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Abstract

We study some products with mixing subalgebras and
non-injectivity with generator Masa of the g-deformed Araki —
Woods of von Neumann algebras. We also study a class of 111
factors with at most one Cartan subalgebra Il and structure
results for free Araki-Woods and their continuous cores. The
Q-Gaussian processes, that is, non- commutative and classical
aspects with g-deformed Araki- Woods factors are determined.
We characterize the asymptotic matricial models, extension of
second quantisation, Haagerup approximation property,
absence of Cartan subalgebras, the structure of modular
invariant subalgrbras and complete metric approximation

property for g- Araki- Woods factors and algebras.
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Introduction

We show that certain free products of factors of type | and other von
Neumann algebras with respect to nontracial, almost periodic states are almost
periodic free Araki-Woods factors. In particular, they have the free absorption
property and Connes’ Sd invariant completely classifies these free products. We
studying the structure of Cartan subalgebras of von Neumann factors of type II;.
We provide more examples of 11, factors having either zero, one or several Cartan
subalgebras.

We examine, for — 1 < q < 1, g-Gaussian processes, i.e. families of
operators (non-commutative random variables) X; = a; + a; — where the a;
fulfill the g-commutation relations a, aj —qa; a; =c(s,t) - 1 for some
covariance function c( -,-) — equipped with the vacuum expectation state. We
show that there is a g- analogue of the Gaussian functor of second quantization
behind these processes and that this structure can be used to translate questions
on g-Gaussian processes into corresponding (and much simpler) questions in the
underlying Hilbert space. We show that the von Neumann algebra generated by
g-gaussians is not injective as soon as the dimension of the underlying Hilbert
space is greater than 1. The approach is based on a suitable vector valued
Khintchine type inequality for Wick products.

Using Speicher central limit Theorem we provide Hiai’s g-Araki-Woods
von Neumann algebras and the g-deformed Araki-Woods factor with nice
asymptotic matricial models.

We show that the normalizer of any diffuse amenable subalgebra of a free
group factor L(E,.) generates an amenable von Neumann subalgebra. Moreover,
any 11, factor of the form Q @ L(E.), with Q an arbitrary subfactor of a tensor
product of free group factors, has no Cartan subalgebras. We show that for any
type 111, free Araki-Woods factor M = I'(Hg,U;)" associated with an
orthogonal representation (U;) of R on a separable real Hilbert space Hp, the
continuous core M = M x, R is a semisolid Il factor, i.e. for any non-zero
finite projection g € M, the I1, factor gMgq is semisolid. If the representation (U;)
Is moreover assumed to be mixing, then we show that the core M is solid. We
show that all the free Araki-Woods factors I'(Hg, U;)"" have the complete metric
approximation property. Using Ozawa-Popa’s techniques, we then prove that
every nonamenable subfactor N c I'(Hg, U;) which is the range of a normal
conditional expectation has no Cartan subalgebra.

Jolissaint and Stalder introduced definitions of mixing and weak mixing
for von Neumann subalgebras of finite von Neumann algebras. In this note, we
study various algebraic and analytical properties of subalgebras with these mixing
properties. We prove some basic results about mixing inclusions of von Neumann
algebras and establish a connection between mixing properties and normalizers
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of von Neumann subalgebras. The special case of mixing subalgebras arising
from inclusions of countable discrete groups finds applications to ergodic theory,
in particular, a new generalization of a classical theorem of Halmos on the
automorphisms of a compact abelian group. To any strongly continuous
orthogonal representation of R on a real Hilbert space Hg, Hiai constructed g-
deformed Araki—- Woods von Neumann algebras for —1 <q< 1, which are Wx*-
algebras arising from non-tracial representations of the g-commutation relations,
the latter yielding an interpolation between the Bosonic and Fermionic statistics.

We extend the class of contractions for which the second
guantisation on g-Araki-Woods algebras can be defined. By adapting an
ultraproduct technique of Junge and Zeng, we prove that radial completely
bounded multipliers on g-Gaussian algebras transfer to g-Araki-Woods algebras.
As a consequence, we establish the w* -complete metric approximation property
for all gAraki-Woods algebras.
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Chapter 1
Free Products of von Neumann Algebras and a Class of II; Factors

We show that for 4, u €]0, 1[, (M,(C), wy) * (M,(C), w,) is isomorphic to the free
Araki-Woods factor whose Sd invariant is the subgroup of R} generated by A and p. The
proofs are based on algebraic techniques and amalgamated free products. These results give
some answers to questions of Dykema and Shlyakhtenko. We also show a rigidity result for
some group measure space II, factors.

Section (1.1): Free Araki-Woods Factors

In [5] and [7], Dykema investigated free products of finite dimensional and other von
Neumann algebras with respect to nontracial faithful states. We are interested in free
products of factors of type I. In this respect, we recall Theorem 1 of [5] in the particular case
of factors of type | (see Proposition 7.3 of [5]).

Theorem (1.1.1)[1]: (Dykema, [5]). Let

(M, p) = (A1, p1) * (A2, $2)

be the von Neumann algebra free product of factors of type | with respect to faithful states,
at least one of which is nontracial. Then M is a full factor of type Il and ¢ is an almost
periodic faithful state whose centralizer is isomorphic to the type 11, factor L(F.,). The point
spectrum of the modular operator Ay, of ¢, is equal to the subgroup of R’ generated by the
union of the point spectra of A, and of Ay, . Thus in Connes' classification, M is always a
factor of type III,, with 0 < 4 < 1.

The fact that ¢ is an almost periodic faithful state [3] is an easy consequence of basic
results on free products (see [5]). The fact that the centralizer of ¢ is isomorphic to the type
11, factor L(F.) is the most difficult part of the theorem. To prove this, Dykema uses
sophisticated algebraic techniques on free products that he developed also in [6] and [8].
Finally, the fact that M is of type Il follows from results of [5].

Dykema asked in Question 9.1 [5], whether the type III, factors that are obtainable
by taking various free products of finite dimensional or hyperfinite algebras are isomorphic
to each other, and whether they are isomorphic to the factor of Radulescu [11],

(L(2),72) * (M2(X), wz)
where w; (p;;) = 6;;/ /(A + 1) for i, j € {0,1}. Furthermore, he asked in Question 9.3 [5],
whether the full factors of type III; having the same Sd invariant that are obtainable by
taking free products of various finite dimensional or hyperfinite algebras are isomorphic to
each other. We will see that we partially give positive answers to these questions.

In [15], Shlyakhtenko introduced a new class of full factors of type Ill. His idea is to
give a version of the CAR functor and of the associated quasi-free states in the framework
of Voiculescu's free probability theory [19]. We recall his construction. We can say that to
each real Hilbert space Hg and to each orthogonal representation (U;) of R on Hg, he
associated a factor I'(Hg, U;)" called the free Araki- Woods factor. He proved that
I'(Hg, U;)" is a type Il factor except if U, = id for all t € R. The restriction to I'(Hg, U;)"
of the vacuum state denoted by ¢, and called the free quasi-free state, is faithful. Moreover,
he proved that ¢, is an almost periodic state iff the orthogonal representation (U, ) is almost
periodic. Recall in this respect the following definition:

Definition (1.1.2)[1]: (Connes, [3]). Let M be a von Neumann algebra with separable
predual which has almost periodic weights. The Sd invariant of M is defined as the



intersection over all the almost periodic, faithful, normal, semifinite weights ¢ of the point
spectra of the modular operators A,,.

Connes proved that for a factor of type 111, Sd(M) is a countable subgroup of R% [3].

In the almost periodic case, using a powerful tool called the matricial model, Shlyakhtenko
obtains this remarkable result:
Theorem (1.1.3)[1]: (Shlyakhtenko, [12],[15]). Let (U;) be a nontrivial almost periodic
orthogonal representation of R on the real Hilbert space Hg with dim Hg > 2. Let A be the
infinitesimal generator of (U,) on H, the complexified Hilbert space of Hg. Denote M =
I'(Hg,U;)". Let T c R% be the subgroup generated by the point spectrum of A. Then, M
only depends on T' up to state-preserving isomorphisms.

Conversely, the group I' coincides with the Sd invariant of the factor M.
Consequently, Sd completely classifies the almost periodic free Araki-Woods factors.
Moreover, the centralizer of the free quasi-free state ¢, is isomorphic to the type II, factor
L(F).

He proved also that the (unique) free Araki-Woods factor of type III;, denoted by
(T3, @) is isomorphic to the factor of Radulescu [11] and "freely absorbs" L(F,,). Since the
free Araki-Woods factors satisfy free absorption properties, Shlyakhtenko asked whether
the free products of matrix algebras (4,, ¢,) * (4,, ¢,) are stable by taking free products
with L(Z), in other words whether they are free Araki-Woods factors.

We give positive answer to the question of Shlyakhtenko for certain free products of
matrix algebras and other von Neumann algebras. Thanks to Theorem 6.6 of [15], it partially
gives positive answers to Questions 9.1 and 9.3 of Dykema [5]. For an almost periodic state
¢, we denote by Sd(¢) the subgroup of R*,. generated by the point spectrum of the modular
operator A,. On B(£2(N)), we denote by 1, the state given by 1, (e;;) = 6;;4/ (1 — 2) for
i,j € N. For g €]0,1[, we denote by (Cz,rﬁ) the algebra generated by a projection g with
73(q) = B. The hyperfinite type II, factor together with its trace is denoted by (R, 7). At
last, we denote by (T, @) the unique (up to state-preserving isomorphism) almost periodic
free Araki-Woods factor whose Sd invariant is exactly T.

Definition (1.1.4)[1]: Let p: (B, ¢5) < (A, ¢,) be an embedding of von Neumann algebras.
We shall say that p is modular if it is state-preserving and if p(B) is globally invariant under

the modular group (af’“).

Theorem (1.1.5)[1]: Let (4;,¢;),i = 1,2, be two von Neumann algebras endowed with a
faithful, normal, almost periodic state ¢;, such that for i = 1,2
(Ai, ¢:) * (L(Z),77) = (Tsaep;) Psdey) )-
Let I be the subgroup of R*. generated by Sd(¢,) and Sd(¢,). Assume that for some , 8 €
] 0,11, there exist modular embeddings
(M3(C),w;) < (A1, 1)
(Cz» TB) S (Az, §2),
such that /(A + 1) < min{f,1 — f}. Then
(Tr, or) = (Ay, P1) * (A2, d2).
In particular, for any 4,u €]0,1[, (M5(C), wy) * (M(C), w,), (M5(C), w;) * (R,7) and
(B(£%(N)),¥,) = (R, T) are free Araki-Woods factors.
We devoted to a few reminders on free products and free Araki-Woods factors. We
show that (M,(C),w;,) * (Cz,rﬁ) Is isomorphic in a state-preserving way to (T3, ¢21),
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whenever A/(A + 1) < min{f, 1 — £}. We prove Theorem (1.1.5) using the "machinery" of
amalgamated free products.
We will be working with free products of von Neumann algebras with respect to
states. It is useful to remind the following notation:
Notation (1.1.6)[1]: If (M, ¢) and (N, ) are von Neumann algebras endowed with states
@ and 1, the notation (M, ¢) = (N, ) means that there exists a *-isomorphism a: M - N
such that ya = ¢.
We remind this well-known proposition concerning free products of von Neumann
algebras with respect to states.
Proposition (1.1.7)[1]: ([19]). Let (M;, ;) be a family of von Neumann algebras endowed
with faithful normal states. Then, there exists, up to state-preserving isomorphism, a unique
von Neumann algebra (M, ¢) endowed with a faithful normal state ¢ such that
1. (M;, ;) embeds into (M, ¢) in a state-preserving way,
2. M is generated by the family of subalgebras (M;) which is a free family in (M, ¢).
The free product of (M;, ;) is denoted by (M, @) =% (M;, ;).

Notation (1.1.8)[1]: ([8]). For von Neumann algebras A and B, with states ¢, and ¢, the
von Neumann algebra

p q
AD®B
a B
where o, = 0 and a + 8 = 1, will denote the algebra A @ B whose associated state is
p(a,b) = ap,(a) + Beg(b). Moreover, p € Aand g € B are projections corresponding to
the identity elements of A and B.
Now, we want to remind the construction of the free Araki-Woods factors [15]. Let

Hpg be a real Hilbert space and let (U, ) be an orthogonal representation of R on Hg. Let H =
Hyr ®g C be the complexified Hilbert space. If A is the infinitesimal generator of (U;) on

1/2
H, we remind that j: Hg = H defined by j({) = (A_1+1) ¢ is an isometric embedding of
Hyg into H. Let Kg = j(Hg). Introduce the full Fock space of H :

F(H) = CQ @ @ HE®™.
n=1

The unit vector () is called vacuum vector. For any_f € H, we have the left creation operator

N (G e
O = PO 6 @8 =08 @@

Forany ¢ € H, we denote by s(&) the real part of [(§) given by
) +IE)”

s@=———
The crucial result of Voiculescu [19] claims that the distribution of the operator s(¢) with
respect to the vacuum vector state @(x) = (xQ, Q) is the semicircular law of Wigner
supported on the interval [—Il & I, Il € 1I].
Definition (1.1.9)[1]: (Shlyakhtenko, [15]). Let (U;) be an orthogonal representation of R
on the real Hilbert space Hgx (dim Hg = 2). The free Araki-Woods factor associated with Hg
and (U,), denoted by I'(Hg, U,)", is defined by

l—‘(I_IRJ Ut)” = {S(f)rf € KR}”'

The vector state ¢, (x) = (xQ, Q) is called the free quasi-free state.




As we said previously, the free Araki-Woods factors provide many new examples of
full factors of type 111 [2],[4],[12]. We can summarize the general properties of free Araki-
Woods factors in the following theorem (see also [18]):

Theorem (1.1.9)[1]: (Shlyakhtenko, [12],[13],[14],[15]). Let (U;) be an orthogonal
representation of R on the real Hilbert space Hg with dim Hg > 2. Denote M = I'(Hg, U,)".
1. M is a full factor.

is of type I1, iff U, = id for every t €R.

The factor M has almost periodic states iff (U,) is almost periodic.
etHg =R?and 0 < 1 < 1. Let
_ (cos(tlogd) —sin(tlogA) 1
Lo (sin(tlogﬂ) cos(tlog 1) ) M
Notation (1.1.10)[1]: ([15]). Denote (T3, ¢,): = I'(Hg, U,)"" where Hg = R? and (U,) is
given by Equation (1).
Using a powerful tool called the matricial model, Shlyakhtenko was able to prove the
following isomorphism

.(TAJ (p/l) = (B('gz (N)), l/J/'L) * (LOO [_111]1 ﬂ);
where 1/1/1(61']') = 6;;//(1—A4),i,j €N, and u is a nonatomic measure on [—1,1]. He also
proved that (T3, ¢;) is isomorphic to the factor of type 111, introduced by Radulescu in [11].
Namely,

2
3
4, M is of type III; in the other cases.
5.
L

(T/l; QD)L) = (MZ (C), (1)/1) * (Loo [_111]7 ‘l.l),

where w;(p;;) = 6;;///(A+1),i,j € {0,1}, and pu a nonatomic measure on [—1,1].
Moreover, he showed that (T}, ¢,) has a good behaviour when it is compressed by a "right"
projection. Denote (C,y): = (B(£2(N)),y,) * (L®[—1,1], 1) and (D, w): = (M,(C), w;) *
(L*[—1,1], u). The following proposition is an easy consequence of proofs of Theorems 5.4
and 6.7 of [15]. It will be useful.

Proposition (1.1.11)[1]: Let (C,vy),(D,w) defined as above and ey, € B(£*(N)) c
C,Poo, P11 € Mz(C) © D. Then

(o) = (eanCenn 7 — )
, o0 Oo’lp( 00)

=(P00 Poor=F7—~ (00) )
= (pubpn o)
(P11 P11 e

When the representation (U,) is assumed to be almost periodic, we have seen (Theorem
(1.1.3)) that T' c R%, the subgroup generated by the point spectrum of A, completely
classifies the free Araki-Woods factor I'(U;, Hg)"'.

Notation (1.1.12)[1]: For any nontrivial countable subgroup I' c R%, we shall denote by
(Tr, or) the unique (up to state-preserving isomorphism) almost periodic free Araki-Woods
factor whose Sd invariant is exactly T. Of course, ¢r is its free quasi-free state. If I' = A%
for A €]0,1[, then (Tr, @) is of type III;; in this case, it will be simply denoted by
(T3, ©,)[15], as in Notation (1.1.10). Theorem 6.4 in [15] gives the following formula:

(Tl"; <pl") Eyzl—' (T ’ (py)
4



For any g €]0,1[, the von Neumann algebra g & 1§ﬁ is simply denoted by (CZJT[;).

Let A €]0,1] and denote ¢ = A1/(4 + 1). We remind that the faithful state w; on M,(C) is
defined as follows: w;(p;;) = 6;;4//(A+ 1), for i,j € {0,1}. We prove the following
theorem:
Notation (1.1.13)[1]: The von Neumann algebra of the left-hand side of (2) together with
its free product state will be denoted by (M, w).

We will need the following result due to Voiculescu [21] (see also [6],[8]) which
gives a precise picture of the von Neumann algebra generated by two projections p and g
free with respect to a faithful trace.
Theorem (1.1.14)[1]: (Voiculescu, [21]). Let 0 < @ < min{f,1 — } < 1. Then

14 1-p q 1—-q
(o) (5oc)

= “fim ® (1= ([o.5].v) @ M) @ ufgt:q), 2)

2a
where v is a probability measure without atoms on [0, /2], and L* ([0, /2], v) has trace

given by integration against v. In the picture of the right-hand side of (2), we have
_ 1 0
p=00(; o) ®0

2 .
1 cos“ 0 cos@sin@ 0,
1 D (cos 6 sin 6 sin? @ ) D

where 8 € [0,/2].
Definition (1.1.15)[1]: ([6]). Let (S;),; be a family of subsets of a unital algebra A 3 1. A
nontrivial traveling product in (S,),; is a product a, ---a, such that a; € S¢,(1 < j < n)

and i, # 1, # -+ # 1,1 # L. The trivial traveling product is the identity element 1. The set
of all traveling products in (S;),¢;, including the trivial one is denoted by A((Sy),ep)- If |I| =
2, we will call traveling products alternating products.

We are now ready to prove the following proposition; it gives a precise picture of the
compression of the von Neumann algebra (M, w) by the projection p. The proof is based on
algebraic techniques developed in [5],[6],[8], and techniques of computation of x-
distributions developed in [15] and [20].

Proposition (1.1.16)[1]: Let (M,w) = (M,(C), wy) * (Cz,rﬁ) and p = p;; € M,(C).
Assume as in Theorem (1.1.14), thata = A/(1 + 1) < min{B,1 — B}. Then

(pMp——w) = L(Z) + ((C,75) ® (BN, ),
w(p) ,
where (C%,75) = Cs D 195 with § = 11__1? and l/u(eij) = 6ij/11'(1 — A), fori,j €N.

Proof. Let (M, w) = (M, w;) * (C?,75). Let p and q be the projections in M such that N =
W*(p,q) as in Theorem (1.1.14); p and q are free in M with respect to w and w(p) = a =
A/(A+1),w(q) = B.Letxand z. We know that N = W*(pgp, x, z). Denote by u = p,y, €
M, (C) the partial isometry frompto1 —p, i.e. u*u = p and uu* = 1 — p. Then, thanks to
Lemma 5.3 from [19]

pMp = W*(pgp, u*x, u*zu).



Denote v = u*x and P = u*zu. Since v*v = p and vv* < p,v IS an isometry in pMp.
Moreover, since Pv = u*zuu*x = u*zx = u*x = v, we get vv* < P. Denote w, = ﬁw
the canonical state on pMp. First, we are going to compute the x-distributions of the
elements v and vP in pMp with respect to w,,.
Lemma (1.1.17)[1]: Lety = (1 + 1) = /(1 — a).Forany k,l € N,
W WD = Gk, 3)

w, (P = 8,4y 4
Proof. Step (0). First, we review the "algebraic trick" of Dykema [6]. Denote a = p — w(p)
and b =q— w(q); we have N =3span" A({a},{b}). Let w € N such that w(w) =
w(pw) = 0. By Kaplansky Density Theorem, w is the s.o.-limit of a bounded sequence in
span A({a},{b}). Note that since a and b are free and w(a) = w(b) =0, if y€
span A({a}, {b}), then w(y) is equal to the coefficient of 1 in y. Since w(w) = 0, we may
choose that approximating sequence in span (A({a}, {b}) \ {1}). Moreover, since w(pw) =
0, we may also assume that each coefficient of a be zero, i.e. we have a bounded
approximating sequence for w of elements of span (A({a}, {b}) \ {1, a}).
Step (1). We prove now Equation (3). Assume k > 1 and [ = 0, then v* = (u*x)* is a
nontrivial alternating product in {u*} and {x}. Since w(x) = w(px) = 0, x is a s.0.-limit of
a bounded sequence in span (A({a}, {b}) \ {1, a}). So to show that w,(v*) = 0, it suffices
to show that if s is a nontrivial alternating product in span (A({a}, {b}) \ {1,a}) and {u"}
then w(s) = 0. Butsince u*a = —au* and au™ = (1 — a)u”, regrouping gives a nontrivial
alternating product in {a, u*} and {b}, hence by freeness w(s) = 0. We get also immediatly
w,((v)H) =0. Assume at last k=1 and [>1, then v¥@")' =
(W) Tuxx*u(x u)t=t.

Let y=xx"—al+Ada. Since wkxx*) =w(xx)=a and py=0w(y) =
w(py) = 0, hence y is a s.o.-limit of a bounded sequence in span (A({a},{b}) \ {1, a}).
Replacing in (u*x)* 1u*xx*u(x*u)'"! the term xx* by y + a1 — Aa, and since u*au =
—ap, we have

@, (W)Y = wp (W) uyulrw)'™1) + Aw, (W) 'p(x*w)'™1). (5)
To prove w,((w*x)* tu*yu(x*u)=1) = 0, it suffices to show that if r is a nontrivial
alternating product in span(A({a}, {b}) \ {1,a}) and {u*,u} then w(s) = 0. But for the
same reasons as above, regrouping gives a nontrivial alternating product in {a, u*, u} and
{b}, hence by freeness w(r) = 0. If in Equation (3), k # [, then applying Equation (5)
several times we eventually get w, (u*x -+ u*x) or w, (x*u --- x*u), both of which are zero.
If k = 1, then we eventually get 2*w, (p) = A*. Thus Equation (3) holds.
Step (2). We prove at last Equation (4). Since w(u*zu) = Aw(z), and y = A+ 1) =
B/(1—a), we get w,(P) =y. Assume k,l =0, then v*P(v*)! = (u*x)*u*zu(x*u)".
Sincew(z) = Bandpz =0,y = z — f1 + ya satisfies w(y) = w(py) = 0. Consequently,
y is a s.o.-limit of a bounded sequence in span(A({a},{b} \ {1,a}). Replacing in the
product (u*x)*u*zu(x*u) the term z by y + 1 — ya, and since u*au = —ap, we have

w0, WP W)Y = w, (W) w yulacw)?) + yw, (%) pGru)h,
For the same reasons, w, ((u*x)*u*yu(x*u)") = 0 and w,(V*P(W*)") = yw,@*(w")"H.
Thus Equation (4) holds.



Lemma (1.1.18)[1]: In pMp, the von Neumann subalgebras W*(pgp) and W*(v, P) are *-
free with respect to w,,.
Proof. Lemma (1.1.23) in [15] inspired us to prove Lemma (1.1.18). It is slightly more
complicated because here, in some sense, the assumptions are weaker and we must
additionally deal with the projection P. To overcome these difficulties, we will use the
"algebraic trick" [6] mentioned above.
Let B = W*(pgp) be the von Neumann subalgebra of pMp generated by pgp and

C = W*(v, P) be the von Neumann subalgebra of pMp generated by v and P. Let g, =
(Pap)* — w,((pgp))p for k=1. Let Wy = v¥w")' — 6,4, Wi = v"P(v*)* -
y6,.sA"p fork,l,r,s €N, k + 1> 0. Since

B =span”{p,gi | k = 1},

C =spanY{p, Wy, , Wi |k r,seNk+1>0}
it follows that to check freeness of B and C, we must show that

(l)p (boWlbl Wnbn> = 0 (6)
w
where
bj = g, )
w; = Wiy, (8)
or w; = W, 9)
with k;, [;, m;, 15, s; € N, k; + [; > 0,m; > 0 forall j, except possibly b, and/or b,, are equal

to 1. We shall prove Equation (6) under a weaker assumption, which is that w; is also
allowed to be
(w*x)Siu*yu(x*u)Y, (10)

sptp=z0andy = xx* —al +Adaory =z — 1+ yaas in proof of Lemma (1.1.17).

We will denote by W = bow, b, --- wy, by, such a word with w; as in Equation (8) or
9).

Let w; be as in Equation (8) with both k; and [; nonzero and let y; = xx* — al + Aa.
We will replace this w; by

Wj — ((u*x)kf_lu*ylu(x*u)lf_l)
+ (A(u*x)kf_l(x"‘u)lf—1 — 6,{].1].1"1')
Let now w; be as in Equation (9) with both 7; and s; nonzero and lety, = z — 1 + ya. We
will replace this w; by
wi = (W) 7uyu(x"u)™)
+y (A(u*x)rf (x*u)%i — 6,,J.SJ.ATJ')
= ((Wx)uyu(x"u)™)
+y (W) Wy u(xru)*i™t)
+y (A(u*x)rf_l(x*u)si_1 — 6,,J.SJ.AT1')
= A+ A+
After such replacements are done, w can be rewritten as a sum of terms, in which some w;

are replaced by 4; 's, A; 's, A;" 's, some by B; 's and some by C; 's. Consider the terms where
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all replacements are replacements by 4; 's, A; 's, A/" 's. These terms can be written as
alternating products in Q = {x,x", V1, V2, 91, X91» 9 X", xgrx*} and {u,u*}. But each
element h € Q satisfies w(h) = w(ph) = 0, hence h is a s.o.-limit of a bounded sequence
inspan(A({a}, {b}) \ {1, a}). We use the same argument as before. To prove that w,, is zero
on such terms, it suffices to show that w is zero on a nontrivial alternating product in span
(A({a},{b}) \ {1,a}) and {u,u"}. But regrouping gives a nontrivial alternating product in
{a,u,u"} and {b}. So, by freeness w is zero on such a product.
In the rest of the terms at least one w; is replaced by B; or C;. Then, since

By = A(0)Y T Wi = 8y 29T

G =vA (O WS = 6 1 A7),
we see that such a term is once again
bowi by - wyby,

so of the same form as W in Equation (6), but now with the total number of symbols u* and
x strictly smaller than the total number of such symbols in W. Thus applying the
replacement procedure to each of these terms repeatedly, we finally get w,(W) =
w, (X W;), where each W; has the same form as W in Equation (6), but for which the
substrings w; are either as in Equation (8) with k; or [; equal to zero, or w; is as Equation
(10) (so that no further replacements can be performed). But then each W; can be rewritten
as a nontrivial alternating product in Q and {u,u"}, so as before w,(W;) =0. Thus
w,(W) = 0.

We finish at last the proof of Proposition (1.1.16). We know that pMp =
W*(pgp, v, P), and thanks to Lemma (1.1.18), W*(pgp) and W*(v, P) are * — free in pMp
with respect to w,,. As pgp is with no atoms with respect to w,,, with the previous notation,
we get W*(pqp) = L(Z). Concerning W* (v, P), let

e =vi(p—-P))

fu =vP—-vv)W),
fori,j, k, 1 € N. With straightforward computations, we see that (eif)ijeN and (fy )k en are
systems of matrix units, for all i,j,k,l € N,e;fi; = frue;; =0, and W*(e;;, fi) =
wW*(v, P).

Moreover, w,(e;) = (1—y)A" and w,(fix) = (¥ — DA, with y = B/(1 — a).
Consequently, with notation of Proposition (1.1.16), we finally get (W*(v, P),wp) =
(C%,75) ® (B(£2(N)), Y.

The proof is complete.
Notation (1.1.19)[1]: For a von Neumann (4, ¢,) endowed with a state ¢4, we will denote
by A° the kernel of ¢, on A.

The next proposition is in some sense a generalization of Theorem 1.2 of [8]. We will
write a complete proof.

Proposition (1.1.20)[1]: Let (4, ¢,), (B,¢p) and (C, ¢.) be three von Neumann algebras
endowed with faithful, normal states such that A is a factor of type I. Let

(M' l/)) = ((C' ¢C) ® (A' ¢A)) * (B' ¢B)

V)

(N' l/)) = (A, ¢A) * (Br ¢B)
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and let e be a minimal projection of A. Then in eMe, we have that eN'e and C & e are free
with respect to Y, = it/) and together they generate eMe, so that

Y(e)
(eMe' l/)e) = (C, (pC) * (eNe' 1/}e)'
Proof. We follow step by step the proof of Theorem 1.2 of [8]. For notational convenience,
we identify C with C @ 1 € M. To see that e/Ne and eC generate eMe, note that V' and
eC generate M; so span A(IV, eC) is dense in M and eA(IV',eC)e = A(eNe, eC).

We shall show that i, is zero on a nontrivial alternating product in (eN'e)° and eC”.

Leta =e—1y(e)l. Then A° = Ca + S where
S={s€eA|yP(s)=0,ese =0}.

Let x € (elNe)°. Then by Kaplansky Density Theorem, x is a s.0.-limit of a bounded
sequence (Ry)ken inspan A({a} U S,B°). For Q € span(A({a} U S,B°) \ {1}), we see that
Y on eQe is equal to a fixed constant times the coefficient of a in Q. So since Y(R;,) — 0
and Y (eR,e) — 0, we may assume that the coefficients in each R, of 1 and a are zero. Since
R, — eR,e — 0 for the s.o. topology, we may also assume that the coefficient of each
element of S in Ry is zero, i.e., that each R, € span(A({a} U S,B°) \ ({1,a} U S)). To
prove the proposition, it suffices to show that v is zero on a nontrivial alternating product
iNA({a}U S,B°) \ ({1,a} U S) and eC°. But regrouping and multiplying some neighboring
elements gives (a constant times) a nontrivial alternating product in {a}U S U (eC®) U
(5C°) and B°. Thus by freeness, v is zero on such a product.

Theorem (1.1.20)[1]: If a = A/(A + 1) < min{B,1 — B}, then

(M (C), wy) * (€%, 75) = (Th, ¢2) - (11)
Proof. Apply Proposition (1.1.20) with (4,¢,) = (B({2(N)),¥,), (B, ¢pp) =
(L(Z),7),(C,pc) = (C?,14). Lete = g5y € B(£2(N)), and denote

M) = ((C%15) ® (B(E2(N)), ) * (L(Z),7)
U
WV, 9) = (B(£2(N)), ¥) * (L(D), 7).

(BM@, l/)e) = (CZ,T(;) * (eNer lpe)-
But with notation, (IV,y¥) = (T3, ¢,) is the free Araki-Woods factor of type III,. Since e =
€00, applying Proposition (1.1.11), we get (eNe, ) = (T3, ;). We use now the "free
absorption™ properties of (T, ¢;). Denote by L(F(s)) the interpolated free factor with s
generators. We know that (T3, ;) * (L(Fy),7) = (T3, ;) (Corollary 5.5 in [15]) and
L(Z) = (C%,15) = L(F(1 +26(1 — 6)))( Lemma 1.6 in [8]). Consequently,
(eMe, ) = (C?,15) * (T, pa) = (Ty, @)
But, in a canonical way
(M, ) = (eMe, ) ® (B(£(N)), ¥2).
Since (Ty, 91) = (Ty, 1) ® (B(£*(N)),,), we get
(M, ) = (T, ¥y).
We remind that we have proved (Proposition (1.1.16)) that
(pMp, w,) = L(Z) + ((C2,75) ® (B(£2(N)), 1)) = (M, ),
where (M, w) = (M,(C), w;) * (C?,73) and p = py; € M,(C). Thus,

(pMp, w,) = (Ty, @)

We get

But once again
(M, ) = (pMp, w,) ® (My(C), ;).
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Since (T/l, (,0/1) = (T/l, (,0/1) ® (MZ (C), (l)/l), we flna”y get
(M, (C), wy) * (C%,15) = (Ty, 92).

We prove Theorem (1.1.5). We will be using the "machinery"” of amalgamated free
products of von Neumann algebras. We introduce some notations and recall some basic facts
about free products with amalgamation (see [9],[17],[22]).

Let (B, ¢g), (4;,¢;),i = 1,2, be three von Neumann algebras endowed with faithful
normal states. Assume that there exist modular embeddings p;: (B, ¢g) < (4;, ;). Denote
by E;: A; - B the unique state-preserving conditional expectation associated with the
embedding p;. We shall denote by

(M,E): = (Ay, Ey) *p* (A3, E2)
the free product with amalgamation over B of A; and A, w.r.t. the conditional expectations
E; and E,.

Let (B,@g) and (C,¢.) bé two von Neumann algebras togetherr with a faithful
normal state. Let (4,¢p,4) = (B, pg) * (C, @) be their free product. We have canonical
modular embeddings pg: (B, 95) © (A, @), pc: (C,0c) < (A, p4) (See [7]).

We shall regard B,C < A. Define as before F:A — B to be the (unique) state-
preserving conditional expectation. Let B° = B N ker(¢g), C° = C N ker(¢.) and denote
as usual Q = A(B°, C°) the set of alternating products in B° and C° including the trivial one.
From [5], we know that

Vb€ B,F(b)=»>b
vzeQ\ (B°U{1}),F(z) =0.
The following proposition is well-known from specialists but we will give a proof for the
sake of completeness.
Proposition (1.1.22)[1]: We use the same notations as before. Moreover, let (M, ¢,,) be a
von Neumann algebra such that B € M together with E: (M, @y) = (B, @g) a state-
preserving conditional expectation. Denote by (M, G) = (M, E) *5 (B = C, F) and denote
by Y = g o G the canonical state on M. Then,
(M,l,b) = (M, <pM) * (C' QDC)
Proof. We see immediatly that (M, ¢,,) and (C, ¢.) embed in (M, ) in a state-preserving
way and together they generate M . It remains to prove that M and C are free together w.r.t.
the state 1. For notational convenience, we may assume M,C c M. Denote M° = M N
ker(¢y),C° = C nker(p.). Let W be a nontrivial alternating product in M° and C°, so that
W can be written
W = xqwyxq == WpXp,
where x; € C°,w; € M° for all j, except possibly x, and/or x,, are equal to 1. Denote Q =
A(B°,C°). If W € M°, there is nothing to do. If not, for each j, replace w; by
where wj € M nker E and b; € B°. Applying the replacement procedure and multiplying
some neighboring elements, we get Y (W) =y (OW;) where each W, is a nontrivial
alternating product in M n ker E and Q \ (B° U {1}). But, we saw that Q \ (B° U {1}) c
ker F. Thus, by freeness with amalgamation over B, we get G(W;) = 0. But y(W;) = ( o
G)(W;) = 0, consequently (W) = 0.
Lemma (1.1.23)[1]: Let (N, ¢) be a von Neumann algebra endowed with a faithful normal
state such that the centralizer N¥ is a factor. Let (M,,(C), w) be a matrix algebra endowed
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with a faithful normal state. Let p;: (M, (C),w) < (N,¢p),i =1,2, be two modular
embeddings. Then, there exists a unitary u € U(N?) such that Ad(w) o p; = p,.
Proof. Denote by (ey;)o<k,i<n—1 the matrix unit in M, (C). Let i € {1,2}. Denote p; =
pi(eqo). Since p; is modular, we have p; , € N and ¢ (p;) = @(p,) = w(ey). Since N¥
Is a factor, there exists a partial isometry v € N¥ such that p; = v*v and p, = vv*. Denote
u = Y14 pa(ein)vp(eg;). An easy computation shows that u is a unitary and u € N9,
since p, , are modular. Moreover, forany 0 < k,l <n —1,

upq(ex)u” = pa(exr)-
Theorem (1.1.24)[1]: Let (A4, ¢,) and (A4,, ¢,) be any von Neumann algebras endowed
with faithful, normal states. Assume that for some A,S €]0,1[, there exist modular
embeddings

(M2(©), wp) < (A1, ¢1)
(C%,15)  © (4z ¢2),
such that /(A + 1) < min{f,1 — f}. Then
(A1, P1) * (A, @2) = (A1, 1) * (Ty, 91) * (A2, P2).

Proof. We shall simply denote by M, the matrix algebra M,(C). Denote by (4, ¢) =
(A4, 91) * (A,, ¢,) and denote by

Ei: (A, 1) — (Mp,wy)

Ey:(Ay, ) - (CZ»Tﬁ)

E:(4,¢) - (C%1p)
the canonical state-preserving conditional expectations. Since (M,,w;) * (Cz,rﬁ) =
(T, ¢1) (Theorem (1.1.21)), denote by F: (T3, ;) —» (M,,w,;) the associated state-
preserving conditional expectation. Let (N, ) = (4,4, ¢;) * (Cz,rﬁ). Applying Proposition
(1.1.22), we get
(N,E) = (A4, Eq) I\;I"z (M, * C2, F).
Since (Ty)%* = L(F,,) is a factor, applying Lemma (1.1.23) for n = 2, we obtain that the
modular embedding of (M,, w;) into (Ty, ¢,) is unique up to a conjugation by a unitary in
T,’*, and we have
(NE) = (A, E)* My *Ty, F)
(N,y¥) = (A, ¢1) * (Ty, ¢2)( by Proposition (1.1.22))
= ((Ay, d1) * (Ty, 92)) * (T, @2).

From Theorem 11 of [2], we get that the centralizer algebra N¥ is a factor. If p;: (C%,75) ©
(N, ) are two modular embeddings, denote p; = p;(p) € N¥ such that 1 (p;) = 5. Since
p, and p, are equivalent in N¥, p, and p, are unitarily conjugate. Consequently, using the
iIsomorphism

(N, 1/1) = (A1; d)l) * (T/lr (p/'l) * (CZ,TB), (12)
we shall denote by G:(N,y) — (Cz,rﬁ) the associated state-preserving conditional
expectation. We finally get
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(A E) =(A,+C%06) 4 (A4,, E,) (by Proposition (1.1.22))
= (A * T * C%,G) & (A2, E2)(by (12))

(A,0) = (A, $1) * (T, @2) * (A, $,). (by Proposition (1.1.22))
The proof is complete.

Theorem (1.1.5) is a straightforward corollary of Theorem (1.1.24). We end by giving
some examples of von Neumann algebras which satisfy assumptions of Theorem (1.1.5).
We introduce the class § of all von Neumann algebras (M, ¢p) with separable predual and
endowed with a faithful, normal, almost periodic state ¢ such that

(M, $) * (L(Z),77) = (Tsacep) Psde))-

Note that if (M, ¢,) and (M,, ¢,) are in S, then (M, ¢p,) * (M,, ¢,) isalsoin S.
Example (1.1.25)[1]: We give several examples of von Neumann algebras in the class S.
This list is not exhaustive and there is nothing really new here: these examples are mere
consequences of results in [5],[6],[8],[10],[15],[19], and of Proposition (1.1.20).

1. Type I: All factors of type | endowed with a faithful, normal nontracial state ¢.

2. Type IlI: All the almost periodic free Araki-Woods factors (T, ¢r) endowed with
their free quasi-free state.

3. Tensor products: All the tensor products (N, w) @ ( Type I, ¢), where (N, w) is:

4. Any finite-dimensional von Neumann algebra of the form C @ --- @ C with a; >

ay an
0 foralliand Ya; = 1.

5. (R, 7) the hyperfinite II; factor.

6. Any interpolated free group factor L(F(s)),s > 1
7. Free products: All the free products of the previous examples.

We still do not know whether all the free products of finite dimensional matrix
algebras (44, ¢,) * (A,, ¢p,) are isomorphic to free Araki-Woods factors. Assume that A; =
M,,(C) with

e
¢, =Tr LA < <A,

Let 8 €]0,1[ such that 4; < min{f, 1 — £}. With our techniques, it is not difficult to see
that if one can prove that (4, ¢,) * (CZ, rﬁ) is a free Araki-Woods factor, then all the free

products (4,, ;) * (A,, ¢d,) are also free Araki-Woods factors. That is exactly what we did
for n = 2. But one of the crucial ingredients in the proof was the precise picture of
Voiculescu in Theorem (1.1.14). This precise description no longer exists for n > 3 (see
[8]).
Section (1.2): Most one Cartan Subalgebra I1

A celebrated theorem of Connes ([28]) states that all amenable II, factors are
isomorphic to the approximately finite dimensional II; factor R of Murray and von
Neumann. In particular, all group II, factors L(I") associated with ICC (infinite conjugacy
class) amenable groups T', and all group measure space 11, factors L*(X) > T arising from
(essentially) free ergodic probability-measure preserving (abbreviated as p.m.p.) actions
[' ~ X of countable amenable groups I'" on standard probability spaces X, are isomorphic to
R.
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In contrast to the amenable case, the group measure space 11, factors L*(X) x I" of
free ergodic p.m.p. actions of non-amenable groups I' on standard probability spaces X form
a rich and particularly important class of II; factors. More general crossed product
construction provides a wider class. We want to investigate the isomorphy problem of the
crossed product II; factors. Namely, given the crossed product M = Q@ x T of a finite
amenable von Neumann algebra (Q, t) by a t-preserving action of a countable group T, to
what extent can we recover information on the original action I' ~ Q? In particular, does
there exist a group measure space II; factor M = L*(X) > I" which remembers completely
the group I' and the action I' ~ X? The first task would be to determine all regular amenable
subalgebras of a given II; factor M. Recall that a von Neumann subalgebra P of M is said
to be regular if the normalizer group of P in M generates M as a von Neumann algebra
([35]). A regular maximal abelian subalgebra A of M is called a Cartan subalgebra ([36]).
In the case of a group measure space II; factor M = L*(X) < T', the von Neumann
subalgebra L* (X) is a Cartan subalgebra and determining its position amounts to recovering
the orbit equivalence relation of the original action ' ~ X (see [36]). By [29], the
approximately finite dimensional II; factor R has a unique Cartan subalgebra, up to
conjugacy by an automorphism of R. In ([48]), we provided the first class of examples of
non-amenable II; factors having unique Cartan subalgebra. They are the group measure
space II; factors M = L*(X) x [F,. associated with free ergodic p.m.p. profinite actions
F,. ~ X of free groups F,. We extend this result from the free groups F, to a lager class of
countable groups with the property (strong) (HH)*, defined as follows.

Definition (1.2.1)[23]: Let G be a second countable locally compact group. By a 1-cocycle,
we mean a continuous map b: G — X, or a triplet (b, m, KX) of b and a continuous unitary
G-representation it on a Hilbert space %, which satisfies the 1-cocycle identity:

Vg,h €T, b(gh) = b(g) + myb(h).

The 1-cocycle b is called proper if the set {g € G: Il b(g) II< R} is compact for every R >
0. Assume that G is non-amenable. We say G has the Haagerup property (see [27],[26]) if it
admits a proper 1-cocycle (b, , K). In the case when r can be taken non-amenable (resp.
to be weakly contained in the regular representation), we say G has the property (resp.
strong) (HH). We say G has the property (strong) (HH)*if I" has the property (strong) (HH)
and the complete metric approximation property (i.e., it is weakly amenable with constant
1).

We will prove that lattices of products of SO(n,1)(n = 2) and SU(n, 1) have the
property (HH)*, and that lattices of SL(2, R) and SL(2, C) have the property strong (HH)*.
Building on our previous work ([48]) and Peterson's deformation technology ([49]), we
obtain the following.

Since L*(X) x T has the complete metric approximation property if I' has it and the
action is profinite, the weak compactness assumption holds automatically.

Corollary (1.2.2)[23]: Let I be a countable group with the property (HH)*. Then, L(T') has
no Cartan subalgebra. Moreover, if I' ~ X is a free ergodic p.m.p. profinite action, then
L™ (X) is the unique Cartan subalgebra in L™ (X) = I, up to unitary conjugacy.

As in [48], a stronger result holds if I' has the property strong (HH).

Corollary (1.2.3)[23]: Let T be a countable group with the property strong (HH)*.Then,
L(T) is strongly solid, i.e., the normalizer of every amenable diffuse subalgebra generates
an amenable von Neumann subalgebra.

13



Once the Cartan subalgebra L® (X) is determined, the isomorphy problem of M =
L*(X) = T reduces to that of the orbit equivalence relations. Then, the group I' and the
action I' ~ X can be recovered if the orbit equivalence cocycle untwists ([59]). loana ([42])
proved a cocycle (virtual) super-rigidity result with discrete targets for p.m.p. profinite
actions of property (T) groups. Here, we prove a similar result for property (t) groups, but
with some restrictions on the targets. Recall that a (residually finite) group T is said to have
the property (7) if the trivial representation is isolated among finite unitary representations.
See [43], [44] for more information on this property.

It is plausible that the residual finiteness assumption on A is in fact redundant. Since
there are groups having both properties (HH)* and (), Theorems A and C together imply a
rigidity result for group measure space von Neumann algebras.

Let I'" < T be a finite index subgroup and I'" ~ (X', u") be a m.p. action. Then, the
induced action Indg,(l“’ ~ X") is the I'-action on the measure space I'/T’ x X', given by
g, x) = (gp,o(gp) tgo(p)x), where o IS a fixed Cross
section o:I'/T' > T. (The action is unique up to conjugacy.) We say that two
p.m.p. actions I; ~ (X;, u;),i = 1,2, are strongly virtually isomorphic if there are a p.m.p.
action I'" ~ (X', u") and finite index inclusions I'" < T; such that I; ~ X; are measure-
preservingly conjugate to Indll:f(l“’ ~ X").

Connes and Jones ([30]) gave a first example of II, factors having more than one
Cartan subalgebra. We present here a new class of examples. To describe it, recall first that
if I" is a discrete group having an infinite normal abelian subgroup H, then L(H) is a Cartan
subalgebra of L(T) if and only if it satisfies the relative ICC condition: forany g € I' \ H,
the set {aga~:a € H} is infinite. The group H x T acts on H by (a,g)b = agbg™! (cf.
Proposition 2.11 in [48]).

We distinguish two Cartan subalgebras by weak compactness. The simplest example
is the following. Another example will be presented.

Corollary (1.2.4)[23]: Let p,, p,, ... be prime numbers. Then the II, -factor

M = 1= (im(Z/p, - paT)?) @ (Z2 » SL(2, )

has more than one Cartan subalgebra.

We observe that in the above, L(Z?) is actually an (strong) HT Cartan subalgebra of
M, in the sense of [51]. Thus, while an HT factor has unique HT Cartan subalgebra, up to
unitary conjugacy, there exist HT factors that have at least two non-conjugate Cartan
subalgebras. It is plausible that there is no essentially-free group action which gives rise to
the same orbit equivalence relation as (L(Z?) c M). Such examples were first exhibited by
Furman ([37]). See also [46] and [53].

Let G be a locally compact group. We recall that a unitary I'-representation (rr, ) is
called amenable if there is a state ¢ on B(H) which is Ad m-invariant:
@ o Ad m, = ¢ for all g € G. This notion was introduced and studied by Bekka ([24]).
Among other things, he proved that m is amenable if and only if = ® 7 weakly contains the
trivial representation.

Let o be the conjugate action of G on L®(G): (a,f)(g) = f(h~1gh) for f € L®(G)
and g, h € G. We say a locally compact group G is inner-amenable if there is a o-invariant
state u on L*(G) which vanishes on C,(G). We note that in several literatures it is only
required that i is o-invariant and u # &, (in case G is discrete).
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Proposition (1.2.5)[23]: A locally compact group G with the property (HH) has the
Haagerup property and is not inner-amenable.

Proof. Let (b, , K) be a proper 1-cocycle and suppose that there is a singular o-invariant
state 4 on L*(G). For x € B(H), we define f, €L®(G) by f.(g)= I
b(g) 172 {(xb(g),b(g)). Let h € G be fixed. Since

Ib(h~*gh) — ' b(g)ll = [[b(R™) + mp-2gb(W)| < 2 B(R) I,

and Il b(g) l> o as g - oo, one has on(fy) = fruxn; € Co(G). 1t follows that
the state ¢ on B(H) defined by ¢ (x) = u(f,) is Ad m-invariant. This means m is amenable.

We do not know whether the converse is also true. Combined with Proposition 2.11
in [48], the above proposition yields the following.

Corollary (1.2.6)[23]: A discrete group I" with the property (HH)* does not have an infinite
normal amenable subgroup.

Theorem (1.2.7)[23]: The following are true.

1. Each of the properties (HH), (HH)*, strong (HH) and strong (HH)* inherits to a
lattice of a locally compact group.

If G, and G, have the property (HH) (resp. (HH)*), then so does G, X G,.

The groups SO(n, 1) with n = 2 and SU(n, 1) have the property (HH)*.

The groups SL(2, R) and SL(2, C) have the property strong (HH)*.

Suppose I is a countable non-amenable group acting properly on a finite dimensional
CAT(0) cube complex. If all hyperplane stabilizer groups are non-co-amenable, then
I has the property (HH)™*. If all hyperplane stabilizer groups are amenable, then T has
the property strong (HH)™.

Proof. The assertion (a) follows from the fact that the restriction of non-amenable (resp.
weakly sub-regular) representation to a lattice is non-amenable (resp. weakly sub-regular).
For the assertion (b), just consider the direct sum of 1cocycles. We prove the property
(HH)* for G = SO(n, 1)(n = 2) and SU(n, 1). It follows from Theorem 3 in [25] that every
non-trivial irreducible representation of G is non-amenable. Since G does not have the
property (T), by [56], there is a non-trivial irreducible representation with an unbounded 1-
cocycle. But, by [57], every unbounded 1-cocycles of G is proper. Thus, G has the property
(HH). Weak amenability is proved in [33],[32].

The irreducible representation of SL(2, R) and SL(2, C) which have non-trivial 1-
cocycles are found in the principal series (see Example 3 in [39]) and hence are weakly
equivalent to the regular representation.

If a group I acts properly ona CAT(0) cube complex Z, then it has a proper 1-cocycle
into the #2(H), where H is the set of hyperplanes in X. (See [47].) The unitary representation
on £2(H) is non-amenable (resp. weakly contained in the regular representation) if and only
if all hyperplane stabilizer subgroups are non-co-amenable (resp. amenable). Weak
amenability for finite-dimensional CAT(0) cube complexes is proved in [38],[45].

Note that by a result of [31], the wreath product (Z/2Z), F, acts properly on an
infinite-dimensional CAT(0) cube complex with all hyperplane stabilizer subgroups
amenable (being subgroups of D, Z/ZZ). It follows that (Z/2Z){IF, has the property strong
(HH), but not (HH)™.

We use the same conventions and notations as in ([48]). Thus the symbol "Lim" will
be used for a state on £ (N), or more generally on £*°(I) with I directed, which extends the
ordinary limit, and that the abbreviation "u.c.p.” stands for "unital completely positive." We
say a map is normal if it is ultraweakly continuous. Whenever a finite von Neumann algebra
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M is being considered, it comes equipped with a distinguished faithful normal tracial state,
denoted by t. Any group action on a finite von Neumann algebra is assumed to preserve the
tracial state . If M = P x I is a crossed product von Neumann algebra, then the tracial state
T on M is given by t(au,) = 8, .7(a) for a € P and g € I'. A von Neumann subalgebra
P < M inherits the tracial state T from M, and the unique t-preserving conditional
expectation from M onto P is denoted by E,. We denote by Z (M) the center of M; by U(M)
the group of unitary elements in M; and by
Ny(P) ={u e UM): (Adu)(P) = P}

the normalizer group of P in M, where (Ad u)(x) = uxu*. A von Neumann subalgebra P c
M is called regular if V), (P)" = M. A regular maximal abelian von Neumann subalgebra
A c M is called a Cartan subalgebra. We note that if ' ™~ X is a free ergodic p.m.p. action,
then A = L™ (X) is a Cartan subalgebra in the crossed product L*(X) > I". (See [36].)

We recall the definition of weak compactness.

Definition (1.2.8)[23]: Let (P,t) be a finite von Neumann algebra, and ' ~* P be a t
preserving action. The action is called weakly compact if there is a net n, €
L?>(P ® P),such that

L lny— @ D)nyll, — 0 for v € U(P);

2. Inp—Adu @ w)(mu)ll, > 0foru eT;

3. ((a® Dnyn,) =1t(a) forall a € P.

(These conditions force P to be amenable.) A von Neumann subalgebra P of M is called
weakly compact if the action NV, (P) ~ P is weakly compact.

It is proved in ([48], Proposition 3.4) that if I' ™~ Q is weakly compact, then Q is
weakly compact in the crossed product Q x T’

Theorem (1.2.9)[23]: (Theorem 3.5 in [48]). Let M be a finite von Neumann algebra with
the complete metric approximation property. Then, every amenable von Neumann
subalgebra P is weakly compact in M.

Let @ c M be finite von Neumann algebras. Then, the conditional expectation E, can
be viewed as the orthogonal projection e, from L*(M) onto L*(Q) c L*(M). It satisfies
egxeq = Ey(x)e, for every x € M. The basic construction (M, e,) is the von Neumann
subalgebra of B(L*(M)) generated by M and e,. We note that (M, eQ) coincides with the
commutant of the right Q-action in B(L?>(M)). The conditional expectation E, extends on
(M, ey) by the formula E,(z)e, = eyze, for z € (M, e,). The basic construction (M, e,)
comes together with the faithful normal semi-finite trace Tr such that Tr(ery) = 7(xy).
We denote

C*(MeyM) = the norm-closed linear span of {xe,y:x,y € M}
which is an ultraweakly dense C*-subalgebra of (M, eQ). Suppose that 6 is a T-preserving
u.c.p. map on M such that 6|, = id,. Then, 8 can be regarded as a contraction on L*(M)
which commutes the left and right Q-actions on L?(M). In particular, 8 € (M, eQ). See
Section 1.3 in [51] for more information on the basic construction.

The following is Theorem A.1 in [51] (see also Theorem 2.1 in [52]).

Theorem (1.2.10)[23]: Let P,Q € M be finite von Neumann subalgebras. Then, the
following are equivalent.
1. There exists a non-zero projection e € P’ N (M, e,) such that Tr(e) < co.
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2. There exist non-zero projections p € P and g € Q, a normal *-homomorphism

6: pPp — qQq and a non-zero partial isometry v € M such that

Vx € pPp xv = v0(x)
and v*v € 8(pPp)' N qMq,vv* € p(P' N M)p.
Definition (1.2.11)[23]: Let P, Q c M be finite von Neumann algebras. Following [52], we
say that P embeds into Q inside M, and write P <,, Q, if any of the conditions in Theorem
(1.2.10) holds.

Let P < V' be von Neumann algebras. We say a state ¢ on N is P-central if
puxu) = @(x) forall u € U(P) and x € IV, or equivalently ¢ (ax) = ¢(xa) forall a €
Pandx € V.

Lemma (1.2.12)[23]: Let P, Q < M be a finite von Neumann algebras, and ¢ be a P central
state on (M,e,) whose restriction to M is normal. If P %, Q, then ¢ vanishes on

C*(Mey M).
Proof. We assume ¢ (C*(MeQM)) + {0} and prove P <,, Q. Since M sits inside the

multiplier of C*(Me,M), there is an approximate unit f, of C*(MeyM) such that
I f,,, ulll = O for every u € U(M). (That is, (f;,) is a quasi-central approximate unit for the
ideal C*(MeyM ) inthe C*-algebra M + C*(MeyM ). ) We may assume that each f;, belongs

to the linear span of {ery: x,y € M} We define positive linear functionals ¢, and ¥ on
(M, eq) by ¢,(2) = ¢(fnzf,) and Y (z) = Lim ¢, (z) for z € (M, e,). We note that ¢ is
non-zero and still P-central. We claim that ¢ is normal. We observe that the net (¢,,)
actually norm converges to i (w.r.t. Lim), since Lim ¥ (f,,) = Lim ¢ (f;,) =Il ¥ Il. Hence, it
suffices to show that each ¢,, is normal. Now let n be fixed and f,, = {-‘zlxieri Then, for

any z € (M, eq) , one has

k k
fazfy = Z YiEq(xizx;)eqy; < z YiEq(x{zx;)y; € M
i,j=1 Lj=1

since  [Eq(xizx;)] is a positive element in M, (Q) which commutes with

k
ij=1
diag(eg, ..., eg). Hence, one has

k
oD = 9(fi2f) < (ol | ) ¥iBo(xizn)y; |
ij=1

This implies that ¢,, is normal, and thus so is . It follows that i can be regarded as a
positive non-zero element in P’ n L*(M, e,) (see Section 1X.2 in [58]). Taking a suitable
spectral projection, we are done.

We recall that A.1 in [51] shows the following:
Lemma (1.2.13)[23]: Let A and B be Cartan subalgebras of a type II,-factor M. If A <, B,
then there exists u € U(M) such that uAu* = B.

Finally, we state some elementary lemmas about u.c.p. maps and positive linear
functionals.
Lemma (1.2.14)[23]: Let (M, t) be a finite von Neumann algebra and 6 be a T-symmetric
u.c.p. map on M. Then for every a, x € M, one has

1/2 1/2

Il 8(ax) —0(a)B(x) <2l x lloll allo"ll a—8(a)
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Proof. Let 8(x) = V*r(x)V be a Stinespring dilation. Then,
I 6(ax) —0()(x) I, = [V'r(x)(1—-VV)n(a*)V],

<l x lle I(1 = VVH)Y2m(a*)V1],
1/2

=l x lloo T(Q(aa*) — H(a)Q(a*)) .

Since t o 8 = 1, this completes the proof.
Lemma (1.2.15)[23]: Let ¢ and ¥ be positive linear functional on a C*-algebra and ¢ > 0.
Suppose that ¢@(1) =y¥(1) and ¢@x)—yYx)<ellxI|l for all x>=0. Then,
onehas |l ¢ — ¢ II< 2e.
Proof. Let ¢ — ¢y = (¢ — ), — (¢ —yY)_be the Hahn decomposition. Since (¢ —
Y)(1) = 0,0nehas (¢ —P)_ll < ll(g —P).ll < e

We review the work of Peterson on real closable derivations, in order to give a
qualitative version of Lemma 2.3 in [49].

Let (M, 7) be a finite von Neumann algebra. An M — M bimodule is a Hilbert space

H together with normal representations A of M and p of M°P such that A(M) c p (MOP) :

The action of M is referred to as the left M-action and the action of M°P is referred to as the
right M-action. We write intuitively aéb for A(a)p(b°P)&. By a closable derivation, we
mean a map § from a weakly dense *-subalgebra D of M into an M — M bimodule #', which
is closable as an operator from L?(M) into H and satisfies the Leibniz's rule:
6(xy) = 6(x)y +x6(y)

forevery x,y € D. Moreover, a derivation is always assumed to be real: there is a conjugate-
linear isometric involution J on H such that J(x6(y)z) = z*6(y*)x* for every x,y,z € D
(which is equivalent to another definition: (6(x),6(y)z) = (z*6(y*),6(x™)) for every
X,y,Z € D).

Let H bean M — M bimodule and 6: M — H be a closable derivation whose closure
is denoted by &§. Thanks to the important work of [34], [54], dom & N M is still a weakly
dense =-subalgebra and § satisfies the Leibniz's rule there. Hence, for notational simplicity,
the closure & will be written as 6. We recycle some notations from [49]:

’ a ~
A=5*6,(a: a+A,5a:a—1/26‘o(a

(note that ran {, € dom A'/? = dom §) and

N / A N
Ay =a V20207, = " A,ea =1-A,.

All operators are firstly defined as Hilbert space operators. Since 1 —+/t < V1 —t for all
0<t<1,onehasd, <{,and

la = o (@, < A (@, = [6a (@, <l all<lla llo
for all a € M. By Lemma 2.2 in [49], the operators {, and 8, map M c L*(M) into M and
are t-symmetric u.c.p. on M.

We recall from [55] the following facts: iy, = exp(—tAl/Z) form a semigroup of
u.c.p. maps on M. Let
I'(b*,c) =AY2(b")c+ b*AY?(c) — AY?(b*c)
— i Ye(b*c) — P (b™),(c)
= 1m
t—0 t
18
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for b,c € dom A2 N M and note that

Z b; ®yi’z ¢ Qzj) = Z T(J’?F(b?»cj)zj)

J Lj
r
IS a positive semi-definite form on (dom AY?2 0 M) & M. In particular, one has
[2(x*T(b*, )y)| < t(x*T(b*, b)x)/*2(y*T(c*, c)y)'/>.
It follows that
ITb*, AN, =sup {ltx"T", AY):x,y € M, llxx*ll, < 1, lyy°ll, < 1}
<sup {t(x*T(b*,b)x)/?t(y*T(c*, c)y)/%:—}
< IP(b*, b1y *Ir(c™, o)y
< 41 b 120 8(b) 1721 ¢ 120 8(c) 12,
Lemma (1.2.16)[23]: (Lemma 2.3 in [49]). For every a, x € M, one has

12 (@8 (%) — 8, (@) < 10 Il x Nl ll a 12 |16, (@)
and
18, () o (@) — 8, ()| < 10 11 x Nl @ 122 18, (@)
Proof. One has
(a(@)ba(x) = a™28(85(a)0o (%)) — 84(@)a(x) =: Ay — A,
We note that || 4,1l <Il x Il [|6,(a)]|. Let § = VA/? be the polar decomposition. Then, one
has

VA, = Za(a)ﬁa(x) + Aa(a)ca(x) - a_l/zr((a(a)r {a(x))

== Bl + BZ - B3
in L2(M). We note that ||B, 1| <Il x Il ||6,(a)||; and by the estimate preceding to this lemma
that 1Bl < 4 Il x llooll @ 12 |16, (&)]|"/%. Finally, one has

B, = Za(a)ﬁa(x) = (e(a)(1 - 6,)(x) = ax — O, (ax) = Aa(ax)-
For the above estimates, we used
1{o(@)x — axll, I X llo lla = Se(@)l, <N % Nl 6D,
and
{2 (@)0a (%) — Ox (@), <l X lles 1({e — O (DI, + 18,(a)0,(x) — O, (ax)l,

<l % o (Ie@ll, +2 1@ 12 18 (@])
(see Lemma (1.2.14)). Consequently, one has
{a(@)b,(x) = Ay = VB; = §,(ax).
This yields the first inequality. Since the derivation is real, one obtains the second as well.
We will need a vector-valued analogue of the above lemma. Let

Q= {n €L*(M Q@ M):(id ® T)(n™n) < 1 and (id ® 7)(nn*) S_l}.
We note that if {&,} is an orthonormal basis of L*(M) and n = Y5 x, & &, then (id ®
(M) = Xexpx, and (d @ T)(Mn™) = Y xkxg- (These series converge a priori in
LY(M).) Wenote thatif n € Qand b,c € M with || b ll,ll ¢ lo< 1,thenn*, (b ® 1)n(c ®
1) € Q.

Lemma (1.2.17)[23]: For everya € M and n € Q, one has
1¢2(@) @ D(6 ® 1)) — (6 ® 1)((@ ® DMy 0,2)
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Proof. Let a € M be fixed and define a linear map T: M — H by
T(x) = {¢(@)8(x) — 64 (ax).
By Lemma (1.2.16), one has || T 1< 10 || a II%/2 ||Sa(a)||1/2. By the non-commutative little
Grothendieck theorem (Theorem 9.4 in [50]), there are states f and g on M such that
I TC) 120 T 112 (f(x*x) + g(xx™))
for all x € M. It follows that for n = Y5, x,, ® &, € Q, one has

1Ga(@) ® D(8, ® 1)) = (60 ® 1)((@ ® DDl
= > TGO < )T IT I (fGon) + gluexd) <2 1T 12
k k

The second inequality follows similarly.

Let " be a group and (b, T, K) be a proper 1-cocycle. Replacing (b, i, K) with (b @
b,m @ @, K @ X) and considering an operator defined by J, (¢ @ 1) = n @ & if necessary,
we may assume that there is a conjugate-linear involution J, on K such that /,b(g) = b(g)
and Jom,Jo = m, for all g € T. (Note that 7 is amenable (resp. weakly sub-regular) if and
onlyifsoism @ 1.)

Let M = Q x I be the crossed product von Neumann algebra of a finite von Neumann
algebra (Q, ) by a t-preserving action o of I'. We denote by u, the element in M that
corresponds to g € I'. We equip H = L*(Q) ® ¢*(I') ® K with an M — M bimodule
structure by the following:

H = Q) & (D) ® K
left actionby g € I' g, ® g Qmy
left actionbya € Q : a @ 1 X1

right actionby g €T : 1 ®p,t R 1
right actionbya € Q : z on(@)? ey X1
her

We define a conjugate-linear involution J on H by

J(@® 8, ®¢) = ~04-1(a) @ 551 ® Jomg-18,
and the derivation §: M — H by

§(auy) =4 ® 8, ® b(g) € [2(Q) ® £2(N) Q K
fora € Q and g € T. Itis routine to check that J intertwines the left and the right M-actions,
J8(auy) = 8(a,_1(a*)uy_1) = 8((au,)") and moreover that & is a real closable
derivation satisfying

a

Aaug) =1l b(g) I” aug, {a(ary) = Ja+ll b(g) 17

and
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Il b(g) Il
Ha(aug) =11 _\/OH_" b(g) |12 alg

foralla € Q and g € I. In particular, all 6,, belong to C*(Me,M).
Lemma (1.2.18)[23]: Suppose that m is weakly contained in the regular representation.
Then, the M — M bimodule A is weakly contained in the coarse bimodule L? (M) & L?(M).
In particular, the left M-action on 7 extends to a u.c.p. map ¥: B(L?*(M)) — B(H) whose
range commutes with the right M-action.
Proof. It is well-known and not hard to see that if 7= is weakly contained in the left regular
representation A, then the M —M bimodule # is weakly contained in H:=
I?(Q) ® £2(I") ® £3(I"), where (m,KX) is replaced with (1,#%(T)) in the
definition of 7. Let U be the unitary operator on ' defined by

Ua @ 8, ® 65 = 04(a) ® 5, ® 8.
It is routine to check that U*A(M)U c A(Q) @ C1 ® B(£*(T)) and U*p (MOP)U c

p(Q°?) ® B(£*(I")) ® €1, where A and p respectively stand for the left and right actions
on A . Since the ambient von Neumann algebras are amenable and commuting, H and a
fortiori H is weakly contained in the coarse M — M bimodule, i.e., the binormal
representation u of M @ M°P on H is continuous w.r.t. the minimal tensor norm. Hence, u
extends to a u.c.p. map i from B(L?(M)) ® M into B(H). We define W: B(L?(M)) -
B(H) by W(x) = fi(x @ 1). Since M°P is in the multiplicative domain of [, the range of
¥ commutes with the right M-action.

For the following, let P € M be an amenable von Neumann subalgebra such that
P £, Q, and G c Ny (P) be a subgroup whose action on P is weakly compact. We may
and will assume that U(P) c G. By definition, there exists a sequence 7, €
L>(M @ M), such that
1. 17, — (v @ D)nyll, = 0 for v € U(P);
2. Iny—Adu @ w)(m)Il, > 0 foru €g;
3. ((a® Dn,n,) =1(a) foralla € M.
We note that n,, € Q.
Lemma (1.2.19)[23]: For every a« > 0 and a € M, one has

Lim,[|(6, ® 1)((a ® D)l =l a ;.
Proof. Note that [|(a ® 1), I, =Il a Il,. Define a state on (M, e, ) by
Po(x) = Limp((x & 1)1, 7).

By construction, ¢, is a P-central state such that ¢,|,, = 7. Since P £, Q and 6,a €
C*(MeyM), Lemma (1.2.14) implies g, (a*8;6,a) = 0. It follows that

Lim, [|(6, ® 1)((@ ® D)l = Limy[|((1 = 6)a ® 1)nll,
= Lim,[l(a ® 1)7,ll,
=l a ll,.
This completes the proof.
For @ > 0, a non-zero projection p € G' N M and n, we denote
b = (6, ® 1)(» @ Dny)
and define a state ¢,, , on B(H) N p(M°P)’, where p(M°P) is the right M-action on 7, by
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Pp,a () =l p 1% Lim, ((x ® Dy, 1y ).
Lemma (1.2.20)[23]: Let a € G"'. Then, one has

Limg|@p,q ((a(@)%) = ¢pa(x8a(@))| = 0
uniformly forx € B(H) np (M"P )I with || x l,< 1
Proof. Let u € G and denote u, = {,(u). By Lemma (1.2.17), one has
Lim, 72 — (ug ® D15 (1 ® 1)l < 40]18, (W]
Since uju, < 1, one has for every x € (p(M°P)") . that
Ppa(Ugxuy) 2l p lz? Limy((x ® D(u, ® ft)n”'“(ua ® 0)*, (ug @ Wny, (U @ W)

= gop,a(x) — 80 |l p ”5 Ii5 (u)” | X Moo
By Lemma (1.2.15), one obtains

" _ = 1/2
”(pp,a(') - (Pp,a(ua 'ua)" < 160 || p ”22 ||5a(u)||
In particular, Lim,, ¢, , (1 — uzu,) = 0 and
Limal(pp,a(uax) - (pp,a(xua)l =0
uniformly for x with || x ll,< 1. This implies that
Lima|¢p,a((a(a)x) - (pp,a(x(a(a))l =0
for each a € span G and uniformly for x € B(H) N p(M°P)" with || x ll,< 1.
However, by Lemma (1.2.17),

[2pa(XSa(@)]  =1p 127 [Limp((x ® 1)Cal@) © Dy, )
<Up I % oo (20 1@ 1220 @ 1572 +0 1)

and likewise for |(pp’a (¢, (a)x)|. Thus, by Kaplansky's Density Theorem, we are done.
Theorem (1.2.21)[23]: Let M = Q = T be the crossed product of a finite von Neumann
algebra (Q, ) by a t-preserving action of a countable group I" with the property (HH). Let
P < M be aregular weakly compact von Neumann subalgebra. Then, P <,, Q.

Proof. Let G"" = M and ¢, = ¢4 ,. By Lemma (1.2.20), one has

Limal(pa((a(a)x) - (pa(x(a(a))l =0
foreverya € G" = M and x € B(H) n p(M°P)". Since

a

Ity = Calug)ll =1 - Ja+|| I

as a — oo, one has

Limg|@q (ugxu)) — @q(x)| =0
forevery g e T'and x € B(H) n p(M°P)’. Hence, the state ¢ defined by

@(x) = Limg @g (x)

on B(X) c B(H)Np(M°P) is Adm-invariant. Therefore, m is an amenable
representation, in contradiction to the property (HH).
Theorem (1.2.22)[23]: Let M = Q x T be the crossed product of a finite amenable von
Neumann algebra (Q, t) by a t-preserving action of a countable group I' with the property
strong (HH). Let P ¢ M be an amenable von Neumann subalgebra such that P £,, Q and
G < Ny, (P) be a subgroup whose action on P is weakly compact. Then, the von Neumann
subalgebra G"' is amenable.
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Proof. We use Haagerup's criterion for amenable von Neumann algebras (Lemma 2.2 in
[40]). Let a non-zero projection p € G' N M and a finite subset F c U(G") be given
arbitrary. We need to show

2 up @ up

UEF MM
Letu € U(G"). By Lemma (1.2.17) and Lemma (1.2.19), one has

PpaCap) Ceup)) =l p I3% Lim, |8 (up) ® D(8, ® 1)((» @ D)

e « % 1/2\?
211 p 12 Limy, (1(52 ® 1)((up ® 1mw)ll, — 20018 up)]l)

>1-40 1 p I3 . up)l””.
Hence, by Lemma (1.2.20), one has

Lima|§0p,a(ca(up)*xca(up)) - (pp,a(x)l =0
uniformly for x € B(#) n p (M) with || x ll.,< 1. By Lemma (1.2.18), the left M-

action on H extends to a u.c.p. map W: B(L*(M)) — B(H) N p(M°P)". The state ¢, , =
Ppo © ¥ on B(L*(M)) satisfies

Lima|¢p,a({a(up)*x{a(up)) - wp,a(x)| =0
uniformly for x € B(L*(M)) with || x l,< 1. By a standard convexity argument in
cooperation with the Powers-Stagrmer inequality, this implies that

> ) @G| =IF
UuerF MM
for the finite subset F < U(G""). Since {, are u.c.p. maps, this yields

Il Il | Il
D wew| =l ) @Lw)| = IF
| by I e lier IIM®M

This completes the proof.

The corollaries follow from the corresponding Theorem (1.2.21) and Lemma (1.2.13),
because all the von Neumann algebras in consideration have the complete metric
approximation property and hence all amenable subalgebras are weakly compact (Theorem
(1.2.9)).

We fix a notation for profinite actions. An action I' ~ (X, i) is said to be profinite if

(X, w) is the projective limit of finite-cardinality probability spaces (X,,, u,,) on which I acts
consistently. We will identify L*(X,,u,) as the corresponding TI-invariant finite-
dimensional von Neumann subalgebra of L* (X, 1). The same thing for L2. We write X =
[Ia Xgn for the partition of X corresponding to X,,, i.e., the characteristic functions of X, ,,
's are the non-zero minimal projections in L* (X,,).
Definition (1.2.23)[23]: Let m: T ~ H be a unitary representation. We say m has a spectral
gap if there are a finite subset F c I"and k > 0, called a critical pair, satisfying the following
property: denoting by P the orthogonal projection of H onto the subspace of m-invariant
vectors, one has

= |F].

Lim,,

kll &—PEI< rggg{”f — myé|
forevery & € H. (This is equivalent to that the point 1 is isolated (if it exists) in the spectrum
of the self-adjoint operator (2|F|)™*Y 4er (7, + ;) on H.) We say that o has a stable
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spectral gap if the unitary representation = @ 7 of I' on % @ H has a spectral gap. (Note
that we allow rank P > 1.)

When the unitary representation it arises from a p.m.p. action I' ~ X, we simply say
[' ~ X has a (stable) spectral gap if = has. Assume moreover that the action I' ~ X is
profinite. We say I' ™~ X has a stable spectral gap with growth condition if there are a critical
pair (F, k) such that ', the restriction of 7 to the subgroup of I' generated by F, does not
have a subrepresentation of infinite multiplicity.

Suppose that ' ~ liian has a stable spectral gap. Then, 7 has finitely many

equivalence classes of irreducible subrepresentations of any given dimension k € N. (See
[41].) It follows that the growth condition is equivalent to that the minimal dimension k,, of
a non-zero subrepresentation of 7| 2 xyg,2(x, ) tends to infinity.
Lemma (1.2.24)[23]: Let I ~ X be a p.m.p. action which is profinite and has a stable
spectral gap with growth condition. Let F c T and k > 0 be a critical pair. Then, for any
k € N and unitary elements {ug}gEF on the k-dimensional Hilbert space ¢7, one has

2

K k
7(1 — k_n> ”f - PLZ(Xn)®£’i€"2 = Igg}(”‘f - (ng ® ug)g”z

for every £ € I2(X) ® £2 andn € N.

Proof. We denote L?(X,)* = L*(X) © L*(X,,). It suffices to show
2

K k
7 (1) 1€ 1= maxlé — (my @, )1,
for & € L2(X,))* ® £2. We assume || € |l,= 1 and denote the right hand side of the asserted
inequality by . We view ¢ as a Hilbert-Schmidt operator T; from {’_,2{ into L2(X,,)*. Note
that

iiTE - T[ngﬁ;iiz = "f - (T[g ® ug)gllz <&
Hence by the Powers-Starmer inequality, the Hilbert-Schmidt operator S =

(Te77)"? on L2(x,)* satisfies

« 12 * * %

IS — g Semgll, < |T:T¢ — my T e, )

< ”Tg + ﬂngﬂ‘;llzlng — ﬂngﬂ‘;llz

< 2e.
By the stable spectral gap property, one has

2
IS = P(Se)Il,, < 2e/x?.

Since P(Sg) commutes with 7, for all g € F, growth condition implies that P(S¢) =
Yiyir; /2 Q; for some y; = 0 and mutually orthogonal projections Q; with r; = Tr(Q;) >
k,. Since S; has rank at most k, denoting its range projection by R, one has
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IP(SIE = (5, P(S¢))
= v (RS Q)

1/2

Z VETITHQRQ | (5eTr(QiSiSe00))

(Z vk 1k> Isel,

= (k/k) 2 P(Se)l

By combining two inequalities, one obtains

1—(k/ky) <1- iip(sf) P(sg)" < 2¢/K?
and hence the desired inequality.
Recall that a cocycle of ' ~ X with values in a group A is a measurable map a:I' X X — A
satisfying the cocycle identity:

Vg,h €T, u-ae. x € X, a(g, hx)a(h,x) = a(gh, x).

A cocycle a which is independent of the x-variable is said to be homomorphism for the
obvious reason. Cocycles a and f are said to be equivalent if there is a measurable map
¢:X - Asuchthat (g,x) = ¢(gx)a(g,x)p(x)~ forall g € I'and u-a.e. x € X.
Lemma (1.2.25)[23]: Let ' =T} XTI, and ' X = lim_X,, be a p.m.p. profinite action
such that I, ™~ X has a stable spectral gap with growth condition. Let (N, t) be a finite type
I von Neumann algebra, and a:T" X X — U(N) be a cocycle. Then, for every € > 0, there
exists n € N such that

[ et - @il <
X

for al g €ker(I; > Aut(X,)), where ocgm(g)=|Xa,n|_1fxana(g,y)dy and

a(x) issuch that x € X,y n-
Proof. It suffices to consider each direct summand of N and hence we may assume N =
M, (C) ® A, where A is an abelian von Neumann algebra. For every g € T', we define w, €
L®(X) @ N = L®(X,N) by wy(x) = a(g, g~*x). Then, it becomes a unitary 1-cocycle for
6=0Qidy:
Wgn = WyGg(Wp).
Let F c T, and k > 0 be a critical pair for the stable spectral gap of T, ~ X. Let § = ex?/8
and take m €N and unitary elements wy, € L (X)) ® N
such that |wy, — w,’lll2 < § for every h € F. For the rest of the proof, we fix g €
ker(I; - Aut(X,,)). Since wj, = 6,(wy), one has
WyWh = Wy8y(Wy) = Wy = wyy = wiép(wy), )
for every h € F. We define trace-preserving *-automorphisms mr;, on L*(X) & N by
T (x) = Ad(wp) © 6, (x)
and note that [lwy — 1, (w,)ll, < 28 for every h € F. We write z, for the restriction of m,
to L*(X,,) ® N. Note that 7t,, acts as identity on C1 ® 4 c L*(X,,) ® N.

25



Let {p,} be the set of non-zero minimal projections in L* (X,,,) and define an isometry
V:L2(X) - L2(X) Q L*>(X,,) by V& = |X,,|Y?Y  pa€ ® p,. (Here |X,,| stands for the
cardinality of the atoms of X,,,.) We claim that (V @ 1)m;,, = (0, ® 7,)(V @ 1). Indeed,
if Will = Zao-h(pa) ® Ya then

@ ® TV ®DE®C) = Xl (04 @) ) paf ®Pa B

= | X, |1/ z 0h(P4&) ® 0n(Pa)  YaCys

a

= Vz 0n(Paé) Q Yacya

a
=V, (§ & c)
forall £ € L2(X) and ¢ € L?>(N). Now, it follows that
rfrggg"(V Q@ Dw, — (07, QT)(V Q 1)Wg"2 < 26.
We observe that if 7, is viewed as a unitary operator on L?(X,,) ® L>(M,(C)) ® L?(A), then

it lives in B (L2 (X)) ® L (Mk((C))) ® A. Hence Lemma (1.2.24) applies and one obtains
2

K mkz , 1]
7<1 - > V& Dw, — (PLZ(Xn) X1 1)(V X 1)Wg"2 =2

for every n € N. Finally take n to be such that n>m and k, > 2mk?. Since
(Pr2cx,) ® 1)V = VP24 y for n = m, one has

1/2
/ 2
<j iia(.gr x) - aa(x),n(-g)iizdx> = ”Wg o (PLZ(Xn) ® 1)Wg”2
X

mik2\"?
<46/ K2(1—< ) ) <e.
Ky

We note that ker(T; - Aut(X,,)) < ker(T} - Aut(X,,)).

We combine the above result with results of loana in [42], to obtain the following
cocycle rigidity result for profinite actions of product groups.
Theorem (1.2.26)[23]: Let ' =T; XTI, and T' ™~ X be an ergodic p.m.p. profinite action
such that I; ~ X has a stable spectral gap with growth condition, for each i = 1,2. Let A be
afinitegroupand a: ' X X — A be acocycle. Then, there exists a finite index subgroup I'’ <
' such that for each I''-ergodic component X' c X, the restricted cocycle alpryy is
equivalent to a homomorphism from I'" into A.
Proof. The proof of this theorem is very similar to that of Theorem B in [42], and hence it
will be rather sketchy. Let Z = X x X x A and we will consider the unitary representation
m: T ~ [2(Z) induced by the m.p. transformation

g(x,y,t) = (gx, gy, a(g, x)ta(g,y) ™).

Let € > 0 be arbitrary. Since A is discrete, Lemma (1.2.25) implies that there are a

normal finite index subgroup I'" and n € N such that Im(g)¢, — &ull, < e forall g € I,

where &, = |Xn|1/22a)(xa,nxxa,nx{e}. It follows that the circumcenter of w(I'")é&,, isam(I')-

invariant vector which is close to &,,. Since I' ™~ X is ergodic and I'" is a normal finite index
subgroup in T, there are a I''-ergodic component X’ c X and a finite subset E < T such that
X = UgegsX'. Thus, there are TI''-ergodic components X;,X; € X such that &' =

26




|X’|‘1)(X{XX21X{3} is close to a w(I'")-invariant vector. We may assume that X; = X'. By
Corollary (1.2.6) in [42], the cocycle alpry IS equivalent to a homomorphism 6 via
$: X' > Aie,0(g) = p(gx)a(g, x)p(x) 1. We observe that a |, . is equivalentto 6 o
Ad(s™1).
Indeed, one has
0(s7'gs) =¢(sT'gsx)als ™ gs, X))~
= ¢(sT gsx)a(s™ gsx)a(g, sx)a(s, x)(x) ™"
= P(gsx)a(g, sx)P(sx) 7",
where Y (sx) = ¢p(x)a(s™1,sx) fors € Eand x € X'.
Theorem (1.2.27)[23]: Let ' =T; X I, be a group with the property (z) and I' ™ X =
lim_X,, be a p.m.p. profinite action with growth condition such that both I'; ~ X are ergodic.
Let A be a residually-finite group. Then, any cocycle
a:I'xX - A
virtually untwists, i.e., there exist n € N and a cocycle B:T X X,, = A which is equivalent
to «.
Proof. By Theorem B and Remark 3.1 in [42], it suffices to show that the unitary
representation 7: T ~ L?(X x X x A) has a spectral gap. Let A; be the finite quotients of A.
Since A is residually finite the unitary representation m is weakly contained in the direct sum
@m;, where 7; is the unitary representation induced by I' ™ X X X X A; using the same 1-
cocycle composed with the quotient A — A;. Thus, it suffices to show that 7; 's have a
uniform spectral gap. We prove this by showing that each 7; is contained in a direct sum of
finite representations; then the uniformity follows from property (). We may assume that
Ais finite and r; = . By Theorem (1.2.26), there is a finite index subgroup I'’ such that for
each T''-ergodic component X; c X, the restricted cocycle alrlxxé Is equivalent to a
homomorphism 6,: T’ — Avia ¢,: Xy, = A, i.e., 0,(9) = ¢X(gx)a(g, x) P (x)~1. Let Ok 1
be the automorphism on X; x X; x A defined by gy ;(x,y,t) = (x,y, i ()t (¥) ™).
Then, for g € T’, one has
0,199k1 (6, ¥, 8) = (g%, gy, dx(gx)a(g, x)pr ()t (V) (g, ¥) i (gy) ™)

= (9%, 9y, 0, (9)t0,(9) ™).
Since X' is profinite, this implies that the unitary representation | is contained in a direct
sum of finite representations (of the form T'~X, XX, XA g(x,y,t)=

(9%, 9,0, (9)t0;(g)™")). Since I'" has finite index in T, the unitary representation = c

Indg,(mr,) is contained in a direct sum of finite representations. This completes the proof.
The following two lemmas are well-known.

Lemma (1.2.28)[23]: Let ' > A; = A, = --- be a decreasing sequence of finite index

normal subgroups. Then, the left-and-right action I' X ' ~ liln I'/A,, is essentially-free if

and only if lim,|Z,,(g)|/IT/A,| = 0 for every g € T with g # e, where Z,(g) is the
centralizer group of g inT'/A,,.

Proof. The 'only if' part is trivial. We prove the 'if’ part. Note that the condition implies that
NA, = {e}. Let (g, h) € T x T and observe that

l{x € T/A,: gxh™1 = x}|

IT/An|

|{x € liinF/An: (g, h)x = x}| = lign
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If g = e, then (g, h) acts freely unless h = e, too. Thus, let g # e. If x,y € '/A,, are such
that gxh™! = x and gyh™! = y, then one has gxy g ' =xy 1 ie xy 1 € Z,(g). It
follows that |{x € T/A,;: gxh™* = x}| < |Z,(9)|.

Lemma (1.2.29)[23]: Let F be a finite field. Then, for every g € PSL(2, F) with g # e, one
has |Z(g)|/IPSL(2,F)| < 2/(|F| = 1).

Proof. Since the characteristic polynomial of g is quadratic, it can be factorized in some
quadratic extension F of F. Thus g is conjugate to a Jordan normal form in PSL(2, F). Now,
it is not hard to see that the centralizer of g in PSL(2, ) has cardinality at most |F| = |F|?.
On the other hand, it is well-known that |[SL(2, F)| = |F|(|F|? — 1).

Corollary (1.2.30)[23]: Let I; = PSL(2,Z[v2]) and p, < p, < -+ be prime numbers. Let
[=T; x I} act on X = lim_PSL(2, (Z/p; -+ pnZ) [\/f]) by the left-and-right translation
action. Let A ~ Y be any free ergodic p.m.p. action of a residuallyfinite group A and suppose
that L*(X) x T = (L*(Y) x A)t for some t > 0. Then, t € Q and the actions ' ~ X and
A ~ 'Y are strongly virtually isomorphic.

Proof. Since SL(2,Z[V2]) is an irreducible lattice in SL(2, R)?, it has property (7) (see
Section 4.3 in [43]) and the property (HH)*(cf. Theorem (1.2.7)). By the above lemmas, the
action I' ~ X is essentially-free. Indeed, consider the homomorphism from PSL(Z, (Z/

p; - PpZ)[V2]) onto PSL(2,F), where F is the field either Z/p,Z or (Z/p,Z)[V2],
depending on whether the equation x? = 2 is solvable in Z/p,Z or not; and apply Lemma
(1.2.29) at PSL(2,F). Therefore, by Corollary (1.2.2), L*(X) is the unique Cartan
subalgebra of L*(X) % T. It follows that the isomorphism of von Neumann algebras
L®(X)x T = (L2(Y) x A)t gives rise to a stable orbit equivalence between ' ~ X and A ~
Y. The growth condition of Theorem (1.2.27) is satisfied because p,, 's are mutually distinct

primes  and  PSL(2,(Z/p; - pnZ)[V2]) = [IPSL(2, (Z/pxZ)[V2]).  Therefore,
Theorem (1.2.27) is applicable to the orbit equivalence cocycle a:T x X — A. For the rest
of the proof, see [42].

Theorem (1.2.31)[23]: Let ' ~ X be a free ergodic p.m.p. action of a discrete group T
having an infinite normal abelian subgroup H satisfying the relative ICC condition. Assume
that H ~ X is ergodic and profinite. Then, both L*(X) and L(H) are Cartan subalgebras of
L (X) = . Assume moreover that I' ~ X is profinite and there is no H > I'-invariant mean
on £*(H). Then, the Cartan subalgebras L* (X) and L(H) are non-conjugate.

Proof. Since H ~? X is an ergodic and profinite action, one has X = lim_H /H,, for some
decreasing sequence H = H, © H; > --- of finite-index subgroups of H such that NH,, =
{e}. Recall that a function f is called an eigenfunction of H if there is a character y on H
such that o, (f) = x(h)f for every h € H. We observe that every unitary eigenfunction
normalizes L(H) in L*(X) = H, and that L* (X) is spanned by unitary eigenfunctions since
L*(H/H,) is spanned by characters. This proves that L(H) is regular in L*(X) < T. To
prove that L(H) is maximal abelian, let a € L(H)' nL*(X) =T be given and a =

Y. ger agug be the Fourier expansion. Then, [a, u,] = 0 implies Jh(ag) = apgp-1 forall g €
' and h € H. In particular, one has ||ahgh-1||2 = [lag|l,. Since X4 ||ag||z =l a I5< oo, the
relative ICC condition implies that a, = 0 forall g ¢ H. But for g € H, ergodicity of H ~
X implies that a, € CL. This proves a € L(H).

For the second assertion, recall that weak compactness is an invariant of a Cartan
subalgebra (Proposition 3.4 in [48]). We prove that L(H) is not weakly compact in L (X) >
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I'. Suppose by contradiction that it is weakly compact. Then, by Proposition 3.2 in [48],
there is a state ¢ on B(£2(H)) which is invariant under the H x I'-action. Restricting ¢ to
£ (H), we obtain an H x I'-invariant mean. This contradicts the assumption.

Corollary (1.2.4) is an immediate consequence of Theorem (1.2.31). Here we give
another example for which Theorem (1.2.31) applies. Let K be a residually-finite additive
group such that |K| > 1, and I, be a residually-finite non-amenable group. The wreath
product I' = K \ T} is defined to be the semidirect product of H = @r_ K by the shift action
of T,. Then, there is a decreasing sequence H, > H; D --- of [,-invariant finite-index
subgroups of H such that NH,, = {0}. Indeed, let K, > K; D - (resp. [0 2 Ih1 2 ) be
finite-index subgroups of K (resp. Iy ) such that NK,, = {0} (resp. N [, = {e}). Then, the
"augmentation subgroups"

H, = (ag)gero € H: Z agn € Ky, forall g € T, ¢,
h€lg n
which is the kernel of the homomorphism onto @r,r,,K/Ky, satisfy the required
conditions. It follows from Theorem (1.2.31) that the 1l ,-factor
L (limH/H, ) x T
has two non-conjugate Cartan subalgebras, namely L(H) and L (lim_H /H,).
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Chapter 2
Non-Commutative and Classical Aspects with Non-Injectivity

We show that a large class of g-Gaussian processes possess a non-commutative kind
of Markov property, which ensures that there exist classical versions of these non-
commutative processes. This answers an old question of Frisch and Bourret [77]. We show
that the proof works for the more general setting of a Yang-Baxter deformation. The
techniques can also be extended to the so called g-Araki-Woods von Neumann algebras
recently introduced by Hiai. We obtain the non injectivity under some asssumption on the
spectral set of the positive operator asociated with the deformation.

Section (2.1): q-Gaussian Processes
What we are going to call g-Gaussian processes was essentially introduced by Frisch

and Bourret [77]. They considered generalized commutation relations given by operators

A(t) and a vacuum vector ¥, with

ADA*(t") — qA*(t)A(t) =T(t, t")1
and
AOY, =0

for some real covariance function I' (i.e. positive definite function). They study the

probabilistic properties of the 'parastochastic’ process M (t) = A(t) + A*(t).

The basic problems arising were the following two types of questions:

1. (realization problem)

Do there exist operators on some Hilbert space and a corresponding vacuum vector

in this Hilbert space which fullfill the above relations, i.e. are there non-commutative

realizations of the g-Gaussian processes.

2. (random representation problem)

Are these non-commutative processes of a classical relevance, i.e. do there exist

classical versions of the g-Gaussian processes (in the sense of coinciding time-

ordered correlations, see Definition (2.1.33)).

Frisch and Bourret could give the following partial answers to these questions.

1. For g = +1 the realization is of course given by the Fock space realization of the
bosonic/fermionic relations. The case g = 0 was realized by creation and annihilation
operators on the full Fock space (note that this was before the introduction of the
Cuntz algebras and their extensions [72],[75]). For other values of g the realization
problem remained open.

2. The g = 1 processes are nothing but the Fock space representations of the classical
Gaussian processes. For g = —1 a classical realization by a dichotomic Markov
process could be given for the special case of exponential covariance I'(t,t’) =
exp(—|t —t']). A classical realization for g = 0 could not be found, but they were
able to show that there is an interesting representation in terms of Gaussian random
matrices.

Starting with [61] there has been another and independent approach to
noncommutative probability theory. This wide and quite inhomogenous field - let us just
mention as two highlights the quantum stochastic calculus of Hudson-Parthasarathy [82]
and the free probability theory of Voiculescu [19] - is now known under the name of
‘quantum probability'. At least some of the fundamental motivation for undertaking such
Investigations can be compared with the two basic questions of Frisch and Bourret:
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1. Non-commutative probability theory is meant as a generalization of classical
probability theory to the description of quantum systems. Thus first of all their objects
are operators on some Hilbert spaces having a meaning as non-commutative anlogues
of the probabilistic notions of random variables, stochastic processes, etc.

2. In many investigations in this area one also tries to establish connections between

non-commutative and classical concepts. The aim of this is twofold. On one side, one
hopes to get a better understanding of classical problems by embedding them into a
bigger non-commutative context. Thus, e.g., the Azéma martingale, although
classically not distinguished within the class of all martingales, behaves in some
respects like a Brownian motion [97]. The non-commutative 'explanation’ for this fact
comes from the observation of Schirmann [100] that this martingale is one
component of a noncommutative process with independent increments. In the other
direction, one hopes to get a classical picture (featuring trajectories) of some aspects
of quantum problems. A total reduction to classical concepts is in general not possible,
but partial aspects may sometimes allow a classical interpretation.

It was of quantum probability where two [66] reintroduced the g-relations - without
knowing of, but much in the same spirit as [77]. Around the same time the g-relations were
also proposed by Greenberg [79] as an example for particles with 'infinite statistics'.

The main progress in connection with this renewed interest was the solution of the
realization problem of Frisch and Bourret. There exist now different proofs for the existence
of the Fock representation of the g-relations for all g with —-1<¢g<1
[66],[112],[76],[103],[68],[111].

In [96], the idea of Frisch and Bourret to use the g-relations as a model for a
generalized noise was pursued further and the Greens function for such dynamical problems
could be calculated for one special choice of the covariance function namely for the case of
the exponential covariance. We will call this special g process in the following g-Ornstein-
Uhlenbeck process. It soon became clear that the special status of the exponential covariance
Is connected with some kind of (honcommutative) Markovianity - as we will see the g-
Ornstein-Uhlenbeck process is the only stationary g-Gaussian Markov process. But using
the general theory of Kiimmerer on non-commutative stationary Markov processes [87],[88]
this readily implies the existence of a classical version (being itself a classical Markov
process) of the g-Ornstein-Uhlenbeck process.

Thus we got a positive solution of the random representation problem of Frisch and
Bourret in this case. However, the status of the other g-Gaussian processes, in particular g-
Brownian motion, remained unclear.

Motivated by our preliminary results, Biane [63] (see also [64],[65]) undertook a deep
and beautiful analysis of the free (¢ = 0) case and showed the remarkable result that all
processes with free increments are Markovian and thus possess classical versions (with a
quite explicit calculation rule for the corresponding transition probabilities). This includes
in particular the case of free Brownian motion.

Inspired by this work we could extend our investigations from the case of the g-
Ornstein-Uhlenbeck process to all g-Gaussian processes. The results are presented.

Up to now there is only one strategy for establishing the existence of a classical
version of a non-commutative process, namely by showing that the process is Markovian.
That this implies the existence of a classical version follows by general arguments, the main
point is to show that we have this property in the concrete case. Whereas Biane could use
the quite developed theory of freeness [19] to prove Markovianity for processes with free
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increments, there is at the moment (and probably also in the future [104]) no kind of g-
freeness for general g. Thus another feature of our considered class of processes is needed
to attack the problem of Markovianity. It is the aim that the g-analogue of Gaussianity will
do this job.

The essential idea of Gaussianity is that one can pull back all considerations from the
measure theoretic (or, in the non-commutative frame, from the operator algebraic) level to
an underlying Hilbert space, thus in the end one essentially has to deal with linear problems.
The main point is that this transcription between the linear and the algebraic level exists in
a consistent way. The best way to see and describe this is by presenting a functor (‘second
guantization) which translates the Hilbert space properties into operator algebraic
properties. Our basic considerations will therefore be on the existence and nice properties
of the g-analogue of this functor. Having this functor, the rest is mainly linear theory on
Hilbert space level. It turns out that all relevant questions on our g-Gaussian processes can
be characterized totally in terms of the corresponding covariance function. In particular, it
becomes quite easy to decide whether such a process is Markovian or not.

We remind of some basic facts about the g-Fock space and its relevant operators.
Furthermore we collect the needed combinatorial results, in particular on g-Hermite
polynomials. We devoted to the presentation of the functor I';, of second quantization. The
main results (apart from the existence of this object) are the facts that the associated von
Neumann algebras are in the infinite dimensional case non-injective I1,-factors and that the
functor maps contractions into completely positive maps. Having this g-Gaussian functor
the definition and investigation of properties of g Gaussian processes (like Markovianity or
martingale property) is quite canonical and parallels the classical case. Thus our presentation
of these aspects, we will be quite condensed. We contain the classical interpretation of the
q Gaussian Markov processes. As pointed out above general arguments ensure the existence
of classical versions for these processes. But we will see that we can also derive quite
concrete formulas for the corresponding transition probabilities.

Let g € (—1,1) be fixed in the following. For a complex Hilbert space H we define
its g-Fock space F, (3{) as follows:

Let Finite (20 be the linar span of vectors of the form f; @ -+ & f,, € H®™ (with
varying n € Ny), where we put £ ®° = €Q for some distinguished vector €, called vacuum.
On Finite (31 we consider the sesquilinear form ()4 given by sesquilinear extension of

(fl ® ® fnr 91 ® ® gm>q: = 6nm z qi(n)<flr gn(l)) (fn’ gn(n))'

TESY
where S,, denotes the symmetric group of permutations of n elements and i(7r) is the number

of inversions of the permutation € S,, defined by
i(m:=#{{,NI11<i<j<nnu(@)>n()}

Another way to describe (-,-), is by introducing the operator P, on Fihinite (21) by linear

extension of

PO=0Q
PAE® =@ fi= ) 0 Vfey &8 fun)
TESY

Then we can write
(&g = (& Bym), (£1 € FF e (30)),
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where (-}, IS the scalar product on the usual full Fock space

Fo(H) = @ HOn,

n=0

One of the main results of [66] (see also [68],[76],[103],[112]) was the strict positivity of
P, i.e. (&,&), > 0for 0 # & € Fnie (31). This allows the following definitions.
Definitions (2.1.1)[60]: a) The g-Fock space F, (#) is the completion of F e (F) with
respect to (-,-).

b) Given f € H, we define the creation operator a*(f) and the annihilation operator
a(f) on F,(H) by

a(He =f
aHLiQQfi =fOfLQQfn
and
a(f)=0

aNA®+®fi=) " fIi®®f®~®f

where the symbol f; means that f; has to be deleted in the tensor.
Notation (2.1.2)[60]: For a linear operator T: H — H ' between two complex Hilbert spaces
we denote by F(T): Finite (1) — Fiinite (37") the linear extension of
F(MQ =0
FMLO Q@ fn =TH)Q - (Th):

In order to keep the notation simple we denote the vacuum for # and the vacuum for H’
by the same symbol Q.

It is clear that F (T") can be extended to a bounded operator Fy(T): Fo(H) = Fo(H')
exactly if T is a contraction, i.e. if || T |[< 1. The following lemma ensures that the same is
true for all other g € (—1,1), too.

Lemma (2.1.3)[60]: Let T°: Ffinite (1) — Ffinite (37" pe a linear operator which fulfills
P;T = TP,, where F, and F; are the operators on Fiinite 3y and Finite (37, respectively,
which define the respective scalar product (-,-),. Then one has Il T ll,= Il T llo. Hence, if |
T llg< oo then T can, for each g € (—1,1), be extended to a bounded operator from F, (3)
to F, (H').

Proof. Let & € Finite (7). Then

I ¢ "5 :(TS:TEM
= (7€, BTE),

[ 51/2 5 reerpl/2
= (R g7, 5)0

< IIT*TII0<Pq1/2€, Pq1/2§>
0

= IT*TlolI€1IZ,
which implies
I T UG NT*Tllo S UT Mo 1 T No=Il T I,
and thus || T Il,<Il T Il,. Since we can estimate in the same way, by replacing P, by P;*
and P, by P; — 1, also | T llo<Il T ll;, we get the assertion.
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Notation (2.1.4)[60]: For a contraction T: H — H ', we denote the extension of F(T) from
Fhnite (30) — Fhnite (3" to F, (H) = F,(H') by F,(T).
The g-relations one usually encounters some kind of g-combinatorics. Let us just
remind of the basic facts.
Notations (2.1.5)[60]: We put for n € N,
1—q"
[n]g:= T—q = 1+q+-+q"*([0],;:=0).

Then we have the g-factorial

and a g-binomial coefficient
n-k

(n) L [n]g! _ 1-¢q
kg =gt —klgt 11 1-¢"
Another quite frequently used symbol is the g-analogue of the Pochhammer symbol

(@ @n: = 1_[ (1 —aq’) in particular (a;q)e:= 1_[ (1 - aq’).

The importance of these concepts in connection with the q relatlons can be seen from
the following g-binomial theorem, which is by now quite standard.
Proposition (2.1.6)[60]: Let x and y be indeterminates which g-commute in the sense xy =

qyx. Then one has forn € N
n

(x+y)" = Z (Z)q yranr,

k=0
Proof. This is just induction and the easily checked equality

n k n _m+1
(k)q +a" (1o 4 1)q = (k + 1)q'
In the same way as the usual Hermite polynomials are connected to the bosonic
relations, the g-relations are linked to g-analogues of the Hermite polynomials.
Definition (2.1.7)[60]: The polynomials H,(lq)(n € Ny), determined by
HPx) =1, Hx) = x
and
xHD (x) = H$, () + [n]gHLZ, () (n = 1)

are called g-Hermite polynomials.

We recall two basic facts about these polynomials which will be fundamental for our
investigations on the classical aspects of g-Gaussian processes.

Theorem (2.1.8)[60]: &) Let v, be the measure on the interval [-2/,/1—q,2/\/1—q]
given by

1 = _
vq(dx) = E‘/l —qsin@ 1_[ (1- q")|1 _ qneZI_@lzdx,
n=1

where
2
1—
Then the g-Hermite polynomials are orthogonal with respect to v, i.e.
34
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2/ (T4
| i ve(dn) = Byl
e

b) Letr > 0 and x,y € [-2//1 — q,2//1 — q]. Denote by p? (x, y) the kernel
o n

pOCy)= ) G WHL )

n=0
Then we have with

the formula
(% Qoo
|(rei@+¥); q) o, (rei@=¥); q) o |*

piV(x,y) =

In particular, for g = 0, we get
1—1r2
p{” (x,y) = .
A—7r2)2—r(A+r>)xy+1r?(x?+y?)
As usually in g-mathematics these formulas are quite old, namely the orthogonalizing
measure v, was calculated by Szego [106], whereas the kernel pﬁ‘”(x, y) goes even back to
Rogers [99]. See [70],[83],[78],[91].

An abstract way of dealing with classical Gaussian processes is by using the Gaussian
functor I'. This is a functor from real Hilbert spaces and contractions to commutative von
Neumann algebras with specified trace-state and unital trace preserving completely positive
maps [94],[95],[80],[101],[102]. A fermionic analogue of this functor is also known, see,
e.g., [110],[71].

We will present a g-analogue of the Gaussian functor. Namely, to each real Hilbert
space, H', we will associate a von Neumann algebra with specified trace-state, (Fq (H), E)
and to every contraction T:H — H' a unital completely positive trace preserving map
[, (T): T, (H) - T, (H").

Definition (2.1.9)[60]: Let H be a real Hilbert space and H its complexification H =
H @ iH.Put, for f € H,

w(f):= a(f) +a'(f) € B (F, ()
and denote by I, (®) € B (Tq (}[(C)) the von Neumann algebra generated by all w(f)

O, (H): = WN(a(f) + " (f) | f € H).
Notation (2.1.10)[60]: We denote by

E:T,(H) - C
the vacuum expectation state on I';, (H) given by
E[X]: = (Q, XQ), (x €T, (}[)).
We remind of some basic facts about I'; () in the following proposition.
Proposition (2.1.11)[60]: The vacuum € is a cyclic and separating trace-vector for I'; (7{),

hence the vacuum expectation E is a faithful normal trace on I, () and I, () is a finite

von Neumann algebra in standard form.
Proof. See Theorems 4.3 and 4.4 in [68].
The first part of the proposition yields in particular that the mapping
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Fq(:]{) - :Fq(:]{(c)
X » XQ
is injective, in this way we can identify each X € I}, (}) with some element of the g-Fock
space F, (H¢).
Notations (2.1.12)[60]: a) Let us denote by
Ly (F): =T, (3)Q
the image of I'; (3') under the mapping X ~ XQ.
b) We also put
LZ(H): = F(H).
Definition (2.1.13)[60]: Let W: Ly (H) — [,(¥) be the identification of L7 (H) with
I, (}) given by the requirement
YA =€ for & € LY (H) c L2 (H) = F, (He).
The explicit form of our Wick products is given in the following proposition.
Proposition (2.1.14)[60]: We have for n €N and f;, ..., f, € H the normal ordered
representation

YHAQ®Qf) =
= Z Z a*(fiwy) —a* (fiwy)a(fiw) -~ alfiw) - 4",
k,1=0,.,n 1,={i(1),..,i(k)}
with
LLul,={1,..,n}
11012=(Z)
where

i, L) ={p.PIl<p<k1=<qg=<li(p)>jl@}k
Denote by X the right hand side of the above relation. Itisclearthat Q = f; ® .- Q f,,, the
problem is to see that X can be expressed in terms of the w 's.
Proof. Note that the formula is true for
Y(f) = o(f) = a(f) + a’(f)
and that the definition of a*(f) and of a(f) gives

YRS ® @ f) )
= 0(NPH® @ f) = ) ¢ ULV ® B fi ® @ f).

. From this the assertion follows by induction.

Note that W(f; ® - & f;,) is just given by multiplying out w(f;) ... w(f;,) and bring
all appearing terms with the help of the relation aa® = ga*a into a normal ordered form -
i.e. we throw away all normal ordered terms in w(f;) ... w(f,,) which have less than n
factors. Thus, for the special case f; = --- = f,,, we are in the realm of the g-binomial
theorem and we have the following nice formula.

Corollary (2.1.15)[60]: We have forn e Nand f € H
n

v(re) = ) () a (ke
k=0

Instead of writing W(f®™) in a normal ordered form we can also express it in terms of w(f)
with the help of the g-Hermite polynomials.
Proposition (2.1.16)[60]: We have forn € Ny and f € H with || f |I= 1 the representation
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w(£®) = B (w(f)).

Proof. This follows by the fact that the W(f®™) fulfill the same recurrence relation as the
HLP (w(f)), namely
w(HP(fO) = (fEMD) + [n]w(fECD)
and that we have the same initial conditions
W(Fe) =1, ¥(f®) = w(f).

We know [22], [19] that for g = 0 the von Neumann algebra I'y(H) is isomorphic to
the von Neumann algebra of the free group on dim A generators - in particular, it is a non-
injective II, -factor for dim H > 2. We conjecture non-injectivity and factoriality in the case
dim H > 2 for arbitrary g € (—1,1), but up to now we can only show the following.
Theorem (2.1.17)[60]: i) For —1 < g < 1 and dimH > 16/(1 — |q|)? the von Neumann
algebra I'; () is not injective.

i) If -1 <q <1landdimH = cothen [, (H)isall ;-factor,

Proof. i) This was shown in a more general context in Theorem 4.2 in [68].
ii) Let {e; };cn be an orthonormal basis of H. Fixn € Ny and (1), ...,r(n) € Nand consider
the operator

Xi=W(era) ® @ erm))-
(For n = 0 this shall be understood as X = 1.) We put

1 m
bn(N)i=— > w(edXw(e) (meN)
i=1

and claim that ¢,,(X) converges for m — oo weakly to ¢(X): = q"X. Because of the m-
independent estimate

lpm (O, <ILX g llew (eI
it suffices to show
1im (§, dm (X)) = (£, ¢(XDM)q
forall &, € F,(H) of the form
§=eu1) Q@ Qequy N=epn) @ Q ey
withu, v € Ny, a(1), ...,a(uw),b(1),...,b(v) € N (foru = 0we put ¢ = Q). To see this, put
my: = max {a(1),..,a(u),b(1),...,b(v),r(1),..,r(n)}.
Since |(§,w(ei)Xw(ei)n)q| < M for some M (independent of ), we have
m

1
i=mop+1
10X
= lim — (8 ae)¥(eray ® - ® ergny)a’(e)n), -
i=mgy+1

By Proposition (2.1.14),¥(e,1) ® -+ ® ey ) is Now a linear combination of terms of the
formY =YY, with

Vi =a'(ergay) - a (eraay) and Y2 = a(ergay) - alergay)
with k + [ = n. Each such term gives, for i > m,, a contribution
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(§,ale)Ya"(e)n)y = (& ale)dV1Y2a"(en)q
= q"*Y(¢, Yla(ei)a*(ei)an)q
=q™& V(1 + qa*(ei)a(ei))an)q

= qn<€’ Y1Y2n)q
= q"(¢,Yn),
and hence

1 m
Jim (£, ¢m (X)m)q = lim — q"(§, ¥(ery ® - ® eremy)), = (€,4"Xn)q.
i=mg+1

Thus we have shown
w = lim ¢ (X) = $(X).
Let now tr be a normalized normal trace on I}, (). Then
trfpC0] = lim tr(d, ()]

m
1
= lim — ) trlw(e;)Xw(e)]
m—oo M £
=1
lm

1
= lim — ) tr[Xw(e)w(e;)]
m—oo M 4 4
l=

m
) 1
X %‘H&Ez w(ei)w(ei)]
i=1

= tr[X¢p(1)]
= tr[X].
Since ¢*(X) = q*™X converges, for k — oo, (even in norm) to

0, n=>1
E[X]'lz{le n=0

=1r

we obtain
tr[X] = Jim tr[¢*(X)] = tr | lim ¢*(X)| = E[X] tr{1] = E[X],
Thus tr coincides on all operators of the form
X = ‘P(er(l) R Q er(n)) (n € Ny, r(1),...,r(n) €N)

with our canonical trace E. Since the set of finite linear combinations of such operators X is
weakly dense in I, (#), we get the uniqueness of a normalized normal trace on I}, (H),
which implies that I'; (3¢) is a factor.

The second part of our g-Gaussian functor I}, assigns to each contraction:
H > H"amap I,(T):I,(H) - I,(H"). The idea is to extend I, (T)w(f) = o(Tf) ina
canonical way to all of I;(3). In general, the g-relations prohibit the extension as a
homomorphism, i.e.

[(Mw(f1) ..w(fn) # w(Tf1) .. w(Tf,) in general .
But what can be done is to demand the above relation for the normal ordered form, i.e.
(T,(MX)Q = F (T)(XQ).
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Thus our second quantization T, (T) is the restriction of F,(T) from F,(H) = L% (H) to
Iq(H) = Ly (3) and the question on the existence of I',(T) amounts to the problem
whether F, (T) (Lf; () c Ly (F"). We know that F, (T) can be defined for T a contraction

and we will see in the next theorem that no extra condition is needed to ensure its nice
behaviour with respect to Lg’. The case g = 0 is due to Voiculescu [22],[19].
Theorem (2.1.18)[60]: a) Let T: H — H' be a contraction between real Hilbert spaces.
There exists a unique map I, (T): T () - T;(#') such that
(T,(MX)Q = F, (T)(XQ).
The map I, (T) is linear, bounded, completely positive, unital and preserves the canonical
trace E.
b) If T is isometric, then I, (T) is a faithful homomorphism, and if T is the orthogonal

projection onto a subspace, then I', (T) is a conditional expectation.
Proof. Uniqueness of I';(T) follows from the fact that ( is separating for I;;(F{"). To prove
the existence and the properties of I', (T)) we notice that any contraction T can be factored
[81] as T = POI where

1.I:H - K =H @ H' is an isometric embedding

2.0: K — K is orthogonal

3.P: K =H @ H' - H'is an orthogonal projection onto a subspace.

Thus if we prove our assertions for each of these three cases then we will also get the
general statement for I', (T) = I, (P)[,(0)I,(1).

a) Let 1 H ->K =H D H' be an isometric embedding and Q: %K — K the
orthogonal projection onto #'. Then F,(Q) is a projection in F,(¥) and F, () can be
identified with F, (Q)F, (¥¢). Let us denote by w4 (f) the sum of creation and annihilation
operator on F, (¥¢). If we put

[ (30): = WN(ws(f) | f € H) < B (F, (%)),
then
Ff(%)?q(%c) c F,(He)
and we have the canonical identification
[, (1) = TF (H)F, (Q),
which gives a homomorphism (and thus a completely positive)
[ (D:Te(3) - T, (F0).
Faithfulness is clear since F, (Q)Q2 = Q and € separating. This yields also that the trace is
preserved.
b) Let P: K =H @ H' - H' be an orthogonal projection, i.e. PP* = 1,4/, where
P*:H' — XK is the canonical inclusion. Then
I, (P)X = F,(P)XF,(P") (X €T, (7())
gives the right operator, because we have for k,l € Ny and f4, ..., fx, 91, -, g1 E K
FoP)a*(f1) ..a’(fida a(gy) ..algnFy(P*) =
= a’(Pf) .. a’ (Pi)Fy(PYF,(Pa(Pgy) ..a(Pg)
= a’(Pfy) ...a’(Pfi)a(Pgy) ...a(Pg)).
By its concrete form, I, (P) is a conditional expectation and
E|F, (PYXF, (P)] = (Fo(PDQ,XF, (P)Q) = (2, XQ) = E[X]
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shows that it preserves the trace.
c) Let 0: KX — XK be orthogonal, i.e. 00" = 0*0 = 14. Then, as in b),
I,(0)X = F,(0)XF,(0),
which is, by
Fa(07)Fq(0) = F(130) = 1g (50)
also a faithful homomorphism.

Instead of working on the level of von Neumann algebras we could also consider the
C*-analogues of the above constructions. This would be quite similar. We just indicate the
main points.

Definition (2.1.19)[60]: Let H be a real Hilbert space and H its complexification H =
H D iH.Put, for f € H,

o(f):= a(f) +a'(f) € B (F,(30))
and denote by ®,(H) c B (Tq (}[@)) the C*-algebra generated by all w(f),

O, (H):=C(a(f) +a*(f) | f € H).
Clearly, the vacuum is also a separating trace-vector for ®,(#), it is also cyclic and
Y(fi®Qf) €EPy(H)foralln € Ngandall i, ..., f,, € I,

The most important fact for our latter considerations is that I';(T) can also be
restricted to the C*-level.

Theorem (2.1.20)[60]: a) Let T: H — H' be a contraction between real Hilbert spaces.
There exists a unique map @, (T): @, (3) - ®,(H") such that

(0,(M)X)Q = F, (T)(XQ).
The map @, (T) is linear, bounded, completely positive, unital and preserves the canonical
trace E.

b) If T is isometric, then &, (T) is a faithful homomorphism, and if T is the orthogonal
projection onto a subspace, then @, (T is a conditional expectation.

¢) We have @, (T) = [, (T)/®,(F).

Proof. This is analogous to the proof of Theorem (2.1.18).

We can now also prove the analogue of the second part of Theorem (2.1.17). The

analogue of factoriality for C*-algebras is simplicity.

Theorem (2.1.21)[60]: If —1 < g < 1 and dimH = oo then ®, () is simple,

Proof. Again, this is similar to the proof of the von Neumann algebra result. We just indicate
the main steps.

We use the notations from the proof of Theorem (2.1.17). First, by norm estimates,
one can show that the convergence lim,,_, o ¢, (X) = ¢(X) for X of the form X:=

‘P(er(l) R Q er(n)) IS even a convergence in norm. Since ¢ (X) is nothing but ¢(X) =
I, (@)X, where q is regarded as multiplication operator on 7, we have, by Theorem (2.1.20),
the bound
I X)) <l X ll.
This together with the m-independent bound
lpm GO, <1l X llg oo (eI
implies that
limyy, 0 (X)) = Ty (@)X uniformly for all X € @, (3).
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Now assume we have a non-trivial ideal I in @, () and consider a positive nonvanishing
X € 1. Then ¢,,(X) €I for all m € N and thus I, ()X € I. Iterating shows I';(q™)X € I
for all n € N and because of the uniform convergence lim,,_,, I;;(¢™)X = E[X]1 we obtain
E[X]1 € I. The faithfulness of E implies then I = &, ().

Before we define the notion of a g-Gaussian process, we want to present our general
frame on non-commutative processes. By T we will denote the range of our time parameter
t, typically T will be some interval in R.

Definitions (2.1.22)[60]: a) Let A be a finite von Neumann algebraand ¢: A — C a faithful
normal trace on A. Then we call the pair (A, @) a (tracial) probability space.

b) A random variable on (A, @) is a self-adjoint operator X € A.

c) A stochastic process on (A, @) is a family (X;);cr of random variables X; € A
(teT).

d) The distribution of a random variable X on (A, ¢) is the probability measure v on
the spectrum of X determined by

p(X™) = jx"dv(x) for alln € N,,.

We should point out that there are also a lot of quantum probabilistic investigations
of more general, non-tracial situations, see e.g. [61], [87].

We will only consider centered Gaussian processes, thus a g-Gaussian process will
be totally determined by its covariance. Since we would like to have realizations of our
processes on separable Hilbert spaces, our admissible covariances are not just positive
definite functions, but they should admit a separable representation.

Definition (2.1.23)[60]: A function ¢:T X T — R is called covariance function, if there
exists a separable real Hilbert space H and vectors f; € H for all t € T such that

c(s,t) = {fs. fo) (s, t € H).
Definition (2.1.24)[60]: Let c:T X T — R be a covariance function corresponding to a real
Hilbert space H and vectors f; € H(t € T). Thenwe putforallt € T

Xe:= w(fy) € [y(H)

and call the process (X;) e ON (l“q (H), E) the g-Gaussian process with covariance c.
see Frisch and Bourret [77].

We can now define g-analogues of all classical Gaussian processes, just by choosing
the appropriate covariance. In the following we consider three prominent examples.

Definitions (2.1.25)[60]: a) The g-Gaussian process (XfBM )te[o ) with covariance

c(s,t) =min (s,t) (0<s,t< )
is called g-Brownian motion.

b) The g-Gaussian process (X°° ) ejo With covariance

c(s, ) =s(1—-t)(0<s<t<1)
Is called g-Brownian bridge.
¢) The g-Gaussian process (X/°") _ with covariance
c(s,t) = e7lt=sl (s,t € R)
is called g-Ornstein-Uhlenbeck process.See [102], [107].
Definition (2.1.26)[60]: Let (A, ) be a probability space and (X;).er a stochastic process
on (A, ¢). Denote by

41



Ay =VWNXylust)cA

"-’q[t] = VN(Xt) cC A.
We say that (X;).er IS @a Markov process if we have for all s,t € T with s < t the property

plX | As] € Ag) forall X € Apy.

Now, the conditional expectations E[-I c/ls]] in the case of g-Gaussian processes are quite
easy to handle because they are nothing but the second quantization of projections in the
underlying Hilbert space. Namely, consider a g-Gaussian process (X;) ey corresponding to
the real Hilbert space ' and vectors f;(t € T). Let us denote by

Hy :=span(fylust)cH

Hy =Rfy cH
the Hilbert space analogues of A and Ay, respectively. Then we have

Ay = Tq(Hy) and Apy = Tg(Hy),
and E[-| A,]] = T, (Py) is the second quantization of the orthogonal projection
Pt]lf]'[ - }[t]
Thus we can translate the Markov property for g-Gaussian processes into the following
Hilbert space level statement.
Proposition (2.1.27)[60]:. Let (X;):er be a g-Gaussian process as above. It has the Markov
property if and only if
PoHy € His foralls,t € T withs < t.
Thus Markovianity is a property of the underlying Hilbert space and does not depend on g
and we get as in the classical case the following characterization in terms of the covariance.
Proposition (2.1.28)[60]:. A g-Gaussian process with covariance c is Markovian if and only
if we have for all triples s, u,t € T withs < u < t that
c(t,s)c(u,u) = c(t,u)c(u,s).

Proof. See the proof of Theorem 3.9 in [102].
Corollary (2.1.29)[60]:. The g-Brownian motion (X{°")

BB
(qu )tE[O,l]’

Analogously, we have all statements of the classical Gaussian processes which
depend only on Hilbert space properties. Let us just state the characterization of the
Ornstein-Uhlenbeck process as the only stationary Gaussian Markov process with
continuous covariance and the characterization of martingales among the Gaussian
Processes.

Proposition (2.1.30)[60]:. Let (X;).er be a g-Gaussian process which is stationary,
Markovian and whose covariance c(s,t) = ¢'(t — s) is continuous. Then X, = antOU for
suitable a, 5 > 0.

Proof. See the proof of the analogous statement for classical Gaussian processes, Corollary
4.10 in [102].

Definition (2.1.31)[60]:. Let (X;).er be a stochastic process on a probability space (A, @)

and let the notations be as in Definition (2.1.26). Then we say that (X;);er IS @ martingale
if

re[0,00)’ the g-Brownian bridge

and the g-Ornstein-Uhlenbeck process (Xfou)teR are all Markovian.

@[X: | Ag]| = X foralls <t.
Proposition (2.1.32)[60]:. A q-Gaussian process is a martingale if and only if P f; = f; for
all s < t — which is the case if and only if c(s,t) = c(s,s) forall s < t.
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Proof. We have
o(f) = Xs = E[X, | Ag] = [, (Pg)w(f) = w(Pyf),
implying P fi = f.
We want to address the question whether our non-commutative stochastic processes

can also be interpreted classically.
Definition (2.1.33)[60]: Let (X,):er be a stochastic process on some non-commutative

probability space (A, ¢). We call a classical real-valued process ()?t)teT on some classical

probability space (Q,2, P) a classical version of (X;).er if all time-ordered moments of
(X0 eer and (X,), __ coincide, i.e. if we have foralln € N, all t; ..., t, € T with t; < - <
teT

t,,, and all bounded Borel functions h4, ..., h,, on R the equality

o |ha(Xe) o hu (Xe,)| = j by (%, (@) b ()?tp(w)) dP(w).

It is clear that there is at most one classical version for a given non-commutative
process (X;).er. The problem consists in showing the existence. If we denote by 1, the
characteristic function of a measurable subset B of R, then we can construct the classical

version (Xt)tET of (X,).er Via Kolmogorov's existence theorem from the collection of all
te,,..e,(n € Nty <--- < t,) —whichare for By, ..., B, c R defined by
Bty (By X =X By) = P(X,, € By, o, X, € B,)

= ¢[15,(X¢,) - 15,(Xe,)]
- ifand only if all u, . are probability measures. Whereas this is of course the case for
ue, and, in our tracial frame because of
Beye, (B X By) = 9|15, (Xe, )15, (Xe,)] = 0|15, (X¢,)15,(X:,) 15, (Xe, ).

also for u, .., there is no apriori reason why it should be true for bigger n. And in general
it is not. It is essentially the content of Bell's inequality that there are examples of non-
commutative processes which possess no classical version — for a discussion of these
subjects see, e.g., [89].

But for special classes of non-commutative processes classical versions might exist.
One prominent example of such a class are the Markov processes.
Definition (2.1.34)[60]: Let (X,);cr be a Markov process on a probability space (A, ).
Let, for t € T, spect(X;) and v, be the spectrum und the distribution, respectively, of the
self-adjoint operator X;. Denote by

L*(X;): = vN(X;) = L™ (spect(X;),v;).
The operators
Kot L (X)) = L2(X) (s < ),
determined by
o[h(XD) | Ag] = o[h(X) | Ag] = (Ksch)(X)

are called transition operators of the process (X;):er, and, looked upon from the other side,
the process (X;):er is called a dilation of the transistion operators X = (Ks,t)sq.

The following theorem is by now some kind of folklore in quantum probability, see,
e.g. [61], [88],[62], [63]. We just indicate the proof for sake of completeness.
Theorem (2.1.35)[60]: If (X;):er IS @ Markov process on some probability space (A, ¢),
then there exists a classical version ()?t)tET of (X;) e, Which is a classical Markov process.
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Proof. One can express the time-ordered moments of a Markov process in terms of the
transition operators via

olhi(Xe,) - ha(Xe,)] = o[ (Xe,) o ha(Xe,) | A,
= ¢ |hy(Xe,) o hnea (Ko )[R (Xe,) | A, |

= @[hy(Xe,) w1 (Xt ) (K, ) (K, )]
= ¢[h1(Xt1) g Z(th 2)(hn 1 Kyt n)(th 1)]

=@ [(hl Kt ¢, (hz Kiyts(hs - )) (Xt1)]

from which it follows — because X . preserves positivity — that the corresponding p;

are probability measures. That the classical version is also a classical Markov process
follows by the same formula.
Corollary (2.1.36)[60]: There exist classical versions of all g-Gaussian Markov processes.
In particular, we have classical versions of the g-Brownian motion, of the g-Brownian
bridge, and of the g-Ornstein-Uhlenbeck process.

We describe these classical versions more explicitly by calculating their transition

probabilities in terms of the orthogonalizing measure v, and the kernel pﬁq)(x, y) of
Theorem (2.1.8).
Theorem (2.1.37)[60]: Let (X;);cr be a g-Gaussian Markov process with covariance ¢ and

put
){t: = 4/ C(t, t) and As,t: =

c(t,s)
\/c(s, s)c(t, t)

12(X,) = 17 ([~22e /1= . 22 /T = q) vg(dx/2,)).
b) If A, = £1, then the transition operator JCSE‘? is given by
(%Ph) () = h(£xA./25).
If |4s,¢| < 1, then the transition operator 765(,?) is given by
(KPR ) = [ KD an),
where the transition probabilities k(‘” are Feller kernels which have the explicit form
koy (x,dy) = i) (x/ 26, v/ )v4 (Y /20).

In particular, for g = 0 and |)Ls,t| < 1, we have the following transition probabilities for the
free Gaussian Markov processes

(0)(x dy) _
1 (1—-22,)/42% — y2dy
2-2F (1 =232 = (1L + A (x/A) W/ A) + 23((x2/23) + (v2/2D))
Recall that a kernel k(x, dy) is called Feller, if the map x — k(x, dy) is weakly continuous
and k(x,") = 0 weakly as x — +oo — or equivalently that the corresponding operator X
sends C,(R) to Cy(R), see, e.g., [73].

a) We have
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Proof. a) This was shown in [67]; noticing the connection between g-relations and g-
Hermite polynomials the assertion reduces essentially to part a) of Theorem (2.1.8).
a) By Proposition (2.1.7), we know

WO =1 £ 1" HD (w (/1 f 1.
Let our g-Gaussian process (X;):er Now be of the form X, = w(f;). Markovianity implies

Py fi = ufs where pu = 8}'?; = zg' 3

Because of

E[W(f®") 1 Ag] =¥ ((Ps]ft)®n) = umP(£2")
we obtain with

Ag c(t,s)

A =Wl = et ) and Ao = 0= s

the formula
1
E[HX/A) 1 Ag| = HE[P(AE) 1 A]
t

_#nqj Qn
==Y (£7")
t

AN" @
:<'u/1_t) Hn (Xs//ls)

= ?,tHr(lq)(Xs//ls);
implying
KD (B (/) = e HP (¢ /25).
Let us now consider the canonical extension of our transition operators from the L*-spaces
to the L?-spaces, i.e.
KD 12(X,) - L (Xy).
If we use the fact that the rescaled g-Hermite polynomials (H,(lq)(-/)lt)/,/[n]!)
nENO

constitute an orthonormal basis of L*(X,), we get directly the assertion in the case A5, =

+1. (For A;; = —1 one also has to note that HéZ) and HZ(Z)H are even and odd polynomials,

respectively.)
In the case |4 .| < 1, our formula implies that JCS("? is a Hilbert-Schmidt operator,

thus it has a concrete representation by a kernel k;‘?, which is given by

KP0ay) = )| SEEHD /A 0/ (@1

= ) A/ 20 Y/ A)va(dy/20).

That our kernels are Feller follows from the fact that, by Theorem (2.1.20), our second
quantization (i.e. our transition operators) restrict to the C*-level (i.e. to continuous
functions).

n=0
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The formula for kgf)t) follows from the concrete form of pﬁo) of Theorem (2.1.8) and
the fact that

vo(dy) = %\/4 —y?dy for y € [—2,2].
The main formula of our proof, namely the action of the conditional expectation on the g-
Hermite polynomials, says that we have some quite canonical martingales associated to g-
Gaussian Markov processes - provided the factor A;, decomposes into a quotient A5, =
A(s)/A(t). Since this can be assured by a corresponding factorization property of the
covariance function — which is not very restrictive for Gaussian Markov processes, see
Theorem 4.9 of [102] - we get the following corollary.
Corollary (2.1.38)[60]: Let (X;).cr be a g-Gaussian process whose covariance factorizes
for suitable functions g and f as
c(s,t) = g(s)f(t) fors <t
Then, for all n € N, the processes (M,,(t)) ey With
My (£):= (g(8)/f ()" Hy? (Xe/ )
are martingales.

Note that the assumption on the factorization of the covariance is in particular fulfilled
for the g-Brownian motion, for the g-Ornstein-Uhlenbeck process, and for the g-Brownian
bridge.

Proof. Our assumption on the covariance implies

9
RENFIOYIO)

hence our formula for the action of the conditional expectation on the g-Hermite
polynomials can be written as

n
(9(©)/F(O)ZEHD (Xe/2e) | Ag| = (9(&)/F()HD (X,/25),
which is exactly our assertion.
Example (2.1.39)[60]: Free Gaussian processes. We will now specialize the formula for
kg? to the case of the free Brownian motion, the free Ornstein-Uhlenbeck process and the

free Brownian bridge. The transition probabilities for the two former cases were also derived
by Biane [63] in the context of processes with free increments.
a) free Brownian motion: We have c(s, t) = min(s, t), thus

A =/t and Ase =+/S/t.
This yields
(t—s) 4t — y2dy
(t—5)2—(t+s)xy +x?t+y?s 21

kse(x,dy) =
for
x € [-2+/s,2+/s] and y € [-2+/t, 2V/t].
b) free Ornstein-Uhlenbeck process: We have c¢(s,t) = e~1t=5l, thus
¢ =1 and A, = e~ It751,
Since this process is stationary, it suffices to consider the transition probabilities for = 0 :
(e?t —1) V4 —y2dy
kot (¥, dy) = 4sinh? t — 2xycosht + x2 + y?2 21

for x,y € [—2,2].
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Let us also calculate the generator N of this process - which is characterized by
Ko = e EON,
It has the property
NH® = nH® (n € Ny),
and differentiating the above kernel shows that it should be given formally by a kernel
—2/(y — x)? with respect to v,. Making this more rigorous [108] yields that N has on
functions which are differentiable the form
, fO)=f) =)y —x)

(ND)(x) = xf'(x) = 2 R 2vo(dy).

c) free Brownian bridge: We have c(s,t) = s(1 —t) for s < t, thus

s(1—1¢)

At:—\/t(l_t) and AS,tz t(l—s)'

This yields
kse(x,dy) =
1-s (t —s) JAt(1—t) — y2dy
=1—t(t—s)2—(5+t—25t)xy+t(1—t)xz+S(1—S)y2 21 ’
for

X € [—2\/5(1 —5), 2\/5(1 —5)]
and y € [-2,/t(1 —t),2{/t(1 = 1)].

Example (2.1.40)[60]: Fermionic Gaussian processes. For illustration, we also want to
consider the fermionic (¢ = —1) analogue of Gaussian processes. Although this case has
not been included in our frame everything works similar, the only difference is that in the
Fock space we get a kernel of our scalar product consisting of anti-symmetric tensors. This
is responsible for the fact that the corresponding (-1)-Hermite polynomials collapse just to

Hé_l)(x) =1 and Hl(_l)(x) = X.
The corresponding measure v_, is not absolutely continuous with respect to the Lebesgue
measure anymore, but collapses to

1
v_,(dx) = > (6_1(dx) + 8,1 (dx)).

This yields
P V() = Hy Y@HTV0) + rHTP@HTV0) = 1+ 7xy,
giving as transition probabilities
KV dy) = (148D (5 (dy) + 6 d ))
st ) y 2 C(S, S)C(t, t) y —Jc(tt) y +./c(t,t) y '

a) fermionic Brownian motion: X, can only assume the values ++/t and —/t and the
transition probabilities are given by the table

ke | E N
VRN RN )
VS-S S (457

This case coincides with the corresponding ¢ = —1 case of the Azéma martingale, see [97].
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b) fermionic Ornstein-Uhlenbeck process: This stationary process lives on the two
values +1 and —1 with the following transition probabilities
kS,t 1 _1

1 1
_ —(t—s) - _ ,—(t-5)
1S (1+e ) > (1-e ).

1 Z(1-et9) (14 e7)
This classical two state Markov realization of the corresponding fermionic relations has
been known for a long time, see [77].
c) fermionic Brownian bridge: X; can only assume the values +.,/t(1 —t) and
—Jt(1 —t) and the transition probabilities are given by the table

kg Jt(1 —1) —Jt(1 —1t)

s(1—1) 1 s(1—1¢)
e i rre sy Y /t(l—s)
1 sA-0) 1 s(1—t)

SR el Prepun s B [ prepupe

Example (2.1.41)[60]: Hypercontractivity. Consider the g-Ornstein-Uhlenbeck process

with stationary transition operators JCt(Q): = Jcs‘f .. Note that this g-OrnsteinUhlenbeck
semigroup is nothing but the second quantization of the simplest contraction, namely with
the one-dimensional real Hilbert space H = R and the corresponding identity operator

1: R - R we have

I,(R) = L?(—2/{1 = q,2/\/T— q,v,(dx)) and T,(et1) = %7,
We have seen that the .’Kt(q) are, for all t > 0, contractions on L? and on L® (and thus, by
duality and interpolation, on all L?). In the classical case g = 1 (and also for g = —1 ) itis
known [101],[94],[95],[80],[71] that much more is true, namely the Ornstein-Uhlenbeck

semigroup is also hypercontractive, i.e. it is bounded as a map from L? to L* for sufficiently
large t. Having the concrete form of the kernel

kP (x,dy) = P06, y)vg (dy)
of Jct(q) it is easy to check that we also have hypercontractivity for all —1 < g < 1 Even
more, we can show that JCt(q) is bounded from L? to L* for t > 0, i.e. we have what one

might call 'ultraconctractivity' - which is, of course, not given for g = +1. This
ultracontractivity follows from the estimate

||7Ct(Q)h||oo <a(t,q)? I hll, where a(t,q):= sup sup pgi)t(x, y)
x€[-2,2]y€[-2,2]

N| -

and from the explicit form of 'pf‘” from Theorem (2.1.8), which ensures that a (¢, q) is finite
fort > 0and —1 < q < 1. One may also note that for small ¢ the leading term of a(t, q)*/?
is of order t=3/2,
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Section (2.2): The g-Deformed von Neumann Algebra

For Hy be a real Hilbert space and H its complexification. Let T be a Yang-Baxter
operator on He @ Hc with || T lI< 1. Let F(H¢) be the associated deformed Fock space
and I'; (Hg) the von Neumann algebra generated by the corresponding deformed gaussian
random variables, introduced by Bozejko and Speicher [68] (also see [60]). In addition, we
will assume that T is tracial, i.e that the vacuum expectation is a trace on I'; (Hg) (cf [68]).
Under these assumptions it was proved in [68] that I';(Hg) is not injective as soon as

dim Hy > )2, where || T ll= q. Since then the problem whether I'; (Hg) is not injective

as soon as d1m Hy = 2 had been left open. We emphasize that this problem remained open
even in the particular case of the qdeformation, that is when T = qa, where o is the reflexion
c0(E ®n) =n & &. Recall that the free von Neumann algebra I, (Hg) (corresponding to
T = 0) is not injective as soon as n = dim Hy = 2, for [;;(Hg) is isomorphic to the free
group von Neumann algebra VN (IF,,) (cf. [19]). The main result solves the above problem.
To explain the idea of our proof we first recall the main ingredient of the proof of the
non injectivity theorem in [68]. It is the following vector-valued non-commutative
Khintchine inequality. Let (e;);c; be an orthonormal basis of Hy. Let K be a complex Hilbert
space and B(K) the space of all bounded operators on K. Then for any finitely supported

family (a;);e; € B(K)
2
Yoaa| > aq] =Y a®6e

i€l B(K) i€l B(K) i€l

2 * *
a;a; ) a;a;

<
\ 1- q i€l B(K) i€l B(K)

where G(e) = a*(e) + a(e) is the deformed gaussian variable associated with a vector e €
Hp. Using this Khintchine inequality and the equivalence between the injectivity and the

semidiscreteness, one easily deduces the non-injectivity of I'y (Hg) as soon as dim Hg >
16

(1-q)*

The proof of our non-injectivity theorem follows the same pattern. We will first need
to extend the preceding vector-valued non-commutative Khintchine inequality to Wick
products. It is well known that for any ¢, a finite linear combination of elementary tensors,
there is a unique operator W (&) € I'y(Hg) such that W (§)Q = €. Instead of the previous
inequality, the main ingredient of our proof is the following. Let n > 1. Let (&;) ;= be an

orthonormal basis of H(g@” and (a;) < B(K) a finitely supported family. Then

max Z a; Q@ Ry iéill ¢ < z a; ® (&)

0<ksn

2
max

)

1

1 1
2 2

max

|i]=n li]=n

< (n + 1)C, max z @ ® Ry ki )

1 o<k<n
|i[=n
where the norms in the left and right handside have to be taken in
B(K) @min HZ" ¥ ®, H®* (see Theorem (2.2.6) below for the precise statement).
Inequality (1) is the vector-valued version of Bozejko's ultracontractivity inequality proved
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in [126] and thus it solves a problem posed in [126]. Using (1) and a careful analysis on the
norms of Wick products on a same level, we deduce our non-injectivity result.

We devoted to necessary definitions and preliminaries on the deformation by a Yang-
Baxter operator and the associated von Neumann algebra. We also include a brief discussion
on the simplest case, the free case, i.e. when T = 0. All our results and arguments become
very simple in this case, for instance, inequality (1) above is then easy to state and prove.
The proof of the non-injectivity of I, (Hg) can be done in just a few lines. The reason why
we have decided to include such a discussion on the free case is the fact that it already
contains the main idea for the general case. We will establish (1) and prove the non-
injectivity of I';(Hg). The last aims at proving the non-injectivity of the Araki-Woods
factors I, (H, U,) introduced by Hiai in [123]. Note that Hiai proved a non-injectivity result
with a condition on the dimension of the spectral sets of the positive generator of U,, which
is similar to that of [68]. The problem is left open whether the dimension can go down to 2.
Although we cannot completely solve this, our method permits to improve in some sense
the criterion for non-injectivity given in [123].

Recall that the free Fock space associated with Hp is given by

FolHo) = E) HE"
nz0

where H®? is by definition CQ with Q a unit vector called the vacuum.

A Yang-Baxter operator on Hc @ H¢ is a self-adjoint contraction satisfying the
following braid relation:

IQTMTXNURT)=(TRIKINURTHT X I)
Forn>2and 1 <k <n— 1 we define T, on HZ" by
Tie = lyp1 T @ Iyn-rs

Let S,, be the group of permutations on a set of n elements. A function ¢ is defined on S,
by quasi-multiplicative extension of:

o(my) = Ty
where m, = (k, k + 1) is the transposition exchanging k and k + 1,1 <k <n—1. The

symmetrizator PT(") is the following operator defined on Hg)” by:
R
OES,
PT(n) IS a positive operator on Hg‘)” for any Yang-Baxter operator T and is strictly positive if
T is strictly contractive (cf. [68]). In the latter case we are allowed to define a new scalar
product on H®™(for = 2) by:

&mr = (&2n)

The associated norm is denoted by ||l . The deformed Fock space associated with T is then

defined by
FrHo) = G HE"

nz0
where H(g@” is now equipped with our deformed scalar product for n > 2. From now on we
will only consider a strictly contractive Yang-Baxter Tand | T I< q < 1.
For f € Hy,a*(f) will denote the creation operator associated with f, and a(f) its
adjoint with respect to the T-scalar product:
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acNi® Q)= RO R S

For f € Hy the deformed gaussian is the following hermitian operator:
G(f) =a’(f) +a(f)
We are interested in I'; (Hg) which is the von Neumann algebra generated by all gaussians
G(f) for f € Hy:
[r(Hg) = {G(f): f € Hp}"" < B(Fr(Hc))
Let (e;);¢; be an orthonormal basis of Hy and set
tff = (es (%) er,T(el- X ej))
Then the following deformed commutation relations hold:
a(ea’() = ) ta(e)(es) = 8y
r,SEI
Moreover if the following condition holds

(es Xe,Te; Q e]-) = (er (0] ej, Teg (0% ei)
which is equivalent to the cyclic condition :
ty =t
then the vacuum is cyclic and separating for I'; (Hg ) and the vacuum expectation is a faithful
trace on I'; (Hy) that will be denoted by t. If this cyclic condition holds we say that T is
tracial, and from now on we will always assume that T has this property.

We will denote by I';7° (Hg) the subspace I'; (Hg)Q of F(Hc). Since Q is separating
for I’y (Hy), for every & € I'7°(Hy) there exists a unique operator W (§) € I'y (Hg) such that
WEQ=¢

W is called Wick product.
The right creation operator, a,.(f), is defined by the following formula:

We will also denote by a,.(f) the right annihilation operator, which is its adjoint with respect
to the T-scalar product, by G, (f) the right gaussian operator, and by I'z . (Hg) the von
Neumann algebra generated by all right gaussians. It is easy to see that 'y . (Hg) < I't(Hg)'.
Actually, by Tomita's theory, we have

FT,r(HR) = STy (Hg)S = It (Hg)'
where S is the anti linear operator on F(H¢) (which is actually an anti unitary) defined by

SO ®f)=Hh®®fi
forany fi,---, f, € Hg. Since Q is also separating for I'> .. (Hg ) we can define the right Wick

product, that will be denoted by W,.(£). For any ¢ € I';°(Hg) we have
W ()" = W(S¢) and SW()S = W;.(5¢)
Some particular cases of deformation have been studied in the literature. Let (qi ]-)ijel be a

hermitian matrix such that sup; ; |q;;| < 1. Define
Te; Qe =qie; Qe
Then T is a strictly contractive Yang-Baxter operator, and it is tracial if and only if the g;;
are real. Our deformed Fock space is then a realisation of the following g;;-relations :
a(ei)a*(ej) — qija*(ej)a(ei) = 6y;
In the special case where all g;; are equal, we obtain the well known g-relations.
Let us define the following selfadjoint unitary on the free Fock space :

Vi n €EHo Ui ®@ @ f) = @@ fi
ol



Since UP™ = PYPU( cf. [124]),U is also a selfadjoint unitary on each T-Fock space.
Given vectors fi, ..., f, in Hg we define :

a’ (i ® - fr) =a’(fy) ..a’(fp) and a(f; ® - @ f) = a(f1) ...a(fy)

For 0 < k < n, let R, , be the operator on H®™ given by
Ru= ) 9™

OESp/Sn_kXSk
where the sum runs over the representatives of the right cosets of S,_; X Si in S,, with
minimal number of inversions. Then

P = Roi (P70 @ P and [yl < €, )
where C; = [In=; (1 — g™ ™" (cf. [126] and [124]). It follows that
P < ¢, P @ P 3)

It also follows that a*, respectively a, extend linearly, respectively antilinearly, and
continuously to H®™ for every n = 1. Then for each vector ¢ € H®™ we have

1
la* (I < C; I € ll; and (a*(§)) = a(U?). (4)
Letn>1and 1 <k <n,HO"* @ H®* will be the Hilbert tensor product of the Hilbert

spaces HY* and H®™* where both H®* and H®" ™ are equipped with the T-scalar
product.
Lemma (2.2.1)[113]: There is a positive constant D, ,, , such that

P @ P < Dy i PV
Consequently for every n > 1 and 1 < k < n, HS™ and H®* @ H®™ " are algebraically

the same and their norms are equivalent.
Proof. It was shown in [125] that there is a positive constant w(q) such that

PPV @1 < w(g) A
Since U (PT(”_l) ® I) U=1® PV we also have
1®P™ Y < w(g@)tP™ (5)
Fix some k,2 < k <n — 1, using (3) and (4) we get:
PT(n—k+1) ® PT(k—1) < CqPT(n—k) QIR PT(k—1)
< Cow(q) P @ P
Thus by iteration it follows that for 0 < k < n:
-k _ _a\Nn—k
P @ PR < w(@)(Cuuig@)™)" P™ (6)
Since U (PT(n_k) ® PT(R)) U =P ® P it follows from (6) that
k -k _ _1\n—k
PP @ PR < w(@ (Cuo@ ) R
Combining this last inequality and (6) we finally obtain :
-k _ _1\min (kn-k)
P @ PR < w(g)(Coo(q)™?) pim (7)
Then the desired result follows from (3) and (7).

For k = 0 let us now define on the family of finite linear combinations of elementary
tensors of length not less than k the following operator U, :

U(i®®f)=a" (L ® @ fu-i)a(for+1 @ ® fr)
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where £ + 1 = & —in forall ,n € Hy.
Fix nand k withn > k. Let J: H®* — HZ* be the conjugation (which is an anti isometry).

For any fi,, fn,J is defined by J(f; ® - Q f,,) =ﬁ® - f,,. It is clear that U,
extends boundedly to H®" ™ ® HZ* by the formula :

Up =M(a" ® ajd)
where M is the multiplication operator from B(F(Hc)) ®min B(Fr(He)) to B(Fr(Hc))
defined by M(A @ B) = AB. Moreover, by (4) we have

IUkIl <I M I lla* & adll < C,

where U, is viewed as an operator from H®" ¥ ® H®* to B(F(Hc)).
In the following lemma we state an extension of the Wick formula (Theorem 3 in [124]).

We deduce it as an easy consequence of the original Wick formula and of our previous
discussion.

Lemma (2.2.2)[113]: Let n>1 and ¢ € ng’", then H(g@" c I'°(Hg) and we have the
following Wick formula:

W) = UeRi(® (8)
k=0

Moreover
3

HE NN WE) IS CZn+ 1) 1€l 9
Proof. The usual Wick formula is the following (cf [126] and [124]): Vfi, ..., f, € Hc We

have
n

WHER-®f) =) > Up@fi®~®f)

k=0 0€S,/Sn_kXSk
Hence (8) holds for every & € A,, = { linear combinations of elementary tensors of length
n}. By Lemma (2.2.1) and our previous discussion, the right handside of (8) is continuous

from H®™ to B(Fr(Hc)). Since Q is separating, it follows that HO™ < I'#° (Hy) and that (8)
extends by density from A, to H(‘?". Actually, our argument shows that for any ¢ €
H®™, W (&) belongs to C;(Hg) which is the C*-algebra generated by the T-gaussians.

Since for any ¢ € H?”,W(g‘)ﬂ = &, the left inequality in (9) holds. We have just
showed that W is bounded from Hg‘)” to B(TT(H(C)). Hence, there is a constant B, ,, such
that forany & € H®" we have || W (&) II< By Il € ll4. To end the proof of (9) we now give
a precise estimate of B, ,. Let ¢ € H ®n , by (8) and (3) we have

I W) u<2 |UcR: Ol < € Z IRl rgen  (10)

It remains to compute the norm of Rn,k as an operator from HE" to H" " @ H®*. Let
n € H™ we have, by (2) and (3)

* 2 _ (n—k) (k) = %
IR snlnrger = (P @ PR i, Rin)
= (P®n, Roen) <t Uy IRz el
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On the other hand,
* 2 * k k
IR senll _<P(n)Rnk77:Rn,kn> < Cq < P @ P )Rnknarkn>

= (g <Pr(n)7b R;,kn>0

< Gyl lr IRl
) . . 2
Hence it follows that Ry 7l < C; Il li; and ”Rn'knllHé@"_k@H«é@k < Cy4lInllF. Thus

1
IRy |l < CZ as an operator from HE™ to HE™™* @ HE*. From (10) and this last estimate,
follows the second inequality in (9).

The remainder is devoted to a simple proof of the non-injectivity of the free von
Neumann algebra I'y(Hg) (dim Hg = 2). The main ingredient is the vector valued Bozejko
inequality (Lemma (2.2.3) below), which is the free Fock space analogue of the
corresponding inequality for the free groups proved by Haagerup and Pisier in [122] and
extended by Buchholz in [118] (see also [117]). Note also that the inequality (11) below was
first proved in [122] in the case n = 1 (i.e. for free gaussians) and that a similar inequality
holds for products of free gaussians (see [118]).

We will need the following notations: (e;);c; Will denote an orthonormal basis of Hg,

and for a multi-index i of length n,i = (iy, ..., i) €I e; =€;, @ - Qe . (ei)l'l isa
i U)i|=
real orthonormal basis of H(?n equipped with the free scalar product and (ei)|i|>o is a real

orthonormal basis of the free Fock space.
Lemma (2.2.3)[113]: Let n > 1,K a complex Hilbert space and (ai)m—n a finitely

supported family of B(K). Then:

0shn (al'£)|1|=n—k = Z a; @ (&)

|ﬂ=k |ﬂ=n

<(n+1) max (a]l) |=n- (11)

0o<k<n |] =n-k
|L[=k
Proof. We write

z @, @ W(e;) =i F,

li|=n
where
F, = Z aj; @ a’ (el-) a(eL)
[lIsn—k
we have _
F, = ( Iy ®a* (ei) )|i'|=n—k (“LL X ITO(H(C))|1|=n—k (IK ®:a(e£)>

=k =
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that is, F, is a product of three matrices, the first is a row indexed by j, the third a column
indexed by . Note that

(ORI S DIEOIEO)]

It is easy to see that };,jj=p—xa” (ej) a (Uej) is the orthogonal projection on @5y, HO®P,

H( (<) ...)w:n_kﬁ <1

Therefore

||Fk||=H(...IK®a* (¢) "')|j|=n—k (@3 ® 0 ) -
- 1=k

. <1K ®:a(el)>w:k

(&) tone| ||( a'(Ue,) .. )m:k”

|t[=K

o)),

(@)

|L|=k
n
< F. [|[< (n+ 1) max (a-)
z k " ( )OskSn Il ljl=n—k I

k=0 =

It follows that

Z a; ® W(e;)

ljl=n

To prove the first inequality, fix 0 <k, <n and consider (vp)l | such that
= 2=k0

ZIg|=ko ||v£||2 < +oo. Letn = Zlgl=kovg X Uep. We have:

2 n
2
> @Wlen| = IRl = [F,l

li[=n k=0
2
= Z ai-,LUL ® el-
|l|n—k0
|£'|=ko
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2

= C(LLUL

|ﬂ:n—k0 |L|=ko

(@)oo )
* Y =ko

|ﬂ:k0

2

Then the result follows.

Using Lemma (2.2.3), it is now easy to prove that I',(Hg) is not injective as soon as
dim Hi = 2. Suppose that I;y(Hg) is injective and dim Hg = 2. Choose two orthonormal
vectors e; and e, in Hy. For n = 1 we have by semi-discreteness (which is equivalent to
the injectivity):

o > wle)w(e) <||z w(e) @ W(e,)

|i]=n lif=n

where in the above sums, the index i € {1,2}". However,

o Y wle)wle) | =) W(e)aw(e)a),

li|=n li|=n

= e’ =

|i|=n

On the other hand, by Lemma (2.2.3),

iiz W(e) @ W(e; |

|i|=n

0<sksn

|
II
< (n+1) max ”

N

2
<m+D| ) ||w(e;)||
li|l=n
1
<(n+1)2"(n+ 1)?)2
n
< (n+1)%22
Combining the preceding inequalities, we get 2™ < (n + 1)?2z which yields a contradiction
for sufficiently large n. Therefore, I'y(Hg) is not injective if dim Hy > 2.
In the following we state and prove the generalized inequality (1). It actually solves

a question of Marek Bozejko (in [126] page 210) whether it is possible to find an operator
coefficient version of the following inequality (this is inequality (9) in Lemma (2.2.2)):

Z aL-W(eL-) Z a;e;

|i[=n |i[=n
where (a;); is a finitely supported family of complex numbers. Inequality (12) was proved
in [126] for the g-deformation, and generalized in [124] for the Yang-Baxter deformation.
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First, we need to recall some basic notions from operator space theory. See [121] and
[125] for more information. Given K a complex Hilbert space, we can equip K with the
column, respectively the row, operator space structure denoted by K, respectively K,., and
defined by

K. = B(C,K) and K, = B(K",C).

Moreover, we have K} = K, as operator spaces.

Given two operator spaces E and F, let us briefly recall the definition of the Haagerup
tensor product of E and F.E & F will denote the algebraic tensor product of E and F. For
n > 1and x = (x; ;) belonging to M,,(E ® F) we define

I Ny = 1nf {1y Ny, o)1l Z g, 0}
where the infimum runs over all » > 1 and all decompositions of x of the form

r
Xij = z Vik Q Zy -
k=1

By Ruan's theorem, this sequence of norms define an operator space structure on the
completion of E @ F equipped with [I-ll,=II-ll»,1). The resulting operator space, which is
called the Haagerup tensor product of E and F is denoted by E @, F.

In this setting, a bilinear map u: E X F — B(K) is said to be completely bounded, in
short c.b, if and only if the associated linear map @: E @ F — B(K) extends completely
boundedly to E ®;, F. We define Il u ll.,=Il @ ll.,. This notion goes back to Christensen
and Sinclair [120]. We will often use the following classical identities for hilbertian operator
spaces:

Ke Qmin Hy = K. Qn Hy = X (H,K),
where X stands for the compact operators and
K Qmin He = K Qp He = (K @, H),
and similarly for rows using duality.

There is another notion of complete boundedness for bilinear maps, called jointly
complete boundedness. Let E, F be operator spaces, K a complex Hilbert space, and u: E X
F — B(K) a bilinear map. u is said to be jointly completely bounded (in short j.c.b) if and
only if for any C*-algebras B; and B,,u can be boundedly extended to a bilinear map
(u)Bl,BZ tE ®min Bl X F ®min BZ - B(K) ®min Bl ®min BZ taking (8 ® blif ® bz)
tou(e, f) ® by ® b,.

We put Il u lljcp= supg, p, [|(w)p, s,[|- Observe that in this definition B; and B, can
be replaced by operator spaces.

We will need the fact that every bilinear c.b map is a j.c.b map with [[u ;c, <Il u lp.
Let K be a complex Hilbert space and u: B(K) X K. — K, the bilinear map taking (¢, k) to
@ (k). Then it is easy to see that u is a norm one bilinear cb map. To simplify our notations,
H¢ will be, most of the time, replaced by H in the rest. For the same reason we will denote

by Hg@” (respectively H,‘,X’") the column Hilbert space (H(?")C(respectively the row Hilbert

space (H(g@n)r).
Lemma (2.2.4)[113]: Let n > 1. The mappings a*: HS" - B(Fr(Hc)) and a: A®™ -
B(Fr(Hc)) are completely bounded with ch-norms less than \/fq.

Proof. Let us start with the proof of the statement concerning a*. Let n > 1, K a complex
Hilbert space and (a;) ;)=» a finitely supported family of B(K) such that
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a; ® €; I3 @minte < 1-
li|=n
Then, since the maps a*(e;) acts diagonally with respect to degrees of tensors in F;(Hc),
Z a; ® a*(ez)l B(K)®minB(Fr(He)) = 1D |l Z @ ® a”(€1) 1)@ minp 1@k HEMH)
|i]=n li|l=n

To compute the right term, fix k > 0 and let (f])l . be a finitely supported family of

vectors in K such that
fi ® ei- "K®2H®k< 1.
ljl=k
By (3) we have

[
Z fj Re & ei-H <C

K®;H®OtK K®;H®"@,H®k
Let u:B(K) X K. = K. given by (¢,&) = ¢(§). Recall that || u |l.,= 1. Consequently, |
u ll;cp< 1. Therefore, we deduce

Z @ () ®e®¢

i

QN

I I
”Z a; (fi-) Qe ® ei-H

ij

K® ,HO"Q,H®k

| ||
g ()@ e

k
Kc®minHé®n®mian®

= i (U)Hé@n,HC@kk Z a; ® 61'2 ";i R e "
j

|
za£®e£ Zfi@ej
<1 i

i
By the result just proved, for any complex Hilbert space K and for any finitely supported
family (ai)m—n of B(K) we have

<l u lljep

B(K)®minH?n Kc®minH§)k

a; ® a*(e;) S\/CZ z a; Qe;

[i]=n BUO@minB (Fr(He) [f|=n BI)®minHE™
Taking adjoints on both sides we get

a; ® a(e,) < [Ga > wes,
t}=n BO@minB(Fr(He) }=n BIO@minAS"
Changing «; to «; and using the fact that U (reversing the order of tensor) is a complete

1

Isometry on Hﬁz’_”, we get that for any finitely supported family (a;) ;= of B(K) we have
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Z ai®a(e_£) S\/C: Z a; Qe

li|=n B(K)®minB(Fr(He)) li|=n B(K)®min A"

In other words,
a: 2" > B(Fr(He))
Is also completely bounded with norm less than \/fq.
Corollary (2.2.5)[113]: For any n = 0, and any k € {0 ...n},
Uy: HE" ™" @y HP* — B(Fr(He))
is completely bounded with cb-norm less than Cj,.
Proof. Let us denote by M the multiplication map B(F;(H¢)) ®n B(Fr(He)) -
B(Fr(Hc)) given by A ® B — AB, M is obviously completely contractive. We have the
formula
Up =M(a* ® ad)
if 7: H®* — H®¥ is the conjugation (which is a complete isometry). By injectivity of the
Haagerup tensor product and by Lemma (2.2.4) we deduce that
la® ® aJllep < C4
Then
WUk, <I M llep la® Q@ adlley < C

Recall that, by definition, I';°(Hg) is identified with I'; (Hg) by the mapping sending & to
W (&). Thus I';°(Hg) inherits the operator space structure of I'; (Hg). In particular for all
n > 0, H®™ will be equipped with the operator space structure of E,, = {W(E), ¢ e H®"}.

Theorem (2.2.6) below was first obtained via elementary, but long, computations. In
the version presented here, we have chosen to follow an approach indicated to us by Eric
Ricard. This approach is much more transparent but involves some notions of operator space

theory.

Theorem (2.2.6)[113]: Let K be a complex Hilbert space. Then foralln > 0 and forall £ €
B(K) @umin H®™ we have

max [[(Id @ Ry )OIl <Nl (1d @ W)(§) llmin< Cq(n + 1) max [|(Id ® Ry, ) ()] (13)

where 1d denotes the identity mapping of B(K), and where the norm ||(Id & R;, ;) ()| is

that of B(K) @ minH®" ¥ @ minH®*.
Proof. For the second inequality, we use the Wick formula :

n
W|H®n == Z UkR:l,k'
k=0
Let £ € B(K) @pmin H®™, then by Corollary (2.2.5)
n
I (d @ WY(E) lmin< Cq ) (14 ® Ry ) (O
k=0

which yields the majoration.
For the minoration, for x € H®"* ® H®* c B(A®*, H®"~*), we claim that
Pn—kUk(x)|1-1®k = x(UJ) (14)
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where P, _; is the projection on tensors of rank n — k in F(H¢). Assuming this claim and
recalling that U and (J are (anti)-isometry, we get that for any xé€

B(K) ®min HéX)n—k ®min H;"gk

I x ”B(K)®minH£®”"‘®mmH;®"S I n_k”B(TT(HC)) It7d & Uk)(x)"B(K)®minB(TT(H<c))
The conclusion follows applying this inequality to x = (Id X R;‘l,k)(f) To prove (14), it
suffices to consider an elementary tensor product with entries in any basis of H, say x =

e Q & Consider e; € H®¥ a length argument gives that a (‘731) - ¢, Is of the form AQ,

B = {a(90) - 18) = (e 05

P,_, Uy (ei X el-) e = <eL, UJei-> e;
On the other hand, viewing x as an operator, we compute
x(JUu) - e =Xx- ([]UeL) = <el-,{]Ue£> e;

But since U is unitary and 7 antiunitary,
<e],JUel> <el, UJe]>

We deduce that

This ends the proof.
The following theorem is the main result.
Theorem (2.2.7)[113]: T';(Hg) is not injective as soon as dim(Hg) = 2.

Proof. Let d < dim Hg. For all n > 0, (fi)m—n will denote a real orthonormal family of

H®" equipped with the T-scalar product of cardinal d™. For example one can take &; =

(P(")) e;. Suppose that I'; (Hg ) is injective. Fix n = 1. By injectivity we have,

T Z w(E) w(g) | <

|i]=n

z w(&) @w (&)

li|l=n

It is clear that

T z w(g) w(s) |=d

|i]=n

On the other hand, applying twice (13) consecutively

Z W Q@ W(&) I< (n+ 1)2CZ max

q 0sk,k'sn

D Ru(8) ® Ri(8)
li|=n
The norms are computed in A" @,... A®* @i HE" ™ ® .. HE¥ for fixed k and
k'. We can rearrange this tensor product and use the comparison with the Hilbert Schmidt
norm: Let t = ¥y=n Ry o1 (&) ® Ry k(&)

It ”I_—I®n—k’® A% @ minH®" ¥ ® minH®*

min

li]=n
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=l¢ "(H®"_k’®zH®”_k)c®min (H®k, ®2 H®k)r

<|t "(1_—1®n—k’®2H®n—k)®2(1_‘1®k’®21_1®k)

=l¢ ”H®n_k,®2H8k,®2H®n_k®2H®k
Finally, we use the estimates on R,

(o | I ’ _ <t l-on_u oyl _
” "Hégm k ®minH§k ®minHé®n k®minH§k ” "H®n k ®2H®k ®2H®n k®2H®k

But by the choice of &;: [|X);=n&, ® & = d"/2.

H™®,H"
Combining all inequalities above, we deduce
d" < C3(n+ 1)%d"/?
which yields a contradiction when n tends to infinity as soon as d > 2.

Let C7(Hg) be the C*-algebra generated by all gaussians G(f) for f € Hg. The
preceding theorem implies directly that C;(Hg) is not nuclear as soon as dim(Hy) = 2 (cf.
[119] Corollary 6.5). Actually the preceding argument can be modified to prove that C; (Hg)
does not have the weak expectation property as soon as dim Hi = 2. Recall that a C*-
algebra A has the weak expectation property (WEP in short) if and only if the canonical
inclusion A - A** factorizes completely contractively through B(K) for some complex
Hilbert space K. By the results of Haagerup (cf. [125] Chapter 15) a C*-algebra A has the
WEP if and only if for all finite family x, ..., x,, in A

n

z x; @ X, z x; @ X,
=1 A®max =1 A®minA

Corollary (2.2.8)[113]: C7(Hg) does not have the WEP as soon as dim Hy > 2.

Proof. Let us use the same notations as in the preceding proof and suppose that C;(Hg) has

the WEP. Fixn > 1, by (15) we have

n

(15)

> wE)ew(E)

|i|=n
CT(HR)®maxCT(HR)

<||2. we)ewE) (16)
it=n C#(HR) @ min G (Hy)
To estimate from below the left handside of (16) observe that ®: C;.(Hg) — Cr(Hg)' taking
W (&) to JUW (E)JU = W,.(JUE) is a *- representation. Thus
LD ®‘w@"

jil=n

Cr(Hr)®@maxCr(HR)

_ ” Z w(&) ® W,(JUE)
|i[=n

C}(HR)®mafoi(HR)),
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D WEW(aug)

|if=n

> 2 (Jué, W(fg)*Q)T

|i[=n

> ), (quew(9ug)a),
li|=n
> Javgl? =ar
li|=n
Then we can finish the proof as for Theorem (2.2.7).

For this we mainly see [123] where the g-Araki-Woods algebras are defined as a
generalization of the g - deformed case of Bozejko and Speicher on the one hand, and the
quasi-free case of Shlyakhtenko (cf. [15]) on the other. Let Hi be a real Hilbert space given
with U;, a strongly continuous group of orthogonal transformations on Hy. U, can be
extended to a unitary group on the complexification H. Let A be its positive non-singular

generator on Hc: U, = A%™. A new scalar product {.,, )y is defined on H¢ by the following
relation:

B(Fr(Hc))

(&, mu = A +A)7¢n)
We will denote by H the completion of H with respect to this new scalar product.

For afixed g €] — 1,1[, we now consider the g-deformed Fock space associated with H and
we denote it by F, (H). Recall that it is the Fock space with the following Yang-Baxter

deformation T defined by:
T-HQX®H —HQ®H
QRN qn¢
Or equivalently, for every n = 2 and o € S,, we have
90(0-) = qi(a)UJ
where i(o) denotes the number of inversions of the permutation o and U, is the unitary on
H®" defined by
Us(f1 @& f) = fa‘l(l) R fa‘l(n)
In this setting, the g-Araki-Woods algebra is the following von Neumann algebra
I, (Hy, U,) = {G(h),h € Hg}"' € B (Tq (H(C))
Let Hy = {g € H,{g, h)y € Rforall h € Hg} and
Fq,r(ng%i Ut) = {Gr(h);h € Hﬁg}”
where G,.(h) is the right gaussian corresponding to the right creation operator.

Since I, . (Hg, Uy) © T (Hg, Up)', Hg + 1Hg = H and Hy + 1Hp = H( cf. [15]), itis
easy to deduce that Q is cyclic and separating for both I, (Hg, U;) and Fq,r(H]{%, U). So
Tomita's theory can apply : recall that the anti-linear operator S is the closure of the operator
defined by :

S(xfy) = x*Q for all x € Iy (Hg, Uy)

Let S = JAz be its polar decomposition. / and A are called respectively the modular
conjugation and the modular operator. The following explicit formulas hold (cf. [123] and

[15])
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S ® —~®hy) =h, ®®hy forall hy,..., h, € Hg
A is the closure of the operator ®%_, (4~1)®™ and
1

1 1

J(hi @ Q@ h,) =A2h, Q- --Q A 2h, forall hy,...,h, € HrNndomA 2

By Tomita's theory, we have

1—‘q (HIR{; Ut), = ]Fq (H[Rl Ut)]
Let h € Hy, as in [15] we have Jh € Hys, then, since Q is separating for I, .. (H, U,), we
obtain that JG (h)] = G,(Jh) € T, (Hg, Uy), so that

l—‘q (Hg, Up)' = Fq,r(H[{Q' Up)
Moreover, if & € I, (Hg, U)Q, then J& € T, . (Hg, U)Q and since Q is separating, we get
JW ()] =W (J$).

Recall that if U, is non trivial, the vacuum expectation ¢ is no longer tracial and is
called the g-quasi-free state. In fact in most cases (cf. [123] Theorem 3.3), Araki-Woods
factors are type 111 von Neumann algebras.

When A is bounded, it is clear that our preliminaries are still valid with minor changes.

For example we should get an extra ||A‘1||k/2 =|l A I*/? in the estimation of ||U,||. Note, in
particular, that the Wick formula, as stated in Lemma (2.2.2), is still true, and that the
following analogue of Bozejko's scalar inequality holds: (proved in [123])

If A is bounded, (ny),cy is a family of vectors in H®™ and (a)cy a finitely
supported family of complex numbers then :

n+1
S ANz -1
Z Ay My < Z “uW(nu) < C|q| |—1 Z AyMNy (17)
ueu q ueu |LA ”E—'l ueu q

It is also a straightforward verification that Lemma (2.2.4), still hold in this setting. Observe
also that U is a unitary on F (H): this follows from the fact that for every n > 1, Pq("),A‘X’"
and U commute on H®™. Note that J is no more an anti unitary from H®* to H®* but since
Up(I ® S) = M(a* ® al), we can deduce, as in the proof of Corollary (2.2.5), that U, (I @
$): H¥" % @, H®* - B(Fr(Hc)) is completely bounded with norm less than C,, where
I stands

for the identity of H?”‘k. Following the same lines as in the proof of Theorem (2.2.6) we
get:

Theorem (2.2.9)[113]: Assume A is bounded. Let K be a complex Hilbert space. Then for
allm > 0 and for all £ € B(K) @i, H®™ we have

max || (1d ® (U ® $)R;ic) (©) I (1A @ WI(E) lyin ~ (18)
0<k<n
< Cq(n+ 1) max Il (1d ® ((I @ SR )(©) I
where Id denotes the identity mapping of B(K),I the identity of H?”‘k, and where the

norms of the left and right handsides are taken in B(K) @ minHS™ ™ @ yin HEX.

It is known (cf. [123]) that if U, has a non trivial continuous part then I'; (Hg, U¢) is
not injective. Using our techniques we are able to state a non-injectivity criterion similar to
that of [123] but independent of q.

Corollary (2.2.10)[113]: If either
dim E4({1})H¢ = 2

orforsomeT > 1
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dimE,(]1, T])Hc
T? 2
where E, is the spectral projection of A, then I, (Hg, U,) is non injective.
Proof. We can assume that U, is almost periodic, then we can write

(Hg, Up) = (H]R, IdH]R) @ H(a) U(a)

a€EA

where
@ _ o2 (@ _ (cos(tlnd,) —sin(tln /1“))
Hy™ =R Uy (sin(tln Aq) cos(tlni,) Aa > 1
Thus the eigenvalues of the generator A(®) of Ut(“) are A, and A;1.

If dim E,({1})Hc = 2 then dim Hg > 2 and since U, is trivial on Hy, the non-
injectivity follows from Theorem (2.2.7) .

For the remaining case we first suppose that dim Hi = 2, U; is not trivial and that
[, (Hg, Up) is injective. Forall n > 1, A®" is a positive operator on H®™ equipped with the
deformed scalar product, we will denote by A and 271 the eigenvalues of A with A > 1 and
by (52)”'_11 an orthonormal basis of eigenvectors of A®™ associated to the eigenvalues

(Aé)lil—n' Since I, (Hg, U,) is semidiscrete we must have for every n > 1

D wawE)| < || ), miw) @w)

li[=n li[=n

=11>. @y ew(s)

|i]=n

It is easily seen that

D wiawE)| =) (@winwE)e),

li=n li|=n
= ). w@) /e w(@)a),
li]=n
= z <A%E£-, E£-> = Trace ((A_%)@m) = (l% + /1_%>n
lil=n 1

On the other hand, the map from JT,, (Hg, U;)] to [, (Hg, U,) taking JW (£)] to W (&) is a *-
isomorphism, hence

D wEyewe)| =), vEew

[i=n P | =
1 ! —
Applying (18) twice, and recalling that on H®¥,§ = JAz = J(A®¥) 2 and that J: H®* -
Hfz’k is completely isometric, we get
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> U@R(E) ® U @ )HRu(5)

i
”Z (18 ue)®)rue) @ (1 (42 3) R;:.k(@"

Where the norms are computed in H®" ™% @ in H*' @ min HE" ¢ @ in HEX. For a fixed
(k, k"), let us denote by

t= z (1 ® (A@k')‘%) R, (8) ® (1 ® (A®")‘%> Rk (§1)

li]=n

As in the proof of Theorem (2.2.7), we have the following Hilbert-Schmidt estimate:

w(z) @ W(§)

< (2 2
‘ 2. < G+ 2 o,

|i|=n

min

< Ci(n+1)* max
0<k,k'sn

”t”W®mln H§k,®min Hc®n_k®min H1®k S ”t”H®n_k,®2H®k,®2H®n_k®2H®k
1

Recall that R;,:H®" > H®"k ®Q, H® is of norm less than Clqu and that

"(A‘X”‘)_%II = /12 Hence
" ||B(H®k) N - ’
_
It e g pov e, non-tg uor < Clai” ii z & fzii
|£'|=n HORQHON
< Cq (V2"

Combining all inequalities we get
1 1\
(Az + 1 2) < Cﬁ”(n + 1D220)™
We now return to the general case, we fix T > 1 and we denote by 44, ..., 4, the eigenvalues

of A in]1, T] counted with multiplicities. Thus we have p = dim E4(]1, T])H. It is easy to

deduce from our first step that for any n > 1 we have
n

o1 1 n
Y B+ e+ 1)*@pyer

i=1
1 1

Since for any i we have /1? + )Li_E > 2 we deduce

n
(2p)" < Cjyy(n + 1*(2p)2T"
So we necessarily have

that is to say
dim E,]1, T]Hc

T2

1
S_
2
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Chapter 3
QWEP Property for g-Araki-Woods Algebras

We use this model and an elaborated ultraproduct procedure, to show that all g-Araki-
Woods von Neumann algebras are QWEP. In addition we show the g-deformed Araki-
Woods factors.

Section (3.1): g-Deformed Araki-Woods Factors

For Hg be a separable real Hilbert space and U, a strongly continuous one-parameter
group of orthogonal transformations on Hg. By linearity U, extends to a one-parameter
unitary group on the complexified Hilbert space Hc: = Hy + iHg. Write U, = A% with the
generator A (a positive non-singular operator on H ) and define an inner product (:,-),, on
Hc by

(x,v)y = QA + A7 x,y), x,y € H.
Let H be the complex Hilbert space obtained by completing H with respect to (:,-),.

For —1 < g < 1 the g-Fock space F, (H’) was introduced in [129, 60] as follows.

Let Ffni® (3) be the linear span of f; @ -~ Q f, € H®*(n =10,1,...) where
H®0 = €Q with vacuum Q. The sesquilinear form (-,-), on Ffint (37) is given by

<f1 (SRR fn' 91 R & gm)q = Onm z qi(n)<f1»gn(1))u (fn'gn(n)>U;

TESY
where i(7r) denotes the number of inversions of the permutation € S,,. For—1 < q < 1,(:

»*)q s strictly positive and the g-Fock space F,(H) is the completion of Filinite (21) with
respect to (-,-),. Given h € 3{ the g-creation operator a; (h) and the g-annihilation operator
aq (h) on F, (3() are defined by
az(h)Q = h,
a;(h)(ﬁ R ®MH)=hBfi QR fn
and
ag(h)Q =0,

4@+ ®f) =) ¢ fdufi @+ ® fis ® firs @ @ fu

The operators ag (h) and a,(h) are bounded operators on F, (}') and they are adjoins of
each other (see [60, Remark 1.2]).

Following [15] we consider the von Neumann algebra I';(Hg,U.)", called a g
deformed Araki-Woods algebra, generated on F, (H') by

sq(h):=ag(h) + a4 (h), h € Hg.

The vacuum state <p(= <pq,u): = (Q,- Q)4 on I, (Hg, U,)" is called the g-quasi-free
state.
Proposition (3.1.1)[127]: Q is cyclic and separating for I, (Hg, U,)"".

One can canonically extend U, on ' to a one-parameter unitary group (the so-called
second quantization) F, (U,) on F, (H) by

Tq(Ut)-Q =,
Tq(Ut)(fl QR fn) = (Utfl) Q& (Utfn)-

Notice F, (Up)ag (h)F,(Up)" = ag(U.h) for h € H so that
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Fo(Up)sq(WF,(U)* = sq(Uch), h € Hy.
Thus, a;:= Ad F, (U,) defines a strongly continuous one-parameter automorphism group
on I, (Hg, U)"".
Proposition (3.1.2)[127]: The q-quasi-free state ¢ on I}, (Hg,U,)" satisfies the KMS
condition with respect to a; at g = 1.

Let (K, V;) be another pair of a separable real Hilbert space and a one-parameter
group V; of orthogonal transformations on K. Let T: Hg — Ky be a contraction such that
TU, = V,T for all t € R. By linearity T extends to a contraction T: H = K and it satisfies
TU, = V,T on H. Let B be the generator of V, so that V, = B%. Since

TA(1+A)™' =B +B)™'T,

T can further extend to a contraction from (%, (:,)y) to (I, {(,)y). Then:
Proposition (3.1.3)[127]: There is a unique completely positive normal contraction I'; (T) :
[ (g, Up)" — T (K, V)" such that

(F,(Mx)Q = Fy (T)(x), x € T,(Hr, U,
where F, (T): Fy (H) - F,(XK) is given by

FoM(fi @& fn) =(Tf) @& (Th).
In this way, we have presented a g-analogue of Shlyakhtenko's free CAR functor; namely,
a von Neumann algebra with a specified state, (Fq (Hr, U, <p), is associated to each real
Hilbert space with a one-parameter group of orthogonal transformations, (Hy, U;), and a
unital completely positive state-preserving map I, (T): I, (Hg, Up)" = Ty (K, V)" to
every contraction T: (Hg, U;) = (Kg, V).

Whenq = 0,T(Hg, U;)" = Ty(Hg, U;)"" is a free Araki-Woods factor (of type I1) in
[15]. On the other hand, when U, = id a trivial action, I',(Hg)" = I,(Hg, id ) is a g-
deformation of the free group factor in [60]; in particular, To(Hg)" = L(Fgims,) a free
group factor.

The following were proven in [68, 60], but it is still open whether I, (Hg)" is a non-
injective type II, factor whenever dim Hgi = 2.

1. If-1<gq<1landdimHg > 16/(1 — |q|)?, then T, (Hg)" is not injective.

2. If dimHy = oo, then I[;(Hy) is a factor (of type II; ) forall -1 < q < 1.

These results can be extended to I, (Hg, U,)" as follows.
Theorem (3.1.4)[127]: If there is T € [1, o) such that
dimE,([1, TDH - 16
T (1—lql)?
where E, is the spectral measure of A, then I, (Mg, U,)" is not injective. In particular,
[, (3, Uy)" is not injective if A has a continuous spectrum.
Theorem (3.1.5)[127]: Assume that the almost periodic part of (Hg,U;) is infinite
dimensional, that is, A has infinitely many mutually orthogonal eigenvectors. Then
(T, (Mg, Ut)”):p NI, (Hp Uy)" = C1,

where (l“q (Hyg, Ut)”)q) is the centralizer of I, (Hg, U)" with respect to the vacuum state

. In particular, I'; (g, U,)" is a factor.
As usual let S, be the closure of the operator given by
Se(xQ) = x*Q, x € Tq (3, Up)",
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and let A,, J, be the associated modular operator and the modular conjugation. Then the
following are seen as in [15]: For h4, ..., h,, € Hy,
S¢(h1 Qh, @ Qhp)=h, Qhp 1 Q& hy,
and for hy, ...,h,, € Hg N dom A1,
A(p(hl K Qhy,) = (A_lhl) X (A_lhn)-
Noting that D: = {h + ig: h, g € Hg N dom A~} is a core of A~*( on #) such that U,D =
D for all t € R, we see that
AL =F (A7) =F,(U_,), t ER
By this and Theorem (3.1.5) we obtain the following type classification result:
Theorem (3.1.6)[127]: Assume that A has infinitely many mutually orthogonal
eigenvectors. Let G be the closed multiplicative subgroup of R generated by the spectrum
of A(U; = Ait). Then I, (#g, U,)" is a non-injective factor of type 11, or type Il (0 <
A <1),and
type 11, if G = {1},
[(Hg,Up)"is { typelll ,  ifG ={A":n€eZ}0<A<1),
type IIl ; 1ifG =R,.
This result for free Araki-Woods factors (in case of g = 0) was shown in [15, 14] generally
when dim Hy = 2. Moreover, it was shown as a consequence of Barnett's theorem that free
Araki-Woods factors are full whenever U, is almost periodic (i.e. the eigenvectors of A span
H). The assumption of Theorems (3.1.5) and (3.1.6) is a bit too restrictive while the
following opposite extreme case is easy to see:
Proposition (3.1.7)[127]: If U, has no eigenvectors, then I', (Hg, U,)"" is atype I1I , factor.

It is worthwhile to note that the type 11 , case does not appear in the above type
classifications.

For example, let (Hg, Up) = ®5-1(R%,V,) where V;:
[Z(l)s((; 11(())2;)) C(S)lsn((ttll)(:ggjs) ,0 <A< 1,and write (Ty 2, 42): = (T,(Hg, Up)", @) with
two parameters g € (—1,1) and 1 € (0,1]. For 0 <A < 1,T,, is a type III; q-deformed
Araki-Woods factor. In particular when g = 0, (TM, goo'l) coincides with the type 111, free
Araki-Woods factor (T}, ¢,) discussed in [11, 15]. For A = 1, T, , is the g-deformed type
11, factor treated in [60].

The C*-algebra I, (}g, Uy), —1 < q < 1, generated by {s,(h): h € Hy} on F,(H) is
considered as the g-analogue of the CAR algebra. From this point of view, the above
T4,2(0 < A < 1) may be considered as the g-analogue of Powers' /11, factor. In fact, we
remark that, for ¢ = —1, our construction of T, ; provides Powers' /11, factor. To be more
precise, for given (Hg, U,), let T_(Hyg, U;)"" denote the von Neumann algebra generated by
s_(h):= a*(h) + a_(h)(h € Hg) on the Fermion Fock space F_(#), where a* (h) and
a_(h) are the Fermion (CAR) creation and annihilation operators.

If (3 Uy) = By (747, U8) where 1 =Rr%,UP =

cos(tlogl,) —sin(tlogAly)
[sin(t logA,) cos(tlogAiy)
an Araki-Woods factor

with 1, < 1, then (I_(Hg, Uy)", @: = (Q, Q)_)becomes
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(00]

[ (2 o))
&[wer{[ L)

Upon these considerations we called I';, (Mg, U;)"" a q-deformed Araki-Woods algebra.

When T = e "1, (t > 0), we obtain a semigroup I,,(e~*)(t > 0) of completely
positive normal contractions on I, (Hg, U,)". This is a non-tracial extension of g Ornstein-
Uhlenbeck semigroup discussed in [128,115]. In the tracial case (i.e. the case of U, being
trivial), the ultracontractivity for I, (e ~*) was proven in [115] as follows:

-2t
3/2

lal (1—e2t)3
with C, given below. In the non-tracial type III case, we have the following

hypercontractivity property. This reduces to the above ultracontractivity when A = 1ory =
0.
Theorem (3.1.8)[127]: Assume that A is bounded (in particular, this is the case if dim Hy <

+00),and lety: = log Il A Il. If =1 < ¢ < 1 and ¢ >y, then

[Tge™x]| < C I xQ Il, x € T, (Hg)"

" el 3/2 1+ e~y 6/2

Ty (e=)xll < ¢/ \/(1 A e GEN) (4 =) |45/ xq)
forall x € I;(#Hg,U;)" and 0 < 6 < 1, where

1
e, (1— g™y

It might be expected that the hypercontractivity given in the above theorem is valid for the
whole t > 0. However, the next proposition says that it is impossible to remove the
assumption t > y, so Theorem (3.1.8) seems more or less best possible. Also, it says that
the hypercontractivity in the sense that ||I,(e )| < C Il x I, holds for some ¢ > 0 and
for all x € T, (Mg, U,)" is impossible when A is unbounded; for example, this is the case
when U, f = f(: +t) on Hx = L>(R; R).
Proposition (3.1.9)[127]: Let -1 < g < 1,0 <6 < 1 and t > 0. If there exists a constant
¢ > 0 such that

Cqr*

0

[T, (e x| <c A?pxﬂ

then 4 is bounded and
2t
A< eXP( )

max{6,1 — 0}
It seems that it is convenient to consider the hypercontractivity of I}, (T) in the setting of
Kosaki's interpolated LP-spaces. For a general von Neumann algebra M and 1 < p < oo let
LP (M) be Haagerup's LP-space. Given a faithful normal state ¢ on M let h,, denote the
element of L'(M)(= M,) corresponding to ¢. For each 1<p <o and 0 <6 <1,
Kosaki's LP-space LP (M; @) With respect to ¢ is introduced as the complex interpolation
space

, x € Iy (Hg, Up)",

Cy/p(RGMRL 8, L1 (M)
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equipped with the complex interpolation norm |[-ll, ¢ (=||-||C1/p). Let T: Hg — Ky be a
contraction with TU, = V, T, t € R. The adjoint operator T*: g = H}y is also a contraction
satisfying T*V, = U,T*,t € R.Foreach -1 < g < 1 let
M =T (Hg,Up)" with ¢ = (Q,- Q)
N:=T,(Kg, V)" with ¥ =(Q,- Q),,
where the vacuums in F, (') and in F, (¥X) are denoted by the same €. Then, by Proposition
(3.1.3) the completely positive normal contractions
[q(T):M -» N and T, (T"): N > M
are determined by
([,(Mx)Q = Fy(T)(xQ), x €M,
(LTy)Q = F(THHQ), y EN.
One can define the contraction w + w o I, (T*) of M, into V.. Via M, = L'(M) and IV, =
L*(V") this induces the contraction I, (T) of L*(M) into L* (V") as follows:
[,(Dh, = heory(r), W € M.
We see that forevery 0 < 6 < 1andx € M,
£y (1) (G xhly ) = B (T, (D)3,
so that fq (T): L(M) - LY(V) is the (unique) continuous extension of the linear mapping
from hEMh3? (c L1 (M) into hg Nhy 0 (c L*(V)) given by
h9xhiy® = h(Ty(Tx)hy %, x € M.
Moreover, the Riesz-Thorin theorem implies that foreach0 < 6 < 1and1 < p < oo, [,(T)
maps LP (M; @)g into LP (IV'; )4 and
iifq(T)aiip,e <llallyg, a€LP(M;p)y.
The next theorem is shown by using Theorem (3.1.8).
Theorem (3.1.10)[127]: Assume that either A(U, = A™) or B(V;, = B*) is bounded, and
let p:=min{ll A I, Il B lI}. Let T: Hx — Ky be a bounded operator such that TU, = V,T for
allt e Rand || T lI< p~*. Then [, (T) maps L*(M) into No<g<1 RGN Ay ? and
1/2
IF. (Tl 1+p7/=ITI

1 w08 = Cial A=ITIDA=p21ITINDA=pIITI
foralla e L'(M),0<6 < 1.

Ilall;

Section (3.2): Asymptotic Matricial Models

Recall that a C*-algebra has the weak expectation property (in short WEP) if the
canonical inclusion from A into A** factorizes completely contractively through some B(H)
(H Hilbert). A C*-algebra is QWEP if it is a quotient by a closed ideal of an algebra with
the WEP. The notion of QWEP was introduced by Kirchberg in [132]. Since then, it became
an important notion in the theory of C*-algebras. Very recently, Pisier and Shlyakhtenko
[26] proved that Shlyakhtenko's free quasi-free factors are QWEP. This result plays an
important role in their work on the operator space Grothendieck Theorem, as well as in the
subsequent related works [134] and [140]. On the other hand, in [131] on the embedding of
Pisier's operator Hilbertian space OH and the projection constant of O H,,, Junge used QWEP
in a crucial way.

70



Hiai [23] introduced the so-called g-Araki-Woods algebras. Let —1 < g < 1, and let
Hyg be a real Hilbert space and (Uy)qcg an orthogonal group on Hg. Let I, (Hg, (Ug)¢er)
denote the associated g-Araki-Woods algebra. These algebras are generalizations of both
Shlyakhtenko's free quasi-free factors (for g = 0), and Bozejko and Speicher's g-Gaussian
algebras (for (Uy)cg trivial). We prove that T, (Hg, (Ug)er) is QWEP. This is an extension
of Pisier Shlyakthenko's result for the free quasi-free factor (with (U;)cg almost periodic),
already quoted above.

We recall some general background on g-Araki-Woods algebras and we give a proof
of the main result in the particular case of Bozejko and Speicher's g-Gaussian algebras
I, (Hg). The proof relies on an asymptotic random matrix model for standard g-Gaussians.
The existence of such a model goes back to Speicher's central limit Theorem for mixed
commuting/anti-commuting non-commutative random variables (see [139]). Alternatively,
one can also use the Gaussian random matrix model given by Sniady in [138]. Notice that
the matrices arising from Speicher's central limit Theorem may not be uniformly bounded
in norm. Therefore, we have to cut them off in order to define a homomorphism from a
dense subalgebra of I';(Hg) into an ultraproduct of matricial algebras. In this tracial
framework it can be shown quite easily that this homomorphism extends to an isometric *-
homomorphism of von Neumann algebras, simply because it is trace preserving. Thus
I,(Hg) can be seen as a (necessarily completely complemented) subalgebra of an
ultraproduct of matricial algebras. This solves the problem in the tracial case.

Moreover, in this (relatively) simple situation, we are able to extend the result to the
C*-algebra generated by all g-Gaussians, C,(Hg). Indeed, using the ultracontractivity of the
q-Ornstein Uhlenbeck semi-group (see [115]) we establish that C;(Hg) is "weakly ucp
complemented" in I}, (Hg ). This last fact, combined with the QWEP of I, (Hy ), implies that
Cq(Hy) is also QWEP.

We adapt the proof of the more general type |11 g-Araki-Woods algebras. We start by
recalling Raynaud's construction of the von Neumann algebra's ultraproduct when algebras
are equipped with non-tracial states (see [136]). Then, we give some general conditions in
order to define an embedding into such an ultraproduct, whose image is of a state preserving
conditional expectation.

We define a twisted Baby Fock model, to which we apply Speicher's central limit
Theorem. This provides us with an asymptotic random matrix model for (finite dimensional)
q-Araki Woods algebras, generalizing the asymptotic model already introduced by Speicher
and used by Biane in [128]. Using this asymptotic model, we then define an algebraic *-
homomorphism from a dense subalgebra of I,(Hg, (Up)ier) into a von Neumann
ultraproduct of finite dimensional C*-algebras. Notice that the cut off argument requires
some extra work (compare the proofs of Lemma (3.2.7) and Lemma (3.2.24)), for instance
we need to use our knowledge of the modular theory at the Baby Fock level to conclude.
We then apply the general results (Theorem (3.2.15)) to extend this algebraic *-
homomorphism into a *-isomorphism from I'; (Hg, (U¢)¢er) to the von Neumann algebra's
ultraproduct, whose image is completely complemented. This allows us to show that
I (Hg, (Up)ter) is QWEP for Hy, finite dimensional (see Theorem (3.2.26)). It implies, by
inductive limit, that T,(Hg, (U)ter) i1s QWEP when (U;).cr is almost periodic (see
Corollary (3.2.27)).
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We consider a general algebra I'; (Hg, (U)cr)- We use a discretization procedure on
the unitary group (Uy) e in order to approach I'; (Hg, (U)er) by almost periodic g-Araki-
Woods algebras. We then apply the general results and, we recover the general algebra as a
complemented subalgebra of the ultraproduct of the discretized ones (see Theorem (3.2.30)).
From this last fact follows the QWEP of I';(Hg, (U;)¢egr)- However we were unable to
establish the corresponding result for the C*-algebra C;(Hg, (Up)¢er)- Indeed, if (Up)¢er IS
not trivial then the ultracontractivity of the g-Ornstein-Uhlenbeck semi-group never holds
in any right-neighborhood of zero (see [23]).

We highlight that the modular theory on the twisted Baby Fock algebras, on their
ultraproduct, and on the g-Araki Woods algebras, are crucial tools in order to overcome the
difficulties arising in the non-tracial case.

Marius Junge informed us that he had obtained our main result using his proof of the
non-commutative L1-Khintchine inequalities for g-Araki-Woods algebras. Junge's approach
is slightly different but its main steps are the same as ours: the proof uses in a crucial way
Speicher's central limit Theorem, an ultraproduct argument and modular theory.

We mainly follow the notations used in [15], [23] and [113]. Let Hg be a real Hilbert
space and (U;) g be a strongly continuous group of orthogonal transformations on Hy. We
denote by H the complexification of Hi and still by (U;).eg its extension to a group of
unitaries on Hc. Let A be the (unbounded) non degenerate positive infinitesimal generator
of (Up)ter-

U, = A" forallt € R
A new scalar product (., . ) is defined on H; by the following relation:
€My = (AL +A)7E,n)
We denote by H the completion of H: with respect to this new scalar product. For g €
(—1,1) we consider the g-Fock space associated with H and given by:

F () = ca ) Hen

n>1
where H®™ is equipped with Bozejko and Speicher's g-scalar product (see [68]). The usual
creation and annihilation operators on F,(H) are denoted respectively by a* and a (see
[68]). For f € Hg, G(f), the g-Gaussian operator associated to f, is by definition:
G(f) = a*(f) + a(f) € B(F,(H))
The von Neumann algebra that they generate in B(Tq (H)) is the so-called g-Araki-Woods
algebra: I'; (Hg, (Up)er). The g-Araki-Woods algebra is equipped with a faithful normal
state ¢ which is the expectation on the vacuum vector Q. We denote by W the Wick product
; it is the inverse of the mapping:
Iy (Hr, Uter) — Iy (Hr, (Ut) ter)2
X »XQ
Recall that T, (Hg, (Uy)¢er) < B(F,(H)) is the GNS representation of (T, ¢). The modular
theory relative to the state ¢ was computed in [23] and [15]. We now briefly recall their
results. As usual we denote by S the closure of the operator:
S(xQ) = x*Q for all x € Iy (Hg, (Up)ter)

1
Let S = JAz be its polar decomposition. / and A are respectively the modular conjugation
and the modular operator relative to ¢. The following explicit formulas hold:

S(hy® +Qh,)=h, ® - ®h, forall hy, ..., h, € Hg
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A is the closure of the operator &%, (A~1)®" and
1

1 1

J(hy ® - Qh,) =A"2h, ® QA 2h, forall hy,...,h, € Hx ndomA 2

The modular group of automorphisms (o) eg 0N I, (Hg, (Up)er) relative to ¢ is given by:
0.(G(f)) = A*G(f)A™™ = G(U_.f) forallt e R andall f € Hg
In the following Lemma we state a well known formula giving, in particular, all moments
of the g-Gaussians.
Lemma (3.2.1)[130]: Let r € N, and (h;)_,<;<r be a family of vectors in Hg. For all [ €
{1, ...,r} consider the operator d; = a*(h;) + a(h_;). For all (k(1), ..., k(r)) € {1,%}" we
have:
if r is odd

0
p
i k k .
qo(df(l) d:f(r) _ z g 1_[('0 (dSl(sz)dtl(tz)) ifr = 2p
P 2-partition =1
V={(St,tl)§:f} with s;<t;
where i(V) = #{(k, ), s, < s; < t} < t;} is the number of crossings of the 2-partition V.
Therefore, we see that the distribution of a single gaussian does not depend on the group
(Ug)tegr- In the tracial case (thus in all cases), and when || f lI= 1, this distribution is the

absolutely continuous probability measure v, supported on the interval [-2/,/1—q,2/
\/1—q] whose orthogonal polynomials are the g-Hermite polynomials (see [60]). In
particular, we have:

Forall f € Hg, I G(f) II=

2
A 1

We now briefly recall a description of the von Neumann algebra I'; (Hg, U;) where
Hp, is an Euclidian space of dimension 2k(k € N,). There exists (Hf)1<j<k a family of two
dimensional spaces, invariant under (U;);cg, and (/1]-)1<]<k some real numbers greater or
equal to 1 such that for all j € {1, ..., k},

Hy= @ Hy and Uy = cos (tln(Aj)) —sin(tln(/lj))

1<k sin (tln(Aj)) cos (tln(Aj))
We put [ = {—k,..,—1} U {1, ..., k}. It is then easily checked that the deformed scalar
product (., . )y on the complexification Hc of Hy is characterized by the condition that there

exists a basis (fj)jel in Hy, such that for all (j, 1) € {1, ..., k}?
-1
(i f-1), = Sju- lm and (fyj, fr1), = (2)
1
Forallj € {1, ..., k} we put u; = A}. Let (ej)jel be a real orthonormal basis of C2* equipped

with its canonical scalar product. For all j € {1, ..., k} we put
A 1 J

— Al l —
=———(we-j+u'e) and f ;= ———=(uje_; —1ij'e))
I+ uy? |2 +
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It is easy to see that the conditions (2) are fulfilled for the family (fj)ja. We will denote by
Hy the Euclidian space generated by the family (fj)ja in C2*. This provides us with a

realization of T[,(Hg,U,) as a subalgebra of B(Tq(cz")). Indeed, I, (Hg,U;) =
(6(f).j ey c B(F,(C?)). Forallj € {1, ..., k} put

/#+Mﬂ /#+Mﬂ

=" ad =y
We define the following generalized semi-circular variable by:
6 = G(f;) +iG(f;) = W(f; +if-;)

It is clear that I, (Hg, Uy) = {c¢;,j € {1, ...,k}}” cB (qu ((CZ")) and we can check that

= wa(e_;) +uj'a(e) 3
Moreover, for all j € {1, ..., k}, c; is an entire vector for (o;).cg and we have, for all € C:

o,(¢;) = 2.

Recall that all odd *-moments of the family (Cf)1<j<k are zero. Applying Lemma (3.2.1) to
the operators c; we state, for further references, an explicit formula for the *-moments of
(Cf)1<j<k' In the following we use the convention ¢! = ¢* when there is no possible
confusion.

Lemma (3.2.2)[130]: Let r € N,, (j(1), ..., j(2r)) € {1, ..., k}*" and (k(1), ..., k(2r)) €
{il}Zr

k(1) k@2r)\ _ l(V) k(Sl) k(tz)
9"(9‘(1) = Ci(ar) ) - Z 1_[ Sitsp ](tl)
V 2-—partition
V={(St,tl)%:§} with s;<t;

r
@' | [ 1358100 -rceo Sicso e
V 2—-partition =1
V={(St,tl)%:;}with S1<t;
Proof. As said above this is a consequence of Lemma (3.2.1) and the explicit computation
of covariances. Using (3) we have:

kD) K@Y _ [ k@) k)
qCrrsy <1(1) ¢ Q)

_ [, k@ _ —k(2) ,
= \Hj) €-k@)j)y Hj2) €k@)j2)

_2k()
= Wiy Ok),—k@)051),i@)

The symmetric Baby Fock (also known as symmetric toy Fock space) is at some point
a discrete approximation of the bosonic Fock space (see [92]). In [128], Biane considered
spin systems with mixed commutation and anti-commutation relations (which is a
generalization of the symmetric toy Fock), and used it to approximate g-Fock space (via
Speicher central limit Theorem). We recall the formal construction of [128]. Let I be a finite
subset of Z and e a function from I x I to {—1,1} satisfying for all (i, ) € I%,€(i,j) = €(j, i)
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and e(i,i) = —1. Let A(I,€) be the free complex unital algebra with generators (x;);e;
quotiented by the relations

x;xj — €(i, )xjx; = 26, j for (i,) € I? (4)
We define an involution on A(I, €) by x; = x;. For asubset A = {i, ..., i} of I with i; <
-+ < We putx, = x; ..x;, Where, by convention, x5 = 1. Then (x4) 4, is @ basis of the
vector space A (1, €). Let o€ be the tracial functional defined by ¢€(x,) = 6,4 forall A c
I.{x,y) = @¢(x"y) defines a positive definite hermitian form on A(I, €). We will denote
by L2(A(I, €), ¢¢) the Hilbert space A (I, €) equipped with (.,.). (x4) 4c; is an orthonormal
basis of L2(A(I, €), ¢¢). For each i € I, define the following partial isometries ;" and a;
of L2(A(I, €), p°) by:

xix, 1f (€A

i () = :
i (xa) {o if (€A
Note that their adjoints are given by:

xix, 1f (€A xax; if €A
i(Xq) = and «;(x,) =
Fixa) {0 if i¢A (%) {0 if igA
B and f; (respectively «; and «;) are called the left (respectively right) creation and
annihilation operators at the Baby Fock level. In the next Lemma we recall from [128] the

fundamental relations 1. and 2., and we leave the proof of 3., 4. and 5.
Lemma (3.2.3)[130]: The following relations hold:
1. Foralli € I(5})? =B =0and BB + B;p; = Id.
2. Forall (i,j) € I* with i # jB;B; — €(i, j))B;B; = 0 and B;8; — (i, j)B; B; = 0.
3. Same relations as in (a). and (b). with « in place of .
4. Foralli€lp/a; = a;p; = 0andforall (i,)) € I* withi # jB;a; = afB;.
5. Forall (i,)) € I?Bia; = a;3;.
It is easily seen, by (a) and (b) of Lemma (3.2.3), that the self adjoint operators defined by:
Yi = B; + B; satisfy the following relation :
for all (i,)) € I?, y;v; — €(i, ))y;v: = 26;;1d (5)
LetT; € B(L?(A(I, €), ¢¢)) be the x-algebra generated by all y;, i € I. Still denoting by ¢¢
the vector state associated to the vector 1, it is known that ¢€ is a faithful normalized trace
on the finite dimensional C*-algebra I;. Moreover, I}, c B(Lz(c/l(l, e),gof)) is the faithful
GNS representation of (T}, ¢€) with cyclic and separating vector 1.
Then, it is clear from (4) and (5) of Lemma (3.2.3), that I, ; < I (there is actually equality).
Since 1 is clearly cyclic for I, ;, then it is also cyclic for I, thus 1 is separating for I;.
1. Let I and J,I < ], be some sets together with signs € and €’ such that €];,; = €. It is
clear that L2(A(I, €), ¢¢) embeds isometrically in Lz(c/l(],e’),gof'). Set K =]\
Fix some total orders on I and K and consider the total order on J which coincides
with the orders of I and K and such that any element of I is smaller than any element
of K. The associated orthonormal basis of Lz(cﬂ(],E’),(pe,) is given by the family
(XaXB) acrn),Ber (k) (Where F (1), respectively F (K), denotes the set of finite subsets
of I, respectively K ). In particular with have the following Hilbertian decomposition:

12(A0,€%,0%) = € 1P(AU0), 0% (6)
BeF(K)

xXax; if €A

and ai(x,) =
((xa) {o if i€A
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For j € I we (temporarily) denote by f; the annihilation operator in B(L?(A(I, €), ¢€)) and
simply by B; its analogue in B (Lz(cﬂ(],el),(pel)). Let C; (respectively C;) be the C*-
algebra generated by {B;,j €1} (respectively {B;,j €J}) in B(L*(A(,€),¢))
(respectively B(Lz(ofl(],e’),gof'))). Consider also C; the C*-algebra generated by

{Bj,j €1} in
B(L*(A(l, €),9%)). For B = {jy, ..., ji.} € K, with j; < --- < i, let us denote by aj the
operator ;, ... a;j, . If T € C; and if T denotes its counterpart in C;, then it is easily seen that,
with respect to the Hilbertian decomposition (6), we have

T = @ asTag. 7
BEF(K)

It follows that C; is *-isomorphic to C; c C;.

1. It is possible to find explicitly selfadjoint matrices satisfying the mixed commutation
and anti-commutation relations (5) (see [139] and [128]). We choose to present this
approach because it will be easier to handle the objects of modular theory in this
abstract situation when we will deal with non-tracial von Neumann algebras.

We recall Speicher's central limit theorem which is specially designed to handle either
commuting or anti-commuting (depending on a function) independent variables. Speicher's
central limit theorem asserts that such a family of centered noncommutative variables which
have a fixed covariance, and uniformly bounded *-moments, is convergent in *-moments,
as soon as a combinatorial quantity associated with e is converging. Moreover the limit *-
distribution is only determined by the common covariance and the limit of the combinatorial
guantity. We start by recalling some basic notions on independence and set partitions.
Definition (3.2.4)[130]: Let (A, @) be a *-algebra equipped with a state ¢ and (A;);¢; @
family of C* subalgebras of A. The family (A;);¢; IS said to be independent if for all r €
N,, (i3, ..., i) € I" with ig # i, for s # t, and all a; € A; fors €{1,..,r} we have:

<p(ai1 ...air) = <p(ai1) ...(p(al-r)

As usual, a family (a;);¢; of non-commutative random variables of A will be called
independent if the family of C*-subalgebras of A that they generate is independent.

On the set of p-uples of integers belonging to {1,..., N} define the equivalence
relation ~ by:

(D, .., i@) ~ (@), .. j®))
if (1) =i(m) = j() =jm)v(,m) € {1,..., p}*
Then the equivalence classes for the relation ~ are given by the partitions of the set {1, ..., p}.
We denote by V;, ..., . the blocks of the partition V and we call V a 2-partition if each of
these blocks is of cardinal 2. The set of all 2-partitions of the set {1, ..., p} (' even) will be
denoted by P, (1, ...,p). For V € P,(1,...,2r) let us denote by V; = (s;,t;),s; < t;, forl €
{1, ..., r} the blocks of the partition V. The set of crossings of V is defined by
IV)={(,m)e{l,..,r}% s, < s < t; <t}

The 2-partition V is said to be crossing if I(V) #= @ and non-crossing if (V) =

Theorem (3.2.5)[130]: (Speicher) Consider k sequences (b”)(u)EN *{1,...k} n a
{1,

noncommutative probability space (B, ¢) satisfying the following conditions:

1. The family (bi'j)(i,j)eN*x{l,...,k} is independent.

76



2. Forall (i,j) €N, x{1,..,k},¢(b;;) =0
3. For all (k(1),k(2)€{-1,1}* and (j(1),j(2)) €{1,...,k}?*, the covariance

@ (bl"”]((ll))blkj((zz))) is independent of i and will be denoted by ¢ (b}‘((ll))b;‘((zz))).

4, For all weN,, (k(1),...,k(w)) € {—1,1} and all j €{1,..,k} there exists a
constant C such that forall i € N,, |¢ (bf}l) bf}w))| < C.

5. For all (i(1),i(2)) € N? there exists a sign €(i(1),i(2)) € {—1,1} such that for all
G(D),j(2) € {1, ... k}* with (i(1),j(1)) # (i(2),j(2)) and all (k(1),k(2)) €
{—1,1}? we have

k(1) k(2) . . k(2) k(1) .
bicyy jwbica.iey ~ € IEDbig) 520 biayjay = O-
(notice that the function e is necessarily symmetric in its two arguments).

6. Forallr e N,andallV = {(s;, t,)i=7} € P»(1, ...,2r) the following limit exists
N

1 .
(= Jim — > || el
i(s1)..i(sp)=1 (IL,m)eI(V)

i(spP=i(sm)=m

Let Sy ; = \/iﬁz?’zlbi,j. Then we have for all p € N,, (k(1),...,k(p)) € {—1,1}? and all

G, ....j(p)) € {1, ..., k}?:
( 0 if p is odd
r
Lty o @ (S0t = S = ! z tv) 1_[ o (b by ) ifp=2r
VeP,(1,...,21) =1
V={(sptDiZ]

The following Lemma, proved in [139], guarantees the almost sure convergence of
the quantity (V) provided that the function e has independent entries following the same
2-points Dirac distribution:

Lemma (3.2.6)[130]: Let g € (—1,1) and consider a family of random variables e(i, j) for
(i,j) € N, with i # j, such that

1. Forall (i,j) € N, withi # j,e(i,j) = €(j, 1)

2. The family (e(i,));>; is independent

3. For all (i,j) € N, with i # j the probability distribution of €(i, ) is

Then, almost surely, we have for all » € N, and for all V € P,(1,...,2r)
li 1 . . —_ (V)
Jim e(i(s), ilsm)) = g
i(s1)-milsr)=1 (I m)el(V)
i(sp)#i(sm) forl#m

Alternatively, one can apply directly Speicher's theorem to families of mixed
commuting /anticommuting creation operators as it is done in [139] and [128]. The limit *-
moments are in this case the x-moments of classical g-creation operators.

We show that I'; (Hg) is QWEP. In fact, by inductive limit, it is sufficient to prove it
for Hy finite dimensional. Let k > 1. We will consider R¥ as the real Hilbert space of
dimension k, with the canonical orthonormal basis (e, ...,e,), and C¥, its complex
counterpart. Let us fix g € (—1,1) and consider [, (R*) the von Neumann algebra generated
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by the g-Gaussians G (e,), ..., G (e, ). We denote by 7 the expectation on the vacuum vector,
which is a trace in this particular case.

By the ending remark, there are Hermitian matrices, g, 1 (), ..., gn x (w), depending
on a random parameter denoted by w and lying in a finite dimensional matrix algebra, such
that their joint *-distribution converges almost surely to the joint =-distribution of the g-
Gaussians in the following sense: for all polynomial P in k noncommuting variables,

lim,,, T, (P(gn,l(w), ...,gn,k(a)))) =T (P(G(el), ) G(ek))) almost surely in w.

We will denote by A, the finite dimensional C*-algebra generated by
In1(®), ..., gnr (@). We recall that these algebras are equipped with the trace t,, defined
by:

Tn(x) =(1,x.1)
Since the set of all monomials in k noncommuting variables is countable, we have for almost
all w,

1im 7 (P(gn1(@), ) g e(@)))
=1 (P(G(el), G(ek))) for all such monomials P (8)
A fortiori we can find an w, such that (8) holds for w,. We will fix such an w, and

simply denote by g,,; the matrix g, ;(w,) for all i € {1, ..., k}. With these notations, it is
clear that, by linearity, we have for all polynomials P in k noncommuting variables,

1im 7, (P(gn s+ gni) ) = 7 (P(Glen), -, G(e)))) 9)
We need to have a uniform control on the norms of the matrices g,,;. Let C be such that
IG (eIl < C, we will replace the g, ;'s by their truncations x;—¢ c((gn:)gn: (Where xi_c ¢
denotes the characteristic function of the interval ] — C, C[). For simplicity x;_¢ c{(gn,:) gn,;
will be denoted by g, ;. We now check that (9) is still valid for the g, ; 's.

Lemma (3.2.7)[130]: With the notations above, for all polynomials P in k noncommuting
variables we have

lim 7, (P(Gn1s - Gnie)) = 7(P(Ge), .., G(er))). (10)
Proof. We just have to prove that for all monomials P in k noncommuting variables we
have

Tlli_EI;loTn[P(gn,li ---Jgn,k) - P(gn,l' ---rgn,k)] = 0.
WIriting gn; = Gni + (gni — Gn:) and developing using multilinearity, we are reduced to
showing that the L*-norms of any monomial in g, ; and (gn; — ;) (With at least one factor
(gni — gn,i)) tend to 0 . By the Holder inequality and the uniform boundedness of the || gy, ; ||
's, it suffices to show that for all i € {1 ...k},
lim 7, (|gni = gnil") =0 forallp > 1. (11)
Let us prove (11) for i = 1. \7Ve are now in a commutative setting. Indeed, let us introduce

the spectral resolutions of identity, E/* (respectively E,), of g, (respectively G(e;)). By
(9) we have for all polynomials P

lim 7, (P(gn,l)) =T (P(G(el))).

n—oo

We can rewrite this as follows: for all polynomials P
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lim f P()d(E!-1,1) = f P(t)d(E, - Q, Q).

"% o (gna a(G(ep)
Let u, (respectively ) denote the compactly supported probability measure (Ef* - 1,1)
(respectively (E, - Q,Q)) on R. With these notations our assumption becomes: for all

polynomials P

lim Pdu, = J P dpu. (12)
n—-oo
and (11) is equivalent to:
lim [t|P du, = 0 forallp > 1. (13)
n—-oo lt|>C

Then the result follows from the following elementary Lemma. We give a proof for sake of
completeness.

Lemma (3.2.8)[130]: Let (u,)n>1 be a sequence of compactly supported probability
measures on R converging in moments to a compactly supported probability measure u on
R. Assume that the support of u is included in the open interval | — C, C[. Then,

lim du, = 0.

n—oco |H>C
Moreover, let f be a borelian function on R such that there exist M > 0 and r € N satisfying
If ()| < M(t?" + 1) forall t > C. Then

lim fdu, =0
e Jit>c
Proof. For the first assertion, let C" < C such that the support of u is included in] — €', C'].

) c! 2k 2k )
Let €e > 0 and an integer k such that (?) < €. Let P(t) =( ) . It is clear that

t
C
Xqtiscy(®) < P(t) for all t € R and that sup ¢’ P(¢) < €. Thus,
0 < lim supf du, < lim f P(t)du,, = j P(t)du < e.
[tI>C noe

n—-oco
Since € is arbitrary, we get limn—’oof|t|>c du, = 0.
The second assertion is a consequence of the first one. Let f be a borelian function

on R such that there exist M > 0 and r € N satisfying |f(t)| < M(t*" + 1) forall t € R.
Using the Cauchy-Schwarz inequality we get:

0 < lim supj Ifldu, <lim supJ M(t*" + 1)dp,
[t|>C [t|>C

n—-oo n—-0oo

N| =
| =

2
< Mlim (j (t?" + 1)? d,un> lim (j d,un>
n—0o0 n—oo It|>C

1 1

5 2
<M (f (t%" + 1)2 d,u)2 lim <f d,un> =0
n—oo It|>C

Let U be a free ultrafilter on N* and consider the ultraproduct von Neumann algebra
(see [135] section 9.10) N defined by

N= (1_[ ﬂn> /ly

n>1

79



where Iy = {(xp)ns1 € [lns1An limy 7, (x5,x,) = 0}. The von Neumann algebra N is
equipped with the faithful normal and normalized trace ((x)ns1) = limy 7, (%) (which
is well defined). Using the asymptotic matrix model for the g-Gaussians and by the
preceding remark, we can define a *-homomorphism ¢ between the *-algebras A4 and N in
the following way:

® (P(G(el), e G(ek))) = (P(gn,lr ---rgn,k))n>1

for every polynomial P in k noncommuting variables. By Lemma (3.2.7), ¢ is trace
preserving on A. Since the x-algebra A is weak-* dense in I, (R¥), @ extends naturally to
a trace preserving homomorphism of von Neumann algebras, that is still denoted by ¢ (see
Lemma (3.2.14) below for a more general result). It follows that I, (R¥) is isomorphic to a
sub-algebra of N which is the image of a conditional expectation (this is automatic in the
tracial case). Since the A,, 's are finite dimensional, they are injective, hence their product
is injective and a fortiori has the WEP, and thus N is QWEP. Since I, (R*) is isomorphic to
a sub-algebra of N which is the image of a conditional expectation, I, (R*) is also QWEP
(see [133]). We have obtained the following:

Theorem (3.2.10)[130]: Let Hy be a real Hilbert space and g € (—1,1). The von Neumann
algebra I'; (Hg) is QWEP.

Proof. Our previous discussion implies the result for every finite dimensional Hyi. The
general result is a consequence of the stability of QWEP by inductive limit (see [132] and
([133] Proposition 4.1 (iii)).

Let C;(Hy) be the C*-algebra generated by all g-Gaussians:

Cy(Hg) = C*({G(fF). f € Hy}) © B (F,(Ho)).
We now deduce the following strengthening of Theorem (3.2.10).
Corollary (3.2.11)[130]: Let Hy be a real Hilbert space and g € (—1,1). The C*-algebra
Cq(Hg) is QWEP.
Proof. This is a consequence of Theorem (3.2.10), Lemma (3.2.12) and Proposition 4.1 (ii)
in [133].

Let A, B, with A c B be C*-algebras. Recall (from [133]) that A is said to be weakly
cp complemented in B, if there exists a unital completely positive map ®: B — A*™* such
that &, = id,. Corollary (3.2.11) is then a consequence of the following Lemma.

Lemma (3.2.12)[130]: The C*-algebra C;(Hg) is weakly cp complemented in the von
Neumann algebra I'; (Hg).
Proof. For any t € R, denote by &, the unital completely positive maps which are the
second quantization of e tid: Hy — Hp (see [60]):

o, = T,(e~tid): T, (Hg) — T, (Hg), forall t > 0.
(P¢)rer, is @ semi-group of unital completely positive maps which is also known as the g
Ornstein-Uhlenbeck semi-group. By the well-known ultracontractivity of the semi-group

(Pe)eer, (see [115]), forall t € R} and all W (§) € T, (Hg), we have
3

1
On the other hand, as a consequence of the Haagerup BOZG_]kO S 1nequality (see [115]), for
every n € N and for every &, € Hg‘)”, we have W(¢,) € Cg(Hg). Fix t € RL, W () €
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I, (Hg), and write § = Y,,en&, With &, € HE®" for all n. From our last observation, for all

N €N,
N N
Ty = @, W(Z fn> = ) eTWE,) € G (HR).

n=0 n=0
By (14), ®,(W(§)) is the norm limit of the sequence (Ty)yen, SO (W (§)) belongs to
Cq(Hg). It follows that &, maps I, (Hg) into C;(Hg). Moreover, it is clear that

lim[|,(W($)) =W (I =0, forall W(S) € Cg(Hp). (15)
Take (t,,),,en a Sequence of positive real numbers converging to 0 and fix U a free ultrafilter
on N. By w*-compactness of the closed balls in (C;(HR)) , we can define the following

mapping ®: I, (Hg) — (C;(HR)) by
W () =w’ —lim®, (W(S)), forall W(S) € I (Hg).
@ is a unital completely positive mép satisfying DPicshp) = idc;(HR) by (15).
We start with a family ((cﬂn, <pn))nEN of von Neumann algebras equipped with

normal faithful state ¢,,. We assume that A,, € B(H,,), where the inclusion is given by the
G.N.S. representation of (A, ¢,,). Let U be a free ultrafilter on N, and let

ﬂ:ﬂ A, /U

neN

be the C*-ultraproduct over U of the algebras A,,. We canonically identify A c B(H),
where H = [];H,/U is the ultraproduct over U of the Hilbert spaces H,. Following
Raynaud (see 2 [136]), we define A, the vN-ultraproduct over U of the von Neumann
algebras A,,, as the w* closure of A in B(H). Then the predual A, of A is isometrically
isomorphic to the Banach ultraproduct over U of the preduals (A,,).

a.=] | can.u (16)
neN
Let us denote by ¢ the normal state on A associated to (¢,,),,cn. NOte that ¢ is not faithful

on A, so we introduce p € A the support of the state ¢. Recall that for all x € A we have
o (x) = p(xp) = p(px), and that ¢(x) = 0 for a positive x implies that pxp = 0. Denote
by (pAp, ) the induced von Neumann algebra pAp < B(pH) equipped with the
restriction of the state ¢. For each n €N, let (¢6{*).cg be the modular group of
automorphisms of ¢,, with the associated modular operator given by A,,. For all t € R, let
(A%) be the associated unitary in [[neyB(H,)/U < B(H). Since (0f)pey iS the
conjugation by (Ai’{)', it follows that (o/*),,en €Xtends by w*-continuity to a group of *-
automorphisms of A. Let (0;):cr be the local modular group of automorphisms of pAp.
By Raynaud's result (see Theorem 2.1 in [136]), pAp is stable by (¢{*),cy and the
restriction of (6{*),,ey 10 pAp coincides with a;.

We consider a von Neumann algebra & c B(K) equipped with a normal faithful state
Y. Let V' be a w*-dense *-subalgebra of ' and & a *-homomorphism from N into A
whose image will be denoted by B with w*-closure denoted by B :

O:NcNcBK) —BcAcCBMH) and NV =N, BY =B
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By a result of Takesaki (see [107]) there is a normal conditional expectation from pAp onto
pBp if and only if pBp is stable by the modular group of ¢ (which is here given by
Raynaud's results). Under this condition there will be a normal conditional expectation from
A onto pBp and pBp will inherit some of the properties of A. We would like to pull back
these properties to 2V itself. It turns out that, with good assumptions on & (see Lemma
(3.2.13) below), the compression from B onto pBp is a *-homomorphism. If in addition, we
suppose that @ is state preserving, then p®p can be extended into a w*-continuous -
iIsomorphism between V' and pBp.

Lemma (3.2.13)[130]: In the following, (a) = (b) = (c¢) & (d) & (e).:

1. For all x € B there is a representative (x,,),,cy Of x such that for all n € N, x,, is entire

for (67")er and (o7;(x,))__,, is uniformly bounded.

2. Forall x € B there exists z € A such that for all y € A we have ¢ (xy) = ¢(y2).

3.  Forall (x,y) € B% @(xpy) = ¢(xy)

4, For all (x,y) € B?, pxyp = pxpyp, i.e the canonical application from B to pBp is a
*-homomorphism.

5. peB.

Proof. (a)=(b) Consider x € B with a representative (x,,),,cy such that for all n € N, x,, is

entire for (a/'):eg and (ai‘i(xn))neN Is uniformly bounded. Denote by z € A the class

(aﬁ‘i (xn))'nEN. By w*-density and continuity if suffices to consider an element y in A with
representative (y,,)nen- Then,
¢ (xy) = lime, (xnyn) = limey (.07 () = 0 (y2)

(b)=(c) Here again it suffices to consider (x,y) € B?. By assumption there exists z € A
such that for all t € A, p(xt) = @(tz). Applying our assumption for t =py and t =y
successively, we obtain the desired result:
o (xpy) = @(pyz) = @(¥z) = @(xy)
(c)=(d) Let x € B. We have, by (c): ¢(x(1 —p)x*) = 0. Since p is the support of ¢ and
x(1—p)x* > 0, this implies px(1 — p)x*p = 0. Thus for all x € B we have
PXpX” p = pxX'p
We conclude by polarization.
(d)=(e) Let g be an orthogonal projection in B. By (d),pgp is again an orthogonal
projection and we claim that this is equivalent to pg = gp. Indeed, let us denote by x the
contraction gp. Then x*x = pqp and since pqgp is an orthogonal projection we have |x| =
pqp. It follows that the polar decomposition of x is of the form x = upqp, with u a partial
isometry. Computing x2, we see that x is a projection:
x? = upqp(qp) = upqp = x.

Since x is contractive, we deduce that x is an orthogonal projection and that x* = x. Thus
pq = gp. Since B is generated by its projections, we have p € B’.
(e) =(c) This is clear.

We assume that one of the technical conditions of the previous Lemma is fulfilled.
Let us denote by ® = pdp. @ is a *-homomorphism from NV, into pAp.

0 = pdp: N — pAp < B(pH).

We assume that @, and hence 0, is state preserving. Then © can be extended into a
(w* continuous) *-isomorphism from V' onto pBp. This is indeed a consequence of the
following well known fact:
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Lemma (3.2.14)[130]: Let (M, ) and (IV, ) be von Neumann algebras equipped with
normal faithful states. Let M, ( respectively V"), be a w* dense *-subalgebra of M (
respectively V). Let W be a *-homomorphism from M onto V" such that for all m € M we
have Y (WY (m)) = @(m) (W is state preserving). Then W extends uniquely into a normal *-
isomorphism between M and V.

Proof. Since ¢ is faithful, we have for all m € M, || m ||= limn_,+oog0((m*m)")%. Thus,
since W is state preserving, ¥ is isometric from M onto V. We put
oM ={p.mmeM}c M, and YN ={y -n,n € N} C V..
@M (respectively YN is dense in M, (respectively V,). Let us define the following linear
operator E from YN onto M :
E(l/).‘P(m)) =¢@.m forallme M
Using Kaplansky's density Theorem and the fact that ¥ is isometric, we compute:
EW.w(m) = sup lpmmo)l = sup _[p(¥(m)¥(mo))l

moEM,Im,ll<1 mo€M,Imyll<

= sup Ny m)ny) I=Iy.Pim) I

ng€N,lInyli<1
So that = extends into a surjective isometry from JV, onto M. Moreover E is the preadjoint
of W. Indeed we have for all (m,m,) € M'? :
(Y -¥P(m),¥(my)) = I,IJ(LP(m)LP(mO)) = p(mmg) = (E@ - ¥(m)), mo)

Thus W extends to a normal *-isomorphism between N and M.

In the following Theorem, we sum up what we have proved in the previous
discussion:
Theorem (3.2.15)[130]: Let (V, ) and (A, ¢,,), for n € N, be von Neumann algebras
equipped with normal faithful states. Let U be a non trivial ultrafilter on N, and A the von
Neumann algebra ultraproduct over ‘U of the A, 's. For all n € N let us denote by (/") ter
the modular group of ¢,, and by ¢ the normal state on A which is the ultraproduct of the
states ¢,,. p € A denote the support of ¢. Consider V' a w*-dense *-subalgebra of V" and a
x-homomorphism &

@:]\7C]\f—>cﬂ=1_[u4n
n, U

Assume @ satisfies:
1. ® is state preserving: for all x € V" we have
i P(O(0)) =h(x)
2. Forall (x,y) € ®(N)?
p(xy) = p(xpy).

(Or one of the technical conditions of Lemma (3.2.13).)
3. ForallteRandforall y = (y,)peny € P(V),

(ot (), P (= 0:(pyp)) € PBp
where B is the w*-closure of ®(N') in A.

Then © = pdp: N — pAp is a state preserving *-homomorphism which can be
extended into a normal isomorphism (still denoted by ®) between V" and its image ©(V') =
pBp. Moreover there exists a (normal) state preserving conditional expectation from A onto
o(N).
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Corollary (3.2.16)[130]: Under the assumptions of the previous Theorem, NV is QWEP
provided that each of the A,, is QWEP.

Proof. This is a consequence of Kirchberg's results (see [132], [133]). First, [[,eny An IS
QWERP as a product of QWEP C*-algebras ([133] Proposition 4.1(i)). Since A is a quotient
of a QWEP C*-algebra, it is also QWEP. It follows that <A which is the w*-closure of A in
B(H) is QWEP (by [133] Proposition 4.1 (iii)). Since there is a conditional expectation from
A onto pAp, pAp is QWEP (see [132]). Finally, by Theorem (3.2.15), V' is isomorphic to
a subalgebra of p.Ap which is the image of a (state preserving) conditional expectation, thus
IV inherits the QWEP property.

We show that I, (Hg, (Up)er) is QWEP when Hy is finite dimensional. For
notational purpose, it will be more convenient to deal with dim(Hg) even. This is not
relevant in our context (see the remark after Theorem (3.2.26)). We put dim(Hg) = 2k.
Notice that I'; (Hg, (U;)¢er) Only depends on the spectrum of the operator A. The spectrum

of A is given by the set {4, ..., 4, } U {A7", ..., A"} where for all j € {1, ...k}, 4; > 1. We

use the notation p; = /1]2..

We start by adapting Biane's model to our situation. Let us denote by I the set
{—k,..,—1}U {1, ..., k}. We give us a function e on I X I into {—1,1} and we consider the
associated complex *-algebra A (1, €). By analogy with (3), for all j € {1, ..., k} we define
the following generalized semi-circular variables acting on L2 (A (I, €), ¢€) :

Vi = ui B+ wif; and & = i + pita;
We denote by I" (respectively I’,) the von Neumann algebra generated in B(L2 (A, e€), gof))
by the y; (respectively §;). I is the natural candidate for the commutant of I' in
B(L2 (A, e), <p€)). We need to show that the vector 1 is cyclic and separating for I'. To do
so we must assume that e satisfies the following additional condition:

Forall (i,)) € I?, €(i,j) = e(lil, [j) (17)

This condition is in fact a necessary condition for I, c I'" and for condition (i)(a) of Lemma
(3.2.18) below.
Lemma (3.2.17)[130]: Under condition (17) the following relation holds:

Foralli € I, aiﬁ; + aiiﬁ_i = ﬁi*ai + ,B_iail-
Proof. Leti € I and A c I. We have

X_iXgX_; if i€A and —-i€A
. . 0 if i€A and —-igA

(B +aZiB-)(x4) = . .
XiXpaXi +X_jXqx_; 1f (€A and —i€A
X;X4X; if i¢A and —i€A

and
X X4X; if i€eA and —i€A
. . XiXpXi +X_jX4x_; 1f (€A and —i g A
A + A X =

(Biatg + Boa) (xa) 0 if i¢A and —i€A
k X_iXgX_; if (€A and —ig€A

Thus, we need to study the following cases. Assume that A = {iy, ..., i, } where i; < -+ <

lp.
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1. If i and —i belong to A then there exists (I, m) € {1, ...,p},l < m, such that i, = —i
and i,,, = i. Applying successively relations (4) and (17), we get:
-1

X_iXpaX_i = | |€(lq,—l) xl-l ...xl-l_lxilﬂ ...xl-px_i
q=1

-1 p p

ne(iq,—i) 1_[ €(ig,—i) |xa = — He(iq,—i) X,

q=1 q=l+1 q=1

p
= — 1_[ e(iq,i) X4 = XiXqX;
q=1
2. If i and —i do not belong to A, we can check in a similar way that:
p p

X_iXqX_j = He(iq,—i) X4 = ne(iq,i) Xy

q=1 q=1
= XiXaXi
3. Ifi € Aand —i & A, then there exists [ € {1, ..., p} such that i; = i. We have:
-1

X;X4X; = | | €(iqnD) |2ey iy Xipyy oo X Xi
q=1

-1 p b

= He(iq,i) 1_[ €(iq i) |xa=— He(iq’i) X4

q=1 q=1l+1 q=1

p
= — 1_[ €(ig,—i) | x4 = —x_ixx_;
q=1
This finishes the proof.
Lemma (3.2.18)[130]: By construction we have:
1. For all (i,j) €{1,..,k}? i+ j, the following mixed commutation and anti-
commutation relations hold:
@ viv; — €. )Dyjyi =0
0) viv; —e@yyyi =0
© @) =ri=0
@) vivi +vivi = (uf +u?)1d.
2. Same relations as in (a) for the operators 6;.
3. I, crI.
4. The vector 1 is cyclic and separating for both I and T;,..
5. I'c B(L2 (A, e), <p6)) is the (faithful) G.N.S representation of (T, ¢€).
Proof. (i)(a) Thanks to (ii). of Lemma (3.2.3) and (17) we get:
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Vivi = MW BIB; it BoiBoj + wg BBy + winy tB-iB;
= (i, Dui i BB+ e(—i, —PDuipiB-jBoi + €(l, =g 1B B
+ (=i, Duin; B B-i
= €@, ("W B B+ ik BojBoi + w1 BB+ i B B-:)
= €@, )y
(i)(b) Is analogous to (a) and is left to the reader.
(i)(c) Using (a) and (b) of Lemma (3.2.3), and €(i, —i) = €(i,i) = —1 we get:
Vi = ui (B i+ BB + BoiBi
=€, —DB-ip +B-iBi =0
(1)(d) Using similar arguments, we compute:
Vivi +vivi = ui2(BiB; + BB + ui (BLiB-i + B_iBL) + BiB—i + B—iB;
+BZiBi + Bi B
= (W2 +p)ld + (e, —0) + DB + BB = (ui* + uf)ld
(i) Is now clear from the proof of (i) since the relations for the «;'s are the same as
the ones for the g;'s.
(iii) It suffices to show that for all (i,)) € {1, ..., k}* we have y;6; = &;y; and Yib; =
5 7i-
If i # j then from (v) of Lemma (3.2.3) it is clear that y;6; = §;y; and y;6; = &;v;.
If i = j then using (iv) and (v) of Lemma (3.2.3) and Lemma (3.2.17) we obtain the
desired result as follows:
vibi = Biai + e+ pitBlas; + uiBoai = pitBla; + uiBoiaf
= pita B + uia; B-; = 8y
and
Vi6i = Blag + Bl +pi Bl + ui By
= a;fff +alf_i +pitBas + uiBoiai
= aifff +al B+ pital B+ piai B = 87y
(iv) It suffices to prove that for any A c I we have x, e 1 NnTI,1. Let A c I and

(xi)ies € {0,1} such that y; = 1 ifand only if i € A. Then
x—k X-1.X1 Xk

xA = x_k 'TE] x_l xl 'TE] xk
= (i ye) R Ty DT (g y) X s (Y ) ¥ 1
—x-1 -x—k_ -x-k _-x-1
I e I e e 31

where by convention y; * = y;.
The same computation is valid for I, and we obtain:

_ g X-1—X1  X~k—Xk Xk o oX1go—X-1 -x—k
Xg = U7 e U, 8.%..6776; w0 1

It follows that the vector 1 is cyclic for both ' and T,.. Since I, < '’ then 1 is also
cyclic for I'" and thus separating for I'. The same argument applies to I, and thus 1 is also a
cyclic and separating vector for T;,..

(v) This is clear from the just proved assertion and the fact that the state ¢°€ is equal
to the vector state associated to the vector 1.

By the Lemma just proved, we are in a situation where we can apply Tomita-Takesaki
theory. As usual we denote by S the involution on L2(A(I, €), ¢€) defined by: S(y1) = y*1
for all y € T'. A will denote the modular operator and J the modular conjugation. Recall that
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1
S = JAz is the polar decomposition of the antilinear operator S (which is here bounded since
we are in a finite dimensional framework). We also denote by (o;) g the modular group of
automorphisms of I' associated to ¢. Recall that for all y € I'and all t € R we have o;(y) =
Ait]/A_it.
Notation (3.2.19)[130]: In the following, for A c I we denote by (x;);c; the characteristic
function of the set A: y; =1ifie Aand y; =0 if i & A. (We will not keep track of the
dependance in A unless there could be some confusion.)
Proposition (3.2.20)[130]: The modular operators and the modular group of (T, ¢€) are
determined by:
1.  Jistheantilinear operator given by: for aII Ac I
J(x) = J(x X T ) = oK xR
2. A is the diagonal and positive operator glven by: for aII Acl,
Ax,) = A(xfk XA xR = /153("_%"‘) ...A&Xl_x_l)xA
3. Forallj €{1..,k},y; isentire for (o;), and satisfies a,(y;) = 1;%y; forall z € C.
Proof. Let A c I. We have

X, _x)(kk xxl 1xi( _Mi(l x—1 ‘ul)((k X- kyk_)( k __ylx 1)/1)(1 kal
Thus,
S(x,) _‘ui(l X— 1 Xk X- k( —X- k . 1—)( 1 X1 k) 1
_‘uih x-1 #gk X- kyk_)(k .]/ yl)( 1 yk 1
— Hf(xl—x 1) Mi()(k X- k)x)(’lz xxi?ﬁ ___xl){(—k

By uniqueness of the polar decomposmon we obtain the stated result. Let j € {1...k} and
t € R we have:
O-t(yj)l — Alt]/jA_ltl — Altyjl — ,uj_lA‘tx] ‘u] I’U;}ltx]

= 1"yl

It follows, since 1 is separating for T, that o, (v;) = u}"y;.

We use the twisted Baby Fock construction to obtain an asymptotic random matrix
model for the g-Gaussian variables, via Speicher's central limit Theorem. Let us first check
the independence condition:

Lemma (3.2.21)[130]: For all j € {1, ...,k} let us denote by A; the C*- subalgebra of

B(L*(A(l, €), ¢¢)) generated by the operators ; and _;. Then the family (A, ). ek |

independent in B(L2(A(I, €), ¢¢)). In particular, the family (yj)1<j<k is independent.

Proof. The proof proceeds by induction. Changing notation, it suffices to show that

(pe(al ---ar+1) = (P_E(Cll ar)(p_e(ar+1) ) _
where a; € A; for all L e€{1,..,r+1}. Since a,,, IS a certain non-commutative
polynomial in the variables B, 1, Br41, B—r+1), and BZ 41y, itis clear that there exists v €
Span{xrﬂ, X_(r+1)» x_(r+1)xr+1} such that

a1l =(La D1+v

It is easy to see that a,..ajl € Span {xg, B c {-r,..,—1}U{1,...,r}}, which is
orthogonal to Span{x, 11, X_ 11y, X_(r+1y%r+1}. We compute:
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p(ay . ary1) =(Lay..a:ar4,1) =(ay ...a;1,a,411)
=(ay..a;1,1X1,a,.11) +{ay ...a;1,v) =(1,a, ...a,1){1,a,,11)
= @(ay ...a,)9p(ar41)

Let g € (—1,1) (this is Proposition 3 in [128]). Let us choose a family of random
variables (e(i,/)) (i jyenz,i=j @ in Lemma (3.2.6), and set (i, i) = —1 forall i € N,. For all
n € N, we will consider the complex *-algebra A (1, €,,) where

I, ={1,...n} x ({~k,..,—1} U {1, .., k})
and
en((@, ), (0',j")) = e(i,i") forall (G, )), (i",j")) € I2.
Notice that the analogue of condition (17) is automatically satisfied. Indeed, we have:
en((@ 1), ('11) = (@ 1D, @, 1j'D) forall (), G',)j") € I}

Let us remind that A (1,,, €,,) is the unital free complex algebra with generators (xl-, j) el

quotiented by the relations,
xi,jxi’,jl — G(i, i,)xi”j’xl"j = 26(i,j),(i’,j’)
and with involution given by x;; = x; ;. Forall (i,j) € {1, ...,n} X {1, ..., k} let y; ; be the
"twisted semi-circular variable™ associated to u;
Vij = 15 Bl + By
We denote by I,, B(L2 (A(l,, €,), <p€n)) the von-Neumann algebra generated by the y; ;
for (i,j) € {1,..,n} x{1,...,k}. Observe that all our notations are consistent since
(T, @€n) is naturally embedded in (T, @€7+1) (see following Lemma (3.2.3)). In fact all
these algebras (T, ¢) can be embedded in the bigger von Neumann algebra (T, ¢¢) which
is the Baby Fock construction associated to the infinite set I and the sign function € given
by
I=N,x({-k, ..,—1}U{1,..,k})
and
e((@, ), {,j)) = €e@,i") forall ((i,)),{,j")) € I~
Let us denote by s, ; the following sum:

1 n
Snj = —z Vi,
vn i=1
We now check the hypothesis of Theorem (3.2.5) for the family (y; ;)
(T, ¢°).
1. The family is independent by Lemma (3.2.21).

2. Itisclear that for all (i, ) we have ¢(y;,) = 0.

3. Let (j(1),j(2)) €{1,..,k} and i € N,. We compute and identify the covariance
thanks to Lemma (3.2.2) :

e (., k@) k() — [, k@) k(2) [, k@ —k(2)
®° (yi,j(l)yi,j(z)) = <Vi,j(1) 1'yi,j(2)1> —< j(1) X-kD)i—k)j) Kj2) xk(Z)i.k(2)1(2)>
_2k(1) _ k(1) k(2)
= Bj) Ok@),-k9j(n,i@) = P (Cj(l) Ci2) )

4, It is easily seen that ¢¢ (yi'fj(l) ...yi'fj(w)) is independent of i € N,.

This is a consequence of Lemma (3.2.18).
This follows from Lemma (3.2.6) almost surely.

C
(i,)EN, x{1,...k}

oo
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Thus, by Theorem (3.2.5), we have, almost surely, for all p € N,, (k(1), ..., k(p)) €
{(=1,1}? and all (1), ...,j(p)) € {1, ..., k}?:
lim ¢ (sk(.l) ) )

n—-+oo TL,] (1) n!] (p)
if p 1s odd
— L(V) k(Sz) k(tz) oo
2 1_[ Gon i) ifp=2r
VEiPz(l,...,ZT)
V={(sptDiZh

By Lemma (3.2.2) we see that all *-moments of the family (s, i)j converge when n

€1,...k}
goes to infinity to the corresponding *-moments of the family (Cj)je iy

Proposition (3.2.22)[130]: For all p e N,,(j(1),...,j(p)) €{1, ...k}’ and for all
(k(1), ..., k(p)) € {—1,1}” we have:

: e (k) k() '\ _ k(1) k(p)
nl_1>r+noo<p6 (sn (1) = Sn j(p)) =@ (01(1) + Cip) ) almost surely  (18)

For all j € {1, ..., k} let us denote by g,, ; = Re(s,;) and g, _; = Im(s,, ;). By (18)
we have that for all monomlals P in 2k noncommuting variables:

lim ¢ (P(gn Ky - ,gnk)) (P(G(f_k),...,G(fk))) almost surely (19)

n—-+oo

Since the set of all non-commutative monomials is countable, we can find a choice of signs
e such that (19) is true for all P. In the sequel we fix such an e and forget about the
dependance on €

Lemma (3.2.23)[130]: For all polynomials P in 2k noncommuting variables we have:

lim ¢ (P(gn-o - gnic)) = @ (P(6(Fa), -, G(F)))  (20)

n-+o
We are now ready to construct an embedding of I'; (Hg, U, ) into an ultraproduct of the finite
dimensional von Neumann algebras I,. To do so we need to have a uniform bound on the
operators g, ;. Let C > 0 such that for all j € I, |G(f;)|| < C, as in the tracial case, we
replace the g, ; by the their truncations g, ; = xj-cc((gn,;)9n;- The following is the
analogue of Lemma (3.2.7):
Lemma (3.2.24)[130]: For all polynomials P in 2k noncommuting variables we have:

im ¢ (P(Gn-to - Gnic)) = 9 (P(6(Fa), -, G(D)) (@D

n—-+oo

Proof. It suffices to show that for all (j(1), ...,j(p)) € I? we have
im @ (dnjcx) - Gnjw) = @ (G(fj(l)) G(fJ(P)))

n—+oo

By (20) it is sufficient to prove that
lim |9(gnj) - Injw) = P(Gnj) - Gnjaw)| =0

n—-+oo

Using multi-linearity we can write
‘P(gn,j(l) "'gn.j(p)) o ¢(gn,j(1)"'gn,j(p))

= Z ?lGn iy -+ Gnja-(Inja) = Gnjw)Injcrr) = Injo)]
=1
b

< z |0[dni) - Inia-(Gnj@ = Gniw)Iniasn = Injo|

=1
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Fix l € {1, ..., p}, using the modular group we have:
|0[nj1) -+ Gnja-1)(Gnj@) = Fnjw)Injars) ~ Injo |
= |o[0i(gnja+1) + Gn j@))Gn,j@) = Gnja-1(Gnjw) = Gnjw)]]
Estimating by Cauchy-Schwarz's inequality we obtain:
0[0:(gn j@r1) -+ Inj@))Injc) = Gnja-1(Gnjay = Gnjw)]|

1
< <P[0i (gn,j(z+1) ---gn,j(m)ﬁn,ju) ---5721,1(1—1) ---gn,j(l)f’—i(gn,j(p) ---gn.j(l+1))]2
1
- 272
X [(gn.j(l) = Gnjw) ]2
1

1
_ 5 - 212
< €7 0[0i(gn j01) - i) 0-i(Gn ) - Gnjasn) 20 [(gn,j(z) = Gnjw) ]
The conclusion follows from the convergence of this last term to 0. Indeed, by (22) there
exists a polynomial in 2k non-commutative variables Q, independent on n, such that
Q(gn-k - Gni) = 0:(Inja+1) = Inj@))9=i(Gnj) - Gn ja+1))- It follows by (20) that
lim ¢[0i(gnja+1) -+ Inj@))0-i(Injw) - Injarn)]

o = ¢ (Q(6(f-) - G(f))-

and by Lemma (3.2.8), ¢ [(gn,j(l) - gn,j(l))z] converges to 0 when n goes to infinity.

Remark (3.2.25)[130]: Foralln € N, and all j € I the element g,, ; is entire for the modular
group (this is always the case in a finite dimensional framework). By (iii) of Proposition

(3.2.20), we have forall j € {1, ..., k}
o (sn,j) = A}an,j forall z € C
Thus for all z € C,

O-z(gn,j)
cos(zln(Aj))gn,j — sin(zln(/lj))gn,_]- forallj € {1, ..., k}
B {sin(zln(/l_j))gn,_j + cos(zln(/l_j))gn,j forallj € {—1,...,—k}
Let us denote by P the w*-dense =*-subalgebra of I';(Hg,U,) generated by the set
{G(f;),j €1}. We know that P is isomorphic to the algebra of non-commutative
polynomials in 2k variables (see the remark after Lemma (3.2.8)). Given ‘U a non trivial

ultrafilter on N, it is thus possible to define the following *-homomorphism & from P into
the von Neumann ultraproduct A = [],, I, by:

o (P(G(f—k)r ---:G(fk))) = (P(gn,—kr ---rgn,k))neN
Indeed the right term is well defined since it is uniformly bounded in norm. Let us check the
hypothesis of Theorem (3.2.15).
1. By Lemma (3.2.24),® is state preserving.
2. It is sufficient to check that condition (b) of Lemma (3.2.13) is satisfied for every

generator @ (G(f])) ,j € 1. Letusfixj € I and recall that by (22) there are complex

(22)

numbers v; and w; (independent of n) such that 6™;(gn, ;) = Vi gn,; + wjgn,,- We
show that condition of Lemma (3.2.13) is satisfied for x = CD(G(fj)) and z =
Vv;® (G(f])) + w;P (G(f_j)). By w*-density it is sufficient to consider y =
(V)nen € A. Using Lemma (3.2.24) we have:
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o(o(6(f))y) = limy (Jn,jyn) = limon(gn,jyn) = limen (307 (9n))
= 1m0, (Ya(vGns + @9n)) = 1imon (Ya (VG + @30n))

v <y (0 (6(£)) + oy (a(f_,.)))>
3. It suffices to check that the intertwining condition given in the remark of Theorem
(3.2.15) is satisfied for the generators & (G(f])) = (Gns), '

forallj € I, o, (pCD (G(f])) p) = pd (at (G(f])))p
To fix ideas we will suppose that j > 0. Recall that in this case for all t € R and for all n €
N, we have

0 (gn,;) = cos (tln()tj)) gn,j — Sin (tln(/lj)) In,—j-
Since the functional calculus commutes with automorphisms, for all t € R and for all n €
N, we have:

O-tn(gn,j) = h(o-tn(gn,j))’
where h(1) = xj-¢c((A)A, forall 1 € R. But by Lemma 5.6,

Gt"(gn,j) = cos (tln(/lj)) Jn,j — Sin (tln(/lj)) In—j
converges in distribution to

cos (tln(/lj)) G(f;) —sin (tln(/lj)) G(f-;) =0 (G(f]))
and | o, (G(f]))ﬁ =||G(f})l < €. Thus, by Lemma (3.2.8), we deduce that o7*(dy, ;)
converges in distribution to o, (G(f])) On the other hand, by Lemma (3.2.24),

cos (tln()tj)) gn,j — Sin (tln(/lj)) Gn,—j
also converges in distribution to

cos (tIn(%)) G(f;) - sin (6In(4;)) 6 () = 0. (G(£)).

Let y € A, using Raynaud's results we compute:

o (o (r2 (6())p)ryr) =0 ((2%)po (6(£))p(a7") PyD)
= o (p(a) @ (6()) ) (47 pyp)
= o () @ (6(5)) (42 py)

Let z = (z,)en € A. By our previous observations, we have:
o ()@ (6(5)) (@:) 2)
= limey (A7 0" 7n)
= limon(07' (Gn,j)7n)
=@ (at (G(f])) Z)
= 1T£’r11}<pn ((cos (tln(lj)) Gn,j — sin (tln(lj)) gn,_,-) Zn)
=¢ ((cos (tln(lj)) o (G(f])) — sin (tln(lj)) @ (G(f—j))) Z>
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Y <(pq> (o (()))p) Zp)

By w*-density and continuity, we can replace z by py in the previous equality, which gives:
¢ (o (p2 (6(5))p)pYP) = 0 ((pcb (% (¢ (f,-))) p) pyp)-

Thus, taking y = o (pq) (G(f])) p) —p® (Jt (G(f,))> p, and by the faithfulness of
¢ (p - p) we deduce that

o (p (6(f;))p) = po (at (6 (f,-))) p € plm(®)p
By Theorem (3.2.15), @ = p®p can be extended into a (necessarily injective because state
preserving) w*-continuous *-homomorphism from I', (Hg, U,) into pAp with a completely
complemented image. By its Corollary (3.2.16), since the algebras T}, are finite dimensional
and a fortiori are QWERP, it follows that I, (Hg, U, ) is QWEP.
Theorem (3.2.26)[130]: If Hy is a finite dimensional real Hilbert space equipped with a
group of orthogonal transformations (Uy).cg, then the von Neumann algebra I, (Hg, U, ) is
QWEP.
Corollary (3.2.27)[130]: If (U;)cr is almost periodic on Hy, then I, (Hg, U) is QWEP.
Proof. There exist an invariant real Hilbert space H,, an orthogonal family of invariant 2
dimensional real Hilbert spaces (H,),ec4 and real eigenvalues (1,),e4 greater than 1 such
that

Hy = H, @ H, and Uyy, = ldy,, Uypy,

a€EA
B cos(tln(1,)) —sin(tln(1,))
B sin(tln(1,))  cos(tln(2,))
In particular it is possible to find a net (IB)[?EB of isometries from finite dimensional

subspaces Hg C Hy into Hy, such that for all § € B, Hg is stable by (Uy)cg and Ugep Hp
Is dense in Hy. By second quantization, for all § € B, there exists an isometric *-

homomorphism T, (Iz) from T, (Hﬁ, Ut|H,;) into T, (Hg, U,), and I, (Hg, U,) is the inductive
limit (in the von Neumann algebra's sense) of the algebras I, (Hﬁ, UuHﬁ). By the previous

Theorem, forall g € B, T}, (Hb" U“Hﬁ) is QWEP, thus I, (Hg, U,) is QWEP, as an inductive

limit of QWEP von Neumann algebras.

We will derive the general case by discretization and an ultraproduct argument
similar.

Let Hy be a real Hilbert space and (U,);cgr @ strongly continuous group of orthogonal
transformations on Hg. We denote by H. the complexification of Hy and by (U;)eR its
extension to a group of unitaries on H¢. Let A be the (unbounded) non degenerate positive
infinitesimal generator of (U;).cgr. FOr every n € N, let g,, be the bounded Borelian
function defined by:

n2"-1 K
gTL =X]1’1+2in[+ z z_n)([zin’%[ +n)([n,+oo[
k=2"+1

and
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fa(®) = gn(OX>13(E) +
It is clear that

1
—X t) + xn(t) forallt € R
T (/D t<13(®) + X3 () +

fu®) 7 tforallt > 1 and f,(t) =

1
/0 forallt € R}. (23)
For all n € N,, let A4,, be the invertible positive and bounded operator on H; defined by

= f,,(4). Denoting by J the conjugation on H¢, we know, by [15], that JA = A~1J. By
the second part of (23), it follows that for all n € N,

= Jfa(A) = (AT = f,(AD7'J = 471 (24)
Consider the strongly continuous unitary group (U{*) .eg On H¢ With positive non degenerate
and bounded infinitesimal generator given by A,,. By definition, we have U* = A%, By (24),
and since /7 is anti-linear, we have foralln € N, and all € R :
JUE = JAY = A = Ul
It follows that for all n € N, and for all t € R, Hy is globally invariant by U/*, thus we have
U{(Hg) = Hg
Hence, (U*) :er induces a group of orthogonal transformations on Hy such that its extension
on H¢ has infinitesimal generator given by the discretized operator A4,,. In the following we
will index by n € N, the objects relative to the discretized von Neumann algebra T}, =
Iy (Hr, (Ui ter)- We simply set I' = T, (Hg, (Up) ter)-
Moreover for all n € N, the scalar products {.,. )y and (., , )y, are equivalent on H
since A,, is bounded.
Scholie (3.2.28)[130]: For all £ and n in Hc we have:

lim (&, m)y, = (&M
Proof. Let E, be the spectral resolution of A. Take ¢ € H¢ and denote by u, the finite
positive measure on R, given by ugz = (E4(-)¢, &)y, Since for all 1 € Ry, limy,_, ;g ©

(D) =g), and g(1) = 24/(1 + A) is bounded on R,, we have by the Lebesgue
dominated convergence Theorem:

16 =(rged), = [ o@ane

= 1im [ gefu(Ddue@) = lim < 24

n—+oo Ry 1 A

and we finish the proof by polarization.
Let E be the vector space given by

E =Upey. XLy (A)(Hg)

) = Jm ve,

We have
A) = A Hg = A
JX[%,,(]( ) X[%,k]( )J X[%,k]( )J
thus E © Hy. Since A is non degenerate,
Uken, X[%,k] (A)(Hc) = Xj0,+w[(A)(Hc) = H

It follows that E is dense in Hg. Let (e;);c; be an algebraic basis of unit vectors of E and
denote by £ the algebra generated by the Gaussians G(e;) fori € I.€ is w* dense in " and
every element in € is entire for (o,):cgr (because for all k € N,, A is bounded and has a
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bounded inverse on )([3 K] (4) (H@). Denoting by W the Wick product in I, we have for all
o

ielandall z € C: _
0,(G(e)) = W(U_,e;) = W(A “¢;) (25)
Since Hg < H and for all n € N,, Hy < H,,( isometrically), we have by (1)

Forall (i,n) € I X N,, lG,(e)ll =

(26)

I
<

Scholie (3.2.29)[130]: For all r € R and for all i € I we have
sup [lo72 (G ()l < +o0
neN,
Proof. Fix i € I. By (25):
lof (Gn(e)ll = ||ZV(AZ€i)|| = llay(Ane;) + a,(JAne)ll
<cz (Idnel, +1d45el, )
1

1 1 Il
<c, (iiAzeian + |67 Ane )

Hpy

% ) ) I r_% I
< Cli | IAnell, + "An e
Thus it suffices to prove that for all » € R we have "

sup IIAIleiIIH < 400
neN, n

Let us denote by p1; = (E4(.)e;, ;). and by g, (1) = 224*"*1 /(1 + A). There exists k € N,
such that e; € x4k k1 (A) (Hg), thus we have:
I45edl?, = (0r o fa@enedue = [ g0 fu@a)

[1/k.kK]
Itis easily seen that (g, ° f,)nen, COnverges uniformly to g, on [1/k, k]. The result follows

by:

lim [|Ae;lly, = lim gr © fu(Ddu; (2)

=40 i1k k]
- j[l - DAuD) = IAe 1,
F’k
Recall that £ is isomorphic to the complex free x-algebra with |I| generators. Let U be a
free ultrafilter on N, by (26) we can define a *-homomorphism & from £ into the von
Neumann algebra ultraproduct over U of the algebras I, by:

c1>:£—>c/1=1_[ T,
n,U

G(e) — (Gn(ei))neN
We will now check the hypothesis of Theorem (3.2.15). '
1. We first check that @ is state preserving. It suffices to verify it for a product of an
even number of Gaussians. Take (i, ..., i) € I?*, we have by Scholie (3.2.28):
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=k
() (G(eil) ...G(eizk)) = z qi(v) 1_[<eis(l)’eit(l)>
VeP,(1,...k) =1 H
=k
=1

V:((s(l),t(l)))

=k
— 1 L(V) . )
im0 1] Jewe),
VeP,(1,...k) =1 n
v:((s(z),t(z)))z
= lim,,_, 10 @Pn, (Gn(eil) Gn(eizk))
This implies, in particular that @ is state preserving.
2. Condition (a) of Lemma (3.2.13) is satisfied by Scholie (3.2.29)..

It suffices to check that for all i € I and all t € R, (at"(Gn(ei))) € Im ™. Fix
0

neN

ielandt € R. Forall n € N, we have
. . s "2 . o 2
lAztte; — A el = j A7) - 7| d (D)

R4
By the Lebesgue dominated convergence Theorem, it follows that
. n _it _ _it '|| —
nETmIIAn e —A el = 0.
By (26) we deduce that
liIP ”Gn(Ar_Litei) - Gn(A_itei)" =0
n—-+oo

Thus we have

(o2(Gne)) _, = (Galtie)) = (Ga(a™"e))  €TmdM c ™"
By Theorem (3.2.15), we deduce our main Theorem:
Theorem (3.2.30)[130]: Let Hy be a real Hilbert space given with a group of orthogonal

transformations (U;):eg- Then for all g € (—1,1) the g-Araki- Woods algebra
[y (Hg, (Up)ter) is QWEP.
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Chapter 4
Most One Cartan Subalgebra and Structural Results with Approximation Properties

We show that if a free ergodic measure-preserving action of a free group F,.,2 < r <
1, on a probability space (X, i) is profinite then the group measure space factor L*(X) x
E. has unique Cartan subalgebra, up to unitary conjugacy. As an application, we construct
an example of a non-amenable solid I1; factor N with full fundamental group, i.e. F(N) =
R’ , which is not isomorphic to any interpolated free group factor L(F;),for1 < t < +oo,
We finally deduce that the type I11; factors constructed by Connes in the ’70s can never be
isomorphic to any free Araki-Woods factor, which answers a question of Shlyakhtenko and
Vaes.

Section (4.1): On a Class of II; Factors

A celebrated theorem of Connes ([28]) shows that all amenable II; factors are
isomorphic to the approximately finite-dimensional (AFD) 11, factor R of Murray and von
Neumann ([161]). In particular, all 1I; group factors L(T") associated with ICC (infinite
conjugacy class) amenable groups T, and all group measure space 11, factors L*(X) x T
arising from free ergodic measure-preserving (m.p.) actions of countable amenable groups
I on a probability space I' ~ X, are isomorphic to R. Moreover, by [29], any decomposition
of R as a group measure space algebra is unique, i.e. if R = L*(X;) x I}, for some free
ergodic measure-preserving actions I; ™~ X;,i = 1,2, then there exists an automorphism of
R taking L (X;) onto L*(X,). In fact, any two Cartan subalgebras of R are conjugate by an
automorphism of R.

Recall in this respect that a Cartan subalgebra A in a II; factor M is a maximal abelian
x-subalgebra A c M with normalizer Ny, (A) = {u € (A) | uAu* = A} generating
M ([35],[36],[36]). Its presence amounts to realizing M as a generalized, twisted-version of
the group measure space construction, corresponding to the equivalence relation induced by
the orbits of some ergodic m.p. action of a countable group, I' ™ X, and a 2 -cocycle, with
A = L*(X). Decomposing factors this way is important, especially if one can show
uniqueness of their Cartan subalgebras, because then the classification of the factors reduces
to the classification of the corresponding actions I' ~ X up to orbit equivalence ([36], [36]).
But beyond the amenable case, very little is known about uniqueness, or possible
nonexistence, of Cartan subalgebras in group factors, or other factors that are a priori
constructed in different ways than as group measure space algebras.

We investigate Cartan decomposition properties for a class of nonamenable I; factors
that are in some sense "closest to being amenable”. Thus, we consider factors M which
satisfy the complete metric approximation property (c.m.a.p.) of Haagerup ([153]), which
requires existence of normal, finite rank, completely bounded (cb) maps ¢,,: M — M, such
that [l ll,, < 1 and lim||¢, (x) — xIl, = 0, for all x € M, where |-ll, denotes the Hilbert

norm given by the trace of M (note that if ¢,, could in addition be taken unital, M would
follow amenable). This is the same as saying that the Cowling-Haagerup constant A, (M)
equals 1 (see [147]). The prototype nonamenable c. m. a. p. factors are the free group factors
L(F,),2 <r < oo ([153]). Like amenability, the c.m.a.p. passes to subfactors and is well-
behaved to inductive limits and tensor products.

We in fact restrict our attention to c.m.a.p. factors of the form M = Q < [F,. and to
subfactors N of such M. The aim is to locate all (or prove possible absence of) diffuse AFD
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subalgebras P ¢ N whose normalizer Vy (P) generates N. Our general result along these
lines shows:

Theorem (4.1.1)[141]: Let F, ~ Q be an action of a free group on a finite von Neumann
algebra. Assume M = Q x F,. has the complete metric approximation property. If P ¢ M is
a diffuse amenable subalgebra and N denotes the von Neumann algebra generated by its
normalizer IV, (P), then either N is amenable relative to Q inside M, or P can be embedded
into Q inside M.

The amenability property of a von Neumann subalgebra N c M relative to another
von Neumann subalgebra Q c M is rather self-explanatory: it requires existence of a norm-
one projection from the basic construction algebra of the inclusion Q € M onto N (see
Definition (4.1.5)). The "embeddability of a subalgebra P c M into another subalgebra Q c
M inside an ambient factor" is in the sense of [52], and roughly means that P can be
conjugated into Q via a unitary element of M.

We mention three applications of the theorem, each corresponding to a particular
choice of F,, ™~ Q and solving well-known problems. Thus, taking Q = C, we get:
Corollary (4.1.2)[141]: The normalizer of any diffuse amenable subalgebra P of a free
group factor L(IF,.) generates an amenable (thus AFD by [28]) von Neumann algebra.

If we take Q to be an arbitrary finite factor with A,,(Q) = 1 and let [F,. act trivially
onit,then M = Q ® L(F,), A, (M) = 1 and the theorem implies:

Corollary (4.1.3)[141]: If Q is all, factor with the complete metric approximation property
then Q ® L(F,) does not have Cartan subalgebras. Moreover, if N ¢ Q ® L(F,) is a
subfactor of finite index [ 158], then N does not have Cartan subalgebras either.

This shows in particular that any factor of the form (F,)®
R,L(F,,) ® L(F,,) ® ---, and more generally any subfactor of finite index of such a factor,
has no Cartan decomposition. Besides Q = R, L([F,), other examples of factors with
Ap(Q) = 1 are the group factors L(I") corresponding to ICC discrete subgroups I' of
SO(1,n) and SU(1,n) ([33], [32]), as well as any subfactor of a tensor product of such
factors. None of the factors covered by Corollary (4.1.3) were known until now not to have
Cartan decomposition.

Finally, if we take F,. ™~ X to be a profinite m.p. action on a probability measure
space (X, u), i.e. an action with the property that L (X) is a limit of an increasing sequence
of F,-invariant finite-dimensional subalgebras Q,, ¢ L™ (X),
then M = L (X) x F, is an increasing limit of the algebras Q,, % FF,., each one of which is
an amplification of L(IF,.). Since c.m.a.p. behaves well to amplifications and inductive
limits, it follows that M has c.m.a.p., so by applying the theorem and (A.1 in [51]) we get:
Corollary (4.1.4)[141]: If [F,. ~ X is a free ergodic measure-preserving profinite action,
then L (X) is the unique Cartan subalgebra of the II ;-factor L*(X) x FF,, up to unitary
conjugacy.

The above corollary produces the first examples of nonamenable 11, factors with all
Cartan subalgebras unitary conjugate. Indeed, the "unique Cartan decomposition™ results in
[51], [52], [156] only showed conjugacy of Cartan subalgebras satisfying certain properties.
This was still enough for differentiating factors of the form L*(T?) x F,. and calculating
their fundamental group in [51], by using [150]. Similarly here, when combined with
Gaboriau's results, Corollary (4.1.4) shows that any factor L (X) ¥ F,,2 < r < oo, arising
from a free ergodic profinite action F,. ~ X, has trivial fundamental group. Also, if F; ~ X
is another such action, with r < s < oo, then L*(X) x F,.L* (Y) x F,. It can be shown that
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the factors considered in [51], [52], [156] cannot even be embedded into the factors arising
from profinite actions of free groups. Note that the uniqueness of the Cartan subalgebras of
the AFD factor R is up to conjugacy by automorphisms ([29]), but not up to unitary
conjugacy, i.e. up to conjugacy by inner automorphisms. Indeed, by [36], [36] there exist
uncountably many nonunitary conjugate Cartan subalgebras in R. Finally, note that Connes
and Jones constructed examples of II; factors M with two Cartan subalgebras that are not
conjugate by automorphisms of M ([30]).

Corollary (4.1.2) strengthens two well-known in-decomposability properties of free
group factors: Voiculescu's result in [172], showing that L(IF,.) has no Cartan subalgebras,
which in fact exhibited the first examples of factors with no Cartan decomposition, and in
[162], showing that the commutant in L(IF,.) of any diffuse subalgebra must be amenable
(L(IF,.) are solid), which itself strengthened the in-decomposability of L(IF,) into tensor
product of II; factors ( primeness of free group factors) in [152].

One should point out that Connes already constructed in [146] a factor N that does
not admit a "classic" group measure space decomposition L*(X) > T.

His factor N is defined as the fixed point algebra of an appropriate finite group of
automorphisms of M = R @ L(IF,.). But it was left open whether N cannot be obtained as a
generalized group measure space factor either, i.e. whether it does not have Cartan
decomposition. Corollary (4.1.3) shows that indeed it does not.

The proof of the theorem follows a "deformation/rigidity" strategy, being inspired by
arguments in [169] and [51]. A key role is played by a property of group actions I' ~~ P
called weak compactness, requiring L?(P) to be a limit of finite dimensional subspaces that
are almost invariant to both the left multiplication by elements in P and to the I'-action, in
the Hilbert-Schmidt norm. In case P = L* (X)), this property is weaker than profiniteness
and compactness, and it is an orbit equivalence invariant. The first step towards proving the
theorem is to show that if a II; factor M has c.m.a.p. then given any AFD subalgebra P ¢ M
the action implemented on P by its normalizer, Vy,(P) ~ P, is weakly compact (see
Theorem (4.1.22)). Note that this implies wreath product factors M = BT x T, with T
nonamenable and B # C, can never have the c.m.a.p. In particular, A, (H \ T") > 1, for all
H +# 1, a fact that was open until now.

To explain the rest of the argument, assume for simplicity M = L(IF,). Let P ¢ M be
AFD diffuse, N = NV, (P)". Taking

n € HS(L*(M)) = L*(M) ® L?(M)
to be Falner-type elements, as given by the weak compactness of V,,(P) ~ P, and «, the
"malleable deformation” of L(IF,.) = L(IF,) in [168], [169], it follows that for ¢t small the
elements (a, ® 1)(n) € L>(M * M) ® L*>(M) are still "almost invariant," in the above
sense. We finally use this to prove that L?(N) is weakly contained in a multiple of the coarse
bimodule L2(M) @ L?(M), thus showing N is AFD by the characterizations of amenability
in [28]. All this is the subject of Theorem (4.1.23).

We recall a number of known results needed in the proofs. This includes a discussion
of relative amenability, intertwining lemmas and several facts on the complete metric
approximation property. We prove that for each 2 < r < oo there exist uncountably many
non orbit equivalent profinite actions F, ~ X, which by Corollary (4.1.4) provide
uncountably many nonisomorphic factors L* (X) = FF,. as well (see Corollary (4.1.39)).

We fix conventions for (semi-)finite von Neumann algebras, but before that we note
that the symbol "Lim" will be used for a state on £°°(N), or more generally on £ (I) with I
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directed, which extends the ordinary limit, and that the abbreviation "u.c.p." stands for
"unital completely positive." We say a map is normal if it is ultraweakly continuous.
Whenever a finite von Neumann algebra M is being considered, it comes equipped with a
distinguished faithful normal tracial state, denoted by 7. Any group action on a finite von
Neumann algebra is assumed to preserve the tracial state 7. If M = L(T") is a group von
Neumann algebra, then the tracial state 7 is given by 7(x) = (x8,,6;) for x € L(I"). Any
von Neumann subalgebra P ¢ M is assumed to contain the unit of M and inherits the tracial
state T from M. The unique t-preserving conditional expectation from M onto P is denoted
by Ep. We denote by 7(M) the center of M; by Y(M) the group of unitary elements in M;
and by
Ny(P) ={u€eu(M):(Adu)(P) = P}

the normalizing group of P in M, where (Adu)(x) = uxu®. A maximal abelian von
Neumann subalgebra A ¢ M satisfying Vy,(A)"" = M is called a Cartan subalgebra. We
note that if ' ~ X is an ergodic essentially-free probabilitymeasure-preserving action, then
A = L”(X) is a Cartan subalgebra in the crossed product L* (X) = I'. ( See [36],[36].)

See Section 1X.2 of [58] for the details of the following facts on noncommutative LP-
spaces. Let V' be a semi-finite von Neumann algebra with a faithful normal semi-finite trace
Tr. For 1 < p < oo, we define the LP-norm on V" by |l x II,,= Tr(]x|P)*/?. By completing
{x EN:lx lI,< oo} with respect to the LP-norm, we obtain a Banach space LP (). We
only need LY(NV), L2(NV) and L*(N) = V. The trace Tr extends to a contractive linear
functional on L' (V).

We occasionally write £ for x € " when viewed as an element in L% (V). For any
1<p,qr<ocowithl/p+1/q = 1/r, there is a natural product map

LP(N) X LI(IN) 3 (x,y) » xy €L (V)
which satisfies Il xy Il <Il x ll,ll ¥ Il, forany x and y. The Banach space L' (V") is identified
with the predual of " under the duality L*(V) X V' 3 ({,x) » Tr({x) € C.

The Banach space L?() is identified with the GNS-Hilbert space of (I, Tr).
Elements in L? (V") can be regarded as closed operators on L2 (V) which are affiliated with
NV and hence in addition to the above-mentioned product, there are well-defined notion of
positivity, square root, etc. We will use many times the generalized Powers-Starmer
inequality (Theorem XI.1.2 in [58]):

In—C3< > =32, <ln+Cllin—2ll, (1)
for every n,{ € L>(IV"),..The Hilbert space L?(V') is an \"-bimodule such that (x¢éy,n) =
Tr(xéyn*) for &n € L*(NV) and x,y € N. We recall that this gives the canonical
identification between the commutant N’ of N in B(L*(V)) and the opposite von

Neumann algebra NP = {xop:x € N} of V. Moreover, the opposite von Neumann

algebra V" °? is =-isomorphic to the complex conjugate von Neumann algebra & = {x:x €
N} of V' under the *-isomorphism x°P - X*.

Whenever IV, < IV is a von Neumann subalgebra such that the restriction of Tr to 2V,
is still semi-finite, we identify LP(JV,) with the corresponding subspace of LP(NV).
Anticipating a later use, we consider the tensor product von Neumann algebra
(V' ® M, Tr ® 1) of a semi-finite von Neumann algebra (V, Tr) and a finite von Neumann
algebra (M, 7). Then, ¥ = V ® C1 ¢ ¥ ® M and the restriction of Tr ® T to V" is Tr.
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Moreover, the conditional expectation id @ 7: ¥ @ M — N~ extends to a contraction from
L'(V @ M) = LY (V).

Let Q < M be finite von Neumann algebras. Then, the conditional expectation E, can
be viewed as the orthogonal projection e, from L?(M) onto L*(Q) c L*(M). It satisfies
egxeqg = Eq(x)e, forevery x € M. The ba — sic construction (M, e, ) is the von Neumann
subalgebra of B(L*(M)) generated by M and e,. We note that (M, eQ) coincides with the
commutant of the right Q-action in B(L*(M)). The linear span of {ery: X,y € M} IS an
ultraweakly dense *-subalgebra in (M, e,) and the basic construction (M,e,) comes
together with the faithful normal semi-finite trace Tr such that Tr(xeQy) = t(xy). See
Section 1.3 in [51] for more information on the basic construction.

We adapt here Connes' characterization of amenable von Neumann algebras to the
relative situation. Recall that for von Neumann algebras N < V', a state ¢ on JV is said to
be N-central if ¢ o Ad(u) = ¢ for any u € (W), or equivalently if ¢ (ax) = @ (xa) for all
a€Nandx € N.

Definition (4.1.5)[141]: Let Q,N ¢ M be finite von Neumann algebras. We say N is

amenable relative to Q inside M, denoted by N <, Q, if any of the conditions in Theorem

(4.1.6) holds. We say Q is co-amenable in M if M «<,, Q (cf. [167], [143])

Theorem (4.1.6)[141]: Let Q, N c M be finite von Neumann algebras. Then, the following

are equivalent:

1. There exists a N-central state ¢ on (M, e,) such that ¢|,, = 7.

2. There exists a N-central state ¢ on (M, e,) such that ¢ is normal on M and faithful
onZ(N'nM).

3. There exists a conditional expectation ¢ from (M, eQ) onto N such that ®|,, = Ej.

4. There exists a net (&,) in L*(M, e, ) such that lim,, (x&,, &,) = ©(x) for every x € M

and that lim||[u, &,]1l,, = 0 for every u € N.

Proof. The proof follows a standard recipe of the theory (cf. [28], [40], [167]). The
implication (a)=(b) is obvious. To prove the converse, assume condition (b). Then, there
exists b € L'(M) such that ¢(x) = t(bx) for x € M. Since ¢ is N-central, one has ubu* =
b forallu € U(N), i.e. b € LY(N' n M). We consider the directed set I of finite subsets of

u(N'nM). For each element i={u,,..,u,}J €I and meN, we define b, =
n 1Y wbug, € NN’ 0 M), Cim = X(1/my(b)b; /> € N’ 0 M and
n

i

1 *
wi,m(x) = Ez (p(ukci,mxci,muk)

k=1
for x € (M, ey). Since c; nu € N' N M, the positive linear functionals 1; ,, are still N-

central and ; , (x) = 7(¥(1/m,00) (bi)x) for x € M. We note that

i lim s oy (b) = lim s(bp) = lim \ [ sCuyb) =
l m l l
where s(-) means the support projection and z is the central support projection of b in N' n
M. Since ¢(z1) = 7(bz*) = 0 and g is faithful on 7(N' n M), one has z = 1. Hence, the
state 1 = Lim; Lim,,, ¥; ,,, on (M, eQ) is N-central and satisfies ¥, = . This proves (a).
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We prove (a)=(d): Let a N-central state ¢ on (M, e,) be given such that ¢|, = 7.
Take a net (¢,,) of positive norm-one elements in Ll(M, eQ) such that Tr({, -) converges to
¢ pointwise. Then, for every x € (M, e,) and u € (), one has
imTr((G, — Ad(W)3a)x) = p(x) — 9(AdW)(x)) = 0
by assumption. It follows that for every u e~ (N), the net {,, — Ad(uw)({,) in Ll(M, eQ)

converges to zero in the weak-topology. By the Hahn-Banach separation theorem, one may
assume, by passing to convex combinations, that it converges to zero in norm. Thus,
I[w, &1L, — O for every u € Y(N). By (1), if we define &, = {,/> € L2(M, e,), then one
has [I[u, £,11l, — 0 for every u € U(N).

Moreover, for any x € M,

lifln(xfw 571) = h;;n Tr((nx) = (p(x) = 7(x).

We prove (d)=(c): For each x € (M, e,), denote ¢(x) = Lim,(x¢&,, &,) Note that ¢ is an
N-central sate on (M, eQ) with ¢,, = t. Since

lp(beyz)| = |p(cyzb)| < @(cyy*c)2p(b*z*zb)"? < ||bll,lIcll Iy Izl
for every b,c € N and y,z € (M, e,), one has |p(ax)| <l a ll1|l x |l for every a € N and
x € (M, ey). Hence, for every x € (M, e,), we may define ®(x) € N = L'(N)* by the
duality t(a®(x)) = ¢(ax) forall a € N. Itis clear that @ is a conditional expectation onto
N such that ®|,, = Ey,.

We prove (c)=(a): If there is a conditional expectation & from (M, eQ) onto N such
that ®|,, = Ey, then ¢ = T o ® is an N-central state such that ¢|,, = 7.

Let N, € M be a von Neumann subalgebra whose unit e does not coincide with the
unit of M. We say N, is amenable relative to Q inside M, denoted by N, <), Q, if Ny +
C(1—e) <y Q. We observe that N, <,, Q if and only if there exists an N,-central state ¢
on e(M, eQ)e such that ¢ (exe) = t(exe )/t (e) for x € M.
Corollary (4.1.7)[141]: Let Q4, ..., Qx, N © M be finite von Neumann algebras and cc (N)

be a subgroup such that " = N. Assume that for every nonzero projection p € L(N' n M),
there exists a net (&,,) of vectors in a multiple of EBf:lLZ <M, er> such that:

1. limsupllxé, |, <Il x II; for all x € M;
2. liminfpé,ll, > 0; and

3. limll[w, &,]ll, = 0 foreveryu € G.
Then, there exist projections p4, ..., pi, € E(N' N M) such that Zlepj =1land Np; <y Q;
for every j.
Proof. We observe that if there exists an increasing net (e;); of projections in Z(N' n M)
such that Ne; <,, Q for all i, then Ne <,, Q for e = supe;. Hence, by Zorn's lemma, there
is a maximal k-tuple (py, ..., px) Of projections in Z(N'n M) such that };p; < 1 and
Np; <y Q; for every j. We prove that };;p; = 1. Suppose by contradiction that p = 1 —
Y.;jpj # 0, and take a net (&,) as in the statement of the corollary. We may assume that all
&, 's are in a multiple of L*(M, eQ;) for some fixed j € {1, ..., k}. We define a state 1 on

Y(x) = Lim,llp&,|I5 *(xp&,, p&,)
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for x € <M, er>. It is not hard to see that Y (p) = 1,y o Ad(u) = for every u € G and

Y(x*x) < (liminflp&, )72 Il xp I3 for every x € M. It follows that |, is normal and
is N-central. Let g be the minimal projection in Z(N' n M) such that ¥(q) = 1. We finish
the proof by showing Nr <, Q; for r = p; + q (which gives the desired contradiction to

maximality). Since Np; <y Qj, there is an Np;-central state ¢ on pj(M, ej)pj such that

¢(pjxp;) = t(pjxp;)/*(p;) for x € M. We fix a state extension ¥ of 7 on <M, er> and

define a state ¢ on <M, eQ].> by

¢(x) = 1(p;)e(pjxp;) + 1(@P(gxq) + (1 —)x(1 = 1))

for x € <M, er>. The state ¢ is (Nr + C(1 —r))-central, normal on M and faithful on
Z(Nr+C(A—-1r))nM)=4(N'"nM)r+Z(M)(1—r).Hence Theorem (4.1.6) implies
Nr Ly Q;.

Compare the following result with [167] and [143].
Proposition (4.1.8)[141]: Let P,Q,N c M be finite von Neumann algebras. Then, the
following are true:
1. Suppose that M = Q x T is the crossed product of Q by a group I'. Then, L(I') < Q

if and only if " is amenable.
2. Suppose that Q is AFD. Then, P «,, Q if and only if P is AFD.
3. If N < Pand P «,; Q,then N <, Q.
Proof. Denote by A, the unitary element in M which implements the action of g € I'. Since
eoA(g)e, = 0for g € T'\ {1}, the projections {1,e,1;: g € I'} are mutually orthogonal and
generate an isomorphic copy of % (T) in (M, e).

Hence, if there exists an L(I")-central state on (M, eQ), then its restriction to £*°(I")
becomes a I'-invariant mean. This proves the "only if" part of assertion (a).

The "if" part is trivial. The assertion (b) easily follows from the fact that (M, e,) is
injective if (and only if) Q is AFD([28]).

Let us finally prove (c). Fix a conditional expectation & from (M, e,) onto P such
that ®|y, = Ep. Foré =Y, a; @ b; € M @ M, we denote

1
" 2
I € ll,= Z a;epb; = z t(b; Ep(a;a;)b;)
i=1 L2(M,ep) Lj

For§ =310, ®b;andn =3 ¢; ® d; in M @ M, we define a linear functional ¢,, ;
on (M, e,) by

Oy e(x) = Z T(bfcb(a;‘xcj)dj).

LJ
We claim that [|g, ¢]| <Il 7 ll21l £ Il,. Indeed, if ®(x) = V*m(x)V is a Stinespring dilation,
then one has

l

Pne(x) = n(x)z ”(Cj)VdjiP'z m(a)Vh;ip
J
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and ||X;w(a;)Vh;1p| =Il € Il, and likewise for 7. It follows that ¢, ¢ is defined for &7 €

L*(M, ep) in such a way that [|¢, ¢|| <Il 7 ll,Il & Il,. Now take a net of unit vectors (&) in

L*(M, ep) satisfying condition (d) in Theorem (4.1.6), and let ¢ = Lim @, £, be the state

on (M, e,). Then, one has

@ ° Ad(w) = Limy @adaygnadaE) = LMy @g, 6, = @
forallu € (W) and
(p(x) = Limn<x€w En)LZ(N,ep) = T(X)

for all x € M. This proves that N «,, Q.

We extract from [51], [52] some results which are needed later. The following are
Theorem A.1 in [51] and its corollary (also, a particular case of 2.1 in [52]).

Theorem (4.1.9)[141]: Let N be a finite von Neumann algebra and P,Q < N be von

Neumann subalgebras. Then, the following are equivalent:

1. There exists a nonzero projection e € (N,e,) with Tr(e) < oo such that the
ultraweakly closed convex hull of {w*ew:w € (P)} does not contain 0.

2. There exist nonzero projections p € P and g € Q, a normal *-homomorphism 6 :
pPp — qQq and a nonzero partial isometry v € N such that for all x € pPp, xv =
vB(x)and v*v € 8(pPp)' N qgNgq,vv* € p(P' N N)p.

Definition (4.1.10)[141]: Let P,Q < N be finite von Neumann algebras. Following [52],

we say that P embeds into Q inside N, and write P <, Q, if any of the conditions in Theorem

(4.1.9) holds.

Let ¢ be a z-preserving u.c.p. map on N. Then, ¢ extends to a contraction T, on
L*(N) by T4(%) = ¢(x). Suppose that ¢|, =idQ. Then, ¢ automatically satisfies
¢ (axb) = ap(x)b forany a,b € Q and x € N. It follows that T, € B(L?>(N)) commutes
with the right action of Q, i.e., Ty € (N, eQ). We say ¢ is compact over Q if T, belongs to
the "compact ideal” of (N, eQ) (see [51]). If ¢ is compact over Q, then for any € > 0, the

spectral projection e = x,11(T5T,) € (N, eq) has finite Tr(e) and
(w*ewl,l)Lz(N) > ( oy €= p(w) lI3—¢

for all w € U(P). These observations imply the following corollary [51].
Corollary (4.1.11)[141]: Let P,Q < N be finite von Neumann algebras. Suppose that ¢ is
a t-preserving u.c.p. map on N such that ¢|, =idy and ¢ is compact over Q. If
inf{ll p(w) ll,:w € U(P)} > 0,then P <y Q.

Finally, recall that A.1 in [51] shows the following:
Lemma (4.1.12)[141]: Let A and B be maximal abelian *-subalgebras of a type I1,- factor
N. If A <y B, then there exists a nonzero partial isometry v € N such that v*v € A,vv* €
B and vAv* = Bvv*. If, moreover, Ny (A)", Ny(B)" are factors (i.e. A, B are semiregular
[35]), then v can be taken a unitary element.

Let I' be a discrete group. For a function f on I, we write m, for the multiplier on
CT c L(T) defined by m(g) = fg for g € CI. We simply write Il f ll, for [m|| _ and
call it the Herz Schur norm. If || f Il is finite and f(1) = 1, then m, extends to a z-
preserving normal unital map on L(T"). See Sections 5 and 6 in [166] for an account of Herz-
Schur multipliers.
Definition (4.1.13)[141]: A discrete group I is weakly amenable if there exist a constant
C = 1 and a net (f,,) of finitely supported functions on I' such that lim sup || f,ll , < C and
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fn = 1 pointwise. The Cowling-Haagerup constant A.,(I") of T is defined as the infimum
of the constant C for which a net (f;,) as above exists.

We say a von Neumann algebra M has the (weak*) completely bounded
approximation property if there exist a constant C > 1 and a net (¢,,) of normal finiterank
maps on M such that limsupligyll , < C and [lx — ¢, (x)ll, = 0 for every x € M. The

Cowling-Haagerup constant A., (M) of M is defined as the infimum of the constant C for
which a net (¢,,) as above exists. Also, we say that M has the (weak*) complete metric
approximation property (c.m.a.p.) if A,,(M) = 1. Note that, by Connes' theorem [28],
amenability trivially implies c.m.a.p.

By routine perturbation arguments, one may arrange ¢,, 's in the above definition to
be unital and trace-preserving when M is finite. We are interested here in the case A, (M) =
1, i.e. when M has the complete metric approximation property. We summarize below some
known results in this direction. For part (g), recall that an action of a group I" on a finite von
Neumann algebra P is profinite if there exists an increasing sequence of I'-invariant finite-
dimensional von Neumann subalgebras P, < P that generate P. Note that this implies P is
AFD. If P =L*(X) is abelian and T' ~ P comes from a m.p. action I" ~ X, then the
profiniteness of I' ~ P amounts to the existence of a sequence of I'-invariant finite partitions
of X that generate the g-algebra of measurable subsets of X.

Theorem (4.1.14)[141]:

1. Agp(L() = Ay foranyT.

2 If T is a discrete subgroup of SO(1,n) or of SU(1,n), then A, (I") = 1.

3. If I" acts properly on a finite-dimensional CAT(0) cubical complex, then A4, (T) = 1.

4, If A, () =1fori =1,2,then A, (It X)) =1and A, (I x T,) = 1.

5 If N € M are finite von Neumann algebras, then Ay, (N) < Ay, (M). Moreover, if
N, M are factors and [M: N] < oo, then Ay, (M) = A, (N) and Ay, (MY) = A, (M),
forall t > 0.

6. Let M be a finite von Neumann algebra and (M,,) be an increasing net of von
Neumann subalgebras of M such that M = (UM,,)"". Then,A., (M) = supA¢, (M,,).

7. If P is a finite von Neumann algebra and T' ~ P is a profinite action, then
Ay (P X T) = Agp (D).

The assertions (a),(b),(c) and (d) are respectively due to [147], [33], [32], [38] and
[170]. The rest are trivial. We will see in Corollary (4.1.19) that property (g) generalizes to
compact actions of groups I', and even to actions of I" that are "weakly compact", in the
sense of Definition (4.1.17).

We prove a general property about normal amenable subgroups of groups with A,-
constant equal to 1. While this property is a consequence of Theorem (4.1.22) (via (c)<(d)
in Proposition (4.1.18)), we give here a direct proof in group-theoretic framework. To this
end, note that if A @ T" is a normal subgroup then the semi-direct product group A > I'" acts
on Aby (a,g)b = agbg™?, for (a,g) E AxTandb € A.

Proposition (4.1.15)[141]: Suppose that I' has an infinite normal amenable subgroup A & T

and that A.,(T") = 1. Then there exists a A x I'-invariant mean on £*(A) (i.e., T' is co-

amenable in A < T'). In particular, T is inner-amenable. (See $5 for the definition of inner-
amenability.)

Proof. Let f,, be a net of finitely supported functions such that sup [If.ll , = 1and f;, - 1

pointwise. By the Bozejko-Fendler theorem (Theorem 6.4 in [166]), there are Hilbert space
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vectors &, (a) and n,,(b) of norm at most one such that f,(ab™1) = (n,,(b), &, (a)) for all
a,b € I'. Then, for every g € T, one has

limsupll€,(ga) — & (@)1’
N qer . I -
< limsup2(ll§,(90) = M (@17 + (@) = (1)
a
< 1im2(2 - 2R)f,(9) + 2 - 2R£(1) = 0,
and similarly lim,, sup,crln,(gb) — n,(b)|l = 0 for every g € T. It follows that
lim||fy, = £ ll g, = 0

for every g € T, where £7 € CT is defined by £7(a) = f,(gag™). Now since ABT is
amenable, the trivial representation 7,:C_ (A) — C is continuous. We define a linear

functional w, on €, (A) by w, =15 °omg | C7, (A). Since f;, is finitely supported, w, is
ultraweakly continuous on L(A). We note that limw,,(1(a)) = 1 forall a € A and

lim|w, — w, © Ad(g)ll < limllf, = £/ll,,, = 0
for all g € T. Since |lw,ll < 1 and limw,, (1) = 1, we have lim|lw,, — |w,|ll = 0. We view
|w,| as an element in L' (L(A)) (which is L*(A) if A is abelian) and consider ¢, = |w,|*/? €
L*(L(A)) = £2(A). Then, the net ({,) satisfies lim, (1(a){,, ¢,) = 1 for all a € A and
lim, 1§, — Ad(g)({)Il, = 0 for all g €T by (1). Therefore, the state w on £%(A)

B(£%(A)) defined by
W(x) = Limy (G, §y) = Limy, )" 2(@)n(0)’

aeA
Is A x I'-invariant. Since A is infinite, the A-invariant mean w is singular, i.e, ¢, = 0 weakly.

This implies inner-amenability of T.

Recall that the wreath product H{T,, of a group H by a group I, is defined as the semi-
direct product (@FOH) x Iy of @, H by the shift action I, ~ @ H.
Corollary (4.1.16)[141]: If T, is nonamenable and H # {1}, then A.,(H{I[,) > 1, i.e.
L(H > T,,) does not have c.m.a.p. Also, if T' is a nonamenable group having a nontrivial
normal amenable subgroup A such that the centralizer Z(a) = {g € I': ga = ag} of any
nonneutral element a € A is amenable, then A, (T") > 1.
Proof. Suppose that I}, is nonamenable and A.,(H > TI;) = 1. Passing to a subgroup if
necessary, we may assume that H is cyclic. Thus A = @ H is a nontrivial normal amenable

subgroup of ' = H > T, such that the centralizer of any nonneutral element of A is amenable
(finite). It is thus sufficient to prove the second part of the statement. We consider A as a set
on which I acts by conjugation.

Then, A\ {1} =U,ecx I'/€(a) as a'-set, where X is a system of representatives of I'-
orbits of A\ {1}. We observe that there is a I'-equivariant u.c.p. map from £ (I") into
£ (T'/#(a)), which is given by a fixed right 7(a)-invariant mean applied to each coset
g€(a) c T'. Hence, there is a '-equivariant . c. p. map from £ (I") into £ (A \ {1}). Since
[" is nonamenable, there is no I'-invariant mean on A \ {1}. Hence, any I'-invariant mean on
A has to be concentrated on {1}. Such mean cannot be A-invariant. This is in contradiction
with Proposition (4.1.15).

Definition (4.1.17)[141]: Let ¢ be an action of a group I" on a finite von Neumann algebra
P. Recall that o is called compact if ¢(I') € Aut(P) is pre-compact in the point-ultraweak

105



topology. We call the action o weakly compact if there exists a net (n,,) of unit vectors in
L?(P ® P) + such that:
1. In, — (v & V)n,ll, — 0 forevery v € U(P).
2. nn— (0 ® 6‘9)(77,l)ii2 — 0 forevery g € T.
3. (x @ Dnyng) =t(x) =, 1 Q x)n,) for every x € P and every n.
Here, we consider the action o on P as the corresponding unitary representation on L?(P).
By the proof of Proposition (4.1.18), condition (c) can be replaced with a formally weaker
condition

1. ((x @ 1)n,,n,) = t(x) forevery x € P.

Weak compactness is manifestly weaker than profiniteness, which is why in an initial
version, we called it weak profiniteness. We are very grateful to Adrian loana, who pointed
out to us that the condition is even weaker than compactness (cf. (b) = (c) below) and
suggested a change in terminology.

Proposition (4.1.18)[141]: Let o be an action of a group I" on a finite von Neumann algebra
P and consider the following conditions:

1. The action o is profinite.

2. The action o is compact and the von Neumann algebra P is AFD.

3. The action o is weakly compact.

4. There exists a state ¢ on B(L?(P)) such that ¢|, =7 and ¢ c Adu = ¢ forall u €

UP)va().

5. The von Neumann algebra L(I") is co-amenable in P X T.
Then, one has (a)=(b)=(c)=(d)=(e).

(Note that, by a result of Hgegh-Krohn-Landstad-Stgrmer ([154]), if in the above
statement we restrict our attention to ergodic actions I' ™~ P, then the condition that P is
AFD in part (b) follows automatically from the assumption I' ~ P compact. We observe
that weak compactness also implies that P is AFD by Connes' theorem ([28]).)

Proof. We have (a)=(b), by the definitions. We prove (b)=(d). Since P is AFD, there is a
net &, of normal w.c.p. maps from B(L?>(P)) into P such that to (&, | P) =7 and
lla — @, (a)ll, - 0 forall a € P.Let G be the SOT-closure of o (T') in the unitary group on

L?(P). By assumption, G is a compact group and has a normalized Haar measure m. We
define a state ¢,, on B(L?(P)) by

() = j 7o d,(gxg~)d m(g).
G

It is clear that ¢,, is Ad(\Gamma)-invariant and ¢,, | P = 7. We will prove that the net ¢,
is approximately P-central. Let @, (x) = V*r(x)V be a Stinespring dilation. Then, for x €
B(L?(P)) and a € P, one has

1P, (xa) = Pp()Pp(@)l, = IV'TE)A = VVIT(@VIl 2,

<l x I |(1 = VvV (@Vi] 2 py
=[xl T(cbn(a*a) - CI)n(a*)CI)n(a))l/z
1

1 =
<2lxlllalzla—®,(a)l2.
It follows that for every x € B(L?(P)) and a € P, one has

1 1
lon(xa) — @n(ax)| < 4 1l x Il @ IIZ supllgag™™ — ®,(gag I3,
gea
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which converge to zero since {gag~1: g € G} is compact in L?(P) and ®,, 's are contractive
on L?(P). Hence ¢,, is approximately P-central and ¢ = Lim,, ¢,, satisfies the requirement.

We prove (c)<(d). Take a net n,, satisfying conditions (a),(b) and (c') of Definition
(4.1.17). We define a state ¢ on B(L?(P)) by ¢ = Lim,, ¢,, With ¢,,(x) = ((x & 1)1,,, 1,,)-
Then, for any u € U(P) U a(I'), one has

@(uxu) = Limy((x @ 1)(u & Wny, (u ® Wn,) = ¢(x)

by conditions (a) and (b) of Definition (4.1.17). That ¢|, = t follows from (c'). Conversely,
suppose now that ¢ is given. We recall that B(L?(P)) is canonically identified with the dual
Banach space of the space S, (L?(P)) of trace class operators. Take a net of positive elements
T, € S;(L?(P)) with Tr(T,,) = 1 such that Tr(T,x) — ¢@(x) for every x € B(L?(P)). Let
b,, € L*(P) be such that Tr(T,a) = t(b,a) for a € P. Since Tr(T,a) - ¢(a) = t(a) for
a € P, the net (b,,) converges to 1 weakly in L*(P). Thus, by the Hahn-Banach separation
theorem, one may assume, by passing to a convex combinations, that [Ib,, — 1], - 0.

By a routine perturbation argument, we may further assume that b,, = 1. We give an
argument for this. Let h(t) = max{1,t} and k(t) = max{1 — t, 0} be functions on [0, o),
and let ¢, = h(b,)~t. We note that 0 < ¢, <1 and b,.c,, + k(b,) = 1. We define T, =
2T, cM? + k(b,) Y2 Pyk(b,)*/2, where P, is the orthogonal projection onto Ci. Then,
one has

1T, — Tl

<27 = P + k(b

1/2 2 1/2
=20 (b(1-c?)) "+ Ik,

< 2t(by(1 — c))""* + k(BRI
1

< 2|lb, — 1iif + 111 = byll, = 0.
Hence, by replacing T,, with T,;, we may assume that Tr(T,,a) = 7(a) for a € P.
Since for every x € B(L*(P)) and u € U(P) U o(T'), one has

Tr((T, — AdW) T,))x) = p(x) — p(AdW) (X)) = 0,

by applying the Hahn-Banach separation theorem again, one may furthermore assume that
\T,, — Ad(u)(Tn)||51 — 0 for every u € U(P) U o(T). Then by (1), the Hilbert-Schmidt

operators T,’? satisfy ||T,/* — Ad(w) (T,f/z)" — 0 for every u € U(P) U (). Now, if
Sy _
we use the standard identification between S, (L?(P)) and L?(P ® P) given by
SUPN 3D (M= ) & Qi € (PR P)
k k

and view T.'/? as an element ¢, € L2(P ® P), then we have ((a ® 1), ) = T(a) =
(Cn, (1 @ @)¢p) and 1€, — (u @ w){yll, — 0 for every u € U(P) U o(T).

Therefore, the net of n,, = ({,¢;;)'/? € L?>(P ® P), verifies the conditions of weak
compactness.

Finally, we prove (d)<(e). We consider P x T as the von Neumann subalgebra of
B(L?(P) ® ¢2(I")) generated by P ® C1 and (¢ ® 2)(T). This gives an identification
between L*(P x T') and L?(P) @ €*(T"). Moreover, the basic construction (P < T, ey r))
becomes B(L?(P)) ® L(I), since it is the commutant of the right L(I")-action (which is
given by (1 ® p)(I") ). Now suppose that ¢ is given as in condition (d). Then, § = o Q t
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on B(L*(P)) ® L(TI") is Ad(UP ® C1) U (¢ @ A)(I))-invariant and @|pyr = 7. This
implies that L(T") is co-amenable in P x I'. Conversely, if @ is a (P x I')-central state such
that @|p. = 7, then the restriction ¢ of @ to B(L?(P)) satisfies condition (d).

Note that by part (g) in Theorem (4.1.14), if A,,(I') =1 and I" ~ P is a profinite
action then A, (P % I'") = 1. More generally we have the following. (Compare this with
[157].)

Corollary (4.1.19)[141]: Let T be weakly amenable and I' ~ P be a weakly compact action
on an AFD von Neumann algebra. Then, P x T has the completely bounded approximation
property and Ag, (P X I') = A, (D).

Proof. By Proposition (4.1.18), L(T") is co-amenable in P x I'. Hence, Theorem 4.9 of [143]
implies that A, (P X T') = A, (L(T)) = Agp (D).

Proposition (4.1.20)[141]: Let P ¢ M be an inclusion of finite von Neumann algebras such
that P N M < P. Assume the normalizer JVy, (P) contains a subgroup G such that its action
on P is weakly compactand (P U G)"" = WV, (P)". Then the action of V), (P) on P is weakly
compact. Moreover, if Vy, (P) ~ P is weakly compact and p € P(P) then N, (pPp) ™~
pPp is weakly compact.

Proof. We may clearly assume NV (P)" = M. Denote by o the action of NV, (P) on P. If
u € Ny (P), then by the conditions P’ N M = A(P) and (P U S)" = M it follows that there
exists a partition {p;}; € Z(P) and unitary elements v; € P such that v = X;p;v;u; for some
u; €G (see eg. [148]). Then o,(x) =vxv" =Z;p;0,,,(x). Let now n,€
L?(P ® P),satisfy the conditions in Definition (4.1.17) for the action 014+ BY Definition
(4.1.17)(a) we have IZ;(p; ® Py — Mnll, = 0, and thus [[(p; ® p;)nall, — 0, forall i +
J. Since q; = a,:(p;) are mutually orthogonal as well, this also implies that for i # j we
have

1 (P ®7)) (v, ® G, ) (1) Iz

= "(O-viui X U_vjuj) ((qi 02y ‘ij)nn)nz = "(qi 02y ‘ij)nnllz - 0.
Also, since w; = u;v;u; € W(P), we have || g, ® O_-wi)(nn) — 1, ll,— 0. Combining with
condition Proposition (4.1.18)(b) on the action G ™~ P, one gets

”(pi ® ﬁl) (nn - (Jviui X J_viui)(nn))||2 - 0.
By Pythagoras' theorem, and using that }; ; [[p; ® ﬁjllz = 1, all this entails
_ _ _ _ 2
"nn - (Uv ® O-v)(nn)llg = Zi,j”(pi ® pj)nn - (pi ® pj)(o-v ® O-v)(nn)llz

2
= Zi,j "(pi ® ﬁj)nn - (pi ® ﬁ]) (O-viui ® U_vjuj) (Un)"z - 0'
showing that vy, (P) ~ P satisfies Definition (4.1.17)(b), thus being weakly compact.

To see that weak compactness behaves well to reduction by projections, note that any
v € Npup (pPp) extends to a unitary in Vy, (P). Thus, if ¢ satisfies Proposition (4.1.18)(d)
for NV (P) ~ P then P = @(p - p) clearly satisfies the same condition for NV, ,,, (pPp) ™~
pPp.

The above result shows in particular that if a measure-preserving action of a countable
group I" on a probability space (X, u) is weakly compact (i.e., I' ™~ L*(X) weakly compact),
then the action of its associated full group [T'], as defined in [148], is weakly compact. Thus,
weak compactness is an orbit equivalence invariant for group actions, unlike profiniteness
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and compactness which are of course not. In fact, Proposition (4.1.20) shows that weak
compactness is even invariant to stable orbit equivalence (also called measure equivalence).

An embedding of finite von Neumann algebras P ¢ M is called weakly compact if
the action vy, (P) ~ P is weakly compact. The next result shows that the complete metric
approximation property of a factor M imposes the weak compactness of all embeddings into
M of AFD (in particular abelian) von Neumann algebras.

For the proof, we need the following consequence of Connes' theorem [28]. This is
well-known, but we include a proof for the reader's convenience.
Lemma (4.1.21)[141]: Let M be a finite von Neumann algebra, P ¢ M be an AFD von
Neumann subalgebra and u € IV, (P). Then, the von Neumann algebra Q generated by P
and u is AFD.
Proof. Since P is injective, the t-preserving conditional expectation E, from M onto P
extends to a u.c.p. map £, from B(L?(M)) onto P. We note that £, is a conditional
expectation: E»(axb) = aEp(x)b for every a,b € P and x € B(L?(M)). We define a state
o on B(L?(M)) by

n—1
— T1; 1 I k -k
o(x) = lennkzo T (Ep(u xu )).

It is not hard to check that o|;, = 1,0 c Adu =g and g o Ad v = o for every v € U(P). It
follows that o is a Q-central state with |, = 7. By Connes' theorem, this implies that Q is
AFD.
Theorem (4.1.22)[141]: Let M be a finite von Neumann algebra with the c.m.a.p., i.e.
Ay (M) = 1. Then any embedding of an AFD von Neumann algebra P ¢ M is weakly
compact, i.e., My (P) ~ P is weakly compact, for all P ¢ M AFD subalgebra.
Proof. First we note the following general fact: Let w be a state on a C*-algebra N and u €
U(N). We define w, (x) = w(xu*) for x € N. Then, one has

max{llw — wyll, Il ® —w o Ad(w) lI} < 2\/2|1 — w(u)l. (2)

Indeed, one has [I&, — u*é,lI° = 2(1 — Rw(w)) < 2|1 — w(u)|, where &, is the GNS-
vector for w.

Let (¢,) be a net of normal finite rank maps on M such that limsupli¢,|l,, < 1 and

lx — ¢ (xX)Il, — 0 for all x € M. We observe that the net (z o ¢,) converges to T weakly

in M,. Hence by the Hahn-Banach separation theorem, one may assume, by passing to
convex combinations, that ||z — 7 o ¢, [l — 0. Let  be the *-representation of the algebraic
tensor product M @ M on L?(M) defined by

#(2 ak®5k)f=z &by

k B k
We define a linear functional u,, on M @ M by

Un (Z ay & Ek) = <H (Z Pnlar) Ek) i' i> = T(Z ¢n(ak)blt>-
k L*(M) k

k

Since ¢,, is normal and of finite rank, p,, extends to a normal linear functional on M @ M,
which is still denoted by u,,. For an AFD von Neumann subalgebra Q c M, we denote by

uff the restriction of u, to Q ® Q. Since Q is AFD, the *-representation y is continuous with
respect to the spatial tensor norm on Q@ ® @ and hence [|u?|| < li$yll_,. We denote w? =
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(N |Hn| Since limsup||u?]| < 1 and limu? (1 ® 1) = 1, the inequality (2), applied to
w?, implies that
lim sup | — wy]| = 0. (3)
n
Now, consider the case Q = P.Since uf (v Q v) = t(¢,(v)v*) —» 1 forany v € U(P), one
has
lim sup iiwn (wn)v®v” =0 (4')
n
by (2) and (3). Now, let u € NV, (P) and consider the case Q = (P, u), which is AFD by
Lemma (4.1.21). Since 1" (u @ @) = (¢, W)u*) - 1, one has

lim sup ||,u( ) ,uilp W o Adlu ® 12)” =0 (5)
by (2) and (3). But since (H o Ad(u 0% u))| = ub o Ad(u ® u), one has
lim sup ||wf — wn cAdlu®@u)|[ =0 (6)
n

by (3) and (5). Now, we view w? as an ¢, element in L*(P ® P) + and let n,, = {-/*. By
(1), the net n,, satisfies all the required conditions.

They will all follow from the following stronger version of the theorem stated:
Theorem (4.1.23)[141]: LetT = .1y X --- X [Fp. (i) be a direct product of finitely many free

groups of rank 2 < r(j) < oo and denote by I} the kernel of the projection from I onto ... j,.

Let M = Q = T be the crossed product of a finite von Neumann algebra Q by I" (action need
not be ergodic nor free). Let P ¢ M be such that P Let G c IV, (P) be a subgroup which
acts weakly compactly on P by conjugation, and denote N = ¢'. Then there exist projections
P1, Dk € Z(N' 0 M) with T5_; p; = 1 such that Np; <4, Q T for every j.

From the above result, we will easily deduce several (in)decomposability properties
for certain factors constructed out of free groups and their profinite actions. Note that
Corollaries (4.1.24) and (4.1.25) below are just Corollaries (4.1.2) and (4.1.3) in the
introduction, while Corollary (4.1.34) is a generalization of Corollary (4.1.4) therein.
Corollary (4.1.24)[141]: If P c L(F,)! is a diffuse AFD von Neumann subalgebra of the
amplification by some ¢ > 0 of a free group factor L(F,),2 < r < oo, then V' ye(P)" is

AFD.
Proof. This is a trivial consequence of Theorem (4.1.22) and Theorem (4.1.23).

Note that the above corollary generalizes the (in)-decomposability results for free
group factors in [162] and [172]. Indeed, Voiculescu's celebrated result in [172], showing
that the normalizer of any amenable diffuse subalgebra P < L(IF,) cannot generate all
L(TF,.), follows from Corollary (4.1.24) because L(IF,.) is nonAFD by [161]. Also, since any
unitary element commuting with a subalgebra P c L(IF,.) lies in the normalizer of P,
Corollary (4.1.24) shows in particular that the commutant of any diffuse AFD subalgebra
P c L(FF,) is amenable, i.e. L(IF,.) is solid in the sense of [162], which amounts to the free
group case of a result in [162]. Note however that the (in)-decomposability results in [172]
and [162] cover much larger classes of factors, e.g. all free products of diffuse von Neumann
algebras in [172] (for absence of Cartan subalgebras) and all 11, factors arising from word-
hyperbolic groups in [162] (for solidity).

Calling strongly solid (or s-solid) the factors satisfying the property that the
normalizer of any diffuse amenable subalgebra generates an amenable von Neumann
algebra, it would be interesting at this point to produce examples of II; factors that are s-
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solid, have both c.m.a.p. and Haagerup property, yet are not isomorphic to an amplification
of a free group factor (i.e., to an interpolated free group factor [6], [10]).

Corollary (4.1.30) blow shows in particular that if Q is an arbitrary subfactor of a
tensor product of free group factors, then Q ® L(F,.) (or any of its finite index subfactors)
has no Cartan subalgebras. When applied to Q = R, this shows that the subfactor N c

R ® L(F,) with N ~ N° constructed in [172], as the fixed point algebra of an appropriate
free action of a finite group on R @ L(IF,) (which thus has finite index in R ® L(]Fr)), does

not have Cartan subalgebras.
Another class of factors without Cartan subalgebras is provided by part (2) of the next
corollary.

Note that one can view part (a) of the Corollary (4.1.32) as a strong rigidity result, in
the spirit of results in ([51], [52], [156]). Indeed, by taking A = L*(Y) to be Cartan in M¢,
it follows that any isomorphism between group measure space II , factors 0: (L*(X) x
[t =~ L®(Y) x A, with the "source" T a direct product of finitely many free groups and the
"target" A arbitrary but the action A ~ Y weakly compact (e.g. profinite, or compact), is
implemented by a stable orbit equivalence of the free ergodic actions ' ~ X,A ~ Y, up to
perturbation by an inner automorphism and by an automorphism coming from a 1-cocycle
of the target action.

Corollary (4.1.34) implies that any isomorphism between factors M € g comes
from an isomorphism of the orbit equivalence relations R,, associated with their unique
Cartan decomposition. Hence, like in the case of the H J-factors in [51], invariants of
equivalence relations, such as Gaboriau's cost and L?-Betti numbers ([150]), are
isomorphism invariants of 11, factors in gog. The subfactor theory within the class g is
particularly interesting: By Corollary (4.1.34) and its proof (see Proposition (4.1.33)), and
Section 7 in [51], any irreducible inclusion of finite index N € M in this class has a
canonical decomposition N c Q c P ¢ M, with P ¢ M coming from a subequivalence
relation of Ry, N c Q from a quotient of R, and @ < P from an irreducible u(#)-valued 1
-cocycle for R,,.

Note that all factors in the class gog have A,-constant equal to 1 by Theorem (4.1.14)
and have Haagerup's compact approximation property by [153]. The sub-class of 11, factors
L*(X) % F,. € gogo, arising from free ergodic profinite probability-measure-preserving
actions of free groups FF, ™~ X, is of particular interest, as they are inductive limits of
(amplifications of) free group factors. We call such a factor L*(X) x [F,. an approximate
free group factor of rank r. By Corollary (4.1.34), more than being in the class gog, such a
factor has the property that any maximal abelian *-subalgebra with normalizer generating a
von Neumann algebra with no amenable summand is unitary conjugate to L (X). When
combined with [150], we see that approximate free group factors of different rank are not
isomorphic and that for » < oo they have trivial fundamental group. Also, they are prime by
[164], in fact by Theorem (4.1.23) the normalizer (in particular the commutant) of any AFD
11, subalgebra of such a factor must generate an AFD von Neumann algebra. We will
construct uncountably many approximate free group factors and comment more on this
class.

For the proof of Theorem (4.1.23), recall from [168], [169] the construction of 1-
parameter automorphisms «; (“malleable deformation™) of L(IFT * FT). Let F, be a copy of

F, and ay, a,, ... (resp. by, b,, ... ) be the standard generators of F, (resp. F, ) viewed as
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unitary elements in L(F, * F,.). Let by = (mv/—1)~*log b, where log is the principal branch
of the complex logarithm so that h, is a selfadjoint element with spectrum contained in
[-1,1]. For simplicity, we write bi(s = 1,2,.. and t € R) for the unitary element
exp(tmV—1hg). The x-automorphism a; is defined by a,(as) = bias and a,(bs) = bs.
We adapt this constructionto I' = [F,.qy X --- X [F,.(y actingon Q and M = Q < I'. We
extend the action I" ~ Q to that of
[ = (Fray * Fray) X X (Frao * Frao),
where FT(D 's act trivially on Q. We denote by a; ;, a; 5, ... (resp. bj 1, bj 5, ) the standard
generators of IF,..;y (resp. Fr( 7)) We redefine the *-homomorphism
apM->M=QxT
by a;(x) = x for x € Q and a,(a;s) = bf;a; for each 1 < j < k and s. (We can define
a, on M, but we do not need it.)
Let
1

1
y(t) = t(bf) = > j exp(tmV—1h)dh =
1

sin(tm)

e y(—=t)

and ¢,y L(Fr¢jy) = L(Fyjy) be the Haagerup multiplier ([153]) associated with the
positive type function g = y(t)9! on F,;). We may extend
Pyity = Pryty & Q Py

to M by defining ¢, ) (xA(g)) = x¢,)(A(g)) for x € Q and A(g) € L(I'). We relate a,
and ¢, () as follows (cf. [49]).
Lemma (4.1.25)[141]: One has Ey o a; = ¢, (0
Proof. Since Ey(xA(9)) = xELr)(A(g)) for x € Q and A(g) € L(I'), one has Ey o
a:(xA(9)) = xE iy (a:(A(g))) for x € Q and A(g) € L(I'). Hence it suffices to show
Epry © ar = ¢y on L(T). Since all E iy, a; and ¢, split as tensor products, we may
assume that k = 1. Since aq, ..., by, ... are mutually free, it is not hard to check

(Evirp o ae)(ai! - ail) =v(©Ora ~ai’ = by (ai - af]
for every reduced word a* -+ ai! in F,.

In particular, the u.c.p. map Ey o a; on M is compact over Q provided that r(j) <

oo for every j. In case of r(j) = oo, we need a little modification: we replace the defining

equation a.(a;s) = bf;a;s with a.(a;5) = bita;s. Then, the u.c.p. map Ey o a; is

compact over Q and a; — id,, ast — 0.
Let T; be the kernel of the projection from I onto [F,.;y and Q; = Q@ X T; ¢ M. We

consider the basic construction <M, er> of (Q; € M). Then, L? <M, er> is naturally an M-

bimodule.
Lemma (4.1.26)[141]: Let Q; € M c M be as above. Then, L*(M) © L*(M) is isomorphic

as an M-bimodule to a submodule of a multiple of eaj?:lLZ <M, er>.
Proof. Let [} be the kernel of the projection from T onto F,;, * F,;. By permuting the

position appropriately, we consider that E X Fpjy C [ and ﬂfj X Fpjy =T. Let (?]- =Q
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[; and M; = Q  (Ij x Fy(jy). Since L>(M) = N, L2(M;), it suffices to show L*(M) ©
L*(M;) is isomorphic as an M-bimodule to a multiple of L2 <M, er>.
We observe that

12(1) © 12()) = P [02(FrydFry)],

where the square bracket means the L2-closure and the direct sum runs all over d € Frejy *
Fr(j) whose initial and final letters in the reduced form come from FT(D. Let 7;: Fr(jy *
Fy(jy = Frj) be the projection sending F,(;y to {1}. It is not difficult to see that

xA(gdh) = xA(g)eqA(m;(d)h)
extends to an M-bimodule isometry from [Q;A(F,(,dF,;)] onto L <M, er>.
We summarize the above two lemmas as follows.
Proposition (4.1.27)[141]: Let Q € Q; € M be as above. Then, there are a finite von
Neumann algebra M > M and trace-preserving *-homomorphisms a,: M — M such that:
1. lim,_qlla,(x) — xll, = 0 for every x € M;
2. E); o a; is compact over Q for every t > 0; and
3. L?(M) © L*>(M) is isomorphic as an M-bimodule to a submodule of a multiple of

®k_, 12 <M, er>.

We complete the proof of Theorem (4.1.23) in this abstract setting.
Theorem (4.1.28)[141]: Let Q < Q; < M be as in Proposition (4.1.27). Let P ¢ M be such
that P X, Q. Let G € WV, (P) be subgroup which acts weakly compactly on P by
conjugation, and N = G"”. Then there exist projection p,,...,p, € L(N' N M) with
Y 1p; = 1suchthat Np; < Q; for every j.
Proof. We may assume that (P) c G. We use Corollary (4.1.7) to conclude the relative
amenability. Let a nonzero projection p in L(N' n M), a finite subset F c G and € > 0 be

given arbitrary. It suffices to find & € eaealeLz <M, er> such that || x& II,<Il x Il,, for all

x € M, |l p& lI,=Ilp Il,/8 and || [€,u] lI5< € for every u € F.

Leté =l p Il,/8. We choose and fix t > 0 such that @ = a; satisfies || p — a(p) II,<
dand ll u—a(u) ll,< /6 for every u € F. We still denote by a when it is viewed as an
isometry from L2(M) into L?(M). Let (n,,) be the net of unit vectors in L>(P ® P).as in
Definition (4.1.17) and denote

fin = (@ @ D(ny,) € L*(M) ® L*(M).
We note that

16 ® Dl =7 (o (e (') ) =1 x 13 ™)
for every x € M. In particular, one has
&
Iu ® @, 7,1l < lu @ u,n,]ll, +2 Il u—aC) ll,< > (8)

for every u € F and large enough n € N. We denote ¢,, = (ey ® 1)(#) and (=1, —
{, Noticing that L2 (M) ® L?(M) is an M @ M-bimodule, it follows from (8) that

It ® @, GJI + l[u ® @, GHIl; = I[u ® a7l < (28)2

)

113



for every u € F and large enough n € N. We claim that
Lim,l(p ® )¢, > 6. (10)
Suppose this is not the case. Then, for any v € U(P), one has
Lim,[I(p ® Dy, — (eya(v)p & v)G0ll,
< Lim,ll(p ® 1)y, — (eya(®)p @ D)y ll, + Lim,[I(p @ 1)¢r,
< Lim,lI(p @ D)jy, — (eyp & 1) (a(v) @ )ijull,+1I [a(v), p] I+ 6
< Lim,[I(p ® D3xll, + Limylif, = (@) @ D)ijall, + 2 1 p = a() o+
<45
since pey, = eyp. It follows that
I(Ey o )@)pll, = Limy[|((Ey o )@)p @ )il
> Limy,|[(ey ® 1)((EM oca)(v)p ® 17)ﬁnii (11)
= Lim, [|(epya(v)p @ V)l
>lpll,—46 >0
forall v € (P). (One has |(Ey © a@)(vp)ll, =l p ll,— 66 as well.) Since Ey o a is compact
over @, this implies P <;, Q by Corollary (4.1.11), contradicting the assumption. Thus by
(9) and (10), there exists n € N such that { = ¢x € (L2(M) © L?(M)) ® L?(M) satisfies |
[u®u,l]ll,<e/2 foreveryu e Fand || (p ® 1) ll,= 6. We note that for all x € M,
equation (7) implies
I (e ® 1)¢ 13=ll(efy @ 1D(x @ Dyl < lx @ Diiall; =Nl x 13, (12)
By Proposition (4.1.27), we may view { as a vector ({;) in @;L*(M, eQ;;y) & L*(M).

We consider ¢;¢; € L (<M er(L.)) 2 1\71) and define &; = ((id 039 r)({izi*))l/z and
then & = (§;) € @; L7 <M, eru>>. Then, the inequality (12) implies
I x& 3= Z (x*x(id ® T)(G¢)) =1l (x @ 1DE I2<Il x 112,

i
and for all x € M. In particular,

Il ¢ 1=l (p ® 1){ lI,= 6.
Finally, by (1), one has

I[&,ul 5= Z 1€ — (Adw) (&Il < Z g7 — (Adw) (E7)Il,
< D165~ Adw® D G,

<) 206, ® 7¢I,

l
S20 00 u®ul]ll,<e
foreveryu € F.

Before proving the corollaries to Theorem (4.1.23), we mention one more result in
the spirit of Theorem (4.1.23). Its proof is similar to the above, but requires more involved
technique from [156].

Theorem (4.1.29)[141]: Let M = M, * M, be the free product of finite von Neumann
algebras and P ¢ M be a von Neumann subalgebra such that P <, M; for i = 1,2. If the
action of G c WV, (P) on P is weakly compact, then G" is AFD.
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Proof. We follow the proof of Theorem (4.1.23), but use instead the deformation «a; given
in Lemma 2.2.2 in [156]. Let a nonzero projection p € L(G' n M), a finite subset F c G and
€ > 0 be given arbitrary. Since P for i = 1,2, one has

lim i {I(Ey ° a)(wp)ll,: v € U(P)} < (999/1000) I p Il

by Proposition (4.1.20) and Theorem 4.3 in [156]. Hence, if we choose § > 0 small enough
and t > 0 accordingly, then one obtains as in the proof of Theorem (4.1.23) that

Limgll(p ® D¢z ll, = 6
for ¢t = ((1 — ey) ® 1), € L2(M © M) ® L?(M). Since L*(M © M) is a multiple of
L?>(M ® M) as an M-bimodule, one obtains € € @L?>(M ® M) suchthat || x& Il,=Il &x II,<
Il x Il, forall x € M, |l p& ll,= 6 and |l [u, &] ll,< € for every u € F. This proves that G is
AFD.
Corollary (4.1.30)[141]: If Q is a type II,-factor with c.m.a.p., then Q ® L(F,) does not
have Cartan subalgebras. Moreover, if N ¢ Q ® L(F,) is a subfactor of finite index, then
N does not have Cartan subalgebras either.
Proof. Suppose there is a Cartan subalgebra A € M where M c N = Q ® L(F,) is a
subfactor of finite index. Since [FF,. is nonamenable, N is not amenable relative to Q, so by
Proposition (4.1.8), M is not amenable relative to Q inside N. Hence, by Theorems (4.1.22)
and (4.1.23) one has A < NQ. By Theorem (4.1.9), this implies there exist projections p €
A'NN,q € Q, an abelian von Neumann subalgebra A, € qQq and a nonzero partial
isometry v € N such that p, = vv* € p(A' N N)p,qy, = v*v € Ay N gNq and v*(Apy)v =
Ao Qo.

Since Q = L(F,)' n N, by "shrinking" q if necessary we may clearly assume q =
V{ugou*:u € U(L(F,))}. Since L(F,)q is contained in (4,q)' N gNg, this implies g, has
central support 1 in the von Neumann algebra (4,q)' N qNq. But (4yq,)' N qoNq, =
v* (A" n N)v by spatiality and since M c N has finite index, A € A" N N has finite index as
well (in the sense of [165]) so A" N N is type I, implying (A,q9,)" N qoNq, type I, and thus
(Apq)' N gNq type | as well. But L(IF,.)) = L(IF,.)q < (A,q)" N gNg, contradiction

For the proof of Corollary (4.1.32), we will need the following general observation.
Lemma (4.1.31)[141]: Let T be an ICC group and I o» X an ergodic measurepreserving
action. Let M = L*(X) xT'. Then M is a factor. Moreover, the following conditions are
equivalent:

1. [ ~ X is free.

2. L™ (X) is maximal abelian (thus Cartan) in M.

3. There is a maximal abelian *-subalgebra A ¢ M such that A <, L (X).

Proof. The first part is well-known, its proof being identical to the Murrayvon Neumann
classical argument in [161], showing that if a group T is ICC then its group von Neumann
algebra L(T) is a factor.

The equivalence of (a) and (b) is a classical result of Murray and von Neumann, and
(b)=(c) is trivial. To prove (c)=(b), denote B = L™ (X) and let A ¢ M be maximal abelian
satisfying A < MB. Then there exists a nonzero partial isometry v € M, projectionsp € A =
A" N M, q € B and a unital isomorphism 6 of Ap onto a unital subalgebra B, of Bgq such that
va = 6(a)v, for all a € Ap. Denoting q’ = vv* € Bj N qMgq, it follows that q'(By N
qMq)q’ = (Byq')' nq'Mq'. Since by spatiality B,q' = vAv* is maximal abelian, this
implies q'(By N qMq)q’' = vAv*. Thus, B N gMq has a type | direct summand. Since
(Bq)' N qMq is a subalgebra of By N pMp, it follows that B’ N M has a type | summand.
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Since T acts ergodically on A(B' n M) o> B (or else M would not be a factor), the algebra

B’ n M is homogeneous of type I,,, for some n < oo.

Note at this point that since all maximal abelian subalgebras of the type | summand
of By N gMq containing g’ are unitary conjugate (cf. [160]), we may assume that g’ isin a
maximal abelian algebra containing Bq. Thus, if £ the center of B’ n M, then £q' c
q'(Bo ngMq)q' = Byq' < Bq’, showing that £q' = Bq'. Since B, £ are I'-invariant with
the corresponding I'-actions ergodic, it follows that there exists a partition of 1 with
projections of equal trace py, ..., p,, € D suchthat £ = X;Bp; and Ez(p;) = m~11, for all i.
Since B'NM = L' n M has an orthonormal basis over £ with n? unitary elements, this
shows that B’ N M has a finite unitary orthonormal basis over B. But if x € (B’ n M) \ B,
and x = X a4uy is its Fourier series, with a,; # 0 for some g # e, then p,u;, € B' N M,
where p, denotes the support projection of a,.

Now, since T is ICC there exist infinitely many h,, € T such that g,, = h,,gh;;* are
distinct. This shows that all o), (p,)u,, < B’ N M are mutually orthogonal relative to B.
By [165], this contradicts the finiteness of the index of B € B’ n M.

Thus, we must have B' n M = B, showing that T ~ X is free and B = L*(X) is
maximal abelian, hence Cartan.

Corollary (4.1.32)[141]: LetT' = [F,.(qy X -+ X Fp(, as in Theorem (4.1.23),and T' ~ X an

ergodic probability-measure-preserving action. Then M = L*(X) % I'is a II; factor and for

each t > 0 we have:

1. Assume M* has a maximal abelian =-subalgebra A such that V'),(4) ~ A is weakly
compact and N = NV,,c(A)" is a subfactor of finite index in M*. Then I' ~ X is
necessarily a free action, L*(X) is Cartan in M and there exists a unitary element u €
M¢t such that udu* = L*(X)*.

2. Assume I' ~ X is profinite (or merely compact). Then M has a Cartan subalgebra if
andonly if ' ~ X is free.

3. Assume T' = F,.. If Mt has a weakly compact maximal abelian =-subalgebra A whose
normalizer generates a von Neumann algebra without amenable direct summand, then
I ~ X follows free and A is unitary conjugate to L* (X)°.

Proof. The factoriality of M was shown in Lemma (4.1.31) above.

To prove part (a), note that V.t (4) ~ A weakly compact implies ;, (AY/t) ~ A1/t
weakly compact, where AY¢ c M is the semiregular maximal abelian *-subalgebra obtained
by amplifying A ¢ Mt by 1/t (see Proposition (4.1.20) and the comments following its
proof). This shows that it is sufficient to prove the case ¢t = 1. Let I; be as in Theorem
(4.1.23). If N = Ny (A)" <y L7(X) x T; for some j, then by [M: N] < oo it follows that
M <y L*(X) xT; as well. But this implies [F,..;y amenable, a contradiction. Thus, by
Theorem (4.1.23) we have A < L (X) and the statement follows from Lemma (4.1.31).

Part (b) follows trivially from part (a), since I' ~ X compact implies M has c.m.a.p.,
by Proposition (4.1.18).

An obvious maximality argument shows that in order to prove (c) it is sufficient to
show: (c') for all p € P(4),p # 0,3v € Mt, nonzero partial isometry, such that v*v €
Ap, vAv* c L®(X)t. By amplifying A ¢ M® by suitable integers, we see that in order to
prove (c') for arbitrary t > 0, it is sufficient to prove it for t = 1. Since N <,, L*(X) would
imply N amenable, by Theorem (4.1.23) we must have A < L*(X). Then Lemma (4.1.31)
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implies L*(X) maximal abelian in M and Lemma (4.1.12) applies to get (c'), thus (c) as
well.

The proof of Corollary (4.1.34) will follow readily from the next general "principle”.
Proposition (4.1.33)[141]: Assume a II; factor M has the property:

1. 3 A c M Cartan and any maximal abelian *-subalgebra A, ¢ M with N, (4,)" a

subfactor of finite index in M is unitary conjugate to A.

Then any amplification and finite index extension/restriction of M satisfies (a) as well.

Moreover, if M satisfies (a) and N € M is an irreducible subfactor of finite index, then
[M: N] is an integer.
Proof. For the proof, we call an abelian von Neumann subalgebra B of a II,, factor P
virtually Cartan if it is maximal abelian and Q = N, (B)" has finitedimensional center with
[qPq: Qq] < oo for any atom g € L(Q). We first prove that if P € N is an inclusion of
factors with finite index and B c P is virtually Cartan in P then any maximal abelian *-
subalgebra A of B’ n N is virtually Cartan in N.

To see this, note that, by commuting squares, the index of B € B’ n N (in the sense
of [165]) is majorized by [N: P] < oo, implying that B’ N N is a direct sum of finitely many
homogeneous type I,,. von Neumann algebras B;, with1 < n; < n, < -+ <mn < 0. Since
any two maximal abelian *-subalgebras of a finite type | von Neumann algebra are unitary
conjugate and Ny (B) leaves B’ N N globally invariant, it follows that given any u € Ny (B),
there exists v(u) € U(B' N N) such that v(u)udAu*v(u)* = A. Moreover, A is Cartan in
B'NN,i.e. Nz y(A)" = B’ n N. This shows in particular that the von Neumann algebra
generated by Ny (A) contains B’ N N and v(uw)u, and thus it contains u, i.e. Np(B) C
Ny(A)".

Thus, the [165]-index of Wy (A)" in N is majorized by the index of P in N, and is
thus finite. Since N is a factor, this implies Q = Ny (4)" has finite-dimensional center and
[gNq: Qq] < oo for any atom in its center, i.e. A is virtually Cartan in N.

Now notice that since any unitary conjugacy of subalgebras 4, A, € M as in (a) can
be "amplified" to a unitary conjugacy of A%, AL in M¢, property (a) is stable to amplifications.
This also shows that (a) holds true for a factor M if and only if M satisfies:

2. 3 A ¢ M Cartan and any virtually Cartan subalgebra A, of M is unitary conjugate to

A.

Since if a subfactor N c M satisfies [M: N] < oo then (M, ey ) is an amplification of
N (see e.g. [165]), it follows that in order to finish the proof of the statement it is sufficient
to prove that if M satisfies (b) and N c M is a subfactor with finite index, then N satisfies

(b).

Let A € M be a Cartan subalgebra of M. Let P c N be such that N c M is the basic
construction of P c N (cf. [158]). Thus P is isomorphic to an amplification of M and so it
has a Cartan subalgebra A, < P. By the first part of the statement any maximal abelian
subalgebra A, of A, N N is virtually Cartan in N. Applying again the first part, any maximal
abelian A, of A} N M is virtually Cartan in M, so it is unitary conjugate to A. Thus, 4, ¢ M
follows Cartan.

Thus, L*(M) =@ u,L*(4,), for some partial isometries u,, € M normalizing A,.
Since 4, is a finitely generated A;-module, it follows that each w,L?(4,) is finitely
generated both as left and as right A; module, i.e. there exist finitely many &;, & € u,L?(4,)
such that X;&;4; and ZA, ¢/ are dense in u, L*(A,). Thus, if we denote by H;, the closure of
the range of the projection of u,,L?(4,) onto L?(N) and by n;, n; the projection of &;, ¢ onto
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L?>(N), then H, is a Hilbert A, -bimodule generated as left Hilbert A,-module by n; € L?(N)
and as a right Hilbert A;-module by n; € L>(N). Moreover, since V,, u,,L*(4,) = L*(M),
we have v,, 7,, = L*(N). Thus, by Section 1.4 in [51], 4, is Cartan in N.

Note that the above argument shows that N has Cartan subalgebra, but also that any
virtually Cartan subalgebra of N is in fact Cartan. If now B; € N is another Cartan
subalgebra of N, then let B, be a maximal abelian subalgebra of B; N M. By the first part of
the proof B, is virtually Cartan, so by (b) there exists v € U(M) such that vA,v* = B,.
Thus, if we let v,, = vu,, then L2(M) = @, v,,L*>(4,) =®,, L*(B,)v,,. Since A, (resp. By)
is a finitely generated A, (resp. B, ) module, there exist &;, ¢} € v,L%(4,) = L*(By)v, such
that 2;¢;A, is dense in v,L?(4,) and Z;B; ¢} is dense in L? (B, )v,,. But then exactly the same

argument as above shows that L?(N) is spanned by Hilbert B; — A; bimodules #,, which
are finitely generated both as right A; Hilbert modules and as left Hilbert B;, modules. By
Section 1.4 in [51], it follows that A;, B, are unitary conjugate.

Finally, to see that for irreducible inclusions of factors N ¢ M satisfying (a), the
index [M: N] is an integer, when finite, let N € Q € P c M be the canonical intermediate
subfactors constructed in 7.1 of [51]. Then Q, P satisfy (a) as well and by 7.1 in [51] the
Cartan subalgebra of P is maximal abelian and Cartan in M. Thus, as in the proof of 7.2.3°
in [51], we have [Q: N],[P: Q],[M: P] € N, implying that [M: N] € N.

Corollary (4.1.34)[141]: Let T = [,y X ==- X Fp4y (as in Theorem (4.1.23), Corollary
(4.1.32)) and I" ~ X a free ergodic profinite (or merely compact) action. Then, L*(X) is the
unique Cartan subalgebra of the II ;-factor L*(X) > T, up to unitary conjugacy. Moreover,
If gogo denotes the class of all 11, factors that can be embedded as subfactors of finite index
in an amplification of some L (X) % T', with ' ~ X free ergodic compact action and I'" as
above, then any M € g has unique Cartan subalgebra, up to unitary conjugacy. The class
g 1s closed under amplifications, tensor product and finite index extension/restriction.
Also, if M € gogo and N c M is an irreducible subfactor of finite index, then [M: N] is an
integer.

Proof. Let M = L*(X) % T and assume A c M is a Cartan subalgebra. By Proposition
(4.1.18) and Corollary (4.1.19), M follows c.m.a.p. Thus, Theorem (4.1.22) applies to show
that Vy, (A) ~ A is weakly compact. Since IF,.(; are all nonamenable, M = JVy,(4)" cannot
be amenable relative to L (X) x I (with I as defined in Theorem (4.1.23)), for all j. Hence,
Theorem (4.1.23) implies A < ML* (X).

Then Lemma (4.1.12) shows there is u € U(M) such that uAu™ = L*(X), proving
the first part of the statement. The rest is a consequence of Proposition (4.1.33).

We prove that there are uncountably many approximate free group factors of any rank
2 < n < oco. We do this by using a "separability argument,” in the spirit of [167], [159],
[163]. The proof is independent of the previous. The result shows in particular the existence
of uncountably many orbit inequivalent profinite actions of F,. The fact that F,, has
uncountably many orbit inequivalent actions was first shown in [151]. A concrete family of
orbit inequivalent actions of IF,, was recently obtained in [155]. Note that the actions F,, ~
X in[151] and [155] are not orbit equivalent to profinite actions (because they have quotients
that are free and have relative property (T) in the sense of [51]).

Definition (4.1.35)[141]: We say a unitary representation (rr, H') of I has (resp. essential)
spectral gap if there is a finite subset F of " and & > 0 such that the self-adjoint operator
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5177 2, (@) + (™)

geF

has (resp. essential) spectrum contained in [—1,1 — €]. We say such (F, €) witnesses ( resp.
essential) spectral gap of (, H).
It is well-known that (7r, H') has spectral gap if and only if it does not contain approximate
Invariant vectors.
Definition (4.1.36)[141]: Let ' be a group. We say T is inner-amenable ([149]) if the
conjugation action of I on £%(T \ {1}) does not have spectral gap.

Let {I},,} be a family of finite index (normal) subgroups of I'. We say I" has the property
(7) with respect to {I,} if the unitary I'-representation on

P eamy

n
has spectral gap, where £2(T'/T,,)° = £2(T'/T;,) © Clr.

I'n
Let I be a family of decreasing sequences

i=(r=rPzrP2r®2-)
of finite index normal subgroups of T" such that N F,Ei) = {1}. We allow the possibility that
F,Ei) = rfjl. We say the family I is admissible if T has the property (z) with respect to
{r nr:ij € ,mn e N}and

sup{[F: F,S)F,Ej)] :m,n € N} <
forany i,j € I with i # j.
Lemma (4.1.37)[141]: Let I < SL(d, Z) with d = 2 be a finite index subgroup and

I, =T nker (SL(d, Z) - SL (d'n%))

Let I be a family of infinite subsets of prime numbers such that |i N j| < co forany i,j € 1
with i # j. (We note that there exists such an uncountable family 1.) Associate each i =

{p; < p, < -} € I with the decreasing sequence of finite index normal subgroups FTEi) =
[n) Where i(n) = pq -+ pp. Then, the family I is admissible.

Proof. First, we note that I;;, N I3, = Tycqemn)- BY the celebrated results of Kazhdan for d =
3 (see [144]) and Selberg for d = 2 (see [42]) the group T has the property () with respect

to the family {I},,: n € N}. We observe that the index [F: F,SPF,ED] is the cardinality of I'-
orbits of (F/F,Sf)) X (F/F,Ej)). Since

l
SL(d 2/pypD) = | | su@ 2/
k=1
for any mutually distinct primes p4, ..., p;, one has a group isomorphism
Z.

Z Z. Z
SL (.- (m)z) x SL (d,j—(n)z) = SL(d, ) xSt (d, ),
where k = gcd(i(m),j(n)) and [ = i(m)j(n)/gcd(i(m), j(n)). Since
(/1) x (r/r{) < SL(d, Z/i(m)Z) x SL(d, Z/j () Z)
as a I'-set, one has
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ION6))
[F. | o) Dy ] < |SL< kZ)| [SL (d lZ) Fl].

Therefore, the condition sup {[l‘: F,Sf)l“,gj)] :m,n € N} < oo follows from the fact that
linj| < oo.

1 2y /1 0\ o
For example, we can take I' < SL(2,Z) to be <(0 1),(2 1)> = [F,. By [171], one

may relax the assumption that " I' < SL(d, Z) has finite index" to " I' < SL(d, Z) is co-
amenable," so that one can take I" to be isomorphic to F..

Let P = (I,)n=, be a decreasing sequence of finite index subgroups of a group T.
We write X5 = lim_T'/T;, for the projective limit of the finite probability space I'/T;, with
uniform measures. We note that L*(Xs) = (U€°° (I‘/Fn))”, where the inclusion
l: 2 (/1) & (T /T,,41) is given by ¢, (f)(gl+1) = f(gl},). There is a natural action
I' ~ L*(Xs) which is ergodic, measurepreserving and profinite. (Any such action arises in
this way.) The action is essentially-free if and only if

[{repgox=x}

=
This condition clearly holds if all T}, are normal and NI, = {1}. We denote A = L* (Xs)
and As,, = £°(T/I},) © AS Since

L*(4,) = «:1@@ 1*(Ayn) © L?(Asn-1) c@l@@ £2(T/T,)°

as a I'-space, the action F ~ A Is strongly ergodic if T' has the property (t) with respect to
?

Theorem (4.1.38)[141]: Let T be a countable group which is not inner-amenable, and I be
an uncountable admissible family of decreasing sequences of finite index normal subgroups
of . Then, all M; = L(X;) % T are full factors of type II; and the set {M;:i € I} contains
uncountably many isomorphism classes of von Neumann algebras.

Proof. That all M; are full follows from [145]. Take a finite subset F of I and € > 0 such
that (F, €) witnesses spectral gap for both non-inner-amenability and the property (z) with

respect to {F,(ni) N F,Ej)}. We write 4;(g) for the unitary element in M; that implements the
action of g € T.

We claim that if i # j, then (F, &) witnesses essential spectral gap of the unitary I'-
representation Ad(2; ® 4;) on L?(M; ® M;). First, we deal with the Ad(4; ® 2,)(I)-
invariant subspace

P(AQ4)=C1d EB (LZ (Ain ® Ajy) © L?(Ajn-1 ® A,-,n_l)) . (14)
We note that the unitary F—representati_on on

12(Ain ® Ajy) = 2 ((F/F,S")) X (F/F,Sf)))
is contained in a multiple of £2 (F/( % n FU))>. Hence if we show that the subspace of

forall g e '\ {1} |{x € X5: gx = x}| = lim,, = 0. (13)

T-invariant vectors in L?(A; ® 4;) is finite-dimensional, then we can conclude by the
property (7) that (F, ) witnesses essential spectral gap. Suppose ¢ € L? (Al-,n 029 Aj’n) is -
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invariant. Since I\ acts trivially on L2(4;,), the vector ¢ is Ad(1 ® 4;) (F,Ei))-invariant.
The same thing is true for j. It follows that ¢ is in the F,Ei)l“,gj) X F,Ei)r‘,gj)—invariant subspace,
, ~12
whose dimension is [F: F,E‘)F,EJ)] :
Since this number stays bounded as n tends to oo, we are done. Second, we deal with
the Ad(A; ® A;)(T)-invariant subspace
(L2(M) © L2 (4)) ® L*(M;) = £2(T\ {1}) ® L*(4) ® L*(M;),  (15)
where T' acts on the right-hand side Hilbert space (which will be denoted by H ) as
Ad(/l(g)_ ® 2:(9) ® A;(g))- For every vector & € H, we write it as (fg)gel‘\{l} with &, €
L*(4;) ® L?(M;) and define |&| € €2(T \ {1}) by |€](g) = [I&,]l- 1t follows that
R(Ad(A(9) ® 4:(9) ® 4(9))$,¢)

- Z (Ad(2:(9) ® 2(9))én Egng)
hel\{1}

< Z 1€ MEgng—r]l = (Ad A()IEL, €])

hel\{1
foreverygeTland ¢ € H. S};c}e (F, ) witnesses spectral gap of the conjugation action on
£2(T \ {1}), it also witnesses spectral gap of the ['-action on . Similarly, (F, &) witnesses
spectral gap of
2(M) ® (12(M;) © 12(4)). (16)
Since the Hilbert spaces (14)-(16) cover L*(M; @ M;), we conclude that (F, ) witnesses
essential spectral gap of the I'-action Ad()tl- X )Lj). This argument is inspired by [145].

We claim that for any i € I and any unitary element u(g) € M; with |l 4;(g) —
u(g) ll,< /4, the essential spectrum of the self-adjoint operator

hy = 2|F|QZEF Ad(i(9) ® u(9)) + Ad(A(g™) ® u(g ™))

on L2(M; ® M;) intersects with [1 — £/2,1]. We fix i € I and define for every n € N the
projection y,, € M; ® M; by x,, = e, & e,, where {e,} is the set of nonzero minimal

] . ] . . .. 11/2
projections in A;, = £% (F/F,E‘)). We normalize &, = [F: F,E‘)] Xn SO that [1E,1l, = 1.
Then, it is not hard to see

Ad(4;(9) ® 24i(9))én = én
forall g €T, and

I(1 ® @)&,lI2 =1l a 3= 15,(1 ® )l
for all a € M;. It follows that

(el &) = Y KAL) @ U9 o)

gEeF

> ﬁz (1-2012:(9) — u(@ll,) > 1 —&/2.

gEF
Since &,, — 0 weakly as n — oo, the claim follows (cf. [42]).

IF]
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From the above claims, we know that if i # j, then there is no *-isomorphism 8 from
M; onto M; such that [|6(2;(g)) — Aj(g)ll2 < g/4 for all g € F. Now, if the isomorphism

classes of {M;:i € I} were countable, then there would be M, and an uncountable subfamily

I, I such that M; = M, for all i € I,. Take an *isomorphism 6;: M; - M, for every i €

I,. Since M{ is separable in ||-|l,-norm, there has to be i, j € I, with i # j such that
rggg‘”@(ﬂi(g)) — 9j(ﬂj(9))”2 < &/4,

in contradiction to the above.

When combined with Lemma (4.1.37), Theorem (4.1.38) shows in particular that any
arithmetic property (T) group has uncountably many orbit inequivalent free ergodic profinite
actions, thus recovering a result in [42]. However, [42] provides a "concrete” family
(consequence of a cocycle superrigidity result for profinite actions of Kazhdan groups)
rather than an “existence" result, as Theorem (4.1.38) does. But the consequence of Theorem
(4.1.38) and Lemma (4.1.37) that is relevant here is the following:

Corollary (4.1.39)[141]: For each 2 <r <o, there exist uncountably many
nonisomorphic approximate free group factors of rank r. In particular, there exist
uncountably many orbit inequivalent free ergodic profinite actions of F,..

As mentioned, all L(IFIf) have Haagerup's compact approximation property (by
[153]), the complete metric approximation property (by Theorem (4.1.14)) and unique
Cartan subalgebra, up to unitary conjugacy (by Corollary (4.1.34)). Also, by [164], the
commutant of any hyperfinite subfactor of L(IFI‘f) must be an amenable von Neumann

algebra, in particular L(IFI’;S) IS prime, i.e. it cannot be written as a tensor product of two II;

factors. By [Pop06a], since the factors L(IFI’f) have Haagerup property they cannot contain

factors M which have a diffuse subalgebra with the relative property (T). In particular, the

H & — factors considered in [51]) cannot be embedded into approximate free group factors.

Same for the factors arising from Bernoulli actions of " w-rigid" groups in [168].
Corollary (4.1.34) combined with [150] shows that approximate free group factors of

different rank are nonisomorphic, L(F}% )L(Fy ), for all 2 < 7 # s < oo, and have trivial

Murray-von Neumann fundamental group [161] when the rank is finite, F (L(]Fif ) = {1},

forall 2 < r < oo, (Recall from [161] that if M is all; factor then its fundamental group is
defined by F(M) ={t > 0| M* =~ M}.) The first examples of factors with trivial
fundamental group were constructed in [51], were it is shown that F (L (T?) x F,.) = {1},
for any finite r > 2, the action of F,. on I? being inherited from the natural action SL(2,Z) ~
12 = Z2, for some embedding F, c SL(2, Z).

One can show that amplifications of approximate free group factors are related by the

t I
formula L(IF;';S = L(IFI;S ) with ' =t71(r — 1) + 1, whenever t~! is an integer

dividing the index of some [I': [;] in the decreasing sequence of groups P = (I3,), with P’
appropriately derived from §. It is not clear however if this is still the case for other values
of t for which t71(r — 1) + 1 is still an integer.

Finally, note that L(IF}% ) is non T if and only if the action I' ~ X has spectral gap.
Indeed, since the acting group is F,, any asymptotically central sequence in L(F[y) =
L (Xs) x . must lie in L®(Xy), so L(F75") is non T if and only if F, ~ X is strongly
ergodic, which by [142] is equivalent to IF,. ™~ X having spectral gap. Foreach 2 < r < oo,
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one can easily produce sequences of subgroups P = (I},) such that IF,. ™~ X does not have
spectral gap, thus giving factors L(IF:;TS ) with property I'. On the other hand, as mentioned

before, if IF,. is embedded with finite index in SL(2, Z) (or merely embedded "co-amenably,"
see [171]) and P = (T,) is given by congruence subgroups, then FF,. ™~ X has spectral gap

by Selberg's theorem. Thus, the corresponding approximate free group factors L([Fiiy ) are
non I'. By Corollary (4.1.39) and its proof, there are uncountably many nonisomorphic such

factors L(IF;;ES) for each 2 < r < co. It is an open problem whether there exist solid factors
within this class.

Section (4.2): Free Araki-Woods Factors and Their Continuous Cores
The free Araki-Woods factors were introduced by Shlyakhtenko in [15]. In the
context of free probability theory, these factors can be regarded as the analogs of the
hyperfinite factors coming from the CAR functor. To each real separable Hilbert space Hg
together with an orthogonal representation (U,) of R on Hg, one can associate a von
Neumann algebra denoted by I'(Hg, U;)"”, called the free A raki-Woods von Neumann
algebra. The von Neumann algebra I'(Hg, U;)"" comes equipped with a unique free quasi-
free state denoted by ¢, which is always normal and faithful on I'(Hg, U,)". If dim Hg =
1, then T'(R,Id)" = L*[0,1]. If dim Hg = 2, then M = T'(Hg, U,)" is a full factor. In
particular, M can never be of type IIl,. The type classification of these factors is the
following:
1. M is a type II, factor iff the representation (U,) is trivial: in that case the functor I'

is Voiculescu's free Gaussian functor [19]. Then I'(Hg, 1d)" = L(Fim gy )-

2. M isatype Ill ; factor, for 0 < A < 1, iff the representation (U,) is Ilj;l-periodic.

3. M is atype IIlI, factor iff (U,) is non-periodic and non-trivial. Using free probability
techniques, Shlyakhtenko obtained several remarkable classification results for
I'(Hg, U,)". For instance, if the orthogonal representations (U,) are almost periodic,
then the free Araki-Woods factors M = I'(Hg, U;)"" are completely classified up to
statepreserving *-isomorphism [15]: they only depend on Connes' invariant Sd(M)
which is equal in that case to the (countable) subgroup S; < R% generated by the
eigenvalues of (U,). Moreover, the discrete core M xS, (where S is the compact
group dual of S;) is *isomorphic to L(F,,) & B(#?). Shlyakhtenko showed in [14]
that if (U,) is the left regular representation, then the continuous core M = M >, R
is isomorphic to L(F,) ® B(£?) and the dual "trace-scaling” action (6;) is precisely
the one constructed by Radulescu [184]. For more on free Araki-Woods factors, we
refer to [179],[1],[185],[12],[186],[13],[14],[15] and also to VVaes' Bourbaki seminar
[18].

The free Araki-Woods factors as well as their continuous cores carry a malleable
deformation in the sense of Popa. Then we will use the deformation/rigidity strategy
together with the intertwining techniques in order to study the associated continuous cores.
The high flexibility of this approach will allow us to work in a semifinite setting, so that we
can obtain new structural/indecomposability results for the continuous cores of the free
Araki-Woods factors. We first need to recall a few concepts. Following Ozawa [162], [164],
a finite von Neumann algebra N is said to be:

1. solid if for any diffuse von Neumann subalgebra A c N, the relative commutant A’ N

N is amenable;
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2. semisolid if for any type II; von Neumann subalgebra A c N, the relative commutant

A' N N is amenable.

It is easy to check that solidity and semisolidity for II; factors are stable under taking
amplification by any t > 0. Moreover, if N is a non-amenable II, factor, then solid =
semisolid = prime. Recall in this respect that N is said to be prime if it cannot be written
as the tensor product of two diffuse factors.

Ozawa discovered a class S of countable groups for which whenever I' € §, the group
von Neumann algebra L(T) is solid [162]. He showed that the following countable groups
belong to the class : the word-hyperbolic groups [162], the wreath products A: T for A
amenable and I' € S[164], and Z? x SL(2,Z)[181]. He moreover proved that if ' € S, then
for any free, ergodic, p.m.p. action ' ~ (X, u), the corresponding 11, factor L (X, u) X T is
semisolid [164]. Recall that a non-amenable solid II; factor does not have property I' of
Murray & von Neumann [162].

Definition (4.2.1)[173]: Let M be a Il factor and let Tr be a fixed faithful normal semifinite
trace on M. We shall say that M is solid (resp. semisolid) if for any non-zero projection q €
M such that Tr(q) < oo, the II; factor gMgq is solid (resp. semisolid).

Recall that an orthogonal/unitary representation (U,) acting on H is said to be mixing

if forany &, € H,(U:&,n) — 0, as |t|] = co. The main result is the following:
Theorem (4.2.2)[173]: Let M = I'(Hg, U;)" be a type 111, free Araki-Woods factor. Then
the continuous core M = M >, R is a semisolid I, factor. Since M is non-amenable, M is
always a prime factor. If the representation (U;) is moreover assumed to be mixing, then M
is a solid II, factor.

The proof of Theorem (4.2.2) follows Popa's deformation/rigidity strategy. This
theory has been successfully used over the last eight years to give a plethora of new
classification/rigidity results for crossed products/free products von Neumann algebras. We
refer to [176],[180],[156],[182],[169],[52],[51],[168],[183],[189] for some applications of
the deformation/rigidity technique. We point out that in the present, the rigidity part does
not rely on the notion of (relative) property (T) but rather on a certain spectral gap property
discovered by Popa in [182],[169]. Using this powerful technique, Popa was able to show
for instance that the Bernoulli action of groups of the form I; X I,, with I; non-amenable
and I, infinite is U -cocycle superrigid [182]. The spectral gap rigidity principle gave also
a new approach to proving primeness and (semi)solidity for type II;/Ill factors
[175],[176],[182],[169]. We briefly remind below the concepts that we will play against
each other in order to prove Theorem (4.2.2):

1. The first ingredient we will use is the "malleable deformation™ by automorphisms

(a;, B) defined on the free Araki-Woods factor M + M = T'(Hg @ Hg, U, D U,)".

This deformation naturally arises as the "second quantization” of the

rotations/reflection defined on Hg @ Hg that commute with U, @ U;,. It was shown

in [182] that such a deformation automatically features a certain "transversality
property"” (see Lemma 2.1 in [182]) which will be of essential use in our proof.
2. The second ingredient we will use is the spectral gap rigidity principle discovered by

Popa in [182],[169]. Let B © M; be an inclusion of finite von Neumann algebras, for

i = 1,2, with B amenable. Write M = M; xz3 M,. Then for any von Neumann

subalgebra Q < M; with no amenable direct summand, the action by conjugation

Ad(U(Q)) ™~ M has "spectral gap" relative to M;: for any € > 0, there exist § > 0
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and a finite "critical" subset F c U(Q) such that for any x € (M), (the unit ball of
M), if luxu* — xll, < 6,Vu € F, then ||x — EMl(x)H2 <e.

3. Let M = M >, R be the continuous core the free Araki-Woods factor M. Letq € M
be a non-zero finite projection. A combination of (a) and (b) yields that for any Q c
qMgq with no amenable direct summand, the malleable deformation (a;) necessarily
converges uniformly in [I-]l, on (Q' NngMgq),. Then, using Popa's intertwining
techniques, one can locate the position of Q' N gMq inside gMgq.

The second result we provide a new example of a non-amenable solid II; factor. We
first need the following:

Example (4.2.3)[173]: Using results of [174], we construct an example of an orthogonal

representation (U,) of R on a (separable) real Hilbert space Ky such that:

1. (U,) is mixing.

2. The spectral measure of @,,- U,ﬁg’” Is singular w.r.t. the Lebesgue measure on R.
Shlyakhtenko showed in [14] that if the spectral measure of the representation

EanlUt@’” is singular w.r.t. the Lebesgue measure, then the continuous core of the free
Araki-Woods factor I'(Hg, U,)"" cannot be isomorphic to any L(F,) @ B(¢£?),for1 <t <
oo, where L(F;) denote the interpolated free group factors [6],[10]. Therefore, we obtain:
Theorem (4.2.4)[173]: Let (U;) be an orthogonal representation acting on Ky as in Example
(4.2.3). Denote by M = I'(Kg, U;)"' the corresponding free Araki-Woods factor and by M =
M x4, R its continuous core. Let g € L(R) be a non-zero projection such that Tr(q) < oo.
Then the non-amenable 11, factor gMgq is solid, has full fundamental group, i.e. F(qgMq) =
R’ and is not isomorphic to any interpolated free group factor L(F,), for 1 < t < co.

We recall the necessary background on free Araki-Woods factors as well as
intertwining techniques for (semi)finite von Neumann algebras. We mainly devoted to the
proof of Theorem (4.2.2), following the deformation/spectral gap rigidity strategy presented
above. We construct Example (4.2.3) and deduce Theorem (4.2.4).

Let Hg be a real separable Hilbert space and let (U,) be an orthogonal representation
of R on Hy such that the map t — U, is strongly continuous. Let H: = Hgr Qg C be the
complexified Hilbert space. We shall still denote by (U,) the corresponding unitary
representation of R on H¢. Let A be the infinitesimal generator of (U;) on H. (Stone's
theorem), so that A is the positive, self-adjoint, (possibly) unbounded operator on H: which
satisfies U, = A%, for every t € R. Define another inner product on H¢ by

2
€my = (T Em). v € He.

Note that for any & € Hg, Il € lly=Il & |I; also, for any &,n € Hg, R((&,n)y) = (&, 1), where
‘R denotes the real part. Denote by H the completion of H w.r.t. the new inner product (-,
Yu, and note that (U,) is still a unitary representation on H. Introduce now the full Fock.
space of H:

FH)=CQ® @ H®",
n=1

The unit vector Q is called the vacuum vector. For any & € H, we have the left creation
operator
()0 =¢.
(&) F(H F(H :{
O FHE) = FH 6, @ 0 6) =R ® - ® &y
Forany ¢ € H, we denote by s(&) the real part of (&) given by
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L&)+ 4O
s = L+ 4G
The crucial result of Voiculescu [19] is that the distribution of the operator s(&) w.r.t. the
vacuum vector state @, = (- Q, Q) is the semicircular law of Wigner supported on the
interval [—II € I, II € II].
Definition (4.2.5)[173]: (Shlyakhtenko, [15]). Let (U,) be an orthogonal representation of
R on the real Hilbert space Hg. The free Araki-Woods von Neumann algebra associated
with Hg and (U,), denoted by I'(Hg, U;)"', is defined by
['(Hg, Up)":={s(§):§ € Hr}".

The vector state ¢, = (- Q, Q) is called the free quasi-free state. It is normal and faithful
onT'(Hg, Uy)".

Recall that for any type III, factor M, Connes-Takesaki's continuous decomposition
[4],[187] yields

M @ B(L*(R)) = (M x, R) Xy R,
where the continuous core M >, R is a Il factor and 6 is the trace-scaling action [187]:
Tr(BS(x)) =e STr(x),Vx € (M x,R),,Vs €R.
The fact that M >, R does not depend on the choice of a f.n. state on M follows from
Connes' Radon-Nikodym derivative theorem [4]. Moreover, for any non-zero finite
projection g € M = M >, R, the II; factor gMq has full fundamental group.

Following [3], a factor M (with separable predual) is said to be full if the subgroup
of inner automorphisms Inn(M) c Aut(M) is closed. Recall that Aut(M) is endowed with
the u-topology: for any sequence (8,,) in Aut(M),

0,—-Idasn->o0 < |lpeld, —@ll »0,asn - o, Vp € M,.

Since M has a separable predual, Aut(M) is a polish group. For any II; factor N, N is full
Iff N does not have property I' of Murray & von Neumann (see [3]).
Denote by m: Aut(M) — Out(M) the canonical projection. Assume M is a full factor so
that Out(M) is a Hausdorff topological group. Fix a f.n. state ¢ on M. Connes' invariant
(M) is defined as the weakest topology on R that makes the map

R - Out(\M)

t ~mn(s)
continuous. Note that this map does not depend on the choice of the f.n. state ¢ on M[4].
Denote by F(U;) = ®,,en Ut®”. The modular group o ®v of the free quasi-free state is given

by: 6V = Ad(F(U_,)), for any t € R. The free Araki-Woods factors provided many new
examples of full factors of type Il [2],[4],[12]. We can summarize their general properties
in the following theorem (see also Vaes' Bourbaki seminar [18]):

Theorem (4.2.6)[173]: (Shlyakhtenko, [12],[13],[14],[15]). Let (U,) be an orthogonal
representation of R on the real Hilbert space Hp with dim Hg = 2. Denote by M =
T'(Hg, Up)".

1. M is a full factor and Connes' invariant 7(M) is the weakest topology on R that

makes the map t = U, strongly continuous.

M is of type 11, iff U, = id for every t € R. In this case, M = L(Fdim(HR)).
M is of type 111, (0 < A < 1) iff (U,) is periodic of period |l§g/1|'

M is of type III; in the other cases.
M has almost periodic states iff (U,) is almost periodic.

gk 0N
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Moreover, it follows from [185] that any free Araki-Woods factor M is generalized
solid in the sense of [188]: for any diffuse von Neumann subalgebra A ¢ M such that there
exists a faithful normal conditional expectation E: M’ — A, the relative commutant A’ N M
Is amenable.

Notice that the centralizer of the free quasi-free state M’ ¥V may be trivial. This is the
case for instance when the representation (U,) has no eigenvectors. Nevertheless, the author
recently proved in [179] that for any type III, free Araki-Woods factor M, the bicentralizer

is trivial, i.e. there always exists a faithful normal state 1y on M such that (JV[‘/’)' nNM =
C. See [178] for more on Connes' bicentralizer problem.

Remark (4.2.7)[173]: ([15]). Explicitly the value of ¢, on a word in s(¢,) is given by
n/2

ou(s@) s =2 > || edn,  an
({BuyiDENC(N),Bi<y; k=1

for n even and is zero otherwise. Here NC(2p) stands for all the non-crossing pairings of

the set {1, ...,2p}, i.e. pairings for which whenever a < b < ¢ < d, and a, c are in the same

class, then b, d are not in the same class. The total number of such pairings is given by the

p-th Catalan number
1 Zp
¢ =——=(7)
P p+1\p

Recall that a continuous ¢-preserving action (og;) of R on a von Neumann algebra M
endowed with a f.n. state ¢ is said to be ¢-mixing if for any x, y € M with ¢(x) = @(y) =
0,

¢(o¢(x)y) = 0, as [t| - oo. (2)
Proposition (4.2.8)[173]: Let M = I'(Hg, U;)"' be any free Araki-Woods factor and let ¢
be the free quasi-free state. Then

(Up) ismixing < (0,.Y) is ¢y — mixing.
Proof. We prove both directions.
< Forany &, n € Hg, oy (s(€)) = oy (s(n)) = 0. Moreover,
(UeSimy = 4oy (s(U)s(n))
= 49y (0?7 (s(£))s(m)) = 0, as |t| - oo,

It follows that (U,) is mixing.
= One needs to show that for any x,y € M,

lim ¢y (07" (x)y) = ey ey ().

|t]—>o0

Note that

span{l, S(El) S(fn): nz=1, 617 L fn € HR}
Is a unital *-strongly dense *-subalgebra of M. Using Kaplansky density theorem, it suffices
to check Equation (18) for x,y € M of the following form:

x =s5(&) "'5(€p)
y =5 s(ng)-
Assume that p +q is odd. Then p or g is odd and we have ¢y(o " (x)y) =0=

oy (xX)ey(y) forany t € R. _
Assume now that p + g is even.

(a) Suppose that p, g are odd and write p = 2k + 1,q = 2L + 1. Then
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¢U(U:0U(x)Y) = <PU(5(U—tfl) o S(U_¢&op1)s(my) - 3(7121+1))

k+l+1

= 2-2(k+1+1) Z 1_[ <hﬁj, hyj>U ,

({BiviDENC(2(k+1+1)),Bi<y; Jj=1
where the letter h stands for U_,& or n. Notice that since 2k + 1 and 21 + 1 are odd, for any
non-crossing pairing ({8;,v;}) € NC(2(k + L + 1)), there must exist some j € {1, ...,k +

[ + 1} such that <hﬁj, h,,j> = <U_tfﬁj, r)yj>. Since we assumed that (U,) is mixing, it follows

that @y (0" (0)y) = 0 = @y (X)py (), as |t| - .
(b) Suppose that p, g are even and write p = 2k,q = 21. Then
(PU(U;'DU(X)ZV) = ‘PU(S(U—tﬁ) o S(U_¢é21)s(m1) "'5(7721))
k+1
— 2-2(k+0) Z 1_[ <hﬁj'hyj>u'
{BiviDENC(2(k+D),Bi<y; j=1
where the letter h stands for U_;& or n. Note that for a non-crossing pairing v = ({8;,v;}) €
NC(2(k + 1)) such that an element of {1, ...,2k} and an element of {1, ...,21} are in the same

class, the proof of (a) yields that the corresponding product Hj?;’{ <h3j, h,,j> goes to 0, as
U

|t| = oo. Thus, we just need to sum up over the noncrossing pairings v of the form v; X v,,
where v, is a non-crossing pairing on the set {1, ...,2k} and v, is a non-crossing pairing on
the set {1, ...,21}. Consequently, we get ¢y (aY (x)y) = @y () @y (), as |t] - o.
Therefore, (at"’U) is mixing.

Proposition (4.2.9)[173]: Let M = I'(Hg, U;)". If (U,) is mixing, then Connes' invariant
(M) is the usual topology on R.

Proof. Let M =T'(Hg,U,)". Recall from Theorem (4.2.6) that 7(M) is the weakest
topology on R that makes the map t — U, strongly continuous. Let (t;) be a sequence in R
such that ¢, — 0 w.r.t. the topology (M), as k — o, i.e. Uy, — Id strongly, as k — co. Fix
& € Hgy, Il € llI=1. Since

lim (U, §,¢) =1

k—oo

and (U,) is assumed to be mixing, it follows that (t;) is necessarily bounded. Let t € R be
any cluster point for the sequence (t). Then U, = Id. Since (U;) is mixing, it follows that
t = 0. Therefore (t;) converges to 0 w.r.t. the usual topology on R.

Let (B, 7) be a finite von Neumann algebra with a distinguished f.n. trace. Since 7 is
fixed, we simply denote L?(B, t) by L?(B). Let H be a right Hilbert B-module, i.e. H is a
complex (separable) Hilbert space together with a normal *-representation r: B> — B(H).
Forany b € B, and ¢ € H, we shall simply write m(b°P)¢ = &b. By the general theory, we
know that there exists an isometry v: H — £2 @ L?(B) such that v(£b) = v(&)b, for any
& € H,b € B. Since p = vv* commutes with the right B-action on £? @ L?(B), it follows
that p € B(#?) ® B. Thus, as right B-modules, we have Hy = p(¥* ® L? (B))B.

On B(#?) ® B, we define the following f.n. semifinite trace Tr (which depends on t ): for
any x = [xij]i’j € (B(fz) ® B)+,

Tr ([xif]i,j) = z T(x1).

i
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We set dim(Hg) = Tr(vv™). Note that the dimension of H depends on t but does not depend
on the isometry v. Indeed take another isometry : H — £2 @ L*(B), satisfying w(&b) =
w(&)b, forany € € H,b € B. Note that vw* € B(#?) ® B and w*w = v*v = 1. Thus, we
have
Tr(vv*) = Tr(vw*wv*) = Tr(wv*vw*) = Tr(ww™).

Assume that dim(Hg) < co. Then for any € > 0, there exists a central projection z € Z(B),
with t(z) = 1 — ¢, such that the right B-module Hz is finitely generated, i.e. of the form
pL?(B)®™ for some projection p € M,,(C) ® B. The non-normalized trace on M,,(C) will
be denoted by Tr,,. For simplicity, we shall denote B™: = M,,(C) &® B.

In [52],[51], Popa introduced a powerful tool to prove the unitary conjugacy of two
von Neumann subalgebras of a tracial von Neumann algebra (M, 7). If A,B c (M, 1) are
two (possibly non-unital) von Neumann subalgebras, denote by 1,, 15 the units of A and B.
Note that we endow the finite von Neumann algebra B with the trace (15 - 15)/t(1p).
Theorem (4.2.10)[173]: (Popa, [52],[51]). Let A, B c (M, t) be two (possibly non-unital)
embeddings. The following are equivalent:

1. There exist n > 1, a (possibly non-unital) *-homomorphism y:A — B™ and a
nonzero partial isometry v € M, ,(C) @ 1,M1p such that xv = vy (x), forany x €

A.

2. The bimodule 4L?(1,M15)5 contains a non-zero sub-bimodule ,Hg which satisfies

dim(Hg) < oo.

3. There is no sequence of unitaries (u;) in A such that ||Eg(a*u,b)Il, = 0, as k — oo,
forany a,b € 1,M15.

If one of the previous equivalent conditions is satisfied, we shall say that A embeds
into B inside M and denote A <,, B.

Definition (4.2.11)[173]: (Popa & Vaes, [183]). Let A € B c (N, t) be an inclusion of
finite von Neumann algebras. We say that B c N is weakly mixing through A if there exists
a sequence of unitaries (u;) in A such that

IIE)_E}(OL*ukb)II2 — 0,as k > oo,Va,b € N © B.
The following result will be a crucial tool: it will allow us to control the relative commutant
A" n N of certain subalgebras A of a given von Neumann algebra N.
Theorem (4.2.12)[173]: (Popa, [52]). Let (N, T) be a finite von Neumann algebraand A c
B < N be von Neumann subalgebras. Assume that B < N is weakly mixing through A. Then
for any sub-bimodule ,Hy of ,L?(N)g such that dim(Hg) < oo, one has H c L?(B). In
particular, A" n N c B.

We will need to use Popa's intertwining techniques for semifinite von Neumann
algebras. See Section 2 of [176] where such techniques were developed. Namely, let (M, Tr)
be a von Neumann algebra endowed with a faithful normal semifinite trace Tr. We shall
simply denote by L*(M) the M — M bimodule L*(M,Tr), and by -l the L?>-norm
associated with the trace Tr. We will use quite often the following inequality:

I xny Ny e <l X looll ¥ ool 7 27, VI € L2(M), VX, y € M,
where ||-ll, denotes the operator norm. We shall say that a projection p € M is Tr-finite if
Tr(p) < oo. Note that a non-zero Tr-finite projection p is necessarily finite and Tr(p -
p)/Tr(p) is a f.n. (finite) trace on pMp. Remind that for any projections p,q € M, we have
pVq—p~q—pAq. Then it follows that for any Tr-finite projections p,q € M,p V q is
still Tr-finite and Tr(p V q) = Tr(p) + Tr(q) — Tr(p A q).
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Note that if a sequence (x;) in M converges to 0 strongly, as k — oo, then for any
non-zero Tr-finite projection g € M, lxeqll, r, = 0,as k — co. Indeed,
x = 0 stronglyin M < x;,x;, = 0 weakly in M
= qx,x,q — 0 weakly in gMq
= Tr(gxgxrq) = 0
= llxqll, . = 0.

Moreover, there always exists an increasing sequence of Tr-finite projections (p;) in M

such that p,, — 1 strongly, as k — oo,

Theorem (4.2.13)[173]:([176]). Let (M, Tr) be a semifinite von Neumann algebra. Let B

M be a von Neumann subalgebra such that Trj is still semifinite. Denote by Ez: M — B the

unique Tr-preserving faithful normal conditional expectation. Let g € M be a non-zero

Trfinite projection. Let A € gMq be a von Neumann subalgebra. The following conditions

are equivalent:

1. There exists a Tr-finite projection p € B,p # 0, such that the bimodule
aL?(qMp),5, contains a non-zero sub-bimodule ,H,p, which satisfies
dim(H,5,) < oo, where pBp is endowed with the finite trace Tr(p - p)/Tr(p).

2. There is no sequence of unitaries (u;) in A such that Eg(x*u,y) — 0 strongly, as
k — oo, forany x,y € gM.

Definition (4.2.14)[173]: Under the assumptions of Theorem (4.2.13), if one of the

equivalent conditions is satisfied, we shall still say that A embeds into B inside M and still

denote A <,, B.

Let Hy be a separable real Hilbert space (dim(Hg) = 2) and let (U;) be an orthogonal
representation of R on Hy that we assume to be neither trivial nor periodic. We set:
1. M =T(Hg,U;)" is the free Araki-Woods factor associated with (Hg, U,), ¢ is the
free quasi-free state and o is the modular group of the state ¢. M is necessarily a type
[11, factor since (U,) is neither periodic nor trivial.
2. M = M >, R is the continuous core of M and Tr is the semifinite trace associated
with the state ¢. M is a Il factor since M is a type III; factor.
3. Likewise M = T(Hg @ Hg, U, ® U,)", @ is the corresponding free quasi-free state
and & is the modular group of @.
4. M = M xR is the continuous core of M and Tr is the f.n. semifinite trace
associated with .
It follows from [15] that
(M, 3) = (M, ) x (M, ).

In the latter free product, we shall write M, for the first copy of M and M., for the second

copy of M. We regard M’ c M via the identification of M with M.

Denote by (A;) the unitaries in L(R) that implement the modular action ¢ on M (resp. & on

M). Define the following faithful normal conditional expectations:

1. E:M — L(R) such that E (xA;) = @ (x)A;, forevery x € M and t € R;

2. E:M - L(R) such that E(x1,) = @(x)A,, forevery x € M and t € R.

Then

(M,E) = (M,E) *,@gy (M, E).

Likewise, in the latter amalgamated free product, we shall write M; for the first copy of M

and M, for the second copy of M. We regard M c M via the identification of M with Mj.
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Notice that the conditional expectation E (resp. E) preserves the canonical semifinite trace
Tr (resp. widetilder) associated with the state ¢ ( resp. @) (see [17]).
Consider the following orthogonal representation of R on Hg € Hp:
T [
cos (— S) —sin (— s)
v, = 2 27 v
s = o T ,Vs € R.
Sin (ES) CosS (E S)
Let (as) be the natural action on (M, @) associated with (V): g = Ad(F (1)), for every
s € R. In particular, we have

Qs (s (g)) =S (VS (g),‘v’s € R,V¢,n € Hy,

and the action (ay) is @-preserving. We can easily see that the representation (I/;) commutes
with the representation (U, @ U,). Consequently, (a,) commutes with modular action &.
Moreover, a,(x 1) = 1 * x, for every a € M. At last, consider the automorphism g

defined on (M, @) by:
()oYt

It is straightforward to check that 8 commutes with the modular action &, 8% = 1d, B =
Id »c and Ba; = a_gf,Vs € R. Since (a;) and f commute with the modular action &, one
may extend (a) and 8 to M by agLr) = Idy(r), for every s € Rand g, gy = Idg).
Moreover (ag, 8) preserves the semifinite trace Tr. Let's summarize what we have
done so far:
Proposition (4.2.15)[173]: The widetilder-preserving deformation (a,, §) defined on M is
s-malleable:
1. agum) = ldyg), forevery s € Rand a; (x gy 1) = 1 *,g) x, for every x € M.
2. B*=1dand By = 1d;y.
3. Bas; =a_,B, foreverys € R.
Denote by E,;: M — M the canonical trace-preserving conditional expectation. Since
Tryy = Tr, we will simply denote by Tr the semifinite trace on M. Remind that the
smalleable deformation (a;, 8) automatically features a certain transversality property.
Proposition (4.2.16)[173]: (Popa, [182]). We have the following:
lx — aas GOl g, < 2[|las(x) - EM(QS(X))”z,Tr' Vx € L>(M,Tr),Vs > 0.(19)
The next proposition refered as the spectral gap property was first proved by Popa in
[169] for free products of finite von Neumann algebras. We will need the following
straightforward generalization:
Proposition (4.2.17)[173]: ([176]). We keep the same notation as before. Let ¢ € M be a
non-zero projection such that Tr(q) < oo. Let Q © gMq be a von Neumann subalgebra with
no amenable direct summand. Then for any free ultrafilter w on N, we have Q' n (¢gMq)® c
(gMq)®.
Let g € M be a non-zero projection such that Tr(q) < oo. Note that Tr(q - q)/Tr(q)
is a finite trace on gMgq. If Q © gMq has no amenable direct summand, then for any £ > 0,
there exist § > 0 and a finite subset F < U(Q) such that for any x € (qMq), (the unit ball
w.r.t. the operator norm),
Il ux —xull;7r< 8, VU EF = ||x — Equ(x)"2Tr < e (20)
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We will simply denote ux — xu by [u, x].

The following theorem is in some ways a reminiscence of a result of loana, Peterson
& Popa, namely Theorem 4.3 of [156] and also Theorem 4.2 of [176]. The
deformation/spectral gap rigidity strategy enables us to locate inside the core M of a free
Araki-Woods factor the position of subalgebras A ¢ M with a large relative commutant A’ N
M.
Theorem (4.2.18)[173]: Let M =T(Hg, U;)" be a free Araki-Woods factor and M =
M >, R be its continuous core. Let g € L(R) € M be a non-zero projection such that
Tr(q) < o.Let Q © gMq be avon Neumann subalgebra with no amenable direct summand.
Then Q' ngMq =<, L(R).
Proof. Let g € L(R) be a non-zero projection such that Tr(q) < c. Let Q € qMgq be a von
Neumann subalgebra with no amenable direct summand. Denote by Q, = Q' n gMq. We
keep the notation introduced previously and regard M c M = M, *Lry Mz Vvia the
identification of M with M;. Remind that ag gy = Id, (&), for every s € R. In particular
as,(q) = q, forevery s € R.
Step (1): Using the spectral gap condition and the transversality property of (e, 8) to
find t > 0 and a non-zero intertwiner v between Id and a;,.

Lete = i g ll, .. We know that there exist § > 0 and a finite subset F c U(Q),

such that for every x € (qgMq);,
I [x,ul ll 1< 8, VU € F = |lx — Equg (Ol . < &

Since a; — Id pointwise *-strongly, as t — 0, and since F is a finite subset of Q < gMq, we
may choose t = 1/2% small enough (k > 1) such that
max {iiu — at(u)iiz’Tr:u € F} < g
For every x € (Qy); and every u € F c Q, since [u, x] = 0, we have
Mo GO ullly gy = e () = e (W]l g,
< 2|lu = a; ()|l

<.
Consequently, we get for every x € (Q)q,[|a:(x) —Equ(“t(x))”ZTr < &. Using

Proposition (4.2.16), we obtain for every x € (Qy);

2, Tr

1
lx —as(Oll, .. = 5 gz,
where s = 2t. Thus, for every u € U(Q,), we have
lwas(w) —ql, r, = lu* (as(w) — u)IIZ,Tr

< llu = a5 (Wl g,

1
S E " CI "2'Tr-

Denote by € = c"{u*a,(u):u € U(Qy)}  qL?(M)q the ultraweak closure of the convex
hull of all u*a,(u), where u € U(Q,). Denote by a the unique element in ¢ of minimal ||
‘lly 7= norm. Since ll a — q ll, 1< 1/2 |l q Il 1y, Necessarily a # 0. Fix u € U(Qy). Since
u*aag(u) € C and lu*aasWIl, ¢ =l a llzTr, necessarily u*aas(u) = a. Taking v =
pol(a) the polar part of a, we have found a non-zero partial isometry v € qMgq such that
xv = vay(x),Vx € Q,. (21)
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Step (2): Proving Qo =<» L(R) using the malleability of (a;, ). By contradiction, assume
Qo *m L(R). The first task is to lift Equation (21) to s = 1. Note that it is enough to find a
non-zero partial isometry w € qMgq such that
W = wa,o(x),Vx € Q,.
Indeed, by induction we can go till s = 1 (because = 1/2%~1). Remind that 5(z) = z, for
every z € M. Note that vv* € Q; N qMq. Since Q, %, L(R), we know from Theorem 2.4
in [176] that Q) N qgMq © gMgq. In particular, vv* € gMq. Setw = a,(B(v*)v). Then,
ww® = a,(B)vv'B(v))
= a;(Bw")Bwv)B(v))
= asﬁ(z*v) + 0.
Hence, w is a non-zero partial isometry in gMq. Moreover, for every x € Q,,
ways(x) = ag(B(v)vag(x))
= a;(B(v*)xv)
as(B(v*x)v)
as(B(as(x)v*)v)
= asfas(x)as(B(v*)v)
= p(x)w

= XW.
Since by induction, we can go till s = 1, we have found a non-zero partial isometry v €

gMgq such that

xv = va,(x),Vx € Q,. (22)
Note that v*v € a;(Q,)’ N gMq. Moreover, since a,:qMq — qMq is a *-automorphism,
and Q, %y L(R), Theorem 2.4 in [176] gives
@1(Q)' NqMq = a1(Qo N qMq)
< a;(qMq).
Hence v*v € a;(qMq).

Since Q, %y L(R), we know that there exists a sequence of unitaries (u;) in Q, such
that Ey gy (x*uyy) — 0 strongly, as k — oo, for any x,y € gM. We need to go further and
prove the following:

Claim (4.2.19)[173]: Va, b € qMgq, |Ey, (a'wb)|,. — 0,85k - oo.

Proof. Let a,b € (M), be either elements in L(R) or reduced words with letters alternating
from M; © L(R) and M, © L(R). Write b = yb' with

1. y=bifbeL(R);

2. y = 1if b is a reduced word beginning with a letter from M, © L(R);

3.y =the first letter of b otherwise.

Note that either b’ = 1 or b’ is a reduced word beginning with a letter from M, © L(R).
Likewise write a = a’x with

4. x =aifx € L(R);

5. x=1ifaisareduced word ending with a letter from M, & L(R);

6. x = the last letter of a otherwise.

Either a’ = 1 or a’ is a reduced word ending with a letter from M, & L(R). For any z €
Qo € My, xzy — Ery(xzy) € My © L(R), so that

Ey,(azb) = Ey, (a’EL(R) (xzy)b’).
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Since Ejgy(xu,y) — 0 strongly, as k — oo, it follows that Ey, (au,b) — 0 strongly, as
k- oo, as well. Thus, in the finite von Neumann algebra gqMgq, we get
|qEm, (aukb)quz,Tr - 0ask — oo.
Note that
A:=span{L(R),(M;, © L(R)) - (M; O L(R)):n = 1,i; # - # i}
Is a unital *-strongly dense *-subalgebra of M. What we have shown so far is that for any
a,b € A, iinMz(au,\,,b)qiiz’Tr — 0,as k - oo, Let now a, b € (M),. By Kaplansky density
theorem, let (a;) and (bj) be sequences in (A); such that a; — a and b; — b strongly.
Recall that (u;) is a sequence in Q, € qMq. We have
"CIEM2 (aukb)qllz, Tt

< iinMz(aiukbj)qiiz’Tr + HqEMz (aiuk(b - bj)) QHZTr
+ ”CIEM2 ((a - ai)ukbj) q"Z,Tr + ”CIEM2 ((a — a)uy(b - bj)) q||
< |lqEwm, (asuiby)all, ;. + lgaswe(b = b;)all, .
+la(a — aduebiqll, .+ llgla - a;)ug(b - bj)qllz,Tr
< lqEw, (aqub))all,.. +31(b = b)all, . + laCa — aqll,,
Fix € > 0. Since a; — a and b; — b strongly, let iy, j, large enough such that
311(b = by, )all, . + la(a — ay,)all, . < e/2.
Now let k, € N such that for any k > k,
|qEm, (aioukbjo)Qiiler <e&/2.
We finally get ||qEy, (aukb)q||2'Tr < g, for any k > k,, which finishes the proof of the

claim.
We remind that for any x € Q,, v*xv = a;(x)v*v. Moreover, v*'v € a;(qMq) C
qM,q. So, for any x € Q,, v*xv € gM,q. Since a, (u;) € U(qM,q), we get
lv* vl = ||“1(uk)77*17”2,Tr = "EM2 (al(uk)v*V)llz,Tr

= [|En, (v*ukv)llz'Tr - 0.

2,Tr

Thus v = 0, which is a contradiction.
Corollary (4.2.20)[173]: Let M = T'(Hg, U;)" be a free Araki-Woods factor of type Il ;.
Then the continuous core M = M >, Ris asemisolid II,, factor. Since M is non-amenable,
M is always a prime factor.
Proof. Let g € L(R) be a non-zero projection such that Tr(q) < co. Denote by N = qMgq
the corresponding 11, factor and by = = Tr(q - q)/Tr(q) the canonical trace on N. By
contradiction, assume that N is not semisolid. Then there exists Q € N a nonamenable von
Neumann subalgebra such that the relative commutant Q' n N is of type I1,. Write z € Z(Q)
for the maximal projection such that Qz is amenable. Then 1 — z # 0, the von Neumann
algebra Q (1 — z) has no amenable direct summand and (Q' N N)(1 — z) is still of type I, .
We may choose a projection q, € Q(1 — z) such that t(q,) = 1/n. Since N is a Il factor,
we may replace Q by M,,(C) ® q,0Qq,, S0 that we may assume Q@ c N has no amenable
direct summand and Q' N N is still of type II;.

If we apply Theorem (4.2.18), it follows that Q"N N =<, L(R). We get a
contradiction because Q' N N is of type II; and L(R) is of type I.
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It follows from [12] that for any type III; factor M, if the continuous core M =
M x, R is full, then Connes' invariant (M) is the usual topology on R. Let now M =
['(Hg,U;)" be a free Araki-Woods factor associated with (U;) an almost periodic
representation. Denote by S, c R} the (countable) subgroup generated by the point
spectrum of (U,). Then t(M) is strictly weaker than the usual topology. More precisely,
the completion of R w.r.t. the topology 7(M) is the compact group S, dual of Sy, (see [3]).
Therefore in this case, for any non-zero projection g € L(R) such that Tr(q) < oo, the II;
factor gMq is semisolid, by Theorem (4.2.18), and has property I' of Murray & von
Neumann by the above remark.

The solidity of the continuous core M forces the centralizers on M to be amenable.
Indeed, fix i any f.n. state on M. Assume that the continuous core M ~ M >, YR is solid.
Choose a non-zero projection g € L(R) such that Tr(q) < oo. Since L(R)q is diffuse in
q(]\/[ X 1 R)q, its relative commutant must be amenable. In particular M¥ ® L(R)q is

amenable. Thus, M'¥ is amenable.

Note that if the orthogonal representation (U;) contains a 11i%—periodic

subrepresentation (V*),0 < A < 1, of the form

1 _ (cos(tlogA) —sin(tlogA)

t (sin(tlog/l) cos(tlog ) )
then the free Araki-Woods factor M = I'(Hg, U;)" freely absorbs L(F,) (see [15]) :

(M, (pU) * (L(Foo)iT) = (Mr (pU)
In particular, the centralizer of the free quasi-free state M’ ¥U is non-amenable since it
contains L(F,,). Therefore, whenever (U,) contains a periodic subrepresentation of the form
(V) for some 0 < 4 < 1, the continuous core of T'(Hg, U,)"" is semisolid by Theorem
(4.2.18) but can never be solid. However, when (U,) is assumed to be mixing, we get solidity
of the continuous core. Indeed in that case, we can control the relative commutant A’ n M
of diffuse subalgebras A c L(R) € M, where M is the continuous core of the free Araki-
Woods factor associated with (U,). Thus, the next theorem can be regarded as the analog of
a result of Popa, namely Theorem 3.1 of [52] (see also Theorem D.4 in [189]).
Theorem (4.2.21)[173]: Let (U,) be a mixing orthogonal representation of R on the real
Hilbert space Hgx. Denote by M = I'(Hg, U;)"' the corresponding free Araki-Woods factor
and by M = M >, R its continuous core. Let k > 1 and let g € M, (C) ® L(R) be a non-
zero projection such that T: = (Tr, ® Tr)(q) < . Write L(R)T:= q(M,(C) ® L(R))q
and MT: = q(M;,(C) ® M)q. Let A c L(R)T be a diffuse von Neumann subalgebra.

Then for any sub-bimodule 4H, gyr Of 4L?(M™), gyr such that dim(H, gyr) < oo,

one has H c L*(L(R)T). In particular A’ n MT c L(R)T.
Proof. As usual, denote by (A4;) the unitaries in L(R) that implement the modular action o
on M. Let ®: L*(R) - L(R) be the Fourier Transform so that ®(e') = A,, for every ¢ €

R. Let T > 0 and denote by g = ®(x[or1). Notice that L* (R) xjo 77 = L™ [0,T] and that

2TC
span {Z cke‘Tk’)([o,T]: F c Z finite subset, ¢, € C,Vk € F

keEF
is a unital *-strongly dense *-subalgebra of L*°(R)x[o,r1- Thus, using the isomorphism @,

we get that

135



A:= span {z cklz_nkq: F c Z finite subset, ¢, € C,Vk € F

T
k€EF
is a unital *-strongly dense *-subalgebra of L(R)q. Let (u,,) be bounded sequence in L(R)q

such that u,, - 0 weakly, as n - oo, and [lu,ll_ < 1, for every n € N. Using Kaplansky
density theorem together with a standard diagonal process, choose a sequence y,, € A such
that [ly,ll, < 1, for every n € N, and [lu,, — ¥,ll, . = 0, as n —» oo. We will write y,, =

Znq with
2 ¢ _ZT ’
n kn Kk

k€EF,
where F, c Z is finite, ¢, ,, € C, for any k € F, and any n € N. Using the T-periodicity, we

have for any n € N,
Izall, =P (),

iz—nkx
= esssup Z Ckn€ T

xX€ER

iz—nkx
= esssup E Ckn€ T
€[o0,T
xelor] | =

= "cb_l(zn))([O,T] "Oo
= liynll, = 1.
Thus, the sequence (z,,) is uniformly bounded.
The first step of the proof consists in proving the following:
IEL®R)q (aunb)iiZTr — 0,asn - oo,Va,b € gMq N ker(EL(R)q).
Equivalently, we need to show that
laELw (OLunb)q”z’Tr - 0,asn - o,Va, b € ker(E,y)). (23)

The first step of the proof is now divided in three different claims that will lead to proving
(23). First note that

E:= span {Z x:A¢: F < R finite subset, x; € M with ¢(x;) = 0,Vt € F

ter
is *-strongly dense in ker (EL(R)) by Kaplansky density theorem. We first prove the

following:
Claim (4.2.22)[173]: If ||qEL(R)(xuny)quzTr -0, as n - oo,Vx,y € M with ¢(x) =

@ (y) = 0, then (23) is satisfied.
Proof. Assume |qE g, (xuny)q"ZTr -0, as n - o,Vx,y € M with ¢(x) = ¢(y) = 0.

First take a € € that we write a = Y .crx.A,, With F c R finite subset, such that x €
M, @(x5) = 0, for every s € F. Then take b € ker(Eygy) and let (bj)je] bea sequence in

€ such that b — b; — 0 -strongly, as j — 0. Since |lu,ll , < 1, we get for any n € N and

any j €],
laEL ) (aunb)q ||2 -
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< laEvw (@tnby)al, p, + [aEum (@ea(b = b)) al,

< 9ELw(aunby)all, o +1 @ lleo (b = by)all, .,
Fix & > 0. Since b —b; - 0 *-strongly, as j — oo, fix j, € such that Il a ll, [|(b —
bjO)QHZ'Tr < ¢/2. Write bj, = Yiep'YeAr, With F' c R finite subset, such that y, €
M, p(y:) =0, forevery t € F'. Therefore, for any n € N,

||qEL(R) (aunbjo)q ||2’Tr < z "qEL(R) (xsAsunyeAe)q "2,Tr

(s,t)EFXF'
= Y AR Ok, .,
(s,t)EFXF’
= Y 9B O Cual, g
(s,t)EFXF’

Since p(o_s(xs)) = ¢(y;) = 0, forany (s, t) € F x F’, using the assumption of the claim,
there exists n, € N large enough such that for any n > n,, iinL(R)(aunlajo)qii2 - S E/2.

Thus, for any n = ny, [|gE, g, (aunb)qu2Tr < &. This proves that for any a € £ and
any b € ker(ELg)) laELmy(aunb)qll,. — 0, as n — oo. If we do the same thing by

approximating a € ker(E,,) with elements in €, using the fact that u,, € (L(R)q);, We

finally get the claim.
We now replace the sequence (u,,) by (z,), use the mixing property of the modular

action o and prove the following:

Claim (4.2.23)[173]L: Va,b € (M), with ¢(a) = ¢(b) =0,

asn — oo,
Proof. Fix a,b € (M), such that ¢(a) = ¢(b) = 0. Fix ¢ > 0. For any n € N, we have

2
> ot (@021, (4)) om0
T T

kEE,
2
0 (aaz_nk (b))
T

qEL(R)(aan)quz,Tr - 0,

2

||Cll*7L(R)(aan)CI||2,Tr =

Moreover forany n € N,

Since the modular group o is ¢-mixing (because (U, ) is assumed to be mixing), there exists
a finite subset K c Z such that forany k € Z \ K, |go (aO'Z_nk(b))| < &/v2T. Thus,
T

Ty = d + ¢/2.

kEKNFy, 2 Tr

laEL®) (az,b)q|| <” z CknA2m, q

Since u,, — z,q — 0 strongly and u,, - 0 weakly, as n — oo, it follows that z,q — 0
weakly, as n — oo. In particular there exists n, large enough such that for any n > n,, for

any k € K N Fy, |cin| < e/(21K1 | g lo7r). Thus, for any n = ny
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l9EL @y (azab)all,, < e/2+e/2=e.
This proves that [|gEy g, (aznb)q||2TTr - 0,asn — oo,

The last claim consists in going back to the sequence (u,,) and proving the following:
Claim (4.2.24)[173]: Va,b € (M), withp(a) = ¢(b) = 0, ||qEL(R)(aunb)q||2Tr - 0,as
n — oo,

Proof. Applying once more Kaplansky density theorem, we can find a sequence (g;);e; In
L(R) such that
1. qi = Xter; deAe, With F; < R finite subset, d; € C, forany ¢t € F; and forany i € I
2. lg;ll, < 1,foranyi €I,
3. q — q; = 0 *-strongly, as i — co.
Fix now a,b € (M), such that ¢(a) = @(b) = 0. Using the fact that
lalleo, I blleo, Il g llo, 1Zxll, < 1,VN €N,
we getforanyn e Nandanyi €I,
|qEL®)(au,b)q ||2'Tr
< |lqELry(alu, — znq)b)qlller + ||qELr)(az,qb)q]|
< lun = zpqll, p, + laEry (azn(q — g b)qll,
+HlaEyw) (aznaiblall, ;.

< ltp = 2ol 3, + 1(q = 4B,
) 1dullaBymy (@zmon(B) 2l

teF;
< lup = zpqll, 4. + 1(q — q)bqll, 1,
£ 1l 9By (@zna (b))l
teF;
Since g — q; — 0 *-strongly, as i — oo, it follows that [|(q — g;)bqll, ;. = 0, as i — oo. Fix
g > 0. Then, take i, € I such that ||(q — ql-o)bq||2Tr < &/3. Since llu, — z,qll, ;. = 0, as

n — oo and using Claim (4.2.23), we may choose n, large enough such that for any n > n,,
”un - an”Z,Tr < 5/3

> ldillaEu (@zaeb)all,,, < e/3
te€F;,
Consequently, for any n >n,, we get ||qEL(R)(a1,¢nb)q||2Tr < &. Therefore, we have
proven ||qEL(R)(aunb)q||2’Tr — 0,asn - oo,
Thanks to Claims (4.2.22) and (4.2.24), it is then clear that (23) is satisfied. This
finishes the first step of the proof.
The last step of the proof consists in using Theorem (4.2.12). Let k > 1 and q €
M, (C) ® L(R) be a non-zero projection such that T:= (Tr, ® Tr)(q) < o. Since
M, (C) ® M is all,, factor, there exists a unitary u € UM, (C) ® M) such that
do 0
q=1u u
0 do

2,Tr

2,Tr

*
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where gy = ®(¥0r/x1) € L(R). Using the spatiality of Ad(u) on M,(C) ® M, we may
assume without loss of generality that

do 0

q=
0 do

In particular, q € M (C) ® L(R)q,. Define MT:=q(M,(C) ® M)q and L(R)T:=
q(M,(C) ® L(R))q. Let A c L(R)T be a diffuse von Neumann subalgebra. Choose a
sequence of unitaries (u,) in A such that u,, — 0 weakly, as n — co. Thus, we can write

u, = [u;’]i’j where u’ € L(R)qo and |Ju.’|| <1,foranyn € Nandanyi,j € {1, ..., k}.

n o

Moreover, u,” — 0 weakly, as n - oo, in L(R)q,, for any i,j € {1, ..., k}. Thus, using the
first step of the proof, it becomes clear that the inclusion L(R)T c MT is weakly mixing
through A in the sense of Definition (4.2.11). Thus, using Theorem (4.2.12), it follows that
forany 4H g sub-bimodule of ,L?(M™), g,r such that dim(H,gyr) < oo, one has H ¢
L>(L(R)T). In particular A’ n MT c L(R)T.
Claim (4.2.25)[173]: Let M =T(Hg,U,)" be a free Araki-Woods factor such that the
orthogonal representation (U,) is mixing. Then the continuous core M = M >, R is a solid
I1,, factor.
Proof. Let g € L(R) be a non-zero projection such that Tr(q) < co. Denote by N = qMgq
the corresponding 11, factor. By contradiction assume that N is not solid. Then there exists
a non-amenable von Neumann subalgebra Q < N such that the relative commutant Q' N N
Is diffuse. Since N is a Il , factor, using the same argument as in the proof of Corollary
(4.2.20), we may assume that Q has no amenable direct summand and Q, = Q' N N s still
diffuse.

Since Q has no amenable direct summand, Theorem (4.2.18) yields Q, <;; L(R).
Thus using Theorem (4.2.13), we know that there exists a non-zero projection p € L(R)
such that Tr(p) < oo, and Q, <.y L(R)p Where e = p v q. Consequently, there exist n >
1, a (possibly non-unital) *-homomorphism ¥:Q, - M, (C) @ L(R)p and a non-zero
partial isometry v € M, ,(C) @ gMp such that

xv = v (x),Vx € Q,.
We moreover have
vv* € Qo N qgMq and v*v € Y(Qp)" N YP(q)(M,(C) & pMp)Y(q).
Write Q; = Q, N gMq and notice that Q < Q;. Since Y (Q,) is diffuse and v*v € Y(Q,)' N
Y (q)(M,,(C) ® pMp)y(q), Theorem (4.2.21) yields v*v € P (q) (M, (C) ® L(R)p)Y(q),
so that we may assume v*v = y¥(q). Forany y € Q,, and any x € Q,,
viyvp(x) =v'yxv
= v'xyv
=Y(x)vyv.
Thus, v*Q,v c Y(Q,) Nv*v(M,,(C) ® pMp)v*v. Since Y(Q,) is diffuse, Theorem
(4.2.21) yields v*Q,v c v*'v(M,,(C) ® L(R)p)v*v. Since Q has no amenable direct
summand and Q < Q, is a unital von Neumann subalgebra, it follows that Q; has no
amenable direct summand either. Thus the von Neumann algebra vv*Q,vv* is non-
amenable. But Ad(v*): vv*Mvv* - v*v(M,,(C) & pMp)v*v is a *-isomorphism and
Ad(v*)(vv*Q,vv*) c v*'v(M,(C) ® L(R)p)v*v.

Since v*v(M,,(C) ® L(R)p)v*v is of type I, hence amenable, we get a contradiction.
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Since the left regular representation (1,) of R acting on L% (R, Lebesgue ) is mixing,

the continuous core M of F(Lﬁ(R, Lebesgue ), /1,:)” Is solid. We partially retrieve a previous
result of Shlyakhtenko [14] where he proved in this case that M = L(F.,) @ B(£?), which
is solid by [162]. We will give an example of a non-amenable solid II, factor with full
fundamental group which is not isomorphic to any interpolated free group factor L(F,), for
1<t<oo.

Note that the mixing property of the representation (U,) is not a necessary condition
for the solidity of the continuous core M. Indeed, take U, = Id @ A, on Hg = R @ L4(R,
Lebesgue). Then (U,) is not mixing, but the continuous core M of I'(Hg, U,)" is still
isomorphic to L(F,,) ® B(#?)[186].

Write A for the Lebesgue measure on the real line R. Let u be a symmetric (positive)
probability measure on R, i.e. u(X) = u(—X), for any Borel subset X c R. Consider the
following unitary representation (U}") of R on L?(R, w) given by:

(UFf)(x) = e f(x),Vf € L>(R,u),Vt,x ER. (24)
Define the Hilbert subspace of L?(R, u)
Ki:={f € L*(R,w): f(x) = f(—x),Vx € R}. (25)

Since u is assumed to be symmetric, the restriction of the inner product to Ky is real-valued.
Indeed, for any f, g € K&,

(. 9) =Lf@ﬁ@wmw
- jR £ (~0)g (D du(—x)

- jR 7009 (x)du(x)
_Fa

Moreover the representation (U}') leaves K globally invariant. Thus, (U}") restricted to

Kj becomes an orthogonal representation. Define the Fourier Transform of the probability
measure u by:

fct) = j e'™du(x),vt € R.
R
We shall identify R with R in the usual way, such that

A

fo = j el f(x)dA(x),Vt € R, Vf € L'(R, 1).
R

Proposition (4.2.26)[173]: Let u be a symmetric probability measure on R. Then
(U}) is mixing < [i(t) - 0,as |t| - oo.
Proof. We prove both directions.
= Assume (U}') is mixing. Let f = 1z € L?(R, u) be the constant function equal to 1 .
Then

i) = j et dy(x)
R
=(ULf, f) = 0,as [t]| - oo.
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& Assume [i(t) - 0, as |t| - . Let f,g € L>(R, ). Then h: = fg € L*(R, ). Since the
set{f € Co(R): f € L(R, A)}isdensein L* (R, 1), we may choose a sequence (hy,) in Co(R)

such that ||h — hnllLl(Rﬂ) — 0,asn — oo, and h,, € L*(R, 1), for any n € N. Define

h(t) = fR e™h(x)du(x),vt € R

h,(t) = f e™h, (x)du(x),vt € R,¥n € N.
R

Since lh — yll1 g,y = 0. @ n - oo, it follows that IR — h,ll, — 0, as n - 0. Since
h, € L*(R, 1), we know that

h,(x) = CJ e~ ™up (w)dA(u),Vx €R,
R
where C is a universal constant that only depends on the normalization of the Lebesgue

measure A on R. Therefore, forany t € Rand any n € N,
Mn(® = | ()
x€R

¢ (-0 () dA(w) | d

fxeR (-[ueRe ) (u)) u(x)

= e (J ei(t_u)xd#(x))dl(u)
u€R x€R

—¢ j R (Wt — WdAW)
u€eR

= C(En * ﬁ) (),
where * is the convolution product. Since ji € Co(R) and k,, € L'(R, 1), it is easy to check
that h, = i € Co(R). Consequently, h, € Co(R) and since || — h,|l — 0, as n > oo, it
follows that A € C,(R). But for any t € R,

(Utf.9) = | e gt
R

= h(t).
Thus, the unitary representation (U£') is mixing.
For a measure v on R, define the measure class of v by:
Cy:= {v’: v’ is absolutely continuous w.r.t. v}.
Definition (4.2.27)[173]: Let (V;) be a unitary representation of R on a separable Hilbert
space H.

Denote by B the infinitesimal generator of (V;), i.e. B is the positive, self-adjoint
(possibly) unbounded operator on H such that V, = B, for every t € R. We define the
spectral measure of the representation (V;) as the spectral measure of the operator B and
denote it by Cy,.

The measure class C;, can also be defined as the smallest collection of all the measures
v on R such that:

1. If v € Cy and v’ is absolutely continuous w.r.t. v, then v’ € Cy;
2. For any unit vector n € H, the probability measure associated with the positive
definite function t ~ (V;n,n) belongs to Cy.
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Since H is separable, there exists a measure v that generates Cy, i.e. Cy, is the smallest
collection of measures on R satisfying (a) and containing v. We will refer to this particular
measure v as the "spectral measure” of the representation (V;) and simply denote it by v.

Let 4 be a symmetric probability measure on R and consider the unitary
representation (Ut”) on L%(R, u) as defined in (24). Then for any unit vector f € L?(R, ),

(UE1.5) = | e™If@Pduco,ve € R
R
Since the probability measure |f (x)|?du(x) is absolutely continuous w.r.t. du(x), it is clear

that the spectral measure of (UL') is u. More generally, we have the following:
Proposition (4.2.28)[173]: Let u be a symmetric probability measure on R. Consider the
unitary representation (Uf) defined on L(R, 1) by (24). Then for any n > 1, the spectral

measure of the n-fold tensor product (Uf)@m is the n-fold convolution product
P =k ek .
n times
Erdos showed in [177] that the symmetric probability measure ug, with 8 = 5/2,
obtained as the weak limit of

1 1 1 1
(E 5_3—1 + E69—1> * oeee X (E 6_9—11 + 569—11)

has a Fourier Transform
_ t
fig(t) = | | cos (ﬁ)

nz1
which vanishes at infinity, i.e. fi(t) = 0, as |t| = oo, and ug is singular w.r.t. the Lebesgue

measure A.

Example (4.2.29)[173]: Modifying the measure ug, Antoniou & Shkarin (see Theorem
2.5,v in [174]) constructed an example of a symmetric probability u on R such that:

1. The Fourier Transform of u vanishes at infinity, i.e. fi(t) — 0, as |t| — oo.

2. For any n > 1, the n-fold convolution product p** is singular w.r.t. the Lebesgue

measure A.

Let u be a symmetric probability measure on R as in Example (4.2.29). Proposition
(4.2.26) and Proposition (4.2.28) yields that the unitary representation (U}") defined on
L*(R, 1) by (24) satisfies:

1. (U})is mixing.
2. The spectral measure of @,,5, (Uf‘)@n Is singular w.r.t. the Lebesgue measure A.

Let now M =T(Hg,U;)" and let M = M >, R be the continuous core. Let g €
L(R) be anon-zero projection such that Tr(q) < oo. Denote by N = gMq the corresponding
I1; factor. Using free probability techniques such as the free entropy, Shlyakhtenko (see
Theorem 9.12 in [13]) showed that if the spectral measure of the unitary representation

D1 U?” Is singular w.r.t. the Lebesgue measure A, then for any finite set of generators
X1, ..., X, Of N, the free entropy dimension satisfies

8o (X1, 0, X)) < 1.
In particular, N is not isomorphic to any interpolated free group factor L(F,), for 1 <t <
oo, Combining these two results together with Theorem (4.2.21), we obtain the following:
Theorem (4.2.30)[173]: Let u be a symmetric probability measure on R as in Example

(4.2.29). Let M =T(k%, UM)" be the free Araki-Woods factor associated with the
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orthogonal representation (Uf) acting on the real Hilbert space K, as defined in (8 — 9).
Let M = M %, R be the continuous core. Fix a non-zero projection g € L(R) such that
Tr(q) < o, and denote by N = gMgq the corresponding II, factor. Then

1. N is non-amenable and solid.

2. N has full fundamental group, i.e. F(N) = R3%.

3. N is not isomorphic to any interpolated free group factor L(F,), for1 < t < oo.

We believe that all the free Araki-Woods factors M = I'(Hg, U;)" have the complete
metric approximation property (c.m.a.p.), i.e. there exists a sequence ®,,: M’ — M of finite
rank, completely bounded maps such that ®,, — Id ultraweakly pointwise, as n — oo, and
limsupy,_,o 1Pyl ,, < 1. If M = T'(Hg, Uy)" had the c.m.a.p. then by [143], the continuous
core M = M x, R would have the c.m.a.p., as well as the II, factor gMgq, for g € M non-
zero finite projection. On the other hand, the wreath product 11, factors L(Z{F,,) do not have
the c.m.a.p., for any 2 < n < oo, by [141]. Thus, we conjecture that the solid II, factors
constructed in Theorem (4.2.30) are not isomorphic to L(Z)F,,), forany 2 < n < oo,

Section (4.3): Absence of Cartan Subalgebra for Free Araki-Woods Factors
The free Araki-Woods factors were introduced by Shlyakhtenko [15]. In the context
of free probability theory, these factors can be regarded as analogs of the hyperfinite factors
coming from the CAR functor. To each real separable Hilbert space Hi together with an
orthogonal representation (U;) of R on Hg, one associates [15] a von Neumann algebra
denoted by I'(Hg, U;)", called the free Araki-Woods von Neumann algebra. The von
Neumann algebra I'(Hg, U;)"" comes equipped with a unique free quasi-free state, which is
always normal and faithful. If dim Hg = 1, then I'(R,Id)" = L*([0,1]). If dim Hg = 2,
then M = T'(Hg, U;)"" is a full factor. In particular, M can never be of type I1I,. The type
classification of these factors is the following:
1. M is a type 11, factor if and only if the representation (U,) is trivial: in that case the
functor I' is Voiculescu's free Gaussian functor [197]. Then I'(Hg, 1)" = L(FdimHR)
Is a free group factor.

2. M isatype Il , factor, for 0 < A < 1, if and only if the representation (U, ) is

periodic.

3. M is a type IlI; factor if and only if (U,) is nonperiodic and nontrivial.

Let us start by recalling some fundamental structural results for free group factors. In
their breakthrough [141], Ozawa and Popa showed that the free group factors L(F,) are
strongly solid, i.e. the normalizer NV y(P) = {u € U(L(F,)):uPu* = P} of any diffuse
amenable subalgebra P < L(F,)) generates an amenable von Neumann algebra, thus
hyperfinite by Connes' result [198]. This strengthened two well-known indecomposability
results for free group factors: Voiculescu's celebrated result in [172], showing that L(F,,)
has no Cartan subalgebra, which in fact exhibited the first examples of factors with no Cartan
decomposition; and Ozawa's result in [162], showing that the commutant in L(F,) of any
diffuse subalgebra must be amenable (L(F,,) are solid).

For the type 11l free Araki-Woods factors M’ = I'(Hg, U;)"’, Shlyakhtenko obtained
several remarkable classification results using free probability techniques:

1. When (U,) are almost periodic, the free Araki-Woods factors are completely
classified up to state-preserving *-isomorphism [15]: they only depend on Connes'

invariant Sd(M) which is equal in that case to the (countable) subgroup S, c
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R, generated by the eigenvalues of (U,). Moreover, the discrete core M xi, S,

(where Sy, is the Pontryagin dual of Sy, ) is *isomorphic to L(F,) & B(£?).

2. If (U,) is the left regular representation, then the continuous core M = M >, R is *-
isomorphic to L(F,) @ B(#?)[14] and the dual "trace-scaling” action (6,) is
precisely the one constructed by Radulescu [184].

For more on free Araki-Woods factors, see [173],[179],[180],[1],[12], [186],[202],[13],45],

[46] and also to Vaes' Bourbaki seminar [18].

We deal with approximation properties for I'(Hg, U;)"'. Recall that a von Neumann

algebra V' is said to have the complete metric approximation property (c.m.a.p.) [196] if
there exists a net of normal finite rank completely bounded maps @,,: ' — IV such that
1. ®,,(x) = x =-strongly, for every x € IV;
2. 1Pl =1, for every n.
Haagerup first established in [178] that the free group factors L(F,) have the metric
approximation property. His idea was to use radial multipliers on F,,. In a subsequent
unpublished work with Szwarc (see [195]), a complete description of
completely bounded radial multipliers was obtained, showing that L(F,,) has the complete
metric approximation property. Along the same pattern, we start by characterizing
appropriate radial multipliers on I'(Hg, U,)"'. At the L?-level, that is on the Fock space, they
just act diagonally on tensor powers of H. They allow us to reduce the question of the
approximation property to a finite length situation, which is enough to conclude for almost
periodic representations (U;). To proceed to the general case, we use completely positive
maps arising from the second quantization functor. The novelty here is that it holds true
under a milder assumption than the usual one [46],[1], and we obtain:

Theorem (4.3.1)[190]: All the free Araki-Woods factors have the complete metric

approximation property.

The free Araki-Woods factors I'(Hg, U;)"" as well as their continuous cores carry a
free malleable deformation (a;) in the sense of Popa: it naturally arises from the second
quantization of the rotations defined on Hgr @ Hgi that commute with U, @ U,. Using
Ozawa-Popa's techniques [141],[198], we will then apply the deformation/rigidity strategy
together with the intertwining techniques in order to study I'(Hg, U;)"". The high flexibility
of this approach will allow us to work in a semifinite setting, so that we can obtain new
structural/indecomposability results for the free ArakiWoods factors as well as their
continuous cores. Recall in that respect that a von Neumann subalgebra A ¢ M is said to
be a Cartan subalgebra if the following conditions hold:

1. A is maximal abelian, i.e. A = A" n M.

2. There exists a faithful normal conditional expectation E: M — A.

3. The normalizer Ny, (A) = {u € U(M): uAu* = A} generates M.

It follows from [201] that in that case, L*(X,u) = A ¢ M = L(R, w) is the von Neumann

algebra of a nonsingular equivalence relation R on the standard probability space (X, u) up

to a scalar 2 -cocycle w for R.

Shlyakhtenko showed [202] that the unique type 11l , free Araki-Woods factor (0 <
A < 1) has no Cartan subalgebra. We generalize this result and prove the analog of the
strong solidity [141] for all the free Araki-Woods factors. Our second result is the following
global dichotomy result for conditioned diffuse subalgebras of free Araki-Woods factors.

We can deduce from Theorem (4.3.1) and Theorem (4.3.37) new classification results
for the free Araki-Woods factors. First recall that a factor V" is said to be full if the subgroup
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of inner automorphisms Inn(V") is closed in Aut(V'). Write : Aut(V) = Out(\V') for the
quotient map. For a full type III, factor V', Connes' invariant (V") is defined as the weakest
topology on R that makes the map t ~ m(g,”) € Out(V) continuous. In [3], Connes
constructed type III, factors V' with prescribed t invariant. Recall his construction. Let u
be a finite Borel measure on R, such that [ Adu(1) < co. We will normalize p so that [ (1 +
A)du(A) = 1. Define the unitary representation (U,) of R on the real Hilbert space
L>(R, p) by (U:6)(A) = A*E(A). We will assume that (U,) is not periodic. Define on P =
M, (C) ® L”(R,, u) the faithful normal state ¢ by

(1t T2) = [ fuau) + [ 2o
Let F,, be acting by Bernoulli shift on

Po = @(P. ®).

9gEF,
Denote by V' = P,, < F,, the corresponding crossed product. By the general theory, V' is a
type Il , factor. Connes showed that V" is a full factor and (V') is the weakest topology
that makes the map t = U, *-strongly continuous. In particular, if (U,) is the left regular
representation, then 7(JV") is the usual topology and V" has no almost periodic state. Observe
that V" has a Cartan subalgebra A given by

A= ® Diag,(L” (R4, ).

gEeF,
The following Corollary answers a question of Shlyakhtenko (see [13], Problem 8.7]) and
Vaes (see [18], Remarque 2.8]).
Corollary (4.3.2)[190]: The type 111, factors constructed by Connes are never isomorphic
to any free Araki-Woods factor. More generally, they cannot be conditionally embedded
into a free Araki-Woods factor.

The continuous cores M = I'(Hg, U;)"" >, R of the free Araki-Woods factors were

shown to be semisolid for every orthogonal representation (U,) and solid when (U,) is
strongly mixing (see [173], Theorem 1.1]). They moreover have the c.m.a.p. by Theorem
(4.3.1). Using a similar strategy as in [198], we obtain new structural results for the
continuous cores of the free Araki-Woods factors.
The proof of Theorem (4.3.37) and Theorem (4.3.39) is a combination of ideas and
techniques of [176],[198],[173],[141],[198] and rely on Theorem (4.3.1). Note that Theorem
(4.3.39) allows us to obtain other new classification results. Indeed let SL,,(Z) ~ R" be the
linear action. Observe that it is an infinite measure-preserving free ergodic action. Thus the
corresponding crossed product von Neumann algebra Q,, = L*(R™) x SL,,(Z) is a Il
factor, which is nonamenable for n > 3. Since the dilation d;:R" 3 x » tx € R" (for t >
0) commutes with SL,,(Z), it gives a trace-scaling action (8,): R, ™~ @Q,,. Theorem (4.3.39)
implies in particular that the type III; factors @, (4, R 0btained this way cannot be
iIsomorphic to any free Araki-Woods factor.

Using ([174], Theorem 2.5,v) (see also the discussion in [198],[4.2]), we can construct
an example of an orthogonal representation (U,) of R on a (separable) real Hilbert space Hg
such that:

1. (U,) is strongly mixing.
2. The spectral measure of @,,5, U?” Is singular with respect to the Lebesgue measure

on R.
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Shlyakhtenko showed ([13], Theorem 9.12) that if the spectral measure of the

representation ean21U,?3’" Is singular with respect to the Lebesgue measure, then the

continuous core of the free Araki-Woods factor I'(Hg, U;)" cannot be isomorphic to any

L(F,) @ B(¢#?), for 1 <t < oo, where L(F,) denote the interpolated free group factors

[6],[10]. Therefore, we obtain:

Corollary (4.3.3)[190]: Let (U;) be an orthogonal representation acting on Hgi as above.

Denote by M = I'(Hg, U;)"” the corresponding free Araki-Woods factor and by M =

M =, Rits continuous core. Let p € M be a nonzero finite projection and write N = pMp.

We have

1. N is a nonamenable strongly solid II; factor with the c.m.a.p. and the Haagerup
property.

1. N is not isomorphic to any interpolated free group factor L(F;), for 1 <t < oo;

2. N ® B(#?) is endowed with a continuous trace-scaling action, in particular F(N) =

R,.

We recall a number of known results needed in the proofs. This includes a discussion
of intertwining techniques for semifinite von Neumann algebras as well as several facts on
the non-commutative flow of weights, Cartan subalgebras and the complete metric
approximation property. Theorem (4.3.1) is proven.

Let P ¢ M be an inclusion of von Neumann algebras. The normalizer of P inside M
Is defined as

Ny (P):={u € U(M): Ad(w)P = P},
where Ad(u) = u - u*. The inclusion P ¢ M is said to be regular if V;:(P)" = M. The
groupoid normalizer of P inside M is defined as
GNy (P): = {v € M partial isometry : vPv* € P,v*Pv C P}.
The quasi-normalizer of P inside M is defined as

QN (P):=4a € M:3by,...,b, E M,aP C Z Pb;, Pa c z bl-P}.
l l
The inclusion P ¢ M is said to be quasi-regular if QN (P)"" = M. Moreover,
P'OM € Nye(P)" € GNye(P)" € QN3 (P

In ([188] Theorem 2.1, [204] Theorem A.1), Popa introduced a powerful tool to prove
the unitary conjugacy of two von Neumann subalgebras of a tracial von Neumann algebra
(M, 7). We will make intensively use of this technique. If A,B < (M, ) are (possibly non-
unital) von Neumann subalgebras, denote by 1, (resp. 1z) the unit of A (resp. B).
Theorem (4.3.4)[190]: (Popa, [188],[204]). Let (M, 7) be a finite von Neumann algebra.
Let A,B c M be possibly nonunital von Neumann subalgebras. The following are
equivalent:
1. There exist n = 1, a possibly nonunital x-homomorphism y: 4 - M,,(C) ® B and a

nonzero partial isometry v € M, ,,(C) @ 1,M 15 such that xv = vip(x), for any x €
A.
2. There is no sequence of unitaries (uy) in A such that
Ilim IIEB.(a*ukb)II2 =0,Va,b € 1,M15;.

If one of the previous equivalent conditions is satisfied, we shall say that A embeds into B
inside M and denote A <,, B. For simplicity, we shall write M": = M,,(C) @ M.
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We will need to extend Popa's intertwining techniques to semifinite von Neumann
algebras. Let (M, Tr) be a von Neumann algebra endowed with a semifinite faithful normal
trace. We shall simply denote by L*(M) the M, M — bimodule L*(M, Tr), and by |I-ll, r the
L?-norm associated with Tr. We will use the following well-known inequality (ll-ll, is the
operator norm):

I 2xEy Nore<I & lypell X ool ¥ llo, VE € L*(M),Vx,y € M.
We shall say that a projection p € M is Tr-finite if Tr(p) < oo. Then p is necessarily finite.
Moreover, pMp is a finite von Neumann algebra and z:= Tr(p - p)/Tr(p) is a faithful
normal tracial state on pMp. Recall that for any projections p,q € M, wehavepVvq—p ~
q — p A q. Then it follows that for any Tr-finite projections p,q € M,p V q is still Tr-finite
and Tr(p vV q) = Tr(p) + Tr(q) — Tr(p A q).

Note that if a sequence (x;) in M converges to 0 *-strongly, then for any nonzero Tr-

finite projection q € M, Ixreqll, ¢ + llgxell, . = 0. Indeed,
X, = 0+ —=strongly in M < x.x;, + xx;, = 0 weakly in M

= qx,X,q + qxix;q = 0 weakly in gMq

= Tr(gxix,q) + Tr(gxexeq) = 0

& Tr((aq) (xkq)) + Tr((gxi)*qxe) = 0

< lixeqll, 7, + lgxgll, . — 0.
Moreover, there always exists an increasing sequence of Tr-finite projections (p;) in M
such that p;, — 1 strongly.

Intertwining techniques for semifinite von Neumann algebras were developed in
[176]. The following result due to S. Vaes is a slight improvement of ([176], Theorem 2.2)
that will be useful in the sequel.

Lemma (4.3.5)[190]: (Vaes, [204]). Let (M, Tr) be a semifinite von Neumann algebra. Let
B c M be a von Neumann subalgebra such that Trp is still semifinite. Let p € M be a
nonzero projection such that Tr(p) < co and A € pMp a von Neumann subalgebra. Then
the following are equivalent:
1. For every nonzero projection g € B with Tr(q) < oo, we have
A fome qBg, where e = p Vv g,
in the usual sense for finite von Neumann algebras.
2. There exists a sequence of unitaries (u,,) in A such that
lirrlnIIEB(ac*uny)IIZTr =0,Vx,y € M.

If these conditions hold, we write A £,, B and otherwise we write A <,, B.
Proof. We prove both directions.

(@) & (b). Take a nonzero projection g € B such that Tr(q) < o andsete =p Vv q.
Write 4 = Tr(e). For all x,y € pMgq, using the [|-ll,-norm with respect to the normalized
trace on eMe, we have

|Eqpq (" un, = 2721 E (" un )Ml . = O.
This means exactly that A .y, qBq.

(@) = (b). Let (g,,) be an increasing sequence of projections in B such that g,, —» 1
strongly and Tr(q,,) < . Sete,, = p V q,. Let {x;: k € N} be a =-strongly dense subset of
(M), (the unit ball of M). Since A £ e,,Me,, q,Bq,,, we can take a unitary u,, € U(A) such
that
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1 .
”EB(aniunijn)llz’Tr < E"ﬂ <Ljs=n
Note that u,, = pu,p.

Let e > 0 and fix x,y € (M);. Since q,, = 1 strongly and since Tr(p) < o, take
m € N large enough such that

lqmxp — xpll, . + IPY G — PV, <&
Since Tr(q,,) < oo, next choose i, j € N such that
Igmxp = qmXill, 1 + PYGm = X0l ., <€
Now, for every n € N, we have
"EB(xuny)Hz’Tr = "EB(xpunp)I)Hz,Tr

< NEg(@mxpunpy@mll, ¢ + €

= "EB (meiunijm)llz'Tr + 2¢.
Therefore, if n > max{m, i, j}, we get

) ) 1
||EB(Xun3/)||2’Tr < ; + 2¢.

Write Tr,, for the non-normalized faithful trace on M,,(C). The faithful normal semifinite

trace Tr,, ® Tr on M,,(C) ® M will be simply denoted by Tr. Observe that if A <,, B in

the sense of Lemma (4.3.5), then there exist n = 1, a nonzero projection g € B™ such that

Tr(g) < oo, a nonzero partial isometry v € M; ,,(C) @ M and a unital *-homomorphism

Y:A - qB™q such that xv = vi(x),Vx € A. In the case when A and B are maximal

abelian, one can get a more precise result. This is an analog of a result by Popa ([204],

Theorem A.1) for semifinite von Neumann algebras.

Proposition (4.3.6)[190]: Let (M, Tr) be a semifinite von Neumann algebra. Let B ¢ M be

a maximal abelian von Neumann subalgebra such that Trp is still semifinite. Letp € M be

a non-zero projection such that Tr(p) < co and A € pMp a maximal abelian von Neumann

subalgebra. The following are equivalent:

1. A <, B in the sense of Lemma (4.3.5).

2. There exists a nonzero partial isometry v € M such that vv* € A,v*v € B and
v*Av = Bv*v.

Proof. We only need to prove (a) = (b). The proof is very similar to the one of ([204]

Theorem A.1). We will use exactly the same reasoning as in the proof of ([188] Theorem

C.3).

Since A <), B in the sense of Lemma (4.3.5), we can find n > 1, a nonzero Trfinite
projection q € M,,(C) ® B, a nonzero partial isometry w € My ,,(C) ® pM and a unital *-
homomorphism y: A - q(M,,(C) ® B)q such that xw = wi(x), Vx € A. Since we can
replace g by an equivalent projection in M,,(C) ® B, we may assume q = Diag,(q4, .-, qn)
(see for instance second item in ([188] Lemma C.2). Observe now that Diag,,(q,B, ..., q,B)
is maximal abelian in g(M,,(C) ® B)gq.

Since B is abelian, g(M,,(C) ® B)q is of finite type I. Since A is abelian, up to unitary
conjugacy by a wunitary in g(M,(C)® B)q, we may assume that Y(A) c
Diag, (q,B, ..., q,B) (see [188] Lemma C.2). We can now cut down i and w by one of
projections (O, ..., g;, ...,0) and assume n = 1 from the beginning.

Write e =ww* €A (since A'npMp =A4) and f =w'w e Y(4)' nqgMq. By
spatiality, we have
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f@WA) ngMq)f = WAf)' nfMf = (w*Aw)' n fMf = w*Aw,
which is abelian. Let Q: =¥ (A)' n gMq, which is a finite von Neumann algebra. Since
Bqg < Q is maximal abelian and f € Q is an abelian projection, ([188], Lemma C.2) yields
a partial isometry u € Q such that uu* = f and u*Qu < Bq. Define now v = wu. We get
v'Av = u'wAwu = u* f(Y(A)' N qMgq)fu c Bg.

Moreover vv* = wuu*w* = wfw* = e € A. Since v*Av and Bv*v are both maximal
abelian, we get v*Av = Bv*v.

Let M be a von Neumann algebra. Let ¢ be a faithful normal state on M. Denote by
M ? the centralizer and by M = M >+ R the core of M, where ¢¥ is the modular group
associated with the state ¢. Denote by m,¢: M — M the representation of M in its core M,
ie. s (x) = (0%,(x)), , for every x € M, and denote by A¢(s) the unitaries in L(R)
implementing the action o%. Consider the dual weight ¢ on M (see [186]) which satisfies
the following:

o (ge(x)) =mge(cl(x)),VxeM

at(p (A°(s)) = A%(s),Vs ER.
Note that ¢ is a semifinite faithful normal weight on M. Write 6% for the dual action of ¢¢
on M, where we identify R with its Pontryagin dual. Take now h,, a nonsingular positive
self-adjoint operator affiliated with L(R) such that hf,f = A%(s), for any s € R. Define
Tr,: = ¢(hy,t). We get that Tr, is a semifinite
faithful normal trace on M and the dual action 6% scales the trace Tr,:
Try, o 0 (x)=e" Tr,(x),Vx € M,,Vs € R.
Moreover, the canonical faithful normal conditional expectation E;gy: M — L(R) defined
by Epr)(xA%(s)) = @(x)A?(s) preserves the trace Tr,, i.e.
Try o Epry(x) = Try,(x),Vx € M,
There is also a functorial construction of the core of the von Neumann algebra
M which does not rely on the choice of a particular state ¢ on M (see [4], [192],[193]).
This is called the noncommutative flow of weights. We will simply denote it by (M c
M, 8, Tr), where M is the core of M, 8 is the dual action of R on the core M and Tr is the
semifinite faithful normal trace on M such that Tr o 8, = e 5Tr, forany s € R. Let ¢ be a
faithful normal state on M. It follows from ([193], Theorem 3.5) and ([16], Theorem
X11.6.10) that there exists a natural *-isomorphism
[My: M X0 R=> M
such that
M,00% =00°I,
Tr, =Trell,
H(p(ﬂaqo(]\/[)) =M.
Let now ¢, be two faithful normal states on M. Through the *-isomorphism II,,.,: =
My o My: M x50 R — M >y R, we will identify
(50 (M) € M x50 R,60%,Tr,) with (7,4(M) € M x4 R,0%,Try,).
In the sequel, we will refer to the triple (M < M, 8, Tr) as the noncommutative flow of
weights. By Takesaki's Duality Theorem [186], we have
(M x5 R) X5y R= M Q B(L*(R)).
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In particular, M is amenable if and only if M = M x ;R is amenable. The following well-
known proposition will be useful.

Proposition (4.3.7)[190]: Let ¢ be a faithful normal state on M. Let M = M >, R be as
above. Then L(R) N M = M? ® L(R). In particular, if M¢ = C then L(R) is maximal
abelian in M.

Proof. We regard M =M x,0 R generated by n(x) = (¢%,(x)), ., for x € M,

and 1® A®(t), for t € R. Therefore M c MB(L*(R)). Since L(R) c B(L?>(R))
is maximal abelian, we get L(R)’ N M ¢ M ® L(R).

Denote by ¢ the dual weight of ¢ on M (see e.g. [186]). The following relations are
true: for every s,t € R, for every x € M,

at‘b(n(x)) = n(a,fp(x))
o 1®22(s)) =1® 2%(s)
A = AL ® 1.
Since (1 ® A?(s))qer is a 1-cocycle for (at"’), ([4], Théoreme 1.2.4) implies that the

faithful normal semifinite weight Tr given by /" = (1 ® 12(£))* s, (1 ® A9 (t)) isatrace
on M. This implies that L(R)" N M is exactly the centralizer of the weight @. Since Ag =
A ® 1, for every t €R, we get L(R)’nM c M? ® B(L*(R)). Thus L(R)'NM =
M? ® L(R).

Definition (4.3.8)[190]: Let M be any von Neumann algebra. A von Neumann subalgebra
A c M is said to be a Cartan subalgebra if the following conditions hold:

1. A is maximal abelian, i.e. A= A" Nn M.

2. There exists a faithful normal conditional expectation E: M — A.

3. The normalizer Ny, (A) = {u € U(M): uAu* = A} generates M.

Let Ac M be a Cartan subalgebra. Let 7 be a faithful normal tracial state on
A.Then ¢ = t o E is a faithful normal state on M'. Moreover A ¢ M'?, where M ¥ denotes
the centralizer of ¢. Write (at"’ ) for the modular automorphism group. Denote by M =
M >0 R the continuous core and write A% (t) for the unitaries in M which implement the
modular action. The following proposition is well-known and will be a crucial tool in order
to prove Theorem (4.3.37).

Proposition (4.3.9)[190]: The von Neumann subalgebra A ® L(R) € M x, R is a Cartan
subalgebra.

Proof. Since A c M and L(R) c B(L*(R)) are both maximal abelian, it follows that
A ® L(R) is maximal abelian in M ® B(L?(R)). Therefore A ® L(R) is maximal abelian
in M xz0 R.

The faithful normal conditional expectation F: M 1,0 R - A ® L(R) is given by:
F(xA?(t)) = E(x)A?(t),Vx € M,Vt € R. Observe that F preserves the canonical trace
Tr,,.

It remains to show that A ® L(R) is regular in M >, R. Recall that A ¢ M %, so
that aA? (t) = A?(t)a, foreveryt € Randeverya € A.Foreveryt € R, everyu € N,,(A)
and every a € A, we have
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o (Wua =o' WWa)u
= (uu auw)u*
= ao; ? wu,

so that o, (w)u* € A’ N M = A. We moreover have

u(ar?(t))u* = (uau™)ud®(t) = (uau™) (uat (u* )) AP (t),

so that u(4 ® L(R))u* = A ® L(R). Consequently, A ® L(R) € M >, R is regular.
Assume that M is a type Il von Neumann algebra. Then M = M >, Riis still of type
I1. Assume now that M is a type Il von Neumann algebra. Then M is of type Il,. Let p €
A ® L(R) be a nonzero projection such that Tr(p) < oo, so that pMp is of type II,. The
next proposition shows that (A ® L(R))p < pMp is a Cartan subalgebra.
Proposition (4.3.10)[190]: Let N be a type Il  von Neumann algebra with a faithful
normal semifinite trace Tr. Let B ¢ N be a maximal abelian *-subalgebra for which Tr g is
still semifinite. Let p € B be a nonzero projection such that Tr(p) < c. Then
Npmp (Bp)" = pNu (B)"p.
Proof. The equality (pBp)' N pMp = p(B' N M)p is well-known (see for instance ([200],
Lemma 2.1). Thus, Bp is maximal abelian in pMp. Let u € NV, (B). We have
pup(Bp) = puBp = pBup = (Bp)pup.
It follows that pNy(B)'p € QN,up(Bp)”'. The normalizer and the quasi-
normalizer of a maximal abelian subalgebra generate the same von Neumann algebra (see
[201], Theorem 2.7). Thus QNp,uy, (Bp)"' = Npump (Bp)'" and p Ny (B)'p © Npyy, (Bp)".
Let now v € N,p,, (Bp). Define u = v + (1 — p) € U(M). It is clear that u € NV (B) and
pup = v. Therefore Ny, (Bp)" € pNy (B)"'p, which finishes the proof.
Definition (4.3.11)[190]: (Haagerup, [196]). A von Neumann algebra V' is said to have
the (weak™) complete bounded approximation property if there exist a constant C > 1 and a
net of normal finite rank completely bounded maps ®,,: ¥ — IV such that
1. ®,,(x) = x =-strongly, for every x € V';
2. lim sup,, 1Pyl <
The Cowling-Haagerup constant A, (V) is defined as the infimum of the constants C for
which a net (®,,) as above exists. Also we say that ' has the (weak*) complete metric
approximation property (c.m.a.p.) if Ag,(WV) = 1.
Theorem (4.3.12)[190]: The following are true.
1. A, (pMp) < A, (M), Tor every projection p € M.
2. If V c M such that there exists a conditional expectation E: M — N, then
A (V) < Ay (M).
3. If M is amenable then A, (M) = 1.
4. Denote by g the modular automorphism group on M. Then A, (M) = Ag, (M >, R)
5. If M; is amenable for every i € I, then Ao, (*;; M;) = 1.
Proof. (i), (ii), (iv) follow from [143]. The equivalence between semidiscreteness and
amenability [198] gives (iii). Finally (v) is due to [170].
Recall now the construction of the free Araki\WWoods factors due to Shlyakhtenko [15].
Let Hg be a real separable Hilbert space and let (U;) be an orthogonal representation of R
on Hg. Let H = Hy ®g C be the complexified Hilbert space. Let J be the canonical anti-
unitary involution on H defined by:

JE +in) =& —in, V¢, n € Hy.
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If A is the infinitesimal generator of (U;) on H, we recall that j: Hg — H defined by j({) =

1/2
(A_fﬂ) ¢ is an isometric embedding of Hg into H. Moreover, we have JA] = A~ Let

Kg = j(Hg). It is easy to see that Kg N iKg = {0} and K + iKyg is dense in H. Write | =
JA~Y/2_ Then I is a conjugate-linear closed invertible operator on H satisfying I = I~* and
I*I = A~1. Such an operator is called an involution on H. Moreover, Kz = {¢ €
dom(I): I¢ = &}. We introduce the full Fock space of :

F(H)=COD @ H®™,

The unit vector Q is called the vacuum vector For any & € H, define the left creation
operator £(¢): F(H) - F(H)

{4’(5)9 =,

1)1 Q0 R&G)=§Q6 Q- Q &y
We have || £(§) llo=Il € Il and £(&) is an isometry if || & I= 1. For any ¢ € H, we denote

by s(&) the real part of £(¢) given by
) +£(6)

The crucial result of Voiculescu [197] is that the distribution of the operator s(&) with
respect to the vacuum vector state y(x) = (xQ, Q) is the semicircular law of Wigner
supported on the interval [l € I, Il € II].
Definition (4.3.12)[190]: (Shlyakhtenko, [15]). Let (U,) be an orthogonal representation
of R on the real Hilbert space Hg. The free Araki-Woods von Neumann algebra associated
with (Hg, U;), denoted by I'(Hg, U;)", is defined by
[(Hg, Up)'": = {s(£):¢ € Kg}".

We will denote by I'(Hg, U,) the C*-algebra generated by the (&) 's for all £ € Kg.

The vector state y(x) = (xQ, Q) is called the free quasi-free state and is faithful on
['(Hg, U;)". Let &,n € Kg and write { = & + in. We have

2s($) + 2is(m) = £(0) +£(7)".

Thus, T'(Hg, U;)"' is generated as a von Neumann algebra by the operators of the form
£(0) + £(I1{)* where ¢ € dom(I). Note that the modular group (o;*) of the free quasi-free
state y is given by 0%, = Ad(F(U,)), where F(U,) = 1 @ @2, U™

In particular, it satisfies

o%.(£(Q) + £(10)*) = £(U.Q) + £(1UQ)*,v{ € dom(I),Vt € R.

The free Araki-Woods factors provided many new examples of full factors of type IlI
[2].[4],[12]. We can summarize the general properties of the free Araki-Woods factors in
the following theorem (see also [18]):
Theorem (4.3.13)[190]: (Shlyakhtenko, [12],[13],[45],[46]). Let (U;) be an orthogonal
representation of R on the real Hilbert space Hg with dim Hg = 2. Denote by M: =
['(Hg, U)".
1. M is a full factor and Connes' invariant 7(M) is the weakest topology on R that

makes the map t — U, *-strongly continuous.
2. M isof type I1; ifand only if U; = 1, forevery t € R.

M isof type Il ,(0 < A < 1) ifandonly if (U,) is periodic of period _/1|

M is of type III; in the other cases.
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5. The factor M has almost periodic states if and only if (U;) is almost periodic.

Shlyakhtenko moreover showed [12] that every free Araki-Woods factor M =
['(Hg, U;)"" is generalized solid in the sense of [162],[187]: for every diffuse subalgebra A c
M for which there exists a faithful normal conditional expectation E: M’ — A, the relative
commutant A" N M is amenable. [179] showed that every type 111, free Araki-Woods factor
has trivial bicentralizer [178].

There are not so many ways to produce concrete examples of completely bounded
maps on free Araki-Woods von Neumann algebras. When (U,) is trivial, one recovers the
free group algebras, and harmonic analysis joins the game with Fourier multipliers. On F,,
multipliers that only depend on the length are said to be radial. Haagerup and Szwarc
obtained a very nice characterization of them. Their approach was based on a one-to-one
correspondence between Fourier multipliers on a group G and Schur multipliers on
B(#2(G)) established by Gilbert. Their idea was to look for a description of Schur
multipliers obtained this way and they managed to do so for more general multipliers related
to homogeneous trees. The key point is to find a shift algebra that is preserved by those
Schur multipliers. This technique or some variations have operated with success on other
groups [195],[205].

The free semicircular random variables and the canonical generators of F,, have
different shape but there is a natural length for both of them which is related to freeness.
This notion still makes sense after the quasi-free deformation and one can hope to have nice
multipliers. We follow the scheme of Haagerup and Szwarc, but Gilbert's theorem is missing
here (there is no easy way to extend multipliers). We obtain exactly the same
characterization and the parallel with Schur multipliers is very striking. This is the first step
towards the approximation property that originates from [196], where it was shown that the
projection onto tensors of a fixed given length is bounded. Haagerup's ideas turned out to
be efficient to prove various approximation properties in relationship with Khintchine type
inequalities (see [191],[113]). The second step consists in using functorial completely
positive maps called second quantizations (see [46],[60]). The new point is that we show
that the second quantization is valid under a milder assumption than the one in [15].

The C*-algebra I'(Hg, U;) is generated by real parts of some left creation operators.
Since we look for completely bounded maps on free ArakiWWoods algebras, it seems natural
to try to find them as restrictions on some larger algebra. This is why we are interested in
basic properties of the algebra generated by creation operators.

Let H be a complex Hilbert space and F(H) the corresponding full Fock space. We
write 7 (H) for the C*-algebra generated by all the left creation operators F(H) = (£(e):e €
H). It is easy to verify that for any , f € H:

() €(e) = (f,e).
In fact, this property completely characterizes the algebra 7 (H). Indeed, in the sense of
[199], T (H) is a Toeplitz algebra and satisfies the following universal property (see [199]
Theorem 3.4): if u:H — B(K) is a linear map (for some Hilbert space K) so that
u*(fHu(e) = (f,e), then there is a unique *-homomorphism m: 7 (H) — B(K) so that
n(€(e)) = u(e).

When H = C, we will simply denote 7°(C) by 7: this is the universal C* algebra
generated by a shift operator S (a nonunitary isometry). We will need the following very
elementary estimates about creation operators:

153



Lemma (4.3.14)[190]: For orthonormal families (e;), (f;) in H and a; € C with |a;| < 1,
we have

1

n

N )y N et <o
£ l l l n L l l l ) — \/ﬁ'

Proof. Let (e;), (f;) be orthonormal families in H and a; € C with |a;| < 1. The first
inequality follows from

n n

1
<— and
n

*

1y 1% 1%
(EZ ai{’(ei){’(ﬁ-)*> (Ez at(e)(f) ) = ) laile(ep (e’

i=1 i=1 i=1

niz £e) (e

The second inequality follows from
1% 1% 1%
=D @@ | 2D ak@ef) | == > laile) )
i=1 i=1 i=1
1 n
n—z £ ()
1

We come back to free Araki-Woods algebras: I'(Hg, Ut) = (s(£): & € Kg) is the C*-
algebra generated by the (&) 's for all & € Kg, and I'(Hg, U;)"" is the corresponding von
Neumann algebra. Given any vector e in Kg + iKg, we will simply write e for I(e) as
I(h + ik) = h — ik, for h, k € Kj.

The vacuum vector Q is separating and cyclic for I'(Hg, U;)"'. Consequently any x €
['(Hg, U:)" is uniquely determined by ¢ = xQ0 € F(H), so we will write x = W (). Note
that for & € Ky, we recover the semicircular random variables W (§) = 2s(&) generating
['(Hg, Up)". It readily yields W (e) = #(e) + £(é&)*, for every e € Kg + iKj.

Given any vectors e, belonging to Kg + iKp, it is easy to check that e; ® - @ e,
lies in T'(Hg, U,)Q. Moreover we have a nice description of W(e; ® --- Q e,,) in terms of
the £(e; )'s called the Wick formula. Since it plays a crucial role in our arguments, we state
it as a lemma.

Lemma (4.3.15)[190]: (Wick formula). For any (e;);en in Kg + iKg and any n > 0:
n

Wer @ ®en) = ) £er) = £(er)e(Enr)” +£(8n)"

Proof. We prove it by induction on n. For n = 0,1, we have W () = 1 and we observed
that W (e;) = €(e;) + £(é;)".
Next, for e, € Kg + iKg, we have
W(e)W(e; @ ®e) =Wl(e)le; ® & ey)
= (£(ep) +4(&p))e; & - @ ey
=e Qe ® - Qe,+(&e)e, ® & ey,
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Hence
W ® - Qey) =W(e))W(e; Q- Qepy) —(eg,e))W(e;, @R ey),
but using the assumption for n and n — 1 and the commutation relations
(€)' W(e; ® - ®ep) =(€,e)W(e, ® - ® ey) + (&) ¢(e)" - (&)
Finally £(eq)W(e; @ - Q e,,) gives the first n terms in the Wick formula for order n + 1.

This formula expresses W(e; ® .- Q e,,) as an element of F(H) and has many

consequences such as Khintchine type inequalities in [191],[113],[60] for instance. We let
W =span{lW(e; ® - QR e,):n =0,e, € Kg + iKg}.
It is a dense *-subalgebra of I'(Hg, U,).

We will use the notion of completely bounded maps (see [135]). We will not need
very much beyond definitions and the fact that bounded functionals are automatically
completely bounded (with the same norm).

The construction of our radial multipliers relies on some functionalson 7. Let ¢p: N —
C be a function. The radial functional y associated to ¢ is defined on span{S"S*f} c F by
y(S‘S*J) =@(i+]).

The C*-algebra 7 admits very few irreducible representations (the identity and its
characters). It is thus possible to compute exactly the norm of such radial linear forms, see
([195] Proposition 1.8 and Theorem 1.3) and [205]:

Proposition (4.3.16)[190]: The functional y extends to a bounded map on 7 if and only if
B =[p({+))—@(+j+2)];js0 is atrace-class operator. If this is the case, then there
are constants c,, ¢, € C and a unique ¥: N — C such that

vneN,p(n) =c; + (=D + ¢ (n), and lirrlm,l)(n) = 0.

Moreover
Iy lly==lesl + le2l+1 By,

where || B |l is the trace norm of B.

We say that y is the radial functional associated to ¢. The definition of multipliers on
I'(Hg, U.)" follows the same scheme. Define m, on W by

my,(W(e, ® @ e)) = p(MW(e; ® - ® ep).

Lemma (4.3.17)[190]: Let ¢: N — C be any function. If m,, can be extended to a completely
contractive map on I'(Hg,U;), then there is a unique normal completely contractive
extension of m,, from I'(Hg, U,)" to I'(Hg, U.)"".
Proof. This is a standard fact. The space W is norm dense in I'(Hg, U;) which is weak-*
dense in T'(Hg, U;)". So W is also norm dense in I'(Hg, U,); using the basic embedding
['(Hg, Up)" = T'(Hg, U:). given by j(x)(y) = x(xy) (where y denotes the free quasi-free
state). By a duality argument, m,: W — W extends uniquely to a completely contractive
map on I'(Hg, U;)., say T. Thus T* is the only operator that satisfies the conclusion.

If m,, is completely bounded on I'(Hg, U;), we say that m,, is a radial multiplier on
['(Hg, Up)".
Theorem (4.3.18)[190]: Let ¢: N — C be any function and Hg an infinite dimensional real
Hilbert space with a one-parameter group (U;) of orthogonal transformations. Then ¢
defines a completely bounded radial multiplier on TI'(Hg, U;)"" if and only if the radial
functional y on 7" associated to ¢ is bounded. Moreover

Imgll , =1y lly-.

Thanks to Proposition (4.3.16), we have an explicit formula for || y ll¢-.
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Proof of the upper bound. We assume that ¢ gives a bounded functional y on 7. By the
universal property of 7(H), there is a x-homomorphism

FH) > FH) @min F
CtE) » ) ®S
So the map m, =(dQ y)m:T(H) » T(H) is completely bounded on T (H)

with norm || y ll7+. We have, foralln € Nand all e, € Ky + iKR :

m,, (£(e1) -+ £(ex)(€x+1)" - £(€,)") = p(n)(er) -+ €(er)€(Ep1) - £(€n)".
Recall that the Wick formula (Lemma (4.3.15)) says

Wie, ® - ®en)—2 £(e) (e 8(@nr)” (&)

Thus we derive that m, (W (e; ® - ® en)) (MW (e; ® - ® ey). Som, is bounded

on I'(Hg, U,) and is a radial multiplier.
To check the necessity of the condition, the idea is similar to [195] or [205]. We find
a shift algebra on which m,, acts. We start by taking an orthonormal system (e;);>; in Kg +

iKg such that (e;, &) = (é;,e;) = 0 forall i = j and |||l < 1 (this is possible by the Gram-
Schmidt algorithm). Consider the following element for > 1:

Z £(e)) ® W(ey) € T(H) ® B(F(H)).
Lemma (4.3.19)[190]: For aII n >1,

3
1S58, — 11l < —.

Vn
Proof. We have
W(e)'W(e) = (£(e)" +€(&))(*(e) +£(€)")
=1+ 2(e)t(e;) +£(e)t(e)" + £(e)"L(&)"
=1+ W(e_l ® ei).
It follows that

1 n
SY*LSTL = 7—1 z f(el)*f(e]) ® W(el)*W(e])
ij=1
1 n
= 1@ 142> 1@ (B@)e) + EEEE)" +(e) ¢(E)").
Lemma (4.3.14) yields )

3
<—,
Vn

[ee)

1w )
||£; 1QW(E Qe)

so that we get the estimate.

For convenience, we will use a standard multi-index notation, we write i for
(iy, ., i) € N*and |i| = n.Fora, 8 = 0, set

et =e,®Qe,Q8,, ®8,,
n
_a+B * *
wp =M2 z (ei,)  ¢(ei, )¢ (ei,,,) "'f(eiw) W (ega'ﬁ)’
il'---'ia+B:1
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ifa+p>0and Vg, =1 1.
Lemma (4.3.20)[190]: For all a, 8 = 0,
sesyf —vig=0 (i)
nen af \/E .
Proof. We do it by induction on a 4+ . When a + 8 < 1, there is equality. Assume this
holds for (a, 8), we prove it for (a + 1, B). First, S,V is equal to
n

n_a+g+1 z t(e;) (e )t(er,,) ¥ (eiaw)* ® W(e;, )W (ef‘).

io,...,l‘a_{_’[g:l

Recall the identity )
WhWh, @ - )=WHhQh Q)+ (hh)W(h, @)

used in the proof of the Wick formula. Therefore
n

1 *
SnVoZB = Vo7z1+1,ﬁ + (Ez <e_i; ei( )>f(€i)f(€i)(*) 03¢ 1) V;B
i=1

where (x)=1l,@a=a-1,=p8 and ei(*) =e¢;, if a>0 and £(e)® =
2(),a=0,=f-1 and el.(*) =e¢; if a=0. We have by Lemma (4.3.14)
lyn, <éi,ei(*)>£(ei)€(e‘i)* =o(andlyr, <e‘i,ei(*)>€(ei)€(ei) = 0 (). This yields
SnVap = Var1p =0 (\/iﬁ) According to Lemma (4.3.19) and the induction hypothesis, S,,
and then V', for a + b < a + f are uniformly bounded in n. Consequently,

« . 1 1
SIS — VI, g = Sa(SESF —vig)+0 (ﬁ) =0 (ﬁ)
The other case (a, f + 1) is obtained by taking adjoints. '
Proof of the lower bound. Assume m,, is a completely bounded multiplier on the free
Araki-Woods factor I'(Hg, U;)". Let U be a nontrivial ultrafilter on N. Set B=7(H) ®

B(F(H)) S0 that S, € B. Consider the C*-algebra A =[luB
and T the ultrapower of Id @ m,,. The element S = (S,,) € A satisfies $*S = 1 by Lemma
(4.3.19). As (Id @ my,)(Vzg) = @(a + BV, 5, We get by Lemma (4.3.20), T(S4S*F) =
o(a + £)S*S*E. Taking a particular non constant ¢ (that does exist), this shows that S is
non unitary and S is a shift. Thus, T leaves T = (S) invariant. By composing it with the
trivial character w of T'(w(S%S*#) = 1), we obtain that y = wT is a bounded functional on
T with 1y llz+< [lmy | .

A linear map between C*-algebras A4 and B is decomposable if it is a linear
combination of completely positive maps from A to B. Any functional can be decomposed
into sums of states, so we have:

Corollary (4.3.21)[190]: Any radial multiplier on T'(Hg,U,) is decomposable from
I'(Hg, U;) into T(H).

More generally, a function ¢: N — C defines a radial multiplier on T (H) if the map
T, given by

Tp(£(ey) L)t (ep1)” - £(en)™) = @(n)€(ey) - £(ex)t(ex+1)” - £(en)”
extends to a completely bounded map on 7'(H). The above proof actually gives the
following
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Corollary (4.3.22)[190]: For ¢: N — C, we have ”m‘p"cb = "T‘p"cb = || T, .

Taking 6<4(n) = &,<4, the corresponding multiplier P; on I'(Hg, U;) is called the
projection onto words of length less than d. Thanks to Proposition (4.3.16), we get:
Corollary (4.3.23)[190]: For any orthogonal group (U,) on an infinite dimensional real

Hilbert space Hpg,

4
P d"cb(r(HR,Ut)) 4500 T d.
Proof. We apply Theorem (4.3.18) and Proposition (4.3.16) to this particular radial function.
It is clear that c; = ¢, = 0. It remains to estimate the trace norm of B = Y& je;,_; +

a1 e;q—1-i- 1000 S0, B + e, 4 is unitarily equivalent to a circulant matrix of size d + 1,

2imk

Id 441 +Ja41 Where J40 = 34, e;i+1- 1he singular values of B are exactly 1 + ed+1, for
k=0,..,d Wegetthat || B |l;/d tends to f01|1 + e?mt|de = %.

Corollary (4.3.24)[190]: For any orthogonal group (U,) on an infinite dimensional real
Hilbert space Hg, there are finitely supported functions ¢,:N — R such that
lim,, || m‘Pn”cb = 1and lim, ¢, (k) = 1 forall k > 0.

Proof. This is an argument due to Haagerup [196] (see also [170]). Using Corollary (4.3.26)
below or Theorem (4.3.18), the contraction H 3 ¢ » e~ té € H gives rise to a unital
completely positive multiplier my,, on I'(Hg, U,)" (for t = 0) where (k) = e ¥t Since

b= ) TS = ) e — Beqr),

d d
the polynomial estimate gives that

limsup[lmy, (1 - Pyl < lim sup e M NIPryr — Pelly, = 0.
d—o —00

kzd
For every n > 1, choose d,, large enough so that [my, (1 —Py,)| , < 1/n. The net of
C

the form ¢, = ¥, /,8<,, satisfies the conclusion of the corollary.

We follow a very typical approach. We first establish a second quantization procedure
on free Araki-Woods von Neumann algebras, which generalizes [46],[1]. Then, to get the
approximation property, we just need to cut them with some radial multipliers to get finite
rank maps. Let H and K be Hilbert spacesand let T: H — K be a contraction. We will denote
the corresponding first quantization F(H) = F(K) by

[(MH=18 @ T®n,

nz1

Theorem (4.3.25)[190]: Let H and K be Hilbert spaces and T: H — K be a contraction.
Then there is a unique unital completely positive map I'(T): T (H) — 7 (K) such that
F(T)CE(hy) - ()€ (Mges1)™ - £(hy)™) =
(T (hy)) -+ (T (i) (T (his))” -+ (T (hi))”
forall h; € H.
Proof. This is again a consequence of the universal property of 7'(H). It is clear that if I'(T)
and I'(S) exist then T'(ST) = I'(S)I'(T). So by the general form of a contraction, one just
needs to prove the result when T is either an inclusion from H to K, or a unitary on H, or an
orthogonal projection from H to K.
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If T is an inclusion, this is just the universal property of 7(H) (note that I'(T) is an
injective *-representation). We emphasize that if H ¢ K and h € H, then £(h) has a priori
two different meanings as a creation operator on F(H) or F(K). The universal property tells
us that there is no difference at the C*-level.

If T is a unitary, this is also the universal property, but in this case I'(T) is nothing
but the restriction of the conjugation by the unitary ['(T) on the full Fock space F(H).

If T is an orthogonal projection from H to K, we write j: K — H for the inclusion.
The first quantization ['(j) = ¢ is also an inclusion of F(K) into F(H), the orthogonal
projection * is exactly ['(T). To avoid any confusion, for k € K write £, (k): F(K) - F(K)
for the creation operator on F(K) and ¢, (k): F(H) — F(H) for the creation operator on
F(H).For h € H and k € K, we have £, (h)*k = (h, k)Q = (T(h),k)Q = €4 (T(h))"'k =
L, (T(h))*k. This yields

Ul (hy) Lyl (Rgr)” - (hy) L =

k(T (hy)) = L (T (i) )k (T (is1)) - L (T(hi))
Hence T'(T)(x) =¢xt, for all xe€T(H). It is then clear that I'(T):T(H) —
T(K) is completely positive.

The second quantization is usually stated for maps such that AT = TA which is a
somewhat strong assumption [15]. This was the main obstacle to prove approximation
properties for general free Araki-Woods algebras as there can be no finite rank T satisfying
that condition.

Corollary (4.3.26)[190]: Let T: H — H be a contraction so that ITlI = T. Then I'(T) leaves
['(Hg, U;) invariant and I'(T) extends to a normal completely positive map on I'(Hg, U;)"
so that
LMW (&) = W(EF(T)E),VE € T(Hg, Uy)" Q.
Proof. If ITI = T, this implies that for all £ € K + iKg, we have T(§) = T(£). So by the
Wick formula for e; in Kg + iKg, we have
n

MW @~ @e) =) #(T(en) £(T(e)) T @) £(T(E)’

k=0
n

= #(Ten) - (T () e(Tlern) -+ (TCen)’
k=0
=W(T(e)) ® @ T(ey)).
As the set of such elements is linearly dense in I'(Hg, U,), we get that I'(Hg, U, ) is stable by
['(T). The normal extension is done as in Lemma (4.3.17).
Proposition (4.3.27)[190]: There is a net of finite rank contractions (T} ), converging to the
identity on H pointwise, such that T, = IT}I, for every k.

Proof. Let (1[,1,00] (A))/1>0 be the spectral projections of A. Since JAI = A™1, we get
1113 0 (A)(H) = 110,1/2(A) (H).
Recall that I = JA~'/? is the polar decomposition of I. We also have JA] = A=' and J is an
anti-unitary that sends 1, g;(A)(H) t0 11,5121 (A) (H).
Fix 1> 1and 0 <6 < 1. Take a subspace E in 1, 3.5 (A)(H) and denote by P the

orthogonal projection onto E. We show that IPI is almost the orthogonal projection JP].
Indeed, we have
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IPI = JA™Y%105 3, 5/(A)P1y 246/ (A)JATY21; 4 1](A)-

1+57
Moreover '
a2 1i32+6)(4) — il [AA+6] (A)” < ° 3
| Vit [
I Ky
la-2/21 A) -1 |l s=s—=
| R =% | Rl BN
The triangle inequality gives
5% 26

o) o)
| IPI — JP] lln< 214‘54‘4—)12_7

Summarizing, for any finite dimensional subspace E' < 1, 4,4(A)(H) and corresponding

projections Pg, Ty = ﬁ (Pg @ IPgI) is a finite rank contraction that satisfies ITgzl = Tg
+_
A
and

ITg — (Pe @ JPeDI, <
Observe that for operators S and T which have orthogonal left and right supports, we denote
thesumS+ThySPT.

Take F a finite dimensional subspace of H and fix € > 0. Then there exists n € N
such that for all f € F, we have ||[1je-non)(A)f — fIl < (e/3) Il f II. Set A, = e™/N, for
1 <k <N for some large N chosen later. Let P, be the orthogonal projection onto
1[ ](A)(H) @D 13,4,,,1@)(H) for k=1, and P, be the projection onto the
Ak+1' Ak

eigenspace of A for 1. Observe that Rer1 = — 1.

k
By the above construction, for each 1 < k < N, we can find a finite rank contraction

T, on P, (H) such that IT, I = T, and forevery f € F,
T, (Pef) = PefIl < 4(e™N — D)IPSfI.
For k = 0, as I is an anti-unitary on Py,(H), we take T, the orthogonal projection onto
Py(F) + 1P, (F), it satisfies the above properties with k = 0.
Set T = @¥_, T, which is a finite rank contraction as the T, 's act on orthogonal
subspaces. Moreover ITI = T and for all f € F, gathering the estimates

I TG = F U< 4(e™N = 1) I F Il + || emnm grmpy 3 (DS | + 2e/3) I f 1.
Letting N — oo, this upper bound can be made smaller than € || f Il. So we get the conclusion
with a net index by finite dimensional subspace of H and € > 0.

Theorem (4.3.28)[190]: (Theorem (4.3.1)). The von Neumann algebra I'(Hg, U;)"" has the
complete metric approximation property.
Proof. Using the contractions of the previous Proposition, the net (F(Tk))k is made of unital

completely positive maps which tend pointwise to the identity. Let (m%) be the multipliers
from Corollary (4.3.24). Since

(mg, o T(T)) (W(ey)) = eu(li)W (F(T)ey),

the net (m<pn ° I‘(Tk)) are normal finite rank completely bounded maps which satisfy:
nk
1. lim,, lim, ( m, o I‘(Tk)) = Id pointwise *-strongly and
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2. lim, limy || m,,_ o F(Tk)||Cb =1
The proof is complete.

There is another approximation property that turns out to be useful. A von Neumann
algebra M satisfies the Haagerup property if there exists a net (u;);c; of normal completely
positive maps from M to M such that
1.  forall x € M, u;(x) = xo-weakly.

2. forall ¢ € L*(M) and i € I the map x — u;(x)& is compact from M to L?(M).

Theorem (4.3.29)[190]: The von Neumann algebra I'(Hg, U;)"" has the Haagerup property.
Proof. This is just a variation. As above, with the finite rank maps of the previous
Proposition, it is easy to check that (F(e‘tTk))t>0 LEN IS a net of unital completely positive

maps that tends to the identity pointwise with respect to the o-weak topology. It remains
only to check the second point.
We use the notation of the proof of Corollary (4.3.24). We have I'(e™*) = m,;,, and
lim [my, (1 = Pl , =0
So T'(e™'Ty) = my, (1 — PI(Ty) + Pl (e™'Ty), as Pys'(e™'Ty) is finite rank,
I'(e7tT,) is a limit in norm of finite rank operators so is compact from I'(Hg,U,)" to
['(Hg,U:)". In particular, its composition with the evaluation on a vector ¢ €
L?>(T'(Hg, U,)") is also compact.
Let Hy be a separable real Hilbert space (dim Hg = 2) together with (U,) an
orthogonal representation of R on Hg. We set:
1. M =T'(Hg, U;)" the free Araki-Woods factor associated with (Hg, U;). Denote by y
the free quasi-free state and by o the modular group of the state y.
2. M = M %, R is the continuous core of M and Tr is the semifinite trace associated
with the state y.
3. Likewise M =T'(Hg @ Hg, U, ® U,)"", 7 is the corresponding free quasi-free
state and & is the modular group of ¥.
4, M =M x4z R is the continuous core of M and Tr is the semifinite trace
associated with ¥.
It follows from [15] that
M=Mx*M.
In the latter free product, we shall write M for the first copy of M and M., for the second
copy of M. We regard M’ c M via the identification of M with M. Denote by (4,) the
unitaries in  L(R) that implement the modular action ¢ on
M (resp. & on M). Define the following faithful normal conditional expectations:
1. E:M — L(R) such that E(xA;) = y(x)A,, forevery x € M and t € R;
2. E:M - L(R) such that £ (x1,) = ¥(x)A,, forevery x € M and t € R.
Then
(M,E) = (M,E) » gy (M, E).
Likewise, in the latter amalgamated free product, we shall write M; for the first copy of M
and M, for the second copy of M. We regard M c M via the identification of M with Mj.
Notice that the conditional expectation E (resp. E) preserves the canonical semifinite trace
Tr (resp. Tr) associated with the state y(resp. ) (see [196]).
Consider the following orthogonal representation of R on Hg @ Hy :
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cos (g s) —sin (g s)

V; = T e ,Vs € R.
SIDSE S) COoS (E S)
Let (a ) be the natural action on (M, ¥) associated with (V;):
a, =T'(V,),Vs €R.
In particular, we have

Qs (W (f})) =W (VS (;’;’)),Vs € R,V¢,n € Hy,

and the action (a;) is j-preserving. We can easily see that the representation (1;) commutes
with the representation (U, @ U,). Consequently, (a,) commutes with modular action 4.
Moreover, a;(x * 1) = 1 * x, for every x € M. At last, consider the automorphism g

defined on (M, ) by:
o)) -5 vener

It is straightforward to check that # commutes with the modular action &, 3% = Id, B =
Id;, and Bas, = a_4f,Vs € R. Since (a,) and f commute with the modular action &, one
may extend (a,) and B to M by AgLr) = Idy(r), for every s € R and B,r) = Idy g
Moreover (ag, B) preserves the semifinite trace Tr. We summarize what we have done so
far:
Proposition (4.3.30)[190]: The {Tr-preserving deformation} (e, B) defined on M =
M gy M is s-malleable:
1. agum =ldygr), for every seR and a;(x#*,ry 1) =1*,gx, for every
X €M,
2. B*=I1dand By = 1dy.
3. Bay, = a_ B, forevery s € R. Denote by E,;: M — M the canonical trace preserving
conditional expectation. Since Try,, = Tr, we will simply denote by Tr the semifinite
trace on M. Recall that the s-malleable deformation (a,, 8) automatically features a
certain transversality property.
Proposition (4.3.31)[190]: (Popa, [182]). We have the following:
lx = a5 (Ol 1y < 2Mlatg(x) = (Epg © ) @), g, VX € L2(M, Tr), Vs > 0.(26)
The following theorem is in some ways reminiscent of a result by loana, Peterson and
Popa, namely ([156] Theorem 4.3) (see also [176] Theorem 4.2] and [173] Theorem 3.4).
Proposition (4.3.32)[190]: Let M = T'(Hg, U;)" and M = M >, R be as above. Let p €
L(R) c M be a nonzero projection such that Tr(p) < oo. Let P € pMp be a von Neumann
subalgebra such that the deformation (a;) converges uniformly in ||l r, on U(P). Then
P <, L(R).
Proof. Let p € L(R) be a nonzero projection such that Tr(p) < o. Let P € pMp be a von
Neumann subalgebra such that («,) converges uniformly in [I-l, . on U(P). We keep the
notation introduced previously and regard M ¢ M = M, *(R) M, Via the identification of
M with M;. Recall that ag;, gy = Id,(g), for every s € R. In particular, a;(p) = p, for every
s € R.
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Step (1): Using the uniform convergence on U(P) to find ¢ > 0 and a nonzero
intertwiner v between Id and a,. The first step uses a standard functional analysis trick.

Lete = % Il p Il We know that there exists s = 1/2% such that Vu € U(P),

1
lu = as iy p < 5 1P lzrr,
Thus, Yu € U(P), we have
lwas(w) —pll, .. = llu"(as() —wll, 1,

< llu—asll, ;,

1
< E I P ”2,Tr.
Denote by € =7c0"{u*as(uw):u € U(P)} c pLl>(M)p the ultraweak closure of
the convex hull of all u*a,(u), where u € U(P). Denote by a the unique element in C of
minimal |||l .— norm. Since la —p ll;7v< 1/2 Il p Il 1, Necessarily a # 0. FiXx u €
U(P). Since u*aas(u) € €' and iiu*aozs(u)llz’Tr =l a ll, 1y, necessarily u*aas(u) = a.
Taking v = pol(a) the polar part of a, we have found a nonzero partial isometry v € pMp
such that
xv = vas(x),Vx € P. (27)
Note that vv* € P’ n pMp and v*v € a,(P)' N pMp.
Step (2): Proving P <, L(R) using the malleability of (e, B). The rest of the proof, is
very similar to the reasoning in ([168], Lemma 4.8, Theorem 6.1), ([188], Theorem 4.1) and
([156], Theorem 4.3) (see also [180], Theorem 5.6) and ([173], Theorem 3.4). For the sake
of completeness, we will give a detailed proof.
By contradiction, assume P £,, L(R). The first task is to lift Equation (27) to s = 1.
Note that it is enough to find a nonzero partial isometry w € pMp such that
Xw = wa,(x),Vx € P.
Indeed, by induction we can go till s = 1 (because s = 1/2%). Recall that 5(z) = z, for
every z € M. Recall that vv* € P’ n pMp. Since P %, L(R), we know from [6, Theorem
2.4] that P’ n pMp < pMp. In particular, vv* € pMp. Set w = a(8(v*)v). Then
ww® = ag(B(w)vv B(v))
= a;(BwH)Bwv)B(v))
=a,f(v'v) # 0.
Hence, w is a nonzero partial isometry in pMp. Moreover, for every x € P,
ways(x) = as(B(v)vas(x))
= as(B(v")xv)
as(B(vx)v)
as(B(as(x)v)v)
= asfa;(x)a;(B(v)v)
= p(x)w
= xw. _
Since by induction, we can go till s = 1, we have found a nonzero partial isometry v € pMp
such that

xv =va,(x),Vx € P. (28)
Note that v*v € ay(P) NpMp. Moreover, since a:pMp—>pMp is a *-
automorphism, and P £,, L(R), ([176] Theorem 2.4) gives
163



a;(P)’ npMp = a,(P' npMp)

C a,(pMp).
Hence v*v € a;(pMp).

Since P £, L(R), we know that there exists a sequence of unitaries (u;) in P such
that limy || £y g, (x*uky)iiZTr — 0, for any x,y € M. We need to go further and prove the
following:

Claim (4.3.33)[190]: Va, b € M,lim,, iiE,\,,z(a*ukb)iiz’Tr =0.
Proof. Let a, b € (M), be either elements in L(R) or reduced words with letters alternating
from M; © L(R) and M, © L(R). Write b = yb' with
1. y=bifbeL(R);
2. y = 1if b is a reduced word beginning with a letter from M, © L(R);
3. y = the first letter of b coming from M; © L(R) otherwise.
Note that either b’ = 1 or b’ is a reduced word beginning with a letter from M, © L(R).
Likewise write a = a’x with
1. x =aifx € L(R);
2. x = 1if a is a reduced word ending with a letter from M, © L(R);
3. x =the last letter of a coming from M; © L(R) otherwise.
Either a’ = 1 or a’ is a reduced word ending with a letter from M, & L(R). For any z €
My, xzy — E,ry(xzy) € M; © L(R), so that
Ey,(azb) = Ey, (a’EL(R) (xzy)b’).
Since lim iiEL(R)(qu,{y)iimr = 0, it follows that lim, ||E,\42(aukb)||2'Tr = 0 as well.
Note that
A:=span{L(R),(M;, O L(R)) - (M; O L(R)):n = 1,i; # - # i}
is a unital *-strongly dense *-subalgebra of M. What we have shown so far is that for any
a,b € A, ||Ey, (aukb)iiZ’Tr — 0, as k — oo. Let now a,b € (M),

By Kaplansky density theorem, let (a;) and (bj) be sequences in (A); such that a; = a

and b; — b *-strongly. Recall that (u,) is a sequence in P C pMp with Tr(p) < . We
have

B, (@bl 1. < 1w, (aitteby)l, . + [Ew, (@it = b))
+ ||EM2 ((a - ai)ukbj)"ﬂr + ||EM2 ((a — al-)uk(b — bj))"
= "EMz(aiukbj)llz’Tr + [lagup(b - bj)””r
+[|(a - ai)pukbjllz’rrr +[l(a = a)wp(b - bf)llz,Tr
< ||Ew, (aswidy)|l, o, + 2l (b = By, 1, + (@ — adpll,

Fix € > 0. Since a; - a and b; — b *-strongly, let iy, j, large enough such that
2lp(b = bl ., + (e = @i, ol ., < /2
Now let k, € N such that for any k > k,,
|En, (aioukbjo)llz’Tr < ¢/2.
We finally get ||E,\,,2(aukb)||2 + = & forany k > k,, which finishes the proof of the claim.

2,Tr
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Recall that for any x € P,v*xv = a,(x)v*v, by Equation (28). Moreover, v*v €
a,(pMp) c pM,p. So, forany x € P, v*xv € pM,p. Since a, (u;) € U(pM,p), we get
v vl = llay (v vll, 1,

= "EM2 (a1(uk)V*V)||2,Tr

= "EM2 (v*ukv)llz,Tr - 0.
Thus v = 0, which is a contradiction.
Corollary (4.3.34)[190]: Let M =T'(Hg,U,)" and M = M >, R be as above. Let p €
L(R) € M be a nonzero projection such that Tr(p) < co. Let P € pMp be a von Neumann
subalgebra such that P £,, L(R). Then there exist 0 < k < 1, a sequence (t;) of positive
reals and a sequence (u) of unitaries in U(P) such that lim,t;, =0 and ii(EM °
“fk)(uk)iiz,Tr <l p llyry forevery k € N.

Proof. Assume P <,, L(R). Using Proposition (4.3.32), we obtain that the deformation («;)
does not converge uniformly on U(P). Combining this with Inequality (26) in Proposition
(4.3.31), we get that there exist 0 < ¢ < 1, a sequence of positive reals (t,) and a sequence
of unitaries (uy) in U(P) such that lim t,, = 0 and ||a;, (uy) — (Ep © atk)(uk)iiZTr >c |

p llz e Yk € N. Since ||ay, (uk)ll2Tr =l p ll, 1+ by Pythagora's theorem we obtain
1(Eu © @t )@l y, < 1P llze, VK € N,

where k = V1 — c2.
Let M, N, P be any von Neumann algebras. For any M, N-bimodules H, K, denote by

my (resp. my) the associated *-representation of the algebraic tensor product M © N°P on

H (resp. on K ). We say that H is weakly contained in K and denote it by H c ., K if

Iy (DIl < llmg (DI, for every T € M O N°P. Recall that H C,., K if and only if H

lies in the closure (for the Fell topology) of all finite direct sums of copies of K. Let H, K be

M, N-bimodules. The following are true:

1. Assume that H c. K. Then, for any N,P-bimodule L, we have H @y
Lc,.. K®yL,as M,P-bimodules. Likewise, for any P, M-bimodule L we have

L@y H Cyeax L @y K, as P, N-bimodules (see [143], Lemma 1.7).

2. Avon Neumann algebra B is amenable if and only if L?(B) Cy L*(B) ® L*(B),
as B, B-bimodules.

Let B, M, N be von Neumann algebras such that B is amenable. Let H be any M, B-
bimodule and let K be any B,N-bimodule. Then, as M, N-bimodules, we have
H Qg K ok HQ K (straightforward consequence of (a) and (b)).

Let M = I'(Hg, U,)" be a free Araki-Woods factor. Denote by M = M >, R its
continuous core.

Lemma (4.3.35)[190]: Let p € L(R) be a nonzero projection such that Tr(p) < c. The
pM,p, pM;p-bimodule H = L?(pMp) © L?>(pM;p) is weakly contained in the coarse
bimodule L?(pM;p) & L*(pM,p).

Proof. Set B = L(R). Let p € L(R) be a nonzero projection such that Tr(p) < c. By
definition of the amalgamated free product M = M, * L(R)M, (see [197] and [196]), we
have as pM;p, pM;p-bimodules

1 (plip) © (oMip) = P 4,

nz1
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where
2n—1

H, = LZ(pM1) Qp (L2(M,) © L*(B)) Q5 - ®p (L*(M;) © L*(B)) ®p LZ(M1P)-
Since B = L(R) is amenable, the identity bimodule L?(B) is weakly contained in the coarse
bimodule L?(B) ® L*(B). From the standard properties of composition and weak

containment of bimodules, it follows that as p M, p, pM; p-bimodules
2n-1

Hy Coeae LP0M;) @ (L2(My) © 12(B)) ® -+ ® (L2(M,) © L*(B)) ® L2(M;p).
Consequently, we obtain as pM; p, pM, p-bimodules

# = 12(plip) © *(pM,p) € o () 120M) ® (M0,
Moreover, as a left pM; p-module, L? (pM,) is contained in @L?(pM,p). Likewise, the right

pM,;p-module L?>(M;p) is contained in @L?(pM;p). Therefore, we get as pM,p, pM;p-
bimodules

H = L*(pMp) © L*(DM1P) Ceq @ L*(pM;p) ® L*(pM;p).

Let M = I'(Hg, U;)" be a free Araki-Woods factor. Since M has the complete metric
approximation property by Theorem (4.3.1), so do its core M = M %, R and pMp, for any
Tr-finite nonzero projection p € M by Theorem (4.3.12).

Theorem (4.3.36)[190]: Let M = I'(Hg, U,)" be a free Araki-Woods factor. Denote by y

the corresponding free quasi-free state and by M = M x,x R the continuous core. Let p €

L(R) be a nonzero projection such that Tr(p) < oo. Let P € pMp be an amenable von

Neumann subalgebra. If P 5, L(R), then NV, (P)" is amenable.

Proof. The proof is a generalization of the one of [198], building on the work of Ozawa and

Popa (see [141], Theorem 4.9) and [198]. What is shown in [198], is the following. Assume

that P c N are finite von Neumann algebras such that P is amenable and N has the c.m.a.p.

Assume moreover that there are a finite von Neumann algebra N c N and trace-preserving

*_-homomorphisms a,: N — N such that:

1. lim;_q lla;(x) — x|, = 0, for every x € N.

2. There exists 0 < k < 1, a sequence of positive reals (t; ) and a sequence of unitaries
() in UP) such that limgt, =0 and [(Ey-e octk)(uk)"2Tr <
klpll, 1, forevery k €N,

3.  The N,N-bimodule L?(N) © L?(N) is weakly contained in the coarse bimodule
L*(N) ® L*>(N).

Then Ny (P)" is amenable.

Now let M =T(Hg,U;)" be a free Araki-Woods factor. Denote by y the
corresponding free quasi-free state and by M = M >, YR the continuous core. Let p €
L(R) be anonzero projection such that Tr(p) < co. We know that N = pMp has the c.m.a.p.
since both M and M have the c.m.a.p. (by Theorem (4.3.1)). Let P € pMp be an amenable
von Neumann subalgebra. The malleable deformation () clearly satisfies (a). Since
P £, L(R), Corollary (4.3.34) yields (b). Lemma (4.3.35) finally yields (c). Therefore
Npmp(P)" is amenable.

Theorem (4.3.37)[190]: Let M = I'(Hg, U;)"" be any free Araki-Woods factor. Let V' c

M be a diffuse von Neumann subalgebra for which there exists a faithful normal conditional

expectation E: M’ — V. Then either V' is hyperfinite or V' has no Cartan subalgebra.
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Proof. Let M be a von Neumann algebra and let ¢, Y be two faithful normal states on M.
Recall that through the natural *-isomorphism
Mpy: M X0 R > M Xy R,
we will identify
(50 (M) € M x50 R,60%,Tr,) with (7,4(M) € M x4 R,0%,Try,),

and simply denote it by (M < M, 8, Tr), where 8 is the dual action of R on the core M and
Tr is the semifinite faithful normal trace on M such that Tr o 8, = e~*Tr, for any s € R.

However, we need to pay attention to the following: whereas the inclusion M ¢ M
does not depend on the state, there are a priori two different copies of the abelian von
Neumann algebra L(R) inside M. To avoid any confusion, we will denote by A% (s) (resp.
¥ (s)) the unitaries implementing the modular action ¢ (resp. all’) on M. The following
technical Proposition will be useful, as it explains why we do not have to worry very much
about the state.
Proposition (4.3.38)[190]: Let M be a von Neumann algebra. Let A ¢ M be a separable
diffuse von Neumann subalgebra. Then, for any nonzero projection p € A’ " M with
Tr(p) < oo, and any faithful normal state ¢ on M, we have

Ap £ 12 (R)".
Proof. Fix ¢ a faithful normal state on M and p a nonzero Tr-finite projection in M. Since
A c M is diffuse and separable, any maximal abelian *-subalgebra in A is separable and
diffuse, and thus isomorphic to L*([0,1]). Therefore there exists a sequence of unitaries
(u,,) in A such that u,, - 0 weakly. Observe that Ap € pMp is a von Neumann subalgebra
and that (u,,p) are unitaries in Ap.
Let (g,,,) be an increasing sequence of projections in A? (R)" such that g,,, — 1 strongly and
Tr(q,,) < . Let x,y € (M), and € > 0. Since Tr(p) < o, choose m € N large enough
such that
Iqmx"p = x"Dll, o, + IPYGm — Y, 1 < €

Observe now that the unital *-algebra

= {z x,A%(s): S c R finite, x; € M
SES

is *-strongly dense in M, so that one can find nets (x;);¢; and (y]-)]_e] in (§), such that x; —»

px and y; — py =-strongly. Since now Tr(q,,) < o, one can find (i, ;) € I X J, such that
lgmx"p = gmxill, 1, + 1PYGm = yidmll, 5, <&
For simplicity of notation write L(R): = A? (R)". For every n € N, we get

|EL Ry (x*punpy) || < ”EL(R)(qmX*punpqu)"2'Tr Te

< ”EL(R)(qu;uny]'qm)”2,T7~ t 2e.

2,Tr

Since x;,y; € (€)1, write

where S, T c R are finite and x,, y, € M. Therefore
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EL(R)(qui*unijm) = Z @(x5upy )A? (t — 5)qm.
(s,t)ESXT
Since ¢ is a faithful normal state on M, one may regard A ¢ M c B(L?(M, ¢)). Since
u, — 0 weakly in A, there exists n, € N large enough such that Vn > ny, V(s,t) € S X T

&
XiuU < .
oGty < g ST T + D

We get, for every n > n,,
"EL(R) (qu;unijm)llz’Tr < &
Therefore, we have for every n > n,
Ly (2" pnp)l, . < 3e.
By (27) of Lemma (4.3.5), we get Ap £, A (R)".

We are now ready to prove Theorem (4.3.37). We will denote by y the corresponding
free quasi-free state on M. We prove the result by contradiction. Assume that there exists a
diffuse nonamenable von Neumann subalgebra V' € M together with E: M — IV a faithful
normal conditional expectation such that V' has a Cartan subalgebra A ¢ V. Observe that
A is necessarily diffuse. Denote by F: V' — A the faithful normal conditional expectation.
Choose a faithful normal trace T on A. Write i = 7o F o E. Observe that vy is a faithful
normal state on M such that Yo E =1 and Ac VY. Set M =M x_y R and N =
N %y R and notice that 2¥(R)" c A’ n M. Observe that since V" is a nonamenable von
Neumann algebra, its core N is nonamenable as well. Take a nonzero Trfinite projection
p € 2¥(R)" large enough such that pNp is nonamenable. Since (A ® ¥ (R)")(1 ® p) €
pNp is regular and pNp is nonamenable, Theorem (4.3.36) implies that
(A® Y (R)")(1 ® p) =y AX(R)" and thus A(1 ® p) <y AX(R)". Since 4 is diffuse,
this contradicts Proposition (4.3.38).
Theorem (4.3.39)[190]: Let (U,) be a nontrivial nonperiodic orthogonal representation of
R. Denote by M = I'(Hg, U;)"’ the corresponding type 111, free Araki-Woods factor. Denote
by M = M x, R its continuous core, which is a type Il factor. Let p € M be a nonzero
finite projection and write N = pMp.
1. For any maximal abelian *-subalgebra A ¢ N,V (A)"' is amenable. In particular, N

has no Cartan subalgebra.
2. Assume that

1. either (U,) is strongly mixing;

2. orU; =RV, where (I;) is strongly mixing. Then for any diffuse amenable

von Neumann subalgebra P ¢ N, Vy (P)"" is amenable, i.e. N is strongly solid.

Proof. Let M =T'(Hg,U,)" be a free Araki-Woods factor. As usual, denote by M =
M i, R its continuous core, where ¢ is the modular group associated with the free quasi-
free state y. Let p € L(R): = AX¥(R)" be a nonzero projection such that Tr(p) < oo.

(a) By contradiction, assume that there exists a maximal abelian *-subalgebra A c
pMp for which N,,,,,,(4)"" is not amenable. Write p — z € Z(N,,,,,(4)") for the maximal
projection such that V., (4)"(p — z) is amenable. Then z # 0 and N,,(A)"z has no
amenable direct summand. Notice that

NpMp(A)”Z C MMZ(AZ),I'
Since this is a unital inclusion (with unit z), V), (Az)"" has no amenable direct summand
either. Moreover, Az c zMz is still maximal abelian. Since L(R) is diffuse, Tr g, is
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semifinite and M is a type I, factor, we can find a projection p, € L(R) such that p, < p
and a unitary u € U(M) such that uzu* = p, Observe that A, = udzu* c pyMp, IS
maximal abelian and NV, up,(40)" has no amenable direct summand. Therefore, we may
assume without loss of generality that p = p,, i.e. A € pMp is a maximal abelian *-
subalgebra for which NV, (A)" has no amenable direct summand.

Theorem (4.3.36) yields A <, L(R). Thus there exists n = 1, a nonzero Tr-finite
projection g € L(R)™, a nonzero partial isometry v € M; ,(C) ® pM and a unital *-
homomorphism y: A — L(R)™ such that xv = vi(x), Vx € A. Write g = Y (p), q' = v*v.
Note that vv* € A'NnpMp =A and q' € Y(A)' ngM"q. It follows that q'(y¥(4)' N
qM™q)q’ = (W(A)q')' nq'M™q’. Since by spatiality 1 (4)q" = v*Av is maximal abelian,
we get g’ (W(A)' ngM™q)q’ = Y(A)q' = v*Av. Thus Y(4)' N gM™q has a type | abelian
direct summand. Moreover,

g(M* Q L(R))"q c q(L(R)' N M)"q < h(4)' N qM™q.
Recall that one of the following situations holds:
1. (U,) contains a trivial or periodic subrepresentation of dimension 2. In that case,

L(F,) c M*.

2. (Uy) = R® (V,), where (V;) is weakly mixing. In that case, M¥ = L(Z).
3. (U,) is weakly mixing and then M* = C.

The subcase (i) cannot occur because otherwise ¥ (A)" N gM™q would be of type II.
Assume now that (ii) occurs. We have (U;) = R & (V;) where (V) is weakly mixing. Then
we have

M =T(Hg,Up)" = T(Kg, V)"  L(Z),
and [203] implies that L(Z) is maximal abelian in M. Therefore B = L(Z) ® L(R) is
maximal abelian in M. Since A =<y L(R), we get A<y B.
Since A € pMp and B ¢ M are both maximal abelian, Proposition (4.3.6) yieldsn > 1, a
nonzero partial isometry v € pM such that vv* € A,v*v € B and v*Av = Bv*v. By
spatiality, we get
Ad(W™) (Npp*mop+ (AVV*)") = Ny ppppep (BU 1)

On the one hand, N,y (Avv™)" = vV*" Ny, (A) vr* is not amenable, since
Npmp(A)” has no amenable direct summand. On the other hand, since L(Z) = MX is
diffuse, Proposition (4.3.38) implies Bv*v = (L(Z) @ L(R))v*v %, L(R). Theorem (4.3.36)
implies that V,,«, 1+, (Bv*v)"" IS amenable. We have reached a contradiction.

Assume at last that (iii) occurs. Since (U,) is weakly mixing, it follows that M'* = C
and L(R) is maximal abelian in M by Proposition (4.3.10). Proposition (4.3.6) yieldsn > 1,
a nonzero partial isometry v € pM such that vv* € A,v*v € L(R) and v*Av = L(R)v*v.
By spatiality, we get

Ad(W") (Nppmo+ (AVV™)") = Ny pprpe (L(R)V* V)"
On the one hand, Ny, pppr(Avv™)" = vV*"Npp,(A)"vr* is not amenable, since
Npmp(A)” has no amenable direct summand. On the other hand, since (U,) is weakly
mixing, L(R) is singular in M, i.e. My, (L(R))"" = L(R). Therefore N, (L(R)V V)" =
L(R)v*v. We have reached again a contradiction.

(2-1) Assume that (U, ) is strongly mixing. Let P ¢ pMp be a unital diffuse amenable
von Neumann subalgebra. By contradiction, assume that V,,,, (P)"" is not amenable. With
the same reasoning as before, we may assume that MV,,,(P)"” has no amenable direct
summand.
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Theorem (4.3.36) yields P <,, L(R). Thus there exist n > 1, a nonzero Tr-finite
projection g € L(R)™, a nonzero partial isometry v € M; ,(C) ® pM and a unital *-
homomorphism y: P — gL(R)™q such that xv = viy(x),Vx € P. Note that vv* € P' n
pMp < Nyyp (P)"” and v*v € Y(P)' N qgM™q. Since Y (P) < qL(R)"q is a unital diffuse
von Neumann subalgebra and the action R ~ M is strongly mixing (see [173], Proposition
2.4 and Theorem 3.7) yields QN gyn, (W (P))" € qL(R)"q. Thus we may assume that
vV = q. Letu € Ny, (P). We have

v'uvryp(P) =v*uPv
= v*Puv
=Y (P)v*uv.
Hence v* Ny, (P)'v € QN gymq (W (P))" © qL(R)™q. But
Ad(v*): vv* Ny, (P)'vv™ - qL(R)"q
is a unital *-isomorphism. Since N,,(P)" has no amenable direct summand, vv* -
Npmp (P)"vv™ is not amenable. This contradicts the fact that gL(R)™q is amenable.

(2-1i) Assume that U, = R @ V, where (V/;) is strongly mixing. Observe that we have
['(Hg,Up)" =T (Kg, V)" * L(Z). If we denote by u a generating Haar unitary for L(Z) and
by Qo =*,e7 U"T'(Kg, V:)""u™"™ the infinite free product, we may regard I'(Hg, U;)"" as the
crossed product

T'(Hg,Up)" = Qoo X Z
where the action Z ~ @, is the free Bernoulli shift. Observe that the modular group (a;")
acts trivially on L(Z). Moreover, (at’( ) acts diagonally on @, in the following sense. Denote
by ¢ the free quasi-free state on I'(Kg,V;)". Let y4,...,yx ET(Kr, V)" ©Cny # -+ #
ng, x; = u™y;u~™ and write x = x, --- x;, for the corresponding reduced word in Q. Then
we have

ol (1) = W (p)u™ - uko (i du.

The core M is therefore given by

M = Q. x (Z xR).
Since (V,) is assumed to be strongly mixing, it is straightforward to check that the action
Z X R ™~ Q, is strongly mixing (see [173]).

We are now ready to prove that pMp is strongly solid. Assume by contradiction that
it is not. As we did before, let P € pMp be a unital diffuse amenable von Neumann
subalgebra such that V,,,, (P)"" has no amenable direct summand. Theorem (4.3.36) yields
P <,, L(R) and hence P <,, L(Z) ® L(R). Thus there exists n > 1, a nonzero Tr-finite
projection g € (L(Z) ® L(R))™, a nonzero partial isometry v € M, ,,(C) ® pM and a unital
x-homomorphism : P - q(L(Z) ® L(R))"q such that xv = vi(x),Vx € P. Note that
vv* € P' N pMp C Ny, (P)" and v*v € Y(P)' N gM™q. Since Y(P) € q(L(Z) ® L(R))"q is
a unital diffuse von Neumann subalgebra and the action Z x R ~ @, is strongly mixing,
[173] yields v* Ny, (P)'v € q(L(Z) ® L(R))"q. But

Ad(v™"): vv* Nypp (P)"vv* = q(L(Z) ® L(R))"q
is a unital *-isomorphism. Since MN,u,(P)"” has no amenable direct summand,
vv* Ny (P)'vv* is not amenable. This contradicts the fact that q(L(Z) ® L(R))"q is
amenable.

A free malleable deformation for (amalgamated) free products of von Neumann
algebras was discovered in [156]. Using ideas and techniques of [176],[197],[156],[141],
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we obtain the following indecomposability results for free products of von Neumann

algebras:

Theorem (4.1.40)[190]: Let (M;, ;) be a family of von Neumann algebras endowed with

faithful normal states. Denote by (M, @) =*;¢; (M}, @;) their free product.

1. Assume that M has the complete metric approximation property. Then either M is
amenable or M has no Cartan subalgebra.

2. Assume that each M; is hyperfinite. Let V' ¢ M be a diffuse von Neumann
subalgebra for which there exists a faithful normal conditional expectation E: M —
NNV. Then either IV is hyperfinite or V' has no Cartan subalgebra.
Observe that in (b), a free product of hyperfinite von Neumann algebras automatically

has the complete metric approximation property by [170].
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Chapter 5
Mixing Subalgebras and Generator Masas

We introduce for a finite von Neumann algebra M and von Neumann subalgebras
A, B of M, a notion of weak mixing of B c M relative to A. We show that weak mixing of
B < M relative to a subalgebra A c B is equivalent to the following property: if x € M and
there exist a finite number of elements x4, ...,x,, € M such that Ax < ], x;B,thenx €
B. We conclude with an assortment of further examples of mixing subalgebras arising from
the amalgamated free product and crossed product constructions. We show that if the
orthogonal representation is not ergodic then these von Neumann algebras are factors
whenever dim(Hg) > 2 and g € (—1,1). In such case, the centralizer of the g-quasi free
state has trivial relative commutant. In the process, we study ‘generator MASASs’ in these
factors and establish that they are strongly mixing.

Section (5.1): Finite von Neumann Algebras

In [211], Jolissaint and Stalder defined weak mixing and mixing for abelian von
Neumann subalgebras of finite von Neumann algebras. These properties arose as natural
extensions of corresponding notions in ergodic theory in the following sense: If o is a
measure preserving action of a countable discrete abelian group I, on a finite measure space
(X, w), then the action is (weakly) mixing in the sense of [207] if and only if the abelian von
Neumann subalgebra L(I},) is (weakly) mixing in the crossed product finite von Neumann
algebra L= (X, u) x I,

We extend the definitions of weak mixing and mixing to general von Neumann
subalgebras of finite von Neumann algebras, and study various algebraic and analytical
properties of these subalgebras. In a forthcoming note, the authors will specialize to the
study of mixing properties of maximal abelian von Neumann subalgebras. If B is a von
Neumann subalgebra of a finite von Neumann algebra M, and Eg denotes the usual trace-
preserving conditional expectation onto B, we call B a weakly mixing subalgebra of M if
there exists a sequence of unitary operators {u,,} in B such that

lim |IEp (1) — Eg()unEs M, = 0, ¥,y € M.

We call B a mixing subalgebra of M if the above limit is satisfied for all elements x, y in M
and all sequences of unitary operators {u,} in B such that lim,,_,,u,, = 0 in the weak
operator topology. When B is an abelian algebra, our definition of weak mixing is precisely
the weak asymptotic homomorphism property introduced by Robertson, Sinclair and Smith
[216]. Although our definitions of weak mixing and mixing are slightly different from those
of Jolissaint and Stalder, our definitions coincide with theirs in the setting of the action of a
countable discrete group on a probability space. Using arguments similar to those in the
proofs of Proposition 2.2 and Proposition 3.6 of [211], one can show:

Proposition (5.1.1)[206]: If o is a measure preserving action of a countable discrete group
[, on a finite measure space (X, 1), then the action is (weakly) mixing in the sense of [207]
if and only if the von Neumann subalgebra L(T,) is (weakly) mixing in the crossed product
finite von Neumann algebra

L (X, u) x T,.
For an inclusion of finite von Neumann algebras B ¢ M, we call a unitary operator u € M
anormalizer of B in M if uBu* = B[35]. Clearly, every unitary in B satisfies this condition;
the subalgebra B is said to be singular in M if the only normalizers of B in M are elements
of B. There is a close relationship between the concepts of weak mixing and singularity.
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Sinclair and Smith [218] noted one connection in proving that weakly mixing von Neumann
subalgebras are singular in their containing algebras. The converse was proved by Sinclair,
Smith, White and Wiggins [221] under the assumption that the subalgebra is also masa
(maximal abelian self-adjoint subalgebra) in the ambient von Neumann algebra. In other
words, the measure preserving action of a countable discrete abelian group I, on a finite
measure space (X, u) is weakly mixing if and only if the associated von Neumann algebra
L(Ty) is singular in L™ (X, u) % I},. This provides an operator algebraic characterization of
weak mixing in the abelian setting, which is the main motivation for the study undertaken
here. In contrast to the abelian case, Grossman and Wiggins [209] showed that for general
finite von Neumann algebras, weakly mixing is not equivalent to singularity, so techniques
beyond those known for singular subalgebras are required. In what follows, we develop
basic theory for mixing properties of general subalgebras of finite von Neumann algebras.
This leads to a number of new observations about mixing properties of subalgebras and
group actions, a characterization of weakly mixing subalgebras in terms of their finite
bimodules, and a variety of new examples of inclusions of von Neumann algebras satisfying
mixing conditions.

We show that if B is a diffuse finite von Neumann algebra, then

B® ©B ={x€B®:1,(x*b) =0,Vb € B}

Is the weak operator closure of the linear span of unitary operators in B & B, where B is
the ultra-power algebra of B.

We prove that if B is a mixing von Neumann subalgebra of a finite von Neumann
algebra M, one has

lim [|Eg(xbyy) — Ep()bnEx (W)l = 0, Vx,y € M,

if {b,} is a bounded sequence of operators in B such that lim,,_,., b, = 0 in the weak
operator topology. As applications, we show that if B is mixing in M, k is a positive integer,
and e € B is a projection, then M, (C) @ B is mixing in M;(C) @ M and eBe is mixing in
eMe. We also show that, in contrast to weakly mixing masas, one cannot distinguish mixing
masas by the presence or absence of centralizing sequences in the masa for the containing
11, factor.

We concerns the special case of inclusions of group von Neumann algebras. We
extend some results of [211] for abelian subgroups to the case of a general inclusion of
countable, discrete groups I, < I' in showing that L(Iy) is mixing in L(T) if and only if
glog~1 NT, is a finite group for every g € I' \ T,. These two conditions are seen to be
equivalent the property that for every diffuse von Neumann subalgebra A of B and every
y €M, yAy* ¢ B implies y € B. Some applications to ergodic theory are given. In
particular, Theorem (5.1.16) generalizes results of Kitchens and Schmidt [213] and Halmos
[210].

We introduce and study the concept of relative weak mixing for a triple of finite von
Neumann algebras, and obtain several characterizations of weakly mixing triples. It turns
out that relative weak mixing of an inclusion B ¢ M with respect to a von Neumann
subalgebra A c B is closely related to the bimodule structure between the two subalgebras
A and B. In particular, we show that B ¢ M is weakly mixing relative to A if and only the
following property holds: if x € M satisfies Ax c Y[~ x; B for a finite number of elements
X1, ., Xy IN M, then x € B.

The results show that mixing von Neumann subalgebras have hereditary properties
which are notably different from those of general singular subalgebras. We also consider
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the relationship between mixing and normalizers; in particular, we show that subalgebras of
mixing algebras inherit a strong singularity property from the containing algebra. Finally,
we provide an assortment of new examples of mixing von Neumann subalgebras which arise
from the amalgamated free product and crossed product constructions.

We collect here some basic facts about finite von Neumann algebras. Throughout, M
is a finite von Neumann algebra with a given faithful normal trace z. Denote by L?(M) =
L?>(M, 1) the Hilbert space obtained by the GNS-construction of M with respect to 7. The
image of x € M via the GNS-construction is denoted by X, and the image of a subset L of
M is denoted by L. The trace norm of x € M is defined by Il x ll,=Il x ll,,= t(x"x)*/2.
Suppose that B is a von Neumann subalgebra of M. Then there exists a unique faithful
normal conditional expectation Ez from M onto B preserving t. Let ez be the projection of
L?(N) onto L?(B). Then the von Neumann algebra (M, eg) generated by M and ey is called
the basic construction of M, which plays a crucial role in the study of von Neumann
subalgebras of finite von Neumann algebras. There is a unique faithful tracial weight Tr on
(M, eg) such that

Tr(xegy) = t(xy), Vx,y € M.
For & € L?>({M,eg), Tr), define | & llyp,= Tr(£*é)Y2. For more details of the
basic construction, see [208],[158],[165],[219]. For a detailed account of finite von
Neumann algebras and the theory of masas, see [219].

Let M be a finite von Neumann algebra with a faithful normal trace , and let B be a
von Neumann subalgebra of M. We denote by M © B the orthngonal complement of B in
M with respect to the standard inner product on M, that is,

M OB ={x € M:t(x*b) = 0 forall b € B}.
Then x e M © B if and only if Ez(x) = 0, where Ey is the trace-preserving conditional
expectation of M onto B. Note thatif x € M © B, then t(x) = t(Eg(x)) = 0, so the unique
positive element in M © B is 0. On the other hand, it is easy to see that M & B is the linear
span of self-adjoint elements in M & B.

We will use the fact that a bounded sequence (b,,) in a finite von Neumann algebra
B converges to 0 in the weak operator topology if and only if it defines an element of the
ultrapower B® which is orthogonal to B in the above sense. A key step in the proof of
Theorem (5.1.10) will then be to approximate an arbitrary z € B® © B by linear
combinations of unitary operators in B® © B. That such an approximation is possible is the
main technical result.

When B € M comes from an inclusion of countable discrete groups, there is an
obvious dense linear subspace of © B : if G is a subgroup of a discrete group I, then £L(I") &
L(G) is the weak closure of the linear span of unitary operators corresponding to elements
inT \ G. Although in the case of a general inclusion B € M, such a canonical set of unitaries
is not available, we nevertheless obtain a partial answer to the following question: If B is a
subalgebra of a diffuse finite von Neumann algebra M such that eMe # eBe for every
nonzero projection e € B, is M © B the weak closure of the linear span of unitariesin M ©
B?

The assumption that eMe # eBe for every nonzero projection e € B is necessary, as
Is the assumption that M is diffuse. For instance, if M = C@ Cand B = Cand t(1 @ 0) #
7(0 & 1), then there are no unitary operators in M & B.

Let (M), be the operator norm-closed unit ball of M, and let
A={xe (M);:x =x"Eg(x) =0}
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Then A is a convex set which is closed, hence also compact, in the weak operator topology.
By the Krein-Milman Theorem, A is the weak operator closure of the convex hull of its
extreme points. Thus, we need only characterize the extreme points of A.

Lemma (5.1.2)[206]: Suppose that for every nonzero projection p € M, there exists a
nonzero element x,, € pMp satisfying Eg (xp) = 0. Then the extreme points of A are

1
{Ze — 1: e € M a projection, with Egz(e) = E}

Proof. If e € M is a projection with Eg(e) = % then it is easy to see that the operator u =

2e — 1 € Ais an extreme point of the unit ball (M), hence also an extreme point of A. On
the other hand, suppose that a € A is an extreme point of A, but is not of the form 2e — 1,
for some projection e € M, as above. By the spectral decomposition theorem, there exists
an € > 0 and a nonzero spectral projection e of a such that

(—1+e)e<ae<(1-¢€)e.
By assumption, there is a nonzero self-adjoint element x € eMe such that Ez(x) = 0. By
multiplying by a scalar, we may insist that —ee < x < ee Thena+x,a—x € Aand a =

%(a + x) +§(a — Xx), SO a is not an extreme point of A, contradicting our assumption.

Therefore, a = 2e — 1 for some projection e € M. Since Egz(a) = 0,Ez(e) = % This

completes the proof.
The following example shows that the assumptions of the above lemma are essential.
Example (5.1.3)[206]: In the inclusion C c M;(C), there is no projection e € M;(C)

satisfing t(e) = ; In this case, the partial isometry

1 0 0
(0 0 0 )
0 0 -1
Is an extreme point of A.

Corollary (5.1.4)[206]: Let M be a diffuse finite von Neumann algebra with a faithful
normal trace . Then M © C1 is the weak operator closure of the linear span of self-adjoint
unitary operators in M © C1.

Proof. For every nonzero projection p € M, pMp is diffuse and hence pMp # Cp. So there
is @ nonzero operator x,, € pMp with 7(x,) = 0 By Lemma (5.1.2), M © C1 is the weak
operator closure of the linear span of self-adjoint unitary operators in M © C1.

For the next result, recall that every diffuse finite von Neumann algebra N with
faithful trace t contains a Haar unitary, that is, a unitary element u € N such that t(u™) = 0
for all n € N.

Lemma (5.1.5)[206]: Suppose B is a diffuse finite von Neumann algebra with a faithful
normal trace t. For e > 0 and x4, ..., x,, € B, there exists a Haar unitary operator u € B such
that
lt(x;u*)| <€ 1<i<n.

Proof. Since B is diffuse, B contains a Haar unitary operator v. Note that v — 0 in the
weak operator topology. So there exists an N such that

lt(x;(vM)*)| <€ 1<i <n.
Let u = v". Then u is a Haar unitary operator and the lemma follows.

Given a separable diffuse von Neumann algebra B with faithful normal trace t and
an ultrafilter w € SN\ N, denote by B® the corresponding ultrapower algebra, and the
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induced faithful normal trace by 7, (see [217]). We again use the standard notation of
(B® © B), for the norm-closed unit ball of B® & B. The following proposition is the main
result.

Proposition (5.1.6)[206]: Suppose B is a separable diffuse finite von Neumann algebra with
a faithful normal trace 7. Then (B® © B), is the trace norm closure of the convex hull of
self-adjoint unitary operators in B © B.

Proof. We claim that for every nonzero projection p € B, there exists a nonzero element
x, in pB®p such that IEB(xp) = 0, where Ejy is the conditional expectation of B® onto B
preserving t,,. Let p = (p,,) € B®, where p,, € B is a projection with =(p,,) = 7, (p) > 0.
Since B is separable, there is a sequence {y;} in B which is dense in the trace norm. We
may assume that y, = 1. By Lemma (5.1.5), for any initial segment {y,, ..., y,,} of the dense
sequence, there is a Haar unitary operator u,, € p,,Bp,, such that

1
[T(PrYiPrun)| < = Vi<isn.
Now define an element x,, of B by x,, = (u,). Then
% ll; = lim [yl = 7(p) > 0.
Hence, x,, # 0 and x,, € pB®p. Note that for each k € N, we have
70 (%)) = T (@D (%)) = lim T(@ayipaus) = 0.
Since {y,} is dense in B in the trace norm topology, Tw(y(xp)*) = 0 for all y € B. This
implies Ez(x,) = 0. By Lemma (5.1.2), (B® © B); is the weak operator closure of the
convex hull of self-adjoint unitary operators in B® © B. Note that (B® © B), is a convex
set, so its weak operator closure coincides with its closure in the strong operator and trace
norm topologies. This proves the result.
Corollary (5.1.7)[206]: Suppose B is a separable diffuse finite von Neumann algebra with
a faithful normal trace 7. Then B® & B is the weak operator closure of the linear span of
self-adjoint unitary operators in B® © B.

Using a similar approach, we can also prove the following result.

Proposition (5.1.8)[206]: If M is a separable type II; factor and B is an abelian von
Neumann subalgebra of M, then M © B is the weak operator closure of the linear span of
unitary operatorsin M © B.

It is not clear whether Proposition (5.1.8) holds for nonabelian subalgebras. We are
unable, for instance, to establish the conclusion of the result when B is a hyperfinite
subfactor of a nonhyperfinite type 11, factor M, e.g. LIF,.

Let M be a finite von Neumann algebra with a faithful normal trace , and let B be a
von Neumann subalgebra of M.

Definition (5.1.9)[206]: An algebra B is a mixing von Neumann subalgebra of M if
Ai_I)Eo”[EB(xuny) - [EB(x)un[EB(y)llz =0

holds for all x,y € M and every sequence of unitary operators {u,} in B such that

lim,,_, ., u,, = 0 in the weak operator topology. If B is a mixing von Neumann subalgebra of

M, then we say B € M a mixing inclusion of finite von Neumann algebras.

It is easy to see that B is a mixing von Neumann subalgebra of M if and only if for all
elements x, y in M with Eg(x) = Eg(y) = 0, one has

Ai_f?o IEg Cxupy)ll, =0
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whenever {u,,} is a sequence of unitary operators in B such that lim,,_, ., u,, = 0 in the weak
operator topology.

The following theorem, which is the main result, provides a useful equivalent
condition for mixing inclusions of finite von Neumann algebras.

Theorem (5.1.10)[206]: If B is a mixing von Neumann subalgebra of M and x, y € M with
Eg(x) = Egz(y) = 0, then

Ai_{?o IEgCxbyy)Il, = 0
whenever {b,,} is a bounded sequence of operators in Buch that lim,,_,,, b,, = 0 in the weak
operator topology.
Proof. Let w be a free ultrafilter of the set of natural numbers and let M be the ultrapower
algebra of M. Then M® is a finite von Neumann algebra with a faithful normal trace z,,. We
can identify B® with a von Neumann subalgebra of M® in the natural way. Every bounded
sequence (b,,) in B defines an element z of B®. We may assume that || z ||< 1. It is easy to
see that lim,,_,, b,, = 0 in the weak operator topology if and only if

7,(zb) =0, Vb € B.
Recall that M © B = {x € M:7(x*b) = 0 for all b € B}. It is easy to see that Definition
(5.1.9) is equivalent to the following: For any x,y in M © B, and any unitary operator u €
B® © B, one has Ezw (xuy) = 0.

Note that B is a diffuse subalgebra of M. Indeed, suppose p € B is a minimal
projection. Since B is mixing, then in particular we have that B’ n M < B, so Theorem
12.2.4 of [219] implies that there exists a masa A of M suchthatp € A c B. Butthenpisa
minimal projection of A, a contradiction. Thus, Proposition (5.1.6) applies, and (B® © B),
Is the trace norm closure of the convex hull of unitary operators in B © B. Lete > 0. Then
there exist unitary operators uy, ..., u, in B® & B and positive numbers a4, ..., a,, with a; +
-+ a, = 1 such that

For any elements x and y of M © B,

n
"[EB“’(ny)IIZ’Tw = |Epe (x Z_z ak“k))’)

k=1 2,74
n
< x(z—z akuk>y
k=1 Z,T
n
<l xII- |z - Z al Iyl
k=1 2,74
<ellxllyl

Since € > 0 is arbitrary, Ez» (xzy) = 0, which is equivalent to
rlli_)rgo IEg (xbpy)ll, = 0.
Two applications of the above theorem are the following.

Corollary (5.1.11)[206]: If B is a mixing von Neumann subalgebra of M and k is a positive
integer, then M, (C) @ B is mixing in M, (C) ® M.
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Proof. Note that x = (x;;) € (M (C) ® M) © (M (C) ® B) if and only if x;; e M © B
for all 1 <i,j < k. Moreover, b, = (bj) € M,(C) ® B converges to 0 in the weak
operator topology if and only if b;; converges to 0 in the weak operator topology for all 1 <

i,j < k. Now the corollary follows from Theorem (5.1.10).
Corollary (5.1.12)[206]: If B is a mixing von Neumann subalgebra of M and e is a
projection of B, then eBe is mixing in eMe.
Proof. Let (b,,) be a bounded sequence in eBe which converges to 0 in the weak operator
topology. For x,y € eMe © eBe, we have x,y € M © B. By Theorem (5.1.10),

111_{{)10 "IEeBe(xbny)llz = 7111—{20 "]EB(any)HZ =0.
It is well-known that the presence of centralizing sequences in a masa for its containing 11,
factor is a conjugacy invariant for the masa. More generally, it is possible to build
nonconjugate masas of a I1; factor by controlling the existence of centralizing sequences in
various cutdowns of each masa. Sinclair and White [220] developed this technique to
produce uncountably many nonconjugate weakly mixing masas in the hyperfinite 11, factor
with the same Pukanszky invariant. The final result implies that, in contrast to the larger
class of weakly mixing masas, there is no hope of distinguishing mixing masas along these
lines. Following the notation of [220], for a von Neumann subalgebra B of a II; factor M,
we denote by I'(B) the maximal trace of a projection e € B for which e Be contains a
nontrivial centralizing sequences for eMe.
Proposition (5.1.13)[206]: If B is a mixing subalgebra of a type II; factor M and eBe # e
Me for each nonzero projection e € B, then I'(B) = 0.
Proof. By Corollary (5.1.12), we need only show that there is no nontrivial sequence {b,, }
in B which is centralizing for M. Suppose {b,,} < B is such a centralizing sequence for M.
We may assume that t(b,,) = 0 for each n. Suppose that lim,,_,, b,, = z € B in the weak
operator topology. Then for all x € M,

zx = lim b,x = lim xb,, = xz.
n-w n-w

Since M is a type II; factor, z = 7(z)1 = 0. Hence lim,,_,, b, = 0 in the weak operator
topology. Choose a nonzero element x € M such that t(xb) = 0 for all b € B. Note that

lxby — bpxll; = llxbyll2 + Ibpxll; — 2Re T(bjx*byx)
> t(byx*xb,) — 2Re T(byEg(x*byx))
= t(x*xbyb;,) — 2 Re t(b;Eg(x*byx)).
Since {b,} is a central sequence of M,{b,b,} is also a central sequence of M. The
uniqueness of the trace on M implies that

lim t(x*xb,b;) = limt(x*x)t(b,b;) = lim || x I3 ||bn||§-
n-w n-w n-w

By Theorem (5.1.10),
0= rl;ng() lxby, — bupxll, =1l x I, Aggo byl
which implies that lim,,_,, lIb,|l, = 0. This completes the proof.
Corollary (5.1.14)[206]: If B is a mixing masa of a type II, factor M, then I'(B) = 0.

We apply our operator-algebraic machinery to the special case of mixing inclusions
of von Neumann algebras that arise from actions of countable, discrete groups. This
direction was taken up in [211], where it was shown that, for an infinite abelian subgroup
I, of a countable group T, the inclusion L(T,,) < L(T') is mixing if and only if the following
condition (called (ST)) is satisfied:
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For every finite subset C of I" \ T}, there exists a finite exceptional set E c I}, such
that gyh ¢ Iy forally e [, \Eand g,h € C.

Theorem (5.1.16) supplies a similar characterization for the case in which T, is not
abelian, and also establishes a connection between the group normalizer of the subgroup [,
and the "analytic" normalizer of its associated group von Neumann algebra. The key
observation required is the following, which shows that mixing subalgebras satisfy a much
stronger form of singularity.

Theorem (5.1.15)[206]: Let B be a mixing von Neumann subalgebra of M, and suppose
that A is a diffuse von Neumann subalgebra of B. If y € M satisfies yAy* € B, then y € B.
Proof. We may assume that A is a diffuse abelian von Neumann algebra. Then A is generated
by a Haar unitary operator w. In particular, lim,,_,.,w™ = 0 in the weak operator topology.
Letx € M and Ez(x) = 0.
Then

212 < NE g ()1,
Note that

B, (i) = lim Sz W G0
A'NM =

n-w n
in the weak operator topology. Hence,
T2 < NE am G2

n

1 . o .
= lim — z (W' ) (W)Wl (y*x)(w*)7)

111

< hm—z |7 (x(ywi=iy*)x* (w*) )]

n-w N2
l] 1

< hm—z IEs Cx(yw? =ty )" ) ))|

n-w N2
l] 1

= lim — z IEs (x(ywi=iy*)x")]l.

n-w N2
i,j=1
By hypothesis, yw™y* € B. Note that lim,,_,., yw"y* = 0 in the weak operator topology.
By Theorem (5.1.10),
lim [|Eg (x(yw™y")x "), =
So

n
1 o
T2 < lim — " By (x(ywi~iy)x), =
ij=1

Therefore, t(xy) = 0 forall y € M © B. This implies that y € B.
Theorem (5.1.16)[206]: Let M = L(T") and B = L(I}). Then the following conditions are
equivalent:
1. B = L(I}) is mixing in M = L(T).
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2.  glhg !t nT,isafinite group for every g € T\ T,.
3. For every diffuse von Neumann subalgebra A of B and every unitary operator v € M,

if vAv* € B, then v € B.
4, For every diffuse von Neumann subalgebra A of B and every operator y € M, if

yAy* € B, theny € B.
Proof. (a) = (d) follows from Theorem (5.1.15) and (d)=(c) is trivial.

(c)=(b) Suppose M = L(I') and B = L(T,). Suppose for some g € '\ T}, glog~1 N
I,b, is an infinitt group. Let T;=T,Ng g =919lhg NIy
Then T; is an infinite group, and ghg 'cTl, So A(gL()HA(g Y c
L(T,). By the third statement, A(g) € L(Iy) and g € I,. This is a contradiction.

(b)=(a) First, we show that if g,,g, € '\ I}, then g,I,g, N T, is a finite set.
Suppose hq, h, € Ty and g, h, 92, g1h, g, € Ty Then

g1hihz gt = g1h192(g1h292) 7" € To N giTogr ™.
Since I, N g,y g1 is a finite group,
{hih3": hy, hy €T, and g1y g,, g1h2 g, € Ty}

Is a finite set. Hence, g,I,g, N I, is a finite set.

Let {v,,} be a sequence of unitary operators in B such that lim,,_,,, v,, = 0 in the weak
operator topology. Write v,, = Y-, ay, x A(hy). Then for each k,lim,, ., a,, , = 0. Suppose
91,92 € T'\ I. There exists an N such that forallm > N, g, mg2 ¢ I,. Hence,

IE5 (9100901l Z I Es (912 (R0 g, 2 | = 0
i=1 i=1
when n — oo, M is mixing relative to B.

We now apply Theorem (5.1.16) to the group-theoretic situation arising from a
semidirect product I' = G x I, where T} is an infinite group. Let 6,,(9) = hgh™! for h €
I, and g € G. Then gy, is an automorphism of G. Note that hg = hgh™*h = 0, (g)h forh €
[,and g € G.

Proposition (5.1.17)[206]: Let M = L(G x T) and B = L(Iy). Then B is mixing in M if
and only if for each g € G, g + e, the group
{h € Tp:0n(9) = g}
Is finite.
Proof. Let g € G and h € T,. Suppose h € gT,g ' NT,. Then ghg™! € I,. Note that
ghg™ = hh71ghg™! = h(o,-1(g)g™1). So ghg™! € I, implies that g,-1(g)g™* € [, N
G = {e}, e, on-1(g) =g and hence on(g) =g
Conversely, suppose a;,(g) = g. Then a,-1(g) = g and hence ghg™! = hoy,_1(g9)g™* =
h €T, n gTyg~?t. This proves
{h€Ty:0,(9) =g} ={h€Ts:h € gTog™ N T}
Suppose B is mixing in M. By (b) of Theorem (5.1.16), gT,g~ ! N T, is a finite group for
every g € G with g # e. So the group {h € H: 0,,(g) = g} is finite. Conversely, suppose
that for each geEG,g+e, the group {h € Ty:
0,(g) = g} is finite. Our previous observations then imply that the group gT,g~! N T, is
finite. A group element of I \ T}y can be writtenas h, g € G g # e, h € T},. Note that
ghloh™'g™ N Ty = glhg™' N T
is finite. So B is mixing in M by (b) of Theorem (5.1.16).

180



Recall that the action o of a group H on a finite von Neumann algebra N is called
ergodic if g,(x) = x for all h € H implies that x = A1. The following result extends
Theorem 2.4 of [213] to the noncommutative setting.

Corollary (5.1.18)[206]: Let M = L(G xT,) and B = L(I;). Suppose I, is a finitely
generated, infinite, abelian group or I, is a torsion free group. Then B is mixing in M if and
only if every element h € T, of infinite order is ergodic on L(G).

Proof. If B is mixing in M, then clearly every element h € T, of infinite order is ergodic on
L(G). Now suppose every element h € I, of infinite order is ergodic on L(G). If B is not
mixing in M, then there is a g € G, g # e, such that {h € I): 0,(g) = g} is an infinite
group. Under the above hypotheses on I, there exists an element h, of infinite order such
that a;,,(g) = g. This implies that the action of hy on L(G) is not ergodic, which is a
contradiction.

Corollary (5.1.19)[206]: Let M = L(G < Z) and B = L(Z). Then the following conditions
are equivalent:

1. The action of Z on L(G) is mixing, i.e., B is mixing in M.

2 The action of Z on L(G) is weakly mixing, i.e., B is weakly mixing in M.

3. The action of Z on L(G) is ergodic.

4. For every g € G, g # e, the orbit {0}, (g)} is infinite.

5. Foreveryg € G,g # e,{h € Z:0,,(9) = g} = {e}.

Proof. Let y be a generator of Z. Clearly (a) = (b) = (¢).

(c) = (d) Suppose o,n(g) = g and n is the minimal positive integer satisfies this
condition. Let x = L, + Logy+ -+ L(,yn_l(g). Then x € L(G), x # A1, and g,(x) = x

for all h € Z. This implies that the action of Z on L(G) is not ergodic.

(d) = (e) Suppose o,~(g) = g for some positive integer n. Then the orbit {o,,(g)}
has at most n elements.

(e) = (a) follows from Proposition (5.1.17).

A special case of Corollary (5.1.19) implies the following classical result of Halmos
[210].
Corollary (5.1.20)[206]: (Halmos's Theorem). Let X be a compact abelian group, and
T:X — X acontinuous automorphism. Then T is mixing if and only if T is ergodic.
Proof. By the Pontryagin duality theorem, the dual group G of X is a discrete abelian group.
Furthermore, there is an induced action of Z on G, and the action is unitarily conjugate to
the action of T on X. Now the corollary follows from Corollary (5.1.19).

Suppose M is a finite von Neumann algebra with a faithful normal trace
7, and A, B are von Neumann subalgebras of M. We say B ¢ M is weakly mixing relative
to A if there exists a sequence of unitary operators u,, € A such that

Ylli_)rgo”IEB(xunY) - IEB(x)unIEB(y)HZ =0, Vx,y € M.

So B is weakly mixing in M if and only if B c M is weakly mixing relative to
B. Since every diffuse von Neumann algebra contains a sequence of unitary operators
converging to 0 in the weak operator topology, B is mixing in M implies that B € M is
weakly mixing relative to A for all diffuse von Neumann subalgebras A of B.

It is easy to see that B < M is weakly mixing relative to A if and only if there exists
a sequence of unitary operators u,, € A such that for all elements x,y in M with Eg(x) =
Eg(y) = 0, one has

lim |[E5 Ccuny)l, = 0.
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The main result is the following, which is inspired by [52].
Corollary (5.1.21)[206]: Let M be a finite von Neumann algebra with a faithful normal
trace 7, and let B be a von Neumann subalgebra of M. Then the following conditions are

equivalent:

1. B is a weakly mixing von Neumann subalgebra of M.

2. If x € M satisfies Bx c Y[, x; B for a finite number of elements x, ..., x, € M, then
X € B.

The following corollary gives an operator algebraic characterization of weakly
mixing actions of countable discrete groups.
Corollary (5.1.22)[206]: If o is a measure preserving action of a countable discrete group
[, on a finite measure space (X, 1), then weak mixing of o is equivalent to the following
property: if x € L*(X,u) x T, and L(Tp)x < ¥, x;L(T,) for a finite number of elements
X1, e, X IN L2 (X, 1) X Ty, then x € L(T).
Corollary (5.1.23)[206]: Let M be a finite von Neumann algebra with a faithful normal
trace 7, and let B be a mixing von Neumann subalgebra of M. If A c B is a diffuse von
Neumann subalgebra and x € M satisfies Ax c Y[-, x;B for a finite number of elements
X1, ., Xy € M, then x € B.
Lemma (5.1.24)[206]: Let p € (M, eg) be a finite projection, p <1 — ez, and € > 0. Then
there exist x4, ..., x, € M © B, and projections fi, ..., f, € B such that Ez(x/x;) = &;;f,
and

- I

i=1 2,Tr
Proof. Let g = eg + p. Then q is a finite projection in (M, eg). By Lemma 1.8 of [215],
there are x, Xy, ..., X, € M, x, = 1, such that Eg(x;x;) = &;;f; for 0 < i,j < n and

n

q-— XiepX; <eE€.
i=0 2,Tr
Clearly,
n
p— z XiepX; <eE€.
i=1 2,Tr

Suppose that H < L*(M) is aright B-module. Let L5 (L?(B), H) be the set of bounded right
B-modular operators from L?(B) into 7. The dimension of  over B is defined as
dimg(H) = Tr(1),
where Tr is the unique tracial weight on B’ satisfying the following condition
Tr(x*x) = 7(xx*), Vx € Lz(L*(B), H).

We say H is a finite right B-module if Tr(1) < oo. For details on finite modules, we refer
the reader to appendix A of [188].

Suppose that 7 < L*(M) is a right B-module. We say that 7 is finitely generated if
there exist finitely many elements &, ..., &, € H such that 7 is the closure of ¥, &B. A
set {&;}], is called an orthonormal basis of 7 if Ez(¢;¢;) = 6;;p; € B,p? = p;, and for
every £ € H we have

£ = Z EEp (D).
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Let p be the orthogonal projection of L*(M) onto #£. Then p = Y1, &;egé;, Where &; €
L?>(M) is viewed as an unbounded operator affilated with M. Every finitely generated right
B module has an orthonormal basis. For finitely generated right B-modules, see 1.4.1 of
[51].

The following lemma is proved by Vaes in [188] (see Lemma A.1).
Lemma (5.1.25)[206]: Suppose H is a finite right B-module. Then there exists a sequence
of projections z,, of Z(B) = B’ n B such thatlim,,_,, z, = 1 in the strong operator topology
and, for each n, there exists a projection p,, € M, (B) such that H z, is unitarily equivalent
to the p, My, (B)p, B-bimodule p,(L?(B)™). In particular, Hz, is a finitely-generated
right B-module,
The following lemma is motivated by Lemma 1.4.1 of [51].
Lemma (5.1.26)[206]: Suppose H c L*(M) is an A-B-bimodule, which is finitely
generated as a right B-module. Let p denote the orthogonal projection of L?(M) onto H.
Then there exists a sequence of projections z,, in A’ N M such that lim,,_,,z, = 1 in the
strong operator topology and for each n, there exist a finite number of elements

X1, - r Xn € M such that
k

ZpPZp(X) = z XniEp (x,*l,lx), Vx € M.
i=1
Proof. Let {§;}¥., ¢ H < L?>(M, 1) be an orthonormal basis for , i.e., H =D* , [§B].
As in 1.4.1 of [51], the projection p from L?(M) onto  has the form p = 3'¥ | &epé;,
where &; € L?(M) is viewed as an unbounded operator affilated with M. Since 7 is a left
A-submodule of L2 (M), in particular it is an invariant subspace for the von Neumann algebra
A, so the projection p: L>(M) —» H commutes with A. Thus, p € A’ N (M, eg). For a € A,

we have
“(Z am:) = (Z fierf) a
i=1 i=1

and, applying the pull down map to both sides, we obtain

“(Z as:) = (Z fifr) a.

i=1 i=1
Hence aq = qa for all spectral projections g of &;&;". Since Yi-,&;&; is a densely defined
operator affilated with M, g € A" n M. We thus obtain a sequence of projections z,, € A’ N
M such that lim,,_,., z, = 1 in the strong operator topology and ¥'¥_, z,;&; z, is a bounded

operator for eachn. Letx,,; = z,¢;,1 < i < k. Thenx, ; € M and
k k k

ZbIn(8) = ) ZniesEiza(®) = ) Xnieptng®) = ) B (K0,0)

i=1 =1 i=1

forall x € M.
Theorem (5.1.27)[206]: Let M be a finite von Neumann algebra with a faithful normal trace
7,and let A, B be von Neumann subalgebras of M with A c B. Then the following conditions
are equivalent:
1. B c M is weakly mixing relative to A4, i.e., there exists a sequence of unitary operators
{u,} in A such that
lim |E (xuy)ll, = 0, Vx,y € M © B.
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2. If z€ A" N (M, eg) satisfies Tr(z*z) < oo, then egzey = z.
3. If p € A' N (M, ep) satisfies Tr(p) < oo, then egpeg = p.
4, If x € M satisfies Ax c Y |-, x; B for a finite number of elements x;, ..., x,, € M, then
xX€ERB
Proof. (a)=(b) Suppose egzzey = z is not true. We may assume that (1 —eg)z# 0
(otherwise, consider z(1 — eB)). Replacing z by a nonzero spectral projection of
(1 —eg)zz*(1 — ep) corresponding to an interval [c, 1] with ¢ > 0, we may assume that
z = p # 0is a subprojection of 1 — ep.
Let € > 0. By Lemma (5.1.24), there is a natural number n and x4, ...,x,, EM & B
such that Eg (x7x;) = 6;;f;, where f; is a projection in B, and
n
-3 s
i=1 2,Tr
Let po = X x;egx;. Then p, is a projection. Note that u, puy = p. So
luxpour = poll, 7, < lluw(o =PI, 1, + lIpo = P, 1, <€

<€/2.

Therefore,

2lpolly = lueporti; = Poll ¢, + 2Tr(wepotio)

* 2 *
= llukpour — poll; 1, + 2 z Tr(uex;epx; upxepx;)
1<i,jsn
<e?+2 z T(Eg (o] upx; ) wex;)
1<i,jsn
2
2 I * I
<e’+2 z IEs (o wexi)
1<i,jsn
. . 2
By the assumption of the lemma, 2%1; j<n [|E (X} ukxi)iiZT — 0 when k — oo. Hence,

Ipoll, ¢ < €. Since € > 0 was arbitrary, this says p = 0 This is a contradiction.
(b) = (a) Suppose (a) is false. Then there exist €, > 0 and x4, ..., x,, € N © B such

that Yisij<n ||Es (xl-ux;)"; > €, for all u € U(A). Let
zZ =Y X/ epx;. Ther? z 1 e, Tr(z) < oo, and

n
Tr(zuzu*) = Z Tr(x; epxiux;epxju*) = z Tr(Eg (x;ux; )epx;ux;)

i,j=1 Lj=1
n

n
* * .k * 2
= z T(Ep(xjux; )xju*x;) = z |Es (xiux )| = €,
i,j=1 Lj=1
for all ue U(A). Let T, be the weak operator closure of the convex hull of
{uzu*:u € U(A)}. Then there exists a unique element y € I, such that ||y ll, =
min{|l x ll,7,:x € I,,}. The uniqueness implies that wyu* = y for all u € U(A) and hence
y € A" n (N, eg).Since Tr(zuzu*) = €,, Tr(zy) =€, > 0.So0y > 0and y L eg. Note that
Tr(y?) <l y I Tr(y) <l y | Tr(2) < .
This contradicts the assumption of (b).
(b)e (c) is easy to see.
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(c)= (d) Suppose Ax c Y™ . x;B. Let H be the closure of AxB in L>(N, 7). Then
is a left A finitely generated right B bimodule. Let p be the projection of L?(N, 1) onto 7.
Thenp € A"’ n (N, eg) is a finite projection of (N, eg). By the assumption of (¢c),p < ez. SO
% =p(%) = ez(%) € Band x € B.

(d)=(c) Suppose p € A’ N (M, eg) satisfies Tr(z*z) < oo. ThenH = pL*(M) is a left
A finite right B bimodule. By Lemma (5.1.25), we may assume that 7 is a left A finitely
generated right B bimodule. By Lemma (5.1.26), there exists a sequence of projections z,,
in A" N M such that lim,,_,,z, = 1 in the strong operator topology and for each n, there

exist Xnis o Xng EM such that
k
ZnPZn(X) = z XniEp (x;;'lx), for all x € M.
i=1

Note that z,pz,, € A’ N (M, ey), and for every x € M,

n

ACpz($) = apz) (A%) € ) FniB.
i=1
By the assumption of (4), z,pz, (%) € B c L?>(B) for every x € M. Hence, for each ¢ €
L*(M), z,pz, (&) € L*(B). Since lim,_,.,z, = 1 in the strong operator topology, p(¢) =
lim,, e 2,0z, (&) € L>(B), i.e.,p < ep.

We explore the hereditary properties of mixing subalgebras of finite von Neumann
algebras; that is, we show that if B € M is a mixing inclusion, then the properties of an
inclusion B, c B can force certain mixing properties on the inclusion B; € M. In particular,
Proposition (5.1.28) below allows us to construct examples of weakly mixing subalgebras
which are not mixing. We also use the crossed product and amalgamated free product
constructions to produce further examples of mixing inclusions.

Proposition (5.1.28)[206]: Let B be a mixing von Neumann subalgebra of M, and let B, be
a diffuse von Neumann subalgebra of B. We have the following:

1. BiNM = B; NnB.

2. If B, is singular in B, then B, is singular in M.

3.  Ny(By)" < B,where Ny (B;) = {u € U(M):uB,u" = B;}.

4, If B, is weakly mixing in B, then B, is weakly mixing in M.

5. If B, is mixing in B, then B, is mixing in M.

Proof. (a)-(c) follow from Theorem (5.1.15).

(d) By Corollary (5.1.21), we need to show that if x € M satisfies Byx € Y-, x;B;
for a finite number of elements x4, ..., x,, € M, then x € B,. Note that B is mixing in M. By
Corollary (5.1.23),x € B. Let b; = Eg(x;) for 1 < i < n. Applying Eg to both sides of the
inclusion Byx c ¥, x;B; we have B;x c I, b;B;. Since B; is weakly mixing in B, x €
B; by Corollary (5.1.21).

(e) Suppose B, is mixing in B and u,, is a sequence of unitary operators in B; with
lim,,_,, u,, = 0 in the weak operator topology. For x,y € M, we have

rlli_{go”EB(xuny) - EB(x)un[EB(y)HZ =0
since B is mixing in M. Applying Ep, to Eg(xu,y) — Eg(x)u,Ez(y), we have
AL@O”EBl(xunY) - EBl(IEB(x)unEB(y))HZ = 0. (D
Since B, is mixing in B,
lim ||Es, (B3 (0)unEp () — Eg, ()unEp, @I, = 0. ()
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Combining (1) and (2), we have
Tll_)r{.lo "IE31 (xuny) — Eg, (X)u,Ep, (U)HZ =0,
which implies that B, is mixing in M.
Proposition (5.1.29)[206]: Let M be a type II, factor with the faithful normal trace t, and
let B be a proper subfactor of M. If {u,} is a sequence of unitary operators in B such that
for all elements x, y in M with Egz(x) = Eg(y) = 0, one has
lim [|E5 (xuny)ll, =0,
then lim,,_,, u,, = 0 in the weak operator topology.
Proof. Note that B is weakly mixing in M and hence singular in M. In particular B' N M =
C1. Let w be a non principal ultrafilter of N and suppose lim,,_,,u,, = b in the weak
operator topology. For x,y in M with Eg(x) = Egz(y) =0
Ep(xby) = lim Ep(xu,y) = 0.
Let b = u|b| be the polar decomposition of b. Note that
Eg(xu*) = Eg(x)u™ = 0.
Hence,
Eg(x|bly) = Eg(xu*ulbly) = Eg(xu*by) = 0.
Letx = y*. Then Ez(y*|b|y) = 0 and hence y*|b|y = 0. This implies that |b|y = 0 for all
y € M with Eg(y) = 0. For b’ € B,Eg(b'y) = b'Eg(y) = 0. Hence, |b|b'y = 0. This
implies that |b|R(b’'y) =0, where R(b'y) is the range projection of b'y. Let p =
Vpreg R(b'y). Then |b|p = 0. On the other hand, 0 #= p € B' N M, so p = 1. We then have
|b| = 0,and b = 0. Therefore, lim,,_,, u,, = 0 in the weak operator topology. Since w is an
arbitrary non principal ultrafilter of N, lim,,_, ., u,, = 0 in the weak operator topology.
Lemma (5.1.30)[206]: Let B be a von Neumann subalgebra of M. Then the following
conditions are equivalent:
1. B is atomic type I.
2. For every bounded sequence {x,} in M with lim,,_,,x,, = 0 in the weak operator

tOpOIOgy, lirnr1.—>oo ”IEB (xn)llz = 0.

Proof. (a)=(b) Since B is a finite atomic type | von Neumann algebra, B =@®¥_, M, (C),
where 1 < N < oo. So there exists a sequence of finite rank central projections p,, € B such
that p,, — 1 in the strong operator topology. Therefore, (p,,) — 1. Let {x,,} be a bounded
sequence in M with x,, — 0 in the weak operator topology, and let e > 0. We may assume
that [|x,|l < 1. Choose p, such that 7(1 —p,) < €2/4. Note that the map x € M -
pkEg(x) is a finite rank operator. There is an m >0 such that for all n>
m, lpkEg(xp)l, < €/2. Then
IEg Ce)ll, < IpkEg el + (1 = pr) Eg(x ), < €/2 +€/2 = €.

This proves that ||IEB(xn)||2 - 0.

(b)=(a) If M is not atomic type I, then there is a nonzero central projection p € M
such that pM is diffuse. Thus, there is a Haar unitary operator v € pM. Note that v — 0 in
the weak operator topology. But [[Eg(v™)Il, = lv"ll, = 7(p)*/? does not converge to 0.
This contradicts (b).

Proposition (5.1.31)[206]: Let M = M, *, M, be the amalgamated free product of diffuse
finite von Neumann algebras (M, ;) and (M,,t,) over an atomic f nite von Neumann
algebra A. Then M; is a mixing von Neumann subalgebra of M.
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Proof. The following spaces are mutually orthogonal with respect to the unique trace = on
M:M,©OA M OA)QM,©A),MOA)QM; ©A),
M, 86AQRM,0A)Q (M; © A),- Furthermore, the trace-norm closure of the linear
span of the above spaces is L>(M, 1) © L*(M,, t). Suppose {u,} is a sequence of unitary
operators in M, satisfying lim,,_,,u,, = 0 in the weak operator topology. To prove M, is a
mixing von Neumann subalgebra of M, we need only to show for x in each of the above
spaces, we have

lim [ Ey, Grugx)], = 0.
We will give the proof for x in one of the following spaces:

M;04)Q® M, ©A) and (M, ©A) Q® (M, © A).
The other cases can be proved similarly.
Suppose x = x;y;, wherex; e M; © Aand y;, € M, © A. Then
XUp X" = X1Yq (un - IEA(un))yikxl + x1y1 E4 () y1x7.

Note that IEMl(xlyl(un — IEA(un))y{‘xl) =0 and lim, ,llEq(u,)ll, =0 by
Lemma (5.1.30). So

lim [ Ey, G2, = 0.
Suppose x = y,x;, where x; e M & Aand y;, € M, © A. Then
XUpX™ = Y1 XqUpX1 Y1 = }’1(9C1unxik - IEA(xlunxi“))yi“ — ¥1Ea (g unx1)yy.
Note that

IEMl(yl(xlunxf - [EA(x1uan)))’f) =0 and Tlli_{g"[EA(Muan)"z =0

by Lemma (5.1.30). So

lim [[Ey, Geux )]l = 0.
Note, in particular, that Proposition (5.1.31) implies that if A is a diffuse mixing masa in a
finite von Neumann algebra M, and M, is also diffuse, then A is mixing in the free product
M, * M,.

Now let B be a diffuse finite von Neumann algebra with a faithful normal trace t, and
let G be a countable discrete group. Let *,¢; B, be the free product von Neumann algebra,
where B, is a copy of B for each g. The shift transformation o (g)((xy)) = (x,-15,) defines
an action of G on *,¢¢ B;. Let M =, By > G. Then M is a type II; factor and we can
identify B with B,.

Proposition (5.1.32)[206]: The above algebra B is a mixing von Neumann subalgebra of
M.
Proof. Suppose v, is the classical unitary operator corresponding to the action g in M. Then
for every (xp,) in *4¢6 By,
vy (xp)vgt = (ag(xh)) = (x4-15).
Suppose b,, € B = B,, b,, — 0 in the weak operator topology, g # e, and x;, € B;,. We may
assume t(b,,) = 0 for each n. Note that
XpVgUnVgXp = Xp0g(bp)Xp,.

If h # e, itis clear that x, 0, (b,)x}, is free with B = B, and hence orthogonal to B. If h =
e, direct computations show that x, o, (b,,)x; is orthogonal to B = B,. So we have

IEB(xhvgbnvgx,’:) = [EB(xhag(bn)x;‘l) = T(xhag(bn)x;*l) = T(Jg(bn)x,”;xh)

=T (bnag-1(x,’;xh)),
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and this last expression above converges to zero. Note that the linear span of the above
elements x,v, is dense in M © B in the weak operator topology. This proves that B is
mixing in M.

Section (5.2): g-Deformed Araki—Woods Von Neumann Algebras and Factoriality

In free probability, Voiculescu's C*-free Gaussian functor associates a canonical C*-
algebra denoted by I'(HR) to a real Hilbert space Hy, the former being generated by
s(§), & € Hy, where each s(&) is the sum of creation and annihilation operators on the full
Fock space of the complexification of Hy. The associated von Neumann algebra I'(Hg)"”’
IS isomorphic to L(IFdim(g{R)) and is the central object in the study of free probability (see
[233] for more on the subject). There are three interesting types of deformations of
Voiculescu's free Gaussian functor each of which has a real Hilbert space Hp as the initial
input data: (i) the g-Gaussian functor due to Bozejko and Speicher for —1 < q < 1 (see
[66]), (ii) a functor due to Shlyakhtenko (see [15]) which is a free probability analog of the
construction of quasi free states on the CAR and CCR algebras and (iii) the third one is a
combination of the first two and is due to Hiai (see [123]); the associated von Neumann
algebras are respectively called BozejkoSpeicher factors (or g-Gaussian von Neumann
algebras), free Araki-Woods factors and g-deformed Araki-Woods von Neumann algebras.

Frisch and Bourret in [77] had considered operators satisfying the g-canonical
commutation relations:

L)) —al(f)'l(e) =(e, /), -1 <qg <1

The existence of such operators on an 'appropriate Fock space' was proved by Bozejko and
Speicher in [66] and these operators have importance in particle statistics [230], [231]. Since
then many experts have studied the g-Gaussian von Neumann algebras. Structural properties
of the g-Gaussian algebras have been studied in [223], [66], [60], [68], [227], [137], [113],
[239], [185], [238]. A short summary of the results obtained in these studies are as follows.
For dim(Hy) = 2, the g-Gaussian von Neumann algebras I, (Hy ) are non-injective, solid,
strongly solid, non T factors with w*-completely contractive approximation property.
Further, T,(Hg) = L(Faimy) for values of g sufficiently close to zero [232]. The
Shlyakhtenko functor in [15] associates a C*-algebra I'(Hy, U;) to a pair (Hg, U;), where
Hry is a real Hilbert space and (U,) is a strongly continuous real orthogonal representation
of R on Hy. The von Neumann algebras I'(Hr, U;)"’ obtained this way i.e., the free Araki-
Woods von Neumann algebras are full factors of type III,,0 < A < 1, when (U,) is non-
trivial and dim(H) = 2 [15]. These von Neumann algebras are type |11 counterparts of the
free group factors. In short, they satisfy the complete metric approximation property, lack
Cartan subalgebras, are strongly solid, and, they satisfy Connes' bicentralizer problem when
they are type I11; (see [179],[190],[224]). They have many more interesting properties.

The third functor mentioned above is the g-deformed functor due to Hiai for —1 <
q < 1 (see [123]). Hiai's functor is the main topic. It is a combination of Bozejko Speicher's
functor and Shlyakhtenko's functor. This functor, like the Shlyakhtenkao's functor, associates
a C*-algebra I'; (Hg, U;) to a pair (Hg, Uy), where Hy, is a real Hilbert space and (U,) is a
strongly continuous orthogonal representation of R on Hpy as before. The associated von
Neumann algebras in this construction a priori depend on g € (—1,1) and are represented
in standard form on ‘twisted full Fock spaces' that carry the spectral data of (U,) and
connects it to the modular theory of this particular standard representation in a manner such
that the canonical creation and annihilation operators satisfy the g-canonical commutation
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relations of Frisch and Bourret. Hiai's functor coincides with Bozejko-Speicher's functor
when (U,) is trivial and also coincides with Shlyakhtenko's functor when g = 0. Note that
I, (Mg, Up)" is abelian when dim(Hg) = 1, so the situation becomes interesting when
dim(Hy) = 2.

Assume dim(Hpy) = 2. Unlike the free Araki-Woods factors, not much is known

about the g-deformed Araki-Woods von Neumann algebras. Hiai proved amongst other
things that when the almost periodic part of (U,) is infinite dimensional, the centralizer of
the g-quasi free state (vacuum state) has trivial relative commutant and thus decided
factoriality of the ambient von Neumann algebra I'; (g, U,)"” (Thm. 3.2, [123]). Thus, he
was also able to decide the type of these factors under the same hypothesis imposed (Thm.
3.3, [123]). He also exhibited non-injectivity of I', (Hg, U;)" depending on the 'thickness of
the spectrum of the analytic generator of (U.)' (Thm. 2.3, [123]). Recently, Nelson
generalized the techniques of free monotone transport originally developed in [232] beyond
the tracial case. Using this powerful tool he proved that I, (Hg, Up)" = Iy (Hg, Up)"" (the
latter being the free Araki-Woods factors) around a small interval centred at 0, and hence
decided factoriality (Thm. 4.5,4.6, [236]). Thus, even factoriality of I}, (Hg,U,)" is not
known to hold in general. We investigate the factoriality of I, (}g, U,)". The main result is
the following:
Theorem (5.2.1)[222]: For any strongly continuous orthogonal representation t — U,, of R
on a separable real Hilbert space Hyx with dim(Hy) = 2 and for all g € (—1,1), the g-
deformed Araki-Woods von Neumann algebras I, (g, U,)"" are factors, if there exists a
unit vector &, € Hy such that U,&, = &, forall t € R.

The main result in [137] which proves the factoriality of I';;(Hy) uses MASAs. The
proof of Theorem (5.2.1) also uses MASAs but from a different point of view. Note that, if
a finite von Neumann algebra contains a diffuse MASA so that the orthocomplement of the
associated Jones' projection (with respect to a faithful normal tracial state) as a bimodule
over the MASA is a direct sum of coarse bimodules, then the ambient von Neumann algebra
must be a factor. Thus, our proof depends on singular MASAs (and this is natural as we are
dealing with algebras which are similar to free group factors [172]). So, our techniques are
more close to understanding the measure-multiplicity invariant of a MASA that was
introduced in [228]. The MASAs that we work with lie in the centralizer of the g-quasi free
state. We call these generator MASAs, as these MASAs are indeed the analogue of generator
MASA:Ss in the free group factors. The generator MASAS in the free group factors have
vigorous mixing properties. So, to compare, we investigate mixing properties of generator
MAGSASs in T, (g, U;)"" and show that the left-right measure of these MASAs (see [234] for
Defn.) are Lebesgue absolutely continuous. The second reason of working with MASAS is
forced, for this enables us to decide the factoriality of the centralizer of the g-quasi free state
and thereby facilitate the computation of the S-invariant of the ambient factor.

We collect all the necessary material that is needed to address the problem. We
contains an account of Hiai's construction, associated modular theory, description of the
commutant and other technical details. A convenient description of the centralizer of the g-
quasi free state is required. The centralizer depends entirely on the almost periodic
component of (U,) and its GNS space is described in Theorem (5.2.11). We investigate the
properties of the generator abelian algebras which are indispensable ingredients in our
arguments. In Theorem (5.2.13), we establish that a canonical self-adjoint generator of

189



I, (Mg, Up)" generates a diffuse abelian algebra (generator MASA) having conditional
expectation that preserves the vacuum state if and only if the generator lies in the centralizer
of I, (Hg, U)"" with respect to the same state.

By making a short account on how to regard a GNS space of an arbitrary von
Neumann algebra equipped with a faithful normal state as a standard bimodule over a
MASA, when the MASA comes from the centralizer of the associated state. We also discuss
strong mixing of MASAs (lying inside the centralizer) with respect to a particular faithful
normal state and also highlight on calculating left-right measures of MASAS. In Theorem
(5.2.17) and Theorem (5.2.18), we show that for a generator algebra (MASA) in
I, (Mg, U,)" that possess conditional expectation preserving the vacuum state, the left-right
measure is indeed Lebesgue absolutely continuous for all g € (—1,1). This justifies the term
'generator MASA: This statement is an indication that [,(Hg,U,)" will share many
properties of the free group factors even when q is away from 0 (the case when q is close to
+1 is probably more interesting from the point of view of physics) and is a reflection of a
deep theorem of Voiculescu on the subject [172]. It readily follows that if the fixed point
subspace of (U,) is at least two dimensional, then the centralizer of the vacuum state has
trivial relative commutant and hence I, (Hg, U,)" is a factor (Corollary (5.2.20)).

We establish factoriality of I'; (Hg, U,)" in Theorem (5.2.22) and Theorem (5.2.23),
when dim(Hy) = 2 and q € (—1,1), in the case when (U;) is not ergodic or has a non-
trivial weakly mixing component. We extend the statement of Corollary (5.2.20) in Theorem
(5.2.24) to show that the centralizer of the vacuum state has trivial relative commutant when
dim(Hy) = 2, the fixed point subspace of (U;) is at least one dimensional and the
dimension of the almost periodic part of (U,) is at least two dimensional. Finally, we
characterize the type of the factors obtained via Hiai's construction in Theorem (5.2.25) and
Theorem (5.2.26) under the assumption that (U;) is almost periodic with a non-trivial fixed
point or has a weakly mixing component. The results are analogous to the ones found in
Thm. 3.3 [123].

We collect some well known facts about the g-deformed Araki-Woods von Neumann
algebras constructed by Hiai in [123] that will be indispensable for our purpose. For detailed
exposition, see [123]. As a convention, all Hilbert spaces are separable, all von Neumann
algebras have separable preduals and inner products are linear in the second variable.

Let Hy be a real Hilbert space and let t » U;,t € R, be a strongly continuous
orthogonal representation of R on Hy. Let H = Hr ®r C denote the complexification of
Hp. Denote the inner product and norm on H¢ by (-,-)g, and Il-ll5;. respectively.

Identify Hy in H by Hr @ 1. Thus, H = Hi + iHR, and as a real Hilbert space
the inner product of Hy in H¢ is given by R(,-)4_ . Consider the bounded anti-linear
operator J: H¢c = Hc givenby J(€ +in) =& —in, &, n € Hy,and note that & = { foré €
Hi. Moreover,

& M. = M) pe = M IE) 3, Torall § € He,n € Hy.
Linearly extend the flow t — U, from Hy to a strongly continuous one parameter group of
unitaries in H¢ and denote the extensions by U, for each t with abuse of notation. Let A
denote the analytic generator and H the associated Hamiltonian of the extension. Then A is
positive, nonsingular and self-adjoint, while H is self-adjoint. Since Hy reduces U, for all
t € R, so Hy reduces iH as well. Denoting D(-) to be the domain of an (unbounded)
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operator, one notes that D(H) = D(iH) and H maps D(H) N H into iHy. It follows that
JH =—HJand JA = A717.

Introduce a new inner product on H¢ by (§,n)y = < 2

1+A4~1

f,n> ,6,m € He, and let |1l

He

denote the associated norm on H. Let H denote the complex Hilbert space obtained by
completing (Hg¢, lI-lly). The inner product and norm of H will respectively be denoted by
(,)y and [I-ll; as well. Then, (Hg, I-llyzc) D& > &€ (He, lI-lly) € (H, NI-lly), is an
isometric embedding of the real Hilbert space Hy in H (in the sense of [15]). With abuse
of notation, we will identify Hy with its image ((Hy). Then, Hg N iHgx = {0} and Hy +
iHy is dense in H (see pp. 332 [15]).

It is now appropriate to record a subtle point which will be crucial in our attempt to
describe the centralizers of the g-deformed Araki-Woods von Neumann algebras. As A is
affiliated to vN (U;: t € R), so note that

(US, Uy = (§, )y, for ,m € He. )
Consequently, (U,) extends to a strongly continuous unitary representation (Ut) of R on
L. Let A be the analytic generator associated to (U, ), which is obviously an extension of
A. From the definition of (-,-);; on Hy, it follows that if u is the spectral measure of A, then
v = fu is the spectral measure of 4, where f(x) = 1% for x € R, and by the spectral
theorem (direct integral form), the multiplicity functions in the associated direct integrals
remain the same. Note that L*(F, uz) € L*(F, v,z) for all Borel subsets F of (0, «). But, as
f is increasing, it follows that L*(F, i) = L*(F,vz) (as a vector space) when F < [, o)
is measurable for all A > 0. Moreover, 0 < A is an atom of u if and only if it is an atom of
v. Thus, if E, and E; denote the associated projection-valued spectral measures, then
Eq([4, ) (H¢) = Ez([A, ) (H) and Ex()(He) = Ez(A)(H)
for all A > 0. We record the following in the form of a proposition.
Proposition (5.2.2)[222]: Any eigenvector of A is an eigenvector of A corresponding to the
same eigenvalue.
Since the spectral data of A and A (and hence of (U,) and (Ut)) are essentially the same,

and U,, A are respectively extensions of U,, A for all t € R, so we would now write 4 = A
and U, = U, forall t € R.
Given a complex Hilbert space and —1 < g < 1, the notion of g-Fock space F,(-)

was introduced in [66]. The g-Fock space F, (3) of H is constructed as follows. Let Q be
a distinguished unit vector in C usually referred to as the vacuum vector. Denote H ®° =
CQ, and, for n > 1, let HO™ = spanc{é; @ - Q@ &,:&; € H for 1 < i < n} denote the
algebraic tensor products. Let Fy,(H) = spanc{H®":n > 0}. For n,m =0 and f =
ERRE,EH®,g=0 QR ® (,, € HL®™, the association

F19)a = mn D TP Gy Gy 4

TESY
where i(m) denotes the number of inversions of the permutation = € S,,, defines a positive

definite sesquilinear form on F, (H") and the g-Fock space 7, (3) is the completion of
F o (30) with respect to the norm |I-1l, induced by (:,-),.

191



Forn € N, let H£®a" = 3£ ®n Il 4. For our purposes, it is important to note that (-,-),

and (-,+), are equivalent on H®" and (-,-), is the inner product of the standard tensor
product. Thus, rephrasing and combining two lemmas of [66] one has the following.
Lemma (5.2.3)[222]: The map id: (H®™, IIll,) - (F£®™ 1I-lly), given by id(§; ® - ®
) =0 Q- Q¢&,), where & € H,1 <i<n, extends uniquely to a bounded and
invertible linear map T: (H®7", [1-ll,) = (F®™, II-llp) for -1 < q < 1.
Proof. Following [66], every m € S,, induces an unitary operator on # ®o™ given by
Urc(fl KX & fn) = En(l) R Q S;Tt(n)» SiEH,1<i<n Let Pq = Zneani(n)Un-
Then P, € B(7£®") and by Lemma 3 and Lemma 4 of [66], P, is strictly positive for —1 <
qg<1 and (f, 9 =B, ) for all f, g € 3£®". Consequently, P, is injective and hence
invertible. It follows that

I f oIl f llg=< [P, ||2 I f llg, for f € H®™, (5)

1] Il
I
The rest is obvious.
The following norm inequalities will be crucial (cf. [60],[66], and [137]):
1. IféeHand|l € lly= 1, then

lE®n)) = [n],L, (6)
where [n]g:=1+q + -+ q" ™V, [n] k= [1}=1 [l forn = 1,and [0],: = 0,[0],:: = 1
by convention.
Lo &, 8 €3 with [I§l, =N € lly=1 for all 1 <j <n, then the following

estimate holds:

156 ®  ® & @™, < €2 [[m]y,m=0, (7)

1
where C; = []:24 C=)

For & € A, the Ief?t g-creation and g-annihilation operators on F, (}) are respectively
defined by:
gL =¢
Cq(f)(ﬁ R Q&) =ERERV R &,
and,
cg(§)" 2 =0,
Cq(f)*(fl ® ® En)

qu (6 ® B 6 ® B ()

where & ® -+ ® &, € H®a™ for n = 1. The operators ¢, (¢) and c,(£)" are bounded on
F,(H) and they are adjoints of each other. Moreover, they satisfy the following g-
commutation relations:

cq(§)7cq(§) — acq($)cq(§)" = (&, Yy, forall §,{ € H.
The following observation will be crucial for our purpose.
Lemma (5.2.4)[222]: Let ¢, &;,n; € H,for1 <i<n,1<j<m.Then

Cq(f)*((fl ® ® fn) ® (771 ® ® nm))
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= (@GO ®&)®(n® - @

06 ® - ® &) ® (cg(§)' (1 @ ® 1))

Proof. The proof follows easily from Eq. (5).

Following [15] and [123], consider the C*-algebra T, (Hg, Uy): = C*{s,(£): & € Hy}
and the von Neumann algebra I'; (}g, U;)", where

54 (&) = cq(§) + cq(§)", ¢ € Hy.

[q (3R, Up)"" is known as the g-deformed Araki-Woods von Neumann algebra (see [123]).

The vacuum state ¢, ,: = (Q,- Q), (also called the g-quasi free state), is a faithful
normal state of I'; (Hg, U)"" and F, (H) is the GNS Hilbert space of I', (Hg, U,)" associated
to @4 y. Thus, I, (Hg, Uy)" acting on F, (3) is in standard form [233].

We will use the symbols (-,-), and II-ll, respectively to denote the inner product and
two-norm of elements of the GNS Hilbert space.

Most of what is taken from [15],[123]. We need to have a convenient description of
the commutant and centralizer of I'; (g, U,)"" (which has been recorded in the case g = 0
in [15] and a similar collection of operators in the commutant has been identified in [123]).
Thus, we need to record some facts related to the modular theory of the g-quasi free state
Pqu-Let]y, and Dpyu respectively denote the modular conjugation and modular operator

1

associated to ¢, ; and let Spqu = ]<pq,uAqu,U Then, forn € N,

1 1 1
Jogu1 @ Q&) =425, Q@A 2§,V5; € HrRN'D <A_§) ;

Apy (& ® Q&) =AT1E @+ Q A, v € Hg nD@A); (O
Spqu§1 ® - ®8n) =8 @ @ &1, VE; € Hp.
The modular automorphism group (o, *") of ¢, ; is given by o*” = Ad(F(U,)), where
FU) =id ®P,»1 U?"n, for all t € R. In particular,
028 (54(8)) = 54(U.£), for all £ € Hy. (10)
Now we proceed to describe the commutant of I}, (Hy, U,)". Consider the set
Hy ={& € H:(&,n)y € R forall n € Hy}.

Note that Hy + 1Hy = 3 and Hy N iHg = {0}. Let { € D(A™Y/2) n . Note that for all
n € Hy, one has

1 1
<A_% > B 24 2 B 24 2
on) =\txaaen S\nITiaas
Hc He
1
_ 2A2 _< 2 A_% >
=\ TE A T\t 5}[@
1
= (n.a7%3) . (1)
U

From Eq. (11), it follows that
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1
A~Y27 € g forall { € D (A‘i) N Hy. (12)
Also note that for n,& € D(4™1) N Hy, one has

8w = <1 +2A—1’7'€>}[ - <5"7 1 +2A‘1n>}[

<€ 1%4") = <1 +2A—1 E,A‘1n>% (13)

1 1 1
=({, A7)y = <A_5€,A_§r)> <as DA H <D (A‘E))_
U
Now for & € 7, define the right creation operator 7, (¢) on F, (H) by
Tq =g,

rq(f)(fl ® ® En) = 5;1 ® ® fn ® f'fi € }[;n = 1.
Clearly, 7, (&) = jcq(€))*, where j: F, () — F,(H) is the unitary defined by
JE6, Q- Q&) =6, Q- R&,whereé; e H forall1 <i<nn=>1,(12)

(14)

J(Q) =Q
Therefore, 7, (£) is a bounded operator on F, (#) and its adjoint 7, (£)* is given by
()2 =0, (15)
@ G @@ &) = ) qTHEENE ® @ §iy ® iy @ ® i € T,

> 1.

Write dg (&) = 1,(8) +7,(§)",& € H. It is easy to observe that {d,(§):& € Hy) <
I, (3R, U)". The following result establishes that the reverse inclusion is also true and its
proof is similar to the one obtained in ([15]).

Theorem (5.2.5)[222]: Suppose & € D(A™") N Hig. Then J, e )y, , = dq (A_%E).

Moreover, T(Hg, U,)' = {dq(§):& € Hz) .
Proof. Fixn = 1 and let n,,7n,, -+, 1, € D(A™1) N Hk. Then from Eq. (8), we have
](pq‘USq (5)(771 ® M2 ® ® nn)

_]§0qU (Z q(l D(f Ndum & - ®nimg @Nipr - ® 77n>
+]<qu(s; XN Q- Q®ny,)
& . 1 1
- Z qo‘”(nz,s‘)u:‘l‘?nn R Q A‘?nm QA1 ® QA2
B 1 1 1 1
+A7, ® Q@A 2n; @ A 2¢ < since D(A"1) €D <A_§>>

n

. 1 1 1 1
- Z qUEA AT, Q@ QAN AN, Q- QA 2y,

i=1
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+ A7, ® - ® A72n; ® A72¢ (by Eq. (12))
TN P 1 1 1 1
= z g~ <A 2¢,A 2m->UA My @ @A 2 QAN @ Q@ A2y
= 1 1 1 1
+A 21, ® QA2 QA 2¢ (since DA HCSD (A_f)>
= d (472€) Jpo (m ® 72 @ -~ ®1,)  (from Eq. (13) and Eq. (15)).

it follows that J,, 54 (), = dq (472€).

Since I, (Mg, Uy)"" is in standard form in F, (H), so from the fundamental theorem
of Tomita-Takesaki theory I, (Hg, U,)" = JoguTa (Hrg, Ut)"]p, - Again from Eq. (9), one

has A‘gf € Hg forall £ € D (A_%) N Hy.
By what we have proved so far, it follows that {]%_Usq(f)](pq’u:f EDMA DN
}[R} C {d,(£):€ € Hg) . Note that from Eq. (7) it follows that, if Hy 3 &, — & € Hy in

Il (equivalently in [1-lly), then s, (&,) = s¢(&) in Il (as||sq | = J%q I ¢ Il for all
{ € Hy). Consequently, D(A™1) N Hy being dense in Hy, it follows that T, (Hg, Uy)' S

{dq(E):E € }[HQ{}”. Since the reverse inclusion is straightforward to check, the proof is

complete.
We are interested in the factoriality of I, (Hy, U,)" and the orthogonal representation

remains arbitrary but fixed. Thus, to reduce notation, we will write M, = I'; (Mg, U;)"" and
¢ = @q,u- We will also denote Jogu by J and Apgu by A. As () is separating for both M, and
Mg, for ¢ € M,Q and n € M, there exist unique x; € M, and x; € Mg such that { = x;Q
and n = x, Q. In this case, we will write

sq({) = xzand d; () = xy. (16)
Thus, for example, as & € M, Q) for every & € Hp, S0 s,(§ + in) = s4(&) + is,(n) for all
$,n € Hy.

Note that ¢, (¢) and 7, (¢) are bounded operators for all £ € H'. Write

5q(§) = ¢q(§) + cq(§)" and do(§) = 1,(§) + ()" § €I
Note that if & € Hp, then 5,(&) = s,(&), and if £ € Hpg then ds(&) =dg(§). IfE =& +
i, for &y, &, € Hi and &, # 0, then note that 3, (&) # s4($).

Write Z(M,) = My N M. Let My = {x € My: 0, (x) = x for all t € R} denote the
centralizer of M, associated to the state ¢. For & € Hp, denote My = vN(sq (5)). Note that
M is abelian as s, (&) is self-adjoint. To understand the Hilbert space F, () as a bimodule
over Mg, it will be convenient for us to work with appropriate choice of orthonormal basis
of Hy with respect to (-,-)4.. Recall that x € M, is analytic with respect to (,”) if and only
if the function R3 t » 0,/ (x) € M, extends to a weakly entire function. We say that a
vector § € Hy, is analytic, if s, (¢) is analytic for (o;,”).

Proposition (5.2.6)[222]: Hk has an orthonormal basis with respect to (:,-)+,. comprising
of analytic vectors. Further, if &, € Hy be a unit vector such that U.&, = &, for all t € R,

then such an orthonormal basis of H can be chosen so that it includes &,.
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Proof. Note that U, = A* forallt € R.For{ € Hgrandr > 0, let {, = \/;fRe—rtzUt{dt.

It is well known that ¢, - ¢ in [I-llz;, (equivalently in ||-ll; as the vectors involved are real)
asr — 0.As (U,) reduces Hg and { € M,Q, so0 ¢, € M Q forall v > 0. Fixr > 0. Consider
sq({) € M, (as defined in Eq. (16)). Then, by Eq. (9) it follows that

o (5(69) = 54 (J; J. e—“”sfutwt),s €R. (17)

Note that f; (z) = \/%fRe"”(”Z)ZUt(dt € Hc forall z € C. Thus, s, (f;.(2)) is defined by

Eq. (16) and belongs to M. It is easy to see that s, (fir(')): C — M, is an analytic extension

of R3 s gy (sq ((r)). Thus, ¢, is analytic.

Let D, = spang{{,.:r > 0,{ € Hy}. Note that D, (consisting of analytic vectors) is
dense in (}[R'<"'>}f<c)- Finally, use the fact that any dense subspace of a separable (real)
Hilbert space has an orthonormal basis consisting of elements from the dense subspace. The
rest is clear.

Lemma (5.2.7)[222]: Let &, € Hy be a unit vector such that U,é, = &, for all t. Then the
following hold.
(@) Forn € Hy + iHk one has

(S0 My = (50:77)}[@-
(b) Let &, -, &, € Hy be non-zero vectors. If k > 1, then

(6 ® - ®&), =0,

if and only if n # k or (&, §;)4. = 0 for at least one i.
1
(c) Leté&y, -, E,EHRND (A‘E) be non-zero vectors. If k > 1, then

1 1
(%4726, @ @4725,) =0,
q
if and only if n # k or (&, §;)4. = 0 for at least one i.
o = &, Thus, the result follows from the definition of ().

(b). Note that
(6760 @ ®&), =8uilis 6 ® @ &),

S

=6 ). a @] | (0.6xp),, (by Ea.(4))
TESy ;=1
n
— i(m) 2
=0k 2, 7] | Ty aalo o),
TES, j=i
n
= On Z ql(n) (fo»fn(jﬁ%@
nESn j=1
=5nk1_[ (fo,fj)}[ z ql(n)
j=1 TESY



S

The rest is immediate.
1
(c). First note that as &; € Hy, S0 A" 2¢; € H. Observe that

(05426 @ - @A) =ou(fn a6 @ - @A)

q

S

. 1
=8 ) 0@ | | (604726xp) (byEa.(#)
4 4 U
TES, j=1
n
= S Z q'™ | | (o énii),,
TESy ] 1

= (26 ® - ® &),
Thus, the result follows from (b) above.

A convenient description of the centralizer M;p IS a component we need to decide the
factoriality and type of M,. We borrow ideas from Thm. 2.2 of [123] and show that the
centralizer of M, depends on the almost periodic part of the orthogonal representation (U,).
We need some intermediate results.

Lemma (5.2.8)[222]: The following hold.
1. The vector§; ® - ® &, € MQ forany §; € Hy,1<i<mnandn € N.
2. The vector§; ® - ® &, € MgQ forany §; € D (A_%) NHr,1<i<nandne€N.

Proof. In both cases, the proof proceeds by induction.
(a) Letn = 1. Then by definition of M, it follows that § = 5,(£)Q € M, Q forall & €
Hg. Now suppose that §; & --- Q@ & € M Q forall §; € Hi, 1 <j<tandforall1 <t <
n. Let &,., € Hg. Then from Eq. (7) we have,
61 ® ® S;n ® €n+1 = Sq(fl)sq(fz ® ® €n+1)ﬂ

n+1

z 47 HEL E)uEr ® + ® §it ® £ ® @ Ena.
But the right hand S|de of the above expression lies in M,Q by the induction hypothesis.
Thus, & ® - ® &, € MQforé; € Hy, 1 <1 Snandforallne N.

(b) Let £ €D (A_%) NHg By Eq. (8), it follows that J(Hg) € Hc. Thus,
write J€ =n; +in, with ny,m, € Hg. Then s,(n;) € M, for j =12, thus J& =
(sq (1) +isq (le)) Qe M, Q. Note that [Js,(J&)JQ=¢&. Consequently, &€ M Q
by the fundamental theorem of Tomita-Takesaki theory. Like before, assumethaté; & - ®

1
§ € My forallg; € HgnD(472),1<j<tandforall 1<t <n.

1 1
FIX &yt €D(A72)NHy and let &g = A 2841 = Nheq +inZey  With

Nt 1,21 € Hy (see Eq. (6)). Then for & € D (A‘E) N Hy for all 1 < i < n, from Eq.
(7), Eq. (8), and the fact that J? = 1, it follows that
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]Sq U€n+1)]dq (Scl ® ® fn)'Q
= ]Sq (]fn+1)](fl K ® En)

=] ((cq (Mn+1) + icq (77721+1)) (A_%fn K ® A_%fl)>
+] ((Cq (77711+1)* + icq (7’721+1)*) (A_%fn ® ® A_%€1)>
=] ((777%+1 +iNne) ® (A_%'Sn Q& A_%f1)>
+] <(cq (77711+1)* + iCq(ﬂ721+1)*) (A_%S;n ® ® A_%S;l))
1 1 1
=) (472601 @ 4725, ® - ® 4725,

+] <(cq (77711+1)* + iCq(ﬂ721+1)*) (A_%S;n ® ® A_%S;l))
=60 Q& Q&
1 1
+] ((cq ()™ +icgMi1)”) (A‘ifn ®® A‘ifl))

Using the induction hypothesis, Eq. (7) and decomposing vectors in H¢ into real and
Imaginary parts, it is straightforward to check that

J ((Cq(n%tﬂ)* + iCq(’?rzzH)*) (A_%fn (SRR A_%€1)> € M,Q.

Hence, & @ -+ @ &, & &n1 € Mg Q. Now use induction to complete the proof.
In the next Lemma, we make use of Lemma (5.2.8) to show how certain operators in M, act

on simple tensors.
Lemma (5.2.9)[222]: Let ¢, € Hi for1 <i <nbesuchthat (¢;,,&)y, =0for1 <i <n.
Then,

& ® R &) =6 @ ® &, ®E®, forall k > 0.
Proof. Note that by Lemma (5.2.8), it follows that s5,(§; ® - ® &,,) € M,;. The result is
clearly true for k = 0 by definition (see Eq. (16)). We will only prove this result for k = 1.
For k > 2, the argument is similar.

We use induction. Let n = 1, then note that,
$q61)E =81 Q&+ (6,2 =¢ ® ¢, by Eq. (7).

Now suppose that the result is true for all 1 <m < n. Let &,,; € Hr be such that
(¢n41,€)y = 0. Then, from Eq. (7) and the proof of Lemma (5.2.8), we have

Sq(fl K- En X En+1) = Sq(fl)sq(fz K& €n+1)

n+1

- z ql_z(ﬁ'fl)usq(fz R Q&R QR Q&nir)
=2

Consequently, by using the induction hypothesis, one has
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Sq (61 ® ® fn ® €n+1)€
= Sq (fl)sq (52 ® ® fn+1)€

n+1

Z 0260 600506 ® -+ ® §11 ® E1as ® + ® nu)é
= Sq (61)(52 QR Q&1 ®E)

n+1

=) G ® @ iy @ 61 B ® iy @D

=2
= 10 Q& ®&ne @, by Eq. (7).
This completes the proof.
Since t = U, t € R, is a strongly continuous orthogonal representation of R on the
real Hilbert space Hpy, there is a unique decomposition (cf. [15]),
1 Ny
Ot U = | €D ®id) |@ | D (0.U.(0) | @ (7. Ty), (18)
j=1 k=1
where 0 < N;, N, < X,
I _ (cos(tlog4,) —sin(tlog4y)
Hull) = R Urlk) = <sin(tlog/1k) cos(tlog A;,)
and (f[R, Ut) corresponds to the weakly mixing component of the orthogonal
representation; thus Hy, is either 0 or infinite dimensional.

IfN;, #0,lete; =0D--DOD1DOD - @OEEB]NllRwherelappearsatthe
j-th place for 1 < j < N,. Similarly, if N, # 0, let ;! =0 - 69069()69069 -

0 €@y, Hy(k)and [2=0D - DOD (1) DOD - D0ed,2, Hr(k) be vectors
with non-zero entries in the k-th position for 1 < k < N,. Denote

J 1 \//1'1
1 _ VAT (fid +ifid) and ef = ———— t (fie —ifid),

€ =
2
thus e;, ef € Hy(k) + iHy (k) are orthonormal basis of (}[R(k) + iHR(k), (-,)y) for1 <
k < N,.Fix1 < k < N,. The analytic generator A(k) of (U.(k)) is given by

PR '(/1 1)
k e L\ 1k e

2 (=) At
lkxlk k/lk

EAS

A(k) =

Moreover,

- —ep and A(k)ef = Aief.
A
Writt S ={e:1<j<N}ufetef:1<k<N,} if Ny #0 or N,#0, else
set § = {0}. If § # {0}, then S is an orthogonal set in (Hc,(:,")y) and the space of
eigenvectors of the analytic generator A of (U;) is contained in span §. Inthe event S # {0},
rename the elements of the set § as {;,{5, -, i.e., § ={¢;:1 <i < N; + 2N,}, whence

AQ, = B¢ with B, € E, forall [,where £, = {1} U{A,: 1 <k < N,}U {% : 1<k <N,}.
k

A(k)e; =
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It is to be understood that when N; = oo (resp. N, = oo ), the constraints j < N; and i <
N; + 2N, (resp. k < N, and i < N; + 2N,) (in defining § and &£, ) is replaced by j < N;
andi < N; + 2N, (resp. k < N, andi < N; + 2N,).
The following result must be known.
Proposition (5.2.10)[222]: Let (p, H) be a strongly continuous unitary representation of a
separable locally compact abelian group G on a Hilbert space #.Forn > 1and q € (—1,1),
let p®a™ be the n-fold amplification of p on H ®4™ defined by
P8 (@E® Q&) =p(@)& R Qp(g)é,gEGEEH forl <i<n.

Then (p®a™, 3£ ®a™) is a strongly continuous unitary representation of G. Letn € H®4" be

an eigenvector of p®4™ with associated character y € G. Let
e, = {El R ® &, & € H,3yx; € G such that

PS¢ =xi()E,1<i< n»l_[ Xi = X}-
i=1

Then, n € Spance,,.
Proof. First of all, note that Eq. (4) forces that p®4™ is a strongly continuous unitary
representation of G. Note that by Lemma (5.2.3), the operator T:(H®4™,||-|l,) -

(HBo™ |I-1ly) defined by T(§, @+ ® &) =& @ ® &, forall § € H,1<i<n,is
bounded and invertible. Moreover, T=1p®" ()T = p®a"(.). Consequently, the spectral
properties of p®9™ and p®o™ are identical. Also note that p®°™ is the usual tensor product
representation on the usual tensor product of Hilbert spaces.

The result now follows clearly from considering the direct integral version of the
spectral theorem of tensor product of unitary operators.
Theorem (5.2.11)[222]: Let
(

n
Zil ® ."®{in:€ij € 5,1 < l] < Nl +2N2,1_[ 'Bij = 1,Tl €N ,
j=1
if max (N, N,) < oo;

n
G ® @G5y €S,1< i <N +21v2,1_[ B, =1LneNy,
j=1

\ if max (N, N,) = co.

Let W = CQ @ span wo" " Then, MZQ =W nM,Q.

Proof. Decomposing vectors in § into real and imaginary parts and using Lemma (5.2.8), it
follows that W, € M, Q. Fixn € Nand let 1 < iy,-,i, S N; + 2N, or 1 < iy, i, <
N; + 2N, (as the case may be), be such that g; ---pB; = 1. Pick (i, €S for1<j<n

Consider x = s,({;, ® -+ ® {;.) € My. As o, = Ad(F(U,)) (see Eq. (6), (7)), s0
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of (0 =FUNFU)'Q=FU)xQ=FU)(3;, ® =B 7;,)
= Ut(i1 K Ut(in
= (B, Bi,) " (G, ® -+ ® ), (since U, = A1)
=54(¢;, ® -~ ® ;)0
= x(), forall t € R.
Consequently, x = s4(¢;, ® -+ ® ;) € MJ. Therefore, conclude that W n M, Q. € M7 Q.
For the reverse inclusion, let y € Mff and write yQ = ¥%_,1,,, where 7,, € H ®a"

for all n = 0 and the series converges in |I-|l,. It is enough to show that n,, € W forall n >
0. Again, note that

D =m0 =FUNFUQ
n=0
= .‘F(Ut)yﬂ

= FU,) Z Nn = Z F(Un,, forall t € R.

Since F(U)H®1" = H®4n for aII n > 0 and for all t € R, so we have F(U,)n,, = n,, for
all n and for all t € R. Fix n = 1 such that n,, # 0. Therefore, by Proposition (5.2.2) and

Proposition (5.2.10), it follows that there exist ¢, z) €S and ﬁ(") e &, with A((")
e for 1 < k < n and scalars ¢, [ € N, such that 7, = Zzan( M. Q (("))

and []x= 1ﬁ(") = 1 for all [; the series above converges in |-ll,. Consequently, n,, € W for
all n > 0 and the proof is complete.

We investigate the von Neumann subalgebras M; for & € Hg, and record some of
their properties. This is a preparatory and the aforesaid subalgebras play a major role in
deciding the factoriality of M,.

In the case when g = 0,t — U, is the identity representation of R and dim(Hy) = 2,
itis well known that My = Iy (Hy, id;) = LF gimsgy) (Se€ [19]). Inthat case, forall 0 # ¢ €
Hp, the algebra M; is a maximal injective (see [237]), strongly mixing MASA, for which
the orthocomplement of the associated Jones' projection regarded as an Mg-bimodule is an
infinite direct sum of coarse bimodules (see [206],[228]). Moreover, if &;,¢&, € Hy are
nonzero elements such that (¢, ;)4 = 0, then M; and M;, are free and outer conjugate
[19].

Note that if 0 # & € Hy and U,& = & forall t € R, then s,(&) € M (from Eq. (7)).
S0 J§ = J54(D)Q = 54(§)" 2 = 54(HQ = .

By Eq. (1.2) of [123], for £ € Hy with || ¢ ll,= 1, the moments of the operator s, ($)
with respect to the g-quasi free state ¢(-) = (€, Q), are given by

0, if n 1s odd,
<P(5q (f)n) = Z g™, ifnis even,

V=), e
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where the summation is taken over all pair partitions V = {r(r), k(r)},_., . of {1,2,---,n}
-T2

with m(r) < k(r) and c(V) is the number of crossings of V, i.e.,

c(V) =#{(r,s):n(r) <m(s) < k(r) <k(s)}
So, it follows that for & € Hy with || € l|;= 1, the distribution of the single g-Gaussian
sq(&) does not depend on the group (U,). In the tracial case, and thus in all cases, this

distribution obeys the g-semicircular law v, which is absolutely continuous with respect to
2 2

1-q’ J1—q
polynomials are g-Hermite polynomials H,!,n > 0. For the density function of vq and the
recurrence relations defining the g-Hermite polynomials, see Defn. 1.9 and Thm. 1.10 of

[60] (also see [130],[19]). Hence, M, = L” ([—\/%q\/%q]vq) thus M is diffuse and

{HI(5,(©))u:n >0}, is a total orthogonal set of vectors in M II-I5. Write & =
(8.0 > ).

Lemma (5.2.12)[222]: The following hold.

1. Let& € Hy be aunitvector suchthat U, = ¢ forall t € R. Then, &; € M,Q N Mg Q.

2. Let& € My be aunit vector. Then, M Qe = W"'"q_
1

Proof. (a) This follows directly from Lemma (5.2.8) as § € D (A_E).

(b) From the Wick product formula in Prop. 2.9 of [60], it follows that §®¥™ =
H)l(s,(&))Q for all n > 0 (by convention §®° = Q). Thus, €®™ € M Q foralln = 0. Itis

now clear that span &; Ma MgQ lI-ll;. Now use Stone-Weierstrass and Kaplansky density

heorems or the fact that M;Ql'la = 2 ([— =,
theorems or the fact that M; =3’ i
inclusion.

The next theorem is known in the case g = 0. When g = 0, one uses freeness and
results from [15] to obtain a proof of it.
Theorem (5.2.13)[222]: Let ¢ € Hy be a unit vector. There exists unique ¢-preserving
faithful normal conditional expectation Eg:M, -» My if and only if s,($) € M?,
equivalently U,¢é = & forall t € R.
Proof. Suppose there exists a conditional expectation E;: M, — M; such that <p(]E5(x)) =
@(x), forall x € M. Clearly, E; is faithful and normal. By Takesaki's theorem [107], we
have o,”(Mg) = Mg forall t € R. Moreover, from [107] we have E¢ o 6 = ¢,” o E for all
t € R. Thus

the uniform measure supported on the interval [— ] The associated orthogonal

],vq) to establish the reverse

Eg (0 (54(9)) = 0 (E¢(54(8))) forall .
Let Pg: L2(M,, ) - M:Q" e denote the orthogonal projection (L?(M,, ¢) = F,(3)).
Since ¢(s,(§)) = 0,50 ¢ (Jt(sq(f))) = 0 forall t € R as well. Thus, using Lemma

(5.2.12) and expanding in terms of orthonormal basis, we have o, (s,(£))Q =
Y a, (£)E®™, a,(t) € C, forall t € R. Hence, from Eq. (9), we have
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U_¢& = Sq(U—tf)Q = Gt(p (Sq ('S))'Q
= 0 (Ee(54(9)) @ = E¢ (0 (5,(9) ) @
= Peay’ (54(8))Pe

=P ) a,(§®"
n=1

(00]

=) g,

Consequently, a,(t) =0 foralln > 2 f?on11 Eq. (6), and

U_.&§ =a,(t)¢ =&, forallt € R.
As Q is separating for M, it follows that o, (s,(€)) = A,5,(€). Thus, 2,45 = A, for all
t,s ER,Ag = 1,4 € {1} (as s4(&) is self-adjoint) and t — 4, is continuous. Since the
Image of a connected set under a continuous map is connected, so either A, = 1 for all ¢t or
A =—1forallt. But A, = 1,50 4, = 1 forall t. Hence, s,(§) € M.

Conversely, suppose s,(¢) € Mg’ . Then M < M;” and the modular group fixes Mff
pointwise. Now use Takesaki's theorem [107] to finish the proof.

We end with the following observation.
Lemma (5.2.14)[222]: Forn € MgQ and ¢ € M,Q one has s, ({)n = dq(n)¢. In particular,
for n € Z(M,)Q the same holds.
Proof. First note that the operators in the statement are defined by Eq. (14). Now s, ({)n =
$q(Q)dq(MQ = dq(m)sq (L = dgq(n)<.

We intend to show that for any unit vector ¢, € Hy with U &, = &, for all t € R, the
abelian algebra M; of M, is a MASA and possesses vigorous mixing properties. Needless

to say, such a MASA is then singular from [36],[235],[206]. In order to do so, we need some
general facts on MASASs. Most of these facts appear in the framework of finite von Neumann

algebras. But, the MASAs of interest in M, lie in the centralizer M;” by Theorem (5.2.13);

so we can freely invoke most of these techniques (used for finite von Neumann algebras) in
our setup as well. We recall without proofs some facts that will be required, as a detailed
exposition would be a digression. The proofs of these facts are analogous to the ones for the
tracial case.

Let M be a von Neumann algebra equipped with a faithful normal state ¢. Let M act
on the GNS Hilbert space L?(M, ¢) via left multiplication and let I-ll,, denote the norm of

L*(M, ). Let Jo, 2, respectively denote the associated modular conjugation operator and
the vacuum vector, and let (o, )tER denote the modular automorphisms associated to ¢. Let
AC M be a diffuse abelian von Neumann subalgebra contained in M? = {x €
M:at"’(x) = xVt € ]R}. Then there exists a unique faithful, normal and ¢-preserving
conditional expectation E, from M on to A [107]. Let L?(4, @) = m"’"z"”. Denote A =

(A U](pA](p)”. Then A is abelian, so its commutant is a type | algebra. Note that A’ N M is

globally invariant under (o,”), thus there exists a unique faithful, normal and ¢-preserving
conditional expectation from M on to A'Nn M (see [107]), and the associated Jones'
projection e,y € A [219, Lemma 7.1.1] and is a central projection of A’. (This fact will
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not be directly used, it is worth mentioning as it is this fact for which the theory of bimodules
of MASAs works and is indispensable). This algebra A has been studied extensively by
many experts of MASASs to understand the size of normalizers, orbit equivalence, mixing
properties and to provide invariants of MASAs. In short, A captures the structure of
L>(M, @) as a A — A bimodule (see Ch. 6,7 [219]). With the setup as above we define the
following:

Definition (5.2.15)[222]: (cf. [206]) A diffuse abelian subalgebra B € M with a ¢-
preserving normal conditional expectation Eg is said to be ¢-strongly mixing in M if
||]EB(xany)||2’(p — 0 for all x,y e M with Ez(x) =0 = Eg(y), whenever {a,} is a

bounded sequence in B that goes to 0 in the w.o.t.

The above definition appears in [206] of finite von Neumann algebras, but the
definition is valid in general and thus we do not assume traciality to define the property of
@-strongly mixing here. Moreover, by a polarization identity it is enough to check the
convergence of Ez(xa,x*) in Defn. (5.2.15) for all x € M such that Ez(x) = 0.

Let M, denote the *-subalgebra of all entire (analytic) elements of M with respect to

(6f). Forx € M and y € M,,, define

Tey: L2(4,¢) = L*(A, ) by Ty ,(aQy) = Es(xay)Q,,a € A, (19)
Note that Ty, is bounded. Indeed, as y € M, so y* € D(ag, ) for all z € C. Hence,
]¢U_Ei(p¢(y*)](paﬂ(p =ayQ, for all a€A, where (o) . denotes the analytic

continuation of (¢,) (see [229]). Thus,
[EaCean)@ll,, < lxay,l,

<l x 1l layQyll, ,

<ix1 lag,I,,

](po-ipl(y*)](p
2

=[x I

Jip%-(y ) ||aQ<p||2’(p, forall a € A.

One can identify A = L*(X, 1), where X is a standard Borel space and A is a nonatomic
probability measure on X. The left-right measure of A is the measure (strictly speaking the
measure class) on X x X obtained from the direct integral decomposition of L2(M, ¢) ©
L*(A, @) over X x X so that A(1 —e,) is the algebra of diagonalizable operators with
respect to the decomposition [235], [206] (e, denoting the Jones' projection associated to ).
The process to calculate the left left-right measure is similar to the discussion laid out in
[234]. Many more details of the same are discussed in [234].

If A is identified with L ([a, b], 2) where A is the normalized Lebesgue measure (or
Lebesgue equivalent), then from the results of [235] (specifically Thm. 2.1), it follows that
the left-right measure of A is Lebesgue absolutely continuous when T, .« is Hilbert Schmidt
for x,y varying over a set S such that E,(x) = 0 = E,(y) for all x,y € S and the span of
SQ is dense in L?(4, ¢)*. (Note that the arguments of [235] use the unit interval. It was so
chosen to make a standard frame of reference. However, the arguments of relating to
absolute continuity of measures do not depend on the choice of the interval. Neither do the
same arguments to prove Thm. 2.1 in [235] require that A is a MASA,; it only involved
measure theory.) From Thm. 4.4 and Rem. 4.5 of [225] (similarly the proof of Thm. 4.4 of
[225] uses measure theory and not that the diffuse abelian algebra there is a MASA), it
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follows that A is ¢-strongly mixing in M if the left-right measure of A is Lebesgue absolutely
continuous. Thus, one has:
Theorem (5.2.16)[222]: Let A © M be a diffuse abelian algebra such that A € M? and the
left-right measure of A is Lebesgue absolutely continuous. Then, A is ¢-strongly mixing in
M. In particular, A is a singular MASA in M.
Proof. We only need to show that A is a singular MASA in M. Letx e A N M. Lety =
x —E4(x).Fora € A,onehasay = a(x — E,(x)) = ax — E4(ax) = xa — E4(xa) = ya.
Since A is diffuse choose a sequence of unitaries u,, € A such that u,, —» 0 in w.o.t. Since A
is @-strongly mixing in M (by the previous discussion) it follows that lim,, || E, (yy*)llw =
limnIIIEA(yuny*)Iiz,(p = 0. Since E, is faithful, it follows that y = 0 Thus, A is a MASA.

That A is singular follows from results of [229],[36] and [234].
We are now ready to prove that if &, € Hp is a unit vector such that U, = &, forall t €
R, then M, is @-strongly mixing in M,. Let E; denote the unique ¢-preserving, faithful,
normal conditional expectation from M, onto M;_ (see Theorem (5.2.13)). Extend ¢, to an
orthonormal basis

O = {&: & analytic, 0 < k < dim(Hy) — 1}

of Hy with respect to ()5, consisting of analytic vectors as described in Proposition
(5.2.6). Fix fi,- € O for 1 < j < n. Note that as the analytic elements form a (w*-dense) *-

subalgebra, so s,(&;, ® - ® &; ) is analytic with respect to (o,”) from (the proof of)
Lemma (5.2.8). It follows that s, (A_Efk) is also analytic with respect to (a,”) for all &, €

0. Thus, by (the proof of) Lemma (5.2.8), it follows that s, (A_Efil X Q A_Efin) is also
analytic ~ with  respect to (o). Moreover, from Lemma (5.2.12)

and Lemma (5.2.7) it follows that Eg, (sq(éi1 R Q® €in)) = 0 forces that at least one
letter $i; must be different from &,. Furthermore, from Lemma (5.2.7) it follows that

1 1
A2 @ Q@ AT2¢; € Fy(H) © L*(Mg,, @) ifandonly if &, @ - ® & € Fy(H) ©
LZ (Mfo’ (,0)
We have the following theorem.
Theorem (5.2.17)[222]: Let t — U, be a strongly continuous orthogonal representation of
R on a real Hilbert space Hy with dim(Hp) = 2. Suppose there exists a unit vector &, €

Hg such that U&= &, forall t e R Letx = 5,(&;, ® - ® ¢ ) and y = s, (A'%éj1 0%

- Q A_%fjk) be such that E; (x) = 0 = E; (y), where &; ,&; €0 for 1 <u <m and

1<v<k
Then, T, is a Hilbert-Schmidt operator.
Proof. First of all, as U;¢, = &, for all t € R, so M;, < M, is a diffuse abelian algebra in

M, lying in MC‘I”. By the previous discussion, it follows that x, y are analytic with respect to

(67). Thus, Ty,y € B(L?(Me,, ) )
Also note that §; ® - ® &;, € M N MgQ from Lemma (5.2.8). From Lemma

(5.2.12), it follows that HI (sq (50)) Q = £&" for all n > 0. Note that d,, (A'th R ®
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1
A_Efjk) € M/ by Theorem (5.2.5). Let eg,: L*(M,, @) - L*(Mg,, ¢) denote the Jones'
projection associated to M¢,. Then from Eqg. (19), we have

Ty (HE (50 600)0) = g, (xH8 (s (60)) 5 (47265, ® ~ @ 4725, )0)  (20)
= e (fol (saCe) (4726, ® - ® A‘%é,-k)>

= e, (xHE (5460)) 4, (4728, © - @ 472, ) )
(from Eq. (16) and Lemma (5.2.14))
er, (xdy (4728, ® @ 4728, | H (54(60)) )
= e, (v, (A‘%fh ®® A‘%fjk) &)
= e (Sq(€i1 ® - ® &, )dq (A‘%f,-l R A‘%sf,-k) ?"),n >0

Now from Lemma 3.1 of [123], we have

56, @ ®&.)

= z Z q¥®De, (Eiic(l)) e Cq (";ix(nl)) Cq (Scin(l))* e cq (gin(nz))* .

dq (A_%fjl R--R A_%fjk)

’y 1 1 1 1
=Z Z gV« Dy, (A z.fjk(l)>...rq <A ijk(ml))rq (A 251'*(1)) e Ty (A ij*(mz)),

where the first sum varies over the pairs (n,,n,) and (K,I) restricted to the following
conditions:
K ={r(1),-,k(n): k(1) < -+ < k(ny},
and, I={m(1),-,n(ny):m(1) <. <m(ny)}, (21)
Kul={1,--,m}L,KnI=9,
and X(K,I) = #{(r,5):1 <r <ny,1 <5 < ny, k(r) > n(s)}. Similarly, the expansion of

1
d, (A'Eg‘j1 X .- ®A‘E€jk) above is in terms of my;,m,>0,m +m, =

ny,n, =0,
nq + n, = m,

1 1 *
k,K',I',X(K',1"), k, 7t and rq (A‘Efjk(c)) and r, (A‘Efj (,)) defined analogous to Eqg. (21).
Note that ||5§9"|| 4! forall n > 0 (see Eq. (7)). Again from Lemma (5.2.12), it

follows that { (‘?”: n= 0} is an orthonormal basis of L?(M¢,, ¢ ). Thus, to show T, ,,

Tt !
Is a Hilbert-Schmidt operator we need to show that Y. - ||Txy(€ ”)||q < oo, But since
sq(&, ® - ®¢& )andd, ( th R RA” zfjk) split as finite sums, so from Eq. (20)
it is enough to show that for each fixed n,,n,, m;, m,, k, m, K, @ (in Eq. (21)), if

n = ez, ((Ca ) ™ Ca )60 Cin)”  Ca Gy

* *

Tq (A_%fiku)) ' (A 25 (ml)) (A 2§, (1)) : (A E]n(m2)>) ®">,n20,
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then Y7, [%M ||(n||2 < oo, Renaming indices, we may write

(n = eg, ((CQ(Eil) Cq(fiz)cq(fim)* ”.CQ(Eim)*

* *

1 ! 1 1 on
"Tq (A 251'1>”'Tq (A 2";fp> Tq (A 2€Ip+1) " Tq (A ijk> ) 0 )'" = 0.
For & €0, since (fjr,fo)q =0 for j#0 (by Lemma (5.2.7)), (and hence

<A‘§50,A—%§j,> — 0for j' # 0 by Eq. (12)), 50
q

(4756 680 = (4735, ) (473,) =0

1 1
foralln = 0 and j* # 0. Since at least one letter in A 2¢; & --- @ A 2¢;, is different from

*

1
&0 and A 2¢, = &,, so ,, can be non-zero only when fjpﬂ ==& =& Write § =
H"j,:pH(SfjW,fO. Hence, from Eq. (13) and Eq. (15) we have

=6 || a+q+e+a

t=n—(k—-p)
eg, ((cq(&,) -+ cq () cq(Girsr) "+ ca(,))
) (f(‘)g’(n—(k—p)) R A—%gsz R ® A‘%gzjl)) (22)
_ [n]g!
N CEICEDIN

€& ((CCI (61'1) " Cq (gil)cq (5i1+1)* " Cq (glm)*)
(gf(n—(k—p)) R A_%fjp R R A‘%gjl))

By hypothesis at least one letter in A'%fjl R R A'%fjp is different from &, (= A'%EO).
Therefore, the constraints for ¢, to be non-zero are i, =0 for all 1<r <
L#{i,:l+1<r <m,i. # 0} = 1 (counted with multiplicities) and the expression
o) caE)ea(6) cal8,) (£8P @ 4726, © - @ 4728,
has to lie in span &;, (see Lemma (5.2.12) and the discussion preceding it). By repeated
application of Lemma (5.2.4), one obtains

) N Y 1 1
cal6un) +eal8,) GE T @ (472, @ @477, )

* * * n— — _1 _1
Cal§ie) CaGinr) (ca(6,) ") @ (47%, @ - @ 47, )

“R—k—p) sf 1 _1
B @ (6, ) (472, @ @ 47, )
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T1:0 m- l=0
l

(ﬂ(cq(‘fmw) )(1 TW)) (()g)(n—(k—p))
®(fk%ﬁmfijf%h®m®A%%)
w=1

where ¢, ..., € Rfor (ry, -+, rp;) € {0,1}™ " are calculated as follows.
Given a (m — D)-bit string (ry, -+, 1), let s, = # of zeros in {r,,, 1y 41, Ty} fOr 1 <
w <m-—1L. Then, clearly s,,_; =1 —r,_; and by induction it follows that s,,_;_; =
Q=1 D)+ A =Ty, 51 = =1 ) + (A =1 m) + -+ (1 —19).
Thus, repeated application of Lemma (5. 2 4) in Eq. (23) entail that

= q(==P)(ER= 1) -2t rwsw
— q(n (k=p)(ZW=t )=t rw(m-D-w+1-3752 7 1)

= g((=(k=p)=(m=D-D(Z=1 rw) + WSt wrw+ Rzt (Z2, T/ )tw,
The above formula for ¢, . , can be obtained by drawing a binary tree of height (m — 1)
with weights attached along edges in such a way that it encodes the tensoring on the left or
on the right following Lemma (5.2.4). It is to be noted that the largest power of g that appears
in Eq. (23) is (n — (k — p))(m — 1) which appears when r,, = 1 for all w and the smallest
power of g is 0 and it occurs when r,, = 0 for all w.

Further, notice that since #{i,:l + 1 <r <m,i,. # 0} > 1, i.e., there is at least one
1o With [ + 1 < ry < m such that $iry L S0 (in {-,")y), so

(CCI(EilH) CCI(Eim—1) CQ(fim) )f(()g)( =rD ® (A Zgjp Q-4 25]'1) = 0.
Therefore, the expression in Eq. (23) has at most 2™t~ many non-zero terms each with
scalar coefficients of the form g%, where d=>((n— (k—p))— (m—1-1)).
Consequently, by Eq. (6), Eq. (7), Eqg. (14) and Eq. (22), we conclude that there is a positive
constant K (I, m, p, q) independent of n and N, € N such that

!
u@ﬁsK@mmﬂmm(m_z¥b

Define a sequence {a,} of real numbers as follows:
1, if 0 <n < N,,

CT1""’7‘m—1

2
i [n—NO]q!> , for all n > Nj.
lal®

a, = 1 g2 [n]}q)* [n— N,],! 2 otherwise
[n]q! 1 [n— (k —p)]jg)! ) |

Note that lim,,_, aZ“ = |q|?* < 1. Consequently, by ratio test Y5, a, < oo. Since the

sequence {a,} eventually dominates the tail of the sequence {# ||(n||fl} modulo a scalar
q!

multiple, the proof is complete.

Thus, we have the following results.
Theorem (5.2.18)[222]: Let t = U, be a strongly continuous orthogonal representation of
R on a real Hilbert space Hy with dim(Hp) = 2. Let {, € Hy be a unit vector such that
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Uiy = & for all t € R. Then, M/ is a \varphi-strongly mixing MASA in M, whose left-

right measure is Lebesgue absolutely continuous.
Proof. In this proof, we repeatedly use Eq. (8), the right multiplication of elements of M,

from [229] and the fact that the analytic extension of (0 ) Is algebraic on the analytic
elements of M,. Fix m,p € N. Note that if ; ,---,¢&; €0 and &, E]p €0, and x =

(6, ® ~®& ) and y=s, (A‘zfjl ® @A ) be such that E (x)=0=
E¢, (), then by Theorem (5.2.17) it follows that T, ,, Ty, are Hilbert-Schmidt operators.
Consequently, letting a = ——, there exists f € L2 (vy ® vq) such that for all n, k > 0 one

Ji-q
has
j_ j_ H] (t)Hq (s)f (t,s)dvg(t)dvy(s)

= Sq (fil ® ® fim)ﬂi Hg (Sq('szo)) Sq (A_%’Sjl ® ® A_%fjp) Hg (Sq (EO)) .Q>q
sa(, @+ ® €, )01l (5460)) 5 (4728, ® @ 47265, ) TH] (546 )
sa(6, ® @ £,)0 H (5460 THY (5460)) I (47261, ® - @ 4726, ) )

<
o
o
<H,EZ (5q(60)) 5q(&, ® -+ ® &, )H{ (54(60)) 2.5, (A_ng © ®A_E€’> >q
-
-

q

q

HE (5460)) 598, ® - ® &, JHE (5,60 2,87 (£, ® - ®¢,)) (bvEq.(6)
(3 (50600 s 8, ® +~ © 8, ) (5060) ) 0,05 (5, © - @, )

(Hq (54(50)) 5 (&, ® - ® &, ) (s (fo))) %(fh ®-® é’fp)>

-PI

q

HY (5460)) 0 (sq(sh@» ®@&,)) HY (5,60)) 2,87 (5, ® - ®€J,,)>

q
(assy(&) € MC‘IP)

= (0% (54(8, ®  ® &,)) 0 H (54(80)) (af;- (50 (51, @~ ®¢;,) ) Hi (54(60) Q>

From the above argument, it follows that T,-,, is also a Hilbert-Schmidt operator, where
z=0" (sq(él1 R Q¢ )) and w=c" (sq (fh ® Q¢ )) as it is an integral

operator given by a square integrable kernel.
Now use the discussion preceding Theorem (5.2.17), Eq. (8) and the fact that the complex
span of

{Uipi (Sq(le R R fim)) ; fi]. €0,1<j<m, fi,- + &, for at least one Eij,m € N}

q

209



is dense in F, (H) © L?(Mg,, ¢) to conclude that the left-right measure of Mg, is Lebesgue
absolutely continuous. The rest is immediate from Theorem (5.2.16).

The results obtained so far can thus be summarized as follows.
Corollary (5.2.19)[222]: Let t — U, be a strongly continuous orthogonal representation of
R on a real Hilbert space Hy with dim(Hp) = 2. Let é, € Hy be a unit vector. Then the
following are equivalent:
1 s,(&) eM?;
2. Uiy =&y, forall t € R;
3. there exists a faithful normal conditional expectation Eg:M,; — Mg, such that

7, ([Ego(x)) = @(x) forall x € M,;
4, M is a @-strongly mixing MASA in M,,.
Proof. The conditions in the statement are equivalent from Theorem (5.2.13) and Theorem
(5.2.18).

Hiai proved that if the almost periodic part of the orthogonal representation is infinite
dimensional, then the centralizer M, has trivial relative commutant, i.e., (M;”)' nM, =Cl

(Thm. 3.2 [123]). Now we show that the same result is true under a weaker hypothesis as
well.

Corollary (5.2.20)[222]: Let t — U, be a strongly continuous orthogonal representation of
R on a real Hilbert space Hy with dim(Hp) = 2. Suppose there exist unit vectors &; € Hy

such that U,&; = &;,i = 1,2, forall t € R, and (&, &,)y = 0. Then, (Mg’)' nM, =CL.
Proof. By Theorem (5.2.13) and Theorem (5.2.18), it follows that M;, < Mff IS a masa in

M, for i =1,2. Letx € (M) N M,. Then x € Mg, N Mg, and hence xQ € span &, a n
span &g la from Lemma (5.2.12). But from Eq. (4), it follows that span& 'la n

span & ¢, Ma =~ ca. Asqisa separating vector for M, the result follows.

We extend the previous efforts to decide the factoriality of M,. We establish that M,
is a factor when dim(Hp) = 2 and (U,) is not ergodic or has a nontrivial weakly mixing
component.

Our approach to prove factoriality is fundamentally along the lines of Eric Ricard
[137]. As discussed the approach is to use ideas coming from Ergodic theory, namely, strong
mixing. Our idea stems from the following observation. If a finite von Neumann algebra
contains a diffuse MASA for which the orthocomplement of the associated Jones' projection
Is a coarse bimodule, then the von Neumann algebra must be a factor [225]. But for the
MASA M, , instead of showing that the orthocomplement of the Jones' projection is a coarse
bimodule over Mg , we only settled with absolute continuity in Theorem (5.2.17) and
Theorem (5.2.18) to avoid cumbersome calculations. We use the fact that M;, is a masa in
M, as obtained, to decide factoriality of M, in the case when (U,) has a non-trivial fixed
vector.

The arguments needed to prove factoriality of M, are divided into two cases, one
dealing with the discrete part of the spectrum of A corresponding to the eigenvalue 1 and
the other dealing with the continuous part of the spectrum.

Definition (5.2.21)[222]: A strongly continuous orthogonal representation (V;) of R on a
real Hilbert space Ky is said to be weakly mixing if for any two nonzero vectors &, € Ky
one has
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T

1
lipﬁ . (V.&,n)|?dt > 0as T — .

Theorem (5.2.22)[222]: Let t = U, be a strongly continuous orthogonal representation of
R on a real Hilbert space Hy. Suppose that the invariant subspace of weakly mixing vectors
in Hy, is non-trivial. Then M, is a factor.

Proof. Decompose Hr = H, @ H,,,, (direct sum taken in (-,-)}[C), where H . and H,,,,, are
closed invariant subspaces of the orthogonal representation consisting of compact and
weakly mixing vectors respectively. First of all note that Hy is infinite dimensional as
Hym # 0. If H, = 0, then by Eq. (9) and Theorem (5.2.11), (,”) acts ergodically on M,.
Consequently, M, is a IlI, factor [187]. Note that this was also proved in [123].)

Let H,. # 0. Then M;” Is non-trivial from Theorem (5.2.11). Let & € H,,,,, be a unit
analytic vector (see Proposition (5.2.6)). Note that Z(M,) S M. Borrowing notations from
Theorem (5.2.11) and the discussion preceding it, we have the following. For (i, €8,1<
i <N;+ 2N, (or1 <i; <N;+ 2N, as the case may be) for 1 < j <nand ]‘[’}zlﬂij =1,
note that §;, ® - ® {; € Mg’ Q. Note that the real and imaginary parts of g, are analytic
and individually orthogonal to ¢ with respect to {-,, )y and (-, forall 1 < j < n. Then,
decomposing vectors into real and imaginary parts and using Eq. (7) and Lemma (5.2.9), it
follows that s,(§)s4(3;, ® +®¢;,)2=¢ @, ® ~ ® G, while 5,(0, @ ®
3 )5q()Q =4, @@ ®E& This observation forces that if a € Z(M,) then
5q(§)al = ¢ ® aQ, while as, ()2 =aQ ® ¢.

Indeed, as a € Mc‘f, so by Theorem (5.2.11) there is a sequence {s;} of linear
combinations of elements of the form sq({il X (in) (as before) such that s; — a in
s.0.tasl — .50 5,Q - aQin|-ll; and thus s,(£)s;Q = s,(E)ain |I-ll. But s4(&)s,Q =
¢ ® s,Q for I and ¢, (&) being continuous, it follows that & & s, — & & a. This proves
5q(§)al = ¢ ® all.

A symmetric argument using the continuity of 7, (&) proves that as, (£)Q = aQ ® ¢.
Thus, s,(&) cannot commute with a unless a is a scalar multiple of 1, as Q is a separating
vector for M,,. This completes the argument.

Theorem (5.2.23)[222]: Let Hy be a real Hilbert space with dim(Hg) = 2. Lett — U, be

a strongly continuous orthogonal representation of R on Hy. Suppose there exists a unit
vector &, € Hy such that U,y = ¢, forall t € Hy. Then M, is a factor.

Proof. Let x € Z(M,). We will show that x is a scalar multiple of 1. By Theorem (5.2.18),
Mg < M, is a diffuse masa with a unique ¢-preserving faithful normal conditional
expectation. Thus, Z(M,) € Mg, and hence x € Mg,. As seen in the proof of Lemma
(5.2.12), H)] (sq(fo))ﬂ =¢8™ for all n>0. Consequently, xQ € span & Ma from
Lemma (5.2.12) and henceoo

xQ = Z 4, &&" =
n=0

where the series converges in [|]l,.

z anHZ (Sq(fo)) Q,a, €C,

[0 0]
n=0
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Since dim(HR) = 2, so there exists an analytic vector &; € Hy (see Proposition
(5.2.6)) such that (£, &1 )5, = 0. Hence, from Eq. (7) and Lemma (5.2.7) it follows that

X0 = ) ansy G (54(60)) 0

n=0
=) s EE = ) anl @)
n=0 n=0

Again, from Eq. (7), H,! (sq(fo)) sq(§)Q = 539" X &, for all n > 0. To see this, we use

induction. For n = 0, the conclusion is obvious, and for n = 1 the same follows from
Lemma (5.2.7). Assume that the result is true for k = 0,1, ---,n. Note that the g-Hermite
polynomials obey the following recurrence relations:

H{(x) = 1,H(x) = x and

XH.Z(X) = Hg+1(x) + [n]qu—l(x)ln > 1,x €

2 2
— ] [60] Defn. 1.9.

J1-q'1-¢q
Thus, by functional calculus one has
iy (500) & = sqGo)HR (54(50)) & — [nlgHY_ (54(60)) &

=5 E(ET @ &) — 1], (€2 @ &)

= Egg(nﬂ) &® &;,by Eq. (7) and Lemma (5.2.8).
Thus, by induction the above conclusion follows. (This can also be proved by Lemma (5.2.7)
and Lemma (5.2.9)).
Note that x is a limit in s.o.t. of a sequence of operators from the linear span of

{H,‘f (sq (50)) n = O}. Consequently, xs;(£;)Q € span {fo®" RRé&:n> 0}" "q. Therefore,
x54(&1) = s4(&1)x forces that a,, = 0 for all n = 1. Thus, xQ2 = a,Q and hence x = a,1
as () is separating for M. So the proof is complete.

We discuss the factoriality of the centralizer M;” of the g-deformed Araki-Woods von
Neumann algebra M,. By Theorem (5.2.18), it follows that if the point spectrum of the
analytic generator A of (U,) is {1} and is of simple multiplicity, then M;” is a masa in M.
Thus, for the centralizer to be large, the almost periodic part of (U;) need to be reasonably
large.

’ For a short account on bicentralizers that follows, see [178]. Let M be a separable

type III; factor and let ¢ be a faithful normal state on M. Denote [x,y] = xy — yx and
[x,¥] = xyp — Yx for x,y € M. The asymptotic centralizer of y is defined to be

ACy = {(x) € £ (N, M): l[xn, Y]Il > 0 as n - oo}.
Observe that AC,, is a unital C*-subalgebra of £ (N, M). The bicentralizer of 1 is defined
by

By = {y € M:[y,x,] - 0 ultrastrongly as n — o for all (x,,) € ACy}.
Note that B, is a von Neumann subalgebra of M which is globally invariant with respect to

the modular automorphism group (a;”). Further, By, < (Mll’)' N M. The type 111, factor M
is said to have trivial bicentralizer if B,, = C1 for any faithful normal state ) of M. The
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bicentralizer problem of Connes is open and asks if every separable type III, factor has
trivial bicentralizer.
Theorem (5.2.24)[222]: Let H be a real Hilbert space such that dim(#y) = 2. Let (U,)
be a strongly continuous real orthogonal representation of R on H such that:

1. there exists a unit vector &, € Hy, satisfying U.&, = &, forall t € R,

2. the almost periodic part of (U,) is at least two dimensional.
Then,

(M#) nM, = CL

In particular, the centralizer M;” of M, is a factor. Moreover, if M, is a Ill; factor then it has

trivial bicentralizer.
Proof. Under the stated hypothesis, if the almost periodic part of (U;) is two dimensional
then (U,) admits two orthogonal invariant vectors. Then the result follows directly from
Corollary (5.2.20). In the remaining case the argument is as follows.

First of all, note that from Corollary (5.2.19), the von Neumann algebra Mg, =

vN (sq(fo)) QM;” is a MASA in M, with a unique ¢-preserving faithful normal

conditional expectation Eg,: M, - Mg,. Therefore, (M) n M, € Mg,. Let x € (M) n
M,.

Since the dimension of the almost periodic part of (U,) is at least two, so from
Theorem (5.2.11), it follows that there exist vectors {; € H- (with real and imaginary parts
individually analytic), 1 <i < k,suchthat {; ® - ® (i € M;”Q and ¢; and as well as its
real and imaginary parts are orthogonal to &, for all 1 <i < k, with respect to {-,-)s (as

well as orthogonal in (-,-)y, as dim(Hg) = 2). Lety = 5,({; @ - @ {i) € Mff.
As seen in the proof of Lemma (5.2.12), H,! (sq(€0))ﬂ = 53’9" for all n>0.
Consequently, xQ € span € " from Lemma (5.2.12) and hence,

xQ = Z 0, £ = z @y (54(50)) Ly € C
n=0 =

= n=
where the series converges in ||-ll ;. Moreover, decomposing vectors into real and imaginary
parts and using Lemma (5.2.9), it follows that

yxQ € spanf{(; ® - ® §, @ E&™n = 0}
Further, decomposing vectors into real and imaginary parts and using Eqg. (5) and Lemma

(5.2.7) it follows that s,($)((1 Q@) =& X J Q& . Assume that

Sq (Hgl(fo)) ((1® Q)= gbm RGA R, for m=20,1,---,n. Using the
recurrence relations of g-Hermite polynomials (as in the proof of Theorem (5.2.23)), Eq.
(7), Lemma (5.2.7) and the induction hypothesis, it follows that H,’ (sq (EO)) (1R

G)=&"Q4HQ Q. for all n > 0. Now note that

Xy =]y a0 = Z anly TH (50600) 0= > anH (s4(60)) ¥

Illg

n=0 n=0

=) (@G e ®w).

n=0
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Since, xy = yx, so a,, = 0 for all n # 0. Thus, the first statement follows.
The final statement is a direct consequence of Connes-Starmer transitivity theorem

[9]. (This can also be deduced from the fact that B, < (MJ) N Mq.)

We describe the type of M, under the same constraints by showing that the type
depends on the spectral information of A as expected. To begin with, we recall some well
known facts about the S invariant of Connes.

The S invariant of a factor M was defined in [66] to be the intersection over all faithful
normal semifinite (f.n.s.) weights ¢ of the spectra of the associated modular operators A.

Further, M is a type Il factor if and only if 0 € S(M) and in this case Connes classified type
I11 factors using their S invariant as follows:

[0, 00), if M is type IIl;,
S(M) =<{0,1}, if M is type Ill,,
fAneZ}u{0}, ifMistypelll;,0<A<1.

Also, recall from [66] that for a fixed faithful normal state (resp. f.n.s. weight) ¢ on M, the
S invariant can be written as

s() =n{sp(a,,):0 = p e P (z(M?))},
P (Z(M¢)) denoting the lattice of projections in the center of the centralizer M% and ¢p =
ipmp- SO, let ¢ be a faithful normal state on M and let 0 # p € M*? be a projection. Let

Ay, and (afb ”) respectively denote the modular operator and the modular automorphism
group of the corner pMp associated to the positive functional ¢,. When p = 1, write A4,

and (thbl) respectively as A4 and (at"’). It is clear that atqb” (pxp) = patd’ (x)pforallx e M

and t € R. It is also easy to check that afb” is implemented by A = pAYp forall t € R.
14

Theorem (5.2.25)[222]: Let (U,) be a strongly continuous real orthogonal representation

of R on a real Hilbert space Hy such that the weakly mixing component of (U,) is non-

trivial. Then M, is a type III, factor.

Proof. Recall the definition of weak mixing from Definition (5.2.21). By the hypothesis it

follows that #y, is infinite dimensional. We need to show that S(M,) = [0, «). So, let 0 #

pEP (Z(MC‘I”)). By the hypothesis and Proposition (5.2.2), there exists 0 # & € Hy S

H¢ € F,(H) such that
T

1
T ~ (U.&, &)y |?dt > 0,as T - oo ( see Eq. (3)).

Thus, by Eq. (4), Eq. (8), Eq. (9) and the discussion following it, one has

T

27,

Consequently, if u; denotes the elementary spectral measure (on R ) associated to ¢ of the
representation {t = F(U,): t € R}, then u, is non-atomic (from Eq. (9)).

If p # 1, note that p¢&, (1 — p)¢ are non-zero vectors. Indeed, if { € M;”Q is such that

sq({) = p (see Eq. (14)), then by Theorem (5.2.11) (as in the proof of Theorem (5.2.22)), it

follows that pé = { ® & # 0. Similar is the argument for (1 —p)¢. Let &, 1iu—p)e

|(T(Ut)fi €>q|2dt - O, as T — oo,
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respectively denote the elementary spectral measures of {t — F(U,):t € R} associated to
the vectors p¢ and (1 —p)<¢. Note that u, is the elementary spectral measure of ¢ —

pAtp (= Aigp) ,t € R, corresponding to the vector pé&, and the former implements (a,fp”).
Also, asp € MC‘I”, so the range of p is an invariant subspace of {F(U,):t € R}. Hence,

(F(UDPE, (1 —p)é)g =0, forall t € R,
Consequently, iz = pys + 1-pye, thus pye and pe; ) are both non-atomic.

Note that the weakly mixing component of {t — F(U,):t € R} is invariant under the
anti-unitary J. This follows by using the fact that JA®J = A for all t € R and by the
definition of weak mixing. Thus, u, ;¢ is non-zero and non-atomic. Note that both ¢ and J¢
are vectors in the 1-particle space H of F, (). This forces that the spectral measure of the

action {t » F(U,):t € R} when restricted to the 1-particle space H contains a non-trivial
non-atomic component u on both sides of 0 by an application of the Stone-Weierstrass

theorem. Since, F(U;) = id ©D,,>1 U?qn, t € R, it follows that Sp (A(pp) = [0, 00). Thus,
the result follows.

Now we turn to the case when the orthogonal representation is almost periodic.
Theorem (5.2.26)[222]: Let (U;) be a strongly continuous almost periodic orthogonal
representation of R on a real Hilbert space Hy such that dim(Hg) = 2 and such that there
exists a unit vector &, € Hy with U,.&, = &, for all t € R. Let G be the closed subgroup of
R’ generated by the spectrum of A. Then,

type Ill; if G = RY,
Mgis {typelll; ifG=25L,0<A<1,
type II;  if G = {1}.
The type 1I; case corresponds to (U.) = (id) and thus M, is the BozZejko-Speicher's II,
factor.
Proof. The hypothesis forces that if dim(Hy) = 2, then M, is a I, factor from Corollary
(5.2.20) and there is nothing to prove. If dim(Hp) = 3, then by Theorem (5.2.24) it follows

that (M?)' n M, = C1. Thus, M? is a factor, and hence S(M,) is completely determined

by Sp(A). Now use the fact that F(U,) = id ®D,,>1 U?qn, t € R, and Proposition (5.2.10)
to complete the proof.
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Chapter 6
Free and g-Araki-Woods Algebras and Factors

We show that all g-Araki-Woods algebras possess the Haagerup approximation
property. We show that any amenable von Neumann subalgebra of any free Araki—Woods
factor that is globally invariant under the modular automorphism group of the free quasi-
free state is necessarily contained in the almost periodic free summand. We show that the
canonical ultraweakly dense C*-subalgebras of g-Araki-Woods algebras are always QWEP.
Section (6.1): Extension of Second Quantisation and Haagerup Approximation
Property

The Haagerup approximation property, along with amenability and weak amenability,
started its life as an approximation property of (discrete) groups, although it was always
intimately connected with operator algebras, beginning from its first appearance in [153].
This connection was further developed by Choda (cf. [241]), who defined the respective
property for tracial von Neumann algebras and proved that a group von Neumann algebra
(of a discrete group) possesses the Haagerup property if and only if so does the underlying
group. The situation in the general locally compact case is, however, not that pleasant. It
resembles the situation with amenability - injectivty of group von Neumann algebra captures
amenability of the group in the discrete case, but not in general.

Ever since the advent of locally compact quantum groups and their approximation
properties (cf. [243]), it has become crucial to extend many notions beyond the case of finite
von Neumann algebras. As in the classical case, there is no hope to define the Haagerup
property of a general locally compact quantum group only via its von Neumann algebra. In
the discrete case this should be feasible. [243] prove the proposed equivalence for
unimodular discrete quantum groups. The theory of quantum groups, however, has the
unusual feature allowing discrete groups to be non-unimodular. This is a clear motivation
to investigate the possibility of extending the definition to the case of non-tracial von
Neumann algebras. Recently, two equivalent axiomatisations of the Haagerup property of
general von Neumann algebras have been established (cf. [242] and [244]).

Whenever a new property is defined, it is useful to have a host of examples to confirm
that the definition is a reasonable one. We prove that a wide class of type 11 von Neumann
algebras, the so-called g-Araki-Woods algebras introduced by Hiai in [123] (based on earlier
work of Shlyakhtenko, cf. [15]), possess the Haagerup approximation property. It is a natural
extension of the fact that the g-Gaussian algebras of Bozejko and Speicher (cf. [60]) possess
the Haagerup property, which seems to be a folklore result. One can also view as a
contribution to the study of the structure of g-Araki-Woods algebras. A lot is known about
their predecessors, the g-Gaussian algebras. They are known to be factors (cf. [137]), they
are non-injective (cf. [113]), they possess the completely contractive approximation
property (cf. [223]). In the case of g-ArakiWoods algebras we have only partial results, e.g.
a recent development in the study of factoriality (cf. [222] and [245]). The best known result
about non-injectivity was obtained by Nou in ([113], Corollary 3). So far, the CCAP has
been obtained only for free Araki-Woods algebras ([190]); the general case, however, is
likely to require new methods. We hope that this article will prompt further study of g-
Araki-Woods algebras. Let us give a brief overview. We introduce the necessary definitions
and tools. We provide an extension of the second quantisation procedure, necessary for the
proof of the Haagerup approximation property. The basic idea is that second quantisation
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allows us to build approximants on the level of the Hilbert space, which is easier than
working directly on the level of the von Neumann algebra.

We recall the construction of the g-Araki-Woods algebras and the definition of the
Haagerup approximation property.

The material about, g-Araki-Woods algebras that follows, with a much more detailed
exposition, can be easily found in [123].

We start from a real separable Hilbert space Hy equipped with a one-parameter group
of orthogonal transformations (U;).cg. This extends to a unitary group on the
complexification, denoted #C, that has the form U, = A for some positive, injective

operator A. We define a new inner product on H¢ by (x, y) : = <% X, y>. The completion

with respect to this inner product is denoted by . Let us denote by I the conjugation on
H —itis a closed operator on H because the new inner product coincides with the old one
on Hy. Consider now the g-Fock space 7 (3() (cf. [60]).
Definition (6.1.1)[240]: For any h € Hy, define s, (h) = ag(h) + a,(h), where ag (h) and
a, (h) are the creation and annihilation operators on F, (#{). g-Araki-Woods algebra is the
von Neumann algebra generated by the set of operators {sq (h):h € }[R}. We will denote it
by I}, ().

There are two special cases considered previously:
1. If the the group (Uy) e is trivial, i.e. U, = Id, then we denote the algebra I'; (i) by

I, () and call it a g-Gaussian algebra (cf. [60]);
2. If g = 0, then I, () is called a free Araki-Woods factor; they were introduced earlier

by Shlyakhtenko (cf. [15])
Definition (6.1.2)[240]: Let T: X — H be a contraction between two Hilbert spaces. Then
there exists a contraction F, (T): F, (¥X) — F,(H), called first quantisation of T, which is
defined on finite tensors by F, (T)(v; @ - @ v,) = Tv; Q@ - Q Tv,.

We will follow the approach of Caspers and Skalski (cf. [242]); for a different
approach, based on standard forms, see [244].
Definition (6.1.3)[240]: Let (M, ¢) be a von Neumann algebra (with separabla predual)
equipped with a normal, faithful, semifinite weight ¢. It has Haagerup approximation
property if there exists a sequence of unital, normal, completely positive (unital, completely
positive will be abbreviated to ucp from now on) maps (Tx: M — M),y Such that:

1. oo Ty < gpforall k € N;
2. GNS-implementations Tj: L*(M, ¢) - L*(M, @) are compact and converge to

112y, Strongly.

We will prove that second quantisation can be defined for arbitrary contractions on
Hy that extend to contractions on ; this condition will be written succinctly as ITI =T,
where the left-hand side is understood as the closure of the product. Motivation comes from
[190], where the analogous generalisation of second quantisation is an indispensable tool
for obtaining approximation properties in the free case. Before we give the details of the
proof, let us first recall how to show that the second quantisation is always available in the
case of g-Gaussian algebras so that the similarities and the differences are clearly visible
(cf. [60], Theorem 2.11). Before that, we need to recall the Wick formula (cf. [60],
Proposition 2.7).
Lemma (6.1.4)[240]: Suppose that ey, ..., e, € H¢. Then
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W(e1 R R en)
Z S ai(en) il )aglien,,) - aglle, g,

ol Skt 10
where I, = {i; < < lk} and I, = {]k+1 < -+ < j,} form a partition of the set {1, ...,n}

and i(I,, I,) is the number of crossings between I, and I,, equal to ¥, (i, — D).

Theorem (6.1.5)[240]: ([60], Theorem 2.11). Let Ky and H be real Hilbert spaces and
let T: Kgr — Hy be a contraction. Then there exists a ucp map I, (T): Iy (Kg) = Ty (3Hg)
such that T,(MW(e; ® - Qey) =W(Te; ® - ®Te,) for any ey,.., e, €Ky.
Moreover, this map preserves the vacuum state.

Proof. To prove the existence, we will first dilate T to an orthogonal transformation Uy, i.e.

1
_ (1y, — T*T)? T*
define Uy = . |, an orthogonal operator on K @ Hy such
T — (g, — TT*)?
that T = PUq:, where ©: K = K @ Hy is the inclusion onto the first summand and
P: Kr @ Hyr — Hy is the orthogonal projection onto the second summand. We will define
separately I'; (1), [(Ur), and I, (P) and then define I}, (T): = I, (P)I[,(Ur)T, (). The maps

I[,(P) and I, (Ur) are easy to define, so we will start with them. We define I;(P)x: =
F,(P)xF,(P)*. This is a normal ucp map from B (Tq (KD }[@)) to B (IFq (I]-[(C)), we just
have to check that it maps W(e; ® - Q@ e,) to W(Pe; & -+ Q Pe,,). To this end, we will
use the Wick formula (1). It suffices to show that
Lo (P) (@3 (01) - ag (Vi) 8g (W) - Og (v)
= ag(Pvy) ...ag(Pvi)ag(Pvygyq) ... ag(Pvy).

We will use the fact that a, (v)F,(T) = F,(T)aq(T*v) and F,(T)ay(v) = az(Tv)F,(T).
An easy application of this shows that F, (P)ag (v1) ... ag (Vi) ag(Vg41) .. ag (v ) Fy (P)* is
equal to ag(Pvy) ...ag(Pv)F,(PP*)a,(Pvy4q) ...aq(Pv,) and we are done, because
PP* =14,,. We define [,,(Ur) analogously: I, (Ur)x = F,(Ur)xF,(Ur)*. The same
computation as in the case of P shows that I, (Ur)W(e; @ - Q e,) = W(Ure; @ -+ &
UTen)-

Now we have to deal with I, (¢). Since u* # 1y, 21, the previous approach does not
work. We know, however, that T, (1) ought to be the inclusion of I,(¥g) onto a von
Neumann subalgebra of I, (K @ Hy) generated by the operators {Sq(v):v EKr D
{0} € X @ Hg}; denote the latter by I, (Kg, Kr © Hg). To construct I, (1), we will
define a map from I}, (K, Kr D Hy) onto I;(Kk) and show that it is an injective, hence
isometric, *-homomorphism, therefore it has an inverse, which will be the sought I, (¢). So
far, we have a map I, (:*): T, (Kr @ Hg) — I;(Kg). Let us show that this map, when
restricted to I}, (Kg, Kr @ Hg), is a x-homomorphism. To show that, note that every
member of the generating set of I, (K, Kr @ Hy) preserves the subspace F,(K¢)
Fy (K¢ D He), itfollows that every element of I, (K, Kr @ Hy) enjoys this property. Let
us take two elements x,y € I}, (Kg, Kg D Hg) and compute

r‘q )xy) = j:q (l*)xyj:q = j:q (l*)x:]:q (l):]:q (l*)y:]:q ),
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where the second equality follows from the fact that 7, (u*) is the orthogonal projection
from F, (K¢ @ H¢) onto F, (K) and the image of yF, (1) is contained in F, (K¢). Therefore
I (1"):Tg(Kg, Kr © Hg) = I (KR) is a *-homomo-rphism. We will check now that it is
injective. Suppose then that I, («*)x = 0 for some x € I, (K, K @ Hy). It follows that
[()xQ = 0. We have [,((")xQ = F,(")xF,(0DQ and F,(DQ = Q, seen now as the
vacuum vector in F, (K¢ @ H¢). But we already know that xQ € F,(K¢) c F, (K D
He), so from F, (¢*)xQ = 0 we can deduce that xQ2 = 0, therefore x = 0 as Q is a separating
vector for I, (Kg @ Hg). We proved that T,;(t"): [, (Kg, Hg D Hg) — [(Kg) is an
isometric *-isomorphism, hence it has an inverse and we call this inverse I, (¢); it is clear
that [,(OW(e; ® - ® ey) = W(ie; Q -+ @ tey,). It is easy to see that the vacuum state is
preserved, so this finishes the proof.

The following extension, with almost the same proof, is due to Hiai (cf. [123]):

Proposition (6.1.6)[240]: Let (Kg, (Up)ter) and (Hg, (Vo) :er) be two real Hilbert spaces
equipped with one parameter groups of orthogonal transformations. Suppose that T: Xr —
Hy is a contraction such that TU, = V,T for all t € R. Then there is a normal ucp map
[q(T): T (F) — T (H) extending W(e; ® - ® ep) » W(Te; ® -+ ® Tep).
Proof. We decompose T = PU;t as previously; the exact form of this decomposition is
important. We equip the space Kr @ Hy with the orthogonal group (U; @ V,);cr. Note
that the completion of K @ H with respect to the inner product defined by (U; @ V;) (e
is naturally identified with & @ H. Then the three maps P,U;, and ¢ intertwine the
orthogonal groups and, therefore, extend to contractions between appropriate Hilbert spaces.
The rest of the proof is exactly the same as previously.

We would like to state now our extension of the second quantisation (with the same
minimal requirements as in [190]).

Theorem (6.1.7)[240]: Suppose that T: K — H is a contraction such that T = JTI, where I
is the conjugation on K and J is the conjugation on H. Then the assignment W(e; ®
Q@ ey) » W(Te; Q& Te,) extends to a normal ucp map I, (T): [, (K) — I, (H)
that preserves the vacuum state.

Proof. We start similarly as in the proof of Theorem (6.1.5); dilate T to a unitary U; on

1
(e = T°T):2 T .| sothat T = PU,/, where : K - K @
T —(1;; = TT*)2

J is the natural inclusion and P: K @ H — H is the orthogonal projection. Note that only
Ur depends on T, so it is easy to see that ¢ and P come from maps of real Hilbert spaces
Kr, Kr D Hg, and Hy and they intertwine the orthogonal groups (U;):er, (Us @ V) ter
and (V;).egr. Therefore there is no problem with defining the second quantisation for these
maps (Proposition (6.1.6)). We get a ucp map I}, (1): [, (¥) — I, (K @ 3). The condition
JTI =T is not self-adjoint, hence in general U; does not commute with I @ J, so there is
no hope of defining a map I, (Ur): Ty (KX @ H) - I,(K @ H). However, there is a map
T,(Ur): B(F, (% @ H)) - B(F, (¥ @ 3)) given by conjugation x - F, (U)xF,(Ur)".
One can easily check that

To (W) (ag(er) .. az(e)ag(ersr) - aqlen))
= ag(Urey) ...ag(Ureg)ag(Uregiq) -..ag(Urey).

K @ H given by
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So far, we have a normal ucp map 7, (Ur) o TZ(1): T, (%) = B(F, (K @ H)). We
now have to deal with the projection P. As in the case of a unitary operator, we get a map
T,(P): B(F, (¥ @ H)) - B(F,(3)) given by x = F,(P)xF,(P)*. It is a simple matter to
check that in this case we still have

Ty (P) (g (er) .. ay(e)aq ersa) - ag(en)
= ag(Pey) ...ag(Pey)ag(Pegyq) ...aq(Pey).
Finally, we obtain a (normal) ucp map
vi= Ty (P) o Ty(Ur) o Ty (0): T, (%) = B(F,(3))
that has the property that v(W (e; ® - ® e,,)) is equal to

Z Z a; (PUTleil) a;(PUTLeik)aq (PUTLIejk+1) aq(PUTLIejn)qi(Il,Iz).
k=0 iyl Jk+1rmJn

Since T = PUy satisfies JTI = T thisisequal to W(Te; Q - ® Te,,), therefore the image
of v is contained in I'; (H') and we define I, (T): = v.

We would like to present a second approach to the extended second quantisation. Let
us start with a definition.
Definition (6.1.8)[240]: Let A be a (complex) Hilbert space. Let F,(#) be the g-Fock
space over H. We define the g-Toeplitz algebra 7; (#) to be the C*-algebra generated by
the creation operators a,(v) inside B(Tq (7{)). If % < H is a closed subspace, we define
T, (3¢, 3{) to be the C*-subalgebra of T, (#) generated by the set {a; (v): v € K}.

We would like to note that both I,(P) and I,(Ur) (denoted then by 7;(P) and

%(UT)) can be defined on the level of the algebra 7;, (3) by the same formula. If we could

do that also for I}, (¢), we would be able to obtain a second quantisation procedure on the
level of the g-Toeplitz algebra. The reasons for seeking such a generalisation are twofold.
First, it is interesting in its own right because better understanding of the structure of the g-
Toeplitz algebra has potential applications to the study of radial multipliers (cf. [190] for the
free case). Second, it allows us to use the approach of Houdayer and Ricard (cf. [190],
Theorem 3.15 and Corollary 3.16) to extend the second quantisation for the g-Araki-Woods
algebras. Let us point out what obstacle has to be overcome. To show that we can define
T3 (), we would like to show that the *-homomorphism 77, (:*): T, (¥, K @ H) - T (K)
Is injective. This is the hard part, because now the vacuum vector Q is not separating

anymore. The kernel ker (Tq(t*)) iIs formed by elements vanishing on the subspace

Fq(¥) € Fy (K @ H). We will now state the triviality of the kernel explicitly.

To make the theorem look plausible, we would like to state a lemma saying that the
linear span of the products of generators of the g-Toeplitz algebra, a dense *-subalgebra of
it, does not contain any nontrivial element of the kernel - this shows that there are no obvious
candidates for the elements of the kernel. Before that, let us introduce some useful notation.
Definition (6.1.9)[240]: Let H be a complex Hilbert space and let £ be its complex
conjugate space. We define maps ajj: 7 ®% —» B(F,(#)) and a,: H®* - B(F,(H)) (the
tensor products are simply algebraic tensor products) to be the linear extensions of the maps
given on simple tensors by ag(e; & - ® ex) = ag(eq) ...ag(er) and az(6; Q@ - ® &) =
aq(ey) ..a,(e). For any v, @ W,_, € H®* @ HOM™K) we also define Ay, (v ®
Wy_i): = ag(vi)a,(Wy,_,). Let us also define the space
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T(H): = @ (@ H Ok Q H O k)

where the direct sums and tensor products are algebraic. Direct sum of all the operators 4y ,,
will be denoted by A: T(H) — T (H). Note that if i: K — H is an inclusion of Hilbert
spaces, then A can be equally WeII viewed as a map from T(X) to T, (¥, H'), for which we
will use the same notation.

Using basic algebraic manipulations, we can obtain the following lemma.
Lemma (6.1.10)[240]: Let :: K — H be an inclusion of Hilbert spaces. Then the mapping
A : T(XK) - T, (XK, ) is injective. As a consequence, any x in the range of A is not in the
kernel of the map 7;, (t*): T, (K, H) - T (XK).

Before proving Theorem (6.1.11), we need just one more lemma, which we precede
with introduction of convenient notation.

Elements of the form ag (v,,)a, (W), where v,, w, € H O™ will be called elements

of length n, and their non-closed linear span will be denoted by (.’]"C,(:H‘))n. Note that, by

Lemma (6.1.10), the subspaces (17}1 (H ))n are linearly independent for different n, therefore
the notion of length is well defined. We will also find it useful to specify the notation for

the orthogonal projections P,: F, (H) — }[f’", where }[q®" denotes the n-fold tensor power
of H endowed with a g-deformed inner product. Let us also introduce the maps

R i HE U - 32" @ 37 E¥(cf. [113], Lemma 2) by their action on simple tensors:
n+k k(vl R & vn+k) = Z qi(ll'IZ)vh K& Vi, ® Vjns1 ® & Vjinsk’

with the same notation as in Lemmg l(lé

Theorem (6.1.11)[240]: Let X and H complex Hilbert spaces, with inclusion «: K — H.
Then the x-homomorphism T;, (t*): T, (¥, H) — T (XK) is injective.

Proof. First, we would like to show that the task of proving triviality of the kernel can be
reduced to a slightly easier one. To show that the kernel is trivial, it suffices to look at
positive elements, since the kernel is an ideal, in particular a C* algebra, therefore it is
spanned by positive elements. Suppose that x is in the kernel and is positive. There is an
action of the circle group (in our case it is the interval [0,27] with endpoints identified) on

T, (%, 1) given by t = F, (ei)xF,(e~it). This action leaves the kernel invariant, therefore

the element Ex: = — [ ", (¢!*)x7F, (e~*)dt is also in the kernel and is invariant by the
2”0 q q

action of the circle group defined above (this action is used by Pimsner in [199] to show the
universality of the usual Toeplitz algebra). It is a simple matter to check that the fixed point
subalgebra is equal to the closed linear span of the elements of the form ag (v, )a, (W),
where v,, € H®" W, € H O™ and n ranges over non-negative integers, and E is a faithful
conditional expectation onto this fixed point subalgebra. So it suffices to show that there are
no non-zero positive elements in this fixed point subalgebra that are in the kernel.

Suppose that x is in the kernel and belongs to the subalgebra fixed by the circle action.
We need to show that x ;,en = 0 for any n > 0; note that, as vector spaces, 17-[®" = HO",

which follows from [113]. We will prove the statement inductively. leasequence (X1.) ken
that approximates x in norm and is contained in the non-closed sum of the subspaces
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(7;(30)) . Therefore every x, admits a decomposition x; = 3 e ox, where x €

(7,(30)), and ny is the smallest number such that x D =0 for I > n,.

We would like to now state explicitly the statement we intend to prove by induction:

For every n € N U {0}x,,en = 0 and limy._,o, | 272 ox | = 0. Let us start with n =

0. Our inductive statement for n = 0 means just that PyxPy = 0 and lim_, |x.”] = o.

The first part translates to x) = 0 and it follows from the fact that Q € K and x
belongs to the kernel. For the other part, it follows from Lemma (6.1.13) that an element y;,
of length [ satisfies an inequality [ly;ll < C(q)IIP,y;P;ll, where C(q) is a positive constant
depending only on g. In our case we get |x || < €(q) [|[Pox " P, . We know that PyxP, =

0 .
0 and P,yx; P, converges to PyxP, in norm. However, Pyx; P, = Pox,g )p,, since elements

of length greater than 0 annihilate the range of P,.

Assume now that our statement has been proved for m < n — we would like to show
that it is also true for n. Use the decomposition £ = K @ K+ to write HO" = XO" @
H', where ' is a direct sum of tensor products of the spaces K and K+, where at least one
factor is equal to Z+. We would like to show that x restricted to each of the tensor products
vanishes. Since x is in the kernel, we get it for x,.on Let ' be any other summand. We
will show that x;, (e) converges to 0 for any simple tensor e € K. Since e is of length n,

we get xi(e) =YL 0xkl)(e) By the inductive assumptlon we know that Y- Ox(l)

converges in norm to 0, so we are left with x; )(e) But every summand in x,§>

is of the form a};(v,)a, (W) and a; (v,)a,(W,)e = (Ew,, e)v,, where Z: H & — F "
is the flip map, taking h; @ - @ h,, to h,, ® -+ ® h,. Since e possesses a vector from K+
in its tensor decomposition, (Zw,,e) = 0. It follows that x,,;en = 0. This implies that

limye g0 1Py X Pyl = 0. Since Pyxy Py = Yo Pux PP, and limyo [|S70 x| = 0, we get
that limy_,o, [PV P || = 0. Using Lemma (6.1.13), we conclude that lim,_,, [|x\]| = 0

therefore limy, o, [|[ X1 Oxkl)” = 0.

Lemma (6.1.12)[240]: Let H be a Hilbert space. Suppose that A, B are positive operators
on H and T is a bounded operator suchthat A = BT. Then ALI T |l B.

Proof. By taking the adjoint, we get A = T*B, hence A> = BTT*B. It follows that A% <]
T 11? B2. The majorisation A <|l T || B is implied by the operator monotonicity of the square
root.

Lemma (6.1.13)[240]: Suppose that x € (7, (}[))n. Then:

1. PorcXPoir = 1dp g (PuxPy @ 1di) Ry i i, Where Id,, o HE" @ HEK —» O™ is
the extension of the identity map H®" @ H Ok - H®n+k defined on algebraic
tensor products.

2. Il x IS C(@)IP,xP,ll, where C(q) is a positive constant depending only on q.
Consequently, Il x ll= [|P,xP,Il.

Proof. (i) Fix x of length n - itis a linear combination of elements of the form ag (v,)a(w,,).
Since the formula

PrikxPpig = (anpn 0%y Idk)R:Hk,k' (2)
is linear in x, it suffices to prove it for x of the form a; (v, )a(w,), where v, = v; @ - ®
v, and w,, = w,, ® --- @ w; are simple tensors. Fix e € H®"+%: we have to check that
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xe = (x @ Idy )Ry re. Note that the action of creation operators does not depend on the

tensor power on which they act - it always boils down to tensoring by a vector on the left.
Therefore we need only to concern ourselves with annihilation operators. We would like to
express g-annihilation operators a,(v) in terms of free annihilation operators a(v): =

ao(v). Note that aj (v) = a*(v), so for any finite tensors y and z we get (z, q, (v)y)q =
(a*(v)z,y)q.
Let P;* be the positive operator on H O™ defining the g-deformed inner product; let

us denote by F, the direct sum of all the operators F*. Using the definition of the g-deformed
inner product, we arrive at

(z, Fa, (v)y)0 = (an*(v)z, y)o.
It follows that P,a, (v) = (P,a*(v)) = a(v)Pqi 50 a, (v) = Py ta(v)P,. If we restrict this
equality to £ ®™, we get a, (v);,en = (P*™') “a(v)P}. Let us compute the left-hand side
of (2) :
-1
ag(Wy) ...ag(we = (PF) “a(w,) ...a(w)P]*¥e.

This formula follows from the fact that first we change a, (w,) to (Pq””"‘l)_la(wl)Pq"*k,
but then a, (w,) has to be changed to (Pq"+k_2)_1a(W2)Pq"+k_1 and there is a cancellation

between a(w,) and a(w;,); using this fact repeatedly, we obtain the above formula. To
calculate the right-hand side, recall (cf. [113], Formula 2 on page 21) that we have an

equality P% = (P @ PSRy ik SO Ryppe = ((P”) ® (PF) ) Pk 1t leads us to:
(aqWn) . ag(wy) @ 1d) (A~ @ (PE) ™) Prtre
= (aqw) - aqw)(FY) ™ @ (RF) ) Pthe

= (a(wy) ..a(wy) @ (PK) ") Pr+re.
We now only need to understand that this is exactly the same formula. It follows from the
fact that the free annihilation operators act only on the n leftmost vectors, so the operator
(P¥)™" in both situations acts only on the k rightmost ones.
(if) First of all, since the spaces J{C‘lg’k are left invariant by x, we have || x ||=
SupgsollPkxPll. Because PxP, =0 for k<n, we actually get | xI=

SUPk>0 I Pr+kXPpkll. We just have to show that ||P, 1, xPy |l < C(q)IIP,xP,ll. From the
first part of the proof we get that [Py, 41 XPpirell < 1dp il - |Rpinll - IPx Byl It is known

(cf. [113], Formula 2 on page 21) that || R}, || < C(q), where C(q) = [Tr=, (1 — |g|*)~*
and R;, ., is seen as an operator on H @Mk \where H®™+K) js equipped with the
standard inner product, not the g-deformed one. It follows from Lemma (6.1.12) that

PO < c(@)PY @ P9 as operators on KO since P = (P(n) ®
P(")) R} Because P( *9 defines the inner product on H2>"*, and P ® P
defines the inner product on 2™ @ F 2%, it follows that the identity map Id,, ;: X" ®
HE* - 1 2™ has norm not greater than /C(q). Finally, (Id,x) = Rjyinr SO

IR+ ]l < \/C(q) as an operator mapping K> to HE™ @ HD*,

This shows that [P, XPraill < C(q)IIPxP,lI.
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To prove the Haagerup property, we need to use one more lemma.
Lemma (6.1.14)[240]: (Houdayer-Ricard, [190]). There exists a sequence (Ty)xen Of
finite rank contractions on H such that IT,I = T, and lim,,_,,, T, = 1 strongly.
Theorem (6.1.15)[240]: Let (Hg, (U;)er) be a separable, real Hilbert space equipped with
a one parameter group of orthogonal transformations (U;).cg. Then the g-Araki-Woods
algebra I'; (Hg, (Up)er)” has the Haagerup approximation property.
Proof. Consider the ucp maps vy ,: = I',(e *T},) — they preserve the vacuum state. We
would like to prove that the GNS-implementations of these maps converge strongly to
identity and are compact. First of all, by definition, the GNS implementations of these maps
are equal to F,(e™'Ty). Let us then check compactness. Recall that we denote by
Py: Fy(H) - F,(H) the orthogonal projection onto first n summands in the direct sum
decomposition of the Fock space. Since T}, is a finite-rank operator, so is P,F,(e~T},). We
have to show that the norm of B;"F, (e ~T},) converges to 0, when n — oo. First of all, let us
reduce to the case g = 0. Operator P, preserves all the tensor powers appearing in the direct
sum decomposition of the Fock space, therefore it commutes with P;. It also commutes
with the first quantisation operators F, (e T;,). It follows from Lemma 1.4 in [60] that the
norm of B;"F, (e~*T},) does not change if we compute it on the free Fock space F,(H); this
is the norm that we will estimate. This is easy when Ty, is self-adjoint and we will now show
that one can assume that. Indeed, the first quantisation on the level of the Fock space
interacts nicely with taking the adjoint, so we get (by the C*-identity)

IPLFo (e T)II* = B Fole Ty T, )P

Now T, T is a finite rank positive contraction, so there is an orthonormal basis (e;);cy Of
H such that T, T,e; = A;e; and 4; € [0,1]. From the orthonormal basis of eigenvectors of
T, T, we can build an orthonormal basis of F,(H), using tensor powers; for a multi-index
" ={i, .., i} we will denote e, =¢; ®---Qe; and A, =21; ---1;,. We can now
estimate the norm of ;- F, (e "*'T; T ) Pi-. Let v € Fy(H) be written as v = Y,a,e;, then

2
z e 2llg,2,e,

[I|>n

= > e g I

[I|>n
< ety 2,

because |1;| < 1. The fact that the operators F, (e ~*T}) converge strongly to the identity
when t — 0 and k — oo is clear; it can be easily checked on finite simple tensors and this
suffices, since they are all contractive. This ends the proof.
Section (6.2): Structure of Modular Invariant Subalgebras

Free Araki-Woods factors were introduced by Shlyakhtenko in [15]. In the framework
of Voiculescu's free probability theory, these factors can be regarded as the type Il
counterparts of free group factors using Voiculescu's free Gaussian functor [22], [19].
Following [15], to any orthogonal representation U: R ™~ Hy on a real Hilbert space, one
associates the free Araki- Woods von- Neumann algebra I'(Hg, U)". The von Neumann
algebra I'(Hg, U)"' comes equipped with a unique free quasi-free state ¢, which is always
normal and faithful. We have I'(Hg, U)" = L(Fdim(HR)) when U = 1, and I'(Hg,U)"" isa
full type 111 factor when U # 1.

— * 2
1B Fole ™ TgT) Ry vll™ =
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Let U:R ™~ Hi be any orthogonal representation. Using Zorn's lemma, we may
decompose Hg = Hg"” @ HY™ and U =U"™@ U%® where U:R ~ Hp" (resp.
Uv™: R ~ HR'™) is the almost periodic (resp. weakly mixing) subrepresentation of U: R ~

14

Hg. Write M = T(Hg,U)"",N =T (Hﬁp,UaP) and P = T'(HY™, UW™)"" so that we have

the following free product splitting

(M, py) = (N, pyar) * (P, pywm).
We provide a general structural decomposition for any von Neumann subalgebra Q ¢ M
that is globally invariant under the modular automorphism group v and shows that when
Q is moreover assumed to be amenable then Q sits inside N. Our main theorem generalizes
([252], Theorem C) to arbitrary free Araki-Woods factors.

The main theorem should be compared to ([249], Theorem D) which provides a
similar result for crossed product II; factors arising from free Bogoljubov actions of
amenable groups.

The core of our argument is Theorem (6.2.2) which generalizes ([252], Theorem 4.3)
to arbitrary free Araki-Woods factors. Let us point out that Theorem (6.2.2) is reminiscent
of Popa's asymptotic orthogonality property in free group factors [237] which is based on
the study of central sequences in the ultraproduct framework. Unlike other results on this
theme [249], [250], [253], we do not assume here that the subalgebra Q c M has a diffuse
intersection with the free summand N of the free product splitting (M, @) = (N, <pUap) *

(P, pywm) and so we cannot exploit commutation relations of Q-central sequences with
elements in N. Instead, we use the facts that Q admits central sequences that are invariant
under the modular automorphism group ¢¥v of the ultraproduct state ¢ and that the
modular automorphism group o ®v is weakly mixing on P.

For any von Neumann algebra M, we denote by Z (M) the centre of M, by U(M) the
group of unitaries in M, by Ball(M) the unit ball of M with respect to the uniform norm and
by (M, L2(M),], L2(M))the standard form of M. We say that an inclusion of von
Neumann algebras P ¢ M is with expectation if there exists a faithful normal conditional
expectation E,: M — P. All the von Neumann algebras we consider are always assumed to
o-finite.

For M be any o-finite von Neumann algebra with predual M, and ¢ € M, any faithful
state. We write || x Il,= @(x*x)*/2 for all x € M. Recall that on Ball(M), the topology
given by [I-l, coincides with the o-strong topology. Denote by ¢, € L?(M) . the unique
representing vector of ¢. The mapping M - L?(M): x x¢, defines an embedding with

dense image such that Il x Il,= ||xf(p||L2(M) for all x € M. We denote by o the modular

automorphism group of the state ¢. The centralizer M? of the state ¢ is by definition the
fixed point algebra of (M, 6%). Recall from ([248], Section 2.1) that two subspaces E, F C
H of a Hilbert space are said to be e-orthogonal for some 0 < e < 1if [{(&,n)| < e |l & |l
n |l forall £ € E and all n € F. We will then simply write E 1, F.
Let M be any o-finite von Neumann algebra and w € g(N) \ N any nonprincipal
ultrafilter. Define
I, (M) = {(x)n € £°(M): x,, = 0 % -strongly as n - w}
M2 (M)
= {(xn)n € €2 (M): ()T (M) < 3, (M) and T, (M) (X)) < T, (M)}
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The multiplier algebra M“ (M) is a C*-algebra and 7,(M) ¢ M*(M) is a norm closed
twosided ideal. Following [254], we define the ultraproduct von Neumann algebra M by
M®:=M*(M)/T,(M), which is indeed known to be a von Neumann algebra. We denote
the image of (x,,),, € M*(M) by (x,)® € M.

For every x € M, the constant sequence (x),, lies in the multiplier algebra M'“ (M).
We will then identify M with (M + 3,(M))/3,(M) and regard M ¢ M® as a von Neumann
subalgebra. The map E, :M® — M:(x,)® » o-weak lim,_,,x, is a faithful normal
conditional expectation.

For every faithful state ¢ € M,, the formula ¢“: = ¢ o E,, defines a faithful normal
state on M. Observe that ¢ ((x,)®) = lim,,_,, @(x,) for all (x,)® € M®.

Let Q € M be any von Neumann subalgebra with faithful normal conditional
expectation Eq: M — Q. Choose a faithful state ¢ € M, in such a way that ¢ = ¢ o E,. We
have £(Q) c ¥*(M),79,(Q) € J3,(M) and M*(Q) c M*®(M). We will then identify
Q¥ =M*(@)/7,(Q) with(M“(Q) +3,(M))/I,(M) and be able to regard Q« < M® as
a von Neumann subalgebra.
Observe that the norm "'”(<p|Q)“’ on Q¢ is the restriction of the norm |I-l,, to Q. Observe

moreover that (EQ (xn)) € J,(0Q) forall (x,), €7,(M) and (EQ (xn)) € M*(Q) for

w

all (x,),, € M“(M). Therefore, the mapping Ey,,: M® = Q%: (x,)? + (EQ(xn)) Is a
well-defined conditional expectation satisfying ¢ o Eqe = @®. Hence, Equ: M® — Q% is
a faithful normal conditional expectation. For more on ultraproduct von Neumann algebras,
we refer the reader to [247], [254].

Let Hg be any real Hilbert space and U:R ™~ Hgi any orthogonal representation.
Denote by H = Hg Qg C = Hg @ iHg the complexified Hilbert space, by I: H - H: & +
in — & — in the canonical anti-unitary involution on H and by A the infinitesimal generator

of U:R ~ H, that is, U, = A™ for all t € R. Moreover, we have IAl = A~1. Observe that
jiHg = H:{ o (=

1/2 _ _ _ _ _
A_1+1) ¢ defines an isometric embedding of Hy into H. Put Kg:=

j(Hg). It is easy to see that Kg N iKg = {0} and that Kg + iKg is dense in H. Write T =
IA=Y/2_ Then T is a conjugate-linear closed invertible operator on H satisfying T = T~ and
T*T = A~1. Such an operator is called an involution on H. Moreover, we have dom(T) =
dom(A~/2) and Ky = {¢ € dom(T): T¢ = &}. In what follows, we will simply write

E+m:=TE+in) =& —in, V& n € Ky.
We introduce the full Fock space of :

F(H) = CQ @ @ HE®™.
n=1

The unit vector Q is called the vacuum vector. For all ¢ € H, define the left creation operator
2(&):F(H) » F(H) by

{t’(f)ﬂ =,

1) Q- Q&H) =EQ6H B Q&
We have [l (&) llo=Il & I and £(&) isanisometry if || £ lI= 1. Forall £ € Kg, put W(&): =
2(&) + £(&)*. The crucial result of Voiculescu ([19], Lemma 2.6.3) is that the distribution
of the self-adjoint operator W (&) with respect to the vector state ¢, = (- Q,Q) is the
semicircular law of Wigner supported on the interval [—II & II, Il € II].
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Definition (6.2.1)[246]: (Shlyakhtenko, [15]). Let Hg be any real Hilbert space and U: R ~
Hpg any orthogonal representation. The free Araki-Woods von Neumann algebra associated
with U: R ™~ Hp is defined by
[(Hg, U)":={W($):& € Kg}".

We will denote by I'(Hg, U) the unital C*-algebra generated by 1 and by all the elements
W (¢) for & € Ky.

The vector state ¢y = (- Q, Q) is called the free quasi-free state and is faithful on
['(Hg,U)". Let &,n € Kg and write { = & + in. Put

W({):=W(S) +iWwm) =£(¢) +£(0)"
Note that the modular automorphism group ¢®v of the free quasi-free state ¢ is given by
al! = Ad(F(Up)), where F(Up) = 1¢q @ @y US™. In particular, it satisfies
o' (W(0) = W(U.),V{ € Kg + iKg, Vt ER.

Itiseasytoseethatforalln > 1andall {y,...,{, € K +iKgr, {4 ® - ® {,, € T'(Hg, U)" Q.

When ¢, ..., ¢, are all nonzero, we will denote by W ({; ® - Q {,,) € I'(Hg, U)"" the
unique element such that

(GG =W Q& G
Such an element is called a reduced word. By ([252], Proposition 2.1(i)) (see also [248],
Proposition 2.4), the reduced word W ({; @ --- ® () satisfies the Wick formula given by
n

WG ® - ®%) = ) G+ G
k=0

Note that since inner products are assumed to be linear in the first variable, we have
L) (M) = (§,n)1 = (n,&)1 for all &,n € H. In particular, the Wick formula from [252,
Proposition 2.1 (ii)] is

Wi Q§IWi & - Q1)

=WE® QLGN ®n) +&mIWE @+ @& IWI, ® - ® 1)

for all &, ..., &, 14, ...,ns € Kg + iKg. We will repeatedly use this fact. We refer to [252]
for further details.

Let U:R ™~ Hi be any orthogonal representation. Using Zorn's lemma, we may

decompose Hg = Hg’ @ HY™ and U =U"™@ U» where U¥:R~Hp" (resp.
U"™:R "~ Hl‘{“’m) is the almost periodic (resp. weakly mixing) subrepresentation of U: R ~
Hg. Write M = T'(Hg, U)"",N = T(HZP,U?P)" and P = T(Hy'™, U™)"" so that

(M, py) = (N, pyar) * (P, pywm).
For notational convenience, we simply write ¢: = ¢@y.

The main result, Theorem (6.2.2) below, strengthens and generalizes [252].
Theorem (6.2.2)[246]: Keep the same notation as above. Let w € S(N) \ N be any
nonprincipal ultrafilter. For all ae M & N, all beM and all x,y € (M®)?®n
(M® & M), we have

p®(b*y*ax) = 0.
Proof. Denote as usual by H: = Hg ®pg C the complexified Hilbert space and by U:R ~ H
the corresponding unitary representation. Put H3P: = HgP ® rC and HW™: = HY™ ® RC.

Put Kg:= j(Hg), Kg" =j(H§p) and Kl;““::j(Hﬁ”“), where j is the isometric

1/2
) ¢ € H. Denote by H = F(H) the full Fock space of H.
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For every t € R, put i, = 1cqg @ ®paq US™ € U(FH). For every t € R and every x € M,
we have o, () = k. (xQ). We will implicitly identify the full Fock space F(H) with the
standard Hilbert space L? (M) and the vacuum vector ) € H with the canonical representing
vector ¢, € L*(M),.

Put Kan:= Ujs11p-121(A)(Kgr + iKg). Observe that K,, < Kg + iKy is a dense
subspace of elements n € Ky + iKg for which the map R — Ky + iKg: t — U,n extends to
an (Kg + iKg)-valued entire analytic function and that K,, = K,,,. For all n € K,,, the
element W (n) is analytic with respect to the modular automorphism group ¢ and we have
o, (W(n)) = W(A%n) forall z € C.

Denote by W the set of reduced words of the form W(¢; ® -+ ® &,,) for which >
1,&4, ..., &, € K,y By linearity/density, in order to prove Theorem (6.2.2), we may assume
without loss of generality that a and b are reduced words in W. Since moreover a € M ©
N, we can assume that at least one of its letters ¢; lies in Kg'™ + iKg'™. More precisely, we
can write

a =adW(E®-®¢&)a"

b =b'W(n & Qng)b"
withp = 1,q = 0a’,a”,b’,b" are reduced words in N with letters in K, N (Kg° + iKg"),
$2s s p—1sM2s s Ng—1 E Kypand &, 85,149,145 € K, N (KR™ +1Kg™). By convention,
whenq = 0,W(n, ® -+ ® n,) is the trivial word 1 , so that b = b'b"".

Denote by L c Kg'™ +iKg'™ the finite dimensional subspace generated by
¢1, €5, M1, Mg and such that L=L.If g=0, then L is simply the subspace generated by
¢1,&p, €1, €, Denote by
1. X (1,r) c H the closed linear subspace generated by all the reduced words of the

forme; @ - Qe, With r>0,n>r+1,e,..,e, € K§p° +iKg" and e, € L.

When r = 0 simply denote X;: = X (1,0).

2. X (2,r) € H the closed linear subspace generated by all the reduced words of the

form e, ® -+ ®e, with r>0,n=r+1,e, ., €L and e,_,4q,..,€, €K' +

iKg". When r = 0, simply denote X,: = X(2,0).

3. Y < H the closed linear subspace generated by all the reduced words of the form

e, ® - Qe,withn>1ande, e, € L*.

Observe that we have the following orthogonal decomposition

=CQD (X, +X) D Y.
Claim (6.2.3)[246]: Let e = 0 and t € R such that U;(L) L,/qim L. Then forall i € {1,2}
and all r > 0, we have

ke (X(@E,1) Le X3, 7).

Proof. Choose an orthonormal basis ({3, ..., {qim ) Of L. We first prove the claim for i = 1.
We will identify X (1,7) with L @ ((H3P)®" @ H') using the following unitary defined by
VAr)HQH®T QH)»H:{Quvru®@{Qv.

Observe that x,V(1,7) =V(1,7)(U; ® (U)®" @ k) for every t eR. Let E;,E, €

x(1, r) be such that &, = ¥ ¢, ®0; and E, = 3910 @ 07 with 0],07 €

irYj
(Hap) ® H. We have i, (E;) = TP UL() ® K, (07) and hence
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dimL

(XA ES W K ACAR AT H]
ij=1
Since |(U(¢), ;)| < e/dimL, we obtain |(x,(E,),E,)| < ellE1IIE, ]l by the Cauchy-
Schwarz inequality. The proof of the claim for i = 2 is entirely analogous.
Given a closed subspace K < H, we denote by Py:H — K the orthogonal
projection onto K.

Claim (6.2.4)[246]: Take z = (z,)® € (M®)?* and let w;, w, € N be any elements of the

following form:

1. either w; =1 or wy =W({; ® &) with r=1 and {,..,{ EK,, N
(K& +iKg).

2. either w, =1 or wo, =W, @ Q®u,) with s=>1 and puy,...,u EK,, N
(K& +iKg).

Then for all i € {1,2}, we have lim,_,, || Px,(w; z,w, Q)| = 0.

Proof. Observe that w, z,w,Q = w,J aﬁ /2 (w3)] z, Q. Firstly, we have

Pxar (]Uﬂ/z (W;)]Znﬂ) = JUﬂ/z W) Px1,ry (200

Py2,5) (W12, Q) = Wy Py(55)(2,Q).
Secondly, for all £ € H', we have

Py, (W, E) = Py, (W1PX(1,r)(E))
Px, (Jo%,,w3)JE) = Py, (Jo% ,,(W3)Px(2.)(®) ).
This implies that

P, W1 2w200) = P, (wa] 0%, (W3] Py (2 D))

Py, W1z, W, Q) = Py, (W1]Uﬂ/2 (W;)]PX(Z,s) (Zn-Q))-

and we are left to show that lim,,_,, | Px 1,7 (Zo Q)| = limy [|Px (2.5 ()| = 0.

Leti € {1,2} and k € {r,s}. Fix N = 0. Since the orthogonal representation U: R ~~
HR'™ is weakly mixing and L ¢ H™™ is a finite dimensional subspace, we may choose
inductively t, ..., ty € R such that Ue;, (L) Lndim(wy)—? U, (L) forall 1 <j; <j, <N.
By Claim (6.2.3), this implies that

Ke; (X K)) Loy ke, (X (k) V1 < j; <jp < N.

Forall t € Rand all n € N, we have

1P i) ZQ|° = (Px (i (20 ), 2, Q)

= <Kt (Px(i,k) (an)),rct(an)> (since K; € ‘U(ﬂ-[))

= (Pe,cx(iry) (K (20 ), Kt (2, Q).
By [247], for all t € R, we have (z,)® =z =0"(2) = (at‘p(zn))w. This implies that
lim,,_,, |l (z,) — Zn"(p = 0, and hence lim,_,, Ik, (z,Q) — z,Ql = 0 for all t €R. In
particular, since the sequence (z,,Q2),, is bounded in ', we deduce that for all t € R,

lim 1Px i @D = rllljf(})(P e (e (i,k)) (Zn D), Zn Q).
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Applying this equality to our well chosen reals (¢;) _._ , taking a convex combination and

1<j<
applying Cauchy-Schwarz inequality, we obtain

n-w

N
1
. 2 .
AI_EEI)”PX(LR)(ZnQ)" = lim Nz <Plctj(X(i,k))(Zn-Q)'Zn-Q>
=1

N
im% Z P,Ctj(X(i, k) (z,Q), z,Q

=1
n-w
=1
e H
< lim N iiz thj(xa,k))(znﬂ)" Izl ,-

Then, for all n € N we have,
[

[ N
!!z P,ct,(xa,k))(znn)!! = ) (B @I, B, (X))
j=1 1J2=

o 1] n2 N "Zn";
< Z iiPKtj(X(i,k))(ZnQ)ii + z N

j=1 Jj1#J2

Iz, 17
%
< Nlizally, + N ——
= 2Nz, I},
Altogether, we have obtained the inequality lim,,_,, [|Px(ix) z,O|° <vV2 1l z 120 /VN. As

N is arbitrarily large, this finishes the proof of Claim (6.2.4). The above argument is inspired
from [255]. Alternatively, we could have used [248].

Claim (6.2.5)[246]: The subspaces W(§; ® -+ ®¢,)Y and jo¥ , (W(ﬁq R ®
ﬁl))]y are orthogonal in . Here, in the case q = 0, the vector space Jo, , (W(ﬁq ®
- ® ﬁl))]y is nothing but Y.

Proof. Let m,n>1,ey,...,em, f1, ... fn € H With ey, ey, f1, fn € Lt so that the vectors
e ® - Qenpandf; & f,, belongto Y. Since &, L ey, f, Lnyand & L f;, we have

(W6 ® ~®&) (e ® @ e jo’y, (Wi, ® @) /(i ® - ® )

= (W ® @ )W(e, ® + ® en)Jo%, (Wi, ®  ® 1)) W(f, ® @ f)0)

=WERREW(E, ® Qe )AUW( L ® QLW (N, ® -+ ®n,)Q)
=WEQRQ,ERe®QRe)WW( AR QL Qn Q- ®n,)0)
(51®"'®5p®€1®"'®em;f1®"'®fn®771®"'®77q>

0.
Note that in the case g = 0, the above calculation still makes sense. Indeed we have
(W(f1 K ® fp)(e1 R Qe (f1® fn))
=65 ® - Qenfi ®Qf,)=0.
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Since the linear span of all such reduced words e; @ - ® e,,, (resp. f1 ® -+  f,,) generate

Y, we obtain that the subspaces W (§; ® - ® &)Y andJa ¥, , (W(ﬁq R-® ﬁl))]y are
orthogonal in #.
Let x,y € (M®)?” n (M® © M). We have
@ (b*y*ax) = (ax€,e, ybé o)
= }j_{g(axnftp' an€<p)
= }l{g(alw(fl Q& fp)a”xnﬂi ynb,W(nl R nq)b”'Q)

= 1im (W(§ ® ~ ® §)a" 5,05 (")) J0%, (W (g @ - @ 1)) 1(@)' b Q).
Put z,=a"x,0%((b")*) and z, = (a’)*y,b’. By Claim (6.2.4), we have that
limy,,, || Px,(z, Q)| = lim,,_, || Px, (2 Q)| = 0 for all i € {1,2}. Since moreover E,(x) =
E,(y) = 0, we see thatlim,,_, , | Pcq (2, Q)| = lim,,,, [[Pcq(z, Q)| = 0.Since X = CQ D
(X1 +X,) @ Y, we obtain

lim [|z,Q — Py(z,Q)| = 0 and lim ||z, Q — Py (z,Q)| = 0.
n-w n-w
By Claim (6.2.5), we finally obtain
go“’(b*y*ax) = rlll—r>ral) <W(€1 ® ® Ep)zn-Qf]Jipi/z (W(ﬁq ® ® ﬁl))]erlQ>

= lim (W(fl ® -+ ® &)Py(za), 0%, (W(i, ® - ® ﬁl))JPy(Zéﬂ>>
= 0.
This finishes the proof of Theorem (6.2.2).
We start by proving the following intermediate result.
Theorem (6.2.6)[246]: Let (M,¢p) = (I'(Hg, U)", @y) be any free Araki-Woods factor

endowed with its free quasi-free state. Keep the same notation as in the introduction. Let

q EM? = Nu pe any nonzero projection. Write Yq = (p;g;)-

Then for any amenable von Neumann subalgebra Q c gMgq that is globally invariant under
the modular automorphism group o %4, we have Q c gNq.

Proof. We may assume that Q has separable predual. Indeed, let x € Q be any element and
denote by Q, < Q the von Neumann subalgebra generated by x € Q and that is globally
invariant under the modular automorphism group o%®4. Then Q, is amenable and has
separable predual. Therefore, we may assume without loss of generality that Q, = Q, that
IS, Q has separable predual.

Special case. We first prove the result when Q c gMgq is globally invariant under o%4 and
is an irreducible subfactor meaning that Q' N gMq = Cq.

Let a € Q be any element. Since Q is amenable and has separable predual, Q' n
(qMq)® is diffuse and so is Q" N ((gMq)®)¥4 by [252]. In particular, there exists a unitary
ueU(Q'n ((qu)“))‘pélu) such that ¢’ (u) = 0. Note that E,,(u) € Q" N gMq = Cq and
hence E, (u) = ¢’ (u) = 0 so that u € (M®)%“ n (M® © M). Theorem (6.2.2) yields
@®(a*u*(a — Ey(a))w) = 0. Since moreover au = ua and u € U((gMq)#7 ), we have
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laly, =lau Ilfaw

= @®W'a*au) = “(a*u*au)

= ¢?(@"wEy(a)u) = ¢®(ua™uEy(a))

= ¢(aEy(a))

= IEx (@)l
This shows that a = Ey(a) € N.
General case. We next prove the result when Q c gMgq is any amenable subalgebra globally
invariant under 4.

Denote by z € Z(Q) € N¥ the unique central projection such that Qz is atomic and
Q(1—2z) is diffuse. Since Qz is atomic and globally invariant under the modular
automorphism group o=, we have that ¢,|,, is almost periodic and hence Qz c N. It
remains to prove that Q(1 — z) © N. Cutting down by 1 — z if necessary, we may assume
that Q itself is diffuse. Since Q c gMq is diffuse and with expectation and since M is solid
(see [252] and [251] which does not require separability of the predual), the relative
commutant Q' N gMgq is amenable. Up to replacing Q by Q vV Q' n gMq which is still
amenable and globally invariant under the modular automorphism group o%4, we may
assume that Q' N gMq = Z(Q). Denote by (z,,),, a sequence of central projections in Z(Q)
such that },,z, = q, (Qzy)' N zoMz, = Z(Q)z, is diffuse and (Qz,)' N z,Mz, = Cz, for
everyn > 1.

1. By the Special case above, we know that Qz,, c N foralln > 1.

2. Since Z(Q)z, @ (1 — z,)N(1 — z,) is diffuse and with expectation in N, its relative
commutant inside M is contained in N by ([253], Proposition 2.7(1)). In particular,
we have Qz, c N.

Therefore, we have Q c N.

Theorem (6.2.7)[246]: Keep the same notation as above. Let Q € M be any unital von

Neumann subalgebra that is globally invariant under the modular automorphism group o¥v.

Then there exists a unique central projection z € Z(Q) ¢ M¥v = N?u? such that

1. Qz is amenable and Qz < zNz and

2. Qz? has no nonzero amenable direct summand and (Q' N M®)zt = (Q' n M)zt is
atomic for any nonprincipal ultrafilter w € S(N) \ N.

In particular, for any unital amenable von Neumann subalgebra Q < M that is globally

invariant under the modular automorphism group oY, we have Q c N.

Proof. Put ¢: = ¢,. Denote by z € Z(Q) € M% = N? the unique central projection such

that Qz is amenable and Qzt has no nonzero amenable direct summand. By Theorem

(6.2.6), we have Qz c zNz. Next, fix w € S(N) \ N any nonprincipal ultrafilter. By [252]

(see also [251]), we have that (Q' N M)zt = (Q' n M)zt is atomic.

Corollary (6.2.7)[264]: Keep the same notation as above. Let w? € B(N,) \ N, be any

2

2w

nonprincipal ultrafilter. For all a € M, © N, all b € M, and all x?,y? € (M;”z)qo N
(M° © M,.), we have

9>*" (b*(y?)*ax?) = 0.
Proof. Denote as usual by H: = Hg ®g C the complexified Hilbert space and by U,: R ~ H
the corresponding unitary representation. Put H3P: = HpP? ®p C and HW™: = HY'™ ® RC.
Put Kg: = j(Hg), Kg' = (Hf;p ) and Ky = (Hﬁ’m ) where j is the isometric embedding
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1/2
§EHy— (1+2_1) & € H. Denote by H = F(H) the full Fock space of H. Forevery t €

R, put &, = 1cq @D @y (U)E" € U(H). For every t € R and every x2 € M,, we have
at"’z(xz)ﬂ = Kk, (x2Q). We will implicitly identify the full Fock space F(H) with the
standard Hilbert space L2(M,) and the vacuum vector Q € H with the canonical
representing vector 2 € L2(M,),.

Put Kun: = Ujs11p-1(A) (KR + iKg). Observe that K,, € Ky + iKp is a dense subspace
of elements n € Kg + iKg for which the map R — Ki + iKr:t » (U,):n extends to an
(Kg + iKg)-valued entire analytic function and that K, = K,,,. For all n € K,,,, the element
W,.(n) is analytic with respect to the modular automorphism group o and we have
UZ"’ZZ(Wr(n)) = Wr(Aizzn) for all z2 € C.

Denote by W the set of reduced words of the form W,.(¢&; ® -+ ® &,,) for which >
1,¢4, ..., &, € K,y By linearity/density, in order to prove Corollary (6.2.7), we may assume
without loss of generality that a and b are reduced words in W. Since moreover a € M, &

N,., we can assume that at least one of its letters &; lies in Kg'™ + iKg'™. More precisely, we
can write

a =aW (s ® - ®use)a”

b =b'We(n ® - ®nase)b”

with € > 0,a’,a”,b’,b" are reduced words in N, with letters in K., N (Kg® + iKg"),

$2s s §es M2 s Me € Ky and $1,8(+ey M Mate) € Ky N (KR™ +1Kg™). By

convention, when € = =1, W;.(n; ® - @ n¢14¢)) is the trivial word 1, so that b = b'b"",

Denote by L, c Kg™ +iKg'™ the finite dimensional subspace generated by

$1, €1+ M N(1+e) and such that L.=1L,. If e=—1, then L, is simply the subspace

generated by &5, §(14¢), $1, $(1+¢) DeNOtE by

3. X (1,1 + €) c H the closed linear subspace generated by all the reduced words of
the form e; @ - ® e, With e > —1,n =2+ ¢€,ey,...,€04¢) € Kspo +iKg" and
€s+¢ € L. When € = —1 simply denote X;: = X'(1,0).

4, X (2,1 + €) c H the closed linear subspace generated by all the reduced words of
the form e; @ - ® e, With e =2 -1,n =2+ €,e_(14¢) €L, and e,_, ..., €, €
Kg® + iKg". When € = —1, simply denote X,: = X(2,0).

5. Y < H the closed linear subspace generated by all the reduced words of the form
e, ® - Qe,withn>1ande,, e, € L.

Observe that we have the following orthogonal decomposition

H=CLS+X)DY.
Corollary (6.2.8)[264]: (see [246]). Let ¢ = 0 and t € R such that (U,).(L,) L_e L,.

dler

Then for all i € {1,2} and all e = —1, we have
k(XA 14€) Lo X3, 1+ e).
Proof. Choose an orthonormal basis (y, .., {gim 1, ) Of L. We first prove the claim for i =
1. We will identify X (1,1 + €) with L, ® ((H2P)®(1+€) & 3() using the following unitary
defined by
VA11+e)HRQHPWIHIQH) > H:{Qu@ v uQ@{Qv.
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Observe that k., V(1,1 + €) = V(1,1 + €)((Ur): ® (U,))®1*® @ k) for every ¢t € R.
Let 2,5, € X(1,1 + €) be such that E, = Zd‘mLT{l ® 6l and E, = Zd‘mLT{] ® 6; with

Q(1+e)
07,0 € (Hap) "~ ® . We have K (B1) = T (U,),(G) ® K¢ (01) and hence

dim L,

0@ EN S Y H{WDED. SO
ij=1
Since |((U)¢ (¢, ¢;)| < e/dim L,, we obtain [(x, (1), E5)| < llE1lIIE, 1l by the Cauchy-
Schwarz inequality. The proof of the claim for i = 2 is entirely analogous.
Given a closed subspace K < H, we denote by (P.)4: H — K the orthogonal projection
onto XK.
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Corollary (6.2.9)[264]: (see [246]). Take z2 = (z2)*" € (M;‘)Z)(p and let w?, w2 € N,

be any elements of the following form:

6. eitherw? =1orw? =W,({; @ - ® {a+e)) With e = 0and {y, ..., {14¢) € K,y N
(K& +iKg).

7. eitherwf =1orwf =W, (g @ - @ Uersey) Withs = 1and py, ..., Uer4e) € K,y N
(K& +iKg").

Then for all i € {1,2}, we have hmn_,wz ||(P )x; Wizgws Q)| = 0.

Proof. Observe that w2z2w wij.o¥ /2((w22) )], z2Q. Firstly, we have

Pxar (Jro _1/2<(w))/r Q) = 1,07, (WH V(B (Z50)

(Pr)X(Z,s) (Wl ZTZlQ) = Wi (Pr)X(Z,s) (Zn-Q)-
Secondly, for all £ € H', we have

(B, WEE) = (B, (Wi (B x(1,146)(B))
P, (J:0% 2 (WDIE) = (B, (10212 (WE Ve (P 2.y (B) )
This implies that

(P, (WEZEW3) = (B, (w0 o (WD) W (B xa ey (2D )

(P, W2 ZEw30) = (B, (WEHoS (W) (B o) (7).

and we are left to show that lim,,_, 2 [|(P-) x(1,1+6) (Zn D) || = lim, 2 [|(B) x 2,5 (22D || =
0.

Leti € {1,2} and k € {1 + ¢,s}. Fix N,. = 0. Since the orthogonal representation U,:R ™~
HR'™ is weakly mixing and L, ¢ HY™ is a finite dimensional subspace, we may choose
inductively ¢4, ..., ty. € R such that (U,,)tj1 (Ly) Loy, dim(,))— (Ur)tj2 (L) foralll <j; <
j» < N,.. By Corollary (6.2.8), this implies that

(e, X @I L1 (e, (XK, VLS fi < Jo < Ny

T
Forallt € Randall n € N,,, we have
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1P xeciry @Zo)|° = (B xn (Za0), 22Q)

= {09 (Bxaao @) ) e (D) (since k, € U(IH))

= ((P) e, (iiey (ke (27219))» Ke(Z2 Q).
By [247], for all t € R, we have (z2)®° = z2 = 01; (zz) = (01; (z2 )) . This implies
that lim, _, 2 “at“’ (z2) — z,%“ , = 0, and hence lim,,_, 2 Ik, (z2Q)) — zz Q|| = 0 for all t €
R. In particular, since the sequence (z,%ﬂ)n Is bounded in H, we deduce that for all t € R,

hm NP x i) (22 Q)" nlirar)lz((Pr)Kt(X(i,k))(Zrzl-Q)'Zrzl-Q)-

Applying this equallty to our well chosen reals (tj)lsjsNr, taking a convex combination and
applying Cauchy-Schwarz inequality, we obtain

Ny
. 2
nll)rar)lz ”(P‘r‘)x(i,k) (Z%-Q)" = nll)ral} — <(P )(K)t (X (i,k)) (Zn.Q.) Zrzl.Q>
1|
= lim, Z (B gor, (06, k) (220), 220
n-w? Ny | £ J
j=1
L[5 |
2
< lim, W <P)<x>t xG k))(znﬂ)" 12212
Then for all n € N,. we have,
Ny

" (X(lk))(ZnQ)" = Z <(PT)(K)t1(X(i'k))(Z’rle)r(PT)(K)tj(x(i'k))(Z’rzl'Q)>

=1 JiJ2=1

T N‘r 2 2
2 2 ”Zn”(pz
< E "(Pr)(;c)t.(x(i,k))(znﬂ)|| + E N
. J ] r
Jj=1 J1#]2
N2 4 N2 1221,
< N |I22]%, + N2 —2
T n (,02 T Nr

2
= 2N ||zl -
Altogether, we have obtained the inequality lim,, .,z || (B) x (o (Z2ZD|* < VZ Il 22 II; boz/

JN-. As N, is arbitrarily large, this finishes the proof of Corollary (6.2.9). The above
argument is inspired from [255]. Alternatively, we could have used [248].
Corollary (6.2.10)[264]: (see [246]). The subspaces Wr(é1 X 5(1+6))y and

]rai’f/2 (Wr(ﬁ(1+e) R ﬁl))jry are orthogonal in #. Here, in the case € = —1, the
vector space J,a*, , (Wr(ﬁme) R Q® ﬁl))jry is nothing but Y.
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Proof. Let m,n > 1,eq,...,e,, f1, .., fn € H With e, e, fi1, f, € L+ so that the vectors
e1 Q- Qenand f1 Q- f,, belong to Y. Since €(1+e) Le,f,Ln,and & L f, we
have

(W (61 @ @ £a40)) (@1 ® -~ ® e y0%, (W (TTase) ® -+ @ 1)) 1o (fy @
® f)
= <Wr(f1 X f(1+e))Wr(e1 b

03¢ em)-Q»]ro-ﬂz/Z (er(ﬁ(1+e) D Q ﬁl))]rvyr(fl K& fn)-Q>

= <VV1"(€1 R f(1+e))Wr(e1 R em)-Q'VVr(fl K ® fn)Wr(Th

® - ® Ne1+e))2)
= <VV1"(€1 X ® E(1+e) Rer X em)Q:Wr(ﬁ R QRHhOMA R 77(1+e))-Q)

=6 ® ®1Ve1 @ Qen i@ f ON1 @ @ Nwre)
=0.
Note that in the case e = —1, the above calculation still makes sense. Indeed we have
(W61 @ ®¢n1e) (1 @ Qen), (i ® @ f))
= <S(1 X Q f(1+e) Re1 Q@ QepfrQ: ®fn> = 0.

Since the linear span of all such reduced words e; @ - ® e,,, (resp. f1 ® -+ ® f,,) generate

Y, we obtain that the subspaces Wr(f1 R ® §(1+6))y and ]rgi/’iz/z (Wr(77(1+e) R ®
ﬁl))]r’y are orthogonal in 7.

202
Letx?,y% € (M®)" (M © M,). We have
0 (b (%) ax?) = (X7 oz ¥2bE )
= lim (ax,zlf(pz Vb y2 2)

n-

= lim (a 4 (51 R f(1+e))a” 20, y5b'W, (771 Q& 77(1+e))b Q>

- nlirar)lz <er(€1
03¢ €(1+6))a”x7210-ﬁ ((b”)*)Qr]ro-ﬂz/z (er(ﬁ(1+6) & -
® 1)) Jr(@)"¥3b'0),

Put zZ2 =a''x Za"’ ((b")*) and (z%)), = (a")*y2b'. By Corollary (6.2.9), we have that
lim,,_, 2 ||(B- )xl(ZnQ)” = lim, 2 [|(P)x, (2% D] =0 for all i€{1,2}. Since
moreover  E_2(x?) = E_:(y?) =0, we see that lim,2[|(B)ca(zZQ)| =
lim,,_, 2 |(B)ca((z?)5 Q) = 0. Since H = CQ D (X, + X,) D Y, we obtain

Tim, 220~ (B)y Q)] = 0 and_lim [0~ (B)y (2] = 0.
By Corollary (6.2.10), we finally obtain
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@2 (b*(y*)*ax?)
= nlir(rulz <Wr(f1 R -
® £+0)750.110%, (W (Tiase ® = ® 1) ) (22040

® Sure)) By (ZhD), Jr0fy (Wr(ﬁ(ue) Q- ® ﬁl))]r(Pr)y((Zz)hQ)>
= 0.

This finishes the proof of Corollary (6.2.7).

Corollary (6.2.11)[264]: Let (M,,9?) = (T'(Hg,U,)", @3 ) be any free Araki-Woods

factor endowed with its free quasi-free state. Keep the same notation as in the introduction.
2

Let (1 M = (). b jection. Write g2, ., = £(1+e-0+e)
et(1+€) €M’ =(N),” beany nonzero projection. Write ¢ , o) = T

Then for any amenable von Neumann subalgebra Q,, c (1 + €)M,.(1 + €) that is globally

invariant under the modular automorphism group a"’?“f), we have Q, € (1 + €)N,.(1 + €).
Proof. We may assume that Q, has separable predual. Indeed, let x2 € Q, be any element
and denote by (Q,), c Q, the von Neumann subalgebra generated by x? € Q, and that is

globally invariant under the modular automorphism group o %G+, Then (Q;)o Is
amenable and has separable predual. Therefore, we may assume without loss of generality
that (Q,), = Q,, that is, Q,- has separable predual.

Special case. We first prove the result when Q,- c (1 + €)M,.(1 + ¢€) is globally invariant
under o®G+o and is an irreducible subfactor meaningthat Q;, N (1 +e)M,.(1+¢€) = C(1 +

€).

Let a € Q, be any element. Since Q, is amenable and has separable predual, @, N ((1 +

202
M, (1 + €))*” is diffuse and so is Q. N (((1+ )M, (1 + €))**)"™* by [252]. In
202
particular, there exists a unitary u € U <Q; n(((1+eM,.(1+ e))“’z)(p““)) such that
<p(21“j,26)(u) =0. Note that E () €@, N(1+e)M,.(14+€)=C(1+€) and hence
2,.2
E,2(u) = <p(21“fe) () = 0sothatu € (M;”Z)(p “n (M®® © M,.). Corollary (6.2.7) yields
(pz“’z(a*u*(a — ENT(a))u) = 0. Since moreover au =ua and u € U (((1 +e)M,.(1+
€))¥ite ) we have
lalgs  =laul’,,

= 2" (u*a*au) = ¢’ (a*u*aw)

= (pz“)z(a*u*ENr(a)u) = <p2“)2(ua*u*ENr(a))

= <P2(a*ENr(a))

2
= ”ENr(a)”(pZ'
This shows that a = Ey_(a) € N,..
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Corollary (6.2.12)[264]: Keep the same notation as above. Let Q,, € M,. be any unital von

Neumann subalgebra that is globally invariant under the modular automorphism group
2 @7 ap

o ®Ur Then there exists a unique central projection z% € Z(Q,) c Mf”r =N, “r" such that

8.  Q,z%isamenable and Q,z% c z?N,z% and

Q,-(z*)* has no nonzero amenable direct summand and (Q; N M;"Z)(zz)l =(Q. n

M,)(z%)* is atomic for any nonprincipal ultrafilter w? € B(N,) \ N,..

Proof. Put ¢*: = ¢, . Denote by z* € Z(Q,) © M;pz = N,f‘”2 the unique central projection
such that Q,z? is amenable and Q,(z?)* has no nonzero amenable direct summand. By
Corollary (6.2.11), we have Q,z? c z2N,z?. Next, fix w? € B(N,) \ N, any nonprincipal
ultrafilter. By [252] (see also [251]), we have that (Qj N M®*)(z2)* = (Qi N M,)(z?)* is
atomic.

Section (6.3): Complete Metric Approximation Property

The study of finite approximation properties has always played a central role in the
structure and classification program for operator algebras. In the amenable setting this can
be seen, for example, in the seminal work of Connes on the classification of injective factors
[28] and also in Elliot's classification program for simple nuclear C*-algebras [263]. For
non-amenable operator algebras, there are two approximation properties that arise as weak
forms of amenability that stand out: the Haagerup property and the completely bounded
approximation property. These two operator algebraic properties have their roots in the deep
work of Cowling, de Canniére and Haagerup on the completely bounded multipliers of
Fourier algebras and group von Neumann algebras (cf. [153], [33], [147]). In the group
context, amenability of a (discrete) group G corresponds to the existence of an approximate
identity in the Fourier algebra A(G) consisting of finitely supported normalised positive
definite functions. The Haagerup property arises when one relaxes the finite support
assumption and allows for an approximate unit of normalized positive definite functions that
merely vanish at infinity (cf. [241] for the connection to group von Neumann algebras). If
one instead insists on having a finitely supported approximate unit for A(G), but allows for
functions of more general type (those uniformly bounded in the completely bounded Fourier
multiplier norm) this results in the fertile and robust notion of weak amenability (cf. [147]).
This latter notion has a straightforward generalization to C*-algebras and von Neumann
algebras, yielding the so-called (w* —) completely bounded approximation property
((w*) — CBAP). The situation is a little more subtle when translating the Haagerup property
to arbitrary von Neumann algebras, and this was obtained only very recently (cf. [242] and
[244] for two different, but equivalent, approaches).

The w*-CBAP has proved to be a remarkable tool in the study of non-amenable
operator algebras. Indeed, it yields a numerical invariant, called the Cowling-Haagerup
constant, which was used by Cowling and Haagerup [147] to distinguish the group von
Neumann algebras arising from lattices in the Lie groups Sp(1,n). Recently, in the
breakthrough work of Ozawa and Popa (cf. [141] and [262]), the w*-CMAP was shown to
be intimately connected to several remarkable indecomposability results for finite von
Neumann algebras, such as strong solidity, absence of Cartan subalgebras, primeness, and
SO on.

All the results mentioned about pertain mostly to (semi)finite von Neumann algebras.
However, several recent advancements have been made in the study of type Il algebras.
Most notably, the work of Isono [259], [260] on the structural theory of non-unimodular
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free quantum group factors, as well as Boutonnét, Houdayer and Vaes' very recent proof of
strong solidity for Shlyakhtenko's free Araki-Woods factors [224]. These latter algebras
constitute the very first examples of non-injective strongly solid type 11l factors. Again, in
the type Ill setting a key role is played by the w*-CBAP, which had been established
previously by Houdayer and Ricard [190] for free Araki-Woods algebras, and by De
Commer, Yamashita and Freslon in the free quantum group case [257].

The present is concerned with the so-called g-Araki-Woods algebras I, (H), which
were introduced by Hiai in [123]. These (typically type I1l) von Neumann algebras are
generated by the real parts of certain creation operators acting on a g-deformed Fock space
F,(H) (introduced in [66]). I;;(H) can be viewed as a deformation of a free Araki-Woods
factor depending on a parameter g € (—1,1)(q = 0 being the undeformed case). In many
senses the g-Araki-Woods algebras are expected to be structurally very similar to their free,
undeformed cousins. In fact, it is even known that for and dimH < o and |q| << 1, I';(H)
IS isomorphic to its free cousin (cf. [236], Theorem 4.5). However, not so much is known
about these algebras in the whole admissible regime of the parameter g. Let us just mention
some partial results: Very recently, advances were made on the factoriality problem (cf.
[222] and [245]). In many cases it is also known that g-Araki-Woods algebras are non-
injective (cf. [113]). For both properties there is really one case left open —qg-Araki Woods
algebras built from a two-dimensional Hilbert space H, in which one cannot rely in any way
on techniques used for g-Gaussian algebras, their tracial predecessors. All g-Araki Woods
algebras are known to be QWEP (cf. [130]), and it was only recently shown that these
algebras possess the Haagerup approximation property (cf. [240]).

We establish the w*-CBAP for all g-Araki-Woods algebras. Following Houdayer and
Ricard's lead from the free case [190], we approach this problem by trying to characterize a
natural class of completely bounded maps on these algebras, called radial multipliers, and
estimate their norms. The classification problem for radial multipliers appears to be hard
even for small values of |g| because the known isomorphism between a g-Araki-Woods
algebra and a free Araki-Woods factor does not carry radial multipliers to radial multipliers.
So even in this setting new techniques are crucial. [190], used the universal property of the
Fock representation of the Toeplitz algebra to translate the question of computing the
completely bounded norm of a radial multiplier on a freeAraki-Woods factor to an
equivalent problem of computing the completely bounded norm of the same multiplier,
viewed now as a radial Fourier multiplier on a free group. In this latter setting, one has an
explicit formula (cf. [195], Theorem 1.2) involving the traceclass norm of a Hankel matrix
associated with the symbol of the multiplier. In particular, it follows from this result that the
completely bounded norms of radial multipliers on free Araki-Woods factors do not depend
on the type structure of the algebra. In the g-deformed setting, we conjecture that the same
type-invariance for radial multipliers should hold for all g-Araki-Woods algebras.
Unfortunately, if one tries to mimic the approach of Houdayer and Ricard in the free case,
several major issues arise. One of them is that one has to work now with the Fock
representation of the g-deformed Toeplitz algebras, and it is an interesting open problem to
settle the universality question for the Fock representation here. We follow a different route,
inspired by transference principles for multipliers. More precisely, we develop a non-tracial
version of an ultraproduct embedding theorem of Junge and Zeng for mixed g-Gaussian
algebras [261]. Our construction (Theorem (6.3.19)) yields a g-quasi-free state-preserving
embedding of an arbitrary I',(H) into an ultraproduct of tensor products of tracial q-
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Gaussian algebras and other g-Araki-Woods algebras. Using Theorem (6.3.19), we show
that it is possible to transfer radial multipliers on (tracial) g-Gaussian algebras to arbitrary
q-Araki-Woods algebras in such a way that the completely bounded norm does not increase
(Theorem (6.3.24)). Our transference result provides strong evidence towards the conjecture
that radial multipliers on g-Araki-Woods algebras do not depend on the type structure, and
we fully expect (but are unable to prove at this time) that our transference principle should
be isometric and bijective.

In any case, Theorem (6.3.24) does provide us with some new examples of completely
bounded radial multipliers on g-Araki-Woods algebras. These are the projections onto Wick
words of a given finite length. Upper bounds for the norms of such multipliers were obtained
previously for g-Gaussian algebras by [223]. These norm estimates together with the
extended second quantisation functor [240] turn out to be exactly what we need to establish
the main result: the w*-CBAP for all g-Araki-Woods algebras. In fact, just as in the free
case, we obtain the completely contractive version of this property:

As an application of the above result, we are able to answer affirmatively a question
left open by Nou ([130,] Remark after Theorem 6.3), concerning whether or not the
canonical w*-dense C*-subalgebras A, (H) < I}, (H) are always QWEP; see Corollary 5.3.
It is our hope that Theorem (6.3.27) will lead to a deeper understanding of the structure of
q-Araki-Woods algebras. In particular, we expect this result to be a fundamental tool in the
applications of deformation/rigidity tools to these algebras.

Let us conclude with a description of the layout of the main body. We introduce the
relevant notation and background on operator spaces, von Neumann ultraproducts, and g-
Araki-Woods algebras. We construct our ultraproduct embedding and apply it to obtain the
transference principle for radial multipliers. Finally, we present the proof of Theorem
(6.3.27).

Throughout, inner products on complex Hilbert spaces are always taken to be
conjugate-linear in the left variable. The algebraic tensor product of two complex vector
spaces VV, W will always be denoted by IV O W, and elementary tensors in VO W will also
be denoted using the symbol (. Given a natural number n € N, we denote by [n]([n],) the
ordered set {1,2, ...,n}({0,1,2, ..., n}). Given n,d € N we will interchangeably view multi-
indices k = (k(1),k(2),...,k(d)) € [n]¢ as functions k:[d] —» [n]. Given d € N, we
denote by P(d) the lattice of partitions of the ordered set [d], and by P,(d) < P(d) the
subset of pair partitions (i.e., partitions of [d] into disjoint subsets ("blocks") of size 2). The
partial order < on P(d) is given by the usual refinement order on partitions, and given
m,0 € P(d), we denote by m v o € P(d) the lattice theoretic join of = and o with respect
to the partial order <. The number of blocks of a partition o will be denoted by |a|. Finally,
given a multi-index k: [d] — [n], we denote by ker k € P(d) the partition defined by level
sets of k : that is, 1 < r, s < d belong to the same block of ker k iff k(r) = k(s).

Some amount of the theory of operator spaces is necessary for our work; even the
statement of the main result uses notions from this field. Recall that an operator space is a
Banach space X endowed with a specific choice of norms on the matricial spaces M,, (X): =
M,, © X satisfying the so-called Ruan axioms, ensuring that it comes from an isometric
embedding of XintoB(H), the C*-algebra of bounded linear operators on some Hilbert space
H. Given a pair of operator spaces X, Y and a linear map T: X — Y, the cb norm of T is given
by

I'T llep: = supllld, OT:M,, ©X - M, OYI.

neN
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If ITI.<o, we say that T is completely bounded (cb). We can now define the
approximation properties that we are interested in. Let X be an operator space. We say that
X possesses the completely bounded approximation property if there exists a net (®;);¢; of
finite rank completely bounded maps on X such that sup;e Pl < o, and
lim;g; [|®;(x) — x|l = 0 for every x € X. If we can find a net (®;);¢; such that [|[d;]] , <1
then we say that X has the complete metric approximation property. For a dual operator
space X (i.e. X = (X,)* for some operator space X,), there is a suitable analogue of this
approximation property which takes into account this additional structure. Namely, we say
that X has the w*-complete metric approximation property if there exists a net (®;);¢; of
finite rank w*-continuous completely bounded maps on X such that ||®;[l , < 1 for each
i €1,and lim;¢; ®;(x) = x (weak-*) for every x € X.

We need to discuss two operator space structures associated with a given Hilbert
space.

Definition (6.3.1)[256]: Let H be a complex Hilbert space. We define the following operator
space structures on H :

1. the column Hilbert space structure H, is given by the identification H =~ B(C, H);

2. the row Hilbert space structure H,. is given by the identification H ~ B(H, C).
(cf. [258], Theorem 3.4.1 and Proposition 3.4.2).

These Hilbertian operator spaces will turn out to be critical for obtaining a right
formulation of the non-commutative Khintchine inequalities (cf. Proposition 2.17).

In the theory of operator spaces there is a variety of different tensor products,

analogous to tensor products of Banach spaces. There is, however, one tensor product that
stands out and does not have a Banach space theoretic counterpart - the Haagerup tensor
product.
Definition (6.3.2)[256]: Let X and Y be operator spaces. We define a bilinear map
M, (X)X M, ,(Y)3 (x,y) »x-yEM,(XOY) to be the bilinear extension of the
assignment (A © x,B O y) » (AB,x © y).Forany z € M,,(X © Y) we define the norm
I zlpn:=inf {Ixlyl:z=x-y,x€M,,(X),y €M, ,(Y),r €N}
This sequence of norms on the matricial spaces M,,(X © Y) satisfies Ruan's axioms and
therefore defines an operator space structure on X (© Y, called the Haagerup tensor product.
The completions with respect to the norms |||l ,, will be denoted M,,(X &, Y). For more
information on the Haagerup tensor product, consult [258] and [135].

Later on we will need the following proposition.

Proposition (6.3.3)[256]: (Proposition 9.3.4 from [258]). Let K and H be complex Hilbert
spaces. Then the assignment HO K3 &€ O n » [€)(n] € K(K, H) (the compact operators)
extends to a complete isometry H, ®,, K, = K(K, H).

We present here a construction due to Hiai (cf. [123]), which builds upon previous
developments: g-Gaussian algebras of Bozejko and Speicher (cf. [60]) and free Araki-
Woods factors defined by Shlyakhtenko (cf. [15]).

The starting point is a real Hilbert space Hy equipped with a continuous one parameter
group of orthogonal transformations (U;):cr. The extension of (U,).cr t0 a unitary group
on H¢, the complexification of Hg, will be still denoted by (U;):cgr. By Stone's theorem,
there exists an injective, positive operator A on H such that U, = A*. On H¢ we define a

new inner product (¢ | n)y: = <€ | 12+_AA77> and denote by H the completion of H¢ with respect

to this inner product. Note that the norms defined by (:|-);; and {:|-) coincide on Hg. This
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Implies that I, the complex conjugation on Hg, is a closed operator on H with dense domain
He.

Next we form the g-Fock space F,(H). Since we will have to delve deeper into its
structure later on, we will present the construction here. First, let us fix g € (—1,1). For any
n we define PJ: HO™ — HO™ by

PMe; O Qe = z 7" Vegay O = O egmy, (3)

OESy
where i(0):=| {(i,)) € [n]*:i <j and o(i) > a(j)} | is the number of inversions. This
operator is (strictly) positive definite (cf. [66, Proposition 1]), so it defines an inner product
on HO™ by (€ | Mq:= (E | Pq"n); the completion with respect to this inner product will be

denoted by Hc‘?". The g-Fock space is defined by the orthogonal direct sum F,(H): =

D=0 Hgg’”. For our purposes, there are two important sets of operators defined on the g-

Fock space. For any ¢ € H we define the g-creation operator a, ($) € B(qu (H)) by
ai}(f)(el O-0e)=¢0e O 0Oey

and the g-annihilation operator a, () = (a;(¢))* € R(F,(H)). It is known (cf. [60],

Remark 1.2) that
" n 1" Tl ” "; 0 =z _1
leg@I=lag@1 =, _ N5 ey neq G

We are now ready to define g-Araki-Woods algebras.
Definition (6.3.4)[256]: Let (Hg, (Us):cr) be a real Hilbert space endowed with a one-
parameter group of orthogonal transformations. Let H be the complex Hilbert space obtained
as the completion of H¢ with respect to (-|-),,. Forany & € Hg we define s, (&) € B(:Fq (H))
by s4(&) = ag(§) + a,(&). We define the g-Araki-Woods algebra I'; (H) to be the von
Neumann algebra generated by the set {s, (§): ¢ € Hg} inside B(F, (H)).
In the special case U, = 1 we obtain the g-Gaussian algebras of Bozejko and Speicher
and we will denote them, following the tradition, by I'; (Hg) (cf. [60], Definition 2.1).
There is a distinguished vector Q in F, (H), called the vacuum vector, which is equal

toleC= H?O C F,(H). It is not hard to see that  is cyclic and separating for I'; (H). In

fact, one can verify that the algebraic direct sum @,,5, Hg” is contained in I, (H)Q. Using
the generator A, one can explicitly identify a big enough subset of the commutant I, (H)'
for which Q is cyclic (cf. [15], Lemma 3.1), so Q is also separating for I'; (H). It follows that
the normal state y(-) = (Q |- Q) is faithful on I;;(H) (called the g-quasi-free state) and
F,(H) can be identified with the GNS Hilbert space associated with y. What is more, the
commutant can be identified with the version of our algebra acting on the right, but in this
case not only one has to use right versions of s, (&) but also the real Hilbert space that one
draws the vectors from needs to be changed. We record here for later use the so-called Wick
formula, which describes the joint moments of the generators {sq (5)} FeHg with respect to

x. Theorem 2.7 ([123], [130]). Forany d € N and any ey, ..., e; € Hg, we have
¥ (saDsg(e) wsqlen) = > a @ | | ter ey,

gEP,(d) (r.t)eo
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where ((g) denotes the number of crossings in the pairing o € P,(d), and (r,t) €Eo
indicates that 1 < r < t < d are paired together by o. If d is odd, we interpret the above
(empty) sumas O .

Since @50 HY™ < T,(H)Q  F,(H), we are allowed to make the following
definition.
Definition (6.3.5)[256]: Let & €D, Hg". Then there is exactly one operator W (§) €
I, (H), called the Wick word associated with &, such that W (£)Q = ¢.
This definition will help us in constructing maps on I';, (H) from operators on H. Let us first
recall a version of this construction on the level of the g-Fock space (cf. [60], Lemma 1.4).
Definition (6.3.6)[256]: Let T: K — H be a contraction between complex Hilbert spaces.
Then the assignment

Tq(T)(e1 O0Oe)=Te, O OTey

extends to a contraction 7, (T): F, ( K) — F,(H), called the first quantisation of T

On the level of the von Neumann algebra I, (H) it is tempting to extend the
assignment

W@ Qey)»W(Te, @ QTey)

to a nice map on I, (H). It turns out that under a mild additional assumption on T the
extension exists and is a normal, unital, completely positive map. The next proposition is an
extension of Theorem 2.11 from [60], which is an analogous result for g-Gaussian algebras.
Proposition (6.3.7)[256]: ([240], Theorem 3.4). Let (Kg, (V:)ter) and (Hg, (Us)ter) be
real Hilbert spaces equipped with respective one-parameter orthogonal groups. Construct
out of them complex Hilbert spaces K and H. Suppose that T: K — H is a contraction such
that T( Kg) < Hg (a condition written more succinctly in the form IT ] = T, where J and [
are complex conjugations on K¢ and H¢, respectively). Then the assignment W(e; @ - ®
en) » W(Te; ® - @ Te,) extends to a normal ucp map I, (T): I, (K) - I;(H) that
preserves the vacuum state. The maps I'; (T) is called the second quantisation of T

To fulfill the purpose, that is to prove the w*-complete metric approximation property
for the g-Araki-Woods algebras, we need to expand our knowledge of the Wick words. Let
us start with the celebrated Wick formula. The proof of the following result can be found in
[60] in the tracial case. The general case follows along the same lines. See also [190].
Proposition (6.3.8)[256]: (Wick formula). Suppose that e, ..., e,, € H¢. Then

W(e © - 9 en)
= Z z af, (eil) Cl:l (ein—k)aCI(Iejn—k+1) Qg (Iejn)qi(ll’IZ), (4)

k=0 i1, ln—kjn-k+1Jn

where I, = {i; < - <ip_}tand I, = {j,,_x+1 < -+ < jn} form a partition of the set [n]
and i(I;, I,) = Y.1=F (i; — 1) is the number of inversion of the permutation defined by I; and
I,. In particular, we have W (e) = s, (e) for any e € H.

We will be concerned with the subspaces I'}' (H) of I';, (H) spanned by the sets {IW ($):
€ H(?"}; elements of these subspaces will be called Wick words of length n. We will also
denote by fq (H) € I;(H) the (non-closed) linear span of (F;(H))HENO. Note that fq (H) is
a w*-dense *-subalgebra of I, (H), called the algebra of Wick words. Note that if § =e; O
-+ ey, Where ey, ..., e, € Hg then W (&) — s,(ey) ...54(ey,) is a sum of Wick words of
length strictly smaller than n, so inductively one can show that I, (H) is the same as the *-
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algebra generated by {s,(¢): & € Hg}. Let now (e;);¢; be a fixed orthonormal basis for H.
Then the algebra of Wick words fq (H) is *-isomorphic to the *-algebra of noncommutative
polynomials C{(X;);e; | X; = X;'). The isomorphism in this case is given by X; = s,(e;) =
W (e;). See [130] for details. At times we will also need to consider the C*-completion
Aq(H) of fq (H). The most important part of the proof of the main theorem is providing an
estimate (which must grow at most polynomially in n) for the cb norm of the projection
from fq (H) onto I'j'(H). Therefore we need to understand the operator space structure of
these spaces. This will be acccomplished by reformulating the Wick formula so that it is
more amenable to operator space theoretic techniques, following Nou's lead (cf. [113]). We
first define some relevant maps.
Definition (6.3.9)[256]: Let H be a complex Hilbert space coming from a pair
(Hg, (Up)er)- We define maps 7, U and S on the algebraic direct sum @, H((CD" by
1. I O Oep)=1Ile; OO ley;
2. U O0e) =e,00Oey;

3. §=7U.
The antilinear map 7 is a natural extension of the complex conjugation on Hg, thereby it
should be really viewed as a closed linear operator from F,(H) to F, (H) mapping e; ®
- Qe,tole; ® - @ Ie,. The flip map U actually extends to a unitary on F, (H). The last
map, S, is a conjugation relevant to the Tomita-Takesaki theory. For future reference, let us
point out that the modular automorphism group (o;):cr associated to the g-quasi-free state
x was computed in [15], [123], and is given by

0:(54(8)) = 5q(U-§) = 54(A7"¢) (§ € H).

We still need two more maps for our reformulation of the Wick formula.
Definition (6.3.10)[256]: Fix k € N, and n € N such that 0 < k < n. We define the map

Ry k: H(‘?n - Hff’("_k) Qn HSQ" by specifying its values on a dense subspace:

R;kl,k(el @ @ en)
= z qi(ll’IZ)(el& OO ein—k) ®h (ejn—k+1 ©-0 ejn)'

il'---'in—krjn—k+1»---» .Tl

J
We also define U, j: (Hg@("_k)) n (HS") = B(F,(H)) by
Uni((e1 © O eni) ®n @nies1 © - O &)):

= a;(e1) - 8 (nic) aq (En—r+1) - aqlen).
We are now ready to state the reformulated Wick formula and the corresponding
Khintchine inequality.
Proposition (6.3.11)[256]: For any ¢ € Hg" we have W (&) =Yi-oUni(y—r O
DRy, 1 (§), where 1,,_, is the identity map on Hg("_k).
Corollary (6.3.12)[256]: ([113], Theorem 3). Let K be a Hilbert space. If £ € B(K) © Hg”
then

maxocn (14 © (o @ NRA)@N <N AAOWIE I (5)

I (1d © W) I< C(@)(n + Dmaxocren [(1d O Wnoie © DRy i) (O (6)
The norm || (Id © W)(¢) Il is computed in B(K) @min [;(H), and the other norms are

computed in B(K) ®min (Hf’("'k)) R (H?")T.
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Proof. Inequality (4) follows from the Wick formula, complete boundedness of U,, ,, and the
triangle inequality, as in the proof of Theorem 1 in [113]. The proof of (3) is also a repetition
of the argument in Nou's.

We will be primarily interested in a special class of completely bounded linear maps
on g-Araki-Woods algebras, called radial multipliers. In the following, we fix an arbitrary
q-Araki-Woods algebra I}, (H).

Definition (6.3.13)[256]: Let ¢: N, — C be a bounded function. The (w*-densely defined)
linear map m,,: I, (H) — T, (H) given by

m, (W () — p(m)W (§) (£ € (Ho)®™)
is called the radial multiplier with symbol ¢. If m,, extends to a completely bounded map
m,,: A, (H) - A, (H), we call m, a completely bounded radial multiplier on I'; (H).

In the course of the proof of the complete metric approximation property for g-
ArakiWoods algebras we will need the following result obtained by the first-named author.
Theorem (6.3.14)[256]: ([223], Proposition 3.3 and the remark following it). Let Hi be a
real Hilbert space and let I'; (Hg) be the g-Gaussian algebra associated with it. Fix n € N
and and consider the radial multiplier m,, associated to the Kronecker delta symbol ¢,, (k) =
6n(k) = 6. Then m,, is a cb radial multiplier and corresponds to the projection B, of
I,(Hg) onto the ultraweakly closed span of {W(€):f € H@"}. Moreover, we have
Img, Il < C@?2(n+ D2

We will mostly follow [247]. Ultraproducts of von Neumann algebras are very useful,
e.g. in the study of central sequences in connection with property I'. The original
construction was applicable only in the case of tracial algebras. The main difference in the
type Il case is that there are two different notions of ultraproducts, each havings its own
virtues.

We start with a definition due to Ocneanu [254], which is closer to the ultraproduct
of tracial von Neumann algebras. We fix a sequence (M,,, ®,,) ey Of vOon Neumann algebras
equipped with normal faithful states, and a non-principal ultrafilter w on N. Recall that if all
the states were tracial, the ultraproduct would be defined as the direct product

£°(N,M,,): = {(xn) € 1_[ M,: sug 2, Il < 00}
neN ne
quotiented by the ideal of L2-null sequences, i.e. sequences (x,,) € #*°(N,M,,) such that

lim,,_,, ¢, (x;,x,,) = 0. The problem in the non-tracial case is that this subspace is just a left
ideal and there is no reason why we should prefer lim,,_,, @, (x;x,) to lim,,_,, @ (x,x;,).

This little nuisance can be taken care of by defining |l x ||$:= (go(x*x +xx*))% and
working with the condition lim,,_,,, ||xn||zn = 0 instead. This, unfortunately, gives rise to
another problem —the subspace

Ly (M, 0): = { (k) € £ (N, M): lim x|l = 0}
is still not an ideal. We need to find the largest subalgebra inside £ (N, M,,) in which
I,(M,,, @) is an ideal. This leads us to the next definition.

Definition (6.3.15)[256]: Let (M,,, ¢,,) be a sequence of von Neumann algebras equipped
with normal faithful states. Define

M‘”(Mn, (pn): = {(xn)nEN € (N, Mn): (xn)lw C Iy 1y (xn) c Iw}-

245



Then M“(M,,, ¢,,) isa C*-algebra in which I,(M,,, ¢,,) is a closed ideal. Therefore we can
form the quotient

My, 9)?:= MMy, @) /1, (Myy, 97,)
which is, a priori, a C*-algebra but actually turns out to be a von Neumann algebra (cf. [254],
Proposition on page 32), called the Ocneanu ultraproduct of the sequence (M,,, ®,,) nen-
The image of a sequence (x,,) ey € M“(M,, @,,) in the quotient algebra (M,,, ¢,,)® will
be denoted by (x,,)?.

Despite being a natural generalisation of the tracial ultraproduct, the Ocneanu
ultraproduct suffers from being inadequate for the purpose of non-commutative integration.
One particular problem is that the Banach space ultraproduct of preduals is usually bigger
than the predual of the Ocneanu ultraproduct.

There is a different construction that, as shown in [136], interacts nicely with
ultraproducts of non-commutative LP-spaces. Once again, we start from a sequence
(M,,, ©,)nen Of von Neumann algebras endowed with normal faithful states. Using the GNS
construction, we view M,, ¢ B(H,,). Let (M,,),, denote the Banach space ultraproduct of
the sequence (M,,),en, Which is a C*-algebra. Let (H,), be the ultraproduct of the
corresponding GNS Hilbert spaces. Then we can view (M,,),, as acting on (H,,),, via

(X))o = (nén)w- (7)
It is not hard to see that this is well defined (by the joint continuity of the map B(H) X H 3
(x,&) » x¢ € H).
Definition (6.3.16)[256]: Let (M,, ®,)nen b€ @ sequence of von Neumann algebras
equipped with normal faithful states, represented faithfully on the GNS Hilbert spaces, i.e.
M,, € B(H,,). The Raynaud ultraproduct is defined as the weak closure inside B((H,,),,) of
the image of the natural diagonal representation (5) of the C*-ultraproduct (M,,),, on (H,,) ,,;
it is denoted by []* (M,,, ;).

There is a nice relationship between the two constructions which is summarised in

the following theorem.
Theorem (6.3.17)[256]: ([247], Theorem 3.7). Let (M,,, ¢,,)nen D€ @ sequence of von
Neumann algebras equipped with normal faithful states. Let H,,: = L*(M,,, ¢,,) be the GNS-
Hilbert space associated with the state ¢,, on M,,, so we have [[* (M,,, ¢,,) < B((H,,),)-
Let M®: = (M, ¢,,)® and ¢®: = (¢,,)®. Define a map w: L2(M?, p®) & (H,),, from the
GNS-Hilbert space of (M®, ¢®) given by

w () (§40)): = (xndip,)

where ¢ (with an appropriate subscript) is the cyclic vector coming from the GNS
construction. Then w is an isometry and w* ([T (My, ¢,) )w = M®.

We would now like to describe a useful theorem from [130] concerning embeddings
into ultraproducts.
Theorem (6.3.18)[256]: ([130], Theorem 4.3). Let (N,y) and (M,,, ¢,)nen D€ vON
Neumann algebras equipped with normal faithful states. Let w be a non-principal ultrafilter
on N and let [[* (M,,, ¢,,) be the Raynaud ultraproduct. Let (¢/*):cr denote the modular
group of ¢,. Let p € [[*(M,,, ,) denote the support of the ultraproduct state (¢,,),-
Suppose that N c N is a weak*-dense *-subalgebra of N and we are given a *-
homomorphism

w
d:N - 1_[ (M,, @,,).
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Assume that & satisfies the following conditions:
1. It is state preserving, i.e. (¢,,), (P (x)) = Y(x) forany x € N
2. For any x € ®(N) there is a representative (x,,),en € £ (N, M,,) such that x,, is
analytic for (6{");cr and the sequence (o (xn))nEN Is bounded (cf. [130], Lemma
4.1).
3. For all t e R and for all y = (y,), € ®(N), irrespective of the choice of the
representative (y,)neny € £ (N, M,,), we have
p(of*'(m)) p € p Bp,
where B is the w*-closure of ®(N).

Then the map ©:=pdp:N - p(]‘[“’ M,,, (pn))p IS a state-preserving *-
homomorphism that can be extended to a normal *-isomorphism from N onto Bp.
Moreover, there exists a normal, state-preserving conditional expectation from [« (M,,, ¢,,)
onto O(N).

We end with a simple remark strengthening the connection between Theorem (6.3.18)
and the Ocneanu ultraproduct. Suppose that (x,,) ey € £ (N, M,,) is a representative of an
element x € (M,,),, such that the sequence (afl- (xn))neN is bounded. Then the sequence

(x)nen belongs to M“(M,, ¢,,), so it defines an element of the Ocneanu ultraproduct.
Indeed, suppose that (y,,) € I,(M,,, ¢,,). We would like to check that lim,,_,, ||xnyn||Zn =

0. It boils down to checking that lim,,_, , @,, (ynx5x,y,) = 0 and lim,,_, , @, (X, Y YnXs) =
0. The first equality is easy to verify because y;'x:x, v, < Ix,lI*y;y,, and the sequence
(% )nen IS bounded. For the second one we will use the KMS condition:

On Cn YY) = On(InYnxnol;(x,)).
Note that z,,: = x;,6™;(x;,) is a bounded sequence. If we denote u,, = /v, ¥, then we have
to bound ¢ (u2y,). By the Cauchy-Schwarz inequality we get

| Qon(un(unzn)) < ¢n(u%)¢n(Z;u%Zn)-
By assumption we have lim,,_,, ¢, (u2) = lim,,_,, @, (,,y5) = 0. The second term can be
bounded above by the norm ||z u?2z, || that is bounded, so the product converges to zero.

We prove a result which shows that an arbitary g-Araki-Woods algebra embeds in a
state preserving way into an ultraproduct of tensor products of g-Gaussian algebras and g-
Araki-Woods algebras. This result will be key to our establishment of a transference
principle for completely bounded radial multipliers in the following.

Let I;;(H) be a fixed g-Araki-Woods algebra for some q € (—1,1), and write q =
q0q, for some |q| < qo < 1. Forany m € N, we let I;;o(R™) be a g-Gaussian algebra and
[,,(H® C™) be a g-Araki-Woods algebra, where the inner product on H @ C™ is the
tensor product of the given deformed inner product on H and the nondeformed one on C™,
In other words, if (U),~ Hg is the orthogonal group associated to I,(H), then
(U ® 1), ~ Hg ® R™ is the orthogonal group associated to I, (H ® C™). Denote by
X> Xo,m and xq ., the g-quasi-free states on I, (H), I, (R™) and I';;, (H ® C™), respectively.
For each m, fix an orthonormal basis (e, ..., e,,) of R™ and define

1w _
Uy (8): = \/—%kz W(e) ® W(E O e) €T, (R™) Q T, (H® C™) (£ € He).

247



Finally, we fix a non-principal ultrafilter w on N, form the corresponding (Raynaud)
ultraproduct

a=] | (0, ®™ & T, M@ €™, xom @ 1)
and let p € A be the support of the ultraproduct state (Xom ® x1m), -
With the above notation fixed, we can now state our embedding result.
Theorem (6.3.19)[256]: (a) The mapping W (&) » (u,,(¢)), € A (¢ € He) extends
uniquely to a state-preserving *-homomorphism r,,: (I (H), x) = (A, (Xom ®X1m) -
(b) The map @: = pm,, (-)p: fq (H) — p Ap extends to a normal state-preserving *-
iIsomorphism

0:T,(H) - 0 (T, (H)) € p Ap.
Moreover, @(l“q(H)) Is the range of a normal state-preserving conditional expectation
E:A - 0(T,(H)).
Proof. (a). Recall that the algebra of Wick words is *-isomorphic to the *-algebra of

noncommutative polynomials, so any *-homomorphism m,,: Fq(H) — A is uniquely
determined by specifying the images (T[a)(W(ei))), c A. Thus to conclude that the
Lel
claimed m, exists and is well-defined, we just need to check that each sequence
(U (€))men (€ € He) is normbounded and hence defines an element (u,,(¢)), € A. To
this end, we apply (the n = 1 version of) Corollary (6.3.12) with coefficients W (& O e;) €
B(K) =B (qu(H X (Cm)) (see also [113], Page 17) to conclude that
-1 -1

lum (O < 2(1—qp)2m?2 1 1

2 m 2
, 2 W(E O edWE O e
k=1

max

D WEO e W(EO e
k=1

-1
<2(1—qo)2 IW(E O el
Finally we check that m,, is state-preserving. By linearity, it suffices to show that for any
d e Nand &, ..., &; € Hg, we have

Jim (rom @ Xam) (m(§1) - v um(Ea)) = x(W(E) - o W(EQ))-
Fixing m and considering the terms on the left-hand side above, we have
(Xo,m X X1,m)(um(51) T um(fd))

S o) Wlea)

k:[d]—[m]

X1m (W(St1 O ek(l)) Tt W(fd © ek(d)))

— m—d/2 z Z g

k:[d]—[m] og€EP,(d)
kerk>o
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‘ﬁ(al) 1_[ (& O ey 16 O ek(t))U

o'eP,(d) (r,t)ea’

[« )

— f !
= m~4/2 2 z q:)(a) z ql(a) 1_[ Sr 18y
k:i[d]-[m] | 0€P2(d) o'€P,(d) (r.t)ea’

kerk>o kerk>o'
£(o’ —
= Z Q(L)(a)%(a) 1_[ & 1 &y z m~4/2
o,0'€P,(d) (r,t)ea’ k:[d]-[m]

kerk>o,ker k>0’

= Z q(l)(d)qi(d) 1_[ (&, | €t>Um—d/2+|ava |
o,0'€P,(d) (r,t)ea’
Since

lim m~4/2*ove’l = 5 1 (0,0" € P,(d)),

m-oo

we conclude that
nlli_r)rgo()(o,m ®X1,m)(um(€1) ETT um(fd)) = 2 qt(d) 1_[ (fr | Et)U

0€EP,(d) (rt)ec
= x(W(E) - s WD)

(b). To exhibit the desired properties of ©: = pm,, (-)p, we will verify conditions (i)-
(iii) in Theorem (6.3.18) for the *-homomorphism m,,. (i) follows immediately from part (a)
of the present theorem. For (ii), we note that by linearity and multiplicativity of m,, it
suffices to check condition (ii) on the generators m,(W(§)) = (U, ()) e, (€ € He).
However, there is a minor issue here coming from the fact that for arbitrary ¢ € Hg, there is
no reason to expect elements u,,($) € I, (R™) 0% [, (H® C™) to even be analytic, let
alone the sequence (a_i(um(f)))meN be uniformly bounded. To overcome this issue, put
HE™ = Ujs11 -1 2(A)He, where 1,-1 5;(A) denotes the spectral projection of the analytic
generator A corresponding to the interval [A7%, A]. Following [246], we see that H3" c H
is a dense linear subspace such that THZ" = HE™. Moreover, for each ¢ € HE™, we have that

& (respectively W (&)) is analytic for the action of the unitary group U, = A (respectively
the modular automorphism group o;), and

o, W (&) = W(A%¢) (z € C).
In our present setting, we shall restrict the domain of ,, to the *-subalgebra I;(H),, ©
fq(H), consisting of linear combinations of Wick words of the form W (&) with & €
(HFHO™, (n € Ny). Since T;(H)g, is still w*-dense in I,(H) and is generated by
(W (€))zenan, We just have to show that the equivalence class representative (u,, (£))men
for (W (£)) satisfies condition (ii) of Theorem (6.3.19) for each & € HE". To this end,

note that on I, (R™) ® T, (H® C™ ), we have

. I, (HRC™) I,, (HRC™)
o = idr,yam @0, &0 T W O )

=W(A™ "¢ Oe) (£ € He e € C™).
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It follows from these identities that if & € HZ" and e € C™, then elements W (& © e) and
u,, (&) are analytic for their respective modular groups and

Tgq,(HRC™)

1 m
o) =|3=) W) ®o W(E O e
k=1

1 v | |
- V_W,Z W(e) @ W(A™%E O e;) = u(47%), (z € ©).

The uniform boundedness of the sequence (6t u,,(€))men NOW follows along the same
lines as that of (,,(¢))men -

supllo™un (©)] = supllim (A6 < 2(1 — go) Z IW(A™E O eIl

For (iii), it gglgain suffices by Iinglarity and multiplicativity to verify that for all =, (W (§)) =
(Umn(§))w, (€ € He),

p (0" wm()),)p € p By,
where B is the w*-closure of 7, (fq (H)) in A. But this last point is obvious, because by the
previous computation, 67" (U, (§)) = up, (A7¢) for all m, giving

p (0" (), ) =P ((um(A‘“f))w) p = pm, (W(A7€))p € p Bp.

We use the ultraproduct embedding result (Theorem (6.3.19)) of the previous to
establish the following transference result for radial multipliers on g-Araki-Woods algebras.

The main technical tool in establishing Theorem (6.3.24) is the following
intertwining-type property for projections onto Wick words of a given length with respect
to the ultraproduct embedding given by Theorem (6.3.19)

There are two things that have to be verified in Theorem (6.3.23). The first one, which
is a routine check, is to prove that (P, ® Id), (and therefore also the composition
p(P, ® Id),,p) is a well-defined map on the (Raynaud) ultraproduct A. Using Theorem
(6.3.14), we can show that (P, ® Id),, is well defined on the C*-ultraproduct A c A. To
conclude, we have to verify that it extends to a normal map on A. Since we are dealing with
the Raynaud ultraproduct, the predual of our ultraproduct is equal to the Banach space
ultraproduct of preduals. On each level we can take the predual map of (B, ® Id),,ey and
use this sequence to obtain a map ¥ on the ultraproduct of L!-spaces, the predual of the
ultraproduct. The dual of W coincides with (P, ® Id), on the C*-ultraproduct, hence it is
its unique normal extension. A similar argument is presented, for instance, in [190].

The second step in proving Theorem (6.3.23) is to understand the images of Wick
words under the *-homomorphism - fq (H) = A. To accomplish this, for any d € N and
&1, ., €4 € He, we define elements WS(&; O - O &,) € A by setting

W6 OO 8a).

a
=|m?2 Z W(ex) - Wlerw) ® W(6 O exwy) - W(Za O exa)

k:[d]—[m]
injective
w

Because we are summing over distinct indices, the vectors ey(qy, ..., ex(q) are pairwise
orthogonal, so W (ek(1)) - W(exw)) = W(exay © -+ O exy)- One can then use the
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Khintchine inequality (Corollary (6.3.12)) to prove that the sequence defining W*(&; ©
- © &,) is uniformly bounded, hence defines a legitimate element of the ultraproduct. We
will not give more details here because in the next proposition we show that
To(W(E O 0O&))=WS(E O O&), so it definitely is an element of the
ultraproduct.
Theorem (6.3.20)[256]: Let &4, ...,&; € He. Let m,, be as in Theorem (6.3.19). Then
To(WE O 0 8)) =W O O ).
Proof. We proceed by induction on d € N,. The base cases d = 0,1 are obvious from the
definitions. Now assume that the claimed formula is true for all lengths 0 < d' < d, and
consider the d + 1 case. Fix &, &5, ..., &4 € Hc. It then follows from Proposition (6.3.8) that
the following relation holds.

W O 0Oéq)

= Vg(fo)W(fl O 0&)

- z Q" HIE 1 EW(E O ..0§O .0 &),

where, as usual, &, means that the tensor factor ¢, is deleted from the simple tensor under
consideration. Applying m,, to this relation and using our induction hypothesis, we have

ﬂw(W(fo ©..0 fd)) =W3()W (& O .. O &q)
a
=Y @G W (61 0 - 04 O . O &)-(8)

=1
Next, we expand the first term on the right-hand side in the above equation:

W3 (W= (§1 © - O Sa)

m

1
=|m 2 W(ek(o)) ® W(fo @ ek(O))
k(O) 1

W(ekm) W (er@y) @ W(§1 O exy) - W(Sa O exay)

k 1rqect1ve

d]o—>
k mJectlve

m

= ( d+1 W(ek(O)) W(ek(d)) ® W(fo © ek(o)) "'W(éd © ek(d))

_d+1

d
+| m- 2 z Z z W(ek()) - W(erw) ® W(5o O ex)) - W($a O ex()) |
k(0)=11=1 k:[d] =[m]
k injective /
k(D)=k(0)

= Ws(fo O & O - O €,) (this is the first term in the preceding sum)
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|/ a+1

d m
£y mz Yy W () - W (exia) ® W (& O ex) W (6 © exc) |

=1 k(0)=1k:[d] =»[m]
\ k injective /
k()=k(0)

The first term is already a part of what we wanted, but we also have to dealwwith the second
term. Note that for k(0) = k(1) and k(1) # --- # k(d) we have

W (exw) -+ W(ew) -
= W(ek(o) @ e @ ek(d)) + CI(I)_1W(ek(0)) W(ek(l)) W(ek(d)) (9)

And
W(fo © ek(o)) ---W(fd © ek(d))) (10)

=W ((EO @ ek(())) @ o @ (fd @ ek(d)))
{160 © exoy 1 61 O exy), a1 W (80 O exo)) W (& O exy) - W(éa O exa)

=W ((%0 © ex) © O (§a O exwy))
+(I& | fz)qu_lw(fo O ek(O)) W(fl/@\ek(l)) W(Std © ek(d))-

Indeed, if (vy,...,v,) € H¢ is a family of orthogonal vectors then W(v,) .. W(v,) =
W, © - O vy,), as we remarked earlier. In our case we have a sequence (w, vy, ..., V4),
where Iw is orthogonal to all vectors v; for j # [, so we get
WwWW (v,) .. W(wg)Q = (a"(w) +aw))v; © - O vy

=wOv O 0OQvg+alw)(v; OO vy)

=wOvr, O 0Qvg+ CI{_IUW vy © O DO O vy,
hence the formula above. Tensoring W (ex(o)) - W (e ay) With W (& O ex(oy) - W (&a ©
ek(d)) (keeping in mind that q,q; = q ) gives us four terms, one of which is

q" N1 | €W (ereny) ---W/(e\k(l)) W (ex@)
QW (& O exo) "-W(S;l/@\ek(l)) W (& O exay)

and we will deal with the three other terms later. To these expressions we need to apply the
d+1

sum YL m™ 2 Yito)=1 Zkia] -[m] the condition k(1) = k(0) and perform the sum over
k injective

k(D)=k(0) )
-1

k(0) immediately, resulting in a sum Z?=1m_72k:[d]\l}_,[m]. Without the sum over [, this
Is the sum over d — 1 distinct indices appearing in the definition of W*°, so we get the sum

d
> 4G LW (5 O+ 0§ O+ O k).
=1

To sum up, we have checked so far that

WSEIW (6 O~ O o) d
= WSE OO )+ ) 4 HIE 18 W (O 08 OO &)
=1

+ R,
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where R is the "remainder" term that will turn out to be a zero element of the ultraproduct.
Inserting this into (8) we get that
ﬂw(W(ﬁ Q-0 Ed)) =W, © 0Oy +R,
so if we can check that R is really a zero element then this ends the proof.
Let us just recall that R comes from the three neglected so far terms arising from tensoring

W (ek)) - W(ex@y) With W(& O excoy) - W(&a O ejqy)- It can be written as

d
d+1

R={m™2 > (Ryu(m)+ (16 | §0ai Ros(m) + a5 Ry (m) |
=1 w
where

Rl’l(m) = Z Z W(ekco) @ @ ek(d))
k(0)=1 k:[d] »[m]
k injective

k(1)=k(0)

®W (£ O k) @ --O (54 © exwy)).
Ru(m= > > Wlewn @O ereay) ®W(E O en)) O W( O exay)

k(0)=1 k:[d] »[m]
k injective
k(D)=k(0)

O W (s O exa),

and
m

R3'l(m) = z z W(ek(l)) W(ek(l)) W(ek(d))
k(=1 k:[d]=>[m]
k injective
k(1)=k(0)

QW (6 O ex) © O (84 O excw))
Recall the formulas (9) and (10). After tensoring the right-hand sides we get four terms, one
of which was already incorporated in the proof of Theorem (6.3.20). The other three are:

W(ekwy O - O ex@y) W ((fo O ek) © .0 (& O ek(d)))

Qi_l(lfo | 51)W(ek(o) O..0 ek(d)) 0y W(ﬁ ©) ek(l)) W(El/@ek(l)) W(fd © ek(d)),
and

ab W (exwy) - W (exw) - W () @ W (80 O ex0)) © - O (§a © exqa) )
To obtain R, we just need to take sums over appropriate sets of indices.

We will now examine properties of R. Since q,, q;, and the range of summation over [ is
fixed, to show that R is a zero element in the ultraproduct, it suffices to show that

d+1

limy,,.m 2 |[R;;[|=0 for any 1<i<3 and l€[d]. We will use Nou's
noncommutative Khintchine inequality for this (Corollary (6.3.12)), but before that we need
to obtain a bound for the coefficients.
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Lemma (6.3.21)[256]: There exists a constant D(d) > 0 (depending only on the initial
choice of &;,...,&; € H¢) such that for all m € N and all k:[d] — [m], the following
inequalities hold:

"W ((fo O k) OO (6 O ek(d)))” < D(d)
W (&1 O exqy) - W(&E& O eray) - W(Es O eyl < D(d)

I W (exy) - W(erq) - W (ew) 1< D(d).
Proof. The second and third inequality will follow if we can show that there is a constant
D > 0 such that [[W(& O exa)ll, W (exay)ll < D (independently of r € [d]). But the
existence of D follows from the simple fact for any g-Araki-Woods algebra I'; (H) and ¢ €

He, we have | W (&) lir,an< llag (Ol + llag U < 2(1 = |q)~ 1/Zmax{ll ENINIE 113,
Now consider the first
inequality. By the Khintchine inequality with K = C (Corollary (6.3.12)), the left-hand side
is bounded by

C(q1)(d + 1) max ||(]1d 1 O7) (Rdl ((fo ©) ek(o)) OO (€d ©) ek(d))))”

o<igd
Writing the above (15_; O J)Rj, terms as sums of simple tensors, one easily sees that the
corresponding norms are bounded by a constant depending only on d. (Note that the
unboundedness of 7 plays no role here, as &, ..., $; € H remain fixed.)

We need one more proposition. In the following, m € N and &, ..., £, are fixed as
usual. Let I; denote the set of indices (k(0), ..., k(d)) € [m]¢** that are pairwise distinct
except for the pair (k(0), k(1)); a generic element of I; will be called i and the corresponding
tensor ejg) & -+ @ ey (qy Will also be denoted by i. We will denote W (e o) ® - ® ex(a))

by W; and W (£ © ex(o)) ® - ® (§a O excay) ) by W
Proposition (6.3.22)[256]: Given any Hilbert space K and any family of operators
(Ap)ier, € B(K), the following inequalities hold.

> aew
n

;
ZAi®Wi
I

where C(d) > 0 depends only on d and the choice of vectors &, &, ..., §; € He.

Proof. The proofs of both inequalities are essentially the same. We will deal with the first
one; to obtain a proof of the second one has to apply conjugation in some places but since
we are dealing with a fixed number of vectors &, ..., £;, the unboundedness of conjugation
does not play any role. By the Khintchine inequality (Corollary (6.3.12)) we need to deal
with

d
< C(d)supllA;im2

I€l;

a
< C(d)supll4;llm2,

€l

max
0<k<gd+1

> A ® Riur, ),
I

up to a d-dependent constant.
Since R4k is a sum of operators that only permute vectors, and the coefficients of
this sum are summable, we just need to take care of a single term of the form
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max
0<kgd+1

)

> 4 ® o
Iy

where o denotes the action of the permutation and the decoration (d + 1, k) reminds us of
the fact that o (i) is viewed now as an element of Hc®(d+1_k) ®;, H®Z*. Whatever the ¢, the
tensor o (i) g+, Is always of the forme;, O - Oe;, e, .. OO e;,, where for
different indices i and i’ these tensors are different. The key property that we will need is
that we have two orthonormal systems (v)ses € H®@+1-%) gnd (Wj)je] c H®¥ such that

foranyi € I, we have o (i) 441, = vs ® w; for some s € S and j € J. Therefore we can get
rid of the sign ¢ and just consider

I
(5K 2, 4 @l
Iy
Since we are dealing with tensor powers of H equipped with g-deformed inner products, we
would rather have families (vg).cs and (Wj,)je] that are orthonormal in H?(d“_k) and
H(‘?k, respectively. To achieve this, we will use the operators defining the g-deformed inner

[
)

products, PA*17% and PF. Let &(i)g41x be tensors defined by ((qu+1"<)5®

(qu)5> (f(i)dﬂ,k) = id+1,k-

- = ! ! H
Then we can write §(i)g41x = vs @ w; for some tensors vg and w; coming from

orthonormal families in HZ**™ and HY*. Since the row/column Hilbert spaces are

homogeneous operator spaces (and Haagerup tensor product allows tensoring cb maps) we
can bound maxocrcq+1 |27, 4i ® igs1kll bY maxockcars [X1,4i ® §@asvkll, up to a d-
1 1

dependent constant coming from the norms of (P+1~%)z and (P;)2. Because we are using
the Haagerup tensor product, we have the following completely isometric isomorphism
H, ®; K, = K (K, H). Under this identification the tensors & (i) 441, correspond to matrix
units in X (HC‘?", H?(d“'k)). This means that the operators A; fill different entries in a

large operator matrix. By comparing the operator norm with the Hilbert-Schmidt norm we
get the estimate

> aew

i€l;

which can be further bounded by

| =

2 1

2
< C(d) Z 14;1° | < C(d) <|11|Sup||Ai||2> ,

. 1€l
i€l

1
2 d
C(d) (mdsupIIAiHZ) = C(d)mzsupll4;]l.
i€l i€l
Finally, to conclude that R = 0 in the ultraproduct, we just observe that each component
Ri; = (R (m)) . is aasequence of terms of the form appearing in Proposition (6.3.22)

with coefficients (4;(m))men ier, Uniformly bounded in i and m by the constant D(d) from
d+1 1

Lemma (6.3.21), so the norm m™ 2 R;;(m) is bounded from above by C(d)D(d)m 2, and
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hence tends to zero. This finishes the proof of Theorem (6.3.20). With this tool at hand, we
prove Theorem (6.3.23).
Theorem (6.3.23)[256]: Let I'; (H) be a g-Araki-Woods algebra. Let P,: I, (H) — I;(H) be
the projection onto the ultraweakly closed span of {W(E):f € H(?"}. Then, using the
notation from Theorem (6.3.19), we have

O P, =p(B ®Id),pe° 0. (11)
Proof. Let W (&) be a Wick word associated with & € H(?d. Then we easily obtain
Ty, (BaW(E)) = 6, 4W*(E). Onthe other hand, let us first apply m,, to obtain W*(£). Since,
as we already remarked earlier, W(ex(1)) .. W(exay) = W(eky ® - ® ex(ay). the
operators acted on by the P, part of the operator (P, ® Id), are exactly of length n.
Therefore (P, ® 1d) ,W?*(&) = 8,,4W?*(&). By linearity, this implies that m, o B, =
(P, ®1d), °om, on the algebra of Wick words fq(H). Compressing by the support
projection p, we then obtain

@B, =p(P, ®1d), o7, ()p = p(P, @ Id),p ° O on [(H),

where in the second equality we used the fact that p € nw(fq (H))' (see [130, Lemma 4.1]).
Since the desired equality holds on the ultraweakly dense subset fq (H), and all maps under
consideration are normal, equality holds everywhere.
Let us now furnish a proof of the transference result for radial multipliers.
Theorem (6.3.24)[256]: Let ¢:N — C be a function such that the associated radial
multipliers m,: I, (R™) — I, (R™) have completely bounded norms uniformly bounded in

m. Then the radial multiplier defined by ¢ on any g-Araki-Woods algebra I},(H) is
completely bounded and
lmy: Iy (H) > ()|, < sup|lmy: I, (R™) —» I, (R™M)|
meN

= ||m<p: Iy (€2,]R{) - Iy (fz,]R{)llcb'
Proof. From Theorem (6.3.23) we get that ® o m,,(x) = p(m, ® Id)wp o ®(x) for any

x = W (&) with & € (H¢)©4. By linearity we can extend this equality to all x € Fq (H). It
follows that we have control on the cb norm of m,, acting on the norm-closure of finite Wick
words, i.e. on the C*-algebra A, (H). Since m,, is automatically normal (cf. [190, Lemma
3.4]), it extends to a normal map on I, (H) with the same cb norm, so we get

|m,,: T, (H) - F‘l(H)"cb < stlggl"m(p: I,(R™) - T, (Rm)ucb.
Since I,(R™) is a subalgebra of I,(R™*!) which is the range of a normal faithful
tracepreserving conditional expectation that intertwins the action of m,,, the sequence of
norms on the right-hand side is non-decreasing, so

Imy,: T (H) - T, (W), < T}li_rgo”m(p: [ (R™) - T(RM) .
By the same token, this limit is not greater than [m: [, (£;r) = Ty (£2r)l - Since the

union of the algebras I, (R™) is strongly dense in Fq(t’z,R), the union of the preduals is
normdense in the predual of I, (¢, ). Therefore the limit of norms is equal to the norm of

the multplier defined on Lt (Fq (fz,n&))- By dualising, we get that
lim lmg: Ty (R™) - T,(R™M)| = [[my: T, (Y2r) = Ty ({’Z’R)ch.
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Let us conclude with an application to the extension of Theorem (6.3.14) to general g-Araki-
Woods algebras.
Corollary (6.3.25)[256]: Let I'; (H) be a g-Araki-Woods algebra. Let B, be the projection
onto Wick words of length n, defined by B,W (&) = 6, 4W (), where & € Hgd. Then P,
extends to a completely bounded, normal map on I, (H) and [|B,]l ., < C(q)*(n+ 1)2.
Proof. We just observe that B, = m,, , where ¢, is the Kroenecker delta-function ¢, (k) =
St We obtain [|Py: Ty (H) = Ty(H|, <l P Ty (£2r) = Tg(£2) len< C(@)*(n + 1%
The last will be devoted to the proof of the complete metric approximation property for
Iy (H).
Before proving our main result, we need to recall one more lemma.
Lemma (6.3.26)[256]: ([190, Proposition 3.17]). Let H be the Hilbert space constructed
from the pair (Hg, (U;):cr)- Let I be the complex conjugation on H¢. Then there exists a
net (T;);e; of finite-rank contractions on H that satisfy IT;I = T;, i.e. preserve Hg, and
converge strongly to identity.
Theorem (6.3.27)[256]: Let I, (H) be a g-Araki-Woods algebra. Then I, (H) has the w*-
complete metric approximation property.
Proof. We define a net I, ,;: = I,(e7'T;)Q,, where n € N,t > 0,i € I, the finite-rank
maps T; come from the previous lemma, and Q,, = Py + -+ B, = Myo1mi Is the radial
multiplier which projects onto Wick words of length at most n. Each I}, ;; is a finite rank
map on I, (H); indeed, @, tells us that we have only Wick words of bounded length and T;
tells us that we can only draw vectors from a finite dimensional Hilbert space, so we are left
with a space of the form @7 _, (C™)®4, which is finite-dimensional. We will pass to a limit
withi - oo,n — oo and t — 0. The rate of convergences of t and n will not be independent
and will be chosen in a way that assures the convergence iil“n,t,iiicb - 1.
Let us check now that it is possible, using a standard argument of Haagerup (note that
[,(e™)P, = e7*Py):
"Fn,t,i”Cb = "Fq (e_tTi)Qn"Cb
<™l
<l eI, +Ire™Ha- e,

14+ e IR,

k>n

<1+ C(q) Z ekt (k + 1)2.
k>n
Since the series Y,s0e *“(k + 1)% is convergent, for any ¢ > 0 the sum will tend to zero

when n — oo, Therefore we can choose the parameters i,n — o and t — 0 such that the
completely bounded norms of the operators I, . ; tend to 1. Then the operators _Tnti arg

N

ITn,eill
completely contractive. We have to check that they converge ultraweakly to 1. Since the
denominators converge to 1 and the net is uniformly bounded, it suffices to prove strong
convergence on a linearly dense set. It is very easy to verify that the convergence holds for
finite simple tensors, so this ends the proof.

Let us state two corollaries of (the proof) of this theorem.
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Corollary (6.3.28)[256]: Let H be the Hilbert space constructed from the pair
(Hg, (Up)¢er)- Consider the o-weakly dense C*-algebra A, (H) < I'; (H) generated by the
set {lW(&):& € Hy} B(Tq(H)). This C*-algebra has the complete metric approximation
property.
Proof. Consider once again the maps I, ;: = I, (e 'T;) Q;,. The ranges of these maps are
contained in fq (H), the bounds for the norms remain the same, so it suffices to check the
pointwise convergence in norm. Since the maps are uniformly bounded, it suffices to check
the convergence on a linearly dense set, hence we may assume that x = W (& © - © &,).
If n is large enough the Q,, that appears in the definition of I, . ; has no effect on x, so we
get
Lpeix —x = e MW (5 O O Ti&) —W(E O O &).
This last expression is easily seen to converge to zero innormas t — 0 and i — oo. This can
be seen either using the Khintchine inequality (Corollary (6.3.12)), or just by expressing
W (& © - © &) asanon-commutative polynomial in a, (&,) 's and ag (&) 's and invoking
the fact that
1i{niia2(Ti€k) —az(&)| = li{niiaq(Tifk) —a,€ll < (- |CI|)_1/2“1H1"Ti5k — &l
- 0.

Corollary (6.3.29)[256]: The C*-algebra A, (H) is QWEP.
Proof. We will show that A, (H) is weakly cp complemented in the von Neumann algebra
I, (H), meaning that there exists a ucp map ®: T, (H) — (A4 (H)) " such that D,y = Id.

Let (d;);¢; be the net of maps implementing at the same time the w*-complete metric
approximation property of I';(H) and the complete metric approximation property of
A, (H). Using this net, we get maps @;:T,(H) - (A, (H))", as ®; maps I, (H) into
A4 (H). There exists a cluster point of this net in the point-weak*-topology and this cluster
point is obviously a ucp map that is equal to identity, when restricted to A, (H), because the
net (®;);e; converges pointwise to identity on A, (H). Since all g-Araki-Woods algebras
are QWEP (cf. [130]) and this property descends to subalgebras that are weakly cp

complemented (cf. [133, Proposition 4.1 (ii)]), we get the claimed result.
Corollary (6.3.30)[264]: (i) The mapping

W) = (Um($))w2-1 € A(S € He)

extends uniquely to a state-preserving *-homomorphism m,z_q: (Te_1(H), x) -

(A, (Xo,m ®X1,m)w2_1-
(ii) The map ©:= pm2_,(-)p: .1 (H) = p Ap extends to a normal state-preserving *-
iIsomorphism

0:Te_1(H) - G(Fe—1(H)) S p Ap.
Moreover, O(T._,(H)) is the range of a normal state-preserving conditional expectation
E:A - 0(T._,(H)).
Proof. (i). Recall that the algebra of Wick words is *-isomorphic to the *-algebra of

noncommutative polynomials, so any *-homomorphism m,,2_,: T._; (H) = A is uniquely

determined by specifying the images (T[wz_l(W(ei))) c A. Thus to conclude that the
i€l

claimed m,2_, exists and is well-defined, we just need to check that each sequence

(U (E))men (€ € He) is normbounded and hence defines an element (u,,,(£)),2_; € A. T0
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this end, we apply (the n =1 version of) Corollary (6.3.29) with coefficients
W(EQOe ) EBK)=B (:Fql(H 0% (Cm)) (see also [113]) to conclude that
lum (I < 2(1 )

1 1 m 5 m
gy zmz max {|> WE QeI WEOeno| [y W
e=0 e=0
1
|12
Qe )W (E O em)*ii

-1
<2(1—qo)2 IW(E O el
Finally we check that 2 _, is state-preserving. By linearity, it suffices to show that for any

1+3eeNand¢,...,& 3 € Hg, we have
r}lilréo (XO,m 0% Xl,m)(um(fl) BRI um(€1+3e)) = X(W(gl) BELLE W(€1+36))'

Fixing m and considering the terms on the left-hand side above, we have
(Xo,m ® Xl,m)(um(fl) taet um(€1+36))
= m~13€¢/2 Z Xom (W(ek(l)) e W(ek(1+3e))))(1,m (W(Sﬂ O exq)) -« --
k:[14+3€]-[m]

’ W(El+36 O ek(1+36)))

_ m_1+23e Z ( z qé(a)\l < 2 q;(d') 1_[ (€146 O erre 16 O ek(t)>U>

k:[1+3€]->[m] \ oc€P,(1+3¢€) o'eP,(1+3€) (1+€,t)ea’
kerk>o

143€ ’
=m 2 Z z " Z qi©? 1_[ (Erve | €0y

k:[1+3€]—~[m] 0€P,(1+3¢€) o'eP,(1+3¢€) (1+€,t)ea’
kerk>o kerk>o'
’ 1+3€
' -
= z CI(L)(G)%(J) 1_[ ($14e 1 E0du z m 2
0,0'€P,(1+3¢€) (1+€,t)ea’ k:[1+3€]-[m]

ke(1+e)k>oker k>a'

1/ _1+36
= 2w | g

g

0,0'€P,(1+3¢€) (1+€,t)€q’
Since
. —ﬁ+|aV0’| '
limm™ 2 = 6,4 (0,0 € P,(1+ 3¢)),
m-—oo !

we conclude that
nllil’)rgo (Xo,m X Xl,m)(um(fl) BELL um(€1+3e))

= Z (e — 1)") l_[ (Grve 1 Edu = X (WD - o W(E1430)).

0gEP,(143¢€) (1+€t)ec
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(i1). To exhibit the desired properties of ©: = pm2_, (-)p, we will verify conditions (i)-(iii)
in Theorem (6.3.27) for the *-homomorphism mz_,. (i) follows immediately from part (1)
of the present theorem. For (ii), we note that by linearity and multiplicativity of m2_, it
suffices to check condition (ii) on the generators  z_; (W (§)) = (W, ()) 2-1, (€ € He).
However, there is a minor issue here coming from the fact that for arbitrary ¢ € Hg, there is
no reason to expect elements u,($) € I, (R™) 29 [, (H® C™) to even be analytic, let
alone the sequence (a_i(um(f)))meN be uniformly bounded. To overcome this issue, put
HE™ = Ujs11 -1 2(A)He, where 1,-1 5, (A) denotes the spectral projection of the analytic
generator A corresponding to the interval [A71, 1]. Following [246, Theorem 3.1], we see
that HE" c Hc is a dense linear subspace such that THE" = Hg". Moreover, for each & €
HE™, we have that & (respectively W (£)) is analytic for the action of the unitary group U; =
A (respectively the modular automorphism group o,), and
a,W (&) = W(A‘izf) (z € Q).

Now we shall restrict the domain of 2, to the *-subalgebra I',_; (H) 4,, < Fo_1 (H),
consisting of linear combinations of Wick words of the form W (&) with & € (H&")©™,
(n € Ny). Since [._; (H) 4, is still w*-dense in T._; (H) and is generated by (W (&) zenan,
we just have to show that the equivalence class representative (u,,(¢))meny fOr
m,2_1 (W (&)) satisfies condition (ii) of Corollary (6.3.30) for each & € HZ". To this end,
note that on I, (R™) ® I, (H ® C™ ), we have

o = idr, @m ® ;""" &0 W(E O e)
=w(A~ ‘tf Oe) (£ €eHgeeC™).

It follows from these identities that if £ € HE™ and e € C™, then elements W (& © e) and
U,, (&) are analytic for their respective modular groups and

Iq, (HOC™)

Tq, (HRC™)

o Un(@) = Z W) ®o, W(E O erre)

FZ Wiers) @ W(ATZE O ey10) = um(471%), (z € ©).

The uniform boundedness of the sequence (61, (&))men NOW follows along the same
lines as that of (14,,($))men -

Suplla_lum(f)ll = sup lum (AN < 2(1 - qo) 2 IIW(A 1 Oel.
For (iii), |t again suffices by linearity and multiplicativity to verify that for all
T2 (W($)) = (un(§))w2-1, (€ € He),
p (0" wn(§)),._, )P €D Bp,
where B is the w*-closure of ﬂwz_l(re_l(H)) in A. But this last point is obvious, because
by the previous computation, o™ (u,,(§)) = um(A_itf) for all m, giving
p (o7 um(@)) o_y) P =P (um(478)) , )P =pmpe_s (W(47))p € p Bp.
Corollary (6.3.31)[264]: (see [256]). Let &, ... €1+36 € H¢. Let m2_, be as in Corollary
(6.3.30). Then ”w2—1(W(€1 ORNO) S(1+3e)) = W€ O - O &143e)-
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Proof. We proceed by induction on 1 + 3€ € N,. The base cases 1 + 3¢ = 0,1 are obvious
from the definitions. Now assume that the claimed formula is true for all lengths € > 0, and
consider the 2(1 + €) case. Fix &y, &1, ..., &143¢ € He. It then follows from Proposition
(6.3.22) that the following relation holds.
W O O &143e)
=W(EIW(E; O O &1436)

1+43€

- ) €= DTHIG 18 W (6 O 0§ O .. O iise),
=1

where, as usual, &, means that the tensor factor &, is deleted from the simple tensor under
consideration. Applying 7 ,2_, to this relation and using our induction hypothesis, we have
7Tw2—1(W(fo 0.0 f1+3e))

= WHZE(S(O)WHZE(Q O ... O &1436)

1+3€¢

=D (= DTHIG I W6 0. 060 . Ofis). (1)
=1

Next, we expand the first term on the right-hand side in the above equation:

WIH2E(EIW 26 (6L O+ O &r43e)

m

_1
= m 2 z W(ek(o)) ® W('EO @ ek(o))

k(0)=1
w?-1

[
X|m 2 Z W(ek(l)) W(ek(1+36))
\ k:[1+3€]~[m]

k injective

® W(El @ ek(l)) W(€1+36 O ek(1+36))\‘

w?-1

_143€+1

— (m 2 z W(ek(o)) W(ek(1+36))

k:[1+3€]p—[m]
k injective

X W(EO © ek(O)) W(S(1+3e © ek(1+3e))

w?-1
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243 m 1+43€
€
+|Im 2 z W(ek(o)) W(ek(1+36))
k(0)=1 I[=1 k:[1+3€]->[m]
k injective
\ k(1)=k(0)

)

X W(fo O ek(O)) W(f1+3e O ek(1+36))

)wz—l

= Wt2¢(&, © & O - O & 43¢) (this is the first term in the preceding sum)

1+3e€ m

2+3€
+ z m 2z z z W(ek(o)) "'W(ek(1+36))
=1

k(0)=1 k:[1+3€] »[m]

k injective
\ k(1)=k(0)

)

& W(‘fo O, ek(o)) W(f1+3e O ek(1+36))

)wz—l

The first term is already a part of what we wanted, but we also have to deal with the second
term. Note that for k(0) = k(1) and k(1) # --- # k(1 + 3€) we have

W(ek(o)) W(ek(1+36))
= W(ek(o) OO, ek(1+3€))

+ q(l)_1W(€k(0)) W/(e\k(l)) W(ek(1+36))(13)
and

W (& O exgy) - W(é143e O ek(1+3e)))

=W ((% O () O O ({143 O exqarze) )

+(I& O ey 1 & O ek(z))U‘ﬁ_lW(fo O exy) - W(& Oerwy) - W(E13e O exarse),
=W (& © ex) O+ O (&143¢ @ exarze))

+(I&, | fz)UCIi_lw(fo © ek(O)) W(fz © ek(l)) W(€1+3€ © ek(1+36))-
Indeed, if (vy,...,v,) S H¢ is a family of orthogonal vectors then W(v,) ..W(v,) =
W, O -Ov,), as we remarked earlier. In our case we have a sequence
(W, vy, ..., V143¢), Where Iw is orthogonal to all vectors v; for j # [, so we get
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WWIW(@y) .. W(w143)Q = (a*(W) + a(Iw))v; © - O Vy43¢
=w OV OO vz +alw)(w; O O vyy3e)

=wOv O OVyzet Qi_l(IW | v)yv1 © O D O C

hence the formula above. Tensoring W (e)) - W(ek+3e) With W(& O

er0)) - W(€143e O era+3e)) (keeping in mind that goq, = € — 1) gives us four terms,
one of which is

(e — D" NI | E)uW (ekcry) - WTe\k(l)) W (eras3e))

QR W(& O ex) - W(fz/@f?k(z)) W (E43e O exarze)
and we will deal with the three other terms later. To these expressions we need to apply the

2+3€

sum Y;27¢m™ 2 Yiio)=1 Dk:[1+3¢] -[m] the condition k(1) = k(0) and perform the sum
k injective
k(1)=k(0) .
over k(0) immediately, resulting in a sum Y;23m™z Yy.(1436]\13[m]- Without the sum
over [, this is the sum over 3e distinct indices appearing in the definition of W1*2¢ so we
get the sum

1+43€

D (= DTG 1 )W (6 O O & O+ O fise).
=1
To sum up, we have checked so far that

W2 (W26 (6L O -+ O &143e)
= WHZE(fo O O &1436)
1+3€e
+ Z (e —1)!"XI& | fl)UWHZG(fo O-0§{§O O 51+3e) + R,
=1
where R is the "remainder" term that will turn out to be a zero element of the ultraproduct.
Inserting this into (12) we get that

”w2—1(W(f1 OXNO) f1+3e)) = W1+26(f1 OO f1+3e) + R,
so if we can check that R is really a zero element then this ends the proof.
Let us just recall that R comes from the three neglected so far terms arising from tensoring
W (excoy) - W(exar3e)) With W(& O exqy) - W (43¢ © ex(i43e))- It can be written as

1+3€
2+3€

R=(m"2 > (Ruu(m)+ (6 | i Roy(m) + a5 Ryy(m) |
=1 w?-1
where

Ry (m) = Z Z W(ek(o) O..0 ek(1+36))
k(0)=1 k:[1+3€]>[m]
k injective
k(D)=k(0)

XKW ((fo ©) ek(o)) O . O (§143¢ O ek(1+3€)))'
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RZ,l(m) = z Z W(ek(o) ©..0 ek(1+36)) X W(f1 O, ek(l))
k(0)=1 k:[1+3€]—[m]
k injective
k(1)=k(0)

©) W(ff@ek(l)) O] W(€1+3e O ek(1+36))’

Rg’l(m) = Z z W(ek(l)) W/(GZ(D) W(ek(1+36))
k(0)=1 k:[1+3€]—>[m]
k injective

k(D)=k(0)

W ((fo © ek(O)) ©..0 (f1+3e © ek(1+36)))-
Recall the formulas (13) and (14). After tensoring the right-hand sides we get four terms,
one of which was already incorporated in the proof of Corollary (6.3.31). The other three
are:

and

W ek O - O eraize) W ((fo O ek)) © . O (&143¢ O ek(1+36)))

qi™ 1& | EOW (exoy © - O exar3e)) @ W(E O exr)) - W(E O exy) - W(Ervze O exc:
and

q0~ W (exqy) -- W/(e\k(o) W (eka+3e)
@ W ((% O ex() O - O (£143e O exqasze)) -

To obtain R, we just need to take sums over appropriate sets of indices.
We will now examine properties of R. Since q,, q;, and the range of summation over [ is
fixed, to show that R is a zero element in the ultraproduct, it suffices to show that

2+3€

limy,,em 2z [|Ryl| =0 for any 1<i<3 and [ €[1+3¢€]. We will use Nou's
noncommutative Khintchine inequality for this (Corollary (6.3.29)), but before that we need
to obtain a bound for the coefficients.

Corollary (6.3.32)[264]: There exists a constant D(1 + 3¢) > 0 (depending only on the
initial choice of &, ..., &; 13 € H¢) such that for all m € N and all k: [1 + 3€] - [m], the
following inequalities hold:

W (50 © ex(ey) © O ({143e O €xuase) )| < DL+ 36€)
W (& O exy) - W(E O exqy) - W(Ersze © exasse))l < DA+ 3€)

I W (ery) W (erqy) - W (ekarse) < D(L + 3€).
Proof. The second and third inequality will follow if we can show that there is a constant
D > 0 such that [W (&4 © exa+e)ll IW (exare))ll < D (independently of 1 + € € [1 +
3€]). But the existence of D follows from the simple fact for any (e — 1) —Araki-Woods
algebraT,_;(H) and & € H¢, we have Il W(&) lir,_, < llae—1 (I + llac— I < 2(1 -
le — 1)~ ?max{ll £ Il Il I II}. Now consider the first inequality. By the Khintchine
inequality with K = C (Corollary (6.3.29)), the left-hand side is bounded by
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C(q;)(2 +3€) max

0<I<1+3e

@ 7) (R1+3e,l ((Sto @ ek(O)) @ @ (€1+3e @ ek(1+3e))))||-
Writing the above (1;43.-; © J)RI;3¢ terms as sums of simple tensors, one easily sees
that the corresponding norms are bounded by a constant depending only on 1 4+ 3¢. (Note
that the unboundedness of 7 plays no role here, as &, ..., §14+3 € He remain fixed.)
We need one more proposition. In the following, m € N and &,, ..., &; ;3. are fixed as usual.
Let I; denote the set of indices (k(0), ..., k(1 + 3¢€)) € [m]?*3€ that are pairwise distinct
except for the pair (k(0), k(1)); ageneric element of I; will be called i and the corresponding
tensor ey o) @ - @ ex(1+3¢) Will also be denoted by i. We will denote W(ek(()) X Q

ex(1+3¢)) Dy Wi and W ((s;o O ex) @+ ® (§143¢ O ek(1+36))) by Wig-
Corollary (6.3.33)[264]: (see [256]). Given any Hilbert space K and any family of operators
(Ap)ier, © B(K), the following inequalities hold.

(]11+3e—l

” 1+3€
z A, ®@ W ” < C(1+3e)supllAlim 2

I€l;

g 1+3e

z AW, n < C(1+36)supll4;im 2,
€l

where C(1 4+ 3¢€) >0 depends only on 1 + 3e and the choice of vectors &,&;, ..., &143¢ €
Hc.
Proof. The proofs of both inequalities are essentially the same. We will deal with the first
one; to obtain a proof of the second one has to apply conjugation in some places but since
we are dealing with a fixed number of vectors &, ...,¢&;43., the unboundedness of
conjugation does not play any role. By the Khintchine inequality (Corollary (6.3.29)) we
need to deal with

max
0<k<2+3e

D4 ® Rypaek ),
I

up to a (1 + 3¢€)-dependent constant.
Since R;, 3. is a sum of operators that only permute vectors, and the coefficients of this
sum are summable, we just need to take care of a single term of the form

z A; @ a()243e0)s
7

where o denotes the action of the permutation and the decoration (2 + 3¢, k) reminds us of
the fact that o (i) is viewed now as an element of H2®*3¢7° @, HE* . Whatever the o,

the tensor o (i),43¢x is always of the forme; O - Oe;,, , Q€. ... O Oe ...,
where for different indices i and i’ these tensors are different. The key property that we will
need is that we have two orthonormal systems (v, 42¢)142ees € HEE+3€=K) and (Wj)jE] c

max
0<k<2+3e

H®* such that for any i € I, we have 6(1)243¢x = Vig2e ® w; for some 1 + 2e € S and
j € J. Therefore we can get rid of the sign ¢ and just consider
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max
0<k<2+3€

)

z A; @ i213¢ k)
I

Since we are dealing with tensor powers of H equipped with (¢ — 1) —deformed inner

products, we would rather have families (v;,,¢)14+2¢es and (wj’)jej that are orthonormal in
Hf’i(fﬁe_k) and Hfﬁ’j, respectively. To achieve this, we will use the operators defining the

(e — 1) —deformed inner products, P2*3¢7* and PX_;. Let £(i),43 4 be tensors defined by

1 1
24+3€e—-k\2 k 2 . =
((Pe—+16 )? ® (Pe—1)2> (W) 243ek) = iz43ei-
Then we can write £(i)z43¢x = V142 ® w; for some tensors v;,,. and wj coming from

orthonormal families in H2@**7 and H®X. Since the row/column Hilbert spaces are

homogeneous operator spaces (and Haagerup tensor product allows tensoring cb maps) we
can bound maxocxcz+3e |21, 4i ® inszerll DY maxockcrse|X1,4i ® §(M)243exll up to a

1 1
1 + 3e-dependent constant coming from the norms of (P2*3¢~%)2 and (PX_,)2. Because we
are using the Haagerup tensor product, we have the following completely isometric
isomorphism H, ®, Ki;. = K (K, H). Under this identification the tensors &(i),43ex

correspond to matrix units in K (H?_kl, H?i(fwe_k)). This means that the operators 4; fill
different entries in a large operator matrix. By comparing the operator norm with the Hilbert-
Schmidt norm we get the estimate
1

I I 2 E

||Z A ®@ Wil < C(1+ 3¢) Z 1412 | < ¢+ 36) (lllls_up”Ai”2> ,

”iEIl Il i€} 1€
which can be further bounded by

1
2 2 1+3€
C(1+ 3¢e) [ mM+3esupll4;ll = C(1+3e)m 2 supll4ll.
i€l ien

Finally, to conclude that R = 0 in the ultraproduct, we just observe that each component
R, = (Ri'l(m))meN Is a a sequence of terms of the form appearing in Corollary (6.3.33)

with coefficients (4;(m))menie;, Uniformly bounded in i and m by the constant D(1 + 3¢)
2+3€

from Corollary (6.3.32), so the norm m™ "z R;;(m) is bounded from above by C(1 +

3e)D(1 + 36)m_%, and hence tends to zero. This finishes the proof of Corollary (6.3.31).
With this tool at hand, we prove Corollary (6.3.34) (see [256]).
Corollary (6.3.34)[264]: Let T._;(H) be a (e—1)—Araki-Woods algebra. Let
P,:T._1(H) = I'._;(H) be the projection onto the ultraweakly closed span of {W(E): ¢ e
H(?"}. Then, using the notation from Corollary (6.3.30), we have

OcP, = p(Pn 0%y Id)a)z—lp ° 0. (14)
Proof. Let W (&) be a Wick word associated with & € Hg(1+36). Then we easily obtain
Toz_1 (BaW (&) = 81143 WH2€(&). On the other hand, let us first apply m,2_, to obtain
W*2€(£). Since, as we already remarked earlier, W (ex(y)) ... W (ex+3ey) = W(eray ®
- Q ek(1+3e)), the operators acted on by the P, part of the operator (P, ® Id)2_, are

exactly of length n. Therefore (B, ® Id),2_ W'2€(&) = 8, 143 W'*2€(£). By linearity,
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this implies that 7, 2_, o P, = (P, ® Id)2_, o 2_, On the algebra of Wick words
I._,(H). Compressing by the support projection p, we then obtain

QP =pF ® Id)a)z—l ° ﬂwz—l(')p =pP, ® Id)wz—lp o on f‘e—l(H):
where in the second equality we used the fact that p € ﬂwz_l(f'e_l(H)), (see [130, Lemma
4.1]). Since the desired equality holds on the ultraweakly dense subset I'._; (H), and all maps
under consideration are normal, equality holds everywhere.
Corollary (6.3.35)[264]: Let ¢:N — C be a function such that the associated radial
multipliers mg:T._; (R™) - I._;(R™) have completely bounded norms uniformly
bounded in m. Then the radial multiplier defined by ¢ on any (e — 1) —Araki-Woods
algebra I'._ 1(H) is completely bounded and

lmy: Feey (H) > T (M|, < < sup Imy: Te—y (R™) = Loy (R™M)|

= ||m [e_ 1({)211%) - Fe 1(3211%)
The main technical tool in establishing Corollary (6.3.35) i |s the following intertwining-type
property for projections onto Wick words of a given length with respect to the ultraproduct
embedding given by Corollary (6.3.30)

Proof. From Corollary (6.3.34) we get that ® o m,, (x;,) = p(m, ® Id)w2—1p o ®(x,,) for
any x,, = W (&) with & € (Ho)©1+3€), By linearity we can extend this equality to all x,,, €
I._; (H). It follows that we have control on the cb norm of m,, acting on the norm-closure
of finite Wick words, i.e. on the C*-algebra A._; (H). Since m,, is automatically normal

(cf. [190, Lemma 3.4]), it extends to a normal map on I'._; (H) with the same cb norm, so
we get

[mg: Ty (H) > Teoa (D], < supmg:Teoy (R™) = Teoy (RM)
Since I'._; (R™) is a subalgebra of Fe_l([Rim“) which is the range of a normal faithful
tracepreserving conditional expectation that intertwins the action of m,,, the sequence of
norms on the right-hand side is non-decreasing, so

Img: Te—1 (H) = Ty (D] ) < lim [Img: Te_y (R™) = Ty (R™M)]|
By the same token, this limit is not greater than [|m,: [._;(€2r) = Fe_l(fz,R)ch. Since

the union of the algebras I'._, (R™) is strongly dense in 1“6_1({’2,]1@), the union of the preduals
is normdense in the predual of T._; (5 r ). Therefore the limit of norms is equal to the norm

of the multplier defined on L* (Fe_l(fm)). By dualising, we get that

nlli£20||m(p: [_;(R™) - Fe—1(Rm)”Cb = "mqo: Fe—1({)2,IRa) = Fe—1({)2,le)"Cb
Corollary (6.3.36)[264]: Let I'._;(H) be a (¢ — 1)-Araki-Woods algebra. Let P, be the
projection onto Wick words of length n, defined by P,W (&) = 6, 14+3eW (), Where & €
Hg)(”%). Then B, extends to a completely bounded, normal map on I'._; (H) and [|B,|l_, <
C(e — 1)?(n+ 1)2.
Proof. We just observe that B, = m,, , where ¢, is the Kroenecker delta-function ¢, (k) =
Oxn. By Theorems 2.20 and (6.3.35), we obtain [|B,;:T_;(H) = T[_;(H)Il
PriTeo1(f2r) = Teci(£2r) b C(e — D*(n + 1%
Now we devoted to the proof of the complete metric approximation property for I'._; (H).
Corollary (6.3.37)[264]: Let I'._, (H) be a (¢ — 1) —Araki-Woods algebra. Then I'._; (H)
has the w*-complete metric approximation property.
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Proof. We define a net I, ; ;: = I._1 (e 7'T;)Q,,, Wwhere n € N, t > 0,i € I, the finite-rank
maps T; come from the previous lemma, and Q,, = Py + -+ B, = Myomi Is the radial

multiplier which projects onto Wick words of length at most n. Each I, ; ; is a finite rank
map on I'._, (H); indeed, Q,, tells us that we have only Wick words of bounded length and
T; tells us that we can only draw vectors from a finite dimensional Hilbert space, so we are
left with a space of the form @”__, (C™)®C*3€), which is finite-dimensional. We will pass

3
to a limit with i - co,n — oo and t — 0. The rate of convergences of ¢t and n will not be
independent and will be chosen in a way that assures the convergence ||Fn,t,illcb - 1.

Let us check now that it is possible, using a standard argument of Haagerup (note that
Fe—1(e )P = e7Py):
Il , = ITec1 (et T)Qnll,,
< T (™) Qnll,,
< ITe—1(e™Dl,, + T (e M = @,

<1+ e,
k>n
<14 C(e— 1) 2 ekt (k + 1)2.
k>n
Since the series Y s0e *(k + 1)? is convergent, for any t > 0 the sum will tend to zero
when n — oo, Therefore we can choose the parameters i,n — o and t — 0 such that the

completely bounded norms of the operators I}, . ; tend to 1. Then the operators —"FF”t'f'li are
ntillcp

completely contractive. We have to check that they converge ultraweakly to 1. Since the
denominators converge to 1 and the net is uniformly bounded, it suffices to prove strong
convergence on a linearly dense set. It is very easy to verify that the convergence holds for
finite simple tensors, so this ends the proof.
Corollary (6.3.38)[264]: (see [256]). Let H be the Hilbert space constructed from the pair
(Hg, (Us)ter)- Consider the o-weakly dense C*-algebra A._, (H) € I'._; (H) generated by
the set {W(¢§):& € Hgx} € B(F._;(H)). This C*-algebra has the complete metric
approximation property.
Proof. Consider once again the maps I, ; ;: = T._1 (e "*T;)Q,,. The ranges of these maps are
contained in T'._; (H), the bounds for the norms remain the same, so it suffices to check the
pointwise convergence in norm. Since the maps are uniformly bounded, it suffices to check
the convergence on a linearly dense set, hence we may assume that x,, = W (& © - © &.).
If n is large enough the Q,, that appears in the definition of I, , ; has no effect on x,,,, so we
get

l_‘n,t,ixm —Xm = e_ktW(Tifl ORNO) Tifk) - W(fl OO gk)
This last expression is easily seen to converge to zeroinnormas ¢t — 0 and i — co. This can
be seen either using the Khintchine inequality, or just by expressing W (&, © - O &) as a
non-commutative polynomial in a._;(é;4¢) 'sand a;_;(&;4¢) 's and invoking the fact that

li{n||a2—1(Tifk) — a1 (&)l = li{n"ae—l(Tifk) — A1 (I
< (1 - e = 1)V2mIIT;g, — &l - 0.
Corollary (6.3.39)[264]: (see [256]). The C*-algebra A._,(H) is QWEP.
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Proof. We will show that A ._, (H) is weakly cp complemented in the von Neumann algebra
I._,;(H), meaning that there exists a ucp map ®:I._,(H) - (A._,(H))*™ such that
q)ldqe—l(H) = Id

Let (®;);¢; be the net of maps implementing at the same time the w*-complete metric
approximation property of I'._;(H) and the complete metric approximation property of
A1 (H). Using this net, we get maps ®;:I._;(H) = (A._,(H))*™, as ®; maps I'._; (H)
into A._, (H). There exists a cluster point of this net in the point-weak*-topology and this
cluster point is obviously a ucp map that is equal to identity, when restricted to A._;(H),
because the net (®;);¢; converges pointwise to identity on A._;(H). Since all (e —
1) —Araki-Woods algebras are QWEP (cf. [130]) and this property descends to subalgebras
that are weakly cp complemented (cf. [113, Proposition 4.1 (ii)]), we get the claimed result.
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List of Symbols

Symbol Page
CAR :Cartan 1
dim  :dimension 2
£2 - Hilbert space of sequences 2
min . minimum 3
(45} : Direct sum 3
® : Tensor product 3
F(H) :Full Fock space 3
L . Essential Lebesgue space 4
S.0 : strong operator 7
Ker : Kernel 10
ICC :infinite conjugecy class 13
p.m.p : probability-measure preserving 13
Ind - induced 14
£ . Essential Banach space 16
u.c.p  :unital completely positive 16
tr : trace 16
diag :diagonal 17
L : Lebesgue on the real line 17
dom :domain 19
sup . Supremum 19
max . maximum 24
m-a.e . measurable almost everywhere 25
Aut  : Automorphism 25
q®™  : q-Brownian 42
q°v  :q-Ornstein-Uhlenberk 42
LP . Lebesgue space 48
VN : Von Neumann 49
inf > infimum 57
c.b : completely bounded 57
j.c.b  :jointly completely bounded 57
WEP  : weak expectation property 61
QWEP : quotient weak expectation property 67
KMS : Kubo-Martin-Schwinger 68
OH - Operator Hilbertian 71
GNS : Gelfand-Naimark-Segal 73
AFD  :approximately finite-dimensional 96
mp . measure -preserving 97
c.m.a.p :complete metric approximation property 97
) : Direct difference 113
gcd  :greatest common divisor 120
Inn . Inner 127
out . outer 127
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f.n . faithful normal 127
CN : Non-Crossing 128
co : closure 163
pol  :polar 164
® . Algebraic Tensor product 164
s.o.t  :algebraic strong operator topology 166
f.n.s : faithful normal semi finite 213
CCAP :completely contractive approximation property | 217
CBAP : completely bounded approximation property 239
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