

Sudan University of Science and Technology

College of Graduate Studies

A Comparative study of A Cache Replacement

Policies for Information-Centric Network

سياسات استبدال ذاكرة التخزين المؤقت لشبكة مركزية لدراسة مقارنة

 المعلومات

Prepared By:

Tmaheen Albdry Mohammed Albdry

Supervisor:

Dr. Mohamed Elghazali Hamza Khalil

A thesis Submitted in Partial Fulfillment of the Requirement for the

Degree of M.Sc. in Information Technology (Networks)

December 2021

i

 الإستهلال

 بسم الله الرحمن الرحيم

 (ومآ أوتيتم من العلم إلا قليلا)

 ﴾٥٨سورة الاسراء ﴿

ii

Acknowledgments

First of all, I want to express my sincere thanks and gratitude to my

supervisor, Dr. Mohamed Elghazali Hamza. He provides excellent research

environment. He gave me great comfort and encouragement. He is an

excellent support both in academia and personality. I want to express my

great gratitude to Dr. Mohammed Elghazali. Secondly, I would like to

thank all my friends, who help me writing and organizing this research.

Last but not least, I want to thank my mother. Without her full support, I

could not finish my master study.

iii

Abstract

Today's Internet user’s concentration on contents. Search engines, social

media, play an important role (users pay an attention for contents which

have a large number of like & share), ICN comes to meet the current

internet user's needs. In ICN, every content is named, requesting data by

name is very beneficial, especially for IOT. Now many researchers are

studying ICN-based IoT systems. In this study, both router and user’s

devices are able to store content. One of the key features of ICN is in-

network content caching. ICN behavior is determined by a3-tuple, which

are routing, content insertion and content replacement. Cache Placement

strategies (e.g Caching everything-everywhere (CE2) stores all the

content to be delivered on every router along the path, this approaches

consumes greater amount of buffer space. As a result, a caching decision

is made without regard to the content's popularity. for efficiency of

caching, cache replacement policies play an important role, because the

ICN router cache is limited, cache replacement is required. There are

different cache replacement policies. This research compare between

cache replacement algorithms (LUR, LFU, TLUR) in term of hit ratio to

select the much more efficient one. Our goal is to find the optimal

content replacement strategy, to face the big amount of caching (in-

network caching) caused by placement algorithms, attempting to

improve the network performance in terms of hit ratio and network

delay, build model to compare algorithms. To calculate hit rate for every

algorithm, and find the best algorithm for ICN. The application was built

using web techniques (PHP, Javascript). The result of comparison

explains that, the three algorithm is same when cache size is small, but

the difference appears when the cache size become larger, whereas

TLRU is the best one. LRU, LFU, TLRU achieves 12.5% with 4bytes

cache size. While LRU, LFU achieves 25% hit, and TLRU achieves

29%hit with 8bytes cache size, using the same number of requests.

iv

 المستخلص

 البحث محركات وتلعب ، المحتويات على اليوم الإنترنت مستخدمو يركز

ا دورًا الاجتماعي التواصل ووسائل التي بالمحتويات المستخدمون يهتم) مهمً

 لتلبية ان سي آي ويأتي ، (والمشاركة الإعجاب من كبير عدد على تحتوي

 ، محتوى كل تسمية يتم ، نا سي آي في .الحاليين الإنترنت مستخدمي احتياجات

ا بالاسم البيانات طلب ويعد ا مفيدً العديد الآن .تي او آي لـ بالنسبة وخاصة ، جدً

في .ان سي آي على القائمة الأشياء إنترنت أنظمةتعمل على دراسة الأبحاث من

هذه الدراسة ، يمكن لكل من جهاز التوجيه وأجهزة المستخدمين تخزين

هي التخزين المؤقت للمحتوى ان سي آييزات الرئيسية لـ إحدى الم. المحتوى

جداول ، والتي تتمثل في -3من خلال ان سي آييتم تحديد سلوك . داخل الشبكة

تخزن استراتيجيات وضع ذاكرة . التوجيه وإدراج المحتوى واستبدال المحتوى

ل ك(سي إي تو)مثل التخزين المؤقت لكل شيء في كل مكان)التخزين المؤقت

المحتوى الذي سيتم تسليمه على كل جهاز توجيه على طول المسار ، وهذا

النهج يستهلك قدرًا أكبر مقدار مساحة المخزن المؤقت ، ونتيجة لذلك ، يتم

من أجل كفاءة . اتخاذ قرار التخزين المؤقت بغض النظر عن شعبية المحتوى

لمؤقت دورًا مهمًا ، تلعب سياسات استبدال ذاكرة التخزين ا .التخزين المؤقت

محدودة ، يلزم ان سي آينظرًا لأن ذاكرة التخزين المؤقت لجهاز التوجيه

توجد سياسات مختلفة لاستبدال ذاكرة التخزين . استبدال ذاكرة التخزين المؤقت

المؤقت ، يقارن هذا البحث بين خوارزميات استبدال ذاكرة التخزين المؤقت

من حيث نسبة النتائج لتحديد الخوارزميات (ر يو،تي ال آ ال آر يو، ال اف يو)

 استبدال استراتيجية على العثور هو الهدف من هذه الدراسة .الأكثر فاعلية

 المؤقت التخزين) المؤقت التخزين من الكبير المقدار لمواجهة ، المثلى المحتوى

 ةالشبك أداء لتحسين محاولة في ، الخوارزميات وضع عن الناجم (الشبكة داخل

 ، الخوارزميات لمقارنة نموذج وبناء ، الشبكة وتأخير الوصول نسبة حيث من

 سي آي لـ خوارزمية أفضل على واعثر ، خوارزمية لكل الدخول معدل احسب

 ، (بي،جاقاسكريبت اتش بي) الويب تقنيات باستخدام التطبيق إنشاء تم .ان

 ذاكرة حجم يكون عندما نفسها هي الثلاثة الخوارزمية أن المقارنة نتيجة وتوضح

 التخزين ذاكرة حجم يصبح عندما يظهر الاختلاف لكن ، صغيرًا المؤقت التخزين

 تي و يو اف ال و يو آر ال تحقق .الأفضل هو يو آر ال تي بينما ، أكبر المؤقت

 ا و يو آر ال تحقق بينما .بايت 4 يبلغ مؤقت تخزين ذاكرة بحجم ٪12.5 يو آر ال

 النتائج من ٪52 نسبة يو آر ال تي تحقق بينما ، النتائج من ٪52 نسبة يو لاف

 .الطلبات عدد نفس باستخدام ، المؤقت التخزين لذاكرة بايت 8 بحجم

v

 Table of Contents

 i . الاستهلال

Acknowledgments . ……….. Ii

Abstract. …………………… Iii

 iv .………………… . المستخلص

List of Figures. …………………. Viii

List of Tables . …………….. X

List of Abbreviations. …….. Xi

Chapter One: Introduction . 1

1.1 Introduction . 1

1.2 Motivation . 1

1.3 Problem Statement . 2

1.4 Objectives . 3

1.5 Research Scope . 3

1.6 Research Outline . 3

Chapter Two: Background and Literature Review 5

2.1 Introduction . 5

2.2 Information-Centric Network (ICN) . 5

2.3 Content Centric Networking CCN/ NDN 7

2.4 Forwarding Information Base (FIB) . 8

2.5 Pending Interest Table (PIT) . 9

2.6 Content Store (CS) . 9

2.7 Communication model in ICN . 9

2.8 Related Work . 13

2.9 ICN Content Caching . 15

2.10 Advantages of in-network caching in ICN 16

2.11 Cache placement and cache replacement 16

2.12 Caching Placement strategies 17

 2.12.1 On-path Caching . 17

 2.12.2 Probabilistic Caching . 17

 2.12.3 Random Caching . 17

 2.12.4 Unique Caching . 17

 2.12.5 Caching Everything-Everywhere 17

vi

 2.12.6 ProbCache . 18

 2.12.7 Leave Copy Everywhere (LCE) 18

2.12.8 Leave Copy Down (LCD) and Move Copy

Down(MCD) 18

 2.13 Replacement Strategy . 18

 2.13.1 Random replacement strategy 19

 2.13.2 Least recently used strategy . 19

 2.13.3 First in first out strategy . 19

 2.13.4 Least frequently used strategy 20

 2.13.5 Most recently used strategy . 20

 2.13.6 Time aware least recently used (TLRU) 20

 2.13.7 Least frequent recently used (LFRU) 21

 2.13.8 Most frequently used strategy 21

2.14 Security . 22

2.15 Name resolution and data routing . 22

2.16 Routing system in ICN . 23

2.17 Queuing delay . 23

2.18 Summary . 24

Chapter Three: Methodology and Research Framework 25

3.1 Introduction . 25

3.2 Cache hit ratio . 25

3.3 Cache load . 26

3.4 Techniques used . 26

3.5 Research Framework Description . 26

 3.5.1 Network environment . 26

 3.5.2 Choose three algorithms to compare 27

 3.5.2.1 Least recently used strategy(LRU) 27

 3.5.2.2 Least frequently used strategy(LFU) 27

 3.5.2.3 Time aware least recently used (TLRU) . . . 28

 3.5.3 build system to comparison . 28

 3.5.4 The sequence of system 29

 3.5.5 specify parameters used in system 31

 3.5.6 decide the best one according to the system 31

3.6 Summary . 31

Chapter Four: Implementation and Finding 32

vii

4.1 Introduction 32

4.2 Framework of Implementation . 32

4.3 Design and implementation . 32

 4.3.1 Results of hit ratio . 33

4.4 Results of different number of Requests, Cache size=4. 33

 4.4.1 Firstly: 10 Requests. 33

 4.4.1.1 LRU result screen 10 Requests 34

 4.4.1.2 LFU result screen 10 Requests 34

 4.4.1.3 TLRU result screen 10 Requests 35

 4.4.2 Secondly: 20 Requests. 35

 4.4.2.1 LRU result screen 20 Requests :. 35

 4.4.2.2 LFU result screen 20 Requests :. 36

 4.4.2.3 TLRU result screen 20 Requests :. 36

 4.4.3 Thirdly: 24 Requests. 36

 4.4.3.1 LRU result screen 24 Requests 37

 4.4.3.2 LFU result screen 24 Requests 37

 4.4.3.3 TLRU result screen 24 Requests 38

4.5 Results of different number of Requests ,Cache size=8 38

 4.5.1 Firstly: 10 Requests. 38

 4.5.1.1 LRU result screen 10 Requests :. 39

 4.5.1.2 LFU result screen 10 Requests :. 39

 4.5.1.3 TLRU result screen 10 Requests :. 40

 4.5.2 Secondly: 20 Requests. 40

 4.5.2.1 LRU result screen 20 Requests :. 40

 4.5.2.2 LFU result screen 20 Requests :. 41

 4.5.2.3 TLRU result screen 20 Requests :. 41

 4.5.3 Thirdly: 24 Requests. 41

 4.5.3.1 LRU result screen 24 Requests :. 42

 4.5.3.2 LFU result screen 24 Requests :. 42

 4.5.3.3 TLRU result screen 24 Requests :. 42

4.6 The charts . 43

4.7 Discussion of analysis and finding . 44

4.8 Summary . 45

Chapter Five: Conclusions and Recommendation 46

5.1 Conclusions . 46

viii

5.2 Recommendation . 46

References. 47

Appendix . 51

A.1 php code . 51

A.2 TLRU Algorithm . 51

ix

List of Figures

2.1 CCN/NDN overview . 7

2.2 ICN packet types . 10

2.3 Components in ICN router . 11

2.4 Basic operation of ICN 12

3.1 Proposed system flowchart . 30

4.1 main page Allow to enter requests,choose an algorithm. . . . 33

4.2 result screen for10 requests and cache=4,lru algorithm 34

4.34.3 result screen for10 requests and cache=4,lfu algorithm 34

4.4 result screen for10 requests and cache=4,tlru algorithm 35

4.5 result screen for20 requests and cache=4,lru algorithm 35

4.6 result screen for20 requests and cache=4,lfu algorithm 36

4.7 result screen for20 requests and cache=4,tlru algorithm 36

4.8 result screen for24 requests and cache=4,lru algorithm. 37

4.9 result screen for24 requests and cache=4,lfu algorithm. 37

4.10 result screen for24 requests and cache=4,tlru algorithm 38

4.11 result screen for10 requests and cache=8,lru algorithm. 39

4.12 result screen for10 requests and cache=8,lfu algorithm 39

4.13 result screen for10 requests and cache=8,tlru algorithm 40

4.14 result screen for 20 requests and cache=8,lru algorithm. 40

4.15 result screen for 20 requests and cache=8,lfu algorithm. 41

4.16 result screen for 20 requests and cache=8,tlru algorithm. 41

4.17 result screen for 24 requests and cache=8,lru algorithm. 42

4.18 result screen for 24 requests and cache=8,lfu algorithm. 42

4.19 result screen for 24 requests and cache=8,tlru algorithm. 43

4.20

chart comparison tlru ,lfu and lru for 4 bytes cache size.

. 43

4.21

chart comparison between tlru ,lfu and lru for 8 bytes cache size

. 44

x

List of Tables

3.1 Simulation parameters . 31

4.1

Calculate hit rate for different number of requests with fixed

Cache size=4 32

4.2

Calculate hit rate for different number of requests with fixed

Cache size=8 33

xi

List of Abbreviations

CCN Content Centric Networking

CDN Content Delivery Networks

CS Content Store

DDoS Distributed Denial-of-Service

DONA data-oriented network architecture

DoS Denial-of-Service

FIB Forwarding Information Base

ICN Information-Centric Network

ICN Information-Centric Network

IFA Interest Flooding Attacks

ISP Internet Service Provider

LCD Leave Copy Down

LCE Leave Copy Everywhere

LFRU Least frequent recently used

LFU Least frequently used

LRU Least recently used

MCD Move Copy Down

MFU Most frequently used

MRU Most recently used

NDN Named-Data Networks

NetInf Network of Information NetInf

PIT Pending Interest Table

PoA point of attachement

PSIRP Publish Subscribe Internet Routing Paradigm

SAIL Scalable and Adaptive Internet Solutions

TLRU Time aware least recently used

TTU Time to Use

1

Chapter one

Introduction

1.1 Introduction

This chapter introduces the background of ICN. The motivation of our re-

search in ICN Caching is given as well. Then, we analyze the existing

problems in ICN placement strategies. Besides, the contributions of our

research work are concluded in this chapter. At the end of this chapter, the

outline of this thesis is listed.

With the ubiquity and proliferation of devices that connect us to the

Inter-net and the rapid advancement in wireless technologies, the global IP

traffic has exploded. Consequently, the usage of computer networking

shifted from sharing hardware and processing resources, as its purpose was

in the early days of its creation, to accessing and sharing content instead.

However, the design of the current Internet architecture was driven by the

needs at the time of its creation where the ultimate goal was end-to-end

communication between a few machines. Therefore, the existing

architecture is facing several challenges in adapting to a phenomenal

increase in content.

Having acknowledged the growth of content and the necessity of its

efficient distribution, efforts from both academia and industry have been

combined in an attempt to adapt the Internet architecture to the explosive

content growth experienced in the last decade. This resulted in several

proposals that replace the end-to-end model of TCP/IP with a more data-

centric architecture under the name of ICN.

1.2 Motivation

In Information Centric Network(ICN), content is uniquely identified and so

 2

endpoints send packets requesting names of specific content rather than an

IP address of a specific destination hosting the content. In other words, the

requesting client need not know where the data resides.

With naming content uniquely and disposing of the end-to-end principle

that keeps end to-end transactions oblivious to resources and content

available along the path, ICN leverages in-network caching where routers

in the net-work cache content items. There have been several different

proposals of ICN architectures they all share the common goal of efficient

content distribution using two key features, which are content-based

communication and universal in-network caching. in-network caching

allows for data being retrieved from intermediate nodes rather than from

the server itself, thus rendering content distribution more efficient by

reducing network traffic ,download time and server load.

With cache placement algorithms (e.g LCE), all such routers on the for-

warding path will cache the content object. As a result, a caching decision

is made without regard to the content’s popularity or to the space resources

available.

1.3 Problem Statement

Cache Placement strategies (like Caching everything-everywhere) stores all

the content to be delivered on every router along the path, this approaches

consumes greater amount of buffer space, degrade cache performance and

network performance. After a cretin amount of time, the buffer is getting

full and there is not enough space to store new incoming data in the cache,

this result in delay and less network performance. The needs to

accommodate the incoming contents in the buffer ”cache” is main feature

of ICN, there is no way to stop, furthermore caching all contents is

impossible, the problem of what content must stay or what content should

gone away, is floating on surface. random replacement result in less cache

 3

performance, so effective cache content replacement decision and strategy

should take place .The strategy takes in account the performance and full

utilization of time, buffer, network, by right selection of the contents must

be replace ,and the procedures to be done. the research goal is to find the

optimal content replacement strategy, to face the big amount of caching (in-

network caching) caused by placement. algorithms, attempting to improve

the network performance in terms of hit ratio and net-work delay.

1.4 Objectives

research objectives are :

1. To build model to compare algorithms in term of hit rate. high hit rate

means high network performance and less traffic and delay.

Calculate hit rate for every algorithm.for fixed parameters,(cache size,

time, number of requests).

2. To find the best algorithm for ICN networks,the algorithm with high hit

rate.

3. To increase the caching replacement process performance,by taking the

content popularity into account. this lead to minimize response time,

network traffic .and optimal utilization for cache memory and network

resources.

1.5 Research Scope

Compare Cache replacement strategies(LRU-LFU-TLRU) for achieving re-

search objectives, furthermore the scope of research is to compare the

algorithms mention above in term of hit ratio for fixed cache size and fixed

number of requests. For efficiency of caching, cache replacement policies

play an important role, because the ICN router cache is limited and cannot

hold all the content in-side the cache. To devise some space for new

content, cache replacement is required. There are different cache

replacement policies. One of the most used and popular policy is Least

Recently Used (LRU). Least Frequently Used (LFU). First-In First-Out

(FIFO).

1.6 Research Outline

The remaining of this thesis is structured as follows: Chapter two: presents

 4

the background of our research. An introduction of ICN is given. ICN

architectures ,exactly NDN ,in-network caching ,cache placement and

replacement strategies are discussed as well. Chapter three: proposes our

model for compare the algorithms ,the simulation ,and parameters. Chapter

four: implement the proposed model, the simulation of the mentioned

algorithms, compare the results with each other. Based on the results , then

choose the much more efficient one. Chapter five: gives a conclusion about

this thesis and our future work. also some future possibilities where listed

in this area.

 5

Chapter Two

Literature Review

2.1 introduction

This chapter presents the background of our research. It gives an

introduction of ICN in Section 2.1, in which it describes the architecture of

ICN. Then presents the NDN architecture, in Section 2.2. After that,

presents Communication model is in 2.3 and IN-Network caching and its

advantages in ICN in 2.4,2.5. It classifies Cache strategies into two major

categories: Placement Strategy and Replacement Strategy. In each

category, a detailed description is discussed. At last, we present the related

studies, another important aspect of ICN, security, naming, routing system.

at last we present queuing delay.

2.2 Information-Centric Network (ICN)

The core idea behind information-centric networking (ICN) architectures is

that who is communicating is less significant than what data are required.

This paradigm shift has occurred due to end-users’ use of today’s Internet,

which is more content-centric than location-centric.

Internet usage has shifted from host-centric end-to-end communication to

a content-centric approach mainly used for content delivery. Although

content delivery represents such a large percentage of Internet traffic, the

paradigm of the current Internet has not been built for content delivery.

Unlike traditional broadcast which sends one title to millions of people

across the network at one time, the Internet transmits same videos many

times over. the congestion in the Internet will get out of control and new

solutions will be required to maintain an acceptable quality of service.

To address the problem, Information Centric Networks (ICN) were pro-

 6

posed.ICN is a novel Internet architecture designed for content delivery. In-

stead of leading the Internet protocol with an end-to-end communication

protocol, ICN switches to a content-centric approach where every content is

named. Researchers have proposed multiple architectures [1]. In 2006, the

data-oriented network architecture (DONA) project at UC Berkeley

proposed an ICN architecture, which improved the security and architecture

of TRIAD. The Publish Subscribe Internet Technology (PURSUIT) project,

a continuation of the Publish Subscribe Internet Routing Paradigm

(PSIRP)project, both funded by the EU Framework 7 Program (FP7), have

proposed a pub-lish/subscribe protocol stack that replaces the IP protocol

stack. In another approach, the Network of Information (NetInf) project was

initially proposed by the European FP7 4WARD project, and further

development has been made by the Scalable and Adaptive Internet Solutions

(SAIL) project. Simi-larly, Van Jacobson, a Research Fellow at PARC,

proposed the Content Cen-tric Networking (CCN) project in 2007.

Currently work is being performed to enhance the CCN architecture called

“named-data networks” (NDN). All of these approaches differ in terms of

implementation, but they have the same goal to improve the performance

and end-user experience of the Internet by providing access to content and

ser-vices by name rather than by original location. There are researches

talked about ICN and its caching strategies and use in [2] [3] [4]. This is

achieved by changing the concept of link protection to content protection

and by exploiting in-network storage of content.

Among all these new architectures, CCN has attracted most of the

attraction of the community due to three reasons:

i. In-network caching features at every node

ii. coupled name resolution

iii. data forwarding and a unified naming scheme.

From these features, in-network caching impacts directly on the content

delivery efficiency. Despite the large caching literature already existing,the

premises of a CCN architecture makes its study challenging. The in-network

 7

caching features at every node becomes CCN into a network of caches.

Internet has never handled caches at such a large scale, caches were located

at fixed locations and now caches are placed everywhere.CCN stores content

at chunks of content at a fine-granularity, in contrast with traditional

architecture were complete objects were stored. CCN routers must deal with

large cache sizes and a catalog ranging for all the content from the Internet.

The CCN efficiency depends drastically on the performance of its caching

features [5].

2.3 Content Centric Networking CCN/ NDN

Figure 2.1: CCN/NDN overview [6]

Content Centric Networking (CCN) in one project that follows the ICN

paradigm. It was originally started at the Palo Alto Research Center (PARC),

a research and development company. Currently the CCN approach is being

continued by for example the Named Data Networking (NDN) project and

 8

the Community Information Centric Networking (CICN) project at Cisco.

In CCN communication is driven by the consumers of data, with publishers

making that data available for access in the form of content. In CCN there

are two primary packet types: Interest and Data. Consumers first use an

Interest packet in order to request some content and the publisher then

delivers that content, in the form of a Content Object, in a Data packet.

Content Object is the CCN specific term for the generic ICN NDO. Routing

is name-based and Interests are routed hop-by-hop toward publishers using

longest prefix matching. Longest prefix matching is originally a forwarding

algorithm used by TCP/IP routers. some papers talk about routing as in [7]

[8]. When applied to CCN it means that a message will be forwarded

according to the entry in the forwarding table with the name that has the

longest prefix in common with the name of the message.

The namespace of CCN is hierarchical, unlike several other ICN projects

which use flat namespaces. The structure is similar to the current URLs,

where the hierarchy is rooted in a publisher unique prefix under which

content is published. This means names are aggregately when routing in a

manner reminiscent of TCP/IP route aggregation, which improves routing

scalability. A CCN router has three primary data structures.

2.4 Forwarding Information Base (FIB)

It is the forwarding table. In CCN the FIB operates similarly to the FIB of a

TCP/IP router, hence the identical name. It maps Content Objects,

represented by their names, to network interfaces. A selected network

interface leads to a next hop toward one publishing location for the content

matching that particular name. In CCN terminology interfaces are simply

referred to as faces.

The primary difference when compared to the FIB of TCP/IP is the fact

that CCN supports multi-sourcing. In CCN each FIB entry can map a single

Content Object to multiple faces, as the same content can be published at

multiple network locations. How to populate the FIB is an important

 9

problem and a common suggestion is to use a routing protocol, much like

how it is done in TCP/IP. When there are multiple alternative faces to

choose from for a Content Object a forwarding strategy determines to

which face, or faces, the Content Object should be forwarded.

2.5 Pending Interest Table (PIT)

The PIT stores state about forwarded Interests in the form of a map, which

maps Content Objects to faces from which Interests for that Content Object

has been received. Similarly, to the FIB, the Content Objects are once again

represented by their names.

Content Objects are not routed from the publisher to the consumer, they

instead travel the same path as the initial Interest, but in the reverse

direction, by consuming the state left behind by the initial Interest in the

PIT at each passed hop. This is called the reverse request path. The state

stored in the PIT thus serves as a breadcrumb for the Content Object to

follow as it travels toward the consumer.

2.6 Content Store (CS)

The CS is the cache where each network node can store content, enabling

on path caching. For example, there are papers in a caching mechanisms as

in [9] caching strategies as in [10] [11], On path caching is the possibility

that, as an Interest is routed toward a publisher, a cache hit occurs in the CS

of one of the intermediate nodes. This reduces content download time,

network traffic and the server workload. The CS operates according to

some cache strategy, for instance Least Recently Used (LRU) or Least

Frequently Used (LFU). There is no requirement for every node to share a

single cache strategy, meaning the cache strategy can be decided on an

individual node basis.

2.7 Communication model in ICN

In ICN, packets used for communication are of two types

 10

Figure 2.2: ICN packet types [12]

Interest and Data [figure 2.2]. User requests a particular data using an

interest packet which includes the name prefix of the content to be fetched.

Name prefix from the interest packet is used to route it forwards the

requested content. The packet whose name matches with the name prefix of

the interest packet or has matching data cached locally is sent to the user

through the same path in reverse direction leaving cached copies at each

intermediate node from source to destination. Every interest packet

additionally contains a NONCE field, a random number assigned by

pending interest table (PIT) to avoid forwarding loops. Data packet carries

the requested data plus the signature of producer to review for

inconsistencies. [12].

 11

CS C

PIT P

FIB F

Figure 2.3: Components in ICN router

ICN routers contain three tables as shown in figure 3.Forwarding

Information Base (FIB), Pending Interest Table (PIT) and a Content Store

(CS). FIB acts as a routing table in an IP router. Instead of IP prefixes, ICN

FIB is indexed by name prefixes and every FIB entry may have several

next hops in place of one best next-hop for every name prefix. PIT keeps

track of received interests. It records which interface(s) the interest is

received from and has been forwarded to. CS acts as a temporary cache of

data packets. If the re-quested data is in the CS, the node can immediately

send the data without generating further requests to the content provider.

Name Data

Name Incoming

Faces

Name Outgoing

Faces

 12

Figure 2.4: Basic operation of ICN[12]

In this example [figure2.4]: User A forwards the interest packet first.

When this interest packet sent from user A reaches the router, router

queries it’s CS for the requested content. If there is any matching data

stored in cache, data is immediately sent to the requester. In this example,

as no such content is available in CS, router looks up the PIT to see if there

is any request for this content. A record of the incoming interface is made

in PIT if an identical entry is found. If the entry is not found in PIT, both

incoming interface and outgoing interface are recorded in addition to the

name of the requested content. Router will then forward interest packet

depending on the information in FIB. There is no cached content for this

request in the network, so the interest packet eventually hits the content

provider and the data packet is sent to the requester. When this data packet

arrives at router, it first looks for any pending entry in PIT for the same. If

so, data packet gets forwarded towards the downstream interfaces and its

corresponding entry in PIT is removed while caching the data packet in its

 13

CS to satisfy future requests. Now, when user B sends the interest packet

for the data similar to the one requested by user A, this data packet gets

delivered from the nearest cache (router in this example) to user B directly

[figure 2.4].

2.8 Related Work

Researchers work on several caching strategies , their algorithm , caching

types , their advantages and issues . Based on the survey work, various

cache methods are compared depend on different criteria. Different

challenges in their works are analyzed, and a proposal based on these works

is given at the end [2].

To improve the cache hit ratio, most of the existing schemes store the

con-tent at maximum number of routers along the downloading path of

content from source. While this helps in increased cache hits and reduction

in delay and server load, the unnecessary caching significantly increases the

network cost, bandwidth utilization, and storage consumption. To address

the limi-tations in existing schemes, researchers in [3] propose an

optimization based in-network caching policy, named as opt-Cache, which

makes more efficient use of available cache resources, in order to reduce

overall network utilization with reduced latency [3].

Researchers in [1] propose a caching and replacement strategies for

content in Content-Centric Network (CCN). The caching strategy will

choose the node that will be cached on based on the network topology. The

proposed replacement strategy will take in its consideration the number of

resources that the content has been consumed and if the content has been

requested recently or not. To evaluate their proposed work, Researchers use

a ccnSim simulator, and the simulation results show that their proposed

caching strategy provides more significant result than the Leave Copy

Everywhere (LCE) strategy and the replacement strategy provide more

significant result than the Least Recently Used (LRU) replacement strategy.

ICN behavior is determined by a 3-tuple, which are routing, content

 14

insertion and content replacement. Besides, Routing algorithms influence

content insertion performance and, which in turn, influences in replacement

policies performance. Furthermore, it is proven that content insertion

policies in-fluence routing performance and there is no work regarded to

analyze the impact of replacement algorithms in content insertion.

Therefore researchers in [13] proposed a new caching metric called

Replacement Ratio and a dynamic content insertion strategy named

RatioCache to prove that content replacement, which is strongly bounded to

caching system, also influence the caching process. In [4] The problem of

the study is that the NDN architecture is processing several forms of online

video requests simultaneously. However, limited cache and multiple

buffering of requested videos result in loss of data packet as a consequence

of the congestion in the cache storage network. Ad-dressing this problem is

essential as congestion cause network instability. This work emphasizes on

the review of cache replacement strategies to deal with the congestion issue

in Named Data Networks (NDN) during the VoD delivery in order to

determine the performance (strengths and weaknesses) of the cache

replacement strategies. Finally, the study proposes the replacement

strategies must be enhanced with a new strategy that depends on popularity

and priority regarding the congestion.

Researcher in [14] propose a content replacement scheme for ICN,

called Randomized LFU that is implemented with respect to content

popularity tak-ing the time complexity into account. They use Abilene

and Tree network topologies in their simulation models. The proposed

replacement achieves encouraging results in terms of the cache hit ratio,

inner hit, and hit distance and it outperforms FIFO, LRU, and Random

replacement strategies.

The researcher in [15] proposed New caching policies and described:

XCaching Type A, XCaching Type B, XCaching TypeC. The results of a

comparative analysis of the developed caching approaches in model of

information-content network are presented. Investigated the probability of

 15

hitting the cache and the uniqueness of caching systems was made. The

results of caching policy evaluations are obtained on the basis of

constructed imitation model of information-content network.

Paper [16] discusses the potential of leveraging Information-Centric

Net-working (ICN) principles in the 3GPP architecture for V2X

communications. researcher consider Named Data Networking (NDN) as

reference ICN ar-chitecture and elaborate on the specific design

aspects,required changes and enhancements in the 3GPP V2X

architecture to enable NDN-based data ex-change as an

alternative/complementary solution to traditional IP networking, which

barely matches the dynamics of vehicular environments. Results are

provided to showcase the performance improvements of the NDN-based

proposal in disseminating content requests over the cellular network

against a traditional networking solution.

To enable a complete ICN caching solution for communication networks,

Quang Ngoc Nguyen and other proposed an autonomous replacement

policy to optimize the cache utilization by maximizing the utility of each

CN from caching content items. By simulation, they show that PPCS,

utilizing edge-computing for the joint optimization of caching decision and

replacement policies, considerably outperforms relevant existing ICN

caching strategies in terms of latency (number of hops), cache redundancy,

and content availability (hit rate), especially when the CN’s cache size is

small [7].

2.9 ICN Content Caching

Approaches to caching can be categorized into off-path caching and on-

path caching based on the location of caches in relation to the forwarding

path from a source to a consumer. Off-path caching, also referred as

content replication or content storing, aims to replicate content within a

network in order to increase availability, regardless of the relationship of

 16

the location to the for-warding path. The actual number of replicas and the

specific nodes in which replicas may be stored is a decision made by the

Internet Service Provider (ISP) that supports the specific network. In on-

path caching approaches, content is replicated at nodes along the

forwarding paths from sources to consumers. The decision to cache a

content resource at a specific node is strictly related to the content that is

being requested [17].

2.10 Advantages of in-network caching in ICN

I) Reduction of content delivery delay and round- time (RTT trip): Because

of in-network caching capability, contents are stored at the intermediate

nodes closer to requesters and can be quickly retrieved from the server.

II) Higher content availability: In-network caching ensures higher

availability of content as they are cached on all nodes back from source to

requester thereby mitigating Denial of Service (DOS) to a significant level

[18].

III) Network caching shows better resiliency towards packet loss by

quickly retransmitting them from the nearest node which has uncorrupted

copy of the content.

IV) In-network caching results in significant reduction of total traffic since

data packets traverse fewer links in case of a cache hit.

V) Cache hit leads to serving one request less, thus reduced server load.

[12]

2.11 Cache placement and cache replacement

Cache memory is used to store frequently referred pages to increase the

throughput of the system and with minimum delay .In ICN, cache place-

ment and cache replacement are different terms. Cache placement basically

references ‘in what place the content should be placed?’ but Cache replace-

ment defines how the event cache content eviction should take place to

achieve a high hit ratio and minimum latency.

 17

2.12 Caching Placement strategies

2.12.1 On-path Caching

On-path caching decisions applies only to the requested content(s); other

content is not taken into account, while content may be cached only at the

nodes lying on the delivery path.On-path caching is strictly related to the

requested content and popularity rates of each item. [17].

2.12.2 Probabilistic Caching

It is a general approach, according to which each node on the delivery path

decides to cache the content based on a probability p. The probability p

may be a pre-determined value [19].

2.12.3 Random Caching

This model is fairly simple and results in no additional load on the network.

However, it is not able to exploit the advantage of having knowledge of the

optimal positions for caching each content [17] [19].

2.12.4 Unique Caching

In this approach, content is cached only in one node along the delivery path

which is chosen randomly. Since only node is chosen, the probability of

caching at each node equals to, one to the number of intermediary nodes.

2.12.5 Caching Everything-Everywhere

The CE2approach simply caches every content in every intermediate node

in-volved in the delivery path. The CE2 approach has been criticized in a

number of works for resulting into unnecessary content redundancy and

resource con-sumption. As an additional drawback, CE2 does not take into

account the content’s popularity, providing the same probability,for both

popular and un-popular content, to be cached. In contrast to its

disadvantages, CE2 holds the advantage of providing fast content

distribution [17].

 18

2.12.6 ProbCache

According to this policy, each node stores a copy of the content with proba-

bility p. If the probability is 1, the LCE policy is implemented. Each node

contains cache sizes and data regular changes over time, so it has to be an

effective content replacement policy. If the node does not have enough

space to cache a copy of the content, it selects suffer for replacement based

on access time,the number of visits or access order [11].

2.12.7 Leave Copy Everywhere (LCE)

LCE leaves a copy of the content in each node along the path from

producer to end user.LCE can be considered as a probability strategy with

caching probability equal to one in each node. LCE designed to reduce user

access time to a content and minimize the frequent download from content

producer.The main disadvantage of this strategy is the redundancy of

caching.To reduce cache redundancy in ICN the LCD is designed. LCD

caches the content only at the direct downstream node of the node that

cache hit occurs on it. [20] [21].

2.12.8 Leave Copy Down (LCD) and Move Copy Down(MCD)

(MCD) are other cache placement policies. When a user sends an Interest

packet,and cache hit occurs, the content will be cached only in the neighbor

downstream node. LCD pushes a copy of the content one hop closer to the

client after each cache hit. Also in MCD once a cache hit occurs the content

is cached only at the neighbor downstream router. MCD deletes the cached

content after the hit while LCD does not [11] [21].

2.13 Replacement Strategy

Cache is filled after a certain amount of running time.Since that, a

replacement strategy is needed to cache a new upcoming content.

Replacement strategies can be categorized based on several characteristics

 19

has been proposed in :

2.13.1 Random replacement strategy

When a content data are requested by requester node (client) and caching

router find that content in its content store (CS) then that event is called hit

event and the content data is immediately sent to the client by the caching

router. When the content is not found in the content store (CS) of the

caching router then the respective data request is sent to the server and in

returning of that data from server, caching router selects one of the content

in its CS randomly and replace that content with requests incoming content

from the server .

The selection criteria of content which has to be replace is done random.

[22] [19] [23].

2.13.2 Least recently used strategy

Least recently used (LRU) is one of famous and mostly used cache replace-

ment strategy in ICN.In Least recently used strategy when a content data

are requested by requester node and caching router finds that

content,caching router selects one of the content in its CS on the behalf of

recency of usage.

Most popular content items will be demanded more in the network so its

usage will be more and recency is directly proportional to the usage. So the

item which having less recency will be selected for replacement by a

caching router in its CS.LRU replacement strategy gives a high hit ratio

because the most popular content is accessed many times in the modern

world scenario [22] [23].

2.13.3 First in first out strategy

This strategy is very simple to understand and implements .In this replace-

ment ,when a content data is requested by requester node ,caching router

selects one of the content in its CS on the behalf of oldness of usage. In this

 20

scenario, oldness is directly proportional to the time at which the content

data was stored in the cache storage. The more old data have high

probability to be replaced with new arrived cached content [19] [23].

2.13.4 Least frequently used strategy

Least frequently used Strategy works with the maintenance of a counter for

each content data. This counter for each content item tracks how many

number of times that particular content item is requested or referred. In

Least frequently used (LFU) strategy, when a content data is requested by

requester node ,caching router selects one of the content in its CS on the

behalf of less value of counter. This less or low value of counter indicates

less number of times that particular content item is referred. The caching

router will select a content item in its cache who has a low value of the

counter and replaces it with newly arrived content data [22] [23].

2.13.5 Most recently used strategy

This strategy is opposite to least recently used replacement strategy, when a

content data are requested by requester node (client) and caching router

finds that content in its content store (CS) ,the content data is immediately

sent to the client by the caching router. caching router selects one of the

content in its CS on the behalf of high recency of usage. Researches show

that the MRU replacement holds good results for scenarios which having

accessed old content data in spite of new one [22] [23].

2.13.6 Time aware least recently used (TLRU)

The Time aware Least Recently Used (TLRU) is a variant of LRU designed

for the situation where the stored contents in cache have a valid life time.

The algorithm is suitable in network cache applications, such as

Information-centric networking (ICN), Content Delivery Networks (CDNs)

and distributed networks in general. TLRU introduces a new term: TTU

(Time to Use). TTU is a time stamp of a content/page which stipulates the

usability time for the content based on the locality of the content and the

content publisher announcement. Owing to this locality based time stamp,

 21

TTU provides more control to the local administrator to regulate in network

storage. In the TLRU algorithm , when a piece of content arrives, a cache

node calculates the local TTU value based on the TTU value assigned by

the content publisher. The local TTU value is calculated by using a locally

defined function. Once the local TTU value is calculated the replacement of

content is performed on a subset of the total content stored in cache node.

The TLRU ensures that less popular and small life content should be

replaced with the incoming content [24] [23].

2.13.7 Least frequent recently used (LFRU)

The Least Frequent Recently Used (LFRU) cache replacement scheme

com-bines the benefits of LFU and LRU schemes. LFRU is suitable for ‘in

network’ cache applications, such s Information centric networking (ICN),

Content De-livery Networks (CDNs) and distributed networks in general.

In LFRU, the cache is divided into two partitions called privileged and

unprivileged partitions. The privileged partition can be defined as a

protected partition. If content is highly popular, it is pushed into the

privileged partition. Replace-ment of the privileged partition is done as

follows: LFRU evicts content from the unprivileged partition, pushes

content from privileged partition to unpriv-ileged partition, and finally

inserts new content into the privileged partition. In the above procedure the

LRU is used for the privileged partition and an approximated LFU (ALFU)

scheme is used for the unprivileged partition, hence the abbreviation

LFRU.

The basic idea is to filter out the locally popular contents with ALFU

scheme and push the popular contents to one of the privileged partition

[25].

2.13.8 Most frequently used strategy

This strategy is opposite to least frequently used replacement strategy.

when a content data are requested by requester node, caching router selects

one of the content in its CS on the behalf of the high value of counter. This

 22

high value of counter indicates a large number of times that particular

content item is referred [22].

2.14: Security

Instead of securing connections, ICN model is based on securing data at

network layer. Each data packet is digitally signed by the producer,

allowing consumers to verify integrity and data-origin authenticity. A

producer is thus required to have and distribute at least one public key.

Existing trust models (e.g. a PKI or Web-of-Trust) can be used to validate

producer identity and key ownership. Data confidentiality can be

guaranteed by encrypting data payload and preventing information leakage

from the name.

one commonly recognized benefit of ICN data-centric security approach

is that it places trust in producers rather than in hosts that store and serve

data. This enables in-network efficient data delivery operations, such as

filtering, caching and multicasting, without affecting the data security

properties en-forced by the data producer [28].

It is also stated that ICN can mitigate traditional Distributed Denial-of-

Service (DDoS) attacks for the certain data providers. in-network caching

in ICN can greatly avoid DDoS attacks, and name-based forwarding in ICN

can trace the attackers easily.Unfortunately, ICN brings a new varietal

DDoS attack called Interest Flood-ing Attacks (IFA), which has become a

big threat for information-centric . Typically, attackers issue a large number

of fake Interest messages to request nonexisting Data, which can lead to the

memory overflow for the ICN-IoT nodes. Recently, many mechanisms

have been proposed to mitigate the IFA attacks [29] [30].In paper [31] the

researchers showcase the existing literature in security and privacy in ICN

and present open questions.

2.15 Name resolution and data routing

The name resolution is a mechanism that enables a consumer or a content

 23

subscriber to find NDO by using a name.This mechanism provides a means

of mapping a name and content locator and forward the requested data to

the source. After the source of the content according the requested name

has been found, the data routing process then constructs a path for

transferring the data from the source to the user/client who requested the

content.in [32] researchers proposed a hybrid name resolution approach, in

which each content has a Home Node located in ICN routers.

2.16 Routing system in ICN

In ICN, data objects must be identified by names regardless their location

or container and the names are divided into two types of schemes:

hierarchical and flat namespaces. A hierarchical scheme used in CCN and

NDN architec-tures has a structure similar to current URIs, where the

hierarchy improves scalability of routing system. It is because the hierarchy

enables aggregation of the name resulting in reducing the size of RIB or

FIB as similar to IP routing system. In a flat scheme, on the other hand,

name routing is not easy since names in a flat namespace cannot be

aggregated anymore, which would cause more the scalability problem in

routing system. In order to address such

problem, a flat name can be resolved to some information which is routable

through NRS,more details in [8] .

2.17 Queuing delay

Is the time spent by the packet sitting in a queue waiting to be transmitted

onto the link. The amount of time it needs to wait depends on the size of the

Queue. If the Queue is empty, then it transmitted immediately, but if it’s

sitting behind other packets, then it needs to wait for the packets in front to

be transmitted first.

researchers in [33] introduced an interest forwarding mechanism to

process the requests of consumers at a CCN router, Interest packets are

forwarded with respect to the priorities of addressed content while the

 24

priority level settings are done by content publishers during an initialization

phase using a collaborative mechanism of exchanging messages to agree to

the priority levels of all content according to the content-nature. Interests

with higher priority content are recorded in Pending Interest Table (PIT) as

well as forwarded to content publishers prior to those with lower priority

content.

NDN defines two basic types of packets: Data and Interest. Content items

are permanently stored in the repository (provider)and partly cached in the

intermediate nodes. A content item is split into a sequence of Data packets

uniquely identified by names. Each consumer implements a receiver-driven

transport protocol to retrieve content by sending Interest requests. A name-

based routing protocol guarantees the Interests are routed toward the data

repository. Every intermediate node keeps track of pending Interests, in

order to deliver the requested Data packets back to the receiver through the

reverse path of Interests. Each router is equipped with a local cache that

stores Data packets in order to satisfy future Interests for the same Data. In

addition, intermediate nodes perform Interests aggregation to avoid

forwarding multiple interests for the same Data while the first one is

pending.

Researchers in [34] introduce the Markovian Queuing System theory into

the ICN modeling. they adopt the Queuing theory to analyze the queuing

delay which is a key part of the content delivery time [20].

2.18 Summary

This chapter, presents an overview of the research background of ICN,

NDN, IN-Network caching in ICN witch lead to cache placement and

replacement strategies. Include that introduced to suit ICN network.at the

end of this chapter we presented the related works and queuing delay.

 25

Chapter Three

Methodology and Research Framework

3.1 Introduction

In this chapter, demonstrate our proposed model, the model involves an

ICN with an NDN architecture, the “in-network” capabilities rise the need

for efficient cache replacement strategy. The main goals of the proposed

model are to compare algorithms and showing, analyzing the results in term

of hit ratio. This chapter is organized as follows. Section 3.1 presents the

hit ratio and Section 3.2 the cache load. Section 3.3 describe the

Framework.

3.2 Cache hit ratio

Cache hit ratio will be evaluated by achieving the number of hits for overall

request of accessing content from the requested client. If the request for

content item made by the client is found in the content store of a caching

rather than this phenomenon is called cache hit. The increasing number of

cache hit leads to high performance of the information centric network

because of less delay and content will be reached for the client before

expected time. Cache hit ratio is directly proportional to the number of

times content item found in the content store of caching router.

 C(hit) = number of times content found in CS

 ــ

 Total no. of request in that caching router

 26

3.3 Cache load

The term cache, load is indicated that how much request is processed by a

server or a caching router at any particular time. Load is the total number of

requests for accessing the content data/ items from client to the server. For

better performance of the system, it is necessary that the server or caching

router should not be overloaded with incoming requests for content access.

3.4 Techniques used

PHP started out as a small open source project that evolved as more and

more people found out how useful it was. Rasmus Lerdorf unleashed the

first version of PHP way back in 1994.PHP is a recursive acronym for

”PHP: Hypertext Preprocessor”. It is server side scripting language that is

embedded in HTML. It is used to manage dynamic content, databases,

session tracking, even build entire e-commerce sites.

Canvas.JS: Canvas.JS is an easy to use HTML5 and Java script Charting

library. This allows to create Rich reports that work across devices without

compromising on Maintainability or Functionality.

 Why Canvas.JS

 Very simple and intuitive API .

 Comes with Beautiful and Elegant looking themes.

 High performance and Works on all modern devices.

 Canvas.JS is Standalone – does not depend on any other library.

3.5 Research Framework Description

3.5.1 Network environment

Our system model involves an ICN with an NDN architecture. It includes

one or more servers that will have the original copies of the files.

Moreover, the network includes routers that connect users to those servers.

Due to the content oriented nature of the network, the features of our

system are those of NDN which we reiterate as the following:

 27

i. in-network storage capabilities at intermediate routers

ii. packet forwarding using the PIT and FIB data structures

iii. routers can serve requests for content they have cached

iv. interest packets are forwarded towards the data source.

3.5.2 Choose three algorithms to compare LRU, LFU, TLRU

3.5.2.1 Least recently used strategy(LRU)

Least recently used (LRU) is one of famous and mostly used cache

replacement strategy in ICN. here is algorithm:

1. Start traversing the content.

2. If set holds less content than capacity.

3. Insert content into the set one by one until the size of set reaches

capacity or all content requests are processed.

4. Simultaneously maintain the recent occurred index of each content in

a map called indexes.

5. Increment content fault

6. Else If current content is present in set, then increment hit.

7. Else Find the content in the set that was least recently used.

We find it using index array .We basically need to replace the

content with minimum index.

8. Replace the found content with current content.

9. Increment content faults.

10. Update index of current content.

11. Return content faults.

3.5.2.2 Least frequently used strategy(LFU)

Least frequently used Strategy works with the maintenance of a counter for

each content data. This counter for each content item tracks how many

num-ber of times that particular content item is requested or referred.

 28

1. Take inputs

2. Initialize cache and count array to -1

3. If (cache miss)

4. Find the least frequently used content from the contents in the cache

5. Replace content in cache by current content.

6. Create array of counts and store it in ’count’ array

7. End If

8. Increment counter

3.5.2.3 Time aware least recently used (TLRU)

The Time aware Least Recently Used (TLRU) is a variant of LRU designed

for the situation where the stored contents in cache have a valid life time. A

brief stepwise explanation is given below.

Step 1: Calculate (TTUij) local time stamp by (j node)value for arriving

content based upon composite function . This step is optional and we argue

that function should be defined by the local network administrator

according to local policies and requirements.

Step 2: Proceed to save arriving content in cache if the average request time

Ti j is smaller then TTU ij calculated in step-1.The reasons for this step is

that if the average request time (in CCN average request time can be calcu-

lated by using information stored in PIT-Pending Interest Table) Tij >

TTUij then there is a high probability that TTUij will expire before arrival

of next request which means storing this content has no use. This step also

endorses that relatively more popular contents should be stored.

Step 3: Store the content if there is an empty space in cache otherwise

apply LRU on Ev[j] cache state Sk[j] . Subset Ev[j] is a contraction of s[j],

calculated based upon the remaining TTU value and average request time.

Contraction endorses that relatively less popular contents should be evicted.

3.5.3 build system to comparison

We compare between the caching replacement policies(LRU,LFU,TLRU)

us-ing the same content placement policies(e.g LCE) when caching space at

nodes is not enough to cache new content. The model compare all three

 29

algorithms mentioned above for the fixed parameter value (number of

requests and cache size),then calculate the hit and miss rate for each one.

then changes the values and calculate again.

3.5.4 The sequence of system explained as followed: -

i. Select cache size (e.g 4 MB).

ii. Enter requests (the number of request should exceed the maximum

cache size)e .g 10 requests .

iii. Execute LRU algorithm.

iv. Execute LFU algorithm.

v. Execute TLRU algorithm.

vi. Read the hit and miss for algorithm and write down to a table ,for

chart.

vii. Change the number of requests by increments (e.g 20 requests) to

see if changes.

viii. Repeat steps (from 3 to 6) .

ix. Repeat all the above steps for new cache size.

x. Use the table data in step 6 to drow a chart for each cache size.

The system flowchart explained on figure 3.1

 30

Enter request (more

than 4 MB)

If exist

in cache Hit++

no

yes

Miss++

Write to cache

Start

Register hit &miss val to a table

Choose cache size (e.g 4 MB)

End

Execute with LRU,LFU,TLRU

Read cache to see if exist

Make the chart to compare

figure 3.1 The propose system

flowchart

 31

 Table 3.1: Simulation parameters

Num PARAMETERS

1. Total number of request

2. Total number of contents in the network

3. Cache memory size of the router

4. Simulation Time in seconds

3.5.5 specify parameters used in system

The proposed model parameters explaned in table 3.1

Total number of request: refer to the incoming requests to search for specific

content in cache.

Total number of contents in the network: the contents saved on cache memorys

on network.

Cache memory size of the router: the cache size in MB of routers.

Simulation Time in seconds: the time spent in seconds.

3.5.6 decide the best one according to the system

At the end, the system can tell us what is the best, the best will achieves the

highest hit rate.

3.6 Summary

This chapter descript the framework used to solve, explains the proposed

system by comparing the selected algorithms, determine comparison

parameters, the techniques used to develop, and the system flowchart.

The proposed system compare three algorithms for the fixed parameter value

(number of requests and cache size), then change the values.

 32

Chapter Four

Implementation and Findings

4.1 Introduction

This chapter, present the results of execution of system which mentioned in

chapter three, and then analysis the results found in the experiment. Before

mention the results will demonstrate the execution of system in details.

4.2 Framework of Implementation

We design an application using web techniques. The application requires

the sequence of query (input) and then show the corresponding result for

the selected algorithm by clicking the button carries the algorithm name.

The result screen shows the cache (last state) also the hit ratio, number of

hits ,miss ratio,t he number of missed. The total number of query, cache

size.

4.3 Design and implementation

The description of implementation was mentioned earlier in chapter three,

here will implement the proposed solution to gain and analyze results .

Table 4.1 explain the results of hit rate for entering deferent number of

requests(10,20,24) for every algorithm,with fixed cache size(4).

Table 4.1: Calculate hit rate for different number of requests with fixed

Cache size=4

Parameter 10 Requests 20 Requests 24 Requests

LRU 0 5 12.5

LFU 0 5 12.5

TLRU 0 5 12.5

Table 4.2 explain the results of hit rate for entering deferent number of

 33

requests(10,20,24) for every algorithm ,with fixed cache size(8).

Table 4.2: Calculate hit rate for different number of requests with fixed

Cache size=8

Parameter 10 Requests 20 Requests 24 Requests

LRU 10 10 25

LFU 10 10 25

TLRU 10 15 29

4.3.1 Results of hit ratio

Figure 4.1: main page Allow to enter requests,choose an algorithm

4.4 Results of different number of Requests ,Cache

size=4

 4.4.1 Firstly: 10 Requests

 I enter 10 requests with 4 cache size,the result was 0 percent hit ratio and

100 percent missed. the application achieves the same result for three

algorithms.

 34

4.4.1.1 LRU result screen 10 Requests :

Figure 4.2: result screen for10 requests and cache=4,lru algorithm

4.4.1.2 LFU result screen 10 Requests :

Figure 4.3: result screen for10 requests and cache=4,lfu algorithm

 35

4.4.1.3 TLRU result screen 10 Requests:

Figure 4.4: Result screen for10 requests and cache=4, TLRU algorithm

4.4.2 Secondly :20 Requests

Enter 20 request with 4 cache size , the result was 5 percent hit ratio and

95 percent miss for LRU and LFU,TLRU.

4.4.2.1 LRU result screen 20 Requests:

Figure 4.5: result screen for20 requests and cache=4, LRU algorithm

 36

4.4.2.2 LFU result screen 20 Requests:

Figure 4.6: Result screen for20 requests and cache=4,LFU algorithm

4.4.2.3 TLRU result screen 20 Requests:

Figure 4.7: Result screen for20 requests and cache=4,TLRU algorithm

4.4.3 Thirdly: 24 Requests

 24 requests with 4 cache size. LRU and LFU, TLRU achieve 12.5

 37

percent hit ratio and 87.5 percent miss ratio. All three algorithms achieve

the same results for the small cache size.

4.4.3.1 LRU result screen 24 Requests:

Figure 4.8: result screen for24 requests and cache=4,lru algorithm

4.4.3.2 LFU result screen 24 Requests

Figure 4.9: result screen for24 requests and cache=4,lfu algorithm

 38

4.4.3.3 TLRU result screen 24 Requests

Figure 4.10: result screen for24 requests and cache=4, TLRU algorithm

4.5 Results of different number of Requests Cache

size=8

4.5.1 Firstly :10 Requests

First enter 10 requests with 8 cache size, the result was 10 percent hit ratio

and 90 percent missed. the application achieves the same result for three

algorithms.

 39

4.5.1.1 LRU result screen 10 Requests

Figure 4.11: Result screen for10 requests and cache=8,LRU algorithm

4.5.1.2 LFU Result screen 10 Requests

Figure 4.12: result screen for10 requests and cache=8,lfu algorithm

 40

4.5.1.3 T LRU result screen 10 Requests

Figure 4.13: result screen for10 requests and cache=8,tlru algorithm

4.5.2 Secondly : 20 Requests

 enter 20 requests with 8 cache size ,the result was 10 percent hit ratio

and 90 percent missed.the application achieve the same result for three

algorithms.

4.5.2.1 LRU result screen 20 Requests

Figure 4.14: result screen for 20 requests and cache=8,lru algorithm

 41

4.5.2.2 LFU result screen 20 Requests

Figure 4.15: result screen for 20 requests and cache=8,lfu algorithm

4.5.2.3 TLRU result screen 20 Requests

Figure 4.16: result screen for 20 requests and cache=8,tlru algorithm

4.5.3 Third: 24 Requests

Enter 24 requests with 8 cache size. LRU and LFU achieve 25 percent

 42

hit ratio and 75 percent miss ratio. TLRU is 29 percent hit ratio and

71percent miss.

4.5.3.1 LRU result screen 24 Requests

Figure 4.17: result screen for 24 requests and cache=8,lru algorithm.

4.5.3.2 LFU result screen 24 Requests

Figure 4.18: result screen for 24 requests and cache=8,lfu algorithm.

4.5.3.3 TLRU result screen 24 Requests

 43

Figure 4.19: result screen for 24 requests and cache=8, TLRU algorithm.

4.6 The charts

Figure 4.20: chart comparison between tlru ,lfu and lru for 4 bytes cache size

 44

Figure 4.21: chart comparison between tlru ,lfu and lru for 8 bytes cache size

4.7 Discussion of analysis and finding
1. The hit and miss ratio results , are equal in all three algorithms, when

the cache size is small.

2. TLRU achieves the highest Hit rate when the cache size become larger

,it takes the content lifetime in account .

3. Also TLRU could result the same hit and missed with two other

algorithm if the cache size is small and exceed them when there is

cache with large size.

4. TLRU is time award, so it increases the content lifetime if hitted to

stay longer and discard the content with small lifetime.it is sortable

in cases of concentric on popularity.

5. The Simulation results showed that the hit and miss ratio equal in all

three algorithms, when the cache size is small, and TLRU achieves

highest hit ratio for large cache size.

6. LRU, LFU, TLRU achieves 12.5 percent with 4 bytes’ cache size.

7. LRU, LFU achieves 25 percent hit, and TLRU achieves 29 percent hit

 45

with 8bytes cache size, using the same number of requests.

4.8 Summary

This chapter presented the simulation environment and the simulation

results to compare the three algorithms. The results was listed based on hit

ratio, number of requests .Simulation results showed that the hit and miss

ratio equal in all three algorithms, when the cache size is small and TLRU

achieves highest hit ratio for large cache size.

 The simulation results showed that the hit and miss ratio equal in all three

algorithms, when the cache size is small, and TLRU achieves highest hit ratio

for large cache size. LRU, LFU, TLRU achieves 12.5 percent with 4bytes

cache size. LRU, LFU achieves 25 percent hit, and TLRU achieves 29 percent

hit with 8bytes cache size, using the same number of requests.

 46

Chapter Five

Conclusions and recommendation

5.1 Conclusions

Information centric network becomes a tremendous research area

nowadays. This research focus on caching replacement strategy and by

inspire of this topic in networking field, I studied several researches

regarding caching in ICN. Caching is just storage of content data with

aiming of speedily served future request. This research presented an

overview of various caching re-placement approaches in ICN with several

features and regarding issues. This research gives a simple idea about ‘how

the event cache content eviction should take place to achieve a high hit

ratio’ problem, The proposed solution gives very high performance in terms

of cache hit ratio with comparison of LRU, LFU, TLRU.

From previous mentioned the contributions of research as follow:

The model can be use to manage the cache, by selecting the right

algorithm, choosing LRU in small cache, and TLRU in large cache size,

and for big numbers of requests. Also Increase the network performance

when the hit ratio increases. The application is a light weight and need not

high ram speed and large memory size.

5.2 Recommendations

Maintaining the consistency of content data if anything updating occurs

Synchronization with various caching routers with respect to the server

Reducing redundancy of content data item in various caches Optimization

of cache space to achieve high capacity to store content data item and so

much else have to consider to make an effective and efficient cache

mechanism in information centric network. This will lead to bright future

of ICN in current internet access scenarios.

 47

References

[1] K. Yu, S. Eum, T. Kurita, Q. Hua, T. Sato, H. Nakazato, T. Asami, and

V. P. Kafle, “Information-centric networking: Research and standardiza-

tion status,” IEEE Access, vol. 7, pp. 126 164–126 176, 2019.

[2] M. Chand, “A comparative survey on different caching mechanisms in

named data networking (ndn) architecture,” International Journal of

Emerging Technologies and Innovative Research, vol. 6, no. 4, pp.

264– 271, 2019.

[3] F. Qazi, O. Khalid, R. N. B. Rais, I. A. Khan et al., “Optimal content

caching in content-centric networks,” Wireless Communications and

Mo-bile Computing, vol. 2019, 2019.

[4] S. J. Taher, O. Ghazali, and S. Hassan, “A review on cache

replacement strategies in named data network,” Journal of

Telecommunication, Elec-tronic and Computer Engineering (JTEC),

vol. 10, no. 2-4, pp. 53–57, 2018.

[5] C. Bernardini, T. Silverston, and A. Vasilakos, “Caching strategies for

information centric networking: opportunities and challenges,” arXiv

preprint arXiv:1606.07630, 2016.

[6] M. A. Yaqub, S. H. Ahmed, S. H. Bouk, and D. Kim, “Information-

centric networks (icn),” in Content-Centric Networks. Springer, 2016,

pp. 19–33.

[7] Q. N. Nguyen, J. Liu, Z. Pan, I. Benkacem, T. Tsuda, T. Taleb, S. Shi-

mamoto, and T. Sato, “Ppcs: a progressive popularity-aware caching

scheme for edge-based cache redundancy avoidance in information-

centric networks,” Sensors, vol. 19, no. 3, p. 694, 2019.

[8] H. Liu, K. Azhandeh, X. de Foy, and R. Gazda, “A comparative study

of name resolution and routing mechanisms in information-centric net-

works,” Digital Communications and Networks, vol. 5, no. 2, pp. 69–

 48

75, 2019.

[9] M. Zhang, H. Luo, and H. Zhang, “A survey of caching mechanisms in

information-centric networking,” IEEE Communications Surveys &

Tutorials, vol. 17, no. 3, pp. 1473–1499, 2015.

[10] H. Khelifi, S. Luo, B. Nour, and H. Moungla, “In-network caching in

icn-based vehicular networks: Effectiveness & performance

evaluation,” in ICC 2020-2020 IEEE International Conference on

Communications (ICC). IEEE, 2020, pp. 1–6.

[11] M. Alkhazaleh, S. Aljunid, and N. Sabri, “A comprehensive survey of

information-centric network: Content caching strategies perspective.”

[12] R. Hegadi, A. Kammar, and S. Budihal, “Performance evaluation of

in-network caching: A core functionality of information centric

networking,” in 2019 International Conference on Data Science and

Communication (IconDSC). IEEE, 2019, pp. 1–8.

[13] P. Sena, I. Carvalho, and A. Abelém, “Content placement aware cache

decision: A caching policy based on the content replacement ratio for

information-centric network,” in 2018 IEEE International Conference

on Internet of Things (iThings) and IEEE Green Computing and Com-

munications (GreenCom) and IEEE Cyber, Physical and Social

Comput-ing (CPSCom) and IEEE Smart Data (SmartData). IEEE,

2018, pp. 1913–1920.

[14] N. Alzakari, A. B. Dris, and S. Alahmadi, “Randomized least

frequently used cache replacement strategy for named data

networking,” in 2020 3rd International Conference on Computer

Applications & Information Security (ICCAIS). IEEE, 2020, pp. 1–6.

[15] Y. Navrotsky and N. Patsei, “Cashing control and optimization in

information-content networks,” in 2019 Open Conference of Electrical,

Electronic and Information Sciences (eStream). IEEE, 2019, pp. 1–5.

[16] M. Amadeo, C. Campolo, A. Molinaro, J. Harri, C. E. Rothenberg, and

 49

A. Vinel, “Enhancing the 3gpp v2x architecture with information-

centric networking,” Future Internet, vol. 11, no. 9, p. 199, 2019.

[17] A. Ioannou and S. Weber, “A taxonomy of caching approaches in

information-centric network architectures,” Elsevier Journal, 2013.

[18] B. Al-Duwairi and Ö. Özkasap, “Preventing ddos attacks in path

identifiers-based information centric networks,” in NOMS 2020-2020

IEEE/IFIP Network Operations and Management Symposium. IEEE,

2020, pp. 1–5.

[19] L. Saino, I. Psaras, and G. Pavlou, “Icarus: a caching simulator for

information centric networking (icn),” in SimuTools, vol. 7. ICST,

2014, pp. 66–75.

[20] B. ALOTAIBI and S. ALAHMADI, “Efficient caching and

replacement strategy in content centric network (ccn) based on xon-

path and hop count.”

[21] I. U. Din, S. Hassan, M. K. Khan, M. Guizani, O. Ghazali, and A.

Hab-bal, “Caching in information-centric networking: Strategies,

challenges, and future research directions,” IEEE Communications

Surveys & Tuto-rials, vol. 20, no. 2, pp. 1443–1474, 2017.

[22] K. N. Lal and A. Kumar, “A cache content replacement scheme for

infor-mation centric network,” Procedia Computer Science, vol. 89,

pp. 73–81, 2016.

[23] Y. S. Rani and M. Seetha, “Enhanced poc tree-based algorithm for data

item correlation and cache effective replacement in mobile ad hoc net-

work,” Int. J. Pure Appl. Math., vol. 118, no. 19, pp. 225–247, 2018.

[24] M. Bilal and S.-G. Kang, “Time aware least recent used (tlru) cache

management policy in icn,” in 16th International Conference on

Advanced Communication Technology. IEEE, 2014, pp. 528–532.

[25] M. A. P. Putra, H. Situmorang, and N. R. Syambas, “Least recently

frequently used replacement policy named data networking approach,” in

2019 International Conference on Electrical Engineering and

 50

Informatics (ICEEI), 2019, pp. 423–427.

[26] M. Hussaini, S. A. Nor, and A. Ahmad, “Producer mobility support for

information centric networking approaches: A review,” Int. J. Appl.

Eng. Res, vol. 13, no. 6, pp. 3272–3280, 2018.

[27] M. Hussaini, M. A. Naeem, B.-S. Kim, and I. S. Maijama’a, “Efficient

producer mobility management model in information-centric network-

ing,” IEEE Access, vol. 7, pp. 42 032–42 051, 2019.

[28] M. Sardara, “Towards a scalable and programmable incremental

deploy-ment of icn in the real world,” Ph.D. dissertation, Université

Paris-Saclay, 2019.

[29] G. Liu, W. Quan, N. Cheng, B. Feng, H. Zhang, and X. S. Shen,

“Blam: Lightweight bloom-filter based ddos mitigation for

information-centric iot,” in 2018 IEEE Global Communications

Conference (GLOBECOM). IEEE, 2018, pp. 1–7.

[30] P. Gasti and G. Tsudik, “Content-centric and named-data networking

se-curity: The good, the bad and the rest,” in 2018 IEEE International

Sym-posium on Local and Metropolitan Area Networks (LANMAN).

IEEE, 2018, pp. 1–6.

[31] R. Tourani, S. Misra, T. Mick, and G. Panwar, “Security, privacy, and

access control in information-centric networking: A survey,” IEEE com-

munications surveys & tutorials, vol. 20, no. 1, pp. 566–600, 2017.

[32] L. Dong and G. Wang, “A hybrid approach for name resolution and

producer selection in information centric network,” in 2018

International Conference on Computing, Networking and

Communications (ICNC). IEEE, 2018, pp. 574–580.

[33] M. Aamir, “Content-priority based interest forwarding in content

centric networks,” arXiv preprint arXiv:1410.4987, 2014.

[34] Y. Ren, J. Li, L. Li, S. Shi, J. Zhi, and H. Wu, “Modeling content

trans-fer performance in information-centric networking,” Future

Generation Computer Systems, vol. 74, pp. 12–19, 2017.

 51

Appendix

A.1 php code

A.2 TLRU Algorithm

 52

Timer.php file

 <?php

class Timer {

 var $classname = "Timer";

 var $start = 0;

 var $stop = 0;

 var $elapsed = 0;

 # Constructor

 function Timer($start = true) {

 if ($start)

 $this->start();

 }

 # Start counting time

 function start() {

 $this->start = $this->_gettime();

 }

 # Stop counting time

 function stop() {

 $this->stop = $this->_gettime();

 $this->elapsed = $this->_compute();

 }

 # Get Elapsed Time

 function elapsed() {

 if (!$elapsed)

 $this->stop();

 return $this->elapsed;

 }

 # Resets Timer so it can be used again

 function reset() {

 $this->start = 0;

 $this->stop = 0;

 $this->elapsed = 0;

 }

 #### PRIVATE METHODS ####

 # Get Current Time

 function _gettime() {

 $mtime = microtime();

 $mtime = explode(" ", $mtime);

 return $mtime[1] + $mtime[0];

 }

 # Compute elapsed time

 function _compute() {

 return $this->stop - $this->start;

 }

}

?>

 53

Lfu.php file

<?php

error_reporting(0);

 function leastFrequent($arr, $n)

{

 // Sort the array

 sort($arr);

 sort($arr , $n);

 // find the min frequency min heap

 // using linear traversal

 $min_count = $n + 1;

 $res = -1;

 $curr_count = 1;

 for($i = 1; $i < $n; $i++)

 {

 if ($arr[$i] == $arr[$i - 1])

 $curr_count++;

 else

 {

 if ($curr_count < $min_count)

 {

 $min_count = $curr_count;

 $res = $arr[$i - 1];

 }

 $curr_count = 1;

 }

 }

 // If last element is

 // least frequent

 if ($curr_count < $min_count)

 {

 $min_count = $curr_count;

 $res = $arr[$n - 1];

 }

 return $res;

}

//

/////////////////////////

 $n=$_REQUEST["number"];

 // echo $n;

 if(!empty($_REQUEST["number"]))

 { $ss=$_REQUEST["number"]; }

 //***

 $arr = array();

$arr2 = array();

$arr3 = array();

$arr=$_REQUEST["number"];

$cachsize=4;

$fault=0;

$hit=0;

$c=0;

 $mystr=""; $q="";

 $sizz = strlen($ss);

 for($i=0;$i<$sizz;$i++)

 {

 if($arr[$i]<>',')

 { $mystr=$mystr.$arr[$i] ; }

 if($arr[$i]==',')

 54

 {

 $q=$mystr;

 $mystr="";

 $c=$c+1;

 }

 $arr2[$c]=$mystr;

 }

 $myco=0;

 for($j=0;$j<=$c;$j++)

 {

 $aa=$arr2[$j];

 if($myco<$cachsize)

 {

 if(array_key_exists($aa, $arr3))

 {

 $hit=$hit+1;

 $aapos=key($arr3);

 $f=true;

 $mycount=count($arr3);

 $aapos=null;

 ///

 for($x=0;$x<$mycount;$x++){

 if(($arr3[$x])==($aa))

 $aapos=$x; }

 ///

 for($bj=$aapos;$bj<$mycount;$bj++){

 if(($bj+1)<$mycount)

 { $arr3[$bj]=$arr3[$bj+1];}

 }

 $arr3[$mycount-1]=$aa;

 }

 else

 {unset($arr3[$j]);

 $arr3[$myco]=$arr2[$j]; //insert it into arr3 the

first time

 $myco=$myco+1;

 $fault=$fault+1;}

 }else break;

 }//echo $j;

 //search for lfu value in the cache////////arr3 is cache to put

in///

 $lastpos=$myco;

 $mycount=count($arr3);

 if($myco>=$cachsize){

 $f=false;

 $as=$myco+1;

 /////////////////////////////////in case of full cache

size//////////////////////////////////

 for($m=$j;$m<=$c;$m++){

 $f=false;

 for($k=0;$k<$cachsize;$k++)

 {

 $position=$k;

 if(($arr2[$m]==$arr3[$k])and($f==false))

 {

 $hit=$hit+1;

 $temp=$arr3[$k];

 for($b=$k;$b<$cachsize;$b++){

 if(($b+1)<$cachsize)

 $arr3[$b]=$arr3[$b+1];

 }

 55

 $arr3[$cachsize-1]=$temp;

 $f=true;

 }

 }

 if(($f==false))

 {

 $temp2=$arr3[0];

 $nn= sizeof($arr2) / sizeof($arr2[0]);

 $lfu=leastFrequent($arr2,$nn);

 for($y=0;$y<$cachsize;$y++) {

 if($lfu==$arr3[$y])

 {$lfucount=$y;

 }

 }

 $arr3[$lfucount]=$arr2[$m];

 for($bb=$lfucount;$bb<$cachsize;$bb++){

 if(($bb+1)<$cachsize){

 $arr3[$bb]=$arr3[$bb+1];

 }

 }

 $arr3[$cachsize-1]=$arr2[$m]; //replace here//

 $fault=$fault+1;

 } //end if

 } //end for1

 }////////////////////////end

 $z=0;

 foreach ($arr3 as $value1) {

 $z=$z+1;

 if($z<=$cachsize) {echo"<tr><td

width='3'>".$z."</td><td width='30'>";}

 if($z<=$cachsize) echo "<font

color='337ab7'>".$value1."";

 else

 if($z<=$cachsize) {echo "</td></tr>";}

 }

echo"<tr><td><h4> LFU Cache Query Sequence

Trace:</h4></td><td><h6> Total Queries

=".($c+1)." Cach Size=".$cachsize;

echo" Cache

Hit=".$hit." Cache

Miss=".$fault." Cache Hit

Rate=".(round($hit/($c+1),2)*100)."% Cach

e Miss

Rate=".(round($fault/($c+1),2)*100)."%</h6></td></tr>";

 ?>

Main.php file

<!DOCTYPE html>

<html lang="en">

<head>

<meta charset="utf-8">

<title></title>

 <meta name="viewport" content="width=device-width, initial-

scale=1">

 <link rel="stylesheet"

href="bootstrap3.4.1/css/bootstrap.min.css">

 <script

src="https://ajax.googleapis.com/ajax/libs/jquery/3.5.1/jquery.m

in.js"></script>

 56

 <script src="bootstrap33.4.1/js/bootstrap.min.js"></script>

<script src="https://code.jquery.com/jquery-

1.12.4.min.js"></script>

<script>

$(document).ready(function(){

 $("button").click(function(){

 ClickedEl = this.id;

 var numValue = $("#num").val();

 if(ClickedEl=="b1"){

 // Send the input data to the server using get

 $.get("lru1.php", {number: numValue} ,

function(data){

 // Display the returned data in browser

 $("#result").html(data);

 });

 }//if

 if(ClickedEl=="b2"){

 // Send the input data to the server using get

 $.get("mylfu.php", {number: numValue} ,

function(data){

 // Display the returned data in browser

 $("#result").html(data);

 });

 }//if

 if(ClickedEl=="b3"){

 // Send the input data to the server using get

 $.get("tlrualg.php", {number: numValue} ,

function(data){

 // Display the returned data in browser

 $("#result").html(data);

 });

 }//if

 });

});

</script>

<body>

<div class="container" align="center">

<div class="panel-body">

 <p align="center"><font size="6"

color="660066">Replacement Algorithm</p>

 <div class="col-xs-12">

 <input class="form-control" id="num" size="" type="text"

style="width:24 px" placeholder="Enter Query Sequence">

 <button type="button" id="b1"class="btn btn-

info"> Execute LRU Algorithm

</button>

 <button type="button" id="b2"class="btn btn-

primary"> Execute LFU Algorithm

</button>

 <button type="button" id="b3" class="btn btn-

success"> Execute TLRU Algorithm

</button>

 </div>

 <table class="table table-striped" border="0"

width="100%" height="" align="right" id="result"> </table>

</div>

</div>

</body>

</html>

 57

Chart.php file

<?php

 $dataPoints1 = array(

 array("x" => 0, "y" => 0),

 array("x" => 10, "y" => 10),

 array("x" => 20, "y" => 15),

 array("x" => 24, "y" => 25)

);

 $dataPoints2 = array(

 array("x" => 0, "y" => 0),

 array("x" => 10, "y" => 10),

 array("x" => 20, "y" => 20),

 array("x" => 24, "y" => 29)

);

 //$dataPoints3 = array(

// array("x" => 0, "y" => 0),

// array("x" => 10, "y" => 10),

// array("x" => 20, "y" => 15),

// array("x" => 24, "y" => 25)

 //);

?>

<!DOCTYPE HTML>

<html>

<head>

<script>

window.onload = function () {

var chart = new CanvasJS.Chart("chartContainer", {

 animationEnabled: true,

 title:{

 text: "Comparison of Cache Replacement Algorithm Hit

Rates"

 },

 subtitles: [{

 text: "LRU & TLRU Cache size=6",

 fontSize: 18

 }],

 axisY: {

 prefix: ""

 },

 legend:{

 cursor: "pointer",

 itemclick: toggleDataSeries

 },

 toolTip: {

 shared: true

 },

 data: [

 {

 type: "line",

 name: "LRU",

 showInLegend: "true",

 //xValueType: "dateTime",

 //xValueFormatString: "MMM YYYY",

 yValueFormatString: "##0.##",

 58

 xValueFormatString: "##5.##",

 dataPoints: <?php echo json_encode($dataPoints1); ?>

 },

 {

 type: "line",

 name: "TLRU",

 showInLegend: "true",

 //xValueType: "dateTime",

 //xValueFormatString: "MMM YYYY",

 yValueFormatString: "##0.##",

 xValueFormatString: "##5.##",

 dataPoints: <?php echo json_encode($dataPoints2); ?>

 }

 /*{

 type: "line",

 name: "LFU",

 showInLegend: "true",

 //xValueType: "dateTime",

 //xValueFormatString: "MMM YYYY",

 yValueFormatString: "##0.##",

 xValueFormatString: "##5.##",

 dataPoints: <?php echo json_encode($dataPoints3); ?>

 }*/

]

});

chart.render();

function toggleDataSeries(e){

 if (typeof(e.dataSeries.visible) === "undefined" ||

e.dataSeries.visible) {

 e.dataSeries.visible = false;

 }

 else{

 e.dataSeries.visible = true;

 }

 chart.render();

}

}

</script>

</head>

<body>

<div id="chartContainer" style="height: 370px; width:

100%;"></div>

<script src="canvasjs/canvasjs.min.js"></script>

</body>

</html>

Chart2.php file

<?php

 $dataPoints1 = array(

 array("x" => 0, "y" => 0),

 array("x" => 10, "y" => 10),

 array("x" => 20, "y" => 10),

 array("x" => 24, "y" => 25)

);

 59

 $dataPoints2 = array(

 array("x" => 0, "y" => 0),

 array("x" => 10, "y" => 10),

 array("x" => 20, "y" => 15),

 array("x" => 24, "y" => 29)

);

 //$dataPoints3 = array(

// array("x" => 0, "y" => 0),

// array("x" => 10, "y" => 10),

// array("x" => 20, "y" => 15),

// array("x" => 24, "y" => 25)

 //);

?>

<!DOCTYPE HTML>

<html>

<head>

<script>

window.onload = function () {

var chart = new CanvasJS.Chart("chartContainer", {

 animationEnabled: true,

 title:{

 text: "Comparison of Cache Replacement Algorithm Hit

Rates"

 },

 subtitles: [{

 text: "LRU & TLRU Cache size=8",

 fontSize: 18

 }],

 axisY: {

 prefix: ""

 },

 legend:{

 cursor: "pointer",

 itemclick: toggleDataSeries

 },

 toolTip: {

 shared: true

 },

 data: [

 {

 type: "line",

 name: "LRU",

 showInLegend: "true",

 //xValueType: "dateTime",

 //xValueFormatString: "MMM YYYY",

 yValueFormatString: "##0.##",

 xValueFormatString: "##5.##",

 dataPoints: <?php echo json_encode($dataPoints1); ?>

 },

 {

 type: "line",

 name: "TLRU",

 showInLegend: "true",

 //xValueType: "dateTime",

 //xValueFormatString: "MMM YYYY",

 yValueFormatString: "##0.##",

 xValueFormatString: "##5.##",

 dataPoints: <?php echo json_encode($dataPoints2); ?>

 }

 60

 /*{

 type: "line",

 name: "LFU",

 showInLegend: "true",

 //xValueType: "dateTime",

 //xValueFormatString: "MMM YYYY",

 yValueFormatString: "##0.##",

 xValueFormatString: "##5.##",

 dataPoints: <?php echo json_encode($dataPoints3); ?>

 }*/

]

});

chart.render();

function toggleDataSeries(e){

 if (typeof(e.dataSeries.visible) === "undefined" ||

e.dataSeries.visible) {

 e.dataSeries.visible = false;

 }

 else{

 e.dataSeries.visible = true;

 }

 chart.render();

}

}

</script>

</head>

<body>

<div id="chartContainer" style="height: 370px; width:

100%;"></div>

<script src="canvasjs/canvasjs.min.js"></script>

</body>

</html>

 61

TLRU Algorithm:

1- ƒ = *

2- g=

3- =ƒ()↑g()

4- If >

5- If s[j]≥

6- Do ᵿ

7- If →

8- LRU() → evict

9- s[j] → U s[j]

10- Else

11- LRU() → evict

12- s[j] → U s[j]

13- else s[j] → U s[j]

14- else reject

