Sudan University of Science and Technology

College of Graduate Studies

A Comparative study of A Cache Replacement

Policies for Information-Centric Network
40 35S e ASedd cBgal) 3RS 58I i) laalued 45 j\Ba dul o
Cila glaall

Prepared By:
Tmaheen Albdry Mohammed Albdry

Supervisor:
Dr. Mohamed Elghazali Hamza Khalil

A thesis Submitted in Partial Fulfillment of the Requirement for the
Degree of M.Sc. in Information Technology (Networks)
December 2021

JOlgisy)

(:;\A‘)S\ QA;)]\ A:m(uuu
\ D L 7
(SLlE V] aladl (e a5 5l La)

(/\0) c«\).n‘}“ ™

Acknowledgments

First of all, I want to express my sincere thanks and gratitude to my
supervisor, Dr. Mohamed Elghazali Hamza. He provides excellent research
environment. He gave me great comfort and encouragement. He is an
excellent support both in academia and personality. | want to express my
great gratitude to Dr. Mohammed Elghazali. Secondly, | would like to
thank all my friends, who help me writing and organizing this research.
Last but not least, | want to thank my mother. Without her full support, |
could not finish my master study.

Abstract

Today's Internet user’s concentration on contents. Search engines, social
media, play an important role (users pay an attention for contents which
have a large number of like & share), ICN comes to meet the current
internet user's needs. In ICN, every content is named, requesting data by
name is very beneficial, especially for IOT. Now many researchers are
studying ICN-based IoT systems. In this study, both router and user’s
devices are able to store content. One of the key features of ICN is in-
network content caching. ICN behavior is determined by a3-tuple, which
are routing, content insertion and content replacement. Cache Placement
strategies (e.g Caching everything-everywhere (CE2) stores all the
content to be delivered on every router along the path, this approaches
consumes greater amount of buffer space. As a result, a caching decision
iIs made without regard to the content's popularity. for efficiency of
caching, cache replacement policies play an important role, because the
ICN router cache is limited, cache replacement is required. There are
different cache replacement policies. This research compare between
cache replacement algorithms (LUR, LFU, TLUR) in term of hit ratio to
select the much more efficient one. Our goal is to find the optimal
content replacement strategy, to face the big amount of caching (in-
network caching) caused by placement algorithms, attempting to
improve the network performance in terms of hit ratio and network
delay, build model to compare algorithms. To calculate hit rate for every
algorithm, and find the best algorithm for ICN. The application was built
using web techniques (PHP, Javascript). The result of comparison
explains that, the three algorithm is same when cache size is small, but
the difference appears when the cache size become larger, whereas
TLRU is the best one. LRU, LFU, TLRU achieves 12.5% with 4bytes
cache size. While LRU, LFU achieves 25% hit, and TLRU achieves
29%hit with 8bytes cache size, using the same number of requests.

Ualiiaal)

Gl GlS jae aliy ¢ Qlysiaall o asll G B seasiuae S 5
) b siaally () seadiuall dig) Lage 1550 olaial¥) dual sill Jilag
Al Ol o ol Al ¢ (A LERly GlaeY) e onS 20 e (ggias
¢ 6 sina IS Apand oy ¢) o) AL omdad) Y eadiie Glaliial
aaall Y S) ol J Al Aald 5 ¢ 13 18 anYL GUL ulla day
G0 o) e Alal ¢ LsY) e) dadal Al o e Jasd Gl e
GRS Cpeadinall 3eals 4l Slea e IS GSa ¢ Aulall oda
6 sinall i gall oy 585l < O o g;i A A)l G el saa) s siall
& Jiad Al g e Jslaad- YA e O o/ e paat oy A3 JAls
381 aaa s laad) il)5AT s siaal) Jladinl 5 (s siaal) #1)a) 5 4aa il
JS (5) o) OlSe S (& e JS) i gall o Al Jie) < gall (5 Al
a5 ¢ Jluall Jsb e aa i Slea IS (o dadud a3l (5 sial)
aby ¢ llal Aagiig ¢ el oAl dalue Hlaie ST 1508 Gllgiag el
el Jal (o s sinal) Al oo laill sy cdgall uadll)8 Al
¢ Laga 1550 cigall oAl 5800 Jlavia) bl el | i gall (o 300
el ¢ Basane O e ol apa sl Sleal cigall Al 5 SIa Y 1k
S ARl 3 S8 Jlariey daliae clulus aa s i gall (Al 3,803 Jlaiu
G gall o 3adll 5800 Jladie) Gl))lsa G Gal A oley ¢ i sl
lae) sadl aaail N A dua e (2 o1 J) (S sl JIes T
Jlana) el i) Je el s Aulall sda e cangd) Aleld iKY
G sall o 3adll) G sall G 3a3N e Sl ladall dgad sal ¢ i) (5 siall
Al o)l Cpeatd A glae 8 ¢ Ol))l Al aum s oo aalill (ASual) Jal
¢ Sl o)Al Dl A gad eling ¢ A3l aliy Jsa ol A Cua e
o= Al daadl e el ¢ Al sa JSI Jsaall Jare sl
¢ (QuoSalilag o OB (o) sl Clidi alaaduly Gl (L) a5 o
8813 ana ()5S Lenie Lgd o4 A5 da) sad) o 4 jlaal) Aoyt eaa 5
O Al 3 SI3 aaa muay Ladie jeday CaDUAY) (ST ¢ | pnaa i gall ¢y 5al)
& s A s s o1 NG JaamdY) s g)T OV S5 b ¢ ST gl
b5 50 O J) 38a ey s 4 aly Sge (3353 813 aany 7125 5 1
U e 729 dpwd g 1 J) (S 38T Lty ¢ il (e 425 At gy Y
Ll sae (g aladtuly ¢ B gal) o 3A81 5 SIA Culy 8 anany

Table of Contents

5 [
Acknowledgments li

ADStract. . . . i

Listof Figures. i VI

Listof Tables e, X

List of Abbreviations. Xi
Chapter One: Introduction i, 1
1.1 Introduction o 1

1.2 Motivation 1

1.3 Problem Statement 2

1.4 ODbJeCtiVES . ..ot e 3

1.5 Research SCopeo 3

1.6 ResearchOutline 3
Chapter Two: Background and Literature Review 5
2.1 Introduction 5

2.2 Information-Centric Network (ICN) 5

2.3 Content Centric Networking CCN/NDN 7

2.4 Forwarding InformationBase (FIB) 8

2.5 Pending Interest Table (PIT) 9
2.6 ContentStore (CS) 9
2.7 Communicationmodel inICN 9

28 Related Work 13
29ICNContentCachingc i 15
2.10 Advantages of in-network cachingin ICN 16
2.11 Cache placement and cache replacement 16
2.12 Caching Placement strategies 17
2.12.1 On-path Caching..................... 17

2.12.2 ProbabilisticCaching 17

2.12.3 Random Caching, 17

2124 Unique Caching, 17

2.12.5 Caching Everything-Everywhere 17

Vv

2.12.6 ProbCache o
2.12.7 Leave Copy Everywhere (LCE)
2.12.8 Leave Copy Down (LCD) and Move Copy
Down(MCD)

2.13 Replacement Strategy
2.13.1 Random replacement strategy
2.13.2 Leastrecentlyusedstrategy
2.13.3 Firstin firstoutstrategy
2.13.4 Least frequently used strategy
2.13.5 Most recently used strategy
2.13.6 Time aware least recently used (TLRU)
2.13.7 Least frequent recently used (LFRU)
2.13.8 Most frequently used strategy

214 SECUNLY . . oo
2.15 Name resolutionand datarouting
2.16 RoutingsysteminICNt
217 Queuingdelay
2.18 SUMMANY . ..o
Chapter Three: Methodology and Research Framework
3.AIntroduction
3.2Cachehitratio......... .. .
33Cacheload............ i
34Techniquesusedt e
3.5Research Framework Description
3.5.1 Network environment
3.5.2 Choose three algorithms to compare
3.5.2.1 Least recently used strategy(LRU)
3.5.2.2 Least frequently used strategy(LFU)
3.5.2.3 Time aware least recently used (TLRU) ...
3.5.3 build system to comparison......................
3.5.4 Thesequenceofsystem
3.5.5 specify parameters used insystem.................
3.5.6 decide the best one according to the system
3B SUMMArY . .
Chapter Four: Implementationand Finding...................

vi

18
18

18
18
19
19
19
20
20
20
21
21
22
22
23
23
24
25
25
25
26
26
26
26
27
27
27

28
29
31
31
31

4.11Introduction .

4.2 Framework of Implementation.........................
4.3Design and implementation
4.3.1 Resultsofhitratio.............................

443 Thirdly: 24 Requests.
4.4.3.1 LRU result screen 24 Requests
4.4.3.2 LFU result screen 24 Requests
4.4.3.3 TLRU result screen 24 Requests

4.5Results of different number of Requests ,Cache size=8

45.1 Firstly: 10 Requests.,

4.7 Discussion of analysisand finding

4.8 Summary. ..

Chapter Five: Conclusions and Recommendation

5.1 Conclusions

32
32
32
33

33
34
34
35
35
35
36
36
36
37
37
38

38
39
39
40
40
40
41
41
41
42
42
42
43
44
45
46
46

5.2 Recommendation i,
ReferenCes.
APPENdIX . ..o

Al phpcode.

A2 TLRUAlgorithm

viii

2.1
2.2
2.3
2.4
3.1
4.1
4.2
13
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19

List of Figures

CCN/NDN OVeIVIEW . ..ot
ICN packettypest e
Componentsin ICNrouter,
Basicoperationof ICN...............
Proposed system flowchart
main page Allow to enter requests,choose an algorithm. . . .
result screen for10 requests and cache=4,lru algorithm
result screen for10 requests and cache=4,Ifu algorithm
result screen for10 requests and cache=4tlru algorithm
result screen for20 requests and cache=4,lIru algorithm
result screen for20 requests and cache=4,Ifu algorithm
result screen for20 requests and cache=4,tlru algorithm
result screen for24 requests and cache=4,lIru algorithm.
result screen for24 requests and cache=4,Ifu algorithm.
result screen for24 requests and cache=4,tlru algorithm
result screen forl10 requests and cache=8,Iru algorithm.
result screen forl10 requests and cache=8,Ifu algorithm
result screen forl10 requests and cache=8,tlru algorithm
result screen for 20 requests and cache=8,Iru algorithm.
result screen for 20 requests and cache=8,Ifu algorithm.
result screen for 20 requests and cache=8,tlru algorithm.
result screen for 24 requests and cache=8,lru algorithm.
result screen for 24 requests and cache=8,Ifu algorithm.
result screen for 24 requests and cache=8,tlru algorithm.
chart comparison tlru ,Ifu and Iru for 4 bytes cache size.

10
11
12
30
33
34
34
35
35
36
36
37
37
38
39
39
40
40
41
41
42
42
43

43

44

3.1

4.1

4.2

List of Tables

Simulation parameters 31
Calculate hit rate for different number of requests with fixed
Cache size=4 32
Calculate hit rate for different number of requests with fixed
Cache size=8. ... 33

CCN
CDN
CS
DDoS
DONA
DoS
FIB
ICN
ICN
IFA
ISP
LCD
LCE
LFRU
LFU
LRU
MCD
MFU
MRU
NDN
Netinf
PIT
PoOA
PSIRP
SAIL
TLRU
TTU

List of Abbreviations

Content Centric Networking
Content Delivery Networks
Content Store

Distributed Denial-of-Service
data-oriented network architecture
Denial-of-Service

Forwarding Information Base
Information-Centric Network
Information-Centric Network
Interest Flooding Attacks

Internet Service Provider

Leave Copy Down

Leave Copy Everywhere

Least frequent recently used

Least frequently used

Least recently used

Move Copy Down

Most frequently used

Most recently used

Named-Data Networks

Network of Information NetInf
Pending Interest Table

point of attachement

Publish Subscribe Internet Routing Paradigm
Scalable and Adaptive Internet Solutions
Time aware least recently used

Time to Use

Xi

Chapter one
Introduction

1.1 Introduction

This chapter introduces the background of ICN. The motivation of our re-
search in ICN Caching is given as well. Then, we analyze the existing
problems in ICN placement strategies. Besides, the contributions of our
research work are concluded in this chapter. At the end of this chapter, the
outline of this thesis is listed.

With the ubiquity and proliferation of devices that connect us to the
Inter-net and the rapid advancement in wireless technologies, the global IP
traffic has exploded. Consequently, the usage of computer networking
shifted from sharing hardware and processing resources, as its purpose was
in the early days of its creation, to accessing and sharing content instead.
However, the design of the current Internet architecture was driven by the
needs at the time of its creation where the ultimate goal was end-to-end
communication between a few machines. Therefore, the existing
architecture is facing several challenges in adapting to a phenomenal
Increase in content.

Having acknowledged the growth of content and the necessity of its
efficient distribution, efforts from both academia and industry have been
combined in an attempt to adapt the Internet architecture to the explosive
content growth experienced in the last decade. This resulted in several
proposals that replace the end-to-end model of TCP/IP with a more data-
centric architecture under the name of ICN.

1.2 Motivation

In Information Centric Network(ICN), content is uniquely identified and so

1

endpoints send packets requesting names of specific content rather than an
IP address of a specific destination hosting the content. In other words, the

requesting client need not know where the data resides.

With naming content uniquely and disposing of the end-to-end principle
that keeps end to-end transactions oblivious to resources and content
available along the path, ICN leverages in-network caching where routers
in the net-work cache content items. There have been several different
proposals of ICN architectures they all share the common goal of efficient
content distribution using two key features, which are content-based
communication and universal in-network caching. in-network caching
allows for data being retrieved from intermediate nodes rather than from
the server itself, thus rendering content distribution more efficient by
reducing network traffic ,download time and server load.

With cache placement algorithms (e.g LCE), all such routers on the for-
warding path will cache the content object. As a result, a caching decision
is made without regard to the content’s popularity or to the space resources

available.

1.3 Problem Statement

Cache Placement strategies (like Caching everything-everywhere) stores all
the content to be delivered on every router along the path, this approaches
consumes greater amount of buffer space, degrade cache performance and
network performance. After a cretin amount of time, the buffer is getting
full and there is not enough space to store new incoming data in the cache,
this result in delay and less network performance. The needs to
accommodate the incoming contents in the buffer “cache” is main feature
of ICN, there is no way to stop, furthermore caching all contents is
impossible, the problem of what content must stay or what content should
gone away, is floating on surface. random replacement result in less cache

performance, so effective cache content replacement decision and strategy
should take place .The strategy takes in account the performance and full
utilization of time, buffer, network, by right selection of the contents must
be replace ,and the procedures to be done. the research goal is to find the
optimal content replacement strategy, to face the big amount of caching (in-
network caching) caused by placement. algorithms, attempting to improve
the network performance in terms of hit ratio and net-work delay.

1.4 Objectives

research objectives are :
1. To build model to compare algorithms in term of hit rate. high hit rate
means high network performance and less traffic and delay.

Calculate hit rate for every algorithm.for fixed parameters,(cache size,
time, number of requests).

2. To find the best algorithm for ICN networks,the algorithm with high hit
rate.

3. To increase the caching replacement process performance,by taking the
content popularity into account. this lead to minimize response time,
network traffic .and optimal utilization for cache memory and network
resources.

1.5 Research Scope

Compare Cache replacement strategies(LRU-LFU-TLRU) for achieving re-
search objectives, furthermore the scope of research is to compare the
algorithms mention above in term of hit ratio for fixed cache size and fixed
number of requests. For efficiency of caching, cache replacement policies
play an important role, because the ICN router cache is limited and cannot
hold all the content in-side the cache. To devise some space for new
content, cache replacement is required. There are different cache
replacement policies. One of the most used and popular policy is Least
Recently Used (LRU). Least Frequently Used (LFU). First-In First-Out
(FIFO).

1.6 Research Outline

The remaining of this thesis is structured as follows: Chapter two: presents

3

the background of our research. An introduction of ICN is given. ICN
architectures ,exactly NDN ,in-network caching ,cache placement and
replacement strategies are discussed as well. Chapter three: proposes our
model for compare the algorithms ,the simulation ,and parameters. Chapter
four: implement the proposed model, the simulation of the mentioned
algorithms, compare the results with each other. Based on the results , then
choose the much more efficient one. Chapter five: gives a conclusion about
this thesis and our future work. also some future possibilities where listed
in this area.

Chapter Two
Literature Review

2.1 introduction

This chapter presents the background of our research. It gives an
introduction of ICN in Section 2.1, in which it describes the architecture of
ICN. Then presents the NDN architecture, in Section 2.2. After that,
presents Communication model is in 2.3 and IN-Network caching and its
advantages in ICN in 2.4,2.5. It classifies Cache strategies into two major
categories: Placement Strategy and Replacement Strategy. In each
category, a detailed description is discussed. At last, we present the related
studies, another important aspect of ICN, security, naming, routing system.
at last we present queuing delay.

2.2 Information-Centric Network (ICN)

The core idea behind information-centric networking (ICN) architectures is
that who is communicating is less significant than what data are required.
This paradigm shift has occurred due to end-users’ use of today’s Internet,
which is more content-centric than location-centric.

Internet usage has shifted from host-centric end-to-end communication to
a content-centric approach mainly used for content delivery. Although
content delivery represents such a large percentage of Internet traffic, the
paradigm of the current Internet has not been built for content delivery.

Unlike traditional broadcast which sends one title to millions of people
across the network at one time, the Internet transmits same videos many
times over. the congestion in the Internet will get out of control and new
solutions will be required to maintain an acceptable quality of service.

To address the problem, Information Centric Networks (ICN) were pro-

5

posed.ICN is a novel Internet architecture designed for content delivery. In-
stead of leading the Internet protocol with an end-to-end communication
protocol, ICN switches to a content-centric approach where every content is
named. Researchers have proposed multiple architectures [1]. In 2006, the
data-oriented network architecture (DONA) project at UC Berkeley
proposed an ICN architecture, which improved the security and architecture
of TRIAD. The Publish Subscribe Internet Technology (PURSUIT) project,
a continuation of the Publish Subscribe Internet Routing Paradigm
(PSIRP)project, both funded by the EU Framework 7 Program (FP7), have
proposed a pub-lish/subscribe protocol stack that replaces the IP protocol
stack. In another approach, the Network of Information (NetInf) project was
initially proposed by the European FP7 4WARD project, and further
development has been made by the Scalable and Adaptive Internet Solutions
(SAIL) project. Simi-larly, Van Jacobson, a Research Fellow at PARC,
proposed the Content Cen-tric Networking (CCN) project in 2007.

Currently work is being performed to enhance the CCN architecture called
“named-data networks” (NDN). All of these approaches differ in terms of
implementation, but they have the same goal to improve the performance
and end-user experience of the Internet by providing access to content and
ser-vices by name rather than by original location. There are researches
talked about ICN and its caching strategies and use in [2] [3] [4]. This is
achieved by changing the concept of link protection to content protection
and by exploiting in-network storage of content.

Among all these new architectures, CCN has attracted most of the
attraction of the community due to three reasons:
I. In-network caching features at every node
Ii. coupled name resolution
iii. data forwarding and a unified naming scheme.
From these features, in-network caching impacts directly on the content

delivery efficiency. Despite the large caching literature already existing,the

premises of a CCN architecture makes its study challenging. The in-network

6

caching features at every node becomes CCN into a network of caches.
Internet has never handled caches at such a large scale, caches were located
at fixed locations and now caches are placed everywhere.CCN stores content
at chunks of content at a fine-granularity, in contrast with traditional
architecture were complete objects were stored. CCN routers must deal with
large cache sizes and a catalog ranging for all the content from the Internet.
The CCN efficiency depends drastically on the performance of its caching

features [5].

2.3 Content Centric Networking CCN/ NDN

4

Routers with caching capabilities

i Q‘f@
la b

> Data Sender
Content/Data Packet Path

>
Interest packet path

Figure 2.1: CCN/NDN overview [6]

Content Centric Networking (CCN) in one project that follows the ICN
paradigm. It was originally started at the Palo Alto Research Center (PARC),
a research and development company. Currently the CCN approach is being
continued by for example the Named Data Networking (NDN) project and

7

the Community Information Centric Networking (CICN) project at Cisco.
In CCN communication is driven by the consumers of data, with publishers
making that data available for access in the form of content. In CCN there
are two primary packet types: Interest and Data. Consumers first use an
Interest packet in order to request some content and the publisher then
delivers that content, in the form of a Content Object, in a Data packet.
Content Object is the CCN specific term for the generic ICN NDO. Routing
Is name-based and Interests are routed hop-by-hop toward publishers using
longest prefix matching. Longest prefix matching is originally a forwarding
algorithm used by TCP/IP routers. some papers talk about routing as in [7]
[8]. When applied to CCN it means that a message will be forwarded
according to the entry in the forwarding table with the name that has the
longest prefix in common with the name of the message.

The namespace of CCN is hierarchical, unlike several other ICN projects
which use flat namespaces. The structure is similar to the current URLSs,
where the hierarchy is rooted in a publisher unique prefix under which
content is published. This means names are aggregately when routing in a
manner reminiscent of TCP/IP route aggregation, which improves routing
scalability. A CCN router has three primary data structures.

2.4 Forwarding Information Base (FIB)

It is the forwarding table. In CCN the FIB operates similarly to the FIB of a
TCP/IP router, hence the identical name. It maps Content Obijects,
represented by their names, to network interfaces. A selected network
interface leads to a next hop toward one publishing location for the content
matching that particular name. In CCN terminology interfaces are simply

referred to as faces.

The primary difference when compared to the FIB of TCP/IP is the fact
that CCN supports multi-sourcing. In CCN each FIB entry can map a single
Content Object to multiple faces, as the same content can be published at

multiple network locations. How to populate the FIB is an important
8

problem and a common suggestion is to use a routing protocol, much like
how it is done in TCP/IP. When there are multiple alternative faces to
choose from for a Content Object a forwarding strategy determines to
which face, or faces, the Content Object should be forwarded.

2.5 Pending Interest Table (PIT)

The PIT stores state about forwarded Interests in the form of a map, which
maps Content Objects to faces from which Interests for that Content Object
has been received. Similarly, to the FIB, the Content Objects are once again
represented by their names.

Content Objects are not routed from the publisher to the consumer, they
instead travel the same path as the initial Interest, but in the reverse
direction, by consuming the state left behind by the initial Interest in the
PIT at each passed hop. This is called the reverse request path. The state
stored in the PIT thus serves as a breadcrumb for the Content Object to
follow as it travels toward the consumer.

2.6 Content Store (CS)

The CS is the cache where each network node can store content, enabling
on path caching. For example, there are papers in a caching mechanisms as
in [9] caching strategies as in [10] [11], On path caching is the possibility
that, as an Interest is routed toward a publisher, a cache hit occurs in the CS
of one of the intermediate nodes. This reduces content download time,
network traffic and the server workload. The CS operates according to
some cache strategy, for instance Least Recently Used (LRU) or Least
Frequently Used (LFU). There is no requirement for every node to share a
single cache strategy, meaning the cache strategy can be decided on an
individual node basis.

2.7 Communication model in ICN

In ICN, packets used for communication are of two types
9

Interest Packet Data Packet

é Name % % Name %

Selectors Metalnfo

(order preference, publisher filter, (content type,

exclude filter) freshness period)

2{ Nonce % J{ Content %

Guiders Signature

{scope. Interest lifetime) (signature type, key locator.
signature bas)

Figure 2.2: ICN packet types [12]

Interest and Data [figure 2.2]. User requests a particular data using an
interest packet which includes the name prefix of the content to be fetched.
Name prefix from the interest packet is used to route it forwards the
requested content. The packet whose name matches with the name prefix of
the interest packet or has matching data cached locally is sent to the user
through the same path in reverse direction leaving cached copies at each
intermediate node from source to destination. Every interest packet
additionally contains a NONCE field, a random number assigned by
pending interest table (PIT) to avoid forwarding loops. Data packet carries
the requested data plus the signature of producer to review for

inconsistencies. [12].

10

CS|C Name Data
PIT |P
Name Incoming
Faces
FIB |F
Name Outgoing
Faces

Figure 2.3: Components in ICN router

ICN routers contain three tables as shown in figure 3.Forwarding
Information Base (FIB), Pending Interest Table (PIT) and a Content Store
(CS). FIB acts as a routing table in an IP router. Instead of IP prefixes, ICN
FIB is indexed by name prefixes and every FIB entry may have several
next hops in place of one best next-hop for every name prefix. PIT keeps
track of received interests. It records which interface(s) the interest is
received from and has been forwarded to. CS acts as a temporary cache of
data packets. If the re-quested data is in the CS, the node can immediately
send the data without generating further requests to the content provider.

11

User d

Dale Intermel Content Provider

Figure 2.4: Basic operation of ICN[12]

In this example [figure2.4]: User A forwards the interest packet first.
When this interest packet sent from user A reaches the router, router
queries it’s CS for the requested content. If there is any matching data
stored in cache, data is immediately sent to the requester. In this example,
as no such content is available in CS, router looks up the PIT to see if there
is any request for this content. A record of the incoming interface is made
in PIT if an identical entry is found. If the entry is not found in PIT, both
incoming interface and outgoing interface are recorded in addition to the
name of the requested content. Router will then forward interest packet
depending on the information in FIB. There is no cached content for this
request in the network, so the interest packet eventually hits the content
provider and the data packet is sent to the requester. When this data packet
arrives at router, it first looks for any pending entry in PIT for the same. If
so, data packet gets forwarded towards the downstream interfaces and its
corresponding entry in PIT is removed while caching the data packet in its

12

CS to satisfy future requests. Now, when user B sends the interest packet
for the data similar to the one requested by user A, this data packet gets
delivered from the nearest cache (router in this example) to user B directly
[figure 2.4].

2.8 Related Work

Researchers work on several caching strategies , their algorithm , caching
types , their advantages and issues . Based on the survey work, various
cache methods are compared depend on different criteria. Different
challenges in their works are analyzed, and a proposal based on these works
Is given at the end [2].

To improve the cache hit ratio, most of the existing schemes store the
con-tent at maximum number of routers along the downloading path of
content from source. While this helps in increased cache hits and reduction
in delay and server load, the unnecessary caching significantly increases the
network cost, bandwidth utilization, and storage consumption. To address
the limi-tations in existing schemes, researchers in [3] propose an
optimization based in-network caching policy, named as opt-Cache, which
makes more efficient use of available cache resources, in order to reduce
overall network utilization with reduced latency [3].

Researchers in [1] propose a caching and replacement strategies for
content in Content-Centric Network (CCN). The caching strategy will
choose the node that will be cached on based on the network topology. The
proposed replacement strategy will take in its consideration the number of
resources that the content has been consumed and if the content has been
requested recently or not. To evaluate their proposed work, Researchers use
a ccnSim simulator, and the simulation results show that their proposed
caching strategy provides more significant result than the Leave Copy
Everywhere (LCE) strategy and the replacement strategy provide more
significant result than the Least Recently Used (LRU) replacement strategy.

ICN behavior is determined by a 3-tuple, which are routing, content

13

insertion and content replacement. Besides, Routing algorithms influence
content insertion performance and, which in turn, influences in replacement
policies performance. Furthermore, it is proven that content insertion
policies in-fluence routing performance and there is no work regarded to
analyze the impact of replacement algorithms in content insertion.
Therefore researchers in [13] proposed a new caching metric called
Replacement Ratio and a dynamic content insertion strategy named
RatioCache to prove that content replacement, which is strongly bounded to
caching system, also influence the caching process. In [4] The problem of
the study is that the NDN architecture is processing several forms of online
video requests simultaneously. However, limited cache and multiple
buffering of requested videos result in loss of data packet as a consequence
of the congestion in the cache storage network. Ad-dressing this problem is
essential as congestion cause network instability. This work emphasizes on
the review of cache replacement strategies to deal with the congestion issue
in Named Data Networks (NDN) during the VoD delivery in order to
determine the performance (strengths and weaknesses) of the cache
replacement strategies. Finally, the study proposes the replacement
strategies must be enhanced with a new strategy that depends on popularity
and priority regarding the congestion.

Researcher in [14] propose a content replacement scheme for ICN,
called Randomized LFU that is implemented with respect to content
popularity tak-ing the time complexity into account. They use Abilene
and Tree network topologies in their simulation models. The proposed
replacement achieves encouraging results in terms of the cache hit ratio,
inner hit, and hit distance and it outperforms FIFO, LRU, and Random
replacement strategies.

The researcher in [15] proposed New caching policies and described:
XCaching Type A, XCaching Type B, XCaching TypeC. The results of a
comparative analysis of the developed caching approaches in model of
information-content network are presented. Investigated the probability of

14

hitting the cache and the uniqueness of caching systems was made. The
results of caching policy evaluations are obtained on the basis of
constructed imitation model of information-content network.

Paper [16] discusses the potential of leveraging Information-Centric
Net-working (ICN) principles in the 3GPP architecture for V2X
communications. researcher consider Named Data Networking (NDN) as
reference ICN ar-chitecture and elaborate on the specific design
aspects,required changes and enhancements in the 3GPP V2X
architecture to enable NDN-based data ex-change as an
alternative/complementary solution to traditional IP networking, which
barely matches the dynamics of vehicular environments. Results are
provided to showcase the performance improvements of the NDN-based
proposal in disseminating content requests over the cellular network
against a traditional networking solution.

To enable a complete ICN caching solution for communication networks,
Quang Ngoc Nguyen and other proposed an autonomous replacement
policy to optimize the cache utilization by maximizing the utility of each
CN from caching content items. By simulation, they show that PPCS,
utilizing edge-computing for the joint optimization of caching decision and
replacement policies, considerably outperforms relevant existing ICN
caching strategies in terms of latency (number of hops), cache redundancy,
and content availability (hit rate), especially when the CN’s cache size is

small [7].

2.9 ICN Content Caching

Approaches to caching can be categorized into off-path caching and on-
path caching based on the location of caches in relation to the forwarding
path from a source to a consumer. Off-path caching, also referred as
content replication or content storing, aims to replicate content within a
network in order to increase availability, regardless of the relationship of

15

the location to the for-warding path. The actual number of replicas and the
specific nodes in which replicas may be stored is a decision made by the
Internet Service Provider (ISP) that supports the specific network. In on-
path caching approaches, content is replicated at nodes along the
forwarding paths from sources to consumers. The decision to cache a
content resource at a specific node is strictly related to the content that is
being requested [17].

2.10 Advantages of in-network caching in ICN

I) Reduction of content delivery delay and round- time (RTT trip): Because
of in-network caching capability, contents are stored at the intermediate
nodes closer to requesters and can be quickly retrieved from the server.

I1) Higher content availability: In-network caching ensures higher
availability of content as they are cached on all nodes back from source to
requester thereby mitigating Denial of Service (DOS) to a significant level
[18].

I11) Network caching shows better resiliency towards packet loss by
quickly retransmitting them from the nearest node which has uncorrupted
copy of the content.

IV) In-network caching results in significant reduction of total traffic since
data packets traverse fewer links in case of a cache hit.

V) Cache hit leads to serving one request less, thus reduced server load.
[12]

2.11 Cache placement and cache replacement

Cache memory is used to store frequently referred pages to increase the
throughput of the system and with minimum delay .In ICN, cache place-
ment and cache replacement are different terms. Cache placement basically
references ‘in what place the content should be placed?’ but Cache replace-
ment defines how the event cache content eviction should take place to
achieve a high hit ratio and minimum latency.

16

2.12 Caching Placement strategies

2.12.1 On-path Caching

On-path caching decisions applies only to the requested content(s); other
content is not taken into account, while content may be cached only at the
nodes lying on the delivery path.On-path caching is strictly related to the
requested content and popularity rates of each item. [17].

2.12.2 Probabilistic Caching

It is a general approach, according to which each node on the delivery path
decides to cache the content based on a probability p. The probability p
may be a pre-determined value [19].

2.12.3 Random Caching

This model is fairly simple and results in no additional load on the network.
However, it is not able to exploit the advantage of having knowledge of the
optimal positions for caching each content [17] [19].

2.12.4 Unique Caching

In this approach, content is cached only in one node along the delivery path
which is chosen randomly. Since only node is chosen, the probability of

caching at each node equals to, one to the number of intermediary nodes.

2.12.5 Caching Everything-Everywhere

The CE2approach simply caches every content in every intermediate node
in-volved in the delivery path. The CE2 approach has been criticized in a
number of works for resulting into unnecessary content redundancy and
resource con-sumption. As an additional drawback, CE2 does not take into
account the content’s popularity, providing the same probability,for both
popular and un-popular content, to be cached. In contrast to its
disadvantages, CE2 holds the advantage of providing fast content
distribution [17].

17

2.12.6 ProbCache

According to this policy, each node stores a copy of the content with proba-
bility p. If the probability is 1, the LCE policy is implemented. Each node
contains cache sizes and data regular changes over time, so it has to be an
effective content replacement policy. If the node does not have enough
space to cache a copy of the content, it selects suffer for replacement based
on access time,the number of visits or access order [11].

2.12.7 Leave Copy Everywhere (LCE)

LCE leaves a copy of the content in each node along the path from
producer to end user.LCE can be considered as a probability strategy with
caching probability equal to one in each node. LCE designed to reduce user
access time to a content and minimize the frequent download from content
producer.The main disadvantage of this strategy is the redundancy of
caching.To reduce cache redundancy in ICN the LCD is designed. LCD
caches the content only at the direct downstream node of the node that
cache hit occurs on it. [20] [21].

2.12.8 Leave Copy Down (LCD) and Move Copy Down(MCD)

(MCD) are other cache placement policies. When a user sends an Interest
packet,and cache hit occurs, the content will be cached only in the neighbor
downstream node. LCD pushes a copy of the content one hop closer to the
client after each cache hit. Also in MCD once a cache hit occurs the content
Is cached only at the neighbor downstream router. MCD deletes the cached

content after the hit while LCD does not [11] [21].

2.13 Replacement Strategy

Cache is filled after a certain amount of running time.Since that, a
replacement strategy is needed to cache a new upcoming content.
Replacement strategies can be categorized based on several characteristics

18

has been proposed in :

2.13.1 Random replacement strategy

When a content data are requested by requester node (client) and caching
router find that content in its content store (CS) then that event is called hit
event and the content data is immediately sent to the client by the caching
router. When the content is not found in the content store (CS) of the
caching router then the respective data request is sent to the server and in
returning of that data from server, caching router selects one of the content
in its CS randomly and replace that content with requests incoming content
from the server .

The selection criteria of content which has to be replace is done random.
[22] [19] [23].

2.13.2 Least recently used strategy

Least recently used (LRU) is one of famous and mostly used cache replace-
ment strategy in ICN.In Least recently used strategy when a content data
are requested by requester node and caching router finds that
content,caching router selects one of the content in its CS on the behalf of
recency of usage.

Most popular content items will be demanded more in the network so its
usage will be more and recency is directly proportional to the usage. So the
item which having less recency will be selected for replacement by a
caching router in its CS.LRU replacement strategy gives a high hit ratio
because the most popular content is accessed many times in the modern
world scenario [22] [23].

2.13.3 First in first out strategy

This strategy is very simple to understand and implements .In this replace-
ment ,when a content data is requested by requester node ,caching router
selects one of the content in its CS on the behalf of oldness of usage. In this

19

scenario, oldness is directly proportional to the time at which the content
data was stored in the cache storage. The more old data have high
probability to be replaced with new arrived cached content [19] [23].

2.13.4 Least frequently used strategy

Least frequently used Strategy works with the maintenance of a counter for
each content data. This counter for each content item tracks how many
number of times that particular content item is requested or referred. In
Least frequently used (LFU) strategy, when a content data is requested by
requester node ,caching router selects one of the content in its CS on the
behalf of less value of counter. This less or low value of counter indicates
less number of times that particular content item is referred. The caching
router will select a content item in its cache who has a low value of the
counter and replaces it with newly arrived content data [22] [23].

2.13.5 Most recently used strategy

This strategy is opposite to least recently used replacement strategy, when a
content data are requested by requester node (client) and caching router
finds that content in its content store (CS) ,the content data is immediately
sent to the client by the caching router. caching router selects one of the
content in its CS on the behalf of high recency of usage. Researches show
that the MRU replacement holds good results for scenarios which having
accessed old content data in spite of new one [22] [23].

2.13.6 Time aware least recently used (TLRU)

The Time aware Least Recently Used (TLRU) is a variant of LRU designed
for the situation where the stored contents in cache have a valid life time.
The algorithm is suitable in network cache applications, such as
Information-centric networking (ICN), Content Delivery Networks (CDNs)
and distributed networks in general. TLRU introduces a new term: TTU
(Time to Use). TTU is a time stamp of a content/page which stipulates the
usability time for the content based on the locality of the content and the

content publisher announcement. Owing to this locality based time stamp,
20

TTU provides more control to the local administrator to regulate in network
storage. In the TLRU algorithm , when a piece of content arrives, a cache
node calculates the local TTU value based on the TTU value assigned by
the content publisher. The local TTU value is calculated by using a locally
defined function. Once the local TTU value is calculated the replacement of
content is performed on a subset of the total content stored in cache node.
The TLRU ensures that less popular and small life content should be
replaced with the incoming content [24] [23].

2.13.7 Least frequent recently used (LFRU)

The Least Frequent Recently Used (LFRU) cache replacement scheme
com-bines the benefits of LFU and LRU schemes. LFRU is suitable for ‘in
network’ cache applications, such s Information centric networking (ICN),
Content De-livery Networks (CDNSs) and distributed networks in general.
In LFRU, the cache is divided into two partitions called privileged and
unprivileged partitions. The privileged partition can be defined as a
protected partition. If content is highly popular, it is pushed into the
privileged partition. Replace-ment of the privileged partition is done as
follows: LFRU evicts content from the unprivileged partition, pushes
content from privileged partition to unpriv-ileged partition, and finally
inserts new content into the privileged partition. In the above procedure the
LRU is used for the privileged partition and an approximated LFU (ALFU)
scheme is used for the unprivileged partition, hence the abbreviation
LFRU.

The basic idea is to filter out the locally popular contents with ALFU
scheme and push the popular contents to one of the privileged partition
[25].

2.13.8 Most frequently used strategy

This strategy is opposite to least frequently used replacement strategy.
when a content data are requested by requester node, caching router selects

one of the content in its CS on the behalf of the high value of counter. This
21

high value of counter indicates a large number of times that particular

content item is referred [22].
2.14: Security

Instead of securing connections, ICN model is based on securing data at
network layer. Each data packet is digitally signed by the producer,
allowing consumers to verify integrity and data-origin authenticity. A
producer is thus required to have and distribute at least one public key.
Existing trust models (e.g. a PKI or Web-of-Trust) can be used to validate
producer identity and key ownership. Data confidentiality can be
guaranteed by encrypting data payload and preventing information leakage
from the name.

one commonly recognized benefit of ICN data-centric security approach
Is that it places trust in producers rather than in hosts that store and serve
data. This enables in-network efficient data delivery operations, such as
filtering, caching and multicasting, without affecting the data security
properties en-forced by the data producer [28].

It is also stated that ICN can mitigate traditional Distributed Denial-of-

Service (DDoS) attacks for the certain data providers. in-network caching
in ICN can greatly avoid DDoS attacks, and name-based forwarding in ICN
can trace the attackers easily.Unfortunately, ICN brings a new varietal
DDoS attack called Interest Flood-ing Attacks (IFA), which has become a
big threat for information-centric . Typically, attackers issue a large number
of fake Interest messages to request nonexisting Data, which can lead to the
memory overflow for the ICN-10T nodes. Recently, many mechanisms
have been proposed to mitigate the IFA attacks [29] [30].In paper [31] the
researchers showcase the existing literature in security and privacy in ICN
and present open questions.

2.15 Name resolution and data routing

The name resolution is a mechanism that enables a consumer or a content

22

subscriber to find NDO by using a name.This mechanism provides a means
of mapping a name and content locator and forward the requested data to
the source. After the source of the content according the requested name
has been found, the data routing process then constructs a path for
transferring the data from the source to the user/client who requested the
content.in [32] researchers proposed a hybrid name resolution approach, in
which each content has a Home Node located in ICN routers.

2.16 Routing system in ICN

In ICN, data objects must be identified by names regardless their location
or container and the names are divided into two types of schemes:
hierarchical and flat namespaces. A hierarchical scheme used in CCN and
NDN architec-tures has a structure similar to current URIs, where the
hierarchy improves scalability of routing system. It is because the hierarchy
enables aggregation of the name resulting in reducing the size of RIB or
FIB as similar to IP routing system. In a flat scheme, on the other hand,
name routing is not easy since names in a flat namespace cannot be
aggregated anymore, which would cause more the scalability problem in
routing system. In order to address such
problem, a flat name can be resolved to some information which is routable
through NRS,more details in [8] .

2.17 Queuing delay

Is the time spent by the packet sitting in a queue waiting to be transmitted
onto the link. The amount of time it needs to wait depends on the size of the
Queue. If the Queue is empty, then it transmitted immediately, but if it’s
sitting behind other packets, then it needs to wait for the packets in front to
be transmitted first.

researchers in [33] introduced an interest forwarding mechanism to
process the requests of consumers at a CCN router, Interest packets are
forwarded with respect to the priorities of addressed content while the

23

priority level settings are done by content publishers during an initialization
phase using a collaborative mechanism of exchanging messages to agree to
the priority levels of all content according to the content-nature. Interests
with higher priority content are recorded in Pending Interest Table (PIT) as
well as forwarded to content publishers prior to those with lower priority
content.

NDN defines two basic types of packets: Data and Interest. Content items
are permanently stored in the repository (provider)and partly cached in the
intermediate nodes. A content item is split into a sequence of Data packets
uniquely identified by names. Each consumer implements a receiver-driven
transport protocol to retrieve content by sending Interest requests. A name-
based routing protocol guarantees the Interests are routed toward the data
repository. Every intermediate node keeps track of pending Interests, in
order to deliver the requested Data packets back to the receiver through the
reverse path of Interests. Each router is equipped with a local cache that
stores Data packets in order to satisfy future Interests for the same Data. In
addition, intermediate nodes perform Interests aggregation to avoid
forwarding multiple interests for the same Data while the first one is
pending.

Researchers in [34] introduce the Markovian Queuing System theory into
the ICN modeling. they adopt the Queuing theory to analyze the queuing
delay which is a key part of the content delivery time [20].

2.18 Summary

This chapter, presents an overview of the research background of ICN,
NDN, IN-Network caching in ICN witch lead to cache placement and
replacement strategies. Include that introduced to suit ICN network.at the
end of this chapter we presented the related works and queuing delay.

24

Chapter Three
Methodology and Research Framework

3.1 Introduction

In this chapter, demonstrate our proposed model, the model involves an
ICN with an NDN architecture, the “in-network™ capabilities rise the need
for efficient cache replacement strategy. The main goals of the proposed
model are to compare algorithms and showing, analyzing the results in term
of hit ratio. This chapter is organized as follows. Section 3.1 presents the
hit ratio and Section 3.2 the cache load. Section 3.3 describe the
Framework.

3.2 Cache hit ratio

Cache hit ratio will be evaluated by achieving the number of hits for overall
request of accessing content from the requested client. If the request for
content item made by the client is found in the content store of a caching
rather than this phenomenon is called cache hit. The increasing number of
cache hit leads to high performance of the information centric network
because of less delay and content will be reached for the client before
expected time. Cache hit ratio is directly proportional to the number of

times content item found in the content store of caching router.

C(hit) = number of times content found in CS

Total no. of request in that caching router

25

3.3 Cache load

The term cache, load is indicated that how much request is processed by a
server or a caching router at any particular time. Load is the total number of
requests for accessing the content data/ items from client to the server. For
better performance of the system, it is necessary that the server or caching
router should not be overloaded with incoming requests for content access.

3.4 Techniques used

PHP started out as a small open source project that evolved as more and
more people found out how useful it was. Rasmus Lerdorf unleashed the
first version of PHP way back in 1994.PHP is a recursive acronym for
”PHP: Hypertext Preprocessor”. It is server side scripting language that is
embedded in HTML. It is used to manage dynamic content, databases,
session tracking, even build entire e-commerce sites.

Canvas.JS: Canvas.JS is an easy to use HTML5 and Java script Charting
library. This allows to create Rich reports that work across devices without
compromising on Maintainability or Functionality.

e Why Canvas.JS

e Very simple and intuitive API .

e Comes with Beautiful and Elegant looking themes.

e High performance and Works on all modern devices.

e (Canvas.JS is Standalone — does not depend on any other library.

3.5 Research Framework Description

3.5.1 Network environment

Our system model involves an ICN with an NDN architecture. It includes
one or more servers that will have the original copies of the files.
Moreover, the network includes routers that connect users to those servers.
Due to the content oriented nature of the network, the features of our
system are those of NDN which we reiterate as the following:

26

in-network storage capabilities at intermediate routers
packet forwarding using the PIT and FIB data structures
routers can serve requests for content they have cached

Iv. interest packets are forwarded towards the data source.

3.5.2 Choose three algorithms to compare LRU, LFU, TLRU
3.5.2.1 Least recently used strategy(LRU)

Least recently used (LRU) is one of famous and mostly used cache

replacement strategy in ICN. here is algorithm:

8.
9.

Start traversing the content.

If set holds less content than capacity.

Insert content into the set one by one until the size of set reaches
capacity or all content requests are processed.

Simultaneously maintain the recent occurred index of each content in
a map called indexes.

Increment content fault

Else If current content is present in set, then increment hit.

Else Find the content in the set that was least recently used.

We find it using index array .We basically need to replace the
content with minimum index.

Replace the found content with current content.

Increment content faults.

10. Update index of current content.

11.Return content faults.

3.5.2.2 Least frequently used strategy(LFU)

Least frequently used Strategy works with the maintenance of a counter for

each content data. This counter for each content item tracks how many

num-ber of times that particular content item is requested or referred.

27

. Take inputs
. Initialize cache and count array to -1
. If (cache miss)

. Find the least frequently used content from the contents in the cache

. Create array of counts and store it in ’count’ array
. End If

1
2
3
4
5. Replace content in cache by current content.
6
5
8. Increment counter

3.5.2.3 Time aware least recently used (TLRU)

The Time aware Least Recently Used (TLRU) is a variant of LRU designed
for the situation where the stored contents in cache have a valid life time. A
brief stepwise explanation is given below.

Step 1: Calculate (TTUij) local time stamp by (j node)value for arriving
content based upon composite function . This step is optional and we argue
that function should be defined by the local network administrator
according to local policies and requirements.

Step 2: Proceed to save arriving content in cache if the average request time
Ti j is smaller then TTU ij calculated in step-1.The reasons for this step is
that if the average request time (in CCN average request time can be calcu-
lated by using information stored in PIT-Pending Interest Table) Tij >
TTUIij then there is a high probability that TTUij will expire before arrival
of next request which means storing this content has no use. This step also
endorses that relatively more popular contents should be stored.

Step 3: Store the content if there is an empty space in cache otherwise
apply LRU on Ev[j] cache state Sk[j] . Subset EV[j] is a contraction of s[j],
calculated based upon the remaining TTU value and average request time.

Contraction endorses that relatively less popular contents should be evicted.

3.5.3 build system to comparison

We compare between the caching replacement policies(LRU,LFU, TLRU)
us-ing the same content placement policies(e.g LCE) when caching space at
nodes is not enough to cache new content. The model compare all three

28

algorithms mentioned above for the fixed parameter value (number of

requests and cache size),then calculate the hit and miss rate for each one.

then changes the values and calculate again.

3.5.4 The sequence of system explained as followed: -

VI.

Vil.

viil.

IX.

X.

Select cache size (e.g 4 MB).

Enter requests (the number of request should exceed the maximum
cache size)e .g 10 requests .

Execute LRU algorithm.

Execute LFU algorithm.

Execute TLRU algorithm.

Read the hit and miss for algorithm and write down to a table ,for
chart.

Change the number of requests by increments (e.g 20 requests) to
see if changes.

Repeat steps (from 3 t0 6) .

Repeat all the above steps for new cache size.

Use the table data in step 6 to drow a chart for each cache size.

The system flowchart explained on figure 3.1

29

Choose cache size (e.g 4 MB)

Enter request (more
than 4 MB)

\4

Execute with LRU,LFU,TLRU

|

Read cache to see if exist

!

If exist

yes

in cache

no

Miss++

Write to cache

Hit++

A

A

A

Register hit &miss val to a table

A

Make the chart to compare

figure 3.1 The propose system
flowchart

30

Table 3.1: Simulation parameters

Num PARAMETERS

Total number of request

Total number of contents in the network

Cache memory size of the router

Bl o=

Simulation Time in seconds

3.5.5 specify parameters used in system

The proposed model parameters explaned in table 3.1

Total number of request: refer to the incoming requests to search for specific
content in cache.

Total number of contents in the network: the contents saved on cache memorys
on network.

Cache memory size of the router: the cache size in MB of routers.

Simulation Time in seconds: the time spent in seconds.

3.5.6 decide the best one according to the system
At the end, the system can tell us what is the best, the best will achieves the

highest hit rate.

3.6 Summary

This chapter descript the framework used to solve, explains the proposed
system by comparing the selected algorithms, determine comparison
parameters, the techniques used to develop, and the system flowchart.

The proposed system compare three algorithms for the fixed parameter value
(number of requests and cache size), then change the values.

31

Chapter Four
Implementation and Findings

4.1 Introduction

This chapter, present the results of execution of system which mentioned in
chapter three, and then analysis the results found in the experiment. Before

mention the results will demonstrate the execution of system in details.

4.2 Framework of Implementation

We design an application using web techniques. The application requires
the sequence of query (input) and then show the corresponding result for
the selected algorithm by clicking the button carries the algorithm name.
The result screen shows the cache (last state) also the hit ratio, number of
hits ,miss ratio,t he number of missed. The total number of query, cache
size.

4.3 Design and implementation

The description of implementation was mentioned earlier in chapter three,

here will implement the proposed solution to gain and analyze results .

Table 4.1 explain the results of hit rate for entering deferent number of
requests(10,20,24) for every algorithm,with fixed cache size(4).
Table 4.1: Calculate hit rate for different number of requests with fixed

Cache size=4
Parameter 10 Requests 20 Requests 24 Requests
LRU 0 5 125
LFU 0 5 125
TLRU 0 5 12.5

Table 4.2 explain the results of hit rate for entering deferent number of

32

requests(10,20,24) for every algorithm ,with fixed cache size(8).

Table 4.2: Calculate hit rate for different number of requests with fixed

Cache size=8
Parameter 10 Requests 20 Requests 24 Requests
LRU 10 10 25
LFU 10 10 25
TLRU 10 15 29

4.3.1 Results of hit ratio

Replacement Algorithm

Figure 4.1: main page Allow to enter requests,choose an algorithm

4.4 Results of different number of Requests ,Cache
Size=4

4.4.1 Firstly: 10 Requests

| enter 10 requests with 4 cache size,the result was 0 percent hit ratio and

100 percent missed. the application achieves the same result for three
algorithms.

33

4.4.1.1 LRU result screen 10 Requests :

[e Y,] e
= locatnost pt 0 >
Replacement Algorithm

[y — Execute TLRU Algoeithm

Figure 4.2: result screen forl10 requests and cache=4,lru algorithm

4.4.1.2 LFU result screen 10 Requests :

"
£
g »
o
5

Replacement Algorithm

Executs LRU Algorithm Execute TLRU Algoeithm

4

o

‘ 3

FU Cacha Cuery ca Trac ' sy o1 » tgwe g St Caonm bt RN Cathe My Rt 13
LFU Cacha Query Sequance Trace ey Coon Bawed Cacne b W Mans 1l Caone e Rateeds Caohe M Ratwe 120%

Figure 4.3: result screen forl10 requests and cache=4,Ifu algorithm

34

4.4.1.3 TLRU result screen 10 Requests:

Figure 4.4: Result screen forl10 requests and cache=4, TLRU algorithm

4.4.2 Secondly :20 Requests
Enter 20 request with 4 cache size , the result was 5 percent hit ratio and
95 percent miss for LRU and LFU,TLRU.

4.4.2.1 LRU result screen 20 Requests:

'
i
:
;

"
2
.
o
N

Replacement Algorithm

Figure 4.5: result screen for20 requests and cache=4, LRU algorithm

35

4.4.2.2 LFU result screen 20 Requests:

]
f o <>

s localnost

Replacement Algorithm

o I

4

LFU Cacha Quary Seguence Trace Totw Gueoed «20 Cam Sassd Camve tot Cache Maae 18 Come HERMSS Caove Wbas Raw

Figure 4.6: Result screen for20 requests and cache=4,LFU algorithm

4.4.2.3 TLRU result screen 20 Requests:

Y] - e
= oCaNost o -

Replacement Algorithm

AT SO AL
£ e

Figure 4.7: Result screen for20 requests and cache=4,TLRU algorithm

4.4.3 Thirdly: 24 Requests
24 requests with 4 cache size. LRU and LFU, TLRU achieve 12.5

36

percent hit ratio and 87.5 percent miss ratio. All three algorithms achieve
the same results for the small cache size.

4.4.3.1 LRU result screen 24 Requests:

B e oseeeeen
o o -

= locainost

Replacement Algorithm

e i

Figure 4.8: result screen for24 requests and cache=4,lru algorithm

4.4.3.2 LFU result screen 24 Requests

= ocalnost o -

Replacement Algorithm

8

4

LFU Cacha Query Secuence Trace Fonn Suenns w28 Cotn Sumed Cathe ie) Caone Miaedt Coote M2 Ratect) Cache et Ramedds

Figure 4.9: result screen for24 requests and cache=4,Ifu algorithm

37

4.4.3.3 TLRU result screen 24 Requests

] G

= ocainost > -

Replacement Algorithm

R Crocue LU Aot | Exncne 1R Moo |

Figure 4.10: result screen for24 requests and cache=4, TLRU algorithm

4.5 Results of different number of Requests Cache
size=8

4.5.1 Firstly :10 Requests

First enter 10 requests with 8 cache size, the result was 10 percent hit ratio
and 90 percent missed. the application achieves the same result for three
algorithms.

38

4.5.1.1 LRU result screen 10 Requests

Replacement Algorithm

Executs LR Aigorithm Exwcute TLRU Algorithm

Figure 4.11: Result screen for10 requests and cache=8,LRU algorithm

4.5.1.2 LFU Result screen 10 Requests

B e eoereaaree

= localnost T pt o 2>

Replacement Algorithm

[Ty — Executs TLRU Algoeithm

LFU Cacha Quary Sequence Trace Totn Quenes 418 Com Saeed Camde bt Caova Mned Coote M Rume 0% Caote W0as Rame 0%

Figure 4.12: result screen for10 requests and cache=8,lfu algorithm

39

4.5.1.3 T LRU result screen 10 Requests

- ocalinost o -7

Replacement Algorithm

Figure 4.13: result screen for10 requests and cache=8,tlru algorithm

4.5.2 Secondly : 20 Requests

enter 20 requests with 8 cache size ,the result was 10 percent hit ratio
and 90 percent missed.the application achieve the same result for three
algorithms.
4.5.2.1 LRU result screen 20 Requests

& R e

=2 Iocainost o >

Replacement Algorithm

e 5

Figure 4.14: result screen for 20 requests and cache=8,Iru algorithm

40

4.5.2.2 LFU result screen 20 Requests

. wgeceaaee

= locaost o R

Replacement Algorithm

s ALAD AT N L5~

4
a8
4
N

L5

LFU Cacha Query Sequance Trace Tty oy <20 Coon Buael Cache el Cade Masts Cathe M2 Ratee W0% Sache Wy Ranedon

Figure 4.15: result screen for 20 requests and cache=8,Ifu algorithm

4.5.2.3 TLRU result screen 20 Requests

B W v AR e
=2 ocainost o >
Replacement Algorithm

7 T T

Figure 4.16: result screen for 20 requests and cache=8,tlru algorithm

4.5.3 Third: 24 Requests

Enter 24 requests with 8 cache size. LRU and LFU achieve 25 percent
41

hit ratio and 75 percent miss ratio. TLRU is 29 percent hit ratio and
71percent miss.
4.5.3.1 LRU result screen 24 Requests

B e saeeramaarenry
t D4+ 9

= localnos

Replacement Algorithm

F2A0 5 M ATION Y AT
e e T

Figure 4.17: result screen for 24 requests and cache=8,Iru algorithm.

4.5.3.2 LFU result screen 24 Requests

N - e
= locainost o] -

Replacement Algorithm

=

o

LFU Cecha Cuery Sequence Trace PV Chiuiog M3 Soth Ay Cole 1R . Caima g

Figure 4.18: result screen for 24 requests and cache=8,Ifu algorithm.

4.5.3.3 TLRU result screen 24 Requests

42

—— & I
ocalost phg >} -

Replacement Algorithm

FIAMD 5 7T 2 A0 A5 30 47 509 A2 17 31 4Y 45 20

o

S501) Came MERGRIPN Carve Uit Ratee? 19

Figure 4.19: result screen for 24 requests and cache=8, TLRU algorithm.

4.6 The charts

7 Y T e
locainost o o

Comparison of Cache Replacement Algorithm Hit Rates

LRU, LFE & TLRY Cache size~4

" "”
Requests

LR = LFU - TLRY

Figure 4.20: chart comparison between tlru ,Ifu and Iru for 4 bytes cache size

43

Hit Ratso

Comparison of Cache Replacement Algorithm Hit Rates
IBU, LFU & TURY Cache sire~8

Requests

Figure 4.21: chart comparison between tlru ,Ifu and Iru for 8 bytes cache size

4.7 Discussion of analysis and finding

1.

The hit and miss ratio results , are equal in all three algorithms, when
the cache size is small.

TLRU achieves the highest Hit rate when the cache size become larger
It takes the content lifetime in account .

Also TLRU could result the same hit and missed with two other
algorithm if the cache size is small and exceed them when there is
cache with large size.

TLRU is time award, so it increases the content lifetime if hitted to
stay longer and discard the content with small lifetime.it is sortable
in cases of concentric on popularity.

The Simulation results showed that the hit and miss ratio equal in all
three algorithms, when the cache size is small, and TLRU achieves
highest hit ratio for large cache size.

LRU, LFU, TLRU achieves 12.5 percent with 4 bytes’ cache size.
LRU, LFU achieves 25 percent hit, and TLRU achieves 29 percent hit

44

with 8bytes cache size, using the same number of requests.

4.8 Summary

This chapter presented the simulation environment and the simulation

results to compare the three algorithms. The results was listed based on hit
ratio, number of requests .Simulation results showed that the hit and miss
ratio equal in all three algorithms, when the cache size is small and TLRU
achieves highest hit ratio for large cache size.
The simulation results showed that the hit and miss ratio equal in all three
algorithms, when the cache size is small, and TLRU achieves highest hit ratio
for large cache size. LRU, LFU, TLRU achieves 12.5 percent with 4bytes
cache size. LRU, LFU achieves 25 percent hit, and TLRU achieves 29 percent
hit with 8bytes cache size, using the same number of requests.

45

Chapter Five
Conclusions and recommendation

5.1 Conclusions

Information centric network becomes a tremendous research area
nowadays. This research focus on caching replacement strategy and by
inspire of this topic in networking field, | studied several researches
regarding caching in ICN. Caching is just storage of content data with
aiming of speedily served future request. This research presented an
overview of various caching re-placement approaches in ICN with several
features and regarding issues. This research gives a simple idea about ‘how
the event cache content eviction should take place to achieve a high hit
ratio’ problem, The proposed solution gives very high performance in terms
of cache hit ratio with comparison of LRU, LFU, TLRU.

From previous mentioned the contributions of research as follow:

The model can be use to manage the cache, by selecting the right
algorithm, choosing LRU in small cache, and TLRU in large cache size,
and for big numbers of requests. Also Increase the network performance
when the hit ratio increases. The application is a light weight and need not
high ram speed and large memory size.

5.2 Recommendations

Maintaining the consistency of content data if anything updating occurs
Synchronization with various caching routers with respect to the server
Reducing redundancy of content data item in various caches Optimization
of cache space to achieve high capacity to store content data item and so
much else have to consider to make an effective and efficient cache
mechanism in information centric network. This will lead to bright future

of ICN in current internet access scenarios.

46

References

[1] K. Yu, S. Eum, T. Kurita, Q. Hua, T. Sato, H. Nakazato, T. Asami, and
V. P. Kafle, “Information-centric networking: Research and standardiza-
tion status,” IEEE Access, vol. 7, pp. 126 164-126 176, 2019.

[2] M. Chand, “A comparative survey on different caching mechanisms in
named data networking (ndn) architecture,” International Journal of
Emerging Technologies and Innovative Research, vol. 6, no. 4, pp.
264— 271, 2019.

[3] F. Qazi, O. Khalid, R. N. B. Rais, I. A. Khan et al., “Optimal content
caching in content-centric networks,” Wireless Communications and
Mo-bile Computing, vol. 2019, 2019.

[4] S. J. Taher, O. Ghazali, and S. Hassan, “A review on cache
replacement strategies in named data network,” Journal of
Telecommunication, Elec-tronic and Computer Engineering (JTEC),
vol. 10, no. 2-4, pp. 53-57, 2018.

[5] C. Bernardini, T. Silverston, and A. Vasilakos, “Caching strategies for

information centric networking: opportunities and challenges,” arXiv
preprint arXiv:1606.07630, 2016.

[6] M. A. Yaqub, S. H. Ahmed, S. H. Bouk, and D. Kim, “Information-
centric networks (icn),” in Content-Centric Networks. Springer, 2016,

pp. 19-33.

[7] Q. N. Nguyen, J. Liu, Z. Pan, I. Benkacem, T. Tsuda, T. Taleb, S. Shi-
mamoto, and T. Sato, “Ppcs: a progressive popularity-aware caching
scheme for edge-based cache redundancy avoidance in information-
centric networks,” Sensors, vol. 19, no. 3, p. 694, 2019.

[8] H. Liu, K. Azhandeh, X. de Foy, and R. Gazda, “A comparative study
of name resolution and routing mechanisms in information-centric net-
works,” Digital Communications and Networks, vol. 5, no. 2, pp. 69—

47

75, 2019.

[9] M. Zhang, H. Luo, and H. Zhang, “A survey of caching mechanisms in
information-centric networking,” IEEE Communications Surveys &
Tutorials, vol. 17, no. 3, pp. 1473-1499, 2015.

[10] H. Khelifi, S. Luo, B. Nour, and H. Moungla, “In-network caching in
icn-based vehicular networks: Effectiveness & performance
evaluation,” in ICC 2020-2020 IEEE International Conference on
Communications (ICC). IEEE, 2020, pp. 1-6.

[11] M. Alkhazaleh, S. Aljunid, and N. Sabri, “A comprehensive survey of

information-centric network: Content caching strategies perspective.”

[12] R. Hegadi, A. Kammar, and S. Budihal, “Performance evaluation of
in-network caching: A core functionality of information centric
networking,” in 2019 International Conference on Data Science and
Communication (IlconDSC). IEEE, 2019, pp. 1-8.

[13] P. Sena, I. Carvalho, and A. Abelém, “Content placement aware cache
decision: A caching policy based on the content replacement ratio for
information-centric network,” in 2018 IEEE International Conference
on Internet of Things (iThings) and IEEE Green Computing and Com-
munications (GreenCom) and IEEE Cyber, Physical and Social
Comput-ing (CPSCom) and IEEE Smart Data (SmartData). IEEE,
2018, pp. 1913-1920.

[L4] N. Alzakari, A. B. Dris, and S. Alahmadi, ‘“Randomized Ieast
frequently used cache replacement strategy for named data
networking,” in 2020 3rd International Conference on Computer
Applications & Information Security (ICCAIS). IEEE, 2020, pp. 1-6.

[15] Y. Navrotsky and N. Patsei, “Cashing control and optimization in
information-content networks,” in 2019 Open Conference of Electrical,

Electronic and Information Sciences (eStream). IEEE, 2019, pp. 1-5.

[16] M. Amadeo, C. Campolo, A. Molinaro, J. Harri, C. E. Rothenberg, and
48

A. Vinel, “Enhancing the 3gpp v2x architecture with information-

centric networking,” Future Internet, vol. 11, no. 9, p. 199, 2019.

[17] A. loannou and S. Weber, “A taxonomy of caching approaches in

information-centric network architectures,” Elsevier Journal, 2013.

[18] B. Al-Duwairi and O. Ozkasap, “Preventing ddos attacks in path
identifiers-based information centric networks,” in NOMS 2020-2020
IEEE/IFIP Network Operations and Management Symposium. IEEE,
2020, pp. 1-5.

[19] L. Saino, 1. Psaras, and G. Pavlou, “Icarus: a caching simulator for
information centric networking (icn),” in SimuTools, vol. 7. ICST,
2014, pp. 66-75.

[20] B. ALOTAIBI and S. ALAHMADI, “Efficient caching and
replacement strategy in content centric network (ccn) based on xon-
path and hop count.”

[21] 1. U. Din, S. Hassan, M. K. Khan, M. Guizani, O. Ghazali, and A.
Hab-bal, “Caching in information-centric networking: Strategies,
challenges, and future research directions,” IEEE Communications
Surveys & Tuto-rials, vol. 20, no. 2, pp. 1443-1474, 2017.

[22] K. N. Lal and A. Kumar, “A cache content replacement scheme for
infor-mation centric network,” Procedia Computer Science, vol. 89,
pp. 73-81, 2016.

[23] Y. S. Rani and M. Seetha, “Enhanced poc tree-based algorithm for data
item correlation and cache effective replacement in mobile ad hoc net-
work,” Int. J. Pure Appl. Math., vol. 118, no. 19, pp. 225-247, 2018.

[24] M. Bilal and S.-G. Kang, “Time aware least recent used (tlru) cache
management policy in icn,” in 16th International Conference on
Advanced Communication Technology. IEEE, 2014, pp. 528-532.

[25] M. A. P. Putra, H. Situmorang, and N. R. Syambas, “Least recently
frequently used replacement policy named data networking approach,” in

2019 International Conference on Electrical Engineering and
49

Informatics (ICEELI), 2019, pp. 423-427.

[26] M. Hussaini, S. A. Nor, and A. Ahmad, “Producer mobility support for
information centric networking approaches: A review,” Int. J. Appl.
Eng. Res, vol. 13, no. 6, pp. 3272-3280, 2018.

[27] M. Hussaini, M. A. Naeem, B.-S. Kim, and I. S. Maijama’a, “Efficient
producer mobility management model in information-centric network-
ing,” IEEE Access, vol. 7, pp. 42 032-42 051, 2019.

[28] M. Sardara, “Towards a scalable and programmable incremental
deploy-ment of icn in the real world,” Ph.D. dissertation, Université
Paris-Saclay, 2019.

[29] G. Liu, W. Quan, N. Cheng, B. Feng, H. Zhang, and X. S. Shen,
“Blam: Lightweight bloom-filter based ddos mitigation for
information-centric iot,” in 2018 IEEE Global Communications
Conference (GLOBECOM). IEEE, 2018, pp. 1-7.

[30] P. Gasti and G. Tsudik, “Content-centric and named-data networking
se-curity: The good, the bad and the rest,” in 2018 IEEE International
Sym-posium on Local and Metropolitan Area Networks (LANMAN).
IEEE, 2018, pp. 1-6.

[31] R. Tourani, S. Misra, T. Mick, and G. Panwar, “Security, privacy, and
access control in information-centric networking: A survey,” IEEE com-

munications surveys & tutorials, vol. 20, no. 1, pp. 566600, 2017.

[32] L. Dong and G. Wang, “A hybrid approach for name resolution and
producer selection in information centric network,” in 2018
International Conference on Computing, Networking and
Communications (ICNC). IEEE, 2018, pp. 574-580.

[33] M. Aamir, “Content-priority based interest forwarding in content

centric networks,” arXiv preprint arXiv:1410.4987, 2014.

[34] Y. Ren, J. Li, L. Li, S. Shi, J. Zhi, and H. Wu, “Modeling content
trans-fer performance in information-centric networking,” Future
Generation Computer Systems, vol. 74, pp. 12-19, 2017.

50

Appendix

A.1 php code

A.2 TLRU Algorithm

51

Timer.php file

<?php
class Timer {

var Sclassname = "Timer'";
var S$start = 0;
var S$Sstop = 0;
var S$elapsed = 0;

Constructor
function Timer ($start = true) {
if (S$start)
Sthis->start () ;
}

Start counting time
function start () {

Sthis->start = $this-> gettime();
}

Stop counting time

function stop () {
Sthis->stop = Sthis-> gettime();
Sthis->elapsed Sthis-> compute () ;

}

Get Elapsed Time
function elapsed() {

if (!Selapsed)
Sthis->stop () ;

return $this->elapsed;
}

Resets Timer so it can be used again

function reset () {
Sthis->start = 0;
Sthis->stop = 0;

I
o
~

Sthis->elapsed =
}

###4# PRIVATE METHODS ####

Get Current Time

function gettime() {
Smtime = microtime () ;
Smtime = explode(" ", Smtime);

return Smtime[l] + Smtime[0];

}

Compute elapsed time
function compute () {

return $this->stop - $this->start;
}

52

Lfu.php file

<?php

error_reporting(0);

function leastFrequent ($arr, $n)

{
// Sort the array
sort (Sarr) ;
sort ($Sarr , $n);
// find the min frequency min heap
// using linear traversal

$min count = $n + 1;
Sres = -1;
Scurr count = 1;

for($I = 1; $i < S$n; S$i++)
{
if (Sarr[$i] == Sarr[$i - 17])
$curr count++;
else
{

if (Scurr count < Smin count)

{

$min count = $curr count;
Sres = Sarr[S$1i - 1];

}

Scurr count = 1;

}

// If last element is
// least frequent
if (S$curr count < Smin count)
{
$min count = Scurr count;
Sres = Sarr[S$n - 1];

}

return Sres;
}
L1770 777
[/ 000 077777777777 7777777
$n=$ REQUEST ["number"];
// echo $n;
if (!empty ($ REQUEST["number"]))
{ $ss=$ REQUEST["number"]; }
//*k*k*k*k*k*k*k*k*k*k*k*k*k*k*k*k*****k*k*k*k*k*k*k************************
Sarr = array () ;
Sarr?2 array () ;
Sarr3 = array();
$arr=$ REQUEST ["number"];
Scachsize=4;

Sfault=0;
Shit=0;
$c=0;
Smystr=""; $qg="";
$sizz = strlen($ss);

for ($i=0;%i<S$Ssizz;Si++)
{
if (Sarr[$i]<>', ")
{ Smystr=$mystr.S$Sarr[S$i] ; }
if(Sarr([$i]l==",")
53

{
Sg=Smystr;
Smystr="";
Sc=Sc+1;
}
Sarr2[S$cl=Smystr;
}
Smyco=0;
for ($3=0;$j<=S8c; $J++)
{
Saa=Sarr2[$3];
if (Smyco<$cachsize)
{
if (array_key exists($aa, Sarr3))
{
Shit=Shit+1;
Saapos=key ($arr3) ;
Sf=true;
Smycount=count ($arr3) ;
Saapos=null;
L1177 7777 7077770777777 7777777777777 777777
for ($x=0; $x<$Smycount; $x++) {
if ((Sarr3[$x])==(Saa))
Saapos=$x; }
L1177 7777 7077770777777 7777777777777 777777
for ($bj=S%aapos; $bj<Smycount; $bj++) {
if ((Sbj+1)<Smycount)
{ Sarr3[$bjl=$arr3[$bj+1];}
}
Sarr3[Smycount-1]=%aa;
}
else
{unset ($Sarr3[$j1);
Sarr3[Smyco]l=$arr2[$]]; //insert it into arr3 the
first time
Smyco=S$myco+1;
Sfault=$fault+1;}
}else break;
}//echo $73;
//search for 1fu value in the cache////////arr3 is cache to put
in///
$lastpos=$myco;
Smycount=count ($arr3) ;
if (Smyco>=S$cachsize) {
Sf=false;
Sas=Smyco+1;
L1177 7777707777777777777777/7/7//7/in case of full cache
size//// /177777777777 777 7777777777777 7
for (Sm=5$7; Sm<=S$c; Sm++) {
Sf=false;
for ($k=0; $k<Scachsize; $k++)
{
Sposition=$k;
if ((Sarr2[S$m]==Sarr3[S$k])and (Sf==false))
{
Shit=Shit+1;
Stemp=S$arr3[$k];
for (Sb=Sk; Sb<Scachsize; Sb++) {
if (($b+1)<S$Scachsize)
Sarr3[S$b]=S%Sarr3[Sb+1];

54

Sarr3[S$Scachsize-1]=Stemp;
Sf=true;

if ((sf==false))
{
Stemp2=$arr3[0];
Snn= sizeof (Sarr2) / sizeof (Sarr2[0]);
$1fu=leastFrequent ($Sarr2, $nn) ;
for (Sy=0; $y<Scachsize; Sy++) {
if ($1fu==Sarr3[Sy])
{$1fucount=3y;
}
}
Sarr3[$1lfucount]=Sarr2[Sm];
for (Sbb=$1fucount; Sbb<S$Scachsize; Sbb++) {
if ((Sbb+1)<Scachsize) {
Sarr3[S$Sbbl=Sarr3[$bb+1];
}
}
Sarr3[S$Scachsize-1]=Sarr2[$m]; //replace here//
Sfault=S$fault+1;
} //end if
} //end forl
Y/ LI/ end
$z=0;
foreach (S$Sarr3 as S$valuel) {
Sz=Sz+1;
if ($z<=S$cachsize) {echo"<tr><td
width="'3">".$8z."</td><td width='30'>";}

if ($z<=Scachsize) echo "".S%valuel."";
else

if (Sz<=Scachsize) {echo "</td></tr>";}

}
echo'"<tr><td><h4> LFU Cache Query Sequence
Trace:</h4></td><td><h6> Total Queries
=".($c+1l) ." Cach Size=".Scachsize;
echo" Cache
Hit=".$hit." Cache
Miss=".$fault." Cache Hit

Rate=". (round ($hit/ ($c+1),2)*100) ."%$ Cach

e Miss

Rate=". (round ($Sfault/ (Sc+1),2)*100)."%</h6></td></tr>";
2>

Main.php file

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<title></title>

<meta name="viewport" content="width=device-width, initial-
scale=1">

<link rel="stylesheet"
href="bootstrap3.4.1/css/bootstrap.min.css">

<script
src="https://ajax.googleapis.com/ajax/libs/jquery/3.5.1/jquery.m
in.js"></script>

55

<script src="bootstrap33.4.1/js/bootstrap.min.]js"></script>
<script src="https://code.jquery.com/jquery-
1.12.4.min.js"></script>
<script>
$ (document) . ready (function() {
S("button") .click(function() {
ClickedEl = this.id;
var numValue = $("#num").val();
if(ClickedEl=="b1") {
// Send the input data to the server using get
S.get("lrul.php", {number: numValue} ,
function(data) {
// Display the returned data in browser
$S("#result") .html (data) ;
3
}//if
if(ClickedEl=="b2") {
// Send the input data to the server using get
S.get("mylfu.php", {number: numValue} ,
function(data) {
// Display the returned data in browser
S("#result").html (data) ;
H;
}//1if
if(ClickedEl=="b3") {
// Send the input data to the server using get
S.get("tlrualg.php", {number: numValue} ,
function(data) {
// Display the returned data in browser
S("#result™).html (data) ;
3
}y//if
|3
|3
</script>
<body>
<div class="container" align="center">
<div class="panel-body">

<p align="center"><font size="6"
color="660066">Replacement Algorithm</p>
<div class="col-xs-12">
<input class="form-control" id="num" size="" type="text"
style="width:24 px" placeholder="Enter Query Sequence">

<button type="button" id="bl"class="btn btn-
info"> Execute LRU Algorithmé
</button>
<button type="button" id="b2"class="btn btn-
primary"> Execute LFU Algorithmé ,
</button>
<button type="button" id="b3" class="btn btn-
success"><pb> Execute TLRU Algorithm
</button>

</div>
<table class="table table-striped" border="0"
width="100%" height="" align="right" id="result"> </table>
</div>
</div>
</body>
</html>

56

Chart.php file

<?php
$dataPointsl = array (
array (HXH :> , ”y” :>)
array 1Al 1Al :> , ”y” :> ,

—_ — — ~
~

("x
array("x" => , uyu =>
array("x" => , uyu =>
) ;

$dataPoints2 = array (
array ("x" => 0, "y" => 0),
array ("x" => , Tyt o =>),
array ("x" => , Tyt o=>),
array ("x" => , Tyt o=>)

)i
//$dataPoints3 = array(

// array("x" => 0, "y" => 0),

// array("x" => 10, "y" => 10)

// array("x" => 20, "y" => 15),
// array("x" => 24, "y" => 25)

/)

"

2>

<!DOCTYPE HTML>

<html>

<head>

<script>

window.onload = function () {

var chart = new CanvasJS.Chart("chartContainer",
animationEnabled: true,
title: {

text: "Comparison of Cache Replacement Algorithm

Rates"

},

subtitles: [{
text: "LRU & TLRU Cache size=6",
fontSize: 18

,

axisY: {
prefix: ""

b,

legend: {
cursor: "pointer",
itemclick: toggleDataSeries

b,

toolTip: {
shared: true

},

data: [

{
type: "line",
name: "LRU",
showInLegend: "true",
//xValueType: "dateTime",
//xValueFormatString: "MMM YYYY",
yValueFormatString: "##0.##",

57

Hit

xValueFormatString: "##5.##",
dataPoints: <?php echo json_encode($dataPointsl); ?>

type: "line",

name: "TLRU",

showInLegend: "true",

//xValueType: "dateTime",

//xValueFormatString: "MMM YYYY",
yValueFormatString: "##0.##",

xValueFormatString: "##5.##",

dataPoints: <?php echo json_encode ($dataPoints2); ?>

/*{

type: "line",

name: "LFU",

showInLegend: "true",

//xValueType: "dateTime",

//xValueFormatString: "MMM YYYY",

yValueFormatString: "##0.##",

xValueFormatString: "##5.##",

dataPoints: <?php echo json_encode ($dataPoints3); ?>
b*/

})
chart.render () ;

function toggleDataSeries(e) {
if (typeof (e.dataSeries.visible) === "undefined" ||
e.dataSeries.visible) {
e.dataSeries.visible = false;
}
else(
e.dataSeries.visible

true;
}
chart.render () ;

}

}

</script>

</head>

<body>

<div id="chartContainer" style="height: 370px; width:
100%;"></div>

<script src="canvasjs/canvasjs.min.js"></script>
</body>

</html>

Chart2.php file

<?php
$dataPointsl = array (
array ("x" => 0, "y" =>),
array ("x" => , "yt o=>),
array ("x" => , "yt o=>),
array ("x" => , Tyt o=>)

58

$dataPoints2 = array (

array ("x" => 0, "y" => 0),
array ("x" => , y"to=>),
array ("x" => , y"to=>),
array ("x" => , Tyt o=>)

);
//$dataPoints3 = array(

// array("x" => 0, "y" => 0),

// array("x" => 10, "y" => 10)

// array("x" => 20, "y" => 15),
// array("x" => 24, "y" => 25)

/)

n

?>

<!DOCTYPE HTML>

<html>

<head>

<script>

window.onload = function () {

var chart = new CanvasJS.Chart("chartContainer", {
animationEnabled: true,
title:{

text: "Comparison of Cache Replacement Algorithm Hit
Rates"

b,

subtitles: [{
text: "LRU & TLRU Cache size=8",
fontSize: 18

,

axisY: {
prefix: ""

b,

legend: {
cursor: "pointer",
itemclick: toggleDataSeries

},

toolTip: {
shared: true

},

data: [

{
type: "line",
name: "LRU",
showInLegend: "true",
//xValueType: "dateTime",
//xValueFormatString: "MMM YYYY",
yValueFormatString: "##0.##",
xValueFormatString: "##5.##",
dataPoints: <?php echo json_encode ($dataPointsl); ?>

{

type: "line",

name: "TLRU",

showInLegend: "true",

//xValueType: "dateTime",

//xValueFormatString: "MMM YYYY",

yValueFormatString: "##0.##",

xValueFormatString: "##5.##",

dataPoints: <?php echo json_encode ($dataPoints2); ?>
}

59

/*{
type: "line",
name: "LFU",
showInLegend: "true",
//xValueType: "dateTime",
//xValueFormatString: "MMM YYYY",
yValueFormatString: "##0.##",
xValueFormatString: "##5.##",
dataPoints: <?php echo json_encode($dataPoints3); ?>

}*/
H
chart.render () ;
function toggleDataSeries(e) {

if (typeof (e.dataSeries.visible) === "undefined" ||
e.dataSeries.visible) {

e.dataSeries.visible = false;
}
else(

e.dataSeries.visible = true;

}

chart.render () ;

}

}

</script>

</head>

<body>

<div id="chartContainer" style="height: 370px; width:
100%;"></div>

<script src="canvasjs/canvasjs.min.js"></script>
</body>

</html>

60

TLRU Algorithm:
1- g=ll oy
| n; |

2- g= EP—J x TTu!

k #i py;
3-TTu'=fTTubyre(TTub)
4-1f TTu'j>t;;

S-1f s[j> | n; |

6-Dow c; € s[f]

7-1f TTu'j < t;; — € Ev[j]
8-LRU(EV[}]) — evict

9- s[i] — ¢; Ussi]

10- Else

11- LRU(s[j]) — eviet
12- s[j1— ¢; Us[j]

13- else s[j] — ¢; U s[j]
14- else reject

61

