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 صلختسملا
 

 لان دق ةفیحنلا تاضراعلل يئاشنلاا لیلحتلا ناف اذھل ً،اعویش ةیئاشنلاا ءاضعلأا رثكأ يھ تاضراعلا   

 لامحأو ،ةیروحم تاھوشت ببست ةیروحم لامحلأ ةضرعم تاضراعلا .میمصتلا ضرغبً اریبكً امامتھا

 ةجتان روحملا ىلع ةیدومعلا تاھوشتلا هذھ ،روحملا ىلع ةیدومع تاھوشت ببست روحملا ىلع ةیدومع

 ةسارد نكمی .ءانحنلاا تاھوشت ببست يتلاو ءانحنلاا موزعو صقلا تاھوشت ببست يتلا صقلا ةوق ببسب

 .ةنرملا تاضراعلل يطخلا يئاشنلاا لیلحتلا دنع رخلاا نم لقتسم لكشب تاھوشتلا هذھ طامنأ

 يلونرب رلوأ ةیرظن مادختساب ةفیحنلا تاضراعلل ءانحنلاا هوشت طمن ةسارد تمت ةحورطلاا هذھ يف     

)Euler-Bernoulli theory( ةحازلإل ةددحملا رصـانعلا ةقیرط مادختسـاب ةفیحنلا مایبلاا لیلحتل كلذو 

 ءانحنلا يئاشـنلإا كولسـلاب ؤبنتللو ةفیحنلا تاضـراعلل يكیتاتسـلاا يطخلا لیلحتلل جمانرب ریوطت ضرغب

 يلولاا ةجردلا ةئف نم ةیرارمتسا ةلكشم اھناب ةفنصم يھ ءانحنلاا تاھوشتو ،تاضراعلا

 inuity problem)cont 1(Class C لــضافتلاو ةیــسأرلا ةحازلإا نم لكل ةیرارمتــسا بلطتت يتلاو 

  .)نارودلا( هوشتلا ينحنم يف لیملا وھو ةیسأرلا ةحازلإل لولأا

 ناتدقع ھب دجوی ثیح ةفیحنلا تاضراعلل ددحم رصنع ساسأ ىلع ددحملا رصنعلا ةغایص تمت   

 ةحازلإا ةلاد مادختسا مت .نارودلاو ةیسارلا ةحازلإا امھو ةدقع لكل ةیرح ةجرد نانثا ددعو فارطلأاب

 مت اضیأو ددحملا رصنعلل ةمولعم ریغلا ةیرحلا تاجردل )Hermit( تمریھل دودحلا ةددعتم ةبعكملا

 متو  .)نارودلا( هوشتلا ينحنم يف لیملاو ةیضرعلا ةحازلاا نم لكل ةیرارمتسلاا ةلكشم لحل اھمادختسا

 (MATLAB R2019b) رادصا بلاتاملا مادختساب ةددحملا رصانعلا ةقیرطب يبوساح جمانرب ریوطت

 جمانربلا جئاتن نم ققحتلا مت امك ،(m-file) تافلملا ماظن مادختساب ةجمربلا طمن دامتعا متً اضیاو

 دناسمو لامحلأ ةضرعم ةفلتخم تاضراع عست لیلحت مت امك ،ةروشنم ةیعجرم جئانت عم اھتنراقمو

 اھیلع لوصحلا مت يتلا جمانربلا جئاتنل ةنراقم دقع مت كلذكو ،جمانربلا جئاتن نم دكأتلا ضرغب ةفلتخم

 جئاتنلاو جمانربلا جئاتن نیب مات قفاوت كلانھ نا ثیحو ةقباطتم ةبش تناكو ةروشنملا ةیعجرملا جئاتنلا عم

 تاضراعلا لیلحت دنع دیج هءادأ ناك ناتدقع ھب يذلا دودحملا رصنعلا نا ظحول لیلحتلا دنعو ،ةیعجرملا

  .ةروشنملا ةیعجرملا جئاتنلا عم ھجئاتن ةنراقم دنع اذھ نم دكأتلا مت امك ،ةفیحنلا
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        The analysis of thin beam structures become of great interest for designing 
purposes, because beams are most common type of structural component. 
Beams are generally subjected to both, axial loads causes (axial deformation) 
and transverse loads causes (transverse deformation). The latter is resulted from 
both shear forces (shear deformation) and bending moment (flexural 
deformation). For linearly elastic beams, these modes of deformation can be 
examined independently from one another. 
         In this research, Euler-Bernoulli beam flexural mode of deformation has 
been examined using finite element displacement methods (FEDM) to develop 
a linear static finite element computer program to predict bending behavior of 
thin beams under transverse loading. This bending deformation is classified as 
class C1 problem (continuity C1), that require continuity of both the transverse 
displacement and the fist derivatives of transverse displacement (slope). 
         The finite element formulation is based on two-node thin beam bending 
element with two degrees of freedom per each node (transverse vertical 
displacement 𝑤!" and rotation 𝜃!"). Hermite cubic polynomial displacement 
function used for the element unknown degrees of freedom and to satisfy this 
class of continuity problem, the resulting element is conforming element and 
the convergence will be monotonic convergence.  
       The approach used in the deviation of the equation adopting the principle 
of minimum potential energy and the generalized coordinate approach.  
        A finite element computer program was developed and implemented using 
MATAB R2019b adopting m-file mode of programming.  
        The verification of the generated developed program results was compared 
with known published analytical exact solution results and published finite 
element analysis results for thin beam bending. Nine different numerical beam 
examples were conducted for this purpose with different loading and 
supporting conditions.  
        The developed program results obtained are in good agreement with 
published, and there is no significance difference between the results.  
        We conclude that using two nodes Euler-Bernoulli beam element was 
showed good performance after it used to analyze thin straight beams for 
bending.  This was conformed when comparing results obtained with known 
published exact analytical solution. 
 
 
 
 

ABSTRACT 
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1 CHAPTER ONE  
 

   INTRODUCTION 
 
 

1.1 Introduction 
     The analysis of beam structures become of great interest for designing 
purposes, because beams are most common type of structural component, 
particularly in civil engineering, and they are widely used in many structures 
as supporting members for floors in building, decks in bridges, wings in 
aircraft, or axels for cars [1].  
     A beam is structural members for which one of the dimensions, the length 
is significantly greater than the other two. One of the beam theories is 
Timoshenko beam theory which includes the effect of transverse shear 
deformation and Euler-Bernoulli beam theory which only considers bending 
deformation and neglects the effect of transverse shear. These theories are used 
to model the kinematic behavior of beams (deformation) and to develop 
governing equation for structural beams. Beam are generally two-dimensional 
structure subjected to both axial and transverse loads. The axial loading force 
parallel to reference line (natural axis), which causes axial internal forces just 
like truss structures, while the transverse loading gives rise to shear forces and 
bending moment (flexural moment). A beam can deform in two basic modes 
namely an axial deformation and deflection. For linearly elastic beams, these 
modes of deformation can be examined independently from one another [1]. 
The main interest in this research to examine Euler-Bernoulli flexural mode of 
deformation of thin beams subjected to transverse loads using finite element 
displacement method (FEDM). 
       Euler-Bernoulli beam theory makes reasonable assumption that yields 
equations that quite accurately predict beam behavior for most practical thin 
beam’s problems [2]. Flexural deformation of Euler-Bernoulli beam is class C1 
problem (continuity C1). The deformation of a beam must have continuous 

slope 𝜃" = #$!

#%
 as well as continuous deflection 𝑤"at any neighboring beam 

elements. This denotes that the Slope 𝜃"is the first derivative of transverse 
deflection 𝑤", both deflection 𝑤" and slope 𝜃" selected as                                    
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nodal variable. Therefore, Hermite interpolation function is used to satisfy this 
class of continuity problem [3].   
      Most problems do not yield to analytical solution or it would require a 
disproportionate amount of effort due to the complex nature of governing 
differential equations (mathematical model) that arise from complex geometry, 
multiple materials complexities, complex boundary and initial conditions for 
which we cannot obtain exact solution (the exact behavior at any point within 
the system). Therefore, numerical simulation provides alternative means of 
finding numerical approximated solution of the physical system implemented 
on digital computer to evaluate the solution of the governing equation of a 
process and estimate its characteristics [4]. 
      The finite element method is a numerical procedure for solution of 
differential equations to obtain approximate numerical solution of the problem 
to simulate the response of the physical system. The method is ideally suited 
for implementation on a digital computer. The finite element method has 
become the method of choice for solving many engineering problems quickly 
and efficiently [4, 5]. The method has become one of the leading methods in 
computer-oriented mechanics for the development of many scientific and 
engineering branches over the last decades [6]. 
      The finite element model is created by dividing the structure into finite 
number of elements, the element is inter connected by nodes only. The section 
of elements for modeling the structure depends upon the behavior and geometry 
of the structure being analyzed, also the structure can be modeled by combining 
different types of elements to approximate aspects of structural behavior. The 
modeling pattern, which is generally called mesh for the finite element method, 
The accuracy of the result obtained from the analysis depends upon the 
selection of the finite element type and the number of elements of the mesh. 
The equilibrium equations can easily be solved using digital computers without 
having to solve large number of partial differential equations by hand. The 
displacement at each node of the finite element model is obtained, Then the 
stresses and strain can be obtained for each element [5]. 
        Due to the large number of equations, computer use is an essential part of 
the finite element analysis [7], it helps us to program FEM and solve FEM 
problem quickly and efficiently, and present the computer-generated results in 
attractive graphics, and also help readers visualize the numerical finite element 
results in two- and three-dimensional plots [8].  
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    The developed Finite element Program code is written in MATLAB 
program, in batch-oriented job mode using (m-files), because it provides a 
structured organization of the functions, easily execution of changes and reruns. 
MATLAB allow us to focus in the FEM rather than on the programming details 
[9]. 
       MATLAB is high-level programming language and also an interactive 
environment for numerical computation, visualization, and application 
development.  MATLAB is convenient to write and understand FEA program, 
it is designed for dealing with matrices and vectors with ease, these algebraic 
equations constitute major parts of the FEA program and the majority of 
engineering systems, this advantage make it particularly suited for 
programming the finite element method [3,8], and also provides an extensive 
library of predefined function to make technical programming tasks easier and 
more efficient [10]. 
         The significance of this research is emphasized by the importance of 
studying linear static analysis of thin beams subjected to transverse loads. The 
element used is two-node beam bending element, the finite element formulation 
adopts the generalized coordinate approach and the principle of potential 
energy to derive the element equations. 
     Recently, MATLAB had been used by many researches in developing finite 
element program. This research is an attempt to extend these programs to cater 
for linear static analysis of thin beams. A comparison is made between results 
obtained by two-node beam element and known published analytical exact 
solution results and exact solution. 
 

1.2 Problem Statement  
     One of the reasons for FEM’s popularity is that the methods result in 
computer programs versatile in nature that can solve many practical problems 
with a small effort [5]. Nowadays, structural engineers will encounter advanced 
commercial finite element software whose capabilities, and the theories behind 
its development, are far superior [8]. 
    Using finite element computer programs without proper understanding of  
the theory behind them is very dangerous [5].  Some of the available 
commercial finite element packages do not provide an insight into the 
formulation and solution methods, and do not provide deeper insight into the 
main interface between the customers of FEM program and the codes itself. 
Therefore, user must realize that the core of the analysis, the user must 
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understand what happens behind the scenes, often referred to as the black box 
[7]. 
      Developing finite element computer program will be of great help to 
understand the theory behind FEM, its programming implementation, and its 
application using the software. The accuracy of numerical approximated 
solution results depends very much on a deep understanding of the 
mathematical governing the theory and on the practical application using 
computer software at the expense of theory, to obtain reliable efficient analysis 
results [8]. 
 
1.3 Research Objective 
The objectives of this research are: 

1. To review Euler-Bernoulli beam theory assumptions and its modes of 
deformation.  

2. To develop displacement finite elements suitable for the linear static 
analysis of thin beam to examine their flexural mode of deformation. 

3. To develop and implement a finite element formulation into a computer 
program using MATLAB program. 

4. To validate developed program by analyzing a number models of thin 
beam and comparing the results obtained with known published results. 

5. To bridge the gap between the theory of the finite element method and its 
mathematical formulation, its programming implementation and its 
application using software, to obtain reliable efficient analysis results. 
 

1.4 Methodology of Study 
The methodology of the study is composed of the following Steps: 

1. Carrying out an extensive literature review referring to references source 
of information such as books, journals, research papers, and Internet web 
site, for beam theories, FEM, computer programming, MATLAB 
program. 

2. Drive the explicit Euler-Bernoulli linear static finite element formulation 
of thin beams by adopting the principle of minimum potential energy and 
the generalized coordinate approach.  

3. Developing a linear static finite element program to analyze thin beams 
using MATLAB program. 

4. Validate the developed program by selecting nine thin beam examples as 
a case study with different loading and supporting conditions. 
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1.5 Outline of Thesis  
This research consists of six chapters, the content of which can be summarized 
as follows: 

Chapter One: covers general introduction. 
Chapter Two: contains literature review. 
Chapter Three: describes the development of linear finite element 
formulation of thin beam structures. 
Chapter Four: describes the development and implementation of linear 
finite element computer program. 
Chapter Five: contain a discussion of the results obtained by program. 
Chapter Six: presents the conclusions and recommendations drawn from 
this study and the suggestion for the future work.  

 
Appendices of this research: 

Appendix I: Finite element computer program  
Appendix II: Program output results. 
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2 CHAPTER TWO  
 

   LITERATURE REVIEW 
 

2.1 General Introduction 
     Examining the flexural mode of deformation of Euler-Bernoulli beam using 
a finite element displacement method (FEDM), to develop a finite element 
computer program for the linear static analysis of thin beams using MATLAB 
is the main objective of this research. To bridge the gap between the theory of 
the finite element method, its mathematical formulation, its programming 
implementation and its application using software, to obtain reliable efficient 
analysis results. 
     The advent of the digital computer has revolutionized engineering curricula. 
In this day, the analysis of all but the simplest problem is carried out with the 
aid of a computer program that not only speed up the calculations but also 
allows the display of results in fancy graphics. 
      The current available commercial finite element software is capable of 
simulating a large variety of complex problems. These commercial software 
packages come with advanced pre-processing abilities to facilitating the data 
input and post-processor abilities to presenting the results. Some of the 
available commercial finite element packages do not provide an insight into the 
formulation and solution methods, and do not provide deeper insight into the 
main interface between the customers of FEM program and the codes itself. 
Therefore, to achieve proficiency in FEA, the user must realize that the core of 
the analysis, the user must understand what happens behind the scenes, often 
referred to as the black box, to obtain reliable efficient analysis results [5, 7,11]. 
 

2.2 Linear Structural Analysis 
    In this research, linear static analysis is adopted, therefore the finite element 
formulation for the analysis of thin beam is under assumption small deflection 
(small rotation and small displacement) and elastic material properties (linear 
analysis). The connecting linear relationships is shown in a Tonti diagram 
Figure 2.1. The important fundamental consequences of the assumption 
linearity [12], as follows: 
1. The geometry of the structural system: is assumed not to change because 

the displacements are infinitesimal, and equilibrium is expressed in the    
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un-deformed geometry, consequently, there is no need to distinguish 
between a material particle and the point in space that it occupies. 

2. The definitions of strain and stress are unique. 
3. Strains are linearly related to displacements. 
4. Stresses are linearly related to forces. 
5.  The response of the structural system to any applied force or displacement 

boundary condition is unique. 

 
Figure 2.1: Tonti diagram for linear relationships of solid and structure 

continuum mechanics. 

2.3 Beam Introduction 
    The analysis of these beam structures become of great interest for designing 
purposes, because beams are most common type of structural component, 
particularly in Civil Engineering, and they are widely used in many structures 
as supporting members for floors in building, decks in bridges, wings in 
aircraft, or axels for cars [7]. Examples of beam structure as shown in Figure 
2.2 Figure 2.3, Figure 2.4, and Figure 2.5 below.  

 
Figure 2.2:  Example of beam in building structure. 
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Figure 2.3:  Continuous beam bridge under loading. 

 
Figure 2.4:  Cantilever beam in Airplane wings is clamped at one end and free 

at the other. 

 
Figure 2.5:  A simply supported beam bridge structure. 

        Beams can be straight or curved depend on their longitudinal axis, as 
shown in Figure 2.6 and Figure 2.7. Beams can be subjected to a combination 
of loading actions such as biaxial bending, transverse shears, axial stretching, 
and possibly torsion. If the internal axial force is compressive, the beam has 
also to be designed to resist buckling. If the beam is subject primarily to 
bending and axial forces, designed to be Two-dimensional beams or beam-
column (planer frame). Spatial beam support transverse loads that can act on 
arbitrary direction along the cross section [12].  

 
Figure 2.6:  Straight beam with straight longitudinal axis. 
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Figure 2.7: Curved beam with curved longitudinal axis. 

   Beams supporting condition can be cantilever, simple supported, 
overhanging, continuous, and fixed ended as shown in Figure 2.8 below: 

 
Figure 2.8: Examples of beam supporting conditions. 

    Beam cross-section can be constant such as in Prismatic beam, also it can 
vary along beam length [13]. Beam cross-section shape can be of any arbitrary 
shapes such as (rectangular, square, circular, I-section, T-section, L-section, 
and U-section) as is shown in Figure 2.9 below. Beam can be made from 
various types materials such (steel, concrete, timber, aluminum, and 
composite). Beam can have laminated behave.  

 
Figure 2.9:  Examples of cross-section shapes for a beam member. 
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      Two-dimensional beams are line members (members for which one of the 
dimensions, the length is significantly greater than the other two). Beam are 
generally subjected to both axial and transverse loads. The axial loading force 
parallel to reference line, which causes axial internal forces just like truss 
structures, while the transverse loading gives rise to shear forces and bending 
moment. Two-dimensional beams can be described as members on a plane, 
such as planer frames or beam-column. These beams can be deformed in two 
basic modes namely an axial deformation and deflection, as shown in Figure 
2.10. For linearly elastic beam, these two modes of deformation can be 
examined independently from one another. This is why many textbooks only 
examine the flexural mode of deformation for beam structures. The axial mode 
of deformation gives the same equations as those obtained for one-dimensional 
elasticity [1].  

 
Figure 2.10: beam two-modes of deformation (axial deformation and 

deflection). 

     In Euler-Bernoulli beam, the transverse loads are acting perpendicular to the 
member’s principal axis. These, transverse loading can be due to concentrated 
force 𝐹, concentrated moment 𝑀, distributed moments 𝑚(𝑥), and distributed 
force 𝑞(𝑥) [14], as shown in Figure 2.11. 

 
Figure 2.11: (a) A beam with generic transverse loads (b) cross-sectional area. 

    Beams resist transverse loads and carry it to the supports through bending 
action is opposed to twisting or axial effects. This bending moment is the 
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primary mechanism that transports loads to the supports and it produces 
compressive longitudinal stresses in one side of the beam and tensile stresses 
in the other, these two regions are separated by neutral surface of zero stress. 
The combination of tensile and compressive stresses produces an internal 
bending moment [12], as it is shown in Figure 2.12.  

 
Figure 2.12: Bending action for a beam subjected to transverse loads. 

2.4 Classical Beam Theories  
      Beams are actually three-dimensional bodies, as shown in Figure 2.13. To 
model such structural member, it is necessarily involving some form of 
approximation to the underlying physics, by representing the deformed beam 
by the deformed reference line called elastic curve [1], as shown in Figure 2.14. 
The two theories used to model the kinematic behavior of beams (deformation), 
and to develop governing equation for structural beams [1, 14, 15], as follow:  

1. Euler-Bernoulli beam theory: is used for thin beams also called (shallow 
beams or shear-rigid beams).  

2. Timoshenko beam theory: is used for deep beams also called (thick 
beams or shear-flexible beams). 

 
Figure 2.13: Three-dimensional beam geometry in local axis. 
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Figure 2.14: Beam deformation is represented by one-dimension reference 

line. 

   To determine the suitability of the theory for idealizing the mechanical 
response of between thin beams and deep beams under transverse loads by 
using the following relation [15]:  

1. For thin beams: 
 𝐿

ℎ
> 10 (2.1) a 

2. For deep beams: 
 𝐿

ℎ
≤ 10 (2.1) b 

Where: 
𝐿: Length of beam. 
ℎ: Thickness of beam. 

 

2.5 Euler-Bernoulli Beam Theory 
2.5.1 Introduction to Euler-Bernoulli Beam Theory 
Euler-Bernoulli theory it is also called classical beam theory or engineering 
beam theory. This theory considers only bending deformation, it neglects the 
effect of transverse shear deformations [15]. 
2.5.2 Kinematics of Deformation for Euler-Bernoulli Beam 
The kinematic assumptions regarding the displacement field as follows [1]: 

1. Plane sections remain plane and perpendicular to the deformed reference 
line of the beam, as shown in Figure 2.15. The first consequence of this 
assumption is that the shear strain 𝛾%&	 = 0,  the way to allow the existence 
of nonzero shear stresses while the shear strain in zero is to assume that 
Euler-Bernoulli infinitely rigid against shear strains. This allows a 
nonzero shear stress, even if the corresponding shear strain is zero. The 
second consequence of this assumption the rotation of the cross-section 
𝜃 	is equal to the corresponding slope of the deformed reference curve. 
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𝜃 	 =

𝑑𝑤 	

𝑑𝑥
 (2.2) 

Where: 
𝜃 	  : Rotation of the cross section. 
#$	

#%
: Slope of the deformed reference curve. 

2. The normal stress parallel to the cross-sectional plane is equal to zero 
𝜎&& = 0. 

3. When determining the axial displacement at a point in a cross-section, we 
neglect the change of the depth of the cross-section, and we stipulate that 
the y-displacement at every point of the cross section is equal to the y-
displacement of reference line at the same cross-section. 

 𝑢&(𝑥, 𝑦) = 𝑢(&(𝑥) (2.3) 

 
Figure 2.15: Euler-Bernoulli beam segment, plane section remain plane. 

2.5.2.1 Axial Displacement of Euler-Bernoulli Beam 
To establish the expression the gives the axial displacement, use the geometric 
considerations obtain from Figure 2.16 below: 

 
Figure 2.16:  Determination of axial displacement at a point P. 
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The axial displacement for Euler-Bernoulli Beam is given by the following: 
 𝑢%(𝑥, 𝑦) = 𝑢(%(𝑥) − 𝑦𝜃((𝑥) (2.4) 

Where: 
𝑢(%: The axial deformation. 

 𝑢(%(𝑥) = 𝑢	 (2.5) 
𝑦	  : Distance from the neutral axis. 
𝜃( : Rotation of cross-section. 
 

2.5.2.2 Axial Strain of Euler-Bernoulli Beam 
 
𝜀%%(𝑥, 𝑦) =

𝑑𝑢%
𝑑𝑥

=
𝑑𝑢(%
𝑑𝑥

− 𝑦
𝑑𝜃(
𝑑𝑥

= 𝜀( − 𝑦𝜑 =
𝑑𝑢
𝑑𝑥

− 𝑦
𝑑)𝑤
𝑑𝑥)

 (2.6) 

Where: 
𝜀(: The axial strain of the reference line, result from axial deformation 
due to axial loads. 
𝜑: The curvature of the beam, locally quantifies how curved the 
geometry of the deformed beam becomes, result from flexural deflection 
due to transverse loads. 

 
𝜑 =

𝑑𝜃(
𝑑𝑥

=
𝑑)𝑤
𝑑𝑥)

 (2.7) 
 

2.5.2.3 Axial Stress of Euler-Bernoulli Beam 
 

𝜎%%(𝑥, 𝑦) = 𝐸𝜀%% = 𝐸(𝜀( − 𝑦𝜑) = 𝐸
𝑑𝑢
𝑑𝑥

− 𝐸𝑦
𝑑)𝑤
𝑑𝑥)

 (2.8) 

Where: 
𝐸: The modules of elasticity. 

2.5.2.4 Axial Force of Euler-Bernoulli Beam 
    The axial force 𝑁 and bending moment 𝑀 can be obtained as stress 
resultants, by imagining the cross-section of the beam A, consist of a 
combination of many points (x, y, z), each point having a corresponding 
infinitesimal sectional area, 𝑑𝑆 = (𝑑𝑦). (𝑑𝑧), we can “sum” the axial force 
contributions of each small area 𝑑𝑆, as shown in Figure 2.17, to obtain axial 
force 𝑁, at a location x, as follows: 

 
𝑁 = ]]𝜎%%	

	

*
𝑑𝑆 = 𝐸𝐴𝜀( = 𝐸𝐴

𝑑𝑢
𝑑𝑥

 (2.9) 

Where: 
𝐴	: Beam cross-section area 

 𝐴 = ]] 	
	

*
𝑑𝑆 (2.10) 
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Figure 2.17: Contribution of “small piece” of cross-section to axial force and 

bending moment. 

2.5.2.5 Bending Moment of Euler-Bernoulli Beam 
The bending moment about the y-axis,  

 
𝑀& = 𝑀 = ]]−𝑦	𝜎%%	

	

*
𝑑𝑆 = 𝐸𝐼𝜑 = 𝐸𝐼

𝑑)𝑤
𝑑𝑥)

 (2.11) 

Where: 
𝐼: The moment of inertia of the cross section of the beam with respect 
to the y-axis. 

 𝐼 = ]]𝑦)	
	

*
𝑑𝑆 (2.12) 

The bending moment about the z-axis,  
 

 𝑀+ = 0					(𝑎𝑠𝑠𝑢𝑚𝑒𝑑) (2.13) 
 
2.5.2.6 Generalized Constative Equation of Euler-Bernoulli Beam 
The bending moment about the y-axis,  
 

 {𝜎d} = f𝐷hi{𝜀̂} (2.14) a 
 

k𝑁𝑀l = m𝐸𝐴 0
0 𝐸𝐼n k

𝜀(
𝜑l = m𝐸𝐴 0

0 𝐸𝐼n o

𝑑𝑢
𝑑𝑥
𝑑)𝑤
𝑑𝑥)

	
p (2.14) b 

Where: 
{𝜎d}: The generalized stress. 
f𝐷hi: The modules matrix. 
{𝜀̂}: The generalized strain. 



16 
 

 

{𝜀̂} = k
𝜀(
𝜑l = o

𝑑𝑢
𝑑𝑥
𝑑)𝑤
𝑑𝑥)

	
p (2.15) 

Where: 
{𝜀(}: The axial strain of the reference line, result from axial 
deformation due to axial loads. 
{𝜑}: The curvature of the beam, locally quantifies how curved the 
geometry of the deformed beam becomes, result from flexural 
deflection due to transverse loads. 

2.6 The Governing Equilibrium PDE and BCs of Euler-
Bernoulli Beam  
2.6.1 The Governing Equilibrium PDE  
 The Strong form of the governing partial differential equations (PDE) 
(mathematical modal) considering axial deformation and flexural deformation 
of two-dimensional Euler-Bernoulli beam [14] as follows: 

 𝑑
𝑑𝑥

q𝐸𝐴
𝑑𝑢
𝑑𝑥
r + 𝑤,(𝑥) = 0													(𝐴𝑥𝑖𝑎𝑙	𝑃𝐷𝐸) (2.16) a 

 
 𝑑)

𝑑𝑥)
w𝐸𝐼

𝑑)𝑤
𝑑𝑥)

x − 𝑤-(𝑥) = 0									(𝐹𝑙𝑒𝑥𝑢𝑟𝑎𝑙	𝑃𝐷𝐸) (2.16) b  

Where: 
𝑤,(𝑥): The intensity of body force. 
𝐴        : Beam cross-section area. 
𝑢        : The axial displacement. 
𝐸𝐴     : The beam axial rigidity. 
𝑤-(𝑥): The distributed load along the length. 
𝐸𝐼							: The beam flexural rigidity. 
𝑤								: The transverse deflection due to vertical displacement in y-
direction. 
𝐸									: The modulus of elasticity. 
𝐼         : The moment of inertia of the cross section of the beam with 
respect to the y-axis. 

 

2.6.2 The Essential and Natural BCs 
The essential boundary conditions (primary unknown variables) the 
generalized deflection [1,14], as follows: 
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 𝑢																											(𝐸𝑠𝑠𝑒𝑛𝑡𝑖𝑎𝑙	𝐴𝑥𝑖𝑎𝑙	𝐵𝐶𝑠)	 (2.17) a 
 

 𝑤																								(	𝐸𝑠𝑠𝑒𝑛𝑡𝑖𝑎𝑙	𝐹𝑙𝑒𝑥𝑢𝑟𝑎𝑙	𝐵𝐶𝑠) (2.17) b 
 

 
	𝜃 	 =

𝑑𝑤 	

𝑑𝑥
									(𝐸𝑠𝑠𝑒𝑛𝑡𝑖𝑎𝑙	𝐹𝑙𝑒𝑥𝑢𝑟𝑎𝑙	𝐵𝐶𝑠) (2.17) c 

Where: 
𝑢 : The axial deformation. 
𝑤: The deflection due to vertical displacement in y-direction. 
𝜃 			: Rotation of the cross section. 
#$	

#%
: slope of the deformed reference curve, is the 1st derivative of 

deflection 𝑤.  
The natural boundary conditions (secondary unknown variables) the 
generalized forces [1,14], as follows 

 
𝑁(𝑥) = 𝐸𝐴

𝑑𝑢
𝑑𝑥
																										(𝑁𝑎𝑡𝑢𝑟𝑎𝑙	𝐴𝑥𝑖𝑎𝑙	𝐵𝐶𝑠) (2.18) a 

 
 

𝑀(𝑥) = 𝐸𝐼
𝑑)𝑤
𝑑𝑥)

																					(𝑁𝑎𝑡𝑢𝑟𝑎𝑙	𝐹𝑙𝑒𝑥𝑢𝑟𝑎𝑙	𝐵𝐶𝑠) (2.18) b 

 
 

𝑉(𝑥) =
𝑑𝑀
𝑑𝑥

= 	𝐸𝐼
𝑑.𝑤
𝑑𝑥.

											(𝑁𝑎𝑡𝑢𝑟𝑎𝑙	𝐹𝑙𝑒𝑥𝑢𝑟𝑎𝑙	𝐵𝐶𝑠) (2.18) c 

Where: 
𝑁(𝑥): The axial force. 
𝑀(𝑥): The bending moment. 
𝑉(𝑥): Transverse shear force. 

   These governing equilibrium PDE (mathematical models) are used to 
simulate the response of the physical system and predict the behavior of a 
system in all physical scales, they can be solved using analytical methods and 
numerical methods [16], as shown in Figure (2.18) below. 
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Figure 2.18:  PDE solution methods. 

2.7 Analytical Methods  
    Analytical solution is called “closed form solution or exact solution” are 
more intellectually satisfying for the solution of partial differential equations. 
Unfortunately, they tend to be restricted to regular geometrics and simple 
boundary conditions. Because in the exact methods of analysis, the deviation 
of the governing equations and their solution is often difficult due to the 
complex nature of governing differential equations that arise from complex 
geometry, multiple materials complexities, complex boundary and initial 
conditions for which difficult to obtain exact solution (the exact behavior of a 
system at any point within the system). Most problems faced by the engineer 
either do not yield to analytical treatment or doing so would require a 
disproportionate amount of effort. Therefore, the practical way out is use 
numerical methods that provide alternative means of finding solution, through 
numerical approximated solution of the physical system [12,16]. 
 

2.8 Computational Methods 
  Computational mechanics is a body of knowledge connected with the 
development of mathematical models and use of numerical simulation of 
physical systems. It is used to solve specific problems by model-based 
simulation through numerical methods implemented on digital computers 
[4,12].  
2.8.1 Mathematical Models  
    To analyze an engineering system, a mathematical model is developed to 
describe the behavior of the system [3]. Developing a mathematical model    
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that describe the physical system, it is the most important step in engineering 
practice, because it must be done by a human not by a computer [12]. 
   The mathematical model of a process (governing equations), is the analytical 
investigation of any physical process by a set of mathematical equations that 
expresses the essential features of a physical system in terms of variables that 
describe the system, and allowing the determination of state variables and in 
turn. These mathematical models typically correspond to differential equations 
[1]. These governing equations are often difficult to solve using exact analytical 
solution methods [4].  
2.8.2 Numerical Simulation  
   Numerical simulation is the use of numerical methods and computer to 
evaluate the solution of the governing equation of a process and estimate its 
characteristics [4]. The use computer helps us to solve and programming a FEM 
problem that involve large number of equations quickly and efficiently with the 
results presented in attractive graphics [4,8]. 
2.8.3 Numerical Methods 
  Numerical methods typically transform the governing differential equations 
to set of algebraic equations of a discrete model of the continuum that are to be 
solved using computers. These procedures in essence reduce the continuous-
system mathematical model to discrete idealization [4]. Numerical solutions 
are approximation exact solution only at discrete points, called nodes. The first 
step of any numerical procedure is discretization. This discretization process 
divides the medium of interest into a number of small subregions called 
elements and connected through nodes [17]. The classification of numerical 
methods based on the discretization techniques by which the continuum 
mathematical model is discretized in space (i.e., converted to a discrete model 
of finite number of degrees of freedom) [12] are: 

1. Finite Element Method (FEM). 
2. Finite Difference Method (FDM). 
3. Finite Volume Methods (FVM). 
4. Boundary Element Method (BEM). 
5. Spectral Method. 
6. Mesh-Free Method. 

In this research, the numerical methods adopted for the analysis of Euler-
Bernoulli flexural mode of deformation is finite element displacement method 
(FEDM).  
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2.9 Finite Element Methods (FEM) 
  The finite element method is a numerical procedure for solution of differential 
equations to obtain approximate numerical solution of the problem to simulate 
the response of the physical system. The method is ideally suited for 
implementation on a digital computer. The FEM has become the method of 
choice for solving many engineering problems quickly and efficiently [4,5], 
and, one of the leading methods in computer-oriented mechanics for the 
development of many scientific and engineering branches over the last decades 
[6]. 
2.9.1 General Description of FEM 
    In the FEM, the actual continuum or body of matter as a solid, liquid, or gas, 
that has infinite degrees of freedom is replaced by a computing model (finite 
element model) that has only finite degrees of freedom and represented as an 
assemblage of subdivisions called elements [16,18]. The finite element model 
is created by dividing the structure into finite number of elements, the element 
is inter connected by nodes only [5]. Since the actual variation of the field 
variable inside the continuum is not known, we assume that variation of the 
field variables inside a finite element can be approximated by a simple function. 
These approximating functions (also called interpolation models) are defined 
in terms of the values of the field variables at the nodes. When field equations 
(like equilibrium equations) for the whole continuum are written, the new 
unknowns will be the nodal values of the field variable. By solving the finite 
element equations (simultaneous algebraic equations), which are generally in 
the form of matrix equations, the nodal values of the field variable will be 
known. Once these are known, the approximating functions define the field 
variables throughout the assemblage of element [16]. The FEM is characterized 
by three features [4], as follows: 

1. The domain is represented by a collection of elements and the collection 
of finite elements is called mesh. 

2. Over each finite element, the physical process is approximated by 
function of the desired type (polynomial or otherwise), and algebraic 
equation relating physical quantities at selective points, called nodes, of 
the elements developed. 

3. The elements equations are assembled using continuity and/or balance 
of physical quantities.  
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     The section of elements for modeling the structure depends upon the 
behavior and geometry of the structure being analyzed, the structure can also 
be modeled by combining different types of elements to approximate aspects 
of structural behavior. The modeling pattern, which is generally called mesh 
for the finite element method, The accuracy of the result obtained from the 
analysis depends upon the selection of the finite element type and the number 
of elements of the mesh. The equilibrium equations can easily be solved using 
digital computers without having to solve large number of partial differential 
equations by hand. The displacement at each node of the finite element model 
is obtained, Then the stresses and strain can be obtained for each element [5]. 
     The finite element formulation of the problem results in a system of 
simultaneous algebraic equations rather than the solution of differential 
equations [1], as shown in Figure 2.19 below: 
 

 
Figure 2.19: Typical conceptual steps to obtain the finite element solution of a 

problem. 
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2.9.2 Advantages of FEM 
The advantages of FEM which has the ability to perform the following [2]: 

1. Model irregularity shaped bodies quite easily. 
2. Handle general load conditions without difficulty.  
3. Model bodies composed of several different materials because the 

element equations are evaluated individually. 
4. Handle unlimited numbers and kinds of boundary conditions. 
5. Vary the size of the elements to make it possible to use small element 

where necessary. 
6. Alter the finite element model relatively easily and cheaply. 
7. Include dynamic effects to conduct dynamic analysis.  
8. Handle nonlinear behavior such as geometric and materials 

nonlinearities. 
 
2.9.3 The Application of the FEM 
    The FEM is extensively used in the field of structural mechanics, also applied 
to solve other types of engineering problems, such as heat conduction, fluid 
dynamics, seepage flow, and electric and magnetic fields.  The general nature 
of its theory, make it applicable to wide variety of boundary and initial in 
engineering. A boundary value problem is the one in which the solution is 
sought in the domain of a body subjected to the satisfaction of prescribed 
boundary (edge) condition on the dependent variables or their derivatives. The 
engineering applications of the FEM in the three major categories of boundary 
value problems, namely (Equilibrium or steady state or time-independent 
problems, Eigenvalue problems, and Propagation or Transient problems), it is 
used in these areas of study such as (civil engineering structures, Aircraft 
structures, Heat conduction, Geomechanics, Nuclear engineering, biomedical 
engineering, Mechanical design, Electrical machines and electromagnetics, 
hydraulic and water resources engineering, hydrodynamics) [16].  
     In structural engineering used in the simulation of civil and aerospace 
structures. In automotive industry the method replaces expensive experimental 
crash tests. In manufacturing processes involve metal forming. In 
micromechanics it helps investigating the finer-scale characteristics of a 
material that need to be taken into account such as damage of materials to 
projectile penetration, the formation of microscopic cracks of inhomogeneous, 
composite materials subjected to specific types of loading [1].  
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2.9.4 General FEM Steps for Structural Mechanics Problem 
The general steps of the FEM for structural problems [2], as follows: 

1. Discretize and select the element types. 
2. Select a displacement function. 
3. Define the strain/displacement and stress/strain relationships. 
4. Derive element stiffness matrix and equations. 
5. Assemble the element equations to obtain the global or total equations 

and introduce boundary conditions. 
6. Solve for the unknown degrees of freedom (or generalized displacement 

or primary variables). Using an elimination method (such as Gauss’s 
method) or an iterative method (such as the Gauss-Seidel method). 

7. Solve for the element strains and stresses (unknown secondary variables) 
8. Interpret the results. 

 
2.9.5 The Weak-Integral Form of Equilibrium PDE 
   The equations of weak form are usually in integral form and require a weaker 
continuity on the field variables. Due the weaker requirement on the filed 
variables and the integral form of governing expression, a formulation based 
on a weak form is expected to lead to set of equations for the discretized system 
that give much more accurate results, especially for problems of complex 
geometry. Hence, the weak form is preferred by many for obtaining an 
approximate solution. Thus, the FEM based on a weak form type of formulation 
yields a set of well-behaved algebraic system equations. The advantages of 
weak formulations are relaxed continuity requirement can be used in the weak 
formulation not like strong form which is usually require that the assumed 
approximated solution to be higher derivative than the weak form [16]. A weak 
from of the system equations is usually derived using one of the following 
widely used methods [19]: 

1. Energy principles: can be categorized as a special from of the variational 
principle which is particularly suited for problems of the mechanics of 
solids and structures. 

2. Weighted residual methods: is a more general mathematical tool 
application, in principle, for solving all kind of partial differential 
equations. 
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2.9.6 The Approaches for the Derivation of Finite Element 
Equations  
2.9.6.1 Direct Approach 
  Direct equilibrium methods are based on the physical reasoning to establish 
the element equations in terms of pertinent variables, the approach uses the 
basic principles of engineering science. The method is an extension of matrix 
displacement approach and its applicable only for simple problems such as 
deriving element stiffness matrices for one-dimensional elements involving 
springs, uniaxial bars, trusses and beams. The two general direct approaches 
traditionally associated with the FEM as applied to structural mechanics 
problem are [16]: 
a. Force or flexibility method: uses internal forces as the unknowns of the 

problem. To obtain the governing equations, first the equilibrium equations 
are used. Then necessary additional equations are found by introducing 
compatibility equations. The result is a set of algebraic equations for 
determining the redundant or unknown forces. 

b. Displacement or stiffness methods: it is more desirable method because its 
formulation is simpler for most structural analysis problems. assumes the 
displacement of the nodes as the unknowns of the problem. For instance, 
compatibility conditions requiring that elements connected at a common 
node, along a common edge, or on a common surface before loading remain 
connected at that node, edge, or surface after deformation takes place are 
initially satisfied. Then the governing equations are expressed in terms of 
nodal displacements using the equations of equilibrium and an applicable 
law relating forces to displacements. 

2.9.6.2 Weight Residual Approach  
    In these methods, the finite element equations are derived directly from the 
governing differential equations of the problem without reliance on the 
variational statement of the problem, it is used when the corresponding 
functional is difficult to find or does not exist. The method replaces the 
differential equations by approximate algebraic equation. The method offers 
the most general procedure for deriving finite element equation and can be 
applied to most all practical problems of science and engineering, it can be used 
to obtain approximate solution to linear and nonlinear differential equations. 
The methods of weighted functions based on the choice of the weighting 
function are (Collocation method, Least squares method, Moment method, 
Subdomain method, and Galerkin’s Method). The most popular                  
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method is Galerkin’s method. Galerkin method used by the analysts of solid 
mechanics, fluid mechanics, heat flow, elastically engineering. In mechanics of 
solid it turns out to be virtual work method [16]. 
2.9.6.3 Variational Approach  
   The variational methods consisting of among the subset’s energy methods 
and the principle of virtual work. Variational methods are the widely used 
numerical approximations approach in elasticity and structural mechanics. The 
method is based on the application of variational calculus, which deals with the 
extremization of functionals in the form of integrals and it is a method for 
studying the maxima and minima of functionals. In fact, in the energy methods 
of structural mechanics, the functional usually the potential energy (physical 
concept), and it is used as basis for developing the governing differential 
equations [16].  
      The major limitation of the method is that it requires the physical or 
engineering problem to be stated in variational form, which may not be possible 
in all cases. The reasons for using variational methods as follows, if the 
variational integral from is known, no need to derive the corresponding 
differential equation. Also, most of the important variational statement for 
problems in engineering and physics have been the functional form is well 
known for over 200 years. Another important feature of variational methods is 
that often dual principles exist that allow one to establish both an upper bound 
estimate and lower bound estimate for an approximate solution, these features 
can be very helpful in establishing accurate error estimates for adopting 
solutions. The variational method is much easier to use for two and three-
dimensional elements [20]. 
    In these methods, the FEA is interpreted as an approximate means for solving 
variational problems. Since most physical and engineering problems can be 
formulated in variational form, the FEM can be readily applied for finding their 
approximate solution. The FEM as an approximate method of solving 
variational problems [20]. 
     Variational method has made finite element analysis a versatile method 
when using this method stiffness matrices and consistent load vector can be 
assembled easily [21]. The energy methods can be used to drive elements 
equations are [2]: 

a. The principles of minimum potential energy: applies to linear-elastic 
materials, which states (For conservative systems, of all the 
kinematically admissible displacement fields, those corresponding to 
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equilibrium extremize the total potential energy. If the extremum 
condition is a minimum, the equilibrium state is stable). 

b. The principles of virtual work: applies to linear and nonlinear analysis. 
c. Castigliano’s theorem. 

 
2.9.7 The Two Selection Attributes for the FEM Choices 
The two key selection attributes based on unknown variables and solution 
choice [18], as follows: 

1. For primary unknown variable(s) choice: 
a. Displacement unknown 
b. Stress unknown 
c. Mixed energy Principle (hybrid element): both displacement and 

stress are unknowns, for hybrid element, we may suppose a stress 
(or displacement) field within the element and another displacement 
(or stress) field on the element boundary, the application of mixed 
energy principle necessitate a simultaneous assumption of stress 
field and displacement filed within the element. 

2. For the solution choice: 
a. Stiffness. 
b. Flexibility. 
c. Combined. 

 
2.9.8 Finite Element Displacement Methods (FEDM) 
       In this research, for examining flexural mode of deformation for Euler-
Bernoulli beam, finite element displacement methods are used. The approaches 
used for derivation of finite element equation is the variational of minimum 
potential energy.  The primary unknowns’ variables are nodal deflection 
(transverse displacement and rotation), the secondary unknown variables are 
nodal force (shear force and bending moment). The equation used for the 
solution are equilibrium equation in a form of simultaneous algebraic 
equations.  
 

2.10 Interpolation Displacement Function  
    The finite element model is created by dividing the structure into finite 
number of elements, the element is inter connected by nodes only [5]. Since the 
actual variation of the field variable inside the continuum is not known, we 
assume that variation of the field variables inside a finite element can be 
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approximated by approximating functions (also called interpolation models) 
are defined in terms of the values of the field variables at the nodes [16].  
    In the FEA aim to find the field variables at nodal points by rigorous analysis, 
assuming at any point inside the element basic variables is a function of values 
nodal points of the element. this functions which relates the field variables at 
any points within the element to the field variables of nodal points is called 
shape function or interpolations function or approximating function. When the 
FEDM is used to find the solution, we need to assume polynomial displacement 
function [16]. 
2.10.1 Guidelines for Selecting Polynomial Form of Displacement 
Function  
 The consideration has to be taken into account when choosing the order of the 
polynomial displacement function [16],as follows:  

1. The interpolation polynomial should satisfy, as far as possible, the 
convergence requirement [16]. 

2. The pattern of variation of the filed variables resulting from the 
polynomial model should be independent of the local coordinate system 
[16]. This property is knowns as geometric Isotropy and spatial isotropy. 
The guidelines to construct polynomial series with the desired property 
of isotropy, that a complete polynomial has geometric isotopy, and a not 
completed polynomial but contain appropriate terms to preserve 
symmetry have geometric isotropy, by dropping only terms that occur in. 
symmetric pairs [21]. 

3. The number of generalized coordinates (number of terms) should be equal 
to the number of nodal degrees of freedom of the elements [16]. 

 

 

2.11 Convergence Requirement for Polynomial 
Displacement  
   The difference between accuracy and convergence term. Accuracy refers to 
the difference between the exact solution and the finite element solution. 
Convergence refers to the accuracy as the number of elements in the mesh is 
increased [4]. 
   The FEM is a numerical technique, we obtain a sequence of approximate 
solution as the element size is reduced successively, this sequence will 
converge to the exact solution if the interpolation polynomial satisfies the 
convergence requirements [16,18], these requirement as follows: 
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2.11.1 Completeness Requirement  
    The completeness requirement is directly applicable to the interpolation 
functions. The completeness conditions consist of two main requirements (rigid 
body motion, and constant state of strain) [22]. First for rigid body requirement 
is satisfied by selecting a constant term in the polynomial displacement 
function, so that the displacement function could translate with a zero value of 
strain at all points within the element, i.e., that element does not generate strain 
(zero-strain field). Second for constant state of strain is satisfied by including a 
constant strain term in the polynomial displacement function, so that the 
displacement function should be able to represent constant strain fields, so that 
the derivatives of the displacement function can be constant on the element to 
reflect the constant strain of the element [16]. 
   The completeness principle states that when the size of the element shrinks 
to zero (mesh refinement), the assumed trial function must be able to represent 
the following [8]: 
 

Table 2.1: The representation of trail function and its derivatives for each 
class of problem. 

Class of Problem Representation of Trial Function and its 
Derivatives 

For a class C0 problem 
(continuity C0) 

A constant value of the exact function as well constant 
vales of its first-order derivatives. 

For a class C1 problem 
(continuity C1) 

A constant value of the exact function as well constant 
vales of its first-order and second-order derivatives. 

For a class Cn problem 
(continuity Cn) 

A constant value of the exact function as well constant 
vales of its derivatives up to the nth order. 

 
 

2.11.2 Continuity or Compatibility Requirement 
    The compatibility requirement means that displacement model must 
continuous within the element and compatibles between the adjacent elements 
(element boundaries) to ensures that no gaps or overlaps can appear between 
the elements. Discontinuities of displacement between adjacent Element will 
produce infinite strain (infinite strain energy) on the contact surface of adjacent 
elements. Therefore, the displacement function should assure that the strain on 
the contact surface of adjacent element is finite [21,23]. Therefore, the assumed 
trial function must be able to represent the following [8]: 
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Table 2.2: The continuity of trail function and its derivatives for each class of 
problem. 

Class of Problem Continuity of Trial Function and its Derivatives 
For a class C0 problem 

(continuity C0) 
The trial solution must be continuous across the 
boundary of the element but not necessarily its 
derivatives. 

For a class C1 problem 
(continuity C1) 

Both The trial solution and its first-order derivatives 
must be continuous across the boundary of the 
element but not necessarily its second-order 
derivatives. 

For a class Cn problem 
(continuity Cn) 

The trial solution and its (n-1) th order derivatives 
must be continuous across the boundary of the 
element but not necessarily its nth order derivatives. 

       
  Using Gauss numerical integration can solve this problem, using Isoperimetric 
elements, the calculation is conducted on Gaussian integral points, and the 
strain energy on the contact surface in not included [18]. 
    In flexure beam problems, bending element such as the Bernoulli beam 
model, the strain energy terms include second derivatives of displacement due 

to moment curvature relation  𝑀 = 𝐸𝐼 #
#$
#%#

	. Hence, to satisfy this compatibility 
requirement, not only displacement continuity but slope continuity should be 
satisfied. this means that the first derivative of displacement (slope) across 
interelement boundaries also must be continuous. Hence, in such flexure 
problems displacement and their first derivatives (slope) are selected as nodal 
field variables. This problem known as C1 continuity problem. Therefore, 
Hermite shape function used for Cn continuity problems [21].  
 

2.12 Conforming and Non-Conforming Elements  
2.12.1 Conforming Elements  
    If the interpolations’ polynomial function satisfies all convergence 
requirement both (complete and compatible), the approximate solution 
converges to the correct solution and do not display strange or pathologic 
behaviors even for a relatively course discretization of the structure when 
refining the mesh to increase number of elements, the resulting element called 
conforming element, which will lead to monotonic convergence [16,23]. The 
increase FEA accuracy and the Convergence to the exact solution for 
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displacement as the number of elements of a finite element solution is increased 
[2], as shown in Figure 2.20. 

 
Figure 2.20: The increase FEA accuracy and the convergence to the exact 

solution for displacement as the number of elements of a finite element 
solution is increased. 

     Monotonic convergence toward an exact solution is the process in which 
successive approximation solution (finite element solution) approach the exact 
solution consistently without changing sign or direction [2]. 
2.12.2 Non-Conforming Elements 
   Non-conforming elements are elements that violate the compatibility 
requirement, and when it assembled it might be incapable of reproducing the 
constant strain condition even though the individual elements are complete. 
Therefore, required to pass the patch test, in which a constant strain filed is 
applied to an assembly of arbitrarily-oriented element [23]. 
     Several interpolation polynomials that do not meet all the requirement have 
been used. In some cases, acceptable convergence has been obtained [16]. The 
good convergence towards the exact mathematical solution due 
incompatibilities disappears with increasing mesh refinement [24]. Mesh 
refinement methods solve non-monotonic convergence problems, when the 
size of element infinitely shrinks, the stains of elements will approach the state 
of constant strain in the neighborhood of each point [16].  
    The main disadvantage of using non-conforming elements is that we no 
longer know in advance that correct solution is reached [21]. In structural 
problems, interpolation polynomial satisfying all the convergence requirement 
always led to the convergence of the displacement solution from below, while 
nonconforming element may converge either from below or from above [16]. 
    Non-conforming elements are very often deliberately adopted, because they 
tend to soften the behavior of the model and counteract the natural over stiffness 
of the displacement functions [24]. 
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2.13 Finite Element Solution  
2.13.1 The Error Concept in Finite Element Analysis 
      The use of computational simulation is integrally connected to the concept 
of approximation, in which that the term approximation implies that the 
computational representation of a physical process is governed by modified 
versions of governing mathematical equations, this modification leads to the 
fact that computational simulation provides approximate values for quantities. 
The accuracy of the approximated values depend on how closely the 
computational modification matches the original mathematical expressions. 
Therefore, due to this approximation the error obtained from the following [1]: 
 

 (𝐸𝑟𝑟𝑜𝑟) = (𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑒𝑑	𝑉𝑎𝑙𝑢𝑒) − (𝐸𝑥𝑎𝑐𝑡	𝑉𝑎𝑙𝑢𝑒) (2.19) 
 
The three sources of errors in the finite element solution are (error due to the 
approximation of the domain, error due to the approximation of the solution, 
and error due to numerical computation such as numerical integration and 
round-off errors in a computer) [4]. 
 
2.13.2 The Lowest Limit Solution of Minimum Potential Energy 
    When using   principle of minimum potential energy, the finite element 
displacement solution will be less than the exact solution, which it called the 
lowest limit solution. The element taken form the body as a part of the 
continuum should have infinite degrees of freedom, which becomes finite 
degrees of freedom after applying displacement function, which means the 
elements stiffness has been increased. So, the calculation approximate solution 
of displacement is less than the exact solution [18]. Therefore, the FEM gives 
lower bound values. Hence it is desirable that as the finite element analysis 
mesh is refined, the solution approaches the exact values. This is one of the 
requirements of shape function to ensure convergence criteria [21]. 
2.13.3 Methods to Improve Convergence of Finite Element 
Results  
    The construction of an efficient finite element model involves (representing 
the geometry of the problem accurately, developing a finite element mesh to 
reduce the bandwidth, choosing a proper interpolation model to obtain the 
desired accuracy in the solution). Unfortunately, there is no priori method of 
creating a reasonably efficient finite element model that can ensure a specified  
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degree of accuracy to assessing the convergence of finite element model. Some 
adoptive finite element methods have been developed to employ the results 
from previous meshes to estimate the magnitude and distribution of solution 
errors and to adoptively improve the finite element model [16]. 
     The four basic approaches to adoptively improve a finite element model are 
(Subdivided selected elements called h-method, increase the order of the 
polynomial of selected element called p-refinement, move node points in fixed 
element topology called r-refinement, and define a new mesh having a better 
distribution of elements.). Various combinations of these approached are also 
possible. Determining which of these approaches is the best for a particular 
class of problems is a complex problem that must consider the cost of the entire 
solution process [16]. 
    The mesh refinement conditions are (all previous (coarse) meshes must be 
contained in the refined meshes, the elements must be smaller in such a way 
that every point of the solution region can be always be within an element, The 
form of the interpolation polynomial must remain unchanged during the 
process of the mesh refinement) [16]. 
 
2.13.4 Checking FEA Results  
   Choosing a suitable model and checking the accuracy and validity of the 
answers is really novel problem [8]. Hence, a comparison should be made 
between computed results from finite element program with results from other 
available techniques for instance approximate mechanics of materials formulas, 
experimental data, and numerical analysis of simpler but similar problems may 
be used for comparison, particularly if you have no real idea of the magnitude 
of the answers [2]. 
    In addition, the analyst must ensure that the results agree with engineering 
intuition and behavior for the problem, and verifying whether the solution 
satisfies the specified boundary and symmetry conditions. If necessary, the 
problem needs to be solved by changing the boundary conditions, loads or 
materials to find whether the resulting FEA solution behave as per engineering 
intuition and expectations [16]. 

2.14 The Use of Computer for Numerical Computation  
2.14.1 Role of Computer in the Development of FEM  
    The FEA result in a very large number of algebraic equations which made 
the method extremely difficult and impractical to use. However, with the advent 
of computer, the solution of thousands of equations in a matter of               
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minutes became possible [2]. Therefore, the computer is the basic need for the 
application of the method to analyze the effects of various parameters of the 
system on its response (computer-generated results) to gain a better 
understanding of the system [4].  
   The fast improvement in computer hardware technology and slashing of cost 
of computers have boosted the FEM and resulted in the writing of 
computational programs to handle various complicated structural and 
nonstructural problems [2,21]. There are many available commercial finite 
element packages fulfill these needs. The commercial packages provide user-
friendly data input platforms and elegant and easy-to-follow display formats. 
However, the packages do not provide an insight into the formulation and 
solution methods [7].  
 
2.14.2 Commercial Finite Element Packages  
   There are number of computer program packages available for the solution 
of a variety of structural and solid mechanics problems. Some of the programs 
have been developed in such a general manner that the same program can be 
used for the solution of problems belonging to different branches of engineering 
with little or no modification [21].  
    The popularity of FEM has motivated the development of multiple finite 
element programs commercial software and research-oriented software (Open-
source finite element codes) [1]. 
    Commercial software is typically marketed by private companies and 
accompanied by appropriate graphical user inter-faces (GUI) to facilitate use. 
Some examples of commercial programs [1], as follows: 

1. NASTRAN: Developed by MacNeal-Schwendler Corporation and 
stemmed from an effort by NASA to create a computer code for the 
analysis of aerospace structures. 

2. ANSYS: Developed by E. Wilson at UC Berkeley is one of the first 
programs to allow nonlinear analysis. 

3. SAP 2000, ETABS and Perform3D: used by civil structural engineering 
community and emphasize seismic design. 

4. ADINA: Developed by K.-J. Bathe a student of Wilson and currently a 
faculty member at MIT. 

5. ABAQUS: is one of the popular commercial programs, created by David 
Hibbitt and marketed by Simulia. this program has a very wide range of 
capabilities with high-performance, parallel computing hardware. 
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6. LS-DYNA: created by John Hallquist and marketed by Liver-more 
Software and Technology Corporation (LSTC), this program has a very 
wide range of capabilities with high-performance, parallel computing 
hardware. 

7. STAAD-PRO 
8. SOLIDWORKS 
9. GT-STEUDEL 
10. NISA 
11. COMSOL 

      Open-source finite element codes is primarily aimed for researchers and 
educators, it is used for understanding the method and the associated 
numerical analysis algorithms.  User is granted a complete access to the entire 
analysis program, which is not possible in some of commercial software, The 
two interesting and popular open-source programs for civil structural 
engineering community are (FEAP, and Opensees) [1]. 
 
2.14.3 General and Special Purpose Finite Element Program 
 There are two general computer methods of approach to the solution of a 
problem by finite element methods [2], as follows: 

1. Large commercial programs are general-purpose finite element programs 
are designed to solve many types of problems. 

2. Small commercial program are special-purpose finite element programs 
are designed to solve specific problems. 
 

Table 2.3: Comparison between (general and special) purpose finite element 
program. 

General-Purpose Programs 
Advantages Disadvantages 

1. The input is well organized and is 
developed with user ease in mind. 
Users do not need special 
knowledge of computer software 
or hardware. Preprocessors are 
readily available to help create the 
finite element model. 

2. The programs are large systems 
that often can solve many types of 

1. The initial cost of developing 
general-purpose programs is high. 

2. General-purpose programs are 
less efficient than special-purpose 
programs because the computer 
must make many checks for each 
problem, some of which would 
not be necessary if a special-
purpose program were used. 
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problems of large or small size 
with the same input format. 

3. Many of the programs can be 
expanded by adding new modules 
for new kinds of problems or new 
technology. Thus, they may be 
kept current with a minimum of 
effort. 

4. With the increased storage 
capacity and computational 
efficiency of PCs, many general-
purpose programs can now be run 
on PCs. 

5. Many of the commercially 
available programs have become 
very attractive in price and can 
solve a wide range of problems 

3. Many of the programs are 
proprietary. Hence the user has 
little access to the logic of the 
program. If a revision must be 
made, it often has to be done by 
the developers. 

Special -Purpose Finite Element Programs 
Advantages Disadvantages 

1. The programs are usually 
relatively short, with low 
development costs. 

2. Small computers are able to run 
the programs. 

3. Additions can be made to the 
program quickly and at a low cost. 

4. The programs are efficient in 
solving the problems they were 
designed to solve. 

1. The inability to solve different 
classes of problems. This one 
must have many programs as 
there are different classes of 
problems to be solved. 

 
2.14.4 The Standard Capabilities of General-Purpose Finite 
Element Program 
The complete capabilities of the programs and their cost are best obtained 
through program reference manuals and websites, some of these capabilities 
[2],as follows: 

1. Element types available, such as beam, plane stress, and three-
dimensional solid. 
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2. Type of analysis available, such as static and dynamic. 
3. Material behavior, such as linear-elastic and nonlinear. 
4. Load types, such as concentrated, distributed, thermal, and displacement 

(settlement). 
5. Data generation, such as automatic generation of nodes, elements and 

restraints (most programs have preprocessors to generate the mesh for the 
model). 

6. Plotting, such as original and deformed geometry and stress and 
temperature contours (most programs have postprocessors to aid in 
interpreting results in graphical form). 

7. Displacement behavior, such as small and large displacement and 
buckling. 

8. Selective output, such as at selected nodes, elements, and maximum or 
minimum values. 

9. All programs include at least the bar, beam, plane stress, plate -bending, 
and three-dimensional solid elements and most now include heat-transfer 
analysis capabilities. 

 
2.14.5 The Basic Structure of a Finite Element Program 
Understanding basic program structure of the FEA is an important part for 
better comprehension of the finite element method [3]. The objective of FEA 
is to determine the unknowns (degrees of freedom) at the nodes and the 
resulting support reaction in any structure. There are three basic phases 
involved in FEA program structure for structural mechanic problem as follows 
below and in Figure 2.21 [25]: 
1. Pre-processing phase:  Build analysis model for computer, this phase is 

made by user to define the problem then processing the given data and 
printing out required result data, such discretizing the domain geometry 
into specific finite elements defined by number of nodes, number of 
degrees of freedom, coordinate of each node, element type, nodal 
connectivity, specifying the materials properties, the magnitude and point 
of application for loads and boundary conditions, number of Gauss points 
and weight if numerical integration is used. Type of analysis (linear or 
nonlinear). 

2. Processing phase: conducting analysis, this phase is made by computer to 
developing a set of linear or nonlinear algebraic equation simultaneously to 
obtain nodal results (the unknown solution of the primary variables) 
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3. Post-processing phase: Analyzing output results, this phase is made by user 
by viewing the results in graphical form, and obtaining results on other 
desirable quantities or variables of interest from nodal variables such as 
stress, strain and moment (the unknown solution of secondary variables). 

 
Figure 2.21: Basic structural phases of a finite element computer program for 

structural mechanics problem. 

2.15 Computer Programming 
   A computer does what you ask, not what you wish. If a computer delivers an 
unsatisfactory result, it is most likely because you did not properly translate 
your wish. This is made by proper developing algorithm process, which is 
defining the finite sequence of well-defined intrastation that to be followed in 
computer calculations (logic of implementation) [26]. 
   Programming is to generate a list of instructions suitable for execution by a 
computer, through splitting the problem into a list of elementary operations, 
then using a programming language to put these operations into coding [26].  
2.15.1 Programming Languages  
    There are hundreds of programming languages. Unfortunately, none of them 
is the ‘’ silver bullet’’ language that is good for every situation. Some of the 
programming languages are better for speed, some for conciseness, some for 
controlling hardware, some for reducing mistakes, some for graphics and sound 
output, some for numerical calculations. There are several ways to       
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categorize programming languages based on the eye of the programmer to low-
level programming language such as (assembler, C, C++, Forth, and LISP), and 
high-level programming language such as (Fortran, Tcl, Java, JavaScript, PHP, 
Per, Python, and MATLAB), and also based on the compliance with other 
programming languages [26].  
    MATLAB is a high-level programming language for numerical computation, 
visualization, application development and programming. It provides an 
interactive environment for iterative exploration, design and problem solving. 
It provides vast library of mathematical functions for linear algebra, statistics, 
Fourier analysis, filtering, optimization, numerical integration and solving 
ordinary differential equations. it provides built-in graphics for visualizing data 
and tools for creating custom plots. MATLAB’s programming interface gives 
development tools for improving code quality maintainability and maximizing 
performance. It provides tools for building applications with custom graphical 
user interfaces (GUI). It provides function for integrating MATLAB based 
algorithms with external applications and languages such a (C, Java, .NET, and 
Microsoft Excel) [26].  
 

2.16 MATALB Program 
2.16.1 Introduction to MATLAB Program 
    MATLAB (short for MATrix LABoratory) is a special-purpose computer 
program optimized to perform engineering and scientific calculations. Started 
as a program designed to perform matrix mathematics, but over the years it has 
grown into a flexible computing system capable of solving essentially any 
technical problem. The software product is developed by the Math Works 
corporation [10]. 
    The MATLAB program implements the MATLAB language and provides 
an extensive library of predefined extremely wide variety of functions to make 
technical programming tasks easier and more efficient and functions makes it 
much easier to solve technical problems in MATLAB than in other languages. 
These functions often solve very complex problems in a single step, saving 
large amount of time. Doing the same thing in another computer language 
usually involves writing complex programs yourself or buying a third-party 
software package [10]. 
    The MATLAB language is a combination of a procedural programming 
language, an integrated development environment (IDE) that includes an   
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editor and debugger, and an extremely rich set of functions that perform many 
types of technical calculations [10]. 
    The MATLAB language is a procedural programming language, meaning 
that the engineer writes programming procedures, which are effectively 
mathematical recipes for solving a problem. This makes MATLAB very similar 
to other procedural languages such as Fortran or C. however, the extremely rich 
list of predefined functions and platting tools makes it superior to these other 
languages for many engineering analysis applications [10]. 
2.16.2 MATLAB Desktop Layout 
   MATLAB desktop layout, as shown in Figure 2.22 shows the default 
MATLAB desktop layout. Figure 2.23 shows the command window after 
entering commands. Figure (2.24) shows the toolstrip, which allows you to 
select from a wide variety of MATLAB tools and commands. 

 
Figure 2.22: The default MATAB desktop layout. 
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Figure 2.23: The Command Window, after entering commands and see 

responses here. 

 
 

 
Figure 2.24: MATLAB toolstrip, which allows you to select from a wide 

variety of tools and commands. 
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2.17 Programming the FEM using MATLAB  
       MATLAB is high-level programming language, is convenient to write and 
understand FEA program, because is specially designed for dealing with 
matrices and vectors with ease, these algebraic operations constitute major parts 
of the FEA program and the majority of engineering systems. Therefore, this 
advantage make it particularly suited for programming the finite element 
method [3,6,8,27].  
       MATLAB has built-in graphics features to help readers visualize the 
numerical results in two and three-dimensional plots. Graphical presentation of 
numerical data is important to interpret the finite element results. The power of 
MATLAB is represented by the length and simplicity of code, one page of 
MATLAB code may be equivalent to many pages of other computer language 
source codes [3,27]. Performing FEA using MATLAB can be carried out and 
run under either the following [9,27]: 

1. Interactive mode session: in this mode the functions are evaluated one 
by one in the MATLAB command window. 

2. Batch oriented job mode: in this mode a sequence of functions is written 
in a file named (m-file), and evaluated by writing the file name in the 
command window. This mode is more flexible way of performing FEA 
because the (m-file) can be written in an ordinary editor, this mode 
recommended because it gives a structured organization of the functions 
and easily execution of changes and reruns. 
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3 CHAPTER THREE 
 

LINEAR FINITE ELEMENT FORMULATION 
OF THIN BEAMS FOR FLEXURAL 

DEFORMATION 
 

3.1 Introduction  
    Beams are generally subjected to both, axial loads causes (axial deformation) 
and transverse loads causes (transverse deformation). The latter is resulted from 
both shear forces (shear deformation) and bending moment (flexural 
deformation). For linearly elastic beams, these modes of deformation can be 
examined independently from one another. The main interest in this research is 
to analyze the bending deformation of thin straight beams [1]. Therefore, the 
finite element formulation developed based on Euler-Bernoulli beam 
assumptions is used to predict bending behavior of thin straight beams 
subjected to transverse loading [15]. 
    Euler-Bernoulli Beam assumptions neglects the effect of transverse shear 
deformations from the shear force and only considers bending deformation 
[15]. The theory makes reasonable assumption that yields equations that quite 
accurately predict beam behavior for most practical beam’s problems [2].  
   The transverse deformation of thin beams is only in direction perpendicular 
to its axis, which produces bending effects as opposed to twisting or axial 
effects [19], This bending deformation is measured as a transverse (deflection) 
𝑤" and a rotation 𝜃"[2].  
    Euler-Bernoulli beam is classified as class C1 problem (continuity C1). The 
slope at any point along the beams equals the first derivative of the deflection 

curve 𝜃" = #$!

#%
, such elements is named slope conforming elements [21]. This 

mean that the deformation of a beam must have continuous slope 𝜃" = #$!

#%
 as 

well as continuous deflection 𝑤"at any neighboring beam elements, and both 

deflection 𝑤" and slope 𝜃" = #$!

#%
  selected as nodal variable. In other words, 

the continuity of the derivatives of the main variables is required. Hermite 
interpolation function is used to satisfy this type of problem (class C1 problem 
(continuity C1)), it satisfies the continuity of                                                                  
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both the transverse deflection 𝑤"and the first derivatives of transverse 

deflection (slope)  𝜃" = #$!

#%
  between any neighboring beam elements [3,21]. 

    Thin beam is modeled geometrically as a straight bar of an arbitrary cross-
section, with two degrees of freedom at each node, which are transverse 
(deflection) 𝑤"and a rotation 𝜃" in a local coordinate system [19]. 
     In the FEA of thin beam bending element, bending moment is not obtained 
using bending stress formula from basic solid mechanics 	𝜎%" = −/&

0
, is found 

using the stress resultant curvature relation  𝑀 = 𝐸𝐼 #
#$
#%#

, by taking second 
derivations on the transverse displacement function, this relation relates the 
bending moment to transverse deflection same as in elementary beam theory. 
Shear force is derived by taking third derivations on the transverse 

displacement function = 𝐸𝐼 #
$$
#%$

 . For the uniformly loaded beam, the resulting 
shear force is a constant throughout the single-element model [2,21,28].  
   Internal hinge results in a discontinuity in the slope or rotation of the 
deflection curve at the hinge. Therefore, the element stiffness matrix must be 
modified to include hinge desired effect, it should be accounted only once on 
either the right end or left end of the element, but not on both [2,8]. 
    The stiffness matrix for a beam element was developed for loading applied 
only at its nodes. Therefore, distributed loading and concentrated loads applied 
other than at the natural intersection of two elements must be converted to nodal 
loads, instead of creating a node at a point of concentrated load application. The 
work-equivalence method is used to replace loads by a set of discrete loads 
(Statically equivalent nodal loads) these equivalent loads tend to have the same 
effect on the beam as the actual original distributed load, and they are always 
of opposite sign from the fixed-end reactions [2,8]. 
   The analysis of thin straight beam bending with local axis are colinear with 
global axes there is no need for coordinate transformation. For each element set 
up the local stiffness matrix and directly assemble it into the global stiffness 
matrix [8]. 
    The displacement computed using statically equivalent nodal loads are exact 
in a finite elements sense at nodes. However, the internal reactions computed 
in individual elements are not. This require same adjustment to obtain the 
correct nodal reactions which is can be verified by simple static equilibrium 
equations [2,8].    
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3.2 The Governing PDE and BCs of (EB) Beam for 
Flexural Deformation 
The Tonti diagram for the governing equations of the Bernoulli-Euler model 
under transverse loading [12], is shown in Figure 3.1 as below: 

 
Figure 3.1: The Tonti diagram for the governing equations of the Bernoulli-

Euler model. 

3.2.1 The Governing Equilibrium PDE OF EB Beam for Flexural 
Deformation 
The strong form of the governing equilibrium PDE of Euler-Bernoulli beam is 
a 4th order differential equation that governs the elementary linear-elastic beam 
behavior and it is used for the static analysis of beam bending [14], it is given 
by: 
 

 𝑑)

𝑑𝑥)
w𝐸𝐼

𝑑)𝑤
𝑑𝑥)

x − 𝑤-(𝑥) = 0												(𝐹𝑙𝑒𝑥𝑢𝑟𝑎𝑙	𝑃𝐷𝐸) (3.1) 

Where: 
𝑤-(𝑥): The distributed load along the length. 
𝐸𝐼							: The beam flexural rigidity. 
𝑤								: The transverse deflection due to vertical displacement in y-
direction. 
𝐸									: The modulus of elasticity. 
𝐼         : The moment of inertia of the cross section of the beam with 
respect to the y-axis. 
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3.2.2 The Essential and Natural BCs of EB Beam for Flexural 
Deformation  

1. The essential boundary conditions (primary unknown variables) the 
generalized deflection of Euler-Bernoulli Beam [1,14], as follows: 
 

 𝑤																								(𝐸𝑠𝑠𝑒𝑛𝑡𝑖𝑎𝑙	𝐹𝑙𝑒𝑥𝑢𝑟𝑎𝑙	𝐵𝐶𝑠)	 (3.2) a 
 

 
	𝜃 	 =

𝑑𝑤 	

𝑑𝑥
															(𝐸𝑠𝑠𝑒𝑛𝑡𝑖𝑎𝑙	𝐹𝑙𝑒𝑥𝑢𝑟𝑎𝑙	𝐵𝐶𝑠) (3.2) b 

Where: 
𝑤: The deflection due to vertical displacement in y-direction. 
𝜃 			: Rotation of the cross section. 
#$	

#%
: slope of the deformed reference curve, is the 1st derivative of 

deflection 𝑤.  
2. The natural boundary conditions (secondary unknown variables) the 

generalized forces of Euler-Bernoulli Beam, as follows: 
 

𝑀(𝑥) = 𝐸𝐼
𝑑)𝑤
𝑑𝑥)

																					(𝑁𝑎𝑡𝑢𝑟𝑎𝑙	𝐹𝑙𝑒𝑥𝑢𝑟𝑎𝑙	𝐵𝐶𝑠) (3.3) a 
 

 
𝑉(𝑥) =

𝑑𝑀
𝑑𝑥

= 	𝐸𝐼
𝑑.𝑤
𝑑𝑥.

											(𝑁𝑎𝑡𝑢𝑟𝑎𝑙	𝐹𝑙𝑒𝑥𝑢𝑟𝑎𝑙	𝐵𝐶𝑠) (3.3) b 

Where: 
𝑀(𝑥): The bending moment. 
𝑉(𝑥): Transverse shear force. 

 

3.3 Formulation of EB Beam for Flexural Deformation 
  Adopting the generalized coordinate approach and the principle of potential 
energy to derive the element equations for Euler-Bernoulli beam element 
subjected transverse loads, using two-nodes thin beam bending element with 
two degrees of freedom per each node. 
 
3.3.1 Geometric Definition of Beam Element 
Using two-nodes beam element with two degrees of freedom per each node, are 
transverse displacement 𝑤"and rotation 𝜃", as shown in Figure 3.2 below: 
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Figure 3.2: Two-nodes beam element in local coordinate systems, nodal 

transverse displacement 𝑤!", rotation 𝜃!", force 𝐹&!"  , and moment 𝑀!
". 

3.3.2 Sign Convention of Beam Element  
The sign convention used for nodal beam element. Positive direction for nodal 
(transverse displacements 𝑤!", rotations 𝜃!", forces 𝐹&!" , and moments 𝑀!

") are 
shown in Figure 3.3.  Positive direction for nodal (rection forces and reaction 
moments 𝑀!

1) are shown in Figure 3.4 below [2]: 

 
Figure 3.3: Sign convention for positive nodal transverse displacements 𝑤!" 

and rotations 𝜃!" nodal forces 𝐹&!"  and moments 𝑀!
". 

 
Figure 3.4: Sign convention for positive nodal reaction forces 𝐹&!1  and reaction 

moments 𝑀!
1. 
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3.3.3 Hermite Interpolation Function  
  Analyzing Euler-Bernoulli beam for bending is a class C1 problem (continuity 
C1) [2,20]. This mean that the deformation of a beam must have continuous 

slope 𝜃" = #$!

#%
 as well as continuous transverse displacement  𝑤"at any 

neighboring beam elements, and both transverse displacement 𝑤" and slope 

𝜃" = #$!

#%
  are selected as nodal variable. This denotes that the Slope 𝜃" = #$!

#%
 

is the first derivative of transverse deflection 𝑤". Hermite interpolation 
function is used to satisfy this class C1 problem (continuity C1), it satisfies the 
continuity of both the transverse deflection 𝑤"and the fist derivatives of 

transverse deflection (slope)  𝜃" = #$!

#%
 . Assume cubic Hermite polynomial 

function with four-parameter for the four degrees of freedom per element. To 
define the main variables for beam bending deformation due to transverse 
displacement 𝑤" and rotation 𝜃". The polynomial form of assumed 
interpolation function as shown below [3,21]: 
 

 𝑤"(𝑥) = 𝛼2 + 𝛼)𝑥 + 𝛼.𝑥) + 𝛼3𝑥.	 (3.4) a 
 
 
 

From the assumption for the Euler-Bernoulli beam, the slope is first-derivatives 
of Transverse displacement 𝑤" of Equations (2.23) a, as follows: 
 

 
𝜃"(𝑥) =

𝑑𝑤"

𝑑𝑥
= 𝛼) + 𝛼.𝑥 + 𝛼3𝑥) (3.4.) b 

Where: 
𝑤"(𝑥): The local element transverse displacement in y-direction. 
𝜃"(𝑥): The rotation in the x-y plane with respect to the z-axis. 
𝛼2, 𝛼), 𝛼., 𝛼3: The four unknown constants found using the end 
conditions. 

Now both transverse deflection 𝑤" and it is first derivative slope 𝜃" = #$!

#%
  are 

continuous between two neighboring elements, this satisfies continuity 
(compatibility) for class C1 problem (continuity C1. The convergence 
requirement for Hermite interpolation function for class C1 problem (continuity 
C1) as follows [8]: 

1. Compatibility requirement for class C1 problem (continuity C1): Both the 
assumed trial solution for (vertical displacement (deflection)) and its 
first-order derivatives (slope) must be continuous across the                                                                                                                                                                                                                                              
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bboundary of the element but not necessarily its second-order 
derivatives. 

2. Completeness requirement (rigid body displacement and constant stain 
state) for class C1 problem (continuity C1): The assumed trial function 
for (vertical displacement (deflection)) must be able to represent A 
constant value of the exact function as well constant vales of its first-
order derivatives and second-order derivatives. 

 For The Integral form of the governing partial differential equation require that 
the assumed trial function of an element to be continuous with nonzero 

derivatives up to second-order derivatives (twice differentiable) due to term #
#$
#%#

 
and satisfies the essential boundary condition which automatically satisfies the 
continuity conditions [4,19]. Therefore, the use of Hermite interpolation 
function will meet all the convergence requirement. Therefore, both 
completeness condition (rigid body motion and constant strain condition) and 
compatibility condition (continuity condition) are met. Therefore, the resulting 
element is conforming element and the convergence will be monotonic 
convergence, which mean that the approximate solution will converges to the 
exact solution when refining the mesh [4].  
Transverse flexural deformation of Euler-Bernoulli beam element based on 
cubic Hermite interpolation function is given by: 
 

 𝑤"(𝑥) = 𝑁2," 𝑤2" + 𝑁)," 𝜃2" + 𝑁.," 𝑤)" + 𝑁3," 𝜃)" (3.5) 
Where: 
𝑤2" ,  𝑤)": The nodal transverse displacement (deflection) in y-direction 
at nodes. 
𝜃2"  ,  𝜃)": The nodal slope in the x-y plane with respect to the z-axis at 
nodes. 
𝑁2,"  , 𝑁.," : Hermite shape functions for transverse displacement 𝑤"at 
nodes. 
𝑁)," , 𝑁3," : Hermite shape functions for rotation of cross-section (slope) 
𝜃" at nodes. 
𝐿"           :  Length of element. 
 

The vector of local Hermite shape functions of flexural deformation at the ith 
node, is given by: 

 [𝑁!," ] = [𝑁2," 𝑁)," 𝑁.," 𝑁3," ] (3.6) a 
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[𝑁!"# ] = %&1 −
3𝑥$

𝐿#$
+
2𝑥%

𝐿#%
.&𝑥 −

2𝑥$

𝐿#
+
2𝑥%

𝐿#$
.&
3𝑥$

𝐿#$
−
2𝑥%

𝐿#%
.&−

𝑥$

𝐿#
+
𝑥%

𝐿#$
./ (3.6) b 

 

 The specialty of Hermite polynomials is their values and the values 
of their derivatives up to nth order are (unity or zero) at the end points 
of the interval (0 to 1), substituting 𝑎𝑡	𝑛𝑜𝑑𝑒	(1)	𝑥 =
0	and	𝑎𝑡	𝑛𝑜𝑑𝑒	(2)	𝑥 = 𝐿", we found the properties of Hermit cubic 
interpolation function as it shown in Table 3.1, and in Figure 3.5 
[4,21]. 
 

 𝑆ℎ𝑎𝑝𝑒	𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛	𝑎𝑛𝑑	𝑖𝑡𝑠	𝑑𝑒𝑟𝑡𝑖𝑣𝑎𝑡𝑖𝑣𝑒		
= 1	𝑎𝑡	𝑛𝑜𝑑𝑒	𝑖	𝑎𝑛𝑑	𝑧𝑒𝑟𝑜	𝑎𝑡	𝑎𝑙𝑙	𝑜𝑡ℎ𝑒𝑟	𝑛𝑜𝑑𝑒𝑠 

(3.7) 
 

Table 3.1: The properties of Hermit cubic interpolation function [23]. 

Type of Function Translation Shape 
Function 

Rotational Shape 
Function 

Node No. 𝑁2,"  𝑁),"  𝑁.,"  𝑁3,"  𝑑𝑁2,"

𝑑𝑥
 
𝑑𝑁),"

𝑑𝑥
 
𝑑𝑁.,"

𝑑𝑥
 
𝑑𝑁3,"

𝑑𝑥
 

𝑎𝑡	𝑛𝑜𝑑𝑒	(1)	(𝑥 = 0) 1 0 0 0 0 1 0 0 
𝑎𝑡	𝑛𝑜𝑑𝑒	(2)	(𝑥 = 𝐿") 0 0 1 0 0 0 0 1 

 

 
Figure 3.5:  Plots of properties of Hermite cubic translational shape function. 
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3.3.4 Element Displacement Field for Flexural Deformation  
  In order to relate forces to deformation, a fundamental assumption in beam 
bending is that a plane section before bending remains plane and normal to the 
neutral axis after bending. Hence, the axial displacement u due to the transverse 
displacement w at a point y above the neutral axis can be expresses [1,2,15], as 
follows: 

𝑤"(𝑥) =
𝑑𝑤
𝑑𝑥

= [𝑁2," 𝑁)," 𝑁.," 𝑁3," ]

⎩
⎨

⎧
𝑤2"

𝜃2"

𝑤)"

𝜃)"⎭
⎬

⎫
		 (3.8) a 

𝑤"(𝑥) =
𝑑𝑤
𝑑𝑥

= [𝑁!," ]{𝑑!"}	 
(3.8) b 

Where: 
[𝑁!," ]: The vector of local Hermite shape functions of flexural 
deformation at the ith node. 
{𝑑!"} : The vector of local nodal element degrees of freedom at the ith 
node. 

 
3.3.5 Element Strain Field for Flexural Deformation  
The axial strain	𝜀%%"  is given by [1,2,15]: 

	𝜀%%" =
𝑑)𝑤
𝑑𝑥)

= �
𝑑𝑁2,"

𝑑𝑥
𝑑𝑁),"

𝑑𝑥
𝑑𝑁.,"

𝑑𝑥
𝑑𝑁3,"

𝑑𝑥
�

⎩
⎨

⎧
𝑤2"

𝜃2"

𝑤)"

𝜃)"⎭
⎬

⎫
 (3.9) a 

	𝜀%%" =
𝑑)𝑤
𝑑𝑥)

= [𝐵!," ]{𝑑!"}	 
(3.9) b 

Where: 
[𝐵!," ]: Strain-displacement matrix for flexural deformation (𝑤		&		𝜃) of 
the first-derivative of shape function at ith node. 
 

[𝐵!," ] = �
𝑑𝑁2,"

𝑑𝑥
𝑑𝑁),"

𝑑𝑥
𝑑𝑁.,"

𝑑𝑥
𝑑𝑁3,"

𝑑𝑥
� (3.10) a 

 

[𝐵!," ] = �w−
6
𝐿")
+
12𝑥
𝐿".

x q−
4
𝐿"
+
6𝑥
𝐿")
r w

6
𝐿")
−
12𝑥
𝐿".

x q−
2
𝐿"
+
6𝑥
𝐿")
r� (3.10) b 

 
 
 



51 
 

3.3.6 Element Bending Moment or Stress Resultant Curvature 
Matrix 
For a linear elastic material, the axial stress 	𝜎%" are related to the axial strain by 
Young’s Modulus E (Hooke’s law) is given by [2,14,28]: 

 
	𝜎%" = −𝐸	𝑦

𝑑)𝑤
𝑑𝑥)

 (3.11)  

From basic solid mechanics the moment curvature relation is 2nd order PDE 
obtained from flexural deformation of Euler-Bernoulli beam, and it is given by 
[28]: 

 
𝑀 = 𝐸𝐼

𝑑)𝑤
𝑑𝑥)

 (3.12) a 
 

 𝑑)𝑤
𝑑𝑥)

=
𝑀
𝐸𝐼

 (3.12) b 

The beam flexure or bending stress formula, which is can relate moment and 
axial stress is obtained by substituting Equation (3.12) b in Equation (3.11), we 
obtain the following [28]: 

 	𝜎%" = −
𝑀𝑦
𝐼

 (3.13)  

Form elementary beam theory, the bending moment are related to the transverse 
displacement 𝑤 function. Because we will use these relationships in the 
derivation of the beam element stiffness matrix, we now present them as in (the 
stress resultant curvature) as shown below in Equation (3.14) a, which relates 
the bending moment to the transverse displacement function [28]. This equation 
is used to represent general stress of a beam [2,14,15,21,28], as follows: 

𝑀 = 𝐸𝐼
𝑑)𝑤
𝑑𝑥)

	= 𝐸𝐼	[𝐵!," ]{𝑑!"} (3.14) a 
 

𝑀 = 𝐸𝐼	 �
𝑑𝑁2,"

𝑑𝑥
𝑑𝑁),"

𝑑𝑥
𝑑𝑁.,"

𝑑𝑥
𝑑𝑁3,"

𝑑𝑥
�

⎩
⎨

⎧
𝑤2"

𝜃2"

𝑤)"

𝜃)"⎭
⎬

⎫
 (3.14) b 

𝑀 = 𝐸𝐼	 45−
6
𝐿#$
+
12𝑥
𝐿#%

7 5−
4
𝐿#
+
6𝑥
𝐿#$
7 5

6
𝐿#$
−
12𝑥
𝐿#%

7 5−
2
𝐿#
+
6𝑥
𝐿#$
79 :

𝑤&#
𝜃&#
𝑤$#
𝜃$#
= (3.14) c 

Where: 
𝑀:  The bending moment   
𝐸𝐼: The beam of flexural rigidity. 
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3.3.7 Element Transverse Shear Force 
The shear force is third order PDE from the elementary basic equations for 
flexural deformation (bending) of Euler-Bernoulli beam. For uniformly loaded 
beam, the resulting shear force is a constant within each beam element used in 
the model [2,28], as shown below: 
 

 
𝑉 =

𝑑𝑀
𝑑𝑥

= 𝐸𝐼
𝑑.𝑤
𝑑𝑥.

= 𝐸𝐼	[𝐵!," ]4{𝑑!"} (3.15) a 
 

 

𝑉 = 𝐸𝐼	 �
𝑑)𝑁2,"

𝑑𝑥)
				
𝑑)𝑁),"

𝑑𝑥)
				
𝑑)𝑁.,"

𝑑𝑥)
				
𝑑)𝑁3,"

𝑑𝑥)
�

⎩
⎨

⎧
𝑤2"

𝜃2"

𝑤)"

𝜃)"⎭
⎬

⎫
 (3.15) b 

 

𝑉 = 𝐸𝐼	 �w
12
𝐿".
x				q

6
𝐿")
r				w−

12
𝐿".
x				q

6
𝐿")
r�

⎩
⎨

⎧
𝑤2"

𝜃2"

𝑤)"

𝜃)"⎭
⎬

⎫
 (3.15) c 

Where: 
[𝐵!"]4: Strain-displacement matrix for flexural deformation (𝑤		&		𝜃) of 
second-derivative of shape at the ith node. 

 
[𝐵!"]4 = �w

12
𝐿".
x				q

6
𝐿")
r				w−

12
𝐿".
x				q

6
𝐿")
r� (3.16)  

 

3.3.8 Element Stiffness Matrix for Flexural Deformation  
The stiffness matrix that relates the nodal displacement to the nodal forces. A 
beam may contain an internal hinge as shown in Figure 3.6, which results in a 
discontinuity in the slope or rotation of the deflection curve at the hinge. 
Therefore, stiffness matrix is modified to include hinge desired effect. The 
element stiffness matrix for bending is given by following [2,8]: 
 

 
[𝐾,"] = 𝐸𝐼 ] [𝐵!," ]5[𝐵!," ]𝑑𝑥

	6

7
 (3.17) a 

Where: 
[𝐾,"]: The local element stiffness matrix for bending. 
[𝐵!," ]: Strain-displacement matrix for flexural deformation (𝑤		&		𝜃) of 
the first-derivative of shape function at ith node. 
𝐸𝐼: The beam flexural rigidity. 
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Figure 3.6:  Beam with Internal hinge. 

3.3.8.1 Element Stiffness Matrix without Internal Hinge Considered  
 

 

[𝐾,"]8(.: =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
12𝐸𝐼
𝐿".

6𝐸𝐼
𝐿")

−
12𝐸𝐼
𝐿".

6𝐸𝐼
𝐿")

6𝐸𝐼
𝐿")

4𝐸𝐼
𝐿"

−
6𝐸𝐼
𝐿")

2𝐸𝐼
𝐿"

−
12𝐸𝐼
𝐿".

−
6𝐸𝐼
𝐿")

12𝐸𝐼
𝐿".

−
6𝐸𝐼
𝐿")

6𝐸𝐼
𝐿")

2𝐸𝐼
𝐿"

−
6𝐸𝐼
𝐿")

4𝐸𝐼
𝐿" ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (3.17) b 

Where: 
[𝐾,"]8(.:: The local element stiffness matrix for bending without 
internal hinge.  
𝐸𝐼: The beam flexural rigidity. 
𝐿": Element Length. 
 

3.3.8.2 Element Stiffness Matrix with Internal Hinge Considered 
At the hinge node the bending moment is equal to zero, but not the rotation. To 
model the hinge, we consider the hinge to be accounted and placed only once 
on either the right end or left end of an element, as shown in Figure 3.7, but not 
on both elements, because this will result in singular stiffness matrix. 
Therefore, the modified stiffness matrix considering internal hinge at its right 
or left end given as following [2,8]: 

 
Figure 3.7: Beam with internal hinge considered either at right or left end of 

the element. 
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1. Modified element local element stiffness matrix considering a hinge at 
its left end 

 

[𝐾,"]:.1 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
3𝐸𝐼
𝐿".

3𝐸𝐼
𝐿")

−
3𝐸𝐼
𝐿".

0

3𝐸𝐼
𝐿")

3𝐸𝐼
𝐿"

−
3𝐸𝐼
𝐿")

0

−
3𝐸𝐼
𝐿".

−
3𝐸𝐼
𝐿	)

3𝐸𝐼
𝐿".

0

0 0 0 0⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (3.18) 

Where: 
[𝐾,"]:.1: The modified local element stiffness matrix for first 
element with a nodal hinge at its right end. 

2. Modified element local element stiffness matrix considering a hinge at 
its left end 

 

[𝐾,"]	:.6 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
3𝐸𝐼
𝐿".

0 −
3𝐸𝐼
𝐿".

3𝐸𝐼
𝐿")

0 0 0 0

−
3𝐸𝐼
𝐿".

0
3𝐸𝐼
𝐿".

−
3𝐸𝐼
𝐿")

3𝐸𝐼
𝐿")

0 −
3𝐸𝐼
𝐿")

3𝐸𝐼
𝐿" ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

	 (3.19) 

Where: 
[𝐾,"]	:.6: The modified local element stiffness matrix for second 
element with a nodal hinge at its left end. 

 

3.3.9 Element Nodal Load Vector  
Using the principle of minimum potential energy, the total work done by 
transverse loading for Euler-Bernoulli beam bending as follows [2]: 

1. Distributed loading (Elements loads). 
2. Concentrated loading (Joint loads). 

3.3.9.1 The Work-Equivalence Method 
   The stiffness matrix for a beam element was developed for loading applied 
only at its nodes. To be compatible with the developed stiffness matrix, the 
distributed loading must be converted to nodal loads only, and also if the 
concentrated loads acting on beam applied other than at the natural intersection 
of two elements must be converted instead of creating a node or place a node 
at it a point of application. Therefore, the work-equivalence method is used. 
The concept of work-equivalence methods used replace a distributed load and 
concentrated loads applied at location other than at the                                        
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natural intersection of two elements by a set of discrete loads (Statically 
equivalent nodal loads), these equivalent loads tend to have the same effect on 
the beam as the actual original distributed load, and they are always of opposite 
sign from the fixed-end reactions, as shown below [2]:  

 {𝐹"}#!;<=!,><"# =	 {𝐹!"}#!;?="<" (3.20)  
Where: 
{𝐹"}#!;<=!,><"#: The local element distributed loading. 
{𝐹!"}#!;?="<":  The vector of local element discrete loads that replace 
distributed loads by statically equivalent nodal loads at the ith node. 
 

 The work due to distributed loading is given by: 
 

{𝐹"}#!;<=!,><"# = ] 𝑤-(𝑥)	𝑤(𝑥)	𝑑𝑥
6

7
 (3.21)  

Where: 
𝑤-(𝑥): The distributed load along the length. 
𝑤(𝑥): The local element transverse displacement (deflection) in y-
direction. 
 

The work due to the replaced discrete loads is given by: 
 {𝐹!"}#!;?="<" = 𝑤2𝐹&27 + 𝜃2𝑀2

7 + 𝑤)𝐹&)7 + 𝜃)𝑀)
7 (3.22) a 

 

 
{𝐹!"}#!;?="<" = �𝐹&27 𝑀2

7 𝐹&)7 𝑀)
7� �

𝑤2
𝜃2
𝑤)
𝜃)

  = �𝐹!7�{𝑑!"} (3.22) b 

Where: 
{𝑑!"} : The vector of local nodal element deflection due to discrete loads 
at the ith node. 
�𝐹!7�: The vector of local element statically equivalent nodal loads 
(Element loads) at the ith node  

 

�𝐹!7� =

⎩
⎪
⎨

⎪
⎧𝐹&2

7

𝑀2
7

𝐹&27

𝑀2
7⎭
⎪
⎬

⎪
⎫

 (3.23) a  

Where: 
𝐹&27 	, 𝐹&)7 : Equivalent nodal forces applied at nodes (Element loads). 
𝑀2
7 , 𝑀)

7: Equivalent nodal moments applied at nodes (Element loads). 
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To represent the local element nodal force vector {𝐹!"}	for beam element as the 
sum of those nodal forces resulting from statically equivalent nodal loads and 
concentrated nodal loading: 

 {𝐹!"} = �𝐹!7� + {𝐹!?} (3.24)  
Where: 
{𝐹!"}: The vector of local element nodal loads due to statically equivalent 
loads and concentrated nodal loads at the ith node. 
�𝐹!7�: Equivalent nodal element loads due to distributed loads (Element 
loads) at the ith node. 
{𝐹!?}: Concentrated nodal load applied at nodes (Joint loads) at the ith 
node.  

 

3.3.9.2 Distributed Loading 
In the appendix there is a list of statically equivalent nodal loads for most 
common types loading presented. For example, for the uniformly distributed 
load the generalized local statically equivalent nodal loads that replace 
uniformly distributed load at the ith node, are given by [2,4]: 

 

�𝐹!7� =

⎩
⎪
⎨

⎪
⎧𝐹&2

7

𝑀2
7

𝐹&)7

𝑀)
7⎭
⎪
⎬

⎪
⎫

= 	

⎩
⎪⎪
⎪
⎨

⎪⎪
⎪
⎧−

𝑤-𝐿"
2

−
𝑤-𝐿")

12

−
𝑤-𝐿"
2

𝑤-𝐿")

12 ⎭
⎪⎪
⎪
⎬

⎪⎪
⎪
⎫

 (3.23) b 

Where: 
𝑤-: The distributed load along the element length. 
𝐿":  Length of element. 

3.3.9.3 Concentrated Loading  
Concentrated nodal loading {𝐹!?} (Joint loads) is applied directly at the nodes. 
Hence, it can be concentrated nodal force and concentrated nodal moment, as 
follows: 

 

{𝐹!?} =

⎩
⎪
⎨

⎪
⎧𝐹&2

@

𝑀2
@

𝐹&)@

𝑀)
@⎭
⎪
⎬

⎪
⎫

 (3.25) 
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Where:  
{𝐹!?}: The vector of concentrated nodal loads applied directly at the ith 
node (Joint loads). 
𝐹&2@  , 𝐹&)@ : Concentrated nodal forces applied at nodes (Joint loads). 
𝑀2
@ , 𝑀)

@: Concentrated nodal moments applied at nodes (Joint loads). 
 
3.3.10 Coordinate Transformation  
  Coordinate transformation is used to transform the beam element matrices 
from the local coordinate system into the global coordinate system. However, 
the transformation is necessary when there is more than beam element in the 
beam structure with different orientations such case in curved beam and in 
frame structures as shown in Figure 3.8 and Figure 3.9 below which require 
coordinate transformation [8,19]. In this research, the developed finite element 
computer program is used for the analysis of thin straight beam. Therefore, 
there is no need to transform the element matrixes from the local to global 
coordinates since both sets of axes are colinear. For each element set up the 
local stiffness matrix and directly assemble it into the global stiffness matrix. 
 

  
Figure 3.8: Curved beam with local axes not colinear with global axes [29]. 

 

Figure 3.9: Frame structure with different members orientation in global 
coordinate system [1]. 
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3.3.11 Global System of Equations 
For a system of connected planar beams, the global system of equation formed 
using Euler-Bernoulli Beam Element [2]: 

 [𝐾,];{𝑑!}; = {𝐹!}; (3.26) a 
 

 [𝐾,];{𝑑!}; = �𝐹!7�
;
+ {𝑃!?}; (3.26) b 

Where: 
[𝐾,];: The global stiffness matrix for thin beam bending. 
{𝑑!};: The vector of global structure nodal degrees of freedom at the ith 
node. 
{𝐹!};		: The vector of global nodal loads at the ith node. 

 {𝐹!}; 		= �𝐹!7�
;
+ {𝑃!?}; (3.27)  

Where: 
�𝐹!7�

;
: The vector of global equivalent nodal loads at the ith node. 

{𝑃!?};: The vector of global concentrated nodal loads at the ith node. 
 
3.3.12 Support Nodal Reactions   
The reactions at support are noting but end equilibrium forces. The 
displacement computed using statically equivalent nodal loads are exact in a 
finite elements sense at nodes. However, to account for distributed loads or 
concentrated loads acting on beam element to calculated the reaction this 
requires same adjustment, to obtain the correct nodal reactions as can be 
verified by simple static equilibrium equations, the following steps must be 
used [2]: 
1. Replace the distributed load by it statically equivalent nodal loads to 

identify the nodal force and moment used in the solution {𝐹"}#!;<=!,><"# =
�𝐹!7�. 

2. Assemble global equations [𝐾,];{𝑑!}; = {𝐹!}; 
Apply the boundary conditions to reduce the set of equations  
 [[𝐾1];]{𝑑!1}; = {𝐹!}; (3.28) a 

3. Solve this reduced set of equation to obtain the unknown nodal degrees of 
freedom (displacement and rotation) 
 {𝑑!1}; = [[𝐾1];]A2{𝐹!}; (3.28) b 

 

4. Obtain the vector of effective global nodal forces. 
 k𝐹!

	(")l
;
= [𝐾];{𝑑!1}; (3.29)  
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Where: 
[𝐾];: The global stiffness matrix. 
{𝑑!1};:  The vector all global nodal displacement obtained from global 
reduced matrix equation which combines (the determined displacement 
with displacement boundary condition). 
 

5. Obtain the correct final global nodal reactions (forces and moments) at the 
supports  
 {𝐹!1}; = k𝐹!

	(")l
;
− �𝐹!7�

;
 (3.30) a 

Where: 

k𝐹!
	(")l

;
: The vector of effective global nodal forces at the ith node. 

�𝐹!7�
;
: The vector of global equivalent nodal loads at the ith node. 

{𝐹!1};: The vector of correct global nodal support reactions at the ith 
node. 

 

{𝐹!1}; =

⎩
⎪
⎨

⎪
⎧𝐹&2

1

𝑀2
1

⋮
𝐹&D1

𝑀D
1⎭
⎪
⎬

⎪
⎫

 (3.30) b 

Where: 
𝐹&!1 	: The vector of vertical global nodal force reaction at ith node. 
𝑀!
1: The vector of global nodal moment reaction at ith node.  
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4 CHAPTER FOUR 
 

DISCRIPTION OF LINEAR FINITE ELEMENT 
COMPUTER PROGRAM 

 
4.1 Introduction  
   In this chapter finite element computer programs are developed to include the 
theory presented in the previous chapters. The finite element formulation is 
used to derive the element equations which is used in the finite element 
computer program. First, it is important to review the steps of FEM for 
structural mechanics problem. Hence, to understand the three phases of finite 
element program structure (pre-processing, processing, and post-processing) 
for structural mechanics problems.  
   Important thing to be kept in mind, computer do what you ask, not what you 
wish. If a computer delivers an unsatisfactory result, it is most likely because 
you did not properly translate your wish”[26] .  Programming is to generate a 
list of instructions suitable for execution by a computer, through splitting the 
problem into a list of elementary operations, then using a programming 
language to put these operations into coding [3]. Therefore, once logic of 
implementation of the FEA variables is understood programming can be carried 
out using any programming language [4].  
   MATLAB is a high-level language specially designed for dealing with 
matrices, this makes it particularly suited for programing the FEM. It allows 
new finite element programmers to focus on the FEM rather on the 
programming details [3,6,8,27].   
  The computer program is named LSATSBB (Linear Static Analysis of Thin 
Straight Beam Bending), The program was coded in MATLAB R2019b. The 
program can be used to analyze thin straight beam bending under static 
transverse loads. The program described here include the linear formulation for 
2-node thin beam bending element. The program developed have the facility to 
use different material types. The mesh generation is done manually. The sign 
conventions adopted are as follows: 

1. Nodal transverse displacements 𝑤!" and nodal force 𝐹&!"  are positive in the 
positive y-direction. 

2. Nodal rotations 𝜃!" and nodal moment 𝑀!
"  are  positive in the counter-

clockwise direction. 



61 
 

3. Nodal reaction force 𝐹&!1  are positive in the negative y-direction. 
4. Nodal reaction moment  𝑀!

1 are positive in the clockwise direction. 
 

The main program flow chart shown in Figure 4.1 
Appendix (A) shows the main program code.  
Appendix (B) shows two sample of output file. 
Brief descriptions will be presented for the main program, sub-programs and 
functions. 
 

4.2 The Structure of Finite Element Program 
    The structure of main program organizes the three basic phases of FEA 
program for structural mechanic problem such as pre-processing, processing, 
and post-processing as it explained in Figure 4.1. In the pre-processing phase, 
the mesh generation is done manually, and also the all-input data used to build 
analysis modal are entered manually in the input sub-program. In the 
processing phase, the program conducts serval analysis steps to get unknown 
nodal deflection (primary unknown variables). In the post-processing phase, 
the program calculates the nodal member actions (secondary unknow variables) 
and print finite element solution result.  
    The main program control various tasks, three sub-programs and six 
functions. Some of these functions is called by other functions.  The name and 
description of each supplementary subprograms is presented in Table 4.1. 
Hence, the name and description of each function is presented in Table 4.2, as 
follows: 
 
Table 4.1: The name and description of each supplementary subprograms. 

Sub-Program Description 
Sub_Input_Modal_Data.m Sub-program to enter modal data for 

thin beam to build analysis modal 
Sub_Print_Display_Modal_Data.m Sub-program to print a display of 

input data for review. 
Sub_Print_Solution_Results.m Sub-program to print FEA solution 

results. 
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Table 4.2: The name and description of each function. 

Functions Description 
[𝐠] = 𝐛𝐞𝐚𝐦A𝐠	(𝐢) 

 
Function to form element steering 
vector form element nodal DOFs 

[𝐅] = 𝐟𝐨𝐫𝐦_𝐛𝐞𝐚𝐦A𝐅	(𝐅) Function to from the global loads 
vector. 

[𝐊𝐊] = 𝐟𝐨𝐫𝐦A𝐊𝐊	(𝐊𝐊, 𝐤𝐠, 𝐠) Functions to form the global 
stiffness matrix. 

[𝐤𝐥] = 𝐛𝐞𝐚𝐦A𝐤	(𝐢) Function to calculate local element 
stiffness matrix. 

[𝐅] = 𝐀𝐬𝐬𝐞𝐦_𝐄𝐥𝐞𝐦_𝐥𝐨𝐚𝐝𝐬		(𝐅, 𝐟𝐠, 𝐠) 
 

Function to Assemble element loads 
to global force vector 

[𝐅] = 𝐀𝐬𝐬𝐞𝐦_𝐉𝐨𝐢𝐧𝐭_𝐥𝐨𝐚𝐝𝐬		(𝐅) 
 

Function to Assemble Joint loads to 
global force vector 

 

4.3 The Main Program  
The flow chart of main program (Main_FEA_Program.m) is presented Figure 
4.1.  and also presented the flow chart of the steps to obtain global loads vector 
Figure 4.2, and flow charts of the steps to obtain global stiffness matrix Figure 
4.3. The program can be extended for the linear static analysis of two-
dimensional plane frame structures based on Euler-Bernoulli theory. Also, the 
program may include other types of analysis e.g., nonlinear and dynamic 
response. 
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Figure 4.1: Flow chart of main program. 
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Figure 4.2: Flow chart of the steps to obtain global loads vector {𝐹}. 
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Figure 4.3: Flow chart of the steps to obtain global stiffness matrix [𝐾]. 
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4.3.1 Sub-Program Sub_Input_Modal_Data.m 
The main program reads the necessary data that defines the structures from the 
sub-program (Sub_Input_Modal_Data.m), these data are (geometrical data, 
nodal coordinates, nodal connectivity, geomatic properties for each element, 
boundary conditions, internal hinge, concentrated joint nodal loads, and 
statically equivalent nodal loads). The reading is free format and separated by 
commas (;). The user is free to adopt any consistent set of units for lengths and 
forces. Since the basic building block in MATLAB is a matrix, the data is 
prepared in the form of tables whenever possible as they are very easily 
translated into matrices. The details of writing modal data in the sub-program 
(Sub_Input_Modal_Data.m) are as follows: 
4.3.1.1 Geometrical Data 

Table 4.3: Input modal for geometrical data. 

Variable Description 
nnd Number of nodes. 
nel Number of elements. 
nne Number of nodes per elements. 
nodof Number of degrees of freedom per node. 
eldof Number of degrees of freedom per element. 

 

4.3.1.2 Nodal Coordinate Data  
Table 4.4: Input modal for nodal coordinate data. 

Variable Description 
geom = [coordinate	value	of	node	(1)
= 0; coordinate	value	of	node	(2); ……. 

coordinate	value	of	node	(𝑛)] ; 

The vector form of nodal x-
coordinate. 

 

4.3.1.3 Element Connectivity Data 
Table 4.5: Input modal for element connectivity data. 

Variable Description 
connec
= [1st	and	2nd	node	of	element	(1); 
3rd	and	4th	node	of		element	(2); …. 
𝑛th	and	𝑚th	node	of	element	(𝑛𝑒𝑙)	] ; 

The matrix form of element 
connectivity. 
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4.3.1.4 Element Materials and Geometrical Properties Data 
Table 4.6: Input modal for element materials and geometrical properties data. 

Variable Description 
prop = [(E	)for	element	(1)	(I)	for	element	(1); 
… . ; (E	)for	element	(𝑛𝑒𝑙)	(I)	for	element	(𝑛𝑒𝑙)]; 

The matrix form of 
element materials 
(Young’s modules) and 
geometrical properties 
(second moment of 
intertia of the cross-
section). 

 

4.3.1.5 Boundary Condition Data 
  Table 4.7: Input modal for boundary conditions data. 

Each node has two degrees of freedom transverse deflection 𝑤!"and rotations 
𝜃!". For restrained degrees of freedom take (value = 0), and for free degrees 
of freedom take (value = 1).  

Variable Description 
nf(𝑛𝑛𝑑, 1)
= value	restrained	or	free	; 

Prescribed nodal degrees of 
freedom at node (𝑖) for deflection 
𝑤!". 

nf(𝑛𝑛𝑑, 2)
= value	restrained	or	free	; 

Prescribed nodal degrees of 
freedom at node (𝑖) for rotations 
𝜃!". 

 

4.3.1.6 Internal Hinges Data 
Table 4.8: Input modal for internal hinges data. 

If internal hinges considered assign (value = 0), if not assign (value = 1). 
A hinge must be considered for one element only at its left end or its right 
end, not on both elements. 

Variable Description 
hinge(𝑛𝑒𝑙, 1)

= value	if	considered	or	not		; 
The hinge is considered at its 
left end for element (𝑖). 

hinge(𝑛𝑒𝑙, 2)
= value	if	considered	or	not		; 

The hinge is considered at its 
right end for element (𝑖). 

 
 



68 
 

4.3.1.7 Joint Nodal Load Data 
Table 4.9: Input modal for joint nodal loads data. 

Variable Description 
Joint_loads(𝑛𝑛𝑑, ∶) = [value	𝐹&!@ 			value	𝑀&!

@ ] 
; 

Prescribed value for nodal 
force and nodal moment  

 

4.3.1.8 Element Nodal Loads Data 
Table 4.10: Input modal for element nodal loads data. 

Variable Description 
Element_loads(𝑛𝑛𝑑, ∶) =

fvalue	𝐹&2!7 			value	𝑀&2!
7 	value	𝐹&)!7 			value	𝑀&)!

7 i	; 
Prescribed value for 
nodal force and nodal 
moment at the 1st and 
2nd node of element 

 

4.3.2 Sub-Program Sub_Print_Display_Modal_Data.m 
After entering all input data and selecting the required input file to be analyzed. 
When pressing a run button to conduct the analysis, the sub-program prints a 
display review in the MATLAB command window for input modal data of the 
selected file. 
 

4.3.3 Sub-program Sub_Print_Solution_Results.m 
After conducting all computation required in processing and post-processing 
phase, the sub-program print FEA solution results. 
 

4.3.4 Function [𝐠] = 𝐛𝐞𝐚𝐦!𝐠	(𝐢) 
Since element loads (the statically equivalent nodal loads) are element based 
(for all four nodal element degrees of freedom). Therefore, there is an important 
need for steering vector function [g]  that contain the number of degrees of 
freedom of the nodes of the element. This function is formed by creating a loop 
over the element degrees of freedom by retrieving element nodal connectivity 
and element BCs. If a degree of freedom is not restrained it is susceptible of 
carrying the element loads.  
The steering vector function one of most important functions in the program. 
The function is called three times in the main program, and in two of the sub-
programs and most functions such as (forming the global loads vector, 
assembly of element loads into global loads vector, forming global stiffness 
matrix, the assembly of element stiffness matrix into global stiffness matrix, 
and the calculation of local member action). 
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4.3.5 Function [𝐅] = 𝐟𝐨𝐫𝐦_𝐛𝐞𝐚𝐦!𝐅	(𝐅) 
This function forms the global load vector. This function is formed by crating 
one loop for joints loads and one loop for element loads. If a degree of freedom 
is not restrained it is susceptible of carrying a load.  
 

4.3.6 Function [𝐊𝐊] = 𝐟𝐨𝐫𝐦!𝐊𝐊	(𝐊𝐊, 𝐤𝐠, 𝐠) 
This function forms the global stiffness matrix. This function is formed by 
creating a loop over element degrees of freedom using steering vector function. 
 

4.3.7 Function [𝐤𝐥] = 𝐛𝐞𝐚𝐦!𝐤	(𝐢) 
This function calculates the element stiffness in local coordinates. Since the 
element axes are colinear with global axes there is no need to transform the 
element stiffness matrix from local to global coordinates. Therefore, for each 
element from (one to number of element), we set up the local stiffness matrix 
and directly assemble it into the formed global stiffness matrix. This function 
is formed by loop over number of elements and if statement for the element 
with or without internal hinge considered at its left or right end but only once. 
 

4.3.8 Function [𝐅] = 𝐀𝐬𝐬𝐞𝐦_𝐄𝐥𝐞𝐦_𝐥𝐨𝐚𝐝𝐬		(𝐅, 𝐟𝐠, 𝐠) 
This function assembles the element loads (statically equivalent nodal loads) to 
the formed global load vector. This function formed by creating a loop over the 
elements degrees of freedom using steering vector function. 
 

4.3.9 Function [𝐅] = 𝐀𝐬𝐬𝐞𝐦_𝐉𝐨𝐢𝐧𝐭_𝐥𝐨𝐚𝐝𝐬		(𝐅) 
This function assembles the joint nodal loads to the formed global loads vector.  
This function is formed by creating a loop over a number of nodes and the 
number of degrees of freedom of per node.  
 

4.4 Program Implementation 
All the program described in the preceding sections were coded in Program. 
Necessary checks for debugging the code were carried out. The programs were 
then applied to verify the performance of the element as shown in the next 
chapter. 
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5 CHAPTER FIVE 
 

VERIFICATION OF PROGRAM RESULTS 
 

5.1 Introduction  
In this chapter numerical examples discussed will be compared to the 
developed code output. nine different beams will be conducted for this purpose 
as follows:  

1. Cantilever beam subjected to UDL. 
2. Fixed-fixed beam subjected to concentrated loads  
3. Overhanging beam subjected to UDL. 
4. Simple supported beam with varying cross-section subjected to 

concentrated loads. 
5. Cantilever beam subjected to UDL and concentrated loads. 
6. Continuous beam subjected to UDL and concentrated loads. 
7. Beam with internal hinge subjected to UDL. 
8. Cantilever beam subjected to linearly varying distributed load. 
9. Beam subjected to concentrated load, UDL, and linearly varying 

distributed load.  
For each examples the basic structural data is displayed with sketches. The 
analysis results are compared with published results is given in tabulated and 
graphical form, and also the location of maximum nodal values is presented.  

 

5.2 Application to Numerical Examples 
5.2.1 Example (1): Cantilever Beam Subjected to UDL. 
Cantilever beam subjected to uniformly distributed load, as shown in Figure 
5.1. the modules of elasticity of the beam 𝐸 = 30 × 10E psi, the second 
moment of area of cross-section 𝐼 =100 in4, beam length 𝐿 = 100 in, and 
uniform load 𝑤 = 20 Ib/in. compare the finite element solution to the exact 
classical beam theory solution (Double-integration method) using one and two 
element finite element solution. Example 4.5 Daryl L. Logon [2].  

 

Figure 5.1: Cantilever beam subjected to UDL. 
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5.2.1.1 Example (1): For One Element Solution at Nodal points  
For one finite element solution for deflection at nodal points, the program 
results obtained are in good agreement with those obtained by Daryl L. Logon 
[2], as shown in (Table 5.1, Table 5.2, Figure 5.2, and Figure 5.3). 
 

Table 5.1: Example (1) one element solution for vertical deflection at nodal 
points.  

Nodal 
Number  

Nodal 
Coordinate 

(m) 

Program 
Result  

Published 
FEA 

Result  

Published 
Exact 
Result  

Present 
Difference  

𝑤!" (in) 𝑤!" (in) 𝑤!" (in) 𝑤!"	(%) 
Node (1)  0 0 0 0 0 
Node (2)  100 -0.0833 -0.0833 -0.0833 0 

 

Table 5.2: Example (1) one element solution for rotation at nodal points.  

Nodal 
Number  

Nodal 
coordinate 

(m) 

Program 
Result  

Published 
FEA 

Result  

Published 
Exact 
Result  

Present 
Difference 

𝜃!" (rad) 𝜃!" (rad) 𝜃!" (rad) 𝜃!"	(%) 
Node (1)  0 0 0 0 0 
Node (2)  100 -0.00111 -0.00111 -0.00111 0 
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Figure 5.2: Example (1) one finite elements solution for vertical deflection 

along beam length at nodal points. 

 

 
Figure 5.3: Example (1) one finite elements solution for rotation along beam 

length at nodal points. 
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5.2.1.2 Example (1): For One Element Solution at Nodal points and Mid-
Length 
For one finite element solution for displacement at nodal points and at mid-
length, the program results obtained are in good agreement with those obtained 
by Daryl L. Logon [2], as shown in (Table 5.3, and Figure 5.4). 
 

Table 5.3: Example (1) one element solution for vertical deflection at nodal 
points and mid-length of a beam at distance (𝑥 = 50	in).  

Nodal 
Number  

Nodal 
Coordinate 

(m) 

Program 
Result  

Published 
FEA 

Result  

Published 
Exact 
Result  

Present 
Difference  

𝑤!" (in) 𝑤!" (in) 𝑤!" (in) 𝑤!"	(%) 
Node (1) 0 0 0 0 0 

𝑎𝑡	𝑥 = 50	in 50 -0.0278 -0.0278 -0.0295 5.76 % 
Node (2)  100 -0.08333 -0.08333 -0.08333 0 

 

 
Figure 5.4: Example (1) one finite elements solution for vertical deflection 
along beam length at nodal points and mid-length of a beam (𝑥 = 50	in). 
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5.2.1.3 Example (1): For Two Elements Solution at Nodal Points  
For two finite elements solution for deflection at nodal points, the program 
results obtained are in good agreement with those obtained by Daryl L. Logon 
[2], as shown in (Table 5.4, Table 5.5, Figure 5.5, and Figure 5.6). 
 

Table 5.4: Example (1) two elements solution for vertical deflection at nodal 
points.  

Nodal 
Number  

Nodal 
Coordi

nate 
(m) 

Program 
Result  

Published 
FEA 

Result  

Published 
Exact 
Result  

Present 
Difference  

𝑤!" (in) 𝑤!" (in) 𝑤!" (in) 𝑤!"	(%) 
Node (1)  0 0 0 0 0 
Node (2)  50 -0.02951 -0.02951 -0.02951 0 
Node (3) 100 -0.08333 -0.0833 -0.0833 0.0360 % 

 

Table 5.5: Example (1) two elements solution for rotation at nodal points.  

Nodal 
Number  

Nodal 
Coordinate 

(m) 

Program 
Result  

Published 
FEA 

Result  

Published 
Exact 
Result  

Present 
Difference 

𝜃!" (rad) 𝜃!" (rad) 𝜃!" (rad) 𝜃!"	(%) 
Node (1)  0 0 0 0 0 
Node (2) 50 -0.00097 -0.000972 -0.000972 0.2057 % 
Node (3) 100 -0.00111 -0.00111 -0.00111 0 
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Figure 5.5: Example (1) two finite elements solution for vertical deflection 

along beam length at nodal points. 

 

 
Figure 5.6: Example (1) two finite elements solution for rotation along beam 

length at nodal points. 
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5.2.2 Example (2) Fixed-Fixed Beam Subjected to Concentrated 
Loads  
Determine the displacement and rotation under the force and moment located 
at the center of the beam shown in Figure 5.7. The beam has been discretized 
into two elements. the beam is fixed at each end. A downward force of 10 kN 
and an applied moment 20 kN.m act at the center of beam. The modules of 
elasticity of the beam  𝐸 = 210 GPa and the second moment of area of cross-
section 𝐼 = 4 × 10A3 m3 throughout the beam length. Example 4.4 Daryl L. 
Logon [2].  
 

 
Figure 5.7: Fixed-fixed beam subjected to concentrated loads. 

For two finite elements solution for nodal variables at nodal points, the program 
results obtained are in good agreement with those obtained by Daryl L. Logon, 
as shown in (Table 5.6, Tables 5.7, Table 5.8, Table 5.9, Figure 5.9, Figure 
5.10, Figure 5.11, and Figure 5.12). Figure 5.8 shows how nodal loads is 
assembled the Table 5.8 and Table 5.9. 
 

 
Figure 5.8: Nodal forces and moments acting on each element. 

Table 5.6: Example (2) two elements solution for vertical deflection at nodal 
points.  

Nodal 
Number  

Nodal 
Coordinate 

(m) 

Program 
Result  

Published 
FEA Result  

Present 
Difference  

𝑤!"(m) 𝑤!"(m) 𝑤!"	(%) 
Node (1)  0 0 0 0 
Node (2)  3 -0.00013 -0.0001339 2.912 % 
Node (3) 6 0 0 0 
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Table 5.7: Example (2) two elements solution for rotation at nodal points.  

Nodal 
Number  

Nodal 
Coordinate 

(m) 

Program 
Result  

Published FEA 
Result  

Present 
Difference 

𝜃!"(rad) 𝜃!"(rad) 𝜃!"	(%) 
Node (1)  0 0 0 0 
Node (2) 3 0.00009 0.00008928 0.8064 % 
Node (3) 6 0 0 0 

 

Table 5.8: Example (2) two elements solution for shear force at nodal points. 

Nodal 
Number  

Nodal 
Coordinate 

(m) 

Program 
Result  

Published 
FEA Result  

Present 
Difference 

𝐹!"(N) 𝐹!"(N) 𝐹!"	(%) 
Node (1)  0 10,000 10,000 0 
Node (2)  3 -10,000 -10,000 0 
Node (3) 6 0 0 0 

 

Table 5.9: Example (2) two elements solution for bending at nodal points.  

Nodal 
Number  

Nodal 
coordinate 

(m) 

Program 
nodal result  

Published FEA 
nodal result  

Present 
Difference 

𝑀!
"(N.m) 𝑀!

"(N.m) 𝑀!
"	(%) 

Node (1)  0 12,500 12,500 0 
Node (2) 3 20,000 20,000 0 
Node (3) 6 -2,500 -2,500 0 
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Figure 5.9: Example (2) two finite elements solution for vertical deflection 

along beam length at nodal points. 

 

 
Figure 5.10: Example (2) two finite elements solution for rotation along beam 

length at nodal points. 
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Figure 5.11: Example (2) two finite elements solution for shear force along 

beam length at nodal points. 

 
Figure 5.12: Example (2) two finite elements solution for bending moment 

along beam length at nodal points. 
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5.2.3 Example (3): Overhanging Beam Subjected to UDL. 
 A beam shown in Figure 5.13 is wide-flange 𝑊310 × 52  with a cross 
sectional area of 6650 mm) and depth of 317 mm. the second moment of area 
of cross-section 𝐼 = 118.6 × 10E mm3 the beam is subjected to a uniformly 
distributed loads 25,000 N/m. the modules of elasticity of the beam 𝐸 = 200 
GPa. Determine the vertical displacement at node (3) and the rotation at node 
(2) and (3). Also compute the reaction forces and moment at node (1) and (2). 
Example 4.4 Saeed Moaveni [17].  

 
Figure 5.13: Overhanging beam subjected to UDL. 

For two finite elements solution for nodal variables at nodal points, the program 
results obtained are in good agreement with those obtained by Saeed Moaveni, 
as shown in (Table 5.10, Table 5.11, Table 5.12, Table 5.13, Figure 5.14, Figure 
5.15, Figure 5.16, and Figure 5.17). 
 

Table 5.10: Example (3) two elements solution for vertical deflection at nodal 
points.  

Nodal 
Number  

Nodal 
Coordinate 

(m) 

Program 
Result  

Published 
FEA Result  

Present 
Difference  

𝑤!"(m) 𝑤!"(m) 𝑤!"	(%) 
Node (1)  0 0 0 0 
Node (2)  5 0 0 0 
Node (3) 7.5 -0.00858 -0.0085772 0.03265 % 
Table 5.11: Example (3) two elements solution for rotation at nodal points. 

Nodal 
Number  

Nodal 
Coordinate 

(m) 

Program 
Result  

Published FEA 
Result  

Present 
Difference 

𝜃!"(rad) 𝜃!"(rad) 𝜃!"	(%) 
Node (1)  0 0 0 0 
Node (2) 5 -0.00137 -0.001372 0.14757 % 
Node (3) 7.5 -0.00412 -0.004117 0.07286 % 
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Table 5.12: Example (3) two elements solution for shear force at nodal points. 

Nodal 
Number  

Nodal 
Coordinate 

(m) 

Program 
Result  

Published 
FEA Result  

Present 
Difference 

𝐹!"(N) 𝐹!"(N) 𝐹!"	(%) 
Node (1)  0 54,687 54,687 0 
Node (2)  5 132,812.6 132,814 0.00105 % 
Node (3) 7.5 0 0 0 

 

Table 5.13: Example (3) two elements solution for bending at nodal points. 

Nodal 
Number  

Nodal 
coordinate 

(m) 

Program 
nodal result  

Published FEA 
nodal result  

Present 
Difference 

𝑀!
"(N.m) 𝑀!

"(N.m) 𝑀!
"	(%) 

Node (1)  0 39,062 39,062 0 
Node (2) 5 0 0 0 
Node (3) 7.5 0 0 0 

 

 
 

Figure 5.14: Example (3) two finite elements solution for vertical deflection 
along beam length at nodal points. 
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Figure 5.15: Example (3) two finite elements solution for rotation along beam 

length at nodal points. 

 
Figure 5.16: Example (3) two finite elements solution for shear force along 

beam length at nodal points. 
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Figure 5.17: Example (3) two finite elements solution for bending moment 

along beam length at nodal points. 

5.2.4 Example (4): Simple Supported Beam with varying Cross-
Section Subjected to Concentrated Loads. 
For the three-segment beam depicted in Figure 5.18 with varying cross-section 
and points loads. Determine the transverse nodal displacement at points A, B, 
C, and D and the reactions at end points. the modules of elasticity of the beam 
𝐸 = 200 GPa and the second moment of area of cross-sections 𝐼*F = 5 × 10AE 
m3, 𝐼F@ = 2.5 × 10AE m3, 𝐼@G = 6.25 × 10AH m3. Example 6.1 Khameel 
Bayo Mustapha [15]. 

 
Figure 5.18: Simple supported beam with varying cross-section subjected to 

concentrated loads. 
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For three finite elements solution for nodal variables at nodal points, the 
program results obtained are in good agreement with those obtained by 
Khameel Bayo Mustapha, as shown in (Table 5.14, Table 5.15, Table 5.16, 
Table 5.17, Figure 5.19, Figure 5.20, Figure 5.21, and Figure 5.22). 
 
Table 5.14: Example (4) three elements solution for vertical deflection at 
nodal points.  

Nodal 
Number  

Nodal 
Coordinate 

(m) 

Program 
Result  

Published 
FEA Result  

Present 
Difference  

𝑤!"(m) 𝑤!"(m) 𝑤!"	(%) 
Node (1)  0 0 0 0 
Node (2)  1 -0.03004 -0.03004 0 
Node (3) 2 -0.01864 -0.01864 0 
Node (4) 2.5 0 0 0 

 

Table 5.15: Example (4) three elements solution for rotation at nodal points. 

Nodal 
Number  

Nodal 
Coordinate 

(m) 

Program 
Result  

Published FEA 
Result  

Present 
Difference 

𝜃!"(rad) 𝜃!"(rad) 𝜃!"	(%) 
Node (1)  0 -0.03586 -0.03586 0 
Node (2) 1 -0.01842 -0.01842 0 
Node (3) 2 0.03618 0.03618 0 
Node (4) 2.5 0 0 0 

 

Table 5.16: Example (4) three elements solution for shear force at nodal points. 

Nodal 
Number  

Nodal 
Coordinate 

(m) 

Program 
Result  

Published 
FEA Result  

Present 
Difference 

𝐹!"(N) 𝐹!"(N) 𝐹!"	(%) 
Node (1)  0 34,868.42 34,868  0.0012 % 
Node (2)  1 -50,000 -50,000 0 
Node (3) 2 -100,000 -100,000 0 
Node (4) 2.5 115,131.58 115,131.58 0 
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Table 5.17: Example (4) three elements solution for bending at nodal points. 

Nodal 
Number  

Nodal 
coordinate 

(m) 

Program 
nodal result  

Published FEA 
nodal result  

Present 
Difference 

𝑀!
"(N.m) 𝑀!

"(N.m) 𝑀!
"	(%) 

Node (1)  0 0 0 0 
Node (2) 1 0 0 0 
Node (3) 2 0 0 0 
Node (4) 2.5 -37,828.95 -37,829 0.00013 % 

 

 
 

Figure 5.19: Example (4) three finite elements solution for vertical deflection 
along beam length at nodal points. 
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Figure 5.20: Example (4) three finite elements solution for rotation along 

beam length at nodal points. 
 

 
Figure 5.21: Example (4) three finite elements solution for shear force along 

beam length at nodal points. 
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Figure 5.22: Example (4) three finite elements solution for bending moment 

along beam length at nodal points. 
 

5.2.5 Example (5): Cantilever Beam Subjected to UDL and 
Concentrated Loads. 
    A wooden beam is loaded as shown in Figure 5.23. The wood material has 
the modules of elasticity of the beam 𝐸 = 12 GPa and the second moment of 
area of cross-section = 10.67 × 10A3 m3. Determine the deflection and slope 
at points, also determine the reaction force and bending moment at points A, B, 
C, and D. Example 6.2 Khameel Bayo Mustapha [15]. 

 
Figure 5.23: Cantilever beam subjected to UDL and concentrated loads. 

For three finite elements solution for nodal variables at nodal points, the 
program results obtained are in good agreement with those obtained by 
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Khameel Bayo, as shown in (Table 5.18, Table 5.19, Table 5.20, Table 21, 
Figure 5.24, Figure 5.25, Figure 5.26, and Figure 5.27). 
 
Table 5.18: Example (5) three elements solution for vertical deflection at 
nodal points.  

Nodal 
Number  

Nodal 
Coordinate 

(m) 

Program 
Result  

Published 
FEA Result  

Present 
Difference  

𝑤!"(m) 𝑤!"(m) 𝑤!"	(%) 
Node (1)  0 0 0 0 
Node (2)  3  -0.01705 -0.017 0.2941 % 
Node (3) 4.5 -0.03348 -0.0335 0.0597 % 
Node (4) 6 -0.05166 -0.0517 0.0773 % 

 

Table 5.19: Example (5) three elements solution for rotation at nodal points. 

Nodal 
Number  

Nodal 
Coordinate 

(m) 

Program 
Result  

Published FEA 
Result  

Present 
Difference 

𝜃!"(rad) 𝜃!"(rad) 𝜃!"	(%) 
Node (1)  0 0 0 0 
Node (2) 3  -0.00984 -0.0098 0.4081 % 
Node (3) 4.5 -0.01177 -0.0118 0.2542 % 
Node (4) 6 -0.0123 -0.0123 0 

 

Table 5.20: Example (5) three elements solution for shear force at nodal points. 

Nodal 
Number  

Nodal 
Coordinate 

(m) 

Program 
Result  

Published 
FEA Result  

Present 
Difference 

𝐹!"(N) 𝐹!"(N) 𝐹!"	(%) 
Node (1)  0 16,000 16,000 0 
Node (2)  3  0 0 0 
Node (3) 4.5 -4,000 -4,000 0 
Node (4) 6 -6,000 -6,000 0 
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Table 5.21: Example (5) three elements solution for bending at nodal points. 

Nodal 
Number  

Nodal 
coordinate 

(m) 

Program 
nodal result  

Published FEA 
nodal result  

Present 
Difference 

𝑀!
"(N.m) 𝑀!

"(N.m) 𝑀!
"	(%) 

Node (1)  0 63,000 63,000 0 
Node (2) 3  0 0 0 
Node (3) 4.5 0 0 0 
Node (4) 6 0 0 0 

 

 
 

Figure 5.24: Example (5) three finite elements solution for vertical deflection 
along beam length at nodal points. 
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Figure 5.25: Example (5) three finite elements solution for rotation along 

beam length at nodal points. 

 
 

Figure 5.26: Example (5) three finite elements solution for shear force along 
beam length at nodal points. 
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Figure 5.27: Example (5) three finite elements solution for bending moment 
along beam length at nodal points. 

 
5.2.6 Example (6): Continuous Beam Subjected to UDL and 
Concentrated Loads. 
 A continuous beam shown in Figure 5.28. Obtain the deflection of the beam 
using the beam element just described in Figure 5.29. Assume the beam flexural 
rigidity  𝐸𝐼 = 1. Example 4.7 P. Seshu [30]. 
 

 
 

Figure 5.28: Continuous beam subjected to UDL and concentrated loads. 
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Figure 5.29: Finite element modal for Example (6) 

For five finite elements solution for deflection at nodal points, the program 
results obtained are in good agreement with those obtained by P. Seshu, as 
shown in (Table 5.22. Table 5.23, Figure 5.30, and Figure 5.31). 
 
Table 5.22: Example (6) five elements solution for vertical deflection at nodal 
points.  

Nodal 
Number  

Nodal 
Coordinate 

(m) 

Program 
Result  

Published 
FEA Result  

Present 
Difference  

𝑤!"(m) 𝑤!"(m) 𝑤!"	(%) 
Node (1)  0 0 0 0 
Node (2)  1  -0.15697 -0.157 0.0191 % 
Node (3) 2 0 0 0 
Node (4) 3 0 0 0 
Node (5) 4 -1.47198 -1.472 0.0013 % 
Node (6) 5 0 0 0 

 

Table 5.23: Example (6) five elements solution for rotation at nodal points. 

Nodal 
Number  

Nodal 
Coordinate 

(m) 

Program 
Result  

Published FEA 
Result  

Present 
Difference 

𝜃!"(rad) 𝜃!"(rad) 𝜃!"	(%) 
Node (1)  0 0 0 0 
Node (2)  1  -0.1153 -0.1153 0 
Node (3) 2 0.46121 0.4612 0.0021 % 
Node (4) 3 -1.25862 -1.2586 0.0015 % 
Node (5) 4 -0.34267 -0.3427 0.0087 % 
Node (6) 5 2.62931 2.62931 0 
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Figure 5.30: Example (6) five finite elements solution for vertical deflection 

along beam length at nodal points. 

 
Figure 5.31: Example (6) five finite elements solution for rotation along beam 

length at nodal points. 
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5.2.7 Example (7): Beam with Internal Hinge Subjected to UDL. 
   Determine the slope at node (2) and the deflections and slope at node (3) for 
the beam with internal hinge located at node (3), the beam is loaded as shown 
in Figure 5.32. Node (1) and (4) are fixed and there is a knife-edge support at 
node (2). the modules of elasticity of the beam  𝐸 = 210 GPa and the second 
moment of area of cross-section 𝐼 = 2 × 10A3 m3. Example 4.11 Daryl L. 
Logon [2]. 

 
Figure 5.32: Beam with internal hinge and uniformly distributed loading. 

For three finite elements solution for deflection at nodal points, the program 
results obtained are in good agreement with those obtained by Daryl L. Logon, 
as shown in (Table 5.24, Table 5.25, Figure 5.33, and Figure 5.34). 
Table 5.24: Example (7) three elements solution for vertical deflection at 
nodal points.  

Nodal 
Number  

Nodal 
Coordinate 

(m) 

Program 
Result  

Published FEA 
Result  

Present 
Difference  

𝑤!"(m) 𝑤!"(m) 𝑤!"	(%) 
Node (1)  0 0 0 0 
Node (2)  2 0 0 0 
Node (3) 3 -2.126 ×	10AI -2.126 ×	10AI 0 
Node (4) 4 0 0 0 

 

Table 5.25: Example (7) three elements solution for rotation at nodal points. 

Nodal 
Number  

Nodal 
Coordinate 

(m) 

Program Result  Published FEA 
Result  

Present 
Difference 

𝜃!"(rad) 𝜃!"(rad) 𝜃!"	(%) 
Node (1)  0 0 0 0 
Node (2) 2 -1.276×	10AI -1.276×	10AI 0 
Node (3) 3 -2.693×	10AI -2.693×	10AI 0 
Node (4) 4 0 0 0 
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Figure 5.33: Example (7) three finite elements solution for vertical deflection 
along beam length at nodal points. 

 

 
Figure 5.34: Example (7) three finite elements solution for rotation along 

beam length at nodal points. 
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5.2.8 Example (8): Cantilever Beam Subjected to Linearly 
varying Distributed Load. 
Cantilever beam subjected to linearly varying distributed load 𝑞7 = 24	kN/m 
and point load 𝐹7 = 60	kN as shown in Figure 5.35. The module of elasticity 
of a beam  𝐸 = 200 × 10E kN/m) and the second moment of area of cross-
section = 29 × 10E mm3. Using two elements for solution the length of beam  
𝐿 = 3m.  Determine deflection field and bending moment.  Example 5.2.1 J.N. 
Reddy [4]. 

 
Figure 5.35: Cantilever beam with linearly varying distributed loads. 

For two finite elements solution for deflection at nodal points, the program 
results obtained are in good agreement with those obtained by J.N. Reddy, as 
shown in (Table 5.26, Table 5.27, Figure 5.36, and Figure 5.37). 
 

Table 5.26: Example (8) two elements solution for vertical deflection at nodal 
points.  

Nodal 
Number  

Nodal 
Coordinate 

(m) 

Program 
Result  

Published 
FEA Result  

Present 
Difference  

𝑤!"(m) 𝑤!"(m) 𝑤!"	(%) 
Node (1)  0 0 0 0 
Node (2)  1.5 -0.03337 -0.0333 0.2102 % 
Node (3) 3 -0.010428 -0.01043 0.0191 % 

 

Table 5.27: Example (8) two elements solution for rotation at nodal points. 

Nodal 
Number  

Nodal 
Coordinate 

(m) 

Program 
Result  

Published 
FEA Result  

Present 
Difference 

𝜃!"(rad) 𝜃!"(rad) 𝜃!"	(%) 
Node (1)  0 0 0 0 
Node (2) 1.5 0.03929 0.0393 0.0254 % 
Node (3) 3 -0.05121 -0.0512 0.0195 % 
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Figure 5.36: Example (8) two finite elements solution for vertical deflection 

along beam length at nodal points. 

 

 
Figure 5.37: Example (8) two finite elements solution for rotation along beam 

length at nodal points. 
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5.2.9 Example (9): Beam with Concentrated Load, UDL and 
Linearly Varying Distributed Load. 
A beam as shown in Figure 5.38, the beam is made of steel with modules of 
elasticity  𝐸 = 30 × 10AE psi, and the second moment of area of cross-section 
= 4.5 in3. Find the transverse deflection using Euler-Bernoulli beam finite 
element. Example 5.2.3 J.N. Reddy [4].  

 

 
Figure 5.38:  Beam with concentrated load, UDL, and linearly varying 

distributed loads. 

For three finite elements solution for deflection at nodal points, the program 
results obtained are in good agreement with those obtained by J.N. Reddy, as 
shown in (Table 5.28, Table 5.29 Figure 5.39, and Figure 5.40). 
 
Table 5.28: Example (9) three elements solution for vertical deflection at nodal 
points.  

Nodal 
Number  

Nodal 
Coordinate 

(in) 

Program 
Result  

Published 
FEA Result  

Present 
Difference  

𝑤!"(in) 𝑤!"(in) 𝑤!"	(%) 
Node (1)  0 0 0 0 
Node (2)  16 0.00036 -0.000322 11.8012 % 
Node (3) 36 0 0 0 
Node (4) 48 -0.00519 0.00515 0.7767 % 
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Table 5.29: Example (9) three elements solution for rotation at nodal points. 

Nodal 
Number  

Nodal 
Coordinate 

(m) 

Program 
Result  

Published 
FEA Result  

Present 
Difference 

𝜃!"(rad) 𝜃!"(rad) 𝜃!"	(%) 
Node (1)  0 0 0 0 
Node (2) 16 0.00006 0.0000593 2.9159 % 
Node (3) 36 -0.00025 -0.0002513 0.5173 % 
Node (4) 48 -0.00052 -0.000518 0.3861 % 

 

 
Figure 5.39: Example (9) three finite elements solution for vertical deflection 

along beam length at nodal points. 
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Figure 5.40: Example (9) three finite elements solution for rotation along 

beam length at nodal points. 

5.3 Discussion of The Results  
    In this research a computer program coded using MATLAB R2019b, it was 
developed for the linear static finite element analysis of thin straight beams of 
two-nodes The approach adopted to drive the element equations based on the 
principle of minimum potential energy and the generalized coordinate 
approach.  
     In order to compared the developed code outputs, nine different beams with 
different loading and boundary conditions will be conducted for this purpose 
include a cantilever beam, fixed beam, overhanging beam, simple supported 
beam, continuous beam, and beam with internal hinge 
 

In Example (1): Cantilever Beam Subjected to UDL. 
Example (1): For One Element Solution at Nodal Points  
For one finite element solution for deflection at nodal points using the same 
two-nodes beam element. The program results obtained are in good agreement 
with the exact solution result and FEA result obtained by Daryl L. Logon [2]. 
Hence, the location of maximum nodal deflection values is presented in Table 
5.30, as follows: 
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Table 5.30: Discussion on the location of maximum values of Example (1). 

No. Variable Name Node 
Number 

Nodal 
Coordinate 
(in) 

Comment on 
Location 

1 Vertical deflection 𝑤!" Node (2) 𝑥 = 100	in At free end. 
2 Rotation 𝜃!" Node (2) 𝑥 = 100	in At free end. 

 

The reason that finite element solution for nodal deflection values is correct and 
identically match the exact beam solution values, because the element nodal 
forces were calculated on the basis on the assumed cubic (third order) 
displacement polynomial field within each beam element [2].  
 

Example (1): For One Element Solution at Nodal Points and at Mid-Length. 
For one finite element solution for deflection at nodal points using the same 
two-nodes beam element. The program results obtained are in good agreement 
with the exact solution result and FEA result obtained by Daryl L. Logon [2]. 
Hence, the location of maximum nodal deflection values is presented in Table 
5.31, as follows: 

Table 5.31: Discussion on the location of maximum values of Example (1). 

No. Variable Name Node 
Number 

Nodal 
Coordinate 
(in) 

Comment on 
Location 

1 Vertical deflection 𝑤!" Node (2) 𝑥 = 100	in At free end. 
2 Rotation 𝜃!" Node (2) 𝑥 = 100	in At free end. 

 

 The finite element solution values of the deflection at other locations along the 
beam, are lower than the exact beam theory solution. this is always true for 
beams subjected to some form of distributed load that are modeled using the 
cubic displacement function. The exception of this results is at nodes, where 
the beam theory and finite element results are identical because of the work-
equivalence concept used to replace the distributed load by statically equivalent 
nodal loads [2]. 
  In the exact beam theory solution, the displacement evaluated using quartic 
(fourth order), while the finite element solution assumes a cubic displacement 
behavior in each beam under all load’s conditions. However, the more element 
used in the model, the finite element solution converges to the actual one [2].  
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Example (1): For Two Elements Solution at Nodal Points  
For two finite element solutions for deflection at nodal points using the same 
two-nodes beam element. the program results obtained are in good agreement 
with the exact solution result and FEA result obtained by Daryl L. Logon [2]. 
Hence, the location of maximum nodal deflection values is presented in Table 
5.32, as follows: 

Table 5.32: Discussion on the location of maximum values of Example (1). 

No. Variable Name Node 
Number 

Nodal 
Coordinate 

(in) 

Comment on 
Location 

1 Vertical deflection 𝑤!" Node (2) 𝑥 = 100	in At free end. 
2 Rotation 𝜃!" Node (2) 𝑥 = 100	in At free end. 

 
In Example (2): The fixed-fixed beam subjected to concentrated loads. 
The two finite elements solution for nodal variables at nodal points using the 
same two-nodes beam element. The program results obtained are in good 
agreement with those obtained by Daryl L. Logon [2]. Hence, the location of 
maximum nodal variables values is presented in Table 5.33, as follows:  
 

Table 5.33: Discussion on the location of maximum values of Example (2). 

No. Variable Name Node 
Number 

Nodal 
Coordinate 

(m) 

Comment on 
Location 

1 Vertical deflection 𝑤!", 
rotation 𝜃!", and bending 
moment 𝑀!

" 

Node (2) 𝑥 = 3	m At the mid-
span. 

2 Shear force 𝐹!" Node (1) 
Node (2) 

𝑥 = 0	m 
𝑥 = 3	m 

At the support 
and at mid-span 
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In Example (3): Overhanging beam subjected to UDL.  
The two finite elements solution for nodal variables at nodal points using the 
same two-nodes beam element. The program results obtained are in good 
agreement with those obtained by Saeed Moaveni [17]. Hence, the location of 
maximum nodal variables values is presented in Table 5.34, as follows: 
 

Table 5.34: Discussion on the location of maximum values of Example (3). 

No. Variable Name Node 
Number 

Nodal 
Coordinate 

(m) 

Comment on 
Location 

1 Vertical deflection 𝑤!", 
and rotation 𝜃!" 

Node (3) 𝑥 = 7.5	m At free end. 

2 Shear force 𝐹!" Node (2) 𝑥 = 5	m At the support. 
3 Bending moment 𝑀!

" Node (1) 𝑥 = 0	m At the fixed 
support. 

 

In Example (4): Simple supported beam with varying cross-section subjected 
to concentrated loads.  
The three finite elements solution for nodal variables at nodal points using the 
same two-nodes beam element. The program results obtained are in good 
agreement with those obtained by Khameel Bayo Mustapha [15]. Hence, the 
location of maximum nodal variables values is presented in Table 5.35, as 
follows: 
 

Table 5.35: Discussion on the location of maximum values of Example (4). 

No. Variable Name Node 
Number 

Nodal 
Coordinate 

(m) 

Comment on 
Location 

1 Vertical deflection 𝑤!" Node (2) 𝑥 = 1	m At mid-span. 
2 Rotation 𝜃!" Node (3) 𝑥 = 2	m At mid-span. 
3 Shear force 𝐹!" Node (4) 𝑥 = 5	m At the fixed support. 
4 Bending moment 𝑀!

" Node (4) 𝑥 = 0	m At the fixed support. 
 

In Example (5): Cantilever beam subjected to UDL and concentrated loads. 
The three finite elements solution for nodal variables at nodal points using the 
same two-nodes beam element. The program results obtained are in good 
agreement with those obtained by Khameel Bayo Mustapha [15] . Hence, the 
location of maximum nodal variable values is presented in Table 5.36, as 
follows: 



104 
 

Table 5.36: Discussion on the location of maximum values of Example (5). 

No. Variable Name Node 
Number 

Nodal 
Coordinate 

(m) 

Comment on 
Location 

1 Vertical deflection 
𝑤!", and rotation 𝜃!" 

Node (4) 𝑥 = 6	m At the free end. 

2 Shear force 𝐹!", and 
Bending moment 𝑀!

" 
Node (1) 𝑥 = 0	m At the fixed support. 

 

In Example (6): Continuous beam subjected to UDL and concentrated loads.  
The five finite elements solution for deflection at nodal points using the same 
two-nodes beam element. The program results obtained are in good agreement 
with those obtained by P. Seshu [30]. Hence, the location of maximum nodal 
deflection values is presented in Table 5.37, as follows: 
 

Table 5.37: Discussion on the location of maximum values of Example (6). 

No. Variable Name Node 
Number 

Nodal 
Coordinate 

(m) 

Comment on 
Location 

1 Vertical deflection 
𝑤!" 

Node (5) 𝑥 = 4	m At mid-span. 

2 Rotation 𝜃!" Node (6) 𝑥 = 5	m At the right end 
support. 

 

In Example (7): Beam with Internal Hinge subjected to UDL.  
The three finite elements solution for deflection at nodal points using the same 
two-nodes beam element. The program results obtained are in good agreement 
with those obtained by Daryl L. Logon [2]. Hence, the location of maximum 
nodal deflection values is presented in Table 5.39, as follows” 
 

Table 5.38: Discussion on the location of maximum values of Example (7). 

No. Variable Name Node 
Number 

Nodal 
Coordinate 

(m) 

Comment on Location 

1 Vertical 
deflection 𝑤!" 

Node (3) 𝑥 = 3	m At the internal hinge. 

2 Rotation 𝜃!" Node (2) 𝑥 = 2	m The maximum value in the 
deflection curve. The internal 
results in a discontinuity in 
the slope or rotation of the 
deflection curve at the hinge 
as it appears in Figure 5.34 
above. 
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In Example (8): Cantilever beam subjected to linear varying distributes loads. 
The two finite elements solution for deflection at nodal points using the same 
two-nodes beam element. The program results obtained are in good agreement 
with those obtained by J.N. Reddy [4]. Hence, the location of maximum nodal 
deflection values is presented in Table 5.39, as follows: 
 

Table 5.39: Discussion on the location of maximum values of Example (8). 

No. Variable Name Node 
Number 

Nodal 
Coordinate 

(m) 

Comment on 
Location 

1 Vertical deflection 
𝑤!" 

Node (2) 𝑥 = 1.5	m At mid-span. 

2 Rotation 𝜃!" Node (3) 𝑥 = 3	m At the free end. 
 

In Example (9): Subjected to a linear varying distributed load, UDL, and 
concentrated loads. 
The three finite elements solution for deflection at nodal points using the same 
two-nodes beam element. The program results obtained are in good agreement 
with those obtained by J.N. Reddy [4]. Hence, the location of maximum nodal 
deflection values is presented in Table 5.40, as follows: 
 

Table 5.40: Discussion on the location of maximum values of Example (9). 

No. Variable Name Node 
Number 

Nodal 
Coordinate 

(in) 

Comment on 
Location 

1 Vertical deflection 
𝑤!" 

Node (4) 𝑥 = 48	in At the free end. 

2 Rotation 𝜃!" Node (4) 𝑥 = 48	in At the free end. 
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6 CHAPTER SIX 
 

CONCLUSIONS AND RECOMMENDATIONS 
 

6.1 Conclusion 
   In this research, Euler-Bernoulli beam flexural mode of deformation has been 
examined using a finite element displacement method (FEDM). One of the 
main objectives of this thesis is to develop a finite element computer program 
for the linear static analysis of thin beams to examine bending deformation, 
which is classified as class C1 problem (continuity C1).  
  In this research, the program results obtained from the analysis of different 
loading and support configuration of thin straight beams are compared with 
known published results and hence the following conclusions are drawn: 

1. First conclusion, for the convergence using two nodes Euler-Bernoulli 
beam element shows good performance when used to analyze thin straight 
beams for bending.  This is conformed when comparing results obtained 
with known published exact analytical solution. 

2. Second conclusion, there is no significance difference between the 
results. 

 
 
 
 
 

6.2 Recommendations for Further Studies   
  From the work presented in this research, the following recommendations for 
future work directions are suggested: 

1. Expending the program to include transformation from local to global 
and the modification of the program to include axial effect for the linear 
analysis of two-dimensional planer frame based on the theory adopted. 

2. Expending the program to include other types of analysis such as 
nonlinear and dynamic response. 

3. Developing a graphical user interface (GUI) using MATLAB to ease the 
pre-processing and post-processing phase. 
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8 APPENDIX (I) 
 

FINITE ELEMENT COMPUTER PROGRAM 
 

%========================================================================
=% 
%                  FINITE ELEMENT COMPUTER PROGRAM                        
% 
%                                                                         
% 
%          FOR LINEAR STATIC ANALYSIS OF THIN STAIGHT BEAMS (BENDING)    
%                              (LSATSBB)                                    
% 
%                                                                         
% 
%                        USING MATLAB R2019b                              
% 
%========================================================================
=% 
%                          THE MAIN PROGRAM                               
% 
%========================================================================
=% 
%                     (1) PRE-PROCESSING PHASE                            
% 
%========================================================================
=% 
%          (1.1)  CLEAR ALL VARIABLES AND SCREEN MEMORY                   
% 
%------------------------------------------------------------------------
-% 
clc % CLEAR ALL COMMANDS IN THE COMMAND WINDOW 
clear % CLEAR ALL VARIABLES IN WORKSPACE 
%------------------------------------------------------------------------
-% 
%     (1.2) THE GLOBAL VARIABLES USED IN MAIN PROGRAM FROM FUNCTIONS      
% 
%------------------------------------------------------------------------
-% 
prop nf Element_loads Joint_loads force Hinge 
global nnd nel nne nodof eldof n geom connec F ... 
%------------------------------------------------------------------------
-% 
%          (1.3)   EXECUT AND DISPLAY MAIN PROGRAM                        
% 
%------------------------------------------------------------------------
-% 
display('Executing Main_FEA_Program'); % EXECUTING AND DISPLAY FORCES 
RESULTS 
%                                     IN COMMAND WINDOW  
%------------------------------------------------------------------------
-% 
% (1.4) AFTER COMPUTATION DISPLAY THE OUTPUT TEXT FILE FOR FEA SOLUTION   
% 
%       RESULTS                                                           
% 
%------------------------------------------------------------------------
-% 
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display('Results printed to file : FEA_Results.txt '); % DISPLAY IN TEXT 
FILE 
fid=fopen('FEA_Results.txt','w'); 
%------------------------------------------------------------------------
-% 
% (1.5) SELECT THE INPUT SUB-PROGRAM FILE FOR BEAM MODEL TO BE ANALYZED   
% 
%                     (BUILDING ANALYSIS MODAL)                           
% 
%------------------------------------------------------------------------
-% 
Sub_Input_Modal_Data ; % SUB-PROGRAM FILE NAME FOR BEAM MODEL 
%========================================================================
=% 
%                      (2) PRE-PROCESSING PHASE                           
% 
%                         (CONDUCTING ANALYSIS)                           
% 
%========================================================================
=% 
%        (2.1) PRINT AND DISPLAY INPUT MODAL DATA FOR REVIEW              
% 
%------------------------------------------------------------------------
-% 
Sub_Print_Display_Model_Data % SUB-PROGRAM TO PRINT & DISPLAY OF MODAL 
DATA  
%------------------------------------------------------------------------
-% 
%          (2.2) INITIALIZE GLOBAL STRUCTURE EQUATIONS TO ZERO            
% 
%------------------------------------------------------------------------
-% 
KK =zeros(n) ; % INITIALIZE GLOBAL STRIFFNESS MATRIX TO ZERO 
F=zeros(n,1); % INITIALIZE GLOBAL FORCE VECTOR TO ZERO  
F = form_beam_F(F); % FUNCTION TO FORMING GLOABAL FORCE VECTOR  
%      (2.3) LOOP FUNCTION TO ASSEMBLE GLOBAL STIFFNESS MATRIX            
% 
%------------------------------------------------------------------------
-% 
for i=1:nel   % LOOP FOR NUMBER OF ELEMENT 
kl=beam_k(i); % USING FUNCTION THAT FORM ELEMENT MATRIX 
g=beam_g(i) ; % USING FUNCTION THAT RETRIEVE ELEMENT STEERING VECTOR  
KK =form_KK(KK, kl, g); % USING FUNCTION THAT FORM GLOBAL STIFFNESS 
MATRIX 
end 
%------------------------------------------------------------------------
-% 
%      (2.4) THE SOLUTION OF GLOBAL DEFLECTION VECTOR                     
% 
%------------------------------------------------------------------------
-% 
delta = KK\F ; % SOLUTION VECTOR FOR NODAL UNKNOWNS  
%========================================================================
=% 
%                     (3) POST-PROCESSING PHASE                           
% 
%                          (ANALYSIS RESULT)                              
% 
%========================================================================
=% 
% (3.1) LOOP FUNCTION TO RETRIVE ELEMENT NODAL DEFLECTION FOR RECTION     
% 



111 
 

%       CORRECTION                                                        
% 
%------------------------------------------------------------------------
-% 
for i=1:nnd   % LOOP FOR NUMBER OF NODES 
for j=1:nodof % LOOP FOR NUMBER OF DOFs 
node_disp(i,j) = 0;  
if nf(i,j)~= 0 % IF STATEMENT TO CONTROL NODAL DEFLECTION FROM SOLUTION  
    %            BASED ON BCs 
node_disp(i,j) = delta(nf(i,j)) ; 
end 
end 
end 
%------------------------------------------------------------------------
-% 
%  (3.2) LOOP FUNCTION TO CALCULATE CORRECT LOCAL MEMBERS NODAL REACTION  
%  
%        LOADS                                                            
% 
%------------------------------------------------------------------------
-% 
for i=1:nel   % LOOP FOR NUMBER OF ELEMENT 
kl=beam_k(i); % USING FUNCTION THAT FORM ELEMENT MATRIX 
g=beam_g(i) ; % USING FUNCTION THAT RETRIEVE ELEMENT STEERING VECTOR  
for j=1:eldof % LOOP FOR NUMBER OF DOFs 
if g(j)== 0 
ed(j)=0.; % FOR RESTRAINED DOFs THE DEFECTION IS ZERO  
else 
ed(j) = delta(g(j));% SOLUTION VECTOR FOR NODAL UNKNOWNS AFTER APPLYING 
BCs  
end 
end 
fl = kl*ed' ; % ELEMENT JOINT NODAL LOADS  
f0 = Element_loads(i,:) % ELEMENT STATICALLY EQUIVALENT NODAL LOADS 
force(i,:) = fl-f0' % THE CORRECT LOCAL NODAL REACTION 
end 
%------------------------------------------------------------------------
-% 
% (3.3) SUB-PROGRAM TO PRINT FINITE ELEMENT ANALYSIS SOLUTION RESULT      
% 
%------------------------------------------------------------------------
-% 
Sub_Print_Solution_Results; % SUB-PROGRAM FOR PRINTING FEA RESULTS 
fclose(fid); 
%========================================================================
=% 
%                         END OF MAIN PROGRAM                             
% 
%======================================================================== 
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9 APPENDIX (II) 
 

PROGRAM OUTPUT RESULTS 
 

EXAMPLE (1) ONE FINITE ELEMENT SOLUTION 
PROGRAM OUTPUT 

 
******* Sub_Print_Display_Model_Data ************** 
------------------------------------------------------  
Number of nodes: 2 
Number of elements: 1 
Number of nodes per element: 2 
Number of degrees of freedom per node: 2 
Number of degrees of freedom per element: 4 
------------------------------------------------------  
Node coordinate X direction  
 1, 0000.00 
 2, 0100.00 
------------------------------------------------------  
Element connectivity Node_1 Node_2  
 1, 1, 2 
------------------------------------------------------  
Element properties E I  
 1, 3e+07, 100 
------------------------------------------------------  
-------------Nodal freedom----------------------------  
Node displacement & rotation  
 1, 0, 0 
 2, 1, 2 
------------------------------------------------------  
-----------------Applied Nodal Loads-------------------  
Node load_& moment in Y direction  
 1, 0000.00, 0000.00 
 2, -1000.00, 16666.66 
------------------------------------------------------  
Total number of active degrees of freedom, n = 2 
--------------------------------------------------------  
 ******* PRINTING ANALYSIS RESULTS ************** 
------------------------------------------------------  
Global force vector F  
 -1000 
 16666.7 
 
------------------------------------------------------  
Displacement solution vector: delta  
 -0.08333 
 -0.00111 
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------------------------------------------------------  
Nodal displacements  
Node displacement & rotation  
 1,  0.00000,  0.00000 
 2, -0.08333, -0.00111 
------------------------------------------------------  
Members actions  
element fy1 M1 Fy2 M2 
 1,   2000.00, 100000.00,      0.00,      0.00 
 
 
EXAMPLE (1) TWO FINITE ELEMENT SOLUTION 

PROGRAM OUTPUT 
 
******* Sub_Print_Display_Model_Data ************** 
------------------------------------------------------  
Number of nodes: 3 
Number of elements: 2 
Number of nodes per element: 2 
Number of degrees of freedom per node: 2 
Number of degrees of freedom per element: 4 
------------------------------------------------------  
Node coordinate X direction  
 1, 0000.00 
 2, 0050.00 
 3, 0100.00 
------------------------------------------------------  
Element connectivity Node_1 Node_2  
 1, 1, 2 
 2, 2, 3 
-----------------------------------------------------  
Element properties E I  
 1, 3e+07, 100 
 2, 3e+07, 100 
------------------------------------------------------  
-------------Nodal freedom----------------------------  
Node displacement & rotation  
 1, 0, 0 
 2, 1, 2 
 3, 3, 4 
------------------------------------------------------  
-----------------Applied Nodal Loads-------------------  
Node load_& Moment in Y direction  
 1, 0000.00, 0000.00 
 2, -1000.00, 0000.00 
 3, -500.00, 4166.67 
------------------------------------------------------  
Total number of active degrees of freedom, n = 4 
--------------------------------------------------------  
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 ******* PRINTING ANALYSIS RESULTS ************** 
------------------------------------------------------  
Global force vector F  
 -1000 
 0 
 -500 
 4166.67 
------------------------------------------------------  
Displacement solution vector: delta  
 -0.02951 
 -0.00097 
 -0.08333 
 -0.00111 
------------------------------------------------------  
Nodal displacements  
Node displacement & rotation  
 1,  0.00000,  0.00000 
 2, -0.02951, -0.00097 
 3, -0.08333, -0.00111 
------------------------------------------------------  
Members actions  
element fy1 M1 Fy2 M2 
 1,   2000.00, 100000.00,  -1000.00, -25000.00 
 2,   1000.00,  25000.00,     -0.00,      0.00 
 
 


