 𝛽
0 𝑖𝑓 𝛼 ≠  𝛽.

 

Finally, if 𝐴 and 𝐵 are two quantities, we use the symbol 𝐴 ≈ 𝐵 whenever 𝐴 ≤ 𝐶1𝐵 and 

𝐵 ≤ 𝐶2𝐴, where 𝐶1 and 𝐶2 are positive constants independent of the varying parameters. 

We shall express the operators 𝐻�̅�𝑘 and 𝐻
�̅�𝑘
∗ 𝐻�̅�𝑙 on holomorphic homogeneous 

polynomials. 

Lemma (2.3.1)[84]: Suppose that 𝛽, 𝑘 ∈ ℕ0
𝑛 and 𝑑 ∈ ℕ0. Then 

(𝐻�̅�𝑘𝑓)(𝜉) = 𝜉
̅𝑘𝑓(𝜉) −

𝑚𝑑

𝑚𝑑 − |𝑘|

𝛤(𝑛 + 𝑑 − |𝑘|)

𝛤(𝑛 + 𝑑)

𝜕|𝑘|

𝜕𝜉𝑘
 𝑓(𝜉) 

for all holomorphic polynomials 𝑓 of degree 𝑑. In particular, if 𝑓 = 𝜉𝛼 , then 

(𝐻�̅�𝑘𝑓)(𝜉) = {
𝜉̅𝑘𝜉𝛼 −

𝑚|𝛼|

𝑚|𝛼|−|𝑘|

𝛤(𝑛 + |𝛼| − |𝑘|)

𝛤(𝑛 + |𝛼|)

𝛼!

(𝛼 −  𝑘)!
 𝜉𝛼−𝑘 , 𝑖𝑓 𝛼 ≥ 𝑘

𝜉̅𝑘𝜉𝛼 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.                                                                               

  

Proof. It suffices to prove the lemma for 𝑓(𝜉) = 𝜉𝛼 , where 𝛼 ∈ ℕ0
𝑛. Let 𝑔 be a 

homogeneous polynomial in 𝑃. If 𝑔 is a monomial of the form 𝑔(𝜉) = 𝜉𝛽 , where 𝛽 ∈ ℕ0
𝑛 , 

then using the properties of 𝑃𝜇 , we see that 

〈𝑃𝜇(𝑧̅
𝑘𝑓), 𝑔〉𝐿2(𝛺,𝜇) = 〈𝑓, 𝑧

𝑘𝑔〉𝐿2(𝛺,𝜇) 

and hence 〈𝑃𝜇(𝑧̅
𝑘𝑓), 𝑔〉𝐿2(𝛺,𝜇) =  0 as long as 𝛼 ≠ 𝑘 +  𝛽. Now let 𝛼 = 𝑘 +  𝛽.By Lemma 

(2.3.1) in [181], we have the following identities 

∫ 𝑧𝛼𝑧̅𝛼𝑑𝜇(𝑧) =
(𝑛 − 1)!𝑚|𝛼|𝛼!

(𝑛 + |𝛼| −  1)!
 

𝛺

  𝑎𝑛𝑑 〈𝑧𝛼 , 𝑧𝛼〉𝐹 = 𝛼! ,           (72) 

fromwhich we obtain 

〈𝑃𝜇(𝑧̅
𝑘𝑓), 𝑔〉𝐿2(𝛺,𝜇)  =

(𝑛 − 1)!𝑚|𝛼|

(𝑛 + |𝛼| − 1)!
〈𝑓, 𝑧𝑘𝑔〉𝐹 . 

Since the multiplication operator and the corresponding differentiation operator are adjoint 

to each other with respect to the Fischer inner product, this implies that 

〈𝑃𝜇(𝑧̅
𝑘𝑓), 𝑔〉𝐿2(𝛺,𝜇)   =

𝑚|𝛽|+|𝑘|

𝑚|𝛽|

(𝑛 − 1 + |𝛽|)!

(𝑛 − 1 + |𝛽| + |𝑘|)!
〈
𝜕|𝑘|

𝜕𝑧𝑘
𝑓, 𝑔〉𝐿2(𝛺,𝜇) 

for all holomorphic homogeneous polynomials 𝑔 of degree |𝛽|. Therefore, if 𝑓 is a 

holomorphic homogeneous polynomial of degree 𝑑, we have 
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𝑃𝜇(𝑧̅
𝑘𝑓) =

𝑚𝑑

𝑚𝑑−|𝑘|/

(𝑛 − 1 + 𝑑 − |𝑘|)!

(𝑛 − 1 + 𝑑)!

𝜕|𝑘|

𝜕𝑧𝑘
 𝑓. 

This completes the proof of the lemma. 

Lemma (2.3.2)[84]: The domain Dom(𝐻
�̅�𝑘
∗ ) of 𝐻

�̅�𝑘
∗  contains all polynomials in 𝑤 and �̅�. 

Proof. It suffices to show that, if 𝛼 and 𝛽 are fixed in ℕ0
𝑛, then the linear functional 

𝑔 ↦ 〈𝐻�̅�𝑘(𝑔), 𝑧
𝛼𝑧̅𝛽〉𝐿2(𝛺,𝜇) 

is bounded on 𝐴2(𝛺, 𝜇). To do so, choose an integer 𝑑 ≥ |𝛼| + |𝛽| + 2|𝑘| and consider the 

subspace 𝑁𝑑 of 𝐴2(𝛺, 𝜇) consisting of polynomials with degree smaller than or equal to 

𝑑.We denote by 𝜋𝑑 the orthogonal projection from 𝐴2(𝛺, 𝜇) onto 𝑁𝑑. If 𝑔 ∈ 𝑃, then (𝐼 −
𝜋𝑑)𝑔 is a sum of holomorphic homogeneous polynomials in 𝑃 with degree at least 𝑑 + 1. 
In view of Lemma (2.3.1), we can write 

𝐻�̅�𝑘 ∘  (𝐼 − 𝜋𝑑)𝑔 = 𝑧̅
𝑘𝑓 + ℎ 

where 𝑓 is a sum of holomorphic homogeneous polynomials of degree at least 𝑑 +  1 and 

ℎ is a sum of holomorphic homogeneous polynomials of degree at least 𝑑 + 1 − |𝑘|. 
Therefore, 

〈𝐻�̅�𝑘 ∘  (𝐼 − 𝜋𝑑)𝑔, 𝑧
𝛼𝑧̅𝛽〉𝐿2(𝛺,𝜇) = 〈𝑧̅

𝑘𝑓, 𝑧𝛼𝑧̅𝛽〉𝐿2(𝛺,𝜇) + 〈ℎ, 𝑧
𝛼𝑧̅𝛽〉𝐿2(𝛺,𝜇)

= 〈𝑓𝑧𝛽 , 𝑧𝛼+𝑘〉𝐿2(𝛺,𝜇) + 〈𝑧
𝛽ℎ, 𝑧𝛼〉𝐿2(𝛺,𝜇). 

Since 𝑑 + 1 + |𝛽| ≥ 1 + |𝛼| + 2|𝛽| + 2|𝑘| > |𝛼| + |𝑘|, it follows that 

〈𝑓𝑧𝛽 , 𝑧𝛼+𝑘〉𝐿2(𝛺,𝜇) = 0. Also, due to the fact that the degree of 𝑧𝛽𝑓 is greater than |𝛼| we 

see that 〈𝑧𝛽𝑓, 𝑧𝛼〉𝐿2(𝛺,𝜇) =  0. Thus 〈𝐻�̅�𝑘 ∘  (𝐼 − 𝜋𝑑)𝑔, 𝑧
𝛼𝑧̅𝛽〉𝐿2(𝛺,𝜇) =  0 for all 𝑔 ∈ 𝑃 and 

consequently 
〈𝐻�̅�𝑘𝑔, 𝑧

𝛼𝑧̅𝛽〉𝐿2(𝛺,𝜇) = 〈𝐻�̅�𝑘 ∘  (𝐼 − 𝜋𝑑)𝑔, 𝑧
𝛼𝑧̅𝛽〉𝐿2(𝛺,𝜇) . 

The lemma now follows from the fact that𝐻�̅�𝑘 ∘ 𝜋𝑑 is of finite rank and hence bounded.  

We observe by Lemmas (2.3.1) and (2.3.2) that 𝑃 is contained in the domain of the operator 

𝐻�̅�
∗𝐻𝑢 for all holomorphic polynomials 𝑢 and 𝑣. 

Lemma (2.3.3)[84]: Suppose that 𝑢, 𝑣 and 𝑓 are holomorphic polynomials. Then 

𝐻�̅�
∗𝐻𝑢𝑓 = 𝑃𝜇(𝑣�̅�𝑓) − 𝑣𝑃𝜇(�̅�𝑓). 

Proof. A little computing shows that for all 𝑔 ∈ 𝐴2(𝛺, 𝜇) 
〈𝐻𝑢𝑓, 𝐻�̅�𝑔〉𝐿2(𝛺,𝜇) = 〈�̅�𝑓 − 𝑃𝜇(�̅�𝑓), �̅�𝑔 − 𝑃𝜇(�̅�𝑔)〉𝐿2(𝛺,𝜇) 

= 〈𝑣�̅�𝑓, 𝑔〉𝐿2(𝛺,𝜇) − 〈𝑃𝜇(�̅�𝑓), �̅�𝑔〉𝐿2(𝛺,𝜇) 

+〈(𝑃𝜇 − 𝐼)(�̅�𝑓), 𝑃𝜇(�̅�𝑔)〉𝐿2(𝛺,𝜇) 

= 〈𝑣�̅�𝑓, 𝑔〉𝐿2(𝛺,𝜇) − 〈𝑃𝜇(�̅�𝑓), �̅�𝑔〉𝐿2(𝛺,𝜇) 

where the latter equality holds since 𝑃𝜇(�̅�𝑔) ∈ 𝐴
2(𝛺, 𝜇) and (𝑃𝜇 − 𝐼)(�̅�𝑓) is orthogonal to 

𝐴2(𝛺, 𝜇). This completes the proof. 

Lemma (2.3.4)[84]: Assume that 𝑘 and 𝑙 are elements of ℕ0
𝑛. If 𝑓 is a holomorphic 

homogeneous polynomial of degree 𝑑, then 

𝑃𝜇(𝑧
𝑙𝑧̅𝑘𝑓) =

𝑚𝑑+|𝑙|

𝑚𝑑 −|𝑘|+|𝑙|

𝛤(𝑑 +  𝑛 − |𝑘| + |𝑙|)

𝛤(𝑑 + 𝑛 + |𝑙|)

𝜕|𝑘|

𝜕𝑧𝑘
𝑓. 

Proof. It is sufficient to establish the lemma for monomials 𝑓(𝑧) = 𝑧𝛼 . If 𝛽 is an arbitrary 

element of ℕ0
𝑛, then, due to the properties of the Fischer product and (72), we have 

〈𝑃𝜇(𝑧
𝑙𝑧̅𝑘𝑓), 𝑧𝛽〉𝐿2(𝛺,𝜇) = 〈𝑧

𝑙+𝛼 , 𝑧𝑘+𝛽〉𝐿2(𝛺,𝜇) 

=
(𝑛 − 1)!𝑚|𝛼|+|𝑙|

(𝑛 + |𝛼| + |𝑙| − 1)!
〈
𝜕|𝑘|

𝜕𝑧𝑘
(𝑧𝑙+𝛼), 𝑧𝛽〉𝐹 
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=
𝑚|𝛼|+|𝑙|

𝑚|𝛼|+|𝑙|−|𝑘|

𝛤(𝑛 + |𝛼| + |𝑙| − |𝑘|)

𝛤(𝑛 + |𝛼| + |𝑙|)
〈
𝜕|𝑘|

𝜕𝑧𝑘
(𝑧𝑙𝑓), 𝑧𝛽〉𝐿2(𝛺,𝜇) 

This completes the proof. 

In what follows we shall compute 𝑐 for a holomorphic homogeneous polynomial 𝑓. 

Lemma (2.3.5)[84]: Suppose that 𝑘 and 𝑙 are in ℕ0
𝑛. If 𝑓 is a holomorphic homogeneous 

polynomial of degree 𝑑, then 

𝐻
�̅�𝑙
∗ 𝐻�̅�𝑘𝑓 =

𝑚𝑑+|𝑙|

𝑚𝑑+|𝑙|−|𝑘|

𝛤(𝑛 + 𝑑 + |𝑙| − |𝑘|)

𝛤(𝑛 + 𝑑 + |𝑙|)

𝜕|𝑘|

𝜕𝑧𝑘
(𝑧𝑙𝑓)

−
𝑚𝑑

𝑚𝑑−|𝑘|

𝛤(𝑑 + 𝑛  − |𝑘|)

𝛤(𝑑 +  𝑛)
 𝑧𝑙
𝜕|𝑘|

𝜕𝑧𝑘
 𝑓 

In particular, 𝐻
�̅�𝑙
∗ 𝐻�̅�𝑘𝑓 is a holomorphic homogeneous polynomial of degree 𝑑 + |𝑙| − |𝑘|. 

Proof. Follows from Lemmas (2.3.1) and (2.3.4). 

An immediate consequence of Lemma (2.3.5) gives the following 

Proposition (2.3.6)[84]: For each 𝛼 in ℕ0
𝑛, the monomial 𝑧𝛼 is an eigenvector for the 

operator  𝐻
�̅�𝑘
∗ 𝐻�̅�𝑘 and the corresponding eigenvalue 𝜆𝛼 is given by 

𝜆𝛼 =
𝑚|𝛼|+|𝑘|

𝑚|𝛼|

𝛤(𝑛 + |𝛼|)

𝛤(𝑛 + |𝛼| + |𝑘|)

(𝛼 + 𝑘)!

𝛼!
−

𝑚|𝛼|

𝑚|𝛼|−|𝑘|

𝛤(|𝛼| + 𝑛 − |𝑘|)

𝛤(|𝛼| + 𝑛)

𝛼!

(𝛼 − 𝑘)!
 

if 𝛼 ≥ 𝑘 and 

𝜆𝛼 =
𝑚|𝛼|+|𝑘|

𝑚|𝛼|

𝛤(𝑛 + |𝛼|)

𝛤(𝑛 + |𝛼| + |𝑘|)

(𝛼 +  𝑘)!

𝛼!
 , 

otherwise. 

We consider the Fock space 𝐴2(𝜇𝑚), for 𝑚 >  0. In this case, the moments of the 

measure 𝑑𝜇𝑚(𝑧) ∶= 𝑒
−|𝑧|𝑚𝑑𝜈(𝑧) are given by 

𝑚𝑠 = ∫ |𝑧|2𝑠𝑒−|𝑧|
𝑚
𝑑𝜈(𝑧)  =

1

𝑚
𝛤(
2𝑠 +  2𝑛

𝑚
 )

ℂ𝑛
.                         (73) 

If 𝑘 is a multi-index we set 𝑇 = 𝐻
�̅�𝑘
∗ 𝐻�̅�𝑘 . Then 𝑇 is defined on the dense subspace 𝑃 of 

𝐴2(𝜇𝑚). For each multi-index 𝛼, the eigenvalue 𝜆𝛼 of 𝑇 corresponding to the eigenvector 

𝜉𝛼 is given by Proposition (2.3.6). In what follows we shall study the asymptotic of these 

eigenvalues. We distinguish the two cases 𝑚 = 2 and 𝑚 ≠ 2. 
Lemma (2.3.7)[84]: Suppose 𝑚 = 2. Then for each 𝑗 = 1,· · · , 𝑛, the operator 𝐻�̅�𝑗 is 

bounded but not compact on 𝐴2(𝜇𝑚). If |𝑘| ≥ 2, 𝐻�̅�𝑘 is unbounded on 𝐴2(𝜇𝑚).  
Proof. In this case, 𝜇2 is the Gaussian measure on ℂ𝑛. Its moments reduce to 𝑚𝑠 =
𝛤(𝑠 +  𝑛). Moreover, if 𝛼 ∈ ℕ0

𝑛,   

𝜆𝛼 =

{
 

 
(𝛼 +  𝑘)!

𝛼!
−

𝛼!

(𝛼 −  𝑘)!
𝑖𝑓 𝛼 ≥  𝑘,

(𝛼 +  𝑘)!

𝛼!
                     𝑖𝑓 𝛼 ≱  𝑘.

 

We first observe that if |𝑘| = 1, then the eigenvalues of 𝑇 are all equal to 1. Therefore, 𝑇 is 

bounded but not compact on 𝐴2(𝜇𝑚). This proves the first part ofthe lemma. 

         Suppose now that |𝑘| ≥ 2. Choose 𝑗0 in [1, 𝑛] so that 𝑘𝑗0 = max𝑗
𝑘𝑗 . If 𝑑 is a 

nonnegative integer, set 𝛼(𝑘, 𝑑)  =  (𝑘1,· · · , 𝑘𝑗0−1, 𝑘𝑗0 + 𝑑 , 𝑘𝑗0+1,· · · , 𝑘𝑛). Then 
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𝜆𝛼(𝑘,𝑑)  = (∏
(2𝑘𝑗)!

(𝑘𝑗)!
 

𝑛

𝑗≠𝑗0

) [(𝑑 + 𝑘𝑗0 + 1) · · · (𝑑 + 2𝑘𝑗0] − (𝑑 +  1)  · · ·  (𝑑 + 𝑘𝑗0) 

Therefore, lim
𝑑→+∞

𝜆𝛼(𝑘,𝑑) = +∞, showing that 𝑇 is unbounded on 𝐴2(𝜇𝑚). Thisimplies that 

𝐻�̅�𝑘 is also unbounded. 

Henceforth, we assume that 𝑚 ≠ 2,𝑚 > 0. From Proposition (2.3.6) and (73) we see that if 

𝛼 ∈ ℕ0
𝑛, then the eigenvalue 𝜆𝛼  can be written in the form 

𝜆𝛼 =

{
 

 𝐴|𝛼|
(𝛼 +  𝑘)!

𝛼!
− 𝐵|𝛼|

𝛼!

(𝛼 − 𝑘)!
𝑖𝑓 𝛼 ≥  𝑘

𝐴|𝛼|
(𝛼 +  𝑘)!

𝛼!
 𝑖𝑓 𝛼 ≱  𝑘

                     (74) 

where, for a nonnegative integer 𝑑, 

{
 
 
 

 
 
 
𝐴𝑑 ∶=

𝛤 (
2𝑑 +  2𝑛
𝑚

 +
2|𝑘|
𝑚 )

𝛤 (
2𝑑 +  2𝑛
𝑚 )

𝛤(𝑑 + 𝑛)

𝛤(𝑑 + 𝑛 + |𝑘|)
,

𝐵𝑑 ∶=
𝛤 (
2𝑑 +  2𝑛
𝑚

 )

𝛤 (
2𝑑 +  2𝑛
𝑚

−
2|𝐾|
𝑚 )

𝛤(𝑑 + 𝑛 − |𝑘|)

𝛤(𝑑 + 𝑛)
 .

                           (75) 

The asymptotic behaviour of the eigenvalues {𝜆𝛼} when |𝛼| = 𝑑 ↦ +∞ is given by the 

following 

Lemma (2.3.8)[84]: The sequences (𝐴𝑑) and (𝐵𝑑) given by (75) have the asymptotic 

behavior 

𝐴𝑑 = (
2

𝑚
)

2|𝑘|
𝑚
(𝑑 + 𝑛)

|𝑘|(
2
𝑚
−1)
 [1 −

|𝑘|2(𝑚 − 2)

2𝑚(𝑑 + 𝑛)
+ 𝑂 (

1

(𝑑 + 𝑛)2
)] 

𝐵𝑑 = (
2

𝑚
)

2|𝑘|
𝑚
(𝑑 + 𝑛)

|𝑘|(
2
𝑚
−1)

[1 +
|𝑘|2(𝑚 − 2)

2𝑚(𝑑 + 𝑛)
+ 𝑂 (

1

(𝑑 + 𝑛)2
)] 

𝑎𝑠 𝑑 ↦ +∞. 
Proof. Follows from the property of the Gamma function [159] 

𝛤(𝑥 + 𝑦)

𝛤(𝑥 + 𝑧)
= 𝑥𝑦−𝑧 (1 +

(𝑦 − 𝑧)(𝑦 +  𝑧 − 1)

2𝑥
+ 𝑂(

1

𝑥2
))𝑎𝑠 𝑥 ↦ +∞,          (76) 

where 𝑦 and 𝑧 are real numbers. 

Lemma (2.3.9)[84]: The eigenvalues 𝜆𝛼 have the form 

𝜆𝛼 = (
2

𝑚
)
2
|𝑘|
𝑚
(𝑑 + 𝑛)2 

|𝑘|
𝑚
−1 (𝑓𝑛 (

𝛼1 + 1

𝑑 + 𝑛
 ,· · · ,

𝛼𝑛 + 1

𝑑 + 𝑛
) + 𝜀(𝛼)) , 

where 𝜀(𝛼) = 𝑂 (
1

𝑑
)and 

𝑓𝑛(𝑡1,· · · , 𝑡𝑛): = −(𝑚 − 2)
|𝑘|2

𝑚
𝑡𝑘 +∑𝑘𝑗

2
𝑡𝑘

𝑡𝑗

𝑛

𝑗=1

 

when 𝛼 ≥ 𝑘 and 𝑑 = |𝛼| ↦ +∞. 
Proof. We recall by (74) that if 𝛼 ≥ 𝑘, then 
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𝜆𝛼 = 𝐴|𝛼|
(𝛼 + 𝑘)!

𝛼!
− 𝐵|𝛼|

𝛼!

(𝛼 − 𝑘)!
 , 

where (𝐴𝑑) and (𝐵𝑑) are given by (75). On the other hand, by (76) we see that 

(𝛼𝑗 + 𝑘𝑗)!

𝛼𝑗!
= (1 + 𝛼𝑗)

𝑘𝑗
+ 𝑘𝑗(𝑘𝑗 − 1)(1 + 𝛼𝑗)

𝑘𝑗−1
+ 𝑞𝑗(1 + 𝛼𝑗) 

𝛼𝑗!

(𝛼𝑗 − 𝑘𝑗)!
=  (1 + 𝛼𝑗)

𝑘𝑗
− 𝑘𝑗(𝑘𝑗 + 1)(1 + 𝛼𝑗)

𝑘𝑗−1
+ 𝑟𝑗(1 + 𝛼𝑗) 

where 𝑞𝑗 and 𝑟𝑗 are one variable polynomials of degree at most 𝑘𝑗 − 2. This implies that 

(𝛼 + 𝑘)!

𝛼!
=∏(1 + 𝛼𝑗)

𝑘𝑗

𝑛

𝑗=1

+∑𝑘𝑗(𝑘𝑗 − 1)(1 + 𝛼𝑗)
𝑘𝑗−1

𝑛

𝑗=1

∏(1+ 𝛼𝑙)
𝑘𝑙 + 𝑞(𝛼)

𝑙≠𝑗

 

𝛼!

(𝛼 − 𝑘)!
=∏(1 + 𝛼𝑗)

𝑘𝑗

𝑛

𝑗=1

−∑𝑘𝑗(𝑘𝑗 + 1)(1 + 𝛼𝑗)
𝑘𝑗−1

𝑛

𝑗=1

∏(1+ 𝛼𝑙)
𝑘𝑙

𝑙≠𝑗

+ 𝑟(𝛼) 

where 𝑞 and 𝑟 are polynomials of degree at most |𝑘| − 2. These equalities, combined with 

Lemma (2.3.8), give the lemma. 

Lemma (2.3.10)[84]: The eigenvalues 𝜆𝛼 have the estimate 

𝜆𝛼 = (𝑂(𝑑 + 𝑛)
2
|𝑘|
𝑚
−𝑘𝑗0) , 

as long as 𝛼𝑗0 < 𝑘𝑗0 and 𝑑 = |𝛼| ↦ +∞. 

Proof. Let 𝑗0 = 1, . . . , 𝑛 and suppose that 𝑘𝑗0 ≥ 1. We recall by (74) that if 

𝛼𝑗0 < 𝑘𝑗0, then 

𝜆𝛼 =
𝐴|𝛼|(𝛼 + 𝑘)!

𝛼!
 , 

where (𝐴𝑑) is as before. Set 𝛼′ = (𝛼1,· · · , 𝛼𝑗0−1, 0, 𝛼𝑗0+1,· · · , 𝛼𝑛) and 𝑘′ = (𝑘1,· · ·

 , 𝑘𝑗0−10, 𝑘𝑗0+1,· · · , 𝑘𝑛). Arguing as in the proof of Lemma (2.3.9) we have 

(𝛼 +  𝑘)!

𝛼!
≤ (2𝑘𝑗0)!

(𝛼′ + 𝑘′)!

𝛼′!
 

= (2𝑘𝑗0)! [ ∏ (1 + 𝛼𝑗)
𝑘𝑗

𝑛

𝑗=1,𝑗≠𝑗0

 + ∑ 𝑘𝑗(𝑘𝑗 − 1)(1 + 𝛼𝑗)
𝑘𝑗−1

𝑛

𝑗=1,𝑗≠𝑗0

∏(1 + 𝛼𝑠)
𝑘𝑠

𝑠≠𝑗,𝑙

]

+ 𝑞(𝛼′), 
where 𝑞 is a polynomial of degree at most |𝑘′| − 2. These estimates, combined with Lemma 

(2.3.8), give the lemma.  

Theorem (2.3.11)[84]: The operator 𝐻�̅�𝑘 ∗ 𝐻�̅�𝑘 is bounded if and only if 2
|𝑘|

𝑚
− 1 ≤ 0 and 

compact if and only if 2
|𝑘|

𝑚
− 1 < 0. 

Proof. Let 𝛴𝑛 be the simplex consisting of those 𝑡 = (𝑡1,· · · , 𝑡𝑛) ∈ ℝ
𝑛  such 𝑡𝑗 ≥ 0 and 

𝑡1 + · · · + 𝑡𝑛 = 1. By Lemmas (2.3.9) and (2.3.10) we see that 

sup
|𝛼|=𝑑

|𝜆𝛼 ≈ (𝑑 + 𝑛)
2
|𝑘|
𝑚
−1 sup

|𝛼|=𝑑
|𝑓𝑛 (

𝛼1 + 1

𝑑 + 𝑛
 ,· · · ,

𝛼𝑛 + 1

𝑑 + 𝑛
)| 

  

≈ (𝑑 + 𝑛)2
|𝑘|
𝑚
−1 sup

𝑡∈𝛴𝑛

|𝑓𝑛(𝑡)| 
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as 𝑑 = |𝛼| → +∞. Now the lemma follows since the operator 𝐻�̅�𝑘 ∗ 𝐻�̅�𝑘 is boundedif and 

only if the sequence sup
|𝛼|=𝑑

|𝜆𝛼| is bounded and 𝐻�̅�𝑘 ∗ 𝐻�̅�𝑘 is compact ifand only if the 

sequence sup
|𝛼|=𝑑

|𝜆𝛼| tends to 0 as 𝑑 = |𝛼| → +∞. _ 

Theorem (2.3.12)[84]: Let 𝑘 ∈ ℕ0
𝑛 and 𝑚 be a positive real number. 

   (i) The Hankel operator 𝐻�̅�𝑘 is bounded on the Fock space 𝐴2(𝜇𝑚) if and only if 𝑚 ≥
2|𝑘|. 
   (ii) The Hankel operator 𝐻�̅�𝑘 is compact on the Fock space 𝐴2(𝜇𝑚) if and only if 𝑚 >
2|𝑘|. 
Proof. We use that the operator 𝐻�̅�𝑘is bounded if and only if 𝑇 = 𝐻�̅�𝑘 ∗ 𝐻�̅�𝑘 is bounded 

and 𝐻�̅�𝑘 is compact if and only if 𝑇 = 𝐻�̅�𝑘 ∗ 𝐻�̅�𝑘 is compact. 

Next, assume that 2
|𝑘|

𝑚
− 1 < 0 and let 𝑝 > 0. We shall investigate the membership of the 

operator 𝑇 to a Schatten class 𝑆𝑝 . Recall that 𝑇 is in 𝑆𝑝 if and only if the series∑𝜆𝛼
𝑝
 is 

convergent. 

       Let 𝑑 be an integer. We shall estimate the 𝑠𝑢𝑚 𝑠𝑑 = ∑ 𝜆𝛼
𝑝

|𝛼|=𝑑 , when 𝑑 → +∞. The 

calculations above lead to study the cases 𝛼 ≥ 𝑘 and its opposite case separately. Let 𝐵𝑑 ∶
= { 𝛼 ∈ ℕ0

𝑛, |𝛼| = 𝑑}. We partition 𝐵𝑑 = 𝐵′𝑑 ∪ 𝐵𝑑
′′, where𝐵𝑑

′ = { 𝛼 ∈ 𝐵 ∶ 𝛼 ≥ 𝑘} and 

𝐵𝑑
′′ = 𝐵𝑑\ 𝐵𝑑

′ . Thus 𝑠𝑑 can be written in the form 𝑠𝑑 = 𝑠𝑑
′ + 𝑠𝑑

′′, where 𝑠𝑑 = ∑ 𝜆𝛼
𝑝

𝛼∈𝐵𝑑
′  and 

𝑠𝑑
′′ = ∑ 𝜆𝛼

𝑝
𝛼∈𝐵𝑑

′′ . 

We need to compare the cardinalities #𝐵𝑑 , # 𝐵𝑑
′ , 𝑎𝑛𝑑 #𝐵𝑑

′′ of these sets. 

Lemma (2.3.13)[84]: We have the estimates #𝐵𝑑 ≈ #𝐵𝑑
′ ≈

𝑑𝑛−1

(𝑛−1)!
and #𝐵𝑑

′′ ≈ 𝑑𝑛−2 as 𝑑 →

+∞. 
Proof. Let 𝑃𝑛 ,𝑑 the space of 𝑛 variables holomorphic polynomials of degree 𝑑. We 

have #𝐵𝑑 = dim𝑃𝑛,𝑑 = (
𝑛−1+𝑑

𝑑
) =

(𝑑+𝑛−1)!

(𝑛−1)!𝑑!
  . Therefore, #𝐵𝑑 ∼

1

(𝑛 −1)!
𝑑𝑛−1as 𝑑 → +∞. 

On the other hand, for 𝑗 = 1,· · · , 𝑛, let 𝐵𝑑,𝑗
′ = {𝛼 ∈ 𝐵𝑑 , 𝛼𝑗 <  𝑘𝑗}. Since 𝐵𝑑

′ =∪1≤𝑗≤𝑛 𝐵𝑑 ,𝑗
′ , 

we see that #𝐵𝑑
′ ≤ ∑ #𝐵𝑑 ,𝑗

′𝑛
𝑗=1   . 

If 𝑘𝑗 ≥ 1, then 

𝐵𝑑 ,𝑗
′ = ∪

𝑙=0

𝑘𝑗−1 { 𝛼 = (𝛼1,· · · , 𝛼𝑗−1, 𝑙, 𝛼𝑗+1,· · · , 𝛼𝑛), |𝛼| = 𝑑 } 

= ∪
𝑙=0

𝑘𝑗−1 {𝛼 =  (𝛼1,· · · , 𝛼𝑗−1, 𝑙, 𝛼𝑗+1,· · · , 𝛼𝑛)∑ 𝛼𝑖 = 𝑑 − 𝑙
𝑖≠𝑗

}. 

Therefore, 𝐵𝑑 ,𝑗
′ = ∑ 𝑑𝑖𝑚 𝑃𝑛−1,𝑑−𝑙

𝑘𝑗−1

𝑙=0
 , and when 𝑑 → +∞, #𝐵𝑑,𝑗

′ ∼ 𝑘𝑗
𝑑𝑛−2

(𝑛−2)!
. 

This shows that, when 𝐵𝑑
′ ≈ 𝑑𝑛−2 as 𝑑 → +∞. The lemma now follows from theobservation 

#𝐵𝑑 = #𝐵𝑑
′ + #𝐵𝑑

′′.  
Lemma (2.3.14)[84]: Suppose that 𝑛 ≥ 2 and 𝑔 is a continuous function on ℝ𝑛 − 1. 
Consider the open set 𝛺 ∶= {(𝑡1,· · · , 𝑡𝑛−1 ∈ ℝ+

𝑛−1 , ∑ 𝑡𝑗 < 1
𝑛−1
𝑗=1   }. For a multi-index𝛾 =

(𝛾1,· · · , 𝛾𝑛−1 in ℕ0
𝑛−1 , set 

𝑐𝛾,𝑑 ∶= (
𝛾1 + 1

𝑑
 ,· · · ,

𝛾𝑛 −1 + 1

𝑑
) 

𝕁𝑑 ∶= {𝛾 ∈ ℕ0
𝑛−1 ∶ ∏

𝛾𝑗
𝑑

𝑛−1

𝑗=1

 ,
𝛾𝑗 + 1

𝑑
⊂ 𝛺} . 
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Then lim
𝑑→+∞

1

𝑑𝑛−1
 ∑ 𝑔(𝑐𝛾,𝑑)𝛾∈𝕁𝑑  = ∫ 𝑔(𝑡)𝑑𝑡

𝛺
. 

Proof. For 𝑑 ∈ ℕ0, let 𝛺𝑑 = ∪𝛾∈𝕁𝑑 ∏ [
𝛾𝑗

𝑑
 ,
𝛾𝑗+1

𝑑
]𝑛−1

𝑗=1 . It is clear that 𝛺𝑑 ⊂ 𝛺.Next, we show 

that lim
𝑑→+∞

𝜒𝛺𝑑 = 𝜒𝛺. If 𝑠 is a real number, let [𝑠] denote 

the largest integer smaller than or equal to 𝑠. If 𝑡 = (𝑡1,· · · , 𝑡𝑛−1) ∈ 𝛺 and1 ≤  𝑗 ≤ 𝑛 − 1, 

then
[𝑑𝑡𝑗]

𝑑
≤ 𝑡𝑗 <

[𝑑𝑡𝑗]

𝑑
+
1

𝑑
. Therefore, 

∑
[𝑑𝑡𝑗]

𝑑
≤ 𝑛

𝑛−1

𝑗=1

∑𝑡𝑗

𝑛−1

𝑗=1

< ∑
[𝑑𝑡𝑗]

𝑑
+
𝑛 − 1

𝑑

𝑛−1

𝑗=1

 . 

Since∑ 𝑡𝑗 < 1,
𝑛−1
𝑗=1   there is an integer 𝑑0 such that for all 𝑑 > 𝑑0 we have 

∑
[𝑑𝑡𝑗]

𝑑
+
𝑛−1

𝑑
<  1𝑛−1

𝑗=1 . Thus, 𝑡 ∈ ∏ [
[𝑑𝑡𝑗]

𝑑
,
[𝑑𝑡𝑗+1]

𝑑
]𝑛−1

𝑗=1 and hence 𝑡 ∈ 𝛺dfor all 𝑑 > 𝑑0. Thus 

lim
𝑑→+∞

𝜒𝛺𝑑 = 𝜒𝛺. Therefore, 

1

𝑑(𝑛−1)
∑ 𝑔(𝑐𝛾, 𝑑)

𝛾∈𝕁𝑑

−∫𝑔(𝑡)𝑑𝑡
𝛺

= ∑ [
1

𝑑𝑛−1
 𝑔(𝑐𝛾, 𝑑) − ∫ 𝑔(𝑡)𝑑𝑡

∏ [
𝛾𝑗
𝑑
 ,
𝛾𝑗+1

𝑑
]𝑛−1

𝑗=1

]

𝛾∈𝕁𝑑

 

+∫ 𝑔(𝑡)𝑑𝑡
𝛺𝑑

 − ∫𝑔(𝑡)𝑑𝑡
𝛺

 

Since 𝑔 is a bounded continuous function on the compact set 𝛺, we have, by Lebesgue’s 

theorem, lim
𝑑→+∞

∫ 𝑔(𝑡)𝑑𝑡
𝛺𝑑

 = ∫ 𝑔(𝑡)𝑑𝑡
𝛺

. On the other hand, by continuityof 𝑔 on the 

compact set 𝛺, we see that 

∑ [
1

𝑑𝑛−1
𝑔(𝑐𝛾, 𝑑) − ∫ 𝑔(𝑡)𝑑𝑡

∏ [
𝛾𝑗
𝑑
 ,
𝛾𝑗+1

𝑑
]𝑛−1

𝑗=1

]

𝛾∈𝕁𝑑

= ∑ ∫ [𝑔(𝑐𝛾, 𝑑) − 𝑔(𝑡)𝑑𝑡]
∏ [

𝛾𝑗
𝑑
 ,
𝛾𝑗+1

𝑑
]𝑛−1

𝑗=1𝛾∈𝕁𝑑

 

also tends to 0 as 𝑑 → +∞. This shows that 

lim
𝑑→+∞

1

𝑑𝑛−1
∑ 𝑔(𝑐𝛾, 𝑑)

𝛾∈𝕁𝑑

= ∫𝑔(𝑡)𝑑𝑡.
𝛺

 

The above result enables us to estimate 𝑠𝑑 when 𝑑 = |𝛼| → +∞. 
Lemma (2.3.15)[84]: If 𝑝 ≥ 1, then  

𝑠𝑑 ≈ 𝑑
𝑛−1𝑑𝑝(2

|𝑘|

𝑚
− 1). 

Proof. Recall that 𝑠𝑑 = ∑ 𝜆𝛼
𝑝

𝛼∈𝐵𝑑
′ . By Lemma (2.3.9), we know that the sequence 

{𝜆𝛼}𝛼 ∈ 𝐵𝑑
′  has the following expansion when 𝑑 → +∞ 

𝜆𝛼 = (
2

𝑚
)
2
|𝑘|

𝑚 (𝑑 +  𝑛)2
|𝑘|

𝑚
−1 (𝑓𝑛 (

𝛼1+1

𝑑 + 𝑛
 ,· · · ,

𝛼𝑛+1

𝑑 + 𝑛
)  + 𝜀(𝛼)), 

where 𝜀(𝛼) = 𝑂 (
1

𝑑
)and 

𝑓𝑛(𝑡1,· · · , 𝑡𝑛): = −(𝑚 −  2)
|𝑘|2

𝑚
𝑡𝑘 +∑𝑘𝑗

2
𝑡𝑘

𝑡𝑗

𝑛

𝑗=1

 

Using the properties of the function 𝑥 →  𝑥𝑝, we see that there exists a constant 𝑀 > 0, 
such that 

||𝑓𝑛 (
𝛼1 + 1

𝑑 +  𝑛
 ,· · · ,

𝛼𝑛 + 1

𝑑 +  𝑛
) + 𝜀(𝛼)|

𝑝

− |𝑓𝑛 (
𝛼1 + 1

𝑑 +  𝑛
 ,· · · ,

𝛼𝑛 + 1

𝑑 +  𝑛
) |
𝑝

| ≤
𝑀

𝑑
. 
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Therefore, 

𝜆𝛼 ≈ (
2

𝑚
)
2
|𝑘|
𝑚
(𝑑 +  𝑛)2

|𝑘|
𝑚
−1 (𝑓𝑛 (

𝛼1 + 1

𝑑 +  𝑛
 ,· · · ,

𝛼𝑛 + 1

𝑑 +  𝑛
)) , 

as 𝑑 = |𝛼| →  +∞. Applying Lemmas (2.3.13) we see that 

𝑠𝑑 ≈ (
2

𝑚
)
2𝑝
|𝑘|
𝑚
𝑑𝑝(2

|𝑘|
𝑚
−1) ∑ |𝑓𝑛 (

𝛼1 + 1

𝑑 +  𝑛
 ,· · · ,

𝛼𝑛 + 1

𝑑 +  𝑛
)|
𝑝

𝛼∈𝐵𝑑

 

≈ (
2

𝑚
)
2𝑝
|𝑘|
𝑚
𝑑𝑛−1𝑑𝑝(2

|𝑘|
𝑚
−1)∫|𝑓𝑛(𝑡)|

𝑝𝑑𝑡
𝛺

 

so that the lemma follows from Lemma (2.3.14). 

      We recall that an operator 𝑇 is in the Schatten class 𝑆𝑝(𝐴
2(𝜇𝑚), 𝐿

2(𝜇𝑚)) 

if (𝑇 ∗ 𝑇)
𝑝

2is in the trace class of 𝐴2(𝜇𝑚). Our second result characterizes such aclass of 

operators. 

Theorem (2.3.16)[84]: Let 𝑘 ∈ ℕ0
𝑛 and 𝑚 be a positive real number. Then the Hankel 

operator 𝐻�̅�𝑘 is in the Schatten class 𝑆𝑝(𝐴
2(𝜇𝑚), 𝐿

2(𝜇𝑚))if and only if 𝑝 > 2𝑛 and 𝑚(𝑝 −

 2𝑛)  >  2𝑝|𝑘|. 
Proof. We use that the operator 𝐻�̅�𝑘 is in𝑆𝑝(𝐴

2(𝜇𝑚), 𝐿
2(𝜇𝑚))if and only if 

𝑇 =  𝐻�̅�𝑘 ∗ 𝐻�̅�𝑘  is 𝑆𝑝
2
(𝐴2(𝜇𝑚)). Therefore, the theorem follows from Lemma (2.3.15). 

       We first study the behavior of the Bergman kernel 𝐾𝑚(𝑧, 𝑤) corresponding to𝐴2(𝜇𝑚). 
Let 𝐸 2

𝑚
,
2𝑛

𝑚

be the generalized Mittag-Leffler’s function. This is the entirefunction defined by 

𝐸 2
𝑚
,
2𝑛
𝑚

(𝜆):= ∑
𝜆𝑑

𝛤 (
2𝑑
𝑚
+
2𝑛
𝑚
 )

+∞

𝑑=0

, 𝜆 ∈ ℂ. 

We shall express the Bergman kernel in terms of this function. Namely, 

Lemma (2.3.17)[84]: The Bergman kernel 𝐾𝑚(𝑧, 𝑤) of 𝐴2(𝜇𝑚) is given by 

𝐾𝑚(𝑧, 𝑤) =
𝑚

(𝑛 − 1)!
𝐸2
𝑚
,
2𝑛

𝑚

𝑛−1(〈𝑧, 𝑤〉) , 

where 𝐸2
𝑚
,
2𝑛

𝑚

𝑛−1is the derivatives of 𝐸 2

𝑚
,
2𝑛

𝑚

 with order 𝑛 − 1. 

Proof. The monomials 𝑧𝛼 , 𝛼 ∈ ℕ0
𝑛, form an orthogonal basis of 𝐴2(𝜇𝑚).Since 

‖𝑧𝛼‖𝐿2(𝜇𝑚)
2 =

(𝑛 − 1)!

𝑚
 

𝛼!

(|𝛼| + 𝑛 − 1)!
Γ (
2|𝛼| + 2𝑛

𝑚
) 

it follows that the Bergman kernel is 

𝐾𝑚(𝑧, 𝑤) = ∑
𝑧𝛼

‖𝑧𝛼‖𝐿2(𝜇𝑚)

𝑤𝛼

‖𝑤𝛼‖𝐿2(𝜇𝑚)𝛼∈ℕ0
𝑛

 

=
𝑚

(𝑛 − 1)!
∑

(𝑑 + 𝑛 − 1)!

𝑑! 𝛤 (
2𝑑
𝑚
 +
2𝑛
𝑚
 )

+∞

𝑑=0

(〈𝑧, 𝑤〉)𝑑 

=
𝑚

(𝑛 − 1)!
𝐸2
𝑚
,
2𝑛
𝑚

𝑛−1 (〈𝑧, 𝑤〉&) . 

This completes the proof of the lemma.  

The Bergman projection 𝑃𝑚 is given by 
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𝑃𝑚(𝑓)(𝑧) ∶= ∫ 𝐾𝑚(𝑧, 𝑤)𝑓(𝑤)𝑑𝜇𝑚(𝑤),
ℂ𝑛

  for 𝑓 ∈ 𝐿2(𝜇𝑚).               (77) 

This definition can be extended to functions of the form 𝑓𝑔 where 𝑓 ∈ 𝐿2(𝜇𝑚) 
and 𝑔 ∈ 𝑃. Indeed, 

Lemma (2.3.18)[84]: If 𝑔 ∈ 𝑃 and 𝑧 ∈ ℂ𝑛, then 𝑔𝐾𝑚(𝑧,·) is in 𝐿2(𝜇𝑚). 
Proof. It follows from Theorem 2, p. 6 in [90] that the generalized Mittag-Leffler’s function 

is 𝐸 2

𝑚
,
2𝑛

𝑚

is an entire function of finite order 
𝑚

2
 andtype 1. Therefore𝐸2

𝑚
,
2𝑛

𝑚

𝑛−1 is also an entire 

function of finite order 
𝑚

2
 and type 1 and hence for any𝜚 >  0, there is a positive constant 𝐶 

that 

|𝐸2
𝑚
,
2𝑛
𝑚

𝑛−1 (𝜆)| ≤ 𝐶𝑒|𝜆|
𝑚+𝜚
2  , 𝜆 ∈ ℂ. 

This shows that for all 𝑧, 𝑤 ∈ ℂ𝑛, 

|𝐾𝑚(𝑧, 𝑤)| ≤ 𝐶𝑒
|〈𝑧,𝑤〉|

𝑚+𝜚
2  ≤  𝐶𝑒(|𝑧||𝑤|)

𝑚+𝜚
2  , 

showing that for all 𝑔 ∈ 𝑃 and 𝑧 fixed in ℂ𝑛, the function 𝑤 ↦ 𝑔(𝑤)𝐾𝑚(𝑧, 𝑤) is in 𝐿2(𝜇𝑚) 
as long as 0 < 𝜚 < 𝑚.  
It follows from Lemma (2.3.18) that if 𝑓 ∈ 𝐿2(𝜇𝑚), then the Hankel operator 𝐻𝑓̅ with 

symbol𝑓 ̅is well-defined on 𝑃 by 

𝐻𝑓(𝑔)(𝑧) ∶= ∫ (𝑓(𝑧) −  𝑓(𝑤))𝐾𝑚(𝑧, 𝑤)𝑔(𝑤)𝑑𝜇𝑚(𝑤), 𝑔 ∈ 𝑃
ℂ𝑛

 . 

We point out that the measurable function 𝑧 ↦  𝐻𝑓̅(𝑔)(𝑧) is not necessarly an element of 

𝐿2(𝜇𝑚). 
Denote by 𝑀 the subspace of those functions 𝑓 ∈ 𝐴2(𝜇𝑚) such that 𝐻𝑓̅ (𝑔) ∈ 𝐿

2(𝜇𝑚) for 

all 𝑔 ∈ 𝑃, and the densely defined operator 𝐻𝑓̅ is bounded on 𝐴2(𝜇𝑚). We equip 𝑀 with 

seminorm 

‖𝑓‖ ∶=  ‖𝐻𝑓̅‖ + |𝑓(0)|. 

The subspace of 𝑀 consisting of functions 𝑓 such that 𝐻𝑓̅ is a compact operator will be 

denoted by 𝑀∞. Then is not hard to see that 𝑀∞ is a closed subspace of M. 

If 𝑝 ≥ 1, we denote by 𝑀𝑝 the subspace of those functions 𝑓 ∈ 𝑀 such that the Hankel 

operator 𝐻𝑓̅ is the Schatten class 𝑆𝑝(𝐴
2(𝜇𝑚), 𝐿

2(𝜇𝑚)). We equip 𝑀𝑝 with seminorm 

‖𝑓‖ ∶=  ‖𝐻𝑓̅‖𝑠𝑝
+ |𝑓(0)|. 

Lemma (2.3.19)[84]: The spaces 𝑀 and 𝑀𝑝 are Banach spaces. 

Proof. We prove the lemma for 𝑀, the proof for 𝑀𝑝 is similar. Let (𝑓𝑛)𝑛∈ℕ0 be a Cauchy 

sequence in 𝑀. Without loss of generality we may assume that 𝑓𝑛(0) = 0 for all 𝑛. The 

sequence (𝐻𝑓�̅�)𝑛∈ℕ0
 is a Cauchy sequence of bounded operators on 𝐴2(𝜇𝑚). Therefore, 

there is an operator 𝑇 in 𝐴2(𝜇𝑚) such that (𝐻𝑓�̅�)𝑛∈ℕ0
  converges to 𝑇 in the norm operator. 

Let 𝑓 ∶= 𝑇(1)̅̅ ̅̅ ̅̅  be the conjugate of the image 𝑇(1) of the constant function 1 under 𝑇. Since 

𝐻𝑓�̅�(1) = 𝑓�̅� , it follows that 

‖𝑓𝑛 − 𝑓‖𝐿2(𝜇𝑚)  =  ‖𝑓�̅� − 𝑇 (1)‖𝐿2(𝜇𝑚)
= ‖𝐻𝑓�̅�(1)–𝑇(1)‖𝐿2(𝜇𝑚)

≤ ‖𝐻𝑓�̅�– 𝑇‖ 

showing that 

lim
𝑛→∞

‖𝑓𝑛 − 𝑓‖𝐿2(𝜇𝑚) =  0.                                             (78) 
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Thus 𝑓 ∈ 𝐴2(𝜇𝑚). We shall show that the Hankel operator 𝐻𝑓̅ with symbol 𝑓 is bounded. It 

is well defined on 𝑃. We shall prove that 𝐻𝑓̅ is equal to 𝑇 on 𝑃. Let 𝑔 be a holomorphic 

polynomial. We first observe by (77), (78) and Lemma (2.3.18) that for all 𝑧 ∈ ℂ𝑛 we have 

|(𝑃(𝑓̅ − 𝑓�̅�)𝑔)(𝑧)| ≤ ‖𝑓𝑛 − 𝑓‖𝐿2(𝜇𝑚)‖𝑔𝐾𝑚(𝑧,·)‖𝐿2(𝜇𝑚) 

showing that lim
𝑛→+∞

𝑃((𝑓̅ − 𝑓�̅�)𝑔)(𝑧)  =  0. Since again by (78) we have that 

lim
𝑛→+∞

(𝑓̅ − 𝑓�̅�)𝑔 (𝑧) =  0, it follows that 

lim
𝑛→+∞

𝐻𝑓𝑛̅̅ ̅ − 𝐻𝑓̅(𝑔)(𝑧) = 0 . 

This proves that 𝑇𝑔 = 𝐻𝑓̅(𝑔) and hence 𝑇 = 𝐻𝑓̅ . Therefore 𝑀 is a Banach space. The proof 

of that 𝑀𝑝 is a Banach space is similar. 

For 𝜃 = (𝜃1,· · · , 𝜃𝑛) ∈ ℝ
𝑛, let 𝑅𝜃 be the unitary linear transformation in ℂ𝑛 defined by 

𝑅𝜃(𝑧) = (𝑒
𝑖𝜃1𝑧1,· · · , 𝑒

𝑖𝜃𝑛𝑧𝑛), for all 𝑧 = (𝑧1,· · · , 𝑧𝑛) ∈ ℂ
𝑛. 

Lemma (2.3.20)[84]: Let 𝜃 ∈ ℝ𝑛. Then the operator 𝑅𝜃𝑓:= 𝑓 ∘ 𝑅𝜃 is a unitary isometry 

from 𝐿2(𝜇𝑚) onto itself and from 𝐴2(𝜇𝑚) onto itself. Moreover the following assertions 

hold. 

   (i) If 𝑓 ∈ 𝑀 then 𝑅𝜃𝑓 ∈ 𝑀 and ‖𝑅𝜃𝑓‖𝑀 = ‖𝑓‖𝑀. 
   (ii) If 𝑓 ∈ 𝑀∞, then 𝑅𝜃𝑓 ∈ 𝑀∞. 
   (iii) If 𝑓 ∈ 𝑀𝑝, then 𝑅𝜃𝑓 ∈ 𝑀𝑝 and 

‖𝑅𝜃𝑓‖𝑀𝑝 = ‖𝑓‖𝑀𝑝  

Proof. It is clear that the operator 𝑅𝜃 is a unitary isometry from 𝐿2(𝜇𝑚) onto itself and from 

𝐴2(𝜇𝑚) onto itself. Let 𝑓 be in 𝑀 and 𝜃 ∈ ℝ𝑛. Then 𝑅𝜃𝑓 is clearly in 𝐴2(𝜇𝑚). Moveover, 

if 𝑔 is an element of 𝑃, then by a change of variable we see that 

𝐻𝑅𝜃𝑓̅̅ ̅̅ ̅̅ (𝑔)(𝑧) = ∫ 𝐾𝑚(𝑅𝜃𝑧, 𝑤)𝑔(𝑅−𝜃𝑤)[𝑅𝜃𝑓̅̅ ̅̅ ̅(𝑧)– 𝑓(̅𝑤)]𝑑𝜇𝑚(𝑤)
ℂ𝑛

  

∫ 𝐾𝑚(𝑅𝜃𝑧, 𝑤)(𝑅−𝜃𝑔)
ℂ𝑛

(𝑤)[𝑓(̅𝑅𝜃𝑧) − 𝑓(̅𝑤)]𝑑𝜇𝑚(𝑤) 

= 𝐻𝑓̅(𝑅−𝜃𝑔)(𝑅𝜃𝑧) 

= (𝑅𝜃𝐻𝑓̅𝑅−𝜃)(𝑔)(𝑧). 

Since the adjoint of 𝑅−𝜃 is 𝑅−𝜃
∗ = 𝑅𝜃 , it follows that 

‖𝐻𝑅𝜃𝑓̅̅ ̅̅ ̅̅ ‖ =  ‖𝐻𝑓̅‖, 

showing that 

‖𝑓 ∘ 𝑅𝜃‖𝑀  =  ‖𝑓‖𝑀. 
This proves part (i) of the lemma. The proof of parts (ii) and (iii) of the lemma are similar.  

Lemma (2.3.21)[84]: Let 𝑓 ∈ 𝐴2(𝜇𝑚). 

   (i) If 𝑓 ∈ 𝑀, then for any multi-index 𝑘 that satisfi
𝜕𝑘𝑓

𝜕𝑧𝑘
(0) ≠ 0,es  the monomial 𝑧𝑘 is in 

𝑀. 

   (ii) If 𝑓 ∈ 𝑀∞, then for any multi-index 𝑘 that satisfies 
𝜕𝑘𝑓

𝜕𝑧𝑘
(0) ≠ 0, the monomial 𝑧𝑘 is in 

𝑀∞. 

   (iii) If 𝑝 ≥ 1 and 𝑓 ∈ 𝑀𝑝, then for any multi-index 𝑘 that satisfies 
𝜕𝑘𝑓

𝜕𝑧𝑘
(0) ≠ 0,the 

monomial 𝑧𝑘 is in 𝑀𝑝. 

Proof. To prove (i), suppose that 𝑓 ∈ 𝑀. By the Cauchy formula we have 



95 

𝜕𝑘𝑓

𝜕𝑧𝑘
 (0)𝑧𝑘 =

1

(2𝜋)𝑛
∫ …
2𝜋

0

∫ 𝑓(𝑅𝜃𝑧)
2𝜋

0

/𝑒𝑖𝑘1𝜃1· · ·𝑒𝑖𝑘𝑛𝜃𝑛 

𝑑𝜃, 
where 𝑑𝜃 ∶=  𝑑𝜃1  · · ·  𝑑𝜃𝑛 for 𝜃 = (𝜃1,· · · , 𝜃𝑛). By Lemmas (2.3.19) and (2.3.20) we see 

that 
𝜕𝑘𝑓

𝜕𝑧𝑘
(0)𝑧𝑘 ∈ 𝑀. Therefore, 𝑧𝑘 ∈ 𝑀 as long as 

𝜕𝑘𝑓

𝜕𝑧𝑘
(0) ≠ 0, The proof of the remaining 

statements of the lemma is similar. 

Theorem (2.3.22)[84]: Let 𝑓 be an entire function in 𝐴2(𝜇𝑚), where m is a positive real 

number. 

   (i) Then the Hankel operator 𝐻𝑓̅ is bounded on the Fock space 𝐴2(𝜇𝑚) if and only if 𝑓 is 

a polynomial of degree at most 
𝑚

2
 . 

   (ii) The Hankel operator 𝐻𝑓̅ is compact on the Fock space 𝐴2(𝜇𝑚) if and only if 𝑓 is a 

polynomial of degree smaller than 
𝑚

2
 . 

Theorem (2.3.23)[84]: Let 𝑓 be an entire function in 𝐴2(𝜇𝑚), where 𝑚 is a positive real 

number. Then the Hankel operator 𝐻𝑓̅ is in the Schatten class 𝑆𝑝(𝐴
2(𝜇𝑚), 𝐿

2(𝜇𝑚)) if and 

only if 𝑝 > 2𝑛 and 𝑓 is a polynomial of degree smaller than 
𝑚(𝑝−2𝑛)

2𝑝
 . 

Proof of Theorems (2.3.22) and (2.3.23). We first prove Theorem (2.3.22). Let 𝑓 ∈

𝐴2(𝜇𝑚). Suppose that 𝐻𝑓̅ is bounded and let 𝑘 be a multi-index that satisfies 
𝜕𝑘𝑓

𝜕𝑧𝑘
(0) ≠ 0, 

By Lemma (2.3.21) we see that the monomial 𝑧𝑘 is in 𝑀. Now Theorem (2.3.12) implies 

that 𝑚 ≥ 2|𝑘|. Hence 𝑓 is a polynomial of degree at most 
𝑚

2
 . 

If 𝐻𝑓̅ is compact then a similar argument shows that 𝑓 is a polynomial of degree strictly 

smaller than 
𝑚

2
 . The converse follows from Theorem (2.3.12). 

The proof of Theorem (2.3.23) is similar to that of Theorem (2.3.22). 

Corollary (2.3.24)[185]: Suppose that 𝛽, 𝑘 ∈ ℕ0
𝑛 and 𝑑 ∈ ℕ0. Then 

∑ 

𝑟

(𝐻�̅�𝑘𝑓𝑟)(𝜉𝑟) = 𝜉�̅�
𝑘∑ 

𝑟

𝑓𝑟(𝜉𝑟) −
(1 + 𝜖)𝑑

(1 + 𝜖)𝑑 − |𝑘|

𝛤(𝑛 + 𝑑 − |𝑘|)

𝛤(𝑛 + 𝑑)

𝜕|𝑘|

𝜕𝜉𝑟
𝑘  ∑  

𝑟

𝑓𝑟(𝜉) 

for all holomorphic polynomials 𝑓𝑟 of degree 𝑑. In particular, if 𝑓𝑟 = 𝜉
𝑘+𝜖 , then 

∑ 

𝑟

(𝐻�̅�𝑘𝑓𝑟)(𝜉)

=

{
 
 

 
 ∑ 

𝑟

𝜉�̅�
𝑘𝜉𝑟
𝑘+𝜖 −

(1 + 𝜖)|𝑘+𝜖|
(1 + 𝜖)|𝑘+𝜖|−|𝑘|

𝛤(𝑛 + |𝑘 + 𝜖| − |𝑘|)

𝛤(𝑛 + |𝑘 + 𝜖|)

(𝑘 + 𝜖)!

(𝜖)!
∑𝜉𝑟

𝜖

𝑟

, if 𝜖 ≥ 0

∑ 

𝑟

𝜉�̅�
𝑘𝜉𝑟
𝑘+𝜖  otherwise.                                                                               

  

Proof. It suffices to prove the corollary for 𝑓𝑟(𝜉𝑟) = 𝜉𝑟
𝑘+𝜖 , where 𝑘 + 𝜖 ∈ ℕ0

𝑛. Let 𝑔𝑟 be a 

homogeneous polynomial in 𝑃. If 𝑔𝑟 is a monomial of the form 𝑔𝑟(𝜉𝑟) = 𝜉𝑟
𝛽
, where 𝛽 ∈

ℕ0
𝑛 , then using the properties of 𝑃𝜇 , we see that 

∑ 

𝑟

〈𝑃𝜇(𝑧̅
𝑘𝑓𝑟), 𝑔𝑟〉𝐿2(𝛺,𝜇) =∑ 

𝑟

〈𝑓𝑟 , 𝑧
𝑘𝑔𝑟〉𝐿2(𝛺,𝜇) 

and hence ∑  𝑟 〈𝑃𝜇(𝑧̅
𝑘𝑓𝑟), 𝑔𝑟〉𝐿2(𝛺,𝜇) =  0 as long as 𝑘 + 𝜖 ≠ 𝑘 +  𝛽. Now let 𝑘 + 𝜖 = 𝑘 +

 𝛽. By Lemma 2.1 in [181], we have the following identities 
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∫ 𝑧𝑘+𝜖𝑧̅𝑘+𝜖𝑑𝜇(𝑧) =
(𝑛 − 1)! (1 + 𝜖)|𝑘+𝜖|(𝑘 + 𝜖)!

(𝑛 + |𝑘 + 𝜖| −  1)!
 

𝛺

  and 〈𝑧𝑘+𝜖 , 𝑧𝑘+𝜖〉𝐹 = (𝑘 + 𝜖)! , (79) 

from which we obtain 

∑ 

𝑟

〈𝑃𝜇(𝑧̅
𝑘𝑓𝑟), 𝑔𝑟〉𝐿2(𝛺,𝜇)  =

(𝑛 − 1)! (1 + 𝜖)|𝑘+𝜖|
(𝑛 + |𝑘 + 𝜖| − 1)!

∑ 

𝑟

〈𝑓𝑟 , 𝑧
𝑘𝑔𝑟〉𝐹 . 

Since the multiplication operator and the corresponding differentiation operator are adjoint 

to each other with respect to the Fischer inner product, this implies that 

∑ 

𝑟

〈𝑃𝜇(𝑧̅
𝑘𝑓𝑟), 𝑔𝑟〉𝐿2(𝛺,𝜇)   =

(1 + 𝜖)|𝛽|+|𝑘|

(1 + 𝜖)|𝛽|

(𝑛 − 1 + |𝛽|)!

(𝑛 − 1 + |𝛽| + |𝑘|)!
∑  

𝑟

〈
𝜕|𝑘|

𝜕𝑧𝑘
𝑓𝑟 , 𝑔𝑟〉𝐿2(𝛺,𝜇) 

for all holomorphic homogeneous polynomials 𝑔𝑟 of degree |𝛽|. Therefore, if 𝑓𝑟 is a 

holomorphic homogeneous polynomial of degree 𝑑, we have 

∑ 

𝑟

𝑃𝜇(𝑧̅
𝑘𝑓𝑟) =

(1 + 𝜖)𝑑
(1 + 𝜖)𝑑−|𝑘|/

(𝑛 − 1 + 𝑑 − |𝑘|)!

(𝑛 − 1 + 𝑑)!

𝜕|𝑘|

𝜕𝑧𝑘
∑ 

𝑟

𝑓𝑟 . 

This completes the proof of the corollary.  

Corollary (2.3.25)[185]: The domain Dom(𝐻
�̅�𝑘
∗ ) of 𝐻

�̅�𝑘
∗  contains all polynomials in 𝑤 and 

�̅�. 

Proof. It suffices to show that, if 𝑘 + 𝜖 and 𝛽 are fixed in ℕ0
𝑛, then the linear functional 

𝑔𝑟 ↦ 〈𝐻�̅�𝑘(𝑔𝑟), 𝑧
𝑘+𝜖𝑧̅𝛽〉𝐿2(𝛺,𝜇) 

is bounded on 𝐴2(𝛺, 𝜇). To do so, choose an integer 𝑑 ≥ |𝑘 + 𝜖| + |𝛽| + 2|𝑘| and consider 

the subspace 𝑁𝑑 of 𝐴2(𝛺, 𝜇) consisting of polynomials with degree smaller than or equal to 

𝑑.We denote by 𝜋𝑑 the orthogonal projection from 𝐴2(𝛺, 𝜇) onto 𝑁𝑑. If 𝑔𝑟 ∈ 𝑃, then (𝐼 −
𝜋𝑑)𝑔𝑟 is a sum of holomorphic homogeneous polynomials in 𝑃 with degree at least 𝑑 + 1. 
In view of Corollary (2.3.24), we can write 

∑ 

𝑟

𝐻�̅�𝑘 ∘  (𝐼 − 𝜋𝑑)𝑔𝑟 =∑ 

𝑟

(𝑧̅𝑘𝑓𝑟  + ℎ𝑟) 

where 𝑓𝑟 is a sum of holomorphic homogeneous polynomials of degree at least 𝑑 +  1 and 

ℎ𝑟 is a sum of holomorphic homogeneous polynomials of degree at least 𝑑 + 1 − |𝑘|. 
Therefore, 

∑ 

𝑟

〈𝐻�̅�𝑘 ∘  (𝐼 − 𝜋𝑑)𝑔𝑟 , 𝑧
𝑘+𝜖𝑧̅𝛽〉𝐿2(𝛺,𝜇)

=∑ 

𝑟

〈𝑧̅𝑘𝑓𝑟 , 𝑧
𝑘+𝜖𝑧̅𝛽〉𝐿2(𝛺,𝜇) +∑ 

𝑟

〈ℎ𝑟 , 𝑧
𝑘+𝜖𝑧̅𝛽〉𝐿2(𝛺,𝜇)

=∑ 

𝑟

〈𝑓𝑟𝑧
𝛽, 𝑧𝑘+𝜖+𝑘〉𝐿2(𝛺,𝜇) +∑ 

𝑟

〈𝑧𝛽ℎ𝑟 , 𝑧
𝑘+𝜖〉𝐿2(𝛺,𝜇). 

Since 𝑑 + 1 + |𝛽| ≥ 1 + |𝑘 + 𝜖| + 2|𝛽| + 2|𝑘| > |𝑘 + 𝜖| + |𝑘|, it follows that 

∑  𝑟 〈𝑓𝑟𝑧
𝛽, 𝑧2𝑘+𝜖〉𝐿2(𝛺,𝜇) = 0. Also, due to the fact that the degree of 𝑧𝛽𝑓𝑟 is greater than 

|𝑘 + 𝜖| we see that ∑  𝑟 〈𝑧
𝛽𝑓𝑟 , 𝑧

𝑘+𝜖〉𝐿2(𝛺,𝜇) =  0. Thus 〈𝐻�̅�𝑘 ∘  (𝐼 − 𝜋𝑑)𝑔𝑟 , 𝑧
𝑘+𝜖𝑧̅𝛽〉𝐿2(𝛺,𝜇) =

 0 for all 𝑔𝑟 ∈ 𝑃 and consequently 

∑ 

𝑟

〈𝐻�̅�𝑘𝑔𝑟, 𝑧
𝑘+𝜖𝑧̅𝛽〉𝐿2(𝛺,𝜇) =∑ 

𝑟

〈𝐻�̅�𝑘 ∘  (𝐼 − 𝜋𝑑)𝑔𝑟 , 𝑧
𝑘+𝜖𝑧̅𝛽〉𝐿2(𝛺,𝜇) . 

The corollary now follows from the fact that 𝐻�̅�𝑘 ∘ 𝜋𝑑 is of finite rank and hence bounded.  

Corollary (2.3.26)[185]: Suppose that 𝑢, 𝑣 and 𝑓𝑟 are holomorphic polynomials. Then 
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∑ 

𝑟

𝐻�̅�
∗𝐻𝑢𝑓𝑟 =∑ 

𝑟

𝑃𝜇(𝑣�̅�𝑓𝑟) −∑ 

𝑟

𝑣𝑃𝜇(�̅�𝑓𝑟). 

Proof. A little computing shows that for all 𝑔𝑟 ∈ 𝐴
2(𝛺, 𝜇) 

∑ 

𝑟

〈𝐻𝑢𝑓𝑟 , 𝐻�̅�𝑔𝑟〉𝐿2(𝛺,𝜇) =∑ 

𝑟

〈�̅�𝑓𝑟 − 𝑃𝜇(�̅�𝑓𝑟), �̅�𝑔𝑟 − 𝑃𝜇(�̅�𝑔𝑟)〉𝐿2(𝛺,𝜇)

=∑ 

𝑟

〈𝑣�̅�𝑓𝑟 , 𝑔𝑟〉𝐿2(𝛺,𝜇) −∑ 

𝑟

〈𝑃𝜇(�̅�𝑓𝑟), �̅�𝑔𝑟〉𝐿2(𝛺,𝜇)

+∑ 

𝑟

〈(𝑃𝜇 − 𝐼)(�̅�𝑓𝑟), 𝑃𝜇(�̅�𝑔𝑟)〉𝐿2(𝛺,𝜇)

=∑ 

𝑟

〈𝑣�̅�𝑓𝑟 , 𝑔𝑟〉𝐿2(𝛺,𝜇) −∑ 

𝑟

 〈𝑃𝜇(�̅�𝑓𝑟), �̅�𝑔𝑟〉𝐿2(𝛺,𝜇) 

where the latter equality holds since 𝑃𝜇(�̅�𝑔𝑟) ∈ 𝐴
2(𝛺, 𝜇) and (𝑃𝜇 − 𝐼)(�̅�𝑓𝑟) is orthogonal to 

𝐴2(𝛺, 𝜇). This completes the proof. 

Corollary (2.3.27)[185]: Assume that 𝑘 and 𝑙 are elements of ℕ0
𝑛. If 𝑓𝑟 is a holomorphic 

homogeneous polynomial of degree 𝑑, then 

∑ 

𝑟

𝑃𝜇(𝑧
𝑙𝑧̅𝑘𝑓𝑟) =

(1 + 𝜖)𝑑+|𝑙|

(1 + 𝜖)𝑑 −|𝑘|+|𝑙|

𝛤(𝑑 +  𝑛 − |𝑘| + |𝑙|)

𝛤(𝑑 + 𝑛 + |𝑙|)

𝜕|𝑘|

𝜕𝑧𝑘
∑ 

𝑟

𝑓𝑟 . 

Proof. It is sufficient to establish the corollary for monomials 𝑓𝑟(𝑧) = 𝑧
𝑘+𝜖 . If 𝛽 is an 

arbitrary element of ℕ0
𝑛, then, due to the properties of the Fischer product and (79), we have 

∑ 

𝑟

〈𝑃𝜇(𝑧
𝑙𝑧̅𝑘𝑓𝑟), 𝑧

𝛽〉𝐿2(𝛺,𝜇) = 〈𝑧
𝑙+𝑘+𝜖 , 𝑧𝑘+𝛽〉𝐿2(𝛺,𝜇)

=
(𝑛 − 1)! (1 + 𝜖)|𝑘+𝜖|+|𝑙|
(𝑛 + |𝑘 + 𝜖| + |𝑙| − 1)!

〈
𝜕|𝑘|

𝜕𝑧𝑘
(𝑧𝑙+𝑘+𝜖), 𝑧𝛽〉𝐹

=
(1 + 𝜖)|𝑘+𝜖|+|𝑙|

(1 + 𝜖)|𝑘+𝜖|+|𝑙|−|𝑘|

𝛤(𝑛 + |𝑘 + 𝜖| + |𝑙| − |𝑘|)

𝛤(𝑛 + |𝑘 + 𝜖| + |𝑙|)
∑  

𝑟

〈
𝜕|𝑘|

𝜕𝑧𝑘
(𝑧𝑙𝑓𝑟), 𝑧

𝛽〉𝐿2(𝛺,𝜇) 

This completes the proof. 

Corollary (2.3.28)[185]: Suppose 𝜖 = 1. Then for each 𝑗 = 1,· · · , 𝑛, the operator 𝐻�̅�𝑗 is 

bounded but not compact on 𝐴2(𝜇1+𝜖). If |𝑘| ≥ 2, 𝐻�̅�𝑘 is unbounded on 𝐴2(𝜇1+𝜖).  
Proof. In this case, 𝜇2 is the Gaussian measure on ℂ𝑛. Its moments reduce to (1 + 𝜖)𝑠 =
𝛤(𝑠 +  𝑛). Moreover, if 𝑘 + 𝜖 ∈ ℕ0

𝑛,   

𝜆𝑘+𝜖
𝑟 =

{
 
 

 
 (2𝑘 + 𝜖)!

(𝑘 + 𝜖)!
−
(𝑘 + 𝜖)!

(𝜖)!
 if 𝜖 ≥ 0,

(2𝑘 + 𝜖)!

(𝑘 + 𝜖)!
                     if 𝜖 ≱  0.

 

We first observe that if |𝑘| = 1, then the eigenvalues of 𝑇 are all equal to 1. Therefore, 𝑇 is 

bounded but not compact on 𝐴2(𝜇1+𝜖). This proves the first part of the corollary. 

         Suppose now that |𝑘| ≥ 2. Choose 𝑗0 in [1, 𝑛] so that 𝑘𝑗0 = max𝑗
𝑘𝑗 . If 𝑑 is a 

nonnegative integer, set (𝑘 + 𝜖)(𝑘, 𝑑)  =  (𝑘1,· · · , 𝑘𝑗0−1, 𝑘𝑗0 + 𝑑 , 𝑘𝑗0+1,· · · , 𝑘𝑛). Then 

𝜆(𝑘+𝜖)(𝑘,𝑑)
𝑟  = (∏

(2𝑘𝑗)!

(𝑘𝑗)!
 

𝑛

𝑗≠𝑗0

) [(𝑑 + 𝑘𝑗0 + 1) · · · (𝑑 + 2𝑘𝑗0] − (𝑑 +  1) · · ·  (𝑑 + 𝑘𝑗0) 
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Therefore, lim
𝑑→+∞

𝜆(𝑘+𝜖)(𝑘,𝑑)
𝑟 = +∞, showing that 𝑇 is unbounded on 𝐴2(𝜇1+𝜖). This implies 

that 𝐻�̅�𝑘 is also unbounded. 

Henceforth, we assume that 𝜖 ≠ 1, 𝜖 ≥ 0. From Proposition (2.3.6) and (73) we see 

that if 𝑘 + 𝜖 ∈ ℕ0
𝑛, then the eigenvalue 𝜆𝑘+𝜖

𝑟  can be written in the form 

𝜆𝑘+𝜖
𝑟 =

{
 
 

 
 𝐴|𝑘+𝜖|

(2𝑘 + 𝜖)!

(𝑘 + 𝜖)!
− 𝐵|𝑘+𝜖|

(𝑘 + 𝜖)!

(𝜖)!
 if 𝜖 ≥ 0

𝐴|𝑘+𝜖|
(2𝑘 + 𝜖)!

(𝑘 + 𝜖)!
   if  𝜖 ≱  0

                     (80) 

where, for a nonnegative integer 𝑑, 

{
 
 
 

 
 
 
𝐴𝑑 ∶=

𝛤 (
2𝑑 +  2𝑛
1 + 𝜖

 +
2|𝑘|
1 + 𝜖)

𝛤 (
2𝑑 +  2𝑛
1 + 𝜖 )

𝛤(𝑑 + 𝑛)

𝛤(𝑑 + 𝑛 + |𝑘|)
,

𝐵𝑑 ∶=
𝛤 (
2𝑑 +  2𝑛
1 + 𝜖

 )

𝛤 (
2𝑑 +  2𝑛
1 + 𝜖

−
2|𝐾|
1 + 𝜖)

𝛤(𝑑 + 𝑛 − |𝑘|)

𝛤(𝑑 + 𝑛)
 .

                           (81) 

The asymptotic behaviour of the eigenvalues {𝜆𝑘+𝜖
𝑟 } when |𝑘 + 𝜖| = 𝑑 ↦ +∞ is given by 

the following (see [84]). 

Corollary (2.3.29)[185]: The sequences (𝐴𝑑) and (𝐵𝑑) given by (81) have the asymptotic 

behavior 

𝐴𝑑 = (
2

1 + 𝜖
)

2|𝑘|
1+𝜖

(𝑑 + 𝑛)
|𝑘|(

1−𝜖
1+𝜖

)
 [1 −

|𝑘|2(𝜖 − 1)

2(1 + 𝜖)(𝑑 + 𝑛)
+ 𝑂 (

1

(𝑑 + 𝑛)2
)] 

𝐵𝑑 = (
2

1 + 𝜖
)

2|𝑘|
1+𝜖

(𝑑 + 𝑛)
|𝑘|(

1−𝜖
1+𝜖

)
[1 +

|𝑘|2(𝜖 − 1)

2(1 + 𝜖)(𝑑 + 𝑛)
+ 𝑂 (

1

(𝑑 + 𝑛)2
)] 

as 𝑑 ↦ +∞. 
Proof. Follows from the property of the Gamma function [159] 

𝛤(𝑥 + 𝑦)

𝛤(𝑥 + 𝑧)
= 𝑥𝑦−𝑧 (1 +

(𝑦 − 𝑧)(𝑦 +  𝑧 − 1)

2𝑥
+ 𝑂 (

1

𝑥2
))  as  𝑥 ↦ +∞ ,                 (82) 

where 𝑦 and 𝑧 are real numbers.  

Corollary (2.3.30)[185]: The eigenvalues 𝜆𝑘+𝜖
𝑟  have the form 

∑ 

𝑟

𝜆𝑘+𝜖
𝑟 = (

2

1 + 𝜖
)
2
|𝑘|
1+𝜖

(𝑑 + 𝑛)2 
|𝑘|
1+𝜖

−1∑ 

𝑟

((𝑓𝑟)𝑛 (
𝑘1 + 𝜖 + 1

𝑑 + 𝑛
 ,· · · ,

𝑘𝑛 + 𝜖 + 1

𝑑 + 𝑛
) + 𝜀(𝑘

+ 𝜖)) , 

where 𝜀(𝑘 + 𝜖) = 𝑂 (
1

𝑑
)and 

(𝑓𝑟)𝑛(𝑡1,· · · , 𝑡𝑛):= −(𝜖 − 1)
|𝑘|2

1 + 𝜖
𝑡𝑘 +∑𝑘𝑗

2
𝑡𝑘

𝑡𝑗

𝑛

𝑗=1

 

when 𝜖 ≥ 0 and 𝑑 = |𝑘 + 𝜖| ↦ +∞. 
Proof. We recall by (80) that if 𝜖 ≥ 0, then 
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𝜆𝑘+𝜖
𝑟 = 𝐴|𝑘+𝜖|

(2𝑘 + 𝜖)!

(𝑘 + 𝜖)!
− 𝐵|𝑘+𝜖|

(𝑘 + 𝜖)!

(𝜖)!
 , 

where (𝐴𝑑) and (𝐵𝑑) are given by (81). On the other hand, by (82) we see that 

(2𝑘𝑗 + 𝜖)!

(𝑘𝑗 + 𝜖)!
= (1 + 𝑘𝑗 + 𝜖)

𝑘𝑗
+ 𝑘𝑗(𝑘𝑗 − 1)(1 + 𝑘𝑗 + 𝜖)

𝑘𝑗−1
+ 𝑞𝑗(1 + 𝑘𝑗 + 𝜖) 

(𝑘𝑗 + 𝜖)!

(𝜖)!
=  (1 + 𝑘𝑗 + 𝜖)

𝑘𝑗
− 𝑘𝑗(𝑘𝑗 + 1)(1 + 𝑘𝑗 + 𝜖)

𝑘𝑗−1
+ 𝑟𝑗(1 + 𝑘𝑗 + 𝜖) 

where 𝑞𝑗 and 𝑟𝑗 are one variable polynomials of degree at most 𝑘𝑗 − 2. This implies that 

(2𝑘 + 𝜖)!

(𝑘 + 𝜖)!
=∏(1 + 𝑘𝑗 + 𝜖)

𝑘𝑗

𝑛

𝑗=1

+∑𝑘𝑗(𝑘𝑗 − 1)(1 + 𝑘𝑗 + 𝜖)
𝑘𝑗−1

𝑛

𝑗=1

∏(1+ 𝑘𝑙 + 𝜖)
𝑘𝑙 + 𝑞(𝑘 + 𝜖)

𝑙≠𝑗

 

(𝑘 + 𝜖)!

(𝜖)!
=∏(1 + 𝑘𝑗 + 𝜖)

𝑘𝑗

𝑛

𝑗=1

−∑𝑘𝑗(𝑘𝑗 + 1)(1 + 𝑘𝑗 + 𝜖)
𝑘𝑗−1

𝑛

𝑗=1

∏(1+ 𝑘𝑙 + 𝜖)
𝑘𝑙

𝑙≠𝑗

+ 𝑟(𝑘

+ 𝜖) 
where 𝑞 and 𝑟 are polynomials of degree at most |𝑘| − 2. These equalities, combined with 

Corollary (2.3.29), give the corollary. 

Corollary (2.3.31)[185]: The eigenvalues 𝜆𝑘+𝜖
𝑟  have the estimate 

𝜆𝑘+𝜖
𝑟 = (𝑂(𝑑 + 𝑛)2

|𝑘|
1+𝜖

−𝑘𝑗0) , 

as long as 𝜖 > 0 and 𝑑 = |𝑘𝑗0 − 𝜖| ↦ +∞. 

Proof. Let 𝑗0 = 1, . . . , 𝑛 and suppose that 𝑘𝑗0 ≥ 1. We recall by (80) that if 𝜖 > 0, then 

𝜆𝑘+𝜖
𝑟 =

𝐴|𝑘+𝜖|(2𝑘 + 𝜖)!

(𝑘 + 𝜖)!
 , 

where (𝐴𝑑) is as before. Set (𝑘 + 𝜖)′ = (𝑘1 + 𝜖,· · · , 𝑘𝑗0−1 + 𝜖, 0, 𝑘𝑗0+1 + 𝜖,· · · , 𝑘𝑛 + 𝜖) 

and 𝑘′ = (𝑘1,· · · , 𝑘𝑗0−10, 𝑘𝑗0+1,· · · , 𝑘𝑛). Arguing as in the proof of Corollary (2.3.30) we 

have 
(2𝑘 + 𝜖)!

(𝑘 + 𝜖)!
≤ (2𝑘𝑗0)!

((𝑘 + 𝜖)′ + 𝑘′)!

(𝑘 + 𝜖)′!

= (2𝑘𝑗0)! [ ∏ (1 + 𝑘𝑗 + 𝜖)
𝑘𝑗

𝑛

𝑗=1,𝑗≠𝑗0

 

+ ∑ 𝑘𝑗(𝑘𝑗 − 1)(1 + 𝑘𝑗 + 𝜖)
𝑘𝑗−1

𝑛

𝑗=1,𝑗≠𝑗0

∏(1 + 𝑘𝑠 + 𝜖)
𝑘𝑠

𝑠≠𝑗,𝑙

] + 𝑞((𝑘 + 𝜖)′), 

where 𝑞 is a polynomial of degree at most |𝑘′| − 2. These estimates, combined with 

Corollary (2.3.29), give the corollary.  

Corollary (2.3.32)[185]: The operator 𝐻�̅�𝑘 ∗ 𝐻�̅�𝑘  is bounded if and only if 2
|𝑘|

1+𝜖
− 1 ≤ 0 

and compact if and only if 2
|𝑘|

1+𝜖
− 1 < 0. 

Proof. Let 𝛴𝑛 be the simplex consisting of those 𝑡 = (𝑡1,· · · , 𝑡𝑛) ∈ ℝ
𝑛  such 𝑡𝑗 ≥ 0 and 

𝑡1 + · · · + 𝑡𝑛 = 1. By Corollaries (2.3.30) and (2.3.31) we see that 
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sup
|𝑘+𝜖|=𝑑

∑ 

𝑟

|𝜆𝑘+𝜖
𝑟 | ≈ (𝑑 + 𝑛)2

|𝑘|
1+𝜖

−1 sup
|𝑘+𝜖|=𝑑

∑ 

𝑟

|(𝑓𝑟)𝑛 (
𝑘1 + 𝜖 + 1

𝑑 + 𝑛
 ,· · · ,

𝑘𝑛 + 𝜖 + 1

𝑑 + 𝑛
)|

≈ (𝑑 + 𝑛)2
|𝑘|
1+𝜖

−1 sup
𝑡∈𝛴𝑛

∑ 

𝑟

|(𝑓𝑟)𝑛(𝑡)| 

as 𝑑 = |𝑘 + 𝜖| → +∞. Now the corollary follows since the operator 𝐻�̅�𝑘 ∗ 𝐻�̅�𝑘 is bounded 

if and only if the sequence sup
|𝑘+𝜖|=𝑑

|𝜆𝑘+𝜖
𝑟 | is bounded and 𝐻�̅�𝑘 ∗ 𝐻�̅�𝑘  is compact if and only 

if the sequence sup
|𝑘+𝜖|=𝑑

|𝜆𝑘+𝜖
𝑟 | tends to 0 as 𝑑 = |𝑘 + 𝜖| → +∞.  

Corollary (2.3.33)[185]: Let 𝑘 ∈ ℕ0
𝑛 and 1 + 𝜖 be a positive real number. 

(i) The Hankel operator 𝐻�̅�𝑘 is bounded on the Fock space 𝐴2(𝜇1+𝜖) if and only if 1 + 𝜖 ≥
2|𝑘|. 
(ii) The Hankel operator 𝐻�̅�𝑘 is compact on the Fock space 𝐴2(𝜇1+𝜖) if and only if 1 + 𝜖 >
2|𝑘|. 
Proof. We use that the operator 𝐻�̅�𝑘is bounded if and only if 𝑇 = 𝐻�̅�𝑘 ∗ 𝐻�̅�𝑘 is bounded 

and 𝐻�̅�𝑘 is compact if and only if 𝑇 = 𝐻�̅�𝑘 ∗ 𝐻�̅�𝑘 is compact. 

Next, assume that 2
|𝑘|

1+𝜖
− 1 < 0 and let 𝜖 ≥ 0. We shall investigate the membership 

of the operator 𝑇 to a Schatten class 𝑆1+𝜖  . Recall that 𝑇 is in 𝑆1+𝜖  if and only if the 

series∑ 𝜆𝑘+𝜖
𝑟(1+𝜖)

𝑟  is convergent. 

Let 𝑑 be an integer. We shall estimate the sum 𝑠𝑑 = ∑ 𝜆𝑘+𝜖
𝑟(1+𝜖)

|𝑘+𝜖|=𝑑 , when 𝑑 → +∞. 

The calculations above lead to study the cases 𝜖 ≥ 0 and its opposite case separately. Let 

𝐵𝑑 ∶= { 𝑘 + 𝜖 ∈ ℕ0
𝑛, |𝑘 + 𝜖| = 𝑑}. We partition 𝐵𝑑 = 𝐵′𝑑 ∪ 𝐵𝑑

′′, where𝐵𝑑
′ = { 𝑘 + 𝜖 ∈

𝐵 ∶ 𝜖 ≥ 0} and 𝐵𝑑
′′ = 𝐵𝑑\ 𝐵𝑑

′ . Thus 𝑠𝑑 can be written in the form 𝑠𝑑 = 𝑠𝑑
′ + 𝑠𝑑

′′, where 𝑠𝑑 =

∑ ∑  𝑟 𝜆𝑘+𝜖
𝑟(1+𝜖)

𝑘+𝜖∈𝐵𝑑
′  and 𝑠𝑑

′′ = ∑ ∑  𝑟 𝜆𝑘+𝜖
𝑟(1+𝜖)

𝑘+𝜖∈𝐵𝑑
′′ . 

Corollary (2.3.34)[185]: We have the estimates #𝐵𝑑 ≈ #𝐵𝑑
′ ≈

𝑑𝑛−1

(𝑛−1)!
and #𝐵𝑑

′′ ≈ 𝑑𝑛−2 

as 𝑑 → +∞. 
Proof. Let 𝑃𝑛 ,𝑑 the space of 𝑛 variables holomorphic polynomials of degree 𝑑. We 

have #𝐵𝑑 = dim𝑃𝑛,𝑑 = (
𝑛−1+𝑑

𝑑
) =

(𝑑+𝑛−1)!

(𝑛−1)!𝑑!
  . Therefore, #𝐵𝑑 ∼

1

(𝑛 −1)!
𝑑𝑛−1as 𝑑 → +∞. 

On the other hand, for 𝑗 = 1,· · · , 𝑛, let 𝐵𝑑,𝑗
′ = {𝑘 + 𝜖 ∈ 𝐵𝑑 , 𝜖 > 0}. Since 𝐵𝑑

′ =∪1≤𝑗≤𝑛 𝐵𝑑 ,𝑗
′ , 

we see that #𝐵𝑑
′ ≤ ∑ #𝐵𝑑 ,𝑗

′𝑛
𝑗=1   . 

If 𝑘𝑗 ≥ 1, then 

𝐵𝑑 ,𝑗
′ = ⋃{ 𝑘 + 𝜖 = (𝑘1 + 𝜖,· · · , 𝑘𝑗−1 + 𝜖, 𝑙, 𝑘𝑗+1 + 𝜖,· · · , 𝑘𝑛 + 𝜖), |𝑘 + 𝜖| = 𝑑}

𝑘𝑗−1

𝑙=0

= ⋃ {𝑘 + 𝜖 

𝑘𝑗−1

𝑙=0

= (𝑘1 + 𝜖,· · · , 𝑘𝑗−1 + 𝜖, 𝑙, 𝑘𝑗+1 + 𝜖,· · · , 𝑘𝑛 + 𝜖)∑𝑘𝑖 + 𝜖 = 𝑑 − 𝑙

𝑖≠𝑗

} . 

Therefore, 𝐵𝑑 ,𝑗
′ = ∑ dim 𝑃𝑛−1,𝑑−𝑙

𝑘𝑗−1

𝑙=0
 , and when 𝑑 → +∞, #𝐵𝑑,𝑗

′ ∼ 𝑘𝑗
𝑑𝑛−2

(𝑛−2)!
. 
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This shows that, when 𝐵𝑑
′ ≈ 𝑑𝑛−2 as 𝑑 → +∞. The corollary now follows from the 

observation #𝐵𝑑 = #𝐵𝑑
′ + #𝐵𝑑

′′.  
Corollary (2.3.35)[185]: Suppose that 𝑛 ≥ 2 and 𝑔𝑟 is a continuous function on ℝ𝑛 − 1. 

Consider the open set 𝛺 ∶= {(𝑡1,· · · , 𝑡𝑛−1 ∈ ℝ+
𝑛−1 , ∑ 𝑡𝑗 < 1

𝑛−1
𝑗=1 }. For a multi-index 𝛾 =

(𝛾1,· · · , 𝛾𝑛−1 in ℕ0
𝑛−1 , set 

𝑐𝛾,𝑑 ∶= (
𝛾1 + 1

𝑑
 ,· · · ,

𝛾𝑛 −1 + 1

𝑑
) 

𝕁𝑑 ∶= {𝛾 ∈ ℕ0
𝑛−1 ∶ ∏

𝛾𝑗
𝑑

𝑛−1

𝑗=1

 ,
𝛾𝑗 + 1

𝑑
⊂ 𝛺} . 

Then lim
𝑑→+∞

1

𝑑𝑛−1
 ∑ ∑  𝑟 𝑔𝑟(𝑐𝛾,𝑑)𝛾∈𝕁𝑑  = ∫ ∑  𝑟 𝑔𝑟(𝑡)𝑑𝑡𝛺

. 

Proof. For 𝑑 ∈ ℕ0, let 𝛺𝑑 = ∪𝛾∈𝕁𝑑 ∏ [
𝛾𝑗

𝑑
 ,
𝛾𝑗+1

𝑑
]𝑛−1

𝑗=1 . It is clear that 𝛺𝑑 ⊂ 𝛺.Next, we show 

that lim
𝑑→+∞

𝜒𝛺𝑑 = 𝜒𝛺. If 𝑠 is a real number, let [𝑠] denote the largest integer smaller than or 

equal to 𝑠. If 𝑡 = (𝑡1,· · · , 𝑡𝑛−1) ∈ 𝛺 and1 ≤  𝑗 ≤ 𝑛 − 1, then
[𝑑𝑡𝑗]

𝑑
≤ 𝑡𝑗 <

[𝑑𝑡𝑗]

𝑑
+
1

𝑑
. 

Therefore, 

∑
[𝑑𝑡𝑗]

𝑑
≤ 𝑛

𝑛−1

𝑗=1

∑𝑡𝑗

𝑛−1

𝑗=1

< ∑
[𝑑𝑡𝑗]

𝑑
+
𝑛 − 1

𝑑

𝑛−1

𝑗=1

 . 

Since∑ 𝑡𝑗 < 1,
𝑛−1
𝑗=1   there is an integer 𝑑0 such that for all 𝑑 > 𝑑0 we have 

∑
[𝑑𝑡𝑗]

𝑑
+
𝑛−1

𝑑
<  1𝑛−1

𝑗=1 . Thus, 𝑡 ∈ ∏ [
[𝑑𝑡𝑗]

𝑑
,
[𝑑𝑡𝑗+1]

𝑑
]𝑛−1

𝑗=1 and hence 𝑡 ∈ 𝛺dfor all 𝑑 > 𝑑0. Thus 

lim
𝑑→+∞

𝜒𝛺𝑑 = 𝜒𝛺. Therefore, 

1

𝑑(𝑛−1)
∑∑ 

𝑟

𝑔𝑟(𝑐𝛾, 𝑑)

𝛾∈𝕁𝑑

−∫ ∑ 

𝑟

𝑔𝑟(𝑡)𝑑𝑡
𝛺

= ∑∑ 

𝑟

[
1

𝑑𝑛−1
 𝑔𝑟(𝑐𝛾, 𝑑) − ∫ 𝑔𝑟(𝑡)𝑑𝑡

∏ [
𝛾𝑗
𝑑
 ,
𝛾𝑗+1

𝑑
]𝑛−1

𝑗=1

]

𝛾∈𝕁𝑑

 

+∫ ∑ 

𝑟

𝑔𝑟(𝑡)𝑑𝑡
𝛺𝑑

 − ∫ ∑ 

𝑟

𝑔𝑟(𝑡)𝑑𝑡
𝛺

 

Since 𝑔𝑟 is a bounded continuous function on the compact set 𝛺, we have, by Lebesgue’s 

theorem, lim
𝑑→+∞

∫ ∑  𝑟 𝑔𝑟(𝑡)𝑑𝑡𝛺𝑑
 = ∫ ∑  𝑟 𝑔𝑟(𝑡)𝑑𝑡𝛺

. On the other hand, by continuity of 𝑔𝑟 

on the compact set 𝛺, we see that 

∑∑ 

𝑟

[
1

𝑑𝑛−1
𝑔𝑟(𝑐𝛾, 𝑑) − ∫ 𝑔𝑟(𝑡)𝑑𝑡

∏ [
𝛾𝑗
𝑑
 ,
𝛾𝑗+1

𝑑
]𝑛−1

𝑗=1

]

𝛾∈𝕁𝑑

= ∑ ∫ ∑ 

𝑟

[𝑔𝑟(𝑐𝛾, 𝑑) − 𝑔𝑟(𝑡)𝑑𝑡]
∏ [

𝛾𝑗
𝑑
 ,
𝛾𝑗+1

𝑑
]𝑛−1

𝑗=1𝛾∈𝕁𝑑

 

also tends to 0 as 𝑑 → +∞. This shows that 

lim
𝑑→+∞

1

𝑑𝑛−1
∑∑ 

𝑟

𝑔𝑟(𝑐𝛾, 𝑑)

𝛾∈𝕁𝑑

= ∫ ∑ 

𝑟

𝑔𝑟(𝑡)𝑑𝑡.
𝛺

 

Corollary (2.3.36)[185]: If 𝜖 ≥ 0, then  
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𝑠𝑑 ≈ 𝑑
𝑛−1𝑑1+𝜖 (2

|𝑘|

1 + 𝜖
− 1). 

Proof. Recall that 𝑠𝑑 = ∑ ∑  𝑟 𝜆𝑘+𝜖
𝑟(1+𝜖)

𝑘+𝜖∈𝐵𝑑
′ . By Corollary (2.3.30), we know that the 

sequence {𝜆𝑘+𝜖
𝑟 }𝑘+𝜖 ∈ 𝐵𝑑

′  has the following expansion when 𝑑 → +∞ 

∑ 

𝑟

𝜆𝑘+𝜖
𝑟 = (

2

1 + 𝜖
)
2
|𝑘|
1+𝜖

(𝑑 +  𝑛)2
|𝑘|
1+𝜖

−1∑ 

𝑟

((𝑓𝑟)𝑛 (
𝑘1 + 𝜖 + 1

𝑑 +  𝑛
 ,· · · ,

𝑘𝑛 + 𝜖 + 1

𝑑 +  𝑛
) 

+ 𝜀(𝑘 + 𝜖)), 

where 𝜀(𝑘 + 𝜖) = 𝑂 (
1

𝑑
)and 

(𝑓𝑟)𝑛(𝑡1,· · · , 𝑡𝑛):= −(𝜖 − 1)
|𝑘|2

1 + 𝜖
𝑡𝑘 +∑𝑘𝑗

2
𝑡𝑘

𝑡𝑗

𝑛

𝑗=1

 

Using the properties of the function 𝑥 →  𝑥1+𝜖 , we see that there exists a constant 𝑀 > 0, 
such that 

∑ 

𝑟

‖(𝑓𝑟)𝑛 (
𝑘1 + 𝜖 + 1

𝑑 +  𝑛
 ,· · · ,

𝑘𝑛 + 𝜖 + 1

𝑑 +  𝑛
) + 𝜀(𝑘 + 𝜖)‖

1+𝜖

−∑ 

𝑟

||(𝑓𝑟)𝑛 (
𝑘1 + 𝜖 + 1

𝑑 +  𝑛
 ,· · · ,

𝑘𝑛 + 𝜖 + 1

𝑑 +  𝑛
) |
1+𝜖

| ≤
𝑀

𝑑
. 

Therefore, 

∑ 

𝑟

𝜆𝑘+𝜖
𝑟 ≈ (

2

1 + 𝜖
)
2
|𝑘|
1+𝜖

(𝑑 +  𝑛)2
|𝑘|
1+𝜖

−1∑ 

𝑟

((𝑓𝑟)𝑛 (
𝑘1 + 𝜖 + 1

𝑑 +  𝑛
 ,· · · ,

𝑘𝑛 + 𝜖 + 1

𝑑 +  𝑛
)) , 

as 𝑑 = |𝑘 + 𝜖| →  +∞. Applying Corollary (2.3.34) we see that 

𝑠𝑑 ≈ (
2

1 + 𝜖
)
2|𝑘|

𝑑
(1+𝜖)(2

|𝑘|
1+𝜖

−1)
∑ ∑ 

𝑟

|(𝑓𝑟)𝑛 (
𝑘1 + 𝜖 + 1

𝑑 +  𝑛
 ,· · · ,

𝑘𝑛 + 𝜖 + 1

𝑑 +  𝑛
)|
1+𝜖

𝑘+𝜖∈𝐵𝑑

 

≈ (
2

1 + 𝜖
)
2|𝑘|

𝑑𝑛−1𝑑
(1+𝜖)(2

|𝑘|
1+𝜖

−1)
∫ ∑ 

𝑟

|(𝑓𝑟)𝑛(𝑡)|
1+𝜖𝑑𝑡

𝛺

 

so that the corollary follows from Corollary (2.3.35).  

Corollary (2.3.37)[185]: Let 𝑘 ∈ ℕ0
𝑛and 1 + 𝜖 be a positive real number. Then the Hankel 

operator 𝐻�̅�𝑘 is in the Schatten class 𝑆2𝑛+𝜖(𝐴
2(𝜇1+𝜖), 𝐿

2(𝜇1+𝜖))if and only if 𝜖 > 0 and 

𝜖(1 + 𝜖) > 2(2𝑛 + 𝜖)|𝑘|. 
Proof. We use that the operator 𝐻�̅�𝑘 is in 𝑆2𝑛+𝜖(𝐴

2(𝜇1+𝜖), 𝐿
2(𝜇1+𝜖))if and only if 𝑇 =

 𝐻�̅�𝑘 ∗ 𝐻�̅�𝑘  is 𝑆2𝑛+𝜖
2

(𝐴2(𝜇1+𝜖)). Therefore, the corollary follows from Corollary (2.3.36)  

Corollary (2.3.38)[185]: The Bergman kernel 𝐾1+𝜖(𝑧, 𝑤) of 𝐴2(𝜇1+𝜖) is given by 

𝐾1+𝜖(𝑧, 𝑤) =
1 + 𝜖

(𝑛 −  1)!
𝐸 2
1+𝜖

,
2𝑛
1+𝜖

𝑛−1 (〈𝑧, 𝑤〉), 

where 𝐸 2

1+𝜖
,
2𝑛

1+𝜖

𝑛−1 is the derivatives of 𝐸 2

1+𝜖
,
2𝑛

1+𝜖

 with order 𝑛 − 1. 

Proof. The monomials 𝑧𝑘+𝜖 , 𝑘 + 𝜖 ∈ ℕ0
𝑛, form an orthogonal basis of 𝐴2(𝜇1+𝜖).Since 

‖𝑧𝑘+𝜖‖
𝐿2(𝜇1+𝜖)

2
=
(𝑛 − 1)!

1 + 𝜖
 

(𝑘 + 𝜖)!

(|𝑘 + 𝜖| + 𝑛 − 1)!
Γ (
2|𝑘 + 𝜖| + 2𝑛

1 + 𝜖
)          (83) 
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it follows that the Bergman kernel is 

𝐾1+𝜖(𝑧, 𝑤) = ∑
𝑧𝑘+𝜖

‖𝑧𝑘+𝜖‖𝐿2(𝜇1+𝜖)

𝑤𝑘+𝜖

‖𝑤𝑘+𝜖‖𝐿2(𝜇1+𝜖)𝑘+𝜖∈ℕ0
𝑛

=
1 + 𝜖

(𝑛 − 1)!
∑

(𝑑 + 𝑛 − 1)!

𝑑! 𝛤 (
2𝑑
1 + 𝜖

 +
2𝑛
1 + 𝜖

 )

+∞

𝑑=0

(〈𝑧, 𝑤〉)𝑑 =
1 + 𝜖

(𝑛 − 1)!
𝐸 2
1+𝜖

,
2𝑛
1+𝜖

𝑛−1 (〈𝑧, 𝑤〉) . 

This completes the proof of the corollary.  

Corollary (2.3.39)[185]: If 𝑔𝑟 ∈ 𝑃 and 𝑧 ∈ ℂ𝑛, then 𝑔𝑟𝐾1+𝜖(𝑧,·) is in 𝐿2(𝜇1+𝜖). 
Proof. It follows from Theorem 2, p. 6 in [90] that the generalized Mittag-Leffler’s function 

is 𝐸 2

1+𝜖
,
2𝑛

1+𝜖

is an entire function of finite order 
1+𝜖

2
 and type 1. Therefore𝐸 2

1+𝜖
,
2𝑛

1+𝜖

𝑛−1  is also an 

entire function of finite order 
1+𝜖

2
 and type 1 and hence for any 𝜚 >  0, there is a positive 

constant 𝐶 that 

∑ 

𝑟

|𝐸 2
1+𝜖

,
2𝑛
1+𝜖

𝑛−1 (𝜆𝑟)| ≤ 𝐶∑ 

𝑟

𝑒|𝜆
𝑟|
1+𝜖+𝜚
2  , 𝜆𝑟 ∈ ℂ. 

This shows that for all 𝑧, 𝑤 ∈ ℂ𝑛, 

|𝐾1+𝜖(𝑧, 𝑤)| ≤ 𝐶𝑒
|〈𝑧,𝑤〉|

1+𝜖+𝜚
2  ≤  𝐶𝑒(|𝑧||𝑤|)

1+𝜖+𝜚
2  , 

showing that for all 𝑔𝑟 ∈ 𝑃 and 𝑧 fixed in ℂ𝑛, the function 𝑤 ↦ 𝑔𝑟(𝑤)𝐾1+𝜖(𝑧, 𝑤) is 

in 𝐿2(𝜇1+𝜖) as long as 0 < 𝜚 < 1 + 𝜖.  
Corollary (2.3.40)[185]: The spaces 𝑀 and 𝑀1+𝜖 are Banach spaces. 

Proof. We prove the corollary for 𝑀, the proof for 𝑀1+𝜖 is similar. Let ((𝑓𝑟)𝑛)𝑛∈ℕ0 be a 

Cauchy sequence in 𝑀. Without loss of generality we may assume that (𝑓𝑟)𝑛(0) = 0 for 

all 𝑛. The sequence (𝐻∑ (𝑓�̅�)𝑛𝑟
)
𝑛∈ℕ0

 is a Cauchy sequence of bounded operators on 

𝐴2(𝜇1+𝜖). Therefore, there is an operator 𝑇 in 𝐴2(𝜇1+𝜖) such that (𝐻∑ (𝑓𝑟)̅̅ ̅̅ ̅
𝑛𝑟
)
𝑛∈ℕ0

  converges 

to 𝑇 in the norm operator. Let 𝑓𝑟 ∶= 𝑇(𝑖)̅̅ ̅̅ ̅̅  be the conjugate of the image 𝑇(𝑖) of the constant 

function 1 under 𝑇. Since 𝐻∑ (𝑓𝑟)̅̅ ̅̅ ̅
𝑛𝑟

 

(𝑖) = (𝑓𝑟)̅̅ ̅̅ ̅
𝑛 , it follows that 

∑ 

𝑟

‖(𝑓𝑟)𝑛 − 𝑓𝑟‖𝐿2(𝜇1+𝜖) =∑ 

𝑟

‖(𝑓𝑟)̅̅ ̅̅ ̅
𝑛 − 𝑇 (1)‖𝐿2(𝜇1+𝜖)

= ‖𝐻∑ (𝑓𝑟)̅̅ ̅̅ ̅
𝑛𝑟
(1)–𝑇(1)‖

𝐿2(𝜇1+𝜖)

≤ ‖𝐻∑ (𝑓𝑟)̅̅ ̅̅ ̅
𝑛𝑟
– 𝑇‖ 

showing that 

lim
𝑛→∞

∑ 

𝑟

‖(𝑓𝑟)𝑛 − 𝑓𝑟‖𝐿2(𝜇1+𝜖) =  0.                                             (84) 

Thus 𝑓𝑟 ∈ 𝐴
2(𝜇1+𝜖). We shall show that the Hankel operator 𝐻∑ 𝑓�̅�𝑟

 with symbol ∑  𝑟 𝑓𝑟 is 

bounded. It is well defined on P. We shall prove that 𝐻∑ 𝑓�̅�𝑟
 is equal to 𝑇 on 𝑃. Let 𝑔𝑟 be a 

holomorphic polynomial. We first observe by (83), (84) and Corollary (2.3.39) that for all 

𝑧 ∈ ℂ𝑛 we have 

∑ 

𝑟

|(𝑃(𝑓�̅� − (𝑓𝑟)𝑛̅̅ ̅̅ ̅̅ ̅)𝑔𝑟)(𝑧)| ≤∑ 

𝑟

‖(𝑓𝑟)𝑛 − 𝑓𝑟‖𝐿2(𝜇1+𝜖)‖𝑔𝑟𝐾1+𝜖(𝑧,·)‖𝐿2(𝜇1+𝜖) 

showing that lim
𝑛→+∞

∑  𝑟 𝑃((𝑓�̅� − (𝑓𝑟)𝑛̅̅ ̅̅ ̅̅ ̅)𝑔𝑟)(𝑧)  =  0. Since again by (84) we have that 

lim
𝑛→+∞

∑  𝑟 (𝑓�̅� − (𝑓𝑟)𝑛̅̅ ̅̅ ̅̅ ̅)𝑔𝑟 (𝑧) =  0, it follows that 
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lim
𝑛→+∞

𝐻∑ (𝑓𝑟)̅̅ ̅̅ ̅
𝑛𝑟
− 𝐻∑ 𝑓�̅�𝑟

(𝑔𝑟)(𝑧) = 0 . 

This proves that 𝑇𝑔𝑟 = 𝐻∑ 𝑓�̅�𝑟
(𝑔𝑟) and hence 𝑇 = 𝐻∑ 𝑓�̅�𝑟

 . Therefore 𝑀 is a Banach space. 

The proof of that 𝑀1+𝜖 is a Banach space is similar. 

Corollary (2.3.41)[185]: Let 𝜃 ∈ ℝ𝑛. Then the operator 𝑅𝜃𝑓𝑟: = 𝑓𝑟 ∘ 𝑅𝜃 is a unitary 

isometry from 𝐿2(𝜇1+𝜖) onto itself and from 𝐴2(𝜇1+𝜖) onto itself. Moreover the following 

assertions hold. 

(i) If 𝑓𝑟 ∈ 𝑀 then 𝑅𝜃𝑓𝑟 ∈ 𝑀 and ∑  𝑟 ‖𝑅𝜃𝑓𝑟‖𝑀 = ∑  𝑟 ‖𝑓𝑟‖𝑀. 
(ii) If 𝑓𝑟 ∈ 𝑀∞, then 𝑅𝜃𝑓𝑟 ∈ 𝑀∞. 
(iii) If 𝑓𝑟 ∈ 𝑀1+𝜖 , then 𝑅𝜃𝑓𝑟 ∈ 𝑀1+𝜖 and 

∑ 

𝑟

‖𝑅𝜃𝑓𝑟‖𝑀1+𝜖 =∑ 

𝑟

‖𝑓𝑟‖𝑀1+𝜖 

Proof. It is clear that the operator 𝑅𝜃 is a unitary isometry from 𝐿2(𝜇1+𝜖) onto itself and 

from 𝐴2(𝜇1+𝜖) onto itself. Let 𝑓𝑟 be in 𝑀 and 𝜃 ∈ ℝ𝑛. Then 𝑅𝜃𝑓𝑟 is clearly in 𝐴2(𝜇1+𝜖). 
Moveover, if 𝑔𝑟 is an element of 𝑃, then by a change of variable we see that 

𝐻∑ 𝑅𝜃𝑓𝑟̅̅ ̅̅ ̅̅ ̅𝑟
(𝑔𝑟)(𝑧) = ∫ ∑ 

𝑟

𝐾1+𝜖(𝑅𝜃𝑧, 𝑤)𝑔𝑟(𝑅−𝜃𝑤)[𝑅𝜃𝑓𝑟̅̅ ̅̅ ̅̅ (𝑧)– 𝑓�̅�(𝑤)]𝑑𝜇1+𝜖(𝑤)
ℂ𝑛

  

∫ ∑ 

𝑟

𝐾1+𝜖(𝑅𝜃𝑧, 𝑤)(𝑅−𝜃𝑔𝑟)
ℂ𝑛

(𝑤)[𝑓�̅�(𝑅𝜃𝑧) − 𝑓�̅�(𝑤)]𝑑𝜇1+𝜖(𝑤) =  𝐻∑ 𝑓�̅�𝑟
(𝑅−𝜃𝑔𝑟)(𝑅𝜃𝑧)

= (𝑅𝜃𝐻∑ 𝑓�̅�𝑟
𝑅−𝜃)∑ 

𝑟

(𝑔𝑟)(𝑧). 

Since the adjoint of 𝑅−𝜃 is 𝑅−𝜃
∗ = 𝑅𝜃 , it follows that 

‖𝐻∑ 𝑅𝜃𝑓𝑟̅̅ ̅̅ ̅̅ ̅𝑟
‖ =  ‖𝐻∑ 𝑓�̅�𝑟

‖, 

showing that 

∑ 

𝑟

‖𝑓𝑟 ∘ 𝑅𝜃‖𝑀 =∑ 

𝑟

‖𝑓𝑟‖𝑀. 

This proves part (i) of the corollary. The proof of parts (ii) and (iii) of the corollary are 

similar.  

Corollary (2.3.42)[185]: Let 𝑓𝑟 ∈ 𝐴
2(𝜇1+𝜖). 

(i) If 𝑓𝑟 ∈ 𝑀, then for any multi-index 𝑘 that satisfies ∑  𝑟
𝜕𝑘𝑓𝑟

𝜕𝑧𝑘
(0) ≠ 0, the monomial 𝑧𝑘 is 

in 𝑀. 

(ii) If 𝑓𝑟 ∈ 𝑀∞, then for any multi-index 𝑘 that satisfies ∑  𝑟
𝜕𝑘𝑓𝑟

𝜕𝑧𝑘
(0) ≠ 0, the monomial 𝑧𝑘 

is in 𝑀∞. 

(iii) If 𝜖 ≥ 0 and 𝑓𝑟 ∈ 𝑀1+𝜖 , then for any multi-index 𝑘 that satisfies ∑  𝑟
𝜕𝑘𝑓𝑟

𝜕𝑧𝑘
(0) ≠ 0,the 

monomial 𝑧𝑘 is in 𝑀1+𝜖 . 
Proof. To prove (i), suppose that 𝑓𝑟 ∈ 𝑀. By the Cauchy formula we have 

∑ 

𝑟

𝜕𝑘𝑓𝑟
𝜕𝑧𝑘

 (0)𝑧𝑘 =
1

(2𝜋)𝑛
∫ …
2𝜋

0

∫ ∑ 

𝑟

𝑓𝑟(𝑅𝜃𝑧)
2𝜋

0

/𝑒𝑖𝑘1𝜃1· · ·𝑒𝑖𝑘𝑛𝜃𝑛𝑑𝜃, 

where 𝑑𝜃 ∶=  𝑑𝜃1  · · ·  𝑑𝜃𝑛 for 𝜃 = (𝜃1,· · · , 𝜃𝑛). By Corollaries (2.3.40) and (2.3.41) we 

see that ∑  𝑟
𝜕𝑘𝑓𝑟

𝜕𝑧𝑘
(0)𝑧𝑘 ∈ 𝑀. Therefore, 𝑧𝑘 ∈ 𝑀 as long as ∑  𝑟

𝜕𝑘𝑓𝑟

𝜕𝑧𝑘
(0) ≠ 0, The proof of 

the remaining statements of the corollary is similar.  
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Chapter 3 

Toeplitz Operators on Bergman Space and Finite Rank Commutators 

 

 We show a conjecture of Axler that for bounded analytic functions 𝑓 and 𝑔 on the 

unit disk, 𝑇𝑓
∗𝑇𝑔 − 𝑇𝑔𝑇𝑓

∗ is compact iff either 𝑓 or 𝑔 is constant on each Gleason part 𝑃(𝑚) 

except 𝐷. We provide examples that show that the Brown–Halmos theorem fails for general 

symbols, even for symbols continuous up to the boundary. We show that if the product of 

two Toeplitz operators with bounded harmonic symbols has finite rank, then one of the 

Toeplitz operators must be zero. 

Section (3.1): Hankel Operators  

       We consider the question of when the semi-commutator 𝑇𝑓𝑔 − 𝑇𝑓𝑇𝑔 on the Bergman 

space with bounded harmonic symbols is compact. Several conditions equivalent to 

compactness of 𝑇𝑓𝑔 − 𝑇𝑓𝑇𝑔 are given. As a consequence we show a conjecture of Axler that 

for bounded analytic functions 𝑓 and 𝑔 on the unit disk, 𝑇𝑓
∗𝑇𝑔 − 𝑇𝑔𝑇𝑓

∗ is compact iff either 

𝑓  or 𝑔 is constant on each Gleason part 𝑃(𝑚) except D. 1989 Academic Press,  Inc. 

       We consider the question of when the product 𝐻𝑓
∗𝐻𝑔 of two Hankel operators on the 

Bergman space with bounded harmonic symbols is compact. The product 𝐻𝑓
∗𝐻𝑔 is equal to 

the semi-commutator 𝑇𝑓̅𝑔 − 𝑇𝑓̅𝑇𝑔. Several conditions equivalent to compactness of 𝐻𝑓
∗𝐻𝑔 

are given. Consequently we prove Axler’s conjecture [92]. 

       As is well known, for 𝑓 and g in 𝐿∞(𝜕𝐷), Axler, Chang, and Sarason [93] and Volberg 

[57] have shown that 𝐻𝑓
∗𝐻𝑔 on the Hardy space is compact iff 𝐻∞[𝑓] ∩ 𝐻∞[𝑔] ⊂ 𝐻∞ +

𝐶(𝜕𝐷). By means of the theorem of Axler and Shields [95], we also obtain that 𝐻𝑓
∗𝐻𝑔 is 

compact iff  

𝐻∞[𝑓] ∩ 𝐻∞[𝑔] ⊂ {𝑢 ∈ ℂ(ℳ): 𝑢|𝑃(𝑚) ∈ 𝐻
∞|𝑃(𝑚) 𝑓𝑜𝑟 𝑡ℎ𝑖𝑛 𝑝𝑎𝑟𝑡 𝑃(𝑚)𝑖𝑛 ℳ} 

for bounded harmonic functions 𝑓 and 𝑔. 
For𝐷 denote the open unit disk in the complex plane ℂ, and 𝑑𝐴 the usual normalized 

area measure on 𝐷. The Bergman space 𝐿𝑎
2  is the Hilbert space of analytic functions 𝑔: 𝐷 →

ℂ with inner product given by 

〈𝑓, 𝑔〉  =  ∫𝑓(𝑧)�̅�(𝑧)𝑑𝐴(𝑧)
 

𝐷

. 

As usual, 𝐿∞(𝐷) denotes the set of bounded measurable functions on 𝐷, and 𝐻∞(𝐷) is the 

set of bounded analytic functions on 𝐷. Let 𝑃 denote the orthogonal projection of 𝐿2(𝐷, 𝑑𝐴) 

onto 𝐿𝑎
2 (𝐷). For 𝑓 ∈ 𝐿∞(𝐷), the Hankel operator 𝐻𝑓: 𝐿𝑎

2 + (𝐿𝑎
2 (𝐷))

⊥
 and the Toeplitz 

operator 𝑇𝑓: 𝐿𝑎
2 → 𝐿𝑎

2  are defined by 𝐻𝑓(ℎ)  =  (𝐼 −  𝑃)(𝑓ℎ) and 𝑇𝑓(ℎ)  =  𝑃(𝑓ℎ), 

respectively. 

       Let ℳ be the maximal ideal space of 𝐻∞(𝐷). The Gleason part 𝑃(𝑚) corresponding 

to 𝑚 is the equivalence class of a point 𝑚 in ℳ, 

𝑃(𝑚) = (𝑚1 ∈ ℳ:𝜌(𝑚,𝑚1) < 1}, 
where 𝑝(𝑚,𝑚1) is the pseduo-hyperbolic distance from 𝑚1 to 𝑚 defined by 

𝑝(𝑚,𝑚1) = sup{|𝑓(𝑚1)|; 𝑓 ∈ 𝐻
∞(𝐷), ‖𝑓‖∞ ≤ 1 and 𝑓(𝑚) = 0} . 

If 𝑚 and 𝑚1 are in the usual disk, the pseduo-hyperbolic distance is given by 

𝜌(𝑚,𝑚1) = |
𝑚1 −𝑚

1 − �̅�1𝑚
| . 

If a is a point of 𝐷, let 𝐿𝛼(𝑧) be the linear fractional map 
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𝐿𝛼(𝑧) =
𝑧 + 𝛼

1 + �̅�𝑧
. 

Call a sequence (𝑧𝑛) in 𝐷 thin if lim
𝑛→∞

𝜋𝑘≠𝑛|𝑧𝑛 − 𝑧𝑘|/|1 − 𝑧�̅�𝑧𝑘| = 1 and a part 𝑃(𝑚) thin 

if 𝑚 is in the closure of some thin sequence. 

       Now we state some of Hoffman’s results [50]. 

Hl. Let 𝑚 be any point of ℳ\𝐷. There exists a sequence {𝛽𝑛} in 𝐷 such that {𝛽𝑛} has no 

accumulation points in 𝐷,𝑚 is in the closure of {𝛽𝑛}, the coresponding maps 𝐿𝛽𝑛 converge 

pointwise to 𝐿𝑚, a map from 𝐷 into ℳ, and for any bounded analytic function ℎ, ℎ ∘ 𝐿𝛽𝑛  

converges to ℎ ∘ 𝐿𝑚 , uniformly on compacta, so that 

(ℎ ∘ 𝐿𝑚
′ )(0) = lim

𝛽𝑛→𝑚
(1 − |𝛽𝑛|

2)ℎ′(𝛽𝑛). 

H2. If the Gleason part 𝑃(𝑚) contains at least two points, 𝑃(𝑚) is an analytic disk, and 𝐿𝑚 

is a one-to-one analytic map from 𝐷 onto the Gleason part 𝑃(𝑚). 
       The map 𝐿𝑚 plays an important role. The Gleason part does the same job on the 

Bergman space as the support set on the Hardy space. 

       For 𝑓 analytic on 𝐷, the Bloch norm ‖𝑓‖𝛽 of 𝑓 is defined by 

‖𝑓‖𝛽 = sup((1 − |𝜆|
2)|𝑓′(𝜆)| : 𝜆 ∈ 𝐷. 

The Bloch space 𝛽 is the set of analytic functions 𝑓 on 𝐷 such that ‖𝑓‖𝛽 < ∞. 

𝐷(𝑧, 𝑟) will denote the pseduo-hyperbolic disc {𝑤 ∈ 𝐷: 𝜌(𝑤, 𝑧)  <  𝑟} for 𝑧 ∈ 𝐷 and 0 <
 𝑟 <  1, and 𝑘𝑧 is the normalized Bergman reproducing kernel 

1 − |𝑧|2

(1 − 𝑧̅𝑤)2
 

Theorem (3.1.1)[58]: Suppose 𝑓 and 𝑔 are bounded harmonic functions on 𝐷. Then the 

following conditions are equivalent: 

   (a) 𝐻𝑓
∗𝐻𝑔  is compact; 

   (b) 𝑇𝑓̅𝑇𝑔 − 𝑇𝑓̅𝑔  is compact; 

   (c) For each thin part  𝑃(𝑚)  except 𝐷, either 𝑓|𝑃(𝑚) ∈ 𝐻
∞(𝐷)|𝑃(𝑚) or  

𝑔|𝑃(𝑚) ∈ 𝐻
∞(𝐷)|𝑃(𝑚); 

   (d) For 𝑚 in ℳ\𝐷, either 𝑓 ∘ 𝐿𝑚 ∈ 𝐻
∞ or 𝑔 ∘ 𝐿𝑚 ∈ 𝐻

∞; 

   (e) 𝐻∞(𝐷)[𝑓] ∩ 𝐻∞(𝐷)[𝑔] ⊂ {𝑢 ∈ 𝐶(ℳ): 𝑢|𝑃(𝑚) ∈ 𝐻
∞(𝐷) for each thin part  𝑃(𝑚)  

except 𝐷}; 

   (f)        lim
|𝑧|→1

min{(1 − |𝑧|2)|(𝜕𝑓 𝜕𝑧̅⁄ )(𝑧)|, (1 − |𝑧|2)|(𝜕𝑔 𝜕𝑧̅⁄ )(𝑧)|} = 0. 

The following theorem, which was conjectured by Axler [92], is valid. 

Theorem (3.1.2)[58]: Suppose 𝑓 and 𝑔 are bounded analytic functions on 𝐷. Then the 

following conditions are equivalent: 

   (𝑎′) 𝐻𝑓
∗𝐻�̅� is compact; 

   (𝑏′) 𝑇𝑓𝑇𝑔
∗ − 𝑇�̅�𝑓  is compact; 

   (𝑐′) For each thin part 𝑃(𝑚) except 𝐷, either 𝑓|𝑃(𝑚) or 𝑔|𝑃(𝑚) is constant; 

   (𝑑′) For each Gleason part 𝑃(𝑚) except 𝐷, either 𝑓|𝑃(𝑚) or 𝑔|𝑃(𝑚) is constant; 

   (𝑒′) 𝐻∞(𝐷)[𝑓]̅ ∩ 𝐻∞(𝐷)[�̅�] ⊂ {𝑢 ∈ 𝐶(ℳ): 𝑢|𝑃(𝑚) ∈ 𝐻
∞(𝐷)|𝑃(𝑚) 𝑓𝑜𝑟 

𝑒𝑎𝑐ℎ 𝑡ℎ𝑖𝑛 𝑝𝑎𝑟𝑡  𝑒𝑥𝑐𝑒𝑝𝑡 𝐷}; 
   (𝑓′) lim

|𝑧|→1
min{(1 − |𝑧|2)|𝑓′(𝑧)|, (1 − |𝑧|2)|𝑔′(𝑧)|}   = 𝑂. 

       We shall prove (𝑑) ⟹ (𝑓) and (𝑓) ⟹ (𝑎) and (𝑎) ⟹ (𝑑) ⟹ (𝑐) ⇔ (𝑒) and (𝑐) ⟹
(𝑎). It is easy to show that 
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𝑇𝑓̅𝑇𝑔 − 𝑇𝑓̅𝑔 = −𝐻𝑓
∗𝐻𝑔. 

Hence the equivalence of (a) and (b) is true. The equivalence (𝑓′) ⇔ (𝑐′) that may have 

been known before will be proved. We show that if 𝑓 and 𝑔 are bounded harmonic functions 

and 𝐻𝑓
∗𝐻𝑔  =  0, then either 𝑓 or 𝑔 is in 𝐻∞(𝐷). This means that 𝑇𝑓

∗𝑇𝑔 = 𝑇𝑓̅𝑔 if 𝑓 either 𝑓 

or 𝑔 is analytic. 

       In fact, it is natural that the thin part plays the special role since there is a function 4 in 

𝐻∞ such that 𝜙 ∘ 𝐿𝑚(𝑧)  =  𝑧 for the thin part 𝑚, which is not true for all Gleason parts. 

       At the same time that the results were obtained, S. Axler and P. Gorkin [94] proved the 

same result as in Theorem (3.1.20), using methods different from ours. 

       We describle the function properties of a bounded analytic function 𝑓 if 𝑓 is constant 

on some Gleason part 𝑃(𝑚). We assume 𝑚 ∉ 𝐷 from now on. 

Lemma (3.1.3)[58]: If 𝑓 is 𝐻∞ and constant on 𝑃(𝑚), then for fixed 0 <  𝑟 <  1 

lim
𝑧→𝑚

max
𝑤∈�̅�(𝑧,𝑟)

(1 − |𝑤|2)𝑓′(𝑤) = 0. 

Proof: Suppose that there is a net (𝑧𝛼) in 𝐷 such that 𝑧𝛼 → 𝑚. Then 𝑓 ∘ 𝐿𝑧𝛼 → 𝑓 ∘ 𝐿𝑚 

uniformly on compacta from Hl. Since 𝑓 ∘ 𝐿𝑚 is constant, 𝑓 ∘ 𝐿𝑚
′ (𝑧)  =  lim (𝑓 ∘

𝐿𝑧𝛼)
′
(𝑧)  =  0. 

Since for 𝑤 in �̅�(𝑧𝛼 , 𝑟) there is a 𝑧 in �̅�(0, 𝑟) such that 𝑤 − 𝐿𝑧𝛼(𝑧), we get 

max
�̅�(𝑧𝛼,𝑟)

𝑓′(𝑤)(1 − |𝑤|2) = max
�̅�(0,𝑟)

|(𝑓 ∘ 𝐿𝑧𝛼)
′
(𝑧)| (1 − |𝑧|2) → 0. 

Thus we have proved the lemma. 

Lemma (3.1.4)[58]: Let 𝑓 and 𝑔 be in 𝐻∞(𝐷). If either 𝑓 or 𝑔 is constant on each thin part 

then for all 0 <  𝑟 <  1 
lim
|𝑧|→1

min{ max
𝑠∈�̅�(𝑧,𝑟)

(1 − |𝑠|2)|𝑓′(𝑠)| , max
𝑡∈�̅�(𝑧,𝑟)

(1 − |𝑡|2)|𝑔′(𝑡)|} = 0. 

Proof. Suppose either 𝑓 or 𝑔 is constant on each thin part, but there are points (𝑧𝑛) in 𝐷 

with |𝑧𝑛| → 1 such that for some 𝜀 >  0 and fixed 0 <  𝑟 <  1 
min{ max

𝑠∈�̅�(𝑧𝑛,𝑟)
(1 − |𝑠|2)|𝑓′(𝑠)| , max

𝑡∈�̅�(𝑧𝑛,𝑟)
(1 − |𝑡|2)|𝑔′(𝑡)|} ≥ 𝜀  ∀𝑛.               (∗) 

Clearly 𝑧𝑛 may be chosen so that {𝑧𝑛} is a thin sequence. 

       Let 𝑚 be in the closure of {𝑧𝑛} in ℳ. There is a subnet {𝑧𝑛𝑘} of {𝑧𝑛} converging to 𝑚 

in ℳ; then 𝑚 is a thin part. Without loss of generality we may assume that 𝑓 is constant on 

𝑃(𝑚). It follows from Lemma (3.1.3) that 

lim
𝑧𝑛𝑘→𝑚

max
𝑠∈�̅�(𝑧𝑛𝑘,𝑟)

(1 − |𝑠|2)𝑓′(𝑠) = 0. 

The above equation contradicts (∗), so the proof is complete. 

Theorem (3.1.5)[58]: Suppose 𝑓 and 𝑔 are in 𝐻∞(𝐷). Then the following are equivalent : 

(𝑐′) either f or g is constant on each thin part  P(m); 

(𝑓′) lim
|𝑧|→1

min{(1 − |𝑧|2)|𝑓′(𝑧)|,   (1 − |𝑧|2)|𝑔′(𝑧)|} = 0. 

Proof: In fact Lemma (3.1.4) implies that 

lim
|𝑧|→1

min{(1 − |𝑧|2)|𝑓′(𝑧)|,   (1 − |𝑧|2)|𝑔′(𝑧)|} = 0, 

provided that either 𝑓 or 𝑔 is constant on each thin part 𝑃(𝑚) except 𝐷. Suppose that a thin 

part 𝑚 ∈ℳ\𝐷 and neither 𝑓 nor 𝑔 is constant on 𝑃(𝑚). From Hl we may assume that 𝑓 ∘
𝐿𝑚
′ (0) ≠ 0 and 𝑔 ∘ 𝐿𝑚

′ (0) ≠ 0. Thus there is a net {𝑧𝑛} in 𝐷 coverging to 𝑚 such that 

lim
𝑧𝑛→𝑚

(1 − |𝑧𝑛|
2)𝑓′(𝑧𝑛) = 𝑓 ∘ 𝐿𝑚

′ (0) 

lim
𝑧𝑛→𝑚

(1 − |𝑧𝑛|
2)𝑔′(𝑧𝑛) = 𝑔 ∘ 𝐿𝑚

′ (0) 
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Clearly 𝑧𝑛 may be chosen so that {𝑧𝑛} is a thin part. 

       So 

lim
|𝑧|→1

min{(1 − |𝑧|2)|𝑓′(𝑧)|,   (1 − |𝑧|2)|𝑔′(𝑧)|} 

= min{|𝑓 ∘ 𝐿𝑚
′ (0)|,   |𝑔 ∘ 𝐿𝑚

′ (0)|} > 0. 
The above contradiction  completes the proof 

Lemma (3.1.6)[58]: Let 0 <  𝑟 <  1 and let 𝑓 and 𝑔 be functions in the Bloch space. If 

lim
|𝑧|→1

min{ max
𝑠∈�̅�(𝑧,𝑟)

(1 − |𝑠|2)|𝑓′(𝑠)| , max
𝑡∈�̅�(𝑧,𝑟)

(1 − |𝑡|2)|𝑔′(𝑡)|} = 0 

then 

lim
|𝑧|→1

∫ |𝑓(𝑤) − 𝑓(𝑧)||𝑔(𝑤) − 𝑔(𝑧)||𝑘2|
2𝑑𝐴(𝑤)

 

𝐷(𝑧,𝑟)

= 0. 

Proof. For 𝑤 ∈ 𝐷(𝑧, 𝑟) we have 

𝑓(𝑤) −  𝑓(𝑧) = ∫ 𝑓′[𝑡𝑤 + (1 − 𝑡)𝑧](𝑤 − 𝑧)𝑑𝑡
1

0

. 

Thus 

|𝑓(𝑤) −  𝑓(𝑧)| ≤ |𝑤 − 𝑧|∫ |𝑓′[𝑡𝑤 + (1 − 𝑡)𝑧]|𝑑𝑡
1

0

≤ max
�̅�(𝑧,𝑟)

|𝑓′(𝑠)||𝑤 − 𝑧|.      (1) 

Because  

|𝑤 − 𝑧| ≤ diam 𝐷(𝑧, 𝑟) ≤ 𝐶 inf
𝐷(𝑧,𝑟)

(1 − |𝑆|2) |𝑓′(𝑠)|                                   (2) 

it follows from (1) that  

|𝑓(𝑤) − 𝑓(𝑧)| ≤  𝐶 max
�̅�(𝑧,𝑟)

(1 − |𝑆|2) |𝑓′(𝑠)| 

In fact the above inequality is also true if 𝑓 is replaced by 𝑔. Thus 

∫ |𝑓(𝑤) − 𝑓(𝑧)||𝑔(𝑤) − 𝑔(𝑧)||𝑘2|
2𝑑𝐴(𝑤)

 

𝐷(𝑧,𝑟)

 

≤ 𝐶2∫ [ max
𝑠∈�̅�(2,𝑟)

(1 − |𝑠|2)|𝑓′(𝑠)|][ max
𝑡∈�̅�(2,𝑟)

(1 − |𝑡|2)|𝑔′(𝑡)|]|𝑘2|
2𝑑𝐴

 

𝐷(𝑧,𝑟)

 

≤ 𝐶2min{ max
𝑠∈�̅�(𝑧,𝑟)

(1 − |𝑠|2)|𝑓′(𝑠)| , max
𝑡∈�̅�(𝑍,𝑟)

(1 − |𝑡|2)|𝑔′(𝑡)|} 

×max{ max
𝑠∈�̅�(𝑧,𝑟)

(1 − |𝑠|2)|𝑓′(𝑠)| , max
𝑡∈�̅�(𝑧,𝑟)

(1 − |𝑡|2)|𝑔′(𝑡)|}. 

Since 𝑓 and 𝑔 are in the Bloch space, there is a constant 𝐵 >  0 such that 

max{ max
𝑠∈�̅�(𝑧,𝑟)

(1 − |𝑠|2)|𝑓′(𝑠)| , max
𝑡∈�̅�(𝑧,𝑟)

(1 − |𝑡|2)|𝑔′(𝑡)|} ≤ 𝐵. 

Therefore 

∫ |𝑓(𝑤) − 𝑓(𝑧)||𝑔(𝑤) − 𝑔(𝑧)||𝑘2|
2𝑑𝐴(𝑤)

 

𝐷(𝑧,𝑟)

 

≤ 𝐵𝐶2min{ max
𝑠∈�̅�(𝑧,𝑟)

(1 − |𝑠|2)|𝑓′(𝑠)| , max
𝑡∈�̅�(𝑧,𝑟)

(1 − |𝑡|2)|𝑔′(𝑡)|}. 

By the hypothesis we obtain 

lim
|𝑧|→1

∫ |𝑓(𝑤) − 𝑓(𝑧)||𝑔(𝑤) − 𝑔(𝑧)||𝑘2|
2𝑑𝐴(𝑤)

 

𝐷(𝑧,𝑟)

= 0, 

completing the proof. 

Lemma (3.1.7)[58]: If 𝑓 and 𝑔 are in the Bloch space and for all 0 <  𝑟 <  1 

min{ max
𝑠∈�̅�(2,𝑟)

(1 − |𝑠|2)|𝑓′(𝑠)| , max
𝑡∈�̅�(𝑧,𝑟)

(1 − |𝑡|2)|𝑔′(𝑡)|} → 0, 

as |𝑧| → 1, then 
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lim
|𝑧|→1

∫|𝑓(𝑤) − 𝑓(𝑧)||𝑔(𝑤) − 𝑔(𝑧)||𝑘2|
2𝑑𝐴(𝑤)

 

�̅�

= 0. 

Proof. Now we estimate the following integral for fixed 0 <  𝑟 <  1: 

∫ |𝑓(𝑤) − 𝑓(𝑧)||𝑔(𝑤) − 𝑔(𝑧)||𝑘2|
2𝑑𝐴

 

𝐷\𝐷(𝑧,𝑟)

 

≤ (∫ |𝑓(𝑤) − 𝑓(𝑧)|2|𝑔(𝑤) − 𝑔(𝑧)|2|𝑘2|
2𝑑𝐴

 

𝐷\𝐷(𝑧,𝑟)

)

1/2

 

× (∫ |𝑘2|
2𝑑𝐴

 

𝐷\𝐷(𝑧,𝑟)

)

1/2

. 

It follows from [92] that there is a constant 𝐶 >  0 such that 

(∫ |𝑓(𝑤) − 𝑓(𝑧)|4|𝑘2|
2𝑑𝐴

 

𝐷

)

1 4⁄

≤ 𝐶‖𝑓‖𝛽 ≤ (∫|𝑓(𝑤) − 𝑓(𝑧)|
4|𝑘2|

2𝑑𝐴
 

𝛽

)

1 4⁄

 

× (∫ |𝑔(𝑤) − 𝑔(𝑧)|4|𝑘2|
2

 

𝛽

)

1 4⁄

(1 − 𝑟2)1/2                           (3) 

and 

(∫|𝑔(𝑤) − 𝑔(𝑧)|4|𝑘2|
2𝑑𝐴

 

𝐷

)

1 4⁄

≃ 𝐶‖𝑔‖𝛽 . 

For any 𝜀 >  0 we may choose 

𝛿 =
𝜀2

(1 + 𝑟)𝐶4(‖𝑓‖𝛽 + 1)
2
(‖𝑔‖𝛽 + 1)

2 . 

If 1 −   𝑟 <  𝛿 the inequality (3) implies 

∫ |𝑓(𝑤) − 𝑓(𝑧)||𝑔(𝑤) − 𝑔(𝑧)||𝑘2|
2𝑑𝐴

 

𝐷\𝐷(𝑧,𝑟)

≤ 𝐶2‖𝑓‖𝛽‖𝑔‖𝛽(1 − 𝑟
2)1/2

≤ 𝐶‖𝑓‖𝛽‖𝑔‖𝛽
𝜀

𝐶(‖𝑓‖𝛽 + 1)(‖𝑔‖𝛽 + 1)
< 𝜀. 

Thus 

∫|𝑓(𝑤) − 𝑓(𝑧)||𝑔(𝑤) − 𝑔(𝑧)||𝑘2|
2𝑑𝐴

 

𝐷

 

≤ ∫ |𝑓(𝑤) − 𝑓(𝑧)||𝑔(𝑤) − 𝑔(𝑧)||𝑘2|
2𝑑𝐴

 

𝐷\𝐷(𝑧,𝑟)

 

+∫ |𝑓(𝑤) − 𝑓(𝑧)||𝑔(𝑤) − 𝑔(𝑧)||𝑘2|
2𝑑𝐴

 

𝐷(𝑧,𝑟)

 

≤ 𝜀 +∫ |𝑓(𝑤) − 𝑓(𝑧)||𝑔(𝑤) − 𝑔(𝑧)||𝑘2|
2𝑑𝐴

 

𝐷(𝑧,𝑟)

 

If 1 − 𝑟 < 𝛿. Lemma (3.1.6) says 

lim
|𝑧|→1

∫ |𝑓(𝑤) − 𝑓(𝑧)||𝑔(𝑤) − 𝑔(𝑧)||𝑘2|
2𝑑𝐴

 

𝐷(𝑧,𝑟)

(𝑤) = 0 

for fixed 0 <  𝑟 <  1. The above inequality gives 

lim
|𝑧|→1

∫|𝑓(𝑤) − 𝑓(𝑧)||𝑔(𝑤) − 𝑔(𝑧)||𝑘2|
2𝑑𝐴

 

𝐷

(𝑤) ≤ 𝜀. 

so 
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lim
|𝑧|→1

∫|𝑓(𝑤) − 𝑓(𝑧)||𝑔(𝑤) − 𝑔(𝑧)||𝑘2|
2𝑑𝐴(𝑤)

 

𝐷

= 0 

since 𝜀 is arbitrary.  The proof is finished. 

We state the following lemma which is proved in [92] and will be used in the proof of 

Lemma (3.1.9). 

Lemma (3.1.8)[58]: Let 

𝐾 = sup {∫ |1 − 𝑧𝛼|−6 5⁄ (1 − |𝛼|)−3 5⁄ 𝑑𝐴(𝛼)
 

𝐷

: 𝑧 ∈ 𝐷} 

Then 𝐾 < ∞. 

The following lemma will be used twice in the proof of Theorem (3.1.10). 

Lemma (3.1.9)[58]: There is a constant 𝐶 >  0 such that 

∫
|𝑓(𝑤) − 𝑓(𝑧)||𝑔(𝑤) − 𝑔(𝑧)|

|1 − 𝑧𝑤|2√1 − |𝑤|2

 

𝐷

𝑑𝐴(𝑤) 

≤
𝐶

√1 − |𝑧|2
[∫ |𝑓(𝑤) − 𝑓(𝑧)||𝑔(𝑤) − 𝑔(𝑧)||𝑘2|

2𝑑𝐴(𝑤)
 

𝐷

]

1/12

 

For all 𝑧 ∈ 𝐷. 

Proof: Fix 𝑧 ∈ 𝐷, and make the change of variables by 𝜆 = 𝜙𝑧(𝑤) to get 

∫
|𝑓(𝑤) − 𝑓(𝑧)||𝑔(𝑤) − 𝑔(𝑧)|

|1 − 𝑧𝑤|2√1 − |𝑤|2

 

𝐷

𝑑𝐴(𝑤)

=
1

√1 − |𝑧|2
[∫

|𝑓 ∘ 𝜙2(𝜆) − 𝑓(𝑧)|
𝛿|𝑔 ∘ 𝜙2(𝜆) − 𝑔(𝑧)|

𝛿

|1 − 𝑧̅𝜆|√1 − |𝜆|2
𝑑𝐴(𝜆)

 

𝐷

] 

≤
1

√1 − |𝑧|2
[∫ |𝑓 ∘ 𝜙2(𝜆) − 𝑓(𝑧)|

𝛿|𝑔 ∘ 𝜙(𝜆) − 𝑔(𝑧)|𝛿𝑑𝐴(𝜆)
 

𝐷

]

1/6

 

× [∫ |1 − 𝑧̅𝜆|−6/5(1 − |𝜆|2)−3/5𝑑𝐴(𝜆)
 

𝐷

]

5/6

. 

It follows from Lemma (3.1.8) that 

∫
|𝑓(𝑤) − 𝑓(𝑧)||𝑔(𝑤) − 𝑔(𝑧)|

|1 − 𝑧𝑤|2√1 − |𝑤|2

 

𝐷

𝑑𝐴(𝑤) 

≤
1

√1 − |𝑧|2
[∫ |𝑓 ∘ 𝜙2(𝜆) − 𝑓(𝑧)|

𝛿|𝑔 ∘ 𝜙2(𝜆) − 𝑔(𝑧)|
𝛿𝑑𝐴(𝜆)

 

𝐷

]

1 6⁄

𝐾5/6 

≤
1

√1 − |𝑧|2
[∫ |𝑓 ∘ 𝜙2(𝜆) − 𝑓(𝑧)||𝑔 ∘ 𝜙2(𝜆) − 𝑔(𝑧)|𝑑𝐴(𝜆)

 

𝐷

]

1 12⁄

𝐾5/6 

× [∫ |𝑓 ∘ 𝜙2(𝜆) − 𝑓(𝑧)|
11|𝑔 ∘ 𝜙2(𝜆) − 𝑔(𝑧)|

11𝑑𝐴(𝜆)
 

𝐷

]

1/12

 

 (by Cauchy-Schwarz inequality)        

≤
1

√1 − |𝑧|2
[∫ |𝑓 ∘ 𝜙2(𝜆) − 𝑓(𝑧)|

𝛿|𝑔 ∘ 𝜙2(𝜆) − 𝑔(𝑧)|
𝛿𝑑𝐴(𝜆)

 

𝐷

]

1 6⁄

𝐾5/6 

× [∫ |𝑓 ∘ 𝜙2(𝜆) − 𝑓(𝑧)|
22𝑑𝐴(𝜆)

 

𝐷

]

1 66⁄
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× [∫ |𝑔 ∘ 𝜙2(𝜆) − 𝑔(𝑧)|
22𝑑𝐴(𝜆)

 

𝐷

]

1 66⁄

 

 (by Cauchy-Schwarz inequality)     

≤
1

√1 − |𝑧|2
[∫ |𝑓 ∘ 𝜙2(𝜆) − 𝑓(𝑧)||𝑔 ∘ 𝜙2(𝜆) − 𝑔(𝑧)|𝑑𝐴(𝜆)

 

𝐷

]

1 12⁄

 

× 𝐾5/6‖𝑓‖𝛽
1 𝛿⁄ ‖𝑔‖𝛽

1 𝛿⁄
 

 (this inequality  comes from [92]) 

≤
𝐶

√1 − |𝑧|2
[∫ |𝑓 ∘ 𝜙2(𝜆) − 𝑓(𝑧)||𝑔 ∘ 𝜙2(𝜆) − 𝑔(𝑧)|𝑑𝐴(𝜆)

 

𝐷

]

1 12⁄

. 

The proof is complete. 

Theorem (3.1.10)[58]: If 𝑓 and 𝑔 are in the Bloch space and 

lim
|𝑧|→1

∫|𝑓(𝑤) − 𝑓(𝑧)||𝑔(𝑤) − 𝑔(𝑧)||𝑘2|
2𝑑𝐴(𝑤)

 

𝐷

= 0, 

then 𝐻𝑓̅
∗𝐻�̅� is compact. 

Proof: For any ℎ ∈ 𝐿𝑎
2 (𝐷) and 𝑧 ∈ 𝐷 we have 

(𝐻𝑓
∗𝐻𝑔ℎ)(𝑧) =

1

1 − |𝑧|2
〈𝐻𝑓

∗𝐻𝑔ℎ, 𝑘𝑧〉 

=
1

1 − |𝑧|2
〈𝐻�̅�ℎ,𝐻𝑓̅𝑘𝑧〉 

=
1

1 − |𝑧|2
〈(�̅� − �̅�(𝑧))ℎ, (𝑓̅ − 𝑓(̅𝑧)) 𝑘𝑧〉 

= ∫
(𝑓(𝑤) − 𝑓(𝑧))(�̅�(𝑤) − �̅�(𝑧))

(1 − 𝑧�̅�)2
ℎ(𝑤)𝑑𝐴(𝑤)

 

𝐷

 

It is obvious that for fixed 0 <  𝑟 <  1 the operator 𝑆𝑟 defined by 

𝑆𝑟ℎ(𝑧) = ∫
(𝑓(𝑤) − 𝑓(𝑧))(�̅�(𝑤) − �̅�(𝑧))

(1 − 𝑧�̅�)2
ℎ(𝑤)𝜒𝐷(0,𝑟)(𝑧)𝑑𝐴(𝑤)

 

𝐷

 

is a compact operator from 𝐿𝑎
2 (𝐷) to 𝐿2(𝐷). In fact, 𝑆𝑟 is a Hilbert-Schmidt operator because 

(𝑓(𝑤) − 𝑓(𝑧))(�̅�(𝑤) − �̅�(𝑧))

(1 − 𝑧�̅�)2
𝜒𝐷(0,𝑟)(𝑧) 

is in 𝐿2(𝐷 × 𝐷). 
       For any ℎ ∈ 𝐿𝑎

2 (𝐷) and 𝑧 ∈ 𝐷 we have 

≤ ∫
𝜒𝐷\𝑟𝐷(𝑤)|𝑓(𝑤) − 𝑓(𝑧)||𝑔(𝑤) − 𝑔(𝑧)||ℎ(𝑤)|

|1 − 𝑧�̅�|2

 

𝐷

𝑑𝐴(𝑤) 

≤ [∫
𝜒𝐷\𝑟𝐷(𝑧)|𝑓(𝑤) − 𝑓(𝑧)||𝑔(𝑤) − 𝑔(𝑧)|

|1 − 𝑧�̅�|2√1 − |𝑤|2

 

𝐷

𝑑𝐴(𝑤)]

1/2

 

× [∫
𝜒𝐷\𝑟𝐷(𝑧)|𝑓(𝑤) − 𝑓(𝑧)||𝑔(𝑤) − 𝑔(𝑧)|√1 − |𝑤|

2

|1 − 𝑧�̅�|2

 

𝐷

|ℎ(𝑤)|2𝑑𝐴(𝑤)]

1/2

(4) 

Combining (4) and Lemma (3.1.9) gives 

‖(𝐻𝑓̅
∗𝐻�̅� − 𝑆𝑟)ℎ‖

2
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= ∫|[(𝐻𝑓
∗𝐻𝑔 − 𝑆𝑟)ℎ](𝑧)|

2
𝑑𝐴(𝑧)

 

𝐷

 

≤ ∫ [∫
𝜒𝐷\𝑟𝐷(𝑧)|𝑓(𝑤) − 𝑓(𝑧)||𝑔(𝑤) − 𝑔(𝑧)|

|1 − 𝑧�̅�|2√1 − |𝑤|2

 

𝐷

𝑑𝐴(𝑤)]
 

𝐷

 

× [∫
|𝑓(𝑤) − 𝑓(𝑧)||𝑔(𝑤) − 𝑔(𝑧)| − √1 − |𝑤|2

|1 − 𝑧�̅�|2

 

𝐷

|ℎ(𝑤)|2𝑑𝐴(𝑤)] 𝑑𝐴(𝑧) 

 (by Cauchy-Schwarz inequality)   

≤ ∫
𝐶

√1 − |𝑧|2
[∫ |𝑓(𝑤) − 𝑓(𝑧)||𝑔(𝑤) − 𝑔(𝑧)||𝑘2|

2
 

𝐷

𝑑𝐴(𝑤)]

1/2 

𝐷\𝑟𝐷

 

× [∫ ∫
|𝑓(𝑤) − 𝑓(𝑧)||𝑔(𝑤) − 𝑔(𝑧)|√1 − |𝑤|2

|1 − 𝑧̅𝑤|2√1 − |𝑧|2

 

𝐷

|ℎ(𝑤)|2𝑑𝐴(𝑤)
 

𝐷

] 𝑑𝐴(𝑧) 

 (by Lemma (3.1.9)) 

≤ 𝐶 sup
𝑧∈𝐷\𝑟𝐷

[∫ |𝑓(𝑤) − 𝑓(𝑧)||𝑔(𝑤) − 𝑔(𝑧)||𝑘2|
2

 

𝐷

𝑑𝐴(𝑤)]

1/2

 

×∫ ∫
|𝑓(𝑤) − 𝑓(𝑧)||𝑔(𝑤) − 𝑔(𝑧)|√1 − |𝑤|2

|1 − 𝑧̅𝑤|2√1 − |𝑧|2

 

𝐷

|ℎ(𝑤)|2𝑑𝐴(𝑤)𝑑𝐴(𝑧)
 

𝐷

 

 (by Lemma (3.1.9) again) 

≤ 𝐶 sup
𝑢∈𝐷\𝑟𝐷

[∫ |𝑓(𝑤) − 𝑓(𝑢)||𝑔(𝑤) − 𝑔(𝑢)||𝑘𝑢|
2

 

𝐷

𝑑𝐴(𝑤)]

1/2

 

×∫|ℎ(𝑤)|2
𝐶√1 − |𝑤|2

√1 − |𝑤|2
[∫ |𝑓(𝑤) − 𝑓(𝑧)||𝑔(𝑤) − 𝑔(𝑧)||𝑘𝑤|

2
 

𝐷

𝑑𝐴(𝑧)]

1/12

𝑑𝐴(𝑤)
 

𝐷

 

≤ 𝐶 sup
𝑢∈𝐷\𝑟𝐷

[∫ |𝑓(𝑤) − 𝑓(𝑢)||𝑔(𝑤) − 𝑔(𝑢)||𝑘𝑢|
2

 

𝐷

𝑑𝐴(𝑤)]

1 12⁄

  

× 𝐶 sup
𝑢∈𝐷

[∫ |𝑓(𝑤) − 𝑓(𝑢)||𝑔(𝑤) − 𝑔(𝑢)||𝑘𝑢|
2

 

𝐷

𝑑𝐴(𝑤)]

1 12⁄

 

It is easy to verify that         

𝐶 sup
𝑢∈𝐷

[∫ |𝑓(𝑤) − 𝑓(𝑢)||𝑔(𝑤) − 𝑔(𝑢)||𝑘𝑢|
2

 

𝐷

𝑑𝐴(𝑤)]

1 2⁄

= 𝜇2 

is bounded since 𝑓 and 𝑔 are in Bloch space. Thus     

‖𝐻𝑓̅
∗𝐻�̅� − 𝑆𝑟‖ ≤ 𝜇 𝐶 sup

𝑢∈𝐷\𝑟𝐷
[∫ |𝑓(𝑤) − 𝑓(𝑢)||𝑔(𝑤) − 𝑔(𝑢)||𝑘𝑢|

2
 

𝐷

𝑑𝐴(𝑤)]

1 24⁄

. 

Since             

lim
|𝑧|→1

∫|𝑓(𝑤) − 𝑓(𝑧)||𝑔(𝑤) − 𝑔(𝑧)||𝑘𝑢|
2

 

𝐷

𝑑𝐴(𝑤) = 0, 

we have            

lim
𝑟→1
‖𝐻𝑓̅

∗𝐻�̅� − 𝑆𝑟‖ = 0; 

so 𝐻𝑓̅
∗𝐻�̅� is compact since 𝑆𝑟 is compact for any 0 <  𝑟 <  1, completing the proof. 

       Although Theorem (3.1.11) is a corollary of Theorem (3.1.12), we give a proof of 

Theorem (3.1.11) by combining with the lemmas and Theorem (3.1.10). 
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Theorem (3.1.11)[58]: If 𝑓 and 𝑔 are in 𝐻∞(𝐷) and either 𝑓 or 𝑔 is constant on each 

Gleason part 𝑃(𝑚) of ℳ, then 𝐻𝑓̅
∗𝐻�̅� is compact. 

Proof. From Theorem (3.1.10) it suffices to prove 

lim
|𝑧|→1

∫|𝑓(𝑤) − 𝑓(𝑧)||𝑔(𝑤) − 𝑔(𝑧)||𝑘𝑢|
2

 

𝐷

𝑑𝐴(𝑤) = 0.                  (5) 

Combining Lemmas (3.1.4) and (3.1.6) with Lemma (3.1.7) implies that the above equation 

(5) holds. So 𝐻𝑓̅
∗𝐻�̅� is compact. 

Theorem (3.1.12)[58]: If 𝑓 and 𝑔 are bounded harmonic functions on 𝐷 and for each thin 

Part 𝑃(𝑚) of ℳ either 𝑓|𝑃(𝑚) ∈ 𝐻
∞|𝑃(𝑚) or 𝑔|𝑃(𝑚) ∈ 𝐻

∞|𝑃(𝑚), then 

   (a) 𝐻𝑓
∗ 𝐻𝑔 is compact; 

   (f) lim
|𝑧|→1

min{(1 − |𝑧|2)|(𝜕𝑓 𝜕𝑧̅⁄ )(𝑧)}, {(1 − |𝑧|2)|(𝜕𝑔 𝜕𝑧̅⁄ )(𝑧)} = 0 

Proof. Since 𝑓 and 𝑔 are bounded harmonic functions on 𝐷, there are functions 𝑓1, 𝑓2, 𝑔1, 
and 𝑔2 in the Bloch space such that 𝑓 =  𝑓1  + 𝑓2̅ and 𝑔 = 𝑔1  + �̅�2. Thus 

𝐻𝑓
∗ 𝐻𝑔 = 𝐻𝑓2

∗  𝐻�̅�2 

and (𝜕𝑓 𝜕𝑧̅⁄ )(𝑧) = 𝑓2̅
′(𝑧), (𝜕𝑔 𝜕𝑧̅⁄ )(𝑧) = �̅�2

′ (𝑧). 
Combining Lemmas (3.1.4)-(3.1.7) with Theorem (3.1.10) shows that it is sufficient to 

prove that for fixed 0 <  𝑟 <  1 

lim
|𝑧|→1

min { max
𝑠∈�̅�(𝑧,𝑟)

(1 − |𝑠|2)|𝑓2(𝑠)| , max
𝑡∈�̅�(𝑧,𝑟)

(1 − |𝑡|2)|𝑔2
′ (𝑡)|} = 0.          (6) 

Suppose that (6) does not hold. There are points {𝑧𝑛} ⊂ 𝐷 and 𝜀 >  0 such that 

min { max
𝑠∈�̅�(𝑧𝑛,𝑟)

(1 − |𝑠|2)|𝑓2
′(𝑠)| , max

𝑡∈�̅�(𝑧𝑛,𝑟)
(1 − |𝑡|2)|𝑔2

′ (𝑡)|} ≥ 𝜀 

and {𝑧𝑛} has no accumulation points in 𝐷. Since there is a thin sub-sequence of {𝑧𝑛}, we 

may assume that {𝑧𝑛} is thin. Let 𝑚 be in the closure {𝑧𝑛} in ℳ. Without loss of generality 

we may assume 𝑓|𝑃(𝑚) ∈ 𝐻
∞|𝑃(𝑚) and {𝑧𝑛} converges to 𝑚. Let {𝑤𝑛} be points 

in 𝐷 satisfying 

1.𝑤𝑛 ∈ 𝐷(𝑧𝑛, 𝑟) 
2. (1 − |𝑤𝑛|

2|𝑓′(𝑤𝑛)| = max
𝑠∈�̅�(𝑧𝑛,𝑟)

(1 − |𝑠|2)|𝑓2
′(𝑠)|.             (7) 

Since ℳ is compact, there is a subnet of {𝑤𝑛} converging to some 𝑚1. For convenience we 

may assume that {𝑤𝑛} converges to 𝑚1. Since 𝜌(𝑧𝑛, 𝑤𝑛) ≤ 𝑟, then 𝑚1 is in 𝑃(𝑚). 
Since 𝑓|𝑃(𝑚) ∈ 𝐻

∞|𝑃(𝑚),we have 

𝑓|𝑃(𝑚1) ∈ 𝐻
∗|𝑃(𝑚1) 

Thus 
𝜕

𝜕𝑧̅
𝑓 ∘ 𝐿𝑚1

(0) = 0. 

On the other hand 
𝜕

𝜕𝑧̅
𝑓 ∘ 𝐿𝑚1

(0) = lim
𝑤𝑛→𝑚1

𝜕

𝜕𝑧̅
𝑓 ∘ 𝐿𝑤𝑛(0) = lim

𝑤𝑛→𝑚1

𝜕

𝜕𝑧̅
(𝑓1 ∘ 𝐿𝑤𝑛 + 𝑓2̅ ∘ 𝐿𝑤𝑛)(0)

= lim
𝑤𝑛→𝑚1

(1 − |𝑤𝑛|2)𝑓2̅
′(𝑤𝑛). 

This contradicts (7). The proof is finished. 

We first consider compactness of 𝐻𝑓̅
∗𝐻�̅� for 𝑓 and 𝑔 in 𝐻∞(𝐷) and make use of the 

maps 𝐿𝑚 to turn the compactness of 𝐻𝑓̅
∗𝐻�̅� into the condition 

𝐻𝑓̅∘𝐿𝑚
∗ 𝐻�̅�∘𝐿𝑚 = 0 

The following  Lemma (3.1.13) is the partial result of [49]. 
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Lemma (3.1.13)[58]: Let 𝑚(𝑧)  =  𝐿𝑚(𝑧) be in 𝑃(𝑚) for some 𝑧 in 𝐷. Then there is a 

constant 𝑐, |𝑐| =  1 such that 

𝐿𝑚(𝑧)(𝑐𝑤) = 𝐿𝑚 ∘ 𝜙𝑧(𝑤). 

Proof. It follows from 𝐻2 that 𝐿𝑚 and 𝐿𝑚(𝑧) are one-to-one analytic maps from 𝐷 onto the 

Gleason part 𝑃(𝑚). Thus 𝐿𝑚(𝑧)
−1 ∘ 𝐿𝑚 ∘ 𝜙𝑧: 𝐷 → 𝐷 is an onto, one-to-one, analytic function, 

and 𝐿𝑚(𝑧)
−1 ∘ 𝐿𝑚 ∘ 𝜙𝑧(0)  =  0. It is well known that there is a constant 𝑐 such that |𝑐| =  1 

and 

𝐿𝑚(𝑧)
−1 ∘ 𝐿𝑚 ∘ 𝜙𝑧(𝑤) = 𝑐𝑤. 

so 𝐿𝑚(𝑧)(𝑐𝑤) = 𝐿𝑚 ∘ 𝜙𝑧(𝑤). 
Although Proposition (3.1.14) is a corollary of Proposition (3.1.16), we give its proof since 

the proof is also interesting. 

Proposition (3.1.14)[58]: If 𝐻𝑓̅
∗𝐻�̅� is compact for 𝑓 and 𝑔 in 𝐻∞(𝐷), then 

𝐻𝑓̅∘𝐿𝑚
∗ 𝐻�̅�∘𝐿𝑚 = 0 

For all m in ℳ\𝐷. 
Proof: For any 𝑚 ∈ℳ\𝐷 there is a net {𝑧𝑛} ⊂ 𝐷 converging to 𝑚 (Corona Theorem), so 

𝑓 ∘ 𝐿2𝑛(𝑤) − 𝑓 ∘ 𝐿2𝑛(0) → 𝑓 ∘ 𝐿𝑚(𝑤) − 𝑓 ∘ 𝐿𝑚(0)  pointwise, 

𝑔 ∘ 𝐿2𝑛(𝑤) − 𝑔 ∘ 𝐿2𝑛(0) → 𝑔 ∘ 𝐿𝑚(𝑤) − 𝑔 ∘ 𝐿𝑚(0)  pointwise. 

In addition 𝑓 ∘ 𝐿𝑚(𝑧) and 𝑔 ∘ 𝐿𝑚(𝑧) are bounded on 𝐷. So for any bounded analytic 

function ℎ 

lim
2𝑛→𝑚

∫ℎ(𝑓 ∘ 𝐿2𝑛 − 𝑓 ∘ 𝐿2𝑛(0))(�̅� ∘ 𝐿2𝑛 − �̅� ∘ 𝐿2𝑛(0))
 

𝐷

𝑑𝐴 

= ∫ℎ(𝑓 ∘ 𝐿𝑚 − 𝑓 ∘ 𝐿𝑚(0))(�̅� ∘ 𝐿𝑚 − �̅� ∘ 𝐿𝑚(0))
 

𝐷

𝑑𝐴. 

On the other hand, 

∫ℎ(𝑓 ∘ 𝐿𝑧𝑛 − 𝑓 ∘ 𝐿𝑧𝑛(0))(�̅� ∘ 𝐿𝑧𝑛 − �̅� ∘ 𝐿𝑧𝑛(0))
 

𝐷

𝑑𝐴 

= ∫(𝑓 − 𝑓 ∘ 𝐿𝑧𝑛(0))(�̅� − �̅� ∘ 𝐿𝑧𝑛(0))|𝑘𝑧𝑛|
2
ℎ ∘ 𝐿𝑧𝑛

 

𝐷

𝑑𝐴 

= 〈𝐻�̅�ℎ ∘ 𝐿𝑧𝑛𝑘𝑧𝑛 , 𝐻𝑗𝑘𝑧𝑛〉 = 〈ℎ ∘ 𝐿𝑧𝑛𝑘𝑧𝑛 , 𝐻�̅�
∗𝐻𝑗𝑘𝑧𝑛〉.                              (8) 

Since 𝐻𝑓̅
∗𝐻�̅� is compact 

‖𝐻�̅�
∗𝐻𝑓̅𝑘𝑧𝑛‖ → 0   as  𝑧𝑛 → 𝑚 

Therefore 

〈ℎ ∘ 𝐿𝑧𝑛𝑘𝑧𝑛 , 𝐻�̅�
∗𝐻𝑓̅𝑘𝑧𝑛〉 ≤ ‖ℎ ∘ 𝐿𝑧𝑛𝑘𝑧𝑛‖‖𝐻�̅�

∗𝐻𝑓̅𝑘𝑧𝑛‖ 

≤ ‖ℎ‖𝑚‖𝐻�̅�
∗𝐻𝑓̅𝑘𝑧𝑛‖ → 0 as 𝑧𝑛 → 𝑚.       (9) 

Combining (8) and (9) we get that 

lim
𝑧𝑛→𝑚

∫ℎ(𝑓 ∘ 𝐿𝑧𝑛 − 𝑓 ∘ 𝐿𝑧𝑛(0))(�̅� ∘ 𝐿𝑧𝑛 − �̅� ∘ 𝐿𝑧𝑛(0))
 

𝐷

𝑑𝐴 = 0. 

This implies that 

∫ℎ(𝑓 ∘ 𝐿𝑚 − 𝑓 ∘ 𝐿𝑚(0))(�̅� ∘ 𝐿𝑚 − �̅� ∘ 𝐿𝑚(0))
 

𝐷

𝑑𝐴 = 0              (10) 

for all bounded analytic functions ℎ. Replacing 𝑚 by 𝑚(𝑧) in (10) we obtain 

∫ℎ(𝑓 ∘ 𝐿𝑚(𝑧) − 𝑓 ∘ 𝐿𝑚(𝑧)(0))(�̅� ∘ 𝐿𝑚(𝑧) − �̅� ∘ 𝐿𝑚(𝑧)(0))
 

𝐷

𝑑𝐴 = 0. 
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The above equality combined with Lemma (3.1.13) implies 

∫ℎ(𝑓 ∘ 𝐿𝑚 ∘ 𝜙𝑧 − 𝑓 ∘ 𝐿𝑚(0))(�̅� ∘ 𝐿𝑚 ∘ 𝜙𝑧 − �̅� ∘ 𝐿𝑚(0))
 

𝐷

𝑑𝐴 = 0. 

Changing the variables by 𝜆 = 𝜙𝑧(𝑤) gives 

∫ℎ ∘ 𝜙𝑧(𝑓 ∘ 𝐿𝑚 − 𝑓 ∘ 𝐿𝑚(0))(�̅� ∘ 𝐿𝑚 − �̅� ∘ 𝐿𝑚(0))|𝑘2|
2

 

𝐷

𝑑𝐴 = 0. 

We may subsitute ℎ ∘ 𝜙𝑧 for ℎ to change the above equality into 

∫ℎ(𝑓 ∘ 𝐿𝑚 − 𝑓 ∘ 𝐿𝑚(0))(�̅� ∘ 𝐿𝑚 − �̅� ∘ 𝐿𝑚(0))|𝑘2|
2

 

𝐷

𝑑𝐴 = 0. 

Thus 

〈ℎ, 𝐻�̅�∘𝐿𝑚
∗ 𝐻𝑓̅∘𝐿𝑚𝑘2〉 = 0. 

We know that 𝐻∞(𝐷) is dense in 𝐿𝑎
2 (𝐷). So 

𝐻𝑓̅∘𝐿𝑚
∗ 𝐻�̅�∘𝐿𝑚𝑘2 =  0, 

which implies that 

𝐻𝑓̅∘𝐿𝑚
∗ 𝐻�̅�∘𝐿𝑚 =  0. 

Before we generalize the above proposition for bounded harmonic functions 𝑓 and 𝑔, we 

need the following lemma which is proved in [91]. 

Lemma (3.1.15)[58]: Let 𝜙 be a Mobius transformation from 𝐷 onto 𝐷 and define an 

operator 𝑈𝜙 on 𝐿2(𝐷) by 

𝑈𝜙𝑔(𝑧)  = 𝑔[𝜙(𝑧)][𝜙
′(𝑧)]. 

Then 

   (a) 𝑈𝜙 is unitary, 

   (b) 𝑃𝑈𝜙  =  𝑈𝜙𝑃. 

Proposition (3.1.16)[58]: If 𝑓 and 𝑔 are bounded harmonic functions and 𝐻𝑓
∗𝐻𝑔 is compact, 

then 

𝐻𝑓∘𝐿𝑚
∗ 𝐻𝑔∘𝐿𝑚 = 0 

for all 𝑚 in ℳ\𝐷. 

Proof.  Since 𝑓 and 𝑔 are harmonic functions, there are Bloch functions 𝑓1, 𝑓2, 𝑔1, and 𝑔2 

such that 𝑓 = 𝑓1 + 𝑓2̅ and 𝑔 = 𝑔1 + �̅�2. For any 𝑚 in ℳ\𝐷 there is a net {𝑧𝑛} converging 

to 𝑚. Then 
𝜕
𝜕𝑧̅
[𝑓 ∘ 𝐿𝑧𝑛(𝑧)] →

𝜕
𝜕𝑧̅
[𝑓 ∘ 𝐿𝑚(𝑧)]   pointwise

𝜕
𝜕𝑧̅
[𝑔 ∘ 𝐿𝑧𝑛(𝑧)] →

𝜕
𝜕𝑧̅
[𝑔 ∘ 𝐿𝑚(𝑧)]   pointwise.

                      (11) 

Since 𝑓 ∘ 𝐿𝑚 and 𝑔 ∘ 𝐿𝑚 are bounded harmonic on 𝐷, there are Bloch functions 𝑓3, 𝑓4, 𝑔1, 

and 𝑔2 such that  

𝑓 ∘ 𝐿𝑚 = 𝑓3 + 𝑓4̅  and 
𝜕

𝜕𝑧̅
(𝑓 ∘ 𝐿𝑚) = 𝑓4̅

′, 

𝑔 ∘ 𝐿𝑚 = 𝑔3 + �̅�4  and 
𝜕

𝜕𝑧̅
(𝑔 ∘ 𝐿𝑚) = �̅�4

′ . 

So  

𝑓4̅(𝑤) − 𝑓4̅(0) = ∫
𝜕
𝜕𝑧̅
[𝑓 ∘ 𝐿𝑚(𝑡𝑤)]𝑑𝑡

1

0

�̅�4(𝑤) − �̅�4(0) = ∫
𝜕
𝜕𝑧̅
[𝑔 ∘ 𝐿𝑚(𝑡𝑤)]𝑑𝑡

1

0
.
                    (12) 

Now 
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〈𝐻𝑓𝑑𝑚
∗ 𝐻𝑔𝑑𝑚𝑘0, ℎ𝑘0〉 = ∫(𝑓4(𝑤) − 𝑓4(0))(�̅�4(𝑤) − �̅�4(0))

 

𝐷

ℎ𝑑𝐴(𝑤).     (13) 

For fixed ℎ in 𝐻∞(𝐷) and any 𝜀 > 0 there is a 𝑟0 in (0, 1) such that if 𝑙 > 𝑟 > 𝑟0 then 

∫ |𝑓4(𝑤) − 𝑓4(0)||𝑔4(𝑤) − 𝑔4(0)|
 

𝐷\𝑟𝐷

|ℎ|𝑑𝐴(𝑤) < 𝜀 

∫ |𝑓2 ∘ 𝜙𝑧𝑛(𝑤) − 𝑓2 ∘ 𝜙𝑧𝑛(0)||𝑔2 ∘ 𝜙𝑧𝑛(𝑤) − 𝑔2 ∘ 𝜙𝑧𝑛(0)||ℎ|𝑑𝐴(𝑤)
 

𝐷\𝑟𝐷

< 𝜀 

for all 𝑧𝑛 in 𝐷. Combining (11) with (12) implies 

|∫ [𝑓4(𝑤) − 𝑓4(0)][�̅�4(𝑤) − �̅�4(0)]
 

𝐷

ℎ̅𝑑𝐴(𝑤)| 

= |∫ |𝑤|2
 

𝐷

∫ ∫
𝜕

𝜕𝑧̅
𝑔 ∘ 𝐿𝑚(𝑡𝑤)

𝜕

𝜕𝑧
𝑓̅ ∘ 𝐿𝑚(𝑠𝑤)𝑑𝑡 𝑑𝑠 ℎ̅(𝑤) 𝑑𝐴(𝑤)

1

0

1

0

| 

≤ 𝜀 + lim̅̅ ̅̅
𝑧𝑛→𝑚

|∫ |𝑤|2
 

𝑟𝐷

∫ ∫
𝜕

𝜕𝑧̅
𝑔 ∘ 𝐿𝑧𝑛(𝑡𝑤)

𝜕

𝜕𝑧
𝑓̅ ∘ 𝐿𝑧𝑛(𝑠𝑤)𝑑𝑡 𝑑𝑠 ℎ̅(𝑤) 𝑑𝐴(𝑤)

1

0

1

0

| 

 (by Fatou’s lemma and (11)) 

≤ 2𝜀 + lim̅̅ ̅̅
𝑧𝑛→𝑚

|∫ [𝑓2 ∘ 𝐿𝑧𝑛(𝑤) − 𝑓2(𝑧𝑛)][�̅�2 ∘ 𝐿𝑧𝑛(𝑤) − �̅�2(𝑧𝑛)]𝑑𝐴(𝑤)
 

𝐷

| 

≤ 2𝜀 + lim̅̅ ̅̅
𝑧𝑛→𝑚

|〈𝐻𝑓
∗𝐻𝑔𝑙𝑧𝑛 , ℎ ∘ 𝜙𝑧𝑛𝑘𝑧𝑛〉| 

≤ 2𝜀. 
Since 𝜀 is arbitrary 

〈𝐻𝑓∘𝐿𝑚
∗ 𝐻𝑔∘𝐿𝑚𝑘0, ℎ𝑘0〉 = 0. 

Substituting 𝑚(𝑧) for 𝑚 we have 

〈𝐻𝑓∘𝐿𝑚(𝑧)
∗ 𝐻𝑔∘𝐿𝑚(𝑧)𝑘0, ℎ𝑘0〉 = 0. 

Using Lemmas (3.1.13) and (3.1.15) we obtain 

〈𝐻𝑓∘𝐿𝑚
∗ 𝐻𝑔∘𝐿𝑚𝑘𝑧, ℎ ∘ 𝜙𝑧𝑘𝑧〉 = 0. 

This implies 

𝐻𝑓∘𝐿𝑚
∗ 𝐻𝑔∘𝐿𝑚 = 0. 

Lemma (3.1.17)[58]: Suppose that 𝑓 and 𝑔 are bounded harmonic functions. If 𝐻𝑓
∗𝐻𝑔 = 0 

then for all 𝑍 ∈ 𝐷 and 𝜉 ∈ 𝜕𝐷 
𝐻𝑓∘𝜙𝑧
∗ 𝐻𝑔∘𝜙𝑧 = 0     and   𝐻𝑓𝜉

∗ 𝐻𝑔𝜉 =  0, 

where 𝑓𝜉(𝑤) = 𝑓(𝜉𝑤). 

Proof: Let 𝜙 be a Mobius function mapping 𝐷 onto 𝐷. From Lemma (3.1.15) it is easy to 

verify that 

𝑈𝜙𝐻𝑓
∗𝐻𝑔𝑈𝜙

∗ = 𝐻𝑓∘𝜙
∗ 𝐻𝑔∘𝜙

∗ . 

So this implies the lemma if 𝜙(𝑤) is replaced by 𝜙𝑧(𝑤) or 𝜉𝑤, respectively. 

We comment on some facts that will be used in the proof of Theorem (3.1.19). 

Suppose that 𝑓 = 𝑓1  + 𝑓2̅ and 𝑔 = 𝑔1  + �̅�2, where 𝑓1 and 𝑔1 are in Bloch space and Hardy 

space 𝐻2. If 𝐻𝑓
∗ 𝐻𝑔  =  0, then 

∫[𝑓2 ∘ 𝜙𝑧(𝑤) − 𝑓2(𝑧)][�̅�2 ∘ 𝜙𝑧(𝑤) − �̅�2(𝑧)]𝑑𝐴(𝑤)
 

𝐷

= 0. 

This is equivalent to 

∫𝑓2(𝑤)�̅�2(𝑤)|𝑘2|
2𝑑𝐴(𝑤)

 

𝐷

= 𝑓2(𝑧)�̅�2(𝑧).                                        (14) 
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Replacing 𝑓2 and 𝑔2 by 𝑓2 ∘ 𝜙𝜆 and 𝑔2 ∘ 𝜙𝜆 or 𝑓2𝜉  and 𝑔2𝜉 respectively, by Lemma 

(3.1.17) we have 

∫𝑓2 ∘ 𝜙𝜆(𝑤)�̅�2 ∘ 𝜙𝜆(𝑤)|𝑘2|
2𝑑𝐴(𝑤)

 

𝐷

= 𝑓2 ∘ 𝜙𝜆(𝑧)�̅�2 ∘ 𝜙𝜆(𝑧).  

and 

∫𝑓2(𝜉𝑤)�̅�2(𝜉𝑤)|𝑘2|
2𝑑𝐴(𝑤)

 

𝐷

= 𝑓2(𝜉𝑧)�̅�2(𝜉𝑧), 

where 𝑧 ∈ 𝐷 and 𝜉 ∈ 𝜕𝐷. 

       We state the following lemma which is the special case of [91]. 

Lemma (3.1.18)[58]:  Let 𝑓 be a continuous function on the closed unit disk �̅�. 

       Then the following are equivalent: 

    (a) 𝑓 is harmonic on 𝐷; 

    (b) for each 𝑧 in 𝐷 

𝑓(𝑧) = ∫ |𝑘2|
2𝑓(𝜉)𝑑𝐴(𝜉)

 

𝐷

. 

Theorem (3.1.19)[58]: Suppose 𝑓 and 𝑔 are bounded harmonic functions on 𝐷. If 𝐻𝑓
∗𝐻𝑔 =

0, then either 𝑓 or 𝑔 is in 𝐻∞(𝐷). 
Proof. Let 𝑓 = 𝑓1 + 𝑓2̅ and 𝑔 = 𝑔1 + �̅�2 where 𝑓𝑖 and 𝑔𝑖 are in the Bloch space and 𝐻2. 

Then 𝐻𝑓
∗𝐻𝑔 = 0 implies 

𝐻𝑓2̅
∗ 𝐻�̅�2 = 0. 

The remark after Lemma (3.1.17) gives 

∫𝑓2 ∘ 𝜙𝜆(𝑤)�̅�2 ∘ 𝜙𝜆(𝑤)|𝑘2|
2𝑑𝐴(𝑤)

 

𝐷

= 𝑓2 ∘ 𝜙𝜆(𝑧)�̅�2 ∘ 𝜙𝜆(𝑧) 

and 

∫𝑓2(𝜉𝑤)�̅�2(𝜉𝑤)|𝑘2|
2𝑑𝐴(𝑤)

 

𝐷

= 𝑓2(𝜉𝑧)�̅�2(𝜉𝑧). 

Set 

𝐺(𝑧) = ∫ 𝑓2(𝜉𝑧)�̅�2(𝜉𝑧)𝑑𝜃/2𝜋
 

𝜉∈𝜕𝐷

 

and suppose 𝑓2 ∘ 𝜙𝜆(𝑤) = ∑ 𝑎𝑛(𝜆)𝑤
𝑛∞

𝑛=0  and 𝑔2 ∘ 𝜙𝜆(𝑤) = ∑ 𝑏𝑛(𝜆)𝑤
𝑛∞

𝑛=0 . Then 

∑ |𝑎𝑛(𝜆)|
2∞

𝑛=0 < ∞ and ∑ |𝑏𝑛(𝜆)|
2∞

𝑛=0 < ∞. Thus 

𝐺(𝑧) = ∑𝑎𝑛(0)�̅�𝑛(0)|𝑧|
2𝑛

∞

𝑛=0

. 

Since ∑ 𝑎𝑛(0)�̅�𝑛(0)|𝑧|
2𝑛∞

𝑛=0  converges unformly on �̅�, the function 𝐺 is continuous. By 

(14) we get 

∫𝐺(𝑤)|𝑘𝑧(𝑤)|
2𝑑𝐴(𝑤)

 

𝐷

= 𝐺(𝑧). 

It follows from Lemma (3.1.3) that 𝐺(𝑧) is harmonic. Let ∆ denote the Laplace operator. It 

is easy to verify that 

∆𝐺(𝑧)  =  4∑𝑛2𝑎𝑛(0)�̅�𝑛(0)|𝑧|
2(𝑛−1)

∞

𝑛=0

. 

So ∆𝐺(𝑧)  =  0 implies that 𝑎𝑛(0)�̅�𝑛(0) =  0, 𝑛 >  1. Similarily we can prove that 

𝑎𝑛(𝑧)�̅�𝑛(𝑧) = 0, 𝑛 >  1. Now we consider only 𝑎1(𝑧)𝑏1(𝑧)  =  0. Without loss of 
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generality we may assume that there are points {𝑤𝑛} in 𝐷(0, 𝑟) for some 0 <  𝑟 <  1 and 

{𝑤𝑛} has at least one accumulation in 𝐷(0, 𝑟) such that 𝑎1(𝑤𝑛) = 0 for all 𝑛. In fact 𝑎1(𝑧) =
 [𝑓2 ∘ 𝜙𝑧]

′(0) =  (1 − |𝑧|2)𝑓2
′(𝑧). Thus 𝑓2

′(𝑤𝑛) = 0. Therefore 𝑓2
′(𝑤) = 0 for all 𝑤 in 𝐷. 

This means that 𝑓 is constant. The proof is complete. 

Considering Toeplitz operators on the Bergman space we interpret the theorem to mean that 

𝑇𝑓̅
∗𝑇𝑔  =  𝑇𝑓̅𝑔 for bounded harmonic functions 𝑓 and 𝑔 if 𝑓 either 𝑓 or 𝑔 is in 𝐻∞(𝐷). On 

the Hardy space the above result is true for all 𝑓 and 𝑔 in 𝐿∞(𝜕𝐷). But on the Bergman 

space we do not know when 𝑇𝑓̅
∗𝑇𝑔  =  𝑇𝑓̅𝑔 is true for 𝑓 and 𝑔 in 𝐿∞(�̅�). 

       Now we turn to the proof of the following theorem. 

Theorem (3.1.20)[58]: Suppose 𝑓 and 𝑔 are bounded harmonic functions on 𝐷. If 𝐻𝑓̅
∗𝐻𝑔 is 

compact, then either 𝑓 ∘ 𝐿𝑚, or 𝑔 ∘ 𝐿𝑚 is in 𝐻∞(𝐷) for m in ℳ\𝐷. 

Proof. Proposition (3.1.16) says that 

𝐻𝑓∘𝐿𝑚
∗ 𝐻𝑔∘𝐿𝑚 = 0 

for all 𝑚 in ℳ\𝐷 if 𝐻𝑓̅
∗𝐻𝑔 is compact. It follows from Theorem (3.1.19) that either 𝑓 ∘ 𝐿𝑚 

or 𝑔 ∘ 𝐿𝑚 is in 𝐻∞(𝐷). 
Theorem (3.1.20) gives that either 𝑓 or 𝑔 is in 𝐻∞(𝐷)|𝑃(𝑚) on each thin part 𝑃(𝑚) since 

𝑏 ∘ 𝐿𝑚(𝑧)  =  𝑧 for some 𝑏 in 𝐻∞(𝐷). So far we have proved that (𝑎) ⇔ (𝑏) ⇔ (𝑐) ⇔
(𝑑) ⇔ (𝑓). We will prove (𝑑) ⇔ (𝑒). The theorem of Axler and Shields makes the proof 

of the following theorem possible. 

Theorem (3.1.21)[58]: Let 𝑓 and 𝑔 be bounded harmonic fuctions on 𝐷. The following are 

equivalent: 

    (c) For each thin part 𝑃(𝑚) except 𝐷, either 𝑓|𝑃(𝑚) ∈ 𝐻
∞(𝐷)|𝑃(𝑚) or 𝑔|𝑃(𝑚) ∈

𝐻∞(𝐷)|𝑃(𝑚); 

    (e) 𝐻∞(𝐷)[𝑓] ∩ 𝐻∞(𝐷)[𝑔] ⊂ {𝑢 ∈ 𝐶(ℳ): 𝑢|𝑃(𝑚) ∈ 𝐻
∞(𝐷) for each thin part 𝑃(𝑚)}. 

Proof. That (c) implies (e) is obvious. Now we prove that (e) implies (c). Let𝑚 in ℳ\𝐷 

and 𝑃(𝑚) be an analytic disk. That 𝐻∞(𝐷)[𝑓] ∩ 𝐻∞(𝐷)[𝑔] ⊂ {𝑢 ∈ 𝐶(ℳ): 𝑢|𝑃(𝑚) ∈

𝐻∞(𝐷) for thin part 𝑃(𝑚)} means that 

𝐻∞(𝐷)[𝑓] ∩ 𝐻∞(𝐷)[𝑔]|𝑃(𝑚) ⊂ 𝐻
∞(𝐷)|𝑃(𝑚),                      (15) 

In fact 𝐻∞(𝐷)[𝑓] ∩ 𝐻∞(𝐷)[𝑔] ∘ 𝐿𝑚 = 𝐻
∞ ∘ 𝐿𝑚(𝐷)(𝑓 ∘ 𝐿𝑚) ∩ 𝐻

∞𝐿𝑚(𝐷)[𝑔 ∘ 𝐿𝑚] and 

𝐻∞ ∘ 𝐿𝑚(𝐷) = 𝐻
∞ since 𝑃(𝑚) is thin. Thus 

𝐻∞(𝐷)[𝑓] ∩ 𝐻∞(𝐷)[𝑔] ∘ 𝐿𝑚 = 𝐻
∞(𝐷)[𝑓 ∘ 𝐿𝑚] ∩ 𝐻

∞(𝐷)[𝑔 ∘ 𝐿𝑚],       (16) 
The theorem of Axler and Shields says that if 𝑢 and 𝑣 are bounded harmonic but not analytic 

on 𝐷, then 𝐻∞(𝐷) + 𝐶(�̅�) ⊂ 𝐻∞(𝐷)[𝑢] ∩ 𝐻∞(𝐷)[𝑣]. Equations (15) and (16) imply 

𝐻∞(𝐷)[𝑓 ∘ 𝐿𝑚] ∩ 𝐻
∞(𝐷)[𝑔 ∘ 𝐿𝑚] ⊂ 𝐻

∞(𝐷). 
Thus either 𝑓 ∘ 𝐿𝑚 or 𝑔 ∘ 𝐿𝑚 is in 𝐻∞(𝐷). We have finished the proof. 

   (i) From the proof of Theorem (3.1.11) we see that the theorem is also valid if 𝐷 is 

replaced by the unit ball 𝐵𝑛 in 𝐶𝑛. It is natural to ask if Theorem (3.1.20) is true on 𝐵𝑛. But 

no one knows what the Gleason parts of the maximal ideal space of 𝐻∞(𝐵𝑛) look like. In 

fact whether the Corona Theorem is valid on ℳ(𝐻∞(𝐵𝑛)) is unknown. 

   (ii) Looking at our proof carefully we observe that the main results are also valid on the 

weighted Bergman space using the following Proposition (3.1.22) instead of Lemma (3.1.8) 

in the above process. 

Proposition (3.1.22)[58]: Let  𝛼, 𝛽 > −  1. Then if [
1

2
− (𝛼 2⁄ − 𝛽 𝑞⁄ )] <  1/𝑝 <  1 and 

1/𝑞 +  1/𝑝 =  1, there is an 𝑀 >  0 such that for all 𝑧 in 𝐷 



119 

∫
(1 − |𝑤|2)𝑃(𝛼 2⁄ −𝛽 𝑞⁄ )

|1 − 𝑧̅𝑤|2(1 − |𝑤|2)𝑃/2
𝑑𝐴(𝑤)

 

𝐷

< 𝑀. 

Indeed we can obtain the result on the weigted Bergman space analogous to that on the 

Bergman space in [58] by means of Proposition (3.1.22). Before we state the following 

theorem, we define the weighted Bergman space and VMO𝜕(𝐷). The weighted Bergman 

space 𝐴2𝛼(𝛼 > − 1) is defined by {𝑓: 𝑓 is analytic on the unit disk 𝐷 and 

∫|𝑓(𝑧)|2(1 − |𝑧|2)𝛼𝑑𝐴(𝑧)  < ∞}, and VMO𝜕(𝐷) is the following set 

{𝑓 ∈ 𝐿1(𝐷):∫|𝑓(𝑧) − 𝑓 ∘ 𝜙𝑧(𝑢)|𝑑𝐴(𝑢) → 0  as |𝑧| → 1}, 

Where 𝑓(𝑧) = ∫𝑓(𝑢)|𝑘𝑧(𝑢)|𝑑𝐴(𝑢). Roughly speaking VMO𝜕(𝐷) is the space of 

intergrable functions on 𝐷 with vanishing mean oscillation near the boundary of 𝐷. 

Theorem (3.1.23)[58]: Let 𝛼 >  − 1 and 𝑓 be in 𝐿∞(𝐷). Then 𝐻𝑓 and 𝐻𝑓 are compact on 

weighted Bergman space 𝐴2𝛼 𝑖𝑓𝑓 𝑓 is in VMO𝜕(𝐷). 
 (iii) From many recent results on Hankel operators and Toeplitz operators on the Bergman 

space it seems more natural to deal with the Toeplitz operators and Hankel operators with 

bounded harmonic symbols than with the symbols in 𝐿∞(𝐷). 
Section (3.2): A Theorem of Brown–Halmos Type 

For 𝐷 denote the open unit disc in the complex plane. 𝐵𝑦 𝐿2  we mean the Lebesgue 

space with respect to the normalized Lebesgue measure 𝑑𝐴 =
1

𝜋
 𝑑𝓍 𝑑𝑦 𝑜𝑛 𝐷. For f and g in 

𝐿2 , 〈 𝑓, g, 〉 will denote the usual 𝐿2 inner product and ||𝑓||
2
 will denote the norm in 

𝐿2 . 𝐵𝑦 𝐵2 , the Bergman space, we mean the subspace of 𝐿2 consisting of the holomorphic 

functions on 𝐷. For a bounded function u on 𝐷 we have the Toeplitz operator 𝑇𝑢 ∶  𝐵
2 𝑄 𝐵2 

given by 𝑇𝑢 𝑓 = 𝑃(𝑢𝑓) where 𝑃: 𝐿2 𝑄 𝐵2 is the orthogonal projection. The function u is 

called the symbol of 𝑇𝑢. An operator that will arise in our study of Toeplitz operators is the 

Berezin transform, defined for any integrable function 𝑓 on 𝐷 by the formula 

𝐵𝑓(𝑧)∫  
𝐷

 𝑓
1 𝑧 − 𝜁

 1 − 𝑧𝜁
  𝑑𝐴(𝑧). 

 If we make a change of variables we see that 

 𝐵𝑓(𝑧) = (1 − |𝑧|2 )2 𝐹 ∫  
𝐷

𝑓(𝜁)

|1 −  𝑧𝜁|̅4
 𝑑𝐴(𝜁). 

  It is well known that 𝐵𝑢 = 𝑢 for any harmonic function u. However, 𝐵 is not a 

projection onto the harmonic functions, that is, Bu is not always harmonic. In fact, 𝑖𝑓 𝑣 =
𝐵𝑢 is harmonic then 𝐵(𝑢 −  𝑣) = 0 since 𝐵 reproduces harmonic functions. It is easily seen 

that the Berezin transform is injective and hence 𝑢 = 𝑣. In other words Bu is harmonic if 

and only if u is harmonic. We also have the kernel functions 𝑘𝑤 for each 𝑤 ∈  𝐷 defined by 

𝑘𝑤(𝑧) = 1/(1 −  𝑧𝑤 )
2 . The relation of these kernel functions with the projection P is the 

following: if 𝑓 ∈ 𝐿2 then (𝑃𝑓)(𝑧) = 𝑂𝑓〈, 𝑘𝑧𝑃. 〉 In particular, if 𝑓 ∈  𝐵2 then 𝑓(𝑧) =
〈𝑓, 𝑘𝑧〉. We shall denote the laplacian by ⊿ = 𝜕2 /(𝜕𝑧 𝜕𝑧 ) and the invariant laplacian 

by ⊿ ̃ = (1 − |𝑧|2 )2⊿. 
       There is an extensive literature on Toeplitz operators on the Hardy space 𝐻2 . (See [98] 

for the definitions of the Hardy space and their Toeplitz operators.) In the Hardy space (and 

in the Bergman space as well, see property 2, below) it is routine that if 𝑢 or 𝑣 is holomorphic 

then 𝑇𝑢𝑇𝑣 = 𝑇𝑢𝑣 . 𝐼𝑛 [98] it was shown by A. Brown and P. Halmos that, in the Hardy space 

case, the converse is true. That is, if 𝑇𝑢𝑇𝑣 = 𝑇𝑤 then one of the two symbols 𝑢 or v must be 

holomorphic and in this case 𝑤 = 𝑢𝑣. From this they easily deduce that if 𝑇𝑢𝑇𝑣 = 0 then 
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one of the symbols 𝑢 𝑜𝑟 𝑣 must be identically zero. There are many other interesting 

corollaries to their result. Returning to the Bergman space case, it has been an open problem 

for some time to determine if there is a theorem of Brown–Halmos type for Toeplitz 

operators. We show that in general there is not. We show that there are functions 𝑢, 𝑣 and w 

which are continuous on the closed unit disc with 𝑇𝑢𝑇𝑣 = 𝑇𝑤 but neither �̅�  nor 𝑣 is 

holomorphic. This example will be given in Some Examples. We do have a theorem of 

Brown–Halmos type if we put some restrictions on the symbols. We show, in Corollary 

(3.2.12), that if f and g are bounded harmonic functions and 𝑇𝑓𝑇𝑔 = 0 then one of the two 

symbols 𝑓 or g is identically zero. This ‘‘zero product’’ problem for arbitrary bounded 

symbols 𝑓 and g is still open. 

 Next we describe the results. 

Theorem (3.2.1)[96]: Suppose 𝑓 and g are bounded harmonic functions and that h 

is 𝑎 bounded 𝐶2 function with the property that ⊿̃ ℎ is also bounded in 𝐷. Assume that 

𝑇𝑓𝑇𝑔 = 𝑇ℎ , then one of the following holds: 

  𝑓 is conjugate holomorphic 𝑔 is holomorphic and in either case ℎ = 𝑓𝑔. 
       We will make two comments on Theorem (3.2.1). There is a general feeling that if a 

theorem from the Hardy space theory of Toeplitz operators is not true for all Bergman space 

Toeplitz operators then it should be true for those operators whose symbols come from the 

algebra 𝒰 . Here 𝒰 is the uniform closure of the algebra generated by the bounded harmonic 

functions. This is not the case for Theorem (3.2.1) because in our counterexample, alluded 

to above, the symbols are continuous on the closed disc and hence belong to 𝓊. The other 

comment has to do with the fact that the function h in Theorem (3.2.1) is required to satisfy 

a much weaker condition than is required of 𝑓 and g. This leads us to ask if Theorem (3.2.1) 

remains true if we just require that the functions 𝑓, 𝑔 and h all have their invariant laplacians 

bounded in 𝐷. The answer is no. We will give an example of functions 𝑓, g and ℎ all of 

which are of class 𝐶2 up to the boundary of 𝐷 and such that 𝑇𝑓𝑇𝑔 = 𝑇ℎ but neither 𝑓 nor g 

is holomorphic. 

       From Theorem (3.2.1) we get the following results on products of Toeplitz operators, 

some of which are parallel to results in [98]. 

  The next rephrasing of Corollary (3.2.12) is a cancellation law for Toeplitz operators. 

 Corollary (3.2.2)[96]: If 𝑓, 𝑔 and ℎ are bounded harmonic symbols such that 𝑇𝑓𝑇𝑔 = 𝑇𝑓𝑇ℎ 

and 𝑓 is not identically 0 then 𝑔 = ℎ. 
    The next corollary says that if a Toeplitz operator with bounded harmonic symbol has an 

inverse of the same type then this can only happen in the most tribyl way 

 Corollary (3.2.3)[96]: If 𝑓 and g are bounded and harmonic and 𝑇𝑓𝑇𝑔 = 𝐼 then either f and 

g are both holomorphic or they are both conjugate holomorphic and in either case 𝑓 =
1

g
 . 

   The next corollary says there are no idempotent Toeplitz operators with bounded 

harmonic symbol other than the obvious ones. 

Corollary (3.2.4)[96]: 𝐼𝑓 𝑓 is bounded and harmonic and 𝑇𝑓
2  = 𝑇𝑓 then 𝑓 —  0 𝑜𝑟 𝑓 —  1. 

 Our last corollary was proved by Zheng in [58] Theorem 5, by a different method. 

Corollary (3.2.5)[96]: 𝐼𝑓 𝑓 and g are bounded harmonic symbols and 𝑇𝑓𝑇𝑔 = 𝑇𝑓𝑔 then 

either g is holomorphic or 𝑓 is conjugate holomorphic. 

       We would like to point out that our method, when applied to the Hardy space case, 

gives a simple ‘‘function theoretic’’ proof of the Brown–Halmos theorem. This proof will 
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be given in the paragraph following the proof of Proposition (3.2.6) This proof clarifies, for 

us, the differences between the Hardy space and Bergman space cases. 

         In Proposition (3.2.6) we give a pair of function theoretic identities involving 𝑓, g and 

h that are equivalent to 𝑇𝑓𝑇𝑔 = 𝑇ℎ , in the case that 𝑓 and g are bounded harmonic functions 

and h is only assumed to be nearly bounded in 𝐷 (see below for the definition of nearly 

bounded). The proof of Theorem (3.2.1) is based on an analysis of these identities. 

      We list here some well known and easy properties of Toeplitz operators:  

 (i) If 𝑇𝑢 = 0 then 𝑢 = 0 almost everywhere. 

 (ii) If 𝑓 is holomorphic then 𝑇𝑢𝑇𝑓 = 𝑇𝑢𝑓 , and 𝑇𝑓𝑇𝑢 = 𝑇𝑓𝑢 for any 𝑢. 

 (iii) 𝑇𝑢
⋇ = 𝑇𝑢 . 

 (iv) If 𝑓 is holomorphic and not identically zero then 𝑇𝑓 is one to one. 

 (v) If g ∈  𝐵 and 𝑤 ∈  𝐷 then 𝑃(g𝑘𝑤) = g(𝑤)𝑘𝑤. 
        A good reference for (ii) through (v) above is Axler’s survey [97]. Property (i) does 

not seem to be stated specifically but it is very easy: 𝑇𝑢 = 0 implies that u is orthogonal to 

all polynomials (in z and 𝑧) and hence 𝑢 = 0 almost everywhere since such polynomials 

are dense in 𝐿2 . Before turning to the proofs of our results we need to say a few words 

about Toeplitz operators with unbounded symbols. Even though we are interested primarily 

in operators with bounded symbol, operators with unbounded symbol arise naturally. In 

contrast to the Hardy space case, unbounded symbols can give rise to bounded operators 

on the Bergman space. For example if 𝐹 ∈ 𝐿1 (𝐷) and has compact support K in 𝐷 then we 

can define 𝑇𝐹  𝑓(𝑧) = ∫  𝐷  (𝐹(𝜁) 𝑓(𝜁)/(1 − 𝑧  𝜁 )
2
 ) 𝑑𝐴(𝜁). Then 

|𝑇𝐹  𝑓(𝑧)| ≤  𝐶  ∫  
𝐾

 |𝐹|𝑑𝐴(sup𝐾  |𝑓|) ≤ 𝐶1∫  
𝐾

|𝐹| 𝑑𝐴 ||𝑓||
2
 . 

 Here the last inequality follows from the fact that for 𝑓 ∈  𝐵2 the 𝐿2 norm dominates the 

sup norm over any compact set. This says that the sup norm of 𝑇𝐹  f is dominated by a 

constant times the 𝐿2  norm of 𝑓 and hence ||𝑇𝐹  𝑓||2 ≤  𝐶 |
|𝑓||

2
 for some constant 𝐶. More 

generally, 𝑖𝑓 𝐹 ∈  𝐿1 (𝐷) and there is an 𝑟 <  1such that f is bounded on   𝑧 𝑟 <  |𝑧|  <  1} 
then 𝑇𝐹 is bounded on 𝐵2 because F can be written as an 𝐿1 function with compact support 

plus a bounded function. Such a function will be called ‘‘nearly bounded’’. A function of 

this kind will arise in the construction of our counterexamples. The basic properties listed 

above for bounded symbols continue to be true for nearly bounded symbols but the only 

one we will use is the following: if u is nearly bounded and 𝑔 is bounded and holomorphic 

then 𝑇𝑢𝑇𝑔 = 𝑇𝑢g , but this is obvious.  

 We prove the identities on which our other results are based. If 𝑓 is a bounded complex 

valued harmonic function defined in 𝐷 then there are holomorphic functions 𝑓1 and 𝑓2 such 

that 𝑓 = 𝑓1 + 𝑓2 . This decomposition is unique if we require 𝑓2 (0) = 0. Of course, 𝑓1 and 

𝑓2    are not necessarily bounded but they are certainly Bloch functions. 

Proposition (3.2.6)[96]: Suppose that 𝑓 = 𝑓1 + 𝑓2̅ , g = g1 + g2̅̅ ̅ are bounded harmonic 

functions with 𝑓𝑖 , g𝑖 holomorphic and h is nearly bounded in 𝐷. Then the following are 

equivalent. 

 (i)𝑇𝑓𝑇𝑔 = 𝑇ℎ .  

 (ii) For all 𝑧 ∈  𝐷 𝑤𝑒 have 

 𝑓1 (𝑧)g1 (𝑧) + 𝑓2  (𝑧)𝑔2 (𝑧) + 𝑓1 (𝑧)2 (𝑧) = 𝐵(ℎ − 𝑓2  𝑔1 )(𝑧). 

 (iii) For all (𝑧, 𝑤)  ∈  𝐷 × 𝐷 we have 

 𝑓1 (𝑧)g1 (𝑧) + 𝑓2̅ (𝑤)𝑔2 (𝑤 ) + 𝑓1 (𝑧)g2 ( 𝑤) 
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= (1 −  𝑧𝑤)2  ∫
∫  
𝐷
( ℎ(𝜁) − 𝑓2 (𝜁)g1 (𝜁))

(1 − 𝜁𝑧)
2
 (1 − 𝜁𝑤)2

 𝑑𝐴(𝜁). 

Proof. Now 𝑇𝑓𝑇𝑔 = 𝑇ℎ if and only if 𝑇𝑓𝑇𝑔𝑘𝑤 = 𝑇ℎ𝑘𝑤 for all 𝑤 ∈  𝐷. Using Property 5 

above we see that 

 𝑇𝑔𝑘𝑤 = 𝑃(𝑔1𝑘𝑤 + �̅�2𝑘𝑤) = 𝑔1𝑘𝑤 + �̅�2 (𝑤)𝑘𝑤 .  

It now follows from another application of Property 5 that 

 𝑇𝑓𝑇𝑔𝑘𝑤 = 𝑃 ((𝑓1 + 𝑓2̅ )(𝑔1𝑘𝑤 + �̅�2 (𝑤)𝑘𝑤)) 

= 𝑓1 𝑔1𝑘𝑤 + �̅�2 (𝑤)𝑓1𝑘𝑤 + �̅�2 (𝑤)𝑓2̅ (𝑤)𝑘𝑤 + 𝑃(𝑓2̅ 𝑔1𝑘𝑤). 
 So we see that 𝑇𝑓𝑇𝑔 = 𝑇ℎ is equivalent to 

 𝑓1 (𝑧)𝑔1 (𝑧) + 𝑓2̅ (𝑤)�̅�2 (𝑤) + 𝑓1 (𝑧)�̅�2 (𝑤) +
1

𝑘𝑤(𝑧)
 𝑃(𝑓2̅ 𝑔1𝑘𝑤)(𝑧) 

 =
1

𝑘𝑤(𝑧)
 𝑃(ℎ𝑘𝑤)(𝑧),  

for all 𝑧, 𝑤 in D. But this is just Eq. (iii) with w replaced by �̅� . This shows that (i) and (iii) 

are equivalent. If we let 𝑤 = 𝑧̅ in (iii) we get (ii). It remains to show that (ii) implies (iii). 

Both sides of Eq. (iii) are holomorphic in (𝑧, 𝑤) in the bidisc 𝐷 × 𝐷. Assuming (ii) they are 

equal on 

 {(𝑧, 𝑤): 𝑤 = 𝑧̅} and hence they are equal on the bidisc. This finishes the proof of the 

proposition. Before continuing with the proof of Theorem (3.2.1) we will discuss what 

happens when we apply our method to the Hardy space case. If 𝑓, g and ℎ are 𝐿∞. functions 

on the circle, then we can write 𝑓 = 𝑓1 + 𝑓2̅ where 𝑓1 and 𝑓2 are in 𝐻2  ∩  𝐵𝑀𝑂 and 

similarly for g and ℎ. If we let 𝑆𝑧 (𝑒
𝑖𝜃 ) = 1/(1 − 𝑧̅𝑒𝑖𝜃 ) be the Szego kernel and 𝑃𝑆 the 

Szego projection of 𝐿2 onto 𝐻2 then application of the method of Proposition (3.2.6) leads 

to:  

𝑓1 (𝑧)𝑔1 (𝑧) + 𝑓2̅ (𝑧)�̅�2 (𝑧) + 𝑓1 (𝑧)�̅�2 (𝑧) +
1

𝑆𝑧 (𝑧)
 𝑃𝑆(𝑓2̅ 𝑔1𝑆𝑧 )(𝑧) = ℎ(𝑧). 

But now we see that (
1

𝑆𝑧
(𝑧))𝑃𝑆(𝑢𝑆𝑧 )(𝑧) is Poisson integral of u for any 𝑢 which is 

integrable on the circle. So we see that every term in the above display with the exception 

of 𝑓1 �̅�2 is obviously harmonic. It follows that 𝑓1 �̅�2 is harmonic from which it follows 

that 𝑓1 or 𝑔2 is constant. This is the same as saying that 𝑓 is conjugate holomorphic or that 

g is holomorphic. In the Bergman space case the Berezin transform appears rather than the 

Poisson integral and since the Berezin transform does not always yield harmonic functions, 

we have some more work to do. 

Now assume that the hypotheses of Theorem (3.2.1) hold. From Proposition (3.2.6)(ii) we 

know that 

 𝑓1 𝑔1 + 𝑓2̅ �̅�2 + 𝑓1 �̅�2 = 𝐵(ℎ − 𝑓2̅ 𝑔1 ). 
 Since B reproduces harmonic functions we see that  

𝑓1 �̅�2 = 𝐵(𝑢), 
where 𝑢 = ℎ − 𝑓2̅ 𝑔1  −  𝑓1 𝑔1  −  𝑓2̅ �̅�2 .  
Notice that ⊿̃𝑢 = ⊿̃ℎ − ⊿̃𝑓2̅ 𝑔1 is bounded. 

 This is so because ⊿̃ℎ is bounded by assumption and 

 ⊿̃𝑓2̅ 𝑔1 (𝑧) = (1 − |𝑧|
2 )2 𝑓2̅

′ (𝑧)𝑔1
′  (𝑧) 
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 is bounded since 𝑓2 and 𝑔1 are Bloch functions. We want to conclude that 𝑓1 or 𝑔2 is 

constant. This will follow from the following  

Proposition (3.2.7)[96]:  Suppose that 𝑓 and g are holomorphic in D and 𝑓�̅� = 𝐵𝑢 

where 𝑢 ∈  𝐿1 (𝐷)  ∩ 𝐶2 (𝐷) and ⊿̃𝑢 ∈  𝐿∞. (𝐷) then either 𝑓 is constant or g is constant. 

 In the proof of Proposition (3.2.7) we will want to use the fact that the invariant laplacian 

commutes with the Berezin transform. This last fact has been known for some time, (see the 

discussion in [99]); however, the proofs we have been able to find are given only for 

functions of compact support or are based on the fact that 𝐵 is in some sense a function 

of 𝐷⊿̃. Since this fact is crucial to our argument we have decided, with no claim to 

originality, to include a simple direct proof of what we need. 

 Lemma (3.2.8)[96]: Suppose that 𝑢 is twice continuously differentiable in 𝐷 and 𝑢 

and ⊿̃𝑢 are in 𝐿1 (𝐷) then ⊿̃𝐵𝑢 = 𝐵(⊿̃𝑢).  
Proof. We fix 0 < 𝑟 < 1 and 𝑧 ∈  𝐷 and consider 

∫  
𝐷𝑟
((𝑟2 − |𝑤|2)2 ⊿𝑢(𝑤))

|1 − 𝑤  𝑧|4 
 𝑑𝐴(𝑤), 

where 𝐷𝑟 is the disc of radius r centered at the origin. By Green’s theoremthis is equal to 

∫  
𝐷𝑟

𝑢(𝑤)⊿𝑤
(𝑟2 − |𝑤|2)

|1 − �̅�𝑧|4
 𝑑𝐴(𝑤) 

 

(the boundary terms are 0 because (𝑟2 − |𝑤|2 )2 and its normal derivative both vanish on 

the boundary). 

        Now |(𝑟2 − |𝑤|2 )2 ⊿𝑢|  ≤  |(1 − |𝑤|2 )2 ⊿𝑢| in 𝐷𝑟  so we may take the limit 

as 𝑟 →  1 under the integral sign in the first integral. 

        Now for each fixed 𝑧 ∈  𝐷, ⊿𝑤((𝑟
2 − |𝑤|2 )^2  /|1 − �̅�𝑧|4 ) converges pointwise 

and boundedly to ⊿𝑤((1 − |𝑤|
2 )2 /|1 − �̅�𝑧|4 ) as 𝑟 →  1. So we obtain that 

 ∫  
𝐷

𝑢(𝑤)⊿𝑤  
(1 − |𝑤|2 )2

 |1 − �̅�𝑧|4
 𝑑𝐴(𝑤) = ∫  

𝐷

⊿̃𝑢(𝑤)

|1 − �̅�𝑧|4
 𝑑𝐴(𝑤). 

In the first integral we now use the remarkable but easily verified identity 

⊿𝑤
(1 – |𝑤|2 )2

 |1 – �̅�𝑧|4
 = ⊿𝑧  

(1 – |𝑧|2 )2

|1 – �̅�𝑧|4
 . 

 If we multiply the resulting equation by (1 − |𝑧|2 )2 we see that the lemma is proved. 

        Now we turn to the proof of Proposition (3.2.7). We are assuming that 𝑓�̅� = 𝐵𝑢. We 

take the invariant laplacian of both sides of this identity and we arrive at (after dividing 

by (1 – |𝑧|2 )2 ),  

𝑓′(𝑧)�̅�′(𝑧) = ∫  
𝐷

⊿̅𝑢(𝜉)

|1 − 𝜉̅𝑧|
4  𝑑𝐴(𝜉). 

 Next we ‘‘complexify’’ this identity. 

 Lemma (3.2.9)[96]: For all 𝑧, 𝑤 𝜖 𝐷 we have  

𝑓′(𝑧)�̅�′(�̅� ) = ∫  
𝐷

⊿𝑢(𝜉)

(1 − 𝜉̅𝑧 )
2
 (1 − 𝜉𝑤)2

 𝑑𝐴(𝜉).  

Proof. The functions on either side of the displayed equation are holomorphic in the bidisc 

{(𝑧, 𝑤): |𝑧|  <  1, |𝑤|  <  1} and they are equal on the subset {(𝑧, 𝑧̅)} and hence are equal on 

the whole bidisc. 
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     Proceeding with the proof of Proposition (3.2.7) we take the identity of the Lemma 

(3.2.9) and we differentiate 𝑘 times with respect to 𝑤 and then let 𝑤 = 0. We arrive at 

∫  
𝐷

𝜉𝑘 𝜎(𝜉)

(1 − 𝜉̅𝑧 )
2   𝑑𝐴(𝜉) = 𝐶𝑘 𝑓′(𝑧), 

for some constants 𝐶𝑘, 𝑘 = 1, 2, ..., where 𝜎(𝜉) = ⊿̃𝑢(𝜉). 
       Consider now the Toeplitz operator 𝑇𝜎 with the possibly non-harmonic bounded symbol 

𝜎(𝜉). The above display tells us that 𝑇𝜎(𝜉
𝑘 ) is a multiple of 𝑓′ for all non-negative integers 

𝑘. There are two possibilities, 𝑇𝜎(𝜉𝑘 ) = 0 for all 𝑘, or not. If the first holds then 𝑇𝜎  𝑝 = 0 

for all polynomials and hence 𝑇𝜎 = 0 on the Bergman space and hence 𝜎 = 0. In the other 

case 𝑇𝜎(𝜉
𝑘 )  ≠  0 for some 𝑘. That is, some 𝐶𝑘  ≠  0. This means that 𝑓′ ∈  𝐵2 since it is a 

multiple of 𝑇𝜎(𝜉
𝑘 ) for some 𝑘. So if s were not zero then Ts would be a rank one operator. 

So we need to know that there are no rank one Toeplitz operators with bounded symbol.  

Lemma (3.2.10)[96]: If 𝜎 is a bounded (not necessarily harmonic) function in D and dim 

𝑇𝜎𝐵
2 [ 1 then 𝜎 ≡  0.  

Proof. The proof depends on the following idea due to R. Rochberg valid for any bounded 

function 𝜎: 𝐼𝑓 𝑤 = 𝑢 + 𝑖𝑣 and �̂� denotes the Fourier transform of s then  

�̂�(𝑣, 𝑢) = ∫  
𝐷

 𝑒
−
𝑤
2
 𝑒𝑤
2
𝜎̅̅ ̅̅ ̅ 𝑑𝐴 = 〈𝑇𝜎𝑒−𝑤

2
 , 𝑒𝑤

2
〉, 

 where 𝑒𝑤(𝑧) = 𝑒
𝑤𝑧. Now the hypothesis of this lemma implies that 

 𝑇𝜎 𝑓 = 〈𝑓, ∅〉 𝐹  
for some ∅, 𝐹 ∈  𝐵 so we see that 

 �̂�(𝑣, 𝑢) = 〈𝑒−𝑤
2
 , ∅〉 〈𝑭, 𝑒𝑤

2

〉 = 𝐺(𝑤)�̅� (𝑤), 

 where 𝐺,𝐻 are entire functions. So we have |�̂�| = |𝐺�̅� | = |𝐺𝐻|. But �̂� is continuous and 

goes to 0 at ∞. and 𝐺𝐻 is entire. It follows that 𝐺𝐻 and hence �̂� is identically 0 from which 

it follows that 𝜎 ≡  0. 
 So we see that in any case 𝜎 ≡  0. This means that ⊿𝑢 ≡  0 and hence that 𝑓′�̅�′ ≡
 0 which implies that f is constant or g is constant. This finishes the proof of Proposition 

(3.2.7) and hence the proof of Theorem (3.2.1). 

       It is natural to ask if the hypothesis on ⊿̃𝑢 in Proposition (3.2.7) is necessary. Pursuing 

this question will lead us to the examples mentioned. The simplest question one could ask 

is: does there exist a function 𝑢 ∈  𝐿1 (𝐷) such that 𝑧𝑧̅ = 𝐵𝑢(𝑧)? The answer is yes, 

with 𝑢(𝜉) =  1 − 𝑙𝑜𝑔 1/|𝜉|2 . To see this we need to show that if 𝑣(𝜉) = 𝑙𝑜𝑔 1/|𝜉|2 then 

𝐵𝑣(𝑧) = 1 − |𝑧|2 . If we use the second of the two formulas given for 𝐵𝑣 we want to show 

that 

(1 − |𝑧|2 )2  ∫  
𝐷

𝑙𝑜𝑔 |𝜉|2

|1 − 𝜉̅𝑧 |
4  𝑑𝐴(𝜉) = |𝑧|

2 −  1. 

Since |1 – 𝜉̅ 𝑧|
−4
∑   
𝑛,𝑘  (𝑛 + 1)(𝑘 + 1)( 𝜉𝑧)𝑛 (𝜉𝑧)

𝑘 and since 𝑣 is radial we see that  

∫  
𝐷

𝑙𝑜𝑔 |𝜉|2

 |1 – 𝜉𝑧|
4  𝑑𝐴(𝜉) =∑ 

𝑛

  (𝑛 + 1)2    ∫  
𝐷

 |𝜉|2𝑛 log|𝜉|2 𝑑𝐴(𝜉)|𝑧|2𝑛. 

Now the integral in the right hand side of the above expression is easily calculated to 

be − 1/(𝑛 + 1)2 . So the sum on the right hand side of the above display is − 1/1 − |𝑧|2 . 
Multiplying by (1 − |𝑧|2 )2 we see that 𝐵𝑣(𝑧) = 1 − |𝑧|2 , as claimed. 

 But now if we recall the equivalence of (i) and (ii) of Proposition (3.2.6) we see that we 

have 
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𝑇𝑧𝑇𝑧̅ = 𝑇𝑢(𝑧) 

where 𝑢(𝑧) = 1 − 𝑙𝑜𝑔 1/|𝑧|2 . Of course 𝑢 is not bounded but it is nearly bounded so 

Proposition (3.2.6) applies. Now if we compose both sides of the above display on the right 

by 𝑇𝑧 we get 

 𝑇𝑧𝑇|𝑧|2 = 𝑇𝑧𝑢(𝑧).  

 This equation is of the form 𝑇𝑓𝑇𝑔 = 𝑇ℎ where 𝑓, g and ℎ are continuous on the closed disc 

but neither 𝑓 ̅nor 𝑔 is holomorphic. If we compose on the right again by 𝑇𝑧2  we get 

 𝑇𝑧𝑇�̅�𝑧3 = 𝑇𝑧3  𝑢(𝑧). 
 In this equation of the form 𝑇𝑓𝑇𝑔 = 𝑇ℎ , all three symbols have bounded invariant laplacian 

since they are all of class 𝐶2 in the closed disc but neither 𝑓 ̅nor 𝑔 is holomorphic. 

 Next we discuss the proofs of the corollaries. 

Corollary (3.2.11)[96]: 𝐼𝑓 𝑓, 𝑔 and h are bounded harmonic functions and 𝑇𝑓𝑇𝑔 = 𝑇ℎ then 

one of the following holds: 

 (i) 𝑓 and 𝑔 are holomorphic 

 (ii) 𝑓 and 𝑔 are conjugate holomorphic 

 (iii) 𝑓 is constant 

 (iv) 𝑔 is constant. 

Proof. Theorem (3.2.1) tells us that 𝑓 is conjugate holomorphic or g is holomorphic. 

Suppose 𝑔 is holomorphic then 𝑓𝑔 = ℎ. In particular, 𝑓𝑔 is harmonic. ⊿𝑓𝑔 =
𝜎𝑓

𝜎�̅�
 𝑔′. It 

follows that 𝑓 is holomorphic as well or that g is constant. If f is conjugate holomorphic the 

argument is similar. 

Corollary (3.2.12)[96]: If 𝑓 and g are bounded harmonic functions and 𝑇𝑓𝑇𝑔 = 0 then either 

𝑓 —  0 or 𝑔 —  0. 
Proof. By Theorem (3.2.1) 𝑓𝑔 = 0 in D and since f and g are harmonic one of them is 

identically 0. 

Corollary (3.2.2) follows from Corollary (3.2.12) since the hypothesis of Corollary (3.2.2) 

implies that 𝑇𝑓𝑇𝑔−ℎ = 0. Corollary (3.2.3) follows by observing that 𝐼 = 𝑇ℎ where ℎ is the 

constant function 1 and then applying Corollary (3.2.12). The proof of Corollary (3.2.4) is 

similar. To prove Corollary (3.2.5) we need only check that ⊿̃𝑓𝑔 ∈  𝐿∞. but this follows 

since 𝑓 and 𝑔 are bounded and harmonic. 
 

Section (3.3): Semicommutators of Toeplitz Operators with Harmonic Symbols 

       For 𝑑𝐴 denote Lebesgue area measure on the unit disk 𝐷, normalized so that the 

measure of 𝐷 equals 1. The Bergman space 𝐿𝑎
2  is the Hilbert space consisting of the analytic 

functions on 𝐷 that are also in 𝐿2(𝐷, 𝑑𝐴). For 𝑧 ∈  𝐷, the Bergman reproducing kernel is 

the function 𝐾𝑧  ∈  𝐿𝑎
2  such that 

ℎ(𝑧)  =  〈ℎ, 𝐾𝑧〉 
for every ℎ ∈  𝐿𝑎

2 . The normalized Bergman reproducing kernel 𝑘𝑧 is the function 

𝐾𝑧/‖𝐾𝑧‖2. Here the norm ‖ ‖2 and the inner product 〈  , 〉 are  taken in the space 

𝐿2(𝐷, 𝑑𝐴). 
       For 𝑓 ∈ 𝐿∞(𝐷, 𝑑𝐴), the Toeplitz operator 𝑇𝑓 with symbol 𝑓 is the operator on 𝐿𝑎

2  

defined by 𝑇𝑓ℎ =  𝑃(𝑓ℎ); here 𝑃 is the orthogonal projection from 𝐿2(𝐷, 𝑑𝐴) onto 𝐿𝑎
2 . We 

denote the semicommutator and commutator of two Toeplitz operators 𝑇𝑓 and 𝑇𝑔 by 

(𝑇𝑓 , 𝑇𝑔]  =  𝑇𝑓𝑔  −  𝑇𝑓𝑇𝑔 

and 
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[𝑇𝑓 , 𝑇𝑔]  =  𝑇𝑓𝑇𝑔  −  𝑇𝑔𝑇𝑓 

respectively. Note that if 𝑔 ∈  𝐻∞(𝐷) (the set of bounded analytic functions on 𝐷), then 𝑇𝑔 

is just the operator of multiplication by 𝑔 on 𝐿𝑎
2  and hence (𝑇𝑓 , 𝑇𝑔]  =  0 for any 𝑓 ∈

 𝐿∞(𝐷, 𝑑𝐴). 
       For a bounded operator 𝑆 on 𝐿𝑎

2 , the Berezin transform of 𝑆 is the function 𝐵(𝑆) on 𝐷 

defined by 

𝐵(𝑆)(𝑧)  =  〈𝑆𝑘𝑧, 𝑘𝑧〉. 
The Berezin transform 𝐵(𝑢)(𝑧) of a function 𝑢 ∈  𝐿∞(𝐷, 𝑑𝐴) is defined to be the Berezin 

transform of the Toeplitz operator 𝑇𝑢. In other words, 

𝐵(𝑢)(𝑧)  =  𝐵(𝑇𝑢)(𝑧)  = ∫ 𝑢 (
𝑧 − 𝑤

1 − 𝑧̅𝑤
) 𝑑𝐴(𝑤)

 

𝐷

. 

The last equality follows from the change of variable in the definition of the Berezin 

transform. The above integral formula extends the Berezin tranform to 𝐿1(𝐷, 𝑑𝐴) and clearly 

gives 

𝐵(𝑢)(𝑧) =  𝑢(𝑧)                                                              (17) 
for any harmonic function 𝑢 ∈  𝐿1(𝐷, 𝑑𝐴). 

       Let ∆ denote the Laplace operator 4
𝜕2

𝜕𝑧𝜕𝑧
.  A function ℎ on 𝐷 is harmonic if ∆ℎ(𝑧)  ≡  0 

on 𝐷. We use ∆̃ to denote the invariant Laplace operator (1 − |𝑧|2)2 4
𝜕2

𝜕𝑧𝜕�̅�
 . The invariant 

Laplace operator commutes with the Berezin transform [96], [103], which is useful in 

studying Toeplitz operators on the Bergman space [96]. 

       An operator 𝐴 on a Hilbert space 𝐻 is said to have finite rank if the closure of Ran (𝐴) 
of the range 𝐴(𝐻) of the operator has finite dimension. For a bounded operator 𝐴 on 𝐻, 

define 𝑟𝑎𝑛𝑘(𝐴)  =  𝑑𝑖𝑚 𝑅𝑎𝑛(𝐴). If 𝐴 has finite rank, then 𝑟𝑎𝑛𝑘(𝐴)  <  ∞. 
We study the problem for which bounded harmonic functions 𝑓, 𝑔 on the unit disk, 

the semicommutator (𝑇𝑓 , 𝑇𝑔] or commutator [𝑇𝑓 , 𝑇𝑔] has finite rank on the Bergman space. 

The analogous problem on the Hardy space has been completely solved in [93], [102]. We 

will reduce the problem to the problem of when a Toeplitz operator has finite rank. Although 

the problem on finite rank Toeplitz operators remains open, Ahern and Cuckovic [96] have 

shown that for 𝑢 ∈  𝐿∞(𝐷), if 𝑇𝑢 has rank one then 𝑢 =  0. One naturally conjectures that 

for 𝑢 ∈  𝐿∞(𝐷), if 𝑇𝑢 has finite rank, then 𝑢 =  0. We will show that this conjecture is true 

provided that 𝑢 is a finite sum of products of an analytic function and a co-analytic function 

in 𝐿2(𝐷, 𝑑𝐴). Using the result we shall completely characterize finite rank semicommutator 

or commutator of two Toeplitz operators with bounded harmonic symbols. The zero 

semicommutator or commutator of two Toeplitz operators with bounded harmonic symbols 

has been completely characterized in [101] and [105]. In fact, we shall show that if the 

semicommutator or commutator of two Toeplitz operators with bounded harmonic symbols 

has finite rank, then it must be zero. This is not the case on the Hardy space [93], [102]. 

Moreover on the Bergman space there exist nonzero compact semicommutators or 

commutators of two Toeplitz operators with bounded harmonic symbols [54], [105]. We 

will show that for two bounded harmonic functions 𝑓, 𝑔, if the product 𝑇𝑓 𝑇𝑔 has finite rank, 

then either 𝑓 or 𝑔 equals 0, which extends the result on the zero products of Toeplitz 

operators in [96]. 

We study Toeplitz operators with finite rank. For a family {𝐴𝑛} of operators on the 

Hilbert space 𝐻 and an operator 𝐴 on 𝐻, we say that 𝐴𝑛 converges to 𝐴 in weak operator 

topology, if for each 𝑥, 𝑦 ∈  𝐻, 
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lim
𝑛→
〈𝐴𝑛𝑥, 𝑦〉 = 〈𝐴𝑥, 𝑦〉. 

The following result is implicitly contained in [104]. We include a proof for completeness. 

Lemma (3.3.1)[100]: Suppose that 𝐴𝑛 and 𝐴 are bounded operators on the Hilbert space 𝐻. 

If 𝐴𝑛 converges to 𝐴 in the weak operator topology, then  

𝑟𝑎𝑛𝑘(𝐴) ≤ lim inf
𝑛→∞

𝑟𝑎𝑛𝑘(𝐴𝑛) . 

Proof. Let 𝑙 denote lim inf
𝑛→∞

𝑟𝑎𝑛𝑘(𝐴𝑛). We need only consider the case 𝑙 <  ∞. We claim 

that 𝑟𝑎𝑛𝑘(𝐴)  ≤  𝑙. If this is false, we may assume that 𝑟𝑎𝑛𝑘(𝐴)  ≥  𝑙 +  1. Thus there are 

(𝑙 +  1) elements {𝑥𝑗}𝑗=1
𝑙+1

 in 𝐻 such that {𝐴𝑥𝑗}𝑗=1
𝑙+1

 are linearly independent and so 

𝑑𝑒𝑡[〈𝐴𝑥𝑖 , 𝐴𝑥𝑗〉](𝑙+1)×(𝑙+1) ≠ 0 

where 𝑑𝑒𝑡[〈𝐴𝑥𝑖 , 𝐴𝑥𝑗〉](𝑙+1)×(𝑙+1) denotes the determinant of the (𝑙 + 1) × (𝑙 + 1) matrix 

[〈𝐴𝑥𝑖 , 𝐴𝑥𝑗〉](𝑙+1)×(𝑙+1). Since 𝐴𝑛 converges to 𝐴 in the weak operator topology, for each 𝑖, 𝑗, 

lim
𝑛→∞

〈𝐴𝑛𝑥𝑖 , 𝐴𝑥𝑗〉 = 〈𝐴𝑥𝑖 , 𝐴𝑥𝑗〉. 

This gives 

lim
𝑛→∞

𝑑𝑒𝑡[〈𝐴𝑛𝑥𝑖 , 𝐴𝑥𝑗〉](𝑙+1)×(𝑙+1) = 𝑑𝑒𝑡[
〈𝐴𝑥𝑖 , 𝐴𝑥𝑗〉](𝑙+1)×(𝑙+1). 

Thus for some large 𝑁,  

𝑑𝑒𝑡[〈𝐴𝑁𝑥𝑖 , 𝐴𝑥𝑗〉](𝑙+1)×(𝑙+1) ≠ 0,                                          (18) 

but     

𝑟𝑎𝑛𝑘(𝐴𝑁)  ≤  𝑙.                                                    (19) 
So (19) gives that there are constants 𝑐𝑖 with ∑ |𝑐𝑖|

𝑙+1
𝑖=1 ≠ 0 such that  

∑𝑐𝑖𝐴𝑁𝑥𝑖

𝑙+1

𝑖=1

= 0 

Hence 

𝑐[〈𝐴𝑁𝑥𝑖 , 𝐴𝑥𝑗〉](𝑙+1)×(𝑙+1) = 0 

where c =  (𝑐1, ⋯ , 𝑐𝑙+1). This implies 

[〈𝐴𝑁𝑥𝑖 , 𝐴𝑥𝑗〉](𝑙+1)×(𝑙+1) = 0. 

It contradicts (18) to complete the proof. 

Theorem (3.3.2)[100]: Suppose that 𝑓 is in 𝐿∞(𝐷) and equal to ∑ 𝑓𝑗(𝑧)𝑔𝑗(𝑧)̅̅ ̅̅ ̅̅ ̅𝑙
𝑗=1  for finitely 

many functions 𝑓𝑗(𝑧) and 𝑔𝑗(𝑧) analytic on the unit disk 𝐷. If 𝑇𝑓 has finite rank, then 𝑓 =

 0. 

Proof. First we will show that 𝑇|𝑓|2 has finite rank. To do so, for each 0 < 𝑟 <  1, define 

𝑓𝑟(𝑧)  =  𝑓(𝑟𝑧). Let 𝑔𝑟  =  𝑓�̅�. Since 

𝑓(𝑧)  =∑𝑓𝑗(𝑧)𝑔𝑗(𝑧)̅̅ ̅̅ ̅̅ ̅

𝑙

𝑗=1

 

for finitely many functions 𝑓𝑗(𝑧) and 𝑔𝑗(𝑧) in 𝐿𝑎
2 , we have 

𝑇𝑓𝑔𝑟 = 𝑇𝑓(∑ 𝑓𝑗(𝑟𝑧)𝑔𝑗(𝑟𝑧)̅̅ ̅̅ ̅̅ ̅̅ ̅𝑙
𝑗=1 )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ =∑𝑇𝑓𝑓𝑗(𝑟𝑧)̅̅ ̅̅ ̅̅ ̅̅ ̅𝑔𝑗(𝑟𝑧)

𝑙

𝑗=1

=∑𝑇𝑓𝑗(𝑟𝑧)̅̅ ̅̅ ̅̅ ̅̅ ̅𝑇𝑓𝑇𝑔𝑗(𝑟𝑧)

𝑙

𝑗=1

. 

The last equality follows from the basic properties of Toeplitz operators [43] 

𝑇ℎ̅𝑇𝑓 = 𝑇ℎ̅𝑓 
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and 

𝑇𝑓 𝑇ℎ  =  𝑇𝑓ℎ , 

for 𝑓 ∈  𝐿∞(𝐷, 𝑑𝐴) and ℎ ∈  𝐻∞(𝐷). If 𝑇𝑓 has finite rank and 𝑟𝑎𝑛𝑘(𝑇𝑓)  =  𝑁, then for 

each 0 <  𝑟 <  1, 

𝑟𝑎𝑛𝑘(𝑇𝑓𝑔𝑟)  ≤  𝑁𝑙. 

Thus 

lim sup
𝑟→1

𝑟𝑎𝑛𝑘(𝑇𝑓𝑔𝑟) ≤  𝑁𝑙. 

Next we shall show that 𝑇𝑓𝑔𝑟 converges to 𝑇|𝑓|2 in the weak operator topology. To do this, 

we observe that for each 𝑧 ∈  𝐷, 

|𝑓(𝑧)𝑔𝑟(𝑧)|  =  |𝑓(𝑧)𝑓(𝑟𝑧)|  ≤  ‖𝑓‖∞
2 , 

and 

lim
𝑟→1−

𝑓(𝑧)𝑔𝑟(𝑧) = |𝑓(𝑧)|
2. 

By the dominant convergence theorem we have that for ℎ1, ℎ2  ∈  𝐿𝑎
2 , 

lim
𝑟→1−

∫𝑓(𝑧)𝑔𝑟(𝑧)ℎ1(𝑧)ℎ2(𝑧)̅̅ ̅̅ ̅̅ ̅𝑑𝐴(𝑧)
 

𝐷

 = ∫ |𝑓(𝑧)|2ℎ1(𝑧)ℎ2(𝑧)̅̅ ̅̅ ̅̅ ̅𝑑𝐴(𝑧)
 

𝐷

, 

to obtain 

lim
𝑟→1−

〈𝑇𝑓𝑔𝑟ℎ1, ℎ2〉 = lim
𝑟→1−

〈𝑓𝑔𝑟ℎ1, ℎ2〉 

= lim
𝑟→1−

∫𝑓(𝑧)𝑔𝑟(𝑧)ℎ1(𝑧)ℎ2(𝑧)̅̅ ̅̅ ̅̅ ̅𝑑𝐴(𝑧)
 

𝐷

 

= ∫|𝑓(𝑧)|2ℎ1(𝑧)ℎ2(𝑧)̅̅ ̅̅ ̅̅ ̅𝑑𝐴(𝑧)
 

𝐷

 

= 〈𝑇|𝑓|2ℎ1, ℎ2〉. 

This means that 𝑇𝑓𝑔𝑟 converges to 𝑇|𝑓|2 in weak operator topology. By Lemma (3.3.1), we 

have that the Toeplitz operator 𝑇|𝑓|2 with nonnegative function symbol has finite rank and 

its rank is at most 𝑁𝑙. 
       To finish the proof we need to prove that if the Toeplitz operator with nonnegative 

function symbol has finite rank, it must be zero. This was well known. For completeness, 

we include a proof here. Since 𝑇|𝑓|2 has finite rank, the kernel of 𝑇|𝑓|2 contains a nonzero 

function ℎ ∈  𝐿𝑎
2 . Thus 

0 = 〈𝑇|𝑓|2ℎ, ℎ〉 

= 〈|𝑓|2ℎ, ℎ〉 

= ∫|𝑓(𝑧)|2|ℎ(𝑧)|2𝑑𝐴(𝑧)
 

𝐷

 

and so 

|𝑓(𝑧)|2|ℎ(𝑧)|2  =  0 
for a.e. 𝑧 ∈  𝐷. Noting that ℎ(𝑧) is in the Bergman space, we conclude that 𝑓 =  0 in 

𝐿∞(𝐷, 𝑑𝐴) to complete the proof. 

       For 𝑓 ∈  𝐿∞(𝐷, 𝑑𝐴), the Hankel operator 𝐻𝑓 with symbol 𝑓 is the operator on 𝐿𝑎
2  

defined by 𝐻𝑓ℎ = (𝐼 − 𝑃)(𝑓ℎ); here 𝑃 is the orthogonal projection from 𝐿2(𝐷, 𝑑𝐴) onto 

𝐿𝑎
2 . The relation between Toeplitz operators and Hankel operators is established by the 

following well-known identity: 

(𝑇𝑓 , 𝑇𝑔]  =  𝐻𝑓̅
∗𝐻𝑔 . 



129 

We shall reduce the problem of when a finite sum of products of two Hankel operators 

has finite rank to the problem of when a Toeplitz operator has finite rank. 

       For each bounded harmonic function 𝑓 on the unit disk, 𝑓 can be written uniquely as a 

sum of an analytic function and a co-analytic function on the unit disk 𝐷 up to a constant. 

Let 𝑓+ denote the analytic part and 𝑓− the co-analytic part with 𝑓−(0)  =  0. In fact, both 𝑓+ 

and 𝑓−̅ are in both the Hardy space 𝐻2 and the Bloch space [43], [49]. 

       For bounded harmonic functions 𝑓𝑖 and 𝑔𝑖 on the unit disk for 𝑖 =  1,⋯ , 𝑘, define 

𝜎(𝑓1, ⋯ , 𝑓𝑘;  𝑔1⋯ ,𝑔𝑘)  = �̃�[∑(𝑓𝑖)−

𝑘

𝑖=1

(𝑔𝑖)+]. 

For two bounded harmonic functions 𝑓 and 𝑔 on the unit disk, let 𝜎𝑠𝑐(𝑓, 𝑔) denote 𝜎(𝑔;  𝑓) 
and 𝜎𝑐(𝑓, 𝑔) denote 𝜎(𝑓,−𝑔;  𝑔, 𝑓). Easy calculations give 

𝜎(𝑓1, ⋯ , 𝑓𝑘;  𝑔1⋯ ,𝑔𝑘)  = (1 − |𝑧|
2)2∑(𝑓𝑖)−

′

𝑘

𝑖=1

(𝑔𝑖)+
′                      (20) 

where (𝑓𝑖)−
′ = 𝜕�̅�𝑓𝑖. Hence         

𝜎𝑠𝑐(𝑓, 𝑔) =  �̃�(𝑓+𝑔−) 
= (1 − |𝑧|2)2(𝜕𝑧𝑓)(𝜕�̅�𝑔) 
= (1 − |𝑧|2)𝑓+

′(𝑧)(1 − |𝑧|2)𝑔−
′ (𝑧), 

𝜎𝑐(𝑓, 𝑔)  =  �̃�[𝑓−𝑔+ − 𝑓+𝑔−] 
= (1 − |𝑧|2)2[(𝜕�̅�𝑓)(𝜕𝑧𝑔) − (𝜕𝑧𝑓)(𝜕�̅�𝑔)] 

= (1 − |𝑧|2)𝑓−
′(𝑧)(1 − |𝑧|2)𝑔+

′ (𝑧) − (1 − |𝑧|2)𝑓+
′(𝑧)(1 − |𝑧|2)𝑔−

′ (𝑧). 
Lemma (3.3.3)[100]: Suppose that 𝑓𝑖 and 𝑔𝑖 are bounded harmonic functions on the unit 

disk for 𝑖 =  1,⋯ , 𝑘. Then 𝜎(𝑓1, ⋯ , 𝑓𝑘;  𝑔1, ⋯ , 𝑔𝑘) is in 𝐿∞(𝐷, 𝑑𝐴). 

Proof. Since 𝑓𝑖 and 𝑔𝑖 are bounded harmonic functions on the unit disk, (𝑓𝑖)+, (𝑓𝑖)−̅̅ ̅̅ ̅̅ , (𝑔𝑖)+ 

and (𝑔𝑖)−̅̅ ̅̅ ̅̅ ̅ are in the Bloch space 

𝐵 = {ℎ ∶  ℎ analytic on 𝐷, sup
𝑧∈𝐷
(1 − |𝑧|2)|ℎ′(𝑧)|  <  ∞} 

 (see [43]). (20) gives that 𝜎(𝑓1, ⋯ , 𝑓𝑘;  𝑔1, ⋯ , 𝑔𝑘) is in 𝐿∞(𝐷, 𝑑𝐴). 
Proposition (3.3.4)[100]: Suppose that 𝑓𝑖 and 𝑔𝑖 are bounded harmonic functions on 𝐷 for 

𝑖 =  1,⋯ , 𝑘.  If the finite sum ∑ 𝐻𝑔𝑗̅̅ ̅
∗ 𝐻𝑓𝑗

𝑘
𝑗=1  of products of Hankel operators has finite rank, 

then 𝑇𝜎(𝑓1,⋯,𝑓𝑘; 𝑔1,⋯,𝑔𝑘) has finite rank.  

Proof. For these bounded harmonic functions 𝑓𝑖 , 𝑔𝑖 on the unit disk, write  

𝑓𝑖 = (𝑓𝑖)+ + (𝑓𝑖)− 
and 

𝑔𝑖 = (𝑔𝑖)+ + (𝑔𝑖)−, 

where (𝑓𝑖)+, (𝑔𝑖)+, (𝑓𝑖)−̅̅ ̅̅ ̅̅ , and (𝑔𝑖)−̅̅ ̅̅ ̅̅ ̅ are in the Hardy space 𝐻2. By Lemma (3.3.3), 

𝜎(𝑓1, ⋯ , 𝑓𝑘;  𝑔1, ⋯ , 𝑔𝑘)(𝑧) is in 𝐿∞(𝐷, 𝑑𝐴). Thus 𝑇𝜎(𝑓1,⋯,𝑓𝑘; 𝑔1,⋯,𝑔𝑘) is bounded on the 

Bergman space 𝐿𝑎
2 . 

       We shall get the Berezin transform of ∑ 𝐻𝑔𝑗̅̅ ̅
∗ 𝐻𝑓𝑗

𝑘
𝑗=1 . First we calculate the Berezin 

transform of 𝐵((𝑇𝑓 , 𝑇𝑔])(𝑧) of the semicommutator (𝑇𝑓 , 𝑇𝑔]. By the basic properties of 

Toeplitz operators on the Bergman space [43], [14], we have 

𝑇𝑓𝑘𝑧  =  (𝑓+ + 𝑓−(𝑧))𝑘𝑧, 

for 𝑧 ∈  𝐷. Since 𝑓 is harmonic in the unit disk, we also have  

𝐵(𝑓)(𝑧)  =  𝑓(𝑧). 
For two bounded harmonic functions 𝑓, 𝑔 on 𝐷, easy calculations give  
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𝐵((𝑇𝑓 , 𝑇𝑔])(𝑧)  =  𝐵(𝑇𝑓𝑔 − 𝑇𝑓𝑇𝑔)(𝑧) 

= 〈𝑓𝑔𝑘𝑧, 𝑘𝑧〉 − 〈(𝑔+ + 𝑔−(𝑧))𝑘𝑧, 𝑓�̅�𝑧〉 

= 〈[𝑓𝑔 − 𝑓(𝑔+ + 𝑔−(𝑧))]𝑘𝑧, 𝑘𝑧〉 

= 〈[𝑓(𝑔− − 𝑔−(𝑧))]𝑘𝑧, 𝑘𝑧〉 

= 〈[𝑓+𝑔− + 𝑓−𝑔− − 𝑓𝑔−(𝑧)]𝑘𝑧, 𝑘𝑧〉 
= 〈𝑓+𝑔−𝑘𝑧, 𝑘𝑧〉 + 〈𝑓−𝑔−𝑘𝑧, 𝑘𝑧〉 − 𝑔−(𝑧)〈𝑓𝑘𝑧, 𝑘𝑧〉 
= 𝐵(𝑓+𝑔−)(𝑧) + 𝑓−(𝑧)𝑔−(𝑧) − 𝑔−(𝑧)𝐵(𝑓)(𝑧) 
= 𝐵(𝑓+𝑔−)(𝑧) + 𝑓−(𝑧)𝑔−(𝑧) − 𝑔−(𝑧)𝑓(𝑧) 

= 𝐵(𝑓+𝑔−)(𝑧) + 𝑓−(𝑧)𝑔−(𝑧) − 𝑔−(𝑧)(𝑓+(𝑧) + 𝑓−(𝑧)) 

= 𝐵(𝑓+𝑔−)(𝑧) − 𝑓+(𝑧)𝑔−(𝑧) 
for all 𝑧 ∈  𝐷. Noting 

(𝑇𝑓 , 𝑇𝑔]  =  𝐻𝑓̅
∗𝐻𝑔 , 

we have            

𝐵(𝐻𝑓̅
∗𝐻𝑔)(𝑧) = 𝐵(𝑓+𝑔−)(𝑧) − 𝑓+(𝑧)𝑔−(𝑧). 

Thus 

𝐵(∑𝐻𝑔𝑗̅̅ ̅
∗ 𝐻𝑓𝑗

𝑘

𝑗=1

)(𝑧) = 𝐵(∑(𝑔𝑗)+(𝑓𝑗)−

𝑘

𝑗=1

)(𝑧) −∑(𝑔𝑗)+(𝑧)(𝑓𝑗)−(𝑧)

𝑘

𝑗=1

. 

Applying the invariant Laplace operator ∆̃ to both sides of the above equation gives 

∆̃𝐵(∑𝐻𝑔𝑗̅̅ ̅
∗ 𝐻𝑓𝑗

𝑘

𝑗=1

)(𝑧) 

= [∆̃𝐵(∑(𝑔𝑗)+(𝑓𝑗)−

𝑘

𝑗=1

)](𝑧) − [∆̃∑(𝑔𝑗)+(𝑧)(𝑓𝑗)−(𝑧)

𝑘

𝑗=1

]. 

Since the invariant Laplace operator commutes with the Berezin transform [96], we have 

𝐵(𝜎(𝑓1, ⋯ , 𝑓𝑘;  𝑔1, ⋯ , 𝑔𝑘))(𝑧) = (1 − |𝑧|
2)2[∑(𝑔𝑗)+

′ (𝑓𝑗)−
′ (𝑧)

𝑘

𝑗=1

] + ∆̃𝐵(∑𝐻𝑔𝑗̅̅ ̅
∗ 𝐻𝑓𝑗

𝑘

𝑗=1

)(𝑧) 

In other words, the above equality becomes       

〈𝑇𝜎(𝑓1,⋯,𝑓𝑘; 𝑔1,⋯,𝑔𝑘)𝑘𝑧, 𝑘𝑧〉 = 𝐵(𝜎(𝑓1, ⋯ , 𝑓𝑘;  𝑔1, ⋯ , 𝑔𝑘))(𝑧) 

= (1 − |𝑧|2)2[∑(𝑔𝑗)+
′ (𝑧)(𝑓𝑗)−

′ (𝑧)

𝑘

𝑗=1

] + ∆̃𝐵(∑𝐻𝑔𝑗̅̅ ̅
∗ 𝐻𝑓𝑗

𝑘

𝑗=1

)(𝑧). 

For two functions 𝑥 and 𝑦 in 𝐿𝑎
2 , define the operator 𝑥 ⊗  𝑦 of rank one to be 

(𝑥 ⊗  𝑦)𝑓 =  〈𝑓, 𝑦〉𝑥 
for 𝑓 ∈  𝐿𝑎

2 . Then it is easy to verify 

𝐵(𝑥 ⊗  𝑦)(𝑧)  =  〈(𝑥 ⊗  𝑦)𝑘𝑧, 𝑘𝑧〉 
= (1 − |𝑧|2)2〈(𝑥 ⊗  𝑦)𝑘𝑧, 𝑘𝑧〉 
= (1 − |𝑧|2)2〈𝑘𝑧, 𝑦〉〈𝑥, 𝑘𝑧〉 
= (1 − |𝑧|2)2𝑥(𝑧)𝑦(𝑧)̅̅ ̅̅ ̅̅ , 

for 𝑧 ∈ 𝐷. If the semicommutator ∑ 𝐻𝑔𝑗̅̅ ̅
∗ 𝐻𝑓𝑗

𝑘
𝑗=1  has finite 𝑟𝑎𝑛𝑘 𝑁, then there exist functions 

𝑥𝑗 and 𝑦𝑗 in 𝐿𝑎
2  for 𝑗 = 1,… ,𝑁 such that    
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∑𝐻𝑔𝑗̅̅ ̅
∗ 𝐻𝑓𝑗

𝑘

𝑗=1

=∑𝑥𝑗⊗𝑦𝑗

𝑁

𝑗=1

. 

Thus             

𝐵(∑𝐻𝑔𝑗̅̅ ̅
∗ 𝐻𝑓𝑗

𝑘

𝑗=1

) (𝑧)  =  (1 − |𝑧|2)2(∑𝑥𝑗(𝑧)𝑦𝑗(𝑧)̅̅ ̅̅ ̅̅ ̅
𝑁

𝑗=1

). 

Observe            

(1 − |𝑧|2)2(∑𝑥𝑗(𝑧)𝑦𝑗(𝑧)̅̅ ̅̅ ̅̅ ̅
𝑁

𝑗=1

) = (∑𝑥𝑗(𝑧)�̂�𝑗(𝑧)̅̅ ̅̅ ̅̅ ̅
3𝑁

𝑗=1

) 

where 𝑥𝑗 and �̂�𝑗 are in the Bergman space 𝐿𝑎
2  . So 

〈𝑇𝜎(𝑓1,⋯,𝑓𝑘; 𝑔1,⋯,𝑔𝑘)𝑘𝑧, 𝑘𝑧〉 

= (1 − |𝑧|2)2[∑(𝑔𝑗)+
′ (𝑧)(𝑓𝑗)−

′ (𝑧)

𝑘

𝑗=1

] + (1 − |𝑧|2)2(∑𝑥𝑗
′(𝑧)�̂�𝑗

′(𝑧)̅̅ ̅̅ ̅̅ ̅
3𝑁

𝑗=1

) 

Dividing by (1 − |𝑧|2)2, we obtain 

〈𝑇𝜎(𝑓1,⋯,𝑓𝑘; 𝑔1,⋯,𝑔𝑘)𝐾𝑧, 𝐾𝑧〉 =∑(𝑔𝑗)+
′ (𝑧)(𝑓𝑗)−

′ (𝑧)

𝑘

𝑗=1

+ (∑𝑥𝑗
′(𝑧)�̂�𝑗

′(𝑧)̅̅ ̅̅ ̅̅ ̅
3𝑁

𝑗=1

).                 (21) 

As in [96] we complexify the above identity. Write the left hand side as an integral as in 

[96] to get 

〈𝑇𝜎(𝑓1,⋯,𝑓𝑘; 𝑔1,⋯,𝑔𝑘)𝐾𝑧, 𝐾𝑧〉 = ∫𝜎(𝑓1, ⋯ , 𝑓𝑘;  𝑔1, ⋯ , 𝑔𝑘)(𝜆)
 

𝐷

1

|1 − �̃�𝜆|4
𝑑𝐴(𝜆). 

Since the right hand side of (21) and the above integral are real analytic functions of 𝑧 and 

𝑧̅ we obtain 

〈𝑇𝜎(𝑓1,⋯,𝑓𝑘; 𝑔1,⋯,𝑔𝑘)𝐾𝑤, 𝐾𝑧〉 =∑(𝑔𝑗)+
′ (𝑧)(𝑓𝑗)−

′ (𝑤)

𝑘

𝑗=1

+ (∑𝑥𝑗
′(𝑧)�̂�𝑗

′(𝑤)̅̅ ̅̅ ̅̅ ̅̅
3𝑁

𝑗=1

). 

Differentiating both sides of the above equation 𝑙 times with respect to �̅� and then letting 

𝑤 =  0 give 

𝑇𝜎(𝑓1,⋯,𝑓𝑘; 𝑔1,⋯,𝑔𝑘)𝑧
𝑙  = ∑𝑎𝑙𝑗(𝑔𝑗)+

′ (𝑧)

𝑘

𝑗=1

+∑𝑏𝑙𝑗𝑥𝑗
′(𝑧)

3𝑁

𝑗=1

                     (22) 

for some constants 𝑎𝑙𝑗 , 𝑏𝑙𝑗. 

Although some of (𝑔𝑗)+
′  and 𝑥𝑗

′ may not be in 𝐿𝑎
2 , we observe that for each 0 <  𝑟 <  1, all 

of (𝑔𝑗)+
′
|𝑟𝐷 for 𝑗 =  1, … , 𝑘 and 𝑥𝑗

′|𝑟𝐷 for 𝑗 =  1,… , 3𝑁 are in 𝐿𝑎
2 (𝑟𝐷, 𝑑𝐴). 

𝑇𝜎(𝑓1,⋯,𝑓𝑘; 𝑔1,⋯,𝑔𝑘) ℎ𝑎𝑠 𝑓𝑖𝑛𝑖𝑡𝑒 𝑟𝑎𝑛𝑘 𝑜𝑛 𝑡ℎ𝑒 𝐵𝑒𝑟𝑔𝑚𝑎𝑛 𝑠𝑝𝑎𝑐𝑒 𝐿𝑎
2 . 

If this claim is false, we may assume that there are 3𝑁 +  𝑘 +  1 linearly independent 

functions {𝜙µ}µ=1
3𝑁+𝑘+1 in the range of 𝑇𝜎(𝑓1,⋯,𝑓𝑘; 𝑔1,⋯,𝑔𝑘). Thus for each 0 <  𝑟 <

 1, {𝜙µ|𝑟𝐷
}µ=1
3𝑁+𝑘+1 are also linearly independent in the space 𝐿𝑎

2 (𝑟𝐷, 𝑑𝐴). Since analytic 

polynomials are dense in 𝐿𝑎
2 , for each µ, there are analytic polynomials 𝑝µ𝑙 such that 

𝑇𝜎(𝑓1,⋯,𝑓𝑘; 𝑔1,⋯,𝑔𝑘)𝑝µ𝑙 converges to 𝜙µ. Thus 𝑇𝜎(𝑓1,⋯,𝑓𝑘; 𝑔1,⋯,𝑔𝑘)𝑝µ𝑙 converges uniformly to 𝜙µ 

on each compact subset of the unit disk 𝐷. Noting that 𝑟𝐷 is contained in a compact subset 

of the unit disk, we have 
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lim
𝑙→∞

∫ |𝑇𝜎(𝑓1,⋯,𝑓𝑘; 𝑔1,⋯,𝑔𝑘)𝑝µ𝑙(𝑧) − 𝜙µ(𝑧)|
2

 

𝑟𝐷

𝑑𝐴(𝑧)  =  0. 

On the other hand, (22) gives that 𝑇𝜎(𝑓1,⋯,𝑓𝑘; 𝑔1,⋯,𝑔𝑘)𝑝µ𝑙|𝑟𝐷
 is contained in the subspace 

spanned by (𝑔𝑗)+
′
|𝑟𝐷 and 𝑥𝑗

′|𝑟𝐷 of 𝐿𝑎
2 (𝑟𝐷, 𝑑𝐴). But the subspace has dimension at most 

3𝑁 +  𝑘. This contradicts that {𝜙µ|𝑟𝐷
}µ=1
3𝑁+𝑘+1 are also linearly independent and hence gives 

that 𝑇𝜎(𝑓1,⋯,𝑓𝑘; 𝑔1,⋯,𝑔𝑘) has finite rank to complete the proof. 

Theorem (3.3.5)[100]: Suppose that 𝑓 and 𝑔 are bounded harmonic functions on the unit 

disk. The semicommutator (𝑇𝑓 , 𝑇𝑔] has finite rank if and only if either 𝑓 ̅or 𝑔 is analytic on 

the unit disk. 

Proof. If either 𝑓 ̅ or g is analytic on the unit disk, then 𝑇𝑓𝑇𝑔  =  𝑇𝑓𝑔 and so the semi 

commutator (𝑇𝑓 , 𝑇𝑔] equals 0. 

If the semicommutator (𝑇𝑓 , 𝑇𝑔] has finite rank, noting 

(𝑇𝑓 , 𝑇𝑔]  =  𝐻𝑓̅
∗𝐻𝑔 

by Proposition (3.3.4), the Toeplitz operator 𝑇_𝜎𝑠𝑐(𝑓, 𝑔) has finite rank. Since 

𝜎𝑠𝑐(𝑓, 𝑔)(𝑧) =  (1 − |𝑧|
2)2𝑓+

′(𝑧)𝑔−
′ (𝑧) 

= 𝑓+
′(𝑧)𝑔−

′ (𝑧)  −  2𝑧𝑓+
′(𝑧)𝑔−

′ (𝑧)𝑧̅ + 𝑧2𝑓+
′(𝑧)𝑔−

′ (𝑧)𝑧̅2, 
Theorem (3.3.2) gives that for 𝑧 ∈  𝐷, 

𝜎𝑠𝑐(𝑓, 𝑔)(𝑧)  =  (1 −  |𝑧|
2)2𝑓+

′(𝑧)𝑔−
′ (𝑧)  ≡  0. 

This implies 

𝑓+
′(𝑧)𝑔−

′ (𝑧)  ≡  0 
on 𝐷. Thus either 𝑓+ or 𝑔− is constant on 𝐷. So we conclude that either 𝑓 ̅or 𝑔 is analytic on 

𝐷 to complete the proof. 

Theorem (3.3.6)[100]: Suppose that 𝑓 and 𝑔 are bounded harmonic functions on the unit 

disk. The commutator [𝑇𝑓 , 𝑇𝑔] has finite rank if and only if 𝑓 and 𝑔 are both analytic on 𝐷, 

or 𝑓 ̅and �̅� are both analytic on 𝐷, or there are constants 𝑐1, 𝑐2, not both 0 such that 𝑐1𝑓 +
 𝑐2𝑔 is constant on 𝐷. 

Proof. If 𝑓 and 𝑔 are both analytic on 𝐷, both 𝑇𝑓 and 𝑇𝑔 are multiplication operators on the 

Bergman space and then they are commuting. Hence the commutator [𝑇𝑓 , 𝑇𝑔] equals 0. 

       If 𝑓 ̅and �̅� are both analytic on 𝐷, both 𝑇𝑓 and 𝑇𝑔 are adjoints of multiplication operators 

on the Bergman space and then they are commuting. Hence the commutator [𝑇𝑓 , 𝑇𝑔] equals 

0. 
       If there are constants 𝑐1, 𝑐2, not both 0 such that 𝑐1𝑓 + 𝑐2𝑔 is constant on 𝐷, noting 

that the Toeplitz operator with constant symbol commutes with any bounded operator on 

the Bergman space, we have that 𝑇𝑓 commutes with 𝑇𝑔 to obtain that the commutator 

[𝑇𝑓 , 𝑇𝑔] equals 0. 

Conversely, if the commutator [𝑇𝑓 , 𝑇𝑔] has finite rank, noting  

[𝑇𝑓 , 𝑇𝑔] = 𝑇𝑓 𝑇𝑔  −  𝑇𝑔𝑇𝑓 

= (𝑇𝑔𝑓  −  𝑇𝑔𝑇𝑓)  − (𝑇𝑓𝑔  −  𝑇𝑓𝑇𝑔)  

= (𝑇𝑔, 𝑇𝑓]  −  (𝑇𝑓 , 𝑇𝑔] 

= 𝐻�̅�
∗𝐻𝑓 −𝐻𝑓̅

∗𝐻𝑔, 

we have that 𝐻�̅�
∗𝐻𝑓 −𝐻𝑓̅

∗𝐻𝑔 has also finite rank. Lemma (3.3.3) gives that 𝜎𝑐(𝑓, 𝑔) is 

bounded on 𝐷, and easy calculations give 

𝜎𝑐(𝑓, 𝑔)(𝑧) = (1 − |𝑧|
2)2[𝑓−

′(𝑧)𝑔+
′ (𝑧) − 𝑓+

′(𝑧)𝑔−
′ (𝑧)] 
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= 𝑓−
′(𝑧)𝑔+

′ (𝑧) − 𝑓+
′(𝑧)𝑔−

′ (𝑧) − 2𝑧̅𝑓−
′(𝑧)𝑔+

′ (𝑧)𝑧 
+2𝑧𝑓+

′(𝑧)𝑔−
′ (𝑧)𝑧̅ + 𝑧̅2𝑓−

′(𝑧)𝑔+
′ (𝑧)𝑧2 − 𝑧2𝑓+

′(𝑧)𝑔−
′ (𝑧)𝑧̅2. 

Thus Theorem (3.3.2) and Proposition (3.3.4) give that 𝜎𝑐(𝑓, 𝑔)(𝑧)  ≡  0 on the unit disk. 

       Let 𝑢 =  𝑔+ + 𝑖𝑔− and 𝑣 =  𝑖𝑓+ + 𝑓−. Clearly, 𝑢 and 𝑣 are harmonic on 𝐷. 

An easy calculation gives 

�̃�(𝑢𝑣)  =  �̃�[𝑔+𝑓− − 𝑓+𝑔− + 𝑖𝑔+𝑓+ + 𝑖𝑔−𝑓−]�̃�[𝑔+𝑓− − 𝑓+𝑔−] 
= (1 − |𝑧|2)2[𝑓−

′(𝑧)𝑔+
′ (𝑧) − 𝑓+

′(𝑧)𝑔−
′ (𝑧)] 

= 𝜎𝑐(𝑓, 𝑔)(𝑧). 
Thus 𝑢𝑣 is also harmonic on 𝐷. By Lemma 4.2 [45], we have that at least one of the 

following conditions holds 

   (i) 𝑢 and 𝑣 are both analytic on 𝐷; 

   (ii) �̅� and �̅� are both analytic on 𝐷; 

   (iii) there exist complex numbers 𝛼, 𝛽, not both 0, such that 𝛼𝑢 +  𝛽𝑣 and �̅��̅� − �̅��̅� are 

both analytic on 𝐷. 

Condition (i) gives that 𝑓 and 𝑔 are both analytic on 𝐷. Condition (ii) gives that 𝑓 ̅and �̅� are 

analytic on 𝐷. Condition (iii) gives that 𝛼(𝑔+ + 𝑖𝑔−) + 𝛽(𝑖𝑓+ + 𝑓−) and �̅�(𝑔+ + 𝑖𝑔−̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ) −

�̅�(𝑖𝑓+ + 𝑓−̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ) are both analytic on 𝐷. Thus 𝛼𝑖𝑔−  +  𝛽𝑓− and �̅�𝑔+̅̅̅̅  −  �̅�𝑖𝑓+̅̅ ̅̅  are constants on 

𝐷, and so 𝛼𝑔− − 𝛽𝑖𝑓−and 𝛼𝑔+ − 𝛽𝑖𝑓+ are constants on 𝐷. Hence we conclude   
𝛼𝑔 −  𝑖𝛽𝑓 =  (𝛼𝑔− − 𝑖𝛽𝑓−) + (𝛼𝑔+ − 𝛽𝑖𝑓+) 

is constant on 𝐷. This completes the proof.   

Theorem (3.3.7)[100]: Suppose that 𝑓 and 𝑔 are bounded harmonic functions on the unit 

disk. 𝑇𝑓𝑇𝑔 has finite rank if and only if either 𝑓 or 𝑔 equals 0. 

Proof. It is clear that if either 𝑓 or 𝑔 equals 0, then 𝑇𝑓𝑇𝑔  =  0. 

Conversely, if 𝑇𝑓𝑇𝑔 has finite rank, we shall show that either 𝑓 or 𝑔 equals 0. An easy 

calculation gives 

𝐵(𝑇𝑓𝑇𝑔)(𝑧)  =  𝐵(𝑓𝑔)(𝑧)  −  𝐵(𝑓+𝑔−)(𝑧)  + 𝑓+(𝑧)𝑔−(𝑧).                     (23) 

Applying the invariant Laplace operator Δ̃ to both sides of the above equation gives 

[Δ̃𝐵(𝑇𝑓𝑇𝑔)](𝑧)  = Δ̃𝐵(𝑓𝑔 − 𝑓+𝑔−)(𝑧)  + Δ̃[𝑓+(𝑧)𝑔−(𝑧)]. 

Since the invariant Laplace operator commutes with the Berezin transform (Lemma (3.3.1), 

[96]), we have 

𝐵(Δ̃(𝑓𝑔 − 𝑓+𝑔−))(𝑧)  =  [Δ̃𝐵(𝑇𝑓𝑇𝑔)](𝑧)  − Δ̃[𝑓+(𝑧)𝑔−(𝑧)]. 

As in the proof of Proposition (3.3.4), the Toeplitz operator 𝑇Δ̃(𝑓𝑔 − 𝑓+𝑔−) has finite rank. 

Theorem (3.3.2) gives that Δ̃(𝑓𝑔 − 𝑓+𝑔−) ≡  0. This implies that 𝑓𝑔 − 𝑓+𝑔− is harmonic 

and 𝑓−
′(𝑧)𝑔+

′ (𝑧)  =  0 on 𝐷. Thus either 𝑓− or 𝑔+ is constant and hence either 𝑓 or �̅� is 

analytic on 𝐷. 

On the other hand, since 𝑓𝑔 − 𝑓+𝑔− is harmonic (23) gives 

𝐵(𝑇𝑓𝑇𝑔)(𝑧)  =  𝑓(𝑧)𝑔(𝑧). 

By the main result of [46], 

lim
|𝑧|→1

𝐵(𝑇𝑓𝑇𝑔)(𝑧)  =  0 . 

Because the radial limits of both 𝑓 and 𝑔 exist on the unit circle, we have that 𝑓(𝑧)𝑔(𝑧)  ≡
 0 on the unit circle and then either 𝑓 or 𝑔 equals 0 on the unit circle. Hence 𝑓 or 𝑔 equals 

0 on the unit disk. This completes the proof. 

Theorem (3.3.8)[100]: Suppose that 𝑓𝑖 and 𝑔𝑖 are bounded harmonic functions on 𝐷 for 

𝑖 =  1,… , 𝑘. The following are equivalent  
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    (i) ∑ 𝐻𝑔𝑗̅̅ ̅
∗ 𝐻𝑓𝑗

𝑘
𝑗=1  has finite rank.  

    (ii) ∑ 𝐻𝑔𝑗̅̅ ̅
∗ 𝐻𝑓𝑗

𝑘
𝑗=1 =  0. 

    (iii) 𝜎(𝑓1, … , 𝑓𝑘;  𝑔1, … , 𝑔𝑘)  ≡  0 

Proof. It is clear that (ii) implies (i). 

First we prove that (i) implies (iii). Proposition (3.3.4) immediately gives that 

𝑇𝜎(𝑓1,⋯,𝑓𝑘; 𝑔1,⋯,𝑔𝑘) has finite rank. Theorem (3.3.2) gives that 

𝜎(𝑓1, ⋯ , 𝑓𝑘;  𝑔1, ⋯ , 𝑔𝑘) ≡ 0. 
To prove that (iii) implies (ii), we need the following equality obtained in the proof of 

Proposition (3.3.4) 

𝐵(∑𝐻𝑔𝑗̅̅ ̅
∗ 𝐻𝑓𝑗

𝑘

𝑗=1

)(𝑧) =  𝐵(∑(𝑔𝑗)+(𝑓𝑗)−

𝑘

𝑗=1

)(𝑧) −∑(𝑔𝑗)+(𝑧)(𝑓𝑗)−(𝑧)

𝑘

𝑗=1

. 

(iii) implies that the function ∑ (𝑔𝑗)+(𝑧)(𝑓𝑗)−(𝑧)
𝑘
𝑗=1  is harmonic and hence 

𝐵(∑(𝑔𝑗)+(𝑓𝑗)−

𝑘

𝑗=1

)(𝑧) =∑(𝑔𝑗)+(𝑧)(𝑓𝑗)−(𝑧)

𝑘

𝑗=1

. 

Therefore 

𝐵(∑𝐻𝑔𝑗̅̅ ̅
∗ 𝐻𝑓𝑗

𝑘

𝑗=1

)(𝑧) = 0. 

By the injection of the Berezin transform [55], we conclude that the operator ∑ 𝐻𝑔𝑗̅̅ ̅
∗ 𝐻𝑓𝑗

𝑘
𝑗=1  

must equal 0 to complete the proof.  



135 

Chapter 4 

Reducing Subspaces 

 

We characterize the nontribyl reducing subspaces of the Toeplitz operator 𝑇𝑧1𝑁𝑧2𝑀 on 

the Bergman space 𝐴2(𝔻2), where 𝑁 and 𝑀 are positive integers. We study the reducing 

subspaces of 𝐴𝑘⊗  𝐼 +  𝐼 ⊗ 𝐵𝑙 and give some examples. As an application, we study the 

reducing subspaces of multiplication operators 𝑀𝑧𝑘+𝛼𝑤𝑙 on function spaces. We show that 

the von Neumann algebra 𝒱∗(𝜙) =  {𝑇𝜙, 𝑇𝜙
∗} is abelian. 

Section (4.1): A Class of Toeplitz Operators on the Bergman Space of the Bidisk 

       For 𝔻 be the open unit disk in the complex plane ℂ. For −1 < 𝛼 < ∞, let 𝐿2(𝔻, 𝑑𝐴𝛼) 
be the Hilbert space of square integrable functions on 𝔻 with the inner product 

〈𝑓, 𝑔〉𝛼  = ∫|𝑓

 

 𝔻

(𝑧)𝑔(𝑧)̅̅ ̅̅ ̅̅ 𝑑𝐴𝛼(𝑧), 𝑓, 𝑔 ∈ 𝐴𝛼
2 ( 𝔻), 

where 

𝑑𝐴𝛼(𝑧)  = (𝛼 + 1)(1 − |𝑧|
2)𝛼𝑑𝐴(𝑧), 

and 𝑑𝐴 is the normalized area measure on  𝔻. 

The weighted Bergman space 𝐴𝛼
2 ( 𝔻) is the subspace of 𝐿2(𝔻, 𝑑𝐴𝛼) consisting of all 

the analytic functions in  𝔻. We denote 

𝛾𝑛 = ‖𝑧
𝑛‖𝛼  = √

𝑛! Γ(2 + 𝛼)

Γ(𝑛 + 𝛼 +  2)
 

for 𝑛 = 0, 1, 2, . . .. Therefore, 

‖𝑓‖𝛼
2 =∑𝛾𝑛

2

+∞

𝑛=0

|𝑎𝑛|
2  < ∞, 

where 𝑓(𝑧)  = ∑ 𝑎𝑛
+∞
𝑛=0 𝑧𝑛 ∈ 𝐴𝛼

2 ( 𝔻). Especially when 𝛼 = 0, we write 𝐴2( 𝔻) = 𝐴0
2( 𝔻).       

In this case, 𝛾𝑛  = √
1

𝑛+1
. . 

       Denote by  𝔻2 =  𝔻 ×  𝔻 the bidisk. The Bergman space 𝐴2( 𝔻2) is the space of all 

holomorphic functions in 𝐿2(𝐷2, 𝑑𝜇) where 𝑑𝜇(𝑧)  =  𝑑𝐴(𝑧1)𝑑𝐴(𝑧2). For multi-index 𝛽 =

(𝛽1, 𝛽2), denote 𝑧𝛽 = 𝑧1
𝛽1𝑧2

𝛽2 and 

𝑒𝛽 =
𝑧𝛽

𝛾𝛽1𝛾𝛽2
. 

Then {𝑒𝛽}𝛽≥0 (𝛽 ≥  0 means that 𝛽1 ≥ 0 andβ2 ≥ 0) is an orthogonal basis in𝐴2( 𝔻2). 

For a bounded measurable function𝑓 ∈ 𝐿∞( 𝔻2), the Toeplitz operator with symbol 𝑓 is 

defined by 𝑇𝑓ℎ = 𝑃(𝑓ℎ) for every ℎ ∈ 𝐴2( 𝔻2), where 𝑃 is the Bergman orthogonal 

projection from 𝐿2( 𝔻2, 𝑑𝜇) onto 𝐴2( 𝔻2). 
   Recall that for a bounded linear operator 𝑇 on a Hilbert space 𝐻, a closed subspace ℳ is 

called a reducing subspace of the operator 𝑇 , if 𝑇(ℳ) ⊂ ℳ and 𝑇∗ (ℳ) ⊂ ℳ. A reducing 

subspace ℳ is said to be minimal if there is no nonzero reducing subspace 𝒩 such that 𝒩 

is properly contained in ℳ. 

   On the Bergman space over 𝔻, it is proved that 𝑇𝐵 has just two non-tribyl reducing 

subspaces [32], [22], where 𝐵 is the product of two Blaschke factors. 
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In [110], M. Stessin and 𝐾. Zhu gave a complete description of the reducing subspaces of 

weighted unilateral shift operators of finite multiplicity. In particular, 𝑇𝑧𝑛 has n distinct 

minimal reducing subspaces. If 𝐵 is a finite Blaschke product (order 𝑛 ≥ 2), the number of 

nontribyl minimal reducing subspaces of 𝑇𝐵 equals the number of connected components of 

the Riemann surface of 𝐵−1 ∘ 𝐵 over 𝔻 (see [23], [27], [28], [10], [109], [1]). Further, if 𝐵 

is an infinite Blaschke product or a covering map, the relative research can be founded in 

[29], [30], [108]. 

       On the Bergman space of bidisk, Y. Lu and X. Zhou [37] characterized the reducing 

subspaces of 𝑇𝑧1𝑁𝑧2𝑁 , 𝑇𝑧1𝑁 and 𝑇𝑧2𝑁, respectively. The reducing sub-spaces of 𝑇𝑧1𝑁𝑧2𝑀on the 

weighted Bergman space 𝐴𝛼
2 ( 𝔻2) have been completely described in [35]. For 𝑝 = 𝛼𝑧𝑘 +

𝛽𝑤𝑙, the minimal reducing subspaces of 𝑇𝑝 on 𝐴2( 𝔻2) and the commutant algebra 

𝒱∗(𝑝)  =  {𝑇𝑝, 𝑇𝑝
∗ }′ was described in [107], [111]. We mainly consider the reducing 

subspaces for the Toeplitz operator 𝑇𝑧1𝑁𝑧2−𝑀on the Bergman space 𝐴2( 𝔻2), where 𝑁 and 𝑀 

are positive integers. 

We will give a complete characterization of the reducing subspaces of 𝑇𝑧1𝑁𝑧2−𝑀.  

Through-out, denote 𝑇 = 𝑇𝑧1𝑁𝑧2−𝑀 , where 𝑁 and 𝑀 are positive integers. Denote by 

[𝑓] the reducing subspace of 𝑇 generated by 𝑓 ∈ 𝐴2( 𝔻2). 
Let ℕ be the set of all the nonnegative integers. 

By direct calculation, we know that 

𝑇ℎ(𝑧1
𝑘 𝑧2

𝑙) = {

𝛾𝑙
2

𝛾𝑙
2 − ℎ𝑀

𝑧1
𝑘+ℎ𝑁 𝑧2

𝑙−ℎ𝑀 ,            𝑖𝑓 𝑙 ≥ ℎ𝑀

0,                                                   𝑖𝑓 𝑙 < ℎ𝑀

;  

𝑇∗ℎ(𝑧1
𝑘 𝑧2

𝑙) = {

𝛾𝑘
2

𝛾𝑘
2 − ℎ𝑁

𝑧1
𝑘−ℎ𝑁 𝑧2

𝑙+ℎ𝑀 , 𝑖𝑓 𝑘 ≥ ℎ𝑁

0,                                               𝑖𝑓 𝑙 < ℎ𝑁

  

 

for 𝑘, 𝑙, ℎ ∈ ℕ. Set 

𝐸0 = {(𝑘, 𝑙) ∈ ℕ × ℕ: 0 ≤ 𝑘 < 𝑁, 0 ≤ 𝑙 < 𝑀}, 
𝐸1 = {(𝑘, 𝑙) ∈ ℕ × ℕ: 𝑘 ≥ 2𝑁}, 

𝐸2 = {(𝑘, 𝑙) ∈ ℕ × ℕ: 𝑙 ≥ 2𝑀, 0 ≤ 𝑘 < 2𝑁}, 
𝐸3 = {(𝑘, 𝑙) ∈ ℕ × ℕ:𝑁 ≤ 𝑘 < 2𝑁,𝑀 ≤ 𝑙 < 2𝑀}, 
𝐸4 = {(𝑘, 𝑙) ∈ ℕ × ℕ: 0 ≤ 𝑘 < 𝑁,𝑀 ≤ 𝑙 < 2𝑀}, 
𝐸5 = {(𝑘, 𝑙) ∈ ℕ × ℕ: 0 ≤ 𝑙 < 𝑀,𝑁 ≤ 𝑘 < 2𝑁}. 

Clearly, 

𝐴2( 𝔻2) =  ⨁
𝑖=0

5 span̅̅ ̅̅ ̅̅ {𝑧1
𝑝
𝑧2
𝑞
∶ (𝑝, 𝑞) ∈ 𝐸𝑖}. 

Notice that ℳ0 = span{𝑧1
𝑝
𝑧2
𝑞
: (𝑝, 𝑞) ∈ 𝐸0} is a reducing subspace of 𝑇. To find other 

reducing subspaces, we first study the orthogonal decomposition of 𝑧1
𝑘𝑧2
𝑙  with respect to ℳ. 

Lemma (4.1.1)[106]: Suppose ℳ ⊂ℳ0
⊥ is a reducing subspace of 𝑇. Let 𝑃ℳ be the 

orthogonal projection from 𝐴2( 𝔻2) onto𝑀. 

   (i) If (𝑘, 𝑙) ∈ 𝐸1 ∪ 𝐸2 ∪ 𝐸3, then 𝑃ℳ𝑧1
𝑘𝑧2
𝑙 = 𝜆𝑧1

𝑘𝑧2
𝑙  with some 𝜆 ∈ ℂ. 

   (ii) If (𝑘, 𝑙) ∈ 𝐸4, then 

𝑃ℳ𝑧1
𝑘𝑧2
𝑙 ∈ span{𝑧1

𝑛 𝑧2
𝑚 ∶ (𝑛,𝑚) ∈ 𝐸4}. 

   (iii) If (𝑘, 𝑙) ∈ 𝐸5, then 

𝑃ℳ𝑧1
𝑘𝑧2
𝑙 ∈ span{𝑧1

𝑛 𝑧2
𝑚 ∶ (𝑛,𝑚) ∈ 𝐸5}. 
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Proof. Let 𝑘, 𝑙 ∈ ℕ. Since ℳ ⊥ℳ0, 〈𝑃ℳ(𝑧1
𝑘𝑧2
𝑙) 𝑧1

𝑝
𝑧2
𝑞〉 = 0 for (𝑝, 𝑞) ∈ 𝐸0. 

In the following, we consider the inner product 〈𝑃ℳ(𝑧1
𝑘𝑧2
𝑙) 𝑧1

𝑝
𝑧2
𝑞〉 = 0 for (𝑝, 𝑞) ∈ ⋃ 𝐸𝑖

5
𝑖=1 . 

For every nonnegative integer ℎ satisfying 𝑙 ≥ ℎ𝑀, 

𝑇ℎ∗ 𝑇ℎ(𝑧1
𝑘 𝑧2

𝑙) =
𝛾𝑙
2𝛾𝑘+ℎ𝑁
2

𝛾𝑙−ℎ𝑀
2 𝛾𝑘

2 𝑧1
𝑘𝑧2
𝑙 .                                        (1) 

By computation, 

𝛾𝑙
2𝛾𝑘+ℎ𝑁
2

𝛾𝑙−ℎ𝑀
2 𝛾𝑘

2
〈𝑃ℳ(𝑧1

𝑘𝑧2
𝑙) 𝑧1

𝑝
𝑧2
𝑞〉 = 〈𝑃ℳ𝑇

ℎ∗ 𝑇ℎ(𝑧1
𝑘𝑧2
𝑙) 𝑧1

𝑝
𝑧2
𝑞〉 

= 〈𝑃ℳ(𝑧1
𝑘𝑧2
𝑙)𝑇ℎ∗ 𝑇ℎ (𝑧1

𝑝
𝑧2
𝑞
)〉 

𝑇ℎ(𝑧1
𝑘 𝑧2

𝑙) = {

𝛾𝑙
2𝛾𝑘+ℎ𝑁
2

𝛾𝑙−ℎ𝑀
2 𝛾𝑘

2
〈𝑃ℳ(𝑧1

𝑘𝑧2
𝑙) 𝑧1

𝑝
𝑧2
𝑞〉  𝑞 ≥ ℎ𝑀

0,                                                𝑞 < ℎ𝑀

.  

Recall that [𝑠] = max{𝑛 ∈ ℤ: 𝑛 ≤ 𝑠} for real number 𝑠. By above equality, 

we get that if 〈𝑃ℳ(𝑧1
𝑘𝑧2
𝑙) 𝑧1

𝑝
𝑧2
𝑞〉 ≠ 0, then 

𝛾𝑙
2𝛾𝑘+ℎ𝑁
2

𝛾𝑙−ℎ𝑀
2 𝛾𝑘

2 =
𝛾𝑞
2𝛾𝑝+ℎ𝑁

2

𝛾𝑙−ℎ𝑀
2 𝛾𝑝

2
                                                 (2) 

for 0 ≤ ℎ ≤ [
𝑙

𝑀
] , 𝑞 ≥  [

𝑙

𝑀
]𝑀. 

Equivalently, 
(𝑘 + 1)(𝑞 + 1)

(𝑝 + 1)(𝑙 + 1)
=
(𝑘 + 1 + ℎ𝑁)(𝑞 + 1 − ℎ𝑀)

(𝑝 + 1 + ℎ𝑁)(𝑙 + 1 −𝑀)
                     (3) 

for 0 ≤ ℎ ≤ [
𝑙

𝑀
] , 𝑞 ≥  [

𝑙

𝑀
]𝑀. 

(i) If (𝑘, 𝑙) ∈ 𝐸1 ∪ 𝐸2 ∪ 𝐸3, we will show that the equality (2) holds if and only if 𝑝 = 𝑘 and 

𝑞 = 𝑙. 
Case one: 𝑙 ≥ 2𝑀. 

       Let 𝑔1(𝜆) = (𝑘 + 1)(𝑞 + 1)(𝑝 + 1 + 𝜆𝑁)(𝑙 + 1 − 𝜆𝑀), 𝑔2(𝜆) = (𝑝 + 1)(𝑙 +
1)(𝑘 + 1 + 𝜆𝑁)(𝑞 + 1 − 𝜆𝑀) and 𝑔(𝜆) =  𝑔1(𝜆) − 𝑔2(𝜆). 
Since 𝑙 ≥ 2𝑀, we have 𝑔(0) = 𝑔(1) = 𝑔(2) = 0. Considering 𝑔(𝜆) is a quadratic 

polynomial, we have 𝑔(𝜆) ≡ 0 on ℂ. Therefore, 𝑔1 and 𝑔2 have the same zeros,i.e., 

{
 

 
(𝑘 + 1)(𝑞 + 1)𝑁𝑀 = (𝑝 + 1)(𝑙 + 1)𝑁𝑀

(𝑘 + 1)(𝑞 + 1)
𝑝+1
𝑁   = (𝑝 + 1)(𝑙 + 1)

𝑘+1
𝑁

(𝑘 + 1)(𝑞 + 1)
𝑙+1
𝑀  = (𝑝 + 1)(𝑙 + 1)

𝑞+1
𝑀   .

 

It follows that 𝑝 = 𝑘 and 𝑞 = 𝑙. 
Case two: 𝑘 ≥ 2𝑁. 

       Replacing 𝑇 ∗ 𝑇 by 𝑇 𝑇∗  in Case one, we can get the desire result. The details are listed 

as follows. 

       Since 

𝑇ℎ 𝑇ℎ∗( 𝑧1
𝑘 𝑧2

𝑙) =
𝛾𝑘
2𝛾𝑙+ℎ𝑀
2

𝛾𝑘−ℎ𝑁
2 𝛾𝑙

2 𝑧1
𝑘 𝑧𝑙

2, ∀ 0 ≤ ℎ ≤ [
𝑘

𝑁
] , 

we know that 
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𝛾𝑘
2𝛾𝑙+ℎ𝑀
2

𝛾𝑘−ℎ𝑁
2 𝛾𝑙

2
〈𝑃𝑀(𝑧1

𝑘 𝑧𝑙
2), 𝑧1

𝑝
 𝑧2
𝑞〉 = 〈𝑃𝑀𝑇ℎ 𝑇ℎ∗(𝑧1

𝑘 𝑧𝑙
2), 𝑧1

𝑝
 𝑧2
𝑞〉  

= 〈𝑃𝑀(𝑧1
𝑘 𝑧𝑙

2), 𝑇ℎ 𝑇ℎ∗ (𝑧1
𝑝
 𝑧2
𝑞
)〉 = {

𝛾𝑘
2𝛾𝑙+ℎ𝑀
2

𝛾𝑘−ℎ𝑁
2 𝛾𝑙

2
〈𝑃𝑀(𝑧1

𝑘 𝑧𝑙
2), 𝑧1

𝑝
 𝑧2
𝑞〉if 𝑝 ≥  ℎ𝑁

0                                                  if 𝑝 < ℎ𝑁.

 

Therefore, 〈𝑃𝑀(𝑧1
𝑘 𝑧𝑙

2), 𝑧1
𝑝
 𝑧2
𝑞〉 ≠ 0 will give that 

𝛾𝑘
2𝛾𝑙+ℎ𝑀

2

𝛾𝑘−ℎ𝑁
2 𝛾𝑙

2 =
𝛾𝑝
2𝛾𝑞+ℎ𝑀
2

𝛾𝑝−ℎ𝑁
2 𝛾𝑞

2
                                          (4) 

for 0 ≤ ℎ ≤  [
𝑘

𝑁
] and 𝑝 ≥ [

𝑘

𝑁
] 𝑁. Equivalently, 

(𝑘 + 1)(𝑞 + 1)

(𝑝 + 1)(𝑙 +  1)
=
(𝑘 + 1 − ℎ𝑁)(𝑞 + 1 + ℎ𝑀)

(𝑝 + 1 − ℎ𝑁)(𝑙 +  1 +  ℎ𝑀)
                     (5) 

for 0 ≤ ℎ ≤ [
𝑘

𝑁
] and 𝑝 ≥ [

𝑘

𝑁
]𝑁. So when 𝑘 ≥ 2𝑁, the above equality follows for ℎ =

 0, 1, 2. In this case we will get 𝑝 = 𝑘 and 𝑞 = 𝑙 by the same arguments as the case 𝑙 ≥  2𝑀 

has done. 

Case three: (𝑘, 𝑙) ∈ 𝐸3 = {(𝑛,𝑚) ∈ ℕ
2 ∶ 𝑁 ≤ 𝑛 < 2𝑁,𝑀 ≤ 𝑚 < 2𝑀}. 

In this case, [
𝑘

𝑁
] ≥ 1 and [ 

𝑙

𝑀
]  ≥ 1. Then equalities (3) and (5) hold for 

ℎ = 0, 1. Recall that 𝑔(𝜆) = 𝑔1(𝜆) − 𝑔2(𝜆), where 𝑔1(𝜆) = (𝑘 + 1)(𝑞 + 1)(𝑝 + 1 +
𝜆𝑁)(𝑙 +  1 − 𝜆𝑀) and 𝑔2(𝜆) = (𝑝 + 1)(𝑙 +  1)(𝑘 +  1 + 𝜆𝑁)(𝑞 + 1 − 𝜆𝑀). We get 

𝑔(0) = 𝑔(1) = 𝑔(−1)  =  0. Therefore, we obtain that 𝑝 =  𝑘 and 𝑞 = 𝑙. 
(ii) Suppose that (𝑘, 𝑙) ∈ 𝐸4. We need only prove that 

𝑃ℳ(𝑧1
𝑘 𝑧2

𝑙 ) ⊥ span̅̅ ̅̅ ̅̅ { 𝑧1
𝑛𝑧2

𝑚 ∶ (𝑛,𝑚) ∈ (⋃𝐸𝑖

3

𝑖=1

)⋃𝐸5} . 

If (𝑛,𝑚) ∈ 𝐸1 ∪ 𝐸2 ∪ 𝐸3, the conclusion (i) implies that 𝑃ℳ𝑧1
𝑛𝑧2

𝑚 = 𝜆𝑧1
𝑛𝑧2

𝑚for some 𝜆 ∈
ℂ. Thus 

〈𝑃ℳ𝑧1
𝑘 𝑧𝑙

2, 𝑧1
𝑛 𝑧2

𝑚〉 = 〈𝑧1
𝑘 𝑧𝑙

2, 𝑃ℳ𝑧1
𝑛 𝑧2

𝑚〉  = �̅�〈𝑧1
𝑘 𝑧𝑙

2, 𝑧1
𝑛 𝑧2

𝑚〉 = 0. 
That is, 𝑃ℳ𝑧1

𝑘𝑧2
𝑙 ⊥ span̅̅ ̅̅ ̅̅ {𝑧𝑝1𝑧2

𝑞
: (𝑝, 𝑞) ∈ 𝐸1 ∪ 𝐸2 ∪ 𝐸3}. 

If (𝑛,𝑚) ∈ 𝐸5 = {(𝑘, 𝑙) ∈ ℕ × ℕ ∶ 0 ≤ 𝑙 < 𝑀,𝑁 ≤ 𝑘 < 2𝑁}, 

〈𝑃ℳ𝑧1
𝑘 𝑧2

𝑙 , 𝑧1
𝑛 𝑧2

𝑚〉 =
𝛾𝑙−𝑀
2 𝛾𝑙

2

𝛾𝑙
2𝛾𝑘+𝑁
2

〈𝑃ℳ𝑇
∗ 𝑇𝑧1

𝑘 𝑧2
𝑙 , 𝑧1

𝑛 𝑧2
𝑚〉  =

𝛾𝑙−𝑀
2 𝛾𝑙

2

𝛾𝑙
2𝛾𝑘+𝑁
2

〈𝑇𝑃ℳ𝑧1
𝑘 𝑧2

𝑙 , 𝑇 𝑧1
𝑛 𝑧2

𝑚〉 = 0, 

where the last equality comes from span{𝑧1
𝑝
𝑧2
𝑞
: (𝑝, 𝑞) ∈ 𝐸5} ⊆ 𝐾𝑒𝑟𝑇 . Thus 

𝑃ℳ𝑧1
𝑘𝑧2
𝑙 ⊥ span{𝑧1

𝑝
𝑧2
𝑞
: (𝑝, 𝑞) ∈ 𝐸5}. 

(iii) Replacing 𝑇 ∗𝑇 by 𝑇 𝑇∗  in (ii), we get the desired result.  

Remark (4.1.2)[106]: Let ℳ ⊂ℳ0
⊥ is a nonzero reducing subspace of  . In (i) of Lemma 

(4.1.1), we indeed get that 𝜆 = 0 or 1, that is 𝑧1
𝑘 𝑧2

𝑙 ∈ ℳ𝑜𝑟 𝑧1
𝑘 𝑧2

𝑙 ∈ ℳ⊥for each (𝑘, 𝑙) ∈
𝐸1 ∪ 𝐸2 ∪ 𝐸3. 

If 𝑧1
𝑘 𝑧2

𝑙 ∈ ℳ, then 

[[𝑧1
𝑘 𝑧2

𝑙 ] = span{𝑧1
𝑘−ℎ𝑁 𝑧2

𝑙+ℎ𝑀: 𝑘 − ℎ𝑁 ≥ 0, 𝑙 + ℎ𝑀 ≥ 0, ℎ ∈ ℤ}       (6) 

is a minimal reducing subspace of 𝑇 , containing inℳ. Moreover, if 𝑧1
𝑘 𝑧2

𝑙 , 𝑧1
𝑝
 𝑧2
𝑞
∈ ℳ, 

and (𝑘, 𝑙), (𝑝, 𝑞) ∈ 𝐸1 ∪ 𝐸2 ∪ 𝐸3, then it’s clear that either [𝑧1
𝑘𝑧2
𝑙 ] ⊥ [𝑧1

𝑝
 𝑧2
𝑞
] 𝑜𝑟[𝑧1

𝑘 𝑧2
𝑙 ] =

[𝑧1
𝑝
 𝑧2
𝑞
]. So for any non-zero function (𝑧) = ∑ 𝑎𝑘

 
(𝑘,𝑙)∈𝐸1∪𝐸2∪𝐸3

, 𝑧1
𝑘 𝑧2

𝑙 , 

[𝑓] is the direct sum of some minimal reducing subspace as (6). 
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We define two equivalences on 𝐸4 and 𝐸5 respectively by: 

 (i) for (𝑝, 𝑞), (𝑘, 𝑙) ∈ 𝐸4, (𝑝, 𝑞) ∼ 1(𝑘, 𝑙)  ⇔  
(𝑘+1)(𝑞+1)

(𝑝+1)(𝑙+1)
 =  

(𝑘+1+𝑁)(𝑞+1−𝑀)

(𝑝+1+𝑁)(𝑙+1−𝑀)
 ; 

 (ii) for (𝑝, 𝑞), (𝑘, 𝑙) ∈ 𝐸5, (𝑝, 𝑞) ∼ 2 (𝑘, 𝑙) ⇔ 
(𝑘+1)(𝑞+1)

(𝑝+1)(𝑙+1)
 =  

(𝑘+1−𝑁)(𝑞+1+𝑀)

(𝑝+1−𝑁)(𝑙+1+𝑀)
. 

It is easy to check that 

(i) (𝑝, 𝑞) ∈ 𝐸4 ⇔ (𝑝 + 𝑁, 𝑞 − 𝑀) ∈ 𝐸5; 
(ii) for(𝑝, 𝑞), (𝑘, 𝑙) ∈ 𝐸4, (𝑝, 𝑞) ∼ 1(𝑘, 𝑙) ⇔ (𝑝 + 𝑁, 𝑞 −𝑀) ∼ 2(𝑘 + 𝑁, 𝑙 − 𝑀); 
(iii) for (𝑝, 𝑞), (𝑘, 𝑙) ∈ 𝐸5, (𝑝, 𝑞) ∼ 2(𝑘, 𝑙) ⇔ (𝑝 − 𝑁, 𝑞 +𝑀) ∼ 1 (𝑘 − 𝑁, 𝑙 + 𝑀). 
For (𝑛,𝑚) ∈ 𝐸4 and (𝑘, 𝑙) ∈ 𝐸5, let 

𝑃𝑛,𝑚 ∶ 𝐴
2(𝔻2) → span{𝑧1

𝑝
𝑧2
𝑞
: (𝑝, 𝑞) ∼ 1 (𝑛,𝑚), (𝑝, 𝑞) ∈ 𝐸4}, 

𝑄𝑘,𝑙 ∶ 𝐴
2(𝔻2)  → span{𝑧1

𝑘 𝑧2
𝑙 : (𝑝, 𝑞) ∼ 2(𝑘, 𝑙), (𝑝, 𝑞)) ∈ 𝐸5} 

be two orthogonal projections. For 𝑓 ∈ 𝐴2(𝔻2) and 𝑃𝑛,𝑚𝑓 ≠  0, we have 

[𝑃𝑛,𝑚𝑓] = span{𝑃𝑛,𝑚𝑓, 𝑇𝑃𝑛,𝑚𝑓}                                          (7), 

since 𝑇∗ 𝑃𝑛,𝑚𝑓 = 0, 𝑇
2𝑃𝑛,𝑚𝑓 = 0 and 𝑇∗ 𝑇𝑃𝑛,𝑚𝑓 =

𝛾𝑚
2 𝛾𝑛+𝑁

2

𝛾𝑚−𝑀
2 𝛾𝑛

2 𝑃𝑛,𝑚𝑓. Similarly, if 𝑓 ∈ ℳ and 

𝑄𝑘,𝑙𝑓 ≠ 0, then 
[𝑄𝑘,𝑙𝑓] = span{𝑄𝑘,𝑙𝑓, 𝑇

∗ 𝑄𝑘,𝑙𝑓}.                                         (8) 

Lemma (4.1.3)[106]: Let ℳ ⊂ℳ0
⊥ be a reducing subspace of 𝑇 and (𝑛,𝑚) ∈ 𝐸4. 

       Then the following statements hold. 

   (a) If 𝑓 ∈ ℳ, then [𝑃𝑛,𝑚𝑓] ⊂ ℳ and [𝑄𝑛+𝑁,𝑚−𝑀𝑓] ⊂ ℳ. 

   (b) If 𝑓1, 𝑓2 ∈ 𝑃𝑛,𝑚ℳ and 𝑓1  ⊥ 𝑓2, then [𝑓1] ⊥ [ 𝑓2]. 
   (c) 𝑃𝑛,𝑚𝑇

∗𝑓 = 𝑇∗𝑄𝑛+𝑁,𝑚−𝑀𝑓 and 𝑇𝑃𝑛,𝑚𝑓 = 𝑄𝑛+𝑁,𝑚−𝑀𝑇 𝑓, ∀𝑓 ∈ ℳ. 
   (d) If 𝑓 ∈ ℳ, then [𝑃𝑛,𝑚𝑓] = [𝑄𝑛+𝑁,𝑚−𝑀𝑇𝑓] and [𝑄𝑛+𝑁,𝑚−𝑀𝑓] = [𝑃𝑛,𝑚𝑇

∗𝑓]. 
   (e) 𝑃𝑛,𝑚ℳ⊕𝑄𝑛+𝑁,𝑚−𝑀ℳ ⊂ℳ is a reducing subspace of 𝑇 . 

Proof. (a) For every 𝑓 ∈ ℳ, we know that 𝑃ℳ𝑃𝑛,𝑚𝑓 = 𝑃𝑛,𝑚𝑓, since 𝑃ℳ𝑃𝑛,𝑚 = 𝑃𝑛,𝑚𝑃ℳ , 
which obtained by the following simple facts: 

   (i) if (𝑘, 𝑙) ∈ 𝐸4, then 𝑃ℳ𝑧1
𝑘 𝑧2

𝑙 ∈ span{𝑧1
𝑝
𝑧2
𝑞
: (𝑝, 𝑞) ∈ 𝐸4}; 

   (ii) if (𝑘, 𝑙) ∉  𝐸4, then 𝑃ℳ𝑧1
𝑘 𝑧2

𝑙 ⊥ span{𝑧1
𝑝
𝑧2
𝑞
: (𝑝, 𝑞) ∈ 𝐸4}; 

So 𝑃𝑛,𝑚𝑓 ∈ ℳ, which implies that [𝑃𝑛,𝑚𝑓] ⊂ ℳ. 
       Similarly, we have 𝑃ℳ𝑄𝑛+𝑁,𝑚−𝑀𝑓 = 𝑄𝑛+𝑁,𝑚−𝑀𝑓, which shows that 𝑄𝑛+𝑁,𝑚−𝑀𝑓 ∈

ℳ. Thus [𝑄𝑛+𝑁,𝑚−𝑀𝑓] ⊂ ℳ. 

(b) It is clear that 𝑇𝑓1, 𝑇𝑓2 ∈ span{𝑧1
𝑘𝑧2
𝑙 : (𝑘, 𝑙) ∈ 𝐸5}; and 

〈𝑇𝑓1, 𝑇𝑓2〉  = 〈𝑇 
∗𝑇 𝑓1, 𝑓2〉 =

𝛾𝑛+𝑁
2 𝛾𝑚

2

𝛾𝑛
2𝛾𝑚−𝑀
2

〈𝑓1, 𝑓2〉 = 0. 

Equality (7) shows that 
[𝑓1] = span{𝑓1, 𝑇 𝑓1}, [𝑓2] = span{ 𝑓2, 𝑇 𝑓2}. 

So [𝑓1] ⊥ [ 𝑓2].  
 (c) For every (𝑛,𝑚) ∈ 𝐸4, let 

ℳ𝑛,𝑚 = span{𝑧1
𝑘 𝑧2

𝑙 : (𝑘, 𝑙) ∼ 1(𝑛,𝑚), (𝑘, 𝑙) ∈ 𝐸4}; 

ℳ𝑛+𝑁,𝑚−𝑀 =  span{𝑧1
𝑘 𝑧2

𝑙 : (𝑘, 𝑙) ∼ 2(𝑛 +  𝑁,𝑚 −𝑀), (𝑘, 𝑙) ∈ 𝐸5}. 

Thenℳ𝑛,𝑚  and ℳ𝑛+𝑁,𝑚−𝑀 are finite dimension, and the following statements 

hold: 

(i) 𝑇ℳ𝑛,𝑚 =ℳ𝑛+𝑁,𝑚−𝑀 and 𝑇
∗ ℳ𝑛+𝑁,𝑚−𝑀 =ℳ𝑛,𝑚 ; 

(ii) 𝑇(ℳ𝑛,𝑚
⊥  ) ⊂ ℳ𝑛+𝑁,𝑚−𝑀

⊥ and 𝑇∗ (ℳ𝑛+𝑁,𝑚−𝑀
⊥ ) ⊂ ℳ𝑛,𝑚

⊥ . 
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Therefore, 𝑇𝑃𝑛,𝑚𝑓 = 𝑄𝑛+𝑁,𝑚−𝑀𝑇𝑓 and 𝑃𝑛,𝑚𝑇 
∗𝑓 = 𝑇∗ 𝑄𝑛+𝑁,𝑚−𝑀𝑓 for any 

𝑓 ∈ ℳ. 

(d) By equality (7), conclusion (c) and 

𝑇∗𝑇𝑃𝑛,𝑚𝑓 =
𝛾𝑛+𝑁
2 𝛾𝑚

2

𝛾𝑛
2𝛾𝑚−𝑀
2 𝑃𝑛,𝑚𝑓,                                           (9) 

we have 

 [𝑄𝑛+𝑁,𝑚−𝑀𝑇𝑓] = span{𝑄𝑛+𝑁,𝑚−𝑀𝑇𝑓, 𝑇
∗𝑄𝑛+𝑁,𝑚−𝑀𝑇𝑓} 

= span{𝑇𝑃𝑛,𝑚𝑓} ⊕ span{𝑇∗𝑇𝑃𝑛,𝑚𝑓} 

  = span{𝑇𝑃𝑛,𝑚𝑓} ⊕ span{𝑃𝑛,𝑚𝑓} =  [𝑃𝑛,𝑚𝑓]. 
Similarly, [𝑄𝑛+𝑁,𝑚−𝑀𝑓] =  [𝑃𝑛,𝑚𝑇

∗𝑓] comes from equality (8), conclusion (c)And 

𝑇 𝑇∗𝑄𝑛+𝑁,𝑚−𝑀𝑓 =
𝛾𝑛+𝑁
2 𝛾𝑚

2

𝛾𝑛
2𝛾𝑚−𝑀
2  𝑄𝑛+𝑁,𝑚−𝑀𝑓.                     (10) 

(e) By equalities (9), (10) and conclusion (c), we have 

𝑄𝑛+𝑁,𝑚−𝑀ℳ =  𝑇𝑇∗(𝑄𝑛+𝑁,𝑚−𝑀ℳ) = 𝑇𝑃𝑛,𝑚𝑇
∗ℳ.                     (11) 

  𝑃𝑛,𝑚ℳ = 𝑇∗𝑇 (𝑃𝑛,𝑚ℳ) =  𝑇∗𝑄𝑛+𝑁,𝑚−𝑀𝑇ℳ. 
Therefore, we only need to show 

 that 𝑃𝑛,𝑚ℳ⊕ 𝑄𝑛+𝑁,𝑚−𝑀ℳ is an invariant subspace of 𝑇and 𝑇∗. In fact 

𝑇(𝑃𝑛,𝑚ℳ⊕ 𝑄𝑛+𝑁,𝑚−𝑀ℳ) = 𝑇𝑃𝑛,𝑚ℳ = 𝑄𝑛+𝑁,𝑚−𝑀ℳ, 

where the last equality comes from 𝑇𝑃𝑛,𝑚𝑓 = 𝑄𝑛+𝑁,𝑚−𝑀𝑇𝑓 ∈ 𝑄𝑛+𝑁,𝑚−𝑀ℳ 

and 𝑄𝑛+𝑁,𝑚−𝑀𝑓 ∈ 𝑇𝑃𝑛,𝑚𝑇
∗ℳ ⊂ 𝑇𝑃𝑛,𝑚ℳ for all 𝑓 ∈ ℳ. Therefore, 

𝑇(𝑃𝑛,𝑚ℳ⊕𝑄𝑛+𝑁,𝑚−𝑀ℳ) ⊂ 𝑃𝑛,𝑚ℳ⊕𝑄𝑛+𝑁,𝑚−𝑀ℳ. 
Similarly, we can prove that 

𝑇∗(𝑃𝑛,𝑚ℳ⊕ 𝑄𝑛+𝑁,𝑚−𝑀ℳ) = 𝑇∗𝑄𝑛+𝑁,𝑚−𝑀ℳ = 𝑃𝑛,𝑚ℳ. 
So we finish the proof.  

Theorem (4.1.4)[106]: Let ℳ ⊂ℳ0
⊥be a non-zero reducing subspace of 𝑇 on the bidisk. 

Then ℳ =ℳ1⊕ℳ2, where  

(i) ℳ1 is a direct sum of minimal reducing subspace [𝑧1
𝑝
𝑧2
𝑞
] with 𝑧1

𝑝
𝑧2
𝑞
∈ ℳfor some 

(𝑝; 𝑞) ∈ 𝐸1⋃ 𝐸2⋃𝐸3;  
(ii) (ii) ℳ2 is a direct sum of minimal reducing subspace [𝑓] with 𝑓 ∈ 𝑃𝑛,𝑚ℳ for some 

(𝑛;𝑚) ∈ 𝐸4. 

Proof. Firstly, we prove that  

ℳ =ℳ1⊕⊕(𝑛;𝑚)∈𝐸 (𝑃𝑛,𝑚ℳ⊕𝑄𝑛+𝑁,𝑚−𝑀ℳ.                     (12) 

whereℳ1 =⊕(𝑝;𝑞)∈⋀ [𝑧1
𝑝
𝑧2
𝑞
] with ⋀  = {(𝑝;  𝑞) ∈ 𝐸1⋃ 𝐸2⋃𝐸3: 𝑧1

𝑝
𝑧2
𝑞
∈ ℳ}, and 𝐸 is the 

partition of 𝐸4 by the equivalence ∼ 1. Setℋ𝑛;𝑚 = 𝑃𝑛,𝑚ℳ⊕𝑄𝑛+𝑁,𝑚−𝑀ℳ. 

 On the one hand, ℳ1⊕⊕(𝑛;𝑚)∈𝐸 ℋ𝑛,𝑚 ⊂ ℳ, since ℳ1 ⊂ℳ is a reducing subspace of 

𝑇, and conclusion (e) in Lemma (4.1.3) implies that ⊕(𝑛;𝑚)∈𝐸 ℋ𝑛;𝑚 ⊂ℳ. On the other 

hand, for 𝑔 = 𝑔1 + 𝑔2 ∈ ℳ with 

𝑔1(𝑧) = ∑ 𝑎𝑝;𝑞𝑧1
𝑝
𝑧2
𝑞

(𝑝;𝑞)∈𝐸1∪𝐸2⋃𝐸3

, 𝑔2(𝑧) = ∑ 𝑎𝑝;𝑞𝑧1
𝑝
𝑧2
𝑞

(𝑝;𝑞)∈𝐸4⋃𝐸5

.              (13) 

Remark (4.1.2) shows that 𝑔1 ∈ ℳ1 ⊂ ℳ, which implies that 𝑔2 = 𝑔 − 𝑔1  ∈ ℳ. 

Therefore, 𝑔2 = ∑ (𝑃𝑛,𝑚𝑔2 + 𝑄𝑛+𝑁,𝑚−𝑀𝑔2)(𝑛,𝑚)∈𝐸 =∈⊕(𝑛;𝑚)∈𝐸 ℋ𝑛;𝑚 . It follows that ℳ is 

in the direct sum of ℳ1 and {ℋ𝑛,𝑚} with (𝑛;𝑚) ∈ 𝐸. So we have equality (12) holds. 
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       Secondly, for each (𝑛,𝑚) ∈ 𝐸4, we prove that ℋ𝑛,𝑚 is the direct sum of minimal 

reducing subspaces as [𝑓] = span{𝑓, 𝑇𝑓} with 𝑓 ∈ 𝑃𝑛,𝑚ℳ. There are some steps in the 

proof. 

Step 1. Take 0 ≠ 𝑓1  ∈ 𝑃𝑛,𝑚ℳ. Then [𝑓1] = span{𝑓1, 𝑇𝑓1} ⊂ ℋ𝑛,𝑚. 

Step 2. If 𝑃𝑛,𝑚ℳ ≠ ℂ𝑓1, take 0 ≠  𝑓2 ∈ 𝑃𝑛,𝑚ℳ⊖ℂ𝑓1. Then 

[𝑓2] = span{𝑓2, 𝑇 𝑓2} ⊂ ℋ𝑛,𝑚⊖ [𝑓1]: 

Step 3. If 𝑃𝑛,𝑚ℳ ≠ span{𝑓1, 𝑓2}, take 0 ≠ 𝑓3 ∈ 𝑃𝑛,𝑚ℳ⊖ span{𝑓1, 𝑓2}. Then 

[𝑓3] = span{𝑓3, 𝑇 𝑓3} ⊂ ℋ𝑛,𝑚⊖ [𝑓1] ⊖ [𝑓2]. 
If 𝑃𝑛,𝑚ℳ ≠ span{𝑓1, 𝑓2, 𝑓3},, continue this process. This process will stop in finite steps, 

since the dimension of ℋ𝑛,𝑚is finite. Thus, we finish the proof.  

       By conclusions (a) and (d) in Lemma (4.1.3) and equalities in (11), we get 

[𝑃𝑛,𝑚𝑔 , 𝑄𝑛+𝑁,𝑚−𝑀𝑔] = [𝑃𝑛,𝑚𝑔, 𝑃𝑛,𝑚𝑔𝑇
∗𝑔]

= span{𝑃𝑛,𝑚𝑔, 𝑃𝑛,𝑚𝑔𝑇
∗𝑔}⊕ span{𝑄𝑛+𝑁,𝑚−𝑀𝑔𝑄𝑛+𝑁,𝑚−𝑀𝑇𝑔}. 

Notice that span{𝑃𝑛,𝑚𝑔, 𝑃𝑛,𝑚𝑔𝑇
∗𝑔} has an orthonormal basis {𝑒1, . . . , 𝑒𝑘}, 

since the dimension of span{𝑃𝑛,𝑚𝑔, 𝑃𝑛,𝑚𝑔𝑇
∗𝑔} is finite. Conclusion (b) in Lemma (4.1.3) 

shows that [𝑒𝑖] ⊥ [𝑒𝑗] for 𝑖 ≠ 𝑗. Then we get 

 [𝑃𝑛,𝑚𝑔, 𝑃𝑛,𝑚𝑇
∗𝑔] =⊕𝑗=1

𝑘 [𝑒𝑗]  =⊕𝑗=1
𝑘 span{𝑒𝑗 , 𝑇𝑒𝑗}. 

Similarly, we can prove that 

[𝑔2] =⊕(𝑛;𝑚)∈𝐸 [𝑄𝑛+𝑁,𝑚−𝑀𝑔 , 𝑄𝑛+𝑁,𝑚−𝑀𝑇𝑔], 

 And 

 [𝑄𝑛+𝑁,𝑚−𝑀𝑔 , 𝑄𝑛+𝑁,𝑚−𝑀𝑇𝑔] =⊕𝑗=1
𝑖 [ℎ𝑗] =⊕𝑗=1

𝑖 span{ℎ𝑗 , 𝑇
∗ℎ𝑗}, 

where {ℎ1, . . . , ℎ𝑙} is an orthonormal basis of 

span{𝑄𝑛+𝑁,𝑚−𝑀𝑔 , 𝑄𝑛+𝑁,𝑚−𝑀𝑇𝑔}. 

In the last part, we give some examples of the reducing sub- spaces of 𝑇𝑧1𝑁 �̅�2𝑀 for the 

case that 𝑁 = 𝑀 and 𝑁 ≠ 𝑀, respectively. 

Example (4.1.5)[106]: Fix 𝑎, 𝑏, 𝑐, 𝑑, 𝑒 ∈ ℂ with 𝑒 ≠ 0. Let 

𝑓(𝑧1, 𝑧2) = 𝑎𝑧1
9𝑧2
14 + 𝑏𝑧1

7𝑧2
15 + 𝑐𝑧1

5𝑧2
17 + 𝑑𝑧1

4𝑧2
19 +  𝑒𝑧1

11 𝑧2
12 , 

 and [𝑓] be the reducing subspace of 𝑇𝑧110 �̅�210generated by 𝑓. Then 

[𝑓] = span{𝑓1, 𝑓2} ⊕ span{𝑧1
11+10ℎ 𝑧2

12−10ℎ ∶ ℎ = −1, 0, 1}. 
Where 

𝑓1(𝑧1, 𝑧2) =  𝑎𝑧1
9𝑧2
14 + 𝑏𝑧1

7𝑧2
15 +  𝑐𝑧1

5𝑧2
17 + 𝑑𝑧1

4𝑧2
19, 

𝑓2(𝑧1, 𝑧2) =
𝑎

3
 𝑧1
19𝑧2

4 +
3𝑏

8
𝑧1
17𝑧2

5 +
4𝑐

9
𝑧1
15𝑧2

7 +
𝑑

2
𝑧1
14𝑧2

9. 

Proof. Notice that (11, 12) ∈ 𝐸3 and(9, 14) ∈ 𝐸4. A direct computation shows 

that (9, 14) ∼ 1(7, 15) ∼ 1(5, 17) ∼ 1(4, 19). Remark (4.1.2) implies that 𝑓1 = 

𝑃4,19𝑓 and 𝑧1
11𝑧2

12 are inℳ. There is span{𝑃4,19𝑓, 𝑃4,19𝑇
∗𝑓} =  [𝑓1] = span{𝑓1, 𝑓2}. 

Therefore we get the desired result.  

Example (4.1.6)[106]: Let 𝑓(𝑧1, 𝑧2) = 𝑧1
4𝑧2
14 + 𝑧1

7𝑧2
7 + 𝑧1

3𝑧2
15 and [𝑓] be the reducing 

subspace of 𝑇𝑧15 �̅�210generated by 𝑓. Then 

[𝑓] = span {𝑧1
4𝑧2
14 + 𝑧1

3𝑧2
15,
1

3
 𝑧1
9𝑧2
4 +

3

8
 𝑧1
8𝑧2
5} ⊕ span{ {𝑧1

7𝑧2
7, 𝑧1

2𝑧2
17}. 

Proof. Notice that (7, 7) ∈ 𝐸5, (4, 14), (3, 15) ∈ 𝐸4 and (4, 14) ∼ 1(3, 15). Let 𝑓1 =
𝑃4,14𝑓 = 𝑧1

4𝑧2
14 + 𝑧1

3𝑧2
15 and 𝑓2 = 𝑄7,7𝑓 = 𝑧1

7𝑧2
7. Then [𝑃4,14𝑓, 𝑃4,14𝑇

∗𝑓] = [𝑓1] =
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span {𝑧1
4𝑧2
14 + 𝑧1

3𝑧2
15,

1

3
 𝑧1
9𝑧2
4 +

3

8
 𝑧1
8𝑧2
5} , [𝑃2,17𝑓, 𝑃2,17𝑇

∗ 𝑓] = [𝑄7,7𝑓, 𝑄7,7𝑇𝑓] = [𝑓2] =

span{𝑧1
7𝑧2
7, 𝑧1

2𝑧2
17}. Then we finish the proof.  

Example (4.1.7)[106]: Let 𝑓(𝑧1, 𝑧2) = 𝑧1
3𝑧2
8  + 𝑧1

7𝑧2
3, and [𝑓] be the reducing subspace of 

𝑇𝑧14 �̅�25generated by 𝑓. Then 

[𝑓] = span{𝑧1
3𝑧2
8, 𝑧1

7𝑧2
3} 

Proof. Notice that (3, 8) ∈ 𝐸4, (7, 3) ∈ 𝐸5. It is easy to check that 𝑇𝑧14 �̅�25𝑧1
4𝑧2
5𝑧1
3𝑧2
8 =

4

9
 𝑧1
7𝑧2
3 and 𝑇∗𝑧14�̅�25 𝑧1

7𝑧2
3 =

1

2
 𝑧1
3𝑧2
8. So [𝑧1

3𝑧2
8] = [𝑧1

7𝑧2
3] =  span{𝑧1

3𝑧2
8, 𝑧1

7𝑧2
3}. It 

meansthat [𝑓] = span{𝑧1
3𝑧2
8, 𝑧1

7𝑧2
3}. 

Example (4.1.8)[106]: Let 𝑓(𝑧1, 𝑧2) = 𝑧1
2𝑧2
17 + 𝑧1

4𝑧2
14 + 𝑧1

9𝑧2
4 + 𝑧1

3𝑧2
15 + 𝑧1

8𝑧2
5 and [𝑓] be 

the reducing subspace of 𝑇𝑧15 �̅�210 generated by 𝑓. Then 

 [𝑓] = [𝑧1
2𝑧2
17] ⊕ [𝑧1

4𝑧2
14] ⊕ [𝑧1

3𝑧2
15]

= [𝑧1
2𝑧2
17] ⊕ [𝑧1

4𝑧2
14 + 𝑧1

3𝑧2
15] ⊕ [𝑧1

4𝑧2
14 − 

64

75
 𝑧1
3𝑧2
15]

= [𝑧1
7𝑧2
7] ⊕ [𝑧1

9𝑧2
4 + 𝑧1

8𝑧2
5 ] ⊕ [𝑧1

9𝑧2
4 −

27

25
 𝑧1
8𝑧2
5] . 

Proof. Notice that (2, 17), (4, 14), (3, 15) ∈ 𝐸4, (9, 4), (8, 5) ∈ 𝐸5 and (4, 14) ∼
1(3, 15), (9, 4) ∼ 2 (8, 5). 

(i) Since 𝑃4,14𝑇
∗𝑓 = 𝑇∗ (𝑧1

9𝑧2
4 + 𝑧1

8𝑧2
5)  =  

1

2
 𝑧1
4𝑧2
14 +

4

9
 𝑧1
3𝑧2
15 , we have 

span{𝑃4,14𝑓, 𝑃4,14𝑇
∗𝑓} = span{𝑧1

4𝑧2
14, 𝑧1

3𝑧2
15} 

Therefore, [𝑓] = [𝑧1
2𝑧2
17] ⊕ [𝑧1

4𝑧2
14] ⊕ [𝑧1

3𝑧2
15] = span[𝑧1

2𝑧2
17, 𝑧1

7𝑧2
7] ⊕ [𝑧1

4𝑧2
14] ⊕

span{𝑧1
4𝑧2
14 , 𝑧1

9𝑧2
4}  ⊕ span{𝑧1

3𝑧2
15, 𝑧1

8𝑧2
5}. 

(ii) It is easy to check that 〈𝑧1
4𝑧2
14 −

64

75
 𝑧1
3𝑧2
15 , 𝑧1

4𝑧2
14 + 𝑧1

3𝑧2
15〉 = 0 

 And span{𝑃4,14𝑓, 𝑃4,14𝑇
∗ 𝑓} = span {𝑧1

4𝑧2
14 + 𝑧1

3𝑧2
15, 𝑧1

4𝑧2
14 −

64

75
  𝑧1

3𝑧2
15}. 

So [𝑓] = [𝑧1
4𝑧2
14 + 𝑧1

3𝑧2
15] ⊕ [𝑧1

4𝑧2
14  −

64

75
  𝑧1

3𝑧2
15] ⊕ [𝑧1

2𝑧2
17]. 

(iii) Notice that 

Span{𝑄9,4𝑓, 𝑄9,4𝑇𝑓} = span {𝑧1
9𝑧2
4 + 𝑧1

8𝑧2
5,
1

3
 𝑧1
9𝑧2
4 +

3

8
𝑧1
8𝑧2
5} 

= span {𝑧1
9𝑧2
4 + 𝑧1

8𝑧2
5, 𝑧1

9𝑧2
4 −

27

25
 𝑧1
8𝑧2
5}, 

Where 𝑧1
9𝑧2
4 −

27

25
𝑧1
8𝑧2
5 ⊥ 𝑄9,4𝑓. Then 

[𝑓] = [𝑧1
7𝑧2
7] ⊕ [𝑧1

9𝑧2
4 + 𝑧1

8𝑧2
5] ⊕ [𝑧1

9𝑧2
4 −

27

25
 𝑧1
8𝑧2
5] . 

       For the case that 𝑎 =
9

8
 , we have 

[𝑔 +
9

8
 𝑧1
8𝑧2
5]  = span {𝑧1

4𝑧2
14 + 𝑧1

3𝑧2
15 , 𝑧1

9𝑧2
4 +

9

8
 𝑧1
8𝑧2
5} = [𝑧1

4𝑧2
14 + 𝑧1

9𝑧2
4]since 𝑇∗  (𝑔 +

9

8
 𝑧1
8𝑧2
5) =

1

2
𝑃4,14𝑔. 

Section (4.2): Tensor Products of Weighted Shifts 

       Suppose that 𝐻 and 𝐾 are two separable Hilbert spaces. If 𝐴 ∈  𝐵(𝐻) and 𝐵 ∈  𝐵(𝐾), 
then 𝑀 =  𝐴 ⊗  𝐼 +  𝐼 ⊗  𝐵 is a bounded operator on the Hilbert space 𝐻 ⊗  𝐾. If both 

𝐻 and 𝐾 are of finite dimensions, then 𝑀 is related to the famous Sylvester equation [113]. 

The Sylvester equation is a matrix equation of the form  

𝐴𝑋 +  𝑋𝐵 =  𝐶, 
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 where 𝐴, 𝐵 and 𝐶 are given 𝑛 ×  𝑛 matrices. This equation has a unique solution 𝑋 for any 

𝐶 if and only if 𝐴 ⊗  𝐼 +  𝐼 ⊗ 𝐵𝑇  is invertible.  

In the case of finite dimensions, the Jordan decomposition of 𝑀 =  𝐴 ⊗  𝐼 +  𝐼 ⊗
 𝐵 has been completely described [118], [119], [122]. It is proved that if 𝐴 and 𝐵 are both 

Jordan blocks, then 𝑀 is not a single Jordan block unless 𝐻 or 𝐾 is of dimension one.  

We consider the reducing subspaces of 𝑀. Recall that a closed subspace 𝑋 ⊆  𝐻 is a 

reducing subspace of 𝐴 if 𝐴𝑋 ⊆  𝑋 and 𝐴 ∗ 𝑋 ⊆  𝑋. Denote 𝒱∗(𝐴)  =  {𝐴∗} . It is easy to 

see that 𝒱∗(𝐴) is equal to the commutant of the von Neumann algebra generated by 𝐴. Then 

𝑋 reduces 𝐴 if and only if the projection 𝑃𝑋 from 𝐻 onto 𝑋 is in 𝒱∗(𝐴). 𝐴 is called irreducible 

if the only reducing subspaces are 0 and 𝐻. Obviously, 𝐴 is irreducible if and only if 

𝒱∗(𝐴) = ℂ.  

It is easy to verify that 𝒱∗(𝑀)  ⊇ 𝒱∗(𝐴) ⊗ 𝒱∗(𝐵). Thus, it is natural to ask when 

the equality holds. If we choose 𝐴 and 𝐵 to be both irreducible, then 𝒱∗(𝐴)  ⊗ 𝒱∗(𝐵) ≅ ℂ. 
In this case, if 𝑀 is irreducible, then the equality holds. 

We prove that 𝑀 is not irreducible if 𝐴 is unitarily equivalent to 𝐵, see Proposition 

(4.2.13). However, we also show that there exists a class ℱ such that if 𝐴 and 𝐵 are both in 

ℱ , then 𝑀 is irreducible if and only if 𝐴 and 𝐵 are not unitarily equivalent. 

We study reducing subspaces of multiplication operators on function spaces. This 

topic began with [10],[110],[12],[111], [32], [17], [1], [22], and several brilliant results are 

obtained in [4], [5], [7]–[109]. This has already attracted a lot of attention and it is an 

opportunity to study the case where the underlying function space is defined on a higher-

dimensional domain [108], [37], [35], [112]. One can see [108], [112]. Furthermore in [108], 

[112], the research objects can be recognized by 𝑀𝑧
𝑘  ⊗  𝐼 +  𝛼𝐼 ⊗ 𝑀𝑤

𝑙 , where 𝑀𝑧 and 𝑀𝑤 

are multiplication operators on the Bergman space 𝐿^2(𝔻). In that case, 𝐴 and 𝐵 are 

unilateral weighted shifts of finite multiplicity. It is well known that unilateral weighted 

shifts are always irreducible, hence it is natural to consider that 𝑀 =  𝐴 ⊗  𝐼 +  𝐼 ⊗  𝐵 

where 𝐴 and 𝐵 are unilateral weighted shifts. See [114], [117], [121] for more on unilateral 

weighted shifts.  

For ℤ+ denote the set of all non-negative integers. Let {𝑒𝑛}_(𝑛 ∈ ℤ+ (resp. {𝑓𝑚}𝑚∈ℤ+ ) 

be orthonormal basis for 𝐻 (resp. 𝐾), and 𝐴𝑒𝑛   =  𝛼𝑛𝑒𝑛+1 (resp. 𝐵𝑓𝑚  =  𝛽𝑚𝑓𝑚+1) for 𝑛 ∈
 ℤ+ (resp. 𝑚 ∈  ℤ+). Here {𝛼𝑛}𝑛∈ℤ+ (resp. {𝛽𝑚}_(𝑚 ∈ ℤ+ ) is the weight sequence of 𝐴 

(resp. 𝐵). Note that ‖𝐴‖  = sup
𝑛
  |𝛼𝑛|  <  ∞ and ‖𝐵‖  = sup

𝑚
   |𝛽𝑚|  <  ∞. Then 

{𝑒𝑛  ⊗ 𝑓𝑚}𝑛,𝑚∈ℤ+ is an orthonormal basis for 𝐻 ⊗  𝐾 and we have  

𝑀𝑒𝑛  ⊗ 𝑓𝑚  =  𝛼𝑛𝑒𝑛+1  ⊗ 𝑓𝑚  +  𝛽𝑚𝑒𝑛  ⊗ 𝑓𝑚+1, 𝑛,𝑚 ∈  ℤ+.      (14) 
 A unilateral weighted shift 𝐴 is said to be simple if 𝛻3[|𝛼|2](𝑛)  =  0 whenever 𝑛2, 

where 𝛻 is the backward difference operator defined by 𝛻[𝑓](𝑛)  =  𝑓(𝑛)  −  𝑓(𝑛 −  1 ). It 
is easy to check that the multiplication operators 𝑀𝑧 are simple on both Dirichlet space and 

Bergman space.  

Let 𝑋 be a reducing subspace of 𝐴. Then 𝑋 is minimal if there is no nonzero reducing 

subspace 𝑌 properly contained in 𝑋.  

Theorem (4.2.1)[112]: If 𝐴 ∈  𝐵(𝐻) and 𝐵 ∈  𝐵(𝐾) are two simple unilateral weighted 

shifts, then 𝐴⊗ 𝐼 + 𝐼 ⊗ 𝐵 is reducible if and only if 𝐴 and 𝐵 are unitarily equivalent. In 

this case, 𝐻 ⊗  𝐾 is the direct sum of two minimal reducing subspaces.  

Based on this theorem, we will classify 𝒱∗(𝐴 ⊗  𝐼 +  𝐼 ⊗  𝐵). We find that there 

are only two types: 𝐶 and 𝐶 ⊕  𝐶.  
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At last, we point out that although the reducing subspaces of 𝐴𝑘 are completed solved 

in [111], it remains unclear in our setting 𝐴𝑘  ⊗  𝐼 +  𝐼 ⊗ 𝐵𝑙 . We will also study the 

reducing subspaces of 𝐴𝑘  ⊗  𝐼 +  𝐼 ⊗ 𝐵𝑙 .  

       Let 𝐻′ be a Hilbert space with an orthonormal basis {𝑒𝑛,𝑚}𝑛,𝑚∈ℤ+
 . We use the 

assumption of (14), and define an operator 𝑀 acting on the Hilbert space 𝐻 as follows:  

𝑀′ 𝑒𝑛,𝑚  =  𝛼𝑛𝑒𝑛+1,𝑚  +  𝛽𝑚𝑒𝑛,𝑚+1, 𝑛, 𝑚 ∈  ℤ+, 

 then 𝑀′ is bounded. Taking 𝐻1  =  span̅̅ ̅̅ ̅̅ {𝑒𝑛 ,0}_(𝑛 ∈ ℤ+ and 𝐻2  =  span̅̅ ̅̅ ̅̅ {𝑒0,𝑚}𝑚∈ℤ+
 , and 

defining 𝐴′ on 𝐻1 by 𝐴′𝑒𝑛,0 = 𝛼𝑛𝑒𝑛+1,0, and 𝐵′ on 𝐻2 by 𝐵′𝑒0,𝑚 = 𝛽𝑚𝑒0,𝑚+1, then there 

exists a unitary equivalence between 𝐻′ and 𝐻1  ⊗ 𝐻2. Furthermore, 𝑀′ is unitarily 

equivalent to 𝐴′⊗ 𝐼 + 𝐼 ⊗ 𝐵′ in this case. Keeping this unitary equivalence in mind, we 

will suppress the tensor product symbol and write enfm for 𝑒𝑛  ⊗ 𝑓𝑚. If 𝐴 ∈ 𝐵(𝐻) (resp. 

𝐵 ∈ 𝐵(𝐾)) is unitarily equivalent to 𝐴′ ∈ 𝐵(𝐻) (resp. 𝐵′ ∈ 𝐵(𝐾)) by a unitary 𝑈 ∈ 𝐵(𝐻) 
(resp. 𝑉 ∈ 𝐵(𝐾)), then 𝐴 ⊗ 𝐼 + 𝐼 ⊗ 𝐵 is unitarily equivalent to 𝐴′⊗ 𝐼 + 𝐼 ⊗ 𝐵′ by the 

unitary 𝑈⊗𝑉. For unilateral weighted shifts 𝐴 and 𝐴′ with weight sequences {𝛼𝑛}𝑛∈ℤ+ and 

{𝛼𝑛}𝑛∈ℤ+ , respectively, we have that 𝐴 and 𝐴′ are unitarily equivalent if and only if |𝛼𝑛|  =

 |𝛼𝑛
′ | for all 𝑛 ∈  ℤ+. 

       Thus in (14), we can assume that 𝛼𝑛 and 𝛽𝑚 are all strictly positive. Then 𝐴 is simple 

if and only if 𝛻3[𝛼2](𝑛)  ≠   0 whenever 𝑛 ≥ 2.  

A unilateral weighted shift can be represented by a multiplication operator acting on 

an analytic function space. We will use this systematically because of its convenience for 

computation. Let 𝜔 =  {𝜔0, 𝜔1, . . . , 𝜔𝑛, . . . } be a sequence of positive numbers. Let 𝐻2(𝜔) 
be the Hilbert space consisting of analytic functions 

𝑓(𝑧)  =  ∑  

∞

 𝑘=0

 𝑎𝑘𝑧𝑘   

such that  

‖𝑓‖2  =  ‖𝑓‖𝜔
2  =  ∑  

∞

 𝑘=0 

𝜔𝑘|𝑎𝑘|
2  <  ∞. 

 Then ‖𝑧𝑛‖
2  =  𝜔𝑛, and {

𝑧𝑛

√𝜔𝑛
 }
𝑛∈ℤ+

 is an orthonormal basis for 𝐻2(𝜔). It is well known 

that the multiplication operator 𝑀𝑧 is unitarily equivalent to a unilateral weighted shift A 

with the weight sequence  

{𝛼𝑛  = √
𝜔𝑛+1
𝜔𝑛

 }

 𝑛∈ℤ+

 . 

 To ensure that 𝑀𝑧 is bounded, we always assume supn 
𝜔𝑛+1

𝜔𝑛
 <  ∞. Similarly, we denote by 

𝐻2(𝛿) the Hilbert space consisting of analytic functions 𝑔(𝑤) such that ‖𝑔‖𝛿  <  ∞. Then 

the multiplication operator 𝑀𝑤 is unitarily equivalent to a unilateral weighted shift 𝐵 with 

weight sequence  

{𝛽𝑚  = √
𝛿𝑚+1
𝛿𝑚

}

𝑚∈ℤ+

 . 
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 Also, supm 
𝛿𝑚+1

𝛿𝑚
 <  ∞.  

Then we realize the tensor product 𝐻2 (𝜔) ⊗𝐻2(𝛿) as the Hilbert space consisting 

of analytic functions  

𝑓(𝑧, 𝑤)  =  ∑  

∞

 𝑘,𝑙=0

 𝑎𝑘𝑙𝑧
𝑘𝑤𝑙 

such that  

‖𝑓‖2  =  ‖𝑓‖𝜔,𝛿
2  =  ∑  

∞

𝑘,𝑙=0

 𝜔𝑘𝛿𝑙|𝑎𝑘𝑙|
2  <  ∞.  

Under these notation, 𝑀 =  𝐴 ⊗  𝐼 +  𝐼 ⊗  𝐵 is unitarily equivalent to 𝑀𝑧+𝑤 on 

𝐻2 (𝜔)  ⊗ 𝐻2(𝛿). It is not necessary to distinguish 𝑀𝑧 from 𝑀𝑧  ⊗  𝐼. We use 𝑀𝑧 to 

represent multiplication operators both on 𝐻2(𝜔) and 𝐻2(𝜔) ⊗ 𝐻2(𝛿). It is similar for 

𝑀𝑤. In this case, 𝑀𝑧+𝑤  =  𝑀𝑧  +  𝑀𝑤. From now on, 𝐻2(𝜔) ⊗ 𝐻2(𝛿) is denoted by 

𝐻2(𝜔, 𝛿).  
For further simplicity of notation, we can assume 𝛻[𝑓](0)  =  𝑓(0).  

       By the above simplification, we can reduce the study of reducing subspaces of 𝐴 ⊗
 𝐼 +  𝐼 ⊗  𝐵 to that of 𝑀𝑧+𝑤. Firstly, we start with several definitions and lemmas, many 

of which originate from [108], [112]. We define 𝑇 =  [𝑀𝑧+𝑤
∗ , 𝑀𝑧+𝑤]  =

 𝑀𝑧+𝑤
∗ 𝑀𝑧+𝑤 – 𝑀𝑧+𝑤𝑀 𝑧+𝑤

∗ . Set 𝜙(𝑛)  =  𝛻 [ 
𝜔· +1

𝜔·
 ] (𝑛) and 𝜓(𝑚)  =  𝛻 [

𝛿·+1

𝛿·
 ] (𝑚). Then a 

routine computation gives that  

𝑇 𝑧𝑛𝑤𝑚  =  (𝜙(𝑛) +  𝜓(𝑚))𝑧𝑛𝑤𝑚, 𝑛,𝑚 ∈  ℤ+. 

 Define an equivalence relation ∼ on ℤ+
2  by  

(𝑛,𝑚)  ∼  (𝑛 ,𝑚 )  ⇔  𝜙(𝑛)  +  𝜓(𝑚)  =  𝜙(𝑛 )  +  𝜓(𝑚 ). 
Since 𝑇 is diagonal with respect to the bases {𝑧𝑛𝑤𝑚}𝑛,𝑚∈ℤ+ , there is a spectral 

decomposition 𝐻2(𝜔, 𝛿)  = ⊕ 𝑄𝑑 such that 𝑧𝑛𝑤𝑚 and 𝑧𝑛
′
 𝑤𝑚

′
 belong to the same 𝑄𝑑 if 

and only if (𝑛,𝑚)  ∼  (𝑛′ , 𝑚′ ). It is easy to see that for each monomial znwm, the 

projection 𝑄𝑑 maps it either to 0 or to itself. Let 𝒜 be a collection of bounded operators on 

a Hilbert space 𝐻. When 𝐹 ⊆  𝐻, we define  

𝒜𝐹 =  span̅̅ ̅̅ ̅̅ {𝐴 ℎ ∶  𝐴 ∈ 𝒜, ℎ ∈  𝐹}, 
And 

�̃�𝐹  =  {𝑇 ∈  𝐵(𝐻): 𝑇 𝐹 ⊆ 𝒜𝐹}. 
Then define �̃� by  

�̃�  =  ⋂  

𝐹 ⊆𝐻

 �̃�𝐹  . 

 Thus for all 𝐵 ⊆ �̃� and 𝐹 ⊆  𝐻, we have ℬ𝐹 ⊆ 𝒜𝐹.  

In fact, there is a related concept. If ℬ is any linear subspace (not necessarily closed) 

of 𝐵 (𝐻), then the attached space [114] for ℬ is defined as 

Ref ℬ =  {𝑇 ∈  𝐵(𝐻) ∶  𝑇 ℎ ∈  span̅̅ ̅̅ ̅̅ {ℬℎ} for all ℎ ∈  𝐻}.  
Actually we have �̃�  = Ref (span𝒜), where span𝒜 is the linear subspace spanned by 𝒜. 

The fact that Ref ℬ is always strongly closed implies that �̃� contains the SOT closure of 

span𝒜, where SOT means the strong operator topology.  

In our concrete case, for each 𝑛 ∈  ℤ+, define  
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𝒮𝑛  = {∏ 

𝑚

𝑘=1

 𝑀𝑧+𝑤
𝑖𝑘 𝑀 𝑧+𝑤

∗𝑗𝑘 , 𝑖𝑘 , 𝑗𝑘  ∈  ℤ+ ∶  ∑  

𝑚

 𝑘=1

 (𝑖𝑘  −  𝑗𝑘)  =  𝑛} 

and  

𝒮∗𝑛  = {∏  

𝑚

 𝑘=1

 𝑀 𝑧+𝑤
𝑖𝑘 𝑀 𝑧+𝑤

∗𝑗𝑘
, 𝑖𝑘, 𝑗𝑘  ∈  ℤ+ ∶  ∑  

𝑚

 𝑘=1

 (𝑖𝑘  −  𝑗𝑘)  =  −𝑛}  .  

Note that 𝒮𝑚(𝒮𝑛𝐹)  =  𝒮𝑚+𝑛𝐹, for any 𝐹 ⊆  𝐻2(𝜔, 𝛿) and 𝑛,𝑚 ∈  ℤ+. For simplicity, 

write 𝒮𝑛  =  𝒮∗−𝑛 and 𝒮∗𝑛  =  𝒮−𝑛 if 𝑛 <  0. Then  

𝒮𝑚(𝒮𝑛𝐹)  ⊆  𝒮𝑚 +𝑛𝐹, 𝑛,𝑚 ∈ ℤ, 
where 𝐹 ⊆  𝐻2(𝜔, 𝛿). 
  It is easy to see that span𝒮0 contains the linear span of all 𝑇𝑛’𝑠 whenever 𝑛 ∈  ℤ+. 
By the spectral decomposition 𝐻2 (𝜔, 𝛿 )  = ⊕ 𝑄𝑑 with respect to 𝑇, since 𝑄𝑑  is a Borel 

functional calculus of 𝑇 ∈  span𝒮0, and 𝒮0 contains the SOT closure of span𝒮0, we get that 

𝑄𝑑  ∈  𝒮
0. Thus, for any 𝐹 ⊆  𝐻2(𝜔, 𝛿) and 𝑛 ∈ ℤ, we obtain the following inequality:  

𝑄𝑑𝒮
𝑛𝐹 ⊆  𝒮0(𝒮𝑛𝐹)  ⊆  𝒮𝑛𝐹.                                        (15) 

 For each 𝑟 ∈  ℤ+, we define  

𝐸𝑟  = span{𝑧
𝑛𝑤𝑚 ∶ 𝑛 + 𝑚 =  𝑟}.  

It is easy to show that dim 𝐸𝑟 =  𝑟 +  1 and 𝐻2(𝜔, 𝛿)  =  ⨁  ∞
𝑟=0  𝐸𝑟 . Furthermore, 𝒮𝑛𝐸𝑟  ⊆

 𝐸𝑟+𝑛, for every 𝑛 ∈  ℤ+. Actually, one of the main purposes is to determine whether 

𝒮𝑛𝐸𝑟  =  𝐸𝑟+𝑛 whenever 𝑟 and 𝑛 are given.  

The following two lemmas generalize the corresponding results of [112].  

Lemma (4.2.2)[112]: Suppose that 𝑟 ∈  ℤ+. If the statement  

(𝑟 +  1, 0) ∼  (𝑟, 1) ∼···∼  (0, 𝑟 +  1)                                  (16) 
 does not hold, then 𝒮1𝐸𝑟  =  𝐸𝑟+1. 

Proof. The proof comes from [108].  

Suppose (16) is false for 𝑟 ∈  ℤ+. It is clear that \𝑎𝑆1𝐸𝑟  ⊆  𝐸𝑟+1. For the inverse 

inclusion, it suffices to show that  

dim   𝒮1𝐸𝑟 ≥ 𝑟 +  2 = dim   𝐸𝑟+1.  
To see this, we first show that 𝑇𝑀𝑧+𝑤(𝐸𝑟)  ⊆  𝑀𝑧+𝑤(𝐸𝑟). Otherwise, for all 𝑗 =  0, 1, . . . , 𝑟,  

𝑇 ((𝑧 +  𝑤)𝑧𝑟−𝑗𝑤𝑗  )  ∈  𝑀𝑧+𝑤(𝐸𝑟). 
Recall that  

𝑇 𝑧𝑛𝑤𝑚  =  (𝜙(𝑛)  +  𝜑(𝑚))𝑧𝑛𝑤𝑚,   𝑛,𝑚 ∈  ℤ+ , 
and we will find that  

(𝑟 −  𝑗 +  1, 𝑗) ∼  (𝑟 −  𝑗, 𝑗 +  1), 0 𝑗 𝑟. 
Thus,  

(𝑟 +  1, 0)  ∼  (𝑟, 1)  ∼···∼  (0, 𝑟 +  1), 
 which leads to a contradiction. Therefore, 𝑇𝑀𝑧+𝑤(𝐸𝑟)  ⊆  𝑀𝑧+𝑤(𝐸𝑟). Hence,  

dim  (𝒮1𝐸𝑟) ≥ dim  (𝑀𝑧+𝑤(𝐸𝑟))  +  1 =  𝑟 +  2, 
 as desired. The proof is finished.  

Lemma (4.2.3)[112]: 𝒮∗1𝐸𝑟+1  =  𝐸𝑟 for each 𝑟 ∈  ℤ+. Consequently, if 𝑚 ≥  𝑛 ≥  0, then 

𝒮∗𝑛𝐸𝑚  =  𝐸𝑚−𝑛.  
Proof. The proof comes from [112].  

It suffices to prove that 𝒮∗1𝐸𝑟+1  =  𝐸𝑟 . Since it is clear that 𝒮∗1 𝐸𝑟+1  ⊆  𝐸𝑟, it 

remains to show that 𝒮∗1𝐸𝑟+1  ⊇  𝐸𝑟.  
By direct computation we get  
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𝑀 𝑧+𝑤
∗ 𝑧𝑟+1  =

𝜔𝑟+1
𝜔𝑟

 𝑧𝑟, 

which yields that 𝑧𝑟  ∈  𝒮
∗1𝐸𝑟+1. By induction, we assume that for some integer 𝑗 < 𝑟, 

𝑧𝑟−𝑖𝑤𝑖  ∈  𝒮∗1𝐸𝑟+1, 0 ≤  𝑖 ≤  𝑗. 
By simple calculations, we obtain that 

𝑀𝑧+𝑤
∗ 𝑧𝑟−𝑗𝑤𝑗+1  =

𝜔𝑟−𝑗
𝜔𝑟−𝑗−1

𝑧𝑟−𝑗−1𝑤𝑗+1  +
𝛿𝑗+1
𝛿𝑗
𝑧𝑟−𝑗𝑤𝑗  , 

which yields 𝑧𝑟−𝑗−1𝑤𝑗+1  ∈  𝒮∗1𝐸𝑟+1. Therefore, 𝒮∗1𝐸𝑟+1  =  𝐸𝑟. 
Finally, if K is a reducing subspace of 𝑀𝑧+𝑤 and dim  (𝐾/𝒮𝐾)  =  1, then 𝐾 is 

minimal. For details, we refer the reader to [112]. 

       Recall that a weighted shift A is simple if 𝛻3[𝛼2](𝑛)  =  0 whenever 𝑛 ≥  2. For 𝑀𝑧 it 
is equivalent to saying that 

𝜑(𝑛 +  1)  −  φ(𝑛)  ≠   φ(𝑛)  −  φ(𝑛 −  1) for all 𝑛 ≥  1, 

where 𝜑(𝑛)  =  𝛻 [
𝜔·+1

𝜔·
 ] (𝑛). The statement for 𝑀𝑤 is similar. Henceforth, all weighted 

shifts are assumed to be simple. 

The following lemma weakens the assumptions of the corresponding result of [112]. 

Lemma (4.2.4)[112]: Let 𝑛,𝑚 ∈  ℤ+ and 𝑛 ≥  1. If (𝑛,𝑚)  ∼  (𝑛 −  1,𝑚 +  1), then (𝑛 +
 1,𝑚)  ∼  (𝑛,𝑚 +  1) and (𝑛,𝑚 +  1)  ∼  (𝑛 −  1,𝑚 +  2). 
Proof. Assume conversely that (𝑛 +  1,𝑚)  ∼  (𝑛,𝑚 +  1), i.e.,  

𝜑(𝑛 +  1) +  𝜓(𝑚) =  𝜑(𝑛) +  𝜓(𝑚 +  1). 
 Combining this with (𝑛,𝑚)  ∼  (𝑛 −  1,𝑚 +  1), i.e.,  

𝜑(𝑛)  +  𝜓(𝑚)  =  𝜑(𝑛 −  1) +  𝜓(𝑚 +  1), 
 yields  

𝜑(𝑛 +  1)  −  𝜑(𝑛)  =  𝜑(𝑛)  −  𝜑(𝑛 −  1). 
Since 𝑀𝑧 is simple and 𝑛 ≥ 1, this leads to a contradiction. Hence (𝑛 +  1,𝑚)  ≄  (𝑛,𝑚 +
 1). Similarly, (𝑛,𝑚 +  1)  ≄  (𝑛 −  1,𝑚 +  2).  

Now we can prove the following result.  

Proposition (4.2.5)[112]: 𝒮1𝐸𝑟  =  𝐸𝑟+1 for each integer 𝑟 ≥  1.  

Proof. The idea of this proof comes from [112]. If the statement was false for some 𝑟 ≥ 1, 

then by Lemma (4.2.2),  

(𝑟 +  1, 0)  ∼  (𝑟, 1)  ∼···∼  (0, 𝑟 +  1). 
By Lemma (4.2.4), since (𝑟 +  1, 0) ∼  (𝑟, 1), we have (𝑟 +  2, 0) ≄  (𝑟 +  1, 1)and 

(𝑟 +  1, 1) ≄  (𝑟, 2). Using the spectral decomposition for  , there is a spectral projection 

𝑄 ∈ 𝒮 0̃ such that 𝑄𝑧𝑟+2  =  𝑄𝑧𝑟𝑤2  =  0, 𝑄𝑧𝑟+1𝑤 =  𝑧𝑟+1𝑤. 
 Note that 𝑀 𝑧+𝑤

2 𝑧𝑟  =  𝑧𝑟+2  +  2𝑧𝑟+1𝑤 + 𝑧𝑟𝑤2  ∈  𝒮2𝐸𝑟, thus we obtain 𝑧𝑟+1𝑤 =
1

2
𝑄𝑀 𝑧+𝑤

2 𝑧𝑟  ∈  𝒮2𝐸𝑟  by (15). 

Since (𝑟, 1)  ∼  (𝑟 −  1, 2), applying Lemma (4.2.4) again we have (𝑟 +  1, 1) ≄
 (𝑟, 2) and (𝑟, 2)  ≄  (𝑟 −  1, 3).  

Note that 𝑀𝑧+𝑤
2 𝑧𝑟−1𝑤 =  𝑧𝑟+1𝑤 +  2𝑧𝑟𝑤2  + 𝑧𝑟−1𝑤3. Using the same argument 

above, we can show that 𝑧𝑟𝑤2, 𝑧𝑟−1𝑤3  ∈ 𝑆2𝐸𝑟. Furthermore, 𝑧𝑟+2  =  𝑀 𝑧+𝑤
2 𝑧𝑟  −

 2𝑧𝑟+1𝑤 − 𝑧𝑟𝑤2  ∈  𝒮2𝐸𝑟. This induction will lead to 𝒮2𝐸𝑟  =  𝐸𝑟+2. Therefore, 𝒮1𝐸𝑟  ⊇
 𝒮∗1𝒮2𝐸𝑟  =  𝒮

∗1𝐸𝑟+2  =  𝐸𝑟+1, where the last identity follows from Lemma (4.2.3). This 

leads to a contradiction.  

Based on the above lemma, we see that 
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dim  (
𝐻2(𝜔, 𝛿)

𝒮1𝐻2(𝜔, 𝛿)
)  = dim  (

(𝐸0  +  𝐸1)

𝒮1𝐸0
) ≤ 2.  

Due to this inequality, we obtain the following corollary:  

Corollary (4.2.6)[112]: Any nontribyl reducing subspace of 𝐻2(𝜔, 𝛿) is all minimal. Hence 

𝐻2(𝜔, 𝛿) is either minimal or a direct sum of two minimal reducing subspaces.  

Proof. If 𝐻2(𝜔, 𝛿) is not minimal, let 𝐻 =  0 be a nontribyl reducing subspace of 𝐻2(𝜔, 𝛿). 
Since 𝒮 increases degree by one, 𝒮1𝐻 ⫋  𝐻 and 𝒮1𝐻⊥ ⫋ 𝐻⊥. Writing 𝐻2(𝜔, 𝛿)  =  𝐻 ⊕
 𝐻⊥, then we see that  

dim  (
𝐻2(𝜔, 𝛿)

𝒮1𝐻2(𝜔, 𝛿)
) = dim  (

𝐻

𝒮1𝐻
) + dim  (

𝐻⊥

𝒮1𝐻⊥
) ≤  2. 

 It yields  

dim  (
𝐻

𝒮1𝐻
)  =  1 anddim  (

𝐻⊥

𝒮1𝐻⊥
) = 1.  

This means that both 𝐻 and 𝐻⊥ are minimal.  

In fact, we claim that if 𝐻2(𝜔, 𝛿) is not minimal, then there are only two minimal 

reducing subspaces. However, the proof of this assertion requires more. We have to 

postpone. 

We will find a method to judge whether  

𝜑(𝑛 +  1) −  𝜑(𝑛) ≠  𝜑(𝑛) −  𝜑(𝑛 −  1)for all 𝑛 ≥  1,               (17)  
whenever 𝜑 is given and 𝑛 ∈  ℤ+. These results will be useful.  

Suppose that 𝑛 varies in ℤ+. Let ℝ+ denotes the set of all non-negative real numbers. 

In many examples, there is always a sufficiently smooth function f defined on ℝ+ such that 

𝜑(𝑛)  =  𝛻[𝑓](𝑛) whenever 𝑛 ≥ 1 and 𝜑(0)  =  𝑓(0). In this case, (17) is equivalent to  

𝛻3[𝑓](𝑛)  ≠  0 for all 𝑛 ≥ 3                                               (18)  
and  

𝑓(1) −  2𝑓(0)  ≠  𝑓(2) −  2𝑓(1) +  𝑓(0).                                (19)  
Such a function is called to be simple.  

Lemma (4.2.7)[112]: Let 𝑓 ∈  𝐶3(ℝ+). If 𝑓(𝑥)  =  0 on ℝ+, then 𝛻2[𝑓](𝑥) is strictly 

monotone for all 𝑥 ≥  2, thus (18) is true.  

Proof. If 𝑥 ≥ 2, by the differential mean value theorem,  

(𝛻2[𝑓]) (𝑥)  =  𝛻2[𝑓′ ](𝑥) = [𝑓′ (𝑥)  −  𝑓 ′ (𝑥 −  1)]  − [𝑓′ (𝑥 −  1)  − 𝑓′ (𝑥 −  2)]  
=  𝑓′′(𝜉1)  − 𝑓

′′(𝜉2)  =  𝑓
′′′(𝜉3)(𝜉1  −  𝜉2),  

where 𝜉1  ∈  (𝑥 −  1, 𝑥), 𝜉2  ∈  (𝑥 −  2, 𝑥 −  1), 𝜉3  ∈  (𝑥 −  2, 𝑥).  
It yields that (𝛻2[𝑓]) (𝑥)  =  0 for all 𝑥 ≥ 2. The proof is complete by Darboux 

theorem.  

Thus, to verify that a function 𝑓 ∈  𝐶3(ℝ+ ) is simple, we will show 𝑓(𝑥)  =  0 on 

ℝ+ first, which implies (18). Then we turn to check (19). 

 Next, some simple functions will be given. For further discussion, we introduce a 

new concept. Let 𝑓 ∈  𝐶3(ℝ+). If 𝑓 >  0, 𝑓
′′  <  0, 𝑓′′′  >  0, 𝑓′′′′ < 0, then 𝑓 is called to 

be strongly simple. For this we have the following key lemma. 

Lemma (4.2.8)[112]: A strongly simple function is simple.  

Proof. Let 𝑓 ∈  𝐶3(ℝ+) be strongly simple. Since 𝑓′′′  <  0, (18) is true by Lemma (4.2.7). 

Next we check (19),  

𝑓(1)  −  2𝑓(0)  ≠  𝑓(2) −  2𝑓(1) +  𝑓(0). 
 Put  

𝑔(𝑥)  =  𝑓(𝑥 +  1)  −  2𝑓(𝑥), 𝑥 ∈  ℝ+. 
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 Taking differentiation, we get  

𝑔′ (𝑥)  =  𝑓′ (𝑥 +  1)  −  2𝑓′ (𝑥), 𝑥 ∈  ℝ+. 
 Since 𝑓′′  >  0, 𝑓′ is strictly increasing. It follows that 0 >  𝑓′ (𝑥 +  1)  >  𝑓′ (𝑥) for 𝑥 ∈
 ℝ+, thus  

𝑓′ (𝑥 +  1)  >  2𝑓′ (𝑥), 𝑥 ∈  ℝ+. 
We obtain the inequality 𝑔 >  0, i.e., g is strictly increasing, hence we have  

𝑔(0)  <  𝑔(1)  <  𝑔(1) +  𝑓(0), 
 which is (19). This completes the proof. The following lemma tells us that the set of all 

strongly simple functions forms a semigroup. 

Lemma (4.2.9)[112]: The product of finitely many strongly simple functions is strongly 

simple.  

Proof. It suffices to prove that if 𝑓1, 𝑓2  ∈  𝐶
3(ℝ+) are both strongly simple, then 𝑓 =  𝑓1𝑓2 

is strongly simple. Of course, 𝑓 >  0. By Leibniz formula,  

𝑓(𝑘)  =  ∑  

𝑘

 𝑗=0

(
𝑘 
𝑗
)  𝑓1

(𝑗)
  𝑓2

(𝑘−𝑗)
 , 𝑘 =  1, 2, 3,  

where  

(
𝑘
 𝑗
)   =

𝑘!

 𝑗! (𝑘 −  𝑗)!
. 

 Since each 𝑓𝑖 is strongly simple, we can see that each term in 𝑓′ , 𝑓′′ and 𝑓′′′ is strictly 

negative, strictly positive and strictly negative, respectively. Thus 𝑓 is strongly simple.  

There are many strongly simple functions.  

Lemma (4.2.10)[112]: 𝑓(𝑥) = (
𝑠+𝑥

 𝑡+𝑥
 )
𝛾
, where 0 < 𝑠 <  0, is strongly simple.  

Proof. The proof is straightforward.  

       Suppose that 𝐻 is a Hilbert space, and 𝑀 ∈  𝐵(𝐻). When 𝐹 ⊆  𝐻, we denote by [𝐹]𝑀 

the reducing subspace of 𝑀 generated by 𝐹.  

In what follows, set 𝐻 =  𝐻2(𝜔, 𝛿) and 𝑀 =  𝑀𝑧+𝑤, then [𝐹]𝑀 will be written as 

[𝐹].  
Proposition (4.2.11)[112]: 𝐻2(𝜔, 𝛿) is not minimal if and only if 𝒮1𝐸0  ≠  𝐸1. In this case, 

𝐻2(𝜔, 𝛿)  =  [1] ⊕ [𝑧 –  𝑤].  
Proof. If 𝒮1𝐸0  =  𝐸1, then 𝐻2(𝜔, 𝛿) is obviously minimal. Conversely, assume 𝒮1𝐸0  ≠
  𝐸1, then 𝒮1𝐸0 is a dimension one subspace. Since 𝑧 +  𝑤 ∈  𝒮1𝐸0, it must be that 𝒮1𝐸0  =
 𝐶{𝑧 +  𝑤}, i.e., for all 𝒮 ∈  𝒮1, there exists a complex number 𝜆 such that 𝒮1  =  𝜆(𝑧 +
 𝑤). Solving the equation on 𝛽, 𝑖. 𝑒., 

 〈𝑧 +  𝑤, 𝑧 +  𝛽𝑤 〉 =  0,  
we get  

�̅�  =  −
𝛿0𝜔1
𝛿1𝜔0

 .                                        (20) 

 Notice [113] = ⨁  ∞
 𝑟=0  𝑆𝑟𝐸0, hence it yields that [113] ⊥ (𝑧 +  𝛽𝑤). Furthermore, we have 

[113]  =  𝐻2(𝜔, 𝛿). According to Corollary (4.2.6), we see that [113] and [113]⊥ are both 

minimal. Thus [113] ⊥ =  [𝑧 +  𝛽𝑤]. Next we show that 𝛽 =  −1.   

Since 𝒮 
1𝐸0  ≠   𝐸1, it follows that (1, 0)  ∼  (0, 1). By Lemma (4.2.4), we obtain 

(2, 0) ≁  (1, 1) and (1, 1)  ≁  (0, 2). So we can select a spectral projection 𝑄 from 𝒮 0̃ such 

that 𝑄𝑧2  =  𝑄𝑤2  =  0 and 𝑄𝑧𝑤 =  𝑧𝑤.  
Using (15), we have 
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 𝒮−1(𝑄𝑆2𝐸0)  ⊆  𝒮
−1(𝒮2𝐸0)  ⊆  𝒮

1𝐸0. 
Thus we will find that there exists a complex number 𝜆 such that  

𝑀 𝑧+𝑤
∗ 𝑇 𝑄𝑀𝑧+𝑤

2 1 =  𝜆(𝑧 +  𝑤).                                     (21)  
 On the other hand, 

𝑀 𝑧+𝑤
∗ 𝑇 𝑄𝑀 𝑧+𝑤

2 1 =  𝑀 𝑧+𝑤
∗ 𝑇 𝑄(𝑧2  +  2𝑧𝑤 + 𝑤2) 

=  2𝑀 𝑧+𝑤
∗ 𝑇𝑧𝑤  

=  2𝜇𝑀 𝑧+𝑤
∗ 𝑧𝑤  

=  2𝜇 (
𝜔1
𝜔0
 𝑤 +

𝛿1
𝛿0
 𝑧)  ,                                            (22) 

 where 𝜇 =  𝜑(1)  +  𝜓(1). Comparing the corresponding coefficients of (21) and (22) 

gives  
𝜔1
𝜔0
 =
𝛿1
𝛿0
 , 

 thus 𝛽 =  −1 by (20).  

The following gives a necessary condition for 𝒮1𝐸0  =  𝐸1. The sufficiency part will 

be shown later.  

Proposition (4.2.12)[112]: If 𝒮1𝐸0  ≠  𝐸1, then  
𝜔𝑖+1
𝜔𝑖

=
𝛿𝑖+1
𝛿𝑖
 , 𝑖 ∈  ℤ+, 

 i.e., 𝑀𝑧 and 𝑀𝑤 are unitarily equivalent.  

Proof. We have already shown that it is true for 𝑖 =  0. By induction, assume it is true for 

all 𝑖 <  𝑛 − 1, we will prove it is true for 𝑖 =  𝑛 −  1. 

It follows from Proposition (4.2.11) that [113] ⊥ [𝑧 −  𝑤]. We get 
0 =  〈(𝑧 +  𝑤)𝑛, (𝑧 −  𝑤)(𝑧 +  𝑤)𝑛−1〉

= 〈(∑ 

𝑛

𝑖=0

(
𝑛
𝑖
) 𝑧𝑛−𝑖𝑤𝑖) , (𝑧 −  𝑤) (∑  

𝑛−1

𝑖=0

(
𝑛 −  1
𝑖

) 𝑧𝑛−1−𝑖𝑤𝑖)〉

= 〈(∑ 

𝑛

𝑖=0

(
𝑛
𝑖
) 𝑧𝑛−𝑖𝑤𝑖) , (∑  

𝑛−1

𝑖=0

(
𝑛 −  1
𝑖

) 𝑧𝑛−1−𝑖𝑤𝑖) − (∑  

𝑛−1

𝑖=0

(
𝑛 −  1
𝑖

) 𝑧𝑛−1−𝑖𝑤𝑖)〉

=  〈𝑧𝑛  +  𝑤𝑚, 𝑧𝑛  −  𝑤𝑚〉  +∑  

𝑛−1

𝑖=1

〈(
𝑛
𝑖
) 𝑧𝑛−𝑖𝑤𝑖 , [(

𝑛 −  1
𝑖

) (
𝑛 −  1
𝑖 −  1

) 𝑧𝑛−𝑖𝑤𝑖〉 . 

But 

∑ 

𝑛−1

𝑖=1

〈(
𝑛
𝑖
) 𝑧𝑛−𝑖𝑤𝑖 , [(

𝑛 −  1
𝑖

) − (
𝑛 −  1
𝑖 −  1

)] 𝑧𝑛−𝑖𝑤𝑖〉

= ∑  

𝑛−1

𝑖=1

(
𝑛
𝑖
) [(

𝑛 −  1
𝑖

) − (
𝑛 −  1
𝑖 − 1

) ] 〈𝑧𝑛−𝑖𝑤𝑖 , 𝑧𝑛−𝑖𝑤𝑖〉

= ∑  

𝜃(𝑛)

𝑖=1

(
𝑛
𝑖
) [(

𝑛 −  1
𝑖

) − (
𝑛 −  1
𝑖 −  1

) (𝜔𝑛−𝑖𝛿𝑖  −  𝜔𝑖𝛿𝑛−𝑖) =  0, 

where 
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𝜃(𝑛)  = {

𝑛 −  1 

2
 , for n odd,

𝑛 −  2 

2
  , for n even

 

Hence,  

0 =  〈𝑧𝑛  +  𝑤𝑛, 𝑧𝑛  −  𝑤𝑛〉  =  𝜔𝑛𝛿0  −  𝜔0𝛿𝑛. 

This together with the assumption gives that 
𝜔𝑛

𝜔𝑛−1
 =  𝛿𝑛/𝛿𝑛−1 , and the proof is finished.  

For sufficiency, there is a general statement. 

Proposition (4.2.13)[112]: Suppose that 𝐻 and 𝐾 both are of dimensions at least two. Let 

𝐴 ∈  𝐵(𝐻) and 𝐵 ∈  𝐵(𝐾). If 𝐴 and 𝐵 are unitarily equivalent, then 𝐴 ⊗  𝐼 +  𝐼 ⊗  𝐵 is 

reducible.  

Proof. If 𝐴 and 𝐵 are unitarily equivalent, suppose 𝑈 ∈  𝐵(𝐻,𝐾) is unitary such that 𝑈𝐴 =
 𝐵𝑈, 𝐴𝑈∗  =  𝑈∗𝐵. Then 𝑈 can be used to define a self-adjoint unitary 𝑉 on 𝐻 ⊗  𝐾 by 

𝑉 (𝑓 ⊗  𝑔)  =  𝑈∗𝑔 ⊗  𝑈𝑓. Note that 𝑉 =  𝐼 is impossible by dimensions of 𝐻 and 𝐾. 

Since 𝑉 is self-adjoint, 
𝐼±𝑉

2
 constitute a complete projection system. We have a 

decomposition as follows:  

𝐻 ⊗  𝐾 =  (𝐼 +  𝑉 )(𝐻 ⊗  𝐾)  ⊕ (𝐼 −  𝑉 )(𝐻 ⊗  𝐾).  
Furthermore, it is easy to verify that (𝐴 ⊗  𝐼 +  𝐼 ⊗  𝐵)𝑉 =  𝑉 (𝐴 ⊗  𝐼 +  𝐼 ⊗  𝐵). 
Indeed,  

(𝐴 ⊗  𝐼 +  𝐼 ⊗  𝐵)𝑉 (𝑓 ⊗  𝑔) = (𝐴 ⊗  𝐼 +  𝐼 ⊗  𝐵)(𝑈∗𝑔 ⊗  𝑈𝑓) 
=  𝐴𝑈∗𝑔 ⊗  𝑈𝑓 + 𝑈∗𝑔 ⊗  𝐵𝑈𝑓  
= 𝑈∗𝐵𝑔 ⊗  𝑈𝑓 + 𝑈∗𝑔 ⊗  𝑈𝐴𝑓  
=  𝑉 (𝐴 ⊗  𝐼 +  𝐼 ⊗  𝐵)(𝑓 ⊗  𝑔). 

Hence 
𝐼±𝑉

2
 (𝐻 ⊗  𝑉 ) are nontribyl reducing subspaces of 𝐴 ⊗  𝐼 +  𝐼 ⊗  𝐵. This leads to 

the reducibility of 𝐴 ⊗  𝐼 +  𝐼 ⊗  𝐵.  
Combining Propositions (4.2.11)–(4.2.13), we get the main result.  

Theorem (4.2.14)[112]: If 𝐴 and 𝐵 are two simple unilateral weighted shifts on separable 

Hilbert spaces 𝐻 and 𝐾, respectively, then  

(i) 𝑀 =  𝐴 ⊗ 𝐼 + 𝐼 ⊗ 𝐵 𝑖s reducible if and only if 𝐴 and 𝐵 are unitarily equivalent. In this 

case, 𝐻 ⊗  𝐾 is the direct sum of two minimal reducing subspaces of 𝑀.  

(ii) If 𝐴𝑒𝑛  =  𝛼𝑛𝑒𝑛+1, 𝐵𝑓𝑚  =  𝛽𝑚𝑓𝑚+1, and 𝛼𝑛  =  𝛽𝑛 for all 𝑛 ∈  ℤ+, then 𝐻 ⊗  𝐾 =
 [𝑒0𝑓0]𝑀 ⊕ [𝑒1𝑓0  −  𝑒0𝑓1]𝑀 , where the summands are the minimal reducing subspaces of 

𝑀.  

In fact, adopting the same argument as shown before, we can carry out the proof of 

the following.  

Corollary (4.2.15)[112]: If 𝐴 and 𝐵 are two unilateral weighted shifts such that 𝒮1 𝐸𝑟  =
 𝐸𝑟+1 for all 𝑟 ≥ 1, together with the property: (1, 0)  ∼  (0, 1) implies (2, 0)  ≁  (1, 1) and 

(1, 1)  ≁  (0, 2), then the conclusions in Theorem (4.2.14) are still true. 

       According to Corollary (4.2.6), 𝐻2(𝜔, 𝛿) is either minimal or a direct sum of two 

minimal reducing subspaces. If 𝐻2(𝜔, 𝛿) is minimal, then 𝒱∗(𝑀𝑧+𝑤)  = ℂ. When 𝑀𝑧 and 

𝑀𝑤 are unitarily equivalent, we will prove that 𝑀𝑧+𝑤 has exactly 2 minimal reducing 

subspaces.  

Proposition (4.2.16)[112]: If 𝑀𝑧 and 𝑀𝑤 are unitarily equivalent, then 𝒱∗(𝑀𝑧+𝑤)  ≅ ℂ ⊕
ℂ. 
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 Proof. Due to Proposition (4.2.11), it follows that 𝐻2(𝜔, 𝛿)  =  [1]  ⊕ [𝑧 −  𝑤], and 

𝒮1𝐸0  =  𝐶{𝑧 +  𝑤}. Since both [113] and [𝑧 −  𝑤] are minimal, it is easy to verify that  

[1] =  ⨁ 

∞

 𝑟=0

 𝒮𝑟𝐸0, [𝑧 −  𝑤] =  ⨁ 

∞

 𝑟=0

 𝒮𝑟{𝑧 −  𝑤}.                     (23) 

 Recalling that 𝐻2(𝜔, 𝛿)  = ⊕ 𝐸𝑟 , we have  

𝒮𝑟+1𝐸0  ⊕ 𝑆𝑟{𝑧 −  𝑤}  =  𝐸𝑟+1, 𝑟 ∈  ℤ+ 

In especial, 𝒮1𝐸0  ⊕ 𝒮0{𝑧 −  𝑤}  =  𝐸1. It leads to 𝒮0{𝑧 −  𝑤}  = ℂ{𝑧 −  𝑤}.  
Let 𝑃 be the projection from 𝐻2(𝜔, 𝛿) onto [113], and 𝑄 =  𝐼 −  𝑃. Clearly, 𝑄 is the 

projection from 𝐻2(𝜔, 𝛿) onto [z − w], and both 𝑃 and 𝑄 are in 𝒱∗ (𝑀𝑧+𝑤). We claim that 

𝑃 and 𝑄 are not equivalent in 𝒱∗(𝑀𝑧+𝑤). If otherwise, then there is a partial isometry 𝑈 ∈
 𝒱∗(𝑀𝑧+𝑤) with the initial space [113] and final space [𝑧 −  𝑤]. Using (23), we get  

𝑈(𝒮𝑟𝐸0)  =  𝑈(𝒮
𝑟[1] ⊝ 𝒮𝑟+1[1])  

= 𝒮𝑟𝑈[1]  𝒮𝑟 +1𝑈[1]  
= 𝒮𝑟[𝑧 −  𝑤]  ⊝ 𝒮𝑟+1[𝑧 −  𝑤] 
= 𝒮𝑟{𝑧 −  𝑤}, 

 for 𝑟 ∈  ℤ+. Thus we obtain dim  (𝒮𝑟 𝐸0)  = dim  (𝒮
𝑟{𝑧 −  𝑤}). Consequently, we infer 

that  

dim  (𝒮1{𝑧 −  𝑤})  = dim  (𝒮1𝐸0) = 1. 
Thus 𝒮1{𝑧 −  𝑤}  = ℂ{𝑧2  −  𝑤2}. In summary, we have two equalities:  

𝑈𝐸0  = ℂ{𝑧 −  𝑤}and 𝑈(𝐶{𝑧 +  𝑤})  = ℂ{𝑧
2  −  𝑤2}.  

It tells us that there exist two nonzero numbers 𝑐0 and 𝑐1 such that  

𝑈1  =  𝑐0(𝑧 −  𝑤) and 𝑈(𝑧 +  𝑤)  =  𝑐1(𝑧2  −  𝑤2). 
Since 𝑈 ∈  𝒱∗(𝑀𝑧+𝑤), we have 𝑈𝑇 =  𝑇𝑈. Notice 𝑀𝑧 and 𝑀𝑤 are unitarily equivalent, i.e., 

𝜑 =  𝜓. By straightforward computation, we get  

𝑈𝑇1 = (𝜑(0)  +  𝜑(0))𝑈1 = (𝜑(0)  +  𝜑(0))𝑐0(𝑧 −  𝑤),  
and 

 𝑇𝑈1 =  𝑐0𝑇 (𝑧 −  𝑤) = (𝜑(1)  +  𝜑(0))𝑐0(𝑧 −  𝑤). 
Thus 

 𝜑(0) =  𝜑(1).                                                                (24) 
Also, 

 𝑈𝑇 (𝑧 +  𝑤) = (𝜑(1) +  𝜑(0))𝑈(𝑧 +  𝑤) = (𝜑(1) +  𝜑(0))𝑐1(𝑧
2  −  𝑤2),  

and  

𝑇𝑈(𝑧 +  𝑤)  =  𝑐1𝑇 (𝑧
2  −  𝑤2) = (𝜑(2) +  𝜑(0))𝑐1(𝑧

2  −  𝑤2). 
 Thus 

 𝜑(2)  =  𝜑(1).  
But, this together with (24), implies that 

 0 =  𝜑(2) −  𝜑(1)  =  𝜑(1)  −  𝜑(0). 
 This contradicts the fact that 𝑀𝑧 is simple. Hence, 𝑃 and 𝑄 are not equivalent in 𝒱∗(𝑀𝑧+𝑤).  

We are now in a position to prove that there are only two nontribyl projections in 

𝒱∗(𝑀𝑧+𝑤). Let 𝑅 ∈  𝒱∗(𝑀𝑧+𝑤) be another nontribyl projection and 𝑅 will be minimal by 

Corollary (4.2.6). Since 𝐼 =  𝑃 + 𝑄, we have 𝑅 =  𝑃 𝑅 +  𝑄𝑅. If 𝑃𝑅 =  0, then 𝑄𝑅 =
 𝑅. It yields that 𝑅 ⊆  𝑄. Thus 𝑅 =  𝑄 by minimality. Similarly, if 𝑄𝑅 =  0 then 𝑅 =  𝑃. 

The remaining case is that both 𝑃𝑅 and 𝑄𝑅 are not zero. Then 𝑅 is equivalent to 𝑃 and 𝑄 

simultaneously in 𝒱∗(𝑀𝑧+𝑤) by the theory of von Neumann algebra. This contradicts the 

fact that 𝑃 and 𝑄 are not equivalent in 𝒱∗(𝑀𝑧+𝑤).  
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The above reasoning shows that 𝒱∗(𝑀𝑧+𝑤) only contains 2 nontribyl projections P 

and Q, and hence 𝒱∗(𝑀𝑧+𝑤) ≅ ℂ ⊕ ℂ. 

Theorem (4.2.17)[112]: Let 𝐴 and 𝐵 be two simple unilateral weighted shifts on separable 

Hilbert spaces 𝐻 and 𝐾, respectively. Then we have  

(i) 𝒱∗(𝐴 ⊗  𝐼 +  𝐼 ⊗  𝐵)  ≅ ℂ, if 𝐴 and 𝐵 are not unitarily equivalent;  

(ii) 𝒱∗(𝐴 ⊗  𝐼 +  𝐼 ⊗  𝐵)  ≅ ℂ ⊕ ℂ, if 𝐴 and 𝐵 are unitarily equivalent.  

       Theorems (4.2.14) and (4.2.17) have many applications. They can be used to investigate 

the reducing subspaces of 𝑁 =  𝐴𝑘  ⊗  𝐼 +  𝛼𝐼 ⊗ 𝐵𝑙 where 𝛼 ∈  𝐶 \ {0}. They also can 

be used to compute reducing subspaces of multiplication operators 𝑀𝑧𝑘+𝛼𝑤𝑙 on some 

familiar function spaces such as weighted Dirichlet spaces over the bidisk.  

In convention, an operator is called a standard model if it is unitarily equivalent to 

some 𝐴⊗ 𝐼 + 𝐼 ⊗ 𝐵 where 𝐴 and 𝐵 are unilateral weighted shifts. Of course, 𝐴⊗ 𝐼 +
𝛼𝐼 ⊗ 𝐵 is a standard model in this case. We will show that in fact, 𝑁 is a direct sum of 

finite standard models. This idea comes from [108]. Suppose that  

𝛺 ≜  {(𝑎, 𝑏)  ∈  ℤ+
2 ∶  0 𝑎 ≤ 𝑘 −  1, 0 ≤ 𝑏 ≤ 𝑙 −  1}. 

Then |𝛺|  =  𝑘𝑙. For each (𝑎, 𝑏)  ∈  𝛺, we define  

𝐻𝑎  =  span̅̅ ̅̅ ̅̅ {𝑒𝑎+𝑛𝑘 : 𝑛 ∈  ℤ+}, 𝐾𝑏  =  span̅̅ ̅̅ ̅̅ {𝑓𝑏+𝑚𝑙 ∶  𝑚 ∈  ℤ+},  
And 

 𝐻𝑎,𝑏  =  span̅̅ ̅̅ ̅̅ {𝑒𝑎+𝑛𝑘𝑓𝑏+𝑚𝑙 ∶  𝑛,𝑚 ∈  ℤ+}  =  𝐻𝑎  ⊗ 𝐾𝑏 .  
Then we have  

𝐻 =  ⨁  

0≤𝑎≤𝑘−1

 𝐻𝑎, 𝐾 =  ⨁  

0≤𝑏≤𝑙−1

 𝐾𝑏 ,  

And  

𝐻 ⊗  𝐾 =  ⨁  

(𝑎,𝑏)∈𝛺

 𝐻𝑎,𝑏  =  ⨁  

 (𝑎,𝑏)∈𝛺 

(𝐻𝑎  ⊗ 𝐾𝑏).  

If 𝑘 is a positive integer, we denote 

 𝛼𝑛
[𝑘]
 =  𝛼𝑛𝛼𝑛+1  ··· 𝛼𝑛+𝑘−1, 𝑛 ∈  ℤ+  

and if 𝑘 ≤ 𝑛 then  

𝛼𝑛
[−𝑘]

 =  𝛼𝑛−1𝛼𝑛−2  ···  𝛼𝑛−𝑘̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  =  𝛼𝑛−𝑘
[𝑘]
, 𝑛 ∈  ℤ+. 

Proposition (4.2.18)[112]: 𝑁 is a direct sum of 𝑘𝑙 standard models.  

Proof. For a and 𝐴𝑘, we have  

𝐴𝑘𝑒𝑎+𝑛𝑘  =  𝛼𝑎+𝑛𝑘
[𝑘]

𝑒𝑎+(𝑛+1)𝑘, 𝐴
𝑘∗𝑒𝑎+(𝑛+1)𝑘  =  𝛼𝑎+𝑛𝑘

[−𝑘]
𝑒𝑎+𝑛𝑘 , 𝑛 ∈  ℤ+.  

and  

𝐴𝑘∗𝑒𝑎  =  0.  
Thus 𝐻𝑎 reduces 𝐴𝑘. Similarly, 𝐾𝑏 reduces  .  

Denote by 𝐴𝑎  =  𝐴
𝑘|𝐻𝑎 , 𝐵𝑏  =  𝐵

𝑙|
𝐾𝑏

 and 𝑁𝑎,𝑏  =  𝑁|𝐻𝑎,𝑏 , then 𝑁𝑎,𝑏  =  𝐴𝑎  ⊗

 𝐼 +  𝛼𝐼 ⊗ 𝐵𝑏 . Furthermore, 𝑁 =  ⨁  (𝑎,𝑏)∈𝛺 𝑁𝑎,𝑏 . 

In fact, 𝐴𝑎 is a unilateral weighted shift 𝐴′ ∶  𝐻𝑎 has the weight sequence 

{𝛼𝑛
′  =  𝛼 𝑎+𝑛𝑘

[𝑘]
}
𝑛∈ℤ+

 with respect to the orthonormal basis {𝑒𝑛
′  =  𝑒𝑎+𝑛𝑘}𝑛∈ℤ+ . 𝐵𝑏 is a 

unilateral weighted shift 𝐵′ ∶  𝐾𝑏 has the weight sequence {𝛽𝑚
′  =  𝛽 𝑏+𝑚𝑙

[𝑙]
}
𝑚∈ℤ+

 with respect 

to the orthonormal basis {𝑓𝑚
′  =  𝑓𝑏+𝑚𝑙}𝑚∈ℤ+ . Thus 𝑁𝑎,𝑏 is a standard model and 𝑁 is a 

direct sum of 𝑘𝑙 standard models.  
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There are two natural questions: When 𝐻𝑎,𝑏 is minimal and when they are not unitary 

equivalent? We will solve the first question in many cases and leave the second one to 

further consideration. Now let us translate them into function models. Then 𝑁 will be 

translated into 𝑀𝑧𝑘+𝛼𝑤𝑙  . For each (𝑎, 𝑏)  ∈ Ω, we define  

𝐻2(𝜔)𝑎  =  span̅̅ ̅̅ ̅̅ {𝑧𝑎+𝑛𝑘 ∶  𝑛 ∈  ℤ+}, 𝐻
2(𝛿)𝑏  =  span̅̅ ̅̅ ̅̅ {𝑤𝑏+𝑚𝑙 ∶  𝑚 ∈  ℤ+}, 

 and  

𝐻2(𝜔, 𝛿)𝑎,𝑏  =  span̅̅ ̅̅ ̅̅ {𝑧𝑎+𝑛𝑘𝑤𝑏+𝑚𝑙 ∶  𝑛,𝑚 ∈  ℤ+}  =  𝐻
2(𝜔)𝑎  ⊗ 𝐻2(𝛿)𝑏 . 

According to the proof of Proposition (4.2.18), a routine computation gives rise to the 

following statements:  

   (i) 𝐻2(𝜔, 𝛿)𝑎,𝑏 is a reducing subspace;  

   (ii) 𝑀𝑧𝑘|𝐻2
(𝜔)𝑎 is a unilateral weighted shift 𝐴′ : 𝐻2(𝜔)𝑎 has the weight sequence 

{𝛼𝑛
′  = √

𝜔𝑎+(𝑛+1)𝑘

𝜔𝑎+𝑛𝑘
 }
𝑛∈ℤ+

 with respect to the orthonormal basis {𝑒𝑛
′  =

𝑧𝑎+𝑛𝑘

√𝜔𝑎+𝑛𝑘
  }
𝑛∈ℤ+

 . 

𝛼𝑀𝑤𝑙|𝐻2
(𝛿)𝑏 is a unilateral weighted shift 𝐵′ ∶  𝐻2(𝛿)𝑏 has the weight sequence 

{𝛽𝑚
′  =  𝛼√

𝛿𝑏+(𝑚+1)𝑙

𝛿𝑏+𝑚𝑙
 }
𝑚∈ℤ+

  with respect to the orthonormal basis {𝑓𝑚
′  =

𝑤𝑏+𝑚𝑙

√𝛿𝑏+𝑚𝑙
 }
𝑚∈ℤ+

 .  

Henceforth, we denote by [𝐹] the reducing subspace of 𝑀𝑧𝑘+ 𝛼𝑤𝑙 generated by 𝐹.  

By Theorems (4.2.14) and (4.2.17), we obtain the following proposition: 

Proposition (4.2.19)[112]: If 𝑀𝑧𝑘|𝐻2
(𝜔)𝑎 and 𝑀𝑤𝑙|𝐻2

(𝛿)𝑏 are simple, then 𝐻2(𝜔, 𝛿)𝑎,𝑏 is 

not minimal for 𝑀𝑧𝑘+𝛼𝑤𝑙  if and only if 𝑀𝑧𝑘|𝐻2
(𝜔)𝑎  ≅  𝛼𝑀𝑤𝑙|𝐻2

(𝛿)𝑏 . In this case, 

𝐻2(𝜔, 𝛿)𝑎,𝑏  =  [𝑧
𝑎𝑤𝑏] ⊕ [𝑧𝑎𝑤𝑏(𝑧𝑘 − |𝛼|𝑤𝑙 )], where the summands are the only 

nontribyl reducing subspaces of 𝑀𝑧𝑘+𝛼𝑤𝑙  .  
Proof. The first statement is given by Theorem (4.2.14). Next, we need to show that the 

decomposition of 𝐻2(𝜔, 𝛿)𝑎,𝑏 has the disired form. If we see 𝐴′ and 𝐵′ in (ii) above, then  

𝐻2(𝜔, 𝛿)𝑎,𝑏  =  [𝑒0
′𝑓0
′]  ⊕ [𝑒1

′𝑓0
′  −  𝑒0

′𝑓1
′] = [𝑧𝑎𝑤𝑏]  ⊕ [

𝑧𝑎+𝑘𝑤𝑏

√𝜔𝑎+𝑘𝛿𝑏
 −
𝑧𝑎𝑤𝑏+𝑙

𝜔𝑎𝛿𝑏+𝑙
]  

=  [𝑧𝑎𝑤𝑏]  ⊕ [𝑧𝑎𝑤𝑏 (𝑧𝑘  −  |𝛼|𝑤𝑙 )], 
where  

|𝛼|  =
𝜔𝑎+𝑘𝛿𝑏

√𝜔𝑎𝛿𝑏+𝑙
  

is given by 𝑀𝑧𝑘|𝐻2(𝜔)𝑎 ≅ 𝛼𝑀𝑤𝑙|𝐻2(𝛿)𝑏 . Then the proof is completed by Theorem (4.2.17).  

In what follows, we will check some classical function spaces. 

For each standard model 𝑀𝑧𝑘+𝛼𝑤𝑙|_(𝐻
2(𝜔, 𝛿)𝑎,𝑏 , denote  

𝑓𝑎(𝑛)  =
𝜔𝑎+(𝑛+1)𝑘
𝜔𝑎+𝑛𝑘

 , 𝑛 ∈  ℤ+,  

and  

𝑔𝑏(𝑚)  =
𝛿𝑏 +(𝑚+1)𝑙 
𝛿𝑏+𝑚𝑙

 , 𝑚 ∈  ℤ+. 

 Then 𝑀𝑧𝑘|𝐻2(𝜔)𝑎
 (resp. 𝑀𝑤𝑙|𝐻2(𝛿)𝑏

 ) is simple if and only if 𝑓𝑎 (resp. 𝑔𝑏) is simple.  

Let 𝐻 =  𝐷𝛽  ⊗ 𝐷𝛾  be the tensor product of two weighted Dirichlet spaces, where 

𝛽, 𝛾 ∈ ℝ. Then 𝐻 = 𝐻(𝜔,𝛿)
2 , where 𝜔𝑛  =  (𝑛 +  1)

𝛽 , 𝛿𝑚  =  (𝑚 +  1)
𝛾. For 𝑝𝛼  =  𝑧

𝑘  +

 𝛼𝑤𝑙  and (𝑎, 𝑏)  ∈  𝛺, we have  
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𝑓𝑎(𝑛) = (
𝑎 + (𝑛 +  1)𝑘 +  1

 𝑎 +  𝑛𝑘 +  1
)

𝛽

 , 

𝑔𝑏(𝑚) = (
𝑏 + (𝑚 +  1)𝑙 +  1

 𝑏 +  𝑚𝑙 +  1
)

𝛾

 . 

 Denote (𝑠, 𝑡) = (
𝑎+1

𝑘
 ,
𝑏+1

𝑙
 ), then we obtain 

𝑓𝑎(𝑛) = (
𝑠 +  𝑛 +  1

𝑠 +  𝑛
)
𝛽

 and 𝑔𝑏(𝑚)  = (
𝑡 +  𝑚 +  1

𝑡 +  𝑚
)
𝛾

 . 

Proposition (4.2.20)[112]: If 𝐻 =  𝐷𝛽  ⊗ 𝐷𝛾 and 𝛽, 𝛾 ∈  (0,+∞), then  

   (i) 𝑀𝑧𝑘|𝐷𝛽𝑎
 and 𝑀𝑤𝑙|𝐷𝛾 𝑏

 are simple for all admissible 𝑘, 𝑙, 𝑎, 𝑏;  

   (ii) 𝑀𝑧𝑘|𝐷𝛽𝑎
 and 𝛼𝑀𝑤𝑙|𝐷𝛾𝑏 are unitarily equivalent if and only if |𝛼|  =  1, 𝛽 =  𝛾, 𝑠 =

 𝑡;  
   (iii) in (ii), 𝐻𝑎,𝑏  =  [𝑧

𝑎𝑤𝑏]  ⊕ [𝑧𝑎𝑤𝑏(𝑧𝑘  −  𝑤𝑙 )], where the summands are the only 

nontribyl reducing subspaces of 𝑀𝑧𝑘+𝑤𝑙  ;  
   (iv) in other cases, 𝐻𝑎,𝑏’s are minimal reducing subspaces of 𝑀𝑧𝑘+𝛼𝑤𝑙 .  

Proof. By Lemma (4.2.10), if 𝛽, 𝛾 ∈  (0,+∞), then 𝑀𝑧𝑘|𝐷𝛽𝑎
  and 𝑀𝑤𝑙|𝐷𝛾𝑏

   are all simple 

for all admissible 𝑘, 𝑙, 𝑎, 𝑏. This proves (i).  

Next, 𝑀𝑧𝑘|𝐷𝛽𝑎
  and 𝛼𝑀𝑤𝑙|𝐷𝛾𝑏

 b are unitarily equivalent if and only if  

√
𝜔𝑎+(𝑛+1)𝑘
𝜔𝑎+𝑛𝑘

 =  |𝛼| 
𝛿𝑏+(𝑛+1)𝑙
𝛿𝑏+𝑛𝑙

 

holds for all 𝑛 ∈  𝑍 +, i.e., 

(
𝑠 +  𝑛 +  1

𝑠 +  𝑛
)
𝛽

 =  |𝛼|2 (
𝑡 +  𝑛 +  1

𝑡 +  𝑛
)
𝛾

 , 𝑛 ∈  ℤ+.  

First letting n tend to infinity, we get |𝛼| =  1. Then taking differentiation, we get 

– 𝛽 (
𝑠 + 𝑛 + 1

𝑠 + 𝑛 
)
𝛽−1

 
1

(𝑠 + 𝑛)2
 =  −𝛾 (

(𝑡 + 𝑛 + 1)

 𝑡 + 𝑛
)
𝛾−1 1

(𝑡 + 𝑛)2
 , 𝑛 ∈  ℤ+,  

i.e.,  

𝛽

𝛾
 = (

𝑡 +  𝑛 +  1

𝑡 +  𝑛
)
𝛾−1

(
𝑠 +  𝑛

𝑠 +  𝑛 +  1
)
𝛽−1

(
𝑠 +  𝑛

𝑡 +  𝑛
 )
2

 , 𝑛 ∈  ℤ+.  

Letting 𝑛 tend to infinity again, we get 𝛽 =  𝛾. Now we have  
𝑠 +  𝑛 +  1 

𝑠 +  𝑛
 =
𝑡 +  𝑛 +  1 

𝑡 +  𝑛
 , 𝑛 ∈  ℤ+. 

 This will lead to 𝑠 =  𝑡. This completes (ii).  

(iii) and (iv) are given by Proposition (4.2.19).  

If 𝛽 =  𝛾 = 1, then 𝐻 = 𝐷𝛽  ⊗ 𝐷𝛾 is the Dirichlet space over the bidisk. For 𝛽 <  0 or 

𝛾 < 0, it need to check the simple condition. If 𝛽 = 𝛾 = −1, then 𝐻 = 𝐷𝛽  ⊗ 𝐷𝛾 is the 

Bergman space 𝐿𝑎
2 (𝔻2) over the bidisk. Some similar and tedious manipulations still yield 

that 𝑓𝑎 and 𝑔𝑏 are simple functions, hence we obtain many results again in [108], [112]. This 

provides a good explanation for their different behavior on α. If 𝛽 =  𝛾 =  0, then 𝐻 =
𝐻2(𝔻2) is the Hardy space over the bidisk. Each 𝐻𝑎,𝑏 is minimal if and only if |𝛼|2  =  1. 

If |𝛼|2  =  1, then each 𝐻𝑎,𝑏 has the same structure as in Proposition (4.2.20)(iii). Dan [108] 

also considered this problem in a different way. In particular, the reducing subspaces of 
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multiplication operators 𝑀𝑧+𝛼𝑤  on the Hardy space, Dirichlet space and Bergman space 

over the bidisk all have the same structure. In other words, their 𝒱∗(𝑀𝑧+𝛼𝑤)’s are 

isomorphic. For more examples, we can introduce a new class of function spaces. We call 

them ultra-weighted Bergman spaces. Let 𝐴 𝛼,𝛽
2  =  𝐻2(𝜔), where 𝛼 >  −1, 𝛽 ∈  𝑅, 𝜔𝑛  =

 (
𝑛!Γ(2+𝛼)

Γ(2+𝛼+𝑛)
)
𝛽

. It is obvious that 𝐴0,𝛽
2  =  𝐷−𝛽  and 𝐴𝛼,1

2  are the usual weighted Bergman 

spaces. 

Let 𝐻 =  𝐴𝛽,𝛾
2  ⊗ 𝐴 𝛿,𝜆

2  be the tensor product of two ultra-weighted Bergman spaces, 

where 𝛽, 𝛿 >  −1, 𝛾, 𝜆 ∈ ℝ. Then 𝐻 =  𝐻(𝜔,𝛿)
2 , where 𝜔𝑛 = (

𝑛!Γ(2+𝛽)

Γ(2+𝛽+𝑛)
)
𝛾

, 𝛿𝑚 =

(
𝑚!Γ(2+𝛿)

Γ(2+𝛿+𝑚)
)
𝜆

. For 𝑝𝛼  =  𝑧
𝑘  +  𝛼𝑤𝑙 and (𝑎, 𝑏)  ∈ Ω, we have  

𝑓𝑎(𝑛) = (
(𝑎 + (𝑛 +  1)𝑘)! Γ(2 +  𝛽 +  𝑎 +  𝑛𝑘)

(𝑎 +  𝑛𝑘)! Γ(2 +  𝛽 +  𝑎 + (𝑛 +  1)𝑘)
)

𝛾

 , 

and 

 𝑔𝑏(𝑚)  = (
(𝑏 + (𝑚 +  1)𝑙)! Γ(2 +  𝛿 +  𝑏 +  𝑚𝑙)

(𝑏 +  𝑚𝑙)! Γ(2 +  𝛿 +  𝑏 +  (𝑚 +  1)𝑙)
)

𝜆

 . 

Denote (𝑠, 𝑡) = ( 𝑎 + 1 𝑘 , 𝑏 + 1 𝑙 ), then 

 𝑓𝑎(𝑛)

= (
 (𝑠 +  𝑛 +  1 −

1
𝑘
 ) (𝑠 +  𝑛 +  1 −

2
𝑘
 ) ··· (𝑠 +  𝑛 +  1 −

𝑘
𝑘
 )

(𝑠 +  𝑛 + 1 +
1 + 𝛽 
𝑘

 −
1
𝑘
 ) (𝑠 +  𝑛 + 1 +

1 + 𝛽 
𝑘

 −
2
𝑘
 ) ··· (𝑠 +  𝑛 + 1 +

1 + 𝛽 
𝑘

 −
𝑘
𝑘
 ) 
)

𝛾

  , 

 and 𝑔𝑏 has the similar form.  

Now we can state the following proposition:  

Proposition (4.2.21)[112]: If 𝐻 =  𝐴𝛽,𝛾
2  ⊗ 𝐴 𝛿,𝜆

2 , where 𝛽, 𝛿 >  −1 and 𝛾, 𝜆 <  0, then  

   (i) 𝑀𝑧𝑘|(𝐴 𝛽,𝛾
2 )

𝑎

 and 𝑀𝑤𝑙|(𝐴( 𝛿,𝜆)𝑏
2 )

 are simple for all admissible 𝑘, 𝑙, 𝑎, 𝑏;  

   (ii) if |𝛼|  =  1 and 𝛾(1 +  𝛽)  =  𝜆(1 +  𝛿), then there may be many (𝑎, 𝑏)’s which make 

𝑀𝑧𝑘|(𝐴 𝛽,𝛾
2 )

𝑎

 and 𝛼𝑀𝑤𝑙|(𝐴𝛿,𝜆
2 )

𝑏

 unitarily equivalent;  

   (iii) in (ii), 𝐻𝑎,𝑏  =  [𝑧
𝑎𝑤𝑏]  ⊕ [𝑧𝑎𝑤

𝑏(𝑧𝑘− 𝑤𝑙)], where the summands are the only 

nontribyl reducing subspaces of 𝑀𝑧𝑘+𝑤𝑙 ; 

   (iv) in other cases, 𝐻𝑎,𝑏’s are minimal reducing subspaces of 𝑀𝑧𝑘+𝛼𝑤𝑙  .  

Proof. By Lemmas (4.2.10) and (4.2.9), we find that 𝑀𝑧𝑘|(𝐴𝛽,𝛾
2 )

𝑎

  and 𝑀𝑤𝑙|(𝐴𝛿,𝜆
2 )

𝑏

 are all 

simple for all admissible 𝑘, 𝑙, 𝑎, 𝑏. This proves (i).  

For unitarily equivalent, consider  

(
(𝑠 +  𝑛 +  1 −

1
𝑘
 ) (𝑠 +  𝑛 +  1 −

2
𝑘
) ··· (𝑠 +  𝑛 +  1 −

𝑘
𝑘
)

(𝑠 +  𝑛 + 1 +
1 + 𝛽
𝑘

−
1
𝑘) (

𝑠 +  𝑛 + 1 +
1 + 𝛽 
𝑘

−
2
𝑘)
··· (𝑠 +  𝑛 + 1 +

1 + 𝛽 
𝑘

−
𝑘
𝑘)
)

𝛾

  

= |𝛼|2  (
(𝑡 +  𝑛 +  1 −

1
𝑙
) (𝑡 +  𝑛 +  1 −

2
𝑙
) ··· (𝑡 +  𝑛 +  1 −

𝑙
𝑙
)

(𝑡 +  𝑛 + 1 +
1 + 𝛿 
𝑙

−
1
𝑙
) (𝑡 +  𝑛 + 1 +

1 + 𝛿 
𝑙

−
2
𝑙
) ··· (𝑡 +  𝑛 + 1 +

1 + 𝛿 
𝑙

−
𝑙
𝑙
)
)

𝜆

   , 
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 for all 𝑛 ∈  ℤ+. First letting 𝑛 tend to infinity, we get |𝛼|  =  1. Set  

ℎ𝑖(𝑛) =
𝑠 +  𝑛 +  1 −

𝑖
𝑘

 𝑠 +  𝑛 + 1 +
1 + 𝛽 
𝑘

−
𝑖
𝑘

 , 𝑖 =  1,… , 𝑘, 𝑛 ∈  ℤ+,  

and 

 𝑙𝑗  (𝑛) =
𝑡 +  𝑛 +  1 −

𝑗
𝑙

𝑡 +  𝑛 + 1 +
1 + 𝛿
𝑙

−
𝑗
𝑙

 , 𝑗 =  1, . . . , 𝑙, 𝑛 ∈  ℤ+,  

then the above equation becomes  

(ℎ1(𝑛) ···  ℎ𝑘(𝑛))
𝛾
 =  (𝑙1(𝑛) ···  𝑙𝑙(𝑛))

𝜆
,    𝑛 ∈  ℤ+.                        (25) 

 Note that, lim
𝑛→∞ 

 ℎ𝑖(𝑛) =  1, 𝑖 =  1, . . . , 𝑘, and  

lim
𝑛→∞ 

 𝑛2
ℎ𝑖
′(𝑛)

ℎ𝑖(𝑛)
 =
1 +  𝛽 

𝑘
 , 𝑖 =  1, . . . , 𝑘. 

 The similar result holds also for 𝑙𝑗 , 𝑗 =  1, . . . , 𝑙.  

Taking differentiation to (25), we get  

𝛾(ℎ1(𝑛) ··· ℎ𝑘(𝑛))
𝛾
(
ℎ1
′ (𝑛)

ℎ1(𝑛)
+ ···  +

ℎ𝑘
′ (𝑛)

ℎ𝑘(𝑛)
) 

= 𝜆(𝑙1(𝑛) ··· 𝑙𝑘(𝑛))
𝜆
(
𝑙1
′ (𝑛)

𝑙1(𝑛)
+ ··· +

𝑙𝑙
′(𝑛)

𝑙𝑙(𝑛)
) , 𝑛 ∈ ℤ+. 

Multiplying both sides by 𝑛2, then letting 𝑛 go to infinity again, we get 𝛾(1 +  𝛽)  =
 𝜆(1 +  𝛿). This completes (ii).  

(iii) and (iv) are given by Proposition (4.2.19).  

In conclusion, we see that if |𝛼| ≠  1, then 𝐻𝑎,𝑏 must be a minimal reducing subspace 

of 𝑀𝑧𝑘+𝛼𝑤𝑙  in many cases. 

Section (4.3): A Class of Non-Analytic Toeplitz Operators on the Bidisk 

       For 𝔻 denote the unit disk in the complex plane ℂ and 𝑑𝐴(𝓏) denote the normalized 

area measure over 𝔻. Let 𝐴2(𝔻2) denote the Bergman space consisting of all holomorphic 

functions over 𝔻2, which are square integrable with respect to the normalized volume 

measure 𝑑𝐴(𝓏)𝑑𝐴(𝑤). Then 𝐴2(𝔻2) is a Hilbert space with inner product 〈𝑓, 𝑔〉 =

∫ 𝑓�̅�𝑑𝐴(𝓏)𝑑𝐴(𝑤)
 

𝔻2
. Given an essentially bounded function 𝜙, the Toeplitz operator 𝑇𝜙 is 

defined by 𝑇𝜙𝑓 =  𝑃(𝜙𝑓) for 𝑓 ∈  𝐴2(𝔻2). Put 𝒱∗(𝜙)  =  {𝑇𝜙, 𝑇𝜙
∗}
′
, the commutant 

algebra of the 𝐶∗−algebra generated by 𝑇𝜙 in 𝐵(𝐴2(𝔻2)). As is given in [115], 𝒱∗(𝜙) is a 

von Neumann algebra and is the norm closed linear span of its projections. 

       For a bounded linear operator 𝑆 on a Hilbert space ℋ, a closed subspace ℳ is called a 

reducing subspace for 𝑆 if 𝑆ℳ ⊆ℳ and 𝑆ℳ⊥  ⊆ ℳ⊥. In addition, ℳ is called minimal if 

there is no nonzero reducing subspace 𝒩 satisfying 𝒩 ⊊  ℳ. It is well known that ℳ is a 

reducing subspace for 𝑆 if and only if 𝑆𝑃ℳ = 𝑃ℳ𝑆, where 𝑃ℳ is the orthogonal projection 

from ℋ onto ℳ. In this way, the range of projections in 𝒱∗(𝜙) and the reducing subspaces 

for 𝑇𝜙 are in one-to-one correspondence. Therefore, in some sense, studying the structure 

of von Neumann algebra 𝒱∗(𝜙) is equivalent to investigating the structure of the reducing 

subspaces for 𝑇𝜙. 

       For 𝐵𝑁 denote a Blaschke product of finite order 𝑁 on 𝔻. In 2009, Zhu [128] proved 

that a multiplication operator 𝑀𝐵2 on 𝐿𝑎
2 (𝔻) has two distinct nontrival minimal reducing 
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subspaces, and conjectured 𝑀𝐵𝑁 has exactly 𝑁 distinct nontrival minimal reducing 

subspaces. In particular, if 𝐵𝑁(𝓏)  =  𝓏
𝑁 ,𝑀𝓏𝑁 is a weighted unilateral shift operator of finite 

multiplicity on a weighted sequence space. Stessin and Zhu [111] showed that every 

reducing subspace for 𝑀𝓏𝑁 contains a minimal reducing subspace as  

𝑋𝑛 = span{𝓏
𝑛+𝑘𝑁 ∶  𝑘 =  0, 1, 2,· · · }̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ with 0 ≤  𝑛 ≤  𝑁 −  1. What is worth mentioning, 

Hardy spaces, Bergman spaces and Dirichlet Spaces are three particular cases of the 

weighted sequence spaces. 

       Further, Douglas and Kim [125], Li, Lan and Liu [127] generalized the results to some 

weighted unilateral shift operators on 𝐿𝑎
2 (𝐴𝑟) and 𝐹𝛼

2(𝛼 >  0) (the square integrable 

analytic functions on the annulus 𝐴𝑟 with respect to the normalized measure 𝑑𝐴(𝓏), and the 

square integrable entire functions on the whole complex plane ℂ with respect to the Gaussian 

measure, respectively). In 2004, Hu, Sun, Xu and Yu [126] proved that there is always a 

nontribyl reducing subspace for 𝑀𝐵𝑁 . In 2009, Guo, Sun, Zheng and Zhong [10] disproved 

Zhu’s conjecture and proposed the modified conjecture that 𝑀𝐵𝑁 has at most 𝑁 distinct 

nontrival minimal reducing subspaces. On the basis of ([27], [28], [10], [1], [17], etal.) by 

Guo, Huang, Sun, Zheng and Zhong, et al., Douglas, Putinar and Wang [23] obtained that 

the number of nontrival minimal reducing subspaces for 𝑀𝐵𝑁 equals the number of 

connected components of the Riemann surface 𝐵𝑁
−1 ∘  𝐵𝑁 on the unit disk. As verified in 

[27], [28], this result is equivalent to the assertion that 𝒱∗(𝐵𝑁) is abelian. For infinite 

Blaschke products, Guo and Huang [8] proved that for “most” thin Blaschke products 𝐵,𝑀𝐵 

has no nontribyl reducing subspace. 

       For high-dimensional domains, research on reducing-subspace problems began with 

some special monomial symbols. Lu and Zhou [37] completely characterized the structure 

of the reducing subspaces for 𝑀𝓏𝑘𝑤𝑘 on the weighted Bergman spaces over 𝔻2. Shi and Lu 

[35] found all the minimal reducing subspaces for 𝑀𝓏𝑘𝑤𝑙(𝑘 ≠  𝑙) on 𝐴𝛼
2 (𝔻𝑛)(𝛼 >  −1) 

and showed that the un-weighted case has more minimal reducing subspaces than the 

weighted case. Guo and Huang [30] gave the direct decompose of the reducing subspaces 

for 𝑀𝓏𝑎 with 𝑎 ∈ ℤ+
𝑑  on a multi-dimensional separable Hilbert space by a different 

approach. For the case that 𝑝 is a polynomial, the reducing subspaces for 𝑇𝛼𝓏𝑘+𝛽𝑤𝑙 (𝛼, 𝛽 ∈

 ℂ) and the structure of 𝒱∗(𝛼𝓏𝑘  +  𝛽𝑤𝑙) are investigated in [108], [112]. More generally, 

Guo and Wang [113] studied the reducing subspaces for 𝐴𝑘⊗ 𝐼 + 𝐼 ⊗ 𝐵𝑙 where 𝐴 ∈
 𝐵(𝐻), 𝐵 ∈  𝐵(𝐾) are two simple unilateral weighted shifts. 

       Motivated by the research of multiplication operators, we wonder what the results about 

the Toeplitz operator with non-analytic symbols look like. Compared with the analytic 

conditions, the tools for the Toeplitz operators with general non-analytic symbols seem far 

fewer at present. Albaseer, Shi and Lu [107] characterized the reducing subspaces for 𝑇𝓏𝑘�̅�𝑙 

on 𝐴2(𝔻2). Let 𝜑(𝓏, 𝑤)  = 𝛼𝓏𝑘  +  𝛽�̅�𝑙 where 𝛼 and 𝛽 are nonzero complex numbers. We 

find all the minimal reducing subspaces for the Toeplitz operator 𝑇𝜑 on 𝐴2(𝔻2), and 

consider the algebraic structure of 𝒱∗(𝜑). Unlike the analytic condition, we obtain that 

𝒱∗(𝜑) is always abelian for every 𝛼𝛽 ≠  0. The following theorem is the main result. 

Theorem (4.3.1)[124]: Let 𝜑(𝓏,𝑤) = 𝛼𝓏𝑘  +  𝛽�̅�𝑙 , where 𝛼, 𝛽 are nonzero complex 

numbers and 𝑘, 𝑙 are positive integers. Then 

𝐿𝑎,𝑏  =  span{𝓏
𝑎+𝑛𝑘𝑤𝑏+𝑚𝑙| 𝑛,𝑚 ∈  ℤ+}̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ (0 ≤  𝑎 ≤  𝑘 −  1, 0 ≤  𝑏 ≤  𝑙 −  1) 

are exactly all the minimal reducing subspaces for 𝑇𝜑 . Furthermore, 𝒱∗(𝜑) is ∗ −isomorphic 

to 
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⊕𝑖=1
𝑘𝑙 ℂ, 

and then 𝒱∗(𝜑) is abelian. 

Since 𝛼 ≠  0, the operators 𝑇𝛼𝓏𝑘+𝛽�̅�𝑙 and 𝑇
𝓏𝑘+

𝛽

𝛼
�̅�𝑙

 have the same reducing subspaces. 

For each 𝑐 ∈ ℂ − {0}, 𝑇𝓏𝑘+𝑐�̅�𝑙 , 𝑇𝓏𝑘+|𝑐|�̅�𝑙 and 𝑇𝑤𝑘+|𝑐|�̅�𝑙  =  𝑇|𝑐|(𝑧𝑙+ 1
|𝑐|
�̅�𝑘)

∗  are unitarily 

equivalent to each other. Therefore, we only need to prove the result under the assumption 

𝑇𝑧𝑘 + 𝛼�̅�𝑙 with 0 <  𝛼 ≤  1. 
We determine all the minimal reducing subspaces for 𝑇𝜑 in Theorem (4.3.1). We 

prove that 𝒱∗(𝜑) is abelian. 

For ℤ denote all integers, ℤ+ denote all nonnegative integers and ℚ denote the set of 

rational numbers. For positive integers 𝑘, 𝑙, define 

𝛺 =  {(𝑎, 𝑏)  ∈  ℤ+
2 | 0 ≤  𝑎 ≤  𝑘 −  1, 0 ≤  𝑏 ≤  𝑙 −  1}. 

For each (𝑎, 𝑏)  ∈  𝛺, put 𝑠 =  
𝑎+1

𝑘
, 𝑡 =  

𝑏+1

𝑙
. Then 𝑠, 𝑡 ∈  (0, 1]  ∩  ℚ. For 𝛼 ∈  (0, 1], 

divide 𝛺 into two parts: 

𝛺𝛼,1  =  {(𝑎, 𝑏)  ∈  𝛺| 
𝑠

𝑠 +  1
− 𝛼2  

𝑡

𝑡 +  1
≠  0}, 

and 

𝛺𝛼,2  =  {(𝑎, 𝑏) ∈  𝛺|
𝑠

𝑠 +  1
− 𝛼2  

𝑡

𝑡 +  1
=  0}. 

Let 𝑝𝛼(𝑧, 𝑤)  =  𝑧
𝑘  +  𝛼�̅�𝑙(0 <  𝛼 ≤  1). Obviously, the subspace 

𝐿𝑎,𝑏  =  span{𝑧
𝑎+𝑛𝑘𝑤𝑏+𝑚𝑙| 𝑛,𝑚 ∈  ℤ+}̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

is a reducing subspace for 𝑇𝑝𝛼 , and 𝐴2(𝔻2) =⊕(𝑎,𝑏)∈𝛺 𝐿𝑎,𝑏 . Denote by 𝑇𝛼  = 𝑇𝑝𝛼
∗ 𝑇𝑝𝛼 −

𝑇𝑝𝛼𝑇𝑝𝛼
∗ , then 

𝑇𝛼  =  (𝑇𝑧𝑘
∗ 𝑇𝑧𝑘  −  𝑇𝑧𝑘𝑇𝑧𝑘

∗ )  −  𝛼2(𝑇
𝑤𝑙
∗ 𝑇𝑤𝑙  −  𝑇𝑤𝑙𝑇𝑤𝑙

∗ ) 

and 

𝑇
𝛼𝑧
𝑎+𝑛𝑘𝑤𝑏+𝑚𝑙 = (𝜙(𝑠, 𝑛) − 𝛼

2𝜙(𝑡,𝑚))𝑧𝑎+𝑛𝑘𝑤𝑏+𝑚𝑙 , (26) 

where 

𝜙(𝑢, 𝑝) = {

1

(𝑢 + 𝑝)(𝑢 + 𝑝 + 1)
, 𝑝 > 0,

                 
𝑢

𝑢 + 1
,                  𝑝 =  0.

             (27) 

Set 

𝜆𝛼(𝑎, 𝑏, 𝑛,𝑚) =  𝜙(𝑠, 𝑛) − 𝛼
2𝜙(𝑡,𝑚).                                    (28) 

For (𝑎, 𝑏), (𝑎′, 𝑏′)  ∈  𝛺, define an equivalence on ℤ+
2  by 

(𝑎, 𝑏, 𝑛,𝑚) ∼  (𝑎′, 𝑏′, 𝑛′, 𝑚′) ⇔ 𝜆𝛼(𝑎, 𝑏, 𝑛,𝑚) =  𝜆𝛼(𝑎
′, 𝑏′, 𝑛′,𝑚′).            (29) 

If (𝑎, 𝑏)  =  (𝑎′, 𝑏′), this notation can be simplified as 

(𝑛,𝑚) ∼𝑎,𝑏  (𝑛
′,𝑚′)  ⇔  𝜆𝛼(𝑎, 𝑏, 𝑛,𝑚)  =  𝜆𝛼(𝑎, 𝑏, 𝑛

′, 𝑚′). 
Define 

Δ𝑛,𝑚
′  =  {(𝑛′,𝑚′) ∶  (𝑎, 𝑏, 𝑛,𝑚)  ∼  (𝑎′, 𝑏′, 𝑛′, 𝑚′), (𝑛′,𝑚′)  ∈  ℤ+

2 } 
and 

Δ𝑛,𝑚  =  {(𝑛
′, 𝑚′): (𝑛,𝑚) ∼𝑎,𝑏  (𝑛

′,𝑚′), (𝑛′,𝑚′)  ∈  ℤ+
2 }. 

Concerning ℤ+
2 , define the partial order ≥ by setting 

(𝑛1, 𝑚1)  ≥  (𝑛2, 𝑚2)  if   𝑛1  ≥  𝑛2    and    𝑚1  ≥  𝑚2. 
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Put Γ =  {(𝑛,𝑚)  ∈  ℤ+
2 | (𝑛,𝑚)  ≥  (1, 1)} and Γ𝑐  =  ℤ+

2\Γ. For each 𝑓 ∈ 𝐴2(𝔻2), [𝑓]𝛼 

denotes the reducing subspace for 𝑇𝑝𝛼 generated by 𝑓, i.e., the smallest reducing subspace 

for 𝑇𝑝𝛼 containing 𝑓. 

We provide some useful lemmas. 

Lemma (4.3.2)[124]: If 0 <  𝛼 ≤  1, (𝑎, 𝑏)  ∈  𝛺, 𝑛, 𝑛′, 𝑚,𝑚′  ∈  ℤ+, then 

            (𝑖)(𝑛,𝑚) ∼𝑎,𝑏  (𝑛,𝑚_) 𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 𝑚 =  𝑚
′; 

            (𝑖𝑖)(𝑛,𝑚) ∼𝑎,𝑏  (𝑛
′,𝑚) 𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 𝑛 =  𝑛′; 

            (𝑖𝑖𝑖)𝑖𝑓 (𝑎, 𝑏) ∈  𝛺1,1  ∪  𝛺𝛼,2(𝛼 ∈  (0, 1)), 𝑡ℎ𝑒𝑛 (0, 0) ≁𝑎,𝑏 (𝑛, 𝑛) 𝑓𝑜𝑟 𝑛 ≥  1. 
Proof. (i) Obviously, we only need to prove the necessity. By (27), (28) and (29), we know 

that 𝜙(𝑡,𝑚)  =  𝜙(𝑡,𝑚′). 
If 𝑚,𝑚′  ≥  1, then (𝑡 + 𝑚)(𝑡 + 𝑚 + 1)  =  (𝑡 + 𝑚′)(𝑡 + 𝑚′ +  1). It follows that 𝑚 =
 𝑚′. 
If one of 𝑚,𝑚′ is 0, without loss of generality, assume 𝑚 ≥  1 and 𝑚′ =  0. Then 

1

(𝑡 +  𝑚)(𝑡 +  𝑚 +  1)
=

𝑡

𝑡 +  1
. 

That is, 𝐹(𝑡)  =  𝑡(𝑡 +  𝑚)(𝑡 +  𝑚 +  1)  − (𝑡 +  1)  =  0, where 𝐹 is a polynomial with 

integral coefficients, with leading coefficient equal to 1 and with degree at least 3. By the 

theory of algebra, all rational roots of 𝐹 are integers. Since 𝑡 ∈  (0, 1]  ∩  ℚ, we have 𝑡 =
 1 and 𝑚 =  0. This leads to a contradiction. 

(ii) By the symmetry of 𝑛 and 𝑚 in the proof of (i), we have (ii) holds. 

(iii) The assumption (𝑎, 𝑏)  ∈  𝛺1,1 ∪ 𝛺𝛼,2(𝛼 ∈  (0,1) ) shows that 𝑠 ≠  𝑡. Notice that 

(0, 0) ∼𝑎,𝑏 (𝑛, 𝑛) for some 𝑛 ≥  1 if and only if 

𝑠

𝑠 +  1
− 

1

(𝑠 +  𝑛)(𝑠 +  𝑛 +  1)
=

𝛼2𝑡

𝑡 +  1
− 

𝛼2

(𝑡 +  𝑛)(𝑡 +  𝑛 +  1)
. 

If (𝑎, 𝑏)  ∈  𝛺1,1, consider the function 𝐺(𝑥)  =  
𝑥

𝑥+1
− 

1

(𝑥+𝑛)(𝑥+𝑛+1)
, 𝑛 ≥  1. 

Obviously, 𝐺(𝑥) is strictly increasing on (0,+∞). Then 𝐺(𝑠)  ≠  𝐺(𝑡), i.e., 

(0, 0) ≁𝑎,𝑏 (𝑛, 𝑛). 

If (𝑎, 𝑏)  ∈  𝛺𝛼,2(0 <  𝛼 <  1), we have 
𝑠

𝑠+1
= 𝛼2

𝑡

𝑡+1
 <  

𝑡

𝑡+1
. Then 𝑡 >  𝑠. It follows that 

1

(𝑠+𝑛)(𝑠+𝑛+1)
 >  

1

(𝑡+𝑛)(𝑡+𝑛+1)
 >  

𝛼2

(𝑡+𝑛)(𝑡+𝑛+1)
. Hence, (0, 0) ≁𝑎,𝑏 (𝑛, 𝑛). 

Lemma (4.3.3)[124]: If (𝑎, 𝑏)  ∈  Ω1,1  ∪  Ω𝛼,2(0 <  𝛼 <  1), (𝑎
′, 𝑏′)  ∈  𝛺 and (𝑛,𝑚)  ∈

Δ0,0
′ ∩ Γ, then (𝑛 ±  1,𝑚 ±  1)  ∉ Δ0,0

′ ∩  Γ. 

Proof. Suppose (𝑛 +  1,𝑚 +  1)  ∈  Δ0,0
′ . For 0 <  𝛼 ≤  1, we get two equations as 

follows: 

𝑠

𝑠 +  1
− 

𝛼2𝑡

𝑡 +  1
=

1

(𝑠′  +  𝑛)(𝑠′  +  𝑛 +  1)
− 

𝛼2

(𝑡′  +  𝑚)(𝑡′  +  𝑚 +  1)
, (30) 

and 

𝑠

𝑠 +  1
− 

𝛼2𝑡

𝑡 + 1
=

1

(𝑠′  +  𝑛 +  1)(𝑠′  +  𝑛 +  2)
− 

𝛼2

(𝑡′  +  𝑚 +  1)(𝑡′  +  𝑚 +  2)
. (31) 

If (𝑎, 𝑏)  ∈  Ω𝛼,2 (0 <  𝛼 <  1), Eq. (30) and Eq. (31) imply that 

𝛼2  =
(𝑡′  +  𝑚)(𝑡′  +  𝑚 +  1)

(𝑠′  +  𝑛)(𝑠′  +  𝑛 +  1)
=
(𝑡′  +  𝑚 +  1)(𝑡′  +  𝑚 +  2)

(𝑠′  +  𝑛 +  1)(𝑠′  +  𝑛 +  2)
. 

Therefore, 𝑡′  +  𝑚 =  𝑠′  +  𝑛 and 𝛼 =  1, which is a contradiction. 
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If (𝑎, 𝑏)  ∈  Ω1,1, then 𝑡′  +  𝑚 =  𝑠′  +  𝑛. Eq. (30) implies that (𝑎, 𝑏)  ∈  Ω1,2, which is 

also a contradiction. So (𝑛 +  1,𝑚 +  1)  ∉ Δ0,0
′ ∩  Γ. 

Replace (𝑛,𝑚) by (𝑛 −  1,𝑚 −  1). Assume (𝑛 −  1,𝑚 −  1)  ∈  Δ0,0
′ ∩  Γ. As the proof 

above, we have (𝑛,𝑚)  =  (𝑛 −  1 +  1,𝑚 −  1 +  1)  ∉ Δ0,0
′ , which is a contradiction. 

The proof is finished. 

Lemma (4.3.4)[124]: If (𝑎, 𝑏)  ∈  Ω1,2 and 𝑛,𝑚 ∈  ℤ+, then the following statements hold: 

(i) (𝑛,𝑚)  ∈  Δ0,0  𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 𝑛 =  𝑚. 
(ii) (𝑛′  +  1, 𝑛′)  ∈  Δ𝑛+1,𝑛 𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 𝑛 =  𝑛

′. 
Proof. (i) It is easy to see that (𝑛, 𝑛)  ∈  Δ0,0 for 𝑛 ∈  ℤ+, since 𝜆1(𝑎, 𝑏, 0, 0) =
 𝜆1(𝑎, 𝑏, 𝑛, 𝑛)  =  0. On the other hand, assume (𝑛,𝑚)  ∈  Δ0,0. If 𝑛 =  0, Lemma (4.3.2)(i) 

shows that 𝑚 =  0. If 𝑛 ≥  1, Eq. (27) and Eq. (28) imply that 𝜙(𝑠,𝑚) =
1

(𝑠+𝑛)(𝑠+𝑛+1)
. 

Since 𝐹(𝑠)  =  𝑠(𝑠 + 𝑛)(𝑠 + 𝑛 + 1) − (𝑠 + 1)  =  0 has no rational roots in (0, 1], we have 

𝑚 ≥  1 and 𝜙(𝑠,𝑚)  =  
1

(𝑠+𝑚)(𝑠+𝑚+1)
 =  

1

(𝑠+𝑛)(𝑠+𝑛+1)
. Hence 𝑚 =  𝑛. 

(ii) We only need to prove the necessity. If 𝑛 =  0 and 𝑛′  ≥  1, then (𝑛 + 1, 𝑛) ∼𝑎,𝑏 (𝑛
′ +

1, 𝑛′) indicates 
1

(𝑠 +  1)(𝑠 +  2)
− 

𝑠

𝑠 +  1
=

−2

(𝑠 + 𝑛′)(𝑠 + 𝑛′  +  1)(𝑠 + 𝑛′  +  2)
. 

By the theory of algebra, we obtain 𝑠 =  1, and then 𝑛′  =  0, which is a contradiction with 

𝑛′  ≥  1. 
If 𝑛 ≥  1, by the argument above, we have 𝑛′  ≥  1. Therefore, (𝑛 +  1, 𝑛) ∼𝑎,𝑏 (𝑛

′ +
 1, 𝑛′) gives 

2

(𝑠 +  𝑛)(𝑠 +  𝑛 +  1)(𝑠 +  𝑛 +  2)
=

2

(𝑠 + 𝑛′)(𝑠 + 𝑛′  +  1)(𝑠 + 𝑛′  +  2)
. 

It follows that 𝑛 =  𝑛′. 
The following lemmas hold for every 0 <  𝛼 ≤  1. 
Lemma (4.3.5)[124]: If (𝑎, 𝑏), (𝑎′, 𝑏′)  ∈  Ω and (𝑛0,𝑚0)  ∈  Δ𝑛,𝑚

′ , then the following 

conclusions hold: 

(𝑖) 𝑖𝑓 (𝑛,𝑚), (𝑛0, 𝑚0)  ≥  (1, 0) 𝑎𝑛𝑑 𝑛 ≠  𝑛0, 𝑡ℎ𝑒𝑛 (𝑛0  +  1,𝑚0)  ∉ Δ𝑛+1,𝑚
′ ; 

(𝑖𝑖) 𝑖𝑓 (𝑛,𝑚), (𝑛0, 𝑚0) ≥ (0, 1) 𝑎𝑛𝑑 𝑚 ≠ 𝑚0, 𝑡ℎ𝑒𝑛 (𝑛0,𝑚0  +  1)  ∉ Δ𝑛,𝑚+1
′ ; 

(𝑖𝑖𝑖)𝑖𝑓 (𝑎, 𝑏) =  (𝑎′, 𝑏′), 𝑛 =  0  𝑎𝑛𝑑    𝑛0  ≥  1, 𝑡ℎ𝑒𝑛 (𝑛0  +  1,𝑚0)  ∉ Δ1,𝑚 . 

Proof. (i) If (𝑛0, 𝑚0)  ∈  Δ𝑛,𝑚
′  and (𝑛0  +  1,𝑚0)  ∈  Δ𝑛+1,𝑚

′ , then 
1

(𝑠′  +  𝑛0)(𝑠
′  +  𝑛0  +  1)

− 𝛼2𝜙(𝑡′, 𝑚0)  =
1

(𝑠 +  𝑛)(𝑠 +  𝑛 +  1)
− 𝛼2𝜙(𝑡,𝑚), 

and 
1

(𝑠′  +  𝑛0 + 1)(𝑠
′  + 𝑛0  +  2)

− 𝛼2𝜙(𝑡′,𝑚0) =
1

(𝑠 +  𝑛 + 1)(𝑠 + 𝑛 + 2)
− 𝛼2𝜙(𝑡,𝑚). 

It follows that 
1

(𝑠′  +  𝑛0)(𝑠
′  +  𝑛0  +  1)(𝑠

′  +  𝑛0  +  2)
 =

1

(𝑠 +  𝑛)(𝑠 +  𝑛 +  1)(𝑠 +  𝑛 +  2)
. 

Thus 𝑠′  +  𝑛0  =  𝑠 +  𝑛. Since −1 ≤  −𝑠′  <  𝑛0  −  𝑛 =  𝑠 − 𝑠
′  <  𝑠 ≤  1, we have 

𝑛0 = 𝑛. This is a contradiction. So (i) holds. 

(ii) Since the proof of this case is similar to the proof of (i), we omit the details. 

(iii) Assume (𝑛0  +  1,𝑚0)  ∈  Δ1,𝑚 . A computation shows that 
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𝑠

𝑠 +  1
− 

1

(𝑠 +  1)(𝑠 +  2)
=

2

(𝑠 +  𝑛0)(𝑠 + 𝑛0  +  1)(𝑠 +  𝑛0  +  2)
 

As in the proof of Lemma (4.3.4) (ii), there is no solution on (0, 1] for any 𝑛0  ≥  1. 
Therefore, the assumption is not true. We finish the proof. 

Lemma (4.3.6)[124]: If (𝑎, 𝑏)  ∈  𝛺, then [𝑧𝑎𝑤𝑏]𝛼  =  𝐿𝑎,𝑏 . 

Proof. Obviously, we only need to show 𝑧𝑎+𝑛𝑘𝑤𝑏+𝑚𝑙  ∈  [𝑧𝑎𝑤𝑏]𝛼 for 𝑛,𝑚 ≥  0. 
Notice that 

𝑇𝑝𝛼
𝑛 𝑧𝑎𝑤𝑏 = 𝑧𝑎+𝑛𝑘𝑤𝑏  ∈  [𝑧𝑎𝑤𝑏]𝛼 , 𝑇𝑝𝛼

∗𝑚𝑧𝑎𝑤𝑏  =  𝛼𝑚𝑧𝑎𝑤𝑏+𝑚𝑙  ∈  [𝑧𝑎𝑤𝑏]𝛼 . 

Denote by 𝛾𝑘  =  ‖𝑧
𝑘‖
2
 =  

1

𝑘+1
. Then we have 

𝑇𝑝𝛼
∗ 𝑧𝑎+𝑛𝑘𝑤𝑏  =  𝛼𝑧𝑎+𝑛𝑘𝑤𝑏+𝑙  +

𝛾𝑎+𝑛𝑘
𝛾𝑎+(𝑛−1)𝑘

𝑧𝑎+(𝑛−1)𝑘𝑤𝑏  ∈  [𝑧𝑎𝑤𝑏]𝛼 . 

It follows that 𝑧𝑎+𝑛𝑘𝑤𝑏+𝑙  ∈  [𝑧𝑎𝑤𝑏]𝛼 for all 𝑛 ≥  1. For every 𝑞 ≥  1, since 

𝛼𝑧𝑎+𝑛𝑘𝑤𝑏+(𝑞+1)𝑙 = 𝑇𝑝𝛼
∗ 𝑧𝑎+𝑛𝑘𝑤𝑏+𝑞𝑙  −  

𝛾𝑎+𝑛𝑘
𝛾𝑎+(𝑛−1)𝑘

𝑧𝑎+(𝑛−1)𝑘𝑤𝑏+𝑞𝑙 , 

it is easy to get the desired result by induction. 

We will prove that 𝐿𝑎,𝑏((𝑎, 𝑏)  ∈  Ω) are the minimal reducing subspaces for 𝑇𝑝𝛼 and 

any two distinct parameter-pairs (𝑎, 𝑏) generate nonequivalent reducing subspaces 𝐿𝑎,𝑏 . 

Theorem (4.3.7)[124]: If (𝑎, 𝑏)  ∈  Ω, then 𝐿𝑎,𝑏 is a minimal reducing subspace for 𝑇𝑝𝛼 for 

any 0 <  𝛼 ≤  1. 
Proof. Obviously, 𝐿𝑎,𝑏 is a reducing subspace for 𝑇𝑝𝛼 for any 0 <  𝛼 ≤  1. We only need 

to prove that 𝐿𝑎,𝑏 is minimal. 

       Suppose there is a reducing subspace 𝑀1 included in 𝐿𝑎,𝑏 . Denote by 𝑃1 the orthogonal 

projection from 𝐴2(𝔻2) onto 𝑀1. Recall that 𝑇𝛼  =  𝑇𝑝𝛼
∗ 𝑇𝑝𝛼 − 𝑇𝑝𝛼𝑇𝑝𝛼

∗ . By (26) and 

𝑇𝛼𝑃1𝑧
𝑎+𝑛𝑘𝑤𝑏+𝑚𝑙  =  𝑃1𝑇𝛼𝑧

𝑎+𝑛𝑘𝑤𝑏+𝑚𝑙  =  𝜆𝛼(𝑎, 𝑏, 𝑛,𝑚)𝑧
𝑎+𝑛𝑘𝑤𝑏+𝑚𝑙 , 

we get 𝑃1𝑧
𝑎+𝑛𝑘𝑤𝑏+𝑚𝑙  ∈  span{𝑧𝑎+𝑝𝑘𝑤𝑏+𝑞𝑙 ∶  (𝑝, 𝑞)  ∈  Δ𝑛,𝑚}. Further, Lemma (4.3.2) (i) 

and (ii) deduce that 

𝑓1  =  𝑃1𝑧
𝑎𝑤𝑏  =  𝑎00𝑧

𝑎𝑤𝑏  + ∑ 𝑎𝑛𝑚𝑧
𝑎+𝑛𝑘𝑤𝑏+𝑚𝑙

(𝑛,𝑚)∈Δ0,0∩Γb

. 

Then 

𝑇𝑝𝛼𝑓1 = 𝑎00𝑧
𝑎+𝑘𝑤𝑏

+ ∑ 𝑎𝑛𝑚 [𝑧
𝑎+(𝑛+1)𝑘𝑤𝑏+𝑚𝑙 +

𝛼𝛾𝑏+𝑚𝑙
𝛾𝑏+(𝑚−1)𝑙

𝑧𝑎+𝑛𝑘𝑤𝑏+(𝑚−1)𝑙]

(𝑛,𝑚)∈Δ0,0∩Γ

.      (32) 

Notice that 

𝑇𝑝𝛼𝑓1  =  𝑃1𝑇𝑝𝛼𝑧
𝑎𝑤𝑏  =  𝑃1𝑧

𝑎+𝑘𝑤𝑏 ∈ span{𝑧𝑎+𝑝𝑘𝑤𝑏+𝑞𝑙 ∶  (𝑝, 𝑞)  ∈  Δ1,0}.     (33) 

Claim (4.3.8)[124]: 𝑓1  =  𝑎00𝑧
𝑎𝑤𝑏 . 

The proof of the above Claim (4.3.8) will be divided into three cases: (𝑎, 𝑏)  ∈  Ω1,1 ∪
Ω𝛼,2(0 < 𝛼 < 1), (𝑎, 𝑏)  ∈  Ω1,2 and (𝑎, 𝑏)  ∈  Ω𝛼,1(0 <  𝛼 <  1). 
Case (1): (𝑎, 𝑏)  ∈  Ω1,1  ∪ Ω𝛼,2(0 <  𝛼 <  1). Without confusion, the range of 𝛼 is (0, 1]. 
Lemma (4.3.3) shows that (𝑛 ± 1,𝑚 ± 1)  ∉ Δ0,0 ∩ Γ, since (𝑛,𝑚)  ∈  Δ0,0 ∩ Γ. 

Thus the coefficient of 𝑧𝑎+(𝑛+1)𝑘𝑤𝑏+𝑚𝑙 in Eq. (32) is 𝑎𝑛𝑚. Associated with Lemma (4.3.5) 

(iii) and Eq. (32), we deduce that 𝑎𝑛𝑚  =  0 for (𝑛,𝑚)  ∈  Γ. Hence, 𝑓1  =  𝑎00𝑧
𝑎𝑤𝑏 . 

Case (2): (𝑎, 𝑏)  ∈  Ω1,2. Let 𝑎𝑛  =  𝑎𝑛𝑛 for convenience. Lemma (4.3.4) deduces that 
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𝑓1  = ∑ 𝑎𝑛𝑧
𝑎+𝑛𝑘𝑤𝑏+𝑛𝑙

𝑛∈ℤ+

. 

By simple computations, Eq. (32) becomes 

𝑇𝑝𝛼𝑓1  = (𝑎0  +  𝑎1
𝛾𝑏+𝑙
𝛾𝑏
) 𝑧𝑎+𝑘𝑤𝑏 +∑(𝑎𝑛  +  𝑎𝑛+1

𝛾𝑏+(𝑛+1)𝑙
𝛾𝑏+𝑛𝑙

)

𝑛≥1

𝑧𝑎+(𝑛+1)𝑘𝑤𝑏+𝑛𝑙 .   (34) 

Lemma (4.3.5)(iii), along with Eq. (33) and (34), shows that 

𝑎𝑛  +  𝑎𝑛+1
𝛾𝑏+(𝑛+1)𝑙
𝛾𝑏+𝑛𝑙

=  0, ∀𝑛 ≥  1. 

It follows that 𝑎𝑛  =  (−1)
𝑛−1 𝛾𝑏+𝑙

𝛾𝑏+𝑛𝑙
𝑎1. Thus 

|𝑎𝑛|
2‖𝑧𝑎+𝑛𝑘𝑤𝑏+𝑛𝑙‖

2
 =

(𝑏 +  𝑛𝑙 +  1)

(𝑎 +  𝑛𝑘 +  1)(𝑏 +  𝑙 +  1)2
|𝑎1|

2. 

Since 𝑓1  ∈  𝐴
2(𝔻2), we have that |𝑎𝑛|

2‖𝑧𝑎+𝑛𝑘𝑤𝑏+𝑛𝑙‖
2
→ 0 as 𝑛 →  ∞. Thus 𝑎1  =  0, 

which indicates that 𝑎𝑛  =  0 for 𝑛 ≥  1. Hence, 𝑓1  =  𝑎00𝑧
𝑎𝑤𝑏 . 

Case (3): (𝑎, 𝑏)  ∈  Ω𝛼,1 (0 <  𝛼 <  1). Firstly, we prove that Δ0,0 is a finite set. 

Otherwise, by Lemma (4.3.2) (i) and (ii), there exists (𝑛𝑘, 𝑚𝑘)  ≥  (𝑘, 𝑘) satisfying 

(𝑛𝑘, 𝑚𝑘) ∈ Δ0,0  ∩  Γ for every 𝑘 ≥  1. That is, 
𝑠

𝑠+1
− 𝛼2

𝑡

𝑡+1 
= 

1

(𝑠+𝑛𝑘)(𝑠+𝑛𝑘+1)
−

𝛼2
1

(𝑡+𝑚𝑘)(𝑡+𝑚𝑘+1)
. Letting 𝑘 →  +∞ shows that 

𝑠

𝑠+1
− 𝛼2  

𝑡

𝑡+1
 =  0, which is a 

contradiction. Therefore, 

𝑓1  =  𝑎00𝑧
𝑎𝑤𝑏  +∑𝑏𝑗𝑧

𝑎+𝑝𝑗𝑘𝑤𝑏+𝑞𝑗𝑙
𝑁

𝑗=1

, 

where 𝑁 is a positive integer and (𝑝𝑗 , 𝑞𝑗)  ∈  Δ0,0 ∩ Γ. Reset {(𝑝𝑖 , 𝑞𝑖)}(1 ≤  𝑖 ≤  𝑁) as 1 ≤

 𝑝1  <  𝑝2  < · · · <  𝑝𝑁 . Thus, 

𝑇𝑝𝛼𝑓1  =  𝑎00𝑧
𝑎+𝑘𝑤𝑏  +∑𝑏𝑗 (𝑧

𝑎+(𝑝𝑗+1)𝑘𝑤𝑏+𝑞𝑗𝑙 + 𝛼
𝛾𝑏+𝑞𝑗𝑙

𝛾𝑏+(𝑞𝑗−1)𝑙
𝑧𝑎+𝑝𝑗𝑘𝑤𝑏+(𝑞𝑗−1)𝑙)

𝑁

𝑗=1

. 

By Lemma (4.3.5)(iii) again, we have (𝑝𝑁  +  1, 𝑞𝑁)  ∉ Δ1,0. Then Eq. (33) shows that 𝑏𝑁 =

 0. Repeat this process until we get 𝑏𝑗  =  0, 𝑗 =  1,· · · , 𝑁. Therefore, 𝑓1  =  𝑎00𝑧
𝑎𝑤𝑏 . So 

we get the desired result. 

       According to the above Claim (4.3.8), we know that either 𝑧𝑎𝑤𝑏  ∈  𝑀1 or 𝑧𝑎𝑤𝑏 ⊥ 𝑀1. 
       Consequently, using Lemma (4.3.6), we obtain that either 𝑀1  =  𝐿𝑎,𝑏 or 𝑀1  =  {0}. So 

𝐿𝑎,𝑏 is minimal. 

       As in [30], we say that two reducing subspaces 𝑀1 and 𝑀2 of 𝑇𝜑 are called unitarily 

equivalent if there exists a unitary operator 𝑈 from 𝑀 onto 𝑁 and 𝑈 commutes with 𝑇𝜑 . One 

can show that 𝑀1 is unitarily equivalent to 𝑀2 if and only if 𝑃𝑀1  and 𝑃𝑀2  are equivalent in 

𝒱∗(𝜑), that is, there is a partial isometry V in 𝒱∗(𝜑) such that 

V∗V =  𝑃𝑀1 , VV∗ = 𝑃𝑀2 . 

       Now, we are ready to prove that 𝐿𝑎,𝑏 and 𝐿𝑎′,𝑏′ are not unitarily equivalent if (𝑎, 𝑏) ≠

(𝑎′, 𝑏′). For 0 <  𝛼 <  1, our proof is divided into two parts: 

   (i) (𝑎, 𝑏)  ∈  Ω𝛼,2, (𝑎
′, 𝑏′)  ∈  Ω; 

   (ii) (𝑎, 𝑏), (𝑎′, 𝑏′)  ∈  Ω𝛼,1. 
For 𝛼 =  1, our proof is also divided into two parts: 
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   (iii) (𝑎, 𝑏)  ∈  Ω1,1, (𝑎
′, 𝑏′)  ∈  Ω; 

   (iv) (𝑎, 𝑏), (𝑎′, 𝑏′)  ∈  Ω1,2. 
Since the proof of (i) and (iii) are similar, we write the proof of them together. 

Theorem (4.3.9)[124]: If (𝑎, 𝑏)  ∈  Ω𝛼,2(0 <  𝛼 <  1)(or (𝑎, 𝑏)  ∈  Ω1,1), (𝑎
′, 𝑏′)  ∈  Ω 

and 

(𝑎, 𝑏) ≠  (𝑎′, 𝑏′), then 𝐿𝑎,𝑏 and 𝐿𝑎′,𝑏′ are not unitarily equivalent reducing subspaces for 

𝑇𝑝𝛼(𝑜𝑟 𝑇𝑝1). 

Proof. Without confusion, the range of 𝛼 is (0, 1]. Assume conversely that 𝐿𝑎,𝑏 and 𝐿𝑎′,𝑏′ 

are unitarily equivalent, then there is a partial isometry 𝑈 ∈  𝒱∗(𝑝𝛼) such that 𝑈|𝐿𝑎,𝑏 is a 

unitary operator from 𝐿𝑎,𝑏 onto 𝐿𝑎′𝑏′ . 

Recall that 𝑇𝛼  =  𝑇𝑝𝛼
∗ 𝑇𝑝𝛼 − 𝑇𝑝𝛼𝑇𝑝𝛼

∗ . For (𝑛,𝑚)  ∈  ℤ+
2 , suppose 

𝑈𝑧𝑎+𝑛𝑘𝑤𝑏+𝑚𝑙  = ∑ 𝑎𝑝𝑞𝑧
𝑎′+𝑝𝑘𝑤𝑏

′+𝑞𝑙

(𝑝,𝑞)∈ℤ+
2

, 

where 𝑎𝑝𝑞  ∈  ℂ. Moreover, we have 

𝑈𝑇𝛼𝑧
𝑎+𝑛𝑘𝑤𝑏+𝑚𝑙  = ∑ 𝑎𝑝𝑞𝜆𝛼(𝑎, 𝑏, 𝑛,𝑚)𝑧

𝑎′+𝑝𝑘𝑤𝑏
′+𝑞𝑙

(𝑝,𝑞)∈ℤ+
2

, 

and 

𝑇𝛼𝑈𝑧
𝑎+𝑛𝑘𝑤𝑏+𝑚𝑙  = ∑ 𝑎𝑝𝑞𝜆𝛼(𝑎

′, 𝑏′, 𝑝, 𝑞)𝑧𝑎
′+𝑝𝑘𝑤𝑏

′+𝑞𝑙

(𝑝,𝑞)∈ℤ+
2

. 

Thus, 𝑈𝑇𝛼  =  𝑇𝛼𝑈 indicates that 

𝑈𝑧𝑎+𝑛𝑘𝑤𝑏+𝑚𝑙  ∈  span{𝑧𝑎
′+𝑝𝑘𝑤𝑏

′+𝑞𝑙 ∶  (𝑝, 𝑞)  ∈  Δ𝑛,𝑚
′ }̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ .                  (35) 

By Lemma (4.3.2)(i) and (ii), we know that there is at most one 𝑛0  ≥  1 satisfying (𝑛0, 0) ∈
Δ0,0
′ , and there is at most one 𝑚0  ≥  1 satisfying (0,𝑚0)  ∈  Δ0,0

′ . So 

𝑈𝑧𝑎𝑤𝑏 = 𝑎00𝑧
𝑎′𝑤𝑏

′
+ 𝑎𝑛0,0𝑧

𝑎′+𝑛0𝑘𝑤𝑏
′
 

+𝑎0 ,𝑚0
𝑧𝑎

′
𝑤𝑏

′+𝑚0𝑙 + ∑ 𝑎𝑛𝑚𝑧
𝑎′+𝑛𝑘𝑤𝑏

′+𝑚𝑙

(𝑛,𝑚)∈Δ0,0
′ ∩Γ

. 

By simple computations, we have 

𝑈𝑇𝑝𝛼
∗ 𝑇𝑝𝛼𝑧

𝑎𝑤𝑏  =  𝛼𝑈𝑧𝑎+𝑘𝑤𝑏+𝑙 +
𝛾𝑎+𝑘
𝛾𝑎

𝑈𝑧𝑎𝑤𝑏 ,            (36) 

and 

    𝑇𝑝𝛼
∗ 𝑇𝑝𝛼𝑈𝑧

𝑎𝑤𝑏 = 𝑎00 (𝛼𝑧
𝑎′+𝑘𝑤𝑏

′+𝑙 +
𝛾𝑎′+𝑘
𝛾𝑎′

𝑧𝑎
′
𝑤𝑏

′
) 

           +𝑎𝑛0,0 (𝛼𝑧
𝑎′+(𝑛0+1)𝑘𝑤𝑏

′+𝑙 +
𝛾𝑎′+(𝑛0+1)𝑘

𝛾𝑎′+𝑛0𝑘
𝑧𝑎

′+𝑛0𝑘𝑤𝑏
′
) 

+𝑎0,𝑚0
[𝛼𝑧𝑎

′+𝑘𝑤𝑏
′+(𝑚0+1)𝑙 + (

𝛾𝑎′+𝑘
𝛾𝑎′

+ 𝛼2
𝛾𝑏′+𝑚0𝑙

𝛾𝑏′+(𝑚0−1)𝑙
) 𝑧𝑎

′
𝑤𝑏

′+𝑚0𝑙] 

 

 

 

 

 



165 

+ ∑ 𝑎𝑛𝑚 [𝛼𝑧
𝑎′+(𝑛+1)𝑘𝑤𝑏

′+(𝑚+1)𝑙

(𝑛,𝑚)∈Δ0,0
′ ∩Γ

        

+(
𝛾𝑎′+(𝑛+1)𝑘
𝛾𝑎′+𝑛𝑘

+ 𝛼2
𝛾𝑏′+𝑚𝑙

𝛾𝑏′+(𝑚−1)𝑙
) 𝑧𝑎

′+𝑛𝑘𝑤𝑏
′+𝑚𝑙      

+ 𝛼
𝛾𝑏′+𝑚𝑙

𝛾𝑏′+(𝑚−1)𝑙

𝛾𝑎′+𝑛𝑘
𝛾𝑎′+(𝑛−1)𝑘

𝑧𝑎
′+(𝑛−1)𝑘𝑤𝑏

′+(𝑚−1)𝑙].                           (37) 

Compare the coefficients of 𝑧𝑎
′+𝑛𝑘𝑤𝑏

′+𝑚𝑙 for (𝑛,𝑚)  ∈  Δ0,0
′ ∩  Γ, respectively. If 

(𝑛,𝑚)  ∈  Γ \ {(1, 1), (𝑛0  +  1, 1), (1,𝑚0  +  1)}, along with (35), we obtain that 

(
𝛾𝑎′+(𝑛+1)𝑘
𝛾𝑎′+𝑛𝑘

+ 𝛼2
𝛾𝑏′+𝑚𝑙

𝛾𝑏′+(𝑚−1)𝑙
)𝑎𝑛𝑚  =

𝛾𝑎+𝑘
𝛾𝑎

𝑎𝑛𝑚, 

since Δ0,0
′ ∩ Δ1,1

′  =  ∅ ( by Lemma (4.3.2)(iii)), (𝑛 ± 1,𝑚 ± 1)  ∉ Δ0,0
′ ∩ Γ ( by Lemma 

2.2), and (𝑛0, 0), (0,𝑚0) ∉ Γ. However, 
𝛾
𝑎′+(𝑛+1)𝑘

𝛾𝑎′+𝑛𝑘
+ 𝛼2

𝛾
𝑏′+𝑚𝑙

𝛾𝑏′+(𝑚−1)𝑙
≥
𝛾
𝑎′+(𝑛+1)𝑘

𝛾𝑎′+𝑛𝑘
>
𝛾𝑎+𝑘

𝛾𝑎
. So 

𝑎𝑛𝑚  =  0. It means that 

𝑈𝑧𝑎𝑤𝑏  =  𝑐0𝑧
𝑎′𝑤𝑏

′
+ 𝑐1𝑧

𝑎′+𝑘𝑤𝑏
′+𝑙  +  𝑐2𝑧

𝑎′+𝑛0𝑘𝑤𝑏
′
+ 𝑐3𝑧

𝑎′+(𝑛0+1)𝑘𝑤𝑏
′+𝑙

+ 𝑐4𝑧
𝑎′𝑤𝑏

′+𝑚0𝑙  +  𝑐5𝑧
𝑎′+𝑘𝑤𝑏

′+(𝑚0+1)𝑙 . 
Some simple computations show that 

𝑈𝑧𝑎+𝑘𝑤𝑏  =  𝑇𝑝𝛼𝑈𝑧
𝑎𝑤𝑏

= (𝑐0  +  𝛼𝑐1
𝛾𝑏′+𝑙
𝛾𝑏′

) 𝑧𝑎
′+𝑘𝑤𝑏

′
+ 𝑐1𝑧

𝑎′+2𝑘𝑤𝑏
′+𝑙

+ (𝑐2  +  𝛼𝑐3
𝛾𝑏′+𝑘
𝛾𝑏′

) 𝑧𝑎
′+(𝑛0+1)𝑘𝑤𝑏

′
+ 𝑐3𝑧

𝑎′+(𝑛0+2)𝑘𝑤𝑏
′+𝑙 + ℎ1(𝑧, 𝑤), 

and 

𝑈𝑧𝑎+2𝑘𝑤𝑏  =  𝑇𝑝𝛼𝑈𝑧
𝑎+𝑘𝑤𝑏

= (𝑐0 +  2𝛼𝑐1
𝛾𝑏′+𝑙
𝛾𝑏′

) 𝑧𝑎
′+2𝑘𝑤𝑏

′
+ 𝑐1𝑧

𝑎′+3𝑘𝑤𝑏
′+𝑙

+ (𝑐2  +  2𝛼𝑐3
𝛾𝑏′+𝑘
𝛾𝑏′

) 𝑧𝑎
′+(𝑛0+2)𝑘𝑤𝑏

′
+ 𝑐3𝑧

𝑎′+(𝑛0+3)𝑘𝑤𝑏
′+𝑙 + 𝑇𝑝𝛼ℎ1, 

where 

ℎ1 ⊥ {𝑧
𝑎′+𝑘𝑤𝑏

′
, 𝑧𝑎

′+2𝑘𝑤𝑏
′+𝑙 , 𝑧𝑎

′+(𝑛0+1)𝑘𝑤𝑏
′
, 𝑧𝑎

′+(𝑛0+2)𝑘𝑤𝑏
′+𝑙} 

and 

𝑇𝑝𝛼ℎ1 ⊥ {𝑧
𝑎′+2𝑘𝑤𝑏

′+𝑙 , 𝑧𝑎
′+3𝑘𝑤𝑏

′+𝑙 , 𝑧𝑎
′+(𝑛0+2)𝑘𝑤𝑏

′
, 𝑧𝑎

′+(𝑛0+3)𝑘𝑤𝑏
′+𝑙}. 

By Lemma (4.3.5)(i), we obtain that (2, 1) ∈  Δ1,0
′  and (3, 1) ∈  Δ2,0

′  are incompatible. 

So 𝑐1  =  0. Moreover, the incompatibility of (𝑛0  +  2, 1)  ∈  Δ1,0
′  and (𝑛0  +  3, 1)  ∈  Δ2,0

′  

shows that 𝑐3  =  0; the incompatibility of (𝑛0  +  1, 0)  ∈  Δ1,0
′  and (𝑛0  +  2, 0)  ∈  Δ2,0

′  

implies 𝑐2  =  0. 
Symmetrically, we consider 𝑈𝑧𝑎𝑤𝑏+𝑙 and 𝑈𝑧𝑎𝑤𝑏+2𝑙 . In a similar way, Lemma (4.3.5) (ii) 

implies that 𝑐4  =  𝑐5  =  0. So 

𝑈𝑧𝑎𝑤𝑏  =  𝑐0𝑧
𝑎′𝑤𝑏

′
, 𝑈𝑧𝑎+𝑘𝑤𝑏  =  𝑐0𝑧

𝑎′+𝑘𝑤𝑏
′
, 𝑈𝑧𝑎𝑤𝑏+𝑙  =  𝑐0𝑧

𝑎′𝑤𝑏
′+𝑙 . 

Since 𝑈|𝐿𝑎,𝑏 is a unitary operator, we get 𝑐0  ≠  0. Then (0, 0)  ∈  Δ0,0
′ , (1, 0)  ∈  Δ1,0

′  and 

(0, 1)  ∈  Δ0,1
′ . By some calculations, it is easy to check that 
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1

(𝑠 +  1)(𝑠 +  2)
− 

𝑠

𝑠 +  1
=

1

(𝑠′  +  1)(𝑠′  +  2)
− 

𝑠′

𝑠′  +  1
; 

1

(𝑡 +  1)(𝑡 +  2)
− 

𝑡

𝑡 +  1
=

1

(𝑡′  +  1)(𝑡′  +  2)
− 

𝑡′

𝑡′  +  1
. 

It follows that (𝑎, 𝑏)  =  (𝑎′, 𝑏′), which is a contradiction. Hence, we complete the proof. 

Theorem (4.3.10)[124]: If (𝑎, 𝑏), (𝑎′, 𝑏′)  ∈  Ω𝛼,1(0 <  𝛼 <  1) and (𝑎, 𝑏)  ≠  (𝑎′, 𝑏′), 

then 𝐿𝑎,𝑏 and 𝐿𝑎′,𝑏′ are not unitarily equivalent. 

Proof. Firstly, by the analogous proof in Theorem (4.3.7), we get that Δ0,0
′  is a finite set. 

Secondly, assume conversely 𝐿𝑎,𝑏 and 𝐿𝑎′,𝑏′ are unitarily equivalent, then there is a partial 

isometry 𝑈 ∈  𝒱∗(𝑝𝛼) such that 𝑈|𝐿𝑎,𝑏 is a unitary operator from 𝐿𝑎,𝑏 onto 𝐿𝑎′,𝑏′ . As the 

analysis above, set 

𝑈𝑧𝑎𝑤𝑏  =  𝑎0𝑧
𝑎′𝑤𝑏

′
+ 𝑢𝑛0𝑧

𝑎′+𝑛0𝑘𝑤𝑏
′
+ 𝑢𝑚0

𝑧𝑎
′
𝑤𝑏

′+𝑚0𝑙 +∑𝑎𝑖𝑧
𝑎′+𝑛𝑖𝑘𝑤𝑏

′+𝑚𝑖𝑙

𝑁

𝑖=1

, 

where 𝑁 is a positive integer, (𝑛𝑖 , 𝑚𝑖)  ∈  Δ0,0
′ ∩  Γ, 𝑛𝑖  ≠  𝑛0, 𝑚𝑖  ≠  𝑚0 and 𝑎𝑖 , 𝑢𝑛0 , 𝑢𝑚0

∈

ℂ. Rearrange {(𝑛𝑖 , 𝑚𝑖)}(1 ≤  𝑖 ≤  𝑁) as 1 ≤  𝑛1  <  𝑛2  < · · · <  𝑛𝑁 . 
By 𝑈 ∈  𝒱∗(𝑝𝛼), we have 

𝑈𝑧𝑎+𝑘𝑤𝑏  =  𝑎𝑁𝑧
𝑎′+(𝑛𝑁+1)𝑘𝑤𝑏

′+𝑚𝑁𝑙  +  𝑔1(𝑧, 𝑤), 
and 

𝑈𝑧𝑎+2𝑘𝑤𝑏 = 𝑎𝑁𝑧
𝑎′+(𝑛𝑁+2)𝑘𝑤𝑏

′+𝑚𝑁𝑙 + 𝛼𝑎𝑁
𝛾𝑏′+𝑚𝑁𝑙

𝛾𝑏′+(𝑚𝑁−1)𝑙
𝑧𝑎

′+(𝑛𝑁+1)𝑘𝑤𝑏
′+(𝑚𝑁−1)𝑙  

 +𝑇𝑝𝛼𝑔1(𝑧, 𝑤), 

where 𝑔1 ⊥ {𝑧
𝑎′+(𝑛𝑁+1)𝑘𝑤𝑏

′+𝑚𝑁𝑙}, 𝑇𝑝𝛼𝑔1 ⊥ {𝑧
𝑎′+(𝑛𝑁+2)𝑘𝑤𝑏

′+𝑚𝑁𝑙}. 

By Lemma (4.3.5)(i), (𝑛𝑁  + 1,𝑚𝑁)  ∈  Δ1,0
′  and (𝑛𝑁  + 2,𝑚𝑁)  ∈  Δ2,0

′  are incompatible. 

Since 

𝑈𝑧𝑎+2𝑘𝑤𝑏  ⊆  span{𝑧𝑎
′+𝑝𝑘𝑤𝑏

′+𝑞𝑙 ∶  (𝑝, 𝑞)  ∈  Δ2,0
′ }̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 

and 

𝑈𝑧𝑎+𝑘𝑤𝑏  ⊆  span{𝑧𝑎
′+𝑝𝑘𝑤𝑏

′+𝑞𝑙 ∶  (𝑝, 𝑞)  ∈  Δ1,0
′ }̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅, 

we have 𝑎𝑁  =  0. Repeat this process until we get 𝑎𝑖  =  0 for 𝑖 =  1,· · · , 𝑁. 
Therefore, we deduce that 

𝑈𝑧𝑎𝑤𝑏  =  𝑎0𝑧
𝑎′𝑤𝑏

′
+ 𝑢𝑛0𝑧

𝑎′+𝑛0𝑘𝑤𝑏
′
+ 𝑢𝑚0

𝑧𝑎
′
𝑤𝑏

′+𝑚0𝑙 . 

By similar way as above, it is easy to get 𝑢𝑛0  =  0. 

On the other hand, we have 

𝑈𝑧𝑎𝑤𝑏+𝑙  =  𝛼𝑎0𝑧
𝑎′𝑤𝑏

′+𝑙  +  𝛼𝑢𝑚0
𝑧𝑎

′
𝑤𝑏

′+(𝑚0+1)𝑙 , 

and 

𝑈𝑧𝑎𝑤𝑏+2𝑙  =  𝛼𝑎0𝑧
𝑎′𝑤𝑏

′+2𝑙  +  𝛼𝑢𝑚0
𝑧𝑎

′
𝑤𝑏

′+(𝑚0+2)𝑙 . 

By Lemma (4.3.5)(ii), the incompatibility of (0,𝑚0  +  1)  ∈  Δ0,1
′  and (0,𝑚0  +  2) ∈ Δ0,2

′  

shows that 𝑢𝑚0
 =  0. 

Since 𝑈|𝐿𝑎,𝑏 is unitary, we have 𝑎0  ≠  0. It follows that (0, 0)  ∈  Δ0,0
′  and (0, 1)  ∈  Δ0,1

′ . A 

simple calculation implies that 𝑡 =  𝑡′ and 𝑠 =  𝑠′, i.e., (𝑎, 𝑏)  = (𝑎′, 𝑏′). Thus the 

assumption is false and we finish the proof. 

Theorem (4.3.11)[124]: If (𝑎, 𝑏), (𝑎′, 𝑏′)  ∈  Ω1,2 and (𝑎, 𝑏)  ≠  (𝑎′, 𝑏′), then 𝐿𝑎,𝑏 and 

𝐿𝑎′,𝑏′ are not unitarily equivalent. 
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Proof. Assume conversely that 𝐿𝑎,𝑏 and 𝐿𝑎′,𝑏′ are unitarily equivalent, then there is a partial 

isometry 𝑈 ∈  𝒱∗(𝑝1) such that 𝑈|𝐿𝑎,𝑏 is a unitary operator from 𝐿𝑎,𝑏 onto 𝐿𝑎′,𝑏′ . By the 

analogous argument in Theorem (4.3.9) and by Lemma (4.3.4), we have 

𝑈𝑧𝑎𝑤𝑏  = ∑ 𝑎𝑛𝑧
𝑎′+𝑛𝑘𝑤𝑏

′+𝑛𝑙

𝑛∈ℤ+

. 

Moreover, 

𝑈𝑧𝑎+𝑘𝑤𝑏  =  𝑇𝑝𝑈𝑧
𝑎𝑤𝑏 = (𝑎0  +  𝑎1

𝛾𝑏′+𝑙
𝛾𝑏′

) 𝑧𝑎
′+𝑘𝑤𝑏

′
                

+∑(𝑎𝑛  +  𝑎𝑛+1
𝛾𝑏′+(𝑛+1)𝑙
𝛾𝑏′+𝑛𝑙

)

𝑛≥1

𝑧𝑎
′+(𝑛+1)𝑘𝑤𝑏

′+𝑛𝑙 . 

By (𝑎, 𝑏), (𝑎′, 𝑏′)  ∈  Ω1,2, we have 𝑠 =  𝑡, 𝑠′  =  𝑡′ and (0, 0)  ∈  Δ0,0
′ . Obviously, (𝑎, 𝑏)  ≠

 (𝑎′, 𝑏′) implies that 𝑠 ≠  𝑠′, forcing (1, 0)  ∉ Δ1,0
′ . Thus, 𝑎0  + 𝑎1

𝛾
𝑏′+𝑙

𝛾𝑏′
 =  0. 

Lemma (4.3.4)(ii) shows that (𝑞 + 1, 𝑞)  ∈  Δ1,0
′  for at most one 𝑞 ≥  1. Therefore, we 

deduce that 

𝑈𝑧𝑎+𝑘𝑤𝑏  =  𝑐𝑧𝑎
′+(𝑞+1)𝑘𝑤𝑏

′+𝑞𝑙 , 
where 𝑐 ∈  ℂ. Moreover, 

𝑈𝑧𝑎+2𝑘𝑤𝑙  =  𝑐𝑧𝑎
′+(𝑞+2)𝑘𝑤𝑏

′+𝑞𝑙  +  𝑐
𝛾𝑏′+𝑞𝑙

𝛾𝑏′+(𝑞−1)𝑙
𝑧𝑎

′+(𝑞+1)𝑘𝑤𝑏
′+(𝑞−1)𝑙 . 

By Lemma (4.3.5)(i), (𝑞 +  1, 𝑞)  ∈  Δ1,0
′  and (𝑞 +  2, 𝑞)  ∈  Δ2,0

′  are incompatible. 

So 𝑐 =  0, which contradicts with 𝑈 ≠  0. Hence, we arrive at the desired conclusion. 

We consider the structure of the von Neumann algebra 𝒱∗(𝑝𝛼) for 0 <  𝛼 ≤  1. 
Rewrite the minimal reducing subspaces 𝐿𝑎,𝑏((𝑎, 𝑏)  ∈  Ω) by 𝑀1, 𝑀2,· · · , 𝑀𝑟 , where 𝑟 =

 𝑘𝑙. As mentioned, 𝑀1 is unitarily equivalent to 𝑀2 if and only if 𝑃𝑀1  and 𝑃𝑀2  are equivalent 

in 𝒱∗(𝑝𝛼), thus we get any two of the minimal projections 𝑃𝑀𝑖 , 𝑖 =  1,· · · , 𝑟, are not 

equivalent. 

As in [112], there are no other minimal projections in 𝒱∗(𝑝𝛼) except {𝑃𝑀𝑖| 𝑖 = 1,· · ·

 , 𝑟}. We briefly recall the main ideas of the proof. Let 𝑄 be a minimal projection, which is 

distinct from all 𝑃𝑀𝑖(1 ≤  𝑖 ≤  𝑟). Since the direct sum of 𝑃𝑀𝑖(1 ≤  𝑖 ≤  𝑟) is the whole 

space 𝐴2(𝔻2), there are at least two minimal projections 𝑃𝑀𝑖 and 𝑃𝑀𝑗 such that 𝑃𝑀𝑖𝑄 ≠  0 

and 𝑃𝑀𝑗𝑄 ≠  0. Then 𝑄 is equivalent to 𝑃𝑀𝑗 and 𝑃𝑀𝑖 , which is a contradiction. 

The following proposition comes from [30]: 

Proposition (4.3.12)[124]: Let 𝜀 denote the set of all minimal projections in a von Neumann 

algebra 𝒜 and suppose 

⋁𝐸 =  𝐼

𝐸∈𝜀

. 

Then there is a family of {Λ𝑖} of subsets of 𝜀 such that 

∑∑ =  𝐼

𝐸∈Λ𝑖𝑖

, 

   (i) each {Λ𝑖} consists of pairwisely orthogonal, mutually equivalent projections in 𝒜; 
   (ii) if 𝐸′, 𝐸′′ lie in different {Λ𝑖}, then 𝐸′ is not equivalent to 𝐸′′; 
Consequently, the von Neumann algebra 𝒜 is ∗- isomorphic to 

⊕𝑖 𝑀𝑛𝑖(ℂ), 

where 𝑛𝑖 denotes the cardinality of {Λ𝑖}, allowed to be infinity. 



168 

Associated with ⋁ 𝑃𝑀𝑖  =  𝐼
𝑟
𝑖=1 , we have the following result. 

Theorem (4.3.13)[124]: If 0 <  𝛼 ≤  1, then 𝒱∗(𝑝𝛼) is ∗- isomorphic to 

⊕𝑖=1
𝑘𝑙 ℂ. 

Moreover, 𝒱∗(𝑝𝛼) is abelian.  
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Chapter 5 

Hankel Operators and Products of Toeplitz Operators 

 

We show the characterization of boundedness relies on certain precise estimates for 

the Bergman kernel and the Bergman metric. Characterizations of compact Hankel operators 

and Schatten class Hankel operators are also given. In the latter case, results on Carleson 

measures and Toeplitz operators along with Hörmander’s 𝐿2 estimates for the 𝜕 operator are 

key ingredients in the proof. We show that the product 𝑇𝑓𝑇𝑔 of Toeplitz operators on the 

Fock  𝐹𝛼
2 of ℂ𝑛 is bounded if and only if 𝑓(𝑧)  = 𝑒𝑞(𝑧) and 𝑔(𝑧)  =  𝑐𝑒−𝑞(𝑧) , where c is a 

nonzero constant and 𝑞 is a linear polynomial. We provide a complete solution to the 

problem for a class of Fock spaces on the complex plane. In particular, this generalizes an 

earlier result of Cho, Park, and Zhu. 

Section (5.1): Fock Spaces and Related Bergman Kernel Estimates 

       The basics of Hankel operators with anti-holomorphic symbols for a large class of 

weighted Fock spaces are presented. Thus certain natural analogues of BMOA, the Bloch 

space, the little Bloch space, and the Besov spaces are identified and shown to play similar 

roles as their classical counterparts do. We will see that these spaces contain all holomorphic 

polynomials and are infinite-dimensional whenever the weight decays so fast that there exist 

functions of infinite order belonging to the Fock space.  

The setting is the following. Consider 𝐶3-function Ψ : [0,+∞[→ [0,+∞[ such that 

Ψ′(𝑥) > 0, Ψ′′(𝑥) ≥  0, and Ψ′′′(𝑥) ≥  0.                         (1) 
We will refer to such a function as a logarithmic growth function. Note that (1) 

effectively says that should grow at least as a linear function. Set 

𝑑𝜇Ψ(𝓏):=  𝑒
−Ψ(|𝑧|2)𝑑𝑉 (𝓏), 

 where 𝑑𝑉 denotes Lebesgue measure on ℂ𝑛, and let 𝐴2(Ψ) be the Fock space defined 

as the closure of the set of holomorphic polynomials in 𝐿2(𝜇Ψ). We observe that 𝐴2(Ψ) 
coincides with the classical Fock space when is a suitably normalized linear function.  

It is immediate that 

𝑠𝑑 ∶= ∫  
+∞

0

  𝑥𝑑𝑒−Ψ(𝑥)𝑑𝑥 <  +∞ 

for all nonnegative integers 𝑑. As shown in [137], the series 

 𝐹𝑠(𝜁):= ∑
𝜁𝑑

𝑠𝑑

+∞

𝑑=0

    , 𝜁 ∈ ℂ 

has an infinite radius of convergence and 𝐴2(Ψ) is a reproducing kernel Hilbert space with 

reproducing kernel 

𝐾Ψ(𝑧, 𝑤) =
1

 (𝑛 −  1)
! 𝐹𝑠

(𝑛−1)
  (〈𝑧, 𝑤〉), (𝓏, 𝑤)  ∈ ℂ𝑛. 

This implies that the orthogonal projection 𝑃Ψ from 𝐿2(𝜇) onto 𝐴^2 (Ψ) can be expressed 

as 

(𝑃Ψ𝑔)(𝓏) =  ∫   
 

ℂ𝑛
 𝐾Ψ(𝓏,𝑤)𝑔(𝑤)𝑑𝜇Ψ(𝑤), 𝓏 ∈ ℂ

𝑛, 

 for every function 𝑔 in 𝐿2(𝜇). The domain of  this integral operator can be extended to 

include functions 𝑔 that satisfy 𝐾Ψ(𝓏,·)𝑔 ∈  𝐿
1(𝜇) for every z in ℂ𝑛. This extension allows 

us to define (big) Hankel operators. To do so, denote by 𝒯 ( Ψ) the class of all 𝑓 in 
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𝐿2(𝜇) such that 𝑓𝜙𝐾Ψ(𝓏,·)  ∈  𝐿
1(𝜇Ψ) for all holomorphic polynomials 𝜑 and z in ℂ^𝑛 and 

the function 

 𝐻𝑓 (𝜑)(𝓏) ≔ ∫  
 

ℂ𝑛
 𝐾Ψ(𝓏, 𝑤)𝜑(𝑤)[𝑓 (𝓏) −  𝑓 (𝑤)] 𝑑𝜇Ψ(𝑤),    𝓏 ∈ ℂ

𝑛 

 is in 𝐿2 (𝜇Ψ). This is a densely defined operator from 𝐴2(Ψ) into 𝐿2(𝜇Ψ) which will be 

called the Hankel operator 𝐻𝑓 with symbol 𝑓 . It can be written in the form 

𝐻𝑓 (𝜑) =  (𝐼 − 𝑃Ψ)(𝑓 𝜑) 

 for all holomorphic polynomials 𝜑. It is clear that the class 𝑇 (Ψ) contains all holomorphic 

polynomials. 

  The main theorem involves the analogues in our setting of the space BMOA and the 

Bloch space. The analogue of BMOA is most conveniently defined by the Berezin 

transform, which for a linear operator 𝑇 on 𝐴2(Ψ) is the function �̃�  defined on ℂ𝑛 by 

�̃� (𝓏) ∶=
〈𝑇 𝐾Ψ(·, 𝑧), 𝐾Ψ(·, 𝓏)〉

 𝐾Ψ(𝓏, 𝓏)
 . 

 If 𝑇 =  𝑀𝑓 is the operator of multiplication by the function 𝑓 , then we just set �̃�𝑓  =  𝑓. 

We set 

‖𝑓 ‖𝐵𝑀𝑂 ∶= sup
( 𝓏∈ℂ𝑛)

(𝑀𝑂𝑓 )(𝓏), 

 Where 

 (𝑀𝑂𝑓 )(𝓏) ≔  √|  𝑓 ̃ |
2
(𝓏) − |𝑓 (𝓏)|

2
, 

 and define BMO(Ψ) as the set of functions f on ℂ𝑛 for which | 𝑓 ̃|2(𝓏) is finite for every 𝑧 

and ‖𝑓‖ BMO <  ∞. It is plain that BMO(Ψ) is a subset of 𝒯 (Ψ). The space BMOA(Ψ) 
is the subspace of BMO(Ψ)consisting of analytic elements; this space is in turn a subset of 

𝑇 (𝛹) ∩ 𝐴2(𝛹). 
  We next introduce the Bergman metric associated withΨ. To this end, set (𝓏)  =
 log𝐾Ψ(𝓏, 𝓏)and 

 𝛽2(𝓏, 𝜉): = ∑  

𝑛

𝑗,𝑘=1

 
𝜕2ΛΨ(𝓏)

 𝜕𝑧𝑗  𝜕𝑧�̅�
 𝜉𝑗 𝜉 𝑘 

 for arbitrary vectors 𝓏 =  (𝓏1, . . . , 𝓏𝑛) and 𝜉 =  (𝜉1, . . . , 𝜉𝑛) in ℂ
𝑛. The corresponding 

distance is given by  

𝜚(𝓏,𝑤) ≔ inf
𝛾
  ∫  

1

0

 𝛽(𝛾(𝑡), 𝛾′(𝑡))𝑑𝑡,                                  (2) 

 where the infimum is taken over all piecewise 𝐶1-smooth curves 𝛾 ∶  [0, 1]  → ℂ𝑛 such that 

𝛾(0)  = 𝓏 and 𝛾(1)  =  𝑤. We define the Bloch space 𝐵(Ψ) to be the space of all entire 

functions f such that 

 𝑓 𝐵(Ψ) ≔ sup
𝓏∈ℂ𝑛

 [ sup
𝜉∈ℂ𝑛\{0}

 
|〈(𝛻𝑓 )(𝓏), 𝜉〉|

 𝛽(𝓏, 𝜉)
 ] <  +∞.          (3) 

 In what follows, the function  

Φ(𝑥) ≔  𝑥Ψ′(𝑥) 
 will play a central role. By (1), we have that both Φ′(𝑥) >  0 and 𝛷′′(𝑥) >  0, and it may 

be checked that  Φ′(|𝑧|2) coincides with the Laplacian of (|𝑧|2) when 𝑛 =  1 and in general 

is bounded below and above by positive constants times this Laplacian for arbitrary 𝑛 >  1. 
  We state the main result. 
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 Theorem (5.1.1)[129]: LetΨbe a logarithmic growth function, and suppose that there exists 

a real number 𝜂 <  1/2 such that 

Φ′′(𝑡) =  𝑂 (𝑡−
1
2 [Φ′(𝑡)]1+𝜂)  when 𝑡 →  ∞.                        (4) 

 If f is an entire function on ℂ𝑛, then the following statements are equivalent:  

   (i) The function f belongs to 𝑇 (Ψ) and the Hankel operator 𝐻𝑓 on 𝐴2(Ψ) is bounded;  

   (ii) The function f belongs to 𝐵𝑀𝑂𝐴(Ψ); (iii) The function f belongs to 𝐵(Ψ). 
  Note that the additional assumption (4) is just a mild smoothness condition, which 

holds whenever is a nontribyl polynomial or a reasonably well-behaved function of super-

polynomial growth. As part of the proof of Theorem (5.1.1), we will perform a precise 

computation of the asymptotic behavior of 𝛽(𝓏, 𝜉) when |𝓏| → ∞. We state this result as a 

separate theorem.  

We observe that for the classical Fock space (Ψ a linear function) we have Ψ′′(𝑥)  ≡
 0, and so the “directional” term in 𝛽(𝓏, 𝜉) is not present. Note also that 𝐵(Ψ) contains all 

polynomials and is infinite-dimensional whenever the growth of Ψ′ (𝑥) is super-polynomial. 

In the language of entire functions, this means that 𝐴2(Ψ) contains functions of infinite 

order. When 𝑛 =  1, 𝛽2(𝑣, 𝜉) can be replaced by  Φ′(|𝓏|2)|𝜉 |2  . The same is also true 

when is a polynomial, because then Ψ′ and Φ′ have the same asymptotic behavior. In the 

latter case, our two theorems give the following precise result: If Ψis a polynomial of degree 

d, then 𝐵(Ψ) consists of all holomorphic polynomials of degree at most 𝑑; cf. Theorem 

(5.1.1) in [137]. 

  The implication (i) ⇒ (ii) in Theorem (5.1.1) is standard; it follows from general 

arguments for reproducing kernels. Likewise, the implication (ii) ⇒ (iii) can be established 

by a well-known argument concerning the Bergman metric. The proof of Theorem (5.1.1) 

therefore deals mainly with the implication (iii) ⇒ (i). The crucial technical ingredients in 

the proof of this result are certain estimates for the Bergman kernel 𝐾Ψ(𝓏, 𝑤). Such 

estimates have previously been obtained by F. Holland and R. Rochberg in [62]. The results 

of [62] are not directly applicable because we need more precise off-diagonal estimates for 

the kernel than those given. Our method of proof is similar to that of [62], but our approach 

highlights more explicitly the interplay between the smoothness of and theΨoff-diagonal 

decay of the Bergman kernel. This is where the additional smoothness condition (4) comes 

into play; many of our estimates can be performed with sufficient precision without the 

assumption that (4) holds, but some condition of this kind seems to be needed for our off-

diagonal estimates. 

 The fact that the Bergman metric is the notion used to define the Bloch space 𝐵(Ψ ) 
suggests that Theorem (5.1.1) should be extendable beyond the case of radial weights. To 

obtain such an extension, one would need a replacement of our Fourier-analytic approach, 

which relies crucially on the representation of the Bergman kernel as a power series. 

 The machinery developed to prove Theorem (5.1.1) leads with little extra effort to a 

characterization of compact Hankel operators in terms of the obvious counterparts to 

VMOA and the little Bloch space; for details. In our study of Schatten class Hankel 

operators, however, some additional techniques will be used. We will need more precise 

local information about the Bergman metric, namely that balls of fixed radius in the 

Bergman metric are effectively certain ellipsoids in the Euclidean metric of ℂ𝑛. These 

results appear to be of independent interest; in particular, they lead to a characterization of 

Carleson measures and in turn to a characterization of the spectral properties of Toeplitz 
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operators. Building on these results and using 𝐿2 estimates for the 𝜕 operator, we obtain a 

characterization of Schatten class Hankel operators. 

To place the present investigation, we close this introduction with a few words on the 

literature. Boundedness and compactness of Hankel operators with arbitrary symbols have 

previously been considered only for the classical Fock space (Ψ 𝑎 linear function); see, 

[130], [131], [134], [135], [142], [143]. The methods, relying on the transitive self-action of 

the group ℂ𝑛, cannot be extended beyond this special case. Hankel operators with anti-

holomorphic symbols defined on more general weighted Fock spaces were studied recently 

in [137] and [84], where it was shown that anti-holomorphic polynomials do not 

automatically induce bounded Hankel operators. For Bergman kernel estimates in similar 

settings, see [140] and [141]. We finally mention [73] and [132]; the first focuses on small 

Hankel operators and the Heisenberg group action, while the second deals with Hankel 

operators for the Bergman projection on smoothly bounded pseudoconvex domains in ℂ𝑛. 

The notation 𝑈(𝓏)  ≲ 𝑉 (𝓏) (or equivalently 𝑉 (𝓏)  ≳ 𝑈(𝓏)) means that there is a 

constant 𝐶 such that 𝑈(𝓏)  ≤  𝐶𝑉 (𝓏) holds for all 𝓏 in the set in question, which may be a 

space of functions or a set of numbers. If both 𝑈(𝓏) ≲ 𝑉 (𝓏) and 𝑉 (𝓏) ≲  𝑈(𝓏), then we 

write 𝑈(𝓏)  ⋍ 𝑉 (𝓏). 
The following standard argument shows that (i) implies (ii) in Theorem (5.1.1). To 

begin with, we note that if 𝑓 is in 𝐴2𝑏(𝜓), then 𝑓     =  𝑓. Moreover, by the definition of the 

reproducing kernel, a computation shows that 

 | 𝑓 ̃|
2
(𝓏) − |𝑓 (𝓏)|2 = ∫  

 

ℂ𝑛
 |𝑓(𝜉) − 𝑓(𝓏)2

|𝐾 Ψ(𝜉, 𝓏)|
2

 𝐾Ψ(𝓏, 𝓏)
 𝑑𝜇(𝜉)  =

‖ 𝐻𝑓𝐾Ψ(·, 𝑧)‖
2

 𝐾(𝓏, 𝓏)
.  (5) 

 Hence, if 𝐻𝑓̅ is bounded, then ‖𝑓‖𝐵𝑀𝑂  <  +∞. The implication (ii) ⇒ (iii) is a 

consequence of the following lemma, the proof of which is exactly as the proof of Corollary 

1 in [133]. 

Lemma (5.1.2)[129]: Suppose that 𝑓 is in 𝐵𝑀𝑂𝐴(Ψ). Then for every piecewise 𝐶1-smooth 

curve  : [0, 1]  → ℂ𝑛 we have 

 |
𝑑

𝑑𝑡
 (𝑓 ∘  𝛾)(𝑡)| ≤  2 √2𝛽(𝛾(𝑡), 𝛾′(𝑡))(𝑀𝑂𝑓 )(𝛾(𝑡)). 

 If we choose 𝛾(𝑡)  = 𝓏 +  𝑡𝜉 , then we obtain 

|〈(𝛻𝑓 )(𝓏), 𝜉〉|

𝛽(𝓏, 𝜉)
≤  2 √2(𝑀𝑂𝑓 )(𝓏)                                                (6) 

 for all 𝓏 in ℂ𝑛 and 𝜉 in ℂ𝑛  {0}. 
       This a some what elaborate preparation for the proof of Theorem (5.1.9) and also the 

proof of the implication (iii) ⇒ (i) in Theorem (5.1.1). 

 Set 

 𝜃0(𝑟):=  [𝑟Φ
′(𝑟)] −

1
2. 

 The key estimates for the Bergman kernel are the following. 

Lemma (5.1.3)[129]: Let η be as in Theorem (5.1.1). Then, for any fixed 𝛼 > 𝜂, we have 

sup

|𝜏|≤𝑡
1
2[𝜙′(𝑡)]−𝛼

    𝜙(𝑡 +  𝜏) =  (1 +  𝑜(1))𝜙′(𝑡) 

 when 𝑡 →  ∞. 
Proof. The proof is similar to the proof of Lemma 6 in [62]. By (4), [𝜙′(𝑥)]−1 − 𝜂 ×  

𝜙′(𝑥)  =  𝑂(𝑥−
1

2) when 𝑥 →  ∞, which implies that 
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|[𝜙′(𝑡 +  𝜏)]−𝜂  – [𝜙′(𝑡)]−𝜂| = |𝜏 |𝑂(𝑡−
1
2𝜏) 

 when 𝑡 →  ∞. The result follows from this relation. 

       In order to estimate |𝐾Ψ(𝓏, 𝑤)|, we need precise information about the moments 𝑠𝑑 .  To 

this end, note that the integrand of 

 ∫  
∞

0

  𝑥𝑡 𝑒−Ψ(𝑥)𝑑𝑥 

 attains its maximum 𝑎𝑡 𝑥 =  𝜙−1(𝑡). Set 

 ℎ𝑡(𝑥)  =  −𝑡 log 𝑥 + Ψ (𝑥)  − (−𝑡 𝑙𝑜𝑔𝜙
−1(𝑡)  + (𝜙−1(𝑡)) 

and 

𝐼(𝑡) =  ∫  
∞

0

  𝑒−ℎ𝑡(𝑥)𝑑𝑥; 

 we may then write 

𝑠𝑑  =  𝑒
𝑑 𝑙𝑜𝑔𝜙−1(𝑑)−Ψ(𝜙−1(𝑑))

𝐼(𝑑). 
We have the following precise estimate for 𝐼(𝑡). 
 Lemma (5.1.4)[129]: For the function I(t), we have 

 𝐼(𝑡) =  ( √2𝜋  +  𝑜(1)) [
𝜙−1(𝑡)

𝜙(𝜙′ − 1(𝑡))
]

1
2

 

 when 𝑡 →  ∞. 

 Proof. Set 𝜏(𝑥)  =  √𝑥[ 𝜙′(𝑥)]−𝛼 , where 𝜂 < 𝛼 < 1/2.Since 

ℎ𝑡
′′ (𝑥) =

 𝜙(𝑥)

 𝑥
 +

𝑡

 𝑥2
𝑏 −

𝜙′(𝑥)

 𝑥2
 =  

𝜙′(𝑥)

 𝑥
 +

1

𝑥2
  [𝜙(𝜙−1(𝑡)) −  𝜙(𝑥)], 

 we have, by Lemma (5.1.3), 

 ℎ𝑡
′′   (𝑥)  =  ℎ𝑡

′′ (𝜙−1(𝑡))(1 +  𝑜(1)) 
when |𝑥 − 𝜙−1(𝑡)|  ≤  𝜏(𝜙−1(𝑡)). On the other hand, by the convexity of ht , we then have  

|ℎ𝑡(𝑥)|  ≥
1

2
 (ℎ𝑡

′′ (𝜙−1(𝑡))  +  𝑜(1))𝜏(𝜙−1(𝑡))|𝑥 − 𝜙−1(𝑡)| 

 for |𝑥 − 𝜙−1(𝑡)|  ≥  𝜏(𝜙−1(𝑡)). Setting for simplicity 

 𝑐 =  ℎ𝑡
′′ (𝜙−1(𝑡)) =

𝜙′(𝜙−1(𝑡))

 𝜙−1(𝑡)
 , 

 we then get 

𝐼(𝑡) = ∫  
 

|𝑥|≤𝜏(𝜙−1(𝑡))

  𝑒−
1
2
 (𝑐+𝑜(1))𝑥2  𝑑𝑥 +  𝐸(𝑡),                      (7) 

 Where 

 |𝐸(𝑡)| ≤  2∫  
 

𝑥≥𝜏(𝜙−1(𝑡))

  𝑒
−
1
2
 (𝑐+𝑜(1))𝜏(𝜙−1(𝑡))𝑥

 𝑑𝑥. 

 Thus the result follows, since the integral in (7) can be estimated by the corresponding 

Gaussian integral from −∞ to ∞.  
  We will estimate a number of integrals in a similar fashion, using Lemma (5.1.3) to 

split the domain of integration. The integrands will be of the type 𝑒−𝑔𝑡(𝑥)𝑆𝑡(𝑥) and satisfy 

the following: 

(I) 𝑔𝑡 attains its minimum at a point 𝑥0  =  𝑥0(𝑡) →  ∞ with 𝑔𝑡
′′ (𝑥) =  (1 +  𝑜(1))𝑐 

for |𝑥 − 𝑥0| ≤  𝜏 and 
1

𝜏
=  𝑜(𝑐) when 𝑡 →  ∞. 
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(II)  For |𝑥 − 𝑥0 |  ≤  𝜏 , 𝑆𝑡(𝑥) can be estimated by a constant 𝐶 times |𝑥 − 𝑥0|
𝑚 for 

some positive integer 𝑚. 

(III) When |𝑥 − 𝑥0|  ≥  𝜏 and |𝑥 − 𝑥0| grows, the function 𝑒−𝑔𝑡(𝑥)𝑆𝑡(𝑥) decays so fast 

that 

∫ 𝑒𝑔𝑡 (𝑥) 
∞

0

|𝑆𝑡(𝑥)|𝑑𝑥 = (1 +  𝑜(1)) ∫  
 

|𝑥−𝑥0|≤𝜏

𝑒−𝑔𝑡(𝑥)|𝑆𝑡(𝑥)|𝑑𝑥. 

 Taking into account the formula 

 ∫  
∞

0

  𝑥𝑚𝑒−
1
2
 𝑐𝑥2  𝑑𝑥 =  (

𝑐

2
)
 −
𝑚+1
2
 ∫  

∞

0

  𝑥𝑚𝑒−𝑥
2
 𝑑𝑥,                                 (8) 

 we then arrive at the estimate 

 ∫ 𝑒−ℎ𝑡(𝑥) 
∞

0

  𝑆𝑡(𝑥)𝑑𝑥 =  𝑂 (𝐶𝑐
−
𝑚+1
2 )                       (9) 

 when 𝑡 →  ∞. 
  We will at one point encounter a slightly different variant of this scheme, obtained by 

replacing (II) by the following: 

 (𝐼𝐼′ ) 𝐹𝑜𝑟 |𝑥 − 𝑥0|  ≤  𝜏 , we have 𝑆(𝑥)  =  (1 +  𝑜(1))(𝑥 −  𝑥0) when 𝑡 →  ∞. 
In this case, because of the symmetry around the point 𝑥0, we get the slightly better estimate 

 ∫  
∞

0

  𝑒−ℎ𝑡(𝑥)𝑆(𝑥)𝑑𝑥 =  𝑜(𝑐−1)                                  (10) 

 when 𝑡 →  ∞. 
  In the following we will omit most of the details of such calculus arguments. We will 

briefly state that conditions (𝐼), (𝐼𝐼), (𝐼𝐼𝐼) (or, respectively, (𝐼), (𝐼𝐼′ ), (𝐼𝐼𝐼)) are satisfied 

and conclude that this leads to the estimate (9) (or, respectively, (10)). 

  In the proof of the next lemma, we will use this scheme three times. 

Lemma (5.1.5)[129]: We have 

𝐼′(𝑡) =  𝑂 ( [Φ−1(𝑡)Φ′(Φ−1(𝑡))]
−
1
2𝐼(𝑡)) ; 

𝐼′′(𝑡) =  𝑂 ( [Φ−1(𝑡)Φ′(Φ−1(𝑡))]
−1
𝐼(𝑡)) ; 

 𝐼′′(𝑡) =  𝑂 ([Φ−1(𝑡)Φ′(Φ−1(𝑡))]
−
3
2 𝐼(𝑡)) 

 when 𝑡 →  ∞. 
 Proof. We begin by noting that 𝐼′ can be computed in the following painless way: 

 𝐼′(𝑡) =  ∫ 𝑙𝑜𝑔  
∞

0

 
𝑥

Φ−1(𝑡)   𝑒
−ℎ𝑡(𝑥)𝑑𝑥;                              (11) 

 this holds because ℎ𝑡
′(Φ−1(𝑡))  =  0. For the same reason, we get 

 𝐼′′(𝑡) =  ∫  
∞

0

   − [
(Φ(−1) )

′
(𝑡)

 Φ−1(𝑡)
 +   𝑙𝑜𝑔 (

𝑥

 Φ−1(𝑡)
)
2

] 𝑒−ℎ𝑡(𝑥)𝑑𝑥     (12) 

and 
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𝐼′′(𝑡) = ∫  
∞

0

   [− [
(Φ(−1)  )(𝑡)

 Φ−1(𝑡)
]

′

−  3
(Φ(−1) )

′
(𝑡)

 Φ−1(𝑡)
 𝑙𝑜𝑔

𝑥

 Φ−1(𝑡)

+ (𝑙𝑜𝑔
𝑥

 Φ−1(𝑡)
)
3

 ] 𝑒−ℎ𝑡(𝑥)𝑑𝑥.                                                                            (13) 

 We use that [Φ−1]′  (𝑡)  =  1/Φ′ (Φ−1(𝑡)), and then in (13) we also use the fact that 

[
1

 Φ′((Φ−1)(𝑡))Φ−1(𝑡)
]

′

 =  −
Φ′′(Φ−1(𝑡))

 [Φ′(Φ−1(𝑡))]
3
Φ−1(𝑡)

 −
1

 [Φ′(Φ−1(𝑡))Φ−1(𝑡)]
2  ; (14) 

 we apply condition (4) to the first term on the right-hand side. When we estimate the 

integrals in (11), (12), and (13), we use that 

|𝑙𝑜𝑔
𝑥

Φ−1(𝑡)
|  ≤  𝑒

|𝑥 – Φ−1(𝑡)|

 –Φ−1(𝑡)
 

for 𝑥 ≥  𝑒−1Φ−1(𝑡) and that, say, 

|𝑙𝑜𝑔
𝑥

Φ−1(𝑡)
| ≤ log  

1

Φ−1(𝑡)
   

when 1 ≤  𝑥 < 𝑒−1Φ−1(𝑡). In each case, the integrand satisfies conditions (𝐼), (𝐼𝐼), (𝐼𝐼𝐼) 
with 𝑔𝑡  =  ℎ𝑡 , so that we may use (9). The desired results for 𝐼′, 𝐼′′, 𝐼′′′ nowfollow from 

(9). 

 We will need similar estimates for the function 

𝐿𝑟(𝑡) = exp(𝑡 log 𝑟 −  𝑡 𝑙𝑜𝑔Φ
−1(𝑡)  + Ψ(Φ−1(𝑡))), 

where 𝑟 is a positive are a meter. 

Lemma (5.1.6)[129]: We have 

𝐿𝑟
′  (𝑡) = − log  

Φ−1 (𝑡)

𝑟
  𝐿𝑟(𝑡); 

𝐿𝑟
′′ (𝑡) = [(log    

Φ−1(𝑡)

𝑟
  )

2

−
1

Φ′(Φ−1(𝑡))Φ−1(𝑡)
] 𝐿𝑟(𝑡); 

𝐿𝑟
′′′ (𝑡) = [(− log    

Φ−1(𝑡)

𝑟
)

3

+
3 𝑙𝑜𝑔

Φ−1(𝑡)
𝑟

Φ′(Φ−1(𝑡))Φ−1(𝑡)

+ ([𝑂Φ′(Φ−1(𝑡))Φ−1(𝑡)]
−
3
2)] 𝐿𝑟(𝑡) 

when 𝑡 →  ∞. 
Proof. The first and the second of these formulas are obtained by direct computation.We 

arrive at the estimate for the third derivative by again using (14) and then applying condition 

(4). 
Lemma (5.1.7)[129]: Suppose that (4) holds. Let z and w be arbitrary points in ℂ𝑛 such that 

〈𝓏, 𝑤〉 ≠  0, and write 〈𝓏, 𝑤〉  =  𝑟𝑒𝑖𝜃 , where 𝑟 >  0 and −𝜋 𝜃0(𝑟). Moreover, there exists 

a positive constant c such that if 𝜃 <  𝑐𝜃0(𝑟), then 

|𝐾Ψ( 𝓏, 𝑤)| ≳ 𝜙
′(𝑟)[ Ψ′(𝑟)]𝑛−1 𝑒Ψ(𝑟). 

Proof. We begin by recalling that 
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𝐾Ψ(𝓏,𝑤) =  𝑘(〈𝓏, 𝑤〉), 
Where 

𝑘(𝜁) ≔
1

(𝑛 −  1)!
  ∑  

∞

𝑑=𝑛−1

  
𝑑(𝑑 −  1) ··· (𝑑 −  𝑛 +  2)

𝑠𝑑
 𝜁−𝑛+1. 

We set 〈𝑧, 𝑤〉  =  𝑟𝑒𝑖𝜃 and assume that 𝑟 >  0 and |𝜃|  ≤  𝜋. We may then write 

(〈𝓏, 𝑤〉𝑑)

𝑠𝑑
 =
𝐿𝑟(𝑑)

𝐼(𝑑)
exp(𝑖𝑑𝜃) 

and hence 

〈𝓏, 𝑤〉𝑛 −1𝐾Ψ(𝓏,𝑤) =  𝑟
𝑛−1 𝑒𝑥𝑝(𝑖(𝑛 −  1)𝜃)𝑘( 𝑟𝑒𝑖𝜃 ) 

=
1

 (𝑛 –  1)!
 ∑  

∞

𝑑=𝑛−1

  𝑑(𝑑 –  1) ··· (𝑑 –  𝑛 +  2)  
𝐿𝑟(𝑑)

 𝐼(𝑑)
 exp(𝑖𝑑𝜃). 

 Let 𝛺(𝑡) be a function in 𝐶3(ℝ) so that 

Ω(𝑡) =
1

 (𝑛 −  1) !

𝑡(𝑡 −  1) ··· (𝑡 −  𝑛 +  2)𝐿𝑟(𝑡)

 𝐼(𝑡)
 

For 𝑡 ≥  𝑛 −  1 and 𝛺(𝑡)  =  0 for 𝑡 ≤  𝑛 −  2. Then the Poisson summation formula 

gives 

 𝑟𝑛−1 exp(𝑖(𝑛 −  1)𝜃) 𝑘( 𝑟𝑒𝑖𝜃)   =  ∑ Ω̃(𝑗),

∞

𝑗=−∞ 

  

 where 

Ω̃(𝑗) ∫ Ω(𝑡)𝑒𝑖(2𝜋𝑗+𝜃)𝑡
∞

−∞ 

=   𝑑𝑡. 

 Integrating by parts, we obtain 

𝑟𝑛−1|𝑘(𝑟𝑒𝑖𝜃 )| ≤ |Ω̃(0)| + ‖Ω′′′‖1 ∑
2

 (2𝜋)3 (𝑗 −
1
2)

3

∞

𝑗=1 

 . 

 Since 

 |Ω̃(0)| ≤ min(‖Ω‖ 1, |𝜃|−3  ‖Ω′′′‖1 ), 
 the proof of the first part of the lemma is complete if we can prove that 

‖Ω‖1 ≲ (Φ(𝑟))
𝑛−1
 Φ′(𝑟)𝑒Ψ(𝑟)                                        (15) 

and 

‖Ω′′′‖1  ≲ (Φ(𝑟))
𝑛−1

  
𝑒Ψ(𝑟)

 𝑟
3
2 √Φ′(𝑟)

 .                                   (16) 

 We first estimate  ‖Ω‖1. We write 𝐿𝑟(𝑡)  =  𝑥𝑝(−𝑔𝑟(𝑡)) and claim that conditions 

(𝐼), (𝐼𝐼), (𝐼𝐼𝐼) above hold. To see this, we observe that, by the first formula of Lemma 

(5.1.6), 𝐿𝑟 attains its maximum at 𝑡 = Φ (𝑟). Moreover, 𝑔𝑟 is a convex function and  

𝑔𝑟
′′ (𝑡)  =

1

 Φ′(Φ−1(𝑡))Φ−1(𝑡)
. 

 Lemma (5.1.3) implies that 

𝑔𝑟
′′ (𝑡) =  (1 +  𝑜(1))𝑔𝑟

′′(Φ(𝑟)) 

When |𝑡 −  Φ(𝑟)|  ≤  √𝑟[Φ′(𝑟)]1−2𝛼 . The remaining details are carried out as in the proof 

of Lemma (5.1.4). Using (9) with m = 0 and Lemma (5.1.4), we therefore get  
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‖Ω‖1  =  |Φ(𝑟)(Φ(𝑟) − 1) ··· (Φ(𝑟) − 𝑛 + 2)|
𝐿𝑟(Φ(𝑟))

 𝐼(Φ(𝑟))
  ( √2𝜋  +  𝑜(1)) [Φ′(𝑟)𝑟]

1
2  

= (1 +  𝑜(1))(Φ(𝑟))
𝑛−1
Φ′(𝑟)𝑒Ψ(𝑟), 

 which shows that (15) holds. 

 To arrive at (16), we need a pointwise estimate for Ω′′′. To simplify the writing, we set  

𝑎 =  |𝑙𝑜𝑔
Φ−1(𝑡)

 𝑟
|  𝑎𝑛𝑑    𝑏 = Φ′(Φ−1(𝑡))Φ−1(𝑡)−

1
2 . 

 Then using the Leibniz rule along with Lemmas (5.1.5) and (5.1.6), we get  

|Ω′′′(𝑡)| ≲  (𝑎3  +  𝑎2𝑏 +  𝑎𝑏2  +  𝑏3)Ω(𝑡). 
 By a straightforward calculus argument, we verify that each of the terms in this expression 

satisfies (I), (II), and III) above, again with 

                                             𝑥0  = Φ(𝑟) 𝜏 =  √𝑟[Φ
′(𝑟)]1−2𝛼 .  

We now use (9) to achieve he desired estimate for each of the terms in this  𝑎𝑚𝑏3−𝑚Ω(𝑡). 
 The previous proof also ives the second estimate when 𝜃 =  0, because then Ω̃(0)  =
 ‖Ω‖1. To prove it in eneral, we need to check that  𝑘(𝑟) ⋍  |𝑘(𝑟)𝑒𝑖𝜃 )| when |𝜃|  ≤

 𝑐[𝑟Φ′(𝑟)] −
1

2. To this nd, note that 

 Ω̃(0) =  𝑒𝑖𝜃(𝑟)∫  Ω(𝑡)𝑒𝑖𝜃(𝑡−(𝑟))𝑑𝑡
∞

−∞

, 

 which implies that 

|Ω̃(0)| ≥  ‖Ω‖1  − ∫  Ω(𝑡)|𝜃||𝑡 –  Φ(𝑟)|𝑑𝑡
∞

−∞

  . 

 The integral on the right is computed using (5.1.4)) with 𝑚 =  1, and so we get 

 |Ω̃(0)| ≥  ‖Ω‖1  ( 1 −  𝐶|𝜃|[𝑟 Φ
′(𝑟)]

1
2). 

Thus the second estimate in Lemma (5.1.7) holds for c sufficiently small.            

       We close by roving some estimates for another function that will be important later. Set 

 𝑄𝑥 (𝑟)  =
1

 2
 (Ψ(𝑟2)  + Ψ (𝑥2))  − Ψ(𝑥𝑟).                          (17)  

Lemma (5.1.8)[129]: Let α be a positive number such that 𝜂 < 𝛼 <  1/2, let 𝑥1 and 𝑥2 be 

the two points such that 𝑥1  < 𝑥 < 𝑥2 and 

|𝑥 − 𝑥1| = |𝑥 − 𝑥2| = [Φ(𝑥)]
−𝛼
, 

and set 𝑐 =  Ψ′ (0). When r → ∞, we have 

 𝑄𝑥
′′ (𝑟) =  (1 +  𝑜(1))Φ′ (𝑥2),     𝑥1  ≤  𝑟 ≤  𝑥2;                 (18) 

𝑄𝑥  (𝑟) ≥
𝑐

 4
 (𝑥 −  𝑟)2  + (

1

 4
 +  𝑜(1)) [Φ′(𝑥2)]1−2𝛼 ,   𝑟 < 𝑥1;                (19) 

𝑄𝑥 (𝑟)  ≥
𝑐

 4
 (𝑥 −  𝑟)2  + (

1

 4
 +  𝑜(1)) [Φ′(𝑥2)]1−2𝛼 ,   𝑟 > 𝑥2.              (20) 

Proof. We begin by noting that 

                                  𝑄𝑥
′  (𝑟)  =  𝑟Ψ′ (𝑟2)  −  𝑥Ψ′ (𝑥𝑟)  

and  

𝑄𝑥
′′ (𝑟) = Ψ′(𝑟2) +  2𝑟2Ψ′′(𝑟2) − 𝑥2Ψ′′(𝑥𝑟). 

 We observe that for 𝑥1  ≤  𝑟 ≤  𝑥2 Lemma (5.1.3) applies: 

 𝑄𝑥
′′ (𝑟) =  Ψ′(𝑟2) + 𝑟2Ψ′(𝑟2) − 𝑥2Ψ′′(𝑥𝑟) =  (1 +  𝑜(1))Ψ′(𝑥2), 
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 and so  have established (18). For 𝑟 < 𝑥1, we use the following estimate: 

𝑄𝑥 (𝑟) ≥
1

2
∫  
𝑥

𝑟

 Ψ′(𝑠2)(𝑠 –  𝑥)𝑑𝑠 
1

2
∫  
𝑥

𝑥−[Φ′( 𝑟2)]−𝛼 

  ∫  
𝑡

𝑥−[Φ′(𝑟2)]−𝛼
  𝑄𝑥

′′ (𝑢)𝑑𝑢𝑑𝑡 

≥
𝑐

4
 (𝑥 −  𝑟)2  + (

1

4
 +  𝑜(1)) [Φ′(𝑟2)]1−2𝛼 , 

where Lemma (5.1.3) is applied once more. Hence (20) also holds.                      

Theorem (5.1.9)[129]: Let be a logarithmic growth function, and suppose that there exists 

a real number 𝜂 <  1/2 such that (4) holds. Then we have, uniformly in 𝜉 , that 

 𝛽2(𝓏, 𝜉) =  (1 +  𝑜(1)) |𝜉|2 (|𝓏|2) + |𝓏, 𝜉 |2  (|𝓏|2)  when |𝓏| → ∞. 
Proof. Computation of the Bergman Metric We begin by recalling that 

  𝐾𝜓(𝑧, 𝑧) =  𝑘(𝑟
2), 

 

Where 

 𝑘(𝑟) = ∑ 𝑐𝑑𝑟
𝑑

∞

𝑛=0

  , 

𝑎𝑛𝑑                                                                                                                                           

 𝑐𝑑 ∶= ((𝑑 +  1) ···
𝑑 +  𝑛 −  1

(𝑛 −  1)! 𝑠𝑑+𝑛−1
 . 

 A computation shows that 

 𝛽2(𝑧, 𝜉) ∶=  |𝜉|2(
𝑘′(|𝑧|2)

 𝑘(|𝑧|2)
   +  |〈𝑧, 𝜉 〉|2 [

𝑘′′((|𝑧|2 ))

𝑘 ((|𝑧|2))
 − ( 

𝑘′(|𝑧|2)

 𝑘(|𝑧|2)
 )

2

 ]. 

 Thus Theorem (5.1.9) is a consequence of the following lemma. 

The proof of this lemma relies on the following estimates. 

 Lemma (5.1.10)[129]: Suppose that (4) holds and let the coefficients cd be as defined 

above. Then we have 

∑ 𝑐𝑑  (𝑑 − Φ (𝑟))
 
𝑟𝑑

∞

𝑑=1 

 =  𝑜 ([𝑟Φ′(𝑟)]
1
2𝑘(𝑟)),                              (21) 

 ∑ 𝑐𝑑  (𝑑 −  Φ(𝑟))
2
𝑟𝑑

∞

𝑑=1

 =  (1 +  𝑜(1))𝑟Φ′(𝑟)𝑘(𝑟)                       

 when r → ∞. 

 Proof. The proof is essentially the same as the proof for the diagonal estimates in Lemma 

(5.1.7). The only difference is that we replace the function 𝛺(𝑡) 𝑏𝑦 (𝑡 − 𝛷 (𝑟))𝛺(𝑡) 

and (𝑡 −  𝛷(𝑟))
2
Ω(𝑡), respectively. In the first case, we have a function that satisfies 

condition (II'). This means that we may use (10) to arrive at (21). To establish (4.2), we may 

apply (8) with m = 2 

 and take into account that we have the explicit factor (𝑡 − Φ(𝑟))
2
 𝑖𝑛 𝑓𝑟𝑜𝑛𝑡 𝑜𝑓 Ω(𝑡).                                                                                                                     

Lemma (5.1.11)[129]: Suppose that (4) holds. Then we have 
𝑘′(𝑟)

 𝑘(𝑟)
  (1 +  𝑜(1))𝜓′(𝑟), 

(
𝑘′(𝑟)

 𝑘(𝑟)
)

′

  =  (1 +  𝑜(1))𝜓′′(𝑟) +  𝑜(1)
𝜓′(𝑟)

 𝑟
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 when r → ∞.  

Proof. We write 

 𝑘′(𝑟) =
Φ(𝑟)

 𝑟
 (𝑘(𝑟) +  𝑂(1)) +

1

𝑟
∑𝑐𝑑  (𝑑 −  Φ(𝑟))𝑟

𝑑

∞

d=1

; 

 using Lemma (5.1.10), we obtain 

𝑘′(𝑟)

𝑘(𝑟)
 =  (1 +  𝑜(1))Ψ′(𝑟) +  𝑜 ([

Φ′(𝑟)

 𝑟
]

1
2

)  .  

The desired estimate for 𝑘′′ /𝑘 follows because, in view of emma (5.1.3), we have 

Φ(𝑟) ≥  ∫  
𝑟

  𝑟−𝑟1/2[Φ′(𝑟)]−𝛼
   Φ′(𝑡)𝑑𝑡 =  (1 +  𝑜(1))𝑟

1
2[Φ′(𝑟)]1−𝛼 

 for some 𝛼 <  1/2.  
To arrive at the second estimate, we first observe that 

𝑘′′(𝑟) =
Φ(𝑟) −  1

 𝑟
 (𝑘′(𝑟) +  𝑂(1)) +

1

𝑟
∑  𝑐𝑑𝑑(𝑑 −  Φ(𝑟))𝑟

𝑑−1

∞

𝑑=2

 

=
Φ(𝑟) −  1

 𝑟
 (𝑘′( 𝑟) +  𝑂(1)) +

Φ(𝑟)

 𝑟2
∑ 𝑐𝑑  (𝑑 −  Φ(𝑟))𝑟

𝑑

∞

𝑑=2

 

+
1

 𝑟2
∑ 

∞

𝑑=2

𝑐𝑑  (𝑑 −  Φ(𝑟))
2
𝑟𝑑  . 

  

Combining our expressions for 𝑘′ and 𝑘′′, we find that 

 𝑘′′(𝑟)𝑘(𝑟) − (𝑘′(𝑟))
2
=
𝑘(𝑟)

 𝑟2
∑  

∞

 𝑑=2 

 𝑐𝑑  (𝑑 −  Φ(𝑟))
2
𝑟𝑑   

−
1

𝑟2
[∑   𝑐𝑑  (𝑑 −  Φ(𝑟))𝑟

𝑑

∞

𝑑=2

]

2

  

−
𝑘(𝑟)𝑘′(𝑟)

 𝑟
 + Ψ′(𝑟)𝑂(𝑘(𝑟) + 𝑘′(𝑟)). 

 Using again Lemma (5.1.10) and the estimate already obtained for 𝑘′ /𝑘, we get 

(
𝑘′(𝑟)

 𝑘(𝑟)
)

′

= (1 +  𝑜(1))
Φ′(𝑟)

 𝑟
 − (1 +  𝑜(1))

Φ(𝑟)

 𝑟2
 

 from which the second estimate in Lemma (5.1.11) follows.                                     

       We finally turn to the roof hat (iii) implies (i) in Theorem (5.1.1). A different proof, 

using 𝐿2 estimates for the �̅� perator, will be given, subject to anadditional mild smoothness 

condition on. The proof gives 𝑎 ore nformative norm estimate, which will be crucial in our 

study of Schatten class ankel operators. The proof to be given below has the advantage that 

it does not require f to be holomorphic.  

Using the reproducing formula, we find that 

 𝐻𝑓̅𝑔(𝑧) = ∫  
 

ℂ𝑛
 ( 𝑓(𝑧)̅̅ ̅̅ ̅̅  −  𝑓(𝑤)̅̅ ̅̅ ̅̅ ̅ )𝐾𝜓(𝑧, 𝑤)𝑔(𝑤)𝑑𝜇𝜓(𝑤). 

 Therefore, by the definition of B(Ψ), we have 
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 |𝐻𝑓̅𝑔(𝑧)| ≤  ‖𝑓‖ 𝐵(Ψ)∫  
 

ℂ𝑛
𝜚(𝑧, 𝑤)𝐾Ψ(𝑧, 𝑤)𝑔(𝑤)𝑑𝜇Ψ(𝑤). 

 Thus it suffices to prove that the operator 𝐴 defined as  

𝐴𝑔(𝑧)  = ∫  
 

ℂ𝑛

𝜚(𝑧, 𝑤)𝐾Ψ(𝑧, 𝑤)𝑔(𝑤)𝑑𝜇Ψ(𝑤) 

 is bounded on 𝐿2(𝜇Ψ). 
We shall use a standard technique known as Schur’s test [106]. Set 

 𝐻(𝑧, 𝑤) = 𝜚( 𝑧, 𝑤)|𝐾Ψ(𝑧, 𝑤)|𝑒
−
 1
 2
 (Ψ(|𝑧|2)+(|𝑤|2))

. 
 By the Cauchy–Schwarz inequality, we obtain 

 |(𝐴𝑔)(𝑧)|2𝑒−Ψ(|𝑧|
2) ≲ ∫  

 

ℂ𝑛
𝐻(𝑧, 𝜁)𝑑𝑉 (𝜁)∫  

 

ℂ𝑛

𝐻(𝑧,𝑤)|𝑔(𝑤)|2𝑒−(|𝑤|2) 𝑑𝑉 (𝑤). 

this means that the operator 𝐴 is bounded on 𝐿2(𝜇Ψ) if  

sup
𝓏
  ∫  

 

ℂ𝑛
 𝐻(𝓏, 𝜁)𝑑𝑉 (𝜁) <  ∞.                     (22) 

We therefore to establish (22). 

      Without loss of generality, we may assume that 𝓏 =  (𝑥, 0, . . . , 0) with 𝑥 >  0. We 

begin by estimating (𝓏, 𝑤). To this end, write 𝑤 =  (𝑤1, 𝜉) with 𝜉 𝑎 vector in ℂ𝑛 −1 and 

𝑤1  =  𝑟𝑒
𝑖𝜃 when 𝑛 >  1. Set 𝑒1  =  (1, 0, . . . , 0) and consider the three curves 

𝛾1(𝑡) =  𝑥𝑒
𝑖𝑡 𝑒1, 0 ≤  𝑡 ≤  𝜃, 

 𝛾2(𝑡) =  (𝑥 +  𝑡(𝑟 −  𝑥))𝑒
𝑖𝜃 𝑒1, 0 ≤  𝑡 ≤  1, 

 𝛾3(𝑡) =  (𝑟𝑒
𝑖𝜃 , 𝑡𝜉), 0 ≤  𝑡 ≤  1, 

 which together constitute a piecewise smooth curve from 𝓏 to w. (When 𝑛 =  1, 𝛾3 does 

not appear and can be neglected.) Note that 

|〈𝛾1(𝑡), 𝛾1
′(𝑡)〉| =  |𝛾1

′(𝑡)||𝛾  1(𝑡)| =  𝑥2, 
|〈𝛾2(𝑡), 𝛾2

′(𝑡)〉| =  |𝛾2(𝑡)||𝛾2
′(𝑡)| =  (𝑥 +  𝑡(𝑟 −  𝑥))|𝑥 −  𝑟|,  

|〈𝛾3(𝑡), 𝛾3
′(𝑡)〉| =  𝑡|𝜉|2  . 

By these observations and Theorem (5.1.9), we get the following estimate: 

𝜚(𝓏,𝑤) ≲  𝑥|𝜃|[Φ′(𝑥2)]
1
2  +  [Φ′(𝑚𝑎𝑥(𝑥2, 𝑟2))]

1
2|𝑥 –  𝑟| 

 + |𝜉| [Ψ′(𝑟2 + |𝜉|2  )]
1
2   +    |𝜉|2[Ψ′′(𝑟2  +  |𝜉|2)]

1
2. 

 When estimating the last term on the right-hand side of his nequality, we will use that 

 [Ψ′(𝑦)]2  ≳ (𝑦),                                                (23) 
 which is a consequence of our assumptions (1) and (4). Indeed, assuming Ψ′′ >  0, we have 

Ψ′′(𝑦)  ⋍ Φ′(𝑦) ince Ψ′′ is a nondecreasing function. Thus (23) is equivalent to the 

following: 

 Φ(𝑡) ≳  𝑡
1
2[Φ′(𝑡)]

1
2. 

 We arrive at this estimate because 

Φ(𝑡) = Φ (0) + ∫ Φ′
𝑡

0

   (𝜏)𝑑𝜏 ≥ Φ (0) (1 +  𝑜(1))𝑡
1
2[Φ′(𝑡)]

1
2, 

 where in the second step we used Lemma (5.1.3) with 𝛼 =  1/2. For 𝜁 =  |𝜁 |𝑒𝑖𝜃 , we set 

ℎ(𝜁) =   {
Φ′(|𝜁 |), |𝜃|  ≤  𝜃0(|𝜁 |),

|𝜁 |−
3
2[Φ′( |𝜁 | )]−

1
2|𝜃|−3, |𝜃|  >  𝜃0(|𝜁 |).

 

 Using this notation and Lemma (5.1.7), we hen obtain 
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 𝐻(𝓏,𝑤) ≲  (𝑥, 𝑤)ℎ(𝑥𝑟𝑒𝑖𝜃 )[Ψ′(𝑥𝑟)]𝑛−1𝑒−
1
2 ((𝑥2) + (𝑟2 + |𝜉 |2)) − (𝑥𝑟). 

 By Fubini’s Theorem, we may compute the integral in (22) by first integrating with respect 

to he vector 𝜉 over ℂ𝑛 − 1 and then taking an area integral with respect to the omplex 

variable 𝑤1 over ℂ. Since 𝑦 Ψ′ →  (𝑟2  +  𝑦2) attains its maximum at 𝑦 =  0 nd has a 

second derivative larger than 2Ψ′ (𝑟2), we have that Ψ(𝑟2  +  𝑦2)  − Ψ(𝑟2)  ≥ Ψ′(𝑟2)𝑦2. 
Using spherical coordinates along with this fact, we find that 

∫  
 

ℂ𝑛 −1
 𝑒−(𝑟

2+|𝜉 |2 ) 𝑑𝑉𝑛−1(𝜉) ≲  𝑒
Ψ′−(𝑟2) [Ψ′(𝑟2)] –𝑛+1. 

 Similarly, again using spherical coordinates, we get 

∫  
 

ℂ𝑛−1
 Θ(𝑟, |𝜉 | )𝑒Ψ−(𝑟

2+|𝜉 |2) 𝑑𝑉𝑛−1(𝜉)  =  𝐶 ∫ Θ (𝑟, 𝑦)𝑦2𝑛−2𝑒Ψ−(𝑟
2+𝑦2)

∞

0

𝑑𝑦, 

 where 𝐶 is the surface area of the unit sphere in ℂ𝑛−1 𝑛𝑑 Θ is any suitable function of two 

variables. From the estimate for 𝜚(𝓏, 𝑤)) we see that we are interested in the following two 

choices: (1) Θ(𝑟, 𝑦)  =  𝑦[Ψ′(𝑟2  +  𝑦2)]
1

2 and (2) Θ(𝑟, 𝑦)  =  𝑦2Ψ(𝑟2  +  𝑦2). In case (1), 

we use the Cauchy–Schwarz inequality, so that we get 

 ∫ |𝜉 |[Ψ′(𝑟2  +  |𝜉 |2 )]
1
2 𝑒^(Ψ − (𝑟2 + |𝜉 |2 )𝑑𝑉𝑛−1(𝜉)

 

ℂ𝑛−1
  

≲ 𝑒−Ψ(𝑟
2)  [ ∫  𝑦4𝑛−3𝑒

−(Ψ(𝑟2+𝑦2)−Ψ(𝑟2))
𝑑𝑦

∞

0

 ]

1
2

 . 

 Estimating Ψ(𝑟2  +  𝑦2)  − Ψ(𝑟2) as above, we therefore get 

 ∫ |𝜉 |[Ψ′(𝑟2  +  |𝜉 |2)]
1
2𝑒−Ψ(𝑟

2+|𝜉 |2 ) 𝑑𝑉𝑛−1(𝜉) ≲  𝑒
−Ψ(𝑟2) [Ψ′(𝑟2)] −𝑛+1

 

ℂ𝑛−1
 . 

 In case (2), we integrate by parts and get 

∫ |𝜉 |2Ψ′ (𝑟2  +  |𝜉 |2)𝑒−Ψ(𝑟
2+|𝜉 |2 ) 𝑑𝑉𝑛−1(𝜉)

 

ℂ𝑛−1
≲ ∫  𝑦2𝑛 −1𝑒(−Ψ(𝑟2 + 𝑦2) 𝑑𝑦

∞

0

 . 

 We proceed as above and obtain 

∫ |𝜉 |2Ψ′ (𝑟2  +  |𝜉 |2)𝑒−Ψ(𝑟
2+|𝜉 |2 ) 𝑑𝑉𝑛−1(𝜉)

 

ℂ𝑛−1
≲ 𝑒−Ψ(𝑟

2) [Ψ′(𝑟2)] –𝑛+1. 

 With σ denoting Lebesgue measure on ℂ, we therefore get 

 ∫ 𝐻(𝓏, 𝑤)𝑑𝑉 (𝑤) ≲ 
 

ℂ𝑛
 ∫ 𝐺(𝑥, 𝑟, 𝜃) [

Ψ′(𝑟𝑥)

  Ψ′(𝑟2)
]

𝑛−1

 ℎ(𝑥𝑟𝑒𝑖𝜃 )𝑒−𝑄𝑥 (𝑟)𝑑𝜎(𝑟𝑒𝑖𝜃 )
 

ℂ

 , 

 Where 

𝐺(𝑥, 𝑟, 𝜃) =  𝑥|𝜃|[Φ′(𝑥2)]
1
2  +  [Φ′ (𝑚𝑎𝑥(𝑥2, 𝑟2))]

1
2|𝑥 −  𝑟| +  1 

 and 𝑄𝑥 is as efined by (17). We now resort to polar coordinates; simple calculations show 

that 

 ∫ ℎ(𝑥𝑟𝑒𝑖𝜃 )𝑑𝜃 ≲  [
Φ′(𝑥𝑟)

 𝑥𝑟
]

1

2𝜋

−𝜋
   and ∫ |𝜃|ℎ(𝑥𝑟𝑒𝑖𝜃 )𝑑𝜃 ≲

1

𝑥𝑟

𝜋

–𝜋
   

 𝑠𝑜 that 

 ∫  (𝓏, 𝑤)𝑑𝑉 (𝑤) ≲ 
 

ℂ𝑛
∫  (𝑆𝑥 (𝑟) + 𝑇𝑥 (𝑟))𝑒

−𝑄𝑥 (𝑟)𝑟𝑑𝑟,
∞

0

  

 Where 
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 𝑆𝑥 (𝑟) =  (
[Φ′ (𝑥2)]

1
2

 𝑟
 +  [

Φ′(𝑥𝑟)

 𝑥𝑟
]

1
2

) [
Ψ′(𝑟𝑥)

  Ψ′(𝑟2)
]

 𝑛−1

 

 and  

𝑇𝑥 (𝑟) =  𝜑(max(𝑥
2, 𝑟2))|𝑥 −  𝑟|  [

Φ′(𝑥𝑟)

 𝑥𝑟
]

 
1
2

 [
Ψ′(𝑟𝑥)

  Ψ′(𝑟2)
]

 𝑛−1

 . 

By Lemma (5.1.8) and a straightforward argument, we find that both 𝑆𝑥 𝑒
−𝑄𝑥 and 𝑇𝑥 𝑒

−𝑄𝑥 

satisfy conditions (𝐼), (𝐼𝐼), (𝐼𝐼𝐼) (with 𝑥 =  𝑡, 𝑄𝑥  =  𝑔𝑡 , 𝑥0  =  𝑥, and 𝜏 =  [ Φ′(𝑥)] −𝛼). 
Hence (9) applies with 𝑚 =  0 and 𝑚 =  1 for the respective integrands, so that we get 

sup
𝑥>0

  ∫  𝑆𝑥 (𝑟)𝑒
−𝑄𝑥 (𝑟)𝑟𝑑𝑟 <  ∞

∞

0

 

And   

sup
𝑥>0

   ∫ 𝑇𝑥 (𝑟)𝑒
−𝑄𝑥 (𝑟)𝑟𝑑𝑟 <  ∞

∞

0

  . 

 We may therefore conclude that (22) holds. 

       We study the relation between the spectral properties of Hankel operators and the 

asymptotic behavior of their symbols. We begin with the case of compact Hankel operators. 

       An entire function is said to be of vanishing mean oscillation with respect toΨif 

(𝑀𝑂𝑓 )(𝓏)  =  𝑜(1) as |𝓏|  →  +∞. Entire functions of vanishing mean oscillation form a 

closed subspace of 𝐵𝑀𝑂𝐴(Ψ) which we will denote by 𝑉𝑀𝑂𝐴(Ψ). In accordance with our 

preceding discussion, we define the little Bloch space 𝐵0(Ψ) as the collection of functions 

𝑓 in 𝐵(Ψ) for which 

Sup
𝜉∈ℂ𝑛{0}

 
|〈𝛻𝑓 (𝓏),𝜉〉|

 𝛽(𝓏,𝜉)
 =  𝑜(1)when |𝓏| →  +∞. 

Our proof of Theorem (5.1.14) requires the following two lemmas. 

 Lemma (5.1.12)[129]: The normalized Bergman kernels 
𝐾Ψ(·,𝓏)

√𝐾(𝓏,𝓏)
 converge weakly to 0 in 

𝐴2(Ψ) when | 𝓏 |  →  +∞. 
 Proof. Since the holomorphic polynomials are dense in 𝐴2(Ψ), it suffices to show that for 

any non-negative integer m, we have 
 |𝓏|𝑚

 √𝐾(𝓏, 𝓏)
 →  0 

 as |𝓏|  →  +∞. But this holds tribylly because 𝐾(𝓏, 𝓏) is an infinite power series in |𝓏|2 

with positive coefficients. 

 Lemma (5.1.13)[129]: Let  : ℂ𝑛  → ℂ be a function for which there exist positive 

numbers 𝑅 and 𝜀 such that 

 |𝑓 (𝓏) −  𝑓 (𝑤)| ≤  𝜀 (𝓏, 𝑤) 
 whenever |𝓏|  ≥  𝑅. Then there exists a function 𝑓0 : ℂ𝑛  → ℂ such that 𝑓 (𝓏)  =  𝑓0(𝓏) for 

|𝓏|  ≥  𝑅 and 

 |𝑓0(𝓏) − 𝑓0(𝑤)| ≤  𝜀 (𝓏, 𝑤) 
 for all points 𝓏 and w in ℂ𝑛. 

 Proof. We argue as in the proof of Lemma 5.1 in [130]. We assume without loss of 

generality that 𝑓 is real-valued and set 

 𝑓0(𝓏) ≔ inf
𝑤∈ℂ𝑛

{𝑓 (𝑤) +  𝜀𝜚 (𝓏, 𝑤)}  . 
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 Then a straightforward argument using the triangle inequality for the Bergman metric 

shows that 𝑓0 has the desired properties. 

Theorem (5.1.14)[129]: Let Ψ be a logarithmic growth function, and suppose that there 

exists a real number 𝜂 <  1/2 such that (4) holds. 𝐼𝑓 𝑓 is an entire function on ℂ𝑛, then the 

following statements are equivalent: 

(i) The function 𝑓 belongs to 𝒯 (Ψ) and the Hankel operator 𝐻𝑓 on 𝐴2(Ψ) is compact; 

(ii) The function 𝑓 belongs to 𝑉𝑀𝑂𝐴(Ψ); 
(iii) The function 𝑓 belongs to 𝐵0(Ψ). 
Proof. We first prove the implication (i) ⇒ (ii). Assuming that 𝐻𝑓  is compact, we obtain, 

using Lemma (5.1.12), that 

 [(𝑀𝑂𝑓 )(𝓏)]2  =
‖𝐻𝑓𝐾Ψ(·, 𝓏)‖

2

 𝐾(𝓏, 𝓏)
 →  0 

 when |𝑧|  →  +∞. This gives the desired conclusion. 

 We next note that the implication (ii) ⇒ (iii) is immediate from (6). Finally, to prove that 

(iii) implies (i), in view of Theorem (5.1.1), we only need to prove that the bounded Hankel 

operator 𝐻𝑓 is compact whenever (iii) is satisfied. To see that this holds, we choose an 

arbitrary positive ε. Assuming (iii), we may find a positive 𝑅0 such that 

|〈(𝛻𝑓 )(𝓏), 𝜉〉| ≤
𝜀

2
 𝛽(𝓏, 𝜉) 

 whenever |𝓏|  ≥  𝑅0 and 𝜉 is in ℂ𝑛 \ {0}. Then for some 𝑅 > 𝑅0 we have 

 |𝑓 (𝓏) −  𝑓 (𝑤)| ≤  𝜀𝜚 (𝓏, 𝑤) 
 as long as |𝓏|  ≥  𝑅. Indeed, this follows because 𝛽(𝓏, 𝜉)/|𝜉 | → ∞ when |𝓏| → ∞ so that, 

whenever |z| is sufficiently large, (z,w) is “essentially” determined by the contribution to 

the integral in (2) from the points that lie outside the ball of radius 𝑅0 centered at 0. Now 

let 𝑓0 be the function obtained from Lemma (5.1.13). We write 

 𝐻𝑓  =  𝐻𝑓−𝑓0   +  𝐻𝑓0 

 and observe that 𝑓̅  −  𝑓0̅ is a compactly supported continuous function on ℂ𝑛. Hence 

𝐻𝑓̅−𝑓̅0 is compact. On the other hand, if g is a holomorphic polynomial, then 

 𝐻𝑓0̅ 𝑔(𝑧) ≲  ∫  
 

ℂ𝑛

 |𝑓0̅(𝑤) − 𝑓0̅(𝑧)| |𝐾Ψ(𝑧, 𝑤)𝑔(𝑤)|𝑑𝜇Ψ(𝑤) 

 ≤  𝜀 ∫  
 

ℂ𝑛

 𝛽(𝑧, 𝜉)|𝐾Ψ(𝑧, 𝑤)𝑔(𝑤)|𝑑𝜇Ψ(𝑤)  

so that, by the proof of Theorem (5.1.1), we see that ‖𝐻𝑓0̅‖ ≲  𝜀. The implication (iii) ⇒ (i) 

follows because ε can be chosen arbitrarily small.                              

       In what follows, we will need the analogue of Lemma (5.1.3) for the function when 

𝑛 >  1. We will therefore assumΨe that 

 Ψ′′(𝑡)  =  𝑂(𝑡−
1
2  [Ψ′(𝑡)]1+𝜂) 𝑤ℎ𝑒𝑛 𝑡 →  ∞                                (24)  

for some 𝜂 <  1/2 whenever 𝑛 >  1. This is again a mild smoothness condition on 𝛹 .  
Lemma (5.1.15)[129]: Assume that (24) holds for some 𝜂 <  1/2. Then, for any fixed 𝛼 >
𝜂, we have 

sup

|𝑡|≤𝑡
1
2[Ψ′(𝑡)]−𝛼

 Ψ′(𝑡 +  𝜏)  =  (1 +  𝑜(1))Ψ′ (𝑡)  

when 𝑡 →  ∞.  
We are interested in describing geometrically the Bergman ball  



184 

𝐵(𝑧, 𝑎) =  {𝑤 ∶  𝜚(𝑧, 𝑤) <  𝑎}. 
 Let 𝑃𝑧 denote the orthogonal projection in ℂ𝑛 onto the complex line {𝜁𝑧 ∶  𝜁 ∈  ℂ}, where 

𝑧 is an arbitrary point in ℂ𝑛 \ {0}. It will be convenient to let 𝑃0 denote the identity map. 

We use the notation  

𝐷(𝑧, 𝑎)  =  { 𝑤 ∶ |𝑧 − 𝑃𝑧𝑤|  ≤  𝑎[Φ
′(|𝑧|2)]−

1
2, |𝑤 − 𝑃𝑧𝑤|  ≤  𝑎[Ψ

′(|𝑧|2)]−
1
2}  . 

 Then we have the following result. 

 Lemma (5.1.16)[129]: Suppose that there exists a real number η < 1/2 such that (4) holds 

and that (24) holds if 𝑛 >  1. Then, for every positive number a, there exist two positive 

numbers m and M such that 

 𝐷(𝑧,𝑚) ⊂  𝐵(𝑧, 𝑎) ⊂  𝐷(𝑧,𝑀) 
 𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑧 𝑖𝑛 ℂ𝑛. 
Proof. It suffices to prove that 

𝜚(𝑧, 𝑤)  ≃  |𝑧 − 𝑃𝑧𝑤|[[Φ
′(|𝑧|2)]

1
2  +  |𝑤 − 𝑃𝓏𝑤|[Ψ

′(|𝓏|2)]
1
2                (25) 

for 𝑤 in 𝐷(𝓏,𝑀) for any fixed positive number M. (The latter term vanishes and can be 

disregarded when 𝑛 =  1. ) To begin with, we note that heorem B gives that 

         𝜚(𝑧, 𝑤) ≃ inf
𝛾
∫  ( |𝛾′(𝑡)|[Ψ′(|𝛾(𝑡)|2)]

1

2 + |〈𝛾(𝑡), 𝛾 ′ 𝑡)〉|[Ψ′′(|𝛾(𝑡)|2)]
1

2)𝑑𝑡
1

0
, (26) 

where the infimum is taken over all piecewise smooth curves 𝛾 ∶  [0, 1]  →  ℂ𝑛 such that 

𝛾(0)  = 𝓏 and 𝛾(1)  =  𝑤. If we choose γ to be the line segment from 𝓏 𝑡𝑜 𝑃𝑧𝑤 followed 

by the line segment from 𝑃𝑧𝑤 to 𝑤 and use that Ψ′′(𝑥)  =  𝑜([Ψ′(𝑥)]
1

2) on the latter part of 

γ , we get from (26) that 

𝜚(𝓏,𝑤) ≲  |𝓏 − 𝑃𝓏𝑤|[Φ
′(|𝓏|2)]

1
2  + |𝑃𝓏𝑤 − 𝑤|[Ψ

′(|𝓏|2)]
1
2  + |𝑃𝓏𝑤 −𝑤|

2𝑜(Ψ′ (|𝓏|2)). 
this gives the desired bound from above because, by assumption, |𝑃𝑧𝑤 −  𝑤|  ≤

 𝑀[Ψ′|𝑧|2  )]−
1

2.  
To prove the bound from below, we argue in the following way. Let ℓ(𝛾) denote the 

Euclidean length of γ . Set  

𝜚𝛾
∗  (𝑧, 𝑤) =  ∫   |𝛾  (𝑡) 

′ |[Ψ′(|𝛾(𝑡)|2)]
1
2 + | 〈 𝛾(𝑡), 𝛾  (𝑡) 

′ 〉|[Ψ′′(|𝛾(𝑡)|2)]
1
2  𝑑𝑡 

1

0

 

and 𝜚∗(𝓏,𝑤) = 𝑖𝑛𝑓𝑦 𝜚𝛾
∗  (𝓏, 𝑤).We observe hat (26)) implies that 

𝜚(𝓏, 𝑤) ≳ inf
𝑡
 [Ψ′(|𝛾(𝑡)|2)]

1
2ℓ(𝛾)                                         (27) 

 whenever, say, 𝜚𝛾
∗  (𝓏, 𝑤) ≤ 2𝜚 ∗ (𝓏,𝑤). Since we know by the first part of the proof 

that 𝜚(𝓏, 𝑤) ≲ 1, this implies that 

ℓ(𝛾) ≲ inf
𝑡
 [Ψ′(|𝛾(𝑡)|2)]−

1
2.  

By Lemma (5.1.15), we therefore have 

 ℓ(𝛾) ≲  [Ψ′(|𝑧|2)]
1
2, 

 which, in view of (27), in turn gives 

 ℓ(𝛾)  ≲ [Ψ′(|𝑧|2)]−
1
2 𝜚(𝓏, 𝑤).                          (28)  

Now et γ be any curve such that 𝜚𝛾
∗  (𝓏, 𝑤)  ≤  2 𝜚∗(𝓏,𝑤). We then get from (26) that  

𝜚(𝓏,𝑤) ≳  |𝓏 −  𝑤|[Ψ′(|𝑧|2)]
1
2  + ∫  |〈𝛾(𝑡), 𝛾  (𝑡) 

′ 〉|[Ψ′′( |𝛾(𝑡)2)]|
1
2𝑑𝑡.

1

0

       (29) 
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Set 𝛾0(𝑡)  =  𝑃𝑧(𝛾(𝑡)) and 𝛾1(𝑡)  =  𝛾(𝑡)  − 𝛾0(𝑡). Note that 𝛾1(0)  =  0 and that ℓ(𝛾1)  ≤
 ℓ(𝛾). By orthogonality and the triangle inequality, we get 

∫ |〈𝛾(𝑡), 𝛾  (𝑡) 
′ 〉|[Ψ′′(|𝛾(𝑡)|2)]

1
2𝑑𝑡 ≥

1

0

 ∫   |𝛾0(𝑡)||𝛾0
′(𝑡)|[Ψ′′(|𝛾0(𝑡)|

2)]
1
2𝑑𝑡

1

0

  

−  ∫   |〈𝛾1(𝑡), 𝛾1
′(𝑡)〉|[\Ψ′′(|𝛾(𝑡)|2)]

1
2𝑑𝑡.

1

0

 

Let 𝑡1  be the smallest t such that |𝓏 − 𝛾0(𝑡)| = |𝓏 − 𝑃𝑧𝑤|. Using that Ψ′′(𝑥)  =
 𝑜([Ψ′(𝑥)]2) and (28), we then get 

∫  |〈𝛾(𝑡), 𝛾′(𝑡)〉|[Ψ′′(|𝛾(𝑡)|2)]
1
2𝑑𝑡

1

0

   

≥ (1 +  𝑜(1))∫   |𝓏||𝛾0
′(𝑡)|[Ψ′′(|𝑧|2)]

1
2𝑑𝑡 − [ℓ(𝛾)]2𝑜(Ψ′(|𝑧|2))

𝑡1

0

  

≳ |𝓏 −  𝑃𝓏𝑤||𝓏|[Ψ
′′(|𝓏|2)]

1
2  −  𝑜(1)𝜚(𝓏, 𝑤) 

when |𝓏| → ∞. Plugging this estimate into (29), we obtain the desired bound from below.                                                                                                       

  It follows from the previous lemma that the Euclidean volume of 𝐵(𝓏, 𝑟) can be estimated 

as 

 |𝐵(𝓏, 𝑟)| ≃ [Φ′(|𝓏|2)]−
1
2[Ψ′(|𝓏|2)]

𝑛−1
2                                  (30) 

 

when 𝑟 is a fixed positive number. We will now use this fact to establish two covering 

lemmas. 

Lemma (5.1.17)[129]: Suppose that there exists a real number 𝜂 <
1

2
 such that (4) holds 

and that (24) holds if 𝑛 >  1. Let R be a positive number and m a positive integer. Then 

there exists a positive integer 𝑁 such that every Bergman ball 𝐵(𝑎, 𝑟)with 𝑟 ≤  𝑅 can be 

covered by N Bergman balls 𝐵 (𝑎𝑘,
𝑟

𝑚
 ). 

Proof. Fix a ball 𝐵(𝑎, 𝑟). Choose 𝑎0 ∶=  𝑎 and let 𝑎1 be a point in ℂ𝑛 such that 𝜚(𝑎, 𝑎1)  =
 𝑟/𝑚. Now iterate so that in the 𝑘 − 𝑡ℎ step 𝑎𝑘 is chosen as a point in the complement of 

⋃  𝑘−1
𝑗=1  𝐵(𝑎𝑗 , 𝑟/𝑚) minimizing the distance from 𝑎, and let 𝐽 be the smallest 𝑘 such 

that𝜚 (𝑎, 𝑎𝑘)  ≥  𝑟. Then the balls 𝐵(𝑎0, 𝑟/𝑚), . . . , 𝐵(𝑎𝐽−1, 𝑟/𝑚) constitute a covering of 

𝐵(𝑎, 𝑟). By the triangle inequality, we see that the sets 𝐵(𝑎𝑗  , 𝑟/(2𝑚)) are mutually 

disjoint, and they are all contained in 𝐵(𝑎, 𝑟 +  𝑟/(2𝑚)) when  𝑗 < 𝐽 .Hence 

∑(𝑎𝑗  , 𝑟/(2𝑚)) |𝐵(𝑎, 𝑟 +  𝑟/(2𝑚))|

𝐽−1

𝑗=0

. 

On the other hand, by (30), it follows that there is a positive number 𝐶 depending on 𝑅 and 

𝑚 but not on a such that 
1

𝐶
 |𝐵 (𝑎, 𝑟 +

𝑟

2𝑚
)| ≤  |𝐵 (𝑎𝑗  ,

𝑟

2𝑚
)| 

 for every 𝑗 . We observe that it suffices to take 𝑁 to be the smallest positive integer larger 

than or equal to 𝐶. 
  Inspired by the construction in the previous lemma, we introduce the following notion. 

We say that a sequence of distinct points (𝑎𝑘) in ℂ𝑛 is a -lattice if there exists a positive 

number 𝑟 such that the balls 𝐵(𝑎𝑘, 𝑟) constitute a covering of ℂ𝑛 and the balls 𝐵 (𝑎𝑘,
𝑟

2
) are 
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mutually disjoint. Replacing a by, say, 0, and 
𝑟

𝑚
by 𝑟 in the previous proof, we have a 

straightforward way of constructing a -lattice. Note that since the balls 𝐵 (𝑎𝑘 ,
𝑟

2
) are 

mutually disjoint, we must have (𝑎𝑘, 𝑎𝑗  ) ≥  𝑟 when 𝑘 ≠  𝑗 . The number 𝑟, which may fail 

to be unique, is called a covering radius for the -lattice (𝑎𝑘). The supremum of all the 

covering radii is again a covering radius; it will be called the maximal covering radius for 

(𝑎𝑘). 

 Lemma (5.1.18)[129]: Suppose that there exists a real number 𝜂 <
1

2
 such that (4) holds 

and that (24) holds 𝑖𝑓 𝑛 >  1, and let 𝑅 be a positive number. Then there exists a positive 

integer 𝑁 such that if (𝑎𝑘) is a -lattice with maximal covering radius 𝑟 ≤
𝑅

2
, then every 

point 𝓏 in ℂ𝑛 belongs to at most 𝑁 of the sets 𝐵(𝑎𝑘, 2𝑟). 
 Proof. Let 𝑁 be the integer obtained from Lemma (5.1.17) for the given 𝑅 when 𝑚 =  4 

and assume that 𝓏 ∈  ⋂ 𝐵(𝑎𝑘𝑗  , 2𝑟)
𝑁+1 
𝑗=1 . Then 𝑎𝑘𝑗 is in 𝐵(𝓏, 2𝑟) for every 𝑗 =  1, . . . , 𝑁 +

 1. If the sets 𝐵(𝓏1  , 𝑟/2), . . . , 𝐵(𝑧𝑁 , 𝑟/2) constitute a covering of 𝐵(𝓏, 2𝑟), the existence 

of which is guaranteed by Lemma (5.1.17), then at least one of the sets 𝐵(𝑧𝑘, 𝑟/2) must 

contain two of the points 𝑎𝑘𝑗  , 𝑗 =  1, . . . , 𝑁 +  1. On the other hand, by the triangle 

inequality, we have reached a contradiction because the minimal distance between any two 

points in the sequence (𝑎𝑘) cannot be smaller than r. 

       For a nonnegative Borel measure ν on ℂ𝑛, we set 

𝑑𝜈Ψ(𝓏)  =  𝑒
−Ψ(|𝓏|2) 𝑑𝜈(𝓏). 

 Such a measure 𝜈 is called a Carleson measure for 𝐴2(Ψ) if there is a positive constant 𝐶 

such that 

∫  |𝑓 (𝓏 )|2𝑑𝜈Ψ(𝓏) ≤  𝐶 
 

ℂ𝑛
∫  |𝑓 (𝓏)|2𝑑𝜇Ψ(𝓏)
 

ℂ𝑛
 

 for every function 𝑓 in 𝐴2(Ψ). Thus 𝜈 is a Carleson measure for 𝐴2(Ψ) if and only if the 

embedding 𝐸𝜈 of 𝐴2(Ψ)into the space 𝐿2(𝜈Ψ) is bounded. 

Lemma (5.1.19)[129]: Suppose that there exists a real number 𝜂 <  1/2 such that (4) 
holds and that (24) holds if 𝑛 >  1. Then there exists a positive number 𝑟0 such that 

|𝐾Ψ(𝓏, 𝑤)|
2  ⋍  𝐾(𝓏, 𝓏)𝐾(𝑤,𝑤) 

 holds for 𝓏 and w whenever (𝓏,𝑤)  ≤  𝑟0. 
 Proof. The lemma follows from Lemma (5.1.7) along with Lemma (5.1.16). 

 Lemma (5.1.20)[129]: Suppose that there exists a real number 𝜂 <  1/2 such that (4) 

holds and that (24) holds if 𝑛 >  1, and let 𝑟0 be the constant from Lemma (5.1.19). Then 

there is a constant 𝐶 such that 

|𝑓 (𝓏)|2𝑒−Ψ(|𝓏|
2)  ≤  

𝐶

|𝐵(𝓏, 𝑟)|
    ∫ |𝑓 (𝑤)|2𝑑𝜇Ψ(𝑤)

 

𝐵(𝓏,𝑟)

 

 𝑓𝑜𝑟 every entire 𝑓unction 𝑓 on ℂ𝑛 and every 𝓏 in ℂ𝑛. 
 Proof. By Lemma (5.1.19), the holomorphic function 𝑤 →  𝐾(𝓏, 𝑤) does not vanish at 

any point in 𝐵(𝓏, 𝑟). Thus the function 𝑤 →  |𝑓 (𝑤)|2|𝐾Ψ(𝓏,𝑤)|
−2 is subharmonic in 

𝐵(𝓏, 𝑟). Choosing m as in Lemma (5.1.16), we therefore get 

 |𝑓 (𝓏)|2|𝐾(𝓏, 𝓏)|−2   ≲
1

 |𝐷(𝓏,𝑚)|
 ∫  |𝑓 (𝑤)|2|𝐾Ψ(𝓏,𝑤)|

 −2𝑑𝑉 (𝑤) 
 

𝐷(𝓏,𝑚)

 

≲
1

 |𝐵(𝓏, 𝑟)|
 ∫ |𝑓 (𝑤)|2|𝐾Ψ(𝓏, 𝑤)|

−2𝑑𝑉 (𝑤)
 

𝐵(𝓏,𝑟)

 . 
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Applying Lemma (5.1.19) to the integrand to the left and then Lemma (5.1.7) to each side, 

we arrive at the desired estimate. 

  Note that, by (30), the lemma is valid for all positive 𝑟, with the additional proviso that 𝐶 

depends on 𝑟. 

Theorem (5.1.21)[129]: Let Ψ be 𝑎 logarithmic growth function, and suppose that there 

exists 𝑎 real number 𝜂 <  1/2 such that (4) holds and that (24) holds if 𝑛 >  1. If ν is a 

nonnegative Borel measure on ℂ𝑛, then the following statements are equivalent: 

 (i) 𝜈 is a Carleson measure for 𝐴2(Ψ); 
 (ii) There is a constant 𝐶 >  0 such that 

 ∫
|𝐾Ψ(𝑤, 𝓏)|

2

 𝐾(𝓏, 𝓏)
 𝑑𝜈Ψ(𝑤) ≤  𝐶

 

ℂ𝑛
 

 for every z in ℂ𝑛; 
 (iii) For every positive number 𝑟, there is a positive number 𝐶 such that 

𝜈(𝐵(𝓏, 𝑟)) ≤  𝐶|𝐵(𝓏, 𝑟)| 
 for every 𝓏 in ℂ𝑛; 
 (iv) There exist 𝑎Ψ -lattice (𝑎𝑘) and a positive number 𝐶 such that 

𝜈(𝐵(𝑎𝑘, 𝑟)) ≤  𝐶|𝐵(𝑎𝑘, 𝑟)| 
 for every point 𝑘, where 𝑟 is the maximal covering radius for (𝑎𝑘). We prepare for the 

proof of Theorem (5.1.21) by establishing the following two lemmas. 

Proof. We begin by noting that the implication (i) ⇒ (ii) is tribyl because it is just the 

statement that the Carleson measure condition holds for the functions 𝐾(·, 𝓏). To prove that 

(ii) implies (iii), we assume that (ii) holds and consider a ball 𝐵(𝓏, 𝑟) where r is a fixed 

positive number. Then, by Lemma (5.1.19) and (30), we have 

1

 |𝐵(𝓏, 𝑟)|
 ≲
|𝐾Ψ(𝓏, 𝑤)|

2

 𝐾Ψ(𝓏, 𝓏)
 𝑒−Ψ(|𝑤|

2) 

  when (𝓏, 𝑤)  ≤  𝑟0, and therefore we obtain 

𝜈(𝐵(𝓏, 𝑟))

|𝐵(𝓏, 𝑟)|
≲  ∫

|𝐾Ψ(𝓏,𝑤)|
2

 𝐾(𝓏, 𝓏)
 𝑒−Ψ(|𝑤|

2) 𝑑𝜈(𝑤) ≤  𝐶
 

ℂ𝑛
. 

 The implication (iii) ⇒ (iv) is tribyl (modulo the existence of Ψ-lattices), and we are 

therefore done if we can prove that (iv) implies (i). To this end, assume that (iv) holds, and 

let (𝑎𝑘) be aΨ-lattice with maximal covering radius 𝑟. 𝐵𝑦 Lemma (5.1.20), we see that 

sup
𝓏∈𝐵(𝑎𝑘 ,𝑟)

|𝑓 (𝓏)|2𝑒−Ψ(|𝓏|
2) ≲

1

 |𝐵(𝑎𝑘, 2𝑟)|
   ∫  |𝑓 (𝑤)|2𝑑𝜇Ψ(𝓏)

 

𝐵(𝑎𝑘 ,2𝑟)

 

 for every 𝑘. We therefore get 

∫  |𝑓 (𝓏)|2𝑑𝜈Ψ(𝓏) ≲
 

ℂ𝑛
 ∑  

𝑘

 ∫  |𝑓 (𝑤)|2𝑑𝜇Ψ(𝑤) ≲
 

𝐵(𝑎𝑘 ,2𝑟)

 ∫  |𝑓 (𝑤)|2𝑑𝜇Ψ(𝑤)
 

ℂ𝑛
, 

 where the latter inequality holds by Lemma (5.1.18). 

 For 𝜈 a nonnegative Borel measure on ℂ𝑛, we define the Toeplitz operator 𝑇𝜈 on 𝐴2(Ψ) in 

the following way: 

(𝑇𝜈𝑓 )(𝓏):=  ∫ 𝑓 (𝑤)𝐾Ψ(𝓏, 𝑤)𝑒
−Ψ(|𝑤|2) 𝑑𝜈(𝑤)

 

ℂ𝑛
 . 

 A computation shows that 𝐸𝜈
∗𝐸𝜈  =  𝑇𝜈 . Thus Theorem (5.1.21) characterizes bounded 

Toeplitz operators. Compact Toeplitz operators can likewise be characterized by socalled 

vanishing Carleson measures; an obvious and straightforward modification of Theorem 
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(5.1.21) gives a description of such measures. Toeplitz operators belonging to the Schatten 

classes 𝑆𝑝 are characterized by the following theorem. 

Lemma (5.1.22)[129]: Suppose that (𝑒𝑗  ) is an orthonormal basis for 𝐴2(Ψ) and that (𝑎𝑗  ) 

is 𝑎 Ψ -lattice. Then the operator 𝐽 on 𝐴2(Ψ) defined by 

 𝐽𝑒𝑗  (𝓏):=
𝐾Ψ(𝓏, 𝑎𝑗  )

 √𝐾Ψ(𝑎𝑗  , 𝑎𝑗  )

 

 is bounded. 

 Proof. For two arbitrary functions 𝑓 =  ∑ 𝑐𝑗 𝑒𝑗 𝑗   and g in 𝐴2(Ψ), the reproducing formula 

and the Cauchy–Schwarz inequality give 

 |〈𝐽𝑓, 𝑔〉|2  = || ∑𝐶𝑗

 

𝑗

 
𝑔(𝑎𝑗  )

 √𝐾Ψ(𝑎𝑗  , 𝑎𝑗  )

||

2

 ≤ ( ∑|𝑐𝑗 |2
 

𝑗

)  ∑
|𝑔(𝑎𝑘)|

2

 𝐾Ψ(𝑎𝑘, 𝑎𝑘)
 

 

𝑘

 . 

 If we set 

 𝜈 ∶=  ∑
𝑒
Ψ(|𝑎𝑗 |

2
)

 𝐾Ψ(𝑎𝑗  , 𝑎𝑗  )
 𝛿𝑎𝑗  

 

𝑘

 , 

 then we may write this estimate as 

 |𝐽𝑓, 𝑔|2    ≤  ‖𝑓 ‖𝐴2(Ψ)
2 ∫  ℂ𝑛 |𝑔(𝓏)|2𝑑𝜈Ψ(𝓏)

 

 ℂ𝑛
. 

 By Theorem (5.1.21), we see that ν is a Carleson measure, which implies that 𝐽 is a bounded 

operator on 𝐴2(Ψ).  
Lemma (5.1.23)[129]: Suppose that T is a positive operator on 𝐴2(Ψ). Then the trace of T 

can be computed as 

𝑇𝑟(𝑇 ) =  ∫  𝑇 ̃(𝓏)𝐾Ψ  (𝑧, 𝑧)𝑑𝜇(𝓏)
 

ℂ𝑛
. 

Proof. We write 𝐾Ψ(𝓏,𝑤) =  ∑ 𝑒𝑘(𝓏)𝑒𝑘(𝑤)̅̅ ̅̅ ̅̅ ̅̅∞
𝑘=0   , where (𝑒𝑘) is an orthonormal basis for 

𝐴2(Ψ). The lemma is then proved by means of the following computation:  

𝑇𝑟(𝑇 )∑  〈𝑇𝑓𝑘, 𝑓𝑘〉𝐴
2(Ψ) = ℂ𝑛 𝑇 𝐾Ψ(·, 𝓏), 𝐾Ψ(·, 𝓏)𝐴

2(Ψ)𝑑𝜇Ψ(𝓏)

∞

𝑘=0

 . 

Theorem (5.1.24)[129]: Let Ψ be a logarithmic growth function, and suppose that there 

exists a real number 𝜂 <  1/2 such that (4) holds and that (24) holds if 𝑛 >  1. 𝐼𝑓 𝜈 is a 

nonnegative Borel measure on ℂ𝑛 and 𝑝 ≥  1, then the following statements are equivalent:  

    (i) The Toeplitz operator 𝑇𝜈 on 𝐴2(Ψ) belongs to the Schatten class 𝑆𝑝 ; 

    (ii) There exists 𝑎 Ψ -lattice (𝑎𝑘) such that 

 ∑  (
𝜈(𝐵(𝑎𝑘, 𝑟))

|𝐵(𝑎𝑘 , 𝑟)|
)

𝑝

 <  +∞

∞

𝑘=1

, 

 where 𝑟 is the maximal covering radius for (𝑎𝑘). 
Proof. We begin by assuming that 𝑇𝜈 is in 𝑆𝑝. Pick aΨ-lattice (𝑎𝑗  ) and let 𝑟 be its maximal 

covering radius. By (30) and Lemma (5.1.19), we have 

 ∑(
𝜈(𝐵(𝑎𝑘, 𝑟))

 |𝐵(𝑎𝑘 , 𝑟)|
)

𝑝 

𝑘

 ⋍  ∑  

 

𝑘

(∫  𝐾Ψ(𝑤, 𝑤)𝑑𝜈Ψ(𝑤)
 

𝐵(𝑎𝑘 ,𝑟)

)

𝑝
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⋍ ∑ 

 

𝑘

(∫
|𝐾Ψ(𝑎𝑘, 𝑤)|

2

 𝐾Ψ(𝑎𝑘, 𝑎𝑘)
 𝑑𝜈(𝑤)

 

𝐵(𝑎𝑘 ,𝑟)

)

𝑝

 . 

 By Lemma (5.1.18) and our assumption on 𝜈, this gives 

 ∑(
𝜈(𝐵(𝑎𝑘, 𝑟))

 |𝐵(𝑎𝑘 , 𝑟)|
 )

 

𝑘

𝑝

 ≲ ∑ 

 

𝑘

  (∫
|𝐾Ψ(𝑎𝑘, 𝑤)|

2

 𝐾Ψ(𝑎𝑘, 𝑎𝑘)
 𝑑𝜇Ψ(𝑤)

 

ℂ𝑛
)

𝑝

 . 

 If we construct 𝐽 as in Lemma (5.1.22), then the right-hand side equals ∑  |〈𝐽 ∗ 
𝑘

𝑇𝜈𝐽𝑒𝑘, 𝑒𝑘〉|
𝑝 . Since 𝐽 is a bounded operator, 𝐽∗𝑇𝜈𝐽 also belongs to 𝑆𝑝, and so the latter sum 

converges. We conclude that (i) implies (ii). We will use an interpolation argument to prove 

that (ii) implies (i). We already know from Theorem (5.1.21) that 𝑇𝜈 is in the Schatten class 

𝑆∞ whenever 𝜈(𝐵(𝑎𝑘, 𝑟))  ≤  𝐶|𝐵(𝑎𝑘, 𝑟)| for some positive constant 𝐶. Suppose now that 

 ∑
𝜈(𝐵(𝑎𝑘, 𝑟))

 |𝐵(𝑎𝑘, 𝑟)|
 <  +∞

 

𝑘

, 

 and let (𝑒𝑗 ) be an orthonormal basis for 𝐴2(Ψ). By the reproducing formula, we have 

〈𝑇𝜈 𝑒𝑗 , 𝑒𝑗  〉  = ∫ |𝑒𝑗  (𝑤)|
2
𝑑𝜈Ψ(𝑤)

 

ℂ𝑛 

, 

 which implies that 

 ∑  |〈𝑇𝜈 𝑒𝑗  , 𝑒𝑗  〉| =

 

𝑗

 ∫  𝐾Ψ(𝑤, 𝑤)𝑑𝜈Ψ(𝑤) ≤
 

ℂ𝑛
 ∑  

 

𝑘

 ∫  𝐾(𝑤,𝑤)𝑑𝜈Ψ(𝑤)
 

𝐵(𝑎𝑘 ,𝑟)

. 

 Again using Lemma (5.1.7), we then get 

 ∑  |〈𝑇𝜈 𝑒𝑗  , 𝑒𝑗  〉| ≲ 

 

𝑗

∑
𝜈(𝐵(𝑎𝑘 , 𝑟))

 |𝐵(𝑎𝑘, 𝑟)|
 <  +∞

 

𝑘

, 

 which means that 𝑇𝜈 belongs to 𝑆1. By interpolation, we conclude that (ii) implies (i).  

  We remark that the theorems proved generalize results for the classical Fock space 

when 𝑛 =  1 obtained recently in [139]. It may be noted that Theorem (5.1.21) above could 

be elaborated to include two additional conditions for membership in 𝑆𝑝, in accordance 

with Theorem 4.4 in [139]. The proof would be essentially the same as the proof of the 

latter theorem. Note that [139] also treats Schatten class membership of Toeplitz operators 

for 𝑝 <  1. 
  We suggest two possible definitions of Besov spaces, in accordance with our 

respective definitions of 𝐵𝑀𝑂𝐴(Ψ) and 𝐵(Ψ). We let 𝐵𝑚
𝑝
(Ψ) denote the set of entire 

functions 𝑓 such that 

 ∫  [𝑀𝑂𝑓 (𝓏)]𝑝𝐾Ψ(𝓏, 𝓏)𝑑𝜇Ψ(𝓏) <  ∞
 

ℂ𝑛
; 

 for a function h : ℂ𝑛  → ℂ𝑛𝑏, we set 

|ℎ(𝓏)|𝛽  = sup
 𝜉∈ℂ𝑛\{0}

 
|〈ℎ(𝓏), 𝜉〉|

 𝛽(𝓏, 𝜉)
 , 

 and we let 𝐵𝑑
𝑝
 (Ψ) be the set of entire functions 𝑓 for which 

 ∫  |𝛻𝑓 (𝓏)|𝛽
𝑝
𝐾Ψ(𝓏, 𝓏)𝑑𝜇Ψ(𝓏) <  ∞

 

ℂ𝑛
. 

 These definitions are in line with those of K. Zhu for Hankel operators on the Bergman 

space of the unit ball in ℂ𝑛 [144]. 
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 It is immediate from (6) that 𝐵𝑚
𝑝
(Ψ)  ⊂  𝐵𝑑

𝑝
 (Ψ). The basic question is whether these 

spaces coincide and in fact characterize Schatten class Hankel operators with anti-

holomorphic symbols. The following theorem gives an affirmative answer to this question. 

 Theorem (5.1.25)[129]: Let Ψ be a logarithmic growth function, and suppose that there 

exists a real number 𝜂 <  1/2 such that (4) holds and that (24) holds if 𝑛 >  1. If f is an 

entire function on ℂ𝑛 and 𝑝 ≥  2, then the following statements are equivalent: 

 (i) The function 𝑓 belongs to 𝒯 (Ψ) and the Hankel operator 𝐻𝑓 𝑜𝑛 𝐴
2(Ψ) is in  

the Schatten class 𝑆𝑝;  

 (ii) The function f belongs to 𝐵𝑚
𝑝
(Ψ); 

 (iii) The function 𝑓 belongs to 𝐵𝑑
𝑝
 (Ψ). 

 Proof. We have already observed that the implication (ii) ⇒ (iii) is an immediate 

consequence of (6). The implication (i) ⇒ (ii) relies on the following general Hilbert space 

argument. If (i) holds, then the operator [𝐻
𝑓
∗ 𝐻𝑓]

𝑝

2
  is in the trace class 𝑆1. Applying Lemma 

(5.1.23) and using the spectral Theorem (5.1.1)long with Hölder’s inequality, we obtain  

𝑇𝑟 ( [𝐻
𝑓
∗ 𝐻𝑓]

𝑝
2
)    =  ∫   〈[𝐻

𝑓
∗𝐻𝑓]

𝑝
2
  𝐾(·, 𝓏), 𝐾Ψ(·, 𝓏)〉 𝑑𝜇Ψ(𝓏)

 

ℂ𝑛
 

≳ ∫ [
‖𝐻𝑓𝐾Ψ(·, 𝓏)‖

2

  𝐾Ψ(𝓏, 𝓏)
]

𝑝
2

 𝐾Ψ(𝓏, 𝓏)𝑑𝜇Ψ(𝓏)
 

ℂ𝑛
. 

 Recalling the computation made in (5), we arrive at (ii). 

       Our proof of the implication (iii) ⇒ (i) will use a version of L. Hörmander’s 𝐿2 

estimates for the 𝜕 operator. To this end, write △Ψ (𝓏)  =  (|𝓏|
2) and observe that 

𝛼2(𝓏, 𝜉) ≔ ∑
𝜕2 △Ψ (𝓏)

 𝜕𝓏𝑗  𝜕𝓏𝑘
 𝜉𝑗  𝜉𝑘  =  |𝜉 |

2Ψ′ (|𝓏|2) + |〈𝑧, 𝜉 〉|2Ψ′′(|𝑧|2)

𝑛

𝑗,𝑘=1 

 

 for arbitrary vectors 𝓏 =  (𝓏1, . . . , 𝓏𝑛) and 𝜉 =  (𝜉1, . . . , 𝜉𝑛) in ℂ𝑛. By Theorem (5.1.9), 

we therefore have 𝛼(𝓏, 𝜉)  ⋍  𝛽(𝓏, 𝜉). Now let 𝐿𝛽
2 (𝜇Ψ) be the space of vector-valued 

functions ℎ =  (ℎ1, . . . , ℎ𝑛), identified with the corresponding (0, 1)-forms ℎ1𝑑𝓏1 + ···
+ ℎ𝑛𝑑𝓏𝑛 such that 

 ‖ℎ ‖
 𝐿𝛽
2  (𝜇)
2 ∶=  ∫  |ℎ(𝓏)|𝛽

2  𝑑𝜇Ψ(𝓏) <  ∞
 

ℂ𝑛
. 

 It follows from Theorem 2.2 in [136] (a special case of a theorem proved by 𝐽. −𝑃. 𝐷𝑒 

mailly in [138]) that the operator S giving the canonical solution to the 𝜕-problem is 

bounded from 𝐿𝛽
2 (𝜇Ψ) into 𝐿2(𝜇). 

 Since 𝑓 is holomorphic, we have 

�̃� (𝐻𝑓𝑔) =  𝛻𝑓
̅̅̅̅
𝑔 

 when 𝑔 is in 𝐴2(Ψ), whence 𝐻𝑓𝑔 =  𝑆(𝛻𝑓
̅̅̅̅ 𝑔). Thus it follows that 

 ‖𝐻𝑓𝑔‖
𝐿2(𝜇Ψ)

≲ ∫  |𝛻𝑓 (𝓏)|𝛽
2 |𝑔(𝓏)|2𝑑𝜇Ψ(𝓏)

 

ℂ𝑛
.                    (31) 

 If we set 𝑑𝜈(𝓏)  =  |𝛻𝑓 (𝓏)|𝛽
2  𝑑𝑉 (𝓏), this may be written as 

𝐻
𝑓
∗𝐻𝑓 𝑀 |𝛻𝑓 |𝛽

∗ 𝑀|𝛻𝑓 |𝛽  =  𝑇𝜈 , 
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 where as before 𝑀ℎ denotes the operator of multiplication by h from 𝐴2(Ψ) into 

𝐿2(𝜇Ψ). 𝐵𝑦 Theorem (5.1.24), it remains to verify that (iii) implies that for some Ψ-lattice 

(𝑎𝑘) we have 

 ∑ (
𝜈(𝐵(𝑎𝑘, 𝑟))

|𝐵(𝑎𝑘, 𝑟)|
)

𝑝
2

< +∞,

∞

𝑘=1 

                                      (32) 

where 𝑟 is the maximal covering radius for (𝑎𝑘). To this end, we first observe that Hölder’s 

inequality gives that 

(
𝜈(𝐵(𝓏, 𝑟))

 |𝐵(𝓏, 𝑟)|
)

𝑝
2

 ≲
1

 |𝐵(𝓏, 𝑟)|
 ∫  |𝛻𝑓 (𝐵(𝓏, 𝑟))|

𝛽

𝑝
 𝑑𝑉 (𝑤)

 

𝐵(𝓏,𝑟)

. 

 Hence, using (30) and Lemma (5.1.7), we obtain 

(
𝜈(𝐵(𝓏, 𝑟))

 |𝐵(𝓏, 𝑟)|
 )

𝑝
2

≲ ∫   |𝛻𝑓 (𝓏)|𝛽
𝑝
𝐾(𝓏, 𝓏)𝑑𝑉 (𝑤)

 

𝐵(𝓏,𝑟)

. 

 Now choosing anyΨ-lattice (𝑎𝑘) and using Lemma (5.1.18), we arrive at (32). Several 

remarks are in order. First, note that (31) gives another proof of the implication (iii) ⇒ (i) 

in Theorem (5.1.1), subject to the additional smoothness condition (24). Second, as shown 

in [137], there are nontribyl Hankel operators in 𝑆𝑝 only when 𝑝 >  2𝑛. This fact is easy 

to see from Theorem (5.1.25) when 𝑛 =  1, because then 

|𝛻𝑓 (𝓏)|𝛽  ⋍  |𝑓
′ (𝓏)|[Φ′(|𝓏|2)]−

1
2, 

 whence 𝑓 is in 𝐵𝑑
𝑝
 (Ψ) if and only if 

 ∫  |𝑓′ (𝓏)|𝑝[ Φ′(|𝓏|2)]1−
𝑝
2𝑑𝑉 (𝓏) <  ∞.

 

ℂ

           (33) 

 When 𝑛 >  1, the computation of |𝛻𝑓 (𝓏)|𝛽 is less straightforward, but we always have  

|𝛻𝑓 (𝓏)|[Φ′(|𝓏|2)]−
1
2 ≲ |𝛻𝑓 (𝓏)|𝛽 |𝛻 ≲ 𝑓 (𝓏)|[Ψ′(|𝑧|2)]−

1
2. 

 The estimate from above shows that the condition 

∫  |𝛻𝑓 (𝓏)|𝑝 Φ′(|𝓏|2)[Ψ′(|𝓏|2)] 𝑛−1−
𝑝
2𝑑𝑉 (𝓏) <  ∞

 

ℂ𝑛
                 (34) 

 is sufficient for 𝑓 to belong to 𝐵𝑑
𝑝
 (Ψ), and the estimate from below shows thatthis is also 

necessary when Φ′ /Ψ′ is a bounded function. We conclude from (33) and (34) that if the 

growth of Ψ is super-polynomial, then 𝐵𝑑
𝑝
(Ψ) is infinite-dimensional and contains all 

polynomials if and only if 𝑝 >  2𝑛. This is immediate when 𝑛 =  1, and it follows also 

when 𝑛 >  1 because 

∫  
Ψ′′(𝑡)

 [Ψ′(𝑡)]1+𝛿
 𝑑𝑡 ≤ (1)/( 𝛿[Ψ′(0)]𝛿  <  ∞

∞

0

 

for every 𝛿 >  0. If, on the other hand, is a polynomial, then Φ′ /Ψ′ is a bounded function, 

and one may use (34) and Theorem (5.1.25) to deduce Theorem (5.1.9) in [84]. It is not 

hard to check that if f is a monomial and 𝑛 >  1, then 

|𝛻𝑓 (𝓏)|𝛽  ⋍  |𝛻𝑓 (𝓏)||[Ψ
′(|𝓏|2)] −

1
2 

 for 𝓏 belonging to a set of infinite volume measure. By Lemma (5.1.2) in [84] and Theorem 

(5.1.25) above, one may therefore conclude as in [84] that 𝐵𝑑
𝑝
 (Ψ) is nontribyl only if 𝑝 >

 2𝑛. 
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Section (5.2): The Fock Space 

For ℂ𝑛 be the complex 𝑛-space. For points 𝓏 =  (𝓏1,· · · , 𝓏𝑛) and 𝑤 = (𝑤1,· · · , 𝑤𝑛) 
in ℂ𝑛 we write 

𝓏 ·  �̅�  = ∑ 

𝑛

𝑗=1

 𝓏𝑗�̅�𝑗  ,       |𝓏|  =  √𝓏 · �̅�. 

Let 𝑑𝑣 be ordinary volume measure on ℂ𝑛 . For any positive parameter 𝛼 we consider the 

Gaussian measure  

𝑑𝜆𝛼(𝓏)  = (
𝛼

𝜋
)
𝑛

 𝑒−𝛼|𝓏|
2
  𝑑𝑣(𝓏). 

The Fock space 𝐹𝛼
2 is the closed subspace of entire functions in 𝐿2 (ℂ𝑛 , 𝑑𝜆𝛼). The 

orthog1onal projection 𝑃 ∶  𝐿2 (ℂ𝑛 , 𝑑𝜆𝛼)  →  𝐹𝛼
2 is given by 

 𝑃 𝑓(𝓏)  = ∫  
ℂ𝑛
𝐾(𝓏, 𝑤)𝑓(𝑤)𝑑𝜆𝛼(𝑤), 

where 𝐾(𝓏,𝑤)  =  𝑒𝛼𝓏·�̅� is the reproducing kernel of 𝐹𝛼
2 .  

       We say that 𝑓 satisfies Condition (G) if the function 𝓏 ↦  𝑓(𝓏)𝑒𝛼𝓏·�̅� belongs to 

𝐿1 (ℂ𝑛 , 𝑑𝜆𝛼) for every 𝑤 ∈ ℂ𝑛 . Equivalently, 𝑓 satisfies Condition (G) if every translate 

of  𝑓 𝓏 ↦  𝑓(𝓏 +  𝑤), belongs to 𝐿1 (ℂ𝑛 , 𝑑𝜆𝛼). If 𝑓 ∈  𝐹𝛼
2  , then there exists a constant 

𝐶 >  0 such that 

 |𝑓(𝓏)|  ≤  𝐶𝑒
𝛼
2
 |𝓏|2  , 𝑧 ∈ ℂ𝑛 . 

This clearly implies that f satisfies Condition (G). 

       If 𝑓 satisfies Condition (G), we can define a linear operator 𝑇𝑓 on 𝐹𝛼
2  by 𝑇𝑓𝑔  =  𝑃(𝑓𝑔), 

where 

 𝑔(𝑧) =   ∑  

𝑁

𝑘=1

 𝑐𝑘𝐾(𝓏, 𝑤𝑘) 

 is any finite linear combination of kernel functions. It is easy to see that the set of all finite 

linear combinations of kernel functions is dense in 𝐹𝛼
2 . Here 𝑃(𝑓𝑔) is to be interpreted as 

the following integral: 

 𝑇𝑓 𝑔(𝓏)  = ∫  
𝐶𝑛

 𝑓(𝑤)𝑔(𝑤)𝑒𝛼𝓏 ·�̅� 𝑑𝜆𝛼(𝑤), 𝓏 ∈ ℂ
𝑛 . 

 Therefore, for 𝑔 in a dense subset of 𝐹𝛼
2 , 𝑇𝑓𝑔 is a well-defined entire function (not 

necessarily in 𝐹𝛼
2 though). We study the Toeplitz product 𝑇𝑓𝑇𝑔, where f and 𝑔 are functions 

in 𝐹𝛼
2. Such a product is well defined on the set of finite linear combinations of kernel 

functions. The main concern is the following: what conditions on f and g will ensure that 

the Toeplitz product 𝑇𝑓𝑇𝑔 extends to a bounded (or compact) operator on 𝐹𝛼
2 ? 

       This problem was first raised by Sarason in [53] in the context of Hardy and Bergman 

spaces. It was partially solved for Toeplitz operators on the Hardy space of the unit circle in 

[59], on the Bergman space of the unit disk in [42], on the Bergman space of the polydisk 

in [149], and on the Bergman space of the unit ball in [148], [150]. In all these cases, the 

necessary and/or sufficient condition for 𝑇𝑓𝑇𝑔 to be bounded is 

Sup
𝓏∈Ω

  |𝑓|2+𝜀̃   (𝑧)|𝑔|2+𝜀̃  (𝓏) <  ∞, 

 where 𝜀 is any positive number and 𝑓 denotes the Berezin transform of 𝑓. 

       Note that in the Hardy space case, the Berezin transform is nothing but the classical 

Poisson transform. 
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We obtain a much more explicit characterization for 𝑇𝑓𝑇�̅� to be bounded on the Fock 

space. 

Main Theorem (5.2.1)[145]: Let 𝑓 and g be functions in  𝐹𝛼
2, not identically zero. Then 

𝑇𝑓𝑇�̅� is bounded on  𝐹𝛼
2if and only if 𝑓 = 𝑒𝑞 and 𝑔 =  𝑐𝑒−𝑞  , where 𝑐 is a nonzero complex 

constant and 𝑞 is a complex linear polynomial. 

       Furthermore, our proof reveals that when 𝑇𝑓𝑇�̅� is bounded, it must be a constant times 

a unitary operator. Consequently, 𝑇𝑓𝑇�̅� is never compact unless it is the zero operator. 

As another by-product of our analysis, we will construct a class of unbounded, densely 

defined, operators on the Fock space whose Berezin transform is bounded. It has been 

known that such operators exist, but our examples are very simple products of Toeplitz 

operators. 

Proof: For any point 𝑎 ∈ ℂ𝑛 we consider the operator 𝑈𝑎 ∶  𝐹𝛼
2  →  𝐹𝛼

2defined by  

𝑈𝑎𝑓(𝓏)  =  𝑓(𝓏 −  𝑎)𝑘𝑎(𝓏), 
  Where 

𝑘𝑎(𝓏) =
𝐾(𝓏, 𝑎)

√𝐾(𝑎, 𝑎)
   =  𝑒𝛼𝓏 ·�̅�−

𝛼
2
  |𝑎|2

 

is the normalized reproducing kernel of 𝐹𝛼
2at 𝑎. It follows from a change of variables that 

each Ua is a unitary operator on 𝐹𝛼
2. 

 We begin with the very special case of Toeplitz operators induced by kernel functions. 

 Lemma (5.2.2)[145]: Let 𝑎 ∈ ℂ𝑛 , 𝑓(𝓏)  =  𝑒𝛼𝓏· �̅� , 𝑎𝑛𝑑 𝑔(𝓏)  =  𝑒𝛼𝓏· �̅�  . We have 

𝑇𝑓𝑇�̅� = 𝑒
𝛼
2
|𝑎|2𝑈𝑎. 

In particular, 𝑇𝑓𝑇�̅�  is bounded on 𝐹𝛼
2. 

Proof. To avoid tribylity we assume that a is nonzero. The Toeplitz operator  𝑇𝑓 is just 

multiplication by 𝑓, as a densely defined unbounded linear operator. So we focus on the 

operator 𝑇�̅�. 

Given any function ℎ ∈ 𝐹𝛼
2, we have 

𝑇�̅�ℎ(𝓏) = ∫  
ℂ𝑛
𝑔(𝑤)̅̅ ̅̅ ̅̅ ̅ℎ(𝑤)𝐾(𝓏, 𝑤)𝑑𝜆𝛼(𝑤) =  ∫  

ℂ𝑛
 ℎ(𝑤)𝑒𝛼(𝓏 − 𝑎)·�̅� 𝑑𝜆𝛼(𝑤) = ℎ(𝓏 −  𝑎). 

Therefore, the Toeplitz operator 𝑇�̅� is an operator of translation, and  

𝑇𝑓𝑇�̅�ℎ(𝓏) =  𝑒
𝛼 𝓏 ·�̅�ℎ(𝓏 −  𝑎) =  𝑒

𝛼
2
|𝑎|2𝑈𝑎ℎ(𝓏). 

 This proves the desired result. 

       An immediate consequence of Lemma (5.2.2) is that if 𝑓 =  𝐶1𝑒
𝑞   𝑎𝑛𝑑 𝑔 =  𝐶2𝑒

−𝑞  , 
where 𝐶1 and 𝐶2 are complex constants and 𝑞 is a complex linear polynomial, then there 

exists a complex constant 𝑐 and a unitary operator 𝑈 such that 𝑇𝑓𝑇�̅� = 𝑐𝑈. 

       To deal with more general symbol functions, we need the following characterization of 

nonvanishing functions in 𝐹𝛼
2 . 

Lemma (5.2.3)[145]: If 𝑓 is a nonvanishing function in 𝐹𝛼
2, then there exists a complex 

polynomial 𝑞, with deg(𝑞) ≤ 2, such that 𝑓 =  𝑒𝑞    . 
Proof. In the case when the dimension 𝑛 =  1, the Weierstrass factorization of functions in 

the Fock space 𝐹𝛼
2 takes the form 𝑓(𝓏)  =  𝑃(𝓏)𝑒𝑞(𝓏) , where 𝑃 is the canonical Weierstrass 

product associated to the zero sequence of 𝑓, and 𝑞(𝓏)  =  𝑎𝓏2  +  𝑏𝓏 +  𝑐 is a quadratic 

polynomial with |𝑎| <
𝛼

2
 . In particular, if f is zero-free, then 𝑓 =  𝑒𝑞 for some quadratic 

polynomial. See [151]. 
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       When 𝑛 >  1, we no longer have such a nice factorization. But the absence of zeros 

makes a special version of the factorization above still valid. More specifically, if 𝑓 is any 

function in 𝐹𝛼
2= 𝐹𝛼

2 (ℂ𝑛 ) and 𝑓 is nonvanishing, then the function 𝓏1 ↦ 𝑓(𝓏1,· · ·
, 𝓏𝑛) is in 𝐹𝛼

2(ℂ), so by the factorization theorem stated in the previous paragraph, 

 𝑓(𝓏1,· · · , 𝓏𝑛) =  𝑒
𝑎𝓏1

2   +𝑏𝓏1+𝑐 , 
where 𝑎, 𝑏, and 𝑐 are holomorphic functions of 𝓏2 ,· · · , 𝓏𝑛. Repeat this for every 

independent variable, we conclude that 𝑓 =  𝑒𝑞 for some polynomial of degree 2𝑛 or less. 

       Recall that every function 𝑓 ∈  𝐹𝛼
2 satisfies the pointwise estimate 

|𝑓(𝓏)| ≤  𝐶𝑒
𝛼
2
|𝓏|2   , 𝓏 ∈ ℂ𝑛 . 

If 𝑞 is a polynomial of degree 𝑁 and 𝑁 >  2, then for any fixed ζ =  (ζ
1
,· · · , ζ

𝑛
) on the 

unit sphere of ℂ𝑛 with each 𝜁𝑘 ≠ 0, and for 𝓏 = 𝑟ζ, where 𝑟 >  0, we have 𝑞(𝓏)  ∼  𝑟𝑁 as 

𝑟 →  ∞, which shows that the estimate |𝑓(𝓏)|  ≤  𝐶𝑒
𝛼

2
|𝓏|2

 is impossible to hold. This shows 

that the degree of 𝑞 is less than or equal to 2. 

       We can now prove the main result, which we restate as follows. 

Theorem (5.2.4)[145]: Suppose 𝑓 and 𝑔 are functions in 𝐹𝛼
2 . Then the Toeplitz product 

𝑇𝑓𝑇�̅� is bounded on 𝐹𝛼
2 if and only if one of the following two conditions holds: 

   (a) At least one of 𝑓 and 𝑔 is identically zero. 

   (b) There exists a linear polynomial 𝑞 and a nonzero constant 𝑐 such that 𝑓 = 𝑒𝑞 and 𝑔 =
 𝑐𝑒−𝑞. 

Proof. If condition (a) holds, then the Toeplitz product 𝑇𝑓𝑇�̅� is 0. If condition (b) holds, the 

boundedness of 𝑇𝑓𝑇�̅� follows from Lemma (5.2.2). 

       Next assume that 𝑇 =  𝑇𝑓𝑇�̅� is bounded on 𝐹𝛼
2 . Then the Berezin transform �̃� is a 

bounded function on ℂ𝑛 , where 

�̃�(𝓏 ) = (𝑇𝑓𝑇�̅�𝑘𝓏  , 𝑘𝓏  )    𝓏 ∈  ℂ
𝑛 . 

 It follows from the integral representation of 𝑇�̅� and the reproducing property of the kernel 

function 𝑒𝛼𝑧·�̅� that 𝑇�̅�𝑘𝓏  =  𝑔(𝓏)̅̅ ̅̅ ̅̅  𝑘𝓏 . Therefore, 

 �̃� (𝓏) =  𝑔(𝓏)̅̅ ̅̅ ̅̅ (𝑓 𝑘𝓏 , 𝑘𝓏),        𝓏 ∈  ℂ
𝑛  . 

Write the inner product above as an integral and apply the reproducing property of the kernel 

function 𝑒𝛼𝓏·�̅� one more time. We obtain �̃�(𝓏)  =  𝑓(𝓏)𝑔(𝓏)̅̅ ̅̅ ̅̅ . It follows that |𝑓(𝓏)𝑔(𝓏)̅̅ ̅̅ ̅̅ |  ≤
‖𝑇‖ for all 𝓏 ∈  ℂ𝑛 . But 𝑓𝑔 is entire, so by Liouville theorem, there is a constant c such 

that 𝑓𝑔 =  𝑐. 
       If 𝑐 =  0, then at least one of 𝑓 and 𝑔 must be identically zero, so condition (a) holds. 

       If 𝑐 ≠ 0, then both 𝑓 and g are nonvanishing. By Lemma (5.2.3), there exists a complex 

polynomial 𝑞, with deg(𝑞)  ≤  2, such that 𝑓 =  𝑒𝑞 and 𝑔 =  𝑐𝑒−𝑞   . 
       It remains for us to show that deg(𝑞)  ≤  1. Let us assume deg(𝑞)  =  2, in the hope of 

reaching a contradition, and write 𝑞 =  𝑞2  +  𝑞1, where 𝑞1 is linear and 𝑞2 is a 

homogeneous polynomial of degree 2. By the boundedness of 𝑇 =  𝑇𝑓𝑇�̅� on 𝐹𝛼
2 , the 

function 

𝑇(𝓏,𝑤) = 〈𝑇𝑓𝑇�̅�𝑘𝓏 , 𝑘𝑤〉,            𝓏 ∈  ℂ
𝑛 , 𝑤 ∈ ℂ𝑛 , 

is bounded on ℂ𝑛 × ℂ𝑛 . We proceed to show that this is impossible unless 𝑞2  =  0. 

       Again, by the integral representation for Toeplitz operators and the reproducing 

property of the kernel function 𝑒𝛼𝓏·�̅�, it is easy to obtain that 

𝑇(𝓏,𝑤) =  𝑓(𝑤)𝑔(𝓏)𝑒̅̅ ̅̅ ̅̅ −
𝛼
2
|𝓏|2+𝛼𝑤·�̅�−

𝛼
2
 |𝑤|2

 

. 
It follows that 
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|𝑇(𝓏,𝑤)|  =  |𝑓(𝑤)𝑔(𝓏)|𝑒−
𝛼
2
|𝓏 −𝑤|2       

for all (𝓏, w) ∈ ℂ𝑛 × ℂ𝑛. Using the explict form of 𝑓 and 𝑔, we can write  

|𝑇(𝓏,𝑤)| =  |𝑐 exp(𝑞2(𝑤) − 𝑞2(𝓏) + 𝑞1(𝑤) − 𝑞1(𝓏))|𝑒
−
𝛼
2
| 𝓏 −𝑤|2 . 

 Since 𝑞1 is linear, it is easy to see that there is a point 𝑎 ∈ ℂ𝑛 such that 

𝑞1(𝑤) − 𝑞1(𝓏)  =  (𝑤 −  𝓏)  ·  �̅� 

for all 𝓏 and 𝑤. 

       For the second-degree homogeneous polynomial 𝑞2 we can find a complex matrix 𝐴 =
 𝐴𝑛×𝑛, symmetric in the real sense, such that 𝑞2(𝓏)  = 〈𝐴𝓏, 𝓏〉, where  〈 , 〉 is the real inner 

product. Fix two points 𝑢 and 𝑣 in ℂ𝑛 such that Re〈𝐴𝑢, 𝑣〉 ≠ 0. This is possible as long as 

𝐴 ≠ 0. Now let 𝓏 =  𝑟𝑢 and 𝑤 =  𝑟𝑢 +  𝑣, where 𝑟 is any real number. We have 

𝑞2(𝑤) − 𝑞2(𝓏) =  𝑞2(𝓏 +  𝑣) − 𝑞2(𝓏) = 〈𝐴(𝓏 +  𝑣), 𝓏 +  𝑣〉 − 〈𝐴𝓏, 𝓏〉
= 〈𝐴𝓏, 𝑣〉 + 〈𝐴𝑣, 𝓏〉 + 〈𝐴𝑣, 𝑣〉 = 2𝑟〈𝐴𝑢, 𝑣〉 + 〈𝐴𝑣, 𝑣〉. 

It follows that there exists a positive constant 𝑀 =  𝑀(𝑢, 𝑣) such that  

|𝑇(𝓏,𝑤)| =  𝑀|exp(2𝑟〈𝐴𝑢, 𝑣〉)|  =  𝑀 exp(2𝑟𝑅𝑒〈𝐴𝑢, 𝑣〉). 
Since Re〈𝐴𝑢, 𝑣〉 ≠ 0, this shows that 𝑇(𝓏,𝑤) cannot be a bounded function on ℂ𝑛  × ℂ𝑛. 

This contradition shows that 𝐴 =  0 and the polynomial 𝑞 must be linear. 

As a consequence of the analysis above, we obtain an interesting class of unbounded 

operators on 𝐹𝛼
2 whose Berezin transforms are bounded. 

Corollary (5.2.5)[145]: Suppose 𝑓(𝓏)  =  𝑒𝑞  and 𝑔 =  𝑒−𝑞 , where 𝑞 is any second-

degree homogeneous polynomial whose coefficients are small enough so that 𝑓 and 𝑔 

belong to 𝐹𝛼
2. Then the Toeplitz product 𝑇𝑓𝑇�̅� is unbounded on 𝐹𝛼

2, but its Berezin transform 

is bounded. 

Proof. By Theorem (5.2.4), the operator 𝑇𝑓𝑇�̅�  is unbounded. On the other hand, by the proof 

of Theorem (5.2.4), the Berezin transform of 𝑇 =  𝑇𝑓𝑇�̅�  is given by 

�̃�(𝓏)  =  𝑓(𝓏)𝑔(𝓏)̅̅ ̅̅ ̅̅ ,         𝓏 ∈  ℂ𝑛 . 
It follows that |𝑇(𝓏)| = |𝑓(𝓏)𝑔(𝓏)| = 1 for all 𝓏 ∈  ℂ𝑛. 

Another consequence of the earlier analysis is the following. 

Corollary (5.2.6)[145]: If 𝑓 and 𝑔 are functions in 𝐹𝛼
2, then the following conditions are 

equivalent: 

 (a) 𝑇𝑓𝑇�̅� is compact. 

 (b) 𝑇𝑓𝑇�̅� = 0. 

 (c) 𝑓 =  0 or 𝑔 =  0. 

 Proof. Combining Lemma (5.2.2) and Theorem (5.2.4), we see that whenever 𝑇𝑓𝑇�̅� is 

compact on 𝐹𝛼
2 , we must have 𝑓 =  0 or 𝑔 =  0. This clearly gives the desired result. 

       For any 0 <  𝑝 ≤  ∞ let 𝐹𝛼
𝑝
  denote the Fock space consisting of entire functions 𝑓 

such that the function 𝑓(𝓏)𝑒  −
𝛼

2
|𝓏|2

 belongs to 𝐿𝑝 (ℂ𝑛, 𝑑𝑣). When 0 <  𝑝 <  ∞, the norm 

in 𝐹𝛼
𝑝
    is defined by 

‖𝑓‖𝑝,𝛼 = [(
𝑝𝛼

2𝜋
)
𝑛

  ∫  
ℂ𝑛
|𝑓(𝓏)𝑒−

𝛼
2
 |𝓏|2|

𝑝

 𝑑𝑣(𝓏)]

1
𝑝

. 

For 𝑝 =  ∞, the norm in 𝐹𝛼
∞ is defined by 

‖𝑓‖∞,𝛼 = sup
𝓏∈ℂ𝑛

 |𝑓(𝓏)|𝑒−
𝛼
2
 |𝓏|2 . 

It is easy to check that the normalized reproducing kernel 
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𝑘𝑎(𝓏) = 𝑒
𝛼𝓏·�̅�−

𝛼
2
 |𝑎|2

 

is a unit vector in each 𝐹𝛼
𝑝
 , where 0 <  𝑝 ≤  ∞. Also, it can be shown that the set of 

functions of the form 

𝑓(𝓏)  =  ∑  

𝑁

𝑘=1

𝑐𝑘𝐾(𝓏, 𝑎𝑘)  =  ∑  

𝑁

𝑘=1

𝑐𝑘𝑒
𝛼𝓏·�̅�𝑘 

is dense in each 𝐹𝛼
𝑝
 , where 0 <  𝑝 <  ∞. See [151]. 

Therefore, if 0 <  𝑝 <  ∞ and f satisfies Condition (G), we can consider the action of the 

Toeplitz operator 𝑇𝑓 on 𝐹𝛼
𝑝
 . Also, if 𝑓 ∈  𝐹𝛼

𝑝
 , then it satisfies the pointwise estimate 

|𝑓(𝓏)|  ≤  𝐶𝑒
𝛼

2
|𝓏|2

 , which implies that 𝑓 satisfies Condition (G). 

When 1 <  𝑝 <  ∞ and 1/𝑝 +  1/𝑞 =  1, the dual space of 𝐹𝛼
𝑝
 can be identified 

with 𝐹𝛼
𝑞
 under the integral pairing 

〈𝑓, 𝑔〉𝛼 = ∫  
ℂ𝑛
𝑓(𝓏)𝑔(𝓏)̅̅ ̅̅ ̅̅  𝑑𝜆𝛼(𝓏). 

When 0 <  𝑝 ≤  1, the dual space of 𝐹𝛼
𝑝
 can be identified with 𝐹𝛼

∞ under the same integral 

pairing above. See [73], [151]. 

Thus for functions 𝑓 and 𝑔 in 𝐹𝛼
𝑝
 , if the Toeplitz product 𝑇 = 𝑇𝑓𝑇�̅� is bounded on 𝐹𝛼

𝑝
, we 

can still consider the function 

𝑇(𝓏, 𝑤)  =  〈𝑇𝑓𝑇�̅�𝑘𝓏 , 𝑘𝑤〉𝛼 

on ℂ𝑛 × ℂ𝑛. Exactly the same arguments will yield the following result. 

Theorem (5.2.7)[145]: Suppose 0 <  𝑝 <  ∞. If f and 𝑔 are functions in 𝐹𝛼
𝑝
, not identically 

zero, then the Toeplitz product 𝑇𝑓𝑇�̅� is bounded on 𝐹𝛼
𝑝
 if and only if 𝑓 = 𝑒𝑞 and 𝑔 = 𝑐𝑒−𝑞, 

where 𝑐 is a nonzero complex contant and 𝑞 is a complex linear polynomial. 

We extend the results here to more general Fock-type spaces. In particular, 

generalization to the Fock-Sobolev spaces studied in [146], [147] should be possible. 

We take a second look at the original Hardy space setting. More specifically, if 𝑓 and 

𝑔 are functions in the Hardy space 𝐻2 (of the unit disk, for example), the the boundedness 

of the Toeplitz product 𝑇𝑓𝑇�̅� on 𝐻2 implies that the product function 𝑓𝑔 is in 𝐻∞. Is it 

possible to derive more detailed information about 𝑓 and 𝑔, say in terms of inner and outer 

functions? A more explicit condition on 𝑓 and 𝑔 (as opposed to the condition |𝑓|2+𝜀̃ |𝑔|2+𝜀̃ ∈
 𝐿∞) would certainly be more desirable. 

We hope that will generate some further interest in this subject. 

 

Section (5.3): Sarason’s Toeplitz Product Problem  

      For 𝔻 be the open unit disk in the complex plane ℂ and let 𝕋 =  𝜕𝔻 denote the unit 

circle. The Hardy space 𝐻2 consists of functions 𝑓 ∈  𝐿2(𝕋) such that its Fourier 

coefficients satisfy 𝑓𝑛  =  0 for all 𝑛 <  0. Given a function 𝜑 ∈  𝐿2(𝕋), the Toeplitz 

operator 𝑇𝜑 ∶  𝐻
2  →  𝐻2 is densely defined by 𝑇𝜑𝑓 =  𝑃(𝜑𝑓), where 𝑃 ∶  𝐿2(𝕋)  →  𝐻2 is 

the Riesz-Szego projection. 

     The original problem that Sarason proposed in [53] was this: characterize the pairs of 

outer functions 𝑢 and 𝑣 in 𝐻2 such that the operator 𝑇𝑢𝑇𝑣 is bounded on 𝐻2. Inner factors 

can easily be disposed of, so it was only necessary to consider outer functions in the Hardy 

space case. It was further observed in [53] that a necessary condition for the boundedness 

of 𝑇𝑢𝑇𝑣 on 𝐻2 is that 
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sup
𝑤∈𝔻

 𝑃𝑤(|𝑢|
2 )𝑃𝑤(|𝑣|

2 ) < ∞, 

where 𝑃𝑤(𝑓) means the Poisson transform of 𝑓 at 𝑤 ∈ 𝔻. In fact, the arguments in [53] 

show that 

sup
𝑤∈𝔻

 𝑃𝑤(|𝑢|
2 )𝑃𝑤(|𝑣|

2 ) ≤ 4‖𝑇𝑢𝑇𝑣‖
2 .                            (35) 

     For 𝐴2 denote the Bergman space consisting of analytic functions in 𝐿2(𝔻, 𝑑𝐴), where 

𝑑𝐴 is ordinary area measure on the unit disk. If 𝑃 ∶  𝐿2(𝔻, 𝑑𝐴)  →  𝐴2 is the Bergman 

projection, then Toeplitz operators 𝑇𝜑 on 𝐴2 are defined by 𝑇𝜑𝑓 =  𝑃(𝜑𝑓). Sarason also 

posed a similar problem in [53] for the Bergman space: characterize functions 𝑢 and 𝑣 in 𝐴2 

such that the Toeplitz product 𝑇𝑢𝑇𝑣 is bounded on 𝐴2. It was shown in [42] that 

sup
𝑤∈𝔻

 |𝑢|2̃(𝑤)|𝑣|2̃(𝑤)  ≤  16‖𝑇𝑢𝑇�̅�‖
2                             (36) 

for all functions 𝑢 and 𝑣 in the Bergman space 𝐴2, where 𝑓 ̃(𝑤) is the socalled Berezin 

transform of 𝑓 at 𝑤. This provides a necessary condition for the boundedness of 𝑇𝑢𝑇𝑣 on 𝐴2 

in terms of the Berezin transform. 

     The Berezin transform is well defined in many other different contexts. In particular, the 

classical Poisson transform is the Berezin transform of the Hardy space 𝐻2.  So the estimates 

in (35) and (36) are in exactly the same spirit. Sarason stated in [53] that “it is tempting to 

conjecture that” 𝑇𝑢𝑇𝑣 is bounded on 𝐻2 or 𝐴2 if and only if |𝑢|2̃(𝑤)|𝑣|2̃(𝑤) is a bounded 

function on 𝔻. It has by now become standard to call this “Sarason’s conjecture for Toeplitz 

products”. 

     It turns out that Sarason’s conjecture is false for both the Hardy space and the Bergman 

space of the unit disk, and the conjecture fails in a big way. See [153], [160] for counter-

examples. In these cases, Sarason’s problem is naturally connected to certain two-weight 

norm inequalities in harmonic analysis, and counter-examples for Sarason’s conjecture were 

constructed by means of the dyadic model approach in harmonic analysis. 

     Another setting where Toeplitz operators have been widely studied is the Fock space. 

More specifically, we let ℱ2 be the space of all entire functions 𝑓 on ℂ that are square-

integrable with respect to the Gaussian measure 

𝑑𝜆(𝓏) =
1

𝜋
 𝑒−|𝑧|

2
 𝑑𝐴(𝓏). 

The function 

𝐾(𝓏, 𝑤)  =  𝑒𝑧�̅� , 𝓏, 𝑤 ∈ ℂ, 
is the reproducing kernel of ℱ2 and the orthogonal projection 𝑃 from 𝐿2(ℂ, 𝑑𝜆) onto ℱ2 is 

the integral operator defined by 

𝑃 𝑓(𝓏) = ∫  
 

ℂ

 𝐾(𝓏, 𝑤)𝑓(𝑤)𝑑𝜆(𝑤), 𝓏 ∈ ℂ. 

If 𝜑 is in 𝐿2(ℂ, 𝑑𝜆) such that the function 𝓏 → 𝜑(𝓏)𝐾(𝓏,𝑤) belongs to 𝐿1(ℂ, 𝑑𝜆) for any 

𝑤 ∈ ℂ, we can define the Toeplitz operator 𝑇𝜑 with symbol 𝜑 by 𝑇𝜑𝑓 =  𝑃(𝜑𝑓), or 

𝑇𝜑𝑓(𝓏) = ∫  
 

ℂ 

𝐾(𝓏,𝑤)𝜑(𝑤)𝑓(𝑤)𝑑𝜆(𝑤), 𝓏 ∈ ℂ, 

When 

𝑓(𝑤)  = ∑  

𝑁

𝑘=1

𝑐𝑘𝐾(𝑤, 𝑐𝑘) 
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is a finite linear combination of kernel functions. Since the set of all finite linear 

combinations of kernel functions is dense in ℱ2, the operator T𝜑 is densely defined and 𝑇𝜑𝑓 

is an entire function. See [152] for basic information about the Fock space and Toeplitz 

operators on it. 

     In [146], Cho, Park and Zhu solved Sarason’s problem for the Fock space. More 

specifically, they obtained the following simple characterization for 𝑇𝑢𝑇𝑣 to be bounded on 

ℱ2: if 𝑢 and 𝑣 are functions in ℱ2, not identically zero, then 𝑇𝑢𝑇�̅� is bounded on ℱ2 if and 

only if 𝑢 =  𝑒𝑞 and 𝑣 =  𝑐𝑒−𝑞 , where 𝑐 is a nonzero constant and 𝑞 is a complex linear 

polynomial. As a consequence of this, it can be shown that Sarason’s conjecture is actually 

true for Toeplitz products on ℱ2. 
We consider the weighted Fock space ℱ𝑚

2 , consisting of all entire functions in 

𝐿2(ℂ, 𝑑𝜆𝑚), where 𝑑𝜆𝑚 are the generalized Gaussian measure defined by 

𝑑𝜆𝑚(𝓏)  =  𝑒
−|𝓏|2𝑚 𝑑𝐴(𝓏), 𝑚 ≥  1. 

Toeplitz operators on ℱ𝑚
2 are defined exactly the same as the cases above, using the 

orthogonal projection 𝑃 ∶  𝐿2(ℂ, 𝑑𝜆𝑚)  → ℱ𝑚
2 . 

     We will solve Sarason’s problem and prove Sarason’s conjecture for the weighted Fock 

spaces ℱ𝑚
2 . The main result can be stated as follows. 

Main Theorem (5.3.1)[152]: Let 𝑢 and 𝑣 be in ℱ𝑚
2 , not identically zero. The following 

conditions are equivalent: 

(i) The product 𝑇 =  𝑇𝑢𝑇�̅� is bounded on ℱ𝑚
2 . 

(ii) There exist a polynomial 𝑔 of degree at most m and a nonzero complex constant 𝑐 

such that 𝑢(𝓏)  =  𝑒𝑔(𝓏) 𝑎𝑛𝑑 𝑣(𝓏)  =  𝑐𝑒−𝑔(𝓏) . 

(iii) The product |𝑢|2̃(𝓏)|𝑣|2̃(𝓏) is a bounded function on ℂ. 
Furthermore, in the affirmative case, we have the following estimate of the norm: 

‖𝑇‖  ≤  𝐶1𝑒
𝐶2‖𝑔‖𝐻2

2

 , 
where ‖𝑔‖𝐻2 is the norm in the Hardy space of the unit disc, and 𝐶1 and 𝐶2 are positive 

constants independent of 𝑔. 
    Let us mention that [158] contains partial results related to Sarason’s conjecture on the 

Fock space. The arguments in [146] depend on the explicit form of the reproducing kernel 

and the Weyl operators induced by translations of the complex plane. Both of these are no 

longer available for the spaces ℱ𝑚
2: there is no simple formula for the reproducing kernel of 

ℱ𝑚
2 and the translations on the complex plane do not induce nice operators on ℱ𝑚

2. Therefore, 

we need to develop new techniques to tackle the problem. 

We recall some properties of the Hilbert space ℱ𝑚
2. It was shown in [84] that the 

reproducing kernel of ℱ𝑚
2 is given by the formula 

𝐾𝑚(𝓏,𝑤) =
𝑚

𝜋
 ∑  

+∞

 𝑘=0

(𝓏�̅�)𝑘

𝛤 (
𝑘 + 1 
𝑚 )

 .                           (37)  

In terms of the Mittag-Leffler function 

𝐸𝛾,𝛽(𝓏) = ∑  

∞

𝑘=0

𝓏𝑘

𝛤(𝛾𝑘 +  𝛽)
 , 𝛾, 𝛽 >  0 , 

we can also write 

𝐾𝑚(𝓏,𝑤) =
𝑚

𝜋
 𝐸 1
𝑚
,
1
𝑚
 (𝓏�̅�).                                   (38) 
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    Recall that the asymptotics of the Mittag-Leffler function 𝐸 1

𝑚
,
1

𝑚

(𝓏) as |𝑧|  → +∞ are 

given by 

𝐸 1
𝑚
 ,
1
𝑚
 (𝓏) = {

𝑚𝓏𝑚−1𝑒𝓏
𝑚
 (1 +  𝑜(1)),          |arg 𝓏| ≤

𝜋
2𝑚

,

  𝑂 (
1
𝓏
 ),                                  

𝜋
2𝑚

 <  |arg  𝓏|  ≤  𝜋
 

            (39) 

for 𝑚 >
1

2
 , and by 

𝐸 1
𝑚
 ,
1
𝑚
 (𝓏) = 𝑚 ∑  

𝑁

 𝑗=−𝑁

𝓏𝑚−1 𝑒2𝜋𝑖𝑗(𝑚−1)𝑒𝓏
𝑚𝑒2𝜋𝑖𝑗𝑚  +  𝑂 (

1

𝓏
) , −𝜋 <  arg 𝓏 ≤  𝜋, 

for 0 <  𝑚 ≤
1

2
 , where 𝑁 is the integer satisfying 𝑁 <

1

2𝑚
 ≤  𝑁 +  1 and the powers 

𝓏𝑚−1 and 𝓏𝑚 are the principal branches. See, for example, Bateman and Erdelyi [155], vol. 

III, 18.1, formulas (55)–(56). 

        The asymptotic estimates of the Mittag-Leffler function 𝐸 1

𝑚
,
1

𝑚

 provide the following 

estimates for the reproducing kernel 𝐾𝑚(𝓏,𝑤), which is a consequence of the results in [84] 

and Lemma (5.3.4) in [130]. 

Lemma (5.3.2)[152]: For arbitrary points 𝑥, 𝑟 ∈  (0,+∞) and 𝜃 ∈  (−𝜋, 𝜋) we have 

|𝐾𝑚(𝑥, 𝑟𝑒
𝑖𝜃)| ≲ {

(𝑥𝑟)𝑚−1𝑒(𝑥𝑟)
𝑚 𝑐𝑜𝑠(𝑚𝜃)         |𝜃| ≤

𝜋

2𝑚

𝑂 (
1

𝑥𝑟
)  ,                       

𝜋

2𝑚
 ≤  |𝜃|  <  𝜋

  

as 𝑥𝑟 →  +∞. Moreover, there is a constant 𝑐 >  0 such that for all |𝜃|  ≤ 𝑐𝜃0 (𝑥𝑟) we 

have 

|𝐾𝑚(𝑥, 𝑟𝑒
𝑖𝜃)| ≳ (𝑥𝑟)𝑚−1 𝑒(𝑥𝑟)𝑚 

as 𝑥𝑟 →  +∞, where 𝜃0(𝑟)  =  𝑟
−
𝑚

2 /𝑚. 
      On several occasions later on we will need to know the maximum order of a function in 

ℱ𝑚
2 . For example, if we have a non-vanishing function 𝑓 in ℱ𝑚

2 and if we know that the order 

of 𝑓 is finite, then we can write 𝑓 =  𝑒𝑞 with 𝑞 being a polynomial. The following estimate 

allows us to do this. 

Lemma (5.3.3)[152]: If 𝑓 ∈  ℱ𝑚
2 , there is a constant 𝐶 >  0 such that 

|𝑓(𝓏)|  ≤  𝐶 |𝓏|𝑚−1 𝑒
1
2
 |𝓏|2𝑚  , 𝓏 ∈ ℂ. 

Consequently, the order of every function in ℱ𝑚
2 is at most 2𝑚. 

Proof. By the reproducing property and Cauchy-Schwartz inequality, we have 

|𝑓(𝓏)|  = |∫  
 

ℂ

𝑓(𝑤)𝐾𝑚(𝓏, 𝑤)𝑑𝜆𝑚(𝑤)| ≤  ‖𝑓‖ 𝐾𝑚(𝓏, 𝓏)
 ½ 

for all 𝑓 ∈ ℱ𝑚
2 and all 𝓏 ∈ ℂ. The desired estimate then follows from Lemma (5.3.2). See 

[156].  

      Another consequence of the above lemma is that, for any function 𝑢 ∈ ℱ𝑚
2 , the Toeplitz 

operators 𝑇𝑢 and 𝑇𝑢 are both densely defined on ℱ𝑚
2 . 

We prove the equivalence of conditions (35) and (36) in the Main Theorem (5.3.1) 

stated, which provides a simple and complete solution to Sarason’s problem for Toeplitz 

products on the Fock space ℱ𝑚
2. We break the proof into several lemmas. 

Lemma (5.3.4)[152]: Suppose that 𝑢 and 𝑣 are functions in ℱ𝑚
2, each not identically zero, 

and that the operator 𝑇 =  𝑇𝑢𝑇�̅� is bounded on ℱ𝑚
2. Then there exists a polynomial 𝑔 of 
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degree at most 𝑚 and a nonzero complex constant 𝑐 such that 𝑢(𝓏)  =  𝑒𝑔(𝓏) and 𝑣(𝓏)  =

 𝑐𝑒−𝑔(𝓏) . 
Proof. If 𝑇 =  𝑇𝑢𝑇𝑣 is bounded on ℱ𝑚

2 , then the Berezin transform 𝑇 is bounded, where 

𝑇(𝓏) =  〈𝑇𝑢𝑇�̅�𝑘𝓏 , 𝑘𝓏〉, 𝓏 ∈ ℂ. 
By the reproducing property of the kernel functions, it is easy to see that 

𝑇(𝓏)  =  𝑢(𝓏)𝑣(𝓏)̅̅ ̅̅ ̅̅ . 
Since each 𝑘𝓏 is a unit vector, it follows from the Cauchy-Schwarz inequality that 

|𝑢(𝓏)𝑣(𝓏)|  =  |�̃�(𝓏)| ≤ ‖𝑇‖ 

for all 𝓏 ∈ ℂ. This together with Liouville’s theorem shows that there exist a constant 𝑐 
such that 𝑢𝑣 =  𝑐. Since neither 𝑢 nor 𝑣 is identically zero, we have 𝑐 ≠ 0. Consequently, 

both 𝑢 and 𝑣 are non-vanishing. 

     Recall from Lemma (5.3.3) that the order of functions in ℱ𝑚
2 is at most 2𝑚, so there is a 

polynomial of degree 𝑑, 

𝑔(𝓏) = ∑  

𝑑

𝑘=0

𝑎𝑘𝓏
𝑘, 𝑑 ≤  [2𝑚], 

such that 𝑢 =  𝑒𝑔 and 𝑣 =  𝑐𝑒−𝑔. It remains to show that 𝑑 ≤  𝑚. 
    Since 𝑇 is bounded on ℱ𝑚

2 , the function 

𝐹(𝓏,𝑤) =
〈𝑇 (𝐾𝑚(·, 𝑤)), 𝐾𝑚(·, 𝓏)〉

√𝐾𝑚(𝓏, 𝓏)√𝐾𝑚(𝑤, 𝑤)
 

must be bounded on ℂ2. On general reproducing Hilbert spaces, we always have  

〈𝑇𝑢𝑇�̅�𝐾𝑤, 𝐾𝓏〉  =  〈𝑇�̅�𝐾𝑤, 𝑇𝑢𝐾𝓏〉  =  〈𝑣 ̅(𝑤)𝐾𝑤, 𝑢(𝓏)𝐾𝓏〉  =  𝑢(𝓏)𝑣 ̅(𝑤)𝐾(𝓏, 𝑤). 
It follows that 

𝐹(𝓏,𝑤) =  𝑐̅𝑒𝑔(𝓏)−𝑔(𝑤)
̅̅ ̅̅ ̅̅ ̅ 𝐾𝑚(𝓏,𝑤)

√𝐾𝑚(𝓏, 𝓏)√𝐾𝑚(𝑤, 𝑤)
 . 

From Lemma (5.3.2) we deduce that 

|𝐹(𝓏, 𝑤)| ≳ 𝑒𝑅𝑒(𝑔(𝓏)−𝑔(𝑤))𝑒−
1
2
 (|𝓏|𝑚−|𝑤|𝑚)2                          (40) 

for all |arg(𝓏�̅�)| ≤  𝑐𝜃0(|𝓏𝑤|) as |𝓏𝑤| grows to infinity. Choose 𝑥 >  0 sufficiently large 

and set 

𝓏(𝑥)  =  𝑥𝑒𝑖 
𝜋
2𝑑
 𝑒−𝑖

arg(𝑎𝑑)
𝑑  , 

and 

𝑤(𝑥)  =  𝑥𝑒𝑖 
𝜋
2𝑑
 𝑒−𝑖

arg(𝑎𝑑)+
𝑐

2𝑚𝑥𝑚
𝑑  . 

Since 

𝜃0(|𝓏(𝑥)𝑤(𝑥)|)  =
1

𝑚𝑥𝑚
 , 

we can apply (40) to 𝓏(𝑥) and 𝑤(𝑥) to get 

𝑒
𝑅𝑒(𝑔(𝓏(𝑥))−𝑔(𝑤(𝑥)))

≲ sup
(𝓏,𝑤)∈ℂ2

 |𝐹(𝓏,𝑤)|  <  ∞                      (41) 

as 𝑥 grows to infinity. On the other hand, a few computations show that 

𝑅𝑒 (𝑔(𝓏(𝑥)) −  𝑔(𝑤(𝑥))) =∑ 

𝑑

𝑗=0

𝑥𝑗  𝑅𝑒 (𝑎𝑗𝑒
𝑖𝑗
𝜋
2𝑑
 −𝑖
𝑗
𝑑
 𝑎𝑟𝑔[𝑎𝑑)   (1 − 𝑒

−𝑖 
𝑐𝑗

2𝑚𝑑𝑥𝑚)) 
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 (1 − 𝑒
−𝑖 

𝑐𝑗
2𝑚𝑑𝑥𝑚) 

= |𝑎𝑑| 𝑥
𝑑 sin (

𝑐

2𝑚𝑥𝑚
)   + 𝑔𝑑−1(𝑥), 

Where 

𝑔𝑑−1(𝑥)  = ∑  

𝑑−1

 𝑗=0

 𝑥𝑗𝑅𝑒 (𝑎𝑗𝑒
𝑖
𝑗𝜋
2𝑑
−𝑖
𝑗
𝑑
 arg(𝑎𝑑)  (1 −  𝑒 − 𝑖

𝑐𝑗
2𝑚𝑑𝑥𝑚

))  

= −∑  

 𝑑−1

 𝑗=0

|𝑎𝑗|𝑥
𝑗 sin (

𝑗𝜋

2𝑑
 +  𝑎𝑟𝑔 𝑎𝑗  −

𝑗

𝑑
 𝑎𝑟𝑔 (𝑎𝑑))  sin

𝑐𝑗
2𝑚𝑑𝑥𝑚

 

+ ∑  

𝑑−1

 𝑗=0

|𝑎𝑗  |𝑥
𝑗 cos [

𝑗𝜋

2𝑑
 +  𝑎𝑟𝑔 𝑎𝑗   −

𝑗

𝑑
 𝑎𝑟𝑔 (𝑎𝑑)] [1 −  𝑐𝑜𝑠

𝑐𝑗
2𝑚𝑑𝑥𝑚

]

≲ 𝑥𝑑−1−𝑚 . 
Therefore, there exist some 𝑥0  >  0 and 𝛿 >  0 such that 

𝑅𝑒 (𝑔(𝓏(𝑥)) −  𝑔(𝑤(𝑥))) ≥
𝛿|𝑎𝑑|𝑥

𝑑

𝑥𝑚
 

for all 𝑥 ≥  𝑥0. Since 𝑎𝑑 ≠ 0, it follows from (41) that 𝑑 ≤  𝑚.  
On several occasions later on we will need to estimate the integral 

𝐼(𝑎)  = ∫  
∞

0

𝑒−
1
2
 𝑟2𝑚+𝑎𝑟𝑑  𝑟𝑁 𝑑𝑟, 

where 𝑚 >  0, 0 ≤  𝑑 ≤  𝑚, 𝑁 >  −1, and 𝑎 ≥  0. 
       First, suppose 𝑎 >  1. By various changes of variables, we have 

𝐼(𝑎) = ∫  
1

0

𝑒−
1
2
 𝑟2𝑚+𝑎𝑟𝑑  𝑟𝑁 𝑑𝑟 + ∫  

∞

1

𝑒−
1
2
 𝑟2𝑚+𝑎𝑟𝑑  𝑟𝑁 𝑑𝑟

≤  𝑒𝑎∫  
1

0

𝑟𝑁𝑑𝑟 + ∫  
∞

1

𝑒−
1
2
 𝑟2𝑚+𝑎𝑟𝑚 𝑟𝑁  𝑑𝑟 

=
𝑒𝑎

𝑁 +  1
 + 𝑒

𝑎2

2 ∫  
∞

1

𝑒−
1
2
 (𝑟𝑚−𝑎)2𝑟𝑁  𝑑𝑟 

=
𝑒𝑎

𝑁 +  1
 +
𝑒
𝑎2

2

𝑚
∫  
∞

1

𝑒^(−
1

2
(𝑡 − 𝑎)2 𝑡

𝑁+1
𝑚

 −1 𝑑𝑡. 

If  
𝑁+1

𝑚
  −  1 ≤  0, then 

𝐼(𝑎) ≤
𝑒𝑎

𝑁 +  1
 +
√2𝜋

𝑚
 𝑒
𝑎2

2  ≤ (
√𝑒

𝑁 +  1
 +
√2𝜋

𝑚
)𝑒

𝑎2

2  . 

     Otherwise, we have 
𝑁+1

𝑚
 −  1 >  0. Using the fact that 𝑢 ⟼ 𝑢

𝑁+1

𝑚
−1  is increasing, we 

see that 

∫  

𝑎
2

−
𝑎
2

𝑒−
𝑡2

2  (𝑡 + 𝑎)
𝑁+1
𝑚

 −1𝑑𝑡 ≤ (
3𝑎

2
)

𝑁+1
𝑚

−1

∫  

𝑎
2

−
𝑎
2

𝑒−
𝑡2

2  𝑑𝑡 ≤  √2𝜋 (
3𝑎

2
)

𝑁+1
𝑚

 −1

 . 

For the same reason we also have 

∫  
+∞

𝑎
2

𝑒−
𝑡2

2  (𝑡 +  𝑎)
𝑁+1
𝑚

 −1 𝑑𝑡 ≤ ∫  
+∞

𝑎
2

𝑒−
𝑡2

2  (3𝑡)
𝑁+1
𝑚

 −1𝑑𝑡  
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≤ 3
𝑁+1
𝑚

 −1∫  
+∞

0

𝑡
𝑁+1
𝑚

 −1𝑒−
𝑡2

2  𝑑𝑡  

=
√2

2
(3 √2)

𝑁+1
𝑚

 −1
∫  
+∞

0

𝑢
𝑁+1
𝑚

 −1𝑒−𝑢 𝑑𝑡  

= 
√2

2
(3 √2)

𝑁+1
𝑚

 −1
𝛤 (
𝑁 +  1

2𝑚
)  . 

In the case when 1 −  𝑎 <  −𝑎 2 (or equivalently 𝑎 >  2), 

∫  
−
𝑎
2

1−𝑎

𝑒−
𝑡2

2  (𝑡 +  𝑎)
𝑁+1
𝑚

−1 𝑑𝑡 ≤ (
𝑎

2
)

𝑁+1
𝑚

 −1

∫   
−
𝑎
2

 1−𝑎

𝑒−
𝑡2

2  𝑑𝑡  

≤ (
𝑎

2
)

𝑁+1
𝑚

−1

 ∫  
−
𝑎
2

 1−𝑎

𝑒
𝑎𝑡
4 𝑑𝑡 ≤ (

𝑎

2
)

 𝑁+1
𝑚

−1

 
4

𝑎
𝑒−

𝑎2

8 ≤  2 (
𝑎

2
)

𝑁+1
𝑚

−1

. 

It follows that there exists a constant 𝐶 =  𝐶(𝑚,𝑁)  >  0 such that 

∫  
∞

1

 𝑒−
1
2
 (𝑡−𝑎)2𝑡

𝑁+1
𝑚

−1𝑑𝑡 = ∫  
∞

1−𝑎

𝑒−
𝑡2

2  (𝑡 +  𝑎)
𝑁+1
𝑚

 −1𝑑𝑡 ≤  𝐶 (1 +  𝑎)
𝑁+1
𝑚

 −1
 

for 
𝑁+1

𝑚
 − 1 >  0. It is then easy to find another positive constant 𝐶 =  𝐶(𝑚,𝑁), 

independent of 𝑎, such that 

𝐼(𝑎)  ≤  𝐶 (1 +  𝑎)
𝑁+1
𝑚

 −1𝑒
𝑎2

2  

for all 𝑎 ≥  1 and 
𝑁+1

𝑚
 − 1 >  0. Therefore, 

∫  
∞

0

𝑒−
1
2
 𝑟2𝑚+𝑎𝑟𝑑  𝑟𝑁 𝑑𝑟 ≤  𝐶 (1 +  𝑎)

max(0,
𝑁+1
𝑚

 −1)
 𝑒
𝑎2

2                     (42) 

for all 𝑎 ≥  1. Since 𝐼(𝑎) is increasing in 𝑎, the estimate above holds for 0 ≤  𝑎 ≤  1 as 

well. 

Lemma (5.3.5)[152]: For any 𝑚 >  0, 𝛿 >  0, 𝑅 ≥  1, 𝑁 >  −1, and 𝑝 ≥  0, we can find 

a constant 𝐶 >  0 (depending on 𝑅, 𝛿, 𝑝, 𝑁,𝑚 but not on 𝑎, 𝑑, 𝑥) such that 

𝑥𝑁+1−𝑝∫  
  +∞

𝑅
𝑥2

𝑒−
𝑥2𝑚

2
 (1+𝑟2𝑚)+𝑎𝑥𝑑(1+𝛿𝑟𝑑) 𝑟𝑁 𝑑𝑟 ≤  𝐶 (1 +  𝑎)

max(0,
𝑁+𝑝+1
𝑚

 −1)
𝑒
1+𝛿2

2
𝑎2

 

and 

𝑥𝑚  ∫  
 +∞ 

𝑅
𝑥2

𝑒−
𝑥2𝑚

2
(1−𝑟𝑚)2+𝑎𝑥𝑑(1−𝑟𝑑)𝑟

𝑚
2  𝑑𝑟 ≤  𝐶(1 +  𝑎)𝑒

𝑎2

2  

for all 𝑥 >  0, 𝑎 >  0, and 0 ≤  𝑑 ≤  𝑚. 
Proof. Let 𝐼 =  𝐼(𝑚,𝑁, 𝑝, 𝑅, 𝑥, 𝑎, 𝑑) denote the first integral that we are trying to estimate. 

If 𝑥 ≥  1, we have 
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𝐼 =  𝑥𝑁+1−𝑝 𝑒−
𝑥2𝑚

2
 +𝑎𝑥𝑑∫   

∞

𝑅
𝑥2

𝑒−
(𝑥𝑟)2𝑚

2
 +𝑎𝛿(𝑥𝑟)𝑑 𝑟𝑁 𝑑𝑟 

≤  𝑥−𝑝 𝑒−
𝑥2𝑚

2
 +𝑎𝑥𝑚∫  

∞

𝑅
𝑥
 

𝑒−
𝑟2𝑚

2
 +𝑎𝛿𝑟𝑑 𝑟𝑁𝑑𝑟 

≤  𝑒−
1
2
 (𝑥𝑚−𝑎)2+

𝑎2

2

∫  
∞
𝑅
𝑥
 
𝑟𝑝

𝑅𝑝
 𝑒−

1
2
 𝑟2𝑚+𝑎𝛿𝑟𝑑  𝑟𝑁 𝑑𝑟 

≤
𝑒
𝑎2

2

𝑅𝑝
 ∫  

∞

𝑅
𝑥
 

𝑒−
𝑟2𝑚

2
 +𝑎𝛿𝑟𝑑 𝑟𝑁+𝑝𝑑𝑟. 

The desired result then follows from (42). 

    If 0 < 𝑥 <  1, we have 

𝐼 =  𝑥𝑁+1−𝑝 𝑒−
𝑥2𝑚

2
 +𝑎𝑥𝑑  ∫   

∞

𝑅
𝑥2

𝑒−
(𝑥𝑟)2𝑚

2
 +𝑎𝛿(𝑥𝑟)𝑑 𝑟𝑁 𝑑𝑟 ≤  𝑒𝑎𝑥−𝑝   ∫  

∞

𝑅
𝑥
 

𝑒−
𝑟2𝑚

2
 +𝑎𝛿𝑟𝑑 𝑟𝑁𝑑𝑟  

≤
𝑒
𝑎2

2
 +1

𝑅𝑝
 ∫  

∞

𝑅
𝑥
 

𝑒−
𝑟2𝑚

2
 +𝑎𝛿𝑟𝑑 𝑟𝑁+𝑝𝑑𝑟. 

The desired estimate follows from (42) again. 

      To prove the second part of the lemma, denote by 𝐽 =  𝐽(𝑚, 𝑑, 𝑅, 𝑥, 𝑎) the second 

integral that we are trying to estimate. Then it is clear from a change of variables that for 

0 < 𝑥 <  1 we have 

𝐽(𝑚, 𝑑, 𝑅, 𝑥, 𝑎)  =  𝑥
𝑚
2
 −1∫  

+∞

𝑅
𝑥

𝑒−
1
2
 (𝑥𝑚−𝑟𝑚)2+𝑎(𝑥𝑑−𝑟𝑑)𝑟

𝑚
2  𝑑𝑟  

≤
𝑒𝑎

𝑅
 𝑥
𝑚
2  ∫  

+∞

𝑅
𝑥

𝑒−
1
2
(𝑥2𝑚−2(𝑥𝑟)𝑚+𝑟2𝑚)𝑟

𝑚
2
 +1 𝑑𝑟  

≤
𝑒𝑎

𝑅
∫  
+∞

0

𝑒−
𝑟2𝑚

2
 +𝑟𝑚  𝑟

𝑚
2
 +1 𝑑𝑟 =  𝐶𝑒𝑎  

≤ 𝐶′(1 +  𝑎)𝑒
𝑎2

2  , 
where the constants 𝐶 and 𝐶 only depend on 𝑅 and 𝑚. 
    Next assume that 𝑥 ≥  1. In case 𝑅 ≤  𝑥2 we write 𝐽 =  𝐽1  +  𝐽2, where 

𝐽1  =  𝐽1(𝑚, 𝑑, 𝑅, 𝑥, 𝑎)  =  𝑥
𝑚   ∫  

1

𝑅
𝑥2

 𝑒−
𝑥2𝑚

2
(1−𝑟𝑚)2+𝑎𝑥𝑑(1−𝑟𝑑)  𝑟

𝑚
2  𝑑𝑟,  

And 

𝐽2  =  𝐽2(𝑚, 𝑑, 𝑅, 𝑥, 𝑎)  =  𝑥
𝑚∫  

∞

1

 𝑒−
𝑥2𝑚

2
(1−𝑟𝑚)2+𝑎𝑥𝑑(1−𝑟𝑑)  𝑟

𝑚
2  𝑑𝑟.  

 Otherwise we just use 𝐽 ≤  𝐽2. So it suffices to estimate the two integrals above. 

     To handle 𝐽1(𝑚, 𝑑, 𝑅, 𝑥, 𝑎), we fix 𝜀 >  0 and consider two cases. In the case 𝑥𝑚  ≤
 𝑎(1 +  𝜀), we have 

𝐽1(𝑚, 𝑑, 𝑅, 𝑥, 𝑎)  ≤  𝑥
𝑚∫  

1

𝑅
𝑥2

 𝑒−
𝑥2𝑚

2
(1−𝑟𝑚)2+𝑎𝑥𝑑(1−𝑟𝑑)  𝑟

𝑚
2  𝑑𝑟 
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≤  𝑎(1 +  𝜀)𝑒
𝑎2

2 ∫  
1

𝑅
𝑥2

𝑒−
1
2
 (𝑥𝑚(1−𝑟𝑚)−𝑎)2 𝑟

𝑚
2  𝑑𝑟 ≤  𝑎(1 +  𝜀)𝑒

𝑎2

2 . 

When 𝑥𝑚  ≥  𝑎(1 +  𝜀), we set 𝑦 =  𝑥𝑚 and 𝜏 =  (𝑦 −  𝑎)/2. Then we have 

𝜏 ≥
𝜀

2(1 +  𝜀)
 𝑦 →  +∞ 

as 𝑦 →  +∞. By successive changes of variables we see that 

𝐽1(𝑚, 𝑑, 𝑅, 𝑥, 𝑎)  ≤  𝑥
𝑚∫  

1

𝑅
𝑥2

𝑒−
𝑥2𝑚

2
 (1−𝑟𝑚)2+𝑎𝑥𝑚(1−𝑟𝑚)𝑟

𝑚
2  𝑑𝑟 

=
𝑦

𝑚
∫  
1− 

𝑅𝑚

𝑦2

0

 (1 −  𝑟)
1
𝑚
 −
1
2 𝑒− 

𝑦2𝑟2

2
 +𝑎𝑦𝑟  𝑑𝑟 

=
1

𝑚
∫  
𝑦−
𝑅𝑚

𝑦

0

(1 −
𝑟

𝑦
)

1
𝑚
  −
1
2
 𝑒−

𝑟2

2
 +𝑎𝑟  𝑑𝑟 

=
𝑒
𝑎2

2

𝑚
∫  
𝑦−𝑎−

𝑅𝑚

𝑦

−𝑎

(1 −
𝑎

𝑦
 −
𝑟

𝑦
)

1
𝑚
 −
1
2
 𝑒−

𝑟2

2  𝑑𝑟.  

 

This shows that for 1 ≤  𝑚 ≤  2 we have 

𝐽1  ≤
𝑒
𝑎2

2

𝑚
∫  
𝑦−𝑎−

𝑅𝑚

𝑦

−𝑎

𝑒−
𝑟2

2  𝑑𝑟 ≤
√2𝜋

𝑚
 𝑒
𝑎2

2  . 

Thus we suppose that 𝑚 >  2. Then 

∫  
𝜏

−𝜏

(1 −
𝑎

𝑦
 −
𝑟

𝑦
)

1
𝑚
 −
1
2
  𝑒−

𝑟2

2  𝑑𝑟 ≤ (1 −
𝑎

𝑦
 −
𝜏

𝑦
)

1
𝑚
 −
1
2
∫  
𝜏

−𝜏

𝑒−
𝑟2

2  𝑑𝑟 

= (
𝜏

2𝑦
)

1
𝑚
  −
1
2
∫  
𝜏

−𝜏

𝑒−
𝑟2

2  𝑑𝑟 ≤  √2𝜋 (
𝜀

4(1 +  𝜀)
)

1
𝑚
 −
1
2
. 

Moreover, in case −𝑎 <  −𝜏 , we have 

∫  
−𝜏 

−𝑎

(1 −
𝑎

𝑦
 −
𝑟

𝑦
)

1
𝑚
  −
1
2
 𝑒−

𝑟2

2  𝑑𝑣 ≤ (1 −
𝑎

𝑦
 +
𝜏

𝑦
)

1
𝑚
 −
1
2
 

 ∫  
−𝜏

−𝑎

𝑒−
𝜏|𝑟|
2  𝑑𝑟  

≤  2 (
3𝜀

2(1 +  𝜀)
)

1
𝑚
 −
1
2
 
𝑒−

𝜏2

2

𝜏
   

≤  4 (
3

2
)

1
𝑚
 −
1
2
  (

𝜀

1 +  𝜀
)

1
𝑚
 −
3
2
 𝑒
−

𝜀2

8(1+𝜀)2  . 

Similarly, in case 𝑦 −  𝑎 −
𝑅𝑚

𝑦
 ≥  𝜏 ,  we have 

∫  
𝑦−𝑎−

𝑅𝑚

𝑦

𝜏

[1 −
𝑎

𝑦
 −
𝑟

𝑦
]

1
𝑚
 −
1
2
 𝑒−

𝑟2

2  𝑑𝑟 ≤ [
𝑅𝑚

𝑦2
]

1
𝑚
 −
1
2

   ∫  
𝑦−𝑎−

𝑅𝑚

𝑦

𝜏

𝑒−
𝜏𝑟
2   𝑑𝑟  

≤  2𝑅1−
𝑚
2  [

𝜀

2(1 +  𝜀)
]

2
𝑚
 −1

  𝜏−
2
𝑚
  𝑒−

𝜏2

2  (𝑠𝑖𝑛𝑐𝑒 𝜏 ≥
𝜀

2(1 +  𝜀)
)   

≤  4𝑅1−
𝑚
2  
1 +  𝜀

𝜀
 𝑒
−

𝜀2

8(1+𝜀)2   . 
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The last three estimates yield 

𝐽1  ≤  𝐶(1 +  𝑎)𝑒
𝑎2

2  

for some C > 0 that is independent of 𝑥 and 𝑎. 
     To establish the estimate for 𝐽2, we perform a change of variables to obtain 

 

𝐽2  ≤  𝑥
𝑚∫  

+∞

1

 𝑒−
𝑥2𝑚

2
 (1−𝑟𝑚)2  𝑟

𝑚
2  𝑑𝑟 =

1

𝑚
∫  
+∞

0

 𝑒−
𝑟2

2  (
𝑟

𝑥𝑚
 +  1)

1
𝑚
  −
1
2
 𝑑𝑟. 

If 𝑚 ≥  2, we have 

𝐽2  ≤
1

𝑚
 ∫  

+∞

0

𝑒−
𝑟2

2  𝑑𝑟, 

and if 1 ≤  𝑚 <  2, we have 

𝐽2  ≤
1

𝑚
 ∫  

+∞

0

𝑒−
𝑟2

2 (𝑟 +  1)
1
𝑚
  −
1
2 𝑑𝑟. 

Therefore, 𝐽2  ≤  𝐶 for some 𝐶 >  0 that is independent of 𝑥 and 𝑎. This completes the proof 

of the lemma. 

     In the proof of the Main Theorem (5.3.1), we will have to estimate the following two 

integrals: 

𝐼(𝑥, 𝑟)  = ∫   
 

|𝜃|≤
𝜋
2𝑚

 𝑒
−(𝑥𝑟)𝑚+2𝑎𝑟𝑑 sin2(

𝜃𝑑
2
 )
|𝐾𝑚(𝑥, 𝑟𝑒

𝑖𝜃)| 𝑑𝜃, 

and 

𝐽(𝑥, 𝑟) = ∫    
 

|𝜃|≥
𝜋
2𝑚

𝑒−(𝑥𝑟)
𝑚+𝑎(𝑥𝑑+𝑟𝑑) |𝐾𝑚(𝑥, 𝑟𝑒

𝑖𝜃)| 𝑑𝜃, 

where 𝑥, 𝑟, 𝑎 ∈  (0, +∞) and 0 ≤  𝑑 ≤  𝑚. 
Lemma (5.3.6)[152]: For any 𝑚 >  0 there exist positive constants 𝐶 =  𝐶(𝑚) and 𝑅 =
 𝑅(𝑚) such that 

𝐼(𝑥, 𝑟)  ≤  𝐶(𝑥𝑟)𝑚−1  ∫  
1

0

𝑒−((𝑥𝑟)
𝑚−𝑎𝑟𝑑)𝑡2  𝑑𝑡 

And 

𝐽(𝑥, 𝑟)  ≤
𝐶𝑒−(𝑥𝑟)

𝑚+𝑎(𝑥𝑑+𝑟𝑑)

𝑥𝑟
  

for all 𝑎 >  0, 0 ≤  𝑑 ≤  𝑚, and 𝑥 >  0 with 𝑥𝑟 >  𝑅. 
Proof. It follows from Lemma (5.3.2) that there exist positive constants 𝐶 =  𝐶(𝑚) and 

𝑅 =  𝑅(𝑚) such that for all 𝑎 >  0 and 𝑥𝑟 >  𝑅 we have 

𝐼(𝑥, 𝑟) ≤ 𝐶(𝑥𝑟)𝑚−1∫  
 

|𝜃|≤
𝜋
2𝑚

𝑒
−(𝑥𝑟)𝑚+(𝑥𝑟)𝑚 cos(𝑚𝜃)+2𝑎𝑟𝑑 sin2  (

𝜃𝑑
2
 )
 𝑑𝜃  

=  2𝐶(𝑥𝑟)𝑚−1 ∫  

𝜋
2𝑚

0

𝑒
−2(𝑥𝑟)𝑚 sin2  (

𝑚𝜃
2
 )+2𝑎𝑟𝑑 sin2  (

𝜃𝑑
2
 )
 𝑑𝜃  

≤  2𝐶(𝑥𝑟)𝑚−1∫  
 
𝜋
2𝑚

0

 𝑒
−2(𝑥𝑟)𝑚 sin2  (

𝑚𝜃
2
 )+2𝑎𝑟𝑑 sin2  (

𝑚𝜃
2
 )
 𝑑𝜃  

≤  2𝐶(𝑥𝑟)𝑚−1∫  
 
𝜋
2𝑚

0

𝑒
−2((𝑥𝑟)𝑚−𝑎𝑟𝑑) sin2  (

𝑚𝜃
2
 )
 𝑑𝜃  
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=
4𝐶

𝑚
 (𝑥𝑟)𝑚−1∫  

√2
2

0

𝑒
−2((𝑥𝑟)𝑚−𝑎𝑟𝑑)𝑡2

𝑑𝑡

√1 − 𝑡2    

≤
4√2𝐶

𝑚
 (𝑥𝑟)𝑚−1∫  

√2
2

0

𝑒−2((𝑥𝑟)
𝑚−𝑎𝑟𝑑)𝑡2  𝑑𝑡  

≤
4√2𝐶

𝑚
 (𝑥𝑟)𝑚−1∫  

1

0

𝑒−((𝑥𝑟)
𝑚−𝑎𝑟𝑑)𝑡2  𝑑𝑡. 

The estimate 

𝐽(𝑥, 𝑟)  ≤
𝐶𝑒−(𝑥𝑟)

𝑚+𝑎(𝑥𝑑+𝑟𝑑)

𝑥𝑟
, 𝑥𝑟 >  𝑅, 

also follows from Lemma (5.3.2). 

Lemma (5.3.7)[152]: For any 𝑚 ≥  1 there exist constants 𝑅 =  𝑅(𝑚)  >  1 and 𝐶 =
 𝐶(𝑚)  >  0 such that 

∫  
+∞

𝑅
𝑥

𝑒−
1
2
 (𝑥𝑚−𝑟𝑚)2+𝑎(𝑥𝑑−𝑟𝑑)  𝐼(𝑥, 𝑟)𝑟 𝑑𝑟 ≤  𝐶 (1 +  𝑎)

1
𝑚
 −1 𝑒𝑎

2
 

and 

∫  
+∞

𝑅
𝑥

 𝑒−
1
2
 (𝑥𝑚−𝑟𝑚)2  𝐽(𝑥, 𝑟)𝑟 𝑑𝑟 ≤  𝐶 (1 +  𝑎)

max(0,
2
𝑚
 −1)𝑒𝑎

2

  

for all 𝑥 >  0, 𝑎 >  0, and 0 ≤  𝑑 ≤  𝑚. 
Proof. For convenience we write 

𝐴𝐼 (𝑥, 𝑟) =  𝑒
−
1
2
 (𝑥𝑚−𝑟𝑚)2+𝑎(𝑥𝑑−𝑟𝑑) 𝐼(𝑥, 𝑟)𝑟, 

and 

𝐴𝐽 (𝑥, 𝑟) = 𝑒
−
1
2
 (𝑥𝑚−𝑟𝑚)2  𝐽(𝑥, 𝑟)𝑟. 

Let 𝑅 and 𝐶 be the constants from Lemma (5.3.6). In the integrands we have 𝑟 >  𝑅/𝑥, or 

𝑥𝑟  >  𝑅, so according to Lemma (5.3.6), 

𝐼(𝑥, 𝑟)  ≤  𝐶(𝑥𝑟)𝑚−1∫  
1

0

𝑒−(𝑥𝑟)
𝑚𝑡2+𝑎𝑟𝑑𝑡2  𝑑𝑡. 

If, in addition, 𝑥 ≤  1, then  

𝐼(𝑥, 𝑟) ≤  𝐶𝑟𝑚−1𝑒𝑎𝑟
𝑑
 , 

and 

𝐴𝐼 (𝑥, 𝑟) =  𝑒
−
1
2
 (𝑥𝑚−𝑟𝑚)2 𝑒𝑎𝑥

𝑑−𝑎𝑟𝑑

 𝐼(𝑥, 𝑟)𝑟 ≤  𝐶𝑟𝑚𝑒𝑎𝑒−
1
2
 (𝑥𝑚−𝑟𝑚)2  . 

It follows that 

∫  
∞

𝑅
𝑥

𝐴𝐼 (𝑥, 𝑟) 𝑑𝑟 ≤  𝐶𝑒
𝑎∫  

∞

𝑅
𝑥

𝑟𝑚𝑒−
1
2
 (𝑥𝑚−𝑟𝑚)2  𝑑𝑟  

≤  𝐶𝑒𝑎∫  
∞

0

𝑟𝑚𝑒−
1
2
 𝑥2𝑚+𝑥𝑚𝑟𝑚−

1
2
 𝑟2𝑚 𝑑𝑟  

≤ 𝐶𝑒𝑎∫  
∞

0

𝑟𝑚𝑒𝑟
𝑚−

1
2
 𝑟2𝑚

 𝑑𝑟 

≤  𝐶 (1 +  𝑎)
1
𝑚
 −1𝑒𝑎

2
 .  

for all 𝑎 >  0 and 0 <  𝑥 ≤  1. 
    Similarly, if 𝑥 ≤  1 (and 𝑥𝑟 >  𝑅), we deduce from Lemma (5.3.6) and (42) that 
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∫   
∞

𝑅
𝑥

𝐴𝐽 (𝑥, 𝑟) 𝑑𝑟 ≤
𝐶

𝑅
∫   
∞

𝑅
𝑥

𝑒−
1
2
 (𝑥𝑚−𝑟𝑚)2  𝑒−(𝑥

𝑟)𝑚+𝑎𝑥𝑑+𝑎𝑟𝑑 𝑟  𝑑𝑟  

≤
𝐶𝑒𝑎

𝑅
∫   
∞

𝑅
𝑥

𝑒−
1
2
 𝑟2𝑚+𝑎𝑟𝑑  𝑟 𝑑𝑟 

≤ 𝐶′(1 +  𝑎) max (0,
2

𝑚
 − 1) 𝑒𝑎

2
 . 

Suppose now that 𝑥 ≥  1 and 𝑟𝑥 >  𝑅. By Lemma (5.3.6) again, 

𝐴𝐼 (𝑥, 𝑟)  ≤  𝐶𝑟(𝑥𝑟)
 𝑚−1 𝑒−

1
2
 (𝑥𝑚−𝑟𝑚)2+𝑎(𝑥𝑑−𝑟𝑑)∫  

1

0

𝑒−𝑡
2((𝑥𝑟)𝑚−𝑎𝑟𝑑) 𝑑𝑡. 

Fix a sufficiently small 𝜀 ∈  (0, 1). If (𝑥𝑟)𝑚 ≥  𝑎𝑟𝑑(1 +  𝜀), then 

∫  
1

0

𝑒−𝑡
2((𝑥𝑟)𝑚−𝑎𝑟𝑑) 𝑑𝑡 =  

1

√(𝑥𝑟)𝑚  −  𝑎𝑟𝑑
∫  
√(𝑥𝑟)𝑚 − 𝑎𝑟𝑑

0

𝑒−𝑠
2
 𝑑𝑠  

≤ 
1

√(𝑥𝑟)𝑚  −  𝑎𝑟𝑑
∫  
∞

0

𝑒−𝑠
2
 𝑑𝑠  

=
√𝜋

2

(𝑥𝑟)−
𝑚
2

√1 − (
𝑎𝑟𝑑

(𝑥𝑟)𝑚
)

  

≤ √
𝜋(1 +  𝜀)

4𝜀
 (𝑥𝑟)−

𝑚
2  , 

so there exists a constant 𝐶 =  𝐶(𝑚) such that 

𝐴𝐼  (𝑥, 𝑟)  ≤  𝐶𝑟(𝑥𝑟)
𝑚
2
 −1 𝑒−

1
2
 (𝑥𝑚−𝑟𝑚)2+𝑎(𝑥𝑑−𝑟𝑑) . 

If (𝑥𝑟)𝑚  ≤  𝑎𝑟𝑑(1 +  𝜀), we have 

𝐴𝐼(𝑥, 𝑟) 𝑎
𝑚−1
𝑚  𝑟

𝑑(𝑚−1)+𝑚
𝑚

   𝑒−
1
2
 (𝑥2𝑚+𝑟2𝑚)+𝑎𝑥𝑑∫  

1

0

𝑒(1−𝑡
2)((𝑥𝑟)𝑚−𝑎𝑟𝑑) 𝑑𝑡  

≤ 𝑎
𝑚−1
𝑚  𝑟

𝑑(𝑚−1)+𝑚
𝑚  𝑒−

1
2
 (𝑥2𝑚+𝑟2𝑚)+𝑎(𝑥𝑑+𝜀𝑟𝑑) . 

It follows that 

∫  
+∞

𝑅
𝑥

𝐴𝐼 (𝑥, 𝑟) 𝑑𝑟 ≲ 𝑥
𝑚
2
−1∫  

+∞

𝑅
𝑥

𝑒−
1
2
 (𝑥𝑚−𝑟𝑚)2+𝑎(𝑥𝑑−𝑟𝑑)𝑟

𝑚
2  𝑑𝑟  

+𝑎
𝑚−1
𝑚 ∫  

+∞

𝑅
𝑥

 𝑒−
1
2
 (𝑥2𝑚+𝑟2𝑚)+𝑎(𝑥𝑑+𝜀𝑟𝑑)𝑑𝑟. 

The change of variables 𝑟 ⟼ 𝑥𝑟 along with the second part of Lemma (5.3.5) shows that 

𝑥
𝑚
2
−1∫  

+∞

𝑅
𝑥

𝑒−
1
2
 (𝑥𝑚−𝑟𝑚)2+𝑎(𝑥𝑑−𝑟𝑑)𝑟

𝑚
2   𝑑𝑟 ≤  𝐶(1 +  𝑎)𝑒

𝑎2

2  . 

Similarly, the change of variables 𝑟 ⟼ 𝑥𝑟 together with the first part Lemma (5.3.5) shows 

that 

∫  
+∞

𝑅
𝑥

𝑟
𝑑(𝑚−1)+𝑚

𝑚  𝑒−
1
2
 (𝑥2𝑚+𝑟2𝑚)+𝑎(𝑥𝑑+𝜀𝑟𝑑) 𝑑𝑟 ≤  𝐶(1 +  𝑎)

𝑑(𝑚−1)+𝑚
𝑚 𝑒

1+𝜀2

2
𝑎2  . 

We may assume that 𝜀 <  1. Then we can find a positive constant 𝐶 such that 
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𝑎
𝑚−1
𝑚 ∫  

+∞

𝑅
𝑥

 𝑟
𝑑(𝑚−1)+𝑚

𝑚   𝑒−
1
2
 (𝑥2𝑚+𝑟2𝑚)+𝑎(𝑥𝑑+𝜀𝑟𝑑)𝑑𝑟 ≤  𝐶(1 +  𝑎)

1
𝑚
  −1 𝑒𝑎

2
 . 

 

It follows that 

∫  
+∞ 

𝑅
𝑥

 𝐴𝐼 (𝑥, 𝑟) 𝑑𝑟 ≤  𝐶 (1 +  𝑎)
1
𝑚
 −1 𝑒𝑎

2
 

for some other positive constant 𝐶 that is independent of 𝑎 and 𝑥. This proves the first 

estimate of the lemma. 

    To establish the second estimate of the lemma, we use Lemma (5.3.6) to get 

𝑥𝐴𝐽 (𝑥, 𝑥𝑟)  =  𝑥
2 𝑟𝑒−

𝑥2𝑚

2
 (1−𝑟𝑚)2  𝐽(𝑥, 𝑥𝑟)  ≤  𝐶𝑒−

𝑥2𝑚

2
 (1+𝑟2𝑚)+𝑎𝑥𝑑(1+𝑟𝑑) .  

It follows from this and Lemma (5.3.5) that 

∫  
+∞ 

𝑅
𝑥

𝐴𝐽 (𝑥, 𝑟) 𝑑𝑟 =  𝑥 ∫  
+∞ 

𝑅
𝑥2

𝐴𝐽 (𝑥, 𝑥𝑟) 𝑑𝑟 ≤  𝐶(1 +  𝑎)
max(0,

2
𝑚
 −1)

𝑒𝑎
2
  .  

This completes the proof of the lemma. 

Lemma (5.3.8)[152]: If 𝑢(𝓏)  =  𝑒𝑔(𝓏) and 𝑣(𝓏)  =  𝑒−𝑔(𝓏) , where 𝑔 is a polynomial of 

degree at most 𝑚, then the operator 𝑇 =  𝑇𝑢𝑇�̅� is bounded on ℱ𝑚
2 . 

Proof. To prove the boundedness of 𝑇 =  𝑇𝑢𝑇�̅�, we shall use a standard technique known 

as Schur’s test [162]. Since 

𝑇 𝑓(𝓏)  = ∫  
 

ℂ

𝐾𝑚(𝓏,𝑤)𝑒
𝑔(𝓏)−𝑔(𝑤)̅̅ ̅̅ ̅̅ ̅

 𝑓(𝑤)𝑒−|𝑤|
2𝑚
 𝑑𝐴(𝑤), 

we have 

|𝑇 𝑓(𝓏)|𝑒−
1
2
 |𝓏|2𝑚 ≤ ∫  

 

ℂ

 𝐻𝑔(𝓏, 𝑤)|𝑓(𝑤)|𝑒
−
1
2
 |𝑤|2𝑚𝑑𝐴(𝑤), 

where 

𝐻𝑔(𝓏, 𝑤) ∶=  |𝐾𝑚(𝓏,𝑤)|𝑒
−
1
2
 (|𝓏|2𝑚+|𝑤|2𝑚)+𝑅𝑒(𝑔(𝓏)−𝑔(𝑤)̅̅ ̅̅ ̅̅ ̅). 

Thus 𝑇 will be bounded on ℱ𝑚
2 if the integral operator 𝑆𝑔 defined by 

𝑆𝑔𝑓(𝓏)  = ∫  
 

ℂ

(𝐻𝑔(𝓏,𝑤) + 𝐻𝑔(𝑤, 𝓏))  𝑓(𝑤) 𝑑𝐴(𝑤) 

is bounded on 𝐿2(ℂ, 𝑑𝐴). Let 

𝐻𝑔(𝓏)  = ∫  
 

ℂ

𝐻𝑔(𝓏,𝑤) 𝑑𝐴(𝑤), 𝓏 ∈ ℂ. 

Since 

𝐻−𝑔(𝓏)  = ∫  
 

\𝑐𝑎𝑙𝑐𝑜𝑙𝑢𝑠 

ℂ 𝐻𝑔(𝑤, 𝓏) 𝑑𝐴(𝑤), 

for all 𝓏 ∈ ℂ, by Schur’s test, the operator 𝑆𝑔 is bounded on 𝐿2(ℂ, 𝑑𝐴) if we can find a 

positive constant 𝐶 such that 

𝐻𝑔(𝓏)  +  𝐻−𝑔(𝓏)  ≤  𝐶, 𝓏 ∈ ℂ. 

    By the Cauchy-Schwarz inequality, we have 

𝐻𝑔1+𝑔2  (𝓏)  ≤   √𝐻2𝑔1 (𝓏)𝐻2𝑔2 (𝓏) 

for all 𝓏 ∈ ℂ and holomorphic polynomials 𝑔1  and 𝑔2. Moreover, if 

𝑈𝜃(𝓏)  =  𝑒
𝑖𝜃𝓏, 𝓏 ∈ ℂ, 𝜃 ∈  [−𝜋, 𝜋], 



209 

Then 

𝐻𝑔𝜊𝑈𝜃  =  𝐻𝑔 𝜊 𝑈𝜃 

for all 𝓏 ∈ ℂ, 𝜃 ∈  [−𝜋, 𝜋], and holomorphic polynomials 𝑔. Therefore, we only need prove 

the theorem for 𝑔(𝓏)  =  𝑎𝓏𝑑 with some 𝑎 >  0 and 𝑑 ≤  𝑚 and establish that 

sup
𝑥≥0

 𝐻𝑔(𝑥)  ≤  𝐶1𝑒
𝐶2𝑎

2
 ,                                              (43) 

where 𝐶𝑘 are positive constants independent of 𝑎 and 𝑑 (but dependent on 𝑚). We will see 

that 𝐶2 can be chosen as any constant greater than 1. 

    It is also easy to see that we only need to prove (43) for 𝑥 ≥  1. This will allow us to use 

the inequality 𝑥𝑑  ≤  𝑥𝑚 for the rest of this proof. 

     For 𝑅 >  0 sufficiently large (we will specify the requirement on 𝑅 later) we write 

𝐻𝑔(𝑥)  =  ∫  
 

|𝑥𝑤|≤𝑅

𝐻𝑔(𝑥, 𝑤) 𝑑𝐴(𝑤) + ∫  
 

|𝑥𝑤|≥𝑅

𝐻𝑔(𝑥, 𝑤) 𝑑𝐴(𝑤). 

We will show that both integrals are, up to a multiplicative constant, bounded above 

by 𝑒(1+𝜀)𝑎
2
 . 

     By properties of the Mittag-Leffler function, we have 

|𝐾𝑚(𝑥, 𝑤)|  ≤
𝑚

𝜋
 𝐸 1
𝑚
 ,
1
𝑚
 (𝑅) ∶=  𝐶𝑅 , |𝑥𝑤|  ≤  𝑅. 

It follows that the integral 

𝐼1  = ∫  
 

𝑥|𝑤|≤𝑅

𝐻𝑔(𝑥, 𝑤) 𝑑𝐴(𝑤) 

Satisfies 

𝐼1  = ∫  
 

𝑥|𝑤|≤𝑅

 |𝐾𝑚(𝓏,𝑤)|𝑒
−
1
2
 (|𝓏|2𝑚+|𝑤|2𝑚)+𝑎𝑅𝑒 (𝑥𝑑−𝑤𝑑) 𝑑𝐴(𝑤)  

≤ 𝐶𝑅∫  
 

𝑥|𝑤|≤𝑅

 𝑒−
1
2
 (𝑥2𝑚+|𝑤|2𝑚)+𝑎𝑅𝑒(𝑥𝑑−𝑤𝑑) 𝑑𝐴(𝑤)  

≤ 𝐶𝑅𝑒
−
1
2
 𝑥2𝑚 +𝑎𝑥𝑑∫  

 

𝑥|𝑤|≤𝑅

 𝑒−
|𝑤|2𝑚

2
 +𝑎|𝑤|𝑑  𝑑𝐴(𝑤)  

≤  2𝜋𝐶𝑅𝑒
−
1
2
 𝑥2𝑚+𝑎𝑥𝑚∫  

+∞

0

𝑒−
𝑟2𝑚

2
 +𝑎𝑟𝑑  𝑟 𝑑𝑟  

≤  2𝜋𝐶𝑅𝑒
𝑎2

2 ∫  
+∞

0

𝑒−
𝑟2𝑚

2
 +𝑎𝑟𝑑  𝑟 𝑑𝑟  

≤  𝐶(1 +  𝑎)
max(0,

2
𝑚
 −1)

 𝑒𝑎
2
 , 

where the last inequality follows from (42). 

      We now focus on the integral 

𝐼2  = ∫  
 

𝑥|𝑤|≥𝑅

 𝐻𝑔(𝑥, 𝑤) 𝑑𝐴(𝑤). 

Observe that for all 𝑥, 𝑟, and 𝜃 we have 

𝑅𝑒(𝑥𝑑 − 𝑟𝑑  𝑒𝑖𝑑𝜃) =  𝑥𝑑  −  𝑟𝑑  cos(𝑑𝜃)  =  𝑥𝑑  −  𝑟𝑑  +  𝑟𝑑  (1 −  cos(𝑑𝜃))  

= 𝑥𝑑  −  𝑟𝑑  +  2𝑟𝑑 sin2  (
𝑑𝜃

2
) . 

It follows from polar coordinates that 

𝐼2  =  ∫  
+∞

𝑅
𝑥

∫  
𝜋

−𝜋

 𝐻𝑔(𝑥, 𝑟𝑒
𝑖𝜃)𝑟 𝑑𝜃 𝑑𝑟  
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= ∫  
+∞

𝑅
𝑥

∫  
𝜋

−𝜋

𝑒
−
1
2
 (𝑥2𝑚+𝑟2𝑚)+𝑎(𝑥𝑑−𝑟𝑑 cos(𝑑𝜃))

|𝐾𝑚(𝑥, 𝑟𝑒
𝑖𝜃)|𝑟 𝑑𝜃 𝑑𝑟  

= ∫  
∞

𝑅
𝑥

𝑒−
1
2
 (𝑥𝑚−𝑟𝑚)2+𝑎(𝑥𝑑−𝑟𝑑)−(𝑥𝑟)𝑚 𝑟 𝑑𝑟∫  

𝜋

−𝜋

 𝑒2𝑎𝑟
𝑑
sin2  (

𝑑𝜃

2
 ) |𝐾𝑚(𝑥, 𝑟𝑒

𝑖𝜃)| 𝑑𝜃  

≤ ∫  
+∞

𝑅
𝑥

𝑒−
1
2
 (𝑥𝑚−𝑟𝑚)2 (𝑒𝑎(𝑥

𝑑−𝑟𝑑) 𝐼(𝑥, 𝑟) +  𝐽(𝑥, 𝑟))  𝑟 𝑑𝑟, 

Where 

𝐼(𝑥, 𝑟)  =  ∫  
 

|𝜃|≤
𝜋
2𝑚

 𝑒
−(𝑥𝑟)𝑚+2𝑎𝑟𝑑 sin2  (

𝑑𝜃
2
 )
|𝐾𝑚(𝑥, 𝑟𝑒

𝑖𝜃)| 𝑑𝜃, 

and 

𝐽(𝑥, 𝑟)  =  ∫  
 

|𝜃|≥
𝜋
2𝑚

 𝑒−(𝑥𝑟)
𝑚+𝑎(𝑥𝑑+𝑟𝑑)|𝐾𝑚(𝑥, 𝑟𝑒

𝑖𝜃)| 𝑑𝜃. 

By Lemma (5.3.7), there exists another constant 𝐶 >  0 such that 

𝐼2  ≤  𝐶(1 +  𝑎)
max(0,

2
𝑚
 −1)

𝑒𝑎
2
 . 

Therefore, 

sup
𝓏∈ℂ

∫  
 

ℂ

𝐻𝑔(𝓏, 𝑤) 𝑑𝐴(𝑤)  ≤  𝐶(1 +  𝑎)
max(0,

2
𝑚
 −1)

𝑒𝑎
2
 

for yet another constant 𝐶 that is independent of 𝑎 and 𝑑. Similarly, we also have 

sup
𝓏∈ℂ

∫ 
 

ℂ

𝐻−𝑔(𝓏, 𝑤) 𝑑𝐴(𝑤)  ≤  𝐶(1 +  𝑎)
max(0,

2
𝑚
 −1)

𝑒𝑎
2
 

This yields (43) and proves the lemma. 

We show that Sarason’s conjecture is true for Toeplitz products on the Fock type 

space ℱ𝑚
2 . We will prove that condition (37) in the Main Theorem (5.3.1) stated in the 

introduction is equivalent to conditions (35) and (36). Again we will break the proof down 

into several lemmas. 

Lemma (5.3.9)[152]: Suppose 𝑢 and 𝑣 are functions in ℱ𝑚
2 , not identically zero, such that 

the operator 𝑇 =  𝑇𝑢𝑇�̅� is bounded on ℱ𝑚
2 . Then the function | 𝑢|2̃(𝓏)| 𝑣|2̃(𝓏) is bounded 

on the complex plane. 

Proof. Since 𝑇𝑢𝑇�̅� is bounded on ℱ𝑚
2 , the operator (𝑇𝑢𝑇�̅�) 

∗ = 𝑇𝑢𝑇�̅� and the products 

(𝑇𝑢𝑇�̅�) 
∗ 𝑇𝑢𝑇�̅� and (𝑇𝑣𝑇𝑢) 

∗ 𝑇𝑣𝑇𝑢 are also bounded on ℱ𝑚
2 . Consequently, their Berezin 

transforms are all bounded functions on ℂ. 
         For any 𝓏 ∈ ℂ we let 𝑘𝓏 denote the normalized reproducing kernel of ℱ𝑚

2 at 𝓏. Then 

〈(𝑇𝑢𝑇�̅�) 
∗ 𝑇𝑢𝑇�̅�𝑘𝓏 , 𝑘𝓏〉 =  〈𝑇𝑢𝑇�̅�𝑘𝓏 , 𝑇𝑢𝑇�̅�𝑘𝓏〉  =   〈𝑢𝑣(𝓏)̅̅ ̅̅ ̅̅ 𝑘𝓏 , 𝑢𝑣(𝓏)̅̅ ̅̅ ̅̅ 𝑘𝓏〉  =  |𝑣(𝓏)|

2 | 𝑢|2̃(𝓏) 

is bounded on ℂ. Similarly |𝑢(𝓏)|2 | 𝑣|2̃(𝓏) is bounded on ℂ. By the proof of Lemma (5.3.4), 

the product 𝑢𝑣 is a non-zero complex constant, say, 𝑢(𝓏)𝑣(𝓏)  =  𝐶. It follows that the 

function 

| 𝑣|2̃(𝓏)| 𝑢|2̃(𝓏)  =  |𝑢(𝓏)|2 | 𝑣|2̃(𝓏)|𝑣(𝓏)|2 | 𝑢|2̃(𝓏)
1

|𝐶|2
  

is bounded as well. 

      To complete the proof of Sarason’s conjecture, we will need to find a lower bound for 

the function 

ℬ(𝓏)  =  | 𝑣|2̃(𝓏)|𝑢(𝓏)|2 , 
where 𝑢 =  𝑒𝑔, 𝑣 =  𝑒−𝑔, and 𝑔 is a polynomial of degree 𝑑. We write 
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𝑔(𝓏)  =  𝑎𝑑𝓏
𝑑  +  𝑔𝑑−1(𝓏), 

where 

𝑎𝑑  =  𝑎𝑒
𝑖𝛼𝑑 , 𝑎 >  0, 

and 

𝑔𝑑−1(𝓏)  = ∑  

𝑑−1

𝑙=0

𝑎𝑙𝓏
𝑙 . 

In the remainder, we will have to handle several integrals of the form 

𝐼(𝑥)  = ∫  
 

𝐽

𝑆𝑥(𝑟)𝑒
−𝑔𝑥(𝑟) 𝑑𝑟, 

where 𝑆𝑥 and 𝑔𝑥 are 𝐶3-functions on the interval 𝐽, and the real number 𝑥 tends to +∞. We 

will make use of the following variant of the Laplace method (see [130]). 

Lemma (5.3.10)[152]: Suppose that 

   (a) 𝑔𝑥 attains its minimum at a point 𝑟𝑥, which tends to +∞ as 𝑥 tends to +∞, with 𝑐𝑥  =
 𝑔𝑥
′′(𝑟𝑥)  >  0; 

   (b) there exists 𝜏𝑥 such that for |𝑟 − 𝑟𝑥|  <  𝜏𝑥, 𝑔𝑥
′′(𝑟)  =  𝑐𝑥(1 +  𝑜(1)) as 𝑥 ten ds to 

+∞; 
   (c) for |𝑟 − 𝑟𝑥| <  𝜏𝑥 , 𝑆𝑥(𝑟) ∼  𝑆𝑥(𝑟𝑥); 
   (d) we have 

∫ 
 

𝐽

𝑆𝑥(𝑟)𝑒
−𝑔𝑥(𝑟) 𝑑𝑟 =  (1 +  𝑜(1))∫  

 

|𝑟−𝑟𝑥|<𝜏𝑥

 𝑆𝑥(𝑟)𝑒
−𝑔𝑥 (𝑟) 𝑑𝑟 

Then we have the following estimate 

𝐼(𝑥)  = (√2𝜋  +  𝑜(1)) [𝑐𝑥]
−1/2 𝑆𝑥(𝑟𝑥)𝑒

−𝑔𝑥(𝑟𝑥), 𝑥 →  +∞.       (44) 

          The computations in [130] ensure that, under the assumptions on 𝑔𝑥 and 𝑆𝑥, we have 

∫  
 

|𝑟−𝑟𝑥|>𝜏𝑥

 𝑆𝑥(𝑟)𝑒
−𝑔𝑥(𝑟) 𝑑𝑟 (𝑐𝑥𝜏𝑥)

−1∫    
 

|𝑡|>𝜏𝑥

𝑒−
1
3
 𝜏𝑥𝑐𝑥𝑡 𝑑𝑡.              (45) 

In particular, if one of the two conditions 𝑐𝑥𝜏𝑥
2  →  +∞ and 𝑐𝑥𝜏𝑥  →  +∞ is satisfied, then 

hypothesis (𝑑) in Lemma (5.3.10) holds. 

         The study of ℬ(𝓏) will require some additional technical lemmas. 

Lemma (5.3.11)[152]: For 𝓏 =  𝑥𝑒𝑖𝜙, with 𝑥 >  0 and 𝑒𝑖(𝛼𝑑+𝑑𝜙) = 1, we have 

ℬ(𝓏) ≳ ∫  
+∞

0

(𝑟𝑥)−
𝑚
2 𝑟2𝑚−1𝑒−ℎ𝑥(𝑟)𝑑𝑟  

 

as 𝑥 →  +∞, where 

ℎ𝑥(𝑟) = (𝑟
𝑚  −  𝑥𝑚)2  −  2𝑎(𝑥𝑑  −  𝑟𝑑) +  𝐶(𝑟𝑑−1 + 𝑥𝑑−1 +  1),   (46) 

for some positive constant 𝐶. 
Proof. It is easy to see that 

ℬ(𝓏) = ∫  
 

ℂ

|𝐾𝑚(𝑤, 𝓏)|
2 𝑒2𝑅𝑒(𝑔(𝓏)−𝑔(𝑤)) [𝐾𝑚(𝓏, 𝓏)]

−1 𝑒−|𝑤|
2𝑚
 𝑑𝐴(𝑤), 

which, in terms of polar coordinates, can be rewritten as 

∫  
+∞

0

∫  
−𝜋

 𝜋

|𝐾𝑚(𝑟𝑒
𝑖𝜃 , 𝓏)|

2
 𝑒
2𝑅𝑒(𝑔(𝓏)−𝑔(𝑟𝑒𝑖𝜃))

 [𝐾𝑚(𝑥, 𝑥)]
−1 𝑒−𝑟

2𝑚
𝑟 𝑑𝑟 𝑑𝜃. 

By Lemma (5.3.2), B(z) is greater than or equal to 
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∫  
+∞

0

∫  
 

|𝜃−𝜙|≤𝑐𝜃0(𝑟𝑥)

|𝐾𝑚(𝑟𝑒
𝑖𝜃 , 𝓏)|

2
𝑒
2𝑅𝑒(𝑔(𝓏)−𝑔(𝑟𝑒𝑖𝜃))

 [𝐾𝑚(𝑥, 𝑥)]
−1 𝑒−𝑟2𝑚 𝑟𝑑𝑟 𝑑𝜃. 

This together with Lemma (5.3.2) shows that 

ℬ(𝓏)∫  
+∞

0

 𝑟2(𝑚−1)𝑒−(𝑟
𝑚−𝑥𝑚)2  𝐼(𝑟, 𝓏)𝑟𝑑𝑟,  

where 

𝐼(𝑟, 𝓏)  = ∫  
 

|𝜃−𝜙|≤𝑐𝜃0(𝑟𝑥)

𝑒
2𝑅𝑒(𝑔(𝓏)−𝑔(𝑟𝑒𝑖𝜃))

 𝑑𝜃. 

Note that 

𝐼(𝑟, 𝓏)  = ∫  
 

|𝜃−𝜙|≤𝑐𝜃0(𝑟𝑥)

𝑒2𝑅𝑒[𝑎𝑒
𝑖𝛼𝑑  (𝑥𝑑𝑒𝑖𝑑𝜙−𝑟𝑑𝑒𝑖𝑑𝜃)]+2𝑅𝑒[𝑔𝑑−1(𝓏)−𝑔𝑑−1(𝑟𝑒

𝑖𝜃)]𝑑𝜃  

= ∫  
 

|𝜃−𝜙|≤𝑐𝜃0(𝑟𝑥)

𝑒
2𝑅𝑒[𝑎𝑒𝑖(𝛼𝑑+𝑑𝜙)(𝑥𝑑−𝑟𝑑𝑒𝑖𝑑(𝜃−𝜙))]+2𝑅𝑒[𝑔𝑑−1(𝓏)−𝑔𝑑−1(𝑟𝑒

𝑖𝜃)]
𝑑𝜃. 

The condition on 𝜙 yields 

𝐼(𝑟, 𝓏)  = ∫  
 

|𝜃|≤𝑐𝜃0(𝑟𝑥)

𝑒2𝑎𝑅𝑒[𝑎(𝑥
𝑑−𝑟𝑑𝑒𝑖𝑑𝜃)]+2𝑅𝑒[𝑔𝑑−1 (𝓏)−𝑔𝑑−1(𝑟𝑒

(𝑖𝜃+𝜙))] 𝑑𝜃. 

Since 

𝑔𝑑−1(𝓏) − 𝑔𝑑−1(𝑟𝑒
𝑖(𝜃+𝜙))  = ∑  

𝑑−1

 𝑙=0

𝑎𝑙(𝑥
𝑙 𝑒𝑖𝑙𝜙  −  𝑟𝑙 𝑒𝑖𝑙(𝜃+𝜙)) , 

 

we have 

𝑅𝑒[𝑔𝑑−1(𝓏) − 𝑔𝑑−1(𝑟𝑒
𝑖(𝜃+𝜙))] ≥  −𝐶(𝑟𝑑−1  +  𝑥𝑑−1  +  1) 

for some constant 𝐶. It follows that 

𝐼(𝑟, 𝓏) ≥  𝑒−𝐶(𝑟
𝑑−1+𝑥𝑑−1+1)∫  

 

|𝜃|≤𝑐𝜃0(𝑟𝑥)

𝑒2𝑎𝑅𝑒[(𝑥
𝑑−𝑟𝑑𝑒𝑖𝑑𝜃)]𝑑𝜃. 

 For the integral we have 

𝐽(𝑟, 𝓏) ∶=  ∫  
 

|𝜃|≤𝑐𝜃0(𝑟𝑥)

𝑒2𝑎𝑅𝑒[(𝑥
𝑑−𝑟𝑑𝑒𝑖𝑑𝜃)]𝑑𝜃 = ∫  

 

|𝜃|≤𝑐𝜃0(𝑟𝑥)

𝑒
2𝑎(𝑥𝑑−𝑟𝑑 𝑐𝑜𝑠(𝑑𝜃))

 𝑑𝜃  

= ∫  
 

|𝜃|≤𝑐𝜃0(𝑟𝑥)

𝑒2𝑎(𝑥
𝑑−𝑟𝑑+(− 𝑐𝑜𝑠(𝑑𝜃)+1)𝑟𝑑)𝑑𝜃  

= ∫  
 

|𝜃|≤𝑐𝜃0(𝑟𝑥)

𝑒
2𝑎(𝑥𝑑−𝑟𝑑+2(𝑠𝑖𝑛(

𝑑𝜃
2
)
2

 )𝑟𝑑)
𝑑𝜃  

≥ 𝑒2𝑎(𝑥
𝑑−𝑟𝑑)  ∫  

 

|𝜃|≤𝑐𝜃0(𝑟𝑥)

𝑒
4|𝑎𝑑| 𝑠𝑖𝑛(

𝑑𝜃
2
)
2

 𝑟𝑑

𝑑𝜃  

≥ 𝑒2𝑎(𝑥
𝑑−𝑟𝑑)  ∫  

 

|𝜃|≤𝑐𝜃0(𝑟𝑥)

𝑑𝜃 

≳ 𝑒2𝑎(𝑥
𝑑−𝑟𝑑) (𝑟𝑥)−

𝑚
2   , 

which completes the proof of the lemma. 

Lemma (5.3.12)[152]: Assume 𝑑 = 2𝑚. For 𝓏 = 𝑥𝑒𝑖𝜙,where 𝑥 >  0 and 𝑒𝑖(𝛼𝑑+𝑑𝜙) = 1, 
we have 

ℬ(𝓏)𝑒
(1+𝑜(1))

2𝑎
(1+2𝑎)

𝑥2𝑚

 , 𝑥 →  +∞. 



213 

Proof. For 𝑥 large enough, the function ℎ𝑥 defined in (46) is convex on some interval 

[𝑀𝑥, +∞) and attains its minimum at some point 𝑟𝑥. In order to bound ℬ(𝓏) from below, we 

shall use the modified Laplace method from Lemma (5.3.10). Since 

ℎ𝑥
′ (𝑟) = 2𝑚𝑟𝑚−1 (𝑟𝑚  −  𝑥𝑚) + 2𝑎𝑑𝑟𝑑−1  +  𝐶 (𝑑 −  1)𝑟𝑑−2,       (47) 

we have 

ℎ𝑥
′ (𝑟) = 2𝑚(1 +  2𝑎)𝑟2𝑚−1 −  2𝑚𝑥𝑚𝑟𝑚−1 +  𝐶(𝑑 −  1)𝑟𝑑−2 , 

and 

ℎ𝑥
′′(𝑟) = 2𝑚(2𝑚 − 1)(1 + 2𝑎)𝑟2𝑚−2 − 2𝑚(𝑚 − 1)𝑥𝑚𝑟𝑚−2  + 𝐶(𝑑 − 1)(𝑑 − 2)𝑟𝑑−3 . 

 Writing ℎ𝑥
′ (𝑟𝑥) = 0 and letting 𝑥 tend to +∞, we obtain 

𝑚(1 +  2𝑎)(𝑟𝑥)
2𝑚−1 ∼  𝑚𝑥𝑚𝑟𝑥

𝑚−1 , 
or 

𝑟𝑥  ∼  (1 +  2𝑎)
−
1
𝑚 𝑥.                                             (48) 

Thus there exists 𝜌𝑥, which tends to 0 as 𝑥 tends to +∞, such that 

𝑟𝑥  =  (1 +  2𝑎)
−
1
𝑚𝑥(1 + 𝜌𝑥).                                    (49) 

When 𝑥 tends to +∞, we have 

ℎ𝑥(𝑟𝑥) ∼  (𝑟𝑥
𝑚  −  𝑥𝑚)2  +  2𝑎(𝑟𝑥

2𝑚  −  𝑥2𝑚)  
∼  (𝑟𝑥

𝑚  −  𝑥𝑚) [(𝑟𝑥
𝑚  −  𝑥𝑚) + 2𝑎(𝑟𝑥

𝑚  +  𝑥𝑚)]  
∼  𝑥2𝑚[(1 +  2𝑎)−1 (1 + 𝜌𝑥)

𝑚  −  1][(1 +  2𝑎)−1 (1 + 𝜌𝑥)
𝑚 −  1

+ 2𝑎 ((1 +  2𝑎)−1(1 + 𝜌𝑥)
𝑚  +  1)]  ∼ −𝑥2𝑚

2𝑎

(1 +  2𝑎)
 ,  

or 

−ℎ𝑥(𝑟𝑥)  ∼  𝑥
2𝑚  

2𝑎

(1 +  2𝑎)
 .                                    (50) 

    In order to estimate 𝑐𝑥 ∶=  ℎ𝑥
′′(𝑟𝑥), we compute that 

ℎ𝑥
′′(𝑟𝑥)  ∼  2𝑚

2 (1 +  2𝑎)−1+
2
𝑚 𝑥2𝑚−2 . 

Thus we get 

𝑐𝑥  ≈  𝑥
2𝑚−2 .                                                    (51) 

    For 𝑟 in a neighborhood of 𝑟𝑥 we set 𝑟 =  (1 + 𝜎𝑥)𝑟𝑥, where 𝜎𝑥  =  𝜎𝑥(𝑟)  →  0 as 𝑥 →
 +∞; a little computation shows that 

ℎ𝑥
′′(𝑟)  ∼  ℎ𝑥

′′(𝑟𝑥) 

as 𝑥 →  +∞. Taking 𝜏𝑥  =  𝑟𝑥
1/2

 and |𝑟 −  𝑟𝑥|  <  𝜏𝑥, we have ℎ𝑥
′′(𝑟) =  (1 +  𝑜(1))𝑐𝑥, so 

ℎ𝑥(𝑟) − ℎ𝑥(𝑟𝑥) =
1

2
 𝑐𝑥(𝑟 − 𝑟𝑥)

2 (1 +  𝑜(1)). 

Thus 

∫  
 

|𝑟−𝑟𝑥|<𝜏𝑥

𝑒−
1
2
 𝑐𝑥(𝑟−𝑟𝑥)

2(1+𝑜(1))𝑑𝑟   = ∫  
 

|𝑡|<𝜏𝑥

𝑒−
1
2
 𝑐𝑥𝑡

2(1+𝑜(1)) 𝑑𝑡 

∼  
1

√𝑐𝑥
∫  
 

|𝑦|<𝜏𝑥√𝑐𝑥

𝑒−
1
2
 𝑦2𝑑𝑦 ≈

1

√𝑐𝑥
, 

because 𝑐𝑥𝜏𝑥
2 ≈ 𝑟𝑥

2𝑚−1 tends to +∞ as 𝑥 tends to +∞. Finally, the estimates  

ℬ(𝓏) ≳ ∫  
 

|𝑟−𝑟𝑥|<𝜏𝑥

(𝑟𝑥)
−
𝑚
2  𝑟2𝑚−1𝑒−ℎ𝑥(𝑟) 𝑑𝑟 

= ∫  
 

|𝑟−𝑟𝑥|<𝜏𝑥

(𝑟𝑥)−
𝑚
2  𝑟2𝑚−1𝑒−ℎ𝑥(𝑟𝑥)𝑒−[ℎ𝑥(𝑟)−ℎ𝑥(𝑟𝑥)] 𝑑𝑟 
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= 𝑒−ℎ𝑥(𝑟𝑥)∫  
 

|𝑟−𝑟𝑥|<𝜏𝑥

(𝑟𝑥)−
𝑚
2  𝑟2𝑚−1𝑒−

1
2
𝑐𝑥(𝑟−𝑟𝑥)

2(1+𝑜(1)) 𝑑𝑟 

∼ 𝑒−ℎ𝑥(𝑟𝑥)𝑟𝑥

3
2
  𝑚−1

 𝑥−
𝑚
2 ∫  

 

|𝑟−𝑟𝑥|<𝜏𝑥

𝑒−
1
2
𝑐𝑥(𝑟−𝑟𝑥)

2(1+𝑜(1)) 𝑑𝑟 

≈ 𝑒−ℎ𝑥(𝑟𝑥)𝑟𝑥

3
2
𝑚−1

 𝑥−
𝑚
2
1

√𝑐𝑥
  

along with (48), (50), and (51) give the lemma. 

Lemma (5.3.13)[152]: Assume 𝑑 <  2𝑚. For 𝓏 =  𝑥𝑒𝑖𝜙, with 𝑥 >  0 and 𝑒𝑖(𝛼𝑑+𝑑𝜙)  =  1, 
we have 

ℬ(𝓏) ≳ 𝑒
(1+𝑜(1))

𝑎2𝑑2

𝑚2  𝑥
2𝑑−2𝑚−𝐶𝑥𝑑−1−𝑚

, 𝑥 →  +∞ 

for some positive constant 𝐶. 
Proof. Let 𝜏𝑥  =  𝑜(𝑥) be a positive real number that will be specified later. As in the proof 

of Lemma (5.3.11) we have 

ℬ(𝓏) ≳ ∫  
+∞

0

𝑟2(𝑚−1)𝑒−(𝑟
𝑚−𝑥𝑚)2𝐼(𝑟, 𝓏)𝑟 𝑑𝑟 

≳ ∫  
 

|𝑟−𝑥|≤𝜏𝑥

𝑟2(𝑚−1)𝑒 − (𝑟𝑚 − 𝑥𝑚)2 𝐼(𝑟, 𝓏)𝑟 𝑑𝑟,  

where 

𝐼(𝑟, 𝓏)  = ∫  
 

|𝜃−𝜙|≤𝑐𝜃0(𝑟𝑥)

 𝑒
2𝑅𝑒(𝑔(𝓏)−𝑔(𝑟𝑒𝑖𝜃))

 𝑑𝜃. 

There exists 𝑐′  >  0 such that for |𝑟 −  𝑥| ≤  𝜏𝑥 we have 

𝐼(𝑟, 𝓏)  ≥ ∫   
 

|𝜃−𝜙|≤𝑐′𝜃0(𝑥
2)

 𝑒
2𝑅𝑒(𝑔(𝓏)−𝑔(𝑟𝑒𝑖𝜃))

 𝑑𝜃

= ∫   
 

|𝜃|≤𝑐′𝜃0(𝑥
2)

 𝑒2𝑎𝑅𝑒(𝑥
𝑑−𝑟𝑑𝑒𝑖𝑑𝜃)+2𝑅𝑒[𝑔𝑑−1(𝓏)−𝑔𝑑−1(𝑟𝑒

𝑖𝜃)]𝑑𝜃

= ∫   
 

|𝜃|≤𝑐′𝜃0(𝑥
2)

 𝑒2𝑎𝑅𝑒(𝑥
𝑑−𝑟𝑑𝑒𝑖𝑑𝜃) − 2∑  

𝑑−1

𝑙=0

|𝑎𝑙||𝑥
𝑙 − 𝑟𝑙𝑒𝑖𝑙𝜃| 𝑑𝜃. 

 Now for |𝑟 −  𝑥|  ≤  𝜏𝑥, we write 𝑟 =  (1 +  𝜎)𝑥, where 𝜎 tends to 0 as 𝑥 →  +∞. Thus 

for 0 ≤ 𝑙 ≤ 𝑑 − 1 and |𝜃|  ≤  𝑐′𝜃0(𝑥
2), we obtain 

|𝑥𝑙   −  𝑟𝑙 𝑒𝑖𝑙𝜃|
2
 =  𝑥2𝑙[1 −  2(1 +  𝜎)𝑙 𝑐𝑜𝑠(𝑙𝜃) + (1 +  𝜎)2𝑙]   

= 𝑥2𝑙[1 −  2(1 +  𝑙𝜎 +  𝑂(𝜎2))  𝑐𝑜𝑠(𝑙𝜃) + 1 + 2𝑙𝜎 

+  𝑂(𝜎2)]   

= 𝑥2𝑙[2 (1 −  𝑐𝑜𝑠(𝑙𝜃))(1 +  𝑙𝜎) +  𝑂(𝜎2)] 

≲ 𝑥2𝑙 [sin2  (
𝑙𝜃

2
) + 𝜎2] ≲ 𝑥2𝑙[𝜃2  +  𝜎2]. 

Next choosing |𝜎|  ≤  𝑥−𝑚, we get 

|𝑥𝑙  −  𝑟𝑙 𝑒𝑖𝑙𝜃| ≲ 𝑥2𝑙 𝑥−2𝑚 ≲ 𝑥2(𝑑−1)−2𝑚 

or 

|𝑥𝑙  −  𝑟𝑙 𝑒𝑖𝑙𝜃| ≲ 𝑥𝑑−1−𝑚 . 

Thus there exists a positive constant 𝐶 such that for |𝑟 −  𝑥|  ≤  𝜏𝑥 and |𝜃| ≤  𝑐′𝜃0(𝑥
2), 
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2∑  

𝑑−1

𝑙=0

|𝑎𝑙||𝑥
𝑙  −  𝑟𝑙 𝑒𝑖𝑙𝜃|  ≤  𝐶𝑥𝑑−1−𝑚. 

It follows that 

𝐼(𝑟, 𝓏)  ≥ ∫   
 

|𝜃|≤𝑐′𝜃0(𝑥
2)

 𝑒2𝑎𝑅𝑒(𝑥
𝑑−𝑟𝑑𝑒𝑖𝑑𝜃) − 𝐶𝑥𝑑−1−𝑚𝑑𝜃 

≳ 𝑥−𝑚𝑒2𝑎𝑅𝑒(𝑥
𝑑−𝑟𝑑𝑒𝑖𝑑𝜃)−𝐶𝑥𝑑−1−𝑚 . 

Then 

ℬ(𝓏)∫   
 

|𝑟−𝑥|≤𝜏𝑥

 𝑟2𝑚−1𝑒−(𝑟
𝑚−𝑥𝑚)2  𝑥−𝑚𝑒2𝑎(𝑥

𝑑−𝑟𝑑)−𝐶𝑥𝑑−1−𝑚 𝑑𝑟  

= 𝑥−𝑚𝑒−𝐶𝑥
𝑑−1−𝑚

∫   
 

|𝑟−𝑥|≤𝜏

𝑟2𝑚−1 𝑒−ℎ𝑥(𝑟)𝑑𝑟,  

where 

ℎ𝑥(𝑟) = (𝑟
𝑚  −  𝑥𝑚)2  −  2𝑎(𝑥𝑑  −  𝑟𝑑). 

    It is easy to see that ℎ𝑥 attains its minimum at 𝑟𝑥 with 𝑟𝑥  ∼  𝑥 as 𝑥 →  +∞. Again we 

write 

𝑟𝑥  =  𝑥(1 + 𝜌𝑥),                                                (52) 
where 𝜌𝑥 tends to 0 as 𝑥 →  +∞. Using the fact that ℎ𝑥

′ (𝑟𝑥) = 0, we have 

2𝑚𝑥2𝑚−1 (1 + 𝜌𝑥)
 𝑚−1 [(1 + 𝜌𝑥)

𝑚  −  1] ∼  −2𝑎𝑑𝑥𝑑−1 (1 +  𝜌𝑥)
𝑑−1, 

and 

2𝑚𝑥2𝑚−1 𝑚𝜌𝑥  ∼  −2𝑎𝑑𝑥
𝑑−1. 

Therefore, 

𝜌𝑥  ∼  −
𝑎𝑑

𝑚2
 𝑥𝑑−2𝑚.                                            (53) 

Since 

ℎ𝑥
′′(𝑟) = 2𝑚(2𝑚 −  1)𝑟2𝑚−2  −  2𝑚(𝑚 −  1)𝑥𝑚𝑟𝑚−2  + 2𝑎𝑑(𝑑 −  1)𝑟𝑑−2 

and 𝑑 <  2𝑚, we get 

ℎ𝑥
′′(𝑟𝑥)  ∼  2𝑚𝑥

2𝑚−2[(2𝑚 −  1)(1 + 𝜌𝑥)
2𝑚−2 − (𝑚 −  1)(1 + 𝜌𝑥)

𝑚−2]
∼  2𝑚2 𝑥2𝑚−2 . 

also, 

ℎ𝑥(𝑟𝑥) ∼  𝑥
2𝑚 [(1 + 𝜌𝑥)

𝑚  −  1]2  +  2𝑎𝑥𝑑   [(1 + 𝜌𝑥)
𝑑  −  1]  

+  𝐶(𝑥𝑑−1  +  𝑟𝑥
𝑑−1  +  1)  ∼  𝑚2 𝜌𝑥

2𝑥2𝑚 +  2𝑎𝑥𝑑  𝑑𝜌𝑥 
It follows that  

𝑐𝑥  ∼  2𝑚
2 𝑥2𝑚−2 ,                                          (54) 

and 

−ℎ𝑥(𝑟𝑥) ∼
𝑎2𝑑2

𝑚2
 𝑥2𝑑−2𝑚 .                                           (55) 

Reasoning as in the proof of Lemma (5.3.12), we arrive at 

ℬ(𝓏) ≳≳ 𝑥−𝑚𝑒−𝐶𝑥
𝑑−1−𝑚

 𝑒−ℎ𝑥(𝑟𝑥) 𝑥2𝑚−1
1

√𝑐𝑥
 . 

The desired estimate then follows from (55), and (54).  

Lemma (5.3.14)[152]: Suppose 𝑢 and 𝑣 are functions in ℱ𝑚
2 , not identically zero, such that 

| 𝑢|2̃(𝓏)| 𝑣|2̃(𝓏) is bounded on the complex plane. Then there exists a nonzero constant 𝐶 

and a polynomial 𝑔 of degree at most 𝑚 such that 𝑢(𝓏) =  𝑒𝑔(𝓏) 𝑎𝑛𝑑 𝑣(𝓏)  =  𝐶𝑒−𝑔(𝓏) . 
Proof. It is easy to check that for 𝑢 ∈ ℱ𝑚

2 we have 
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𝑢(𝓏)  = ∫  
 

ℂ

𝑢(𝑥)|𝑘𝓏(𝑥)|
2 𝑑𝜆𝑚(𝑥)  =  �̃�(𝓏). 

Also, it follows from the Cauchy-Schwarz inequality that |𝑢(𝓏)|2  ≤  | 𝑢|2̃(𝓏). So if 

| 𝑢|2̃(𝓏)| 𝑣|2̃(𝓏) is bounded on ℂ, then ℬ(𝓏) and |𝑢(𝓏)𝑣(𝓏)|2 are also bounded. 

Consequently, 𝑢𝑣 is a constant, there is a non-zero constant 𝐶 and a polynomial 𝑔 such that 

𝑢 =  𝑒𝑔 and 𝑣 =  𝐶𝑒−𝑔. The condition 𝑢 ∈ ℱ𝑚
2 implies that the degree 𝑑 of 𝑔 is at most 

2𝑚; see Lemma (5.3.3). 

      We shall consider the case where 𝑢(𝓏)  =  𝑒𝑔(𝓏) and 𝑣(𝓏)  =  𝑒−𝑔(𝓏) . We will show 

that that the boundedness of ℬ(𝓏) implies 𝑑 ≤  𝑚. If 2𝑚 is an integer, Lemma (5.3.12) 

shows that we must have 𝑑 <  2𝑚. 
Thus, in any case (2𝑚 being an integer or not), a necessary condition is 𝑑 <  2𝑚. The 

desired result now follows from Lemma (5.3.13).  

We specialize to the case 𝑚 =  1 and make several additional remarks. For 

convenience we will alter notation somewhat here. 

Thus for any 𝛼 >  0  we let ℱ𝛼
2 denote the Fock space of entire functions 𝑓 on the complex 

plane ℂ such that 

∫  
 

ℂ

|𝑓(𝓏)|2 𝑑𝜆𝛼(𝓏) <  ∞, 

where  

𝑑𝜆𝛼(𝓏)  =
𝛼

𝜋
 𝑒−𝛼|𝓏|

2
 𝑑𝐴(𝓏). 

Toeplitz operators on ℱ𝛼
2 are defined exactly the same as before using the orthogonal 

projection 𝑃𝛼 ∶  𝐿
2(ℂ, 𝑑𝜆𝛼)  → ℱ𝛼

2.      
    Suppose 𝑢 and 𝑣 are functions in ℱ𝛼

2, not identically zero. It was proved in [146] that 

𝑇𝑢𝑇�̅� is bounded on the Fock space ℱ𝛼
2 if and only if there is a point 𝑎 ∈ ℂ such that 

𝑢(𝓏)  =  𝑏𝑒𝛼�̅�𝓏 , 𝑣(𝓏)  =  𝑐𝑒−𝛼�̅�𝓏 ,                             (56) 
where 𝑏 and 𝑐 are nonzero constants. This certainly solves Sarason’s problem for Toeplitz 

products on the space ℱ𝛼
2. But [146] somehow did not address Sarason’s conjecture, which 

now of course follows from our main result. 

    We want to make two points here. First, the proof of Sarason’s conjecture for ℱ𝛼
2 is 

relatively simple after Sarason’s problem is solved. Second, Sarason’s conjecture holds for 

the Fock space ℱ𝛼
2 for completely different reasons than was originally thought, namely, the 

motivation for Sarason’s conjecture provided in [53] for the cases of Hardy and Bergman 

spaces is no longer valid for the Fock space. It is therefore somewhat amusing that Sarason’s 

conjecture turns out to be true for the Fock space but fails for the Hardy and Bergman spaces. 

 Suppose 𝑢 and 𝑣 are given by (56). We have  

| 𝑢|2̃(𝓏) =  ‖𝑓 𝑘𝓏‖
2 = ∫   

 

ℂ

|𝑓(𝑤)𝑒𝛼𝑤�̅� − (𝛼2)|𝓏|2 |2 𝑑𝜆𝛼(𝑤)  

= |𝑏|2 𝑒−𝛼|𝓏|
2
∫  
 

ℂ

|𝑒𝛼𝑤(�̅�+�̅�)|
2
 𝑑𝜆𝛼(𝑤) 

= |𝑏|2 𝑒−𝛼|𝓏|
2+𝛼|𝑎+𝓏|2 

= |𝑏|2 𝑒𝛼(|𝑎|
2+�̅�𝑧+𝑎�̅�) . 

Similarly, 

| 𝑣|2̃(𝓏)  =  |𝑐|2 𝑒𝛼(|𝑎|
2−�̅�𝓏−𝑎�̅�) . 

It follows that 
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| 𝑢|2̃(𝓏)| 𝑣|2̃(𝓏) =  |𝑏𝒸|2 𝑒2𝛼|𝑎|
2
 

is a constant and hence a bounded function on ℂ. 
         On the other hand, it follows from Hölder’s inequality that we always have 

|𝑢(𝓏)|2  ≤  | 𝑢|2̃(𝓏), 𝑢 ∈ ℱ𝛼
2, 𝓏 ∈ ℂ. 

Therefore, if | 𝑢|2̃| 𝑣|2̃ is a bounded function on ℂ, then there exists a positive constant 𝑀 

such that 

|𝑢(𝓏)𝑣(𝓏)|2  ≤  | 𝑢|2̃(𝓏)| 𝑣|2̃(𝓏)  ≤  𝑀 

for all 𝓏 ∈ ℂ. Thus, as a bounded entire function, uv must be constant, say 𝑢(𝓏)𝑣(𝓏)  = ℂ 

for all 𝓏 ∈ ℂ. Since 𝑢 and 𝑣 are not identically zero, we must have 𝐶 ≠  0. Since functions 

in ℱ𝛼
2 must have order less than or equal to 2, we can write 𝑢(𝓏)  =  𝑒𝑝(𝓏) , where 

𝑝(𝓏)  =  𝑎𝓏2  +  𝑏𝓏 +  𝑐 
is a polynomial of degree less than or equal to 2. But 𝑢(𝓏)𝑣(𝓏) is constant, so 𝑣(𝓏)  =

 𝑒𝑞(𝓏) , where 

𝑞(𝓏)  =  −𝑎𝓏2  −  𝑏𝓏 +  𝑑 
is another polynomial of degree less than or equal to 2. 

      We will show that 𝑎 =  0. To do this, we will estimate the Berezin transform  |𝑢|2̃ when 

𝑢 is a quadratic exponential function as given above. More specifically, for 𝐶1  =  |𝑒
𝑐|2 , we 

have 

|𝑢|2̃(𝓏) =  𝐶1  ∫  
 

ℂ

 |𝑒𝑎(𝓏+𝑤)
2+𝑏(𝓏+𝑤)|

2
 𝑑𝜆𝛼(𝑤) 

= 𝐶1 |𝑒
𝑎𝓏2+𝑏𝓏  |

2
∫  
 

ℂ

 |𝑒𝑎𝑤
2+(𝑏+2𝑎𝓏)𝑤|

2
 𝑑𝜆𝛼(𝑤). 

Write 𝑏 +  2𝑎𝓏 =  𝛼𝜁.̅ Then it follows from the inequality | 𝐹|2̃  ≥  |𝐹|2̃  for 𝐹 ∈  𝐹𝛼
2 again 

that 

| 𝑢|2̃(𝓏)   = 𝐶1 |𝑒
𝑎𝓏2+𝑏𝓏  |

2
 𝑒𝛼|𝜁|

2
∫  
 

ℂ

|𝑒𝑎𝑤
2
 𝑘𝜁  (𝑤)|

2
 𝑑𝜆𝛼(𝑤)  

≥ 𝐶1|𝑒
𝑎𝓏2+𝑏𝓏  |

2
 𝑒𝛼|𝜁|

2
 |𝑒𝑎𝜁

2
|
2
 . 

If we do the same estimate for the function 𝑣, the result is 

| 𝑣|2̃(𝓏) ≥  𝐶2 |𝑒
−𝑎𝓏2−𝑏𝓏|

2
 𝑒𝛼|𝜁|

2
 |𝑒−𝑎𝜁

2
|
2
 , 

where 𝜁 is the same as before and 𝐶2  =  |𝑒
𝑑|
2
. It follows that 

| 𝑢|2̃(𝓏)| 𝑣|2̃(𝓏)  ≥  𝐶1𝐶2𝑒
2𝛼|𝜁|2  =  𝐶1𝐶2𝑒

2|𝑏+2𝑎𝓏|2/𝛼 . 

This shows that | 𝑢|2̃| 𝑣|2̃ is unbounded unless 𝑎 =  0. Therefore, the boundedness of 

| 𝑢|2̃| 𝑣|2̃ implies that 

𝑢(𝓏) =  𝑒𝑏𝓏+𝑐  , 𝑣(𝓏)  =  𝑒−𝑏𝓏+𝑑  . 
By [146], the product 𝑇𝑢𝑇𝑣 is bounded on 𝐹𝛼

2. In fact, 𝑇𝑢𝑇𝑣 is a constant times a unitary 

operator. 

     Combining the arguments above and the main result of [146] we have actually proved 

that the following conditions are equivalent for 𝑢 and 𝑣 in 𝐹𝛼
2: 

   (a) 𝑇𝑢𝑇�̅� is bounded on 𝐹𝛼
2. 

   (b) 𝑇𝑢𝑇�̅� is a constant multiple of a unitary operator. 

   (b) | 𝑢|2̃| 𝑣|2̃ is bounded on ℂ. 

   (c) | 𝑢|2̃| 𝑣|2̃ is constant on ℂ. 
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     Recall that in the case of Hardy and Bergman spaces, there is actually an absolute 

constant 𝐶 (4 for the Hardy space and 16 for the Bergman space) such that 

| 𝑢|2̃(𝓏)| 𝑣|2̃(𝓏)  ≤  𝐶‖𝑇𝑢𝑇�̅�‖
2 

for all 𝑢, 𝑣, and 𝓏. We now show that such an estimate is not possible for the Fock space. 

To see this, consider the functions 

𝑢(𝓏) =  𝑒𝛼�̅�𝑧 , 𝑣(𝓏)  = 𝑒−𝛼�̅�𝓏  . 
By calculations done in [146], we have 

𝑇𝑢𝑇�̅�  =  𝑒
𝛼|𝑎|2/2 𝑊𝑎 , 

where 𝑊𝑎 is the Weyl unitary operator defined by 𝑊𝑎𝑓(𝓏)  =  𝑓(𝓏 − 𝑎)𝑘𝑎(𝓏). On the other 

hand, by calculations done earlier, we have 

| 𝑢|2̃(𝓏)| 𝑣|2̃(𝓏)  =  𝑒2𝛼|𝑎|
2
 . 

It is then clear that there is NO constant 𝐶 such that 

𝑒2𝛼|𝑎|
2
 ≤  𝐶𝑒𝛼|𝑎|

2/2 

for all 𝑎 ∈ ℂ. Therefore, there is NO constant 𝐶  such that 

sup
𝓏∈ℂ

 | 𝑢|2̃(𝓏)| 𝑣|2̃(𝓏)  ≤  𝐶‖𝑇𝑢𝑇�̅�‖
2 

for all 𝑢 and 𝑣. In other words, the easy direction for Sarason’s conjecture in the cases of 

Hardy and Bergman spaces becomes difficult for Fock spaces. 

Corollary (5.3.15)[185]: If 𝑓𝑠  ∈  ℱ1
2
−𝜖

2 , there is a constant 𝐶 >  0 such that 

|𝑓𝑠(𝓏𝑛)|  ≤  𝐶 |𝓏𝑛|
−(
1
2
+𝜖)
 𝑒
1
2
 |𝓏𝑛|

1−2𝜖

 , 𝓏𝑛  ∈ ℂ. 

Consequently, the order of every function in ℱ1
2
−𝜖

2  is at most (1 − 2𝜖). 

Proof. By the reproducing property and Cauchy-Schwartz inequality, we have 

|𝑓𝑠(𝓏𝑛)|  = |∫ ∑ 

𝑠

 

ℂ

𝑓𝑠(𝑤𝑛)𝐾1
2
−𝜖
(𝓏𝑛, 𝑤𝑛)𝑑𝜆1

2
−𝜖
(𝑤𝑛)| ≤∑ 

𝑠

‖𝑓𝑠‖ 𝐾1
2
−𝜖
(𝓏𝑛, 𝓏𝑛)

 ½ 

for all 𝑓𝑠  ∈ ℱ1
2
−𝜖

2  and all 𝓏𝑛  ∈ ℂ. The desired estimate then follows from Lemma (5.3.2). 

See [156] for more details.  

Corollary (5.3.16)[185]: Suppose that 𝑢2 and 𝑣2 are functions in ℱ1
2
−𝜖

2 , each not identically 

zero, and that the operator 𝑇 =  𝑇𝑢2𝑇�̅�2 is bounded on ℱ1
2
−𝜖

2 . Then there exists a polynomial 

𝑔 of degree at most (
1

2
− 𝜖) and a nonzero complex constant 𝑐 such that 𝑢2(𝓏𝑛)  =

 𝑒𝑔(𝓏𝑛) and 𝑣2(𝓏𝑛)  =  𝑐𝑒
−𝑔(𝓏𝑛) . 

Proof. If 𝑇 =  𝑇𝑢2𝑇𝑣2  is bounded on ℱ1
2
−𝜖

2 , then the Berezin transform 𝑇 is bounded, where 

𝑇(𝓏𝑛) =  〈𝑇𝑢2𝑇�̅�2𝑘𝓏𝑛 , 𝑘𝓏𝑛〉, 𝓏𝑛  ∈ ℂ. 

By the reproducing property of the kernel functions, it is easy to see that 

𝑇(𝓏𝑛)  =  𝑢
2(𝓏𝑛)𝑣

2(𝓏𝑛)̅̅ ̅̅ ̅̅ ̅̅ ̅. 
Since each 𝑘𝓏𝑛 is a unit vector, it follows from the Cauchy-Schwarz inequality that 

|𝑢2(𝓏𝑛)𝑣
2(𝓏𝑛)|  =  |�̃�(𝓏𝑛)| ≤ ‖𝑇‖ 

for all 𝓏𝑛  ∈ ℂ. This together with Liouville’s theorem shows that there exist a constant 𝑐 
such that 𝑢2𝑣2  =  𝑐. Since neither 𝑢2 nor 𝑣2 is identically zero, we have 𝑐 ≠ 0. 
Consequently, both 𝑢2 and 𝑣2 are non-vanishing. 
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     Recall from Corollary (5.3.15) that the order of functions in ℱ𝑑+𝜖
2  is at most 2(𝑑 + 𝜖), 

so there is a polynomial of degree 𝑑, 

𝑔(𝓏𝑛) = ∑  

𝑑

𝑘=0

(1 + 𝜖)𝑘𝓏𝑛
𝑘, 𝑑 ≤  [2(𝑑 + 𝜖)], 

such that 𝑢2  =  𝑒𝑔 and 𝑣2  =  𝑐𝑒−𝑔. It remains to show that 𝜖 ≥ 0. 
    Since 𝑇 is bounded on ℱ𝑑+𝜖

2 , the function 

𝐹(𝓏𝑛, 𝑤𝑛) =
〈𝑇 (𝐾𝑑+𝜖(·, 𝑤𝑛)), 𝐾𝑑+𝜖(·, 𝓏𝑛)〉

√𝐾𝑑+𝜖(𝓏𝑛, 𝓏𝑛)√𝐾𝑑+𝜖(𝑤𝑛, 𝑤𝑛)
 

must be bounded on ℂ2. On general reproducing Hilbert spaces, we always have  

〈𝑇𝑢2𝑇�̅�2𝐾𝑤𝑛 , 𝐾𝓏𝑛〉  =  〈𝑇�̅�2𝐾𝑤𝑛 , 𝑇𝑢2𝐾𝓏𝑛〉  =  〈𝑣 ̅
2(𝑤𝑛)𝐾𝑤𝑛 , 𝑢

2(𝓏𝑛)𝐾𝓏𝑛〉  

=  𝑢2(𝓏𝑛)�̅�
2(𝑤𝑛)𝐾(𝓏𝑛, 𝑤𝑛). 

It follows that 

𝐹(𝓏𝑛, 𝑤𝑛) =  𝑐̅𝑒
𝑔(𝓏𝑛)−𝑔(𝑤𝑛)̅̅ ̅̅ ̅̅ ̅̅ ̅ 𝐾𝑑+𝜖(𝓏𝑛, 𝑤𝑛)

√𝐾𝑑+𝜖(𝓏𝑛, 𝓏𝑛)√𝐾𝑑+𝜖(𝑤𝑛, 𝑤𝑛)
 . 

From Lemma (5.3.2) we deduce that 

|𝐹(𝓏𝑛, 𝑤𝑛)| ≳ 𝑒
𝑅𝑒(𝑔(𝓏𝑛)−𝑔(𝑤𝑛))𝑒−

1
2
 (|𝓏𝑛|

𝑑+𝜖−|𝑤𝑛|
𝑑+𝜖)

2

                         (57) 
for all |arg(𝓏𝑛𝑤𝑛̅̅ ̅̅ )| ≤  𝑐𝜃0(|𝓏𝑛𝑤𝑛|) as |𝓏𝑛𝑤𝑛| grows to infinity. Choose 𝑥𝑛  >  0 

sufficiently large and set 

𝓏𝑛(𝑥𝑛)  =  𝑥𝑛𝑒
𝑖 
𝜋
2𝑑
 𝑒−𝑖

arg((1+𝜖)𝑑)
𝑑  , 

and 

𝑤𝑛(𝑥𝑛)  =  𝑥𝑛𝑒
𝑖 
𝜋
2𝑑
 𝑒−𝑖

arg((1+𝜖)𝑑)+
𝑐

2(𝑑+𝜖)𝑥𝑛
𝑑+𝜖

𝑑  . 
Since 

𝜃0(|𝓏𝑛(𝑥𝑛)𝑤𝑛(𝑥𝑛)|)  =
1

(𝑑 + 𝜖)𝑥𝑛
𝑑+𝜖  , 

we can apply (57) to 𝓏𝑛(𝑥𝑛) and 𝑤𝑛(𝑥𝑛) to get 

𝑒
𝑅𝑒(𝑔(𝓏𝑛(𝑥𝑛))−𝑔(𝑤𝑛(𝑥𝑛))) ≲ sup

(𝓏𝑛,𝑤𝑛)∈ℂ
2
 |𝐹(𝓏𝑛, 𝑤𝑛)|  <  ∞                      (58) 

as 𝑥𝑛 grows to infinity. On the other hand, a few computations show that 

𝑅𝑒 (𝑔(𝓏𝑛(𝑥𝑛)) −  𝑔(𝑤𝑛(𝑥𝑛)))

=∑ 

𝑑

𝑗=0

𝑥𝑛
𝑗
 𝑅𝑒 ((1 + 𝜖)𝑗𝑒

𝑖𝑗
𝜋
2𝑑
 −𝑖
𝑗
𝑑
 arg[(1+𝜖)𝑑)   (1 − 𝑒

−𝑖 
𝑐𝑗

2(𝑑+𝜖)𝑑𝑥𝑛
𝑑+𝜖
)

 (1 − 𝑒
−𝑖 

𝑐𝑗

2(𝑑+𝜖)𝑑𝑥𝑛
𝑑+𝜖
) =  |(1 + 𝜖)𝑑| 𝑥𝑛

𝑑 sin (
𝑐

2(𝑑 + 𝜖)𝑥𝑛
𝑑+𝜖)  + 𝑔𝑑−1(𝑥𝑛), 

= |(1 + 𝜖)𝑑| 𝑥𝑛
𝑑 sin (

𝑐

2(𝑑 + 𝜖)𝑥𝑛
𝑑+𝜖)  +  𝑔𝑑−1(𝑥𝑛),) 

where 
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𝑔𝑑−1(𝑥𝑛)  = ∑  

𝑑−1

 𝑗=0

 𝑥𝑛
𝑗
𝑅𝑒 ((1 + 𝜖)𝑗𝑒

𝑖
𝑗𝜋
2𝑑
−𝑖
𝑗
𝑑
 arg((1+𝜖)𝑑)  (1 −  𝑒 − 𝑖

𝑐𝑗

2(𝑑 + 𝜖)𝑑𝑥𝑛
𝑑+𝜖))  

= −∑  

 𝑑−1

 𝑗=0

|(1 + 𝜖)𝑗|𝑥𝑛
𝑗
sin (

𝑗𝜋

2𝑑
 +  arg (1 + 𝜖)𝑗  

−
𝑗

𝑑
 arg ((1 + 𝜖)𝑑))  sin

𝑐𝑗

2(𝑑 + 𝜖)𝑑𝑥𝑛
𝑑+𝜖  

+ ∑  

𝑑−1

 𝑗=0

|(1 + 𝜖)𝑗  |𝑥𝑛
𝑗
cos [

𝑗𝜋

2𝑑
 +  arg (1 + 𝜖)𝑗   −

𝑗

𝑑
 arg ((1 + 𝜖)𝑑)] [1 

−  𝑐𝑜𝑠
𝑐𝑗

2(𝑑 + 𝜖)𝑑𝑥𝑛
𝑑+𝜖] ≲ 𝑥𝑛

𝜖−1. 

Therefore, there exist some (𝑥𝑛)0  >  0 and 𝛿 >  0 such that 

𝑅𝑒 (𝑔(𝓏𝑛(𝑥𝑛))  −  𝑔(𝑤𝑛(𝑥𝑛))) ≥
𝛿|(1 + 𝜖)𝑑|𝑥𝑛

𝑑

𝑥𝑛
𝑑+𝜖  

for all 𝑥𝑛  ≥  (𝑥𝑛)0. Since (1 + 𝜖)𝑑 ≠ 0, it follows from (58) that 𝜖 ≥ 0.  
On several occasions later on we will need to estimate the integral 

𝐼(1 + 𝜖)  = ∫  
∞

0

𝑒−
1
2
 𝑟2(𝑑+𝜖)+(1+𝜖)𝑟𝑑  𝑟𝜖−1 𝑑𝑟, 

where 𝜖 ≥  0. 
       First, suppose 𝜖 > 0. By various changes of variables, we have 

𝐼(1 + 𝜖) = ∫  
1

0

𝑒−
1
2
 𝑟2(𝑑+𝜖)+(1+𝜖)𝑟𝑑  𝑟𝜖−1 𝑑𝑟 + ∫  

∞

1

𝑒−
1
2
 𝑟2(𝑑+𝜖)+(1+𝜖)𝑟𝑑  𝑟𝜖−1 𝑑𝑟

≤  𝑒1+𝜖∫  
1

0

𝑟𝜖−1𝑑𝑟 + ∫  
∞

1

𝑒−
1
2
 𝑟2(𝑑+𝜖)+(1+𝜖)𝑟𝑑+𝜖 𝑟𝜖−1  𝑑𝑟 

=
𝑒1+𝜖

𝜖
 + 𝑒

(1+𝜖)2

2 ∫  
∞

1

𝑒
−
1
2
 (𝑟𝑑+𝜖−(1+𝜖))

2

𝑟𝜖−1  𝑑𝑟 

=
𝑒1+𝜖

𝜖
 +
𝑒
(1+𝜖)2

2

𝑑 + 𝜖
∫  
∞

1

𝑒−
1
2
(𝑡−1+𝜖)2  𝑡

−𝑑
𝑑+𝜖  𝑑𝑡. 

If  
𝜖

𝑑+𝜖
  −  1 ≤  0, then 

𝐼(1 + 𝜖) ≤
𝑒1+𝜖

𝜖
 +

√2𝜋

𝑑 + 𝜖
 𝑒
(1+𝜖)2

2  ≤ (
√𝑒

𝜖
 +

√2𝜋

𝑑 + 𝜖
) 𝑒

(1+𝜖)2

2  . 

     Otherwise, we have 
𝜖

𝑑+𝜖
 −  1 >  0. Using the fact that 𝑢2  ⟼ 𝑢

−2𝑑

𝑑+𝜖  is increasing, we 

see that 

∫  

1+𝜖
2

−
1+𝜖
2

𝑒−
𝑡2

2  (𝑡 + 1 + 𝜖)
−𝑑
𝑑+𝜖𝑑𝑡 ≤ (

3(1 + 𝜖)

2
)

−𝑑
𝑑+𝜖

∫  

1+𝜖
2

−
1+𝜖
2

𝑒−
𝑡2

2  𝑑𝑡 ≤  √2𝜋 (
3(1 + 𝜖)

2
)

−𝑑
𝑑+𝜖
 . 

For the same reason we also have 
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∫  
+∞

1+𝜖
2

𝑒−
𝑡2

2  (𝑡 +  1 + 𝜖)
−𝑑
𝑑+𝜖  𝑑𝑡 ≤ ∫  

+∞

1+𝜖
2

𝑒−
𝑡2

2  (3𝑡)
−𝑑
𝑑+𝜖𝑑𝑡 ≤ 3

−𝑑
𝑑+𝜖∫  

+∞

0

𝑡
−𝑑
𝑑+𝜖𝑒−

𝑡2

2  𝑑𝑡 

=
√2

2
(3 √2)

−𝑑
𝑑+𝜖∫  

+∞

0

𝑢
−2𝑑
𝑑+𝜖𝑒−𝑢

2
 𝑑𝑡 =  

√2

2
(3 √2)

−𝑑
𝑑+𝜖𝛤 (

𝜖 − 1

2(𝑑 + 𝜖)
)  . 

In the case when 𝜖 > 0 (or equivalently 𝜖 > 0), 

∫  
−
2+𝜖
2

−(1+𝜖)

𝑒−
𝑡2

2  (𝑡 +  2 + 𝜖)
−𝑑
𝑑+𝜖  𝑑𝑡 ≤ (

2 + 𝜖

2
)

−𝑑
𝑑+𝜖

∫   
−
2+𝜖
2

−(1+𝜖)

𝑒−
𝑡2

2  𝑑𝑡 

≤ (
2 + 𝜖

2
)

−𝑑
𝑑+𝜖

 ∫  
−
2+𝜖
2

−(1+𝜖)

𝑒
(2+𝜖)𝑡
4 𝑑𝑡 ≤ (

2 + 𝜖

2
)

−𝑑
𝑑+𝜖

 
4

2 + 𝜖
𝑒−

(2+𝜖)2

8

≤  2 (
2 + 𝜖

2
)

−𝑑
𝑑+𝜖
. 

It follows that there exists a constant 𝐶 =  𝐶(𝑑 + 𝜖, 𝜖 − 1)  >  0 such that 

∫  
∞

1

 𝑒−
1
2
 (𝑡−(2+𝜖))2𝑡

−𝑑
𝑑+𝜖𝑑𝑡 = ∫  

∞

−(1+𝜖)

𝑒−
𝑡2

2  (𝑡 +  2 + 𝜖)
−𝑑
𝑑+𝜖𝑑𝑡 ≤  𝐶 (1 +  2 + 𝜖)

−𝑑
𝑑+𝜖 

for 𝑑 < 0. It is then easy to find another positive constant 𝐶 =  𝐶(𝑑 + 𝜖, 𝜖 − 1), 
independent of (1 + 𝜖), such that 

𝐼(1 + 𝜖)  ≤  𝐶 (2 + 𝜖)
−𝑑
𝑑+𝜖𝑒

(1+𝜖)2

2  

for all 𝜖 ≥ 0 and 𝑑 < 0. Therefore, 

∫  
∞

0

𝑒−
1
2
 𝑟2(𝑑+𝜖)+(1+𝜖)𝑟𝑑  𝑟𝜖−1 𝑑𝑟 ≤  𝐶 (2 + 𝜖)

max(0,
−𝑑
𝑑+𝜖

)
 𝑒
(1+𝜖)2

2                  (59) 

for all 𝜖 ≥ 0. Since 𝐼(1 + 𝜖) is increasing in (1 + 𝜖), the estimate above holds for 0 ≤ 𝜖 ≤
 1 as well. 

Corollary (5.3.17)[185]: For any 𝛿 >  0, 𝜖 > 0, we can find a constant 𝐶 >  0 (depending 

on 1 + 𝜖, 𝛿, 1 + 𝜖, 𝜖 − 1, 1 + 𝜖 but not on 1 + 𝜖, 𝑑, 𝑥𝑛) such that 

𝑥𝑛
−1∫  

  +∞

1+𝜖

𝑥𝑛
2

𝑒−
𝑥𝑛
2(1+𝜖)

2
 (1+𝑟2(1+𝜖))+(1+𝜖)𝑥𝑛

𝑑(1+𝛿𝑟𝑑) 𝑟𝜖−1 𝑑𝑟 ≤  𝐶 (2 + 𝜖)
max(0,

𝜖
1+𝜖

)
𝑒
1+𝛿2

2
(1+𝜖)2

 

and 

𝑥𝑛
1+𝜖  ∫  

 +∞ 

1+𝜖

𝑥𝑛
2

𝑒−
𝑥𝑛
2(1+𝜖)

2
(1−𝑟1+𝜖)2+(1+𝜖)𝑥𝑛

𝑑(1−𝑟𝑑)𝑟
1+𝜖
2  𝑑𝑟 ≤  𝐶(2 + 𝜖)𝑒

(1+𝜖)2

2  

for all 𝑥𝑛  >  0,  𝜖 ≥ 0. 
Proof. Let 𝐼 =  𝐼(1 + 𝜖, 𝜖 − 1, 1 + 𝜖, 1 + 𝜖, 𝑥𝑛, 1 + 𝜖, 𝑑) denote the first integral that we 

are trying to estimate. If 𝑥𝑛  ≥  1, we have 

𝐼 =  𝑥𝑛
−1 𝑒−

𝑥𝑛
2(1+𝜖)

2
 +(1+𝜖)𝑥𝑛

𝑑

∫   
∞

1+𝜖

𝑥𝑛
2

𝑒−
(𝑥𝑛𝑟)

2(1+𝜖)

2
 +(1+𝜖)𝛿(𝑥𝑛𝑟)

𝑑 𝑟𝜖−1 𝑑𝑟 

≤  𝑥𝑛
−(1+𝜖)

 𝑒−
𝑥𝑛
2(1+𝜖)

2
 +(1+𝜖)𝑥𝑛

1+𝜖

∫  
∞

1+𝜖
𝑥𝑛

 

𝑒−
𝑟2(1+𝜖)

2
 +(1+𝜖)𝛿𝑟𝑑 𝑟𝜖−1𝑑𝑟  
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≤ 𝑒−
1
2
 (𝑥𝑛

1+𝜖−(1+𝜖))
2
+
(1+𝜖)2

2

∫  
∞
1+𝜖
𝑥𝑛

 
𝑟1+𝜖

(1 + 𝜖)1+𝜖
 𝑒−

1
2
 𝑟2(1+𝜖)+(1+𝜖)𝛿𝑟𝑑  𝑟𝜖−1 𝑑𝑟 

≤
𝑒
(1+𝜖)2

2

(1 + 𝜖)1+𝜖
 ∫  

∞

1+𝜖
𝑥𝑛

 

𝑒−
𝑟2(1+𝜖)

2
 +(1+𝜖)𝛿𝑟𝑑 𝑟2𝜖𝑑𝑟. 

The desired result then follows from (59). 

    If 0 < 𝑥𝑛 <  1, we have 

𝐼 =  𝑥𝑛
−1 𝑒−

𝑥𝑛
2(1+𝜖)

2
 +(1+𝜖)𝑥𝑛

𝑑

 ∫   
∞

1+𝜖

𝑥𝑛
2

𝑒−
(𝑥𝑛𝑟)

2(1+𝜖)

2
 +(1+𝜖)𝛿(𝑥𝑛𝑟)

𝑑 𝑟𝜖−1 𝑑𝑟

≤  𝑒1+𝜖𝑥𝑛
−(1+𝜖)

  ∫  
∞

1+𝜖
𝑥𝑛

 

𝑒−
𝑟2(1+𝜖)

2
 +(1+𝜖)𝛿𝑟𝑑 𝑟𝜖−1𝑑𝑟 

≤
𝑒
(1+𝜖)2

2
 +1

(1 + 𝜖)1+𝜖
 ∫  

∞

1+𝜖
𝑥𝑛

 

𝑒−
𝑟2(1+𝜖)

2
 +(1+𝜖)𝛿𝑟𝑑 𝑟2𝜖𝑑𝑟. 

The desired estimate follows from (59) again. 

      To prove the second part of the corollary, denote by 𝐽 =  𝐽(1 + 𝜖, 𝑑, 1 + 𝜖, 𝑥𝑛, 1 + 𝜖) 
the second integral that we are trying to estimate. Then it is clear from a change of variables 

that for 0 < 𝑥𝑛 <  1 we have 

𝐽(1 + 𝜖, 𝑑, 1 + 𝜖, 𝑥𝑛 , 1 + 𝜖)  =  𝑥𝑛

𝜖−1
2 ∫  

+∞

1+𝜖
𝑥𝑛

𝑒−
1
2
 (𝑥𝑛

1+𝜖−𝑟1+𝜖)
2
+(1+𝜖)(𝑥𝑛

𝑑−𝑟𝑑)𝑟
1+𝜖
2  𝑑𝑟 

≤
𝑒1+𝜖

1 + 𝜖
 𝑥𝑛

1+𝜖
2  ∫  

+∞

1+𝜖
𝑥𝑛

𝑒
−
1
2
(𝑥𝑛
2(1+𝜖)

−2(𝑥𝑛𝑟)
1+𝜖+𝑟2(1+𝜖))

𝑟
3+𝜖
2  𝑑𝑟 

≤
𝑒1+𝜖

1 + 𝜖
∫  
+∞

0

𝑒−
𝑟2(1+𝜖)

2
 +𝑟1+𝜖 𝑟

3+𝜖
2  𝑑𝑟 =  𝐶𝑒1+𝜖  ≤  𝐶′(2 + 𝜖)𝑒

(1+𝜖)2

2  , 

where the constants 𝐶 and 𝐶 only depend on 1 + 𝜖. 
    Next assume that 𝑥𝑛  ≥  1. In case 1 + 𝜖 ≤  𝑥𝑛

2 we write 𝐽 =  𝐽1  +  𝐽2, where 

𝐽1  =  𝐽1(1 + 𝜖, 𝑑, 1 + 𝜖, 𝑥𝑛, 1 + 𝜖)  

=  𝑥𝑛
1+𝜖   ∫  

1

1+𝜖

𝑥𝑛
2

 𝑒−
𝑥𝑛
2(1+𝜖)

2
(1−𝑟1+𝜖)2+(1+𝜖)𝑥𝑛

𝑑(1−𝑟𝑑)  𝑟
1+𝜖
2  𝑑𝑟,  

And 

𝐽2  =  𝐽2(1 + 𝜖, 𝑑, 1 + 𝜖, 𝑥𝑛, 1 + 𝜖)  

=  𝑥𝑛
1+𝜖∫  

∞

1

 𝑒−
𝑥𝑛
2(1+𝜖)

2
(1−𝑟1+𝜖)2+(1+𝜖)𝑥𝑛

𝑑(1−𝑟𝑑)  𝑟
1+𝜖
2  𝑑𝑟.  

 Otherwise we just use 𝐽1 ≤ 𝐽2. So it suffices to estimate the two integrals above. 

     To handle 𝐽1(1 + 𝜖, 𝑑, 1 + 𝜖, 𝑥𝑛, 1 + 𝜖), we fix 𝜀 >  0 and consider two cases. In the 

case 𝑥𝑛
1+𝜖  ≤  (1 + 𝜖)2, we have 
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𝐽1(1 + 𝜖, 𝑑, 1 + 𝜖, 𝑥𝑛 , 1 + 𝜖)  ≤  𝑥𝑛
1+𝜖∫  

1

1+𝜖

𝑥𝑛
2

 𝑒−
𝑥𝑛
2(1+𝜖)

2
(1−𝑟1+𝜖)2+(1+𝜖)𝑥𝑛

𝑑(1−𝑟𝑑)  𝑟
1+𝜖
2  𝑑𝑟

≤ (1 + 𝜖)2𝑒
(1+𝜖)2

2 ∫  
1

1+𝜖

𝑥𝑛
2

𝑒
−
1
2
 (𝑥𝑛

1+𝜖(1−𝑟1+𝜖)−(1+𝜖))
2
 
𝑟
1+𝜖
2  𝑑𝑟

≤ (1 +  𝜀)2𝑒
(1+𝜖)2

2 . 
When 𝑥𝑛

1+𝜖  ≥  (1 +  𝜀)2, we set 𝑦𝑛  =  𝑥𝑛
1+𝜖 and 𝜏 =  (𝑦𝑛  − (1 + 𝜖))/2. Then we have  

𝜏 ≥
𝜀

2(1 +  𝜀)
 𝑦𝑛  →  +∞ 

as 𝑦𝑛  →  +∞. By successive changes of variables we see that 

𝐽1(1 + 𝜖, 𝑑, 1 + 𝜖, 𝑥𝑛, 1 + 𝜖)  ≤  𝑥𝑛
1+𝜖∫  

1

1+𝜖

𝑥𝑛
2

𝑒−
𝑥𝑛
2(1+𝜖)

2
 (1−𝑟1+𝜖)2+(1+𝜖)𝑥𝑛

1+𝜖(1−𝑟1+𝜖)𝑟
1+𝜖
2  𝑑𝑟 

=
𝑦𝑛
1 + 𝜖

∫  
1− 

(1+𝜖)1+𝜖

𝑦𝑛
2

0

 (1 −  𝑟)
1
1+𝜖

 −
1
2 𝑒− 

𝑦𝑛
2𝑟2

2
 +(1+𝜖)𝑦𝑛𝑟  𝑑𝑟 

=
1

1 + 𝜖
∫  
𝑦𝑛−

(1+𝜖)1+𝜖

𝑦𝑛

0

(1 −
𝑟

𝑦𝑛
)

1−𝜖
2(1+𝜖)

 𝑒−
𝑟2

2
 +(1+𝜖)𝑟  𝑑𝑟 

=
𝑒
(1+𝜖)2

2

1 + 𝜖
∫  
𝑦𝑛−(1+𝜖)−

(1+𝜖)1+𝜖

𝑦𝑛

−(1+𝜖)

(1 −
1 + 𝜖

𝑦𝑛
 −

𝑟

𝑦𝑛
)

1
1+𝜖

 −
1
2
 𝑒−

𝑟2

2  𝑑𝑟.  

 

This shows that for 0 ≤ 𝜖 ≤ 1 we have 

𝐽1  ≤
𝑒
(1+𝜖)2

2

1 + 𝜖
∫  
𝑦𝑛−(1+𝜖)−

(1+𝜖)1+𝜖

𝑦𝑛

−(1+𝜖)

𝑒−
𝑟2

2  𝑑𝑟 ≤
√2𝜋

1 + 𝜖
 𝑒
(1+𝜖)2

2  . 

Thus we suppose that 𝜖 > 0. Then 

∫  
𝜏

−𝜏

(1 −
1 + 𝜖

𝑦𝑛
 −

𝑟

𝑦𝑛
)
−

𝜖
2(2+𝜖)

  𝑒−
𝑟2

2  𝑑𝑟 ≤ (1 −
1 + 𝜖

𝑦𝑛
 −

𝜏

𝑦𝑛
)
−

𝜖
2(2+𝜖)

∫  
𝜏

−𝜏

𝑒−
𝑟2

2  𝑑𝑟

= (
𝜏

2𝑦𝑛
)
−

𝜖
2(2+𝜖)

∫  
𝜏

−𝜏

𝑒−
𝑟2

2  𝑑𝑟 ≤ √2𝜋 (
𝜀

4(1 +  𝜀)
)
−

𝜖
2(2+𝜖)

. 

Moreover, in case −(1 + 𝜖)  <  −𝜏 , we have 

∫  
−𝜏 

−(1+𝜖)

(1 −
1 + 𝜖

𝑦𝑛
 −

𝑟

𝑦𝑛
)
−

𝜖
2(2+𝜖)

 𝑒−
𝑟2

2  𝑑𝑣2  

≤ (1 −
1 + 𝜖

𝑦𝑛
 +

𝜏

𝑦𝑛
)
−

𝜖
2(2+𝜖)

 

 ∫  
−𝜏

−(1+𝜖)

𝑒−
𝜏|𝑟|
2  𝑑𝑟 

≤  2 (
3𝜀

2(1 +  𝜀)
)
−

𝜖
2(2+𝜖)

 
𝑒−

𝜏2

2

𝜏
  ≤  4 (

3

2
)
−

𝜖
2(2+𝜖)

  (
𝜀

1 +  𝜀
)
−
5+𝜖
2(2+𝜖)

 𝑒
−

𝜀2

8(1+𝜀)2  . 

Similarly, in case 𝑦𝑛  − (1 + 𝜖)  −
(1+𝜖)2+𝜖

𝑦𝑛
 ≥  𝜏 ,  we have 
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∫  
𝑦𝑛−(1+𝜖)−

(1+𝜖)2+𝜖

𝑦𝑛

𝜏

[1 −
1 + 𝜖

𝑦𝑛
 −

𝑟

𝑦𝑛
]
−

𝜖
2(2+𝜖)

 𝑒−
𝑟2

2  𝑑𝑟 

≤ [
(1 + 𝜖)2+𝜖

𝑦𝑛
2

]

−
𝜖

2(2+𝜖)

   ∫  
𝑦𝑛−(1+𝜖)−

(1+𝜖)2+𝜖

𝑦𝑛

𝜏

𝑒−
𝜏𝑟
2   𝑑𝑟 

≤  2(1 + 𝜖)−
𝜖
2  [

𝜀

2(1 +  𝜀)
]
−
𝜖
2+𝜖
  𝜏−

2
2+𝜖

  𝑒−
𝜏2

2  (𝑠𝑖𝑛𝑐𝑒 𝜏 ≥
𝜀

2(1 +  𝜀)
)   

≤  4(1 + 𝜖)−
𝜖
2  
1 +  𝜀

𝜀
 𝑒
−

𝜀2

8(1+𝜀)2   . 

The last three estimates yield 

𝐽1  ≤  𝐶(2 + 𝜖)𝑒
(1+𝜖)2

2  

for some 𝐶 >  0 that is independent of 𝑥𝑛 and (1 + 𝜖). 
     To establish the estimate for 𝐽2, we perform a change of variables to obtain 

 

𝐽2  ≤  𝑥𝑛
2+𝜖∫  

+∞

1

 𝑒−
𝑥𝑛
2(2+𝜖)

2
 (1−𝑟2+𝜖)2  𝑟

2+𝜖
2  𝑑𝑟 =

1

2 + 𝜖
∫  
+∞

0

 𝑒−
𝑟2

2  (
𝑟

𝑥𝑛
2+𝜖  +  1)

−
𝜖

2(2+𝜖)

 𝑑𝑟. 

If 𝜖 ≥ 0, we have 

𝐽2  ≤
1

2 + 𝜖
 ∫  

+∞

0

𝑒−
𝑟2

2  𝑑𝑟, 

and if 0 ≤ 𝜖 < 1, we have 

𝐽2  ≤
1

1 + 𝜖
 ∫  

+∞

0

𝑒−
𝑟2

2 (𝑟 +  1)
1−𝜖
2(1+𝜖) 𝑑𝑟. 

Therefore, 𝐽2  ≤  𝐶 for some 𝐶 >  0 that is independent of 𝑥𝑛 and (1 + 𝜖). This completes 

the proof of the corollary. 

 

     In the proof of the main theorem, we will have to estimate the following two integrals: 

𝐼(𝑥𝑛, 𝑟)  = ∫   
 

|𝜃|≤
𝜋

2(1+𝜖)

 𝑒
−(𝑥𝑛𝑟)

1+𝜖+2(1+𝜖)𝑟𝑑 sin2(
𝜃𝑑
2
 )
|𝐾1+𝜖(𝑥𝑛, 𝑟𝑒

𝑖𝜃)| 𝑑𝜃, 

and 

𝐽(𝑥𝑛, 𝑟) = ∫    
 

|𝜃|≥
𝜋

2(1+𝜖)

𝑒−(𝑥𝑛𝑟)
1+𝜖+(1+𝜖)(𝑥𝑛

𝑑+𝑟𝑑) |𝐾1+𝜖(𝑥𝑛, 𝑟𝑒
𝑖𝜃)| 𝑑𝜃, 

where 𝑥𝑛, 𝑟, 1 + 𝜖 ∈  (0,+∞) and 𝜖 ≥ 0. 
Corollary (5.3.18)[185]: For any 𝜖 > −1 there exist positive constants 𝐶 =  𝐶(1 + 𝜖) and 

𝜖 = −1 such that 

𝐼(𝑥𝑛, 𝑟)  ≤  𝐶(𝑥𝑛𝑟)
𝜖  ∫  

1

0

𝑒−((𝑥𝑛𝑟)
1+𝜖−(1+𝜖)𝑟𝑑)𝑡2  𝑑𝑡 

and 

𝐽(𝑥𝑛, 𝑟)  ≤
𝐶𝑒−(𝑥𝑛𝑟)

1+𝜖+(1+𝜖)(𝑥𝑛
𝑑+𝑟𝑑)

𝑥𝑛𝑟
  

for all 𝜖 ≥ 0, and 𝑥𝑛  >  0 with 𝑥𝑛𝑟 >  1 + 𝜖. 
Proof. It follows from Lemma (5.3.2) that there exist positive constants 𝐶 =  𝐶(1 + 𝜖) and 

𝜖 = −1 such that for all 𝜖 ≥  0 and 𝑥𝑛𝑟 >  1 + 𝜖 we have 
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𝐼(𝑥𝑛, 𝑟)  ≤  𝐶(𝑥𝑛𝑟)
𝜖∫  

 

|𝜃|≤
𝜋

2(1+𝜖)

𝑒
−(𝑥𝑛𝑟)

1+𝜖+(𝑥𝑛𝑟)
1+𝜖 cos((1+𝜖)𝜃)+2(1+𝜖)𝑟𝑑 sin2  (

𝜃𝑑
2
 )
 𝑑𝜃 

=  2𝐶(𝑥𝑛𝑟)
𝜖 ∫  

𝜋
2(1+𝜖)

0

𝑒
−2(𝑥𝑛𝑟)

1+𝜖 sin2  (
(1+𝜖)𝜃
2

 )+2(1+𝜖)𝑟𝑑 sin2  (
𝜃𝑑
2
 )
 𝑑𝜃 

≤  2𝐶(𝑥𝑛𝑟)
𝜖∫  

 
𝜋

2(1+𝜖)

0

 𝑒
−2(𝑥𝑛𝑟)

1+𝜖 sin2  (
(1+𝜖)𝜃
2

 )+2(1+𝜖)𝑟𝑑 sin2  (
(1+𝜖)𝜃
2

 )
 𝑑𝜃 

≤  2𝐶(𝑥𝑛𝑟)
𝜖∫  

 
𝜋

2(1+𝜖)

0

𝑒
−2((𝑥𝑛𝑟)

1+𝜖−(1+𝜖)𝑟𝑑) sin2  (
(1+𝜖)𝜃
2

 )
 𝑑𝜃  

=
4𝐶

1 + 𝜖
 (𝑥𝑛𝑟)

𝜖∫  

√2
2

0

𝑒
−2((𝑥𝑛𝑟)

1+𝜖−(1+𝜖)𝑟𝑑)𝑡2
𝑑𝑡

√1 − 𝑡2   

≤
4√2𝐶

1 + 𝜖
 (𝑥𝑛𝑟)

𝜖∫  

√2
2

0

𝑒−2((𝑥𝑛𝑟)
1+𝜖−(1+𝜖)𝑟𝑑)𝑡2  𝑑𝑡 

≤
4√2𝐶

1 + 𝜖
 (𝑥𝑛𝑟)

𝜖∫  
1

0

𝑒−((𝑥𝑛𝑟)
1+𝜖−(1+𝜖)𝑟𝑑)𝑡2  𝑑𝑡. 

The estimate 

𝐽(𝑥𝑛, 𝑟)  ≤
𝐶𝑒−(𝑥𝑛𝑟)

1+𝜖+(1+𝜖)(𝑥𝑛
𝑑+𝑟𝑑)

𝑥𝑛𝑟
, 𝑥𝑛𝑟 >  1 + 𝜖, 

also follows from Lemma (5.3.2). 

 

Corollary (5.3.19)[185]: For any 𝜖 ≥ 0 there exist constants 𝜖 > 0 and 𝐶 =  𝐶(1 + 𝜖)  >
 0 such that 

∫  
+∞

1+𝜖
𝑥𝑛

𝑒−
1
2
 (𝑥𝑛

1+𝜖−𝑟1+𝜖)
2
+(1+𝜖)(𝑥𝑛

𝑑−𝑟𝑑)  𝐼(𝑥𝑛, 𝑟)𝑟 𝑑𝑟 ≤  𝐶 (2 + 𝜖)
−
𝜖
1+𝜖  𝑒(1+𝜖)

2
 

and 

∫  
+∞

1+𝜖
𝑥𝑛

 𝑒−
1
2
 (𝑥𝑛

1+𝜖−𝑟1+𝜖)
2

 𝐽(𝑥𝑛, 𝑟)𝑟 𝑑𝑟 ≤  𝐶 (2 + 𝜖)
max(0,−

𝜖
1+𝜖

)𝑒(1+𝜖)
2

  

for all 𝑥𝑛  >  0,  𝜖 ≥ 0. 
Proof. For convenience we write 𝑥𝑛 

𝐴𝐼 (𝑥𝑛, 𝑟) =  𝑒
−
1
2
 (𝑥𝑛

1+𝜖−𝑟1+𝜖)
2
+(1+𝜖)(𝑥𝑛

𝑑−𝑟𝑑) 𝐼(𝑥𝑛, 𝑟)𝑟, 
and 

𝐴𝐽 (𝑥𝑛, 𝑟) =  𝑒
−
1
2
 (𝑥𝑛

1+𝜖−𝑟1+𝜖)
2

 𝐽(𝑥𝑛, 𝑟)𝑟. 

Let (1 + 𝜖) and 𝐶 be the constants from Corollary (5.3.18). In the integrands we have 𝑟 >
 1 + 𝜖/𝑥𝑛, or 𝑥𝑛𝑟 >  1 + 𝜖, so according to Corollary (5.3.18), 

𝐼(𝑥𝑛, 𝑟)  ≤  𝐶(𝑥𝑛𝑟)
𝜖∫  

1

0

𝑒−(𝑥𝑛𝑟)
1+𝜖𝑡2+(1+𝜖)𝑟𝑑𝑡2  𝑑𝑡. 

If, in addition, 𝑥𝑛  ≤  1, then  

𝐼(𝑥𝑛, 𝑟) ≤  𝐶𝑟
𝜖𝑒(1+𝜖)𝑟

𝑑
 , 

and 
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𝐴𝐼 (𝑥𝑛, 𝑟) =  𝑒
−
1
2
 (𝑥𝑛

1+𝜖−𝑟1+𝜖)
2
 𝑒(1+𝜖)𝑥𝑛

𝑑−(1+𝜖)𝑟𝑑

 𝐼(𝑥𝑛, 𝑟)𝑟 ≤  𝐶𝑟
1+𝜖𝑒1+𝜖𝑒−

1
2
 (𝑥𝑛

1+𝜖−𝑟1+𝜖)
2

 . 
It follows that 

∫  
∞

1+𝜖
𝑥𝑛

𝐴𝐼 (𝑥𝑛, 𝑟) 𝑑𝑟 ≤  𝐶𝑒
1+𝜖∫  

∞

1+𝜖
𝑥𝑛

𝑟1+𝜖𝑒−
1
2
 (𝑥𝑛

1+𝜖−𝑟1+𝜖)
2

 𝑑𝑟 

≤  𝐶𝑒1+𝜖∫  
∞

0

𝑟1+𝜖𝑒−
1
2
 𝑥𝑛
2(1+𝜖)

+𝑥𝑛
1+𝜖𝑟1+𝜖−

1
2
 𝑟2(1+𝜖)  𝑑𝑟 

≤  𝐶𝑒1+𝜖∫  
∞

0

𝑟1+𝜖𝑒𝑟
1+𝜖−

1
2
 𝑟2(1+𝜖)

 𝑑𝑟 ≤  𝐶 (1 +  1 + 𝜖)−
𝜖
1+𝜖𝑒(1+𝜖)

2
 .  

for all 𝜖 ≥  0 and 0 <  𝑥𝑛  ≤  1. 
    Similarly, if 𝑥𝑛  ≤  1 (and 𝑥𝑛𝑟 >  1 + 𝜖), we deduce from Corollary (5.3.18) and (59) 

that 

∫   
∞

1+𝜖
𝑥𝑛

𝐴𝐽 (𝑥𝑛, 𝑟) 𝑑𝑟 ≤
𝐶

1 + 𝜖
∫   
∞

1+𝜖
𝑥𝑛

𝑒−
1
2
 (𝑥𝑛

1+𝜖−𝑟1+𝜖)
2

 𝑒−(𝑥𝑛
𝑟)1+𝜖+(1+𝜖)𝑥𝑛

𝑑+(1+𝜖)𝑟𝑑 𝑟  𝑑𝑟 

≤
𝐶𝑒1+𝜖

1 + 𝜖
∫   
∞

1+𝜖
𝑥𝑛

𝑒−
1
2
 𝑟2(1+𝜖)+(1+𝜖)𝑟𝑑  𝑟 𝑑𝑟     

≤  𝐶′(2 + 𝜖) max (0,
1 − 𝜖

1 + 𝜖
) 𝑒(1+𝜖)

2
 . 

Suppose now that 𝑥𝑛  ≥  1 and 𝑟𝑥𝑛  >  1 + 𝜖. By Corollary (5.3.18) again, 

𝐴𝐼 (𝑥𝑛, 𝑟)  ≤  𝐶𝑟(𝑥𝑛𝑟)
𝜖  𝑒−

1
2
 (𝑥𝑛

1+𝜖−𝑟1+𝜖)
2
+(1+𝜖)(𝑥𝑛

𝑑−𝑟𝑑)∫  
1

0

𝑒−𝑡
2((𝑥𝑛𝑟)

1+𝜖−(1+𝜖)𝑟𝑑) 𝑑𝑡. 

Fix a sufficiently small 𝜀 ∈  (0, 1). If (𝑥𝑛𝑟)
1+𝜖  ≥  (1 + 𝜖)𝑟𝑑(1 +  𝜀), then 

∫  
1

0

𝑒−𝑡
2((𝑥𝑛𝑟)

1+𝜖−(1+𝜖)𝑟𝑑) 𝑑𝑡 =  
1

√(𝑥𝑛𝑟)
1+𝜖  −  (1 + 𝜖)𝑟𝑑

∫  
√(𝑥𝑛𝑟)

1+𝜖 − (1+𝜖)𝑟𝑑

0

𝑒−𝑠
2
 𝑑𝑠 

≤  
1

√(𝑥𝑛𝑟)
1+𝜖  −  (1 + 𝜖)𝑟𝑑

∫  
∞

0

𝑒−𝑠
2
 𝑑𝑠 =

√𝜋

2

(𝑥𝑛𝑟)
−
1+𝜖
2

√1 − (
(1 + 𝜖)𝑟𝑑

(𝑥𝑛𝑟)
1+𝜖 )

 

≤  √
𝜋(1 +  𝜀)

4𝜀
 (𝑥𝑛𝑟)

−
1+𝜖
2  , 

so there exists a constant 𝐶 =  𝐶(1 + 𝜖) such that 

𝐴𝐼 (𝑥𝑛, 𝑟)  ≤  𝐶𝑟(𝑥𝑛𝑟)
𝜖−1
2  𝑒−

1
2
 (𝑥𝑛

1+𝜖−𝑟1+𝜖)
2
+(1+𝜖)(𝑥𝑛

𝑑−𝑟𝑑) . 
If (𝑥𝑛𝑟)

1+𝜖  ≤  𝑟𝑑(1 + 𝜖)2, we have 

𝐴𝐼(𝑥𝑛, 𝑟) (1

+ 𝜖)
𝜖
1+𝜖  𝑟

𝑑(𝜖)+1+𝜖
1+𝜖

   𝑒
−
1
2
 (𝑥𝑛

2(1𝑥𝑛+𝜖)+𝑟2(1+𝜖))+(1+𝜖)𝑥𝑛
𝑑

∫  
1

0

𝑒(1−𝑡
2)((𝑥𝑛𝑟)

1+𝜖−(1+𝜖)𝑟𝑑) 𝑑𝑡 

≤  (1 + 𝜖)
𝜖
1+𝜖  𝑟

𝑑(𝜖)+1+𝜖
1+𝜖  𝑒

−
1
2
 (𝑥𝑛

2(1+𝜖)
+𝑟2(1+𝜖))+(1+𝜖)(𝑥𝑛

𝑑+𝜀𝑟𝑑)
 . 

It follows that 
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∫  
+∞

1+𝜖
𝑥𝑛

𝐴𝐼 (𝑥𝑛, 𝑟) 𝑑𝑟

≲ 𝑥𝑛

𝜖−1
2 ∫  

+∞

1+𝜖
𝑥𝑛

𝑒−
1
2
 (𝑥𝑛

1+𝜖−𝑟1+𝜖)
2
+(1+𝜖)(𝑥𝑛

𝑑−𝑟𝑑)𝑟
1+𝜖
2  𝑑𝑟 

+ (1 + 𝜖)
𝜖
1+𝜖∫  

+∞

1+𝜖
𝑥𝑛

 𝑒−
1
2
 (𝑥𝑛

2(1+𝜖)
+𝑟2(1+𝜖))+(1+𝜖)(𝑥𝑛

𝑑+𝜀𝑟𝑑)𝑑𝑟. 

The change of variables 𝑟 ⟼ 𝑥𝑛𝑟 along with the second part of Corollary (5.3.17) shows 

that 

𝑥𝑛

𝜖−1
2 ∫  

+∞

1+𝜖
𝑥𝑛

𝑒−
1
2
 (𝑥𝑛

1+𝜖−𝑟1+𝜖)
2
+(1+𝜖)(𝑥𝑛

𝑑−𝑟𝑑)𝑟
1+𝜖
2   𝑑𝑟 ≤  𝐶(2 + 𝜖)𝑒

(1+𝜖)2

2  . 

Similarly, the change of variables 𝑟 ⟼ 𝑥𝑛𝑟 together with the first part Corollary (5.3.17) 

shows that 

∫  
+∞

1+𝜖
𝑥𝑛

𝑟
𝑑(𝜖)+1+𝜖
1+𝜖  𝑒

−
1
2
 (𝑥𝑛

2(1+𝜖)
+𝑟2(1+𝜖))+(1+𝜖)(𝑥𝑛

𝑑+𝜀𝑟𝑑)
 𝑑𝑟 ≤  𝐶(2 + 𝜖)

𝑑(𝜖)+1+𝜖
1+𝜖 𝑒

1+𝜀2

2
(1+𝜖)2  . 

We may assume that 𝜀 <  1. Then we can find a positive constant 𝐶 such that 

(1 + 𝜖)
𝜖
1+𝜖∫  

+∞

1+𝜖
𝑥𝑛

 𝑟
𝑑(𝜖)+1+𝜖
1+𝜖   𝑒

−
1
2
 (𝑥𝑛

2(1+𝜖)
+𝑟2(1+𝜖))+(1+𝜖)(𝑥𝑛

𝑑+𝜀𝑟𝑑)
𝑑𝑟 

≤  𝐶(2 + 𝜖)−
𝜖
1+𝜖  𝑒(1+𝜖)

2
 . 

 

It follows that 

∫  
+∞ 

1+𝜖
𝑥𝑛

 𝐴𝐼 (𝑥𝑛, 𝑟) 𝑑𝑟 ≤  𝐶 (2 + 𝜖)
−
𝜖
1+𝜖  𝑒(1+𝜖)

2
 

for some other positive constant 𝐶 that is independent of (1 + 𝜖) and 𝑥𝑛. This proves the 

first estimate of the corollary. 

    To establish the second estimate of the corollary, we use Corollary (5.3.18) to get 

𝑥𝑛𝐴𝐽 (𝑥𝑛, 𝑥𝑛𝑟)  =  𝑥𝑛
2 𝑟𝑒−

𝑥𝑛
2(1+𝜖)

2
 (1−𝑟1+𝜖)2  𝐽(𝑥𝑛, 𝑥𝑛𝑟)  

≤  𝐶𝑒−
𝑥𝑛
2(1+𝜖)

2
 (1+𝑟2(1+𝜖))+(1+𝜖)𝑥𝑛

𝑑(1+𝑟𝑑) .  
It follows from this and Corollary (5.3.17) that  

∫  
+∞ 

1+𝜖
𝑥𝑛

𝐴𝐽 (𝑥𝑛, 𝑟) 𝑑𝑟 = 𝑥𝑛  ∫  
+∞ 

1+𝜖

𝑥𝑛
2

𝐴𝐽 (𝑥𝑛, 𝑥𝑛𝑟) 𝑑𝑟 ≤  𝐶(2 + 𝜖)
max(0,

1−𝜖
1+𝜖

)
𝑒(1+𝜖)

2
  .  

This completes the proof of the corollary. 

Corollary (5.3.20)[185]: If 𝑢2(𝓏𝑛)  =  𝑒
𝑔(𝓏𝑛) and 𝑣2(𝓏𝑛)  =  𝑒

−𝑔(𝓏𝑛) , where 𝑔 is a 

polynomial of degree at most 1 + 𝜖, then the operator 𝑇 =  𝑇𝑢2𝑇�̅�2 is bounded on ℱ1+𝜖
2 . 

Proof. To prove the boundedness of 𝑇 =  𝑇𝑢2𝑇�̅�2 , we shall use a standard technique known 

as Schur’s test [162]. Since 

𝑇(∑𝑓𝑠
𝑠

(𝓏𝑛)) = ∫ ∑ 

𝑠

 

ℂ

𝐾1+𝜖(𝓏𝑛, 𝑤𝑛)𝑒
𝑔(𝓏𝑛)−𝑔(𝑤𝑛)̅̅ ̅̅ ̅̅ ̅̅ ̅

 𝑓𝑠(𝑤𝑛)𝑒
−|𝑤𝑛|

2(1+𝜖)
 𝑑𝐴(𝑤𝑛), 
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we have 

|𝑇 (∑𝑓𝑠
𝑠

(𝓏𝑛))| 𝑒
−
1
2
 |𝓏𝑛|

2(1+𝜖)

≤  ∫ ∑ 

𝑠

 

ℂ

 𝐻𝑔(𝓏𝑛, 𝑤𝑛)|𝑓𝑠(𝑤𝑛)|𝑒
−
1
2
 |𝑤𝑛|

2(1+𝜖)

𝑑𝐴(𝑤𝑛), 

where 

𝐻𝑔(𝓏𝑛, 𝑤𝑛) ∶=  |𝐾1+𝜖(𝓏𝑛, 𝑤𝑛)|𝑒
−
1
2
 (|𝓏𝑛|

2(1+𝜖)+|𝑤𝑛|
2(1+𝜖))+𝑅𝑒(𝑔(𝓏𝑛)−𝑔(𝑤𝑛)̅̅ ̅̅ ̅̅ ̅̅ ̅). 

Thus 𝑇 will be bounded on ℱ1+𝜖
2  if the integral operator 𝑆𝑔 defined by 

𝑆𝑔 (∑𝑓𝑠
𝑠

(𝓏𝑛))  = ∫ ∑ 

𝑠

 

ℂ

(𝐻𝑔(𝓏𝑛, 𝑤𝑛) + 𝐻𝑔(𝑤𝑛, 𝓏𝑛)) 𝑓𝑠(𝑤𝑛) 𝑑𝐴(𝑤𝑛) 

is bounded on 𝐿2(ℂ, 𝑑𝐴). Let 

𝐻𝑔(𝓏𝑛)  = ∫  
 

ℂ

𝐻𝑔(𝓏𝑛, 𝑤𝑛) 𝑑𝐴(𝑤𝑛), 𝓏𝑛  ∈ ℂ. 

Since 

𝐻−𝑔(𝓏𝑛)  = ∫  
 

ℂ

ℂ 𝐻𝑔(𝑤𝑛, 𝓏𝑛) 𝑑𝐴(𝑤𝑛), 

for all 𝓏𝑛  ∈ ℂ, by Schur’s test, the operator 𝑆𝑔 is bounded on 𝐿2(ℂ, 𝑑𝐴) if we can find a 

positive constant 𝐶 such that 

𝐻𝑔(𝓏𝑛)  +  𝐻−𝑔(𝓏𝑛)  ≤  𝐶, 𝓏𝑛  ∈ ℂ. 

    By the Cauchy-Schwarz inequality, we have 

𝐻𝑔1+𝑔2  (𝓏𝑛)  ≤   √𝐻2𝑔1 (𝓏𝑛)𝐻2𝑔2 (𝓏𝑛) 

for all 𝓏𝑛  ∈ ℂ and holomorphic polynomials 𝑔1  and 𝑔2. Moreover, if 

𝑈𝜃(𝓏𝑛)  =  𝑒
𝑖𝜃𝓏𝑛, 𝓏𝑛  ∈ ℂ, 𝜃 ∈  [−𝜋, 𝜋], 

then 

𝐻𝑔𝜊𝑈𝜃  =  𝐻𝑔 𝜊 𝑈𝜃 

for all 𝓏𝑛  ∈ ℂ, 𝜃 ∈  [−𝜋, 𝜋], and holomorphic polynomials 𝑔. Therefore, we only need 

prove the theorem for 𝑔(𝓏𝑛)  =  (1 + 𝜖)𝓏𝑛
𝑑 with some 𝜖 ≥ 0 and establish that 

sup
𝑥𝑛≥0

 𝐻𝑔(𝑥𝑛)  ≤  𝐶1𝑒
𝐶2(1+𝜖)

2
 ,                                                        (60) 

where 𝐶𝑘 are positive constants independent of (1 + 𝜖) and 𝑑 (but dependent on 𝑑 + 𝜖). We 

will see that 𝐶2 can be chosen as any constant greater than 1. 

    It is also easy to see that we only need to prove (60) for 𝑥𝑛  ≥  1. This will allow us to 

use the inequality 𝑥𝑛
𝑑  ≤  𝑥𝑛

𝑑+𝜖 for the rest of this proof. 

     For 𝜖 ≥  0 sufficiently large (we will specify the requirement on (1 + 𝜖) later) we write 

𝐻𝑔(𝑥𝑛)  =  ∫  
 

|𝑥𝑛𝑤𝑛|≤1+𝜖

𝐻𝑔(𝑥𝑛, 𝑤𝑛) 𝑑𝐴(𝑤𝑛)  + ∫  
 

|𝑥𝑛𝑤𝑛|≥1+𝜖

𝐻𝑔(𝑥𝑛, 𝑤𝑛) 𝑑𝐴(𝑤𝑛). 

We will show that both integrals are, up to a multiplicative constant, bounded above 

by 𝑒(1+𝜀)(1+𝜖)
2
 . 

     By properties of the Mittag-Leffler function, we have 

|𝐾𝑑+𝜖(𝑥𝑛, 𝑤𝑛)|  ≤
𝑑 + 𝜖

𝜋
 𝐸 1
𝑑+𝜖

 ,
1
𝑑+𝜖
 (1 + 𝜖) ∶=  𝐶1+𝜖 , |𝑥𝑛𝑤𝑛|  ≤  1 + 𝜖. 

It follows that the integral 
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𝐼1  = ∫  
 

𝑥𝑛|𝑤𝑛|≤1+𝜖

𝐻𝑔(𝑥𝑛, 𝑤𝑛) 𝑑𝐴(𝑤𝑛) 

Satisfies 

𝐼1  = ∫  
 

𝑥𝑛|𝑤𝑛|≤1+𝜖

 |𝐾𝑑+𝜖(𝓏𝑛, 𝑤𝑛)|𝑒
−
1
2
 (|𝓏𝑛|

2(𝑑+𝜖)+|𝑤𝑛|
2(𝑑+𝜖))+(1+𝜖)𝑅𝑒 (𝑥𝑛

𝑑−𝑤𝑛
𝑑) 𝑑𝐴(𝑤𝑛)  

≤  𝐶1+𝜖∫  
 

𝑥𝑛|𝑤𝑛|≤1+𝜖

 𝑒
−
1
2
 (𝑥𝑛

2(𝑑+𝜖)
+|𝑤𝑛|

2(𝑑+𝜖))+(1+𝜖)𝑅𝑒(𝑥𝑛
𝑑−𝑤𝑛

𝑑)
 𝑑𝐴(𝑤𝑛)  

≤  𝐶1+𝜖𝑒
−
1
2
 𝑥𝑛
2(𝑑+𝜖)

 +(1+𝜖)𝑥𝑛
𝑑

∫  
 

𝑥𝑛|𝑤𝑛|≤1+𝜖

 𝑒−
|𝑤𝑛|

2(𝑑+𝜖)

2
 +(1+𝜖)|𝑤𝑛|

𝑑

 𝑑𝐴(𝑤𝑛)  

≤  2𝜋𝐶1+𝜖𝑒
−
1
2
 𝑥𝑛
2(𝑑+𝜖)

+(1+𝜖)𝑥𝑛
𝑑+𝜖

∫  
+∞

0

𝑒−
𝑟2(𝑑+𝜖)

2
 +(1+𝜖)𝑟𝑑  𝑟 𝑑𝑟 

≤  2𝜋𝐶1+𝜖𝑒
(1+𝜖)2

2 ∫  
+∞

0

𝑒−
𝑟2(𝑑+𝜖)

2
 +(1+𝜖)𝑟𝑑  𝑟 𝑑𝑟    

≤  𝐶(2 + 𝜖)
max(0,

2−𝑑−𝜖
𝑑+𝜖

 )
 𝑒(1+𝜖)

2
 , 

where the last inequality follows from (59). 

      We now focus on the integral 

𝐼2  = ∫  
 

𝑥𝑛|𝑤𝑛|≥1+𝜖

 𝐻𝑔(𝑥𝑛, 𝑤𝑛) 𝑑𝐴(𝑤𝑛). 

Observe that for all 𝑥𝑛, 𝑟, and 𝜃 we have 

𝑅𝑒(𝑥𝑛
𝑑 − 𝑟𝑑  𝑒𝑖𝑑𝜃) =  𝑥𝑛

𝑑  −  𝑟𝑑  cos(𝑑𝜃)    =  𝑥𝑛
𝑑  −  𝑟𝑑(2 −  cos(𝑑𝜃))

=  𝑥𝑛
𝑑 + 𝑟𝑑 sin2  (

𝑑𝜃

2
) . 

It follows from polar coordinates that 

𝐼2  =  ∫  
+∞

1+𝜖
𝑥𝑛

∫  
𝜋

−𝜋

 𝐻𝑔(𝑥𝑛, 𝑟𝑒
𝑖𝜃)𝑟 𝑑𝜃 𝑑𝑟 

=  ∫  
+∞

1+𝜖
𝑥𝑛

∫  
𝜋

−𝜋

𝑒
−
1
2
 (𝑥𝑛

2(𝑑+𝜖)
+𝑟2(𝑑+𝜖))+(1+𝜖)(𝑥𝑛

𝑑−𝑟𝑑 cos(𝑑𝜃))
|𝐾𝑑+𝜖(𝑥𝑛, 𝑟𝑒

𝑖𝜃)|𝑟 𝑑𝜃 𝑑𝑟 

= ∫  
∞

1+𝜖
𝑥𝑛

𝑒−
1
2
 (𝑥𝑛

𝑑+𝜖−𝑟𝑑+𝜖)
2
+(1+𝜖)(𝑥𝑛

𝑑−𝑟𝑑)−(𝑥𝑛𝑟)
𝑑+𝜖

 𝑟 𝑑𝑟∫  
𝜋

−𝜋

 𝑒2(1+𝜖)𝑟
𝑑
sin2  (

𝑑𝜃

2
 ) |𝐾𝑑+𝜖(𝑥𝑛, 𝑟𝑒

𝑖𝜃)| 𝑑𝜃 

≤  ∫  
+∞

1+𝜖
𝑥𝑛

𝑒−
1
2
 (𝑥𝑛

𝑑+𝜖−𝑟𝑑+𝜖)
2
 (𝑒(1+𝜖)(𝑥𝑛

𝑑−𝑟𝑑) 𝐼(𝑥𝑛, 𝑟) +  𝐽(𝑥𝑛, 𝑟)) 𝑟 𝑑𝑟, 

Where 

𝐼(𝑥𝑛, 𝑟)  =  ∫  
 

|𝜃|≤
𝜋

2(𝑑+𝜖)

 𝑒
−(𝑥𝑛𝑟)

𝑑+𝜖+2(1+𝜖)𝑟𝑑 sin2  (
𝑑𝜃
2
 )
|𝐾𝑑+𝜖(𝑥𝑛, 𝑟𝑒

𝑖𝜃)| 𝑑𝜃, 

and 

𝐽(𝑥𝑛, 𝑟)  =  ∫  
 

|𝜃|≥
𝜋

2(𝑑+𝜖)

 𝑒−(𝑥𝑛𝑟)
𝑑+𝜖+(1+𝜖)(𝑥𝑛

𝑑+𝑟𝑑)|𝐾𝑑+𝜖(𝑥𝑛, 𝑟𝑒
𝑖𝜃)| 𝑑𝜃. 

By Corollary (5.3.19), there exists another constant 𝐶 >  0 such that 

𝐼2  ≤  𝐶(2 + 𝜖)
max(0,

2−𝑑−𝜖
𝑑+𝜖

)
𝑒(1+𝜖)

2
 . 

Therefore, 
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sup
𝓏𝑛∈ℂ

∫ 
 

ℂ

𝐻𝑔(𝓏𝑛, 𝑤𝑛) 𝑑𝐴(𝑤𝑛)  ≤  𝐶(2 + 𝜖)
max(0,

2−𝑑−𝜖
𝑑+𝜖

)
𝑒(1+𝜖)

2
 

for yet another constant 𝐶 that is independent of (1 + 𝜖) and 𝑑. Similarly, we also have 

sup
𝓏𝑛∈ℂ

∫ 
 

ℂ

𝐻−𝑔(𝓏𝑛, 𝑤𝑛) 𝑑𝐴(𝑤𝑛)  ≤  𝐶(2 + 𝜖)
max(0,

2−𝑑−𝜖
𝑑+𝜖

)
𝑒(1+𝜖)

2
 

This yields (60) and proves the corollary. 

Corollary (5.3.21)[185]: Suppose 𝑢2 and 𝑣2 are functions in ℱ𝑑+𝜖
2 , not identically zero, 

such that the operator 𝑇 =  𝑇𝑢2𝑇�̅�2 is bounded on ℱ𝑑+𝜖
2 . Then the function 

|𝑢2|2̃(𝓏𝑛)|𝑣
2|2̃(𝓏𝑛) is bounded on the complex plane. 

Proof. Since 𝑇𝑢2𝑇�̅�2 is bounded on ℱ𝑑+𝜖
2 , the operator (𝑇𝑢2𝑇�̅�2) 

∗ = 𝑇𝑢2𝑇�̅�2 and the 

products (𝑇𝑢2𝑇�̅�2) 
∗ 𝑇𝑢2𝑇�̅�2 and (𝑇𝑣2𝑇𝑢2̅̅ ̅̅ ) 

∗ 𝑇𝑣2𝑇𝑢2 are also bounded on ℱ𝑑+𝜖
2 . 

Consequently, their Berezin transforms are all bounded functions on ℂ. 
         For any 𝓏𝑛  ∈ ℂ we let 𝑘𝓏𝑛 denote the normalized reproducing kernel of ℱ𝑑+𝜖

2  at 𝓏𝑛. 

Then 

〈(𝑇𝑢2𝑇�̅�2) 
∗ 𝑇𝑢2𝑇�̅�2𝑘𝓏𝑛 , 𝑘𝓏𝑛〉 =  〈𝑇𝑢2𝑇�̅�2𝑘𝓏𝑛 , 𝑇𝑢2𝑇�̅�2𝑘𝓏𝑛〉  

=   〈𝑢2𝑣2(𝓏𝑛)̅̅ ̅̅ ̅̅ ̅̅ ̅𝑘𝓏𝑛 , 𝑢
2𝑣2(𝓏𝑛)̅̅ ̅̅ ̅̅ ̅̅ ̅𝑘𝓏𝑛〉  =  |𝑣

2(𝓏𝑛)|
2 | 𝑢2|2̃(𝓏𝑛) 

is bounded on ℂ. Similarly |𝑢2(𝓏𝑛)|
2 |𝑣2|2̃(𝓏𝑛) is bounded on ℂ. By the proof of Corollary 

(5.3.16), the product 𝑢2𝑣2 is a non-zero complex constant, say, 𝑢2(𝓏𝑛)𝑣
2(𝓏𝑛)  =  𝐶. It 

follows that the function 

|𝑣2|2̃(𝓏𝑛)|𝑢
2|2̃(𝓏𝑛)  =  |𝑢

2(𝓏𝑛)|
2 |𝑣2|2̃(𝓏𝑛)|𝑣

2(𝓏𝑛)|
2 | 𝑢2|2̃(𝓏𝑛)

1

|𝐶|2
  

is bounded as well. 

      To complete the proof of Sarason’s conjecture, we will need to find a lower bound for 

the function 

ℬ(𝓏𝑛)  =  |𝑣
2|2̃(𝓏𝑛)|𝑢

2(𝓏𝑛)|
2 , 

where 𝑢2  =  𝑒𝑔, 𝑣2  =  𝑒−𝑔, and 𝑔 is a polynomial of degree 𝑑. We write 

𝑔(𝓏𝑛)  =  (1 + 𝜖)𝑑𝓏𝑛
𝑑  +  𝑔𝑑−1(𝓏𝑛), 

where 

(1 + 𝜖)𝑑  =  (1 + 𝜖)𝑒
𝑖(1+𝜖)𝑑 , 𝜖 >  0, 

and 

𝑔𝑑−1(𝓏𝑛)  = ∑  

𝑑−1

𝑙=0

(1 + 𝜖)𝑙𝓏𝑛
𝑙 . 

In the remainder, we will have to handle several integrals of the form 

𝐼(𝑥𝑛)  = ∫  
 

𝐽

𝑆𝑥𝑛(𝑟)𝑒
−𝑔𝑥𝑛(𝑟) 𝑑𝑟, 

where 𝑆𝑥𝑛 and 𝑔𝑥𝑛 are 𝐶3-functions on the interval 𝐽, and the real number 𝑥𝑛 tends to +∞. 

We will make use of the following variant of the Laplace method (see [130]). 

Corollary (5.3.22)[185]: For 𝓏𝑛  =  𝑥𝑛𝑒
𝑖𝜙, with 𝑥𝑛  >  0 and 𝑒𝑖((1+𝜖)𝑑+𝑑𝜙) = 1, we have 

ℬ(𝓏𝑛) ≳ ∫  
+∞

0

(𝑟𝑥𝑛)
−
𝑑+𝜖
2 𝑟2(𝑑+𝜖)−1𝑒−ℎ𝑥𝑛(𝑟)𝑑𝑟  

 

as 𝑥𝑛  →  +∞, where 

ℎ𝑥𝑛(𝑟) = (𝑟
𝑑+𝜖  −  𝑥𝑛

𝑑+𝜖)2  −  2(1 + 𝜖)(𝑥𝑛
𝑑  −  𝑟𝑑) +  𝐶(𝑟𝑑−1 + 𝑥𝑛

𝑑−1 +  1),   (61) 
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for some positive constant 𝐶. 
Proof. It is easy to see that 

ℬ(𝓏𝑛) = ∫  
 

ℂ

|𝐾𝑑+𝜖(𝑤𝑛, 𝓏𝑛)|
2 𝑒2𝑅𝑒(𝑔(𝓏𝑛)−𝑔(𝑤𝑛)) [𝐾𝑑+𝜖(𝓏𝑛, 𝓏𝑛)]

−1 𝑒−|𝑤𝑛|
2(𝑑+𝜖)

 𝑑𝐴(𝑤𝑛), 

which, in terms of polar coordinates, can be rewritten as 

∫  
+∞

0

∫  
−𝜋

 𝜋

|𝐾𝑑+𝜖(𝑟𝑒
𝑖𝜃 , 𝓏𝑛)|

2
 𝑒
2𝑅𝑒(𝑔(𝓏𝑛)−𝑔(𝑟𝑒

𝑖𝜃))
 [𝐾𝑑+𝜖(𝑥𝑛, 𝑥𝑛)]

−1 𝑒−𝑟
2(𝑑+𝜖)

𝑟 𝑑𝑟 𝑑𝜃. 

By Lemma (5.3.2), ℬ(𝓏𝑛) is greater than or equal to 

∫  
+∞

0

∫  
 

|𝜃−𝜙|≤𝑐𝜃0(𝑟𝑥𝑛)

|𝐾𝑑+𝜖(𝑟𝑒
𝑖𝜃 , 𝓏𝑛)|

2
𝑒
2𝑅𝑒(𝑔(𝓏𝑛)−𝑔(𝑟𝑒

𝑖𝜃))
 [𝐾𝑑+𝜖(𝑥𝑛, 𝑥𝑛)]

−1 𝑒−𝑟2(𝑑+𝜖) 𝑟𝑑𝑟 𝑑𝜃. 

This together with Lemma (5.3.2) shows that 

ℬ(𝓏𝑛)∫  
+∞

0

 𝑟2(𝑑+𝜖−1)𝑒−(𝑟
𝑑+𝜖−𝑥𝑛

𝑑+𝜖)
2

 𝐼(𝑟, 𝓏𝑛)𝑟𝑑𝑟,  

where 

𝐼(𝑟, 𝓏𝑛)  = ∫  
 

|𝜃−𝜙|≤𝑐𝜃0(𝑟𝑥𝑛)

𝑒
2𝑅𝑒(𝑔(𝓏𝑛)−𝑔(𝑟𝑒

𝑖𝜃))
 𝑑𝜃. 

Note that 

𝐼(𝑟, 𝓏𝑛)  = ∫  
 

|𝜃−𝜙|≤𝑐𝜃0(𝑟𝑥𝑛)

𝑒2𝑅𝑒[(1+𝜖)𝑒
𝑖(1+𝜖)𝑑  (𝑥𝑛

𝑑𝑒𝑖𝑑𝜙−𝑟𝑑𝑒𝑖𝑑𝜃)]+2𝑅𝑒[𝑔𝑑−1(𝓏𝑛)−𝑔𝑑−1(𝑟𝑒
𝑖𝜃)]𝑑𝜃 

= ∫  
 

|𝜃−𝜙|≤𝑐𝜃0(𝑟𝑥𝑛)

𝑒
2𝑅𝑒[(1+𝜖)𝑒𝑖((1+𝜖)𝑑+𝑑𝜙)(𝑥𝑛

𝑑−𝑟𝑑𝑒𝑖𝑑(𝜃−𝜙))]+2𝑅𝑒[𝑔𝑑−1(𝓏𝑛)−𝑔𝑑−1(𝑟𝑒
𝑖𝜃)]
𝑑𝜃. 

The condition on 𝜙 yields 

𝐼(𝑟, 𝓏𝑛)  = ∫  
 

|𝜃|≤𝑐𝜃0(𝑟𝑥𝑛)

𝑒2(1+𝜖)𝑅𝑒[(1+𝜖)(𝑥𝑛
𝑑−𝑟𝑑𝑒𝑖𝑑𝜃)]+2𝑅𝑒[𝑔𝑑−1 (𝓏𝑛)−𝑔𝑑−1(𝑟𝑒

(𝑖𝜃+𝜙))] 𝑑𝜃. 

Since 

𝑔𝑑−1(𝓏𝑛)  −  𝑔𝑑−1(𝑟𝑒
𝑖(𝜃+𝜙))  = ∑  

𝑑−1

 𝑙=0

(1 + 𝜖)𝑙(𝑥𝑛
𝑙  𝑒𝑖𝑙𝜙  −  𝑟𝑙 𝑒𝑖𝑙(𝜃+𝜙)) , 

 

we have 

𝑅𝑒[𝑔𝑑−1(𝓏𝑛) − 𝑔𝑑−1(𝑟𝑒
𝑖(𝜃+𝜙))] ≥  −𝐶(𝑟𝑑−1  +  𝑥𝑛

𝑑−1  +  1) 
for some constant 𝐶. It follows that 

𝐼(𝑟, 𝓏𝑛) ≥  𝑒
−𝐶(𝑟𝑑−1+𝑥𝑛

𝑑−1+1)∫  
 

|𝜃|≤𝑐𝜃0(𝑟𝑥𝑛)

𝑒2(1+𝜖)𝑅𝑒[(𝑥𝑛
𝑑−𝑟𝑑𝑒𝑖𝑑𝜃)]𝑑𝜃. 

 For the integral we have 
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𝐽(𝑟, 𝓏𝑛) ∶=  ∫  
 

|𝜃|≤𝑐𝜃0(𝑟𝑥𝑛)

𝑒2(1+𝜖)𝑅𝑒[(𝑥𝑛
𝑑−𝑟𝑑𝑒𝑖𝑑𝜃)]𝑑𝜃 

= ∫  
 

|𝜃|≤𝑐𝜃0(𝑟𝑥𝑛)

𝑒
2(1+𝜖)(𝑥𝑛

𝑑−𝑟𝑑 𝑐𝑜𝑠(𝑑𝜃))
 𝑑𝜃 

= ∫  
 

|𝜃|≤𝑐𝜃0(𝑟𝑥𝑛)

𝑒2(1+𝜖)(𝑥𝑛
𝑑−𝑟𝑑+(− 𝑐𝑜𝑠(𝑑𝜃)+1)𝑟𝑑)𝑑𝜃 

= ∫  
 

|𝜃|≤𝑐𝜃0(𝑟𝑥𝑛)

𝑒
2(1+𝜖)(𝑥𝑛

𝑑−𝑟𝑑+2(𝑠𝑖𝑛(
𝑑𝜃
2
)
2

 )𝑟𝑑)
𝑑𝜃 

≥  𝑒2(1+𝜖)(𝑥𝑛
𝑑−𝑟𝑑)  ∫  

 

|𝜃|≤𝑐𝜃0(𝑟𝑥𝑛)

𝑒
4|(1+𝜖)𝑑| 𝑠𝑖𝑛(

𝑑𝜃
2
)
2

 𝑟𝑑

𝑑𝜃 

≥ 𝑒2(1+𝜖)(𝑥𝑛
𝑑−𝑟𝑑)  ∫  

 

|𝜃|≤𝑐𝜃0(𝑟𝑥𝑛)

𝑑𝜃 ≳ 𝑒2(1+𝜖)(𝑥𝑛
𝑑−𝑟𝑑) (𝑟𝑥𝑛)

−
𝑑+𝜖
2   , 

which completes the proof of the corollary. 

Corollary (5.3.23)[185]: Assume 𝜖 = 0. For 𝓏𝑛 = 𝑥𝑛𝑒
𝑖𝜙,where 𝑥𝑛  >  0 and 

𝑒𝑖((1+𝜖)𝑑+𝑑𝜙) = 1, we have 

ℬ(𝓏𝑛)𝑒
(1+𝑜(1))

2(1+𝜖)
(1+2(1+𝜖))

𝑥𝑛
𝑑+2𝜖

 , 𝑥𝑛  →  +∞. 
Proof. For 𝑥𝑛 large enough, the function ℎ𝑥𝑛 defined in (61) is convex on some interval 

[𝑀𝑥𝑛 , +∞) and attains its minimum at some point 𝑟𝑥𝑛 . In order to bound ℬ(𝓏𝑛) from below, 

we shall use the modified Laplace method from Lemma (5.3.10). Since 

ℎ𝑥𝑛
′ (𝑟) = (𝑑 + 2𝜖)𝑟

𝑑+2𝜖−2
2  (𝑟

𝑑
2
+𝜖  −  𝑥𝑛

𝑑
2
+𝜖
) + 2(1 + 𝜖)𝑑𝑟𝑑−1  +  𝐶 (𝑑 −  1)𝑟𝑑−2, (62) 

we have 

ℎ𝑥𝑛
′ (𝑟) = (𝑑 + 2𝜖)(1 +  2(1 + 𝜖))𝑟𝑑+2𝜖−1 − (𝑑 + 2𝜖)𝑥𝑛

𝑑
2
+𝜖
𝑟
𝑑+2𝜖−2

2 +  𝐶(𝑑 −  1)𝑟𝑑−2 , 

and 

ℎ𝑥𝑛
′′ (𝑟) = (𝑑 + 2𝜖)(𝑑 + 2𝜖 − 1)(1 + 2(1 + 𝜖))𝑟𝑑+2𝜖−2 − (𝑑

+ 2𝜖) (
𝑑 + 2𝜖 − 2

2
)𝑥𝑛

𝑑
2
+𝜖
𝑟
𝑑
2
+𝜖−2  + 𝐶(𝑑 − 1)(𝑑 − 2)𝑟𝑑−3 . 

 Writing ℎ𝑥𝑛
′ (𝑟𝑥𝑛) = 0 and letting 𝑥𝑛 tend to +∞, we obtain 

(
𝑑

2
+ 𝜖) (1 +  2(1 + 𝜖))(𝑟𝑥𝑛)

𝑑+2𝜖−1
∼ (

𝑑

2
+ 𝜖) 𝑥𝑛

𝑑
2
+𝜖
𝑟𝑥𝑛

𝑑+2𝜖−2
2  , 

or 

𝑟𝑥𝑛  ∼  (1 +  2(1 + 𝜖))
−
1
𝑑
2
+𝜖  𝑥𝑛.                                             (63) 

Thus there exists 𝜌𝑥𝑛 , which tends to 0 as 𝑥𝑛 tends to +∞, such that 

𝑟𝑥𝑛  =  (1 +  2(1 + 𝜖))
−
1
𝑑
2
+𝜖𝑥𝑛(1 + 𝜌𝑥𝑛).                                                                     (64) 

When 𝑥𝑛 tends to +∞, we have 
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ℎ𝑥𝑛(𝑟𝑥𝑛) ∼  (𝑟𝑥𝑛

𝑑
2
+𝜖
 −  𝑥𝑛

𝑑
2
+𝜖
)

2

 +  2(1 + 𝜖)(𝑟𝑥𝑛
𝑑+2𝜖  −  𝑥𝑛

𝑑+2𝜖)  

∼  (𝑟𝑥𝑛

𝑑
2
+𝜖
 −  𝑥𝑛

𝑑
2
+𝜖
) [(𝑟𝑥𝑛

𝑑
2
+𝜖
 −  𝑥𝑛

𝑑
2
+𝜖
) + 2(1 + 𝜖)(𝑟𝑥𝑛

𝑑
2
+𝜖
 +  𝑥𝑛

𝑑
2
+𝜖
)]  

∼  𝑥𝑛
𝑑+2𝜖 [(1 +  2(1 + 𝜖))−1 (1 + 𝜌𝑥𝑛)

𝑑
2
+𝜖
 

−  1] [(1 +  2(1 + 𝜖))−1 (1 + 𝜌𝑥𝑛)
𝑑
2
+𝜖
−  1 + 2(1

+ 𝜖) ((1 +  2(1 + 𝜖))−1(1 + 𝜌𝑥𝑛)
𝑑
2
+𝜖
 +  1)]  

∼ −𝑥𝑛
𝑑+2𝜖

2(1 + 𝜖)

(1 +  2(1 + 𝜖))
 ,  

or 

−ℎ𝑥𝑛(𝑟𝑥𝑛)  ∼  𝑥𝑛
𝑑+2𝜖  

2(1 + 𝜖)

(1 +  2(1 + 𝜖))
 .                                    (65) 

    In order to estimate 𝑐𝑥𝑛 ∶=  ℎ𝑥𝑛
′′ (𝑟𝑥𝑛), we compute that 

ℎ𝑥𝑛
′′ (𝑟𝑥𝑛)  ∼  2 (

𝑑

2
+ 𝜖)

2

 (1 +  2(1 + 𝜖))
4−𝑑−2𝜖
𝑑+2𝜖  𝑥𝑛

𝑑+2𝜖−2 . 

Thus we get 

𝑐𝑥𝑛  ≈  𝑥𝑛
𝑑+2𝜖−2 .                                                    (66) 

    For 𝑟 in a neighborhood of 𝑟𝑥𝑛 we set 𝑟 =  (1 + 𝜎𝑥𝑛)𝑟𝑥𝑛 , where 𝜎𝑥𝑛  =  𝜎𝑥𝑛(𝑟)  →  0 as 

𝑥𝑛  →  +∞; a little computation shows that 

ℎ𝑥𝑛
′′ (𝑟)  ∼  ℎ𝑥𝑛

′′ (𝑟𝑥𝑛) 

as 𝑥𝑛  →  +∞. Taking 𝜏𝑥𝑛  =  𝑟𝑥𝑛
1/2

 and |𝑟 −  𝑟𝑥𝑛|  <  𝜏𝑥𝑛 , we have ℎ𝑥𝑛
′′ (𝑟) =  (1 +

 𝑜(1))𝑐𝑥𝑛 , so 

ℎ𝑥𝑛(𝑟) − ℎ𝑥𝑛(𝑟𝑥𝑛) =
1

2
 𝑐𝑥𝑛(𝑟 − 𝑟𝑥𝑛)

2
 (1 +  𝑜(1)). 

Thus 

∫  
 

|𝑟−𝑟𝑥𝑛|<𝜏𝑥𝑛

𝑒−
1
2
 𝑐𝑥𝑛(𝑟−𝑟𝑥𝑛)

2
(1+𝑜(1))𝑑𝑟 = ∫  

 

|𝑡|<𝜏𝑥𝑛

𝑒−
1
2
 𝑐𝑥𝑛𝑡

2(1+𝑜(1)) 𝑑𝑡

∼  
1

√𝑐𝑥𝑛
∫  
 

|𝑦𝑛|<𝜏𝑥𝑛√𝑐𝑥𝑛

𝑒−
1
2
 𝑦𝑛
2

𝑑𝑦𝑛 ≈
1

√𝑐𝑥𝑛
, 

because 𝑐𝑥𝑛𝜏𝑥𝑛
2 ≈ 𝑟𝑥𝑛

𝑑+2𝜖−1 tends to +∞ as 𝑥𝑛 tends to +∞. Finally, the estimates  
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ℬ(𝓏𝑛) ≳ ∫  
 

|𝑟−𝑟𝑥𝑛|<𝜏𝑥𝑛

(𝑟𝑥𝑛)
−(𝑑+2𝜖)

 𝑟𝑑+2𝜖−1𝑒−ℎ𝑥𝑛(𝑟) 𝑑𝑟

= ∫  
 

|𝑟−𝑟𝑥𝑛|<𝜏𝑥𝑛

(𝑟𝑥𝑛)
−(𝑑+2𝜖) 𝑟𝑑+2𝜖−1𝑒−ℎ𝑥𝑛(𝑟𝑥𝑛)𝑒−[ℎ𝑥𝑛(𝑟)−ℎ𝑥𝑛(𝑟𝑥𝑛)] 𝑑𝑟

=  𝑒−ℎ𝑥𝑛(𝑟𝑥𝑛)∫  
 

|𝑟−𝑟𝑥𝑛|<𝜏𝑥𝑛

(𝑟𝑥𝑛)
−(𝑑+2𝜖) 𝑟𝑑+2𝜖−1𝑒−

1
2
𝑐𝑥𝑛(𝑟−𝑟𝑥𝑛)

2
(1+𝑜(1)) 𝑑𝑟

∼  𝑒−ℎ𝑥𝑛(𝑟𝑥𝑛)𝑟𝑥𝑛

3
2
 (
𝑑
2
+𝜖)−1

 𝑥𝑛
−(𝑑+2𝜖)

∫  
 

|𝑟−𝑟𝑥𝑛|<𝜏𝑥𝑛

𝑒−
1
2
𝑐𝑥𝑛(𝑟−𝑟𝑥𝑛)

2
(1+𝑜(1)) 𝑑𝑟

≈  𝑒−ℎ𝑥𝑛(𝑟𝑥𝑛)𝑟𝑥𝑛

3
2
(
𝑑
2
+𝜖)−1

 𝑥𝑛
−(𝑑+2𝜖) 1

√𝑐𝑥𝑛
  

along with (63), (65), and (66) give the corollary 

Corollary (5.3.24)[185]: Assume 𝜖 > 0. For 𝓏𝑛  =  𝑥𝑛𝑒
𝑖𝜙, with 𝑥𝑛  >  0 and 

𝑒𝑖((1+𝜖)𝑑+𝑑𝜙)  =  1, we have 

ℬ(𝓏𝑛) ≳ 𝑒

(1+𝑜(1))
(1+𝜖)2𝑑2

(
𝑑
2
+𝜖)

2  𝑥𝑛
𝑑−2𝜖−𝐶𝑥𝑛

𝑑
2
−𝜖−1

, 𝑥𝑛  →  +∞ 

for some positive constant 𝐶 

Proof. Let 𝜏𝑥𝑛  =  𝑜(𝑥𝑛) be a positive real number that will be specified later. As in the 

proof of Corollary (5.3.22) we have 

ℬ(𝓏𝑛) ≳ ∫  
+∞

0

𝑟
2(
𝑑
2
+𝜖−1)

𝑒
−(𝑟

𝑑
2
+𝜖
−𝑥𝑛

𝑑
2
+𝜖
)

2

𝐼(𝑟, 𝓏𝑛)𝑟 𝑑𝑟

≳ ∫  
 

|𝑟−𝑥𝑛|≤𝜏𝑥𝑛

𝑟
2(
𝑑
2
+𝜖−1)

𝑒 − (𝑟
𝑑
2
+𝜖 − 𝑥𝑛

𝑑
2
+𝜖
)

2

 𝐼(𝑟, 𝓏𝑛)𝑟 𝑑𝑟,  

where 

𝐼(𝑟, 𝓏𝑛)  = ∫  
 

|𝜃−𝜙|≤𝑐𝜃0(𝑟𝑥𝑛)

 𝑒
2𝑅𝑒(𝑔(𝓏𝑛)−𝑔(𝑟𝑒

𝑖𝜃))
 𝑑𝜃. 

There exists 𝑐′  >  0 such that for |𝑟 − 𝑥𝑛| ≤  𝜏𝑥𝑛 we have 

𝐼(𝑟, 𝓏𝑛)  ≥ ∫   
 

|𝜃−𝜙|≤𝑐′𝜃0(𝑥𝑛
2)

 𝑒
2𝑅𝑒(𝑔(𝓏𝑛)−𝑔(𝑟𝑒

𝑖𝜃))
 𝑑𝜃 

= ∫   
 

|𝜃|≤𝑐′𝜃0(𝑥𝑛
2)

 𝑒2(1+𝜖)𝑅𝑒(𝑥𝑛
𝑑−𝑟𝑑𝑒𝑖𝑑𝜃)+2𝑅𝑒[𝑔𝑑−1(𝓏𝑛)−𝑔𝑑−1(𝑟𝑒

𝑖𝜃)]𝑑𝜃 

= ∫   
 

|𝜃|≤𝑐′𝜃0(𝑥𝑛
2)

 𝑒2(1+𝜖)𝑅𝑒(𝑥𝑛
𝑑−𝑟𝑑𝑒𝑖𝑑𝜃) − 2∑  

𝑑−1

𝑙=0

|(1 + 𝜖)𝑙||𝑥𝑛
𝑙 − 𝑟𝑙𝑒𝑖𝑙𝜃| 𝑑𝜃. 

 Now for |𝑟 − 𝑥𝑛|  ≤  𝜏𝑥𝑛 , we write 𝑟 =  (1 +  𝜎)𝑥𝑛, where 𝜎 tends to 0 as 𝑥𝑛  →  +∞. 

Thus for 0 ≤ 𝑙 ≤ 𝑑 − 1 and |𝜃|  ≤  𝑐′𝜃0(𝑥𝑛
2), we obtain 

|𝑥𝑛
𝑙   −  𝑟𝑙 𝑒𝑖𝑙𝜃|

2
 =  𝑥𝑛

2𝑙[1 −  2(1 +  𝜎)𝑙  𝑐𝑜𝑠(𝑙𝜃)  + (1 +  𝜎)2𝑙]   

=  𝑥𝑛
2𝑙[1 −  2(1 +  𝑙𝜎 +  𝑂(𝜎2))  𝑐𝑜𝑠(𝑙𝜃) + 1 + 2𝑙𝜎 +  𝑂(𝜎2)]   

=  𝑥𝑛
2𝑙[2 (1 −  𝑐𝑜𝑠(𝑙𝜃))(1 +  𝑙𝜎) +  𝑂(𝜎2)]

≲ 𝑥𝑛
2𝑙 [sin2  (

𝑙𝜃

2
) + 𝜎2]                                                ≲ 𝑥𝑛

2𝑙[𝜃2  +  𝜎2]. 
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Next choosing |𝜎|  ≤  𝑥𝑛
−(

𝑑

2
+𝜖)
, we get 

|𝑥𝑛
𝑙  −  𝑟𝑙 𝑒𝑖𝑙𝜃| ≲ 𝑥𝑛

2𝑙 𝑥𝑛
−(𝑑+2𝜖)

≲ 𝑥𝑛
𝑑−2(1+𝜖)

 

or 

|𝑥𝑛
𝑙  −  𝑟𝑙 𝑒𝑖𝑙𝜃| ≲ 𝑥𝑛

𝑑
2
−(1+𝜖)

. 

Thus there exists a positive constant 𝐶 such that for |𝑟 − 𝑥𝑛|  ≤  𝜏𝑥𝑛 and |𝜃| ≤  𝑐′𝜃0(𝑥𝑛
2), 

2∑  

𝑑−1

𝑙=0

|(1 + 𝜖)𝑙||𝑥𝑛
𝑙  −  𝑟𝑙 𝑒𝑖𝑙𝜃|  ≤  𝐶𝑥𝑛

𝑑
2
−(1+𝜖)

. 

It follows that 

𝐼(𝑟, 𝓏𝑛)  ≥ ∫   
 

|𝜃|≤𝑐′𝜃0(𝑥𝑛
2)

 𝑒2(1+𝜖)𝑅𝑒(𝑥𝑛
𝑑−𝑟𝑑𝑒𝑖𝑑𝜃) − 𝐶𝑥𝑛

𝑑
2
−(1+𝜖)

𝑑𝜃

≳ 𝑥𝑛
−(
𝑑
2
+𝜖)
𝑒2(1+𝜖)𝑅𝑒(𝑥𝑛

𝑑−𝑟𝑑𝑒𝑖𝑑𝜃)−𝐶𝑥𝑛

𝑑
2
−(1+𝜖)

 . 
Then 

ℬ(𝓏𝑛)∫   
 

|𝑟−𝑥𝑛|≤𝜏𝑥𝑛

 𝑟𝑑+2𝜖−1𝑒
−(𝑟

𝑑
2
+𝜖
−𝑥𝑛

𝑑
2
+𝜖
)

2

 𝑥𝑛
−(
𝑑
2
+𝜖)
𝑒2(1+𝜖)(𝑥𝑛

𝑑−𝑟𝑑)−𝐶𝑥𝑛

𝑑
2
−(1+𝜖)

 𝑑𝑟 

=  𝑥𝑛
−(
𝑑
2
+𝜖)
𝑒−𝐶𝑥𝑛

𝑑
2
−(1+𝜖)

∫   
 

|𝑟−𝑥𝑛|≤𝜏

𝑟𝑑+2𝜖−1 𝑒−ℎ𝑥𝑛(𝑟)𝑑𝑟,  

where 

ℎ𝑥𝑛(𝑟) = (𝑟
𝑑
2
+𝜖  −  𝑥𝑛

𝑑
2
+𝜖
)

2

 −  2(1 + 𝜖)(𝑥𝑛
𝑑  −  𝑟𝑑). 

    It is easy to see that ℎ𝑥𝑛 attains its minimum at 𝑟𝑥𝑛 with 𝑟𝑥𝑛  ∼  𝑥𝑛 as 𝑥𝑛  →  +∞. Again 

we write 

𝑟𝑥𝑛  =  𝑥𝑛(1 + 𝜌𝑥𝑛),                                                (67) 

where 𝜌𝑥𝑛 tends to 0 as 𝑥𝑛  →  +∞. Using the fact that ℎ𝑥𝑛
′ (𝑟𝑥𝑛) = 0, we have (𝑑 +

2𝜖)𝑥𝑛
𝑑+2𝜖−1 (1 + 𝜌𝑥𝑛)

 
𝑑

2
+𝜖−1

 [(1 + 𝜌𝑥𝑛)
𝑑

2
+𝜖
 −  1] ∼  −2(1 + 𝜖)𝑑𝑥𝑛

𝑑−1 (1 + 𝜌𝑥𝑛)
𝑑−1
, 

and 

(𝑑 + 2𝜖)𝑥𝑛
𝑑+2𝜖−1  (

𝑑

2
+ 𝜖) 𝜌𝑥𝑛  ∼  −2(1 + 𝜖)𝑑𝑥𝑛

𝑑−1. 

Therefore, 

𝜌𝑥𝑛  ∼  −
(1 + 𝜖)𝑑

(
𝑑
2
+ 𝜖)

2  𝑥𝑛
−2𝜖 .                                            (68) 

Since 

ℎ𝑥𝑛
′′ (𝑟) = (𝑑 + 2𝜖)(𝑑 + 2𝜖 −  1)𝑟𝑑+2𝜖−2  −  (𝑑 + 2𝜖) (

𝑑

2
+ 𝜖 −  1) 𝑥𝑛

𝑑
2
+𝜖
𝑟
𝑑
2
+𝜖−2  + 2(1

+ 𝜖)𝑑(𝑑 −  1)𝑟𝑑−2 

and 𝜖 > 0, we get 
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ℎ𝑥𝑛
′′ (𝑟𝑥𝑛)  ∼  (𝑑

+ 2𝜖)𝑥𝑛
𝑑+2𝜖−2 [(𝑑 + 2𝜖 −  1)(1 + 𝜌𝑥𝑛)

𝑑+2𝜖−2

− (
𝑑

2
+ 𝜖 −  1) (1 + 𝜌𝑥𝑛)

𝑑
2
+𝜖−2

] ∼  2 (
𝑑

2
+ 𝜖)

2

 𝑥𝑛
𝑑+2𝜖−2 . 

Also, 

ℎ𝑥𝑛(𝑟𝑥𝑛) ∼  𝑥𝑛
𝑑+2𝜖  [(1 + 𝜌𝑥𝑛)

𝑑
2
+𝜖
 −  1]

2

 +  2(1 + 𝜖)𝑥𝑛
𝑑   [(1 +  𝜌𝑥𝑛)

𝑑
 −  1]  

+  𝐶(𝑥𝑛
𝑑−1  +  𝑟𝑥𝑛

𝑑−1  +  1)  ∼  (
𝑑

2
+ 𝜖)

2

 𝜌𝑥𝑛
2 𝑥𝑛

𝑑+2𝜖 +  2(1 + 𝜖)𝑥𝑛
𝑑  𝑑𝜌𝑥𝑛 

It follows that  

𝑐𝑥𝑛  ∼  2 (
𝑑

2
+ 𝜖)

2

 𝑥𝑛
𝑑+2𝜖−2 ,                                          (69) 

and 

−ℎ𝑥𝑛(𝑟𝑥𝑛) ∼
(1 + 𝜖)2𝑑2

(
𝑑
2
+ 𝜖)

2  𝑥𝑛
𝑑−2𝜖 .                                           (70) 

Reasoning as in the proof of Corollary (5.3.23), we arrive at 

ℬ(𝓏𝑛) ≳≳ 𝑥𝑛
−(
𝑑
2
+𝜖)
𝑒−𝐶𝑥𝑛

𝑑
2
−(1+𝜖)

 𝑒−ℎ𝑥𝑛(𝑟𝑥𝑛) 𝑥𝑛
𝑑+2𝜖−1

1

√𝑐𝑥𝑛
 . 

The desired estimate then follows from (70), and (69).  

Corollary (5.3.25)[185]: Suppose 𝑢2 and 𝑣2 are functions in ℱ𝑑
2
+𝜖

2 , not identically zero, 

such that | 𝑢2|2̃(𝓏𝑛)|𝑣
2|2̃(𝓏𝑛) is bounded on the complex plane. Then there exists a nonzero 

constant 𝐶 and a polynomial 𝑔 of degree at most (
𝑑

2
+ 𝜖) such that 𝑢2(𝓏𝑛) =  𝑒𝑔(𝓏𝑛) and 

𝑣2(𝓏𝑛)  =  𝐶𝑒
−𝑔(𝓏𝑛) . 

Proof. It is easy to check that for 𝑢2  ∈ ℱ𝑑
2
+𝜖

2  we have 

𝑢2(𝓏𝑛)  = ∫  
 

ℂ

𝑢2(𝑥𝑛)|𝑘𝓏𝑛(𝑥𝑛)|
2
 𝑑𝜆𝑑

2
+𝜖
(𝑥𝑛)  =  �̃�

2(𝓏𝑛). 

Also, it follows from the Cauchy-Schwarz inequality that |𝑢2(𝓏𝑛)|
2  ≤  |𝑢2|2̃(𝓏𝑛). So if 

|𝑢2|2̃(𝓏𝑛)|𝑣
2|2̃(𝓏𝑛) is bounded on ℂ, then ℬ(𝓏𝑛) and |𝑢2(𝓏𝑛)𝑣

2(𝓏𝑛)|
2 are also bounded. 

Consequently, 𝑢2𝑣2 is a constant, there is a non-zero constant 𝐶 and a polynomial 𝑔 such 

that 𝑢2  =  𝑒𝑔 and 𝑣2  =  𝐶𝑒−𝑔. The condition 𝑢2  ∈ ℱ𝑑
2
+𝜖

2  implies that the degree 𝑑 of 𝑔 is 

at most (𝑑 + 2𝜖); see Corollary (5.3.15). 

     Without loss of generality we shall consider the case where 𝑢2(𝓏𝑛)  =  𝑒
𝑔(𝓏𝑛) and 

𝑣2(𝓏𝑛)  =  𝑒
−𝑔(𝓏𝑛) . We will show that that the boundedness of ℬ(𝓏𝑛) implies 𝜖 ≥ 0. If 

(𝑑 + 𝜖) is an integer, Corollary (5.3.23) shows that we must have 𝜖 > 0. 
Thus, in any case ((𝑑 + 2𝜖) being an integer or not), a necessary condition is 𝜖 > 0. The 

desired result now follows from Corollary (5.3.24).   
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Chapter 6 

Finite Rank Perturbations and Theorem of Brown–Halmos Type 

 

We study finite rank perturbations of the Brown-Halmos type results involving 

products of Toeplitz operators acting on the Bergman space. We show that operator is called 

the Toeplitz operator with symbol µ. We show that 𝑇µ has finite rank if and only if µ is a 

finite linear combination of point masses. Application to Toeplitz operators on the Bergman 

space is immediate. We show that there is no nontribyl rank one perturbation. However, in 

the case rank 𝑚 ≥  2, we construct an example that shows there are bounded harmonic 

functions 𝑓, 𝑔 and ℎ such that 𝑇𝑓𝑇𝑔 − 𝑇ℎ has rank exactly 𝑚. 

Section (6.1): Perturbations of Toeplitz Operators 

Ahern and Cuckovic [101] proved an analogue of the well-known Brown- Halmos 

theorem for the Bergman space Toeplitz operators with harmonic symbols. To state the 

result, we introduce the notation. Let 𝔻 denote the open unit disk in the complex plane and 

let 𝑑𝐴 denote the normalized Lebesgue area measure on 𝔻. As usual, 𝐿2(𝔻) is the space of 

measurable complex valued functions 𝑓 on 𝔻 such that ∫ |𝑓(𝑧)|2𝑑𝐴(𝑧)
 

𝔻
 <  ∞. The 

Bergman space 𝐿𝑎
2 (𝔻) is the closed subspace of 𝐿2(𝔻) consisting of the analytic functions 

on 𝔻. Let 𝑃 ∶  𝐿2(𝔻)  →  𝐿𝑎
2 (𝔻) denote the orthogonal projection. For a bounded function 

𝑢 on 𝔻 we have the Toeplitz operator 𝑇𝑢: 𝐿𝑎
2 (𝔻)  →  𝐿𝑎

2 (𝔻) given by 𝑇𝑢𝑓 =  𝑃(𝑢𝑓). We 

denote the Laplacian 𝛥 =  
𝜕2

𝜕𝑧�̅�𝑧 
and the invariant Laplacian by �̃�  =  (1 − |𝑧|2)2𝛥. We can 

now state the above mentioned theorem. 

Theorem (6.1.1)[163]: Suppose 𝑓 and g are bounded harmonic functions and h is a bounded 

C2 function such that Δh is bounded on D. If TfTg  =  Th, then either f is conjugate analytic 

or g is analytic. In either case, ℎ =  𝑓𝑔. 

Later on, Ahern [164] removed the assumptions on ℎ and showed the theorem is true 

for ℎ ∈  𝐿∞(𝔻). From Theorem (6.1.1), Ahern and ˇCuˇckovi´c obtained a sequence of 

results on products of Toeplitz operators that are parallel to the corollaries of the Brown-

Halmos theorem for the Hardy space obtained in [98]. We list some of them. 

Corollary (6.1.2)[163]: If 𝑓, 𝑔 and ℎ are bounded harmonic functions and 𝑇𝑓 𝑇𝑔   =  𝑇ℎ , then 

one of the following holds: 

   (i) 𝑓 and 𝑔 are analytic. 

   (ii) 𝑓 and 𝑔 are conjugate analytic. 

   (iii) 𝑓 is constant. 

   (iv) 𝑔 is constant. 

The next one resolved an open problem about zero products. 

Corollary (6.1.3)[163]: If 𝑓 and 𝑔 are bounded harmonic functions and 𝑇𝑓  𝑇𝑔   =  0, then 

either 𝑓 =  0 or 𝑔 =  0. 
Corollary (6.1.4)[163]: If 𝑓 and 𝑔 are bounded and harmonic and 𝑇𝑓𝑇𝑔  =  𝐼, then either 𝑓 

and 𝑔 are both analytic or they are both conjugate analytic. In either case 𝑓𝑔 =  1. 
Corollary (6.1.5)[163]: If 𝑓 is bounded and harmonic and 𝑇𝑓

2  =  𝑇𝑓 , then 𝑓 ≡ 0 or 𝑓 ≡ 1. 

Corollary (6.1.6)[163]: If 𝑓 and 𝑔 are bounded harmonic and 𝑇𝑓 𝑇𝑔   =  𝑇𝑓𝑔, then either 𝑔 

is analytic or 𝑓 is conjugate analytic.  
This last corollary was proved earlier by Zheng [58] using a different method. We 

point out that in [165] we constructed examples of Toeplitz operators with radial symbols 

that show that some of these corollaries do not hold in general. One of the main steps in the 
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proof of Theorem (6.1.1) is the study of the range of the Berezin transform. For any 

integrable function 𝑓 on 𝔻, the Berezin transform is defined by 

𝐵𝑓(𝑧)  =  (1 − |𝑧|2)2∫
𝑓(𝑤)

|1 −  𝑧�̅�|4
 𝑑𝐴

 

𝔻

(𝑤). 

Let 𝐾𝑧(𝑤) =
1

(1−𝑤�̅�)2
 denote the Bergman kernel for 𝑧 ∈ 𝔻. Then 𝑘𝑧(𝑤) denotes the 

normalized Bergman kernel: 

𝑘𝑧(𝑤)  =
1 − |𝑧|2

(1 −  𝑤𝑧̅)2
  , 𝑤 ∈ 𝔻. 

The Berezin transform can then be expressed as 𝐵𝑓(𝑧)  =  〈𝑓𝑘𝑧, 𝑘𝑧〉, where  〈· , 〉  denotes 

the 𝐿2(𝔻) inner product. We can also define the Berezin transform of any bounded operator 

𝑆 as 𝐵(𝑆)(𝑧)  =  𝑆𝑘𝑧, 𝑘𝑧, for 𝑧 ∈ 𝔻. Another important step in the proof of Theorem (6.1.1) 

is the proof of the fact that a rank 1 Toeplitz operator on 𝐿𝑎
2 (𝔻) must be 0. For any operator 

𝐴, rank (𝐴) = dim Ran(𝐴). Compact Toeplitz operators on 𝐿𝑎
2 (𝔻) have been characterized 

by Axler and Zheng using the Berezin transform (see [46]). Surprisingly characterizing 

finite rank Toeplitz operators on 𝐿𝑎
2 (𝔻) is still an open problem. The common conjecture 

among the experts is that a finite rank Toeplitz operator on 𝐿𝑎
2 (𝔻) must be 0. In Guo, Sun 

and Zheng [100] have proved this conjecture in a special case. 

Theorem (6.1.7)[163]: Suppose that 𝑓 is in 𝐿∞(𝐷) and 𝑓 = ∑ 𝑓𝑗  (𝑧) (𝑔𝑗(𝑧))̅̅ ̅̅ ̅̅ ̅̅ ̅̅𝑙
𝑗=1  for finitely 

many functions 𝑓𝑗 and 𝑔𝑗 analytic on 𝐷. If 𝑇𝑓 has finite rank, then 𝑓 =  0. 

Using this theorem, they obtained an extension of Corollary(6.1.2) on the zero  

products of Toeplitz operators. More specifically, they proved that for two bounded 

harmonic functions 𝑓 and 𝑔, if the product 𝑇𝑓𝑇𝑔 has finite rank, then either 𝑓 =  0 or 𝑔 =

 0. We think of this product as 𝑇𝑓𝑇𝑔  =  0 +  𝐹, 𝐹 finite rank, so product is a finite rank 

perturbation of 0. Similarly, they also obtained a result characterizing finite rank 

semicommutators 𝑇𝑓𝑔  − 𝑇𝑓𝑇𝑔 of Toeplitz operators with harmonic symbols. This is a finite 

rank perturbation extension of Corollary (6.1.5), where we considered the case 𝑇𝑓𝑔  −

 𝑇𝑓𝑇𝑔  =  0. Inspired by these results of Guo, Sun and Zheng, we want to obtain results on 

finite rank perturbations of the products in the other corollaries listed above. They will 

follow from the following result. Before we state it, we recall two known results. First, an  

operator 𝐹 of finite rank 𝑁 can be written as∑ 𝑥𝑗⊗ 𝑦𝑗
𝑁
𝑗=1  , for some functions 𝑥𝑗  , 𝑦𝑗 in 

𝐿𝑎
2 (𝔻) 𝑓𝑜𝑟 𝑗 =  1, . . . , 𝑁. Here 𝑥 ⊗ 𝑦 is the rank one operator defined by (𝑥 ⊗ 𝑦)ℎ =
 ℎ, 𝑦𝑥, where 𝑥, 𝑦, ℎ are in 𝐿𝑎

2 (𝔻). Second, if 𝑓 is a bounded harmonic function on 𝔻, 𝑓 can 

be written as 𝑓1  +  𝑓2, where 𝑓1 and 𝑓2 are analytic functions that belong to the Bloch space 

𝐵 =  {𝑓 ∶  𝑓 𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐 𝑜𝑛 𝔻 𝑎𝑛𝑑 sup
𝑧∈𝔻
(1 − |𝑧|2)|𝑓′(𝑧)| <  ∞}. 

Theorem (6.1.8)[163]: Suppose 𝑓 =  𝑓1  +  𝑓2̅, 𝑔 =  𝑔1  +  𝑔2̅̅ ̅ and ℎ =  ℎ1  +  ℎ2̅̅ ̅ are 

bounded harmonic functions on 𝔻 such that ℎ1, ℎ2  ∈  𝐻
∞(𝔻). Suppose that 𝑇𝑓𝑇𝑔  =  𝑇ℎ𝑛 +

𝐹, where 𝐹 = ∑ 𝑥𝑗  ⊗ 𝑦𝑗
𝑁
𝐽=1   is of finite rank 𝑁, 𝑥𝑗  , 𝑦𝑗  ∈  𝐿𝑎

2 (𝔻)for 𝑗 =

 1, . . . , 𝑁 and 𝑁, 𝑛 ∈ ℕ.  Then: 

 (i)𝑔1(𝑧)𝑓2̅(𝑧)  − ℎ
𝑛(𝑧) is harmonic, 

 (ii)𝑓(𝑧)𝑔(𝑧) =  ℎ𝑛(𝑧) + (1 −  |𝑧|2)2∑ 𝑥𝑗(𝑧)𝑦𝑗(𝑧)̅̅ ̅̅ ̅̅ ̅𝑁
𝑗=1  , 𝑓𝑜𝑟 𝑧 ∈ 𝔻. 

Conversely, suppose 𝑓 =  𝑓1  +  𝑓2̅, 𝑔 =  𝑔1  +  𝑔2̅̅ ̅ and ℎ =  ℎ1  +  ℎ2̅̅ ̅ are bounded 

harmonic functions on 𝔻 such that (i)  holds on 𝔻. If there exist nonzero vectors 
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𝑥1, . . . , 𝑥𝑁 , 𝑦1, . . . , 𝑦𝑁  in 𝐿𝑎
2 (𝔻), such that (ii) holds for 𝑧 ∈ 𝔻, then 𝑇𝑓𝑇𝑔 = 𝑇ℎ𝑛  +

 𝐹, where 𝐹 = ∑ 𝑥𝑗  ⊗ 𝑦𝑗
𝑁
𝑗=1   is a finite rank operator. 

In particular, condition (ii) implies that 𝑓𝑔 = ℎ𝑛 𝑎. 𝑒. 𝑜𝑛 𝜕𝔻. If in addition,𝑇ℎ𝑛  +  𝐹 is an 

isometry, then 
 ‖ℎ‖𝐿∞(𝔻) = ‖ℎ‖ 𝐿∞(𝜕𝔻) = ‖𝑓𝑔‖𝐿∞(𝜕𝔻)  =  1. 

Proof. Suppose that 𝑇𝑓𝑇𝑔  =  𝑇ℎ𝑛  +  𝐹. Then we have 

     𝐵(𝑇𝑓𝑇𝑔) =  𝐵(ℎ
𝑛) +  𝐵(𝐹).                                (1) 

As in [101], 

𝐵(𝑇𝑓𝑇𝑔)(𝑧) =  𝑓1(𝑧)𝑔1(𝑧) + 𝑓1(𝑧)𝑔2(𝑧)̅̅ ̅̅ ̅̅ ̅  + 𝑓2(𝑧) ̅̅ ̅̅ ̅̅ ̅ 𝑔2(𝑧)̅̅ ̅̅ ̅̅ ̅  +  𝐵(𝑓2̅𝑔1)(𝑧), for 𝑧  ∈

𝔻 . It is also easy to show that 

𝐵(𝐹)(𝑧) =∑𝐵(𝑥𝑗  ⊗ 𝑦𝑗)(𝑧)

𝑁

𝑗=1

 =  (1 − |𝑧|2)2∑𝑥𝑗  (𝑧)𝑦𝑗(𝑧)̅̅ ̅̅ ̅̅ ̅
𝑁

𝑗=1

. 

Thus (1) can be written as 

𝑓1(𝑧)𝑔1(𝑧)  + 𝑓1(𝑧)𝑔2(𝑧)̅̅ ̅̅ ̅̅ ̅  + 𝑓2(𝑧)̅̅ ̅̅ ̅̅ ̅ 𝑔2(𝑧)̅̅ ̅̅ ̅̅ ̅  +  𝐵(𝑓2̅𝑔1)  −  𝐵(ℎ
𝑛) =  (1 − |𝑧|2)2 

∑𝑥𝑗  (𝑧)𝑦𝑗(𝑧)̅̅ ̅̅ ̅̅ ̅
𝑁

𝑗=1

                  (2) 

for 𝑧 ∈  𝐷. It is well known that the Berezin transform fixes 𝐿1-harmonic functions, i.e., 

𝐵(𝑢)  =  𝑢 if 𝑢 is harmonic. Thus (2) can be written as 

𝐵(𝑓1𝑔1  +  𝑓2̅�̅�2    +  𝑓2̅𝑔1  −  ℎ
𝑛)(𝑧) =  (1 − |𝑧|2)2∑𝑥𝑗(𝑧)𝑦𝑗(𝑧)̅̅ ̅̅ ̅̅ ̅  − 𝑓1(𝑧)𝑔2(𝑧)̅̅ ̅̅ ̅̅ ̅

𝑁

𝑗=1

 . 

Apply the invariant Laplacian �̃� to both sides and use the fact that Δ̃ commutes with 𝐵 (see 

[101]), to obtain 

𝐵  (�̃�(𝑓2̅𝑔1  −  ℎ
𝑛)) (𝑧) =  �̃�[(1 − |𝑧|2)2∑ 𝑥𝑗(𝑧)𝑦𝑗(𝑧)̅̅ ̅̅ ̅̅ ̅𝑁

𝑗=1 ]  − �̃� [𝑓1(𝑧)𝑔2(𝑧)̅̅ ̅̅ ̅̅ ̅]    (3)  

for 𝑧 ∈ 𝔻. Let 𝜎 =  �̃�(𝑓2̅𝑔1  −  ℎ𝑛). After cancelling (1 − |𝑧|2)2 on both sides of (3) we 

have 

∫
𝜎(𝜉)

|1 − 𝜉̅𝑧|
4  𝑑𝐴(𝜉)

 

𝔻 

=  𝛥 [ (1 − |𝑧|2)2∑ 𝑥𝑗  (𝑧)𝑦𝑗(𝑧)̅̅ ̅̅ ̅̅ ̅
𝑁

𝑗=1

] − 𝑓′1(𝑧)𝑔′2(𝑧)̅̅ ̅̅ ̅̅ ̅̅ .        (4) 

Notice that (1 − |𝑧|2)2∑  𝑥𝑗  (𝑧)𝑦𝑗(𝑧)̅̅ ̅̅ ̅̅ ̅𝑁
𝑗=1 = ∑  𝑥𝑗  (𝑧)𝑦𝑗(𝑧)̅̅ ̅̅ ̅̅ ̅𝑁

𝑗=1 −  2∑ 𝑧 𝑥𝑗  (𝑧)𝑧𝑦𝑗(𝑧)̅̅ ̅̅ ̅̅ ̅̅𝑁
𝑗=1 +

∑ 𝑧2 𝑥𝑗 (𝑧)𝑧
2𝑦𝑗(𝑧)̅̅ ̅̅ ̅̅ ̅̅ ̅̅𝑁

𝑗=1  f𝑜𝑟 𝑧 ∈ 𝔻, which can be written as 3∑ �̃�𝑗(𝑧)�̃�𝑗 (𝑧)̅̅ ̅̅ ̅̅ ̅𝑁
𝑗=1  with �̃�𝑗 , �̃�𝑗  ∈

 𝐿𝑎
2 (𝔻). With this in mind, we can complexify (4) as was done in Lemma 2 of [101] to obtain 

𝜎(𝜉)

(1 − 𝜉̅𝑧)
2
(1 −  𝜉𝑤)2

𝑑𝐴(𝜉) =∑ �̃�𝑗(𝑧)𝑦′̃𝑗 (�̅�)
̅̅ ̅̅ ̅̅ ̅̅ ̅

3𝑁

𝑗=1
− 𝑓1

′(𝑧)𝑔2
′ (�̅�)        (5) 

for all 𝑧, 𝑤 ∈ 𝔻 . If we differentiate (5) 𝑘 times with respect to 𝑤 and then let 𝑤 =  0, we 

get 

∫
𝜉𝑘𝜎(𝜉)

(1 − 𝜉̅𝑧)
2

 

𝔻 

𝑑𝐴(𝜉)  =∑𝑎𝑘𝑗�̃�𝑗
′ (𝑧)  − 𝑐𝑘𝑓1

′(𝑧)

3𝑁

𝑗=1

                        (6) 

for some constants 𝑎𝑘𝑗   , 𝑐𝑘, 𝑘 =  1, 2, . . .. Then (6) tells us that for any 𝑘 ∈ ℕ, we have 



240 

𝑇𝜎(𝜉
𝑘)  = ∫

𝜉𝑘𝜎(𝜉)

(1 − 𝜉̅𝑧)
2

 

𝔻 

𝑑𝐴(𝜉)  =∑𝑎𝑘𝑗 �̃�𝑗
′ (𝑧)  − 𝑐𝑘𝑓1

′(𝑧)

3𝑁

𝑗=1

 

Using the argument of Proposition 4 in [100] we have that 𝑇𝜎 has finite rank. 

Notice that �̃�(𝑓2̅𝑔1) = (1 − |𝑧|
2)2𝑓′̅2(𝑧)𝑔1′(𝑧) is bounded since 𝑓2 and 𝑔1 belong to 

the Bloch space. If 𝑛 =  1, then 𝛥ℎ =  0. For 𝑛 >  1, 

ℎ𝑛  =  (ℎ1  +  ℎ2)
𝑛  = ∑( 𝑘

𝑛) ℎ1
𝑘 ·  ℎ2

−𝑛−𝑘

𝑛

𝑘=0

 

so that 

 

∆̃( ℎ𝑛)  = ∑  

𝑛

𝑘=1

(
𝑛 
𝑘
) (1 −  |𝓏|2)2𝑘ℎ1

𝑘−1  ·  ℎ1
′  ·  (𝑛 −  𝑘)ℎ̅2

(𝑛−𝑘−1)
 ℎ̅2
′   

which is also bounded, since ℎ1 and ℎ2 are bounded by the assumption and they also belong 

to the Bloch space. 

       Thus 𝜎(𝓏) is in 𝐿∞(𝔻) and it is of the form ∑  3𝑛+3
𝑗=1 𝐹𝑗  (𝓏)𝐺𝑗 (𝓏)̅̅ ̅̅ ̅̅ ̅̅  for some analytic 

functions 𝐹𝑗 and 𝐺𝑗  , 𝑗 =  1, . . . , 𝑛. By Theorem 𝐵, 𝜎 ≡  0, and hence 𝑓2̅𝑔1  −  ℎ
𝑛 is a 

harmonic function. Thus (i) holds. Now (2) gives 

𝑓1(𝓏)𝑔1(𝓏) + 𝑓1(𝓏)𝑔2̅̅ ̅(𝓏) + 𝑓2(𝓏)̅̅ ̅̅ ̅̅ ̅ 𝑔2(𝓏)̅̅ ̅̅ ̅̅ ̅̅  

+𝑓2̅(𝓏)𝑔1(𝓏) − ℎ
𝑛(𝓏)  =  (1 − |𝓏|2)2∑ 

𝑁

𝑗=1

𝑥𝑗  (𝓏)𝑦𝑗 (𝓏)̅̅ ̅̅ ̅̅ ̅̅  

for all 𝓏 ∈ 𝔻. In other words (𝑓𝑔)(𝓏)  − ℎ𝑛(𝓏)  =  (1 −  |𝓏|2)2∑  𝑁
𝑗=1  𝑥𝑗  (𝓏)𝑦𝑗 (𝓏)

̅̅ ̅̅ ̅̅ ̅̅  

which gives (ii). The expression on the right-hand side is equal to 𝐵(∑  𝑛
𝑗=1  𝑥𝑗  ⊗ 𝑦𝑗)(𝓏) 

which goes to 0 as |𝓏|  →  1, since ∑  𝑁
𝑗=1 𝑥𝑗  ⊗ 𝑦𝑗 is a finite rank operator and therefore 

compact. Hence 𝑓𝑔 =  ℎ𝑛 a.e. on 𝜕𝔻. Also notice that (3) implies that 𝑓1(𝓏)𝑔2(𝓏)̅̅ ̅̅ ̅̅ ̅̅  =

 (1 − |𝓏|2)2∑  𝑁
𝑗=1 𝑥𝑗  (𝓏)𝑦𝑗(𝓏)

̅̅ ̅̅ ̅̅ ̅  +  𝑢(𝓏) for some harmonic function 𝑢. If the operator 

𝐹 =  0, then this would imply 𝑓1
′(𝓏)𝑔2

′ (𝓏)̅̅ ̅̅ ̅̅ ̅̅  =  0 on 𝔻. This means that 𝑓1 is constant or 𝑔2 

is constant. In other words, 𝑓 is conjugate analytic or 𝑔 is analytic which is consistent with 

Theorem (6.1.1) from [101]. 

         Conversely, suppose that 𝑔1(𝓏)𝑓2̅(𝓏) − ℎ
𝑛(𝓏) is harmonic on 𝔻, and 𝑓(𝓏)𝑔(𝓏)  =

 ℎ𝑛(𝓏) + (1 − |𝓏|2)2∑  𝑁
𝑗=1 𝑥𝑗  (𝓏)𝑦𝑗(𝓏)

̅̅ ̅̅ ̅̅ ̅. As calculated earlier, 

𝐵(𝑇𝑓𝑇𝑔  −  𝑇ℎ𝑛)(𝓏)  

=  𝑓1(𝓏)𝑔1(𝓏) + 𝑓1(𝓏)𝑔2(𝓏)̅̅ ̅̅ ̅̅ ̅̅  +  𝑓2(𝓏)̅̅ ̅̅ ̅̅ ̅𝑔2(𝓏)̅̅ ̅̅ ̅̅ ̅̅  +  𝐵(𝑓2̅ 𝑔1   −  ℎ
𝑛)(𝓏)  

=  (𝑓𝑔)(𝓏) − ℎ𝑛(𝓏)  =  (1 − |𝓏|2)2  ∑  

𝑁

𝑗=1

𝑥𝑗  (𝓏)𝑦𝑗 (𝓏)̅̅ ̅̅ ̅̅ ̅̅  

=  𝐵 (∑ 

𝑁

𝑗=1

 𝑥𝑗  ⊗ 𝑦𝑗). 

 Since the Berezin transform is one-to-one, it follows that 𝑇𝑓𝑇𝑔  =  𝑇ℎ𝑛  + ∑  𝑁
𝑗=1  𝑥𝑗⊗𝑦𝑗 

and the converse is proved. 
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         Assume, in addition, that 𝑇ℎ𝑛  + 𝐹 is an isometry. Then (𝑇ℎ𝑛  + 𝐹) ∗ (𝑇ℎ𝑛  + 𝐹)  =  𝐼 
or 

𝑇ℎ̅𝑛 𝑇ℎ𝑛  +  𝐹
∗𝑇ℎ𝑛  + 𝑇ℎ̅𝑛𝐹 + 𝐹

∗𝐹 =  𝐼.                                 (7) 
We will recall some classical results about the algebra of bounded analytic functions 

on 𝔻, denoted by 𝐻∞. Let 𝑀 denote the maximal ideal space of 𝐻∞. Hoffman ([50], Lemma 

4.4) has proved that the algebra 𝐶(𝑀) is identical to the sup norm closure of the algebra 

generated by the bounded harmonic functions. Thus ℎ𝑛  ∈  𝐶(𝑀). On the ideal 𝑀 we can 

introduce an equivalence relation: 𝑚1 ∼ 𝑚2 if and only if 𝜌(𝑚1, 𝑚2)  <  1, where 

𝜌(𝑚1, 𝑚2)  = sup  {|𝑓(𝑚2)|: 𝑓 ∈  𝐻
∞, ‖𝑓‖  ≤  1, 𝑓(𝑚1) = 0}. 

Here 𝑓 is the Gelfand transform of  𝑓 defined by 𝑓(𝑚) =  𝑚(𝑓),𝑚 ∈  𝑀. The equivalence 

classes are called Gleason parts. Let 𝑀1 denote the set of one-point parts in 𝑀, and 

𝐽  =  {𝜑 ∈  𝐶(𝑀) ∶ 𝜑 =  0 on 𝑀1}. 

Let 𝜏(𝐶(𝑀)) be the closed subalgebra of the algebra of all bounded linear operators on 

𝐿𝑎
2 (𝔻) generated by {𝑇𝜑 ∶ 𝜑 ∈  𝐶(𝑀)} and let 𝒞 be the commutator ideal of 𝜏(𝐶(𝑀)). 

McDonald and Sundberg [167] have proved that 𝐶(𝑀)/𝐽  is isomorphic to 𝜏(𝐶(𝑀))/𝒞 with 

the isomorphism 

𝜑 +  𝐽 →̂ 𝑇𝜑  + 𝒞. 

It is also well known that 𝒞 contains all compact operators. Let Π: 𝜏(𝐶(𝑀)) → 𝜏(𝐶(𝑀))/𝒞 

be the quotient map. Apply Π to the equation (7) and notice that 𝐹 is finite rank and hence 

𝐹 is compact. Therefore 𝐹∗ is also compact so (7) becomes 

Π(𝑇ℎ̅𝑛  )Π(𝑇ℎ𝑛)  =  Π(𝐼). 
Applying the isomorphism above, we obtain 

(ℎ̅𝑛  +  𝐽)(ℎ𝑛  +  𝐽) = 1 +  𝐽 
or ℎ̅𝑛  ·  ℎ𝑛 −  1 ∈  𝐽. This means ℎ̅𝑛  ·  ℎ𝑛  −  1 =  0 on 𝑀1. But the maximal ideal space 

of 𝐿∞(𝜕𝔻) is a subset of 𝑀1. Hence 

𝜑(ℎ̅𝑛 )  · 𝜑(ℎ̅𝑛)  = 1 
or 

|𝜑(ℎ)|  =  1 for all 𝜑 ∈  𝑀(𝐿∞(𝜕𝔻)). 
Since ℎ is a bounded harmonic function on 𝔻, we can identify it with its boundary value 

function, which we denote by ℎ again. By Hoffman [166], p. 170 the Gelfand transform 

maps 𝐿∞(𝜕𝔻) isometrically and isomorphically onto 𝐶(𝑀(𝐿∞)). Thus we have 

‖ℎ‖𝐿∞(𝔻) = ‖ℎ‖𝐿∞(𝜕𝔻) = ‖ℎ̂‖𝐶(𝑀(𝐿∞)) = 𝑠𝑢𝑝{
|𝜑(ℎ)|: 𝜑 ∈  𝑀(𝐿∞(𝜕𝔻))}  =  1. 

Then clearly ||ℎ𝑛||
𝐿∞(𝜕𝔻)

 =  1 and since 𝑓𝑔 =  ℎ𝑛 a.e. on 𝜕𝔻, we have 

‖ℎ‖𝐿∞(𝔻)   =  ‖ℎ
𝑛‖𝐿∞(𝜕𝔻)  =  ‖𝑓𝑔‖𝐿∞(𝜕𝔻)  =  1. 

Corollary (6.1.9)[163]: Suppose 𝑓 =  𝑓1  +   �̅�2, 𝑔 =  𝑔1  +   �̅�2 and ℎ =  ℎ1  +  ℎ̅2 are 

bounded harmonic functions on 𝔻 and 𝑥1, . . . , 𝑥𝑁 , 𝑦1, . . . , 𝑦𝑁 are in 𝐿𝑎
2 (𝔻). Then 𝑇𝑓𝑇𝑔  =

 𝑇ℎ  + ∑  𝑁
𝑗=1 𝑥𝑗  ⊗ 𝑦𝑗if and only if the following two conditions hold: (i) either 𝑓 is analytic 

or 𝑔 is conjugate analytic, 

(ii) (𝑓𝑔)(𝓏)  =  ℎ(𝓏) + (1 − |𝓏|2)2∑  𝑁
𝑗=1 𝑥𝑗  (𝓏)𝑦𝑗 (𝓏)

̅̅ ̅̅ ̅̅ ̅̅ , for 𝓏 ∈ 𝔻. 

Proof. Apply Theorem (6.1.8) with 𝑛 =  1. Then 𝑇𝑓𝑇𝑔   =  𝑇ℎ  +  𝐹 implies that 𝑔1 �̅�2 is 

harmonic on 𝔻, so that ∆(𝑔1𝑓2̅)(𝓏)  =  𝑔1
′(𝓏)𝑓2̅

′(𝓏)  =  0. Hence 𝑔1  = constant or 𝑓2 is 

constant on 𝔻 which means that either 𝑓 is analytic or 𝑔 is conjugate analytic. The other 

statements follow immediately from Theorem (6.1.8). If 𝐹 =  0, then (3) 

implies 𝑓1
′(𝓏)�̅�2

′ (𝓏)  =  0 and hence either 𝑓 is conjugate analytic or 𝑔 is analytic. If 𝑓 is 
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analytic and 𝑓 is conjugate analytic, then clearly 𝑓 is constant. The same situation for 𝑔 

leads to the conclusion that 𝑔 is constant. Otherwise, both 𝑓 and 𝑔 are analytic on 𝔻 or both 

𝑓 and 𝑔 are conjugate analytic and Corollary (6.1.2) follows. 

          Conversely, if 𝑓 is analytic, then 𝑓2 is constant so that 𝑔1𝑓2̅  −  ℎ is harmonic on 𝔻. 
Apply Theorem (6.1.8) now with 𝑛 =  1 and the converse follows. Similarly, the statement 

follows if 𝑔 is conjugate analytic. 

         A finite rank perturbation version of Corollary (6.1.3) is contained in the following 

corollary.  

Corollary (6.1.10)[163]: Suppose 𝑓 and 𝑔 are bounded and harmonic on 𝔻. Then 𝑇𝑓𝑇𝑔  =

 𝐼 + ∑  𝑁
𝑗=1  𝑥𝑗⊗𝑦𝑗  and 𝑥1, . . . , 𝑥𝑁 , 𝑦1, . . . , 𝑦𝑁 are in 𝐿𝑎

2 (𝔻) if and only if the following two 

conditions hold: 

   (i) either 𝑓 is analytic or 𝑔 is conjugate analytic, 

   (ii) 𝑓(𝓏)𝑔(𝓏) =  1 + (1 − |𝓏|2)2∑  𝑁
𝑗=1 𝑥𝑗  (𝓏)𝑦𝑗(𝓏)

̅̅ ̅̅ ̅̅ ̅, for 𝓏 ∈ 𝔻. 

Corollary (6.1.11)[163]: If 𝑓 is bounded and harmonic and 𝑇𝑓
2  =  𝑇𝑓  +  𝐹, then 𝑓 =  0 or 

𝑓 =  1 on 𝔻. 
Proof. By Corollary (6.1.9), 𝑓 is analytic or 𝑓 is conjugate analytic and 𝑓2  =  𝑓 a.e. on 𝜕𝔻. 
This means that 𝑓(𝑓 −  1)  =  0 a.e. on 𝜕𝔻. If 𝑓 is analytic, then either 𝑓 =  0 on 𝜕𝔻 (and 

hence 𝑓 ≡  0 on 𝔻) or 𝑓 =  1 on 𝜕𝔻 (and hence 𝑓 ≡  1 on 𝔻). The same conclusion 

follows if 𝑓 is conjugate analytic. 

         If we slightly modify the argument in the proof of Theorem (6.1.7), we get the 

following proposition. 

Proposition (6.1.12)[163]: Suppose 𝐸 ⊂ 𝔻 is a starlike with respect to 0 compact set. Let 

𝑓(𝓏)  =  𝜒𝐸  (𝓏)∑ 

ℓ

𝑗=1

 𝑓𝑗(𝓏)𝑔𝑗(𝓏)̅̅ ̅̅ ̅̅ ̅, 

with 𝑓𝑗  , 𝑔𝑗 analytic on 𝔻 for 𝑗 =  1, . . . , ℓ If 𝑇𝑓 has finite rank 𝑁, then 𝑓 =  0. 

Proof. Clearly 𝑓 is bounded. As in the proof of Theorem (6.1.7), for 0 < 𝑟 <  1, define 

𝑓𝑟(𝓏)  =  𝑓(𝑟𝓏) and let 𝑔𝑟(𝓏)  =  �̅�𝑟  . Then 

𝑇𝑓𝑔𝑟  =  𝑇𝑓𝜒𝐸(𝑟𝓏)∑  ℓ
𝑗=1  𝑓𝑗(𝑟𝓏)

̅̅ ̅̅ ̅̅ ̅̅ ̅𝑔𝑗(𝑟𝓏)
 = ∑ 

ℓ

𝑗=1

𝑇𝑓𝑗(𝑟𝓏)̅̅ ̅̅ ̅̅ ̅̅ ̅𝑇𝑓𝜒𝐸(𝑟𝓏)𝑇𝑔𝑗(𝑟𝓏).        (8) 

But notice 𝑓(𝓏)𝜒𝐸  (𝑟𝓏)  =  𝜒𝐸  (𝓏)𝜒𝐸  (𝑟𝓏)∑  ℓ
𝑗=1 𝑓𝑗  (𝓏)𝑔𝑗(𝓏)

̅̅ ̅̅ ̅̅ ̅. 

If 𝓏 ∈  𝐸, then 𝑟𝓏 ∈  𝐸 too since 𝐸 is starlike. Thus 𝜒𝐸(𝓏)𝜒𝐸  (𝑟𝓏)  =  1. 
If 𝓏 ∉  𝐸, 𝜒𝐸  (𝓏)  =  0. Hence in both cases 𝜒𝐸  (𝓏)𝜒𝐸  (𝑟𝓏)  =  𝜒𝐸  (𝓏). Thus 

𝑓(𝓏)𝜒𝐸  (𝑟𝓏)  =  𝑓(𝓏). Now (8) gives that 𝑇𝑓𝑔𝑟  = ∑  ℓ
𝑗=1  𝑇𝑓𝑗(𝑟𝓏)̅̅ ̅̅ ̅̅ ̅̅ ̅𝑇𝑓(𝓏)𝑇𝑔𝑗(𝑟𝓏) and 

consequently rank 𝑇𝑓𝑔𝑟  ≤  𝑁ℓ  , for all 𝑟. Thus lim sup
𝑟→1

 rank 𝑇𝑓𝑔𝑟  ≤  𝑁ℓ . We continue as 

in Theorem (6.1.7) and conclude that 𝑇|𝑓|2 has finite rank and therefore 𝑓 ≡  0 see [100]. 

            Finally we would like to prove another zero product result involving two Toeplitz 

operators. 

Proposition (6.1.13)[163]: Suppose 𝔻𝑟  =  𝑟𝔻 for some 𝑟 ∈  (0, 1), ℎ is an analytic 

function on 𝔻 and 𝑔 =  𝑔1  +  �̅�2 is a bounded harmonic function. If 𝑓 =  𝜒𝔻𝑟  ℎ and 

𝑇𝑓𝑇𝑔  =  0, then either 𝑓 =  0 or 𝑔 =  0. 

Proof. Suppose 𝑓 ∈  𝐿∞(𝔻), 𝑔 =  𝑔1  +  𝑔2̅̅ ̅ is a bounded and harmonic function, and 

𝑇𝑓𝑇𝑔  =  0. Then 
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𝐵(𝑇𝑓𝑇𝑔)(𝓏)  =  〈𝑇𝑓𝑇𝑔𝑘𝓏 , 𝑘𝑧〉 =  (1 − |𝓏|
2)2〈𝑇𝑓𝑃(𝑔1  +  𝑔2̅̅ ̅)𝐾𝓏 , 𝐾𝓏〉

=  (1 − |𝓏|2)2{〈𝑓𝑔1𝐾𝓏 , 𝐾𝓏〉  + 〈 𝑓𝑃(𝑔2̅̅ ̅𝐾𝓏), 𝐾𝓏〉}  

=  𝐵(𝑓𝑔1)(𝓏)  + 𝑔2(𝓏̅̅ ̅̅ ̅̅ )(𝐵𝑓)(𝓏)  = 0.                                                                (9) 
Suppose now that 𝑓 =  𝜒𝔻𝑟  ℎ, where ℎ is analytic. Then (9) means 

∫  
 

𝔻𝑟

ℎ(𝜉)𝑔1(𝜉)

|1 − 𝓏𝜉̅|
4  𝑑𝐴(𝜉)  +  𝑔2(𝓏)∫  

 

𝔻𝑟

ℎ(𝜉)

|1 − 𝓏𝜉̅|
4  𝑑𝐴(𝜉) = 0.           (10) 

Let 𝑤 =
𝜉

𝑟
 ; then (10) becomes 

𝑟2∫  
 

𝔻

ℎ(𝑤𝑟)𝑔1(𝑤𝑟)

|1 − 𝓏�̅�𝑟|4
 𝑑𝐴(𝑤) + 𝑟2𝑔2(𝓏)̅̅ ̅̅ ̅̅ ̅̅ ∫  

 

𝔻

ℎ(𝑤𝑟)

|1 − 𝓏�̅�𝑟|4
 𝑑𝐴(𝑤) = 0 

or 

(1 − 𝑟2|𝓏|2)2∫  
 

𝔻

ℎ(𝑤𝑟)𝑔1(𝑤𝑟)

|1 − �̅�𝓏𝑟|4
𝑑𝐴(𝑤) + 𝑔2(𝓏)̅̅ ̅̅ ̅̅ ̅̅ (1 − 𝑟2|𝓏|2)2∫  

 

𝔻

ℎ(𝑤𝑟)

|1 − �̅�𝓏𝑟|4
𝑑𝐴(𝑤) = 0 

so that 

𝐵[(ℎ𝑔1)𝑟](𝑟𝓏)  + 𝑔2(𝓏)̅̅ ̅̅ ̅̅ ̅̅ 𝐵(ℎ𝑟)(𝑟𝓏) = 0. 
Since the Berezin transform fixes analytic functions, we have 

ℎ(𝑟2𝓏)𝑔1(𝑟
2𝓏)  + 𝑔2(𝓏)̅̅ ̅̅ ̅̅ ̅̅ ℎ(𝑟2𝓏) = 0, for 𝓏 ∈ 𝔻 

which implies 

ℎ(𝑟2𝓏)[𝑔1(𝑟
2𝓏) + 𝑔2(𝓏)̅̅ ̅̅ ̅̅ ̅̅  ]  =  0. 

Then either h = 0 or 𝑔1(𝑟
2𝓏)  =  −𝑔2(𝓏)̅̅ ̅̅ ̅̅ ̅̅ ̅̅  for 𝓏 ∈ 𝔻. 

           If ℎ =  0, then 𝑓 =  0. 
           In the second case, an analytic function 𝑔1𝑟

2 is equal to the conjugate analytic 

function, so they both are constant functions; i.e., 𝑔1  = constant and 𝑔2  = constant. 

           If 𝑔 = constant, then 𝑇𝑓𝑇𝑔  =  0 implies 𝑔 = constant =  0 or 𝑓 =  0. Thus we have 

proved the proposition. 

Section (6.2): Finite Rank Toeplitz Operators 

       In classical function theory of the unit disk, Toeplitz operators were defined on the 

Hardy space 𝐻2 by 𝑇𝜙𝑓 =  𝑃(𝜙𝑓), where 𝜙 is a bounded measurable function on the unit 

circle 𝕋 =  𝜕𝔻 and 𝑃 is the Szeg˝o projection from 𝐿2 (of the unit circle) to 𝐻2. McDonald 

and Sundberg [167] defined Toeplitz operators on the Bergman space 𝐴2 analogously: 𝜙 is 

a function on the interior of the disk and 𝑃 is the Bergman projection from 𝐿2(𝑑𝐴) (𝑑𝐴 

being area measure) to 𝐴2. 

       In the Bergman space one can have 𝜙𝑓 ∈  𝐿2 for all 𝑓 ∈  𝐴2 even if 𝜙 is unbounded. 

Moreover, the formula for the Bergman projection as an integral can be applied even when 

the product 𝜙𝑓 is only in 𝐿1. Given that, one quickly realizes that the formula for the Toeplitz 

operator 

𝑃(𝜙𝑓)(𝓏) = ∫  
𝜙(𝑤)𝑓(𝑤)

(1 − �̅�𝓏)2
 𝑑𝐴(𝑤) 

allows one to extend the notion of Toeplitz operators to symbols that are measures (or even 

compactly supported distributions): simply replace 𝜙 𝑑𝐴 with 𝑑µ in the formula (or apply 

the distribution to the appropriate product). [171] determined necessary and sufficient 

conditions on a positive measure µ for 𝑇µ to belong to the Schatten classes 𝑆𝑝. For complex 

measures the conditions were only sufficient. The same is true for the characterization of 

finite rank operators 𝑇µ: necessary and sufficient conditions for positive measures were 

obtained, only sufficient for complex measures.  
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       The characterization obtained here (that µ must be a finite sum of point masses) proves 

the conjecture that for 𝜙 ∈  𝐿∞, 𝑇𝜙 has finite rank only if it is 0. After was submitted, I 

learned of partial results on this conjecture in a preprint by A. Pushnitski, G. Rozenblum 

and N. Shirokov. They imposed some extra conditions on 𝜙. In addition, Namita Das 

communicated some incomplete work on the same conjecture. 

        

       Initially, let µ be any complex regular Borel measure on the unit disk 𝔻 in the complex 

plane ℂ. Integration with respect to area measure is denoted with 𝑑𝐴. 

The set of all analytic functions on 𝔻 will be denoted ℋ(𝔻) or simply ℋ. 

       The Bergman space 𝐴2 of the unit disk is the space of all functions analytic in 𝔻 which 

belong to 𝐿2  =  𝐿2(𝑑𝐴), that is, 𝐴2  =  𝐿2  ∩ ℋ. The inner product in 𝐿2 is denoted 〈𝑓, 𝑔〉 =
1

𝜋
 ∫    𝑓(𝓏)𝑔(𝓏)̅̅ ̅̅ ̅̅  𝑑𝐴(𝓏) and the corresponding norm is denoted ‖𝑓‖ =  〈𝑓, 𝑓〉1/2. The 

Bergman kernel is the function 𝐾(𝓏,𝑤) = 𝐾𝑤(𝓏)  =  (1 − �̅�𝓏)
−2. It satisfies 𝑃𝑓(𝑤)  =

〈𝑓, 𝐾𝑤〉 for all 𝑓 ∈  𝐿2 where 𝑃 is the orthogonal projection from 𝐿2 to 𝐴2. In particular, if 

𝑓 ∈  𝐴2, then 𝑓(𝑤)  =  〈𝑓, 𝐾𝑤〉. 
       The Toeplitz operator on 𝐴2 with symbol µ is denoted 𝑇µ and is formally defined by 

𝑇µ(𝑓)(𝑤) =
1

𝜋
 ∫  
𝔻

 
𝑓(𝓏)

(1 − 𝓏�̅�)2
 𝑑µ(𝓏).                                                  (11) 

If µ has the form 𝜙 𝑑𝐴 for some bounded measurable function 𝜙, then 𝑇µ is denoted 𝑇𝜙 and 

satisfies 𝑇𝜙𝑓 =  𝑃(𝜙𝑓), 𝑓 ∈  𝐴
2. For arbitrary measures on 𝔻, 𝑇µ may be only densely 

defined because the integral (11) can only be guaranteed to converge for bounded 𝑓. Even 

if it converges, the result need not be in 𝐴2. We will view 𝑇µ as an operator defined on the 

dense subset of polynomials with range in the set of all analytic functions on 𝔻. The question 

of when 𝑇µ extends to 𝐴2 or has values in 𝐴2 will not be considered here. However, we note 

that if |µ| is a Carleson measure for 𝐴2, then it is always true that 𝑇µ is bounded from 𝐴2 to 

𝐴2. In particular this is true for measures µ whose support is a compact subset of 𝔻 as well 

as for measures of the form  𝜙 𝑑𝐴 with 𝜙 bounded. 

       The following is the main theorem, whose proof will occupy the majority. 

Theorem (6.2.1)[168]: The rank of 𝑇µ is finite if and only if µ is a finite linear combination 

of point masses. 

              The Bergman space setting is completely unnecessary and we will actually prove a 

Theorem (6.2.1)bout operators on the space of analytic polynomials. Moreover, a large part 

of our proof does not require µ to be a measure. We have, formally, 〈𝑇µ𝑓, 𝑔〉 = ∫   𝑓�̅� µ . 

For this to be true in the strict sense of the definition of 〈·,·〉, we would need to justify the 

implied exchange of integrals. What is clear, however, is that if µ is a measure on 𝔻, then 

𝑇µ𝑓 will always produce an analytic function in 𝔻. If µ is a measure on any disk, then we 

can use the same formula for 𝑇µ𝑓 and obtain a function analytic in some neighborhood of 0. 

The coefficients of any formal power series determine a linear functional on the space of 

polynomials in �̅� in a standard way. If we interpret 𝑇µ𝑓 in this way it is easy to prove that 

𝑇µ𝑓(�̅�) = ∫   𝑓�̅� 𝑑µ. 

       Thus 𝑇µ can always be seen as taking polynomials to linear functionals on the conjugate 

analytic polynomials and µ can be seen as a linear functional on the space of polynomials 

in 𝓏 and �̅�. Moreover, these two objects determine each other. 

       We now generalize these observations. 
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       Let 𝒫 denote the algebra of complex polynomials over ℂ in the variable 𝓏 and let �̅� 

denote the polynomials in �̅�. Both are subalgebras of ℂ[𝓏, �̅�], the polynomials in both 

variables. Let µ be a linear functional on ℂ[𝓏, �̅�] and let 𝐵µ(𝑓, 𝑔)  =  µ(𝑓�̅�). 

       Let 𝑇µ𝑓 denote the linear functional on �̅� defined by 𝑇µ𝑓(�̅�)  =  𝐵µ(𝑓, 𝑔)  =  µ(𝑓�̅�). 

       One can determine the nature of µ by defining a topology on ℂ[𝓏, �̅�] and requiring that 

µ be continuous in that topology. For example, if ℂ[𝓏, �̅�] is given the topology of uniform 

convergence on compact sets, then a continuous µ can be identified with a complex measure 

with compact support. Compactly supported distributions come from the topology of 

uniform convergence on compact sets of all derivatives. Continuity in the 𝐿1(𝔻, 𝑑𝐴) norm 

implies a bounded measurable function. We will need the exact nature of µ only in the last 

stages of our proof. 

       If the operator 𝑇µ has rank less than 𝑁, then if we select 𝑁 polynomials 𝑓𝑗 , there will 

exist a nontribyl linear relation 

∑ 

𝑁

𝑗=1

𝑐𝑗𝑇µ𝑓𝑗 = 0.                                                                        (12) 

If we apply these functionals 𝑇µ𝑓𝑗 to polynomials �̅�𝑖 , 1 ≤  𝑖 ≤  𝑁, we obtain a set of column 

vectors in ℂ𝑁 that satisfies a linear relation with the same constants as (12). Thus, the matrix 

whose 𝑖, 𝑗 entry is µ(𝑓𝑗�̅�𝑖) has a determinant equal to 0. 

       The determinant is linear in each column and µ is a linear functional, so we can write 

µ

(

 𝑓1(𝓏)  · ||

𝑔1(𝓏)̅̅ ̅̅ ̅̅ ̅ µ(𝑓2�̅�1)

𝑔2(𝓏)̅̅ ̅̅ ̅̅ ̅̅ µ(𝑓2�̅�2)
⋮

𝑔𝑁(𝓏)̅̅ ̅̅ ̅̅ ̅̅
⋮

µ(𝑓2�̅�𝑁)

    

⋯ µ(𝑓𝑁�̅�1)
⋯ µ(𝑓𝑁�̅�2)
⋱
⋯

⋮
µ(𝑓𝑁�̅�𝑁)

 ||

)

 =  0. 

Let us introduce the variable 𝓏1 in place of 𝓏 above and use µ1 for µ acting in the variable 

𝓏1. Now we repeat this process in each column (using the variable 𝓏𝑗 in column 𝑗 and the 

notation µ𝑗 for µ acting in 𝓏𝑗 ) to obtain 

µ1(µ2(. . . µ𝑁 (∏ 

𝑁

𝑘=1

𝑓𝑘(𝓏𝑘)det (𝑔𝑖(𝓏𝑗))) . . . )) = 0.                                        (13) 

We now specialize to the case where each 𝑔𝑖 has the form 𝑔𝑖(𝓏)  = 𝓏
𝑘𝑖 with 𝑘1 < 𝑘2 < ···

 < 𝑘𝑁. Let 𝐽 =  (𝑘𝑖) denote any such increasing 𝑁-tuple of nonnegative integers. Write 𝑍 

for the 𝑁-tuple (𝓏1, 𝓏2, . . . , 𝓏𝑁) and write 𝑉𝐽(𝑍) for the determinant det (𝓏𝑗
𝑘𝑖) . Taking finite 

sums of equations (13), we get for any polynomial 𝐹(𝑍) in 𝑁 variables: 

µ𝑁 (𝐹(𝑍)𝑉𝐽(𝑍)̅̅ ̅̅ ̅̅ ̅ ) = 0                                                            (14) 

where µ𝑁 is our abbrebytion for successive applications of µ in each variable.  

       We now determine what one gets when we take linear combinations of 𝑉𝐽 with varying 

𝐽 in this equation. We claim one gets 

µ𝑁 (𝐹(𝑍)𝐺(𝑍)̅̅ ̅̅ ̅̅ ̅) = 0                                                  (15) 

for all polynomials 𝐹 and all antisymmetric polynomials 𝐺. We now digress for a short 

discussion of symmetric and antisymmetric polynomials. 

       A polynomial 𝐹(𝑍) is called symmetric if it is invariant under permutations of the 

variables 𝓏𝑗 , that is, 𝐹(𝜋(𝑍))  =  𝐹(𝑍), where 𝜋(𝑍) is the 𝑁-tuple consisting of the 
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permutation of the coordinates of 𝑍. We call 𝐺(𝑍) antisymmetric (or alternating) if it 

changes sign with each transposition of coordinates. That is, 𝐺(𝜋(𝑍))  = 𝜖𝜋𝐺(𝑍), where 𝜖𝜋 

is +1 for an even permutation 𝜋 and −1 for an odd 𝜋. 

       Denote by 𝑆𝐹(𝑍) and 𝐴𝐹(𝑍) the symmetric and antisymmetric projections of a function 

𝐹. That is, 

𝑆𝐹(𝑍) =
1

𝑁!
 ∑  

𝜋

 𝐹(𝜋(𝑍))   and  𝐴𝐹(𝑍) =
1

𝑁!
 ∑  

𝜋

 𝜖𝜋𝐹(𝜋(𝑍)),    (16) 

where each sum is over all permutations. For any polynomial 𝐹, 𝑆𝐹 is symmetric and 𝐴𝐹 is 

antisymmetric. If 𝐹 is symmetric and 𝐺 is antisymmetric, then 𝑆𝐹 =  𝐹, 𝐴𝐹 =  0, 𝑆𝐺 =  0 

and 𝐴𝐺 =  𝐺. 

       We observe that the vector space of all antisymmetric polynomials is the range of 𝐴 and 

is therefore the span of the images of all monomials. If 𝐺(𝑍)  =  𝑍𝐽 = 𝓏1
𝑘1𝓏2

𝑘2  . . . 𝓏𝑁
𝑘𝑁 is a 

monomial, then 𝐴𝐺(𝑍) is easily seen to be 0 if any of the exponents are equal. Moreover, if 

the monomial 𝐺′ is obtained from the monomial 𝐺 by a permutation of the exponents, then 

𝐴𝐺′(𝑍)  =  ±𝐴𝐺(𝑍). Thus, the set of antisymmetric polynomials is spanned by 𝐴(𝑍𝐽) as 𝐽 
varies over increasing 𝑁-tuples of nonnegative integers. It follows easily from the formula 

for the determinant as a signed sum of products that 𝐴(𝑍𝐽) = 𝑉𝐽 (𝑍)/𝑁!. Thus, summing 

equations (14) produces equation (15), as claimed. 

       If 𝐽 =  (0, 1, 2, . . . , 𝑁 −  1), then 𝑉𝐽(𝑍) = 𝑉(𝑍) is the Vandermonde determinant. 

Clearly the product of a symmetric polynomial and 𝑉(𝑍) is antisymmetric. Ultimately, we 

will only need the fact that these products are in the range of 𝐴. 

However, the argument of the following paragraph shows that every antisymmetric 

polynomial is in fact the product of a symmetric polynomial and 𝑉(𝑍). 
       The Vandermonde determinant 𝑉 (𝑍) is the minimal-degree polynomial 𝐺(𝑍) 
vanishing on all the varieties 𝒱𝑖,𝑗 = {𝑍 ∶  𝓏𝑖 = 𝓏𝑗} for all pairs of indices (𝑖, 𝑗) with 𝑖 ≠ 𝑗. 

Therefore the ideal generated by 𝑉 (𝑍) is a radical ideal, and, by the Hilbert Nullstellensatz 

(see for example [170]), any other polynomial vanishing on ⋃   
(𝑖,𝑗)  𝒱𝑖,𝑗 is divisible by 𝑉 (𝑍). 

It is clear that any antisymmetric polynomial 𝐺(𝑍) vanishes on ⋃   
(𝑖,𝑗)  𝒱𝑖,𝑗 and hence 𝐺(𝑍) 

is divisible by 𝑉 (𝑍). 
       This fact that every antisymmetric polynomial is divisible by 𝑉 (𝑍) is known. It is stated 

in the Encyclopedic Dictionary of Mathematics [169], but it has been hard to find a 

published proof. 

       Let us recall that the following equation: 

µ𝑁(𝐹(𝑍)𝑉𝐽 (𝑍)̅̅ ̅̅ ̅̅ ̅̅ ) = 0                                          (17) 

implies that for all polynomials 𝐹, 

µ𝑁(𝐹(𝑍)𝐺(𝑍)̅̅ ̅̅ ̅̅ ̅ ) = 0    for all antisymmetric 𝐺, and so 

µ𝑁(𝐹(𝑍)𝐻(𝑍)𝑉 (𝑍)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ) = 0    for all symmetric 𝐻. 
Specializing to 𝐹 of the form 𝐹1𝑉 with 𝐹1 symmetric gives us 

µ𝑁(𝐹1(𝑍)𝐹2(𝑍)̅̅ ̅̅ ̅̅ ̅|𝑉(𝑍)|2) = 0   for all symmetric polynomials  𝐹1 and 𝐹2. (18) 
Now is the time to use the fact that µ is a measure, and to require that it have compact 

support. Let us restate our main theorem in the form of the ideas we have been using. In this 

form it is actually more general. 
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Theorem (6.2.1)[168]: (Restated). Let µ be a measure on ℂ with compact support. Let 𝑇µ 

be the operator from 𝒫 to linear functionals on �̅� by 𝑇µ𝑓(�̅�)  = ∫   𝑓�̅� 𝑑µ . Then 𝑇µ has 

finite rank if and only if the support of µ is finite. 

In the present case, µ𝑁 is just a product measure on ℂ𝑁. We formally state our conclusions 

thus far in the language of measures and integration: 

Proposition (6.2.2)[168]: If 𝑇µ has rank less than 𝑁, then for all symmetric polynomials 𝐹1 

and 𝐹2 

∫  
ℂ𝑁
 𝐹1(𝑍)𝐹2(𝑍)̅̅ ̅̅ ̅̅ ̅|𝑉 (𝑍)|2 𝑑µ𝑁 (𝑍) = 0.                          (19) 

It is clear that finite sums of products of the form 𝐹1(𝑍)𝐹2(𝑍)̅̅ ̅̅ ̅̅ ̅ (with 𝐹1 and 𝐹2 symmetric) 

form an algebra 𝒜 of functions on ℂ which contains the constants and is closed under 

conjugation. It doesn’t separate points because each element is constant on sets of points 

that are permutations of one another. Define an equivalence relation ∼ on ℂ𝑁 by the fact 

that 𝑍1  ∼  𝑍2 if and only if 𝑍2 = 𝜋(𝑍1) for some permutation 𝜋. Let 𝑍 = (𝓏1, . . . , 𝓏𝑁) and 

𝑊 = (𝑤1, . . . , 𝑤𝑁). If 𝑍 ≁ 𝑊, then the polynomials 𝑝(𝑡)  = ∏  (𝑡 − 𝓏𝑗) and 𝑞(𝑡)  =

∏  (𝑡 − 𝑤𝑗) have different zeros (or the same zeros with different multiplicities). This 

implies that the coefficient of some power of 𝑡 in 𝑝(𝑡) differs from the corresponding 

coefficient in 𝑞(𝑡). Thus there is an elementary symmetric function that differs at 𝑍 and 𝑊. 

Consequently, 𝒜 separates equivalence classes. 

Let us give the quotient space ℂ𝑁/∼ the standard quotient space topology. If 𝐾 is any 

compact set in ℂ𝑁 that is invariant with respect to ∼, then 𝐾/∼ is compact and Hausdorff. 

Also, any symmetric continuous function on ℂ𝑁 induces a continuous function on ℂ/∼ (and 

conversely). Thus we can apply the Stone-Weierstrass theorem (on 𝐾/∼) to conclude that 

𝒜 is dense in the space of continuous symmetric functions, in the topology of uniform 

convergence on any compact set. Therefore, for any continuous symmetric function 𝑓(𝑍) 

∫  
ℂ𝑁
 𝑓(𝑍)|𝑉 (𝑍)|2 𝑑µ𝑁 (𝑍) = 0.                                 (20) 

If 𝑓 is an arbitrary continuous funtion, the above integral will be the same as the 

corresponding integral with 𝑆𝑓 replacing 𝑓. This is because the function |𝑉 (𝑍)|2  and the 

product measure µ𝑁 are both invariant under permutations of the coordinates. We conclude 

that this integral vanishes for any continuous 𝑓 and so the measure |𝑉 (𝑍)|2 𝑑µ𝑁 (𝑍) must 

be zero. Thus, µ𝑁 is supported on the set where 𝑉 vanishes. 

       This means µ must have fewer than 𝑁 points in its support: for if 𝓏𝑗 are 𝑁 distinct points 

in the support of µ, then the point 𝑍 = (𝓏1, . . . , 𝓏𝑁) is in the support of µ𝑁 but 𝑉 (𝑍) ≠ 0, a 

contradiction. 

       In fact, when the number of points in the support is finite, it is precisely the rank of 𝑇µ: 

if the support of µ is {𝓏1, 𝓏2, . . . , 𝓏𝑀}, then the range of 𝑇µ contains the 𝑀 independent 

evaluation functionals. 

       Note that the rank zero case has been known for at least a century: ∫   𝑓�̅� 𝑑µ = 0 for 

all polynomials 𝑓 and 𝑔 clearly implies µ =  0 by the Stone-Weierstrass theorem. 

       Let 𝑋 be any subspace of 𝐴2 with finite codimension. Let 𝑆 be the closure of {∑  𝑓𝑗�̅�𝑗 ∶

 𝑓𝑗  ∈  𝑋, 𝑔𝑗 ∈ 𝐴
2} in the topology of uniform convergence on compact sets. Suppose 𝑆 is 

not all of 𝐶(𝔻); then there exists a measure µ with compact support in 𝔻 such that 

∫   𝑓�̅� 𝑑µ = 0 for all 𝑓 ∈ 𝑆 and all 𝑔 ∈ 𝐴2. That is, the range 𝑌µ of 𝑇µ is contained in 𝑋⊥, a 

finite dimensional set. This implies that µ is a finite sum of point masses and so 𝑌µ is spanned 
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by the set of 𝐾𝑎 for a in the support of µ. If we repeat this for all possible measures that 

annihilate 𝑆 we get a set 𝐸 of all such points 𝑎. Then 𝐸 is finite because the corresponding 

𝐾𝑎  are all independent and in 𝑋⊥. Therefore, 𝑆 has finite codimension and contains all 

functions that vanish on 𝐸. 

       Also, 𝑓 ∈  𝑋 implies 〈𝑓, 𝐾𝑎〉 = 0 for all 𝑎 ∈  𝐸 so all the functions in 𝑆 vanish on 𝐸. 

Thus 𝑆 is the ideal of all functions vanishing on 𝐸. This gives us the following corollary. 

Corollary (6.2.3)[168]: If 𝑋 is a subspace of 𝐴2 with finite codimension, then the closure 

of the span of 𝑋𝐴2̅̅̅̅  in the topology of uniform convergence on compact sets is an ideal in 

𝐶(𝔻) with a finite zero set. If 𝑋 has no common zeros, it is all of 𝐶(𝔻).  

       Note that it is not clear a priori that the closed span of 𝑋𝐴2̅̅̅̅  is even closed under 

multiplication. 

       One can define operators to which our results apply that seem to have little to do with 

Toeplitz operators and nothing to do with Bergman spaces. For example, let µ be a measure 

on �̅� and define an operator from (say) the disk algebra to entire functions by 𝑆µ(𝑓)(𝑤) =

∫   exp(�̅�𝑤)𝑓(𝓏) 𝑑µ(𝓏). Then, since exp(�̅�𝑤) is a reproducing kernel for some appropriate 

normalization of the Fock space, one obtains 〈𝑆µ(𝑓), 𝑔〉 = ∫   𝑓�̅� 𝑑µ for all polynomials 𝑓 

and 𝑔. If 𝑆µ has finite rank, then µ must have finite support. 

Section (6.3): Bergman Space Modulo Finite Rank Operators 
        Many algebraic properties of Toeplitz operators on analytic function spaces have been 

studied. We are concerned with the problem of when the product of two Toeplitz operators 

𝑇𝑓𝑇𝑔 is a finite perturbation of another Toeplitz operator 𝑇ℎ. We take the Bergman space as 

the domain and study the question for 𝑓, 𝑔 bounded harmonic and ℎ in 𝐶2 class with the 

invariant Laplacian in 𝐿1.  

        Let d𝐴 denote the Lebesgue area measure on the unit disk 𝐷 in the complex plane, 

normalized so that the measure of the disk 𝐷 is 1. The Bergman space 𝐿2 a is the Hilbert 

space consisting of analytic functions on 𝐷 that are square integrable with respect to the 

measure d𝐴. For 𝜑 ∈  𝐿2(𝐷, d𝐴), the Toeplitz operator 𝑇𝜑 with symbol 𝜑 is defined densely 

on 𝐿𝑎
2  by  

𝑇𝜑𝑓 =  𝑃(𝜑𝑓), 

where 𝑃 is the orthogonal projection from 𝐿2(𝐷, d𝐴) to 𝐿𝑎
2 .  

       For general operator 𝑆 on a Hilbert space, the rank(𝑆) is defined as the dimension of 

closure of the range of 𝑆. 𝑆 is called finite rank operator with rank 𝑟 if it is bounded and 

rank(𝑆)  =  𝑟 <  ∞. On the Bergman space, the rank r operator has the expression  

𝑆 =  ∑ 

𝑟

𝑖=1

 𝑥𝑖  ⊗ 𝑦𝑖 ,  

where {𝑥𝑖}𝑖=1
𝑟 , {𝑦𝑖}𝑖=1

𝑟  are two sets of linearly independent functions in 𝐿𝑎
2  and we use the 

standard notation for rank-one operators in the Hilbert space: 𝑥 ⊗  𝑦: ℎ →  〈ℎ, 𝑦〉𝑥. A tool 

that arises in the study of the Bergman space is the Berezin transform. Given an (possibly 

unbounded) operator 𝑆 on 𝐿𝑎
2 , with its domain containing all the normalized reproducing 

kernels 𝑘𝑧(𝑤) =
(1−|𝑧|2)2

(1−𝑧𝑤)2
 , the Berezin transform of 𝑆 is the function  

𝐵[𝑆](𝑧) =  〈𝑆𝑘𝑧, 𝑘𝑧〉, 𝑧 ∈  𝐷,  
where 〈, 〉 is the inner product in 𝐿𝑎

2 . It was proved that the Berezin transform is injective 

[55], which means 𝐵[𝑆](𝑧)  =  𝐵[𝑇](𝑧) will imply 𝑆 =  𝑇 for two operators 𝑆, 𝑇 on 𝐿𝑎
2 . For 

an integrable function 𝑓 on 𝐷, the Berezin transform of 𝑓 is the function  
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𝐵[𝑓](𝑧)  =  〈𝑓𝑘𝑧, 𝑘𝑧〉  
For 𝑢 ∈  𝐿1(𝐷), it was shown in [173], [176] that 𝐵(𝑢)  =  𝑢 if and only if 𝑢 is harmonic. 

We shall denote the Laplacian by 𝛥 =
𝜕2

𝜕𝑧𝜕𝑧
  and the invariant Laplacian by �̃�  =

 (1 − |𝑧|2)2𝛥.  
        Since the Bergman projection maps 𝐿∞(𝐷) to the Bloch space [43] and the Szego 

projection maps 𝐿∞(𝜕𝐷) into BMOA [177], we note that for a bounded harmonic function 

𝜙 on 𝐷, 𝜙 can be written uniquely as a sum of an analytic function 𝜙+
  and a conjugate 

analytic function 𝜙− with  

𝜙−(0)  =  0: 𝜙 =  𝜙+  +  𝜙−,  
where 𝜙+ and 𝜙− are in the Bloch space and BMOA. We say that 𝜙+ and 𝜙− are the analytic 

part of φ and the conjugate analytic part of φ respectively.  

        The earliest characterization of product problem is on the Hardy space of the unit circle 

𝜕𝐷 by Brown and Halmos [98], said that for 𝑓, 𝑔 ∈  𝐿∞, 𝑇𝑓𝑇𝑔  =  𝑇ℎ if and only if either 𝑓 

or 𝑔 is analytic and 𝑓𝑔 =  ℎ a. e. 𝜕𝐷. One would expect if similar result holds on the 

Bergman space. The situation is more complicated on the Bergman space. For bounded 

harmonic functions 𝑓 and 𝑔 on 𝐷, the third author [58] proved that 𝑇𝑓𝑇𝑔  =  𝑇𝑓𝑔 on the 

Bergman space if either 𝑓 or 𝑔 is analytic. Then Ahern and Čučković [96] obtained the 

characterization analogues to the Brown–Halmos theorem for the Bergman space Toeplitz 

operators with harmonic symbols.  

Theorem (6.3.1)[172]: Suppose 𝑓 and 𝑔 are bounded harmonic functions on the unit disk 

and h is a bounded 𝐶2 that �̃� ℎ ∈  𝐿∞(𝐷). If 𝑇𝑓𝑇𝑔  =  𝑇ℎ , then either 𝑓 is conjugate analytic 

or 𝑔 is analytic. In either case, ℎ = 𝑓𝑔.  

        Later in [165], Ahern removed the assumption on h and showed that the above theorem 

is true for the function h bounded on the unit disk. For more general symbols, surprisingly, 

Ahern [165] had the following example,  

𝑇𝑧𝑇𝑧2𝑧  =  𝑇2𝑧𝑧−1.                                         (21) 

It means even if 𝑇𝑓𝑇𝑔  =  𝑇ℎ , ℎ does not have to be equal to fg. More interesting examples 

are shown in [166].  

      Inspired by (21), we construct the following examples showing that the product of two 

Toeplitz operators can be a nonzero finite rank perturbation of another Toeplitz operator.  

Example (6.3.2)[172]:  

𝑇𝑧2  𝑇𝑧3  −  𝑇3𝑧−2
𝑧
 =  1 ⊗  𝑧, 

 𝑇2𝑧2  𝑇𝑧3𝑧  −  𝑇(6|𝑧|2−4)  =  1 ⊗  1.  

To get the first equation, applying Berezin transform to right hand side for each 𝑤 ∈  𝐷,  
〈(1 ⊗  𝑧)𝑘𝑤, 𝑘𝑤〉  =  (1 − |𝑤|

2)2𝑤  
Also by simple calculation  

〈(𝑇𝑧  −  2𝑇𝑧𝑇𝑧2  +  𝑇𝑧2  𝑇𝑧3  )𝑘𝑤, 𝑘𝑤〉  =  (1 − |𝑤|
2)2𝑤.  

This is 𝐵[1⊗ 𝑧](𝑤)  =  𝐵[𝑇𝑧 − 2𝑇𝑧𝑇𝑧2 + 𝑇𝑧2  𝑇𝑧3  ](𝑤). Since the Berezin transform is 

injective, it follows  

1 ⊗  𝑧 =  𝑇𝑧  −  2𝑇𝑧𝑇𝑧2  +  𝑇𝑧2  𝑇𝑧3  .  

Combining with Identity (21), we obtain the first example  

𝑇𝑧2  𝑇𝑧3  −  𝑇3𝑧−2
𝑧
 =  1 ⊗  𝑧.  

To get the second equation, by using above we have  
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[𝑇𝑧2  𝑇𝑧3  −  𝑇3𝑧−2
𝑧
 ] 𝑇𝑧  =  [1 ⊗  𝑧]𝑇𝑧   =  1 ⊗ (𝑇𝑧

∗ 𝑧) = 1 ⊗
1

2
 . 

Combining (21) with the above identity implies  

𝑇2𝑧2  𝑇𝑧3𝑧  −  𝑇(6|𝑧|2−4)  =  1 ⊗  1. 

        Note that in above examples, the two symbols are either not harmonic or unbounded. 

Naturally, one may ask the following question.  

Question (6.3.3)[172]: Can 𝑇𝑓𝑇𝑔  −  𝑇ℎ be a nonzero finite rank operator on 𝐿𝑎
2  if 𝑓, 𝑔 are 

bounded harmonic functions and ℎ ∈  𝐿∞(𝐷)?  

        On the Hardy space, the symbol mapping [175] said 𝑓𝑔 must be equal to ℎ. Axler, 

Chang and Sarason gave an affirmative answer to Question (6.3.3) in [93] as the following 

theorem.  

Theorem (6.3.4)[172]: (The variant theorem of Axler–Chang–Sarason). Suppose 𝑓, 𝑔  ∈

 𝐵𝑀𝑂𝐴. Then the semicommutator �̂�𝑓𝑔  −  �̂�𝑓�̂�𝑔 (=  �̂�𝑓
∗ �̂�𝑔) is a finite rank operator if and 

only if either �̂�𝑓 or �̂�𝑔 is a finite rank operator. Here �̂�𝑓 and �̂�𝑓 denote the Toeplitz operator 

and Hankel operator on the Hardy space respectively.  

        In [179], Richman obtained a formula on the ranks.  

Theorem (6.3.5)[172]: Suppose that 𝑓, 𝑔  ∈  𝐵𝑀𝑂𝐴  

rank �̂�
𝑓
∗ �̂�𝑔  =  min {rank �̂�𝑓 , rank �̂�𝑔}.  

       On the Bergman space, Guo, Sun and the third author [100] showed that for bounded 

harmonic functions 𝑓, 𝑔 and ℎ =  𝑓𝑔, 𝑇𝑓𝑇𝑔  − 𝑇ℎ is a finite rank operator on 𝐿𝑎
2  if and only 

if 𝑇𝑓𝑇𝑔  −  𝑇ℎ  =  0. Hence by Ahern and Čučković theorem [96], either 𝑓 or 𝑔 is analytic. 

As Luecking [169] showed that there is no non-tribyl finite rank Toeplitz operator with 

bounded symbol on the Bergman space, one may expect that the answer to Question (6.3.3) 

should be analogous to Ahern and Čučković’s Theorem (Theorem (6.3.1)). Indeed, 

Čučković [164] has studied this question and obtained:  

Theorem (6.3.6)[172]: Suppose 𝑓, 𝑔 and ℎ are bounded harmonic functions and ℎ+ and ℎ− 

are in 𝐻∞(𝐷). Then 𝑇𝑓𝑇𝑔  − 𝑇ℎ𝑛  =  ∑  𝑟
𝑗=1  𝑥𝑗  ⊗ 𝑦𝑗  , where 𝑥𝑗 , 𝑦𝑗  ∈  𝐿𝑎

2 , if and only if the 

following conditions hold:  

       (a) 𝑓−𝑔+  −  ℎ
𝑛 is harmonic,  

       (b) 𝑓(𝑧)𝑔(𝑧)  =  ℎ𝑛(𝑧)  + (1 −  |𝑧|2)2  ∑  𝑟
𝑗=1  𝑥𝑗  (𝑧)𝑦𝑗  (𝑧), for 𝑧 ∈  𝐷.      

        Question (6.3.3) for other function spaces has been studied as well. In [174], Choe, 

Koo and Lee got a result similar to the above theorem for pluriharmonic functions 𝑓, 𝑔 and 

𝑛-harmonic function ℎ on the polydisk.  

        Our first result is to give a negative answer to the question for the perturbation of rank 

one operators.  

The above theorem may be viewed as the version of the Ahern–Čučković theorem 

(Theorem (6.3.1))–the Brown–Halmos type theorem for the Bergman Toeplitz operators 

modulo rank one operators. The main ideas of the proof are to use the Berezin transform on 

the Bergman space and the Hardy space, to exchange Toeplitz operators identities on the 

Bergman space to Toeplitz operators identities on the Hardy space, and to use the Bochner 

theorem on critical points of rational functions [180].  

We get an affirmative answer to Question (6.3.3) for a perturbation of operators with 

higher rank.  
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Theorem (6.3.7)[172]: For each 𝑚 ≥  2, there exist rational functions 𝑓, 𝑔, ℎ+ and ℎ− in 

𝐻∞(𝐷) such that 𝑇𝑓𝑇𝑔  −  𝑇ℎ+ + ℎ− has finite rank and its rank equals 𝑚.  

       In general, we characterize when 𝑇𝑓𝑇𝑔  −  𝑇ℎ has finite rank if 𝑓 and 𝑔 are bounded 

harmonic functions and ℎ is a bounded 𝐶2 function such that �̃�ℎ ∈  𝐿1(𝐷). For our purpose, 

let us introduce some notations. For each polynomial 𝑃(𝑧) of 𝑧 with degree 𝑁,  

𝑃(𝑧)  =  𝑃0  +  𝑃1𝑧 + ···  𝑃𝑁 𝑧
𝑁 .  

Denote  

�̃�(𝑧)  =  𝑧𝑁 𝑃 (
1

𝑧
 )  = 𝑃0𝑧

𝑁  +  𝑃1𝑧
𝑁−1  + ···  + 𝑃𝑁 .  

For 𝑚 ≥  𝑁, we define  

�̃�𝑚(𝑧) =  �̃�(𝑧)𝑧
𝑚−𝑁 . 

        The above theorem is analogous to the Axler, Chang and Sarason theorem (Theorem 

(6.3.4)) for finite rank perturbation on the Hardy space [93], where the third condition should 

be changed into that either 𝑓+ or 𝑔− is a rational function but the last two conditions are not 

required and the second condition is replaced by  

ℎ =  𝑓𝑔  
on 𝜕𝐷.  

We will extend the Čučković theorem (Theorem (6.3.6)) to obtain a necessary and 

sufficient condition for 𝑇𝑓𝑇𝑔  − 𝑇ℎ to have finite rank for more general ℎ by using 

Luecking’s theorem on the finite rank Toeplitz operators [169]. Next by the injective 

property of the Berezin transform on bounded operators on the Bergman space or the Hardy 

space, we will show that 𝑓+, 𝑔−, ℎ+ and ℎ− are rational functions. By the Bochner’s theorem 

[180] for rational functions and deriving some functions identities on 𝑓, 𝑔 and ℎ, we will 

prove Theorem (6.3.13). Then computing the action of the product of two Toeplitz operators 

on the orthogonal basis {(𝑘 +  1)𝑧𝑘}𝑘=0
∞ , we get some identities on these symbols of 

Toeplitz operators to prove Theorem (6.3.16). Using these identities in Theorem (6.3.16), 

we will prove Theorem (6.3.7) by constructing examples.  

Using the Luecking theorem on the finite rank Toeplitz operators [169], we get the 

following theorem which extends the Čučković theorem (Theorem (6.3.6)).  

Theorem (6.3.8)[172]: Suppose that 𝑓 and 𝑔 are bounded harmonic functions,  

ℎ ∈ ∩𝑞>1 𝐿
𝑞(𝐷)  ∩  𝐶2, �̃� ℎ ∈  𝐿1(𝐷). 

Then 𝑇𝑓𝑇𝑔  −  𝑇ℎ has finite rank on 𝐿𝑎
2  if and only if the following conditions hold:  

      (a) 𝑓−𝑔+  −  ℎ is harmonic.  

      (b) There exist nonzero vectors 𝑥1, . . . , 𝑥𝑟 , 𝑦1, . . . , 𝑦𝑟 in 𝐿𝑎
2 , such that  

𝑓(𝑧)𝑔(𝑧) =  ℎ(𝑧) + (1 −  |𝑧|2)2∑ 

𝑟

𝑗=1

 𝑥𝑗  (𝑧)𝑦𝑗  (𝑧)                       (22) 

      for 𝑧 ∈  𝐷.  

      We should point out that the idea in the proof is the combination of the proof of Theorem 

1 in [164], Luecking Theorem on finite rank Toeplitz operators [169] and the proof of 

Proportion 4 in [100].  

       For operators 𝑆1 and 𝑆2 that are densely defined on 𝐿𝑎
2  or 𝐻2(𝐷), we say that 𝑆1  =  𝑆2 

if 𝑆1𝑝 =  𝑆2𝑝 for each analytic polynomial 𝑝.  
Proof. Suppose  

𝑇𝑓𝑇𝑔  −  𝑇ℎ  =  𝐹, 
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where 𝐹 =  ∑  𝑟
𝑗=1  𝑥𝑗⊗𝑦𝑗 is a finite rank operator on 𝐿𝑎

2  for two sets of linearly 

independent functions 𝑥𝑗  , 𝑦𝑗  ∈  𝐿𝑎
2 , 𝑗 =  1, 2, . . . , 𝑟. Taking the Berezin transform both 

sides of the above equation gives  

𝐵[𝑇𝑓𝑇𝑔](𝑧) =  𝐵[ℎ](𝑧) +  𝐵[𝐹](𝑧)                        (23) 

 for each 𝑧 in 𝐷. By hypothesis, f and g are bounded harmonic functions on the unit disk, 

we can write  

𝑓 =  𝑓+  +  𝑓−, 𝑔 =  𝑔+  +  𝑔−, 
 where f+, f−, g+, and g− are in the Bergman space 𝐿𝑎

2  and in the Bloch space contained in  

⋂   𝑝>1  𝐿
𝑝(𝐷). Using  

𝑇𝑔 − 𝑘𝑧  =  𝑔−(𝑧)𝑘𝑧, 𝑇𝑓+
∗  𝑘𝑧  =  𝑓+(𝑧)𝑘𝑧, 

we show  

𝐵[𝑇𝑓𝑇𝑔](𝑧)  =  𝐵[𝑓−𝑔+](𝑧)  + 𝑓+(𝑧)𝑔+(𝑧)  + 𝑓−(𝑧)𝑔−(𝑧)  + 𝑓+(𝑧)𝑔−(𝑧), (24) 

𝐵[𝐹](𝑧) =  ∑  

𝑟

𝑗=1

 〈𝑘𝑧, 𝑦𝑗〉 〈𝑥𝑗 , 𝑘𝑧〉  =  (1 − |𝑧|
2)2∑ 

𝑟

𝑗=1

 𝑥𝑗  (𝑧)𝑦𝑗  (𝑧).                 (25) 

 That is  

𝐵(𝑓−𝑔+  +  𝑓−𝑔−  +  𝑓+𝑔+  −  ℎ)(𝑧)  =  (1 − |𝑧|
2)2∑ 

𝑟

𝑗=1

 𝑥𝑗  (𝑧)𝑦𝑗  (𝑧)  − 𝑓+(𝑧)𝑔−(𝑧). 

Further expanding the right side,  

(1 −  |𝑧|2)2𝑥𝑗  (𝑧)𝑦𝑗  (𝑧)  =  𝑥𝑗  (𝑧)𝑦𝑗  (𝑧)  −  2𝑧𝑥𝑗  (𝑧)𝑧𝑦𝑗  (𝑧)  +  𝑧
2𝑥𝑗  (𝑧)𝑧

2𝑦𝑗  (𝑧). 

Then we obtain  

𝐵(𝑓−𝑔+  +  𝑓−𝑔−  +  𝑓+𝑔+  −  ℎ)(𝑧) =  3∑ 

𝑟

𝑗=1

 𝑋𝑗  (𝑧)𝑌𝑗  (𝑧) − 𝑓+(𝑧)𝑔−(𝑧)      (26) 

where 𝑋𝑗  , 𝑌𝑗  ∈  𝐿𝑎
2 . Notice that 𝑓− and 𝑔+ are in the algebra ⋂   𝑝>1  𝐿𝑝(𝐷), we have 𝑓−𝑔+  ∈

  ⋂  1<𝑞<∞ , 𝐿𝑞(𝐷)   

∆̃[𝑓−(𝑧)𝑔+(𝑧)]  =  [(1 − |𝑧|
2)𝑓−

′(𝑧)][(1 − |𝑧|2)𝑔+
′ (𝑧)]  ∈  𝐿1(𝐷) 

 where 𝑓−
′(𝑧) =

𝜕𝑓−

𝜕𝑧
 and 𝑔+

′ (𝑧) =
𝜕𝑔+

𝜕𝑧
 Therefore  

�̃�[𝑓−(𝑧)𝑔+(𝑧) + 𝑓−(𝑧)𝑔−(𝑧) + 𝑓+(𝑧)𝑔+(𝑧) −  ℎ(𝑧)]  =  �̃�[𝑓−(𝑧)𝑔+(𝑧) −  ℎ(𝑧)] 
is in 𝐿1(𝐷). By Lemma 1 in [96], the invariant Laplace operator commutes with the Berezin 

transform:  

�̃� {𝐵[𝑓−𝑔+  −  ℎ](𝑧)}  =  𝐵[�̃�( 𝑓−𝑔+  −  ℎ)](𝑧), 

applying the invariant Laplacian �̃� to Equation (26), we get  

𝐵[�̃�(  𝑓−𝑔+  −  ℎ)](𝑧) =  �̃� [∑  

3𝑟

𝑗=1

 𝑋𝑗  (𝑧)𝑌𝑗  (𝑧)]  − �̃�[𝑓+(𝑧)𝑔−(𝑧)]  

= (1 − |𝑧|2)2 [ ∑ 

3𝑟

𝑗=1

 𝑋𝑗
′ (𝑧)𝑌𝑗

′ (𝑧)  − 𝑓+
′(𝑧)𝑔−

′ (𝑧)] 

 for 𝑧 ∈  𝐷. Canceling the factor (1 − |𝑧|2)2 in both sides of above equation we obtain  

〈�̃�( 𝑓−𝑔+  −  ℎ)𝐾𝑧, 𝐾𝑧〉  =  ∑  

3𝑟

𝑗=1

 𝑋𝑗
′ (𝑧)𝑌𝑗

′ (𝑧)  −  𝑓+
′(𝑧)𝑔−

′ (𝑧)        (27) 
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Now one can “complexify” above equation to get  

〈�̃�( 𝑓−𝑔+  −  ℎ)𝐾𝑧, 𝐾𝑤〉  =  ∑  

3𝑟

𝑗=1

 𝑋𝑗
′ (𝑧)𝑌𝑗

′ (𝑤)  − 𝑓+
′(𝑧)𝑔−

′ (𝑤)      (28)  

since the above equation holds on the bidisc as both sides of the above equation are 

holomorphic in the bidisc {(𝑧, 𝑤): |𝑧| <  1, |𝑤| <  1} and are equal on {(𝑧, 𝑤): |𝑧| <
 1, 𝑤 =  𝑧}. Next we take the 𝑘th derivative to both sides of Equation (28) with respect to 

w and then evaluate the values at 𝑤 =  0, it follows  

〈�̃�[𝑓−𝑔+  −  ℎ]𝜉
𝑘, 𝐾𝑧(𝜉)〉 =  ∑ 

3𝑟

𝑗=1

 𝑏𝑗,𝑘𝑋𝑗
′ (𝑧)  + 𝑎𝑘𝑓+

′(𝑧)  

for some constants 𝑏𝑗,𝑘 , 𝑎𝑘.  

     Although some of the 𝑋𝑗
′ and 𝑓+

′  may not be in 𝐿𝑎
2 , we observe that for each 0 <  𝑠 <  1, 

all of 𝑋𝑗
′ and 𝑓+

′  are bounded and analytic on 𝑠𝐷. Hence  

{𝑇�̃�[𝑓−𝑔+−ℎ] 𝜉
𝑘}(𝑠𝑧)  =  ∑  

3𝑟

𝑗=1

 𝑏𝑗,𝑘𝑋𝑗
′ (𝑟𝑧)  + 𝑎𝑘𝑓+

′(𝑠𝑧). 

We claim that 𝑇�̃�[𝑓−𝑔+−ℎ] has finite rank on the Bergman space 𝐿𝑎
2 . If the claim is false, we 

may assume that there are 3𝑟 + 2 linearly independent functions {𝑢𝑙}𝑙=1
3𝑟+2 in the range of 

𝑇�̃�[𝑓−𝑔+−ℎ] . Then for each 0 <  𝑠 <  1, {𝑢𝑙|𝑠𝐷}𝑙=1
3𝑟+2 are also linearly independent in the 

space 𝐿𝑎
2 (𝑠𝐷). Since analytic polynomials are dense in 𝐿𝑎

2 (𝑠𝐷), for each l there are analytic 

polynomials 𝑝𝑙𝑗  such that 𝑇�̃�[𝑓−𝑔+−ℎ] 𝑝𝑙𝑗 converges to 𝑢𝑙 as (𝑗 →  ∞). Thus 𝑇�̃�[𝑓−𝑔+−ℎ] 𝑝𝑙𝑗 

converges uniformly to 𝑢𝑙 on every compact subset of the unit disk 𝐷. Note that 𝑠𝐷 is 

contained in a compact subset of the unit disk, we have  

lim
𝑗→∞

  ∫  
𝑠𝐷

 |{𝑇�̃�[𝑓−𝑔+−ℎ] 𝑝𝑙𝑗  −  𝑢𝑙|
2
 d𝐴(𝑧) = 0. 

By the above formula, 𝑇�̃�[𝑓−𝑔+−ℎ] 𝑝𝑙𝑗  |𝑠𝐷 is contained in the subspace 

span{𝑋𝑗
′ (𝑠𝑧), 𝑓+

′(𝑠𝑧)}
𝑗=1

3𝑟
, so  

𝑢𝑙(𝑠𝑧)  ∈  span{𝑋𝑗
′ (𝑠𝑧), 𝑓+

′(𝑠𝑧)}
𝑗=1

3𝑟
 

for 𝑙 =  1, 2, . . . , 3𝑟 +  2. But this contradicts that {𝑢𝑙(𝑠𝑧)}𝑙=1
3𝑟+2 are linearly independent, 

and hence the claim follows.  

       By Luecking’s Theorem in [169], which says that there is no nonzero finite rank 

Toeplitz operators on the Bergman space with symbol in 𝐿1(𝐷), we have  

�̃�[𝑓−(𝑧)𝑔+(𝑧) −  ℎ(𝑧)]  =  0 

 on 𝐷. This implies that 𝑓−𝑔+  −  ℎ is a harmonic function and hence  

𝐵[𝑓−𝑔+  −  ℎ](𝑧) =  𝑓−(𝑧)𝑔+(𝑧) −  ℎ(𝑧).  
So Equation (23) gives  

𝑓−(𝑧)𝑔+(𝑧)  −  ℎ(𝑧)  

=  (1 − |𝑧|2)2  ∑  

𝑟

𝑗=1

 𝑥𝑗  (𝑧)𝑦𝑗  (𝑧)  − 𝑓−(𝑧)𝑔−(𝑧)  − 𝑓+(𝑧)𝑔+(𝑧)  

− 𝑓+(𝑧)𝑔−(𝑧). 
 Therefore we obtain  
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𝑓(𝑧)𝑔(𝑧)  =  ℎ(𝑧)  + (1 − |𝑧|2)2∑ 

𝑟

𝑗=1

 𝑥_𝑗  (𝑧)𝑦𝑗  (𝑧). 

Conversely, suppose that 𝑓−𝑔+  −  ℎ is harmonic on 𝐷, and  

𝑓(𝑧)𝑔(𝑧)  =  ℎ(𝑧)  + (1 − |𝑧|2)2∑ 

𝑟

𝑗=1

 𝑥𝑗  (𝑧)𝑦𝑗  (𝑧). 

It follows from (24) and (25) that  

𝐵[𝑇𝑓𝑇𝑔  −  𝑇ℎ](𝑧)  =  𝑓(𝑧)𝑔(𝑧)  −  ℎ(𝑧)  =  𝐵 [ ∑ 

𝑟

𝑗=1

 𝑥𝑗  ⊗ 𝑦𝑗] (𝑧). 

Since the Berezin transform is injective [55], we conclude that  

𝑇𝑓𝑇𝑔  −  𝑇ℎ  =  ∑  

𝑟

𝑗=1

 𝑥𝑗  ⊗ 𝑦𝑗   

The proof is complete.  

      The Hardy space 𝐻2 is the subspace of analytic functions on 𝐷 whose Taylor coeffi- 

cients are square summable. It can be also identified (by radial limits) with the subspace of 

𝐿2(𝜕𝐷) of functions whose negative Fourier coefficients vanish. For 𝑝 ≥  1, the classical 

Hardy space 𝐻𝑝 is the subspace of 𝐿𝑝(𝜕𝐷) consisting of those functions whose negative 

Fourier coefficients vanish. Let �̂� denote the Szego projection: the orthogonal projection 

from 𝐿2(𝜕𝐷) onto 𝐻2. Since �̂� is a bounded projection from 𝐿𝑞(𝜕𝐷) onto 𝐻𝑞 for 𝑞 >  1, 

for each bounded harmonic function 𝜙 on 𝐷, we have that both 𝜙+ and 𝜙− are in ⋂  𝑞>1  𝐻
𝑞 . 

We let �̂�𝑓 denote the Toeplitz operator on the Hardy space 𝐻2 and �̂�𝑓 the Hankel operator 

on 𝐻2 which are defined by  

�̂�𝑓ℎ =  �̂�(𝑓ℎ),  

�̂�𝑓ℎ =  (𝐼 − �̂�)(𝑓ℎ) 

for ℎ ∈  𝐻2. There is an extensive literature on Toeplitz operators on the Hardy space 𝐻2 

[175]. We will give a characterization when 𝑓 and 𝑔 are holomorphic functions in 𝐵𝑀𝑂𝐴. 
The main idea is to exchange an identity of the Toeplitz operators on the Bergman space to 

an identity of Toeplitz operators on Hardy space by the Berezin transforms.  

       For an operator (possibly unbounded) 𝑆 on 𝐻2, define the Berezin transform  

𝐵[𝑆](𝑧)  =
〈𝑆�̂�𝑧, �̂�𝑧〉

𝐻2
 

if the domain of the operator 𝑆 contains all the normalized reproducing kernels ˆ  

𝑘𝑧(𝑤)  =
1 − |𝑧|2

(1 − 𝑧𝑤)
  

of 𝐻2. The Berezin transform is also injective on the Hardy space. 

       A simple calculation gives that for two nonnegative integers 𝑘 and 𝑙,  
𝑇
𝑧
𝑘  𝑧𝑙  =  0  

if 𝑘 > 𝑙 and  

𝑇
𝑧
𝑘  𝑧𝑙  =

𝑙 −  𝑘 +  1

𝑙 +  1
 𝑧𝑙−𝑘   

if 𝑘 ≤  𝑙. This immediately leads to the following lemma.  
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Lemma (6.3.9)[172]: If 𝑢(𝑧)  =  𝑢0  +  𝑢1𝑧 + ···  + 𝑢𝑚−1𝑧
𝑚  + ··· is in 𝐿𝑎

2 , then for each 

𝑚 ≥  0,  

𝑇𝑢𝑧
𝑚+𝑘  

=  
(𝑚 +  𝑘 +  1)𝑢0𝑧

𝑚+𝑘  +  (𝑚 +  𝑘)𝑢1𝑧
𝑚+𝑘−1  + ···  + (𝑘 +  1)𝑢𝑚  + ···  + 𝑢𝑚+𝑘

 𝑚 +  𝑘 +  1
 ,  

for 𝑘 ≥  −𝑚. We will prove the following theorem.  

Theorem (6.3.10)[172]: Suppose that 𝑓 and 𝑔 are two nonconstant functions in 𝐵𝑀𝑂𝐴 and 

ℎ is in 𝐿𝑞(𝐷)𝐶2(𝐷) with �̃�ℎ ∈  𝐿1(𝐷). If there are two families {𝑥𝑗}𝑗=1
𝑟

 and {𝑦𝑗}𝑗=1
𝑟
 of 

linearly independent functions in 𝐿𝑎
2  such that  

𝑇𝑓𝑇𝑔  −  𝑇ℎ  =  ∑  

𝑟

𝑗=1

 𝑥𝑗  ⊗ 𝑦𝑗  , 

where 𝑟 ≥  1, then ℎ is harmonic function, and  

ℎ =  ℎ+  +  ℎ−, 

where ℎ+ and ℎ− are analytic functions, 𝑓, 𝑔, ℎ+, and ℎ− and all 𝑥𝑖 , 𝑦𝑖  are rational functions 

(𝑖 =  1, 2, . . . , 𝑟, 𝑟 >  0). Moreover there are analytic polynomials 

𝑞(𝑧), 𝑝(𝑧), 𝐹(𝑧), 𝐺(𝑧), 𝑏(𝑧), 𝐵(𝑧), 𝑐1(𝑧),··· , 𝑐𝑟(𝑧), 𝑑1(𝑧),··· , 𝑑𝑟(𝑧) such that  

𝑓(𝑧) =
𝐹(𝑧)

𝑞(𝑧)
 , 𝑔(𝑧) =

𝐺(𝑧)

𝑝(𝑧)
 , ℎ+(𝑧) =

𝑏(𝑧)

𝑞(𝑧)
 , ℎ−(𝑧) =

𝐵(𝑧)

𝑝(𝑧)
     (29) 

 𝑥𝑗  (𝑧) =
𝑐𝑗(𝑧)

𝑞(𝑧)
 , 𝑦𝑗  (𝑧) =

𝑑𝑗(𝑧)

𝑝(𝑧)
                                 (30) 

Where  
deg 𝑐𝑗  ≤  max{𝑑𝑒𝑔 𝐹, 𝑑𝑒𝑔 𝑞} −  2, 

and  

𝑑𝑒𝑔 𝑑𝑗  ≤  max{𝑑𝑒𝑔 𝐺, 𝑑𝑒𝑔 𝑝}  −  2,  

for 𝑗 =  1, 2, . . . , 𝑟. In fact,  

rank (�̂�𝑓�̂�𝑔  −  �̂�ℎ)  =  min{max{𝑑𝑒𝑔 𝐵, 𝑑𝑒𝑔 𝑝},max{𝑑𝑒𝑔 𝐹, 𝑑𝑒𝑔 𝑞}}.  (31) 

If  

min{max{𝑑𝑒𝑔 𝐵, 𝑑𝑒𝑔 𝑝},max{𝑑𝑒𝑔 𝐹, 𝑑𝑒𝑔 𝑞}}  <  2, 
then  

𝑇𝑓𝑇𝑔  −  𝑇ℎ  =  0. 

Proof. Suppose 

𝑇𝑓𝑇𝑔  −  𝑇ℎ  =  ∑  

𝑟

𝑗=1

 𝑥𝑗  ⊗ 𝑦𝑗                                    (32) 

where 𝑥𝑗  , 𝑦𝑗 are in 𝐿𝑎
2  such that 𝑥1, 𝑥2, . . . , 𝑥𝑟 are linearly independent and 𝑦1, 𝑦2, . . . , 𝑦𝑟 are 

linearly independent.  

        By Theorem (6.3.8), since 𝑓 and 𝑔 are analytic, we have that 𝑓−(𝑔)+ − ℎ =  −ℎ is 

harmonic. Thus ℎ is harmonic. So we can write ℎ =  ℎ+  +  ℎ− , where ℎ+, ℎ− are functions 

in 𝐻2.   

       First we show that 𝑥𝑖 , 𝑦𝑖  are in 𝐻2, for 𝑖 =  1, 2, . . . , 𝑟. By Theorem (6.3.8), we have 

that  

𝑓(𝑧)𝑔(𝑧)  −  ℎ(𝑧)  =  (1 − |𝑧|2)2∑ 

𝑟

𝑖=1

 𝑥𝑖(𝑧)𝑦𝑖(𝑧)            (33) 
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By the “complexify” argument used in the proof of Theorem (6.3.8), we obtain  

𝑓(𝑧)𝑔(𝑤) − ℎ+(𝑧) − ℎ−(𝑤) =  (1 −  𝑧𝑤)
2∑ 

𝑟

𝑖=1

 𝑥𝑖(𝑧)𝑦𝑖(𝑤)     (34) 

For a fixed t in (0, 1), we have  

𝑓(𝑧)𝑔(𝑡𝑤)  − ℎ+(𝑧)  − ℎ−(𝑡𝑤)  =  (1 −  𝑡𝑧𝑤)
2∑ 

𝑟

𝑖=1

 𝑥𝑖(𝑧)𝑦𝑖(𝑡𝑤), (35) 

to get  

∑ 

𝑟

𝑖=1

 𝑥𝑖(𝑧)𝑦𝑖(𝑡𝑤)  =
1

(1 −  𝑡𝑧𝑤)2
 [𝑓(𝑧)𝑔(𝑡𝑤)  − ℎ+(𝑧) − ℎ−(𝑡𝑤)]. 

For each 𝑗, pairing both sides of the above equation with 𝑦𝑗(𝑡𝑤) and then integrating about 

𝑤, we have  

∑ 

𝑟

𝑖=1

[∫  
𝐷

 𝑦𝑗  (𝑡𝑤)𝑦𝑖(𝑡𝑤)𝑑𝐴(𝑤)] 𝑥𝑖(𝑧)

= ∫  
𝐷

𝑦𝑗(𝑡𝑤)

(1 −  𝑡𝑧𝑤)2
 [𝑓(𝑧)𝑔(𝑡𝑤)  − ℎ+(𝑧) − ℎ−(𝑡𝑤)] 𝑑𝐴(𝑤) = 𝑔𝑗  (𝑧),  

where  

𝑔𝑗  (𝑧) =   ∫  
𝐷

𝑦𝑗(𝑡𝑤)

(1 −  𝑡𝑧𝑤)2
 [𝑓(𝑧)𝑔(𝑡𝑤) − ℎ+(𝑧) − ℎ−(𝑡𝑤)] 𝑑𝐴(𝑤)  

is in 𝐻2 since 𝑓 and ℎ+ are in 𝐻2. The coefficient matrix of the above system is given by    

[∫  
𝐷

 𝑦𝑗  (𝑡𝑤)𝑦𝑖(𝑡𝑤)𝑑𝐴(𝑤)]
𝑖,𝑗

 , 

and is invertible since {𝑦1, 𝑦2,··· , 𝑦𝑟} are linearly independent in 𝐿𝑎
2 . Cramer’s rule gives  

𝑥𝑖(𝑧)  =  ∑  

𝑟

𝑖=1

𝑏𝑖𝑗𝑔𝑗  (𝑧) 

for each 𝑧 in 𝐷 and some constants 𝑏𝑖𝑗  . This gives that each 𝑥𝑖 is in 𝐻2 since gj is in 𝐻2. 

Similarly we can show that each 𝑦𝑖  is also in 𝐻2.  
       Next we will show that both 𝑓 and 𝑔 are rational functions. Rewriting Equation (33), 

for every 𝑧 ∈  𝐷, we have  

𝑓(𝑧)𝑔(𝑧)  −  ℎ(𝑧) =  (1 − |𝑧|2) { ∑  

𝑟

𝑖=1

 𝑥𝑖(𝑧)𝑦𝑖(𝑧)  −∑ 

𝑟

𝑖=1

 𝑧𝑥𝑖(𝑧)𝑧𝑦𝑖(𝑧)}  (36) 

Simple computations give  

〈[�̂�𝑓�̂�𝑔  −  �̂�ℎ]�̂�𝑧, �̂�𝑧〉  =  𝑓(𝑧)𝑔(𝑧)  −  ℎ(𝑧), 

〈[ ∑ 

𝑟

𝑖=1

 𝑥𝑖  ⊗ 𝑦𝑖  −∑  

𝑟

𝑖=1

 𝜍𝑥𝑖  ⊗  𝜍𝑦𝑖] �̂�𝑧, �̂�𝑧〉  

= (1 − |𝑧|2) {∑ 

𝑟

𝑖=1

 𝑥𝑖(𝑧)𝑦𝑖(𝑧)  −∑ 

𝑟

𝑖=1

 𝑧𝑥𝑖(𝑧)𝑧𝑦𝑖(𝑧)}. 

Then Equation (36) implies that  
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〈[�̂�𝑓�̂�𝑔  −  �̂�ℎ]�̂�𝑧, �̂�𝑧 〉  =  〈[∑ 

𝑟

𝑖=1

 𝑥𝑖  ⊗ 𝑦𝑖  −∑ 

𝑟

𝑖=1

𝜍𝑥𝑖  ⊗  𝜍𝑦𝑖] �̂�𝑧, �̂�𝑧〉.     (37) 

Since the Berezin transform is one-to-one from the algebra of bounded operators on the 

Hardy space to 𝐿∞(𝐷), we have  

�̂�𝑓�̂�𝑔  −  �̂�ℎ  =  ∑  

𝑟

𝑖=1

 𝑥𝑖  ⊗ 𝑦𝑖  −∑ 

𝑟

𝑖=1

 𝜍𝑥𝑖  ⊗  𝜍𝑦𝑖 .                    (38) 

Thus �̂�𝑓�̂�𝑔  −  �̂�ℎ is an operator at most 2𝑟 rank and the well-defined symbol map on the 

Toeplitz algebra on the Hardy space [175] gives  

𝑓(𝑧)𝑔(𝑧)  −  ℎ(𝑧) = 0 

on the unit circle ∂D. Thus we have  

�̂�𝑓�̂�𝑔  −  �̂�𝑓𝑔  =  ∑  

𝑟

𝑖=1

 𝑥𝑖  ⊗ 𝑦𝑖  −∑ 

𝑟

𝑖=1

 𝜍𝑥𝑖  ⊗  𝜍𝑦𝑖 ,  

to get  

−�̂�
𝑓
∗�̂�𝑔  =  ∑  

𝑟

𝑖=1

 𝑥𝑖  ⊗ 𝑦𝑖  −∑ 

𝑟

𝑖=1

 𝜍𝑥𝑖  ⊗  𝜍𝑦𝑖   

is a finite rank operator as  

�̂�𝑓�̂�𝑔  −  �̂�𝑓𝑔  =  −�̂�𝑓
∗�̂�𝑔.  

By Theorem (6.3.4), either �̂�𝑓 or �̂�𝑔 has finite rank. Let  

𝑛 = rank (�̂�𝑓�̂�𝑔  −  �̂�𝑓𝑔).  

By Theorem (6.3.5), either rank �̂�𝑓 or rank �̂�𝑔 equals 𝑛. By the Kronecker theorem (p. 21, 

[178]), we have that either 𝑓 or 𝑔 is a rational function with degree n. We may assume that 

the degree of 𝑓 equals 𝑛 and  

𝑓(𝑧) =
𝐹(𝑧)

𝑞(𝑧)
 , 

where 𝐹(𝑧) and 𝑞(𝑧) are polynomials with degrees at most n and do not have any common 

factors.  

      Next we will show that ℎ+ and 𝑥𝑖 , 𝑖 =  1, 2, . . . , 𝑟 are all rational functions with the same 

denominator 𝑞(𝑧). Moreover we can write  

ℎ+(𝑧) =
𝑏(𝑧)

𝑞(𝑧)
  

and  

𝑥𝑗  (𝑧) =
𝑐𝑗(𝑧)

𝑞(𝑧)
 , 

where 𝑏(𝑧) is an analytic polynomial with degree at most 𝑛 and 𝑐𝑗  (𝑧) is an analytic 

polynomial with degree less than 𝑛 −  2, for 𝑗 =  1, 2, . . . , 𝑟.  
        Since 𝑓𝑔  =  ℎ on 𝜕𝐷, 𝑞𝑓𝑔  =  𝑞ℎ+ + 𝑞ℎ− and both 𝑞 and 𝐹 =  𝑞𝑓 are analytic 

polynomials with degree at most n, we have  

𝑏 =  𝑞ℎ+  =  �̂�[(𝑞𝑓)𝑔]  − �̂�[𝑞ℎ−]  =  �̂�[𝐹𝑔]  −  �̂�[𝑞ℎ−] 
is an analytic polynomial with degree at most max{𝑑𝑒𝑔 𝐹, 𝑑𝑒𝑔 𝑞}  =  𝑑𝑒𝑔 𝑓. Therefore ℎ+ 

is a rational function:  
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ℎ+(𝑧) =
𝑏(𝑧)

𝑞(𝑧)
 . 

Using Identity (32) and (𝑧) =
𝐹(𝑧)

𝑞(𝑧)
 , we have 

𝑇𝐹  𝑇𝑔  −  𝑇𝑞𝑇ℎ−  −  𝑇𝑏  =  𝑇𝑞[𝑇𝑓𝑇𝑔  −  𝑇ℎ] =  𝑇𝑞𝑓𝑇𝑔  −  𝑇𝑞𝑇ℎ−  −  𝑇𝑞ℎ+ 

∑ 

𝑟

𝑖=1

 (𝑞𝑥𝑖) ⊗ 𝑦𝑖  =  ∑  

𝑟

𝑖=1

 𝑐𝑖  ⊗ 𝑦𝑖                            (39) 

where 𝑐𝑖  =  𝑞𝑥𝑖 .  
        Let 𝑃𝑁 be the projection from 𝐿𝑎

2  onto the subspace spanned by {1, 𝑧,··· , 𝑧𝑁 } which 

consists of polynomials of 𝑧 with degree at most 𝑁. Since {𝑦𝑖}𝑖=1
𝑟  are linearly independent 

in 𝐿𝑎
2 , we see that for some sufficient large 𝑁, {𝑃𝑁 (𝑦𝑖)}𝑖=1

𝑁  are also linearly independent. 

Applying the operator identity (39) to each 𝑃𝑁(𝑦𝑗) gives the following system of functions  

𝐹(𝑧)𝑇𝑔𝑃𝑁 (𝑦𝑗)  −  𝑞(𝑧)𝑇ℎ−  𝑃𝑁 (𝑦𝑗)  −  𝑏(𝑧)𝑃𝑁(𝑦𝑗  )  =  ∑  

𝑟

𝑖=1

 〈𝑃𝑁(𝑦𝑗), 𝑦𝑖〉𝑐𝑖   

= ∑ 

𝑟

𝑖=1

〈𝑃𝑁 (𝑦𝑗), 𝑃𝑁(𝑦𝑖)〉𝑐𝑖   

for 𝑗 =  1,··· , 𝑟. By Lemma (6.3.9), we have that 𝑇𝑔𝑃𝑁 (𝑦𝑗  ) and 𝑇ℎ−  𝑃𝑁 (𝑦𝑗) are 

polynomials of 𝑧. This gives that the left hand side of each equation in the above system is 

a polynomial of 𝑧. Since the 𝑟 ×  𝑟 matrix (〈𝑃𝑁 (𝑦𝑗), 𝑃𝑁(𝑦𝑖)〉)𝑖,𝑗 is invertible, solving the 

above system for 𝑐𝑖 we have that 𝑐𝑖 is a polynomial of 𝑧.  

        Next we will show that 𝑔, ℎ− and 𝑦𝑖 , 𝑖 =  1, 2, . . . , 𝑟 are all rational functions with the 

same denominator.  

        Taking partial derivative both sides of Equation (32) about z gives  

𝑓 (𝑧)𝑔(𝑧) − ℎ+
′ (𝑧)

=  (1 − |𝑧|2) { ∑  

𝑟

𝑖=1

[(1 − |𝑧|2)𝑥𝑖
′(𝑧)𝑦𝑖(𝑧)  −  2𝑧𝑥𝑖(𝑧)𝑦𝑖(𝑧)]}            (40) 

Thus for each 𝜍 ∈  𝜕𝐷, we have  

𝑓′(𝜍)𝑔(𝜍) =  ℎ+
′ (𝜍),                                                          (41) 

to get that 𝑔(𝜍) is a rational function on the unit circle as 𝑓′(𝜍) and ℎ+
′ (𝜍) are rational 

functions on the unit circle. This gives that 𝑔(𝑧) is a rational function on the unit disk. Let  

𝑔(𝑧) =
𝐺(𝑧)

𝑝(𝑧)
 

for two polynomials 𝐺(𝑧) and 𝑝(𝑧) with degree at most degree 𝑚 of 𝑔. Using 

𝑇𝑔𝑇𝑓  −  𝑇ℎ  =  ∑  

𝑟

𝑖=1

 𝑦𝑖  ⊗ 𝑥𝑖 , 

and repeating the above argument, we can get that ℎ− and all 𝑦𝑖  are rational functions: 

ℎ−(𝑧)  =
𝐵(𝑧)

𝑝(𝑧)
 , 𝑦𝑖(𝑧) =

𝑑𝑖(𝑧)

𝑝(𝑧)
 

for some polynomials 𝐵(𝑧), 𝑑1(𝑧),··· , 𝑑𝑟(𝑧) with degree at most m.  

        Last we will obtain the remaining result of the theorem.  

        Theorem (6.3.5) implies  
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𝑛 =  rank �̂�
𝑓
∗ �̂�𝑔  =  min {rank �̂�𝑓 , rank �̂�𝑔}  =  min{𝑛,𝑚}.  

By the Kronecker theorem [178], we have  

rank �̂�𝑓  =  max{𝑑𝑒𝑔 𝐹, 𝑑𝑒𝑔 𝑞}. 

Thus we obtain (31). To complete the proof we need only to show  

𝑑𝑒𝑔 𝑐𝑖(𝑧)  ≤  𝑛 −  2, 𝑑𝑒𝑔 𝑑𝑖(𝑧)  ≤  𝑚 −  2. 
To do this, using (29), (30) and (34) we have 

𝐹(𝑧)𝐺(𝑤) −  𝑏(𝑧)𝑝(𝑤) −  𝑞(𝑧)𝐵(𝑤)  =  (1 −  𝑧𝑤)2∑ 

𝑟

𝑖=1

 𝑐𝑖(𝑧)𝑑𝑖(𝑤).  

Since the left hand side of the above equation is a polynomial of 𝑧 with degree at most 𝑛 

and is also a polynomial of 𝑤 with degree at most 𝑚 and the degree of (1 −  𝑧𝑤)2 about 𝑧 

or 𝑤 is 2, we conclude that the degree of each 𝑐𝑖(𝑧) is at most 𝑛 −  2 and the degree of each 

𝑑𝑖(𝑤) is at most 𝑚 −  2. If either 𝑛 or 𝑚 is less than 2, we have that  

∑ 

𝑟

𝑖=1

𝑐𝑖(𝑧)𝑑𝑖(𝑤) = 0.  

This gives that  

∑ 

𝑟

𝑖=1

 𝑥𝑖  ⊗ 𝑦𝑖  =  0,  

and hence  

𝑇𝑓𝑇𝑔  −  𝑇ℎ  =  0.  

This completes the proof. 

We will prove Theorems (6.3.13), (6.3.7), and (6.3.16). We need some notation. For 

each α in the unit disk, define a unitary operator 𝑈𝛼 on 𝐿2(𝐷):  

𝑈𝛼𝜙 = 𝜙(𝜙𝛼(𝑧))𝑘𝛼(𝑧)  

for 𝜑 ∈ 𝐿2(𝐷), where 𝜙𝛼(𝑧) is the Mobius transform 
𝛼−𝑧

1−𝛼𝑧
  . As pointed out in [46], 𝑈𝛼𝑈𝛼  =

 𝐼 and  
𝑈𝛼𝑇𝑓𝑈𝛼  =  𝑇𝑓°𝜙𝛼 .  

Using the above properties one can easily get the following useful and simple lemma which 

we will use in the proof of Theorem (6.3.13). We omit its proof.  

Lemma (6.3.11)[172]: For any 𝛼 ∈  𝐷, if  

𝑇𝑓𝑇𝑔  −  𝑇ℎ  =  ∑  

𝑟

𝑖=1

 𝑥𝑖  ⊗ 𝑦𝑖 ,  

then  

𝑇𝑓°𝜙𝛼  𝑇𝑔°𝜑𝛼  −  𝑇ℎ°𝜙𝛼  =  ∑  

𝑟

𝑖=1

 (𝑈𝛼𝑥𝑖)  ⊗ (𝑈𝛼𝑦𝑖).  

        In the proof of Theorem (6.3.13) we will use the following corollary of Bochner’s 

theorem on critical points of a rational function [180].  

Theorem (6.3.12)[172]: If the circular regions |𝑧|  ≤  𝑟1 and |𝑧|  ≥  𝑟2(>  𝑟1) contain 

respectively the zeros and poles of a rational function 𝑅(𝑧) of degree 𝑛, those regions 

contain all the critical points of 𝑅(𝑧), and the former region contains precisely 𝑛 −
 1 critical points.  

        Now we are ready to present the proof of Theorem (6.3.13).  
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Theorem (6.3.13)[172]: Suppose 𝑓 and 𝑔 are bounded harmonic functions and h is a 

bounded 𝐶2 function such that �̃� ℎ ∈  𝐿1(𝐷). If 𝑇𝑓𝑇𝑔  −  𝑇ℎ has the rank at most one, then 

either f is conjugate analytic or 𝑔 is analytic. In either case, ℎ =  𝑓𝑔.  
Proof. First we reduce Theorem (6.3.13) to the special case that 𝑓 and 𝑔 are in 𝐵𝑀𝑂𝐴 and ℎ 

is in 𝐿𝑞(𝐷)𝐶2(𝐷) for any 𝑞 >  1 with  

�̃� ℎ ∈  𝐿1(𝐷).  
To do so, write 𝑓 =  𝑓+  +  𝑓− and 𝑔 =  𝑔+  +  𝑔−. We have  

𝑇𝑓𝑇𝑔  −  𝑇ℎ  =  𝑇𝑓+  𝑇𝑔−  −  𝑇ℎ−𝑓−𝑔+−𝑓−𝑔−−𝑓+𝑔+  .  

Let 𝐺 =  ℎ − 𝑓−𝑔+  −  𝑓−𝑔−  −  𝑓+𝑔+. Then 𝑇𝑓+  𝑇𝑔−  −  𝑇𝐺 has rank at most one also. By 

Theorem (6.3.10), 𝐺 is harmonic on the unit disk. So we may consider the finite rank 

operator 𝑇𝑓𝑇𝑔  −  𝑇ℎ with rank at most one where 𝑓 =  𝑓+, 𝑔 =  𝑔−, and ℎ =  𝐺. We will 

show that either 𝑓 or 𝑔 is constant and 𝑇𝑓𝑇𝑔  −  𝑇ℎ  =  0. This gives that ℎ =  𝑓𝑔.  

       Since 𝑇𝑓𝑇𝑔  −  𝑇ℎ has rank at the most one, there are two functions 𝑥1 and 𝑦1 in 𝐿2 a 

such that  

𝑇𝑓𝑇𝑔  −  𝑇ℎ  =  𝑥1  ⊗ 𝑦1.                               (42) 

By Theorem (6.3.10), ℎ is harmonic on 𝐷 and 𝑥1  ∈  𝐻
2 and 𝑦1  ∈  𝐻

2. We write ℎ =  ℎ+  +
 ℎ− where ℎ+ is analytic part of ℎ and ℎ− is conjugate analytic part of h. 

        By Theorem (6.3.10), we may assume that �̂�𝑓�̂�𝑔  −  �̂�ℎ is a finite rank operator with 

rank 𝑛 =  2 and there are analytic polynomials 

𝑞(𝑧), 𝑝(𝑧), 𝐹(𝑧), 𝐺(𝑧), 𝑏(𝑧), 𝐵(𝑧), 𝑐1(𝑧), 𝑑1(𝑧) such that  

𝑓(𝑧) =
𝐹(𝑧)

𝑞(𝑧)
 , 𝑔(𝑧) =

𝐺(𝑧)

𝑝(𝑧)
 , ℎ+(𝑧) =

𝑏(𝑧)

𝑞(𝑧)
 , ℎ−(𝑧) =

𝐵(𝑧)

𝑝(𝑧)
  

and  

𝑥1(𝑧) =
𝑐1(𝑧)

𝑞(𝑧)
 , 𝑦1(𝑧) =

𝑑1(𝑧)

𝑝(𝑧)
 .  

As for 𝛼 in 𝐷 except for one point, the degree of the denominator of 𝑅 ° 𝜙𝛼 is greater than 

or equal to the degree of the numerator of 𝑅 ° 𝜙𝛼 for a rational function 𝑅, by Lemma 

(6.3.11), we may assume 𝑑𝑒𝑔 𝑞 =  2 ≤  𝑚 =  𝑑𝑒𝑔 𝑝, 𝑑𝑒𝑔 𝐹 ≤  2 and 𝑑𝑒𝑔 𝐺 ≤
 𝑚. Then 𝑑𝑒𝑔 𝐹 ≤  2, 𝑑𝑒𝑔 𝐺 ≤  𝑚, 𝑑𝑒𝑔 𝑏 ≤  2, 𝑑𝑒𝑔 𝐵 ≤  𝑚,  

𝑑𝑒𝑔 𝑐1  =  0,  
and  

𝑑𝑒𝑔 𝑑1  ≤  𝑚 −  2.  
        By Theorem (6.3.8) we have  

𝑓(𝑧)𝑔(𝑧)  =  ℎ(𝑧)  +  (1 − |𝑧|2)2𝑥1(𝑧)𝑦1(𝑧)                            (43)  
holds for 𝑧 ∈  𝐷. Complexify (43) to get  

𝑓(𝑧)𝑔(𝑤)  =  ℎ+(𝑧) + ℎ−(𝑤) + (1 −  𝑧𝑤)
2𝑥1(𝑧)𝑦1(𝑤)  

holds for 𝑧 and 𝑤 in 𝐷. Since these functions in the above equation are rational functions we 

have  

𝑓(𝑧)𝑔(𝑤)  =  ℎ+(𝑧) + ℎ−(𝑤) + (1 −  𝑧𝑤)
2𝑥1(𝑧)𝑦1(𝑤)       (44)  

for z and w in the complex plane C except for finitely many points.  

        Taking partial derivative both sides of (44) with respect to z gives  

𝑓 (𝑧)𝑔(𝑤)  =  ℎ+
′ (𝑧)  −  2𝑤(1 −  𝑧𝑤)𝑥(𝑧)𝑦(𝑤)  + (1 −  𝑧𝑤)2𝑥 (𝑧)𝑦(𝑤).  

Letting 𝑤 =
1

𝑧
 in the above equation, we have  
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𝑓 (𝑧)𝑔 (
1

𝑧
 )  =  ℎ+

′ (𝑧),  

to get  

𝑓′(𝑧)
 �̃�𝑚(𝑧)

�̃�(𝑧)
  =  ℎ+

′ (𝑧).  

Noting that zeros of 𝑝(𝑧) are outside of the unit disk, we see that zeros of �̃�(𝑧) are in the 

unit disk. In addition, poles of 𝑓 lie outside of the unit disk. Observe that f equals zero at the 

zero set of �̃�(𝑧) in the unit disk which has two points 𝛼1 and 𝛼2 with multiplicity. Thus f 

has two critical points 𝛼1 and 𝛼2 with multiplicity in the unit disk. So 𝑓 − 𝑓(𝛼1) has two 

critical points 𝛼1 and 𝛼2 with multiplicity in the unit disk. On the other hand, 𝑓 −  𝑓(𝛼1) 
has only one repeated zero 𝛼1 in the unit disk. Thus the unit circle separates the all zeros of 

𝑓 −  𝑓(𝛼1) from all poles of 𝑓 −  𝑓(𝛼1). Theorem (6.3.12) says that 𝑓 −  𝑓(𝛼1) has only 

one critical point in the unit disk. This contracts that 𝑓 − 𝑓(𝛼1) has two critical points α1 

and α2 with multiplicity in the unit disk. This implies that 𝑓 is a constant. 

        For each polynomial 𝑃(𝑧) of 𝑧 with degree 𝑁,  
𝑃(𝑧)  =  𝑃0  +  𝑃1𝑧 + ···  𝑃𝑁 𝑧

𝑁 ,  
recall  

�̃�(𝑧)  =  𝑧𝑁 𝑃 (
1

𝑧
 ) 

= 𝑃0𝑧
𝑁  +  𝑃1𝑧

𝑁−1  + ···  + 𝑃𝑁 .  
For 𝑚 ≥  𝑁, recall  

�̃�𝑚(𝑧)  =  �̃�(𝑧)𝑧
𝑚−𝑁 .  

To get Theorem (6.3.16) we need only the following theorem.  

Theorem (6.3.14)[172]: Suppose that 𝐹, 𝐺, 𝑞, 𝑝, 𝑏 and 𝐵 are polynomials of z and the degree 

of 𝑝 equals 𝑚, degrees of 𝐺 and 𝐵 are at most m. 𝑇𝐹  𝑇�̃�  −  𝑇𝑏𝑇𝑝 − 𝑇𝑞𝑇�̃� has finite rank if 

and only if  

𝐹(𝑧)�̃�𝑚(𝑧)  −  𝑏(𝑧)�̃�𝑚(𝑧)  −  𝑞(𝑧)�̃�𝑚(𝑧) = 0,                   (45) 
𝐹(𝑧)�̃�𝑚

′ (𝑧) −  𝑏(𝑧)�̃�𝑚
′ (𝑧) −  𝑞(𝑧)�̃�𝑚

′ (𝑧) = 0.                   (46) 
Proof. Let 𝑒𝑘  =  (𝑘 + 1)𝑧𝑘. Then {𝑒𝑘}𝑘=0

∞  is an orthogonal basis of the Bergman space 𝐿𝑎
2 . 

Using Lemma (6.3.9) first we calculate [𝑇𝐹  𝑇�̃�  −  𝑇𝑏𝑇𝑝 − 𝑇𝑞𝑇�̃�  ]𝑒𝑚+𝑘−1
 . Writing  

𝐺(𝑧)  =  𝑢0  +  𝑢1𝑧 + ···  + 𝑢𝑚𝐺
 𝑧𝑚𝐺 , 𝐵(𝑧)  =  𝑣0  +  𝑣1𝑧 + ···  + 𝑣𝑚𝐵

 𝑧𝑚𝐵 , 

𝑝(𝑧)  =  𝑝0  +  𝑝1𝑧 + ···  + 𝑝𝑚𝑧
𝑚, max{𝑚𝐺 , 𝑚𝐵}  ≤  𝑚. 

By Lemma (6.3.9), we have that for 𝑘 ≥  1,  

[𝑇𝐹  𝑇�̃�  −  𝑇𝑞𝑇�̃� − 𝑇𝑏𝑇𝑝 ]𝑒𝑚+𝑘−1
  

=  𝐹(𝑧)[(𝑚 +  𝑘)𝑢0𝑧
𝑚+𝑘−1  + ···  + (𝑘 +  𝑚 − 𝑚𝐺)𝑢𝑚𝐺

 𝑧𝑚−𝑚𝐺+𝑘−1] 

−𝑞(𝑧)[(𝑚 +  𝑘)𝑣0𝑧
𝑚+𝑘−1  + ···  + (𝑘 +  𝑚 −  𝑚𝐵)𝑣𝑚𝐵

 𝑧𝑚−𝑚𝐵+𝑘−1] 

−𝑏(𝑧)[(𝑚 +  𝑘)𝑝
0
𝑧𝑚+𝑘−1  + ···  + 𝑘𝑝

𝑚
𝑧𝑘−1) 

=  𝐹(𝑧)(�̃�𝑚(𝑧)𝑧
𝑘)  −  𝑞(𝑧)(�̃�𝑚(𝑧)𝑧

𝑘)  −  𝑏(𝑧)(�̃�𝑚(𝑧)𝑧
𝑘)  

= [𝐹(𝑧)�̃�𝑚(𝑧) −  𝑞(𝑧)�̃�𝑚(𝑧) −  𝑏(𝑧)�̃�𝑚(𝑧)]𝑘𝑧
𝑘−1  

+ [𝐹(𝑧)�̃�𝑚(𝑧) −  𝑞(𝑧)�̃�𝑚(𝑧) − 𝑏(𝑧)�̃�𝑚(𝑧)]𝑧
𝑘.                                             (47) 

        If (45) and (46) hold, then the above equalities give that 𝑇𝐹  𝑇�̃�  −  𝑇𝑏𝑇𝑝  −

 𝑇𝑞𝑇�̃�vanishes on {𝑒𝑙}𝑙=𝑚
∞ . This gives that 𝑇𝐹  𝑇�̃�  −  𝑇𝑏𝑇𝑝  −  𝑇𝑞𝑇�̃� has finite rank.  

        Conversely suppose that 𝑇𝐹  𝑇�̃�  −  𝑇𝑏𝑇𝑝 − 𝑇𝑞𝑇�̃� has finite rank. We may assume that  
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𝑇𝐹  𝑇�̃�  −  𝑇𝑏𝑇𝑝 − 𝑇𝑞𝑇�̃�  =  ∑  

𝑟

𝑖=1

 𝑐𝑖  ⊗ 𝑑𝑖 .            (48)  

Thus taking the Berezin transform both sides of the above equality gives  

𝐹(𝑧)𝐺(𝑧)  −  𝑏(𝑧)𝑝(𝑧) −  𝑞(𝑧)𝐵(𝑧)  =  (1 −  |𝑧|2)2∑ 

𝑟

𝑖=1

 𝑐𝑖(𝑧)𝑑𝑖(𝑧)  

for z in D. Complexify the above equation to obtain  

𝐹(𝑧)𝐺(𝑤) −  𝑏(𝑧)𝑝(𝑤) −  𝑞(𝑧)𝐵(𝑤)  =  (1 − |𝑧|2)2∑ 

𝑟

𝑖=1

 𝑐𝑖(𝑧)𝑑𝑖(𝑤).      (49) 

 By Theorem (6.3.10), we notice that the both sides of the above equation are polynomials 

of both z and w. Letting 𝑤 =
1

𝑧
 in (49) and then multiplying both sides of (49) give  

𝐹(𝑧)�̃�𝑚(𝑧) −  𝑏(𝑧)�̃�𝑚(𝑧) −  𝑞(𝑧)�̃�𝑚(𝑧) = 0,             (50) 
which is (45). Thus (47) becomes 

[𝑇𝐹  𝑇�̃�  −  𝑇𝑞𝑇�̃� − 𝑇𝑏𝑇𝑝 ]𝑒𝑚+𝑘−1
 = [𝐹(𝑧)�̃�𝑚

′ (𝑧) −  𝑞(𝑧)�̃�𝑚
′ (𝑧) −  𝑏(𝑧)�̃�𝑚

′ (𝑧)]𝑧𝑘 

for 𝑘 ≥  0. Since 𝑇𝐹  𝑇�̃�  −  𝑇𝑞𝑇�̃� − 𝑇𝑏𝑇𝑝 has finite rank, we have that the dimension of the 

range of 𝑇𝐹  𝑇�̃�  −  𝑇𝑞𝑇�̃� − 𝑇𝑏𝑇𝑝 is of finite dimension. On the hand, its range contains 

{[𝐹(𝑧)�̃�𝑚
′ (𝑧) −  𝑞(𝑧)�̃�𝑚

′ (𝑧) −  𝑏(𝑧)�̃�𝑚
′ (𝑧)]𝑧𝑘}

𝑘=0

∞
. Thus  

𝐹(𝑧)�̃�𝑚
′ (𝑧) −  𝑞(𝑧)�̃�𝑚

′ (𝑧) −  𝑏(𝑧)�̃�𝑚
′ (𝑧) = 0, 

which is (46). This completes the proof.  

        Solving for 𝐹 and 𝑏 in (45) and (46) gives the following theorem if 𝐹 and 𝑞 do not have 

any nontribyl common factors.  

Theorem (6.3.15)[172]: Suppose that 𝐹, 𝐺, 𝑞, 𝑝, 𝑏 and 𝐵 are polynomials of 𝑧 and degree of 

𝑝 equals 𝑚, degrees of 𝐺 and 𝐵 are at most 𝑚. If 𝐹 and 𝑞 do not have any nontribyl common 

factors and either 
𝐺

𝑝
 or 

𝐵

𝑝
 is not a constant, then (45) and (46) are equivalent to the existence 

of a nonzero polynomial 𝑃 of 𝑧 such that  

�̃�𝑚�̃�𝑚
′  −  �̃�𝑚

′ �̃�𝑚
  =  𝑞𝑃,                            (51) 

 �̃�𝑚�̃�𝑚
′  −  �̃�𝑚

′ �̃�𝑚
  =  𝐹𝑃,                            (52) 

�̃�𝑚�̃�𝑚
′  −  �̃�𝑚

′ �̃�𝑚
  =  𝑏𝑃.                            (53) 

Proof. Suppose that (51), (52) and (53) hold for a nonzero polynomial 𝑃. Then we have  

𝑃[𝐹�̃�𝑚  −  𝑏�̃�𝑚  −  𝑞�̃�𝑚]

=  �̃�𝑚(�̃�𝑚�̃�𝑚
′  −  �̃�𝑚

′ �̃�𝑚)  − �̃�𝑚(�̃�𝑚�̃�𝑚
′  −  �̃�𝑚

′ �̃�𝑚
 ) − �̃�𝑚(�̃�𝑚�̃�𝑚

′  −  �̃�𝑚
′ �̃�𝑚

 )

= 0, 
and  

𝑃[𝐹�̃�𝑚
′  −  𝑏�̃�𝑚

′  −  𝑞�̃�𝑚
′ ]  

=  �̃�𝑚
′ (�̃�𝑚�̃�𝑚

′  −  �̃�𝑚
′ �̃�𝑚)  − �̃�𝑚

′ (�̃�𝑚�̃�𝑚
′  −  �̃�𝑚

′ �̃�𝑚
 ) − �̃�𝑚

′ (�̃�𝑚�̃�𝑚
′  −  �̃�𝑚

′ �̃�𝑚
 )

= 0. 
This gives (45) and (46). Conversely, suppose that (45) and (46) hold.  

        Then we have the following system  

[
�̃�𝑚 �̃�𝑚
�̃�𝑚
′ �̃�𝑚

′
] [
𝐹 
−𝑏
]  =  𝑞 [

�̃�𝑚 

�̃�𝑚
′ ] . 

 Multiplying both sides of the above system by  
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[
�̃�𝑚
′ −�̃�𝑚

−�̃�𝑚
′ �̃�𝑚

] 

gives  

(�̃�𝑚�̃�𝑚
′  −  �̃�𝑚

′ �̃�𝑚) [
𝐹 
−𝑏
] = 𝑞 [

�̃�𝑚
′ −�̃�𝑚

−�̃�𝑚
′ �̃�𝑚

] [
�̃�𝑚 

�̃�𝑚
′ ] = 𝑞 [

�̃�𝑚�̃�𝑚
′ − �̃�𝑚

′ �̃�𝑚
−�̃�𝑚�̃�𝑚

′ + �̃�𝑚
′ �̃�𝑚

]  . 

Since 𝐹 and 𝑞 do not have any common factors, the first equation in the above system gives 

that there is a polynomial 𝑃 such that  

�̃�𝑚�̃�𝑚
′  −  �̃�𝑚

′ �̃�𝑚  =  𝑞𝑃,  
�̃�𝑚�̃�𝑚

′  −  �̃�𝑚
′ �̃�𝑚  =  𝐹𝑃. 

 The second equation the above system gives  

�̃�𝑚�̃�𝑚
′  −  �̃�𝑚

′ �̃�𝑚  =  𝑏𝑃. 
If 𝑃 equals 0, we have  

�̃�𝑚�̃�𝑚
′  −  �̃�𝑚

′ �̃�𝑚  =  �̃�𝑚�̃�𝑚
′  −  �̃�𝑚

′ �̃�𝑚  =  �̃�𝑚�̃�𝑚
′  −  �̃�𝑚

′ �̃�𝑚  =  0, 
to get  

�̃�𝑚
′  �̃�𝑚  =  �̃�𝑚

′  �̃�𝑚  =  �̃�𝑚
′  �̃�𝑚 . 

Solving the above differential equations gives  

�̃�𝑚  =  𝜆�̃�𝑚  =  𝜆�̃�𝑚, 
for some constant 𝜆 and hence  

𝐺 =  𝜆𝑝  =  𝜆𝐵. 

Since either 
𝐺

𝑝
 or 

𝐵

𝑝
 is not a constant, we have that 𝑃 is a nonzero polynomial. This completes 

the proof.  

Theorem (6.3.16)[172]: Suppose 𝑓 and 𝑔 are bounded harmonic functions, ℎ is a bounded 

𝐶2 function such that �̃� ℎ ∈  𝐿1(𝐷). 𝑇𝑓𝑇𝑔  −  𝑇ℎ has finite rank greater than one if and only 

if  

       (i) 𝑓− and 𝑔+ are in 𝐻∞(𝐷);  
       (ii) 𝐻 =  ℎ−(𝑓−𝑔+  +  𝑓−𝑔−  +  𝑓+𝑔+) is harmonic on 𝐷;  

       (iii) 𝑓+ is a rational function 
𝐹

𝑞
 with degree 𝑛 >  2, 𝑔− is a rational function 

𝐺

𝑝
 with 

degree 𝑚 >  2,𝐻+ is a rational function 
𝑏

𝑞
 with degree 𝑛 and 𝐻− is a rational function 

𝐵

𝑝
 with 

degree 𝑚;  

      (iv)  

𝐹(𝑧)�̃�𝑚(𝑧)  −  𝑏(𝑧)�̃�𝑚(𝑧)  −  𝑞(𝑧)�̃�𝑚(𝑧)  =  0; 
       (v)  

𝐹(𝑧)�̃�𝑚
′ (𝑧)  −  𝑏(𝑧)�̃�𝑚

′ (𝑧)  −  𝑞(𝑧)�̃�𝑚
′ (𝑧) = 0.  

Proof. Since 𝑓 and 𝑔 are bounded and harmonic on 𝐷, first we write  

𝑓 =  𝑓+  +  𝑓−;  
and  

𝑔 =  𝑔+  +  𝑔−  

for 𝑓+, 𝑓−, 𝑔+ and 𝑔− in 𝐵𝑀𝑂𝐴.  
        Suppose that 𝑇𝑓𝑇𝑔  −  𝑇ℎ has finite rank on 𝐿𝑎

2 . By Theorem (6.3.8), we have that 𝐻 =

 ℎ− (𝑓−𝑔+  +  𝑓−𝑔−  +  𝑓+𝑔+) is harmonic on 𝐷, which is Condition (ii) Also we have  

𝑇𝑓+  𝑇𝑔−  −  𝑇𝐻  =  𝑇𝑓𝑇𝑔  −  𝑇ℎ 

has finite rank. Theorem (6.3.10) gives that there are analytic polynomials 

𝑞(𝑧), 𝑝(𝑧), 𝐹(𝑧), 𝐺(𝑧), 𝑏(𝑧), 𝐵(𝑧) such that  



264 

𝑓+(𝑧) =
𝐹(𝑧)

𝑞(𝑧)
 , 𝑔−(𝑧) =

𝐺(𝑧)

𝑝(𝑧)
 , 𝐻+(𝑧) =

𝑏(𝑧)

𝑞(𝑧)
 , 𝐻−(𝑧) =

𝐵(𝑧)

𝑝(𝑧)
 . 

 This gives Condition (i). Let 

 min{𝑚 =  max{𝑑𝑒𝑔 𝐵, 𝑑𝑒𝑔 𝑝}, 𝑛 =  max{𝑑𝑒𝑔 𝐹, 𝑑𝑒𝑔 𝑞}}   >  2.  
Theorem (6.3.10) gives Condition (iii). By Theorem (6.3.14), we have  

𝐹(𝑧)�̃�𝑚(𝑧) −  𝑏(𝑧)�̃�𝑚(𝑧) −  𝑞(𝑧)�̃�𝑚(𝑧) = 0;                    
𝐹(𝑧)�̃�𝑚

′ (𝑧) −  𝑏(𝑧)�̃�𝑚
′ (𝑧) −  𝑞(𝑧)�̃�𝑚

′ (𝑧) = 0,                    
which are Conditions (iv) and (v).  

        Conversely, suppose  

         (i) 𝑓− and 𝑔+ are in 𝐻∞(𝐷);  
         (ii) 𝐻 =  ℎ − (𝑓−𝑔+  +  𝑓−𝑔−  +  𝑓+𝑔+) is harmonic on 𝐷;  

(iii) 𝑓+ is a rational function 
𝐹

𝑞
 with degree 𝑛 >  2, 𝑔− is a rational function 

𝐺

𝑝
 with 

degree 𝑚 >  2,𝐻+ is a rational function 
𝑏

𝑞
 with degree 𝑛 and 𝐻− is a rational function 

𝐵

𝑝
 with degree 𝑚;  

         (iv)  

𝐹(𝑧)�̃�𝑚(𝑧) −  𝑏(𝑧)�̃�𝑚(𝑧) −  𝑞(𝑧)�̃�𝑚(𝑧) = 0;                    
         (v) 

𝐹(𝑧)�̃�𝑚
′ (𝑧) −  𝑏(𝑧)�̃�𝑚

′ (𝑧) −  𝑞(𝑧)�̃�𝑚
′ (𝑧) = 0,                    

By Theorem (6.3.14), using Conditions (iv) and (v) we have that 𝑇𝐹  𝑇�̃�  −  𝑇𝑏𝑇𝑝 − 𝑇𝑞𝑇�̃�   
has finite rank:  

𝑇𝐹  𝑇�̃�  −  𝑇𝑏𝑇𝑝 − 𝑇𝑞𝑇�̃�  =  ∑  

𝑟

𝑖=1

 𝑐𝑖  ⊗ 𝑑𝑖 . 

Thus  

𝑇𝑓+  𝑇𝑔−  −  𝑇𝐻  =  𝑇𝐹
𝑞
 𝑇�̃�
𝑝

 −  𝑇𝑏
𝑞
+
�̃�
�̃�

= 𝑇1
𝑞
 [𝑇𝐹  𝑇�̃�  −  𝑇𝑏𝑇𝑝 − 𝑇𝑞𝑇�̃�  ]𝑇1

𝑝

= 𝑇1
𝑞
[∑  

𝑚 −1

𝑖=1

 𝑐𝑖  ⊗ 𝑑𝑖] 𝑇1
𝑝
 =  ∑  

𝑚 −1

𝑖=1

𝑐𝑖
𝑞
 ⊗

𝑑𝑖
𝑝

 

 has finite rank. So  

𝑇𝑓𝑇𝑔  −  𝑇ℎ  =  𝑇𝑓+  𝑇𝑔−  −  𝑇𝐻  

has finite rank. This completes the proof of Theorem (6.3.16).  

        Using Theorem (6.3.16) and Theorem (6.3.15) we have the following corollary.  

Corollary (6.3.17)[172]: Suppose f and g are bounded harmonic functions, ℎ is a bounded 

𝐶2 function such that �̃�ℎ ∈  𝐿1(𝐷). If 𝑇𝑓𝑇𝑔  −  𝑇ℎ has finite rank and either 𝑓 or 𝑔 is a 

polynomial of 𝑧 or ℎ is analytic or co-analytic and both 𝑓 and 𝑔 are analytic, then either 𝑓 

or 𝑔 is constant and  

𝑓𝑔  =  ℎ.  
Proof. Let 𝐻 =  ℎ − (𝑓−𝑔−  +  𝑓−𝑔+  +  𝑓+𝑔−) . By Theorem (6.3.16), H is harmonic in 

the unit disk and there are analytic polynomials 𝑞(𝑧), 𝑝(𝑧), 𝐹(𝑧), 𝐺(𝑧), 𝑏(𝑧), 𝐵(𝑧) such that 

𝐻 =  𝐻+  +  𝐻−,  

𝑓+(𝑧) =
𝐹(𝑧)

𝑞(𝑧)
 , 𝑔+(𝑧)  =

𝐺(𝑧)

𝑝(𝑧)
 , 𝐻+(𝑧) =

𝑏(𝑧)

𝑞(𝑧)
 , 𝐻−(𝑧) =

𝐵(𝑧)

𝑝(𝑧)
 . 

By Theorem (6.3.13), we may assume that  
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min{𝑚 =  max{𝑑𝑒𝑔 𝐵, 𝑑𝑒𝑔 𝑝}, 𝑛 =  max{𝑑𝑒𝑔 𝐹, 𝑑𝑒𝑔 𝑞}}  >  2.  

We may assume that 𝑚 ≥  𝑛 and 𝐺(0)  =  0 and 𝐵(0)  =  0. As the degree of 𝑓 =
𝐹

𝑞
 is 

equal to 𝑛, Theorem (6.3.10) gives that 𝐹 and 𝑞 do not have any common factors. Also both 

the degree of �̃�𝑚 and the degree of �̃�𝑚 are less than 𝑚 as 𝐺(0)  =  0 and 𝐵(0)  =  0. Since 

𝑇𝑓𝑇𝑔  −  𝑇ℎ  =  𝑇𝑓+  𝑇𝑔+  −  𝑇𝐻 has finite rank, Theorem (6.3.15) gives  

�̃�𝑚�̃�𝑚
′  −  �̃�𝑚

′ �̃�𝑚
  =  𝑞𝑃,                            (54) 

 �̃�𝑚�̃�𝑚
′  −  �̃�𝑚

′ �̃�𝑚
  =  𝐹𝑃,                            (55) 

�̃�𝑚�̃�𝑚
′  −  �̃�𝑚

′ �̃�𝑚
  =  𝑏𝑃.                            (56) 

        Suppose that either 𝑓 or 𝑔 is a polynomial. In the first case that 𝑓 is a polynomial, we 

have that 𝑓−  =  0 and 𝑞 =  1. Noting that the degree of �̃�𝑚 equals m, we have that the 

degree of �̃�𝑚�̃�𝑚
′  −  �̃�𝑚

′ �̃�𝑚
  equals deg �̃�𝑚  +  𝑚 −  1. (54) gives  

𝑑𝑒𝑔 𝑃 =  𝑑𝑒𝑔 �̃�𝑚  +  𝑚 −  1.  
On the other hand, using (56) we have  

𝑑𝑒𝑔 𝑏 +  𝑑𝑒𝑔 𝑃 ≤  𝑑𝑒𝑔 �̃�𝑚  +  𝑑𝑒𝑔 �̃�𝑚  −  1 ≤  𝑚 −  1 +  𝑑𝑒𝑔 �̃�𝑚  −  1.  
Thus 𝑏 must equal 0 identically and so �̃�𝑚 equals 𝜆�̃�𝑚 for some constant λ. Using (55) we 

have that  

𝑑𝑒𝑔 𝐹 +  𝑑𝑒𝑔 𝑃 =  𝑑𝑒𝑔 �̃�𝑚  +  𝑚 −  1,  
to obtain that 𝐹 is a constant. Thus 𝑓+ is constant and so is 𝑓. In the case that 𝑔 is a 

polynomial, we have that 𝑔−  =  0 and 𝑝 =  1. Thus  

�̃�𝑚  =  𝑧
𝑚, �̃�𝑚

′  =  𝑚𝑧𝑚−1.  
 (54) and (55) give  

�̃�𝑚𝑚𝑧
𝑚−1  −  �̃�𝑚

′ 𝑧𝑚  =  𝑞𝑃, 
 �̃�𝑚𝑚𝑧

𝑚−1  −  �̃�𝑚
′ 𝑧𝑚  =  𝐹𝑃. 

So we have  

𝑓+  =
𝐹

𝑞
 =
𝐹𝑃

𝑞𝑃
  

=
�̃�𝑚𝑚𝑧

𝑚−1  −  �̃�𝑚
′ 𝑧𝑚

�̃�𝑚𝑚𝑧
𝑚−1  −  �̃�𝑚

′ 𝑧𝑚
 

=
�̃�𝑚𝑚 − �̃�𝑚

′ 𝑧  

�̃�𝑚𝑚 − �̃�𝑚
′ 𝑧  

 

to get that the degree 𝑛 of 𝑓+ must equal m. Repeating the argument in the first case we have 

that 𝑔 must be a constant.  

        If ℎ is co-analytic and both f and g are analytic, then 𝑓−   =  𝑔−  =  0. Since 𝐻 =  ℎ −
 (𝑓−𝑔−  + 𝑓−𝑔+  + 𝑓+𝑔−  =  ℎ is co-analytic, we have that 𝑏 equals 0 identically. (56) gives  

�̃�𝑚�̃�𝑚
′  −  �̃�𝑚

′ �̃�𝑚  =  0. 
Thus  

�̃�𝑚
′

�̃�𝑚
=
�̃�𝑚
′

�̃�𝑚
. 

Integrating both sides of above equation gives that  

�̃�𝑚  =  𝜆
−1�̃�𝑚, 

 for some constant λ. Thus we have  

𝐵  =  𝜆𝐺,  
to get  
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𝐻−(𝑧) =
𝐵(𝑧)

𝑝(𝑧)
 =
𝜆𝐺(𝑧)

𝑝(𝑧)
 =  𝜆𝑔+. 

This gives that  

𝑇𝑓+  𝑇𝑔+  −  𝑇𝐻++𝐻−  =  𝑇𝑓+  𝑇𝑔+  −  𝑇𝐻−  =  𝑇𝑓+−𝜆𝑇𝑔+   

has finite rank and hence is compact. By the main theorem in [46], we have that the Berezin 

transform of 𝑇𝑓+−𝜆𝑇𝑔+ vanishes on the unit circle. On the other hand, the Berezin transform 

of 𝑇𝑓+−𝜆𝑇𝑔+ equals (𝑓+  −  𝜆)𝑔+ and hence (𝑓+  −  𝜆)𝑔+ vanishes on the unit circle and so 

does (𝑓+  − 𝜆)𝑔+. We conclude that either 𝑓+ or 𝑔+ is a constant. Thus either 𝑓 or 𝑔 is 

constant.  

        If ℎ is co-analytic and both f and g are analytic, then 𝑓−  =  𝑔−  =  0. Since 𝐻 =  ℎ −
 (𝑓−𝑔−  +  𝑓−𝑔+  +  𝑓+𝑔−)   =  ℎ is analytic, we have that 𝐵 equals 0 identically. In this case 

we consider that 𝑇𝑔𝑇𝑓  −  𝑇𝐻++𝐻−  has finite rank. Similarly we have that either 𝑓 or 𝑔 is a 

constant. This completes the proof.  

        We have the following theorem that implies Theorem (6.3.7).  

Theorem (6.3.18)[172]: For each 𝑚 ≥  3, if three nonzero real numbers 𝛼, 𝛽 and 𝛾 satisfy 

that |𝛽|  >  1, 𝛼 ≠  𝛾,  

|𝛼|1/(𝑚−1)  =  |𝛽|1/𝑚,  
and  

𝑚 −  1

|𝛽|
 −  1 >

𝑚

|𝛼|
 ,  

then 𝑇𝐹
𝑞

 𝑇�̃�
𝑝

 −  𝑇𝑏
𝑞
+
�̃�

�̃�

 has finite rank and its rank equals 𝑚 −  1 where  

𝐺(𝑧)  =  𝛼𝑧 +  𝑧𝑚,  
𝑝(𝑧)  =  𝛽 + 𝑧𝑚,  
𝐵(𝑧)  =  𝛾𝑧 + 𝑧𝑚,  

𝐹(𝑧)  =  𝛽𝛾 (𝑧𝑚  +
𝑚

𝛾
 𝑧 −

𝑚 −  1

𝛽
 ),  

𝑞(𝑧)  =  𝛽𝛼 (𝑧𝑚  +
𝑚

𝛼
 𝑧 −

𝑚 −  1

𝛽
 ),  

𝑏(𝑧) = (𝑚 −  1)(𝛼 −  𝛾). 
Proof. Let polynomials 𝐹, 𝑞, 𝑏, 𝐺, 𝐵 and 𝑝 be given in the theorem. Simple calculation gives  

�̃�𝑚(𝑧)  =  𝛼𝑧
𝑚−1  +  1, 

�̃�𝑚(𝑧)  =  𝛽𝑧
𝑚  +  1, 

�̃�𝑚(𝑧)  =  𝛾𝑧
𝑚−1  +  1,  

�̃�𝑚
′ (𝑧) = (𝑚 −  1)𝛼𝑧𝑚−2,  
�̃�𝑚
′ (𝑧)  =  𝑚𝛽𝑧𝑚−1,  

�̃�𝑚
′ (𝑧) = (𝑚 −  1)𝛾𝑧𝑚−2. 

Thus we have  

𝐹(𝑧)�̃�𝑚(𝑧) −  𝑏(𝑧)�̃�𝑚(𝑧) −  𝑞(𝑧)�̃�𝑚(𝑧)

= 𝛽𝛾 (𝑧𝑚  +
𝑚

𝛾
 𝑧 −

𝑚 −  1

𝛽
 ) (𝛼𝑧𝑚−1 + 1)

− (𝑚 −  1)(𝛼 −  𝛾)(𝛽𝑧𝑚  +  1)  

− 𝛽𝛼 (𝑧𝑚  +
𝑚

𝛼
 𝑧 −

𝑚 −  1

𝛽
 ) (𝛾𝑧𝑚−1  +  1) = 0, 

𝐹(𝑧)�̃�𝑚
′ (𝑧) −  𝑏(𝑧)�̃�𝑚

′ (𝑧) −  𝑞(𝑧)�̃�𝑚
′ (𝑧) 
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=  𝛽𝛾 (𝑧𝑚  +
𝑚

𝛾
 𝑧 −

𝑚 −  1

𝛽
 ) (𝑚 −  1)𝛼𝑧𝑚−2  −  (𝑚 −  1)(𝛼 −  𝛾)𝑚𝛽𝑧𝑚−1  

−𝛽𝛼 (𝑧𝑚  +
𝑚

𝛼
 𝑧 −

𝑚 −  1

𝛽
 ) (𝑚 −  1)𝛾𝑧𝑚−2  =  0. 

Theorem (6.3.14) gives that 𝑇𝐹
𝑞

 𝑇�̃�
𝑝

 −  𝑇𝑏
𝑞
+
�̃�

�̃�

 has finite rank. Let 𝑒𝑘  =  (𝑘 +  1)𝑧
𝑘. Then 

{𝑒𝑘}𝑘=0
∞  is an orthogonal basis of the Bergman space 𝐿𝑎

2 . Simple calculation gives that for 

1 ≤  𝑘 ≤  𝑚 −  1,  

[𝑇𝐹  𝑇�̃�  −  𝑇𝑞𝑇�̃� − 𝑇𝑏𝑇𝑝 ]𝑒𝑘
 =  𝐹(𝑧)𝛼𝑘𝑧𝑘−1  −  𝑞(𝑧)𝛾𝑘𝑧𝑘−1  −  𝑏(𝑧)𝛽(𝑘 +  1)𝑧𝑘  

=  𝛽𝛾 (𝑧𝑚  +
𝑚

𝛾
 𝑧 −

𝑚 −  1

𝛽
 )𝛼𝑘𝑧𝑘−1  

− 𝛽𝛼 (𝑧𝑚  +
𝑚

𝛼
 𝑧 −

𝑚 −  1

𝛽
 ) 𝛾𝑘𝑧𝑘−1  −  (𝑚 −  1)(𝛼 −  𝛾)𝛽(𝑘 +  1)𝑧𝑘  

=  𝑘𝑧𝑘−1𝛽𝛼𝛾 (
𝑚

𝛾
 𝑧 −

𝑚

𝛼
 𝑧) − (𝑚 −  1)(𝛼 −  𝛾)𝛽(𝑘 +  1)𝑧𝑘  

              =  (𝑘 +  1 −  𝑚)𝛽(𝛼 −  𝛾)𝑧𝑘.  
From (47) in the proof of Theorem (6.3.14) we also have that for 𝑙 ≥  1,  

[𝑇𝐹  𝑇�̃�  −  𝑇𝑞𝑇�̃� − 𝑇𝑏𝑇𝑝 ]𝑒𝑚+𝑙−1
  =  [𝐹(𝑧)�̃�𝑚

′ (𝑧) −  𝑞(𝑧)�̃�𝑚
′ (𝑧) −  𝑏(𝑧)�̃�𝑚

′ (𝑧)]𝑧𝑙  

+[𝐹(𝑧)�̃�𝑚(𝑧) −  𝑞(𝑧)�̃�𝑚(𝑧) −  𝑏(𝑧)�̃�𝑚(𝑧)]𝑙𝑧
𝑙−1  =  0. 

Thus the range of 𝑇𝐹  𝑇�̃�  −  𝑇𝑞𝑇�̃� − 𝑇𝑏𝑇𝑝 is spanned by {1, 𝑧,··· , 𝑧𝑚−2}. So 𝑇𝐹  𝑇�̃�  −

 𝑇𝑞𝑇�̃� − 𝑇𝑏𝑇𝑝 has finite rank and its rank is m − 1. Now we can write  

𝑇𝐹  𝑇�̃�  −  𝑇𝑞𝑇�̃� − 𝑇𝑏𝑇𝑝  =  ∑  

𝑚 −1

𝑖=1

 𝑐𝑖  ⊗ 𝑑𝑖   

for some polynomials 𝑐𝑖 and 𝑑𝑖.  
       Since 𝑚 −  1 ≥  2, for any two nonzero real numbers 𝛼 and 𝛽 such that |𝛽|  >  1 and  

𝑚 −  1

|𝛽|
 −  1 >

𝑚

|𝛼|
 , 

we have  
|𝑞(𝑧)|

|𝛼𝛽|
 ≥
𝑚 −  1

|𝛽|
 − |𝑧|𝑚  −

𝑚

|𝛼|
 |𝑧| ≥

𝑚 −  1

|𝛽|
 −  1 −

𝑚

|𝛼|
 >  0,  

for 𝑧 in the closure of the unit disk. Thus 𝑞 does not have any zero in the closure of the unit 

disk. The condition on 𝛼, 𝛽, and 𝛾 in the theorem leads that 𝐹(𝑧) and 𝑞(𝑧) do not have any 

common factors and 𝐺(𝑧) and 𝑝(𝑧) do not have any common factors. Since  

𝑇𝐹
𝑞
𝑇�̃�
𝑝

− 𝑇�̃�
�̃�

− 𝑇𝑏
𝑞
= 𝑇1

𝑞
[𝑇𝐹  𝑇�̃�  −  𝑇𝑞𝑇�̃� − 𝑇𝑏𝑇𝑝 ]𝑇1

𝑝
= 𝑇1

𝑞
[ ∑ 𝑐𝑖

𝑚 −1

𝑖=1

⊗𝑑𝑖] 𝑇1
�̃�

= ∑ (
𝑐𝑖
𝑞
 )

𝑚 −1

𝑖=1

⊗(
𝑑𝑖
𝑝
),  

we conclude that 𝑇𝐹
𝑞

 𝑇�̃�
𝑝

 −  𝑇�̃�
�̃�

− 𝑇𝑏
𝑞

 has finite rank and its rank is also equal to 𝑚 −  1 to 

complete the proof.  

       Letting 𝑚 =  3, 𝛼 = 10, 𝛽 =
3

2
 and 𝛾 =  1 in the above theorem suggests the 

following concrete example.  
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Example (6.3.19)[172]: Let 𝐹(𝑧) =
3

2
 (𝑧3 + 3𝑧 −

4

3
), 𝑞(𝑧)  =  15 (𝑧3 +

3

10
 𝑧 −

4

3
), 

𝑏(𝑧)  =  18, 𝐺(𝑧)  =  10𝑧 + 𝑧3, 𝐵(𝑧)  =  𝑧 + 𝑧3, and 𝑝(𝑧) =
3

2
 +  𝑧3. The above theorem 

and some calculations used in the proof of the above theorem give  

𝑇𝐹
𝑞
 𝑇�̃�
𝑝

 −  𝑇𝑏
𝑞
+
�̃�
�̃�

= −27 [
1

𝑞
 ⊗

1

𝑝
 +
1

2

𝑧

𝑞
 ⊗

𝑧

𝑝
 ]. 
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List of Symbols 

 

 

Symbol Page 

𝐿𝑎
𝑝

 : Bergman space 1 

𝐿2 : Hilbert space 1 

𝐻2 : Hardy space 1 

⊖ : Direct difference 1 

𝐿∞ : Essential Lebesgue space 2 

⨁            : Orthogonal sum 2 

cl            : closure 2 

Ker            : Kernel 3 

Mod            : Modular 4 

dim             : dimension  8 

Re             : Real 23 

Im            : Imaginary 23 

Ind            : Index 24 

inf             : infimum   25 

𝐿𝑎,𝑝
2  : Bergman space 27 

min           : minimal 34 

𝐴∞
2  : Bergman space 37 

𝐻∞ : Essential Hardy space 45 

⨂               : Tensor product 49 

sup            : Supremum 52 

ℓ2 : space of sequences 53 

Hol            : Holomorphic 63 

𝐴2(𝜇𝑚)            : Fock space 83 

𝐻𝑓            : Hankel operators 84 

max             : maximum   108 

diam             : diameter 109 

VMO             : Vanishing mean Oscillation 120 

𝐿1 : Lebesgue on the real line 120 

𝐿ℳ : Toepliz operator 120 

BMO             : Bounded mean Oscillation 123 

ran             : rang 127 

det            : determinant 128 

𝐴𝛼
2  : Bergman space 136 

SOT             : Strong Operator Topology 146 

BMOA             : The space of analytic Bounded mean Oscillation 169 

𝐴2(Ψ)            : Besov space 169 

VMOA             : The space of analytic functions of Vanishing  mean 

Oscillation 

171 

𝐹𝛼
2            : Fock space 192 

deg            : degree 194 

ℱ𝑚
2            : Fock space 198 
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arg            : argument 199 

a. e : almost everywhere  240 

𝐿𝑞 : Dual of Lebesgue space 251 

𝐿𝑝 : Lebesgue space 252 

𝐻𝑝 : Hardy space 254 

𝐻𝑞 : Dual of Hardy space 254 
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