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I 

 الاية
 قال تعالى : 

{ واَلْقمََرَ قدََّرْنَاهُ مَنَازِلَ 38واَلشَّمْسُ تَجْرِي لمُِسْتَقَرٍّ لَّهَا ذَلِكَ تَقْدِيرُ العَْزِيزِ العَْلِيمِ }

{ لَا الشَّمْسُ يَنبغَِي لَهَا أَن تدُْرِكَ الْقَمَرَ وَلَا اللَّيْلُ 39حَتَّى عَادَ كَالعُْرْجوُنِ الْقَدِيمِ }

 { . صدق الله العظيم 40فِي فَلَكٍ يَسْبَحوُنَ } سَابقُِ النَّهَارِ وَكُلٌّ

 (40 - 38سورة يس الايات )
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IV 

Abstract 

In this study the generalized gravitational field equation has been 

adopted to see how gravitational waves can be generated. First one 

assumes spherically symmetric body solution. At the beginning of the 

work a useful expression for the time metric has been also obtained in 

terms of the potential for all fields including strong fields when the body 

is spherically symmetric. In this case standing, time oscillating, and 

radially decaying gravitational waves can be generated. However, if the 

black hole a quires a mass that exceeds a certain critical value a travelling 

gravitational waves can be emitted with wave length shorter than a 

certain critical wave length.  

The singularity black hole problem and the infinite self-mass of 

elementary particles are one of the long-standing problems in physics. 

Using the expression of energy in a potential dependent special relativity 

an advanced model has been constructed. According to this model the 

energy at which both radius and mass give minimum energy, determine 

the self-mass and minimum radius. The self-mass was found to be finite, 

dependent on vacuum energy and coupling constant. The radius was 

found to be dependent on the short-range field coupling constant. 
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CHAPTER ONE 

Introduction 

1.1 Preface   

The relativity theory is one of the biggest achievements in physics. 

It changes radically our thinking about the nature of the space and time.  

Albert Einstein proposed the theory of special relativity in 1905, 

deriving many theoretical results and empirical finding obtained by 

Albert, A. Michelson, Hendrik Lorentz, Henri point care and other, 

Maxplanck, Herman Minkowaski and others. Einstein developed general 

relativity (GR) between 1907 and 1915 so as to describe the gravitational 

field and the behavior of the universe with contributions made by others, 

general relativity was formulated in 1916 [1]. 

The theory of gravitation proposed by Newton was developed by 

Einstein. His theory is known as general relativity (GR). The 

development of general relativity began with the equivalence principal 

which shows that gravitational motion is the freely falling particle 

equivalent to the motion of accelerated particle in free space.  For an 

observer freely falling, object in free fall is falling because there is no 

force being exerted on them [2, 3]. 

The theory of GR have many predictions, It shows that o'clock run 

slower in deeper gravitational wells compared to the one at the earth 

surface. This is called gravitational time dilation. It also predicts that 

orbits process in a way un expected in Newton's theory of gravity. The 

space deformation is caused by gravity since rays of light bend in the 

presence of gravitational field. A cording to GR rotating. Masses “drag 
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along” the space time ground them a phenomenon termed “frame 

dragging”. 

The Big Bang model shows that the universe is expanding and the 

far parts of it are moving away from us faster than the speed of light      

[2, 3]. In Einstein's general theory of relativity, gravity is treated as 

phenomenon resulting from the curvature of space time. This curvature is 

caused by the presence of mass. Generally, the move mass that is 

contained within a given volume of space. The greater the curvature of 

space time will be at the boundary of it's volume. As objects with mass 

move a round in space time, the curvature changes to reflect the changed 

locations of these objects. In certain circumstances accelerating objects 

generate changes in this curvature which propagate out words at the 

speed of light in a wavelike manner. These propagating were known as 

gravitational waves [4]. 

Despite the success of GR, it fails in explaining many phenomena 

at early universe [4, 5] these include flatness, Harizen, entropy and 

singularity problems [6,7). The behavior of exotic objects like black hole 

and pulsars is difficult to be explained by GR [8, 9]. This motivates Ali 

Eltahir and other to propose generalize general relativity (GGR). This 

GGR succeeded in solution some of these problem [10, 11, 12].  

General relativity (GR) is one of the big achievements which 

enables scientists to understand the nature of our universe much [1]. It's 

theoretical big bang (BB) cosmological model which is designed to 

describe the universe evolution [2]. The BB model succeeded in 

describing a large number of astronomical observations including light 

red shift, relic microwave back ground radiation, deflection of light by 

the sun and gravitational waves [3 , 4]. 
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According to the big bang model the light red shift indicates the 

universe expansion, which decreases matter density and temperature [5]. 

The BB model also explains galaxy formation and evolution of 

stars. The evolution of stars results from the nuclear energy consumption 

and the effect of pressure and attractive gravitational force. This 

evolution of neutron stars, pulsars, while duarfs, red giant stars and black 

holes. The behavior of these exotic astronomical objects needs promoting 

the cosmological models [6,7]. Many physical phenomena and long-

standing problems are associated with these exotic objects. One of these 

main problems are associated with the singularity problem, infinite self-

mass and generation of gravitational waves [8,9,10]. 

The attractive shiny glittering attracts people attention at very early 

times. This leads scientists to study the behavior of these beautiful 

objects. These astronomical objects are now well classified. The so-called 

stars, are very large radiation generators. They generate energy due to the 

nuclear fusion process [11,12]. The so-called planets revolve around the 

star. Satellites are known to revolve around each planet. A large number 

of star systems gather together to form the galaxy. Large number of 

galaxies accumulate themselves to form a cluster. The universe consists 

of large number of clusters. The recent widely accepted model to describe 

our universe is the known as the big bang model (BB) [13,14]. 

The observed red shift of the light coming from remote stars 

confirms the BB suggestion that the universe is expanding. The observed 

cold relic microwave back ground agrees with the suggestion that after 

the big bang. The universe enter the so called radiation era [15,16]. The 

theory of general relativity predicts many phenomena like the deflection 

of light by the sun, the existence of exotic objects which emits radiation 

with very large red shift. These exotic objects include neutron stars, 
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pulsars and black holes. All these observations were confirmed 

experimentally [17,18]. 

Among these the black hole is one of the most important exotic 

objects which pay attention of large number of researchers. The 

researches concentrate to explain their peculur properties. These include 

the large red shift, light trapping, and the emission of gravitational waves 

[19,20]. 

1.2 Research problem 

The GR theory succeeded in explaining many astronomical 

observations, but unfortunately it suffers from many problem in its 

cosmological model. First of all, the behavior of black holes neutron stars 

and binary pulsars are still incomplete.  The behavior at the early universe 

at Plank time also needs Quantum Gravity Model.  

1.3 Aim of the work 

The aim of this study is to use generalized general relativity to 

explain the behavior of the cosmos at early stages, beside the behavior of 

exotic objects and the nature of gravitational waves.  

1.4 Thesis Layout  

The thesis consists of 4 chapters. Chapters 1 and 2 are concerned 

with the introduction and the theoretical background Chapters 3 and 4 are 

concerned with the literature review and the contributions.  

 

 

 

 



5 

CHAPTER TWO 

General Relativity 

2.1 Introduction  

This chapter includes the conceptual framework of the equivalence 

principle and also mathematical basis GR using curvature tensors and 

geodesics. Important test of the theory is also presented.  

The mathematical description in the form of the Schwarzschild metric 

with horizons and singularities will be derived and analyzed.  

2.2 The principle of equivalence and space-time curvature  

The principle of special relativity applies only to bodies moving 

with constant velocity. This principle is no longer valid in case of 

accelerated bodies, i.e when the velocity is not constant[21].  

Einstein has tried to extend the scope of the principle of relativity to 

accelerated bodies. The starting point of his reflection was equivalence 

principle, this principle referred to two different categories phenomenon 

gravitation and inertia:  

- The gravitational mass determines the intensity of the gravitational 

attraction force, that is mean the more massive bodies are the 

stronger.  

- Inertia of an object could be interpreted as its resistance to any 

modification to its motion state. If the following condition satisfies 

for masses, one can then postulate that they are equal. 

- These masses are equivalent that is mean they are actually 

proportional. 

- One can change the ratio of the gravitational and inertia masses 

without affecting the physical phenomenon [22]. 
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We can put a definition for the principle of equivalence as the following:  

If the original observer O who uses coordinates Xt, his freely falling 

friend O who uses XE will detect no difference in the laws of mechanics, 

except that O will say that he feels a gravitational field and O will say 

that he does not. This principle reveals that space-time is curved by the 

presence of matter, but they do not indicate how much space-time 

curvature matter actually produces. [23. 24, 25] 

To determine this curvature requires a specific metric theory of gravity, 

Einstein put ten field equations and in 1960 C-H brans & Robert Dicke. 

Developed a metric theory for additional gravitational field.  

Gauss first conceived a metric space that includes abroad class of 

ordinary and non-ordinary curved spaces and which allows in an 

infinitesimally small region, the possibility of finding a locally Euclidian 

coordinate system.  

The axiom made by Gauss to be the basis of a non-Euclidian geometry 

resembles the equivalence principle which admits the possibility of 

finding a locally inertial system at any point in space. The two-

dimensional space of Gauss used in determing metric. Functions were 

expanded to n-dimensions and the complicated problem related to it was 

solved by Bernhard Riemann who established a complete geometry of 

space[26].  

Einstein proceeded to combine the strong principle of equivalence with 

the general covariance. The laws of nature have to be described by 

generally covariant tensor equations, thus the law of gravitation has to be 

a covariant relation between mass density and curvature.  

Because Einstein's principle of equivalence is in a deep analogy with 

Gauss and Riemann geometry we wanted conceive of gravitation as a 
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manifestation of geometry or equally of the curvature of space as an 

indication of matter distribution in this space.  

Equivalence principle teaches us, the laws of physics showed by 

equivalent not only among inertial systems of coordinates but also among 

accelerated ones which means that the proper line interval is invariant 

under transformation and it says that the equation of physics is called 

generally covarianty, if it holds the absence of gravitation as well as in its 

presence[27,28].  

2.3 Mathematical Basis of Curvature  

2.3.1 Contraverint vectors  

Suppose we have two points and consider vector X
r
 and the 

component of the vector dx
r
, if we want to connect these component with 

another component in different dx
s
 coordinates system then we must use 

the following formula[29]:  

s

s

r
r

dx
xd

xd
xd       (2.3.1)  

Consider p is fixed and Q vary then 
sr

dx/xd remain constant and the 

transformation is linear homogenous. So we can define the contravariant 

vector as follow:  

A set quantities T
r
 associated with a point p, are said to be the 

components of a contravariant vector if they transform on change of 

coordinates, according to the equation. 

s

r

sr

x

x
TT




       (2.3.2)  

The infinitesimal displacement is a particular example. We can put the 

definition of a contravariant tensor as follow. A set of quantities T
rs
 are 
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said to be the components of a contravariant tensor of the second order if 

they transform according to the equation.  

n

s

m

r
mnrs

x

x

x

x
TT








     (2.3.3) 

2.3.2 Covariant vectors and tensors:  

Partial derivative of an invariant is a prototype of the general covariant 

vector. We define it as follows.  

A set of quantities Tr are said to be the components of a covariant vector 

if they transform according to the equation[30]. 

r

s

r

x

x
TsT




     (2.3.4)  

Let Ф be an invariant function of the coordinates, then  

r

s

sr
x

x

xx 











    (2.3.5)  

2.3.3 Kronecker data ( r
s ) 

It has mixed tensor character:  

s

n

m

r

m
n

r

s

x

x

x

x








    (2.3.6)  

Where 
r

s   = 1   if   r = s  

  = 0   if   r ≠ s  

  If  m = n  

The right hand side reduces to  

s

m

m

r

x

x

x

x








     (2.3.7)  
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A tensor equation is true in all coordinate system, if true in one. Tensor 

transformation is linear and homogeneous. [31] 

rsT  = 0  also  srT = 0            (2.3.8)  

rsA  = rsB     (2.3.9)  

rsA  = rsB     (2.3.10)  

Transitivity of tensor character (Tensorial) when we have 3 coordinates 

rsT  = mnT  
s

n

r

m

x

x

x

x








  (2.3.11)  

2.3.4 Addition, multiplication, contraction of tensor:  

r
stC  = r

st
r
st BA      (2.3.12)  

Symmetric srrs AA     (2.3.13)  

Anti symmetric or Kew – Symmetric  

rsrs AA       (2.3.14)  

srrssrrs AA,AA          (2.3.15) 

This applies only for contravariant tensor not for mixed tensor.  

Not for mixed tensor  

i.e.,  s
r

r
s AA     (not correct)  

2.4 Laws of gravitation  

Newton could not answer the question of how to identify the 

inertial frame which at rest relative to this absolute space. Riemann 

realized that Euclidean geometry was just a particular choice suited to flat 

space but not correct in the space which is filled with fields. Einstein 

finally drew the conclusion and replaced the flat Euclidean three – 

dimensional space with curved Mikowskian four–dimensional space. [32] 
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2.5 Riemannian geometry 

Gauss made a great emphasis on the inner properties of surface 

these properties for a cylinder is the same as that for a plane but it is 

different for spherical surfaces (metric function is different).  

Gauss first conceived a metric space includes curved space this admits 

the possibility of finding a locally inertial system at any point in space , 

this expand to N-dimensions and the complicated problem related to it 

was solved by Riemann who established a complete geometry of space. 

The three dimensional space are not invariant under Lorentz 

transformation, their values being different to observer in different frames 

so to find invariant replace them by the four dimensional space time of 

Hermann minkowski (x, y, z, ct). the distance between two events in three 

dimensional space dL is generalized to four dimensional space time 

distance ds  

𝑑𝑠2 = 𝑐2𝑑𝜏2 = 𝑐2𝑑𝑡2 − 𝑑𝑥2 − 𝑑𝑦2 − 𝑑𝑧2 = 𝑐2𝑑𝑡2 − |𝑑𝑟|2         (2.5.1) 

dt = proper time  

|dL/dt| ≤ c                                                 (2.5.2) 

World line is inside the light cone consider the case as shown in fig :  

 

 

 

r  + r  = r  

r  – r  = r  

VA ( r , t) = VA (r, t) – VA ( r , t)                                           (2.5.3) 

Equation (2.5.3) is true if VA (r, t) has specific form 

 VA (r, t) = f(t) r                                                                 (2.5.4) 

r r  

r  
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f(t)r proportional to r and is arbitrary function .  

If f(t)= 0 the universe would be seen expand or if f(t)  0, the universe 

limited gravitational contraction–expansion and contraction, are natural 

system consequences of cosmological principle. To study how signals are 

exchanged between inertial frames, Einstein considered physical 

measurements is all frames moving with respect to each other with 

constant velocity and all frames must be equivalent, the result of 

measurement identical, this possible if frames independent invariants and 

light travels by constant speed C.  

2.6 The Newtonian limit 

To make contact with Newton's theory let us consider the case of a 

particle moving slowly in a weak stationary gravitational field. According 

to equation (2.5.4) the time component is given by:  

0

2

2

2

00 














d

dt

d

xd
                              (2.6.1)  

The field is stationary, then all-time derivatives of gµν vanish and 

therefore 

vx

g
g




 00

00
2

1                                       (2.6.2) 

Since the field is weak, we may adopt nearly Cartesian coordinate system 

which 

 hyg    | h | <<1                             (2.6.3)  

To first order in h                                      (2.6.4)  

00

2

2

2

2

1
h

d

dt

d

xd












                                     (2.6.5)  

So dividing the equation for d
2
x/dt

2
 by (dt / dτ)

2
, we find 0

2

2


d

td
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002

2

2

1
h

d

xd



                                       (2.6.6)  

The corresponding Newtonian result is  





2

2

d

xd
                               (2.6.7)  

Where  is the gravitational potential, which at a distance r from the 

center of a spherical body of mass M takes the form  

r

GM
                                (2.6.8)  

Comparing (2.6.6) with (2.6.7) we conclude that  

ttancons2h00                              (2.6.9)  

Furthermore, the coordinate system must become Minkowskian at great 

distances so 00h  vanishes at infinity, and if we define  to vanish at 

infinity as in (2.6.8) we find that the constant here is zero, so 00h  = –2 

and returning to the metric   (2.6.3)  

g00= - (1 + 2)      (2.6.10)  

The gravitational potential  is of the order 10
–39

 at the surface of a 

proton, 10
–9

 at the surface of the earth, 10
–6

 at the surface of the sun and 

10
–4

 at the surface of a white dwarf star, so evidently the distortion in gµv 

produced by gravitation is generally very slight.  

2.7 General relativity and the principle of covariance  

The strongest force of nature on large scales is gravity, so the most 

important part of a physical description of the universe is a theory of 

gravity.  

We therefore begin this chapter with a brief introduction to the basic of 

this theory.  
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In Euclidian space the invariant interval between two events at 

coordinates (t, x, y, z) and (tdt, xtdx), ydy, ztdz) is defined by  

                    ds
2
 = c

2
dt

2
 – (dx

2
 + dy

2
 + dz

2
)  

Where ds invariant under a change of coordinate system  

The path of light Ray is given by ds = 0  

The paths of particles between any two events as forgive stationary 

values of  

𝐼 = ∫𝑑𝑠 This corresponds to the shortest distance between two points 

being a straight line. (Motion of particle under no external forces).  

Gravitation and electromagnetism cause particle tracks to deviate from 

the straight line.  

Einstein's theory is to transform it from being a force to being a property 

of space time. In this theory, the space time is not necessarily flat as it is 

in Minicowski space-time but may be curved the interval between two 

events.  

𝑑𝑠2 = 𝑔𝜇𝑣𝑑𝑥𝑚𝑑𝑥𝑣 

𝜇, 𝑣 = 0,1,2,3 

𝑥0 = 𝑐𝑡,                    𝑥′ = 𝑥,          𝑥2 = 𝑦,     𝑥3 = 𝑧 

to x
1
, x

2
, x

3
 space coordinates  

Tensor 𝑔𝜇𝑣 is metric tensor that describes the space time geometry the 

integral along path. 

0ds
path

   

From equation the path of a free particle which is called a geodesic can be 

show to be described by  
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0
ds

dx

ds

dx

ds

xd Lk
i
kl2

i2

  

When s are called Christopher symbols  
































x

gkl

xk

g

xL

g
g mLklI

KL
2

1
 

And 

g
im

 gmk = i

k  

Is the kronecker delta, which satisfies  

  𝛿𝑘
𝑖 = 1    𝑖 = 𝑘 

𝑖 ≠ 𝑘 

gij determine by the matter  

Einstein equation is the relationship between the distribution of matter 

and the metric describing the space-time geometry in general relativity 

and equations are tensor equation are tensor equation.  

General tensor is a quantity which transforms as follows when 

coordinates are changed from x
i
 to x

–i
   

q

s

p

r

n

L

m

k
kl
pq

x

x

x

x
...

x

x

x

x
'A




















  

Where upper indices mn
rsA  

Are contravariant and the lower are covariant.  

The difference can be illustrated by considering a tensor of Rank (1) 

which simply a vector (the Rank is the no of indices it carries). A vector 

will transformation according to some rules suppose we have original 
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coordinate x
i
 and we transform it to a new system x

–k
 ,A

x

x
A

i

k








this 

vector A is a covariant  

A = A
i
 contravariant  

k

i

x

x
A




  A is covariant  

A = Ai covariant  

The tangent vector to a curve is an example of contra variant vector, the 

normal to a surface in a covariant vector.  

The rule is a generalization of these concepts to tensors of arbitrary rank 

and to tensor of mixed character.  

2.8 Einstein’s gravitational field equation   

To get similar laws for general relativity as in special relativistic physics, 

with equivalence of mass and energy, one can define the energy-

momentum tensor T to be  

𝑇𝜇𝑣 = (𝜌 + 𝜌)𝑉𝑚𝑉𝑣 + 𝑔𝜇𝑣𝜌                            (2.7.1) 

The energy momentum tensor Tin describe the mass distribution with 

pressure p and energy density  for fluid. Where  

Tik = (p + pc
2
) u; uk – pgik; 

ui = fluid for velocity  

ui = gik u
u
 = gik 

ds

dx k

                                    (2.7.2) 
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x
k
 is the world line of a fluid element i.e the trajectory in space-time 

followed by the particle. The conservation of energy-momentum requires: 

𝑇𝑖𝑘;𝑘=0                                  (2.7.3) 

Einstein wished to find a relation between matter and metric. Because in 

the appropriate limit, equation must reduce to Poisson equation 

describing Newtonian gravity  


2
 = 4G                                    (2.7.4) 

But according to equation (2.6.10) 

𝑔00 = −(1 + 2𝜙) 

 

Thus  

∇2𝜙 = −
1

2
∇2𝑔00 

According to equation (2.7.1)  

𝑇00 = 𝜌 

 

Thus one can be rewrite  

Position equation  

∇2𝑔00 = −8𝜋𝐺𝑇00 

The L.H.S represents the geometrical part which can be denoted by G,  

More generally  

𝐺𝑖𝑘 = −8𝜋𝐺𝑇00 

 

𝐺𝑖𝑘 = −8𝜋𝐺𝑇𝑖𝑘 
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gik and their derivatives. The energy conservation requires  

𝐺𝑖𝑘;𝑘 = −8𝜋𝐺𝑇𝑖𝑘;𝑘 = 0 

but according to Bianchi identity  

(𝑅𝑖𝑘 −
1

2
𝑔𝑖𝑘)

;𝑘
= 0 

thus one can propose that Einstein’s field equation takes the form  

𝐺𝑖𝑘 = 𝑅𝑖𝑘 −
1

2
𝑔𝑖𝑘𝑅 = −8𝜋𝐺𝑇𝑖𝑘 

when a cosmological constant A is taken into account, one gets  

𝐺𝑖𝑘 = 𝑅𝑖𝑘

1

2
𝑔𝑖𝑘𝑅 − 𝐴𝑔𝑖𝑘 =

8𝜋𝐺

𝑐4
𝑇𝑖𝑘 

2.8 Solution of Einstein's free-field equations 

Since the Einstein equation built from the metric tensor, therefore we will 

look for the solution in terms of space coordinate for this purpose we 

choose the simplest form with space symmetry and independence of time, 

i-e static metric, in this metric the gravitational field will depend on the 

rotational invariants xdx,xd,x
22

  and the invariant proper time interval 

should be the same for all points in symmetrical positions.  

By using the spherical coordinates, that one can come to the following:  

ds
2
 = –gµv dx

µ
 dx

v
 

ds
2
 = – [A(r) dr

2
 + r

2
d 

2
 + r

2
sin

2
 d

2
 – B(r) dt

2
]   (2.8.1)  

the function A and B can be determined from the solution of the field 

equation. Non vanishing components are.  

grr = A(r)  g = r
2
   g = r

2
 sin

2
 

gtt = –B(r)  g
rr
 = A

–1
(r)  g


 = r

–2
 

g


 = r
–2

 (sin
2
)

–2
   g

tt
 = –B

–1
(r) 
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g = r
4
 A(r) B(r) sin

2
     (2.8.2)  

so the invariant volume element is  

√g d
3
x dt  

√g dr  d d = r
2
  dddrSin)r(B)r(A 2   (2.8.3)  

Using the usual formula  





































x

g

x

g

dx

g
g

v

v2

1
                      (2.8.4)  

Non vanishing components are :  



 = 
)r(A2

1
 

dr

)r(dA
  

)r(A

rr   

r
 = 

)r(A

sinr 2 
    

)r(A2

1r
tt   

dr

)r(dB
 


r = 

 r = 
r

1
    

 = –sin cos  


 r = 

r = 
r

1
    

  = 
  = cot  

t
tr = t

rt = 
)r(B2

1
 

r

rB



 )(
 

Ricci tensor  































 



 kkx
R   (2.8.5)  

The Ricci tensor components will have the following terms  

B2

B
R rr


 – 

A

Â

r

1

B

B̂

B

B

A

A

4

1








 



 

A

1

B

B

A

A

A2

r
1

sin

R
R

2








 









  
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rA

B̂

A

B

B

B

A

A

4

1

A2

B
R tt 









 






    (2.8.6) 

Rµv = 0  for µ≠ ν 

That is mean the scalar curvature in static isotropic metric does not 

depend on either the time or  and , it is a function only on r.  

R = R(r) 

In the vacuum Einstein's equation give  

Rrr  = Rtt = R = 0    (2.8.7)  

0
dr

dAB
  

AB = constant  

A() = B () = 1    (2.8.8)  

The flatness condition at large r  

A(r) = B
–1

 (r)    (2.8.9)  

This yield 








A

r

dr

d
 = 1  

B = C1
–2

      (2.8.10)  

By integration (1-60) the following solutions for A and B will be obtain :  

A(r) = 

1

r

1C
1











  

B(r) = 1 + 
r

C1
    (2.8.11)  

The gravitational Newtonian potential of source mass M.   

 = –
r

MG
 

Which is related to gtt by  

–gtt = B
r
  large 1 + 2   (2.8.12)  
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The following metric space due to Schwarzschild (1916) result ds
2
 = 

2

1

2 dr
r

M2
1dt

r

M2
1










 








 
  

–r
2
 

2
 – r

2
 sin

2
  d

2
    (2.8.13)  

By transforming the time coordinate in the form  

τ= t + 2M ln |1–r|2M| |     (2.8.14)  

And accordingly the metric tensor component we obtained the following 

expression.  

ds
2
 = dτ

2
 – dr

2
 – r

2
 (d

2
 + sin

2
 d

2
)  

2)drd(
r

M2



     (2.8.15)  

Where the last term represent the non-flatness of space. This equation 

called the Schwarzschild metric which having singularities at r = 0 and r 

= 2M 

The Schwarzschild solution has its limitation in strong field region, i.e it 

gives singularity and gravitational collapse and black holes.  

The singularity at the origin is real since physically there is no point mass 

whose gravitational field is infinite and its coordinate un removable by 

the use of any coordinate transformation. One can prove the nonzero 

curvature invariant at r = 2M so this singularity is not real and infinite 

force crushes the collapsing body to infinite density. This imply the laws 

of physics break down near the singular point including the general 

relativistic law. That mean GTR is not the right model for strong gravity. 

2.9 Application of general relativity  

2.9.1 Time dilation:  

Consider a clock in an arbitrary gravitational field moving with arbitrary 

velocity not necessarily in free fall. The equivalence principle tells us that 
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its rate is unaffected by the gravitational field if we observe the clock 

from a locally inertial coordinate system 

 , the space – time interval dτ

 

between
 
sticks is governed in this system by  

 2
1


  d     (2.9.1)  

Where τ  is the period between ticks when the clock is at rest in the 

absence of gravitation. Hence in any arbitrary coordinate system the 

space-time interval between ticks will be governed by  

2

1

















 v

v
dx

x
dx

x
y


 





     (2.9.2)  

Or introducing the metric tensor  

t = (–gµv dx dx
v
) 2

1

       (2.9.3)  

If the clock has velocity dx
μ
/dt then the time interval dt between ticks will 

be given by  

2

1












 dt

dx

dt

dx
g

dt v

v






      (2.9.4)  

In particular if the clock is at rest this becomes  

  2

1

00





g

dt


       (2.9.5)  

We can not observe the time dilation factors appearing in (2.6.10), (2.9.5) 

by merely measuring the time interval at between ticks and comparing 

with the value t specified by the manufacture because the gravitational 

field affects our time standards in exactly the same way as it affects the 

clock being studied.  

That is if our standard clock says that a certain physical process takes 1 

sec at rest in the absence of gravitational, that it will also tell us that it 
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takes 1 sec in the presence of gravitation booth standard clock and 

process being affected by the field in the same way.  

However, we can compare the time dilation factors at two different points 

in a field. For instance, suppose that at point 1 we observe the light 

coming from a particular atomic transition at point 2. if point 1 and 2 are 

at rest in a stationary gravitational field, then the time taken for a wave 

crest to travel from 2 to 1 will be a constant.  

dt2 =  (–g00 (x2)) 2

1


    (2.9.6)  

Hence for a given atomic the ratio frequency (observed at point 1) of the 

light from point 2 to that of the light from point 1 will be.  

2

1

100

200

1

2

)x(g

)x(g

V

V













      (2.9.7)  

In the weak field limit 00g  – 1 – 2     and  <<1  

So V2 / V1 = 1 + v / v where  

v

v
=  (x2) –  (x1)     (2.9.8)  

From uniform gravitational field, this result could be derived directly 

from the principle of equivalence without introducing a metric or affine 

connection. Let us apply Eq (2.7.5) to case of light from the sum's surface 

observed on the earth. The sun's gravitational potential can be calculated 

as  

0 = 
Ro

Mo
                 (2.9.9)  

Where Mo and Ro are the sum's mass and radius  

Mo = 1.97 * 10
33

 g  

Ro = 0.695 10
6
 km  
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And  is the gravitational constant  

 = 6.67 10
–8

 erg cm/gm
2
  

We find that the potential on the surface of the sum is  

0 = –2–/2 10
–6

  

The gravitational potential of the earth is negligible in comparison so 

ideally the frequency of light from the sun should be shifted to the red by 

2-12 parts per million as compared with light emitted by terrestrial atoms.  

2.9.2 The Red shift  

The interesting effect of the gravitational field:  

The slowing down of time in the field and the consequent red shift of 

spectral lines emitted by atoms located on massive bodies. The effect has 

been tested by experiment and been rather well verified; we thus have 

some experimental justification for the basic theoretical concepts we have 

set forth.   

Consider for example a light wave emitted on the sun and received on the 

earth. Let the gravitational potential at the surface of the sun be s. using 

the approximate g00 and proper-time intervals are related to coordinate-

time intervals by the equation.  

2

1

2s
c

s2
1d 







 
 dt    (2.9.10)  

Similarly on the earth proper-time intervals are related to coordinate time 

intervals by  

 

dt = 
2

1

2c

2
1 







 
 dt     (2.9.11) 
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Where  is the value of the gravitational potential on the earth? Suppose 

now n waves frequency v0 are emitted in proper time s from an atom on 

the sun, then  

n = v0 s      (2.9.12)  

On the earth are certainly receives n waves, but the frequency and time 

duration of the wave train have changed. Using a frequency – duration.  

N = e e     (2-13)  

Since n is a constant  

o s = e e 

e = o 
e

s




    (2.9.14)  

The coordinate – time duration of the wave corresponding to s is  

 = 
2

s

s

c/21 


   (2.9.15)  

 = 
2

e

e

c/21 


   (2.9.16)  

2

1

2
e

2
s

e

s

c/21

c/21






















   (2.9.17)  

e = o 
e

s




 = o 

2

1

2
e

2
s

c/21

c/2!

















 

Expanding to first order in the small quantities s/c
2
 and e/c

2
 we obtain.  

2

es

o

oe

c







     (2.9.18)  
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Or in briefer notation  

2
o c







      (2.9.19)  

Since the sun is at a large negative potential relative to the earth, we see 

that  is negative. Thus, the frequency of light decreases as it leaves the 

sun, and when it is received on earth, we see a shift toward the red end of 

the spectrum. It is as if the atoms of the sun vibrated in slow motion when 

we viewed them from the earth. Of course, there is nothing special about 

using the earth and sun as the two points at different heights on the earth 

if our measurement is precise enough to detect the correspondingly small 

shift.   
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CHAPTER THREE 

Literature Review 

3.1 Introduction: 

In this chapter many attempts to describe the behavior of black holes and 

exotic objects are presented. The papers which are directly related to our 

model were fully derived, while the others are summarized.   

3.2 Equilibrium of Stars within the Framework of 

Generalized Special Relativity Theory  

In this work the generalized special relativity energy relation was 

used for minimization of energy. For minimum energy the radius the 

critical value is typical to that of general relativity for black holes. At 

equilibrium the pressure and centrifugal force balance the attractive 

gravity. [33,34,35] 

Equilibrium Conditions  

Consider first the Generalized Special Relativity GSR energy 𝐸 

equilibrium condition by minimizing 𝐸 w.r.t. 𝑟 

𝐸 = 𝑚0𝐶
2 (1 +

2𝜑

𝐶2
) (1 +

2𝜑

𝐶2 −
𝑣2

𝐶2
)
−1/2

                                              (3.2.1)   

𝜑 = −
𝐺𝑀

𝑟
  , 𝑚0 = 𝑀                                                                                (3.2.2)  

𝑣2

𝐶2
=

𝑚2𝑣2

𝑚2𝐶2
=

𝑝2

𝑀2𝐶2
                                                                                     (3.2.3)  

For simplicity consider the average momentum 𝑝 is equal to the 

maximum momentum𝑝𝐹, by ignoring  √2 , where 

𝑝 =
𝑝𝐹

√2
  

Thus  
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𝑝 = 𝑝𝐹 =∧ (
𝑁

𝑉
)

1
3
=∧ 𝑛0  

Where  

∧= (3𝜋2)
1
3ℏ                                                                                                  (3.2.4)  

Therefore, with the aid of equations (2) – (4), equation (1) reads 

𝐸 = 𝐸𝐹 = 𝑀𝑐2 (1 −
2𝑀𝐺

𝑟
) (1 −

2𝑀𝐺

𝑟
−

𝑝𝐹
2

𝑀2𝐶2
)
−1

2
                                  (3.2.5)  

The radius 𝑟 which makes the energy 𝐸 minimum is given when 

𝑑𝐸𝑟

𝑑𝑟
=

𝑀𝑐2(
2𝑀𝐺

𝑟2 )

(1−
2𝑀𝐺

𝑟
−

𝑝𝐹
2

𝑀2𝐶2)

1/2 +
𝑀𝑐2(1−

2𝑀𝐺

𝑟
)(−

1

2
)(

2𝑀𝐺

𝑟2 )

(1−
2𝑀𝐺

𝑟
−

𝑝𝐹
2

𝑀2𝐶2)

= 0  

Mc2[(
2𝑀𝐺

𝑟2 )(1−
2𝑀𝐺

𝑟
−

𝑝𝐹
2

𝑀2𝐶2)−(
𝑀𝐺

𝑟2 )(1−
2𝑀𝐺

𝑟2 )]

(1−
2𝑀𝐺

𝑟
−

𝑝𝐹
2

𝑀2𝐶2)

3/2 = 0  

𝑀2𝑐2𝐺

𝑟2
(−1 + 2 +

4𝑀𝐺

𝑟
−

𝑝𝐹
2

𝑀2𝐶2
) = 0                                                         (3.2.6)  

This is satisfied when 

4𝑀𝐺

𝑟
=

𝑝𝐹
2

𝑀2𝐶2 − 1                                                                                            (3.2.7)  

Thus the minimum radius is given by 

𝑟 =

4𝑀2𝑐2𝐺

𝑝𝐹
2−𝑀2𝑐2                                                                                                            (3.2.8)  

Where 

𝑝𝐹
2 = (3𝜋2)1/3ℏ𝑛1/3 =∧ (

𝑁

𝑉
)
1 3⁄

= (
9𝜋

4
)
1 3⁄ 𝑁1 3⁄

𝑟𝐹
ℏ                              (3.2.9)  

The equilibrium takes place when 𝑟 is non negative, i.e when 

𝑝𝐹
2 > 𝑀2𝐶2  

𝑝𝐹 > 𝑀𝑐                                                                                                      (3.2.10)  

The critical mass is given by 

𝑀𝑐 =
𝑝𝐹

𝐶
                                                                                                      (3.2.11)  
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Thus for star to be at equilibrium one requires 

𝑝𝐹

𝐶
> 𝑀  

𝑀𝐶 > 𝑀                                                                                                       (3.2.12)  

𝑀 < 𝑀𝐶   

Thus the maximum mass for stable star is 

𝑀𝐶 =
𝑃𝐹

𝑐
=

(3𝜋2)1 3⁄ ℏ

𝑐
(
𝑁

𝑉
)
1 3⁄

                                                                    (3.2.13)  

This condition resembles Chandrasekhar limit for stable white dwarf. 

i.e the star mass need to be less than the critical value in equation 

(3.2.11(. The equilibrium condition can also be found by using 

generalized special relativity energy momentum relation [36,37] 

𝑔00𝐸
2 − 𝑝2𝑐2 + 𝑔00𝑚0

2𝑐4                               

𝐸2 = (𝑔00)
−1𝑝2𝑐2 + 𝑔00𝑚0

2𝑐4                                                             (3.2.14)  

One can rewrite equation (14) to be 

𝐸 = (𝑎1 − 𝑎2𝑝
2)1 2⁄                                                                                  (3.2.15)  

Where 

𝑎1 = 𝑔00𝑚0
2𝑐4 = (1 −

2𝑀𝐺

𝑟𝑐2
)𝑚0

2𝑐4  , 𝑎2 = (𝑔00)
−1𝑐2   

𝑎2𝑝
2 = 𝑎1 cos2 𝜃                                                                                     (3.2.16)  

𝐸 = ∫ (𝑎1 − 𝑎1 cos2 𝜃)1 2⁄ 𝑑𝑝                                                            (3.2.17)
𝑝𝐹

0
  

Where 

−𝑑𝑝 = √
𝑎1

𝑎2
sin 𝜃𝑑𝜃                                                                               (3.2.18) 

𝐸 = √𝑎1 ∫(1 − cos2 𝜃)1 2⁄ (−√
𝑎1

𝑎2
)sin 𝜃𝑑𝜃                                 (3.2.19)  

= √𝑎1 (−√
𝑎1

𝑎2
)∫ sin2 𝜃𝑑𝜃                                                                     (3.2.20)  

𝑐𝑜𝑠 2 𝜃 = cos2 𝜃 − sin2 𝜃 = 1 − 2 sin2 𝜃 
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sin2 𝜃 =
1

2
(1 − 𝑐𝑜𝑠 2𝜃) 

𝐸 =
√𝑎1

2
(−√

𝑎1

𝑎2
)(𝜃 −

𝑠𝑖𝑛2𝜃

2
)                                                          (3.2.21) 

𝑠𝑖𝑛2𝜃 = 2 𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃  , 𝑐𝑜𝑠𝜃 = √
𝑎2

𝑎1
𝑝 

𝑠𝑖𝑛𝜃 = (1 − cos2 𝜃)1 2⁄ = (1 −
𝑎2

𝑎1
𝑝2)

1 2⁄

 

𝐸 = √𝑎1√
𝑎1

𝑎2
√

𝑎2

𝑎1
𝑝𝐹(1 − 𝑎3𝑝𝐹

2)1 2⁄ + 𝑐𝑜𝑠−1√
𝑎2

𝑎1
𝑝𝐹 −

𝜋

2
 

= √𝑎1𝑝𝐹(1 − 𝑎3𝑝𝐹
2)1 2⁄ + 𝑐𝑜𝑠−1√

𝑎2

𝑎1
𝑝𝐹 −

𝜋

2
                                   (3.2.22) 

Where 

𝑎3 =
𝑎2

𝑎1
=

𝑔00
−1𝑐2

𝑔00𝑚0
2𝑐4

=
𝑔00

−2

𝑚0
2𝑐4

 

𝐸 = (1 −
2𝑀𝐺

𝑟𝑐2
) 𝑝𝐹 [1 −

𝑝𝐹
2𝑐2

𝑚0
2𝑐4(1−

2𝑀𝐺

𝑟𝑐2 )
2]

1 2⁄

+ 𝑐𝑜𝑠−1 (
𝑝𝐹𝑐

𝑚0𝑐2(1−
2𝑀𝐺

𝑟𝑐2 )
)  

−
𝜋

2
                                                                                                               (3.2.23)   

It is clear from equation (3.2.23) that stability requires 𝐸 to be real. 

This can be satisfied when 

1 −
2𝑀𝐺

𝑟𝑐2
> 0 

𝑟𝑐2 > 2𝑀𝐺 

𝑟 >
2𝑀𝐺

𝑐2   

The critical radius is given by 

𝑟𝑐 =
2𝑀𝐺

𝑐2
                                                                                                   (3.2.24) 
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Thus the radius should be greater than the black hole radius. Also 

1 −
𝑝𝐹

2𝑐2

𝑚0
2𝑐4 (1 −

2𝑀𝐺
𝑟𝑐2 )

2 > 0 

𝑚0
2𝑐4 (1 −

2𝑀𝐺

𝑟𝑐2
)
2

> 𝑝𝐹
2𝑐2 

Thus  

𝑚0𝑐
2 (1 −

2𝑀𝐺

𝑟𝑐2
) > ±𝑝𝐹𝑐 

(1 −
2𝑀𝐺

𝑟𝑐2
) > ±

𝑝𝐹𝑐

𝑚0𝑐2
 

𝑟𝑐2 − 2𝑀𝐺 > ±(
𝑝𝐹𝑐

𝑚0𝑐2
) 𝑟𝑐2                                                                (3.2.25) 

(1 ±
𝑝𝐹𝑐

𝑚0𝑐2
) 𝑟𝑐2 > 2𝑀𝐺 

𝑟 >
2𝑀𝐺𝑚0

𝑚0𝑐2 ± 𝑝𝐹
                                                                                         (3.2.26) 

Thus the critical radius is given by 

𝑟𝑐 =
2𝑀𝑚0𝐺

(𝑚0𝑐2 ± 𝑝𝐹𝑐)
                                                                                  (3.2.27) 

The equilibrium mass also satisfies 

2𝑀𝐺 > −𝑟𝑐2 ± (
𝑝𝐹𝑐

𝑚0𝑐2
) 𝑟𝑐2 

𝑀 <
𝑟𝑐2

2𝐺
±

𝑝𝐹𝑟𝑐

𝑚0
                                                                                      (3.2.28) 

Hence the critical maximum mass is given by 

𝑀𝑐 =
𝑟𝑐2

2𝐺
±

𝑝𝐹𝑟𝑐

𝑚0
                                                                                     (3.2.29) 

The equilibrium condition can also be found by minimizing𝐸, where 

𝐸 = 𝑚𝑐2=𝑚0𝑐
2 (1 +

2𝜑

𝑐2
) (1 +

2𝜑

𝑐2 −
𝑣2

𝑐2
)
−1 2⁄

                                    (3.2.30) 
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Assuming the mass to be equal to the rest mass, and the potential to be 

the Newtonian, one gets 

𝑚0 = 𝑀     ,     𝜑 = −
𝐺𝑀

𝑅
                                                                       (3.2.31) 

Therefore  

𝐸 = 𝑀𝑐2 (1 −
2𝐺𝑀

𝑅𝑐2
)(1 −

2𝐺𝑀

𝑅𝑐2
−

𝑣2

𝑐2
)

−1 2⁄

                                    (3.2.32) 

For small 𝜑 and velocity 𝑣 compared to speed of light 𝑐, i.e 

𝐺𝑀

𝑅
< 1     ,     

𝑣2

𝑐2
< 1 

One gets 

𝐸 = 𝑀𝑐2 (1 −
2𝐺𝑀

𝑅𝑐2
)(1 −

2𝐺𝑀

𝑅𝑐2
−

1

2

𝑣2

𝑐2
) 

𝐸 = (𝑀𝑐2 −
2𝐺𝑀2

𝑅
)(1 −

2𝐺𝑀

𝑅𝑐2
−

1

2

𝑣2

𝑐2
) 

𝐸 = 𝑀𝑐2 +
𝐺𝑀2

𝑅
+

1

2
𝑀𝑣2 −

2𝐺𝑀2

𝑅
−

2𝐺2𝑀2

𝑅2𝑐2
−

𝐺𝑀2𝑣2

𝑅𝑐2
              (3.2.33) 

The mass which make the energy minimum for constant radius is given 

by 

𝑑𝐸

𝑑𝑀
=

𝑐2(
2𝐺𝑀

𝑅𝑐2
)

√1−
2𝑀𝐺

𝑅𝑐2 −
𝑣2

𝑐2

+
𝑀𝑐2(

−2𝐺

𝑅𝑐2
)

√1−
2𝐺𝑀

𝑅𝑐2 −
𝑣2

𝑐2

+
1

2
𝑀𝑐2(1−

2𝐺𝑀

𝑅𝑐2 )(
2𝐺

𝑅𝑐2
)

(1−
2𝐺𝑀

𝑅𝑐2
−

𝑣2

𝑐2
)

                              (3.2.34)   

Neglecting the kinetic term yields 

𝑑𝐸

𝑑𝑀
=

(𝑐2 −
4𝑀𝐺

𝑅
) (1 −

2𝑀𝐺
𝑅𝑐2 ) +

𝑀𝐺
𝑅 −

𝑀2𝐺2

𝑅𝑐2

(1 −
𝐺𝑀
𝑅𝑐2 +

1
2

𝑣2

𝑐2)
3 2⁄

= 0                     (3.2.35) 

This requires 

𝑐2 −
2𝑀𝐺

𝑅
−

4𝑀𝐺

𝑅
+

8𝑀2𝐺2

𝑅2𝑐2
+

𝑀𝐺

𝑅
−

2𝑀2𝐺2

𝑅2𝑐2
= 0 

𝑐2 −
5𝑀𝐺

𝑅
+

6𝑀2𝐺2

𝑅2𝑐2
= 0 
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6𝐺2

𝑅2𝑐2
𝑀2 −

5𝐺

𝑅
𝑀 + 𝑐2 = 0 

𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0 , 𝑥 =
−𝑏 ± √𝑏2 − 4𝑎𝑐

2𝑎
 

𝑀 =

5𝐺
𝑅 ± √(

5𝐺
𝑅

)
2

−
24𝐺2𝑐2

𝑅2𝑐2

12𝐺2

𝑅2𝑐2

=
𝑅2𝑐2

12𝐺2
(
5𝐺

𝑅
± √

𝐺2

𝑅2
) 

𝑀 =
𝑅2𝑐2

12𝐺2
(
𝐺

𝑅
) (5 ± 1) =

𝑅𝑐2

12𝐺
(5 ± 1) 

𝑀 =
1

2

𝑅𝑐2

𝐺
   ,    

1

3

𝑅𝑐2

𝐺
                                                                              (3.2.36) 

For stars one have two forces, pressure force which counter balance the 

gravity force, thus 

𝑝 =
𝑁𝐾𝑇

𝑉
=

1

3

𝑚𝑣2

𝑉
                                                                                  (3.2.37) 

Thus the pressure force is given by 

𝐹𝑝 = 𝑃𝐴 =

1
3𝑚𝑣2(4𝜋𝑟2)

4𝜋
3 𝑟3

=
𝑚𝑣2

𝑟
                                                        (3.2.38) 

The gravity force is given by 

𝐹𝑔 =
𝐺𝑚𝑀

𝑟2
                                                                                                 (3.2.39) 

At equilibrium the two forces counter balances themselves thus: 

𝐹𝑝 = 𝐹𝑔 

𝑚𝑣2

𝑟
=

𝐺𝑚𝑀

𝑟2
      ,    𝑚𝑣2 =

𝐺𝑚𝑀

𝑟
                                                        (3.2.40) 

If particles are considered as strings with 𝑣 representing max speed. thus 

the average value is given by 

𝑣𝑎 =
𝑣𝑚

√2
    ,   𝑚𝑣𝑎

2 =
𝑚𝑣𝑚

2

2
                                                                        (3.2.41)
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Thus  

𝑚𝑣𝑎
2 =

𝑚𝑣𝑎
2

2
=

1

2
𝑚𝑣2                                                                             (3.2.42) 

One thus gets 

1

2
𝑚𝑣2 =

𝐺𝑚𝑀

𝑟
= 𝑚𝜑                                                                             (3.2.43) 

Hence  

𝑣2 = 2𝜑                                                                                                     (3.2.44) 

Hence  

𝐸 =
𝑚0𝑐

2 (1 +
2𝜑
𝑐2 )

(1 +
2𝜑 − 𝑣2

𝑐2 )
1 2⁄ = 𝑚0𝑐

2 (1 +
2𝜑

𝑐2
)                                        (3.2.45) 

But:  

𝑚0 = 𝑀 , 𝜑 = −
𝐺𝑀

𝑅
                                                                       (3.2.46) 

For attractive force 

𝐸 = 𝑀 (𝑐2 −
2𝐺𝑀

𝑅
) + 𝑀 (

−2𝐺

𝑅
) = 0                                                 (3.2.47) 

−
4𝐺𝑀

𝑅
+ 𝑐2 = 0 

4𝐺𝑀

𝑅
= 𝑐2                                                                                                   (3.2.48) 

𝑀 =
𝑅𝑐2

4𝐺
                                                                                                   (3.2.49) 

𝑀 =
𝑅

2𝐺
𝑐𝑎
2 =

𝑅

2𝐺
(
𝑐𝑚

√2
)
2

=
𝑅

2𝐺
𝑐2                                                       (3.2.50) 

For  

𝑐 → 𝑐𝑎 =
𝑐𝑚

√2
=

𝑐

√2
  

The radius which make 𝐸 minimum in (3.2.8) requires maximum 

mass given by (3.2.13). The condition for maximum mass resembles 

Chandrasekhar Limit. The equilibrium condition requires, here, 𝐸 to be 
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real. This makes the critical radius to be dependent on 𝐺 and ℎ as shown 

by equations (3.2.27) and (3.2.9). Equation (3.2.26) shows that this is the 

minimum equilibrium radius. But according to equations (3.2.28) and 

(3.2.29) the maximum critical mass depends two on 𝐺 and ℎ. The pence 

of these tow parameters reflects the quantum gravitational nature of the 

steller mass. The equilibrium condition is also studied by considering the 

effect of pressure force in relation to centrifugal force  

Equations (3.2.38) According to pressure force act as a centrifugal force 

which counter balance the gravity force. considering particles as strings it 

was shown by equation (3.2.37) that equilibrium takes place when kinetic 

and potential energy equal each other. The mass which makes 𝐸 

minimum also tackled in equations (3.2.34, 3.2.35 and 3.2.36). The mass 

at which 𝐸 is minimum is given by equation conforms with that of black 

hole as shown by eqn (3.2.50)  

3.3 Flat rotation curve without dark matter: the eneralized 

Newton’s law of gravitation.  

This paper is devoted to solve universe density problems: the flat 

rotation curve using generalized Newton’s law of gravitation need not 

require dark matter. The potential is logarithmic at large distances from 

the center of the galaxy. The gravitomagnetic force generates constant 

velocity observed in flat rotation curve at very large distances from the 

center of the galaxy. Dynamical matter arising from moving stars far 

away from the center of the galaxy has large contribution to the mass of 

the galaxy. [38]  

Gravitomagnetic force: 

In the generalized Newton’s law of gravitation developed by Arbab 

(2010, 2012), one has 
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𝐹 = −
𝐺𝑀𝑚

𝑟2
−

𝜋𝑚𝑣4

𝑣𝑐
2𝑟

,                                                                              (3.3.1) 

where vc is some characteristic velocity. This force is the gravitational 

analogue of Lorentz force of electromagnetism. The second term in Eq. 

(3-3-1) accounts for the gravitomagnetic force arising from the motion of 

the orbiting mass, m. For ordinary velocities Eq. (3-3-1) reduces to the 

ordinary Newton’s law of gravitation. However, since we are interested in 

the behavior of matter at very large distances where the object (star) 

speed is so big, the situation will be different, as we will describe below. 

For a circular motion, one has 

𝑚𝑣2

𝑟
=

𝐺𝑀𝑚

𝑟2
+

𝜋𝑚𝑣4

𝑣𝑐
2𝑟

                                                                              (3.3.2) 

 

Fig. A flat rotation curve without dark matter: 𝑣2 𝑣𝑐
2⁄  versus 𝑟 𝑟0⁄  

Equation (3-3-2) is solved to give 

𝑣2 =
𝑣𝑐

2

2𝜋
(1 ± √1 −

4𝜋𝐺𝑀

𝑣𝑐
2𝑟

)                                                                  (3.3.3) 
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Let us now consider the case when, 𝑟 >
4𝜋𝐺𝑀

𝑣𝑐
2 = 𝑟0 By Taylor expanding 

the square root in Eq. (3-3-3) and neglecting the higher orders terms, we 

obtain the two solutions 

𝑣−
2 ≈

𝐺𝑀

𝑟
,                                                                                                      (3.3.4) 

and  

𝑣+
2 ≈

𝑣𝑐
2

𝜋
(1 −

𝜋𝐺𝑀

𝑣𝑐
2𝑟

).                                                                                 (3.3.5) 

Equation (5) yields 

𝑣+ ≈
𝑣𝑐

√𝜋
(1 −

𝜋𝐺𝑀

2𝑣𝑐
2𝑟

).                                                                                (3.3.6) 

Equation (3-3-4) gives the ordinary Kepler velocity. Eq. (3.3.5) 

gives a velocity distribution that in agreement with the observed flat 

rotation curve. The flattening of velocity curve becomes predominant at 

distances much bigger than a few parsecs. The gravitomagnetic force 

resolves the dark matter problem associated with Kepler law.  

Inserting Eq. (3.3.3) in Eq. (3.3.1), we will get 

𝐹 = −
𝑚𝑣𝑐

2

2𝜋𝑟
(1 ± √1 −

4𝜋𝐺𝑀

𝑣𝑐
2𝑟

).                                                           (3.3.7) 

Taylor expansion of the square root in Eq. (3-3-7), neglecting the higher 

orders terms, yields, for r > r0, the two forces 

𝐹− ≈
𝐺𝑀𝑚

𝑟2
,                                                                                                  (3.3.8) 

and  

𝐹+ ≈
𝑚𝑣𝑐

2

𝜋𝑟
+

𝐺𝑀𝑚

𝑟2
                                                                                   (3.3.9) 

The first term in Eq. (3.3.9) may suggest that matter at large 

distances may not be gravitationally coupled to the central galaxy, and 

another law holds instead (
𝑚𝑣𝑐

2

𝜋𝑟
) Recently, Kuhn and Kruglyak (1987) 
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assumed a modified attractive force between two mass of a similar law 

(except for a sign) to that in Eq. (3.3.9) claiming to explain the mass 

discrepancy at many distance scales. While the first term in Eq. (3.3.9) 

gives an attractive 

force that dominates at large distances, the second parts is related to some 

kind or repulsive force Equation (3.3.9) can be written as 

𝐹+ = −
𝐺𝑀𝑚

𝑟2
(

𝑣𝑐
2𝑟

𝜋𝐺𝑀
− 1)                                                                     (3.3.10) 

Equation (3-3-10) can be written in the informative form 

𝐹+ = −
𝐺𝑀eff.𝑚

𝑟2
                                                                                       (3.3.11) 

where 

𝑀eff. = (
𝑣𝑐

2𝑟

𝜋𝐺
− 𝑀)                                                                                (3.3.12) 

and M is the visible mass, and we call Meff. the active (effective) mass. 

The term (
𝑣𝑐

2𝑟

𝜋𝐺𝑀
− 1) Eq. (3-3-10) can be seen as a scaling of the visible 

mass of the galaxy. One can treat the term 
𝑣𝑐

2𝑟

𝜋𝐺
 as a dynamical mass 

present at a distance r (if one prefers, we may call it dark matter and M as 

passive) static (matter). In the relativistic hydrodynamics, the pressure 

equally contributes to the mass density of the fluid. As demonstrated by 

Ehlers et al. (2005), pressure like mass is a source of gravity too. Hence, 

the first term in Eq. (3-3-12) could reflect this contribution. This extra 

term was absent in the Newtonian theory. The absence of this term in 

Newtonian theory could reflect the fact that it is related to the curvature 

of the space that wasn’t considered in Newtonian formulation   

This gravitomagnetic model is consistent with the prediction of the 

general theory of relativity. Equation (3-3-12) suggests that the effective 

mass increases linearly with r. This situation mimics the effect of dark 
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matter at large distances. It seems that the gravity force at large scales 

becomes repulsive giving rise to the observed cosmic acceleration. If we 

now write dMeff. = ρeff.dV , where ρeff  is the galaxy density, and V is the 

volume, then Eq. (3-3-12) yields  

𝜌eff. =
𝑣𝑐

2

4𝜋2𝐺

1

𝑟2
.                                                                                      (3.3.13) 

This equation can be used to estimate the present density of the universe 

if we use rp = 2.7 × 10
26

m. This amounts to ρp = 3.1×10
−27

 kg/m
3
. 

Equation (3-3-11) can be inverted and equally suggests that the 

gravitational constant increases with distance at large scale. This is 

evident if we write Eq. (3-3-10) as 

𝐹+ = −
𝐺eff.𝑀𝑚

𝑟22
,   𝐺eff. = (

𝑣𝑐
2𝑟

𝜋𝑀
− 𝐺).                                                (3.3.14) 

Recently, Ehlers et al. (2005) have investigated the effect of a running 

gravitational constant on the flat rotation curve of galaxies and came up 

with similar conclusion. The dynamical mass of the universe can be 

estimated from 
𝑣𝑐

2𝑟𝑝

𝜋𝐺
~1053 kg. taking 𝑟𝑝~1026m and 𝑣𝑐 = 𝑐.  

This estimate is of the same order of the mass of the present universe 

deduced by McCulloch (2014). We can associate a potential energy with 

the force in Eq. (3-3-9) of the form 

𝑈+ =
𝑚𝑣𝑐

2

𝜋
 𝐼𝑛 (

𝑟

𝑟𝑆
) +

𝐺𝑀𝑚

𝑟
                                                               (3.3.15) 

Where 𝑟𝑆 is some reference distance from the galaxy. It is interesting to 

see that when 𝑟 < 𝑟𝑆, the potential in U+ is positive. However, when  

𝑟 > 𝑟𝑆 , the first term in Eq. (3-3-15) becomes negative. At  𝑟 = 𝑟𝑆 the 

potential is a pure repulsive Newtonian. These different situations 

correspond to the behavior of matter under these outlined regions. The 

potential energy in Eq. (3-3-15) is that one of a star at large distances 
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from the central galaxy. It is interesting to note that such potential is 

recently suggested by Fabris and Campos (2009) to account for the spiral 

galaxies rotation curves. They attributed such a potential to arise from 

string theories or effective models of gravity due to quantum effects. 

Recently, Kinney and Brisudova (2000) introduce such a potential as 

representing a non-gravitational force component coupled to baryon 

number as a charge. They further assumed that this force becomes 

dominant on very large scales. The potential energy in Eq. (3-3-15) at 

very large distances reduces to 

𝑈+ =
𝑚𝑣𝑐

2

𝜋
 𝐼𝑛 (

𝑟

𝑟𝑆
).                                                                                (3.3.16) 

A logarithmic potential energy usually arises from a singular isothermal 

sphere with a density profile given by 𝜌 = 𝐴(
𝑟𝑎

𝑟
)
2

, where 𝜌0 and 𝑟𝑎 are 

constants. This yields the potential, 𝑉 = 4𝜋𝐺𝜌0𝑟𝑎
2 In(

𝑟

𝑟𝑎
) and a circular 

velocity independent of r. Moreover, the density ρ follows the same 

pattern as the one in Eq. (3-3-13). 

Modified gravity model (MOND) 

In this model it is assumed that the acceleration (a) of a mass having an 

acceleration beyond a characteristic acceleration (a0), one has (Milgrom 

1983) 

𝑎 =
√𝐺𝑀𝑎0

𝑟
,                                                                                             (3.3.17) 

where a0 = 1.2 × 10−8 m/s−2. In a recent work, Arbab (2004) has shown 

that such an acceleration reflects the quantum nature of the present 

universe. Now equating the acceleration in Eq. (3-3-17) to the centripetal 

acceleration yields 

𝑣 = √𝐺𝑀𝑎0
4                                                                                                (3.3.18) 
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We thus see that the velocity 𝑣 is independent of the distance r. This 

agrees with the observed flat rotation curve for spiral galaxies. Using Eq. 

(3-3-9), the acceleration of the mass m can be written as 

𝑎 ≈ −
𝑣𝑐

2

𝜋𝑟
+

𝐺𝑀

𝑟2
                                                                                        (3.3.19) 

At sufficiently large distances, this gives an attractive acceleration 

𝑎 ≈ −
𝑣𝑐

2

𝜋𝑟
                                                                                                    (3.3.20) 

Comparing this with Eq. (3-3-17) yields 

𝑎 ≈ −
𝑣𝑐

4

𝜋2𝐺𝑀
.                                                                                         (3.3.21) 

Apparently, the MOND acceleration is tantamount to 

gravitomagnetic acceleration. MOND as well as our generalized 

Newton’s law of gravitation are capable of explaining the flat rotation 

curve exhibited by spiral galaxies  The solution for the flat rotation curve 

shows that gravitation should be govern by the generalized Newton’s law 

of gravitation that works well at very large distances (cosmic). It is the 

nature of gravity that makes the rotation curve of the spiral galaxies flat. 

This new law is applicable at cosmological level. 

Concluding remarks 

The presence of the gravitomagnetic force leads to a logarithmic 

gravitational potential. This gravitational potential produces a velocity 

profile, for stars in a galaxy, in agreement with the presently observed 

one. The mass density of a galaxy is that of a singular isothermal sphere. 

3.4 Quantum and Generalized Special Relativistic Model for 

Electron Charge Quantization.  

This work was done by Hassabo. The electron and elementary 

particles charges are quantized using Hamiltonian in a curved space-time 
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at vacuum stage of the universe, using quantum spin angular momentum 

and Klein-Gordon equation beside generalized special relatively. Electron 

charge is found to be quantized and the electron self-energy is finite. The 

electron radius is found to be extremely small than atomic particles. 

According to GR, the time – component of the metric is given by [39] 

𝑔00 = −(1 +
2∅g

𝑐2
)                                                                                   (3.4.1) 

Where ∅g is the gravity potential per unit mass and is related to electric 

potential ∅  and electron charge e through the relation 

∅g =
𝑈

𝑚
=

𝑒∅

𝑚
                                                                                               (3.4.2) 

This comes from the fact that any energy form including electric can 

generate gravity field  

Thus equation (3.4.1) becomes  

𝑔00 = −(1 +
2𝑒∅

𝑚𝑐2
)                                                                                (3.4.3) 

At early stages of the universe electric charge is generated due to the 

electromagnetic (e.m) field at vacuum stage. This requires minimizing the 

Hamiltonian (H) w.r.t electric potential ∅ to find the electric charge and 

see how it is generated. Since the Hamiltonian part representing charge 

itself can be neglected as for as they are independent of ∅ . The charge 

field interactions are neglected for simplicity. One also assumes electric 

charge to be at rest. This means that the magnetic field is not generated. 

Therefore 

𝐴0 = ∅  , 𝐴𝑖 = 0 , 𝑖 = 1,2,3, …                                                         (3.4.4) 

To find the Hamiltonian in curved space, one can generalized the linear 

space form 

𝐻 = 𝜂002𝜀𝑖( 𝜕𝑖𝐴0 −  𝜕0𝐴𝑖)
2                                                                   (3.4.5) 

to be written in a curved space in the form 
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𝐻 = 𝑔00
2 𝜀𝑖( 𝜕𝑖𝐴0 −  𝜕0𝐴𝑖)

2                                                                      (3.4.6) 

From Equation (3.4.3) one gets 

𝐻 = (1 +
2𝑒∅

𝑚𝑐2
)
2

(∇∅)2                                                                             (3.4.7) 

Thus minimization condition requires 

𝑑𝐻

𝑑∅
= (1 +

2𝑒∅

𝑚𝑐2
) (

2𝑒

𝑚𝑐2
) (∇∅)2 = 0 

1 +
2𝑒∅

𝑚𝑐2
= 0,      ∅ = −

𝑚𝑐2

2𝑒
                                                                    (3.4.8) 

Assuming the mass energy to be resulting from electric field energy 

density 𝐸𝑑 where 𝐸𝑑 = 𝜀0𝐸
2 Inside electron of radius 𝑟0, one gets  

𝑚𝑐2 = 𝐸𝑑𝑉 = 𝜀0𝐸
2
4

3
𝜋𝑟0

3 =
𝜀0𝑒

2

16𝜋2𝜀0
2𝑟0

4

4

3
𝜋𝑟0

3 =
𝑒2

12𝜋𝜀0𝑟0
              (3.4.9) 

The vacuum energy potential which results from electric charge becomes 

𝑈𝑣 = −𝑒∅ =
𝑒2

12𝜋𝜀0𝑟0
                                                                             (3.4.10) 

according to a vacuum energy potential which takes the form 

𝑈𝑣 = 𝜌𝑣 [(
𝜋2𝑛2

𝑥0
2𝑛0

2) + 𝜔2]

−3

                                                                    (3.4.11) 

Thus combining Equations (3-4-10) and (3-4-11) yields 

𝑒2

12𝜋𝜀0𝑟0
= [(

𝜋2𝑛2

𝑥0
2𝑛0

2) + 𝜔2]

−3

 

Thus the electric charge is given by 

𝑒 = [(
𝜋2𝑛2

𝑥0
2𝑛0

2) + 𝜔2]

−3 2⁄

(12𝜋𝜀0𝑟0)
1 2⁄                                                (3.4.12) 

Setting to be equal to zero, for simplification. The electric charge is given 

by  

𝑒 = (12𝜋𝜀0𝑟0)
1 2⁄ (𝑥0𝑛0 𝑛𝜋⁄ )2                                                           (3.4.13) 
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𝑟0 is the electron radius and 𝑥0 is the universe radius. Thus, the electron 

radius can be found by assuming that the electron energy results from its 

spinning, where the spin angular momentum is given by 

𝐿𝑠 = ℏ[𝑠(𝑠 + 1)]1 2⁄ =
√3ℏ

2
                                                                  (3.4.14) 

Where for electron 

𝑠 = ∓
1

2
                                                                                                    (3.4.15) 

At vacuum stage we choose minimums lower value. 

𝐿𝑠 =
1

2
ℏ                                                                                                      (3.4.16) 

Assume that rest mass is neglected in relativistic expression to get 

𝑚𝑐2 = 𝐸 = 𝑐𝑝                                                                                          (3.4.17) 

𝑚𝑐 = 𝑝                                                                                                       (3.4.18) 

The same relation can hold for Newtonian mechanics by considering 

wave nature of electrons, where the maximum velocity 𝑣𝑚 is related to 

the effective value v through the relations 

𝑣 =
𝑣𝑚

√2
                                                                                                        (3.4.19) 

By assuming 

𝑝 = 𝑚𝑣 

Thus the Newtonian expression for free particle takes the form 

𝐸 =
1

2
𝑚𝑣𝑚

2 = 𝑚𝑣2 =
𝑚2𝑣2

𝑚
=

𝑝2

𝑚
                                                      (3.4.20) 

If one believes in relativistic energy mass relation, one gets 

𝑚𝑐2 = 𝐸 =
𝑝2

𝑚
 

Thus one gets: 

𝑚2𝑐2 = 𝑝2  ,   𝑚𝑐 = 𝑝                                                                            (3.4.21) 

Since the momentum p is related to L according to the 
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𝑝 = 𝑚𝑣 =
𝑚𝑣𝑟0

𝑟0
=

𝐿𝑠

𝑟0
                                                                            (3.4.22) 

It follows from equation (3-4-21) that 

𝐿𝑠

𝑟0
= 𝑚𝑐 

Using equation (3-4-16) one gets 

𝑟0 =
𝐿𝑠

𝑚𝑐
=

ℏ

2𝑚𝑐
                                                                                       (3.4.23) 

Substituting the values of h, m and c, the electron radius can be 

calculated. The electric charge is assumed to be born at very early stages 

of the universe where vacuum exist and the minimum radius is 𝑥0 where 

[40] 

𝑥0 = 26.635 × 10−3𝑚 

The electric charge is numerically given by 𝑒 = 1.6 × 10−19𝐶. It can be 

obtained by adjusting the quantum numbers 𝑛 and 𝑛0 to be 

𝑛

𝑛0
=

𝜋

𝑥0

[𝑒 (12𝜋𝜀0𝑟)
2⁄ ]−1 3⁄                                                                    (3.4.24) 

Similarly, the charges of quarks and charged leptons can be found by 

adjusting the quantum numbers 𝑛 and 𝑛0 

Equation (3-4-10) shows that vacuum energy is repulsive due to the 

existence of positive sign. This can form with cosmological models, 

which suggests repulsive vacuum energy. Inflation models suggest also 

very large vacuum energy. If one believes in this model, such that 

∅ =
𝑈𝑣

𝑚0
→

𝑐2

2
                                                                                           (3.4.25) 

in this case according to generalized special relativity model the electron 

mass is given by 

𝑚 = 𝑚0(1 − 2∅𝑔 𝑐2⁄ ) → large                                                            (3.4.26) 

Assume for simplicity 

𝑚 = 1013𝑚0 = 1013 × 9 × 10−31 = 9 × 10−18𝑘𝑔                       (3.4.27) 
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From Equations (3-4-16), (3-4-21) and (3-4-22) the electron radius can be 

given to be 

𝑟0 =
ℏ

2𝑚𝑐
=

ℎ

4𝜋𝑚𝑐
=

6.63 × 10−34

4𝜋 × 9 × 10−18 × 3 × 108
 

𝑟0 = 1954 × 10−26𝑚                     (3 − 4 − 28) 

Which is quite reasonable as far as nucleus or proton radius for very light 

atoms are 

𝑟0 = 10−14             𝑟𝑝 = 10−16 

Vacuum energy is obtained by minimizing ∅ and is equated with 

that obtained from electric energy density according to equations (3-4-

9),(3-4-10). The expression for classical angular momentum and quantum 

spin angular momentum are used to find electron radius. The electron 

charge is shown to be quantized according to equation (3-4-13) due to the 

existence of two quantum numbers 𝑛 and 𝑛0which can be adjusted early 

to find the value of e. The radius of the electron can be found by using 

equations (3-4-23),(3-4-28). The values obtained are very small compared 

to proton and nuclear radius which is quite reasonable. According to 

equations (3-4-9),(3-4-28), the electron self-energy is finite. 

3.5 The Generalized Newton’s Law of Gravitation versus the 

General Theory of Relativity.  

The precession of binary pulsars can be accounted for as due to the 

existence of gravitomagnetism only, thus gravitomagnetism is equivalent 

to a curved space-time. The preces-sion of the perihelion of planets and 

binary pulsars may be interpreted as due to the spin of the orbiting planet 

(m) about the Sun (M). The spin (S) of planets is found to be related to 

their orbital angular momentum (L) by a simple formula. [41] 

The General Theory of Relativity (GTR) 

Einstein assumed the gravitational field, to be result from curvature 

of space-time induced by a massive object [42]. The effective 
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gravitational potential of the object of mass m moving around a massive 

object of mass M takes the form [43] 

𝑈(𝑟) =
𝐺𝑀𝑚

𝑟
+

𝐿2

2𝑚𝑟2
−

𝐺𝑀𝐿2

𝑐3𝑚𝑟3
                                                           (3.5.1) 

And the force, 𝐹 =
𝜕𝑈

𝜕𝑟
, can be written as 

𝐹(𝑟) =
𝐺𝑀𝑚

𝑟2
+

𝐿2

𝑚𝑟3
−

3𝐺𝑀𝐿2

𝑐2𝑚𝑟4
                                                           (3.5.2) 

where L is the orbital angular momentum of the mass m  This inverse-

cubic energy term in Equation (3-5-1) causes elliptical orbits to precess 

gradually by an angle 𝛿𝜑 per revolution [44] 

𝛿𝜑 =
6𝜋𝐺𝑀

𝑐2𝑎(1 − 𝑒2)
                                                                                     (3.5.3) 

where e and a are the eccentricity and semi-major axis of the elliptical 

orbit, respectively. This is known as the anomalous precession of the 

planet Mercury  

Another prediction famously used as evidence for GTR, is the bending of 

light in a gravitational field. The deflection angle is given by [45] 

𝛿𝜑 =
4𝐺𝑀

𝑐2𝑏
                                                                                                   (3.5.4) 

where b is the distance of closest approach of light ray to the massive 

object. Therefore, the gravitomagnetic force is equal to 
𝜋

3
 of the GTR 

force. Whether, the gravitational phenomena are in full agreement with 

our gravitomagnetic model or with GTR is a subject of the present and 

future observations.  

The Generalized Newton Law of Gravitation 

Newton law of gravitation can be written, as a Lorentz-like law, as 

[46] 

𝐹(𝑟) = 𝑚𝐸𝑔 + 𝑚𝑣 × 𝐵𝑔  , 𝐸𝑔 = 𝑎 =
𝑣2

𝑟
                                       (3.5.5) 
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Where 

𝐵𝑔 =
𝑣 × 𝐸𝑔

𝑐2
                                                                                                 (3.5.6) 

Thomas introduced a factor 
1

2
 to account for the spin-orbit interaction in 

hydrogen atom [47]. Here 𝐵𝑔 is measured in 𝑆−1 . to convert it to rad/sec, 

we multiply it by 2𝜋. Hence, the gravitomagnetic force becomes 

𝐹𝑚(𝑟) =
𝜋𝑚𝑣4

𝑐2𝑟
, 𝑎 =

𝑣2

𝑟
, 𝑣2 =

𝐺𝑀

𝑟
                                                        (3.5.7) 

The gravitomagnetic field is divergenceless, since 

∇. 𝐵𝑔 =
1

𝑐2
∇. (𝑣 × 𝐸𝑔) 

∇. 𝐵𝑔 =
1

𝑐2
𝐸𝑔. (∇ × 𝑣) −

1

𝑐2
∇. (𝑣 × 𝐸𝑔) 

∇. 𝐵𝑔 =
1

𝑐2
𝑣.

𝜕𝐵𝑔

𝜕𝑡
= −

1

𝑐2

𝜕

𝜕𝑡
(𝑣. 𝐵𝑔) = 0 

This implies that the gravitomagnetic lines curl around the moving mass 

(gravitational current) creating it. This may also rule out the existence of 

negative mass. Therefore, as no magnetic monopole exits; no 

gravitomagnetic monopole (antigravity) exits.  

The angular momentum is defined by 𝐿 = 𝑚𝑣𝑟, so that Equation (3-5-7) 

becomes 

𝐹𝑚(𝑟) =
𝜋𝐺𝑀𝐿4

𝑚𝑐2𝑟4
                                                                                         (3.5.8) 

The second term in Equation (3-5-2) is due to the centrifugal term arising 

from a central force field. In polar coordinates the force is written as 

𝑚𝑎 = 𝑚(�̈� − 𝑟�̇�2)�̂�𝑟 + 𝑚(𝑟�̈� + 2�̇��̇�)�̂�𝜃 .                                             (3.5.9) 

For a central force the second term vanishes. It yields �̇� =
𝐿2

𝑚𝑟2 , so that 

the first term becomes 

𝑚𝑎𝑟 = 𝑚�̈�
𝐿2

𝑚𝑟3
                                                                                      (3.5.10) 
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Substituting Equation (3-5-10) in Equation (3-5-5) yields the full 

effective central force, owing to gravitomagnetism, as 

𝐹(𝑟) = −
𝐺𝑀𝑚

𝑟2
+

𝐿2

𝑚𝑟3
−

𝜋𝐺𝑀𝐿2

𝑚𝑐2𝑟4
                                                      (3.5.11) 

The corresponding potential will be 

𝑈(𝑟) = −
𝐺𝑀𝑚

𝑟
+

𝐿2

2𝑚𝑟3
−

𝜋𝐺𝑀𝐿2

𝑚𝑐2𝑟4
               

Comparison of Equations (3-5-2) and (3-5-11) reveals that the 

gravitomagnetic force is equal to 
𝜋

3
 of the curvature force. Consequently, 

the generalized Newton law of gravitation and the general theory of 

relativity produce the same gravitational phenomena  

The gravitomagnetic force term, the last term in Equation (3-5-11), can 

be written as 

𝜋𝐺𝑀𝐿2

𝑚𝑐2𝑟4
=

𝜋𝐺2𝑀2𝑚

𝑐2𝑟3
, 𝑤ℎ𝑒𝑟𝑒,    𝑣2 =

𝐺𝑀

𝑟
                                 (3.5.12) 

Finally, Equation (3-5-11) can be written as 

𝐹(𝑟) = −
𝐺𝑀𝑚

𝑟2
+

𝐽𝑒𝑓𝑓
2

𝑚𝑟3
                                                                         (3.5.13) 

Where 

𝐽𝑒𝑓𝑓
2 = 𝐿2 − (

√𝜋𝐺𝑀𝑚

𝑐
)

2

                                                                       (3.5.14) 

Precession of Planets and Binary Pulsars 

Owing to the above equivalence between gravitomag- netism and 

GTR, we interpret the precession of the peri- helion of planets and binary 

pulsars as a Larmor-like precession, and not due to the GTR 

interpretation as due to the curvature of space-time. We may attribute this 

pre- cession as due to the precession of gravitational moment (mass) in a 

gravitomagnetic field induced by the massive objects (Sun). In 

electromagnetism, the Larmor prece- ssion is defined by [48] 
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𝜔 =
𝑒

2𝑚
𝐵.                                                                                                  (3.5.15) 

While in gravitation (since 𝐵𝑔 𝑖𝑠 𝑖𝑛 𝑆−1 𝑎𝑛𝑑 𝑒 ⟺ 𝑚) it is defined as [49] 

𝜔𝑔 = 2𝜋 = (
𝐵𝑔

2
) =

𝜋𝑣3

𝑟𝑐2
,       𝐵𝑔 =

𝑣𝑎

𝑐2
=

𝑣3

𝑟𝑐2
,                                 (3.5.16) 

Where 𝜔𝑔 𝑖𝑠 𝑖𝑛 𝑟𝑎𝑑/𝑠𝑒𝑒𝑐) 𝑎𝑛𝑑 

𝑣2

𝑟
                                                                                                                   (3.5.17) 

The precession rate in Equation (3-5-16) can be written as 

𝜔𝑔 = 𝜋 (
2𝜋𝐺𝑀

𝑇𝑐2𝑟
) =

𝑆∅𝑔

𝑇
,                                                                        (3.5.18) 

Where 𝑇 =
2𝜋𝑟

𝑣
 is the period of revolution. This corresponds to a 

precession angle of  

𝑆∅𝑔 = 𝜋 (
2𝜋𝐺𝑀

𝑐2𝑟
) 𝑟𝑎𝑑/𝑠,                                                                     (3.5.19) 

That is equal to 
𝜋

3
 of the curvature effect, and for elliptical orbit 𝑟 =

𝑎(1 − 𝑒2). 

Deflection of α-Particles by the Nucleus 

We would like here to interpret the deflection of light by the Sun gravity 

in an analogous way to the deflection of 𝛼 − particles by the nucleus, 

without resorting to the GTR calculation. The deflection angle of 𝛼-

particles by a nucleus is given by [50] 

∆𝜃𝑒 =
4𝑘𝑒𝑄

𝑚𝑏𝑣2
                                                                                              (3.5.20) 

where Q is the nucleus charge, v the α -particle speed, k Coulomb 

constant, and b the impact factor. The corre- sponding gravitational 

analog for the deflection of light will be. 

 𝑣 → 𝑐, 𝑒 → 𝑚 , 𝑄 → 𝑀 , 𝑘 → 𝐺 [51] 

∆𝜃𝑒 =
4𝑘𝐺𝑀

𝑏𝑐2
                                                                                             (3.5.21) 
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without resorting to GTR calculation. Recall that, accord- ing to 

Equivalence Principle, all particles in gravity acce- lerate without 

reference to their mass (whether massive or massless). Therefore, it 

doesn’t matter whether light has a mass or not. The relation in Equation 

(3-5-21) is the same as the relation obtained by GTR as in Equation (3-5-

4). The minimum distance 𝛼 particles can approach the nucleus is given 

by equating the kinetic energy and the Coulomb potential energy that 

yields the relation 

𝑏𝑒 =
2𝑘𝑞1𝑞2

𝑚𝑣2
                                                                                          (3.5.22) 

In gravitation and for light scattered by the Sun gravity, the above 

relation gives (𝑞1 → 𝑚  , 𝑞2 → 𝑀 𝑎𝑛𝑑 𝑘 → 𝐺) 

𝑏𝑔 =
2𝐺𝑀

𝑐2
                                                                                                (3.5.23) 

This is nothing but the Schwarzschild distance that no particle can 

exceed. Therefore, the complete analogy be- tween gravitation and 

electricity is thus realized. In this context, we have shown recently that 

the Larmor dipole radiation has a gravitational analogue [20]. Similarly, 

the same analogy exists between hydrodynamics and electro- magnetism 

[52]. 

The spin of planets had been known since long time (1851) that was 

demonstrated by Foucault’s pendu- lum. According to our model one 

assumes the gravito- magnetism to be produced by moving planets as the 

magnetic field produced by moving charge. We then obtained the 

gravitational Ampere’s and Faraday’s laws of gravi- tomagnetism. The 

gravitomagnetic moment of a planet due to its orbital motion is given    

by [53] 

𝜇𝐿 =
𝑣3𝑟2

2𝐺
                                                                                                  (3.5.24) 

For circular orbit, Equation (24) yields 
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𝜇𝐿 = (
𝑀

2𝑚
)𝐿                                                                                              (3.5.25) 

In a similar manner the gravitomagnetic moment due to spin will be twice 

the above value (analogous to electromagnetism) 

𝜇𝑆 = 𝑔𝑆 (
𝑀

2𝑚
)𝑆                                                                                        (3.5.26) 

where 𝑔𝑆 defines some gyro-gravitomagnetic ratio that is independent of 

the planet’s mass. If we assume the precession of planets is a spin-orbit 

interaction, then we can equate 𝜇𝑆𝐵𝑔 (assuming the angle to be zero) to 

the potential term arising from the gravitomagnetic force in Equation    

(3.5.11). This yields, for circular orbit, 

𝑆 = (
4𝜋

3𝑔𝑆

𝑚

𝑀
 ) 𝐿.   𝑆 = (

4𝜋

3𝑔𝑆

𝐺𝑚2

𝑣
 )                                                     (3.5.27) 

3.6 Generation of Elementary Particles inside Black Holes at 

Planck Time 

Using string theory by treating particles as quantum strings and 

using generalized special relativity a useful expression for self-energy 

was found. The critical radius of a star when particles are created is that 

of the black hole. The elementary particles formation should also take 

place at Planck time which also conforms with that proposed by big bang 

model. [16] 

Model Universe with A cosmology Constant  

Generalized special relativistic energy (GSR) energy, relation is 

given by 

𝐸 = 𝑚0𝑐
2 (1 +

2𝜑

𝑐2
 ) (1 +

2𝜑

𝑐2
−

𝑣2

𝑐2
 )

−
1
2

                                        (3.6.1) 

Where the Newtonian potential takes the form 
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𝜑 = −
𝑀𝐺

𝑅
                                                                                                 (3.6.2) 

𝐸 = 𝑚0𝑐
2 (1 +

2𝑀𝐺

𝑅𝑐2
 ) (1 −

2𝑀𝐺

𝑅𝑐2
−

𝑣2

𝑐2
 )

−
1
2

                                    (3.6.3) 

Minimizing 𝐸 w.r.t 𝑀 yields 

𝑑𝐸

𝑑𝑀
= 𝑚0𝑐

2

[
 
 
 
 

−
2𝐺
𝑅𝑐2

(1 −
2𝑀𝐺
𝑅𝑐2 −

𝑣2

𝑐2  )

1
2

+
(1 −

2𝑀𝐺
𝑅𝑐2 ) (−

1
2
) (

−2𝐺
𝑅𝑐2 )

(1 −
2𝑀𝐺
𝑅𝑐2 −

𝑣2

𝑐2  )

2
3

]
 
 
 
 

= 0 

Thus 

−
2𝐺
𝑅𝑐2 (1 −

2𝑀𝐺
𝑅𝑐2 −

𝑣2

𝑐2  ) +
2𝐺
𝑅𝑐2 (1 −

2𝑀𝐺
𝑅𝑐2 )

(1 −
2𝑀𝐺
𝑅𝑐2 −

𝑣2

𝑐2  )

2
3

= 0 

If one consider 

𝑣2 ≪ 𝑐2 

−
2𝐺

𝑅𝑐2
(1 −

2𝑀𝐺

𝑅𝑐2
−

𝑣2

𝑐2
 ) +

2𝐺

𝑅𝑐2
(1 −

2𝑀𝐺

𝑅𝑐2
) = 0 

−
𝐺

𝑅𝑐2
(1 −

2𝑀𝐺

𝑅𝑐2
 ) = 0 

The requires  

2𝑀𝐺

𝑅𝑐2
= 1 

2𝑀𝐺 = 𝑅𝑐2                                                                                                  (3.6.4) 

Thus the mass which makes 𝐸 minimum is 

𝑀 =
𝑅𝑐2

2𝐺
                                                                                                       (3.6.5) 

Consider also the generalized special relativity energy 𝐸 equilibrium 

condition by minimizing 𝐸with respect to radius 𝑟 from equation (3-6-3), 

when the star particles speed are small compared to speed of light 
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𝑣2

𝑐2
≪ 1 

Thus  

𝐸 = 𝑚0𝑐
2 (1 −

2𝑀𝐺

𝑅𝑐2
 )

1
2
                                                                        (3.6.6) 

𝑑𝐸𝑟

𝑑𝑀
= 𝑚0𝑐

2 (
2𝑀𝐺

𝑟2𝑐2
 ) (

1

2
) (1 −

2𝑀𝐺

𝑟𝑐2
 )

−
1
2
 

𝑑𝐸𝑟

𝑑𝑀
=

𝑚0𝑐
2 (

2𝑀𝐺
𝑟2𝑐2  ) (

1
2
) (1 −

2𝑀𝐺
𝑟𝑐2  )

(1 −
2𝑀𝐺
𝑟𝑐2  )

3
2

= 0 

Thus the radius which makes E minimum is given by 

1 −
2𝑀𝐺

𝑟𝑐2
= 0 

The critical radius is thus given by 

𝑟𝑐 =
2𝑀𝐺

𝑐2
                                                                                                    (3.6.7) 

(This is the black hole radius) 

But the critical mass is given by equation (3-6-7), i.e. 

𝑀 = 𝑚𝑐 =
𝑐2𝑟𝑐
2𝐺

                                                                                           (3.6.8) 

Hence from (3-6-8) 

2𝑚𝑐𝐺 = 𝑐2𝑟𝑐                                                                                                (3.6.9) 

The condition governing the equilibrium of the universe, from (3-6-9) 

and (3-9-4) we get 

𝑚𝑐𝑅

𝑀𝑟𝑐
= 1                                                                                                     (3.6.10) 

Where 𝑀 and 𝑅 are the mass and radius of the universe respectively. The 

mass of the universe (𝑀 = 2.2 × 1056g) and the radius (𝑅 = 1.6 × 

1028cm) According to generalized general relativity (GGR) there is a 
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short range repulsive gravitational force beside long range attractive 

gravity force given by [54]: 

𝜑𝑠 =
𝑐1
𝑟

𝑒
−

𝑟
𝑟𝑐                                                                                               (3.6.11)  

𝜑𝐿 = −
𝐺𝑀

𝑟
                                                                                               (3.6.12)  

𝜑 = 𝜑𝑠 + 𝜑𝐿 =
𝑐1

𝑟
𝑒

−
𝑟
𝑟𝑐 −

𝐺𝑀

𝑟
 

𝜑 =
1

𝑟
[𝑐1𝑒

−
𝑟
𝑟𝑐 −

𝐺𝑀

𝑟
]                                                                              (3.6.13) 

For small radius 𝑟 or strictly speaking small 
𝑟

𝑟𝑐
 

𝑒
−

𝑟
𝑟𝑐 = 1 −

𝑟

𝑟𝑐
                                                                                             (3.6.14) 

Hence  

𝜑 =
1

𝑟
[𝑐1 − 𝑐1

𝑟

𝑟𝑐
− 𝐺𝑀]                                                                        (3.6.15) 

To secure finite self-energy 𝜑 at small 𝑟, one requires 

𝑐1 = 𝐺𝑀                                                                                                      (3.6.16) 

Thus the star self-energy is given by 

𝜑 = −
𝑐1

𝑟𝑐
=

𝐺𝑀

𝑟𝑐
                                                                                        (3.6.17) 

Since the star is a particle at rest thus the minimization of 𝐸 requires (see 

equation (3-6-2), (3-6-4) and (3-6-17)) 

𝜑 = −
𝑐1
𝑟𝑐

= −
𝑐2

2
                                                                                      (3.6.18) 

For photon (𝑣 = 𝑐) thus one gets 

𝜑 =
𝑐2

2
                                                                                                        (3.6.19) 

From equation (3 -6 -17) and (3 - 6 -18) 

𝜑 = −
𝐺𝑀

𝑟𝑐
= −

𝑐2

2
                                                                                   (3.6.20) 
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Thus the critical radius is given by 

𝑟𝑐 =
2𝐺𝑀

𝑐2
                                                                                                  (3.6.21) 

(This is the black hole radius) 

Since 𝑟𝑐 should be small as shown by equation (3-6-14), thus requires 

𝑟𝑐 < 1   ,
2𝐺𝑀

𝑐2
< 1 

𝑀 <
𝑐2

2𝐺
                                                                                                     (3.6.22) 

Thus there is a critical mass 

𝑀𝑐 =
𝑐2

2𝐺
                                                                                                     (3.6.23) 

Above it the particle rest mass energy cannot be formed form 

potential.We see from equation (3-6-4) that the present radius of the 

universe should be 

𝑅0 =
2𝐺𝑀

𝑐2
~1028𝑐𝑚                                                                               (3.6.24) 

Which conforms to observations. Consider a star as consisting of photons 

gas, such that the critical radius is related to the wave number according 

to the relation 

𝑝 = 𝑚0𝑐 = ℏ𝑘 =
ℏ

𝑟𝑐
     , 𝑘 =

1

𝑟𝑐
                                                    (3.6.25) 

For oscillating string the energy takes the form 

𝐸𝑟𝑐 = 𝑚0𝑐 =
ℏ𝑐

𝑟𝑐
                                                                                       (3.6.26) 

Hence  

𝑟𝑐 =
ℏ

𝑚0𝑐
                                                                                                    (3.6.27) 

The photon which obeys quantum laws equations (3-6-19) and (3-6-1) 

gives 
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𝐸 =
2𝑚0𝑐

2

√2 − 1
= 2𝑚0𝑐

2                                                                             (3.6.28) 

This conforms with the fact that photons can produce particle 

pairs.Newton's law of potential gives 

𝐸𝑟𝑐 = 𝑈(𝑟) = −𝐺
𝑚1𝑚2

𝑟
                                                                        (3.6.29) 

Gravity force is also given by 

𝐹 = −𝐺
𝑚1𝑚2

𝑟2
.
𝑟

𝑟
                                                                                    (3.6.30) 

If  

𝑚1 = 𝑚2 = 𝑚𝑐 

Thus (3-6-26) and (3-6-29) given 

𝐸𝑟𝑐 =
𝐺𝑚𝑐

2

𝑟𝑐
=

ℏ𝑐

𝑟𝑐
                                                                                      (3.6.31) 

Therefore 

ℏ𝑐 = 𝐺𝑚𝑐
2                                                                                                   (3.6.32) 

Hence  

𝑚𝑐 = (
ℏ𝑐

𝐺
)

1
2
                                                                                              (3.6.33) 

Where  

ℏ = 1.05 × 10−27𝑒𝑟𝑔. 𝑠, 𝑐 = 3 × 1010𝑐𝑚. 𝑆−1, 𝐺

= 6.67 × 10−8𝑒𝑟𝑔. 𝑐𝑚. 𝑔−1 

𝑚𝑐 = (
ℏ𝑐

𝐺
)

1
2
 ~2.2 × 10−5𝑔                                                                  (3.6.34) 

(Equivalent Planck’s mass) 

Which matches the proposed value. The same equation applies to 

Planck’s length, namely 

𝑅𝑃 =
𝐺𝑃𝑀𝑃

𝑐2
~10−33𝑐𝑚                                                                           (3.6.35) 
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(Planck’s length)At distances smaller than this scale the gravitational 

interaction should be stronger than the quantum effects [2].Also the 

critical distance 𝑟𝑐 is equal 

𝑟𝑐 =
ℏ

𝑚𝑐𝑐
= (

𝐺ℏ

𝑐3
)

1
2
~1.6 × 10−33𝑐𝑚                                                  (3.6.36) 

(Equivalent Planck’s length) One can calculate the critical density 𝜎𝑐 of 

the material when the particles are considered as a hollow sphere 

surrounded by thin layer or membrane. In this case the surface density is 

given by 

𝜎 =
𝑚𝑐

𝐴
  ,   𝑚𝑐 =

ℏ

𝑟𝑐𝑐
    , 𝐴 = 4𝜋𝑟𝑐

2                                               (3.6.37) 

𝜎 = (
ℏ

𝑟𝑐𝑐
) (

1

4𝜋𝑟𝑐2
) =

ℏ

4𝜋𝑟𝑐
3𝑐

                                                                  (3.6.38) 

Where  

𝑚𝑐 =
ℏ

𝑟𝑐𝑐
                                                                                                     (3.6.39) 

𝜎 =
𝑚𝑐

4𝜋𝑟𝑐2
~6.7 × 1059𝑔. 𝑐𝑚−2                                                             (3.6.40) 

Thus the critical density satisfies 

𝜎𝑐 =
𝑚𝑐

𝑟𝑐2
= (

𝑐7

𝐺3ℏ
)

1
2

 

Where  

𝜎𝑐 = 4𝜋𝜎~8.4 × 1060𝑔. 𝑐𝑚−2                                                              (3.6.41) 

According to this model the universe began at a time and specific place, 

at the critical point (𝑟𝑐 , 𝑡𝑐), where all fundamental forces are unified into 

a single force. The Planck time is thus given by 

𝑡𝑐 =
𝑟𝑐
𝑐

= (
𝐺ℏ

𝑐3
)

1
2
(
1

𝑐
) = (

𝐺ℏ

𝑐5
)

1
2
~5.4 × 10−44𝑆                               (3.6.42) 

The value speed of light 𝑐 at the critical point (𝑟𝑐 , 𝑡𝑐). Is given by 
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𝑐 =
𝑟𝑐
𝑡𝑐

~3 × 1010𝑐𝑚. 𝑆−1                                                                    (3.6.43) 

It is also very interesting to note that according to equations        

(3-6-11) - (3-6-21) that the stars having short and long range gravity force 

have finite self-energy that is formed when the radius is very small, 

provided that the mass should be less than a critical value. This means 

that only elementary particles having very small radius and very small 

mass can have self-energy due to the transformation of potential field 

energy to rest mass energy, where equations (3-6-17), (3-6-19) and (3-6-

20) gives: 

𝑉 = 𝑚𝜑 =
𝑚𝑐2

2
=

𝐺𝑀𝑚

𝑟𝑐
 

It is very interesting to note that the radius for self-energy is that of black 

holes. It is also very interesting note that, using quantum oscillator and 

relativistic energy expressions (3-6-25) and (3-6-26) beside Newtonian 

potential relation a useful expressions for Planck mass, length and time 

are obtained in equations (3-6-34), (3-6-36) and (3-6-42). The numerical 

values of these parameters agree with standard values. 

3.7 Energy-Energy-Momentum Relation and Eigen 

Equations In a Curved Space Time 

With the aid of the expression of time and distance in a curved 

space time a useful expression of energy and momentum Eigen equation 

similar to that is a curved space is found. These expressions are used to 

derive the corresponding relations in the Euclidean space. The 

corresponding expressions of energy-momentum relations for both 

curved and Euclidian space gives a relation between energy and 

momentum similar to the energy and momentum Eigen equations. The 

expression of mass in a curved space is similar to that of the generalized 

relativity. [55] 
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3.8 Dirac Generalized Relativistic Quantum Wave Function 

Which Gives Right Electrons Number in Each Energy Level 

by Controlling Quantized Atomic Radius 

A linear energy-momentum Dirac relation was found using generalized 

special relativistic energy expression equation was used to find Dirac 

generalized relativistic quantum equation. This equation enables 

obtaining the number of particles for each atomic energy level. The wave 

function give an expression for the number of electrons in each energy 

levels if the atomic radius is quantized and satisfy certain constraints. It 

shows also that the stable atom corresponds to the minimum relativistic 

Einstein energy. [56] 

3.9 United Nations Educational Scientific and Cultural 

Organization And International Atomic Energy Agency.  

To describe our cosmos a generalized gravitational model 

depending on a quadratic lagrangian has been constructed. Solutions of 

this model are non-singular and do not possess the horizon, entropy, 

flatness or the age problem. 

Unlike general relativity, where the flat space is characterized by a 

critical density, the flat space here does not contain matter at all. 

Moreover, the expansion of the universe is caused by matter only while in 

the case of empty space the expansion ceases. According to this approach 

vacuum energy, , decays where its initial value is very large and at 

present is negligibly small in conformity with both particle physics and 

present observations. The solutions are non-singular and do not possess 

the horizon, flatness and age problem [57]. 
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3.10 Gravitomagnetism:  

A novel explanation of the precession of planets and binary pulsars.  

Owing to gravitomagnetism, the precession of planetary and 

pulsars orbits is due to the gravitomagnetic field.  

The model unifies gravitational laws with electromag-netism ones 

through analogy. According to this unification, a phenomenon occurring 

in one discipline is typical to that of the other discipline The 

gravitomagnetic field resulting from the orbital and spin motion of 

celestial objects will induce a Larmor-like precession of the axis of 

rotation of these objects, analogous to the precession predicted by GTR, 

which is attributed to the curvature of space-time. The calculated values 

of the present gravitational phenomena according to our generalized 

Newton law of gravitation are in close agreement with those calculated 

from GTR. [58] 

3.11 Massive photons propagation in gravitational field 

The photons which are massive, moving inse a gravity field behave 

like the radiation emitted by a black hole. A black hole emitting such a 

radiation develops an entropy that is found to increase linearly with black 

hole mass, and inversely with the photon mass. The created photons 

could be seen as resulting from quantum fluctuation during an uncertainty 

time. The gravitational force on the photon is that of an entropic nature, 

and varies inversely with the square of the entropy. The power of the 

massive photon radiation is found to be analogous to Larmor power of an 

accelerating charge.  

The photon placed under gravity behaves like a particle with mass 

that depends on the gravitational acceleration.  Unlike the standard 

entropy for a black hole that is directly proportional to M2, the entropy of 

a black hole emitting such a radiation is found to be directly proportional 
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to its mass, M. Thus, its entropy is additive like other thermodynamic 

systems. The created particle near the black hole horizon takes too long 

time to be emitted. A single photon needs about one year to be created 

near the Earth surface. The gravitational force on the massive photon is 

found to be of a quantum character. The radiated power by massive 

photon is analogous to that of the classical Larmor power. Using the 

Heisenberg uncertainty relation, the power radiated by a black hole as 

massive photon is greater than that of a massless photon, due to the black 

body radiation,  
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CHAPTER FOUR 

Gravitation Waves and Origin of Mass 

4.1 Introduction  

The behavior of exotic objects like black holes and pulsars beside 

binary stars need a new version to explain their behavior. This model tries 

to explain some of the new astronomical observations associated with 

these exotic objects.   

4.2 Emission of Gravitational waves by Black holes  

Gravitational waves 

The ideal model treats black holes as perfect spherical bodies. This 

requires finding the radial parts of the generalized general relativity 

equations. Thus, the covarient derivative of the scalar curvature R along 

the radius r according to equation takes the form  

𝑅;𝑖;𝑗 =
𝜕𝑅;𝑗

𝜕𝑥 𝑗
− Γ𝑖𝑗

𝜆𝑅;𝜆                                                                                    (4.1.1) 

𝑅;0 = 𝑅;𝑡 =
𝜕𝑅

𝜕𝑡
= 𝑅 ′ 

𝑅;1 = 𝑅;𝑟 =
𝜕𝑅

𝜕𝑟
= 𝑅 ∙ 

𝑅;𝑡;𝑖 =
𝜕𝑅;𝑡

𝜕𝑥 𝑖
− Γ𝑡𝑖

𝜆𝑅;𝜆                                                                                     (4.1.2) 

𝑅;𝑡;𝑡 =
𝜕𝑅′

𝜕𝑡
− Γ𝑡𝑡

𝜆𝑅;𝜆 = 𝑅′′ − Γ𝑡𝑡
𝜆𝑅;𝜆 

= 𝑅′′ − Γ𝑡𝑡
𝑡𝑅′ − Γ𝑡𝑡

𝑟𝑅∙ 
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𝑅;𝑡, 𝑟 =
𝜕𝑅′

𝜕𝑟
− Γ𝑟𝑡

𝜆𝑅;𝜆 = 𝑅∙′ − Γ𝑡𝑟
𝑡𝑅′ − Γ𝑡𝑟

𝑡𝑅∙ 

𝑅;𝑟, 𝑡 =
𝜕𝑅∙

𝜕𝑡
− Γ𝑟𝑡

𝜆𝑅;𝜆 = 𝑅∙′ − Γ𝑟𝑡
𝑡𝑅′ − Γ𝑟𝑡

𝑟𝑅∙ 

𝑅;𝑟; 𝑟 =
𝜕𝑅∙

𝜕𝑟
− Γ𝑟𝑟

𝜆𝑅;𝜆 = 𝑅∙∙ − Γ𝑟𝑟
𝑡 𝑅′ − Γ𝑟𝑟

𝑟𝑅∙                                             (4.1.3) 

2

𝑅 = 𝑔𝜌𝜎𝑅;𝜌; 𝜎 = 𝑔𝑡𝑡𝑅;𝑡; 𝑡 + 𝑔𝑡𝑟𝑅;𝑡; 𝑟 + 𝑔𝑟𝑡𝑅;𝑟; 𝑡 + 𝑔𝑟𝑟𝑅;𝑟; 𝑟 

=
𝛽𝑅 + 2𝛾

6𝛼
                                                                                                 (4.1.4) 

But 

𝑔𝑡𝑟 = 0    𝑔𝑟𝑡 = 0                                                                                        (4.1.5) 

Thus  

2

𝑅 = 𝑔𝑡𝑡𝑅;𝑡; 𝑡 + 𝑔𝑟𝑟𝑅;𝑟; 𝑟         

= 𝑔𝑡𝑡[𝑅′′ − Γ𝑡𝑡
𝑡𝑅′ − Γ𝑡𝑡

𝑟𝑅∙] + 𝑔𝑟𝑟[𝑅∙∙ − Γ𝑟𝑟
𝑡 𝑅′ − Γ𝑟𝑟

𝑟𝑅∙]                              (4.1.6) 

From tensor relations, one gets  

Γ𝜆𝜇
𝛾 =

1

2
𝑔𝜈𝛾[𝜕𝜆𝑔𝜇𝑣 + 𝜕𝜇𝑔𝜆𝑣 − 𝜕𝑣𝑔𝜆𝜇] 

Γ𝑡𝑡
𝑡 =

1

2
𝑔𝜈𝑡[𝜕𝑡𝑔𝑡𝑣 + 𝜕𝑡𝑔𝑡𝑣 − 𝜕𝑣𝑔𝑡𝑡

] 

=
1

2
𝑔𝑡𝑡[2𝜕𝑡𝑔𝑡𝑡 − 𝜕𝑡𝑔𝑡𝑡

] =
1

2
𝑔𝑡𝑡

𝜕𝑔𝑡𝑡

𝜕𝑡

=
1

2
𝑔𝑡𝑡𝑔𝑡𝑡

′  

Γ𝑡𝑡
𝑟 =

1

2
𝑔𝜈𝑡[𝜕𝑡𝑔𝑡𝑣 + 𝜕𝑡𝑔𝑡𝑣 − 𝜕𝑣𝑔𝑡𝑡

] =
1

2
𝑔𝑟𝑟[𝜕𝑡𝑔𝑡𝑟 + 𝜕𝑡𝑔𝑡𝑟 − 𝜕𝑟𝑔𝑡𝑡

] = −
1

2
𝑔𝑟𝑟𝑔𝑡𝑡

∙  
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Γ𝑟𝑟
𝑡 =

1

2
𝑔𝜈𝑡[𝜕𝑟𝑔𝑟𝑣 + 𝜕𝑟𝑔𝑟𝑣 − 𝜕𝑣𝑔𝑟𝑟

] =
1

2
𝑔𝑡𝑡[𝜕𝑟𝑔𝑟𝑡 + 𝜕𝑟𝑔𝑟𝑡 − 𝜕𝑡𝑔𝑟𝑟

]

= −
1

2
𝑔𝑡𝑡

𝜕𝑔𝑟𝑟

𝜕𝑡

= −
1

2
𝑔𝑡𝑡𝑔𝑟𝑟

′  

Γ𝑟𝑟
𝑟 =

1

2
𝑔𝑟𝑟[𝜕𝑟𝑔𝑟𝑟 + 𝜕𝑟𝑔𝑟𝑟 − 𝜕𝑟𝑔𝑟𝑟

] =
1

2
𝑔𝑟𝑟

𝜕𝑔𝑟𝑟

𝜕𝑟
                                        (4.1.8) 

1

2
𝑔𝑟𝑟𝑔∙𝑟𝑟 

The equation of motion in the field is given by 

𝑑𝑥𝜆

𝑑𝑡2
+ 𝑐2Γ00

𝜆 = 0                                                                                          (4.1.9) 

The motion in one dimension towards the center in given by  

𝑑2𝑥1

𝑑𝑡2
+ 𝑐2Γ00

1 = 0                                                                                        (4.1.10) 

where 

𝑥1 = 𝑟                𝑥0 = 𝑖𝑐𝑡                                                                         (4.1.11) 

In view of equation (4.1.8) 

Γ𝑡𝑡
𝑟 = Γ00

1 = Γ00
𝑟 = −

1

2
𝑔𝑟𝑟

𝜕𝑔00

𝜕𝑟
                                                                  (4.1.12) 

Thus from eqn (4.1.10), (4.1.11) and (4.1.12) 

�̈� =
𝑑2𝑟

𝑑𝑡2
= −

𝑐2

2
𝑔𝑟𝑟∇𝑟𝑔00 = −

𝑐2

2
𝑔𝑟𝑟

𝜕𝑔00

𝜕𝑟
= −

𝑐2

2
𝑔𝑟𝑟∇𝑔00 

Thus from eqn (4.1.8) 

Γ𝑡𝑡
𝑟 = −

1

2
𝑔𝑟𝑟𝑔𝑡𝑡

∙ = −
1

2
𝑔𝑟𝑟

𝜕𝑔00

𝜕𝑟
= −

1

2
𝑔𝑟𝑟∇𝑔00                                       (4.1.13) 
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Γ𝑡𝑡
𝑟 =

�̈�

𝑐
=

𝑔𝑟𝑟
2 �̈�

𝑐2
                                                                                             (4.1.14) 

Using (4.1.8), one also gets  

Γ𝑟𝑟
𝑡 = −

1

2
𝑔𝑡𝑡𝑔𝑟𝑟

′ = −
1

2
𝑔00

𝜕𝑔𝑟𝑟

𝜕𝑡
                                                                (4.1.15) 

The proper interval is given by 

𝑑𝑠2 = 𝑔𝜇𝑣𝑑𝑥𝜇𝑑𝑥𝑣                                                                                      (4.1.16) 

For spherically symmetric direction independent, the proper interval is 

given by 

𝑑𝑠2 = 𝑔00𝑑
2𝑥0 + 𝑔𝑟𝑟𝑑𝑟2 

= 𝑐2𝑔00𝑑𝑡2 + 𝑔𝑟𝑟𝑑𝑟2                                                                                  (4.1.17) 

For astronomical object in the form of sphere  

𝑔𝑟𝑟 = 1           𝑔𝑟𝑟 = 1                                                                                 (4.1.18) 

Thus from egn (4.1.13) 

�̈� = −
𝑐2

2

𝜕𝑔00

𝜕𝑟
                                                                                             (4.1.19) 

𝑔00 = −
2

𝑐2
∫ �̈� 𝑑𝑟 + 𝑐0                                                                              (4.1.20) 

To satisfy Minkoskian limit in vacuum or free space  

�̈� = 0           𝑐0 = 1                                                                                     (4.1.21) 

Where 

𝑔00 = 𝜁00 = 1                                                                                              (4.1.22) 

Thus  
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𝑔00 = −
2

𝑐2
∫ �̈� 𝑑𝑟 + 𝑐0                                                                              (4.1.23) 

= −
2

𝑐2
∫ �̈� 𝑑𝑟 + 1 

But  

𝐹 = 𝑚�̈� = −∇𝑉 = −𝑚∇∅                                                                      (4.1.24) 

There fore  

𝑔𝑡𝑡 = 𝑔00 =
2

𝑐2
∫∇∅𝑑𝑟 + 1 =

2

𝑐2
∫

𝜕∅

𝜕𝑟
𝑑𝑟 + 1 =

2∅

𝑐2
+ 1               (4.1.25) 

Thus this relation (4.1.25) is valid even for strong field. Using the formal 

definitions (4.1.6) 

2

𝑅 = 𝑔𝑡𝑡 [𝑅 ′′ −
𝑔𝑡𝑡

2

𝜕𝑔
𝑡𝑡

𝜕𝑡
𝑅 ′ −

1

2
𝑔𝑟𝑟

𝜕𝑔
𝑡𝑡

𝜕𝑟
𝑅 ∙] + 𝑔𝑟𝑟 [�̈� +

1

2
𝑔𝑡𝑡

𝜕𝑔
𝑟𝑟

𝜕𝑡
𝑅 ′ −

1

2
𝑔𝑟𝑟

𝜕𝑔
𝑟𝑟

𝜕𝑟
𝑅 ∙] (4.1.26) 

Since 

𝑔𝑟𝑟 = 𝑔𝑟𝑟 = 1                                                                                              (4.1.27) 

𝑔𝑡𝑡 = 𝑔00 = 𝑔00
−1 = (1 +

2∅

𝑐2
) = 𝑔00(𝑟) 

It follows that 

𝜕𝑔𝑡𝑡

𝜕𝑡
= 0            

𝜕𝑔𝑟𝑟

𝜕𝑡
= 0            

𝜕𝑔𝑟𝑟

𝜕𝑡
= 0                                             (4.1.28) 

2

𝑅 = 𝑔00 [𝑅′′ −
1

2
(∇𝑔00

)𝑅∙] + 𝑅 ∙∙                                                     (4.1.29) 

Since for linear Lagrangian GFE reduced to GR, and since the non-linear 

term gives successful cosmological model  

Thus, one select L to be 
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𝐿 =  −𝛼𝑅2 + 𝛽𝑅 + 𝛾                                                                               (4.1.30) 

Thus the  

2

𝑅 =
𝛽𝑅 + 2𝛾

6𝛼
                                                                                     (4.1.31) 

Hence  

𝑔00 [𝑅′′ −
1

2
(∇𝑔00

)𝑅 ∙] + 𝑅∙∙ =
𝛽𝑅 + 2𝛾

6𝛼
                                               (4.1.32) 

But  

𝑔00 = 𝑔00
−1                                                                                                     (4.1.33) 

𝑅′′ −
1

2
(∇𝑔00

)𝑅∙ + 𝑅 ∙∙ = (
𝛽𝑅 + 2𝛾

6𝛼
)𝑔00                                                (4.1.34) 

To simplify this equ, one can split R to time and r dependent parts to get 

𝑅(𝑟, 𝑡) = ℎ(𝑡)𝑓(𝑟)                                                                                  (4.1.35) 

Thus  

𝑅=h𝑓,   𝑅∙ = ℎ𝑓 ∙           𝑅∙∙ = ℎ𝑓 ∙∙                                                             (4.1.36) 

Farther simplification can be made by considering the field out-side the 

source. Hence  

(𝛾 = 0)                                                                                                      (4.1.37) 

ℎ′′ 𝑓 +
1

2
(∇𝑔00

)ℎ𝑓 ∙ + 𝑔00ℎ𝑓 ∙∙ =
𝑔00𝛽𝑅

6𝛼
                                               (4.1.38) 

dividing both sides by (hf) yields  

ℎ′′

ℎ
+

1

2
(∇𝑔00

)
𝑓 ∙

𝑓
+

𝑔00𝑓
∙∙

𝑓
= 𝑔00𝑏3                                                           (4.1.39) 
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Where 

𝑏3 =
𝛽

6𝛼
                                                                                                       (4.1.40) 

Considering the particles as strings, the time metric is given by 

𝑔00 = 1 +
2∅

𝑐2
= 1 +

2

𝑐2
(
1

2

𝑘

𝑚
𝑟2) 

= 1 +
𝑘

𝑚
𝑟2 = 1 + 𝑎1𝑟

2                                                                            (4.1.41) 

Where  

𝑎1 =
𝑘

𝑐2𝑚
                                                                                                    (4.1.42) 

Therefore  

∇𝑔00 = 2𝑎1𝑟                                                                                                (4.1.43) 

One can solve eqn (4.1.39) by suggesting  

ℎ = 𝐴0𝑒
−𝑖𝑤𝑡                                                                                                  (4.1.44) 

thus 

ℎ′ =
𝜕ℎ

𝜕𝑥 .
=

𝜕ℎ

𝑖𝑐𝜕𝑡
= −

𝑖𝑤ℎ

𝑖𝑐
=

−𝑤ℎ

𝑐
                                                       (4.1.45) 

ℎ′′ =
−𝑤ℎ′

𝑐
=

𝑤2

𝑐2
ℎ                                                                                 (4.1.46) 

ℎ′′ = −𝑏4ℎ                                                                                                 (4.1.47) 

Thus  

𝑏4 =
−𝑤2

𝑐2
                                                                                                 (4.1.48) 
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Thus from eqn (4.1.39) and (4.1.46) 

𝑔00𝑓
∙∙  +

1

2
(∇𝑔00

)𝑓 ∙ = (𝑔00𝑏3 + 𝑏4)𝑓                                                    (4.1.49) 

To solve eqn (4.1.49) consider the solution  

𝑓 = (𝑟 + 𝑏1)𝑒
𝑏

2
𝑟 

𝑓 ∙ = (𝑏1
)𝑒𝑏

2
𝑟 + 𝑏2(𝑟 + 𝑏1)𝑒

𝑏
2
𝑟  

= (𝑏1 + 𝑏1𝑏2 + 𝑏2𝑟)𝑒
𝑏

2
𝑟 

𝑓 ∙∙ = (𝑏2
)𝑒𝑏

2
𝑟 + (𝑏1 + 𝑏1𝑏2 + 𝑏2𝑟)𝑏2𝑒

𝑏
2
𝑟 

𝑓 ∙∙ = (𝑏1𝑏2 + 𝑏1𝑏2
2 + 𝑏2 + 𝑏2

2𝑟)𝑒𝑏
2
𝑟                                                          (4.1.50) 

A direct insertion of eqn (4.1.50) in (4.1.49) gives  

(1 + 𝑎1𝑟
2)(𝑏1𝑏2 + 𝑏1𝑏2

2 + 𝑏2 + 𝑏2
2𝑟) + 𝑎1𝑟(𝑏1 + 𝑏1𝑏2 + 𝑏2𝑟)

= (𝑏3 + 𝑎1𝑏3𝑟
2)(𝑟 + 𝑏1

) + 𝑏4
(𝑟 + 𝑏1

)                           (4.1.51) 

𝑏1𝑏2 + 𝑏1𝑏2
2 + 𝑏2 + 𝑏2

2𝑟 + 𝑎1𝑏1𝑏2𝑟
2 + 𝑎1𝑏1𝑏2

2𝑟2 + 𝑎1𝑏2𝑟
2 + 𝑎1𝑏2

2𝑟3

+ (𝑎1𝑏1 + 𝑎1𝑏1𝑏2
)𝑟 + 𝑎1𝑏2𝑟

2 

= 𝑏3𝑟 + 𝑏3𝑏1 + 𝑎1𝑏3𝑟
3 + 𝑎1𝑏1𝑏3𝑟

2 + 𝑏1𝑏4 + 𝑏4𝑟                                  (4.1.52) 

(𝑏1𝑏2 + 𝑏1𝑏2
2 + 𝑏2

) + (𝑏2
2 + 𝑎1𝑏1 + 𝑎1𝑏1𝑏2

)𝑟

+ (𝑎1𝑏1𝑏2 + 𝑎1𝑏1𝑏2
2 + 𝑎1𝑏2 + 𝑎1𝑏2

)𝑟2 + 𝑎1𝑏2
2𝑟3 

= (𝑏1𝑏3 + 𝑏1𝑏4
) + (𝑏3 + 𝑏4)𝑟 + 𝑎1𝑏1𝑏3𝑟

2 + 𝑎1𝑏3𝑟
3                             (4.1.53) 

Taking the coefficients of 𝑟𝑛 

𝑟0: 𝑏1𝑏2 + 𝑏1𝑏2
2 + 𝑏2 = 𝑏1𝑏3 + 𝑏1𝑏4                                                        (4.1.54) 

𝑟: 𝑏2
2 + 𝑎1𝑏1 + 𝑎1𝑏1𝑏2 = 𝑏3 + 𝑏4                                                             (4.1.55) 

𝑟2: 𝑎1𝑏1𝑏2 + 𝑎1𝑏1𝑏2
2 + 2𝑎1𝑏2 = 𝑎1𝑏1𝑏3                                                   (4.1.56) 
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𝑎1𝑏2
2 = 𝑎1𝑏3                                                                                                 (4.1.57) 

From (4.1.57):  

𝑏3 = 𝑏2
2                                                                                                         (4.1.58) 

From (4.1.56): 

𝑎1𝑏1𝑏2 + 𝑎1𝑏1𝑏2
2 + 2𝑎1𝑏2 = 𝑎1𝑏1𝑏2

2                  

𝑎1𝑏1𝑏2 + 2𝑎1𝑏2 = 0 

𝑏1 = −2                                                                                                      (4.1.59) 

From (4.1.55), (4.1.58), (4.1.59) 

𝑏2
2 − 2𝑎1 − 2𝑎1𝑏2 = 𝑏2

2 + 𝑏4 

𝑏4 = −2𝑎1 − 2𝑎1𝑏2                                                                                  (4.1.60) 

From (4.1.54), (4.1.58), (4.1.59): 

−2𝑏2 − 2𝑏2
2 + 𝑏2 = −2𝑏2

2 − 2𝑏4 

−2𝑏4 = −𝑏2                    

𝑏4 =
1

2
𝑏2                                                                                                     (4.1.61) 

Sub (4.1.61) in (4.1.60) 

1

2
𝑏2 = −2𝑎1 − 2𝑎1𝑏2 

𝑏2 = −4𝑎1 − 4𝑎1𝑏2 

(1 + 4𝑎1)𝑏2 = −4𝑎1 

𝑏2 =
−4𝑎1

(1 + 4𝑎1)
                                                                                         (4.1.62) 
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Thus from eqn (4.1.42) 

𝑏1 =
−4(

𝑘
𝑚𝑐2)

1 +
4𝑘
𝑚𝑐2

=
−4𝑘

𝑚𝑐2 + 4𝑘
= −𝛾0                                                      (4.1.63) 

Thus inserting eqn (4.1.63) and (4.1.59) 

𝑓 = (𝑟 − 2)𝑒−𝛾
0
𝑟                                                                                         (4.1.64) 

In view of eqns (4.1.37), (4.1.45) and (4.1.64) 

𝑅 = 𝐴0𝑒
−𝑖𝑤𝑡(𝑟 − 2)𝑒−𝛾

0
𝑟 

𝑅 = 𝐴0
(𝑟 − 2)𝑒−𝛾

0
𝑟𝑒−𝑖𝑤𝑡                                                                             (4.1.65) 

Which describes stationary, standing, spatial decaying, time oscillating 

gravitational wave. 

Equation (4.1.26) can be written using curved space coordinate  

𝑑𝑡𝑐 = √𝑔𝑡𝑡 . 𝑑𝑡 

𝑑𝑟𝑐 = √𝑔𝑟𝑟 . 𝑑𝑟                                                                                           (4.1.66) 

To get 

2

𝑅 =
𝜕2𝑅∙

𝜕𝑡𝑐
2
−

1

2
𝑔𝑡𝑡

𝜕𝑔𝑡𝑡

𝜕𝑡𝑐

 
𝜕𝑅

𝜕𝑡𝑐

−
1

2
𝑔𝑡𝑡

𝜕𝑔𝑡𝑡

𝜕𝑟𝑐

𝜕𝑅

𝜕𝑟𝑐

  

+
𝜕2𝑅 ∙

𝜕𝑟𝑐
2
+

1

2
𝑔𝑟𝑟

𝜕𝑔𝑟𝑟

𝜕𝑡𝑐

 
𝜕𝑅

𝜕𝑡𝑐

−
1

2
𝑔𝑟𝑟

𝜕𝑔𝑡𝑡

𝜕𝑟𝑐

𝜕𝑅

𝜕𝑟𝑐

 

2

𝑅 = 𝑅′′ −
1

2
𝑔𝑡𝑡𝑔′

𝑡𝑡
𝑅′ −

1

2
𝑔𝑡𝑡𝑔∙

𝑡𝑡
𝑅∙ + 𝑅∙∙ +

1

2
𝑔𝑟𝑟𝑔′

𝑟𝑟
𝑅′ −

1

2
𝑔𝑟𝑟𝑔∙

𝑟𝑟
𝑅∙       (4.1.67) 

 

 



72 

Following Schwarzschild solution  

𝑔𝑟𝑟 = 𝑔𝑡𝑡
−1 = (1 +

2∅

𝑐2
)

−1

= (1 +
2𝑉

𝑚𝑐2
)

−1

                                             (4.1.68) 

Where one assume the black hole as a harmonic oscillater, with  

𝑉 =
1

2
𝑘𝑟2                                                                                                    (4.1.69) 

Since the potential V is part of the total energy 𝑚𝑐2 thus 

𝑉 < 𝑚𝑐2 

𝑚𝑐2 >
1

2
𝑘𝑟2 

𝑚 >
𝑘𝑟2

2𝑐2
                                                                                                      (4.1.70) 

In this case  

𝑔𝑟𝑟 ≈ 1        𝑔𝑟𝑟 ≈ 1          𝑔𝑡𝑡 ≈ 1        𝑔𝑡𝑡 ≈ 1                                        (4.1.71) 

Therefore equation (4.1.67) becomes  

2

𝑅 = 𝑅′′ + 𝑅∙∙                                                                                        (4.1.72) 

In view of eqn (4.1.31), with (𝛾 = 0) 

𝑅′′ + 𝑅∙∙ =
𝛽

6𝛼
𝑅                                                                                        (4.1.73) 

Suggesting again 

𝑅 = 𝑓(𝑟)ℎ(𝑡) = 𝑓ℎ                                                                                (4.1.74) 

In view of eqns (4.1.41) and (4.1.74) 

𝑓ℎ′′ + ℎ𝑓 ∙∙ = 𝑏3𝑓ℎ 



73 

ℎ′′

ℎ
+

𝑓 ∙∙

𝑓
= 𝑏3                                                                                                (4.1.75) 

Using equations (4.1.45) and (4.1.47) beside (4.1.48) 

𝑓 ∙∙

𝑓
= 𝑏3 + 𝑏4 = 𝑏3 −

𝑤2

𝑐2
                                                                           (4.1.76) 

One can solve this equation by suggesting  

𝑓 = 𝑒 𝑖𝑘𝑟 

𝑓 ∙ = 𝑖𝑘𝑓                          𝑓 ∙∙ = −𝑘2𝑓                                                         (4.1.77) 

A direct substitution of (4.1.77) in (4.1.76) gives  

−𝑘2 = 𝑏3 −
𝑤2

𝑐2
 

𝑘2 =
𝑤2

𝑐2
− 𝑏3 =

𝑤2

𝑐2
−

𝛽

6𝛼
                                                                        (4.1.78) 

In view of equations (4.1.45), (4.1.74) and (4.1.78) 

𝑅 = 𝐴0𝑒
𝑖(𝑘𝑟−𝑤𝑡)                                                                                              (4.1.79) 

Thus gravitational waves can be generated provided that 

𝑘2 > 0                                                                                                         (4.1.80) 

According to eqn (4.1.78) this require 

𝑤2

𝑐2
−

𝛽

6𝛼
> 0 

𝑤2 >
𝛽

6𝛼
𝑐2                                                                                                  (4.1.81) 

Since  
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𝑤 =
2𝜋𝑐

𝜆
= 𝑐𝑘                                                                                           (4.1.82) 

Let the critical wave number defined by  

𝑘𝑐
2 =

𝛽

6𝛼
                                                                                                      (4.1.83) 

thus condition (4.1.81) can be rewritten as  

𝑤2

𝑐2
> 𝑘𝑐

2 

𝑘2 > 𝑘𝑐
2                        

𝑘 > 𝑘𝑐                                                                                                          (4.1.84) 

1

𝜆
>

1

𝜆𝑐

 

𝜆 < 𝜆𝑐                                                                                                         (4.1.85) 

4.2. Black hole and Elementary particle self-energy and 

radius  

When the field is weak, the time metric is given by  

g00 = (1 +
2∅

c2
)

1

2

                                                                                          (4.2.1) 

The total energy can be given by 

E =
g00m0c

2

√g00 −
v2

c2

                                                                                              (4.2.2) 

With mo, c, v standing for the rest mass, speed of light in vacuum, and 

the particle velocity respectively. 
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Consider the particle to be at rest, as far as we need the minimum energy. 

Thus according to equations (4.2.1) and (4.2.2) and since (v=0). it follows 

that 

E = (1 +
2∅

c2
)

+
1

2

m0c
2                                                                                  (4.2.3) 

When the elementary particle is affected by short range nuclear field ∅n 

and gravitational field ∅g, in this case 

∅ =
c0

r
ec

1
r −

GM

r
                                                                                          (4.2.4) 

Where the nuclear and gravitational potentials per unit mass are given by 

∅n =
c0

r
ec

1
r                                                                                                     (4.2.5) 

∅g = −
GM

r
                                                                                                   (4.2.6) 

Then by defining  

m0c
2 = c2                                                                                                       (4.2.7) 

Equation (4.2.3) and (4.2.4) beside (4.2.7) gives  

E = (1 +
2c0

c2r
ec

1
r − 2

GM

c2r
)

+
1

2

c2                                                                  (4.2.8) 

The radius for which the energy is minimum can be found by minimizing 

E 

dE

dr
=

c2

2
(1 +

2c0

c2r
ec

1
r − 2

GM

c2r
)

−1

2

(
−2c0

c2r
ec

1
r +

2c0c1

c2r
ec

1
r + 2

GM

c2r2
)       (4.2.9) 

The radius which make the energy minimum is thus given by setting E is 

minimum when  
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dE

dr
= 0                                                                                                        (4.2.10) 

This is satisfied when 

−2c0

c2r
ec

1
r +

2c0c1

c2r
ec

1
r + 2

GM

c2r2
= 0                                                           (4.2.11) 

Since the radii of elementary particles are so small, or if one consider 

small radius black hole, one has  

r → 0                                                                                                           (4.2.12) 

Thus one can use the Tayler expansion for the exponential function to get 

ec
1
r ≅ 1 + c1r                                                                                              (4.2.13) 

A direct substitution of this in (4.2.11) gives  

−c0
(1 − c1r)(1 + c1r) + GM = 0                                                         (4.2.14) 

1 − c1
2r2 =

GM

c0

                                                                                         (4.2.15) 

r2 =
c0 − GM

c0c1
2

 

Thus, the radius at which the energy is minimum is given by  

r0 = r =
1

c1

√1 −
GM

c0

                                                                             (4.2.16) 

It is very interesting to note that for massive body additional the radius 

become smaller due to strong gravity attraction. Means that the radius of 

massive black hole is very small. To this find the additional self-mass one 

can consider the energy in equation (4.2.3) to having vacuum term, which 

is given by 
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∅v =
Vv

M
                                                                                                      (4.2.17) 

Thus according to equation (4.2.4) and (4.2.17) the total potential is given 

by 

∅ = ∅n + ∅n + ∅v =
c0

r
ec

1
r −

GM

r
+

Vv

M
                                                 (4.2.18) 

Inserting (4.2.18) in (4.2.3) gives  

E = m0c
2 (1 +

2∅

c2
)

1

2

= m0c
2 (1 +

2c0c1

c2r
ec1r + 2

GM

c2r2
+

2Vv

c2M
)

1

2

                  (4.2.19) 

Thus the mass which makes the energy minimum, requires  

dE

dM
= 0                                                                                                        (4.2.20) 

dE

dM
=

1

2
m0c

2 (1 +
2

c2
(
c0

r
ec1r +

GM

r
+

Vv

M
))

1

2

(−
G

r
−

Vv

M2
) (

2

c2
)                  (4.2.21) 

G

r
+

Vv

M2
= 0 

Vv

M2
= −

G

r
 

M2

Vv

= −
r

G
 

M2 = −
rVv

G
 

M = √−
rVv

G
                                                                                               (4.2.22) 
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Since the mass is real and not imaginary. This requires vacuum energy to 

be attractive, i.e 

Vv = −V0                                                                                                      (4.2.23) 

M = √
rV0

G
                                                                                                   (4.2.24) 

It is clear that the mass increases when vacuum energy increases which 

means that mass is generated by vacuum. Thus, more vacuum energy 

generates more massive body  

Where r is the radius for minimum energy i.e (see equation 4.2.16) 

r = r0 =
1

C0

√1 −
GM

C0

                                                                             (4.2.25) 

M = √
r0V0

G
                                                                                                (4.2.26) 

M2 =
r0V0

G
=

V0

GC1

√1 −
GM

C0

                                                                  (4.2.27) 

Since short range nuclear force in much stronger than the gravity force, it 

follows that 

GM

C0

≪ 1                                                                                                     (4.2.28) 

M = √
V0

GC1

                                                                                                (4.2.29) 
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This equation again shows that mass is generated by vacuum. The more 

vacuum energy generates more massive body, but more generally the 

mass can be found by squaring equation (4.2.27) to get 

M4 =
V0

2

(GC1
)2

(1 −
GM

C1

) 

(GC1
)2

V0

2 M4 +
G

C0

M − 1 = 0                                                                       (4.2.30) 

Consider now elementary particles. 

Since the mass of elementary particles is so small. Thus 

M4 ≪ M                                                                                                       (4.2.31) 

Therefore  

M =
C0

G
                                                                                                        (4.2.32) 

However for massive black holes  

M4 > M                                                                                                        (4.2.33) 

Thus equation (4.2.30) gives 

M4 =
V0

2

(GC1
)2

 

M = ±√
V0

GC1

                                                                                            (4.2.34) 

Which again gives an expression similar to eqn (4.2.29) but with 

additional negative mass solution. This gives possibility of generating 

anti particles which canforms with elementary particles theories which 

propose that particles are created by photons in pairs. However black 
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holes have positive mass. But one can also propose existence of anti-

particles black holes with negative masses. 

One can also try to find the radius of elementary particles and black holes 

in the presence of vacuum and strong nuclear force. This is done when 

the generalized potential special relativity (gpsr) energy is given by 

E = m0c
2 (∅0 −

c2

r
ec

1
r)

1

2

                                                                         (34.2.5) 

Where  

c2 =
2c0

c2
                    ∅0 = 1 +

2

c2

∅v                                                        (4.2.36) 

Here outside the body (c0 = 0) 

It is important to note that, the shortrange force in eqn (4.2.33) is the 

attractive gravity force, to find the minimum radius under the effect of a 

shortrange attractive gravity force, one applies the condition of minimum 

energy, where 

dE

d𝑟
=

1

2
m0c

2 (∅0 −
c2

r
ec

1
r)

−1

2

(
c2

r2
ec

1
r −

c2c1

r
ec

1
r)                                    (4.2.37) 

For minimum energy  

dE

d𝑟
= 0 

1

2
m0c

2 (∅0 −
c2

r
ec

1
r)

−1

2

(
c2

r2
ec

1
r +

c2c1

r
ec

1
r) = 0            

c2

r2
[ec

1
r − c1re

c
1
r] = 0                                                                                  (4.2.38) 
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For the black hole r may by sometimes large, thus  

ec
1
r(1 − c1r) = 0 

1 − c1r = 0 

r =
1

c1

                                                                                                         (4.2.39) 

Thus, the minimum radius is given by  

r0 =
1

c1

                                                                                                         (4.2.40) 

For (out-side the body c0 = c) for small distances 

ec
1
r = (1 + c1r)                                                                                           (4.2.41) 

(1 + c1r)(1 − c1r) = 0 

(1 − c1
2r2) = 0 

c1
2r2 = 1 

r = ±
1

c1

                                                                                                      (4.2.42) 

Again the minimum radius is given by 

r0 =
1

c1

                                                                                                        (4.2.43) 

In view of eqn (4.2.35) it is clear that stronger attractive force requires c1 

to be large. This makes r0 very small. This is quite reasonable, since 

stronger attractive force causes the body to be shrinked more thus causing 

its radius to be very small. Equation (4.2.42) gives additional possibility 

by all awing a possibility of having short attractive force which diminish 

itself away from the source. Thus requires according to equation (4.2.35) 
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c1 = −c3                                                                                                  (4.2.44) 

Thus according to eqn (42) the minimum radius is given by 

r0 =
1

c3

                                                                                                         (4.2.45) 

4.3 Discussion 

Using Reimann geometry the generalized field equation of the 

gravitational field has been exhibited in a very general form in equations 

(4.1.4). Restricting our-selves to spherically symmetric bodies the GFE is 

reduced to eqn (4.1.33). The time metric g00 is shown by equations 

(4.1.10-4.1.25) to represent all fields including strong fields. The GFE 

has been solved by using the method of speration of variables, by 

splitting R to time and radial parts as shown by eqn (4.1.36). The time 

part solution (4.1.45) suggests time oscillating field. However the radial 

solution (4.1.64) indicates radially decaying wave. Equation (4.1.65) 

shows generation of gravitational waves by black holes in the form of 

non-travelling standing radial decaying wave, but when one uses curved 

coordinates (see eqn (4.1.66)), and bearing in mind that the potential  

energy is less that the total energy, the GFE (4.1.67) reduces to (4.1.72). 

The solution (4.1.79) predicts generation of travelling oscillating 

gravitational field provided that the black hole mass exceeds certain 

critical mass 𝑚𝑐 =
𝐾𝑟2

2𝑐2
 as eqn (4.1.70) indicates. The gravitational waves 

generated should also have shorter wave length less than a certain critical 

value determined by eqn (4.1.85). 

4.4 Conclusion: 

The theoretical model based on potential dependent special 

relativity can successfully construct anon singular model to describe the 
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behavior and find the self-energy and the radius of generated elementary 

particles and black holes. According to this model the self-mass is 

dependent on vacuum energy and gravitational and short-range force 

coupling constants. The radius depends on the short-range coupling 

constant, as well as the mass in some cases also. 

The theoretical model based on the GFE shows that a gravitational 

wave in the form of standing time oscillating and radially decaying wave 

can be generated by any black hole. However if the black hole a quire a 

mass larger than acritical value, a travelling gravitational wave can be 

generated with wave lengths, shorter than a certain critical value.   

4.5 Future Work  

The constructed model can be used as well to study the behavior of 

the binary stars and pulsars as well as neutron stars. The Plank era and a 

quantum cosmological model at the early universe specially at Planck 

time where unification takes place and the elementary particles are 

generated can also be constructed. The behavior of vacuum beside its 

history can also be envistigated 
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