+

Sudan University of Science and Technology
College of Graduate Studies

Performance Evaluation Of Open Network Operating System And
Floodlight Controllers In Software Defined Network Based Internet
Of Things

Baainall pLudl) c yii) B cu¥a slil) g A gidal) ASudl) Jubds aUAT cilaSalia £)af ay gl
il yally 48 jaal) ALY Lo

A Thesis Submitted in Partial Fulfillment for the Requirement of the
Degree of M.Sc. in Electronic Engineering (Computer and Networks

Engineering)

Prepared By:

Sara Mohammed Bakri Mohammed
Supervised By:

Dr. Fath Elrahman Ismael Khalifa

March 2021

Lo gl 919 pglall 0155t Arale

'\ Sudan University of Science & Technology

College of Graduate Studies

Lt Sty 3s”

Wi wolulyldi &8

® Ref: SUST/ CGS/A11 ®

Approval Page
(To be completed after the college council approval)

Name of Candidate: [Seyey | [Mahammed Balfyz | [Mobammid

Thesis title: Ef.)‘ﬂ.T‘mmC'ﬁ. EV(LZWLZ{/ZV) . OI?.C.)P.W N ﬁé.».vm?:?. 0/? f.)’a-ﬁ. l.'wg §V)5’i7€
and, Qoaa’abw ; G;V‘AY@(«(WJ’ ;w j,ﬂ%/;«wﬁ/)é/?&,d . Nch‘Y%/BMéJ Ia /r
-~ 2 =% == —~ o~ A - g ' e
z_.”/k’;p’J(f’ﬁ«d)W)ﬁwwluij(\h)&w ShT g2

................. D S U | O WY JIRY SR SR R NE-So= YA R e)
Degree Examined for: Mﬂzj’b?ﬁ L‘).‘ﬁ. .SC’/I’.Q/V).CRT . Eée .C.ﬁYomAfC,/f

Approved by:

1. External Examiner \
Signature: =S \/’_\ Date: g/lf/%ﬁ/
2. Internal Examiner '
Name: Ml xex Q\"Mi A/\{

Signature: ... 5 T e Date: .. 55 /q/dd 2A4.......

3. Supervisor

Name: Fa/é%EéYMM«Fm[SVY)&é[..... / /{?GW/J[;

Signature:[: a(, 1/
= 2N

L cgs @ sustech edu.

Iy

s ad 3l &) al

(asal) Al el o) Eale W) Ul ale ¥ Al 1 516)

(32)-5 241 5 g

Dedication

| dedicate this work to those who were very caring, helpful and
encouraging. To those who carried me for advancement and
success.

To my Mother, my late father god blesses his soul, my brothers
and sister who supported me and believed in my capabilities, my

friends who were there for me.

Acknowledgement

First, | thank Allah for giving me the strength and ability to complete this
research.

To the supervisor Dr. Fath Elrahman Ismael, the guider of my work,
who gave me his trust in the knowledge and work, being determined and
dedicated, helped and motivated me, to reach this form.

To my Mom, friends, family and stranger people those who pushed my

goals till clarity supported me to the limit for it to be, sometimes over

pushed it just so | succeed.

Abstract

The increase in the number of smart connected things has affected the
performance of loT applications, the problem statement of this research is
that organizations requirements are becoming heterogeneous and stringent
in terms of bandwidth, response time, throughput. Software Defined
Networking (SDN) came as a solution that enables the network to adapt its
behavior dynamically according to the traffic type which will increase the
performance. In this research, the performances of the most used SDN
controllers (ONOS, Floodlight) are analyzed and compared. Controllers
analyzed based on some metrics such as throughput, delay, bandwidth
using different topologies (single, linear, tree and SDN based 10T) using
loT traffic flow transmitted through MQTT protocol. ONOS shows
throughput of 223.985, 340.3, 69.24 and 222.6 MB and floodlight shows
throughput of 207.46 ,138.26, 255.33 and 228.5 MB in single, linear, tree
and SDN-based I0T topologies respectively. ONOS shows bandwidth of
1.876, 2.85, 587.55 and 1.77 Gbit/sec and floodlight show bandwidth of
1.741, 1.4, 2.157 and 1.86 Gbit/sec in single, linear, tree and SDN-based
lIoT topologies respectively. ONOS show delay of 3.442, 7.15, 8.3and
0.062 msec and floodlight show delay of 2.85, 4.9, 5.28 and 0.039 msec in

single, linear, tree and SDN-based 10T topologies respectively.

i) iyl il glal e e i) A dlatd) 4830 (LaY) aae A saly 3l < i)
dadd b gl Aalide LS aadtd a8 Al g Glabaiall Glaldia) jd 6 oo Sbasdll aal g
4 yrall Cilyma) Ciela AoaliY) 5 Alacia) € 5 5 a0 5l GSlaill Jie digee il dipes
On e Lea A pall bl g 630 188 5 USaling LS sl (o€ (e 4S8 (Ray JaS Sl
DSV Sl 48 jrall Cilime yll aSas Cilas g e ol A jlia s Jalas a3 ¢ Caad) 138 1Y)
Laliy) Jie Ganliall (an o 5l (Cu¥alilly dx gital) 4080 Juk alai) Laladia
iy sy i (ad) Adlite il aladiuly gaa i) Gl (= e 5 Al
il 1 J J S0 5 39 oy Ll Qb (S0l 48 jaall iliaa i e disal) oLEY)
223.985 @l Aali) da gidal) AAN Jdi alai Heday Cua day e jUaiiy) A6
525533 513826 5207.46 <ol selays cullane 222.6 569.24 5340.35
e Al cLlY)) Ay Ay el dpdaddly Al dad) (8 cullaae 22815
Glai e s gidall SN Jdit sl jedad LS gl e il 48 paall Cillna il
Guai iase Vgl eldayg Al / Culas 1.77 5 587.55 52.85 5 1.876 523
Aol s Apkadll g 4 8l Al Al / Culaas 1,86 52,157 5 1.4 5 1.741 g2
i jeday 1yl s sl o cSall 48 prall il yll e Gl oLudV) c 5l Ay
Vsl jelay s ali A 0.062 58.3 57.15 53.442 a1 5l da il A0 Jais
i) Ay g A il g Apadl) g A A) 8 4l L1k 0,039 5.28 54.9 52.85 nal

sl e Sl A8 jprall Clma) e dgiaall (LY

Table of Contents

L-INTRODUCTION ..uueieeetettttiiieseseeeeeetttuieeeseeeeeeasuuaaseseeerenassanasesaeesaesssnnnaseseesssnsssnnneeeseanennns 1
L L PREFACE cttttuieeeeeeettttttuieseeeeerterrnnneseseeereessnnnsassssesseesssnnssssesesseesssnnsnsessesssessssnnsssssssnnns 1
1.2, PROBLEM STATEMENT tiitiiiiiiiiiiiiiieieieieeeeeeee et et e e et e e e e e e e e e e e e e e e e e e eeeeeeeeeeeaeaeeesesesesesesesesesesenes 2
1.3. PROPOSED SOLUTION t1ittiiiiiiiiiieiiieieieieeee et et e e et ee et et ee et e e e e e s e e e s e e e e eaeaeeeeeasaeeeseseseseseseseseseseees 2
1.4, AIM AND OBJECTIVES t1ttuuueeeteeeeetttuuiieseseeerteutuuasesesessssssnnasesesessessmnaesessesssesssnnnesessesesnns 3
1.5, IMIETHODOLOGY ...eeiviiuuieeeseeeeettiuuiiaseseeeteestuunaseseeseensssnnnaseseesssesssnneseseesssnsssnnnesessssennns 3
i ST T R O 1 1 1 [PP 4
2. OVERVIEW 1ttt s s s s s s s s s s s s s s s s s e s s e e s s s s ssssssssssnsssssnssnnssanes 5
2.1. SOFTWARE-DEFINED NETWORKING (SDIN)..uvvverieiiiiiiiiiiireeeeeeeieiiirreeeeeeeeesennreeeeeseessennans 5
0 I Y 1 A T3 TN U 5
2.1.2. SDN ARCHITECTURE....etttttuuuuaeseeereettunuuaeeeeeeereesnnaneseseessresssnnassssessenmssnnaneesesesennssnnnns 5
2.1.3.SDN BASIC PRINCIPLES «.cetttuuueeeseeeeeetiutuaaeeeseeeettuunaaeseseesssesssnnasessessensssnnnasesessssnnsnnnnns 7
2.1.4.SDN PROTOCOL (OPENFLOW) veveviiiiiiiiirrieiiee e eeiiiteeeeeeeceeseirvreeeeeeeesseansaeeeresessennns 8
2.1.5.SDN CONTROLLERScettttturuuaeeeeerrtrunrunasseeeeerersmsnnssseseesseesssnnssssessseesmssssssssssssennssnnnns 9
2.1.6.SDN APPLICATIONS...ceetttttuuueeeeeeeeetttuuuaeeeeeereeetaraaaeseeerersmssnaaeseeersrmssnnaaeseesserensnnnns 10
P 2 1N 1 N3 o T I TN T (Lo) PP 12
B 2 T [0 1) = 0T] U 12
2.2.2. 10T ARCHITECTURE: cettttttttuuuuieseeeeereernnnunaseeeeereesmssssssssesssessmsssssssssesssensssnnsnsssessssssssnnns 12
0 T8 (o 1 I od (0 1 o Yoo | I3 14
2.2, 4. 10T APPLICATION ttututuuuuuuuuuunrnnnsnnesesnsesssnsnsssnsssnsnsnsnsssnnns 15
2.3, RELATED WORK ...vutuuutuuutuuuuuuetetsnatesesssssssssnsssssesssnsnnnsnsnsnnns 17
2.8, SYSTEM TOOLS..uuuuuuuuuuuunuuunuuneteneuaueresanssssssenssnsesensssessesesesesssesesssssesssnsssssnsssssnsnsnsnsssnnns 19
2 4. LNV M VIRTUALBOX. .ottt eettiiiieee sttt eeettss s s s e e e e e eaaass s s e s e e e e aaaabe e s s e e eseeeesnaans 20
2.4, 2 UBUNTU LINUX.uuuueeeteteittiiniiieneeeeettetisiiesseseeteesssnuasssssssessmsssssssesesssesssmnnsnsssesssesssnnnns 20
. Y T\ o LU F SR 20
B 3 |V 1111] 3 PSR ORURUPTRTRRN 20
N | = PSR PRPRRRTRN 21
2.4.6.ECLIPSE MOSQUITTO .etttiiiuiiereeeeetteiiuiieseeeeereesnniuessseessesssssssssseeesssesssmnsnssssessesesnnnns 21
2.4.7 . PAHO PYTHON CLIENT .tttttuuuereeeeerterinuiereeeeereesnnnusssseeesensmssnssssesesssemssmmnsnsssesssssnsnnnns 21
3. SYSTEM IMPLEMENTATION AND CONFIGURATIONcettvvuuiueseeeeererurrunsseeseenensssnnnsesseenenns 22
3.0, SYSTEM IMPLEMENTATION .vvuvuvuruuururererennsesnsesnsesnsssssssssssesssssssssssssssssssssssssssssnssssssssnnnes 22
3.2, SYSTEM CONFIGURATION ..vtvvuuuverurnrarerensnssssesesasesssssssssssssesssssssssssssssssssssssssssssnsssssssssnnes 22
4, RESULTS cetttttititieieieieeeeeee e eeeeee et eeee et eereteeeeetereeetereeeeetererererererererererererererereeerereeeeeeeees 27
4.1, SINGLE TOPOLOGY ...iieieiiituuuiieseeeeereesssuieseseesesessssunnssssesessssssnssseseesssesssnnnssssssssnsnsnnnns 27
4.2, LINEAR TOPOLOGY ...ieieiiiiiiuiieieeeeettttisiieseseeeteetsssunssesesessssssnssssessesssesssnnnnssssssssnsnsnnnns 31
4.3, TREE TOPOLOGY ..uuieiereiesesesesesssesesesssssssssssessnes 35

L N [0 I o =] Ko T3 2 40

5. CONCLUSION AND RECOMMENDATIONS «.evuiiuniiunieniernietnieteenerneernteseeserseerssesnsesnsesnernns

5.1. CONCLUSION
5.2. RECOMMENDATIONS
6. APPENDICES.........

List of Figures

FIGURE 2-1. SDN ARCHITECTURE
FIGURE 2-2. |OT ARCHITECTURE ...tttteteeeuuuttttteeesaauteteeeeesasastateeeessssaussstaeasesssanasssaeasesssassnsaaaeesssesannsenaeesssannan
FIGURE 3-1CREATES SDNHUB VIRTUAL IMACHINEuveeruteeeuteesreeenseestesesseesseesnseesnsesssssesssesssssesssesssssesssesssssesssees
FIGURE 3-2 SINGLE TOPOLOGY ...tttttetieeuetettteeesaaitetteeeesesanteteeeeesesansatteeeesesaasssteaeesesaaannsaaaeesesesansenaeeessannnn
FIGURE 3-3 LINEAR TOPOLOGYtteeuveerureesureesireesseesuteesseesasesssseessessnseesasessnsessnsesssseesnsessnssesnsssesssesnsesessesnsees
FIGURE 3-8 TREE TOPOLOGYuuvteeeiutueeseuteeesauneessseeessssesesssssessssseessssseessnsssesssssessssssesssssssessssssesessssasesssssens
FIGURE 3-5 10T TOPOLOGY ..uveeiuvierureesireesieesteesiseesteesseesatesssseesasessnseesssessnsesssesssssesssessnssesnsssssssesnsssessesnsees
FIGURE 3-6 CREATE SENSORS USING PYTHONuuuvtteeiurteeeaereeesnuseesesssseessssseessnsssesssssessssssesssssssesssnssessssssesesnnssees
FIGURE 3-7: SUBSCRIBE AND PUBLISH TO TOPIC BY SENSORS ...ceuuveeeveesureessueesseessseesnsesensuesssesensassnsesssssesssesesssesnsees
FIGURE 4-1 SINGLE TOPOLOGY ONOS GUI..ccccuuviiiiiiieeeeiiieeceitee e sitee e ettt e seateesssteesssnseeessasaeessnsaeessssesesnnseens
FIGURE 4-2 THROUGHPUT AND BANDWIDTH IN ONOS- BASED SINGLE TOPOLOGY ...uvvveeererieeesinrreesseneeesnnseesssnsenesssens
FIGURE 4-3 DELAY IN ONOS- BASED SINGLE TOPOLOGYveeeuveerureessseesseessseesssesssseesnsesssssesssessnsessssssessesssssesssesnsees
FIGURE 4-4 SINGLE TOPOLOGY FLOODLIGHT GUI ..eiiuiiiieieiiiieciiee e eiteeeestee e seiree s svteesssate e s saneeeesnsaeessnnneessnneens
FIGURE 4-5 THROUGHPUT AND BANDWIDTH IN FLOODLIGHT- BASED SINGLE TOPOLOGY
FIGURE 4-6 DELAY IN FLOODLIGHT- BASED SINGLE TOPOLOGY ..euuvvveeerurreeessreeesnnseeeesseeessnseeessssseessssseessssneesssseees
FIGURE 4-7 TRAFFIC THROUGHPUT OF SINGLE TOPOLOGY ..uveevuveteveerreessieessesssseesnseesssnesssesessassnsesssssesssesesssesnsens
FIGURE 4-8 BANDWIDTH OF SINGLE TOPOLOGY ..uvveeeuvueeeeureeesnureesessseeesssseessasssessssssesssssseessssseesssssseesssssesessseees
FIGURE 4-9 DELAY OF SINGLE TOPOLOGY ..uuveerurereueesreeeseesssessssessssessssessssessssessnsesssssesssesenssssssssssssesssessnsssnsees
FIGURE 4-10 LINEAR TOPOLOGY ONOS GUIuviiiiiiiieieiiieeciiee e citee e ettt e seaee e s svteesssate e s saveeessnsaeessnseeesnneens
FIGURE 4-11 THROUGHPUT AND BANDWIDTH IN ONOS BASED LINEAR TOPOLOGYuuuurerirereserainerieeeeseeennnreeeeeeesennns
FIGURE 4-12 DELAY IN ONOS BASED LINEAR TOPOLOGY ...eeeuveerureeesueerreesnseesseessseesssesssseesssesesseesssesessesssseessessnees
FIGURE 4-13 LINEAR TOPOLOGY FLOODLIGHT GUIciiiiiiiiieiiieie ettt ettt et e e e e e e
FIGURE 4-14 THROUGHPUT AND BANDWIDTH IN FLOODLIGHT BASED LINEAR TOPOLOGY ...ceeeuvvvreeruvreeesnrreeessnennessnneens 33
FIGURE 4-15 DELAY IN FLOODLIGHT BASED LINEAR TOPOLOGY
FIGURE 4-16 TRAFFIC THROUGHPUT OF LINEAR TOPOLOGYuuuuririieiiiiiiiirieeeeseiiiireteeesesinnreteeesssemnreneseesseans
FIGURE 4-17 BANDWIDTH OF LINEAR TOPOLOGYuuuutttiteeeeaiuititieeseeesauterteeeesesaunseeeesesesannnsenesesssesnnsenesesssannns
FIGURE 4-18 DELAY OF LINEAR TOPOLOGY ...cetteiiiiiuirerieeteieneiiertteeeseseirareteeeseseinsneteeesesesmnnatesesssennmnnenesesssennns
FIGURE 4-19 TREE TOPOLOGY ONOS GUI...cciiiiiiiiiiiiiiee ettt ettt ettt e e e e s e e e e e s eeeeeeeeeaas
FIGURE 4-20 THROUGHPUT AND BANDWIDTH IN ONOS BASED TREE TOPOLOGY ...uuuuurerereresesesesesesasesesesesesasasasasasns 36

FIGURE 4-21 DELAY IN ONOS BASED TREE TOPOLOGY ..cceteiiiiiunrertieeeieiiiereteeesesenireteeeseseimsnetesesssesmnrenesesssenans 36
FIGURE 4-22 TREE TOPOLOGY FLOODLIGHT GUI ...eeeiiiiiiiiiiiiiiieieec ettt et 37
FIGURE 4-23 THROUGHPUT AND BANDWIDTH IN FLOODLIGHT BASED TREE TOPOLOGY ..vvvevveevreeereenrreessreensseesseenenes 37
FIGURE 4-24 DELAY IN FLOODLIGHT BASED TREE TOPOLOGY ...eeuuveteuveerureesnueesreessseessseessseesssesesseesssesssssessseeessessnees 37
FIGURE 4-25 TRAFFIC THROUGHPUT OF TREE TOPOLOGY ...eeuuuiiitieeeeeeiiiiitteeeeseseiereeeeeseseannseeeeesesesannreeeeeessannnn 39
FIGURE 4-26 BANDWIDTH OF TREE TOPOLOGY....cceuveerureeereerreeesseesteeesseesseessseesseeesssesssesssseesssesssssesssesenssessnees 39
FIGURE 4-27 DELAY OF TREE TOPOLOGY ...eeuvterureeeseesuteessseesseessseesasesssseesssessnseesssesssseesssesssseesssesssssesssessssesssees 40
FIGURE 4-28 SDN-BASED I0T TOPOLOGY ONOS GULL...ciiiiiiiiiiiieie ettt ettt e et e e e 40
FIGURE 4-29 THROUGHPUT AND BANDWIDTH IN ONOS- BASED [OT TOPOLOGYeeeruvereererieeenieesieeesireeseeeesneeennees 41
FIGURE 4-30 DELAY IN ONOS- BASED |OT TOPOLOGY ...ceteeeeaiuuurrrieeeeeesauierteeaesesaaunnseeeeesesaannseeeseessasannseeesesssannn 41
FIGURE 4-31 THROUGHPUT AND BANDWIDTH IN FLOODLIGHT- BASED IOT TOPOLOGY ...eeeuvveruveieiiesiieenieesieeesieeenaees 41

FIGURE 4-32 DELAY IN FLOODLIGHT- BASED OT TOPOLOGYuuuutirieeeeeeiiierieeeesesaisrteeeesesennnreeeeesssesnnrenesesssennnn 42
FIGURE 4-33TRAFFIC THROUGHPUT OF [OT TOPOLOGY ..eeeuvierureieeeerreesnieesteessieesnseesssnesssesssssesssesessesssssesssesssees 43
FIGURE 4-34 BANDWIDTH OF |OT TOPOLOGY ..eetieeuuuierteeeeeaiuietteeeesesausarteeeesesanusnsteesesssasnnseaeeesssesansesesesssannn 43
FIGURE 4-35 DELAY OF |IOT TOPOLOGY

BYOD
CoAP
CP

DP

FD
GUI
IERC
10T

ITU-T

MQTT
NFV
NFV
NI
NOS
QoS
SDN
Sl
TCP
VPN

List of Abbreviation

Bring your own device

Constrained Application Protocol
Control plane

Data Plane

Forwarding Devices

Graphical User Interface
International Energy Research Centre
Internet of Things

International Telecommunication Union Telecommunication
Standardization Sector

Message Queue Telemetry Transport
Network Function Virtualization
Network Functions Virtualization
Northbound Interface

The Network Operating System
Quality of Service

Software Defined Networking
Southbound Interface

Transmission Control Protocol

Virtual Private Network

Chapter One

1-Introduction

1.1. Preface

The next wave in the era of computing will be outside the realm of the
traditional desktop[1]. A growing number of physical objects are being
connected to the Internet at an unprecedented rate realizing the idea of the
Internet of Things (IoT)[2] which represent the Future of the internet.
According to International Telecommunication Union Telecommunication
Standardization Sector (ITU-T)and International Energy Research Centre
(IERC) the 10T, first introduced in 1999 [3].

The Internet of Things (loT) is a recent communication paradigm that
envisions a near future, in which the objects of everyday life will be
equipped with microcontrollers, transceivers for digital communication,
and suitable protocol stacks that will make them able to communicate with
one another and with the users and make decision using locally- or
globally-gathered data.[4]

The recent surge in popularity of the Internet of Things (loT) across
multiple domains has stemmed from the spread of networking-enabled
consumer devices that are deployed on a geographically wide-scale[5]it is
estimated that by 2020 10T is going to cover between 26 billion and 50
billion devices [6].

Advancement in wireless networking has let these thousands of smart
devices connect to the internet anywhere and anytime. With the
development of IoT, the amount of data produced per day increases
exponentially[7, 8].

Nowadays we are also in the cloud computing and big data era in which
most of computing and communication resources are shared and provided
to users. The characteristics of diversity, dynamics, and big data explosion
bring a big challenge for the design of the 10T architecture in the cloud and
big data era. Networks should now be more intelligent, more powerful,
more efficient, more secure, more reliable, and more scalable to meet the
requirements of the characteristics of diversity and dynamics.

Also, the use of computing devices and communication technologies are
growing exponentially with the decline in cost and size of hardware and
software. Vendors and organizations are digging new domain in search of
finding new ways of flexible computing and communication which
provided by Software Defined Network (SDN). IoT and SDNs are two
completely different communication and network domain whose merger is
seeking for benefiting human kinds and developing smart systems. As the
0T implementation expectancy exceeds the limits of traditional network
e.g., Virtual Private Network (VPN), the SDN promise to hold the

traditional network with new service demands.[9].

1.2. Problem Statement
Due to the huge number of heterogeneous devices, it is required that 10T

systems support the increasing number of connected devices; it is a
necessary requirement that information exchange takes place between all
the interconnected 10T devices taking into consideration bandwidth,
response time, throughput.

1.3. Proposed Solution
By exploit the programmability and the flexibility of SDN an IoT model

using SDN is proposed to enable the network to adapt its behavior

dynamically according to the traffic type which will increase the

performance.

1.4. Aim and Objectives
The main objectives of this work is to analyze and evaluate the

performance of software defined network controllers ONOS and floodlight
in term of bandwidth, throughput and delay using different topologies

through experiments and see how to utilize SDN controllers in I0T.

1.5. Methodology
Firstly, a comprehensive investigation on SDN and IoT is done to achieve

our goal which is to evaluate the performance of SDN controllers ONOS
and floodlight in single, linear, tree and SDN-based 10T topologies in term
of bandwidth, throughput and delay.

To achieve this goal, we implemented networks using Mininet software
which is software comes as a pre-built virtual machine (VM) image, The
VM was allocated two 1.7 GHz Intel Core 7 processors and 4 gigabytes of
RAM (Random Access Memory) then Mininet 2.2.0 VM image was
downloaded and installed and controllers were installed on the Ubuntu
14.0 to be evaluated starting with ONOS controller that used in single,
linear, tree and SDN-based loT topologies then bandwidth and throughput
was measured using iperf and delay was measured using ping between tow
hosts in the network , for the 10T topology a python script is used to create
the topology and Eclipse Mosquitto which is an open source (EPL/EDL
licensed) message broker that implements the MQTT protocol that used to
carry out messaging using a publish/subscribe model in 10T .the same
procedure is done for floodlight controller and each time the results was

documented.

1.6. Thesis Outline
The thesis is reported in five chapters the first chapter includes Preface, problem

statement, proposed solution, objectives and methodology. The second chapter
is literature review which contains a general overview of SDN and loT their
architecture, protocols, services and applications in addition, some of previous
studies of them Dbrief definition of the tools and software used in the
methodology. The third chapter is system implementation and configuration
which contains detailed explanation of all stages to implement the proposed
scenario .the fourth is result and discussion in which the performance of
different SDN controllers (ONOS and FloodLight) was evaluated in term of
bandwidth, throughput and delay using different topologies (single, linear , tree
and SDN-based loT topology) and the last chapter is conclusion and
recommendation which concludes the work done in this research and presents

the recommendation for future work.

Chapter Two

Literature Review

2. Overview
This chapter contains a general overview of SDN and loT their

Architecture, protocols, services and applications in addition, some of

previous studies of them.

2.1. Software-Defined Networking (SDN)
This section contains a general overview of SDN its architecture,

protocols, services and applications

2.1.1. SDN Definition
Software-Defined Networking (SDN) is a network architecture approach

that enables the network to be intelligently and centrally controlled, or
‘programmed,’ using software applications. This helps operators manage
the entire network consistently and holistically, regardless of the
underlying network technology.

2.1.2. SDN Architecture
SDN is a layered architecture, consisting of three basic layers;

application/services layer, a controller layer, and data plane layer called
forwarding layer consisting of forwarding devices. These SDN layers
communicate with each other via open APIs called Northbound Interface
(NI) API and Southbound Interface (S1) API as in figure 2-3

Application Plane

MNorthbound API

e

Southbound
API

Data Plane

Figure 2-1. SDN Architecture

[10] describe them as follow:

2.1.2.1. Application Layer (AP):
The application plane also called management plane consist of

applications that leverage the functions offered by the NI to implement
network control and operation logic. Essentially, a management
application defines the policies, which are ultimately translated to
southbound-specific instructions that program the behavior of the

forwarding devices[9].

2.1.2.2. Northbound Interface (NI):
Is the interface between applications and the controller. It provides access

to network resources from the application level.
The Network Operating System (NOS) facilitate application developers to
coordinate through these NI APIs. Typically, an NI APIs abstracts the low-

level instruction sets and implementation of forwarding devices. So far NI

APIs is not well studied. Generally, RESTFull APIs are used as an

interface between applications and control plane [11].

2.1.2.3. Control Plane (CP):
Control plane is the most intelligent and important layer of an SDN architecture.

It contains one or various controllers (ONOS , Floodlight , NOX , Ryu and
OpenDaylight) that forward the different types of rules and policies to the

infrastructure data layer through the southbound interface [12].

2.1.2.4. Southbound Interface (SI):
Southbound interfaces provide a communication protocol between CP and

forwarding device though the Sl instruction set. Well established Sl
protocol help controller in programming forwarding devices and formalize
rules for interaction between the two planes (CP & DP). Some examples
are OpenFlow [13], Forwarding and Control Elements (ForCES)[14] ,

Protocol-oblivious forwarding [15].

2.1.2.5. Data Plane (DP)/Forwarding Plane:
Represents the forwarding devices on the network (routers, switches, load

balancers, etc.). It uses the south-bound APIs to interact with the control
plane by receiving the forwarding rules and policies to apply them to the
corresponding devices[16].

2.1.3. SDN Basic Principles
Given the heterogeneity of networks, it is challenging to coordinate and

optimize the use of the heterogeneous network resources with the goal
of satisfying as many tasks and services as possible. It is conjecture that
the SDN paradigm is a good candidate to solve the resource
management needs for network environmentsfor multiple reasons[17]

SDN allows for a clear separation between services in the control plane

(that makes decisions about how traffic is managed) and the data plane
(actual mechanisms for forwarding traffic to desired destinations). The
decoupling of the control plane from the forwarding plane encourages
abstractions of low-level network functionalities.

Logically centralized view of the network, which allows to perform
network optimization techniques. Redundancy and other mitigation
failures can be applied in order to avoid single points of failure.

Network programmability allows the dynamic and fast introduction of new
network services

2.1.4. SDN Protocol (OpenFlow)
Sdn use openflow protocol which support a lot of technology .In the

creators' own words, OpenFlow is a communications protocol that
provides an abstraction of the forwarding plane of a switch or router in the
network.[18] OpenFlow system initially created at Stanford University
now under dynamic gauges improvement through the Open Networking
Foundation (ONF). Open Networking foundation (ONF) defined that
OpenFlow protocol is based on SDN layered architecture, it is in between
control plane and forwarding plane as communication protocol (Open
Flow Switch Specification. Open Networking Foundation ONF)[19]
Focusing on its main features, OpenFlow:

e Brings network control functions out of switches and routers, while
allowing to directly access and manipulate the forwarding plane of
those devices.

e species basic primitives that can be used by an external software
application to actually program the forwarding plane of network
devices, just

e like the instruction set of a CPU would program a computer system.

8

e works on a per-ow basis to identify network track.
e Forwards flows according to preened match rules statically or
dynamically programmed by the SDN control software.

2.1.5. SDN Controllers
the SDN controller is a software entity that has exclusive control over an

abstract set of data plane resources.An SDN controller may be
implemented as any number of software components, which reside on any
number of physical platforms[17].

Several open-source implementations of an SDN controller are available,

being the most important the following:

2.1.5.1. ONOS Conrtoller:
ONOS controller is a dynamic flexible platform easy operates in any OSs

capabilities and strongly supports switching, routing, and distributed
application architected for performance, high availability, scale-out and
well-defined northbound and southbound abstractions and interfaces.
ONOS was open- sourced on December 5th, 2014 [20].

2.1.5.2. Floodlight Controller:
The Floodlight Open SDN Controller is a company-class, open source,

Java-based OpenFlow Controller. It is supported by a group of developers
among them of engineers from Big Switch Networks. OpenFlow protocols
are an open standard managed by ONF. It specifies a protocol through
switch a remote controller can modify the behavior of networking devices
through a well-defined “forwarding instruction set” Floodlight is designed
to work with the increasing number of switches, routers, virtual switches,

and access points that support the OpenFlow standard [21].

2.1.5.3. OpenDaylight Controller
OpenDaylight controller is an open-source project supported by IBM,

Cisco, Juniper, VMWare and several other major networking vendors.It is
SDN controller platform implemented in Java. As such, it can be deployed
on any hardware and operating system platform that supports Java. It
robust and provides production-level performance and support. Its main
drawback is the complexity and the fact that it takes time for learning to

develop applications [22].

2.1.5.4. Ryu Controller
The Ryu Controller is open source and under the Apache 2.0 license,

written completely based on Python, supported and deployed by NTT
cloud data centers. Main source code can be found on GitHub, provided
and supported by Open Ryu community. It supports NETCONF and OF-
config network management protocols, as well as OpenFlowis .it is
component-based software defined networking framework that provides
software components with well-defined API that make it easy for
developers to create new network management and control applications
[23].

2.1.6. SDN Applications
In this section SDN applications are introduced including Software defined

ICN, cloud and data center and BlueCat DNS director.

2.1.6.1. Software Defined Information Centric Network (SDICN)
1.In recent years many researchers claimed that current internet

architecture is not able to response the emerging and future need of users.
Based on this claim, new architectures were introduced. Information
centric network is one of these architectures. In ICN, the information name

IS unique and independent of locations, applications, storages and

10

distribution and network primitives are done based on the names. To
retrieve named information, various transmission techniques are
introduced, including name-based routing, name-based resolution, etc. To
support these techniques and exploit the advantages of ICN, dramatic
changes to the network devices deployed in current Internet are needed,
which leads to challenge of ICN implementation. Implementing ICN over
SDN enables innovation and optimization of network resources and
functionalities. This leads to decreasing in implementation costs. It also
enables innovation and optimization of network resources and

functionalities[24]

2.1.6.2. Cloud and Data Center
One area that SDN has been attended a lot is Cloud Services and data

center. One of the main characteristics of cloud is that users gain the
adequate resources based on requirement in real time [109]. Cloud
management is the most important challenge that has always been, and
many solutions have been proposed for that. SDN is highly regarded as
one of the newest solutions, which makes it possible to configure and

manage cloud and data center easily[25].

2.1.6.3. Bluecat DNS Director
This application is targeted towards security threats caused by BYOD

(Bring your own device). DNS director programs Openflow switches in
the network using HP VAN SDN controller to redirect requests for non-
corporate DNS servers towards

BlueCat’s DNS server. BlueCat’s DNS server sends back proper DNS
response and the requestor will not even know that the DNS request was
intercepted [26].

11

2.2. Internet of Thing(loT)
This section contains a general overview of 10T its architecture,

protocols, services and applications

2.2.1. 10T Definition
IoT Defined as a system of interrelated computing devices, mechanical

and digital machines, objects, animals or people that are provided with
unique identifiers and the ability to throughput data over a network
without requiring human-to-human or human-to-computer
interaction[27]

2.2.2. lot Architecture:
In this section, an overview of the loT architecture was briefly

highlighted
The structure of the 10T consists of five layers: Business layer,

Application layer, Middleware layer, Network layer and Perception layer.

o Ty

Business Layer Business Flow-
Graphs
| system Manage ment | Models charts
L. A
P
Application Layer Smart Applications and
Manage ment
- ™y
Middleware Layer I Ubiguitous Computing “ Database |
I Info Processing I I Service Manage ment II Decision Unit I
L. -
F ™y
Metwork Layer Secure G, LVDATS, VAR,
. Bluetooth, infrared,
Transmission Figbee, etc
o —
i ™y
Perception Layer
pt ye Physical Objects REAR, Barcode,
Infrared Sensors

L A

Figure 2-2. 10T Architecture

2.2.2.1. Business Layer
This layer is responsible for the management of overall 10T system

including the applications and services. It builds business models, graphs,

flowcharts. etc based on the data received from Application layer. The real

12

success of the 10T technology also depends on the good business models.
Based on the analysis of results, this layer will help to determine the future

actions and business strategies [28].

2.2.2.2. Application Layer
This is the layer that delivers 10T services to end users through loT

applications and has been placed at the top of the ACO architecture. It acts
as an interface for the users to remotely send commands and receive data
and information from the objects. Users are also able to visualize the loT
data, which has been analyzed in the cloud services layer, through the
applications.

The applications also allow administrators and users to configure devices,
and define access control polices for securing access to 10T resources and
data [29].

2.2.2.3. Middleware Layer
The devices over the 10T implement different type of services. Each device

connects and communicates with only those other devices which
implement the same service type. This layer is responsible for the service
management and has link to the database.It receives the information from
Network layer and store in the database. It performs information
processing and ubiquitous computation and takes automatic decision based
on the results[30].

2.2.2.4. Network Layer
The network layer is like the neural network and brain of loT, its main

function is transmitting and processing information. The network layer
includes a convergence network of communication and Internet network,

network management center, information center and intelligent processing

13

center, etc. The network layer will transmit and process the information

obtained from perception layer[31].

2.2.2.5. Perception Layer

Perception layer is the lowest layer in the 10T architecture. As the name
suggests, its purpose is to perceive the data from environment. All the data
collection and data sensing part is done on this layer Sensors, bar code
labels, RFID tags, GPS, and camera, lie in this layer. Identifying
object/thing and gathering data is the main purpose of this layer [32].

2.2.3. 10T Protocols:
This section contains a general overview of 10T

2.2.3.1. Message Queue Telem etry Transport (MQTT)
The Message Queuing Telemetry Transport (MQTT) is a standard protocol

of Organization for the Advancement of Structured Information Standards
(OASIS) standard. It is light weights publish/subscribe messaging
transport application level protocol. It uses TCP/IP protocol and designed

for machine-to-machine and loT purpose[33].

2.2.3.2. Constrained Application Protocol (CoAP)
The Constrained Application Protocol (CoAP) has been designed by

Internet Engineering Task Force (IETF) to facilitate message throughput
between machine-to-machine (M2M) applications by offering various
features such as built-in discovery, multicast support and asynchronous
message exchanges. The main goal of CoAP is to design a web protocol
on top of UDP for special environments that consist of constrained nodes
(e.g., resources, computing power) and networks (e.g., low-power, l0ss).
There are more than 30 CoAP implementations written in various
languages including C,C++, Java, Python, JavaScript, etc[34].
14

2.2.3.3. Websocket Protocol
the WebSocket Protocol also has been designed by IETF to provide full-

duplex communication between the web browser and server to overcome
the existing bidirectional communication technologies using HTTP while
supporting existing HTTP infrastructures over HTTP ports—80 and 443.
Although the WebSocket Protocol has been designed to supersede existing
HTTP technologies, it recently has been used for the 10T applications that
require real-time communication[35].

2.2.4. 10T Application
Potential applications of the 10T are numerous and diverse, permeating

into practically all areas of every-day life of individuals, enterprises, and
society as a whole. The IoT application covers “smart”
environments/spaces in domains such as: Transportation, Building, City,
Lifestyle, Retail, Agriculture, Factory, Supply chain, Emergency,
Healthcare, User interaction, Culture and tourism, Environment and

Energy. Below are some of the IOT applications:

2.2.4.1. Smart Cities
The 10T play a vital role to improve the smartness of cities includes many

applications to monitoring of parking spaces availability in the city,
monitoring of vibrations and material conditions in buildings and bridges,
sound monitoring in sensitive areas of cities, monitoring of vehicles and
pedestrian levels, intelligent and weather adaptive lighting in street lights,
detection of waste containers levels and trash collections, smart roads,
intelligent highways with warning messages and diversions according to
climate conditions and unexpected events like accidents or traffic jams
[36].

15

2.2.4.2. Smart Agriculture and Smart Water
The 10T can help to improve and strengthen the agriculture work by

monitoring soil moisture and trunk diameter in vineyards to control and
maintain the amount of vitamins in agricultural products, control micro
climate conditions to maximize the production of fruits and vegetables and
its quality, study of weather conditions in fields to forecast ice information,
rail, drought, snow or wind changes, control of humidity and temperature
level to prevent fungus and other microbial contaminants. The role of 10T
in water management includes study of water suitability in rivers and the
sea for agriculture and drinkable use, detection of liquid presence outside
tanks and pressure variations along pipes and monitoring of water level

variations in rivers, dams and reservoirs[37].

2.2.4.3. Retail and Logistics Implementing
The 10T in Retail/Supply Chain Management has many advantages which

include monitoring of storage conditions along the supply chain and
product tracking for traceability purposes and payment processing based
on location or activity duration for public transport, gyms, theme park, etc.
In the shop itself, 10T offers many applications like guidance in the shop
according to a preselected shopping list, fast payment solutions like
automatically check-out using biometrics, detection of potential allergen
in a given product and control of rotation of products in shelves and
warehouses to automate restocking processes. The IoT elements used in
this kind of application are RFID and WSN and the bandwidth range is
small. The example retail 10T reported in literature is SAP future retail
center. The 10T in logistics includes quality of shipment conditions, item
location, storage incompatibility detection, fleet tracking, etc. The loT
elements used in the field of logistics are RFID, WSN and single sensors
16

and the bandwidth ranges from medium to large[38].

2.2.4.4. Healthcare
Many benefits provided by the 10T technologies to the healthcare domain

are classified into tracking of objects, staff and patients, identification and
authentication of people, automatic data collection and sensing. Tracking
is the function used to identify a person or an object in motion. This
includes the case of patient flow monitoring to improve workflow in
hospitals. The identification and authentication include patient
identification to reduce incidents harmful to patients, comprehensive and
current electronic medical record maintenance, and infant identification in
hospitals to prevent mismatching. The automatic data collection and
throughput is mostly aimed at reducing form processing time, process
automation, automated care and procedure auditing, and medical inventory
management. Sensor devices enable function centered on patients, and in
particular on diagnosing patient conditions, providing real-time
information on patient health indicators. Application domains include
different telemedicine solutions, monitoring patient compliance with
medication regiment prescriptions, and alerting for patient well-being. In
this capacity, sensors can be applied both in in-patient and out-patient care.
The elements of 10T in Health Care are RFID, NFC, WSN, WiFi,
Bluetooth, etc. significantly improve the measurement and monitoring
methods of vital functions such as temperature, blood pressure, heart rate,
cholesterol level, blood glucose, etc. [39].

2.3. Related Work
Recently, SDN has proved its benefits and thus applied to many

networking environments such as 1oT. Here, SDN has an impact in 10T by

17

its flexibility to adapt the components and the applications dynamically.
So that many researchers proposed an SDN-based architecture for 10T
The author of [40] reviewed SDN controller and Take advantages of the
decentralized feature of it and proposed Ubiflow software defined IoT
system flow control and mobility management in a heterogeneous
network.
The author s in [5]also proposed an original SDN controller design in loT
Multi-networks that enables flexible, effective, and efficient management
on task, flow, network, and resources.
Although, others proposed software defined based framework for IoT.
Jararweh and al in [41] proposed a SDIoT software defined based
framework model to simplify the loT management process and challenges
in the traditional IoT architecture to forward, store, and secure the
produced data from the 10T objects by integrating the software defined
network software defined storage, and software defined security into one
software defined based control model.
The authors of [42] developed an SDN-Based layered architecture for
horizontal 10T services with open and programmable devices and data at
different levels they proposed two network models, the man-like nervous
(MLN) model and the social organization framework (SOF) model. The
idea of MLN model is similar to a reverse tree in which the sensors are in
the low rank of the model, and it becomes a distributed node to send
sensing data to the centralized data center. Additionally, the SOF model
consists of local l0T, industrial 10T, and national 10T that manages the
distributed nodes in the specific region and the data center.
The theme of [42]is that 10T is based on the data center and manages the
data from the sensors based on the MLN model. However, the specific
18

usage of the 10T network is not provided yet.

Another architecture of the 10T network was described by Catellani et al.
[43]. In this work,the authors created a test bed for an 10T environment by
utilizing the legacy sensors and actuators by modifying it with TinyOS.
The authors envisioned that the future 10T network would be based on
Internet Protocol version 6 (IPv6), and every communication will be
conducted with IP addresses.

Moreover, instead of enumerating the future networking protocol, the
authors categorized the nodes in terms of base station node (BSN), mobile
node (MN), and specialized node (SN). BSN refers to the IPv6 sink and
router, MN refers to wireless dongle to add wireless sensor network
(WSN) connectivity to a standard laptop, and SN refers to nodes offering
services such as temperature readings or actuation.

Finally, Gubbi et al. [11] claimed that future 10T network will be based on
the current WSN technology. The nodes are expected to be deployed in an
ad-hoc manner, and a novel cyber infrastructure is based on a service-
oriented architecture (SOA) and sensor networks to acquire the data from
the sensors and the devices. Furthermore, the addressing schemes will be
based on IPv6 and possible adaptation with the uniform resource name
(URN) system for development of the I0T network. The authors claimed
that cloud-based centralized storage is required to support the storage and
analysis for 10T. Consequently, the authors noted that the future loT
network will be based on current WSN technology with the middleware to

support heterogeneous devices and a centralized storage for the data.

2.4. System Tools
This section describes software tools that have been used in the simulation

19

2.4.1. VM VirtualBox
VirtualBox is free and open-source software that can be installed on a

number of host operating systems including Linux, mac-OS and Windows
VirtualBox is used here to run mininet hosted in Ubuntu Linux operating
system which is used to implement the different topologies under
evaluation.

2.4.2. Ubuntu Linux
Ubuntu Linux is a Linux distribution based on Debian and mostly

composed of free and open-source software. Ubuntu is officially released
in three editions: Desktop, Server and Core for Internet of things devices
and robots. All the editions can run on the computer alone, or in a virtual
machine. Ubuntu is a popular operating system for cloud computing, with
support for OpenStack

2.4.3. SDN Hub
SDN Hub created a starter kit tutorial VM, which comprises various

components that will facilitate SDN development.

The VM is Ubuntu 64-bit based, which is preinstalled with various
software and tools Controllers (OpenDaylight, ONOS, RYU, Floodlight,
Floodlight-OF1.3, POX, and Trema), Open VSwitch, Mininet, Wireshark
1.12.1 with native support for OpenFlow parsing, JDK 1.8, Eclipse Luna,
and Maven 3.3.

2.4.4. Mininet
Mininet is a network emulator which is able to emulate a linked set of

virtual hosts, switches, and controllers. Mininet hosts run standard Linux
network software, and its switches support OpenFlow for highly exile
custom routing and SDN.

Mininet supports research, development, learning, prototyping, testing,

debugging, and any other tasks that could benefit from having a complete
20

experimental network on a laptop or other PC.

2.4.5. Iperf
Iperf is a tool for network performance measurement and tuning. It is a

cross-platform tool that can produce standardized performance
measurements for any network. Iperf has client and server functionality
and can create data streams to measure the throughput between the two
ends in one or both directions. Typical iperf output contains a time-
stamped report of the amount of data throughputred and the throughput
measured.

2.4.6. Eclipse Mosquitto
Eclipse Mosquitto is an open source (EPL/EDL licensed) message broker

that implements the MQTT protocol versions 5.0, 3.1.1 and 3.1. Mosquitto
is lightweight and is suitable for use on all devices from low power single
board computers to full servers.

The MQTT protocol provides a lightweight method of carrying out
messaging using a publish/subscribe model. This makes it suitable for
Internet of Things messaging such as with low power sensors or mobile
devices such as phones, embedded computers or microcontrollers.

The Mosquitto project also provides a C library for implementing MQTT
clients, and the very popular mosquitto_pub and mosquitto_sub command
line MQTT clients.

2.4.7. Paho Python Client

The Paho Python Client provides a client class with support for both
MQTT v3.1 and v3.1.1 on Python 2.7 or 3.x. It also provides some helper
functions to make publishing one off messages to an MQTT server very

straightforward

21

Chapter Three

Methodology

3. System Implementation and Configuration
In this chapter, we discuss about software’s that we used in simulations

and finally the implementations of SDN networks.

3.1. System Implementation
SDN hub installed in the virtual machine as in figure (3-1) and different

topologies (single, linear and tree) with different SDN controllers (ONOS
and Floodlight) are constructed using mininet tool

8¢ Oracle VM VirtualBox Manager

— O *
File Machine Help
AT
AWM Ay i :
tl]ﬁ Tools %"wv-? r‘lﬁ?‘,} -
MNew Settings Discard Show
EME Centos =] General = Preview

b @ Powered Off Mame: SDNHub

Operating System: Ubuntu {(64-bit)

~ Settings File Location: C:\Users\user
=, deisnet213 WirtualBox YMs\SDMHub
@) Powered Off

El System

cal — Base Memory: 4608 MB
Boot Order: Floppy, Optical, Hard Disk
Acceleration: YT-x/AMD-Y, Nested Paging,

KN¥M Paravirtualization
(== SDNHub1 _
- - Displa
(@) Powered Off = play

Figure 3-1creates SDNhub virtual machine

ONOS controller installed using the commands:
root@sdnhumvm:/home/ubuntu/Desktop/onos-2.0.0/bin# ./onos-service start
FloodLight controller installed using the commands:
root@sdnhumvm:/home/ubuntu/Desktop/floodlight# java - jar target/floodlight.jar

3.2. System Configuration
In this section configuration of the different topologies is detailed as

follows:

22

Single topology: The single topology in Mininet environment
consists of a single OpenFlow-enabled switch and number of hosts.
The switch in turn gets connected with a control plane available on
the topology. A single topology that connected to a floodlight
controller or ONOS controller can be created by using a command-
line tool as shown in Fig. 3-2 with 5-hosts follow the structure

command below:
Sudo mn —topo single, 5 - -controller remote, ip=127.0.0.1,port=6653

&> =

h10.0.0.1
h10.0.0.2
/\J
—
lsl S00:00:00:00:00:00:00:00 rlsl
h10.0.0.5 h10.0.0.3
r \
S

h10.0.0.4
Figure 3-2 Single Topology

Linear Topology: Is including linear connection between switches
and hosts. Each host connects with its particular switch and the
switches are connected with each other linearly. All the OpenFlow-
enabled switches in turn gets connected with a remote controller. A
linear topology having 5-hosts connected with Floodlight controller
or ONOS controller topology that connected to a floodlight
controller or ONOS controller can be created by using a command-

line tool as shown in Fig. 3-3.
Sudo mn —topo linear, 5 - -controller remote, ip=127.0.0.1,port=6653

23

h10.0.0/4

h10.0.0.3

$00:00:00:00:00:00:00:05
S00:00:00:00:00:00:00:03
00:00:00:00:00:00:00:02

S00:00:00:00:00:00:0Q:04

<>

h10.0.0.1

S00:00:00:00:00:00:00:01

Figure 3-3 Linear Topology

e Tree Topology: All OpenFlow-enabled switches and hosts are
linked with each other in a hierarchical fashion. A tree topology
having 32-hosts in floodlight controller or ONOS controller
topology that connected to a floodlight controller or ONOS
controller can be created by using a command-line tool as shown in
Fig. 3-4.

Sudo mn —topo tree,3 - -controller remote, ip=127.0.0.1,port=6653

s 2 28 &

H100029 10.00.30 H16.0.0.31 Hiohos
soooooooo 0.00.00.29 '
H10.0.0.28 L

@ . 500,000 oo.o.oo 00.3?410 0.0.23 Hl0.0.0.A@
$00.00.00000.00.00.27 P

H10.0.0.27 <O $00.00.00,£0.00.00.00.03 H10.0.0.5
$00.00.00.00.04.00.00.28 , .

S h10.0.0.1 <> S00.00.00.¢0.00.00.00.02 <O H10.0.0.6

$00.0940.00.00.00.00.25~ 5 $00.00.00.00.00.00.00.01 500.00.00.09450.00.00.04
2 $00.00.00.40.00.00.00.24 @
L
506.00.00.00.00.00.00.26
H10.0.0.26
<2 H10.0.0.2 <

@ 500.00.00f00.00.00.00.17 S 6730.00:60.00,00.00.07 H10.0.0.7
g > 305206.30.00.00.00.00.06 g
H10.0.0.25 $00.00.00.00.00.00.00.16 A $00.00.00.00.00.00.00:05,
Y $00.00.00.09.00.00.00.08
)@3 $00.00.00.00.00.00.00.22 <>
S < SQo-0700.0010.00.00.18
7 <> o H10.0.0.8
H10.0.0.24,
$00.00.00/00.00.00.00.21 $00.00.00.0%.00.008Q12
&
500.0%Q0.00.00.00.00. 500.00.00.00.00.00.00.10
H10.0.0.23 s00.00.00.90.00.00.00.23 < > <>
g P, 500.00.00.00.0040.00.09
500090 Q.0.0.9

sooooooo 00.00.00.20 000040013 @
H10.0.0. 17 \

S00.00, 00 00.00.00.12

H10.0.0.22 3 @ @ P 500.00.00.00.00.00.00.1 H10.0.0.10
H10.0.0. @
H100021 MO0 20H10 0.0.19
H10.0.0.11

H1°0016 H10.0.0.14 H10.0.0.13 H10.0.0.12
H10.0.0.15

Figure 3-4 Tree Topology
24

e |0T Topology:In this section, An SDN-based lot topology that uses
MQTT protocol which can be used in 10T devices from different
manufacture that uses different technologies is created using

python script as shown in Fig. 3-5.

® ®
=) ®) 5) ® @ = & S 8)

Figure 3-5 loT Topology

MQTT use mosquito and mosgitto-clients and paho mqtt python which
are a light weight open source message broker that Implements MQTT.
mosquito configured using the command:
Sudo apt-get install mosquito
mosqitto-clients configured using the command:
Sudo apt-get install mosquito- clients
paho mqtt python configured using the command:
git clone https://github.com/eclipse/paho.mqtt.python
cd paho.mqtt.python
python setup.py install
Then part of the hosts used to create a very simple two state controllable
sensors using python script as shown in Fig. 3-6. The sensors can be used
to simulate real world objects like lights, doors using the following
command:

root@sdnhubvm:$python simple-sensor.py -h test.mosquitto.org -n door -s

25

m:~[08:51]1% puthon simple—sensor.py —h test.mosquitto.org —n

Figure 3-6 create sensors using python
All the sensors controlled by the remote SDN Controller use MQTT which
IS an application protocol that runs over the TCP/IP protocol using the
publish-subscribe pattern. Then test.mosquitto.org which is online MQTT
broker and two hosts (sensors) are used as publisher and subscriber. Both
can publish messages or subscribe to topic request it from broker (server)

who is listening at port 1883 as shown in Fig. 3-7.

File Edit View Terminal Tabs Help

ubuntu@sdnhubvm:~[04:30]% mosquitto_pub -h test.mosquitto.org -t "hello/world”
m "“"open the door"

ubuntu@sdnhubvm:~[04:30]s%

File Edit View Terminal Tabs Help
ubuntu@sdnhubvm:~[04:29]% mosquitto_sub -h test.mosquitto.org -t "hello/world

-V

hello/world open the door

Figure 3-7: subscribe and publish to topic by sensors

26

Chapter Four

Results and Discussion

4. Results

In this chapter the performance of different SDN controllers (ONOS and
FloodLight) was evaluated in terms of bandwidth, throughput and delay
using different topologies (single, linear and tree and SDN-based

architecture for 10T as follow:

4.1. Single Topology

The following section provides the results obtained by testing the ONOS
and Floodlight controllers in simulation environment that implemented in
Mininet.

To measure the throughput, bandwidth and delay single topology is created
as shown in figure 4-1 using onos controller and figure 4-4 using floodligt
controller and then iperf which use one of the host as server and the other
as client was used as in figure 4-2, figure 4-3, figure 4-5 and figure 4-6

<« c @ @ localhost 80% oe w I @ =

Figure 4-1 Single Topology ONOS GUI

27

T
[
L
[
C
L
[
L
r
L
[
L
L
[
-

time 9014

OO S

O-00 00

—1 10 0. 0=

1 OO _ O._4a

Figure 4-4 Single Topology Floodlight GUI

28

0.0.1 port 51079

BRRERRRERR

Figure 4-5 throughput and bandwidth in Floodlight- based single
topology

B RRRBERRRRE

Figure 4-6 delay in Floodlight- based single topology

Single topology reflects the simple way for evaluating controller behavior.
Fig 4-7, Fig 4-8 and Fig 4-9 show the throughput, bandwidth and delay
over a single topology, respectively. It’s clear that ONOS controller gives
performance better than floodlight controller when it comes to Throughput
and Bandwidth and Floodlight give better performance when it comes to
delay.

The traffic Throughput of ONOS ranged is from 1.25 to 321 MB and
increase dramatically from 1.25 to 282 MB at the first five seconds then
slightly decrease to 276 MB at second number six then continue to
increase until reach the highest throughput value which is 321 MB at the
last time interval, On the other hand the throughput of floodlight ranged is
from 28.6 to 263 MB and increase dramatically from 28.6 to 229 MB at

29

the first three seconds then slightly decrease to 211 MB at the next time
interval then increase to 236 at the following two time interval and
decrease to 213 at the following three time interval until reach the highest
throughput value which is 263 MB at the last time interval .

The Bandwidth of ONOS ranged is from 0.01 to 2.69 Gbits/sec. and
increase dramatically from 0.01 to 2.36 Gbits/sec MB at the first five
seconds then slightly decrease to 2.32 Gbits/sec at the next time interval
then continue to increase until reach the highest Bandwidth value which is
2.69 Ghits/sec at the last time interval; On the other hand the Bandwidth
of floodlight ranged is from 0.24 to 2.21 Gbit/sec and increase
dramatically from 0.24 to 1.92 Gbit/sec at the first three seconds then
slightly decrease to 1.77 at the next time interval then increase to 1.98
Ghit/sec at the following two time interval and decrease to 1.79 Gbit/sec
at the following three time interval until reach The highest value of the
Bandwidth which is 2.21 Gbit/sec at the last time interval .

The Delay of ONOS ranged is from 0.099 to 33 ms. the highest value of
the delay is 33 ms which happen at the first-time interval because put the
ping request on hold to send out an ARP broadcast to learn the MAC
address of the remote device, then wait for a response, and then send the
first ping through. This delay is usually too long, then the delay decrees as
the time went by until it reaches the lowest value 0.099 at the last time
interval; on the other hand, the Delay of floodlight ranged was from 0.099
to 27.5ms. The highest value of the Delay is 27.5 ms which happen at the
first-time interval as described then the delay decrees as the time went by
until it reaches the lowest value 0.099 at the last time interval.

30

400

T 300 e
€5 200 —~4
,_§ // e ONOS
= 100 L V4 floodlight
0
01 12 23 34 45 56 67 7-8 89 910
Interval Time [sec]
Figure 4-7 Traffic Throughput of Single Topology
3
2 25 P
% 2 l:]
S s / . o
% 1 /)4 onos
g 05 / // ——floodlight
0 V
01 1-2 23 34 45 56 67 7-8 89 9-10
Interval Time [sec]
Figure 4-8 Bandwidth of Single Topology
35 \
30
o 25 \
gzo
715 onos
© 1‘5) ——floodlight
o \

o1 12 23 34 45 56 67 78 89 09-10

Interval Time [sec]

Figure 4-9 Delay of Single Topology

4.2. Linear Topology
A linear topology was created as showed in figure 4-10 using onos

controller and figure 4-13 using floodligt controller and Iperf was used to

measure the throughput, bandwidth as showed in figure 4-11 and Figure

31

4-14 and ping used to measure delay as showed in figure 4-12 and Figure
4-15:

100215 -2 ONOS Summa
: 15
Version : 2.0.0
Devices: 5
Devices : S
Links
Hosts : 5

Topology SCCs :

Intents :
Flows : 20

Figure 4-10 Linear Topology ONOS GUI

-1
1
1
1
1

-1
1
1
1

-1

Figure 4-12 delay in onos based linear topology

32

sO0O:00:00

O0:00:00:00

: : ~:l'|r| OO0 0000 ('-l'-(“‘.”‘_';“"_H';‘ O O-(
10.0.0.1

000002

L

CP port 5001
ult)

e e

Figure 4-14 throughput and bandwidth in Floodlight based linear
topology

EhEARRBRARAND
BERRRERRRRE

Figure 4-15 delay in Floodlight based linear topology
33

figure 4-16, figure 4-17 and figure 4-18 display the results of linear
topology based on throughput, bandwidth and delay respectively.

figure 4-16 display the results of the throughput of ONOS which show
inconsistency in increasing and decreasing through all the time interval it
ranged from 222 which happened at time interval number seven to 466 MB
which happened at time interval number five, On the other hand the
Throughput of floodlight show increasing from the lowest value 47.6 to
146 Mbytes at the first three time interval then decrease to 126 Mbytes
after two time interval and increasing to the highest value of the
Throughput which is 167 MB that happened at the last interval.

figure 4-17 display the results of the bandwidth of ONOS which show
inconsistency in increasing and decreasing through all the time interval it
ranged from 1.86 Gbit/sec which happened at time interval number seven
to 3.91Ghit/sec which happened at time interval number five, on the other
hand the Bandwidth of floodlight show increasing from the lowest value
0.39 to 1.23 91Ghit/sec at the first three time interval then decrease to 1.05
91Gbit/sec after two time interval and increasing to the highest value of
the bandwidth which is 1.4 Gbit/sec that happened at the last interval.
figure 4-18 display the results of the the controllers delay in ONOS it
ranged from the highest value which is 69.7 ms that’s happen at the first
time interval as described then the delay decrees as the time went by until
it reach the lowest value 0.112 ms at the last time interval, On the other
hand the Delay of floodlight ranged from the highest value which is 48.1
ms ms that’s happen at the first time interval as described then the delay
decrees as the time went by until it reach the lowest value 0.061 ms at the

last time .

34

500
T 400 N
I~ \
%’200 onos
£ floodlight
£ 100 //
0
01 12 23 34 45 56 67 7-8 89 9-10
Interval Time[sec
Figure 4-16 Traffic Throughput of Linear Topology
5
g4 \
§ 2 "‘\5\] onos
5 1 floodlight
0
01 12 23 34 45 56 67 7-8 89 9-10
Interval Time[sec]
Figure 4-17 Bandwidth of Linear Topology
80
70
60

20 1N\
onos

\

\

\\
20 floodlight
10

o1 12 23 34 45 56 67 7-8 89 09-10

Interval Time[sec]

delay[mesec
w
o

Figure 4-18 Delay of Linear Topology

4.3. Tree Topology
A tree topology was created as showed in figure 4-19 using onos controller

35

and figure 4-22 using floodligt controller and Iperf was used to measure

the throughput, bandwidth as showed in figure 4-20 and figure 4-23 and

ping used to measure delay as showed in figure 4-21 and figure 4-24:

10.0.2.15

10.0.2.15
Devices: 7

Figure 4-19 Tree Topology ONOS GUI

Figure 4-21 delay in ONOS based tree topology

36

hi \\ - L
. .
1.4
|
— Q\ —
|- s =
1 o = 1 _ -
|
| i
e

i
i
i
i
1
i
i
i
i
L™

Figure 4-24 delay in Floodlight based tree topology
37

Figure 4-25, figure 4-26 and figure 4-27 illustrate the outcome of tree
topology based on throughput, bandwidth and delay respectively.
Figure 4-25 illustrate the Throughput of ONOS which show increasing
from the lowest value 11.6 to 109 Mbytes at the first five time interval
then decrease to 32.9 Mbytes after three time interval and increasing to
the highest value of the Throughput which is 172 MB that happened at the
last time interval; on the other hand the Throughput of floodlight
increasing from the lowest value 135 to 286 Mbytes at the first five time
interval then decrease to 230 Mbytes for the next time interval and
increasing to the highest value of the Throughput which is 302 MB that
happened at time interval number nine then decrease to 272 anged is from
135 to 300 Mbyte. The highest value of the Throughput is 300Mbyte as in
figure 4-26.
Figure 4-26 present the Bandwidth of ONOS which started at 97.5
Ghits/sec and increase dramatically to 915 Gbits/sec at the first five
seconds then slightly decrease to 256 Gbits/sec at the next three time
interval then continue to increase until reach the highest Bandwidth value
which is 1485Gbhit/sec at the last time interval; On the other hand the
Bandwidth of floodlight started at 1.13 Ghits/sec and increase dramatically
to 2.4 Gbits/sec at the first six time interval then slightly decrease to 1.93
Gbits/sec at the next time interval then continue to increase to 2.54
Ghits/sec at the next two time interval then slightly decrease to 2.28
Gbits/sec at the last time interval.
figure 4-27 display the results of the controllers delay in ONOS it showed
inconsistency in increasing and decreasing through all the time interval it
decrease from 31.4 ms which happened at the first time interval to 0.102
at the time interval number three and increase to 25.3 for the next interval
38

then decrease to 0.104 at the time interval number eight then increase to
23.9 for the next interval then decrease to 0.629 at the last time interval,
On the other hand the Delay of floodlight ranged from the highest value
which is 51.7 ms that’s happen at the first time interval as described then
the delay decrees as the time went by until it reach the lowest value 0.065

ms at the last time interval .

=

5 200 //

E; 150 / / onos
©

-

floodlight

4,

0 =

01 12 23 34 45 56 67 7-8 89 9-10

Interval Time[sec]

Figure 4-25 Traffic Throughput of Tree Topology

1600
1400 -

1000 /
800 /
600 / \ / === 0NO0S
400 / \ /
200 //]

o L1 L

o1 1-2 23 34 45 56 67 78 89 0910

Interval Time[sec]

[EnY
N
o
o

Bandwith[Gbits/sec

floodlight

Figure 4-26 Bandwidth of Tree Topology

39

D
o

[
o

onos

A\ A floodlight

/1N /1\
\ /1N

01 12 23 34 45 56 67 78 89 9-10

Interval Time[sec]

delay[mesec
w IN
o o

//

N
o

SN

o

Figure 4-27 Delay of Tree Topology

4.4. 10T topology
An |oT topology was created as showed in figure 4-28 using ONOS

controller and Iperf was used to measure the throughput and bandwidth as
showed in figure 4-29 and figure 4-31 and ping used to measure delay as

showed in figure 4-30 and figure 4-32:

~ ONOS Summary

10.0.2.15

= Devices: 7 Version : 2.0.0
Devices: 7
- Links: 14
= Hosts : 14
B “ TopologySCCs: 1
2 3
Intents:
2 Flows : 28
n .
B

Figure 4-28 SDN-based iot Topology ONOS GUI

40

File Edit View Terminal Tabs Help

Client connecting to 10.6.2.15, TCP port 56001
: 2.50 MByte (default)

ID] Interval Transfer Bandwidth

sec 176 MBytes 1.48 Gbits/sec
sec 268 MBytes 2.25 Gbits/sec
sec 227 MBytes 1.91 Gbits/sec

sec 204 MBytes 1.71 Gbits/sec
sec 244 MBytes 2.05 Gbits/sec
sec 222 MBytes 1.87 Gbits/sec
sec 227 MBytes 1.90 Gbits/sec
sec 206 MBytes 1.73 Gbits/sec
sec 241 MBytes 2.02 Gbits/sec
sec 211 MBytes 1.77 Gbits/sec
sec 2.17 GBytes 1.87 Gbits/sec
:~[06:551%

QOUONOUVAWNKMFO

Figure 4-29 throughput and bandwidth in ONOS- based loT topology

Edit View Terminal Tabs Help
lubuntu@sdnhubvm: ~[04:32]% ping 16.6.2.15 -c 16
PING 10.0.2.15 (10.0.2.15) 56(84) bytes of
bytes from - icmp_seq=1
bytes from icmp_seq=2
bytes from icmp_seq=3
bytes from icmp_seq=4
bytes from icmp__seq=5
bytes from icmp_seq=6
bytes from icmp_seq=7
bytes from icmp__seq=8 =
bytes from icmp__seq=9 time=0.072
bytes from icmp_seq=10 ttl=64 time=0.062 ms

-=-=- 10.0.2.15 ping statistics - --

10 packets transmitted, 10 received, 0% packet loss, time 9003ms
‘rtt min/avg/max/mdev = 0.062/0.069/0.080/0.004 ms
ubuntu@sdnhubvm:—~[04:331s

File Edit View Terminal Tabs Help

ubuntu@sdnhubvm:~[04:22]% ping 10.60.2.15 -c 10

PING 10.0.2.15 (10.0.2.15) 56(84) bytes of data.

64 bytes from 10.0.2.15: icmp_seq=1l ttl=64 time=0.059
64 bytes from 10.0.2.15: icmp_seq=2 ttl=64 i

64 bytes from 10.0.2.15: icmp_seq=3 ttl=64

64 bytes from 10.0.2.15: icmp_seq=4 ttl=64

64 bytes from 10.0.2.15: icmp_seq=5 ttl=64

64 bytes from 10.0.2.15: icmp_seq=6 ttl=64

64 bytes from 10.0.2.15: icmp_seq=7 ttl=64

64 bytes from 10.0.2.15: icmp_seq=8 ttl=64

64 bytes from 10.0.2.15: icmp_seq=9 ttl=64

64 bytes from 10.0.2.15: icmp_seq=10 ttl=64 time=0.039 ms

NNNNNNNNNN®

--- 10.0.2.15 ping statistics ---

10 packets transmitted, 10 received, 0% packet loss, time 9001lms
rtt min/avg/max/mdev ©0.039/0.055/0.120/0.022 ms
ubuntu@sdnhubvm:~[04:23]%

Figure 4-31 throughput and bandwidth in floodlight- based 10T topology

41

I . .)
File Edit View Terminal Tabs Help
3] local 10.0.2.15 port 37109 connected with 10.0.2.15 port 5001
ID] Interval Transfer Bandwidth
3] ® sec 208 MBytes .74 Gbits/sec
3] 0 sec 211 MBytes .77 Gbits/sec
3] 0 sec 239 MBytes .00 Gbits/sec
3] © sec 267 MBytes .24 Gbits/sec
3] 0 sec 239 MBytes .01 Gbits/sec
3] .0 sec 179 MBytes .50 Gbits/sec
e
2]
(2]
e
2]
m:

3] sec 236 MBytes .98 Gbits/sec
3]
3]
3]
3]
buntu@sdnhubv

.07 Gbits/sec
.99 Gbits/sec
.86 Gbits/sec
.92 Gbits/sec

sec 247 MBytes
sec 237 MBytes
sec 222 MBytes

QVUONOVNDBWNRFO
CONOUNAWNK
HMEMNRERENNNRR

sec 2.23 GBytes
~[04:161%

Figure 4-32 Delay in floodlight- based 10T topology

Figure 4-33, figure 4-34 and figure 4-35 illustrate the outcome of loT
topology based on throughput, bandwidth and delay respectively.

Figure 4-33 illustrate the Throughput of ONOS which show increasing
from the lowest value 176 to 268 Mbytes at the first time interval then
decrease and increasing as the time interval goes until the last time interval
which shows throughput of 211 Mbytes; on the other hand the Throughput
of floodlight increasing from the lowest value 179 to 267 Mbytes at the
first four time interval then decrease and increasing as the time interval
goes until the last time interval which shows throughput of 222 Mbytes.
Figure 4-34 present the bandwidth of ONOS which started at 1.48
Gbits/sec and increase t02.25 Gbits/sec which is the highest value then
decrease and increasing as the time interval goes until the last time interval
which shows bandwidth of 1.77; On the other hand the bandwidth of
floodlight started at 1.74 Gbits/sec increasing to 2.24 Gbits/secwhich is the
highest value at the first four time interval then decrease and increasing as
the time interval goes until the last time interval which shows 1.86
Gbits/sec at the last time interval.

Figure 4-35 display the results of the controllers delay in ONOS it showed

42

inconsistency in increasing and decreasing through all the time interval it
decrease from 0.08 ms which happened at the first time interval to 0.062
at the last time interval, On the other hand the Delay of floodlight ranged
from the highest value which is 0.059 ms that’s happen at the first time
interval as described then the delay showed inconsistency in increasing
and decreasing through all the time interval and reach 0.039ms delay at
the last time interval .

300

250

o

e ON0S

100 e f|loodlight

Throughput [Mbytes]

50
0

0-1 1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-10

Interval Time[sec]

Figure 4-33Traffic Throughput of lIoT Topology

2.5
2
o \ \ 4
S~
215 4
9,
=
ﬁ — ONOS
s 1
© .
c% e f|loodlight
0.5

0-1 1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-10

Interval Time[sec]

Figure 4-34 Bandwidth of 0T Topology
43

delay[mesec

© o
= =
N SN

o©
i

/
\

\ = floodlight

\
L

01 12 23 34 45 56 67 78 89 9-10

Interval Time[sec]

Figure 4-35 Delay of 0T Topology

44

Chapter 5

5. Conclusion and Recommendations

5.1. Conclusion

SDN seems to be the promising technology thanks to its flexibility,
programmability and the global view given by its centralized controller, in
the first part of this Thesis tow SDN controllers are evaluated especially in
terms of throughput, bandwidth and delay and since some of the loT
applications require high band width due to the big data generated. ONOS
show the highest bandwidth in all the evaluated topologies which are
1.876, 2.85 and 587.55 Ghit/sec comparing to floodlight which are 1.741,
1.4 and 2.157 Ghit/sec in single, linear and tree topologies respectively and
show its feasibility to be used in the SDN-based IoT topology and show
average throughput of 222.6 MB and average bandwidth of 1.869 Gbit/sec

and average delay of 0.069 ms.

5.2. Recommendations

Internet of Things is a new revolution of the Internet and it is a key research
topic for researcher in embedded, computer science & information
technology area due to its very diverse area of application& heterogeneous
mixture of various communications and embedded technology in its
architecture

In the future a special attention should be put to studying performances of
SDN-based architecture for 10T in a concrete smart scenario and with 10T
devices such as Raspberry Pi and sensors. In addition, the behavior of

different SDN controllers within a smart loT environment.

45

10.

11.

12,

13.

14,

Reference

Gubbi, J., et al., Internet of Things (loT): A vision, architectural
elements, and future directions. Future generation computer
systems, 2013. 29(7): p. 1645-1660.

Al-Fugaha, A., et al., Internet of things: A survey on enabling
technologies, protocols, and applications. IEEE communications
surveys & tutorials, 2015. 17(4): p. 2347-2376.

Domingo, M.C., An overview of the Internet of Things for people
with disabilities. Journal of Network and Computer Applications,
2012. 35(2): p. 584-596.

Zanella, A., et al., Internet of things for smart cities. IEEE Internet
of Things journal, 2014. 1(1): p. 22-32.

Qin, Z., et al. A software defined networking architecture for the
internet-of-things. in 2014 IEEE network operations and
management symposium (NOMS). 2014. IEEE.

Evans, D., The internet of things how the next evolution of the
internet is changing everything (april 2011). White Paper by Cisco
Internet Business Solutions Group (IBSG), 2012.

Atzori, L., A. lera, and G. Morabito, The internet of things: A survey.
Computer networks, 2010. 54(15): p. 2787-2805.

Giusto, D., et al., The internet of things: 20th Tyrrhenian workshop
on digital communications. 2010: Springer Science & Business
Media.

Tayyaba, S.K., et al., Software-defined networks (SDNs) and
Internet of Things (loTs): A qualitative prediction for 2020.
network, 2016. 7(11).

Lara, A., A. Kolasani, and B. Ramamurthy, Network innovation
using openflow: A survey. IEEE communications surveys &
tutorials, 2013. 16(1): p. 493-512.

Cabaj, K., et al. SDN Architecture Impact on Network Security. in
FedCSIS (Position Papers). 2014.

Kreutz, D., et al., Software-defined networking: A comprehensive
survey. Proceedings of the IEEE, 2014. 103(1): p. 14-76.

Da Xu, L., W. He, and S. Li, Internet of things in industries: A
survey. IEEE Transactions on industrial informatics, 2014. 10(4): p.
2233-2243.

Perera, C., et al., A survey on internet of things from industrial

46

15.

16.

17,

18.

19.

20.

21,

22,

23.

24,

25.

26.

217.

28.

market perspective. IEEE Access, 2014. 2: p. 1660-1679.

Yang, Z., et al. Study and application on the architecture and key
technologies for IOT. in 2011 International Conference on
Multimedia Technology. 2011. IEEE.

Blial, O., M. Ben Mamoun, and R. Benaini, An overview on SDN
architectures with multiple controllers. Journal of Computer
Networks and Communications, 2016. 2016.

Bonomi, F., et al. Fog computing and its role in the internet of
things. in Proceedings of the first edition of the MCC workshop on
Mobile cloud computing. 2012.

McKeown, N., et al., OpenFlow: enabling innovation in campus
networks. ACM SIGCOMM Computer Communication Review,
2008. 38(2): p. 69-74.

Othman, W.M., et al. Implementation and performance analysis of
SDN firewall on POX controller. in 2017 IEEE 9th International
Conference on Communication Software and Networks (ICCSN).
2017. IEEE.

Salman, O., et al. SDN controllers: A comparative study. in 2016
18th Mediterranean Electrotechnical Conference (MELECON).
2016. IEEE.

Taher, A., Testing of floodlight controller with mininet in sdn
topology. ScienceRise, 2014(5 (2)): p. 68-73.

Khattak, Z.K., M. Awais, and A. Igbal. Performance evaluation of
OpenDaylight SDN controller. in 2014 20th IEEE international
conference on parallel and distributed systems (ICPADS). 2014.
IEEE.

Morita, K., I. Yamahata, and V. Linux. Ryu: Network operating
system. in OpenStack Design Summit & Conference. 2012.
Nguyen, X.N., D. Saucez, and T. Turletti, Providing CCN
functionalities over OpenFlow switches. 2013.

Rowshanrad, S., et al., A survey on SDN, the future of networking.
Journal of Advanced Computer Science & Technology, 2014. 3(2):
p. 232-248.

Kulmala, M., Improving network security with software-defined
networking, 2016.

Berte, D.-R. Defining the iot. in Proceedings of the International
Conference on Business Excellence. 2018. Sciendo.

Khan, R., et al. Future internet: the internet of things architecture,
possible applications and key challenges. in 2012 10th international
conference on frontiers of information technology. 2012. IEEE.

47

29,

30.

31.

32.

33.

34,

35.

36.

37.

38.

39.

40.

41.

42.

Bhatt, S., F. Patwa, and R. Sandhu. An access control framework for
cloud-enabled wearable Internet of Things. in 2017 IEEE 3rd
International Conference on Collaboration and Internet Computing
(CIC). 2017. IEEE.

Tan, L. and N. Wang. Future internet: The internet of things. in
2010 3rd international conference on advanced computer theory
and engineering (ICACTE). 2010. IEEE.

Wu, M., et al. Research on the architecture of Internet of Things. in
2010 3rd International Conference on Advanced Computer Theory
and Engineering (ICACTE). 2010. IEEE.

Uckelmann, D., M. Harrison, and F. Michahelles, Architecting the
internet of things. 2011: Springer Science & Business Media.

Mun, D.-H., M. Le Dinh, and Y.-W. Kwon. An assessment of
internet of things protocols for resource-constrained applications.
in 2016 IEEE 40th Annual Computer Software and Applications
Conference (COMPSAC). 2016. IEEE.

Shelby, Z., K. Hartke, and C. Bormann, The constrained application
protocol (CoAP). 2014.

Fette, I. and A. Melnikov, The websocket protocol, 2011, RFC 6455,
December.

Kidd, C.D., et al. The aware home: A living laboratory for
ubiquitous computing research. in International Workshop on
Cooperative Buildings. 1999. Springer.

Bainbridge, S., C. Steinberg, and M. Furnas. GBROOS—an ocean
observing system for the Great Barrier Reef. in International Coral
Reef Symposium. 2010.

Zhang, M., T. Yu, and G.F. Zhai. Smart transport system based on
“The Internet of Things”. in Applied mechanics and materials.
2011. Trans Tech Publ.

Vilamovska, A., et al., Rfid application in healthcare—scoping and
identifying areas for rfid deployment in healthcare delivery. RAND
Europe, February, 2009: p. 26.

Wu, D., et al. UbiFlow: Mobility management in urban-scale
software defined 10T. in 2015 IEEE conference on computer
communications (INFOCOM). 2015. IEEE.

Jararweh, Y., et al., SDIoT: a software defined based internet of
things framework. Journal of Ambient Intelligence and Humanized
Computing, 2015. 6(4): p. 453-461.

Huang, H., J. Zhu, and L. Zhang, An SDN_based management
framework for 10T devices. 2014.

48

43.

Castellani, A.P., et al. Architecture and protocols for the internet of
things: A case study. in 2010 8th IEEE International Conference on
Pervasive Computing and Communications Workshops (PERCOM
Workshops). 2010. IEEE.

49

6. Appendices
Appendix A

Create SDN-based IoT topology

""""Custom topology example
Two directly connected switches plus a host for each switch:
host --- switch --- switch --- host
Adding the 'topos' dict with a key/value pair to generate our newly
defined
topology enables one to pass in '--topo=mytopo’ from the command line.
from mininet.topo import Topo
class MyTopo(Topo):
"Simple topology example."
def __init_ (self):
"Create custom topo."
Initialize topology
Topo.__init__(self)
Add hosts and switches
edgeServer = self.addHost('h1")
internet = self.addHost('h2")
Hostl = self.addHost('h3")
Host2 = self.addHost('h4")
Host3 = self.addHost('h5")
Host4 = self.addHost('h6")
Host5 = self.addHost('h7")
Host6 = self.addHost('h8")

50

Host7 = self.addHost('h9")
Host8 = self.addHost('n10")
Host9 = self.addHost('h11")
Host10 = self.addHost('h12")
Host11 = self.addHost('h13")
Host12 = self.addHost('h14")
coreSwitch = self.addSwitch('s1")
disSwitchl = self.addSwitch('s2")
disSwitch2 = self.addSwitch('s3")
accSwitchl = self.addSwitch('s4")
accSwitch2 = self.addSwitch('s5")
accSwitch3 = self.addSwitch('s6')
accSwitch4 = self.addSwitch('s7")
Add links
self.addLink(edgeServer, coreSwitch)
self.addLink(internet, coreSwitch)
self.addLink(coreSwitch, disSwitchl)
self.addLink(coreSwitch, disSwitch2)
self.addLink(disSwitchl, disSwitch2)
self.addLink(disSwitch1, accSwitchl)
self.addLink(disSwitch1, accSwitch2)
self.addLink(disSwitch2, accSwitch3)
self.addLink(disSwitch2, accSwitch4)
self.addLink(accSwitchl, Hostl)
self.addLink(accSwitchl, Host2)
self.addLink(accSwitchl, Host3)
self.addLink(accSwitch2, Host4)

51

self.addLink(accSwitch2, Host5)
self.addLink(accSwitch2, Host6)
self.addLink(accSwitch3, Host7)
self.addLink(accSwitch3, Host8)
self.addLink(accSwitch3, Host9)
self.addLink(accSwitch4, Host10)
self.addLink(accSwitch4, Host11)
self.addLink(accSwitch4, Host12)
topos = { 'mytopo’: (lambda: MyTopo()) }

52

Appendix B

Create simple sensors
#! python3.4
#Simple Light or door type Sensor that can receive control Information to
change state
##sensor uses loop and standard reconnect
import paho.mqtt.client as mqtt
#import testclient as mqtt
import json
import os
import time
import logging,random,os
import sys,getopt
#from mqtt_functions import *
options=dict()
brokers=["192.168.1.206","192.168.1.157","192.168.1.204","192.168.1.1
85","test. mosquitto.org",\
"broker.hivemqg.com","iot.eclipse.org"]
options["broker"]=brokers[1]
options["port"]=1883
options[“verbose"]=False

options["“password"]=

options["sensor_type"]="light"

53

options[“topic_base"]="sensors"

options["interval"]=10 #loop time when sensor publishes in verbose
options[“interval_pub™]=300 # in non chatty mode publish

status at this interval if 0 then ignore

options["keepalive"]=120

options["loglevel"]=logging. ERROR

chame=""

QOS0=0
mqttclient_log=False

username=
password=""
chatty=False
interval=2 #loop time when sensor publishes
sensor_pub_interval=300# how often to publish if status is unchanged
Hit
def command_input(options):
topics_in=[]
qos_in=[]
valid_options=" -h <broker> -b <broker> -p <port>-t <topic> -q QOS
-v -h <help>\
-d logging debug -n Client ID or Name -i loop Interval\
-s <set states to open and closed> -u Username -P Password --h <help>"
print_options_flag=False
try:
opts, args = getopt.getopt(sys.argv[1:],"h:b:i:dk:p:t:q:l:vsn:r:u:P:")
except getopt.GetoptError:
print (sys.argv[0],valid_options)
54

sys.exit(2)
gos=0
for opt, arg in opts:

if opt =="-h"
options["broker"] = str(arg)

elif opt == "-b":
options["broker"] = str(arg)

elif opt =="-i""
options["interval"] = int(arg)

elif opt == "-k":
options["keepalive™] = int(arg)

elif opt=="-r""
options["topic_base"]=str(arg)

elif opt =="-p":
options[“port"] = int(arg)

elif opt =="-t":
topics_in.append(arg)

elif opt =="-g":
gos_in.append(int(arg))

elif opt =="-n""
options[“cname"]=arg

elif opt =="-d":
options["loglevel"]=logging. DEBUG

elif opt =="-v":
options[*verbose"]=True

elif opt =="-s":
options[*sensor_type"]="door"

55

elif opt =="-P™:
options[“password"] = str(arg)
elif opt =="-u":
options[“username™] = str(arg)
Iqos=len(qos_in)
for i in range(len(topics_in)):
if lgos >i:
topics_in[i]=(topics_in[i],int(qos_in[i]))
else:
topics_in[i]=(topics_in[i],0)
if topics_in:
options["topics"]=topics_in
HHHERHH
##callback all others defined in mqtt-functions.py
def on_message(client,userdata, msg):
topic=msg.topic
m_decode=str(msg.payload.decode("utf-8","ignore™))
logging.debug("Message Received "+m_decode)
message _handler(client,m_decode,topic)
def message_handler(client,msg,topic):
if topic==topic_control: #got control message
print(“control message ",msg)
update_status(client,msg)
def on_connect(client, userdata, flags, rc):
logging.debug(""Connected flags"+str(flags)+"result code "\
+str(rc)+"clientl_id")
if rc==0:

56

client.connected flag=True
client.publish(connected_topic,1,retain=True)
#publish connection status
client.subscribe(options[*topics™])
else:
client.bad _connection_flag=True
def on_disconnect(client, userdata, rc):
logging.debug("disconnecting reason " + str(rc))
client.connected_flag=False
client.disconnect_flag=True
client.subscribe_flag=False
HHHHHHH
def update_status(client,status):
status=status.upper()
if status==states[0] or status==states[1]: #Valid status
client.sensor_status=status #update
print(“updating status”,client.sensor_status)
def publish_status(client):
global start_flag #used to publish on start
pubflag=False
if start_flag:
start_flag=False
pubflag=True
if time.time()-client.last_pub_time >=options["interval_pub"]:
pubflag=True
if time.time()-client.last_pub_time >=options["interval"] and chatty:
pubflag=True
57

logging.debug("old "+str(client.sensor_status_old))

logging.debug("new "+ str(client.sensor_status))

if client.sensor_status_old!=client.sensor_status or pubflag:
client.publish(sensor_status_topic,client.sensor_status,0,True)
print("publish on",sensor_status_topic,\

" message ",client.sensor_status)
client.last_pub_time=time.time()
client.sensor_status_old=client.sensor_status

def Initialise_client_object():
mqtt.Client.last_pub_time=time.time()
mqtt.Client.topic_ack=[]
mqtt.Client.run_flag=True
mqtt.Client.subscribe flag=False
mqtt.Client.sensor_status=states[1]
mqtt.Client.sensor_status_old=None
mqtt.Client.bad_connection_flag=False
mqtt.Client.connected_flag=False
maqtt.Client.disconnect_flag=False
mqtt.Client.disconnect_time=0.0
mqtt.Client.disconnect_flagset=False
mqtt.Client.pub_msg_count=0

def Initialise_clients(cname):
#flags set
client= mqtt.Client(cname)
if mqttclient_log: #enable mqqt client logging

client.on_log=on_log
client.on_connect= on_connect #attach function to callback
58

client.on_message=on_message #attach function to callback
client.on_disconnect=on_disconnect
#client.on_subscribe=on_subscribe
#client.on_publish=on_publish
return client
def Connect(client,broker,port,keepalive,run_forever=False):
""" Attempts connection set delay to >1 to keep trying
but at longer intervals """
connflag=False
delay=5
#print(*'connecting ", client)
badcount=0 # counter for bad connection attempts
while not connflag:
logging.info("connecting to broker "+str(broker))
print(""connecting to broker "+str(broker)+":"+str(port))
print("Attempts ",badcount)
try:
res=client.connect(broker,port,keepalive) #connect to broker
if res==0:
connflag=True
return 0
else:
logging.debug("connection failed ",res)
badcount +=1
if badcount>=3 and not run_forever:
return -1
raise SystemExit #give up
59

elif run_forever and badcount<a3:
delay=5
else:
delay=30
except:
client.badconnection_flag=True
logging.debug("connection failed")
badcount +=1
if badcount>=3 and not run_forever:
return -1
raise SystemEXxit #give up
elif run_forever and badcount<a3:
delay=5*badcount
elif delay<300:
delay=30*badcount
time.sleep(delay)
return O
def
wait_for(client,msgType,period=.25,wait_time=40,running_loop=False):
#running loop is true when using loop_start or loop_forever
client.running_loop=running_loop #
wcount=0
while True:
logging.info("waiting"+ msgType)
if msgType=="CONNACK":
if client.on_connect:
if client.connected_flag:
60

return True
if client.bad_connection_flag: #
return False
if not client.running_loop:
client.loop(.01) #check for messages manually
time.sleep(period)
#print("loop flag ",client.running_loop)
wcount+=1
if wcount>wait_time:
print("return from wait loop taken too long™)
return False
HHHH R R
HitHHHE
if _name__ ==" main__ " and len(sys.argv)>=2:
command_input(options)
chatty=options["verbose"]
logging.basicConfig(level=options["loglevel"]) #error logging
#use DEBUG,INFO,WARNING,ERROR
if not options[*“cname"]:
r=random.randrange(1,10000)
r=3542
chame="sensor-"+str(r)
else:
cname=str(options["cname"])
##May want to change topics
connected_topic=options["topic_base"]+"/connected/"+cname
sensor_status_topic=options["topic_base"]+"/"+chame
61

topic_control=sensor_status_topic+"/control"
HHHHRHIH
options["topics™]=[(topic_control,0)]
#print(options["topics"])
if not options[*verbose"]:

print(“only sending changes")
if options["sensor_type"]=="light":

states=["ON","OFF"] #possible sensor states
else:

states=["OPEN","CLOSED"] #possible sensor states
Initialise_client_object() # add extra flags
logging.info(“creating client"+cname)
client=Initialise_clients(cname)#create and initialise client object
if options[*'username™] !1=""

client.username_pw_set(options[* username"],options[*'password"])
client.will_set(connected_topic,0, qos=0, retain=True) #set will
print(*'starting™)
print("Publishing on ",sensor_status_topic)
print(*"send control to ", topic_control)
print("Sensors States are ",states)
start_flag=True #used to always publish when starting
run_flag=True
#connecting_flag=False
bad_conn_count=0
try:

while run_flag:

client.loop(0.05)
62

if not client.connected_flag:
iIf Connect(client,options["broker"],options[*'port"],\
options["keepalive™],run_forever=True) !=-1:
if not wait_for(client,"CONNACK"):
run_flag=False #break
else:
run_flag=False #break
#subbscribes to control in on_connect calback
if client.connected flag:
publish_status(client)
except KeyboardInterrupt:
print(“interrrupted by keyboard™)
if client.connected_flag:
client.publish(connected_topic,0,retain=True)
time.sleep(1)

client.disconnect()

63

