
i

+

Sudan University of Science and Technology

 College of Graduate Studies

Performance Evaluation Of Open Network Operating System And

Floodlight Controllers In Software Defined Network Based Internet

Of Things

ترنت الأشياء المعتمدة إن في والفلودلايت المفتوحة الشبكة تشغيل نظام تحكمات م أداء ويمتق

 البرمجياتعلى الشبكة المعرفة ب

A Thesis Submitted in Partial Fulfillment for the Requirement of the

Degree of M.Sc. in Electronic Engineering (Computer and Networks

Engineering)

Prepared By:

Sara Mohammed Bakri Mohammed

Supervised By:

Dr. Fath Elrahman Ismael Khalifa

March 2021

 الإستهلال

ِاللِ ب ِ يمِ سْم ح ِالرَّ حْمن الرَّ

 (قاَلوُاْ سُبْحَانكََ لاَ عِلْمَ لنَاَ إلِاَّ مَا عَلَّمْتنَاَ إنَِّكَ أنَتَ الْعلَِيمُ الْحَكِيمُ)

﴾ 32)-سورة البقرة

Dedication

I dedicate this work to those who were very caring, helpful and

encouraging. To those who carried me for advancement and

success.

To my Mother, my late father god blesses his soul, my brothers

and sister who supported me and believed in my capabilities, my

friends who were there for me.

Acknowledgement

First, I thank Allah for giving me the strength and ability to complete this

research.

To the supervisor Dr. Fath Elrahman Ismael, the guider of my work,

who gave me his trust in the knowledge and work, being determined and

dedicated, helped and motivated me, to reach this form.

To my Mom, friends, family and stranger people those who pushed my

goals till clarity supported me to the limit for it to be, sometimes over

pushed it just so I succeed.

Abstract

The increase in the number of smart connected things has affected the

performance of IoT applications, the problem statement of this research is

that organizations requirements are becoming heterogeneous and stringent

in terms of bandwidth, response time, throughput. Software Defined

Networking (SDN) came as a solution that enables the network to adapt its

behavior dynamically according to the traffic type which will increase the

performance. In this research, the performances of the most used SDN

controllers (ONOS, Floodlight) are analyzed and compared. Controllers

analyzed based on some metrics such as throughput, delay, bandwidth

using different topologies (single, linear, tree and SDN based IoT) using

IoT traffic flow transmitted through MQTT protocol. ONOS shows

throughput of 223.985, 340.3, 69.24 and 222.6 MB and floodlight shows

throughput of 207.46 ,138.26, 255.33 and 228.5 MB in single, linear, tree

and SDN-based IoT topologies respectively. ONOS shows bandwidth of

1.876, 2.85, 587.55 and 1.77 Gbit/sec and floodlight show bandwidth of

1.741, 1.4, 2.157 and 1.86 Gbit/sec in single, linear, tree and SDN-based

IoT topologies respectively. ONOS show delay of 3.442, 7.15, 8.3and

0.062 msec and floodlight show delay of 2.85, 4.9, 5.28 and 0.039 msec in

single, linear, tree and SDN-based IoT topologies respectively.

 المستخلص

اثرت الزيادة في عدد الاشياء الذكية المتصلة بشبكة الانترنت على اداء تطبيقات انترنت الاشياء

ومن اهم التحديات هي توفير إحتياجات المنظمات والتي قد تستخدم تقنيات مختلفة لتوفير خدمة

 المعرفة لبرمجيات ا جاءت .النطاق الترددي ووقت الاستجابة والإنتاجيةمثل معينة بمتطلبات معينة

مما سيزيد من البيانات المرسلة شبكات كحل يمكّن الشبكة من تكييف سلوكها ديناميكيًا وفقًا لنوع لل

شبكات الأكثر لل المعرفة لبرمجيات اتم تحليل ومقارنة أداء وحدات تحكم الأداء. في هذا البحث ،

(والفلودلايت استخدامًا المفتوحة الشبكة تشغيل الإنتاجية (نظام مثل المقاييس بعض على بناءً

النطاق وعرض باستخدام ا والتأخير وشجري بنيات لترددي وخطي)فردي وانترنت مختلفة

بإرسال البيانات بإستخدام بروتكول نقل الرسائل) الاشياء المبنية على البرمجيات المعرفة للشبكات

بعد حيث قائمة الإنتظار عن اليظُهر في المفتوحةنظام تشغيل تبلغ شبكة 223.985إنتاجية

و 255.33و 138.26و 207.46 فلودلايت ميجابايت ويظهر 222.6و 69.24و 340.3و

ال ميجابايت 228.5 البنية على شجريالو ةخطيالو ةفرديفي المبنية الاشياء انترنت وبنية ة

عرض نطاق نظام تشغيل الشبكة المفتوحةيظُهر البرمجيات المعرفة للشبكات على التوالي كما

ويظهر 1.77و 587.55و 2.85و 1.876ترددي ثانية / نطاق فلودلايت جيجابت عرض

ة شجري الو ةخطي الو ةيفرد في البنية ال جيجابت / ثانية 1.86و 2.157و 1.4و 1.741ترددي

ي وبنية انترنت الاشياء المبنية على البرمجيات المعرفة للشبكات على التوالي نظام ظهرواخيراً

فلودلايت ظهري مللي ثانية و 0.062و 8.3و 7.15و 3.442تأخيرًا يبلغ تشغيل الشبكة المفتوحة

ة وبنية انترنت شجريالو ة خطيالو ةفرديفي البنية ال مللي ثانية 0.039 5.28و 4.9و 2.85تأخير

 . الاشياء المبنية على البرمجيات المعرفة للشبكات على التوالي

Table of Contents
1-INTRODUCTION ... 1

1.1. PREFACE .. 1

1.2. PROBLEM STATEMENT .. 2

1.3. PROPOSED SOLUTION ... 2

1.4. AIM AND OBJECTIVES ... 3

1.5. METHODOLOGY .. 3

1.6. THESIS OUTLINE .. 4

2. OVERVIEW ... 5

2.1. SOFTWARE-DEFINED NETWORKING (SDN)... 5

2.1.1. SDN DEFINITION .. 5

2.1.2. SDN ARCHITECTURE .. 5

2.1.3. SDN BASIC PRINCIPLES .. 7

2.1.4. SDN PROTOCOL (OPENFLOW) .. 8

2.1.5. SDN CONTROLLERS ... 9

2.1.6. SDN APPLICATIONS ... 10

2.2. INTERNET OF THING) IOT) ... 12

2.2.1. IOT DEFINITION .. 12

2.2.2. IOT ARCHITECTURE: ... 12

2.2.3. IOT PROTOCOLS: .. 14

2.2.4. IOT APPLICATION .. 15

2.3. RELATED WORK .. 17

2.4. SYSTEM TOOLS .. 19

2.4.1. VM VIRTUALBOX .. 20

2.4.2. UBUNTU LINUX ... 20

2.4.3. SDN HUB .. 20

2.4.4. MININET ... 20

2.4.5. IPERF .. 21

2.4.6. ECLIPSE MOSQUITTO ... 21

2.4.7. PAHO PYTHON CLIENT ... 21

3. SYSTEM IMPLEMENTATION AND CONFIGURATION .. 22

3.1. SYSTEM IMPLEMENTATION .. 22

3.2. SYSTEM CONFIGURATION .. 22

4. RESULTS .. 27

4.1. SINGLE TOPOLOGY ... 27

4.2. LINEAR TOPOLOGY ... 31

4.3. TREE TOPOLOGY .. 35

4.4. IOT TOPOLOGY .. 40

5. CONCLUSION AND RECOMMENDATIONS .. 45

5.1. CONCLUSION .. 45

5.2. RECOMMENDATIONS .. 45

6. APPENDICES ... 50

List of Figures

FIGURE 2-1. SDN ARCHITECTURE .. 6

FIGURE 2-2. IOT ARCHITECTURE .. 12

FIGURE 3-1CREATES SDNHUB VIRTUAL MACHINE .. 22

FIGURE 3-2 SINGLE TOPOLOGY .. 23

FIGURE 3-3 LINEAR TOPOLOGY .. 24

FIGURE 3-4 TREE TOPOLOGY ... 24

FIGURE 3-5 IOT TOPOLOGY .. 25

FIGURE 3-6 CREATE SENSORS USING PYTHON .. 26

FIGURE 3-7: SUBSCRIBE AND PUBLISH TO TOPIC BY SENSORS ... 26

FIGURE 4-1 SINGLE TOPOLOGY ONOS GUI ... 27

FIGURE 4-2 THROUGHPUT AND BANDWIDTH IN ONOS- BASED SINGLE TOPOLOGY .. 28

FIGURE 4-3 DELAY IN ONOS- BASED SINGLE TOPOLOGY .. 28

FIGURE 4-4 SINGLE TOPOLOGY FLOODLIGHT GUI ... 28

FIGURE 4-5 THROUGHPUT AND BANDWIDTH IN FLOODLIGHT- BASED SINGLE TOPOLOGY .. 29

FIGURE 4-6 DELAY IN FLOODLIGHT- BASED SINGLE TOPOLOGY .. 29

FIGURE 4-7 TRAFFIC THROUGHPUT OF SINGLE TOPOLOGY .. 31

FIGURE 4-8 BANDWIDTH OF SINGLE TOPOLOGY .. 31

FIGURE 4-9 DELAY OF SINGLE TOPOLOGY .. 31

FIGURE 4-10 LINEAR TOPOLOGY ONOS GUI ... 32

FIGURE 4-11 THROUGHPUT AND BANDWIDTH IN ONOS BASED LINEAR TOPOLOGY .. 32

FIGURE 4-12 DELAY IN ONOS BASED LINEAR TOPOLOGY .. 32

FIGURE 4-13 LINEAR TOPOLOGY FLOODLIGHT GUI ... 33

FIGURE 4-14 THROUGHPUT AND BANDWIDTH IN FLOODLIGHT BASED LINEAR TOPOLOGY ... 33

FIGURE 4-15 DELAY IN FLOODLIGHT BASED LINEAR TOPOLOGY ... 33

FIGURE 4-16 TRAFFIC THROUGHPUT OF LINEAR TOPOLOGY .. 35

FIGURE 4-17 BANDWIDTH OF LINEAR TOPOLOGY .. 35

FIGURE 4-18 DELAY OF LINEAR TOPOLOGY .. 35

FIGURE 4-19 TREE TOPOLOGY ONOS GUI.. 36

FIGURE 4-20 THROUGHPUT AND BANDWIDTH IN ONOS BASED TREE TOPOLOGY ... 36

FIGURE 4-21 DELAY IN ONOS BASED TREE TOPOLOGY ... 36

FIGURE 4-22 TREE TOPOLOGY FLOODLIGHT GUI .. 37

FIGURE 4-23 THROUGHPUT AND BANDWIDTH IN FLOODLIGHT BASED TREE TOPOLOGY .. 37

FIGURE 4-24 DELAY IN FLOODLIGHT BASED TREE TOPOLOGY ... 37

FIGURE 4-25 TRAFFIC THROUGHPUT OF TREE TOPOLOGY ... 39

FIGURE 4-26 BANDWIDTH OF TREE TOPOLOGY ... 39

FIGURE 4-27 DELAY OF TREE TOPOLOGY .. 40

FIGURE 4-28 SDN-BASED IOT TOPOLOGY ONOS GUI... 40

FIGURE 4-29 THROUGHPUT AND BANDWIDTH IN ONOS- BASED IOT TOPOLOGY ... 41

FIGURE 4-30 DELAY IN ONOS- BASED IOT TOPOLOGY ... 41

FIGURE 4-31 THROUGHPUT AND BANDWIDTH IN FLOODLIGHT- BASED IOT TOPOLOGY .. 41

FIGURE 4-32 DELAY IN FLOODLIGHT- BASED IOT TOPOLOGY .. 42

FIGURE 4-33TRAFFIC THROUGHPUT OF IOT TOPOLOGY ... 43

FIGURE 4-34 BANDWIDTH OF IOT TOPOLOGY .. 43

FIGURE 4-35 DELAY OF IOT TOPOLOGY ... 44

List of Abbreviation

BYOD Bring your own device

CoAP Constrained Application Protocol

CP Control plane

DP Data Plane

FD Forwarding Devices

GUI Graphical User Interface

IERC International Energy Research Centre

IOT Internet of Things

ITU-T
International Telecommunication Union Telecommunication

Standardization Sector

MQTT Message Queue Telemetry Transport

NFV Network Function Virtualization

NFV Network Functions Virtualization

NI Northbound Interface

NOS The Network Operating System

QoS Quality of Service

SDN Software Defined Networking

SI Southbound Interface

TCP Transmission Control Protocol

VPN Virtual Private Network

1

Chapter One

1-Introduction

1.1. Preface

The next wave in the era of computing will be outside the realm of the

traditional desktop[1]. A growing number of physical objects are being

connected to the Internet at an unprecedented rate realizing the idea of the

Internet of Things (IoT)[2] which represent the Future of the internet.

According to International Telecommunication Union Telecommunication

Standardization Sector (ITU-T)and International Energy Research Centre

(IERC) the IoT, first introduced in 1999 [3].

 The Internet of Things (IoT) is a recent communication paradigm that

envisions a near future, in which the objects of everyday life will be

equipped with microcontrollers, transceivers for digital communication,

and suitable protocol stacks that will make them able to communicate with

one another and with the users and make decision using locally- or

globally-gathered data.[4]

The recent surge in popularity of the Internet of Things (IoT) across

multiple domains has stemmed from the spread of networking-enabled

consumer devices that are deployed on a geographically wide-scale[5]it is

estimated that by 2020 IoT is going to cover between 26 billion and 50

billion devices [6].

Advancement in wireless networking has let these thousands of smart

devices connect to the internet anywhere and anytime. With the

development of IoT, the amount of data produced per day increases

exponentially[7, 8].

2

Nowadays we are also in the cloud computing and big data era in which

most of computing and communication resources are shared and provided

to users. The characteristics of diversity, dynamics, and big data explosion

bring a big challenge for the design of the IoT architecture in the cloud and

big data era. Networks should now be more intelligent, more powerful,

more efficient, more secure, more reliable, and more scalable to meet the

requirements of the characteristics of diversity and dynamics.

Also, the use of computing devices and communication technologies are

growing exponentially with the decline in cost and size of hardware and

software. Vendors and organizations are digging new domain in search of

finding new ways of flexible computing and communication which

provided by Software Defined Network (SDN). IoT and SDNs are two

completely different communication and network domain whose merger is

seeking for benefiting human kinds and developing smart systems. As the

IoT implementation expectancy exceeds the limits of traditional network

e.g., Virtual Private Network (VPN), the SDN promise to hold the

traditional network with new service demands.[9].

1.2. Problem Statement

Due to the huge number of heterogeneous devices, it is required that IoT

systems support the increasing number of connected devices; it is a

necessary requirement that information exchange takes place between all

the interconnected IoT devices taking into consideration bandwidth,

response time, throughput.

1.3. Proposed Solution

By exploit the programmability and the flexibility of SDN an IoT model

using SDN is proposed to enable the network to adapt its behavior

3

dynamically according to the traffic type which will increase the

performance.

1.4. Aim and Objectives

The main objectives of this work is to analyze and evaluate the

performance of software defined network controllers ONOS and floodlight

in term of bandwidth, throughput and delay using different topologies

through experiments and see how to utilize SDN controllers in IoT.

1.5. Methodology

Firstly, a comprehensive investigation on SDN and IoT is done to achieve

our goal which is to evaluate the performance of SDN controllers ONOS

and floodlight in single, linear, tree and SDN-based IoT topologies in term

of bandwidth, throughput and delay.

To achieve this goal, we implemented networks using Mininet software

which is software comes as a pre-built virtual machine (VM) image, The

VM was allocated two 1.7 GHz Intel Core 7 processors and 4 gigabytes of

RAM (Random Access Memory) then Mininet 2.2.0 VM image was

downloaded and installed and controllers were installed on the Ubuntu

14.0 to be evaluated starting with ONOS controller that used in single,

linear, tree and SDN-based IoT topologies then bandwidth and throughput

was measured using iperf and delay was measured using ping between tow

hosts in the network , for the IoT topology a python script is used to create

the topology and Eclipse Mosquitto which is an open source (EPL/EDL

licensed) message broker that implements the MQTT protocol that used to

carry out messaging using a publish/subscribe model in IoT .the same

procedure is done for floodlight controller and each time the results was

documented.

4

1.6. Thesis Outline

The thesis is reported in five chapters the first chapter includes Preface, problem

statement, proposed solution, objectives and methodology. The second chapter

is literature review which contains a general overview of SDN and IoT their

architecture, protocols, services and applications in addition, some of previous

studies of them brief definition of the tools and software used in the

methodology. The third chapter is system implementation and configuration

which contains detailed explanation of all stages to implement the proposed

scenario .the fourth is result and discussion in which the performance of

different SDN controllers (ONOS and FloodLight) was evaluated in term of

bandwidth, throughput and delay using different topologies (single, linear , tree

and SDN-based IoT topology) and the last chapter is conclusion and

recommendation which concludes the work done in this research and presents

the recommendation for future work.

5

Chapter Two

Literature Review

2. Overview

This chapter contains a general overview of SDN and IoT their

Architecture, protocols, services and applications in addition, some of

previous studies of them.

2.1. Software-Defined Networking (SDN)

This section contains a general overview of SDN its architecture,

protocols, services and applications

 SDN Definition

Software-Defined Networking (SDN) is a network architecture approach

that enables the network to be intelligently and centrally controlled, or

‘programmed,’ using software applications. This helps operators manage

the entire network consistently and holistically, regardless of the

underlying network technology.

 SDN Architecture

SDN is a layered architecture, consisting of three basic layers;

application/services layer, a controller layer, and data plane layer called

forwarding layer consisting of forwarding devices. These SDN layers

communicate with each other via open APIs called Northbound Interface

(NI) API and Southbound Interface (SI) API as in figure 2-3

6

Figure 2-1. SDN Architecture

[10] describe them as follow:

2.1.2.1. Application Layer (AP):

The application plane also called management plane consist of

applications that leverage the functions offered by the NI to implement

network control and operation logic. Essentially, a management

application defines the policies, which are ultimately translated to

southbound-specific instructions that program the behavior of the

forwarding devices[9].

2.1.2.2. Northbound Interface (NI):

Is the interface between applications and the controller. It provides access

to network resources from the application level.

The Network Operating System (NOS) facilitate application developers to

coordinate through these NI APIs. Typically, an NI APIs abstracts the low-

level instruction sets and implementation of forwarding devices. So far NI

7

APIs is not well studied. Generally, RESTFull APIs are used as an

interface between applications and control plane [11].

2.1.2.3. Control Plane (CP):

Control plane is the most intelligent and important layer of an SDN architecture.

It contains one or various controllers (ONOS , Floodlight , NOX , Ryu and

OpenDaylight) that forward the different types of rules and policies to the

infrastructure data layer through the southbound interface [12].

2.1.2.4. Southbound Interface (SI):

Southbound interfaces provide a communication protocol between CP and

forwarding device though the SI instruction set. Well established SI

protocol help controller in programming forwarding devices and formalize

rules for interaction between the two planes (CP & DP). Some examples

are OpenFlow [13], Forwarding and Control Elements (ForCES)[14] ,

Protocol-oblivious forwarding [15].

2.1.2.5. Data Plane (DP)/Forwarding Plane:

Represents the forwarding devices on the network (routers, switches, load

balancers, etc.). It uses the south-bound APIs to interact with the control

plane by receiving the forwarding rules and policies to apply them to the

corresponding devices[16].

 SDN Basic Principles

Given the heterogeneity of networks, it is challenging to coordinate and

optimize the use of the heterogeneous network resources with the goal

of satisfying as many tasks and services as possible. It is conjecture that

the SDN paradigm is a good candidate to solve the resource

management needs for network environments for multiple reasons[17]

SDN allows for a clear separation between services in the control plane

8

(that makes decisions about how traffic is managed) and the data plane

(actual mechanisms for forwarding traffic to desired destinations). The

decoupling of the control plane from the forwarding plane encourages

abstractions of low-level network functionalities.

Logically centralized view of the network, which allows to perform

network optimization techniques. Redundancy and other mitigation

failures can be applied in order to avoid single points of failure.

Network programmability allows the dynamic and fast introduction of new

network services

 SDN Protocol (OpenFlow)

Sdn use openflow protocol which support a lot of technology .In the

creators' own words, OpenFlow is a communications protocol that

provides an abstraction of the forwarding plane of a switch or router in the

network.[18] OpenFlow system initially created at Stanford University

now under dynamic gauges improvement through the Open Networking

Foundation (ONF). Open Networking foundation (ONF) defined that

OpenFlow protocol is based on SDN layered architecture, it is in between

control plane and forwarding plane as communication protocol (Open

Flow Switch Specification. Open Networking Foundation ONF)[19]

Focusing on its main features, OpenFlow:

• Brings network control functions out of switches and routers, while

allowing to directly access and manipulate the forwarding plane of

those devices.

• species basic primitives that can be used by an external software

application to actually program the forwarding plane of network

devices, just

• like the instruction set of a CPU would program a computer system.

9

• works on a per-ow basis to identify network track.

• Forwards flows according to preened match rules statically or

dynamically programmed by the SDN control software.

 SDN Controllers

 the SDN controller is a software entity that has exclusive control over an

abstract set of data plane resources.An SDN controller may be

implemented as any number of software components, which reside on any

number of physical platforms[17].

Several open-source implementations of an SDN controller are available,

being the most important the following:

2.1.5.1. ONOS Conrtoller:

ONOS controller is a dynamic flexible platform easy operates in any OSs

capabilities and strongly supports switching, routing, and distributed

application architected for performance, high availability, scale-out and

well-defined northbound and southbound abstractions and interfaces.

ONOS was open- sourced on December 5th, 2014 [20].

2.1.5.2. Floodlight Controller:

The Floodlight Open SDN Controller is a company-class, open source,

Java-based OpenFlow Controller. It is supported by a group of developers

among them of engineers from Big Switch Networks. OpenFlow protocols

are an open standard managed by ONF. It specifies a protocol through

switch a remote controller can modify the behavior of networking devices

through a well-defined “forwarding instruction set” Floodlight is designed

to work with the increasing number of switches, routers, virtual switches,

and access points that support the OpenFlow standard [21].

10

2.1.5.3. OpenDaylight Controller

OpenDaylight controller is an open-source project supported by IBM,

Cisco, Juniper, VMWare and several other major networking vendors.It is

SDN controller platform implemented in Java. As such, it can be deployed

on any hardware and operating system platform that supports Java. It

robust and provides production-level performance and support. Its main

drawback is the complexity and the fact that it takes time for learning to

develop applications [22].

2.1.5.4. Ryu Controller

The Ryu Controller is open source and under the Apache 2.0 license,

written completely based on Python, supported and deployed by NTT

cloud data centers. Main source code can be found on GitHub, provided

and supported by Open Ryu community. It supports NETCONF and OF-

config network management protocols, as well as OpenFlowis .it is

component-based software defined networking framework that provides

software components with well-defined API that make it easy for

developers to create new network management and control applications

[23].

 SDN Applications

In this section SDN applications are introduced including Software defined

ICN, cloud and data center and BlueCat DNS director.

2.1.6.1. Software Defined Information Centric Network (SDICN)

1.In recent years many researchers claimed that current internet

architecture is not able to response the emerging and future need of users.

Based on this claim, new architectures were introduced. Information

centric network is one of these architectures. In ICN, the information name

is unique and independent of locations, applications, storages and

11

distribution and network primitives are done based on the names. To

retrieve named information, various transmission techniques are

introduced, including name-based routing, name-based resolution, etc. To

support these techniques and exploit the advantages of ICN, dramatic

changes to the network devices deployed in current Internet are needed,

which leads to challenge of ICN implementation. Implementing ICN over

SDN enables innovation and optimization of network resources and

functionalities. This leads to decreasing in implementation costs. It also

enables innovation and optimization of network resources and

functionalities[24]

2.1.6.2. Cloud and Data Center

One area that SDN has been attended a lot is Cloud Services and data

center. One of the main characteristics of cloud is that users gain the

adequate resources based on requirement in real time [109]. Cloud

management is the most important challenge that has always been, and

many solutions have been proposed for that. SDN is highly regarded as

one of the newest solutions, which makes it possible to configure and

manage cloud and data center easily[25].

2.1.6.3. Bluecat DNS Director

This application is targeted towards security threats caused by BYOD

(Bring your own device). DNS director programs Openflow switches in

the network using HP VAN SDN controller to redirect requests for non-

corporate DNS servers towards

BlueCat’s DNS server. BlueCat’s DNS server sends back proper DNS

response and the requestor will not even know that the DNS request was

intercepted [26].

12

2.2. Internet of Thing) IoT)

This section contains a general overview of IoT its architecture,

protocols, services and applications

 IoT Definition

IoT Defined as a system of interrelated computing devices, mechanical

and digital machines, objects, animals or people that are provided with

unique identifiers and the ability to throughput data over a network

without requiring human-to-human or human-to-computer

interaction[27]

 Iot Architecture:

In this section, an overview of the IoT architecture was briefly

highlighted

The structure of the IoT consists of five layers: Business layer,

Application layer, Middleware layer, Network layer and Perception layer.

Figure 2-2. IoT Architecture

2.2.2.1. Business Layer

This layer is responsible for the management of overall IoT system

including the applications and services. It builds business models, graphs,

flowcharts. etc based on the data received from Application layer. The real

13

success of the IoT technology also depends on the good business models.

Based on the analysis of results, this layer will help to determine the future

actions and business strategies [28].

2.2.2.2. Application Layer

This is the layer that delivers IoT services to end users through IoT

applications and has been placed at the top of the ACO architecture. It acts

as an interface for the users to remotely send commands and receive data

and information from the objects. Users are also able to visualize the IoT

data, which has been analyzed in the cloud services layer, through the

applications.

The applications also allow administrators and users to configure devices,

and define access control polices for securing access to IoT resources and

data [29].

2.2.2.3. Middleware Layer

The devices over the IoT implement different type of services. Each device

connects and communicates with only those other devices which

implement the same service type. This layer is responsible for the service

management and has link to the database.It receives the information from

Network layer and store in the database. It performs information

processing and ubiquitous computation and takes automatic decision based

on the results[30].

2.2.2.4. Network Layer

The network layer is like the neural network and brain of loT, its main

function is transmitting and processing information. The network layer

includes a convergence network of communication and Internet network,

network management center, information center and intelligent processing

14

center, etc. The network layer will transmit and process the information

obtained from perception layer[31].

2.2.2.5. Perception Layer

 Perception layer is the lowest layer in the IoT architecture. As the name

suggests, its purpose is to perceive the data from environment. All the data

collection and data sensing part is done on this layer Sensors, bar code

labels, RFID tags, GPS, and camera, lie in this layer. Identifying

object/thing and gathering data is the main purpose of this layer [32].

 IoT Protocols:

This section contains a general overview of IoT

2.2.3.1. Message Queue Telem etry Transport (MQTT)

The Message Queuing Telemetry Transport (MQTT) is a standard protocol

of Organization for the Advancement of Structured Information Standards

(OASIS) standard. It is light weights publish/subscribe messaging

transport application level protocol. It uses TCP/IP protocol and designed

for machine-to-machine and IoT purpose[33].

2.2.3.2. Constrained Application Protocol (CoAP)

The Constrained Application Protocol (CoAP) has been designed by

Internet Engineering Task Force (IETF) to facilitate message throughput

between machine-to-machine (M2M) applications by offering various

features such as built-in discovery, multicast support and asynchronous

message exchanges. The main goal of CoAP is to design a web protocol

on top of UDP for special environments that consist of constrained nodes

(e.g., resources, computing power) and networks (e.g., low-power, loss).

There are more than 30 CoAP implementations written in various

languages including C,C++, Java, Python, JavaScript, etc[34].

15

2.2.3.3. Websocket Protocol

the WebSocket Protocol also has been designed by IETF to provide full-

duplex communication between the web browser and server to overcome

the existing bidirectional communication technologies using HTTP while

supporting existing HTTP infrastructures over HTTP ports—80 and 443.

Although the WebSocket Protocol has been designed to supersede existing

HTTP technologies, it recently has been used for the IoT applications that

require real-time communication[35].

 IoT Application

Potential applications of the IoT are numerous and diverse, permeating

into practically all areas of every-day life of individuals, enterprises, and

society as a whole. The IoT application covers “smart”

environments/spaces in domains such as: Transportation, Building, City,

Lifestyle, Retail, Agriculture, Factory, Supply chain, Emergency,

Healthcare, User interaction, Culture and tourism, Environment and

Energy. Below are some of the IOT applications:

2.2.4.1. Smart Cities

The IoT play a vital role to improve the smartness of cities includes many

applications to monitoring of parking spaces availability in the city,

monitoring of vibrations and material conditions in buildings and bridges,

sound monitoring in sensitive areas of cities, monitoring of vehicles and

pedestrian levels, intelligent and weather adaptive lighting in street lights,

detection of waste containers levels and trash collections, smart roads,

intelligent highways with warning messages and diversions according to

climate conditions and unexpected events like accidents or traffic jams

[36].

16

2.2.4.2. Smart Agriculture and Smart Water

 The IoT can help to improve and strengthen the agriculture work by

monitoring soil moisture and trunk diameter in vineyards to control and

maintain the amount of vitamins in agricultural products, control micro

climate conditions to maximize the production of fruits and vegetables and

its quality, study of weather conditions in fields to forecast ice information,

rail, drought, snow or wind changes, control of humidity and temperature

level to prevent fungus and other microbial contaminants. The role of IoT

in water management includes study of water suitability in rivers and the

sea for agriculture and drinkable use, detection of liquid presence outside

tanks and pressure variations along pipes and monitoring of water level

variations in rivers, dams and reservoirs[37].

2.2.4.3. Retail and Logistics Implementing

The IoT in Retail/Supply Chain Management has many advantages which

include monitoring of storage conditions along the supply chain and

product tracking for traceability purposes and payment processing based

on location or activity duration for public transport, gyms, theme park, etc.

In the shop itself, IoT offers many applications like guidance in the shop

according to a preselected shopping list, fast payment solutions like

automatically check-out using biometrics, detection of potential allergen

in a given product and control of rotation of products in shelves and

warehouses to automate restocking processes. The IoT elements used in

this kind of application are RFID and WSN and the bandwidth range is

small. The example retail IoT reported in literature is SAP future retail

center. The IoT in logistics includes quality of shipment conditions, item

location, storage incompatibility detection, fleet tracking, etc. The IoT

elements used in the field of logistics are RFID, WSN and single sensors

17

and the bandwidth ranges from medium to large[38].

2.2.4.4. Healthcare

 Many benefits provided by the IoT technologies to the healthcare domain

are classified into tracking of objects, staff and patients, identification and

authentication of people, automatic data collection and sensing. Tracking

is the function used to identify a person or an object in motion. This

includes the case of patient flow monitoring to improve workflow in

hospitals. The identification and authentication include patient

identification to reduce incidents harmful to patients, comprehensive and

current electronic medical record maintenance, and infant identification in

hospitals to prevent mismatching. The automatic data collection and

throughput is mostly aimed at reducing form processing time, process

automation, automated care and procedure auditing, and medical inventory

management. Sensor devices enable function centered on patients, and in

particular on diagnosing patient conditions, providing real-time

information on patient health indicators. Application domains include

different telemedicine solutions, monitoring patient compliance with

medication regiment prescriptions, and alerting for patient well-being. In

this capacity, sensors can be applied both in in-patient and out-patient care.

The elements of IoT in Health Care are RFID, NFC, WSN, WiFi,

Bluetooth, etc. significantly improve the measurement and monitoring

methods of vital functions such as temperature, blood pressure, heart rate,

cholesterol level, blood glucose, etc. [39].

2.3. Related Work

Recently, SDN has proved its benefits and thus applied to many

networking environments such as IoT. Here, SDN has an impact in IoT by

18

its flexibility to adapt the components and the applications dynamically.

So that many researchers proposed an SDN-based architecture for IoT:

The author of [40] reviewed SDN controller and Take advantages of the

decentralized feature of it and proposed Ubiflow software defined IoT

system flow control and mobility management in a heterogeneous

network.

The author s in [5]also proposed an original SDN controller design in IoT

Multi-networks that enables flexible, effective, and efficient management

on task, flow, network, and resources.

Although, others proposed software defined based framework for IoT.

Jararweh and al in [41] proposed a SDIoT software defined based

framework model to simplify the IoT management process and challenges

in the traditional IoT architecture to forward, store, and secure the

produced data from the IoT objects by integrating the software defined

network software defined storage, and software defined security into one

software defined based control model.

The authors of [42] developed an SDN-Based layered architecture for

horizontal IoT services with open and programmable devices and data at

different levels they proposed two network models, the man-like nervous

(MLN) model and the social organization framework (SOF) model. The

idea of MLN model is similar to a reverse tree in which the sensors are in

the low rank of the model, and it becomes a distributed node to send

sensing data to the centralized data center. Additionally, the SOF model

consists of local IoT, industrial IoT, and national IoT that manages the

distributed nodes in the specific region and the data center.

The theme of [42]is that IoT is based on the data center and manages the

data from the sensors based on the MLN model. However, the specific

19

usage of the IoT network is not provided yet.

Another architecture of the IoT network was described by Catellani et al.

[43]. In this work,the authors created a test bed for an IoT environment by

utilizing the legacy sensors and actuators by modifying it with TinyOS.

The authors envisioned that the future IoT network would be based on

Internet Protocol version 6 (IPv6), and every communication will be

conducted with IP addresses.

Moreover, instead of enumerating the future networking protocol, the

authors categorized the nodes in terms of base station node (BSN), mobile

node (MN), and specialized node (SN). BSN refers to the IPv6 sink and

router, MN refers to wireless dongle to add wireless sensor network

(WSN) connectivity to a standard laptop, and SN refers to nodes offering

services such as temperature readings or actuation.

Finally, Gubbi et al. [11] claimed that future IoT network will be based on

the current WSN technology. The nodes are expected to be deployed in an

ad-hoc manner, and a novel cyber infrastructure is based on a service-

oriented architecture (SOA) and sensor networks to acquire the data from

the sensors and the devices. Furthermore, the addressing schemes will be

based on IPv6 and possible adaptation with the uniform resource name

(URN) system for development of the IoT network. The authors claimed

that cloud-based centralized storage is required to support the storage and

analysis for IoT. Consequently, the authors noted that the future IoT

network will be based on current WSN technology with the middleware to

support heterogeneous devices and a centralized storage for the data.

2.4. System Tools

This section describes software tools that have been used in the simulation

20

 VM VirtualBox

VirtualBox is free and open-source software that can be installed on a

number of host operating systems including Linux, mac-OS and Windows

VirtualBox is used here to run mininet hosted in Ubuntu Linux operating

system which is used to implement the different topologies under

evaluation.

 Ubuntu Linux

Ubuntu Linux is a Linux distribution based on Debian and mostly

composed of free and open-source software. Ubuntu is officially released

in three editions: Desktop, Server and Core for Internet of things devices

and robots. All the editions can run on the computer alone, or in a virtual

machine. Ubuntu is a popular operating system for cloud computing, with

support for OpenStack

 SDN Hub

SDN Hub created a starter kit tutorial VM, which comprises various

components that will facilitate SDN development.

The VM is Ubuntu 64-bit based, which is preinstalled with various

software and tools Controllers (OpenDaylight, ONOS, RYU, Floodlight,

Floodlight-OF1.3, POX, and Trema), Open VSwitch, Mininet, Wireshark

1.12.1 with native support for OpenFlow parsing, JDK 1.8, Eclipse Luna,

and Maven 3.3.

 Mininet

Mininet is a network emulator which is able to emulate a linked set of

virtual hosts, switches, and controllers. Mininet hosts run standard Linux

network software, and its switches support OpenFlow for highly exile

custom routing and SDN.

Mininet supports research, development, learning, prototyping, testing,

debugging, and any other tasks that could benefit from having a complete

21

experimental network on a laptop or other PC.

 Iperf

Iperf is a tool for network performance measurement and tuning. It is a

cross-platform tool that can produce standardized performance

measurements for any network. Iperf has client and server functionality

and can create data streams to measure the throughput between the two

ends in one or both directions. Typical iperf output contains a time-

stamped report of the amount of data throughputred and the throughput

measured.

 Eclipse Mosquitto

Eclipse Mosquitto is an open source (EPL/EDL licensed) message broker

that implements the MQTT protocol versions 5.0, 3.1.1 and 3.1. Mosquitto

is lightweight and is suitable for use on all devices from low power single

board computers to full servers.

The MQTT protocol provides a lightweight method of carrying out

messaging using a publish/subscribe model. This makes it suitable for

Internet of Things messaging such as with low power sensors or mobile

devices such as phones, embedded computers or microcontrollers.

The Mosquitto project also provides a C library for implementing MQTT

clients, and the very popular mosquitto_pub and mosquitto_sub command

line MQTT clients.

 Paho Python Client

The Paho Python Client provides a client class with support for both

MQTT v3.1 and v3.1.1 on Python 2.7 or 3.x. It also provides some helper

functions to make publishing one off messages to an MQTT server very

straightforward

22

Chapter Three

Methodology

3. System Implementation and Configuration

In this chapter, we discuss about software’s that we used in simulations

and finally the implementations of SDN networks.

3.1. System Implementation

SDN hub installed in the virtual machine as in figure (3-1) and different

topologies (single, linear and tree) with different SDN controllers (ONOS

and Floodlight) are constructed using mininet tool

Figure 3-1creates SDNhub virtual machine

ONOS controller installed using the commands:

 root@sdnhumvm:/home/ubuntu/Desktop/onos-2.0.0/bin# ./onos-service start

FloodLight controller installed using the commands:

root@sdnhumvm:/home/ubuntu/Desktop/floodlight# java - jar target/floodlight.jar

3.2. System Configuration

In this section configuration of the different topologies is detailed as

follows:

23

• Single topology: The single topology in Mininet environment

consists of a single OpenFlow-enabled switch and number of hosts.

The switch in turn gets connected with a control plane available on

the topology. A single topology that connected to a floodlight

controller or ONOS controller can be created by using a command-

line tool as shown in Fig. 3-2 with 5-hosts follow the structure

command below:

 Sudo mn –topo single, 5 - -controller remote, ip=127.0.0.1,port=6653

h10.0.0.1

h10.0.0.5

h10.0.0.2

h10.0.0.3

h10.0.0.4

S00:00:00:00:00:00:00:00

Figure 3-2 Single Topology

• Linear Topology: Is including linear connection between switches

and hosts. Each host connects with its particular switch and the

switches are connected with each other linearly. All the OpenFlow-

enabled switches in turn gets connected with a remote controller. A

linear topology having 5-hosts connected with Floodlight controller

or ONOS controller topology that connected to a floodlight

controller or ONOS controller can be created by using a command-

line tool as shown in Fig. 3-3.

 Sudo mn –topo linear, 5 - -controller remote, ip=127.0.0.1,port=6653

24

h10.0.0.4

S00:00:00:00:00:00:00:04

S00:00:00:00:00:00:00:05

S00:00:00:00:00:00:00:02
S00:00:00:00:00:00:00:03

S00:00:00:00:00:00:00:01

h10.0.0.2

h10.0.0.3
h10.0.0.5

h10.0.0.1

 Figure 3-3 Linear Topology

• Tree Topology: All OpenFlow-enabled switches and hosts are

linked with each other in a hierarchical fashion. A tree topology

having 32-hosts in floodlight controller or ONOS controller

topology that connected to a floodlight controller or ONOS

controller can be created by using a command-line tool as shown in

Fig. 3-4.

Sudo mn –topo tree,3 - -controller remote, ip=127.0.0.1,port=6653

H10.0.0.6

H10.0.0.5

H10.0.0.3

H10.0.0.12

H10.0.0.8

H10.0.0.7

H10.0.0.4

H10.0.0.9

H10.0.0.11

H10.0.0.13H10.0.0.14

H10.0.0.15

H10.0.0.16

H10.0.0.17

H10.0.0.18

H10.0.0.19

H10.0.0.20

S00.00.00.00.00.00.00.30

S00.00.00.00.00.00.00.03

S00.00.00.00.00.00.00.02

S00.00.00.00.00.00.00.28

S00.00.00.00.00.00.00.29

S00.00.00.00.00.00.00.27

S00.00.00.00.00.00.00.26

S00.00.00.00.00.00.00.24

S00.00.00.00.00.00.00.17

S00.00.00.00.00.00.00.10

S00.00.00.00.00.00.00.16

S00.00.00.00.00.00.00.01

S00.00.00.00.00.00.00.07

S00.00.00.00.00.00.00.05

S00.00.00.00.00.00.00.06

S00.00.00.00.00.00.00.09

S00.00.00.00.00.00.00.08

S00.00.00.00.00.00.00.11

S00.00.00.00.00.00.00.18

S00.00.00.00.00.00.00.22

S00.00.00.00.00.00.00.23

S00.00.00.00.00.00.00.19

S00.00.00.00.00.00.00.20

S00.00.00.00.00.00.00.12

S00.00.00.00.00.00.00.13

S00.00.00.00.00.00.00.04

S00.00.00.00.00.00.00.21

S00.00.00.00.00.00.00.25

h10.0.0.1

H10.0.0.23

H10.0.0.31H10.0.0.30

H10.0.0.2

H10.0.0.10

H10.0.0.23

H10.0.0.24

H10.0.0.25

H10.0.0.22

H10.0.0.21

H10.0.0.26

H10.0.0.28

H10.0.0.27

H10.0.0.29

S00.00.00.00.00.00.00.12

Figure 3-4 Tree Topology

25

• IoT Topology:In this section, An SDN-based Iot topology that uses

MQTT protocol which can be used in IoT devices from different

manufacture that uses different technologies is created using

python script as shown in Fig. 3-5.

Figure 3-5 IoT Topology

MQTT use mosquito and mosqitto-clients and paho mqtt python which

are a light weight open source message broker that Implements MQTT.

mosquito configured using the command:

 Sudo apt-get install mosquito

mosqitto-clients configured using the command:

 Sudo apt-get install mosquito- clients

paho mqtt python configured using the command:

 git clone https://github.com/eclipse/paho.mqtt.python

 cd paho.mqtt.python

 python setup.py install

Then part of the hosts used to create a very simple two state controllable

sensors using python script as shown in Fig. 3-6. The sensors can be used

to simulate real world objects like lights, doors using the following

command:

root@sdnhubvm:$python simple-sensor.py -h test.mosquitto.org -n door -s

26

Figure 3-6 create sensors using python

All the sensors controlled by the remote SDN Controller use MQTT which

is an application protocol that runs over the TCP/IP protocol using the

publish-subscribe pattern. Then test.mosquitto.org which is online MQTT

broker and two hosts (sensors) are used as publisher and subscriber. Both

can publish messages or subscribe to topic request it from broker (server)

who is listening at port 1883 as shown in Fig. 3-7.

Figure 3-7: subscribe and publish to topic by sensors

27

Chapter Four

Results and Discussion

4. Results

In this chapter the performance of different SDN controllers (ONOS and

FloodLight) was evaluated in terms of bandwidth, throughput and delay

using different topologies (single, linear and tree and SDN-based

architecture for IoT as follow:

4.1. Single Topology

The following section provides the results obtained by testing the ONOS

and Floodlight controllers in simulation environment that implemented in

Mininet.

To measure the throughput, bandwidth and delay single topology is created

as shown in figure 4-1 using onos controller and figure 4-4 using floodligt

controller and then iperf which use one of the host as server and the other

as client was used as in figure 4-2, figure 4-3, figure 4-5 and figure 4-6

Figure 4-1 Single Topology ONOS GUI

28

Figure 4-2 throughput and bandwidth in onos- based single topology

Figure 4-3 delay in onos- based single topology

Figure 4-4 Single Topology Floodlight GUI

29

Figure 4-5 throughput and bandwidth in Floodlight- based single

topology

Figure 4-6 delay in Floodlight- based single topology

Single topology reflects the simple way for evaluating controller behavior.

Fig 4-7, Fig 4-8 and Fig 4-9 show the throughput, bandwidth and delay

over a single topology, respectively. It’s clear that ONOS controller gives

performance better than floodlight controller when it comes to Throughput

and Bandwidth and Floodlight give better performance when it comes to

delay.

The traffic Throughput of ONOS ranged is from 1.25 to 321 MB and

increase dramatically from 1.25 to 282 MB at the first five seconds then

slightly decrease to 276 MB at second number six then continue to

increase until reach the highest throughput value which is 321 MB at the

last time interval, On the other hand the throughput of floodlight ranged is

from 28.6 to 263 MB and increase dramatically from 28.6 to 229 MB at

30

the first three seconds then slightly decrease to 211 MB at the next time

interval then increase to 236 at the following two time interval and

decrease to 213 at the following three time interval until reach the highest

throughput value which is 263 MB at the last time interval .

The Bandwidth of ONOS ranged is from 0.01 to 2.69 Gbits/sec. and

increase dramatically from 0.01 to 2.36 Gbits/sec MB at the first five

seconds then slightly decrease to 2.32 Gbits/sec at the next time interval

then continue to increase until reach the highest Bandwidth value which is

2.69 Gbits/sec at the last time interval; On the other hand the Bandwidth

of floodlight ranged is from 0.24 to 2.21 Gbit/sec and increase

dramatically from 0.24 to 1.92 Gbit/sec at the first three seconds then

slightly decrease to 1.77 at the next time interval then increase to 1.98

Gbit/sec at the following two time interval and decrease to 1.79 Gbit/sec

at the following three time interval until reach The highest value of the

Bandwidth which is 2.21 Gbit/sec at the last time interval .

The Delay of ONOS ranged is from 0.099 to 33 ms. the highest value of

the delay is 33 ms which happen at the first-time interval because put the

ping request on hold to send out an ARP broadcast to learn the MAC

address of the remote device, then wait for a response, and then send the

first ping through. This delay is usually too long, then the delay decrees as

the time went by until it reaches the lowest value 0.099 at the last time

interval; on the other hand, the Delay of floodlight ranged was from 0.099

to 27.5ms. The highest value of the Delay is 27.5 ms which happen at the

first-time interval as described then the delay decrees as the time went by

until it reaches the lowest value 0.099 at the last time interval.

31

Figure 4-7 Traffic Throughput of Single Topology

Figure 4-8 Bandwidth of Single Topology

Figure 4-9 Delay of Single Topology

4.2. Linear Topology

A linear topology was created as showed in figure 4-10 using onos

controller and figure 4-13 using floodligt controller and Iperf was used to

measure the throughput, bandwidth as showed in figure 4-11 and Figure

0

100

200

300

400

0-1 1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-10

T
r
a

ff
ic

T
r
a

n
sf

e
r
 [

M
B

]

Interval Time [sec]

onos

floodlight

0

0.5

1

1.5

2

2.5

3

0-1 1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-10

B
a

n
d

w
it

h
 [

G
b

it
s/

se
c
]

Interval Time [sec]

onos

floodlight

0

5

10

15

20

25

30

35

0-1 1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-10

d
e

la
y[

m
e

se
c

Interval Time [sec]

onos

floodlight

32

4-14 and ping used to measure delay as showed in figure 4-12 and Figure

4-15:

Figure 4-10 Linear Topology ONOS GUI

Figure 4-11 throughput and bandwidth in onos based linear topology

Figure 4-12 delay in onos based linear topology

33

Figure 4-13 Linear Topology Floodlight GUI

Figure 4-14 throughput and bandwidth in Floodlight based linear

topology

Figure 4-15 delay in Floodlight based linear topology

34

figure 4-16, figure 4-17 and figure 4-18 display the results of linear

topology based on throughput, bandwidth and delay respectively.

figure 4-16 display the results of the throughput of ONOS which show

inconsistency in increasing and decreasing through all the time interval it

ranged from 222 which happened at time interval number seven to 466 MB

which happened at time interval number five, On the other hand the

Throughput of floodlight show increasing from the lowest value 47.6 to

146 Mbytes at the first three time interval then decrease to 126 Mbytes

after two time interval and increasing to the highest value of the

Throughput which is 167 MB that happened at the last interval.

figure 4-17 display the results of the bandwidth of ONOS which show

inconsistency in increasing and decreasing through all the time interval it

ranged from 1.86 Gbit/sec which happened at time interval number seven

to 3.91Gbit/sec which happened at time interval number five, on the other

hand the Bandwidth of floodlight show increasing from the lowest value

0.39 to 1.23 91Gbit/sec at the first three time interval then decrease to 1.05

91Gbit/sec after two time interval and increasing to the highest value of

the bandwidth which is 1.4 Gbit/sec that happened at the last interval.

figure 4-18 display the results of the the controllers delay in ONOS it

ranged from the highest value which is 69.7 ms that’s happen at the first

time interval as described then the delay decrees as the time went by until

it reach the lowest value 0.112 ms at the last time interval, On the other

hand the Delay of floodlight ranged from the highest value which is 48.1

ms ms that’s happen at the first time interval as described then the delay

decrees as the time went by until it reach the lowest value 0.061 ms at the

last time .

35

Figure 4-16 Traffic Throughput of Linear Topology

Figure 4-17 Bandwidth of Linear Topology

 Figure 4-18 Delay of Linear Topology

4.3. Tree Topology

A tree topology was created as showed in figure 4-19 using onos controller

0

100

200

300

400

500

0-1 1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-10

Tr
af

fi
c

Tr
an

sf
e

r[
M

b
yt

es
]

Interval Time[sec

onos

floodlight

0

1

2

3

4

5

0-1 1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-10

B
an

d
w

id
th

[G
b

it
s/

se
c

Interval Time[sec]

onos

floodlight

0

10

20

30

40

50

60

70

80

0-1 1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-10

d
e

la
y[

m
e

se
c

Interval Time[sec]

onos

floodlight

36

and figure 4-22 using floodligt controller and Iperf was used to measure

the throughput, bandwidth as showed in figure 4-20 and figure 4-23 and

ping used to measure delay as showed in figure 4-21 and figure 4-24:

Figure 4-19 Tree Topology ONOS GUI

Figure 4-20 throughput and bandwidth in ONOS based Tree topology

Figure 4-21 delay in ONOS based tree topology

37

Figure 4-22 Tree Topology Floodlight GUI

Figure 4-23 throughput and bandwidth in Floodlight based Tree topology

Figure 4-24 delay in Floodlight based tree topology

38

Figure 4-25, figure 4-26 and figure 4-27 illustrate the outcome of tree

topology based on throughput, bandwidth and delay respectively.

 Figure 4-25 illustrate the Throughput of ONOS which show increasing

from the lowest value 11.6 to 109 Mbytes at the first five time interval

then decrease to 32.9 Mbytes after three time interval and increasing to

the highest value of the Throughput which is 172 MB that happened at the

last time interval; on the other hand the Throughput of floodlight

increasing from the lowest value 135 to 286 Mbytes at the first five time

interval then decrease to 230 Mbytes for the next time interval and

increasing to the highest value of the Throughput which is 302 MB that

happened at time interval number nine then decrease to 272 anged is from

135 to 300 Mbyte. The highest value of the Throughput is 300Mbyte as in

figure 4-26.

Figure 4-26 present the Bandwidth of ONOS which started at 97.5

Gbits/sec and increase dramatically to 915 Gbits/sec at the first five

seconds then slightly decrease to 256 Gbits/sec at the next three time

interval then continue to increase until reach the highest Bandwidth value

which is 1485Gbit/sec at the last time interval; On the other hand the

Bandwidth of floodlight started at 1.13 Gbits/sec and increase dramatically

to 2.4 Gbits/sec at the first six time interval then slightly decrease to 1.93

Gbits/sec at the next time interval then continue to increase to 2.54

Gbits/sec at the next two time interval then slightly decrease to 2.28

Gbits/sec at the last time interval.

figure 4-27 display the results of the controllers delay in ONOS it showed

inconsistency in increasing and decreasing through all the time interval it

decrease from 31.4 ms which happened at the first time interval to 0.102

at the time interval number three and increase to 25.3 for the next interval

39

then decrease to 0.104 at the time interval number eight then increase to

23.9 for the next interval then decrease to 0.629 at the last time interval,

On the other hand the Delay of floodlight ranged from the highest value

which is 51.7 ms that’s happen at the first time interval as described then

the delay decrees as the time went by until it reach the lowest value 0.065

ms at the last time interval .

Figure 4-25 Traffic Throughput of Tree Topology

Figure 4-26 Bandwidth of Tree Topology

0

50

100

150

200

250

300

350

0-1 1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-10

Tr
af

fi
c

Tr
an

sf
e

r[
M

b
yt

e]

Interval Time[sec]

onos

floodlight

0

200

400

600

800

1000

1200

1400

1600

0-1 1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-10

B
an

d
w

it
h

[G
b

it
s/

se
c

Interval Time[sec]

onos

floodlight

40

Figure 4-27 Delay of Tree Topology

4.4. IoT topology

An IoT topology was created as showed in figure 4-28 using ONOS

controller and Iperf was used to measure the throughput and bandwidth as

showed in figure 4-29 and figure 4-31 and ping used to measure delay as

showed in figure 4-30 and figure 4-32:

Figure 4-28 SDN-based iot Topology ONOS GUI

0

10

20

30

40

50

60

0-1 1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-10

d
e

la
y[

m
e

se
c

Interval Time[sec]

onos

floodlight

41

Figure 4-29 throughput and bandwidth in ONOS- based IoT topology

Figure 4-30 Delay in ONOS- based IoT topology

Figure 4-31 throughput and bandwidth in floodlight- based IoT topology

42

Figure 4-32 Delay in floodlight- based IoT topology

Figure 4-33, figure 4-34 and figure 4-35 illustrate the outcome of IoT

topology based on throughput, bandwidth and delay respectively.

Figure 4-33 illustrate the Throughput of ONOS which show increasing

from the lowest value 176 to 268 Mbytes at the first time interval then

decrease and increasing as the time interval goes until the last time interval

which shows throughput of 211 Mbytes; on the other hand the Throughput

of floodlight increasing from the lowest value 179 to 267 Mbytes at the

first four time interval then decrease and increasing as the time interval

goes until the last time interval which shows throughput of 222 Mbytes.

Figure 4-34 present the bandwidth of ONOS which started at 1.48

Gbits/sec and increase to2.25 Gbits/sec which is the highest value then

decrease and increasing as the time interval goes until the last time interval

which shows bandwidth of 1.77; On the other hand the bandwidth of

floodlight started at 1.74 Gbits/sec increasing to 2.24 Gbits/secwhich is the

highest value at the first four time interval then decrease and increasing as

the time interval goes until the last time interval which shows 1.86

Gbits/sec at the last time interval.

Figure 4-35 display the results of the controllers delay in ONOS it showed

43

inconsistency in increasing and decreasing through all the time interval it

decrease from 0.08 ms which happened at the first time interval to 0.062

at the last time interval, On the other hand the Delay of floodlight ranged

from the highest value which is 0.059 ms that’s happen at the first time

interval as described then the delay showed inconsistency in increasing

and decreasing through all the time interval and reach 0.039ms delay at

the last time interval .

Figure 4-33Traffic Throughput of IoT Topology

Figure 4-34 Bandwidth of IoT Topology

0

50

100

150

200

250

300

0-1 1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-10

Th
ro

u
gh

p
u

t
[M

b
yt

es
]

Interval Time[sec]

onos

floodlight

0

0.5

1

1.5

2

2.5

0-1 1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-10

B
an

d
w

id
th

[G
b

it
s/

se
c

Interval Time[sec]

onos

floodlight

44

Figure 4-35 Delay of IoT Topology

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0-1 1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-10

d
e

la
y[

m
e

se
c

Interval Time[sec]

onos

floodlight

45

Chapter 5

5. Conclusion and Recommendations

5.1. Conclusion

SDN seems to be the promising technology thanks to its flexibility,

programmability and the global view given by its centralized controller, in

the first part of this Thesis tow SDN controllers are evaluated especially in

terms of throughput, bandwidth and delay and since some of the IoT

applications require high band width due to the big data generated. ONOS

show the highest bandwidth in all the evaluated topologies which are

1.876, 2.85 and 587.55 Gbit/sec comparing to floodlight which are 1.741,

1.4 and 2.157 Gbit/sec in single, linear and tree topologies respectively and

show its feasibility to be used in the SDN-based IoT topology and show

average throughput of 222.6 MB and average bandwidth of 1.869 Gbit/sec

and average delay of 0.069 ms.

5.2. Recommendations

Internet of Things is a new revolution of the Internet and it is a key research

topic for researcher in embedded, computer science & information

technology area due to its very diverse area of application& heterogeneous

mixture of various communications and embedded technology in its

architecture

In the future a special attention should be put to studying performances of

SDN-based architecture for IoT in a concrete smart scenario and with IoT

devices such as Raspberry Pi and sensors. In addition, the behavior of

different SDN controllers within a smart IoT environment.

46

Reference

1. Gubbi, J., et al., Internet of Things (IoT): A vision, architectural

elements, and future directions. Future generation computer

systems, 2013. 29(7): p. 1645-1660.

2. Al-Fuqaha, A., et al., Internet of things: A survey on enabling

technologies, protocols, and applications. IEEE communications

surveys & tutorials, 2015. 17(4): p. 2347-2376.

3. Domingo, M.C., An overview of the Internet of Things for people

with disabilities. Journal of Network and Computer Applications,

2012. 35(2): p. 584-596.

4. Zanella, A., et al., Internet of things for smart cities. IEEE Internet

of Things journal, 2014. 1(1): p. 22-32.

5. Qin, Z., et al. A software defined networking architecture for the

internet-of-things. in 2014 IEEE network operations and

management symposium (NOMS). 2014. IEEE.

6. Evans, D., The internet of things how the next evolution of the

internet is changing everything (april 2011). White Paper by Cisco

Internet Business Solutions Group (IBSG), 2012.

7. Atzori, L., A. Iera, and G. Morabito, The internet of things: A survey.

Computer networks, 2010. 54(15): p. 2787-2805.

8. Giusto, D., et al., The internet of things: 20th Tyrrhenian workshop

on digital communications. 2010: Springer Science & Business

Media.

9. Tayyaba, S.K., et al., Software-defined networks (SDNs) and

Internet of Things (IoTs): A qualitative prediction for 2020.

network, 2016. 7(11).

10. Lara, A., A. Kolasani, and B. Ramamurthy, Network innovation

using openflow: A survey. IEEE communications surveys &

tutorials, 2013. 16(1): p. 493-512.

11. Cabaj, K., et al. SDN Architecture Impact on Network Security. in

FedCSIS (Position Papers). 2014.

12. Kreutz, D., et al., Software-defined networking: A comprehensive

survey. Proceedings of the IEEE, 2014. 103(1): p. 14-76.

13. Da Xu, L., W. He, and S. Li, Internet of things in industries: A

survey. IEEE Transactions on industrial informatics, 2014. 10(4): p.

2233-2243.

14. Perera, C., et al., A survey on internet of things from industrial

47

market perspective. IEEE Access, 2014. 2: p. 1660-1679.

15. Yang, Z., et al. Study and application on the architecture and key

technologies for IOT. in 2011 International Conference on

Multimedia Technology. 2011. IEEE.

16. Blial, O., M. Ben Mamoun, and R. Benaini, An overview on SDN

architectures with multiple controllers. Journal of Computer

Networks and Communications, 2016. 2016.

17. Bonomi, F., et al. Fog computing and its role in the internet of

things. in Proceedings of the first edition of the MCC workshop on

Mobile cloud computing. 2012.

18. McKeown, N., et al., OpenFlow: enabling innovation in campus

networks. ACM SIGCOMM Computer Communication Review,

2008. 38(2): p. 69-74.

19. Othman, W.M., et al. Implementation and performance analysis of

SDN firewall on POX controller. in 2017 IEEE 9th International

Conference on Communication Software and Networks (ICCSN).

2017. IEEE.

20. Salman, O., et al. SDN controllers: A comparative study. in 2016

18th Mediterranean Electrotechnical Conference (MELECON).

2016. IEEE.

21. Taher, A., Testing of floodlight controller with mininet in sdn

topology. ScienceRise, 2014(5 (2)): p. 68-73.

22. Khattak, Z.K., M. Awais, and A. Iqbal. Performance evaluation of

OpenDaylight SDN controller. in 2014 20th IEEE international

conference on parallel and distributed systems (ICPADS). 2014.

IEEE.

23. Morita, K., I. Yamahata, and V. Linux. Ryu: Network operating

system. in OpenStack Design Summit & Conference. 2012.

24. Nguyen, X.N., D. Saucez, and T. Turletti, Providing CCN

functionalities over OpenFlow switches. 2013.

25. Rowshanrad, S., et al., A survey on SDN, the future of networking.

Journal of Advanced Computer Science & Technology, 2014. 3(2):

p. 232-248.

26. Kulmala, M., Improving network security with software-defined

networking, 2016.

27. Berte, D.-R. Defining the iot. in Proceedings of the International

Conference on Business Excellence. 2018. Sciendo.

28. Khan, R., et al. Future internet: the internet of things architecture,

possible applications and key challenges. in 2012 10th international

conference on frontiers of information technology. 2012. IEEE.

48

29. Bhatt, S., F. Patwa, and R. Sandhu. An access control framework for

cloud-enabled wearable Internet of Things. in 2017 IEEE 3rd

International Conference on Collaboration and Internet Computing

(CIC). 2017. IEEE.

30. Tan, L. and N. Wang. Future internet: The internet of things. in

2010 3rd international conference on advanced computer theory

and engineering (ICACTE). 2010. IEEE.

31. Wu, M., et al. Research on the architecture of Internet of Things. in

2010 3rd International Conference on Advanced Computer Theory

and Engineering (ICACTE). 2010. IEEE.

32. Uckelmann, D., M. Harrison, and F. Michahelles, Architecting the

internet of things. 2011: Springer Science & Business Media.

33. Mun, D.-H., M. Le Dinh, and Y.-W. Kwon. An assessment of

internet of things protocols for resource-constrained applications.

in 2016 IEEE 40th Annual Computer Software and Applications

Conference (COMPSAC). 2016. IEEE.

34. Shelby, Z., K. Hartke, and C. Bormann, The constrained application

protocol (CoAP). 2014.

35. Fette, I. and A. Melnikov, The websocket protocol, 2011, RFC 6455,

December.

36. Kidd, C.D., et al. The aware home: A living laboratory for

ubiquitous computing research. in International Workshop on

Cooperative Buildings. 1999. Springer.

37. Bainbridge, S., C. Steinberg, and M. Furnas. GBROOS—an ocean

observing system for the Great Barrier Reef. in International Coral

Reef Symposium. 2010.

38. Zhang, M., T. Yu, and G.F. Zhai. Smart transport system based on

“The Internet of Things”. in Applied mechanics and materials.

2011. Trans Tech Publ.

39. Vilamovska, A., et al., Rfid application in healthcare–scoping and

identifying areas for rfid deployment in healthcare delivery. RAND

Europe, February, 2009: p. 26.

40. Wu, D., et al. UbiFlow: Mobility management in urban-scale

software defined IoT. in 2015 IEEE conference on computer

communications (INFOCOM). 2015. IEEE.

41. Jararweh, Y., et al., SDIoT: a software defined based internet of

things framework. Journal of Ambient Intelligence and Humanized

Computing, 2015. 6(4): p. 453-461.

42. Huang, H., J. Zhu, and L. Zhang, An SDN_based management

framework for IoT devices. 2014.

49

43. Castellani, A.P., et al. Architecture and protocols for the internet of

things: A case study. in 2010 8th IEEE International Conference on

Pervasive Computing and Communications Workshops (PERCOM

Workshops). 2010. IEEE.

50

6. Appendices

Appendix A

Create SDN-based IoT topology

"""Custom topology example

Two directly connected switches plus a host for each switch:

 host --- switch --- switch --- host

Adding the 'topos' dict with a key/value pair to generate our newly

defined

topology enables one to pass in '--topo=mytopo' from the command line.

"""

from mininet.topo import Topo

class MyTopo(Topo):

 "Simple topology example."

 def __init__(self):

 "Create custom topo."

 # Initialize topology

 Topo.__init__(self)

 # Add hosts and switches

 edgeServer = self.addHost('h1')

 internet = self.addHost('h2')

 Host1 = self.addHost('h3')

 Host2 = self.addHost('h4')

 Host3 = self.addHost('h5')

 Host4 = self.addHost('h6')

 Host5 = self.addHost('h7')

 Host6 = self.addHost('h8')

51

 Host7 = self.addHost('h9')

 Host8 = self.addHost('h10')

 Host9 = self.addHost('h11')

 Host10 = self.addHost('h12')

 Host11 = self.addHost('h13')

 Host12 = self.addHost('h14')

 coreSwitch = self.addSwitch('s1')

 disSwitch1 = self.addSwitch('s2')

 disSwitch2 = self.addSwitch('s3')

 accSwitch1 = self.addSwitch('s4')

 accSwitch2 = self.addSwitch('s5')

 accSwitch3 = self.addSwitch('s6')

 accSwitch4 = self.addSwitch('s7')

 # Add links

 self.addLink(edgeServer, coreSwitch)

 self.addLink(internet, coreSwitch)

 self.addLink(coreSwitch, disSwitch1)

 self.addLink(coreSwitch, disSwitch2)

 self.addLink(disSwitch1, disSwitch2)

 self.addLink(disSwitch1, accSwitch1)

 self.addLink(disSwitch1, accSwitch2)

 self.addLink(disSwitch2, accSwitch3)

 self.addLink(disSwitch2, accSwitch4)

 self.addLink(accSwitch1, Host1)

 self.addLink(accSwitch1, Host2)

 self.addLink(accSwitch1, Host3)

 self.addLink(accSwitch2, Host4)

52

 self.addLink(accSwitch2, Host5)

 self.addLink(accSwitch2, Host6)

 self.addLink(accSwitch3, Host7)

 self.addLink(accSwitch3, Host8)

 self.addLink(accSwitch3, Host9)

 self.addLink(accSwitch4, Host10)

 self.addLink(accSwitch4, Host11)

 self.addLink(accSwitch4, Host12)

topos = { 'mytopo': (lambda: MyTopo()) }

53

Appendix B

Create simple sensors

#! python3.4

#Simple Light or door type Sensor that can receive control Information to

change state

##sensor uses loop and standard reconnect

import paho.mqtt.client as mqtt

#import testclient as mqtt

import json

import os

import time

import logging,random,os

import sys,getopt

#from mqtt_functions import *

options=dict()

brokers=["192.168.1.206","192.168.1.157","192.168.1.204","192.168.1.1

85","test.mosquitto.org",\

 "broker.hivemq.com","iot.eclipse.org"]

options["broker"]=brokers[1]

options["port"]=1883

options["verbose"]=False

options["username"]=""

options["password"]=""

options["cname"]=""

options["sensor_type"]="light"

54

options["topic_base"]="sensors"

options["interval"]=10 #loop time when sensor publishes in verbose

options["interval_pub"]=300 # in non chatty mode publish

status at this interval if 0 then ignore

options["keepalive"]=120

options["loglevel"]=logging.ERROR

cname=""

QOS0=0

mqttclient_log=False

username=""

password=""

chatty=False

interval=2 #loop time when sensor publishes

sensor_pub_interval=300# how often to publish if status is unchanged

def command_input(options):

 topics_in=[]

 qos_in=[]

 valid_options=" -h <broker> -b <broker> -p <port>-t <topic> -q QOS

-v -h <help>\

 -d logging debug -n Client ID or Name -i loop Interval\

-s <set states to open and closed> -u Username -P Password --h <help>"

 print_options_flag=False

 try:

 opts, args = getopt.getopt(sys.argv[1:],"h:b:i:dk:p:t:q:l:vsn:r:u:P:")

 except getopt.GetoptError:

 print (sys.argv[0],valid_options)

55

 sys.exit(2)

 qos=0

 for opt, arg in opts:

 if opt == '-h':

 options["broker"] = str(arg)

 elif opt == "-b":

 options["broker"] = str(arg)

 elif opt == "-i":

 options["interval"] = int(arg)

 elif opt == "-k":

 options["keepalive"] = int(arg)

 elif opt=="-r":

 options["topic_base"]=str(arg)

 elif opt =="-p":

 options["port"] = int(arg)

 elif opt =="-t":

 topics_in.append(arg)

 elif opt =="-q":

 qos_in.append(int(arg))

 elif opt =="-n":

 options["cname"]=arg

 elif opt =="-d":

 options["loglevel"]=logging.DEBUG

 elif opt =="-v":

 options["verbose"]=True

 elif opt =="-s":

 options["sensor_type"]="door"

56

 elif opt == "-P":

 options["password"] = str(arg)

 elif opt == "-u":

 options["username"] = str(arg)

 lqos=len(qos_in)

 for i in range(len(topics_in)):

 if lqos >i:

 topics_in[i]=(topics_in[i],int(qos_in[i]))

 else:

 topics_in[i]=(topics_in[i],0)

 if topics_in:

 options["topics"]=topics_in

#######

##callback all others defined in mqtt-functions.py

def on_message(client,userdata, msg):

 topic=msg.topic

 m_decode=str(msg.payload.decode("utf-8","ignore"))

 logging.debug("Message Received "+m_decode)

 message_handler(client,m_decode,topic)

def message_handler(client,msg,topic):

 if topic==topic_control: #got control message

 print("control message ",msg)

 update_status(client,msg)

def on_connect(client, userdata, flags, rc):

 logging.debug("Connected flags"+str(flags)+"result code "\

 +str(rc)+"client1_id")

 if rc==0:

57

 client.connected_flag=True

 client.publish(connected_topic,1,retain=True)

 #publish connection status

 client.subscribe(options["topics"])

 else:

 client.bad_connection_flag=True

def on_disconnect(client, userdata, rc):

 logging.debug("disconnecting reason " + str(rc))

 client.connected_flag=False

 client.disconnect_flag=True

 client.subscribe_flag=False

#######

def update_status(client,status):

 status=status.upper()

 if status==states[0] or status==states[1]: #Valid status

 client.sensor_status=status #update

 print("updating status",client.sensor_status)

def publish_status(client):

 global start_flag #used to publish on start

 pubflag=False

 if start_flag:

 start_flag=False

 pubflag=True

 if time.time()-client.last_pub_time >=options["interval_pub"]:

 pubflag=True

 if time.time()-client.last_pub_time >=options["interval"] and chatty:

 pubflag=True

58

 logging.debug("old "+str(client.sensor_status_old))

 logging.debug("new "+ str(client.sensor_status))

 if client.sensor_status_old!=client.sensor_status or pubflag:

 client.publish(sensor_status_topic,client.sensor_status,0,True)

 print("publish on",sensor_status_topic,\

 " message ",client.sensor_status)

 client.last_pub_time=time.time()

 client.sensor_status_old=client.sensor_status

def Initialise_client_object():

 mqtt.Client.last_pub_time=time.time()

 mqtt.Client.topic_ack=[]

 mqtt.Client.run_flag=True

 mqtt.Client.subscribe_flag=False

 mqtt.Client.sensor_status=states[1]

 mqtt.Client.sensor_status_old=None

 mqtt.Client.bad_connection_flag=False

 mqtt.Client.connected_flag=False

 mqtt.Client.disconnect_flag=False

 mqtt.Client.disconnect_time=0.0

 mqtt.Client.disconnect_flagset=False

 mqtt.Client.pub_msg_count=0

def Initialise_clients(cname):

 #flags set

 client= mqtt.Client(cname)

 if mqttclient_log: #enable mqqt client logging

 client.on_log=on_log

 client.on_connect= on_connect #attach function to callback

59

 client.on_message=on_message #attach function to callback

 client.on_disconnect=on_disconnect

 #client.on_subscribe=on_subscribe

 #client.on_publish=on_publish

 return client

def Connect(client,broker,port,keepalive,run_forever=False):

 """Attempts connection set delay to >1 to keep trying

 but at longer intervals """

 connflag=False

 delay=5

 #print("connecting ",client)

 badcount=0 # counter for bad connection attempts

 while not connflag:

 logging.info("connecting to broker "+str(broker))

 print("connecting to broker "+str(broker)+":"+str(port))

 print("Attempts ",badcount)

 try:

 res=client.connect(broker,port,keepalive) #connect to broker

 if res==0:

 connflag=True

 return 0

 else:

 logging.debug("connection failed ",res)

 badcount +=1

 if badcount>=3 and not run_forever:

 return -1

 raise SystemExit #give up

60

 elif run_forever and badcount<3:

 delay=5

 else:

 delay=30

 except:

 client.badconnection_flag=True

 logging.debug("connection failed")

 badcount +=1

 if badcount>=3 and not run_forever:

 return -1

 raise SystemExit #give up

 elif run_forever and badcount<3:

 delay=5*badcount

 elif delay<300:

 delay=30*badcount

 time.sleep(delay)

 return 0

def

wait_for(client,msgType,period=.25,wait_time=40,running_loop=False):

 #running loop is true when using loop_start or loop_forever

 client.running_loop=running_loop #

 wcount=0

 while True:

 logging.info("waiting"+ msgType)

 if msgType=="CONNACK":

 if client.on_connect:

 if client.connected_flag:

61

 return True

 if client.bad_connection_flag: #

 return False

 if not client.running_loop:

 client.loop(.01) #check for messages manually

 time.sleep(period)

 #print("loop flag ",client.running_loop)

 wcount+=1

 if wcount>wait_time:

 print("return from wait loop taken too long")

 return False

###############

if __name__ == "__main__" and len(sys.argv)>=2:

 command_input(options)

chatty=options["verbose"]

logging.basicConfig(level=options["loglevel"]) #error logging

#use DEBUG,INFO,WARNING,ERROR

if not options["cname"]:

 r=random.randrange(1,10000)

 r=3542

 cname="sensor-"+str(r)

else:

 cname=str(options["cname"])

##May want to change topics

connected_topic=options["topic_base"]+"/connected/"+cname

sensor_status_topic=options["topic_base"]+"/"+cname

62

topic_control=sensor_status_topic+"/control"

#########

options["topics"]=[(topic_control,0)]

#print(options["topics"])

if not options["verbose"]:

 print("only sending changes")

if options["sensor_type"]=="light":

 states=["ON","OFF"] #possible sensor states

else:

 states=["OPEN","CLOSED"] #possible sensor states

Initialise_client_object() # add extra flags

logging.info("creating client"+cname)

client=Initialise_clients(cname)#create and initialise client object

if options["username"] !="":

 client.username_pw_set(options["username"],options["password"])

client.will_set(connected_topic,0, qos=0, retain=True) #set will

print("starting")

print("Publishing on ",sensor_status_topic)

print("send control to ",topic_control)

print("Sensors States are ",states)

start_flag=True #used to always publish when starting

run_flag=True

#connecting_flag=False

bad_conn_count=0

try:

 while run_flag:

 client.loop(0.05)

63

 if not client.connected_flag:

 if Connect(client,options["broker"],options["port"],\

 options["keepalive"],run_forever=True) !=-1:

 if not wait_for(client,"CONNACK"):

 run_flag=False #break

 else:

 run_flag=False #break

 #subbscribes to control in on_connect calback

 if client.connected_flag:

 publish_status(client)

except KeyboardInterrupt:

 print("interrrupted by keyboard")

if client.connected_flag:

 client.publish(connected_topic,0,retain=True)

 time.sleep(1)

 client.disconnect()

