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Abstract

This research project introduces a new method employed to tackle non-
linear partial differential equations, namely Modified Double Sumudu
Transform Decomposition Method. This method is a combination of the
Modified Double Sumudu Transform and Adomian Decomposition
Method. The presented technique is provided and supported with
necessary illustrations, together with some attached examples. The results
reveal that the new method is very efficient, simple and can be applied to

other non-linear problems.
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Chapter 1

Introduction

Partial differential equations have become a useful tool for describing
most of the natural phenomena of science and engineering models. For
example, in physics, the heat flow and the wave propagation, in ecology,
most population models are governed by partial differential equations.
The dispersion of a chemically reactive material is characterized by
partial differential equations. In addition, most physical phenomena of
fluid dynamics, quantum mechanics, electricity, plasma physics,
propagation of shallow water wave, and many other models are
controlled within its domain of validity by partial differential equations.
Therefore, it becomes increasingly important to be familiar with all
traditional and recently developed methods for solving partial differential

equations, and the implementation of these methods.

The non-linear partial differential equations, appear in many applications
of mathematics, physics, chemistry and engineering, for this reason the
researcher presents a number of methods for solving it, such as Adomian
Decomposition Method (ADM) [1], Variation Iteration Method (VIM)
[1], Homotopy Perturbation Method (HPM) [1].

A new option appear recently, includes the composition of previous
methods with some integral transforms namely Laplace transform,
Sumudu transform, or Elzaki transform, these compositions resulted
number of methods such as Laplace Decomposition Method (LDM) ([2]-
[4]), Laplace Variation Iteration Method (LVIM) [5], Sumudu
Decomposition Method (SDM) ([6]-[15]), Sumudu Homotopy
Perturbation Method (SHPM) ([16],[17]), Elzaki Variation Iteration



Method (EVIM) [18], Elzaki project Differential Transform Method
(EPDTM) [19], Elzaki Homotopy Perturbation Method (EHPM)
([20],[21]), and Elzaki Decomposition Method (EDM) ([22],[23]).

In this thesis the essential motivation of the present study is to extend the
application of the Modified Double Sumudu Transform by introduce a
new method called Modified Double Sumudu Transform Decomposition

Method for solving non-linear partial differential equations.

The significance of this method is its capability of combining easy
integral transform Modified Double Sumudu Transform (DET)[24] and
an effective method for solving non-linear partial differential equations,

namely Adomian Decomposition Method [1].

This method is described and illustrated with some examples in chapter

four to explain its effectiveness.



Chapter 2
Sumudu and Modified Sumudu Transform

In the literature, there are several works on the theory and applications
of integral transform such as Laplace, Fourier, Mellin, Hankel, Sumudu
and Modified Sumudu transform (Elzaki Transform). These transforms
use to solve a lot of problems in ordinary differential equation, partial
differential equation and integral equations. Now we take a glance for

some transforms.

2.1 Sumudu Transform
Sumudu transform it was proposed originally by Watugala (1993) to

solve differential equation and control engineering problems.

Definition (2.1.1):Sumudu transform denoted by the operator S(.)

defined by the integral equation:
F(u) = S[f():u] = %Tf(t)eut dt . uc(on.zo) (1)

It appeared like the modification of the well-known Laplace transform.

This transform may be used to solve problems without resorting to a new
frequency domain and has many interesting properties which make its

visualization easing some of these properties are:

1-The differentiation and integration in the t- domain is equivalent to

division and multiplication of the transformed function F(u) by u in the

u- domain.



2-The unit-step function in the t- domain is transformed into unity in the

u- domain.

3-Degree of the function f(t)in the t- domain is equivalent to degree of

F(u) inthe u-domain by the same degree factor.

4-The limit of f(t) as t tends to zero is equal to the limit of F(u)as u

tends to zero.

5-The limit of f(t) ast tends to infinity is the same as the limit of F(u)

as u tends to infinity.

6-The slope of the function f(t) at t =0is the same as the slope of F(u)

atu=0.
2.1.1 Properties of Sumudu Transform :
1- Linear Property:

Slaf () + bg(D] =aS[f(©)] +b S[g(®)]

Slaf () +bg(®)] =1 ;e ulaf(©) + bg(e)]dt
=4[ F© eTnde + 27 g e de
= a S [f(©)] +b S[g(®)]

2- 51f (at)] = F(an)
SIf (@] =2 [ eulf (@Dl dt = Faw)

2.2 Modified Sumudu Transform:

Modified Sumudu transform was introduced to facilitate the process of

solving ordinary and partial differential equations in the time domain.



Definition (2.2.1): Modified Sumudu transform denoted by the operator
E(.) defined by the integral equation:

t

E[f@®) ]=TW)= vT f(t)e% dt ,t >0, k, <v<k, (2.2)

2.2.1 Existence of Modified Sumudu Transforms:

The sufficient conditions for the existence of Modified Sumudu transform
are that f (t) for t > 0 be Piecewise continuous and of exponential order,
Otherwise Modified Sumudu transform may or may not exist. That is

means Modified Sumudu transform defined for function in the set A such

that the set A defined by:

It]

A= {f t):3AM Kk, .k, >0,[f®)| < Me" if te(—1)' X [O,oo)}

The constant M must be finite number, k,,k, may be finite or infinite.

Example(2.2.1): If f(t) =1 then

E(l):vfe7dt = v(-v)e'| = —v?[0-1=V?

0
=E@1) = Vv*

Example (2.2.2): If f(t) =t then

o0

© —t
+vjev dt
0 0
;t o0
=v?|—vev | =V
0

Example (2.2.3): If f(t) =e*,then

t

E(t):theV dad = v[t(—vevt)

=E@lt)=V?

E(eé“)zvojzeat e_Vt dt = vTe
0 0

A -2)

dt



= E(e") =

1-av

Modified Sumudu transform (Elzaki Transform) of the some functions

are listed in the following table

f(t) ELf(V)]
V2

ot 1-av
V2

cos (at) L+a’v
av®

sin (at) l+alv?
V2

cosh (at) 1-a*v*
av®

sinh (at) 1-a’v’

Theorem (2.2.2): Let T (v) is the Modified Sumudu transform of

[ E(f (9)=T (v) ],then
T (v)

(i) E(f'(1) = -v f(0)
(i) E(f" (1)) —T )
(i) E(f ™ (1) = T(") nZ_l\ﬂ*'”kf(k)(O)

Proof

f(t)




() E(f'(1)) :VT f '(t)e_Vt dt

+—j f(t)e dt
\'

0 0

—v {f(t)evt

:—vf(O)+Tf(t)eVt dt

= E(F () =1

Vi)
(i) Let g(t)= f'(t) , then
E(g'(t) = %E(g(t» “vg(0) , from (i)

= E("(t)) =TV(;’)

(iii) By mathematical induction: for n=1 , hold in(i),we assume it hold
forn , and proved that it carries ton+1
=E(f™" (1) =E(f" )

CEEPM) o
== Vi)

V |:T (V) nji 2-n+k f (k) (O)i| vf (n) (0)

l—*

ST Sy g0 g) —y 10 (g)

n+1

\' k=0
_ T(v) _ C Lk f(k)(o)
Vn+1 P

= E (f (n) (t)) T (V) ZIVZ—nJrk f (k) (0)
V"

Theorem (2.2.3): Modified Sumudu transform of partial derivatives are:

0 E{af (x,t)}: TO;'V) ~v £ (x,0)

ot



| 07 F(x1) T(x V) af(x,O)
(i) E{ e } % — f(x,0)—v p

of d
(iii) E{&}z &[T(x,v)]

0% f d?
(iv) E{ P~ } e —[T(x.v)]

Proof

We use integration by parts as follows:

t

()E[af(Xt)} J‘vg th_llmjvevidt
ot , ot P ot

t t
Let u=ve v = du=-e v and dv:%:v:f

t p

= E{%}: lim ve_Vf(x,t) + E N f(x,t)dt

0

—v f(x,0)

. E[@f (0] _ T(xv)
ot v

(ii) To find g 2 f(f’t)} CletT g, then:
ot ot

AElcHIN {ag(x,t)} _ Elg(x1)] ~vg(x0)
ot2 ot \' 1

- [azf(zx t)} T(xz,v) ~ £ (x0) _Vaf(x,O)
ot Vv ot

i | L] e M0 - 2 fue tocgan- v

OX



= E[af } = di[T(x,v)]

o] dx

Also we can find: E[ = |= d?ﬁ(x’v)]

821 d?
* We can easily extend this result to thenth partial derivative by using

mathematical induction.

2.2.2 Laplace — Modified Sumudu Duality:
Now we showed that modified Sumudu transform is the dual of Laplace
transform. Hence, one should be able to reveal it to a great extent in

problem solving. Defined for Re(s)> 0, the Laplace transform is given by:
F(s) = L(f(t) = T f(t)e ™ dt
0

According to above definition ELzaki and Laplace transforms exhibit a

duality , relation expressed as follows:
T(V) =VF(EJ ,  F(9) =ST(1J
\" S

The (L E D) formula helps us to find inverse Elzaki transform by using

contour integral and residues theorems we know:

ft)=L"[F(s)]= i J'eSt F(s) ds

a—iwo
Wheres=x+iya complex variable

Then from the relation between ( L and E) transform we get

ET(s)] = i are“ sT[lj ds = ) residues of {e“ sTGﬂ (2.3)

S

We can apply above formula as follows:

1 1
3 3 3
Let T(v) = — :sT(lj:s S |=s|-2 :s{%. S}: !
1+v S 1+} s+1 s° s+1] s(s+1)
S S



st

s(s+1)

ThenE'[T(v)] = D residues of{ } do occur at the poles

s=—1and s=0 with respective values -e*and 1.Then f(t)=1-¢™".

2.3 Modified Double Sumudu Transform:

Now we take modified version of double Sumudu transform which is
called modified double Sumudu transform. This new transform rivals
Sumudu transform and Laplace transform in problem solving.

Definition (2.3.1):Let f(xt),t,xeR"™ be a function which can be
expressed as a convergent infinite series, then its Modified Double

Sumudu Transform given by:

X t

E, [f(xt)u,v]=T(u,v)= uvﬁ f(x,t)e_[”+Vj dxdt , x,t>0.  (2.4)

whereu ,v are complex values.

Example (2.3.1): If f (x,t) =x then

0

X t X t

E,(X)=uv ﬁx e_(mfjdx dt :—uvax e_(UTjdx
00 0

0
X

9 —_
=uvzjxe u dx
0

Use Integration by Parts gives:

°° +u Te_zdx ]

0 0

X 9]
:uv{—uze ”}
0

— ¥ ?[0-1]=u¥?

E,(x)= uvzlxueu

Example (2.3.2): If f (x,t) = 2t then

X t

E,(2t) =uv TTZt e_EUT)dx dt
00

10



u=2t =>du=2

x t

dv :e_(rV

x t
+

Let ] — V:_Ve_(UV)

Use Integration by Parts gives:

o0
x t
+

E,(2t) =uv T [2tv ef[i ij

0 0

] dx =uv j—Zv 2 [O—e“jdx
0

:qu'Z\/Zerx :—ZUQ\IB{eU}
0 0

+ Te[z+vtjdt ]dx

x t)[|°

N Zef(rvfj

o0

=uv I

0

0

=—20%°[0-1]= w¥?®
=E,(2)=2u¥"

Example (2.3.3): If f (x,t) =e*™* then

E,*")=uv e“ef(ﬁ]dx dt

—38
O 8

D
//—
>
|
[SHBS

JS G P

Il
c
<

(¢]
<
/N
T
[SHIN

I G

-
(2) | et
1 v+l x
0

I
c
<

ot—3g o8 o
ot—3 O—3

Il
c
<
o—3
>}

vV +1y

2 © 2 1 @
uv e uv -u x| ;1
= Ie (”jdx: —e(”)
v+l v+l 1-u

0

A
v+l 1-u

Example (2.3.4): If f (x,t) =sint then



X t

E,(sint) =uv ﬁsint e_(iﬂ dx dt
00

0

=uv Tsint {—u e[Hq dt
0

o) t
:u2vjsint e v dt
0

u =sint = du =cost

Let _t t
dv=eVvdt = v=-veV

Use Integration by Parts gives:

0

t

0 t 0 t
E,(sint) =u2v.[sint e Vv dt _uﬂ{ve v sint +vjcost e th]
0 0

0

© t
=u¥ {zero +V jcost e vdt }
0

o t
:uzvzjcost e vdt
0

U =cost = du =-sint
ot _t
dv=eVvdt > v=-veV

t *© © t
UQ\IZI:—V€ veost| —v [sinte th}
0

0
® _t
=u?\/{v —vjsinte th}
0
% ot
=u2v3—u2vgjsinte vdt
0
0 _L 00 _L
uzvjsinte vat + u2v3jsinte vdt =u?d®
0 0
0 t
u2vj.sinte th[1+v2]:u2v3
0

% L TR
:Ez(sint):uzvj-sint e vdt = -
5 1+v

12



Now to obtain Modified double Sumudu transform of partial derivatives

we use integration by parts [24], and then we have:

N

E _i}le(u,v)—uT(O,v)
L OX | u

N

E Eil }zizT(u,v)—T(O,v)—u QT(O,V)
OX

x| u
fof] 1
Ez_a}:vT(u,v)—vT(u,O) (2.5)
o’f| 1 0
EZ_ P }=V—2T(u,v)—T(u,O)—vaT(u,0)
A2
E,| 2 f}=iT(u,v)—!T(u,O)—HT(O,v)+uvT(O,O)
| oxot | uv u v
Proof
E {i}:uv]g]gg1‘(x,t)e_[3+ij dxdt :vTe_5 uTe_zgf(x,t)dx dt
“ ox 2 OX : X

The inner integral gives 1T(u,t)—u f(0,1)
u

=E,

|9<)|9'=

o _t o _t
=~ e " T(u tdt-u[e " £(0,1)dt
uO 0

fof | 1
E,|—|==T(u,v)-uT(0,v
= o | u( ) O,v)

-

Also E{%} ==T(u,v)—vT(u,0)

<

‘. {az f (x,t)} _ ”VIIGQ f0) (00 g~y Te_{

ox?

0 2 _E
The inner integral: uja f(Z"t) e vy = T(uz’t)—f(O,t)—uaf(o’t)_
0 oX u OX

By taking Modified Sumudu transform with respect to t for above

integral we get:

Ez{az f (f’t)} ~Lruw-tov-ulTOV
OX u OX

13



Similarly:

0% f (x,1) _1 B e
Ez{ e }_VZT(U,V) T(u,0) vatT(u,O)

Theorem (2.3.2): Consider a function f in the set Adefined by:

X+t
f(x,1) ={f(x,t) e A:3M,k,,k, >0 suchthat|f (x,t)| <M e ¥ i=12and (x,t)eRﬂ}

With double Laplace transform F(p,s), and Modified double Sumudu

transform T(u,v)

Then: T(u,v) :qu(l,lj,where M,k ,k, eR*
u'v

Proof: Let f(x,t)eAand k, <u,v <k2,T(u,v):u2v2”f(ux,vt)e‘(“‘)dxdt
00

Let n=ux and A=vt, we have

00 00 @ 0 _24_&
T(u,v)=u2v2”f(ux,vt)e‘(x“)dxdt = uv”f(n,i)e (” deﬂdﬂ=UVF(1,1]
00 00 uv
:T(u,v)zqu(l,l)
u'v

Definition (2.3.3): Let f(x,t)and g(x,t)be a piecewise continuous
function on  [0,) and having double Laplace transform
F(p,s) and G(p,s) respectively, then the double

Convolution of the functions f(x,t) and g(x,t) exist and defined by:
(fxxg)t) =[ [ (. B) g (x—a,t - B)dadp
L L [(f *#g)(x,1);(p,5)]=F (p,5)G(p,5)

Theorem (2.3.4): Let f(x,t) and g(x,t)be defined in A and having the
double Laplace transform F(p,s) and G(p,s) respectively, and also having

Modified double Sumudu transform M(u,v) and N(u,v) respectively, then

14



the Modified double Sumudu transform of the convolution of

f(x,t) and g(x,t)is given by:

E[(F )60 )] - MUVNEY)

Proof: The Laplace transform of (f =xg)(x,t) is given by
L, L [(f xg)(x.1);(P.8)|=F(p.5)G(p.5)
From theorem (2.3.2) we have:
E,[(f *+g)(x1): (u W)= wLL[(f **g)(x,1):(p.5)]
11

u'v

E,[(f **g)(x,t);(u,v)]= UV{F G%} G[E,lﬂzuv{M(U’v) : I\I(u’v)}:u—l\/I\/I(u,v) N (u,v)

uv uv uv

11

Since M(u,v):qu( J’N(U’V)ZUVG(U’VJ then

2.3.1 Convergence of Modified Double Sumudu Transform

Here we need to discuss some theorems of convergence of Modified
Double Sumudu Transform

Theorem (2.3.5): Let the function f(x,t) is continuous in the xt-
plane, if the integral converges at u=u,, v=v, then the integral,

X t

w [ | f(x,t)e_(“ J dxdt is convergence for u<u,, v<v,.
00

For the proof we will use the following theorems.

t

Theorem (2.3.6): Suppose that: vj f(x,t)e vdt, converges at v=v,, then
0
the integral converges for v <v,

Proof:

S

Let a(x,t)=v, [ f(x,s)e “ds , O<t<w

O ey —

15



Clearly «(x,0)=0 and lim a(x,t) exist.

tow

By fundamental theorem of calculus we have:

t

a,(xt)=v, f(xt)e * (2.6)
If we choose ¢, and R,such that (0 < ¢, <R,) and using equation (2.6) we
get:

Ry _t Ri1 _t v e 7( ]t
vj.f(x,t)e vdt =VJ’v—eVO a,(x,t)e v dt =V—I a,(x,t)e L™/ dt
€ e 0

OEl

Vo—V

Integrating the last integral by parts to gives:

0 g

Vl? a, (x,t)e_(vvov"v} dt = {a(x,t)e(vsv!}] - Fj Ot(x,t)-e_{vvovt’vjt . —(VO _V]dt

Vl[a(x, Rl)e(vvov"v]Rl - a(x,el)e[vsv"vjq + [Vi’/\:vﬁ Ot(X,t)e[vsv‘Jvjt dt}
0 0 Jg
Now let €, -0 , R, >, if v<v, ,then we have
® ot )= _[vo—vjt
vj f(xt)e th:(v‘) ZV]j a(x,t)e \ "/ dt
0 VO 0

Now if the integral on the right converges then the theorem is proved.

By using limit test for convergence we get:

lim t° oc(x,t)e_[v&“’vjt =lim lim(a(x,t))
t— t—o [V\(:T;V]t t—
e

2

The first limit equal zero at t — «if v <v,and the second limit exist, then

V-V

lim tza(x,t)e_[ Wk 0, finite.

tow

16



o t
Then the integral v | f(xt)e vdt is converges at v <v,.

Theorem (2.3.7): Suppose that: uj f(x,t)e vdx , converges at u=u,, then
0
the integral converges for u <u,

Proof
Prove, of this theorem is same as the method in Theorem (2.3.6).

Now the proof of the theorem (2.3.5) is as follows

t

X t X

uv”f(xt)e[“ dexdt = Teﬁ v xtdt} (2.7)

0

By using theorem (2.3.6) and theorem (2.3.7) we see the integral in RHS
of equation (2.7) is converges foru<u,,v<v,, hence the integral

X t

uv j j f(xt)e 1) dxdt converges for u<u,, v <v, ([28] [29]).

2.4 On Some Applications of Modified Double Sumudu Transform to
Integro-Partial Differential Equations:

To solve integro-partial differential equations by using Modified double
Sumudu transform first convert proposed equation to an algebraic
equation, solving this algebraic equation and applying inverse Modified

double Sumudu transform we obtain the exact solution of the problem

Example (2.4.1):
Consider the PIDE

t
U, =U, + Zj(t —5).u(x,s)ds — 2e”*
0

With initial conditions: u(x,00=e* , u,(x,0)=0
And boundary conditions:  u(0,t)=cost

Solution:

17



We take Modified double Sumudu transform for equation:

u’v?

%T(u,v)—T(u,O)—véT(u,O) = 1T(u,v)—uT (0,v)+2v°T(0,v) -2
v ot u 1

We take single Modified Sumudu transform for conditions

2 2
T(u,O):lu_u ' w: 0 ' T(O’V)zlivz

By substituting:

2 2 2,,2
_T(u )_1u :—T( v)— Tov? +2v2T(u,v)—21u v

2 2,,2
( +2v? ——jT(u V) = ! +21u v
1-u —-u

Multiply both sides by uv®

u’v®  udv? . 2udv?

2 4
=l +2uv” —uT(u,v) =
( )I’( ) 1+v? 1-u 1-u

Cudvt UtV UtV -t 20ty 4 2utVe
@+v*)@-u)

uzvz(v2 +2uv? —u)

:>(v +2uv —u)l'(u,v)z v

uv?

=T(u,v) =
@+vi)L—-u)

Appling inverse Modified double Sumudu transform we get:

u(x,t)=e" cost

18



Chapter 3
Adomian Decomposition Method

The Adomian Decomposition method was introduced and developed by

George Adomian,

The method has a several advantages it’s powerful, effective, and can

easily handle a wide class of linear or non-linear, ordinary or partial

differential equations, and linear and non-linear integral equations, and

it’s attacks the problem in a direct way and in a straightforward without

any need to restrictive assumptions such as linearization, discretization or

perturbation, there is no need is using this method to convert in-

homogenous conditions to homogenous conditions as required by other

techniques.

3.1 Solving linear ODEs and PDEs by Adomian Decomposition
Method:

The adomian decomposition method consist of decomposing the

unknown function u(x, y) of any equation into a sum of an infinite number

of components defined by the decomposition series
u(x,y) = iun(x, y) (3.1)

Where the components u,(x,y), n>0 are to be determined in a recursive
manner.
We first consider the linear differential equation in an operator from by:
Lu+Ru=g (3.2)
Where Lis mostly the lower order derivative which is assumed to be
invertible, R is other linear differential operator, and g is a source term. We
next apply the inverse operatorL™* to both sides of equation (3.2) and
using the given condition to obtain:
u=f-L"(Ru) (3.3)
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Where the function f represents the terms arising from integration the
source term g and from using the given conditions that are assumed to be

prescribed. Adomian method defines the solution u by an infinite series

of components given by

u :iun (3.4)

n=0

Where the components u,,u,,u,,...are usually recurrently determined.

Substituting (3.4) into both sides of (3.3) we get

Su, =f —L{R(iunn (35)
-0 Py
Equation (3.5) can be rewritten as
Up+U, +U, +...=F =L (R(Uy +U, +U, ++-7)) (3.6)
We need to find the components u,,u,,u,,...
The Adomian method suggests that the zeroth component u,is usually
defined by the function f described above by all terms that are not

included under the inverse operator L™, which arise from the initial data
and from integrating the inhomogeneous term. Accordingly the formal
recursive relation is defined by

u, =f

Uy =-L7(RU,)), k=0 3.7
Or equivalently
U, =f
u; :_Lil(R (1))
u, =-L"*(R(u,)) (3.8)

U =-L"(R(,))

After determined these components, we then substitute them into (3.4) to
obtain the solution in a series form.

Now consider the problem:
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u’'(x)=u(x), u(0)=A (3.9)

In an operator form, we get

Lu=u (3.10)
Where
d
L=+ (3.11)
And
L) = ()dx (3.12)
Applying L* to both sides of (3.10) and using the initial condition we
obtain
L (Lu) = L(u) (3.13)
So that
u(x)—u(0) =L"(u) (3.14)
u(x) = A+L*(u) (3.15)
iun(x):A+L‘1(iun(X)j (3.16)
Then
1o (X)=A (3.17)

U () =L U, (x)), k20

Follows immediately consequently, we obtain,
Uy (X)=A
U, (x) = L7 (U (X)) = L™ (A) = Ax

1,00 = L0, (00 =L (A = 2 (3.18)

sz)_ Ax®
217 31

U3(X) = I—_l(uz (X)) = L_l(

Substituting (3.18) into (3.4), we get

u(x):A(x +X?j+xg_j+") (3.19)
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And in a closed form by
u(x) = Ae* (3.20)
Also consider the Airy’s equations
u”(x)=xu(x), u(0)=A,u’'(0)=B (3.21)
In an operator form we get
Lu = xu (3.22)
Where

L:% and rl():ﬁ(-)dxdx

2

Applying L*to both sides of (3.22) and using the initial conditions

L*(Lu) = L™ (xu) (3.23)
u(x)—xu’(0)—u(0)=L"(xu) (3.24)
u(x) = A+ Bx+ L (xu) (3.25)
:iun(x):A+Bx +Ll{xiun(x)J (3.26)

=U,(x)=A+Bx

Uk+1(x)=|-71(xuk(x)), k>0 (3.27)
Consequently we obtain:
Ug(X)=A+Bx
u (x) =L (x Uy(x)) = L(Ax +Bx?) = Ax?® .\ Bx *
° L (3.28)

Ax* Bx°®. Ax® Bx’
u,(x)=L"(xu,(x))=L" + = n
:(%) (et () ( 6! 12!) 180 504

Substituting (3.28) into (3.4) we get

3 6 4 7
00-A(tA ek e (xS k] (@20)
6 180 12 504

Other components can be easily computed to enhance the accuracy of the

approximation.
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Next we apply Adomian decomposition method to first-order partial
differential equations, consider the inhomogeneous partial differential
equations,
u,+u, =f(x,y),  u@©y)=g(y), ux,0)=h(x) (3.30)
In an operator form Equation (3.30) can be written as:
Lu+Lu=f(xy) (3.31)
Where

0 0 oy Gy
L= b =% and L (-)z!(-)dx, L, (.):!(.)dy (3.32)

This means that

L Lu(x, y) =u(x,y)-u(0,y) (3.33)
Applying L;! to both sides of equation (3.31) gives
LoLu =L (F(x y) - L (L) (3.34)
Or equivalently:
u(x,y) =g(y)+ L (f(x, y)) - L (L,u) (3.35)

We obtained above equation by using equation (3.33) and condition
u0,y)=a(y).

Now the decomposition method sets:
(6, =20, 49) (3.36)
Substituting (3.36) into both sides of (3.35) we get
gum,y):g(y)nﬂf(x,y»—L:[Ly(gun(x,y)n (3.37)

This can be re written as
Up +Uy +Uy +---= g(y)+ L (F (%, y)) - 'L, (U +U; +u, +--) (3.38)
We set
Up (X, y) =g (y) +L(F (% ¥))

and
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U (x,y)=-LL, @) k=0 (3.39)
Then we obtain the recursive scheme:
Uo(x,¥) =g (y)+L(F (x,y))
u(x,y) = = LH(L,uo(x,y))
u,(x,y) = -L(L,u(x.y))
u(x,y) = ~L(L,u,(x,y))

(3.40)

And so on, after determined the more components u_(x,y) substituting in
equation (3.36) to find approximate solution.
It is important to note that the solution can also be obtained by finding the

y-solution by applying the inverse operator L to both sides of the

equation
L, =f(x,y)-Lu (3.41)
And complete similar to the x-solution.
The essential steps of the decomposition method for linear and nonlinear
equations, homogenous and inhomogeneous can be outlined as follow:
i- Express the partial differential equations, linear or nonlinear in an
operator form.
ii- Apply the inverse operator to both sides of the equation written in
an operator form.

Iii- Set the unknown function u(x, y) into a decomposition series
u(x, y) = u(xy)
n=0

We next substitute above series into both sides of the resulting
equation.
iv- Identify the zeroth component u,(x,y) as terms arising from the

given conditions and from integration the source term f (x,y) .
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v- Determine the successive components of the series solution u, .k >1
by applying the recursive scheme (3.39), where each component u,
can be completely determined by using the pervious componentu, ,

vi- Substituting the determined components into decomposition series

to obtain the solution in a series form.

An exact solution can be easily obtained in many equations if such a
closed form solution exists.
The essential steps of the adomian decomposition method will be
illustrated by the following examples:
Example (3.1.1): Solve the following partial differential equation

u, +u, =2xy*+2x%y, u(x,0)=0, u(0,y)=0
Solution

Lu+L,u=2xy*+2x%

Lu=2xy?+2x% —L,u

L'Lu= L;l(2xy 2+2x %y )— L 'L,u

u(x,y):O+L;1(2xy2+2x2y —Lyu)

ZUH(x,y)zL;l(ny2+2x2y _Ly zun(xﬂy)j
n=0 n=0
u0+ul+u2+---:x2y2+§x3y —L'L, (Ug+uy +-+)

uO:x2y2+§x3y

U 0GY) =-L (L, )
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=_L;1 _gx3 — £X4
3 12

a 2 4))_
us(x,y)=-L, (Ly (Ex D_O

2 2 1 1
=u(x,y)=x’y?+=x’y —=x’y —=x*+=x"*
(X,y)=x7y"+2X7y =Xy 5

=u(x,y) = x°y?
Example (3.1.2): Solve the following partial differential equation:
xu, +u, =Uu, u(x,0)=1+x, u(0,y)=e’

Solution

xLu+Lu=u

Lu=u-xLu

L'Lu=L'u— L (xLu)

u(x, y) =1+x+ L (u—xL,u)

iun(x,y)zux+Lyl[iun(x,y>—xinun(x,y>j

n=0
=U, =1+X

U (X, y) =L (u, —xLu, ),k =0
u(x,y) =L (1+x =xL, @+x)) =L (1+x —=x )=y

- 1
U,y ) =L, (y XLy ) =2y
1 1 1
u,(x, 1 = e _ty3
s(X,y)= 2y Zyj 6y
0oy)=L, n-123.
n!
L y2 y3
u(x,y)=1+x+ nz .—x+1+y+a+§+...

=u(x,y)=x +e’
Example (3.1.3): Solve the following partial differential equation
u,+yu, +2zu,=3u, u(0,y,z)=yz, u(x,0,z)=u(x,y,0)=0

Solution
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L,u+yLu+zL,u=3u
L,u=3-yLu-zL,u
LLu=L(3u—-yL,u-zL,u)

u(x,y,z)=yz +LX1(3 iun -yL, iun -zL, iunj
n=0 n=0

n=0
=U(x,y,z) =Yz
Uoa(x,y,z)= L;l(SUk _yLyuk —zL,u, ), k 20
U, (x,y,2) =LA@, - yL, U, —2L,u,)
=L Byz —yL,yz —zL,yz)
=L.'(3yz —yz —zy) =xyz
u,(x,y,z)=L"(3xyz —yL, Xxyz —zL,xyz)

=L,"(3xyz —xyz —xyz )=%x2yz

3 1 1
u.(x,y,z)=L" =x?yz —yL, =x?%yz —zL =x?yz
s(X,y,2) X(Zy YL, SX7y zzyj

3 1 1 1
=L Ex?%yz —=x%yz —=x%yz)==x3yz
x(z yz =oxyz =2 yz) g XY
u,(x,y z)—ix“yz
v 24

o0 1 n
un(x,y,z)zzmx yz
n=0 't~

x? x3
U(X1y,2)=(l+x +E+§+...)yz
=u(x,y,z)=yze’

3.1.1 The Noise Terms Phenomenon

Now we will present a useful tool that will accelerate the convergence of

the Adomian decomposition method.

The noise terms phenomenon provides a major advantage in that it
demonstrates a fast convergence of the solution. It is important to note
that the noise terms phenomenon that will be introduced, may appear only
for inhomogeneous PDEs. In addition, this phenomenon is applicable to

all inhomogeneous PDEs of any order. The noise terms, if existed in the
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components u, and u, , will provide, in general, the solution in a closed

form with only two successive iterations.
In view of these remarks, we now outline the ideas of the noise terms:

1. The noise terms are defined as the identical terms with opposite
signs that may appear in the components u, andu, .

2. The noise terms appear only for specific of inhomogeneous
equations whereas noise terms do not appear for homogeneous
equations.

3. The noise terms appear if the exact solution is part of zeroth

componentu, .

4. Verification that the remaining non-canceled terms satisfy the
equation is necessary and essential.
The phenomenon of the useful noise terms will be explained by the

following examples.
Example (3.1.4): Consider the inhomogeneous PDE:
u, +u, =@+ x)e’ ,u(0,y)=0,u(x,0)=
The inhomogeneous PDE can be rewritten in an operator form by

L u =(1+x)e’ - L,u.

X

Applying L, to both sides and using the given condition leads to

u(x,y)=(x+%} R (T

(x,y) into both sides gives

n

Substituting u(x,y) = iu
n=0
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Futen)- (x5 e 11 Sub)]|

n=0

Proceeding as before, the components u,,u,,u,,.... are determined in a

recursive manner by

Uo(X,Y)=(X+X—2Jey,

2!

B x? X
ul(x’y):_ L, 1(Lyuo) :_(E"'gj e,

B x* X!
u,(x,y)=-1L, l(Lyul) = (ngg] e’

Considering the first two components u, andu, , it is easily observed that

2 2

the noise terms %ey and - %ey appear in u, andu, respectively. By

canceling the noise terms inu, , and by verifying that the remaining non-

canceled terms of u, , we find that the exact solution is given by
u(x,y) = xe’ .

3.1.2 Solution Heat Equation by Adomian Decomposition Method.
The initial boundary value problem that controls the heat conduction in a
rod in one, two and three dimensional is given respectively by:

PDE u =ku, O<x<L,t>0

BC u(,1t)=0, t=>0
u(L,t)=0, t>0 (3.42)
IC u(x,0) = f(x)

PDE u =k U, +u,), 0<x<a 0<y<b,t>0
BC u0,y,t)=uay,t)=0
u(x,0,t)=u(x,b,t)=0 (3.43)
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IC u(x, y,0) = f(x,y)

PDE U =K Uy +U,, +U,,), 0<x <a,0<y <b,0<z <c,t >0
BC u(,y,z,t)=u(dy,z,t)=0
u(x,0,z,t)=u(x,b,z,t)=0 (3.44)

u(x,y,0,t) =u(x,vy,c,t)=0
IC u(x,y,z,0)= f(x,y.2)

Where u=u(x,t) represent the temperature of the rod at the position x at
time t in one dimensional, u=u(x,yt) is the temperature of any point
located at the position (x,y) of a rectangular plate at any time t in two
dimensional and u=u(x,y,zt)is the temperature of any point located at
the position(x,y,z) of a rectangular volume at any time t in three
dimensional and k is the thermal diffusivity of the material that measures
the rod ability to heat conduction.

The boundary conditions (BC) that describe the temperature u at both
ends of the rod and the initial condition (IC) that describe the temperature
u attime t=0.

The heat equation in one, two, and three dimensional arises in two

different types namely:

1- Homogeneous Heat Equation:
This type of equations is often given respectively by:

u =ku,, O0<x<L,t>0
u =Kk (U, +u,), 0<x<a0<y<hb,t>0 (3.45)
=k (U, +U,, +U,), 0<x <a,0<y <b,0<z <c,t >0

Further, heat equation with a lateral heat loss is formally derived as a

homogeneous partial differential equation respectively of the form:
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Il
)

u, —u, 0<x <L,t>0
U, +U,)-U, 0<x <a,0<y <b,t>0 (3.46)
k_(uXX

U,

I
=~

Uy

+U,, +U,)-u, 0<x <a, 0<y<b, 0<z <c,t >0

2- Inhomogeneous Heat Equation:
This type of equation contains one or more terms that do not dependent

variable u(x,t),u(x, y,t)andu(x, y, z,t) respectively. It’s often given by:

I
=~

u u, +g(x), 0<x <L,t>0

t XX
(U, +U,)+0(x,y), 0<x <a,0<y <b,t >0 (3.47)
k U,

Il
=~

U,

, tUy, +U,)+g(X,y,z), 0<x <a,0<y <b,0<z<c,t>0
Where g(x),g(x, y)and g(x,y, z) is called the heat source which independent

of time.

To solve equation (3.42) we first rewrite in an operator form as follows:

Lu(xt)=k Lu(x,t) (3.48)
Where
0 o?
L, = L, = e (3.49)
and
Lt= j.(-)dt, L= jj ()dxdx. (3.50)
This means that:
L Lu(x,t) =u(x,t) —u(x,0) (3.51)

Applying L* to both sides of (3.48) and using the initial condition we get
u(x,t)=f (x)+k L;*(Lu(x,t)) (3.52)

From the adomian decomposition method we defined the series
u(x,t) = iun(x,t) (3.53)

Substituting (3.53) into both sides of (3.52) we get:
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Su, (1) =f (x)+k_Lt‘1£LX (iun(x ,t)D (3.54)

From the adomian decomposition method we defined:

u,(x,t)=F (x)

U, () =KL (L, (U (x 1)), k=0 (3.55)
The componentsu, (x,t), u,(x,t), u,(xt),... are determined individually by:

Up(x, 1) =f (x)
u, (x,t) =L, (ug) =f "(x)t

50D =L 0) =1 60 L (3.56)

_ td
u(x,t)=L'L, (u,) =f “”(X)Q

Others components can be determined by the similar way.
Finally substituting (3.56) into (3.53) we get the solution u(x,t) of the

partial differential equation in a series form as follows:

u(x,t) = i f (2“)(x):1—nl (3.57)
n=0 .
To solve equation (3.43) we first rewrite in an operator form as follows:
Lu(x, y,t) =k (Lu+L,u) (3.58)
Where
0 o° 0°
L‘_E’ Lx_y,Ly_y (3.59)
and
t X X yy
L =[Odt, Lt=[[Cdxdx, L;=[[()dydy (3.60)
0 00 00

This means that:
L'Lu(x, y,t) =u(x, y,t) —u(x, y,0) (3.61)
Applying L;* to both sides of (3.58) and using the initial condition we get

u(x,y,t)=Ff (x,y)+k L*(L,u +L,u) (3.62)
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From the adomian decomposition method we definedénies
u(x, y,t):iun (X,y,t) (3.63)

Substituting (3.63) into both sides of (3.62) wé& ge

iun(x,y,t):f x,y)+ k_Lt'l(LX (iunJ+Ly (iunD (3.64)

From the adomian decomposition method we defined:

l 1t = f k)
Uy (X, Yst) EX_ly) (3.65)
uk+1(X1 y1t) = kL[ (Lxuk + I‘yuk)’ k=0
Calculate the components,(x,y,t),u,(x,y,t)u,x,yt),. individually and
substitute into (3.63) we get the solutiagx, y,t) of the partial differential

equation in a series form.

To solve equation (3.44) we first rewrite in an iger form as follows:

Lu(x,y,zt)=k (Lu+Lu+Lu) (3.66)
where
0 0? 02 0?
=9 =2 =2 =2 67
L o’ Y oy’ ¢ 0z (3.67)
and

t X X yy zZ2Z
L= [oot, L= [Otxdx, L' =[] Odydy, L;'=[[@bzdz  (3.68)
This means that:
L'Lu(x, y,z,t)=u(x,y,zt)-u,y,z,0) (3.69)
Applying L* to both sides of (3.66) and using the initial atod we get
u(x,y,zt)=f (x,y,z)+ k' (Lu+Lu+Lu) (3.70)

From the adomian decomposition method we definecddnies

u(x, y,z,t):iun (x,y,zt) (3.71)

n=0

Substituting (3.71) into both sides of (3.70) wé& ge
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iun(x,y,z ) =f (x,y,z)+k_Lt‘1(LX [iun}rLy [iun}rLz (iunn(3.72)

n=0
From the adomian decomposition method we defined:

Up (X, y,2,1) = (x,y,2)

= (3.73)
U, (% y,z,t) =k “(Lu, +Lu, +Lu,) k>0

Calculate the components u,(x,y,z,t),u,(X, Y, z,t),u,(X,y,z,t),.. individually
and substitute into (3.71) we get the solution u(x, y, z," of the partial
differential equation in a series form.

We observe the solution for equation (3.42), (3.43), and (3.44) is obtained
by using the initial condition only, but we can show that it’s satisfies the
given boundary conditions these solutions are obtained by using the

inverse operator L'.

The solution for equation (3.42), (3.43), and (3.44) can also be obtained
by using the inverse operator L'& L' L' &L LY L respectively. In this
case we use the boundary conditions and initial condition for this reason
the solution of partial differential equation in the t direction reduces the
size of computational work compare with the other directions.

Now we have chosen several examples of one dimensional, two
dimensional and three dimensional heat equation homogeneous and in
homogeneous.

Example (3.1.5): Use the adomian decomposition method to solve the

initial-boundary value problems:

PDE u, =u,,0<x <zt >0

BC u(0,t)=0,t>0
u(z,t)=0,t>0

IC u(x,0) =sinx

Solution

Rewrite in an operator form:
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Lu=Lu=L'Lu=L"Lu

0 o°
Where L=— and L =—
ot OX

u(x,t) =sinx+ L 'Lu
Du, =sinx+ 'Ly u,
n=0 n=0
= U, =sinx

uk+l = L[_le (uk)’ k Z 0

u, = 'L (sin x)

u, = L*'(=sinx) =-tsinx

u,(x,t) =L, (—tsinx):Lt‘l(tsinx):ltzsinx

u(x,t)=sinx (1—t +t2—2|—---j:et sin x
=u(x,t)=e"sinx
The solution satisfies the partial differential equation, the boundary
condition and the initial condition.
We can also solve above example by using formula (3.57) such that:
f (x)=sinx = f ®)(x)=(-1)"sinx, n=0,12,--
2 3 4

. t . te . t° . .
=u(x,t)=sinx ——sinX + —sinX ——sinx +—sinx
1 2! 3! 41

R S
:sinx(l—t+———+—---j:etsinx
21 31 4]

=u(x,t)=e"sinx

Example (3.1.6): Use the adomian decomposition method to solve the
initial-boundary value problems with lateral heat loss
PDE u=u,+u,-u 0<xy<zt>0
BC u(0,y,t)=u(r,y,t)=0
u(x,0,t) =—u(x, z,t) =e>sin x
IC u(x,y,0)=sinx cosy

Solution
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Rewrite

in an operator form:

Lu=Lu+Lu-u

L 'Lu =L (Lu+L,u—u)

u(x,y,t)=sinx cosy +L(L,u+L,u—-u)

=U,(x,y,t)=sinx cosy

u, = Lt’l(LX (sinx cosy)+L, (sinx cosy)—sinx cosy)

u, =L *(-3sinx cosy)=-3tsinx cosy

u, =L (L, (-3tsinx cosy)+L, (-3tsinx cosy)+3tsinx cosy)

@)?
2!

=L (9t sinx cosy):%tzsinx cosy = sinx cosy

(3)’

3!

us(x,y,t)=- sinx cosy

u(x,y,t)=sinx cosy (1—3t +%—%+---],

=u(x,y,t)=e*sinx cosy

Example (3.1.7): Use the adomian decomposition method to solve the

inhomogeneous partial differential equation

Solution

PDE  u =u,+u,+u,+sinz 0<xy,z<zt>0
BC u(0,y,z,t)=sinz+e*'siny

u(zy,z,t)=sinz—e*siny
u(x,0,z,t) =sinz+e*sinx
u(x, z,z,t) =sinz—esin x

u(x,y,0,t) =u(x,y, z,t) =e *sin(x +y)

IC u(x,y,z,0) =sin(x+y)+sinz

Rewrite in an operator form:
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Lu=(Lu+Lu+L,u+sinz)

L 'Lu =L (Lu+Lu+L,u+sinz)

u(x,y,z,t)=sin(x +y)+sinz +tsinz +L*(L,u +L,u+L,u)

=U,=sin(x +y)+sinz +tsinz

ul:Lt’l(LX (sin(x +y)+sinz +tsinz )+L, (sin(x +y)+sinz +tsinz )+L, (sin(x +y)+sinz +tsinz

=L (-sin(x +y)-sin(x +y)—sinz —tsinz)
2
=-2tsin(x +y)-tsinz —%sinz

u _@y sin(x + )+t—zsinz +isinz
221 T 3!

2 3 2 2
u(x,y,z,t)=sinz +sin(x +y)(1—2t+%—%+---]+[tsinz—tsinz—%sinz +%sinz +j

=u(x,y,z,t)=sinz +e ?sin(x +y)

3.1.3 Solution of Wave Equation by Adomian Decomposition Method
The wave equation plays a significant role in various physical problems,
it’s needed in diverse area of science and engineering. It’s usually
describes water wave, the vibrations of a string or a membrane, the
propagation of electromagnetic and sound wave, or the transmission of
electric signals in a cable.

A: One Dimensional Wave Equation:

A simple wave equation it’s came as the following initial-boundary value

problem
PDE u, =c’u, 0<x<l,t>0
BC u(0,t) =0,u(l,t)=0, t>0 (3.74)
IC u(x,0) = f(x), u,(x,0) = g(x)

Where u=u(xt) is the displacement of any point of the string at the

position x and at time t, and c is a constant related to the elasticity of the

material of the string. The term u, that represents the vertical

acceleration. The given boundary conditions indicate the end points of the
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vibrating string are fixed. Two initial conditions
u(x,0)=f (x) and u,(x,0)=g(x)that describe the initial displacement and
the initial velocity of any point at the starting time t =0 respectively.

To solve above equation we begin by rewriting equation in an operator

form
Lu(x,t) =c’Lu(x,t) (3.75)
where
0* 0?
L=z b=5e (3.76)
And
Li() = j j ()dtdt , L1() = j j (-)dxdx (3.77)
This means that:
L 'L u(x,t)=u(x,t)—tu,(x,0)—u(x,0) (3.78)
LILu(x,t) =u(x,t)—xu, (0,t) —u(0,t) (3.79)

Appling L7 to both sides of (3.75) and using the initial conditions we
obtain:

u(x,t) = f(x)+tg(x)+c’L (L u(x,t)) (3.80)
The Adomian’s method decomposes the displacement function u(x,t) into

a sum of infinite components defined by the infinite series:
u(x,t) =iun(x,t) (3.81)
Substituting (3.81) into both sides of (3.80) gives:

iun (x,t)=f (x)+tg (x)+chtl[LX (iun(x ,t)D (3.82)

n=0
From Adomian’s method

Up(x, 1) =f (x)+tg (x)

uk+l(X1t)=C2Lt_1(Lx (Uk(X,t)))1 k >0 (383)
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From (3.83) the components u,(x,t),u,(x,t),u,(xt),... can be determined
individually by:
U (x,t) =f (x)+tg (x),

u (x,t) =c’L 'L, (u,) =c’

tz—!f "(X)+t—,g"(x)j,
u,(x,t)=c’'L, (u,)=c* i f (4)(x)+ g (x )j (3.84)

uy(x,t) =c’L'L, (u,) =c” f(a’( )+ “”(X)]

6!

And so on.
By substituting (3.84) into (3.81) we get the solution of (3.74) in a series

form as follows:

t (2n+1)

[ 7 ¢ g
[ AR L e E0) (3.95)

n=0

The solution (3.85) can also be obtained by using the inverse operator L'

but this solution imposes the use of initial and boundary conditions. For
this reason and the reduce the size of calculations, we will apply the
decomposition method in the t direction.
The PDE one dimensional wave equation can be came of the form:

PDE u,=c’u,-au 0O<x<l, t>0 (3.86)
Such that an additional term -au arises when each element of the string
Is subject to an additional force which is proportional to its displacement.
Also The Inhomogeneous PDE one dimensional wave equation can be
came of the form:

PDE  u, =c’u, +h(xt) O<x<l,t>0 (3.87)

Where h(x,t) is the inhomogeneous term
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B: Two Dimensional Wave Equation:

The propagation of waves in a two dimensional vibrating membrane of
length a and width b is governed by the following initial-boundary
value problem

PDE U, =c*(U, +U, ), 0<x<a0<y<b,t>0

BC u(0,y,t)=u(ay,t)=0, t=0
u(x,0t)=u(x,b,t)=0 (3.88)
IC u(x, y,0) = f(x y),u.(x,y,0) =g(x, )

Where u=u(x,vy,t) is the displacement of any point located at the position
(x,y) of a vibrating membrane at any time t, and ¢ is a constant related

to the elasticity of the material of the rectangular plate.

To solve above equation we begin by rewriting equation in an operator

form
Ltu(x,y,t):CZ(LXu(X,y,t)+Lyu(x,y,t)) (3.89)
where
o? o? 0?
L‘_E’Lx_ﬁ’ Ly_y (3.90)
and

0= ot & L0 =] oo & GO =[[ondy  (3.91)

The solution in the t direction, in the x space, or in the y space will
lead to identical results. However the solution in the t direction reduces
the size of calculations compared with the other space solutions because
it uses the initial conditions only. For this reason we use the solution in
the t direction as follows:

LLu(x, y,t) =u(x, y,t) —u(x, y,0) —tu, (x, y,0) (3.92)
Appling L;! to both sides of (3.89) and using the initial conditions we

obtain:
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u(x,y,t)=f (x,y)+tg(x,y)+cL (L,u+L,u) (3.93)
The Adomian’s method defines the solution u(x,y,t) as an infinite series

given by:
u(x, ¥ = D0, (4 y.0) (3.94)

Substituting (3.94) into both sides of (3.93) gives:

Su, =t (x,y)+tg<x,y)+c2L£[Lx (iunjuy [Zun (3.95)

n=0
From Adomian’s method

Uy (X, y,t) = £ (X, y) +tg(x,y)

2 4 (3.96)
U (X y t)=cL(Lu +Lu) k=0

From (3.96) calculate the componentsu,(x,y,t),u,(x,y,t),u,(x, y,t),..and
substitute into (3.94) we get the solution in the series form.
The partial differential equation two dimensional wave equation can be
came of the form:

PDEu, =c’(u,, +u, )-au, 0<x <a 0<y<b,t>0 (3.97)
Such that an additional term -au arises when each element of the
membrane is subjected to an additional force which is proportional to its
displacement u(x, y,t).
Also The Inhomogeneous partial differential equation two dimensional
wave equation can be came of the form:

PDE  u, =c’(u,+u,)+h(xy,t) (3.98)
Where h(x,y,t) is the inhomogeneous term.
C: Three Dimensional Wave Equation:
The propagation of waves in a three dimensional volume of length a,
width b and height d is governed by the following initial-boundary
value problem

PDE u, =c*(u, +u, +u,), 0<x <a,0<y <b,0<z <d, t>0
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BC u(,y,z,t)=u(@y,z,t)=0, t=0
u(x,0,z,t)=u(x,b,z,t)=0 (3.99)
u(x,y,0,t)=u(x,y,d,t)=0
IC u(x,y,z,0)=f(xy,2),u.(xY,z,0)=g(x,Y,2)
Where u=u(x,y,zt) is the displacement of any point located at the
position (x,y,z) of a rectangular volume at any time t, and c is the

velocity of a propagation wave.

To solve above equation we begin by rewriting equation in an operator

form
Lu=c*(Lu+Lu+Lu) (3.100)
where
0? 0? o° o°
== L =—l ="l =— 101
. o N G, o & (3.101)
and

()dxdx &

I
iR
~
~
I
—
—
~
~
Q.
—
o
—
I_
NN
~
~
I
S m——

(3.102)

ot—,N O Sy X

0
L;l():ﬁ()dydy &L (1) j[ dzdz
00 0

The solution in the t direction, in the x space, in the y space, or in the z
space will lead to identical results. However the solution in the t
direction reduces the size of calculations compared with the other space
solutions because it uses the initial conditions only. For this reason we
use the solution in the t direction as follows:
We know that:

L'Lu(x, Y, z,t) =u(x, y, zt) —u(x, y,z,0) —tu,(x, y, z,0) (3.103)
Appling L' to both sides of (3.100) and using the initial conditions we
obtain:

u(x,y,z,t)=f (x,y,z)+tg(x,y,z)+cZL{1(LXu +L,u +Lzu) (3.104)
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The Adomian’s method defines the solutw, y,z,t) as an infinite series

as follows:

u(x, y,z,t):iun(x,y,z,t) (3.105)

n=0

Substituting (3.105) into both sides of (3.104)e3v

iun =f (x,y,z)+tg(x,y,z )+c2|_t—1(|_X (iunj+ Ly (iunj+ L, (iunD (3_106)

n=0 n=0
From Adomian’s method

uO(Xv y,Z,t) = f (va!z)+tg (va!z)

Uk+l(X, y,z,t)= CZL[_]' (Lxuk + LyUk +Lu, )k=0 (3 107)

From (3.107) calculate the componenjgx,y,z,t),u, (x,y,zt)u, X,y z1),..
and substitute into (3.105) we get the solutiothanseries form.
The PDE three dimensional wave equation can be cémhe form:

PDE u, =c’(u, +u, +u,)-au (3.108)
Such that an additional termau arises when each element of the
rectangular volume is subjected to an additional€o
Also The Inhomogeneous partial differential equatibree dimensional
wave equation can be came of the form:

PDE u, =c?(u, +u,, +u,) +h(x,y,zt) (3.109)
Wheren(x,y,z,t)is the inhomogeneous term.
D: Wave Equation in an Infinite Domain:
The initial value problem of the one dimensionaive@quation, where
the domain of the space variable is unbounded, it's describes the
motion of a very long string that is considered todhave boundaries. It's
described by a partial differential equation anidiahconditions only as
follows:

PDEu, =c?,, —0<X <0, t>0

IC  u(x,0)=f (x),u (x,0)=g () (3.110)
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Such that The solution u(x,t) represents the displacement of the point x
at time t, the initial displacement u(x,0) and the initial velocity u,(x,0)
are prescribe by f(x) and g(x) respectively.
To solve above equation we begin by rewriting equation in an operator
form

Lu(x,t) =c’Lu(x,t) (3.111)
Appling L* to both sides of (3.111) and using the initial conditions we
obtain:

u(x,t) =f (x)+tg (x)+c2 (Lu(x 1)) (3.112)
The Adomian’s method decomposes the displacement function u(x,t) into

a sum of an infinite components defined by the infinite series:
u(x,t) = iun(x,t) (3.113)
n=0
Substituting (3.113) into both sides of (3.112) gives:

Su, (x.1) = (x) +tg (x)+cht‘1(LX (iun(x ,t)D (3.114)

From Adomian’s method:

Uo(x,t)=Ff (x)+tg(x)

Uy 1 (1) =L (L, (U, (x 1)), k =0 (3.115)

From (3.115) the components u,(x,t),u,(xt),u,(x,t),... can be determined
individually by:
Uy (X, 1) = f(X) +tg(x)

00D =CLL ) = 1 G+ e'g 00

) > 3.116
u, (x,t)= C2L[_1|_X (ul) — f (4)(X)%+C4g(4)(x)% ( )

0, (0 = CLL,(u,) = f(@)(x)(%?s

Jrc‘sg(‘”(x)E
7!

and so on.

44



By substituting (3.116) into (3.113) we get the solution in a series form as

follows:

u(X,t):£f (x)+f ”(x)((:;—?2+f (4)(X)(C;r—?4+f 6(X)(Cé—l)6+-~j +

(3.117)
STV SDVINV VN ST
+[g(x)t +Cc°g (x)a+c g (x)a+c g (X)ﬂ+'"
Or equivalent
S (Ct)zn (2n) 2n t(2n+1) (2n)
N P S :
u(x,t) ;((Zn)! (x)+c (2n+1)!g (x) (3.118)

Now we have chosen several examples to illustrate discussion given
above
Example (3.1.8): Use the Adomian decomposition method to solve the

initial-boundary value problem

PDE u,=u, O<x<mt>0
BC u(0,t) =1+sint, u(r,t) =1-sint
IC u(x,0)=1u, (x,0)=cosx
Solution
Lu=Lu
L'Lu=L"Lu

u(x,t)=tcosx +1+L "L u

= u(xt) =tcosx+1+L'L D u,(xt)

n=0
= U, =tcosx+1

3
u,=L"L, (tcosx +1) =L (-t cosx) = —ts—lcosx

g (8 1 1.5
u,=LL,|—=cosx |=L | —cosx |=—t>cosx
3! 3! 5!

t3 5
u(x,t)=1+cosx [t—§+ ..... ]

= u(x,t) =1+cosxsint

We can also solve above example by using formula (3.85) such that:
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c=1 f(x)=1 and g(Xx)=cosx, g®"(x)=(-1D)"cosx,n=0,12,...
and

1 n=0
fe(x)=
0 n=123,..

t t t° t’
=u(x,t)=|1+—Cc0osX |-| —COSX |+| —COSX |—| —COSX |[...
1 3! 5! 7!

t2 t° tf
:1+cosx(t——+———+...}
3! 51 71

=u(x,t)=1+cosx sint
Example (3.1.9): Use the Adomian decomposition method to solve the

initial-boundary value problem
PDE uttzé(uxx+uw)—2, O<x,y<mt>0

BC u(0,y,t) =vy? u(r,y,t) = z° + y,u(x,0,t) = x>, u(x, z,t) = 7° + x*
IC u(x,y,0) =x*+y?,u,(x,y,0) =sinxsin y
Solution
1
L.u :E(Lxu +Lyu)—2
_ 1 _ _
L 'L u =§Lt1(LXu +Lu)-L(2)
=u(x,y,t)=—t*>+tsinxsiny +x? +y2+%Ltl(LXu +Lyu)

=Uu,=-t’+tsinxsiny +x*+y?

ulzéLt‘l[LX (-t*+tsinxsiny +x°+y?)+L, (-t*+tsinx siny +x2+y2)J

1 . . . . 1 . .
=§Lt1(2—t sinx siny +2—tsinx smy):tz—at"‘smx siny

_ 1 5 - -
u, _at sinx siny
s t3 t°
=u(x,y,t)=x"+y“+sinx smy{t—aJra—wJ
=u(x,y,t)=x*+y’+sinx siny sint
Example (3.1.10): Use the Adomian decomposition method to solve the

initial-boundary value problem

46



PDE  u,=u,+u,+u,—u,0<x,y,z<7zt>0

BC u(,y,z,t)=u(ry,z,t)=0
u(x,0,z,t)=u(x,z,z,t)=0

IC u(x,y,z,0)=0,u,(x,y,z,0) =2sin xsin ysin z
Solution
Lu=Lu+Lu+L,u-u
L'Llu =L (Lu+Lu+L,u—u)
=u(x,y,z,t)=2tsinxsiny sinz +L;1(Lxu +Lu+L,u —u)
=Uu,=2tsinxsiny sinz
u, =L*(L, (2tsinx siny sinz)+L, (2tsinxsinysinz)+L, (2t sinxsinysinz)—2tsinx siny sinz)

()’

=L (-8tsinxsinysinz)=- 3 sinx siny sinz

()

oS!

u, =

sinx siny sinz

:u(x,y,z,t):smxsmysmz(Zt— Y 5l

(2t)3+@_...]

=u(x,y,z,t)=sinxsiny sinz sin(2t)

Example (3.1.11): Use the Adomian decomposition method to solve the
initial-boundary value problem

PDE  u,=16u, —co<Xx<o0,t>0

IC u(x,0) =sinx, u,(x,0)=2

Solution
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Lu=16L.u
L'Lu =16L"L,u
=u(x,t)=sinx +2+18"L,u
=Uu, =sinx + 2
u, =16L;"L, (sinx + 2) = 16;*(- six)=- & sin
- . - . 32 .
u, =16L"L, (—82 smx): lﬂi_tl( 8’ snx):?t * sim
. , .32, .
=u((x,t)=2 +sinx — &° sirx +?t SirK —---
2 4
MCINCY _J
2! 41

=u(x,t)=2 +sinx cos(t )

=2t+sinx(

We can solve above example by using formula (3.8 that:
c=4, f(x)=sinxand g ()= 2
f@(x)=(-1)"sinx, n=0,1,2,..

and
2, n=0
@)y =)<
g7 () {O, n=123,..
=oo (4t)2n o . t2n+l (2n)
u(x,t) 2, (2n)!( 1)" sinx + £ —(2n+1)!g &)

u(x,t)=(sinx + 2)+[—% sinxJ+((4tT!)4 sirxj—

1—ﬂ+(4t_)4—...j

=2t +sinx [
2! 41

= u(x,t) = 2t + sinx cos(#
Example (3.1.12):Use the Adomian decomposition method to solve the

initial-boundary value problem

PDE u, =u, +2x+6 -ow<x<co,t>0

IC  u(x,0)=0,y, (x,0)= sinx
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Solution
Lu=Lu+2x +6t
LLu =Lt (Lu+2x +6t) =L (Lu)+xt?+t°
=u(x,t)=xt*+t°+tsinx +L'L u

= U, =xt? +t> +tsint

. . 1.,
-1 2 3 -1 3
u, = L'L, (xt® +t2+tsinx ) =L, (—tsmx):—at sinx

. 1.5. 1.5 .
u,=L"L, (—ltsslnx):Ltl(—te’smxj:—tf’smx

3! 3! 5!
t° t°

:>u(x,t)=xt2+t3+sinx[t——+ ———— j
=u(x,t) =xt>+t>+sinx sint

3.2 Solving Systems of Linear PDEs by Adomian Decomposition
Method

We apply the Adomian decomposition method for solving systems of

linear PDEs. We write a system in an operator form by

Lu+Lv=g,,
L v+ Lxu:gz]

With initial data

u(x,0)= f,(x) , v(x,0)= f,(x) ,

Where L, and L, are considered, without less of generality, first order

partial differential operators, and g, and g,are inhomogeneous terms.
Applying L, to the system and using the initial condition yields

u(x,t)=f,(x)+L'g, - L "LV,
vix,t)=f,(x)+ L g, - L, Lu.

The Adomian decomposition method suggests that the linear terms u(x,t)

and v(x,t) be decomposed by an infinite series of components
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u(x,t)= iun(x,t) , v(x,t)= ivn(x,t).

n=0 n=0

Where u, (x,t) and v, (x,t), n>0 are the components of u(x,t) and v(x,t)

that will be elegantly determined in a recursive manner.

Then gives

gt

u,(x,t)= f,(x)+ L, g, - Ltl(Lx [gvn(x,t)B ,
S, (%)= £, (x)+ L g, - Ltl[Lx [gun(x,t)n.

Following Adomian analysis, the system is transformed into a set of

recursive relation given by

uo(X1t): fl(x)+ Lt_l g,
uk+1(x,t) = _Lt_l (Lx Vk)’ k 20.

And

Vo(x!t): fz(X)"' Ltilgz )
Ve (6t) = -1 7 (Luy ), k>0,

To give a clear overview of the content of this work, several illustrative

examples have been selected to demonstrate the efficiency of the method.
Example (3.2.1): Consider the linear system of PDEs

Lu+Lu+2v=0,
Lv+ L,v—-2u=0,

With initial condition

u(x,0)=cosx , v(x,0)=sinx.
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Operating with L, and using initial condition we obtain

u(x,t)=cosx — L, (2v+L,u) ,
v(x,t)=sinx + L, '(2u - L,v) .

Using the recursive manner gives

U, (x,t) = cosx,
Ue,a (x,8) = =L (2v, + L, (u,), k >0.

and

Vo(x,t)=sinx ,
Viea (60t) = L (2u, - L, (v, ) k 0.

Consequently, the pair of zeroth components is defined by
(Uy,Vy) = (cos x, sinx),

Using (u,.v,) into recursive manner gives
(u,,v,) = (=t sinx , t cos x),

t? t?
(u,,v,)= [— oy COSX s == sin x],

2!

t° t?
(Ug,v,) = [§ sinx, — gcosxj.

Combining the results obtained above we obtain

2 4 3 5
u(x,t)=cos x[l—t—+t——...j —sin x(t—t—+t——...] ,
21 4l 3

5|
2 4 3 5

v(x,t) = sin x(l—t—+t——...j + cosx(t—t—+t——...}
21 4 3 ol

So that the pair (u,v) is know in a closed form by
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(u,v) = (cos(x +t), sin(x +1)).
Example (3.2.2): Consider the linear system

Lu+L,v=0,
Lv+ Lu=0

With initial condition
u(x,0)=e* , v(x,0)=e.

To derive the solution by using the decomposition method, we follow the

recursive relation to obtain

U, (x,t)=e*,
Uk+1(X,t) = _Lt_l (Lx Vk)’ k 20.

and

Vo(x,t)=e™,
Via (6, 8) = =L (Louy ), k>0,

The remaining components are thus determined by

2 2
uz(x,t)zzeX L V,(x,t)= EE’X,

t* t*
ug(x,t)—ge , v3(x,t):—§e :

This has an exact analytical solution of the form
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(u,v) = (e* cosht + e *sinht , e * cosht — e* sinht).

3.3 Solving Non-Linear ODEs and PDEs by Adomian Decomposition
Method

The method has been applied directly and in a straightforward manner to
homogeneous and inhomogeneous problems without any restrictive
assumptions or linearization. The method usually decomposes the
unknown function u into an infinite sum of components that will be
determined recursively through iterations as discussed before.

An important remark should be made here concerning the representation
of the nonlinear terms that appear in the equation. Although the linear
term u is expressed as an infinite series of components.

The Adomian decomposition method requires a special representation for

the nonlinear terms such as u?,u®,u’,sinu,e",uu,,u?etc. that appear in the

equation. The method introduces a formal algorithm to establish a proper
representation for all forms of nonlinear terms. The representation of the
nonlinear terms is necessary to handle the nonlinear equations in an
effective and successful way.

3.3.1 Calculation of Adomian Polynomials:

It is well known now that Adomian decomposition method suggests that
the unknown linear function u may be represented by the decomposition

series

u=Su, (3.119)

n=0
The nonlinear term F(u) can be expressed by an infinite series of the so-

called Adomian polynomials A, given in the form

F(u):iﬁh(uo,ul,u2 ..... u,) (3.120)
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The Adomian polynomials A for the nonlinear term F(u) can be

evaluated by using the following expression

1 dn n i B
AFEM{F(;z ui)lo’ n=012,.. (3.121)

For example:
A = F)]= A =F)

1d , '
A ZEH[F(UO +lu1)] =uF (Uo +ﬂ’u1)|,1:0 =A=uF (uo)

1 d?

1d '
A, :EW[F(U0 + AU, + A7Uy)] :Eﬁ[(Ul +2U,)F'(u, + Au, + A°u,)]

1 " '

=§[(u1+21u2)(F (Ug + AU, + A%U,) (U, +24U,)) + (2u,)F (U, + Au, + A70,)],
1 14 ’

:E[u1~F (ug)-u, +2u,F'(u,)]

= A, =U,F'(u,) +%ufF "(U,)

Then Adomian polynomials are given by:

A, =F(U,)
A, =u,F'(u,)
Ay =0 (Up) + S U7F"(0) (3.122)

A, =UF'(u,)+uu,F"(u,) +%ufF”’(u0)

A, :u4F'(u0)+(%u22 +u1u3jF”(uo)+%ufu2F"’(uo)+%ufF(4)(u0)
Other polynomials can be generated in a similar manner.
Important observation that the A depends only on u,, A depends only on
u, and u,, A, depends only on u,,u,and u,, and so on.

Calculation of Adomian Polynomials A, :

I- Nonlinear polynomials
Case 1: F(u)=u®

The polynomials can be obtained as follows:
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A,=F(u,)=ut,
A =uF'(u,)=2uuU,,

A, =u,F (u0)+ u F"(uy)=2u, +u?,
A, =UuF'(u,)+uy, F"(u0)+; JF"(Uy)=2uu,+2uu,

Case 2: F(u)=u®
The polynomials are given by

Ay = F(U,) =ug
A1 = ulF'(Uo) = 2u§u1

A =u,F (u0)+ L Uy ’F"(u,) = 3uu, +3u,u’,
A, =U,F'(Uy) +u,u,F"(u,) + %ufF”’(uo) = 3u2u, +6uyu,u, +u;

Case 3:F(u)=u*
Proceeding as before we find
A =Uy,
A =4ulu,,
A, =4uiu, +6u’u?,
A, = 4ulu, +4ulu, +12u2u,u,.

In a parallel manner, Adomian polynomials can be calculated for
nonlinear polynomials of higher degrees.

I1- Nonlinear Derivatives:

Case 1: F(u) = (u,)?

A, =F (up) =ug ,
A:uF(u):Zu Uy

A, =u,F (u0)+ U FF"(Ug) =u, -2u, +%ufx 2=2u,U, +U
Ay =2u, U, +2ulxu2x
Case 2: F(u)=u’

The Adomian polynomials are given by
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AOZF(UO):USX7
A =u F'(uo):u U =g,

A =UF )+ SuTF ) =, 7+ Tl 6, =ufu, 4,7,

A, :3“0xu3x +6u0xu1xu2x +u1x.

Case 3.F(u)=uu, = % L (u®)

F) = LD&F' (W =2 1,2

The Adomian polynomials for this linearity are given by
A, =FU,) =UdU,,

A :UlF’(uo) =u; '%Lx 20, =L, (uOul) =Ug U, +UU,

A2:uzF'(uo)+%ufF”(uo):u L (2u0)+—u2 ;L 2
:%LX(2u0u2+uf):uoxu2+ulxul+u U,

A3=u3-£LX(2u0)+ulu ;L 2+;LI L :%LX(2u0u3+2u1u2)

=u, U +U1XU2+U u, +u, U

I11- Trigonometric Nonlinearity:

Case 1: F(u)=sinu

The Adomian polynomials for this linearity are given by
A, =sinu,

A =u, cosu,

1 5.
A, =u, cosu, ——uU, sinu,,
2!
. 1
A, =u, cosu, —u,u, sinu, _Qul cos U,

Case 2: F(u) =cosu

Proceeding as before gives
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A, =cosu,
A =-u sinu,,

: 1,
A, =-U,sinu, ——U, cosu,,
2!
. 1 5.
A, =—u,sinu, —u,u, cosu, —gul sinu,

I\VV- Hyperbolic Nonlinearity:
Case 1: F(u) =sinhu
The A polynomials for this form of nonlinearity are given by

A, =sinhu,
A, =u, coshu,

1,
A, =u,coshu, +Eufsmhuo,
: 1 5
A, =u,coshu, +uyu,sinhu, —aul coshu,

Case 2: F(u) =coshu

The Adomian polynomials are given by
A, =coshu,

A =u,sinhu,

. 1
A, =u,sinhu, +—u’ coshu,,
21

. 1 5.
A, =u,sinhu, +u,u, coshu, +§ufsmh U

V- Exponential Nonlinearity:
Case 1:F(u)=e"
The Adomian polynomials for this form of nonlinearity are given by

u
A, =e"

u
A =uge™,

1 u

A2 :(Uzﬁ-aulzje o,
1 3 u
A, = u3+u1u2+§ul e.

Case 2.F(u)=¢e™
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-u
A,=e

A =-ue™,
1
AZ:(—u2+5uf)e :
1 3 -Ug
A, = —u3+u1u2—au1 e .
VI- Logarithmic Nonlinearity:

Case 1: F(u)=Inu,u>0

The A, polynomials for logarithmic nonlinearity are given by

Case 2: F(u) =In(1+u),-1<u<1

The A polynomials are given by

A, =In(l+u,)
u
A= 1
1+u,
A - u, 1 U’

1+u, 2(@+u,)?

3
A = u,  uu, +1 U,

1+u, (1+u))? 3(+u,)’

3.3.2 Solving Nonlinear Ordinary Differential Equations by Adomian
Method:
To apply the Adomian decomposition method for solving nonlinear
ordinary differential equations, we consider the equation
Ly +R(y)+F(y) =9(x) (3.123)
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where the differential operator L may be considered as the highest order
derivative in the equation, R is the remainder of the differential operator,

F(y) expresses the nonlinear terms, and g(x) is an inhomogeneous term.

If L is a first order operator defined by:

L:i Then L™ is given by: L‘1(~)=I(-)dx
dx °

so that:
L'Ly = y(x) - y(0) (3.124)

If L is asecond order:

L= dx—zz —L7()= II(-)dxdx

=Ly =y (x)-y(0)-xy'(0) (3.125)
If L is athird order we can easily show that

L7Ly = y(x) - y(0) - xy'(0) - - x"y"(0) (3.126)

And so on for a higher order operators.

Applying L™ to both sides of equation (3.123) gives

y(x) =y, —L'g(x)~L'Ry —L"F(y) (3.127)
where
y (0) forL =9
dx
d 2
y (0)+xy '(0) for el
1 d 3
W, = y(0)+xy’(0)+—x 2y "(0) for L =53 (3.128)
4
Y (0)+xy'(O)+ X"y "(0) + Xy (0) forL=2"
3 dx
5
y (0)+xy '(0)+ X 2y "(0) + ; 3 "'(0)+ y @) forL = ddx

And substitute y(x) = i y.andF(y) = i A inequation (3.127)
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=3y, =w-Lg()-LR [iynj—L*(iAnj (3.129)

n=0 n=0

The various components y,, of the solution y can be easily determined by:
Yo=Wo—L7(9(x))
Yia=—LT(Ry,)-L7(A) k=0 (3.130)
The first few components can be written as
Yo =¥o —L79(X)
Y, ==L (R(Ye)) - L7 (A)
Y, ==L (R(y)) - L7 (A) (3.131)
Y =—L(R(y)) - L7(A)
Y, ==L (R(Y,)) - L7 (A)

n-1
We can written @ =>"y, to produce a closed form or may be write the

k=0

approximate solution as the form:
y (x)=2y.(x) (3.132)

Example (3.3.1): Solve the first order nonlinear differential equation:

2

y’=1y y(0)=1

Solution
y'(l-xy)=y?®
y'=xyy'+y’
y (x)=1+L"(xyy)+L7(y?)
iyn =1+ Ll(ixAn}r Ll(iBn]
n=0 n=0 n=0
= yo(x) =1
Ve =L (XA)+L(B,), k 20
=>Yy,=1
Yi= Lil(XAo)"‘ I—il(Bo) = L71(0)+ I—il(l) =X

y,=L"(xA)+L*(B,)=L"'(x)+L"(2x) = gx 2

Y, =L7T(XA,)+L7*(B,) =L (x (x +3x))+L'(3x * +x?) = %x 3

=y (x)=1+x p 352,855, 1254
2 3 24

The exact solution can be expressed in the implicit expression = y(x)=e”
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Example (3.3.2): Solve the first order nonlinear differential equation:
y'—e’=0, y(0)=1

Solution
L(y)=¢e’
L7L(y)=L"(")

y(x)=1+ L‘liAn
n=0

0

Dy, =1+ |_-1iAn
n=0

n=0 =

Yo=1

Vi =L"(A) k 20

=y, =L"(A,)=L"()=ex

=LA =L (k) =2 e’
y,=L"(A,)= L{(%x %? +%x 2ezje} =L7(x%%)= %x %3
And so on, the solution in a series form is given by:
y(x):1+ex+%(ex)2 +%(ex)3+---,—1§ex<1
= y(x)=1-In(l—ex), -1<ex<1
Example (3.3.3): Use the noise term phenomenon to solve the second
order nonlinear differential equation
Y +(y)> +y? =1-sinx, y(0)=0,y'(0) =1
Solution

Rewrite in an operator form and applying L™to both sides of equation we

get
: 1 2 -1 1\2 2
y (x)=sinx +oX -L ((y ) +y )

From adomian decomposition method we can write above equation as

follows
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nZ:;yn(x) = sinx +%x2—L'1(iAnj

n=0

—i 1.
=Yy, =sinx +§X

yk+l:_L_1(Ak)’ k20
- . 1
=y, = - (y) +y?) = X

The zeroth component contains the trigonometriction sinx , therefore
it is recommended that the noise terms phenomeronskd here. By

canceling the noise termeléx2 and —%xz betweeny, and y,, and

justifying that the remaining non-canceled term yf satisfies the

differential equation leads to the exact solutioweg by y (x) = sinx

3.3.3 Solution of Nonlinear PartialDifferential Equations by Admian
Method:

Nonlinear partial differential equations arise iffatent areas of physics,

engineering, and applied mathematics such asifhgichanics, condensed

matter physics, soliton physics fluid dynamics,spta physics, solid

mechanics and quantum field theory.

Systems of nonlinear partial differential equatiblase been also noticed

to arise in chemical and biological applications.

The first order nonlinear partial differential e¢joa in two independent

variablesx andy can be generally expressed in the form

F(xy,uu,u, )= f

wheref is a function of one or two of the independenialdesx andy.

Similarly, the second order nonlinear partial défetial equation in two

independent variables and y can be expressed by

F(xy,u,u,u,,u, uu, )= f
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The nonlinear partial differential equation is called homogeneous if f =0,
and inhomogeneous if f =0.

A wide variety of physically significant problems modeled by nonlinear
partial differential equations, such as the advection problem, the KdV
equation, the modified KdV equation, the KP equation, Boussinesq
equation.

An important note worth mentioning is that there is no general method
that can be employed for obtaining analytical solutions for nonlinear
partial differential equations. Several methods are usually used and
numerical solutions are often obtained. Further, transformation methods
are sometimes used to convert a nonlinear equation to an ordinary
equation or to a system of ordinary differential equations. Furthermore,
perturbation techniques and discretization methods, that require a massive
size of computational work, can be used for some types of equations.

The Adomian decomposition method can be used generally for all types
of differential and integral equations. The method can be applied in a
straightforward manner and it provides a rapidly convergent series
solution. Now we will discuss a general description of the method that
will be used for nonlinear partial differential.

We first consider the nonlinear partial differential equation given in an

operator form

Lu(x, y) + Lu(x, y) + RU(x, y)) + FU(x, y)) = g(x, y) (3.133)
Where L, and L, is the highest order differential in x and y respectively,
R contains the remaining linear terms of lower derivatives, F(u(x,y)) is an
analytic nonlinear term, and g(x, y) is an inhomogeneous or forcing term.
The solutions for u(x,y) obtained from the operator equations Lu and

L,u are equivalent and each converges to the exact solution, the decision

63



as to which operator L, or L, should be used to solve the problem

depends mainly on two bases:

(i) The operator of lowest order should be selected to minimize the size of
computational work.

(i) The selected operator of lowest order should be of best known
conditions to accelerate the evaluation of the components of the solution.

Suppose that the operator L, meets the two bases of selection, therefore
we set
Lu(x, y) = g(x, y) — Lu(x, y) —Ru(x, y)) - F(u(x, y)) (3.134)
Applying L;! to both sides we get
u(x,y)=¢-L g(x,y)-LLux,y)-LR(ux,y))-LF (u(x,y))(3.135)
Where

u@,y) forl =2

OX
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u(0,y)+xu, (0,y) fork =—-

by = . 23 (3.136)

u (o, xu., (0, —xu,, (0, forL = —
0,y)+xu,( y)+2! «(0,Y) v
u(,y)+xu (0 )+£x2u (0 )+£x3u 0,y) forL—ﬁ—4
’y X ’y 2| XX ’y 3| XXX 7y _8X4

And so on.

Then substitute u(x,y) = Yoo U, (x, y) and F(u(x, y)) =Y 0A, N

equation

30,00 = L) L (0,60 |- LR S |-L2 34, |(@.13)

The components u_(x,y), n>0 can be recursively determined by using the
relation:

Uy (X, ¥) = ¢ — L9 (X, Y)
Uy, (X ) = —L'Lu, — 'RU) - L (A) k=0 (3.138)

= Uy (%, y) =, - L'g(x,y)
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U, (%, y) ==L Lug (%, y) = LR, (X, ¥)) — LA
U, (X, y) ==L LU, (X, ) - LR, (x, y)) — L*A
Uy(X, ) ==L LU, (%, Y) - LIR(U,(x, y)) - LA,
Uy (%, y) ==L Lus (%, ¥) = LR Uy (X, ¥)) - LA

(3.139)

Substitute above components to obtain the solution in a series form.
Example (3.3.4):

u, +uu, =0, u(x,0)=x,t>0
Solution

Lu=-uu,
L' Lu=-L"(uu,)
u(x,t)=x —L;*(uu,)

From adomian method

iun(x,t):x—Lt‘l(iAnj

n=0

=Uy(X,t)=x

U (X t)=—L"(A¢), k=0

The first few components are given by

Uy (X,t)=X

u,(x,t)=—-L*(Ay) =—L*(x )=—xt,
u,(x,t)=-L*(A l) —L*(—2xt )=xt?,
uy(x,t)=—L*(A,) = -L* (3xt?)=—xt°,

=Uu (X,t)=x (1—t+t —t%4-)

=u(x, t)— t|<1
1+t
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Chapter 4

Modified Double Sumudu Transform Decomposition Method for
Solving Non-linear Partial Differential Equations

We discuss now a new method employed to tackle non-linear partial
differential equations, namely Modified Double Sumudu Transform
Decomposition Method. This method is a combination of the Modified
Double Sumudu Transform and Adomian Decomposition Method. This
technique is hereafter provided and supported with necessary

illustrations, together with some attached examples.
4.1 General Describe for the Method

To clarify the basic idea of this method, we consider a general
inhomogeneous nonlinear partial differential equation with the initial

condition of the following form:
Lu(x,t)+Ru(x,t)+Nu(x,t)=g(xt) , (4.1)

u(x,0)=h(x), u,(x,0)= f(x). (4.2)

2

Where, L is the second order linear differential operatorL:%, R is the

linear differential operator of less order than L, N represents the

general nonlinear differential operator and g(x,t) is the source term.

Taking the Modified Double Sumudu Transform on both sides of
equation (4.1) and Modified single Sumudu Transform of equation (4.2),

We get:
E,(Lu(x,t))+E,(Ru(x,t))+E,(Nu(x,1))=E,(g(x,1)) , (4.3)

E(u(x,0)=E(h(x))=T(u,0) and E(u,(x,0)) = E(f(x))= %T(u,o) . (4.4)
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To substitute Equation (4.4) in (4.3) , after using Equation (2.5), we get:
E,(u(xt)) =v?E,(g(x,1))+Vv2E(h(x))+V’E(f (x))-Vv?E,(Ru(x,t)) =vZE,(Nu(x,1)).
(4.5)

Now, with the application of the inverse Double Elzaki Transform on

both side of equation (4.5) we get:

u(x,t)=G(x,t)- Ez’l[v ? EZ[Ru (x,t)+Nu(x t)ﬂ (4.6)
Where G(x,t) represents the terms arising from the source term and the
prescribed initial conditions.

After that we represent solution as an infinite series given below,

o0

u(x,t) = > u,(xt), (4.7)

n=0

and the nonlinear term can be written as follow,
Nu(t)= A ). (4.8)
n=0

Where, A (u) are Adomian polynomial and it can be calculated by

formula given below:

A‘:%;;”{N(imuiﬂﬂ_o ,n=0,1,2,3,... (4.9)

i=0

To substitute (4.7) and (4.8) in (4.6), we get:

Zu”(x't): G(x,t)- E;{vz E{Riun(x,t)Jr 3 Anﬂ (4.10)

n=0 n=0

Then from equation (4.10) we get:

u,(x,t) = G(x,t) ,
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ul(x,t)=—Ez‘l[szz[Ruo(x,t)Jerﬂ, (4.11)

U,(x,t)= —Ez‘l[v2 E,[Ru,(x ,t)+A1]].
In general, the recursive relation is given by:
u,(x,t) = —E,* V? E,[Ru, , (x,t)+ A, ]| n>1. (4.12)

Finally, we approximate the solution u(x,t) by the series:

N —>w©

u(x,t)=lim iun(x,t). (4.13)

4.2 Application of the Method for Some Nonlinear Equations

Now we choose some different types for Nonlinear Partial differential
Equations and solve it by Modified Double Sumudu transform

decomposition method

Example (4.2.1): Consider the following nonlinear partial differential

equations

u +uu, —u, =0, (4.14)
with initial condition:

u(x,0)= x. (4.15)

Take the Modified double Sumudu transform to both sides of equation
(4.14), we get:

T(uv)

v ~vT(u,0) = E,(u, — uu,), (4.16)

Take single Modified Sumudu transform to initial condition we get:

E (u(x,0)) =T (u,0)= E(x) = u®, (4.17)
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Substitute Equation (4.17) in Equation (4.16), we obtain:
T(u,v)=v?u?®+VvE,(u, —uu,). (4.18)

Take the inverse Modified double Sumudu transform to both sides of

equation (4.18), we obtain:
u(x,t) = x+E;*[VE,(u, — uu,)]. (4.19)

From the Adomian decomposition method, rewrite (4.19) as follows,

n=0 n=0 n=0

iun(x,t): x+E21{vE2(i(un)XX—iAq(u)H. (4.20)

Where, A (u) are Adomian polynomials that represent the nonlinear

terms. The first few components of A (u) are given by:

A&(u):(uo)xu1+uo(u1)X’ (4-21)

By comparing both sides of equation (4.20), we get:

Uy (x,t) = X, (4.22)

Una (1) = B [VE,[(U, )~ A W)]] n=0. (4.23)

Then:

U, (X 1) = E;* [V B, [ (Ug),, — Ao (u)]]
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= ;' [VE,(-x)]
R (4.24)
U, (xt) = B, [VE,[(W,), ~ AW)]]
= E,'[VE,(2x)]
— e[ ] = e, (4.25)
By similar way we get:
uy(x,t) = - xt*. (4.26)

And so on. Then the first four terms of the decomposition series for

Equation (4.14), is given by:
u(x,t) = Xx—xt+xt? —xt*+---, (4.27)

The solution in a closed form is given by:

u(x,t) = ﬁ <t (4.28)

Example (4.2.2): Consider the following nonlinear partial differential

equations:
u,— —uu, =0, (4.29)

with initial condition:
u(x,0) = 0, u,(x,0) = x. (4.30)

Take the Modified double Sumudu transform to both sides of Equation
(4.29), we get:
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- T(u,O)—ng(u,O)z EZ(ZTXUUXJ, (4.31)
Take single Modified Sumudu transform to initial conditions, we get:
Eu(x0)=0 and E(u(x0))= gT(u,o): E(x) =, (4.32)
Substitute Equation (4.32) in Equation (4.31) we obtain:
T(u,v)= v3u3+v2E2{2Tquux}. (4.33)

Take the inverse double Modified Sumudu transform to both sides of

Equation (4.33), we obtain:
Ll e | 2X2
u(x,t)= xt + E, {v E2|:Tuuxﬂ, (4.34)
From the Adomian decomposition method, rewrite (4.34) as follows:

iun(x,t) = Xt + Ez‘{v2 E{Ztingn(u)ﬂ. (4.35)

n=0
Where A (u) are Adomian polynomials that represent the nonlinear terms.

The first few components of A (u)are given by:

A&(u):(uo)xul"'uo(ul)w (436)
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By comparing both sides of Equation (4.35), we get:

up(x,t) = xt, (4.37)
u,,(x,t)= E {sz{—Anﬂ, n>0. (4.38)
Then:

u,(x,t) = Ez‘l{sz{ztiAo}

.-
= EZ‘{VZE{Z%. xt? }

:Ez’l[12v5u5] = %x3t3, (4.39)

By similar way we get:

u,(x,t) = %x%s, (4.40)
u,(x,t) = %XW, (4.41)

And so on. Then the first four terms of the decomposition series for

Equation (4.29), is given by:

1 3 2 s 17 7
u(x,t) = xt +§(xt) +E(Xt) + E(Xt) +eee (4.42)
The solution in a closed form is given by:
u(x,t) = tan(xt). (4.43)

Example (4.2.3): Consider the following KdV equations

u +6uu, +u, =0, (4.44)
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with initial condition:
u(x,0)= x. (4.45)

Take the Modified double Sumudu transform to both sides of Equation
(4.44), we get:

Tuv)

y —vT(u,0)=—-E,(6uu, +u,,), (4.46)

Take single Modified Sumudu transform to initial condition we get:
E(u(x0)) =T (u0)= E(x) = v, (4.47)
Substitute equation (4.47) in equation (4.46), we obtain:
T(u,v)=Vv?u’-VE,(6uu, +u,,). (4.48)

Take the inverse Modified double Sumudu transform to both sides of

Equation(4.48), we obtain:
u(x,t) = x—E;*[VE,(6uu, +u,,)]. (4.49)

From the Adomian decomposition method, rewrite equation (4.49) as

follows,

gun(x,t): x—Ezl{sz(GgAq(uﬁé(un)m H (4.50)

Where, A (u)are Adomian polynomials that represent the nonlinear terms.

The first few components of A (u)are given by:

Ai(u):(uo)xul"'uo(ul)x’ (4.51)



By comparing both sides of equation(4.50), we get:

Uy(x,t) = X,

Una(t) =~ E[VE[6A )+ (U), ]l n20.

Then:
U, (x,t) = —E;* [V B, [ 6A,(u) + (U),, ]
= —E;' [VE,(6x)]

=—E" [6v3u3]: —6xt,

U, (x,t) = -E;{v E,[ 6A,(u)+(u,),, ﬂ
= —E,'[VE,(—72xt)]
= E*[72v'u?| = 36xt?,
By similar way we get:

u,(x,t) = —216xt°.

(4.52)

(4.53)

(4.54)

(4.55)

(4.56)

And so on, then the first four terms of the decomposition series for

equation(4.44) are given by:
u(x,t) = Xx—6xt + 36 xt* —216xt° +- -,
This can be written as:

U (xt) =x | 1-6t+(6t) ~(6t) +-- |,
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The solution in a closed form is given by:

u(xt) = 1+X6t Cl <1, (4.59)

Example (4.2.4): Consider the following KdV equations
u,—6uu, +u =0, (4.60)
with initial condition:

u(x,O):%(x—l). (4.61)

Take the Modified double Sumudu transform to both sides of
equation(4.60), we get:

Tuv)

; —vT(u,0)= E,(6uu, —u,,), (4.62)

Take single Modified Sumudu transform to initial condition we get:
E(u(x,0))=T(u,0)= E(%(x—l)] = %(u3—u2), (4.63)
Substitute Equation(4.63) in equation (4.62), we obtain:
T(u,v)= %(v2u3—v2u2)+vE2(6uux—uw). (4.64)

Take the inverse Modified double Sumudu transform to both sides of

equation(4.64), we obtain:
u(x,t) = %(x—l) +E,* [VE,(6uu, —u,, ). (4.65)

From the Adomian decomposition method, rewrite equation(4.65) as

follows,
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nZ.;)un(x,t) = %(x—1)+ Ezl{v E, (Gri)ﬁh(u) —g(un)w H (4.66)

Where, A (u)are the Adomian polynomials that represent the nonlinear terms.

The first few components of A (u)are given by:
A (u)=uo (o),
A(u)=(Uo), uy +ug(uy),
Ay (u)=(uo ) Uy +(uy) Uy + (U, ), Uo

As(u):(uo)xus +(ul)xu2 + (UZ)XU1+ (us)xuo .

By comparing both sides of equation(4.66), we get:

0 (%) = %(x—l),

U ()= B [VE[BA W) - (), ]l n20.

Uy (x 1) = B2V E, [ 6A,(u) ~ (uo),,, ]

= E,’ VEZ(6.3—16(X—1)H

(4.67)

(4.68)

(4.69)

(4.70)



L1 1 1
= Ezl[gu:*v“—guzv“}=E(x—1)t2, (4.71)
By similar way we get:
u, (x,t) = %(x—l)ﬁ. (4.72)

And so on. Then the first four terms of the decomposition series for

equation (4.60), is given by:
u(x,t) =%(x—l) (L+t+t2+t°+...), (4.73)
The solution in a closed form is given by:

u(xt) = l[x—_lj < (4.74)

6
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Conclusion

The combination of Adomian Decomposition Method (ADM) and
Modified Double Sumudu Transform Method can produce a very
effective method to solve nonlinear partial differential equations. Simply,
it can be applied to other nonlinear partial differential equations of higher

order.
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